

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

The Regulation of Meiotic Recombination by DNA Damage Response Proteins

A thesis submitted for the degree of Doctor of Philosophy in Biochemistry

Margaret Rosemary Crawford
Genome Damage and Stability Centre
University of Sussex
May 2017

Statement

I hereby declare that this thesis has not been and will not be, submitted in whole
or in part to another University for the award of any other degree.
Signature:

Acknowledgements

Foremost I would like to thank Matt Neale, for excellent supervision, scientific guidance and personal mentoring.

I also thank the Neale lab, past and present, for their help, guidance and support. In particular, Tim Cooper, who carried out analysis to investigate interference in my recombination event data; Rachal Allison, for the hundreds of dissection plates; and Kayleigh Wardell, Dominic Johnson and Valerie Garcia, for answering all my questions.

I would like to thank Bertrand Llorente and Marie-Claude Marsolier for protocols, yeast strains and data analysis scripts for genome-wide analysis of recombination, and for their help and advice.

Summary

Homologous recombination (HR) is a vital aspect of meiotic cell division, required for the correct segregation of chromosomes, and generation of genetic diversity. DNA double strand breaks (DSBs) are formed by Spo11 and repaired by HR to produce crossovers (COs) between homologous chromosomes. DSBs and COs are subject to interference to ensure even spacing of recombination events. The DNA damage response checkpoint, mediated by Mec1 and Tel1, is partly responsible for the regulation of HR and its outcomes.

To investigate HR outcomes, hybrid budding yeast containing ~65,000 variants were induced to undergo meiosis and the resulting spores were sequenced. Recombination events were categorized via comparison to the parental genomes, using a custom-designed bioinformatic pipeline.

Changes in recombination event type and distribution were examined in Mec1 and Tel1 mutants, revealing that these proteins are required to limit Spo11-DSB formation, reduce DSB clustering and maintain DSB interference, and to promote CO formation and mediate CO interference, likely by altering the ratio of interfering to non-interfering CO formation.

An activator of Mec1, Rad24, is shown to have a meiotic recombination phenotype similar to that of the Mec1 mutant, but displays an increase in event length, and a reduction in CO interference and CO formation. The roles of Mec1, Tel1 and Rad24 are further examined by testing genetic interaction with factors that influence the outcome of meiotic recombination. Separable roles of Mec1 and Rad24 are also identified by examining the different effects of prophase extension on these strains.

During these analyses, it is determined that the mismatch repair protein Msh2 has opposing roles in both improving and reducing spore survival in hybrids, and in the promotion of interfering CO formation.

Collectively, this study reveals the consequences of the loss of important DNA damage sensor proteins on the meiotic genome, at a high resolution conferred by the use of deep-sequencing and bioinformatic tools.

Table of Contents

Declaration	i
Acknowledgements	ii
Summary	iii
List of Figures	xii
Abbreviations	xviii
Chapter 1. Introduction	1
1.1. Meiosis	2
1.2. Homologue Pairing and separation	6
1.3. Homologous Recombination	7
1.4. Structure and Function of Spo11	8
1.5. Spo11 accessory factors	10
1.6. Location of Spo11-DSBs	11
1.7. Timing of Spo11-DSB formation	13
1.8. DSB processing	14
1.9. HJ-resolution in <i>S. cerevisiae</i>	18
1.10. ZMM proteins promote the formation of Class I interfering COs	19
1.11. Influence of DSB interference on CO interference	21
1.12. Roles of Mec1 and Tel1 in the DNA damage response	21
1.13. Regulation of Sml1 activity by Mec1	23
1.14. Role of Mec1 and Rad24 in CO formation and Class	_26
1.15. Roles of Mec1 and Rad24 in CO and DSB interference	26
1.16. Evidence for a role in DSB interference for Tel1	_26
1.17. Evidence for a role in CO interference for Tel1	_27
1.18. The role of NDT80 in meiosis	_28
1.19. Spo11 hypomorph alleles	_30
1.20. Interaction between NDT80, Spo11 and Rad24	_30
1.21. Assaying Meiotic recombination	_31
1.22. Caveats of whole-genome recombination assays	34
1.23. Recombination is impaired in a hybrid diploid	_35
1.24. The use of MMR-deficient strains increases meiotic recombination rate and allows observation of post-meiotic segregation	_36

1.25. Bioinformatic solutions for detection and classification of recombination genome-wide	38
1.26. General aims of this project	39
Chapter 2. Methods	40
2.1. Strain creation	41
2.2. Yeast growth media	44
2.3. Yeast Transformation	45
2.4. Spot tests for resistance to UV light and Hydroxyurea	45
2.5. Meiotic timecourses with <i>NDT80</i> or <i>CDC20</i> arrest	46
2.6. Sporulation Efficiency	46
2.7. Dissection of tetrads/octads to assay spore viability and for sequencing hybrids_	46
2.8. Genomic DNA Preparation	47
2.9. Preparation of samples for sequencing	48
2.10. Alignment of paired-end reads	49
2.11. Detection of SNPs and indels and creation of SK1 genome	50
2.12. Genotype calling in tetrads and octads	51
2.13. Event Calling	52
2.14. Subclassification of events	53
2.15. Event Imaging	58
2.16. Manual Annotation of Events	58
2.17. Removal of false events	59
2.18. Inter-event distance simulations: independence and interference	59
2.19. Mixture modelling	60
2.20. Kolmogorov–Smirnov test	61
2.21. T-test	62
2.22. F-test	62
2.23. One-way ANOVA	
2.23. Tukey Test	62
Chapter 3. Spore viability in the absence of the DNA damage response and mismatch repair	63
3.1. Introduction	64

3.1.1. General Introduction	64
3.1.2. The relationship between DSB formation, DNA damage response and meiotic progression	64
3.1.3. NDT80 arrest system	65
3.1.3. Aims of this investigation	65
3.2. Results	6
3.2.1. The spore viabilities of $rad24\Delta$ and $hypo-Spo11$ mutants positively correlate with time in $NDT80$ arrest	66
3.2.2. Use of the <i>NDT80</i> arrest and release system causes sporulation defects	69
3.2.3. Early induction of <i>NDT80</i> in <i>RAD24</i> strains	71
3.2.4. The viability of P_{CLB2} -MEC1 is not affected by NDT80 arrest	74
3.2.5. SML1 deletion rescues <i>rad24∆</i> spore viability	75
3.2.6. The deletion of $SML1$ and prophase arrest rescue the viability of $rad24\Delta$ by different mechanisms	78
3.2.7. Different <i>S. cerevisiae</i> strains display significantly altered spore viabilities in checkpoint-deficient backgrounds	78
3.2.8. <i>sml1</i> \(\Delta\) rescues $rad24\(Delta\)$ viability in cycling cells when exposed to UV damage but not hydroxyurea	80
3.2.9. Effect of metaphase arrest on <i>rad24∆</i> spore viability	82
3.2.10. The mismatch repair protein Msh2 has both negative and positive effects on spore viability	84
3.2.11. In SK1xS288c hybrids, both <i>rad24∆</i> and <i>P_{CLB2}-MEC1</i> are rescued by <i>NDT80</i> arrest	86
3.2.12. The benefits of $msh2\Delta$ in $rad24\Delta$ are additive to those of $sml1\Delta$ and prolonged prophase	89
3.3. Discussion	90
3.3.1. Effect of prophase extension in Rad24 and Mec1 mutants	90
3.3.2. Effect of <i>sml1</i> △ and <i>msh2</i> △ in Rad24 and Mec1 mutants	91
3.3.3. Spo11-DSB levels in <i>rad24</i> Δ	92
3.3.4 Closing statement	92
Chapter 4. Development of lab and bioinformatics methods for generating and analyzing recombination event data	93
4.1. Introduction	94
4.1.1. General introduction	94

and allows observation of post-meiotic segregation	94
4.1.3. Bioinformatic solutions for detection and classification of recombination genome-wide	95
4.1.4. Characteristics of an SK1 x S288c hybrid cross	95
4.1.5. Aims of this investigation	95
4.2. Results	96
4.2.1. Strategy for maximizing sequencing data	96
4.2.2. Reduction of contamination by 2μ plasmid and mitochondrial DNA	99
4.2.3. Detection of polymorphisms and creation of SK1 genome	_100
4.2.4. SNP calling	102
4.2.5. Heteroduplex calling in <i>msh2∆</i> tetrads	103
4.2.6 Presence of potential duplications	104
4.2.7. Errors in heteroduplex calling	104
4.2.8. Variant call reconciliation	106
4.2.9. MMR incompatibility	107
4.2.10 Event categorization	108
4.2.11. Subcategorization of events and manual annotation	109
4.2.12 Quality control of detected recombination events	122
4.3. Discussion	125
4.3.1. Advantages of sequencing over microarray for marker detection	125
4.3.2. Adjustments to marker numbers, event resolution and event classification	125
4.3.4 Closing statement	126
Chapter 5. Effect of MMR deficiency and prolonged prophase on meiotic recombination in WT hybrid crosses	127
5.1 Introduction	128
5.1.1 General introduction	128
5.1.2 Aims of this section	129
5.2 Results	129
5.2.1 The number of detected recombination events in hybrids is altered by prophase arrest and MMR deficiency	129
5.2.2. Relationship between chromosome length and recombination	134

5.2.3 The complexity of detected recombination events in WT, prophase arrest and MMR deficient backgrounds	
5.2.4. The length of detected recombination events in WT, prophase arrest and MMR deficient backgrounds	
5.2.5. Presence of potential duplications and deletions in WT, prophase extended and MMR deficient backgrounds	143
5.2.6. Distribution of recombination events in relation to centromeres and telomeres	_146
5.2.7 The distribution of CO events shows evidence of interference	_148
5.2.8 The distribution of NCO events does not shows evidence of interference	152
5.2.9. The distribution of all recombination events shows some evidence of DSB interference	_154
5.2.10. MMR-deficient meiotic recombination is predicted to have a lower proportion of Class II COs than WT	157
5.3. Discussion	_159
5.3.1. The effect of the mismatch repair protein Msh2 on meiotic recombination	159
5.3.2. Effect of prophase arrest	159
5.3.4 Closing statement	161
Chapter 6. The role of the DDR kinase Tel1 in regulation of meiotic recombination	162
6.1. Introduction	163
6.1.1. Roles of Tel1 in the DNA damage response	163
6.1.2. Evidence for a role in DSB interference for Tel1	163
6.1.3. Evidence for a role in CO interference for Tel1	164
6.1.4. Aims of this investigation	164
6.2. Results	165
6.2.1. Tel1 deletion increases numbers of detected recombination events in hybrids	165
6.2.2. Relationship between chromosome length and recombination	168
6.2.3. Tel1 affects the complexity of detected recombination events	168
6.2.4. 6:2/2:6 conversion tracts observed in MMR-deficient recombination may represent DSB clusters	_176
6.2.5. Recombination event length is altered in $tell\Delta$	181
6.2.6. Presence of potential duplications is increased in $tell\Delta$	184

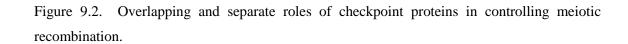
5.2.7. Distribution of recombination events in relation to centromeres and relomeres	188
5.2.8. The distribution of CO events shows evidence of loss of interference between COs in $tell\Delta$	190
5.2.9. The distribution of NCO events does not show evidence of interference	<u>1</u> 93
5.2.10. The distribution of all recombination events shows some evidence of DSB interference loss in $tel1\Delta$ $msh2\Delta$	194
$5.2.11$. The proportion of Class I and Class II COs is predicted to be altered in $tell\Delta$	196
5.3. Discussion	198
5.3.1. Comparison of genome-wide sequencing in MMR-proficient and MMR-deficient <i>tel1</i> ∆ hybrids	198
5.3.2 Closing statement	199
Chapter 7. Separable roles of Mec1 and Rad24 in regulation of meiotic recombination	200
7.1. Introduction	201
7.1.1. Roles of Mec1 and Rad24 in the DNA damage response	201
7.1.2. Roles of Mec1 and Rad24 in CO and DSB interference	202
7.1.3. Differences and similarities in Rad24 and Mec1 meiotic behaviour	202
7.1.4. Genome-wide analysis of recombination in <i>rad24</i> \(\Delta\) and P _{CLB2} -MEC1 is confounded by low spore viability	203
7.1.5. Aims of this investigation	204
7.2. Results	205
7.2.1. Alterations in CO and NCO numbers in <i>rad24</i> \(\Delta\) and <i>P</i> _{CLB2} -MEC1	205
7.2.2. Loss of CO assurance in <i>rad24</i> Δ	211
7.2.3. The complexity of detected recombination events is altered in checkpoint mutants	215
7.2.4. Conversion tracts observed in MMR-deficient recombination may represent DSB clusters	221
7.2.5. Event length is altered in checkpoint mutants	226
7.2.6. Increase in potential duplications in $rad24\Delta$ and P_{CLB2} -MEC1 prophase extension backgrounds	_233
7.2.7. Distribution of recombination events in relation to centromeres and relomeres	238
7.2.8. The distribution of CO events shows evidence of interference loss in checkpoint mutants	241

7.2.9. The distribution of NCO events does not show evidence of interferen	ce.246
7.2.10. The distribution of all recombination events may show evidence of DSB interference loss in DDR mutants	248
7.2.11. Mixture modelling predicts proportion of Class I and Class II COs in $rad24\Delta$ and P_{CLB2} -MEC1	251
7.3. Discussion	254
7.3.1 The meiotic roles of Rad24 and Mec1	254
7.3.2. Influence of CO interference and CO numbers on spore viability and CO assurance in $rad24\Delta$	255
7.3.3. Differences and similarities between recombination in msh2 Δ and prophase-arrested $rad24\Delta$ and P_{CLB2} -MEC1 backgrounds	255
7.3.4 Closing statement	258
Chapter 8. The effect of resolvase pathway choice on spore viability and CO interference in DDR and MMR mutants	
8.1. Introduction_	
8.1.1. CO resolution in <i>S. cerevisiae</i>	260
8.1.2. ZMM proteins promote the formation of Class I interfering COs	260
8.1.3. Mixture modelling predicts the percentage of Class II COs	260
8.1.4. Aims of this investigation	261
8.2. Results	262
8.2.1. Deletion of Mus81 reduces spore viability in all strains except rad24.	<i>1</i> .262
8.2.2. Contribution of resolvases to WT spore viability	265
8.2.3. Contribution of resolvases to <i>rad24∆</i> spore viability	268
8.2.3. <i>rad24</i> \Delta spore viability is no longer rescued by 8 h of prophase arrest in the absence of Mus81 activity	
8.3. Discussion	273
8.3.1 Effect of different proteins on Class I/II ratio	273
8.3.4 Closing statement	276
Chapter 9 Discussion	277
Chapter 9. Discussion	
9.1. Overview	_210
9.2. Development and quality control of a customized pipeline for recombination event analysis	278
9.3. Analysis of recombination genome-wide in wild type meiosis	279

9.4. Analysis of recombination genome wide in $tell \Delta$	282
9.5. Separable contributions of Rad24 and Mec1 to outcomes of meiosis	284
9.5.1 Meiotic recombination	284
9.5.2 Spore viability	284
9.5.3 Efficient DSB repair	_286
9.6. The contribution of CO resolvases to meiotic success in the absence of DDR and MMR proteins	_287
9.7 Contribution of Mec1 and Tel1 to meiotic recombination	287
9.8. Increase in recombination event length observed in mutants mostly explainable by increase in DSB cluster events	_290
9.9. Future Work	_291
9.10 Closing statement	293
Reference List	_294

List of Figures and Tables

- Figure 1.1. Simple representation of the stages of mitosis.
- Figure 1.2. Simple representation of the stages of meiosis.
- Figure 1.3. Simple representation of the chromosomal events of meiosis.
- Figure 1.4. Comparison of average frequency of nucleosome occupancy and Spo11-DSB hits around piled-up gene transcription start sites.
- Figure 1.5. Simple representation of the tethered-loop axis model of the synaptonemal complex and Spo11-DSB tethering.
- Figure 1.6. Key roles of DNA damage checkpoint proteins in meiotic prophase.
- Figure 1.7. Models of meiotic CO and NCO formation as described by Paques and Haber, 1999.
- Figure 1.8. The role of Sml1 in the mitotic response to DNA damage.
- Table 2.1. S. cerevisiae strains used in this study.
- Table 2.2. Drug concentrations.
- Table 2.3. Amino acid concentrations.
- Table 2.4. Deletion calling rules.
- Figure 2.1. Examples of events matching NCO groups and classes.
- Figure 2.2. Examples of events matching CO groups and classes.
- Figure 3.1. Effects of prophase arrest on spore viability and sporulation efficiency.
- Figure 3.2. A comparison of *rad24*\Delta strains and *RAD24* strains with 3-5 hours of prophase and hypomorphic Spo11.
- Figure 3.3. The effects of prophase arrest on the spore viability of Mec1 mutants.
- Figure 3.4. The effect of Sml1 deletion on the spore viability of Rad24 mutants.
- Figure 3.5. Differences in spore viability observed in SK1 and S288c strains.
- Figure 3.6. Spot tests carried out on WT, $rad24\Delta$, $sml1\Delta$ and $rad24\Delta$ $sml1\Delta$ strains in both SK1 and S288c backgrounds.
- Figure 3.7. Comparison of effect of *NDT80* arrest and *CDC20* arrest on viability of WT and $rad24\Delta$ strains.
- Figure 3.8. Comparison of pure and hybrid spore viabilities.


- Figure 3.9. Effects of prophase arrest, *SML1* mutation and MMR deficiency on the spore viability hybrid strains
- Figure 4.1. Workflow for genome-wide analysis of recombination.
- Figure 4.2. The average spore viability of $msh2\Delta$ tetrads and $msh2\Delta$ octads.
- Figure 4.3. Quality control of sequencing sample preparation. All error bars are 95% confidence limits.
- Figure 4.4. Reduction of contamination in sequenced DNA.
- Figure 4.5 Comparison of the distribution of distances between polymorphisms.
- Figure 4.6. Considerations for heteroduplex calling.
- Table 4.1. Comparison of recombination event features that can be seen in the different types of sequenced tetrad.
- Figure 4.7. Percentage of variant positions removed in each sample compared to the average read depth of variant positions for each sample
- Figure 4.8. The percentage increase in the number of separate events called when the merging threshold is reduced from 5000 to 1500, across different genotypes.
- Figure 4.9. Models of meiotic NCO formation.
- Figure 4.10. Models of meiotic CO formation.
- Figure 4.11. A selection of example CO events from $msh2\Delta$ octads.
- Figure 4.12. A selection of example NCO events from *msh2*∆ octads.
- Figure 4.13. A selection of example events from *msh2*∆ octads containing 8:0 or 0:8 segments.
- Figure 4.14. A selection of example dCO events from *msh2*△ octads.
- Figure 4.15. Comparison of the average number of recombination events classified for each genotype before and after manual annotation.
- Figure 4.16. Comparison of the data output observed from the $msh2\Delta$ octads produced in this study and those from the Llorente lab.
- Table 5.1. Data summary for recombination events detected in WT, $msh2\Delta$ and prophase arrested backgrounds.
- Figure 5.1. Quantity of recombination events detected in WT, MMR deficient and prophase extension strains.

- Table 5.2. Data summary of the percentage of CO and NCO events in each group and class, detected in WT, $msh2\Delta$ and prophase arrested backgrounds.
- Figure 5.2. Categories of recombination events detected in WT, MMR deficient and prophase extension strains.
- Figure 5.3. Mid length estimates for recombination events detected in WT, MMR deficient and prophase extension strains.
- Figure 5.4. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in WT, MMR deficient and prophase extension strains.
- Figure 5.5. Length of potential duplications detected in WT, MMR deficient and prophase extension strains.
- Table 5.3. Data summary for potential duplications and deletions detected in WT, $msh2\Delta$ and prophase arrested backgrounds.
- Figure 5.6. Length of potential deletions detected in WT, MMR deficient and prophase extension strains.
- Figure 5.7. Distance between telomeres or centromeres and CO events detected in WT, MMR deficient and prophase extension strains.
- Figure 5.8. Distribution of distances between crossover events observed in WT, MMR deficient and prophase extension strains.
- Table 5.4. Gamma parameters.
- Figure 5.9. Distribution of distances between noncrossover events observed in WT, MMR deficient and prophase extension strains.
- Figure 5.10. Distribution of distances between all recombination events observed in WT, MMR deficient and prophase extension strains.
- Table 5.5. Percentage of COs that do not appear to show interference in sequenced strain backgrounds
- Table 5.6. Summary of basic recombination characteristics across strains.
- Table 6.1. Data summary for recombination events detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ backgrounds.
- Figure 6.1. Quantity of recombination events detected in $msh2\Delta$ and $tell\Delta$ $msh2\Delta$ strains.

- Table 6.2. Data summary of the percentage of CO and NCO events in each group and class, detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ backgrounds.
- Figure 6.2. Categories of recombination events detected in $msh2\Delta$ and $tell\Delta$ $msh2\Delta$ strains.
- Figure 6.3. Examples of four-chromatid double COs detected in *tel1*△ *msh2*△ strains.
- Figure 6.4. Examples of different event types containing 8:0 segments detected in $tel1\Delta$ $msh2\Delta$ strains.
- Figure 6.5. Examples of different event types containing 6:2 segments detected in $tel1\Delta$ $msh2\Delta$ strains.
- Figure 6.6. Comparison of conversion segment features detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains.
- Figure 6.7. Mid length estimates of recombination events detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains.
- Figure 6.8. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains.
- Figure 6.9. Length of potential duplications detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains
- Table 6.3. Data summary for potential duplications and deletions detected in $msh2\Delta$ and $tell\Delta$ msh2 Δ backgrounds.
- Figure 6.10. Length of potential deletions detected in $msh2\Delta$ and $tell\Delta msh2\Delta$ strains.
- Figure 6.11. Distance between telomeres or centromeres and CO events detected in $msh2\Delta$ and $tel1\Delta msh2\Delta$ strains.
- Table 6.4. Gamma parameters.
- Figure 6.12. Distribution of distances between crossover events observed in $msh2\Delta$ and $tell\Delta$ $msh2\Delta$ strains.
- Figure 6.13. Distribution of distances between noncrossover events observed in $msh2\Delta$ and $tell\Delta$ msh 2Δ strains.
- Figure 6.14. Distribution of distances between all recombination events observed in $msh2\Delta$ and $tel1\Delta msh2\Delta$ strains.
- Table 6.5. Percentage of COs that do not appear to show interference in sequenced strain backgrounds.

- Table 7.1. Data summary for recombination events detected in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$, $rad24\Delta$ $msh2\Delta$, WT+8 h, P_{CLB2} -MEC1 +8 h, $rad24\Delta$ +10 h, $rad24\Delta$ $msh2\Delta$ $sml1\Delta$ and $rad24\Delta$ $sml1\Delta$ backgrounds.
- Figure 7.1. Quantity of recombination events detected in MMR deficient and prophase arrested $rad24\Delta$ and P_{CLB2} -MEC1 strains.
- Figure 7.2. Density of recombination events detected in MMR deficient or prophase arrested $rad24\Delta$ and P_{CLB2} -MEC1 strains.
- Table 7.2. Data summary of the percentage of CO and NCO events in each group and class.
- Figure 7.3. Abnormal mitotic recombination events in P_{CLB2} -MEC1 strains.
- Figure 7.4. Relationship between CO number and the number of chromosomes without COs in $rad24\Delta$ and P_{CLB2} -MEC1 strains.
- Figure 7.5. Categories of recombination events detected in MMR-deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains.
- Figure 7.6. Categories of recombination events detected in $rad24\Delta$ and P_{CLB2} -MEC1 strains with prophase extension.
- Figure 7.7. Comparison of conversion segment features detected in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$ and $rad24\Delta$ $msh2\Delta$ strains.
- Figure 7.8. Mid length estimates of recombination events detected in MMR deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains.
- Figure 7.9. Mid length estimates of recombination events detected in *rad24*\(\Delta\) and *PCLB2-MEC1* strains with prophase extension.
- Figure 7.10. Example long recombination events detected in rad24\Delta with prophase extension.
- Figure 7.11. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in MMR deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains.
- Figure 7.12. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in prophase-extension $rad24\Delta$ and P_{CLB2} -MEC1 strains
- Figure 7.13. Length of potential duplications detected in $rad24\Delta$ and P_{CLB2} -MEC1 strains with prophase extension.
- Table 7.3. Data summary for potential duplications and deletions detected in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$, $rad24\Delta$ $msh2\Delta$, WT+8 h, P_{CLB2} -MEC1 +8 h and $rad24\Delta$ +10 h tetrads.

- Figure 7.14. Length of potential deletions detected in $rad24\Delta$ and P_{CLB2} -MEC1 strains with prophase extension and MMR deficiency.
- Figure 7.15. Distance between telomeres or centromeres and CO events detected in MMR deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains.
- Figure 7.16. Distance between telomeres or centromeres and CO events detected in $rad24\Delta$ and P_{CLB2} -MEC1 strains with prophase extension.
- Figure 7.17. Distribution of distances between crossover events observed in MMR deficient and prophase extension checkpoint mutant strains
- Table 7.4. Gamma parameters
- Figure 7.18. Distribution of distances between noncrossover events observed in MMR deficient and prophase extension checkpoint mutant strains.
- Figure 7.19. Distribution of distances between all recombination events observed in MMR deficient and prophase extension checkpoint mutant strains.
- Table 7.5. Percentage of COs that do not appear to show interference in sequenced strain backgrounds.
- Table 7.6. Summary of basic recombination characteristics across strains, highlighting differences between MMR deficient and prophase extension strains.
- Table 8.1. Percentage of COs that do not appear to show interference in sequenced strain backgrounds.
- Figure 8.1. Spore viability in strains with and without Mus81 activity.
- Table 8.2. Observed and expected spore viabilities of $mus81\Delta$ strains.
- Figure 8.2. Spore viability in resolvase mutants.
- Table 8.3. Observed vs expected spore viabilities of *rad24∆* strains.
- Figure 8.3. Effect of 4 or 8 hours of prophase arrest on the spore viability of $mus81\Delta$ and $rad24\Delta$ mus81 Δ yeast.
- Figure 8.4. Model of Class I / Class II pathway influences
- Table 9.1. Summary of basic recombination characteristics across strains.
- Figure 9.1. Model of Rad24 and Mec1 meiotic roles

List of Abbreviations

AA: Amino acid bp: base pairs °C: Degrees Centigrade CDK: Cyclin dependent kinase CO: Crossover CWC: Chromosome without a Crossover dCO: double crossover DDR: DNA Damage Response dHJ: double Holliday Junction D-loop: Displacement loop DNA: Deoxyribonucleic acid dNTP: deoxynucleoside triphosphate dNCO: double non-crossover DSB: Double strand break dsDNA: double stranded DNA h: hours hDNA: Heteroduplex DNA HR: Homologous Recombination HU: Hydroxyurea Indel: insertion/deletion IED/ICD/IND: Inter-Event/CO/NCO distance JM: Joint molecule Kb: Kilobases KS: Kolmogorov-Smirnov

M: Molar

Mb: Megabases

Ml: millilitres

mM: millimolar

MMR: Mismatch repair

mtDNA: mitochondrial DNA

μl: microlitre

NCO: Non-crossover

ng: nanogram

OM: Octad msh2∆

OMT: Octad *msh2∆ tel1∆*

RFC: Replication factor C

RMM: Rec114, Mer2, Mei4

SC: Synaptonemal complex

SDSA: Synthesis-dependent strand annealing

SNP: Small Nucleotide Polymorphism

ssDNA: Single-stranded DNA

TCMM: Tetrad pCLB2-MEC1 msh2△

TCMN: Tetrad pCLB2-MEC1 Ndt80-arrest

TN: Tetrad Ndt80-arrest

TRM: Tetrad rad24△ msh2△

TRMS: Tetrad rad24\(Delta\) msh2\(Delta\) sml1\(Delta\)

TRN: Tetrad rad24△ Ndt80-arrest

TRS: Tetrad rad24△ sml1△

TW: Tetrad wild-type

WT: Wild type

ZMM: Zip1, Zip2, Zip3, Zip4, Mer3, Msh4, Msh5

Chapter 1.

Introduction

Chapter 1. Introduction

1.1. Meiosis

Meiosis is a specialized form of eukaryotic cell division that produces haploid gametes from a diploid parent. Haploid gametes are required for sexual reproduction, and include animal eggs and sperm, plant pollen and ova, and fungal spores.

Eukaryotic vegetative growth is characterized by alternation of chromosome replication and segregation, maintaining a diploid genome (Figure 1.1). In meiosis, a reduction in ploidy is achieved by the occurrence of two sequential chromosome segregation events, first segregating homologous chromosomes in Meiosis I, followed by sister chromatids in Meiosis II (Figure 1.2). DNA replication is regulated by Cdk levels; in G1 when Cdk activity is low, prereplicative complexes are formed at replication origins, and an increase in Cdk levels in late G1 initiates DNA replication (Tanaka & Araki, 2010). In meiosis, a second replication phase is skipped because Cdk activity is maintained at a high levels in between the two divisions (Holt *et al.*, 2007).

To achieve chromosome segregation, spindle fibres attach to the kinetochore, a protein structure that links microtubules and centromeres. During mitosis, sister chromatid kinetochores must be orientated such that they attach to opposite poles of the cell. However, in Meiosis I, sister kinetochores must attach to the same pole, while homologs must attach to opposite poles. In Meiosis II, sister kinetochores must attach to opposite poles as in mitosis. In *Saccharomyces cerevisiae*, a single microtubule attaches to each kinetochore, and the protein complex monopolin, which clamps microtubule binding sites, is required for monopolar orientation of sister kinetochores in meiosis I (Tóth *et al.*, 2000; Rabitsch *et al.*, 2003).

In order for correct segregation of chromosomes to occur, chromosome pairs must be connected to each other, ensuring proper orientation on the spindle apparatus (reviewed in Miller *et al.*, 2013). As in mitotic cell division, sister chromatids are joined by sister chromatid cohesion which is established during duplication of the diploid genome in premeiotic S phase (reviewed in Nasmyth & Haering, 2009). In contrast, homologous chromosomes must become connected by chiasmata during meiotic prophase (Figure 1.3).

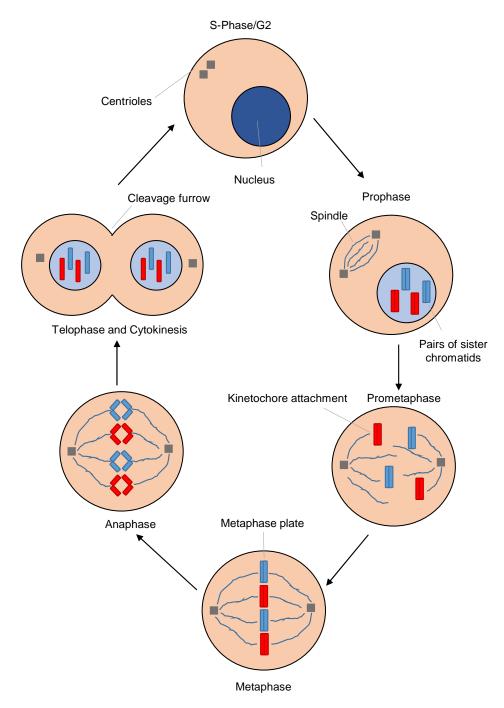


Figure 1.1. Simple representation of the stages of mitosis.

S-Phase/G2: Cell growth, centrioles and chromosomes duplicate.

Prophase: Chromosomes condense, centrioles move to opposite sides of the cell, microtubules are assembled.

Prometaphase: The nuclear envelope disintegrates and microtubules can attach to kinetochores.

Metaphase: Chromosomes line up on the metaphase plate and become connected to spindle fibres.

Anaphase: Sister chromatids are pulled apart.

Telophase & cytokinesis: Chromosomes decondense and the nuclear envelope reforms.

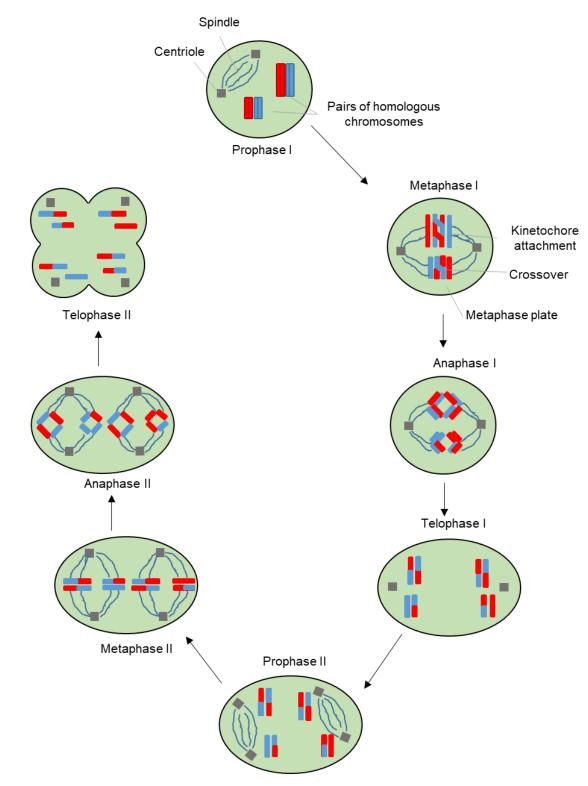


Figure 1.2. Simple representation of the stages of meiosis.

Prophase I: Homologous chromosomes pair up and crossovers form.

Metaphase I: Homologous chromosomes line up on the metaphase plate and are connected to spindle fibres.

Anaphase I: Homologous chromosomes are pulled apart.

Telophase I & cytokinesis: Cytoplasm divides to form two separate cells.

Prophase II: A new spindle forms in each separate cell.

Metaphase II: Chromosomes line up on the metaphase plate.

Anaphase II: sister chromatids are separated.

Telophase II & cytokinesis: The nuclear envelope reforms, cytoplasm divides to form a total of four separate haploid cells. 4

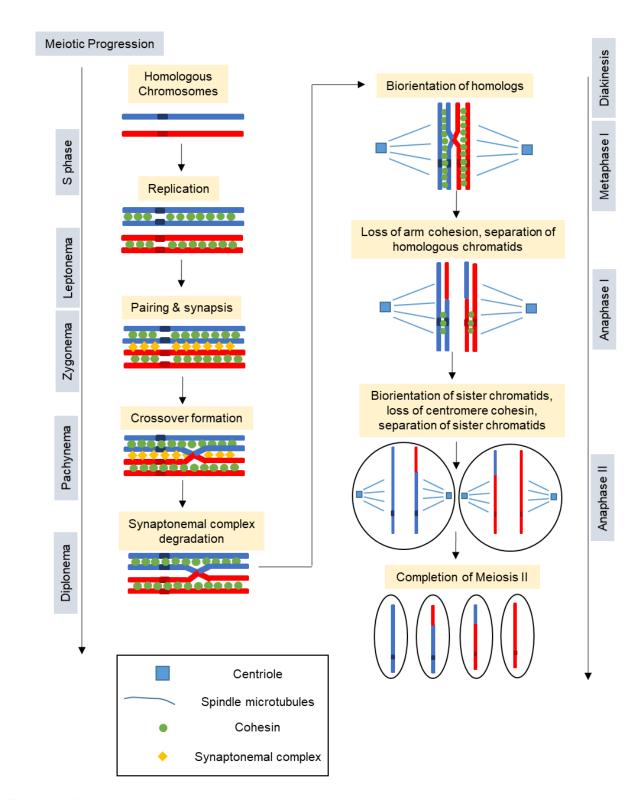


Figure 1.3. Simple representation of the chromosomal events of meiosis.

The main stages are shown for a single pair of homologous chromosomes (red and blue). Green circles indicate cohesin complexes connecting sister chromatids. Yellow diamonds represent the synaptonemal complex. Darker patches on chromosomes are kinetochores/centromeres. The blue structure represents the spindle, with a square as the centriole and lines as microtubules.

A CO establishes a physical link between homologues. A crossover between homologues in conjunction with cohesion establishes a physical connection, and allows orientation on the meiotic spindle.

1.2. Homologue Pairing and separation

Several factors contribute to the process of homologue pairing. During the meiotic prophase of many organisms, chromosomes are arranged in a bouquet formation, where telomeres become attached to the nuclear envelope (Harper *et al.*, 2004). In *S. cerevisiae*, vigorous chromosome movement occurs during prophase I, led by telomere clustering near spindle pole bodies and powered by actin filaments; this facilitates the pairing of homologous chromosomes (Scherthan et al., 2007; Conrad *et al.*, 2008, Koszul *et al.*, 2008). Homologous chromosomes become paired along their entire length and are stabilized by the synaptonemal complex, a structure consisting of two parallel lateral regions and a central element. A diverse group of proteins known as ZMM proteins, including Zip1, Zip2 and Zip3, localize on chromosomes during meiotic prophase I, promoting initiation of the synaptonemal complex (Sym *et al.*, 1993). In *S. cerevisiae*, Zip1 forms the transverse filament component of the synaptonemal complex (Sym *et al.* 1993). Dependent on Zip2, Zip1 localizes to Zip2/Zip3 foci, then begins polymerization along the length of the yeast SC during pachytene (Chua & Roeder, 1998, Agarwal & Roeder, 2000).

In most organisms, homologous chromosomes are held together by homologous recombination events which form chiasmata and are resolved into crossovers (COs), resulting in a reciprocal exchange of chromosome arms. The formation of noncrossover (NCO) products between homologous chromosomes also contributes to their stable pairing, though not as much as CO formation (Peoples-Holst & Burgess, 2005). Meiotic recombination is thus important to the process of homologue recognition and juxtaposition, and additionally essential to exchange genetic diversity in offspring, as it causes a reshuffling of maternal and paternal alleles, although there is also the potential to homogenize alleles by gene conversion.

The SC requires meiotic recombination to occur for its formation in yeast and mice (Loidl *et al.*, 1994, Baudat *et al.*, 2000, Romanienko & Camerini-Otero 2000) but not in *Drosophila melanogaster* or *Caenorhabditis elegans* (Dernburg *et al* 1998, McKim *et al.*, 1998). In *S. cerevisiae*, Zip3 and the proline isomerase Fpr3 ensure that DSB formation precedes synapsis initiation (MacQueen & Roeder, 2009).

The SC is also required for efficient CO formation in most organisms (reviewed in Zickler & Kleckner, 2015). The SC can also limit CO formation (Chen *et al.* 2008). The decision between CO or NCO formation occurs before the formation of a stable strand invasion intermediate, well before HJ resolution (Hunter & Kleckner, 2001). The evidence for this is as follows: in the absence of various CO-promoting ZMM proteins, DSBs and NCO products occur efficiently and with normal timing (Borner *et al.*, 2004). Synaptonemal complex polymerisation is

promoted at synapsis initiation complexes (SICs), which contain ZMM proteins and are associated with CO events (Agarwal & Roeder, 2000; Chua & Roeder, 1998). Like Class I CO events, SICs display interference (Fung *et al.*, 2004; Wang *et al.*, 2015). However, in mutants such as $tel1\Delta$, $zip1\Delta$, $msh2\Delta$ and $sgs1\Delta$, CO interference is reduced but SIC distribution is unaffected (Anderson *et al.*, 2015; Fung *et al.*, 2004). A model has been suggested to explain this in which DSBs are designated to become COs or NCOs, with SICs marking future interfering CO sites. Mutants disrupting the formation of the SIC-marked COs cause non-interfering COs to form instead, meaning the initial CO/NCO decision is not altered (Fung *et al.*, 2004; Anderson *et al.*, 2015).

In *C. elegans*, pairing of homologous chromosomes is achieved via pairing centres found on each chromosomes, although meiotic recombination does also occur (Tsai & McKee 2011). In *D. melanogaster* males, pairing also occurs via pairing centres and is thought to occur early before meiosis, allowing accurate segregation without meiotic recombination (Hawley, 2002). In *Bombyx mori* females, there is also no meiotic recombination, and instead a long-lived synaptonemal complex is formed and persists throughout meiosis, indicating that the synaptonemal complex allows accurate homologue segregation (Rasmussen *et al.*, 1977).

In mitosis, the cohesin complex must be removed to allow sister chromatid separation during metaphase (reviewed in Nasmyth & Haering, 2009). Cohesin is removed by cleavage of the Scc1 subunit, or by phosphorylation (Uhlmann *et al.*, 1999). In meiosis I, the presence of sister chromatid cohesion is also necessary to hold homologous chromosomes, themselves connected by chiasmata, together. To allow homologs to separate in anaphase I, cohesin must be removed, but must also remain in order to prevent sister chromatid separation. Thus, cohesion is only removed from chromosome arms, but cohesion at centromeres is protected until anaphase II. A meiosis-specific cohesin subunit, Rec8, replaces Scc1, and the protein Shugoshin is responsible for centromere protection (Watanabe & Nurse, 1999; Kitajima *et al.*, 2004).

1.3. Homologous Recombination

While homologous recombination (HR) is employed during the mitotic cell cycle to repair accidental DNA breakage, HR is initiated in meiosis by the deliberate activity of Spo11, which forms DNA double strand breaks (DSBs) (Keeney, 2001). Spo11-DSBs can only be repaired by HR, in contrast to the mitotic cell cycle, where DSBs can be repaired by either HR or non-homologous end joining (NHEJ) (reviewed in Symington & Gautier, 2011; Lieber, 2010).

In budding yeast, it has been estimated that 140–220 DSBs result in ~95 COs per meiosis (Mancera *et al.*, 2008). Each DSB undergoes 5` resection, producing a 3` single-stranded DNA (ssDNA) end, which is able to search for a double-stranded homologous repair template into which it can invade, in conjunction with the strand invasion proteins (RecA homologs) Rad51 and Dmc1 (Neale & Keeney, 2006).

While recombination preferentially occurs with the identical sister chromatid in mitosis, meiotic recombination is biased towards occurring with the homologous chromosomes (Hollingsworth, 2010; Kadyk & Hartwell, 1992; Bzymek *et al.*, 2010). This bias is essential to hold homologous chromosomes together during metaphase I. Rad51 is expressed in mitosis and meiosis, and when alone, promotes strand invasion into the sister chromatid; when in combination with the meiosis-specific Dmc1, both proteins promote interhomologue recombination (Cloud *et al.*, 2012). Interhomologue bias is also established in meiosis by the repression of Rad51 by two meiosis-specific factors, the kinase complex Red1/Hop1/Mek1 and by Hed1, which interacts with Rad51 (Busygina *et al.*, 2008; Niu *et al.*, 2009).

The even distribution of CO events among chromosomes is ensured by CO interference (Carpenter & Sandler, 1974; Bishop & Zickler, 2004; reviewed in Berchowitz & Copenhaver, 2010). CO interference is thought to be important in meiosis because it causes the limited number of chiasmata occurring to be spread out evenly among the chromosomes. An even distribution of CO events helps to ensure that even the smallest chromosomes will have at least one chiasma, the 'obligate CO' needed for proper chromosome segregation (Shinohara *et al.*, 2008; reviewed in Egel, 1995). In this way, CO interference contributes to CO assurance, the process which promotes the occurrence of at least one CO per chromosome. In addition, Spo11 DSBs are subject to DSB interference, in *cis* and *trans* (Zhang *et al.*, 2011; Garcia *et al.*, 2014).

1.4. Structure and Function of Spo11

In *S. cerevisiae*, Spo11 forms DNA DSBs in meiotic prophase I (Keeney *et al.*, 1997), catalyzing DSB formation via a topoisomerase-like reaction (Bergerat *et al.*, 1997). Spo11 is highly conserved, appearing to be present in all sequenced eukaryotic genomes (Ramesh *et al.*, 2005), having DSB-forming equivalents in *C. elegans*, *D. melanogaster*, *Mus musculus*, *Schizosaccharomyces pombe*, and *Arabidopsis thaliana* (Dernberg *et al.* 1998; McKim and Hayashi-Hagihara 1998; Baudat *et al.*, 2000; Steiner *et al.*, 2002; Grelon *et al.*, 2001).

Spo11 is related to DNA topoisomerases, the purpose of which is to resolve topological issues in DNA, such as supercoiling and intertwining of DNA molecules, by breaking and rejoining DNA strands (reviewed in Champoux 2001). There are two categories of topoisomerase, I and

II, which break single and double strands of DNA respectively. To carry out their role, topoisomerases contain a tyrosine residue that can attack a phosphorus in DNA, forming a tyrosyl phosphodiester link on the DNA and severing the DNA backbone. Another DNA strand can then pass through the break in order to resolve tangles, after which the cleavage reaction is reversed to reseal the DNA strand.

Spo11 is most closely related to Archaeal Topoisomerase VI, which is a Type II topoisomerase and an A²B² heterotetramer (Bergerat *et al.*, 1997). The A subunit contains the catalytic domain and a Toprim metal binding domain, and the B subunit contains an ATP-binding domain. Cleavage by the A subunit is dependent on the presence of the B subunit and ATP (Buhler *et al.*, 1998). *S. cerevisiae* Spo11 is biochemically and structurally similar to the TopoVIA subunit (Diaz *et al.*, 2002; Nag *et al.*, 2005). Like TopoVIA, Spo11 cleaves DNA to leave a two-nucleotide 5' overhang (Buhler *et al.*, 2001; Liu *et al.*, 1995). Recently, a conserved protein family was identified in plants and animals with a strong structural similarity to the TopoVIB subunit (the TOPOVIB-like family) (Robert, *et al.*, 2016; Vrielynck et al., 2016). In *S. cerevisiae*, Rec102 shares sequence similarity and predicted structure with TopoVIB, and is known to form a complex with Spo11 and be required for meiotic DSB formation (Kee & Keeney, 2001; Bhargava *et al.*, 1991).

Based on structure and function analyses of Spo11 and TopoVIA (Nichols *et al.*, 1999; Diaz *et al.*, 2002), Spo11 is thought to dimerize via an interaction between the catalytic tyrosine of one Spo11 and the metal binding pocket on the other, forming two active sites on either side of the duplex. Next, in a topoisomerase-like reaction, the tyrosine residues perform a nucleophilic attack on the DNA, producing a DSB with Spo11 remaining covalently attached to the 5' ends. Unlike the topoisomerase reaction, the covalent attachment is not reversed but instead Spo11 remains bound and must be removed by the endonuclease activity of Mre11. Sae2, the functional homologue of CtIP, appears to be required to activate Mre11 endonuclease (Neale *et al.*, 2005; Cannavo & Cejka, 2014; Lengsfeld *et al.*, 2007). Mre11 endonuclease nicks the 5' strand up to 300 nucleotides away from the DSB, enabling 5'-3' resection by Exo1 away from the DSB and 3'-5' resection by the exonuclease activity of Mre11 back towards the DSB, leaving a short oligonucleotide with Spo11 attached (Garcia *et al.*, 2011). Normal meiotic resection occurs between ~200 to ~2000 nt away from Spo11-DSB hotspot centres, with a mean of 822 nt (Mimitou *et al.*, 2016). Resection must be limited because excessive levels of ssDNA can induce mutations and cell death (Ngo & Lydall, 2010; Yang *et al.*, 2008).

1.5. Spo11 accessory factors

While Spo11 is the catalyst of DSB formation, it requires at least nine other proteins for its activity. These form four complexes, Spo11-Ski8, Rec102-Rec104, Mei4-Mer2-Rec114, and Mre11-Rad50-Xrs2 (reviewed in Keeney, 2008).

Ski8 directly interacts with Spo11, and is required for the interaction between Spo11 and Rec104 (Arora *et al.* 2004); thus its role may be to bridge interactions between proteins. Ski8 is not meiosis-specific but has a very different role in vegetative growth, where it is involved in RNA metabolism (Araki *et al.*, 2001). During meiosis, Ski8 relocalizes from the cytoplasm to the nucleus (Arora *et al.* 2004), where it is required for DSB formation (Gardiner *et al.*, 1997).

The Mre11-Rad50-Xrs2 (MRX) complex has roles in vegetative and meiotic DNA repair, telomere maintenance and DNA damage checkpoint signalling (reviewed in Assenmacher & Hopfner 2004; Krogh & Symington, 2004). Unique to *S. cerevisiae*, the MRX complex is required for both DSB formation and DSB processing. Mre11 has both single-strand endonuclease and 3'→5' exonuclease activities, and endonuclease-dead Mre11 mutants cause DSBs to accumulate with Spo11 covalently attached to the DNA ends (Moreau *et al.*, 1999), indicating that Mre11 is required for the removal of Spo11 from DSB ends (Neale *et al.*, 2005). Mre11 has been shown to bind to sites of DSB formation in *S. cerevisiae* (Borde *et al.*, 2004). Rad50 is an ATP-binding protein and is structurally related to the Structural Maintenance of Chromosomes (SMC) proteins. In *S. cerevisiae*, Xrs2 interacts with Mre11 and with the checkpoint/telomere maintenance kinase Tel1 (Shima *et al.*, 2005).

As mentioned above, Rec102 appears to act as the equivalent of the TopoVIB subunit for Spo11, which is similar to TopoVIA. Rec102 physically interacts with Rec104 (Jiao *et al.*, 2003). Rec102 and Rec104 are both required for Spo11 dimerization, chromatin binding and localization to DSB hotspots (Prieler *et al.*, 2005; Sasanuma *et al.*, 2007).

Mer2, Rec114 and Mei4 associate together and colocalize on meiotic chromosomes (Li *et al.*, 2006). Mer2 is phosphorylated during meiosis by the cyclin-dependent kinase Cdc28, an event that may be part of the mechanism controlling the timing of meiotic DSB formation (Henderson *et al.*, 2006). Rec114 is required for both the association of Spo11 and Mre11 with hotspot sequences, and for Spo11 dimerization (Borde *et al.*, 2004; Prieler *et al.*, 2005; Sasanuma *et al.*, 2007).

1.6. Location of Spo11-DSBs

Spo11 does not form DSBs randomly, but displays preferences for certain sites known as DSB hotspots (Lichten & Goldman, 1995). In most mammals, hotspots are determined by PRDM9, a H3K4 methyltransferase with a zinc finger domain. An amino acid sequence in the zinc finger domain determines the consensus sequence to which PRDM9 binds, which varies between PRDM9 alleles and thus alters DSB patterns in different individuals (Baudat *et al.*, 2010).

In *S. cerevisiae*, hotspots do not have any conserved sequence, but have a correlation with nucleosome-depleted regions such as promoters, indicating a need for chromatin accessibility (Figure 1.4) (Pan *et al.*, 2011, Ohta *et al.*, 1994, Wu & Lichten, 1994). Other factors influencing chromatin accessibly such as transcription factors and chromatin remodelers also influence DSB activity (Petes, 2001). Spo11 hotspots also correlate with the methylation of histone H3 at lysine 4 (Sollier *et al.*, 2004). In *S. cerevisiae*, H3K4me3 is known to interact with Spp1, which itself interacts with the DSB protein Mer2 (Sommermeyer *et al.*, 2013; Acquaviva *et al.*, 2012). Spp1 is a part of the COMPASS complex, which is responsible for the methylation of lysine 4 of histone H3 (Dehe *et al.* 2006).

In meiosis, chromosomes appear in the form of a series of chromatin loops on a structural axis, which contains meiosis-specific proteins such as Red1, Hop1 and the cohesin Rec8 (reviewed in Kleckner, 2006). Meiotic DSBs preferentially occur within loops (Blat *et al.*, 2002; Glynn *et al.*, 2004; Kugou *et al.*, 2009; Pan *et al.*, 2011), but proteins needed for DSB formation (Rec114, Mer2, and Mei4) and repair (Rad51 and Dmc1), occur primarily on the axis (Panizza *et al.*, 2011; Tarsounas *et al.*, 1999; Blat *et al.*, 2002). Thus, it is thought that either prior to, or because of, DSB formation, DSB sites on chromatin loops become linked to the axis; this is known as the 'Tethered-loop axis model' (Figure 1.5) (Blat *et al.*, 2002; Kleckner, 2006; Panizza *et al.*, 2011). The tethering most likely occurs prior to DSB formation because many DSB proteins are enriched on the axis (Panizza *et al.*, 2011). The mechanism for loop tethering may be explained by the physical interaction between Spp1, Mer3 and H3K4me3 (Acquaviva *et al.*, 2012; Sommermeyer *et al.*, 2013). Spp1 may simultaneously interact with Mer3 and H4K4me3, bringing chromatin loops closer to the DSB proteins enriched on the chromosome axis (Acquaviva *et al.*, 2012)

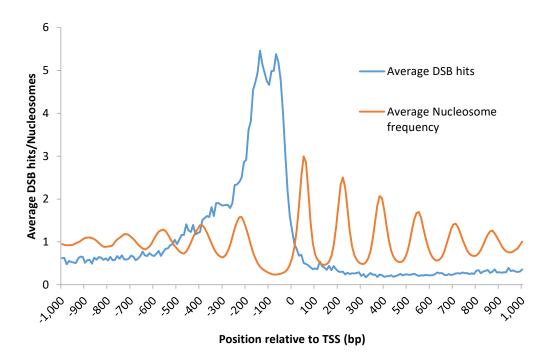


Figure 1.4. Comparison of average frequency of nucleosome occupancy and Spo11-DSB hits around piled-up gene transcription start sites.

Spo11-DSB data is from Pan et al., 2011.

Nucleosome location data is from Kent et al., 2011.

Gene TSS data is from Xu et al., 2009 and includes 5171 gene TSSs from S. cerevisiae.

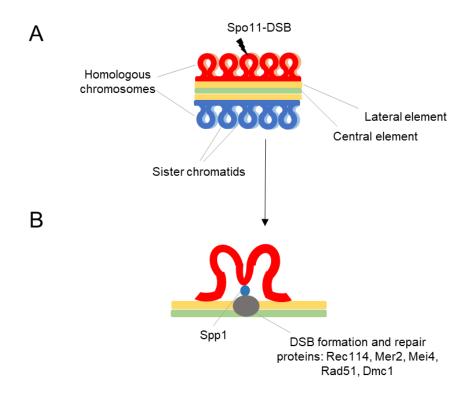


Figure 1.5. Simple representation of the tethered-loop axis model of the synaptonemal complex and Spo11-DSB tethering. A) In the tethered-loop axis model, sister chromatid loop arrays are attached to an axis of structural proteins. Meiotic DSBs preferentially occur within loops, but proteins needed for DSB formation (Rec114, Mer2, and Mei4) and repair (Rad51 and Dmc1) occur primarily on the axis. B) The tethered-loop axis model suggests that immediately before or after DSB formation, DSB sites on chromatin loops become linked to the axis. Loop tethering may be enacted by the dual interaction of Spp1 with Mer3 at the DSB site and H4K4me3 on the axis.

1.7. Timing of Spo11-DSB formation

The timing of DSB formation in *S. cerevisiae* is strictly controlled, only occurring within a small window of time during Prophase I division (Padmore *et al.*, 1991). The transition between prophase and metaphase is controlled by the activation of Ndt80, which occurs after DSB repair is completed and itself activates a cascade of proteins causing meiotic commitment (Prugar *et al.*, 2017; reviewed in Winter, 2012). Spo11 forms foci on chromatin as early as leptonema (Prieler *et al.*, 2005), and DSB proteins persist on chromosomes after DSB formation is complete (Kee *et al.*, 2004; Prieler *et al.*, 2005; Li *et al.*, 2006).

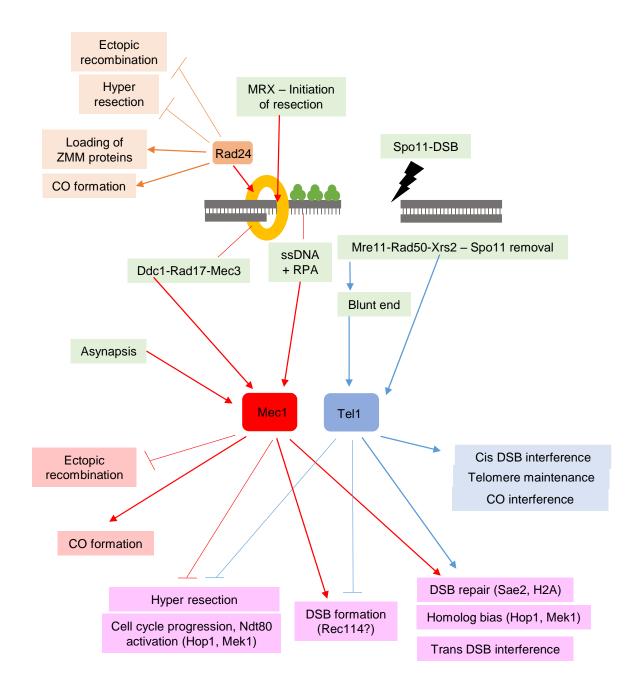
DSB formation is negatively regulated by ATM/Tel1 (Lange *et al.*, 2011; Garcia *et al.*, 2014; Anderson *et al.*, 2015). Both Tel1 and Mec1 also downregulate the Spo11-accessory factor Rec114 upon meiotic DSB formation via phosphorylation (Carballo *et al.*, 2013).

The DSB formation phase appears to be concluded by the formation of the SC (Thacker *et al.*, 2014). SC formation, when assayed by presence of Zip1, is strongly correlated with a reduction in the presence of Hop1, dependent on Pch2 (Borner *et al.*, 2008). As a target of Mec1/Tel1, the absence of Hop1 means Mec1/Tel1 signal can no longer be transduced, and remaining meiotic DSBs are repaired by a Dmc1-independent inter-sister repair pathway (Carballo *et al.*, 2008).

As mentioned previously, DSB formation is directly regulated by the Cdc28(CDK)-dependent phosphorylation of Mer2 in meiosis (Smith *et al.*, 2001; Henderson *et al.*, 2006), linking DSB formation to premeiotic DNA replication, which requires a low level of Cdc28 (Benjamin *et al.*, 2003; Shuster & Byers, 1989; Stuart & Wittenberg, 1998). Specifically, there is evidence that DSB formation is coordinated to occur after DNA replication. In order to take advantage of sister chromatid cohesion in homologue pairing, DSBs must only occur after replication has completed. In a *CDC6* mutant, DSBs can form prior to replication fork passage in Spo11 (Hochwagen *et al.*, 2005), but in normal *S. cerevisiae* cells, DNA replication and DSB formation are closely connected (Baudat & Keeney 2001; Smith *et al.*, 2001; Borde *et al.*, 2000). In the latter study, it was found that DSBs form ~90 minutes after local replication.

1.8. DSB processing

DSB end resection enables HR by providing a ssDNA tail that can invade a matching region on another chromosome for use as a repair template. The processes of searching for a homologue and strand invasion are facilitated in meiosis by the cooperative activity of the RecA homologs Rad51 and Dmc1 (Brown & Bishop, 2015). Rad51 and Dmc1 form a nucleoprotein filament with the ssDNA, and catalyse strand exchange (Hong *et al.*, 2001).


In vegetative DSB repair, Rad51 alone is responsible for catalyzing strand exchange (Shinohara *et al.*, 1992). However, during meiosis in *S. cerevisiae* (but not other organisms), Rad51 activity is inhibited by Hed1 (Busygina *et al.*, 2008), and instead the meiosis-specific Dmc1 is predominantly responsible for strand exchange (Bishop *et al.*, 1992; Cloud *et al.*, 2012). Rad51 still has a meiotic role in promoting Dmc1 assembly and homologue bias (Cloud *et al.*, 2012; Lao *et al.*, 2013).

The binding of the MRX complex to DSB sites also activates the checkpoint kinase Tel1, via an interaction with Xrs2 (Nakada *et al.*, 2003). Tel1 detects and is activated by blunt and protein conjugated DSB ends (Usui *et al.*, 2001). Tel1 in turn activates Sae2 via phosphorylation, promoting the initiation of resection (Cartagena-Lirola *et al.*, 2006; Terasawa *et al.*, 2008). The initiation of DSB resection by the MRX complex also facilitates the DNA damage response

(DDR), as the resulting RPA-coated ssDNA activates Mec1 (Jazayeri *et al.*, 2006; Shiotani & Zou, 2009; Zou & Elledge, 2003). Mec1 also activates Sae2 in a positive feedback loop (Cartagena-Lirola *et al.*, 2006).

Tel1 and Mec1 activation initiates the DNA damage response (DDR) network, which coordinates responses to damaged DNA by regulating DNA repair and cell cycle arrest in mitosis and meiosis (Figure 1.6) (Shinohara *et al.*, 2003; Finn *et al.*, 2012; Ciccia & Elledge, 2010; Carballo & Cha, 2007). Another important sensor of DNA damage is the checkpoint clamp, composed of Ddc1/Rad9, Mec3/Hus1 and Rad17/Rad1 (known as the 9-1-1 clamp, based on the numeric component of the mammalian protein names). The clamp is loaded onto DSB sites by Rad24 (Rad17), which acts in combination with Replication Factor C (RFC) (Kondo *et al.*, 2001; Melo *et al.*, 2001). The 9-1-1 complex activates Mec1 directly via an interaction with the C terminal of Ddc1 (Navadgi-Patil & Burgers, 2011). In meiosis, both the 9-1-1 clamp and the clamp loader Rad24 prevent excessive resection (Gray *et al.*, 2013). In mitosis, 9-1-1 inhibits DSB resection, but Rad24 appears to promote resection (Ngo & Lydall, 2015; Aylon & Kupiec, 2003). ATR is also activated in response to unsynapsed meiotic chromatin by the cofactors BRCA1 and TOPBP1 (Royo *et al.*, 2013).

When a ssDNA end invades into a homologous duplex, it anneals to one strand and displaces the other, producing a displacement loop (D-loop), or joint molecule (JM) (Figure 1.7) (Hunter & Kleckner, 2001). This JM may be dissolved to form a NCO by synthesis-dependent strand annealing (SDSA), where after the invading strand is extended by DNA synthesis, the D-loop is disrupted by helicases, freeing the newly-synthesized strand to anneal back to the other end of the DSB (Allers & Lichten, 2001). Alternatively, the D-loop can mature into an intermediate known as a Holliday junction (HJ), in which the second ssDNA end from the DSB is captured so that both recombining DNA strands are covalently-linked by a four-way junction (Schwacha & Kleckner, 1994; 1995). HJ-containing joint molecules need to be resolved in order to allow chromosome segregation, and in meiosis, are resolved to form mostly CO, but occasionally NCO, products (Allers & Lichten, 2001; Borner *et al.*, 2004).

Figure 1.6. Key roles of DNA damage checkpoint proteins in meiotic prophase. Signalling pathways for the activation and activities of Mec1 and Tel1 in meiotic prophase. In addition, roles of Rad24 that are separable from roles of Mec1 are given. Green boxes contain activating factors, while important meiotic prophase activities of Mec1 are given in red, Tel1 in blue, Rad24 in orange and overlapping roles of Mec1 and Tel1 in purple.

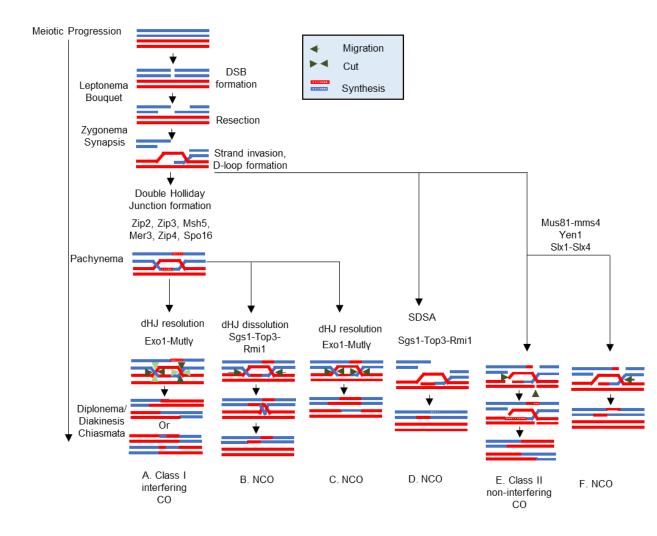


Figure 1.7. Models of meiotic CO and NCO formation in *S. cerevisiae* as described by Paques and Haber, 1999. For simplicity, only two homologous DNA molecules are represented, one red and one blue. The appropriate stage of meiosis is given for each progression in HR. This only applies to the leftmost path, as other outcomes may occur later or earlier.

- A. Canonical dHJ resolution: After 3' end invasion, a stable SEI intermediate is formed and is processed into a dHJ. dHJ resolution can lead to a CO if the four nicks (arrowheads) cleave four different DNA strands. The darker and lighter coloured arrowhead pairs illustrate two possible resolutions. Of the final CO patterns, the top corresponds to resolution by the darker arrowheads, and the bottom CO pattern corresponds to resolution by the lighter arrowheads.
- B. dHJ dissolution: After 3' end invasion, a stable SEI intermediate is formed and is processed into a dHJ, but the dHJ is dissolved by the combined action of Sgs1 helicase and Top3 topoisomerase, producing an NCO with two hDNA tracts in a trans configuration on the same chromatid.
- C. dHJ resolution: After 3' end invasion, a stable SEI intermediate is formed and is processed into a dHJ, the resolution of which can lead to NCO if the four nicks affect only two DNA strands.
- D. SDSA: After strand invasion, the invading 3' end is extended by DNA synthesis. The intermediate is dismantled and the DSB repaired by annealing of the ends and gap repair.
- E. dHJ-independent CO: After 3' end invasion, an unstable intermediate is formed. A structure-specific endonuclease such as Mus81 can process this intermediate into a CO.
- F. dHJ/SDSA-independent NCO: After 3' end invasion, an unstable intermediate is formed. A structure-specific endonuclease such as Mus81 can process this intermediate into an NCO.

1.9. HJ-resolution in S. cerevisiae

The first HJ-resolving endonuclease, prokaryotic RuvC, was identified 30 years ago (West *et al.*, 1997), however the lack of sequence conservation between prokaryotic and eukaryotic resolvases meant that the discovery of a eukaryotic resolvase did not follow quickly.

In *S. cerevisiae*, four distinct endonucleases capable of resolving JMs *in vitro* have been identified: Mus81-Mms4 (Boddy *et al.*, 2001), Slx1–Slx4 (Fricke & Brill, 2003), Yen1 (Ip *et al.*, 2008), and Exo1-MutLγ (Zakharyevich *et al.*, 2012), which together account for essentially all JM resolution *in vivo* (Figure 1.7) (Zakharyevich *et al.*, 2012). All four of these resolvases have meiotic roles, but Mus81-Mms4 and Yen1 are also important for mitotic CO resolution (Ho *et al.*, 2010).

The majority of COs are formed by the resolvase action of the MutL γ complex, in combination with Exo1 nuclease and Sgs1, an ortholog of Bloom's helicase (Zakharyevich *et al.*, 2012). Exo1- MutL γ acts late in recombination (Zakharyevich *et al.*, 2010). Zakharyevich *et al.*, 2012 found that an $mms4\Delta$ $slx4\Delta$ $yen1\Delta$ triple mutant had a WT level of NCOs and around 70% of WT CO levels, though chromosome segregation failed in this strain, likely due to remaining unresolved JMs. Nevertheless this indicates that MutL γ is responsible for resolving ~70% of COs, and that dHJ resolution by MutL γ rarely or never produces NCOs. The second most prolific resolvase is Mus81, which acts with Mms4(Eme1). This pathway accounts for somewhere between 10-40% of COs (de los Santos, 2003). In some species such as *S. pombe*, Mus81 is the main CO resolvase (Smith *et al.*, 2003). Osman et al., 2003

Finally, Yen1 (GEN1) and Slx1-Slx4 (BTBD12) normally account for only a small subset of COs; $yen1\Delta$, $slx1\Delta$ and $slx4\Delta$ single mutants all show slight or no defects in meiotic recombination. In fact, Slx1-Slx4 resolvase activity is not normally detectable during meiosis (Matos et~al., 2011). However, in the absence of other CO resolution pathways, Yen1 and Slx1-Slx4 appear to play a more important role in recombination. In an $mms4\Delta$ background, the loss of Yen1 has a much more severe effect, reducing CO levels by ~21% and resulting in the inability to produce viable spores (Zakharyevich et~al., 2012). A similar effect is seen in an $sgs1\Delta$ background, where the loss of Slx4 or Slx1 causes meiotic catastrophe and an increase in unresolved JMs, although this does not cause a reduction in the levels of CO or NCO products (Zakharyevich et~al., 2012). These observations suggest that Yen1 and Slx1-Slx4 act as 'backup' resolvases, essential for the resolution of some types of JM in the absence of the main CO resolution pathways. Yen1 also acts as a backup for Mus81 in mitotic CO resolution (Ho et~al., 2010).

Unlike MutL γ , dHJ cleavage mediated by Mus81-Mms4, Yen1 or Slx1-Slx4 can yield NCOs as well as COs. This is evident from the fact that in the absence of Sgs1, which is normally responsible for early NCO formation, there are still joint molecules formed that are resolved, without bias, into COs and NCOs (De Muyt *et al.*, 2012). However, these COs and NCOs are dependent on Mus81-Mms4, Slx1-Slx4 and Yen1 (Zakharyevich *et al.*, 2012).

Mus81-Mms4 is activated in meiosis I by the polo-like kinase, Cdc5 (Matos *et al.*, 2011). Expression of Yen1 is induced in late meiosis (Chu & Herskowitz, 1998), and Yen1p must also be activated by dephosphorylation, which occurs during the metaphase II to anaphase II transition (Matos *et al.*, 2011). Also, Yen1 is able to cleave a wide variety of DNA substrates including HJs, 5'-flaps, and replication fork structures (Matos *et al.*, 2011). Thus, Yen1 is able to resolve any persistent joint molecules that were not processed by other resolvases before the second meiotic division. It has been suggested that the purpose of the late activation of Yen1 in vegetative cells is to allow most joint molecules to be dissolved rather than resolved, preventing an excessive number of COs from forming; however, this has not been shown to be the case for meiotic cells (Blanco *et al.*, 2014).

In the process of SDSA, joint molecules are dismantled by branch migration and decatenation to form NCOs by the action of the STR(BTR) complex, composed of Sgs1(BLM), type-I topoisomerase Top3(TOPIIIα), and specificity factor Rmi1(RMI1–RMI2) (Cejka *et al.*, 2010). Thus, Sgs1 is involved in both a pro- and anti- CO pathway, promoting COs via Exo1-MutLγ, and preventing COs by removing aberrant recombination intermediates (Jessop *et al.*, 2006). NCOs are formed by the STR complex early in the cell cycle, which is thought to be important to limit the formation of COs in cycling cells, which could cause a loss of heterozygosity if occurring in excess (Blanco *et al.*, 2014).

1.10. ZMM proteins promote the formation of Class I interfering COs

Originally identified in Drosophila, CO interference is a phenomenon where CO events occur further apart than would be expected from a random distribution (Sturtevant 1913; Sturtevant 1915). CO interference has been documented in many species (Zhao *et al.*, 1995). CO interference is thought to be important in meiosis because it causes the limited number of chiasmata occurring to be spread out evenly among the chromosomes. This helps to ensure that even the smallest chromosomes will have at least one chiasma (known as the 'obligate CO') needed for proper chromosome segregation (reviewed in Egel, 1995). The obligate CO is thought to be ensured by the interference-dependent pathway during the CO/NCO decision step, before single-end invasion (Allers & Lichten 2001; Hunter & Kleckner, 2001). CO homeostasis ensures that, if DSB numbers are reduced, COs are maintained at the expense of NCOs (Martini

et al. 2006; Zanders & Alani, 2009). In *S. cerevisiae*, loss of CO interference due to Zip1 or Tam1 deletion causes an increase in chromosome nondisjunction (Sym & Roeder 1994; Chua & Roeder 1997). Spreading out CO events, whether spatially or temporally, may also be beneficial to prevent the repair processes from overlapping (e.g. resection tracts running into each other), although this may be more applicable to DSB interference.

However, not all COs display interference. In *S. cerevisiae*, there are at least two distinct classes of COs. Class I COs exhibit interference and are dependent upon Msh4/Msh5 activity (Novak *et al.*, 2001), and Class II COs do not display interference and are dependent upon Mus81/Mms4, Yen1 or Slx1-Slx4 activity (Figure 1.7) (de los Santos, 2003). The interfering pathway is meiosis specific, while the non-interfering pathway is very similar to mitotic DSB repair (Kohl & Sekelsky, 2013).

Msh4 and Msh5 are homologs of MutS (Hollingsworth *et al.*, 1995; Snowden *et al.*, 2004), a bacterial protein that identifies mismatches and forms a repair complex with MutL and MutH. The Msh4/Msh5 heterodimer is only required for meiotic functions, as opposed to standard mismatch repair (Hollingsworth *et al.* 1995). Msh4 and Msh5 are members of a group of proteins known as ZMMs, a meiosis-specific, functionally diverse set of proteins, which promote the formation of dHJs (Lynn *et al.*, 2007) and their biased resolution into Class I COs (Chen *et al.*, 2015). The ZMM proteins are important for the maintenance of both CO assurance and CO interference in meiosis (Shinohara *et al.*, 2008). ZMM proteins localize on chromosomes during meiotic prophase-I, promoting initiation of the synaptonemal complex (Sym *et al.*, 1993). Other ZMM proteins are Zip1, Zip2, Zip3, Mer3, Spo22/Zip4, and Spo16.

Zip3 is a putative SUMO/Ubiquitin E3 ligase (Cheng *et al.*, 2006), which binds DNA close to DSBs and promotes local assembly of other ZMM proteins (Serrentino *et al.*, 2013). Zip2 colocalizes with Zip3 at discrete foci and promotes initiation of chromosome synapsis. Zip1 forms the transverse filament component of the synaptonemal complex (Sym *et al.* 1993). Dependent on Zip2, Zip1 localizes to Zip2/Zip3 foci, then begins polymerization along the length of the yeast SC during pachytene (Chua & Roeder, 1998, Agarwal & Roeder, 2000). Spo16 works together with Spo22 in a subcomplex which facilitates Zip1 polymerization from recombination sites (Shinohara *et al.*, 2008). Finally, Mer3 is a 5'-3' DNA helicase, able to unwind various double-stranded substrates (Nakagawa *et al.* 2001). All ZMM mutants show a reduction in crossing over, and in most ZMM mutants, residual COs show a loss of interference; however, Spo16 and Spo22 mutants show a normal interference distribution (Shinohara *et al.*, 2008).

Not all organisms have separate classes of COs. In *S. pombe*, ~80-95% of COs are resolved by Mus81-Eme1, and there is no CO interference (Cromie *et al.*, 2006; Smith *et al.*, 2003; Osman *et al.*, 2003; Boddy *et al.*, 2001). On the other hand, *C. elegans* COs are dependent on Msh4-Msh5, and interference is absolute, with exactly one CO per bivalent (Meneely *et al.*, 2002).

1.11. Influence of DSB interference on CO interference

CO interference could in theory be a reflection of DSB interference. However, the observation that NCO events do not display interference, suggests this is not the case (Mortimer & Fogel, 1974; Getz *et al.*, 2008; Mancera *et al.*, 2008). In contrast, COs and NCOs appear to display weak positive interference as assayed by a genome wide survey (Mancera *et al.*, 2008), but not when assaying single loci (Mortimer & Fogel, 1974; Malkova *et al.*, 2004; Getz *et al.*, 2008).

The extent to which DSBs interfere with each other is not well understood, but the insertion of a strong artificial hotspot in *S. cerevisiae* has been observed to decrease DSB formation in a ~60kb region around the hotspot (Ohta *et al.*, 1999; Wu & Lichten, 1995; Fan *et al.*, 1997). However, this may actually may be a reflection of DSB competition, a phenomenon thought to arise upstream of DSB formation due to limited availability of pro-recombination factors for the formation of DSBs occurring within the same chromatin loop (Cooper *et al.*, 2016). Nonetheless, if the reduction in DSB formation after insertion of a strong hotspot were caused by DSB interference, the short range would not be enough to explain CO interference over much larger distances.

1.12. Roles of Mec1 and Tel1 in the DNA damage response

Tel1^{ATM} and Mec1^{ATR} are serine/threonine kinases with many functions in both mitosis and meiosis, including monitoring of DNA damage repair, checkpoint regulation, genome duplication and cell cycle progression (Figure 1.6) (Cha *et al.*, 2002; Harper & Elledge, 2007; Carballo & Cha, 2007).

The functions of Tel1^{ATM} and Mec1^{ATR} have been well-studied in the context of *S. cerevisiae* meiotic prophase. In meiotic prophase, programmed DSBs are formed by Spo11. With the yeast 911 complex (Rad17, Mec3, and Ddc1), its loader Rad24 and the MRX complex as damage sensors (Hochwagen & Amon, 2006), unresected DSBs cause activation of Tel1 (Usui *et al.*, 2001), and unrepaired ssDNA produced by the resection of DSBs activates Mec1 (Lydall *et al.*, 2011). The accumulation of unrepaired DSBs causes Tel1 and Mec1 to trigger meiotic arrest as part of the meiotic checkpoint response (Lydall *et al.*, 1996). The meiotic checkpoint monitors meiotic events and halts cell cycle progression if necessary, ensuring that cells do not exit

prophase before the process of DSB repair is complete (Lydall *et al.*, 1996; Carballo *et al.*, 2008).

In addition, Tel1 and Mec1 modulate DSB frequency in an antagonistic manner. Tel1 negatively regulates DSB formation in mammals, flies and yeast (Lange *et al.*, 2011; Joyce *et al.*, 2011; Gray *et al.*, 2011), while Mec1 positively regulates DSB formation in yeast via the checkpoint dependent extension of meiotic prophase length (Gray *et al.*, 2011).

As kinases, Tel1 and Mec1 carry out many of their functions via the phosphorylation of other proteins including histone H2A, which has roles in DNA replication (Cheng *et al.*, 2013); Zip1, the main component of the SC central element (Falk *et al.*, 2010; Sym *et al.*, 1993), and two meiosis-specific components of the axial element, Hop1, required for chromosome synapsis, and Mek1, another serine/threonine kinase and paralog of Dun1 (Smith & Roeder, 1997; Hollingsworth *et al.*, 1990; Rockmill & Roeder, 1991; Carballo *et al.*, 2008; Usui *et al.*, 2001; Carballo *et al.*, 2008; Penedos *et al.*, 2015). Mec1 and Tel1 downregulate the Spo11-accessory protein Rec114 via phosphorylation, affecting DSB formation (Carballo *et al.*, 2013).

To implement meiotic checkpoint arrest, Tel1 and Mec1 utilize Hop1 and Mek1 as adaptor and effector kinases, respectively (Carballo *et al.*, 2008). Tel1/Mec1 also phosphorylate proteins involved in DNA repair during vegetative growth, such as RPA, Sae2 (Carballo & Cha, 2007; Chen *et al.*, 2010; Cartagena-Lirola *et al.*, 2006) and histone H2A, which triggers a DNA damage response (Szilard *et al.*, 2010) in addition to having roles in premeiotic DNA replication.

Another important meiotic activity of Tel1/Mec1 is to promote interhomologue bias in meiotic DSB repair, which takes place preferentially between homologous chromosomes, as opposed to the sister chromatids preferred in mitosis (Schwacha & Kleckner, 1994; Collins & Newlon, 1994). As with the implementation of checkpoint arrest, homologue bias processes are initiated by Tel1/Mec1 phosphorylation of Hop1, leading to activation of Mek1, which then phosphorylates further downstream proteins such as Rad54 (Carballo *et al.*, 2008; Goldfarb & Lichten, 2010; Niu *et al.*, 2009). Mek1 indirectly promotes interhomolog strand invasion by Dmc1 via its downregulation of Rad51 (Prugar *et al.*, 2017). Mec1 and Tel1 also act to destabilize centromere pairing that occurs without homology via phosphorylation of Zip1, which mediates nonhomologous centromere coupling (Falk et al., 2010; Tsubouchi & Roeder, 2005).

It should be noted that while there is a degree of redundancy in the functions of Mec1 and Tel1, their contributions are not necessarily identical in all cases. Tel1 and Mec1 work through independent pathways to phosphorylate Hop1, with Mec1 activated by Rad17 and ssDNA (Lydall *et al.*, 1996), while Tel1 works with Pch2 ATPase and MRX component Xrs2 (Wu & Burgess, 2006).

Of the two kinases, Tel1 appears to be much less important for survival. The homozygous deletion of *MEC1*^{ATR} is inviable in yeast (Giaever *et al.*, 2002) and mice (Brown & Baltimore, 2000; de Klein *et al.*, 2000). However, *TEL1* deletion has only a minor effect on spore viability in yeast, reducing it from ~97% to ~93% (Chapter 3, Figure 3.7). Even the conditional Mec1 mutant P_{CLB2}-MEC1 which is only suppressed during meiosis has a lower spore viability of ~58%. Despite the modest effect on viability, ATM mouse mutants and tefu fly mutants have been shown to display increased rates of recombination initiation, unrepaired DSBs and apoptosis (Joyce *et al.*, 2011; Lange *et al.*, 2011; Barchi *et al.*, 2005; Di Giacomo *et al.*, 2005; Barchi *et al.*, 2008). In humans, ATM defects cause the disease ataxia telangiectasia, which among other symptoms includes infertility, indicating that ATM has a role in human meiotic DSB repair. In addition, when the overall DSB level is low, Tel1 is required in yeast for efficient resection of DSBs and maintenance of homologue bias (Joshi *et al.*, 2015).

1.13. Regulation of Sml1 activity by Mec1

Mec1 deletion is inviable in *S. cerevisiae*, but the deletion of Sml1 (Suppressor of Mec1 Lethality) restores the cell viability of $mec1\Delta$ in both meiosis and mitosis, though $sml1\Delta$ does not compensate for the checkpoint or transcriptional functions of Mec1 (Zhao *et al.*, 1998).

Sml1 inhibits dNTP synthesis post-translationally by binding directly to the ribonucleotide reductase (RNR) subunit Rnr1 (Zhao *et al.*, 1998). RNR catalyzes the conversion of NDP to dNDP, the rate-limiting step of dNTP synthesis, thus controlling dNTP pool levels and affecting genetic fidelity and cell viability (Reichard, 1988).

RNR activity is strictly regulated during DNA replication and repair (Figure 1.8). During S-phase and after DNA damage, Sml1 is inactivated by Dun1 phosphorylation (Zhao & Rothstein, 2002). As a result, $dun1\Delta$ yeast take longer to complete DNA replication, and are sensitive to DNA-damaging agents (Zhao & Rothstein, 2002).

In mitosis, Dun1 is activated by Rad53 (Chen *et al.*, 2006), and Rad53 is in turn activated by phosphorylation via Mec1 and Tel1 (Sanchez *et al.*, 1996). Rad53 and Dun1 are therefore the

mitotic equivalents of meiotic Hop1 and Mek1 respectively, though it is not known whether Mek1 performs the same roles as Dun1 in Sml1 regulation (Carballo *et al.*, 2008). Mec1, Rad53 and Dun1 also affect RNR activity by upregulating the transcription of RNR genes (Huang & Elledge, 1997). Dun1 upregulates transcription of the *RNR* genes by relieving the transcriptional repression of the Crt1 protein (Elledge *et al.*, 1992; Huang *et al.*, 1998). In this way, dNTP levels can be controlled in response to DNA damage.

Deletion of Sml1 therefore rescues the inviable phenotype of *mec1∆* in two ways, first by relieving the requirement for Mec1-mediated inactivation of Sml1, and secondly by increasing dNTP levels (Huang & Elledge, 1997) by releasing RNR suppression, allowing DNA repair to be more efficient in the absence of the DDR checkpoint.

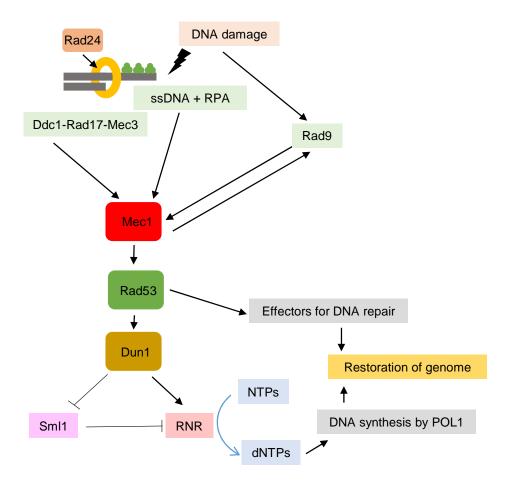


Figure 1.8. The role of Sml1 in the mitotic response to DNA damage. Sml1 represses ribonucleotide reductase activity, which is needed to produce dNTPs. In response to DNA damage during vegetative cell growth, Mec1 activation causes repression of Sml1 activity via Rad53 and Dun1, allowing the production of more dNTPs which facilitate DNA repair. In the absence of Mec1, Sml1 is no longer repressed and so can continue to inhibit RNR, reducing the number of dNTPs available for DNA damage repair. Multiple DNA damage sensors activate Mec1, including RPA-bound ssDNA, the Ddc1-Rad17-Mec3 clamp loaded by Rad24-RFC, and Rad9. Rad9 is hyper phosphorylated by Mec1 in response to DNA damage, and the activated Rad9 then enhances Mec1 phosphorylation of Rad53 (Emili, 1998; Sweeney et al., 2005). Thus, the loss of Rad24 alone is predicted to only partly reduce Sml1 repression.

1.14. Role of Mec1 and Rad24 in CO formation

One of the functions of the DNA damage response proteins Mec1 and Rad24 is the promotion of CO formation (Grushcow *et al.*, 1999). This study found that checkpoint mutants $rad24\Delta$ and mec1-1 smlX had an approximately twofold decrease in interhomologue recombinants using the HIS4::LEU2 assay, likely due to loss of ability to arrest meiosis in response to impaired meiotic recombination. The similar phenotype in both mutants suggests that Rad24 indirectly promotes CO formation as a consequence of Mec1 activation, rather than acting separately. However, it has recently been discovered that Rad24 is necessary for loading ZMM proteins, and interacts physically with Zip3, independent of Mec1 (Shinohara *et al.*, 2015). This indicates that Rad24 may promote the loading of ZMM proteins at sites of future COs.

Rad24 also has a meiotic role in limiting DSB resection, which was not seen in a Mec1 mutant (Gray et al., 2013). This observation is counter to one suggesting Rad24 is important for promoting resection of vegetative DSBs (Ngo & Lydall, 2015). This discrepancy may be explained by the fact that Rad9 recruitment is required for vegetative DSB resection regulation, and Rad9 is not required for checkpoint activation in meiosis (Lydall et al., 1996). The mechanism of Rad24 resection regulation may be via the loading of the 9-1-1 clamp, which provides a physical barrier to resection.

1.15. Roles of Mec1 and Rad24 in CO and DSB interference

There has been very little investigation into the roles of Mec1 and Rad24 in DSB or CO interference. Mec1 has been shown to be a mediator of *trans* DSB interference via tetrad analysis at the *HIS4::LEU2* hotspot (Zhang *et al.*, 2011). A reduction in DSB interference can be indicated by an increase in concerted Spo11-DSB formation; while a $tel1\Delta$ mutant had an increase in double-cuts (closely juxtaposed DSBs), a $rad24\Delta$ mutant did not (Garcia *et al.*, 2014). However, this measurement was only made at a few loci, which may not reflect the genome-wide situation.

1.16. Evidence for a role in DSB interference for Tel1

DSBs do not occur independently, but are subject to interference among the four chromatids. This interference occurs in *cis* (adjacent on the same chromatid), and *trans* (between chromatids). All DSBs are proposed to be constrained to occur only once per pair, and some to occur only once per quartet, indicating communication between homologous chromosomes. This *trans* inhibition effect spreads for some distance along the chromosome, likely contributing to even spacing of DSBs (Zhang *et al.*, 2011).

Mec1 and Tel1 have been shown to be mediators of *trans* DSB interference via tetrad analysis at the *HIS4::LEU2* hotspot, showing that DSB formation is no longer constrained to occur only once per quartet of chromatids in Tel1 and Mec1 mutants (Zhang *et al.*, 2011).

Tell has also been shown to mediate cis DSB interference (Garcia et al., 2014). This study utilized a method of monitoring recombination by Southern blot analysis of DNA extracted from cells undergoing meiosis. By assessment of the frequency of multiple cleavages among four chromosomes, this study found that over large distances (~150 kb), DSBs tend to form independently of each other regardless of Tel1 presence, as in Zhang et al. (2011). However, over a range of 10-70 kb, interference was lost in the absence of Tel1. An estimation of interference was obtained by measuring the frequencies of coincident DSB formation (doublecuts) at the HIS4::LEU2 and ARE1 loci and comparing them to the values that would be expected if DSB formation was random. Intriguingly, over very short distances (<10 kb), loss of Tel1 was found to cause concerted DSB formation, an activity known as DSB clustering or negative interference. According to the tethered-loop axis model, Spo11-DSB catalysis is triggered by the tethering of small chromatin loops to the chromosome axis (Panizza, et al., 2011; Blat et al., 2002). An anticorrelation was identified between negative interference and chromosome axis component RMM, suggesting that the clustering domains are confined within chromatin loop domains. In contrast, the downregulation of the Mec1 branch of the DDR checkpoint pathway, enacted by deletion of Rad24, did not have a significant effect on doublecut frequencies at these loci.

1.17. Evidence for a role in CO interference for Tel1

The occurrence of a CO event reduces the chance of another CO event occurring in proximity, a phenomenon known as CO interference. The majority of COs in yeast display interference and are formed by the activity of Msh4/Msh5, but Class II COs formed by the activity of Mus81, Yen1 or Slx1-Slx4 do not (Novak *et al.*, 2001; de los Santos, 2003).

It has been shown that Tel1 has a role in CO interference, specifically by limiting ZMM-independent recombination, i.e. reduces the number of Class II COs but does not affect the number of Class I COs (Anderson *et al.*, 2015). This study used whole-genome mapping of recombination products in eight MMR-proficient $tel1\Delta$ hybrid tetrads, along with six $tel1\Delta$ $tel1\Delta$ tetrads. The parental strains were S96 and YJM789, which have about 65,000 polymorphisms giving a median resolution of 81 bp. The study also found that $tel1\Delta$ increases recombination levels for both COs and NCOs, correlating with the increased levels of DSB

formation shown by Garcia *et al.* (2015), and that the distribution of all detectable recombination events was altered in *tel1*\(\Delta\), supporting a role for Tel1 in DSB interference (Anderson *et al.*, 2015). However, their use of recombination products as indicators of DSB locations is imperfect as not all DSBs produce detectable recombination products, especially in MMR-proficient backgrounds which disguise NCO numbers (Martini *et al.*, 2011).

The number and distribution of Zip3 foci in $tel1\Delta$ is not significantly different to WT, suggesting normal interference in Class I COs. In addition, CO number is less affected by ZIP3 deletion in $tel1\Delta$ than in WT. The percentage of all detected events that are COs is ~72% in WT and ~39% in $zip3\Delta$, but there is a smaller decrease between $tel1\Delta$ (~67%) and $tel1\Delta$ $zip3\Delta$ (~49%), indicating that COs are less dependent on Zip3 in the absence of Tel1 (Anderson et al., 2015).

1.18. The role of Ndt80 in meiosis

NDT80 was identified in a general screen for mutants defective in spore formation (Xu *et al.*, 1995). It is a meiosis-specific transcription factor for genes with middle sporulation elements (MSEs), and is required for pachytene exit and meiotic progression. *NDT80* expression is an important step in meiosis, and it is highly regulated. The initial transcription of *NDT80* is caused by protein kinase Ime2, after which Ndt80 causes a positive feedback loop by binding to its own promoter (which also contains an MSE) and enhancing its own transcription, ensuring irreversible meiotic commitment (Chu and Herskowitz, 1998). The normal activation of *NDT80* likely takes place somewhere between 4-5 hours into meiosis, since this is when WT and *NDT80* phenotypes begin to diverge (Xu *et al.*, 1995). Ndt80 is also subject to posttranslational regulation, as it must be phosphorylated before it can act as a transcription factor. Premature meiotic expression causes Ndt80 to accumulate in non-phosphorylated state until it is modified by Ime2 (Sopko *et al.*, 2002).

The meiotic recombination checkpoint inactivates Ndt80 in response to DNA damage via Mek1 (Prugar *et al.*, 2017). High levels of Mek1 activation correspond to low levels of Ndt80 activation. As DSBs are repaired, Mek1 activity is reduced until Ndt80 activation is allowed (Prugar *et al.*, 2017). This is important to prevent cells from exiting meiotic prophase before recombination is complete. The DDR checkpoint is also thought to repress NDT80 transcription via Sum1 (Lindgren *et al.*, 2000; Pak & Segall, 2002). Sum1 is a transcriptional repressor which, like Ndt80, binds to MSEs (Xie *et al.*, 1999). Sum1 levels decrease over the course of meiosis, but the decrease is halted during checkpoint arrest (Lindgren *et al.*, 2000).

 $ndt80\Delta$ yeast arrest in meiotic prophase with fully synapsed chromosomes and unresolved dHJs (Allers & Lichten, 2001). Spindle pole bodies are duplicated but do not separate. SCs appear at the same time as in a wild-type strain (~4 h), but continue to accumulate and persist for at least 15 hours. There is some evidence that the SCs would eventually decay at later time points. Around 55% of NDT80-arrested cells were found to contain large Zip1 polycomplexes (aggregates of SC material) (Bhuiyan *et al.*, 2002). A *HIS4::LEU2* locus assay showed that the $ndt80\Delta$ mutant exhibits normal levels of DSB formation, but only 50% of the wild-type level of COs (Xu *et al.*, 1995). However, this assay was only performed at one particular locus.

1.19. Spo11 hypomorph alleles

The importance of Spo11-DSBs to the timing of meiosis can be investigated by using hypomorphic Spo11 (hypo-spo11) alleles. SPO11-HA3-His6 ('Spo11-HA') has a C terminal epitope (haemagglutinin) tag, a total of 33 amino acids in length. Spo11-HA is reported to reduce the formation of Spo11-DSBs by 11-50% (Martini et al., 2006). Spore viability is also slightly reduced, by ~2% compared to WT. The reason for this is unknown, but it may be that the tag physically interferes with Spo11 activity.

spo11-D290A has a point mutation occurring in a putative Toprim domain, thought to be involved in DSB catalysis via the coordination of Mg2+ (Diaz et al., 2002). Under standard conditions, spo11-D290A only has a mild recombination defect phenotype (spore viability of ~87%), but if sensitized by other conditions, the defects become much more severe e.g. sporulation at the low temperature of 16°C gives a viability of ~2% (Martini et al., 2006; Diaz et al., 2002).

Interestingly, the *spo11-D290A* and *spo11-HA* alleles also cause a synergistic decrease in spore viability when combined: HA-tagged *spo11-D290A* has a spore viability of 19.3% and reduced DSB formation, which suggests the tag and the point mutation affect Spo11 activity in different ways (Diaz *et al.*, 2002).

1.20. Interaction between Ndt80, Spo11 and Rad24

Wild type SK1 budding yeast strains have a spore viability of ~97%. The deletion of the DDR checkpoint protein Rad24 reduces spore viability to ~25%, and this can be rescued to ~50% by an 8 hour prophase arrest mediated by transient *NDT80* repression (Gray *et al.* 2013). Budding yeast with a hypo-*spo11* allele, such as *spo11-HA* or *D290A*, do not have significantly decreased viability compared to WT. Surprisingly, when hypo-*Spo11* is combined with $rad24\Delta$, a synergistic reduction in viability to just 5% is observed. Interestingly, in the $rad24\Delta$ hypo-*spo11* strains, eight hours of *NDT80*-mediated prophase arrest improves spore viability to ~70%

(Gray *et al.*, 2013). Similarly, P_{CLB2}-MEC1, a conditional Mec1 allele expressed only in mitosis, has a spore viability of ~50%, and when combined with hypo-*spo11*, this drops to ~7% (Gray *et al.*, 2013).

A possible explanation for the mechanism of the rescue of spore viability in $rad24\Delta$ and hypospo11 is simply that the prophase arrest allows more time for DSBs to be formed and repaired (Gray et al., 2013). For $rad24\Delta$, the prophase arrest essentially replaces the function of the checkpoint, restoring the cell cycle arrest that is lost in the absence of Rad24. For the hypospo11, the arrest allows more time for the less efficient protein to make DSBs. However, it is important to note that spore viability is not restored to WT levels, so there are additional deleterious effects of the $rad24\Delta$ and hypo-spo11 mutations that are not rescued by the arrest.

The recruitment of Mec1 to DSBs requires the formation of RPA-coated ssDNA via resection of the DSB (Clerici *et al.*, 2014). Thus, inefficient DSB formation due to a hypo-*spo11* allele is expected to cause a weaker checkpoint response, as would the loss of Rad24. A synergistic reduction in DSB signal also occurs in $rad24\Delta$ hypo-*spo11* strains, which can be rescued by transiently extending meiotic prophase (Gray *et al.*, 2013). This explains why the combination of $rad24\Delta$ and hypo-*spo11* causes a greater reduction in spore viability than either alone.

Since Ndt80 expression is likely repressed during checkpoint arrest, a weakened checkpoint response is expected to cause precocious Ndt80 expression, leading to an early exit from meiotic prophase and reducing the amount of time available for DSB formation by the already-inefficient hypo-spo11. This explains why prophase arrest is more beneficial to spore viability than expected in a $rad24\Delta$ hypo-spo11 background.

However, it is unclear why spore viability in rad24 Δ hypo-Spo11 is higher than that of $rad24\Delta$ when prophase is extended to 8 h. It is possible that one contributing factor to the lower spore viability of $rad24\Delta + 8$ h is an excessive number of DSBs, which is rescued by a hypo-spo11 allele. Thus, $rad24\Delta$ viability is negatively affected by both too few DSBs (hypo-spo11) and by too many DSBs (extended prophase), though having too few DSBs is more deleterious than having too many. This implies that Rad24 has a role in controlling DSB number.

1.21. Assaying Meiotic recombination

In order to better understand the processes controlling recombination events, it is desirable to monitor changes in the frequency and distribution of various types of events in mutant strains for genes of interest. To study recombination event outcomes and positioning, a system is needed to allow the formation, detection and categorization of recombination events. During *S. cerevisiae* meiosis, a diploid cell divides into four haploid spores (a tetrad), which can be separated physically and cultured separately. The genotype of each spore can then be examined to reconstruct recombination events. In the absence of recombination, markers will show a continuous Mendelian segregation pattern (2:2). COs are identified as the junction between two different 2:2 segregations, which indicate a reciprocal exchange. There may also be gene conversion tracts associated with COs, appearing as non-Mendelian (3:1) segregation of markers around the reciprocal exchange. 3:1 patterns observed without a reciprocal exchange indicate the presence of a NCO.

Historically, recombination could only be detected at a small number of loci with nutritional or antibiotic resistance markers (Papazian, 1952). For example, the *leu2-R* and *leu2-K* mutations can be utilized, which occur in the *LEU2* coding sequence and eliminate either the EcoRI or KpnI restriction sites at nucleotides 1295 and 909 (Lichten *et al.*, 1986). Diploids heterozygous for *leu2-R* and *leu2-K* may produce *LEU2* recombinants, which are detected by assaying for auxotrophy.

However, this method can only give a narrow view of a few loci, and very little information is discovered about the recombination events in a single cell. It is possible that the few loci examined are not representative of the average of all loci. To examine, genome wide and at high spatial resolution, as many recombination events as possible in a single meiosis, polymorphisms must be present at many thousands of loci. The established method is to mate two highly divergent yeast strains, producing a hybrid diploid naturally heterozygous for tens of thousands of alleles (Winzeler *et al.*, 1998). For example, the genomes of SK1 and S288c strains are composed of ~0.7% polymorphisms, and an S96xYJM789 hybrid cross contains 0.6% variants (Martini *et al.*, 2011; Anderson *et al.*, 2011).

After sporulation of the hybrid diploid, the recombination outcomes in each resultant tetrad can be detected by the use of microarrays or high-throughput sequencing to genotype single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels), allowing the determination of the regions of the genome derived from each parent. This information allows recombination events to be reconstructed (Chapter 4, Figure 4.1).

This approach allows detection of most recombination events in a single meiosis, allowing the frequency and distribution of events in a single cell to be examined. It is still not possible to detect any events occurring between sister chromatids, since both chromatids have identical sequences; however, these events are thought to be rare in wild type meiosis because most repair happens between homologs (Schwacha & Kleckner, 1997; Kim *et al.*, 2010). In addition, NCOs may be missed if they occur between markers, or if they result in restoration of the original genotype rather than conversion, both of which prevent the detection of parental polymorphism exchanges.

Polymorphisms occurring in repetitive regions such as rDNA, telomeres, and Ty-element containing regions are not considered due to the difficulty of pinpointing their genomic locations. Thus, any recombination events occurring in repetitive regions will not be detected, though such events are rare in a WT background (Petes & Botstein, 1977; Pan *et al.*, 2011). DSBs formed in repetitive regions can cause ectopic recombination leading to genome rearrangement (reviewed in Sasaki *et al.*, 2010).

An example of a study utilizing microarray hybridization to detect recombination events genome wide comes from Mancera *et al.*, 2008. This study used an S288c/YJM789 hybrid budding yeast strain, with ~52,000 SNP markers (median distance between markers 78 bp, when repetitive regions are excluded). Genomic DNA from all four products of fifty-one wild-type yeast meioses was hybridized to high-density microarrays tiling the genomes of S288c and YJM789. In this method, genotypes are inferred from the hybridization intensities of the probes covering each polymorphism. The high density of markers used allowed detection of both the CO and the shorter NCO gene conversion tracts. However, it is likely that many NCOs are missed by this method due to occurring between markers, or because MMR has restored the original genotype. In addition, this study only looked at SNP-type polymorphisms, excluding information from indels (Mancera *et al.*, 2008).

An example of a study utilizing high throughput sequencing to detect recombination outcomes comes from Anderson *et al.*, 2011. This used an S96xYJM789 hybrid cross, with ~60,000 SNPs and ~6,000 indels (median distance between markers 56 bp). Sequencing on the Illumina platform requires the preparation of a library of ssDNA fragments, which are immobilized on a flow cell and amplified to form clusters. Fluorescent nucleotides are then added and clusters are imaged to determine which fluorophore, and thus which nucleotide, was used in synthesis. The output of nucleotides allows reconstruction of the sequence of the DNA in the cluster. The DNA sequences can then be aligned to the parental genomes to detect polymorphisms. This method

typically gives a higher resolution of recombination event data than microarray hybridization due to higher coverage of the yeast genome.

In the study by Anderson *et al.*, 2011, the read lengths were 36-43bp long and 27x average coverage of the yeast genome was obtained. Reads of this short length need stringent alignment criteria as allowing mismatches can result in incorrect mapping. From this data they were able to obtain information on both simple CO and NCO events and more complex recombination events such as clusters of multiple COs and/or NCOs. The method described by Anderson *et al.* was subsequently used to examine recombination in S96xYJM789 strains heterozygous for hypo-*spo11* alleles, finding that reduced Spo11 activity causes significantly longer gene conversion tracts associated with COs (Rockmill *et al.*, 2012).

In addition, Oke *et al.*, 2014 utilized the method to quantify recombination in *sgs1* and *mms4-md* mutants, finding an increase in aberrant recombination in both. In *sgs1*, there were more multichromatid events (3-4 chromatids), while in *mms4-md*, increased scarring (frequent genome changes) was detected near recombination events occurring on 1-2 chromatids. The authors explain both as multiple strand invasions from complex repair of a single DSB, however the same patterns could be produced by the repair of multiple DSBs.

It is important to note that any method relying on 4-spore viable tetrads for genomic analysis is potentially susceptible to bias; in a severe mutation with a low percentage of 4-spore viables, the recombination events may not be representative of the population but instead represent an extreme case. Also, particularly deleterious recombination events cannot be captured e.g. ectopic recombination that produces acentric/dicentric chromosomes will result in cell death.

A bias has only been previously shown when sporulation was very inefficient (0.4% tetrads formed) as in the zip1 mutant (Chen et~al., 2008). In this case, high levels of CO formation were detected in zip1 mutant strains via sequencing tetrads, but not by genetic and physical data, indicating that only cells with an unusually high number of COs managed to sporulate and thus were able to be dissected and sequenced. However, COs near centromeres were shown to be increased by both methods (Chen et~al., 2008).

1.22. Caveats of whole-genome recombination assays

Using whole-genome mapping of recombination products means that almost all recombination from an individual meiosis can be detected, allowing detailed examination of the relationships between events across the entire genome. However, there are caveats to this method.

Firstly, exact DSB locations cannot be determined, only approximated by event locations. Since not every DSB produces a visible recombination event, many DSBs will not be represented at all by recombination event data. Around 15-30% of meiotic DSBs are thought to repair with the sister chromatid (Schwacha & Kleckner, 1997).

Based on the proportion of CO events that occur without detectable conversion tracts, ~14% of NCO events are predicted to occur between markers in the WT strain (Martini *et al.*, 2011), although this is only correct if conversion tract lengths are equal between CO and NCO products. In addition, based on the number of NCO events composed only of hDNA, ~30% of NCOs are estimated to be restored to the original genotype by mismatch repair (Chapter 5, section 5.2.1). These issues in pinpointing DSB locations may be expected to affect measurements of DSB interference. However, the calculated strength of DSB interference has been found to be mostly constant regardless of event density, assuming that the undetectable events occur uniformly in the genome (Zhang *et al.*, 2014; Anderson *et al.*, 2015).

Secondly, when examining recombination genome-wide, fewer events will be detected per hotspot. Roughly 150-250 events are detected in most meioses, so it is unlikely that any given hotspot of interest will contain an event in a single meiosis, let alone multiple events between samples. This means that any event occurring at a hotspot may not be representative of recombination activity generally at that hotspot. In contrast, a detailed analysis of recombination at one hotspot using Southern blot analysis of DNA extracted from cells undergoing meiosis represents an average of tens of millions of meiotic recombination events at that locus (Garcia *et al.*, 2014). However, since this an average, it is not possible to know the exact nature of any individual recombination event, unlike NGS marker analysis. Thus, both methods have specific advantages in this case.

Thirdly, as described above, this analysis cannot be done in backgrounds with a very low spore viability, since all four products of recombination are required. Southern blot analysis can be used to view recombination without culturing the spores, so can be done in any background including mutants with a severe inviable spore phenotype. In addition, backgrounds with a borderline spore viability (very low but still occasionally produces four viable spores) may produce a selection bias. For example, a strain with 2% of tetrads containing four viable spores

has 98% of meioses result in failure, but only the 2% of successful meioses are being assayed, which may not be representative of the failed meioses.

1.23. Recombination is impaired in a hybrid diploid

The high number of polymorphisms between SK1 and S288c make this cross desirable for high resolution genotyping. However, there is also a decrease in spore viability associated with increasing sequence divergence (Liti *et al.*, 2006). This is known as hybrid incompatibility and is caused by the action of MMR proteins preventing recombination between divergent sequences, a protective activity that reduces chromosomal rearrangements (Myung *et al.*, 2001), but also enforces reproductive barriers between species (Hunter *et al.*, 1996). Increasing sequence divergence is also associated with decreasing efficiency of hDNA formation in mitotic and meiotic cells (Datta *et al.*, 1997; Chen & Jinks-Robertson, 1999), thought to be because MMR proteins detect and reject hDNA intermediates that contain mismatches.

Thus, the high amount of heterozygosity between SK1 and S288c could affect meiotic recombination, affecting both recombination outcomes and locations due to highly diverse regions being selected against by the MMR proteins. However, in wild *S. cerevisiae* populations, most individuals are heterozygous (reviewed in Mortimer 2000; Borts & Haber, 1987), indicating that outbreeding is common; thus, a heterozygous cross may be more representative of wild type conditions than a homozygous cross, discounting the inbreeding that occurs during colony germination.

There is a known incompatibility between SK1 and S288c *MLH1* and *PMS1* alleles (Heck *et al.*, 2005), *MLH1-PMS1* being vital for post replicative MMR as the primary MLH heterodimer in *S. cerevisiae*. When the S288c allele of *MLH1* was combined with the SK1 allele of *PMS1*, an approximately 100-fold higher mutation rate was observed, along with a reduction in longterm fitness in the progeny derived from crossing S288c and SK1 strains (Heck *et al.*, 2005). However, Martini *et al.*, 2011 found that the fraction of COs associated with conversion tracts found in a WT SK1xS288c hybrid was comparable to that found in YJM789 x S288c hybrid (which does not have the *MLH1-PMS1* incompatibility), indicating that the partial MMR defect in SK1 xS288c hybrids has a negligible effect (assuming that the YJM789xS288c cross does not itself produce another unknown MMR defect).

1.24. The use of MMR-deficient strains increases meiotic recombination rate and allows observation of post-meiotic segregation

During homologous recombination, the pairing of complementary DNA between donor and recipient strands produces heteroduplex DNA (hDNA) with mismatches at heterozygous positions (White *et al.*, 1985; Williamson *et al.*, 1985; Bishop *et al.*, 1987; Allers & Lichten, 2001). The mismatches are usually repaired by MMR machinery to give either gene conversion or restoration of the original genotype, producing 3:1 or 2:2 segregation patterns respectively. If any mismatches remain unrepaired (by chance or due to a deficiency of the MMR system), the semi-conservative nature of DNA replication means that the alleles will segregate during the first mitotic division. This phenomenon, known as post-meiotic segregation (PMS), has implications for inheritance patterns, causing non-Mendelian inheritance ratios for simple traits, and mosaicism in multicellular organisms where the first zygotic division produces cells with different alleles (Surtees *et al.*, 2004; Leslie & Watt, 1984).

A simple way to observe PMS in fungi is by the formation of sectored colonies grown from a single spore when PMS has occurred in markers conferring a phenotype (Esposito, 1971). However, the implications of PMS for inheritance merit a genome-wide investigation as well as single loci. In order to detect PMS on a wide scale, it is necessary to allow each spore of a tetrad to germinate and undergo one mitotic division, then score genetic markers in the resulting eight cells (an octad).

By this method, each of the dissected spores is allowed to germinate and divide mitotically, and the resulting cells separated to give four pairs of mother and daughter cells per tetrad. The genotypes of mother and daughter cells are compared in order to identify markers where PMS occurred. This essentially allows reconstruction of the post-meiotic sequence of the eight individual DNA strands from the four chromatids of the diploid hybrid. Thus in addition to the usual Mendelian 2:2 and non-Mendelian 1:3 marker segregation patterns encountered in tetrads, octads can display 5:3 patterns, indicating half-conversion tracts which can be associated with either COs or NCOs.

Previous genome wide studies of PMS include Mancera *et al.*, 2011. This study examined post-meiotic segregation in four octads, genotyping using tiling microarrays in the same way as in Mancera *et al.*, 2008. However, this was in a MMR-proficient background, relying on mismatches being left unrepaired by chance. Nonetheless, PMS events were detected in nearly 10% of recombination events (with equal relative frequency in COs and NCOs).

However, a much higher level of PMS was detected by Martini *et al.*, 2011, using microarray tiling for genotyping in a SK1 x S288c hybrid MMR-deficient background, providing a genome-wide view of hDNAs associated with COs and NCOs. This study found that 83% of events contain 5:3 or 3:5 segregation patterns, indicating PMS. The SK1 x S288c cross contains ~62000 sequence polymorphisms with a median inter-marker distance of 77 bp, and few regions longer than 10kb devoid of polymorphisms. These characteristics are desirable for high-resolution genotyping.

SK1 and S288c have a relatively high sequence divergence of around 0.7%, but the hybrid undergoes meiosis efficiently and has a spore viability of around ~70%, reduced to ~63% in the absence of MMR. The S288cxSK1 hybrid strain sporulates efficiently (88%), much like a pure SK1 strain (Laureau *et al.* 2016).

In order to reveal hDNA intermediates, Martini et al., 2011 chose to inactivate MMR via the disruption of the MutS homolog MSH2 because Msh2 covers a wide scope of mismatch recognition, but unlike the MutL homologues MLH1 or MLH3, which can promote meiotic CO formation (Hunter & Borts, 1997; Al-Sweel et al., 2017), it does not affect meiotic recombination in the absence of DNA polymorphisms (Hunter et al., 1996). However, it was observed that in the presence of DNA polymorphisms, the absence of Msh2 increased CO numbers from ~73 to ~92 (Martini et al., 2011). In msh2∆ the COs were properly distributed, with all chromosomes having at least one CO, a median distance between COs that was not significantly different than that in the WT hybrid, and a positive correlation between CO numbers and chromosome size (Martini et al., 2011). In fact, this correlation is even stronger in msh2∆ than WT, suggesting that the presence of polymorphisms slightly affects CO distribution. Since Msh2 only reduces CO numbers in the presence of polymorphisms, this suggests that the polymorphisms are the cause of the CO reduction via the action of Msh2. It may be the case that MMR proficiency causes DSBs in variant-rich regions to be repaired with the sister chromatid, which would produce an undetectable event. This is supported by the fact that meiotic DSBs are repaired with the sister chromatid if they form at a locus lacking homology (Goldfarb & Lichten, 2010).

The deletion of Msh2 causes a reduction in spore viability, which may be at least partly due to unrepaired mutations accumulated during vegetative growth of the SK1 and S288c haploids, and/or the hybrid diploid. Though $msh2\Delta$ -mediated MMR deficiency reduces spore viability in WT and $tel1\Delta$ backgrounds, it improves spore viability in DDR checkpoint-deficient hybrid backgrounds, as discussed in Chapter 3.

1.25. Bioinformatic solutions for detection and classification of recombination genomewide

In order to analyse recombination events genome-wide, it is necessary to have a list of variants and the parental genotypes at each position, a method of identifying recombination products and a way to consistently deal with the classification of simple and complex events.

To extract a list of polymorphisms, sequencing data from hybrids can be aligned to one or both parental genomes. There are many existing programs that can be used for alignment, including Bowtie2 (Langmead *et al.*, 2009) and BWA (Li & Durbin, 2010).

To detect SNPs and indels in this aligned data, it is necessary to identify locations where the read sequences differ from a known reference genome (e.g. van Oeveren & Janssen, 2009). However, apparent variants can occur due to sequencing or alignment error, so a quality score threshold can be used which will depend on read depth and proportions of reads with the variant, so rare variants can be ignored (Li *et al.*, 2008; Li *et al.*, 2009). Programs exist for this purpose e.g. LAGAN (Brudno *et al.*, 2003) or GATK (McKenna *et al.*, 2010).

The genotype of each spore at each position can then be determined by comparing the number of sequencing reads that match the reference sequence for each parent. For example, Laureau *et al.* 2016, used a system where an 'S288c' genotype was assigned at each position if at least 95% of the reads displayed the S288c allele, 'SK1' if at least 75% of reads exhibited the SK1 allele, or 'heterozygous' if 25-95% of the reads were S288c and 5-75% were SK1. The reason for the biased threshold towards S288c was due to the fact that this study only aligned reads once, to the S288c reference.

Once all the spores from a single meiosis have been genotyped, recombination events must be detected and classified from this information. Due to the large number of markers involved, it is not possible to manually annotate every event, so the process of identifying, classifying and describing each event can be automated. The output can then be manually checked to ensure that the program is working as expected, and to deal with any unusual recombination events that may have escaped classification.

Programs exist for this purpose; for example, Anderson *et al.*, 2011 describes a package of programs called 'ReCombine' which is able to classify recombination events from microarray or sequencing data, including 'GenotypeCaller' to determine the genotype for each SNP and indel, and 'CrossOver' which detects various types of recombination events including COs,

NCOs, and GCs, classifies them into categories, and reports event frequency, distribution and conversion tract length. Via GenotypeCaller, genotypes for each polymorphism are provisionally assigned twice, once for each parent, and the two calls are reconciled. Information from each spore in a tetrad is then combined, producing a binary table which can be analyzed by CrossOver. Any polymorphisms that were not genotyped in all four spores are discarded, as it is not possible to determine the nature of any event that occurred at a particular marker location if fewer than four spores can be genotyped at that locus. However, the ReCombine package has no capacity to analyse PMS in octad data. In addition, 4:0 segregation patterns are removed because they may represent mitotic recombination events. This quality control step was also carried out in Martini *et al.*, 2011, who additionally discounted events that were identified from only one marker. However, it is possible that 4:0 segregation patterns could be produced by meiotic recombination, caused by complex event repair or the presence of multiple DSBs. These are expected to be rare in WT, but could be increased in mutants that have lost meiotic recombination control.

1.26. General aims of this project

- 1. To better understand the role of Rad24 and Mec1 in meiosis, and where those roles may differ
- 2. To refine a method to assay recombination events genome-wide.
- 3. To use this method to analyse recombination levels in wild type and checkpoint mutants.
- 4. To use high resolution event location data to analyse CO and DSB interference processes in wild type and checkpoint mutants.

Chapter 2.

Methods

Chapter 2. Methods

2.1. Strain creation

All *Saccharomyces cerevisiae* strains used in this study are derivatives of SK1 (Kane and Roth, 1974), S288c (Mortimer and Johnston, 1986), or BY4741, a derivative of S288c (Brachmann *et al.*, 1998). All hybrid yeast strains were derived from a cross of haploid SK1 and S288c or BY4741 parents. Strain genotypes are listed in Table 2.1.

Gene disruptions for *rad24*Δ::*HphMX*, *msh2*Δ::*kanMX6*, *mus81*Δ::*kanMX6* and *tel1*Δ::*HphMX* were performed by PCR mediated gene replacement using pFA6a-*kanMX6* or pFA6-*hphMX* plasmids (Longtine *et al.*, 1998; Goldstein & McCusker, 1999).

P_{CLB2}-MEC1 strains were created by replacing the natural MEC1 promoter with the mitosis-specific CLB2 promoter using pFA6a-natMX4-PCLB2-3HA plasmid as a template (Gray et al., 2013; Grandin & Reed, 1993).

The *spo11-HA* allele is produced by tagging *SPO11* with the *HA3-His6::kanMX4* epitope (Diaz *et al.*, 2002).

The *spo11-D290A*::*kanMX4* allele is made with a point mutation at the natural *SPO11* locus (Diaz *et al.*, 2002).

The P_{GAL} -NDT80::TRP1 allele has the natural NDT80 promoter replaced by the GAL1-10 promoter, and strains include a GAL4::ER chimeric transactivator for β -oestradiol-induced expression (Benjamin $et\ al.$, 2003).

The *cdc20-1::kanMX4* allele is made with a point mutation at the natural *CDC20* locus (Hartwell *et al.*, 1973).

Table 2.1. S. cerevisiae strains used in this study.

			at strains used in this study.
	Background		
MJ512		α	ho::LYS2 lys2Δ ura3Δ leu2Δ arg4Δ
MJ513		а	ho::LYS2 lys2Δ leu2Δ arg4Δ
MJ600		α	ho::LYS2 lys2Δ ade8Δ
MJ631	S288c	а	ho::LYS2 lys2Δ ade8Δ
			ho::LYS2 lys2Δ arg4Δ leu2Δ::hisG trp1Δ::hisG his4XΔ::LEU2 nuc1ΔΔ::LEU2
MJ43		α	PGAL1-NDT80::TRP1 ura3::pGPD1-GAL4(848)-ER::URA3
MC42		а	ho::LYS2 lys2Δ ade8Δ ndt80ΔΔ::Kan
MC25		а	ho::LYS2 lys2Δ arg4Δ leu2Δ msh2Δ::Kan
MC26		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ msh2Δ::Kan
MC51		α	ho::LYS2 lys2Δ ade8Δ msh2Δ::Kan
MC49		а	ho::LYS2 lys2Δ ade8Δ msh2Δ::Kan
MC214		a	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan
MC215		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan
MC230		a	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan msh2Δ::Kan
MC231		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan msh2Δ::Kan
MC254		a	ho::LYS2 lys2Δ ura3Δ arg4Δ mlh3ΔΔ::KanMX6
MC255		α	ho::LYS2 lys2Δ ura3Δ arg4Δ mlh3ΔΔ::KanMX6
MC264		a	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ yen1Δ::hphMX
MC265		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ yen1Δ::hphMX
MC271 MC272		a	ho::LYS2 lys2Δ ura3Δ arg4Δ mlh3Δ::KanMX6 mus81Δ::KanMX6
		α	ho::LYS2 lys2Δ ura3Δ arg4Δ mlh3Δ::KanMX6 mus81Δ::KanMX6
MC267 MC268		a α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ yen1Δ::hphMX mus81Δ::KanMX6
MC277			ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ yen1Δ::hphMX mus81Δ::KanMX6 ho::LYS2 lys2Δ ura3Δ arg4Δ yen1Δ::hphMX mlh3Δ::KanMX6
MC278		a α	ho::LYS2 lys2Δ ura3Δ urg4Δ yen1Δ::hphMX mlh3Δ::KanMX6
MC17		a	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4
MC18		α	ho::LYS2 lys2Δ URA3 arg4Δ leu2Δ rad24Δ::HphMX4
MC19		a	ho::LYS2 ade8Δ rad24Δ::HphMX4
MC20		α	ho::LYS2 ade8Δ rad24Δ::HphMX4
MC31		a	ho::LYS2 lys2\Delta his4 ura3\Delta leu2\Delta rad24\Delta::HphMX4
MC32		α	ho::LYS2 lys2\(Delta\) his4 ura3\(Delta\) leu2\(Delta\) rad24\(Delta\):HphMX4
MC107		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 msh2Δ::Kan
MC105		a	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 msh2Δ::Kan
MC202		a	ho::LYS2 ade8Δ rad24Δ::HphMX4 msh2Δ::Kan
MC203		α	ho::LYS2 ade8Δ rad24Δ::HphMX4 msh2Δ::Kan
MC223		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan rad24::hphMX
MC222		а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan rad24::hphMX
MC227	S288c	α	ho::LYS2 lys2Δ ade8Δ mus81Δ::Kan rad24::hphMX
MC247	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ rad24Δ::HphMX4 mlh3Δ::KanMX6
MC248	SK1	а	ho::LYS2 lys2Δ ura3Δ arg4Δ rad24Δ::HphMX4 mlh3Δ::KanMX6
MC251	SK1	а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 yen1Δ::hphMX
MC252	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 yen1Δ::hphMX
MC262	SK1	а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 mlh3Δ::KanMX6 yen1Δ::hphMX
MC263		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 mlh3Δ::KanMX6 yen1Δ::hphMX
MC257	SK1	а	ho::LYS2 lys2Δ ura3Δ arg4Δ rad24Δ::HphMX4 mus81Δ::KanMX6 mlh3Δ::KanMX6
MC258	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ rad24Δ::HphMX4 mus81Δ::KanMX6 mlh3Δ::KanMX6
MC101	SK1	а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 sml1Δ::URA3
MC103	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 sml1Δ::URA3
MC59	BY474	а	ho::LYS2 lys2Δ his4 ura3Δ leu2Δ sml1Δ::URA3 rad24Δ::HphMX4
MC61	BY474	α	ho::LYS2 lys2Δ his4 ura3Δ leu2Δ sml1Δ::URA3 rad24Δ::HphMX4
MC273	SK1	а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 yen1Δ::hphMXmus81Δ::KanMX6
MC274	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ rad24Δ::HphMX4 yen1Δ::hphMXmus81Δ::KanMX6
MC190	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ msh2Δ::Kan rad24Δ::HphMX4 sml1Δ::URA3
MC193	BY474	a	ho::LYS2 lys2Δ his4 ura3Δ leu2Δ msh2Δ::Kan rad24Δ::HphMX4 sml1Δ::URA3

Table 2.1. continued. S. cerevisiae strains used in this study.

Strain	Background	Mat	Genotype
MC21	SK1	Α	ho::LYS2 lys2Δ arg4Δ leu2Δ tel1Δ::HphMX4
MC22	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ tel1Δ::HphMX4
MC23	S288c	а	ho::LYS2 ade8Δ tel1Δ::HphMX4
MC24	S288c	α	ho::LYS2 ade8Δ tel1Δ::HphMX4
MC234	SK1	a	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan tel1Δ::HphMX4
MC235		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan tel1Δ::HphMX4
MC29	SK1	а	ho::LYS2 lys2Δ arg4Δ leu2Δ tel1Δ::HphMX4 msh2Δ::Kan
MC30	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ tel1Δ::HphMX4 msh2Δ::Kan
MC53	S288c	a	ho::LYS2 lys2Δ ade8Δ msh2Δ::Kan tel1Δ::HphMX4
MC55	S288c	α	ho::LYS2 lys2Δ ade8Δ msh2Δ::Kan tel1Δ::HphMX4
VG120		а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 ade2-bglPCLB2-MEC1::Kan
VG121		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 ade2-bglPCLB2-MEC1::Kan
MC152		а	ho::LYS2 lys2Δ ade8Δ PCLB2-MEC1::Kan
MC153		α	ho::LYS2 lys2Δ ade8Δ PCLB2-MEC1::Kan
MC163		а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG nuc1Δ::LEU2PCLB2-MEC1::Kan msh2Δ::Kan
MC164		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG nuc1Δ::LEU2 his4XΔ::LEU2PCLB2-MEC1::Kan msh2Δ::Kan
MC171		а	ho::LYS2 lys2Δ ade8Δ PCLB2-MEC1::Kan msh2::HphMX4
MC172		α	ho::LYS2 lys2Δ ade8Δ PCLB2-MEC1::Kan msh2::HphMX4
MC243		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan PCLB2-MEC1::Kan
MC242	SK1	а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ mus81Δ::Kan PCLB2-MEC1::Kan
			ho::LYS2 lys2Δ arg4Δ leu2Δ his4B/X::LEU2 nuc1Δ::LEU2 trp1Δ::hisG ura3Δ::pGPD1-GAL4(848)-ER::URA3
MC281	SK1	а	PCLB2-MEC1::Kan Spo11(D290A)::kanMX4
			ho::LYS2 lys2Δ arg4Δ leu2Δ his4B/X::LEU2 nuc1Δ::LEU2 trp1Δ::hisG ura3Δ::PGPD1-GAL4(848)-ER::URA3
MC282	SK1	α	PCLB2-MEC1::Kan Spo11(D290A)::kanMX4
			ho::LYS2 lys2Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 trp1Δ::hisG ura3Δ::PGPD1-GAL4(848)-ER::URA3
MC2	SK1	а	PCLB2-MEC1::Kan PGALNDT80::TRP1
	01/4		ho::LYS2 lys2Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 trp1Δ::hisG ura3Δ::PGPD1-GAL4(848)-ER::URA3
MC3	SK1	α	PCLB2-MEC1::Kan PGALNDT80::TRP1
MC198	S288C	α	ho::LYS2 lys2Δ ade8Δ PCLB2-MEC1::Kan ndt80Δ::Kan
NAC244	CV4		ho::LYS2 lys2Δ arg4Δ leu2Δ his4XΔ::LEU2 nuc1Δ::LEU2 trp1Δ::hisG ura3Δ::PGPD1-GAL4(848)-ER::URA3 PCLB2-
MC211	SKI	а	MEC1::Kan PGAL-NDT80::TRP1 Spo11(D290A)::kanMX4
NAC242	CIZ1		ho::LYS2 lys2Δ arg4Δ leu2Δ his4XΔ::LEU2 nuc1Δ::LEU2 trp1Δ::hisG ura3Δ::PGPD1-GAL4(848)-ER::URA3 PCLB2-
MC212	2KT	α	MEC1::Kan PGAL-NDT80::TRP1 Spo11(D290A)::kanMX4
MJ846	SK1	a/α	ho::LYS2/" lys2Δ/" arg4Δ-nsp/" leu2Δ::hisG/" trp1Δ::hisG/" his4XΔ::LEU2/" nuc1Δ::LEU2/" ura3Δ::PGPD1- GAL4(848)-ER::URA3/"PGAL-NDT80::TRP1/"
1411040	JKI	a/u	$ho::LYS2/' lys2\Delta/' ura3\Delta/' arg4\Delta-nsp/' leu2\Delta-?/' trp1\Delta::hisG/' his4B/X::LEU2/' nuc1\Delta::LEU2/' ura3\Delta::PGPD1-$
MJ892	SK1	a/α	GAL4(848)-ER::URA3/'PGAL1NDT80::TRP1/' spo11(D290A)::kanMX/'
1411022	SKI	u, u	ho::LYS2/' lys2Δ/' arg4Δ-nsp/' leu2Δ::hisG/' trp1Δ::hisG/' his4XΔ::LEU2/' nuc1Δ::LEU2/' ura3Δ::PGPD1-
MJ847	SK1	a/α	GAL4(848)-ER::URA3/'PGAL-NDT80::TRP1/' SPO11-HA3His6::KanMX4/'
MC207		a	ho::LYS2 lys2Δ arg4Δ leu2Δ trp1Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 msh2Δ::Kan ura3Δ::PGPD1-GAL4
MC208		α	ho::LYS2 lys2Δ arg4Δ leu2Δ trp1Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 msh2Δ::Kan ura3Δ::PGPD1-GAL4
MC239		α	ho::LYS2 ade8Δ rad24Δ::HphMX4 ndt80Δ::Kan msh2Δ::Kan
		-	ho::LYS2 lys2Δ arg4Δ leu2Δ::hisG trp1Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 ura3Δ::PGPD1-GAL4(848)-ER::URA3
MJ835	SK1	α	PGAL-NDT80::TRP1 rad24Δ::hphMX
MC89	S288c	a	ho::LYS2 ade8Δ rad24Δ::HphMX4 ndt80Δ::Kan
MC120		a	ho::LYS2 lys2Δ trp1Δ::hisG arg4Δ leu2Δ his4XΔ::LEU2 nuc1Δ::LEU2 sml1Δ::URA3 ura3Δ::PGPD1-GAL4
MC122		α	ho::LYS2 lys2Δ trp1Δ::hisG arg4Δ leu2Δ his4XΔ::LEU2 nuc1Δ::LEU2 sml1Δ::URA3 ura3Δ::PGPD1-GAL4
MC139		α	ho::LYS2 lys2Δ his4 ura3Δ leu2Δ ndt80Δ::Kan rad24Δ::HphMX4 sml1Δ::URA3
			ho::LYS2/' lys2Δ/' arg4Δ/' leu2Δ::hisG/' trp1Δ::hisG/' his4XΔ::LEU2/' nuc1Δ::LEU2/' ura3Δ::PGPD1-GAL4(848)-
MJ848	SK1	a/α	ER::URA3/'PGAL-NDT80::TRP1/' rad24Δ::hphMX/'
			ho::LYS2/' lys2Δ/' arg4Δ/' leu2Δ/' trp1Δ::hisG/' his4B/X::LEU2/' nuc1Δ::LEU2/' ura3Δ::PGPD1-GAL4(848)-
MJ913	SK1	a/α	ER::URA3/"PGAL-NDT80::TRP1/" spo11(D290A)::kanMX4/" rad24Δ::hphMX/"
			ho::LYS2/" lys2Δ/" arg4Δ/" leu2Δ::hisG/" trp1Δ::hisG/" his4XΔ::LEU2/" nuc1Δ::LEU2/" ura3Δ::PGPD1-GAL4(848)-
MJ850	SK1	a/α	ER::URA3/"PGAL-NDT80::TRP1/" rad24Δ::hphMX/" SPO11-HA3His6::KanMX4/"
MC142	SK1	a	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 cdc20-1::Kan rad24Δ::HphMX4
MC143	SK1	α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 cdc20-1::Kan rad24Δ::HphMX4
MC132		а	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 cdc20-1::Kan
MC133		α	ho::LYS2 lys2Δ ura3Δ arg4Δ leu2Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 cdc20-1::Kan
			ho::LYS2 lys2Δ arg4Δ leu2Δ trp1Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 ura3Δ::PGPD1-GAL4(848)-ER::URA3 PGAL-
MC288	SK1	а	NDT80::TRP mus81∆::Kan rad24∆::HphMX4
			ho::LYS2 lys2Δ arg4Δ leu2Δ trp1Δ::hisG his4XΔ::LEU2 and/or nuc1Δ::LEU2 ura3Δ::PGPD1-GAL4(848)-ER::URA3
MC289	SK1	α	PGAL-NDT80::TRP mus81∆::Kan rad24∆::HphMX4
			ho::LYS2 lys2Δ arg4Δ leu2Δ trp1Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 ura3Δ::PGPD1-GAL4(848)-ER::URA3 PGAL-
MC286	SK1	а	NDT80::TRP mus81∆::Kan
			ho::LYS2 lys2Δ arg4Δ leu2Δ trp1Δ::hisG his4XΔ::LEU2 nuc1Δ::LEU2 ura3Δ::PGPD1-GAL4(848)-ER::URA3 PGAL-
MC287	SK1	α	NDT80::TRP mus81∆::Kan

2.2. Yeast growth media

YPD: 1% BD Bacto Yeast Extract, 2% BD Bacto Peptone, 0.5 mM Adenine and 0.4 mM Uracil are added to 90% of the required volume in double distilled water and autoclaved. Once cooled, 20% D-Glucose is added to a final concentration of 2% and to bring the total to 100% of the required volume. For YPD plates, 2% Bacto Agar is added prior to autoclaving and D-glucose addition.

YPA: 1% BD Bacto Yeast Extract, 2% BD Bacto peptone, and 1% potassium acetate are added to the required volume and autoclaved.

Drug selection plates for marker selection and strain genotyping are made by producing YPD as above and adding the relevant drug to the final concentrations listed in Table 2.2. For plates, 2% Bacto Agar is added prior to autoclaving.

Table 2.2. Drug concentrations.

<u>Drug</u>	Final Concentration
G418	200 μg/ml
Hygromycin	$300 \ \mu g/ml$

Drop-out liquids and plates for marker selection and strain genotyping are made as follows: 0.675% Yeast Nitrogen Base with ammonium sulphate, 2% Glucose and the relevant amino acids are combined to the final concentrations listed in Table 2.2. For plates, 2% Bacto Agar is added prior to autoclaving.

Table 2.3. Amino acid concentrations.

Amino Acid	Final Concentration
Adenine Sulphate	0.02%
Arginine	0.02%
Aspartic Acid	0.1%
Histidine	0.02%
Leucine	0.06%
Lysine	0.03%
Methionine	0.02%
Phenylalanine	0.05%
Threonine	0.2%
Tryptophan	0.02%
Tyrosine	0.03%
Uracil	0.02%
Tyrosine	0.03%

2.3. Yeast Transformation

A single colony of cells is inoculated into 4 ml of YPD and grown overnight at 30 °C. Cell density is measured and 50 ml of YPD is inoculated to a cell density (OD600) of $5x10^6$ cells/ml and grown to a cell density of $2x10^7$ cells/ml. Cells are spun for 5 minutes at $3,000 \times g$. The supernatant is aspirated and the pellet is resuspended in 50 ml double distilled water and spun again for 5 minutes at $3,000 \times g$. The supernatant is aspirated and the pellet is resuspended in 1 ml of 100 mM lithium acetate, transferred to 1.5 ml tubes and spun at $1,000 \times g$ for 1 minute. The lithium acetate is aspirated and the pellet is resuspended in a volume of 100 mM lithium acetate necessary to give a cell density of $2x10^9$ cells/ml. 50 μ l of cells per transformation are transferred to 1.5ml tubes. Tubes are spun at $4,600 \times g$ for 1 minute, lithium acetate aspirated and 360 μ l transformation mix (33.3% PEG, 100 mM Lithium Acetate, 0.28 mg/ml single stranded carrier DNA (salmon sperm), between 0.1-10 μ g transformation DNA fragment) is added to each tube.

Tubes are vortexed until the pellet is resuspended, then incubated at 30° C for 30 minutes. Tubes are transferred to 42° C for 22 minutes to heat shock cells then spun for 15 seconds at $4,600 \times g$ and the transformation mix is aspirated. Pellets are resuspended in 1 ml YPD and incubated for 2 hours to allow recovery. $200\mu l$ of cells are then spread onto selection plates and grown for 48-72 hours to allow identification of transformants.

2.4. Spot tests for resistance to UV light and Hydroxyurea

Hydroxyurea plates are made by adding HU in the amount required for the desired concentration to YPD+Agar before pouring plates.

For exponentially growing yeast, an overnight saturated YPD culture is measured for cell density and diluted in YPD to a cell density (OD600) of $5x10^6$ cells/ml and grown to a cell density of $3x10^7$ cells/ml. Cultures are diluted to a cell density (OD600) of $5x10^6$ cells/ml again in double distilled water, then serially diluted to produce 1/10, 1/100, 1/1,000 and 1/10,000 dilutions. $5\mu l$ of each dilution is spotted onto plates.

For hydroxyurea exposure, YPD plates containing 25, 50 or 100 mM HU are used, plus a control YPD plate. Spots are allowed the dry and the plates incubated at 30°C for 2 days.

For UV light exposure, four YPD plates are used. Spots are allowed to dry, then plates are immediately exposed to 25 J/m^2 , 50 J/m^2 or 75 J/m^2 of UV light, plus one untreated control. Plates are incubated at 30° C for 2 days.

2.5. Meiotic timecourses with NDT80 or cdc20-1 arrest

Strains are taken from -80 °C storage, streaked onto YPD plates and incubated at 30 °C for 2 days. For SK1 diploids, a single colony is inoculated into 4 ml YPD and incubated at 30 °C at 250 rpm for 24 hours. For hybrid crosses, haploid parents are mated in 1 ml YPD for 8 hours, after which an additional 3ml YPD is added and the cells are grown for a further 16 hours.

Cell density is measured and inoculated to a density of (OD600) 0.2 into 30 ml YPA. The culture is incubated at 250 rpm at 30°C for 14 hours. Cells are collected by centrifugation at 6,000 \times g for 3 minutes, resuspended in 30 ml double distilled water, re-spun and then resuspended in 30 ml pre-warmed sporulation media (2% potassium acetate, 5 μ g/ml Adenine, 5 μ g/ml Arginine, 5 μ g/ml Histidine, 15 μ g/ml Leucine, 5 μ g/ml Tryptophan, 5 μ g/ml Uracil). The culture is then incubated at 30°C at 250 rpm for the duration of the time course with samples taken at relevant time points.

For the P_{GAL} -NDT80 experiments, synchronized cultures were split after the required amount of time (3-12 h) in 2% potassium acetate, and one fraction induced to sporulate by addition of beta-oestradiol to a final concentration of 2 mM. Cultures were then incubated to a total of 48 h at 30 °C prior to dissection.

For the *CDC20-1* experiments, synchronized cultures were split after 8 h at 37 °C in 2% potassium acetate, and one fraction induced to sporulate by transfer to 30 °C. Cultures were then incubated to a total of 48 h prior to dissection.

2.6. Sporulation Efficiency

4 μl of meiotic culture is taken after 48 hours, added to a slide, cover slip placed on top, and scored under a microscope for cells that have not formed tetrads and those that have. Percentages are calculated to give the sporulation efficiency.

2.7. Dissection of tetrads/octads to assay spore viability and for sequencing hybrids

To assay spore viability, 50 μl of sporulated cells in sporulation media are incubated with Zymolyase 100T (10 mM Sucrose, 0.7% Glucose, 1 mM HEPES pH 7.5, 1 mg Zymolyase 100T) at a final concentration of 4 μg/ml in a 150 mM sodium phosphate buffer at 37 °C for 15 min. 15μl of digested cells is pipetted onto a YPD plate and allowed to dry before tetrad dissection. Dissected spores were incubated for 2 days at 30°C on YPD and scored for percentage viability per strain and viable spores per tetrad.

To produce hybrid spores for sequencing, SK1 x S288c and SK1xBY4741 haploid parents were mated for 8–14 hours on YPD plates. Haploid are mated freshly on each occasion and not propagated as diploids, in order to reduce mitotic recombination. Sporulation was induced and tetrads were dissected after 72 hours in 2% potassium acetate. For octads, spores were allowed to grow for 4-8 hours on YPD plates until they had completed one division, after which mother and daughter cells were separated. Colonies were grown for 16 hours in liquid YPD for DNA isolation.

Only tetrads giving four viable spores, and octads giving eight viable progeny, are considered for genotyping by Next Generation Sequencing.

2.8. Genomic DNA Preparation

4 ml of overnight saturated YPD culture is spun down at 1,750 ×g for 3 minutes and washed once with double distilled water. The pellet is resuspended in 0.5 ml sphaeroplasting buffer (1 M Sorbitol, 100 mM Sodium Phosphate Buffer pH 7.5, 100 mM EDTA, 1% 2-Mercaptoethanol, 0.25 mg/ml Zymolyase 100T) and transferred to 2 ml tubes, then incubated at 37°C for 30 minutes.

If the sample is to be sequenced, 0.5 ml of Triton mix (5% Triton X-100, 0.1M EDTA, 0.1M Tris-HCl pH 7.5) is added, the sample vortexed and incubated at room temperature for 5 minutes with intermittent inversion. The sample is spun down at $20,000 \times g$ for 5 minutes and the supernatant aspirated. The pellet is resuspended in 0.5 ml sphaeroplasting buffer.

The cells are lysed with the addition of 100 µl lysis buffer (3% SDS, 0.1 M EDTA, 1 mg/ml Proteinase K) and incubation at 60°C for 1 hour. Samples allowed to cool and then 800 µl of Phenol/Chloroform/Isoamyl alcohol (25:24:1) is added. Samples are vigorously mixed, rested for

5 minutes, then mixed again and spun down at $20,000 \times g$ for 5 minutes. Approximately 450 μ l of the aqueous phase is removed into a clean 1.5 ml tube. 50 μ l 3 M NaAc pH 5.2 is added, mixed in and then 550 μ l 100% Ethanol is added, mixed in and the sample is spun down for 1 minute at $20,000 \times g$. The supernatant is aspirated and the pellet washed with 1 ml 70 % Ethanol, spun for 1 minute at $20,000 \times g$, aspirated again and allowed to dry for approximately 10 minutes. The pellet is then dissolved in 450 μ l 1xTE (10 mM Tris Base HCl pH 8.0, 1 mM EDTA pH 8.0). 50 μ l of 1 mg/ml RNAse A in 1xTE is added, mixed and incubated at 37°C for 2 hours, with additional mixing every 30 minutes. DNA is precipitated by adding 30 μ l 3 M NaAc pH 5.2, mixing, then adding 700 μ l of 100% ethanol and mixing. The sample is spun for 1 minute at 20,000 $\times g$, aspirated and the pellet washed in 70% ethanol then spun again for 1 minute at 20,000 $\times g$. The pellet is allowed to dry for approximately 10 minutes and dissolved in 200 μ l of 1xTE. The sample is incubated overnight at 4°C to aid dissolution.

2.9. Preparation of samples for sequencing

Samples of genomic DNA are defrosted and diluted 1/10 with 1xTE. The DNA concentration is measured using the Qubit High Sensitivity dsDNA Assay. The sample is diluted again and remeasured until the concentration is between 0.2-0.3 ng/µl.

The diluted samples are input into the Nextera XT workflow according to the Best Practises recommended by Illumina.

The Nextera transposome is used to tagment genomic DNA, which fragments and tags the DNA with adapter sequences in a single step. $5\mu l$ of ~ 0.2 ng/ μl DNA is transferred to a PCR tube and 5 μl Amplicon Tagment Mix (ATM) is added. Samples are spun at $280 \times g$ for 1 minute and incubated at 55 °C for 5 minutes. 5 μl of Neutralise Tagmentation (NT) is added and the samples incubated at room temperature for 5 minutes.

To amplify libraries and add indexing adapters, 5 μ l of an Index 1 (i7) adapter and 5 μ l of an Index 2 (i5) adapter is added to each sample. A different combination is used for each sample to allow demultiplexing. 15 μ l of Nextera PCR Master is added to each sample, mixed and spun at 280 \times g for 1 minute. The samples are placed in a thermal cycler with pre-heated lid and the following program is run:

72 °C for 3 minutes

95 °C for 30 seconds

12 cycles of [95 °C for 10 seconds, 55 °C for 30 seconds, 72 °C for 30 seconds]

72 °C for 5 minutes

To purify library DNA and remove short library fragments, $30\,\mu l$ of AMPure XP magnetic beads are added to each sample and shaken at 1,800 rpm for 2 minutes. Samples are incubated at room temperature for 5 minutes and placed on a magnetic stand for 2 minutes. The supernatant is removed and the samples washed with 200 μl fresh 80% Ethanol. After 30 seconds the ethanol is removed and the wash step repeated with another 200 μl of 80% ethanol. After 30 seconds the ethanol is removed and the beads allowed to air dry for 15 minutes. 52.5 μl Resuspension Buffer is added to each sample and shaken at 1,800 rpm for 2 minutes, then incubated at room temperature for 2 minutes. Samples are placed on a magnetic stand for 2 minutes and 50 μl of supernatant is removed and transferred to fresh PCR tubes.

To check the fragment length distribution and concentration of the purified libraries, 1 μ l of undiluted library is run on an Agilent Technology 2100 Bioanalyzer using a High Sensitivity DNA chip.

To normalize the quantity of each library, 20 µl of supernatant is transferred to a new tube.

Library Normalization Additives and Library Normalization Beads are combined in a ratio of 6.5:1 to give a total volume sufficient to add 45 μ l to each sample. 45 μ l of the mixture is added to each sample and shaken at 1,800 rpm for 30 minutes. Samples are placed on a magnetic stand for 2 minutes and the supernatant is removed. Samples are washed with 45 μ l of Library Normalization Wash, shaken at 1,800 rpm for 5 minutes, placed on a magnetic stand for 2 minutes and supernatant removed. The wash step is repeated with the addition of 45 μ l of Library Normalization Wash, sample is shaken at 1,800 rpm for 5 minutes, placed on a magnetic stand for 2 minutes and supernatant removed. 30 μ l of freshly prepared 0.1 N NaOH is added to each sample and shaken at 1800 rpm for 5 minutes. Samples are placed on a magnetic stand for 2 minutes and 30 μ l of supernatant is removed to fresh tubes containing 30 μ l of Library Normalization Storage Buffer, then centrifuged at 1,000 \times g for 1 minute.

To denature and dilute a PhiX library for use as a sequencing control, 2 μ l of 10 nM PhiX library is mixed with 3 μ l of 10 mM Tris-Cl, pH 8.5 with 0.1% Tween 20 in a 1.5 ml tube. 5 μ l of freshly made 0.2 N NaOH is added, the sample mixed and spun down at $280 \times g$ for 1 minute, then incubated at room temperature for 5 minutes. 990 μ l prechilled hybridization buffer is added to give a 20 pM PhiX library.

To pool samples for sequencing, 5 µl of each sample is combined into a 1.5 ml tube and mixed. 24 µl of the mix is transferred to a tube containing 570 µl hybridization buffer. The mix is boiled at 96°C for 2 minutes and placed in ice water for 5 minutes. 6 µl of denatured PhiX control (final

concentration 1%) is added to the library, mixed well and then loaded into a MiSeq reagent cartridge.

2.10. Alignment of paired-end reads

Paired read files are aligned using bowtie2 (Langmead *et al.*, 2009) to the S288c reference genome (version R64-2-1_20150113 (Engel *et al.*, 2013). Also included in the reference file are sequences from the yeast mitochondrial (GenBank: KP263414.1 [Foury *et al.*, 1998]) and 2μ plasmid (GenBank: V01323.1 [Hartley & Donelson, 1980]). In addition, paired read files are aligned to a custom-made SK1 genome. The reference files are formatted with the bowtie2-build command. To optimize the alignment for long reads and tolerance of mismatches expected in the hybrid genome, the bowtie2 alignment is performed with the following settings:

- -X 1000: Allows paired reads to map up to 1,000 bp apart. The default is 500, which may not be appropriate for long sequenced fragments.
- --local: Allows bowtie2 to trim off mismatching bases at the ends of reads, if the rest of the fragment is a good match. This is useful for mapping long reads as they commonly have poor quality reads at the end.
- --mp 5,1: Reduces the mismatch penalty by 1. This may help with mapping of reads containing SNPs and indels.
- -D 20 -R 3 -N 1 -L 20 -i S,1,0.50: These options increase the likelihood that bowtie2 will report the correct alignment for a read that aligns in many places. Bowtie2 uses multiseed alignment, creating small 'seed' oligonucleotides from each read to speed up searching for a match. To make the mapping more sensitive, options can be turned on that allow a mismatch in a seed (-N), decrease the length of the seed (-L), alter the interval between extracted seeds (-i), and specify how many times bowtie2 will re-seed repetitive seeds (-R) and try consecutive seed extension attempts before moving on (-D), using the alignments found so far.
- --dovetail: Allows paired reads that dovetail each other to be considered concordant. This does not affect alignment, but makes the reported fragment lengths more accurate.
- --rg-id 1 --rg PU:1 --rg LB:1 --rg SM:1 --rg PL:1 Optional fields which do not affect alignment but are required for downsteam processing.

The alignment produces a SAM file, which is then converted into a sorted BAM file using the Samtools view command (Li *et al.*, 2009), for downstream processing.

2.11. Detection of SNPs and indels and creation of SK1 genome

Once sequences from hybrid spores have been aligned, SNP and indel type polymorphisms were detected using the GenomeAnalysisToolkit function HaplotypeCaller (Van der Auwera *et al.*

2013). The S288c reference sequence used is the same as the one used for the initial alignment (version R64-2-1_20150113 (Engel *et al.*, 2013).

The program 'VariantCaller' by Tim Cooper (personal communication) was then run, which combined the GATK calls from 120 samples, and calculated the call frequency, total read depth and averaged variant read-depth:total read-depth ratios for each variant. Variants were filtered for a call-freq between 45-55% of spores, a total read-depth spanning the site of >250 and where 95% or more of the reads at that site contained the variant. The final variant list was then used to automatically produce a custom 'SK1' genome, using the S288c genome as a backbone and converting any SNP or indel positions into the newly-detected SK1 equivalent.

2.12. Genotype calling in tetrads and octads

The PySamStats module 'variation' (Miles & Mattioni, 2016) is run on the sorted BAM file for each sequenced spore. This produces a list of the number of reads containing an A, C, T, G, insertion or deletion for each genomic position specified in the reference, in .txt format. The S288c reference sequence used is the same as the one used for the initial alignment (version R64-2-1_20150113 (Engel *et al.*, 2013).

In order to isolate only SNP and indel reads, VariantIsolator.R (available in appendix) is run on each .txt file using the data from the variant table produced by the GATK analysis. VariantIsolator is run twice, once for each parent, because the genomic positions of variants are different.

To call genotypes at each variant positions, VariantCaller.R (available in appendix) is run twice on each sample for comparison to each parent. Thus, one call is made using S288c as the reference genome and SK1 as the variant, and the other with SK1 as the reference and S288c as the variant. The program VariantCaller examines the makeup of the reads at each position and assigns genotypes according to the following rules:

All positions must have a read depth of at least 5 in order to pass the read depth threshold.

A SNP is called as having the variant genotype if 70% or more of reads at that position match the variant, or as the reference genotype if 90% of reads match the reference. If the variant and reference reads are above 90% of all reads *and* within 70% of each other, the position is called heteroduplex.

Insertions and deletions are called as having the variant genotype if 30% or more of reads at that position match the variant. This low threshold is used because the alignment of indel sequences is biased towards the reference sequence, which means that they are unlikely to be erroneously called as matching the variant genotype. In addition, if the indel is longer than 20bp the threshold is reduced to 20% because the increased length will make it harder to align. There is also a reduced 20% threshold when there are more than 10 reads matching the variant. This is because reads are unlikely to be recorded as having an insertion or deletion if there is not one present, so having >10 indel reads increases the confidence.

To be called as the reference genotype, at least 95% of reads must match the reference sequence, and there must be fewer than 2 reads matching the variant call. This is because even if there is an indel, there are usually reference reads recorded as well due to the difficulty in alignment, so the presence of more than one variant read reduces confidence in the ability to correctly call the position as reference.

Indel positions technically can be called as heteroduplex, but it is uncommon and they are discarded later in the pipeline.

Each indel is called as both an insertion and a deletion depending on which parental genotype it is being compared to. When the indel is called as a deletion, each base of the deletion is called separately. The calls for the separate bases must then be collapsed into a single call. This process has another set of rules for calling, based on the length of the deletion. If there is at least one reference call and at least one variant call within the same deletion, the deletion is discarded. Otherwise, both reference and variant calls are evaluated by the same rules (Table 2.4).

Table 2.4. Deletion calling rules

Length of deletion (bp)	Required percentage of bases
	called for pass
1	100
2-5	40
6-10	33
11-20	25
21-50	16
51-100	10
>100	5

If an octad is being analysed, each of the eight progeny are processed. If a tetrad is being analysed, the four spores are processed and the data for each spore is duplicated in order to appear as an octad, in order to simplify downstream processing.

In octads and MMR-proficient tetrads, SNPs called as heteroduplex are discarded. However, in MMR-deficient tetrads, heteroduplex calls are converted. For each position with a heteroduplex call, the original 'mother' is converted to SK1 and the duplicated 'daughter' to S288c. This is an arbitrary choice since it is impossible to know which should have which call, assuming there is no bias in the directionality of the repair.

Finally, the genotype calls against each parent are combined using the program 'Combining_SK1_S288c.R' (available in appendix). The rules for this are that if one call is SK1 and the other S288c, there is a conflict and the position is discarded; if both calls are the same, that call is used; if there is only one call, with the other unable to be called due to low read depth or ambiguity, the lone call is used; if neither was able to be called, the position is discarded. The genotype call is converted into a binary signal, either 1 for S288c or 0 for SK1. Two files are

produced from this, one containing final binary calls for each variant, which is compatible with the event calling script (the binary file); and one containing both the binary calls and the raw SK1 and S288c read depths, which is used to produce visualizations of recombination events (the gr2 file).

2.13. Event Calling

Using the binarized input, chromosomes are split into segments with the same segregation pattern by the program 'Annotation.py' (authored by Marie-Claude Marsolier, unpublished work). Each segment has information recorded about the limits of the upstream 'start' interval and downstream 'stop' interval and the genotypic pattern of the eight progeny, for example [1, 1, 0, 0, 0, 0, 1, 1]. The spores are always arranged in the same order 1, 2, 3, 4, 5, 6, 7, 8 with mother/daughter couples. Also recorded is the segment type, which will be 1:7, 2:6, 2:6*, 3:5, 4:4, 4:4*, 5:3, 6:2, 6:2* or 7:1 as described in Martini *et al.* (2011). The first number corresponds to the number of spores with the S288c genotype.

Next, events are called using the chromosome segments listed in the Annotation file and the 'Event Caller' program (authored by Marie-Claude Marsolier, personal communication). This determines recombination events as being a set of segments located between two 4:4 segments longer than 1.5 kb. If these two 4:4 segments have the same pattern, the event is an NCO, and if the two 4:4 segments have different patterns, then the event is a CO. The program produces a file recording information about each recombination event including the limits of the upstream 'start' interval and downstream 'stop' interval, the types of the segments composing the event, the number of chromatids involved in the event and the length of the event.

2.14. Subclassification of events

Events are automatically subclassified by the program Event_Sorter (available in appendix). Classes are based on those described in Martini *et al.* (2011).

According to the rules of this program, NCOs are subcategorized into four groups:

Group 1: Changes on one chromatid, no trans hDNA

Group 2: Changes on one chromatid, and trans hDNA (occurrences of separate 5:3 or 3:5 patterns from different chromatids)

Group 3: Changes on two non-sister chromatids.

Group 0: Changes on two sister chromatids or 3 or 4 chromatids.

Within each group, there are also separate classes, as detailed below and in Figure 2.1.

Group 1

Class 1: 5:3 only

Class 2: 3:5 only

Class 3: 5:3 with restoration and/or conversion tract (4:4, 6:2)

Class 4: 3:5 with restoration and/or conversion tract (4:4, 6:2)

Class 10: 6:2 only

Class 10.1: 2:6 only

Class 7: One 6:2 plus other

Class 8: One 2:6 plus other

Class 9: Anything else

Group 2

Class 11: 5:3_5:3a

Class 12: 3:5_3:5a

Class 13: 5:3_5:3a plus other patterns NOT in the middle of the trans hDNA

Class 14: 3:5_3:5a plus other patterns NOT in the middle of the trans hDNA

Class 15: 5:3_4:4_5:3a (trans het with restoration tract gap in the middle)

Class 16: 3:5_4:4_3:5a

Class 17: 5:3_4:4_5:3a plus other patterns NOT in the middle of the trans hDNA

Class 18: 3:5_4:4_3:5a plus other patterns NOT in the middle of the trans hDNA

Class 19: 5:3_6:2_5:3a (trans het with conversion tract gap in the middle)

Class 20: 3:5_2:6_3:5a

Class 21: 5:3_6:2_5:3a plus other patterns NOT in the middle of the trans hDNA

Class 22: 3:5 2:6 3:5a plus other patterns NOT in the middle of the trans hDNA

Class 23: Anything else

Group 3

Class 31: contains 4:4i (symmetrical heteroduplex)

Class 30: anything else

COs are also subcategorized into four groups:

Group 1: No trans hDNA or incompatible hDNA

Group 2: trans hDNA is present, but no incompatible hDNA

Group 3: Events with incompatible hDNA (containing both [5:3 or 6:2 segments] and [3:5 or 2:6 segments].

Group 0: Events involving more than 2 chromatids.

Within each group, there are also separate classes, as detailed below and in Figure 2.2.

Group 1

Class 100: 4:4aCO: just CO, no associated patterns

Class 1: (5:3)_(4:4aCO): CO with hDNA tract

Class 2: (3:5)_(4:4aCO): CO with hDNA tract

Class 3: (5:3)_(4:4)_(4:4aCO): Characteristic pattern of hDNA, restoration tract, then CO, thought to be caused by resection from break to give hDNA, branch migration to give 4:4, then the actual CO.

Class 4: (4:4aCO)_(5:3)_(4:4a): Same as above but in opposite direction.

Class 5: (3:5)_(4:4)_(4:4aCO)

Class 6: (4:4aCO)_(3:5)_(4:4a)

Class 7: (5:3)_(6:2)_(4:4aCO) Characteristic pattern of hDNA, conversion tract, then CO, thought to be caused by resection from break to give hDNA, branch migration to give 6:2, then the actual CO.

Class 8: (6:2)_(5:3)_(4:4aCO) Same as above but in opposite direction.

Class 9: (3:5)_(2:6)_(4:4aCO)

Class 10: (2:6)_(3:5)_(4:4aCO)

Class 11: contains 4:4i: where the 4:4 pattern is actually produced by symmetrical heteroduplex on different chromatids.

Class 15: (6:2)_(4:4aCO) (CO with conversion tract)

Class 16: (2:6)_(4:4aCO) (CO with conversion tract)

Class 12: Anything else

Group 2

Class 30: adjacent 5:3 5:3a, plus any other patterns

Class 31: adjacent 3:5 3:5a, plus any other patterns

Class 32: non-adjacent trans hDNA i.e. have conversion or restoration tract in between

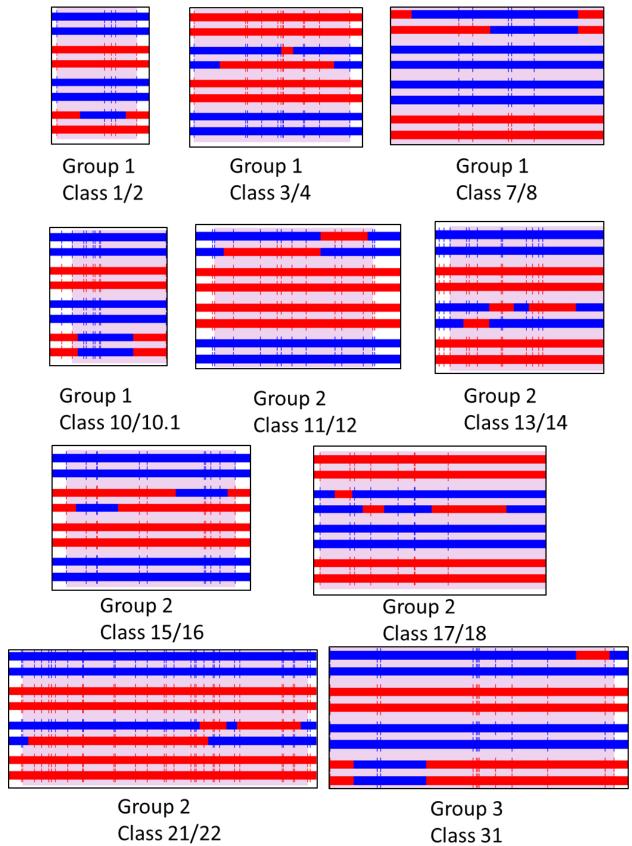
Group 3

Class 21: contains 4:4i

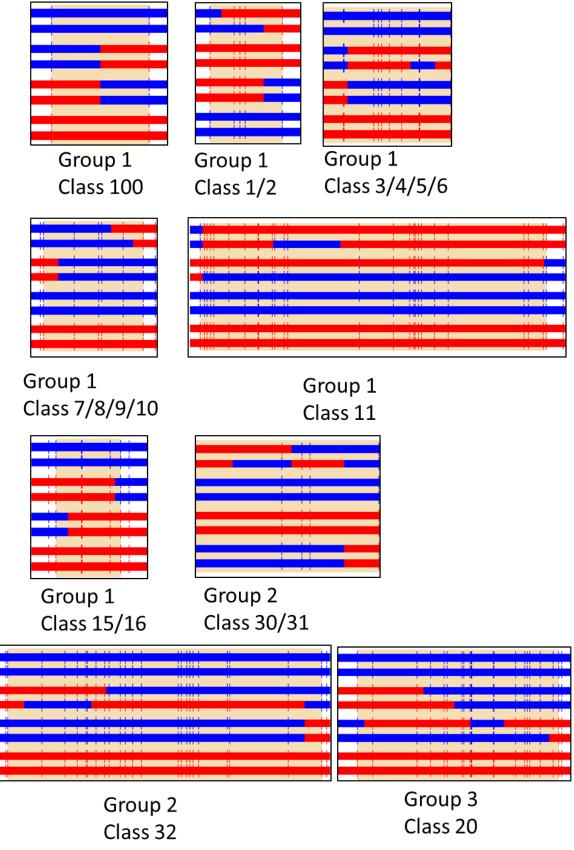
Class 20: any other

Finally, Group 0 is composed of events that show signs of complexity or difficulty in classification.

Group 0


Class 1 = NCO involving 2_sis, 3 or 4 chromatids

Class 2= Crossover involving 3 or 4 chromatids


Class 3= Contains multiple different 4:4 patterns indicating possibly of multiple COs

Class 4= Type 'U' events: cannot classify due to occurrence at the end of the chromosome – never returns to 4:4 pattern.

The sorted event tables and gr2 files for each meiosis can be combined into master tables using the script 'Event table combiner.R' (available in appendix).

Figure 2.1. Examples of events matching NCO groups and classes. A representative example event for each category is shown. Event length does not affect categorization. The red and blue lines correspond to the eight strands of DNA present during meiotic recombination, four from each parent. Vertical ticks correspond to called polymorphism positions. The different colours represent homologous chromosomes from the different parents of the hybrid. The purple background highlights the NCO event region.

Figure 2.2. Examples of events matching CO groups and classes. A representative example event for each category is shown. Event length does not affect categorization. The red and blue lines correspond to the eight strands of DNA present during meiotic recombination, four from each parent. Vertical ticks correspond to called polymorphism positions. The different colours represent homologous chromosomes from the different parents of the hybrid. The orange background highlights the CO event region.

2.15. Event Imaging

Using the sorted event table and gr2 imaging file for each meiosis, recombination event regions can be imaged using the script 'Event_Imager' (available in appendix). Alongside the event, the Spo11 profile and hotspot strength values (Pan *et al.*, 2011), Rec114/Mer2/Mei1 (RMM) profile (Panizza *et al.*, 2011), Rec8 peaks (Ito *et al.*, 2014), and transcribed regions (Nagalakshmi *et al.*, 2008) are plotted.

2.16. Manual Annotation of Events

Event tables and images are inspected manually to ensure correct classification. Events in Group 0 in particular are scrutinized as they are difficult to correctly classify automatically.

For Class 1 (NCOs involving 2_sis, 3 or 4 chromatids), the event is marked as being produced by two Spo11-DSBs. If the event is composed solely of a 8:0 segregation pattern, the event is marked as mitotic and there are no Spo11-DSBs considered to have occurred. Also, events occurring in the same place across multiple samples are likely to be caused by a variant table error.

For Class 2 events (COs involving 3 or 4 chromatids): These are usually a CO and an NCO, but occasionally double COs, which are unambiguous because all four chromosomes swap over. Either way, the event is categorized as being produced by two Spo11-DSBs.

For Class 3 events (more than two different 4:4 regions – potential double CO): These are usually not actually double COs according to the 1.5kb threshold, but have a different 4:4 pattern occurring within the event caused by a complex CO/NCO or multiple NCOs. Events are only considered to be double COs if the event involves all four chromatids in a double reciprocal exchange, or if the two different 4:4 segments are more than 1.5kb apart. Usually, if the 4:4 segments are >1.5 kb apart, the two COs will be considered separate anyway. However, if another event or other pattern changes occur on different chromatids in between, they will 'interrupt' the threshold. So, the two CO regions are more than 1.5kb apart, but the automatic categorization could not detect this due to the presence of another pattern on a different chromatid occurring within 1.5kb of both 4:4 patterns, obscuring the event boundaries.

It is possible that a double crossover could occur where one or both chromatids are shared, but it is not possible to say for certain, so the threshold value of 1.5kb is used. The threshold means that some dCOs will be miscategorised as not dCOs, and some non-dCOs miscategorised as dCOs, but on average it should give a representative result.

Any events that were automatically categorized as double COs, but do not fulfil the criteria according to manual inspection, are re-annotated as either one CO and 1+ NCOs (common for 3-chromatid events), or 2+ NCOs (common for 2-chromatid events). In either case, the event is still

considered to have occurred from two separate Spo11-DSBs, due to the inherent incompatibility of the heteroduplex tracts; in order to create the 4:4 pattern, the event must have separate DSBs on multiple chromatids.

2.17. Removal of false events

Apparent 'events' that are actually caused by variant table errors are easily spotted because they will occur in the same place across multiple samples. The offending variants are removed from the event table and event calling is repeated. Common types of false event include:

8-0s: A unique event solely composed of 8:0 or 0:8 positions could be mitotic, but if it appears in multiple samples, it is a table error.

False hDNA: In $msh2\Delta$ tetrads which have undergone heteroduplex calling to produce an 'octad', occasionally variants occurring in repetitive regions like subtelomeres may be detected as hDNA, when actually they are duplicates. So in these samples, events composed solely of heteroduplex and occurring in the same place across multiple samples are considered to be table errors.

False 4:4: This occurs if the actual S288c strain used has a different DNA sequence from the reference S288c. The variant table is made by comparing real samples to the S288c reference, so any differences are assigned to SK1. However, if the SK1 actually matches the S288c reference and the S288c does not, it causes a switched position. For these positions, the variants can be swapped back over to the correct parental genotypes.

2.18. Inter-event distance simulations: independence and interference

This analysis was performed and authored by Tim Cooper (personal communication).

To show the hypothetical distribution of events along the chromosomes, simulated data is produced for a given event count. For comparison to experimental data, simulated datasets are produced for each genotype. Data from separate samples from the same genotype is aggregated. To simulate inter-event distance (IED) data under conditions of interference or independence, virtual events occur sequentially on simulated chromosomes and either have no influence on the following events (independence simulation) or apply an interference window that reduces the chance of another event occurring within it, with a size based on best-fit gamma parameters (interference simulation). If simulated events occur within 1.5kb, the two events will be merged so the final observed event count will be identical to the experimental data.

To quantify the strength of inter-event interference, the best fit to a gamma distribution is determined for the experimental inter-event distribution. A gamma distribution is a continuous probability distribution that is observed in the intervals between successive independent events,

and so can be used to describe the distances between recombination events (McPeek and Speed, 1995; Zhao *et al.*, 1995).

A gamma distribution function has a shape factor, α , and a scale factor, β . For recombination events, α corresponds to the strength of interference. A value of 1 indicates an exponential distribution i.e. no interference. Values > 1 indicate interference, with higher values corresponding to stronger interference.

 β describes the distance over which the shape designated by α is stretched, thus indicating the range of the interference. It is also affected by the number of data points, so is higher in strains with more events.

A one-sample Kolmogorov–Smirnov test (section 2.20) is utilized to determine whether the experimental inter-event distribution is significantly different from the best fit gamma distribution.

2.19. Mixture modelling

This analysis was performed and authored by Tim Cooper (personal communication).

Experimental inter-CO distance data is expected to contain a random component (Class II COs) and an interfering component (Class I COs). The two components can be separated into two gamma distributions, based on the expectation that one component will display no interference (α =1) and the other will display interference (α >1). Initial parameter estimates are provided and the two gamma-components are iteratively corrected until they fit the experimental data.

A two-sample Kolmogorov–Smirnov test (section 2.20) is utilized to determine whether the experimental inter-event distribution is significantly different from the two-component system.

2.20. Kolmogorov-Smirnov test

The Kolmogorov–Smirnov test is a nonparametric test used to compare continuous probability distributions, either one sample against a hypothetical distribution (one-sample K-S test) or two samples (two-sample K-S test). This test can thus be used to compare inter-event distance cumulative frequency distributions between samples or to compare a sample to a hypothetical gamma distribution.

One Sample: A one-sample Kolmogorov-Smirnov-test is used to compare an inter-event distance distribution from experimental data to a theoretical gamma distribution.

Two Sample: A two-sample KS-test is used to compare two inter-event distributions derived from experimental data.

2.21. T-test (independent samples)

To compare data from independent samples with unequal sample sizes (e.g. the number of double crossovers in each meiosis per genotype), two-sample two-tailed T-tests were carried out, with the assumption of equal or unequal variances depending on the result of an F-test Two-Sample for Variances (see 2.22). For samples with unequal variances, a Welch's T-test is used. The tests are carried out using the function in Microsoft Excel.

2.22. F-test

An F-test was used to determine whether two populations have the same variance. The tests are carried out using the function in Microsoft Excel.

2.23. One-way ANOVA

A one-way ANOVA was carried out to test if the value of a single parametric variable (e.g. the number of double crossovers in each meiosis) differs significantly between three genotypes.

The test is carried out using an online tool

(http://astatsa.com/OneWay_Anova_with_TukeyHSD)

2.23. Tukey Test

After using an ANOVA to determine that there is a significant difference, the Tukey test is used to determine exactly which pairs of means are significantly different. The test is carried out using an online tool (http://astatsa.com/OneWay_Anova_with_TukeyHSD)

Chapter 3.

Spore viability in the absence of the DNA damage response and mismatch repair

Chapter 3. Spore viability in the absence of the DNA damage response and mismatch repair

3.1. Introduction

3.1.1. General Introduction

In meiotic prophase, around 200 DSBs are formed by Spo11 before the cell enters metaphase I. The transition between prophase and metaphase is controlled by *NDT80* activation, a meiosisspecific transcription factor which activates a cascade of proteins causing pachytene exit and meiotic progression. In order to ensure that DSBs are repaired before this occurs, the DNA damage response checkpoint arrests cell cycle progression in pachytene in response to the presence of unresected DSBs and unrepaired ssDNA. Key checkpoint proteins include the kinases Tel1^{ATM} and Mec1^{ATR}, and Rad24^{Rad17}, an activator of Mec1.

The importance of Spo11-DSBs to the timing of meiosis can be investigated by using hypomorphic SPO11 alleles (hypo-spo11). SPO11-HA3-His6 ('spo11-HA') has a tag composed of three copies of a C terminal epitope (haemagglutinin), a total of 33 amino acids in length, and six histidine residues. spo11-HA is reported to reduce the formation of Spo11-DSBs by 11-50% (Martini et al., 2006). Spore viability is also slightly reduced, by ~2% compared to WT. The reason for this is unknown, but it may be that the tag physically interferes with Spo11 activity. spo11-D290A has a point mutation occurring in a putative Toprim domain, thought to be involved in DSB catalysis via the coordination of Mg2+ (Diaz et al., 2002). Under standard conditions, spo11-D290A only has a mild recombination defect phenotype (spore viability of ~87%), but if sensitized by other conditions, the defects become much more severe (e.g. sporulation at 16°C gives a viability of ~2%: Martini et al., 2006; Diaz et al., 2002). The spo11-D290A and spo11-HA alleles cause a greater decrease in spore viability when combined: HA-tagged spo11-D290A has a spore viability of 19.3% and reduced DSB formation, which suggests the tag and the point mutation affect Spo11 activity in different ways (Diaz et al., 2002).

3.1.2. The relationship between DSB formation, DNA damage response and meiotic progression

Wild type SK1 budding yeast strains have a spore viability of ~97%. The deletion of the DDR checkpoint protein Rad24 reduces spore viability to ~25%, and this can be rescued to ~50% by an 8 hour prophase arrest mediated by transient *NDT80* repression (Gray *et al.* 2013).

Budding yeast with a hypo-spo11 allele, such as spo11-HA or D290A, do not have significantly decreased viability compared to WT. Surprisingly, when hypo-spo11 is combined with $rad24\Delta$, a synergistic reduction in viability to just 5% is seen. Interestingly, in the $rad24\Delta$ hypo-spo11 strains, eight hours of NDT80-mediated prophase arrest improves spore viability to \sim 70% (Gray et~al., 2013). Similarly, P_{CLB2} -MEC1, a conditional Mec1 allele expressed only in mitosis, has a spore viability of \sim 50%, and when combined with hypom-spo11, this drops to \sim 7% (Gray et~al., 2013), but whether P_{CLB2} -MEC1 viability can also be rescued by prophase arrest has not been examined.

3.1.3. NDT80 prophase arrest system

The release from *NDT80* prophase arrest is enacted via induction of the *GAL* promoter with beta-estradiol, a *GAL* promoter having been placed upstream of the *NDT80* coding sequence. GAL transcription is induced by a chimeric transcription factor consisting of an estradiol binding domain fused with Gal4 (Benjamin *et al.*, 2003). Gal4-ER thus activates transcription only in the presence of estradiol, which causes strong expression of any GAL-controlled genes, including the *GAL* family of galactose metabolism genes. This increase in GAL-gene transcription during meiosis could cause decondensation of chromosomes, which may explain the observed abnormalities e.g. the increased presence of polycomplexes (Bhuiyan *et al.*, 2002).

3.1.4. Aims of this investigation

These observations provoked the following ideas;

- 1. Whether there was a correlation between prophase length and spore viability.
- 2. What would be the maximum and minimum length of prophase required to observe a rescue effect.
- 3. If prolonging prophase in Mec1 mutants would also increase spore viability, as Rad24 and Mec1 function in the same DDR pathway.
- 4. Whether the rescue was specific to *NDT80* prophase arrest, or cell cycle arrest generally.

3.2. Results

3.2.1. The spore viabilities of $rad24\Delta$ and hypo-spo11 mutants positively correlate with time in NDT80 prophase arrest

It has been shown that the spore viability of $rad24\Delta$ and hypo-spo11 strains can be rescued by transient NDT80 prophase arrest (Gray et~al., 2013). To investigate the impact of varying the length of time cells are held in meiotic prophase, a meiotic timecourse was carried out on $rad24\Delta$ and $rad24\Delta$ hypo-spo11 diploid strains, as described in Methods Section 2.5. The release from NDT80 prophase arrest is enacted via induction of the GAL promoter with beta-estradiol, a GAL promoter having been placed upstream of the NDT80 coding sequence. A chimeric transcription factor is used, consisting of an estradiol binding domain fused with Gal4 (Benjamin et~al., 2003). Gal4-ER thus activates transcription only in the presence of estradiol. The estradiol induction causes strong expression of any GAL-controlled genes, including the GAL family of galactose metabolism genes.

Sporulation is induced in diploid cells via transfer to 2% potassium acetate solution, and *NDT80* expression, and therefore exit from prophase and meiotic progression, is triggered by the addition of β-estradiol at timepoints taken each hour between 3-12 hours. In order to determine whether the phenotype is unique to a particular *SPO11* allele or to *spo11* hypomorphs generally, two different hypomorphic alleles (*spo11-HA* and *spo11-D290A*) are used, as in Gray *et al.*, 2013. Samples were incubated at 30 °C for 48 hours to allow the completion of sporulation, then dissected and scored for the number of surviving spores.

The viability of the $rad24\Delta$ strain at 8 hours recapitulated that from Gray et~al., who reported ~54% viability, while this experiment showed ~59% these are within 95% confidence limits (Figure 3.1A). [Similarly, the non-arrested viabilities of $rad24\Delta$ and P_{CLB2} -MEC1 were reported to be 27% and 52% respectively in Gray et~al. (2013), but are here observed at 22% and 58% respectively (data not shown)]. Between 3 and 8 hours of prophase arrest, the viability of the $rad24\Delta$ strain steadily increases from 22% to 60%, with no substantial further improvement from extending the time beyond 8 h (Figure 3.1A). For the $rad24\Delta$ hypo-spo11 strains, a similar trend of viability improving with increasing prophase length is observed, and no appreciable additional improvement to viability is gained from extending prophase to longer than 8 h. However, it is interesting to note that both $rad24\Delta$ hypo-spo11 strains are less viable than $rad24\Delta$ when NDT80 is induced earlier (3-4 h) and more viable when NDT80 is induced later (6-12 h). In addition, at early timepoints, 3-4 h, $rad24\Delta$ spo11-HA has a slightly higher spore viability than $rad24\Delta$ spo11-D290A; at later timepoints, the viabilities are indistinguishable. This is explored further in Section 3.2.3.

A simple explanation for the mechanism of rescue by prophase arrest is that for $rad24\Delta$, the arrest essentially replaces the function of the checkpoint, restoring the cell cycle arrest that Rad24 is involved in maintaining. The arrest also allows more time for the less efficient *hypospo11* protein to make DSBs. The recruitment of Mec1 to DSBs requires the formation of RPA-coated ssDNA via resection of the DSB (Clerici *et al.*, 2014). Thus, inefficient DSB formation due to a hypomorphic *spo11* allele is expected to cause a weaker checkpoint response, as would the loss of Rad24. This explains why the combination of $rad24\Delta$ and hypo-spo11 causes a greater reduction in spore viability than either alone (Gray *et al.*, 2015).

Since Ndt80 expression is likely repressed during checkpoint arrest, a weakened checkpoint response is expected to cause precocious Ndt80 expression, leading to an early exit from meiotic prophase and reducing the amount of time available for DSB formation by the already-inefficient hypo-spo11. This explains why prophase arrest is more beneficial to spore viability than expected in a $rad24\Delta$ hypo-spo11 background. This agrees with the hypothesis that activation of the DDR checkpoint represses NDT80 transcription and activation (Lindgren et al., 2000; Pak and Segall, 2002; Prugar et al., 2017).

However, it is unclear why spore viability in $rad24\Delta$ hypo-spo11 is higher than that of $rad24\Delta$ when prophase is extended to 8 h. It is possible that one contributing factor to the lower spore viability of $rad24\Delta + 8$ h is an excessive number of DSBs, which is rescued by a hypo-spo11 allele. Thus, $rad24\Delta$ viability is negatively affected by both too few DSBs (hypo-spo11) and by too many DSBs (extended prophase), though having too few DSBs is more deleterious than having too many. This implies that Rad24 has a role in controlling DSB numbers, though this is likely to occur indirectly via the activation of Mec1. It is also important to note that the spore viability of arrested $rad24\Delta$ hypo-spo11 is not restored to WT levels, so there are additional deleterious effects of the $rad24\Delta$ and hypo-spo11 mutations that are not rescued by the arrest.

Figure 3.1. Effects of prophase arrest on spore viability and sporulation efficiency. All error bars are 95% confidence intervals. Strains are detailed in Table 2.1, raw data is available in Table S1. A) Comparison between the spore viability of, and the effect of changing the amount of time spent in prophase arrest on, $rad24\Delta$ and $rad24\Delta$ hypo-spo11 strains. B) Length of NDT80 prophase arrest compared to sporulation efficiency of $rad24\Delta$ and $rad24\Delta$ hypo-spo11 cultures. C) Comparison of tetrad and triad viability in $rad24\Delta$ and $rad24\Delta$ hypo-spo11 strains, after 12h prophase arrest.

3.2.2. Use of the NDT80 prophase arrest and release system causes sporulation defects

The SK1 strain is a highly efficient sporulator; after 24 h in sporulation medium, ~80% of cells in an SK1 culture will have sporulated (Deutschbauer & Davis, 2005). However, it was observed that prophase-arrested $rad24\Delta$ and $rad24\Delta$ hypo-spo11 cells exhibited relatively inefficient sporulation, ranging from 20-60% and which was partly alleviated by increasing prophase length (Figure 3.1B). This may be due to the high rate of NDT80 transcription induced by the Gal4-ER construct in response to β -estradiol; Ndt80 overexpression has been shown to reduce the overall efficiency of sporulation in wild-type SK1 strains (Tung et~al., 2000).

In addition, only ~1/5 of the cells that sporulated produced tetrads, the remainder produced triads or dyads (data not shown). In order to assess whether there was a systematic bias caused by the low number of tetrads available to select for dissection, the spore viability of triads from samples arrested for 12h was assessed. Tetrad and triad viability were not significantly different in both $rad24\Delta$ and $rad24\Delta$ hypo-spo11 backgrounds (Figure 3.1C). This indicates that the tetrads are not a biased population. In addition, the size of the spores in tetrads and triads was consistent, suggesting that they are all haploid cells. Thus it seems likely that triads are simply tetrads that have failed to package a spore, rather than having one pair of spores failing to correctly undergo Meiosis II.

NDT80 induces transcription of many genes encoding proteins that are directly involved in spore assembly (Chu *et al.*, 1998; Primig *et al.*, 2000). For example, one *NDT80*-induced gene is *ADY3* (Accumulates *DY*ads), which as the name suggests, when mutated leads to an increase in asci with fewer than four spores due to a failure to form mature spore walls (Rabitsch *et al.*, 2001). Excessive or inappropriately timed *NDT80* expression could thus cause failure in spore packaging or spore wall formation.

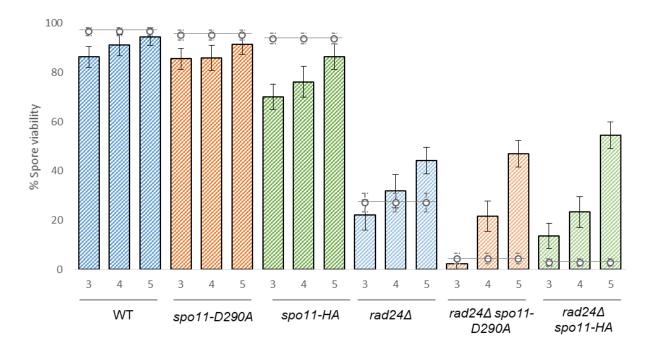


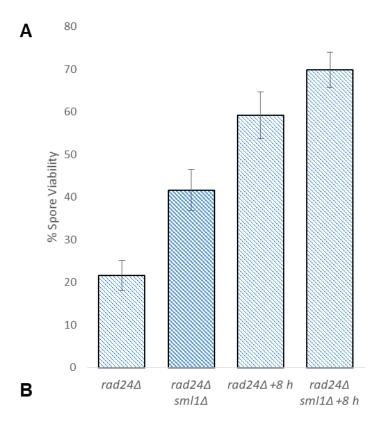
Figure 3.2. A comparison of *rad24*Δ strains and *RAD24* strains with 3-5 hours of prophase and hypo-spo11. Error bars are 95% confidence limits. Strains are detailed in Table 2.1, raw data is available in Table S1. White circles with grey error bars represent the spore viabilities of equivalent non-arrested strains reported by Gray *et al.*, 2013.

3.2.3. Early induction of NDT80 in RAD24 strains

Interestingly, the viability of $rad24\Delta$, $rad24\Delta$ spo11-HA and $rad24\Delta$ spo11-D290A strains after 3 hours of arrest (~22%, ~13%, ~2% respectively) is similar to the viability of the non-inducible strains reported by Gray et~al.~(~27%, ~4%, ~3% respectively). Since spore viability is similar in $rad24\Delta$ whether NDT80 expression is deliberately induced early or not, this suggests that NDT80 is activated early anyway in the checkpoint mutants. This agrees with the hypothesis that the DDR checkpoint represses NDT80 transcription (Lindgren et~al., 2000; Pak and Segall, 2002).

Wild type and hypo-spo11 yeast do not have significantly different spore viabilities (Gray et~al., 2011). However, when hypo-spo11 is combined with $rad24\Delta$, there is a synergistic reduction in spore viability, suggesting that inefficient formation of DSBs is especially deleterious in checkpoint-deficient strains. This has been explained by the low DSB signal from the hypo-spo11 being unable to trigger the DDR checkpoint in the absence of $rad24\Delta$, and thus unable to inhibit NDT80 transcription. If this is the case, the effect of $rad24\Delta$ in hypo-spo11 backgrounds might be recapitulated by inducing an early exit from prophase in RAD24~hypo-spo11 strains.

To test this idea, the *NDT80* induction system was utilized to cause early exit from prophase, instead of increasing prophase length. The normal activation of *NDT80* likely takes place somewhere between 4-5 hours into meiosis, since this is when WT and *NDT80* phenotypes begin to diverge (Xu *et al.*, 1995). Meiotic timecourses were carried out as previously described (Methods section 2.5) on *RAD24*⁺ *SPO11*⁺, *spo11-HA* and *D290A* strains, with *NDT80* induction at 3, 4 and 5 hours. Earlier timepoints could not be used because the cells do not efficiently sporulate.


In checkpoint proficient yeast, all strains have their spore viabilities reduced by the early exit from prophase when induced after 3 or 4 hours (Figure 3.2). A prophase length of 5 hours is sufficient to restore WT and *spo11-D290A* strains to a level of spore viability comparable with a non-arrested strain. However, the viability of *spo11-HA* after 5 hours is still significantly lower than its non-arrested equivalent. Also, *spo11-HA* shows the greatest improvement in viability between 3-5 hours, indicating that it benefits the most from the arrest. This is probably because *spo11-HA* has a more severe phenotype than *spo11-D290A*.

However, even when prophase length is only 3 hours, the checkpoint proficient yeast have a much higher viability than their $rad24\Delta$ equivalents, indicating that either NDT80 is induced even earlier than 3h in checkpoint mutants, or that there are other deleterious effects of $rad24\Delta$ not related to the early exit from prophase. By contrast, in checkpoint deficient yeast, a prophase

length of just 4 hours is sufficient to raise the spore viability not just equivalent to, but higher than, that of the equivalent non-arrested strain (Figure 3.2).

The presence of a hypo-spo11 allele is more deleterious to $rad24\Delta$ spore viability with a 3 h prophase, but advantageous after 6 h+ (Figure 3.1A). The $rad24\Delta$ hypo-spo11 strains both benefit more from increased arrest time than $rad24\Delta$ alone, showing a greater improvement as prophase is extended (Figure 3.2). Thus, spo11-HA $rad24\Delta$ and RAD24 strains both show a greater improvement than SPO11 equivalents when prophase is extended, but the same is only true for spo11-D290A when checkpoint deficient. This can be explained by the fact that spo11-HA has a more severe phenotype, while the more proficient spo11-D290A can make more DSBs in the shortened prophase. However, with a 3 h prophase, $rad24\Delta$ spo11-D290A experiences a greater loss of viability than $rad24\Delta$ spo11-HA. This suggests that spo11-D290A is more deleterious than spo11-HA only under the specific conditions of a 3h prophase and checkpoint deficiency.

Overall, these results indicate that an early exit from prophase has a more severe effect on hypospol1 strains, in both *RAD24* and *rad24*\Delta backgrounds. This is likely because the reduced activity of Spol1 makes it unable to form sufficient DSBs in the reduced timeframe, consistent with conclusions from Gray *et al.*, 2013.

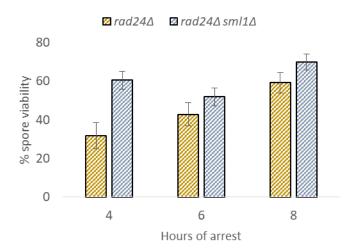


Figure 3.4. The effect of Sml1 deletion on the spore viability of Rad24 mutants. All error bars are 95% confidence limits. Strains are detailed in Table 2.1, raw data is available in Table S1. A) Comparison of spore viability in $rad24\Delta$ strains with or without $sml1\Delta$ and/or prophase extension. B) Comparison of the effect of different prophase lengths on $rad24\Delta$ and $rad24\Delta$ $sml1\Delta$ SK1 strains.

3.2.4. The viability of P_{CLB2} -MEC1 is not affected by NDT80 prophase arrest

The homozygous deletion of $MEC1^{ATR}$ is inviable in yeast (Giaever *et al.*, 2002) and mice (Brown and Baltimore, 2000; de Klein *et al.*, 2000). In order to examine the function of Mec1 in meiosis, the promoter of CLB2 can be used to create a conditional mutant where MEC1 transcription is suppressed during meiotic prophase. P_{CLB2} -MEC1 yeast have a spore viability of 52-58%, substantially higher than the 22-27% seen in $rad24\Delta$ (Gray *et al.*, 2013).

Since Mec1 and Rad24 function in the same DNA damage response pathway, it was thought that extending prophase length via NDT80 block and release may also rescue the viability of Mec1 mutants. To test this idea, the spore viability of P_{CLB2} -MEC1 strains was scored after varying times of arrest in the NDT80 block-and-release system. It was found that the spore viability of P_{CLB2} -MEC1 with eight hours of NDT80 block and release was not distinguishable from that of a non-arrested strain (Figure 3.3A). Other timepoints were also taken, demonstrating no notable change in spore viability with 4 to 10 hours of arrest (Figure 3.3B).

When P_{CLB2} -MEC1 is combined with the hypomorphic spo11-HA, spore viability drops to 9%; a synergistic effect like that seen in $rad24\Delta$ spo11-HA (Gray et~al., 2013). To discover if P_{CLB2} -MEC1 would also have a synergistic relationship with the spo11-D290A allele, the spore viability of a P_{CLB2} -MEC1 spo11-D290A was tested (Figure 3.3C).

Here, a similarity is seen between $rad24\Delta$ and $_{PCLB2}$ -MEC1 phenotypes, in that both have spore viability reduced by the presence of a hypomorphic Spo11 allele. Also, for both checkpoint mutants, the spo11-HA allele reduces viability to around 0.2x of the starting value (P_{CLB2} -MEC1: 58% to 7%, $rad24\Delta$: 27% to 5% (Gray et~al., 2013)). However, the spo11-D290A allele is slightly less deleterious to P_{CLB2} -MEC1 than to $rad24\Delta$, reducing $rad24\Delta$ viability by 0.2x, but P_{CLB2} -MEC1 viability only by 0.4x (P_{CLB2} -MEC1: 58% to 17%, $rad24\Delta$: 27% to 3% [Gray et~al., 2013]).

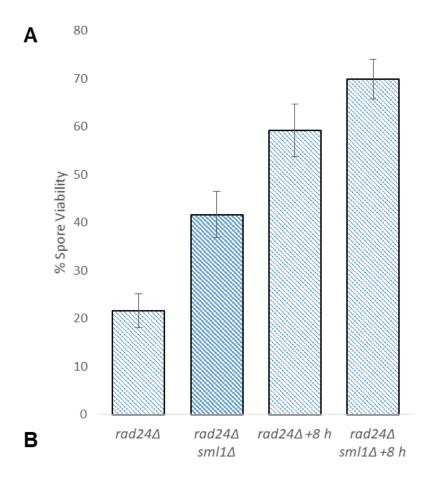
It was reasoned that under the combined sensitising effects of a hypomorphic spo11 and P_{CLB2} -MEC1, prophase arrest may now rescue spore viability. It was found that NDT80 prophase arrest does rescue the viability of P_{CLB2} -MEC1 spo11-D290A, but unlike with $rad24\Delta$ the rescue is not time dependent – roughly the same viability is observed between 4-10 hours (Figure 3.3C). Interestingly, at most timepoints the viability of P_{CLB2} -MEC1 spo11-D290A is generally not substantially different to that of P_{CLB2} -MEC1. This is unlike the situation in $rad24\Delta$ spo11-D290A, where NDT80 prophase arrest raises spore viability above that of $rad24\Delta$. This suggests that the arrest is only rescuing the hypomorphic Spo11 aspect of the phenotype, and P_{CLB2} -MEC1 is still the limiting factor in preventing the spore viability from improving further. Thus

hypo-spo11 alleles may have a synergistic effect in decreasing viability when combined with P_{CLB2} -MEC1, but not in increasing viability in response to prophase arrest, unlike in $rad24\Delta$. This suggests that unlike in $rad24\Delta$, the P_{CLB2} -MEC1 spore viability phenotype is entirely unrelated to prophase length. In $rad24\Delta$, most of the loss of spore viability is explained by a reduced prophase length, but not all.

 P_{CLB2} -MEC1 yeast is more viable than $rad24\Delta$ to begin with (52-58% vs 22-25%), but the viability of $rad24\Delta$ is higher than that of P_{CLB2} -MEC1 when both checkpoint mutants have a hypomorphic Spo11 allele and a prophase length of >=6 h (e.g. 83% in $rad24\Delta$ spo11-D290A +10 h, 60% in P_{CLB2} -MEC1 spo11-D290A +10 h). The reason why $rad24\Delta$ viability surpasses that of P_{CLB2} -MEC1 under these specific circumstances may be that $rad24\Delta$ is less tolerant of an excessive number of DSBs than P_{CLB2} -MEC1. A reduced number of DSBs due to hypomorphic Spo11 is deleterious for both checkpoint mutants, but an increased number of DSBs due to extended prophase is only deleterious to $rad24\Delta$. This implies that Rad24 has some role in controlling recombination event quantities or qualities separate to those of Mec1.

A more simple explanation for the observed differences between $rad24\Delta$ and P_{CLB2} -MEC1 may be that it is due to the use of a meiotic knockout of Mec1. Mec1 is still able to perform its roles in the mitotic cell cycle, unlike $rad24\Delta$; perhaps some of the reduced viability observed in $rad24\Delta$ spores is due to death during germination and vegetative growth, which would have been prevented in P_{CLB2} -RAD24. Also, the CLB2-promoter may affect Mec1 expression in mitosis, causing Mec1 to be expressed at inappropriate times, in inappropriate quantities. This may contribute to the observation that P_{CLB2} -MEC1 spore viability is not rescued by a longer prophase. Alternatively, it may be that the meiotic knockout of Mec1 is incomplete; there may still be some MEC1 protein present by the time DSBs are being formed. In P_{CLB2} -MEC1, DSBs are seen from 2 hours after entry into meiosis, at which time the amount of Mec1 is low, but there is still some Mec1 present until around 3 hours (Gray $et\ al.$, Figures 3A & S4). Regardless, during the bulk of DSB formation and repair, there should be little or no Mec1 protein present.

3.2.5. *SML1* deletion rescues *rad24∆* spore viability


Mec1 deletion is inviable in *S. cerevisiae*, but the deletion of Sml1 (Suppressor of Mec1 Lethality) restores the cell viability of $mec1\Delta$ in both meiosis and mitosis, though $sml1\Delta$ does not compensate for the checkpoint or transcriptional functions of Mec1 (Zhao *et al.*, 1998).

Sml1 inhibits dNTP synthesis post-translationally by binding directly to the ribonucleotide reductase (RNR) subunit Rnr1 (Zhao *et al.*, 1998). RNR catalyses the conversion of NDP to

dNDP, the rate-limiting step of dNTP synthesis, thus controlling dNTP pool levels and affecting genetic fidelity and cell viability (Reichard, 1988). RNR activity is strictly regulated during DNA replication and repair. During S-phase and after DNA damage, Sml1 is inactivated by Dun1 phosphorylation (Zhao and Rothstein 2002). As a result, *dun1*Δ yeast take longer to complete DNA replication, and are sensitive to DNA-damaging agents (Zhao and Rothstein 2002). Dun1 is activated by Rad53 (Chen *et al.*, 2006), and Rad53 is in turn activated by phosphorylation via Mec1 and Tel1 (Sanchez *et al.*, 1996). Mec1, Rad53 and Dun1 also affect RNR activity by upregulating the transcription of RNR genes (Huang & Elledge 1997). Dun1 upregulates transcription of the *RNR* genes by relieving the transcriptional repression of the Crt1 protein (Elledge *et al.*, 1992; Huang *et al.*, 1998). In this way, dNTP levels can be controlled in response to DNA damage.

Deletion of Sml1 therefore rescues the inviable phenotype of *mec1*∆ in two ways, first by relieving the requirement for Mec1-mediated inactivation of Sml1, and secondly by increasing dNTP levels (Huang & Elledge, 1997) by releasing RNR suppression, allowing DNA repair to be more efficient in the absence of the DDR checkpoint.

Since Rad24 is an activator of Mec1, this raised the question of whether Sml1 deletion would also rescue $rad24\Delta$, in mitosis and meiosis. To examine meiotic rescue, the spore viability of a $rad24\Delta$ sml1 Δ strain was measured and found to be twice as high as in $rad24\Delta$ alone (Figure 3.4A). However, the rescue effect of $sml1\Delta$ on $rad24\Delta$ was not as substantial as that of 8 h prophase arrest, which was 50% more beneficial than $sml1\Delta$ to $rad24\Delta$ viability.

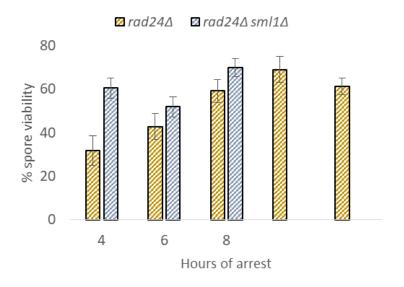


Figure 3.4. The effect of Sml1 deletion on the spore viability of Rad24 mutants. All error bars are 95% confidence limits. Strains are detailed in Table 2.1, raw data is available in Table S1. A) Comparison of spore viability in $rad24\Delta$ strains with or without $sml1\Delta$ and/or prophase extension. B) Comparison of the effect of different prophase lengths on $rad24\Delta$ and $rad24\Delta$ $sml1\Delta$ SK1 strains.

3.2.6. The deletion of SML1 and prophase arrest rescue the viability of $rad24\Delta$ by different mechanisms

rad24 Δ spore viability can be rescued by both $sml1\Delta$ and by transient prophase arrest. To observe the relationship between the two forms of rescue, the viabilities of $rad24\Delta$, $rad24\Delta$ $sml1\Delta$, $rad24\Delta$ 8 h NDT80 prophase arrest, and $rad24\Delta$ $sml1\Delta$ 8 h NDT80 prophase arrest were compared in an SK1 background (Figure 3.4A). A deletion of Sml1 increases $rad24\Delta$ viability from ~20% to ~40%, while NDT80 prophase arrest increases it to 60%. However, $sml1\Delta$ deletion combined with NDT80 prophase arrest gave a viability of 70%, suggesting that the two forms of rescue together improve $rad24\Delta$ viability more than either does alone, and supporting the idea that each rescues $rad24\Delta$ viability by a separate mechanism.

To determine whether this synergistic effect with $sml1\Delta$ effect would be observed for different prophase lengths, the spore viability of $rad24\Delta$ $sml1\Delta$ was tested with 4 and 6 h prophase (Figure 3.4B). This revealed that the largest difference in viability between $rad24\Delta$ and $rad24\Delta$ $sml1\Delta$ is with a 4 h prophase, so $sml1\Delta$ is particularly protective of $rad24\Delta$ viability when prophase is shortened. These data support the idea that $sml1\Delta$ and NDT80 prophase arrest rescue $rad24\Delta$ via different mechanisms. The most likely explanation is that $sml1\Delta$ increases the number of available nucleotides for repair as it is no longer inhibiting RNR, and NDT80 gives the cells more time to make/repair DSBs.

3.2.7. Different *S. cerevisiae* strains display significantly altered spore viabilities in checkpoint-deficient backgrounds

To test if $rad24\Delta$ has the same effect on spore viability in different strain backgrounds, the viabilities of SK1 and S288c $rad24\Delta$ yeast were compared (Figure 3.5A). This revealed that the spore viability of $rad24\Delta$ was higher in an S288c background than in SK1, but the S288c strain received less benefit from SML1 deletion. To see if S288c always has a higher spore viability than SK1, the viabilities of other mutants were scored (Figure 3.5B). In most backgrounds tested, S288c spore viability was not substantially different to that of SK1. However, along with $rad24\Delta$, P_{CLB2} -MEC1 was also noticeably less viable in SK1 than in S288c. This suggests that the loss of DDR response checkpoint proteins is more deleterious to SK1 than to S288c yeast. This may be related to the fact that SK1 is a much more efficient sporulator than S288c; 90% of SK1 yeast, but only 10% of S288c yeast, sporulate after 48 hours (Deutschbauer & Davis, 2005). A possible explanation is that in SK1, sporulation may continue despite errors in segregation, producing more defective tetrads able to be assayed, but in S288c, sporulation may be more likely to fail entirely if there are any errors in chromosome segregation, meaning that fewer defective tetrads are produced.

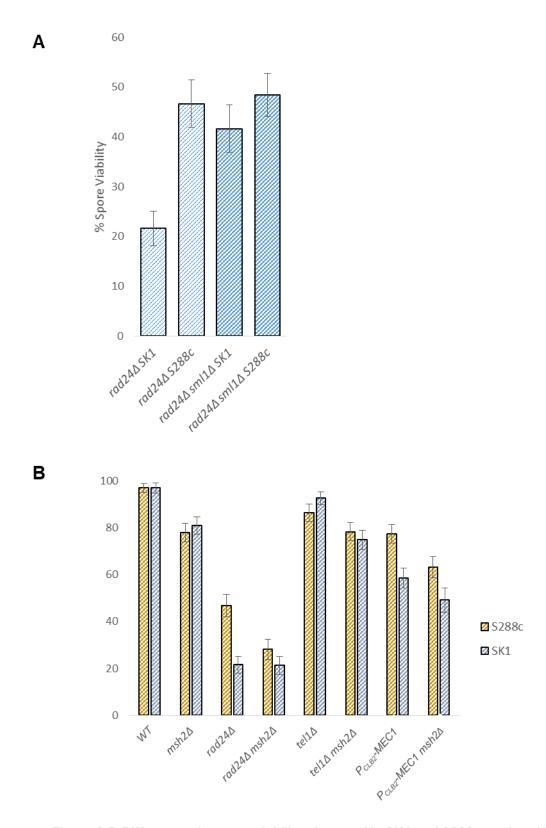
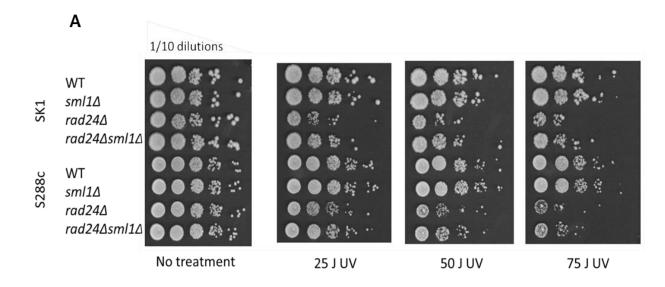



Figure 3.5. Differences in spore viability observed in SK1 and S288c strains. All error bars are 95% confidence limits. Strains are detailed in Table 2.1, raw data is available in Table S1. A) Comparison of spore viability of $rad24\Delta$ and $rad24\Delta sml1\Delta$ yeast in SK1 and S288c backgrounds. B) Comparison between spore viability in pure SK1 and S288c strains. Error bars are 95% confidence limits.

3.2.8. $sml1\Delta$ rescues $rad24\Delta$ viability in cycling cells when exposed to UV damage but not hydroxyurea

It has been shown that $sml1\Delta$ rescues $rad24\Delta$ spore viability in meiosis. SML1 deletion is known to rescue $mec1\Delta$ in mitosis (Zhao et~al., 1998), so it was reasoned that $sml1\Delta$ should also rescue $rad24\Delta$ in mitosis. To test this idea, spot tests were carried out on $rad24\Delta$ strains with acute exposure to UV light or chronic exposure to hydroxyurea. rad24 mutant strains have decreased resistance to UV damage (Paulovich et~al., 1998). Hydroxyurea, like SML1, is an inhibitor of RNR, so exposing $rad24\Delta$ yeast to HU may abrogate the rescue effect of $sml1\Delta$. Both SK1 and S288c backgrounds were tested because SK1 haploid cells tend to clump together and do not spread out well for the spot test, and because S288c $rad24\Delta$ is naturally more viable than SK1 $rad24\Delta$ (Figure 3.5A), so may give a different result.

It was found that $rad24\Delta$ yeast viability is reduced when exposed to acute doses of 25, 50 and 75 J/m² of UV, with the reduction proportional to the dose received; and that $sml1\Delta$ rescues the viability of UV-exposed $rad24\Delta$ yeast, though not to WT levels (Figure 3.6A). This result demonstrates that $sml1\Delta$ rescues $rad24\Delta$ UV damage sensitivity phenotype in mitosis, in both SK1 and S288c backgrounds. Spot tests were also carried out in the presence of 25, 50 and 100 mM HU (Figure 3.6B). In both backgrounds, $sml1\Delta$ appears to rescue viability slightly in both $rad24\Delta$ and WT. However, it is not a strong rescue. It may be that, while SML1 and HU are both inhibitors of RNR, HU is a much more potent inhibitor and so its presence is not compensated for by a lack of $sml1\Delta$; or it may be due to the fact that the HU exposure is chronic, while the UV exposure is acute.

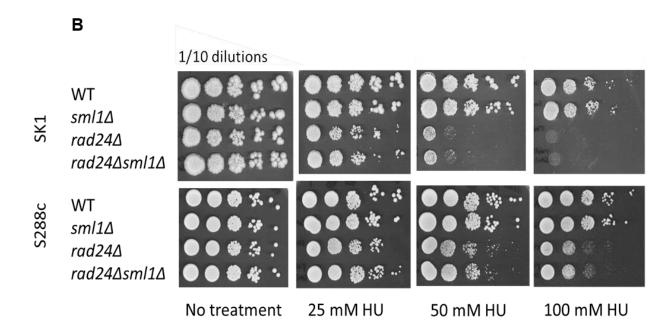


Figure 3.6. Spot tests carried out on WT, rad24Δ, sml1Δ and rad24Δsml1Δ strains in both SK1 and S288c backgrounds. Strains are detailed in Table 2.1. A) Serial dilutions spotted onto a YPD plate, then exposed to UV radiation. B) Serial dilutions spotted onto a YPD plate containing hydroxyurea.

3.2.9. Effect of metaphase arrest on *rad24*∆ spore viability

It has been shown that $rad24\Delta$ spore viability is rescued by transient prophase arrest mediated by NDT80 repression. If the mechanism of this rescue is simply that it gives the cells more time to make and repair DSBs, then other methods of prophase arrest should work similarly to transient NDT80 prophase arrest.

Another protein that can be targeted to cause cell cycle arrest is Cdc5 (Polo-like kinase), an important cell cycle kinase needed for pachytene exit in mitosis and meiosis (Clyne *et al.*, 2003). However, the meiotic function of Cdc5 requires activation by *NDT80* (Sourirajan and Lichten, 2008), so the functions of Ndt80 and Cdc5 may be too similar for Cdc5 arrest to be a proper control. Also, *cdc5* mutant cells show some evidence of entry into metaphase, so Cdc5 activity may not be absolutely required for meiotic progression beyond pachytene (Clyne *et al.*, 2003). Cdc5 arrest was also examined in Gray *et al.*, (2013) where it was found to have little effect on measured DSB frequency at *HIS4::LEU2*, unlike *NDT80* prophase arrest.

Another candidate is *CDC20*, which is responsible for the transition to anaphase via activation of the Anaphase Promoting Complex, so *CDC20* mutants arrest at the end of metaphase. *CDC20* is also essential for mitosis, so it is not possible to use an inducible knockout as with *NDT80*. Instead, a temperature sensitive mutant can be utilized: *cdc20-1*, which is degraded at 37 °C. The strain can be arrested and released by putting the sporulating culture at 37 °C for 8 hours, then moving to 30°C to release. However, exposure to the higher temperature of 37 °C causes prophase arrest in A364A yeast (Byers and Goetsch, 1982). This may not be the case for SK1 as it is a very proficient sporulator, but if so, the temperature-related arrest may also rescue spore viability.

To discover whether $rad24\Delta$ spore viability could be rescued by metaphase arrest, the cdc20-1 allele was introduced into SK1 strains. To test the system, cdc20-1 cultures were inoculated into SPM and placed at 37 °C. After 8 hours, samples were taken and placed at 30 °C for an additional 40 hours. These showed evidence of sporulation, while the cultures left at 37 °C for 48 hours did not, indicating that the allele is functioning as expected (data not shown).

Additionally, the spore viability of 8-hour-arrested cdc20-1 was examined to see if viability is affected by the arrest (Figure 3.7). The viability was indistinguishable from WT, so 8 hours of cdc20-1 arrest does not have an effect on spore viability. To see the effect of the temperature shift on $rad24\Delta$, this strain was also exposed to 8 hours at 37 °C. The 8 hour incubation at 37° C slightly reduced $rad24\Delta$ spore viability, so if the temperature shift does induce prophase arrest, it is not beneficial to spore viability (Figure 3.7). A high temperature is known to have other

effects on the events and timing of the cell cycle (Vanoni *et al.*, 1984; Börner *et al.*, 2004 & 2008), which may be deleterious to spore viability.

Finally, the spore viability of a $rad24\Delta$ strain with 8 h of cdc20-1 arrest was indistinguishable from the non-arrested $rad24\Delta$ strain. This shows that 8 h of metaphase arrest did not improve viability of a cdc20-1 $rad24\Delta$ SK1 strain, while in contrast, 8 h of prophase arrest triples the viability of $rad24\Delta$ (Figure 3.7).

Since spore viability is restored by *NDT80*, but not cdc20-1 arrest, it suggests that specifically prophase length, rather than the length of meiosis generally, is important to the viability of $rad24\Delta$ yeast, and that the rescue is not an indirect consequence of the onset of anaphase I caused by the *NDT80*-dependent transcriptional cascade. This agrees with the result from Gray $et\ al.\ (2013)$ regarding CDC5-mediated arrest.

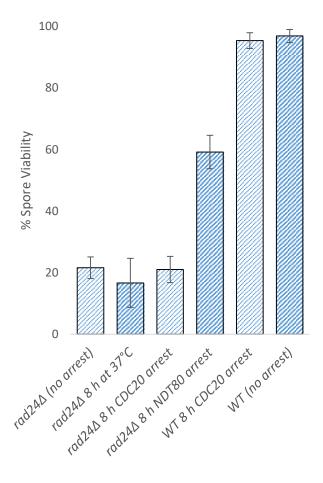


Figure 3.7. Comparison of effect of *NDT80* arrest and *CDC20* arrest on viability of WT and *rad24∆* strains. Error bars are 95% confidence limits.

3.2.10. The mismatch repair protein Msh2 has both negative and positive effects on spore viability

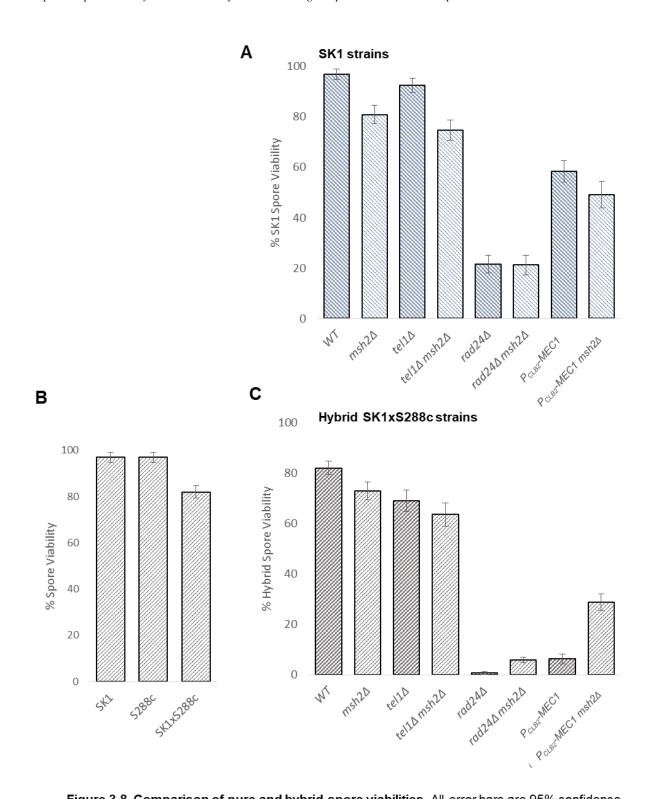
During meiotic recombination, it is important for strand invasion to occur into a homologous sequence in order to prevent ectopic recombination. One likely role of the mismatch repair (MMS) protein Msh2, a MutS homolog, is to detect and reject mismatched DNA intermediates formed during strand invasion. Msh2 localizes to DSB repair donor and recipient sequences, and is enriched in the presence of sequence polymorphism (Sugawara et al., 1997; Evans et al., 2000). Rejection of mismatched strand invasion intermediates is important in order to prevent recombination with non-allelic sequences. However, MMR also acts as a barrier to recombination between populations with many DNA polymorphisms. In S. cerevisiae, increasing sequence divergence reduces the efficiency of hDNA formation, in mitotic cells (Datta et al., 1997; Chen & Jinks-Robinson, 1999). These studies both utilized an inverted repeat assay system with the recombination substrates ranging in identity from 74% to 100% (Datta et al., 1997) or 82% to 100% (Chen & Jinks-Robinson, 1999) in order to score recombination rates in in both wild-type and MMR-deficient strains. Even a single mismatch reduces the recombination rate by 4x, and additional mismatches reduce the recombination rate exponentially with increasing sequence divergence (Datta et al., 1997). Substrates with 99.7% sequence identity recombined 4.1x less efficiently than the 100% control substrates (Datta et al., 1997), so a similar relationship may be expected to be seen between S. cerevisiae SK1 and S288c sequences which have around 99.3% sequence identity. Therefore, MMR-proficient SK1xS288c hybrid yeast should undergo a higher rate of strand invasion rejection during recombination. In contrast, for MMR-deficient strains the effect of sequence divergence on recombination rates was inconspicuous unless the identity was lower than 91% (Datta et al., 1997). This suggests that the inhibitory effect of sequence divergence on recombination can be entirely explained by MMR activity, if the sequence divergence is less than 10%; however, with higher divergence, another factor is negatively affecting the recombination process (Datta et al., 1997). This suggests that in $msh2\Delta$ SK1xS288c hybrids (~0.7% divergence on average), there should be little reduction in recombination.

If strand invasion into a mismatching sequence does occur, heteroduplex DNA (hDNA) will be formed (Allers & Lichten, 2001). hDNA tracts formed during MMR-deficient meiotic recombination are 65% longer than in a MMR-proficient strain, indicating that the MMR machinery may interfere with the extension, as well as the formation, of heteroduplex recombination intermediates (Chen & Jinks-Robinson, 1999). The mismatches in an hDNA tract will be recognized and repaired by the Msh2-Msh6 or Msh2-Msh3 complexes, causing restoration or conversion of the genetic markers within the hDNA depending on how the mismatches are repaired. Msh2-Msh6 is responsible for the repair of single-base mispairs and

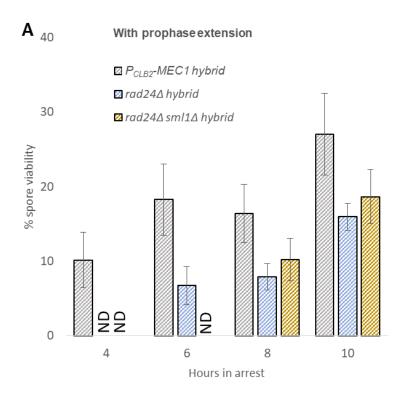
single-base indels (Marsischky *et al.*, 1996). Msh2–Msh3 repairs both single base indels and larger indels (Marsischky *et al.*, 1996; Kolodner, 1996). Thus, the loss of Msh2 during meiotic recombination is expected to have major effects on the efficiency of strand invasion, ectopic recombination and presence of mismatched DNA.

To observe the effect of Msh2 deletion on spore viability in pure SK1 backgrounds, strains of interest were scored for spore viability in the presence or absence of Msh2 activity (Figure 3.8A). In pure SK1 strains, WT, $tel1\Delta$ and P_{CLB2} -MEC1 all experience reduced viability as a result of Msh2 deletion, possibly due to increased ectopic recombination or unrepaired mismatches in DNA after meiosis. However, this is not the case for a $rad24\Delta$ strain, which seems unaffected by the loss of mismatch repair. This may be because $rad24\Delta$ already has an increase in ectopic recombination (Gray et~al., 2013), so additional ectopic recombination caused by $msh2\Delta$ may not have a noticeable effect. However, $mec1\Delta$ also causes an increase in ectopic recombination (Grushcow et~al., 1999), and is affected by $msh2\Delta$ deletion, so the occurrence of ectopic recombination cannot solely explain why $rad24\Delta$ is unaffected by $msh2\Delta$.

Hybrid SK1xS288c yeast have a spore viability reduced by about 20% compared to that of either pure parental strain (Figure 3.8B). To observe the effect of Msh2 deletion on spore viability in hybrid SK1xS288c backgrounds, strains of interest were scored for spore viability in the presence or absence of Msh2 activity (Figure 3.8C). This revealed that deletion of Msh2 is less deleterious in hybrid SK1xS288c strains than in pure SK1 strains, with a reduction by ~16% and ~21% of the starting value in SK1 WT and $tel1\Delta$ respectively, but only ~11% and ~8% in hybrid WT and $tel1\Delta$ (compare Figure 3.8A and 3.8C). This is likely because MMR-proficient strains are more likely to reject strand invasion into mismatched sequences, which are more common in hybrids. However, the $msh2\Delta$ still has an overall negative effect on spore viability in hybrids, probably due to the other roles of MMR in repairing mismatches and preventing ectopic recombination.


In contrast, it was found that in checkpoint mutant hybrids, $msh2\Delta$ has an overall beneficial effect on spore viability. In $rad24\Delta$ hybrids, MMR-deficiency improves spore viability by 8x, while in P_{CLB2} -MEC1, spore viability is improved 4.5x (Figure 3.8 A and C). This may be due to the fact that one role of Mec1 and Rad24 is to promote CO formation; the loss of either protein produces half as many CO molecules compared to the WT (Grushcow *et al.*, 1999). Therefore, the loss of the checkpoint is expected to decrease CO levels, as well as overall DSB numbers (Gray *et al.*, 2013). If there are fewer CO-destined DSBs in these backgrounds, it becomes more important for strand invasion to be successful. As with the pure SK1 strains, it may be the case that $rad24\Delta$ and P_{CLB2} -MEC1 experience fewer deleterious effects from $msh2\Delta$ than WT and

tel1∆ because Rad24 and Mec1 mutants already have higher levels of ectopic recombination (Grushcow et al., 1999; Gray et al., 2013).


Overall, these results show that MMR-deficiency has both a positive and negative effect on spore viability. Generally the negative effect outweighs any positive effects, but in backgrounds where it is more important for strand invasion to be successful, $msh2\Delta$ can have an overall neutral or positive effect on spore viability.

3.2.11. In SK1xS288c hybrids, both $rad24\Delta$ and P_{CLB2} -MEC1 are rescued by prophase extension

To examine the effect of prophase extension on hybrid checkpoint mutant spore viability, hybrid Rad24 and Mec1 mutants were scored for spore viability with different prophase lengths (Figure 3.9A). This showed that both $rad24\Delta$ and $rad24\Delta$ $sml1\Delta$ hybrid spore viabilities are rescued by NDT80 prophase arrest, and the viability improves further with increased arrest time, which is the same result as seen in the pure SK1 equivalent strains (Figure 3.4B). However, unlike in pure SK1, the $rad24\Delta$ $sml1\Delta$ hybrid strain does not have a viability distinguishable from that of $rad24\Delta$ alone after 8 h or 10 h prophase, so the two forms of rescue no longer produce a strong synergistic effect like that observed in Figure 3.4A. Surprisingly, the P_{CLB2} -MEC1 hybrid is rescued by prophase arrest, despite this not being the case in the pure SK1 background (Figure 3.3B). This may be because the arrest is rescuing the deleterious effects of being a hybrid, rather than the Mec1 phenotype.

Figure 3.8. Comparison of pure and hybrid spore viabilities. All error bars are 95% confidence limits. Strains are detailed in Table 2.1, raw data is available in Table S1. **A)** Comparison of spore viability in SK1 strains with and without mismatch repair proficiency. **B)** Comparison of spore viability in WT SK1, S288c and SK1xS288c hybrid strains. **C)** Comparison of spore viability in hybrid SK1xS288c strains with and without mismatch repair proficiency.



Figure 3.9. Effects of prophase arrest, SML1 mutation and MMR deficiency on the spore viability hybrid strains. Strains are detailed in Table 2.1, raw data is available in Table S1. Error bars are 95% confidence limits. ND: not determined. A) Comparison of the effect of different prophase lengths on the spore viability of SK1xS288c hybrids. B) Comparison of the effect of changing prophase length on spore viability in $rad24\Delta$ and $rad24\Delta$ msh2 Δ SK1 and hybrid strains. C) Comparison of spore viability in $rad24\Delta$ hybrid strains with $msh2\Delta$, $sml1\Delta$ or both.

3.2.12. The benefits of $msh2\Delta$ in $rad24\Delta$ hybrids are additive to those of $sml1\Delta$ and prolonged prophase

Prophase arrest rescues the viability of $rad24\Delta$ SK1 and hybrid strains. To determine whether the rescue has an additive effect with that of $msh2\Delta$, spore viability was scored in $rad24\Delta$ and $rad24\Delta$ $msh2\Delta$ SK1 and hybrid backgrounds with altered prophase lengths (Figure 3.9B). After 4 h arrest, the viability of $rad24\Delta$ and $rad24\Delta$ $msh2\Delta$ is similar, around 30%. However, by 10 h of arrest the $rad24\Delta$ strain viability is 70%, an improvement of 2.3x from the starting value, while the $rad24\Delta$ $msh2\Delta$ has only gone up to 45%, an improvement of 1.5%. Therefore, though $msh2\Delta$ deletion did not affect the viability of a $rad24\Delta$ pure strain, the loss of Msh2 does partially negate the benefits of NDT80 prophase arrest in $rad24\Delta$.

In a $rad24\Delta$ hybrid strain, viability is rescued by both $msh2\Delta$ and NDT80 prophase arrest. While the NDT80 prophase arrest rescue is dependent on the exact amount of time spent arrested, when combined with $msh2\Delta$ the amount of time does not make a difference, with viability not showing a substantial change between 4-10 h (Figure 3.9B). The $rad24\Delta$ $msh2\Delta$ hybrid has a viability similar to that of $rad24\Delta$ and $rad24\Delta$ $msh2\Delta$ pure SK1 strains, indicating that the two forms of rescue have overcome the deleterious effect of being a hybrid; however, unlike the pure SK1 strains, the $rad24\Delta$ $msh2\Delta$ hybrid does not show further improvement from longer prophase, so by 10 h the viabilities of the pure strains are much higher.

Both $sml1\Delta$ and $msh2\Delta$ rescue spore viability of $rad24\Delta$ in a hybrid background. To see if there is a relationship between the two forms of rescue, spore viability was assayed in a $rad24\Delta$ $msh2\Delta$ $sml1\Delta$ hybrid background (Figure 3.9C). This revealed that the combination of $msh2\Delta$ and $sml1\Delta$ produces a synergistic effect on $rad24\Delta$ hybrid viability. In a $rad24\Delta$ hybrid, $msh2\Delta$ and $sml1\Delta$ both improve spore viability from almost 0 to around 5%. However, a triple mutant has a viability of around 25%, meaning that the two forms of rescue have a highly synergistic effect (Figure 3.9C).

3.3. Discussion

The loss of Rad24 is highly deleterious to spore survival in both pure SK1 and hybrid SK1xS288c strains (Figure 3.8). It was observed that 8 hours of extended prophase rescued the spore viability of $rad24\Delta$ SK1 strains (Gray *et al.*, 2013). To further investigate this, the relationship between prophase length and spore viability was examined in $rad24\Delta$ and P_{CLB2} -MEC1 SK1 and hybrid strains. In addition, other ways in which the $rad24\Delta$ and P_{CLB2} -MEC1 meiotic phenotype can be rescued were examined to help inform on the roles of Rad24 in meiosis and where they may differ from Mec1.

3.3.1. Effect of prophase extension in Rad24 and Mec1 mutants

The rescue of $rad24\Delta$ spore viability by NDT80 prophase arrest is thought to be because the arrest restores part of the natural function of the meiotic checkpoint (Gray et al., 2013). Presumably via its role in the activation of Mec1 by the 9-1-1 clamp, Rad24 activity is important for the inhibition of Ndt80 activation, as Mec1 activity inactivates Ndt80 via Mek1 until DSBs are repaired (Prugar et al., 2017). However, the spore viability of P_{CLB2} -MEC1 is not affected by prophase extension in a pure SK1 background, suggesting that Mec1 activity is not important to inactivate NDT80. In contrast, P_{CLB2} -MEC1 spore viability is rescued by prophase extension in an SK1xS288c hybrid background (Figure 3.9). This discrepancy may be explained by the difference in recombination event numbers between pure and hybrid strains. Hybrid strains are thought to have fewer recombination events than pure strains due to the activity of Msh2, which rejects strand invasion into mismatched sequences (Sugawara et al., 1997; Evans et al., 2000). The increase in recombination event numbers in msh2∆ hybrids compared to WT indicates that recombination event formation is reduced in MMR-proficient hybrids (Datta et al., 1999; Chen & Jinks-Robinson, 1998). This suggests that prophase arrest is more helpful in backgrounds with fewer recombination events; this is supported by the fact that hypomorphic Spo11 alleles have a synergistic negative effect on spore viability in combination with rad24∆ and P_{CLB2} -MEC1, suggesting that the slower/reduced DSB formation of the hypomorphic Spo11 is particularly deleterious in checkpoint deficient backgrounds. One reason why rad24\Delta is more deleterious to spore viability than P_{CLB2}-MEC1 may be because Rad24 and Mec1 mutants have different effects on recombination event numbers; this is examined further in Chapter 7.

Interestingly, while the spore viability of $rad24\Delta$ is much lower than that of P_{CLB2} -MEC1 (Table 9.1), when prophase is extended to 10 h, $rad24\Delta$ spore viability is higher than that of P_{CLB2} -MEC1 (70% vs 60%). Since P_{CLB2} -MEC1 viability is not affected at all by prophase length, this indicates that there is a factor negatively affecting spore viability in the absence of Mec1 that does not occur in $rad24\Delta$.

3.3.2. Effect of $sml1\Delta$ and $msh2\Delta$ in Rad24 and Mec1 mutants

SK1 and hybrid $rad24\Delta$ spores are rescued by Sml1 deletion, which is well established as a method of rescuing $mec1\Delta$. Mec1 activity indirectly deactivates Sml1, which is an inhibitor of Rnr1, which produces dNTPs; therefore, it is likely that the rescue is due to the presence of more nucleotides readily available for DSB repair, allowing repair to occur faster. As Rad24 activity is needed to activate Mec1, the absence of Rad24 means that Sml1 is expected to have a higher level of activity in meiosis than in WT.

Deletion of $msh2\Delta$ has no effect on pure SK1 $rad24\Delta$ (though it does partly negate the rescue effect of NDT80 prophase arrest (Figure 3.9)), despite having a negative effect on WT, $tel1\Delta$ and P_{CLB2} -MEC1 spore viability (Figure 3.8). In SK1xS288c hybrids, $msh2\Delta$ has a positive effect on $rad24\Delta$ spore viability similar to that of $sml1\Delta$, with both raising spore survival from <1% to around 5%. Removing both Sml1 and Msh2 raises $rad24\Delta$ spore viability to ~25%, a much larger increase in viability than expected. A possible explanation is that $rad24\Delta$ has low CO numbers, which are boosted by $msh2\Delta$ (though not to WT levels), but not affected by $sml1\Delta$, which does not affect CO numbers but only their repair. Similarly to $rad24\Delta$, P_{CLB2} -MEC1 is affected negatively by $msh2\Delta$ in a pure SK1 background, but affected positively in a hybrid background; however, the improvement is not as great as that seen in $rad24\Delta$. An explanation for these observations is that the increase in the efficiency of strand invasion in $msh2\Delta$ improves recombination event counts in checkpoint mutants, but in order to complete the repair, it is highly beneficial to have a large pool of dNTPs.

Having many dNTPs available may also reduce the amount of time taken for *de novo* DNA synthesis during repair, since a given base is more likely to be readily available; this would be particularly helpful when MMR is inactive and so unable to repair mistakes that could occur.

NDT80 prophase arrest and $msh2\Delta$ also interact in hybrids to give a higher viability than either rescue alone (Figure 3.9), but the time-dependence is removed. This suggests that the increased success rate of strand invasion in the absence of $msh2\Delta$ means that even a short prophase is sufficient to allow DSB to form.

Essentially, the checkpoint functions that are lost in $rad24\Delta$ can be 'reconstructed' by prophase arrest and Sml1 deletion, providing the aspects of DSB formation and repair that would normally be ensured by Rad24 activity. However, the viability of $rad24\Delta$ with prophase arrest and $sml1\Delta$ is still lower than WT, which may relate to other roles of Rad24 such as controlling resection distance and reducing ectopic recombination (Gray *et al.*, 2013).

3.3.3. Spo11-DSB levels in rad244

While low DSB/CO numbers may be a source of rad24∆ meiotic defects, there is also an indication that high levels of Spo11-DSBs may also be deleterious to rad24\Delta, because in pure SK1, the highest rad24\Delta viabilities are seen when 10 h of NDT80 prophase extension is combined with hypo-spo11, allowing the viability to reach a level of around 80%, while 10 h of NDT80 prophase extension alone improves viability to ~69%. An excessively high number of DSBs may be deleterious to rad24\Delta because there are not enough dNTPs to repair all the breaks. The effect of having few dNTPs can be observed by comparing the spore viabilities of $rad24\Delta$ sml1 Δ + 8 h which has a spore viability of ~70%, which is lower than the ~75% viability of $rad24\Delta + \text{hypo-}spo11 + 8 \text{ h}$, but higher than the ~60% viability of $rad24\Delta + 8 \text{ h}$. This suggests that the presence of addition dNTPs may help to repair an increased number of DSBs. In addition, unlike in pure SK1, the $rad24\Delta$ sml1 Δ hybrid strain does not have a substantially different viability than rad24∆ after 8h or 10h prophase, meaning the two forms of rescue no longer produce a strong synergistic effect. This may be because the hybrid has fewer recombination events due to rejection of strand invasion by MMR proteins (Chapter 5, Figure 5.1; Sugawara et al., 1997; Evans et al., 2000; Datta et al., 1999; Chen & Jinks-Robinson, 1998), so there is a reduced need for dNTPs.

3.3.4. Closing statement

As a whole, the results shown in this chapter demonstrate that the deleterious $rad24\Delta$ phenotype can be rescued in multiple ways, such as having more nucleotides present via $sml1\Delta$, restoration of at least four hours of prophase extension in both SK1 and hybrid backgrounds, hypomorphic Spo11 alleles in combination with extended prophase, and by $msh2\Delta$ in hybrid, but not SK1, backgrounds (Figures 3.1, 3.4, 3.8, 3.9). In addition, P_{CLB2} -MEC1 spore viability can be rescued by $msh2\Delta$ and prophase extension, but only if hybrid, not pure SK1. To further investigate the meiotic roles of Rad24 and Mec1, and to identify where these roles may differ, genome-wide analysis of recombination was performed in Rad24 and Mec1 mutants. This is discussed in Chapter 7.

Chapter 4.

Development of lab and bioinformatics methods for generating and analyzing recombination event data

Chapter 4. Development of lab and bioinformatics methods for generating and analyzing recombination event data

4.1. Introduction

4.1.1. General introduction

In order to better understand the processes controlling recombination events, it is desirable to monitor changes in the frequency and distribution of various types of events in mutant strains for genes of interest. To study recombination event outcomes and positioning, a system is needed to allow the formation, detection and categorization of recombination events.

To accomplish this, the established method is to mate two highly divergent yeast strains, producing a hybrid diploid naturally heterozygous for tens of thousands of alleles (Winzeler *et al.*, 1998). After sporulation of the hybrid diploid, the recombination outcomes in each resultant tetrad can be detected by the use of high-throughput sequencing to genotype single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels), allowing the determination of the regions of the genome derived from each parent and reconstruction of recombination events. This approach allows detection of most recombination events in a single meiosis, allowing the frequency and distribution of events in a single cell to be examined. Notably, recombination occurring between sister chromatids or in repetitive regions cannot be detected by this method, but such events are rare in wild-type meiosis (Schwacha & Kleckner, 1997; Kim *et al.*, 2010; Petes and Botstein, 1977; Pan *et al.*, 2011).

4.1.2. The use of MMR-deficient strains increases meiotic recombination rate and allows observation of post-meiotic segregation

During homologous recombination, the pairing of complementary DNA between donor and recipient strands produces heteroduplex DNA (hDNA) with mismatches at heterozygous positions (White *et al.*, 1985; Williamson *et al.*, 1985; Bishop *et al.*, 1987; Allers & Lichten, 2001). The mismatches are usually repaired by MMR machinery to give either gene conversion or restoration of the original genotype, producing 3:1 or 2:2 segregation patterns respectively. In order to reveal hDNA intermediates, MMR can be inactivated via the disruption of *MSH2*. If any mismatches remain unrepaired, the alleles will segregate during the first mitotic division. This phenomenon is known as post-meiotic segregation (PMS). In order to detect PMS on a wide scale, it is necessary to allow each spore of a tetrad to germinate and undergo one mitotic division, then score genetic markers in the resulting eight cells (an octad). This essentially allows reconstruction of the post-meiotic sequence of the eight individual DNA strands from the four chromatids of the diploid hybrid.

4.1.3. Bioinformatic solutions for detection and classification of recombination genome-wide

In order to analyse recombination events genome-wide, it is necessary to have a list of variants and the parental genotypes at each position, a method of identifying recombination products and a way to consistently deal with the classification of simple and complex events. To extract a list of polymorphisms, sequencing data from hybrids can be aligned to one or both parental genomes. There are many existing programs that can be used for alignment, including Bowtie (Langmead *et al.*, 2009) and BWA (Li & Durbin, 2010). To detect SNPs and indels in this aligned data, it is necessary to identify locations where the read sequences differ from a known reference genome (e.g. van Oeveren & Janssen, 2009). The genotype of each spore at each position can then be determined by comparing the number of sequencing reads that match the reference sequence for each parent. Once all the spores from a single meiosis have been genotyped, recombination events must be detected and classified from this information.

4.1.4. Characteristics of an SK1 x S288c hybrid cross

An SK1 x S288c hybrid cross has a relatively high sequence divergence of around 0.7%, containing \sim 62,000 sequence polymorphisms with a median inter-marker distance of 77 bp (when excluding repetitive regions). There are few (11) regions longer than 10kb devoid of polymorphisms (Laureau *et al.*, 2016). These characteristics are desirable for high-resolution genotyping. The hybrid undergoes meiosis efficiently and has a spore viability of around \sim 70%, reduced to \sim 63% in the absence of MMR. Though $msh2\Delta$ -mediated MMR deficiency reduces spore viability in WT and $tel1\Delta$ backgrounds, it improves spore viability in DDR checkpoint-deficient hybrid backgrounds (discussed in Chapter 3).

4.1.5. Aims of this investigation

There are many established methods for characterizing recombination events genome wide. However, there is scope to improve upon these methods, and adapt them for new lines of investigation. The aims of this project are:

- 1. To create a dedicated SNP and indel list tailored for the SK1 and S288c strains used in this investigation.
- 2. To reconstruct an 'SK1' genome using S288c scaffolding and the detected variants.
- 3. To create a data analysis pipeline that compares to both parental genomes to establish the genotype of each detected variant.
- 4. To create a pipeline that can handle the heteroduplex DNA found in msh2∆ tetrads, as well as msh2∆ octads and MSH2 tetrads. This is important for getting the most out of low-viability crosses. The octad protocol is not suitable for all backgrounds as some very rarely produce 4-spore viable tetrads (Table S1).
- 5. To create a pipeline optimized for long reads and relatively low read depths.

4.2. Results

4.2.1. Strategy for maximizing sequencing data

In order to examine recombination genome wide, hybrid SK1xS288c diploids were sporulated and tetrad dissected as detailed in Methods (the sequencing and analysis workflow is also summarized in Figure 4.1). To produce octads for the analysis of PMS, an additional round of dissection was carried out on $msh2\Delta$ strains after the first mitotic division. One concern was that this mechanical interference with actively dividing cells may reduce their viability. To test this, the viability of $msh2\Delta$ tetrads and octads was compared (Figure 4.2). The spore viability of $msh2\Delta$ octads and tetrads were not found to be noticeably different, indicating that the mechanical separation of mitotically dividing cells does not affect their viability.

Genomic DNA was prepared from colonies derived from each tetrad spore or octad progeny, diluted to ~0.2ng/µl and prepared for sequencing as according to the Nextera XT protocol. By this method, genomic DNA is 'tagmented' by an enzyme that simultaneously fragments the DNA and adds in adapter sequences, then PCR amplified with indexed primers. By using different indexes for each sample, many samples can be sequenced together and demultiplexed. Samples are paired-end sequenced on the Illumina MiSeq platform (Methods Section 2.9).

The Nextera XT protocol recommends 12 cycles of PCR. Increasing the number of cycles may produce more material for sequencing, but carries a risk of biasing the read population towards whichever reads were amplified early. However, no strong correlation between the number of cycles and duplication rate of sequenced reads was observed (Figure 4.3A).

After PCR amplification, a clean-up step is carried out with magnetic beads; this also serves to select for certain size fragments. Adding fewer beads selects for longer DNA fragments, which affects the read lengths of the final output (Figure 4.3B). However, selecting for long reads means less DNA is carried though the clean-up step, affecting cluster density (Figure 4.3C). In addition, reads longer than 600bp will not be sequenced completely. This means that overall, more sequence data is produced when short fragments are retained, despite not fulfilling the potential read lengths and being counter to the recommendation of the Nextera XT protocol.

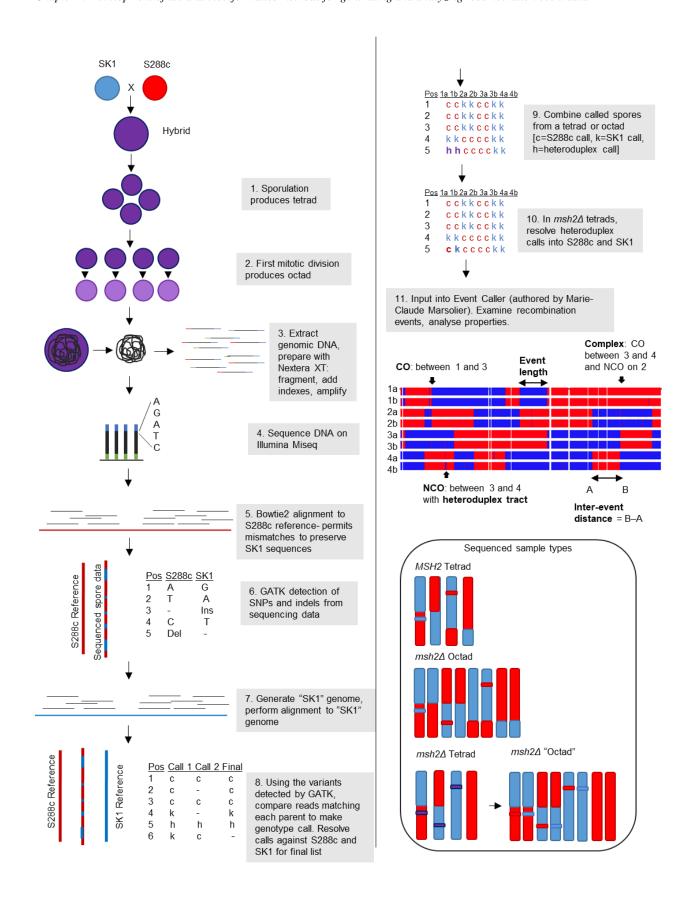


Figure 4.1. Workflow for genome-wide analysis of recombination.

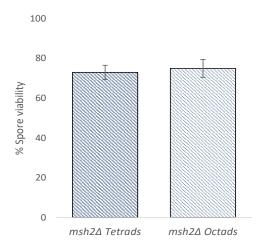


Figure 4.2. The average spore viability of $msh2\Delta$ tetrads and $msh2\Delta$ octads. Error bars are 95% confidence limits.

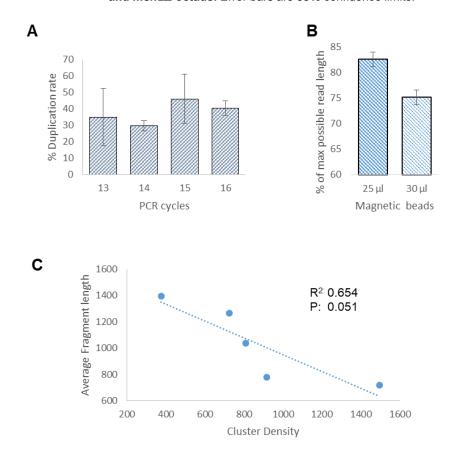
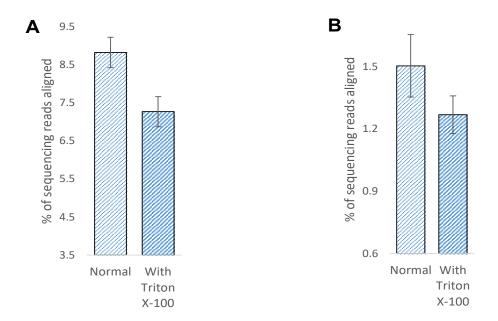



Figure 4.3. Quality control of sequencing sample preparation. All error bars are 95% confidence limits. A) Relationship between duplication rate of sequenced reads and the number of PCR cycles. Duplication rate corresponds to non-unique read start positions, so e.g. 20% duplication rate means 1/5 read start positions occurred more than once. B) The average read length of sequencing runs expressed as a % of the maximum possible read length (300bp or 75bp), depending on whether samples were cleaned up with 25µl or 30µl of magnetic beads (a ratio of PCR product to volume of beads of 9:5 or 3:2, respectively). C) The effect of the average size of DNA fragments after PCR clean-up on cluster density of the sequencing run. Fragment lengths were measured on a Bioanalyzer.

4.2.2. Reduction of contamination by 2μ plasmid and mitochondrial DNA

An undesirably large number of sequenced reads were found to align to the 2μ plasmid or mitochondrial genomes. In an attempt to reduce this contamination, an additional step was added to the standard genomic prep involving treatment with Triton X-100 (a nonionic surfactant) after sphaeroplasting. This was intended to open small holes in the cell and nuclear membranes, allowing small plasmids and mitochondria to exit but not the bulky genomic DNA. This was a partial success; comparing samples prepared by the new and old method shows that the amounts of both 2μ plasmid and mtDNA have been reduced on average, although they are still undesirably high (Figure 4.4).

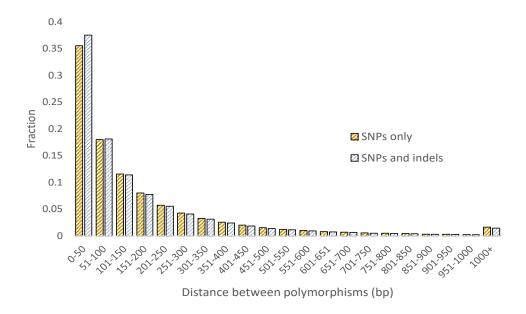
Sequencing results suggest that the average haploid yeast cell contains 146 copies of the 2µ plasmid. This is higher than the published amount of 50 to 100 copies (Zakian *et al.*, 1979), which suggests that the protocol is biased towards 2µ plasmids somehow, possibly because plasmid DNA has a higher stability than genomic DNA in storage. On the other hand, sequencing suggests an average of only 2 mtDNA copies, compared to a normal range of 20-30 mitochondria per yeast cell (Visser *et al.*, 1995). This may be because mtDNA is not contained in the nucleosome, and so is more likely to be lost during the genomic prep. Petite colonies were not observed among hybrid spores (data not shown), so they are not expected to have mitochondrial defects.

Figure 4.4. Reduction of contamination in sequenced DNA. Error bars are 95% confidence limits. **A)** Comparison of the average number of sequenced reads that align to the 2-micron plasmid sequence, in samples prepared with or without an additional treatment with Triton X-100. **B)** Comparison of the average number of sequenced reads that align to the mtDNA sequence, in samples prepared with or without an additional treatment with Triton X-100.

4.2.3. Detection of polymorphisms and creation of SK1 genome

The S288c strain has the status of being the first eukaryotic genome ever sequenced (Goffeau *et al.*, 1996), and has since been regularly improved upon to give a reliable and thorough sequence. In contrast, the SK1 genome has only been partially sequenced, and is missing detail from repetitive regions (Liti *et al.*, 2009). To overcome this issue, data from sequenced tetrads was first aligned to the S288c genome only (Engel *et al.*, 2013). Also included in the reference file are sequences from the yeast mitochondrial (Foury *et al.*, 1998) and 2µ plasmid (Hartley & Donelson, 1980), a small high-copy plasmid present in *S. cerevisiae* (Nelson and Fangman, 1979).

The sequenced reads in this study are up to 300bp long, unlike most previous studies which have used reads of up to 100bp (e.g. Anderson *et al.*, 2011; Laureau *et al.*, 2016). Since an SK1 variant will appear on average once every ~77bp (when excluding repetitive regions), a 300bp read may contain several SK1 type alleles. During alignment, these would be treated as mismatches and reduce the success of alignment. To preserve SK1 sequences, a high sensitivity bowtie2 alignment was used with a reduced mismatch penalty (detailed in methods). This permits >99% of reads to be mapped in most samples (data not shown). This will also preserve sequencing errors, so a good read depth is needed to dilute any miscalls.


To detect SNPs and indels in the aligned data, it is necessary to identify locations where the read sequences differ from a known reference genome (e.g. van Oeveren & Janssen, 2009). However, apparent variants can occur due to sequencing or alignment error, so a quality score threshold can be used which will depend on read depth and proportions of reads with the variant, so rare variants can be ignored (Li *et al.*, 2008; Li *et al.*, 2009).

SNP and indel type polymorphisms were discovered and genotyped using the GenomeAnalysisToolkit function HaplotypeCaller (DePristo *et al.* 2011). The calls from 120 samples were combined and the call frequency, total read depth and averaged variant read-depth:total read-depth ratios were calculated. Variants were filtered according to custom filtering parameters for a call-frequency between 45-55% of spores, a total read depth spanning the site of >250 and where 95% or more of the reads at that site contained the variant. Variants occurring in repetitive regions such as subtelomeres are also removed. This is performed using the script 'VariantCalling' authored by Tim Cooper (Methods section 2.11).

The final robust list of 64582 SNPs and 3947 indels has a median distance of 81bp and a mean distance of 169bp between polymorphisms, when excluding repetitive regions of the genome (Figure 4.5). If only SNPs were considered and not indels, the median distance would be 87bp

and the mean 180bp, which shows that the indels have a beneficial effect on marker density even though there are 16x fewer indels than SNPs.

The variant table was then used to create an 'SK1' genome by substituting each polymorphism detected into the S288c reference genome. Each sequenced sample was then realigned to this 'SK1' genome. During the second alignment, it is still necessary to tolerate mismatches because if there are reads that span a recombination event, there may be polymorphisms from both parents present within one read. Thus a very strict alignment would discard reads covering these junctions.

Figure 4.5 Comparison of the distribution of distances between polymorphisms Distances between polymorphisms in the variant table are plotted for when both the 64582 SNPs and 3947 indels are considered, or when the SNPS alone are considered.

4.2.4. SNP calling

In order to extract the number of reads matching each base, or an insertion or deletion, at each genomic position, the PySamStat module 'variation' (Miles & Mattioni, 2016) is run on each sample. These are then compared to the list of parental variants in order to make a call for each polymorphism, using a set of custom scripts authored by myself (available in Appendix). Variant calling is performed twice, once against each parental variant list, and the two lists are reconciled. Rules for calling are detailed in Methods section 2.12.

A genotype will only be assigned for positions with 5 or more reads. This is similar to Laureau *et al.* (2016), who used a limit of 6 or more. There are different calling thresholds for SNPs and indels, because indels are harder to align and so usually have a lower reported read depth than the surrounding positions. However, alignments are not likely to falsely report the presence of an indel, so even a low number of reads can be trusted to be accurate. Thus, SNP reads are required to have a 75% match for a variant call, and 90% for a reference call; indels need a 30% match for a variant call, 95% for a reference call.

The variant caller script also produces a statistics file containing various useful stats e.g. the number of positions that failed the read depth threshold, number of variants called S288c or SK1 etc. This helps give feedback on the validity of the rules, informing e.g. if there is a bias in calling.

At most positions, it is easy to make an unambiguous call as reads will only match one parental genotype. There are occasionally some positions that consistently appear as segregating 4:0 across multiple tetrads; these are considered unreliable and are removed to improve the accuracy of the variant table.

If a mixture of SK1 and S288c-type reads are detected at a SNP position, it is marked as 'heteroduplex'. This occurs if total SNP reads are >90% of all reads, and S288c and SK1 reads are each between 20%-70% of all reads. This is similar to the thresholds used by Laureau *et al.*, (2016) which required 25-95% S288c reads and 5-75% SK1 reads for a heterozygous call. Indels cannot be called heteroduplex, because it is hard to be certain if there is truly a mixture of reads. Due to the difficulty in alignment of sequences containing indels, there is always a reference bias for these positions.

4.2.5. Heteroduplex calling in msh2∆ tetrads

In most samples, positions with a heteroduplex call are then discarded before event calling, because $msh2\Delta$ octads and MSH2 tetrads are not expected to have hDNA. However, in $msh2\Delta$ tetrads, it is possible to convert hDNA calls into separate SK1 and S288c calls, as a reconstruction of what would have been seen if it were possible to perform octad dissection in a low-viability background. By this method, calls for each spore in a tetrad are combined into one file and duplicated to produce eight columns. Positions that were called as heteroduplex will be assigned as S288c in the original column and SK1 in the duplicated column. From this, almost all the information that would have been available in an octad can be accessed. The features that can be observed in the different types of meiotic products are summarized in Table 4.1.

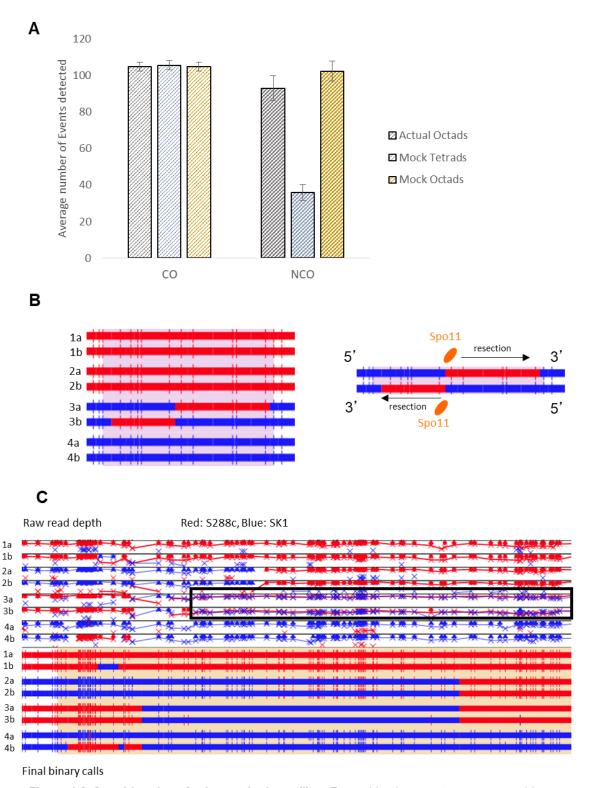
Table 4.1. Comparison of recombination event features that can be seen in the different types of sequenced tetrad. hDNA tracts are regions where the inherited parental variant differs between DNA strands of a chromosome. Duplications are regions of consecutive variant positions where a roughly 50:50 mixture of reads containing the different parental SNPs is detected. Trans hDNA is when the genotype changes between DNA strands or chromosomes, but the same overall segregation pattern is seen. Incompatible hDNA is a hDNA pattern that cannot be explained by a single DSB.

Feature	msh2∆ octads	msh2∆ tetrads	Tetrads
hDNA tracts	Yes	Yes	No
Duplications	Yes	No	Yes
Trans hDNA	Yes	No	No
COs with incompatible	Yes	Yes	No
hDNA indicating a			
separate NCO			

The ability to detect hDNA in $msh2\Delta$ tetrads is an advantage of the use of sequencing over the use of DNA-chip arrays, because mixed hybridization would be difficult to achieve in that system. Thus when using DNA-chip arrays for hDNA analysis it would be necessary to use octads, which would greatly increase the difficultly of examination of mutants with a low spore viability, as the probability of successfully isolating a viable octad is low in those backgrounds.

To assess the effectiveness of this system of heteroduplex reconstruction, $msh2\Delta$ octad data can be converted into 'mock tetrads' by summing the reads from each pair of mother-daughter spores to give an output resembling that of a $msh2\Delta$ tetrad, with a mixture of reads at heteroduplex positions. The mock tetrad can then be processed as if it were a tetrad, without heteroduplex calling, or with the heteroduplex calling to give a 'mock octad'. The results of this comparison are shown in Figure 4.6A. This shows that, between the different ways of calling genotypes, the number of COs detected is not greatly affected, but the number of NCOs is severely reduced when

heteroduplex calling is not performed on *msh2*\(\text{\Delta}\) tetrads. When heteroduplex calling is carried out, the number of NCOs detected as slightly higher than the number seen in the true octad, though not significantly so (T-test, P=0.298 [Methods 2.21]). These extra 'NCOs' could be duplications, as discussed in section 4.2.6, or errors, as discussed in section 4.2.7.


One limitation of heteroduplex calling is that in true octads, it is possible to see occurrences of trans hDNA in NCOs, where there are two 5:3 sections occurring on different strands or chromatids (Figure 4.6B). These are of interest because usually the original Spo11-DSB occurred in the middle of the trans hDNA (Martini *et al.*, 2011). This means it is possible to work out which strand of the original chromatid was 3' and which was 5', because resection occurs 5' to 3'. Thus, there is less information available in $msh2\Delta$ tetrads about Spo11-DSB positioning and strand directionality.

4.2.6. Presence of potential duplications

Occasionally, unique 'heteroduplex' SNP calls are observed in octads or MSH2 tetrads, even though there should not be occurring in these backgrounds (an example is shown in Figure 4.6C). These calls most likely represent duplications occurring during recombination. If an SK1-type allele is broken and copies from an S288c sequence, but invades in the wrong place, it may end up with two copies of the same sequence, once from each parent. The duplications are not always associated with a detected recombination event, meaning that they could represent undetected NCOs. It is interesting to examine these duplications as they represent a loss of control in meiotic recombination; e.g. they occur more frequently in $tel1\Delta msh2\Delta$ octads than in $msh2\Delta$ octads (Chapter 6, Section 6.2.6). However, if these duplications occur in $msh2\Delta$ tetrads, they would be indistinguishable from hDNA caused by PMS, so cannot be detected separately.

4.2.7. Errors in heteroduplex calling

Occasionally, there are some positions that are called as heteroduplex across multiple tetrads; these are considered unreliable and are removed to improve the accuracy of the variant table. It is likely that these positions are from naturally duplicated regions of the genome, as they are most commonly found in the subtelomeres. If one copy of a repeated gene is different between SK1 and S288c but the other is not, when reads are aligned by bowtie2, they are randomly assigned to the wrong copy of the gene, indicating that there is a polymorphism but it is not possible to pinpoint where it occurs with simple alignment.

Figure 4.6. Considerations for heteroduplex calling. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. A) Comparison of the number of events detected as CO or NCO in actual octads, mock tetrads and mock octads. Error bars are 95% confidence limits. B) Example of a *trans* hDNA tract, occurring on chromatid 1. *trans* hDNA can also occur between two different chromatids. C) Example of a suspected duplication in a $tel1\Delta$ $msh2\Delta$ octad. From the raw read depth, it is apparent that there is a mixture of SK1 and S288c type reads occurring on chromatid 3 (black box), close to a CO event between 3 and 4. However, in the final binary calls, these positions have been discarded.

4.2.8. Variant call reconciliation

Once variant calling is complete, all members of an octad or tetrad are combined into one file. If any member lacks a call at one position, the position is removed. In addition, indels with a 4:0 segregation patterns are removed because the difficulty of indel calling means that they may not be real.

To reconcile calls made against each parent, each position is tested to see if the two calls agree, or disagree. If there is a clash, the position will be removed. If only one parental alignment has successfully called the position, this call will be used (a system similar to that described in Anderson *et al.*, 2011). From this step, a binary file is produced that is compatible with event analysis programs authored by Marie-Claude Marsolier (personal communication).

The overall number of variant positions discarded due to an inability to unambiguously call a genotype at that position is reduced at higher read depths (Figure 4.7). On average, samples from this study have 27x read depth and 8.11% of variants removed. In comparison, additional sequencing data from four $msh2\Delta$ octads was provided by Bertrand Llorente, which had an average read depth of 75x and 0.62% of variants removed. However, there is a lot of variation; samples with the same read depth may have different numbers of unambiguously called variants. In addition, even very high read depth samples have some variants removed, for reasons unrelated to read depth such as heteroduplex calling, alignment error or mutation.

It is important to note that variant removal only affects the potential to see all recombination events, and does not necessarily mean than a significant number of events are missed. Even in samples with a lot of variants removed, there are typically a similar number of events detected to that of higher-read depth samples of the same genotype (Figure 4.14). In particular, the number of COs detected is unlikely to change with higher read depth because COs are very unambiguous due to the reciprocal exchange of markers.

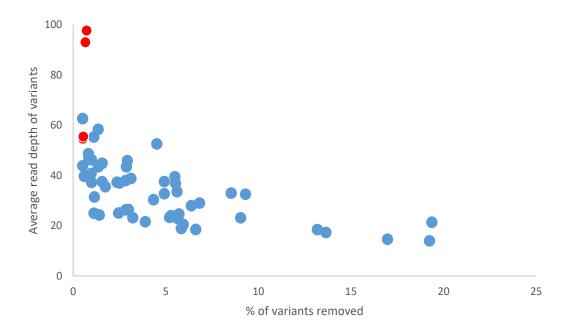


Figure 4.7. Percentage of variant positions removed in each sample compared to the average read depth of variant positions for each sample. Blue dots are original data, red dots represent data provided by the Llorente lab.

4.2.9. MMR incompatibility

It is known that there is an incompatibility between SK1 and S288c MLH1 and PMS1 alleles, affecting MMR processes and causing a higher mutation rate in the progeny that inherit the combination of alleles (Heck et al., 2005). MLH1-PMS1 is vital for post replicative MMR, being the primary MLH heterodimer in Saccharomyces cerevisiae. A single SNP in each gene is responsible for the incompatibility: in Mlh1, amino acid 761 is Asp in S288c, but Gly in SK1; and in Pms1, amino acid 818 is Arg in S288c, but the equivalent position is Lys in SK1. When the S288c allele of MLH1 was combined with the SK1 allele of PMS1, an approximately 100fold higher mutation rate was observed (Heck et al, 2005). Sequencing shows that these polymorphisms are present between the S288c and SK1 strains used in the experiments described in this project, so around 1 in 4 spores produced should have the incompatible combination. These spores may then have accumulated additional mutations during normal growth before being sequenced, potentially introducing apparent noncrossover events. However, unless a mutation occurred at a known polymorphism location, coincidentally converting the genotype at that location from that of one parent to the other, it would not be detected. Also, most of the sequenced samples lack Msh2 anyway, so this mismatch defect would not affect them additionally. Finally, the fraction of COs associated with conversion tracts in a WT SK1xS288c hybrid was comparable to that found in a YJM789 x S288C hybrid, indicating that the partial MMR defect has a negligible effect (Martini et al., 2011).

4.2.10 Event categorization

The scripts for event categorization described in this section were authored by Marie-Claude Marsolier (Methods section 2.13). In order to detect recombination events, the chromosomes of the spores are first segmented into regions of homogeneous genotypic patterns, i.e. each change in the segregation pattern is a separate segment. Next, recombination events are considered as a set of segments occurring within a set distance of each other (the merging threshold), located between regions of 4:4 (Mendelian) segregation. In the absence of recombination, markers will show a continuous Mendelian segregation pattern (2:2). COs are identified as the junction between two different 2:2 segregations, which indicate a reciprocal exchange. There may also be gene conversion tracts associated with COs, appearing as non-Mendelian (3:1) segregation of markers around the reciprocal exchange. 3:1 patterns observed without a reciprocal exchange indicate the presence of a NCO. In addition to the usual Mendelian 2:2 and non-Mendelian 1:3 marker segregation patterns encountered in tetrads, octads can display 5:3 patterns, indicating half-conversion tracts which can be associated with either COs or NCOs.

The event detecting script outputs a file containing the event start and stop positions (the minimum and maximum possible are reported based on the last SNP to change and the first SNP to not change); the length of the event, which is estimated from the distance between the midpoints of the start and stop intervals; the type of event e.g. 5:3_4:4_3:5 means that the event is composed of 3 segments of different segregation patterns; the number of chromatids involved in the event, and the number of variants that were called as part of the event.

A higher merging threshold means that events may be merged when they should be considered separate; a lower threshold may cause the opposite. Originally, a 5kb merging threshold was used, meaning that pattern changes occurring within 5kb of each other would not be considered as separate events (Martini *et al.*, 2011). However, after extensive analysis of heteroduplex patterns, the authors now consider 1.5kb to be most representative of the situation in $msh2\Delta$ octads (Bertrand Llorente, personal communication). This threshold allows the majority of events to be correctly called, based on existing data on event numbers in WT and the occurrence of segregation patterns incompatible with a single DSB. However, this may not be the case in all backgrounds. If a loss of CO or DSB interference has occurred, DSB clustering may be observed, meaning that multiple events will occur close together. These events will not be resolved if the distance between them is shorter than the merging threshold. Even if the merging threshold is not appropriate in all backgrounds, it is still necessary to use the same threshold for all analyses to avoid introducing a bias. Different genotypes can then be compared for other characteristics to identify clustering. For example, if tetrads analyzed with a 1.5kb merging limit have many more events detected than if they were analyzed at 5kb, it suggests that there were a lot of events that are close together in

this background. For all analyzed genotypes, reducing the limit from 5kb to 1.5kb increases the number of events detected as separate, but most checkpoint mutants have a larger increase than WTs (Figure 4.8). In most cases, the number of NCOs is more heavily affected than the number of COs when the threshold is changed. Other examples suggestive of clustering are the occurrence of long events that may be merged events, and an increase in the proportion of events affecting multiple chromosomes.

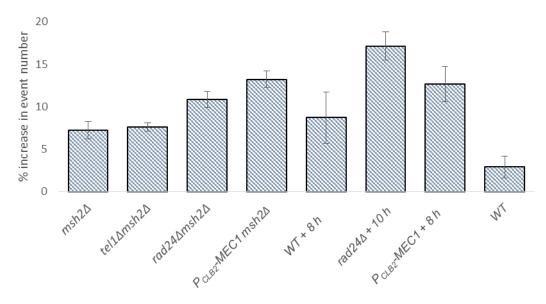


Figure 4.8. The percentage increase in the number of separate events called when the merging threshold is reduced from 5000bp to 1500bp, across different genotypes.

Strains with 8 or 10 hours of NDT80-mediated prophase extension are named with '+ 8/10 h'.

4.2.11. Subcategorization of events and manual annotation

In addition to the higher categories of CO or NCO categories, recombination events can be subcategorized based on certain signatures that may give clues as to how they were formed. The event categorizes are based on those described by Martini *et al.*, 2011. As such, many categories depend upon the presence of hDNA, so fewer classes are available for the MMR-proficient strains. The classification system is described in Methods section 2.14. For both COs and NCOs, there are four groups which are composed of multiple classes. Categorizing events in this manner is helpful because certain patterns may be indicative of different repair methods. Generally, Group 1 contains simple events, Groups 2 and 3 contain events with signatures suggestive of different complex repair processes (such as repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration), and Group 0 contains events with signatures suggestive of multiple DSBs. Some models for how certain complex signatures may have been formed are shown in Figures 4.9 and 4.10. However, there are many ambiguous cases where it is not possible to be certain exactly how an event was formed. For example,

segments of 6:2 or 2:6 segregation were originally not predicted to occur in $msh2\Delta$ octads as these conversion tracts were thought to be a result of mismatch repair only (Martini et~al., 2011). However, around 19% of CO and NCO events in $msh2\Delta$ octads display segments of 6:2 or 2:6 (e.g. Figure 4.11A). It is likely that these segments result from the repair of gaps, which could arise from two close Spo11-DSBs on the same chromatid or from the removal of a 3' end after invasion of a homologous sequence, e.g. the formation of a nick during topological processing of a dHJ (Figure 4.10, E and H). In such ambiguous cases, the scenario involving fewer DSBs is chosen for the purpose of the categorization, but an increase in such events could still be suggestive of increased DSB formation.

CO events:

CO events are usually associated with conversion, restoration or hDNA tracts, caused by resection and dHJ migration. However, these patterns could also be caused by an adjacent NCO. It is possible to differentiate CO-associated tracts from separate CO and NCO pairs because the broken chromatid can be identified based on which DNA strands had a pattern change, since the broken strands will copy from an intact donor. Usually, patterns are consistent with a single break, i.e. all show the same directionality of repair (e.g. only 3:5 and 2:6, or only 5:3 and 6:2). If patterns of different directionalities occur, e.g. 5:3 then 3:5, this indicates that more than one chromatid was broken. However, it does not mean that both breaks were formed by Spo11 activity; the second break could have occurred during DSB repair (Figure 4.10G). Thus, these events are only considered to be formed by two Spo11 breaks if the CO and potential NCO occur on different chromatids (Group 0 Class 2; e.g. Figure 4.11C). Otherwise, COs with hDNA patterns incompatible with a 1-break scenario on the same chromatids as the CO are sorted into Group 3 (e.g. Figure 4.11B). Again, in these ambiguous cases, the scenario involving fewer DSBs is chosen; however, Group 3 COs could conceivably be produced by concerted DSB formation.

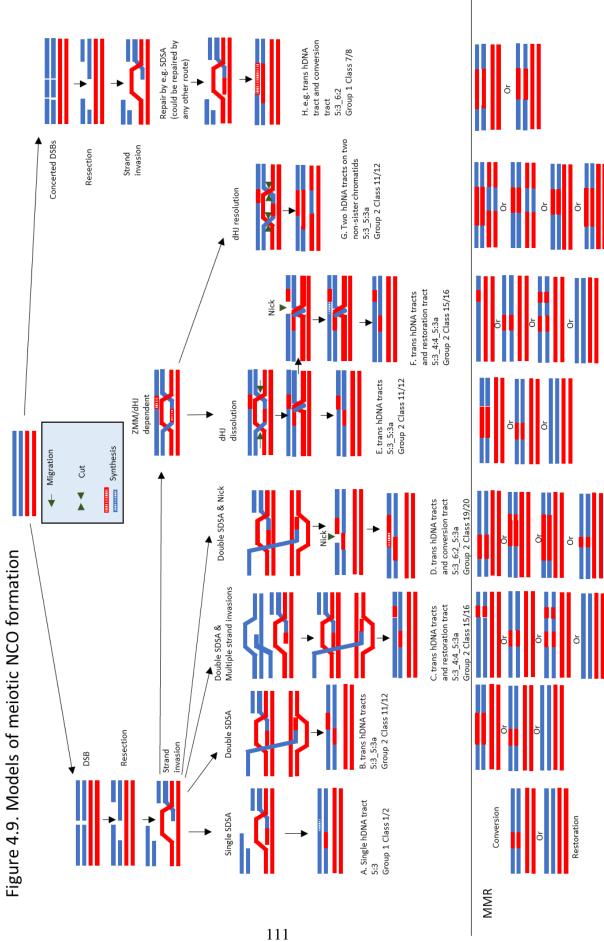


Figure 4.9. Models of meiotic NCO formation. For simplicity, only two homologous DNA molecules are represented, one red and one blue, unless necessary to represent template switching/multiple strand invasions. Note that nicks and multiple strand invasions could happen in combination with other pathways to produce more complex patterns. The notation 5:3_5:3a stands for two consecutive hDNA tracts producing the same overall segregation pattern but affecting different strands. This is called 'trans hDNA' if the affected strands are on the same chromatid, but the hDNA tracts can also be produced on two non-sister chromatids by dHJ resolution. A) SDSA (Paques and Haber, 1999): After strand invasion, the invading 3' end is extended by DNA synthesis. The intermediate is dismantled and the DSB repaired by annealing of the ends and gap repair. This pathway generates NCOs with only one hDNA tract. B) Double SDSA (Martini et al., 2011): Both ends of the DSB engage in two independent SDSA reactions, generating a NCO with two hDNA tracts in a trans configuration on the same chromatid. C) Double SDSA & template switching (Martini et al., 2011): During double SDSA, one end first invades the sister chromatid followed by a non-sister chromatid. The other end invades the non-sister chromatid as usual. Annealing of the two ends leads to the formation of a trans hDNA pattern separated by a 4:4 tract. D) Double SDSA & nick formation: After strand invasion, a nick is formed in the 3' end. Double SDSA occurs as usual and the nick is filled in with information copied from the non-sister chromatid, producing a conversion tract. E) dHJ dissolution (Paques and Haber, 1999): After 3' end invasion, a stable SEI intermediate is formed and is processed into a dHJ, but the dHJ is dissolved by the combined action of Sqs1 helicase and Top3 topoisomerase, producing an NCO with two hDNA tracts in a trans configuration on the same chromatid. F) dHJ dissolution and nick (Martini et al., 2011) During dHJ dissolution, a nick is formed during the topological processing of the junction. Nick translation generates a 4:4 restoration tract. G) dHJ resolution (Paques and Haber, 1999): After 3' end invasion, a stable SEI intermediate is formed and is processed into a dHJ, the resolution of which can lead to NCO if the four nicks affect only two DNA strands. H) Double DSB. Two close DSBs occur on the same chromatid, and the DNA in between is lost. Resection and strand invasion happen normally and the break is repaired by any method, with additional gap repair producing a conversion tract. The example shows repair by SDSA (as in A). I) Effect of MMR: Each image is a possible outcome of the repair pathway shown directly above it, after mismatch repair has converted or restored hDNA tracts. Note that the invading 3' end may be converted or restored during strand invasion instead of post-repair.

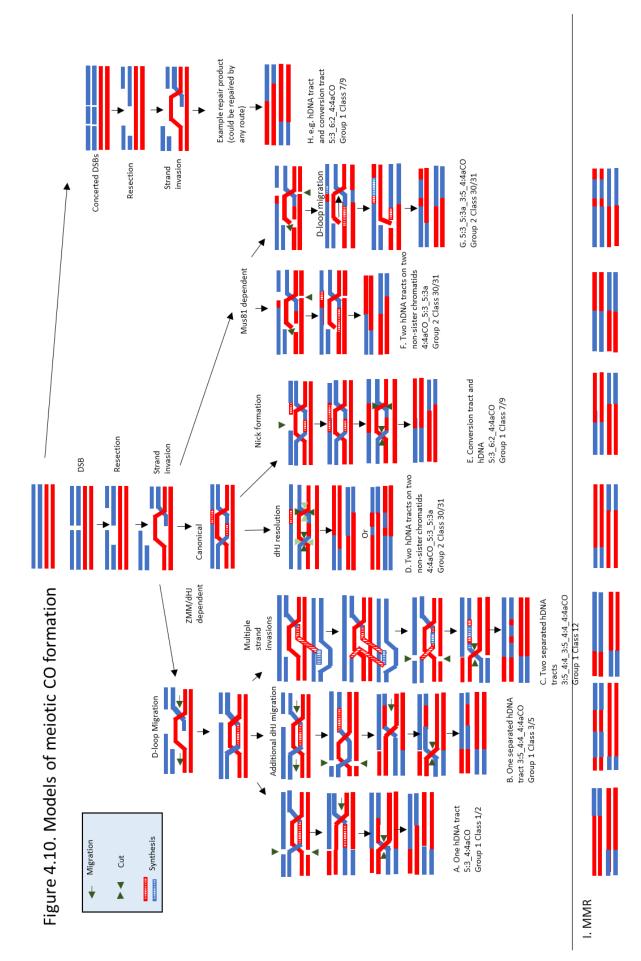
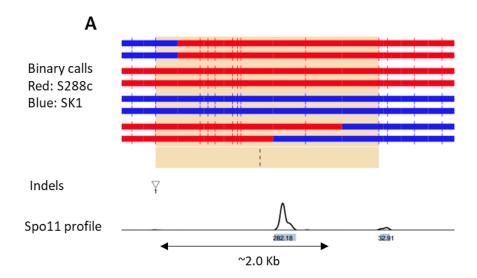


Figure 4.10. Models for meiotic CO formation. For simplicity, only two homologous DNA molecules are represented, one red and one blue, unless necessary to represent template switching/multiple strand invasions. Note that nicks and multiple strand invasions could happen in combination with other pathways to produce more complex patterns. The notation 5:3 5:3a stands for two consecutive hDNA tracts producing the same overall segregation pattern but affecting different strands. This is called 'trans hDNA' if the affected strands are on the same chromatid, but the hDNA tracts can also be produced on two non-sister chromatids by dHJ resolution. A) D-loop migration (Martini et al., 2011): Concurrent with DNA synthesis at the invading end, D-loop migration (horizontal green arrows) occurs in the same direction. Migration of the D-loop can potentially completely erase the first hDNA formed after strand invasion, leaving hDNA on only 1 side of the event. B) dHJ migration (Martini et al., 2011): As above, but with dHJ migration away from the invasion point after dHJ formation forming an additional restoration tract. The two-step resolution process shown is speculative and as equally probable as a one-step resolution process for two close HJs. C) dHJ migration and multiple strand invasion (Martini et al., 2011): The invading end undergoes template switching between non-sister and sister chromatids, generating an alternating strand transfer pattern on a single chromatid. D) Canonical dHJ resolution (Paques and Haber, 1999): After 3' end invasion, a stable SEI intermediate is formed and is processed into a dHJ. dHJ resolution can lead to a CO if the four nicks (arrowheads) cleave four different DNA strands. The darker and lighter coloured arrowhead pairs illustrate two possible resolutions. Of the final CO patterns, the top corresponds to resolution by the darker arrowheads, and the bottom CO pattern corresponds to resolution by the lighter arrowheads. Both contain two hDNA tracts distributed on the two non-sister chromatids involved in the repair reaction. E) dHJ with nick: An unrepaired nick is formed before or during the topological processing of a dHJ. Nick translation generates a conversion tract. F) dHJ-independent (Pagues and Haber, 1999): After 3' end invasion, an unstable intermediate is formed. A structure-specific endonuclease such as Mus81 can process this intermediate into a CO with two hDNA tracts distributed between the nonsister chromatids. G) D-loop migration coupled with endonuclease processing by e.g. Mus81 (Martini et al., 2011): First end invasion produces a HJ. Close by, DNA is cut by a nuclease such as the structure-specific endonuclease Mus81. DNA synthesis is initiated at the nick, using the invading strand as a template due to HJ branch migration. Under this scenario, a 5:3 segregation tract is partially inverted to become a 3:5 tract. H) Double DSB. Two close DSBs occur on the same chromatid, and the DNA in between is lost. Resection and strand invasion happen normally and the break is repaired by any method, with additional gap repair producing a conversion tract. The example shows repair by the canonical DSB resolution (as in D). I) Effect of MMR: Each image is a possible outcome of the repair pathway shown directly above it, after mismatch repair has converted or restored hDNA tracts. Only one example outcome is shown, not all possible combinations. Note that the invading 3' end may be converted or restored during strand invasion instead of post-repair. CO events are almost always detectable due to reciprocal exchange, but a bias towards conversion tracts means that more information about events can be detected.

NCO Events:

For NCOs, hDNA patterns can give an idea of the pathway in which they were formed. Technically, NCOs can be formed by SDSA, dHJ dissolution or by dHJ resolution; however, the number of meiotic NCOs produced by dHJ resolution is seemingly negligible because removal of MutLγ complex components does not affect NCO numbers (Zakharyevich et al., 2012). NCOs likely to have been formed by SDSA usually have a simple signature of a 5:3 or 3:5 tract (e.g. Figure 4.12A, Figure 4.9A). Using hDNA patterns, it is also possible to identify NCOs that could have been formed by dHJ dissolution. NCO Group 2 classes all contain trans hDNA on a single chromatid (e.g. Figure 4.12B). Trans hDNA is when the same overall segregation pattern is repeated, e.g. 5:3 5:3, but the actual altered chromatids or strands are different. When this occurs on a single chromatid, this means that the two DNA strands must have each been broken separately, potentially by dissolution of a dHJ (Figure 4.9, E). However, these patterns could also be produced by the occurrence of double SDSA, i.e. both resected ends have undergone strand invasion into a homologous chromosome and copied the sequence (Figure 4.9B). A preliminary finding from the Llorente lab is that a DSB hotspot site is usually found in the middle of the two trans hDNA segments, which points towards the majority of these events being produced by double SDSA rather than dHJ dissolution (Bertrand Llorente & Marie-Claude Marsolier, personal communication).


Within Group 0, there are more specific classes which are strongly suggestive of a loss of DSB or CO interference. For example, 4:0 or 8:0 segregation of markers strongly indicates the occurrence of multiple events in proximity to other events, which should normally be prevented by DSB interference (e.g. Figure 4.13). Another example is the double crossovers (dCOs), which are defined here as COs occurring on different chromosomes within 1.5kb of each other (Figure 4.14A). Double COs could also occur between the same two chromatids or sharing one chromatid, but they cannot be distinguished from a combination of a CO and an NCO or two NCOs. In these ambiguous cases, the scenario with fewer COs is favoured. So, if a double reciprocal exchange occurs with less than 1.5kb between the exchanges, it is classified as 1 CO & 1 NCO if occurring on three chromatids with one overall reciprocal exchange, and as 2 NCOs if on 2 chromatids (Figure 4.14B). The number of four-chromatid dCOs can be used to estimate how many three-and two-chromatid dCOs there should be, assuming that double DSBs are equally likely to be resolved as COs regardless of which chromosomes they occur on. For example, a meiosis with 5 four-chromatid dCOs would be predicted to have 10 three-chromatid dCOs and five 2-chromatid dCOs.

The existence of the double NCO group means that there is a class of complex NCOs occurring on two non-sister chromatids, in this special case of both non-sisters having a conversion tract in

the same place indicating that both have been broken. Usually, NCOs that affect two non-sister chromatids are not considered to be produced by more than one Spo11-DSB, but the signature of an apparent 4:4 double reciprocal exchange within 1.5kb is incompatible with a 1-DSB scenario and not explainable by either double SDSA or by dHJ resolution/dissolution.

Initially, events are automatically categorized by the script 'Event_Sorter' (Methods section 2.14, script available in appendix). Events are also manually inspected in order to check their classification, because it is not always possible to correctly categorize them automatically. In particular, events with signatures indicating complexity or clustering may require manual annotation, based on the presence of segregation patterns that are very unlikely to have been produced by the repair of one DSB. These multiple-DSB signatures include NCOs with changes on two sister chromatids, which indicates two separate NCOs because another chromatid must have been involved for the repair; COs involving 3 chromatids, which can be produced by 1 CO and 1 NCO; COs involving 4 chromatids, which can also be 1 CO and 1 NCO but also possibly double COs; and events with heteroduplex tracts that are incompatible with a 1-DSB scenario, i.e. events containing segments with both 5:3 or 6:2 and 3:5 or 2:6 segregation patterns. These incompatible heteroduplex tracts indicate that the identities of the donor and recipient chromatids are not consistent within the event region. If events are likely to be formed from more than one DSB, they are split into the component events (rules are detailed in Methods section 2.14).

To determine whether the manual annotation process significantly affects event numbers, the average number of COs and NCOs classified for each genotype before and after annotation are compared in Figure 4.15. This analysis shows that CO numbers generally do not change, but NCOs show a small increase in some backgrounds (these increases were not found to be significant according to a T-test [Methods section 2.21]).

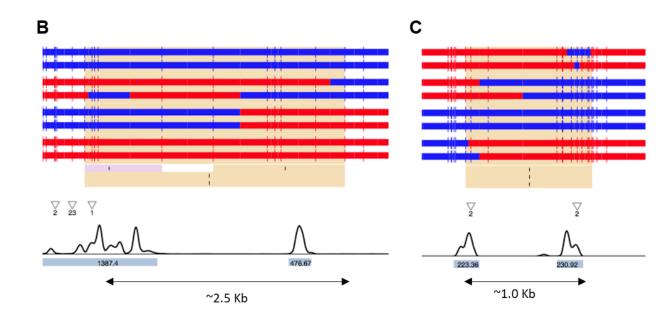


Figure 4.11. A selection of example CO events from $msh2\Delta$ octads.

Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan et al., 2011). A) CO Group 1 class 8: A CO showing a pattern of hDNA, conversion tract, reciprocal exchange. B) CO Group 3 class 20: A CO associated with hDNA incompatible with a single DSB occurring on the same chromatid. C) CO Group 0 Class 2: A CO associated with an NCO occurring on a different chromatid.

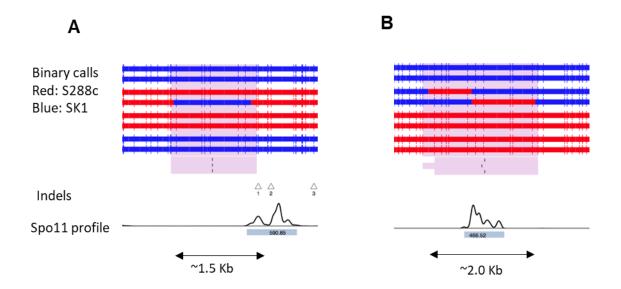


Figure 4.12. A selection of example NCO events from *msh2*Δ octads. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan *et al.*, 2011). A) NCO Group 1 class 2: A simple NCO formed by SDSA. B) NCO Group 2 class 11: An NCO containing trans hDNA, formed by either

double SDSA or dHJ resolution.

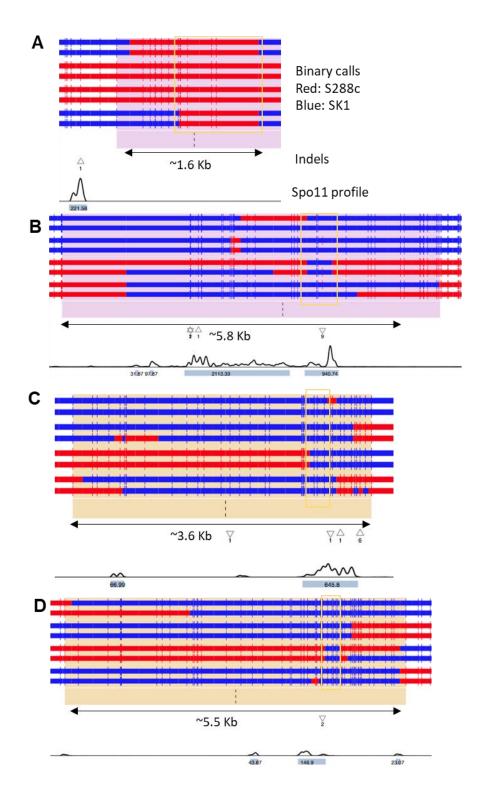


Figure 4.13. A selection of example events from *msh2*Δ octads containing 8:0 or 0:8 segments. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan *et al.*, 2011). The segments of interest are highlighted in yellow. A) Affects two sister chromatids, likely caused by two NCOs. B) Affects all four chromatids, but no reciprocal exchange. Could be 2-4 NCOs. C) Affects all four chromatids and has one reciprocal exchange. Likely 1 CO, 1NCO. D) Affects all four chromatids and has a double reciprocal exchange. Double CO.

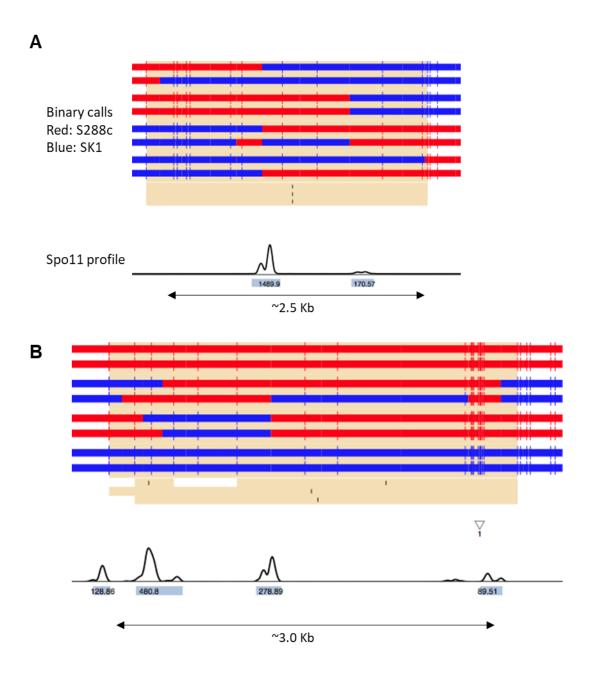


Figure 4.14. A selection of example dCO events from msh2Δ octads. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan et al., 2011). A) CO Group 0 class 2: A dCO involving all four chromatids in a double reciprocal exchange. B) Group 0 Class 3: Has a 4:4 pattern suggestive of a double CO, but occurring on the same two chromatids within 1.5kb, so considered to be two NCOs.

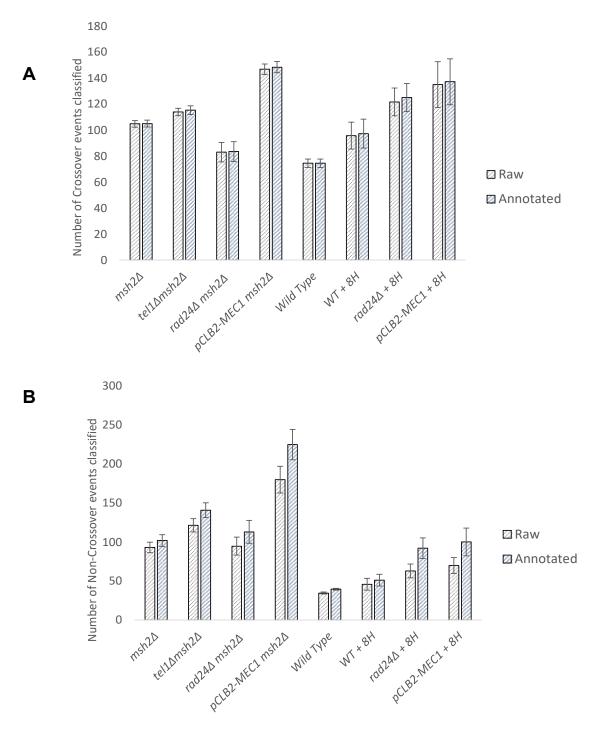


Figure 4.15. Comparison of the average number of recombination events classified for each genotype before and after manual annotation. Error bars are 95% confidence limits. Comparison of average A) CO and B) NCO numbers.

4.2.12. Quality control of detected recombination events

To help inform on whether the detected events are real, and whether they might be made up of separate events, Spo11-DSB hotspot data from Pan *et al.* (2011) can be used. If an event is detected in a DSB-cold region, there is less confidence in its legitimacy, though it is certainly possible for real events to occur in such locations; 11% of uniquely mapped Spo11-oligos occur away from hotspots (Pan *et al.*, 2011). If multiple DSB hotspots occur within an event boundary, it may suggest that there are two separate DSBs occurring within the event.

The number of variants that are called within an event is also helpful to determine the accuracy of event calling. Originally, Martini *et al.* discounted 1-SNP events as they may not be real, and instead caused by sequencing or alignment errors. The authors no longer recommend this, but there is still a reduced confidence in the validity of events composed of only one variant (Bertrand Llorente, personal communication). However, events that cover only a few variants may simply be occurring in areas of relatively low variant density, as opposed to events that occur in regions of high SNP variant density but are still only composed of one variant change, so it is important to take the SNP density of the event region into account.

Overall, events with few variant changes that occur in areas of high variant density, and low Spo11-DSB signal are less likely to be real. Still, these events are not currently removed from event tables in this analysis. Events are only discarded if they occur with the same characteristics and in the same place across multiple samples, as this suggests an error in the variant table. The offending variants are removed from the table.

Events are also removed if they are suspected of being caused by mitotic, rather than meiotic, recombination. This is done for events composed solely of a 4:0 segregation pattern. Those containing a 4:0 segment, but also other segments or a CO, are retained. It is possible for 4:0 patterns to be produced by meiotic recombination, caused by complex event repair or the presence of multiple DSBs. These are expected to be rare in WT, but could be increased in mutants that have lost meiotic recombination control. Others (Martini *et al.*, 2011; Anderson *et al.*, 2011) routinely remove all variant positions with 4:0 segregation patterns, discarding information about event complexity.

To ascertain whether reproducible results can be obtained from analysis of sequencing data obtained from different experiments, use of sequencing data from four SK1xS288c $msh2\Delta$ octads from the Llorente lab (distinct from the four $msh2\Delta$ octads analyzed by microarray in Martini et al., 2011) was kindly provided to allow comparison with data from the nine $msh2\Delta$ octads sequenced in this project. This revealed that when using the pipeline described in this chapter,

both sets of $msh2\Delta$ octads have similar overall event numbers (Figure 4.16A), and proportions of event in each subgroup (Figure 4.16B,C). In addition, both sets of $msh2\Delta$ octads have an overall similar proportion of events suspected to be formed by DSB clusters (overall number of events in Group 0, Figure 4.16D). In terms of event lengths, the mid length of COs was very similar for both sets of $msh2\Delta$ octads (Figure 4.16E), although there were more short NCOs in the Llorente data (Figure 4.16F).

The similarity of results from the two sets of $msh2\Delta$ octads suggests that firstly, the higher read depth of the Llorente samples does not make a significant difference to the number of events called, and secondly, that for this experiment, results are generally consistent between samples produced by different laboratories. This suggests that the pipeline is valid and strengthens confidence in the results.

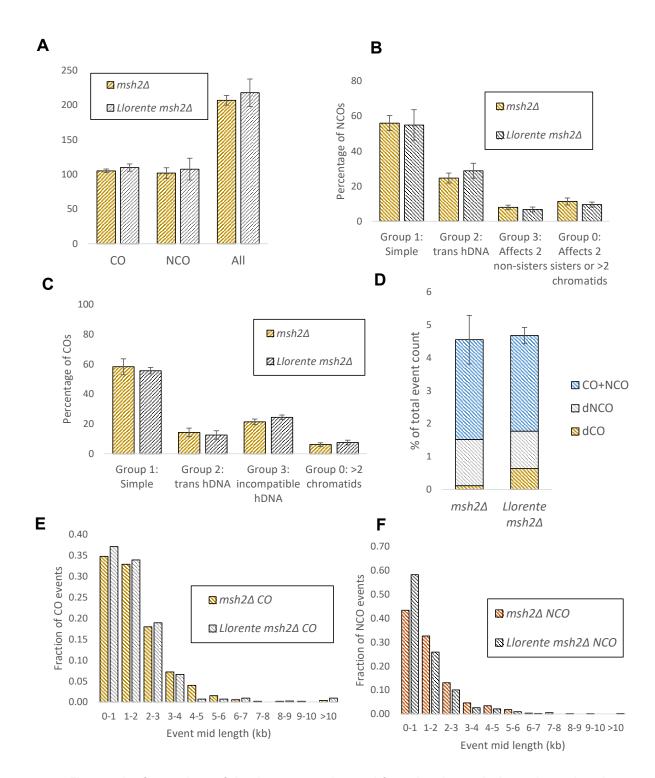


Figure 4.16. Comparison of the data output observed from the nine *msh2*Δ octads produced in this study and four from the Llorente lab. Error bars are 95% confidence limits. A) Comparison of average CO and NCO numbers per octad. B) Average percentage of NCOs in each group. C) Average percentage of COs in each group. D) Comparison of the average percentage of events thought to be DSB clusters (overall Group 0), with sublevels indicating whether the clusters were thought to be a double CO, double NCO or CO and NCO. E) Comparison of the average fraction of CO events occurring within each length category. F) Comparison of the average fraction of NCO events occurring within each length category.

4.3. Discussion

In order to determine the roles of various factors in the regulation of meiotic recombination, it is necessary to view characteristics of meiotic recombination genome-wide in a single meiosis. While there are many established methods for characterizing recombination events genome wide, there is scope to improve upon these methods and tailor them for a specific dataset.

4.3.1. Advantages of sequencing over microarray for marker detection

Genome-wide recombination assays have been used previously to examine recombination in $msh2\Delta$ octads (Martini et al., 2011). Martini et al. used microarray hybridisation for genotyping. Deep sequencing provides a higher resolution of polymorphisms than microarray hybridisation, because sequencing is capable of interrogating the entire genome, without depending on preselected targets. This means that the SNPs of interest must be decided in advance and cannot be determined from the data itself, unlike with deep sequencing (Section 4.2.3). In addition, with sequenced samples it is simple to repeatedly align the same sample with different settings in order to optimise quality and quantity of reads, which is helpful when aligning against a sequence expected to contain mismatches. DNA fragments containing polymorphisms from both parents are particularly of interest as they cover the junction of recombining strands. To obtain a similar effect in microarray analysis, the entire hybridization would have to be repeated with different conditions, and it would still be difficult to detect fragments containing polymorphisms from both parents. Additionally, more recombination events may be detected via sequencing compared to microarray analysis. The authors of Martini et al. (2011) used sequencing to analyse recombination in a further four msh2∆ octads, finding an average of 107 NCOs and 109 COs per meiosis (Section 4.2.12) compared to an average of only 84.5 NCOs and 92 COs in the microarray analysis. While the $msh2\Delta$ octads were different in each analysis, the samples were obtained, prepared and analysed in the same way except for the method of detecting markers, so the results should be similar.

Finally, hDNA can be detected in $msh2\Delta$ tetrads via sequencing, but not via microarray (discussed in Section 4.2.5). The ability to use $msh2\Delta$ tetrads rather than octads is thus advantageous for strains with very low spore viability.

4.3.2. Adjustments to marker numbers, event resolution and event classification

Previous analysis of $msh2\Delta$ octads has only used SNP markers, disregarding indels (Martini et al., 2011). The use of indels improves the resolution of genotyping, decreasing the median distance between markers to 81bp from 87bp if SNPs alone are used (Figure 4.5). In addition,

during classification of recombination products, pattern changes within 5kb of each other were considered to be part of the same event (Martini et al., 2011). However, the authors subsequently found that many events incompatible with a 1-DSB scenario occur closer than 5kb by careful examination of hDNA tracts associated with recombination in MMR-deficient backgrounds, and thus recommend a 1.5kb merging limit (Bertrand Llorente & Marie-Claude Marsolier, personal communication). Thus, the 1.5 kb merging limit used in the data presented here is advantageous for detailed examination of the distance between recombination events.

Finally, previous studies (e.g. Martini *et al.*, 2011; Anderson *et al.*, 2011) also discount events containing 4:0 tracts as being caused by pre-meiotic recombination, even though they could potentially be caused by two overlapping DSBs, suggesting a loss of trans DSB interference. In an MMR-deficient background, the ability to see a greater variety of pattern changes via hDNA analysis means that 4:0 events can be categorized as meiotic or mitotic with more certainty, depending on whether they are associated with other pattern changes.

4.3.3 Closing statement

This chapter describes how a new bioinformatics pipeline was designed, differing from previously published methods in several ways, including that it is optimized for long reads and lower read depths; uses a dedicated list of both SNPs and indels produced for the specific SK1 and S288c strains used in this investigation; is capable of analyzing heteroduplex DNA found in $msh2\Delta$ tetrads, as well as $msh2\Delta$ octads and MSH2 tetrads. Overall, though recombination has been previously assayed genome-wide in $msh2\Delta$ octads, this study offers distinct advantages over preceding ones in terms of marker and event resolution and detection. Taken together, the results shown in the chapter indicate that this optimized analysis method can be used with confidence to examine recombination in genotypes of interest.

Chapter 5.

Effect of MMR deficiency and prolonged prophase on meiotic recombination in WT hybrid crosses

Chapter 5. Effect of MMR deficiency and prolonged prophase on meiotic recombination in WT hybrid crosses

5.1. Introduction

5.1.1. General introduction

Meiotic recombination is important for correct disjunction of chromosomes, fertility and genetic diversity. To understand the process of meiotic recombination, it is desirable to catalogue the types and distribution of recombination events in a wild type meiosis. However, it is not possible to detect recombination events with high resolution in a 'true WT' because it is necessary to use hybrids with many polymorphisms in order to visualize the events.

A high sequence divergence between homologous chromosomes reduces spore viability, due to the action of MMR proteins preventing recombination between divergent sequences (Liti *et al.*, 2006). This is a protective activity that reduces chromosomal rearrangements (Myung *et al.*, 2001), but also enforces reproductive barriers between species (Hunter *et al.*, 1996). Increasing sequence divergence is also associated with decreasing efficiency of hDNA formation in mitotic and meiotic cells (Datta *et al.*, 1997; Chen & Jinks-Robertson, 1999), thought to be because MMR proteins detect and reject hDNA intermediates that contain mismatches.

MMR can be disrupted by the deletion of proteins such as Msh2 and Mlh1, homologues of MutS and MutL respectively (Reenan and Kolodner, 1992; Hunter & Borts, 1997). Both cover a wide scope of mismatch recognition, but since Mlh1 can promote meiotic CO formation (Hunter & Borts, 1997), and Msh2 does not affect meiotic recombination in the absence of polymorphisms (Hunter *et al.*, 1996), a hybrid $msh2\Delta$ strain can be used to compare to a WT hybrid in order to determine the effect of MMR deficiency on recombination in a hybrid.

Due to the potential bias against recombination occurring in regions containing polymorphisms in a WT hybrid, meiotic recombination in a MMR-deficient hybrid may be considered to be more similar to a non-hybrid WT. However, the loss of Msh2 activity also leads to an increase in unrepaired mutations, strand invasion into ectopic regions of the genome, and a decrease in spore viability in most backgrounds (Chapter 3, Figure 3.8 B and C).

Spo11 DSBs are formed during meiotic prophase, so the length of the prophase may affect the types, frequency and distribution of recombination events. Using the *NDT80* arrest and release system (Chapter 1, Figure 1.9) in a WT hybrid can allow examination of events in a WT strain with an elongated prophase. An extended prophase is known to increase the viability of hybrid

checkpoint mutants (Chapter 3, Figure 3.10A), so sequencing strains of this background may help to understand how the arrest is rescuing spore viability.

5.1.2. Aims of this section

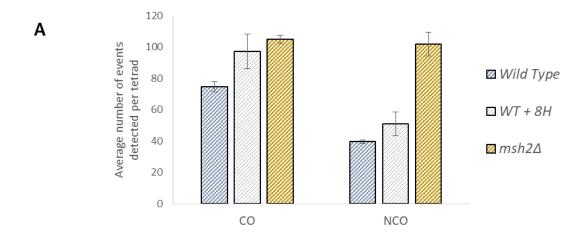
- 1. To establish a baseline for 'wild-type' recombination that can be used for comparisons, by using high-resolution sequencing data to examine features of meiotic recombination in wild type, MMR deficient and prophase arrested hybrid strains.
- 2. To determine whether these 'wild type' backgrounds have differences in recombination to each other, and if so, to understand why.

5.2. Results

5.2.1. The number of detected recombination events in hybrids is altered by prophase arrest and MMR deficiency

To acquire information on the quality and quantity of meiotic recombination in a 'wild-type' background, hybrid SK1xS288c tetrads or octads were produced in WT, WT + 8 h of prophase arrest, or $msh2\Delta$ backgrounds. The normal activation of NDT80 likely takes place somewhere between 4-5 hours into meiosis (Xu *et al.*, 1995), so the WT + 8 h strain could be considered to have 3-4 extra hours in prophase. The individual spores were sequenced and the data analyzed as detailed in Chapter 4. Raw data is available in the appendix (Table S2).

To see if prophase extension and MMR deficiency have an effect on the number of recombination events detected, CO and NCO numbers were compared across backgrounds (Table 5.1, Figure 5.1A).


The WT hybrid strain has an average of ~74 COs detected per meiosis, which is very close to the average of ~73 COs reported previously (Martini *et al.*, 2011). In contrast, an average of ~40 NCOs per meiosis were detected in the WT hybrid strain vs ~27 reported by Martini *et al.*, 2011. This disparity in NCO numbers could be related to the use of microarrays to view marker changes, which may give a lower NCO estimate than that obtained by sequencing due to the lower resolution of the method.

It is not possible to measure recombination in a homozygous background by marker analysis, since no markers will be different; however, ~86 COs have been detected genetically in a S96xYJM789 hybrid WT background, with a sequence difference of 0.6% (Chen *et al.*, 2008). This is higher than the number of COs detected in an SK1xS288c hybrid background, which has ~0.7% sequence divergence, suggesting that the presence of polymorphisms may be inhibitory to recombination.

Table 5.1. Data summary for recombination events detected in WT, $msh2\Delta$ and prophase arrested backgrounds.

Separate samples for each genotype are shown. TW: Wild type tetrad, TN: NDT80 arrest tetrad, OM: *msh2*Δ octad. Columns contain the number of COs, NCOs and Undetermined (U) events detected, the overall number of events, the number of chromosomes without COs (CWCs), the identity of the CWCs, the number of double COs closer than 1.5kb (dCOs), the number of events containing an 8:0/0:8 or 7:1/1:7 segment, the number of COs without a detectable conversion tract, and the number of NCOs that were composed only of hDNA.

						CW	'Cs				COs	NCOs
Meiosis	со	NCO	U	Total	CO-NCO	Frequency	Identity	dCO number	8:0	7:1	without tracts	hDNA only
Wild Type									Ormy			
Average	74.5±3	39.5±1	0.3	114.3±4	1:0.53			0	0.8		12.8	
TW1	68	39	1	108	1:0.57	2	Chr 1, 6	0	1	-	11	-
TW2	83	42	0	125	1:0.51	1	Chr 1	0	0	-	15	-
TW3	76	40	0	116	1:0.53	0	-	0	1	-	13	-
TW4	71	37	0	108	1:0.52	0	-	0	1	-	12	-
WT + 8 h	WT + 8 h											
Average	97.3±11	51.0±8	0.5	148.8±19	1:0.52			1.5	2.5		20.5	
TN1	70	34	0	104	1:0.49	0	-	0	1	-	11	-
TN2	90	43	0	133	1:0.48	0	-	1	1	-	23	-
TN3	121	61	1	183	1:0.50	0	-	4	5	-	29	-
TN4	108	66	1	175	1:0.61	0	-	1	3	-	19	-
msh2∆												
Average	105.0±3	101.8±8	0	206.8±7	1:0.98			0.2	0.1	0.4	14.9	64.1
OM1	116	109	0	225	1:0.94	0	-	0	0	0	13	45
OM2	100	125	0	225	1:1.25	0	-	0	0	0	8	69
OM3	95	100	0	195	1:1.05	0	-	0	0	0	18	50
OM4	105	98	0	203	1:0.93	0	-	1	0	1	11	50
OM5	98	79	0	177	1:0.81	0	-	0	0	0	19	41
OM6	116	65	0	181	1:0.56	0	-	1	1	0	22	37
OM7	98	139	0	237	1:1.42	0	-	0	0	1	11	70
OM8	107	113	0	220	1:1.06	0	-	0	0	2	21	62
OM9	110	88	0	198	1:0.80	0	-	0	0	0	10	45

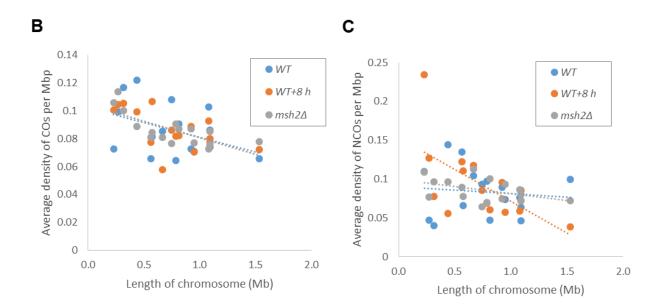


Figure 5.1. Quantity of recombination events detected in WT, MMR deficient and prophase extension strains. Strain details are given in Table 2.1, raw event data is available in Table S2. A) Average number of CO and NCO events. Error bars are 95% confidence limits. B) Density of COs and C) NCOs per Mbp. The average number of CO/NCO events per chromosome is divided by the average total CO/NCO count, then divided by the chromosome length in Mbp. Dotted lines are linear regressions. R²: WT CO 0.16, NCO 0.01; WT + 8 h CO 0.36, NCO 0.40; msh2Δ CO 0.54, NCO 0.20.

When the WT strain has prophase extended to 8 hours, the number of detected events increases to ~97 COs and ~51 NCOs per meiosis. A possible explanation for this is that the longer prophase allows more DSBs to be formed and repaired, helping to overcome the less efficient strand invasion caused by the presence of polymorphisms in a *MSH2* background (Sugawara *et al.*, 1997; Evans *et al.*, 2000; Goldfarb & Lichten, 2010). The ratio of COs to NCOs is not altered by the prophase arrest, with 1.85 COs for every NCO in WT and 1.9 with prophase arrest.

The number of observed NCOs is likely to be an underestimate of the real frequency, due to events occurring in regions without markers, short event lengths and, in MMR-proficient strains, restoration (Mancera *et al.*, 2008). The percentage of observed COs that occur between markers and thus have no detectable conversion tract can be used to estimate the number of NCOs that may be invisible due to falling between markers. In the WT hybrid, an average of 17% of COs had no associated conversion tract (Table 5.1), so the corrected estimate of the number of NCOs for the WT hybrid is 48. In the WT hybrid with extended prophase, 21.1% of COs had no associated conversion tract, so the corrected number of NCOs in this background is 64.6. However, these estimates assume that GC tracts are of a similar length in CO and NCO events, while in fact NCOs tend to be shorter (Figure 5.3), meaning that the true number of undetectable NCOs is likely higher.

In the MMR-deficient $msh2\Delta$ strain, an average of 105 COs are detected, which is considerably higher than WT but within error limits of the amount detected in WT+ 8 h, and an average of 101 NCOs which is substantially higher than both the other backgrounds. In addition, 32% of COs fell between markers, indicating that an additional average of 43 NCOs may have occurred in marker free regions and thus were undetectable.

Functional MMR can prevent recombination in variant rich regions from using a homologous chromatid, instead promoting repair using the sister chromatid and producing undetectable recombination events (Goldfarb & Lichten, 2010). Therefore, the increased event numbers observed in $msh2\Delta$ compared to WT may be at least partly because strand invasion into sequences containing polymorphisms is less likely to be rejected when MMR is not functioning.

MMR can also produce invisible NCOs by restoring parental information, meaning that NCOs are easier to detect in the $msh2\Delta$ strain because heteroduplex tracts are not repaired. An average of 52 NCOs per meiosis in the $msh2\Delta$ background were composed of only a single hDNA tract. If the strain was MMR-proficient with no bias towards conversion or restoration, it could be assumed that 50% of these events would have been repaired to give a conversion tract and 50% to a restoration tract, meaning that around 26 events would become invisible. If this logic is applied to the NCO count in the WT hybrid, the corrected total would be 66, which is still much lower than the number of NCOs detected in $msh2\Delta$. This suggests that in the WT hybrid there may be a bias towards conversion, or that there may be a significant amount of repair with the sister chromatid, both of which would mask the total number of NCOs detected.

While almost twice as many CO events were detected than NCO events in MMR-proficient backgrounds, the CO to NCO ratio is almost 1:1 in $msh2\Delta$. The larger disparity in NCO numbers

than in CO numbers between MMR-proficient and deficient strains (Table 5.1) suggests that the reason for lower event counts in MMR-proficient strains is primarily explained by a bias towards conversion, since this only masks NCO numbers, while repair with the sister chromatid can hide both potential COs and NCOs.

Conflictingly, an average of only 84.5 NCOs and 92 COs were detected in an SK1xS288c $msh2\Delta$ background using microarrays to detect markers (Martini et~al., 2011). However, when a further four $msh2\Delta$ octads produced by this lab were analyzed via sequencing for marker detection, an average of 107 NCOs and 109 COs were detected per meiosis (Chapter 4, Figure 4.16A), which is very similar to the frequency observed in the data presented here. This indicates that the lower event counts in the original $msh2\Delta$ octads compared to the sequenced $msh2\Delta$ octads from the Llorente group were caused by the lower resolution of the microarray method for event detection.

In total, an average of 114 recombination events are detected in a WT hybrid, 148 in a WT hybrid with extended prophase, and 206 in *msh2∆*. Based on an estimate of ~160-200 Spo11-DSBs per cell (Pan *et al.*, 2011), the *msh2∆* genotype may enable the observation of the event counts most comparable to those of a non-hybrid strain, suggesting that the low level of NCOs observed in WT hybrids mainly results from Msh2 activity. Based on this, Msh2 activity appears to reduce overall recombination by 1.8x when the sequence divergence is ~0.7% as in SK1xS288c.

The estimate of a 1.8x reduction in recombination with 0.7% sequence divergence is slightly lower than expected, given the reduction in recombination rate by 4.1x at 0.3% divergence reported by Datta *et al.*, 1999. However, that was measured at a single, artificially constructed locus by using an inverted repeat of the *HIS3* gene with different point mutations, inserted at the *URA3* locus and assayed via return to growth.

5.2.2. Relationship between chromosome length and recombination

In WT meiosis, there is a negative correlation between chromosome length and the density of DSB formation, dependent on Zip3 (Thacker *et al.*, 2014). To see if this is affected by prophase arrest or MMR deficiency, the relationship between chromosome length and fraction of all detected COs or NCOs that occurred on that chromosome was examined in WT, prophase arrested and $msh2\Delta$ strains (Figures 5.1B&C). All backgrounds tested displayed negative correlation between chromosome length and CO or NCO density, indicating that prophase arrest and MMR deficiency do not affect CO event distribution among chromosomes.

The skew in CO numbers towards short chromosomes is due to crossover assurance, a phenomenon in which meiotic COs are distributed so that each chromosome has at least one CO, which is believed to help prevent nondisjunction of chromosomes (Shinohara *et al.*, 2008; reviewed in Egel, 1995). However, in the WT background, three chromosomes without a CO were observed among the four assayed tetrads (Table 5.1). The chromosomes were Chr VI and Chr I twice, the two shortest chromosomes. In contrast, all chromosomes had at least one crossover in the prophase arrested and $msh2\Delta$ strains. This suggests that the low number of COs in the WT hybrid affects crossover assurance. Alternatively, the length of prophase or MMR proficiency may be important factors in crossover assurance.

5.2.3. The complexity of detected recombination events in WT, prophase arrest and MMR deficient backgrounds

Recombination events in each strain were categorized further as described in Section 4.2.10 (Table 5.2 and Figure 5.2A, B). The event categories are based on those described by Martini *et al.*, 2011. As such, many categories depend upon the presence of hDNA, which does not apply to the MMR-proficient strains. Thus, WT and $msh2\Delta$ strains cannot be directly compared because fewer categories are available in WT; however, the WT and prophase arrested strains generally have similar proportions of event types to each other. This indicates that prophase arrest does not strongly affect the complexity of DSB repair. The only notable difference between WT, prophase arrest and MMR deficient strains is in the proportion of CO and NCO events occurring in Group 0, which contains 'complex events'. These events, including NCOs on 2 sister chromatids or 2 non-sister chromatids with a 4:4 segment, and COs or NCOs affecting 3 or 4 chromatids, are considered to be complex because they are likely to have been caused by two close DSBs.

It should be noted that these two close DSBs are not necessarily both Spo11-DSBs, because during the repair of a Spo11-DSB, a second DSB could be caused by enzymatic nicking. Complex conversion tracts have also been proposed to be caused by multiple rounds of strand invasion into different chromatids and extension from different templates (Oke *et al.*, 2014).

The proportions of all detected COs and NCOs that were classified into Group 0 can be compared (Table 5.2; Figure 5.2A, B). The proportion of all COs sorted into Group 0 is similar in all backgrounds, but there is slightly higher proportion of Group 0 NCOs in WT and prophase arrest compared to $msh2\Delta$. However, the reason why $msh2\Delta$ appears to have a somewhat low proportion of complex NCOs is likely to be because it is easier to detect simple NCOs in an MMR-deficient background than in an MMR-proficient background. Thus, the WT and WT+ 8 h strains appear to have a higher proportion of complex NCOs only because simple NCOs are harder to detect in

these backgrounds. This would not apply to COs, because their detected is facilitated by the presence of a reciprocal exchange of chromosome arms.

In addition, the proportion of all recombination events classified into Group 0 was compared, equivalent to the number of suspected DSB clusters (Figure 5.2C). This differs from looking at the proportion of COs or NCOs in Group 0 as in Figure 5.2A&B, in that each cluster contains two events which are not counted separately in Figure 5.2C. Overall, all strains had a similar percentage of events occurring in Group 0, i.e. in each strain, approximately 5% of all recombination events are thought to be produced by DSB clusters. Within those clusters, the proportion of different cluster types were roughly equal across strains, with the majority of clusters being composed of a CO and a NCO for all strains (Figure 5.2C).

Previously, 2.6% of COs were reported to have a non-overlapping NCO partner on a third spore, and 0.6% had an additional CO partner involving the other two spores (Mancera et al., 2008). Here, 4.36% of COs had a non-overlapping NCO partner on a third spore, but none had an additional CO partner involving the other two spores. The increase in CO+NCO clusters detected here may be due to the improved ability to detect NCO events by sequencing compared to microarray marker analysis.

Within the Group 0 (complex events) category, one specific category of events is those containing a 4:0 or 8:0 segregation of markers, which is a strong indication of multiple events. The occurrence is generally low in wild type strains, with $\sim 0.7\%$ and $\sim 0.17\%$ of events occurring with 4:0 segments per meiosis in WT and prophase arrest, respectively, and $\sim 0.3\%$ of events occurring with 8:0 or 7:1 segments in $msh2\Delta$ (Table 5.1).

Another specific subcategory is double COs, defined as a double reciprocal exchange involving all four chromatids within 1.5kb. No double COs were detected in WT, 2 dCOs in nine *msh24* octads, and 6 dCOs in four prophase arrest tetrads (Table 5.1). As described in Section 4.2.11, the composition of an event cluster can be ambiguous. In such cases, the outcome with fewer COs is favoured; e.g. an event that could conceivably be a double CO or a CO + NCO, will be categorized as the latter. However, it is possible that some CO + NCO and double NCO clusters could be double CO events. The number of definite, four-chromatid dCOs is an indicator of how many three- and two-chromatid dCOs there may be. The true number of dCOs should be four times as high, if it is assumed that double DSBs are equally likely to be resolved as COs regardless of which chromosomes they occur on and that COs are equally distributed among the four chromatids (in terms of both initiating DSB and repair donor). Under these circumstances, ½ of double COs would involve all four chromatids, ½ would involve 3 chromatids (indistinguishable

from 1 CO + 1 NCO) and $\frac{1}{4}$ would involve two chromatids (indistinguishable from double NCO). This means that the number of dCOs reported here is likely an underestimate, and some CO+NCO or NCO+NCO clusters may actually be dCOs, giving revised estimates of 24 dCOs in four WT + 8 h tetrads, and eight in nine $msh2\Delta$ octads. (Original, not corrected, values are shown in Figure 5.2C).

Table 5.2. Data summary of the percentage of CO and NCO events in each group and class, detected in WT, $msh2\Delta$ and prophase arrested backgrounds. A short description of the characteristics of each group and class is given.

Group 1 : S	Crossover Groups Simple - no trans hDNA or incompatible hDNA	msh2∆	Llorente msh2∆	WT	WT +8H
	, provide the prov	%	%	%	%
Total		58.21	55.59	92.95	89.97
Class 1	(5:3)_(4:4aCO) - CO with hDNA tract	4.76	6.15		
Class 2	(3:5)_(4:4aCO) - CO with hDNA tract	4.76	4.78		
Class 3	(5:3)_(4:4)_(4:4aCO) - hDNA, restoration tract, CO pattern	0.85	1.37		
Class 4	(4:4aCO)_(5:3)_(4:4a) - Same as above but in opposite direction.	0.63	0.46		
Class 5	(3:5)_(4:4)_(4:4aCO) - hDNA, restoration tract, CO pattern	0.21	0.91		
Class 6	(4:4aCO)_(3:5)_(4:4a) - Same as above but in opposite direction.	0.85	1.14		
Class 7	(5:3)_(6:2)_(4:4aCO) - hDNA, conversion tract, CO pattern	1.59	0.91		
Class 8	(6:2)_(5:3)_(4:4aCO) - Same as above but in opposite direction.	1.80	0.23		
Class 9	(3:5)_(2:6)_(4:4aCO) - hDNA, conversion tract, CO pattern	1.80	3.19		
Class 10	(2:6)_(3:5)_(4:4aCO) - Same as above but in opposite direction.	2.12	2.05		
Class 11	Contains 4:4i (symmetrical hDNA)	1.59	2.05	F 27	0.54
Class 12	Anything else	10.90	11.16	5.37	9.51
Class 15	(6:2)_(4:4aCO) - CO with conversion tract	5.93	3.87	33.22	26.48
Class 16	(2:6)_(4:4aCO) - CO with conversion tract	6.35	3.42	37.25	32.90
Class 100	4:4aCO: CO in marker-sparse region	14.07	13.90	17.11	21.08
	Presence of trans hDNA, but not incompatible hDNA	44.20	40.50	0	
Total	disease 5.2 5.25 also source beautiful and	14.29	12.53	0	0
Class 30	adjacent 5:3 5:3a, plus any other segments	2.86	3.19		
Class 31	adjacent 3:5 3:5a, plus any other segments	3.60	1.37		
Class 32	non-adjacent trans hDNA i.e. have conversion or restoration tract in between	7.83	7.97		
Group 3: P	Presence of incompatible hDNA				
Total		21.37	24.37	2.68	1.8
Class 20	Contains 4:4i (symmetrical hDNA)	19.15	22.32	2.68	1.8
Class 21	Anything else	2.22	2.05		
Group 0: N	Multiple Spo11-DSBs: Affects 3 or 4 chromatids				
Total		6.14	7.52	4.37	8.22
Class 2	CO ± NCO involving 3 or 4 chromatids	5.4	6.61	4.03	4.88
Class 3	CO ± NCO involving 3 or 4 chromatids, contains different 4:4 patterns	0.74	0.91	0.34	3.34
• • •	Noncrossover Groups		Llorente		
Group 1: 5	SDSA-like: Affects one chromatid, no trans hDNA	msh2∆	msh2∆	<i>WT</i> %	WT +8H
		%	%	70	%
		55.00	540		05 70
	5-2 - composed of hDNA only	55.99 19.10	54.9 22.56	80.38	85.78
Class 1	5:3 - composed of hDNA only	19.10	22.56		85.78
Class 1 Class 2	3:5 - composed of hDNA only	19.10 21.29	22.56 20.23		85.78
Class 2 Class 3	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA	19.10 21.29 2.40	22.56 20.23 2.33		85.78
Class 1 Class 2 Class 3 Class 4	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA	19.10 21.29 2.40 2.07	22.56 20.23 2.33 1.16	80.38	
Class 1 Class 2 Class 3 Class 4 Class 7	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments	19.10 21.29 2.40 2.07 2.73	22.56 20.23 2.33 1.16 3.26	80.38 0.63	1.96
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments	19.10 21.29 2.40 2.07 2.73 3.38	22.56 20.23 2.33 1.16 3.26 2.56	0.63 1.27	1.96 0.98
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only	19.10 21.29 2.40 2.07 2.73 3.38 2.73	22.56 20.23 2.33 1.16 3.26 2.56	0.63 1.27 36.71	1.96 0.98 47.06
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only	19.10 21.29 2.40 2.07 2.73 3.38	22.56 20.23 2.33 1.16 3.26 2.56	0.63 1.27	1.96 0.98
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3HJ-dissolution-like: Affects one chromatid, has trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33	0.63 1.27 36.71	1.96 0.98 47.06
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 12	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10 Class 10 Class 11 Class 11 Class 12 Class 13 Class 14	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 13 Class 14 Class 15	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 2:6 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 5:3_5:3a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 7 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 15 Class 16	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:5a - restoration tract in the middle of trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10.1 Total Class 11 Class 12 Class 13 Class 13 Class 14 Class 15 Class 16 Class 17	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a - pus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - pus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - pus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 15 Class 17 Class 17 Class 17 Class 18	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 17 Class 17 Class 18 Class 19	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 16 Class 17 Class 19 Class 19 Class 19 Class 19 Class 19	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a - two 3:5 patterns on tract in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10 Class 10.1 Total Class 11 Class 12 Class 12 Class 13 Class 15 Class 16 Class 17 Class 17 Class 18 Class 19 Class 20 Class 20 Class 20 Class 20	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a - lous other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:4_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of trans hDNA 5:3_6:2_5:3a - lous other segments NOT in the middle of trans hDNA 5:3_6:2_5:3a - lous other segments NOT in the middle of trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10.1 Total Class 11 Class 12 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 20 Class 21 Class 22	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HI-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 15 Class 16 Class 17 Class 18 Class 19 Class 19 Class 20 Class 21 Class 22 Class 23	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA Anything else	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10 Total Class 11 Class 11 Class 12 Class 14 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 22 Class 23 Group 3: A	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HI-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0 0 1.86	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78
Class 1 Class 2 Class 3 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 11 Class 12 Class 13 Class 15 Class 16 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 21 Class 23 Class 21 Class 23 Class 21 Class 23 Class 21 Class 23 Class 24 Class 25 Class 25 Class 25 Class 26 Class 27 Class 28 Class 28 Class 28 Class 27 Class 28	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA Anything else	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0 0 1.86 6.74	0.63 1.27 36.71 41.77 0	1.96 0.98 47.06 35.78 0
Class 1 Class 2 Class 3 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10 Class 10 Class 11 Class 12 Class 12 Class 13 Class 15 Class 16 Class 16 Class 17 Class 18 Class 19 Class 20 Class 20 Class 20 Class 20 Class 20 Class 30	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:4_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_3:6_3:5_5 plus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 1.86 1.86 0.70 1.40 0.23 0 0 1.86 6.74 1.86	0.63 1.27 36.71 41.77	1.96 0.98 47.06 35.78 0
Class 1 Class 2 Class 3 Class 4 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 11 Class 12 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 23 Group 3: A Total	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HI-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 3:5_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA Anything else Affects two non-sister chromatids Contains 4:4i (symmetrical heteroduplex) Anything else	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0 0 1.86 6.74	0.63 1.27 36.71 41.77 0	1.96 0.98 47.06 35.78 0
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 13 Class 14 Class 14 Class 15 Class 16 Class 16 Class 17 Class 18 Class 19 Class 20 Class 20 Class 20 Class 20 Class 21 Class 21 Class 23 Group 3: A	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:4_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:5_3:6_3:5_5 plus other segments NOT in the middle of the trans hDNA	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0 0 1.86 6.74 1.86 4.88	0.63 1.27 36.71 41.77 0	1.96 0.98 47.06 35.78 0
Class 1 Class 2 Class 3 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10 Class 10 Total Class 11 Class 12 Class 13 Class 15 Class 15 Class 16 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 23 Group 3: A Total Class 23 Group 3: A Total Class 30 Class 30 Class 30 Class 31 Group 0: N	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 2:6 - composed of conversion tract only 3:1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a restoration tract in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA Anything else Multiple Spo11-DSBs: Affects two sister, 3 or 4 chromatids	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.44 0.22 0.44 7.97 4.69 3.28	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0 0 1.86 6.74 1.86 4.88	0.63 1.27 36.71 41.77 0	1.96 0.98 47.06 35.78 0
Class 1 Class 2 Class 3 Class 3 Class 4 Class 7 Class 8 Class 10.1 Group 2: d Total Class 11 Class 12 Class 13 Class 15 Class 16 Class 16 Class 17 Class 17 Class 18 Class 19 Class 20 Class 21 Class 30 Class 31 Group 3: A	3:5 - composed of hDNA only 5:3 _6:2 _5:3 or 5:3 _4:4 _5:3 - Conversion/restoration tract between hDNA 3:5_6:2 _3:5 or 3:5_4:4 _3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 3:HJ-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a - conversion tract in the middle of the trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA Anything else Multiple Spo11-DSBs: Affects two sister, 3 or 4 chromatids NCO involving 2_sis, 3 or 4 chromatids	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44 7.97 4.69 3.28 11.35 2.40	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0 0 1.86 6.74 1.86 4.88	0.63 1.27 36.71 41.77 0	1.96 0.98 47.06 35.78 0 1.96 1.96
Class 1 Class 2 Class 3 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: d Total Class 12 Class 12 Class 13 Class 14 Class 14 Class 16 Class 16 Class 17 Class 18 Class 19 Class 21 Class 23 Group 3: A	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 2:6 - composed of conversion tract only 3:1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a restoration tract in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA Anything else Multiple Spo11-DSBs: Affects two sister, 3 or 4 chromatids	19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.44 0.22 0.44 7.97 4.69 3.28	22.56 20.23 2.33 1.16 3.26 2.56 0.47 2.33 28.84 5.12 6.28 1.86 4.42 3.95 1.16 0.70 1.40 0.23 0 0 1.86 6.74 1.86 4.88	0.63 1.27 36.71 41.77 0	1.96 0.98 47.06 35.78 0

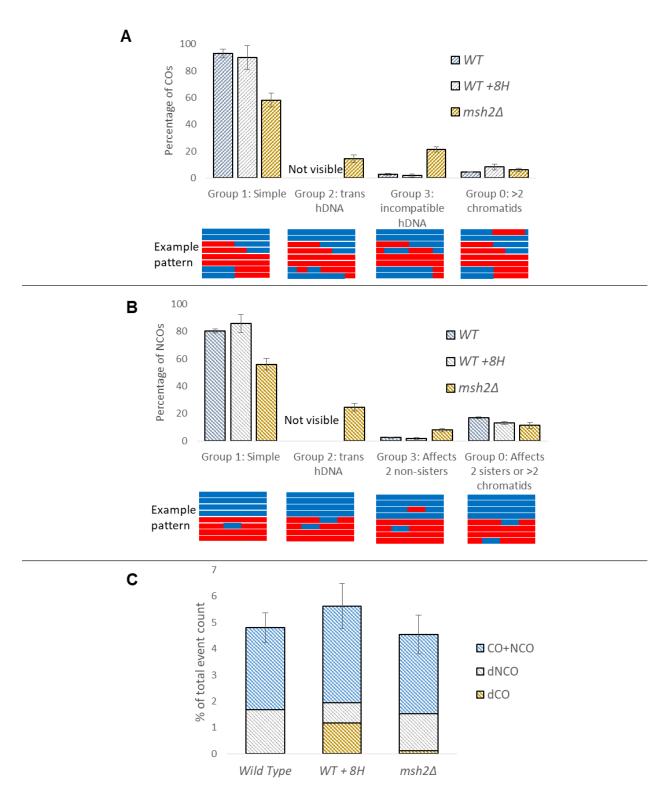


Figure 5.2. Categories of recombination events detected in WT, MMR deficient and prophase extension strains. Error bars are 95% confidence limits. Strain details are given in Table 2.1, raw event data is available in Table S2. A simple example event for each category is shown directly beneath the X-axis, with the red and blue lines corresponding to the eight strands of DNA present during meiotic recombination, four from each parent. A) Average percentage of COs and B) NCOs in each group. Group 2 is not available in MMR-proficient strains. C) Comparison of the average percentage of events thought to be DSB clusters (overall Group 0), with sublevels indicating whether the clusters were inferred to be a double CO, double NCO or CO plus NCO.

5.2.4. The length of detected recombination events in WT, prophase arrest and MMR deficient backgrounds

The length of recombination event tracts could be indicative of the extent of D-loop/dHJ migration and/or resection (Chapter 4, Figure 4.9/4.10), as longer resection or migration distances are predicted to correspond to longer tracts of marker changes. The length of recombination events is also an indicator of event complexity, because apparent long events can be produced by two separate events occurring nearby and overlapping.

Using marker changes to detect recombination events means that the exact start and end of an event cannot be pinpointed, only the locations of the two markers flanking a genotype change at each end of the event. Thus, event length can be reported as the maximum (the difference in the coordinates between the two outer flanking markers), the minimum (the different between the inner flanking markers), or the mid length, which is the difference between the midpoints between the two sets of flanking markers (Figure 5.3A). Generally, the mid length is preferred because on average, it is most likely to approximate the true event length. However, events occuring in areas of low polymorphism density may have poor correlation between mid length estimates and the true event length.

To examine event lengths in WT, MMR deficient and extended prophase strains, event mid lengths were categorized into bins, and mean and median values are also reported (Figure 5.3B & C). Compared to WT hybrids, WT with extended prophase had a general trend towards longer events, having a higher proportion of events with a length >8kb than WT. This may be caused by clustering of separate events, longer conversion tracts or dHJ migration. However, since the trend is seen in both COs and NCOs, it is unlikely that it is caused by dHJ migration since most NCOs are not formed from dHJ resolution in meiosis (Zakharyevich *et al.*, 2012). Nevertheless, it is possible that NCOs displaying trans hDNA on a single chromatid could be formed by dHJ resolution (Martini *et al.*, 2011); if there was a greater occurrence of these events in prophase-arrested strains, it could suggest that more NCO events are produced by dHJ resolution in this background. However, this category (NCO Group 2) is not visible in MMR-proficient strains because hDNA is not detected. Testing this hypothesis would require analysis of recombination events in a *msh2*Δ strain with prophase arrest.

In contrast, both COs and NCOs tended to have shorter lengths in $msh2\Delta$ than in WT. However, there are also some events in $msh2\Delta$ with a length >8kb, which is not seen in WT. The higher proportion of short events is probably at least partly explained by the fact that it is easier to detect short NCO events in a $msh2\Delta$ background due to the presence of hDNA tracts, although short CO events should be detectable in any background due to the reciprocal exchange. The detection of

longer events could be partly caused by the increased information available about event boundaries due to hDNA tract detection.

To determine whether long events represent DSB cluster events, event length distributions were plotted separately for DSB cluster events and non-cluster events (Figure 5.4). In WT, a general trend is seen for both COs and NCOs where the longest events are mostly clusters, and the shorter events are mostly non-clusters. However, there are some short clusters and long non-clusters. Similarly, the WT strain with prophase arrest long events that are mostly, but not always, DSB clusters. However, all of the shortest events are non-clusters. In stark contrast, in $msh2\Delta$, all of the longest events are non-clusters. Overall, these results suggest that in WT, the main cause of long event lengths is the merging of two separate events, although not all long events can be explained in this way. However, in an MMR-deficient strain, long event lengths are not well explained by DSB clustering, despite all three strains having similar levels of DSB clusters (Figure 5.2C) (discussed in Section 9.8).

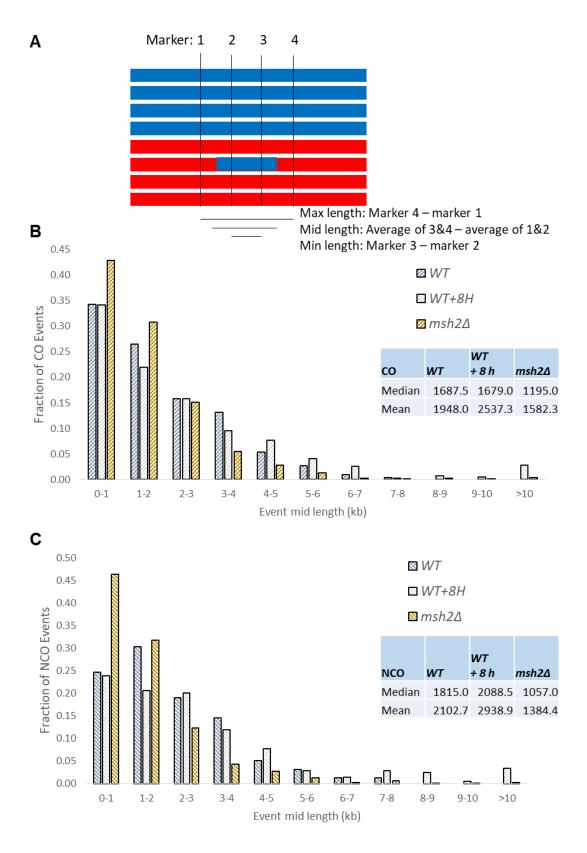


Figure 5.3. Mid length estimates for recombination events detected in WT, MMR deficient and prophase extension strains. Strain details are given in Table 2.1, raw event data is available in Table S2. Insert tables contain the median and mean lengths in bp. A) Diagram illustrating how the mid length estimate is calculated. Mid length estimate of B) CO and C) NCO events.

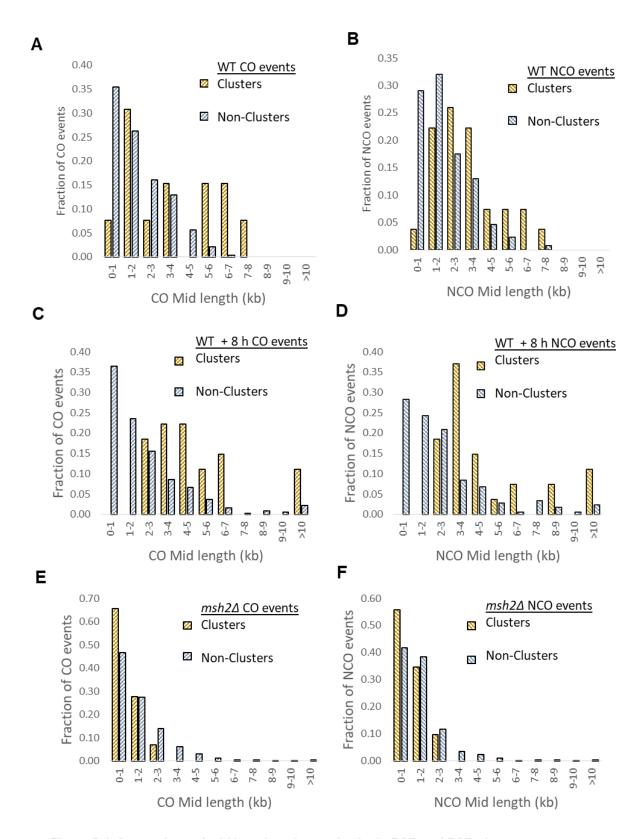


Figure 5.4. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in WT, MMR deficient and prophase extension strains. Strain details are given in Table 2.1, raw event data is available in Table S2. Mid length estimate of cluster/non-clusters of: A) CO events in WT, B) NCO events in WT, C) CO events in WT+8 h, D) NCO events in WT+8 h, E) CO events in $msh2\Delta$, F) NCO events in $msh2\Delta$.

5.2.5. Presence of potential duplications and deletions in WT, prophase extended and MMR deficient backgrounds

Occasionally, unique 'heteroduplex' SNP calls are seen in individual spore members of an octad or MSH2 tetrad, even though they are not expected to be present in these backgrounds. One possible explanation is that these calls may actually represent duplications occurring during recombination. If an SK1-type allele is broken and copies from an S288c sequence, but invades in the wrong place, it may end up with two copies of the same sequence, once from each parent. The duplications are not always associated with a detected recombination event, suggesting that they could represent undetected NCOs. An example of a potential duplication is shown in Figure 5.5A. In addition, potential deletions can be detected in a similar way by looking for unique adjacent polymorphisms that have a low read depth, suggesting that a section of DNA could be missing in that spore clone. However, these could also be caused a by low sequencing depth of the region in question.

Potential duplications and deletions were examined in WT, extended prophase and $msh2\Delta$ backgrounds (Table 5.3, Figure 5.5B&C, Figure 5.6A&B). Potential duplications and deletions were only counted if they covered at least two consecutive SNPs.

In a WT background, an average of 2 potential duplications and 1.25 deletions were detected per meiosis, each covering relatively few SNPs and having short potential lengths (Table 5.3, Figure 5.5B&C, Figure 5.6A&B). When prophase is extended, the average number of potential duplications and deletions detected per meiosis is unchanged (2.5 and 1.25 respectively), but the average length of the duplications is somewhat increased, with one having a length of over 900bp; however, due to the low number of samples it is not possible to say if this is significant. In contrast, the MMR deficient strain has an average of 6.6 duplications and 8.3 deletions. The potential duplications in $msh2\Delta$ contain an average of 3.2 adjacent SNPs, increasing confidence in their calling. The average lengths are increased compared to those in WT, with two duplications over 1000bp long and 5 deletions over 200bp.

Overall, the validity of the deletions is uncertain, as they tend to be short and cover few SNPs (Table 5.3). In addition, the detection of potential deletions is based on an absence of data, so deletions may just be regions with low read depth. However, the potential duplications tend to contain more adjacent SNPs, and are based on the presence of heteroduplex reads, increasing confidence in their validity. It should be noted, however, that deletion lengths may be expected to be shorter than duplications, as long deletions are less likely to be tolerated by the cell. The number of duplications that are not associated with an identified event gives an indication that there may have been additional NCOs occurring during meiosis that are not otherwise reported because they produced a mixture of markers that cannot be called as one genotype or the other.

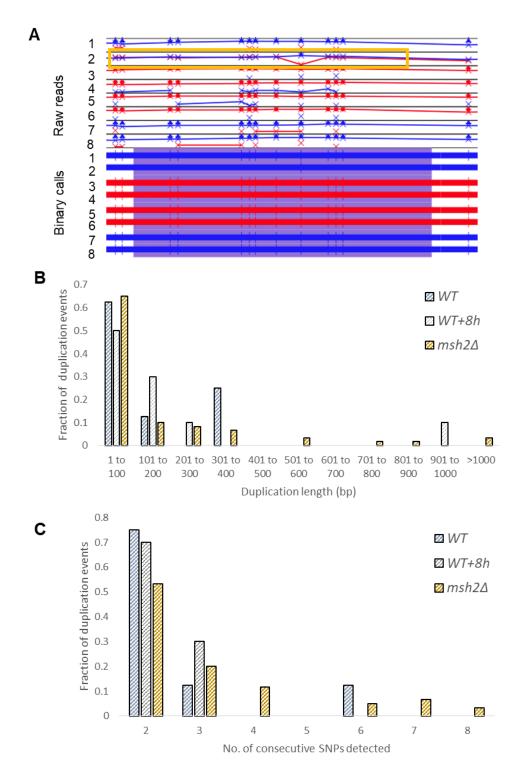
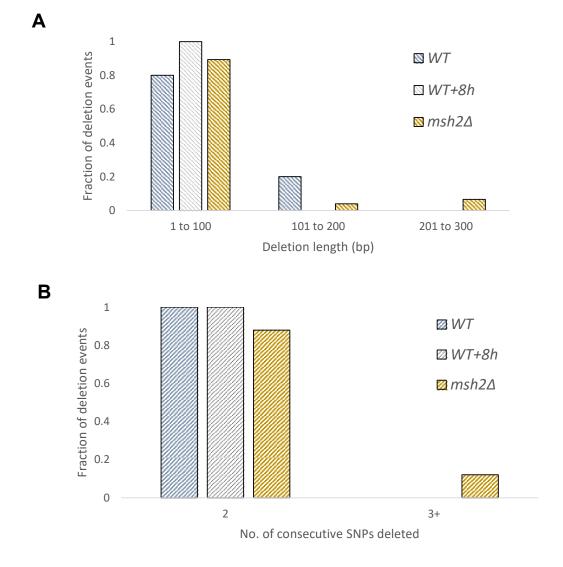



Figure 5.5. Length of potential duplications detected in WT, MMR deficient and prophase extension strains.

Regions of hDNA were mapped by detection of mixed SK1 (blue) and S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The hDNA region is indicated by the purple box. **A)** An example duplication from a msh2 octad, containing 8 SNPs and with a length of 1081bp. Raw reads indicate the frequency of reads containing SK1 or S288c type polymorphisms detected at each position; these are translated into binary calls, which can only be SK1 or S288c. The yellow box highlights the suspected duplication, which can be seen to contain both SK1 and S288c reads. In the binary calls, these positions are discarded. **B)** Length of potential duplications in bp, **C)** Number of consecutive SNPs in potential duplications.

Table 5.3. Data summary for potential duplications and deletions detected in WT, *msh2*Δ and prophase arrested backgrounds. Only duplications and deletions containing at least two SNPs are included.

		Duplications				
Genotype	Total	Mean no. of	Mean	Total	Mean no. of	Mean
(repeats)	detected	SNPs	length (bp)	detected	SNPs	length (bp)
WT (4)	8	2.6	121.9	5	2.0	41.0
WT + 8 h (4)	10	2.3	199.2	5	2.0	22.6
msh2Δ (9)	60	3.2	165.3	75	2.1	59.1

Figure 5.6. Length of potential deletions detected in WT, MMR deficient and prophase extension strains. Potential deletions were detected by looking for consecutive SNPS with low read depth. **A)** Length of potential deletions in bp. *pCLB2-MEC1* +8 h is not shown because no potential deletions were detected. **B)** Number of consecutive SNPs in potential deletions.

5.2.6. Distribution of recombination events in relation to centromeres and telomeres

Normally, recombination is suppressed from occurring near centromeres and telomeres (Petes & Botstein, 1977; Pan *et al.*, 2011). DSBs formed in repetitive regions can cause ectopic recombination leading to genome rearrangement (reviewed in Sasaki *et al.*, 2010). In particular, CO formation is repressed near centromeres (Lambie & Roeder, 1986) and telomeres (Rockmill et al., 2006). The formation of CO events in centromeres and telomeres has consequences for chromosome segregation (Ross et al., 1996; Barton et al., 2003).

It is not possible to detect whether any recombination events occur within centromeres or telomeres using marker mapping, because it is difficult to accurately map reads to repetitive DNA. However, the proximity of events to the region of interest can be measured.

The proximity of recombination events to the nearest telomere to centromeres was measured in WT, extended prophase and $msh2\Delta$ backgrounds, ranked and plotted as a fraction of total events (Figure 5.7).

In all backgrounds, the frequency of CO event formation is reduced close to the telomeres and centromeres, with very few events occurring within 10kb. This indicates that the mechanisms preventing recombination near these regions is functioning normally in these backgrounds. However, WT + 8 h has a slightly increased fraction of recombination events occurring close to telomeres, but not centromeres, compared to WT or $msh2\Delta$. This suggests that there may be a slight loss of the repression of DSB formation near telomeres when prophase is extended. This may be because the overall number of recombination events is increased when prophase is extended, and DSB events tend to 'spread' towards the ends of chromosomes due to DSB interference mechanisms, which mean that middle regions of chromosomes have a higher probability of being under the effects of interference than end regions.

For all strains, the majority of recombination events that do occur close to telomeres and centromeres are NCOs rather than COs (Figure 5.7 C,D). This suggests that the repression of CO formation near these regions is intact when prophase is extended or MMR inactivated.

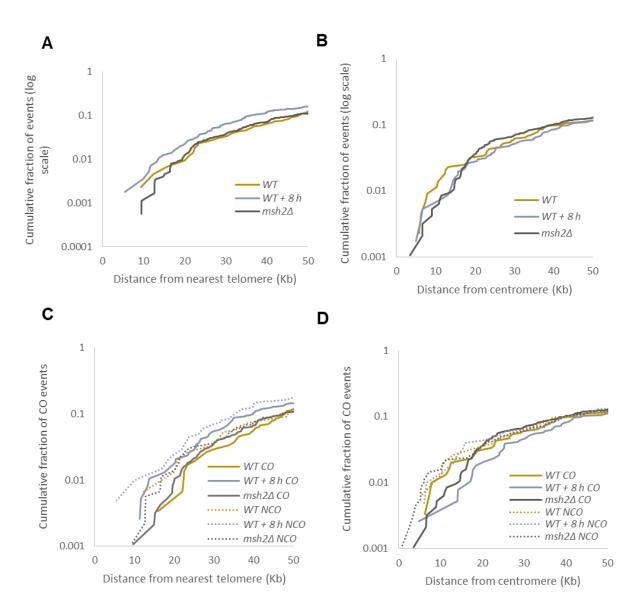


Figure 5.7. Distance between telomeres or centromeres and recombination events detected in WT, MMR deficient and prophase extension strains. For each event, the distance to the centromere or nearest telomere is calculated and plotted against a cumulative fraction of events. A) Distance between telomeres and all events. This includes 'U' events which cannot be called a CO or NCO due to occurrence close to the telomeres. B) Distance between centromeres and all events. C) Distance between telomeres and CO or NCO events.

5.2.7. The distribution of CO events shows evidence of interference

During meiosis, the formation of a CO event reduces the likelihood of another CO occurring nearby. This process (interference) is thought to ensure that events are spread out more evenly along the chromosome. The degree of interference between events can be estimated by measuring the distance between event midpoints and comparing the distributions. The distribution of inter-CO distances gives an indication of CO interference; for example, an increase in short distances between events indicates a loss of interference.

The inter-event distance data shown in this section and the following is from non-annotated samples, meaning that any DSB clusters are treated as a single event (double CO and CO+NCO are considered to be one CO, and double NCO is considered to be one NCO). One consequence of this is that there are no inter-event distances shorter than 1.5 Kb in the non-annotated data, as this is the event merging threshold. The reason for the use of non-annotated data is in order to allow comparisons between experimental data and simulated data that displays random or non-random patterns. While simulated events are merged with the same 1.5 Kb limit used for experimental data, DSB clusters cannot be distinguished in the simulated data, so the experimental data needs to match this format for the purpose of comparison.

Inter-CO distances were calculated for the WT, prophase arrest and *msh2∆* strains, arranged in order from smallest to largest and plotted as cumulative fraction of total events against inter-CO distance (ICD) size on a log scale (Figure 5.8). In the WT, prophase arrest and MMR-deficient backgrounds, CO interference is expected to be present as the mutations are not currently known to affect this process.

In order to determine whether the experimental inter-event distance distributions are distinct from a random distribution, simulated data is produced for the appropriate event counts to show the hypothetical distribution of events along the chromosomes under conditions of independence (Methods section 2.18; Tim Cooper, personal communication). To simulate IED data under conditions of interference or independence, virtual events occur sequentially on simulated chromosomes and either have no influence on the following events (independence simulation) or apply an interference window that reduces the chance of another event occurring within it, with a size based on the gamma parameters (interference simulation). Since the experimental data was analyzed with a 1.5kb merging threshold between events, this is also done for simulated events so the final observed event count will be identical to the experimental data. Because inter-event distances are strongly influenced by the number of events, and this varies between octads/tetrads, data for each genotype must be plotted separately, with its own simulated datasets that match the number of events.

For crossovers (Figure 5.8), experimental inter-CO distance distributions in all cases deviate from the random simulation (compare blue (experimental) and orange (random simulation). The experimental data is shifted to the right, indicating that there are fewer short inter-CO distances than expected. This means that CO events are occurring further apart than would be expected if events were occurring independently, suggesting the presence of CO interference.

Visually, interference appears to be stronger in the $msh2\Delta$ strain in comparison to the MMRproficient strains; the deviation in the experimental data from a random simulation is larger. However, experimental IED distributions cannot be directly compared because the number of events is different in each background. Instead, to quantify the strength of CO interference in each strain, the best fit to a gamma distribution can be determined. A gamma distribution is a continuous probability distribution that is observed in the intervals between successive independent events, and so can be used to describe the distances between recombination events (McPeek and Speed, 1995; Zhao et al., 1995). A gamma distribution function has a shape factor, α , and a scale factor, β . For recombination events, α corresponds to the strength of interference. A value of 1 indicates an exponential distribution i.e. no interference. Values > 1 indicate interference, with higher values corresponding to stronger interference. β describes the distance over which the shape designated by α is stretched, thus indicating the range of the interference. It is also affected by the number of data points, so is lower in strains with more events. Experimentally obtained inter-CO distances from WT cells have been shown to be well fit by a gamma distribution, indicating the presence of CO interference (Chen et al., 2008). Calculated gamma parameters are presented in Table 5.4.

The α values were similar for WT (1.39) and prophase arrested (1.46) strains, suggesting that CO interference has a similar strength in both backgrounds despite the different CO counts. Previous studies have used the same method to quantify the strength of interference in WT strains, finding α values of 1.9 and 2.0 (Chen *et al.*, 2008; Rockmill *et al.*, 2013). The reason why these studies found WT CO interference to be somewhat stronger may be related to the fact that they utilized a different hybrid strain background (S96 x YJM789). Alternatively, the relatively low sample size in the data presented here may be showing an incomplete picture of interference, so ideally more data from WT and prophase arrested samples should be obtained. In contrast, inter-CO distances in $msh2\Delta$ were best described by a gamma function with an α value of 2.44, suggesting that interference is stronger in this background than in the MMR-proficient background.

A Kolmogorov-Smirnov test (Methods section 2.20) was utilized to determine whether the experimental inter-CO distribution was significantly different from the best fit gamma

distribution, revealing that in all cases they were significantly different (low P-values in Table 5.4), indicating that inter-CO distributions cannot be well described by a gamma distribution. The best fit gamma function for each background also was used to produce simulated IED data. Simulated IED data was plotted alongside experimental data to give a visual indication of the goodness of fit to the 'best fit' gamma parameters (Figure 5.8, grey lines). This shows that there is a particularly poor fit for the shortest inter-CO distances, with the experimental data shifted to the left compared to the gamma distribution, meaning that more short distances are occurring than expected. This suggests that there are many events occurring that do not display interference; this may be caused by the presence of Class II (non-interfering) COs, as discussed in section 5.2.10.

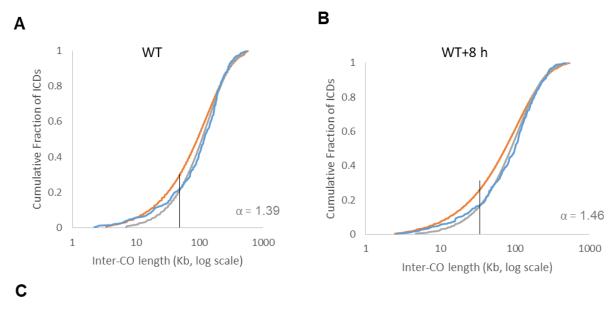


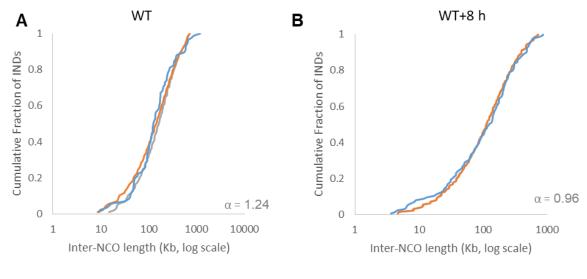
Figure 5.8. Distribution of distances between crossover events observed in WT, MMR deficient and prophase extension strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-CO distance (ICD) in A) WT, B) WT + 8 h, C) $msh2\Delta$.

Table 5.4. Gamma parameters.

Best-fit gamma parameters are given for the inter-event distribution for each aggregate genotype and event type. The number following the genotype indicates how many samples were included in the aggregate. N indicates the total number of recombination events (CO, NCO or both) included in the analysis. The shape factor, α , corresponds to the strength of interference: A value of 1 indicates an exponential distribution i.e. no interference. Values > 1 indicate interference, with higher values corresponding to stronger interference. The scale factor, β describes the distance over which the shape designated by α is stretched, thus indicating the range of the interference. It is also affected by the number of data points, so is lower in strains with more events. A one-sample Kolmogorov–Smirnov test is utilized to determine whether the experimental inter-event distribution is significantly different from the theoretical best fit gamma distribution, with the reported P-value indicating whether the difference was significant. If the value is <0.05, the difference is considered significant (red).

Genotype (repeats) Crossovers	N	Best fit gamma α value	Best fit gamma β value	(P)
WT (4)	237	1.39	100429	0.0217
WT+8 h (4)	319	1.46	79142	0.0245
msh2∆ (9)	799	2.44	44056	0.0036
Non-Crossovers	N	α	β	(P)
WT (4)	85	1.24	165657	0.0146
WT+8 h (4)	123	0.96	186147	0.9732
msh2∆ (9)	698	1.21	87998	0.0861
Total events	N	α	β	(P)
WT (4)	375	1.36	73799	0.0123
WT+8 h (4)	504	1.1	72010	0.0011
msh2∆ (9)	1636	1.57	36542	0.0001

5.2.8. The distribution of NCO events does not shows evidence of interference


In contrast to CO events, NCOs do not display interference. This was first shown for single loci (Mortimer & Fogel, 1974) and reiterated by a genome wide survey (Mancera *et al.*, 2008).

In order to determine whether NCO events display interference in WT, prophase-arrested and MMR-deficient backgrounds, inter-NCO distances were plotted as described for inter-CO distances in Section 5.2.7 (Figure 5.9). In these backgrounds, NCO interference is not expected to be present. If interference is present, events should occur further apart than would be expected if event placement was random. As described for CO events, simulated datasets for events occurring under conditions of independence were produced for the appropriate event counts.

For noncrossovers (Figure 5.9), the experimental inter-NCO distance plots are visually a good match to the random simulation (compare blue (experimental) and orange (random simulation).

The best match is seen in $msh2\Delta$; the other backgrounds have more noise in the data due to the low NCO counts, but still show a random distribution. This is as expected as NCOs are known to not display interference in yeast.

The best fit to a gamma distribution was found for inter-NCO event distances (Table 5.4), producing α values of 1.24, 0.96, and 1.21 for WT, WT+ 8h and $msh2\Delta$ respectively, all of which indicate low or no interference between NCO events, as predicted. A Kolmogorov-Smirnov test was utilized to determine whether the experimental inter-NCO distribution was significantly different from the best fit gamma distribution, revealing that even the best-fit for the WT distribution was still significantly different (P-values in Table 5.4), indicating that WT inter-NCO distributions cannot be well described by a gamma distribution. However, the best-fit gamma distributions for WT +8h and $msh2\Delta$ are not significantly different from experimental data, indicating that the calculated gamma values are a good description of the strength of NCO interference in these backgrounds.

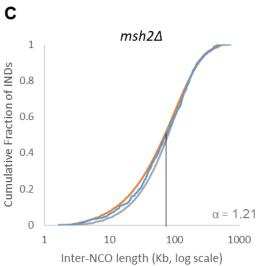


Figure 5.9. Distribution of distances between noncrossover events observed in WT, MMR deficient and prophase extension strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-NCO distance (IND) in **A)** WT, **B)** WT + 8 h, **C)** $msh2\Delta$.

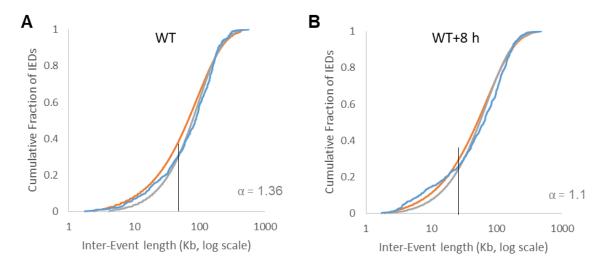
5.2.9. The distribution of all recombination events shows some evidence of DSB interference

The occurrence of a DSB is known to reduce further DSB formation nearby in *cis* and in *trans*, a phenomenon known as DSB interference. To give an approximate measure of DSB interference, the distance between any type of event is used as an equivalent of inter-DSB distance. This is an imperfect measure for two reasons. Firstly, event midpoints are not necessarily where the DSB was located; this would disproportionally affect strain backgrounds with increased event lengths. Secondly, many recombination events occur invisibly. Around 15-30% of meiotic DSBs are thought to repair with the sister chromatid (Schwacha & Kleckner, 1997). In addition, in the WT strain, ~16% of NCO events are predicted to occur between markers, and ~30% of NCOs are estimated to be restored to the original genotype by mismatch repair (Section 5.2.1). However, the issue of genotype restoration should in theory not affect the strength of interference (assuming that the undetectable events occur uniformly in the genome), because interference has been found to be mostly constant regardless of event density (Zhang *et al.*, 2014; Anderson *et al.*, 2015).

Inter-event distances were calculated for the WT, prophase arrest and $msh2\Delta$ strains, and plotted alongside simulated datasets for events occurring under conditions of independence as described for inter-CO distances in Section 5.2.7 (Figure 5.10). In WT, prophase arrest and $msh2\Delta$ strains, DSB interference is expected to be present because the $msh2\Delta$ and ndt80 mutations are not currently known to affect these processes. If interference is present, events should occur further apart than would be expected if event placement was random.

Both WT and *msh2*\$\Delta\$ inter-event distributions have a convincing deviation away from the random distribution, indicating that events are occurring further apart than would be expected by random chance. However, there is a tendency towards randomness over short distances (Figure 5.8, A &C). The prophase arrested WT strain has a similarly-shaped, but more exaggerated, curve, with a high tendency towards randomness over short distances, but evidence of interference over a long range (Figure 5.8B).

In order to quantify the strength of "DSB" interference for each genotype, the best fit gamma parameters were found for inter-event intervals from WT, prophase arrested and $msh2\Delta$ strains as described in Methods Section 2.18 and Section 5.2.7 (Table 5.4). The inter-event distributions were best described by gamma distributions with α values of 1.36, 1.1 and 1.57 for WT, WT+8 h and $msh2\Delta$ respectively. This suggests that both WT and $msh2\Delta$ display interference in event positioning, but events in prophase-arrested WT tend to be randomly placed. However, since event midpoints do not necessarily correspond to DSB locations, this does not mean that DSB interference is definitely lost under conditions of prophase arrest. In addition, the results of a Kolmogorov-Smirnov test used to compare the best-fit gamma distribution with the experimental


distribution showed that in all cases the distributions were significantly different (low P-values in Table 5.4). This indicates that inter-event distributions cannot be well described by a gamma distribution.

In a WT background, the α value for DSB interference was found to be 0.37 by Anderson *et al.*, 2015, which is much lower than the value calculated here and indicative of negative interference. This may be related to the fact that Anderson et al. used a slightly different strain background (S96 x YJM789) and a higher event merging threshold of 5 Kb, which would reduce the ability to resolve closely-occurring events.

One reason why inter-event interference may not be a good estimate for DSB interference is that it may be influenced by CO interference due to CO-CO intervals present in the data, which are known to display interference (Section 5.2.7). In addition, if event positions are a good approximation of DSBs, NCO events should display some interference caused by the underlying DSB interference. However, this may be prevented by CO events occurring in between NCO events.

These ideas have been investigated previously using a simulation where DSB interference was established entirely independently of CO interference (Anderson *et al.*, 2015).

The model revealed that a complete loss of CO interference only slightly reduces the interference among all detectable events, with the reduction not being comparable to that observed in mutants that lose DSB interference such as $tell\Delta$, $zip3\Delta$, $msh4\Delta$, and $sgsl\Delta$ (Anderson et al., 2015). However, the experimentally-observed lack of interference between NCOs was not predicted by the model, suggesting that DSB interference may be at least partly influenced by DSB suppression near COs.

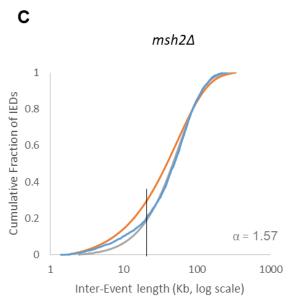


Figure 5.10. Distribution of distances between all recombination events observed in WT, MMR deficient and prophase extension strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-event distance (IED) in **A)** WT, **B)** WT + 8 h, **C)** $msh2\Delta$.

5.2.10. MMR-deficient meiotic recombination is predicted to have a lower proportion of Class II COs than WT

There are two distinct classes of CO event in *S. cerevisiae* meiosis: Class I COs exhibit interference and are dependent upon Msh4/Msh5 activity (Novak *et al.*, 2001), and Class II COs do not display interference and are dependent upon Mus81/Mms4, Yen1 or Slx1-Slx4 activity (de los Santos, 2003). A potential explanation for an apparent loss of CO interference is an increase in the proportion of COs that are non-interfering, rather than a reduction in the interference displayed by Class I events. The normal ratio of Class I to II is somewhere around 70:30 (Zakharyevich *et al.*, 2012; de los Santos, 2003).

Thus, the distribution of CO events can be viewed as having two components, a distribution of non-random, interfering events and a distribution of random, non-interfering events. Based on the expectation of a two-component distribution, it is possible to separate out the two using mixture modelling. Each dataset was split into an interfering and a non-interfering subset, which are inferred to be equivalent to Class I and Class II COs. This analysis was performed and authored by Tim Cooper (personal communication) (Methods section 2.19). Based on the expectation that one component will display no interference (α =1) and the other will display interference (α >1), this system takes initial parameter estimates and iteratively corrects the two gamma-components until they fit the experimental data.

It was observed that $msh2\Delta$ appears to have much stronger CO interference than WT (Section 5.2.7). A potential explanation is that $msh2\Delta$ may have a reduction in Class II CO formation. To be able to predict the proportions of Class I/II COs in these backgrounds, two-component analysis was carried out on these strains (Table 5.5). The ability of the two-component system to describe experimental data was analyzed via a Kolmogorov-Smirnov test. In comparison to the poor fit of a single gamma distribution to inter-CO distances (Table 5.4), a large improvement for all genotypes is seen when a mixed-fit is used, with none of the distributions significantly different to the experimentally observed data (compare P-values in Tables 5.4 and 5.5).

The results of this analysis show that the WT strain is predicted to have ~67% Class I to ~33% Class II COs, which is in accord with what is expected from the literature (Zakharyevich *et al.*, 2012; de los Santos, 2003). Extending prophase does not affect the ratio, with ~66% Class I and ~34% Class II in the prophase arrest WT background. In contrast, $msh2\Delta$ is predicted to have ~77% Class I COs and ~23% Class II, suggesting that $msh2\Delta$ is predicted to have about two-thirds the proportion of Type II COs compared to WT or WT+8 h arrest. However, because more COs occur in $msh2\Delta$ than WT, there is actually the same absolute number of Class II COs predicted in WT and $msh2\Delta$ (24.5 vs 24.7 respectively). This suggests that the reason for the shift in

proportions in $msh2\Delta$ is not due to the occurrence of fewer Class II COs, but of more Class I COs. This suggests that Msh2 is an anti-Class I CO factor, which may be related to the anti-recombinogenic activity of MMR in hybrid backgrounds (Hunter *et al.*, 1996), if this affects crossovers formed by the ZMM pathway disproportionately to those formed by other pathways. To test this hypothesis, Class II COs can be suppressed via the deletion of Mus81, the main resolvase responsible for their formation. This is discussed in Chapter 8.

Table 5.5. Percentage of COs that do not appear to show interference in sequenced strain backgrounds.

Mixture modelling results are given for each genotype. The strength of interference in the non-random population is given by $\alpha 1$ and is expected to be >1. The strength of interference in the random population is given by $\alpha 2$ and is expected to be ~1. The scale factors, $\beta 1$ and $\beta 2$ describe the distance over which the shapes designated by $\alpha 1$ or $\alpha 2$ respectively are stretched, thus indicating the range of the interference. The overall proportion of CO events that are thought to occur with random or non-random placement is given, which allows a predicted total number of Class I and Class II COs to be calculated from the overall CO count. A two-sample Kolmogorov–Smirnov test is utilized to determine whether the experimental inter-event distribution is significantly different from the two-component system, with the significance indicated by the reported P-value. A value of >0.05 is considered to show no significant difference.

Genotype	α1	α2	β1	β2	Non-random	Random	Predicted mean	Predicted mean	P
(repeats)					proportion (%)	proportion	number of Class	number of Class	
						(%)	I COs	II COs	
WT (4)	3.78	1.06	37696	107930	67.1	32.9	50	24.5	0.7
WT +8 h (4)	3.22	1.4	47109	32856	66	34	64.1	33.15	1
msh2∆ (9)	3.84	1.21	29877	68155	76.5	23.5	80.3	24.7	0.9

5.3. Discussion

5.3.1. The effect of the mismatch repair protein Msh2 on meiotic recombination

The loss of the mismatch protein Msh2 is deleterious to spore viability in SK1 and hybrid SK1xS288c WT strains (Chapter 3, Figure 3.7A, B). However, deletion of *MSH2* is less deleterious in hybrid SK1xS288c strains than in pure SK1 strains. Msh2 is thought to detect and reject mismatched DNA intermediates formed during strand invasion (Sugawara *et al.*, 1997; Evans *et al.*, 2000), something that is more likely to occur in hybrid strains. The absence of Msh2 allows more recombination events to form in hybrids (Figure 5.1), supporting an anti-recombination role for Msh2 when sequences are diverged. The reduced recombination event frequency in *MSH2* hybrids may contribute to the lowered spore viability (Figure 3.8).

Msh2 appears to be an anti-Class I factor, as the increase in CO number in $msh2\Delta$ compared to WT appears to be entirely made up of Class I COs, causing an apparent increase in the strength of CO interference as the distribution of CO events matches gamma distributions with higher alpha values in $msh2\Delta$ (Figure 5.8, Table 5.5). $msh2\Delta$ also increases NCO counts compared to WT. This is at least partly because they are easier to detect because hDNA can be seen when sequencing. However, even when accounting for events detected in $msh2\Delta$ that are composed of hDNA only, the WT strain is still predicted to have fewer than $msh2\Delta$ (Section 5.2.1).

Overall, these results show that MMR-deficiency has both a positive and negative effect on spore viability in hybrid strains. The negative effect is presumably due to the occurrence of unrepaired mismatches and increased ectopic recombination due to lack of fidelity in strand invasion. The positive effect is due to the increase of event counts of COs and NCOs, specifically Class I COs. In most backgrounds, the negative effect outweighs any positive effects to give an overall decrease in viability, but in backgrounds where it is more important for strand invasion to be successful, $msh2\Delta$ can have an overall neutral or positive effect on spore viability (Figure 3.8).

It is possible that deleting *MSH2* in hybrids effectively restores the situation that would be seen in a WT pure background (in terms of CO/NCO counts), though with some negative effects due to unrepaired mismatches etc. However, whether the increase in CO and NCO counts would be seen in a pure SK1 strain cannot be determined by using the marker analysis method to assay recombination as there are no different markers.

5.3.2. Effect of prophase arrest

Recombination was assayed genome-wide in hybrid yeast with around 3-4 extra hours of prophase, mediated by *NDT80* block and release (Xu *et al.*, 1995). The WT + 8 h cells had an increase in CO and NCO events compared to WT. Prophase arrest cells also have longer CO and

NCO events and an increase in the percentage of recombination events that appear to be DSB clusters compared to WT or $msh2\Delta$. WT and WT + 8 h cells have similar proportions of COs that appear to be placed randomly or subject to interference, indicating that the increase in CO formation caused by the extended prophase does not favour Class I or Class II in particular.

Increased prophase length is more beneficial to hybrid spore survival than $msh2\Delta$, perhaps because a lack of MMR means that mutations cannot be repaired and ectopic recombination is increased due to the inability to reject strand invasion into non-homologous regions, while NDT80 arrest does not produce many effects that persist after NDT80 induction (Allers & Lichten, 2001; Bhuiyan $et\ al.$, 2002). However, the prophase arrest does slightly reduce hybrid viability (~82% to ~70%) (Table 5.6).

Table 5.6. Summary of basic recombination characteristics across strains.

Spore viability was originally shown in Figures 3.1A, 3.8, 3.9. WT + 8 h is from Gray *et al.*, 2013. DSB cluster formation originally shown in Figure 5.2. CO/NCO formation originally reported in Table 5.1. Event mid length median shown in Figure 5.3.

Best fit alpha values are from Table 5.4. (It should be noted that the best fit alpha value was still significantly different from the actual CO distribution in most cases). The Class I and II percentages and numbers are from Table 5.5.

	WT	WT + 8 h	msh2∆
Spore viability % (SK1)	97	94	81
Spore viability % (SK1xS288c hybrid)	82	70	73
Average CO number	74.5	97.3	105
Average NCO number	39.5	51	101.8
Median NCO mid length (bp)	1815	2089	1057
Median CO mid length (bp)	1688	1679	1195
% of events that are DSB clusters	4.8	5.6	4.6
Best fit α value (CO interference)	1.18	1.46	2.44
Class I/Class II CO percentage	67.1/ 32.9	66/ 34	76.5/ 23.5
Class I/Class II CO number (predicted)	50/ 24.5	64.1/ 33.2	80.3/ 24.7

5.3.3 Closing Statement

In this chapter, high-resolution sequencing data was used to examine features of meiotic recombination in wild type, MMR deficient and prophase arrested hybrid strains. This allowed a baseline for 'wild-type' recombination to be established, which can be used for comparisons. In addition, it was found that the three 'wild type' backgrounds have some significantly different features of recombination to each other (Table 5.6).

Chapter 6.

The role of the DDR kinase Tell in regulation of meiotic recombination

Chapter 6. The role of the DDR kinase Tel1 in regulation of meiotic recombination

6.1. Introduction

6.1.1. Roles of Tel1 in the DNA damage response

Tel1^{ATM} kinase has many functions in meiosis, including monitoring of DNA damage repair, checkpoint regulation, and cell cycle progression (Cha et al., 2002; Harper & Elledge, 2007; Carballo & Cha, 2007). In S. cerevisiae meiotic prophase, programmed DSBs are formed by Spo11. The accumulation of unresected DSBs cause activation of Tel1 (Usui et al., 2001). The meiotic checkpoint monitors meiotic events and halts cell cycle progression if necessary, ensuring that cells do not exit prophase before the process of DSB repair is complete (Lydall et al., 1996; Carballo et al., 2008). Tel1 negatively regulates DSB formation in mammals, flies and yeast (Lange et al., 2011; Joyce et al., 2011; Gray et al., 2011). An increase in Spo11oligonucleotide complex formation has been observed in tell deletion and kinase dead mutant yeast (Mohibullah & Keeney, 2017). Tel1 also has a role in telomere maintenance, producing a DNA damage response when telomeres are damaged in vegetative cells (Lustig & Petes, 1985; Eckert-Boulet & Lisby, 2010). Atm-/- mouse spermatocytes have been observed to have aberrant telomere bouquet formation, with altered timing and occurrence of chromosome polarization (Pandita et al., 1999). TEL1 deletion has only a minor effect on spore viability in yeast, reducing it from ~97% to ~93% (Chapter 3, Figure 3.7). In addition, when the overall DSB level is low, Tel1 is required in yeast for efficient resection of DSBs and maintenance of homolog bias (Joshi et al., 2015).

6.1.2. Evidence for a role in DSB interference for Tel1

DSBs do not occur independently, but are subject to interference among the four chromatids. This interference occurs in *cis* (adjacent on the same chromatid), and *trans* (between chromatids). Tel1 has been shown to be a mediator of trans DSB interference via tetrad analysis at the *HIS4::LEU2* hotspot, showing that DSB formation is no longer constrained to occur only once per quartet of chromatids in *TEL1* mutants (Zhang *et al.*, 2011).

Tel1 also mediates DSB interference in *cis* (Garcia *et al.*, 2014). This study found that over a range of 10 kb-70 kb, interference was lost in the absence of Tel1. Intriguingly, over very short distances (<10 kb), loss of Tel1 was found to cause concerted DSB formation, an activity known as DSB clustering or negative interference (Garcia *et al.*, 2014).

6.1.3. Evidence for a role in CO interference for Tel1

The occurrence of a CO event reduces the chance of another CO event occurring in proximity, a phenomenon known as CO interference. The majority of COs in yeast display interference and are formed by the activity of Msh4/Msh5, but Class II COs formed by the activity of Mus81, Yen1 or Slx1-Slx4 do not (Novak *et al.*, 2001; de los Santos, 2003).

It has been shown by whole-genome mapping of recombination products in eight $tel1\Delta$ hybrid tetrads that Tel1 has a role in CO interference, specifically by limiting ZMM-independent recombination, i.e. Tel1 reduces the number of Class II COs but does not affect the number of Class I COs (Anderson et~al., 2015). This study also found that $tel1\Delta$ increases recombination levels for both COs and NCOs, correlating with the increased levels of DSB formation shown by Garcia et~al. (2015), and that the distribution of all detectable recombination events was altered in $tel1\Delta$, supporting a role for Tel1 in DSB interference (Anderson et~al., 2015).

However, Anderson *et al.* (2015) used MMR proficient strains, which greatly reduces the number of NCOs that can be detected as well as the amount of information about e.g. length, complexity that can be gathered for each event (Martini *et al.*, 2011). In addition, during classification of recombination products, pattern changes within 5kb of each other were considered to be part of the same event. This limit was based on previous analysis by the authors of wild-type tetrads showing that events occurring 5 kb have properties that suggest they originated from a single DSB (Anderson *et al.*, 2011). However, by careful examination of hDNA tracts associated with recombination in MMR-deficient backgrounds, others have found that many events incompatible with a 1-DSB scenario occur closer than 5kb, and thus recommend a 1.5kb merging limit (Bertrand Llorente & Marie-Claude Marsolier, personal communication). In addition, a 5kb limit may mask the detection of event clustering at short range, such as that described by Garcia *et al.* (2015). In order to view close-range recombination event formation in higher resolution, and to enable detection of more events in greater detail, it is worthwhile to repeat event analysis in a *tel1* deletion strain, with MMR deficiency and a 1.5kb event merging threshold.

6.1.4. Aims of this investigation

- To map recombination events in MMR-deficient tell∆ octads via deep sequencing and marker analysis.
- 2. To observe the effects of $tell\Delta$ on recombination event quantity and quality.
- 3. To determine whether CO and DSB interference are altered in *tell* \(\alpha\).

6.2. Results

6.2.1. Tel1 deletion increases numbers of detected recombination events in hybrids

To observe the effect of $tel1\Delta$ on meiotic recombination, nine $msh2\Delta$ and ten $tel1\Delta$ $msh2\Delta$ hybrid SK1xS288c octads were produced. The deletion of MMR protein Msh2 from a $tel1\Delta$ hybrid reduces spore viability only slightly from ~69% to ~63% (Chapter 3, Figure 3.8), making this strain background an excellent candidate for octad analysis. The individual spores were sequenced and the data analyzed as detailed in Chapter 4. Raw data is available in the appendix (Table S2).

To observe the effect of $tel1\Delta$ on the numbers of recombination events detected, CO and NCO numbers were compared across $tel1\Delta msh2\Delta$ and $msh2\Delta$ backgrounds (Figure 6.1A; Table 6.1). Upon the loss of Tel1, CO numbers experienced a slight increase from ~105 to ~115 (~1.1x) while NCO events had a more dramatic increase from ~102 to ~141 (~1.4x). This agrees with the observation of increased DSB levels from Garcia et~al.~(2015). Additionally, in the MMR-proficient tetrads analyzed by Anderson et~al.~(2015), $tel1\Delta$ caused an increase in CO numbers from ~98 in WT to ~115 (~1.15x), and NCO numbers from ~35 in WT to ~58 (~1.8x). Thus detected CO numbers are very similar between MMR-proficient and -deficient strains, but many more NCOs are detected when MMR is not functioning.

An average of 52 NCOs detected in a $msh2\Delta$ background and 64 NCOs in a $tel1\Delta$ $msh2\Delta$ background were composed only of hDNA (Table 6.1). If hDNA tracts are equally likely to be repaired as restoration or conversion, then 50% of these events would be visible in a MMR-proficient background. However, the disparity in NCO counts between the MMR deficient strains described here and the MMR-proficient strains from Anderson et~al. is too high to be explained purely in terms of invisible hDNA. This is probably because MMR proficiency reduces the number of events repaired with the homologous chromosome in a hybrid background, due to rejection of mismatches during strand invasion (Goldfarb & Lichten, 2010). This may also explain why the increase in NCO levels in $tel1\Delta$ is not proportional between the two backgrounds, with a 38% increase in NCO number in the MMR-deficient strain and a 60% increase in the MMR-proficient strain.

In addition, $tel1\Delta$ alters the ratio of CO:NCO formation from almost 1:1 in $msh2\Delta$ to 1:1.4 in $tel1\Delta msh2\Delta$, indicating that Tel1 may have a role in dictating repair pathway choice, or that there is a maximum limit on CO formation under homeostatic control (Martini et~al., 2006). This suggests that the excess DSB formed in a $tel1\Delta$ background (Garcia et~al., 2015) may be more likely to be repaired as NCOs than COs.

The number of NCOs is likely to be an underestimate caused by events occurring in regions without markers (Mancera *et al.*, 2008). The percentage of observed COs that occur between markers and thus have no detectable conversion tract can be used to estimate the number of NCOs that may be invisible due to falling between markers (assuming that NCO and CO events are of similar lengths; NCOs are generally shorter (Section 6.2.5), so these numbers are likely underestimates). An average of 15% COs in $msh2\Delta$ and 18% in $tel1\Delta$ $msh2\Delta$ had no associated conversion tracts (Table 6.1). Based on this, an additional 15 and 25 NCOs are predicted to have occurred in regions without markers, in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ respectively.

Table 6.1. Data summary for recombination events detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ backgrounds.

Separate samples for each genotype are shown. OM: *msh2*Δ octad, OMT: *tel1*Δ *msh2*Δ octad. Columns contain the number of COs, NCOs and Undetermined (U) events detected, the overall number of events, the number of chromosomes without COs (CWCs), the identity of the CWCs, the number of double COs closer than 1.5kb (dCOs), the number of events containing an 8:0/0:8 or 7:1/1:7 segment, the number of COs without a detectable conversion tract, and the number of NCOs that were composed only of hDNA.

						CV	VC	dCO			COs without	NCOs hDNA
Meiosis	СО	NCO	U	Total	CO:NCO	frequenc	identity	number	8:0	7:1	tracts	only
msh2∆						, ,						
Average	105.0±3	101.8±8	0	206.8±7	1:0.98			0.2	0.1	0.4	14.7	52.1
OM1	116	109	0	225	1:0.94	0	-	0	0	0	13	45
OM2	100	125	0	225	1:1.25	0	-	0	0	0	8	69
OM3	95	100	0	195	1:1.05	0	-	0	0	0	18	50
OM4	105	98	0	203	1:0.93	0	-	1	0	1	11	50
OM5	98	79	0	177	1:0.81	0	-	0	0	0	19	41
OM6	116	65	0	181	1:0.56	0	-	1	1	0	22	37
OM7	98	139	0	237	1:1.42	0	-	0	0	1	11	70
OM8	107	113	0	220	1:1.06	0	-	0	0	2	21	62
OM9	110	88	0	198	1:0.80	0	-	0	0	0	10	45
tel1∆ msh	2∆											
Average	115.3±3	140.7±10	1.1	257.1±12	1:1.22			1.3	0.8	4.4	15.9	64.1
OMT1	136	188	6	330	1:1.38	0	-	4	1	7	23	101
OMT2	118	92	2	212	1:0.78	0	-	1	0	2	26	48
OMT3	104	113	0	217	1:1.09	0	-	0	0	2	14	50
OMT4	112	168	1	281	1:1.50	0	-	0	0	3	14	77
OMT5	128	145	0	273	1:1.13	0	-	3	1	7	20	54
OMT6	110	143	1	254	1:1.30	0	-	1	0	3	14	76
OMT7	106	130	0	236	1:1.23	0	-	0	1	4	13	68
OMT8	110	107	0	217	1:0.97	0	-	1	1	2	12	47
OMT9	122	157	0	279	1:1.29	0	-	2	2	4	12	52
OMT10	107	164	1	272	1:1.53	0	-	1	2	10	11	68

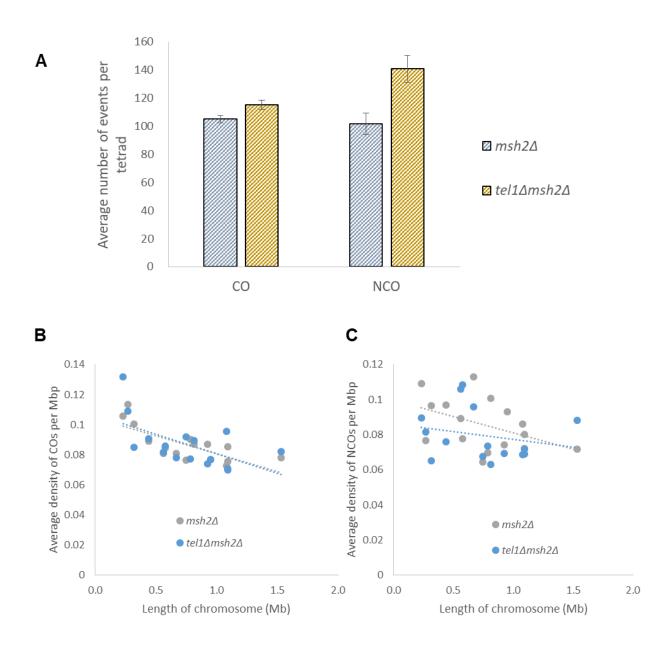


Figure 6.1. Quantity of recombination events detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains. Strain details are given in Table 2.1, raw event data is available in Table S2. A) Average number of CO and NCO events. Error bars are 95% confidence limits. B) Density of COs and C. NCOs per Mbp. The average number of CO/NCO events per chromosome is divided by the average total CO/NCO count, then divided by the chromosome length in Mbp. Dotted lines are linear regressions. R²: $msh2\Delta$ CO 0.54, NCO 0.20; $tel1\Delta$ $msh2\Delta$ CO 0.35, NCO 0.05.

6.2.2. Relationship between chromosome length and recombination

In WT and $msh2\Delta$ meiosis, there is a negative correlation between chromosome length and the density of DSB formation, dependent on Zip3 (Thacker *et al.*, 2014; Chapter 5, Section 5.2.2). To see if this is affected by $tel1\Delta$, the relationship between chromosome length and fraction of all detected COs or NCOs that occurred on that chromosome was examined in $tel1\Delta$ $msh2\Delta$ (Figure 6.1B&C). In $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$, there is a negative correlation between chromosome length and CO and NCO density, suggesting that $tel1\Delta$ does not affect this relationship. In addition, there were no chromosomes without at least one CO in every $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ octad tested, suggesting that there is no defect in crossover assurance.

6.2.3. Tel1 affects the complexity of detected recombination events

Recombination events in each strain were categorized further as described in Section 4.2.10 (Table 6.2 and Figure 6.2A,B). Similar analysis was performed on $tell\Delta$ tetrads by Anderson et al. (2015), but events could not be categorized in as much detail in their analysis due to the inability to detect hDNA tracts. Due to this, proportions of events in each category cannot be directly compared between these studies.

Compared to $msh2\Delta$ cells, $tel1\Delta$ $msh2\Delta$ cells have a lower proportion of events classified into CO Group 3 (~21% and ~17% respectively) and NCO Group 2 (~25% and ~16% respectively), both of which contain events with patterns indicative of complex repair (Figure 6.2 A,B). CO Group 3 is composed of COs associated with hDNA patterns that suggest of the occurrence of another DSB, but constrained to the same chromatids as the CO, and so the second DSB is considered to be a consequence of complex repair e.g. multiple strand invasions (as detailed in Chapter 4 Section 4.2.11). NCO Group 2 is composed of NCOs containing trans hDNA patterns on the same chromatid, which are thought to be formed by double SDSA (Martini et al., 2011).

Another difference between $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ was in the proportion of recombination events in Group 0. This group contains events with signatures suggesting that they are composed of multiple separate Spo11-DSBs, including NCOs on 2 sister chromatids or 2 non-sister chromatids with a 4:4 segment, and COs or NCOs affecting three or four chromatids. A significantly higher proportion of all individual detected COs (~13% and ~6% respectively) and NCOs (~18 and ~11% respectively) are involved in an event cluster in $tel1\Delta$ $msh2\Delta$ compared to $msh2\Delta$ (Figure 6.2A, B). Thus, while $tel1\Delta$ reduces the proportion of events that have signatures of complex repair, there is an increase in events with signatures indicative of multiple DSBs.

Table 6.2. Data summary of the percentage of CO and NCO events in each group and class, detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ backgrounds. A short description of the characteristics of each group and class is given.

Group 1: Si	Crossover Groups mple - no trans hDNA or incompatible hDNA	msh2∆	tel1∆ msh2∆
Group 1. O	The Tho trails fibria of incompatible fibria	%	%
Total		58.21	56.73
Class 1	(5:3)_(4:4aCO) - CO with hDNA tract	4.76	
Class 2	(3:5)_(4:4aCO) - CO with hDNA tract	4.76	
Class 3	(5:3)_(4:4)_(4:4aCO) - hDNA, restoration tract, CO pattern	0.85	
Class 4	(4:4aCO)_(5:3)_(4:4a) - Same as above but in opposite direction.	0.63	
Class 5	(3:5)_(4:4)_(4:4aCO) - hDNA, restoration tract, CO pattern	0.21	1.04
Class 6	(4:4aCO)_(3:5)_(4:4a) - Same as above but in opposite direction.	0.85	
Class 7	(5:3)_(6:2)_(4:4aCO) - hDNA, conversion tract, CO pattern	1.59	
Class 8	(6:2)_(5:3)_(4:4aCO) - Same as above but in opposite direction.	1.80	
Class 9	(3:5)_(2:6)_(4:4aCO) - hDNA, conversion tract, CO pattern	1.80	
Class 10 Class 11	(2:6)_(3:5)_(4:4aCO) - Same as above but in opposite direction.	2.12	
Class 11	Contains 4:4i (symmetrical hDNA) Anything else	1.59 10.90	
Class 15	(6:2)_(4:4aCO) - CO with conversion tract	5.93	
Class 16	(2:6)_(4:4aCO) - CO with conversion tract	6.35	
Class 100	4:4aCO: CO in marker-sparse region	14.07	13.79
	resence of trans hDNA, but not incompatible hDNA	14.07	13.79
Total	esence of trans higher, but not incompatible higher	14.29	12.92
Class 30	adjacent 5:3 5:3a, plus any other segments	2.86	
Class 31	adjacent 3:5 3:5a, plus any other segments	3.60	-
Class 31	non-adjacent trans hDNA i.e. have conversion or restoration tract in between	7.83	
	resence of incompatible hDNA	7.03	7.03
Total	eserice of incompatible hibrid	21.37	17.00
Class 20	Contains 4:4i (symmetrical hDNA)	19.15	
Class 21	Anything else	2.22	
	ultiple Spo11-DSBs: Affects 3 or 4 chromatids	2.22	2.00
Total	uniple oport Bobo. Another of the internation	6.14	13.35
Class 2	CO ± NCO involving 3 or 4 chromatids	5.40	
Class 3	CO ± NCO involving 3 or 4 chromatids, contains different 4:4 patterns	0.74	
C.acc c	Noncrossover Groups		
Group 1: SI	DSA-like: Affects one chromatid, no trans hDNA	msh2∆	tel1∆ msh2∆
		0.4	0/
		%	%
Total		55.99	58.78
Total Class 1	5:3 - composed of hDNA only		58.78
	5:3 - composed of hDNA only 3:5 - composed of hDNA only	55.99	58.78 19.55
Class 1	·	55.99 19.10	58.78 19.55 19.97 2.13
Class 1 Class 2	3:5 - composed of hDNA only	55.99 19.10 21.29 2.40 2.07	58.78 19.55 19.97 2.13 2.35
Class 1 Class 2 Class 3	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA	55.99 19.10 21.29 2.40 2.07 2.73	58.78 19.55 19.97 2.13 2.35 3.62
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments	55.99 19.10 21.29 2.40 2.07 2.73 3.38	58.78 19.55 19.97 2.13 2.35 3.62 3.84
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only	55.99 19.10 21.29 2.40 2.07 2.73 3.38	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dl	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29	58.78 19.55 19.97 2.13 2.35 3.65 3.84 3.13 4.19
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2 : dh	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dh Total Class 11	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dt Total Class 11 Class 11	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dl Total Class 11 Class 12 Class 12 Class 13	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dl Total Class 11 Class 12 Class 13 Class 14	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dl Total Class 11 Class 12 Class 13 Class 14 Class 14	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dl Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 5:3_5:3a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dl Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: di Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 18	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dh Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 17 Class 17 Class 17 Class 17 Class 18 Class 19	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.71
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dh Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.71 0.73
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10.1 Group 2: dl Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 15 Class 16 Class 16 Class 17 Class 19 Class 19 Class 20 Class 21	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 4J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10.1 Group 2: dl Total Class 12 Class 13 Class 14 Class 15 Class 15 Class 15 Class 16 Class 17 Class 17 Class 18 Class 20 Class 21 Class 21	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10.1 Group 2: dl Total Class 12 Class 13 Class 14 Class 15 Class 15 Class 16 Class 17 Class 17 Class 18 Class 20 Class 20 Class 21	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_3:5a - restoration tract in the middle of the trans hDNA 5:3_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dl Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 17 Class 18 Class 20 Class 21 Class 23 Group 3: Al	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_3:5a - restoration tract in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: di Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 18 Class 20 Class 21 Class 23 Group 3: Al	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-J-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5_3:5a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3:5a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3:5a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3:5a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3:5a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3:5a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3:5a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3:5a plus other segments NOT in the middle of the trans hDNA 6:2_5:3_6:3_5:3_6:3_6:3_6:3_6:3_6:3_6:3_6:3_6:3_6:3_6	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: di Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 18 Class 20 Class 21 Class 21 Class 21 Class 33 Group 3: Ai Total Class 30	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_3:5a - restoration tract in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44 7.97	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00 6.89 4.05
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dh Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 20 Class 21 Class 22 Class 23 Group 3: Ad Total Class 30 Class 31	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:2_6:2_5:3a plus other segments NOT in the middle of the	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00 6.89 4.05
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dh Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 20 Class 21 Class 23 Group 3: Ah Total Class 30 Class 31 Group 0: M	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_3:5a - restoration tract in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.87 0.44 0.22 0.44 7.97 4.69 3.28	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00 6.89 4.05 2.84
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10 Class 10.1 Group 2: dh Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 20 Class 21 Class 23 Group 3: Ad Total Class 30 Class 31 Group 0: M Total	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - conversion tract in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:6_6:2_6:6_6:6_6:6_6:6_6:6_6:6_6:6_6:6_	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.44 0.22 0.44 7.97 4.69 3.28	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00 6.89 4.05 2.84
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10.1 Group 2: df Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 16 Class 16 Class 17 Class 18 Class 20 Class 21 Class 23 Group 3: Af Total Class 31 Group 0: M Total Class 1	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a - restoration tract in the middle of trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_4:4_5:3a plus other segments NOT in the middle of trans hDNA 3:5_4:4_5:3a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a - conversion tract in the middle of trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA 3:5_2:6_3:5a plus other segments NOT in the middle of the trans hDNA Anything else Iffects two non-sister chromatids NCO involving 2_sis, 3 or 4 chromatids	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.44 0.22 0.44 7.97 4.69 3.28	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00 6.89 4.05 2.84
Class 1 Class 2 Class 3 Class 4 Class 7 Class 8 Class 10.1 Group 2: dh Total Class 11 Class 12 Class 13 Class 14 Class 15 Class 15 Class 16 Class 16 Class 17 Class 18 Class 20 Class 21 Class 23 Group 3: Ah Total Class 30 Class 31 Group 0: M Total	3:5 - composed of hDNA only 5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between hDNA 3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between hDNA 6:2 plus any other segments 2:6 plus any other segments 6:2 - composed of conversion tract only 2:6 - composed of conversion tract only 1-dissolution-like: Affects one chromatid, has trans hDNA 5:3_5:3a - two 5:3 patterns on different strands 3:5_3:5a - two 3:5 patterns on different strands 5:3_5:3a plus other segments NOT in the middle of the trans hDNA 3:5_3:5a plus other segments NOT in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a - restoration tract in the middle of trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_4:4_5:3a - conversion tract in the middle of the trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a - conversion tract in the middle of trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 5:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:3_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:5_6:2_5:3a plus other segments NOT in the middle of the trans hDNA 6:6_6:2_6:6_6:6_6:6_6:6_6:6_6:6_6:6_6:6_	55.99 19.10 21.29 2.40 2.07 2.73 3.38 2.73 2.29 24.67 4.91 3.82 1.31 1.86 3.49 3.93 1.53 0.98 0.87 0.44 0.22 0.44 7.97 4.69 3.28	58.78 19.55 19.97 2.13 2.35 3.62 3.84 3.13 4.19 15.85 2.27 2.77 1.21 0.71 2.70 2.06 1.21 0.71 0.43 0.36 0.14 0.28 1.00 6.89 4.05 2.84

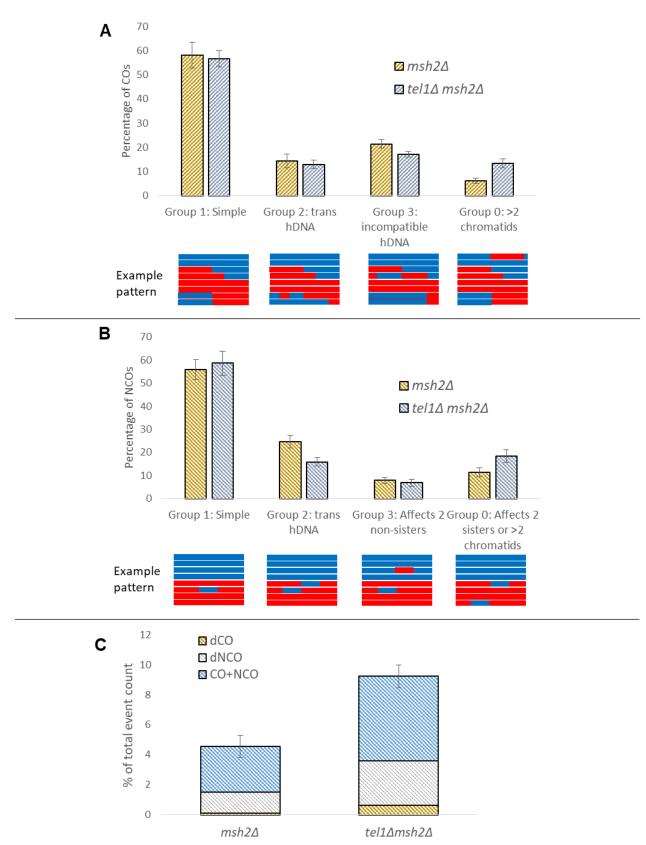


Figure 6.2. Categories of recombination events detected in *msh2*Δ and *tel1*Δ *msh2*Δ strains. Error bars are 95% confidence limits. Strain details are given in Table 2.1, raw event data is available in Table S2. A simple example event for each category is shown directly beneath the X-axis, with the red and blue lines corresponding to the eight strands of DNA present during meiotic recombination, four from each parent. A) Average percentage of COs and B) NCOs in each group. C) Comparison of the average percentage of events thought to be DSB clusters (overall Group 0), with sublevels indicating whether the clusters were inferred to be a double CO, double NCO or CO plus NCO.

In addition, the proportion of all recombination events classified into Group 0 (equivalent to the number of suspected DSB clusters) was compared between $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains (Figure 6.2C). (This differs from looking at the proportion of COs or NCOs in Group 0 as in Figure 6.2A&B, in that each cluster contains two events each of which are not counted separately in Figure 6.2C). The percentage of all detected recombination events that were classified as being a DSB cluster is 4.6% in $msh2\Delta$ and 9.2% in $tel1\Delta$ $msh2\Delta$. A cluster of two DSBs can resolve into a double CO, CO + NCO or double NCO event; this categorization is done manually (Section 4.2.11). Within those clusters, the proportion of different cluster types (double CO, CO + NCO or double NCO) were roughly equal in each strain, with the majority of clusters being composed of a CO and a NCO for both strains (Figure 6.2C).

In analysis by Anderson *et al.* (2015), complex events accounted for ~14% of all events in WT, and ~22% in *tel1*\(\textit{L}\). These higher values are likely due to the fact that Anderson *et al.* (2015) used an event merging threshold of 5kb, compared to the 1.5kb used in this study. A lower merging threshold has a different advantage for event cluster analysis, in that any clusters that would be detected with a 5kb threshold can be resolved down further so that more detail can be revealed about the component events and the distance between them, allowing interference interactions over short distances to be analysed (Section 5.2.7). With a threshold of 1.5kb (as used here), any remaining clusters are those with events so close that they cannot be disentangled computationally at any reasonable threshold, and so can only be manually categorized.

Of particular interest are double CO clusters (defined as a double reciprocal exchange involving all four chromatids within 1.5kb). Among the nine octads tested, there were two dCOs in $msh2\Delta$; in $tell \Delta msh2\Delta$, there were fourteen detected among ten octads (Table 6.1). The number of double crossovers is significantly higher in $tel1\Delta$ msh2 Δ than in msh2 Δ (T-test, P=0.0454). It is expected that dCO events should be a rare occurrence under conditions of crossover interference, suggesting a loss of CO interference in tel1 Δ . Examples of dCO events observed in tel1 Δ msh2 Δ octads are shown in Figure 6.3. As described in Section 4.2.11, the composition of an event cluster can be ambiguous. In such cases, the outcome with fewer COs is favoured; e.g. an event that could conceivably be a double CO or a CO + NCO, will be categorized as the latter. However, it is possible that some CO + NCO and double NCO clusters could be double CO events. The number of definite, four-chromatid dCOs is an indicator of how many three- and two-chromatid dCOs there may be. The true number of dCOs should be four times as high, if it is assumed that double DSBs are equally likely to be resolved as COs regardless of which chromosomes they occur on and that COs are equally distributed among the four chromatids (in terms of both initiating DSB and repair donor). Under these circumstances, ¼ of double COs would involve all four chromatids, ½ would involve 3 chromatids (indistinguishable from 1 CO + 1 NCO) and ¼

would involve two chromatids (indistinguishable from double NCO). This means that the number of dCOs reported here is likely an underestimate, and some CO+NCO or NCO+NCO clusters may actually be dCOs, giving revised estimates of eight dCOs in nine $msh2\Delta$ octads and 56 in ten $tell\Delta msh2\Delta$ octads.

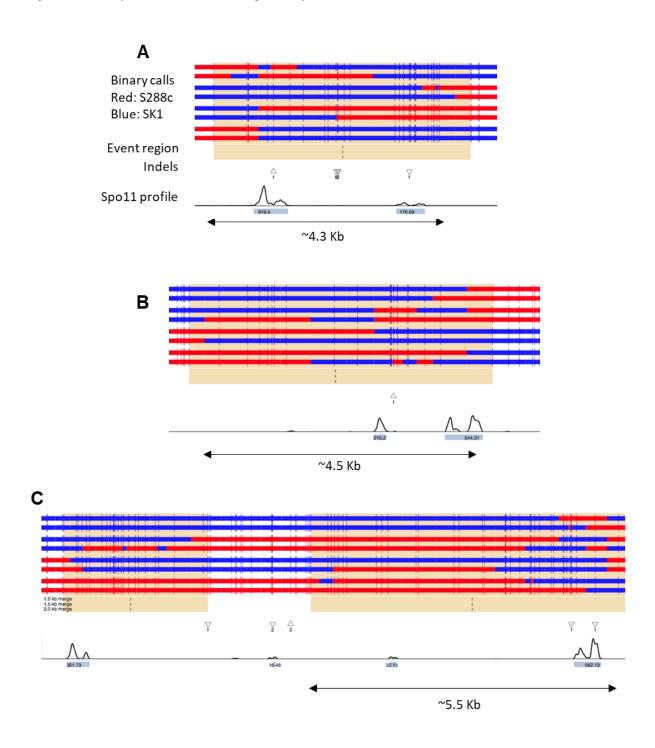


Figure 6.3. Examples of four-chromatid double COs detected in tel1\(\triam\) msh2\(\triam\) strains.

Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan et al., 2011). A) and B), examples of double COs, determined by the fact that a double reciprocal exchange occurs between all four chromatids. In C) another CO occurs to the left of the double CO, though outside the 1.5kb merging threshold.

Another specific category of events within Group 0 are events containing a 4:0 or 8:0/7:1 segregation of markers, which is a strong indication of multiple DSB events. Out of nine $msh2\Delta$ octads, one event contained an 8:0 segment and four contained 7:1 segments (Table 6.1). In contrast, ten $tel1\Delta$ $msh2\Delta$ octads contained a total of nine events with an 8:0 segment (examples shown in Figure 6.4), and 44 events with a 7:1 segment. When only counting events containing an 8:0 if they are associated with at least one other different segment, a significantly higher number of events with an 8:0 or 7:1 segment are seen in $tel1\Delta$ $msh2\Delta$ than in $msh2\Delta$ (T-test, P=0.001 [Methods 2.21]). This is suggestive of a loss of trans DSB interference in $tel1\Delta$, as these patterns may be produced by the formation of two DSBs on different chromatids at the same position.

In MMR-proficient tetrads, segments of 7:1 segregation are not visible, but analysis of events containing 4:0 tracts is included in Anderson et al. (2015). However, these events are discounted as being caused by pre-meiotic recombination, because the majority of 4:0 tracts detected in WT and $tell\Delta$ tetrads had perfect overlap, meaning that the two gene conversion tracts begin or end at the same markers on the different chromatids (Anderson et al., 2015). The authors suggest that this indicates an increase in premeiotic recombination in tell\(\Delta \), which are then replicated in premeiotic S phase. However, in data from octads presented here, the single 8:0 event detected from the $msh2\Delta$ octads did not have perfect overlap, and in 9 events containing an 8:0 segment from $tell \Delta msh 2\Delta$ octads, only one had perfect overlap. Overall, there were no mitotic-like 8:0 events in $msh2\Delta$ octads, and ~10% of 8:0 events were mitotic-like in $tel1\Delta$ $msh2\Delta$ octads, different to the situation observed in MMR-proficient tetrads. The reason why fewer premeiotic-like events were detected in octad samples may be due to a difference in the sporulation protocol, as the amount of time mated haploids are allowed to spend propagating as a diploid may influence the amount of premeiotic recombination seen. Alternatively, the ability to view hDNA tracts in octads may mean that some events that could have become apparent 8:0s due to genotype conversion during NCO repair instead became other patterns such as 7:1 or symmetrical hDNA. In an MMRdeficient background, the ability to observe a greater variety of pattern changes via hDNA analysis means that 4:0 events can be categorized as meiotic or mitotic with more certainty.

Another potential group of DSB cluster events are events containing a conversion tract (6:2 or 2:6). This is discussed in the following section.

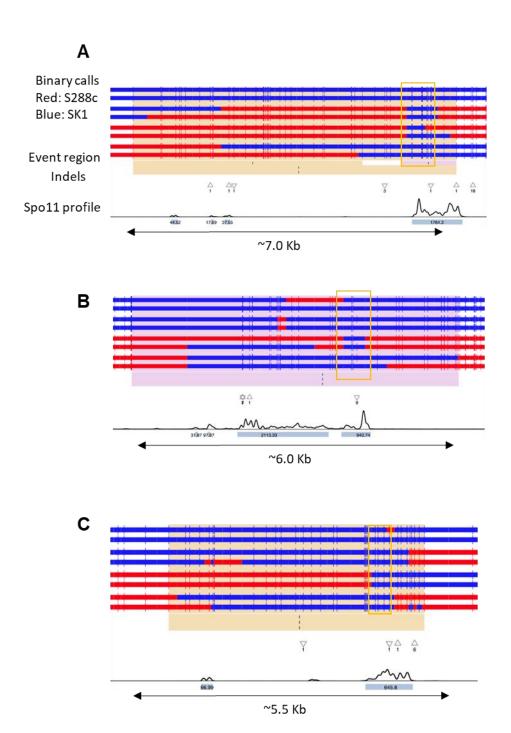


Figure 6.4. Examples of different event types containing 8:0 segments detected in tel1Δ msh2Δ strains. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan et al., 2011). The yellow box highlights the 8:0 segment. A) A CO and NCO cluster, determined by the occurrence of one overall reciprocal exchange. B) An NCO cluster, determined by the absence of an overall reciprocal exchange. C) A double CO cluster, determined by the double reciprocal exchange involving all four chromatids.

6.2.4. 6:2/2:6 conversion tracts observed in MMR-deficient recombination may represent DSB clusters

In MMR-deficient backgrounds, conversion tracts are not expected to arise because they are thought to be a result of mismatch repair only (Martini *et al.*, 2011). However, around 19% of CO and NCO events in *msh2*\$\Delta\$ octads contain segments with 6:2 or 2:6 segregation patterns, hereafter referred to as 'conversion segments' (examples shown in Figure 6.5). Conversion segments could occur alone or as part of other segregation pattern changes within an event. It is likely that these conversion segments result from the repair of gaps, which could arise from 1) two close Spo11-DSBs on the same chromatid or 2) from the removal of a 3' end after invasion of a homologous sequence, e.g. the formation of a nick during topological processing of a dHJ (Chapter 4, Figure 4.9 D, H and Figure 4.10 E, H). In such ambiguous cases, the scenario involving fewer DSBs is chosen for the purpose of the categorization. Thus, events containing 6:2 segments are not automatically categorized as DSB clusters in the current pipeline (Section 4.2.11), but an increase in such events could still be suggestive of adjacent DSB formation.

Interestingly, the possibility that a significant number of recombination events may be initiated by the formation of a gap is reminiscent of the model of meiotic recombination proposed by Szostak *et al.* (1983), which proposed that recombination events are initiated by DSBs which are enlarged into double-strand gaps by exonuclease action. Such ideas were based on observations of 6:2 segregation in fungi and efficient repair of restriction enzyme induced gaps on a plasmid.

In addition, segments of 8:0 segregation can be considered to be two overlapping conversion tracts, meaning that these could also be produced by concerted DSB formation, although there would have to be four Spo11-DSBs arising on a pair of sister chromatids. As mentioned in Section 6.2.3, segments of 8:0 segregation are increased in $tel1\Delta msh2\Delta$ compared to $msh2\Delta$.

Concerted DSB formation has been observed in both WT and *tel1*\(\Delta\) strains, supporting the possibility that many recombination events are initiated by a double DSB (Garcia *et al.*, 2015; Dominic Johnson, personal communication). Concerted DSB formation has been suggested to occur within a single chromatin loop domain that has been primed for DSB formation (Garcia *et al.*, 2015).

Analysis of conversion segments can only be done in MMR-deficient backgrounds because MMR activity produces many 6:2/2:6 signatures which will obscure any conversion tracts produced by multiple DSBs (Chapter 4, Figure 4.9 I, 4.10 I).

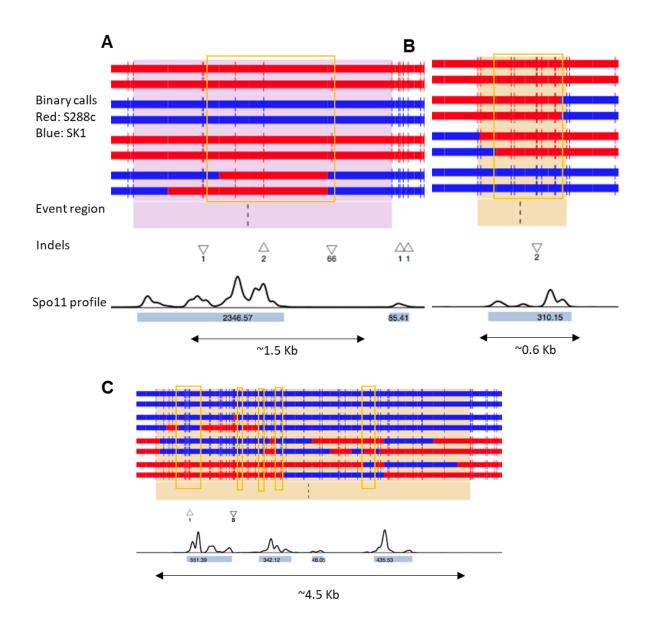


Figure 6.5. Examples of different event types containing 6:2 segments detected in $tel1\Delta$ $msh2\Delta$ strains.

Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan et al., 2011). The yellow box highlights the 6:2 segment. A) An NCO containing a 6:2 segment. B) A CO containing a 6:2 segment. D) A CO and NCO cluster containing numerous small 6:2 patches.

To investigate this phenomenon in more detail, the occurrence of events containing a conversion segment was examined in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ hybrids (Figure 6.6A). On average, $msh2\Delta$ octads contained ~80 events (39% of all events) that have at least one conversion segment, while $tel1\Delta$ $msh2\Delta$ octads had ~107 (42% of all events). In both backgrounds, conversion segments were more frequently observed as part of CO events than NCO events (Figure 6.6B). In $msh2\Delta$, 52.4% of all COs and 23.6% of all NCOs contained a conversion segment, while in $tel1\Delta$ $msh2\Delta$, 57.2% of all COs and 29.1% of all NCOs contained a conversion segment.

As previously mentioned, conversion segments could be produced by concerted DSBs or by nicking during repair. Because the occurrence of multiple DSBs in proximity is expected to be relatively rare, events containing multiple separate conversion segments may be more likely to be caused by nicking during repair (e.g. Figure 6.5C) (as they would otherwise necessitate the formation of two close DSBs per segment). By contrast, events containing a single conversion segment may be more likely to be caused by concerted DSB formation (e.g. Figure 6.5A,B).

The number of conversion segments that occurred as part of an event that contained either a single or multiple conversion segments was compared in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ (Figure 6.6 C). For both strains, the majority (~66-68%) of conversion segments occurred as part of an event containing only one conversion segment.

If single-conversion segment events are produced by concerted DSBs, they may be expected to occur in strong Spo11 hotspots, or spanning multiple hotspots. If multiple-conversion segment events are produced by nicking, they may be expected to be shorter in length, because the nicking enzyme should cause relatively little degradation, and few markers will be converted during repair of the single strand break.

Using Spo11 location data from Pan *et al.* (2011), the observed and expected values of Spo11 hits for a conversion segment region can be calculated. The number of Spo11 hits for each genomic position is normalized by dividing by the total number of Spo11 hits and multiplying by the number of reads, to obtain Spo11 hits per million reads (HpM). For each segment, the maximum possible coordinates are taken (i.e. the position before the next marker with a different segregation pattern), and Spo11 HpM is summed for that region. The expected value is obtained by multiplying the genomic average number of hits per bp by the maximum length of the conversion segment. The DSB landscape is known to be altered across large chromosomal domains in $tel1\Delta$ during early meiosis, but at sub-kb size scales, Spo11-oligos tend to map to hotspots similar to WT in location and width (Mohibullah & Keeney, 2017).

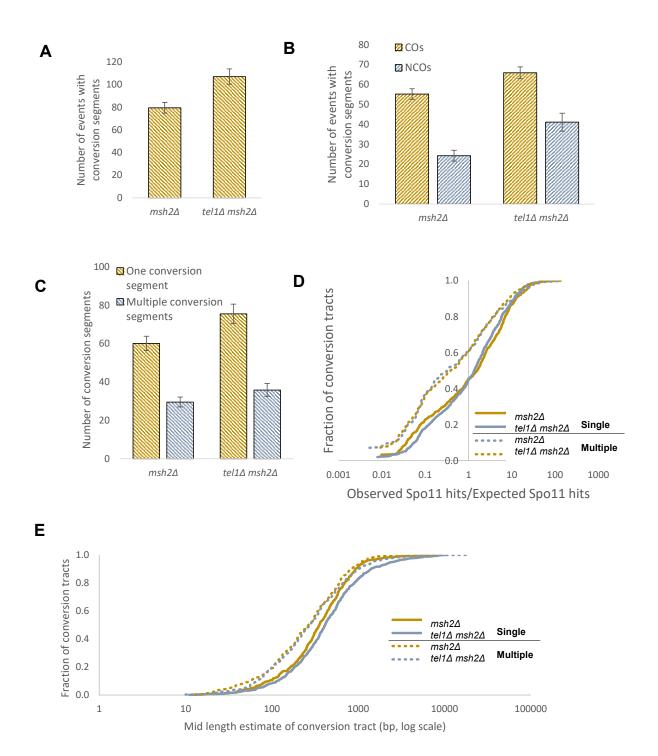


Figure 6.6. Comparison of conversion segment features detected in msh2Δ and tel1Δ msh2Δ strains. A) Average number of events containing at least one conversion segment. B) Average number of CO and NCO events containing at least one conversion segment. C) Average number of conversion segments that are part of an event with a single conversion segment, or with multiple conversion segments. D) Cumulative fraction of events with single or multiple conversion segments with an increasing observed Spo11 hits/expected Spo11 hits ratio. E) Cumulative fraction of events with single or multiple conversion segments with an increasing mid length estimate.

To determine whether there is evidence supporting the idea that events containing multiple conversion segments are not produced by multiple Spo11-DSBs, the relationship between conversion segment length and DSB frequency was examined. The mid length estimate and the ratio of the observed and expected numbers of Spo11 HpM was calculated for each segment, and plotted separately for segments occurring in events with single or multiple conversion segments (Figure 6.6D&E).

For both $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$, conversion segments that occur as part of events with multiple conversion segments are shorter than those occurring in events with a single conversion segment. In addition, conversion segments from events containing only one conversion segment are more likely to have a higher than expected number of Spo11 hits in the vicinity; for single conversion segments, 40% of segments have an observed/expected ratio <1, while 60% of multiple-segment-event conversion segments have an observed/expected ratio of <1.

These results suggest that there is some evidence that there are two groups of conversion-tracts: 1), those that occur in hotter regions, have longer lengths and occur in isolation, and 2), those that occur in colder regions, have shorter lengths and occur in multiples. The two groups are predicted to generally correspond to the local formation of multiple Spo11-DSBs on the same chromatid and 3' nicking during repair, respectively (although there is likely some crossover between the two). The reasoning for this is that events in hotter regions are thought to be more likely to have multiple DSBs, while those in colder regions are predicted to have fewer DSBs; events with multiple conversion segments are less likely to be produced by multiple DSBs because each additional conversion segment would require the formation of another two Spo11-DSBs, which should be limited by DSB interference; and enzymatic nicking is expected to produce shorter conversion segments due to causing little degradation of DNA.

However, there is no particular difference in the formation of either group between $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$; this is counter to observations from Garcia et al. (2014) that indicate that concerted DSB formation is increased in $tel1\Delta$. This may be due to the fact that conversion segments occurring within complex (Group 0) events are not included in this analysis, because conversion segments can be 'interrupted' by pattern changes on different chromatids. Complex events are thought to be produced by DSB clusters (although not necessarily occurring on the same chromatid), and are increased in $tel1\Delta$ $msh2\Delta$ (Section 6.2.3).

6.2.5. Recombination event length is altered in tel1∆

The length of recombination event tracts could be indicative of the extent of D-loop/dHJ migration and/or resection (Chapter 4, Figure 4.9/4.10), as longer resection or migration distances are predicted to correspond to longer tracts of marker changes. The length of recombination events is also an indicator of event complexity, because apparent long events can be produced by two separate events occurring nearby and overlapping. Using marker changes to detect recombination events means that the exact start and end of an event cannot be pinpointed, only the locations of the two markers flanking a genotype change at each end of the event. Thus, event length can be reported as the maximum (the difference in the coordinates between the two outer flanking markers), the minimum (the different between the inner flanking markers), or the mid length, which is the difference between the midpoints between the two sets of flanking markers (Chapter 5, Figure 5.3A). Generally, the mid length is preferred because on average, it is most likely to approximate the true event length. However, events occurring in areas of low polymorphism density may have poor correlation between mid length estimates and the true event length.

To compare event lengths in $msh2\Delta$ and $tell\Delta$ $msh2\Delta$, event mid lengths were categorized into bins and plotted; median and mean lengths are also reported (Figure 6.7A & B). Compared to $msh2\Delta$, $tell\Delta$ $msh2\Delta$ event lengths are increased for both COs and NCOs. Of particular interest, the proportion of very long events (>10kb) is increased in $tell\Delta$ $msh2\Delta$ (~2% of COs and ~1% of NCOs, compared to none in $msh2\Delta$). Some examples of very long events observed in $tell\Delta$ $msh2\Delta$ are shown in Figure 6.6C & D. This subset of very long events may represent event clustering, increased resection or dHJ migration. Since both CO and NCO lengths are increased, it is unlikely to be caused by dHJ migration because most, if not all, NCOs are formed by SDSA (Zakharyevich et al., 2012). However, D-loop migration could still occur during NCO formation, which could contribute to event length (Martini et al., 2011).

To determine whether events thought to be composed of multiple DSBs were longer than those thought to be produced by a single DSB (Section 4.2.11), event lengths were compared between single-DSB and DSB cluster events (Figure 6.8) (This differs from Figure 6.7, in which DSB cluster events are separated into their component events and thus their lengths are counted twice). This shows that in $msh2\Delta$, all the longest events are produced by non-clusters, and clusters tend to be short in length (discussed in Section 9.8). In contrast, almost all long events are produced by clusters in $tel1\Delta$ $msh2\Delta$, though there are also some short clusters. Non-cluster COs in $tel1\Delta$ $msh2\Delta$ are also slightly longer than non-cluster COs in $msh2\Delta$. This indicates that the increased event lengths observed in $tel1\Delta$ $msh2\Delta$ are almost entirely explainable by the increase in DSB cluster events observed in Section 6.2.3.

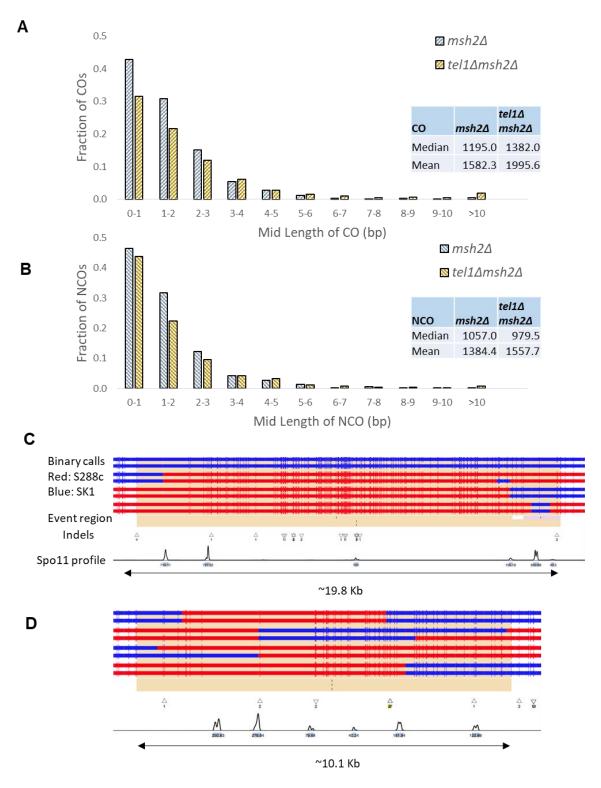


Figure 6.7. Mid length estimates of recombination events detected in msh2Δ and tel1Δ msh2Δ strains. Strain details are given in Table 2.1, raw event data is available in Table S2. Histogram of mid length estimate of A) CO and B) NCO events. Insert tables contain median and mean length in bp. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan et al., 2011). C) A CO and NCO cluster with a mid length estimate of 19867bp. D) A double CO with a mid length estimate of 10083bp.

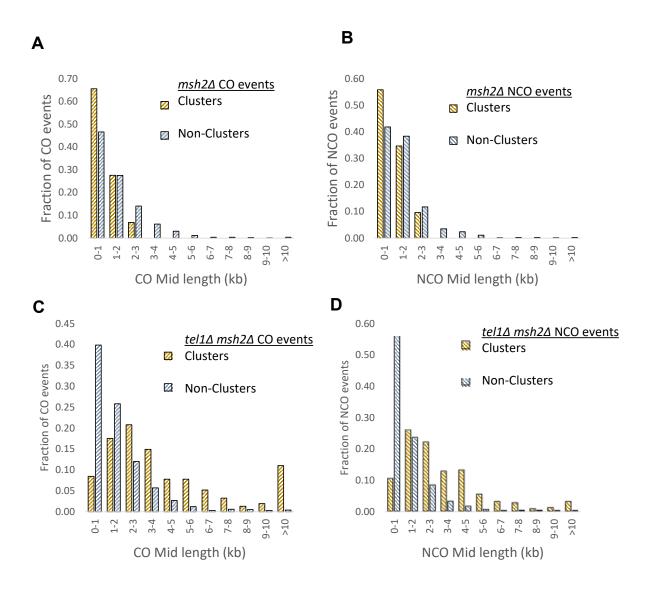


Figure 6.8. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains. Mid length estimate of cluster/non-cluster of: A) CO events in $msh2\Delta$, B) NCO events in $msh2\Delta$, C) CO events in $tel1\Delta$ $msh2\Delta$, D) NCO events in $tel1\Delta$ $tel1\Delta$ $tel1\Delta$ $tel1\Delta$.

6.2.6. Presence of potential duplications is increased in $tel1\Delta$

It is possible to detect what appear to be novel duplications in the post meiotic genome (described in Chapter 4 Section 4.2.6). These duplications may or may not be associated with a detected recombination event, meaning that they could represent additional NCOs occurring during meiosis that were not detected because they produced a mixture of markers that could not called as one genotype or the other. Examples of potential duplications identified in $tel1\Delta$ $msh2\Delta$ data are presented in Figure 6.9A&B.

To test whether duplications are more likely to occur or have different lengths in $tel1\Delta$, duplications were examined in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ backgrounds (Table 6.3, Figure 6.9C&D). Duplications were only counted if they covered at least two consecutive SNPs. While the $msh2\Delta$ strain has an average of 6.6 duplications per cell covering an average of 3.2 adjacent SNPs, the $tel1\Delta msh2\Delta$ strain had an average of 8.8 duplications per cell covering an average of 4.4 SNPs. The distribution of duplication lengths shows that duplications tend to be longer in $tel1\Delta$ in terms of both bp and SNPs, including an increase in the proportion of duplications >1kb in length and those converting >10 consecutive SNPs. This observation is noteworthy because duplications may be formed during complex repair of a DSB, for example multiple strand invasions into the same sequence on different chromatids could result in the same region being copied twice with different polymorphisms.

Alternatively, gene duplications can be caused by ectopic recombination (reviewed in Zhang, 2003). Ectopic recombination most commonly occurs during repair of DSBs formed in repetitive regions. Spo11-DSBs do not normally form in these regions (Pan *et al.*, 2011), so an increase in ectopic recombination may reflect an increase in recombination in, or close to, repetitive regions (reviewed in Sasaki *et al.*, 2010), although markers occurring in repetitive regions are not used in this analysis (Section 4.2.3). Overall, since Tel1, unlike Mec1 and Rad24, is not known to have a role in preventing ectopic recombination, it seems most likely that the increase in duplications in $tel1\Delta$ are caused by complex DSB repair.

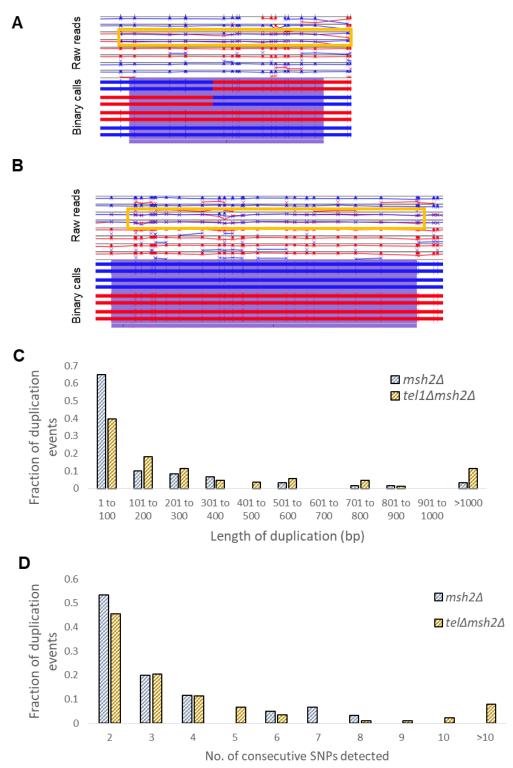


Figure 6.9. Length of potential duplications detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains. Regions of hDNA were mapped by detection of mixed SK1 (blue) and S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The hDNA region is indicated by the purple box. **A)** An example duplication from a $tel1\Delta$ $msh2\Delta$ octad associated with a CO, containing 17 SNPs and with a length of 2683bp. The yellow box highlights the suspected duplication, which can be seen to contain both SK1 and S288c reads. In the binary calls, these positions are discarded. Discarded positions are highlighted by a purple box. **B)** An example duplication from a $tel1\Delta$ msh2 Δ octad that is not associated with a detected recombination event, containing 11 SNPs and with a length of 2047 bp. **C)** Length of potential duplications in bp, **D)** Number of consecutive SNPs in potential duplications.

Table 6.3. Data summary for potential duplications and deletions detected in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ backgrounds. Only duplications and deletions containing at least two SNPs are included.

		Duplications		Deletions				
Genotype (repeats)		Mean no. of SNPs	Mean length (bp)	Total detected	Mean no. of SNPs	Mean length (bp)		
msh2∆ (9		3.2	165.3	75	2.1	59.1		
tel1Δ msh2Δ (10	88	4.4	432	71	2.1	63.4		

Similarly, novel deletions may be detectable by looking for adjacent SNPs with low read depth. However, these could also simply represent areas that did not receive much sequencing coverage. In addition, the presence of deletions is based on the absence of data, while duplications are based on the presence of heteroduplex calls, meaning there is less confidence in the accuracy of the deletions.

Potential deletions in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ were examined (Figure 6.10, Table 6.3), revealing that all were very short in length, and there was no difference between the genotypes, unlike the duplications. This suggests that the potential deletions are a technical artefact, because deletions are based on the absence of data, cover few markers, have short lengths and are not altered between genotypes, as opposed to duplications, which are based on the presence of data, can have long lengths and cover many markers, and display altered characteristics between genotypes. However, it should be noted that deletions are likely to be shorter in length than duplications, because longer deletions may not be tolerated by the cell.

Overall, $tel1\Delta$ appears to have no effect on the rate of deletion occurrence, though the limitations of this analysis mean this is not definitive.

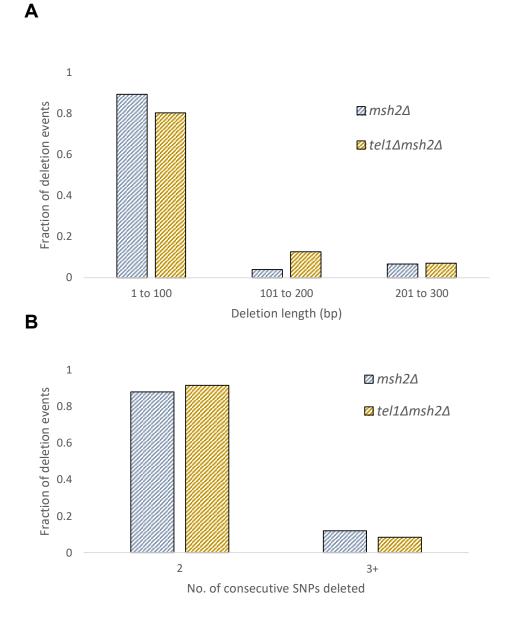


Figure 6.10. Length of potential deletions detected in *msh2*Δ and *tel1*Δ *msh2*Δ strains.

Potential deletions were detected by looking for consecutive SNPS with low read depth. A) Length of potential deletions in bp. B) Number of consecutive SNPs in potential deletions.

6.2.7. Distribution of recombination events in relation to centromeres and telomeres

Normally, recombination is suppressed from occurring near centromeres and telomeres (Petes & Botstein, 1977; Pan *et al.*, 2011). DSBs formed in repetitive regions can cause ectopic recombination leading to genome rearrangement (reviewed in Sasaki *et al.*, 2010). In particular, CO formation is repressed near centromeres (Lambie & Roeder, 1986) and telomeres (Rockmill et al., 2006). The formation of CO events in centromeres and telomeres has consequences for chromosome segregation (Ross et al., 1996; Barton et al., 2003).

It is not possible to detect whether any recombination events occur within centromeres or telomeres using marker mapping, because it is difficult to accurately map reads to repetitive DNA, and because centromeres are very short in *S. cerevisiae* (100-200bp) (Mortimer and Schild, 1980). However, the proximity of events to the region of interest can be measured. To see if the mechanisms preventing recombination near these regions is functioning normally, the proximity of recombination events to telomeres and centromeres in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ backgrounds was measured (Figure 6.11). This analysis includes 'unclassified' events, which cannot be classified as CO or NCO because they occur towards the end of the region covered by the variant table (i.e. are subtelomeric), so never return to a 4:4 segregation pattern. Since only one endpoint can be seen for an unclassified event, it is not certain how far into the repetitive subtelomeric region it may extend.

In both backgrounds, the frequency of all recombination event formation (including unclassified events) is reduced close to telomeres and centromeres (Figure 6.11A&B) and of events that do occur close to these regions, there are more NCO events than CO events (excluding unclassified events) (Figure 6.11 C&D). There is not a noticeable difference between $tel1\Delta msh2\Delta$ and $msh2\Delta$. However, out of 10 tel1\(Delta\) msh2\(Delta\) octads, a total of 11 "unclassified" events were detected, while no such events were observed in *msh2*△ octads. This suggests that while events are equally likely to occur in non-repetitive regions that are close to telomeres in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$, they are still more likely to extend into the repetitive subtelomeric region in $tell \Delta msh 2\Delta$. This may represent a partial loss of control over event positioning in subtelomeric regions in $tell\Delta$. This could be related to the fact that Tel1 is known to have a role in telomere maintenance, producing a DNA damage response when telomeres are damaged (Lustig & Petes, 1985; Eckert-Boulet & Lisby, 2010). In addition, it has been observed that Spo11-oligo frequencies are initially lower than expected in $tell\Delta$ near telomeres and centromeres, but the levels increase over the course of meiosis, suggesting that the suppression of DSBs in these regions seen in WT is initially functional, but the accumulation of DSBs over time overcomes the suppression in tell 1/2 (Mohibullah & Keeney, 2017).

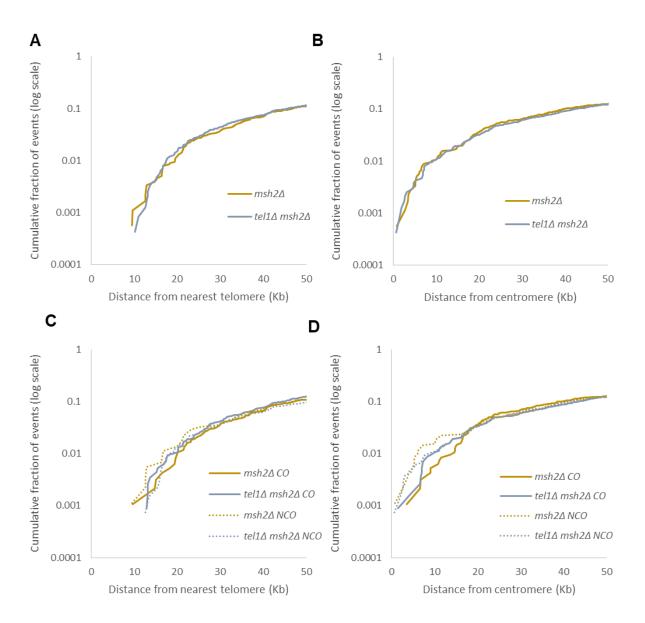


Figure 6.11. Distance between telomeres or centromeres and recombination events detected in *msh2*Δ and *tel1*Δ *msh2*Δ strains. For each event, the distance to the centromere or nearest telomere is calculated and plotted against a cumulative fraction of events. A) Distance between telomeres and all events. This includes 'U' events which cannot be called a CO or NCO due to occurrence close to the telomeres. B) Distance between centromeres and all events. C) Distance between telomeres and CO or NCO events. D) Distance between centromeres and CO or NCO events.

6.2.8. The distribution of CO events shows evidence of loss of interference between COs in $tel1\Delta$

The occurrence of a CO is known to reduce further CO formation nearby, a phenomenon known as CO interference. The degree of interference between COs can be estimated by measuring the distance between event midpoints and comparing the distributions (as described in Chapter 5, Section 5.2.7).

Inter-CO distances were calculated for $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains, arranged in order from smallest to largest and plotted as cumulative fraction of total events against inter-CO distance size on a log scale (Figure 6.12). If interference is present, events should occur further apart than would be expected if event placement was random. In order to determine whether the experimental inter-event distance distributions are distinct from a random distribution, simulated data is produced for the appropriate event counts to show the hypothetical distribution of events along the chromosomes under conditions of independence (Methods section 2.18; Tim Cooper, personal communication).

In $msh2\Delta$, experimental inter-CO distance distributions deviate greatly from the random simulation, with the experimental data shifted to the right, indicating that there are fewer short inter-CO distances than expected (Figure 6.12, compare blue (experimental data) and orange (random simulation). This means that CO events are occurring further apart than would be expected if events were occurring independently, suggesting the presence of CO interference. In $tel1\Delta \ msh2\Delta$, inter-CO distances also deviate from the random simulation, but not as strongly as in $msh2\Delta$.

In order to quantify the strength of CO interference for each genotype, the best fit gamma parameters were found for inter-CO intervals from $msh2\Delta$ strains (as described in Chapter 5, Section 5.2.7 and in Methods section 2.18 (analysis performed by Tim Cooper)). Calculated gamma parameters are shown in Table 6.4. Inter-CO distances in $msh2\Delta$ were best described by a gamma function with an α value of 2.44, while $tell\Delta$ $msh2\Delta$ CO distribution was best fit by a gamma curve with α =2.03, suggesting that the strength of CO interference is reduced in $tell\Delta$. However, even the best-fit gamma distributions are not a good fit for the experimental data, according to the results of a Kolmogorov-Smirnov test used to determine whether the distributions are significantly different (P-values in Table 6.4). This indicates that inter-CO distributions cannot be well described by a gamma distribution.

The best fit gamma function for each background was also used to produce simulated IED data (as described in Chapter 5, section 5.2.7). Simulated IED data was plotted alongside experimental

data to give a visual indication of the goodness of fit to the 'best fit' gamma parameters (Figure 6.12, grey lines). This shows that in both $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$, there is a particularly poor fit for the shortest inter-CO distances (shorter than ~27kb), with the experimental data shifted to the left in comparison to the gamma distribution, indicating that that more short distances are occurring than expected, in agreement with the results of the KS test. This suggests that there are many events occurring that do not display interference; this may be caused by the presence of Class II (non-interfering) COs, as discussed in section 6.2.10.

The value of α was calculated as 2.0 in WT and 1.6 in $tel1\Delta$ by Anderson et al. (2015). The reason why interference values are higher in the $msh2\Delta$ strains is likely because the proportion of COs that display interference (Class I) is increased in $msh2\Delta$ compared to WT (Chapter 5, Section 5.2.10); discounting this influence, the difference in interference strength between WT and $tel1\Delta$ from Anderson et al. is proportional to the difference between $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$.

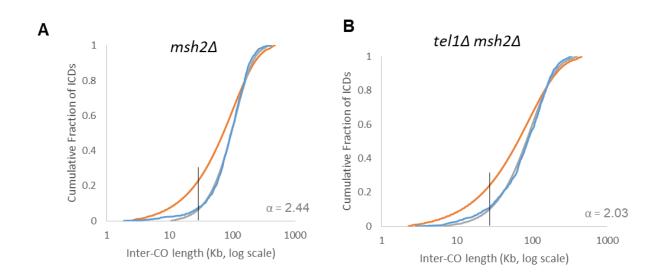


Figure 6.12. Distribution of distances between crossover events observed in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-CO distance (ICD) in **A)** $msh2\Delta$, **B)** $tel1\Delta$ $msh2\Delta$.

Table 6.4. Gamma parameters

Best-fit gamma parameters are given for the inter-event distribution for each aggregate genotype and event type. The number following the genotype indicates how many samples were included in the aggregate. N indicates the total number of recombination events (CO, NCO or both) included in the analysis. The shape factor, α , corresponds to the strength of interference: A value of 1 indicates an exponential distribution i.e. no interference. Values > 1 indicate interference, with higher values corresponding to stronger interference. The scale factor, β describes the distance over which the shape designated by α is stretched, thus indicating the range of the interference. A one-sample Kolmogorov–Smirnov test is utilized to determine whether the experimental inter-event distribution is significantly different from the theoretical best fit gamma distribution, with the reported P-value indicating whether the difference was significant. If the value is <0.05, the difference is considered significant (red).

Genotype (repeats)	N	Best fit	Best fit	(P)
		gamma α	gamma β	
Crossovers		value	value	
msh2Δ (9)	799	2.44	44056	0.0036
tel1Δmsh2Δ (10)	979	2.03	48931	0.0004
Non-Crossovers	N	α	β	(P)
msh2Δ (9)	698	1.21	87998	0.0861
tel1∆msh2∆ (10)	1057	1.11	73646	0.0586
Total events	N	α	β	(P)
msh2Δ (9)	1636	1.57	36542	0.0001
tel1∆msh2∆ (10)	2204	1.31	36386	0.0005

6.2.9. The distribution of NCO events does not show evidence of interference

In contrast to CO events, NCOs do not display interference (Mancera *et al.*, 2008). In order to determine whether this is affected by Tel1, inter-NCO distances were plotted as described for inter-CO distances, alongside simulated datasets for events occurring under conditions of independence (Figure 6.13). In both backgrounds, the experimental inter-NCO distance plots are a good match to the random simulation (Figure 6.13, compare blue (experimental) and orange (random simulation). This is as expected as NCOs are known to not display interference in yeast.

The best fit to a gamma distribution was found for inter-NCO event distances (Table 6.4), producing α values of 1.21 and 1.11 for $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ respectively, both of which indicate low or no interference between NCO events, as predicted. A Kolmogorov-Smirnov test was utilized to determine whether the experimental inter-NCO distribution was significantly different from the best fit gamma distribution, revealing they were not (P-values in Table 5.4), indicating that the calculated gamma values are a good description of the strength of NCO interference in these backgrounds.

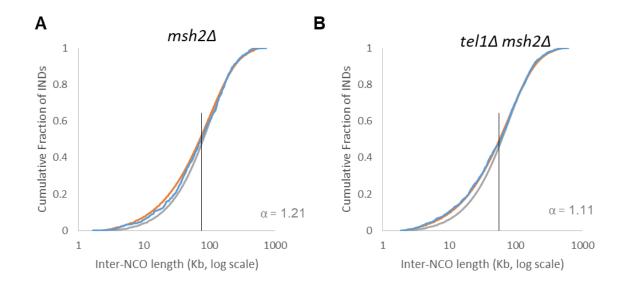


Figure 6.13. Distribution of distances between noncrossover events observed in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-NCO distance (IND) in **A)** $msh2\Delta$, **B)** $tel1\Delta$ $msh2\Delta$.

6.2.10. The distribution of all recombination events shows some evidence of DSB interference loss in $tel1\Delta$ msh 2Δ

In addition to CO interference, DSBs also reduce the likelihood of another DSB occurring nearby in *cis* and in *trans*, a phenomenon known as DSB interference. For an estimate of DSB interference, the distribution of all events is examined, although this is not precise because event midpoints do not always correspond to DSB locations. In addition, there may be additional DSBs repaired to form NCOs that are not detected due to occurring in regions without markers, or due to being repaired as a restoration tract in an MMR-proficient strain (as detailed in Chapter 5, section 5.2.9). In addition, recombination events that are repaired with the sister chromatid cannot be detected.

In order to estimate DSB interference in $tel1\Delta$, inter-event distances were calculated for the $tel1\Delta$ $msh2\Delta$ and $msh2\Delta$ strains, arranged in order from smallest to largest and plotted as cumulative fraction of total events against IED size on a log scale, alongside simulated datasets for events occurring under conditions of independence as described for inter-CO distances (Figure 6.14). If DSB interference is present, events should occur further apart than would be expected if event placement was random.

While the $msh2\Delta$ inter-event distribution deviates to the right from the random distribution, indicating that there are fewer short distances than expected, the $tell\Delta$ $msh2\Delta$ inter-event distribution is well-described by a random distribution (Figure 6.14A&B, compare blue and orange lines), indicating that events are mostly randomly placed in $tell\Delta$.

In order to quantify the strength of DSB interference for each genotype, the best fit gamma parameters were found for inter-event intervals from $tel1\Delta$ $msh2\Delta$ and $msh2\Delta$ strains (as described in Chapter 5, Section 5.2.7 and in Methods section 2.18 (analysis performed by Tim Cooper)). Calculated gamma parameters are shown in Table 6.4.

The distribution of recombination events in $msh2\Delta$ is best described by a gamma distribution of α =1.57, and in $tel1\Delta$ $msh2\Delta$, by α =1.31, indicating a decrease in inter-event interference in $tel1\Delta$. However, the results of a Kolmogorov-Smirnov test to compare the experimental and gamma distributions show that these best-fit gamma distributions were still significantly different to the experimental data (P-values in Table 6.4). This indicates that inter-event distributions cannot be well described by a gamma distribution.

The best-fit gamma distributions were plotted alongside the experimental data to allow a visual examination of the goodness-of-fit (Figure 6.14, grey lines). This shows that the fit is poor for

both inter-event distance distributions, which deviate to the left of the best fit gamma distribution for distances shorter than ~17 Kb in $msh2\Delta$ and ~31Kb in $tel1\Delta$ $msh2\Delta$, indicating that more short distances are occurring than expected.

In WT and $tel1\Delta$, inter-event distance distributions were found to be best described by α values of 0.37 and 0.21 by Anderson et al. (2015). These much lower values may be due to the fact that fewer events can be detected in MMR-proficient backgrounds, meaning that a less complete picture of DSB interference can be revealed from this data. Alternatively, it could be due to the slightly different strain background, or the higher event merging threshold used in the analysis by Anderson et al. Nonetheless, both this study and that of Anderson et al are in agreement in that they show a decrease in DSB interference in $tel1\Delta$.

Overall, these results suggest that DSB interference is reduced in $tell\Delta$, in agreement with findings from Garcia et~al., 2014. However, it should be emphasized again that event midpoint distributions do not necessarily correspond to DSB locations. In addition, inter-event interference may be influenced by CO interference due to CO-CO intervals present in the data, which are known to display interference that is reduced in $tell\Delta$ (Section 6.2.8).

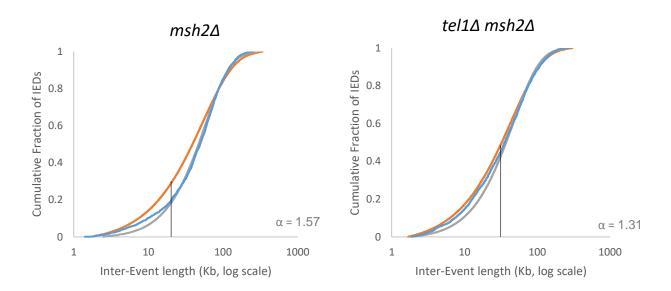


Figure 6.14. Distribution of distances between all recombination events observed in $msh2\Delta$ and $tel1\Delta$ $msh2\Delta$ strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-event distance in A) $msh2\Delta$, B) $tel1\Delta$ $msh2\Delta$.

6.2.11. The proportion of Class I and Class II COs is predicted to be altered in tel14

There are two distinct classes of CO event in *S. cerevisiae* meiosis: Class I COs exhibit interference and are dependent upon Msh4/Msh5 activity (Novak *et al.*, 2001), and Class II COs do not display interference and are dependent upon Mus81/Mms4, Yen1 or Slx1-Slx4 activity (de los Santos, 2003). The normal ratio of Class I to II is estimated to be 70:30 (Zakharyevich *et al.*, 2012; de los Santos, 2003). Based on the expectation of a two-component distribution, it is possible to separate out an interfering and a non-interfering subset, which are inferred to be equivalent to Class I and Class II COs (as described in Section 5.2.10; Methods section 2.19). This analysis was performed and authored by Tim Cooper (personal communication).

It was observed that $tel1\Delta$ $msh2\Delta$ cells appear to have reduced CO interference compared to $msh2\Delta$ (Section 6.2.8). A potential explanation is that $tel1\Delta$ $msh2\Delta$ may have a reduction in Class I CO formation, or an increase in Class II CO formation. To be able to predict the proportions of Class I/II COs in these backgrounds, two-component analysis was carried out on these strains (Table 6.5). The ability of the two-component system to describe experimental data was analyzed via a Kolmogorov-Smirnov test. In comparison to the poor fit of a single gamma distribution to inter-CO distances (Table 6.4), a large improvement for all genotypes is seen when a mixed-fit is used, with none of the fitted distributions significantly different to the experimentally observed data (compare P-values in Tables 6.4 and 6.5).

The predictions from the two-component analysis are that $msh2\Delta$ should have ~77% Class I COs and ~23% Class II, while $tel1\Delta$ $msh2\Delta$ should have ~67% Class I and ~33% Class II, indicating that the ratio is shifted towards Class II non-interfering events in $tel1\Delta$. When taking into account the differing event numbers for each background, the average number of Class I COs is not predicted to change much between the two strains, with ~80 in $msh2\Delta$ and ~77 in $tel1\Delta$ $msh2\Delta$. However, the average number of Class II COs is predicted to increase from ~25 to ~38 when Tel1 is deleted. This suggests that the increase in CO number seen in $tel1\Delta$ $msh2\Delta$ compared to $msh2\Delta$ (Figure 6.1A) may be caused by an increase in Class II CO formation without any change in Class I CO formation. To test this hypothesis, Class II CO formation can be reduced by the deletion of Mus81, the main resolvase responsible for their formation. This is discussed in Chapter 8.

This conclusion is supported by the findings of Anderson *et al.* (2015), who reported that a larger share of COs in $tel1\Delta$ is ZMM-independent. Zip3 deletion reduced the proportion of events repaired as COs from 72% to 39% in WT, but a more modest reduction from 67% to 49% was seen in $tel1\Delta$, suggesting that CO formation is less dependent on Zip3 in $tel1\Delta$. In addition, the number and distribution of Zip3 foci in $tel1\Delta$ was not significantly different to WT, suggesting normal interference in Class I COs (Anderson *et al.*, 2015).

Table 6.5. Percentage of COs that do not appear to show interference in sequenced strain backgrounds.

Mixture modelling results are given for each genotype. The strength of interference in the non-random population is given by $\alpha 1$ and is expected to be >1. The strength of interference in the random population is given by $\alpha 2$ and is expected to be ~1. The scale factors, $\beta 1$ and $\beta 2$ describe the distance over which the shapes designated by $\alpha 1$ or $\alpha 2$ respectively are stretched, thus indicating the range of the interference. The overall proportion of CO events that are thought to occur with random or non-random placement is given, which allows a predicted total number of Class I and Class II COs to be calculated from the overall CO count. A two-sample Kolmogorov–Smirnov test is utilized to determine whether the experimental inter-event distribution is significantly different from the two-component system, with the significance indicated by the reported P-value. A value of >0.05 is considered to show no significant difference.

Genotype (repeats)	α1	α2	β1	β2	Non-	Random	Predicted	Predicted	Р
					random	proportion	mean	mean	
					proportion	(%)	number of	number of	
					(%)		Class I COs	Class II COs	
msh2∆ (9)	3.84	1.21	29877	68155	76.5	23.5	80.3	24.7	0.9
tel1∆ msh2∆ (10)	4.45	1.97	28187	23104	67.4	32.6	77.7	37.6	0.9

6.3. Discussion

6.3.1. Comparison of genome-wide sequencing in MMR-proficient and MMR-deficient $tell\Delta$ hybrids

Here, recombination is examined in $tell\Delta$ msh 2Δ meiosis genome-wide, revealing that Tel1 has roles in limiting NCO and CO (especially Class II) formation (Figure 6.1), and reduces CO and potentially DSB formation (Figure 6.12 and 6.14), causing more DSB/CO cluster events to form (Figure 6.2), which produce long complex events (Figure 6.8), supporting previous work showing an increase in Spo11 double-cuts in tel1\(\Delta\) (Garcia et al., 2015). These features have also been noted previously in genome-wide assays of recombination in tell∆ meiosis (Anderson et al., 2015). However, MMR proficient strains were used, which greatly reduces the number of NCOs that can be detected as well as the amount of information about e.g. length, complexity that can be gathered for each event (Martini et al., 2011). MMR-deficient hybrids may also be more representative of recombination in a pure SK1 background than MMR-proficient hybrids, due to the rejection of strand invasion into mismatching sequences by Msh2 (Sugawara et al., 1997; Evans et al., 2000; Datta et al., 1999; Chen & Jinks-Robinson, 1998). In addition, during classification of recombination products, pattern changes within 5kb of each other were considered to be part of the same event (Anderson et al., 2015). This limit was based on previous analysis by the authors of wild-type tetrads showing that events occurring 5 kb have properties that suggest they originated from a single DSB (Anderson et al., 2011). By careful examination of hDNA tracts associated with recombination in MMR-deficient backgrounds, others have found that many events incompatible with a 1-DSB scenario occur closer than 5kb, and thus recommend a 1.5kb merging limit (Bertrand Llorente & Marie-Claude Marsolier, personal communication). In addition, a 5kb limit may mask the detection of event clustering at short range as described by Garcia et al., 2015. Thus, the 1.5 kb merging limit used in the data presented here is advantageous for detailed examination of the distance between recombination events.

Anderson *et al.* (2015) does include analysis of events containing 4:0 tracts, unlike previous studies (e.g. Martini *et al.*, 2011; Anderson *et al.*, 2011) which discount these events as being caused by pre-meiotic recombination, even though they could potentially be caused by two overlapping NCOs. However, events composed solely of 4:0 tracts are included as well as 4:0 segments associated with other pattern changes, which are more likely to have arisen during meiosis. In an MMR-deficient background, the ability to see a greater variety of pattern changes via hDNA analysis means that 4:0 events can be categorized as meiotic or mitotic with more certainty. In the data presented here, 8:0 and 4:0 events are only kept if they are associated with other pattern changes. In addition, segments of 7:1 segregation can also be seen in $msh2\Delta$ octads, which are likely produced by the same processes as 8:0 segments such as double initiation on sister chromatids. An increase in 7:1 segments is seen between $msh2\Delta$ and $tel1\Delta msh2\Delta$ (Section

6.2.3), which would not be possible to see in the MMR-proficient strains of Anderson *et al.* (2015). In addition, 6:2 segments are visible in $msh2\Delta$ octads that may be indicative of concerted DSB formation (Section 6.2.4); while these would also be present in tetrads, they would be indistinguishable from 6:2 segments produced by MMR.

6.3.2. Closing Statement

Previously, recombination has been assayed genome-wide in $tell\Delta$ tetrads (Anderson et al., 2015). However, recombination has not been assayed in a MMR-deficient $tell\Delta$ background. In this chapter, the role of Tell in controlling recombination event quantity and quality, CO and DSB interference are revealed by analysis of recombination event mapping in MMR-deficient $tell\Delta$ octads via deep sequencing and marker analysis. This study offers distinct advantages over preceding ones in terms of marker and event resolution and detection.

Chapter 7.

Separable roles of Mec1 and Rad24 in regulation of meiotic recombination

Chapter 7. Separable roles of Mec1 and Rad24 in regulation of meiotic recombination

7.1. Introduction

7.1.1. Roles of Mec1 and Rad24 in the DNA damage response

Mec1^{ATR} is a kinase which functions in meiosis to monitor DNA damage repair, activate checkpoints and regulate cell cycle progression (Cha *et al.*, 2002; Harper & Elledge, 2007; Carballo & Cha, 2007). In meiotic prophase, programmed DSBs are formed by Spo11. With the yeast 9-1-1 clamp complex (Rad17, Mec3, and Ddc1), its loader Rad24 and the MRX complex as damage sensors (Hochwagen & Amon, 2006), unrepaired ssDNA produced by the resection of Spo11-DSBs activates Mec1 (Lydall *et al.*, 2011). The accumulation of unrepaired DSBs causes Mec1 to trigger meiotic arrest as part of the meiotic checkpoint response (Lydall *et al.*, 1996). The meiotic checkpoint monitors meiotic events and halts cell cycle progression if necessary, ensuring that cells do not exit prophase before the process of DSB repair is complete (Lydall *et al.*, 1996; Carballo *et al.*, 2008).

Mec1 positively regulates DSB formation in yeast (Gray *et al.*, 2011), and both Mec1 and Rad24 promote CO formation (Grushcow *et al.*, 1999), likely due to the loss of the ability to arrest meiosis in response to impaired meiotic recombination. The interaction between Mec1 and the 9-1-1 complex is also important for other Mec1 functions such as Hop1 phosphorylation, which is important for homolog bias and chiasma formation (Cheng *et al.*, 2013).

Mec1^{ATR} deletion is inviable in yeast (Giaever *et al.*, 2002), but P_{CLB2} -MEC1, a conditional Mec1 allele expressed only in mitosis, supports vegetative growth and has a spore viability of ~50% compared to ~97% in WT. However, the use of this mitosis-specific promoter could potentially affect the mitotic or meiotic behaviour of Mec1. Potentially, Mec1 could be expressed at inappropriate times, or in inappropriate quantities. In addition, the meiotic knockout of MEC1 could be incomplete, causing Mec1 protein to be present during meiotic prophase at the time when Spo11-DSBs are being formed. In P_{CLB2} -MEC1, DSBs are seen from 2 hours after entry into meiosis, at which time the amount of Mec1 is low, but there is still some Mec1 present until around 3 hours (Gray *et al.*, 2013). Nevertheless, during the bulk of DSB formation and repair, there is expected to be little or no Mec1 protein present.

The deletion of Sml1 restores the cell viability of $mec1\Delta$, though $sml1\Delta$ does not compensate for the checkpoint functions of Mec1 (Zhao et~al., 1998). Sml1 inhibits dNTP synthesis (Zhao et~al., 1998), and is inactivated by phosphorylation initiated by Mec1 via Rad53 and Dun1 (Zhao and Rothstein 2002; Chen et~al., 2006, Sanchez et~al., 1996). Deletion of Sml1 rescues $mec1\Delta$ by relieving the requirement for Mec1-mediated inactivation of Sml1, and by increasing dNTP levels

(Huang & Elledge, 1997) by releasing ribonucleotide reductase suppression, allowing DNA repair to be more efficient in the absence of the DDR checkpoint. $mec1\Delta \ sml1\Delta$ strains have a spore viability of 30-50% (Lydall *et al.*, 1996, Carballo & Cha, 2007).

It was not previously known if Rad24 activity was important for Sml1 inactivation, however $sml1\Delta$ was found to double $rad24\Delta$ spore viability (Chapter 3, Figure 3.4A) and also rescue $rad24\Delta$ cell viability after UV treatment (Figure 3.6A), suggesting that Rad24 has a role in Sml1 inactivation.

7.1.2. Roles of Mec1 and Rad24 in CO and DSB interference

DSBs do not occur independently, but are subject to interference among the four chromatids. This interference occurs in *cis* (adjacent on the same chromatid), and *trans* (between chromatids) (Zhang *et al.*, 2011). CO events also display interference (Sturtevant 1913; Zhao *et al.*, 1995). There has been very little investigation into the roles of Mec1 and Rad24 in DSB or CO interference. Mec1 has been shown to be a mediator of *trans* DSB interference via tetrad analysis at the *HIS4::LEU2* hotspot (Zhang *et al.*, 2011). A reduction in DSB interference can be indicated by an increase in concerted Spo11-DSB formation; while a *tel1*\$\Delta\$ mutant had an increase in double-cuts (closely juxtaposed DSBs), a *rad24*\$\Delta\$ mutant did not (Garcia *et al.*, 2014). However, this measurement was only made at a few loci, which may not reflect the genome-wide situation.

7.1.3. Differences and similarities in Rad24 and Mec1 meiotic behaviour

Despite functioning in the same DDR pathway, Mec1 and Rad24 are known to have some separable functions. Rad24 spore viability can be rescued to ~50% by prophase extension mediated by *NDT80* repression and release, but P_{CLB2} -MEC1 viability is not affected by *NDT80* prophase extension (Chapter 3, Figure 3A&B; Gray *et al.* 2013). In addition, Rad24 is necessary for loading ZMM proteins, and interacts physically with Zip3, independently of Mec1 (Shinohara *et al.*, 2015). This indicates that Rad24 may promote the loading of ZMM proteins at sites of future COs. Finally, a high degree of hyper-resection at Spo11-DSBs is visible in $rad24\Delta$ and $rad17\Delta$ cells; some hyper-resection is also seen in P_{CLB2} -MEC1, but not to the same extent as in $rad24\Delta$ (Gray *et al.*, 2013; Kayleigh Wardell, personal communication).

Rad24 may enact its role in regulating resection distance by loading the 9-1-1 clamp, which has been proposed to act as a physical barrier to resection (Kayleigh Wardell, personal communication). Alternatively or additionally, the effect on resection may be because Rad24 and Rad17 are involved in activating Mec1, which may then prevent resection by e.g. deactivation of

Sae2 (Cartagena-Lirola *et al.*, 2006) or Exo1 (Morin *et al.*, 2008). The 9-1-1 complex inhibits resection by promoting the recruitment of Rad9 near mitotic DSBs (Ngo & Lydall, 2015); however, this may not be the case for meiotic DSBs, because Rad9 is not required for checkpoint activation in meiosis (Lydall *et al.*, 1996).

rad24∆ strains also have an increase in ectopic recombination, which may be related to hyperresection as the longer resection tracts uncover more ssDNA that could potentially pair with a non-allelic region (Gray *et al.*, 2013; Grushcow et al., 1999).

7.1.4. Genome-wide analysis of recombination in $rad24\Delta$ and P_{CLB2} -MEC1 is confounded by low spore viability

In order to examine the roles of Rad24 and Mec1 in recombination rate, CO formation and interference between COs and DSBs, hybrid spores can be sequenced for marker analysis. However, both $rad24\Delta$ and P_{CLB2} -MEC1 are more severely affected by being a hybrid than other backgrounds (Chapter 3, Figure 3.7A). This is likely because the rate of meiotic recombination is affected by sequence divergence; since meiotic recombination is already likely to be reduced in $rad24\Delta$ and P_{CLB2} -MEC1, any further reductions may be particularly deleterious. The very low spore viability of the hybrids ($rad24\Delta$ 0.73%, P_{CLB2} -MEC1 6%) makes these strains unsuitable for tetrad or octad analysis. However, the spore viability can be rescued in a variety of ways.

The mismatch repair protein Msh2 is responsible for detecting and rejecting mismatched DNA intermediates formed during strand invasion. Msh2 deletion is deleterious to spore viability in most pure or hybrid backgrounds (Chapter 3, Figure 3.7B&C). However, in $rad24\Delta$ and P_{CLB2} -MEC1 hybrids, $msh2\Delta$ has an overall beneficial effect on spore viability. This is likely because strand invasion is more likely to be successful in the absence of Msh2 meaning that more recombination events can occur. The rejection of mismatched strand invasion intermediates is potentially important in order to prevent recombination with non-allelic sequences; however, in RAD24 and MEC1 mutants already have an increase in ectopic recombination (Gray et~al., 2013; Grushcow et~al., 1999), so there may not be a significant change in the probability that recombination will occur ectopically without MMR. Alternatively, the two factors could cause a synergistic increase in ectopic formation, but this is outweighed by the positive effects of $msh2\Delta$ such that there is an overall increase in viability.

As with non-hybrid strains, the spore viabilities of $rad24\Delta$ hybrids are rescued by $sml1\Delta$ and by NDT80 prophase arrest (Chapter 3, Figure 3.9). Unlike the non-hybrid strain, P_{CLB2} -MEC1 hybrids are also rescued by NDT80 prophase arrest. Thus, using $msh2\Delta$, NDT80 prophase arrest and/or

 $sml1\Delta$ in these backgrounds can improve viability enough to allow tetrad analysis, though not high enough for octad analysis. Instead, heteroduplex DNA information in $msh2\Delta$ tetrads is partially retained by harvesting entire sectored colonies and looking for variants present in a roughly 50:50 ratio (Chapter 4, Section 4.2.5).

Since some of the deleterious effects of $rad24\Delta$ and P_{CLB2} -MEC1 are presumably abrogated by the rescues, meiotic recombination in the rescued strains may not resemble that of non-rescued checkpoint mutants; for example, if the rescue is increasing DSB or CO formation, then the number of recombination events detected will not be representative of the non-rescued phenotype. However, by assaying multiple different rescue backgrounds, a more complete picture can be uncovered by observing differences and similarities between them.

It is important to note that because only surviving spores can be assayed, spores with particularly deleterious occurrences such as dicentric/acentric chromosome formation from ectopic recombination can never be sequenced. Since only very few sets of four spores survive, the recombination events may not be representative of the population but instead represent extreme cases. However, a bias has only been previously shown for a *ZIP1* mutant with very inefficient sporulation (0.4%) (Chen *et al.*, 2008).

7.1.5. Aims of this investigation

- 1. To assay meiotic recombination genome wide in $rad24\Delta$ and P_{CLB2} -MEC1 backgrounds, in order to establish the roles of these proteins in meiotic recombination.
- 2. To look for differences and similarities between Rad24 and Mec1 activity.
- To utilise different rescue backgrounds to obtain a more complete picture of recombination in non-rescued checkpoint mutants.

7.2. Results

7.2.1. Alterations in CO and NCO numbers in $rad24\Delta$ and P_{CLB2} -MEC1

To assay recombination event formation in P_{CLB2} -MEC1 and $rad24\Delta$ backgrounds, hybrid tetrads were obtained, sequenced and analysed as described in Chapter 4. For both backgrounds, six $msh2\Delta$ tetrads and six NDT80 prophase extension tetrads were assayed. The length of prophase arrest was 8 hours for P_{CLB2} -MEC1 tetrads, but 10 hours for $rad24\Delta$ tetrads to improve their lower spore viability. The normal activation of NDT80 likely takes place somewhere between 4-5 hours into meiosis (Xu *et al.*, 1995), so the P_{CLB2} -MEC1 + 8 h and $rad24\Delta$ + 10 h strains could be considered to have 3-4 or 5-6 extra hours in prophase, respectively. In addition, one $rad24\Delta$ $sml1\Delta$ tetrad and two $rad24\Delta$ $sml1\Delta$ $msh2\Delta$ tetrads were sequenced. These were not used for most analyses due to having fewer repeats. Raw data is available in the appendix (Table S2).

To determine whether CO and NCO numbers are altered in checkpoint mutants, and if the results are different in $msh2\Delta$ and NDT80 prophase-arrest backgrounds, event numbers were examined in these strains (Figure 7.1; Table 7.1).

The $rad24\Delta$ $msh2\Delta$ tetrads had on average fewer COs than $msh2\Delta$ (~83.5 vs ~105); however, the P_{CLB2} -MEC1 $msh2\Delta$ tetrads had a much higher average of 134.7 COs (Figure 7.1A). $rad24\Delta$ $msh2\Delta$ tetrads had an average of ~113 NCOs, similar to the ~101 NCOs seen in WT and within 95% confidence intervals; P_{CLB2} -MEC1 $msh2\Delta$ again had a much higher average of ~213 NCOs (Figure 7.1A). Overall, P_{CLB2} -MEC1 $msh2\Delta$ had a dramatic 1.75x fold increase in total recombination event numbers compared to the $msh2\Delta$ control, something that was not observed in $rad24\Delta$ $msh2\Delta$.

The almost 1:1 ratio of CO:NCO detection observed in $msh2\Delta$ is altered to 1:1.35 in $rad24\Delta$ $msh2\Delta$ and to 1:1.58 in P_{CLB2} -MEC1 $msh2\Delta$ (Figure 7.1C). Since both checkpoint mutants skew the ratio in favour of NCOs, this supports the idea that both Mec1 and Rad24 are important for promoting CO formation; alternatively, it could be that there is a limit on the number of COs that can form, so any excessive DSBs must be resolved as NCOs.

Overall, these results indicate that Mec1 meiotic activity may be important for limiting both CO and NCO numbers (but primarily NCO numbers), while Rad24 is responsible for promoting CO formation, but has no significant effect on NCO frequency. This suggests that Mec1 may be more important for controlling DSB frequency, whereas Rad24 is more involved in controlling CO frequency.

Table 7.1. Data summary for recombination events detected in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$, $rad24\Delta$ $msh2\Delta$, WT+8 h, P_{CLB2} -MEC1 +8 h, $rad24\Delta$ +10 h, $rad24\Delta$ $msh2\Delta$ $sml1\Delta$ and $rad24\Delta$ $sml1\Delta$ backgrounds.

Separate samples for each genotype are shown. TN: Ndt80 arrest tetrad, OM: $msh2\Delta$ octad, TRM: $rad24\Delta$ $msh2\Delta$ tetrad, TCMM: P_{CLB2} -MEC1 $msh2\Delta$ tetrad, TRN: $rad24\Delta$ +10 h tetrad, TCMN: P_{CLB2} -MEC1 +8 h tetrad, TRS: $rad24\Delta$ $sml1\Delta$ tetrad, TRMS: $rad24\Delta$ $msh2\Delta$ $sml1\Delta$ tetrad. Columns contain the number of COs, NCOs and Undetermined (U) events detected, the overall number of events, the number of chromosomes without COs (CWCs), the identity of the CWCs, the number of double COs closer than 1.5kb (dCOs), the number of events containing an 8:0/0:8 or 7:1/1:7 segment, the number of COs without a detectable conversion tract, and the number of NCOs that were composed only of hDNA.

						CM				COs	NCOs	
						CWCs		dCO			without	hDNA
Meiosis	CO	NCO	U	Total	CO:NCO	Frequency	Identity	number	8:0	7:1	tracts	only
msh2∆												
Average	105.0±3	101.8±8	0	206.8±7	1:0.98			0.2	0.1	0.4	14.9	64.1
OM1	116	109	0	225	1:0.94	0		0.2	0.1	0.4	13	45
OM2	100	125	0	225	1:1.25	0	-	0	0	0	8	69
OM3	95	100	0	195	1:1.05	0	-	0	0	0	18	50
						_	-	_	_			
OM4	105	98	0	203	1:0.93	0	-	1	0	1	11	50
OM5	98	79	0	177	1:0.81	0	-	0	0	0	19	41
OM6	116	65	0	181	1:0.56	0	-	1	1	0	22	37
OM7	98	139	0	237	1:1.42	0	-	0	0	1	11	70
OM8	107	113	0	220	1:1.06	0	-	0	0	2	21	62
OM9	110	88	0	198	1:0.80	0	-	0	0	0	10	45
rad24∆ ms												
Average	83.5±8	113.0±15	0.67	197.2±21	1:1.35			0.5	0.7	2.0	8.8	44.2
TRM1	54	53	0	107	1:0.98	2	Chr 5, 15	0	0	0	12	32
TRM2	86	121	0	207	1:1.41	1	Chr 1	1	2	4	5	43
TRM3	104	159	0	263	1:1.53	0	-	0	2	5	8	68
TRM4	82	130	1	213	1:1.59	2	Chr 6, 8	1	0	1	13	41
TRM5	102	96	2	200	1:0.94	1	Chr 8	1	0	1	10	30
TRM6	73	119	1	193	1:1.63	0	-	0	0	1	5	51
P _{CLB2} -MEC	C1 msh2∆											
Average	134.7±14	213.8±19	1	349.5±30	1:1.67			1.5	3.2	5.3	22.3	56.7
TCMM4	66	159	0	225	1:2.41	1	Chr 8	1	1	1	11	48
TCMM8	145	230	1	376	1:1.59	0	-	0	4	6	30	58
TCMM15	137	196	1	334	1:1.43	0	_	0	1	5	19	61
TCMM16	144	211	1	356	1:1.47	0	_	3	3	5	21	42
TCMM18	162	190	2	354	1:1.17	0	-	2	5	4	38	30
TCMM19	154	297	1	452	1:1.93	0	_	3	5	11	15	101
WT + 8 h												
Average	97.3±11	51.0±8	0.5	148.8±19	1:0.52			1.5	2.5	-	20.5	-
TN1	70	34	0	104	1:0.49	0	-	0	1	-	11	-
TN2	90	43	0	133	1:0.48	0	-	1	1	-	23	-
TN3	121	61	1	183	1:0.50	0	-	4	5	-	29	-
TN4	108	66	1	175	1:0.61	0	-	1	3	-	19	-
rad24∆ + 1	10 h											
Average	125.0±11	92.0±13	1.5	218.5±22	1:0.73			3.0	9.3	-	25.3	-
TRN1	146	112	4	262	1:0.77	0	-	3	17	-	28	-
TRN2	142	68	2	212	1:0.48	0	-	3	7	-	38	-
TRN4	107	70	0	177	1:0.65	1	Chr 6	6	7	-	20	-
TRN10	155	130	3	288	1:0.84	0	-	2	13	-	23	-
TRN11	87	52	0	139	1:0.60	1	Chr 6	0	6	-	26	-
	113	120	0	233	1:1.06	0	-	4	6	-	17	-
TRN20											20.0	
P _{CLB2} -MEC	C1 + 8 h			040 5±25	4.0.00			2	450			
P _{CLB2} -MEC Average	1 + 8 h 126.8±18	90.7±17	1	218.5±35	1:0.69	0		3	15.8		22.3	
P _{CLB2} -MEC Average TCMN1	126.8±18 196	90.7±17 143	0	339	1:0.73	0	-	2	21	-	26	-
P _{CLB2} -MEC Average TCMN1 TCMN2	126.8±18 196 97	90.7±17 143 51	0	339 148	1:0.73 1:0.53	0	-	2	21 9	-	26 28	-
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3	1+8h 126.8±18 196 97 135	90.7±17 143 51 88	0 0 0	339 148 223	1:0.73 1:0.53 1:0.65	0	- - -	2 1 2	21 9 15	- - -	26 28 23	-
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3 TCMN4	126.8±18 196 97 135 106	90.7±17 143 51 88 79	0 0 0 2	339 148 223 187	1:0.73 1:0.53 1:0.65 1:0.75	0 0 0	- - -	2 1 2 3	21 9 15 7	- - -	26 28 23 16	- - -
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3 TCMN4 TCMN5	1 + 8 h 126.8±18 196 97 135 106 152	90.7±17 143 51 88 79 139	0 0 0 2 3	339 148 223 187 294	1:0.73 1:0.53 1:0.65 1:0.75 1:0.91	0 0 0 0	- - - -	2 1 2 3 3	21 9 15 7 32	-	26 28 23 16 30	-
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3 TCMN4 TCMN5 TCMN6	1+8h 126.8±18 196 97 135 106 152 75	90.7±17 143 51 88 79	0 0 0 2	339 148 223 187	1:0.73 1:0.53 1:0.65 1:0.75	0 0 0	- - - - - Chr 1	2 1 2 3	21 9 15 7	-	26 28 23 16	-
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3 TCMN4 TCMN5	1+8h 126.8±18 196 97 135 106 152 75	90.7±17 143 51 88 79 139	0 0 0 2 3	339 148 223 187 294	1:0.73 1:0.53 1:0.65 1:0.75 1:0.91	0 0 0 0		2 1 2 3 3	21 9 15 7 32	-	26 28 23 16 30	-
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3 TCMN4 TCMN5 TCMN6	21 + 8 h 126.8±18 196 97 135 106 152 75	90.7±17 143 51 88 79 139 44	0 0 0 2 3 1	339 148 223 187 294 120	1:0.73 1:0.53 1:0.65 1:0.75 1:0.91 1:0.59	0 0 0 0 1	Chr 1, 5, 8,	2 1 2 3 3 6	21 9 15 7 32 11	- - - - -	26 28 23 16 30 11	-
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3 TCMN4 TCMN5 TCMN6 rad24Δ sm	21 + 8 h 126.8±18 196 97 135 106 152 75 111∆ 34	90.7±17 143 51 88 79 139 44	0 0 0 2 3	339 148 223 187 294	1:0.73 1:0.53 1:0.65 1:0.75 1:0.91	0 0 0 0		2 1 2 3 3	21 9 15 7 32	- - - - - -	26 28 23 16 30	-
P _{CLB2} -MEC Average TCMN1 TCMN2 TCMN3 TCMN4 TCMN5 TCMN6 rad24Δ sm	21 + 8 h 126.8±18 196 97 135 106 152 75 111∆ 34 111∆ msh2∆	90.7±17 143 51 88 79 139 44	0 0 0 2 3 1	339 148 223 187 294 120	1:0.73 1:0.53 1:0.65 1:0.75 1:0.91 1:0.59	0 0 0 0 1	Chr 1, 5, 8, 11, 12, 14	2 1 2 3 3 6	21 9 15 7 32 11		26 28 23 16 30 11	- - - -
CLB2-MEC Average TCMN1 TCMN2 TCMN3 TCMN4 TCMN5 TCMN6 rad24Δ sm	21 + 8 h 126.8±18 196 97 135 106 152 75 111∆ 34	90.7±17 143 51 88 79 139 44	0 0 0 2 3 1	339 148 223 187 294 120	1:0.73 1:0.53 1:0.65 1:0.75 1:0.91 1:0.59	0 0 0 0 1	Chr 1, 5, 8,	2 1 2 3 3 6	21 9 15 7 32 11	- - - - - 1 0	26 28 23 16 30 11	- - - - - - 46

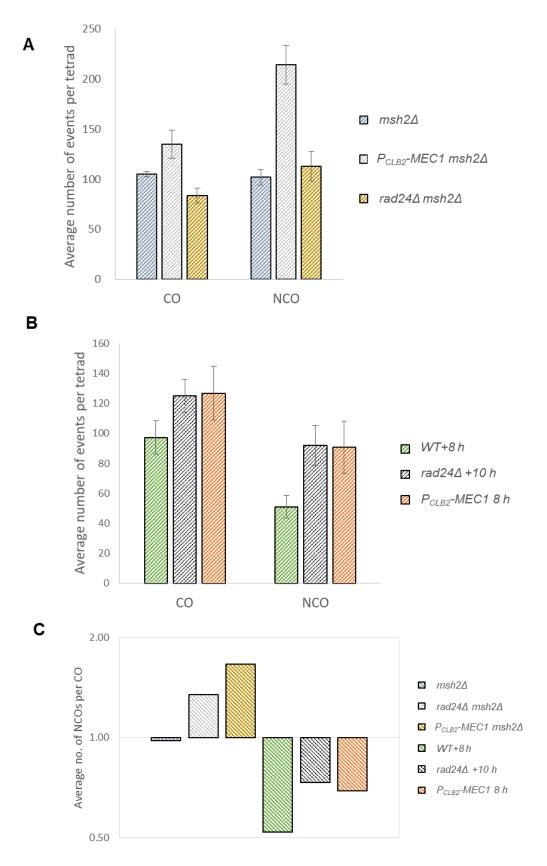


Figure 7.1. Quantity of recombination events detected in Msh2 deficient and prophase arrested *rad24*Δ and *P_{CLB2}-MEC1* strains. All error bars are 95% confidence limits. Strain details are given in Table 2.1, raw event data is available in Table S2. Average number of CO and NCO events per tetrad in A) Msh2 deficient strains, B) prophase arrest strains. C) CO: NCO ratio for all strains, plotted as average no. of NCOs per CO.

Msh2 deficient strains Α В 0.16 0.16 msh2∆ Average density of NCOs per Mb 0.06 0.08 0.06 0.06 0.04 0.02 P_{CLB2}-MEC1 msh2∆ 0.14 Average density of COs per Mbp rad24∆ msh2∆ 0.12 0.1 0.08 0.06 0.04 0.02 0 0 0.0 0.5 1.5 1.0 2.0 0.0 0.5 1.0 1.5 2.0 Length of chromosome (Mb) Length of chromosome (Mb)

Prophase extension strains

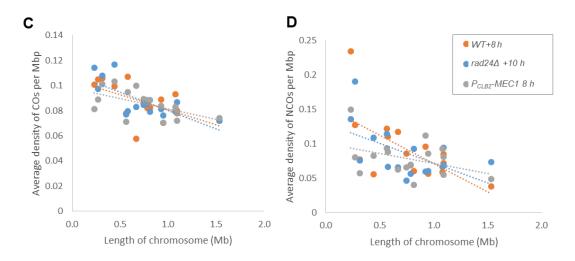


Figure 7.2. Density of recombination events detected in Msh2 deficient or prophase arrested $rad24\Delta$ and P_{CLB2} -MEC1 strains. Strain details are given in Table 2.1, raw event data is available in Table S2. The average number of CO/NCO events per chromosome is divided by the average total CO/NCO count, then divided by the chromosome length in Mbp. Density of A) COs and B) NCOs per Mbp in MMR-deficient strains; C) COs and D) NCOs per Mbp in prophase-extension strains. Dotted lines are linear regressions. R^2 : $msh2\Delta$ CO 0.54, NCO 0.20; $rad24\Delta$ $msh2\Delta$ CO 0.12, NCO 0.01; P_{CLB2} -MEC1 $msh2\Delta$ CO 0.45, NCO 0.31; WT + 8 h CO 0.36, NCO 0.40; $rad24\Delta$ + 10 h CO 0.31, NCO 0.15; P_{CLB2} -MEC1 + 8 h CO 0.55, NCO 0.31.

By contrast, the effect of *NDT80* prophase extension abrogated many of the differences observed between $rad24\Delta$ and P_{CLB2} -MEC1 in the $msh2\Delta$ background. For example, the $rad24\Delta + 10 h$ and P_{CLB2} -MEC1+8 h tetrads had very similar average counts for COs (~125 and ~126.8 respectively) and NCOs (~92 and ~90.7 respectively). However, both were significantly higher than the WT+8 h control (~97.3 COs and ~51 NCOs), an overall ~1.5x increase in recombination event formation (Figure 7.1B).

In the *NDT80* prophase extension WT, a CO:NCO ratio of 1:0.52 is observed, which is increased to 1:0.74 in $rad24\Delta$ and 1:0.72 in P_{CLB2} -MEC1 (Figure 7.1C). As with the $msh2\Delta$ strains, both checkpoint mutants show a disproportionate increase in NCO formation, suggesting a role in the promotion of CO formation, or that there is a maximum limit on CO formation due to CO homeostasis (Martini et al., 2006). The *NDT80* prophase-arrested strains have fewer NCOs per CO than their $msh2\Delta$ equivalents, likely due to the ability to detect more NCOs in a $msh2\Delta$ background (Chapter 5, Section 5.2.1).

Overall, these results indicate that when prophase is extended, both Rad24 and Mec1 have an equal role in limiting the amount of CO and NCO events formed, but are more important for limiting NCOs than COs, and so perhaps are both involved in controlling DSB frequency and promoting CO formation.

The event counts in $msh2\Delta$ compared to NDT80 prophase extension backgrounds seem contradictory for $rad24\Delta$ but not for P_{CLB2} -MEC1. This may be related to the fact that, in non-hybrids, only $rad24\Delta$ is rescued by NDT80 prophase arrest and P_{CLB2} -MEC1 is unaffected. In addition, while P_{CLB2} -MEC1 yeast is more viable than $rad24\Delta$ (~60% vs ~22%), the viability of $rad24\Delta$ is higher than that of P_{CLB2} -MEC1 when $rad24\Delta$ has a hypomorphic Spo11 allele and a prophase length of >=6h (e.g. ~83% in $rad24\Delta$ spo11-D290A +10 h, ~60% in P_{CLB2} -MEC1 or P_{CLB2} -MEC1 +10 h spo11-D290A) (Chapter 3, Figures 3.1A and 3.3B). The reason why $rad24\Delta$ viability surpasses that of P_{CLB2} -MEC1 under these specific circumstances may be that $rad24\Delta$ is less tolerant of an excessive number of DSBs than P_{CLB2} -MEC1, so hypomorphic Spo11 activity is advantageous under these circumstances. A possible explanation for this is that $rad24\Delta$ may have a loss of DSB and/or CO interference, causing any excessive DSBs to form deleterious clusters, while P_{CLB2} -MEC1 may have more normal interference, meaning that extra recombination events are still properly spaced. This is discussed further in Section 7.2.8.

The number of NCOs is likely to be an underestimate caused by events occurring in regions without markers (Mancera *et al.*, 2008). The percentage of observed COs that occur between markers and thus have no detectable conversion tract can be used to estimate the number of NCOs

that may be invisible due to falling between markers. An average of 10.5% of COs in $rad24\Delta$ $msh2\Delta$, 16.6% in P_{CLB2} -MEC1 $msh2\Delta$, 20.2% in $rad24\Delta + 10$ h and 17.6% in P_{CLB2} -MEC1 +8 h had no associated conversion tracts (Table 7.1). Based on this, an additional 12, 35, 19 and 16 NCOs are estimated to have occurred in regions without markers, in $rad24\Delta$ $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$, $rad24\Delta + 10$ h and P_{CLB2} -MEC1 h respectively.

In addition, the number of NCOs detected in MMR-deficient strains that were composed only of hDNA can be used to estimate the number of NCOs that may have occurred in MMR-proficient strains but were repaired invisibly to restoration tracts by MMR. In the MMR-deficient strains, an average of ~38.9% and ~26.6% of NCOs in rad24∆ and P_{CLB2}-MEC1 respectively were composed of hDNA patterns only (Table 7.1). Assuming that in MMR-proficient strains, half of such events are repaired to a conversion and half are restored, an additional 18 and 12 undetected NCOs are predicted to have occurred in $rad24\Delta+10 h$ and P_{CLB2} -MEC1+8 h strains respectively. Overall, the estimated invisible NCO counts for each strain raise the overall NCO count from ~113 to ~125 in $rad24\Delta$ msh2 Δ , from ~214 to ~248 in P_{CLB2} -MEC1 msh2 Δ , from ~92 to ~129 in $rad24\Delta + 10$ h, and from ~91 to ~119 in P_{CLB2} -MEC1 + 8 h. The estimated NCO counts are now similar in both $rad24\Delta$ strains and in P_{CLB2} -MEC1+8 h, but are still much higher in P_{CLB2} -MEC1 msh2\Delta. This suggests that there is a particularly high amount of DSB formation in this background, with the excess all becoming NCOs due to CO homeostasis, or that NCOs are favoured over COs. This may also be the case in P_{CLB2} -MEC1 + 8 h, but the rejection of strand invasion into mismatched sequences by Msh2 may cause more potential NCOs to be repaired with the sister chromatid.

A single $rad24\Delta$ $sml1\Delta$ tetrad was also sequenced. This tetrad displayed highly abnormal meiotic recombination, with only 34 COs and 15 NCOs detected (Table 7.1). This supports the idea that $sml1\Delta$ rescues the $rad24\Delta$ phenotype by boosting nucleotide pools for efficient repair, rather than actually increasing event numbers, unlike either $msh2\Delta$ or NDT80 prophase extension. Thus, the $rad24\Delta$ $sml1\Delta$ tetrad probably best represents the true $rad24\Delta$ phenotype out of all the rescue strains (at least in terms of event numbers), but unfortunately the viability was too low to sequence enough tetrads for further analysis.

Two $rad24\Delta$ $msh2\Delta$ $sml1\Delta$ tetrads were also sequenced; the two repeats were quite variable, with one having 92 COs and 73 NCOs, while the other had 61 COs and 26 NCOs (Table 7.1). These features are generally similar to those of $rad24\Delta$ $msh2\Delta$ tetrads.

7.2.2. Loss of CO assurance in rad244

In WT, $msh2\Delta$ and WT+ 8 h meiosis, there is a negative correlation between chromosome length and the density of DSB formation, dependent on Zip3 (Thacker *et al.*, 2014; Chapter 5, Section 5.2.2). To determine whether this correlation is affected by Mec1 or Rad24 deficiency, the relationship between chromosome length and CO and NCO number was examined in NDT80 prophase-extended and $msh2\Delta$ checkpoint mutant strains (Figure 7.2). In all of the backgrounds examined, the density of both COs and NCOs decreases with chromosome size, indicating that the checkpoint mutant strains have a normal relationship between DSB/CO formation and chromosome length.

Normally, meiotic COs are distributed so that each chromosome has at least one CO, which helps prevent nondisjunction of chromosomes. Crossover assurance is the name for the observation that every chromosome gets a CO, regardless of length. However, many chromosomes without COs were observed in $rad24\Delta$ strains (Table 7.1). Among the six $rad24\Delta$ msh2 Δ tetrads, two had two chromosomes without COs, and two had one chromosome without a CO. The chromosomes affected were Chr 1, 5, 6, 15 and 8 twice. Most of these are among the shortest chromosomes, but Chr 15 is the third longest. This suggests that the low number of COs in $rad24\Delta$ msh2 Δ affects crossover assurance, or that rad24Δ directly regulates CO assurance independently of CO numbers. In $rad24\Delta + 10$ h strains, only two out of six tetrads had one chromosome without a CO, which was the short Chr 6 in both cases (Table 7.1). This suggests that crossover assurance is more reliable in $rad24\Delta$ when prophase is extended, perhaps due to the ~1.5x increase in CO frequency observed in $rad24\Delta + 10$ h vs $rad24\Delta$ msh2 Δ , which could simply mean that there are enough events for each chromosome to receive one by chance. The formation of noncrossover products between homologous chromosomes also contributes to their stable pairing, though not as much as CO formation (Peoples-Holst & Burgess, 2005). All the CO-less chromosomes in $rad24\Delta$ msh2 Δ has at least one NCO event; however, neither of the ones in $rad24\Delta + 10$ h had an NCO.

Among P_{CLB2} -MEC1 strains, chromosomes without COs were infrequent. Only one out of six P_{CLB2} -MEC1 tetrads had a chromosome without a detected CO (or NCO), Chr 8, and one out of six P_{CLB2} -MEC1 +8 h tetrads had a chromosome without a CO (but two NCOs), Chr 1. However, these cases may not represent a loss of crossover assurance. Examination of recombination in these two specific tetrads (known as 'TCMM4' and 'TCMN6', for 'Tetrad P_{CLB2} -MEC1 $msh2\Delta$ /Ndt80' revealed some unusual features not seen in other P_{CLB2} -MEC1 tetrads. The chromosome 8 apparently without a CO in the P_{CLB2} -MEC1 $msh2\Delta$ TCMM4 appears to actually have undergone a mitotic duplication of the S288c copy prior to sporulation. This is apparent because from the final tetrad, two spores had normal S288c chromosomes and two had mixed reads for almost the entire length of chromosome 8, indicating that they had two copies of the

chromosome, one from each parent (Figure 7.3A). Thus, no COs could be detected on this chromosome, but some could have occurred invisibly. In addition, the P_{CLB2} -MEC1 + 8 h tetrad TCMN6 had a number of partial chromosome conversions; two spores contain chromosomes where a substantial portion has been converted to the other parental genotype, which must have occurred prior to meiotic S phase, or only one copy would have been converted (Figure 7.3B). Approximately half of Chr 4, two-fifths of Chr 7 and one quarter of Chr 10 have been converted to entirely S288c, SK1 or S288c sequence respectively. The unaffected portions of each chromosome display normal meiotic recombination, with both COs and NCOs evident. However, the chromosome without a CO in this tetrad, Chr 1, did not have a partial conversion, so this may still represent a loss of CO assurance.

The observation that mitotic duplication events have occurred in P_{CLB2} -MEC1 may be related to the use of the CLB2 promoter, which could potentially affect Mec1 expression during mitotic growth, causing Mec1 to be expressed at inappropriate times, or in inappropriate quantities. The single $rad24\Delta$ $sml1\Delta$ tetrad had six chromosomes lacking a CO, Chrs 1, 5, 8, 11, 12 and 14, most of which are not especially short. This tetrad likely represents a unique case. Out of 196 dissected tetrads, only one four spore viable was obtained. If all $rad24\Delta$ $sml1\Delta$ tetrads have so many chromosomes without COs, it is likely that this surviving tetrad was 'lucky' in that all chromosomes fortuitously segregated correctly. Each of the chromosomes without a CO in $rad24\Delta$ $sml1\Delta$ also lacked any detectable NCOs, so NCO formation did not contribute to homolog pairing either. Of the two $rad24\Delta$ $msh2\Delta$ $sml1\Delta$ tetrads, one had one chromosome without a CO, but two NCOs (Chr 3), while the other had two chromosomes without COs or NCOs (Chr 3 and 8).

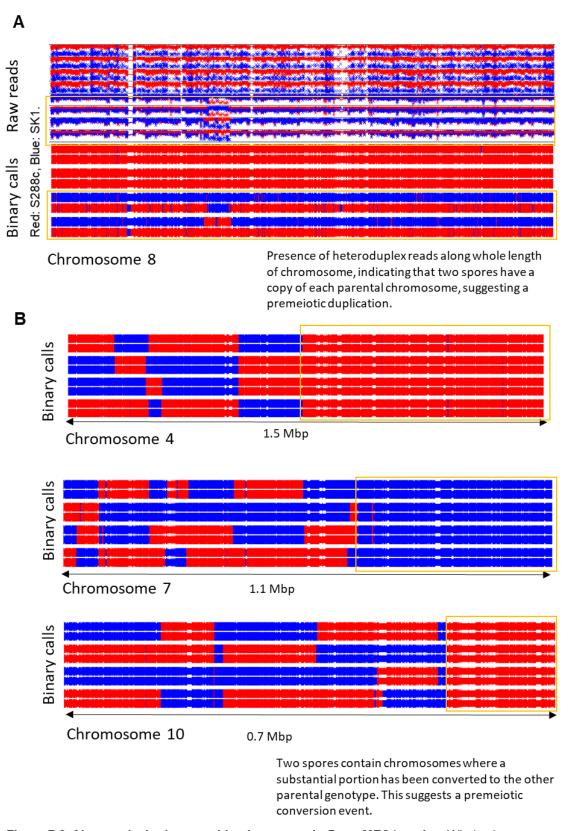


Figure 7.3. Abnormal mitotic recombination events in P_{CLB2} -MEC1 strains. Whole chromosome recombination patterns were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight horizontal lines corresponding to the eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. A) A duplication of S288c Chr 8 in a P_{CLB2} -MEC1 msh2 Δ tetrad (TCMM4); B) partial chromosome conversions on Chr 4, 7 and 10 in a P_{CLB2} -MEC1 +10 h tetrad (TCMN6). Raw reads indicate the frequency of reads containing SK1 or S288c type polymorphisms detected at each position; these are translated into binary calls, which can only be SK1 or S288c.

Rad24 is known to interact with Zip3, independently of Mec1 (Shinohara et al., 2015), so this may explain the difference between Rad24 and Mec1 in establishing the relationship between chromosome length and recombination event density. However, the *NDT80* prophase-arrested $rad24\Delta$ strain did not display such a defect. This suggests that prophase length, and/or the lower CO count observed in $rad24\Delta$ $msh2\Delta$ compared to $rad24\Delta$ +10 h (Figure 7.1), may be important for establishing the relationship between chromosome length and DSB/CO numbers in the absence of the Rad24-Zip3 interaction.

Alternatively, the increased incidence of chromosomes without crossovers among $rad24\Delta$ strains may simply be related to low CO counts, because the tetrads with the lowest CO counts are also those most likely to have a chromosome without a CO (Figure 7.4). Since P_{CLB2} -MEC1 strains tend to have higher CO counts than $rad24\Delta$ strains, they may be expected to have fewer chromosomes without COs, just by chance.

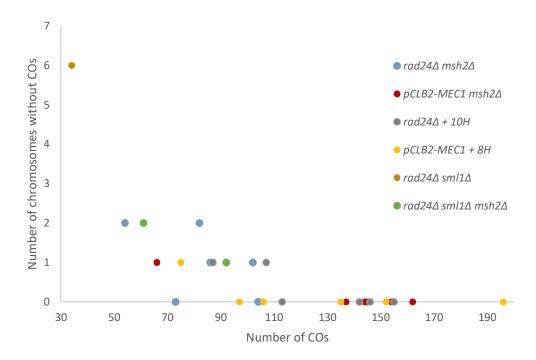


Figure 7.4. Relationship between CO number and the number of chromosomes without COs in *rad24*Δ and *pCLB2-MEC1* strains. The number of COs detected in each meiosis is plotted against the number of chromosomes lacking a CO in that meiosis.

7.2.3. The complexity of detected recombination events is altered in checkpoint mutants

Recombination events in each strain were categorized further as described in Chapter 4, Section 4.2.9 (Table 7.2, Figure 7.5, Figure 7.6). Briefly, Group 1 contains events with simple signatures, Groups 2 and 3 events with signatures indicative of complex repair, and Group 0 contains events likely to be part of a cluster of Spo11-DSBs occurring closer than 1.5kb.

For the MMR-proficient *NDT80* prophase extension strains, events could not be categorized in full detail due to the inability to detect hDNA tracts (Group 2 COs and NCOs, which contain *trans* hDNA [symmetrical hDNA patterns on the same or different chromatids], cannot be seen). Due to this, proportions of events in each category cannot be compared between the $msh2\Delta$ and NDT80 prophase arrest backgrounds.

In addition, because the MMR-deficient strains were tetrads rather than octads, the ability to detect *trans* hDNA on the same chromatid is lost because there is no strand information (as discussed in Chapter 4, Section 4.2.5), meaning that no NCOs composed of *trans* hDNA will be detected (however, trans hDNA on different chromatids can be seen, as in CO Group 2). To allow proper comparison with the $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ tetrads, the $msh2\Delta$ octads were reanalysed as 'mock tetrads' summing the reads from each pair of mother-daughter spores to give an output resembling that of a $msh2\Delta$ tetrad, with a mixture of reads at heteroduplex positions. Another way in which $msh2\Delta$ octads and tetrads differ is in the ability to detect duplications causing the presence of mixed reads, which will instead be categorized as NCOs (as discussed in Section 4.2.6). This is discussed further in Section 7.2.7.

In the MMR-deficient strains, there was a reduced proportion of COs detected in P_{CLB2} -MEC1 and $rad24\Delta$ $msh2\Delta$ that displayed signatures of complex repair (Groups 2 and 3), and an increased proportion of COs likely to have occurred as part of a cluster of Spo11-DSBs (Group 0) (Figure 7.5A). In $rad24\Delta$ $msh2\Delta$, the proportion of COs classified as being part of DSB cluster was also increased, though not to the same extent as in P_{CLB2} -MEC1 $msh2\Delta$.

For both $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$, there was a lower proportion of simple NCOs (Group 1) and a higher proportion of NCOs occurring as part of a cluster of Spo11-DSBs (Group 0) (Figure 7.5B). Note that in $msh2\Delta$ tetrads, any NCO events that would have displayed trans hDNA in an octad, and thus be sorted into Group 2, would be sorted into Group 1 instead, so the decrease in Group 1 NCOs could also reflect a reduction in Group 2 NCOs.

Table 7.2. Data summary of the percentage of CO and NCO events in each group and class.

For events detected in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$, $rad24\Delta$ $msh2\Delta$, WT+8 h, P_{CLB2} -MEC1 +8 h, and $rad24\Delta$ +10 h backgrounds. A short description of the characteristics of each group and class is given.

	Crossover Groups	msh2Δ	pCLB2-	10.14	rad24∆			pCLB2-	
Group 1: Simple - no trans hDNA or incompatible hDNA			MEC1 msh2Δ	rad24∆ msh2∆	msh2∆ sml1∆	WT	WT +8H	MEC1 +8H	rad24∆ +10H
Group 1.	Simple - no trans hora or incompatible hora	as tetrad %	/////////////////////////////////////	шsп <u>гд</u> %	%	%	W 1 +оп	%	*10H
Total		61.54	64.24	59.49	57.16	92.95	89.97	74.51	74.79
Class 1	(5:3)_(4:4aCO) - CO with hDNA tract	4.45	2.1	5.19	2.12		00.01		0
Class 2	(3:5)_(4:4aCO) - CO with hDNA tract	4.24	2.72		3.17				
Class 3	(5:3)_(4:4)_(4:4aCO) - hDNA, restoration tract, CO pattern	0.74	0.25	0	0				
Class 4	(4:4aCO)_(5:3)_(4:4a) - Same as above but in opposite direction.	0.74	0.25	0.8	0				
Class 5	(3:5)_(4:4)_(4:4aCO) - hDNA, restoration tract, CO pattern	0.11	0.37	0.2	0				
Class 6	(4:4aCO)_(3:5)_(4:4a) - Same as above but in opposite direction.	0.95	1.11	0.4	0				
Class 7	(5:3)_(6:2)_(4:4aCO) - hDNA, conversion tract, CO pattern	1.48	1.49	2	2.12				
Class 8	(6:2)_(5:3)_(4:4aCO) - Same as above but in opposite direction.	1.8	0.87	1.6	0				
Class 9	(3:5) (2:6) (4:4aCO) - hDNA, conversion tract, CO pattern	2.01	0.5	1.4	1.06				
Class 10	(2:6)_(3:5)_(4:4aCO) - Same as above but in opposite direction.	2.33	2.1	2.79	2.12				
Class 11		1.8	0.62	2.2	1.06				
Class 12	Anything else	16	16.34	15.97	19.05	5.37	9.51	8.02	9.73
	(6:2)_(4:4aCO) - CO with conversion tract	5.61	9.16	4.59	8.47			22.6	
	(2:6) (4:4aCO) - CO with conversion tract	6.36	9.78	8.58	7.41	37.25	32.9	26.41	22.4
Class 100	04:4aCO: CO in marker-sparse region	12.92	16.58	10.58	10.58	17.11	21.08	17.48	
	Presence of trans hDNA, but not incompatible hDNA								
Total		9.53	3.83	9.38	4.23	C	0	0	0
	adjacent 5:3 5:3a, plus any other segments	2.22	1.11	2.79	0				
	adjacent 3:5 3:5a, plus any other segments	1.91	0.62	1.2	1.06				
	non-adjacent trans hDNA i.e. have conversion or restoration tract in								
Class 32	between	5.4	2.1	5.39	3.17				
	Presence of incompatible hDNA								
Total		22.56	12.5	18.57	11.64	2.68	1.8	5.78	5.73
Class 20	Contains 4:4i (symmetrical hDNA)	20.02	11.63	16.57	11.64	2.68	1.8	5.78	
	Anything else	2.54	0.87	2	0				
	Multiple Spo11-DSBs: Affects 3 or 4 chromatids								
Total		6.35	19.43	12.57	26.98	4.37	8.22	19.71	19.46
Class 2	CO ± NCO involving 3 or 4 chromatids	5.61	14.23		11.64			14.06	
	CO ± NCO involving 3 or 4 chromatids, contains different 4:4								
Class 3	patterns	0.74	5.2	2.99	15.34	0.34	3.34	5.65	8.53
	Noncrossover Groups		pCLB2-		rad24∆			pCLB2-	
		msh2∆	MEC1	rad24∆	msh2∆			MEC1	rad24∆
Group 1:	SDSA-like: Affects one chromatid, no trans hDNA	as tetrad	msh2∆	msh2∆	sml1∆	WT	WT +8H	+8H	+10H
		%	%	%	%	%	%	%	%
Total		79.94	68.04	67.1	63.23	80.38	85.78	60.29	52.73
Class 1	5:3 - composed of hDNA only	20.76	12.7	19.62	17.65				
Class 2	3:5 - composed of hDNA only	23.67	13.09	18.58	13.97				
	5:3_6:2_5:3 or 5:3_4:4_5:3 - Conversion/restoration tract between								
Class 3	hDNA	8.93	3.66	2.36	4.41				
	3:5_6:2_3:5 or 3:5_4:4_3:5 - Conversion/restoration tract between								
Class 4	hDNA	8.83	3.51	4.87	0.74				
Class 7	6:2 plus any other segments	4.91	5.69	3.24	1.47	0.63	1.96	0.92	2.54
Class 8	2:6 plus any other segments	5.32	6.24	5.16	4.41	1.27	0.98	1.47	2.36
Class 10	6:2 - composed of conversion tract only	4.01	11.38	6.19	11.76	36.71	47.06	23.71	21.92
Class									
10.1	2:6 - composed of conversion tract only	3.51	11.77	7.08	8.82	41.77	35.78	34.19	25.91
Group 2:	dHJ-dissolution-like: Affects one chromatid, has trans hDNA								
This grou	up not applicable to tetrads								
		0	0	0	0	0	0	0	0
Group 3:	Affects two non-sister chromatids								
Total		7.82	5.69	8.85	8.82	2.53	1.96	2.94	3.26
Class 30	Contains 4:4i (symmetrical heteroduplex)	4.51	4.75	6.34	7.35	2.53	1.96	2.94	3.26
Class 31	Anything else	3.31	0.94	2.51	1.47				
Group 0:	Multiple Spo11-DSBs: Affects two sister, 3 or 4 chromatids								
Total		12.24	26.26	24.04	30.88	17.09	13.23	36.76	44.02
Class 1	NCO involving 2_sis, 3 or 4 chromatids	3.41	7.79	6.49	15.44	1.27	2.94	9.56	7.25
Class 2	NCO+CO involving 3 or 4 chromatids	5.12	8.81	6.19	7.72	7.59	7.35	15.99	12.68
	NCO±CO involving 3 or 4 chromatids, contains different 4:4								
Class 3	patterns	3.71	9.66	11.36	7.72	8.23	2.94	11.21	24.09

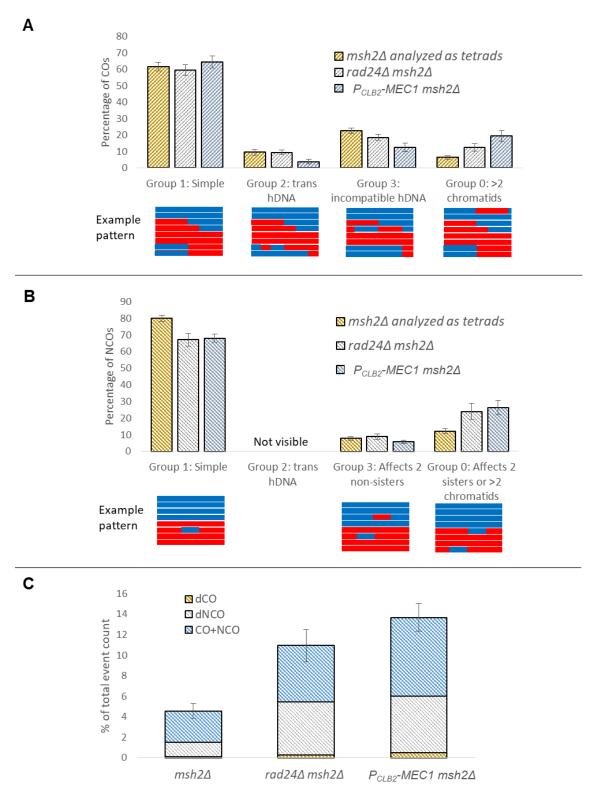


Figure 7.5. Categories of recombination events detected in Msh2-deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains. Error bars are 95% confidence limits. Strain details are given in Table 2.1, raw event data is available in Table S2. A simple example event for each category is shown directly beneath the X-axis, with the red and blue lines corresponding to the eight strands of DNA present during meiotic recombination, four from each parent. A) Average percentage of COs and B) NCOs in each group. Group 2 NCOs are not possible to detect in msh2 Δ tetrads, and will instead appear as Group 1 NCOs. C) Comparison of the average percentage of events thought to be DSB clusters (overall Group 0), with sublevels indicating whether the clusters were inferred to be a double CO, double NCO or CO plus NCO.

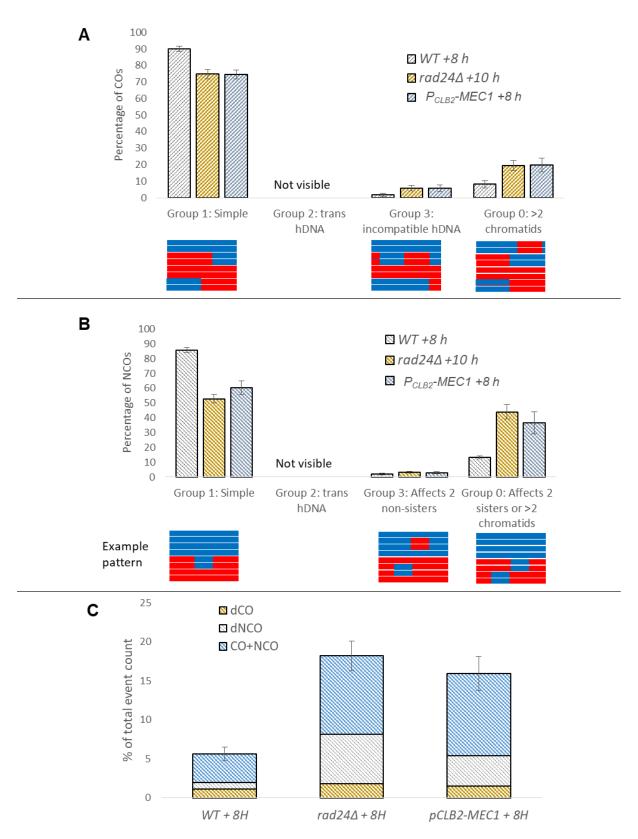


Figure 7.6. Categories of recombination events detected in *rad24*Δ and *P_{CLB2}-MEC1* strains with prophase extension. Error bars are 95% confidence limits. Strain details are given in Table 2.1, raw event data is available in Table S2. A simple example event for each category is shown directly beneath the X-axis, with the red and blue lines corresponding to the eight strands of DNA present during meiotic recombination, four from each parent. A) Average percentage of COs and B) NCOs in each group. Group 2 is not available in MMR-proficient strains. C) Comparison of the average percentage of events thought to be DSB clusters (overall Group 0), with sublevels indicating whether the clusters were inferred to be a double CO, double NCO or CO plus NCO.

In the MMR-proficient *NDT80* prophase extension strains, P_{CLB2} -MEC1 +8 h and $rad24\Delta +10$ h displayed very similar proportions of subcategories for both COs and NCOs (Figure 7.5A,B). Both had a reduced proportion of simple NCOs (Group 1), but an increase in complex repair (Group 3) and NCOs occurring in DSB clusters (Group 0). For COs, both checkpoint mutants had a reduction in the proportion of simple-signature COs (Group 1) and an increase in COs occurring in DSB clusters (Group 0). Note that Group 2 is not available in MMR-proficient backgrounds, so events with this signature of complex repair will be likely categorized into Group 1.

The main conclusion from this analysis is that in all four checkpoint mutant backgrounds, there was a higher proportion of CO and NCO events occurring as part of a DSB cluster compared to the relevant WT control. To examine this further, the proportion of all recombination events classified into Group 0 was compared, equivalent to the number of suspected DSB clusters (Figure 7.5C, 7.6C). This differs from looking at the proportion of COs or NCOs in Group 0, in that each cluster contains two events which are not counted separately.

The percentage of all detected recombination events that were classified as being a DSB cluster was ~4.6% in $msh2\Delta$, ~13.7% in P_{CLB2} -MEC1 $msh2\Delta$ and ~10.9% in $rad24\Delta$ $msh2\Delta$, with the mean values for $rad24\Delta$ and P_{CLB2} -MEC1 being within 95% confidence intervals (Figure 7.5C). Similarly for NDT80 prophase-arrest strains, ~5.6% of WT+8 h events occurred as part of a DSB cluster, compared to ~15.9% of p_{CLB2} -MEC+8 h and ~18.1% of $rad24\Delta+10$ h events (Figure 7.6C). Again, the mean values for $rad24\Delta$ and P_{CLB2} -MEC1 were within 95% confidence intervals. The proportion of clusters classified as double CO, double NCO or CO+NCO is roughly equal across strains, with CO + NCO clusters being most commonly observed.

Double COs are defined here as a double reciprocal exchange involving all four chromatids within 1.5kb. Among nine octads tested, there were 2 dCOs in $msh2\Delta$; in P_{CLB2} -MEC1 $msh2\Delta$, there were nine detected among six tetrads, and in $rad24\Delta$ $msh2\Delta$, three in six tetrads. The results of a one-way ANOVA [Methods 2.23] indicate a significant difference between sample means (P=0.028). The results of a post-hoc Tukey test [Methods 2.24] indicate that the number of dCOs in P_{CLB2} -MEC1 $msh2\Delta$ is significantly higher than the number in $msh2\Delta$ (P<0.05), though not significantly higher than the number in $rad24\Delta$ $msh2\Delta$ is not significantly higher than in $msh2\Delta$. Double COs are expected to be a rare occurrence under conditions of crossover interference, suggesting a loss of CO interference in P_{CLB2} -MEC1 $msh2\Delta$.

For *NDT80* prophase arrest strains, there were six dCOs detected in four tetrads in WT+8 h, seventeen in six P_{CLB2} -MEC1+8 h tetrads and eighteen in six $rad24\Delta$ +10 h tetrads. However, the

means for each were not significantly different to each other according to a one-way ANOVA (P=0.4285 [Methods 2.23]).

The number of definite, four-chromatid dCOs can be used to estimate how many three- and two-chromatid dCOs there should be (as described in Chapter 5, section 5.2.3). The true number of dCOs should be four times as high, if it is assumed that double DSBs are equally likely to be resolved as COs regardless of which chromosomes they occur on and that COs are equally distributed among the four chromatids (in terms of both initiating DSB and repair donor). Under these circumstances, $\frac{1}{4}$ of double COs would involve all four chromatids, $\frac{1}{2}$ would involve 3 chromatids (indistinguishable from 1 CO + 1 NCO) and $\frac{1}{4}$ would involve two chromatids (indistinguishable from double NCO). This means that the number of dCOs reported here is likely an underestimate, and some CO+NCO or NCO+NCO clusters may actually be dCOs, giving revised estimates of eight dCOs in nine $msh2\Delta$ octads, 36 in six P_{CLB2} - $msh2\Delta$ tetrads and 12 in six $rad24\Delta$ $msh2\Delta$ tetrads; 24 dCOs in four WT + 8 h tetrads, 68 in six P_{CLB2} -mec1 + 8 h, and 72 in six $rad24\Delta$ + 10 h tetrads.

Another specific category of event within Group 0 are those containing a 4:0, 8:0 or 7:1 segregation of markers, which is a strong indication of multiple events. Events containing a 4:0 or 8:0 segment are only counted if they are associated with at least one other different segment (i.e. do not have perfect overlap), else they are considered possibly to be mitotic in origin.

In $msh2\Delta$, one 8:0 and four 7:1 events were observed in nine octads, while $rad24\Delta$ $msh2\Delta$ had four 8:0 and twelve 7:1 events in six tetrads, P_{CLB2} -MEC1 $msh2\Delta$ displayed nineteen 8:0 and thirty-two 7:1 events across six tetrads (Table 7.1). These numbers are significantly higher than $msh2\Delta$ for both $rad24\Delta$ and P_{CLB2} -MEC1 (T-test, P=0.019 and $2x10^{-6}$ respectively), and in addition, P_{CLB2} -MEC1 $msh2\Delta$ also has significantly more than $rad24\Delta$ $msh2\Delta$ (T-test, P=0.006). Among NDT80 prophase arrest trains, WT+8 h had ten 4:0 events in four tetrads, while $rad24\Delta+10$ h had fifty-six 4:0 events in six tetrads and P_{CLB2} -MEC1+8 h had ninety-five 4:0 events in six tetrads. The frequencies of 4:0 events observed in both $rad24\Delta+10$ h and P_{CLB2} -MEC1+8 h were significantly higher than the frequency observed in WT+8 h (P=0.014 and P=0.025, respectively), but the frequencies observed in $rad24\Delta+10$ h and P_{CLB2} -MEC1+8 h were not significantly different from each other.

An increase in such events is strongly suggestive of a loss of *trans* DSB interference, as two DSBs must have formed at the same location on different chromatids, so these results are suggestive of DSB interference loss in P_{CLB2} -MEC1 $msh2\Delta$, $rad24\Delta+10$ h and P_{CLB2} -MEC1+8 h. The difference observed between NDT80 prophase-arrest and MMR-deficient strains may be simply due to the

increased ability to detect such events in the absence of Msh2, since 7:1 segments could be converted to either 4:0 or 3:1 events by MMR.

Another potential indication of DSB cluster formation is the presence of 6:2 or 2:6 segregation patterns in MMR-deficient strains, as described in Chapter 6, Section 6.2.4. This is discussed in the following section.

7.2.4. Conversion tracts observed in MMR-deficient recombination may represent DSB clusters

In an MMR-deficient background, 6:2 or 2:6 segregation patterns ('conversion segments') are thought to result from the repair of gaps, which could arise either from two close Spo11-DSBs on the same chromatid or from the removal of a 3' end after invasion of a homologous sequence, e.g. the formation of a nick during topological processing of a dHJ (Chapter 4, Figure 4.9 D, H and Figure 4.10 E, H). Thus, an increase in such events could be suggestive of increased DSB formation, or increased nicking (as discussed in Chapter 6, Section 6.2.4).

In addition, segments of 8:0 segregation could be considered to essentially be two overlapping conversion tracts, meaning that these could also be produced by concerted DSB formation, although there would have to be four close Spo11-DSBs. As discussed in the previous section, segments of 8:0 segregation are increased in $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ compared to $msh2\Delta$.

Analysis of conversion segments can only be done in Msh2-deficient backgrounds because MMR activity produces many 6:2/2:6 signatures which would obscure any conversion tracts produced by multiple DSBs (Figure 4.9 I, 4.10 I).

The occurrence of events containing a conversion segment was examined in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$ and $rad24\Delta$ $msh2\Delta$ (Figure 7.7A). On average, $msh2\Delta$ octads contained ~80 events that have at least one conversion segment events (39% of all events), $rad24\Delta$ $msh2\Delta$ tetrads had an increase to ~98 (50% of all events), and P_{CLB2} -MEC1 $msh2\Delta$ tetrads had an increase to ~196 (56% of all events).

While in $msh2\Delta$, conversion segments were more frequently observed as part of CO events than NCO events, there is an increase in the number of NCOs containing a conversion segment in $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ (Figure 7.7B). This is not simply due to the increase in NCO numbers in the mutant strains, because in $msh2\Delta$, ~52.4% of all COs and ~23.6% of all NCOs contained a conversion segment, while in $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$

respectively, ~65.3%/~67.6% of all COs and ~38.9%/ ~49.6 of all NCOs contained a conversion segment. This indicates that the loss of Rad24 or Mec1 activity increases the probability that a conversion segment will occur as part of an NCO event as opposed to a CO event.

Conversion segments could be produced by concerted DSBs on the same chromatid or by nicking during repair. Since multiple DSBs occurring in proximity is expected to be a rare occurrence, events containing multiple separate conversion segments may be more likely to be caused by nicking during repair (as they would otherwise necessitate the formation of four or more close DSBs), and events containing a single conversion segment may be more likely to be caused by concerted DSB formation.

The number of conversion segments that were part of an event that contained a single or multiple conversion segments was compared in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$ and $rad24\Delta$ $msh2\Delta$ (Figure 7.7 C). For both $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ strains, the majority (~67% and ~61% respectively) of conversion segments occurred as part of an event containing only one conversion segment. However, in $rad24\Delta$ $msh2\Delta$, there was a roughly equal number (within 95% confidence intervals) of conversion segments occurring as part of an event containing one or multiple conversion segments.

As explained in Chapter 6 Section 6.2.4., if single-conversion segment events are produced by concerted DSBs, they may be expected to occur in strong Spo11 hotspots, or spanning multiple hotspots. If multiple-conversion segment events are produced by nicking, they may be expected to be shorter in length, because the nicking enzyme should cause relatively little degradation, and few markers will be converted during repair of the single strand break.

Using Spo11 location data from Pan *et al.* (2011), the observed and expected values of Spo11 hits for a conversion segment region can be calculated, as described in Chapter 6, Section 6.2.4. To examine differences in conversion segment length and heat, the medium length estimate and the ratio of the observed and expected numbers of Spo11 HpM was calculated for each segment, and plotted separately for segments occurring in events with single or multiple conversion segments (Figure 7.7 D&E).

For all three strains, conversion segments from events containing only one conversion segment are more likely to have a higher than expected number of Spo11 hits in the vicinity; for single conversion segments, ~40% of segments in $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ and ~50% of segments in $rad24\Delta$ $msh2\Delta$ have an observed/expected ratio <1, while ~60% of multiple-segment-event conversion segments have an observed/expected ratio of <1 (Figure 7.7D).

For all three strains, conversion segments that occur as part of events with multiple conversion segments are likely to be slightly shorter than those occurring in events with a single conversion segment (Figure 7.7E). In addition, for conversion segments in both single-segment or multiple-segment events, P_{CLB2} -MEC1 $msh2\Delta$ tends to have conversion segments that are on average around 100bp longer than those observed in $msh2\Delta$, while $rad24\Delta$ $msh2\Delta$ tends to have segments around 50bp longer than $msh2\Delta$.

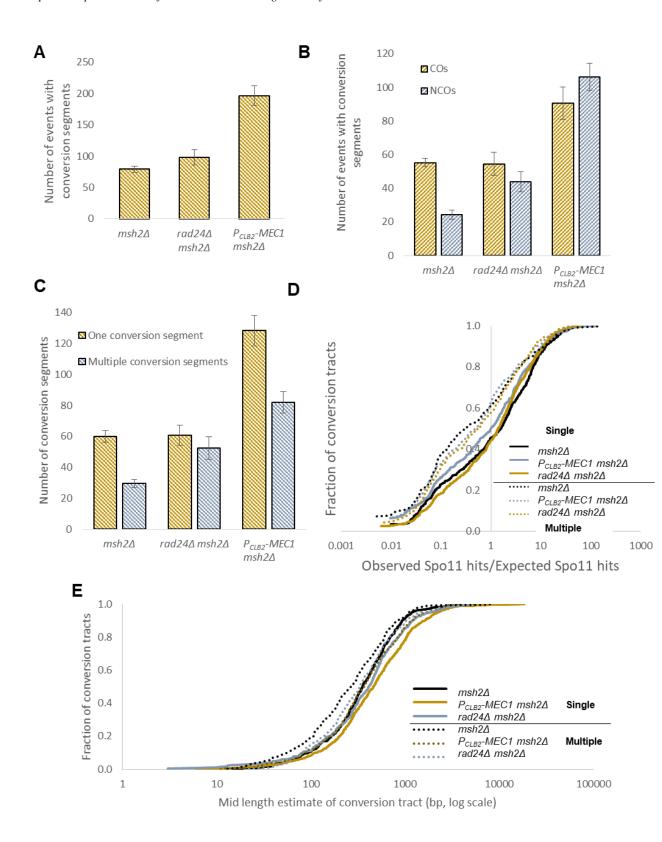
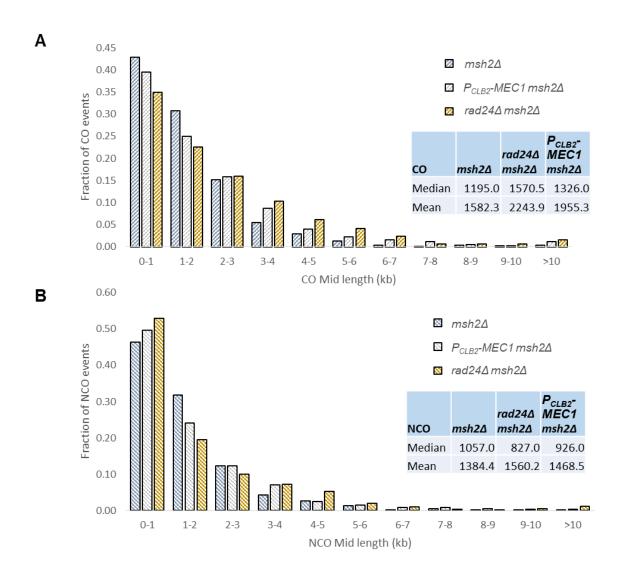


Figure 7.7. Comparison of conversion segment features detected in msh2Δ, P_{CLB2}-MEC1 msh2Δ and rad24Δ msh2Δ strains. A) Average number of events containing at least one conversion segment. B) Average number of CO and NCO events containing at least one conversion segment. C) Average number of conversion segments that are part of an event with a single conversion segment, or with multiple conversion segments. D) Cumulative fraction of events with single or multiple conversion segments with an increasing observed Spo11 hits/expected Spo11 hits ratio. E) Cumulative fraction of events with single or multiple conversion segments with an increasing mid length estimate.

As with the analysis performed in *tel1*Δ strains (Chapter 6, Section 6.2.4), these results suggest that there is some evidence that there are two groups of conversion-tracts: 1), those that occur in hotter regions, have longer lengths and occur in isolation, and 2), those that occur in colder regions, have shorter lengths and occur in multiples. The two groups are predicted to generally correspond to the local formation of multiple Spo11-DSBs on the same chromatid and 3' nicking during repair, respectively (although there is likely some overlap between the two). The reasoning for this is that events in hotter regions are expected to be more likely to have multiple DSBs, while those in colder regions are expected to have fewer DSBs; events with multiple conversion segments are less likely to be produced by multiple DSBs because each additional conversion segment would require the formation of another two Spo11-DSBs, which should be limited by DSB interference (although this may be reduced or missing in the mutants); and enzymatic nicking is expected to produce shorter conversion segments due to causing little degradation of DNA.

There is no particular difference in the formation of either group between $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$, but $rad24\Delta$ $msh2\Delta$ appears to have slightly more conversion segments occurring in events containing multiple conversion segments, and also conversion segments occurring in events with a single conversion segment tend to occur in slightly colder regions; this may indicate that $rad24\Delta$ $msh2\Delta$ is more likely to have conversion tracts produced by 3' nicking during repair than the other strains.

It should also be noted that conversion segments occurring within complex (Group 0) events are not included in this analysis, because conversion segments can be 'interrupted' by pattern changes on different chromatids, meaning that the overall segregation pattern may not reflect the true nature of a 6:2 segment (e.g. a single 6:2 segment may appear to be composed of separate 6:2 segments interrupted by other patterns, or to have a shorter length). Complex events are also thought to be produced by DSB clusters (although not necessarily occurring on the same chromatid, unlike those that may produce 6:2 segments), and are increased in both $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ (Section 7.2.3).


7.2.5. Event length is altered in checkpoint mutants

The length of recombination event tracts may be indicative of the extent of D-loop/dHJ migration and/or resection (Chapter 4, Figure 4.9/4.10), because longer resection or migration distances are predicted to correspond to longer tracts of marker changes. The length of a recombination event may also be an indicator of event complexity, because long events can be produced by two separate events occurring nearby and overlapping.

To compare event lengths in $msh2\Delta$ strains, event mid lengths were categorized into bins (Figure 7.8 A&B). Event mid lengths are used rather than the maximum or minimum length, because on average, they are most likely to approximate the true event length (as described in Chapter 5, Section 5.2.4, Figure 5.3A). The median and mean event mid lengths are also given in Figure 7.8. Compared to $msh2\Delta$, both $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ have an increase in CO lengths, but more so in $rad24\Delta$ $msh2\Delta$. NCO event lengths do not differ much between the strains, but $rad24\Delta$ $msh2\Delta$ has some very long (>10kb) NCOs, unlike $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$. A long event example is shown in Figure 7.8C.

Event lengths in *NDT80* prophase extension strains were also examined (Figure 7.9 A&B). Here, a striking increase in the proportion of very long CO and NCO events, including those >10kb long, is observed in both $rad24\Delta+10 h$ and P_{CLB2} -MEC1+8 h compared to WT+8 h. Again, CO and NCO lengths in $rad24\Delta+10 h$ are also longer than those in P_{CLB2} -MEC1+8 h. Some long event examples are shown in Figure 7.10.

It was previously found that the *NDT80*-arrest WT strain has somewhat increased event lengths compared to $msh2\Delta$ (Chapter 5, Figure 5.3 A and B), which suggests that event lengths may increase during NDT80 prophase arrest (possibly because of continuing resection or D-loop migration). If so, this phenotype may be exacerbated by the loss of the checkpoint proteins. Alternatively, long events may represent DSB clusters, where overlapping recombination signatures (up to 1.5kb apart) merge into a single apparently large recombination event, or Msh2 activity may contribute to event length somehow. Since both CO and NCO lengths are increased in $rad24\Delta$ $msh2\Delta$, $rad24\Delta+10$ h and P_{CLB2} -MEC1+8 h, the increased length is unlikely to be caused by dHJ migration because most, if not all, NCOs are formed by SDSA. However, only CO, and not NCO, lengths are increased in P_{CLB2} -MEC1 $msh2\Delta$, so dHJ migration is a possible explanation for this change.

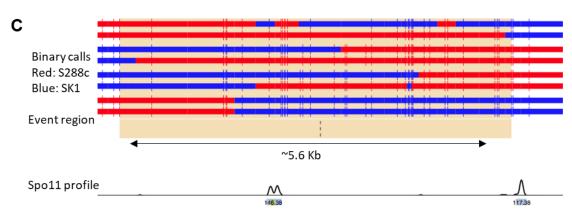


Figure 7.8. Mid length estimates of recombination events detected in Msh2 deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains. Strain details are given in Table 2.1, raw event data is available in Table S2. Histogram of mid length estimates for A) CO and B) NCO events. C) An example of a 5598bp event in a $rad24\Delta$ msh2Δ tetrad, in this case actually two COs occurring in proximity. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan et al., 2011).

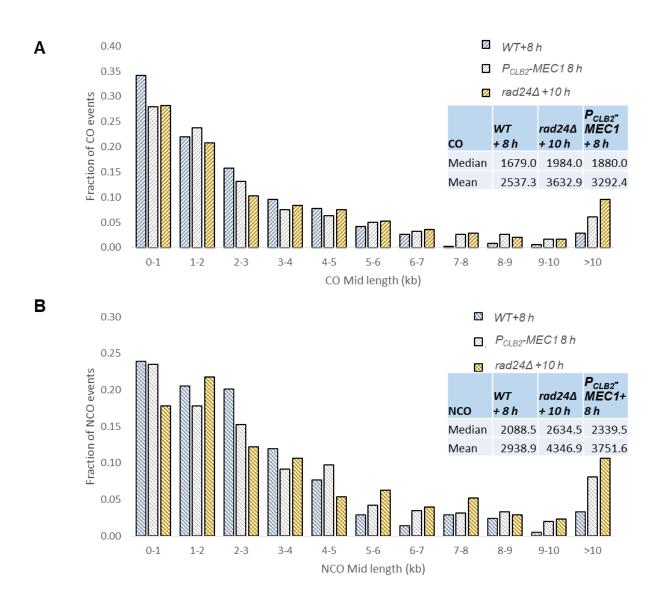
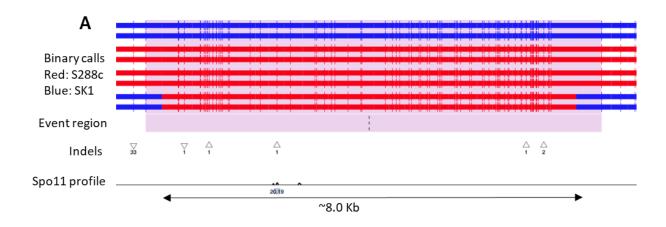
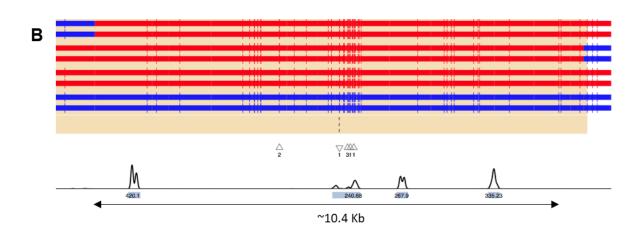




Figure 7.9. Mid length estimates of recombination events detected in *rad24*Δ and *P_{CLB2}-MEC1* strains with prophase extension. Strain details are given in Table 2.1, raw event data is available in Table S2. Histogram of mid length estimates for A) CO and B) NCO events.

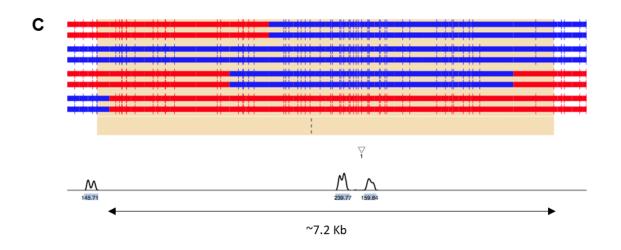


Figure 7.10. Example long recombination events detected in *rad24*Δ with prophase extension. Recombination events were mapped in hybrid strains by detection of SK1 (blue) or S288c (red) markers. The region of interest is plotted as eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The event region is indicated by the orange or purple box. Indel markers are indicated by triangles with the length of the indel below. A 100bp-smoothed DSB profile is plotted in black with the strength of each hotspot below (Pan *et al.*, 2011). A) A simple NCO with a mid length estimate of 7939bp. B) A simple CO with a mid length estimate of 10435bp. C) A DSB cluster event, in this case annotated as a CO and a NCO due to the overall single reciprocal exchange within 1.5kb, with a mid length estimate of 7206bp.

DSB cluster events are defined by the occurrence of signatures indicative of multiple DSBs which have occurred to so close together they cannot be distinguished and have merged into one event (Section 4.2.11). Since DSB cluster formation increases in the checkpoint mutant backgrounds (Figure 7.5, 7.6), this may be expected to cause an increase in apparently long events that are actually two events are merged into one. To determine whether if DSB clusters disproportionately contribute to long event categories, the lengths of single-DSB and DSB-cluster events were compared (Figure 7.11, 7.12). This analysis shows that in $msh2\Delta$, DSB cluster events actually tend to be relatively short, and the longest events are all single-DSB events (Figure 7.11, A&B). However, in both P_{CLB2} -MEC1 $msh2\Delta$ and $rad24\Delta$ $msh2\Delta$, DSB cluster events tend to be the longest events and non-clusters the shortest (Figure 7.11, C-F). Thus, in the $msh2\Delta$ background, the increase in event lengths observed in checkpoint mutants is likely to be explained by the increase in DSB cluster formation, which is consistent with a loss of DSB and/or CO interference.

In the *NDT80* prophase extension WT, DSB cluster events tend to be the longest events and non-clusters the shortest, though there are some very long events that do not appear to be clusters (Figure 7.12, A&B). In both $rad24\Delta+10 h$ and $P_{CLB2}-MEC1+8 h$, the majority of long events are DSB cluster events and most short events are single-DSB events. However, there are some long non-cluster CO and NCO events, including those over >10kb in length, as well as some very short DSB cluster events (Figure 7.12, C-F).

Thus, the greatly increased event lengths observed in $rad24\Delta$ and P_{CLB2} -MEC1 strains with extended prophase (Figure 7.9) are mostly, but not entirely, explainable by increased DSB cluster formation, as there are still some long non-clusters that are not seen in the control. An explanation involving continuing DSB resection during prophase arrest is also plausible because $rad24\Delta$ and P_{CLB2} -MEC1 are known to have increased DSB resection compared to WT (Gray et~al., 2013; Kayleigh Wardell, personal communication). Normal meiotic resection occurs between ~200 to ~2000 nt away from hotspot centres, with a mean of 822 nt (Mimitou et~al., 2016). Estimates based on gel migration distances put $rad24\Delta$ resection up to 3.9x further than WT, and P_{CLB2} -MEC1 up to 2.3x further (Kayleigh Wardell, personal communication). This correlates with the observation that in NDT80 prophase arrested backgrounds, $rad24\Delta$ has longer COs and NCOs than P_{CLB2} -MEC1, and P_{CLB2} -MEC1 $msh2\Delta$ has longer COs and NCOs than WT, although does not prove that distant resection is the cause of the long events.

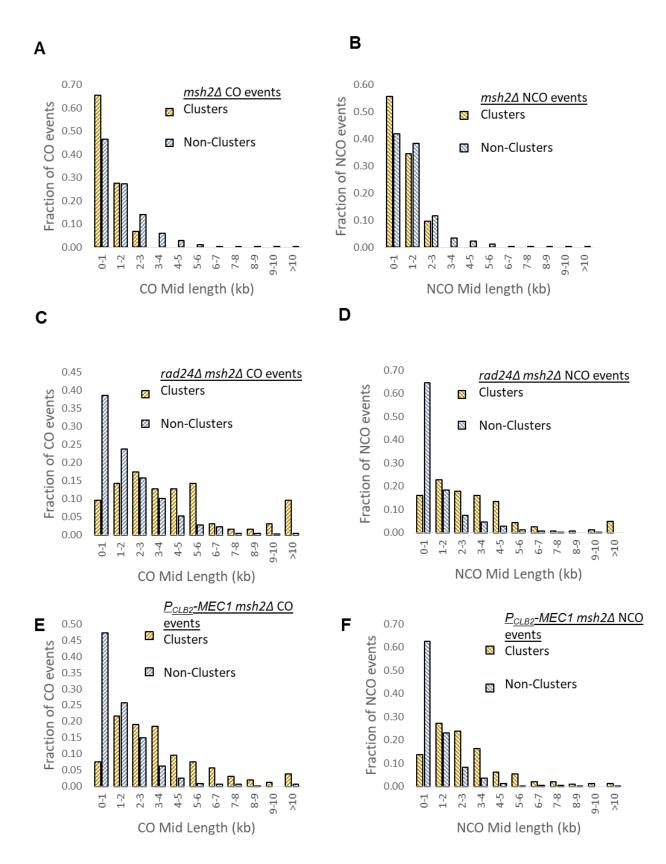


Figure 7.11. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in Msh2 deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains. Strain details are given in Table 2.1, raw event data is available in Table S2. Mid length estimate of cluster/non-cluster of: A) CO events in $msh2\Delta$, B) NCO events in $msh2\Delta$, C) CO events in $rad24\Delta$ $msh2\Delta$ D) NCO events in $rad24\Delta$ $msh2\Delta$ E) CO events in P_{CLB2} -MEC1 $msh2\Delta$, F) NCO events in P_{CLB2} -MEC1 $msh2\Delta$.

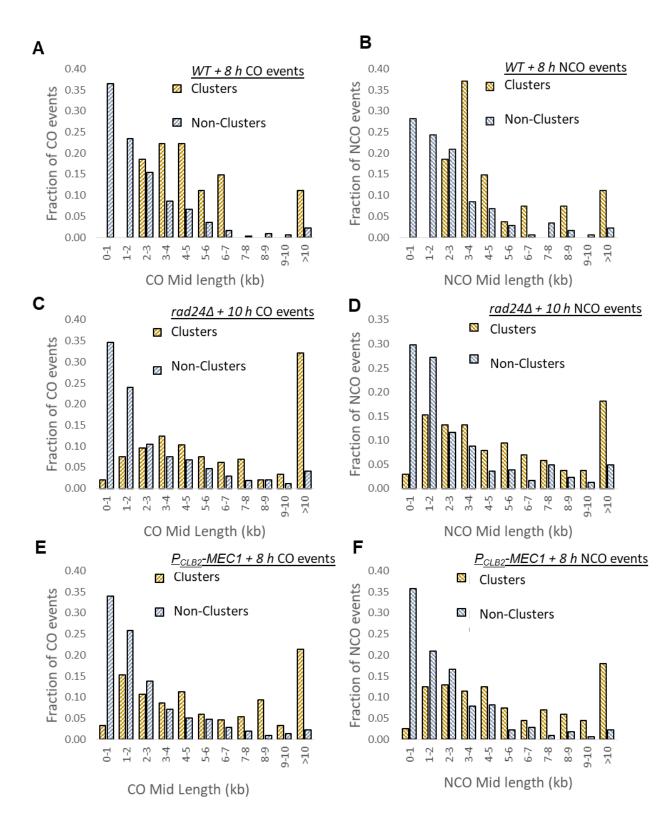


Figure 7.12. Comparison of mid length estimates in single-DSB and DSB-cluster events detected in prophase-extension $rad24\Delta$ and P_{CLB2} -MEC1 strains. Strain details are given in Table 2.1, raw event data is available in Table S2. Mid length estimate of cluster/non-cluster of: A) CO events in WT+8 h, B) NCO events in WT+8 h, C) CO events in $rad24\Delta$ +10 h, D) NCO events in $rad24\Delta$ +10 h, E) CO events in P_{CLB2} -MEC1 +8 h, F) NCO events in P_{CLB2} -MEC1 +8 h.

It has been proposed that Rad24 activity provides a physical barrier to resection, as it is responsible for loading the 9-1-1 clamp at DSB sites (Kayleigh Wardell, personal communication). Mutants of the 9-1-1 component, Rad17, show a hyper-resection phenotype identical to that of *rad24Δ* (Shinohara *et al.*, 2003). In addition, Rad24 and Rad17 are involved in the activation of Mec1, which may regulate resection by deactivating Sae2, or in another way. Thus, all three proteins contribute to resection regulation, but the contributions of Rad24 and Rad17 appear larger than those of Mec1.

The increase in resection in Rad24 and Mec1 mutants is a possible explanation for the increase in ectopic recombination seen in these backgrounds (Gray *et al.*, 2013; Grushcow *et al.*, 1999), as the longer resection tracts uncover more ssDNA that could potentially pair with a non-allelic region. A comparison of ectopic recombination frequencies in the sequenced spores could provide evidence for this connection; however, ectopic recombination is difficult to measure by this method because it is highly deleterious and likely to cause cell death due to the formation of acentric and dicentric chromosomes, meaning that affected spores cannot be sequenced. On the other hand, small-scale occurrences of ectopic recombination are not as deleterious, and could cause signatures such as duplications, something that is discussed in the next section.

7.2.6. Increase in potential duplications in $rad24\Delta$ and P_{CLB2} -MEC1 NDT80 prophase extension backgrounds

It is possible to detect what appear to be novel duplications in the post meiotic genome (as discussed in section Chapter 4, Section 4.2.6). These duplications may or may not be associated with a detected recombination event, meaning that they could represent additional NCOs occurring during meiosis that were not detected by the pipeline because they produced a mixture of markers which could not be called as one genotype or the other. An example duplication associated with a CO identified in a P_{CLB2} -MEC1+8h tetrad is shown in Figure 7.13A.

To determine whether duplications are more likely to occur or have different lengths in checkpoint mutants, duplications were examined in P_{CLB2} -MEC1+8h and $rad24\Delta+10h$ backgrounds (Table 7.3, Figure 7.13B&C). Duplications were only counted if they covered at least two consecutive SNPs.

In $rad24\Delta+10~h$, there were considerably more duplications detected than in WT+8 h (average of 7 vs 2.5), and they tended to contain more consecutive SNPs and be slightly longer in length, with one in ten duplications being >10kb in length. In P_{CLB2} -MEC1, there were more duplications than in WT (average of 3.2 vs 2.5), but fewer than in $rad24\Delta+10~h$. However, the P_{CLB2} -MEC1 duplications tended to be much longer than WT or $rad24\Delta$, with one in five duplications being

longer than 10kb in length, and also contained more consecutive SNPs on average which increases confidence in their validity. It should be noted that some large whole chromosome or partial chromosome duplications were also observed in P_{CLB2} -MEC1 strains (Section 7.2.2, Figure 7.3A&B), although these are thought to be mitotic in origin, due to affecting both sister chromatids.

The presence of duplications is important because they may be formed during complex repair of a DSB. For example, multiple strand invasions into the same sequence on different chromatids could result in the same region being copied twice with different polymorphisms. Alternatively, gene duplications can be caused by ectopic recombination (reviewed in Zhang, 2003). Ectopic recombination most commonly occurs during repair of DSBs formed in repetitive regions. Spo11-DSBs do not normally form in these regions (Pan *et al.*, 2011), so an increase in ectopic recombination may reflect an increase in recombination in repetitive regions (reviewed in Sasaki *et al.*, 2010).

Duplications cannot be detected separately in $msh2\Delta$ tetrads, because all mixed reads are converted into apparent hDNA and so duplications will be analysed as normal NCOs (Chapter 4, Section 4.2.5). (This is not wholly undesirable, because the duplications are likely to have been caused by a Spo11 break repaired as a complex NCO). When $msh2\Delta$ octads are reanalysed as if they were tetrads, they gain an average of 9 NCOs (Figure 4.6A); $msh2\Delta$ octads have an average of 6.7 duplications, so most of the new apparent NCOs in $msh2\Delta$ tetrads are likely to actually be duplications. This could partly explain why $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ have an increase in NCO formation in relation to CO formation. For example, the large increase in NCO formation seen in P_{CLB2} -MEC1 $msh2\Delta$ could in fact represent an increase in duplication formation, but NCOs and duplications are indistinguishable due to both producing ~50:50 mixed reads in $msh2\Delta$ tetrads. This cannot be confirmed without performing octad analysis in these backgrounds however, which is not trivial due to the low viability of the strains.

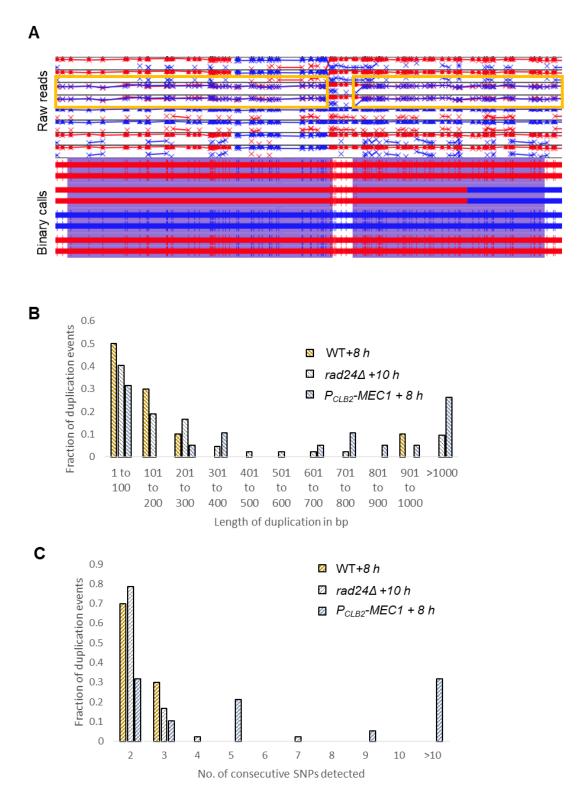


Figure 7.13. Length of potential duplications detected in $rad24\Delta$ and P_{CLB2} -MEC1 strains with prophase extension. Regions of hDNA were mapped by detection of mixed SK1 (blue) and S288c (red) markers. The region of interest is plotted as eight strands of DNA present in the original hybrid diploid, with vertical tick marks indicating called variant positions. The hDNA region is indicated by the purple box. **A)** An example duplication associated with a CO event, from a P_{CLB2} -MEC1 +8 h tetrad, containing 48 SNPs and with a length of 3336bp. Raw reads indicate the frequency of reads containing SK1 or S288c type polymorphisms detected at each position; these are translated into binary calls, which can only be SK1 or S288c. The yellow box highlights the suspected duplication, which can be seen to contain both SK1 and S288c reads. In the binary calls, these positions are discarded. **B)** Length of potential duplications in bp, **C)** Number of consecutive SNPs in potential duplications.

Table 7.3. Data summary for potential duplications and deletions detected in $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$, $rad24\Delta$ $msh2\Delta$, WT+8 h, P_{CLB2} -MEC1 +8 h and $rad24\Delta$ +10 h tetrads. Only duplications and deletions containing at least two SNPs are included.

	D	uplications	5	Deletions			
Genotype (repeats)	Total detected	Mean no. of SNPs	Mean length (bp)	Total detected	Mean no. of SNPs	Mean length (bp)	
WT + 8 h (4)	10	2.3	199.2	5	2.0	41.0	
rad24∆ +10 h (6)	42	2.3	278.7	5	2.0	22.6	
P _{CLB2} -MEC1 + 8 h (6)	19	10.9	827.4	0	0	0	
msh2Δ (9)	60	3.2	165.3	75	2.1	59.1	
rad24Δ msh2Δ (6)	NA	NA	NA	4	2	17.3	
P _{CLB2} -MEC1 msh2Δ (6)	NA	NA	NA	12	2.1	9.83	

Similarly, novel deletions may be detectable by looking for adjacent SNPs with low read depth. However, these could also simply represent areas that, for some reason, did not receive much sequencing coverage. In addition, the presence of deletions is based on the absence of data, while duplications are based on the presence of heteroduplex calls, meaning there is less confidence in the accuracy of the deletion calls.

Nonetheless, potential deletions in *NDT80* prophase-arrested and MMR-deficient checkpoint mutant strains were examined (Figure 7.14, Table 7.3), revealing that all were very short in length, and there was no difference between the genotypes, unlike the duplications. This suggests that the potential deletions are a technical artefact. However, it should be noted that deletions are likely to be shorter in length than duplications, because longer deletions would not be well tolerated by the cell, suggesting that at least some may be real.

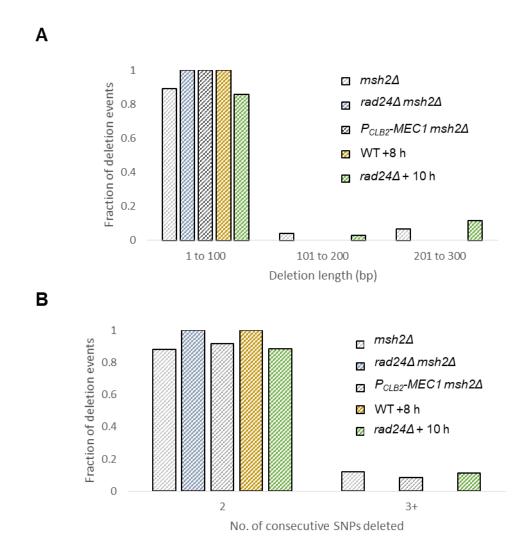


Figure 7.14. Length of potential deletions detected in $rad24\Delta$ and P_{CLB2} -MEC1 strains with prophase extension and Msh2 deficiency. Potential deletions were detected by looking for consecutive SNPS with low read depth. A) Length of potential deletions in bp. P_{CLB2} -MEC1 +8 h is not shown because no potential deletions were detected. B) Number of consecutive SNPs in potential deletions.

7.2.7. Distribution of recombination events in relation to centromeres and telomeres

Normally, recombination is suppressed from occurring near centromeres and telomeres (Petes & Botstein, 1977; Pan *et al.*, 2011). In particular, CO formation is repressed near centromeres (Lambie & Roeder, 1986) and telomeres (Rockmill *et al.*, 2006).

To determine whether the mechanisms preventing recombination near centromeres and telomeres is functioning normally in the mutant strains, the proximity of all recombination events to telomeres and centromeres was measured in MMR-deficient and NDT80 prophase arrested P_{CLB2} -MEC1 and $rad24\Delta$ backgrounds (Figures 7.15, 7.16). The frequency of recombination event formation is reduced close to the telomeres and centromeres to a similar degree in $rad24\Delta$ strains and their relevant controls, with very few events occurring within 10kb (Figure 7.15 A, B; 7.16 A, B). CO events also tend to occur further from telomeres and centromeres than NCOs in $rad24\Delta$ backgrounds and their controls (Figure 7.15 C, D; 7.16 C, D). This indicates that the mechanisms preventing recombination near these regions is functioning normally in a $rad24\Delta$ background.

However, there are some abnormalities in the P_{CLB2} -MEC1 strains. In P_{CLB2} -MEC1 + 8 h, there is an increase in the proportion of COs occurring near the centromere (Figure 7.16 B, D). The suppression of CO formation near centromeres is eliminated in the absence of kinetochore assembly (Lambie *et al.*, 1988). Mec1 has a role in the destabilization of centromere pairing that occurs without homology via phosphorylation of Zip1 (Falk et al., 2010); incorrect centromere pairing in the absence of Mec1 may affect kinetochore assembly, reducing CO suppression near centromeres. Strangely, this is not seen in the P_{CLB2} -MEC1 $msh2\Delta$ strain, suggesting that the phenomenon may be related to prophase length or Msh2 activity in combination with Mec1 deficiency.

In P_{CLB2} -MEC1 $msh2\Delta$, there is an increase in the proportion of NCOs that occur near subtelomeric regions (Figure 7.15A, C); this suggests that the increased number of NCOs formed in P_{CLB2} -MEC1 are also more likely to form in subtelomeric regions. This could be related to DSB spreading, a phenomenon where DSB interference increases the probability that DSBs will occur towards the ends of the chromosomes, as central regions become more likely to have a DSB in proximity than outer regions; this would have a more visible effect in a strain with an increased DSB formation.

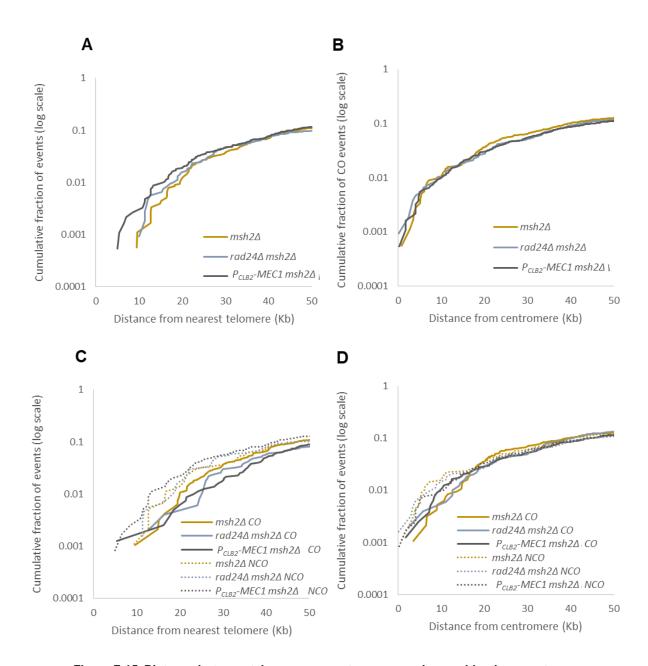


Figure 7.15. Distance between telomeres or centromeres and recombination events detected in Msh2 deficient *rad24*Δ and *P_{CLB2}-MEC1* strains. For each event, the distance to the centromere or nearest telomere is calculated and plotted against a cumulative fraction of events. A) Distance between telomeres and all events. This includes 'U' events which cannot be called a CO or NCO due to occurrence close to the telomeres. B) Distance between centromeres and all events. C) Distance between telomeres and CO or NCO events. D) Distance between centromeres and CO or NCO events.

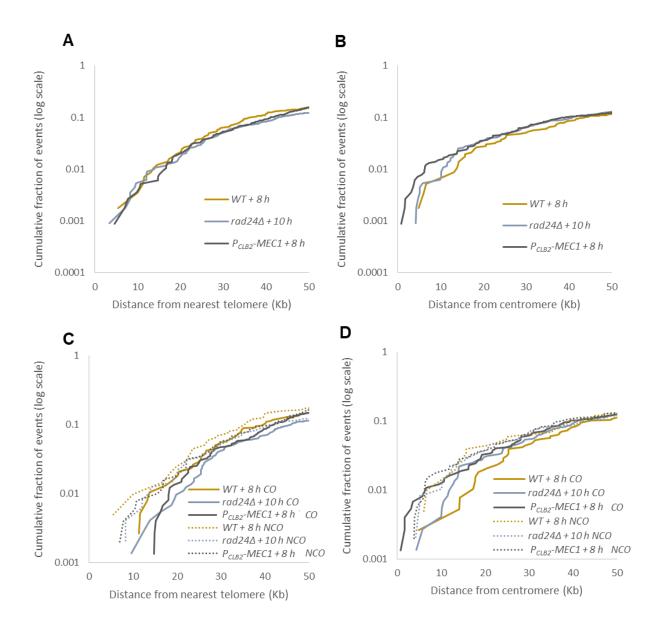


Figure 7.16. Distance between telomeres or centromeres and recombination events detected in *rad24*Δ and *P_{CLB2}-MEC1* strains with prophase extension. For each event, the distance to the centromere or nearest telomere is calculated and plotted against a cumulative fraction of events. A) Distance between telomeres and all events. This includes 'U' events which cannot be called a CO or NCO due to occurrence close to the telomeres. B) Distance between centromeres and all events. C) Distance between telomeres and CO or NCO events. D) Distance between centromeres and CO or NCO events.

7.2.8. The distribution of CO events shows evidence of interference loss in checkpoint mutants

The occurrence of a CO is known to reduce further CO formation nearby, a phenomenon known as CO interference (Sturtevant 1913; Sturtevant 1915). The degree of interference between COs can be estimated by measuring the distance between event midpoints and comparing the distributions (as described in Chapter 5, Section 5.2.7).

Inter-CO distances were calculated for MMR-deficient and *NDT80* prophase arrested P_{CLB2} -MEC1 and $rad24\Delta$ strains, arranged in order from smallest to largest and plotted as cumulative fraction of total CO events against IED size on a log scale (Figure 7.17). If interference is present, events should occur further apart than would be expected if event placement was random. In order to determine whether the experimental inter-event distance distributions are distinct from a random distribution, simulated data is produced for the appropriate event counts to show the hypothetical distribution of events along the chromosomes under conditions of independence (Methods Section 2.18; Tim Cooper, personal communication).

In $msh2\Delta$ and WT+8 h, experimental inter-CO distance distributions deviate from the random simulation, with the distribution being shifted to the right (Figure 7.17A&B, compare blue (experimental) and orange (random simulation). This distinctive shape indicates that CO events are occurring further apart than would be expected if events were occurring independently, indicating the presence of CO interference. As discussed in Chapter 5, Section 5.2.10, CO interference is stronger in $msh2\Delta$ than in WT, likely due to an increased presence of Class I (interfering) COs.

In P_{CLB2} -MEC1 $msh2\Delta$, inter-CO distances are not well-described by a random simulation, indicating the presence of CO interference (Figure 7.17E, compare blue (experimental) and orange (random simulation)). However, there is a tendency towards a random distribution for closely-spaced events, suggesting some loss of interference (this is also seen in $msh2\Delta$ and WT+ 8 h, but with a slightly weaker skew towards a random distribution). Similarly, NDT80 prophase-arrested P_{CLB2} -MEC1 also displays inter-CO distances that do not quite match a random distribution. However, as with other strains, they are shifted towards the random distribution for closely-spaced events (Figure 7.17F, compare blue (experimental) and orange (random simulation)).

In a *rad24*\Delta *msh2*\Delta background, inter-CO distances are again not well-described by a random distribution, but tend towards randomness for closely-spaced events (Figure 7.17C, compare blue (experimental) and orange (random simulation)). In contrast, the *NDT80* prophase-arrested

rad24∆ strain demonstrates and almost complete loss of CO interference; the distribution of inter-CO distances closely matches a random distribution for medium-long range distances (50kb+) (Figure 7.17D, compare blue (experimental) and orange (random simulation)). Notably, over short distances, events are clustered more closely than expected by chance (negative interference), indicated by the blue line crossing the orange line).

In order to quantify the strength of CO interference for each genotype, the best fit gamma parameters were found for inter-CO intervals (as described in Chapter 5, Section 5.2.7 and in Methods section I (analysis performed by Tim Cooper). Calculated gamma parameters are shown in Table 7.4.

Inter-CO distances in $msh2\Delta$ were best described by a gamma function with an α value of 2.44, while WT+8 h CO distribution was best fit by a gamma curve with α =1.46, indicating that the apparent strength of CO interference is increased upon MSH2 deletion.

The best-fit gamma distributions for both P_{CLB2} -MEC1 msh2 Δ and P_{CLB2} -MEC1 + 8 h have lower α values than their appropriate controls, supporting a loss of interference in these strains. The apparent strength of interference in the NDT80 prophase-arrested Mec1 mutant is lower than in the MMR-deficient Mec1 mutant (α =1.20 vs 1.65), but this is likely to be related to the fact that $msh2\Delta$ displays stronger interference than NDT80 prophase-arrested backgrounds. Overall, these results indicate that in P_{CLB2} -MEC1, there is a reduction in CO interference, and to a similar extent in both MMR-deficient and NDT80 prophase-extension backgrounds.

In a $rad24\Delta$ $msh2\Delta$ background, the inter-CO distances are best described by a gamma distribution with α =1.60, meaning that CO interference in $rad24\Delta$ $msh2\Delta$ is similar to P_{CLB2} -MEC1 $msh2\Delta$. The NDT80 prophase-arrested $rad24\Delta$ strain is best described by an α value of 1.07, suggesting a loss of CO interference in this strain.

However, even the best-fit gamma distributions are not a good fit for the experimental data, according to the results of a Kolmogorov-Smirnov test (Methods section 2.20) used to determine whether the two distributions are significantly different (P-values in Table 7.4). This indicates that inter-CO distributions cannot be well described by a gamma distribution (except for P_{CLB2} -MEC1 +8 h, where P=0.0542).

The best fit gamma function for each background was also used to produce simulated IED data as described in Chapter 5, section 5.2.7. Simulated IED data was plotted alongside experimental data to give a visual indication of the goodness of fit of the experimental data to the 'best fit' gamma parameters (Figure 7.17, grey lines).

In all strains, there is a particularly poor fit for the shortest inter-CO distances, with the experimental data shifted to the left in comparison to the best-fit gamma distribution, which indicates that there are more short distances occurring than expected. This suggests that there are many events occurring that do not display interference; this may be caused by the presence of Class II (non-interfering) COs, as discussed in section 7.2.11.

In $msh2\Delta$, P_{CLB2} -MEC1 $msh2\Delta$ and in $tel1\Delta$ $msh2\Delta$ (see Chapter 6), inter-CO distances shorter than ~25-27kb are poorly described by the best-fit gamma distribution (Figure 7.17A, E, Figure 6.12B, point at which blue and grey lines deviate), though the strength of CO interference is lower in P_{CLB2} -MEC1 $msh2\Delta$ than in $tel1\Delta$ $msh2\Delta$ (α =1.65 vs 2.03). In $rad24\Delta$ $msh2\Delta$, the range is 46kb, a much wider range than observed for other backgrounds, and the α value of 1.60 is lower than in $tel1\Delta$ $msh2\Delta$. NDT80 prophase-arrested P_{CLB2} -MEC1 has a slightly wider range (~32kb) of poorly-fitting inter-CO distances than MMR-deficient P_{CLB2} -MEC1. The reason for this disparity may be explained by a difference in the ratio of Class I/Class II CO formation (discussed in Section 7.2.11).

The observation that CO interference is reduced in P_{CLB2} -MEC1 and $rad24\Delta$ strains may help to explain why these mutants have low viability. CO clustering means that COs are not properly spread out along the chromosomes, potentially causing non disjunction of chromosomes, which is increased in $rad24\Delta$ (Section 7.2.2). This may also be partly explained by the reduced CO count seen in $rad24\Delta$ msh2 Δ , because if there are not enough COs to go around, an increase in CO-less chromosomes is expected.

When the overall CO count is high, the effect of reduced CO interference loss may be counteracted, ensuring that all chromosomes are still likely to receive a CO. However, $rad24\Delta + 10 \text{ h}$ has an increase in CO events compared to WT + 8 h, yet still has some CO-less chromosomes, which may be caused by the complete loss of CO interference in this strain.

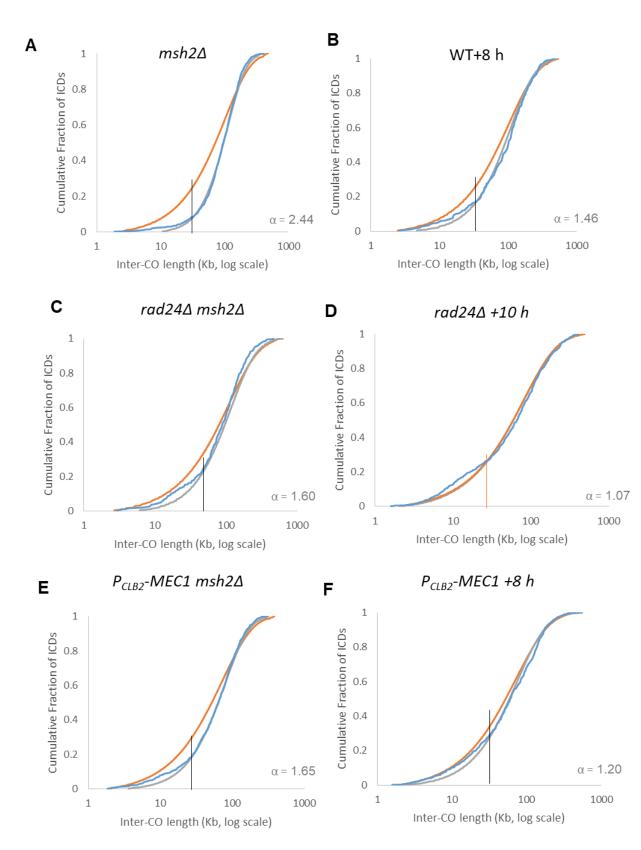


Figure 7.17. Distribution of distances between crossover events observed in Msh2 deficient and prophase extension checkpoint mutant strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-CO distance (ICD) in A) $msh2\Delta$, B) WT + 8 h, C) $rad24\Delta$ $msh2\Delta$, D) $rad24\Delta$ +10 h, E) P_{CLB2} -MEC1 $msh2\Delta$, F) P_{CLB2} -MEC1 +8 h.

Table 7.4. Gamma parameters

Best-fit gamma parameters are given for the inter-event distribution for each aggregate genotype and event type. The number following the genotype indicates how many samples were included in the aggregate. N indicates the total number of recombination events (CO, NCO or both) included in the analysis. The shape factor, α , corresponds to the strength of interference: A value of 1 indicates an exponential distribution i.e. no interference. Values > 1 indicate interference, with higher values corresponding to stronger interference. The scale factor, β describes the distance over which the shape designated by α is stretched, thus indicating the range of the interference. A one-sample Kolmogorov–Smirnov test is utilized to determine whether the experimental inter-event distribution is significantly different from the theoretical best fit gamma distribution, with the reported P-value indicating whether the difference was significant. If the value is <0.05, the difference is considered significant (red).

Genotype (repeats) Crossovers	N	Best fit gamma α value	Best fit gamma β value	(P)
msh2∆ (9)	799	2.44	44056	0.0036
rad24∆msh2∆ (6)	408	1.60	65725	0.0580
P _{CLB2} -MEC1 msh2Δ (5)	654	1.65	44833	0.0375
WT+8 h (4)	319	1.46	79142	0.0245
rad24∆ +10 h (6)	636	1.07	81728	0.0025
P _{CLB2} -MEC1 +8 h (5)	595	1.20	68504	0.0542
Non-Crossovers	N	α	β	(P)
msh2∆ (9)	698	1.21	87998	0.0861
rad24∆msh2∆ (6)	474	1.06	88589	0.7754
P_{CLB2} -MEC1 msh2 Δ (5)	820	1.02	59296	0.0501
WT+8 h (4)	123	0.96	186147	0.9732
rad24∆ +10 h (6)	287	1.02	134129	0.4625
P _{CLB2} -MEC1 +8 h (5)	273	0.95	133785	0.0558
Total events	N	α	β	(P)
msh2∆ (9)	1636	1.57	36542	0.0001
rad24∆msh2∆ (6)	974	1.11	50168	0.1302
P_{CLB2} -MEC1 msh2 Δ (5)	1560	1.24	28006	0.0001
WT+8 h (4)	504	1.10	72010	0.0011
rad24∆ +10 h (6)	1022	0.98	60137	0.0001
P _{CLB2} -MEC1 +8 h (5)	949	1.05	52784	0.0075

7.2.9. The distribution of NCO events does not show evidence of interference

In contrast to CO events, NCOs do not display interference (Mancera *et al.*, 2008). In order to determine whether this was affected by checkpoint mutations, inter-NCO distances were plotted as described for inter-CO distances, alongside simulated datasets for events occurring under conditions of independence (Figure 7.18). In all backgrounds, the experimental inter-NCO distance plots are a good match to the random simulation (Figure 7.18, compare blue (experimental) and orange (random simulation); suggesting that NCOs are randomly distributed. The best fit to a gamma distribution was found for inter-NCO event distances (Table 7.4), producing α values close to 1 for all strains, also indicative of low or no interference between NCO events, as predicted. A Kolmogorov-Smirnov test was utilized to determine whether the experimental inter-NCO distribution was significantly different from the best fit gamma distribution, revealing that they were not (P-values >0.05 in Table 5.4), indicating that the calculated gamma values are a good description of the strength of NCO interference in these backgrounds.

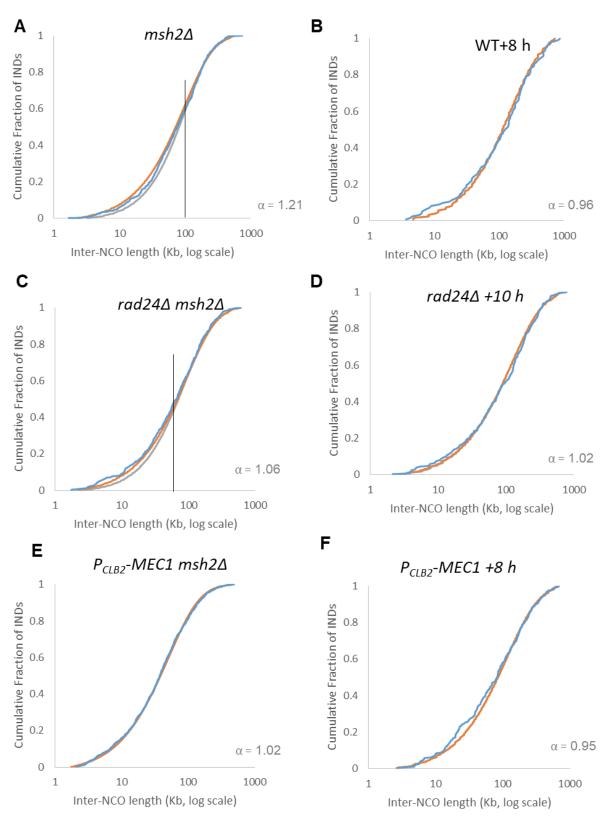


Figure 7.18. Distribution of distances between noncrossover events observed in Msh2 deficient and prophase extension checkpoint mutant strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-NCO distance (IND) in A) $msh2\Delta$, B) WT + 8 h, C) $rad24\Delta$ $msh2\Delta$, D) $rad24\Delta$ +10 h, E) P_{CLB2} -MEC1 $msh2\Delta$, F) P_{CLB2} -MEC1 +8 h.

7.2.10. The distribution of all recombination events may show evidence of DSB interference loss in DDR mutants

In addition to CO interference, DSBs also reduce the likelihood of another DSB occurring nearby in *cis* and in *trans*, a phenomenon known as DSB interference (Zhang *et al.*, 2012; Garcia *et al.*, 2014). For an estimate of DSB interference, the distribution of all events is examined, although this is not precise because event midpoints do not always correspond to DSB locations; this may disproportionately affect strains that tend to have long event lengths. In addition, there may be additional DSBs repaired to form NCOs that are not detected due to occurring in regions without markers, or being repaired as a restoration tract in an MMR-proficient strain, and CO or NCO events that are not detected due to being repaired with the sister chromatid (as detailed in Chapter 5, section 5.2.9).

In order to estimate DSB interference in checkpoint mutants, inter-event distances were calculated for the NDT80 prophase-extension and MMR-deficient $rad24\Delta$ and P_{CLB2} -MEC1 strains, arranged in order from smallest to largest and plotted as cumulative fraction of total events against IED size on a log scale, alongside simulated datasets for events occurring under conditions of independence as described for inter-CO distances (Figure 7.19). If DSB interference is present, events should occur further apart than would be expected if event placement was random.

While the $msh2\Delta$ inter-event distribution deviates to the right from the random distribution, indicating that there are fewer short distances than expected, both the P_{CLB2} -MEC1 $msh2\Delta$ and $rad24\Delta$ $msh2\Delta$ inter-event distribution are well-described by a random distribution, with only few IEDs occurring closer than expected in P_{CLB2} -MEC1 (Figure 7.19A-C, compare blue and orange lines), indicating that events are mostly randomly placed in P_{CLB2} -MEC1 and $rad24\Delta$. Similarly to their MMR-deficient equivalents, NDT80 prophase-arrested $rad24\Delta$ and P_{CLB2} -MEC1 strains also display inter-event distance distributions that are well-described by a random distribution. Notably, $rad24\Delta+10$ h in particular shows negative interference (DSB clustering) at distances between 4.5-32kb. However, the WT+8 h inter-event distribution also mostly matches a random distribution, so this may be mostly related to the increased prophase length rather than $rad24\Delta$. In order to quantify the strength of inter-event interference for each genotype, the best fit gamma parameters were found for inter-event intervals from $msh2\Delta$, $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ strains as described for CO events (Methods section 2.18). Calculated gamma parameters are shown in Table 7.4. The α value corresponds to the strength of the interference, with a value of 1 corresponding to a random distribution and values >1 indicating interference.

Inter-event distances in $msh2\Delta$ are best described by a gamma distribution with α =1.57, while the distribution of events in P_{CLB2} -MEC1 $msh2\Delta$ and $rad24\Delta$ $msh2\Delta$ are best described by gamma

distributions with α =1.24 and α =1.11, respectively, suggesting a loss of DSB interference in both checkpoint mutants. Similarly, α values of 1.1, 1.05 and 0.98 were obtained for WT+8 h, P_{CLB2} -MEC1+8 h and $rad24\Delta+10$ h respectively, suggesting a loss of DSB interference in the checkpoint mutants.

However, for all strains except $rad24\Delta$ $msh2\Delta$, the results of a Kolmogorov-Smirnov test to compare the experimental and gamma distributions show that the best-fit gamma distributions are still significantly different to the experimental data (P-values in Table 7.4). This indicates that inter-event distributions in most strains cannot be well described by a gamma distribution.

To provide a visual indication of the goodness of fit, the gamma distributions were used to produce simulated inter-event distance matching the specified parameters, which was plotted to allow comparison with the original data (Figure 7.19, grey lines). For all strains, the gamma distributions are particularly poor fits for the shortest IEDs, which tend to be more randomly placed (Figure 7.19, compare blue and grey lines).

Overall, these results suggest that DSB interference is reduced in P_{CLB2} -MEC1, and reduced further in $rad24\Delta$, for both MMR-deficient and NDT80 prophase-arrested backgrounds. However, it should be emphasized again that event midpoint distributions do not necessarily correspond to DSB locations. In addition, inter-event interference may be influenced by CO interference due to CO-CO intervals present within the data, which are known to display interference that is reduced in checkpoint mutants (Section 7.2.8). Overall, because strains generally lose inter-event interference to a similar extent as CO interference, loss of inter-event interference is probably primarily due to the loss of CO interference, rather than reflecting a reduction in DSB interference.

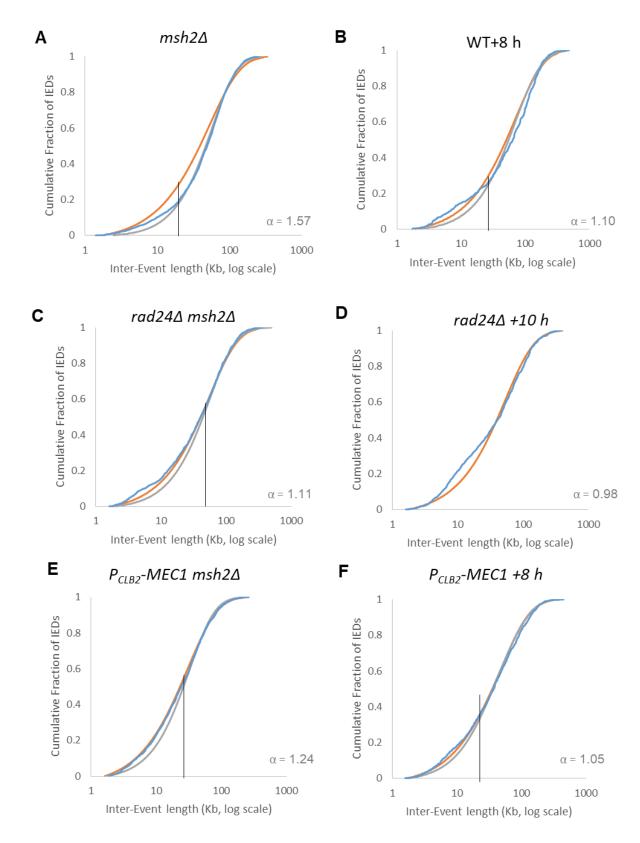


Figure 7.19. Distribution of distances between all recombination events observed in Msh2 deficient and prophase extension checkpoint mutant strains. Both experimental and simulated data are plotted. Blue: Experimental data, Orange: Random simulation, Grey: Best-fit gamma for experimental data, with strength given by α . Vertical black line indicates where deviation between experimental and best-fit gamma begins. Inter-event distance (IED) in A) $msh2\Delta$, B) WT + 8 h, C) $rad24\Delta$ $msh2\Delta$, D) $rad24\Delta$ +10 h, E) P_{CLB2} -MEC1 $msh2\Delta$, F) P_{CLB2} -MEC1 +8 h.

7.2.11. Mixture modelling predicts proportion of Class I and Class II COs in $rad24\Delta$ and P_{CLB2} -MEC1

There are two distinct classes of CO event in *S. cerevisiae* meiosis: Class I COs exhibit interference and are dependent upon Msh4/Msh5 activity (Novak *et al.*, 2001), and Class II COs do not display interference and are dependent upon Mus81/Mms4, Yen1 or Slx1-Slx4 activity (de los Santos, 2003). The normal ratio of Class I to II is somewhere around 70:30 (Zakharyevich *et al.*, 2012; de los Santos, 2003). Based on the expectation of a two-component distribution, it is possible to separate out an interfering and a non-interfering subset, which are inferred to be equivalent to Class I and Class II COs (as described in Section 5.2.10). This analysis was authored and performed by Tim Cooper (Methods section 2.19).

It was observed that both MMR-deficient and *NDT80* prophase arrested checkpoint mutants appear to have reduced CO interference (Section 7.2.8), which could be explained by a decrease in Class I CO formation or by an increase in Class II CO formation. To be able to predict the proportions of Class I/II COs in these backgrounds, two-component analysis was carried out on these strains (Table 7.5).

It should be noted that, due to the high degree of randomness in CO distribution observed in these strains, results from the mixture modelling analysis are unreliable for the $rad24\Delta$ $msh2\Delta$ and $rad24\Delta + 10$ h strains. In fact, since the distribution of events in $rad24\Delta + 10$ h appears to be totally random, it cannot be successfully separated into two components, because there is no major non-random component.

The ability of the two-component system to describe experimental data was analysed via a Kolmogorov-Smirnov test. In comparison to the poor fit of a single gamma distribution to inter-CO distances (Table 7.4), a large improvement for all genotypes is observed when a mixed-fit is used, with none of the distributions significantly different to the experimentally observed data (compare P-values in Tables 7.4 and 7.5).

The results from the two-component analysis indicate that both MMR-deficient and *NDT80* prophase arrested P_{CLB2} -MEC1 strains appear to have a striking increase in the predicted number of Class II COs, compared to the appropriate WT control (Table 7.5). *NDT80* prophase-arrested P_{CLB2} -MEC1 is expected to have ~64 Class I COs and ~63 Class II COs, compared to ~64 Class I COs and ~33 Class II COs expected in the *NDT80* prophase-arrested WT. Thus Class I CO formation does not appear to be altered in P_{CLB2} -MEC1, but Class II CO formation is greatly increased. Indeed, the increased CO count observed in P_{CLB2} -MEC1 appears to be entirely accounted for by Class II COs.

On the other hand, P_{CLB2} -MEC1 $msh2\Delta$ is predicted to have ~71 Class I COs and ~64 Class II COs, compared to ~80 Class I COs and ~25 Class II COs in $msh2\Delta$. While Class II CO formation is again apparently increased when Mec1 is inactive, Class I CO formation appears to be slightly reduced. Since it was previously observed that Msh2 appears to have anti-Class I CO activity (discussed in Chapter 5, Section 5.2.10), loss of Mec1 activity appears to slightly abrogate this phenotype, though not completely, since P_{CLB2} -MEC1 $msh2\Delta$ has more Class I COs than its NDT80 prophase-arrested counterpart.

Interestingly, both the MMR-deficient and *NDT80* prophase arrested P_{CLB2} -MEC1 strains have very similar predicted proportions for the random and non-random components (52.7%/47.3% compared to 50.7%/49.4%, respectively). Thus, the ratio of Class I: Class II in P_{CLB2} -MEC1 is roughly 50:50, regardless of the method used to rescue spore viability.

Similarly to the P_{CLB2} -MEC1 strains, both $rad24\Delta$ strains are predicted to have a dramatic increase in Class II CO formation compared to the relevant WT controls. However, unlike in the Mec1 mutants, the predicted number of Class I COs is substantially reduced. $rad24\Delta$ $msh2\Delta$ and $rad24\Delta$ + 10 h are expected to have only around ~10% Class I CO formation, meaning they are predicted to have 7 and 13 Class I COs on average, respectively. It may seem contradictory for $rad24\Delta$ $msh2\Delta$ and $rad24\Delta$ + 10 h to have a similar level of Class I CO formation, considering that the latter appears to have a total loss of CO interference, while the former retains some (Figure 7.17). However, the CO-CO intervals identified by mixture modelling that appear to show interference in $rad24\Delta$ + 10 h have a very low β value (1984) compared to that of $rad24\Delta$ $msh2\Delta$ (18994); this indicates that the range of the interference is very narrow in $rad24\Delta$ + 10 h (Methods Section 2.18). In addition, the results of mixture modelling only offer a prediction of the proportion of CO-CO intervals that appear to show interference, and are by no means definitive.

Both $rad24\Delta$ strains are also predicted to have a greater number of Class II COs than their P_{CLB2} -MEC1 equivalent, with ~76 and ~111 in $rad24\Delta$ $msh2\Delta/rad24\Delta+10$ h respectively, compared to ~64 and ~63 in P_{CLB2} -MEC1 $msh2\Delta/P_{CLB2}$ -MEC1+8 h respectively. In addition, since both $rad24\Delta$ $msh2\Delta$ and $rad24\Delta+10$ h strains have a similar level of predicted Class I formation, it appears that $rad24\Delta$ is able to abrogate the Class I–promoting phenotype of $msh2\Delta$ (Section 5.2.10).

The observation that most COs in *NDT80* prophase-arrested $rad24\Delta$ appear to be Class II non-interfering COs could be explained by the use of the *NDT80* system rather than the lack of Rad24 activity. However, in other backgrounds, *NDT80* arrest does not seem to promote more Class II COs. In WT strains, the number of Class II COs predicted to form is identical between arrested and non-arrested backgrounds (Chapter 4, Section 5.2.10). In addition, P_{CLB2} -MEC1+8h and P_{CLB2} -MEC1+8h also have identical predicted CO numbers; the only thing that changes

between these pairs of strains is the predicted Class I CO numbers. Thus, the reason for the random CO distribution in $rad24\Delta$ is not caused by the prophase arrest alone, though the arrest conditions likely promote continued Class II CO formation when Rad24 is absent.

Overall, these results suggest an explanation for why P_{CLB2} -MEC1 strains have overall higher numbers of COs than their $rad24\Delta$ equivalents; both have an increase in Class II COs, but only $rad24\Delta$ has a reduction in Class I COs. This explanation is supported by the observation from Shinohara *et al.*, 2015, which suggests that Rad24, but not Mec1, is normally involved in promoting Class I COs. To test this hypothesis, further Class II CO formation can be reduced by the deletion of Mus81, the main resolvase responsible for their formation. This idea is investigated further in Chapter 8.

Table 7.5. Percentage of COs that do not appear to show interference in sequenced strain backgrounds.

Mixture modelling results are given for each genotype. The strength of interference in the non-random population is given by $\alpha 1$ and is expected to be >1. The strength of interference in the random population is given by $\alpha 2$ and is expected to be ~1. The scale factors, $\beta 1$ and $\beta 2$ describe the distance over which the shapes designated by $\alpha 1$ or $\alpha 2$ respectively are stretched, thus indicating the range of the interference. The overall proportion of CO events that are thought to occur with random or non-random placement is given, which allows a predicted total number of Class I and Class II COs to be calculated from the overall CO count. A two-sample Kolmogorov–Smirnov test is utilized to determine whether the experimental inter-event distribution is significantly different from the two-component system, with the significance indicated by the reported P-value. A value of >0.05 is considered to show no significant difference.

Genotype (repeats)	α1	α2	β1	β2	Non- random proportion (%)	Random proportion (%)	mean	Predicted mean number of Class II COs	
msh2∆ (9)	3.84	1.21	29877	68155	76.5	23.5	80.3	24.7	0.9
rad24∆msh∆ (6)	4.25	1.34	18994	75454	8.5	91.5	7.0	76.4	0.9
P_{CLB2} -MEC1 msh2 Δ (5)	3.56	1.37	35114	27035	52.7	47.3	71.0	63.7	1
WT +8 h (4)	3.22	1.40	47109	32856	66.0	34.0	64.1	33.2	1
rad24∆+10 h (6)	4.12	1.41	1984	63394	10.9	89.1	13.6	111.3	1
P _{CLB2} -MEC1 +8 h (5)	3.25	1.29	39718	24840	50.7	49.4	64.2	62.6	0.9

7.3. Discussion

7.3.1 The meiotic roles of Rad24 and Mec1

Previously, it was found that $rad24\Delta$ SK1 and SK1xS288c spore viability was rescued by NDT80 prophase arrest and $sml1\Delta$, and hybrid $rad24\Delta$ by $msh2\Delta$ (Chapter 3). However, only hybrid, not SK1, P_{CLB2}-MEC1 yeast were rescued by NDT80 prophase arrest. It was thought that the low spore viability in $rad24\Delta$ and P_{CLB2} -MEC1 hybrids is caused by low numbers of CO events, which is exacerbated in hybrid backgrounds due to the increase in strand rejection by Msh2. In order to investigate these ideas further, recombination events were sequenced genome wide in Rad24 and Mec1 mutants. This revealed that *rad24∆* has lower CO counts than Mec1 strains (Table 7.6). In addition, a rad24\Delta sml1\Delta meiosis had only 34 COs (Table 7.1), while rad24\Delta msh2\Delta had ~84 COs, $rad24\Delta$ msh2 Δ sml1 Δ had ~76.5 and $rad24\Delta$ + 10 h had ~125. This suggests that $rad24\Delta$ has low CO numbers, which are boosted by msh2\Delta (though not to WT levels), but not affected by $sml1\Delta$. This supports the idea that the low spore viability in $rad24\Delta$ is due to low CO counts, which are improved by $msh2\Delta$ and NDT80 prophase arrest in hybrids, but not by $sml1\Delta$ which does not affect CO numbers but only their repair. In addition, rad24\(\Delta\) has fewer CO and NCO events than P_{CLB2}-MEC1, in both MMR-deficient and NDT80 prophase-extension backgrounds (Table 9.1). This suggests that Rad24 contributes more to ensuring DSB and/or CO formation than Mec1, perhaps via its role in Class I CO formation by interaction with Zip3 and its role in loading ZMM proteins (Section 7.2.11; Shinohara et al., 2015). Alternatively, this could be because Mec1 also has a role in limiting DSB formation via phosphorylation of Rec114 after DSB formation (Carballo et al., 2013), so the absence of Mec1 boosts DSB formation.

Mec1 activity inactivates NDT80 via Mek1 until DSBs are repaired (Prugar *et al.*, 2017). Via its role in the activation of Mec1, Rad24 activity is presumably also important for the inhibition of NDT80 activation. The spore viability of P_{CLB2} -MEC1 is not affected by prophase extension in a pure SK1 background, but is rescued in an SK1xS288c hybrid background (Chapter 3, Figure 3.9). This may be explained by a reduction in recombination event numbers in hybrid strains, which are thought to have fewer recombination events than pure strains due to the activity of Msh2, which rejects strand invasion into mismatched sequences (Sugawara *et al.*, 1997; Evans *et al.*, 2000). DSB processing leads to the activation of Mec1 due to the formation of RPA-bound ssDNA (Zou & Elledge, 2003), so strains with low rates of DSB formation will also have a reduced level of Mec1 activation. Thus, the lower levels of recombination and spore viability seen in $rad24\Delta$ compared to P_{CLB2} -MEC1 can be explained as follows: The absence of Mec1 means there is no Mec1-mediated inhibition of Ndt80, causing a shorter prophase and fewer DSBs, but Rad24 is still present to promote the formation of Class I COs. In the absence of Rad24, there is a reduction in Class I CO formation, and Mec1-mediated inhibition of Ndt80 is weakened because

Mec1 activation by the 9-1-1 clamp and RPA-coated ssDNA is reduced, leading to the formation of fewer DSBs and fewer CO events.

7.3.2. Influence of CO interference and CO numbers on spore viability and CO assurance in $rad24\Delta$

The observation that CO interference is reduced in $rad24\Delta$ strains may also help to explain why these mutants have low viability. CO clustering means that COs are not properly spread out along the chromosomes, potentially causing non disjunction of chromosomes, which is increased in $rad24\Delta$ (Section 7.2.2). Many chromosomes without COs are seen in $rad24\Delta$ $sml1\Delta$ and $rad24\Delta$ $msh2\Delta$ strains, which also have low spore viability, few COs and reduced CO interference (Tables 7.1, 9.1); this raises the possibility that a lack of CO interference may cause non-disjunction of chromosomes. However, $rad24\Delta + 10$ h has an increase in CO events and a greater loss of CO interference compared to $rad24\Delta$ $msh2\Delta$, but a lower number of chromosomes without COs, indicating that the strength of CO interference is less important than the overall CO number for ensuring that all chromosomes receive a CO event (CO assurance). This suggests that the loss of CO interference observed in $rad24\Delta$ does not greatly affect spore viability, because while chromosome non disjunction due to lack of CO formation is likely a major contributor to spore viability, this seems to be mainly affected by CO number rather than CO interference. Thus, the role of Rad24 in promoting Class I CO formation appears to be more important to boost CO numbers rather than to maintain CO interference, at least in terms of spore survival.

7.3.3. Differences and similarities between recombination in $msh2\Delta$ and NDT80 prophase-arrested $rad24\Delta$ and P_{CLB2} -MEC1 backgrounds

For WT, $rad24\Delta$ and P_{CLB2} -MEC1 strains, recombination was assayed genome-wide in both $msh2\Delta$ and NDT80 prophase-extension backgrounds. Recombination in NDT80 prophase arrested and $msh2\Delta$ versions of strains can be compared, but any differences may be only due to the difference in Msh2 proficiency or due to the difference in prophase length, so the contribution of each factor is uncertain. $msh2\Delta$ strains are expected to have 4-5 hours of prophase (Xu *et al.*, 1995). Ideally, recombination characteristics would be compared between $msh2\Delta$ and $msh2\Delta$ with NDT80 prophase arrest strain versions. Alternatively, characteristics could be compared between WT and NDT80 prophase arrest versions of strains, but four-spore-viable tetrads cannot be obtained from $rad24\Delta$ hybrids without the rescue effect of prophase arrest of $msh2\Delta$.

Key recombination characteristics were compared between $msh2\Delta$ and NDT80 prophase arrest strains (Table 7.6). Generally, the spore viability of NDT80 prophase arrest strains is higher than $msh2\Delta$ strains, except in P_{CLB2} -MEC1 hybrids. Usually, $msh2\Delta$ strains have more CO and NCO

events, except for $rad24\Delta$ NDT80 prophase arrest, which has more COs than $rad24\Delta$ $msh2\Delta$. The increase in NCO events in $msh2\Delta$ is at least partly because of the ability to detect hDNA in $msh2\Delta$ backgrounds. In all cases, NDT80 prophase arrest strains have longer CO and NCO events, while $msh2\Delta$ strains have an increase in the percentage of recombination events that appear to be DSB clusters. The distribution of CO events matches gamma distributions with higher alpha values in $msh2\Delta$, suggesting stronger CO interference than in NDT80 prophase arrest strains. This may be explained by the higher percentage of COs that are predicted to be Class I interfering COs, in comparison to Class II non-interfering COs, in $msh2\Delta$ strains.

Increased prophase length is more beneficial to cell survival than $msh2\Delta$, perhaps because a lack of MMR means that mutations cannot be repaired and ectopic recombination is increased due to the inability to reject strand invasion into non-homologous regions, while Ndt80 arrest does not produce many effects that persist after Ndt80 induction (Allers & Lichten, 2001; Bhuiyan *et al.*, 2002). In NDT80 prophase arrest strains, events occur in lower numbers and with weaker CO interference than $msh2\Delta$; however, this is probably because of the effect of $msh2\Delta$ rather than the effect of prophase length, because $msh2\Delta$ has an increase in Class I COs, boosting CO numbers and increasing the strength of interference.

Table 7.6. Summary of basic recombination characteristics in $rad24\Delta$ and P_{CLB2} -MEC1 strains. To highlight differences between $msh2\Delta$ and NDT80-arrest version of WT, $rad24\Delta$ and pCLB2-MEC1 strains. For each pair of strains, the NDT80 prophase arrest version is on the left and the MMR deficient version on the right. For each characteristic, the red coloured box indicates the strain with the highest value (for the final two categories, the highest percentage and number of Class I COs). Spore viability was originally shown in Figures 3.1A, 3.8, 3.9. WT + 8 h is from Gray $et\ al.$, 2013. DSB cluster formation originally shown in Figure 7.5, 7.6. CO/NCO formation originally reported in Table 7.1. Event mid length median shown in Figure 7.8, 7.9. Best fit alpha values are from Table 7.4. (It should be noted that the best fit alpha value was still significantly different from the actual CO distribution in most cases). The Class I and II percentages and numbers are from Table 7.5.

	WT + 8 h	msh2∆	rad24∆ + 10 h	rad24∆ msh2∆	P _{CLB2} - MEC1 + 8 h	P _{CLB2} - MEC1 msh2Δ
Spore viability % (SK1)	94	81	69	21	58	49
Spore viability % (SK1xS288c hybrid)	70	73	16	6	16	29
Average CO number	97.3	105	125	83.5	126.8	134.7
Average NCO number	51	101.8	92	113	90.7	213.8
Median NCO mid length (bp)	2089	1057	2635	827	2340	926
Median CO mid length (bp)	1679	1195	1984	1571	1880	1326
% of events that are DSB clusters	5.6	4.6	18.2	10.9	15.9	13.7
Best fit α value (CO interference)	1.46	2.44	1.07	1.60	1.20	1.65
Class I/Class II CO percentage	66/ 34	76.5/ 23.5	10.9/ 89.1	8.5/ 91.5	50.7/ 49.4	52.7/ 47.3
Class I/Class II CO number (predicted)	64.1/ 33.2	80.3/ 24.7	13.6/ 111.3	7/ 76.4	64.2/ 62.6	71/ 63.7

7.3.4. Closing Statement

In this chapter, the roles of Rad24 and Mec1 proteins are established via the analysis of meiotic recombination genome wide in $rad24\Delta$ and P_{CLB2} -MEC1 backgrounds. In particular, differences and similarities between Rad24 and Mec1 activity are examined. The analysis is repeated in two different rescue backgrounds in order to account for any effects produced by the rescue mechanism.

Overall, these results suggest that the main cause of the low spore viability of $rad24\Delta$ and P_{CLB2} -MEC1 is a reduction in Spo11-DSB formation (likely due to the loss of the meiotic checkpoint), and a resultant reduction in CO formation, which is particularly severe in $rad24\Delta$ due to the role of Rad24 in promoting Class I CO formation. Increasing the number of DSBs that are formed and repaired via prophase arrest, or via increasing the efficiency of strand invasion into homologous chromosomes via $msh2\Delta$, improves $rad24\Delta$ and P_{CLB2} -MEC1 hybrid viability.

Chapter 8.

The effect of resolvase pathway choice on spore viability and CO interference in DDR and MMR mutants

Chapter 8. The effect of resolvase pathway choice on spore viability and CO interference in DDR and MMR mutants

8.1. Introduction

8.1.1. CO resolution in *S. cerevisiae*

In *S. cerevisiae*, there are at least four distinct endonucleases capable of resolving JMs in vitro: Mus81-Mms4 (Boddy *et al.*, 2001), Slx1–Slx4 (Fricke and Brill, 2003), Yen1 (Ip *et al.*, 2008), and Exo1-MutLγ (Zakharyevich *et al.*, 2012), which together account for essentially all JM resolution in vivo (Zakharyevich *et al.*, 2012). Around 70% of COs, and few or no NCOs, are formed by the MutLγ complex, in combination with Exo1 nuclease and Sgs1 helicase (Zakharyevich *et al.*, 2012). The Mus81-Mms4 pathway accounts for somewhere between 10-40% of COs (de los Santos, 2003). Yen1 and Slx1-Slx4 do not usually account for many COs. However, in the absence of other CO resolution pathways, Yen1 and Slx1-Slx4 appear to play a more important role in recombination (Zakharyevich *et al.*, 2012).

8.1.2. ZMM proteins promote the formation of Class I interfering COs

Crossover interference is a phenomenon where CO events occur further apart than would be expected from a random distribution (Sturtevant 1913; Sturtevant 1915). However, interference is only exhibited in Class I COs, which are dependent upon Msh4/Msh5 activity (Novak *et al.*, 2001). Class II COs do not display interference and are dependent upon Mus81/Mms4, Yen1 or Slx1-Slx4 activity (de los Santos, 2003). Msh4 and Msh5 are ZMM proteins, which promote the biased resolution of dHJs into Class I COs (Chen *et al.*, 2015) and are important for the maintenance of crossover interference in meiosis (Shinohara *et al.*, 2008). Another ZMM protein is Zip3, which binds DNA close to DSBs and promotes local assembly of other ZMM proteins (Serrentino *et al.*, 2013). It has recently been discovered that Rad24 is necessary for loading ZMM proteins, and interacts physically with Zip3, independent of Mec1. This indicates that Rad24 may promote the loading of ZMM proteins at sites of future Class I COs (Shinohara *et al.*, 2015).

8.1.3. Mixture modelling predicts the percentage of Class II COs

The distribution of CO events can be viewed as having two components, a distribution of non-random, interfering events and a distribution of random, non-interfering events (previously discussed in Chapter 5 section 5.2.10, Chapter 6 section 6.2.11, Chapter 7 section 7.2.11). Based on the expectation of a two-component distribution, it is possible to separate out random and non-random components of inter-CO distance distributions using mixture modelling. The system for this analysis was authored by Tim Cooper (Methods section 2.19). The random distribution is

inferred to be equivalent to Class I interfering COs, and the non-random distribution to Class II non-interfering COs. Different strain backgrounds have differing ratios, as shown in Table 8.1.

8.1.4. Aims of this investigation

Mixture modelling predicts a certain percentage of Class II COs in each background. Because Mus81 is the major Class II pathway, strains predicted to have more Class II COs are expected to have a larger drop in viability when Mus81 is deleted. In this chapter this idea is explored in two ways.

- 1. To measure the effect of the loss of the major Class II CO pathway resolvase Mus81 in various backgrounds.
- 2. To examine the effect of single and double mutants of Mus81, Mlh3 and Yen1 in WT and $rad24\Delta$ backgrounds, to discover the relationship between the resolvases and the role they play in $rad24\Delta$ viability.

Table 8.1. Percentage of COs that do not appear to show interference in sequenced strain backgrounds.

Mixture model results per genotype. The strength of interference in the non-random population is given by $\alpha 1$ and is expected to be >1. The strength of interference in the random population is given by $\alpha 2$ and is expected to be ~1.

Genotype (repeats)	α1	α2	Non-random	Random	Predicted mean	Predicted mean
			proportion (%)	proportion (%)	number of Class I	number of Class II
					COs	COs
WT (4)	3.78	1.06	67.1	32.9	50	24.5
WT+8h (4)	3.22	1.4	66	34	64.1	33.15
msh2∆ (9)	3.84	1.21	76.5	23.5	80.3	24.7
tel1∆ msh2∆ (10)	4.45	1.97	67.4	32.6	77.7	37.6
P_{CLB2} -MEC1 msh Δ (5)	3.56	1.37	52.7	47.3	71	63.7
P _{CLB2} -MEC1 +8 h (5)	3.25	1.29	50.7	49.4	64.2	62.6
rad24∆msh∆ (6)	4.25	1.34	8.5	91.5	7	76.4
rad24∆+10 h (6)	4.12	1.41	10.9	89.1	13.6	111.3

8.2. Results

8.2.1. Deletion of Mus81 reduces spore viability in all strains except rad24\Delta

Genome-wide analysis of recombination events suggests that there is a loss of CO interference in checkpoint mutants, and this may be caused by an increase in the proportion of Class II COs. To observe the effect of removing the main Class II CO pathway on spore viability, a deletion of Mus81 is used.

mus81 Δ yeast have been reported to have a spore viability of 40% (de los Santos et al., 2003), 38.7% (Chen et al., 2016) and ~50% (Matos et al., 2011). The mus81 Δ strain used here had a spore viability of ~55%, compared to a WT viability of ~96% (Figure 8.1). This is somewhat higher than previous reported values for mus81 Δ viability, which may be due to variation in sporulation conditions.

Considering that Mus81 is responsible for resolving only 10-40% of COs, the large drop in viability is surprising compared to the 71.7-79% spore viability observed in $mlh3\Delta$, which abolishes ~70% of COs (Nishant *et al.*, 2008; Brown *et al.*, 2013). This suggests that there are some joint molecule structures that cannot be resolved by anything other than Mus81. $mus81\Delta$ viability may also be lower than other resolvases because Mms4 is required for crossovers between short chromosomes (de los Santos, 2003).

In addition, since Mus81 is also functional in mitotic recombination (Ho *et al.*, 2010), that may also be affecting viability of the germinating spores. However, it has been previously shown that using a meiotic depletion allele of *MMS4* gives a similar sporulation defect to that of a complete *MMS4* knockout, so if there is a build-up of repair intermediates from the preceding mitoses, it does not have a significant effect on the following meiosis (Matos *et al.*, 2011).

In WT, $msh2\Delta$, $tel1\Delta$ and P_{CLB2} -MEC1 mutant strains, the loss of Mus81 reduces spore viability (Figure 8.1). In order to determine if the spore viability reduction is as expected based on the WT values, the expected viability of a double mutant can be calculated and compared to the actual viability (Table 8.2). If the viability is lower than expected, this indicates that the loss of Mus81 activity is particularly severe to this mutant. If viability is higher than expected, this suggests that the mutant strain may have already lost some Mus81 function or is able to compensate for its absence. If viability is as expected based on WT values, then there is no indication of any relationship between the gene of interest and Mus81 activity.

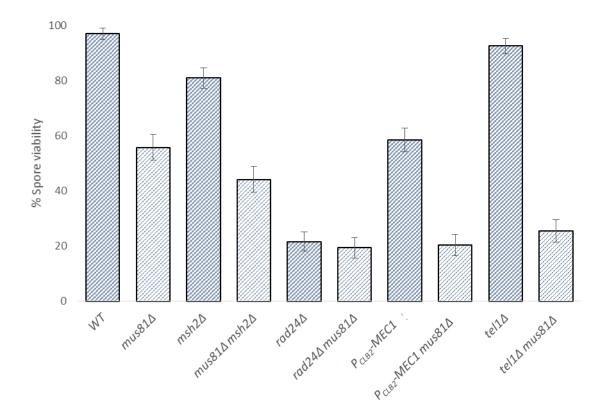


Figure 8.1. Spore viability in strains with and without Mus81 activity. All error bars represent 95% confidence limits.

Table 8.2. Observed and expected spore viabilities of *mus81*∆ **strains.** The expected spore viability is calculated by working out the percentage change in spore viability from WT for each single mutant, then combining the change for the relevant single mutants to work out the expected for the double mutant.

Genotype	No. tetrads dissected	Observed Spore viability %	Expected Spore viability of double mutants %	Observed/ Expected ratio
WT	64	96.88		
mus81∆	110	55.68		
rad24∆	132	21.59		
rad24∆ mus81∆	110	19.32	12.4	1.56
msh2∆	110	73.0		
msh2∆mus81∆	110	44.1	40.6	1.09
tel1∆	87	92.5		
tel1∆mus81∆	109	25.5	51.5	0.50
P _{CLB2} -MEC1	130	58.5		
P _{CLB2} -MEC1 mus81∆	108	20.4	32.6	0.63
mlh3∆	110	89.09		
mus81∆ mlh3∆	107	59.58	51.2	1.16

The $msh2\Delta$ strain was predicted to have ~24% Class II COs, compared to ~33% in WT (Table 8.1). However, the actual average number of Class II COs is not expected to change between strains, with both WT and $msh2\Delta$ having ~25 Class II COs; only the number of Class I COs is altered. The viability of the $msh2\Delta$ mus81 Δ strain was ~44%, which is exactly as expected based on the viabilities of the $msh2\Delta$ and $mus81\Delta$ single mutants (Table 8.2). This indicates that $msh2\Delta$ spore viability is affected by the loss of Mus81 activity to the same degree as WT, supporting the conclusion that the number of Class II COs is unaffected by loss of Msh2 activity.

The $tel1\Delta \ msh2\Delta$ strain was predicted to have ~33% Class II COs, giving an average of 38 Class II COs per octad, an increase compared to the $msh2\Delta$ control (Table 8.1). The spore viability of $tel1\Delta \ mus81\Delta$ was 50% lower than expected based on the viability of $tel1\Delta$ and $mus81\Delta$ single mutants (Table 8.2), indicating that Class II COs are more important for successful meiosis in $tel1\Delta$ than in WT, as their spore viability is disproportionately affected by the loss of Mus81 activity. This supports the conclusion that $tel1\Delta \ msh2\Delta$ has a greater number of Class II COs, which was also predicted by Anderson et al., 2015.

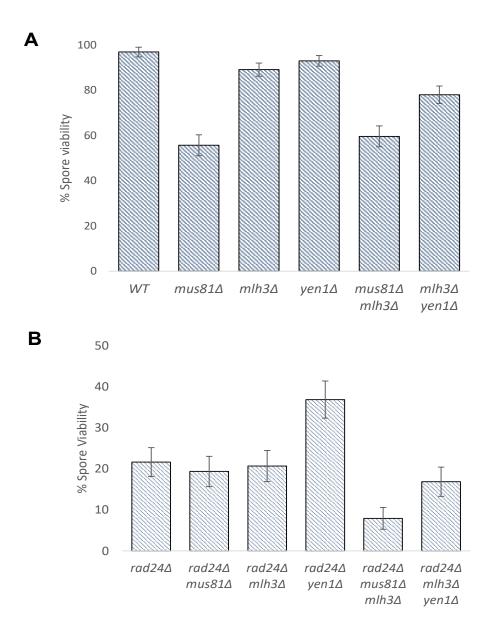
Both *NDT80* prophase-arrested and MMR-deficient P_{CLB2} -MEC1 strains were predicted to have a roughly 50:50 ratio of Class I to Class II, and were expected to have 63-64 Class II each, a significant increase compared to the *NDT80* prophase-arrested and MMR deficient wild types (Table 8.1). P_{CLB2} -MEC1 $mus81\Delta$ spore viability was around 37% lower than expected based on the spore viabilities of the P_{CLB2} -MEC1 and $mus81\Delta$ single mutants, indicating that Class II COs are more important for successful meiosis in P_{CLB2} -MEC1 than in WT (Table 8.2). This supports the conclusion that P_{CLB2} -MEC1 strains have a greater number of Class II COs than WT strains, as their spore viability is disproportionately affected by the loss of Mus81 activity. However, the P_{CLB2} -MEC1 $msh2\Delta$ strain was also predicted to have a greater number and proportion of Class II COs than $tel1\Delta$ $msh2\Delta$ strain, but $tel1\Delta$ $mus81\Delta$ spore viability was reduced more than that of P_{CLB2} -MEC1 $mus81\Delta$. This indicates that even though P_{CLB2} -MEC1 $msh2\Delta$ had more Class II COs, and fewer Class I COs, than $tel1\Delta$ $msh2\Delta$, the Class II COs were not as important to successful meiosis in P_{CLB2} -MEC1 as in $tel1\Delta$. This may be because the P_{CLB2} -MEC1 $msh2\Delta$ strain has more COs in total than $tel1\Delta$ $msh2\Delta$, so is less affected by a reduction in CO numbers.

Lack of Mus81 is expected to impact spore viability partly due to the presence of unresolvable joint molecules; the increase in recombination events seen in $tel1\Delta$ and P_{CLB2} -MEC1 meioses may mean that this is the cause of their greater loss of viability, rather than being due to the reduction in Class II COs formation. However, $msh2\Delta$ meioses also have an increase in recombination, but are not disproportionally affected by $mus81\Delta$, which indicates that complex repair of aberrant

joint molecules is not impacting spore viability disproportionately in strains with increased recombination activity.

Both MMR-deficient and *NDT80* prophase arrested $rad24\Delta$ strains were predicted to have few Class I COs, with only ~10% of COs predicted to be Class I (Table 8.1). This conclusion was supported by the observation that Rad24 interacts with Zip3, which promotes Class I CO formation (Shinohara *et al.*, 2015). Thus, deletion of $mus81\Delta$ was expected to have a severe effect on $rad24\Delta$ spore viability. However, $rad24\Delta$ $mus81\Delta$ had a much higher spore viability than expected based on the viabilities of the $rad24\Delta$ and $mus81\Delta$ single mutants, indicating that Class II COs are not as important to $rad24\Delta$ spore viability as in WT (Table 8.2). This also indicates that Class II COs are less vital to a successful meiosis in $rad24\Delta$ than in P_{CLB2} -MEC1, despite the two proteins being in the same DDR pathway.

A possible explanation for the spore viability of $rad24\Delta$ $mus81\Delta$ being higher than expected may be because $rad24\Delta$ has already lost some Mus81 function, and so is not affected further by its deletion. Alternatively, $rad24\Delta$ may be able to compensate for the loss of Mus81 more effectively than WT, with other resolvases able to rescue spore viability. Since the sequenced $rad24\Delta$ strains are either MMR-deficient or with 10 h of NDT80 prophase arrest, it may be that Class II CO proportions are only elevated under these circumstances, and so the effect of $mus81\Delta$ is not seen in $rad24\Delta$ alone. Finally, the results could be affected by bias – since only successfully sporulated cells can be dissected, the spore viability is skewed towards situations where meiosis was completed, which could be unusual. To investigate some of these ideas, the effect of removing the action of other resolvases on $rad24\Delta$ viability was tested (Section 8.2.3) and the viability of $rad24\Delta$ $mus81\Delta$ with NDT80 prophase arrest was assayed (Section 8.2.4).


8.2.2. Contribution of resolvases to WT spore viability

To investigate the individual and combined contributions of different resolvases in meiosis, the spore viability of $yen1\Delta$, $mlh3\Delta$ and $mus81\Delta$ single and double mutants was assayed (Figure 8.2A, Table 8.3). The ~93% viability of the $yen1\Delta$ strain is in line with the measurement of ~95% by Matos et~al., 2011, which was about the same as their WT. Yen1 is also functional in mitotic CO resolution (Ho et~al., 2010), so survival defects in this background could be due to mitotic, as well as meiotic, recombination failure. A $mus81\Delta$ $yen1\Delta$ strain was also created, but its sporulation was too inefficient for dissection. $mus81\Delta$ $yen1\Delta$ viability was previously found to be ~2.5% (Matos et~al., 2011). This result is in line with conclusions that Yen1 resolvase activity is redundant with that of Mus81.

Of the MutL γ components, it was decided to use a deletion of Mlh3 rather than Mlh1, because $mlh3\Delta$ has a lower rate of spontaneous mitotic mutation (Brown, 2013). As mentioned for $mus81\Delta$ in the previous section, the $mlh3\Delta$ strain is also healthier than expected (89%, Figure 8.2) given reported values of 71.7% (Nishant et~al., 2008) and 79% (Brown et~al. 2013) for $mlh3\Delta$, and 81% (Hoffmann et~al., 2003) and 68% (Argueso et~al., 2004) for $mlh1\Delta$. This may be due to variation in sporulation conditions.

The combination of $mus81\Delta$ and $mlh3\Delta$ is surprisingly healthy (~59% spore viability), considering that both major CO pathways are lost. This suggests that the backup resolvase pathways Yen1 and Slx1-Slx4 are able to compensate effectively for the loss of both Mus81 and Mlh3.

It is important to note that $mlh3\Delta$ may not necessarily completely lose interference. Synaptonemal complex initiation sites also display interference, even in the absence of CO interference (Fung $et\ al.$, 2004), and are established by the ZMM proteins far upstream of dHJ resolution, so interfering CO sites may have already been determined when Mlh1-Mlh3 acts (Argueso $et\ al.$, 2004). However, this is only a concern if the pre-determined interfering CO sites are able to be used to complete CO formation. Since COs are reduced by ~70% in $mlh1\Delta$, it seems unlikely that many residual Class I COs are formed by other resolvases. Instead, the pre-determined CO sites may be dissolved by Sgs1, which has a role in removing aberrant recombination intermediates (Jessop $et\ al.$, 2006). $sgs1\Delta$ alleviates the crossover defect of $mlh3\Delta$ mutants (Oh $et\ al.$, 2007). In addition, it would not be fair to compare the $mus81\Delta$ phenotype to that of ZMM mutants, because the ZMM proteins have other roles in addition to maintaining CO interference. For example, Zip1, as the transverse filament protein, is a major part of the synaptonemal complex, and its mutation is much more severe than $mlh3\Delta$. $zip1\Delta$ has a spore viability of 48.4%, and 17% when combined with $mus81\Delta$ (Chen $et\ al.$, 2016).

Figure 8.2. Spore viability in resolvase mutants. All error bars represent 95% confidence limits. Spore viabilities of various resolvase single and double mutants in **A**) a RAD24 background, **B**) a $rad24\Delta$ background.

Genotype	No. Tetrads dissected	Observed % Spore viability	Expected % viability of double/triple mutants	Observed/ Expected ratio
WT	64	96.88		
mus81∆	110	55.68		
mlh3∆	110	89.09		
yen1∆	110	92.95		
mus81∆ mlh3∆	107	59.58	51.2	1.16
mlh3∆yen1∆	110	77.95	85.49	0.91
mus81∆yen1∆	0	-	53.43	-
rad24∆	132	21.59		
rad24∆ mus81∆	110	19.32	12.4	1.56
rad24∆ mlh3∆	109	20.64	19.9	1.04
rad24∆ yen1∆	110	36.82	20.7	1.78
rad24∆ mus81∆ mlh3∆	98	7.91	11.4	0.69
rad24∆ mlh3∆ yen1∆	107	16.82	19.05	0.88
rad24∆ mus81∆ yen1∆	0	-	11.91	-

Table 8.3. Observed vs expected spore viabilities of *rad24∆* strains. For the triple mutants, the expected value was calculated using the viabilities of the three relevant singles rather than the doubles.

8.2.3. Contribution of resolvases to *rad24*∆ spore viability

Due to the unexpected result of $mus81\Delta$ not having much effect on $rad24\Delta$ viability, the effect of other resolvase mutations on $rad24\Delta$ spore viability was also tested (Figure 8.2B), and compared to expected values based on single mutant spore viabilities (Table 8.3). This shows that $rad24\Delta$ is very tolerant of the loss of any single resolvase (Mus81, Mlh3 or Yen1), and loss of both Mlh3 and Yen1, none of which produce a significant effect on $rad24\Delta$ spore viability. Since the number of ZMM foci in $rad24\Delta$ is reduced by 2/3 (Shinohara et~al., 2013), Mlh1-Mlh3 activity is not expected to be vital to $rad24\Delta$ spore survival. In contrast, removal of both Mus81 and Yen1 or Mus81 and Mlh3 has a significant effect on $rad24\Delta$ spore viability. In $rad24\Delta$ $mus81\Delta$ $yen1\Delta$, sporulation efficiency was too low to test viability. The few tetrads present were composed of very small, pale spores. This is the same as in $mus81\Delta$ $yen1\Delta$ backgrounds, affirming Yen1's role in acting as a backup for Mus81 and suggesting that the reason for meiotic failure in $rad24\Delta$ $mus81\Delta$ $yen1\Delta$ is due to the presence of joint molecules that cannot be resolved.

The combination of $mus81\Delta$ and $mlh3\Delta$ reduces $rad24\Delta$ viability from 21% to 8%. However, in a WT background, $mus81\Delta$ $mlh3\Delta$ does not reduce viability any more than $mus81\Delta$ alone. This suggests that $rad24\Delta$ is less tolerant of the loss of both major resolvases than $RAD24^+$ backgrounds. Since CO numbers are reduced in $rad24\Delta$ strains (Chapter 7, Table 7.1), it may be that $rad24\Delta$ does not have a high requirement for resolvases due to having few dHJs to resolve.

Overall, in $rad24\Delta$, the loss of any single resolvase is not deleterious. This suggests that Yen1 and Mlh3 activity can compensate for a lack of Mus81, and Mus81 can make up for absence of both Mlh3 and Yen1. However, losing another resolvase on top of $mus81\Delta$ is more deleterious, suggesting that Mus81 is the resolvase most important to spore viability in $rad24\Delta$.

Taken together, these results suggest that the reason why $rad24\Delta$ is more tolerant to $mus81\Delta$ than WT is that it is able to use the Yen1 and Mlh1/Mlh3 pathways to compensate for the loss of Mus81-mediated COs more effectively than WT, perhaps because it has few CO events to begin with. Thus, $rad24\Delta$ is not negatively affected by $mus81\Delta$ unless it has also lost Mlh3 or Yen1, while WT is not affected by the loss of Mlh3 if it has already lost Mus81.

An explanation for why $rad24\Delta$ is resistant to the loss of any single resolvase could be because it forms fewer COs, so is less reliant on any particular resolvase. This agrees with the observation that $rad24\Delta$ $msh2\Delta$ and $rad24\Delta$ $sml1\Delta$ sequenced tetrads have fewer COs than WT (Chapter 7, Section 7.2.1).

The reason why $rad24\Delta$ $mus81\Delta$ viability is dependent on $mlh3\Delta$ may be because the number of ZMM foci in $rad24\Delta$ is reduced by 2/3 in $rad24\Delta$, so the remaining 1/3 of Class I COs have increased importance to $rad24\Delta$ viability in the absence of Mus81. The decreased number of COs observed in sequenced $rad24\Delta$ $msh2\Delta$ and $rad24\Delta$ $sml1\Delta$ tetrads supports the idea that $rad24\Delta$ is more reliant on residual COs.

Surprisingly, the deletion of Yen1 improves the spore viability of $rad24\Delta$, by about 15%. Yen1 activity is known to be deleterious when uncontrolled; a constitutively activated form of Yen1 causes increased sensitivity to DNA-damaging agent methyl methanesulfonate (MMS) and an increase in mitotic CO numbers at the expense of NCO products, causing a loss of heterozygosity (Blanco *et al.*, 2014). This seems unlikely to be a factor in the health of $rad24\Delta$, because it has a reduced number of meiotic COs based on sequencing data from $rad24\Delta$ msh2\Delta and $rad24\Delta$ sml1\Delta. So, if Yen1 is activated at an inappropriate time in $rad24\Delta$ meiosis, it would be expected to improve CO numbers and thus be beneficial to survival. Yen1 is normally subject to strict spatial and temporal control in meiosis and mitosis. In mitotic S-phase, Yen1p is subject to phosphorylation mediated by the cyclin-dependent kinase Cdk1. This has the dual effect of both excluding Yen1p from the nucleus and reducing the efficiency of DNA binding (Blanco *et al.*, 2014). In anaphase, Yen1p is activated by Cdc14 phosphatase, which dephosphorylates Yen1p, allowing it to efficiently bind DNA and causing it to relocalize to the nucleus (Blanco *et al.*, 2014). The levels of Yen1 remain fairly constant throughout meiosis, but its HJ resolvase activity is not observed until the start of anaphase II transition, when it is activated by desphosphorylation

(Matos *et al.*, 2011). It is not clear whether Cdk1 and Cdc14 have the same roles in regulating Yen1p in meiosis as in mitosis. Yen1 does have some phosphorylation sites matching the consensus target sequences for Mec1, which could indicate a connection with Rad24 (Blanco *et al.*, 2014). If Mec1 is at least partly responsible for phosphorylating Yen1, the reduced activity of Mec1 in *rad24*\$\Delta\$ could potentially lead to inappropriate activity of Yen1p. However, Mec1-mediated activation of the DDR checkpoint is known to inhibit Cdk1 activity in mitosis. The lethal effects of Mec1 mutations can be alleviated by a decrease in Cdk1 activity, indicating that certain Cdk1 activities are detrimental in the absence of the DDR (Manfrini *et al.*, 2012). Also, MMS treatment during G1 delays the transcription of *CLN1* and *CLN2*, cyclins which bind Cdk1; this alleviated by Mec1 mutation (Sidorova and Breeden, 1997). If this also applies in meiosis, it would be expected that lower activity of Mec1 due to lack of Rad24 would cause higher activity of Cdk1, and thus lower activity of Yen1p.

Overall, it seems most likely that the reason for Yen1 activity being deleterious in $rad24\Delta$ is due to inappropriately early activation of Yen1, as $rad24\Delta$ is known to have abnormal cell cycle timing due to its short prophase; however, the exact details of when Yen1 is activated in $rad24\Delta$ are unclear.

8.2.3. $rad24\Delta$ spore viability is no longer rescued by 8h of $NDT8\theta$ prophase arrest in the absence of Mus81 activity.

In contrast to $rad24\Delta$ $msh2\Delta$ and $rad24\Delta$ $sml1\Delta$, sequenced $rad24\Delta$ tetrads with 10 h of NDT80 prophase arrest had an increased number of COs compared to WT, and those COs displayed no interference (Chapter 7, Sections 7.2.1 and 7.2.8). It was thought that the increase in CO number may be caused by the formation of Class II COs during the arrest. To test this idea, NDT80 prophase arrest and release was carried out on a $rad24\Delta$ $mus81\Delta$ strain.

In $mus81\Delta$, transient prophase arrest mediated by NDT80 block-and-release reduces spore viability from ~55% to ~33% (Figure 8.1 and Figure 8.3). This effect is independent of the length of the NDT80 prophase arrest, with the same results seen for 4 and 8 hours. Since Mus81 is activated by Cdc5, and Cdc5 expression is controlled by Ndt80 (De Muyt et~al., 2012; Matos et~al., 2011; Allers & Lichten, 2001), Mus81 is not active during prophase arrest. Thus, it is not necessarily expected that there should be a difference in spore viability between $mus81\Delta$ and prophase-arrested $mus81\Delta$. Yen1 is also not active during meiotic prophase (Matos et~al., 2011), so a possible explanation is that there may be a build-up of joint molecules that cannot be processed by either Mus81 or Yen1 during the prophase arrest. Once NDT80 is induced, Mus81 will become active and able to resolve the build-up of joint molecules, but if Mus81 is not present, Yen1 activity is insufficient to compensate. However, the negative effect on spore viability does

not increase with prophase length, so any build-up of unresolvable joint molecules does not continue beyond 4 hours into prophase.

The spore viability of $rad24\Delta$ is normally rescued by 8 h of NDT80 prophase arrest, going from ~21% to ~59% (Chapter 3, Figure 3.1). However, in the absence of Mus81, $rad24\Delta$ is no longer rescued by the extension of prophase (Figure 8.3). Based on the $rad24\Delta$ +8 h spore viability of ~59% and a $mus81\Delta$ viability of ~55%, $rad24\Delta$ $mus81\Delta$ +8 h is expected to have a viability of ~33%, but it is actually around 10% (Table 8.3). This shows that the rescue of $rad24\Delta$ by NDT80 prophase extension is dependent on the activity of Mus81. Combined with the observations that there is an increase in CO numbers in sequenced $rad24\Delta$ +10 h tetrads (Chapter 7, Section 7.2.1), and these COs do not display interference (Chapter 7, Section 7.2.8), this suggests the additional COs formed during prophase arrest are Class II COs. In addition, it has been previously show that $rad24\Delta$ strains arrested in prophase for 8 hours do not experience a significant increase in ZMM foci compared to non-arrested $rad24\Delta$ (Shinohara et al., 2015). This supports the idea that the increase in CO numbers in $rad24\Delta$ +10 h is due to the formation of additional Class II COs, not Class I COs.

While the difference in spore viability between $rad24\Delta$ and $rad24\Delta$ mus81 Δ was negligible (Figure 8.1), $rad24\Delta$ mus81 Δ +8 h has a viability significantly lower than that of $rad24\Delta$ +8 h (Figure 8.3). This indicates that the loss of mus81 Δ is not deleterious to $rad24\Delta$ unless prophase is extended. It may be the case that $rad24\Delta$ is normally resistant to the loss of mus81 Δ because it has fewer COs, so is less reliant on any particular resolvase. However, when CO numbers are increased by NDT80 prophase arrest, $rad24\Delta$ requires Mus81 activity for the timely resolution of joint molecules.

In addition, because $msh2\Delta$ normally rescues the spore viability of $rad24\Delta$ SK1xS288c hybrids (but not pure SK1 strains), and these $rad24\Delta$ $msh2\Delta$ hybrids are predicted to have mostly Class II COs, a hybrid $rad24\Delta$ $msh2\Delta$ $mus81\Delta$ strain was assayed for spore viability. However, the sporulation efficiency was extremely low, rendering tetrad dissection difficult. Nonetheless, out of 31 successfully dissected tetrads, not a single viable spore was produced (Table S1). This supports the idea that the additional COs formed in a $msh2\Delta$ background are all or mostly Class II in $rad24\Delta$.

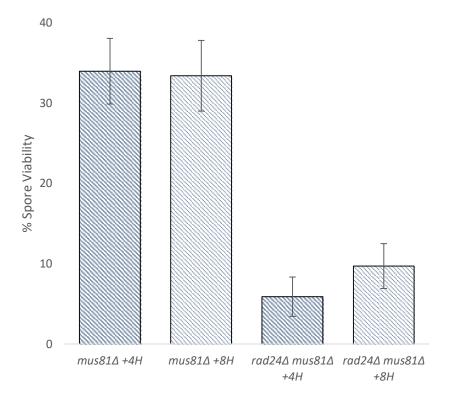


Figure 8.3. Effect of 4 or 8 hours of prophase arrest on the spore viability of $mus81\Delta$ and $rad24\Delta$ $mus81\Delta$ yeast. All error bars represent 95% confidence limits.

8.3. Discussion

8.3.1 Effect of different proteins on Class I/II ratio

CO events can be Class I, which display interference (Novak *et al.*, 2001), or Class II, which do not interfere and are primarily formed by Mus81 activity (de los Santos, 2003). By predicting the percentage of COs that display interference or not by mixture modelling (Sections 5.2.10, 6.2.11, 7.2.11) and by removing $mus81\Delta$ activity (Section 8.2.1), information about the roles of Mec1, Tel1, Rad24 and Msh2 in determining the ratio of Class I/II formation can be obtained.

In most strains, the results of mixture modelling and Mus81 deletion are in agreement, in terms of the importance of Class II CO formation for each strain. The spore viability of $tel1\Delta$ and P_{CLB2} -MEC1 strains are affected more than WT strains by $mus81\Delta$ (Table 8.2), indicating that they are more reliant on Class II COs than WT strains; the results of mixture modelling also predict a large increase in Class II CO formation and small reduction in Class I CO formation in $tel1\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ compared to $msh2\Delta$ (Table 8.1). This suggests that Mec1 and Tel1 are pro Class I and/or anti Class II factors, though this is likely an indirect activity as they are not known to interact with any relevant proteins, unlike Rad24 (Figure 8.4). In addition, mixture modelling predicts an increase in Class I formation in $msh2\Delta$ but no change in Class II formation; the loss of Mus81 affects $msh2\Delta$ to the same degree as a WT strain, indicating that $msh2\Delta$ is not more reliant on Class II CO formation than WT, and that Msh2 is an anti-class I CO factor, possibly by disproportionately rejecting strand invasion at sites for future Class I COs rather than Class II COs (Figure 8.4).

In contrast, while $rad24\Delta$ strains are predicted to have few or no Class I COs, and instead mainly Class II COs (Section 7.2.11), the deletion of Mus81 does not affect spore viability at all (Chapter 8, Figure 8.1). This may be explained by the fact that the sequenced $rad24\Delta$ strains also had prophase extension or $msh2\Delta$ deletion, while the $rad24\Delta$ $mus81\Delta$ strain did not. The NDT80 prophase arrest and MMR deficiency are thought to improve $rad24\Delta$ viability by increasing CO numbers (Chapter 7, Section 7.2.1), which may increase the need for Mus81 activity for the timely resolution of joint molecules. When observing the effect of $mus81\Delta$ on prophase-arrested $rad24\Delta$ or $rad24\Delta$ $msh2\Delta$, it was found that a $rad24\Delta$ $msh2\Delta$ $mus81\Delta$ triple mutant had low sporulation efficiency and produced no viable spores. In addition, $rad24\Delta$ no longer experienced a rescue effect from prophase arrest in the absence of Mus81, and in fact, $rad24\Delta$ $mus81\Delta$ +8 h has a viability substantially lower than that of $rad24\Delta$ (Chapter 8, Figure 8.3). This suggests that $msh2\Delta$ and prophase extension likely rescue $rad24\Delta$ viability by allowing the formation of additional Class II COs, because Class I COs form infrequently in $rad24\Delta$ (Figure 8.4). In the absence of these conditions, the formation of any CO events may be so infrequent that the presence or

absence of Mus81 makes no difference (assuming the presence of other resolvases; the additional absence of Yen1 or Mlh3 has a more severe effect (Section 8.2.3)).

In addition, it has been previously show that $rad24\Delta$ strains arrested in prophase for 8 hours do not experience a significant increase in ZMM foci compared to non-arrested $rad24\Delta$ (Shinohara et al., 2015). This supports the idea that the increase in CO numbers in $rad24\Delta + 10$ h is due to the formation of additional Class II COs, not Class I COs.

CO numbers are also affected by DSB formation levels, since DSBs are the precursors of COs. The absence of Msh2, Mec1 or Tel1 in meiosis increases the number of recombination events detected, suggesting that they are anti-DSB factors (Figures 5.1, 6.1, 7.1). In support of this latter conclusion, $tel1\Delta$ strains have been directly shown to have increase in DSB formation (Garcia et al., 2015; Mohibullah et al., 2017). The absence of Rad24 decreases recombination event formation in a $msh2\Delta$, but not NDT80 prophase arrest, background (Figure 7.1). However, Mec1 and Rad24 are also known to be pro-DSB factors due to their role in the meiotic checkpoint (Gray et al., 2013) indicating that these proteins have both positive and negative effects on DSB formation.

The resolution of Class II COs occurs after meiotic prophase, as Mus81 is indirectly activated by Ndt80 via Cdc5 (Matos *et al.*, 2011; Sourirajan and Lichten, 2008), and Yen1 activation occurs in late meiosis (Chu & Herskowitz, 1998; Matos *et al.*, 2011). However, the DDR response checkpoint occurs during meiotic prophase. For this reason, the increase in Class II CO formation in the absence of Mec1, Tel1 or Rad24 is likely not because these proteins normally inhibit Class II formation, but that they normally promote Class I formation. In absence of the checkpoint proteins, recombination events that would have ordinarily become Class I COs have to become Class II COs or NCOs instead. This is further supported by the fact that Yen1 is able to cleave a wide variety of DNA substrates, suggesting that its role is to resolve any persistent joint molecules that were not processed by other resolvases before the second meiotic division (Matos *et al.*, 2011). In addition, Mus81 is needed to resolve aberrant JMs such as single Holliday junctions, intersister JMs, multichromatid (3 or 4 chromatid) JMs, and JMs containing two chromatids where one has undergone crossing over (Oh *et al.*, 2008).

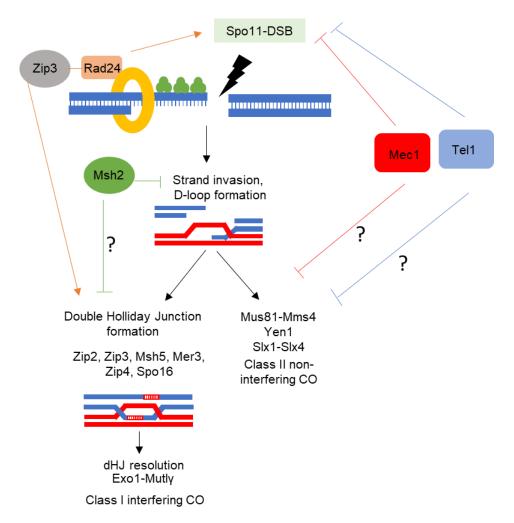


Figure 8.4. Model of Class I /Class II pathway influences

Spo11-DSBs can be repaired to produce CO or NCO products. After strand invasion and D-loop formation, CO events can be formed by either dHJ formation and resolution, or via a structure specific endonuclease (Paques and Haber, 1999). These pathways produce interfering and noninterfering COs respectively. Rad24 influences CO formation by promoting the Class I CO pathway via the loading of ZMM proteins (Shinohara et al., 2015). In addition, Rad24 also indirectly promotes CO formation by increasing DSB formation due to its role in the meiotic checkpoint (Gray et al., 2013; Chapter 7, Section 7.2.1). In the absence of Msh2, more recombination events are detected (Chapter 5, Section 5.2.1). Msh2 inhibits strand invasion into mismatching sequences, which likely reduces recombination between homologous chromosomes in hybrids. In msh2\(\Omega\), an increase in Class I Co formation is observed without a change in Class II CO numbers, indicating that Msh2 activity is an anti-class I CO factor, perhaps by disproportionately rejecting strand invasion at sites for future Class I COs. The absence of either Mec1 or Tel1 in meiosis increases the number of recombination events detected, indicating that they are anti-DSB factors. Both are also known to be pro-DSB factors however (Garcia et al., 2015; Gray et al., 2013), indicating that they have positive and negative effects on DSB formation. Absence of Mec1 or Tel1 also produces a large increase in Class II CO formation, but only a slight reduction in Class I CO formation. This suggests that Mec1 and Tel1 are pro Class I/anti Class II factors.

8.3.2. Closing Statement

In this chapter, the effect of the loss of the major Class II CO pathway resolvase Mus81 in various backgrounds is measured by assaying spore viability. In addition, the effect of single and double mutants of mus81, mlh3 and yen1 in WT and $rad24\Delta$ backgrounds is examined, to discover the relationship between the resolvases and the role they play in $rad24\Delta$ viability.

Overall, these results show that in silico models can predict the ratio of Class I: Class II CO formation, and these predictions are largely supported by the *in vivo* effects of removing Class II CO formation. The results support an anti-Class I CO role for Msh2, and a pro-Class I and/or anti-Class II role for Mec1, Tel1 and Rad24. In addition, $rad24\Delta$ spore viability is not reliant on any particular resolvase, likely because it has so few CO events. The rescue effect of prophase extension and $msh2\Delta$ on $rad24\Delta$ strains is abrogated by loss of Mus81, indicating that Class II CO formation is integral to the mechanism of rescue by these methods.

Chapter 9.

Discussion

Chapter 9. Discussion

9.1. Overview

Previous investigations into the roles of the DDR checkpoint proteins Tel1, Mec1 and Rad24 during meiotic recombination have demonstrated an increase in DSB formation and loss of DSB interference in $tel1\Delta$ at some single loci (Garcia et~al., 2015), a reduction in DSB formation in P_{CLB2} -MEC1 at single loci and rescue of spore viability by NDT80 prophase extension in $rad24\Delta$ (Gray et~al., 2013).

To further investigate the roles of these DDR proteins in regulation of meiotic recombination, recombination events were analysed genome-wide in individual meioses. Methods for mapping meiotic recombination genome wide from sequencing data have been established, but required improvements and customization to accommodate the relatively long reads and lower read depths generated by the MiSeq platform, and to use the polymorphism markers present in the strains used in this investigation (Chapter 4). In addition, the analysis pipeline was updated so that heteroduplex DNA present in $msh2\Delta$ tetrads could be analysed, alongside $msh2\Delta$ octads and msh2 tetrads (Chapter 4).

The high resolution event location data produced by this method was used to determine various characteristics of meiotic recombination in wild type, $msh2\Delta$, NDT80 prophase-extension and checkpoint mutant hybrids, including CO and DSB interference processes (Chapters 5-7). The conclusions drawn about changes in CO interference were further substantiated by removing most Class II COs from each strain via $mus81\Delta$ and observing the effect on spore survival (Chapter 8).

An important aim was to understand where the roles of Rad24 and Mec1 in meiosis may differ, which was investigated in two ways. Firstly, by comparing the effect of the absence of each protein on meiotic recombination by the genome-wide survey (Chapter 7), and secondly by examining the differences in spore viability and rescue by *NDT80* prophase arrest between each mutant (Chapter 3).

9.2. Development and quality control of a customized pipeline for recombination event analysis

In Chapter 4, a new bioinformatics pipeline was designed, differing from previously published methods in several ways, including that it is optimized for long reads (300bp) and relatively low read depths (~27x); uses a dedicated list of both SNPs and indels produced for the specific SK1

and S288c strains used in this investigation; and is capable of analysing heteroduplex DNA found in $msh2\Delta$ tetrads, as well as $msh2\Delta$ octads and MSH2 tetrads.

Overall, though recombination has been assayed genome-wide in $msh2\Delta$ octads, this updated study offers distinct advantages over preceding ones in terms of marker detection and recombination event resolution. For example, deep sequencing provides a higher resolution of polymorphisms than microarray hybridisation, because sequencing is capable of interrogating the entire genome, without depending on pre-selected targets. This means that the polymorphisms of interest can be determined from the data itself (Section 4.2.3). In addition, hDNA can be detected in $msh2\Delta$ tetrads via sequencing, but not via microarray (discussed in Section 4.2.5). Finally, during classification of recombination products, pattern changes falling within only 1.5kb of each other were considered to be part of the same event, compared to the up to 5kb limit used in previous studies (e.g. Martini et al., 2011). The reduced threshold of 1.5kb was determined by detailed analysis of heteroduplex DNA patterns in recombination events, allowing the identification of events that must have been produced by multiple Spo11-DSBs (Bertrand Llorente and Marie-Claude Marsolier, personal communication). This is advantageous for detailed examination of the distance between recombination events, which may enable the detection of event clustering at short range, as proposed to arise in tell \(\text{mutants} \) mutants (Garcia et al., 2015).

9.3. Analysis of recombination genome-wide in wild type meiosis

In Chapter 5, high-resolution sequencing data was used to examine features of meiotic recombination in wild type, MMR deficient and *NDT80* prophase-extended hybrid strains. Such analyses provided a baseline for 'wild-type' recombination to be established, which can be used for comparisons. In addition, it was determined that the three 'wild type' backgrounds have some substantially different features of recombination to each other (Table 5.6).

Genome-wide recombination assaying in $msh2\Delta$ hybrids reveals an increased CO and NCO count compared to the $MSH2^+$ wildtype control (Chapter 5, Figure 5.1). The increase in recombination supports the idea that Msh2 has a role in rejecting strand invasion during recombination, which would be more of an issue in the hybrid diploids due to the numerous mismatches (\sim 68,500) spread across the genome. $msh2\Delta$ also increases NCO counts compared to WT. This is at least partly because they are easier to detect because hDNA can be detected in $msh2\Delta$. However, even when accounting for events detected in $msh2\Delta$ that are composed of hDNA only, the WT strain is still predicted to have fewer than $msh2\Delta$, suggesting that Msh2 suppresses both CO and NCO formation (Section 5.2.1). In agreement with these observations,

it was found that $msh2\Delta$ is less deleterious to hybrid strains than to pure SK1 strains, and even rescues the viability of $rad24\Delta$ and P_{CLB2} -MEC1 hybrids (Figure 3.8B).

Collectively, these data suggest a role for Msh2 in rejecting strand invasion into mismatched sequences, something that is more likely to occur in hybrids.

Extended prophase also increases the number of CO and NCO events detected, but not as much as $msh2\Delta$ (Chapter 5, section 5.2.1). Prophase-extended strains also have longer CO and NCO events than $msh2\Delta$ or WT, suggesting that recombination event tracts may continue to be lengthened by e.g. resection or joint molecule migration, while in prophase arrest.

In WT, *NDT80* prophase-extension and $msh2\Delta$ strains, CO events occur further apart than expected from a random distribution, indicating the presence of CO interference. The distributions of CO events in WT and WT + 8 h are best fit by gamma distributions with α =1.39 and 1.46 respectively, while in $msh2\Delta$, the best-fit gamma distribution has α =2.44, suggesting stronger CO interference than in WT or *NDT80* prophase arrest strains. This may be explained by the higher percentage of COs that are predicted to be Class I interfering COs, in comparison to Class II non-interfering COs, in $msh2\Delta$ strains. Increased prophase length is more beneficial to cell survival than $msh2\Delta$, perhaps because a lack of MMR means that mutations cannot be repaired, or because ectopic recombination is increased due to the inability to reject strand invasion into non-homologous regions. By contrast, extending prophase may provide more time to complete accurate recombination, and has only minor impacts on recombination and spore viability (Allers & Lichten, 2001; Bhuiyan *et al.*, 2002; Table 9.1).

Table 9.1. Summary of basic recombination characteristics across strains.

Spore viability was originally shown in Figures 3.1A, 3.3A, 3.8, 3.9.

DSB cluster formation originally shown in Figures 5.2, 6.2, 7.5, 7.6.

CO/NCO formation originally reported in Table 5.1, 6.1, 7.1.

Event lengths originally reported in Figures 5.3, 6.7, 7.8, 7.9.

Best fit alpha values are from Table 5.4, 6.4, 7.4.

It should be noted that the best fit alpha value was still significantly different from the actual CO distribution in most cases.

The Class I and II percentages and numbers are from Table 5.5, 6.5, 7.5.

	WT	WT + 8 h	msh2∆	rad24∆ + 10 h	rad24∆ msh2∆	P _{CLB2} - MEC1 + 8 h	P _{CLB2} - MEC1 msh2Δ	tel1∆ msh2∆
Spore viability % (SK1)	97	94	81	69	21	58	49	75
Spore viability % (SK1xS288c hybrid)	82	70	73	16	6	16	29	64
Average CO number	74.5	97.3	105.0	125.0	83.5	126.8	134.7	115.3
Average NCO number	39.5	51.0	101.8	92.0	113.0	90.7	213.8	140.7
Median NCO mid length (bp)	1815	2089	1057	2635	827	2340	926	980
Median CO mid length (bp)	1688	1679	1195	1984	1571	1880	1326	1382
% of events that are DSB clusters	4.8	5.6	4.6	18.2	10.9	15.9	13.7	9.2
Best fit α value (CO interference)	1.2	1.5	2.4	1.1	1.6	1.2	1.7	1.9
Class I/Class II CO percentage	67.1/ 32.9	66.0/ 34.0	76.5/ 23.5	10.9/ 89.1	8.5/ 91.5	50.7/ 49.4	52.7/ 47.3	67.4/ 32.6
Class I/Class II CO number (predicted)	50.0/ 24.5	64.1/ 33.2	80.3/ 24.7	13.6/ 111.3	7.0/ 76.4	64.2/ 62.6	71.0/ 63.7	77.7/ 37.6

9.4. Analysis of recombination genome wide in tel1∆

Previously, recombination has been assayed genome-wide in $tell\Delta$ tetrads (Anderson et~al., 2015), but not in a MMR-deficient $tell\Delta$ background. In Chapter 6, the deep sequencing methods that I developed were used to investigate the effects that $tell\Delta$ has on recombination event quantity and quality, and CO and DSB interference. Tell is found to have roles in controlling CO and NCO event formation, levels of DSB cluster formation, and CO interference, likely via controlling the ratio of Class I/II CO formation (Figure 9.1). This study offers distinct advantages over preceding ones in terms of marker and event resolution and detection.

The use of MMR deficient strains greatly increases the number of NCOs that can be detected, as well as the amount of information about e.g. length and complexity that can be gathered for each event (Martini et al., 2011). For example, an increase in 7:1 segments is observed upon tell \(\Delta \) (Section 6.2.3), something that is impossible to detect in the MMR-proficient strains used by Anderson et al., 2015. These events are of particular interest because they represent cases where recombination has occurred on two sister chromatids at the same location, suggesting a loss of trans DSB interference, which is known to be reduced in tell (Zhang et al., 2011). In addition, segments of 6:2 segregation may represent DSB cis interference loss, as they could be formed by the occurrence of two close Spo11-DSBs. Such segments would be visible in MSH2+ as well as msh2∆ cells, but since 6:2 segments are also produced by MMR activity, any 6:2 segments formed by concerted Spo11-DSB formation would be occluded in the former. MMR-deficient hybrids may also be more representative of recombination in a pure SK1 background than MMRproficient hybrids, due to the rejection of strand invasion into mismatching sequences by Msh2 (Sugawara et al., 1997; Evans et al., 2000; Datta et al., 1999; Chen & Jinks-Robinson, 1998). However, in wild S. cerevisiae populations, most individuals are heterozygous (reviewed in Mortimer 2000; Borts & Haber, 1987), so a heterozygous cross may be more representative of wild type conditions than homozygous strains.

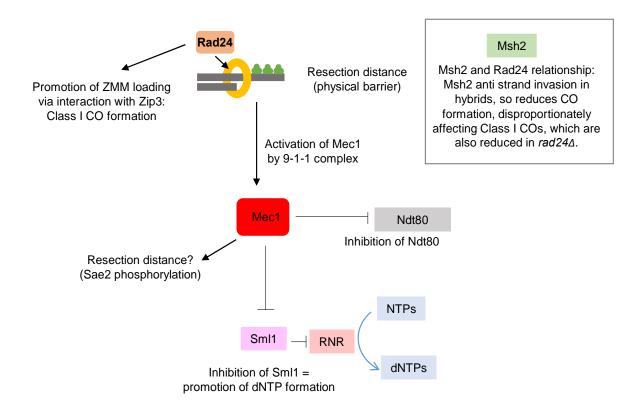


Figure 9.1. Model of Rad24 and Mec1 meiotic roles

In response to DNA damage initiated by Spo11, Rad24 loads the 9-1-1 clamp at the DSB site and promotes loading of ZMM proteins, likely via an interaction with Zip3 (Shinohara et al., 2015). ZMM proteins are required for Class I interfering CO formation. Rad24 contributes to the activation of Mec1 via the 9-1-1 complex. Mec1 activation inhibits NDT80 activation, stalling meiotic progress (Prugar et al., 2017). Mec1 also inhibits Sml1 activity via Dun1, promoting the formation of dNTPs which contribute to DNA repair. Mec1 also limits resection distance, possibly via Sae2 phosphorylation. Rad24 also contributes to resection distance, likely via the 9-1-1 clamp which may act as a physical barrier to resection.

9.5. Separable contributions of Rad24 and Mec1 to outcomes of meiosis

9.5.1 Meiotic recombination

The roles of Rad24 and Mec1 proteins are investigated via the analysis of meiotic recombination signatures genome wide in $rad24\Delta$ and P_{CLB2} -MEC1 backgrounds (Chapter 7). In order to carry out this analysis, the spore viability of the hybrid checkpoint mutants must be improved by prophase extension or $msh2\Delta$ to allow collection of four-spore viable tetrads. Since these rescue methods may affect the recombination event outcomes, the analysis is repeated in two different rescue backgrounds to help reduce any bias and obtain a more complete picture of the effect of Mec1 and Rad24 on meiotic recombination.

 $rad24\Delta$ has fewer CO and NCO events than P_{CLB2} -MEC1, in both MMR-deficient and NDT80 prophase-extension backgrounds (Table 9.1). This suggests that Rad24 contributes more to ensuring DSB formation than Mec1. Most residual COs in $rad24\Delta$ are distributed randomly, showing a loss of interference (Chapter 7, Figure 7.17); this could be due to a reduction in Class I CO formation. A loss of CO interference is also observed in P_{CLB2} -MEC1, but to a lesser extent. In addition, unlike Mec1, Rad24 has a physical interaction with Zip3, and has a role in loading ZMM proteins at sites of future Class I COs (Shinohara et al., 2015).

Alternatively, the disparity in recombination event numbers between Rad24 and Mec1 could be because Mec1 has a role in limiting DSB formation via phosphorylation of Rec114 (Carballo *et al.*, 2013). DSB processing leads to the activation of Mec1 due to the formation of RPA-bound ssDNA (Zou & Elledge, 2003), thus strains with low rates of DSB formation will also have a reduced level of Mec1 activation. In the absence of Rad24, Mec1 activation is reduced in two ways: by the reduction of ssDNA formation and by the lack of a clamp loader to load the 9-1-1 clamp (Figure 9.1), affecting the role of Mec1 in processes such as Ndt80 inhibition, meaning that fewer recombination events can occur before the end of prophase. The scarcity of recombination events is exacerbated by the reduction in Class I CO formation caused by *rad241*. In contrast, in the absence of Mec1, Mec1 activities are removed entirely e.g. there is no Mec1-mediated inhibition of Ndt80, but CO formation is not strongly affected because Rad24 is still present to promote the formation of Class I COs.

9.5.2 Spore viability

Loss of Rad24 and Mec1 activity greatly impacts spore viability. In Chapter 3, ways in which the $rad24\Delta$ and P_{CLB2} -MEC1 meiotic phenotype can be rescued were examined to help inform on the roles of Rad24 in meiosis and where they may differ from Mec1. It was found that the deleterious $rad24\Delta$ phenotype can be rescued in multiple ways, such as having more nucleotides present via

 $sml1\Delta$, restoration of at least four hours of prophase arrest in both SK1 and hybrid backgrounds (Figure 3.4, 3.9), and reductions in Spo11 activity in combination with extended prophase (Gray et~al., 2013). The relationship between prophase length and spore viability of DDR mutants is also investigated, showing a positive correlation for up to 12 hours of prophase. In addition, as noted above, in hybrid, but not SK1, backgrounds, $msh2\Delta$ also improves viability (Figure 3.8). Finally, P_{CLB2} -MEC1 spore viability can be rescued by $msh2\Delta$ and NDT80 prophase extension, but only if hybrid, not pure SK1 (Figures 3.3, 3.8, 3.9). The rescue of $rad24\Delta$ and P_{CLB2} -MEC1 hybrid spore viability is unexpected because $msh2\Delta$ is deleterious to WT strains. This suggests that a main cause of low viability in mec1 and rad24 mutant hybrids is the reduced recombination event formation due to Msh2 activity (Figure 9.1).

Overall, these results suggest that the main cause of the low spore viability of $rad24\Delta$ and P_{CLB2} -MEC1 is a reduction in Spo11-DSB formation (likely due to the loss of the meiotic checkpoint, and in hybrids, the rejection of strand invasion by Msh2), and a resultant reduction in CO formation, which is particularly severe in $rad24\Delta$ due to the role of Rad24 in promoting Class I CO formation. Increasing the number of DSBs that are formed and repaired via NDT80 prophase extension, or via increasing the efficiency of strand invasion into homologous chromosomes via $msh2\Delta$, improves $rad24\Delta$ and P_{CLB2} -MEC1 hybrid viability. This suggests that in WT meiosis, the DDR checkpoint is important to delay prophase exit in order to promote DSB formation and repair.

Mec1 is known to inactivate Ndt80 via Mek1 until DSBs are repaired (Prugar et al., 2017). As an activator of Mec1, it is logical that Rad24 is therefore also important for the inhibition of Ndt80 activation (Figure 9.1). This model likely explains why $rad24\Delta$ spore viability is rescued by transient NDT80 repression, which is thought to restore part of the natural function of the meiotic checkpoint. Intriguingly, the spore viability of P_{CLB2} -MEC1 is not affected by NDT80 prophase extension in a pure SK1 background, but is rescued in an SK1xS288c hybrid background (Figure 3.9). An explanation for this discrepancy may be that while both Mec1 and Rad24 are important to inhibit Ndt80, early induction of Ndt80 is only a problem for spore survival if recombination event numbers are low. Thus, rad24\Delta is rescued by NDT80 prophase extension, because rad24\Delta has fewer CO events due to its influence on Class I CO formation, and hybrid P_{CLB2} -MEC1 are rescued because they have fewer recombination events due to the activity of Msh2, which rejects strand invasion into mismatched sequences (Sugawara et al., 1997; Evans et al., 2000). The latter is likely to cause an increased level of inter-sister repair – something which may be exacerbated by the absence of Mec1, which is known to have a role in ensuring inter-homologue bias. The conclusion that prophase extension is more helpful in backgrounds with fewer recombination events is supported by the fact that hypo-spo11 alleles have a synergistic negative effect on spore

9.5.3 Efficient DSB repair

Sml1 is an inhibitor of RNR, which is needed for dNTPs synthesis, required for repair of DNA damage (Zhao et al., 1998; Reichard, 1988). Survival of rad24\Delta spores can be improved via deletion of Sml1, likely due to the role of Rad24 in activating Mec1, which indirectly inactivates Sml1 (Figure 9.1), especially in combination with $msh2\Delta$ and/or NDT80 prophase arrest. A rad24\Delta sml1\Delta meiosis had only 32 COs (Table 7.1), compared to averages of 84 and 125 COs in $rad24\Delta$ msh2 Δ and $rad24\Delta + 10$ h respectively. In addition, 61 and 92 COs were detected in two rad24∆ msh2∆ sml1∆ meioses, similar numbers to those observed in rad24∆ msh2∆ (which range from 54-104 CO events), suggesting that $msh2\Delta$ increases CO event formation in $rad24\Delta$, but $sml1\Delta$ does not. Thus, $sml1\Delta$ likely does not affect recombination event formation, but may increase the efficiency of their repair due to the increase in dNTP numbers, and so is particularly beneficial in the $msh2\Delta$ background where the levels of event formation are increased but there is limited time to repair them due to the early induction of Ndt80. While NDT80 prophase extension is highly beneficial to rad24\Delta spore viability, it is even more beneficial when combined with a hypo-spo11 allele, suggesting that excessively high levels of Spo11-DSBs may be deleterious to rad24\Delta. It is possible that this is because there are too few dNTPs available for repair of the increased DSBs, due to the lower activation of Mec1, and thus loss of Sml1 inactivation, in $rad24\Delta + 10 \text{ h}$.

Having many dNTPs available could also potentially reduce the number of mismatches formed during the repair, because the correct base is more likely to be available; this would then be particularly helpful when MMR is inactive and so unable to repair mismatches. In vegetatively growing yeast with a point mutation in RNR that results in an increase in dCTP and dTTP, but not dATP or dGTP, an increase in mutation rate is observed (~14x), which is greatly exacerbated by the deletion of *MSH2* (an additional ~40x) (Buckland *et al.*, 2014; Watt *et al.*, 2016). This suggests that elevated dNTP production increases mutation rate in the absence of MMR, but specifically when dNTP pools are biased, which may reduce the probability that the correct base is available. A different effect may be observed if dNTP pools are uniformly increased, as would be the case in *sml1*\(\textit{\Delta}\).

9.6. The contribution of CO resolvases to meiotic success in the absence of DDR and MMR proteins

CO events detected via recombination event analysis can be divided into those that show Class I—or Class II—like behaviour, by separating out those that are distributed randomly and those that appear to show CO interference (Sections 5.2.10, 6.2.11, 7.2.11). This analysis is complemented by observing the effect of the loss of the major Class II CO pathway resolvase Mus81 on spore viability in various backgrounds (Section 8.2.1).

For $msh2\Delta$, $tell\Delta$ and P_{CLB2} -MEC1 strains, the results of each analysis are coherent. P_{CLB2} -MEC1 and $tell\Delta$ both have a greater reduction in spore viability on $mus8l\Delta$ than WT (Table 8.1), which agrees with analysis suggesting they have an increase in Class II CO formation (Tables 6.5, 7.5). In contrast, Msh2 appears to be an anti-Class I factor, as $msh2\Delta$ is affected by $mus8l\Delta$ to the same extent as WT (Table 8.1), and the increase in CO number in $msh2\Delta$ compared to WT appears to be entirely made up of Class I COs, with no change in Class II CO number (Table 5.5). However, the results of each analysis are not coherent for $rad24\Delta$ strains, which are unaffected by $mus8l\Delta$ (Table 8.1) but appear to have almost no Class I CO formation (Table 7.5). However, $rad24\Delta$ strains are affected by $mus8l\Delta$ when prophase is extended or MMR is deficient (as in the sequenced tetrads), indicating that Class II CO formation may only be increased in $rad24\Delta$ under these circumstances.

9.7. Contribution of Mec1 and Tel1 to meiotic recombination

While Tel1 and Mec1 have many overlapping roles in meiotic recombination (Figure 9.2), the contribution of each protein is not equal. For both SK1 and hybrid strains, loss of Mec1 is more deleterious to spore viability than loss of Tel1, in agreement with previous findings that Tel1/ATM is less vital to survival than Mec1/ATR (Morrow *et al.*, 1995; de Klein *et al.*, 2000).

Both Mec1 and Tel1 are proposed to downregulate DSB formation via Rec114 phosphorylation (Carballo *et al.*, 2012). Mec1 also promotes DSB formation indirectly via the inhibition of Ndt80 (Gray *et al.*, 2013; Prugar *et al.*, 2017). Significantly more CO and NCO events are detected in P_{CLB2} -MEC1 than in $tel1\Delta$ (Table 9.1). This is counter to previous observations suggesting that both P_{CLB2} -MEC1 and $tel1\Delta$ have an approximately twofold increase in DSB formation: DSB signal at the LEU2::HISG hotspot, measured by Southern blotting after 3 hours of meiosis, is increased from ~6% in WT to ~12.5% in P_{CLB2} -MEC1 (Gray et al., 2013), and from 2-3% in WT to 4-6% in $tel1\Delta$ (Garcia et al., 2014). A $tel1\Delta$ strain has also been found to have on average, 2.2x more Spo11-oligos than WT (Mohibullah et al., 2017). However, these studies only assay the

products of DSB formation and not recombination. It could be the case that excessive DSBs are formed, but are not detected in the outcomes of recombination. For example, DSBs may be more likely to be repaired with the sister chromatid due to loss of homolog bias, which Mec1 and Tel1 are known to have roles in (Schwacha & Kleckner, 1994; Collins & Newlon, 1994). If the role of Tel1 in maintaining homologue bias is more vital than that of Mec1, this could explain why the increase in DSB formation in $tel1\Delta$ is not reflected in detected recombination event numbers, but is for Mec1.

Tel1-deficient strains have on average longer NCO and CO events than Mec1-deficient strains. However, P_{CLB2} -MEC1 have a higher percentage of events that are formed from multiple DSBs than $tel1\Delta$. This seems counterintuitive considering that long event lengths in $msh2\Delta$ strains are almost entirely explained by DSB clustering (Sections 6.2.5, 7.2.5). However, when observing the range of DSB cluster lengths across strains, it can be seen that in $tel1\Delta$, a higher proportion of DSB cluster events have long lengths (Figure 7.11, 6.8). For example, 11% of CO-containing DSB clusters in $tel1\Delta$, but only 4% in P_{CLB2} -MEC1, are >10kb in length. This suggests that there is a higher proportion of DSB clusters with very long lengths in $tel1\Delta$ than in P_{CLB2} -MEC1.

 P_{CLB2} -MEC1 appears to have lost CO interference to a higher degree than $tel1\Delta$, likely because P_{CLB2} -MEC1 also has fewer Class I COs and more Class II COs than $tel1\Delta$. Tel1 has been previously shown to be involved in CO interference and to influence the ratio of Class I/II CO formation (Anderson et al., 2015), but Mec1 has not previously been implicated in these processes.

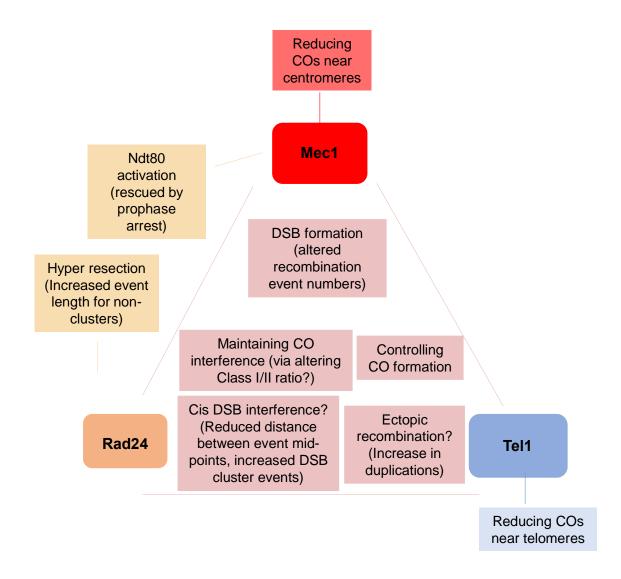


Figure 9.2. Overlapping and separate roles of checkpoint proteins in controlling meiotic recombination.

Roles of the DDR proteins Mec1, Tel1, and Rad24 in meiotic recombination, as interpreted from the results of genome-wide recombination assays. Red indicates Mec1-specific roles; blue, Tel1 specific; yellow, roles shared by Mec1 and Rad24, and pink, roles shared by all three.

9.8. Increase in recombination event length observed in mutants is mostly explainable by an increase in DSB cluster events

The amount of genetic change associated with a recombination event was investigated by comparing mid length estimates, which are calculated as the difference between the midpoints between the first and last SNPs to display an altered segregation pattern in a recombination event (Figure 5.3). It should be noted that the mid length may be an overestimate in areas of low SNP density, but on average is expected to be more accurate than the minimum or maximum possible lengths.

The mid length estimate of CO and NCO events is increased in WT+8 h (Figure 5.3), $tel1\Delta$ $msh2\Delta$ (Figure 6.7), $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ (Figure 7.8), $rad24\Delta$ +10 h and P_{CLB2} -MEC1 +8 h (Figure 7.9), compared to the WT and $msh2\Delta$ controls, which do not have highly different event lengths to each other. Overall, $rad24\Delta$ + 10 h has the highest proportion of long events of any background. Possible explanations for an increase in event length include an increase in D-loop or dHJ migration (Figure 4.9, 4.10), an increase in DSB resection distance, or the merging of two separate DSB repair events.

An increase in dHJ migration would be expected to primarily affect the length of CO events, since the number of NCOs formed from dHJ resolution is thought to be low or none (Zakharyevich *et al.*, 2012). However, both CO and NCO event lengths are increased in the strains mentioned above, so dHJ migration alone is not a satisfactory explanation. Nonetheless, D-loop migration could occur during NCO formation.

Examining the length of single-DSB and DSB-cluster events separately revealed that most long events in $tel1\Delta$ $msh2\Delta$ (Figure 6.8), $rad24\Delta$ $msh2\Delta$ and P_{CLB2} -MEC1 $msh2\Delta$ (Figure 7.11) were DSB cluster events, indicating that the primary reason for an increase in event length observed in these strains is that there is an increase in DSB clustering. However, there are a few short DSB cluster events and long non-cluster events in these strains.

In WT+ 8 h (Figure 5.3), the majority of long events were DSB clusters, with a few long nonclusters but no short DSB clusters. In $rad24\Delta$ +10 h and P_{CLB2} -MEC1 + 8 h, while most long events were again DSB clusters, there was also an increase in the proportion of long non-clusters, and in short DSB clusters (Figure 7.12). This suggests that while most of the increase in event length can be explained by DSB clustering in $rad24\Delta$ and P_{CLB2} -MEC1 with prophase extension, this is not sufficient to explain the increase in the length of non-clusters. The most likely explanation for this is resection distance, because hyper resection has been previously observed in $rad24\Delta$ and P_{CLB2} -MEC1 (Gray et al., 2013; Kayleigh Wardell, personal communication). Excessive resection may disproportionately affect *NDT80* prophase-arrested strains due to the increased time available for DSB repair, suggesting that DSB resection is continuing during the time spent in prophase arrest.

Curiously, DSB cluster events tend to be short compared to non-clusters in msh2\(\Delta\) (Figure 5.4). Shorter NCO events are also found more often in $msh2\Delta$ backgrounds (Figure 5.3), likely because hDNA is visible, allowing short NCOs composed entirely of hDNA to be detected. On the other hand, short COs should be detectable in any background due to the reciprocal exchange of chromosome arms, so $msh2\Delta$ strains may be expected to display longer CO events due to the increased detail provided by hDNA analysis. However, CO event lengths also tend to be shorter in msh2∆ compared to WT and NDT80 prophase-extension backgrounds (Figure 5.3). Potentially, because one likely role of Msh2 is to reject strand invasion into mismatching sequences (Chapter 5, Figure 5.1; Sugawara et al., 1997; Evans et al., 2000; Datta et al., 1999; Chen & Jinks-Robinson, 1998), the absence of msh2∆ may mean that less homology is needed for successful strand invasion, and thus less resection is needed for homology searching, causing faster initiation of DSB repair and contributing to the occurrence of shorter event lengths in msh2\(\Delta\) backgrounds compared to WT and NDT80 prophase-extension backgrounds. Alternatively, the distance between DSBs that produce clusters in msh2\Delta may generally be smaller than in other backgrounds; shorter cluster events may be produced by DSBs occurring within the same hotspot, while longer events result from DSB clusters between adjacent hotspots.

9.9. Future Work

This work has revealed the consequences of the loss of important DDR and MMR proteins on the meiotic genome, at a high resolution conferred by the use of next generation sequencing and new bioinformatic tools. However, there are a number of ways in which it can be extended.

In order to determine the reproducibility of results, it is desirable to sequence additional WT and WT + 8 h tetrads, because data from only four of each was acquired. In addition, these strains in particular tend to have very low event counts, which means that more data needs to be acquired to confirm the reproducibility of CO event distributions for interference measurements.

Another strain that would be useful to sequence for event analysis would be a $msh2\Delta$ hybrid with NDT80 prophase extension. This would be helpful to reconcile some of the differences observed between $msh2\Delta$ and NDT80 prophase extension strains, such as the different levels of DSB cluster formation. The increased information about recombination events from hDNA would also be useful. For example, it would reveal more about the nature of the very long events observed in

NDT80 prophase arrest strains that are not DSB clusters. Increasing detail within the hDNA patterns of these events would help to determine how they are formed.

For existing datasets, additional data analysis is planned:

Analysis of recombination events with regards to Spo11-DSB positions and hotspot strength information from Pan *et al.*, 2011 and Mohibullah *et al.*, 2017, will help to determine the most likely position of the originating DSB for each event, and which events may have been produced by multiple DSBs. Currently, suspected DSB cluster events have been manually annotated without considering the DSB peaks, so as not to bias the data. This means that it can be tested whether events annotated with more than 1 DSB tend to contain multiple and/or strong hotspots. Previously, an anticorrelation between concerted DSB formation and Rec114, Mer2 and Mei4 (RMM) axis proteins was observed (Garcia *et al.*, 2014), suggesting that concerted DSBs occur within the same chromatin loop, and that Tel1 is involved in maintaining DSB interference/suppression within loops. Because this phenomenon was observed at only a few single loci, it would be advantageous to determine whether the same phenomenon is present for recombination genome wide. Previously-annotated DSB cluster events (events with more than one DSB within 1.5kb) can be tested for whether they are disproportionately contained within loops (determined by absence of RMM) or tend to cross loop boundaries (determined by Rec8 peaks) (Panizza *et al.*, 2011; Ito *et al.*, 2014).

In $msh2\Delta$ strains, tracts of 6:2 or 2:6 conversion were observed, which was not predicted as these tracts were thought to be produced by gene conversion (Sections 6.2.4, 7.2.4). These may represent occurrences of concerted DSB formation on the same chromatid. To study these events further, the occurrence and strength of DSB hotspots and the correlation with chromatin loops and axis will be examined.

Ectopic recombination is known to be increased in *rad24* and *mec1* mutants (Gray *et al.*, 2013; Grushcow *et al.*, 1999). Ectopic recombination is difficult to observe in sequencing data because any given read will simply map to the correct region of the genome. However, sequences from different regions of the genome that are contained within the same pair of reads may be detectable. To detect this, paired end reads that map discordantly can be isolated and analysed for whether they occur uniquely and frequently in a certain location, indicating that ectopic recombination has occurred in that region.

9.10. Closing Statement

Collectively, these analyses permit a genome-wide and high-resolution view of meiotic recombination processes, revealing information about the roles of Mec1, Tel1, Rad24 and Msh2 in the regulation of meiotic recombination event quality, quantity and location, and the effect that this has on ensuring spore survival.

References

Acquaviva, L., Székvölgyi, L., Dichtl, B., Dichtl, B.S., Saint André, C. de L.R., Nicolas, A., Géli, V., 2013. The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 339, 215–218.

Agarwal, S., Roeder, G.S., 2000. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245–255.

Al-Sweel, N., Raghavan, V., Datta, A., Ajith, V.P., Di Vietro, L., Khondakar, N., Manhart, C., Surtees, J., Nishant, K.T., Alani, E., 2017. mlh3 separation of function and endonuclease defective mutants display an unexpected effect on meiotic recombination outcomes. bioRxiv 108498.

Allers, T., Lichten, M., 2001a. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.

Allers, T., Lichten, M., 2001b. Intermediates of yeast meiotic recombination contain heteroduplex DNA. Molecular cell 8, 225–231.

Anderson, C.M., Chen, S.Y., Dimon, M.T., Oke, A., DeRisi, J.L., Fung, J.C., 2011. ReCombine: A Suite of Programs for Detection and Analysis of Meiotic Recombination in Whole-Genome Datasets. PLoS ONE 6, e25509.

Anderson, C.M., Oke, A., Yam, P., Zhuge, T., Fung, J.C., 2015. Reduced Crossover Interference and Increased ZMM-Independent Recombination in the Absence of Tel1/ATM. PLOS Genetics 11, e1005478.

Araki, Y., Takahashi, S., Kobayashi, T., Kajiho, H., Hoshino, S., Katada, T., 2001. Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeast. The EMBO Journal 20, 4684–4693.

Argueso, J.L., 2004. Competing Crossover Pathways Act During Meiosis in *Saccharomyces cerevisiae*. Genetics 168, 1805–1816.

Arora, C., Kee, K., Maleki, S., Keeney, S., 2004. Antiviral Protein Ski8 Is a Direct Partner of Spo11 in Meiotic DNA Break Formation, Independent of Its Cytoplasmic Role in RNA Metabolism. Molecular Cell 13, 549–559.

Assenmacher, N., Hopfner, K.-P., 2004. MRE11/RAD50/NBS1: complex activities. Chromosoma 113.

Aylon, Y., Kupiec, M., 2003. The Checkpoint Protein Rad24 of *Saccharomyces cerevisiae* is Involved in Processing Double-Strand Break Ends and in Recombination Partner Choice. Molecular and Cellular Biology 23, 6585–6596.

Barchi, M., Mahadevaiah, S., Di Giacomo, M., Baudat, F., de Rooij, D.G., Burgoyne, P.S., Jasin, M., Keeney, S., 2005. Surveillance of Different Recombination Defects in Mouse Spermatocytes Yields Distinct Responses despite Elimination at an Identical Developmental Stage. Molecular and Cellular Biology 25, 7203–7215.

Barchi, M., Roig, I., Di Giacomo, M., de Rooij, D.G., Keeney, S., Jasin, M., 2008. ATM Promotes the Obligate XY Crossover and both Crossover Control and Chromosome Axis Integrity on Autosomes. PLoS Genetics 4, e1000076.

Barton, A. B., Su, Y., Lamb, J., Barber, D., Kaback, D. B., 2003. A Function for Subtelomeric DNA in *Saccharomyces cerevisiae*. Genetics 165, 929–934.

Baudat, F., Manova, K., Yuen, J.P., Jasin, M., Keeney, S., 2000. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Molecular cell 6, 989–998.

Benjamin, K.R., 2003. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes & Development 17, 1524–1539.

Berchowitz, L. E., Copenhaver, G. P., 2010. Genetic Interference: Don't Stand So Close to Me. Current Genomics 11, 91–102.

Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P-C., Nicolas, A., Forterre, P., 1997. An atypical topoisomerase from archaea with implications for meiotic recombination. Nature 386, 414–417.

Bhargava, J., Engebrecht, J., Roeder, G. S., 1992. The rec102 Mutant of Yeast Is Defective in Meiotic Recombination and Chromosome Synapsis. Genetics 130, 59–69.

Bhuiyan, H., Dahlfors, G., Schmekel, K., 2003. Lateral Elements Inside Synaptonemal Complex-Like Polycomplexes in ndt80 Mutants of Yeast Bind DNA. Genetics 163, 539–544.

Bishop, D.K., Park, D., Xu, L., Kleckner, N., 1992. DMC1: A Meiosis-Specific Yeast Homolog of E. coli recA Required for Recombination, Synaptonemal Complex Formation, and Cell Cycle Progression. Cell 69, 439–456.

Bishop, D.K., Williamson, M.S., Fogel, S., Kolodner, R.D., 1987. The role of heteroduplex correction in gene conversion in *Saccharomyces cerevisiae*. Nature 328, 362–364.

Bishop, D.K., Zickler, D., 2004. Early decision: meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15.

Blanco, M.G., Matos, J., West, S.C., 2014. Dual Control of Yen1 Nuclease Activity and Cellular Localization by Cdk and Cdc14 Prevents Genome Instability. Molecular Cell 54, 94–106.

Blat, Y., Protacio, R.U., Hunter, N., Kleckner, N., 2002. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111, 791–802.

Boddy, M.N., Gaillard, P.-H.L., McDonald, W.H., Shanahan, P., 3rd, J.R.Y., Russell, P., 2001. Mus81-Eme1 Are Essential Components of a Holliday Junction Resolvase. Cell 107, 537–548.

Borde, V., de Massy, B., 2013. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Current Opinion in Genetics & Development 23, 147–155.

Borde, V., Goldman, A.S., Lichten, M., 2000. Direct coupling between meiotic DNA replication and recombination initiation. Science 290, 806–809.

Borde, V., Lin, W., Novikov, E., Petrini, J.H., Lichten, M., Nicolas, A., 2004. Association of Mre11p with double-strand break sites during yeast meiosis. Molecular cell 13, 389–401.

Börner, G.V., Barot, A., Kleckner, N., 2008. Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. PNAS 105, 3327–3332.

Börner, G.V., Kleckner, N., Hunter, N., 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.

Borts, R.H., Lichten, M., Haber, J.E., 1986. Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113, 551–567.

Borts, R. H., Haber, J. E., 1987. Meiotic Recombination in Yeast: Alteration by Multiple Heterozygosities. Science 237, 1459–1465.

Bourgon, R., Mancera, E., Brozzi, A., Steinmetz, L.M., Huber, W., 2009. Array-based genotyping in S.cerevisiae using semi-supervised clustering. Bioinformatics 25, 1056–1062.

Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., Boeke, J.D., 1998. Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.

Brem, R.B., Storey, J.D., Whittle, J., Kruglyak, L., 2005. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436, 701–703.

Broman, K.W., Rowe, L.B., Churchill, G.A., Paigen, K., 2002. Crossover interference in the mouse. Genetics 160, 1123–1131.

Brown, M.S., Bishop, D.K., 2015. DNA Strand Exchange and RecA Homologs in Meiosis. Cold Spring Harbor Perspectives in Biology 7, a016659.

Brown, M.S., Grubb, J., Zhang, A., Rust, M.J., Bishop, D.K., 2015. Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break. PLOS Genetics 11, e1005653.

Brown, M.S., Lim, E., Chen, C., Nishant, K.T., Alani, E., 2013. Genetic Analysis of mlh3 Mutations Reveals Interactions Between Crossover Promoting Factors During Meiosis in Baker's Yeast. G3&58; Genes|Genomes|Genetics 3, 9–22.

Brown, E. J., Baltimore, D., 2000. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes & Development 14, 397–402.

Brudno, M., Do, C., Cooper, G., Kim, M.F., Davydov, E., Green, E.D., Sidow, A., Batzoglou, S. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA, Genome Research 2003 Apr;13(4):721-31.

Buckland, R.J., Watt, D.L., Chittoor, B., Nilsson, A.K., Kunkel, T.A., Chabes, A., 2014. Increased and Imbalanced dNTP Pools Symmetrically Promote Both Leading and Lagging Strand Replication Infidelity. PLoS Genetics 10, e1004846.

Buhler, C., Gadelle, D., Forterre, P., Wang, J.C., Bergerat, A., 1998. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Nucleic Acids Research 26, 5157–5162.

Buhler, C., Lebbink, J.H.G., Bocs, C., Ladenstein, R., Forterre, P., 2001. DNA Topoisomerase VI Generates ATP-dependent Double-strand Breaks with Two-nucleotide Overhangs. Journal of Biological Chemistry 276, 37215–37222.

Busygina, V., Sehorn, M.G., Shi, I.Y., Tsubouchi, H., Roeder, G.S., Sung, P., 2008. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes & Development 22, 786–795.

Byers, B., Goetsch, L., 1982. Reversible Pachytene Arrest of *Saccharomyces cerevisiae* at Elevated Temperature. Mol Gen Genet 187, 47–53.

Bzymek, M., Thayer, N.H., Oh, S.D., Kleckner, N., Hunter, N., 2010. Double Holliday junctions are intermediates of DNA break repair. Nature 464, 937–941.

Cannavo, E., Cejka, P., 2014. Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks. Nature 514, 122–125.

Carballo, J.A., Cha, R.S., 2007. Meiotic roles of Mec1, a budding yeast homolog of mammalian ATR/ATM. Chromosome Research 15, 539–550.

Carballo, J.A., Johnson, A.L., Sedgwick, S.G., Cha, R.S., 2008. Phosphorylation of the Axial Element Protein Hop1 by Mec1/Tel1 Ensures Meiotic Interhomolog Recombination. Cell 132, 758–770.

Carballo, J.A., Panizza, S., Serrentino, M.E., Johnson, A.L., Geymonat, M., Borde, V., Klein, F., Cha, R.S., 2013. Budding Yeast ATM/ATR Control Meiotic Double-Strand Break (DSB) Levels by Down-Regulating Rec114, an Essential Component of the DSB-machinery. PLoS Genetics 9, e1003545.

Carpenter, A. T. C., Sandler, L., 1974. On recombination-defective meiotic mutants in *Drosophila melanogaster*. Genetics 76, 453–475.

Cartagena-Lirola, H., Guerini, I., Viscardi, V., Lucchini, G., Longhese, M.P., 2006. Budding Yeast Sae2 is an In Vivo Target of the Mec1 and Tel1 Checkpoint Kinases During Meiosis. Cell Cycle 5, 1549–1559.

Cejka, P., Plank, J.L., Bachrati, C.Z., Hickson, I.D., Kowalczykowski, S.C., 2010. Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1–Top3. Nature Structural & Molecular Biology 17, 1377–1382.

Cha, R.S., Kleckner, N., 2002. ATR Homolog Mec1 Promotes Fork Progression, Thus Averting Breaks in Replication Slow Zones. Science 297, 602–606.

Champoux, J.J., 2001. DNA topoisomerases: structure, function, and mechanism. Annual review of biochemistry 70, 369–413.

Chen, S. -h., Albuquerque, C.P., Liang, J., Suhandynata, R.T., Zhou, H., 2010. A Proteomewide Analysis of Kinase-Substrate Network in the DNA Damage Response. Journal of Biological Chemistry 285, 12803–12812.

Chen, S. -h., Smolka, M.B., Zhou, H., 2007. Mechanism of Dun1 Activation by Rad53 Phosphorylation in *Saccharomyces cerevisiae*. Journal of Biological Chemistry 282, 986–995.

Chen, S.Y., Tsubouchi, T., Rockmill, B., Sandler, J.S., Richards, D.R., Vader, G., Hochwagen, A., Roeder, G.S., Fung, J.C., 2008. Global analysis of the meiotic crossover landscape. Developmental cell 15, 401–415.

Chen, W., Jinks-Robertson, S., 1999. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 151, 1299–1313.

Chen, X., Suhandynata, R.T., Sandhu, R., Rockmill, B., Mohibullah, N., Niu, H., Liang, J., Lo, H.-C., Miller, D.E., Zhou, H., Börner, G.V., Hollingsworth, N.M., 2015. Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis. PLOS Biology 13, e1002329.

Cheng, C.-H., 2006. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of *Saccharomyces cerevisiae*. Genes & Development 20, 2067–2081.

Cheng, Y.-H., Chuang, C.-N., Shen, H.-J., Lin, F.-M., Wang, T.-F., 2013. Three Distinct Modes of Mec1/ATR and Tel1/ATM Activation Illustrate Differential Checkpoint Targeting during Budding Yeast Early Meiosis. Molecular and Cellular Biology 33, 3365–3376.

Chikashige, Y., Ding, D.-Q., Funabiki, H., Haraguchi, T., Mashiko, S., Yanagida, M., Hiraoka, Y., 1994. Telomere-Led Premeiotic Chromosome Movement in Fission Yeast. Science 264, 270–273.

Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O., Herskowitz, I., 1998. The transcriptional program of sporulation in budding yeast. Science 282, 699–705.

Chu, S., Herskowitz, I., 1998. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Molecular cell 1, 685–696.

Chua, P.R., Roeder, G.S., 1998. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359.

Chua, P.R., Roeder, G.S., 1997. Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes & development 11, 1786–1800.

Ciccia, A., Elledge, S.J., 2010. The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell 40, 179–204.

Clerici, M., Trovesi, C., Galbiati, A., Lucchini, G., Longhese, M.P., 2013. Mec1/ATR regulates the generation of single-stranded DNA that attenuates Tel1/ATM signaling at DNA ends. The EMBO Journal n/a–n/a.

Clyne, R.K., Katis, V.L., Jessop, L., Benjamin, K.R., Herskowitz, I., Lichten, M., Nasmyth, K., 2003. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nature Cell Biology 5, 480–485.

Collins, I., Newlon, C.S., 1994. Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell 76, 65–75.

Conrad, M.N., Lee, C.-Y., Chao, G., Shinohara, M., Kosaka, H., Shinohara, A., Conchello, J.-A., Dresser, M.E., 2008. Rapid Telomere Movement in Meiotic Prophase Is Promoted By NDJ1, MPS3, and CSM4 and Is Modulated by Recombination. Cell 133, 1175–1187.

Cooper, T.J., Garcia, V., Neale, M.J., 2016. Meiotic DSB patterning: A multifaceted process. Cell Cycle 15, 13–21.

Cooper, T.J., Wardell, K., Garcia, V., Neale, M.J., 2014. Homeostatic regulation of meiotic DSB formation by ATM/ATR. Experimental Cell Research 329, 124–131.

Cromie, G.A., Hyppa, R.W., Taylor, A.F., Zakharyevich, K., Hunter, N., Smith, G.R., 2006. Single Holliday Junctions Are Intermediates of Meiotic Recombination. Cell 127, 1167–1178.

Datta, A., Hendrix, M., Lipsitch, M., Jinks-Robertson, S., 1997. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. PNAS 94, 9757–9762.

Davidow, L. S., Byers, B., 1984. Enhanced gene conversion and postmeiotic segregation in pachytene-arrested *Saccharomyces cerevisiae*. Genetics 106, 165–183.

De Boer, E., Dietrich, A.J.J., Hoog, C., Stam, P., Heyting, C., 2007. Meiotic interference among MLH1 foci requires neither an intact axial element structure nor full synapsis. Journal of Cell Science 120, 731–736.

De Klein, A., Muijtjens, M., van Os, R., Verhoeven, Y., Smit, B., Carr, A. M., Lehmann, A. R., Hoeijmakers, J.H.J., 2000. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Current Biology 10, 479–482.

De los Santos, T., Hunter, N., Lee, C., Larkin, B., Loidl, J., Hollingsworth, N. M., 2003. The Mus81/Mms4 Endonuclease Acts Independently of Double-Holliday Junction Resolution to Promote a Distinct Subset of Crossovers During Meiosis in Budding Yeast. Genetics 164, 81–94.

De Massy, B., 2013. Initiation of Meiotic Recombination: How and Where? Conservation and Specificities Among Eukaryotes. Annual Review of Genetics 47, 563–599.

De Muyt, A., Jessop, L., Kolar, E., Sourirajan, A., Chen, J., Dayani, Y., Lichten, M., 2012. BLM Helicase Ortholog Sgs1 Is a Central Regulator of Meiotic Recombination Intermediate Metabolism. Molecular Cell 46, 43–53.

DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. 2011 Nature Genetics 43:491-498

Dehe, P.-M., Dichtl, B., Schaft, D., Roguev, A., Pamblanco, M., Lebrun, R., Rodriguez-Gil, A., Mkandawire, M., Landsberg, K., Shevchenko, A., Shevchenko, A., Rosaleny, L.E., Tordera, V., Chavez, S., Stewart, A.F., Geli, V., 2006. Protein Interactions within the Set1 Complex and Their Roles in the Regulation of Histone 3 Lysine 4 Methylation. Journal of Biological Chemistry 281, 35404–35412.

Demogines, A., Wong, A., Aquadro, C., Alani, E., 2008. Incompatibilities Involving Yeast Mismatch Repair Genes: A Role for Genetic Modifiers and Implications for Disease Penetrance and Variation in Genomic Mutation Rates. PLoS Genetics 4, e1000103.

Dernburg, A.F., McDonald, K., Moulder, G., Barstead, R., Dresser, M., Villeneuve, A.M., 1998. Meiotic recombination in *C. elegans* initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398.

Deutschbauer, A.M., Davis, R.W., 2005. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nature Genetics 37, 1333–1340.

Diaz, R.L., Alcid, A.D., Berger, J.M., Keeney, S., 2002. Identification of Residues in Yeast Spo11p Critical for Meiotic DNA Double-Strand Break Formation. Molecular and Cellular Biology 22, 1106–1115.

Eckert-Boulet, N., Lisby, M., 2010. Regulation of homologous recombination at telomeres in budding yeast. FEBS Letters 584, 3696–3702.

Egel, R., 1995. The synaptonemal complex and the distribution of meiotic recombination events. Elsevier 11, 206–208.

Elledge, S.J., Zhou, Z., Allen, J.B., 1992. Ribonucleotide reductase: regulation, regulation, regulation. Trends in biochemical sciences 17, 119–123.

Emili, A., 1998. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Molecular cell 2, 183–189.

Engel, S.R., Dietrich, F.S., Fisk, D.G., Binkley, G., Balakrishnan, R., Costanzo, M.C., Dwight, S.S., Hitz, B.C., Karra, K., Nash, R.S., Weng, S., Wong, E.D., Lloyd, P., Skrzypek, M.S., Miyasato, S.R., Simison, M., Cherry, J.M., 2014. The Reference Genome Sequence of *Saccharomyces cerevisiae*: Then and Now. G3&58; Genes|Genomes|Genetics 4, 389–398.

Esposito, M.S., 1971. Postmeiotic segregation in Saccharomyces. Molecular and General Genetics MGG 111, 297–299.

Evans, E., Alani, E., 2000. Roles for mismatch repair factors in regulating genetic recombination. Molecular and cellular biology 20, 7839–7844.

Evans, E., Sugawara, N., Haber, J.E., Alani, E., 2000. The *Saccharomyces cerevisiae* Msh2 mismatch repair protein localizes to recombination intermediates in vivo. Molecular cell 5, 789–799.

Falk, J.E., Chan, A.C., Hoffmann, E., Hochwagen, A., 2010. A Mec1- and PP4-Dependent Checkpoint Couples Centromere Pairing to Meiotic Recombination. Developmental Cell 19, 599–611.

Fan, Q.-Q., Xu, F., White, M.A., Petes, T.D., 1997. Competition between adjacent meiotic recombination hotspots in the yeast *Saccharomyces cerevisiae*. Genetics 145, 661–670.

Finn, K., Lowndes, N.F., Grenon, M., 2012. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cellular and Molecular Life Sciences 69, 1447–1473.

Foury, F., Roganti, T., Lecrenier, N., Purnelle, B., 1998. The complete sequence of the mitochondrial genome of *Saccharomyces cerevisiae*. FEBS letters 440, 325–331.

Fricke, W.M., 2003. Slx1--Slx4 is a second structure-specific endonuclease functionally redundant with Sgs1--Top3. Genes & Development 17, 1768–1778.

Fung, J.C., Rockmill, B., Odell, M., Roeder, G.S., 2004. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802.

Garcia, V., Gray, S., Allison, R.M., Cooper, T.J., Neale, M.J., 2015. Tel1ATM-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 520, 114–118.

Garcia, V., Phelps, S.E.L., Gray, S., Neale, M.J., 2011. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244.

Gardiner, J.M., Bullard, S.A., Chrome, C., Malone, R.E., 1997. Molecular and genetic analysis of REC103, an early meiotic recombination gene in yeast. Genetics 146, 1265–1274.

Gardner, R., Putnam, C.W., Weinert, T., 1999. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. The EMBO Journal 18, 3173–3185.

Getz, T.J., Banse, S.A., Young, L.S., Banse, A.V., Swanson, J., Wang, G.M., Browne, B.L., Foss, H.M., Stahl, F.W., 2008. Reduced Mismatch Repair of Heteroduplexes Reveals "Non"-interfering Crossing Over in Wild-Type *Saccharomyces cerevisiae*. Genetics 178, 1251–1269.

Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B., others, 2002. Functional profiling of the *Saccharomyces cerevisiae* genome. Nature 418, 387–391.

Gladstone, M.N., Obeso, D., Chuong, H., Dawson, D.S., 2009. The Synaptonemal Complex Protein Zip1 Promotes Bi-Orientation of Centromeres at Meiosis I. PLoS Genetics 5, e1000771.

Glynn, E.F., Megee, P.C., Yu, H.-G., Mistrot, C., Unal, E., Koshland, D.E., DeRisi, J.L., Gerton, J.L., 2004. Genome-Wide Mapping of the Cohesin Complex in the Yeast *Saccharomyces cerevisiae*. PLoS Biology 2, e259.

Goffeau, A., Barrell, B., Bussey, H., Davis, R., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J., Jacq, C., Johnston, M., Louis, E.J., Mewes, H., Murakami, Y., Philippsen, P., Tettelin, H., Oliver, S., Valle, D., 1996. Life with 6000 Genes. Methods Enzymol 266, 141.

Goldfarb, T., Lichten, M., 2010. Frequent and Efficient Use of the Sister Chromatid for DNA Double-Strand Break Repair during Budding Yeast Meiosis. PLoS Biology 8, e1000520.

Goldstein, A. L., McCusker, J. H., 1999. Three New Dominant Drug Resistance Cassettes for Gene Disruption in *Saccharomyces cerevisiae*. Yeast 15, 1541–1553.

Grandin, N., Reed, S.I., 1993. Differential function and expression of *Saccharomyces cerevisiae* B-type cyclins in mitosis and meiosis. Molecular and Cellular Biology 13, 2113–2125.

Gray, S., Allison, R.M., Garcia, V., Goldman, A.S.H., Neale, M.J., 2013. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR). Open Biology 3, 130019–130019.

Greene, C.N., Jinks-Robertson, S., 1997. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Molecular and Cellular Biology 17, 2844–2850.

Grelon, M., Vezon, D., Gendrot, G., Pelletier, G., 2001. AtSPO11-1 is necessary for efficient meiotic recombination in plants. The EMBO Journal 20, 589–600.

Grushcow, J.M., Holzen, T.M., Park, K.J., Weinert, T., Lichten, M., Bishop, D.K., 1999. *Saccharomyces cerevisiae* checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153, 607–620.

H. Papazian, 1951. The Analysis of Tetrad Data. Genetics 37, 175–188.

Harper, J.W., Elledge, S.J., 2007. The DNA Damage Response: Ten Years After. Molecular Cell 28, 739–745.

Harper, L., 2004. A bouquet of chromosomes. Journal of Cell Science 117, 4025–4032.

Hartley, J. L., Donelson, J. E., 1980. Nucleotide sequence of the yeast plasmid. Nature 286, 860–864.

Hartwell, L. H., Mortimer, R. K., Culotti, J., Culotti, M., 1973. Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74, 267–286.

Hawley, R. S., 2002. Meiosis: How Male Flies Do Meiosis. Current Biology 12, 660–662.

Heck, J.A., Argueso, J.L., Gemici, Z., Reeves, R.G., Bernard, A., Aquadro, C.F., Alani, E., 2006. Negative epistasis between natural variants of the *Saccharomyces cerevisiae* MLH1 and PMS1 genes results in a defect in mismatch repair. PNAS 103, 3256–3261.

Henderson, K.A., Kee, K., Maleki, S., Santini, P.A., Keeney, S., 2006. Cyclin-Dependent Kinase Directly Regulates Initiation of Meiotic Recombination. Cell 125, 1321–1332.

Ho, C.K., Mazón, G., Lam, A.F., Symington, L.S., 2010. Mus81 and Yen1 Promote Reciprocal Exchange during Mitotic Recombination to Maintain Genome Integrity in Budding Yeast. Molecular Cell 40, 988–1000.

Ho, H.-C., Burgess, S.M., 2011. Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis. PLoS Genetics 7, e1002351.

Hochwagen, A., Amon, A., 2006. Checking Your Breaks: Surveillance Mechanisms of Meiotic Recombination. Current Biology 16, R217–R228.

Hochwagen, A., Tham, W.-H., Brar, G.A., Amon, A., 2005. The FK506 Binding Protein Fpr3 Counteracts Protein Phosphatase 1 to Maintain Meiotic Recombination Checkpoint Activity. Cell 122, 861–873.

Hoffmann, E.R., Shcherbakova, P.V., Kunkel, T.A., Borts, R.H., 2003. MLH1 Mutations Differentially Affect Meiotic Functions in *Saccharomyces cerevisiae*. Genetics 163, 515–526.

Hollingsworth, N.M., 2010. Phosphorylation and the creation of interhomolog bias during meiosis in yeast. Cell Cycle 9, 436–437.

Hollingsworth, N.M., Goetsch, L., Byers, B., 1990. The HOP1 Gene Encodes a Meiosis-Specific Component of Yeast Chromosomes. Cell 61, 73–84.

Hollingsworth, N. M., Ponte, L., Halsey, C., 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in *Saccharomyces cerevisiae* but not mismatch repair. Genes & Development 9, 1728–1739.

Holt, L.J., Hutti, J.E., Cantley, L.C., Morgan, D.O., 2007. Evolution of Ime2 Phosphorylation Sites on Cdk1 Substrates Provides a Mechanism to Limit the Effects of the Phosphatase Cdc14 in Meiosis. Molecular Cell 25, 689–702.

Hong, E.L., 2001. *Saccharomyces cerevisiae* Dmc1 Protein Promotes Renaturation of Singlestrand DNA (ssDNA) and Assimilation of ssDNA into Homologous Super-coiled Duplex DNA. Journal of Biological Chemistry 276, 41906–41912.

Huang, M., Elledge, S.J., 1997. Identification of RNR4, Encoding a Second Essential Small Subunit of Ribonucleotide Reductase in *Saccharomyces cerevisiae*. Molecular and Cellular Biology 17, 6105–6113.

Huang, M., Zhou, Z., Elledge, S.J., 1998. The DNA Replication and Damage Checkpoint Pathways Induce Transcription by Inhibition of the Crt1 Repressor. Cell 94, 595–605.

Hunter, N., Borts, R.H., 1997. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes & Development 11, 1573–1582.

Hunter, N., Kleckner, N., 2001. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70.

Hunter, N. 2006. Meiotic Recombination, in: Molecular Genetics of Recombination, Topics in Current Genetics. pp. 381–442.

Hunter, N., Chambers, S., Louis, E., Borts, R. 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. The EMBO Journal 15, 1726–1733.

Ip, S.C.Y., Rass, U., Blanco, M.G., Flynn, H.R., Skehel, J.M., West, S.C., 2008. Identification of Holliday junction resolvases from humans and yeast. Nature 456, 357–361.

Ito, M., Kugou, K., Fawcett, J.A., Mura, S., Ikeda, S., Innan, H., Ohta, K., 2014. Meiotic recombination cold spots in chromosomal cohesion sites. Genes to Cells 19, 359–373.

Jasin, M., Rothstein, R., 2013. Repair of Strand Breaks by Homologous Recombination. Cold Spring Harbor Perspectives in Biology 5, a012740–a012740.

Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G.C.M., Lukas, J., Jackson, S.P., 2006. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biology 8, 37–45.

Jessop, L., Rockmill, B., Roeder, G.S., Lichten, M., 2006. Meiotic Chromosome Synapsis-Promoting Proteins Antagonize the Anti-Crossover Activity of Sgs1. PLoS Genetics 2, e155. Jiao, K., Salem, L., Malone, R., 2003. Support for a Meiotic Recombination Initiation Complex: Interactions among Rec102p, Rec104p, and Spo11p. Molecular and Cellular Biology 23, 5928–5938.

Johnson, R., Borde, V., Neale, M.J., Bishop-Bailey, A., North, M., Harris, S., Nicolas, A., Goldman, A.S.H., 2007. Excess Single-Stranded DNA Inhibits Meiotic Double-Strand Break Repair. PLoS Genetics 3, e223.

Joshi, N., Brown, M.S., Bishop, D.K., Börner, G.V., 2015. Gradual Implementation of the Meiotic Recombination Program via Checkpoint Pathways Controlled by Global DSB Levels. Molecular Cell 57, 797–811.

Joyce, E.F., Pedersen, M., Tiong, S., White-Brown, S.K., Paul, A., Campbell, S.D., McKim, K.S., 2011. Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair. The Journal of Cell Biology 195, 359–367.

Kadyk, L. C., Hartwell, L. H., 1992. Sister Chromatids Are Preferred Over Homologs as Substrates for Recombinational Repair in *Saccharomyces cerevisiae*. Genetics 132, 387–402.

Kane, S.M., Roth, R., 1974. Carbohydrate metabolism during ascospore development in yeast. Journal of Bacteriology 118, 8–14.

Kee, K., Protacio, R.U., Arora, C., Keeney, S., 2004. Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. The EMBO Journal 23, 1815–1824.

Kee, K., Keeney, S., 2002. Functional Interactions Between SPO11 and REC102 During Initiation of Meiotic Recombination in *Saccharomyces cerevisiae*. Genetics 160, 111–122.

Keeney, S., 2008. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis, in: Egel, R., Lankenau, D.-H. (Eds.), Recombination and Meiosis. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 81–123.

Keeney, S., Giroux, C. N., Kleckner, N, 1997. Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family. Cell 88, 375–384.

Kent, N.A., Adams, S., Moorhouse, A., Paszkiewicz, K., 2011. Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing. Nucleic Acids Research 39, e26–e26.

Khazanehdari, K.A., Borts, R.H., 2000. EXO1 and MSH4 differentially affect crossing-over and segregation. Chromosoma 109, 94–102.

Kim, K.P., Weiner, B.M., Zhang, L., Jordan, A., Dekker, J., Kleckner, N., 2010. Sister Cohesion and Structural Axis Components Mediate Homolog Bias of Meiotic Recombination. Cell 143, 924–937.

Kitajima, T. S., Kawashima, S. A., Watanabe, Y., 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517.

Klein, F., Mahr, P., Galova, M., Buonomo, S.B.C., Michaelis, C., Nairz, K., Nasmyth, K., 1999. A Central Role for Cohesins in Sister Chromatid Cohesion, Formation of Axial Elements, and Recombination during Yeast Meiosis. Cell 98, 91–103.

Kohl, K.P., Sekelsky, J., 2013. Meiotic and Mitotic Recombination in Meiosis. Genetics 194, 327–334.

Kolodner, R. D., 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes & Development 10, 1433–1442.

Kolodner, R. D., Marsischky, G. T., 1999. Eukaryotic DNA mismatch repair. Current Opinion in Genetics & Development 9, 89–96.

Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K., Sugimoto, K., 2001. Recruitment of Mec1 and Ddc1 Checkpoint Proteins to Double-Strand Breaks Through Distinct Mechanisms. Science 294, 867–870.

Koszul, R., Kim, K.P., Prentiss, M., Kleckner, N., Kameoka, S., 2008. Meiotic Chromosomes Move by Linkage to Dynamic Actin Cables with Transduction of Force through the Nuclear Envelope. Cell 133, 1188–1201.

Krogh, B.O., Symington, L.S., 2004. Recombination Proteins in Yeast. Annual Review of Genetics 38, 233–271.

Kugou, K., Fukuda, T., Yamada, S., Ito, M., Sasanuma, H., Mori, S., Katou, Y., Itoh, T., Matsumoto, K., Shibata, T., Shirahige, K., Ohta, K., 2009. Rec8 Guides Canonical Spo11 Distribution along Yeast Meiotic Chromosomes. Molecular Biology of the Cell 20, 3064–3076.

Lambie, E.J., Roeder, G.S., 1988. A yeast acts in (Cis) to inhibit meiotic gene conversion of adjacent sequences. Cell 52, 863–873.

Lambie, E.J., Roeder, G.S., 1986. Repression of Meiotic Crossing Over by a Centromere (CEN3) in *Saccharomyces cerevisiae*. Genetics 114, 769–789.

Lange, J., Pan, J., Cole, F., Thelen, M.P., Jasin, M., Keeney, S., 2011. ATM controls meiotic double-strand-break formation. Nature 479, 237–240.

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.

Lao, J.P., Cloud, V., Huang, C.-C., Grubb, J., Thacker, D., Lee, C.-Y., Dresser, M.E., Hunter, N., Bishop, D.K., 2013. Meiotic Crossover Control by Concerted Action of Rad51-Dmc1 in Homolog Template Bias and Robust Homeostatic Regulation. PLoS Genetics 9, e1003978.

Laureau, R., Loeillet, S., Salinas, F., Bergström, A., Legoix-Né, P., Liti, G., Nicolas, A., 2016. Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion. PLOS Genetics 12, e1005781.

Lengsfeld, B.M., Rattray, A.J., Bhaskara, V., Ghirlando, R., Paull, T.T., 2007. Sae2 Is an Endonuclease that Processes Hairpin DNA Cooperatively with the Mre11/Rad50/Xrs2 Complex. Molecular Cell 28, 638–651.

Leslie, J.F., Watt, W.B., 1984. Postmeiotic segregation as a source of mosaics in diploid organisms. Genetical Research 44, 225.

Li, H., Ruan, J., Durbin, R., 2008. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research 18, 1851–1858.

Li, J., 2006. *Saccharomyces cerevisiae* Mer2, Mei4 and Rec114 Form a Complex Required for Meiotic Double-Strand Break Formation. Genetics 173, 1969–1981.

Li H. and Durbin R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler Transform. Bioinformatics, Epub.

Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., Wang, J., 2009. SNP detection for massively parallel whole-genome resequencing. Genome Research 19, 1124–1132.

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup, 2009. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9.

Lichten, M., Borts, R.H., Haber, J.E., 1987. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in *Saccharomyces cerevisiae*. Genetics 115, 233–246.

Lieber, M.R., 2010. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annual Review of Biochemistry 79, 181–211.

Lindgren, A., Bungard, D., Pierce, M., Xie, J., Vershon, A., Winter, E., 2000. The pachytene checkpoint in *Saccharomyces cerevisiae* requires the Sum1 transcriptional repressor. The EMBO Journal 19, 6489–6497.

Liti, G., Barton, D.B.H., Louis, E.J., 2006. Sequence Diversity, Reproductive Isolation and Species Concepts in Saccharomyces. Genetics 174, 839–850.

Liti, G., Carter, D.M., Moses, A.M., Warringer, J., Parts, L., James, S.A., Davey, R.P., Roberts, I.N., Burt, A., Koufopanou, V., Tsai, I.J., Bergman, C.M., Bensasson, D., O'Kelly, M.J.T., van Oudenaarden, A., Barton, D.B.H., Bailes, E., Nguyen, A.N., Jones, M., Quail, M.A., Goodhead, I., Sims, S., Smith, F., Blomberg, A., Durbin, R., Louis, E.J., 2009. Population genomics of domestic and wild yeasts. Nature 458, 337–341.

Liu, J., Wu, T-c., Lichten, M., 1995. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. The EMBO Journal 14, 4599–4608.

Liuzhong Xu, Masahiro Ajimura, Ruth Padmore, Charles Klein, Nancy Kleckner, 1995. NDT80, a Meiosis-Specific Gene Required for Exit from Pachytene in *Saccharomyces cerevisiae*. Molecular and Cellular Biology 15, 6572–6581.

Lo, Y.-H., Chuang, C.-N., Wang, T.-F., 2014. Pch2 Prevents Mec1/Tel1-Mediated Hop1 Phosphorylation Occurring Independently of Red1 in Budding Yeast Meiosis. PLoS ONE 9, e85687.

Loidl, J., Klein, F., Scherthan, H., 1994. Homologous Pairing Is Reduced But Not Abolished in Asynaptic Mutants of Yeast. Journal of Cell Biology 125, 1191–1200.

Longtine, M., McKenzie, A., Demarini, D., Shah, N., Wach, A., Brachat, A., Philippsen, P., Pringle, J. 1998. Additional Modules for Versatile and Economical PCR-based Gene Deletion and Modification in *Saccharomyces cerevisiae*. Yeast 14, 953–961.

Lustig, A. J., Petes, T. D., 1986. Identification of yeast mutants with altered telomere structure. PNAS 83, 1398–1402.

Lydall, D., Nikolsky, Y., Bishop, D. K., Weinert, T., 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383, 840–843.

Lynn, A., Soucek, R., Börner, G.V., 2007. ZMM proteins during meiosis: Crossover artists at work. Chromosome Research 15, 591–605.

MacQueen, A.J., Roeder, G.S., 2009. Fpr3 and Zip3 Ensure that Initiation of Meiotic Recombination Precedes Chromosome Synapsis in Budding Yeast. Current Biology 19, 1519–1526.

Malkova, A., 2004. Gene Conversion and Crossing Over Along the 405-kb Left Arm of *Saccharomyces cerevisiae* Chromosome VII. Genetics 168, 49–63.

Mancera, E., Bourgon, R., Brozzi, A., Huber, W., Steinmetz, L.M., 2008. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479–485.

Mancera, E., Bourgon, R., Huber, W., Steinmetz, L., 2011. Genome-wide survey of post-meiotic segregation during yeast recombination. Genome Biology 12.

Manfrini, N., Gobbini, E., Baldo, V., Trovesi, C., Lucchini, G., Longhese, M.P., 2012. G1/S and G2/M Cyclin-Dependent Kinase Activities Commit Cells to Death in the Absence of the S-Phase Checkpoint. Molecular and Cellular Biology 32, 4971–4985.

Marsischky, G.T., Filosi, N., Kane, M.F., Kolodner, R., 1996. Redundancy of *Saccharomyces cerevisiae* MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes & development 10, 407–420.

Martini, E., Borde, V., Legendre, M., Audic, S., Regnault, B., Soubigou, G., Dujon, B., Llorente, B., 2011. Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair—Deficient Yeast Cells Reveals Novel Properties of Meiotic Recombination Pathways. PLoS Genetics 7, e1002305.

Martini, E., Diaz, R.L., Hunter, N., Keeney, S., 2006. Crossover Homeostasis in Yeast Meiosis. Cell 126, 285–295.

Matos, J., Blanco, M.G., Maslen, S., Skehel, J.M., West, S.C., 2011. Regulatory Control of the Resolution of DNA Recombination Intermediates during Meiosis and Mitosis. Cell 147, 158–172.

Matos, J., West, S.C., 2014. Holliday junction resolution: Regulation in space and time. DNA Repair 19, 176–181.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297-303

McKim, K.S., Hayashi-Hagihara, A., 1998. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes & Development 12, 2932–2942.

McKim, K., Green-Marroquin, B., Sekelsky, J., Chin, G., Steinberg, C., Khodosh, R., Hawley, S., 1998. Meiotic Synapsis in the Absence of Recombination. Science 279, 876–878.

McPeek, M.S., Speed, T.P., 1995. Modeling interference in genetic recombination. Genetics 139, 1031–1044.

Melo, J., Cohen, J., Toczyski, D., 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes & Development 15, 2809–2821.

Melo, J., Toczyski, D., 2002. A unified view of the DNA-damage checkpoint. Current Opinion in Cell Biology 14, 237–245.

Mendenhall, M.D., Hodge, A.E., 1998. Regulation of Cdc28 Cyclin-Dependent Protein Kinase Activity during the Cell Cycle of the Yeast *Saccharomyces cerevisiae*. Microbiology and Molecular Biology Reviews 62, 1191–1243.

Meneely, P.M., Farago, A.F., Kauffman, T.M., 2002. Crossover distribution and high interference for both the X chromosome and an autosome during oogenesis and spermatogenesis in *Caenorhabditis elegans*. Genetics 162, 1169–1177.

Miles, A. & Mattioni, M. (2016). pysamstats: v0.24.3 [Data set]. Zenodo. http://doi.org/10.5281/zenodo.51093

Mimitou, E.P., Yamada, S., Keeney, S., 2017. A global view of meiotic double-strand break end resection. Science 355, 40–45.

Mohibullah, N., Keeney, S., 2017. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Research 27, 278–288.

Moreau, S., Ferguson, J.R., Symington, L.S., 1999. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Molecular and cellular biology 19, 556–566.

Morin, I., Ngo, H-P., Greenall, A., Zubko. M. K., Morrice, N., Lydall. D., 2008. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. The EMBO Journal 27, 2400–2410.

Morrow, D., Tagle, D., Shiloh, Y., Collins, F., Hieter, P., 1995. TEL1, an *S. cerevisiae* Homolog of the Human Gene Mutated in Ataxia Telangiectasia, Is Functionally Related to the Yeast Checkpoint Gene MEC1. Cell 82, 831–840.

Mortimer RK, Fogel S. In: Genetical Interference and Gene Conversion. in Mechanisms in Recombination. Grell R.F, editor. New York: Plenum; 1974. pp. 263–275.

Mortimer, R.K., Schild, D., 1980. Genetic map of *Saccharomyces cerevisiae*. Microbiological reviews 44, 519.

Mortimer, R. K., 2000. Evolution and Variation of the Yeast (*Saccharomyces*) Genome. Genome Research 10, 403–409.

Mortimer, R. K., Johnston, J. R., 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113.

Murton, B.L., Chin, W.L., Ponting, C.P., Itzhaki, L.S., 2010. Characterising the Binding Specificities of the Subunits Associated with the KMT2/Set1 Histone Lysine Methyltransferase. Journal of Molecular Biology 398, 481–488.

Myung, K., Datta., A, Chen, C., Kolodner, R. D., 2001. SGS1, the *Saccharomyces cerevisiae* homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nature Genetics 27, 113–116.

Nag, D.K., Pata, J.D., Sironi, M., Flood, D.R., Hart, A.M., 2006. Both conserved and non-conserved regions of Spo11 are essential for meiotic recombination initiation in yeast. Molecular Genetics and Genomics 276, 313–321.

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., Snyder, M., 2008. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science 320, 1344–1349.

Nakada, D., Matsumoto, K., Sugimoto, K., 2003. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes & development 17, 1957–1962.

Nakagawa, T., 2001. The MER3 Helicase Involved in Meiotic Crossing Over Is Stimulated by Single-stranded DNA-binding Proteins and Unwinds DNA in the 3' to 5' Direction. Journal of Biological Chemistry 276, 31487–31493.

Nasmyth, K., Haering, C.H., 2009. Cohesin: Its Roles and Mechanisms. Annual Review of Genetics 43, 525–558.

Navadgi-Patil, V.M., Burgers, P.M., 2011. Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. Biochemical Society Transactions 39, 600–605.

Navadgi-Patil, V.M., Burgers, P.M., 2009. The Unstructured C-Terminal Tail of the 9-1-1 Clamp Subunit Ddc1 Activates Mec1/ATR via Two Distinct Mechanisms. Molecular Cell 36, 743–753.

Neale, M.J., Keeney, S., 2006. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158.

Neale, M.J., Pan, J., Keeney, S., 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057.

Neiman, A.M., 2005. Ascospore Formation in the Yeast *Saccharomyces cerevisiae*. Microbiology and Molecular Biology Reviews 69, 565–584.

Ngo, G.H.P., Lydall, D., 2015. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Research 43, 5017–5032.

Ngo, H.-P., Lydall, D., 2010. Survival and Growth of Yeast without Telomere Capping by Cdc13 in the Absence of Sgs1, Exo1, and Rad9. PLoS Genetics 6, e1001072.

Nichols, M.D., DeAngelis, K., Keck, J.L., M.Berger, J., 1999. Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. The EMBO Journal 18, 6177–6188.

Nishant, K.T., Plys, A.J., Alani, E., 2008. A Mutation in the Putative MLH3 Endonuclease Domain Confers a Defect in Both Mismatch Repair and Meiosis in *Saccharomyces cerevisiae*. Genetics 179, 747–755.

Niu, H., Wan, L., Busygina, V., Kwon, Y., Allen, J.A., Li, X., Kunz, R.C., Kubota, K., Wang, B., Sung, P., Shokat, K.M., Gygi, S.P., Hollingsworth, N.M., 2009. Regulation of Meiotic Recombination via Mek1-Mediated Rad54 Phosphorylation. Molecular Cell 36, 393–404.

Novak, J.E., Ross-Macdonald, P.B., Roeder, G.S., 2001. The Budding Yeast Msh4 Protein Functions in Chromosome Synapsis and the Regulation of Crossover Distribution. Genetics 158, 1013–1025.

Nyberg, K.A., Michelson, R.J., Putnam, C.W., Weinert, T.A., 2002. Toward Maintaining the Genome: DNA Damage and Replication Checkpoints. Annual Review of Genetics 36, 617–656.

Oeveren, J., Janssen, A., 2009. Mining SNPs from DNA Sequence Data; Computational Approaches to SNP Discovery and Analysis, in: Komar, A.A. (Ed.), Single Nucleotide Polymorphisms. Humana Press, Totowa, NJ, pp. 73–91.

Oh, S., Lao, J., Hwang, P., Taylor, A., Smith, G.R., Hunter, N., 2007. Sgs1, a Bloom's helicase ortholog, prevents aberrant crossingover by suppressing the formation of multi-chromatid joint molecules. Cell 130, 259–272.

Ohta, K., Shibata, T., Nicolas, A., 1994. Changes in chromatin structure at recombination initiation sites during yeast meiosis. The EMBO journal 13, 5754.

Ohta, K., Wu, T.-C., Lichten, M., Shibata, T., n.d. Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration. Nucleic Acids Research 27, 2175–2180.

Oke, A., Anderson, C.M., Yam, P., Fung, J.C., 2014. Controlling Meiotic Recombinational Repair – Specifying the Roles of ZMMs, Sgs1 and Mus81/Mms4 in Crossover Formation. PLoS Genetics 10, e1004690.

Osman, F., Dixon, J., Doe, C.L., Whitby, M.C., 2003. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Molecular cell 12, 761–774.

Pak, J., Segall, J., 2002a. Regulation of the Premiddle and Middle Phases of Expression of the NDT80 Gene during Sporulation of *Saccharomyces cerevisiae*. Molecular and Cellular Biology 22, 6417–6429.

Pak, J., Segall, J., 2002b. Role of Ndt80, Sum1, and Swe1 as Targets of the Meiotic Recombination Checkpoint That Control Exit from Pachytene and Spore Formation in *Saccharomyces cerevisiae*. Molecular and Cellular Biology 22, 6430–6440.

Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., Hochwagen, A., Keeney, S., 2011. A Hierarchical Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic Recombination Initiation. Cell 144, 719–731.

Pandita, T.K., Westphal, C.H., Anger, M., Sawant, S.G., Geard, C.R., Pandita, R.K., Scherthan, H., 1999. Atm inactivation results in aberrant telomere clustering during meiotic prophase. Molecular and cellular biology 19, 5096–5105.

Panizza, S., Mendoza, M.A., Berlinger, M., Huang, L., Nicolas, A., Shirahige, K., Klein, F., 2011. Spo11-Accessory Proteins Link Double-Strand Break Sites to the Chromosome Axis in Early Meiotic Recombination. Cell 146, 372–383.

Paques, F., Haber, J.E., 1999. Multiple Pathways of Recombination Induced by Double-Strand Breaks in *Saccharomyces cerevisiae*. Microbiology and Molecular Biology Reviews 349–404.

Paulovitch, A., Armour, C., Hartwell, L., 1998. The *Saccharomyces cerevisiae* RAD9, RAD17, RAD24 and MEC3 Genes Are Required for Tolerating Irreparable, Ultraviolet-Induced DNA Damage. Genetics 150, 75–93.

Penedos, A., Johnson, A.L., Strong, E., Goldman, A.S., Carballo, J.A., Cha, R.S., 2015. Essential and Checkpoint Functions of Budding Yeast ATM and ATR during Meiotic Prophase Are Facilitated by Differential Phosphorylation of a Meiotic Adaptor Protein, Hop1. PLOS ONE 10, e0134297.

Peoples-Holst, T.L., Burgess, S.M., 2005. Multiple branches of the meiotic recombination pathway contribute independently to homolog pairing and stable juxtaposition during meiosis in budding yeast. Genes & development 19, 863–874.

Petes, T.D., Botstein, D., 1977. Simple Mendelian inheritance-of the reiterated ribosomal DNA of yeast. PNAS 74, 5091–5095.

Prieler, S., Penkner, A., Borde, V., Klein, F., 2005. The control of Spo11's interaction with meiotic recombination hotspots. Genes & Development 19, 255–269.

Primig, M., Williams, R.M., Winzeler, E.A., Tevzadze, G.G., Conway, A.R., Hwang, S.Y., Davis, R.W., Esposito, R.E., 2000. The core meiotic transcriptome in budding yeasts. Nature Genetics 26, 415–423.

Prugar, E., Burnett, C., Chen, X., Hollingsworth, N.M., 2017. Coordination of Double Strand Break Repair and Meiotic Progression in Yeast by a Mek1- Ndt80 Negative Feedback Loop. Genetics genetics.117.199703.

Puddu, F., Oelschlaegel, T., Guerini, I., Geisler, N.J., Niu, H., Herzog, M., Salguero, I., Ochoa-Montano, B., Vire, E., Sung, P., Adams, D.J., Keane, T.M., Jackson, S.P., 2015. Synthetic viability genomic screening defines Sae2 function in DNA repair. The EMBO Journal 34, 1509–1522.

R. Padmore, L. Cao, N. Kleckner, 1991. Temporal Comparison of Recombination and Synaptonemal Complex Formation during Meiosis in *S. cerevisiae*. Cell 66, 1239–1256.

Rabitsch, K.P., Petronczki, M., Javerzat, J.-P., Genier, S., Chwalla, B., Schleiffer, A., Tanaka, T.U., Nasmyth, K., 2003. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Developmental cell 4, 535–548.

Rabitsch, K.P., Toth, A., Galova, M., Schleiffer, A., Schaffner, G., Aigner, E., Rupp, C., Penkner, A.M., Moreno-Borchart, A.C., Primig, M., Esposito, R.E., Klein, F., Knop, M., 2001. A screen for genes required for meiosis and spore formation based on whole-genome expression. Current Biology 11, 1001–1009.

Ramesh, M.A., Malik, S.-B., Logsdon, J.M., 2005. A Phylogenomic Inventory of Meiotic Genes: Evidence for Sex in Giardia and an Early Eukaryotic Origin of Meiosis. Current Biology 15, 185–191.

Rasmussen, S., 1977. Meiosis in *Bombyx mori* females. Phil. Trans. R. Soc. Lond. 277, 343–350.

Reenan, R.A., Kolodner, R.D., 1992. Characterization of insertion mutations in the *Saccharomyces cerevisiae* MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132, 975–985.

Reichard, P., 1988. Interactions between deoxyribonucleotide and DNA synthesis. Ann. Rev. Biochem. 57, 349–374.

Rockmill, B., Lefrançois, P., Voelkel-Meiman, K., Oke, A., Roeder, G.S., Fung, J.C., 2013. High Throughput Sequencing Reveals Alterations in the Recombination Signatures with Diminishing Spo11 Activity. PLoS Genetics 9, e1003932.

Rockmill, B., Roeder, G.S., 1991. A meiosis-specific protein kinase homolog required for chromosome synapsis and recombination. Genes & Development 5, 2392–2404.

Rockmill, B., Voelkel-Meiman, K., Roeder, G.S., 2006. Centromere-Proximal Crossovers Are Associated With Precocious Separation of Sister Chromatids During Meiosis in *Saccharomyces cerevisiae*. Genetics 174, 1745–1754.

Roeder, G.S., 1997. Meiotic chromosomes: it takes two to tango. Genes & development 11, 2600–2621.

Romanienko, P.J., Camerini-Otero, R.D., 2000. The Mouse Spo11 Gene Is Required for Meiotic Chromosome Synapsis. Molecular Cell 6, 975–987.

Ross, L.O., Maxfield, R., Dawson, D., 1996. Exchanges are not equally able to enhance meiotic chromosome segregation in yeast. PNAS 93, 4979–4983.

Royo, H., Prosser, H., Ruzankina, Y., Mahadevaiah, S.K., Cloutier, J.M., Baumann, M., Fukuda, T., Hoog, C., Toth, A., de Rooij, D.G., Bradley, A., Brown, E.J., Turner, J.M.A., 2013. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes & Development 27, 1484–1494.

Ruiz, J.F., Pardo, B., Sastre-Moreno, G., Aguilera, A., Blanco, L., 2013. Yeast Pol4 Promotes Tel1-Regulated Chromosomal Translocations. PLoS Genetics 9, e1003656.

Ruzankina, Y., Pinzon-Guzman, C., Asare, A., Ong, T., Pontano, L., Cotsarelis, G., Zediak, V.P., Velez, M., Bhandoola, A., Brown, E.J., 2007. Deletion of the Developmentally Essential Gene ATR in Adult Mice Leads to Age-Related Phenotypes and Stem Cell Loss. Cell Stem Cell 1, 113–126.

Sanchez, Y., Desany, B.A., Jones, W.J., Liu, Q., Wang, B., Elledge, S.J., 1996. Regulation of RAD53 by the ATM-Like Kinases MEC1 and TELl in Yeast Cell Cycle Checkpoint Pathways. Science 271, 357–360.

Sasaki, M., Lange, J., Keeney, S., 2010. Genome destabilization by homologous recombination in the germ line. Nature Reviews Molecular Cell Biology.

Sasanuma, H., Murakami, H., Fukuda, T., Shibata, T., Nicolas, A., Ohta, K., 2007. Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Research 35, 1119–1133.

Scherthan, H., Wang, H., Adelfalk, C., White, E.J., Cowan, C., Cande, W.Z., Kaback, D.B., 2007. Chromosome mobility during meiotic prophase in *Saccharomyces cerevisiae*. Proceedings of the National Academy of Sciences 104, 16934–16939.

Schwacha, A., Kleckner, N., 1994. Identification of Joint Molecules That Form Frequently between Homologs but Rarely between Sister Chromatids during Yeast Meiosis. Cell 76, 51–63.

Schwacha, A., Kleckner, N., 1995. Identification of Double Holliday Junctions as Intermediates in Meiotic Recombination. Cell 83, 783–791.

Schwacha, A., Kleckner, N., 1997. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123–1135.

Selva, E.M., New, L., Crouse, G.F., Lahue, R.S., 1995. Mismatch correction acts as a barrier to homeologous recombination in *Saccharomyces cerevisiae*. Genetics 139, 1175–1188.

Serrentino, M.-E., Chaplais, E., Sommermeyer, V., Borde, V., 2013. Differential Association of the Conserved SUMO Ligase Zip3 with Meiotic Double-Strand Break Sites Reveals Regional Variations in the Outcome of Meiotic Recombination. PLoS Genetics 9, e1003416.

Shen, P., Huang, H.V., 1989. Effect of base pair mismatches on recombination via the RecBCD pathway. Mol Gen Genet 218, 358–360.

Shima, H., 2005. Isolation and Characterization of Novel xrs2 Mutations in *Saccharomyces cerevisiae*. Genetics 170, 71–85.

Shinohara, A., Ogawa, H., Ogawa, T., 1992. Rad51 Protein Involved in Repair and Recombination in *S. cerevisiae* Is a RecA-like Protein. Cell 69, 457–470.

Shinohara, M., Hayashihara, K., Grubb, J., Bishop, D.K., Shinohara, A., 2015. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. J Cell Sci 128, 1494–1506.

Shinohara, M., Oh, S.D., Hunter, N., Shinohara, A., 2008. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nature Genetics 40, 299–309.

Shinohara, M., Sakai, K., Ogawa, T., Shinohara, A., 2003. The Mitotic DNA Damage Checkpoint Proteins Rad17 and Rad24 Are Required for Repair of Double-Strand Breaks During Meiosis in Yeast. Genetics 164, 855–865.

Shinohara, M., Shinohara, A., 2013. Multiple Pathways Suppress Non-Allelic Homologous Recombination during Meiosis in *Saccharomyces cerevisiae*. PLoS ONE 8, e63144.

Shiotani, B., Zou, L., 2009. Single-Stranded DNA Orchestrates an ATM-to-ATR Switch at DNA Breaks. Molecular Cell 33, 547–558.

Shuster, E. O., Byers, B., 1989. Pachytene Arrest and Other Meiotic Effects of the Start Mutations in *Saccharomyces cerevisiae*. Genetics 123, 29–43.

Sia, E.A., Kokoska, R.J., Dominska, M., Greenwell, P., Petes, T.D., 1997. Microsatellite Instability in Yeast: Dependence on Repeat Unit Size and DNA Mismatch Repair Genes. Molecular and Cellular Biology 17, 2851–2858.

Sidorova, J.M., Breeden, L.L., 1997. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in *Saccharomyces cerevisiae*. Genes & Development 11, 3032–3045.

Singh, T.R., Ali, A.M., Busygina, V., Raynard, S., Fan, Q., Du, C. -h., Andreassen, P.R., Sung, P., Meetei, A.R., 2008. BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes & Development 22, 2856–2868.

Smeds, L., Mugal, C.F., Qvarnström, A., Ellegren, H., 2016. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree. PLOS Genetics 12, e1006044.

Smith, A.V., Roeder, G.S., 1997. The yeast Red1 protein localizes to the cores of meiotic chromosomes. The Journal of cell biology 136, 957–967.

Smith, C.E., Llorente, B., Symington, L.S., 2007. Template switching during break-induced replication. Nature 447, 102–105.

Smith, G.R., Boddy, M.N., Shanahan, P., Russell, P., 2003. Fission Yeast Mus81•Eme1 Holliday Junction Resolvase Is Required for Meiotic Crossing Over but Not for Gene Conversion. Genetics 165, 2289–2293.

Smith, K.N., Penkner, A., Ohta, K., Klein, F., Nicolas, A., 2001. B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis. Current Biology 11, 88–97.

Snowden, T., Acharya, S., Butz, C., Berardini, M., Fishel, R., 2004. hMSH4-hMSH5 Recognizes Holliday Junctions and Forms a Meiosis-Specific Sliding Clamp that Embraces Homologous Chromosomes. Molecular Cell 15, 437–451.

Sommermeyer, V., Béneut, C., Chaplais, E., Serrentino, M.E., Borde, V., 2013. Spp1, a Member of the Set1 Complex, Promotes Meiotic DSB Formation in Promoters by Tethering Histone H3K4 Methylation Sites to Chromosome Axes. Molecular Cell 49, 43–54.

Sopko, R., Raithatha, S., Stuart, D., 2002. Phosphorylation and Maximal Activity of *Saccharomyces cerevisiae* Meiosis-Specific Transcription Factor Ndt80 Is Dependent on Ime2. Molecular and Cellular Biology 22, 7024–7040.

Sourirajan, A., Lichten, M., 2008. Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes & Development 22, 2627–2632.

Steiner, W.W., Schreckhise, R.W., Smith, G.R., 2002. Meiotic DNA Breaks at the S. pombe Recombination Hot Spot M26. Molecular Cell 9, 847–855.

Storlazzi, A., Xu, L., Schwacha, A., Kleckner, N., 1996. Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. PNAS 93, 9043–9048.

Stuart, D., Wittenberg, C., 1998. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes & Development 12, 2698–2710.

Sturtevant, A.H., 1913. A third group of linked genes in *Drosophila ampelophila*. Science 990–992.

Sturtevant AH. The behavior of chromosomes as studied through linkage. Z. Induct. Abstammungs-Vererbungsl. 1915;13:234–287.

Sugawara, N., Paques, F., Colaiacovo, M., Haber, J.E., 1997. Role of *Saccharomyces cerevisiae* Msh2 and Msh3 repair proteins in double-strand break-induced recombination. PNAS 94, 9214–9219.

Surtees JA, Argueso JL, Alani E: Mismatch repair proteins: key regulators of genetic recombination. Cytogenet Genome Res 2004, 107:146-159.

Sweeney, F.D., Yang, F., Chi, A., Shabanowitz, J., Hunt, D.F., Durocher, D., 2005. *Saccharomyces cerevisiae* Rad9 Acts as a Mec1 Adaptor to Allow Rad53 Activation. Current Biology 15, 1364–1375.

Sym, M., Engebrecht, J., Roeder, G.S., 1993. ZIP1 is a Synaptonemal Complex Protein Required for Meiotic Chromosome Synapsis. Cell 72, 365–378.

Sym, M., Roeder, G.S., 1994. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79, 283–292.

Symington, L.S., Gautier, J., 2011. Double-Strand Break End Resection and Repair Pathway Choice. Annual Review of Genetics 45, 247–271.

Szilard, R.K., Jacques, P.-É., Laramée, L., Cheng, B., Galicia, S., Bataille, A.R., Yeung, M., Mendez, M., Bergeron, M., Robert, F., Durocher, D., 2010. Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX. Nature Structural & Molecular Biology 17, 299–305.

Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., Stahl, F. W., 1983. The Double-Strand-Break Repair Model for Recombination. Cell 33, 25–35.

Tanaka, S., Araki, H., 2010. Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma 119, 565–574.

Tarsounas, M., Morita, T., Pearlman, R.E., Moens, P.B., n.d. RAD51 and DMC1 Form Mixed Complexes Associated with Mouse Meiotic Chromosome Cores and Synaptonemal Complexes.

Terasawa, M., Ogawa, T., Tsukamoto, Y., Ogawa, H., 2008. Sae2p phosphorylation is crucial for cooperation with Mre11p for resection of DNA double-strand break ends during meiotic recombination in *Saccharomyces cerevisiae*. Genes Genet. Syst. 83, 209–217.

Thacker, D., Keeney, S., 2016. Homologous Recombination During Meiosis, in: Hanaoka, F., Sugasawa, K. (Eds.), DNA Replication, Recombination, and Repair. Springer Japan, Tokyo, pp. 131–151.

Thacker, D., Mohibullah, N., Zhu, X., Keeney, S., 2014. Homologue engagement controls meiotic DNA break number and distribution. Nature 510, 241–246.

Tóth, A., Rabitsch, K.P., Gálová, M., Schleiffer, A., Buonomo, S.B., Nasmyth, K., 2000. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103, 1155–1168.

Tung, K.-S., Hong, E.-J.E., Roeder, G.S., 2000. The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. PNAS 97, 12187–12192.

Uhlmann, F., Lottspeich, F., Nasmyth, K., 1999. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42.

Usui, T., Ogawa, H., Petrini, J.H., 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Molecular cell 7, 1255–1266.

Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K, Altshuler D, Gabriel S, DePristo M., 2013. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols in Bioinformatics 43:11.10.1-11.10.33

Vanoni, M., Vai, M., Frascotti, G., 1984. Effects of temperature on the yeast cell cycle analyzed by flow cytometry. Cytometry 5, 530–533.

Visser, W., van Spronsen, E.A., Nanninga, N., Pronk, J.T., Kuenen, J.G., van Dijken, J.P., 1995. Effects of growth conditions on mitochondrial morphology in *Saccharomyces cerevisiae*. Antonie van Leeuwenhoek 67, 243–253.

Voelkel-Meiman, K., Johnston, C., Thappeta, Y., Subramanian, V.V., Hochwagen, A., MacQueen, A.J., 2015. Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis. PLOS Genetics 11, e1005335.

Vrielynck, N., Chambon, A., Vezon, D., Pereira, L., Chelysheva, L., De Muyt, A., Mezard, C., Mayer, C., Grelon, M., 2016. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939–943.

Wang, S., Zickler, D., Kleckner, N., Zhang, L., 2015. Meiotic crossover patterns: Obligatory crossover, interference and homeostasis in a single process. Cell Cycle 14, 305–314.

Watanabe, Y., Nurse, P., 1999. Cohesin Rec8 is required for reductional chromosome segregation atmeiosis. Nature 400, 461–464.

Watt, D.L., Buckland, R.J., Lujan, S.A., Kunkel, T.A., Chabes, A., 2016. Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. Nucleic Acids Research 44, 1669–1680.

West, S.C., 2009. The search for a human Holliday junction resolvase. Biochemical Society Transactions 37, 519–526.

Williamson, M.S., Game, J.C., Fogel, S., 1985. Meiotic gene conversion mutants in *Saccharomyces cerevisiae*. I. Isolation and Characterization of PMS1-1 and PMS1-2. Genetics 110, 609–646.

Winter, E., 2012. The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in *Saccharomyces cerevisiae*. Microbiology and Molecular Biology Reviews 76, 1–15.

Winzeler, E.A., Richards, D.R., Conway, A.R., Goldstein, A.L., Kalman, S., McCullough, M.J., McCusker, J.H., Stevens, D.A., Wodicka, L., Lockhart, D.J., Davis, R.W., 1998. Direct Allelic Variation Scanning of the Yeast Genome. Science 281, 1194–1197.

Wu, H.-Y., Burgess, S.M., 2006. Two Distinct Surveillance Mechanisms Monitor Meiotic Chromosome Metabolism in Budding Yeast. Current Biology 16, 2473–2479.

Wu, T.-C., Lichten, M., 1995. Factors That Affect the Location and Frequency of Meiosis-Induced Double Strand Breaks in *Saccharomyces cerevisiae*. Genetics 140, 55–66.

Wu, T.-C., Lichten, M., 1994. Meiosis-Induced Double-Strand Break Sites Determined by Yeast Chromatin Structure. Science 263, 515–518.

Wu, L., Hickson, I., 2003. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874.

Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., Vershon, A.K., 1999. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in *Saccharomyces cerevisiae*. The EMBO Journal 18, 6448–6454.

Xu L, Ajimura M, Padmore R, Klein C, Kleckner N. NDT80, a meiosis-specific gene required for exit from pachytene in *Saccharomyces cerevisiae*. Mol Cell Biol. 1995; 15(12):6572–81.

Xu, D., Guo, R., Sobeck, A., Bachrati, C.Z., Yang, J., Enomoto, T., Brown, G.W., Hoatlin, M.E., Hickson, I.D., Wang, W., 2008. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes & Development 22, 2843–2855.

Xu, Z., Wei, W., Gagneur, J., Perocchi, F., Clauder-Münster, S., Camblong, J., Guffanti, E., Stutz, F., Huber, W., Steinmetz, L.M., 2009. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037.

Yang, Y., Sterling, J., Storici, F., Resnick, M.A., Gordenin, D.A., 2008. Hypermutability of Damaged Single-Strand DNA Formed at Double-Strand Breaks and Uncapped Telomeres in Yeast *Saccharomyces cerevisiae*. PLoS Genetics 4, e1000264.

Zakharyevich, K., Ma, Y., Tang, S., Hwang, P.Y.-H., Boiteux, S., Hunter, N., 2010. Temporally and Biochemically Distinct Activities of Exo1 during Meiosis: Double-Strand Break Resection and Resolution of Double Holliday Junctions. Molecular Cell 40, 1001–1015.

Zakharyevich, K., Tang, S., Ma, Y., Hunter, N., 2012. Delineation of Joint Molecule Resolution Pathways in Meiosis Identifies a Crossover-Specific Resolvase. Cell 149, 334–347.

Zakian, V.A., Brewer, B.J., Fangman, W.L., 1979. Replication of Each Copy of the Yeast 2 Micron DNA Plasmid Occurs during the S Phase. Cell 17, 923–934.

Zalatan, J.G., Coyle, S.M., Rajan, S., Sidhu, S.S., Lim, W.A., 2012. Conformational Control of the Ste5 Scaffold Protein Insulates Against MAP Kinase Misactivation. Science 337, 1218–1222.

Zanders, S., Alani, E., 2009. The pch2Δ Mutation in Baker's Yeast Alters Meiotic Crossover Levels and Confers a Defect in Crossover Interference. PLoS Genetics 5, e1000571.

Zhang, J., 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution 18, 292–298.

Zhang, L., Kim, K.P., Kleckner, N.E., Storlazzi, A., 2011. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. PNAS 108, 20036–20041.

Zhang, L., Liang, Z., Hutchinson, J., Kleckner, N., 2014. Crossover Patterning by the Beam-Film Model: Analysis and Implications. PLoS Genetics 10, e1004042.

Zhao, H., Speed, T.P., McPeek, M.S., 1995. Statistical Analysis of Crossover Interference Using the Chi-square Model. Genetics 139, 1045–1056.

Zhao, X., Chabes, A., Domkin, V., Thelander, L., Rothstein, R., 2001. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. The EMBO Journal 20, 3544–3553.

Zhao, X., Muller, E.G.D., Rothstein, R., 1998. A Suppressor of Two Essential Checkpoint Genes Identifies a Novel Protein that Negatively Affects dNTP Pools. Molecular Cell 2, 329–340.

Zhao, X., Rothstein, R., 2002. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. PNAS 99, 3746–3751.

Zhou, Z., Elledge, S.J., 1993. DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75, 1119–1127.

Zou, L., Elledge, S.J., 2003. Sensing DNA Damage Through ATRIP Recognition of RPAssDNA Complexes. Science 300, 1542–1548.

				Mean					95%						
Genotype	Cross	Background	Tetrads	viability	95% conf	4 spores	95% conf	3 spores	conf	2 spores	95% conf	1 spore	95% conf	0 spores	95% conf
WT	MJ512xMJ513	SK1	64	96.88	2.13	92.19	6.58	3.13	4.26	4.69	5.18	0.00	0.00	0.00	0.00
WT	MJ600xMJ631	S288c	72	96.88	2.01	88.89	7.26	9.72	6.84	4.17	4.62	0.00	0.00	29.17	10.50
WT	MJ600xMJ513	SK1xS288c	197	81.98	2.68	13.45	2.38	6.85	1.76	3.55	1.29	0.51	0.50	0.63	0.55
WT + 10 h	MJ43xMC42	SK1xS288c	86	70.35	4.83	36.05	10.15	25.58	9.22	25.58	9.22	9.30	6.14	3.49	3.88
msh 2Δ	MC25xMC26	SK1	110	80.91	3.67	15.00	3.34	3.18	1.64	4.55	1.95	2.27	1.39	0.00	0.00
msh 2Δ	MC49xMC50	S288c	105	77.86	3.97	47.62	9.55	26.67	8.46	18.10	7.36	4.76	4.07	2.86	3.19
msh2∆ Tetrads	MC49xMC26	SK1xS288c	149	72.99	3.56	10.07	2.42	6.38	1.96	5.37	1.81	2.85	1.34	0.34	0.46
msh2∆ Octads	MC49xMC26	SK1xS288c	87	75.00	4.55	36.78	10.13	33.33	9.91	24.14	8.99	4.60	4.40	1.15	2.24
mus 81Δ	MC214xMC215	SK1	110	55.68	4.64	17.27	7.06	27.27	8.32	25.45	8.14	20.91	7.60	9.09	5.37
mus 81Δ msh 2Δ	MC230xMC231	SK1	110	44.09	4.64	13.64	6.41	20.00	7.48	19.09	7.34	23.64	7.94	23.64	7.94
mlh 3Δ	MC254xMC255	SK1	110	89.09	2.91	81.82	7.21	3.64	3.50	9.09	5.37	0.00	0.00	5.45	4.24
yen1∆	MC264xMC265	SK1	110	92.95	2.39	89.09	5.83	0.00	0.00	6.36	4.56	2.73	3.04	1.82	2.50
mus 81Δ mlh 3Δ	MC271xMC272	SK1	107	59.58	4.65	26.17	8.33	28.04	8.51	19.63	7.53	10.28	5.75	15.89	6.93
mus 81Δ yen 1Δ	MC267xMC268	SK1	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mlh3∆ yen1∆	MC277xMC278	SK1	110	77.95	3.87	64.55	8.94	4.55	3.89	19.09	7.34	1.82	2.50	10.00	5.61
$rad24\Delta$	MC17xMC18	SK1	132	21.59	3.51	7.58	4.51	5.30	3.82	17.42	6.47	5.30	3.82	64.39	8.17
$rad24\Delta$	MC19xMC20	S288c	106	46.70	4.75	12.26	6.24	17.92	7.30	29.25	8.66	25.47	8.29	15.09	6.82
$rad24\Delta$	MC31xMC32	BY474	197	46.70	3.48	14.21	4.88	20.30	5.62	22.84	5.86	23.35	5.91	19.29	5.51
$rad24\Delta$	MC17xMC20	SK1xS288c	240	0.73	0.54	0.00	0.00	0.00	0.00	0.00	0.00	2.92	2.13	97.08	2.13
$rad24\Delta$ msh 2Δ	MC105xMC106	SK1	107	21.26	3.88	9.35	5.52	5.61	4.36	21.50	7.78	24.30	8.13	59.81	9.29
$rad24\Delta$ msh 2Δ	MC202xMC203	S288c	102	28.19	4.37	2.94	3.28	11.76	6.25	18.63	7.56	28.43	8.75	38.24	9.43
$rad24\Delta$ msh 2Δ	MC105xMC203	SK1xS288c	462	5.90	1.07	1.30	1.03	2.38	1.39	8.87	2.59	21.00	3.71	66.45	4.31
$rad24\Delta$ mus 81Δ	MC222xMC223	SK1	110	19.32	3.69	0.00	0.00	7.27	4.85	20.91	7.60	13.64	6.41	58.18	9.22
$rad24\Delta$ mus 81Δ	MC222xMC227	SK1XS288c	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
rad24 Δ mlh3 Δ	MC247xMC248	SK1	109	20.64	3.80	6.42	4.60	3.67	3.53	13.76	6.47	18.35	7.27	57.80	9.27
rad24Δ yen1Δ	MC251xMC252	SK1	110	36.82	4.51	12.73	6.23	11.82	6.03	21.82	7.72	17.27	7.06	36.36	8.99
rad24 Δ mlh3 Δ yen1 Δ	MC262xMC263	SK1	107	16.82	3.54	2.80	3.13	6.54	4.69	9.35	5.52	17.76	7.24	63.55	9.12
$rad24\Delta$ mus 81Δ mlh 3Δ	MC257xMC258	SK1	98	7.91	2.67	1.02	1.99	0.00	0.00	9.18	5.72	9.18	5.72	80.61	7.83
$rad24\Delta \text{ sml}1\Delta$	MC101xMC102	SK1	102	41.67	4.78	18.63	7.56	13.73	6.68	21.57	7.98	7.84	5.22	38.24	9.43
$rad24\Delta \text{ sml}1\Delta$	MC59xMC60	BY474	131	48.47	4.28	15.27	6.16	22.90	7.20	19.85	6.83	24.43	7.36	17.56	6.52
$rad24\Delta$ mus 81Δ yen 1Δ	MC273xMC274	SK1	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00

rad24Δ sml1Δ	MC101xMC61	SK1xBY474	196	4.72	1.48	0.51	1.00	0.51	1.00	4.08	2.77	7.14	3.61	87.76	4.59
$rad24\Delta \ sml1\Delta \ msh2\Delta$	MC190xMC193	SK1xBY474	110	24.32	4.01	5.45	4.24	6.36	4.56	13.64	6.41	29.09	8.49	45.45	9.31
tel 1Δ	MC21xMC22	SK1	87	92.53	2.76	82.76	10.34	2.30	3.45	1.15	7.94	6.40	3.15	3.83	2.24
tel 1Δ	MC23xMC24	S288c	86	86.34	3.63	63.95	10.15	20.93	8.60	12.79	7.06	1.16	2.27	1.16	2.27
tel 1Δ	MC21xMC24	SK1xS288c	109	69.04	4.34	33.94	8.89	26.61	8.30	24.77	8.10	11.01	5.88	3.67	3.53
tel 1Δ mus 81Δ	MC234xMC235	SK1	109	25.46	4.09	1.83	2.52	11.01	5.88	12.84	6.28	35.78	9.00	38.53	9.14
tel 1Δ msh 2Δ	MC29xMC30	SK1	109	74.77	4.08	59.63	9.21	6.42	4.60	15.60	6.81	10.09	5.65	8.26	5.17
tel 1Δ msh 2Δ	MC53xMC54	S288c	116	78.23	3.75	57.76	8.99	15.52	6.59	14.66	6.44	6.03	4.33	6.03	4.33
tel 1Δ msh 2Δ Tetrads	MC53xMC30	SK1xS288c	105	63.57	4.60	24.76	8.26	28.57	8.64	26.67	8.46	16.19	7.05	3.81	3.66
tel1Δ msh2Δ Octads 2%glucose	MC53xMC30	SK1xS288c	130	60.19	4.21	20.00	6.88	30.77	7.93	26.92	7.62	14.62	6.07	7.69	4.58
tel 1Δ msh 2Δ Octads 5%glucose	MC53xMC30	SK1xS288c	76	64.47	10.76	21.05	18.33	31.58	20.90	31.58	20.90	15.79	16.40	0.00	0.00
PCLB2-MEC1	VG120xVG121	SK1	130	58.46	4.24	21.54	7.07	32.31	8.04	15.38	6.20	20.00	6.88	10.77	5.33
PCLB2-MEC1	MC152xMC153	S288c	110	77.27	3.92	62.50	10.12	30.68	9.64	21.59	8.60	1.14	2.21	9.09	6.01
PCLB2-MEC1	VG120xMC153	SK1xS288c	153	6.37	1.94	1.31	1.80	0.65	1.28	4.58	3.31	9.15	4.57	84.31	5.76
PCLB2-MEC1 msh2Δ	MC163xMC164	SK1	88	49.15	5.22	19.32	8.25	23.86	8.91	14.77	7.41	18.18	8.06	23.86	8.91
PCLB2-MEC1 msh2Δ	MC171xMC172	S288c	111	63.06	4.49	30.63	8.58	25.23	8.08	19.82	7.42	14.41	6.53	9.91	5.56
PCLB2-MEC1 msh2Δ	MC163xMC172	SK1xS288c	176	28.84	3.35	3.41	2.68	10.80	4.58	17.61	5.63	34.09	7.00	34.09	7.00
PCLB2-MEC1 mus81Δ	MC243xMC242	SK1	108	20.37	3.80	1.85	2.54	3.70	3.56	14.81	6.70	33.33	8.89	46.30	9.40
PCLB2-MEC1 Spo11-D290A	MC281xMC282	SK1	88	17.05	3.93	6.82	5.27	4.55	4.35	9.09	6.01	9.09	6.01	70.45	9.53
PCLB2-MEC1 + 4 h	MC2xMC3	SK1	88	49.15	5.22	12.50	6.91	28.41	9.42	18.18	8.06	25.00	9.05	15.91	7.64
PCLB2-MEC1 + 6 h	MC2xMC3	SK1	86	54.07	5.27	19.77	8.42	23.26	8.93	23.26	8.93	20.93	8.60	12.79	7.06
PCLB2-MEC1 + 8 h	MC2xMC3	SK1	84	57.74	5.28	17.86	8.19	30.95	9.89	25.00	9.26	16.67	7.97	9.52	6.28
PCLB2-MEC1 + 10 h	MC2xMC3	SK1	86	48.55	5.28	12.79	7.06	19.77	8.42	30.23	9.71	23.26	8.93	13.95	7.32
PCLB2-MEC1 + 12 h	MC2xMC3	SK1	53	51.89	6.73	16.98	10.11	32.08	12.57	15.09	9.64	13.21	9.12	22.64	11.27
PCLB2-MEC1 +4 h	MC2xMC198	SK1xS288c	64	10.16	3.70	1.56	3.04	1.56	3.04	3.13	4.26	23.44	10.38	70.31	11.19
PCLB2-MEC1 +6 h	MC2xMC198	SK1xS288c	63	18.25	4.77	0.00	0.00	6.35	6.02	14.29	8.64	25.40	10.75	53.97	12.31
PCLB2-MEC1 +8 h	MC2xMC198	SK1xS288c	87	16.38	3.89	2.30	3.15	4.60	4.40	9.20	6.07	24.14	8.99	59.77	10.30
PCLB2-MEC1 +10 h	MC2xMC198	SK1xS288c	63	26.98	5.48	4.76	5.26	6.35	6.02	19.05	9.70	31.75	11.49	38.10	11.99
PCLB2-MEC1 D290A + 4 h	MC211xMC212	SK1	61	73.36	5.55	37.70	12.16	31.15	11.62	19.67	9.98	9.84	7.47	1.64	3.19
PCLB2-MEC1 D290A + 6 h	MC211xMC212	SK1	86	60.47	5.17	24.42	9.08	31.40	9.81	18.60	8.22	12.79	7.06	12.79	7.06
PCLB2-MEC1 D290A + 8 h	MC211xMC212	SK1	85	60.29	5.20	25.88	9.31	31.76	9.90	15.29	7.65	11.76	6.85	15.29	7.65

PCLB2-MEC1 D290A + 10 h	MC211xMC212	SK1	87	60.63	5.13	31.03	9.72	21.84	8.68	17.24	7.94	18.39	8.14	11.49	6.70
WT + 3 h	MJ846	SK1	64	86.33	4.21	75.00	10.61	7.81	6.58	9.38	7.14	3.13	4.26	4.69	5.18
WT + 4 h	MJ846	SK1	42	91.07	4.31	80.95	11.88	11.90	9.79	2.38	4.61	0.00	0.00	4.76	6.44
WT + 5 h	MJ846	SK1	41	94.51	3.49	85.37	10.82	7.32	7.97	7.32	7.97	0.00	0.00	0.00	0.00
Spo11-D290A +3 h	MJ892	SK1	64	85.55	4.31	67.19	11.50	12.50	8.10	17.19	9.24	1.56	3.04	1.56	3.04
Spo11-D290A +4 h	MJ892	SK1	44	85.80	5.16	72.73	13.16	9.09	8.49	11.36	9.38	2.27	4.40	4.55	6.15
Spo11-D290A +5 h	MJ892	SK1	44	91.48	4.13	79.55	11.92	11.36	9.38	6.82	7.45	0.00	0.00	2.27	4.40
Spo11-HA +3 h	MJ847	SK1	77	70.13	5.11	51.95	11.16	11.69	7.18	16.88	8.37	3.90	4.32	15.58	8.10
Spo11-HA +4 h	MJ847	SK1	44	76.14	6.30	54.55	14.71	11.36	9.38	25.00	12.79	2.27	4.40	6.82	7.45
Spo11-HA +5 h	MJ847	SK1	44	86.36	5.07	72.73	13.16	6.82	7.45	15.91	10.81	2.27	4.40	2.27	4.40
$rad24\Delta$ msh 2Δ + 4 h	MC207xMC208	SK1	66	33.33	5.69	4.55	5.03	18.18	9.31	15.15	8.65	30.30	11.09	31.82	11.24
$rad24\Delta$ msh $2\Delta + 6$ h	MC207xMC208	SK1	78	30.00	5.57	1.54	2.99	9.23	7.04	27.69	10.88	30.77	11.22	30.77	11.22
$rad24\Delta$ msh 2Δ + 8 h	MC207xMC208	SK1	66	43.56	5.98	13.64	8.28	13.64	8.28	27.27	10.74	24.24	10.34	21.21	9.86
$rad24\Delta$ msh $2\Delta + 10$ h	MC207xMC208	SK1	66	49.24	6.03	7.58	6.38	24.24	10.34	34.85	11.50	24.24	10.34	9.09	6.94
$rad24\Delta$ msh 2Δ +4 h	MC239xMC207	SK1xS288c	109	31.19	4.35	4.59	3.93	10.09	5.65	24.77	8.10	26.61	8.30	33.94	8.89
$rad24\Delta$ msh 2Δ +6 h	MC239xMC207	SK1xS288c	110	25.68	4.08	1.82	2.50	7.27	4.85	17.27	7.06	39.09	9.12	34.55	8.89
$rad24\Delta$ msh 2Δ +8 h	MC239xMC207	SK1xS288c	110	26.82	4.14	3.64	3.50	4.55	3.89	20.00	7.48	39.09	9.12	32.73	8.77
$rad24\Delta$ msh 2Δ +10 h	MC239xMC207	SK1xS288c	110	27.05	4.15	6.36	4.56	5.45	4.24	20.91	7.60	24.55	8.04	42.73	9.24
$rad24\Delta +6 h$	MJ835xMC89	SK1xS288c	93	6.72	2.54	0.00	0.00	4.30	4.12	1.08	2.10	11.83	6.56	82.80	7.67
$rad24\Delta + 8 h$	MJ835xMC89	SK1xS288c	218	7.91	1.79	0.46	0.90	0.92	1.27	4.59	2.78	17.89	5.09	76.15	5.66
$rad24\Delta +10 h$	MJ835xMC89	SK1xS288c	269	15.94	1.82	1.86	1.61	2.60	1.90	13.38	4.07	17.84	4.58	64.31	5.73
$rad24\Delta$ sml1 Δ +4 h	MC120xMC122	SK1	109	60.55	4.59	34.86	8.95	26.61	8.30	19.27	7.40	11.93	6.08	16.51	6.97
$rad24\Delta$ sml1 Δ +6 h	MC120xMC122	SK1	107	51.87	4.73	27.10	8.42	17.76	7.24	28.04	8.51	17.76	7.24	18.69	7.39
$rad24\Delta \text{ sml} 1\Delta + 8 \text{ h}$	MC120xMC122	SK1	117	69.87	4.16	43.59	8.99	27.35	8.08	17.09	6.82	14.53	6.39	5.98	4.30
$rad24\Delta \text{ sml} 1\Delta + 8 \text{ h}$	MC120xMC139	SK1xBY474	110	10.23	2.83	0.00	0.00	0.91	1.77	10.91	5.83	16.36	6.91	71.82	8.41
$rad24\Delta$ sml1 Δ +10 h	MC120xMC139	SK1xBY474	110	18.64	3.64	0.00	0.00	4.55	3.89	14.55	6.59	31.82	8.70	49.09	9.34
$rad24\Delta +3 h$	MJ848	SK1	43	22.09	6.20	9.30	8.68	6.98	7.61	6.98	7.61	16.28	11.03	60.47	14.61
$rad24\Delta +4 h$	MJ848	SK1	44	31.82	6.88	4.55	6.15	18.18	11.40	20.45	11.92	13.64	10.14	43.18	14.64
$rad24\Delta +5 h$	MJ848	SK1	82	44.21	5.37	9.76	6.42	18.29	8.37	35.37	10.35	12.20	7.08	24.39	9.29
$rad24\Delta +6 h$	MJ848	SK1	66	42.80	5.97	9.09	6.94	15.15	8.65	36.36	11.61	16.67	8.99	22.73	10.11
rad24Δ +7 h	MJ848	SK1	41	56.10	7.60	19.51	12.13	26.83	13.56	24.39	13.15	17.07	11.52	12.20	10.02
rad24Δ +8 h	MJ848	SK1	84	59.18	5.42	15.48	7.73	26.19	9.40	28.57	9.66	25.00	9.26	4.76	4.55
rad24Δ +9 h	MJ848	SK1	41	62.20	7.42	24.39	13.15	26.83	13.56	26.83	13.56	17.07	11.52	4.88	6.59

rad24Δ +10 h	MJ848	SK1	59	69.07	5.90	35.59	12.22	22.03	10.58	28.81	11.56	10.17	7.71	3.39	4.62
rad24Δ +11 h	MJ848	SK1	64	62.50	5.93	23.44	10.38	34.38	11.64	18.75	9.56	15.63	8.90	7.81	6.58
rad24Δ +12 h	MJ848	SK1	165	61.34	3.91	17.58	5.81	23.03	6.42	33.94	7.22	13.94	5.28	11.52	4.87
rad24Δ Spo11-D290A +3 h	MJ913	SK1	44	2.27	2.20	0.00	0.00	0.00	0.00	4.55	6.15	0.00	0.00	95.45	6.15
rad24Δ Spo11-D290A +4 h	МЈ913	SK1	44	21.59	6.08	4.55	6.15	2.27	4.40	25.00	12.79	11.36	9.38	56.82	14.64
rad24Δ Spo11-D290A +5 h	MJ913	SK1	83	46.99	5.37	15.66	7.82	16.87	8.06	27.71	9.63	19.28	8.49	20.48	8.68
rad24Δ Spo11-D290A +6 h	MJ913	SK1	62	54.84	6.19	20.97	10.13	22.58	10.41	25.81	10.89	16.13	9.16	14.52	8.77
rad24Δ Spo11-D290A +7 h	MJ913	SK1	43	58.14	7.37	30.23	13.73	13.95	10.36	27.91	13.41	13.95	10.36	13.95	10.36
rad24Δ Spo11-D290A +8 h	MJ913	SK1	63	75.79	5.29	41.27	12.16	28.57	11.16	23.81	10.52	4.76	5.26	1.59	3.09
rad24Δ Spo11-D290A +9 h	MJ913	SK1	41	71.95	6.88	39.02	14.93	21.95	12.67	29.27	13.93	7.32	7.97	2.44	4.72
rad24Δ Spo11-D290A +10 h	MJ913	SK1	61	81.97	4.82	47.54	12.53	37.70	12.16	11.48	8.00	1.64	3.19	1.64	3.19
rad24Δ Spo11-D290A +11 h	MJ913	SK1	63	75.40	5.32	50.79	12.35	23.81	10.52	11.11	7.76	4.76	5.26	9.52	7.25
rad24Δ Spo11-D290A +12 h	MJ913	SK1	149	78.65	3.48	24.83	6.94	44.30	7.98	19.46	6.36	10.74	4.97	0.67	1.31
rad24∆ Spo11-HA +3 h	MJ850	SK1	44	13.64	5.07	4.55	6.15	0.00	0.00	15.91	10.81	4.55	6.15	75.00	12.79
rad24∆ Spo11-HA +4 h	MJ850	SK1	44	23.30	6.25	11.36	9.38	2.27	4.40	15.91	10.81	9.09	8.49	61.36	14.39
rad24∆ Spo11-HA +5 h	MJ850	SK1	83	54.52	5.36	31.33	9.98	14.46	7.57	19.28	8.49	10.84	6.69	24.10	9.20
rad24∆ Spo11-HA +6 h	MJ850	SK1	59	65.68	6.06	40.68	12.53	18.64	9.94	18.64	9.94	6.78	6.41	15.25	9.17
rad24∆ Spo11-HA +7 h	MJ850	SK1	44	68.75	6.85	45.45	14.71	15.91	10.81	15.91	10.81	13.64	10.14	9.09	8.49
rad24∆ Spo11-HA +8 h	MJ850	SK1	73	74.32	5.01	45.21	11.42	24.66	9.89	17.81	8.78	6.85	5.79	5.48	5.22
rad24∆ Spo11-HA +9 h	MJ850	SK1	43	78.49	6.14	46.51	14.91	32.56	14.01	11.63	9.58	6.98	7.61	2.33	4.50
rad24∆ Spo11-HA +10 h	MJ850	SK1	54	80.09	5.33	66.67	12.57	3.70	5.04	18.52	10.36	5.56	6.11	5.56	6.11
rad24∆ Spo11-HA +11 h	MJ850	SK1	65	78.85	4.96	50.77	12.15	26.15	10.68	12.31	7.99	9.23	7.04	1.54	2.99
rad24∆ Spo11-HA +12 h	MJ850	SK1	154	80.59	3.24	35.71	7.57	43.51	7.83	10.39	4.82	5.19	3.51	5.19	3.51
rad24 CDC20-1 +8 h @37oC	MC142xMC143	SK1	88	21.02	4.26	0.85	0.96	2.56	1.65	1.99	1.46	5.97	2.47	13.64	3.59
CDC20-1 +8 h @37oC	MC132xMC133	SK1	65	95.38	2.55	22.31	5.06	1.15	1.30	1.15	1.30	0.38	0.75	0.00	0.00
rad24Δ +8 h @37oC	MC17xMC18	SK1	21	16.67	7.97	0.00	0.00	1.19	2.32	3.57	3.97	5.95	5.06	14.29	7.48
$rad24\Delta$ mus 81Δ +8 h		SK1	108	9.72	2.79	0.00	0.00	1.85	2.54	2.78	3.10	27.78	8.45	67.59	8.83
$rad24\Delta$ mus 81Δ +4 h		SK1	89	5.90	2.45	1.12	2.19	0.00	0.00	4.49	4.30	10.11	6.26	84.27	7.56
mus $81\Delta + 8 h$		SK1	110	33.41	4.41	3.64	3.50	17.27	7.06	21.82	7.72	23.64	7.94	33.64	8.83
mus $81\Delta + 4 h$		SK1	128	33.98	4.10	6.25	4.19	10.94	5.41	23.44	7.34	31.25	8.03	28.13	7.79

id M	leiosis (Genotype chr	start5	start3	sto	op5 :	stop3 ch	nromatids	len_mir	n len_mid	len_ma	x groupe	classe	LSB	LCO	LNCO	type
112 BC		вом			1834	951845	951926		1	12	76	140	1	1	1		1 05:03
237 BC	OM1	BOM	15 93	1168 93	1340	931340	931409		1	1	121	240	1	1	1	0	1 05:03
34 BC	OM1	ВОМ	4 16	3443 16	3447	163455	163695		1	9	130	251	1	1	1	0	1 05:03
114 BC	OM1	ВОМ	7 99	3849 99	4015	994032	994097		1	18	133	247	1	1	1	0	1 05:03
56 BG	OM1	ВОМ	4 93	0409 93	0421	930421	930813		1	1	202	403	1	1	1	0	1 05:03
16 BC	OM1	BOM	2 54	9839 55	0124	550142	550241		1	19	210	401	1	1	1	0	1 05:03
75 BC	OM1	BOM	5 4	5963 4	6022	46098	46310		1	77	212	346	1	1	1	0	1 05:03
205 BG	OM1	BOM	13 73	2051 73	2373	732395	732528		1	23	250	476	1	1	1	0	1 05:03
76 BC	OM1	BOM	5 6	9083 6	9209	69243	69568		1	35	260	484	1	1	1	0	1 05:03
5 BC	OM1	ВОМ	1 13	8499 13	8650	138650	139076		1	1	289	576	1	1	1	0	1 05:03
227 BC	OM1	BOM	15 36	0812 36	0995	360995	361461		1	1	325	648	1	1	1	0	1 05:03
196 BG	OM1	ВОМ	13 11	9087 11	9306	119476	119630		1	171	357	542	1	1	1	0	1 05:03
46 BC	OM1	BOM	4 44	1672 44	5249	445249	445472		1	1	400	799	1	1	1	0	1 05:03
144 BC	OM1	ВОМ	10 37	9811 38	0369	380369	380706		1	1	448	894	1	1	1	0	1 05:03
115 BC	OM1	BOM	7 101	1203 101	1474	1011510	1012069		1	37	451	865	1	1	1	0	1 05:03
69 BC	OM1	BOM	4 145	9261 145	9669	1459669	1460259		1	1	499	997	1	1	1	0	1 05:03
218 BG	OM1	BOM	14 32	3136 32	3238	323606	323787		1	369	510	650	1	1	1	0	1 05:03
18 BC	OM1	BOM	2 65	1616 65	2362	652467	652587		1	106	538	970	1	1	1	0	1 05:03
146 BC	OM1	BOM	10 46	5282 46	5795	465816	466454		1	22	597	1171	1	1	1	0	1 05:03
63 BG		BOM			0902	1270902	1271755		1	1	649	1297	1	1	1		1 05:03
57 BC		BOM			0464	960787	961189		1	324	706	1087	1	1	1		1 05:03
198 BC	OM1	BOM	13 28		2022	282022	282723		1	1	741	1481	1	1	1		1 05:03
159 BG	OM1	BOM	11 31	7104 31	7375	317831	318297		1	457	825	1192	1	1	1	0	1 05:03
174 BC		вом	12 39		8570	399414	399454		1	845	896	946	1	1	1	0	1 05:03
86 BC	OM1	BOM	5 46	0411 46	1582	461594	462226		1	13	914	1814	1	1	1	0	1 05:03
37 BC	OM1	вом	4 22	5248 22	6059	226209	227127		1	151	1015	1878	1	1	1	0	1 05:03
118 BC	OM1	BOM	8 11	1246 11	1464	112492	112829		1	1029	1306	1582	1	1	1	0	1 05:03
31 BC		вом			2534	54490	55084		1		2450	2942	1	1	1	0	1 05:03
36 BC		ВОМ			3315	215967	216258		1		3082	3511	1	1	1		1 05:03
8 BC		BOM			2897	202977	203031		1	81	128	174	1	2	1		1 03:05
128 BG		вом			8723	138762	139068		1	40	199	357	1	2	1		1 03:05
35 BC	OM1	BOM			6423	176519	176588		1	97	206	314	1	2	1		1 03:05
41 BC	OM1	BOM	4 26		6113	266302	266398		1	190	279	368	1	2	1	0	1 03:05
163 BG	OM1	BOM	11 38	1228 38	4363	384363	384792		1	1	282	563	1	2	1	0	1 03:05
91 BC	OM1	BOM	6 7	1705 7	4753	74992	75055		1	240	295	349	1	2	1	0	1 03:05
170 BG	OM1	ВОМ	12 25	9471 26	0086	260086	260298		1	1	414	826	1	2	1	0	1 03:05
82 BC	OM1	BOM	5 23	7481 23	8122	238122	238396		1	1	458	914	1	2	1	0	1 03:05
133 BG	OM1	ВОМ	9 24	3675 24	8948	249032	249546		1	85	478	870	1	2	1	0	1 03:05
73 BG	OM1	ВОМ	5 2	5594 2	6638	27119	27260		1	482	574	665	1	2	1	0	1 03:05
240 BG	OM1	ВОМ	16 5	1755 5	5257	55562	55604		1	306	577	848	1	2	1	0	1 03:05
103 BG	OM1	ВОМ	7 37	5036 37	5227	375494	375933		1	268	582	896	1	2	1	0	1 03:05
94 BC	OM1	ВОМ	6 20	2731 20	2970	203253	203623		1	284	588	891	1	2	1	0	1 03:05
247 BC	OM1	ВОМ	16 53	9197 53	9336	539891	539931		1	556	645	733	1	2	1	0	1 03:05
230 BG	OM1	BOM	15 55	3518 55	4715	554715	554820		1	1	651	1301	1	2	1	0	1 03:05
108 BC	OM1	BOM	7 78	1625 78	5199	785318	785828		1	120	661	1202	1	2	1	0	1 03:05
61 BC	OM1	BOM	4 107	8458 107	8855	1079258	1079450		1	404	698	991	1	2	1	0	1 03:05
206 BG	OM1	BOM	13 75	2521 75	2958	752958	753954		1	1	717	1432	1	2	1	0	1 03:05
184 BC	OM1	BOM	12 75	7131 75	7763	758099	758246		1	337	726	1114	1	2	1	0	1 03:05
152 BC	OM1	BOM	11 9	9646 10	0443	100670	101183		1	228	882	1536	1	2	1	0	1 03:05
64 BC	OM1	BOM	4 133	5831 133	7219	1337219	1337684		1	1	927	1852	1	2	1	0	1 03:05
124 BC		BOM	8 48	7644 48	8458	488588	489445		1	131	966	1800	1	2	1	0	1 03:05
1 BC	OM1	BOM	1 4	3565 4	3691	44588	44675		1	898	1004	1109	1	2	1	0	1 03:05
106 BG	OM1	BOM	7 59	9815 59	9896	600706	601348		1	811	1172	1532	1	2	1	0	1 03:05
113 BG	OM1	BOM	7 97	2322 97	2898	973354	974385		1	457	1260	2062	1	2	1	0	1 03:05
221 BC	OM1	BOM	14 67	3326 67	4407	674690	676085		1	284	1521	2758	1	2	1	0	1 03:05
155 BG	OM1	BOM	11 14	0833 14	1109	141122	143878		1	14	1529	3044	1	2	1	0	1 03:05
132 BC	OM1	BOM	9 18	5865 18	8629	188877	188919		1	249	1651	3053	1	2	1	0	1 03:05
49 BC	OM1	ВОМ	4 62	8602 62	9487	630674	631576		1	1188	2081	2973	1	2	1	0	1 03:05
50 BG	OM1	BOM	4 64	5102 65	2022	652241	652907		1	220	4012	7804	1	2	1	0	1 03:05

121 BOM1	BOM	8	316015	317153	317992	318122	1	840	1473	2106	1	3	1	0	1 5:3_4:4_5:3
167 BOM1	BOM	12	45294	46479	47654	48661	1	1176	2271	3366	1	3	1	0	1 5:3_4:4_5:3
244 BOM1	BOM	16	294452	294899	296393	297021	1	1495	2032	2568	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
23 BOM1	BOM	3	39281	39525	40294	40374	1	770	931	1092	1	3	1	0	1 5:3_6:2_5:3_6:2_5:3_6:2_5:3
42 BOM1	BOM	4	313728	313860	314015	314500	1	156	464	771	1	4	1	0	1 3:5_2:6_3:5
125 BOM1	BOM	8	517036	517336	517499	518179	1	164	653	1142	1	4	1	0	1 3:5_4:4_3:5
71 BOM1	BOM	4	1476514	1476956	1479784	1480113	1	2829	3214	3598	1	4	1	0	1 3:5_4:4_3:5
214 BOM1	BOM	14	184882	184944	185309	185417	1	366	450	534	1	7	1	0	1 5:3_6:2
181 BOM1	BOM	12	714641	714966	715622	715772	1	657	894	1130	1	7	1	0	1 6:2_5:3
79 BOM1	BOM	5	187705	187805	189254	189662	1	1450	1703	1956	1	7	1	0	1 6:2_5:3
201 BOM1	BOM	13	492116	492266	492388	492749	1	123	378	632	1	7	1	0	1 5:3_6:2_5:3_6:2
96 BOM1	BOM	6	254081	254393	255417	255483	1	1025	1213	1401	1	7	1	0	1 5:3_4:4_5:3_6:2
160 BOM1	BOM	11	327998	328028	329482	329573	1	1455	1515	1574	1	7	1	0	1 6:2_5:3_4:4_5:3
67 BOM1	BOM	4	1409336	1409468	1412942	1413914	1	3475	4026	4577	1	7	1	0	1 5:3_6:2_5:3_6:2_5:3_6:2
217 BOM1	BOM	14	316782	316808	317360	317738	1	553	754	955	1	8	1	0	1 3:5_2:6
199 BOM1	BOM	13	396483	396553	397289	397850	1	737	1052	1366	1	8	1	0	1 2:6_3:5
74 BOM1	BOM	5	42646	42708	43260	43494	1	553	700	847	1	8	1	0	1 2:6_4:4_3:5_4:4_2:6
14 BOM1	BOM	2	356462	356648	356648	356805	1	1	172	342	1	10.1	1	0	1 02:06
78 BOM1	BOM	5	160729	160912	160912	161191	1	1	231	461	1	10.1	1	0	1 02:06
209 BOM1	BOM	14	40306	40397	40430	41146	1	34	437	839	1	10.1	1	0	1 02:06
65 BOM1	BOM	4	1385671	1385846	1386016	1386524	1	171	512	852	1	10.1	1	0	1 02:06
232 BOM1	BOM	15	684419	684893	685067	685601	1	175	678	1181	1	10.1	1	0	1 02:06
211 BOM1	BOM	14	68234	68498	68923	69145	1	426	668	910	2	11	1	0	1 5:3_5:3a
223 BOM1	BOM	15	68535	68903	69357	69484	1	455	702	948	2	11	1	0	1 5:3_5:3a
250 BOM1	BOM	16	833382	833507	834395	834534	1	889	1020	1151	2	11	1	0	1 5:3_5:3a
161 BOM1	BOM	11	368313	369378	369878	370412	1	501	1300	2098	2	11	1	0	1 5:3_5:3a
6 BOM1	BOM	1	141984	142779	143679	143822	1	901	1369	1837	2	11	1	0	1 5:3_5:3a
231 BOM1	BOM	15	558128	558487	559768	560108	1	1282	1631	1979	2	11	1	0	1 5:3_5:3a
22 BOM1	BOM	2	800055	800115	800316	800859	1	202	503	803	2	12	1	0	1 3:5_3:5a
153 BOM1	BOM	11	114400	114572	114933	115293	1	362	627	892	2	12	1	0	1 3:5_3:5a
186 BOM1	BOM	12	827928	828244	828622	828844	1	379	647	915	2	12	1	0	1 3:5_3:5a
40 BOM1	BOM	4	254856	255187	255722	255870	1	536	775	1013	2	12	1	0	1 3:5_3:5a
157 BOM1	BOM	11	216709	216788	217514	217814	1	727	916	1104	2	12	1	0	1 3:5_3:5a
80 BOM1	BOM	5	201006	201879	202285	202470	1	407	935	1463	2	12	1	0	1 3:5_3:5a
20 BOM1	BOM	2	701832	701871	702673	703042	1	803	1006	1209	2	12	1	0	1 3:5 3:5a
89 BOM1	BOM	6	27638	27761	28662	28792	1	902	1028	1153	2	12	1	0	1 3:5 3:5a
55 BOM1	BOM	4	855461	855709	856679	857591	1	971	1550	2129	2	12	1	0	1 3:5_3:5a
229 BOM1	BOM	15	477802	478649	479565	480090	1	917	1602	2287	2	12	1	0	1 3:5_3:5a
44 BOM1	BOM	4	402050	402371	403830	403952	1	1460	1681	1901	2	13	1	0	1 5:3_4:4_5:3_5:3a
39 BOM1	BOM	4	240657	240792	243004	243234	1	2213	2395	2576	2	13	1	0	1 5:3_6:2_5:3_5:3a
84 BOM1	BOM	5	334460	334676	335812	335874	1	1137	1275	1413	2	13	1	0	1 6:2_5:3_4:4_5:3_5:3a
207 BOM1	BOM	13	795946	796038	798333	798592	1	2296	2471	2645	2	14	1	0	1 3:5_4:4_3:5_3:5a
235 BOM1	BOM	15	824928	825148	826879	827016	1	1732	1910	2087	2	14	1	0	1 3:5_3:5a_4:4_2:6_3:5a
183 BOM1	BOM	12	747180	747358	747982	748236	1	625	840	1055	2	15	1	0	1 5:3_4:4_5:3a
215 BOM1	BOM	14	199873	199979	200718	201078	1	740	972	1204	2	15	1	0	1 5:3 4:4 5:3a
97 BOM1	BOM	7	17261	17428	18259	18394	1	832	982	1132	2	15	1	0	1 5:3_4:4_5:3a
210 BOM1	BOM	14	51050	51868	52659	52850	1	792	1296	1799	2	15	1	0	1 5:3_4:4_5:3a
123 BOM1	BOM	8	463706	463786	464855	465244	1	1070	1304	1537	2	15	1	0	1 5:3_4:4_5:3a
131 BOM1	BOM	9	169256	169294	170681	170921	1	1388	1526	1664	2	15	1	0	1 5:3_4:4_5:3a
127 BOM1	BOM	9	124830	125455	126608	127338	1	1154	1831	2507	2	15	1	0	1 5:3_4:4_5:3a
101 BOM1	BOM	7	165523	166667	167983	168156	1	1317	1975	2632	2	15	1	0	1 5:3_4:4_5:3a
202 BOM1	BOM	13	535437	535671	536671	536833	1	1001	1198	1395	2	16	1	0	1 3:5_4:4_3:5a
12 BOM1	BOM	2	269653	269904	270387	271598	1	484	1214	1944	2	16	1	0	1 3:5_4:4_3:5a
251 BOM1	BOM	16	842086	842864	843720	843861	1	857	1316	1774	2	16	1	0	1 3:5_4:4_3:5a
52 BOM1	BOM	4	721365	721724	723150	723345	1	1427	1703	1979	2	16	1	0	1 3:5_4:4_3:5a
139 BOM1	BOM	10	34093	36217	37127	37895	1	911	2356	3801	2	16	1	0	1 3:5_4:4_3:5a
116 BOM1	BOM	8	20117	20294	20993	21004	1	700	793	886	2	17	1	0	1 5:3_4:4_5:3a_6:2
45 BOM1	BOM	4	423595	423759	424131	424226	1	373	502	630	2	18	1	0	1 2:6_3:5_4:4_3:5a
85 BOM1	BOM	5	377471	377999	379332	379879	1	1334	1871	2407	2	18	1	0	1 2:6_3:5_4:4_3:5_4:4_3:5a
194 BOM1	BOM	13	76522	77019	77482	77676	1	464	809	1153	2	20	1	0	1 3:5_2:6_3:5a
Domi	2011	15	, 3322	, 1017	, 1402	,,0,0	1	.04	307		-	20		3	. 5.5_5.5_6

180 BOM1	BOM	12	611812	611864	612358	612475	1	495	579	662	2	23	1	0	1 3:5_2:6_4:4_3:5a
177 BOM1	BOM	12	539092	539598	540258	540405	1	661	987	1312	2	23	1	0	1 5:3_6:2_4:4_5:3a
102 BOM1	BOM	7	170211	170880	171571	171676	1	692	1078	1464	2	23	1	0	1 5:3_6:2_4:4_5:3a
59 BOM1	BOM	4	1010910	1011237	1011970	1012387	1	734	1105	1476	2	23	1	0	1 3:5_2:6_4:4_3:5a
241 BOM1	BOM	16	131754	131951	133388	133624	1	1438	1654	1869	2	23	1	0	1 5:3_4:4_6:2_5:3a_4:4_5:3a
156 BOM1	BOM	11	176780	177108	179509	179637 2_nonsis		2402	2629	2856	3	30	1	0	1 3:5_3:5a_2:6_3:5b
25 BOM1	BOM	3	56432	57568	59465	59925 2_nonsis		1898	2695	3492	3	31	1	0	1 4:4ai_3:5
140 BOM1	BOM	10	100496	101045	101339	101966 2_nonsis		295	882	1469	3	31	1	0	1 4:4ai_4:4bi_5:3
88 BOM1	BOM	5	523260	523683	525834	526150 2_nonsis		2152	2521	2889	3	31	1	0	1 3:5_4:4ai_3:5a_4:4ai
66 BOM1	BOM	4	1400232	1400438	1402144	1402695 2_nonsis		1707	2085	2462	3	31	1	0	1 5:3_4:4_4:4ai_5:3_5:3a
2 BOM1	BOM	1	80077	80554	82379	83613 2_nonsis		1826	2681	3535	3	31	1	0	1 4:4ai_5:3_4:4ai_5:3_5:3a
11 BOM1	BOM	2	212886	213058	218557	218624 2_nonsis		5500	5619	5737	3	31	1	0	1 4:4ai_3:5_4:4ai_5:3_5:3a_5:3b
90 BOM1	BOM	6	35993	36224	38359	38588 2_nonsis		2136	2365	2594	3	31	1	0	1 4:4ai_3:5_4:4ai_5:3_5:3a_6:2_5:3a
213 BOM1	BOM	14	121220	121385	124154	124235 2_nonsis		2770	2892	3014	3	31	1	0	1 5:3_6:2_5:3_6:2_5:3_6:2_5:3_5:3a_4:4ai_3:5
164 BOM1	BOM	11	433175	433506	437754	437891 2_nonsis		4249	4482	4715	3	31	1	0	1 4:4ai_3:5_2:6_3:5_2:6_3:5a_4:4_3:5a_5:3_3:5_3:5a_4:4ai
182 BOM1	BOM	12	717181	717475	717475	717529 2_nonsis		1	174	347	1	1	1	1	0 (5:3)_(4:4aCO)
242 BOM1	BOM	16	135194	135326	135326	135618 2_nonsis		1	212	423	1	1	1	1	0 (5:3)_(4:4aCO)
203 BOM1	BOM	13	556437	557365	557425	557517 2_nonsis		61	570	1079	1	1	1	1	0 (5:3)_(4:4aCO)
70 BOM1	BOM	4	1464680	1465187	1465397	1465791 2_nonsis		211	661	1110	1	1	1	1	0 (5:3)_(4:4aCO)
212 BOM1	BOM	14	70909	71495	72005	72122 2_nonsis		511	862	1212	1	1	1	1	0 (5:3)_(4:4aCO)
151 BOM1	BOM	11	77827	78581	79874	80353 2_nonsis		1294	1910	2525	1	1	1	1	0 (5:3)_(4:4aCO)
135 BOM1	BOM	9	289127	292353	292446	292870 2_nonsis		94	1918	3742	1	1	1	1	0 (5:3)_(4:4aCO)
117 BOM1	BOM	8	45102	46055	47072	48088 2_nonsis		1018	2002	2985	1	1	1	1	0 (5:3)_(4:4aCO)
150 BOM1	BOM	11	32124	33673	34686	35136 2_nonsis		1014	2013	3011	1	1	1	1	0 (5:3)_(4:4aCO)
138 BOM1	BOM	10	21859	22066	22066	22158 2_nonsis		1	150	298	1	2	1	1	0 (3:5)_(4:4aCO)
141 BOM1	BOM	10	155705	156143	156143	156360 2_nonsis		1	328	654	1	2	1	1	0 (3:5)_(4:4aCO)
225 BOM1	BOM	15	154165	154173	154173	156059 2_nonsis		1	947	1893	1	2	1	1	0 (3:5)_(4:4aCO)
200 BOM1	BOM	13	487831	489569	489569	490109 2_nonsis		1	1139	2277	1	2	1	1	0 (3:5)_(4:4aCO)
51 BOM1	BOM	4	698788	699229	699280	699436 2_nonsis		52	350	647	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
195 BOM1	BOM	13	113641	114304	115471	115959 2_nonsis		1168	1743	2317	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
166 BOM1	BOM	11	616404	616917	618540	618631 2_nonsis		1624	1925	2226	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
110 BOM1	BOM	7	847727	847980	848688	849134 2_nonsis		709	1058	1406	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
10 BOM1	BOM	2	115894	116084	116947	117293 2_nonsis		864	1131	1398	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
24 BOM1	BOM	3	41852	42410	43346	43513 2_nonsis		937	1299	1660	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
179 BOM1	BOM	12	606928	607451	607458	607531 2_nonsis		8	305	602	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
21 BOM1	BOM	2	742150	742220	742660	742690 2_nonsis		441	490	539	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
239 BOM1	BOM	16	45800	45974	46435	46547 2_nonsis		462	604	746	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
30 BOM1	BOM	4	43482	46115	46818	47365 2_nonsis		704	2293	3882	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
107 BOM1	BOM	7	605648	605710	606561	606799 2_nonsis		852	1001	1150	1	11	1	1	0 (4:4ai)_(3:5)_(4:4bCO)
192 BOM1	BOM	13	18814	20392	21881	22318 2_nonsis		1490	2497	3503	1	11	1	1	0 (4:4ai)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4bCO)_(3:5)_(2:6)_(4:4b)
27 BOM1	BOM	3	218655	218906	219723	219844 2_nonsis		818	1003	1188	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
216 BOM1	BOM	14	237756	237804	238429	238793 2_nonsis		626	831	1036	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
158 BOM1	BOM	11	298637	298924	299201	300874 2_nonsis		278	1257	2236	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
234 BOM1	BOM	15	774457	774673	776223	776725 2_nonsis		1551	1909	2267	1	12	1	1	0 (3:5)_(2:6)_(4:4)_(4:4aCO)
246 BOM1	BOM	16	476851	477152	478714	479396 2_nonsis		1563	2054	2544	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
149 BOM1	BOM	10	723717	723783	725123	725433 2_nonsis		1341	1528	1715	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)
15 BOM1	BOM	2	452218	452891	454336	454401 2_nonsis		1446	1814	2182	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
47 BOM1	BOM	4	480846	480887	482676	482955 2_nonsis		1790	1949	2108	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
252 BOM1	BOM	16	876719	876797	876914	877898 2_nonsis		118	648	1178	1	15	1	1	0 (6:2)_(4:4aCO)
109 BOM1	BOM	7	798380	798397	798848	799244 2 nonsis		452	658	863	1	15	1	1	0 (6:2)_(4:4aCO)
193 BOM1	BOM	13	73368	74014	74014	74346 2_nonsis		1	489	977	1	16	1	1	0 (2:6)_(4:4aCO)
172 BOM1	BOM	12	322903	323570	323570	324050 2_nonsis		1	574	1146	1	16	1	1	0 (2:6)_(4:4aCO)
62 BOM1	BOM	4	1241519	1242168	1242241	1242658 2_nonsis		74	606	1138	1	16	1	1	0 (2:6)_(4:4aCO)
228 BOM1	BOM	15	362851	363553	363824	364095 2_nonsis		272	758	1243	1	16	1	1	0 (2:6)_(4:4aCO)
147 BOM1	BOM	10	503880	504158	504158	506424 2_nonsis		1	1272	2543	1	16	1	1	0 (2:6)_(4:4aCO)
17 BOM1	BOM	2	625298	626092	627055	627259 2_nonsis		964	1462	1960	1	16	1	1	0 (2:6)_(4:4aCO)
168 BOM1	BOM	12	124421	124596	124421	124596 2_nonsis		0	87	174	1	100	1	1	0 (4:4aCO)
53 BOM1	BOM	4	770352	770770	770352	770770 2_nonsis		0	209	417	1	100	1	1	0 (4:4aCO)
220 BOM1	BOM	14	547958	548436	547958	548436 2_nonsis		0	239	477	1	100	1	1	0 (4:4aCO)
233 BOM1	BOM	15	686985	687587	686985	687587 2_nonsis		0	301	601	1	100	1	1	0 (4:4aCO)
235 BOM1	2011	1.5	000700	557567	000700	557557 2_HOHAIS		Ü	501	501		100		•	- (

13 BOM1	BOM	2	354720	355349	354720	355349 2_nonsis	0	314	628	1	100	1	1	0 (4:4aCO)
58 BOM1	BOM	4	963777	964418	963777	964418 2_nonsis	0	320	640	1	100	1	1	0 (4:4aCO)
222 BOM1	BOM	14	705870	706528	705870	706528 2_nonsis	0	329	657	1	100	1	1	0 (4:4aCO)
187 BOM1	BOM	12	866643	867405	866643	867405 2_nonsis	0	381	761	1	100	1	1	0 (4:4aCO)
111 BOM1	BOM	7	948202	949014	948202	949014 2_nonsis	0	406	811	1	100	1	1	0 (4:4aCO)
243 BOM1	BOM	16	291355	292215	291355	292215 2_nonsis	0	430	859	1	100	1	1	0 (4:4aCO)
134 BOM1	BOM	9	255654	256581	255654	256581 2_nonsis	0	463	926	1	100	1	1	0 (4:4aCO)
238 BOM1	BOM	15	996896	997902	996896	997902 2_nonsis	0	503	1005	1	100	1	1	0 (4:4aCO)
19 BOM1	BOM	2	695479	697455	695479	697455 2_nonsis	0	988	1975	1	100	1	1	0 (4:4aCO)
154 BOM1	BOM	11	138050	140833	138050	140833 2_nonsis	0	1391	2782	1	100	1	1	0 (4:4aCO)
148 BOM1	BOM	10	596891	601293	596891	601293 2_nonsis	0	2201	4401	1	100	1	1	0 (4:4aCO)
188 BOM1	BOM	12	892436	930472	892436	930472 2_nonsis	0	19018	38035	1	100	1	1	0 (4:4aCO)
176 BOM1	BOM	12	439126	439413	441152	441612 2_nonsis	1740	2113	2485	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
189 BOM1	BOM	12	1000203	1000542	1001464	1001833 2_nonsis	923	1276	1629	2	30	1	1	0 (6:2)_(5:3)_(5:3a)_(4:4aCO)
32 BOM1	BOM	4	104069	104854	106899	107966 2_nonsis	2046	2971	3896	2	30	1	1	0 (4:4aCO)_(5:3)_(5:3a)_(4:4a)
99 BOM1	BOM	7	75778	76021	76989	77983 2_nonsis	969	1587	2204	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
191 BOM1	BOM	12	1055872	1056105	1057759	1058607 2_nonsis	1655	2195	2734	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(5:3a)_(4:4aCO)
245 BOM1	BOM	16	381280	381362	381840	381920 2_nonsis	479	559	639	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
72 BOM1	BOM	4	1488904	1489717	1490210	1490249 2_nonsis	494	919	1344	2	31	1	1	0 (3:5)_(2:6)_(3:5)_(3:5a)_(4:4aCO)
142 BOM1	BOM	10	235976	236393	236674	236901 2_nonsis	282	603	924	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
83 BOM1	BOM	5	330953	332219	332482	332992 2_nonsis	264	1151	2038	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
145 BOM1	BOM	10	384052	384310	385510	385772 2_nonsis	1201	1460	1719	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
95 BOM1	BOM	6	247354	247915	249213	249459 2_nonsis	1299	1702	2104	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)
98 BOM1	BOM	7	22405	23215	24468	25442 2_nonsis	1254	2145	3036	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
100 BOM1	BOM	7	82858	84285	85628	86297 2_nonsis	1344	2391	3438	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
185 BOM1	BOM	12	788874	789356	791142	794003 2_nonsis	1787	3458	5128	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4aCO)
190 BOM1	BOM	12	1009719	1011169	1012226	1013592 2_nonsis	1058	2465	3872	2	32	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
226 BOM1	BOM	15	309144	309237	311489	312220 2_nonsis	2253	2664	3075	2	32	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
130 BOM1	BOM	9	157619	157961	160764	161147 2_nonsis	2804	3166	3527	2	32	1	1	0 (6:2)_(5:3)_(4:4aCO)_(5:3a)_(5:3)_(4:4a)
169 BOM1	BOM	12	233075	234128	235352	235684 2_nonsis	1225	1917	2608	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
236 BOM1	BOM	15	890409	890957	892736	892829 2_nonsis	1780	2100	2419	2	32	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(4:4aCO)_(5:3a)_(4:4a)
178 BOM1	BOM	12	600676	601080	604223	604825 2_nonsis	3144	3646	4148	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)_(3:5a)_(2:6)_(3:5a)_(4:4a)
87 BOM1	BOM	5	473950	474020	476027	476048 2_nonsis	2008	2053	2097	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(2:6)_(3:5a)_(2:6)_(4:4)_(3:5b)_(4:4aCO)
224 BOM1	BOM	15	112140	112969	117525	123864 2_nonsis	4557	8140	11723	2	32	1	1	0 (5:3)_(4:4aCO)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4a)_(5:3b)_(4:4a)
26 BOM1	BOM	3	135329	136159	137021	137201 2_nonsis	863	1367	1871	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
219 BOM1	BOM	14	412609	413686	414025	415775 2_nonsis	340	1753	3165	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
60 BOM1	BOM	4	1061165	1061318	1062037	1062818 2_nonsis	720	1186	1652	3	20	1	1	0 (2:6)_(3:5)_(5:3)_(4:4aCO)
120 BOM1	BOM	8	238630	238746	239033	239430 2_nonsis	288	544	799	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO)
9 BOM1	BOM	2	75576	75822	77073	77094 2_nonsis	1252	1385	1517	3	20	1	1	0 (3:5)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
197 BOM1	BOM	13	227027	227957	228901	229206 2_nonsis	945	1562	2178	3	20	1	1	0 (2:6)_(4:4aCO)_(2:6)_(5:3)_(4:4a)
162 BOM1	BOM	11	377390	377792	379287	379301 2_nonsis	1496	1703	1910	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)
77 BOM1	BOM	5	70969	71501	73131	73474 2_nonsis	1631	2068	2504	3	20	1	1	0 (4:4aCO)_(5:3)_(4:4a)_(3:5)_(4:4a)
129 BOM1	BOM	9	141022	141141	143092	143302 2_nonsis	1952	2116	2279	3	20	1	1	0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4a)
105 BOM1	BOM	7	436065	436337	438470	438674 2_nonsis	2134	2371	2608	3	20	1	1	0 (2:6)_(4:4aCO)_(5:3)_(6:2)_(4:4a)
204 BOM1	BOM	13	700620	700942	702308	702452 2_nonsis	1367	1599	1831	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(5:3)_(4:4aCO)
54 BOM1	BOM	4	848136	848341	849796	850164 2_nonsis	1456	1742	2027	3	20	1	1	0 (6:2)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
104 BOM1	BOM	7	398049	398572	399836	400713 2_nonsis	1265	1964	2663	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(3:5)_(4:4)_(4:4aCO)
38 BOM1	BOM	4	231260	231400	233237	233528 2_nonsis	1838	2053	2267	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
249 BOM1	BOM	16	700101	700285	703359	703434 2_nonsis	3075	3204	3332	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
92 BOM1	BOM	6	85636	85688	87512	87585 2_nonsis	1825	1887	1948	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(5:3)_(4:4a)_(5:3a)_(4:4a)
143 BOM1	BOM	10	347630	347852	349631	350244 2_nonsis	1780	2197	2613	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(5:3)_(6:2)_(5:3)_(4:4aCO)
165 BOM1	BOM	11	573486	573513	576522	576947 2_nonsis	3010	3235	3460	3	20	1	1	0 (5:3)_(4:4)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)
136 BOM1	BOM	9	357298	357540	360876	360955 2_nonsis	3337	3497	3656	3	20	1	1	0 (2:6)_(3:5)_(4:4aCO)_(5:3)_(4:4a)_(5:3a)_(4:4a)
208 BOM1	BOM	13	850650	851409	854292	854948 2_nonsis	2884	3591	4297	3	20	1	1	0 (3:5)_(3:5a)_(2:6)_(3:5a)_(4:4)_(5:3)_(4:4aCO)
93 BOM1	BOM	6	193973	194109	195471	195636 2_nonsis	1363	1513	1662	3	20	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)
175 BOM1	BOM	12	416464	416793	419081	419132 2_nonsis	2289	2478	2667	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(3:5a)_(2:6)_(3:5a)_(4:4a)
43 BOM1	BOM	4	372201	372238	375384	375458 2_nonsis	3147	3202	3256	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(6:2)_(5:3a)_(4:4a)
7 BOM1	BOM	1	180509	180583	181957	182519 2_nonsis	1375	1692	2009	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(2:6)_(4:4)_(5:3)_(2:6)_(4:4aCO)
173 BOM1	BOM	12	340008	340119	341926	341974 2_nonsis	1808	1887	1965	3	21	1	1	0 (4:4ai)_(3:5)_(4:4)_(2:6)_(6:2)_(4:4bCO)
81 BOM1	BOM	5	223802	224276	230208	230344 2_nonsis	5933	6237	6541	3	21	1	1	0 (5:3)_(4:4)_(3:5)_(5:3)_(3:5)_(2:6)_(3:5)_(4:4ai)_(3:5)_(4:4bCO)_(3:5)_(4:4b)

28 BOM1	BOM	3	224261	224961	226498	228130 2_sis		1538	2703	3868	0	1	2	0	2 (6:2i)_(5:3)_(5:3a)_(4:4)_(5:3b)_(4:4)
68 BOM1	BOM	4	1446792	1446979	1447313	1447694 2_sis		335	618	901	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(4:4)
137 BOM1	BOM	9	412645	415204	416627	416694 2_sis		1424	2736	4048	0	1	2	0	2 (6:2i)_(5:3)_(4:4)
3 BOM1	BOM	1	90516	90665	95139	95169	3	4475	4564	4652	0	2	2	1	1 (5:3)_(4:4aCO)_(3:5)_(4:4a)
29 BOM1	BOM	4	34237	34987	39986	40439	4	5000	5601	6201	0	2	2	1	1 (5:3)_(4:4ai)_(5:3)_(5:3a)_(6:2i)_(5:3b)_(4:4ai)_(4:4bCO)_(3:5)_(4:4b)
33 BOM1	BOM	4	137047	137547	139926	140600	3	2380	2966	3552	0	2	2	1	1 (6:2)_(2:6)_(5:3)_(6:2)_(4:4)_(4:4aCO)
48 BOM1	BOM BOM	4	613630	613738	617421	617533 144688	3	3684	3793	3902	0	2	2	1	1 (3:5)_(2:6)_(3:5)_(4:4)_(3:5)_(4:4ai)_(3:5a)_(4:4ai)_(3:5a)_(2:6)_(3:5b)_(3:5c)_(4:4bi)_(3:5d)_(4:4cCO)_(5:3)_(4:4c)
119 BOM1		8	140123	142800	144393			1594	3079	4564	0	2	2	•	1 (4:4aCO)_(2:6)_(2:6ai)_(3:5)_(4:4a)_(3:5)_(4:4a)
122 BOM1 126 BOM1	BOM BOM	8	360186 98294	360415 98932	362567 99653	362829 99715	4	2153 722	2398 1071	2642 1420	0	2 2	2 2	1	1 (3:5)_(4:4)_(3:5)_(5:3)_(4:4ai)_(4:4bi)_(4:4cCO)
248 BOM1	BOM	16	642789	643790	644963	645571	3	1174	1978	2781	0	2	2	1	1 (4:4ai)_(5:3)_(4:4)_(4:4bCO) 1 (5:3)_(4:4)_(4:4aCO)
4 BOM1	BOM	10	129075	129476	130975	132066	4	1500	2245	2990	0	3	2	2	0 (3:5)_(6:2i)_(4:4aCO) (6:2ai)_(5:3)_(4:4bCO)
368 BOM1	BOM	7	1042643	1043244	1064130	1090940	3	20887	34592	48296	0	4	1 NA	NA	2:6_2:6
69 BOM2	BOM	6	119127	119224	119229	119266	1	6	72	138	1	1	1	0	1 05:03
78 BOM2	BOM	7	156075	156105	156105	156252	1	1	89	176	1	1	1	0	1 05:03
102 BOM2	BOM	8	297072	297365	297365	297421	1	1	175	348	1	1	1	0	1 05:03
15 BOM2	BOM	2	419495	419604	419604	419859	1	1	182	363	1	1	1	0	1 05:03
91 BOM2	BOM	7	766129	766363	766363	766502	1	1	187	372	1	1	1	0	1 05:03
192 BOM2	BOM	14	427295	427451	427451	427715	1	1	210	419	1	1	1	0	1 05:03
178 BOM2	BOM	13	517348	517743	517743	517791	1	1	222	442	1	1	1	0	1 05:03
10 BOM2	BOM	2	292212	292254	292401	292524	1	148	230	311	1	1	1	0	1 05:03
73 BOM2	BOM	7	48448	48835	48835	49026	1	1	289	577	1	1	1	0	1 05:03
87 BOM2	BOM	7	581464	581660	581814	581949	1	155	320	484	1	1	1	0	1 05:03
195 BOM2	BOM	14	715182	715380	715430	715791	1	51	330	608	1	1	1	0	1 05:03
220 BOM2	BOM	16	320885	321573	321573	321586	1	1	351	700	1	1	1	0	1 05:03
81 BOM2	BOM	7	271853	272144	272144	272568	1	1	358	714	1	1	1	0	1 05:03
19 BOM2	BOM	3	40637	40987	41096	41289	1	110	381	651	1	1	1	0	1 05:03
52 BOM2	BOM	4	1352454	1353241	1353245	1353261	1	5	406	806	1	1	1	0	1 05:03
34 BOM2	BOM	4	497463	498138	498138	498305	1	1	421	841	1	1	1	0	1 05:03
40 BOM2	BOM	4	722085	722407	722687	722776	1	281	486	690	1	1	1	0	1 05:03
43 BOM2	BOM	4	945712	946425	946452	946721	1	28	518	1008	1	1	1	0	1 05:03
113 BOM2	BOM	9	165195	166074	166141	166175	1	68	524	979	1	1	1	0	1 05:03
169 BOM2	BOM	12	1014227	1014332	1014670	1014976	1	339	544	748	1	1	1	0	1 05:03
222 BOM2	BOM	16	404106	404554	404667	405120	1	114	564	1013	1	1	1	0	1 05:03
180 BOM2	BOM	13	540798	541071	541511	541716	1	441	679	917	1	1	1	0	1 05:03
100 BOM2	BOM	8	190024	190339	190671	191072	1	333	690	1047	1	1	1	0	1 05:03
163 BOM2	BOM	12	623566	623758	623971	624838	1	214	743	1271	1	1	1	0	1 05:03
143 BOM2	BOM	11	513454	514126	514315	514792	1	190	764	1337	1	1	1	0	1 05:03
48 BOM2	BOM	4	1268647	1269918	1269918	1270457	1	1	905	1809	1	1	1	0	1 05:03
165 BOM2	BOM	12	778158	779222	779607	780114	1	386	1171	1955	1	1	1	0	1 05:03
214 BOM2	BOM	16	56155	56290	56290	63220	1	1	3533	7064	1	1	1	0	1 05:03
22 BOM2	BOM	3	77849	77866	77866	77900	1	1	26	50	1	2	1	0	1 03:05
109 BOM2	BOM	9	117336	117411	117411	117413	1	1	39	76	1	2	1	0	1 03:05
225 BOM2	BOM	16	678652	678709	678709	678816	1	1	82	163	1	2	1	0	1 03:05
144 BOM2	BOM	11	581803	581827	581827	582019	1	1	108	215	1	2	1	0	1 03:05
13 BOM2	BOM BOM	2	393237 382571	393340	393340	393507	1	180	135	269	1	2	1		1 03:05
12 BOM2 201 BOM2	BOM	2 15	231814	382644 232193	382823 232193	382880 232303	1	180	244 245	308 488	1	2 2	1	0	1 03:05 1 03:05
90 BOM2	BOM	7	650898	651268	651268	651425	1	1	264	526	1	2	1	0	1 03:05
139 BOM2	BOM	11	340714	340743	340811	341198	1	69	276	483	1	2	1	0	1 03:05
174 BOM2	BOM	13	236240	236370	236410	236819	1	41	310	578	1	2	1	0	1 03:05
77 BOM2	BOM	7	123839	124322	124322	124460	1	1	311	620	1	2	1	0	1 03:05
99 BOM2	BOM	8	121987	122169	122169	122633	1	1	323	645	1	2	1	0	1 03:05
70 BOM2	BOM	6	155336	155718	155718	155985	1	1	325	648	1	2	1	0	1 03:05
127 BOM2	BOM	10	317305	317491	317491	317989	1	1	342	683	1	2	1	0	1 03:05
106 BOM2	BOM	9	41664	41898	41980	42365	1	83	392	700	1	2	1	0	1 03:05
45 BOM2	BOM	4	1055678	1055799	1056079	1056232	1	281	417	553	1	2	1	0	1 03:05
57 BOM2	BOM	5	209424	209789	209789	210347	1	1	462	922	1	2	1	0	1 03:05
116 BOM2	BOM	9	248675	248948	249032	249546	1	85	478	870	1	2	1	0	1 03:05
121 BOM2	BOM	9	380279	380666	380999	381073	1	334	564	793	1	2	1	0	1 03:05
				2.5000			•	55.	50.	.,,,	-	-	-	-	****

112 BOM2	BOM	9	160585	160764	161147	161384	1	384	591	798	1	2	1	0	1 03:05
216 BOM2	BOM	16	106600	107304	107496	107754	1	193	673	1153	1	2	1	0	1 03:05
153 BOM2	BOM	12	252779	252885	253274	253791	1	390	701	1011	1	2	1	0	1 03:05
186 BOM2	BOM	14	39652	40306	40430	41146	1	125	809	1493	1	2	1	0	1 03:05
64 BOM2	BOM	5	460411	461582	461594	462226	1	13	914	1814	1	2	1	0	1 03:05
142 BOM2	BOM	11	477203	477776	477776	479195	1	1	996	1991	1	2	1	0	1 03:05
75 BOM2	BOM	7	97616	98124	98613	100362	1	490	1618	2745	1	2	1	0	1 03:05
110 BOM2	BOM	9	136083	136100	137266	138115	1	1167	1599	2031	1	3	1	0	1 5:3_4:4_5:3
97 BOM2	BOM	8	84777	84820	85033	85109	1	214	273	331	1	4	1	0	1 3:5_2:6_3:5
209 BOM2	BOM	15	638644	639033	639159	639225	1	127	354	580	1	7	1	0	1 6:2_5:3
149 BOM2	BOM	12	115422	116205	116613	116647	1	409	817	1224	1	7	1	0	1 5:3_6:2
122 BOM2	BOM	9	396753	396773	397178	397230	1	406	441	476	1	7	1	0	1 6:2_4:4_6:2
157 BOM2	BOM	12	301472	301852	302144	302282	1	293	551	809	1	7	1	0	1 5:3_4:4_6:2
							1				-			0	
50 BOM2	BOM	4	1332857	1333408	1334142	1334337	-	735	1107	1479	1	8	1	-	1 3:5_2:6
187 BOM2	BOM	14	51050	51868	52659	52850	1	792	1296	1799	1	8	1	0	1 2:6_4:4_3:5
170 BOM2	BOM	12	1022675	1022756	1024168	1024747	1	1413	1742	2071	1	8	1	0	1 3:5_4:4_2:6
31 BOM2	BOM	4	302250	303051	303504	303806	1	454	1005	1555	1	8	1	0	1 2:6_4:4_3:5_4:4_3:5
160 BOM2	BOM	12	514832	514961	514961	515064	1	1	116	231	1	10.1	1	0	1 02:06
66 BOM2	BOM	5	512058	512295	512664	512863	1	370	587	804	2	11	1	0	1 5:3_5:3a
162 BOM2	BOM	12	573671	573804	574726	574950	1	923	1101	1278	2	11	1	0	1 5:3_5:3a
168 BOM2	BOM	12	1001464	1001833	1003348	1004176	1	1516	2114	2711	2	11	1	0	1 5:3_5:3a
154 BOM2	BOM	12	258730	259051	261119	261578	1	2069	2458	2847	2	11	1	0	1 5:3_5:3a
11 BOM2	BOM	2	323214	323896	324185	324220	1	290	648	1005	2	12	1	0	1 3:5_3:5a
68 BOM2	BOM	6	106222	106492	107042	107101	1	551	715	878	2	12	1	0	1 3:5_3:5a
82 BOM2	BOM	7	370641	370822	371625	372033	1	804	1098	1391	2	12	1	0	1 3:5 3:5a
118 BOM2	BOM	9	281719	281795	283713	284253	1	1919	2226	2533	2	12	1	0	1 3:5_3:5a
141 BOM2	BOM	11	428081	428986	429656	429690	1	671	1140	1608	2	13	1	0	1 5:3_5:3a_6:2
8 BOM2	BOM	2	63243	63284	65309	65480	1	2026	2131	2236	2	13	1	0	1 5:3_5:3a_4:4_5:3a
196 BOM2	BOM	15	39607	39768	41050	41221	1	1283	1448	1613	2	14	1	0	1 3:5_3:5a_2:6
156 BOM2	BOM	12	289291	289538	290328	290359	1	791	929	1067	2	14	1	0	1 3:5_3:5a_2:0 1 3:5_3:5a_4:4_3:5a
85 BOM2	BOM	7	442874	442935	444107	444236	1	1173	1267	1361	2	14	1	0	1 3:5_3:5a_4:4_3:5a 1 3:5_3:5a_2:6_3:5a
115 BOM2															
	BOM	9	175960	176421	177853	178160	1	1433	1816	2199	2	14	1	0	1 3:5_4:4_3:5_3:5a
7 BOM2	BOM	2	27832	28538	29377	36302	1	840	4655	8469	2	14	1	0	1 3:5_3:5a_4:4_2:6
103 BOM2	BOM	8	360504	360630	360746	360898	1	117	255	393	2	15	1	0	1 5:3_4:4_5:3a
199 BOM2	BOM	15	185951	186289	186970	187008	1	682	869	1056	2	15	1	0	1 5:3_4:4_5:3a
59 BOM2	BOM	5	325958	326031	327059	327079	1	1029	1075	1120	2	15	1	0	1 5:3_4:4_5:3a
217 BOM2	BOM	16	113385	114050	114957	115228	1	908	1375	1842	2	15	1	0	1 5:3_4:4_5:3a
2 BOM2	BOM	1	75520	76205	77433	77528	1	1229	1618	2007	2	15	1	0	1 5:3_4:4_5:3a
203 BOM2	BOM	15	295281	295611	297107	297302	1	1497	1759	2020	2	15	1	0	1 5:3_4:4_5:3a
146 BOM2	BOM	12	20699	20715	21252	21693	1	538	766	993	2	16	1	0	1 3:5_4:4_3:5a
152 BOM2	BOM	12	233075	234128	234633	234668	1	506	1049	1592	2	16	1	0	1 3:5_4:4_3:5a
35 BOM2	BOM	4	538829	538864	539680	540228	1	817	1108	1398	2	16	1	0	1 3:5_4:4_3:5a
177 BOM2	BOM	13	513553	513778	514431	515212	1	654	1156	1658	2	16	1	0	1 3:5_4:4_3:5a
158 BOM2	BOM	12	387156	387519	388930	388950	1	1412	1603	1793	2	16	1	0	1 3:5_4:4_3:5a
207 BOM2	BOM	15	533520	533636	534200	536230	1	565	1637	2709	2	16	1	0	1 3:5_4:4_3:5a
41 BOM2	BOM	4	834537	834720	836436	836558	1	1717	1869	2020	2	16	1	0	1 3:5_4:4_3:5a
61 BOM2	BOM	5	335262	335310	335874	336237	1	565	770	974	2	18	1	0	1 2:6_3:5_4:4_3:5a
80 BOM2	BOM	7	196769	196840	198003	198476	1	1164	1435	1706	2	19	1	0	1 5:3_6:2_5:3a
108 BOM2	BOM	9	99043	99647	99846	100355	1	200	756	1311	2	23	1	0	1 5:3_4:4_6:2_5:3a
86 BOM2	BOM	7	472321	472609	473748	473949 2_nonsis		1140	1384	1627	3	30	1	0	1 5:3_5:3a
25 BOM2	BOM	3	211204	211348	213768	213849 2_nonsis		2421	2533	2644	3	30	1	0	1 3:5_4:4_3:5a_5:3_5:3a
136 BOM2	BOM	11	99646	100443	100670	101183 2_nonsis		228	882	1536	3	31	1	0	1 4:4ai
29 BOM2	BOM	4	155900	156500	156591	157148 2_nonsis		92	670	1247	3	31	1	0	1 4:4ai_3:5
														-	
23 BOM2 44 BOM2	BOM BOM	3	117992	118273	118751	119120 2_nonsis		479 790	803 1088	1127 1385	3	31 31	1	0	1 4:4ai_3:5_3:5a
			1013843	1013924	1014713	1015229 2_nonsis							1	-	1 5:3_4:4_4:4ai
123 BOM2	BOM	10	34093	36217	37127	37895 2_nonsis		911	2356	3801	3	31	1	0	1 4:4ai_5:3_6:2_5:3
36 BOM2	BOM	4	550672	550699	552846	553583 2_nonsis		2148	2529	2910	3	31	1	0	1 3:5_4:4_2:6_5:3_4:4ai
107 BOM2	BOM	9	53832	54480	56514	57063 2_nonsis		2035	2633	3230	3	31	1	0	1 5:3_4:4_5:3a_4:4ai_5:3a_2:6
172 BOM2	BOM	13	77019	77135	77135	77482 2_nonsis		1	232	462	1	1	1	1	0 (5:3)_(4:4aCO)
72 BOM2	BOM	6	239066	239639	239639	239696 2_nonsis		1	315	629	1	1	1	1	0 (5:3)_(4:4aCO)

135 BOM2	BOM	11	71211	71541	71541	71930 2_nonsis	1	360	718	1	1	1	1	0 (5:3)_(4:4aCO)
6 BOM2	BOM	2	24379	24823	24920	25246 2_nonsis	98	482	866	1	1	1	1	0 (5:3)_(4:4aCO)
227 BOM2	BOM	16	841702	842073	842086	842864 2_nonsis	14	588	1161	1	1	1	1	0 (5:3)_(4:4aCO)
166 BOM2	BOM	12	836343	837497	837595	837962 2_nonsis	99	859	1618	1	1	1	1	0 (5:3)_(4:4aCO)
125 BOM2	BOM	10	187746	188331	188961	189017 2_nonsis	631	951	1270	1	1	1	1	0 (5:3)_(4:4aCO)
17 BOM2	BOM	2	703264	703780	704282	704922 2_nonsis	503	1080	1657	1	1	1	1	0 (5:3)_(4:4aCO)
111 BOM2	BOM	9	141514	141703	141703	141911 2_nonsis	1	199	396	1	2	1	1	0 (3:5)_(4:4aCO)
26 BOM2	BOM	3	223339	223676	223676	224009 2_nonsis	1	335	669	1	2	1	1	0 (3:5)_(4:4aCO)
224 BOM2	BOM	16	676361	676691	676743	677025 2_nonsis	53	358	663	1	2	1	1	0 (3:5)_(4:4aCO)
190 BOM2	BOM	14	204995	205138	205208	205814 2_nonsis	71	445	818	1	2	1	1	0 (3:5)_(4:4aCO)
185 BOM2	BOM	13	873246	874942	875718	876530 2_nonsis	777	2030	3283	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
20 BOM2	BOM	3	51650	52350	53316	53891 2_nonsis	967	1604	2240	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
51 BOM2	BOM	4	1347683	1349666	1350213	1350342 2_nonsis	548	1603	2658	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
129 BOM2	BOM	10	466454	467010	467589	469453 2_nonsis	580	1789	2998	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
228 BOM2	BOM	16	921117	921154	921490	921713 2_nonsis	337	466	595	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
171 BOM2	BOM	12	1032869	1033274	1034221	1034264 2_nonsis	948	1171	1394	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
62 BOM2	BOM	5	397892	398975	399399	400005 2_nonsis	425	1269	2112	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
89 BOM2	BOM	7	617675	617861	618236	618272 2_nonsis	376	486	596	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
4 BOM2	BOM	1	107970	108457	108718	108763 2_nonsis	262	527	792	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
49 BOM2	BOM	4	1300388	1300582	1302220	1302530 2_nonsis	1639	1890	2141	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
9 BOM2	BOM	2	220055	220122	220817	227201 2_nonsis	696	3921	7145	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
197 BOM2	BOM	15	83853	84190	84388	84463 2_nonsis	199	404	609	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
120 BOM2	BOM	9	338050	338086	338465	338670 2_nonsis	380	500	619	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
175 BOM2	BOM	13	306097	306566	307804	308296 2_nonsis	1239	1719	2198	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
28 BOM2	BOM	4	33135	33253	34987	35378 2_nonsis	1735	1989	2242	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
27 BOM2	BOM	3	260698	261312	263025	264441 2_nonsis	1714	2728	3742	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO) 0 (2:6)_(3:5)_(4:4aCO)
179 BOM2	BOM	13	538839	539007	539282	539498 2_nonsis	276	467	658	1	11	1	1	0 (5:3)_(4:4ai)_(4:4bCO)
179 BOM2 132 BOM2	BOM	10	661017	661171	662479	663134 2_nonsis	1309	1713	2116	1	11	1	1	0 (3:5)_(4:4a)_(4:4bCO) 0 (4:4ai)_(3:5)_(4:4bCO)
132 BOM2 117 BOM2	BOM	9	267764	268176	268278		103	402	701	1	11	1	1	
117 BOM2 14 BOM2	BOM		416426		417468	268466 2_nonsis		402 859	1462	1		1	1	0 (3:5)_(4:4ai)_(3:5)_(4:4bCO)
14 BOM2 184 BOM2	BOM	2		417214	798889	417889 2_nonsis	255	908	1257	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
		13	798261	798332		799519 2_nonsis	558				12	1		0 (2:6)_(4:4)_(4:4aCO)
93 BOM2	BOM	7	914816	915691	916059	916953 2_nonsis	369	1253	2136	1	12	-	1	0 (2:6)_(4:4)_(4:4aCO)
114 BOM2	BOM	9	170156	170408	171637	171711 2_nonsis	1230	1392	1554	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
210 BOM2	BOM	15	770868	771765	772232	773455 2_nonsis	468	1527	2586	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
16 BOM2	BOM	2	535775	535946	536146	536197 2_nonsis	201	311	421	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
67 BOM2	BOM	6	73933	74035	75475	76048 2_nonsis	1441	1778	2114	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
182 BOM2	BOM	13	661888	662059	663903	663987 2_nonsis	1845	1972	2098	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
226 BOM2	BOM	16	681542	681719	684164	685433 2_nonsis	2446	3168	3890	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO)
98 BOM2	BOM	8	93770	96126	98284	98376 2_nonsis	2159	3382	4605	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
202 BOM2	BOM	15	284521	284983	285663	286242 2_nonsis	681	1201	1720	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
188 BOM2	BOM	14	86514	86730	88100	88950 2_nonsis	1371	1903	2435	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(4:4aCO)
38 BOM2	BOM	4	615449	615581	616214	616380 2_nonsis	634	782	930	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
53 BOM2	BOM	4	1435091	1435647	1436962	1437126 2_nonsis	1316	1675	2034	1	12	1	1	0 (4:4aCO)_(6:2)_(5:3)_(4:4a)_(5:3)_(4:4a)
183 BOM2	BOM	13	683958	684171	684171	684406 2_nonsis	1	224	447	1	15	1	1	0 (6:2)_(4:4aCO)
134 BOM2	BOM	11	34159	34378	34444	34686 2_nonsis	67	297	526	1	15	1	1	0 (6:2)_(4:4aCO)
71 BOM2	BOM	6	203253	203623	204061	204282 2_nonsis	439	734	1028	1	15	1	1	0 (6:2)_(4:4aCO)
213 BOM2	BOM	16	49049	49169	49169	50572 2_nonsis	1	762	1522	1	15	1	1	0 (6:2)_(4:4aCO)
3 BOM2	BOM	1	92891	93563	93563	94472 2_nonsis	1	791	1580	1	15	1	1	0 (6:2)_(4:4aCO)
130 BOM2	BOM	10	570822	573135	573135	573950 2_nonsis	1	1564	3127	1	15	1	1	0 (6:2)_(4:4aCO)
92 BOM2	BOM	7	801970	802249	802249	802512 2_nonsis	1	271	541	1	16	1	1	0 (2:6)_(4:4aCO)
60 BOM2	BOM	5	332482	332992	332992	333114 2_nonsis	1	316	631	1	16	1	1	0 (2:6)_(4:4aCO)
88 BOM2	BOM	7	609958	610218	610674	611145 2_nonsis	457	822	1186	1	16	1	1	0 (2:6)_(4:4aCO)
181 BOM2	BOM	13	588927	589273	588927	589273 2_nonsis	0	173	345	1	100	1	1	0 (4:4aCO)
58 BOM2	BOM	5	225841	226347	225841	226347 2_nonsis	0	253	505	1	100	1	1	0 (4:4aCO)
39 BOM2	BOM	4	719896	720645	719896	720645 2_nonsis	0	374	748	1	100	1	1	0 (4:4aCO)
221 BOM2	BOM	16	371914	372742	371914	372742 2_nonsis	0	414	827	1	100	1	1	0 (4:4aCO)
79 BOM2	BOM	7	192332	193477	192332	193477 2_nonsis	0	572	1144	1	100	1	1	0 (4:4aCO)
194 BOM2	BOM	14	701618	702991	701618	702991 2_nonsis	0	686	1372	1	100	1	1	0 (4:4aCO)
193 BOM2	BOM	14	542443	543829	542443	543829 2_nonsis	0	693	1385	1	100	1	1	0 (4:4aCO)
105 BOM2	BOM	8	484090	485522	484090	485522 2_nonsis	0	716	1431	1	100	1	1	0 (4:4aCO)
						=								

223 BOM2	BOM	16	465383	466824	465383	466824 2_nonsis		0	720	1440	1	100	1	1	0 (4:4aCO)
76 BOM2	BOM	7	100529	102955	100529	102955 2_nonsis		0	1213	2425	1	100	1	1	0 (4:4aCO)
137 BOM2	BOM	11	235115	238513	235115	238513 2_nonsis		0	1699	3397	1	100	1	1	0 (4:4aCO)
24 BOM2	BOM	3	171207	174943	171207	174943 2_nonsis		0	1868	3735	1	100	1	1	0 (4:4aCO)
131 BOM2	BOM	10	601293	609171	601293	609171 2_nonsis		0	3939	7877	1	100	1	1	0 (4:4aCO)
54 BOM2	BOM	4	1505138	1505479	1506992	1507780 2_nonsis		1514	2078	2641	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
147 BOM2	BOM	12	28820	29085	30375	30558 2_nonsis		1291	1514	1737	2	30	1	1	0 (5:3)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
42 BOM2	BOM	4	923952	924026	925318	925618 2_nonsis		1293	1479	1665	2	30	1	1	0 (5:3)_(5:3a)_(4:4)_(6:2)_(4:4)_(4:4aCO)
191 BOM2	BOM	14	364020	364611	366762	367502 2_nonsis		2152	2817	3481	2	30	1	1	0 (6:2)_(4:4aCO)_(6:2)_(5:3)_(5:3a)_(4:4a)
200 BOM2	BOM	15	220116	220335	221206	221576 2_nonsis		872	1166	1459	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
124 BOM2	BOM	10	69523	69580	70072	70786 2_nonsis		493	878	1262	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
74 BOM2	BOM	7	53982	54056	55107	55263 2_nonsis		1052	1166	1280	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
215 BOM2	BOM	16	74885	74937	76316	76413 2_nonsis		1380	1454	1527	2	32	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)_(3:5a)_(4:4a)
133 BOM2	BOM	10	704861	704987	706608	707018 2_nonsis		1622	1889	2156	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4)_(5:3)_(4:4aCO)
150 BOM2	BOM	12	135409	135677	137012	137313 2_nonsis		1336	1620	1903	2	32	1	1	0 (3:5)_(4:4ai)_(4:4bCO)_(2:6)_(4:4b)_(3:5a)_(4:4b)
176 BOM2	BOM	13	387879	388308	392173	392209 2_nonsis		3866	4098	4329	2	32	1	1	$0 \ (3:5)_(4:4)_(3:5a)_(4:4)_(2:6)_(3:5)_(2:6)_(3:5b)_(4:4aCO)_(3:5b)_(4:4a)_(3:5b)_(4:4a)$
212 BOM2	BOM	15	1061185	1061339	1061899	1061951 2_nonsis		561	663	765	3	20	1	1	0 (6:2)_(3:5)_(4:4aCO)
148 BOM2	BOM	12	98655	99028	100126	100150 2_nonsis		1099	1297	1494	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
104 BOM2	BOM	8	380348	380530	381058	381424 2_nonsis		529	802	1075	3	20	1	1	0 (2:6)_(3:5)_(5:3)_(4:4aCO)
101 BOM2	BOM	8	236251	237146	237633	238170 2_nonsis		488	1203	1918	3	20	1	1	0 (6:2)_(5:3)_(3:5)_(4:4aCO)
198 BOM2	BOM	15	91592	91686	93175	93845 2_nonsis		1490	1871	2252	3	20	1	1	0 (2:6)_(4:4aCO)_(5:3)_(4:4a)
37 BOM2	BOM	4	573947	574093	575468	577551 2_nonsis		1376	2490	3603	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
56 BOM2	BOM	5	124517	124905	125756	125939 2_nonsis		852	1137	1421	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(5:3)_(4:4aCO)
173 BOM2	BOM	13	165218	166349	167027	167431 2_nonsis		679	1446	2212	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
159 BOM2	BOM	12	414993	415537	417465	417575 2_nonsis		1929	2255	2581	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
218 BOM2	BOM	16	169911	170076	172192	172402 2_nonsis		2117	2304	2490	3	20	1	1	0 (3:5)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
30 BOM2	BOM	4	160479	160731	163327	163439 2_nonsis		2597	2778	2959	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
161 BOM2	BOM	12	560519	561781	563822	564068 2_nonsis		2042	2795	3548	3	20	1	1	0 (3:5)_(3:5a)_(3:5)_(5:3)_(4:4aCO)
46 BOM2	BOM	4	1059380	1059396	1062037	1062818 2_nonsis		2642	3040	3437	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(3:5)_(4:4aCO)
119 BOM2	BOM	9	329125	332459	333581	334640 2_nonsis		1123	3319	5514	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(5:3)_(4:4a)
96 BOM2	BOM	8	10261	10615	11625	11689 2_nonsis		1011	1219	1427	3	20	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)_(5:3)_(4:4a)
65 BOM2	BOM	5	489897	490102	491262	491327 2_nonsis		1161	1295	1429	3	20	1	1	0 (2:6)_(5:3)_(3:5)_(4:4aCO)_(5:3a)_(4:4a)
219 BOM2	BOM	16	213190	213534	215126	215175 2_nonsis		1593	1789	1984	3	20	1	1	0 (4:4aCO)_(2:6)_(6:2)_(4:4a)_(5:3)_(4:4a)
206 BOM2	BOM	15	494326	494461	496163	496422 2_nonsis		1703	1899	2095	3	20	1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(6:2)_(4:4aCO)
140 BOM2	BOM	11	379301	379423	381058	381640 2_nonsis		1636	1987	2338	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(2:6)_(3:5a)_(4:4a)
47 BOM2	BOM	4	1078009	1078458	1079984	1080788 2_nonsis		1527	2153	2778	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
145 BOM2	BOM	11	606370	606560	609738	610232 2_nonsis		3179	3520	3861	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(5:3a)_(3:5)_(4:4aCO)
32 BOM2	BOM	4	312186	312250	313644	313728 2_nonsis		1395	1468	1541	3	20	1	1	0 (2:6)_(3:5)_(5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
94 BOM2	BOM	7	1009812	1010365	1012544	1012661 2_nonsis		2180	2514	2848	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(4:4aCO)_(3:5)_(3:5a)_(4:4a)
33 BOM2	BOM	4	408894	410728	412574	413313 2_nonsis		1847	3133	4418	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
84 BOM2	BOM	7	410531	411461	414265	414479 2_nonsis		2805	3376	3947	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
138 BOM2	BOM	11	258771	258873	260530	260745 2_nonsis		1658	1816	1973	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
5 BOM2	BOM	1	178682	178989	180747	180881 2_nonsis		1759	1979	2198	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(5:3)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
126 BOM2	BOM	10	208377	208641	211991	212108 2_nonsis		3351	3541	3730	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(3:5a)_(4:4aCO)_(3:5b)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4a)
151 BOM2	BOM	12	210240	210476	212081	212681 2_nonsis		1606	2023	2440	3	21	1	1	0 (4:4ai)_(5:3)_(2:6)_(4:4bCO)
1 BOM2	BOM	1	32989	33040	36898	37019 2_nonsis		3859	3944	4029	3	21	1	1	0 (5:3)_(3:5)_(5:3)_(4:4ai)_(3:5)_(4:4bCO)
189 BOM2	BOM	14	195358	195766	199432	199570 2_nonsis		3667	3939	4211	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(6:2)_(5:3)_(4:4)_(4:4bi)_(5:3)_(4:4cCO)
63 BOM2	BOM	5	441963	442012	443395	449846 2_sis		1384	4633	7882	0	1	2	0	2 (5:3)_(4:4)_(6:2)_(4:4)
95 BOM2	BOM	7	1021077	1021490	1022816	1023234 2_sis		1327	1742	2156	0	1	2	0	2 (3:5)_(4:4)_(2:6i)_(3:5a)_(2:6a)_(3:5a)_(3:5b)_(4:4)
18 BOM2	BOM	2	741097	741197	744063	744356	3	2867	3063	3258	0	2	2	1	1 (3:5)_(4:4)_(2:6)_(3:5)_(2:6ai)_(1:7)_(2:6)_(2:6b)_(3:5a)_(4:4aCO)
21 BOM2	BOM	3	73255	73479	75546	75892	4	2068	2352	2636	0	2	2	1	1 (3:5)_(3:5a)_(3:5b)_(4:4aCO)_(5:3)_(4:4a)
55 BOM2	BOM	5	54453	55841	58346	58866	3	2506	3459	4412	0	2	2	1	1 (5:3)_(6:2)_(4:4aCO)_(6:2)_(4:4a)_(2:6i)_(4:4a)_(3:5)_(3:5a)_(4:4a)
83 BOM2	BOM	7	383348	383573	385570	386428	3	1998	2539	3079	0	2	2	1	1 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4a)
164 BOM2	BOM	12	704793	704829	706966	707098	3	2138	2221	2304	0	2	2	1	1 (6:2)_(3:5)_(3:5a)_(2:6)_(4:4aCO)_(3:5b)_(4:4a)
167 BOM2	BOM	12	865078	866286	872401	872807	3	6116	6922	7728	0	2	2	1	1 (5:3)_(4:4ai)_(5:3)_(4:4)_(3:5)_(4:4bCO)
208 BOM2	BOM	15	585808	586076	592385	592588	4	6310	6545	6779	0	2	2	2	$0 \ (3:5)_(4:4)_(3:5a)_(3:5)_(2:6)_(4:4ai)_(3:5b)_(5:3)_(5:3a)_(5:3b)_(4:4bCO)_(5:3b)_(4:4b)$
211 BOM2	BOM	15	984651	984992	989690	991111	3	4699	5579	6459	0	2	2	1	1 (5:3)_(4:4aCO)_(2:6)_(3:5)_(4:4a)_(3:5a)_(4:4a)_(3:5b)_(4:4a)
128 BOM2	BOM	10	360767	360976	363678	363726	4	2703	2831	2958	0	3	2	2	0 (3:5)_(4:4ai)_(3:5a)_(5:3)_(4:4bCO)_(4:4ci)_(4:4dCO)
171 BOM3	BOM	16	921271	921352	921352	921490	1	1	110	218	1	1	1	0	1 05:03
30 BOM3	BOM	4	848136	848341	848341	848397	1	1	131	260	1	1	1	0	1 05:03

110 BOM3	BOM	12	363805	363912	363912	364089	1	1	142	283	1	1	1	0	1 05:03
43 BOM3	BOM	5	268597	268713	268713	268979	1	1	191	381	1	1	1	0	1 05:03
36 BOM3	BOM	4	1434754	1434866	1434996	1435091	1	131	234	336	1	1	1	0	1 05:03
97 BOM3	BOM	11	258604	258771	258943	259176	1	173	372	571	1	1	1	0	1 05:03
48 BOM3	BOM	5	560026	560290	560376	560686	1	87	373	659	1	1	1	0	1 05:03
156 BOM3	BOM	15	967611	967862	968047	968186	1	186	380	574	1	1	1	0	1 05:03
35 BOM3	BOM	4	1337910	1338084	1338366	1338448	1	283	410	537	1	1	1	0	1 05:03
92 BOM3	BOM	11	67700	67997	68250	68298	1	254	426	597	1	1	1	0	1 05:03
167 BOM3	BOM	16	644963	645571	645683	645731	1	113	440	767	1	1	1	0	1 05:03
39 BOM3	BOM	5	77697	77918	77918	78595	1	1	449	897	1	1	1	0	1 05:03
69 BOM3	BOM	8	16735	16788	17157	17359	1	370	497	623	1	1	1	0	1 05:03
148 BOM3	BOM	15	579028	579517	579517	580206	1	1	589	1177	1	1	1	0	1 05:03
71 BOM3	BOM	8	121618	121987	122169	122633	1	183	599	1014	1	1	1	0	1 05:03
164 BOM3	BOM	16	491133	491543	491568	492354	1	26	623	1220	1	1	1	0	1 05:03
61 BOM3	BOM	7	785318	785828	785907	786618	1	80	690	1299	1	1	1	0	1 05:03
93 BOM3	BOM	11	99646	100443	100670	101183	1	228	882	1536	1	1	1	0	1 05:03
4 BOM3	BOM	1	71008	71281	71673	72952	1	393	1168	1943	1	1	1	0	1 05:03
102 BOM3	BOM	11	569085	569468	571329	571639	1	1862	2208	2553	1	1	1	0	1 05:03
67 BOM3	BOM	8	10934	11006	11006	11100	1	1	83	165	1	2	1	0	1 03:05
89 BOM3	BOM	10	672728	672798	672815	672937	1	18	113	208	1	2	1	0	1 03:05
58 BOM3	BOM	7	584298	584414	584414	584527	1	1	115	228	1	2	1	0	1 03:05
115 BOM3	BOM	12	611994	612158	612306	612349	1	149	252	354	1	2	1	0	1 03:05
5 BOM3	BOM	1	184510	184921	184921	185150	1	1	320	639	1	2	1	0	1 03:05
59 BOM3	BOM	7	609958	610218	610218	610674	1	1	358	715	1	2	1	0	1 03:05
29 BOM3	BOM	4	836867	837275	837527	837572	1	253	479	704	1	2	1	0	1 03:05
46 BOM3	BOM	5	398975	399399	399399	400005	1	1	515	1029	1	2	1	0	1 03:05
16 BOM3	BOM	3	103955	104476	104476	105047	1	1	546	1091	1	2	1	0	1 03:05
169 BOM3	BOM	16	713201	713880	713959	714342	1	80	610	1140	1	2	1	0	1 03:05
17 BOM3	BOM	3	142499	143131	143316	143575	1	186	631	1075	1	2	1	0	1 03:05
105 BOM3	BOM	12	38737	39963	39963	40119	1	1	691	1381	1	2	1	0	1 03:05
11 BOM3	BOM	2	585909	586331	586331	587309	1	1	700	1399	1	2	1	0	1 03:05
107 BOM3	BOM	12	281289	282215	282385	282626	1	171	754	1336	1	2	1	0	1 03:05
130 BOM3	BOM	14	79165	79183	80071	80156	1	889	940	990	1	2	1	0	1 03:05
94 BOM3	BOM	11	116904	117207	118109	118487	1	903	1243	1582	1	2	1	0	1 03:05
87 BOM3	BOM	10	570822	573135	573950	574034	1	816	2014	3211	1	2	1	0	1 03:05
153 BOM3	BOM	15	829911	830506	830857	831051	1	352	746	1139	1	3	1	0	1 5:3 4:4 5:3
99 BOM3	BOM	11	355272	355411	356100	356125	1	690	771	852	1	3	1	0	1 5:3_6:2_5:3
28 BOM3	BOM	4	636201	636237	636465	636737	1	229	382	535	1	7	1	0	1 5:3_6:2
44 BOM3	BOM	5	311900	311969	311996	312007	1	28	67	106	1	8	1	0	1 2:6_3:5
22 BOM3	BOM	4	87296	87312	87353	87458	1	42	102	161	1	8	1	0	1 3:5_2:6
139 BOM3	BOM	14	631369	631510	631514	631593	1	5	114	223	1	10.1	1	0	1 02:06
13 BOM3	BOM	2	642483	642776	642776	643134	1	1	326	650	1	10.1	1	0	1 02:06
140 BOM3	BOM	14	635465	636275	636966	637234	1	692	1230	1768	2	11	1	0	1 5:3_5:3a
128 BOM3	BOM	13	797401	797456	798739	798826	1	1284	1354	1424	2	11	1	0	1 5:3_5:3a
41 BOM3	BOM	5	161191	161593	162567	163290	1	975	1537	2098	2	11	1	0	1 5:3_5:3a
100 BOM3	BOM	11	369378	369689	369878	370412	1	190	612	1033	2	12	1	0	1 3:5_3:5a
151 BOM3	BOM	15	633069	633360	633825	634186	1	466	791	1116	2	12	1	0	1 3:5_3:5a
75 BOM3	BOM	8	438697	439062	439686	439692	1	625	810	994	2	12	1	0	1 3:5_3:5a
86 BOM3	BOM	10	391429	391555	392346	392871	1	792	1117	1441	2	12	1	0	1 3:5_3:5a
62 BOM3	BOM	7	797674	797989	798848	799244	1	860	1215	1569	2	12	1	0	1 3:5_3:5a
18 BOM3	BOM	3	145735	145988	148041	148135	1	2054	2227	2399	2	12	1	0	1 3:5_3:5a
129 BOM3	BOM	13	915009	915182	916458	916492	1	1277	1380	1482	2	13	1	0	1 5:3_5:3a_6:2_5:3a
147 BOM3	BOM	15	478649	478679	480909	481143	1	2231	2362	2493	2	13	1	0	1 5:3_4:4_5:3_5:3a
27 BOM3	BOM	4	615060	615092	616750	616883	1	1659	1741	1822	2	14	1	0	1 2:6_3:5_3:5a
150 BOM3	BOM	15	619075	619398	619861	620063	1	464	726	987	2	15	1	0	1 5:3_4:4_5:3a
112 BOM3	BOM	12	424702	424898	425696	425939	1	799	1018	1236	2	15	1	0	1 5:3_4:4_5:3a
134 BOM3	BOM	14	273091	273306	274808	275212	1	1503	1812	2120	2	15	1	0	1 5:3_4:4_5:3a
162 BOM3	BOM	16	264726	264772	265153	265309	1	382	482	582	2	16	1	0	1 3:5_4:4_3:5a
165 BOM3	BOM	16	520404	520684	520832	521292	1	149	518	887	2	16	1	0	1 3:5_4:4_3:5a
56 BOM3	BOM	7	427318	427600	428728	428940	1	1129	1375	1621	2	17	1	0	1 5:3_4:4_5:3_4:4_5:3a
50 BOM5	20111	,	12/310	.27000	.20720	.20740	1	112/	.515	1021	-			~	. 5.55.5_4.4_5.54

95 BOM3	BOM	11	194709	195050	196712	196848	1	1663	1901	2138	2	17	1	0	1 5:3_4:4_5:3a_4:4_5:3a
45 BOM3	BOM	5	334750	335065	336702	336936	1	1638	1912	2185	2	17	1	0	1 5:3_4:4_5:3_4:4_5:3a
122 BOM3	BOM	13	352695	353026	353814	354080	1	789	1087	1384	2	19	1	0	1 5:3_6:2_5:3a
154 BOM3	BOM	15	880027	880543	882343	882544	1	1801	2159	2516	2	19	1	0	1 5:3_6:2_5:3a
1 BOM3	BOM	1	31403	31635	32271	32511	1	637	872	1107	2	23	1	0	1 3:5_2:6_4:4_3:5a
135 BOM3	BOM	14	364611	364966	366581	366762	1	1616	1883	2150	2	23	1	0	1 3:5_4:4_2:6_4:4_3:5a
159 BOM3	BOM	16	72872	73338	76987	77082 2_nonsis		3650	3930	4209	3	30	1	0	1 5:3_3:5_4:4_5:3a_4:4_5:3a
98 BOM3	BOM	11	334135	334655	334655	334735 2_nonsis		1	300	599	3	31	1	0	1 4:4ai
144 BOM3	BOM	15	220116	220335	221206	221576 2_nonsis		872	1166	1459	3	31	1	0	1 4:4ai_4:4_3:5
20 BOM3	BOM	4	76974	77295	79321	79387 2_nonsis		2027	2220	2412	3	31	1	0	1 5:3_6:2_4:4ai_5:3a
127 BOM3	BOM	13	795107	795326	795326	795946 2_nonsis		1	420	838	1	1	1	1	0 (5:3)_(4:4aCO)
109 BOM3	BOM	12	320469	320997	320997	322903 2_nonsis		1	1217	2433	1	1	1	1	0 (5:3)_(4:4aCO)
101 BOM3	BOM	11	534234	534309	535712	536243 2_nonsis		1404	1706	2008	1	1	1	1	0 (5:3)_(4:4aCO)
143 BOM3	BOM	15	146419	147007	147007	150962 2_nonsis		1	2272	4542	1	1	1	1	0 (5:3)_(4:4aCO)
142 BOM3	BOM	15	94972	95393	95393	95966 2_nonsis		1	497	993	1	2	1	1	0 (3:5)_(4:4aCO)
66 BOM3	BOM	7	1045427	1045920	1045920	1046573 2_nonsis		1	573	1145	1	2	1	1	0 (3:5)_(4:4aCO)
126 BOM3	BOM	13	702605	703253	703549	703560 2_nonsis		297	626	954	1	2	1	1	0 (3:5)_(4:4aCO)
155 BOM3	BOM	15	920281	920643	921405	922090 2_nonsis		763	1286	1808	1	2	1	1	0 (3:5)_(4:4aCO)
117 BOM3	BOM	12	837962	840577	840682	843387 2_nonsis		106	2765	5424	1	2	1	1	0 (3:5)_(4:4aCO)
113 BOM3	BOM	12	496489	497835	498565	499674 2_nonsis		731	1958	3184	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
33 BOM3	BOM	4	1239399	1240123	1241519	1242168 2_nonsis		1397	2083	2768	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
80 BOM3	BOM	9	401375	402165	403510	403760 2_nonsis		1346	1865	2384	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
116 BOM3	BOM	12	658054	658599	660046	660371 2 nonsis		1448	1882	2316	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
136 BOM3	BOM	14	415877	416164	416362	416620 2_nonsis		199	471	742	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
21 BOM3	BOM	4	84443	84518	84947	85442 2_nonsis		430	714	998	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
42 BOM3	BOM	5	236202	236672	237191	237481 2_nonsis		520	899	1278	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
31 BOM3	BOM	4	868578	868704	869992	870200 2_nonsis		1289	1455	1621	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
158 BOM3	BOM	16	40127	40351	40445	40527 2_nonsis		95	247	399	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
170 BOM3	BOM	16	828891	829002	829418	830004 2_nonsis		417	765	1112	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO) 0 (2:6)_(3:5)_(4:4aCO)
88 BOM3	BOM	10	662479	663134	663739	663948 2 nonsis		606	1037	1468	1	12	1	1	0 (2:6)_(3:3)_(4:4aCO) 0 (2:6)_(4:4)_(4:4aCO)
146 BOM3	BOM	15	447606	447942	449353	449867 2_nonsis		1412	1836	2260	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
84 BOM3	BOM	10	290730	290883	291438			556	816	1076	1	12	1	1	
	BOM					291807 2_nonsis					1		1		0 (6:2)_(4:4)_(6:2)_(4:4aCO)
114 BOM3		12	552323	552416	553063	553358 2_nonsis		648	841	1034	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)
10 BOM3 14 BOM3	BOM BOM	2	393237 694512	393340 695405	394726 697503	394786 2_nonsis		1387 2099	1468	1548	1	12 12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
14 BOM3 131 BOM3	BOM	14	137862	138022	138984	698250 2_nonsis			2918 1351	3737 1739	1	12	1		0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
						139602 2_nonsis		963			1		1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(4:4aCO)
24 BOM3	BOM	4	300160	300204	302084	302250 2_nonsis		1881	1985	2089		12	-	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
70 BOM3	BOM	8	97715	98248	99909	101246 2_nonsis		1662	2596	3530	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4)_(4:4aCO)
168 BOM3	BOM	16	679712	679897	680837	681366 2_nonsis		941	1297	1653	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(4:4aCO)
37 BOM3	BOM	4	1447313	1447694	1448987	1449188 2_nonsis		1294	1584	1874	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
76 BOM3	BOM	8	517036	517336	517376	517399 2_nonsis		41	202	362	1	15	1	1	0 (6:2)_(4:4aCO)
34 BOM3	BOM	4	1289490	1289885	1289885	1289939 2_nonsis		1	225	448	-	15	1	1	0 (6:2)_(4:4aCO)
111 BOM3	BOM	12	367857	367998	368038	368453 2_nonsis		41	318	595	1	15	1	1	0 (6:2)_(4:4aCO)
121 BOM3	BOM	13	141979	142186	142395	142575 2_nonsis		210	403	595	1	15	1	1	0 (6:2)_(4:4aCO)
149 BOM3	BOM	15	589303	589700	589839	590260 2_nonsis		140	548	956	1	15	1	1	0 (6:2)_(4:4aCO)
74 BOM3	BOM	8	435329	435693	435968	436433 2_nonsis		276	690	1103	1	15	1	1	0 (6:2)_(4:4aCO)
73 BOM3	BOM	8	361272	361539	361910	362504 2_nonsis		372	802	1231	1	15	1	1	0 (6:2)_(4:4aCO)
106 BOM3	BOM	12	159272	159591	159591	159665 2_nonsis		1	197	392	1	16	1	1	0 (2:6)_(4:4aCO)
50 BOM3	BOM	6	81532	81686	82058	82187 2_nonsis		373	514	654	1	16	1	1	0 (2:6)_(4:4aCO)
23 BOM3	BOM	4	177807	178219	178306	179632 2_nonsis		88	956	1824	1	16	1	1	0 (2:6)_(4:4aCO)
40 BOM3	BOM	5	123248	123378	123248	123378 2_nonsis		0	65	129	1	100	1	1	0 (4:4aCO)
72 BOM3	BOM	8	237328	237556	237328	237556 2_nonsis		0	114	227	1	100	1	1	0 (4:4aCO)
125 BOM3	BOM	13	675387	675697	675387	675697 2_nonsis		0	155	309	1	100	1	1	0 (4:4aCO)
15 BOM3	BOM	3	60997	61457	60997	61457 2_nonsis		0	230	459	1	100	1	1	0 (4:4aCO)
124 BOM3	BOM	13	559312	559794	559312	559794 2_nonsis		0	241	481	1	100	1	1	0 (4:4aCO)
8 BOM3	BOM	2	170868	171433	170868	171433 2_nonsis		0	282	564	1	100	1	1	0 (4:4aCO)
38 BOM3	BOM	5	30664	31247	30664	31247 2_nonsis		0	291	582	1	100	1	1	0 (4:4aCO)
12 BOM3	BOM	2	615005	615654	615005	615654 2_nonsis		0	324	648	1	100	1	1	0 (4:4aCO)
137 BOM3	BOM	14	440622	441276	440622	441276 2_nonsis		0	327	653	1	100	1	1	0 (4:4aCO)
26 BOM3	BOM	4	588711	589440	588711	589440 2_nonsis		0	364	728	1	100	1	1	0 (4:4aCO)

2 BOM3	BOM	1	64499	65365	64499	65365 2_nonsis		0	433	865	1	100	1	1	0 (4:4aCO)
103 BOM3	BOM	11	603048	604059	603048	604059 2_nonsis		0	505	1010	1	100	1	1	0 (4:4aCO)
90 BOM3	BOM	11	4775	5928	4775	5928 2_nonsis		0	576	1152	1	100	1	1	0 (4:4aCO)
157 BOM3	BOM	15	1002614	1003809	1002614	1003809 2_nonsis		0	597	1194	1	100	1	1	0 (4:4aCO)
19 BOM3	BOM	3	228130	230267	228130	230267 2_nonsis		0	1068	2136	1	100	1	1	0 (4:4aCO)
91 BOM3	BOM	11	46439	48790	46439	48790 2_nonsis		0	1175	2350	1	100	1	1	0 (4:4aCO)
138 BOM3	BOM	14	539950	542443	539950	542443 2_nonsis		0	1246	2492	1	100	1	1	0 (4:4aCO)
78 BOM3	BOM	9	185865	188629	185865	188629 2_nonsis		0	1382	2763	1	100	1	1	0 (4:4aCO)
79 BOM3	BOM	9	299287	302738	299287	302738 2_nonsis		0	1725	3450	1	100	1	1	0 (4:4aCO)
53 BOM3	BOM	7	58086	58485	59403	60729 2_nonsis		919	1781	2642	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
96 BOM3	BOM	11	229432	229903	232839	234299 2_nonsis		2937	3902	4866	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(3:5b)_(4:4a)
77 BOM3	BOM	9	54480	55071	56514	57063 2_nonsis		1444	2013	2582	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
161 BOM3	BOM	16	226160	226313	228253	228815 2_nonsis		1941	2298	2654	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)
145 BOM3	BOM	15	283744	284515	285663	286242 2_nonsis		1149	1823	2497	2	32	1	1	0 (4:4aCO)_(3:5)_(2:6)_(3:5a)_(4:4a)
104 BOM3	BOM	12	20715	20975	22811	22902 2_nonsis		1837	2012	2186	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(4:4aCO)
32 BOM3	BOM	4	1148075	1148435	1149565	1149761 2_nonsis		1131	1408	1685	2	32	1	1	0 (4:4ai)_(6:2)_(5:3)_(4:4bCO)_(5:3a)_(4:4b)
64 BOM3	BOM	7	807791	807996	809973	810159 2_nonsis		1978	2173	2367	2	32	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5a)_(3:5)_(4:4a)
49 BOM3	BOM	6	72559	73471	75475	76048 2_nonsis		2005	2747	3488	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4)_(3:5a)_(4:4aCO)
119 BOM3	BOM	12	1043537	1043638	1043701	1043895 2_nonsis		64	211	357	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)
7 BOM3	BOM	2	88022	88046	89785	90196 2_nonsis		1740	1957	2173	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
163 BOM3	BOM	16	359182	359890	361590	361807 2_nonsis		1701	2163	2624	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
54 BOM3	BOM	7	76149	76406	76620	76882 2_nonsis		215	474	732	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
118 BOM3	BOM	12	877274	877539	877999	878076 2_nonsis		461	631	801	3	20	1	1	0 (2:6)_(3:5)_(6:2)_(4:4aCO)
83 BOM3	BOM	10	246652	247233	247893	247938 2_nonsis		661	973	1285	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(4:4aCO)
85 BOM3	BOM	10	363087	363678	364397			720	1078	1436	3	20	1	1	
133 BOM3	BOM	14	270187	270523	271443	364524 2_nonsis 271707 2_nonsis		921	1220	1519	3	20	1	1	0 (6:2)_(5:3)_(2:6)_(4:4aCO) 0 (6:2)_(4:4aCO)_(3:5)_(4:4a)
											3		1	1	
25 BOM3	BOM	4 7	439479 23297	439746	441071	441206 2_nonsis		1326	1526 1582	1726		20	1	1	0 (3:5)_(4:4aCO)_(6:2)_(4:4a)
52 BOM3	BOM			23450	24468	25442 2_nonsis		1019		2144	3	20			0 (2:6)_(4:4)_(6:2)_(4:4aCO)
82 BOM3	BOM	10	102425	102662	104033	104395 2_nonsis		1372	1671	1969	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
152 BOM3	BOM	15	821737	822154	823983	824604 2_nonsis		1830	2348	2866	3	20	1	1	0 (5:3)_(2:6)_(3:5)_(4:4aCO)
81 BOM3	BOM	10	73391	73708	75075	75279 2_nonsis		1368	1628	1887	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(5:3)_(4:4aCO)
65 BOM3	BOM	7	1011510	1012069	1013788	1013909 2_nonsis		1720	2059	2398	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
9 BOM3	BOM	2	288304	288339	289409	289530 2_nonsis		1071	1148	1225	3	20	1	1	0 (3:5)_(5:3)_(6:2)_(4:4aCO)_(5:3)_(4:4a)
68 BOM3	BOM	8	13244	13408	14784	14833 2_nonsis		1377	1483	1588	3	20	1	1	0 (6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
120 BOM3	BOM	13	70292	70356	74346	74436 2_nonsis		3991	4067	4143	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(4:4)_(2:6)_(4:4aCO)
57 BOM3	BOM	7	432412	432654	434308	434403 2_nonsis		1655	1823	1990	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(3:5a)_(4:4)_(6:2)_(4:4aCO)
123 BOM3	BOM	13	388308	388416	390486	390597 2_nonsis		2071	2180	2288	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(3:5)_(5:3)_(3:5)_(4:4aCO)
63 BOM3	BOM	7	800442	801373	803780	803951 2_nonsis		2408	2958	3508	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(3:5a)_(5:3)_(5:3a)_(4:4aCO)
55 BOM3	BOM	7	146193	146595	147855	148827 2_nonsis		1261	1947	2633	3	20	1	1	0 (3:5)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)_(5:3)_(4:4a)
166 BOM3	BOM	16	585037	585060	587432	587665 2_nonsis		2373	2500	2627	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)
51 BOM3	BOM	6	235114	235342	237962	238279 2_nonsis		2621	2893	3164	3	20	1	1	0 (2:6)_(3:5)_(5:3)_(4:4)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
47 BOM3	BOM	5	463157	463255	465206	465425 2_nonsis		1952	2110	2267	3	21	1	1	0 (5:3)_(5:3a)_(3:5)_(4:4ai)_(5:3a)_(4:4bCO)
132 BOM3	BOM	14	197191	197707	198636	198795 2_sis		930	1267	1603	0	1	2	0	2 (5:3)_(4:4)_(5:3a)_(6:2)_(4:4)
3 BOM3	BOM	1	66178	66696	68959	69112	3	2264	2599	2933	0	2	2	1	1 (5:3)_(4:4ai)_(3:5)_(4:4bi)_(5:3a)_(2:6)_(4:4cCO)
6 BOM3	BOM	1	190636	190880	195750	195910	3	4871	5072	5273	0	2	2	1	1 (2:6)_(5:3)_(6:2i)_(5:3)_(3:5)_(4:4ai)_(4:4bCO)_(3:5)_(4:4b)
141 BOM3	BOM	14	715086	715182	716055	716316	3	874	1052	1229	0	2	2	1	1 (3:5)_(2:6)_(3:5a)_(4:4aCO)
160 BOM3	BOM	16	173291	173330	174906	175137	3	1577	1711	1845	0	2	2	1	1 (5:3)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
60 BOM3	BOM	7	621861	622133	625898	626137 2_nonsis		3766	4021	4275	0	3	2	0	2 (5:3)_(4:4aCO)_(4:4CO)_(3:5)_(4:4)_(3:5)_(3:5a)_(4:4)
343 BOM3	BOM	16	923175	923621	925093	948066	1	1473	13182	24890	0	4	1 NA	NA	5:3_6:2_5:3_6:2_5:3
2 BOM4	BOM	1	108718	108763	108763	108814	1	1	48	95	1	1	1	0	1 05:03
179 BOM4	BOM	16	339687	339729	339729	339833	1	1	73	145	1	1	1	0	1 05:03
72 BOM4	BOM	7	993849	994015	994032	994097	1	18	133	247	1	1	1	0	1 05:03
45 BOM4	BOM	5	42396	42646	42646	42708	1	1	156	311	1	1	1	0	1 05:03
137 BOM4	BOM	12	877274	877539	877560	877606	1	22	177	331	1	1	1	0	1 05:03
35 BOM4	BOM	4	807628	807907	807918	808086	1	12	235	457	1	1	1	0	1 05:03
166 BOM4	BOM	15	769092	769431	769458	769620	1	28	278	527	1	1	1	0	1 05:03
56 BOM4	BOM	6	225428	225457	225457	226036	1	1	304	607	1	1	1	0	1 05:03
186 BOM4	BOM	16	840488	840627	840627	841238	1	1	375	749	1	1	1	0	1 05:03
146 BOM4	BOM	13	509869	510245	510379	510599	1	135	432	729	1	1	1	0	1 05:03
173 BOM4	BOM	16	131951	132681	132693	132838	1	13	450	886	1	1	1	0	1 05:03
1,5 DOM	2011	10	/./1	152001	102070	102000	•	1.5	7.70	300		1	•		

108 BOM4	BOM	11	80353	80724	80854	81244	1	131	511	890	1	1	1	0	1 05:03
32 BOM4	BOM	4	454193	454502	454502	455316	1	1	562	1122	1	1	1	0	1 05:03
99 BOM4	BOM	10	465816	466454	466454	467010	1	1	597	1193	1	1	1	0	1 05:03
115 BOM4	BOM	11	346941	347287	347376	348332	1	90	740	1390	1	1	1	0	1 05:03
77 BOM4	BOM	8	54591	55333	55477	56032	1	145	793	1440	1	1	1	0	1 05:03
168 BOM4	BOM	15	857961	859039	859217	859587	1	179	902	1625	1	1	1	0	1 05:03
106 BOM4	BOM	11	4775	5928	5999	6589	1	72	943	1813	1	1	1	0	1 05:03
123 BOM4	BOM	12	82663	82757	83596	83835	1	840	1006	1171	1	1	1	0	1 05:03
4 BOM4	BOM	1	167179	170726	170726	170945	1	1	1883	3765	1	1	1	0	1 05:03
129 BOM4	BOM	12	416803	416876	416876	416918	1	1	58	114	1	2	1	0	1 03:05
6 BOM4	BOM	1	198657	198664	198713	198815	1	50	104	157	1	2	1	0	1 03:05
119 BOM4	BOM	11	511186	511303	511327	511387	1	25	113	200	1	2	1	0	1 03:05
104 BOM4	BOM	10	675511	675536	675595	675709	1	60	129	197	1	2	1	0	1 03:05
16 BOM4	BOM	2	535946	536134	536146	536197	1	13	132	250	1	2	1	0	1 03:05
60 BOM4	BOM	7	371335	371489	371489	371625	1	1	145	289	1	2	1	0	1 03:05
107 BOM4	BOM	11	78639	78838	78838	79002	1	1	182	362	1	2	1	0	1 03:05
79 BOM4	BOM	8	97245	97536	97650	97715	1	115	292	469	1	2	1	0	1 03:05
145 BOM4	BOM	13	397289	397850	397850	397898	1	1	305	608	1	2	1	0	1 03:05
63 BOM4	BOM	7	494205	494624	494636	494870	1	13	339	664	1	2	1	0	1 03:05
93 BOM4	BOM	10	101339	101966	102081	102363	1	116	570	1023	1	2	1	0	1 03:05
143 BOM4	BOM	13	271372	271672	271672	272762	1	1	695	1389	1	2	1	0	1 03:05
5 BOM4	BOM	1	190031	190402	190880	191026	1	479	737	994	1	2	1	0	1 03:05
117 BOM4	BOM	11	450308	450894	451133	452719	1	240	1325	2410	1	2	1	0	1 03:05
114 BOM4	BOM	11	276968	277294	278406	278445	1	1113	1295	1476	1	3	1	0	1 5:3_4:4_5:3
20 BOM4	BOM	2	786528	786546	788596	789113	1	2051	2318	2584	1	3	1	0	1 5:3_6:2_5:3_4:4_5:3
164 BOM4	BOM	15	587316	587565	590260	590710	1	2696	3045	3393	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
25 BOM4	BOM	3	246581	246789	246853	247156	1	65	320	574	1	4	1	0	1 3:5_4:4_3:5
46 BOM4	BOM	5	98507	98854	99031	99091	1	178	381	583	1	7	1	0	1 6:2_5:3
75 BOM4	BOM	7	1050064	1050446	1051057	1051093	1	612	820	1028	1	7	1	0	1 6:2_5:3
52 BOM4	BOM	5	472245	472448	472577	472664	1	130	274	418	1	8	1	0	1 3:5_2:6
48 BOM4	BOM	5	210793	211386	212029	212585	1	644	1218	1791	1	8	1	0	1 3:5_4:4_2:6
14 BOM4	BOM	2	476602	476950	477015	477199	1	66	331	596	1	10	1	0	1 06:02
66 BOM4	BOM	7	626947	627440	627463	627706	1	24	391	758	1	10	1	0	1 06:02
73 BOM4	BOM	7	996426	996469	996469	996604	1	1	89	177	1	10.1	1	0	1 02:06
84 BOM4	BOM	9	55837	56514	56514	57063	1	1	613	1225	1	10.1	1	0	1 02:06
182 BOM4	BOM	16	552585	552953	553028	553046	1	76	268	460	2	11	1	0	1 5:3_5:3a
37 BOM4	BOM	4	955140	955230	955484	955574	1	255	344	433	2	11	1	0	1 5:3_5:3a
105 BOM4	BOM	10	703339	703431	703967	704056	1	537	627	716	2	11	1	0	1 5:3_5:3a
118 BOM4	BOM	11	456743	456866	457465	457579	1	600	718	835	2	11	1	0	1 5:3_5:3a
110 BOM4	BOM	11	177551	178198	178613	178752	1	416	808	1200	2	11	1	0	1 5:3_5:3a
62 BOM4 121 BOM4	BOM BOM	7 11	472321 532742	472609 533318	473448 534234	473748 534309	1	840 917	1133 1242	1426 1566	2 2	11	1	0	1 5:3_5:3a
	BOM						1	795	1242			11	1	0	1 5:3_5:3a
9 BOM4 11 BOM4		2	106396 254899	107123	107917	108149 256925	-			1752	2		1	0	1 5:3_5:3a
	BOM	2		255469	256767		1	1299	1662	2025	2	11			1 5:3_5:3a
176 BOM4	BOM BOM	16 4	230687	230837 184727	231179	231457	1	343 417	556 670	769 923	2	12 12	1 1	0	1 3:5_3:5a
29 BOM4	BOM	11	184320		185143	185244 232567	1	320	672	1023	2 2	12	1	0	1 3:5_3:5a
113 BOM4 130 BOM4	BOM	12	231543 424702	231603 424898	231922 425404	425550	1	507	672	847	2	12	1	0	1 3:5_3:5a
			83057				1				2		1	0	1 3:5_3:5a
92 BOM4 90 BOM4	BOM BOM	10 9	423651	83207 424253	83804 425064	83877 425130	1	598 812	709 1145	819 1478	2	12 12	1	0	1 3:5_3:5a 1 3:5_3:5a
69 BOM4	BOM	7	784625	785199	785907	786618	1	709	1351	1992	2	12	1	0	1 3:5_3:5a
43 BOM4	BOM	4	1420281	1420528	1423497	1423605	1	2970	3147	3323	2	13	1	0	1 5:3_5:3a 1 5:3_5:3a_4:4_5:3a_6:2_5:3a
174 BOM4	BOM	16	163169	163239	164063	164740	1	825	1198	1570	2	15	1	0	1 5:3_4:4_5:3a 1 5:3_4:4_5:3a
180 BOM4	BOM	16	350968	351571	353391	353535	1	1821	2194	2566	2	15	1	0	1 5:3_4:4_5:3a 1 5:3_4:4_5:3a
94 BOM4	BOM	10	146738	146986	147143	147445	1	158	432	706	2	16	1	0	1 3:5_4:4_3:5a 1 3:5_4:4_3:5a
169 BOM4	BOM	15	967885	968047	968991	969441	1	945	1250	1555	2	16	1	0	1 3:5_4:4_3:5a
111 BOM4	BOM	11	187243	187398	188875	188972	1	1478	1603	1728	2	16	1	0	1 3:5_4:4_3:5a
68 BOM4	BOM	7	746564	746615	748153	748214	1	1539	1594	1649	2	17	1	0	1 5:3_4:4_5:3a_4:4_5:3a
65 BOM4	BOM	7	609644	609701	609928	609958	1	228	271	313	2	19	1	0	1 5:3_6:2_5:3a
177 BOM4	BOM	16	267098	267298	267573	267749	1	276	463	650	2	19	1	0	1 5:3_6:2_5:3a
.// DOM4	DOM	10	201070	201270	201515	201177		270	705	050	2	17		U	. 5.5_0.2_5.54

134 BOM4	BOM	12	659350	659916	660916	661444	1 1001	1547	2093	2	19	1	0	1 5:3_6:2_5:3a
163 BOM4	BOM	15	481588	481817	482608	483090 2_nonsis	792	1147	1501	3	30	1	0	1 3:5_3:5a_4:4_5:3
1 BOM4	BOM	1	33077	33147	34497	34515 2_nonsis	1351	1394	1437	3	30	1	0	1 5:3_6:2_4:4_3:5
124 BOM4	BOM	12	134715	134767	136834	137012 2_nonsis	2068	2182	2296	3	30	1	0	1 5:3_4:4_5:3_5:3a_5:3b
13 BOM4	BOM	2	465156	465417	468402	468870 2_nonsis	2986	3350	3713	3	30	1	0	1 5:3_4:4_5:3_4:4_3:5
120 BOM4	BOM	11	525645	526035	527432	527498 2_nonsis	1398	1625	1852	3	31	1	0	1 3:5_4:4ai_4:4_3:5a
97 BOM4	BOM	10	277465	277623	279207	279278 2_nonsis	1585	1699	1812	3	31	1	0	1 4:4ai_5:3_5:3a_5:3b
87 BOM4	BOM	9	122089	122282	122375	122588 2_nonsis	94	296	498	1	1	1	1	0 (5:3)_(4:4aCO)
159 BOM4	BOM	15	73362	73589	73589	74106 2_nonsis	1	372	743	1	1	1	1	0 (5:3)_(4:4aCO)
64 BOM4	BOM	7	528447	528489	528828	528993 2_nonsis	340	443	545	1	1	1	1	0 (5:3)_(4:4aCO)
112 BOM4	BOM	11	222033	223233	223330	223790 2_nonsis	98	927	1756	1	1	1	1	0 (5:3)_(4:4aCO)
151 BOM4	BOM	14	37063	37986	37986	39122 2_nonsis	1	1030	2058	1	1	1	1	0 (5:3)_(4:4aCO)
171 BOM4	BOM	15	1043151	1043361	1044558	1044705 2_nonsis	1198	1376	1553	1	1	1	1	0 (5:3)_(4:4aCO)
133 BOM4	BOM	12	602685	602909	602909	603057 2_nonsis	1	186	371	1	2	1	1	0 (3:5)_(4:4aCO)
27 BOM4	BOM	4	62205	62366	62366	62726 2_nonsis	1	261	520	1	2	1	1	0 (3:5)_(4:4aCO)
126 BOM4	BOM	12	269565	269839	269839	270392 2_nonsis	1	414	826	1	2	1	1	0 (3:5)_(4:4aCO)
138 BOM4	BOM	12	878875	879756	879756	880251 2_nonsis	1	688	1375	1	2	1	1	0 (3:5)_(4:4aCO)
109 BOM4	BOM	11	118487	119310	119339	120268 2_nonsis	30	905	1780	1	2	1	1	0 (3:5)_(4:4aCO)
51 BOM4	BOM	5	460411	461582	461594	462226 2_nonsis	13	914	1814	1	2	1	1	0 (3:5)_(4:4aCO)
8 BOM4	BOM	2	101289	101613	102815	103652 2_nonsis	1203	1783	2362	1	2	1	1	0 (3:5)_(4:4aCO)
3 BOM4	BOM	1	130975	132066	132066	135319 2_nonsis	1	2172	4343	1	2	1	1	0 (3:5)_(4:4aCO)
162 BOM4	BOM	15	429624	429729	430036	430667 2_nonsis	308	675	1042	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
175 BOM4	BOM	16	213597	213837	214358	214684 2_nonsis	522	804	1086	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
70 BOM4	BOM	7	877134	878070	878701	878834 2_nonsis	632	1166	1699	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
185 BOM4	BOM	16	686122	687687	689677	691459 2_nonsis	1991	3664	5336	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
157 BOM4	BOM	14	650114	650366	650687	650816 2_nonsis	322	512	701	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
141 BOM4	BOM	13	118473	118852	119306	119467 2_nonsis	455	724	993	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
76 BOM4	BOM	8	9426	9704	10615	10670 2_nonsis	912	1078	1243	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
103 BOM4	BOM	10	661626	662241	663534	663564 2_nonsis	1294	1616	1937	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
34 BOM4	BOM	4	681992	682073	682303	682509 2_nonsis	231	374	516	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
39 BOM4	BOM	4	1224954	1225088	1225088	1225292 2_nonsis	1	169	337	1	11	1	1	0 (4:4ai)_(4:4bCO)
54 BOM4	BOM	6	156102	156218	156218	156651 2_nonsis	1	275	548	1	11	1	1	0 (4:4ai)_(4:4bCO)
10 BOM4	BOM	2	196145	196404	196417	196581 2_nonsis	14	225	435	1	11	1	1	0 (4:4ai)_(3:5)_(4:4bCO)
49 BOM4	BOM	5	227105	227242	228774	228943 2_nonsis	1533	1685	1837	1	11	1	1	0 (4:4aCO)_(5:3)_(4:4bi)_(5:3)_(4:4a)
152 BOM4	BOM	14	117055	117101	117410	117759 2_nonsis	310	507	703	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
150 BOM4	BOM	13	860181	861184	861205	861520 2_nonsis	22	680	1338	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
28 BOM4	BOM	4	155900	156500	157148	157424 2_nonsis	649	1086	1523	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
36 BOM4	BOM	4	931376	931988	932535	933005 2_nonsis	548	1088	1628	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
42 BOM4	BOM	4	1414373	1414490	1415193	1416035 2_nonsis	704	1183	1661	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
139 BOM4	BOM	12	1009719	1011169	1011952	1012226 2_nonsis	784	1645	2506	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
165 BOM4	BOM	15	721121	721240	722724	723053 2_nonsis	1485	1708	1931	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
71 BOM4	BOM	7	959381	959587	959945	960299 2_nonsis	359	638	917	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
170 BOM4	BOM	15	985518	985891	986501	986764 2_nonsis	611	928	1245	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)
61 BOM4	BOM	7	384678	384785	385570	386428 2_nonsis	786	1268	1749	1	12	1	1	0 (6:2)_(4:4)_(5:3)_(4:4aCO)
128 BOM4	BOM	12	388010	388456	389584	389815 2_nonsis	1129	1467	1804	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
95 BOM4	BOM	10	159830	160491	161596	162223 2_nonsis	1106	1749	2392	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)
86 BOM4	BOM	9	99043	99647	100450	102247 2_nonsis	804	2004	3203	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
116 BOM4	BOM	11	400068	400341	401916	402660 2_nonsis	1576	2084	2591	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
40 BOM4	BOM	4	1289490	1289885	1291869	1292138 2_nonsis	1985	2316	2647	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)
154 BOM4	BOM	14	331790	332278	335092	335197 2_nonsis	2815	3111	3406	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(6:2)_(4:4aCO)
58 BOM4	BOM	7	145098	145450	145516	145962 2_nonsis	67	465	863	1	15	1	1	0 (6:2)_(4:4aCO)
161 BOM4	BOM	15	288781	288918	289563	289728 2_nonsis	646	796	946	1	15	1	1	0 (6:2)_(4:4aCO)
23 BOM4	BOM	3	152439	152546	152546	152748 2_nonsis	1	155	308	1	16	1	1	0 (2:6)_(4:4aCO)
144 BOM4	BOM	13	332932	333053	333079	333250 2_nonsis	27	172	317	1	16	1	1	0 (2:6)_(4:4aCO)
26 BOM4	BOM	4	20444	20659	20785	20969 2_nonsis	127	326	524	1	16	1	1	0 (2:6)_(4:4aCO)
15 BOM4	BOM	2	479516	479752	479516	479752 2_nonsis	0	118	235	1	100	1	1	0 (4:4aCO)
30 BOM4	BOM	4	303504	303806	303504	303806 2_nonsis	0	151	301	1	100	1	1	0 (4:4aCO)
184 BOM4	BOM	16	677836	678266	677836	678266 2_nonsis	0	215	429	1	100	1	1	0 (4:4aCO)
53 BOM4	BOM	6	48712	49201	48712	49201 2_nonsis	0	244	488	1	100	1	1	0 (4:4aCO)
31 BOM4	BOM	4	369971	370499	369971	370499 2_nonsis	0	264	527	1	100	1	1	0 (4:4aCO)
	-						-	-						

17 BOM4	BOM	2	650619	651379	650619	651379 2_nonsis		0	380	759	1	100	1	1	0 (4:4aCO)
167 BOM4	BOM	15	803637	804529	803637	804529 2_nonsis		0	446	891	1	100	1	1	0 (4:4aCO)
156 BOM4	BOM	14	542443	543829	542443	543829 2_nonsis		0	693	1385	1	100	1	1	0 (4:4aCO)
155 BOM4	BOM	14	437581	439088	437581	439088 2_nonsis		0	753	1506	1	100	1	1	0 (4:4aCO)
140 BOM4	BOM	13	26922	28623	26922	28623 2_nonsis		0	850	1700	1	100	1	1	0 (4:4aCO)
101 BOM4	BOM	10	570822	573135	570822	573135 2_nonsis		0	1156	2312	1	100	1	1	0 (4:4aCO)
78 BOM4	BOM	8	93770	96126	93770	96126 2_nonsis		0	1178	2355	1	100	1	1	0 (4:4aCO)
59 BOM4	BOM	7	236277	241275	236277	241275 2_nonsis		0	2499	4997	1	100	1	1	0 (4:4aCO)
125 BOM4	BOM	12	212026	212081	212780	212801 2_nonsis		700	737	774	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
85 BOM4	BOM	9	95341	95580	96885	96924 2_nonsis		1306	1444	1582	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
149 BOM4	BOM	13	748055	748748	750177	751108 2_nonsis		1430	2241	3052	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
89 BOM4	BOM	9	306037	306523	308383	308815 2_nonsis		1861	2319	2777	2	30	1	1	0 (5:3)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
132 BOM4	BOM	12	510395	510423	511071	511197 2_nonsis		649	725	801	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
88 BOM4	BOM	9	177082	177586	178629	179273 2_nonsis		1044	1617	2190	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
38 BOM4	BOM	4	999431	999562	999724	999930 2_nonsis		163	331	498	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
135 BOM4	BOM	12	719618	719858	722079	722344 2_nonsis		2222	2474	2725	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
131 BOM4	BOM	12	490675	493339	494429	495002 2 nonsis		1091	2709	4326	2	32	1	1	0 (5:3) (6:2) (5:3a) (4:4aCO)
74 BOM4	BOM	7	1022196	1022301	1023633	1023685 2 nonsis		1333	1411	1488	2	32	1	1	0 (5:3) (4:4) (5:3a) (6:2) (4:4aCO)
67 BOM4	BOM	7	629962	630335	631589	631912 2_nonsis		1255	1602	1949	2	32	1	1	0 (6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
33 BOM4	BOM	4	549856	550499	551991	552102 2_nonsis		1493	1869	2245	2	32	1	1	0 (3:5)_(4:4)_(3:5)_(4:4)_(2:6)_(3:5a)_(4:4aCO)
188 BOM4	BOM	16	886812	887016	890080	890467 2_nonsis		3065	3360	3654	2	32	1	1	0 (6:2)_(5:3)_(6:2)_(5:3a)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
178 BOM4	BOM	16	279568	279637	279975	280422 2_nonsis		339	596	853	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)
80 BOM4	BOM	8	121618	121987	122674	122848 2_nonsis		688	959	1229	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
158 BOM4	BOM	14	709675	709906	710457	711379 2_nonsis		552	1128	1703	3	20	1	1	0 (5.3)_(3.5)_(4.4aCO) 0 (5.3)_(3.5)_(4.4aCO)
153 BOM4	BOM	14	197788	198236	198937	199403 2_nonsis		702	1158	1614	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO) 0 (3:5)_(6:2)_(4:4aCO)
102 BOM4	BOM	10	627178	627999	628891	629879 2 nonsis		702 893	1797	2700	3	20	1	1	
						_									0 (5:3)_(3:5)_(4:4aCO)
147 BOM4	BOM	13	552466	553020	554456	555036 2_nonsis		1437	2003	2569	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
100 BOM4	BOM	10	489721	490750	492405	493019 2_nonsis		1656	2477	3297	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
22 BOM4	BOM	3	59925	60198	60997	61457 2_nonsis		800	1166	1531	3	20	1	1	0 (5:3)_(4:4aCO)_(2:6)_(4:4a)
83 BOM4	BOM	8	498566	498745	499853	500211 2_nonsis		1109	1377	1644	3	20	1	1	0 (5:3)_(6:2)_(3:5)_(4:4aCO)
12 BOM4	BOM	2	304001	304384	306376	306932 2_nonsis		1993	2462	2930	3	20	1	1	0 (3:5)_(5:3)_(6:2)_(4:4aCO)
160 BOM4	BOM	15	198105	198213	198772	199130 2_nonsis		560	792	1024	3	20	1	1	0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4a)
24 BOM4	BOM	3	224261	224961	225200	225673 2_nonsis		240	826	1411	3	20	1	1	0 (2:6)_(3:5)_(4:4)_(6:2)_(4:4aCO)
81 BOM4	BOM	8	225748	225911	227343	227411 2_nonsis		1433	1548	1662	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(5:3)_(4:4a)
44 BOM4	BOM	5	11847	12024	13645	13996 2_nonsis		1622	1885	2148	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
82 BOM4	BOM	8	361910	362504	364439	364600 2_nonsis		1936	2313	2689	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(3:5a)_(4:4aCO)
148 BOM4	BOM	13	683655	683958	685884	686613 2_nonsis		1927	2442	2957	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(2:6)_(4:4a)
91 BOM4	BOM	10	51007	51976	53312	53513 2_nonsis		1337	1921	2505	3	20	1	1	0 (5:3)_(6:2)_(4:4)_(2:6)_(3:5)_(4:4aCO)
41 BOM4	BOM	4	1315764	1316569	1318539	1318597 2_nonsis		1971	2402	2832	3	20	1	1	0 (6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:5a)_(4:4a)
96 BOM4	BOM	10	272315	272381	274782	275124 2_nonsis		2402	2605	2808	3	20	1	1	0 (3:5)_(3:5a)_(2:6)_(4:4aCO)_(5:3)_(4:4a)
122 BOM4	BOM	11	580815	581385	582336	582583 2_nonsis		952	1360	1767	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4a)
183 BOM4	BOM	16	585958	586036	588931	588991 2_nonsis		2896	2964	3032	3	20	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4)_(2:6)_(3:5)_(4:4aCO)
142 BOM4	BOM	13	192291	192332	195330	195572 2_nonsis		2999	3140	3280	3	20	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4)_(3:5)_(5:3)_(5:3a)_(4:4aCO)
181 BOM4	BOM	16	524743	525053	527574	528017 2_nonsis		2522	2898	3273	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
47 BOM4	BOM	5	123248	123378	124970	125141 2_nonsis		1593	1743	1892	3	21	1	1	0 (5:3)_(4:4)_(6:2)_(4:4ai)_(3:5)_(4:4bCO)
50 BOM4	BOM	5	376275	376375	378395	378586 2_nonsis		2021	2166	2310	3	21	1	1	0 (4:4ai)_(3:5)_(4:4bCO)_(5:3)_(6:2)_(5:3a)_(4:4b)
172 BOM4	BOM	16	66527	66703	69355	69402 2_nonsis		2653	2764	2874	3	21	1	1	0 (3:5)_(3:5a)_(4:4ai)_(4:4)_(5:3)_(5:3a)_(4:4bCO)
18 BOM4	BOM	2	695479	697455	716856	716927	3	19402	20425	21447	0	2	2	1	1 (0:8)_(2:6)_(4:4)_(5:3)_(6:2)_(0:8)_(4:4aCO)
19 BOM4	BOM	2	723663	723755	738241	738886	3	14487	14855	15222	0	2	2	2	0 (0:8)_(4:4)_(0:8)_(4:4aCO)
57 BOM4	BOM	7	20257	20512	22405	23215	3	1894	2426	2957	0	2	2	2	0 (5:3)_(5:3a)_(7:1)_(5:3b)_(4:4aCO)_(5:3b)_(6:2)_(5:3b)_(4:4a)
98 BOM4	BOM	10	359445	359702	361485	361643	3	1784	1991	2197	0	2	2	1	1 (2:6)_(4:4aCO)_(5:3)_(5:3a)_(4:4a)
136 BOM4	BOM	12	837543	837595	837595	837962	3	1	210	418	0	2	2	1	1 (4:4ai)_(4:4bCO)
187 BOM4	BOM	16	878578	878899	879550	879742	3	652	908	1163	0	2	2	1	1 (3:5)_(2:6i)_(1:7)_(0:8)_(4:4aCO)
7 BOM4	BOM	2	44210	44904	45959	46603 2_nonsis		1056	1724	2392	0	3	2	0	2 (5:3)_(4:4aCO)_(3:5)_(4:4CO)
55 BOM4	BOM	6	203253	203623	205576	205702 2_nonsis		1954	2201	2448	0	3	2	0	2 (5:3)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4CO)
205 OM1	OM	16	63201	63205	63205	63216	1	1	8	14	1	1	1	0	1 05:03
122 OM1	OM	10	360588	360746	360746	360767	1	1	90	178	1	1	1	0	1 05:03
105 OM1	OM	8	399043	399050	399050	399235	1	1	96	191	1	1	1	0	1 05:03
155 OM1	OM	13	51358	51433	51433	51596	1	1	119	237	1	1	1	0	1 05:03
103 OM1	OM	8	371268	371744	371744	371815	1	1	274	546	1	1	1	0	1 05:03
105 01111	0.71	0	5,1200	5,1,44	5,1177	3,1013	•	1	217	540	1		4	~	- 00000

45 OM1	OM	4	787173	787632	787632	787723	1	1	275	549	1	1	1	0	1 05:03
37 OM1	OM	4	71525	71645	71743	72032	1	99	303	506	1	1	1	0	1 05:03
98 OM1	OM	8	98484	98622	98643	99089	1	22	313	604	1	1	1	0	1 05:03
174 OM1	OM	14	136113	136144	136375	136579	1	232	349	465	1	1	1	0	1 05:03
66 OM1	OM	6	43988	44192	44192	44748	1	1	380	759	1	1	1	0	1 05:03
49 OM1	OM	4	1015515	1016282	1016332	1016426	1	51	481	910	1	1	1	0	1 05:03
56 OM1	OM	5	15966	16323	16323	17065	1	1	550	1098	1	1	1	0	1 05:03
89 OM1	OM	7	635353	635861	635861	636660	1	1	654	1306	1	1	1	0	1 05:03
65 OM1	OM	5	509962	510678	510678	511287	1	1	663	1324	1	1	1	0	1 05:03
159 OM1	OM	13	228322	228901	229206	229539	1	306	761	1216	1	1	1	0	1 05:03
171 OM1	OM	14	32426	34396	34412	34467	1	17	1029	2040	1	1	1	0	1 05:03
24 OM1	OM	2	730662	730763	731596	731934	1	834	1053	1271	1	1	1	0	1 05:03
117 OM1	OM	10	146059	146367	147143	147445	1	777	1081	1385	1	1	1	0	1 05:03
109 OM1	OM	9	46174	46556	48252	48606	1	1697	2064	2431	1	1	1	0	1 05:03
166 OM1	OM	13	618075	618182	618182	618249	1	1	87	173	1	2	1	0	1 03:05
130 OM1	OM	11	20761	20824	20824	20955	1	1	97	193	1	2	1	0	1 03:05
137 OM1	OM	11	506430	506614	506614	506729	1	1	150	298	1	2	1	0	1 03:05
162 OM1	OM	13	496640	496721	496739	496955	1	19	167	314	1	2	1	0	1 03:05
115 OM1	OM	10	54311	54420	54420	54825	1	1	257	513	1	2	1	0	1 03:05
12 OM1	OM	2	350451	350900	350900	351083	1	1	316	631	1	2	1	0	1 03:05
62 OM1 67 OM1	OM	5	378395	378586	378586	379092	1	1	349 495	696	1	2 2	1	0	1 03:05
	OM OM	6 9	55864 60879	56533	56533 62057	56854	1	735	1031	989 1327	1	2	1	0	1 03:05 1 03:05
110 OM1 84 OM1	OM	7	442184	61323 442299	443342	62207 443602	1	1044	1231	1417	1	2	1	0	1 03:05
32 OM1	OM	3	238725	238995	239515	240922	1	521	1359	2196	1	2	1	0	1 03:05
79 OM1	OM	7	178509	179910	180364	181069	1	455	1507	2559	1	2	1	0	1 03:05
79 OM1	OM	6	158086	158256	159616	159744	1	1361	1507	1657	1	2	1	0	1 03:05
147 OM1	OM	12	439951	440042	440342	440952	1	301	651	1000	1	3	1	0	1 5:3_6:2_5:3
156 OM1	OM	13	101569	101681	102320	102554	1	640	812	984	1	3	1	0	1 5:3 4:4 5:3
26 OM1	OM	2	786902	787329	787939	788189	1	611	949	1286	1	3	1	0	1 5:3_6:2_5:3
20 OM1	OM	2	641433	641467	642776	643134	1	1310	1505	1700	1	3	1	0	1 5:3_4:4_5:3
74 OM1	OM	7	21041	21167	21543	21569	1	377	452	527	1	3	1	0	1 5:3_4:4_5:3_6:2_5:3
90 OM1	OM	7	701596	701914	703157	703857	1	1244	1752	2260	1	7	1	0	1 6:2_5:3
22 OM1	OM	2	679385	680044	681414	681557	1	1371	1771	2171	1	7	1	0	1 6:2_4:4_6:2
72 OM1	OM	6	229247	229320	230462	230627	1	1143	1261	1379	1	7	1	0	1 6:2_4:4_5:3_4:4_5:3
149 OM1	OM	12	601489	601624	603693	603907	1	2070	2244	2417	1	7	1	0	1 6:2_5:3_6:2_5:3_6:2
150 OM1	OM	12	644551	645338	645971	646705	1	634	1394	2153	1	8	1	0	1 3:5_2:6
184 OM1	OM	14	574949	575525	576383	577027	1	859	1468	2077	1	8	1	0	1 2:6_4:4_2:6
107 OM1	OM	8	516468	516616	517036	517336	1	421	644	867	1	8	1	0	1 2:6_3:5_2:6_3:5
203 OM1	OM	15	1070965	1071028	1071033	1071090	1	6	65	124	1	10	1	0	1 06:02
134 OM1	OM	11	369378	369689	369689	369878	1	1	250	499	1	10	1	0	1 06:02
18 OM1	OM	2	558042	558499	558499	558576	1	1	267	533	1	10	1	0	1 06:02
163 OM1	OM	13	540526	540798	540798	541071	1	1	273	544	1	10	1	0	1 06:02
206 OM1	OM	16	168076	169035	169035	169613	1	1	769	1536	1	10	1	0	1 06:02
136 OM1	OM	11	477776	479195	479195	479521	1	1	873	1744	1	10	1	0	1 06:02
14 OM1	OM	2	392022	392544	393197	393340	1	654	986	1317	1	10	1	0	1 06:02
178 OM1	OM	14	331699	331790	331790	332278	1	1	290	578	1	10.1	1	0	1 02:06
64 OM1	OM	5	461582	461594	461594	462226	1	1	322	643	1	10.1	1	0	1 02:06
69 OM1	OM	6	95849	96304	96305	96502	1	2	327	652	1	10.1	1	0	1 02:06
202 OM1	OM	15	986991	987247	987247	987667	1	1	338	675	1	10.1	1	0	1 02:06
192 OM1	OM	15	256235	256322	256457	256963	1	136	432	727	1	10.1	1	0	1 02:06
102 OM1	OM	8	369483	369871	369898	370655	1	28	600	1171	1	10.1	1	0	1 02:06
51 OM1	OM	4	1102674	1103455	1103488	1104014	1	34	687	1339	1	10.1	1	0	1 02:06
61 OM1	OM	5	318016	318309	318414	319404	1	106	747	1387	1	10.1	1	0	1 02:06
158 OM1	OM	13	169522	169808	169962	170932	1	155	782	1409	1	10.1	1	0	1 02:06
76 OM1	OM	7	55263	55957	55957	57501	1	1	1119	2237	1	10.1	1	0	1 02:06
44 OM1	OM	4	743651	743850	744435	745067	1	586	1001	1415	2	11	1	0	1 5:3_5:3a
41 OM1	OM	4	476888	477034	478019	478092	1	986	1095	1203	2	11	1	0	1 5:3_5:3a
75 OM1	OM	7	34992	35217	36018	36691	1	802	1250	1698	2	11	1	0	1 5:3_5:3a
4 OM1	OM	1	173222	173966	175578	175876	1	1613	2133	2653	2	11	1	0	1 5:3_5:3a

82 OM1	OM	7	345438	345471	347682	348496	1	2212	2635	3057	2	11	1	0	1 5:3_5:3a
126 OM1	OM	10	585466	586827	587861	589894	1	1035	2731	4427	2	11	1	0	1 5:3_5:3a
30 OM1	OM	3	207534	207705	208489	208699	1	785	975	1164	2	12	1	0	1 3:5_3:5a
13 OM1	OM	2	371746	372547	373488	373782	1	942	1489	2035	2	12	1	0	1 3:5_3:5a
215 OM1	OM	16	831160	831178	832685	832807	1	1508	1577	1646	2	12	1	0	1 3:5_3:5a
25 OM1	OM	2	767058	767298	768073	769699	1	776	1708	2640	2	12	1	0	1 3:5_3:5a
198 OM1	OM	15	586076	586304	588171	588409	1	1868	2100	2332	2	12	1	0	1 3:5_3:5a
175 OM1	OM	14	166733	167934	169998	170087	1	2065	2709	3353	2	12	1	0	1 3:5_3:5a
191 OM1	OM	15	242641	242848	243335	243831	1	488	839	1189	2	13	1	0	1 5:3_5:3a_4:4_5:3a
188 OM1	OM	15	108331	108945	109584	110892	1	640	1600	2560	2	14	1	0	1 3:5_3:5a_2:6
59 OM1	OM	5	183549	183864	184363	184684	1	500	817	1134	2	14	1	0	1 3:5_4:4_3:5_3:5a
179 OM1	OM	14	335707	335910	336414	336437	1	505	617	729	2	15	1	0	1 5:3_4:4_5:3a
85 OM1	OM	7	451346	451921	452589	452990	1	669	1156	1643	2	15	1	0	1 5:3_4:4_5:3a
10 OM1	OM	2	269036	269210	270207	270387	1	998	1174	1350	2	15	1	0	1 5:3_4:4_5:3a
210 OM1	OM	16	454587	454982	455955	456445	1	974	1416	1857	2	15	1	0	1 5:3_4:4_5:3a
77 OM1	OM	7	119177	119852	121176	121350	1	1325	1749	2172	2	15	1	0	1 5:3_4:4_5:3a
148 OM1	OM	12	445923	446046	447993	448167	1	1948	2096	2243	2	15	1	0	1 5:3_4:4_5:3a
196 OM1	OM	15	494089	494313	494956	495340	1	644	947	1250	2	16	1	0	1 3:5_4:4_3:5a
48 OM1	OM	4	1004000	1004480	1005656	1005728	1	1177	1452	1727	2	16	1	0	1 3:5_4:4_3:5a
23 OM1	OM	2	701354	701832	703042	703256	1	1211	1556	1901	2	16	1	0	1 3:5_4:4_3:5a
16 OM1	OM	2	466266	466523	467353	468345	1	831	1455	2078	2	17	1	0	1 5:3_4:4_5:3a_4:4_5:3a
73 OM1	OM	6	239066	239639	240385	240682	1	747	1181	1615	2	18	1	0	1 3:5_4:4_3:5a_4:4_3:5a
190 OM1	OM	15	205739	205841	208106	208220	1	2266	2373	2480	2	21	1	0	1 5:3_6:2_5:3a_4:4_5:3a
177 OM1	OM	14	307665	307785	311673	312312	1	3889	4268	4646	2	21	1	0	1 5:3_6:2_5:3_6:2_5:3_6:2_5:3a_6:2
145 OM1	OM	12	314478	314762	316496	316628	1	1735	1942	2149	2	22	1	0	1 3:5_4:4_3:5_2:6_3:5a
139 OM1	OM	11	614450	614538	615361	615437 2_nonsis		824	905	986	3	30	1	0	1 05:03
28 OM1	OM	3	96055	96799	97696	98578 2_nonsis		898	1710	2522	3	30	1	0	1 2:6_3:5
101 OM1	OM	8	267804	268308	272512	273164 2_nonsis		4205	4782	5359	3	30	1	0	1 3:5_2:6
86 OM1	OM	7	531741	532320	533847	533952 2_nonsis		1528	1869	2210	3	30	1	0	1 3:5_4:4_5:3
93 OM1	OM	7	848452	848688	850043	850236 2_nonsis		1356	1570	1783	3	30	1	0	1 5:3_3:5_4:4_3:5
6 OM1	OM	2	45075	45304	47900	47948 2_nonsis		2597	2735	2872	3	30	1	0	1 5:3_4:4_5:3a_5:3b
94 OM1	OM	7	913000	913222	915939	916059 2_nonsis		2718	2888	3058	3	30	1	0	1 3:5_5:3_4:4_5:3_3:5_5:3_5:3a
133 OM1	OM	11	316845	317019	317104	317375 2_nonsis		86	308	529	1	1	1	1	0 (5:3)_(4:4aCO)
57 OM1	OM	5	17824	18447	18447	18515 2_nonsis		1	346	690	1	1	1	1	0 (5:3)_(4:4aCO)
131 OM1	OM	11	73320	73701	73701	74074 2_nonsis		1	377	753	1	1	1	1	0 (5:3)_(4:4aCO)
120 OM1	OM	10	302207	302882	302943	303003 2_nonsis		62	429	795	1	1	1	1	0 (5:3)_(4:4aCO)
169 OM1	OM	13	820241	820753	821125	821368 2_nonsis		373	750	1126	1	1	1	1	0 (5:3)_(4:4aCO)
36 OM1	OM	4	68799	69384	69990	70167 2_nonsis		607	987	1367	1	1	1	1	0 (5:3)_(4:4aCO)
114 OM1	OM	9	424642	424776	424776	424866 2_nonsis		1	112	223	1	2	1	1	0 (3:5)_(4:4aCO)
11 OM1	OM	2	317892	318192	318225	318982 2_nonsis		34	562	1089	1	2	1	1	0 (3:5)_(4:4aCO)
152 OM1	OM	12	849651	854761	854846	855144 2_nonsis		86	2789	5492	1	2	1	1	0 (3:5)_(4:4aCO)
168 OM1	OM	13	772587	773055	773268	773415 2_nonsis		214	521	827	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
161 OM1	OM	13	456970	457507	458513	459192 2_nonsis		1007	1614	2221	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
142 OM1	OM	12	112405	112468	112663	112689 2_nonsis		196	240	283	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
7 OM1	OM	2	61810	62000	62445	62830 2_nonsis		446	733	1019	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
116 OM1	OM	10	66411	67353	70072	70786 2_nonsis		2720	3547	4374	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
121 OM1	OM	10	331024	332595	333136	333385 2_nonsis		542	1451	2360	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
52 OM1	OM	4	1241519	1242168	1242658	1246191 2_nonsis		491	2581	4671	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
187 OM1	OM	15	40593	40834	41221	41378 2_nonsis		388	586	784	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
141 OM1	OM	12	45294	47080	47204	48661 2_nonsis		125	1746	3366	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
157 OM1	OM	13	157807	159085	160280	160611 2_nonsis		1196	2000	2803	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
154 OM1	OM	13	45656	45908	46860	48814 2_nonsis		953	2055	3157	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
111 OM1	OM	9	166074	166116	169444	169471 2_nonsis		3329	3363	3396	1	11	1	1	0 (5:3)_(4:4ai)_(5:3)_(4:4bCO)
104 OM1	OM	8	378234	378579	378642	378942 2_nonsis		64	386	707	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
78 OM1	OM	7	139179	139322	139797	140188 2_nonsis		476	742	1008	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
29 OM1	OM	3	146470	146649	146949	147882 2_nonsis		301	856	1411	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
182 OM1	OM	14	487393	487663	488208	488587 2_nonsis		546	870	1193	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
88 OM1	OM	7	609614	609644	609958	610218 2_nonsis		315	459	603	1	12	1	1	0 (5:3)_(4:4aCO)_(5:3)_(4:4a)
118 OM1	OM	10	183834	184128	184439	184592 2_nonsis		312	535	757	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)
55 OM1	OM	4	1509719	1509983	1510510	1511013 2_nonsis		528	911	1293	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)

195 OM1	OM	15	461434	461644	462267	462906 2_nonsis	624	1048	1471	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
185 OM1	OM	14	643259	643444	644271	644875 2_nonsis	828	1222	1615	1	12	1	1	0 (6:2)_(4:4)_(5:3)_(4:4aCO)
71 OM1	OM	6	204282	204454	205702	205793 2_nonsis	1249	1380	1510	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
193 OM1	OM	15	268456	269276	270526	270656 2_nonsis	1251	1725	2199	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)
140 OM1	OM	11	619375	619475	620968	621343 2_nonsis	1494	1731	1967	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
165 OM1	OM	13	590865	591615	593072	593361 2_nonsis	1458	1977	2495	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
95 OM1	OM	7	948202	949014	950926	951196 2_nonsis	1913	2453	2993	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
167 OM1	OM	13	666220	666667	667511	667766 2_nonsis	845	1195	1545	1	12	1	1	0 (4:4aCO)_(5:3)_(4:4a)_(5:3)_(4:4a)
211 OM1	OM	16	497140	497162	498200	498617 2_nonsis	1039	1258	1476	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4)_(4:4aCO)
106 OM1	OM	8	510752	510778	512291	512682 2_nonsis	1514	1722	1929	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)
127 OM1	OM	10	704056	704425	705938	706135 2_nonsis	1514	1796	2078	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
181 OM1	OM	14	410941	411667	412609	413686 2_nonsis	943	1844	2744	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
68 OM1	OM	6	88777	89605	91021	91098 2_nonsis	1417	1869	2320	1	12	1	1	0 (4:4aCO)_(5:3)_(4:4a)_(5:3)_(4:4a)
33 OM1	OM	3	272348	273723	276551	277187 2_nonsis	2829	3834	4838	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)
207 OM1	OM	16	170349	170630	171270	171314 2_nonsis	641	803	964	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(3:5)_(4:4aCO)
144 OM1	OM	12	230218	230960	232561	233075 2_nonsis	1602	2229	2856	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(6:2)_(4:4a)
201 OM1	OM	15	985000	985377	985377	985518 2_nonsis	1	259	517	1	15	1	1	0 (6:2)_(4:4aCO)
63 OM1	OM	5	414243	414432	414642	414720 2_nonsis	211	344	476	1	15	1	1	0 (6:2)_(4:4aCO)
100 OM1	OM	8	195826	195949	196180	196402 2_nonsis	232	404	575	1	15	1	1	0 (6:2)_(4:4aCO)
47 OM1	OM	4	908967	909447	909447	909908 2_nonsis	1	471	940	1	15	1	1	0 (6:2)_(4:4aCO)
213 OM1	OM	16	677287	677647	677836	678266 2_nonsis	190	584	978	1	15	1	1	0 (6:2)_(4:4aCO)
80 OM1	OM	7	244757	245112	245422	245686 2_nonsis	311	620	928	1	15	1	1	0 (6:2)_(4:4aCO)
132 OM1	OM	11	172715	173133	173315	173801 2_nonsis	183	634	1085	1	15	1	1	0 (6:2)_(4:4aCO)
197 OM1	OM	15	510696	511001	511476	511568 2_nonsis	476	674	871	1	15	1	1	0 (6:2)_(4:4aCO)
50 OM1	OM	4	1044635	1044751	1045062	1045735 2_nonsis	312	706	1099	1	15	1	1	0 (6:2)_(4:4aCO)
208 OM1	OM	16	253297	253600	254117	254324 2_nonsis	518	772	1026	1	15	1	1	0 (6:2)_(4:4aCO)
19 OM1	OM	2	611338	611905	611905	613145 2_nonsis	1	904	1806	1	15	1	1	0 (6:2)_(4:4aCO)
53 OM1	OM	4	1268647	1269918	1269918	1270457 2_nonsis	1	905	1809	1	15	1	1	0 (6:2)_(4:4aCO)
17 OM1	OM	2	504535	504568	505298	506138 2_nonsis	731	1167	1602	1	15	1	1	0 (6:2)_(4:4aCO)
204 OM1	OM	16	29458	29604	29674	29749 2_nonsis	71	181	290	1	16	1	1	0 (2:6)_(4:4aCO)
43 OM1	OM	4	699938	700023	700170	700186 2_nonsis	148	198	247	1	16	1	1	0 (2:6)_(4:4aCO)
199 OM1	OM	15	670429	670593	670593	670904 2_nonsis	1	238	474	1	16	1	1	0 (2:6)_(4:4aCO)
194 OM1	OM	15	407171	407340	407340	407771 2_nonsis	1	300	599	1	16	1	1	0 (2:6)_(4:4aCO)
170 OM1	OM	13	838248	838336	838336	838867 2_nonsis	1	310	618	1	16	1	1	0 (2:6)_(4:4aCO)
151 OM1	OM	12	677815	677890	678194	678512 2_nonsis	305	501	696	1	16	1	1	0 (2:6)_(4:4aCO)
97 OM1	OM	8	81320	81666	81685	82351 2_nonsis	20	525	1030	1	16	1	1	0 (2:6)_(4:4aCO)
40 OM1	OM	4	410728	411048	411335	411785 2_nonsis	288	672	1056	1	16	1	1	0 (2:6)_(4:4aCO)
200 OM1	OM	15	806960	807123	807631	807840 2_nonsis	509	694	879	1	16	1	1	0 (2:6)_(4:4aCO)
214 OM1	OM	16	828891	829002	829418	830004 2_nonsis	417	765	1112	1	16	1	1	0 (2:6)_(4:4aCO)
172 OM1	OM	14	56038	57439	57439	57579 2_nonsis	1	771	1540	1	16	1	1	0 (2:6)_(4:4aCO)
21 OM1	OM	2	661374	662094	662444	666708 2_nonsis	351	2842	5333	1	16	1	1	0 (2:6)_(4:4aCO)
160 OM1	OM	13	287574	287682	287574	287682 2_nonsis	0	54	107	1	100	1	1	0 (4:4aCO)
38 OM1	OM	4	164096	164298	164096	164298 2_nonsis	0	101	201	1	100	1	1	0 (4:4aCO)
2 OM1	OM	1	61708	61999	61708	61999 2_nonsis	0	145	290	1	100	1	1	0 (4:4aCO)
209 OM1	OM	16	374857	375235	374857	375235 2_nonsis	0	189	377	1	100	1	1	0 (4:4aCO)
31 OM1	OM	3	225200	225631	225200	225631 2_nonsis	0	215	430	1	100	1	1	0 (4:4aCO)
146 OM1	OM	12	341070	341507	341070	341507 2_nonsis	0	218	436	1	100	1	1	0 (4:4aCO)
113 OM1	OM	9	303489	303983	303489	303983 2_nonsis	0	247	493	1	100	1	1	0 (4:4aCO)
212 OM1	OM	16	607028	607677	607028	607677 2_nonsis	0	324	648	1	100	1	1	0 (4:4aCO)
129 OM1	OM	11	19020	19855	19020	19855 2_nonsis	0	417	834	1	100	1	1	0 (4:4aCO)
27 OM1	OM	3	77900	78844	77900	78844 2_nonsis	0	472	943	1	100	1	1	0 (4:4aCO)
54 OM1	OM	4	1355944	1357024	1355944	1357024 2_nonsis	0	540	1079	1	100	1	1	0 (4:4aCO)
60 OM1	OM	5	256810	258361	256810	258361 2_nonsis	0	775	1550	1	100	1	1	0 (4:4aCO)
3 OM1	OM	1	130975	135319	130975	135319 2_nonsis	0	2172	4343	1	100	1	1	0 (4:4aCO)
46 OM1	OM	4	816853	817682	817919	818507 2_nonsis	238	946	1653	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
123 OM1	OM	10	398357	398746	399390	400622 2_nonsis	645	1455	2264	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
92 OM1	OM	7	799970	800086	803311	803780 2_nonsis	3226	3518	3809	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO) 0 (3:5)_(3:5a)_(3:5b)_(4:4aCO)
186 OM1	OM	14	689057	689310	690428	691115 2_nonsis	1119	1588	2057	2	31	1	1	0 (2:6)_(4:4aCO)_(3:5)_(3:5a)_(4:4a)
108 OM1	OM	9	37222	39367	42866	43949 2_nonsis	3500	5113	6726	2	31	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(3:5a)_(4:4aCO)
173 OM1	OM	14	116131	116459	118803	119128 2_nonsis	2345	2671	2996	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4aCO)
1/3 OMI	OW	14	110131	110439	110003	117120 2_HUHSIS	4J#J	2071	2770	4	34	1	1	0 (3.3)_(4.4)_(3.3a)_(4.4aCO)

119 OM1	OM	10	189441	190275	192156	192956 2_nonsis		1882	2698	3514	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)
42 OM1	OM	4	614321	614433	617533	617915 2_nonsis		3101	3347	3593	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
87 OM1	OM	7	559914	560083	560364	560455 2_nonsis		282	411	540	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
216 OM1	OM	16	921352	921490	921998	922220 2_nonsis		509	688	867	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
5 OM1	OM	1	184083	184235	184921	185150 2_nonsis		687	877	1066	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
180 OM1	OM	14	372088	372101	373375	373628 2_nonsis		1275	1407	1539	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
112 OM1	OM	9	175126	175167	176578	177082 2_nonsis		1412	1684	1955	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
125 OM1	OM	10	544523	545038	547200	547730 2_nonsis		2163	2685	3206	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
91 OM1	OM	7	733970	733979	734573	734668 2_nonsis		595	646	697	3	20	1	1	0 (2:6)_(5:3)_(2:6)_(4:4aCO)
58 OM1	OM	5	173989	174295	174794	175154 2_nonsis		500	832	1164	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
34 OM1	OM	4	61175	61275	62205	62366 2_nonsis		931	1061	1190	3	20	1	1	0 (3:5)_(6:2)_(5:3)_(4:4aCO)
99 OM1	OM	8	120445	121477	122655	122848 2_nonsis		1179	1791	2402	3	20	1	1	0 (5:3)_(3:5)_(6:2)_(4:4aCO)
164 OM1	OM	13	541852	542119	543392	543706 2_nonsis		1274	1564	1853	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(3:5)_(4:4aCO)
39 OM1 183 OM1	OM OM	4 14	278692 549663	280191 550069	281647 553809	281853 2_nonsis		1457 3741	2309 4147	3160 4553	3	20 20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(5:3)_(4:4a) 0 (2:5)_(5:2)_(4:4aCO)_(5:2)_(4:4a)
138 OM1	OM	11	573530	574134	577779	554217 2_nonsis			4177		3			1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4a) 0 (5:3)_(6:3)_(5:3)_(4:4a-CO)_
1 OM1	OM	1	36160	36898	38689	578230 2_nonsis 38888 2_nonsis		3646 1792	2260	4699 2727	3	20 20	1	1	0 (5:3)_(6:2)_(5:3)_(3:5)_(4:4aCO) 0 (2:6)_(3:5)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
83 OM1	OM	7	427600	427741	431344	431867 2 nonsis		3604	3935	4266	3	20	1	1	0 (3:5) (4:4) (5:3) (4:4aCO) (5:3) (4:4a)
189 OM1	OM	15	170203	170363	172081	431807 2_nonsis 172515 2 nonsis		1719	2015	2311	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)_(3:5)_(4:4aCO)
135 OM1	OM	11	428081	428986	429694	429883 2 nonsis		709	1255	1801	3	21	1	1	0 (4:4ai) (5:3) (3:5) (4:4bCO)
8 OM1	OM	2	70638	70774	72233	72395 2_nonsis		1460	1608	1756	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO)
35 OM1	OM	4	64539	64917	66855	67141 2_nonsis		1939	2270	2601	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO)
9 OM1	OM	2	215989	216051	218741	219119	3	2691	2910	3129	0	2	2	1	1 (3:5)_(4:4ai)_(5:3)_(4:4bCO)
15 OM1	OM	2	430067	431229	435951	436119	3	4723	5387	6051	0	2	2	1	1 (3:5)_(3:5a)_(2:6)_(3:5)_(4:4)_(3:5)_(5:3)_(4:4aCO)
81 OM1	OM	7	271422	271683	273422	273707	3	1740	2012	2284	0	2	2	1	1 (3:5)_(4:4ai)_(4:4bCO)
143 OM1	OM	12	223258	223495	225620	225795	3	2126	2331	2536	0	2	2	1	1 (3:5)_(2:6)_(3:5)_(4:4)_(3:5a)_(4:4aCO)
176 OM1	OM	14	190429	190588	192780	193106	3	2193	2435	2676	0	2	2	1	1 (2:6)_(3:5)_(4:4ai)_(4:4bCO)
96 OM1	OM	7	1050064	1050446	1052107	1052468	3	1662	2033	2403	0	3	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
124 OM1	OM	10	453451	454963	455506	456781 2_nonsis		544	1937	3329	0	3	2	0	2 (3:5)_(4:4aCO)_(3:5a)_(4:4CO)
128 OM1	OM	10	722676	723534	725475	725492 2_nonsis		1942	2379	2815	0	3	2	0	2 (3:5)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4CO)_(5:3)_(4:4)
153 OM1	OM	12	1013592	1014017	1015598	1015774 2_nonsis		1582	1882	2181	0	3	2	0	2 (4:4aCO)_(2:6)_(3:5)_(4:4a)_(2:6)_(3:5a)_(4:4CO)
103 OM2	OM	9	160362	160453	160457	160514	1	5	78	151	1	1	1	0	1 05:03
204 OM2	OM	16	347463	347684	347684	347716	1	1	127	252	1	1	1	0	1 05:03
49 OM2	OM	4	1402857	1402868	1402910	1403082	1	43	134	224	1	1	1	0	1 05:03
143 OM2	OM	12	829264	829433	829433	829534	1	1	135	269	1	1	1	0	1 05:03
112 OM2	OM	10	360316	360588	360588	360746	1	1	215	429	1	1	1	0	1 05:03
86 OM2	OM	7	785318	785828	785828	785851	1	1	267	532	1	1	1	0	1 05:03
5 OM2	OM	2	193664	193715	193715	194226	1	1	281	561	1	1	1	0	1 05:03
164 OM2	OM	13	914620	915009	915009	915182	1	1	281	561	1	1	1	0	1 05:03
135 OM2	OM	12	260086	260298	260496	260584	1	199	348	497	1	1	1	0	1 05:03
92 OM2	OM	8	189521	190024	190024	190339	1	1	409	817	1	1	1	0	1 05:03
39 OM2	OM	4	635784	636201	636352	636465	1	152	416	680	1	1	1	0	1 05:03
152 OM2	OM	13	228322	228901	228901	229206	1	1	442	883	1	1	1	0	1 05:03
76 OM2	OM	7	304247	304566	304734	305050	1	169	486	802	1	1	1	0	1 05:03
189 OM2	OM	15	742445	742492	742716	743206	1	225	493	760	1	1	1	0	1 05:03
59 OM2	OM	5	326423	326990	327079	327363	1	90	515	939	1	1	1	0	1 05:03
100 OM2	OM	9	74241	74340	74723	75152	1	384	647	910	1	1	1	0	1 05:03
128 OM2	OM	11	629864	630615	630615	631180	1	1	658	1315	1	1	1	0	1 05:03
126 OM2	OM	11	521737	521933	522458	522560	1	526	674	822	1	1	1	0	1 05:03
56 OM2	OM	5	131558	132643	132767	133007	1	125	787	1448	1	1	1	0	1 05:03
35 OM2	OM	4	375458	375530	375932	376661	1	403	803	1202	1	1	1	0	1 05:03
33 OM2	OM	4	286258	287699	287699	288063	1	1	903	1804	1	1	1	0	1 05:03
95 OM2	OM	8	419057	419187	420099	420248	1	913	1052	1190	1	1	1	0	1 05:03
13 OM2	OM	2	477368	479516	479516	479752	1	1	1192	2383	1	1	1	0	1 05:03
120 OM2	OM	11	218177	218544	218976	220318	1	433	1287	2140	1	1	1	0	1 05:03
82 OM2	OM	7	590933	591242	592334	592660	1	1093	1410	1726	1	1	1	0	1 05:03
154 OM2 160 OM2	OM	13	388681	388700	388700	388702	1	1	11	20	1	2 2	1	0	1 03:05
160 OM2 109 OM2	OM OM	13 10	707030 79812	707109 79831	707109 79840	707180 79972	1	1 10	75 85	149 159	1	2	1	0	1 03:05 1 03:05
54 OM2	OM	5	79812 42217	42238	42280	42354	1	43	85 90	136	1	2	1	0	1 03:05
34 UM2	OM	5	42217	42238	42280	42334	1	43	90	130	1	2	1	U	1 05.05

216 OM2	OM	16	775448	775673	775673	775730	1	1	141	281	1	2	1	0	1 03:05
199 OM2	OM	16	114414	114586	114586	114774	1	1	180	359	1	2	1	0	1 03:05
104 OM2	OM	9	195082	195274	195274	195521	1	1	220	438	1	2	1	0	1 03:05
198 OM2	OM	16	74885	74937	74937	75355	1	1	235	469	1	2	1	0	1 03:05
133 OM2	OM	12	198146	198396	198484	198532	1	89	237	385	1	2	1	0	1 03:05
107 OM2	OM	10	40683	41107	41107	41211	1	1	264	527	1	2	1	0	1 03:05
44 OM2	OM	4	888734	889122	889122	889358	1	1	312	623	1	2	1	0	1 03:05
147 OM2	OM	12	1001464	1001833	1001922	1002086	1	90	356	621	1	2	1	0	1 03:05
77 OM2	OM	7	356141	356393	356588	356663	1	196	359	521	1	2	1	0	1 03:05
119 OM2	OM	11	174125	174419	174509	174833	1	91	399	707	1	2	1	0	1 03:05
153 OM2	OM	13	273767	274088	274088	274730	1	1	482	962	1	2	1	0	1 03:05
206 OM2	OM	16	425481	425740	426048	426150	1	309	489	668	1	2	1	0	1 03:05
184 OM2	OM	15	487166	487809	487838	488123	1	30	493	956	1	2	1	0	1 03:05
6 OM2	OM	2	202580	202724	203030	203566	1	307	646	985	1	2	1	0	1 03:05
156 OM2	OM	13	511632	512090	512558	512572	1	469	704	939	1	2	1	0	1 03:05
61 OM2	OM	5	342945	343116	343350	344171	1	235	730	1225	1	2	1	0	1 03:05
70 OM2	OM	6	195471	195636	196194	196491	1	559	789	1019	1	2	1	0	1 03:05
66 OM2	OM	5	545109	545863	546141	546545	1	279	857	1435	1	2	1	0	1 03:05
177 OM2	OM	15	82218	82279	83069	83198	1	791	885	979	1	2	1	0	1 03:05
131 OM2	OM	12	124421	124596	124986	126014	1	391	992	1592	1	2	1	0	1 03:05
148 OM2	OM	12	1042570	1042844	1043701	1043895	1	858	1091	1324	1	2	1	0	1 03:05
170 OM2	OM	14	331067	331336	332371	332613	1	1036	1291	1545	1	2	1	0	1 03:05
75 OM2	OM	7	273422	273707	274448	275758	1	742	1539	2335	1	2	1	0	1 03:05
138 OM2	OM	12	521782	522608	522914	525267	1	307	1896	3484	1	2	1	0	1 03:05
144 OM2	OM	12	849651	854846	855154	856994	1	309	3826	7342	1	2	1	0	1 03:05
97 OM2	OM	8	483502	483796	484090	485522	1	295	1157	2019	1	3	1	0	1 5:3_6:2_5:3
50 OM2	OM	4	1417050	1417646	1418937	1419231	1	1292	1736	2180	1	3	1	0	1 5:3_6:2_5:3
83 OM2	OM	7	610674	611145	612267	612759	1	11292	1604	2084	1	4	1	0	
							1						1		1 3:5_4:4_3:5
37 OM2	OM	4	548255	548809	551587	551626	1	2779	3075	3370	1	4	1	0	1 3:5_4:4_3:5_2:6_3:5
207 OM2	OM	16	449172	450060	450430	450669	1	371	934	1496	1	7	1	0	1 5:3_6:2
45 OM2	OM	4	955335	955435	958717	959103	1	3283	3525	3767	1	7	1	0	1 6:2_5:3_4:4_5:3_4:4_5:3_4:4_5:3
81 OM2	OM	7	582077	582172	582429	582790	1	258	485	712	1	8	1	0	1 2:6_3:5
85 OM2	OM	7	732583	733373	733567	733673	1	195	642	1089	1	8	1	0	1 2:6_3:5
180 OM2	OM	15	220116	220335	220880	220974	1	546	702	857	1	8	1	0	1 3:5_4:4_2:6
57 OM2	OM	5	146641	146798	146798	146845	1	1	102	203	1	10	1	0	1 06:02
51 OM2	OM	4	1420794	1420932	1420941	1421025	1	10	120	230	1	10	1	0	1 06:02
14 OM2	OM	2	490619	490686	490686	491476	1	1	429	856	1	10	1	0	1 06:02
42 OM2	OM	4	820502	821075	821075	821822	1	1	660	1319	1	10.1	1	0	1 02:06
88 OM2	OM	7	912431	912560	913222	913393	1	663	812	961	2	11	1	0	1 5:3_5:3a
65 OM2	OM	5	540880	541003	541873	541980	1	871	985	1099	2	11	1	0	1 5:3_5:3a
10 OM2	OM	2	305500	305677	306376	306932	1	700	1066	1431	2	11	1	0	1 5:3_5:3a
90 OM2	OM	8	50050	50186	51314	51378	1	1129	1228	1327	2	11	1	0	1 5:3_5:3a
159 OM2	OM	13	674283	675083	675970	676095	1	888	1350	1811	2	11	1	0	1 5:3_5:3a
190 OM2	OM	15	816620	816745	818428	818557	1	1684	1810	1936	2	11	1	0	1 5:3_5:3a
26 OM2	OM	3	224038	224261	225710	226498	1	1450	1955	2459	2	11	1	0	1 5:3_5:3a
182 OM2	OM	15	315837	316312	316611	317034	1	300	748	1196	2	12	1	0	1 3:5_3:5a
167 OM2	OM	14	168712	169090	169784	169998	1	695	990	1285	2	12	1	0	1 3:5_3:5a
11 OM2	OM	2	323214	323896	324467	324761	1	572	1059	1546	2	12	1	0	1 3:5_3:5a
125 OM2	OM	11	515018	515114	516158	516240	1	1045	1133	1221	2	12	1	0	1 3:5_3:5a
158 OM2	OM	13	666220	666667	667766	668207	1	1100	1543	1986	2	12	1	0	1 3:5_3:5a
52 OM2	OM	4	1452723	1453451	1455354	1455507	1	1904	2344	2783	2	12	1	0	1 3:5_3:5a
116 OM2	OM	10	645177	645288	647196	647651	1	1909	2191	2473	2	14	1	0	1 3:5_4:4_3:5_3:5a
96 OM2	OM	8	437014	437680	439710	440297	1	2031	2657	3282	2	14	1	0	1 3:5_4:4_3:5_3:5a
188 OM2	OM	15	700514	700551	701772	701808	1	1222	1258	1293	2	14	1	0	1 3:5_2:6_3:5_3:5a_4:4_3:5a
93 OM2	OM	8	238630	238746	239033	239430	1	288	544	799	2	15	1	0	1 5:3_4:4_5:3a
212 OM2	OM	16	656563	656605	657509	657678	1	905	1010	1114	2	15	1	0	1 5:3_4:4_5:3a
195 OM2	OM	15	1010000	1010114	1010673	1011684	1	560	1122	1683	2	16	1	0	1 3:5_4:4_3:5a
215 OM2	OM	16	754107	754263	755318	755437	1	1056	1193	1329	2	16	1	0	1 3:5_4:4_3:5a
210 OM2	OM	16	609630	609903	610981	611302	1	1079	1375	1671	2	16	1	0	1 3:5_4:4_3:5a
63 OM2	OM	5	471690	471723	473209	473281	1	1487	1539	1590	2	16	1	0	1 3:5_4:4_3:5a

19 OM2	OM	2	734046	734409	735807	736128	1	1399	1740	2081	2	16	1	0	1 3:5_4:4_3:5a
17 OM2	OM	2	679385	680044	680726	681166	1	683	1232	1780	2	17	1	0	1 5:3_4:4_5:3a_6:2
73 OM2	OM	7	120933	120977	122047	122120	1	1071	1129	1186	2	17	1	0	1 5:3_4:4_5:3a_6:2_5:3a_6:2_5:3a
41 OM2	OM	4	769372	769508	771211	771632	1	1704	1982	2259	2	18	1	0	1 3:5_4:4_3:5a_4:4_3:5a
203 OM2	OM	16	286085	286209	287664	288762	1	1456	2066	2676	2	18	1	0	1 3:5_4:4_3:5a_2:6_3:5a
110 OM2	OM	10	294302	294332	296106	296529	1	1775	2001	2226	2	18	1	0	1 2:6_3:5_4:4_3:5_4:4_3:5a
181 OM2	OM	15	271047	271168	271758	271964	1	591	754	916	2	19	1	0	1 5:3_6:2_5:3a
209 OM2	OM	16	581896	582013	583481	583659	1	1469	1616	1762	2	19	1	0	1 5:3_6:2_5:3a
139 OM2	OM	12	587932	588394	589563	590028	1	1170	1633	2095	2	19	1	0	1 5:3_6:2_5:3a
9 OM2	OM	2	269029	269036	269987	270191	1	952	1057	1161	2	20	1	0	1 3:5_2:6_3:5a
98 OM2	OM	8	503996	505427	506192	506267	1	766	1518	2270	2	20	1	0	1 3:5_2:6_3:5a
68 OM2	OM	6	94545	94981	96991	97235	1	2011	2350	2689	2	21	1	0	1 5:3_6:2_5:3_6:2_5:3a
78 OM2	OM	7	421478	421561	424065	424176	1	2505	2601	2697	2	23	1	0	1 3:5_4:4_2:6_3:5a_4:4_3:5a_4:4_2:6_3:5a
136 OM2	OM	12	367546	367570	368453	368695 2_nonsis		884	1016	1148	3	30	1	0	1 3:5_6:2_3:5
22 OM2	OM	3	50664	51152	51650	52350 2_nonsis		499	1092	1685	3	30	1	0	1 5:3_4:4_3:5
175 OM2	OM	14	730427	730652	731562	732158 2_nonsis		911	1321	1730	3	30	1	0	1 5:3_5:3a_3:5
23 OM2	OM	3	94376	94470	96988	97369 2_nonsis		2519	2756	2992	3	30	1	0	1 5:3_5:3a_5:3b
129 OM2	OM	11	633545	633641	633641	634259 2_nonsis		1	357	713	3	31	1	0	1 4:4ai
161 OM2	OM	13	751553	751891	752521	753954 2_nonsis		631	1516	2400	3	31	1	0	1 5:3_4:4ai_5:3a
108 OM2	OM	10	52186	52869	54311	54420 2_nonsis		1443	1838	2233	3	31	1	0	1 5:3_4:4ai_3:5
145 OM2	OM	12	867405	869664	873021	873153 2_nonsis		3358	4553	5747	3	31	1	0	1 4:4ai_3:5_4:4ai
32 OM2	OM	4	263030	263811	270285	271431 2_nonsis		6475	7438	8400	3	31	1	0	1 4:4ai_3:5_3:5a
123 OM2	OM	11	401736	401769	403011	403407 2_nonsis		1243	1457	1670	3	31	1	0	1 3:5_4:4_4:4ai_5:3
30 OM2	OM	4	169331	170362	173380	174736 2_nonsis		3019	4212	5404	3	31	1	0	1 4:4ai_3:5_2:6_3:5_3:5a
101 OM2	OM	9	100450	102247	103227	103838 2_nonsis		981	2184	3387	3	31	1	0	1 3:5_2:6_3:5a_3:5b_4:4ai_5:3
3 OM2	OM	1	191704	191755	194625	194803 2_nonsis		2871	2985	3098	3	31	1	0	1 5:3_4:4_6:2_4:4_5:3a_4:4ai
15 OM2	OM	2	524315	524415	528294	528370 2_nonsis		3880	3967	4054	3	31	1	0	1 4:4ai_3:5_4:4_3:5_4:4_3:5a
89 OM2	OM	7	986883	986910	988550	988609 2_nonsis		1641	1683	1725	3	31	1	0	1 5:3_4:4_5:3a_4:4_3:5_4:4ai_6:2_5:3a
34 OM2	OM	4	314015	314500	314500	315175 2_nonsis		1	580	1159	1	1	1	1	0 (5:3)_(4:4aCO)
58 OM2	OM	5	184684	185983	185983	186070 2_nonsis		1	693	1385	1	1	1	1	0 (5:3)_(4:4aCO)
186 OM2	OM	15	604804	605119	605119	606232 2_nonsis		1	714	1427	1	1	1	1	0 (5:3)_(4:4aCO)
174 OM2	OM	14	652841	653557	653635	655138 2_nonsis		79	1188	2296	1	1	1	1	0 (5:3)_(4:4aCO)
21 OM2	OM	3	23149	23567	23887	25689 2_nonsis		321	1430	2539	1	1	1	1	0 (5:3)_(4:4aCO)
16 OM2	OM	2	585814	585909	585909	586331 2_nonsis		1	259	516	1	2	1	1	0 (3:5)_(4:4aCO)
162 OM2	OM	13	797688	798060	798090	798261 2_nonsis		31	302	572	1	2	1	1	0 (3:5)_(4:4aCO)
47 OM2	OM	4	1286871	1286949	1287125	1287842 2_nonsis		177	574	970	1	2	1	1	0 (3:5)_(4:4aCO)
121 OM2	OM	11	242705	243550	243838	244481 2_nonsis		289	1032	1775	1	2	1	1	0 (3:5)_(4:4aCO)
118 OM2	OM	11	28441	30068	30068	31754 2_nonsis		1	1657	3312	1	2	1	1	0 (3:5)_(4:4aCO)
202 OM2	OM	16	230335	230413	231052	231144 2_nonsis		640	724	808	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
69 OM2	OM	6	154357	154385	155718	155985 2_nonsis		1334	1481	1627	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
130 OM2	OM	12	95188	97490	97654	98056 2_nonsis		165	1516	2867	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
155 OM2	OM	13	411264	412303	412382	412745 2_nonsis		80	780	1480	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
150 OM2	OM	13	169522	169808	170002	170932 2_nonsis		195	802	1409	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
71 OM2	OM	6	244444	245103	246533	246625 2_nonsis		1431	1806	2180	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
192 OM2	OM	15	903669	903843	904346	904817 2_nonsis		504	826	1147	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
25 OM2	OM	3	162361	162686	163699	164093 2_nonsis		1014	1373	1731	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
62 OM2	OM	5	392326	392813	394083	394357 2_nonsis		1271	1651	2030	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
211 OM2	OM	16	612912	613008	613103	613637 2_nonsis		96	410	724	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
124 OM2	OM	11	491161	491399	491873	492251 2_nonsis		475	782	1089	1	11	1	1	0 (6:2)_(4:4)_(4:4ai)_(4:4bCO)
191 OM2	OM	15	825345	826024	826212	826624 2_nonsis		189	734	1278	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)
12 OM2	OM	2	332548	332630	333382	334070 2_nonsis		753	1137	1521	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
29 OM2	OM	4	140835	141791	143253	143335 2_nonsis		1463	1981	2499	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
165 OM2	OM	14	49011	49737	51868	52069 2_nonsis		2132	2595	3057	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
67 OM2	OM	6	51193	51257	51603	51748 2_nonsis		347	451	554	1	12	1	1	0 (2:6)_(4:4)_(3:5)_(2:6)_(4:4aCO)
84 OM2	OM	7	694539	694708	695230	695342 2_nonsis		523	663	802	1	15	1	1	0 (6:2)_(4:4aCO)
53 OM2	OM	4	1474578	1475249	1475397	1475979 2_nonsis		149	775	1400	1	15	1	1	0 (6:2)_(4:4aCO)
134 OM2	OM	12	257669	257813	257813	258349 2_nonsis		1	340	679	1	16	1	1	0 (2:6)_(4:4aCO)
142 OM2	OM	12	826618	827343	827343	827901 2_nonsis		1	642	1282	1	16	1	1	0 (2:6)_(4:4aCO)
217 OM2	OM	16	829035	829198	829035	829198 2_nonsis		0	81	162	1	100	1	1	0 (4:4aCO)
72 OM2	OM	7	38848	39412	38848	39412 2_nonsis		0	282	563	1	100	1	1	0 (4:4aCO)

7 OM2	OM	2	204536	205151	204536	205151 2_nonsis	0	307	614	1	100	1	1	0 (4:4aCO)
48 OM2	OM	4	1288775	1289394	1288775	1289394 2_nonsis	0	309	618	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
114 OM2	OM	10	450678	451382	450678	451382 2_nonsis	0	352	703	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
91 OM2	OM	8	186453	187527	186453	431382 2_nonsis 187527 2_nonsis	0	537	1073	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
	OM	3		253903			0			1		1		
27 OM2			252633		252633	253903 2_nonsis		635	1269	1	100		1	0 (4:4aCO)
115 OM2	OM	10	570822	573135	570822	573135 2_nonsis	0	1156	2312		100	1	1	0 (4:4aCO)
178 OM2	OM	15	198700	198772	199186	199433 2_nonsis	415	574	732	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
43 OM2	OM	4	859708	859980	861727	862580 2_nonsis	1748	2310	2871	2	30	1	1	0 (6:2)_(5:3)_(5:3a)_(4:4aCO)
173 OM2	OM	14	558085	558811	559885	559919 2_nonsis	1075	1454	1833	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
197 OM2	OM	16	53429	53499	65675	66393 2_nonsis	12177	12570	12963	2	30	1	1	0 (4:4ai)_(5:3)_(5:3a)_(6:2)_(5:3a)_(4:4bCO)
196 OM2	OM	15	1053326	1053371	1055396	1055524 2_nonsis	2026	2112	2197	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3a)_(6:2)_(5:3a)_(4:4a)
179 OM2	OM	15	203386	203506	205574	205723 2_nonsis	2069	2203	2336	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
106 OM2	OM	9	401375	402165	404802	405428 2_nonsis	2638	3345	4052	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
117 OM2	OM	10	704705	704768	707333	707549 2_nonsis	2566	2705	2843	2	31	1	1	0 (3:5)_(3:5a)_(4:4)_(3:5)_(4:4aCO)
18 OM2	OM	2	706449	706983	707509	708202 2_nonsis	527	1140	1752	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4aCO)
132 OM2	OM	12	193985	194032	195201	195525 2_nonsis	1170	1355	1539	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
140 OM2	OM	12	627370	627543	628424	629441 2_nonsis	882	1476	2070	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
64 OM2	OM	5	521844	521857	523683	524394 2_nonsis	1827	2188	2549	2	32	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
176 OM2	OM	15	40365	40497	41495	41838 2_nonsis	999	1236	1472	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(2:6)_(4:4aCO)
111 OM2	OM	10	331024	332595	333385	333992 2_nonsis	791	1879	2967	2	32	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5a)_(4:4a)
102 OM2	OM	9	136172	136619	138293	138305 2_nonsis	1675	1904	2132	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(4:4aCO)
36 OM2	OM	4	430899	430932	432803	432926 2_nonsis	1872	1949	2026	2	32	1	1	0 (3:5)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
94 OM2	OM	8	327083	327422	330227	330629 2_nonsis	2806	3176	3545	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(6:2)_(4:4aCO)
193 OM2	OM	15	941405	941706	944698	945099 2_nonsis	2993	3343	3693	2	32	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5a)_(4:4a)
8 OM2	OM	2	215181	215962	218741	219119 2_nonsis	2780	3359	3937	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(3:5b)_(4:4aCO)
169 OM2	OM	14	270133	270187	271256	271443 2_nonsis	1070	1190	1309	2	32	1	1	0 (5:3)_(4:4ai)_(5:3a)_(4:4bCO)_(6:2)_(4:4b)
187 OM2	OM	15	648434	648663	650442	650943 2_nonsis	1780	2144	2508	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4)_(6:2)_(4:4aCO)
172 OM2	OM	14	486092	486859	488598	488965 2_nonsis	1740	2306	2872	2	32	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5a)_(3:5)_(4:4a)
137 OM2	OM	12	514693	514832	517338	517614 2_nonsis	2507	2714	2920	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4)_(5:3)_(6:2)_(4:4aCO)
99 OM2	OM	9	35774	35955	37222	39244 2_nonsis	1268	2369	3469	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
87 OM2	OM	7	848688	849134	849797	849971 2_nonsis	664	973	1282	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
80 OM2	OM	7	523740	524713	524998	525413 2_nonsis	286	979	1672	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
163 OM2	OM	13	857842	858111	859063	859155 2_nonsis	953	1133	1312	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
20 OM2	OM	2	743899	744063	745085	745190 2_nonsis	1023	1157	1290	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
213 OM2	OM	16	677836	678266	679094	679573 2_nonsis	829	1283	1736	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
38 OM2	OM	4	615258	615413	616624	616689 2_nonsis	1212	1321	1430	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
2 OM2	OM	1	108814	108928	109735	110713 2_nonsis	808	1353	1898	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
171 OM2	OM	14	419770	420029	420961	421631 2_nonsis	933	1397	1860	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
218 OM2	OM	16	887709	888159	890080	890467 2_nonsis	1922	2340	2757	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
74 OM2	OM	7	197230	197465	198476	198752 2_nonsis	1012	1267	1521	3	20	1	1	0 (2:6)_(4:4aCO)_(5:3)_(4:4a)
24 OM2	OM	3	104476	105047	105854	106362 2_nonsis	808	1347	1885	3	20	1	1	0 (3:5)_(6:2)_(5:3)_(4:4aCO)
185 OM2	OM	15	493415	493846	494956	495340 2_nonsis	1111	1518	1924	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
151 OM2	OM	13	213451	213972	215661	215779 2_nonsis	1690	2009	2327	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
113 OM2	OM	10	391555	391631	393918	394217 2_nonsis	2288	2475	2661	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
79 OM2	OM	7	484957	485223	485842	486003 2_nonsis	620	833	1045	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(3:5)_(4:4aCO)
122 OM2	OM	11	308042	308133	309188	309294 2_nonsis	1056	1154	1251	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
40 OM2	OM	4	699280	699436	700752	700773 2_nonsis	1317	1405	1492	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
149 OM2	OM	13	24877	24997	26434	26922 2_nonsis	1438	1741	2044	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
205 OM2	OM	16	406571	406826	409553	409812 2_nonsis	2728	2984	3240	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)_(5:3)_(4:4a)
201 OM2	OM	16	224069	224569	227039	227828 2_nonsis	2471	3115	3758	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
1 OM2	OM	1	51371	51434	52858	52939 2_nonsis	1425	1496	1567	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
141 OM2	OM	12	677132	677323	678817	678971 2_nonsis	1495	1667	1838	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)_(5:3)_(4:4a)
168 OM2	OM	14	210033	210155	211886	211934 2_nonsis	1732	1816	1900	3	20	1	1	0 (5:3)_(3:5)_(4:4)_(3:5)_(5:3)_(4:4aCO)
183 OM2	OM	15	443071	443358	444029	444178 2_nonsis	672	889	1106	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(5:3)_(4:4aCO)
127 OM2	OM	11	526209	526649	527758	528174 2_nonsis	1110	1537	1964	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO) 0 (5:3)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
157 OM2	OM	13	623510	623868	625844	625856 2_nonsis	1977	2161	2345	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(2:6)_(4:4aCO)_(2:6)_(3:5a)_(4:4a)
60 OM2	OM	5	333453	333669	335874	336237 2_nonsis	2206	2495	2783	3	20	1	1	0 (3:3)_(4:4)_(3:3)_(2:0)_(4:4aCO)_(2:0)_(5:3)_(4:4a) 0 (2:6)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
208 OM2	OM	16	528017	528301	534749	535407 2_nonsis	6449	6919	7389	3	20	1	1	
166 OM2	OM	14	108948	109033	113360	113719 2 nonsis	4328	4549	4770	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5a)_(5:3)_(6:2)_(4:4aCO) 0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
28 OM2	OM	4	28077	28487	30545	30752 2_nonsis	2059	2367	2674	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(4:4)_(2:0)_(5:3)_(4:4aCO) 0 (3:5)_(4:4)_(2:6)_(3:5)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
26 OWIZ	OM	4	20077	2040/	30343	JU/JZ Z_HOHSIS	2039	2307	2074	3	20	1	1	0 (3.3)_(4.4)_(2:0)_(3:3)_(3:3)_(0:2)_(3:3)_(0:2)_(3:3a)_(4:4aCO)

4 OM2	OM	2	69355	69616	69901	70006 2_nonsis		286	468	650	3	21	1	1	0 (2:6)_(4:4ai)_(5:3)_(4:4bCO)
194 OM2	OM	15	966472	966571	968210	968244 2_nonsis		1640	1706	1771	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(4:4ai)_(5:3a)_(4:4bCO)
214 OM2	OM	16	684164	685433	687708	687978	3	2276	3045	3813	0	1	2	0	2 (3:5)_(3:5a)_(6:2)_(4:4)
31 OM2	OM	4	183901	183975	185643	185762	3	1669	1765	1860	0	2	2	1	1 (5:3)_(4:4ai)_(5:3a)_(4:4bCO)
46 OM2	OM	4	1125228	1125275	1126330	1126356	3	1056	1092	1127	0	2	2	1	1 (5:3)_(5:3a)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)
55 OM2	OM	5	67311	67575	70022	70335	3	2448	2736	3023	0	2	2	1	1 (5:3)_(5:3a)_(3:5)_(5:3a)_(4:4aCO)
105 OM2	OM	9	267764	268176	268690	269349	3	515	1050	1584	0	2	2	1	1 (4:4aCO)_(5:3)_(4:4a)_(6:2i)_(5:3a)_(6:2a)_(5:3a)_(4:4a)
146 OM2	OM	12	952469	952886	955645	955822	3	2760	3056	3352	0	2	2	1	1 (5:3)_(3:5)_(2:6)_(3:5a)_(3:5)_(3:5b)_(4:4aCO)
200 OM2	OM	16	133867	133951	135687	136628	3	1737	2249	2760	0	2	2	1	1 (3:5)_(4:4ai)_(3:5a)_(2:6)_(5:3)_(4:4bCO)
176 OM3	OM	16	500988	501008	501008	501086	1	1	49	97	1	1	1	0	1 05:03
36 OM3	OM	4	1139520	1139804	1139804		1	1	234		1	1	1	0	1 05:03
						1139987				466					
182 OM3	OM	16	885455	885683	885683	885979	1	1	262	523	1	1	1	0	1 05:03
172 OM3	OM	16	168040	168073	168076	168575	1	4	269	534	1	1	1	0	1 05:03
132 OM3	OM	13	527316	527507	527507	527901	1	1	293	584	1	1	1	0	1 05:03
60 OM3	OM	7	810169	810199	810496	810523	1	298	326	353	1	1	1	0	1 05:03
178 OM3	OM	16	672209	672569	672668	672779	1	100	335	569	1	1	1	0	1 05:03
110 OM3	OM	12	124013	124317	124421	124596	1	105	344	582	1	1	1	0	1 05:03
32 OM3	OM	4	957502	957628	957628	958319	1	1	409	816	1	1	1	0	1 05:03
49 OM3	OM	6	182063	182307	182500	182752	1	194	441	688	1	1	1	0	1 05:03
64 OM3	OM	8	70138	70273	70542	70883	1	270	507	744	1	1	1	0	1 05:03
68 OM3	OM	8	276242	276840	276840	277301	1	1	530	1058	1	1	1	0	1 05:03
18 OM3	OM	3	102669	103556	103649	103757	1	94	591	1087	1	1	1	0	1 05:03
184 OM3	OM	16	920519	920779	921271	921352	1	493	663	832	1	1	1	0	1 05:03
100 OM3	OM	11	283904		284656	284914	1	409	709	1009	1	1	1	0	1 05:03
				284248			-								
27 OM3	OM	4	620963	621879	621894	622375	1	16	714	1411	1	1	1	0	1 05:03
89 OM3	OM	10	311129	311627	311915	312326	1	289	743	1196	1	1	1	0	1 05:03
170 OM3	OM	16	113385	114050	114414	114586	1	365	783	1200	1	1	1	0	1 05:03
119 OM3	OM	12	624838	625064	625064	627007	1	1	1085	2168	1	1	1	0	1 05:03
43 OM3	OM	5	321046	321126	321983	322493	1	858	1152	1446	1	1	1	0	1 05:03
3 OM3	OM	1	112136	113132	113326	114283	1	195	1171	2146	1	1	1	0	1 05:03
122 OM3	OM	12	835692	835791	836343	837497	1	553	1179	1804	1	1	1	0	1 05:03
147 OM3	OM	15	167546	168295	169333	169416	1	1039	1454	1869	1	1	1	0	1 05:03
153 OM3	OM	15	448955	448985	448985	449105	1	1	75	149	1	2	1	0	1 03:05
134 OM3	OM	13	695196	695300	695300	695427	1	1	116	230	1	2	1	0	1 03:05
86 OM3	OM	9	426906	427061	427061	427189	1	1	142	282	1	2	1	0	1 03:05
103 OM3	OM	11	369378	369689	369689	369878	1	1	250	499	1	2	1	0	1 03:05
77 OM3	OM	9	55071	55251	55362	55461	1	112	251	389	1	2	1	0	1 03:05
		4										2			
33 OM3	OM		965951	966501	966501	966530	1	1	290	578	1		1	0	1 03:05
127 OM3	OM	13	228146	228182	228322	228901	1	141	448	754	1	2	1	0	1 03:05
114 OM3	OM	12	286350	286840	286840	287319	1	1	485	968	1	2	1	0	1 03:05
92 OM3	OM	10	503037	503193	503352	503880	1	160	501	842	1	2	1	0	1 03:05
165 OM3	OM	15	942759	943167	943283	943688	1	117	523	928	1	2	1	0	1 03:05
25 OM3	OM	4	404690	404702	404996	405482	1	295	543	791	1	2	1	0	1 03:05
6 OM3	OM	2	27832	28538	28614	28912	1	77	578	1079	1	2	1	0	1 03:05
142 OM3	OM	14	605054	606035	606111	606283	1	77	653	1228	1	2	1	0	1 03:05
107 OM3	OM	11	565093	565270	565671	566185	1	402	747	1091	1	2	1	0	1 03:05
80 OM3	OM	9	185865	188629	188822	188845	1	194	1587	2979	1	2	1	0	1 03:05
179 OM3	OM	16	687978	688591	689677	691459	1	1087	2284	3480	1	2	1	0	1 03:05
137 OM3	OM	14	29547	32285	32426	34717	1	142	2656	5169	1	2	1	0	1 03:05
5 OM3	OM	1	190429	190558	190636	190880	1	79	265	450	1	3	1	0	1 5:3_4:4_5:3
101 OM3	OM	11	328709	329482	329590	330549	1	109	974	1839	1	3	1	0	1 5:3_6:2_5:3
12 OM3		2					1				1	4			
	OM		495218	495468	496048	496540	-	581	951	1321	-		1	0	1 3:5_4:4_3:5
74 OM3	OM	8	516015	516158	517376	517399	1	1219	1301	1383	1	4	1	0	1 3:5_2:6_3:5
162 OM3	OM	15	835656	836062	836505	836747	1	444	767	1090	1	7	1	0	1 5:3_6:2
34 OM3	OM	4	1007834	1008485	1008685	1009606	1	201	986	1771	1	7	1	0	1 5:3_6:2
106 OM3	OM	11	526688	527413	527758	528174	1	346	916	1485	1	7	1	0	1 5:3_4:4_5:3_6:2
76 OM3	OM	9	33062	33143	33434	33678	1	292	454	615	1	8	1	0	1 2:6_3:5
85 OM3	OM	9	421278	421475	421791	422134	1	317	586	855	1	8	1	0	1 3:5_2:6
130 OM3	OM	13	355571	355643	363140	363478	1	7498	7702	7906	1	8	1	0	1 3:5_2:6
113 OM3	OM	12	258730	259051	260496	260584	1	1446	1650	1853	2	11	1	0	1 5:3_5:3a

94 OM3	OM	10	705542	705639	706547	706608	1	909	987	1065	2	12	1	0	1 3:5_3:5a
116 OM3	OM	12	415898	416026	417083	417137	1	1058	1148	1238	2	12	1	0	1 3:5_3:5a
82 OM3	OM	9	268690	269349	270121	270435	1	773	1259	1744	2	12	1	0	1 3:5_3:5a
59 OM3	OM	7	784625	785199	785907	786618	1	709	1351	1992	2	12	1	0	1 3:5_3:5a
97 OM3	OM	11	88322	88618	90412	90586	1	1795	2029	2263	2	12	1	0	1 3:5_3:5a
171 OM3	OM	16	161519	161768	164063	164740	1	2296	2758	3220	2	12	1	0	1 3:5_3:5a
164 OM3	OM	15	929212	929593	932673	933245	1	3081	3557	4032	2	13	1	0	1 5:3_4:4_5:3_6:2_5:3_5:3a
56 OM3	OM	7	609903	609928	611145	611214	1	1218	1264	1310	2	14	1	0	1 3:5_3:5a_2:6_3:5a
47 OM3	OM	6	113619	113688	115088	115119	1	1401	1450	1499	2	14	1	0	1 3:5_4:4_3:5_3:5a
158 OM3	OM	15	732609	733385	733953	735184	1	569	1572	2574	2	14	1	0	1 3:5_4:4_3:5_3:5a
13 OM3	OM	2	514893	515049	515792	515871	1	744	861	977	2	15	1	0	1 5:3_4:4_5:3a
166 OM3	OM	15	967506	967611	968970	968991	1	1360	1422	1484	2	15	1	0	1 5:3_4:4_5:3a
163 OM3	OM	15	890957	891275	892523	892725	1	1249	1508	1767	2	15	1	0	1 5:3_4:4_5:3a
129 OM3	OM	13	346254	346559	347796	349796	1	1238	2390	3541	2	15	1	0	1 5:3_4:4_5:3a
63 OM3	OM	7	1016792	1017034	1019970	1020978	1	2937	3561	4185	2	15	1	0	1 5:3_4:4_5:3a
117 OM3	OM	12	554168	554190	554937	555282	1	748	931	1113	2	16	1	0	1 3:5_4:4_3:5a
75 OM3	OM	8	521408	521787	523245	523268	1	1459	1659	1859	2	16	1	0	1 3:5_4:4_3:5a
174 OM3	OM	16	371914	372742	374261	374470	1	1520	2038	2555	2	16	1	0	1 3:5_4:4_3:5a
20 OM3	OM	3	250253	250855	252633	253903	1	1779	2714	3649	2	16	1	0	1 3:5_4:4_3:5a
66 OM3	OM	8	194830	195121	196468	196529	1	1348	1523	1698	2	17	1	0	1 6:2_5:3_4:4_5:3a_4:4_5:3a
159 OM3	OM	15	761321	761947	763262	763613	1	1316	1804	2291	2	23	1	0	1 5:3_4:4_6:2_5:3a
1 OM3	OM	1	46375	46723	50024	50204 2_nonsis		3302	3565	3828	3	30	1	0	1 3:5_3:5a
40 OM3	OM	5	55841	55880	56829	57131 2_nonsis		950	1120	1289	3	30	1	0	1 3:5_3:5a_3:5b
70 OM3	OM	8	401408	401729	403805	404246 2_nonsis		2077	2457	2837	3	30	1	0	1 3:5_3:5a_3:5b
154 OM3	OM	15	478750	478915	481588	481817 2_nonsis		2674	2870	3066	3	30	1	0	1 5:3_5:3a_4:4_3:5
91 OM3	OM	10	458530	458980	461843	461906 2_nonsis		2864	3120	3375	3	30	1	0	1 3:5_5:3_4:4_5:3a
121 OM3 155 OM3	OM OM	12 15	815561 532110	816037	820606	821384 2_nonsis		4570 3320	5196	5822	3	30	1	0	1 6:2_5:3_6:2_4:4_3:5
8 OM3	OM	2	180607	532911 181279	536230 182436	538230 2_nonsis 182643 2 nonsis		1158	4720 1597	6119 2035	3	31 31	1	0	1 3:5_4:4ai 1 5:3 4:4 4:4ai
95 OM3	OM	11	32124	33673	35505	35593 2_nonsis		1833	2651	3468	3	31	1	0	1 3:5_4:4_4:4ai 1 4:4ai_3:5_3:5a
83 OM3	OM	9	333081	333345	335079	336156 2_nonsis		1735	2405	3074	3	31	1	0	1 5:3_4:4_5:3a_4:4ai
96 OM3	OM	11	77827	78581	81388	81532 2_nonsis		2808	3256	3704	3	31	1	0	1 3:5_4:4_5:3_6:2_5:3_4:4ai_4:4_3:5a
67 OM3	OM	8	211004	211042	211042	211315 2_nonsis		1	156	310	1	1	1	1	0 (5:3)_(4:4aCO)
88 OM3	OM	10	192156	192956	192956	193023 2_nonsis		1	434	866	1	1	1	1	0 (5:3)_(4:4aCO)
157 OM3	OM	15	675019	675643	675643	675894 2_nonsis		1	438	874	1	1	1	1	0 (5:3)_(4:4aCO)
55 OM3	OM	7	523417	523732	523740	524713 2_nonsis		9	652	1295	1	1	1	1	0 (5:3)_(4:4aCO)
141 OM3	OM	14	425816	427278	427451	427715 2_nonsis		174	1036	1898	1	1	1	1	0 (5:3)_(4:4aCO)
143 OM3	OM	14	608001	610323	610323	610397 2_nonsis		1	1198	2395	1	1	1	1	0 (5:3)_(4:4aCO)
73 OM3	OM	8	510685	510752	511816	512259 2_nonsis		1065	1319	1573	1	1	1	1	0 (5:3)_(4:4aCO)
10 OM3	OM	2	426191	426299	427091	427568 2_nonsis		793	1085	1376	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
128 OM3	OM	13	306097	306566	306778	307008 2_nonsis		213	562	910	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
169 OM3	OM	16	105356	105755	106109	106351 2_nonsis		355	675	994	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
136 OM3	OM	13	880477	880820	881086	882052 2_nonsis		267	921	1574	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
54 OM3	OM	7	398049	398825	399032	399494 2_nonsis		208	826	1444	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
28 OM3	OM	4	725692	726379	726870	727318 2_nonsis		492	1059	1625	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
102 OM3	OM	11	355110	355272	355474	355535 2_nonsis		203	314	424	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
131 OM3	OM	13	485052	485130	485305	485712 2_nonsis		176	418	659	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
79 OM3	OM	9	169471	169640	170156	170408 2_nonsis		517	727	936	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
175 OM3	OM	16	444920	445378	445861	445985 2_nonsis		484	774	1064	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
140 OM3	OM	14	326722	327569	332884	333286 2_nonsis		5316	5940	6563	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
149 OM3	OM	15	189367	189822	193609	193685 2_nonsis		3788	4053	4317	1	11	1	1	0 (4:4ai)_(4:4bCO)
51 OM3	OM	7	66795	67477	69315	69578 2_nonsis		1839	2311	2782	1	11	1	1	0 (5:3)_(4:4)_(4:4ai)_(4:4bCO)
39 OM3	OM	4	1453865	1454543	1454648	1454951 2_nonsis		106	596	1085	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
111 OM3	OM	12	180421	180545	180860	181518 2_nonsis		316	706	1096	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
124 OM3	OM	12	1012226	1013592	1014017	1014198 2_nonsis		426	1199	1971	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
144 OM3	OM	14	651410	652054	652841	653557 2_nonsis		788	1467	2146	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
118 OM3	OM	12	567266	568114	568917	569539 2_nonsis		804	1538	2272	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
115 OM3	OM	12	318011	318672	319960	320465 2_nonsis		1289	1871	2453	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
133 OM3	OM	13	626104	626185	626430	627290 2_nonsis		246	716	1185	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
71 OM3	OM	8	422434	422538	423045	423870 2_nonsis		508	972	1435	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)

61 OM3	OM	7	847980	848452	849134	849405 2_nonsis	683	1054	1424	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
21 OM3	OM	4	19322	19376	20444	20659 2_nonsis	1069	1203	1336	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
24 OM3	OM	4	363860	365434	366072	366513 2_nonsis	639	1646	2652	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
146 OM3	OM	15	109584	110892	111855	111925 2_nonsis	964	1652	2340	1	12	1	1	0 (5:3)_(4:4aCO)_(5:3)_(4:4a)
78 OM3	OM	9	129907	130004	130049	130270 2_nonsis	46	204	362	1	15	1	1	0 (6:2)_(4:4aCO)
26 OM3	OM	4	550499	550672	550893	551387 2_nonsis	222	555	887	1	15	1	1	0 (6:2)_(4:4aCO)
81 OM3	OM	9	249032	249546	249546	250194 2_nonsis	1	581	1161	1	15	1	1	0 (6:2)_(4:4aCO)
99 OM3	OM	11	185334	185846	185846	186668 2_nonsis	1	667	1333	1	15	1	1	0 (6:2)_(4:4aCO)
19 OM3	OM	3	196331	196781	197306	197389 2_nonsis	526	792	1057	1	15	1	1	0 (6:2)_(4:4aCO)
41 OM3	OM	5	85103	85578	85693	86696 2_nonsis	116	854	1592	1	15	1	1	0 (6:2)_(4:4aCO)
183 OM3	OM	16	888536	888652	888868	888934 2_nonsis	217	307	397	1	16	1	1	0 (2:6)_(4:4aCO)
42 OM3	OM	5	234654	234744	234751	235773 2_nonsis	8	563	1118	1	16	1	1	0 (2:6)_(4:4aCO)
156 OM3	OM	15	607260	607371	607371	608818 2_nonsis	1	779	1557	1	16	1	1	0 (2:6)_(4:4aCO)
93 OM3	OM	10	631130	632972	632972	633146 2 nonsis	1	1008	2015	1	16	1	1	0 (2:6) (4:4aCO)
125 OM3	OM	13	50955	51084	50955	51084 2_nonsis	0	64	128	1	100	1	1	0 (4:4aCO)
69 OM3	OM	8	328366	328590	328366	328590 2_nonsis	0	112	223	1	100	1	1	0 (4:4aCO)
173 OM3	OM		225893		225893		0	133		1		1	1	0 (4:4aCO) 0 (4:4aCO)
		16		226160		226160 2_nonsis			266		100			
11 OM3	OM	2	493123	493536	493123	493536 2_nonsis	0	206	412	1	100	1	1	0 (4:4aCO)
35 OM3	OM	4	1011449	1011936	1011449	1011936 2_nonsis	0	243	486	1	100	1	1	0 (4:4aCO)
112 OM3	OM	12	253274	253791	253274	253791 2_nonsis	0	258	516	1	100	1	1	0 (4:4aCO)
177 OM3	OM	16	535437	535979	535437	535979 2_nonsis	0	271	541	1	100	1	1	0 (4:4aCO)
31 OM3	OM	4	926737	927283	926737	927283 2_nonsis	0	273	545	1	100	1	1	0 (4:4aCO)
90 OM3	OM	10	396063	396638	396063	396638 2_nonsis	0	287	574	1	100	1	1	0 (4:4aCO)
50 OM3	OM	6	225457	226036	225457	226036 2_nonsis	0	289	578	1	100	1	1	0 (4:4aCO)
58 OM3	OM	7	765415	766068	765415	766068 2_nonsis	0	326	652	1	100	1	1	0 (4:4aCO)
167 OM3	OM	15	1042440	1043118	1042440	1043118 2_nonsis	0	339	677	1	100	1	1	0 (4:4aCO)
120 OM3	OM	12	810333	811301	810333	811301 2_nonsis	0	484	967	1	100	1	1	0 (4:4aCO)
44 OM3	OM	5	362962	364031	362962	364031 2_nonsis	0	534	1068	1	100	1	1	0 (4:4aCO)
22 OM3	OM	4	133068	134651	133068	134651 2_nonsis	0	791	1582	1	100	1	1	0 (4:4aCO)
98 OM3	OM	11	141122	143878	141122	143878 2_nonsis	0	1378	2755	1	100	1	1	0 (4:4aCO)
145 OM3	OM	15	22043	39380	22043	39380 2_nonsis	0	8668	17336	1	100	1	1	0 (4:4aCO)
123 OM3	OM	12	892436	930472	892436	930472 2_nonsis	0	19018	38035	1	100	1	1	0 (4:4aCO)
108 OM3	OM	11	629129	629639	632117	632654 2_nonsis	2479	3002	3524	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
139 OM3	OM	14	293347	294319	295803	295990 2_nonsis	1485	2064	2642	2	30	1	1	0 (4:4aCO)_(5:3)_(5:3a)_(4:4a)
161 OM3	OM	15	802784	803471	804529	804694 2_nonsis	1059	1484	1909	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
148 OM3	OM	15	185107	185134	186970	187008 2_nonsis	1837	1869	1900	2	31	1	1	0 (3:5)_(3:5a)_(3:5b)_(4:4aCO)
29 OM3	OM	4	835164	835319	836867	837275 2_nonsis	1549	1830	2110	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4aCO)
4 OM3	OM	1	130254	130292	132066	135319 2_nonsis	1775	3420	5064	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4aCO)
48 OM3	OM	6	173398	173500	174556	174682 2_nonsis	1057	1170	1283	2	32	1	1	0 (3:5)_(4:4aCO)_(2:6)_(3:5a)_(4:4a)
9 OM3	OM	2	299901	301455	302473	302626 2 nonsis	1019	1872	2724	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(2:6)_(4:4aCO)
65 OM3	OM	8	176184	176351	178314	178619 2_nonsis	1964	2199	2434	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(3:5b)_(4:4aCO)
160 OM3	OM	15	779309	779467	780072	780180 2_nonsis	606	738	870	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
53 OM3	OM	7	253383	253849	254422	254489 2_nonsis	574	840	1105	3	20	1	1	0 (3:5)_(5:2)_(4:4aCO)
138 OM3	OM	14	109914	110232	110961	111039 2_nonsis	730	927	1103	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
72 OM3		8	455744						1799			1		
	OM			455850	457364	457544 2_nonsis	1515	1657		3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
126 OM3	OM	13	132751	132818	134000	136477 2_nonsis	1183	2454	3725	3	20	-	1	0 (3:5)_(5:3)_(4:4aCO)
45 OM3	OM	5	452629	452746	452954	453437 2_nonsis	209	508	807	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)
181 OM3	OM	16	812845	812990	813489	813633 2_nonsis	500	644	787	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(4:4aCO)
14 OM3	OM	2	701207	701303	702673	703042 2_nonsis	1371	1603	1834	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
57 OM3	OM	7	676875	677169	678883	679675 2_nonsis	1715	2257	2799	3	20	1	1	0 (5:3)_(6:2)_(3:5)_(4:4aCO)
2 OM3	OM	1	81841	82076	84046	84858 2_nonsis	1971	2494	3016	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
87 OM3	OM	10	69155	69275	69814	70030 2_nonsis	540	707	874	3	20	1	1	0 (2:6)_(3:5)_(5:3)_(3:5)_(4:4aCO)
152 OM3	OM	15	396447	396613	397394	397607 2_nonsis	782	971	1159	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)_(6:2)_(4:4a)
84 OM3	OM	9	374268	374496	375220	375595 2_nonsis	725	1026	1326	3	20	1	1	0 (6:2)_(3:5)_(5:3)_(3:5)_(4:4aCO)
151 OM3	OM	15	356119	356505	357367	357554 2_nonsis	863	1149	1434	3	20	1	1	0 (6:2)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
7 OM3	OM	2	86293	86416	87833	88022 2_nonsis	1418	1573	1728	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(6:2)_(4:4aCO)
180 OM3	OM	16	739738	739829	741423	741972 2_nonsis	1595	1914	2233	3	20	1	1	0 (6:2)_(5:3)_(4:4)_(3:5)_(4:4aCO)
52 OM3	OM	7	147249	147427	147855	148827 2_nonsis	429	1003	1577	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(5:3)_(6:2)_(4:4aCO)
30 OM3	OM	4	888734	889122	890417	890461 2_nonsis	1296	1511	1726	3	20	1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(5:3)_(4:4aCO)
37 OM3	OM	4	1257459	1257868	1259982	1260032 2_nonsis	2115	2344	2572	3	20	1	1	0 (5:3)_(4:4)_(5:3a)_(6:2)_(3:5)_(4:4aCO)
						=								

38 OM3	OM	4	1334061	1334142	1335831	1337684 2_nonsis		1690	2656	3622	3	20	1	1	0 (5:3)_(6:2)_(4:4)_(5:3)_(2:6)_(4:4aCO)
135 OM3	OM	13	759962	760211	762993	763154 2_nonsis		2783	2987	3191	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(3:5)_(2:6)_(3:5)_(5:3a)_(6:2)_(4:4aCO)_(5:3a)_(3:5)_(5:3a)_(4:4a)
23 OM3	OM	4	301375	301751	303260	303504 2_sis		1510	1819	2128	0	1	2	0	2 (5:3)_(5:3a)_(4:4)
150 OM3	OM	15	216181	216247	216499	217333 2_sis		253	702	1151	0	1	2	0	2 (3:5)_(2:6i)_(4:4)
168 OM3	OM	15	1056819	1056865	1058977	1059193 2_sis		2113	2243	2373	0	1	2	0	2 (5:3)_(5:3a)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4)
15 OM3	OM	2	735399	735582	739813	739882	4	4232	4357	4482	0	2	2	1	1 (4:4ai)_(6:2)_(4:4ai)_(5:3)_(4:4bi)_(5:3)_(6:2)_(5:3a)_(4:4ci)_(4:4dCO)
46 OM3	OM	6	95632	95746	97819	97944	3	2074	2193	2311	0	2	2	1	1 (6:2)_(4:4aCO)_(3:5)_(4:4a)
62 OM3	OM	7	938789	938924	940087	940564	3	1164	1469	1774	0	2	2	1	1 (5:3)_(4:4)_(3:5)_(4:4aCO)
105 OM3	OM	11	477203	477776	479195	479521	3	1420	1869	2317	0	2	2	1	1 (3:5)_(6:2)_(4:4aCO)
109 OM3	OM	12	85799	85916	88557	89489	3	2642	3166	3689	0	2	2	1	1 (5:3)_(4:4ai)_(4:4)_(6:2)_(4:4)_(3:5)_(6:2)_(4:4bCO)
16 OM3	OM	3	40637	40987	43107	43304 2_nonsis		2121	2394	2666	0	3	2	0	2 (5:3)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4CO)
17 OM3	OM	3	54721	55672	59465	59925 2_nonsis		3794	4499	5203	0	3	2	0	2 (3:5)_(2:6)_(4:4aCO)_(4:4CO)
104 OM3	OM	11	381058	381640	383538	383706 2_nonsis		1899	2273	2647	0	3	2	0	2 (5:3)_(4:4aCO)_(5:3)_(6:2)_(4:4CO)_(5:3a)_(4:4)
66 OM4	OM	7	584200	584249	584298	584414	1	50	132	213	1	1	1	0	1 05:03
135 OM4	OM	13	540798	541071	541071	541246	1	1	224	447	1	1	1	0	1 05:03
3 OM4	OM	1	71116	71281	71312	71535	1	32	225	418	1	1	1	0	1 05:03
115 OM4	OM	12	377594	377691	377750	378126	1	60	296	531	1	1	1	0	1 05:03
126 OM4	OM	13	29994	30303	30379	30523	1	77	303	528	1	1	1	0	1 05:03
129 OM4	OM	13	160280	160611	160785	160953	1	175	424	672	1	1	1	0	1 05:03
40 OM4	OM	4	1011449	1011936	1011970	1012387	1	35	486	937	1	1	1	0	1 05:03
14 OM4	OM	2	410015	410900	410900	410992	1	1	489	976	1	1	1	0	1 05:03
175 OM4	OM	16	74327	74884	74937	75355	1	54	541	1027	1	1	1	0	1 05:03
10 OM4	OM	2	192576	193122	193122	193664	1	1	544	1087	1	1	1	0	1 05:03
168 OM4	OM	15	848635	848657	849274	849337	1	618	660	701	1	1	1	0	1 05:03
185 OM4	OM	16	712507	713201	713201	713880	1	1	687	1372	1	1	1	0	1 05:03
8 OM4	OM	2	135796	135971	136348	136840	1	378	711	1043	1	1	1	0	1 05:03
112 OM4	OM	12	99653	100126	100583	100678	1	458	741	1024	1	1	1	0	1 05:03
5 OM4	OM	1	170726	170945	170945	172280	1	1	777	1553	1	1	1	0	1 05:03
80 OM4	OM	8	411072	411599	412127	412418	1	529	937	1345	1	1	1	0	1 05:03
102 OM4	OM	11	114199	114400	114933	115636	1	534	985	1436	1	1	1	0	1 05:03
104 OM4	OM	11	245116	246336	246873	247464	1	538	1443	2347	1	1	1	0	1 05:03
42 OM4	OM	4	1141710	1142883	1143838	1143894	1	956	1570	2183	1	1	1	0	1 05:03
88 OM4	OM	9	361353	361360	362523	363445	1	1164	1628	2091	1	1	1	0	1 05:03
167 OM4	OM	15	837247	837630	839012	839332	1	1383	1734	2084	1	1	1	0	1 05:03
20 OM4	OM	2	735240	735363	735363	735399	1	1	80	158	1	2	1	0	1 03:05
24 OM4	OM	3	153893	153973	153973	154067	1	1	87	173	1	2	1	0	1 03:05
13 OM4	OM	2	341632	341930	341973	342023	1	44	217	390	1	2	1	0	1 03:05
29 OM4	OM	4	159315	159567	159567	159777	1	1	231	461	1	2	1	0	1 03:05
19 OM4	OM	2	642483	642776	642776	643134	1	1	326	650	1	2	1	0	1 03:05
176 OM4	OM	16	214281	214333	214684	214724	1	352	397	442	1	2	1	0	1 03:05
180 OM4	OM	16	529035	529207	529418	529663	1	212	420	627	1	2	1	0	1 03:05
110 OM4	OM	12	22811	22902	23199	23393	1	298	440	581	1	2	1	0	1 03:05
11 OM4	OM	2	217015	217070	217109	218039	1	40	532	1023	1	2	1	0	1 03:05
178 OM4	OM	16	372742	373522	373522	373847	1	1	553	1104	1	2	1	0	1 03:05
2 OM4	OM	1	60267	60417	61084	61164	1	668	782	896	1	2	1	0	1 03:05
121 OM4	OM	12	690280	690475	690781	691605	1	307	816	1324	1	2	1	0	1 03:05
159 OM4	OM	15	442786	442914	443611	443738	1	698	825	951	1	2	1	0	1 03:05
63 OM4	OM	7	270608	270688	271853	272144	1	1166	1351	1535	1	2	1	0	1 03:05
111 OM4	OM	12	85595	85625	86634	87317	1	1010	1366	1721	1	2	1	0	1 03:05
44 OM4	OM	4	1270902	1271755	1272164	1272726	1	410	1117	1823	1	3	1	0	1 5:3_4:4_5:3
15 OM4	OM	2	503402	504535	505298	506138	1	764	1750	2735	1	4	1	0	1 3:5_4:4_3:5
22 OM4	OM	3	60704	60997	61457	61855	1	461	806	1150	1	7	1	0	1 5:3_6:2
155 OM4	OM	15	145798	146225	147007	150962	1	783	2973	5163	1	7	1	0	1 5:3_6:2
173 OM4	OM	15	1039293	1039487	1039586	1039607	1	100	207	313	1	8	1	0	1 2:6_3:5
60 OM4	OM	7	123330	123839	124322	124671	1	484	912	1340	1	8	1	0	1 3:5_2:6
170 OM4	OM	15	953320	953577	954310	954766	1	734	1090	1445	1	8	1	0	1 3:5_2:6
37 OM4	OM	4	820502	821075	821822	822225	1	748	1235	1722	1	8	1	0	1 2:6_3:5
142 OM4	OM	14	34396	34412	34917	37063	1	506	1586	2666	1	8	1	0	1 2:6_3:5
174 OM4	OM	16	56116	56137	64540	65675	1	8404	8981	9558	1	8	1	0	1 2:6_3:5_2:6_3:5
90 OM4	OM	10	68659	68967	68967	69094	1	1	218	434	1	10	1	0	1 06:02

144 OM4	OM	14	116892	116973	117253	117326	1	281	357	433	1	10	1	0	1 06:02
87 OM4	OM	9	249032	249546	249546	250194	1	1	581	1161	1	10.1	1	0	1 02:06
70 OM4	OM	7	766797	767046	767446	767698	1	401	651	900	2	11	1	0	1 5:3_5:3a
30 OM4	OM	4	177807	178219	178306	179632	1	88	956	1824	2	11	1	0	1 5:3_5:3a
32 OM4	OM	4	333754	334214	334954	335332	1	741	1159	1577	2	11	1	0	1 5:3_5:3a
172 OM4	OM	15	1024766	1025192	1026039	1026427	1	848	1254	1660	2	11	1	0	1 5:3_5:3a
138 OM4	OM	13	713980	715257	715953	715971	1	697	1344	1990	2	11	1	0	1 5:3_5:3a
122 OM4	OM	12	703815	703971	705221	705602	1	1251	1519	1786	2	11	1	0	1 5:3_5:3a
107 OM4	OM	11	472114	472789	474395	474932	1	1607	2212	2817	2	11	1	0	1 5:3_5:3a
147 OM4	OM	14	341067	341465	342273	342387	1	809	1064	1319	2	12	1	0	1 3:5_3:5a
38 OM4	OM	4	870568	870749	871483	878186	1	735	4176	7617	2	12	1	0	1 3:5_3:5a
120 OM4	OM	12	677323	677545	678541	678658	1	997	1166	1334	2	13	1	0	1 5:3_5:3a_4:4_5:3a
50 OM4	OM	5	233356	234239	234931	235495	1	693	1416	2138	2	14	1	0	1 3:5_2:6_3:5_3:5a
184 OM4	OM	16	699223	699663	703259	703359	1	3597	3866	4135	2	14	1	0	1 3:5_3:5a_2:6_3:5a
61 OM4	OM	7	190505	190661	191252	191348	1	592	717	842	2	15	1	0	1 5:3_4:4_5:3a
165 OM4	OM	15	769002	769092	769620	770027	1	529	777	1024	2	15	1	0	1 5:3_4:4_5:3a
131 OM4	OM	13	230470	230627	231947	232186	1	1321	1518	1715	2	15	1	0	1 5:3_4:4_5:3a
62 OM4	OM	7	225112	225550	226354	226711	1	805	1202	1598	2	16	1	0	1 3:5_4:4_3:5a
92 OM4	OM	10	128154	128296	129510	129833	1	1215	1447	1678	2	17	1	0	1 5:3_4:4_5:3a_6:2_5:3a
188 OM4	OM	16	840103	840263	841702	842073	1	1440	1705	1969	2	17	1	0	1 5:3_4:4_5:3a_4:4_5:3a
156 OM4	OM	15	215043	215265	216039	216075	1	775	903	1031	2	19	1	0	1 5:3_6:2_5:3a
99 OM4	OM	10	723948	724020	724519	724641	1	500	596	692	2	20	1	0	1 3:5_2:6_3:5a
166 OM4	OM	15	832326	832546	833472	833904	1	927	1252	1577	2	20	1	0	1 3:5_2:6_3:5a
157 OM4	OM	15	251789	252485	256152	256235	1	3668	4057	4445	2	20	1	0	1 3:5_2:6_3:5a
139 OM4	OM	13	797688	798060	798090	798261 2_nonsis		31	302	572	3	30	1	0	1 03:05
124 OM4	OM	12	860959	861841	861841	863244 2_nonsis		1	1143	2284	3	30	1	0	1 03:05
73 OM4	OM	7	1022499	1022816	1023277	1023633 2_nonsis		462	798	1133	3	30	1	0	1 3:5_5:3
105 OM4	OM	11	254966	255050	255714	256637 2_nonsis		665	1168	1670	3	30	1	0	1 5:3_3:5
57 OM4	OM	6	226919	227043	229991	230223 2_nonsis		2949	3126	3303	3	30	1	0	1 3:5_3:5a_3:5b
130 OM4	OM	13	191318	191452	192436	192717 2_nonsis		985	1192	1398	3	30	1	0	1 5:3_4:4_3:5_2:6
93 OM4	OM	10	314642	314885	317046	317150 2_nonsis		2162	2335	2507	3	30	1	0	1 5:3_4:4_2:6_3:5
171 OM4	OM	15	985932	986343	989301	989690 2_nonsis		2959	3358	3757	3	30	1	0	1 5:3_4:4_5:3a_5:3b
59 OM4	OM	7	72181	72738	76989	78426 2_nonsis		4252	5248	6244	3	30	1	0	1 5:3_4:4_5:3_4:4_5:3_5:3a_6:2
85 OM4	OM	9	53238	53717	54480	55071 2_nonsis		764	1298	1832	3	31	1	0	1 4:4ai_5:3_4:4ai_5:3a
108 OM4	OM	11	502040	502594	506842	506935 2_nonsis		4249	4572	4894	3	31	1	0	1 3:5_4:4ai_3:5_3:5a
69 OM4	OM	7	677412	678405	678405	678750 2_nonsis		1	669	1337	1	1	1	1	0 (5:3)_(4:4aCO)
125 OM4	OM	12	1009719	1011169	1011170	1011621 2_nonsis		2	952	1901	1	1	1	1	0 (5:3)_(4:4aCO)
163 OM4	OM	15	732609	733385	733953	735107 2_nonsis		569	1533	2497	1	1	1	1	0 (5:3)_(4:4aCO)
68 OM4	OM	7	633985	634428	634428	634525 2_nonsis		1	270	539	1	2	1	1	0 (3:5)_(4:4aCO)
25 OM4	OM	3	163371	163645	163699	164093 2_nonsis		55	388	721	1	2	1	1	0 (3:5)_(4:4aCO)
96 OM4	OM	10	471025	471532	471532	472011 2_nonsis		1	493	985	1	2	1	1	0 (3:5)_(4:4aCO)
106 OM4	OM	11	456155	456734	457094	457349 2_nonsis		361	777	1193	1	2	1	1	0 (3:5)_(4:4aCO)
82 OM4	OM	8	483502	483796	484090	485522 2_nonsis		295	1157	2019	1	2	1	1	0 (3:5)_(4:4aCO)
143 OM4	OM	14	79325	79763	80433	81575 2_nonsis		671	1460	2249	1	2	1	1	0 (3:5)_(4:4aCO)
51 OM4	OM	5	296971	297515	299873	300269 2_nonsis		2359	2828	3297	1	2	1	1	0 (3:5)_(4:4aCO)
23 OM4	OM	3	77505	77826	78844	78909 2_nonsis		1019	1211	1403	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
152 OM4	OM	14	646547	646799	647174	647815 2_nonsis		376	822	1267	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
27 OM4	OM	4	83687	83831	84518	84625 2_nonsis		688	813	937	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
78 OM4	OM	8	221372	221854	222996	223791 2_nonsis		1143	1781	2418	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
53 OM4	OM	5	521881	522010	522899	523260 2_nonsis		890	1134	1378	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
128 OM4	OM	13	119630	120376	120995	121603 2_nonsis		620	1296	1972	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
91 OM4	OM	10	77203	78874	79138	79551 2_nonsis		265	1306	2347	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
89 OM4	OM	9	398092	398246	398583	398957 2_nonsis		338	601	864	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
7 OM4	OM	2	110746	110917	112684	113236 2_nonsis		1768	2129	2489	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
186 OM4	OM	16	752508	752721	753173	753251 2_nonsis		453	598	742	1	11	1	1	0 (4:4ai)_(3:5)_(4:4bCO)
26 OM4	OM	3	222542	223339	223676	224009 2_nonsis		338	902	1466	1	11	1	1	0 (3:5)_(4:4ai)_(4:4bCO)
109 OM4	OM	11	590994	592478	592577	593181 2_nonsis		100	1143	2186	1	11	1	1	0 (3:5)_(4:4ai)_(4:4bCO)
16 OM4	OM	2	535946	536134	537210	537267 2_nonsis		1077	1199	1320	1	11	1	1	0 (4:4ai)_(5:3)_(4:4bCO)
98 OM4	OM	10	662479	663134	664330	664516 2_nonsis		1197	1617	2036	1	11	1	1	0 (4:4ai)_(4:4bCO)_(3:5)_(4:4b)
179 OM4	OM	16	408139	408347	408842	408889 2_nonsis		496	623	749	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)

34 OM4	OM	4	565322	565398	566007	566376 2_nonsis	610	832	1053	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
160 OM4	OM	15	480909	481143	482126	482383 2_nonsis	984	1229	1473	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
46 OM4	OM	4	1489808	1490210	1491321	1491574 2 nonsis	1112	1439	1765	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
132 OM4	OM	13	355503	355560	356924	362992 2_nonsis	1365	4427	7488	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
162 OM4	OM	15	578881	578915	579517	580333 2_nonsis	603	1027	1451	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(4:4aCO)
49 OM4	OM	5	201006	201879	203706	203832 2_nonsis	1828	2327	2825	1	12	1	1	0 (6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
55 OM4	OM		104114	105370	108071		2702	3350	3998	1	12	1	1	
146 OM4	OM	6 14	288926	289222	290461	108113 2_nonsis 291122 2_nonsis	1240	1718	2195	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(5:3)_(4:4a) 0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(4:4aCO)
47 OM4	OM	5	24966	25188	27932		2745	2965		1	12	1	1	
47 OM4 75 OM4	OM	8	50351	50566	50566	28151 2_nonsis	2/45	2965	3184 400	1		1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
95 OM4	OM	10	394408	394692	394713	50752 2_nonsis	22			1	15	1	1	0 (6:2)_(4:4aCO)
97 OM4	OM		555723			394810 2_nonsis	1	212 499	401	-	15	-	1	0 (6:2)_(4:4aCO)
97 OM4 84 OM4	OM	10	41664	556159 41898	556159 41980	556720 2_nonsis	83	392	996 700	1	15 16	1	1	0 (6:2)_(4:4aCO)
		9				42365 2_nonsis				1		1		0 (2:6)_(4:4aCO)
140 OM4	OM	13	849562	851409	851409	851620 2_nonsis	1	1029	2057	1	16	1	1	0 (2:6)_(4:4aCO)
119 OM4	OM	12	624838	627007	627007	627201 2_nonsis	1	1182	2362	1	16	1	1	0 (2:6)_(4:4aCO)
103 OM4	OM	11	149388	152355	152355	154732 2_nonsis	1	2672	5343	1	16	1	1	0 (2:6)_(4:4aCO)
183 OM4	OM	16	656605	656677	656605	656677 2_nonsis	0	36	71	1	100	1	1	0 (4:4aCO)
145 OM4	OM	14	118803	119128	118803	119128 2_nonsis	0	162	324	1	100	1	1	0 (4:4aCO)
150 OM4	OM	14	483386	483741	483386	483741 2_nonsis	0	177	354	1	100	1	1	0 (4:4aCO)
74 OM4	OM	7	1050064	1050446	1050064	1050446 2_nonsis	0	191	381	1	100	1	1	0 (4:4aCO)
158 OM4	OM	15	288307	288781	288307	288781 2_nonsis	0	237	473	1	100	1	1	0 (4:4aCO)
100 OM4	OM	11	74916	75663	74916	75663 2_nonsis	0	373	746	1	100	1	1	0 (4:4aCO)
28 OM4	OM	4	106899	107966	106899	107966 2_nonsis	0	533	1066	1	100	1	1	0 (4:4aCO)
136 OM4	OM	13	556437	557517	556437	557517 2_nonsis	0	540	1079	1	100	1	1	0 (4:4aCO)
35 OM4	OM	4	625839	628602	625839	628602 2_nonsis	0	1381	2762	1	100	1	1	0 (4:4aCO)
123 OM4	OM	12	791142	794003	791142	794003 2_nonsis	0	1430	2860	1	100	1	1	0 (4:4aCO)
154 OM4	OM	15	22358	39380	22358	39380 2_nonsis	0	8511	17021	1	100	1	1	0 (4:4aCO)
39 OM4	OM	4	888611	888734	889358	889568 2_nonsis	625	791	956	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
1 OM4	OM	1	41481	41587	42257	42484 2_nonsis	671	837	1002	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
187 OM4	OM	16	830277	831160	832685	832807 2_nonsis	1526	2028	2529	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
189 OM4	OM	16	918448	918658	920048	920519 2_nonsis	1391	1731	2070	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(5:3)_(4:4aCO)
127 OM4	OM	13	94190	94473	95911	96019 2_nonsis	1439	1634	1828	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)_(5:3b)_(4:4a)
81 OM4	OM	8	421075	421312	423045	423870 2_nonsis	1734	2264	2794	2	30	1	1	0 (5:3)_(5:3a)_(6:2)_(5:3a)_(6:2)_(5:3a)_(6:2)_(4:4aCO)
117 OM4	OM	12	507531	508649	512083	513766 2_nonsis	3435	4835	6234	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(5:3a)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
71 OM4	OM	7	824168	824337	825852	826536 2_nonsis	1516	1942	2367	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
21 OM4	OM	2	790680	790744	792465	792968 2_nonsis	1722	2005	2287	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
141 OM4	OM	13	912584	912804	916816	917194 2_nonsis	4013	4311	4609	2	31	1	1	$0 \ (3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)_(3:5a)_(2:6)_(3:5a)_(4:4a)$
94 OM4	OM	10	361124	361221	362546	362886 2_nonsis	1326	1544	1761	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4aCO)
164 OM4	OM	15	760366	761321	762399	762530 2_nonsis	1079	1621	2163	2	32	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
118 OM4	OM	12	566615	567266	568917	569539 2_nonsis	1652	2288	2923	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
64 OM4	OM	7	351287	351684	352489	352538 2_nonsis	806	1028	1250	2	32	1	1	0 (4:4aCO)_(3:5)_(4:4a)_(3:5a)_(4:4a)
56 OM4	OM	6	168217	168241	169392	169586 2_nonsis	1152	1260	1368	2	32	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5a)_(4:4a)
113 OM4	OM	12	252615	252766	254321	254610 2_nonsis	1556	1775	1994	2	32	1	1	0 (5:3)_(6:2)_(4:4)_(5:3a)_(4:4aCO)
9 OM4	OM	2	175526	175964	178099	178447 2_nonsis	2136	2528	2920	2	32	1	1	0 (5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
45 OM4	OM	4	1410189	1410611	1411672	1411690 2_nonsis	1062	1281	1500	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
149 OM4	OM	14	386641	386898	388348	388819 2_nonsis	1451	1814	2177	2	32	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
161 OM4	OM	15	519432	519516	521442	521727 2_nonsis	1927	2111	2294	2	32	1	1	0 (5:3)_(6:2)_(4:4aCO)_(5:3a)_(6:2)_(5:3a)_(4:4a)
86 OM4	OM	9	166646	166778	169788	169820 2_nonsis	3011	3092	3173	2	32	1	1	0 (3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
18 OM4	OM	2	632170	632896	636372	636994 2_nonsis	3477	4150	4823	2	32	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
153 OM4	OM	14	719985	720135	723593	723962 2_nonsis	3459	3718	3976	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
182 OM4	OM	16	595114	595421	596701	596886 2_nonsis	1281	1526	1771	2	32	1	1	0 (5:3)_(4:4ai)_(5:3)_(6:2)_(4:4bCO)_(5:3a)_(4:4b)_(5:3b)_(6:2)_(5:3b)_(4:4b)
116 OM4	OM	12	390693	390717	391232	391272 2_nonsis	516	547	578	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
31 OM4	OM	4	284557	285372	285631	285994 2_nonsis	260	848	1436	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)
79 OM4	OM	8	329634	330629	331641	331868 2_nonsis	1013	1623	2233	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
72 OM4	OM	7	936067	936350	936948	937376 2_nonsis	599	954	1308	3	20	1	1	0 (5:3)_(6:2)_(3:5)_(4:4aCO)
54 OM4	OM	6	43123	43673	45082	45201 2_nonsis	1410	1744	2077	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
41 OM4	OM	4	1055277	1055562	1057601	1058554 2_nonsis	2040	2658	3276	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
137 OM4	OM	13	590016	590250	593361	594254 2_nonsis	3112	3675	4237	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(4:4aCO)
33 OM4	OM	4	420755	420793	422107	422276 2 nonsis	1315	1418	1520	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(4:4aCO) 0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)
36 OM4	OM	4	698347	698417	699938	700023 2_nonsis	1513	1599	1675	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO) 0 (5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
30 OM4	OW	4	070347	078417	029938	700023 Z_HOHSIS	1322	1399	10/3	3	20	1	1	○ (J.J)_(0.2)_(4.4dCO)_(J.J)_(4.4d)

148 OM4	OM	14	370839	371516	372919	373080 2_nonsis		1404	1822	2240	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(3:5)_(4:4aCO)
151 OM4	OM	14	530418	530856	532165	532649 2_nonsis		1310	1770	2230	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
58 OM4	OM	6	245505	245636	250075	251006 2_nonsis		4440	4970	5500	3	20	1	1	0 (5:3)_(6:2)_(5:3a)_(5:3b)_(4:4aCO)_(3:5)_(4:4a)
181 OM4	OM	16	534749	535407	535727	535979 2_nonsis		321	775	1229	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(4:4bCO)
4 OM4	OM	1	129517	130254	130975	132066 2_nonsis		722	1635	2548	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(4:4bCO)
67 OM4	OM	7	610674	611145	612759	612980 2_nonsis		1615	1960	2305	3	21	1	1	0 (5:3)_(6:2)_(4:4ai)_(3:5)_(4:4bCO)
52 OM4	OM	5	487689	488899	491327	491424 2_nonsis		2429	3082	3734	3	21	1	1	0 (4:4ai)_(5:3)_(4:4bCO)_(3:5)_(2:6)_(4:4b)
133 OM4	OM	13	395969	396257	397127	397143 2_nonsis		871	1022	1173	3	21	1	1	0 (5:3)_(4:4)_(5:3)_(4:4ai)_(5:3a)_(3:5)_(4:4bCO)
83 OM4	OM	8	516184	516318	519408	519682	3	3091	3294	3497	0	1	2	0	2 (5:3)_(5:3a)_(4:4ai)_(5:3a)_(4:4)_(2:6i)_(1:7)_(2:6i)_(3:5)_(4:4)
6 OM4	OM	2	60793	60945	63304	63831	3	2360	2699	3037	0	2	2	1	1 (3:5)_(4:4)_(5:3)_(4:4ai)_(5:3a)_(4:4bCO)
12 OM4	OM	2	286762	286855	288498	288671	3	1644	1776	1908	0	2	2	1	1 (3:5)_(4:4)_(3:5)_(5:3)_(4:4ai)_(3:5a)_(4:4bCO)
17 OM4	OM	2	598254	598328	601647	602361	3	3320	3713	4106	0	2	2	1	1 (3:5)_(4:4ai)_(5:3)_(5:3a)_(4:4bCO)
65 OM4	OM	7	427215	427318	429941	430559	4	2624	2984	3343	0	2	2	1	1 (3:5)_(4:4)_(3:5)_(5:3)_(3:5)_(4:4)_(5:3a)_(2:6)_(4:4)_(4:4ai)_(3:5a)_(4:4bCO)
76 OM4	OM	8	120445	121477	123006	123099	3	1530	2092	2653	0	2	2	1	1 (5:3)_(5:3a)_(2:6)_(3:5)_(4:4aCO)
77 OM4	OM	8	191304	191691	192892	195121	4	1202	2509	3816	0	2	2	1	1 (5:3)_(6:2i)_(6:2a)_(4:4aCO)
101 OM4	OM	11	93041	93302	98707	98834	3	5406	5599	5792	0	2	2	1	1 (5:3)_(4:4)_(3:5)_(3:5a)_(4:4aCO)
134 OM4	OM	13	482376	482500	486437	486464	4	3938	4013	4087	0	2	2	1	1 (3:5)_(4:4)_(3:5)_(3:5a)_(4:4ai)_(3:5b)_(4:4bCO)
169 OM4	OM	15	942317	942594	945099	945153	4	2506	2671	2835	0	2	2	2	0 (3:5)_(4:4ai)_(4:4bi)_(3:5a)_(4:4cCO)
177 OM4	OM	16	325596	325797	329617	329941	3	3821	4083	4344	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(5:3a)_(6:2)_(5:3)_(4:4ai)_(5:3b)_(4:4bi)_(3:5)_(4:4cCO)
43 OM4	OM	4	1179125	1179516	1181771	1182010 2_nonsis		2256	2570	2884	0	3	2	0	2 (3:5)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(5:3)_(4:4CO)
48 OM4	OM	5	45665	45963	47165	48256 2_nonsis		1203	1897	2590	0	3	2	0	2 (5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3b)_(4:4CO)
114 OM4	OM	12	326213	326929	328075	328990	3	1147	1962	2776	0	3	2	1	1 (4:4ai)_(3:5)_(4:4bCO)_(5:3)_(4:4cCO)
113 OM5	OM	12	399513	399563	399563	399644	1	1	66	130	1	1	1	0	1 05:03
119 OM5	OM	12	722507	722593	722594	722657	1	2	76	149	1	1	1	0	1 05:03
69 OM5	OM	8	58415	58524	58524	58620	1	1	103	204	1	1	1	0	1 05:03
101 OM5	OM	11	327663	327707	327707	327893	1	1	115	229	1	1	1	0	1 05:03
157 OM5	OM	15	638644	639033	639042	639159	1	10	262	514	1	1	1	0	1 05:03
141 OM5	OM	14	440622	441276	441276	441344	1	1	361	721	1	1	1	0	1 05:03
154 OM5	OM	15	550812	551128	551234	551437	1	107	366	624	1	1	1	0	1 05:03
144 OM5	OM	14	604250	604879	604879	605054	1	1	402	803	1	1	1	0	1 05:03
2 OM5	OM	1	67801	68551	68551	68621	1	1	410	819	1	1	1	0	1 05:03
55 OM5	OM	7	75728	75778	76149	76406	1	372	525	677	1	1	1	0	1 05:03
35 OM5	OM	4	841276	842028	842070	842326	1	43	546	1049	1	1	1	0	1 05:03
149 OM5 136 OM5	OM OM	15 14	128417 273306	128530 273490	128730 273928	129347 274328	1	201 439	565 730	929 1021	1	1	1	0	1 05:03 1 05:03
	OM	15					1			1351	1	1	1		1 05:03
155 OM5 72 OM5	OM	8	571716 340958	572407 341040	572520 341515	573068 342157	1	114 476	733 837	1198	1	1	1	0	1 05:03
108 OM5	OM	12	114242	114659	115422	116251	1	764	1386	2008	1	1	1	0	1 05:03
112 OM5	OM	12	318672	320465	320997	322903	1	533	2382	4230	1	1	1	0	1 05:03
106 OM5	OM	12	84153	84302	84302	84315	1	1	81	161	1	2	1	0	1 03:05
73 OM5	OM	8	375097	375221	375221	375658	1	1	281	560	1	2	1	0	1 03:05
176 OM5	OM	16	840482	840627	840627	841238	1	1	378	755	1	2	1	0	1 03:05
78 OM5	OM	8	524046	524210	524455	524576	1	246	388	529	1	2	1	0	1 03:05
38 OM5	OM	4	969384	969561	969561	970293	1	1	455	908	1	2	1	0	1 03:05
170 OM5	OM	16	425006	425302	425481	425740	1	180	457	733	1	2	1	0	1 03:05
66 OM5	OM	7	1050064	1050446	1050446	1051057	1	1	497	992	1	2	1	0	1 03:05
168 OM5	OM	16	297234	297543	297634	298155	1	92	506	920	1	2	1	0	1 03:05
39 OM5	OM	4	1049309	1050120	1050175	1050369	1	56	558	1059	1	2	1	0	1 03:05
151 OM5	OM	15	314514	315191	315191	315748	1	1	617	1233	1	2	1	0	1 03:05
139 OM5	OM	14	425816	427278	427295	427451	1	18	826	1634	1	2	1	0	1 03:05
99 OM5	OM	11	165754	166502	166774	167254	1	273	886	1499	1	2	1	0	1 03:05
123 OM5	OM	13	42127	43336	43336	44157	1	1	1015	2029	1	2	1	0	1 03:05
158 OM5	OM	15	648434	649497	649839	650136	1	343	1022	1701	1	2	1	0	1 03:05
127 OM5	OM	13	347586	347780	347796	349796	1	17	1113	2209	1	2	1	0	1 03:05
27 OM5	OM	4	91959	93521	93541	94320	1	21	1191	2360	1	2	1	0	1 03:05
75 OM5	OM	8	461318	462176	462825	463320	1	650	1326	2001	1	2	1	0	1 03:05
138 OM5	OM	14	399462	400449	400849	401240	1	401	1089	1777	1	3	1	0	1 5:3_4:4_5:3
1 OM5	OM	1	32883	32986	34170	34308	1	1185	1305	1424	1	4	1	0	1 3:5_2:6_4:4_3:5_4:4_3:5
19 OM5	OM	2	738015	738213	738241	738886	1	29	450	870	1	7	1	0	1 6:2_5:3
82 OM5	OM	9	154922	155270	155702	155792	1	433	651	869	1	7	1	0	1 6:2_5:3

86 OM5	OM	9	386347	386352	388703	388925	1	2352	2465	2577	1	7	1	0	1 5:3_4:4_6:2_4:4_6:2
36 OM5	OM	4	870200	870568	870950	884980	1	383	7581	14779	1	8	1	0	1 3:5_2:6
48 OM5	OM	5	187482	187519	187838	188435	1	320	636	952	1	8	1	0	1 3:5_4:4_2:6
94 OM5	OM	10	502163	502527	503880	504158	1	1354	1674	1994	1	8	1	0	1 3:5_4:4_2:6
6 OM5	OM	1	180726	180747	180747	180881	1	1	78	154	1	10	1	0	1 06:02
15 OM5	OM	2	595106	595246	595246	595346	1	1	120	239	1	10	1	0	1 06:02
171 OM5	OM	16	482417	482429	482429	482737	1	1	160	319	1	10	1	0	1 06:02
28 OM5	OM	4	263811	264197	264197	264290	1	1	240	478	1	10	1	0	1 06:02
163 OM5	OM	16	21007	21094	21105	21507	1	12	256	499	1	10	1	0	1 06:02
173 OM5	OM	16	678266	678517	678709	678816	1	193	371	549	1	10	1	0	1 06:02
130 OM5	OM	13	661888	662059	662059	662796	1	1	454	907	1	10	1	0	1 06:02
109 OM5	OM	12	167737	168861	168861	169124	1	1	694	1386	1	10	1	0	1 06:02
50 OM5	OM	5	409333	409394	409394	410947	1	1	807	1613	1	10	1	0	1 06:02
165 OM5	OM	16	128399	128926	130068	130597	1	1143	1670	2197	1	10	1	0	1 06:02
80 OM5	OM	9	96842	96860	96885	96924	1	26	54	81	1	10.1	1	0	1 02:06
10 OM5	OM	2	170152	170442	170442	170593	1	1	221	440	1	10.1	1	0	1 02:06
162 OM5	OM	15	967885	968186	968244	968286	1	59	230	400	1	10.1	1	0	1 02:06
83 OM5	OM	9	177082	177853	177853	178629	1	1	774	1546	1	10.1	1	0	1 02:06
77 OM5	OM	8	486569	486921	487644	488458	1	724	1306	1888	1	10.1	1	0	1 02:06
135 OM5	OM	14	182462	182621	182639	185309	1	19	1433	2846	1	10.1	1	0	1 02:06
62 OM5	OM	7	650898	651268	651484	651712	1	217	515	813	2	11	1	0	1 5:3_5:3a
7 OM5	OM	2	46916	47062	47612	47900	1	551	767	983	2	11	1	0	1 5:3_5:3a
93 OM5	OM	10	465816	466454	467199	467589	1	746	1259	1772	2	11	1	0	1 5:3_5:3a
58 OM5	OM	7	271422	271683	272568	273422	1	886	1443	1999	2	11	1	0	1 5:3_5:3a
146 OM5	OM	14	698696	698753	700405	700775	1	1653	1866	2078	2	11	1	0	1 5:3_5:3a
89 OM5	OM	10	285419	285967	287517	287913	1	1551	2022	2493	2	11	1	0	1 5:3_5:3a
45 OM5	OM	4	1476168	1476261	1477237	1477311	1	977	1060	1142	2	12	1	0	1 3:5_3:5a
42 OM5	OM	4	1333898	1334061	1335206	1335398	1	1146	1323	1499	2	14	1	0	1 3:5_4:4_3:5_3:5a
115 OM5	OM	12	509642	509817	510507	510559	1	691	804	916	2	15	1	0	1 5:3_4:4_5:3a
160 OM5	OM	15	780823	781222	782242	782356	1	1021	1277	1532	2	15	1	0	1 5:3_4:4_5:3a
32 OM5	OM	4	692787	692797	694033	694047	1	1237	1248	1259	2	16	1	0	1 3:5_4:4_3:5a
131 OM5	OM	13	723721	723996	724434	726144	1	439	1431	2422	2	16	1	0	1 3:5_4:4_3:5a
117 OM5	OM	12	602107	602186	603907	604090	1	1722	1852	1982	2	18	1	0	1 3:5_4:4_3:5a_2:6_3:5a
59 OM5	OM	7	410453	410531	413797	414265	1	3267	3539	3811	2	18	1	0	1 3:5_4:4_3:5a_4:4_2:6_3:5a_4:4_3:5a
167 OM5	OM	16	213837	214028	214963	215112	1	936	1105	1274	2	20	1	0	1 3:5_2:6_3:5a
26 OM5	OM	4	32409	32706	33397	34987 2_nonsis		692	1635	2577	3	30	1	0	1 2:6_6:2_5:3
20 OM5	OM	3	40637	41096	42419	42698 2_nonsis		1324	1692	2060	3	30	1	0	1 5:3_4:4_2:6_3:5
122 OM5	OM	12	1023437	1023823	1027573	1027717 2_nonsis		3751	4015	4279	3	30	1	0	1 5:3_5:3a_4:4_2:6
74 OM5	OM	8	421840	422434	424326	425219 2_nonsis		1893	2636	3378	3	31	1	0	1 5:3_4:4ai_5:3a_4:4_5:3a
116 OM5	OM	12	541773	542005	542005	542794 2_nonsis		1	511	1020	1	1	1	-	0 (5:3)_(4:4aCO)
120 OM5	OM OM	12	789373	789615	789623	791142 2_nonsis		9 1625	889 1846	1768	1	1	1	1	0 (5:3)_(4:4aCO)
172 OM5 16 OM5	OM	16 2	623041 660972	623258 662444	624882 662444	625108 2_nonsis		1023	2868	2066 5735	1	1	1	1	0 (5:3)_(4:4aCO)
174 OM5	OM	16	696490	696582	696582	666708 2_nonsis 696879 2_nonsis		1	195	388	1	2	1	1	0 (5:3)_(4:4aCO)
64 OM5	OM	7	795505	795543	795662			120	245	370	1	2	1	1	0 (3:5)_(4:4aCO)
22 OM5	OM	3	100466	100585	100585	795876 2_nonsis 101527 2_nonsis		120	531	1060	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
54 OM5	OM	6	244444	245484	245505	245636 2_nonsis		22	607	1191	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
31 OM5	OM	4	501667	502245	502277	502877 2_nonsis		33	621	1209	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
24 OM5	OM	3	249994	250855	250855	251323 2 nonsis		1	665	1328	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
164 OM5	OM	16	106109	106450	106600	107304 2_nonsis		151	673	1194	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
143 OM5	OM	14	539848	542443	542443	543829 2_nonsis		131	1991	3980	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
63 OM5	OM	7	733453	733567	734928	736788 2_nonsis		1362	2348	3334	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
4 OM5	OM	1	155505	158814	158870	159623 2_nonsis		57	2087	4117	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
30 OM5	OM	4	432487	432803	433470	434094 2_nonsis		668	1137	1606	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
102 OM5	OM	11	368313	369378	369878	370412 2_nonsis		501	1300	2098	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
169 OM5	OM	16	307685	308234	309089	309787 2_nonsis		856	1479	2101	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
148 OM5	OM	15	40057	40497	40593	40834 2_nonsis		97	437	776	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
18 OM5	OM	2	733887	733953	734046	734409 2_nonsis		94	308	521	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
161 OM5	OM	15	941405	941706	942317	942594 2 nonsis		612	900	1188	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO) 0 (3:5)_(2:6)_(4:4aCO)
14 OM5	OM	2	539483	540265	540365	540546 2_nonsis		101	582	1062	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
0113	O171	-	557705	5.5265	5.0505	5.05.0 2_nonats		101	302	1302		10			(2.0)_(3.5)_(1.1400)

91 OM5	OM	10	360588	360746	361340	361485 2_nonsis	595	746	896	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
44 OM5	OM	4	1427252	1428300	1428864	1429122 2_nonsis	565	1217	1869	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
98 OM5	OM	11	91825	92069	92330	92948 2_nonsis	262	692	1122	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
56 OM5	OM	7	81306	81381	81435	82858 2_nonsis	55	803	1551	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
124 OM5	OM	13	70356	71137	71397	72027 2_nonsis	261	966	1670	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
104 OM5	OM	11	590023	590067	590994	592478 2_nonsis	928	1691	2454	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
87 OM5	OM	9	405428	405665	405973	406124 2_nonsis	309	502	695	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
90 OM5	OM	10	294619	294826	295430	295604 2_nonsis	605	795	984	1	12	1	1	0 (2:6)_(3:5)_(4:4)_(4:4aCO)
53 OM5	OM	6	93934	94545	95246	95308 2_nonsis	702	1038	1373	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
111 OM5	OM	12	314762	314849	315642	316064 2_nonsis	794	1048	1301	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)
33 OM5	OM	4	698788	699229	700250	700440 2_nonsis	1022	1337	1651	1	12	1	1	0 (5:3)_(6:2)_(4:4)_(4:4aCO)
34 OM5	OM	4	836051	836148	837527	837572 2_nonsis	1380	1450	1520	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
128 OM5	OM	13	387879	388308	389541	389574 2_nonsis	1234	1464	1694	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
92 OM5	OM	10	400808	401166	402577	402683 2_nonsis	1412	1643	1874	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
51 OM5	OM	5	461594	462614	463625	464078 2_nonsis	1012	1748	2483	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
147 OM5	OM	14	761636	761851	763447	763540 2_nonsis	1597	1750	1903	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
47 OM5	OM	5	98381	98507	98507	98854 2 nonsis	1	237	472	1	15	1	1	0 (6:2)_(4:4aCO)
12 OM5	OM	2	344093	344182	344186	344668 2 nonsis	5	290	574	1	15	1	1	0 (6:2) (4:4aCO)
52 OM5	OM	6	40189	40564	40564	40771 2_nonsis	1	291	581	1	15	1	1	0 (6:2)_(4:4aCO)
29 OM5	OM	4	353410	353682	353682	354016 2_nonsis	1	303	605	1	15	1	1	0 (6:2)_(4:4aCO)
11 OM5	OM	2	247069	247234	247399	247522 2_nonsis	166	309	452	1	15	1	1	0 (6:2)_(4:4aCO)
97 OM5	OM	11	19020	19563	19563	19855 2_nonsis	1	418	834	1	15	1	1	0 (6:2)_(4:4aCO)
37 OM5	OM	4	908967	909447	909447	909908 2_nonsis	1	471	940	1	15	1	1	0 (6:2)_(4:4aCO)
142 OM5	OM	14	470413	471767	471767	472546 2_nonsis	1	1067	2132	1	15	1	1	0 (6:2)_(4:4aCO)
118 OM5	OM	12	624838	627007	627007	627201 2_nonsis	1	1182	2362	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
125 OM5	OM	13	214290	214378	214378	214530 2_nonsis	1	120	2302	1	16	1	1	0 (2:6)_(4:4aCO)
23 OM5	OM	3	212528	212637	212637	212942 2_nonsis	1	207	413	1	16	1	1	0 (2:6)_(4:4aCO)
152 OM5	OM	15	394567	394716	394716	395073 2_nonsis	1	253	505	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
150 OM5	OM	15	240538	241147	241147	241190 2 nonsis	1	326	651	1	16	1	1	0 (2:6) (4:4aCO)
150 OM5 159 OM5	OM	15	737961	738026	738026	738617 2_nonsis	1	328	655	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
96 OM5	OM	10	662479	663134	663134	663261 2_nonsis	1	328	781	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
		9	28746				257			1		1	1	
79 OM5 70 OM5	OM OM	8	101512	28937 102030	29193 102030	29619 2_nonsis	1	565	872 1533	1	16	1	1	0 (2:6)_(4:4aCO)
						103046 2_nonsis		767			16			0 (2:6)_(4:4aCO)
103 OM5 95 OM5	OM	11 10	477203 574799	477776 576464	477776 576551	479195 2_nonsis	1	996	1991 2035	1	16	1	1	0 (2:6)_(4:4aCO)
	OM					576835 2_nonsis	88	1062		-	16			0 (2:6)_(4:4aCO)
13 OM5	OM	2	429131	430040	431229	431663 2_nonsis	1190	1861	2531	1	16	1	1	0 (2:6)_(4:4aCO)
5 OM5	OM	1	166369	166571	166369	166571 2_nonsis	0	101	201	1	100	1	1	0 (4:4aCO)
88 OM5	OM	10	59791	60064	59791	60064 2_nonsis	0	136	272	1	100	1	1	0 (4:4aCO)
175 OM5	OM	16	832826	833262	832826	833262 2_nonsis	0	218	435	1	100	1	1	0 (4:4aCO)
145 OM5	OM	14	647174	647815	647174	647815 2_nonsis	0	320	640	1	100	1	1	0 (4:4aCO)
166 OM5	OM	16	147141	147862	147141	147862 2_nonsis	0	360	720	1	100	1	1	0 (4:4aCO)
8 OM5	OM	2	73943	74853	73943	74853 2_nonsis	0	455	909	1	100	1	1	0 (4:4aCO)
49 OM5	OM	5	267673	268597	267673	268597 2_nonsis	0	462	923	1	100	1	1	0 (4:4aCO)
68 OM5	OM	8	47072	48088	47072	48088 2_nonsis	0	508	1015	1	100	1	1	0 (4:4aCO)
129 OM5	OM	13	411264	412303	411264	412303 2_nonsis	0	519	1038	1	100	1	1	0 (4:4aCO)
71 OM5	OM	8	184323	185364	184323	185364 2_nonsis	0	520	1040	1	100	1	1	0 (4:4aCO)
121 OM5	OM	12	987417	988464	987417	988464 2_nonsis	0	523	1046	1	100	1	1	0 (4:4aCO)
153 OM5	OM	15	487028	488123	487028	488123 2_nonsis	0	547	1094	1	100	1	1	0 (4:4aCO)
140 OM5	OM	14	428883	430018	428883	430018 2_nonsis	0	567	1134	1	100	1	1	0 (4:4aCO)
100 OM5	OM	11	182573	183958	182573	183958 2_nonsis	0	692	1384	1	100	1	1	0 (4:4aCO)
76 OM5	OM	8	484090	485522	484090	485522 2_nonsis	0	716	1431	1	100	1	1	0 (4:4aCO)
17 OM5	OM	2	668082	669586	668082	669586 2_nonsis	0	752	1503	1	100	1	1	0 (4:4aCO)
134 OM5	OM	14	166583	168436	166583	168436 2_nonsis	0	926	1852	1	100	1	1	0 (4:4aCO)
57 OM5	OM	7	113828	116310	113828	116310 2_nonsis	0	1241	2481	1	100	1	1	0 (4:4aCO)
156 OM5	OM	15	574716	578388	574716	578388 2_nonsis	0	1836	3671	1	100	1	1	0 (4:4aCO)
9 OM5	OM	2	145486	146169	146891	147197 2_nonsis	723	1217	1710	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4ai)_(4:4bCO)
85 OM5	OM	9	332459	332503	333581	334640 2_nonsis	1079	1630	2180	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(4:4aCO)
133 OM5	OM	14	108312	108405	111039	111216 2_nonsis	2635	2769	2903	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)_(2:6)_(4:4a)_(3:5a)_(4:4a)
84 OM5	OM	9	274516	274938	275192	275372 2_nonsis	255	555	855	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)
65 OM5	OM	7	959381	959587	959945	960299 2_nonsis	359	638	917	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)

137 OM5	OM	14	317078	317360	317738	317977 2_nonsis		379	639	898	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
41 OM5	OM	4	1288090	1288209	1288775	1289394 2_nonsis		567	935	1303	3	20	1	1	0 (6:2)_(3:5)_(4:4aCO)
126 OM5	OM	13	342492	342513	343909	344475 2_nonsis		1397	1690	1982	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
67 OM5	OM	7	1056817	1057978	1059252	1059363 2_nonsis		1275	1910	2545	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
114 OM5	OM	12	403568	404007	404333	405334 2_nonsis		327	1046	1765	3	20	1	1	0 (3:5)_(4:4aCO)_(6:2)_(4:4a)
107 OM5	OM	12	94728	94846	95188	97572 2_nonsis		343	1593	2843	3	20	1	1	0 (2:6)_(6:2)_(5:3)_(4:4aCO)
3 OM5	OM	1	81731	81841	83613	84046 2_nonsis		1773	2044	2314	3	20	1	1	0 (3:5)_(2:6)_(5:3)_(4:4aCO)
46 OM5	OM	5	68996	69083	70969	71501 2_nonsis		1887	2196	2504	3	20	1	1	0 (2:6)_(5:3)_(3:5)_(4:4aCO)
81 OM5	OM	9	100355	102438	103227	104128 2_nonsis		790	2281	3772	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
132 OM5	OM	13	796811	796868	797379	797401 2_nonsis		512	551	589	3	20	1	1	0 (2:6)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
61 OM5	OM	7	608221	609405	610218	610674 2_nonsis		814	1633	2452	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)
25 OM5	OM	3	299527	299645	300560	300759 2 nonsis		916	1074	1231	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(5:3)_(3:5)_(4:4aCO)
60 OM5	OM	7	528501	528674	529644	529943 2_nonsis		971	1206	1441	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
105 OM5	OM	12	36167	36336	37611	37705 2_nonsis		1276	1407	1537	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
40 OM5	OM	4	1165937	1166232	1169428	1169720 2_nonsis		3197	3490	3782	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(3:5)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(6:2)_(4:4a)_(5:3a)_(4:4a)
21 OM5	OM	3	46714	47161	48383	48702 2_nonsis		1223	1605	1987	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(4:4bCO)
43 OM5	OM	4	1387223	1387436	1388150	1389010 2_nonsis		715	1251	1786	3	21	1	1	0 (6:2)_(4:4)_(3:5)_(4:4ai)_(4:4bCO)
110 OM5	OM	12	211226	212081	221668	223058 2_sis		9588	10710	11831	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(4:4)_(3:5a)_(2:6)_(3:5b)_(4:4)
76 OM6	OM	8	455850	455862	455862	455976	1	1	63	125	1	1	1	0	1 05:03
169 OM6	OM	16	339516	339687	339729	339833	1	43	180	316	1	1	1	0	1 05:03
146 OM6	OM	14	258013	258264	258264	258392	1	1	190	378	1	1	1	0	1 05:03
134 OM6	OM	13	706399	706931	707030	707109	1	100	405	709	1	1	1	0	1 05:03
16 OM6	OM	2	723102	723175	723454	723663	1	280	420	560	1	1	1	0	1 05:03
144 OM6	OM	14	196834	197191	197191	197707	1	1	437	872	1	1	1	0	1 05:03
117 OM6	OM	12	866496	866643	866643	867405	1	1	455	908	1	1	1	0	1 05:03
39 OM6	OM	4	1335831	1337219	1337219	1337684	1	1	927	1852	1	1	1	0	1 05:03
		14		764741			1	1	121		1	2	1	0	
153 OM6 18 OM6	OM OM	3	764697	51491	764741 51491	764938	1	1	121	240 244	1	2	1	0	1 03:05
			51405			51650	-					2	1		1 03:05
174 OM6	OM	16	681542	681719	681719	681810	1	1	134	267	1		-	0	1 03:05
91 OM6	OM	10	574034	574073	574091	574310	1	19	147	275	1	2	1	0	1 03:05
85 OM6	OM	10	67457	67697	67697	67836	1	1	190	378	1	2	1	0	1 03:05
156 OM6	OM	15	315837	316312	316312	316327	1	1	245	489	1	2	1	0	1 03:05
82 OM6	OM	9	350189	350470	350470	350705	1	1	258	515	1	2	1	0	1 03:05
100 OM6	OM	11	308234	308325	308425	308754	1	101	310	519	1	2	1	0	1 03:05
93 OM6	OM	10	663948	664155	664330	664516	1	176	372	567	1	2	1	0	1 03:05
43 OM6	OM	5	84810	85009	85103	85578	1	95	431	767	1	2	1	0	1 03:05
80 OM6	OM	9	165195	166074	166074	166116	1	1	461	920	1	2	1	0	1 03:05
172 OM6	OM	16	519523	519709	520162	520194	1	454	562	670	1	2	1	0	1 03:05
90 OM6	OM	10	465816	466454	466454	467010	1	1	597	1193	1	2	1	0	1 03:05
141 OM6	OM	14	76429	76856	77185	77306	1	330	603	876	1	2	1	0	1 03:05
138 OM6	OM	13	819611	819989	820241	820753	1	253	697	1141	1	2	1	0	1 03:05
4 OM6	OM	2	73943	74853	75084	75564	1	232	926	1620	1	2	1	0	1 03:05
109 OM6	OM	12	282626	283463	283731	284270	1	269	956	1643	1	2	1	0	1 03:05
24 OM6	OM	4	198376	198685	200025	200151	1	1341	1558	1774	1	2	1	0	1 03:05
104 OM6	OM	11	477776	479195	481321	482428	1	2127	3389	4651	1	2	1	0	1 03:05
99 OM6	OM	11	276968	277294	278448	278756	1	1155	1471	1787	1	3	1	0	1 5:3_4:4_5:3
167 OM6	OM	16	263635	263648	264796	266276	1	1149	1895	2640	1	3	1	0	1 5:3_4:4_5:3
28 OM6	OM	4	345209	345524	347623	347851	1	2100	2371	2641	1	3	1	0	1 5:3_4:4_5:3
26 OM6	OM	4	239643	239693	242094	242772	1	2402	2765	3128	1	3	1	0	1 5:3_4:4_5:3_6:2_5:3
132 OM6	OM	13	652413	652621	653063	653200	1	443	615	786	1	4	1	0	1 3:5_2:6_3:5
177 OM6	OM	16	888652	888868	891194	891335	1	2327	2505	2682	1	4	1	0	1 3:5_4:4_3:5
25 OM6	OM	4	202572	202761	202877	202902	1	117	223	329	1	7	1	0	1 6:2_5:3
151 OM6	OM	14	574949	575525	577067	577136	1	1543	1865	2186	1	8	1	0	1 3:5_2:6
96 OM6	OM	11	136761	137170	137170	137272	1	1	256	510	1	10	1	0	1 06:02
157 OM6	OM	15	322692	322741	323130	323552	1	390	625	859	2	11	1	0	1 5:3_5:3a
143 OM6	OM	14	182084	182303	182639	183060	1	337	656	975	2	11	1	0	1 5:3_5:3a
137 OM6	OM	13	809473	810028	811666	811677	1	1639	1921	2203	2	11	1	0	1 5:3_5:3a
111 OM6	OM	12	423416	423821	424138	424315	1	318	608	898	2	12	1	0	1 3:5_3:5a
127 OM6	OM	13	336845	337176	337732	337869	1	557	790	1023	2	12	1	0	1 3:5_3:5a
79 OM6	OM	9	153913	154387	155292	155480	1	906	1236	1566	2	12	1	0	1 3:5_3:5a

11 OM6	OM	2	481949	482720	483944	484110	1	1225	1693	2160	2	12	1	0	1 3:5_3:5a
15 OM6	OM	2	716467	716483	720010	720178	1	3528	3619	3710	2	12	1	0	1 3:5_3:5a
57 OM6	OM	6	168728	168886	169618	169635	1	733	820	906	2	13	1	0	1 5:3_6:2_5:3_5:3a
12 OM6	OM	2	513994	514468	515996	516344	1	1529	1939	2349	2	13	1	0	1 5:3_5:3a_4:4_5:3a
161 OM6	OM	15	700856	700946	701852	702223	1	907	1137	1366	2	14	1	0	1 3:5_3:5a_2:6_3:5a
101 OM6	OM	11	340285	340451	340811	341198	1	361	637	912	2	15	1	0	1 5:3_4:4_5:3a
71 OM6	OM	8	46457	47060	48508	48551	1	1449	1771	2093	2	15	1	0	1 5:3_4:4_5:3a
31 OM6	OM	4	599314	599388	599865	599964	1	478	564	649	2	16	1	0	1 3:5_4:4_3:5a
129 OM6	OM	13	434958	435813	436595	436769	1	783	1297	1810	2	16	1	0	1 3:5_4:4_3:5a
50 OM6	OM	5	348780	349106	350516	350543	1	1411	1587	1762	2	16	1	0	1 3:5_4:4_3:5a
46 OM6	OM	5	195975	196106	197502	197916	1	1397	1669	1940	2	16	1	0	1 3:5_4:4_3:5a
159 OM6	OM	15	494089	494313	496482	496659	1	2170	2370	2569	2	16	1	0	1 3:5_4:4_3:5a
45 OM6	OM	5	162008	162250	163835	163997	1	1586	1787	1988	2	19	1	0	1 5:3_6:2_5:3a
6 OM6	OM	2	82573	83659	84823	84862	1	1165	1727	2288	2	23	1	0	1 5:3_4:4_6:2_5:3a
175 OM6	OM	16	829002	829035	829418	830004 2_nonsis		384	693	1001	3	30	1	0	1 3:5_3:5a
29 OM6	OM	4	366072	366513	366913	367042 2_nonsis		401	685	969	3	30	1	0	1 5:3_5:3a_3:5
142 OM6	OM	14	85801	85831	88100	88950 2_nonsis		2270	2709	3148	3	30	1	0	1 5:3_6:2_5:3_5:3a
119 OM6	OM	13	11305	11831	13831	13907 2_nonsis		2001	2301	2601	3	31	1	0	1 4:4ai_5:3_4:4_5:3a
78 OM6	OM	9	82538	82899	82899	83067 2_nonsis		1	265	528	1	1	1	1	0 (5:3)_(4:4aCO)
152 OM6	OM	14	652238	652389	652419	652841 2_nonsis		31	317	602	1	1	1	1	0 (5:3)_(4:4aCO)
14 OM6	OM	2	642483	642776	642776	643134 2_nonsis		1	326	650	1	1	1	1	0 (5:3)_(4:4aCO)
35 OM6	OM	4	954963	955643	955755	956552 2_nonsis		113	851	1588	1	1	1	1	0 (5:3)_(4:4aCO)
108 OM6	OM	12	224270	225174	225645	225795 2_nonsis		472	998	1524	1	1	1	1	0 (5:3)_(4:4aCO)
5 OM6	OM	2	78234	78701	79464	79692 2_nonsis		764	1111	1457	1	1	1	1	0 (5:3)_(4:4aCO)
122 OM6	OM	13	99880	100124	101176	102104 2_nonsis		1053	1638	2223	1	1	1	1	0 (5:3)_(4:4aCO)
42 OM6	OM	5	26685	27044	27044	27119 2_nonsis		1	217	433	1	2	1	1	0 (3:5)_(4:4aCO)
72 OM6	OM	8	70542	70883	70883	71457 2_nonsis		1	458	914	1	2	1	1	0 (3:5)_(4:4aCO)
130 OM6	OM	13	476908	477780	477780	478087 2_nonsis		1	590	1178	1	2	1	1	0 (3:5)_(4:4aCO)
10 OM6	OM	2	409495	410015	410015	410900 2_nonsis		1	703	1404	1	2	1	1	0 (3:5)_(4:4aCO)
94 OM6	OM	11	19020	19563	20014	20275 2_nonsis		452	853	1254	1	2	1	1	0 (3:5)_(4:4aCO)
131 OM6	OM	13	574226	575064	575127	576259 2_nonsis		64	1048	2032	1	2	1	1	0 (3:5)_(4:4aCO)
124 OM6	OM	13	117651	120604	120995	121603 2_nonsis		392	2172	3951	1	2	1	1	0 (3:5)_(4:4aCO)
148 OM6	OM	14	416991	418723	420283	420526 2_nonsis		1561	2548	3534	1	2	1	1	0 (3:5)_(4:4aCO)
73 OM6	OM	8	121618	121987	122169	122633 2_nonsis		183	599	1014	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
120 OM6	OM	13	39438	40376	40511	41051 2_nonsis		136	874	1612	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
19 OM6	OM	3	102669	103556	103955	104476 2_nonsis		400	1103	1806	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
65 OM6	OM	7	609958	610674	611214	611295 2_nonsis		541	939	1336	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
165 OM6	OM	15	985518	985891	986838	986894 2_nonsis		948	1162	1375	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
52 OM6	OM	5	465974	466823	467963	468715 2_nonsis		1141	1941	2740	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
22 OM6	OM	4	105121	105197	105348	105623 2_nonsis		152	327	501	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
13 OM6	OM	2	564041	565133	565389	565408 2_nonsis		257	812	1366	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
47 OM6	OM	5	212944	213244	214752	214893 2_nonsis		1509	1729	1948	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
27 OM6	OM	4	263030	263811	266878	267359 2_nonsis		3068	3698	4328	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
158 OM6	OM	15	410276	410471	410754	411250 2_nonsis		284	629	973	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
115 OM6	OM	12	678541	678658	678971	679614 2_nonsis		314	693	1072	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
128 OM6	OM	13	388416	388450	389307	389541 2_nonsis		858	991	1124	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
155 OM6	OM	15	267320	267756	268456	269276 2_nonsis		701	1328	1955	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
59 OM6	OM	6	228093	228299	230627	230867 2_nonsis		2329	2551	2773	1	12	1	1	0 (5:3)_(4:4aCO)_(6:2)_(4:4a)
38 OM6	OM	4	1278613	1278992	1279680	1279875 2_nonsis		689	975	1261	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
136 OM6	OM	13	772282	772333	774012	774331 2_nonsis		1680	1864	2048	1	12	1	1	0 (2:6)_(3:5)_(4:4)_(2:6)_(4:4aCO)
58 OM6	OM	6	189336	189828	191655	191860 2_nonsis		1828	2176	2523	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
63 OM6	OM	7	433234	433416	435261	435280 2_nonsis		1846	1946	2045	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
37 OM6	OM	4	1149128	1149251	1153171	1153699 2_nonsis		3921	4246	4570	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
103 OM6	OM	11	469355	469480	469561	469692 2_nonsis		82	209	336	1	15	1	1	0 (6:2)_(4:4aCO)
86 OM6	OM	10	146598	146986	147014	147143 2_nonsis		29	287	544	1	15	1	1	0 (6:2)_(4:4aCO)
64 OM6	OM	7	451921	452296	452296	452589 2_nonsis		1	334	667	1	15	1	1	0 (6:2)_(4:4aCO)
114 OM6	OM	12	616330	616917	616917	617208 2_nonsis		1	439	877	1	15	1	1	0 (6:2)_(4:4aCO)
97 OM6	OM	11	172151	172715	172715	173133 2_nonsis		1	491	981	1	15	1	1	0 (6:2)_(4:4aCO)
166 OM6	OM	16	65675	66393	66527	66703 2_nonsis		135	581	1027	1	15	1	1	0 (6:2)_(4:4aCO)
69 OM6	OM	7	911857	912297	912560	912779 2_nonsis		264	593	921	1	15	1	1	0 (6:2)_(4:4aCO)
00		,			2000			-0.	-,,,		•		-	-	· (

61 OM6	OM	7	141481	141849	142398	142616 2_nonsis	550	842	1134	1	15	1	1	0 (6:2)_(4:4aCO)
20 OM6	OM	3	156517	156868	157515	157686 2_nonsis	648	908	1168	1	15	1	1	0 (6:2)_(4:4aCO)
160 OM6	OM	15	570484	570759	570759	571108 2_nonsis	1	312	623	1	16	1	1	0 (2:6)_(4:4aCO)
150 OM6	OM	14	531520	531611	531656	532165 2_nonsis	46	345	644	1	16	1	1	0 (2:6)_(4:4aCO)
164 OM6	OM	15	968047	968210	968476	968504 2_nonsis	267	362	456	1	16	1	1	0 (2:6)_(4:4aCO)
77 OM6	OM	8	462588	462676	462717	463320 2_nonsis	42	387	731	1	16	1	1	0 (2:6)_(4:4aCO)
48 OM6	OM	5	228943	229569	229569	229778 2_nonsis	1	418	834	1	16	1	1	0 (2:6)_(4:4aCO)
54 OM6	OM	6	39690	40189	40232	40564 2_nonsis	44	459	873	1	16	1	1	0 (2:6)_(4:4aCO)
40 OM6	OM	4	1394566	1394881	1394881	1395687 2_nonsis	1	561	1120	1	16	1	1	0 (2:6)_(4:4aCO)
75 OM6	OM	8	352905	353097	353343	354035 2_nonsis	247	688	1129	1	16	1	1	0 (2:6)_(4:4aCO)
9 OM6	OM	2	338226	338664	339083	339200 2_nonsis	420	697	973	1	16	1	1	0 (2:6)_(4:4aCO)
87 OM6	OM	10	272315	272728	272728	273972 2_nonsis	1	829	1656	1	16	1	1	0 (2:6)_(4:4aCO)
163 OM6	OM	15	761321	761947	762399	762530 2_nonsis	453	831	1208	1	16	1	1	0 (2:6)_(4:4aCO)
60 OM6	OM	7	92892	93381	93397	94650 2_nonsis	17	887	1757	1	16	1	1	0 (2:6)_(4:4aCO)
123 OM6	OM	13	104516	105255	105707	106249 2_nonsis	453	1093	1732	1	16	1	1	0 (2:6)_(4:4aCO)
107 OM6	OM	12	54071	54226	54071	54226 2_nonsis	0	77	154	1	100	1	1	0 (4:4aCO)
66 OM6	OM	7	640541	640786	640541	640786 2_nonsis	0	122	244	1	100	1	1	0 (4:4aCO)
67 OM6	OM	7	697261	697513	697261	697513 2_nonsis	0	126	251	1	100	1	1	0 (4:4aCO)
112 OM6	OM	12	568114	568449	568114	568449 2_nonsis	0	167	334	1	100	1	1	0 (4:4aCO)
33 OM6	OM	4	808258	808803	808258	808803 2_nonsis	0	272	544	1	100	1	1	0 (4:4aCO)
7 OM6	OM	2	150492	151117	150492	151117 2_nonsis	0	312	624	1	100	1	1	0 (4:4aCO)
17 OM6	OM	2	738241	738886	738241	738886 2_nonsis	0	322	644	1	100	1	1	0 (4:4aCO)
30 OM6	OM	4	375932	376661	375932	376661 2_nonsis	0	364	728	1	100	1	1	0 (4:4aCO)
140 OM6	OM	14	51050	51868	51050	51868 2_nonsis	0	409	817	1	100	1	1	0 (4:4aCO)
51 OM6	OM	5	359292	360247	359292	360247 2_nonsis	0	477	954	1	100	1	1	0 (4:4aCO)
36 OM6	OM	4	1063173	1064173	1063173	1064173 2_nonsis	0	500	999	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
34 OM6	OM	4	894075	895202	894075	895202 2_nonsis	0	563	1126	1	100	1	1	0 (4:4aCO)
89 OM6	OM	10	391693	392871	391693		0	589	1177	1	100	1	1	
92 OM6	OM		577732	578943	577732	392871 2_nonsis	0	605	1210	1	100	1	1	0 (4:4aCO)
92 OM6 21 OM6	OM	10 3	252633	253903	252633	578943 2_nonsis 253903 2_nonsis	0	635	1210	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
3 OM6	OM	1	170945	172280	170945	233903 2_nonsis 172280 2_nonsis	0	667	1334	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
							0			-		1	1	
106 OM6	OM	11	634635	635970	634635	635970 2_nonsis		667	1334	1	100			0 (4:4aCO)
149 OM6	OM	14	439088	440569	439088	440569 2_nonsis	0	740	1480	1	100	1	1	0 (4:4aCO)
126 OM6	OM	13	222095	223597	222095	223597 2_nonsis	0	751	1501	1	100	1	1	0 (4:4aCO)
81 OM6	OM	9	240939	242535	240939	242535 2_nonsis	0	798	1595	1	100	1	1	0 (4:4aCO)
121 OM6	OM	13	42127	44157	42127	44157 2_nonsis	0	1015	2029	1	100	1	1	0 (4:4aCO)
145 OM6	OM	14	197788	200172	197788	200172 2_nonsis	0	1192	2383	1	100	1	1	0 (4:4aCO)
139 OM6	OM	13	889717	890524	892536	893651 2_nonsis	2013	2973	3933	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
173 OM6	OM	16	653303	653426	653932	653953 2_nonsis	507	578	649	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
2 OM6	OM	1	121235	128637	130776	130897 2_nonsis	2140	5901	9661	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
98 OM6	OM	11	263873	263933	265522	265706 2_nonsis	1590	1711	1832	2	31	1	1	0 (3:5)_(4:4)_(3:5)_(3:5a)_(2:6)_(4:4aCO)
55 OM6	OM	6	87978	88329	91421	92092 2_nonsis	3093	3603	4113	2	31	1	1	0 (4:4ai)_(3:5)_(2:6)_(3:5)_(3:5a)_(3:5b)_(4:4bCO)
83 OM6	OM	9	405428	405665	405973	406124 2_nonsis	309	502	695	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4aCO)
1 OM6	OM	1	55793	55914	57455	57739 2_nonsis	1542	1744	1945	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
95 OM6	OM	11	74916	75663	77172	77759 2_nonsis	1510	2176	2842	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(2:6)_(4:4aCO)
70 OM6	OM	7	991617	991917	994032	994097 2_nonsis	2116	2298	2479	2	32	1	1	0 (4:4aCO)_(3:5)_(4:4a)_(3:5a)_(4:4a)
170 OM6	OM	16	425006	425302	427600	428058 2_nonsis	2299	2675	3051	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4)_(4:4aCO)
168 OM6	OM	16	312873	312892	316205	316676 2_nonsis	3314	3558	3802	2	32	1	1	0 (5:3)_(4:4)_(6:2)_(5:3a)_(4:4aCO)
23 OM6	OM	4	174905	175847	177807	178219 2_nonsis	1961	2637	3313	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)_(5:3a)_(4:4a)
32 OM6	OM	4	635526	635784	637257	637466 2_nonsis	1474	1707	1939	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
44 OM6	OM	5	119741	120378	122638	122728 2_nonsis	2261	2624	2986	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
171 OM6	OM	16	482069	482104	482429	482737 2_nonsis	326	497	667	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)
84 OM6	OM	10	36445	36722	37127	37895 2_nonsis	406	928	1449	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
88 OM6	OM	10	315888	316551	317150	317223 2_nonsis	600	967	1334	3	20	1	1	0 (3:5)_(5:3)_(3:5a)_(4:4aCO)
154 OM6	OM	15	40365	40497	41470	41495 2_nonsis	974	1052	1129	3	20	1	1	0 (2:6)_(4:4aCO)_(5:3)_(4:4a)
68 OM6	OM	7	853206	853242	855067	855163 2_nonsis	1826	1891	1956	3	20	1	1	0 (3:5)_(2:6)_(5:3)_(4:4aCO)
105 OM6	OM	11	522458	522560	525240	525421 2_nonsis	2681	2822	2962	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)
49 OM6	OM	5	298190	298538	299333	299795 2_nonsis	796	1200	1604	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
135 OM6	OM	13	715257	715590	716494	716783 2_nonsis	905	1215	1525	3	20	1	1	0 (3:5)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
162 OM6	OM	15	749079	749636	750300	751330 2_nonsis	665	1458	2250	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)

147 OM6	OM	14	364966	365449	366762	367502 2_nonsis		1314	1925	2535	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)
74 OM6	OM	8	279897	280350	281430	282877 2_nonsis		1081	2030	2979	3	20	1	1	0 (5:3)_(5:3a)_(6:2)_(3:5)_(4:4aCO)
62 OM6	OM	7	197816	197942	199894	200351 2_nonsis		1953	2244	2534	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(5:3)_(4:4aCO)
176 OM6	OM	16	839916	840103	842086	842864 2_nonsis		1984	2466	2947	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(2:6)_(4:4aCO)
113 OM6	OM	12	600547	600676	602186	602338 2_nonsis		1511	1651	1790	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
56 OM6	OM	6	113910	114016	116186	116269 2_nonsis		2171	2265	2358	3	20	1	1	0 (3:5)_(4:4)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(4:4a)
8 OM6	OM	2	251742	251790	254006	254436 2_nonsis		2217	2455	2693	3	20	1	1	0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(4:4a)
116 OM6	OM	12	835509	835608	837962	840577 2_nonsis		2355	3711	5067	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5a)_(2:6)_(3:5)_(4:4a)
41 OM6	OM	4	1442138	1442312	1443911	1444256 2_nonsis		1600	1859	2117	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(4:4aCO)_(6:2)_(4:4a)_(5:3)_(4:4a)
133 OM6	OM	13	664149	664502	668408	668902 2_nonsis		3907	4330	4752	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
53 OM6	OM	5	491135	491222	491960	492293 2_nonsis		739	948	1157	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(3:5a)_(4:4bCO)
125 OM6	OM	13	178780	179112	180040	181117 2_sis		929	1633	2336	0	1	2	0	2 (6:2)_(8:0)_(4:4)
110 OM6	OM	12	340821	340838	341070	341507	4	233	459	685	0	2	2	2	0 (3:5)_(2:6)_(4:4aCO)
118 OM6	OM	12	1012226	1013592	1014541	1014649	3	950	1686	2422	0	2	2	1	1 (3:5)_(3:5a)_(4:4aCO)
102 OM6	OM	11	369878	370412	370874	371565 2_nonsis		463	1075	1686	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
134 OM7	OM	11	506252	506430	506430	506614	1	1	181	361	1	1	1	0	1 05:03
126 OM7	OM	11	258873	259176	259177	259318	1	2	223	444	1	1	1	0	1 05:03
161 OM7	OM	13	95214	95277	95482	95516	1	206	254	301	1	1	1	0	1 05:03
39 OM7	OM	4	954530	954939	954985	955099	1	47	308	568	1	1	1	0	1 05:03
44 OM7	OM	4	1126843	1126921	1127082	1127449	1	162	384	605	1	1	1	0	1 05:03
142 OM7	OM	12	97654	98056	98056	98431	1	1	389	776	1	1	1	0	1 05:03
41 OM7	OM	4	1045146	1045288	1045482	1045735	1	195	392	588	1	1	1	0	1 05:03
22 OM7	OM	3	197057	197306	197389	197788	1	84	407	730	1	1	1	0	1 05:03
5 OM7	OM	1	175409	175578	175876	175963	1	299	426	553	1	1	1	0	1 05:03
103 OM7	OM	9	169471	169640	169820	170156	1	181	433	684	1	1	1	0	1 05:03
129 OM7	OM	11	333757	334135	334135	334655	1	1	449	897	1	1	1	0	1 05:03
183 OM7	OM	14	382904	383402	383575	383709	1	174	489	804	1	1	1	0	1 05:03
198 OM7	OM	15	486108	486243	486511	487028	1	269	594	919	1	1	1	0	1 05:03
173 OM7	OM	13	776909	777163	777598	777667	1	436	597	757	1	1	1	0	1 05:03
159 OM7	OM	13	15705	16224	16764	17138	1	541 684	987	1432 1377	1	1	1	0	1 05:03
145 OM7	OM	12	341070	341507	342190	342448	•		1031		1	1	-		1 05:03
2 OM7	OM	1	73855	73970	74786	75211	1	817	1086	1355	1	1	1	0	1 05:03
9 OM7	OM	2	126263	126565	126921	128153	1	357	1123	1889	1	1	1	0	1 05:03
98 OM7 47 OM7	OM OM	8	499040 1240626	499430 1241483	500464 1242241	500752	1	1035 759	1373 1395	1711 2031	1	1 1	1	0	1 05:03
47 OM7 118 OM7	OM		570822			1242658 573950	1	759	1564	3127	1	1	1	0	1 05:03 1 05:03
216 OM7	OM	10 16	461367	573135 462319	573135 463723	573950 464194	1	1405	2116	2826	1	1	1	0	1 05:03
190 OM7	OM	15		99844	102107		1					1	1	0	
196 OM7	OM	15	99650 378043	378090	378090	102146 378122	1	2264 1	2380 40	2495 78	1	2	1	0	1 05:03 1 03:05
60 OM7	OM	5	335567	335661	335661	335687	1	1	60	119	1	2	1	0	1 03:05
63 OM7	OM	5	472577	472664	472664	472738	1	1	81	160	1	2	1	0	1 03:05
194 OM7	OM	15	316433	316591	316591	316611	1	1	89	177	1	2	1	0	1 03:05
91 OM7	OM	8	48709	48768	48768	48921	1	1	106	211	1	2	1	0	1 03:05
51 OM7	OM	4	1420714	1420794	1420794	1420932	1	1	109	217	1	2	1	0	1 03:05
74 OM7	OM	7	196917	196981	197001	197150	1	21	127	232	1	2	1	0	1 03:05
164 OM7	OM	13	303300	303354	303419	303491	1	66	128	190	1	2	1	0	1 03:05
215 OM7	OM	16	425451	425480	425481	425740	1	2	145	288	1	2	1	0	1 03:05
136 OM7	OM	11	565671	565988	565988	566185	1	1	257	513	1	2	1	0	1 03:05
100 OM7	OM	9	76162	76340	76381	76848	1	42	364	685	1	2	1	0	1 03:05
28 OM7	OM	4	164096	164298	164298	164984	1	1	444	887	1	2	1	0	1 03:05
76 OM7	OM	7	224665	225106	225112	225550	1	7	446	884	1	2	1	0	1 03:05
83 OM7	OM	7	597592	598397	598397	598538	1	1	473	945	1	2	1	0	1 03:05
38 OM7	OM	4	909447	909908	909908	910427	1	1	490	979	1	2	1	0	1 03:05
206 OM7	OM	16	21870	21970	22388	22478	1	419	513	607	1	2	1	0	1 03:05
199 OM7	OM	15	513637	514366	514405	514625	1	40	514	987	1	2	1	0	1 03:05
186 OM7	OM	14	464849	465005	465005	465885	1	1	518	1035	1	2	1	0	1 03:05
15 OM7	OM	2	490686	491476	491476	492001	1	1	658	1314	1	2	1	0	1 03:05
214 OM7	OM	16	371914	372742	372742	373291	1	1	689	1376	1	2	1	0	1 03:05
181 OM7	OM	14	240933	241136	241440	242111	1	305	741	1177	1	2	1	0	1 03:05
85 OM7	OM	7	640541	640849	640849	642042	1	1	751	1500	1	2	1	0	1 03:05

140 OM7	OM	12	37196	37375	38224	38338	1	850	996	1141	1	2	1	0	1 03:05
152 OM7	OM	12	727539	727901	728268	729242	1	368	1035	1702	1	2	1	0	1 03:05
185 OM7	OM	14	425816	427278	427451	427715	1	174	1036	1898	1	2	1	0	1 03:05
105 OM7	OM	9	257646	257823	258908	259266	1	1086	1353	1619	1	2	1	0	1 03:05
176 OM7	OM	14	52324	52659	53888	54162	1	1230	1534	1837	1	2	1	0	1 03:05
13 OM7	OM	2	371139	371446	372730	372954	1	1285	1550	1814	1	2	1	0	1 03:05
125 OM7	OM	11	225909	226549	227625	227937	1	1077	1552	2027	1	2	1	0	1 03:05
223 OM7	OM	16	892211	892306	893806	893821	1	1501	1555	1609	1	2	1	0	1 03:05
37 OM7	OM	4	865525	865546	867508	867984	1	1963	2211	2458	1	2	1	0	1 03:05
102 OM7	OM	9	160585	160764	162266	163812	1	1503	2365	3226	1	2	1	0	1 03:05
144 OM7	OM	12	317117	318011	319960	320465	1	1950	2649	3347	1	2	1	0	1 03:05
155 OM7	OM	12	837962	840577	840682	843387	1	106	2765	5424	1	2	1	0	1 03:05
71 OM7	OM	6	236578	236905	237488	237962	1	584	984	1383	1	3	1	0	1 5:3_6:2_5:3
137 OM7	OM	11	598922	599337	600144	600159	1	808	1022	1236	1	3	1	0	1 5:3_4:4_5:3
40 OM7	OM	4	968331	968466	969561	970293	1	1096	1529	1961	1	3	1	0	1 5:3_4:4_5:3
16 OM7	OM	2	516590	516896	519354	519405	1	2459	2637	2814	1	3	1	0	1 5:3_6:2_5:3
1 OM7	OM	1	30493	30516	30644	30662	1	129	149	168	1	3	1	0	1 5:3 4:4 6:2 5:3
132 OM7	OM	11	438489	439212	439879	439894	1	668	1036	1404	1	4	1	0	1 3:5 4:4 3:5
45 OM7	OM	4	1167232	1167361	1168770	1168940	1	1410	1559	1707	1	4	1	0	1 3:5_2:6_3:5
138 OM7	OM	11	612809	613087	614538	615121	1	1452	1882	2311	1	4	1	0	1 3:5_4:4_3:5
43 OM7	OM	4	1052845	1053051	1054662	1055183	1	1612	1975	2337	1	4	1	0	1 3:5_2:6_3:5
54 OM7	OM	5	11847	12024	13307	13446	1	1284	1441	1598	1	4	1	0	1 3:5_4:4_2:6_3:5
131 OM7	OM	11	434978	435357	437047	437157	1	1691	1935	2178	1	4	1	0	1 3:5_4:4_3:5_2:6_3:5
31 OM7	OM	4	341036	341381	341421	341782	1	41	393	745	1	7	1	0	1 5:3_6:2
84 OM7	OM	7	636413	636660	636810	637449	1	151	593	1035	1	7	1	0	1 6:2_5:3
158 OM7	OM	12	1053098	1053517	1054794	1055114	1	1278	1647	2015	1	7	1	0	1 5:3 6:2
154 OM7	OM	12	818577	819069	819834	820606	1	766	1397	2028	1	7	1	0	1 5:3_6:2_5:3_6:2
10 OM7	OM	2	160020	160143	160810	161687	1	668	1167	1666	1	8	1	0	1 3:5_2:6
165 OM7	OM	13	371760	371798	379248	379442	1	7451	7566	7681	1	8	1	0	1 3:5 2:6 4:4 2:6
6 OM7	OM	1	195324	195456	198699	198707	1	3244	3313	3382	1	8	1	0	1 3:5_2:6_3:5_2:6_3:5_2:6_3:5_2:6_3:5_2:6
148 OM7	OM	12	602479	602685	602685	602909	1	1	215	429	1	10.1	1	0	1 02:06
178 OM7	OM	14	116678	116796	117055	117101	1	260	341	422	2	11	1	0	1 5:3_5:3a
56 OM7	OM	5	33348	33706	34050	34247	1	345	622	898	2	11	1	0	1 5:3_5:3a
201 OM7	OM	15	733385	733489	733953	735184	1	465	1132	1798	2	11	1	0	1 5:3_5:3a
151 OM7	OM	12	679633	680510	681146	681539	1	637	1271	1905	2	11	1	0	1 5:3_5:3a 1 5:3_5:3a
213 OM7	OM	16	358537	358849	360315	360607	1	1467	1768	2069	2	11	1	0	1 5:3_5:3a 1 5:3_5:3a
121 OM7	OM	11	33673	34051	35874	36243	1	1824	2197	2569	2	11	1	0	1 5:3_5:3a 1 5:3_5:3a
172 OM7	OM	13	741504	741880	744735	744855	1	2856	3103	3350	2	11	1	0	1 5:3_5:3a 1 5:3_5:3a
49 OM7	OM	4	1318030	1318331	1321506	1322306	1	3176	3726	4275	2	11	1	0	1 5:3_5:3a 1 5:3_5:3a
75 OM7		7		202039		205751	1	3603	3927		2		1	0	
149 OM7	OM OM	12	201499 644551	645338	205641 645971	646705	1	634	1394	4251 2153	2	11 12	1	0	1 5:3_5:3a 1 3:5_3:5a
42 OM7	OM	4	1049195	1049210	1050770	1050824	1	1561	1595	1628	2	12	1	0	1 3:5_3:5a 1 3:5_3:5a
135 OM7	OM	11	523649	523718	525240	525421	1	1523	1647	1771	2		1	0	1 3:5_3:5a 1 3:5_3:5a
79 OM7	OM	7	412771	412810	413503	413620	1	694	771	848	2	12 13	1	0	1 5:3_5:5a 1 5:3_4:4_5:3_5:3a
80 OM7		7					1	1404	1848	2292	2		1	0	
80 OM7 130 OM7	OM OM	11	451346 400972	451921 401736	453324 404440	453639 404696	1	2705	3214	3723	2	13 13	1	0	1 5:3_5:3a_6:2_5:3a
221 OM7	OM		400972 810641		815485		1	3921	3214 4726				1	0	1 5:3_4:4_5:3_5:3a
221 OM7 87 OM7		16		811565		816173	-			5531	2	13	-	0	1 5:3_4:4_5:3_5:3a_4:4_5:3a_4:4_5:3a_6:2_5:3a
	OM	7	795193	795253	796413	796586	1	1161	1277	1392	2	14	1		1 3:5_3:5a_2:6
182 OM7	OM	14	317977	318057	319911	321214	1	1855	2546	3236	2	14	1	0	1 3:5_3:5a_2:6_3:5a
24 OM7	OM	4	21450	21476	22513	22525	1	1038	1056	1074	2	14	1	0	1 3:5_4:4_3:5_2:6_3:5_3:5a
116 OM7	OM	10	380992	381023	381650	381896	1	628	766	903	2	15	1	0	1 5:3_4:4_5:3a
34 OM7	OM	4	714934	715058	716075	716118	1	1018	1101	1183	2	15	1	0	1 5:3_4:4_5:3a
205 OM7	OM	15	1024766	1025192	1026039	1026427	1	848	1254	1660	2	15	1	0	1 5:3_4:4_5:3a
210 OM7	OM	16	172192	172402	173535	174782	1	1134	1862	2589	2	15	1	0	1 5:3_4:4_5:3a
127 OM7	OM	11	267504	267528	272535	272996	1	5008	5250	5491	2	15	1	0	1 5:3_4:4_5:3a
12 OM7	OM	2	350797	350900	351335	351500	1	436	569	702	2	16	1	0	1 3:5_4:4_3:5a
171 OM7	OM	13	694524	694679	695300	695427	1	622	762	902	2	16	1	0	1 3:5_4:4_3:5a
212 OM7	OM	16	286085	286209	286979	287057	1	771	871	971	2	16	1	0	1 3:5_4:4_3:5a
209 OM7	OM	16	114414	114586	115228	115785	1	643	1007	1370	2	16	1	0	1 3:5_4:4_3:5a
48 OM7	OM	4	1278056	1278456	1279416	1279422	1	961	1163	1365	2	16	1	0	1 3:5_4:4_3:5a

177 OM7	OM	14	107852	108148	109033	109383	1	886	1208	1530	2	16	1	0	1 3:5_4:4_3:5a
167 OM7	OM	13	459508	459995	461290	461498	1	1296	1643	1989	2	16	1	0	1 3:5_4:4_3:5a
106 OM7	OM	9	266803	267668	268690	269349	1	1023	1784	2545	2	16	1	0	1 3:5_4:4_3:5a
57 OM7	OM	5	66291	67085	69243	69568	1	2159	2718	3276	2	17	1	0	1 6:2_5:3_4:4_5:3a
150 OM7	OM	12	675407	675924	678194	678512	1	2271	2688	3104	2	17	1	0	1 6:2_5:3_4:4_5:3_4:4_5:3_4:4_5:3a
68 OM7	OM	6	108920	109247	114918	115088	1	5672	5920	6167	2	17	1	0	1 5:3_4:4_5:3a_4:4_6:2_5:3a_6:2_5:3a_4:4_5:3a
108 OM7	OM	9	335079	336156	339115	340356	1	2960	4118	5276	2	18	1	0	1 3:5_2:6_3:5_4:4_3:5a
120 OM7	OM	10	704768	704861	705639	705848	1	779	929	1079	2	19	1	0	1 5:3_6:2_5:3a
110 OM7	OM	9	396773	396834	399240	399281	1	2407	2457	2507	2	19	1	0	1 5:3_6:2_5:3a
207 OM7	OM	16	45974	46114	46637	46780	1	524	665	805	2	20	1	0	1 3:5_2:6_3:5a
82 OM7	OM	7	527159	527396	528501	528674	1	1106	1310	1514	2	20	1	0	1 3:5_2:6_3:5a
20 OM7	OM	3	70158	70491	71427	71575	1	937	1177	1416	2	22	1	0	1 3:5_2:6_3:5_2:6_3:5a
94 OM7	OM	8	140123	142800	143949	144253 2_nonsis		1150	2640	4129	3	30	1	0	1 3:5_5:3_3:5
72 OM7	OM	7	19992	20130	21041	21167 2_nonsis		912	1043	1174	3	30	1	0	1 3:5_4:4_3:5_5:3_4:4_5:3_4:4_2:6_3:5a
92 OM7	OM	8	97245	97536	99112	99909 2_nonsis		1577	2120	2663	3	31	1	0	1 5:3_5:3a_4:4ai
220 OM7	OM	16	784177	784693	786663	787292 2_nonsis		1971	2543	3114	3	31	1	0	1 3:5_4:4ai_4:4bi_5:3_6:2_5:3
123 OM7	OM	11	99224	99633	99646	100670 2_nonsis		14	730	1445	1	1	1	1	0 (5:3)_(4:4aCO)
187 OM7	OM	14	606438	606872	606872	608001 2_nonsis		1	782	1562	1	1	1	1	0 (5:3)_(4:4aCO)
77 OM7	OM	7	247749	249983	250680	252024 2_nonsis		698	2486	4274	1	1	1	1	0 (5:3)_(4:4aCO)
21 OM7	OM	3	163699	164093	164277	165283 2_nonsis		185	884	1583	1	2	1	1	0 (3:5)_(4:4aCO)
99 OM7	OM	8	517036	517336	518620	518740 2_nonsis		1285	1494	1703	1	2	1	1	0 (3:5)_(4:4aCO)
114 OM7	OM	10	346858	347630	347951	348292 2_nonsis		322	878	1433	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
197 OM7	OM	15	457110	457531	458312	458549 2_nonsis		782	1110	1438	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
111 OM7	OM	10	58202	58607	60064	60979 2_nonsis		1458	2117	2776	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
26 OM7	OM	4	77883	78578	79621	79687 2_nonsis		1044	1424	1803	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
192 OM7	OM	15	270164	270370	270526	270656 2_nonsis		157	324	491	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
143 OM7	OM	12	233075	234128	234378	234633 2_nonsis		251	904	1557	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
52 OM7	OM	4	1463798	1464429	1465960	1466217 2_nonsis		1532	1975	2418	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
78 OM7	OM	7	306279	306537	306650	306793 2_nonsis		114	314	513	1	8	1	1	0 (6:2) (5:3) (4:4aCO)
86 OM7	OM	7	766129	766363	766579	766797 2_nonsis		217	442	667	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
69 OM7	OM	6	172677	173376	173765	174112 2_nonsis		390	912	1434	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
174 OM7	OM	13	797223	797362	797456	797542 2_nonsis		95	207	318	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
208 OM7	OM	16	72392	72410	73929	74327 2_nonsis		1520	1727	1934	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
90 OM7	OM	7	1012544	1012661	1012874	1013000 2_nonsis		214	335	455	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
95 OM7	OM	8	189310	189521	190671	191072 2_nonsis		1151	1456	1761	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
153 OM7	OM	12	776373	777814	778158	779222 2_nonsis		345	1597	2848	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
146 OM7	OM	12	370090	370487	370966	371874 2_nonsis		480	1132	1783	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
73 OM7	OM	7	124322	124671	125090	125128 2_nonsis		420	613	805	1	12	1	1	0 (5:3)_(4:4aCO)_(5:3)_(4:4a)
211 OM7	OM	16	212773	213190	214028	214067 2_nonsis		839	1066	1293	1	12	1	1	0 (5:3)_(4:4aCO)_(6:2)_(4:4a)
170 OM7	OM	13	664811	665349	666220	666667 2_nonsis		872	1364	1855	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
122 OM7	OM	11	80353	80724	81532	82469 2_nonsis		809	1462	2115	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
64 OM7	OM	5	540528	540683	541194	541873 2_nonsis		512	928	1344	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
113 OM7	OM	10	236674	236901	237784	238262 2_nonsis		884	1236	1587	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
109 OM7	OM	9	375595	375691	377556	378238 2_nonsis		1866	2254	2642	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(3:5)_(4:4a)
101 OM7	OM	9	90720	91277	93376	93546 2_nonsis		2100	2463	2825	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(5:3)_(6:2)_(5:3)_(4:4a)
218 OM7	OM	16	586133	586291	586309	586497 2_nonsis		19	191	363	1	15	1	1	0 (6:2)_(4:4aCO)
19 OM7	OM	3	40374	40637	40637	40987 2_nonsis		1	307	612	1	15	1	1	0 (6:2)_(4:4aCO)
70 OM7	OM	6	223659	224098	224098	224275 2_nonsis		1	308	615	1	15	1	1	0 (6:2)_(4:4aCO)
133 OM7	OM	11	479195	479521	479521	480070 2_nonsis		1	438	874	1	15	1	1	0 (6:2)_(4:4aCO)
180 OM7	OM	14	233897	234026	234026	234916 2_nonsis		1	510	1018	1	15	1	1	0 (6:2)_(4:4aCO)
203 OM7	OM	15	860391	861174	861195	861567 2_nonsis		22	599	1175	1	15	1	1	0 (6:2)_(4:4aCO)
11 OM7	OM	2	288990	289129	289129	289364 2_nonsis		1	187	373	1	16	1	1	0 (2:6)_(4:4aCO)
217 OM7	OM	16	520404	520684	520684	520828 2_nonsis		1	212	423	1	16	1	1	0 (2:6)_(4:4aCO)
33 OM7	OM	4	615975	616214	616434	616559 2_nonsis		221	402	583	1	16	1	1	0 (2:6)_(4:4aCO)
59 OM7	OM	5	224681	225229	225485	226347 2_nonsis		257	961	1665	1	16	1	1	0 (2:6)_(4:4aCO)
141 OM7	OM	12	94920	95188	94920	95188 2_nonsis		0	134	267	1	100	1	1	0 (4:4aCO)
81 OM7	OM	7	523417	523732	523417	523732 2_nonsis		0	157	314	1	100	1	1	0 (4:4aCO)
163 OM7	OM	13	236410	236819	236410	236819 2_nonsis		0	204	408	1	100	1	1	0 (4:4aCO)
200 OM7	OM	15	670513	671012	670513	671012 2_nonsis		0	249	498	1	100	1	1	0 (4:4aCO)
184 OM7	OM	14	424418	425075	424418	425075 2_nonsis		0	328	656	1	100	1	1	0 (4:4aCO)
	-		-					-							•

124 OM7	OM	11	171261	172151	171261	172151 2_nonsis		0	445	889	1	100	1	1	0 (4:4aCO)
219 OM7	OM	16	689677	691459	689677	691459 2_nonsis		0	891	1781	1	100	1	1	0 (4:4aCO)
117 OM7	OM	10	568805	570822	568805	570822 2_nonsis		0	1008	2016	1	100	1	1	0 (4:4aCO)
4 OM7	OM	1	132066	135319	132066	135319 2_nonsis		0	1626	3252	1	100	1	1	0 (4:4aCO)
191 OM7	OM	15	147007	150962	147007	150962 2_nonsis		0	1977	3954	1	100	1	1	0 (4:4aCO)
156 OM7	OM	12	892436	930472	892436	930472 2_nonsis		0	19018	38035	1	100	1	1	0 (4:4aCO)
107 OM7	OM	9	274972	275112	275507	275789 2_nonsis		396	606	816	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
222 OM7	OM	16	887394	887495	889742	890080 2_nonsis		2248	2467	2685	2	30	1	1	0 (5:3)_(5:3a)_(6:2)_(5:3a)_(4:4ai)_(4:4bCO)
168 OM7	OM	13	494666	494984	498745	499915 2_nonsis		3762	4505	5248	2	30	1	1	0 (6:2)_(5:3)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
50 OM7	OM	4	1362965	1363089	1367355	1367748 2_nonsis		4267	4525	4782	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(5:3a)_(5:3b)_(4:4aCO)
8 OM7	OM	2	73943	74920	76470	76676 2_nonsis		1551	2142	2732	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
175 OM7	OM	13	860181	861184	864272	864551 2_nonsis		3089	3729	4369	2	31	1	1	0 (3:5)_(3:5a)_(4:4)_(3:5b)_(4:4aCO)
36 OM7	OM	4	809670	810702	814490	814815 2_nonsis		3789	4467	5144	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
30 OM7	OM	4	319641	320177	321785	321844 2_nonsis		1609	1906	2202	2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
202 OM7	OM	15	778024	779060	781811	781897 2_nonsis		2752	3312	3872	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(3:5b)_(4:4a)
55 OM7	OM	5	26638	26678	28312	28600 2_nonsis		1635	1798	1961	2	32	1	1	0 (3:5)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
139 OM7	OM	12	29131	29612	31221	31473 2_nonsis		1610	1976	2341	2	32	1	1	0 (5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
195 OM7	OM	15	346743	347366	349515	349564 2_nonsis		2150	2485	2820	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(5:3b)_(4:4a)
188 OM7	OM	14	662512	665017	667685	668135 2_nonsis		2669	4146	5622	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4)_(5:3)_(4:4aCO)
160 OM7	OM	13	54192	54469	56748	57144 2_nonsis		2280	2616	2951	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4)_(3:5)_(4:4ai)_(3:5b)_(4:4bCO)
169 OM7	OM	13	560428	561397	561662	561993 2_nonsis		266	915	1564	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)
67 OM7	OM	6	102071	102489	103865	104114 2_nonsis		1377	1710	2042	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
61 OM7	OM	5	358357	359292	360556	361242 2_nonsis		1265	2075	2884	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
29 OM7	OM	4	230153	230663	233071	233134 2_nonsis		2409	2695	2980	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO) 0 (5:3)_(3:5)_(4:4aCO)
29 OM7 204 OM7	OM		944698	945099	945647			549	817	1085	3	20	1	1	
		15				945784 2_nonsis									0 (6:2)_(5:3)_(3:5)_(4:4aCO)
53 OM7	OM	4	1497031	1497133	1498007	1498087 2_nonsis		875	965	1055	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
193 OM7	OM	15	295611	296401	297608	297726 2_nonsis		1208	1661	2114	3	20	1	1	0 (5:3)_(6:2)_(4:4)_(2:6)_(4:4aCO)
119 OM7	OM	10	660786	661017	662479	663134 2_nonsis		1463	1905	2347	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
115 OM7	OM	10	373437	373775	375392	375980 2_nonsis		1618	2080	2542	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)_(3:5)_(4:4a)
162 OM7	OM	13	163286	163391	167027	167431 2_nonsis		3637	3891	4144	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(5:3a)_(4:4aCO)
89 OM7	OM	7	919531	919947	926465	926609 2_nonsis		6519	6798	7077	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)
93 OM7	OM	8	121477	121987	123099	123320 2_nonsis		1113	1478	1842	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(5:3)_(4:4aCO)
27 OM7	OM	4	145687	145805	148667	148986 2_nonsis		2863	3081	3298	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)_(3:5a)_(4:4a)
104 OM7	OM	9	175175	175368	178629	179273 2_nonsis		3262	3680	4097	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5)_(2:6)_(4:4a)
14 OM7	OM	2	457416	457610	458835	458919 2_nonsis		1226	1364	1502	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO)_(2:6)_(3:5)_(4:4a)
96 OM7	OM	8	279197	279622	281264	281430 2_nonsis		1643	1938	2232	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(3:5)_(4:4aCO)
18 OM7	OM	2	757908	758926	761970	762336 2_nonsis		3045	3736	4427	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(2:6)_(4:4a)_(3:5a)_(4:4a)
147 OM7	OM	12	514693	514832	519358	520183 2_nonsis		4527	5008	5489	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
66 OM7	OM	6	74173	74254	78202	78568 2_nonsis		3949	4172	4394	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
179 OM7	OM	14	187434	187730	188341	188387 2_nonsis		612	782	952	3	21	1	1	0 (6:2)_(4:4ai)_(3:5)_(4:4bCO)
157 OM7	OM	12	952346	952469	955099	955168 2_nonsis		2631	2726	2821	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(4:4bCO)
17 OM7	OM	2	597752	597781	600626	601097 2_nonsis		2846	3095	3344	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(4:4bCO)_(3:5)_(4:4b)
88 OM7	OM	7	847512	847727	850043	850236 2_nonsis		2317	2520	2723	3	21	1	1	0 (5:3)_(6:2)_(5:3)_(4:4ai)_(4:4bCO)_(3:5)_(4:4b)
46 OM7	OM	4	1216449	1216848	1219165	1219718 2_nonsis		2318	2793	3268	3	21	1	1	0 (5:3)_(4:4)_(5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO)
3 OM7	OM	1	129075	129476	130975	132066 2_sis		1500	2245	2990	0	1	2	0	2 (5:3)_(4:4)_(5:3a)_(6:2)_(4:4)
58 OM7	OM	5	155613	155858	160248	160729	3	4391	4753	5115	0	1	2	0	2 (3:5)_(4:4)_(3:5)_(3:5a)_(5:3)_(3:5b)_(4:4ai)_(3:5a)_(4:4)_(5:3)_(4:4)
128 OM7	OM	11	307466	307562	310373	310702	3	2812	3024	3235	0	1	2	0	2 (3:5)_(3:5a)_(2:6i)_(1:7)_(1:7a)_(2:6i)_(3:5b)_(4:4)
23 OM7	OM	3	212942	213185	218143	218655	3	4959	5336	5712	0	2	2	1	1 (6:2)_(5:3)_(2:6i)_(4:4ai)_(5:3a)_(4:4bCO)
25 OM7	OM	4	55084	55881	57910	58341	3	2030	2643	3256	0	2	2	1	1 (3:5)_(4:4aCO)_(3:5a)_(2:6)_(3:5a)_(2:6)_(4:4a)
32 OM7	OM	4	550699	550807	552354	552557	3	1548	1703	1857	0	2	2	1	1 (5:3)_(4:4)_(4:4aCO)_(5:3a)_(4:4a)
35 OM7	OM	4	788889	789368	794075	794507	3	4708	5163	5617	0	2	2	1	1 (5:3)_(5:3a)_(6:2)_(4:4aCO)
62 OM7	OM	5	397892	398975	400033	400481	3	1059	1824	2588	0	2	2	1	1 (6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
97 OM7	OM	8	372612	372964	377294	377321	4	4331	4520	4708	0	2	2	1	1 (3:5)_(2:6)_(3:5)_(4:4ai)_(2:6)_(3:5)_(3:5a)_(2:6ai)_(3:5b)_(2:6bi)_(3:5c)_(4:4bCO)
112 OM7	OM	10	156523	157046	159830	160491	3	2785	3376	3967	0	2	2	1	1 (3:5)_(4:4)_(2:6)_(3:5a)_(4:4aCO)_(5:3)_(4:4a)
189 OM7	OM	14	707765	708870	710457	711615	3	1588	2719	3849	0	2	2	1	1 (5:3)_(3:5)_(4:4ai)_(4:4bCO)
7 OM7	OM	2	37628	39234	45824	46603	3	6591	7783	8974	0	3	2	1	1 (5:3)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)_(6:2a)_(5:3b)_(6:2a)_(5:3b)_(4:4bCO)
65 OM7	OM	6	54605	54858	58295	58625 2_nonsis	,	3438	3729	4019	0	3	2	0	2 (5:3)_(4:4ai)_(4:4bCO)_(5:3a)_(6:2)_(4:4CO)
166 OM7	OM	13	405911	406116	411113	411264	3	4998	5175	5352	0	3	2	1	2 (3:3)_(4:4aCO)_(3:3a)_(6:2)_(4:4cCO) 1 (4:4aCO)_(3:5)_(2:6)_(3:5)_(6:2)_(2:6)_(3:5a)_(4:4bCO)
72 OM8	OM	7	442184	442209	411113	411264 442299	1	4998	51/5	114	1	1	1	0	1 (4:4aCO)_(3:5)_(2:6)_(3:5)_(0:2)_(2:6)_(3:5a)_(4:4bCO) 1 05:03
72 OM8 55 OM8	OM	5		311900	311969	311996	1	70	112	114	1	1	1	0	1 05:03
33 UM8	OM	5	311842	511900	311909	311990	1	/0	112	133	1	1	1	U	1 03.03

197 OM8	OM	16	339114	339477	339486	339516	1	10	206	401	1	1	1	0	1 05:03	
123 OM8	OM	12	65728	65992	66129	66235	1	138	322	506	1	1	1	0	1 05:03	
73 OM8	OM	7	478509	478940	478995	479144	1	56	345	634	1	1	1	0	1 05:03	
144 OM8	OM	13	159532	159727	159950	160037	1	224	364	504	1	1	1	0	1 05:03	
61 OM8	OM	5	560026	560290	560376	560686	1	87	373	659	1	1	1	0	1 05:03	
136 OM8	OM	12	677763	677890	677890	678512	1	1	375	748	1	1	1	0	1 05:03	
24 OM8	OM	3	40637	40987	41096	41289	1	110	381	651	1	1	1	0	1 05:03	
40 OM8	OM	4	654179	654729	654813	654890	1	85	398	710	1	1	1	0	1 05:03	
88 OM8	OM	8	515162	515676	515688	516015	1	13	433	852	1	1	1	0	1 05:03	
112 OM8	OM	11	165754	166502	166543	166672	1	42	480	917	1	1	1	0	1 05:03	
92 OM8	OM	9	174391	174961	175175	175368	1	215	596	976	1	1	1	0	1 05:03	
130 OM8	OM	12	253274	253791	253941	254321	1	151	599	1046	1	1	1	0	1 05:03	
16 OM8	OM	2	492334	493122	493123	493536	1	2	602	1201	1	1	1	0	1 05:03	
48 OM8	OM	4	1265447	1266696	1266696	1266824	1	1	689	1376	1	1	1	0	1 05:03	
89 OM8	OM	8	517499	518179	518762	518911	1	584	998	1411	1	1	1	0	1 05:03	
69 OM8	OM	7	270688	270975	271853	272144	1	879	1167	1455	1	1	1	0	1 05:03	
160 OM8	OM	14	460076	462377	462386	462443	1	10	1188	2366	1	1	1	0	1 05:03	
192 OM8	OM	16	154774	155088	155906	156518	1	819	1281	1743	1	1	1	0	1 05:03	
129 OM8	OM	12	248700	248752	249826	250571	1	1075	1473	1870	1	1	1	0	1 05:03	
126 OM8	OM	12	144379	144822	146111	146275	1	1290	1593	1895	1	1	1	0	1 05:03	
180 OM8	OM	15	684419	685601	685875	687587	1	275	1721	3167	1	1	1	0	1 05:03	
17 OM8	OM	2	541389	541474	541474	541477	1	1	44	87	1	2	1	0	1 03:05	
21 OM8	OM	2	714536	714609	714609	714638	1	1	51	101	1	2	1	0	1 03:05	
102 OM8	OM	10	323078	323243	323243	323333	1	1	128	254	1	2	1	0	1 03:05	
194 OM8	OM	16	214068	214281	214281	214333	1	1	133	264	1	2	1	0	1 03:05	
28 OM8	OM	3	197306	197389	197389	197578	1	1	136	271	1	2	1	0	1 03:05	
118 OM8	OM	11	361983	362017	362231	362247	1	215	239	263	1	2	1	0	1 03:05	
116 OM8	OM	11	283762	283904	283904	284248	1	1	243	485	1	2	1	0	1 03:05	
195 OM8	OM	16	257730	257972	257972	258230	1	1	250	499	1	2	1	0	1 03:05	
1 OM8	OM	1	34554	34991	34991	35059	1	1	253	504	1	2	1	0	1 03:05	
178 OM8	OM	15	457110	457531	457548	457599	1	18	253	488	1	2	1	0	1 03:05	
31 OM8	OM	3	236387	236702	236772	236946	1	71	315	558	1	2	1	0	1 03:05	
49 OM8	OM	4	1296388	1296525	1296525	1297076	1	1	344	687	1	2	1	0	1 03:05	
23 OM8	OM	3	16356	16705	16705	17092	1	1	368	735	1	2	1	0	1 03:05	
172 OM8	OM	15	159092	159369	159369	159827	1	1	368	734	1	2	1	0	1 03:05	
56 OM8	OM	5	328320	328370	328370	329070	1	1	375	749	1	2	1	0	1 03:05	
104 OM8	OM	10	503352	503880	503880	504158	1	1	403	805	1	2	1	0	1 03:05	
36 OM8	OM	4	266878	267359	267406	267874	1	48	522	995	1	2	1	0	1 03:05	
184 OM8	OM	15	836747	837056	837247	837630	1	192	537	882	1	2	1	0	1 03:05	
34 OM8	OM	4	93541	94320	94538	94649	1	219	663	1107	1	2	1	0	1 03:05	
186 OM8	OM	15	967506	967611	968210	968244	1	600	669	737	1	2	1	0	1 03:05	
182 OM8	OM	15	783046	784086	784086	784606	1	1	780	1559	1	2	1	0	1 03:05	
125 OM8	OM	12	124986	126014	126014	126853	1	1	934	1866	1	2	1	0	1 03:05	
169 OM8	OM	15	70751	70932	71365	72322	1	434	1002	1570	1	2	1	0	1 03:05	
175 OM8	OM	15	267165	268222	268330	269276	1	109	1110	2110	1	2	1	0	1 03:05	
5 OM8	OM	1	112136	113132	113326	114283	1	195	1171	2146	1	2	1	0	1 03:05	
156 OM8	OM	14	293347	294505	294505	295803	1	1	1228	2455	1	2	1	0	1 03:05	
83 OM8	OM	8	66280	66569	67460	68202	1	892	1407	1921	1	2	1	0	1 03:05	
9 OM8	OM	2	36507	36690	37628	39234	1	939	1833	2726	1	2	1	0	1 03:05	
132 OM8	OM	12	341070	341507	343213	343396	1	1707	2016	2325	1	2	1	0	1 03:05	
6 OM8	OM	1	132066	135319	135325	136910	1	7	2425	4843	1	2	1	0	1 03:05	
205 OM8	OM	16	857345	858788	861839	863244	1	3052	4475	5898	1	2	1	0	1 03:05	
127 OM8	OM	12	181770	182125	182197	182242	1	73	272	471	1	3	1	0	1 5:3_4:4_5:3	
167 OM8	OM	14	732856	732888	733411	733695	1	524	681	838	1	4	1	0	1 3:5_4:4_3:5	
42 OM8	OM	4	833693	834320	835319	835444	1	1000	1375	1750	1	4	1	0	1 3:5_4:4_3:5	
37 OM8	OM	4	272060	272298	272385	273003	1	88	515	942	1	7	1	0	1 6:2_5:3	
45 OM8	OM	4	1032015	1032120	1032141	1033091	1	22	549	1075	1	7	1	0	1 6:2_5:3	
158 OM8	OM	14	335395	335707	336158	336315	1	452	686	919	1	7	1	0	1 6:2_5:3	
106 OM8	OM	10	640552	640718	641346	641571	1	629	824	1018	1	7	1	0	1 6:2_5:3	
120 OM8	OM	11	513454	514126	514543	514792	1	418	878	1337	1	8	1	0	1 3:5_2:6	

140 OM8	OM	12	1012226	1013592	1014017	1014198		426	1199	1971		8	1	0	1.25.26
							1				1	8	1	0	1 3:5_2:6
19 OM8	OM	2	661374	662094	662444	666708	1	351	2842	5333	-				1 2:6_3:5
12 OM8	OM	2	306376	306932	307944	307989	1	1013	1313	1612	1	8	1	0	1 3:5_4:4_2:6
147 OM8	OM	13	309395	309424	310153	310534	1	730	934	1138	1	8	1	0	1 3:5_4:4_3:5_2:6
30 OM8	OM	3	224261	225200	225200	225631	1	1	685	1369	1	10	1	0	1 06:02
124 OM8	OM	12	95236	97490	97572	97654	1	83	1250	2417	1	10	1	0	1 06:02
201 OM8	OM	16	591009	591334	591382	591462	1	49	251	452	1	10.1	1	0	1 02:06
81 OM8	OM	7	1049349	1050057	1050064	1050446	1	8	552	1096	1	10.1	1	0	1 02:06
97 OM8	OM	9	422694	422857	423571	423632	1	715	826	937	2	11	1	0	1 5:3_5:3a
161 OM8	OM	14	486859	487177	488598	488965	1	1422	1764	2105	2	11	1	0	1 5:3_5:3a
111 OM8	OM	11	74916	75663	76124	76914	1	462	1230	1997	2	12	1	0	1 3:5_3:5a
58 OM8	OM	5	404063	404317	405271	406216	1	955	1554	2152	2	12	1	0	1 3:5_3:5a
96 OM8	OM	9	407232	407953	409125	409496	1	1173	1718	2263	2	12	1	0	1 3:5_3:5a
78 OM8	OM	7	847980	848452	849600	849797	1	1149	1483	1816	2	13	1	0	1 6:2_5:3_5:3a_4:4_6:2
62 OM8	OM	5	563348	563399	564974	565161	1	1576	1694	1812	2	13	1	0	1 5:3_5:3a_6:2_5:3a_6:2_5:3a_6:2_5:3a
162 OM8	OM	14	508321	508617	510300	510459	1	1684	1911	2137	2	14	1	0	1 3:5_3:5a_4:4_3:5a
14 OM8	OM	2	408107	408483	409364	409495	1	882	1135	1387	2	15	1	0	1 5:3_4:4_5:3a
52 OM8	OM	5	68996	69083	70022	70335	1	940	1139	1338	2	15	1	0	1 5:3_4:4_5:3a
176 OM8	OM	15	322819	323107	324679	325064	1	1573	1909	2244	2	15	1	0	1 5:3_4:4_5:3a
151 OM8	OM	13	618182	618249	619714	619995	1	1466	1639	1812	2	16	1	0	1 3:5_4:4_3:5a
198 OM8	OM	16	372742	373291	374857	375235	1	1567	2030	2492	2	16	1	0	1 3:5_4:4_3:5a
142 OM8	OM	13	28854	29616	30379	30523	1	764	1216	1668	2	17	1	0	1 5:3_6:2_5:3_4:4_5:3a
44 OM8	OM	4	1002178	1002467	1004000	1004480	1	1534	1918	2301	2	18	1	0	1 3:5 4:4 3:5a 2:6
67 OM8	OM	7	121571	121697	123330	123839	1	1634	1918	2267	2	18	1	0	1 3:5_4:4_3:5a_4:4_3:5a
							1								
115 OM8	OM	11	278448	278756	279830	280076	1	1075	1351	1627	2	19	1	0	1 5:3_6:2_5:3a
179 OM8	OM	15	493415	494313	494326	494732 2_nonsis		14	665	1316	3	30	1	0	1 05:03
133 OM8	OM	12	414993	416362	416803	417943 2_nonsis		442	1696	2949	3	30	1	0	1 03:05
164 OM8	OM	14	674690	676085	677207	677352 2_nonsis		1123	1892	2661	3	30	1	0	1 5:3_5:3a
26 OM8	OM	3	94591	95029	96988	97369 2_nonsis		1960	2369	2777	3	30	1	0	1 3:5_2:6
3 OM8	OM	1	74190	74538	75211	76205 2_nonsis		674	1344	2014	3	30	1	0	1 3:5_4:4_3:5a
190 OM8	OM	16	21112	21201	22826	26191 2_nonsis		1626	3352	5078	3	30	1	0	1 2:6_4:4_5:3
90 OM8	OM	9	55837	56514	58256	58630 2_nonsis		1743	2268	2792	3	31	1	0	1 2:6_4:4ai_4:4_3:5_4:4_3:5
109 OM8	OM	11	19607	19617	23532	27301 2_nonsis		3916	5805	7693	3	31	1	0	1 3:5_2:6_3:5_2:6_3:5_4:4_3:5_4:4ai
20 OM8	OM	2	708952	709993	712259	712456 2_nonsis		2267	2885	3503	3	31	1	0	1 3:5_4:4_3:5_3:5a_4:4ai_5:3_4:4ai_3:5a_4:4ai
50 OM8	OM	4	1318646	1318845	1318845	1319624 2_nonsis		1	489	977	1	1	1	1	0 (5:3)_(4:4aCO)
60 OM8	OM	5	539346	540205	540256	540509 2_nonsis		52	607	1162	1	1	1	1	0 (5:3)_(4:4aCO)
166 OM8	OM	14	707765	708870	708870	709317 2_nonsis		1	776	1551	1	1	1	1	0 (5:3)_(4:4aCO)
183 OM8	OM	15	825345	826024	826642	826798 2_nonsis		619	1036	1452	1	1	1	1	0 (5:3)_(4:4aCO)
207 OM8	OM	16	921352	921490	922622	922730 2_nonsis		1133	1255	1377	1	1	1	1	0 (5:3)_(4:4aCO)
110 OM8	OM	11	44603	45993	46439	48790 2_nonsis		447	2317	4186	1	1	1	1	0 (5:3)_(4:4aCO)
15 OM8	OM	2	489580	490532	490619	490686 2_nonsis		88	597	1105	1	2	1	1	0 (3:5)_(4:4aCO)
98 OM8	OM	10	34093	36217	36357	36445 2_nonsis		141	1246	2351	1	2	1	1	0 (3:5)_(4:4aCO)
64 OM8	OM	6	164557	166317	166317	167318 2_nonsis		1	1381	2760	1	2	1	1	0 (3:5)_(4:4aCO)
47 OM8	OM	4	1242169	1242241	1242241	1246191 2_nonsis		1	2011	4021	1	2	1	1	0 (3:5)_(4:4aCO)
10 OM8	OM	2	125843	126130	126565	126921 2_nonsis		436	757	1077	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
202 OM8	OM	16	652985	653303	653978	654370 2_nonsis		676	1030	1384	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO) 0 (5:3)_(4:4)_(4:4aCO)
											-				
138 OM8	OM	12	828844	829206	829398	829421 2_nonsis		193	385	576	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
18 OM8	OM	2	595735	595927	596267	596654 2_nonsis		341	630	918	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
134 OM8	OM	12	534194	535113	535963	536245 2_nonsis		851	1451	2050	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
77 OM8	OM	7	832207	832717	833517	833796 2_nonsis		801	1195	1588	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
143 OM8	OM	13	82357	83128	83176	83404 2_nonsis		49	548	1046	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
86 OM8	OM	8	256342	256905	257367	257823 2_nonsis		463	972	1480	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
157 OM8	OM	14	309823	310003	310729	311115 2_nonsis		727	1009	1291	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
153 OM8	OM	13	798333	798592	798739	798826 2_nonsis		148	320	492	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
168 OM8	OM	15	22358	39380	39893	40057 2_nonsis		514	9106	17698	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
117 OM8	OM	11	295309	296531	299201	300874 2_nonsis		2671	4118	5564	1	11	1	1	0 (5:3)_(4:4)_(4:4ai)_(4:4bCO)
13 OM8	OM	2	331827	332522	332548	332630 2_nonsis		27	415	802	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
103 OM8	OM	10	347951	348560	348792	348930 2_nonsis		233	606	978	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
185 OM8	OM	15	915096	915310	915759	915972 2_nonsis		450	663	875	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
41 OM8	OM	4	714714	714933	715715	715933 2_nonsis		783	1001	1218	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
	-									-					

54 OM8	OM	5	227640	227836	228774	228943 2_nonsis	939	1121	1302	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
193 OM8	OM	16	176002	176140	177345	177590 2_nonsis	1206	1397	1587	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
196 OM8	OM	16	308785	308999	310159	310530 2_nonsis	1161	1453	1744	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
84 OM8	OM	8	120445	121477	122634	122655 2_nonsis	1158	1684	2209	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
145 OM8	OM	13	163519	164021	165218	166349 2_nonsis	1198	2014	2829	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
99 OM8	OM	10	148569	149059	150714	151050 2_nonsis	1656	2068	2480	1	12	1	1	0 (4:4aCO)_(2:6)_(3:5)_(4:4a)
57 OM8	OM	5	400033	400481	402400	402722 2_nonsis	1920	2304	2688	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
82 OM8	OM	8	21579	21612	22834	23105 2_nonsis	1223	1374	1525	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
71 OM8	OM	7	433234	433416	433556	433681 2_nonsis	141	294	446	1	15	1	1	0 (6:2)_(4:4aCO)
51 OM8	OM	4	1476514	1476956	1476956	1477116 2_nonsis	1	301	601	1	15	1	1	0 (6:2)_(4:4aCO)
204 OM8	OM	16	745157	746299	746299	746899 2_nonsis	1	871	1741	1	15	1	1	0 (6:2)_(4:4aCO)
189 OM8	OM	15	1042440	1043118	1043151	1044215 2_nonsis	34	904	1774	1	15	1	1	0 (6:2)_(4:4aCO)
206 OM8	OM	16	900472	900592	901342	901564 2_nonsis	751	921	1091	1	15	1	1	0 (6:2)_(4:4aCO)
163 OM8	OM	14	542443	543829	543829	544303 2_nonsis	1	930	1859	1	15	1	1	0 (6:2)_(4:4aCO)
76 OM8	OM	7	763413	763485	763517	763747 2_nonsis	33	183	333	1	16	1	1	0 (2:6)_(4:4aCO)
53 OM8	OM	5	79940	80081	80182	80303 2_nonsis	102	232	362	1	16	1	1	0 (2:6)_(4:4aCO)
135 OM8	OM	12	602685	602909	603077	603141 2_nonsis	169	312	455	1	16	1	1	0 (2:6)_(4:4aCO)
95 OM8	OM	9	377556	378238	378238	378456 2_nonsis	1	450	899	1	16	1	1	0 (2:6)_(4:4aCO)
122 OM8	OM	11	578824	578904	579153	579541 2_nonsis	250	483	716	1	16	1	1	0 (2:6)_(4:4aCO)
70 OM8	OM	7	325875	326015	326056		42	544	1046	1	16	1	1	
177 OM8	OM	15	425518	426767	426767	326922 2_nonsis	1	944	1887	1	16	1	1	0 (2:6)_(4:4aCO)
177 OM8 107 OM8	OM	10	660786	661017	660786	427406 2_nonsis 661017 2_nonsis	0	115	230	1	100	1	1	0 (2:6)_(4:4aCO) 0 (4:4aCO)
										-				
101 OM8	OM	10	280699	281003	280699	281003 2_nonsis	0	152	303	1	100	1	1	0 (4:4aCO)
105 OM8	OM	10	542308	542637	542308	542637 2_nonsis	0	164	328	1	100	1	1	0 (4:4aCO)
91 OM8	OM	9	97151	97705	97151	97705 2_nonsis	0	277	553	1	100	1	1	0 (4:4aCO)
148 OM8	OM	13	311582	312171	311582	312171 2_nonsis	0	294	588	1	100	1	1	0 (4:4aCO)
29 OM8	OM	3	222542	223339	222542	223339 2_nonsis	0	398	796	1	100	1	1	0 (4:4aCO)
75 OM8	OM	7	639145	639946	639145	639946 2_nonsis	0	400	800	1	100	1	1	0 (4:4aCO)
11 OM8	OM	2	255862	256767	255862	256767 2_nonsis	0	452	904	1	100	1	1	0 (4:4aCO)
4 OM8	OM	1	109735	110713	109735	110713 2_nonsis	0	489	977	1	100	1	1	0 (4:4aCO)
137 OM8	OM	12	780728	781856	780728	781856 2_nonsis	0	564	1127	1	100	1	1	0 (4:4aCO)
46 OM8	OM	4	1079976	1081335	1079976	1081335 2_nonsis	0	679	1358	1	100	1	1	0 (4:4aCO)
113 OM8	OM	11	204194	205607	204194	205607 2_nonsis	0	706	1412	1	100	1	1	0 (4:4aCO)
199 OM8	OM	16	465383	466824	465383	466824 2_nonsis	0	720	1440	1	100	1	1	0 (4:4aCO)
2 OM8	OM	1	57739	59349	57739	59349 2_nonsis	0	805	1609	1	100	1	1	0 (4:4aCO)
66 OM8	OM	7	98613	100529	98613	100529 2_nonsis	0	958	1915	1	100	1	1	0 (4:4aCO)
93 OM8	OM	9	185865	188629	185865	188629 2_nonsis	0	1382	2763	1	100	1	1	0 (4:4aCO)
159 OM8	OM	14	401251	404051	401251	404051 2_nonsis	0	1400	2799	1	100	1	1	0 (4:4aCO)
7 OM8	OM	1	167179	170726	167179	170726 2_nonsis	0	1773	3546	1	100	1	1	0 (4:4aCO)
171 OM8	OM	15	154173	158356	154173	158356 2_nonsis	0	2091	4182	1	100	1	1	0 (4:4aCO)
68 OM8	OM	7	235967	241354	235967	241354 2_nonsis	0	2693	5386	1	100	1	1	0 (4:4aCO)
139 OM8	OM	12	892436	930472	892436	930472 2_nonsis	0	19018	38035	1	100	1	1	0 (4:4aCO)
155 OM8	OM	14	260618	261617	264607	265328 2_nonsis	2991	3850	4709	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
187 OM8	OM	15	987247	987667	988871	989690 2_nonsis	1205	1824	2442	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
114 OM8	OM	11	245116	246336	249723	250518 2_nonsis	3388	4395	5401	2	31	1	1	0 (3:5)_(2:6)_(3:5)_(4:4ai)_(4:4bCO)
8 OM8	OM	2	27032	27154	29377	36302 2_nonsis	2224	5747	9269	2	31	1	1	0 (3:5)_(2:6)_(3:3)_(3:5a)_(4:4a)_(4:4bCO) 0 (3:5)_(2:6)_(4:4ai)_(3:5)_(3:5a)_(2:6)_(3:5a)_(4:4bCO)_(3:5a)_(4:4b)
79 OM8	OM	7	906181	906494	906758	906845 2_nonsis	265	464	663	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
59 OM8	OM	5	490942	490952	491556	491806 2_nonsis	605	734	863	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
188 OM8	OM	15	1022391	1022673	1023697	1023785 2_nonsis	1025	1209	1393	2	32	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
131 OM8	OM	12	260086	260298	262070	262322 2_nonsis	1773	2004	2235	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4aCO)
63 OM8	OM	6	61904	62459	64252	64937 2_nonsis	1794	2413	3032	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
173 OM8	OM	15	170112	170199	178587	178731 2_nonsis	8389	8504	8618	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4ai)_(4:4bCO)
33 OM8	OM	4	19455	19746	20444	20659 2_nonsis	699	951	1203	2	32	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
65 OM8	OM	6	223558	224098	227043	227223 2_nonsis	2946	3305	3664	2	32	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(5:3)_(6:2)_(5:3a)_(4:4a)
174 OM8	OM	15	258408	258436	261788	261915 2_nonsis	3353	3430	3506	2	32	1	1	0 (5:3)_(6:2)_(4:4)_(5:3a)_(4:4)_(5:3)_(6:2)_(4:4ai)_(4:4bCO)
22 OM8	OM	2	760599	760767	760960	761030 2_nonsis	194	312	430	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)
38 OM8	OM	4	482676	482955	483171	483225 2_nonsis	217	383	548	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
74 OM8	OM	7	598733	599081	599198	599515 2_nonsis	118	450	781	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)
27 OM8	OM	3	191932	192715	193828	196331 2_nonsis	1114	2756	4398	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
108 OM8	OM	11	13260	13310	14411	18399 2_nonsis	1102	3120	5138	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)

128 OM8	OM	12	215021	221295	223495	223519 2_nonsis		2201	5349	8497	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
150 OM8	OM	13	523390	523621	524320	524617 2_nonsis		700	963	1226	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
43 OM8	OM	4	925956	926065	926737	927283 2_nonsis		673	1000	1326	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
149 OM8	OM	13	407599	407663	408374	408897 2_nonsis		712	1005	1297	3	20	1	1	0 (3:5)_(4:4aCO)_(6:2)_(4:4a)
85 OM8	OM	8	187989	188673	189521	190024 2_nonsis		849	1442	2034	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
25 OM8	OM	3	48704	50099	51405	52350 2_nonsis		1307	2476	3645	3	20	1	1	0 (3:5)_(5:3)_(3:5)_(4:4aCO)
203 OM8	OM	16	675149	676046	676743	677025 2_nonsis		698	1287	1875	3	20	1	1	0 (6:2)_(4:4aCO)_(3:5)_(2:6)_(4:4a)
191 OM8	OM	16	73338	73929	75455	75694 2_nonsis		1527	1941	2355	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
100 OM8	OM	10	178616	179084	180354	180756 2_nonsis		1271	1705	2139	3	20	1	1	0 (3:5)_(3:5a)_(5:3)_(6:2)_(5:3)_(4:4aCO)
181 OM8	OM	15	761947	762072	763679	763784 2_nonsis		1608	1722	1836	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
87 OM8	OM	8	459589	459844	463473	463665 2_nonsis		3630	3853	4075	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(5:3)_(4:4aCO)
170 OM8	OM	15	103968	103993	106264	106364 2_nonsis		2272	2334	2395	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(4:4ai)_(5:3a)_(4:4bCO)
121 OM8	OM	11	568041	568472	571329	571639 2_sis		2858	3228	3597	0	1	2	0	2 (5:3)_(7:1)_(5:3a)_(4:4)_(6:2)_(5:3a)_(4:4)_(5:3a)_(4:4)
32 OM8	OM	3	239515	240922	240922	241753	3	1	1119	2237	0	2	2	1	1 (4:4ai)_(4:4bCO)
39 OM8	OM	4	549856	550499	552354	552557	3	1856	2278	2700	0	2	2	1	1 (5:3)_(4:4)_(4:4aCO)_(3:5)_(4:4a)
80 OM8	OM	7	1011203	1011474	1012213	1012326	3	740	931	1122	0	2	2	1	1 (3:5)_(4:4ai)_(4:4bCO)
119 OM8	OM	11	400972	401736	403011	403407	3	1276	1855	2434	0	2	2	1	1 (3:5)_(4:4ai)_(4:4bCO)
154 OM8	OM	14	63403	64611	64800	65227	3	190	1007	1823	0	2	2	1	1 (4:4ai)_(7:1)_(4:4bCO)
165 OM8	OM	14	699152	700405	702991	703330	3	2587	3382	4177	0	2	2	1	1 (3:5)_(5:3)_(4:4aCO)
200 OM8	OM	16	525308	525445	527344	527574	3	1900	2083	2265	0	2	2	1	1 (5:3)_(4:4)_(2:6)_(4:4aCO)_(3:5)_(4:4a)
35 OM8	OM	4	184754	184859	186841	187054	3	1983	2141	2299	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(3:5)_(4:4bCO)
94 OM8	OM	9	267764	268176	269349	269523	3	1174	1466	1758	0	3	2	1	1 (4:4aCO)_(6:2)_(3:5)_(4:4bCO)
141 OM8	OM	12	1053098	1053478	1053841	1054279 2_nonsis		364	772	1180	0	3	2	0	2 (4:4aCO)_(5:3)_(4:4CO)
146 OM8	OM	13	202482	203305	204735	205670 2_nonsis		1431	2309	3187	0	3	2	0	2 (5:3)_(4:4aCO)_(4:4CO)
152 OM8	OM	13	750177	751108	752227	752515 2_nonsis		1120	1729	2337	0	3	2	0	2 (4:4aCO)_(4:4CO)_(3:5)_(4:4)
129 OM9	OM	12	677815	677890	677890	677900	1	1	43	84	1	1	1	0	1 05:03
11 OM9	OM	2	288081	288303	288339	288484	1	37	220	402	1	1	1	0	1 05:03
143 OM9	OM	13	561510	561662	561662	561993	1	1	242	482	1	1	1	0	1 05:03
71 OM9	OM	7	450034	450372	450372	450623	1	1	295	588	1	1	1	0	1 05:03
51 OM9	OM	4	1476514	1476956	1476956	1477116	1	1	301	601	1	1	1	0	1 05:03
117 OM9	OM	11	526649	526688	526688	527413	1	1	382	763	1	1	1	0	1 05:03
115 OM9	OM	11	445062	445342	445342	445854	1	1	396	791	1	1	1	0	1 05:03
98 OM9	OM	10	256465	256690	256992	257035	1	303	436	569	1	1	1	0	1 05:03
78 OM9	OM	7	950639	951537	951595	951635	1	59	527	995	1	1	1	0	1 05:03
122 OM9	OM	12	176946	177754	177778	178195	1	25	637	1248	1	1	1	0	1 05:03
84 OM9	OM	8	366783	367303	367303	368538	1	1	878	1754	1	1	1	0	1 05:03
182 OM9	OM	16	374470	374857	375235	376113	1	379	1011	1642	1	1	1	0	1 05:03
179 OM9	OM	16	214684	214724	215587	216380	1	864	1280	1695	1	1	1	0	1 05:03
120 OM9	OM	12	97490	98056	99028	99470	1	973	1476	1979	1	1	1	0	1 05:03
151 OM9	OM	14	319853	319911	321214	321588	1	1304	1519	1734	1	1	1	0	1 05:03
91 OM9	OM	9	204908	213470	213470	213953	1	1	4523	9044	1	1	1	0	1 05:03
70 OM9	OM	7	446220	446369	446399	446571	1	31	191	350	1	2	1	0	1 03:05
60 OM9	OM	6	72559	73353	73353	73471	1	1	456	911	1	2	1	0	1 03:05
162 OM9	OM	15	233742	233865	234124	234579	1	260	548	836	1	2	1	0	1 03:05
88 OM9	OM	9	68666	68857	68857	69789	1	1	562	1122	1	2	1	0	1 03:05
173 OM9	OM	15	1010523	1010592	1010673	1011684	1	82	621	1160	1	2	1	0	1 03:05
66 OM9	OM	7	166667	167076	167099	167889	1	24	623	1221	1	2	1	0	1 03:05
183 OM9	OM	16	382450	382832	383083	383599	1	252	700	1148	1	2	1	0	1 03:05
172 OM9	OM	15	977302	977581	977770	978537	1	190	712	1234	1	2	1	0	1 03:05
14 OM9	OM	2	414950	415547	415695	416297	1	149	748	1346	1	2	1	0	1 03:05
4 OM9	OM	2	39607	40029	40260	40882	1	232	753	1274	1	2	1	0	1 03:05
86 OM9	OM	8	515162	515676	516184	516318	1	509	832	1155	1	2	1	0	1 03:05
110 OM9	OM	11	95374	96187	96250	97113	1	64	901	1738	1	2	1	0	1 03:05
31 OM9	OM	4	215724	215967	216399	217109	1	433	909	1384	1	2	1	0	1 03:05
41 OM9	OM	4	784537	784809	785156	786657	1	348	1234	2119	1	2	1	0	1 03:05
15 OM9	OM	2	448188	448816	449152	450377	1	337	1263	2188	1	2	1	0	1 03:05
139 OM9	OM	13	369783	370224	370569	372277	1	346	1420	2493	1	2	1	0	1 03:05
8 OM9	OM	2	124617	124942	126263	126565	1	1322	1635	1947	1	2	1	0	1 03:05
32 OM9	OM	4	265338	265426	266878	267359	1	1453	1737	2020	1	2	1	0	1 03:05
104 OM9	OM	10	568363	570822	570822	573135	1	1	2386	4771	1	2	1	0	1 03:05

184 OM9	OM	16	435977	443833	444028	444118	1	196	4168	8140	1	2	1	0	1 03:05
35 OM9	OM	4	321997	324926	326210	326416	1	1285	2852	4418	1	3	1	0	1 5:3_6:2_5:3
76 OM9	OM	7	894109	894129	894550	894616	1	422	464	506	1	4	1	0	1 3:5_2:6_3:5
52 OM9	OM	4	1496573	1497025	1497214	1497535	1	190	576	961	1	4	1	0	1 3:5_4:4_3:5
85 OM9	OM	8	482724	482776	483502	483796	1	727	899	1071	1	4	1	0	1 3:5_4:4_3:5
188 OM9	OM	16	718964	719387	719419	719631	1	33	350	666	1	7	1	0	1 5:3_6:2
136 OM9	OM	13	178203	178325	179271	179346	1	947	1045	1142	1	7	1	0	1 6:2_4:4_5:3
57 OM9	OM	5	362296	362343	362389	362397	1	47	74	100	1	8	1	0	1 3:5_2:6
169 OM9	OM	15	770508	770539	770554	770868	1	16	188	359	1	8	1	0	1 3:5_2:6
6 OM9	OM	2	79121	79329	79359	80573	1	31	741	1451	1	8	1	0	1 2:6_3:5
124 OM9	OM	12	234668	234824	235891	235940	1	1068	1170	1271	1	8	1	0	1 2:6_3:5
100 OM9	OM	10	302207	302882	303316	303556	1	435	892	1348	2	11	1	0	1 5:3_5:3a
18 OM9	OM	2	624736	624805	625298	626092	1	494	925	1355	2	11	1	0	1 5:3_5:3a
125 OM9	OM	12	269839	270392	270995	271951	1	604	1358	2111	2	11	1	0	1 5:3_5:3a
160 OM9	OM	15	192333	192748	193911	195064	1	1164	1947	2730	2	11	1	0	1 5:3_5:3a
47 OM9	OM	4	1084839	1084860	1085100	1085571	1	241	486	731	2	12	1	0	1 3:5_3:5a
159 OM9	OM	15	108331	108945	109584	111554	1	640	1931	3222	2	12	1	0	1 3:5_3:5a
105 OM9	OM	10	622874	623040	624648	627140	1	1609	2937	4265	2	12	1	0	1 3:5_3:5a
185 OM9	OM	16	461367	462405	464201	464470	1	1797	2450	3102	2	13	1	0	1 5:3_4:4_5:3_5:3a
177 OM9	OM	16	104443	105356	105972	106107	1	617	1140	1663	2	14	1	0	1 3:5_3:5a_2:6_3:5a
114 OM9	OM	11	382140	382201	383133	383398	1	933	1095	1257	2	15	1	0	1 5:3_4:4_5:3a
106 OM9	OM	10	636028	636245	637574	637737	1	1330	1519	1708	2	15	1	0	1 5:3_4:4_5:3a
74 OM9	OM	7	623700	624442	625479	625898	1	1038	1618	2197	2	15	1	0	1 5:3_4:4_5:3a
146 OM9	OM	13	819141	819393	821494	822331	1	2102	2646	3189	2	15	1	0	1 5:3_4:4_5:3a
97 OM9	OM	10	235668	235976	236912	237017	1	937	1143	1348	2	16	1	0	1 3:5_4:4_3:5a
29 OM9	OM	4	158510	158749	159777	159930	1	1029	1224	1419	2	16	1	0	1 3:5_4:4_3:5a
181 OM9	OM	16	296144	296178	297234	297543	1	1057	1228	1398	2	16	1	0	1 3:5_4:4_3:5a
166 OM9	OM	15	519516	519651	520826	521084	1	1176	1372	1567	2	16	1	0	1 3:5_4:4_3:5a
95 OM9	OM	10	79138	79551	81028	81358	1	1478	1849	2219	2	16	1	0	1 3:5_4:4_3:5a
24 OM9	OM	3	212528	212637	214762	215005	1	2126	2301	2476	2	16	1	0	1 3:5_4:4_3:5a
175 OM9	OM	16	21970	21980	22826	26261	1	847	2569	4290	2	17	1	0	1 5:3_4:4_5:3a_5:3
45 OM9	OM	4	953912	954283	955620	956552	1	1338	1989	2639	2	17	1	0	1 5:3_4:4_5:3_4:4_5:3a
83 OM9	OM	8	341482	341488	343561	344834	1	2074	2713	3351	2	17	1	0	1 5:3_4:4_5:3a_4:4_5:3a
72 OM9	OM	7	473951	474708	479200	480192	1	4493	5367	6240	2	17	1	0	1 5:3_4:4_5:3_4:4_5:3a
149 OM9	OM	14	106295	106712	110232	110465	1	3521	3845	4169	2	21	1	0	1 5:3_4:4_5:3_6:2_5:3a_6:2_5:3a
121 OM9	OM	12	107894	107971	113758	113903	1	5788	5898	6008	2	23	1	0	1 5:3_4:4_6:2_5:3a
7 OM9	OM	2	119499	119918	122010	122996 2_nonsis		2093	2795	3496	3	30	1	0	1 5:3_3:5
109 OM9	OM	11	60173	62759	65282	66233 2_nonsis		2524	4292	6059	3	30	1	0	1 3:5_5:3
23 OM9	OM	3	152143	152240	155616	156252 2_nonsis		3377	3743	4108	3	30	1	0	1 3:5_4:4_3:5_5:3_3:5a_4:4_3:5b
92 OM9	OM	9	249032	249546	249546	250194 2_nonsis		1	581	1161	3	31	1	0	1 4:4ai
107 OM9	OM OM	10	724020	724234	724657 55280	725433 2_nonsis		424	918	1412	3	31	1	0	1 3:5_4:4ai_3:5a
108 OM9		11	49756	52588		56302 2_nonsis		2693	4619	6545		31			1 3:5_4:4ai_3:5a
10 OM9	OM	2 6	212014	212764	218624	218666 2_nonsis		5861	6256 2823	6651	3	31	1	0	1 4:4ai_3:5_3:5a
62 OM9 190 OM9	OM OM		211344 785910	211545 786015	214157 786020	214378 2_nonsis		2613 6	307	3033 607	3 1	31 1	1	1	1 5:3_4:4ai_6:2_5:3a_4:4_3:5
90 OM9	OM OM	16 9	785910 193298	786015 193815	786020 193815	786518 2_nonsis		6	307 675	1349	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
	OM		254117	254324	254813	194648 2_nonsis		490	1171		1	1	1	1	
180 OM9 58 OM9	OM	16 5	400915	401106	402268	255970 2_nonsis 402321 2_nonsis		1163	1284	1852 1405	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
	OM		22855	23245	23245			1103	302		1	2	1	1	
148 OM9 61 OM9	OM	14 6	115494	115717	115810	23459 2_nonsis 116037 2_nonsis		94	318	603 542	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
48 OM9	OM	4	1091591	1092239	1092239	1092561 2_nonsis		1	485	969	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
155 OM9	OM	14	651410	652389	652419	652841 2_nonsis		31	731	1430	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
21 OM9	OM	3	51650	52350	52919	53316 2_nonsis		570	1118	1665	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
126 OM9	OM	12	320997	322903	322903	324050 2_nonsis		1	1527	3052	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
99 OM9	OM	10	278411	279038	280099	280598 2_nonsis		1062	1624	2186	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
135 OM9	OM	13	76243	76517	77135	77482 2_nonsis		619	929	1238	1	7	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(6:2)_(4:4aCO)
77 OM9	OM	7	914816	915691	917686	918119 2_nonsis		1996	2649	3302	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO) 0 (5:3)_(6:2)_(4:4aCO)
39 OM9	OM	4	654816	654890	655473	656349 2_nonsis		584	1058	1532	1	8	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(5:3)_(4:4aCO)
113 OM9	OM	11	378458	379495	379888	380602 2_nonsis		394	1269	2143	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO) 0 (6:2)_(5:3)_(4:4aCO)
65 OM9	OM	7	164429	164774	165175	165212 2_nonsis		402	592	782	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
05 01015	OM	,	104427	104774	103173	105212 2_HORSIS		+02	392	702	1	,	4		V (3.0/_(2.0/_(T.TGCO))

59 OM9	OM	5	525834	526150	526303	526638 2_nonsis	154	479	803	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
44 OM9	OM	4	936739	936980	937167	937517 2_nonsis	188	483	777	1	11	1	1	0 (2:6)_(4:4ai)_(4:4bCO)
103 OM9	OM	10	503037	503193	503352	503880 2_nonsis	160	501	842	1	11	1	1	0 (3:5)_(4:4ai)_(4:4bCO)
9 OM9	OM	2	194226	196404	196581	196633 2_nonsis	178	1292	2406	1	11	1	1	0 (5:3)_(4:4ai)_(4:4bCO)
127 OM9	OM	12	438989	439125	440042	440337 2_nonsis	918	1133	1347	1	11	1	1	0 (2:6)_(3:5)_(4:4ai)_(4:4bCO)
167 OM9	OM	15	612123	613660	616666	616760 2_nonsis	3007	3822	4636	1	11	1	1	0 (4:4ai)_(3:5)_(2:6)_(4:4bCO)
116 OM9	OM	11	514315	514543	515611	515680 2_nonsis	1069	1217	1364	1	12	1	1	0 (2:6)_(4:4)_(3:5)_(4:4aCO)
138 OM9	OM	13	339889	340680	341630	341834 2_nonsis	951	1448	1944	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
163 OM9	OM	15	283744	284515	285557	285663 2_nonsis	1043	1481	1918	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
137 OM9	OM	13	226133	227957	228322	228901 2_nonsis	366	1567	2767	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)
16 OM9	OM	2	490686	491476	492334	493122 2_nonsis	859	1647	2435	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
79 OM9	OM	8	73929	73993	74435	74477 2_nonsis	443	495	547	1	12	1	1	0 (3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
111 OM9	OM	11	264513	264611	265706	266888 2_nonsis	1096	1735	2374	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)
147 OM9	OM	13	861520	862065	863707	864551 2_nonsis	1643	2337	3030	1	12	1	1	0 (6:2)_(5:3)_(4:4aCO)_(6:2)_(4:4a)
142 OM9	OM	13	540526	540798	540798	541071 2_nonsis	1	273	544	1	15	1	1	0 (6:2)_(4:4aCO)
25 OM9	OM	3	224261	224961	225116	225200 2_nonsis	156	547	938	1	15	1	1	0 (6:2)_(4:4aCO)
161 OM9	OM	15	198772	199130	199186	199433 2_nonsis	57	359	660	1	16	1	1	0 (2:6)_(4:4aCO)
55 OM9	OM	5	321624	322875	322875	323078 2_nonsis	1	727	1453	1	16	1	1	0 (2:6)_(4:4aCO)
186 OM9	OM	16	503192	503873	504044	504597 2_nonsis	172	788	1404	1	16	1	1	0 (2:6)_(4:4aCO)
101 OM9	OM	10	359445	359702	359445	359702 2_nonsis	0	128	256	1	100	1	1	0 (4:4aCO)
123 OM9	OM	12	231692	232046	231692	232046 2_nonsis	0	177	353	1	100	1	1	0 (4:4aCO)
38 OM9	OM	4	617533	617915	617533	617915 2_nonsis	0	191	381	1	100	1	1	0 (4:4aCO)
187 OM9	OM	16	653978	654370	653978	654370 2_nonsis	0	196	391	1	100	1	1	0 (4:4aCO)
150 OM9	OM	14	187803	188308	187803	188308 2_nonsis	0	252	504	1	100	1	1	0 (4:4aCO)
30 OM9	OM	4	199393	200025	199393	200025 2 nonsis	0	316	631	1	100	1	1	0 (4:4aCO)
73 OM9	OM	7	621311	622492	621311	622492 2_nonsis	0	590	1180	1	100	1	1	0 (4:4aCO)
82 OM9	OM	8	260343	261563	260343	261563 2_nonsis	0	610	1219	1	100	1	1	0 (4:4aCO)
49 OM9	OM	4	1254292	1256876	1254292	1256876 2_nonsis	0	1292	2583	1	100	1	1	0 (4:4aCO)
131 OM9	OM	12	822430	827343	822430	827343 2_nonsis	0	2456	4912	1	100	1	1	0 (4:4aCO)
93 OM9	OM	9	308018	308167	308908	310160 2_nonsis	742	1442	2141	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
157 OM9	OM	15	50464	52771	53357	54061 2_nonsis	587	2092	3596	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO) 0 (5:3)_(5:3a)_(4:4aCO)
22 OM9	OM	3	58033	59028	60704	60997 2_nonsis	1677	2320	2963	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO) 0 (5:3)_(5:3a)_(4:4aCO)
153 OM9	OM	14	506768	507599	509646	510203 2_nonsis	2048	2741	3434	2	30	1	1	0 (5.3)_(5.3a)_(4.4aCO) 0 (5.3)_(5.3a)_(4.4aCO)
132 OM9	OM	12	860959	861841	864291	864999 2_nonsis	2451	3245	4039	2	30	1	1	0 (5:3)_(4:4ai)_(5:3)_(5:3a)_(4:4bCO)
12 OM9	OM	2	354093	354317	356128		1812	2090	2368	2	30	1	1	
						356462 2_nonsis							1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3a)_(5:3b)_(4:4a)
176 OM9 158 OM9	OM	16	46435	46780 88299	47566	48262 2_nonsis	787	1307 1471	1826 2581	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
	OM	15	86647		88659	89229 2_nonsis	361			2	31		1	0 (3:5)_(3:5a)_(4:4aCO)
54 OM9 53 OM9	OM OM	5 5	96491 26638	97220 26678	98283 28151	98381 2_nonsis	1064 1474	1477 1574	1889 1673	2 2	31 31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
						28312 2_nonsis						1		0 (3:5)_(3:5a)_(4:4aCO)
80 OM9	OM	8	171347	172563	173412	173805 2_nonsis	850	1654	2457	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
26 OM9	OM	6	32706	32904	37123	37597 2_nonsis	4220	4555	4890	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
63 OM9	OM		231775	232381	234009	234589 2_nonsis	1629	2221	2813	2	31			0 (4:4aCO)_(3:5)_(3:5a)_(4:4a)
43 OM9	OM	4	854367	855322	857627	858176 2_nonsis	2306	3057	3808	2	31	1	1	0 (4:4ai)_(3:5)_(3:5a)_(4:4bCO)
102 OM9	OM	10	494603	494940	498958	499043 2_nonsis	4019	4229	4439	2	31	1	1	0 (3:5)_(4:4)_(3:5)_(3:5a)_(4:4aCO)
1 OM9	OM	1	67801	68551	69734	69998 2_nonsis	1184	1690	2196	2	31	1	1	0 (4:4aCO)_(2:6)_(4:4a)_(2:6)_(3:5)_(3:5a)_(4:4a)
42 OM9	OM	4	826327	826825	827581	828045 2_nonsis	757	1237	1717	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
68 OM9	OM	7	379162	379420	380582	380720 2_nonsis	1163	1360	1557	2	32	1	1	0 (5:3)_(4:4ai)_(5:3a)_(4:4bCO)
118 OM9	OM	11	642394	642498	644727	645008 2_nonsis	2230	2422	2613	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
17 OM9	OM	2	566061	566265	568465	569235 2_nonsis	2201	2687	3173	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4aCO)
56 OM9	OM	5	327079	327970	332391	332460 2_nonsis	4422	4901	5380	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
141 OM9	OM	13	491864	492749	494333	495115 2_nonsis	1585	2418	3250	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(4:4aCO)
164 OM9	OM	15	380023	380192	382531	383827 2_nonsis	2340	3072	3803	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4)_(4:4aCO)
154 OM9	OM	14	536514	536751	538142	538315 2_nonsis	1392	1596	1800	2	32	1	1	0 (3:5)_(4:4aCO)_(2:6)_(3:5a)_(3:5b)_(4:4a)
20 OM9	OM	2	786053	786732	788501	789182 2_nonsis	1770	2449	3128	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)_(3:5b)_(4:4a)
37 OM9	OM	4	425304	425896	428969	428983 2_nonsis	3074	3376	3678	2	32	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
27 OM9	OM	4	59246	59321	62366	62726 2_nonsis	3046	3263	3479	2	32	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)_(5:3a)_(4:4a)
130 OM9	OM	12	707950	708595	711837	713312 2_nonsis	3243	4302	5361	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4ai)_(3:5a)_(4:4bCO)_(3:5a)_(4:4b)
67 OM9	OM	7	286802	287143	287729	288473 2_nonsis	587	1129	1670	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
94 OM9	OM	9	369589	370024	370992	371210 2_nonsis	969	1295	1620	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
19 OM9	OM	2	633618	633876	635127	635445 2_nonsis	1252	1539	1826	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)

69 OM9	OM	7	391649	391859	393263	393326 2_nonsis		1405	1541	1676	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
89 OM9	OM	9	87717	87789	89380	89461 2_nonsis		1592	1668	1743	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
46 OM9	OM	4	1021040	1022238	1023685	1024279 2_nonsis		1448	2343	3238	3	20	1	1	0 (6:2)_(3:5)_(4:4aCO)
140 OM9	OM	13	444677	444908	445712	446574 2_nonsis		805	1351	1896	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)
40 OM9	OM	4	769038	769356	770770	771211 2_nonsis		1415	1794	2172	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
170 OM9	OM	15	780184	780221	782242	782356 2_nonsis		2022	2097	2171	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
13 OM9	OM	2	406115	406787	408724	408801 2_nonsis		1938	2312	2685	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
189 OM9	OM	16	772366	774130	775448	777332 2_nonsis		1319	3142	4965	3	20	1	1	0 (5:3)_(4:4aCO)_(2:6)_(4:4a)
156 OM9	OM	14	735112	735174	736111	736153 2_nonsis		938	989	1040	3	20	1	1	0 (3:5)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
50 OM9	OM	4	1419366	1419516	1420941	1421025 2_nonsis		1426	1542	1658	3	20	1	1	0 (3:5)_(5:3)_(3:5)_(2:6)_(4:4aCO)
174 OM9	OM	15	1047626	1047731	1048990	1049465 2_nonsis		1260	1549	1838	3	20	1	1	0 (3:5)_(5:3)_(3:5)_(5:3)_(4:4aCO)
152 OM9	OM	14	418511	419029	420283	420526 2_nonsis		1255	1635	2014	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
34 OM9	OM	4	312701	313108	314500	315175 2_nonsis		1393	1933	2473	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
128 OM9	OM	12	611864	611994	613380	614564 2_nonsis		1387	2043	2699	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)
144 OM9	OM	13	695196	695427	697269	697465 2_nonsis		1843	2056	2268	3	20	1	1	0 (3:5)_(4:4)_(3:5a)_(5:3)_(4:4aCO)
112 OM9 96 OM9	OM OM	11 10	267528 140649	268550 140994	270178 142749	270231 2_nonsis 143550 2 nonsis		1629 1756	2166 2328	2702 2900	3	20 20	1	1 1	0 (6:2)_(4:4aCO)_(2:6)_(5:3)_(4:4a)
5 OM9	OM	2	65975	66052	69901	70006 2 nonsis		3850	3940	4030	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(6:2)_(4:4a) 0 (3:5) (5:3) (4:4aCO) (5:3) (4:4a)
168 OM9	OM	15	652283	652485	653431	653618 2_nonsis		947	1141	1334	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)_(6:2)_(4:4a) 0 (2:6)_(4:4)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
119 OM9	OM	12	28820	29085	30768	30884 2_nonsis		1684	1874	2063	3	20	1	1	0 (5:3)_(5:3a)_(4:4)_(2:6)_(3:5)_(4:4aCO)
171 OM9	OM	15	906405	907000	908551	908634 2_nonsis		1552	1890	2228	3	20	1	1	0 (3:5)_(5:3)_(5:3)_(4:4aCO)_(5:3a)_(4:4a)
165 OM9	OM	15	454944	455108	458549	458585 2_nonsis		3442	3541	3640	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5a)_(4:4a)
33 OM9	OM	4	268432	269350	272060	272298 2_nonsis		2711	3288	3865	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
87 OM9	OM	9	30858	31904	34648	34698 2 nonsis		2745	3292	3839	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4aCO) 0 (3:5)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4aCO)
64 OM9	OM	7	47196	47512	48448	48835 2_nonsis		937	1288	1638	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)_(2:6)_(4:4a)
133 OM9	OM	12	940786	947200	949429	949489 2 nonsis		2230	5466	8702	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(4:4bCO)_(5:3)_(4:4b)
145 OM9	OM	13	771109	771220	773689	774012 2 nonsis		2470	2686	2902	3	21	1	1	0 (5:3)_(4:4)_(5:3)_(4:4ai)_(3:5)_(4:4bCO)_(3:5a)_(4:4b)_(3:5a)_(4:4b)
2 OM9	OM	1	121235	128637	130975	132066	3	2339	6585	10830	0	2	2	1	1 (5:3)_(6:2)_(5:3a)_(3:5)_(3:5a)_(4:4aCO)
3 OM9	OM	1	190429	190558	193737	193807	4	3180	3279	3377	0	2	2	1	1 (5:3)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(5:3a)_(4:4a)
28 OM9	OM	4	127476	129270	130537	130640	3	1268	2216	3163	0	2	2	1	1 (5:3)_(4:4ai)_(4:4bCO)
81 OM9	OM	8	191691	192435	196468	196529	3	4034	4436	4837	0	2	2	1	1 (3:5)_(2:6i)_(4:4ai)_(4:4bCO)_(5:3)_(6:2)_(5:3)_(4:4b)
134 OM9	OM	12	1025374	1025702	1027717	1028477	3	2016	2559	3102	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(4:4ai)_(4:4bCO)_(3:5)_(4:4b)
178 OM9	OM	16	127908	127985	137386	137748	4	9402	9621	9839	0	2	2	1	$1\ (5:3)_(4:4)_(5:3)_(5:3a)_(4:4)_(5:3a)_(4:4)_(5:3a)_(4:4ai)_(4:4)_(3:5)_(4:4)_(5:3b)_(4:4bi)_(5:3b)_(5:3c)_(4:4cCO)$
36 OM9	OM	4	373728	373922	375932	376867 2_nonsis		2011	2575	3138	0	3	2	0	2 (5:3)_(6:2)_(5:3a)_(4:4aCO)_(6:2)_(5:3a)_(4:4CO)
75 OM9	OM	7	795662	795876	798400	798821	3	2525	2842	3158	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(5:3)_(4:4bi)_(3:5)_(4:4cCO)
179 OMT1	OMT	11	361878	361983	361983	362017	1	1	70	138	1	1	1	0	1 05:03
281 OMT1	OMT	16	425940	426048	426048	426150	1	1	105	209	1	1	1	0	1 05:03
85 OMT1	OMT	4	1471301	1471484	1471484	1471524	1	1	112	222	1	1	1	0	1 05:03
153 OMT1	OMT	9	337914	337948	338050	338086	1	103	137	171	1	1	1	0	1 05:03
96 OMT1	OMT	5	386529	386588	386692	386715	1	105	145	185	1	1	1	0	1 05:03
189 OMT1	OMT	12	87687	87824	87825	88002	1	2	158	314	1	1	1	0	1 05:03
270 OMT1	OMT	16	46921	46996	47067	47208	1	72	179	286	1	1	1	0	1 05:03
13 OMT1	OMT	2	236188	236256	236256	236554	1	1	183	365	1	1	1	0	1 05:03
134 OMT1	OMT	8	17359	17641	17641	17751	1	1	196	391	1	1	1	0	1 05:03
175 OMT1 115 OMT1	OMT OMT	11 7	258604 80976	258771 81268	258873 81306	258943 81381	1	103 39	221 222	338 404	1	1	1	0	1 05:03 1 05:03
95 OMT1	OMT	5	303778	304224	304224	304272	1	39	247	404	1	1	1	0	1 05:03 1 05:03
39 OMT1	OMT	3	95527	95697	95815	95935	1	119	263	407	1	1	1	0	1 05:03
280 OMT1	OMT	16	383387	383599	383599	383919	1	1	266	531	1	1	1	0	1 05:03
227 OMT1	OMT	13	797688	798060	798090	798261	1	31	302	572	1	1	1	0	1 05:03
38 OMT1	OMT	3	78909	79012	79170	79392	1	159	321	482	1	1	1	0	1 05:03
245 OMT1	OMT	14	678322	678661	678759	678891	1	99	334	568	1	1	1	0	1 05:03
10 OMT1	OMT	2	169893	170442	170442	170593	1	1	350	699	1	1	1	0	1 05:03
294 OMT1	OMT	16	840103	840263	840488	840627	1	226	375	523	1	1	1	0	1 05:03
235 OMT1	OMT	14	210033	210155	210474	210617	1	320	452	583	1	1	1	0	1 05:03
102 OMT1	OMT	5	517549	517944	517944	518464	1	1	458	914	1	1	1	0	1 05:03
128 OMT1	OMT	7	836443	837183	837183	837417	1	1	487	973	1	1	1	0	1 05:03
196 OMT1	OMT	12	388456	388801	388950	389347	1	150	520	890	1	1	1	0	1 05:03
159 OMT1	OMT	10	150714	151050	151245	151609	1	196	545	894	1	1	1	0	1 05:03
81 OMT1	OMT	4	1394566	1394881	1394881	1395687	1	1	561	1120	1	1	1	0	1 05:03

65 OMT1	OMT	4	719671	719728	719896	720645	1	169	571	973	1	1	1	0	1 05:03
73 OMT1	OMT	4	1109835	1110571	1110571	1111002	1	1	584	1166	1	1	1	0	1 05:03
192 OMT1	OMT	12	231106	231430	231692	232046	1	263	601	939	1	1	1	0	1 05:03
66 OMT1	OMT	4	814278	814490	814815	815156	1	326	602	877	1	1	1	0	1 05:03
28 OMT1	OMT	2	564884	565133	565601	565627	1	469	606	742	1	1	1	0	1 05:03
185 OMT1	OMT	11	626765	627471	627471	628158	1	1	697	1392	1	1	1	0	1 05:03
142 OMT1	OMT	8	323497	324669	324770	325071	1	102	838	1573	1	1	1	0	1 05:03
255 OMT1	OMT	15	206718	206822	207586	207629	1	765	838	910	1	1	1	0	1 05:03
133 OMT1	OMT	8	11695	12640	13001	13116	1	362	891	1420	1	1	1	0	1 05:03
284 OMT1	OMT	16	502118	503157	503192	503873	1	36	895	1754	1	1	1	0	1 05:03
75 OMT1	OMT	4	1128837	1129980	1129980	1130680	1	1	922	1842	1	1	1	0	1 05:03
181 OMT1	OMT	11	400521	400972	401769	401790	1	798	1033	1268	1	1	1	0	1 05:03
137 OMT1	OMT	8	189521	190024	190671	191072	1	648	1099	1550	1	1	1	0	1 05:03
114 OMT1	OMT	7	55263	55957	55957	57501	1	1	1119	2237	1	1	1	0	1 05:03
247 OMT1	OMT	14	715430	715791	716564	716912	1	774	1128	1481	1	1	1	0	1 05:03
93 OMT1	OMT	5	264105	264464	265681	266217	1	1218	1665	2111	1	1	1	0	1 05:03
25 OMT1	OMT	2	510710	512166	513202	513337	1	1037	1832	2626	1	1	1	0	1 05:03
62 OMT1	OMT	4	625839	628602	628602	629725	1	1	1943	3885	1	1	1	0	1 05:03
99 OMT1	OMT	5	443341	443369	443369	443373	1	1	16	31	1	2	1	0	1 03:05
108 OMT1	OMT	6	114205	114248	114251	114263	1	4	31	57	1	2	1	0	1 03:05
140 OMT1	OMT	8	238630	238746	238746	238799	1	1	85	168	1	2	1	0	1 03:05
290 OMT1	OMT	16	656605	656677	656677	656784	1	1	90	178	1	2	1	0	1 03:05
254 OMT1	OMT	15	198587	198700	198700	198772	1	1	93	184	1	2	1	0	1 03:05
259 OMT1	OMT	15	301153	301302	301302	301346	1	1	97	192	1	2	1	0	1 03:05
253 OMT1	OMT	15	162190	162324	162324	162386	1	1	98	195	1	2	1	0	1 03:05
267 OMT1	OMT	15	1037336	1037514	1037514	1037595	1	1	130	258	1	2	1	0	1 03:05
288 OMT1	OMT	16	609903	610056	610056	610223	1	1	160	319	1	2	1	0	1 03:05
15 OMT1	OMT	2	269653	269904	269904	269983	1	1	165	329	1	2	1	0	1 03:05
167 OMT1	OMT	10	568363	568755	568755	568805	1	1	221	441	1	2	1	0	1 03:05
68 OMT1	OMT	4	910968	911274	911343	911454	1	70	278	485	1	2	1	0	1 03:05
223 OMT1	OMT	13	625245	625844	625844	625856	1	1	306	610	1	2	1	0	1 03:05
274 OMT1	OMT	16	188250	188615	188703	188788	1	89	313	537	1	2	1	0	1 03:05
125 OMT1	OMT	7	616159	616580	616580	616811	1	1	326	651	1	2	1	0	1 03:05
232 OMT1	OMT	14	121988	122135	122278	122496	1	144	326	507	1	2	1	0	1 03:05
201 OMT1	OMT	12	540147	540219	540405	540621	1	187	330	473	1	2	1	0	1 03:05
161 OMT1	OMT	10	254503	254968	254968	255203	1	1	350	699	1	2	1	0	1 03:05
88 OMT1	OMT	5	15698	15888	15966	16323	1	79	352	624	1	2	1	0	1 03:05
198 OMT1	OMT	12	417373	417445	417665	417943	1	221	395	569	1	2	1	0	1 03:05
47 OMT1	OMT	4	52663	53011	53077	53471	1	67	437	807	1	2	1	0	1 03:05
87 OMT1	OMT	4	1518155	1518220	1518269	1519166	1	50	530	1010	1	2	1	0	1 03:05
53 OMT1	OMT	4	200220	200994	200994	201329	1	1	555	1108	1	2	1	0	1 03:05
98 OMT1	OMT	5	430305	430576	430899	431114	1	324	566	808	1	2	1	0	1 03:05
8 OMT1	OMT	2	159427	159926	160143	160403	1	218	597	975	1	2	1	0	1 03:05
49 OMT1	OMT	4	146582	147362	147377	147778	1	16	606	1195	1	2	1	0	1 03:05
120 OMT1	OMT	7	373958	374507	374973	375001	1	467	755	1042	1	2	1	0	1 03:05
207 OMT1	OMT	12	770488	770842	771112	771882	1	271	832	1393	1	2	1	0	1 03:05
141 OMT1	OMT	8	270370	271207	271207	272321	1	1	976	1950	1	2	1	0	1 03:05
33 OMT1	OMT	2	697503	698250	698250	699461	1	1	979	1957	1	2	1	0	1 03:05
243 OMT1	OMT	14	604250	604879	605054	606035	1	176	980	1784	1	2	1	0	1 03:05
190 OMT1	OMT	12	104468	105183	105323	106427	1	141	1050	1958	1	2	1	0	1 03:05
109 OMT1	OMT	6	166317	167037	167410	168102	1	374	1079	1784	1	2	1	0	1 03:05
238 OMT1	OMT	14	308673	309212	310003	310045	1	792	1082	1371	1	2	1	0	1 03:05
41 OMT1	OMT	3	209648	209856	210635	211159	1	780	1145	1510	1	2	1	0	1 03:05
244 OMT1	OMT	14	662512	665502	665502	665847	1	1	1668	3334	1	2	1	0	1 03:05
229 OMT1	OMT	14	41218	41680	42594	43912	1	915	1804	2693	1	2	1	0	1 03:05
146 OMT1	OMT	8	511414	511546	514601	515162	1	3056	3402	3747	1	2	1	0	1 03:05
249 OMT1	OMT	15	43376	43479	43753	43786	1	275	342	409	1	4	1	0	1 3:5_2:6_3:5
59 OMT1	OMT	4	521481	521536	522457	522598	1	922	1019	1116	1	4	1	0	1 3:5_4:4_3:5
234 OMT1	OMT	14	198636	198795	199738	199813	1	944	1060	1176	1	4	1	0	1 3:5_2:6_3:5
156 OMT1	OMT	10	79138	79551	80439	80673	1	889	1212	1534	1	4	1	0	1 3:5_4:4_3:5

177 OME	OMT		200210	200022	210061	210072	1	1020	1246	1650		4		0	1.25.44.25
177 OMT1 293 OMT1	OMT	11 16	309310 831601	309823 831747	310861 832034	310963 832084	1	1039 288	1346 385	1652 482	1	7	1	0	1 3:5_4:4_3:5
							-				-		1		1 5:3_6:2
172 OMT1	OMT	11	178752	179179	179509	179637	1	331	608	884	1	7	1	0	1 5:3_6:2
77 OMT1	OMT	4	1251240	1251845	1252149	1252244	1	305	654	1003	1	7	1	0	1 5:3_6:2
197 OMT1	OMT	12	404007	404208	404333	405334	1	126	726	1326	1	7	1	0	1 5:3_6:2
258 OMT1	OMT	15	266279	266696	267756	267906	1	1061	1344	1626	1	7	1	0	1 5:3_6:2
129 OMT1	OMT	7	892549	892563	894129	894236	1	1567	1627	1686	1	7	1	0	1 5:3_6:2
106 OMT1	OMT	6	94981	95054	95232	95308	1	179	253	326	1	8	1	0	1 3:5_2:6
225 OMT1	OMT	13	737651	738269	739163	739584	1	895	1414	1932	1	8	1	0	1 3:5_2:6
180 OMT1	OMT	11	382201	382357	384068	384196	1	1712	1853	1994	1	8	1	0	1 2:6_3:5
43 OMT1	OMT	3	257993	258780	259910	260698	1	1131	1918	2704	1	8	1	0	1 3:5_2:6
213 OMT1	OMT	13	29826	29994	31154	35547	1	1161	3441	5720	1	8	1	0	1 2:6_3:5
184 OMT1	OMT	11	577779	578230	578230	578669	1	1	445	889	1	10	1	0	1 06:02
239 OMT1	OMT	14	350848	350864	355731	357348	1	4868	5684	6499	1	10	1	0	1 06:02
58 OMT1	OMT	4	506865	507130	507130	507490	1	1	313	624	1	10.1	1	0	1 02:06
173 OMT1	OMT	11	195050	195153	195825	196346	1	673	984	1295	1	10.1	1	0	1 02:06
170 OMT1	OMT	11	38739	38767	38767	41369	1	1	1315	2629	1	10.1	1	0	1 02:06
174 OMT1	OMT	11	201727	202124	203378	204194	1	1255	1861	2466	1	10.1	1	0	1 02:06
236 OMT1	OMT	14	288680	288926	289457	289633	1	532	742	952	2	11	1	0	1 5:3_5:3a
	OMT						1	602	1344		2	11	1	0	
221 OMT1		13	423811	424537	425138	425898				2086			1		1 5:3_5:3a
277 OMT1	OMT	16	241702	241882	243049	243556	1	1168	1511	1853	2	11	1	0	1 5:3_5:3a
144 OMT1	OMT	8	400335	400618	401862	402413	1	1245	1661	2077	2	11	1	0	1 5:3_5:3a
246 OMT1	OMT	14	689310	689558	691115	691292	1	1558	1770	1981	2	11	1	0	1 5:3_5:3a
273 OMT1	OMT	16	150219	150295	150413	150484	1	119	192	264	2	12	1	0	1 3:5_3:5a
40 OMT1	OMT	3	154645	154683	154902	155018	1	220	296	372	2	12	1	0	1 3:5_3:5a
282 OMT1	OMT	16	463723	464194	464400	464470	1	207	477	746	2	12	1	0	1 3:5_3:5a
111 OMT1	OMT	6	196194	196491	197027	197428	1	537	885	1233	2	12	1	0	1 3:5_3:5a
79 OMT1	OMT	4	1337684	1337715	1338585	1338669	1	871	928	984	2	12	1	0	1 3:5_3:5a
165 OMT1	OMT	10	465816	466454	467107	467162	1	654	1000	1345	2	12	1	0	1 3:5_3:5a
70 OMT1	OMT	4	930077	930409	931180	931376	1	772	1035	1298	2	12	1	0	1 3:5_3:5a
261 OMT1	OMT	15	586076	586304	587206	587265	1	903	1046	1188	2	12	1	0	1 3:5_3:5a
89 OMT1	OMT	5	30664	31247	31867	32276	1	621	1116	1611	2	12	1	0	1 3:5_3:5a
242 OMT1	OMT	14	551646	552035	552709	553315	1	675	1172	1668	2	12	1	0	1 3:5_3:5a
272 OMT1	OMT	16	83873	84641	85621	85729	1	981	1418	1855	2	12	1	0	1 3:5_3:5a
119 OMT1	OMT	7	337363	337618	338951	339102	1	1334	1536	1738	2	12	1	0	1 3:5_3:5a
24 OMT1	OMT	2	465471	465657	466266	466521	1	610	830	1049	2	13	1	0	1 5:3_6:2_5:3_5:3a
214 OMT1	OMT	13	44503	45656	46860	48814	1	1205	2758	4310	2	13	1	0	1 5:3_6:2_5:3_5:3a
74 OMT1	OMT	4	1125429	1126043	1126356	1126365	1	314	625	935	2	13	1	0	1 5:3_4:4_5:3_5:3a_6:2
286 OMT1	OMT	16	580936	581005	582043	582137	1	1039	1120	1200	2	13	1	0	1 5:3_5:3a_6:2_5:3a_6:2_4:4_5:3a
													1		
224 OMT1	OMT	13	644973	645040	645786	645859	1	747	816	885	2	15	1	0	1 5:3_4:4_5:3a
276 OMT1	OMT	16	227039	227828	228253	228815	1	426	1101	1775	2	15	1	0	1 5:3_4:4_5:3a
67 OMT1	OMT	4	847053	847395	848397	848940	1	1003	1445	1886	2	15	1	0	1 5:3_4:4_5:3a
123 OMT1	OMT	7	584200	584249	584527	584635	1	279	357	434	2	16	1	0	1 3:5_4:4_3:5a
219 OMT1	OMT	13	352513	352695	353429	353814	1	735	1018	1300	2	16	1	0	1 3:5_4:4_3:5a
84 OMT1	OMT	4	1432932	1433048	1435091	1435647	1	2044	2379	2714	2	16	1	0	1 3:5_4:4_3:5a
55 OMT1	OMT	4	312431	312518	313223	313308	1	706	791	876	2	18	1	0	1 2:6_3:5_4:4_3:5a
94 OMT1	OMT	5	290420	290513	292770	293965	1	2258	2901	3544	2	19	1	0	1 5:3_6:2_5:3a
117 OMT1	OMT	7	194553	195492	197465	197816	1	1974	2618	3262	2	22	1	0	1 3:5_4:4_3:5_2:6_3:5a
104 OMT1	OMT	6	16574	16654	17595	17653	1	942	1010	1078	2	22	1	0	1 3:5_2:6_3:5a_2:6_3:5a_4:4_3:5a
157 OMT1	OMT	10	103601	104033	104033	104395 2_nonsis		1	397	793	3	30	1	0	1 05:03
113 OMT1	OMT	7	41041	41301	41497	41833 2_nonsis		197	494	791	3	30	1	0	1 2:6_3:5
45 OMT1	OMT	3	289600	289803	290527	290957 2_nonsis		725	1041	1356	3	30	1	0	1 2:6_6:2
16 OMT1	OMT	2	275372	275968	277874	278630 2_nonsis		1907	2582	3257	3	30	1	0	1 5:3_5:3a
50 OMT1	OMT	4	163031	163324	170953	171661 2_nonsis		7630	8130	8629	3	30	1	0	1 2:6_3:5
264 OMT1	OMT	15	795711	796275	797043	797205 2_nonsis		769	1131	1493	3	30	1	0	1 5:3_4:4_3:5
291 OMT1	OMT	16	677796	677836	679575	679712 2_nonsis		1740	1828	1915	3	30	1	0	1 5:3_4:4_3:5
291 OMT1 200 OMT1	OMT	12	515064	515468	517114			1647	1960	2273	3	30	1	0	1 5:3_6:2_5:3a
44 OMT1	OMT	3	278462	279641	280971	517338 2_nonsis			2310	3289	3	30	1	0	
						281752 2_nonsis		1331					1		1 3:5_3:5a_3:5b
12 OMT1	OMT	2	214810	215068	219381	220055 2_nonsis		4314	4779	5244	3	30	1	0	1 5:3_6:2_5:3_3:5_3:5a
204 OMT1	OMT	12	634488	634506	636269	637193 2_nonsis		1764	2234	2704	3	30	1	0	1 3:5_4:4_3:5_4:4_3:5_3:5a

226 OMT1	OMT	13	772587	772883	775737	775955 2_nonsis	2855	3111	3367	3	30	1	0	1 3:5_3:5a_2:6_4:4_3:5b_3:5
150 OMT1	OMT	9	136028	136044	139273	139299 2_nonsis	3230	3250	3270	3	30	1	0	1 3:5_4:4_3:5_5:3_5:3a_4:4_3:5a
268 OMT1	OMT	15	1048488	1048836	1049902	1050066 2_nonsis	1067	1322	1577	3	31	1	0	1 4:4ai_5:3
27 OMT1	OMT	2	551607	552237	554757	555319 2_nonsis	2521	3116	3711	3	31	1	0	1 5:3_4:4ai
9 OMT1	OMT	2	162680	162986	164474	164851 2_nonsis	1489	1830	2170	3	31	1	0	1 4:4ai_3:5_3:5a
191 OMT1	OMT	12	167737	168861	170609	170795 2_nonsis	1749	2403	3057	3	31	1	0	1 4:4ai_3:5_3:5a
124 OMT1	OMT	7	609760	609887	610674	611145 2_nonsis	788	1086	1384	3	31	1	0	1 3:5_4:4ai_2:6_3:5a
32 OMT1	OMT	2	684271	684966	687872	689156 2_nonsis	2907	3896	4884	3	31	1	0	1 5:3_4:4ai_4:4_3:5
163 OMT1	OMT	10	378340	378557	380706	380992 2_nonsis	2150	2401	2651	3	31	1	0	1 3:5_4:4_3:5_4:4ai_5:3
279 OMT1	OMT	16	371706	371914	375235	376113 2_nonsis	3322	3864	4406	3	31	1	0	1 3:5_4:4ai_3:5a_4:4ai_2:6_3:5a
257 OMT1	OMT	15	260906	261194	261194	261299 2_nonsis	1	197	392	1	1	1	1	0 (5:3)_(4:4aCO)
231 OMT1	OMT	14	87215	87864	87864	88013 2_nonsis	1	399	797	1	1	1	1	0 (5:3)_(4:4aCO)
218 OMT1	OMT	13	317105	317648	317750	317836 2_nonsis	103	417	730	1	1	1	1	0 (5:3)_(4:4aCO)
131 OMT1	OMT	7	990718	990823	990823	991617 2_nonsis	1	450	898	1	1	1	1	0 (5:3)_(4:4aCO)
158 OMT1	OMT	10	143166	143550	143678	144098 2_nonsis	129	530	931	1	1	1	1	0 (5:3)_(4:4aCO)
212 OMT1	OMT	12	1054333	1054794	1055114	1055417 2_nonsis	321	702	1083	1	1	1	1	0 (5:3)_(4:4aCO)
138 OMT1	OMT	8	192892	194830	194830	195121 2_nonsis	1	1115	2228	1	1	1	1	0 (5:3)_(4:4aCO)
105 OMT1	OMT	6	30616	30827	30834	30954 2_nonsis	8	173	337	1	2	1	1	0 (3:5)_(4:4aCO)
250 OMT1	OMT	15	45210	46201	46201	46774 2_nonsis	1	782	1563	1	2	1	1	0 (3:5)_(4:4aCO)
78 OMT1	OMT	4	1268647	1269918	1269918	1270457 2_nonsis	1	905	1809	1	2	1	1	0 (3:5)_(4:4aCO)
166 OMT1	OMT	10	496029	497589	497879	497985 2_nonsis	291	1123	1955	1	2	1	1	0 (3:5)_(4:4aCO)
178 OMT1	OMT	11	321853	321982	322308	322974 2_nonsis	327	724	1120	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
122 OMT1	OMT	7	581660	581705	582429	582800 2_nonsis	725	932	1139	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
64 OMT1	OMT	4	674927	675634	675833	676252 2_nonsis	200	762	1324	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
275 OMT1	OMT	16	191256	191540	191750	191940 2_nonsis	211	447	683	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
265 OMT1	OMT	15	836747	837056	838315	838372 2_nonsis	1260	1442	1624	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
228 OMT1	OMT	13	903826	904006	904069	904131 2_nonsis	64	184	304	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
194 OMT1	OMT	12	273722	274041	274243	274580 2_nonsis	203	530	857	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
18 OMT1	OMT	2	306242	306376	307860	307919 2_nonsis	1485	1581	1676	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
260 OMT1	OMT	15	460871	461249	464547	464562 2_nonsis	3299	3495	3690	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
107 OMT1	OMT	6	97737	97814	98593	98654 2_nonsis	780	848	916	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
240 OMT1	OMT	14	425816	427278	427715	428693 2_nonsis	438	1657	2876	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
283 OMT1	OMT	16	487851	488388	489543	490095 2_nonsis	1156	1700	2243	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
154 OMT1	OMT	9	407232	407953	409496	409532 2_nonsis	1544	1922	2299	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
97 OMT1	OMT	5	395813	396138	397105	397401 2_nonsis	968	1278	1587	1	11	1	1	0 (4:4ai)_(2:6)_(4:4bCO)_(3:5)_(4:4b)
271 OMT1	OMT	16	72872	73338	74327	74884 2_nonsis	990	1501	2011	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
57 OMT1	OMT	4	430932	431592	431930	432137 2_nonsis	339	772	1204	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
263 OMT1	OMT	15	741984	742253	742716	743206 2_nonsis	464	843	1221	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
139 OMT1	OMT	8	235099	235912	236251	237146 2_nonsis	340	1193	2046	1	12	1	1	0 (3:5)_(2:6)_(4:4)_(4:4aCO)
202 OMT1	OMT	12	552850	553063	554218	554679 2_nonsis	1156	1492	1828	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
116 OMT1	OMT	7	90444	91031	91862	92820 2_nonsis	832	1604	2375	1	12	1	1	0 (5:3)_(6:2)_(4:4)_(4:4aCO)
295 OMT1	OMT	16	874996	875078	876811	876914 2_nonsis	1734	1826	1917	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
143 OMT1	OMT	8	331868	334431	335220	335465 2_nonsis	790	2193	3596	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
148 OMT1	OMT	9	36691	36702	39559	40190 2_nonsis	2858	3178	3498	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
61 OMT1	OMT	4	599518	599722	601683	602153 2_nonsis	1962	2298	2634	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(3:5)_(4:4aCO)
162 OMT1	OMT	10	300402	300732	302943	303003 2_nonsis	2212	2406	2600	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)
80 OMT1	OMT	4	1347683	1349666	1350718	1350819 2_nonsis	1053	2094	3135	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
205 OMT1	OMT	12	638411	640114	642815	643838 2_nonsis	2702	4064	5426	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
121 OMT1	OMT	7	394219	394474	394474	394511 2_nonsis	1	146	291	1	15	1	1	0 (6:2)_(4:4aCO)
126 OMT1	OMT	7	671982	672059	672059	672419 2_nonsis	1	219	436	1	15	1	1	0 (6:2)_(4:4aCO)
118 OMT1	OMT	7	199894	200351	200351	200448 2_nonsis	1	277	553	1	15	1	1	0 (6:2)_(4:4aCO)
230 OMT1	OMT	14	51868	52069	52243	52297 2_nonsis	175	302	428	1	15	1	1	0 (6:2)_(4:4aCO)
48 OMT1	OMT	4	105853	106143	106143	106727 2_nonsis	1	437	873	1	15	1	1	0 (6:2)_(4:4aCO)
76 OMT1	OMT	4	1198548	1199289	1199413	1199588 2_nonsis	125	582	1039	1	15	1	1	0 (6:2)_(4:4aCO)
52 OMT1	OMT	4	196851	198376	198734	198778 2_nonsis	359	1143	1926	1	15	1	1	0 (6:2)_(4:4aCO)
248 OMT1	OMT	14	743089	743137	743262	743408 2_nonsis	126	222	318	1	16	1	1	0 (2:6)_(4:4aCO)
37 OMT1	OMT	3	74394	74577	74577	75202 2_nonsis	1	404	807	1	16	1	1	0 (2:6)_(4:4aCO)
127 OMT1	OMT	7	825066	825417	825444	825852 2_nonsis	28	407	785	1	16	1	1	0 (2:6)_(4:4aCO)
56 OMT1	OMT	4	366072	366513	366629	366913 2_nonsis	117	479	840	1	16	1	1	0 (2:6)_(4:4aCO)
11 OMT1	OMT	2	192576	193122	193122	193664 2_nonsis	1	544	1087	1	16	1	1	0 (2:6)_(4:4aCO)

71 OMT1	OMT	4	1039132	1039385	1039385	1040424 2_nonsis	1	646	1291	1	16	1	1	0 (2:6)_(4:4aCO)
211 OMT1	OMT	12	1009719	1011169	1011170	1011621 2_nonsis	2	952	1901	1	16	1	1	0 (2:6)_(4:4aCO)
31 OMT1	OMT	2	640627	641071	642483	642776 2_nonsis	1413	1781	2148	1	16	1	1	0 (2:6)_(4:4aCO)
287 OMT1	OMT	16	591462	591540	591462	591540 2_nonsis	0	39	77	1	100	1	1	0 (4:4aCO)
269 OMT1	OMT	16	30747	30844	30747	30844 2_nonsis	0	48	96	1	100	1	1	0 (4:4aCO)
1 OMT1	OMT	1	77554	77737	77554	77737 2_nonsis	0	91	182	1	100	1	1	0 (4:4aCO)
252 OMT1	OMT	15	96983	97189	96983	97189 2_nonsis	0	103	205	1	100	1	1	0 (4:4aCO)
289 OMT1	OMT	16	623051	623258	623051	623258 2_nonsis	0	103	206	1	100	1	1	0 (4:4aCO)
54 OMT1	OMT	4	255481	255722	255481	255722 2_nonsis	0	120	240	1	100	1	1	0 (4:4aCO)
237 OMT1	OMT	14	300738	301119	300738	301119 2_nonsis	0	190	380	1	100	1	1	0 (4:4aCO)
217 OMT1	OMT	13	209542	209952	209542	209952 2_nonsis	0	205	409	1	100	1	1	0 (4:4aCO)
195 OMT1	OMT	12	341070	341507	341070	341507 2_nonsis	0	218	436	1	100	1	1	0 (4:4aCO)
151 OMT1	OMT	9	215186	215644	215186	215644 2_nonsis	0	229	457	1	100	1	1	0 (4:4aCO)
92 OMT1	OMT	5	225841	226347	225841	226347 2_nonsis	0	253	505	1	100	1	1	0 (4:4aCO)
262 OMT1	OMT	15	606336	606849	606336	606849 2_nonsis	0	256	512	1	100	1	1	0 (4:4aCO)
164 OMT1	OMT	10	421930	422597	421930	422597 2_nonsis	0	333	666	1	100	1	1	0 (4:4aCO)
82 OMT1	OMT	4	1415193	1416035	1415193	1416035 2_nonsis	0	421	841	1	100	1	1	0 (4:4aCO)
176 OMT1	OMT	11	291136	292055	291136	292055 2_nonsis	0	459	918	1	100	1	1	0 (4:4aCO)
256 OMT1	OMT	15	218142	219124	218142	219124 2_nonsis	0	491	981	1	100	1	1	0 (4:4aCO)
220 OMT1	OMT	13	411264	412303	411264	412303 2_nonsis	0	519	1038	1	100	1	1	0 (4:4aCO)
278 OMT1	OMT	16	345110	346505	345110	346505 2_nonsis	0	697	1394	1	100	1	1	0 (4:4aCO)
171 OMT1	OMT	11	125651	127396	125651	127396 2_nonsis	0	872	1744	1	100	1	1	0 (4:4aCO)
69 OMT1	OMT	4	915507	917310	915507	917310 2_nonsis	0	901	1802	1	100	1	1	0 (4:4aCO)
3 OMT1	OMT	1	187427	189825	187427	189825 2_nonsis	0	1199	2397	1	100	1	1	0 (4:4aCO)
168 OMT1	OMT	10	624648	627140	624648	627140 2_nonsis	0	1246	2491	1	100	1	1	0 (4:4aCO)
2 OMT1	OMT	1	104068	107245	104068	107245 2_nonsis	0	1588	3176	1	100	1	1	0 (4:4aCO)
35 OMT1	OMT	2	726633	726855	727581	727716 2_nonsis	727	905	1082	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
216 OMT1	OMT	13	167521	167925	172118	172478 2_nonsis	4194	4575	4956	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
36 OMT1	OMT	2	791057	791214	792210	792968 2_nonsis	997	1454	1910	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
251 OMT1	OMT	15	68200	68284	69841	69894 2_nonsis	1558	1626	1693	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
30 OMT1	OMT	2	632917	633067	636267	636372 2_nonsis	3201	3328	3454	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
208 OMT1	OMT	12	787510	787598	789373	789615 2_nonsis	1776	1940	2104	2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(4:4aCO)
46 OMT1	OMT	4	20081	20103	20400	20444 2_nonsis	298	330	362	2	31	1	1	0 (2:6)_(3:5)_(2:6)_(4:4aCO)
215 OMT1	OMT	13	68292	69113	72351	73368 2_nonsis	3239	4157	5075	2	31	1	1	0 (3:5)_(2:6)_(3:5)_(3:5a)_(4:4aCO)
101 OMT1	OMT	5	473281	473821	475154	475295 2_nonsis	1334	1674	2013	2	31	1	1	0 (3:5)_(2:6)_(3:5)_(3:5a)_(4:4aCO) 0 (3:5)_(2:6)_(3:5)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
241 OMT1	OMT	14	531399	531505	533533	533705 2 nonsis	2029	2167	2305	2	31	1	1	0 (3:5) (4:4) (2:6) (4:4) (3:5) (3:5a) (4:4aCO)
6 OMT1	OMT	2	107438	107671	109488	110113 2_nonsis	1818	2246	2674	2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
132 OMT1	OMT	7	1011474	1011503	1013000	1013720 2_nonsis	1498	1872	2245	2	32	1	1	0 (5:3)_(5:3a)_(2:0)_(5:3a)_(4:4aCO) 0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
203 OMT1										2		1	1	
	OMT	12	566431	566615	578083	578714 2_nonsis	11469	11876	12282	2	32			0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
112 OMT1	OMT OMT	6	208668	209238	211344 177858	211545 2_nonsis	2107	2492 1697	2876	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3b)_(4:4a)
110 OMT1 155 OMT1	OMT	6	176167	176296	37982	177999 2_nonsis	1563	5993	1831 6053	2	32 32	1	1	0 (5:3)_(4:4)_(5:3a)_(5:3b)_(4:4aCO)_(5:3b)_(4:4a)
		10	32041	32051		38095 2_nonsis	5932							0 (2:6)_(3:5)_(2:6)_(4:4)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
83 OMT1	OMT	4	1417050	1417646	1422082	1422450 2_nonsis	4437	4918	5399	2	32	1	1	0 (6:2)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
149 OMT1	OMT	9	42866	43748	47054 189441	47493 2_nonsis	3307	3967	4626	2	32	1	1	0 (2:6)_(3:5)_(4:4)_(3:5)_(4:4ai)_(3:5a)_(4:4ai)_(4:4bCO)_(3:5b)_(3:5a)_(4:4b)
160 OMT1	OMT	10	189105	189246		189631 2_nonsis	196	361	525	3	20	-	-	0 (5:3)_(3:5)_(4:4aCO)
188 OMT1	OMT	12	36038	36125	37050	37123 2_nonsis	926	1005	1084	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
23 OMT1	OMT	2	451982	452218	453426	453575 2_nonsis	1209	1401	1592	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
182 OMT1	OMT	11	486704	487095	488294	488405 2_nonsis	1200	1450	1700	3	20	1	1	0 (3:5)_(6:2)_(5:3)_(4:4aCO)
210 OMT1	OMT	12	953141	953351	954772	954849 2_nonsis	1422	1565	1707	3	20	1	1	0 (3:5)_(6:2)_(5:3)_(4:4aCO)
130 OMT1	OMT	7	904249	904347	905710	906181 2_nonsis	1364	1648	1931	3	20	1	1	0 (3:5)_(4:4aCO)_(6:2)_(4:4a)
86 OMT1	OMT	4	1487095	1487794	1488904	1489717 2_nonsis	1111	1866	2621	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(4:4aCO)
136 OMT1	OMT	8	121477	121618	123473	123592 2_nonsis	1856	1985	2114	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
199 OMT1	OMT	12	422565	423102	425324	425404 2_nonsis	2223	2531	2838	3	20	1	1	0 (5:3)_(5:3a)_(3:5)_(4:4aCO)
17 OMT1	OMT	2	287551	287818	290619	291653 2_nonsis	2802	3452	4101	3	20	1	1	0 (5:3)_(3:5)_(5:3a)_(4:4aCO)
186 OMT1	OMT	11	630615	631180	631559	632039 2_nonsis	380	902	1423	3	20	1	1	0 (6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
285 OMT1	OMT	16	525053	525272	527456	527480 2_nonsis	2185	2306	2426	3	20	1	1	0 (5:3)_(4:4)_(5:3a)_(6:2)_(3:5)_(5:3b)_(4:4aCO)
206 OMT1	OMT	12	759015	759162	761502	761602 2_nonsis	2341	2464	2586	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
103 OMT1	OMT	5	525075	525798	527534	528932 2_nonsis	1737	2797	3856	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
233 OMT1	OMT	14	185896	186475	188016	188308 2_nonsis	1542	1977	2411	3	20	1	1	0 (5:3)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)_(3:5a)_(4:4a)
91 OMT1	OMT	5	65622	65697	68268	68547 2_nonsis	2572	2748	2924	3	21	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4ai)_(4:4bCO)

63 OMT1	OMT	4	662835	663783	667027	667309 2_nonsis		3245	3859	4473	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO)
21 OMT1	OMT	2	390744	391464	395368	395476 2_nonsis		3905	4318	4731	3	21	1	1	0 (5:3)_(3:5)_(4:4ai)_(5:3)_(4:4ai)_(3:5a)_(4:4ai)_(3:5a)_(4:4bCO)
14 OMT1	OMT	2	250789	251134	252589	253219 2_sis		1456	1943	2429	0	1	2	0	2 (3:5)_(4:4)_(2:6i)_(3:5a)_(2:6i)_(3:5b)_(4:4)
19 OMT1	OMT	2	310393	310571	312167	312299 2_sis		1597	1751	1905	0	1	2	0	2 (5:3)_(5:3a)_(5:3b)_(4:4)
20 OMT1	OMT	2	350900	351083	352907	353413 2_sis		1825	2169	2512	0	1	2	0	2 (2:6i)_(3:5)_(4:4)
51 OMT1	OMT	4	174905	174996	174996	175763 2_sis		1	429	857	0	1	2	0	2 (6:2i)_(4:4)
60 OMT1	OMT	4	589456	589536	591129	591782 2 sis		1594	1960	2325	0	1	2	0	2 (3:5)_(4:4)_(2:6i)_(2:6a)_(4:4)
72 OMT1	OMT	4	1079984	1080788	1081335	1081779 2 sis		548	1171	1794	0	1	2	0	2 (2:6i)_(3:5)_(4:4)_(3:5)_(4:4)
187 OMT1	OMT	12	20616	20678	22902	23199 2 sis		2225	2404	2582	0	1	2	0	2 (5:3)_(4:4)_(6:2i)_(6:2a)_(4:4)
193 OMT1	OMT	12	250711	251635	255736	255818	3	4102	4604	5106	0	1	2	0	2 (3:5)_(4:4)_(3:5)_(6:2i)_(5:3)_(4:4)
5 OMT1	OMT	2	44210	44904	61179	61197	3	16276	16631	16986	0	2	2	1	1 (5:3)_(2:6)_(3:5)_(4:4ai)_(5:3a)_(5:3b)_(6:2i)_(5:3b)_(6:2i)_(5:3c)_(4:4bCO)
	OMT	2	112018	112335	117726	117972	4				0	2	2	2	
7 OMT1								5392	5673	5953	0				0 (3:5)_(5:3)_(4:4)_(2:6i)_(3:5a)_(2:6i)_(2:6ai)_(3:5b)_(2:6ai)_(3:5c)_(4:4ai)_(4:4bCO)
22 OMT1	OMT	2	430067	431229	433097	433196	3	1869	2499	3128		2	2	1	1 (5:3)_(4:4ai)_(3:5)_(4:4bCO)
29 OMT1	OMT	2	579131	579255	582680	583031	3	3426	3663	3899	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(5:3a)_(6:2i)_(5:3a)_(6:2i)_(5:3b)_(4:4aCO)
34 OMT1	OMT	2	700117	700950	704282	704922	3	3333	4069	4804	0	2	2	1	1 (5:3)_(4:4ai)_(6:2)_(6:2ai)_(5:3a)_(4:4bCO)_(5:3a)_(4:4b)
100 OMT1	OMT	5	459831	460003	463625	464078	3	3623	3935	4246	0	2	2	1	1 (5:3)_(4:4)_(7:1)_(4:4)_(8:0)_(5:3a)_(4:4aCO)
135 OMT1	OMT	8	54302	54591	58733	59498	3	4143	4669	5195	0	2	2	1	1 (3:5)_(4:4ai)_(2:6)_(6:2)_(5:3)_(4:4)_(2:6)_(3:5)_(4:4bCO)
145 OMT1	OMT	8	422434	422538	423045	423870	3	508	972	1435	0	2	2	1	1 (2:6i)_(1:7)_(4:4aCO)_(3:5)_(4:4a)
147 OMT1	OMT	8	516318	516468	518620	518743	3	2153	2289	2424	0	2	2	1	1 (5:3)_(6:2)_(7:1)_(3:5)_(3:5a)_(4:4aCO)
152 OMT1	OMT	9	266803	267668	269580	269763	3	1913	2436	2959	0	2	2	1	1 (3:5)_(2:6)_(1:7)_(2:6ai)_(3:5a)_(2:6b)_(6:2)_(4:4aCO)
169 OMT1	OMT	10	662479	663134	664569	664824	3	1436	1890	2344	0	2	2	1	1 (4:4ai)_(4:4)_(6:2)_(4:4bCO)
209 OMT1	OMT	12	827343	827901	831136	831658	4	3236	3775	4314	0	2	2	2	0 (3:5)_(2:6i)_(3:5a)_(2:6i)_(3:5b)_(2:6a)_(3:5c)_(2:6a)_(3:5c)_(4:4aCO)
222 OMT1	OMT	13	592777	593048	594694	595371	3	1647	2120	2593	0	2	2	1	1 (2:6i)_(3:5)_(4:4aCO)_(3:5a)_(4:4a)
292 OMT1	OMT	16	784177	784693	786161	786518	3	1469	1905	2340	0	2	2	1	1 (3:5)_(4:4)_(2:6)_(5:3)_(4:4aCO)_(3:5a)_(4:4a)
4 OMT1	OMT	2	26815	27032	37454	37628	4	10423	10618	10812	0	3	2	2	0 (4:4ai)_(3:5)_(4:4ai)_(5:3)_(5:3a)_(4:4bCO)_(5:3a)_(6:2)_(5:3b)_(4:4ci)_(5:3c)_(4:4dCO)
26 OMT1	OMT	2	530065	531256	540568	540838	4	9313	10043	10772	0	3	3	2	1 (5:3)_(7:1)_(6:2)_(4:4aCO)_(2:6)_(3:5)_(4:4bCO)
42 OMT1	OMT	3	216424	216599	230267	231791	4	13669	14518	15366	0	3	2	2	0 (6:2)_(1:7)_(2:6)_(1:7)_(2:6a)_(3:5)_(4:4aCO)_(6:2a)_(5:3)_(4:4bCO)
90 OMT1	OMT	5	38064	38431	42646	43035	3	4216	4593	4970	0	3	2	1	1 (5:3)_(2:6)_(4:4aCO)_(2:6)_(3:5)_(4:4bCO)_(4:4ci)_(3:5a)_(4:4CO)
183 OMT1	OMT	11	521737	521933	527630	527758	3	5698	5859	6020	0	3	2	0	
266 OMT1	OMT	15	987667	988081	989301	991111	3	1221	2332	3443	0	3	2	1	2 (5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)_(5:3b)_(6:2)_(4:4bCO)_(6:2)_(4:4b) 1 (5:3)_(5:3a)_(3:5)_(2:6)_(4:4aCO)_(4:4bCO)
296 OMT1	OMT	13	31403	31635	33328	33347	1	1694	1819	1943	0	4	1 NA	NA	3:5_2:6_3:5_4:4_3:5
333 OMT1	OMT	2	797248		800937		1	3612	9774	15935	0	4	1 NA	NA NA	
				797326		813184 2_nonsis									3:5_3:5_4:4_3:5
343 OMT1	OMT	3	292937	296463	303499	316620 2_sis		7037	15360	23682	0	4	1 NA	NA	5:3_6:2_7:1_5:3_6:2_5:3
453 OMT1	OMT	10	21758	21859	22895	22911 2_nonsis		1037	1095	1152	0	4	1 NA	NA	3:5_4:4*_5:3_4:4*_3:5_5:3
469 OMT1	OMT	10	725123	725433	725933	745751	1	0	10314	20627	0	4	1 NA	NA	
596 OMT1	OMT	16	920519	920779	925093	948066 2_nonsis		4315	15931	27546	0	4	1 NA	NA	4:4*_4:4_4:4*_5:3_4:4_5:3_6:2_5:3_4:4_5:3
219 OMT10	OMT	15	494326	494461	494461	494556	1	1	115	229	1	1	1	0	1 05:03
241 OMT10	OMT	16	785910	786015	786020	786161	1	6	128	250	1	1	1	0	1 05:03
166 OMT10	OMT	12	433420	433567	433567	433851	1	1	216	430	1	1	1	0	1 05:03
103 OMT10	OMT	8	108568	108672	108672	109025	1	1	229	456	1	1	1	0	1 05:03
21 OMT10	OMT	3	52371	52747	52792	52803	1	46	239	431	1	1	1	0	1 05:03
239 OMT10	OMT	16	645731	645899	645942	646173	1	44	243	441	1	1	1	0	1 05:03
171 OMT10	OMT	12	763412	763502	763666	763742	1	165	247	329	1	1	1	0	1 05:03
26 OMT10	OMT	4	20223	20376	20444	20659	1	69	252	435	1	1	1	0	1 05:03
56 OMT10	OMT	4	1295451	1295582	1295582	1295980	1	1	265	528	1	1	1	0	1 05:03
186 OMT10	OMT	13	513381	513415	513553	513778	1	139	268	396	1	1	1	0	1 05:03
202 OMT10	OMT	14	531611	531656	531656	532165	1	1	277	553	1	1	1	0	1 05:03
79 OMT10	OMT	6	207745	207760	207985	208075	1	226	278	329	1	1	1	0	1 05:03
183 OMT10	OMT	13	236240	236370	236410	236819	1	41	310	578	1	1	1	0	1 05:03
149 OMT10	OMT	11	437157	437524	437585	437754	1	62	329	596	1	1	1	0	1 05:03
95 OMT10	OMT	7	848688	849134	849134	849405	1	1	359	716	1	1	1	0	1 05:03
7 OMT10	OMT	2	70774	71161	71276	71395	1	116	368	620	1	1	1	0	1 05:03
52 OMT10	OMT	4	1188542	1188946	1188946	1189283	1	1	371	740	1	1	1	0	1 05:03
											1	1	-	-	
101 OMT10	OMT	8	16906	17120	17359	17641	1	240	487	734	1	1	1	0	1 05:03
46 OMT10	OMT		835164	835319	835444	836028	1	126	495	863	-	1	1	0	1 05:03
135 OMT10	OMT	10	360767	360976	361340	361485	1	365	541	717	1	1	1	0	1 05:03
105 OMT10	OMT	8	186876	187527	187695	187989	1	169	641	1112	1	1	1	0	1 05:03
54 OMT10	OMT	4	1270457	1270902	1270902	1271755	1	1	649	1297	1	1	1	0	1 05:03
50 OMT10	OMT	4	1110571	1111002	1111414	1111575	1	413	708	1003	1	1	1	0	1 05:03
215 OMT10	OMT	15	284521	284983	285417	285557	1	435	735	1035	1	1	1	0	1 05:03

53 OMT10	OMT	4	1260078	1260779	1261105	1261386	1	327	817	1307	1	1	1	0	1 05:03
211 OMT10	OMT	15	197183	197943	198230	198587	1	288	846	1403	1	1	1	0	1 05:03
200 OMT10	OMT	14	355731	357348	357375	357524	1	28	910	1792	1	1	1	0	1 05:03
152 OMT10	OMT	11	634259	634414	634635	635970	1	222	966	1710	1	1	1	0	1 05:03
197 OMT10	OMT	14	90644	90834	91563	91989	1	730	1037	1344	1	1	1	0	1 05:03
45 OMT10	OMT	4	802711	805658	805658	805687	1	1	1488	2975	1	1	1	0	1 05:03
209 OMT10	OMT	15	153405	153546	154173	156059	1	628	1641	2653	1	1	1	0	1 05:03
106 OMT10	OMT	8	206103	206439	207745	208403	1	1307	1803	2299	1	1	1	0	1 05:03
126 OMT10	OMT	10	83804	83877	85773	85992	1	1897	2042	2187	1	1	1	0	1 05:03
17 OMT10	OMT	2	662272	662444	662444	666708	1	1	2218	4435	1	1	1	0	1 05:03
157 OMT10	OMT	12	112012	112031	112068	112137	1	38	81	124	1	2	1	0	1 03:05
225 OMT10	OMT	15	768429	768642	768642	768676	1	1	124	246	1	2	1	0	1 03:05
36 OMT10	OMT	4	520944	521108	521126	521211	1	19	143	266	1	2	1	0	1 03:05
162 OMT10	OMT	12	278546	278659	278673	278823	1	15	146	276	1	2	1	0	1 03:05
38 OMT10	OMT	4	556617	556732	556732	556934	1	1	159	316	1	2	1	0	1 03:05
193 OMT10	OMT	13	759350	759582	759582	759679	1	1	165	328	1	2	1	0	1 03:05
180 OMT10	OMT	13	159532	159727	159757	159950	1	31	224	417	1	2	1	0	1 03:05
110 OMT10	OMT	8	360746	360898	360906	361205	1	9	234	458	1	2	1	0	1 03:05
22 OMT10	OMT	3	69091	69652	69652	69718	1	1	314	626	1	2	1	0	1 03:05
34 OMT10	OMT	4	462638	462986	463089	463263	1	104	364	624	1	2	1	0	1 03:05
164 OMT10	OMT	12	332162	332441	332524	332859	1	84	390	696	1	2	1	0	1 03:05
229 OMT10	OMT	15	1025392	1025498	1025760	1025986	1	263	428	593	1	2	1	0	1 03:05
182 OMT10	OMT	13	191318	191452	191569	192110	1	118	455	791	1	2	1	0	1 03:05
204 OMT10	OMT	14	586871	587725	587725	587867	1	1	498	995	1	2	1	0	1 03:05
163 OMT10	OMT	12	319960	320465		320997	1	5	521	1036	1	2	1	0	1 03:05
86 OMT10	OMT	7	351684	351949	320469 352206	352489	1	258	531	804	1	2	1	0	1 03:05
		5									1	2			
63 OMT10	OMT		41711	41961	42354	42396	1	394	539	684	1		1	0	1 03:05
111 OMT10	OMT	8	373732	373987	374065	374774	1	79	560	1041	-	2	-	0	1 03:05
25 OMT10	OMT	3	235472	236284	236387	236702	1	104	667	1229	1	2	1	0	1 03:05
212 OMT10	OMT	15	218142	219124	219136	219822	1	13	846	1679	1	2	1	0	1 03:05
228 OMT10	OMT	15	985518	985891	986501	986764	1	611	928	1245	1	2	1	0	1 03:05
146 OMT10	OMT	11	176780	177108	177551	178198	1	444	931	1417	1	2	1	0	1 03:05
55 OMT10	OMT	4	1288775	1289394	1289972	1290308	1	579	1056	1532	1	2	1	0	1 03:05
39 OMT10	OMT	4	628602	629487	629725	630640	1	239	1138	2037	1	2	1	0	1 03:05
145 OMT10	OMT	11	170362	170773	171261	172151	1	489	1139	1788	1	2	1	0	1 03:05
8 OMT10	OMT	2	73943	74853	75576	75822	1	724	1301	1878	1	2	1	0	1 03:05
2 OMT10	OMT	1	85751	87490	88008	90330	1	519	2549	4578	1	2	1	0	1 03:05
235 OMT10	OMT	16	519754	520090	520684	521292	1	595	1066	1537	1	3	1	0	1 5:3_6:2_5:3
23 OMT10	OMT	3	168300	169991	171207	174943	1	1217	3930	6642	1	4	1	0	1 3:5_4:4_3:5
65 OMT10	OMT	5	69243	69568	69789	70022	1	222	500	778	1	7	1	0	1 6:2_5:3
77 OMT10	OMT	6	155336	155718	156218	156651	1	501	908	1314	1	7	1	0	1 5:3_6:2
220 OMT10	OMT	15	584870	585188	586345	586852	1	1158	1570	1981	1	7	1	0	1 5:3_6:2
107 OMT10	OMT	8	233475	233495	235099	235912	1	1605	2021	2436	1	7	1	0	1 5:3_6:2
100 OMT10	OMT	7	1016792	1017034	1017880	1018075	1	847	1065	1282	1	7	1	0	1 5:3_4:4_6:2
233 OMT10	OMT	16	323900	324163	324535	325197	1	373	835	1296	1	7	1	0	1 6:2_4:4_5:3_6:2_5:3
51 OMT10	OMT	4	1166461	1166557	1166937	1167032	1	381	476	570	1	7	1	0	1 6:2_5:3_4:4_5:3_6:2_5:3
37 OMT10	OMT	4	524941	525488	526636	526651	1	1149	1429	1709	1	7	1	0	1 6:2_5:3_6:2_5:3_4:4_5:3_4:4_5:3_6:2_5:3_6:2
226 OMT10	OMT	15	943688	944039	945252	945621	1	1214	1573	1932	1	8	1	0	1 2:6_3:5
67 OMT10	OMT	5	195529	195746	202626	203184	1	6881	7268	7654	1	8	1	0	1 2:6_3:5
10 OMT10	OMT	2	290619	291653	293405	293501	1	1753	2317	2881	1	8	1	0	1 2:6_4:4_3:5
122 OMT10	OMT	9	273624	273888	275131	275192	1	1244	1406	1567	1	8	1	0	1 2:6_3:5_4:4_3:5
216 OMT10	OMT	15	302883	303066	304525	304796	1	1460	1686	1912	1	8	1	0	1 2:6_3:5_4:4_2:6
72 OMT10	OMT	5	486986	487184	490700	490942	1	3517	3736	3955	1	8	1	0	1 3:5_2:6_3:5_4:4_3:5_2:6_3:5_2:6
168 OMT10	OMT	12	500605	500833	500833	501707	1	1	551	1101	1	10	1	0	1 06:02
130 OMT10	OMT	10	220326	220622	220637	221804	1	16	747	1477	1	10	1	0	1 06:02
5 OMT10	OMT	1	187280	187411	187411	187414	1	1	67	133	1	10.1	1	0	1 02:06
189 OMT10	OMT	13	618075	618182	618182	618249	1	1	87	173	1	10.1	1	0	1 02:06
230 OMT10	OMT	16	22571	22695	22695	22824	1	1	127	252	1	10.1	1	0	1 02:06
43 OMT10	OMT	4	770058	770136	770136	770352	1	1	147	293	1	10.1	1	0	1 02:06
217 OMT10	OMT	15	412174	412390	412390	412522	1	1	174	347	1	10.1	1	0	1 02:06
2., 0,1110	0.411	1.5		112370	2370			1	1/7	547		10.1	•	9	

140 OMT10	OMT	10	709147	709747	709747	711083	1	1	968	1935	1	10.1	1	0	1 02:06
121 OMT10	OMT	9	244304	244618	244765	244951	1	148	397	646	2	11	1	0	1 5:3_5:3a
153 OMT10	OMT	12	36477	36694	37050	37123	1	357	501	645	2	11	1	0	1 5:3_5:3a
148 OMT10	OMT	11	368313	369378	369689	369878	1	312	938	1564	2	11	1	0	1 5:3_5:3a
11 OMT10	OMT	2	296843	297226	298189	298678	1	964	1399	1834	2	11	1	0	1 5:3_5:3a
190 OMT10	OMT	13	675294	675387	675697	675922	1	311	469	627	2	12	1	0	1 3:5_3:5a
40 OMT10	OMT	4	674365	674440	675833	676252	1	1394	1640	1886	2	12	1	0	1 3:5_3:5a
98 OMT10	OMT	7	987011	987084	988045	988071	1	962	1011	1059	2	13	1	0	1 5:3_5:3a_6:2_5:3a
199 OMT10	OMT	14	345280	345668	346414	346690	1	747	1078	1409	2	13	1	0	1 5:3_6:2_5:3_5:3a
62 OMT10	OMT	5	14955	15170	17320	17368	1	2151	2282	2412	2	13	1	0	1 6:2_5:3_6:2_5:3_6:2_5:3a
73 OMT10	OMT	5	524497	524520	526303	526638	1	1784	1962	2140	2	14	1	0	1 2:6_3:5_3:5a_2:6_3:5a
154 OMT10	OMT	12	48757	49068	49545	49638	1	478	679	880	2	15	1	0	1 5:3_4:4_5:3a
47 OMT10	OMT	4	855763	856001	856679	857591	1	679	1253	1827	2	15	1	0	1 5:3_4:4_5:3a
32 OMT10	OMT	4	267874	268279	269406	269544	1	1128	1399	1669	2	15	1	0	1 5:3_4:4_5:3a
192 OMT10	OMT	13	721068	721309	721694	721833	1	386	575	764	2	16	1	0	1 3:5_4:4_3:5a
237 OMT10	OMT	16	609630	609903	610749	610825	1	847	1021	1194	2	16	1	0	1 3:5_4:4_3:5a
223 OMT10	OMT	15	745929	746313	747546	747612	1	1234	1458	1682	2	16	1	0	1 3:5_4:4_3:5a
69 OMT10	OMT	5	270072	270213	271703	271934	1	1491	1676	1861	2	16	1	0	1 3:5 4:4 3:5a
124 OMT10	OMT	10	22158	22350	24307	26108	1	1958	2954	3949	2	16	1	0	1 3:5_4:4_3:5a
29 OMT10	OMT	4	183023	183468	186001	186485	1	2534	2998	3461	2	16	1	0	1 3:5_4:4_3:5a
66 OMT10	OMT	5	73474	74196	76636	77002	1	2441	2984	3527	2	17	1	0	1 5:3_4:4_5:3a 1 6:2_5:3_4:4_5:3a
88 OMT10	OMT	7	395416	395553	398049	398572	1	2497	2826	3155	2	17	1	0	1 5:3_4:4_5:3_4:4_5:3a
13 OMT10	OMT	2	444564		445794		1	1131	1287	1442	2	18	1	0	
15 OMT10 194 OMT10	OMT	13	835125	444664 837907	839353	446007 839983	1	1447	3152	4857	2	18	1	0	1 3:5_4:4_3:5_4:4_3:5a 1 3:5_4:4_3:5a_4:4_3:5a
							1								
227 OMT10	OMT	15	977533	977581	980032	981230	-	2452	3074	3696	2	18	1	0	1 3:5_2:6_4:4_3:5_4:4_3:5a_4:4_3:5a_2:6
15 OMT10	OMT	2	554757	555319	555805	556121	1	487	925	1363	2	19	1	0	1 5:3_6:2_5:3a
161 OMT10	OMT	12	259126	259210	261119	261578	1	1910	2181	2451	2	20	1	0	1 3:5_2:6_3:5a
179 OMT10	OMT	13	76522	77019	78923	79258	1	1905	2320	2735	2	21	1	0	1 5:3_6:2_5:3a_4:4_5:3a
128 OMT10	OMT	10	171829	172240	173515	173883	1	1276	1665	2053	2	23	1	0	1 5:3_4:4_6:2_5:3a
31 OMT10	OMT	4	262409	262808	266029	266113	1	3222	3463	3703	2	23	1	0	1 5:3_6:2_4:4_6:2_5:3a
221 OMT10	OMT	15	656165	656264	659154	660208	1	2891	3467	4042	2	23	1	0	1 5:3_4:4_6:2_5:3a_6:2_5:3a
109 OMT10	OMT	8	336133	336486	338239	338392 2_nonsis		1754	2006	2258	3	30	1	0	1 5:3_5:3a_5:3b
142 OMT10	OMT	11	14411	19020	21803	22806 2_nonsis		2784	5589	8394	3	30	1	0	1 5:3_6:2_5:3
118 OMT10	OMT	9	113159	113517	115941	116245 2_nonsis		2425	2755	3085	3	30	1	0	1 5:3_6:2_5:3_5:3a_5:3b
206 OMT10	OMT	14	661270	661348	665064	665097 2_nonsis		3717	3772	3826	3	30	1	0	1 5:3_4:4_3:5_3:5a_5:3
132 OMT10	OMT	10	240364	240782	246652	247233 2_nonsis		5871	6370	6868	3	30	1	0	1 3:5_2:6_3:5_2:6_3:5a
174 OMT10	OMT	12	947421	947519	949489	949843 2_nonsis		1971	2196	2421	3	30	1	0	1 5:3_6:2_5:3_6:2_4:4_6:2
99 OMT10	OMT	7	992475	992805	994272	994410 2_nonsis		1468	1701	1934	3	30	1	0	1 5:3_3:5_4:4_3:5_4:4_3:5_5:3a_6:2
236 OMT10	OMT	16	524220	524743	525053	525272 2_nonsis		311	681	1051	3	31	1	0	1 4:4ai
177 OMT10	OMT	13	15470	15705	17138	17364 2_nonsis		1434	1664	1893	3	31	1	0	1 3:5_4:4_3:5_4:4_3:5_4:4ai
184 OMT10	OMT	13	367523	367636	379984	380209 2_nonsis		12349	12517	12685	3	31	1	0	1 5:3_4:4_5:3_4:4_5:3_6:2_5:3_3:5_4:4ai
57 OMT10	OMT	4	1326110	1326543	1330877	1330885 2_nonsis		4335	4555	4774	3	31	1	0	1 3:5_4:4ai_5:3_4:4ai_3:5a_4:4ai_3:5a_5:3a_3:5a_4:4ai_3:5
114 OMT10	OMT	8	511816	512259	512291	512682 2_nonsis		33	449	865	1	1	1	1	0 (5:3)_(4:4aCO)
82 OMT10	OMT	7	127409	127838	127940	128210 2_nonsis		103	452	800	1	1	1	1	0 (5:3)_(4:4aCO)
120 OMT10	OMT	9	212207	213470	213470	213953 2_nonsis		1	873	1745	1	1	1	1	0 (5:3)_(4:4aCO)
205 OMT10	OMT	14	606872	608001	608001	610323 2_nonsis		1	1726	3450	1	1	1	1	0 (5:3)_(4:4aCO)
85 OMT10	OMT	7	248225	249983	250680	252024 2_nonsis		698	2248	3798	1	1	1	1	0 (5:3)_(4:4aCO)
113 OMT10	OMT	8	484090	485522	487338	487560 2_nonsis		1817	2643	3469	1	1	1	1	0 (5:3)_(4:4aCO)
141 OMT10	OMT	10	721671	721886	721886	722092 2_nonsis		1	211	420	1	2	1	1	0 (3:5)_(4:4aCO)
214 OMT10	OMT	15	246178	246679	246679	247071 2_nonsis		1	447	892	1	2	1	1	0 (3:5)_(4:4aCO)
185 OMT10	OMT	13	447619	448761	448761	449175 2_nonsis		1	778	1555	1	2	1	1	0 (3:5)_(4:4aCO)
75 OMT10	OMT	6	73471	73840	74753	74843 2_nonsis		914	1143	1371	1	2	1	1	0 (3:5)_(4:4aCO)
27 OMT10	OMT	4	43482	46115	46179	46608 2_nonsis		65	1595	3125	1	2	1	1	0 (3:5)_(4:4aCO)
117 OMT10	OMT	9	91970	92242	93903	94143 2_nonsis		1662	1917	2172	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
156 OMT10	OMT	12	100126	100150	100682	100762 2_nonsis		533	584	635	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
59 OMT10	OMT	4	1445249	1445402	1447213	1447296 2_nonsis		1812	1929	2046	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
30 OMT10	OMT	4	196851	198376	199393	200025 2_nonsis		1018	2096	3173	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
68 OMT10	OMT	5	241522	241980	243892	244317 2_nonsis		1913	2354	2794	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
70 OMT10	OMT	5	413281	413862	414243	414432 2_nonsis		382	766	1150	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
81 OMT10	OMT	7	57501	57822	58485	59379 2_nonsis		664	1271	1877	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
			- · · · · ·												

139 OMT10	OMT	10	637795	637967	638018	(20242.2	52	300	547	1	11	1	1	0.444.2.45.2.441.00
						638343 2_nonsis	700	915		1	12	1	1	0 (4:4ai)_(5:3)_(4:4bCO) 0 (3:5)_(2:6)_(4:4)_(4:4cCO)
44 OMT10	OMT	4	783406	783598	784297	784537 2_nonsis			1130				-	0 (3:5)_(2:6)_(4:4)_(4:4aCO)
232 OMT10	OMT	16	214963	215112	215587	216380 2_nonsis	476	946	1416	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
203 OMT10	OMT	14	552429	552569	553315	553805 2_nonsis	747	1061	1375	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
3 OMT10	OMT	1	99374	99440	100840	101177 2_nonsis	1401	1602	1802	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
93 OMT10	OMT	7	760939	761877	763227	763406 2_nonsis	1351	1909	2466	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
198 OMT10	OMT	14	267621	268398	270547	270838 2_nonsis	2150	2683	3216	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)
80 OMT10	OMT	6	220253	221384	222196	222477 2_nonsis	813	1518	2223	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
9 OMT10	OMT	2	83944	84352	84976	85339 2_nonsis	625	1010	1394	1	12	1	1	0 (6:2)_(5:3)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
218 OMT10	OMT	15	448985	449105	449105	449205 2_nonsis	1	110	219	1	15	1	1	0 (6:2)_(4:4aCO)
176 OMT10	OMT	12	1043157	1043284	1043701	1043895 2_nonsis	418	578	737	1	15	1	1	0 (6:2)_(4:4aCO)
201 OMT10	OMT	14	425816	427278	427278	427295 2_nonsis	1	740	1478	1	15	1	1	0 (6:2)_(4:4aCO)
147 OMT10	OMT	11	341772	342080	342621	342813 2_nonsis	542	791	1040	1	15	1	1	0 (6:2)_(4:4aCO)
131 OMT10	OMT	10	236615	236674	236674	236901 2_nonsis	1	143	285	1	16	1	1	0 (2:6)_(4:4aCO)
96 OMT10	OMT	7	958623	958749	958749	958930 2_nonsis	1	154	306	1	16	1	1	0 (2:6)_(4:4aCO)
20 OMT10	OMT	3	39123	39265	39281	39525 2_nonsis	17	209	401	1	16	1	1	0 (2:6)_(4:4aCO)
240 OMT10	OMT	16	677836	678266	678266	678517 2_nonsis	1	341	680	1	16	1	1	0 (2:6)_(4:4aCO)
136 OMT10	OMT	10	486009	486193	486432	486501 2_nonsis	240	366	491	1	16	1	1	0 (2:6)_(4:4aCO)
222 OMT10	OMT	15	701028	701208	701466	701569 2_nonsis	259	400	540	1	16	1	1	0 (2:6)_(4:4aCO)
208 OMT10	OMT	15	134063	135587	135770	136025 2_nonsis	184	1073	1961	1	16	1	1	0 (2:6)_(4:4aCO)
94 OMT10	OMT	7	807533	823555	823615	823674 2_nonsis	61	8101	16140	1	16	1	1	0 (2:6)_(4:4aCO)
170 OMT10	OMT	12	681146	681539	681146	681539 2_nonsis	0	196	392	1	100	1	1	0 (4:4aCO)
92 OMT10	OMT	7	612267	612759	612267	612759 2_nonsis	0	246	491	1	100	1	1	0 (4:4aCO)
181 OMT10	OMT	13	164532	165032	164532	165032 2_nonsis	0	250	499	1	100	1	1	0 (4:4aCO)
243 OMT10	OMT	16	879007	879511	879007	879511 2_nonsis	0	252	503	1	100	1	1	0 (4:4aCO)
35 OMT10	OMT	4	511815	512370	511815	512370 2_nonsis	0	277	554	1	100	1	1	0 (4:4aCO)
14 OMT10	OMT	2	531940	533263	531940	533263 2_nonsis	0	661	1322	1	100	1	1	0 (4:4aCO)
172 OMT10	OMT	12	789623	791142	789623	791142 2_nonsis	0	759	1518	1	100	1	1	0 (4:4aCO)
134 OMT10	OMT	10	331024	332595	331024	332595 2_nonsis	0	785	1570	1	100	1	1	0 (4:4aCO)
138 OMT10	OMT	10	601293	609171	601293	609171 2_nonsis	0	3939	7877	1	100	1	1	0 (4:4aCO)
207 OMT10	OMT	15	22358	39380	22358	39380 2_nonsis	0	8511	17021	1	100	1	1	0 (4:4aCO)
173 OMT10	OMT	12	892436	930472	892436	930472 2_nonsis	0	19018	38035	1	100	1	1	0 (4:4aCO)
115 OMT10	OMT	9	47519	47656	48252	48606 2_nonsis	597	842	1086	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
58 OMT10	OMT	4	1384944	1385143	1387436	1387907 2_nonsis	2294	2628	2962	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(5:3a)_(4:4aCO)
160 OMT10	OMT	12	242568	242737	246534	246798 2_nonsis	3798	4014	4229	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(5:3a)_(4:4aCO)
137 OMT10	OMT	10	567525	568041	573950	574034 2 nonsis	5910	6209	6508	2	31	1	1	0 (3:5) (3:5a) (4:4aCO)
87 OMT10	OMT	7	360287	360441	360942	361541 2_nonsis	502	878	1253	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO) 0 (3:5)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
127 OMT10	OMT	10	159135	159148	161596	162223 2_nonsis	2449	2768	3087	2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(3:5a)_(4:4ai)_(4:4bCO)
90 OMT10	OMT	7	482421	483344	488836	489042 2_nonsis	5493	6057	6620	2	31	1	1	0 (3:5)_(3:5a)_(2:0)_(3:5a)_(4:4at)_(4:4aCO) 0 (2:6)_(3:5)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
										2		1		
76 OMT10 97 OMT10	OMT	6 7	93664 968127	93934 968214	97372 973354	97617 2_nonsis	3439 5141	3696	3952 6257	2	32 32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO) 0 (3:5)_(4:4ai)_(3:5a)_(4:4bCO)
123 OMT10	OMT	9	340507	340858	342462	974385 2_nonsis	1605	5699 2037	2468	2	32	1	1	
191 OMT10	OMT					342976 2_nonsis	3254		4070	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
	OMT	13 4	696177	696333	699586	700248 2_nonsis	2705	3662				1	1	0 (5:3)_(4:4)_(5:3a)_(4:4)_(5:3b)_(6:2)_(4:4aCO)
42 OMT10			719896	720645	723349	723451 2_nonsis		3130	3554	2 2	32	1	1	0 (4:4ai)_(3:5)_(4:4bCO)_(3:5)_(4:4ai)_(2:6)_(3:5a)_(3:5b)_(4:4b)
178 OMT10	OMT	13	42127	43336	46860	48814 2_nonsis	3525	5106	6686		32	-		0 (3:5)_(4:4)_(3:5a)_(2:6)_(3:5a)_(4:4)_(2:6)_(3:5b)_(4:4aCO)
116 OMT10	OMT	9	53832	54480	55071	55251 2_nonsis	592	1005	1418	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)
144 OMT10	OMT	11	119339	120268	121106	121247 2_nonsis	839	1373	1907	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)
61 OMT10	OMT	4	1495680	1496054	1496573	1497025 2_nonsis	520	932	1344	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(4:4aCO)
74 OMT10	OMT	5	557877	558441	559174	559301 2_nonsis	734	1079	1423	3	20	1	1	0 (5:3)_(3:5)_(6:2)_(4:4aCO)
89 OMT10	OMT	7	478509	478940	479689	480192 2_nonsis	750	1216	1682	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)
151 OMT10	OMT	11	562768	562948	564055	564676 2_nonsis	1108	1508	1907	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(4:4aCO)
234 OMT10	OMT	16	372742	373291	375235	376113 2_nonsis	1945	2658	3370	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
169 OMT10	OMT	12	610934	611078	611779	611787 2_nonsis	702	777	852	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(6:2)_(4:4aCO)
1 OMT10	OMT	1	70497	70524	71535	71616 2_nonsis	1012	1065	1118	3	20	1	1	0 (6:2)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
242 OMT10	OMT	16	819509	820356	821711	822057 2_nonsis	1356	1952	2547	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(6:2)_(4:4a)
108 OMT10	OMT	8	322533	323234	324770	325071 2_nonsis	1537	2037	2537	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO)
19 OMT10	OMT	2	759221	759357	761529	761787 2_nonsis	2173	2369	2565	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
18 OMT10	OMT	2	718805	719463	721566	721863 2_nonsis	2104	2581	3057	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(6:2)_(4:4aCO)
188 OMT10	OMT	13	552466	553020	555444	555852 2_nonsis	2425	2905	3385	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
78 OMT10	OMT	6	168241	168408	170209	170473 2_nonsis	1802	2017	2231	3	20	1	1	0 (3:5)_(4:4)_(2:6)_(5:3)_(5:3a)_(4:4aCO)

84 OMT10	OMT	7	206685	206716	209279	209637 2_nonsis		2564	2758	2951	3	20	1	1	0 (3:5)_(4:4)_(3:5a)_(6:2)_(5:3)_(4:4aCO)
104 OMT10	OMT	8	110685	111245	113512	114144 2_nonsis		2268	2863	3458	3	20	1	1	0 (6:2)_(5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)
4 OMT10	OMT	1	141984	142779	145634	146539 2_nonsis		2856	3705	4554	3	20	1	1	0 (6:2)_(5:3)_(4:4)_(4:4aCO)_(3:5)_(4:4a)
33 OMT10	OMT	4	311119	311194	312701	313108 2_nonsis		1508	1748	1988	3	20	1	1	0 (5:3)_(4:4aCO)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4a)
159 OMT10	OMT	12	167737	168861	170342	170609 2_nonsis		1482	2177	2871	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(2:6)_(6:2)_(5:3)_(4:4aCO)
41 OMT10	OMT	4	697759	698151	700023	700151 2_nonsis		1873	2132	2391	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
238 OMT10	OMT	16	619088	619148	620773	620821 2_nonsis		1626	1679	1732	3	20	1	1	0 (2:6)_(3:5)_(4:4)_(3:5)_(4:4)_(2:6)_(3:5)_(2:6)_(5:3)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
213 OMT10	OMT	15	240538	241147	243831	244393 2_nonsis		2685	3270	3854	3	21	1	1	0 (6:2)_(5:3)_(4:4)_(5:3a)_(4:4ai)_(3:5)_(4:4bCO)
83 OMT10	OMT	7	197989	198003	201499	201788 2_nonsis		3497	3648	3798	3	21	1	1	0 (3:5)_(4:4)_(4:4ai)_(5:3)_(6:2)_(5:3)_(4:4bCO)
224 OMT10	OMT	15	753645	753808	755321	755705 2_nonsis		1514	1787	2059	3	21	1	1	0 (4:4ai)_(3:5)_(4:4bCO)_(5:3)_(4:4b)_(5:3)_(6:2)_(5:3a)_(4:4b)
133 OMT10	OMT	10	313030	313808	318240	318505 2_nonsis		4433	4954	5474	3	21	1	1	0 (5:3)_(4:4)_(5:3)_(4:4ai)_(5:3)_(4:4ai)_(4:4bCO)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4b)
60 OMT10	OMT	4	1476401	1476502	1477174	1477237	3	673	754	835	0	1	2	0	2 (5:3)_(6:2i)_(7:1)_(4:4ai)_(4:4)
71 OMT10	OMT	5	419827	420040	423233	423672 2_sis		3194	3519	3844	0	1	2	0	2 (5:3)_(5:3a)_(7:1)_(4:4)_(5:3b)_(4:4) 2 (5:3)_(5:3a)_(7:1)_(4:4)_(5:3b)_(4:4)
91 OMT10	OMT OMT	7	609044 46055	609307	610674	611145 2_sis		1368	1734 4768	2100	0	1	2	0	2 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(7:1)_(6:2ai)_(7:1)_(5:3a)_(4:4)
102 OMT10		8		46220	50752	51058	3	4533		5002	-	1	_	0	2 (5:3)_(6:2i)_(5:3a)_(5:3)_(6:2a)_(5:3a)_(6:2a)_(5:3a)_(4:4ai)_(4:4)
143 OMT10	OMT	11	90751	91192	92069	92108 2_sis		878	1117	1356	0	1	2	-	2 (5:3)_(4:4)_(5:3a)_(4:4)
158 OMT10	OMT	12	154678	155252	157014	157169 2_sis		1763	2127	2490	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(4:4)
175 OMT10	OMT	12	1009719	1011169	1014670	1014976	3	3502	4379	5256	0	1	2 2	0	2 (5:3)_(6:2)_(7:1)_(6:2a)_(5:3a)_(6:2a)_(5:3a)_(4:4)
210 OMT10	OMT	15 2	169851	170112 650411	171288	171805 2_sis 652362	3	1177 1206	1565 1820	1953	0	2	2	1	2 (5:3)_(7:1)_(5:3a)_(6:2i)_(5:3b)_(4:4)
16 OMT10 24 OMT10	OMT		649927 224038	224261	651616 228130	230267	4	3870	5049	2434 6228	0	2	2	1	1 (6:2)_(5:3)_(2:6)_(4:4aCO)
24 OMT10 28 OMT10	OMT	3	122163	122341	130967	131084	3	3870 8627	8774	8920	0	2	2	1	1 (6:2)_(6:2a)_(7:1)_(5:3)_(4:4aCO)_(2:6)_(4:4a) 1 (6:2)_(5:3)_(4:4aCO)
		4		952270	955755		4	3486			0	2	2	1	
48 OMT10 49 OMT10	OMT	4	952018 1105780	1106241	1108696	955831 1109358	3	2456	3649 3017	3812 3577	0	2	2	1	1 (3:5)_(4:4ai)_(2:6)_(3:5a)_(2:6)_(0:8)_(1:7)_(2:6a)_(3:5b)_(4:4bCO)_(3:5b)_(4:4b) 1 (5:3)_(4:4)_(5:3a)_(4:4)_(5:3a)_(6:2)_(4:4aCO)
112 OMT10	OMT	8	449402	449894	462176	462297	3	12283	12589	12894	0	2	2	1	1 (3:3)_(4:4)_(3:3a)_(4:4)_(3:3a)_(6:2)_(4:4aCO) 1 (5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(6:2ai)_(5:3)_(7:1)_(6:2)_(7:1)_(6:2)_(4:4aCO)
112 OMT10 119 OMT10	OMT	9	137266	138115	143458	144100	4	5344	6089	6833	0	2	2	1	1 (3.3)_(0.2)_(3.5)_(4:4)_(3.5)_(0.2)_(3.5)_(0.2a)_(3.5)_(7:1)_(0.2)_(7:1)_(0.2)_(7:1)_(0.2)_(4:4aCO) 1 (4:4ai)_(5:3)_(4:4ai)_(4:4)_(3:5)_(2:6)_(3:5)_(2:6ai)_(3:5a)_(2:6ai)_(2:6b)_(3:5)_(2:6)_(3:5b)_(2:6)_(3:5b)_(3:5c)_(4:4bCO)
155 OMT10	OMT	12	85096	85270	88069	88362	3	2800	3033	3265	0	2	2	1	1 (5:3)_(5:3a)_(4:4ai)_(4:4bCO)
165 OMT10	OMT	12	340602	340616	344859	345042	3	4244	4342	4439	0	2	2	1	1 (5:3)_(5:3a)_(4:4aCO) 1 (6:2)_(5:3)_(5:3a)_(4:4aCO)
167 OMT10	OMT	12	446902	447260	448793	449654	3	1534	2143	2751	0	2	2	1	1 (7:1)_(5:3)_(4:4aCO) 1 (7:1)_(5:3)_(4:4aCO)
187 OMT10	OMT	13	533975	534586	540798	541071	3	6213	6654	7095	0	2.	2	1	1 (5:3)_(5:3a)_(4:4aCO)_(0:8)_(1:7)_(3:5)_(4:4a)
231 OMT10	OMT	16	107304	107496	108552	109014	3	1057	1383	1709	0	2	2	1	1 (3:5)_(4:4)_(4:4aCO)
6 OMT10	OMT	1	190031	190402	194169	194241	4	3768	3989	4209	0	3	2	1	1 (2:6)_(4:4)_(4:4aCO)_(3:5)_(5:3)_(3:5a)_(4:4bCO)
12 OMT10	OMT	2	311366	311639	313334	313427	3	1696	1878	2060	0	3	2	1	1 (3:5)_(5:3)_(4:4aCO)_(3:5a)_(4:4bCO)
64 OMT10	OMT	5	59555	60057	63585	63707 2_nonsis		3529	3840	4151	0	3	2	0	2 (3:5)_(4:4aCO)_(3:5a)_(4:4CO)_(3:5a)_(4:4)_(3:5a)_(4:4)
125 OMT10	OMT	10	55650	56177	60064	60979	4	3888	4608	5328	0	3	2	2	0 (4:4ai) (2:6i) (3:5) (4:4bCO) (3:5) (3:5a) (4:4cCO)
129 OMT10	OMT	10	183834	184128	187746	188331 2_nonsis	•	3619	4058	4496	0	3	2	0	2 (3:5)_(3:5a)_(2:6)_(5:3)_(4:4aCO)_(4:4bi)_(3:5a)_(4:4bi)_(3:5a)_(4:4CO)
150 OMT10	OMT	11	468315	468458	469831	470250 2_nonsis		1374	1654	1934	0	3	2	0	2 (5:3)_(4:4aCO)_(5:3a)_(4:4a)_(3:5)_(4:4CO)
195 OMT10	OMT	13	860181	861184	866753	867864	4	5570	6626	7682	0	3	2	1	1 (5:3)_(4:4aCO)_(5:3)_(3:5)_(5:3a)_(5:3b)_(4:4bi)_(3:5a)_(4:4bi)_(4:4cCO)_(3:5b)_(2:6)_(4:4di)_(3:5c)_(4:4eCO)
196 OMT10	OMT	14	78386	79032	80433	81575	3	1402	2295	3188	0	3	2	1	1 (6:2)_(4:4)_(5:3)_(2:6)_(4:4aCO)_(4:4bCO)
473 OMT10	OMT	16	19545	19582	20186	20220	1	605	640	674	0	4	1 NA	NA	2:6_3:5_2:6_3:5_2:6_3:5_4:4_3:5
138 OMT2	OMT	12	743917	744124	744124	744207	1	1	145	289	1	1	1	0	1 05:03
65 OMT2	OMT	5	15698	15888	15940	15966	1	53	160	267	1	1	1	0	1 05:03
144 OMT2	OMT	12	1056569	1056760	1056760	1056900	1	1	166	330	1	1	1	0	1 05:03
46 OMT2	OMT	4	936189	936221	936290	936485	1	70	183	295	1	1	1	0	1 05:03
189 OMT2	OMT	16	169696	169911	169911	170076	1	1	190	379	1	1	1	0	1 05:03
190 OMT2	OMT	16	213190	213534	213534	213597	1	1	204	406	1	1	1	0	1 05:03
105 OMT2	OMT	8	337281	337596	337596	337894	1	1	307	612	1	1	1	0	1 05:03
163 OMT2	OMT	14	122717	123158	123158	123338	1	1	311	620	1	1	1	0	1 05:03
71 OMT2	OMT	5	325661	325958	326031	326225	1	74	319	563	1	1	1	0	1 05:03
60 OMT2	OMT	4	1416976	1417050	1417050	1417646	1	1	335	669	1	1	1	0	1 05:03
26 OMT2	OMT	4	199393	200025	200025	200151	1	1	379	757	1	1	1	0	1 05:03
88 OMT2	OMT	7	397325	397929	397971	398049	1	43	383	723	1	1	1	0	1 05:03
67 OMT2	OMT	5	132767	133007	133078	133491	1	72	398	723	1	1	1	0	1 05:03
120 OMT2	OMT	10	523373	523995	523995	524341	1	1	484	967	1	1	1	0	1 05:03
125 OMT2	OMT	11	216046	216382	216709	216788	1	328	535	741	1	1	1	0	1 05:03
43 OMT2	OMT	4	841276	842028	842070	842326	1	43	546	1049	1	1	1	0	1 05:03
99 OMT2	OMT	8	67629	68025	68352	68508	1	328	603	878	1	1	1	0	1 05:03
40 OMT2	OMT	4	792642	793089	793254	793726	1	166	625	1083	1	1	1	0	1 05:03
28 OMT2	OMT	4	258755	258793	259198	259676	1	406	663	920	1	1	1	0	1 05:03
41 OMT2	OMT	4	806528	806564	807222	807409	1	659	770	880	1	1	1	0	1 05:03

134 OMT2	OMT	12	325937	326213	326981	327112	1	769	972	1174	1	1	1	0	1 05:03
63 OMT2	OMT	4	1488904	1489717	1490249	1490604	1	533	1116	1699	1	1	1	0	1 05:03
159 OMT2	OMT	13	897645	897755	899239	899812	1	1485	1826	2166	1	1	1	0	1 05:03
6 OMT2	OMT	2	50893	59500	59525	60420	1	26	4776	9526	1	1	1	0	1 05:03
95 OMT2	OMT	7	823555	823607	823734	823786	1	128	179	230	1	2	1	0	1 03:05
16 OMT2	OMT	2	527865	528054	528108	528212	1	55	201	346	1	2	1	0	1 03:05
152 OMT2	OMT	13	675294	675387	675387	675697	1	1	202	402	1	2	1	0	1 03:05
45 OMT2	OMT	4	911343	911454	911454	911813	1	1	235	469	1	2	1	0	1 03:05
79 OMT2	OMT	6	205970	206097	206097	206474	1	1	252	503	1	2	1	0	1 03:05
89 OMT2	OMT	7	412279	412400	412413	412771	1	14	253	491	1	2	1	0	1 03:05
173 OMT2	OMT	14	625861	626122	626122	626480	1	1	310	618	1	2	1	0	1 03:05
75 OMT2	OMT	5	536075	536455	536455	536698	1	1	312	622	1	2	1	0	1 03:05
38 OMT2	OMT	4	701739	702278	702278	702480	1	1	371	740	1	2	1	0	1 03:05
80 OMT2	OMT	6	207790	207823	208165	208303	1	343	428	512	1	2	1	0	1 03:05
37 OMT2	OMT	4	693728	693982	694241	694457	1	260	494	728	1	2	1	0	1 03:05
9 OMT2	OMT	2	191242	191470	191613	192398	1	144	650	1155	1	2	1	0	1 03:05
22 OMT2	OMT	3	146860	146949	147587	147882	1	639	830	1021	1	2	1	0	1 03:05
139 OMT2	OMT	12	776373	777814	777868	778158	1	55	920	1784	1	2	1	0	1 03:05
84 OMT2	OMT	7	271853	272144	272568	273422	1	425	997	1568	1	2	1	0	1 03:05
36 OMT2	OMT	4	587057	588381	588711	589440	1	331	1357	2382	1	2	1	0	1 03:05
102 OMT2	OMT	8	143727	143824	145105	145255	1	1282	1405	1527	1	2	1	0	1 03:05
110 OMT2	OMT	9	96388	96801	96885	96924	1	85	310	535	1	3	1	0	1 5:3_6:2_5:3
167 OMT2	OMT	14	318393	318591	318845	319024	1	255	443	630	1	3	1	0	1 5:3_6:2_5:3
109 OMT2	OMT	8	516318	516468	517036	517336	1	569	793	1017	1	3	1	0	1 5:3_6:2_5:3
7 OMT2	OMT	2	71569	71621	72420	73226	1	800	1228	1656	1	3	1	0	1 5:3_6:2_5:3
142 OMT2	OMT	12	954173	954521	955099	955168	1	579	787	994	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
197 OMT2	OMT	16	525636	525655	528017	528301	1	2363	2514	2664	1	3	1	0	1 5:3_4:4_5:3_6:2_5:3
150 OMT2	OMT	13	464785	464976	465931	466308	1	956	1239	1522	1	4	1	0	1 3:5_4:4_3:5
52 OMT2	OMT	4	1258442	1258657	1260078	1260779	1	1422	1879	2336	1	4	1	0	1 3:5_2:6_3:5
177 OMT2	OMT	15	230614	230706	232710	232797	1	2005	2094	2182	1	4	1	0	1 3:5_2:6_3:5_4:4_2:6_3:5
86 OMT2	OMT	7	309604	310446	310906	311141	1	461	999	1536	1	7	1	0	1 6:2_5:3
185 OMT2	OMT	15	1043807	1044044	1046807	1047359	1	2764	3158	3551	1	7	1	0	1 6:2_5:3
171 OMT2	OMT	14	539950	542443	546371	547464	1	3929	5721	7513	1	7	1	0	1 6:2_5:3
166 OMT2	OMT	14	267621	268398	270187	270523	1	1790	2346	2901	1	7	1	0	1 5:3_4:4_6:2
59 OMT2	OMT	4	1409468	1409615	1412047	1412326	1	2433	2645	2857	1	7	1	0	1 5:3_4:4_5:3_6:2
56 OMT2	OMT	4	1318539	1318597	1322553	1323143	1	3957	4280	4603	1	7	1	0	1 6:2_5:3_4:4_5:3
50 OMT2	OMT	4	1153966	1161539	1166609	1166645	1	5071	8875	12678	1	7	1	0	1 5:3_6:2_5:3_6:2
98 OMT2	OMT	8	16362	16671	17151	17157	1	481	638	794	1	8	1	0	1 3:5_2:6
181 OMT2	OMT	15	601325	601569	602638	603166	1	1070	1455	1840	1	8	1	0	1 3:5_2:6
148 OMT2	OMT	13	386530	386785	388416	388450	1	1632	1776	1919	1	8	1	0	1 3:5_2:6
77 OMT2	OMT	6	95746	95849	97636	97737	1	1788	1889	1990	1	8	1	0	1 3:5_2:6
117 OMT2	OMT	10	244325	244400	246451	246591	1	2052	2159	2265	1	8	1	0	1 3:5_2:6
195 OMT2	OMT	16	492354	493222	495265	495414	1	2044	2552	3059	1	8	1	0	1 2:6_3:5_2:6_3:5
1 OMT2	OMT	1	29354	29374	29996	30051	1	623	660	696	1	8	1	0	1 3:5_2:6_4:4_3:5_2:6
198 OMT2	OMT	16	536429	536720	536720	536802	1	1	187	372	1	10	1	0	1 06:02
108 OMT2	OMT	8	498868	499032	499040	499430	1	9	285	561	1	10.1	1	0	1 02:06
11 OMT2	OMT	2	356462	356648	356805	357199	1	158	447	736	1	10.1	1	0	1 02:06
199 OMT2	OMT	16	629722	630417	631326	631631	1	910	1409	1908	1	10.1	1	0	1 02:06
12 OMT2	OMT	2	359006	359116	362183	362354	1	3068	3208	3347	1	10.1	1	0	1 02:06
42 OMT2	OMT	4	812580	813568	816853	817682	1	3286	4194	5101	1	10.1	1	0	1 02:06
158 OMT2	OMT	13	873141	873246	875463	875718	1	2218	2397	2576	2	11	1	0	1 5:3_5:3a
17 OMT2	OMT	2	539483	539810	539825	540265	1	16	399	781	2	12	1	0	1 3:5_3:5a
193 OMT2	OMT	16	381121	381280	381960	382120	1	681	840	998	2	12	1	0	1 3:5_3:5a
18 OMT2	OMT	2	632170	632896	633960	635127	1	1065	2011	2956	2	12	1	0	1 3:5_3:5a
33 OMT2	OMT	4	403347	403449	406385	406667	1	2937	3128	3319	2	12	1	0	1 3:5_3:5a
160 OMT2	OMT	14	29547	30923	32426	34396	1	1504	3176	4848	2	12	1	0	1 3:5_3:5a
191 OMT2	OMT	16	308420	308669	311060	311427	1	2392	2699	3006	2	13	1	0	1 5:3_4:4_5:3_5:3a_4:4_5:3a
47 OMT2	OMT	4	953693	953912	955643	955755	1	1732	1897	2061	2	15	1	0	1 5:3_4:4_5:3a
113 OMT2	OMT	9	228903	229515	231138	232195	1	1624	2458	3291	2	15	1	0	1 5:3_4:4_5:3a
154 OMT2	OMT	13	742214	742337	745005	745236	1	2669	2845	3021	2	15	1	0	1 5:3_4:4_5:3a

184 OMT2	OMT	15	1037757	1038438	1039786	1039824	1	1349	1708	2066	2	16	1	0	1 3:5_4:4_3:5a
83 OMT2	OMT	7	197230	197465	201093	201499	1	3629	3949	4268	2	20	1	0	1 3:5_2:6_3:5a
103 OMT2	OMT	8	229106	229427	232747	233140	1	3321	3677	4033	2	23	1	0	1 2:6_3:5_2:6_4:4_3:5a
203 OMT2	OMT	16	919303	919423	923175	923621 2_nonsis		3753	4035	4317	3	30	1	0	1 2:6_3:5_4:4_3:5a_4:4_3:5a_2:6_3:5a_6:2_5:3_6:2_5:3_4:4_5:3
14 OMT2	OMT	2	434210	434430	436905	437154 2_nonsis		2476	2710	2943	3	31	1	0	1 4:4ai_5:3_4:4_5:3a
3 OMT2	OMT	1	112136	113132	115665	116327 2_nonsis		2534	3362	4190	3	31	1	0	1 3:5_4:4ai_3:5a_4:4ai
124 OMT2	OMT	11	211030	211408	211676	211843 2_nonsis		269	541	812	1	1	1	1	0 (5:3)_(4:4aCO)
53 OMT2	OMT	4	1268439	1268647	1268647	1269918 2_nonsis		1	740	1478	1	1	1	1	0 (5:3)_(4:4aCO)
27 OMT2	OMT	4	217557	218010	219340	221090 2_nonsis		1331	2432	3532	1	1 2	1	1	0 (5:3)_(4:4aC0)
97 OMT2 162 OMT2	OMT OMT	7 14	974457 116131	974639 116459	974639 116459	974684 2_nonsis		1	114 273	226 544	1	2	1	1	0 (3:5)_(4:4aCO)
143 OMT2	OMT	12	1027717	1028133	1028133	116676 2_nonsis 1028477 2 nonsis		1	380	759	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
172 OMT2	OMT	14	605054	606035	606111	606283 2_nonsis		77	653	1228	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
78 OMT2	OMT	6	129391	130480	130480	131200 2 nonsis		1	905	1808	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
123 OMT2	OMT	11	53005	53905	53905	54957 2_nonsis		1	976	1951	1	2	1	1	0 (3:5)_(4:4aCO)
32 OMT2	OMT	4	375826	376661	377176	377306 2_nonsis		516	998	1479	1	2	1	1	0 (3:5)_(4:4aCO)
196 OMT2	OMT	16	520404	520684	521328	521940 2_nonsis		645	1090	1535	1	2	1	1	0 (3:5)_(4:4aCO)
96 OMT2	OMT	7	825444	825852	826641	826948 2_nonsis		790	1147	1503	1	2	1	1	0 (3:5)_(4:4aCO)
51 OMT2	OMT	4	1175004	1176543	1176920	1176974 2_nonsis		378	1174	1969	1	2	1	1	0 (3:5)_(4:4aCO)
58 OMT2	OMT	4	1380649	1381111	1381111	1383527 2_nonsis		1	1439	2877	1	2	1	1	0 (3:5)_(4:4aCO)
176 OMT2	OMT	15	196577	196695	196803	197183 2_nonsis		109	357	605	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
92 OMT2	OMT	7	592334	592660	594021	594391 2_nonsis		1362	1709	2056	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
164 OMT2	OMT	14	153222	153782	154853	155065 2_nonsis		1072	1457	1842	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
54 OMT2	OMT	4	1279680	1279875	1280622	1281921 2_nonsis		748	1494	2240	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
157 OMT2	OMT	13	860181	861184	864551	864888 2_nonsis		3368	4037	4706	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
61 OMT2	OMT	4	1452483	1452723	1455942	1458372 2_nonsis		3220	4554	5888	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
130 OMT2	OMT	12	29781	30008	30375	30558 2_nonsis		368	572	776	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
19 OMT2	OMT	2	641914	642165	642483	642776 2_nonsis		319	590	861	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
21 OMT2	OMT	3	136789	137021	137490	138018 2_nonsis		470	849	1228	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
200 OMT2	OMT	16	644568	644801	645942	646173 2_nonsis		1142	1373	1604	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
161 OMT2	OMT	14	86730	87215	89959	89998 2_nonsis		2745	3006	3267	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
73 OMT2	OMT	5	456087	456116	456801	456960 2_nonsis		686	779	872	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
192 OMT2	OMT	16	371914	372742	372742	373291 2_nonsis		1	689	1376	1	11	1	1	0 (4:4ai)_(4:4bCO)
155 OMT2	OMT	13	759081	759285	759679	759844 2_nonsis		395	579	762	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
20 OMT2 68 OMT2	OMT	3	71310 173645	71391 173948	72034 174794	72190 2_nonsis		644	762	879	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
182 OMT2	OMT OMT	5 15	738026	738211	739494	175080 2_nonsis 739749 2 nonsis		847 1284	1141 1503	1434 1722	1	12 12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO) 0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
90 OMT2	OMT	7	463843	464170	465028	466029 2_nonsis		859	1522	2185	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)
90 OM12 81 OMT2	OMT	6	226919	227043	228617	229028 2_nonsis		1575	1842	2108	1	12	1	1	0 (5:3)_(2:0)_(5:3)_(4:4)_(4:4aCO) 0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
151 OMT2	OMT	13	494582	494666	495559	496159 2_nonsis		894	1235	1576	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(4:4aCO)
126 OMT2	OMT	11	309188	309294	309310	309621 2_nonsis		17	225	432	1	15	1	1	0 (6:2)_(4:4aCO)
202 OMT2	OMT	16	883117	883214	883313	883526 2_nonsis		100	254	408	1	15	1	1	0 (6:2)_(4:4aCO)
175 OMT2	OMT	15	40497	40570	40593	41027 2_nonsis		24	277	529	1	15	1	1	0 (6:2)_(4:4aCO)
115 OMT2	OMT	10	50434	50613	50613	51007 2_nonsis		1	287	572	1	15	1	1	0 (6:2)_(4:4aCO)
149 OMT2	OMT	13	409894	410079	410172	410428 2_nonsis		94	314	533	1	15	1	1	0 (6:2)_(4:4aCO)
129 OMT2	OMT	11	578230	578669	578824	578904 2_nonsis		156	415	673	1	15	1	1	0 (6:2)_(4:4aCO)
2 OMT2	OMT	1	56786	57455	57455	57739 2_nonsis		1	477	952	1	15	1	1	0 (6:2)_(4:4aCO)
165 OMT2	OMT	14	209155	210033	210033	210155 2_nonsis		1	500	999	1	15	1	1	0 (6:2)_(4:4aCO)
69 OMT2	OMT	5	225841	226347	226500	226861 2_nonsis		154	587	1019	1	15	1	1	0 (6:2)_(4:4aCO)
57 OMT2	OMT	4	1349944	1350135	1350135	1351399 2_nonsis		1	728	1454	1	15	1	1	0 (6:2)_(4:4aCO)
24 OMT2	OMT	4	61275	62061	62366	62726 2_nonsis		306	878	1450	1	15	1	1	0 (6:2)_(4:4aCO)
169 OMT2	OMT	14	478186	479345	479609	479875 2_nonsis		265	977	1688	1	15	1	1	0 (6:2)_(4:4aCO)
66 OMT2	OMT	5	103937	104269	105345	105369 2_nonsis		1077	1254	1431	1	15	1	1	0 (6:2)_(4:4aCO)
104 OMT2	OMT	8	283683	283957	284440	285871 2_nonsis		484	1336	2187	1	15	1	1	0 (6:2)_(4:4aCO)
15 OMT2	OMT	2	487781	489580	489580	490532 2_nonsis		1	1376	2750	1	15	1	1	0 (6:2)_(4:4aCO)
132 OMT2	OMT	12	114144	114242	114242	114659 2_nonsis		1	258	514	1	16	1	1	0 (2:6)_(4:4aCO)
147 OMT2	OMT	13	195330	195572	195572	195860 2_nonsis		1	265	529	1	16	1	1	0 (2:6)_(4:4aCO)
39 OMT2	OMT	4	765017	765331	765398	765553 2_nonsis		68	302	535	1	16	1	1	0 (2:6)_(4:4aCO)
153 OMT2	OMT	13	720681	720893	721068	721309 2_nonsis		176	402	627	1	16	1	1	0 (2:6)_(4:4aCO)
180 OMT2	OMT	15	585323	585644	586076	586304 2_nonsis		433	707	980	1	16	1	1	0 (2:6)_(4:4aCO)

Section Control Cont																
14 16 16 17 18 18 18 18 18 18 18				539680			540965 2_nonsis		287	786		1	16	1		0 (2:6)_(4:4aCO)
14 10 11 12 13 13 13 13 13 13	87 OMT2	OMT	7	346985	347223	347682	348496 2_nonsis		460	985	1510	1	16	1	1	0 (2:6)_(4:4aCO)
14 15 15 15 15 15 15 15							394408 2_nonsis					1		1	1	0 (4:4aCO)
1		OMT	10	85363	85607	85363	85607 2_nonsis		0	122	243	1	100	1	1	0 (4:4aCO)
10 10 11 12 13 13 13 13 13 13	74 OMT2	OMT	5	491556	491806	491556	491806 2_nonsis		0	125	249	1	100	1	1	0 (4:4aCO)
1.0 1.0	121 OMT2	OMT	10	579770	580075	579770	580075 2_nonsis		0	152	304	1	100	1	1	0 (4:4aCO)
10 10 11 12 13 13 14 14 15 15 14 14 15 15	85 OMT2	OMT	7	288130	288473	288130	288473 2_nonsis		0	171	342	1	100	1	1	0 (4:4aCO)
14 15 16 16 17 18 18 18 18 18 18 18	49 OMT2	OMT	4	1088958	1089304	1088958	1089304 2_nonsis		0	173	345	1	100	1	1	0 (4:4aCO)
100 100	112 OMT2	OMT	9	176578	177082	176578	177082 2_nonsis		0	252	503	1	100	1	1	0 (4:4aCO)
1.00 1.00	94 OMT2	OMT	7	785318	785828	785318	785828 2_nonsis		0	255	509	1	100	1	1	0 (4:4aCO)
14 14 15 15 15 15 15 15	106 OMT2	OMT	8	365442	365964	365442	365964 2_nonsis		0	261	521	1	100	1	1	0 (4:4aCO)
14 10 11 12 13 13 13 13 13 13	128 OMT2	OMT	11	463071	463630	463071	463630 2_nonsis		0	279	558	1	100	1	1	0 (4:4aCO)
18 18 18 18 18 18 18 18	168 OMT2	OMT	14	382124	382693	382124	382693 2_nonsis		0	284	568	1	100	1	1	0 (4:4aCO)
190 100	174 OMT2	OMT	14	705870	706528	705870	706528 2_nonsis		0	329	657	1	100	1	1	0 (4:4aCO)
140 OMT 0.04	8 OMT2	OMT	2	124959	125762	124959	125762 2_nonsis		0	401	802	1	100	1	1	0 (4:4aCO)
14	179 OMT2	OMT	15	477802	478649	477802	478649 2_nonsis		0	423	846	1	100	1	1	0 (4:4aCO)
9 ONT 2 ONT	70 OMT2	OMT	5	310175	311096	310175	311096 2_nonsis		0	460	920	1	100	1	1	0 (4:4aCO)
9 ONT 2 ONT	146 OMT2	OMT	13	70356	71382	70356	71382 2 nonsis		0	513	1025	1	100	1	1	0 (4:4aCO)
19		OMT							0		1227	1	100	1	1	
St. OMT OMT OMT 0 14 1 10 0 1 1 1 0 0 0									0			1		1	1	
Formation Form																
19 OMT 0MT 0 190888 192723 19088 192733 2,00081 0 9.21 1342 1 100 1 1 0 0.44CO)																
140 OMT 10															1	
140 MIT OMT 12 792275 793882 793882 202375 793882 202375 793882 202375 150 MIT 16 10 MIT 16 16 16 16 16 16 16 1									-			-		-	-	
194 OMT														-	-	
HS OMT OMT							_									
Math																
Math																
Math																
Conting Cont																
10 OMT																
170 OMT OMT OMT																
4 OMT2							_									
186 ONT 15 105880 105886 105886 105886 266910 268222 2_nonsis 1552 1593 1633 2 32 1 1 0 (3.5)_(.44_)_(.3.5a)_(.44_)_(.3.5a)_(.44_a)_(.3.5																
178 OMT																
137 OMT2																
131 OMT2 OMT																
31 OMT2 OMT 4 334709 334761 334954 335332 2_nonsis 194 408 622 3 20 1 1 0 0 (62)_(44)_(26)_(44aCO) 29 OMT2 OMT 4 271809 272060 272385 273003 2_nonsis 326 760 1193 3 20 1 1 0 0 (53)_(44)_(26)_(44aCO) 35 OMT2 OMT 4 1288090 1288290 1288294 1289394 2_nonsis 1186 1293 1399 3 20 1 1 0 0 (53)_(44)_(26)_(44aCO) 36 OMT2 OMT 9 338225 338465 340356 340556 340567 2_nonsis 1882 2087 2281 3 20 1 1 0 0 (53)_(44)_(26)_(44aCO) 36 OMT2 OMT 12 533245 533365 536152 536248 2_nonsis 2788 2894 2999 3 20 1 1 0 0 (53)_(44)_(26)_(44aCO) 37 OMT2 OMT 16 46273 46282 47208 47273 2_nonsis 1892 2087 2281 3 20 1 1 0 0 (53)_(44)_(26)_(44aCO) 38 OMT2 OMT 11 339536 340007 341413 341641 2_nonsis 1833 1870 1907 3 20 1 1 0 0 (35)_(26)_(35)_(44aCO) 38 OMT2 OMT 4 4 408894 410728 412374 413313 2_nonsis 1833 1870 1907 3 20 1 1 0 0 (52)_(44)_(62)_(53)_(44)_(62)_(53)_(44aCO) 39 OMT2 OMT 4 4 088894 410728 412374 413313 2_nonsis 1837 3133 4418 3 20 1 1 1 0 (62)_(44)_(62)_(53)_(44)_(6														-		
29 OMT2 OMT 4 271809 272060 272385 27303 2_nonsis 326 760 1193 3 20 1 1 1 0 (5:3_(44)_(2:6_(4:4aCO)) 55 OMT2 OMT 4 1288090 1288209 1289394 1289490 2_nonsis 1186 1293 1399 3 20 1 1 0 (5:3_(4:4)_(2:6_(4:4aCO)) 114 OMT2 OMT 9 338225 338465 340365 340507 2_nonsis 1892 2087 2281 3 20 1 1 0 (5:3_(6:2)_(5:3)_(4:4aCO)) 127 OMT 12 533345 533345 533636 536152 536245 2_nonsis 2788 2894 2999 3 20 1 1 0 (5:3_(6:2)_(5:3)_(4:4aCO)) 127 OMT 16 46273 46282 47208 47273 2_nonsis 927 963 999 3 20 1 1 0 (3:5_(2:6_(6:3)_(5:3)_(4:4aCO)) 127 OMT2 OMT 11 339956 340007 341413 341641 2_nonsis 1407 1756 2104 3 20 1 1 0 (3:5_(2:6_(6:3)_(5:3)_(4:4aCO)) 13 OMT2 OMT 2 392522 392544 394376 39430 2_nonsis 1833 1870 1907 3 20 1 1 0 (3:5_(2:6_(6:3)_(6:4aCO)_(5:3)_(4:4aCO)) 147 OMT2 OMT 4 408894 410728 412574 413313 2_nonsis 1847 3133 4418 3 20 1 1 0 (6:2_(4:4)_(6:2_(6:3)_(6:4aCO)_(5:3)_(4:4aCO)) 147 OMT2 OMT 16 804145 810641 812990 813147 2_nonsis 2350 5676 9001 3 20 1 1 0 (6:2_(4:4)_(6:2_(6:3)_(6:4)_(6:2_(6:3)_(4:4aCO)_(3:5_(4:4aCO)_(3:5_(4:4)_(6:4)_(6:2_(6:3)_(4:4)_(6:4)_(6:4)_(6:2_(6:3)_(4:4)_(6:4)_(6:2_(6:3)_(6:4)_(6:4)_(6:2_(6:3)_(6:4)_(6:4)_(6:2_(6:3)_(6:4)_(6:4)_(6:2_(6:3)_(6:4)_(-		
186 1293 1399 3 20 1 1 0 (5:3)_(4:4)_(3:5)_(4:4aCO) 187 MT 2 33825 33846 340356 340057 2_nonsis 1892 2087 2281 3 20 1 1 0 (5:3)_(4:6)_(3:5)_(4:4aCO) 187 MT 2 533245 533365 536152 536245 2_nonsis 2788 2894 2999 3 20 1 1 0 (3:5)_(2:6)_(5:3)_(4:4aCO) 187 MT 2 533245 533365 536152 536245 2_nonsis 2788 2894 2999 3 20 1 1 0 (3:5)_(2:6)_(5:3)_(4:4aCO) 187 MT 2 392522 392544 394376 394430 2_nonsis 1407 1756 2104 3 20 1 1 0 (3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO) 187 MT 2 392522 392544 394376 394430 2_nonsis 1837 1907 3 20 1 1 0 (3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO) 189 MT 2 392522 392544 394376 394430 2_nonsis 1847 31333 4418 3 20 1 1 0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4aCO) 201 MT 2 392522 392544 394376 394430 2_nonsis 1847 31333 4418 3 20 1 1 0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4aCO) 201 MT 2 MT 3 44145 810641 81299 813147 2_nonsis 2350 5676 9011 3 20 1 1 0 (3:5)_(4:4)_(4:4aCO)_(3:5)_(4:4aCO) 187 MT 2 MT 3 441469 443302 443414 2_nonsis 1834 1958 2081 3 20 1 1 0 (3:5)_(4:4)_(4:4)_(6:2)_(5:3)_(4:4aCO) 188 MT 2 MT 3 441469 443302 44444 2_nonsis 34699 2_nonsis 2318 2376 2433 3 20 1 1 0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4aCO) 183 MT 2 MT 3 441469 443302 44444 2_nonsis 34699 2_nonsis 3782 3999 4075 3 20 1 1 0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(6:4)_(4:4aCO)_(6:3)_(6:3)_(4:4aCO)_(6:3)_(6:3)_(4:4aCO)_(6:3)_(6:3)_(4:4aCO)_(6:3)_(6:3)_(4:4aCO)_(6:3)_(6:3)_(4:4aCO)_(6:3)_(6:3)_(4:4aCO)_(6:3)_(6:3)_(4:4aCO)_(6:3)_(-	-	
114 OMT2 OMT															-	
136 OMT2 OMT 12 533245 533365 536152 536245 2_nonsis 2788 2894 2999 3 20 1 1 0 0(35)_(2:6)_(5:3)_(4:4aCO) 187 OMT2 OMT 16 46273 46282 47208 47273 2_nonsis 927 963 999 3 20 1 1 0 0(35)_(2:6)_(5:3)_(4:4aCO) 127 OMT2 OMT 11 339536 340007 341413 341641 2_nonsis 1407 1756 2104 3 20 1 1 0 0(35)_(2:6)_(3:5)_(5:3)_(4:4aCO) 13 OMT2 OMT 2 392522 392544 394376 394430 2_nonsis 1833 1870 1907 3 20 1 1 0 0(35)_(2:6)_(3:5)_(5:3)_(4:4aCO) 34 OMT2 OMT 4 408894 410728 412574 413313 2_nonsis 1847 3133 4418 3 20 1 1 1 0 0(62)_(4:4)_(62)_(3:5)_(4:4aCO) 201 OMT2 OMT 16 843373 434369 436695 436939 2_nonsis 2350 5676 9001 3 20 1 1 0 0(53)_(4:4)_(4:4aCO)_(5:3)_(4:4aCO) 111 OMT2 OMT 8 433873 434369 436695 436939 2_nonsis 1844 1958 2081 3 20 1 1 0 0(35)_(4:4)_(62)_(5:3)_(6:2)_(4:4aCO) 111 OMT2 OMT 9 141332 141499 143302 143414 2_nonsis 1844 1958 2081 3 20 1 1 0 0(35)_(4:4)_(62)_(5:3)_(6:2)_(4:4aCO) 183 OMT2 OMT 15 801084 801285 804884 805025 2_nonsis 3600 3770 3940 3 20 1 1 0 0(35)_(4:4)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO) 183 OMT2 OMT 15 801084 801285 804884 805025 2_nonsis 3600 3770 3940 3 20 1 1 0 0(35)_(4:4)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO) 183 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4461 1577 2108 3 20 1 1 1 0 0(53)_(4:4)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a) 180 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4461 1577 2108 3 21 1 1 0 0(53)_(4:4aCO)_(5:3)_(4:4							_									
187 OMT2														1		
127 OMT2 OMT 11 339536 34007 341413 341641 2_nonsis 1407 1756 2104 3 20 1 1 0 (3:5)_(2:6)_(3:5)_(3:5)_(4:4aCO) 13 OMT2 OMT 2 392522 392544 394376 394430 2_nonsis 1833 1870 1907 3 20 1 1 0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4a) 34 OMT2 OMT 4 408894 410728 412574 413313 2_nonsis 1847 3133 4418 3 20 1 1 0 (6:2)_(4:4)_(6:2)_(3:5)_(4:4aCO) 201 OMT2 OMT 16 804145 810641 81299 813147 2_nonsis 2350 5676 9001 3 20 1 1 0 (6:2)_(4:4)_(6:2)_(3:5)_(6:3)_(4:4aCO) 110 OMT2 OMT 8 4383873 434369 436695 436939 2_nonsis 2327 2696 3065 3 20 1 1 0 (3:5)_(4:4)_(4:2)_(3:5)_(6:2)_(4:3ACO) 111 OMT2 OMT 9 141332 141469 143302 143414 2_nonsis 1834 1958 2081 3 20 1 1 0 (3:5)_(4:4)_(4:2)_(5:3)_(6:2)_(5:3)_(4:4aCO) 113 OMT2 OMT 15 801084 801285 80484 805025 2_nonsis 3600 3770 3940 3 20 1 1 0 (3:5)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a) 138 OMT2 OMT 12 208797 209042 212823 212873 2_nonsis 3600 3770 3940 3 20 1 1 0 (3:5)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a) 188 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:2)_(6:3)_(4:4aCO)_(3:5)_(4:4a) 188 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:2)_(6:3)_(4:4aCO)_(3:5)_(4:4a) 188 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 (5:3)_(4:4a)_(5:3)_(6:2)_(6:3)_(4:4a)_(6:2)_(4:4a)_(536245 2_nonsis			2894	2999		20	1		
13 OMT2 OMT 2 392522 392544 394376 394430 2_nonsis 1833 1870 1907 3 20 1 1 0 0.355_(2:6)_(4:4aCO)_(5:3)_(4:4a) 34 OMT2 OMT 4 408894 410728 412574 413313 2_nonsis 1847 3133 4418 3 20 1 1 1 0 (6:2)_(4:4)_(6:2)_(3:5)_(4:4aCO) 201 OMT2 OMT 16 80445 810641 81299 813147 2_nonsis 2350 5676 9001 3 20 1 1 0 0.55_(4:4)_(6:2)_(5:3)_(4:4aCO) 107 OMT2 OMT 8 433873 434369 436695 436939 2_nonsis 2327 2696 3065 3 20 1 1 0 0.55_(4:4)_(6:2)_(5:3)_(6:2)_(4:4aCO) 111 OMT2 OMT 9 141332 141469 14332 143414 2_nonsis 1834 1958 2081 3 20 1 1 0 0.35_(4:4)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO) 183 OMT2 OMT 5 11741 11756 14073 14175 2_nonsis 2318 2376 2433 3 20 1 1 1 0 0.35_(4:4)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO) 183 OMT2 OMT 15 801084 801285 804884 805025 2_nonsis 3600 3770 3940 3 20 1 1 0 0.35_(4:4)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO) 183 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 0.35_(4:4)_(5:3)_(6:2)_(6:4)_(6:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 180 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 0.35_(4:4)_(5:3)_(6:2)_(6:3)_(6:4)_(6:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(6:2	187 OMT2	OMT	16	46273	46282	47208	47273 2_nonsis		927	963	999	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO)
34 OMT2 OMT 4 408894 410728 412574 413313 2_nonsis 1847 3133 4418 3 20 1 1 0 (6:2)_(4:4)_(6:2)_(5:3)_(4:4aCO) 201 OMT2 OMT 16 804145 810641 812990 813147 2_nonsis 2350 5676 9001 3 20 1 1 0 (5:3)_(4:4)_(4:4aCO)_(3:5)_(4:4a) 107 OMT2 OMT 8 433873 434369 436695 436939 2_nonsis 2327 2696 3065 3 20 1 1 0 (3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(4:4aCO) 111 OMT2 OMT 9 141332 141469 14332 143414 2_nonsis 1834 1958 2081 3 20 1 1 0 (3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(4:4aCO) 113 OMT2 OMT 5 11741 11756 14073 14175 2_nonsis 2318 2376 2433 3 20 1 1 0 (3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO) 183 OMT2 OMT 15 801084 801285 804884 805025 2_nonsis 3600 3770 3940 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:2)_(4:3)_(4:4aCO)_(3:5)_(4:4a) 133 OMT2 OMT 12 208797 209042 212823 212873 2_nonsis 3782 3929 4075 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:2)_(4:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 188 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 100 OMT2 OMT 8 76095 76580 77625 78204 2_nonsis 1046 1577 2108 3 21 1 1 0 (5:3)_(4:4)_(3:3)_(6:2)_(5:3)_(6:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(6:2)_(4:4aCO)_(3:5)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:3)_(6:2)_(4:4a		OMT					341641 2_nonsis		1407	1756	2104	3	20	1		0 (3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO)
201 OMT2 OMT 16 804145 810641 812990 813147 2 nonsis 2350 5676 9001 3 20 1 1 0 (5:3)_(4:4)_(4:4CO)_(3:5)_(4:4a) 107 OMT2 OMT 8 433873 434569 436695 436939 2 nonsis 2327 2696 3065 3 20 1 1 0 (3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(4:4CO) 111 OMT2 OMT 9 141332 141469 143302 143414 2 nonsis 1834 1958 2081 3 20 1 1 0 (3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(4:4CO)_(5:3)_(4:4a) 64 OMT2 OMT 5 11741 11756 14073 14175 2 nonsis 2318 2376 2433 3 20 1 1 0 (3:5)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4a) 183 OMT2 OMT 15 801084 801285 80484 80525 2 nonsis 3600 3770 3940 3 20 1 1 0 (3:5)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 133 OMT2 OMT 12 208797 209042 212823 212873 2 nonsis 3782 3929 4075 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 188 OMT2 OMT 16 127009 127901 131951 132681 2 nonsis 4051 4861 5671 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 100 OMT2 OMT 8 76095 76580 77625 78204 2 nonsis 1046 1577 2108 3 21 1 1 0 (5:3)_(4:4a)_(2:6)_(4:4aCO)_(3:5)_(4:4a)_(6:2)_(4:4a)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(6:2)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4:4a)_(4	13 OMT2	OMT	2	392522	392544	394376	394430 2_nonsis		1833	1870	1907	3	20	1	1	0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4a)
107 OMT2 OMT 8 433873 434369 436695 436693 2_nonsis 2327 2696 3065 3 20 1 1 0 0.355_(43_(62_)(5:3_)(6:2_)(4:4aCO) 111 OMT2 OMT 9 141332 141469 143302 143414 2_nonsis 1834 1958 2081 3 20 1 1 0 0.355_(2:6_)(5:3_)(4:4aCO)_(5:3_)(6:2_)(5:3_)(4:4aCO) 1411 OMT2 OMT 5 11741 11756 14073 14175 2_nonsis 2318 2376 2433 3 20 1 1 0 0.355_(2:6_)(5:3_)(4:4a_CO)_(5:3_)(6:2_)(5:3_)(4:4a_CO) 1411 OMT2 OMT 15 801084 801285 804884 805025 2_nonsis 3700 3700 3940 3 20 1 1 0 0.355_(2:6_)(5:3_)(4:4a_CO)_(3:5_)(4:3_0(6:2_)(5:3_)(4:4a_CO)_(3:5_)(34 OMT2	OMT	4	408894	410728	412574	413313 2_nonsis		1847	3133	4418	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(3:5)_(4:4aCO)
111 OMT2 OMT 9 141332 141469 14332 143414 2 nonsis 1834 1958 2081 3 20 1 1 0 (3.5) (2.6) (5.3) (4.4aCO) (5.3) (6.2) (5.3) (4.4a) (4.4a) (6.4 OMT2 OMT 15 801084 801285 80484 805025 2 nonsis 3600 3770 3940 3 20 1 1 0 (5.3) (5.3) (4.4) (5.3) (6.2) (5.3) (4.4aCO) (201 OMT2	OMT	16	804145	810641	812990	813147 2_nonsis		2350	5676	9001	3	20	1	1	0 (5:3)_(4:4)_(4:4aCO)_(3:5)_(4:4a)
64 OMT2 OMT 5 11741 11756 14073 14175 2_nonsis 2318 2376 2433 3 20 1 1 0 (3:5)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO) 183 OMT2 OMT 15 801084 801285 804884 805025 2_nonsis 3600 3770 3940 3 20 1 1 0 (5:3)_(5:3a)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)_(3:5)_(4:4a) 133 OMT2 OMT 12 208797 209042 212823 212873 2_nonsis 3782 3929 4075 3 20 1 1 0 (5:3)_(4:4)_(5:3)_(6:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 188 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 (5:3)_(4:4a)_(5:3)_(6:4)_(5:3)_(6:4)_(5:3)_(6:4)_(5:3)_(6:4)_(5:3)_(6:4)_(4:4aCO)_(3:5)_(4:4a) 100 OMT2 OMT 8 76095 76580 77625 78204 2_nonsis 1046 1577 2108 3 21 1 1 0 (5:3)_(4:4a)_(5:3)_(6:4)_(5:3)_(6:2)_(4:4a)_(5:3)_(6:2)_(4:4a)_(4:4a)_(4:4	107 OMT2	OMT	8	433873	434369	436695	436939 2_nonsis		2327	2696	3065	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(4:4aCO)
183 OMT2 OMT 15 801084 801285 804884 805025 2_nonsis 3600 3770 3940 3 20 1 1 0 0.53]_(5:3a]_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 13259 13250 13486 13505 3 892 1684 2475 0 2 1684 2475 0 2 2 2 1 1 (5:3a]_(6:2)_(4:4a)_(5:3a]_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) 1 0 0.53]_(6:4a)_(6:3a)_(6:4a)_(6:3a)_(6:4a)_(6:2)_(4:4a)_(4:4b)_(6:2)_(4:4a)_(4:4b)_(6:2)_(4:4a)_(4:4b)_(4	111 OMT2	OMT	9	141332	141469	143302	143414 2_nonsis		1834	1958	2081	3	20	1	1	0 (3:5)_(2:6)_(5:3)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4a)
133 OMT2 OMT 12 208797 209042 212823 212873 2_nonsis 3782 3929 4075 3 20 1 1 0 0.53_(4:4)_(5:3_(4:4)_(2:6)_(4:4aCO)_(3:5_)_(4:4a)_(5:3_(4:4)_(5:3)_(4:4a)_(5:3_(4:4)_(5:3)_(4:4a)_(5:3_(4:4)_(5:3)_(4:4a)_(5:3_(4:4)_(5:3)_(4:4a)_(5:3_(4:4)_(5:3)_(4:4a)_(5:3_(4:4)_(5:3)_(4:4a)_(5:3_(4:4a)_(5:3_(4:4a)_(5:3)_(4:4a)_(5:3_(4:4a)_(4:4a)_(5:3_(4:4a)_(4:4a)_(5:3_(4:4a)_	64 OMT2	OMT	5	11741	11756	14073	14175 2_nonsis		2318	2376	2433	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
188 OMT2 OMT 16 127009 127901 131951 132681 2_nonsis 4051 4861 5671 3 20 1 1 0 (2.6)_(4:4aCO)_(2:6)_(4:4a)_(5:3)_(6:2)_(4:4a)_(4:4b)_(6:2)_(4:4a)_(4:4b)	183 OMT2	OMT	15	801084	801285	804884	805025 2_nonsis		3600	3770	3940	3	20	1	1	0 (5:3)_(5:3a)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
100 OMT2 OMT 8 76095 76580 77625 78204 2_nonsis 1046 1577 2108 3 21 1 1 0 (5:3)_(4:4ai)_(2:6)_(3:5)_(4:4bCO) 156 OMT2 OMT 13 849562 850650 853802 854292 2_nonsis 3153 3941 4729 3 21 1 1 0 (5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO) 23 OMT2 OMT 3 218655 218906 223676 224009 3 4771 5062 5353 0 2 2 2 1 1 (3:5)_(2:6)_(4:4)_(2:6)_(5:3)_(5:3a)_(4:4aCO) 25 OMT2 OMT 4 132259 13250 134836 135705 3 2277 2861 3445 0 2 2 2 1 1 (3:5)_(2:6)_(4:4ai)_(4:4ai)_(4:4ai)_(4:4aCO) 72 OMT2 OMT 5 334460 334676 335567 336936 3 892 1684 2475 0 2 2 2 1 1 (5:3)_(6:2)_(1:7)_(4:4aCO)	133 OMT2	OMT	12	208797	209042	212823	212873 2_nonsis		3782	3929	4075	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(2:6)_(4:4aCO)_(3:5)_(4:4a)
100 OMT2 OMT 8 76095 76580 77625 78204 2_nonsis 1046 1577 2108 3 21 1 1 0 (5:3)_(4:4ai)_(2:6)_(3:5)_(4:4bCO) 156 OMT2 OMT 13 849562 850650 853802 854292 2_nonsis 3153 3941 4729 3 21 1 1 0 (5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO) 23 OMT2 OMT 3 218655 218906 223676 224009 3 4771 5062 5353 0 2 2 2 1 1 (3:5)_(2:6)_(4:4)_(2:6)_(5:3)_(5:3a)_(4:4aCO) 25 OMT2 OMT 4 132259 13250 134836 135705 3 2277 2861 3445 0 2 2 2 1 1 (3:5)_(2:6)_(4:4ai)_(4:4ai)_(4:4ai)_(4:4aCO) 72 OMT2 OMT 5 334460 334676 335567 336936 3 892 1684 2475 0 2 2 2 1 1 (5:3)_(6:2)_(1:7)_(4:4aCO)	188 OMT2	OMT	16	127009	127901	131951	132681 2_nonsis		4051	4861	5671	3	20	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(5:3)_(6:2)_(4:4a)_(6:2)_(4:4a)
156 OMT2 OMT 13 849562 850650 853802 854292 2_nonsis 3153 3941 4729 3 21 1 1 0 (5.3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO) 23 OMT2 OMT 3 218655 218906 223676 224009 3 4771 5062 5353 0 2 2 2 1 1 (3:5)_(2:6)_(4:4ai)_(4:4bi)_(4:4cCO) 25 OMT2 OMT 4 132259 132560 134836 135705 3 2277 2861 3445 0 2 2 2 1 1 (3:5)_(2:6)_(4:4ai)_(4:4bi)_(4:4cCO) 72 OMT2 OMT 5 334460 334676 335567 336936 3 892 1684 2475 0 2 2 2 1 1 (5:3)_(6:2)_(1:7)_(4:4aCO)	100 OMT2	OMT		76095	76580	77625			1046	1577	2108	3	21	1	1	
23 OMT2 OMT 3 218655 218906 223676 224009 3 4771 5062 5353 0 2 2 1 1 (3:5)_(2:6)_(4:4)_(2:6)_(5:3)_(5:3a)_(4:4aCO) 25 OMT2 OMT 4 132259 132560 134836 135705 3 2277 2861 3445 0 2 2 1 1 (3:5)_(2:6)_(4:4ai)_(4:4bi)_(4:4cCO) 72 OMT2 OMT 5 334460 334676 335567 336936 3 892 1684 2475 0 2 2 1 1 (5:3)_(6:2)_(1:7)_(4:4aCO)														1	1	
25 OMT2 OMT 4 132259 132560 134836 135705 3 2277 2861 3445 0 2 2 1 1 (3:5)_(2:6)_(4:4a)(4:4bi)_(4:4eCO) 72 OMT2 OMT 5 334460 334676 335567 336936 3 892 1684 2475 0 2 2 1 1 (5:3)_(6:2)_(1:7)_(4:4aCO)								3				0	2	2	1	
72 OMT2 OMT 5 334460 334676 335567 336936 3 892 1684 2475 0 2 2 1 1 (5:3)_(6:2)_(1:7)_(4:4aCO)								3				0	2		1	
	· · · · · ·	-	-					-		-						

122 OMT2	OMT	10	661626	663261	663948	664824	4	688	1943	3197	0	2	2	2	0 (1:7)_(2:6i)_(4:4aCO)
135 OMT2	OMT	12	341070	341507	341974	342190	3	468	794	1119	0	2	2	1	1 (2:6)_(4:4aCO)_(3:5)_(4:4a)
101 OMT2	OMT	8	96393	97160	99909	101246 2_nonsis		2750	3801	4852	0	3	2	1	1 (3:5)_(2:6)_(3:5)_(5:3)_(4:4ai)_(4:4bCO)_(4:4ai)_(3:5a)_(4:4CO)
223 OMT2	OMT	2	798886	799021	801020	813184	1	0	7149	14297	0	4	1 NA	NA	
364 OMT2	OMT	14	17935	18306	18838	19210 2_nonsis		533	904	1274	0	4	1 NA	NA	05:03
179 OMT3	OMT	15	832222	832326	832326	832546	1	1	162	323	1	1	1	0	1 05:03
28 OMT3	OMT	4	234361	234547	234547	234711	1	1	175	349	1	1	1	0	1 05:03
85 OMT3	OMT	8	319436	319609	319609	319904	1	1	234	467	1	1	1	0	1 05:03
197 OMT3	OMT	16	921352	921490	921490	921845	1	1	247	492	1	1	1	0	1 05:03
126 OMT3	OMT	12	553728	554116	554168	554190	1	53	257	461	1	1	1	0	1 05:03
33 OMT3	OMT	4	569606	569971	569971	570356	1	1	375	749	1	1	1	0	1 05:03
48 OMT3	OMT	4	1453865	1454543	1454543	1454648	1	1	392	782	1	1	1	0	1 05:03
94 OMT3	OMT	9	332503	333073	333081	333345	1	9	425	841	1	1	1	0	1 05:03
99 OMT3	OMT	10	195349	195849	195964	196239	1	116	503	889	1	1	1	0	1 05:03
131 OMT3	OMT	12	778158	779222	779222	779322	1	1	582	1163	1	1	1	0	1 05:03
170 OMT3 57 OMT3	OMT OMT	15 5	272726 358357	273137 359292	273461 359292	273775 360247	1 1	325	687 945	1048	1	1	1	0	1 05:03
37 OM13 39 OMT3		4	1000380	1001608		1002119	1	1	1024	1889	1	1	1	0	1 05:03
64 OMT3	OMT OMT	6	211974	212097	1001916 212940	213216	1	309 844	1024	1738 1241	1	1	1	0	1 05:03 1 05:03
	OMT					665970	1	764	1043	1402	1	1	1	0	
192 OMT3 37 OMT3	OMT	16 4	664567	664678	665441 922979	923047	1	764 964	1195	1402	1	1	1	0	1 05:03
185 OMT3	OMT	16	921620 187323	922016 187324	187324	187327	1	964	2	3	1	2	1	0	1 05:03 1 03:05
66 OMT3	OMT	7	23450	23509	23516	23602	1	8	80	151	1	2	1	0	1 03:05
175 OMT3	OMT	15	494556	494573	494573	494732	1	1	88	175	1	2	1	0	1 03:05
134 OMT3	OMT	12	1019126	1019156	1019199	1019284	1	44	101	157	1	2	1	0	1 03:05
113 OMT3	OMT	11	365937	366156	366174	366213	1	19	147	275	1	2	1	0	1 03:05
41 OMT3	OMT	4	1105249	1105534	1105534	1105561	1	1	156	311	1	2	1	0	1 03:05
6 OMT3	OMT	2	63891	64139	64139	64291	1	1	200	399	1	2	1	0	1 03:05
165 OMT3	OMT	14	724364	724486	724600	724671	1	115	211	306	1	2	1	0	1 03:05
96 OMT3	OMT	9	406436	406590	406596	406941	1	7	256	504	1	2	1	0	1 03:05
143 OMT3	OMT	13	460662	460753	460753	461207	1	1	273	544	1	2	1	0	1 03:05
91 OMT3	OMT	9	177586	177853	177853	178160	1	1	287	573	1	2	1	0	1 03:05
128 OMT3	OMT	12	711045	711067	711354	711432	1	288	337	386	1	2	1	0	1 03:05
19 OMT3	OMT	3	60997	61457	61457	61855	1	1	429	857	1	2	1	0	1 03:05
29 OMT3	OMT	4	362993	363511	363511	363860	1	1	434	866	1	2	1	0	1 03:05
1 OMT3	OMT	1	67801	68551	68621	68725	1	71	497	923	1	2	1	0	1 03:05
183 OMT3	OMT	15	1035181	1035608	1035815	1036058	1	208	542	876	1	2	1	0	1 03:05
55 OMT3	OMT	5	225229	225841	225841	226347	1	1	559	1117	1	2	1	0	1 03:05
74 OMT3	OMT	7	756484	756717	757121	757231	1	405	576	746	1	2	1	0	1 03:05
176 OMT3	OMT	15	511466	511476	511738	512726	1	263	761	1259	1	2	1	0	1 03:05
145 OMT3	OMT	13	576343	577768	577768	577948	1	1	803	1604	1	2	1	0	1 03:05
49 OMT3	OMT	4	1476168	1476261	1476956	1477116	1	696	822	947	1	2	1	0	1 03:05
100 OMT3	OMT	10	207695	208362	208641	209220	1	280	902	1524	1	2	1	0	1 03:05
157 OMT3	OMT	14	391752	392860	392860	393703	1	1	976	1950	1	2	1	0	1 03:05
35 OMT3	OMT	4	630640	631576	631885	632423	1	310	1046	1782	1	2	1	0	1 03:05
136 OMT3	OMT	13	41174	42127	42127	43336	1	1	1081	2161	1	2	1	0	1 03:05
167 OMT3	OMT	15	127669	128123	128730	129347	1	608	1143	1677	1	2	1	0	1 03:05
112 OMT3	OMT	11	363248	363372	364489	364596	1	1118	1233	1347	1	2	1	0	1 03:05
187 OMT3	OMT	16	214281	214333	214724	214866	1	392	488	584	1	3	1	0	1 5:3_4:4_5:3
31 OMT3	OMT	4	390756	391128	391712	392799	1	585	1314	2042	1	3	1	0	1 5:3_6:2_5:3
83 OMT3	OMT	8	227227	227323	228507	228696	1	1185	1327	1468	1	3	1	0	1 5:3_6:2_5:3
118 OMT3	OMT	12	36792	36833	38338	38565	1	1506	1639	1772	1	3	1	0	1 5:3_6:2_5:3
72 OMT3	OMT	7	626794	626892	626947	627440	1	56	351	645	1	4	1	0	1 3:5_4:4_3:5
142 OMT3	OMT	13	458051	458330	458513	459192	1	184	662	1140	1	4	1	0	1 3:5_4:4_3:5
182 OMT3	OMT	15	978665	978755	979457	979485	1	703	761	819	1	4	1	0	1 3:5_4:4_3:5
161 OMT3	OMT	14	577136	579044	579121	579520	1	78	1231	2383	1	4	1	0	1 3:5_2:6_3:5
88 OMT3	OMT	8	496531	496975	497336	497380	1	362	605	848	1	7	1	0	1 5:3_6:2
188 OMT3	OMT	16	245496	245843	246962	247112	1	1120	1368	1615	1	7	1	0	1 5:3_4:4_6:2
180 OMT3	OMT	15	942759	943167	944039	944698	1	873	1406	1938	1	7	1	0	1 6:2_4:4_5:3
117 OMT3	OMT	11	526649	526688	527413	527423	1	726	750	773	1	8	1	0	1 2:6_3:5

45 OMT3	OMT	4	1338669	1339080	1341826	1342306	1	2747	3192	3636	1	8	1	0	1 3:5_2:6
34 OMT3	OMT	4	617153	617276	617421	617533	1	146	263	379	1	10	1	0	1 06:02
138 OMT3	OMT	13	169522	169808	169808	169962	1	1	220	439	1	10.1	1	0	1 02:06
84 OMT3	OMT	8	236227	236251	236251	237146	1	1	460	918	1	10.1	1	0	1 02:06
15 OMT3	OMT	2	620548	621285	621285	621546	1	1	499	997	1	10.1	1	0	1 02:06
103 OMT3	OMT	10	568805	570822	570822	573135	1	1	2165	4329	1	10.1	1	0	1 02:06
158 OMT3	OMT	14	427295	427451	427715	428693	1	265	831	1397	2	11	1	0	1 5:3_5:3a
54 OMT3	OMT	5	211420	211559	212585	212818	1	1027	1212	1397	2	11	1	0	1 5:3_5:3a
11 OMT3	OMT	2	350378	350451	352907	353413	1	2457	2746	3034	2	11	1	0	1 5:3_5:3a
75 OMT3	OMT	7	797674	797989	798400	798821	1	412	779	1146	2	12	1	0	1 3:5_3:5a
109 OMT3	OMT	11	201271	201376	202339	202593	1	964	1143	1321	2	12	1	0	1 3:5_3:5a
194 OMT3	OMT	16	703890	704140	705306	705875	1	1167	1576	1984	2	12	1	0	1 3:5_3:5a
68 OMT3	OMT	7	190037	190333	191348	192332	1	1016	1655	2294	2	12	1	0	1 3:5_3:5a
154 OMT3	OMT	14	214918	215120	221010	221673	1	5891	6323	6754	2	13	1	0	1 5:3_5:3a_4:4_5:3a_4:4_5:3a_6:2_5:3a
160 OMT3	OMT	14	537552	537564	538564	538640	1	1001	1044	1087	2	15	1	0	1 5:3_4:4_5:3a
119 OMT3 189 OMT3	OMT OMT	12	86087 279259	86291 279412	88362 280470	88422	1	2072 1059	2203 1729	2334 2399	2 2	15	1	0	1 5:3_4:4_5:3a
146 OMT3	OMT	16 13	667024	667065	669672	281659 670228	1	2608	2906	3203	2	16 16	1	0	1 3:5_4:4_3:5a
146 OM13 196 OMT3	OMT	16	886812	887016	889543	889589	1	2528	2652	2776	2	17	1	0	1 3:5_4:4_3:5a 1 5:3_4:4_5:3a_6:2_5:3a
196 OM13 181 OMT3	OMT		967263	967506		968918	1	2528 999	1327	1654	2	18	1	0	
7 OMT3	OMT	15 2	68834	69355	968504 70774	71161	1	1420	1873	2326	2	18	1	0	1 3:5_2:6_3:5_4:4_3:5a 1 5:3_6:2_5:3a
139 OMT3	OMT	13	208108	208467	209542	209890	1	1076	1429	1781	2	23	1	0	1 3:5_6:2_3:5a 1 3:5_4:4_2:6_3:5a
53 OMT3	OMT	5	56000	56129	56829	57131 2_nonsis	1	701	916	1130	3	30	1	0	1 5:3_6:2
5 OMT3	OMT	1	187427	189816	190031	190402 2_nonsis		216	1595	2974	3	30	1	0	1 6:2_3:5_5:3
59 OMT3	OMT	5	490700	490942	492341	498773 2_nonsis		1400	4736	8072	3	30	1	0	1 5:3_4:4_3:5_2:6
121 OMT3	OMT	12	247140	247370	249353	249539 2_nonsis		1984	2191	2398	3	30	1	0	1 5:3_2:6_3:5_4:4_3:5a
76 OMT3	OMT	7	805722	806818	809973	810159 2_nonsis		3156	3796	4436	3	30	1	0	1 3:5_4:4_5:3_4:4_6:2
90 OMT3	OMT	9	171281	171632	175368	175738 2_nonsis		3737	4097	4456	3	30	1	0	1 2:6_3:5_2:6_3:5_2:6_3:5_3:5a
147 OMT3	OMT	13	688905	688991	689685	689746 2_nonsis		695	768	840	3	31	1	0	1 2:6_4:4ai_5:3_4:4ai
110 OMT3	OMT	11	284248	284656	289528	289859 2_nonsis		4873	5242	5610	3	31	1	0	1 3:5_4:4_3:5a_4:4ai
173 OMT3	OMT	15	479565	480090	481447	481588 2_nonsis		1358	1690	2022	3	31	1	0	1 3:5_3:5a_4:4ai_3:5a_5:3
12 OMT3	OMT	2	463842	464330	469344	474261 2_nonsis		5015	7717	10418	3	31	1	0	1 4:4ai_3:5_5:3_4:4_5:3_4:4ai_6:2_4:4ai_5:3_4:4ai
82 OMT3	OMT	8	138557	138587	138587	138887 2_nonsis		1	165	329	1	1	1	1	0 (5:3)_(4:4aCO)
101 OMT3	OMT	10	317305	317491	317491	317989 2_nonsis		1	342	683	1	1	1	1	0 (5:3)_(4:4aCO)
166 OMT3	OMT	15	90886	91370	91686	91777 2_nonsis		317	604	890	1	1	1	1	0 (5:3)_(4:4aCO)
191 OMT3	OMT	16	504044	504597	504597	505893 2_nonsis		1	925	1848	1	1	1	1	0 (5:3)_(4:4aCO)
93 OMT3	OMT	9	318469	319670	319670	320609 2_nonsis		1	1070	2139	1	1	1	1	0 (5:3)_(4:4aCO)
168 OMT3	OMT	15	203284	203344	204093	204904 2_nonsis		750	1185	1619	1	1	1	1	0 (5:3)_(4:4aCO)
2 OMT3	OMT	1	71312	71535	72952	73633 2_nonsis		1418	1869	2320	1	1	1	1	0 (5:3)_(4:4aCO)
63 OMT3	OMT	6	107101	107432	107432	107906 2_nonsis		1	403	804	1	2	1	1	0 (3:5)_(4:4aCO)
20 OMT3	OMT	3	77900	78705	78705	78844 2_nonsis		1	472	943	1	2	1	1	0 (3:5)_(4:4aCO)
162 OMT3	OMT	14	652389	652419	652841	653557 2_nonsis		423	795	1167	1	2	1	1	0 (3:5)_(4:4aCO)
98 OMT3	OMT	10	152637	154954	154973	154996 2_nonsis		20	1189	2358	1	2	1	1	0 (3:5)_(4:4aCO)
22 OMT3	OMT	3	226498	228130	228130	230267 2_nonsis		1	1885	3768	1	2	1	1	0 (3:5)_(4:4aCO)
3 OMT3	OMT	1	81604	81691	82379	83613 2_nonsis		689	1349	2008	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
80 OMT3	OMT	8	66569	67460	68532	68854 2_nonsis		1073	1679	2284	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
89 OMT3	OMT	9	40953	41223	41980	42365 2_nonsis		758	1085	1411	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
10 OMT3	OMT	2	340279	340534	341632	341930 2_nonsis		1099	1375	1650	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
56 OMT3	OMT	5	335262	335310	335687	335812 2_nonsis		378	464	549	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
104 OMT3	OMT	10	635321	635444	635710	635986 2_nonsis		267	466	664	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
193 OMT3	OMT	16	677287	677647	677836	678266 2_nonsis		190	584	978	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
108 OMT3	OMT	11	193829	194564	195507	195729 2_nonsis		944	1422	1899	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
137 OMT3	OMT	13	144771	145063	146198	149583 2_nonsis		1136	2974	4811	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
171 OMT3	OMT	15	275073	275191	275230	275863 2_nonsis		40	415	789	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
129 OMT3	OMT	12	745464	745552	746036	746372 2_nonsis		485	696	907	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
8 OMT3	OMT	2	146169	146217	146891	147197 2_nonsis		675	851	1027	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
60 OMT3	OMT	5	551411	551830	553226	553261 2_nonsis		1397	1623	1849	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
195 OMT3	OMT	16	842931	843042	843391	843720 2_nonsis		350	569	788	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
81 OMT3	OMT	8	74727	74846	75188	75639 2_nonsis		343	627	911	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)
9 OMT3	OMT	2	310088	310328	310706	310972 2_nonsis		379	631	883	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)

79 OMT3	OMT	8	25677	25834	26825	27080 2_nonsis	992	1197	1402	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
116 OMT3	OMT	11	511387	511838	514315	514792 2_nonsis	2478	2941	3404	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
105 OMT3	OMT	10	697206	697486	701326	701478 2_nonsis	3841	4056	4271	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
69 OMT3	OMT	7	389105	389508	390472	390727 2_nonsis	965	1293	1621	1	12	1	1	0 (3:5)_(2:6)_(4:4aCO)_(3:5)_(4:4a)
71 OMT3	OMT	7	616811	617037	618272	618689 2_nonsis	1236	1557	1877	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(3:5)_(4:4aCO)
164 OMT3	OMT	14	694273	694765	694765	694868 2_nonsis	1	298	594	1	15	1	1	0 (6:2)_(4:4aCO)
123 OMT3	OMT	12	388010	388456	388456	388801 2_nonsis	1	396	790	1	15	1	1	0 (6:2)_(4:4aCO)
23 OMT3	OMT	3	289942	290527	290527	290957 2_nonsis	1	508	1014	1	15	1	1	0 (6:2)_(4:4aCO)
115 OMT3	OMT	11	476160	476611	476611	477203 2_nonsis	1	522	1042	1	15	1	1	0 (6:2)_(4:4aCO)
111 OMT3	OMT	11	315983	316401	317104	317375 2_nonsis	704	1048	1391	1	15	1	1	0 (6:2)_(4:4aCO)
186 OMT3	OMT	16	211075	212033	212526	212736 2_nonsis	494	1077	1660	1	15	1	1	0 (6:2)_(4:4aCO)
95 OMT3	OMT	9	385355	385422	385550	385711 2_nonsis	129	242	355	1	16	1	1	0 (2:6)_(4:4aCO)
70 OMT3	OMT	7	457721	457920	457920	458281 2_nonsis	1	280	559	1	16	1	1	0 (2:6)_(4:4aCO)
140 OMT3	OMT	13	221252	221642	221642	222095 2_nonsis	1	422	842	1	16	1	1	0 (2:6)_(4:4aCO)
125 OMT3	OMT	12	525539	525791	525539	525791 2_nonsis	0	126	251	1	100	1	1	0 (4:4aCO)
14 OMT3	OMT	2	568465	568762	568465	568762 2_nonsis	0	148	296	1	100	1	1	0 (4:4aCO)
144 OMT3	OMT	13	543392	543706	543392	543706 2_nonsis	0	157	313	1	100	1	1	0 (4:4aCO)
122 OMT3	OMT	12	319635	319960	319635	319960 2_nonsis	0	162	324	1	100	1	1	0 (4:4aCO)
73 OMT3	OMT	7	702791	703157	702791	703157 2_nonsis	0	183	365	1	100	1	1	0 (4:4aCO)
172 OMT3	OMT	15	413774	414171	413774	414171 2_nonsis	0	198	396	1	100	1	1	0 (4:4aCO)
25 OMT3	OMT	4	87619	88023	87619	88023 2_nonsis	0	202	403	1	100	1	1	0 (4:4aCO)
78 OMT3	OMT	7	1011510	1012069	1011510	1012069 2_nonsis	0	279	558	1	100	1	1	0 (4:4aCO)
27 OMT3	OMT	4	226209	227127	226209	227127 2 nonsis	0	459	917	1	100	1	1	0 (4:4aCO)
92 OMT3	OMT	9	297675	298626	297675	298626 2_nonsis	0	475	950	1	100	1	1	0 (4:4aCO)
159 OMT3	OMT	14	478186	479345	478186	479345 2_nonsis	0	579	1158	1	100	1	1	0 (4:4aCO)
130 OMT3	OMT	12	776373	777814	776373	777814 2_nonsis	0	720	1440	1	100	1	1	0 (4:4aCO)
163 OMT3	OMT	14	686681	688572	686681	688572 2_nonsis	0	945	1890	1	100	1	1	0 (4:4aCO)
135 OMT3	OMT	13	26434	28623	26434	28623 2_nonsis	0	1094	2188	1	100	1	1	0 (4:4aCO)
46 OMT3	OMT	4	1347683	1349666	1352299	1353241 2_nonsis	2634	4096	5557	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(6:2)_(5:3b)_(4:4aCO)
21 OMT3	OMT	3	162694	163059	163371	163645 2_nonsis	313	632	950	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
50 OMT3	OMT	4	1488106	1488682	1490249	1490604 2 nonsis	1568	2033	2497	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
42 OMT3	OMT	4	1229336	1229391	1231118	1231256 2_nonsis	1728	1824	1919	2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(3:5b)_(4:4aCO)
18 OMT3	OMT	2	773089	773889	778895	779836 2_nonsis	5007	5877	6746	2	31	1	1	0 (3:5)_(4:4)_(3:5)_(3:5a)_(4:4aCO)
44 OMT3	OMT	4	1296525	1297076	1306509	1306661 2_nonsis	9434	9785	10135	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)_(3:5a)_(4:4a)
38 OMT3	OMT	4	958717	959103	960570	960787 2_nonsis	1468	1769	2069	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4aCO)
61 OMT3	OMT	6	40771	40841	42943	43072 2 nonsis	2103	2202	2300	2	32	1	1	0 (3:5) (2:6) (3:5a) (4:4aCO)
43 OMT3	OMT	4	1267989	1268154	1271871	1271941 2_nonsis	3718	3835	3951	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO) 0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
	OMT	6	224599	224792			1579	1797	2015	2	32	1	1	
65 OMT3					226370	226615 2_nonsis				2				0 (3:5)_(4:4)_(3:5a)_(4:4)_(4:4aCO)
156 OMT3	OMT	14	355289	355500	358643	358757 2_nonsis	3144	3306	3467		32	1	1	0 (6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
169 OMT3	OMT	15	210403	210877	212020	212816 2_nonsis	1144	1778	2412	2	32	1		0 (3:5)_(4:4)_(3:5)_(4:4ai)_(3:5a)_(4:4bCO)
141 OMT3	OMT	13	430948	431689	434927	434958 2_nonsis	3239	3624	4009	2 2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
149 OMT3	OMT	13	840464	840468	841905	842091 2_nonsis	1438	1532	1626		32			0 (6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)_(5:3a)_(4:4a)
124 OMT3	OMT	12	447993	448167	450128	450178 2_nonsis	1962	2073	2184	2	32	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3a)_(5:3b)_(4:4aCO)
40 OMT3	OMT	4	1083252	1083381	1087412	1088864 2_nonsis	4032	4822	5611	2	32	1	1	0 (3:5)_(4:4)_(4:4ai)_(3:5a)_(4:4bCO)_(3:5a)_(4:4b)
4 OMT3	OMT	1	176948	178602	180361	180393 2_nonsis	1760	2602	3444	2	32	1	1	0 (3:5)_(2:6)_(4:4aCO)_(3:5a)_(2:6)_(3:5b)_(2:6)_(3:5b)_(4:4a)
127 OMT3	OMT	12	599905	600169	603216	603313 2_nonsis	3048	3228	3407	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)_(5:3b)_(6:2)_(5:3b)_(4:4a)
36 OMT3	OMT	4	847395	847524	848397	848940 2_nonsis	874	1209	1544	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
155 OMT3	OMT	14	262513	263036	264607	265328 2_nonsis	1572	2193	2814	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
190 OMT3	OMT	16	329617	329941	330571	331090 2_nonsis	631	1052	1472	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
13 OMT3	OMT	2	487454	487781	489580	490532 2_nonsis	1800	2439	3077	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)
150 OMT3	OMT	14	51050	51868	53888	54162 2_nonsis	2021	2566	3111	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
174 OMT3	OMT	15	486327	486494	488163	488189 2_nonsis	1670	1766	1861	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)_(5:3)_(4:4a)
133 OMT3	OMT	12	992572	992595	994933	994942 2_nonsis	2339	2354	2369	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(6:2)_(4:4aCO)
152 OMT3	OMT	14	120530	121108	123158	123338 2_nonsis	2051	2429	2807	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(5:3)_(4:4aCO)
30 OMT3	OMT	4	365434	365716	367564	368207 2_nonsis	1849	2311	2772	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4)_(3:5a)_(4:4aCO)
62 OMT3	OMT	6	94545	94981	96991	97235 2_nonsis	2011	2350	2689	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(3:5)_(4:4aCO)
184 OMT3	OMT	16	27168	27460	29674	29749 2_nonsis	2215	2398	2580	3	20	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)
120 OMT3	OMT	12	94920	97490	98655	99028 2_nonsis	1166	2637	4107	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(2:6)_(3:5)_(4:4aCO)
114 OMT3	OMT	11	367941	368071	370874	371565 2_nonsis	2804	3214	3623	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(4:4bCO)
26 OMT3	OMT	4	198376	198685	200193	200220 2_nonsis	1509	1676	1843	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(3:5)_(4:4bCO)

51 OMT3	OMT	5	12341	12413	13996	14061 2_nonsis		1584	1652	1719	3	21	1	1	0 (5:3)_(6:2)_(5:3)_(4:4ai)_(3:5)_(4:4ai)_(4:4bCO)
153 OMT3	OMT	14	132374	132585	137407	137422 2_nonsis		4823	4935	5047	3	21	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(5:3)_(4:4bi)_(5:3)_(4:4a)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4a)
24 OMT3	OMT	4	60151	61039	62973	63046	3	1935	2415	2894	0	1	2	0	2 (3:5)_(4:4)_(3:5)_(2:6i)_(2:6ai)_(2:6bi)_(1:7)_(1:7a)_(3:5a)_(4:4)
47 OMT3	OMT	4	1410029	1410091	1411239	1411446 2_sis		1149	1283	1416	0	1	2	0	2 (5:3)_(6:2i)_(5:3a)_(4:4)
52 OMT3	OMT	5	23990	24079	27636	27869 2_sis		3558	3718	3878	0	1	2	0	2 (5:3)_(4:4)_(5:3a)_(4:4)
77 OMT3	OMT	7	967869	968127	969533	969608 2_sis		1407	1573	1738	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(4:4)
151 OMT3	OMT	14	59823	59998	61469	62457 2_sis		1472	2053	2633	0	1	2	0	2 (5:3)_(5:3a)_(4:4)
16 OMT3	OMT	2	695479	697455	698250	699461	3	796	2389	3981	0	2	2	1	1 (4:4ai)_(3:5)_(6:2)_(4:4bCO)
17 OMT3	OMT	2	741732	741884	744640	745085	3	2757	3055	3352	0	2	2	1	1 (5:3)_(3:5)_(4:4ai)_(4:4bi)_(3:5a)_(2:6)_(3:5a)_(4:4cCO)
32 OMT3	OMT	4	549856	550499	550893	551387	3	395	963	1530	0	2	2	1	1 (3:5)_(2:6)_(4:4)_(4:4aCO)
58 OMT3	OMT	5	422255	422613	424029	424927	3	1417	2044	2671	0	2	2	1	1 (3:5)_(4:4)_(4:4ai)_(4:4bCO)
67 OMT3	OMT	7	74791	75209	76989	78426	3	1781	2708	3634	0	2	2	1	1 (5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)_(5:3a)_(6:2a)_(5:3b)_(4:4a)
86 OMT3	OMT	8	325184	325621	327422	327845	3	1802	2231	2660	0	2	2	1	1 (2:6i)_(3:5)_(3:5a)_(4:4aCO)
87 OMT3	OMT	8	461593	462176	462419	462588	3	244	619	994	0	2	2	1	1 (3:5)_(4:4ai)_(5:3)_(4:4bCO)
102 OMT3	OMT	10	461906	461975	471532	472011	3	9558	9831	10104	0	2	2	1	1 (6:2)_(4:4)_(5:3)_(4:4)_(5:3a)_(5:3)_(4:4aCO)
106 OMT3 107 OMT3	OMT OMT	11 11	69942 85027	69964 86234	72294 89674	72330 90100	3	2331 3441	2359 4257	2387 5072	0	2 2	2 2	1	1 (5:3)_(4:4ai)_(2:6)_(3:5)_(2:6)_(4:4)_(2:6)_(4:4bCO)_(5:3a)_(4:4b)
107 OM13 132 OMT3	OMT	12	837497	837595	840682	843387	3	3088	4489	5889	0	2	2	1	1 (5:3)_(6:2ì)_(5:3a)_(6:2a)_(5:3a)_(4:4aCO)
132 OM13 148 OMT3	OMT	13	739584	740188	746108	746305	3	5921	6321	6720	0	2	2	1	1 (5:3)_(4:4ai)_(5:3a)_(4:4bCO) 1 (6:2)_(5:3)_(6:2)_(5:3)_(5:3a)_(6:2a)_(5:3a)_(4:4aCO)
148 OM13	OMT	15	580351	580729	586345	586852	3	5617	6059	6500	0	2	2	1	
177 OM13 178 OMT3	OMT	15	769620	770027	771781	772232	3	1755	2183	2611	0	2	2	1	1 (3:5)_(4:4)_(6:2)_(4:4aCO) 1 (6:2)_(7:1)_(4:4)_(2:6)_(4:4aCO)
97 OMT3	OMT	10	29806	29815	37127	37895 2_nonsis	3	7313	7701	8088	0	3	2	0	1 (0:2)_(7:1)_(4:4)_(2:6)_(4:4aCO) 2 (3:5)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5b)_(4:4CO)
253 OMT4	OMT	16	339486	339516	339516	339687	1	7313	101	200	1	1	1	0	2 (3.3)_(2.0)_(3.3a)_(4.4acO)_(3.3a)_(2.0)_(3.3a)_(2.0)_(3.3a)_(2.0)_(3.3a)_(2.0)_(3.3a)_(2.0)_(4.4cO) 1 05:03
202 OMT4	OMT	14	86180	86282	86282	86514	1	1	167	333	1	1	1	0	1 05:03
117 OMT4	OMT	9	270121	270435	270435	270588	1	1	234	466	1	1	1	0	1 05:03
171 OMT4	OMT	12	616917	617208	617302	617371	1	95	274	453	1	1	1	0	1 05:03
224 OMT4	OMT	15	273775	273944	273944	274324	1	1	275	548	1	1	1	0	1 05:03
228 OMT4	OMT	15	394716	395073	395093	395268	1	21	286	551	1	1	1	0	1 05:03
84 OMT4	OMT	7	208043	208356	208356	208622	1	1	290	578	1	1	1	0	1 05:03
16 OMT4	OMT	2	394726	394786	394786	395349	1	1	312	622	1	1	1	0	1 05:03
210 OMT4	OMT	14	301506	301548	301794	301887	1	247	314	380	1	1	1	0	1 05:03
190 OMT4	OMT	13	318454	318678	318678	319105	1	1	326	650	1	1	1	0	1 05:03
128 OMT4	OMT	10	253405	254075	254119	254247	1	45	443	841	1	1	1	0	1 05:03
46 OMT4	OMT	4	550672	550699	550893	551387	1	195	455	714	1	1	1	0	1 05:03
225 OMT4	OMT	15	284521	284983	285010	285417	1	28	462	895	1	1	1	0	1 05:03
242 OMT4	OMT	15	943688	944039	944039	944698	1	1	505	1009	1	1	1	0	1 05:03
114 OMT4	OMT	9	169820	170156	170432	170681	1	277	569	860	1	1	1	0	1 05:03
262 OMT4	OMT	16	801399	801614	801756	802415	1	143	579	1015	1	1	1	0	1 05:03
65 OMT4	OMT	5	80182	80303	80737	81049	1	435	651	866	1	1	1	0	1 05:03
119 OMT4	OMT	9	338670	339115	339115	340356	1	1	843	1685	1	1	1	0	1 05:03
179 OMT4	OMT	12	827343	827901	828345	828622	1	445	862	1278	1	1	1	0	1 05:03
39 OMT4	OMT	4	266113	266302	266878	267359	1	577	911	1245	1	1	1	0	1 05:03
207 OMT4	OMT	14	185798	185846	186921	186976	1	1076	1127	1177	1	1	1	0	1 05:03
21 OMT4	OMT	2	658797	659928	660237	660972	1	310	1242	2174	1	1	1	0	1 05:03
185 OMT4	OMT	12	1026889	1027477	1028477	1028782	1	1001	1447	1892	1	1	1	0	1 05:03
170 OMT4	OMT	12	572294	572662	573804	574096	1	1143	1472	1801	1	1	1	0	1 05:03
160 OMT4	OMT	12	138768	141153	141390	141933	1	238	1701	3164	1	1	1	0	1 05:03
258 OMT4	OMT	16	642789	643790	644963	645571	1	1174	1978	2781	1	1	1	0	1 05:03
118 OMT4	OMT	9	329125	332459	332503	333073	1	45	1996	3947	1	1	1	0	1 05:03
44 OMT4	OMT	4	465458	465495	465495	465563	1	1	53	104	1	2	1	0	1 03:05
93 OMT4	OMT	7	905148	905227	905266	905275	1	40	83	126	1	2	1	0	1 03:05
218 OMT4	OMT	14	736429	736458	736460	736619	1	3	96	189	1	2	1	0	1 03:05
24 OMT4	OMT	2	723175	723232	723232	723385	1	1	105	209	1	2	1	0	1 03:05
48 OMT4	OMT	4	617153	617276	617276	617367	1	1	107	213	1	2	1	0	1 03:05
154 OMT4	OMT	11	625985	626193	626193	626218	1	1	117	232	1	2	1	0	1 03:05
231 OMT4	OMT	15	533847	533983	533983	534085	1	1	119	237	1	2	1	0	1 03:05
248 OMT4	OMT	16	125867	125934	125970	126095	1	37	132	227	1	2	1	0	1 03:05
53 OMT4	OMT	4	1005614	1005656	1005728	1005839	1	73	149	224	1	2	1	0	1 03:05
87 OMT4	OMT	7	459382	459691	459691	459753	1	1	186	370	1	2	1	0	1 03:05
165 OMT4	OMT	12	412564	412603	412603	412966	1	1	201	401	1	2	1	0	1 03:05

129 OMT4	OMT	10	316551	316590	316590	317045	1	1	247	493	1	2	1	0	1 03:05
80 OMT4	OMT	6	115291	115411	115494	115717	1	84	255	425	1	2	1	0	1 03:05
72 OMT4	OMT	5	315416	315857	315857	315976	1	1	280	559	1	2	1	0	1 03:05
155 OMT4	OMT	11	630615	631180	631180	631232	1	1	309	616	1	2	1	0	1 03:05
23 OMT4	OMT	2	720615	720905	721088	721115	1	184	342	499	1	2	1	0	1 03:05
257 OMT4	OMT	16	564015	564521	564521	564703	1	1	344	687	1	2	1	0	1 03:05
112 OMT4	OMT	9	150789	151377	151394	151474	1	18	351	684	1	2	1	0	1 03:05
94 OMT4	OMT	7	936948	937376	937376	937670	1	1	361	721	1	2	1	0	1 03:05
19 OMT4	OMT	2	537354	537480	537549	538047	1	70	381	692	1	2	1	0	1 03:05
50 OMT4	OMT	4	721724	721991	722085	722407	1	95	389	682	1	2	1	0	1 03:05
89 OMT4	OMT	7	598733	599198	599198	599515	1	1	391	781	1	2	1	0	1 03:05
1 OMT4	OMT	1	45030	45198	45198	45831	1	1	401	800	1	2	1	0	1 03:05
111 OMT4	OMT	9	131341	131883	131891	132148	1	9	408	806	1	2	1	0	1 03:05
244 OMT4	OMT	15	1009095	1009862	1009862	1009919	1	1	412	823	1	2	1	0	1 03:05
221 OMT4	OMT	15	128417	128530	128730	129118	1	201	451	700	1	2	1	0	1 03:05
236 OMT4	OMT	15	662688	662842	662842	663595	1	1	454	906	1	2	1	0	1 03:05
41 OMT4	OMT	4	407286	407403	407403	408221	1	1	468	934	1	2	1	0	1 03:05
73 OMT4	OMT	5	417790	418504	418513	418792	1	10	506	1001	1	2	1	0	1 03:05
123 OMT4	OMT	10	22158	22350	22772	22827	1	423	546	668	1	2	1	0	1 03:05
20 OMT4	OMT	2	641467	641914	642356	642406	1	443	691	938	1	2	1	0	1 03:05
113 OMT4	OMT	9	159685	160007	160585	160764	1	579	829	1078	1	2	1	0	1 03:05
251 OMT4	OMT	16	222390	222598	222957	223697	1	360	833	1306	1	2	1	0	1 03:05
66 OMT4	OMT		83200	83329	83692	84562	1	364	863	1361	1	2	1	0	1 03:05
140 OMT4	OMT	5 11	179745	180215	180215	182377	1	364 1	1316	2631	1	2	1	0	1 03:05
159 OMT4	OMT	12	63076	63559	63859	65485	1	301	1355	2408	1	2	1	0	1 03:05
212 OMT4	OMT	14	404051	405175	405878	406133	1	704	1393	2081	1	2	1	0	1 03:05
173 OMT4	OMT	12	625064	627007	627370	627543	1	364	1421	2478	1	2	1	0	1 03:05
139 OMT4	OMT	11	166774	167254	168464	168746	1	1211	1591	1971	1	2	1	0	1 03:05
103 OMT4	OMT	8	280455	280619	281430	282877	1	812	1617	2421	1	2	1	0	1 03:05
255 OMT4	OMT	16	425481	425740	427238	427523	1	1499	1770	2041	1	2	1	0	1 03:05
10 OMT4	OMT	2	150492	151117	151407	151865	1	291	832	1372	1	3	1	0	1 5:3_4:4_5:3
206 OMT4	OMT	14	174664	174821	175274	176348	1	454	1069	1683	1	3	1	0	1 5:3_6:2_5:3
172 OMT4	OMT	12	622999	623416	623971	624838	1	556	1197	1838	1	3	1	0	1 5:3_4:4_5:3
145 OMT4	OMT	11	327707	327893	328709	329482	1	817	1296	1774	1	3	1	0	1 5:3_6:2_5:3
227 OMT4	OMT	15	356936	357029	358915	359878	1	1887	2414	2941	1	3	1	0	1 5:3_4:4_5:3
162 OMT4	OMT	12	198146	198396	198771	199043	1	376	636	896	1	4	1	0	1 3:5_2:6_3:5
60 OMT4	OMT	4	1271755	1271812	1272164	1272726	1	353	662	970	1	4	1	0	1 3:5_4:4_3:5
99 OMT4	OMT	8	116330	117152	117423	117631	1	272	786	1300	1	4	1	0	1 3:5_4:4_3:5
194 OMT4	OMT	13	529347	529948	530525	530917	1	578	1074	1569	1	7	1	0	1 6:2_5:3
106 OMT4	OMT	8	461593	462176	462825	463320	1	650	1188	1726	1	7	1	0	1 6:2_5:3
17 OMT4	OMT	2	483804	483939	492334	493122	1	8396	8857	9317	1	7	1	0	1 5:3_6:2
126 OMT4	OMT	10	194790	194922	195349	195849	1	428	743	1058	1	7	1	0	1 6:2_4:4_6:2
232 OMT4	OMT	15	544722	544812	546393	546837	1	1582	1848	2114	1	7	1	0	1 6:2_4:4_5:3
121 OMT4	OMT	9	382792	382906	384418	384629	1	1513	1675	1836	1	7	1	0	1 6:2_5:3_4:4_5:3
4 OMT4	OMT	1	129517	130254	130776	130897	1	523	951	1379	1	8	1	0	1 2:6_3:5
102 OMT4	OMT	8	260343	261563	261724	262100	1	162	959	1756	1	8	1	0	1 3:5_2:6
214 OMT4	OMT	14	575525	576199	577136	579044	1	938	2228	3518	1	8	1	0	1 3:5_2:6
141 OMT4	OMT	11	198458	198833	201727	202124	1	2895	3280	3665	1	8	1	0	1 3:5_2:6_4:4_2:6
56 OMT4	OMT	4	1083881	1083977	1083977	1084057	1	1	88	175	1	10	1	0	1 06:02
12 OMT4	OMT	2	216902	216962	217015	217070	1	54	111	167	1	10	1	0	1 06:02
58 OMT4	OMT	4	1162210	1162357	1162494	1162575	1	138	251	364	1	10	1	0	1 06:02
239 OMT4	OMT	15	802784	803471	803471	803637	1	1	427	852	1	10	1	0	1 06:02
27 OMT4	OMT	3	51491	51650	51650	52350	1	1	430	858	1	10	1	0	1 06:02
189 OMT4	OMT	13	241597	242042	242235	242692	1	194	644	1094	1	10	1	0	1 06:02
9 OMT4	OMT	2	140383	140643	141215	141553	1	573	871	1169	1	10	1	0	1 06:02
176 OMT4	OMT	12	719910	721257	721257	721983	1	1	1037	2072	1	10	1	0	1 06:02
180 OMT4	OMT	12	832633	833476	833540	834769	1	65	1100	2135	1	10	1	0	1 06:02
134 OMT4	OMT	10	631130	632972	633146	633240	1	175	1142	2109	1	10	1	0	1 06:02
219 OMT4	OMT	15	22358	39380	40593	40834	1	1214	9845	18475	1	10	1	0	1 06:02
187 OMT4	OMT	13	169412	169477	169477	169492	1	1	40	79	1	10.1	1	0	1 02:06
						·· ··-	-						·		

90 OMT4	OMT	7	706337	706391	706439	706722	1	49	217	384	1	10.1	1	0	1 02:06
211 OMT4	OMT	14	366158	366581	366581	366762	1	1	302	603	1	10.1	1	0	1 02:06
107 OMT4	OMT	8	465996	466004	466305	466322	1	302	314	325	1	10.1	1	0	1 02:06
149 OMT4	OMT	11	425593	425840	425991	426133	1	152	346	539	1	10.1	1	0	1 02:06
235 OMT4	OMT	15	653431	653618	653896	653929	1	279	388	497	1	10.1	1	0	1 02:06
69 OMT4	OMT	5	210793	211386	211559	211770	1	174	575	976	1	10.1	1	0	1 02:06
79 OMT4	OMT	6	105427	105934	106222	106492	1	289	677	1064	1	10.1	1	0	1 02:06
122 OMT4	OMT	9	405665	405821	406436	406590	1	616	770	924	1	10.1	1	0	1 02:06
241 OMT4	OMT	15	882131	882322	882911	883100	1	590	779	968	1	10.1	1	0	1 02:06
8 OMT4	OMT	2	121576	121643	126263	126921	1	4621	4983	5344	1	10.1	1	0	1 02:06
260 OMT4	OMT	16	751172	751586	752166	752508	1	581	958	1335	2	11	1	0	1 5:3_5:3a
54 OMT4	OMT	4	1011299	1011430	1012387	1012624	1	958	1141	1324	2	11	1	0	1 5:3_5:3a
183 OMT4	OMT	12	964591	964739	967302	969880	1	2564	3926	5288	2	11	1	0	1 5:3_5:3a
91 OMT4	OMT	7	801946	801970	802550	802904	1	581	769	957	2	12	1	0	1 3:5_3:5a
42 OMT4	OMT	4	410728	411048	411785	412382	1	738	1196	1653	2	12	1	0	1 3:5_3:5a
64 OMT4	OMT	5	40898	41432	42396	42646	1	965	1356	1747	2	12	1	0	1 3:5_3:5a
247 OMT4	OMT	16	119752	120748	121751	122624	1	1004	1938	2871	2	12	1	0	1 3:5_3:5a
259 OMT4	OMT	16	708937	708998	711113	711619	1	2116	2399	2681	2	13	1	0	1 6:2_5:3_5:3a_4:4_5:3a
203 OMT4	OMT	14	89837	89883	90956	91169	1	1074	1203	1331	2	14	1	0	1 3:5_3:5a_4:4_3:5a
13 OMT4	OMT	2	248159	248728	251548	251742	1	2821	3202	3582	2	14	1	0	1 2:6_3:5_2:6_3:5_3:5a
5 OMT4	OMT	1	175578	175849	176713	176948	1	865	1117	1369	2	14	1	0	1 3:5_2:6_3:5_2:6_3:5_3:5a
238 OMT4	OMT	15	781222	781633	782356	782474	1	724	988	1251	2	15	1	0	1 5:3_4:4_5:3a
25 OMT4	OMT	2	760365	760599	761454	761529	1	856	1010	1163	2	15	1	0	1 5:3_4:4_5:3a
168 OMT4	OMT	12	527518	527685	528671	528758	1	987	1113	1239	2	15	1	0	1 5:3_4:4_5:3a
222 OMT4	OMT	15	242267	242488	243831	244393	1	1344	1735	2125	2	15	1	0	1 5:3_4:4_5:3a
163 OMT4	OMT	12	266094	266454	267117	267423	1	664	996	1328	2	16	1	0	1 3:5_4:4_3:5a
250 OMT4	OMT	16	162602	162746	163739	163759	1	994	1075	1156	2	17	1	0	1 5:3_4:4_5:3_4:4_5:3a
137 OMT4	OMT	11	69153	69417	70711	70841	1	1295	1491	1687	2	17	1	0	1 5:3_6:2_5:3_4:4_5:3a
220 OMT4	OMT	15	82279	82570	83853	84190	1	1284	1597	1910	2	17	1	0	1 5:3_4:4_5:3a_6:2_5:3a
193 OMT4	OMT	13	527516	527588	527901	528307	1	314	552	790	2	19	1	0	1 5:3_6:2_5:3a
132 OMT4	OMT	10	567298	567353	568805	570822	1	1453	2488	3523	2	19	1	0	1 5:3_6:2_5:3a
209 OMT4	OMT	14	287606	287672	289222	289345	1	1551	1645	1738	2	23	1	0	1 3:5_4:4_2:6_3:5a
82 OMT4	OMT	7	71410	71649	74453	74566	1	2805	2980	3155	2	23	1	0	1 2:6_3:5_4:4_2:6_3:5a
52 OMT4	OMT	4	1000380	1001608	1002837	1003188	1	1230	2019	2807	2	23	1	0	1 3:5_2:6_4:4_3:5_2:6_4:4_3:5a
204 OMT4	OMT	14	111039	111216	114221	114314	1	3006	3140	3274	2	23	1	0	1 5:3_4:4_6:2_5:3a_4:4_5:3a_4:4_5:3a_6:2_5:3a
153 OMT4	OMT	11	597889	598496	599535	599900 2_nonsis		1040	1525	2010	3	30	1	0	1 05:03
70 OMT4	OMT	5	238122	238396	239816	239949 2_nonsis		1421	1624	1826	3	30	1	0	1 3:5_2:6
105 OMT4	OMT	8	404970	405293	406734	407300 2_nonsis		1442	1886	2329	3	30	1	0	1 2:6_3:5
75 OMT4	OMT	5	472577	472664	474569	474623 2_nonsis		1906	1976	2045	3	30	1	0	1 6:2_4:4_3:5
184 OMT4	OMT	12	1011170	1011621	1014437	1014538 2_nonsis		2817	3092	3367	3	30	1	0	1 3:5_2:6_3:5a
263 OMT4	OMT	16	894511	894610	896267	896434 2_nonsis		1658	1790	1922	3	30	1	0	1 5:3_2:6_5:3_3:5
85 OMT4	OMT	7	270374	270491	272144	272568 2_nonsis		1654	1924	2193	3	30	1	0	1 3:5_3:5a_3:5b_3:5a
200 OMT4	OMT	14	37986	39122	41680	42185 2_nonsis		2559	3379	4198	3	30	1	0	1 6:2_5:3_2:6_3:5_4:4_3:5
181 OMT4	OMT	12	867405	869664	875259	876120 2_nonsis		5596	7155	8714	3	30	1	0	1 3:5_5:3_3:5_4:4_2:6_3:5a
14 OMT4	OMT	2	287818	287997	292755	292797 2_nonsis		4759	4869	4978	3	30	1	0	1 3:5_4:4_3:5_4:4_5:3_4:4_5:3a_5:3_4:4_5:3
254 OMT4	OMT	16	381280	381362	381362	381840 2_nonsis		1	280	559	1	1	1	1	0 (5:3)_(4:4aCO)
77 OMT4	OMT	6	48712	49201	49483	49819 2_nonsis		283	695	1106	1	1	1	1	0 (5:3)_(4:4aCO)
169 OMT4	OMT	12	560519	561781	561781	562070 2_nonsis		1	776	1550	1	1	1	1	0 (5:3)_(4:4aCO)
208 OMT4	OMT	14	273928	274328	274808	275212 2_nonsis		481	882	1283	1	1	1	1	0 (5:3)_(4:4aCO)
62 OMT4	OMT	4	1505853	1506604	1506992	1507780 2_nonsis		389	1158	1926	1	1	1	1	0 (5:3)_(4:4aCO)
76 OMT4	OMT	5	483903	485006	485380	486292 2_nonsis		375	1382	2388	1	1	1	1	0 (5:3)_(4:4aCO)
136 OMT4	OMT	11	44603	45993	46439	48790 2_nonsis		447	2317	4186	1	1	1	1	0 (5:3)_(4:4aCO)
178 OMT4	OMT	12	822848	823217	823256	826618 2_nonsis		40	1905	3769	1	2	1	1	0 (3:5)_(4:4aCO)
216 OMT4	OMT	14	686681	688572	689582	689944 2_nonsis		1011	2137	3262	1	2	1	1	0 (3:5)_(4:4aCO)
57 OMT4	OMT	4	1152100	1152705	1153303	1161539 2_nonsis		599	5019	9438	1	2	1	1	0 (3:5)_(4:4aCO)
110 OMT4	OMT	9	41439	41532	42365	42595 2_nonsis		834	995	1155	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
226 OMT4	OMT	15	312575	312919	313126	313924 2_nonsis		208	778	1348	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
233 OMT4	OMT	15	586345	586852	587316	587565 2_nonsis		465	842	1219	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
120 OMT4	OMT	9	347702	348431	348958	349855 2_nonsis		528	1340	2152	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
59 OMT4	OMT	4	1261452	1262394	1263265	1263883 2_nonsis		872	1651	2430	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)

243 OMT4	OMT	15	953577	954310	954766	955006 2_nonsis	457	943	1428	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
47 OMT4	OMT	4	591129	591782	592050	592072 2_nonsis	269	606	942	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
167 OMT4	OMT	12	509342	509612	510230	510340 2_nonsis	619	808	997	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
164 OMT4	OMT	12	300946	301171	302719	302764 2_nonsis	1549	1683	1817	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
166 OMT4	OMT	12	493339	493774	494429	495002 2_nonsis	656	1159	1662	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
67 OMT4	OMT	5	106188	106333	106607	106808 2_nonsis	275	447	619	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
100 OMT4	OMT	8	187989	188673	189221	189274 2_nonsis	549	917	1284	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
135 OMT4	OMT	10	639041	639365	641346	641571 2_nonsis	1982	2256	2529	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
157 OMT4	OMT	12	36792	36833	38737	39963 2_nonsis	1905	2538	3170	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
32 OMT4	OMT	3	249994	250855	259910	260698 2_nonsis	9056	9880	10703	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
188 OMT4	OMT	13	170932	171275	171896	172118 2_nonsis	622	904	1185	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
35 OMT4	OMT	4	29152	29441	30908	31112 2 nonsis	1468	1714	1959	1	10	1	1	0 (2:6) (3:5) (4:4aCO)
	OMT		29132	217457	220881	_		3799		1		1	1	,
142 OMT4		11				221472 2_nonsis	3425		4173	1	10			0 (2:6)_(3:5)_(4:4aCO)
29 OMT4	OMT	3	83816	93230	94139	94175 2_nonsis	910	5634	10358	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
109 OMT4	OMT	8	511816	512259	513034	514468 2_nonsis	776	1714	2651	1	11	1	1	0 (6:2)_(5:3)_(4:4ai)_(4:4bCO)
256 OMT4	OMT	16	475802	476377	477361	477481 2_nonsis	985	1332	1678	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
38 OMT4	OMT	4	211460	211831	212746	213315 2_nonsis	916	1385	1854	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
74 OMT4	OMT	5	452590	452629	452954	453437 2_nonsis	326	586	846	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
22 OMT4	OMT	2	716328	716467	716927	717374 2_nonsis	461	753	1045	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
191 OMT4	OMT	13	324736	325194	326120	326401 2_nonsis	927	1296	1664	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
26 OMT4	OMT	3	47306	48335	48704	50099 2_nonsis	370	1581	2792	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)
151 OMT4	OMT	11	486704	487095	488665	489458 2_nonsis	1571	2162	2753	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
205 OMT4	OMT	14	144587	144778	145535	145554 2 nonsis	758	862	966	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
68 OMT4	OMT	5	189662	189983	190829	191462 2_nonsis	847	1323	1799	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
55 OMT4	OMT	4	1079059	1079189	1080869	1080944 2_nonsis	1681	1783	1884	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a) 0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
7 OMT4	OMT	1	195910	196198	198713		2516	2710	2904	1	12	1	1	
						198815 2_nonsis				1				0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
63 OMT4	OMT	5	27119	27260	27272	27604 2_nonsis	13	249	484	1	15	1	1	0 (6:2)_(4:4aCO)
33 OMT4	OMT	3	287614	288008	288099	288246 2_nonsis	92	362	631	1	15	1	1	0 (6:2)_(4:4aCO)
201 OMT4	OMT	14	79325	79763	79763	80071 2_nonsis	1	373	745	1	15	1	1	0 (6:2)_(4:4aCO)
97 OMT4	OMT	8	21033	21160	21541	21579 2_nonsis	382	464	545	1	15	1	1	0 (6:2)_(4:4aCO)
217 OMT4	OMT	14	713149	713326	713775	713826 2_nonsis	450	563	676	1	15	1	1	0 (6:2)_(4:4aCO)
116 OMT4	OMT	9	266255	266803	266803	267668 2_nonsis	1	707	1412	1	15	1	1	0 (6:2)_(4:4aCO)
83 OMT4	OMT	7	140806	140941	141481	141723 2_nonsis	541	729	916	1	15	1	1	0 (6:2)_(4:4aCO)
175 OMT4	OMT	12	703971	704793	705221	705602 2_nonsis	429	1030	1630	1	15	1	1	0 (6:2)_(4:4aCO)
252 OMT4	OMT	16	239686	239952	241053	241174 2_nonsis	1102	1295	1487	1	15	1	1	0 (6:2)_(4:4aCO)
36 OMT4	OMT	4	43482	46608	47467	48046 2 nonsis	860	2712	4563	1	15	1	1	0 (6:2)_(4:4aCO)
148 OMT4	OMT	11	389926	389996	393512	393589 2_nonsis	3517	3590	3662	1	15	1	1	0 (6:2)_(4:4aCO)
127 OMT4	OMT	10	211498	211638	211638	211656 2_nonsis	1	79	157	1	16	1	1	0 (2:6)_(4:4aCO)
213 OMT4	OMT	14	435509	435739	435739	435934 2_nonsis	1	213	424	1	16	1	1	0 (2:6)_(4:4aCO)
81 OMT4							21					1	1	
	OMT	6	167410	168102	168122	168217 2_nonsis		414	806	1	16			0 (2:6)_(4:4aCO)
2 OMT4	OMT	1	47896	48115	48591	48751 2_nonsis	477	666	854	1	16	1	1	0 (2:6)_(4:4aCO)
86 OMT4	OMT	7	452296	452589	452296	452589 2_nonsis	0	146	292	1	100	1	1	0 (4:4aCO)
18 OMT4	OMT	2	533263	533610	533263	533610 2_nonsis	0	173	346	1	100	1	1	0 (4:4aCO)
198 OMT4	OMT	13	840667	841022	840667	841022 2_nonsis	0	177	354	1	100	1	1	0 (4:4aCO)
240 OMT4	OMT	15	837247	837630	837247	837630 2_nonsis	0	191	382	1	100	1	1	0 (4:4aCO)
11 OMT4	OMT	2	170868	171433	170868	171433 2_nonsis	0	282	564	1	100	1	1	0 (4:4aCO)
215 OMT4	OMT	14	651410	652054	651410	652054 2_nonsis	0	322	643	1	100	1	1	0 (4:4aCO)
101 OMT4	OMT	8	222295	222996	222295	222996 2_nonsis	0	350	700	1	100	1	1	0 (4:4aCO)
195 OMT4	OMT	13	556437	557365	556437	557365 2_nonsis	0	464	927	1	100	1	1	0 (4:4aCO)
3 OMT4	OMT	1	112136	113132	112136	113132 2_nonsis	0	498	995	1	100	1	1	0 (4:4aCO)
104 OMT4	OMT	8	330227	331641	330227	331641 2_nonsis	0	707	1413	1	100	1	1	0 (4:4aCO)
158 OMT4	OMT	12	40119	41721	40119	41721 2_nonsis	0	801	1601	1	100	1	1	0 (4:4aCO)
6 OMT4	OMT	1	187427	189821	187427	189821 2_nonsis	0	1197	2393	1	100	1	1	0 (4:4aCO)
115 OMT4	OMT	9	185865	188629	185865	188629 2_nonsis	0	1382	2763	1	100	1	1	0 (4:4aCO)
182 OMT4	OMT	12	892436	930472	892436	930472 2_nonsis	0	19018	38035	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
96 OMT4	OMT									2		1	1	
		7	1017034	1017661	1019116	1019203 2_nonsis	1456	1812	2168		30			0 (5:3)_(5:3a)_(4:4aCO)
124 OMT4	OMT	10	164772	164955	167814	168672 2_nonsis	2860	3380	3899	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
125 OMT4	OMT	10	179084	179602	181065	181281 2_nonsis	1464	1830	2196	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(5:3a)_(4:4aCO)
246 OMT4	OMT	15	1041417	1042440	1043807	1044044 2_nonsis	1368	1997	2626	2	30	1	1	0 (4:4aCO)_(6:2)_(5:3)_(5:3a)_(4:4a)
144 OMT4	OMT	11	281006	281154	283904	284248 2_nonsis	2751	2996	3241	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3b)_(4:4a)

28 OMT4	OMT	3	69745	70158	70491	70617 2_nonsis		334	603	871	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
230 OMT4	OMT	15	478915	479565	482126	482383 2_nonsis		2562	3015	3467	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
130 OMT4	OMT	10	360316	360588	362886	363087 2_nonsis		2299	2535	2770	2	31	1	1	0 (3:5)_(3:5a)_(4:4)_(2:6)_(4:4aCO)
229 OMT4	OMT	15	460815	460848	464113	464395 2_nonsis		3266	3423	3579	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(2:6)_(3:5a)_(4:4a)
34 OMT4	OMT	4	19746	19880	20444	20737 2_nonsis		565	778	990	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)
156 OMT4	OMT	11	641940	642207	643856	643871 2_nonsis		1650	1790	1930	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
223 OMT4	OMT	15	246022	246178	247462	248324 2_nonsis		1285	1793	2301	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
234 OMT4	OMT	15	636422	637574	638644	639033 2_nonsis		1071	1841	2610	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4aCO)
147 OMT4	OMT	11	379888	380602	382357	382980 2_nonsis		1756	2424	3091	2	32	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5a)_(4:4a)
30 OMT4	OMT	3	154278	154645	156960	157443 2_nonsis		2316	2740	3164	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(3:5b)_(4:4aCO)
45 OMT4	OMT	4	483545	483565	486079	486783 2_nonsis		2515	2876	3237	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4)_(4:4aCO)
152 OMT4	OMT	11	526688	527413	527498	527511 2_nonsis		86	454	822	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
249 OMT4	OMT	16	131754	131951	132915	133150 2_nonsis		965	1180	1395	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
31 OMT4	OMT	3	239394	239437	240922	241753 2_nonsis		1486	1922	2358	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
95 OMT4	OMT	7	1008097	1008259	1010365	1010428 2_nonsis		2107	2219	2330	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
71 OMT4	OMT	5	263992	264105	264738	264848 2_nonsis		634	745	855	3	20	1	1	0 (5:3)_(5:3a)_(3:5)_(4:4aCO)
43 OMT4	OMT	4	434256	435260	436026	436257 2_nonsis		767	1384	2000	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
161 OMT4	OMT	12	160531	160756	162922	163451 2_nonsis		2167	2543	2919	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)
15 OMT4	OMT	2	323106	323214	324467	324761 2_nonsis		1254	1454	1654	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
197 OMT4	OMT	13	712889	713054	713980	715257 2_nonsis		927	1647	2367	3	20	1	1	0 (6:2)_(5:3)_(2:6)_(3:5)_(4:4aCO)
237 OMT4	OMT	15	735184	735517	738211	738617 2_nonsis		2695	3064	3432	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
261 OMT4	OMT	16	785197	785578	786663	787292 2_nonsis		1086	1590	2094	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)_(5:3)_(4:4a)
199 OMT4	OMT	13	858111	859174	861520	862065 2_nonsis		2347	3150	3953	3	20	1	1	0 (3:5)_(4:4)_(3:5a)_(5:3)_(3:5b)_(4:4aCO)
192 OMT4	OMT	13	492378	492387	495115	495304 2_nonsis		2729	2827	2925	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
49 OMT4	OMT	4	697201	697575	700151	700170 2_nonsis		2577	2773	2968	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
174 OMT4	OMT	12	677014	677110	678971	679614 2_nonsis		1862	2231	2599	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(4:4ai)_(4:4bCO)
143 OMT4	OMT	11	277809	277967	279367	279467 2_nonsis		1401	1529	1657	3	21	1	1	0 (3:5)_(4:4)_(3:5)_(4:4ai)_(5:3)_(4:4bCO)
37 OMT4	OMT	4	132892	133023	134836	135397 2_sis		1814	2159	2504	0	1	2	0	2 (5:3)_(4:4)_(5:3a)_(4:4)
98 OMT4	OMT	8	23964	24334	26184	26675 2_sis		1851	2281	2710	0	1	2	0	2 (3:5)_(2:6i)_(1:7)_(2:6i)_(3:5a)_(2:6i)_(3:5a)_(2:6a)_(2:6bi)_(4:4)
108 OMT4	OMT	8	497380	497405	499040	499430 2_sis		1636	1843	2049	0	1	2	0	2 (5:3)_(5:3a)_(6:2)_(4:4)
131 OMT4	OMT	10	461975	462161	465816	466454	3	3656	4067	4478	0	1	2	0	2 (2:6)_(3:5)_(4:4ai)_(3:5a)_(2:6)_(4:4)
138 OMT4	OMT	11	80854	81244	81532	82469 2_sis		289	952	1614	0	1	2	0	2 (3:5)_(1:7)_(3:5)_(4:4)
150 OMT4	OMT	11	428081	428986	429005	429076 2_sis		20	507	994	0	1	2	0	2 (1:7)_(4:4)
196 OMT4	OMT	13	695123	695196	696571	697269 2_sis		1376	1761	2145	0	1	2	0	2 (3:5)_(2:6i)_(4:4)
245 OMT4	OMT	15	1038822	1038960	1039487	1039544 2_sis		528	625	721	0	1	2	0	2 (5:3)_(6:2)_(4:4)
40 OMT4	OMT	4	302250	303051	308617	308638	3	5567	5977	6387	0	2	2	1	1 (4:4ai)_(6:2)_(5:3)_(4:4bCO)_(3:5)_(4:4b)_(3:5a)_(4:4b)
51 OMT4	OMT	4	767007	767342	770058	770136	3	2717	2923	3128	0	2	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)
61 OMT4	OMT	4	1418139	1418662	1421025	1421204	4	2364	2714	3064	0	2	2	1	1 (4:4ai)_(3:5)_(2:6)_(3:5)_(2:6)_(2:6ai)_(3:5)_(4:4bCO)
78 OMT4	OMT	6	86721	87400	95849	96304	3	8450	9016	9582	0	2	2	1	1 (4:4ai)_(6:2i)_(5:3)_(4:4ai)_(5:3a)_(4:4ai)_(5:3b)_(6:2a)_(4:4bCO)
88 OMT4	OMT	7	588549	588631	590933	591242	3	2303	2498	2692	0	2	2	1	1 (3:5)_(3:5a)_(4:4aCO)_(5:3)_(4:4a)
92 OMT4	OMT	7	846945	846990	850043	850236	3	3054	3172	3290	0	2	2	1	1 (5:3)_(6:2i)_(6:2a)_(5:3a)_(6:2b)_(5:3a)_(4:4aCO)
146 OMT4	OMT	11	351989	352346	355543	355649	3	3198	3429	3659	0	2	2	1	1 (5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(3:5a)_(2:6a)_(3:5b)_(4:4bCO)
186 OMT4	OMT	13	25829	26166	26922	28623	3	757	1775	2793	0	2	2	1	1 (5:3)_(3:5)_(4:4aCO)
133 OMT4	OMT	10	570822	573135	584209	584647	3	11075	12450	13824	0	3	2	1	1 (5:3)_(6:2)_(4:4aCO)_(5:3a)_(6:2a)_(4:4bCO)
177 OMT4	OMT	12	745706	746036	747982	748236 2_nonsis		1947	2238	2529	0	3	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(2:6)_(3:5a)_(4:4CO)_(3:5b)_(3:5c)_(4:4aCO)
449 OMT4	OMT	12	1053841	1054279	1059350	1078177 2_sis		5072	14704	24335	0	4	1 NA	NA	3:5_3:5_4:4_2:6
160 OMT5	OMT	12	603216	603313	603325	603374	1	13	85	157	1	1	1	0	1 05:03
210 OMT5	OMT	15	494326	494461	494461	494556	1	1	115	229	1	1	1	0	1 05:03
230 OMT5	OMT	16	236868	236925	236925	237102	1	1	117	233	1	1	1	0	1 05:03
99 OMT5	OMT	8	462176	462297	462297	462419	1	1	122	242	1	1	1	0	1 05:03
92 OMT5	OMT	8	143543	143727	143727	143824	1	1	141	280	1	1	1	0	1 05:03
98 OMT5	OMT	8	383099	383247	383257	383395	1	11	153	295	1	1	1	0	1 05:03
150 OMT5	OMT	12	166641	166909	166909	166947	1	1	153	305	1	1	1	0	1 05:03
79 OMT5	OMT	7	413051	413440	413440	413503	1	1	226	451	1	1	1	0	1 05:03
116 OMT5	OMT	10	236674	236901	237020	237032	1	120	239	357	1	1	1	0	1 05:03
238 OMT5	OMT	16	653426	653739	653824	653857	1	86	258	430	1	1	1	0	1 05:03
228 OMT5	OMT	16	150500	150643	150643	151045	1	1	273	544	1	1	1	0	1 05:03
175 OMT5	OMT	13	239896	240226	240226	240460	1	1	282	563	1	1	1	0	1 05:03
185 OMT5	OMT	13	692858	693184	693290	693352	1	107	300	493	1	1	1	0	1 05:03
48 OMT5	OMT	4	1434996	1435091	1435091	1435647	1	1	326	650	1	1	1	0	1 05:03

		_												_	
63 OMT5	OMT	5	491262	491327	491556	491806	1	230	387	543	1	1	1	0	1 05:03
17 OMT5	OMT	2	308083	308205	308422	308770	1	218	452	686	1	1	1	0	1 05:03
200 OMT5	OMT	14	560308	560362	560362	561334	1	1	513	1025	1	1	1	0	1 05:03
156 OMT5	OMT	12	509342	509612	509982	510120	1	371	574	777	1	1	1	0	1 05:03
80 OMT5	OMT	7	450034	450372	450623	451100	1	252	659	1065	1	1	1	0	1 05:03
164 OMT5	OMT	12	706112	706444	707098	707238	1	655	890	1125	1	1	1	0	1 05:03
176 OMT5	OMT	13	258060	258493	259094	259263	1	602	902	1202	1	1	1	0	1 05:03
171 OMT5	OMT	13	21556	21881	22567	22768	1	687	949	1211	1	1	1	0	1 05:03
188 OMT5	OMT	13	873246	874942	874942	875434	1	1	1094	2187	1	1	1	0	1 05:03
121 OMT5	OMT	10	337345	337436	337436	339657	1	1	1156	2311	1	1	1	0	1 05:03
6 OMT5	OMT	10	112136		113326		1	195	1171	2146	1	1	1	0	1 05:03
		-		113132		114283	-				-	-	-		
146 OMT5	OMT	12	27605	28820	29781	30008	1	962	1682	2402	1	1	1	0	1 05:03
110 OMT5	OMT	9	412645	415204	415643	415827	1	440	1811	3181	1	1	1	0	1 05:03
9 OMT5	OMT	2	50611	50820	50893	59500	1	74	4481	8888	1	1	1	0	1 05:03
16 OMT5	OMT	2	258153	258313	258313	258409	1	1	128	255	1	2	1	0	1 03:05
149 OMT5	OMT	12	109602	109677	109736	109886	1	60	172	283	1	2	1	0	1 03:05
60 OMT5	OMT	5	416514	416792	416815	416927	1	24	218	412	1	2	1	0	1 03:05
199 OMT5	OMT	14	487991	488208	488208	488587	1	1	298	595	1	2	1	0	1 03:05
151 OMT5	OMT	12	177778	178195	178195	178408	1	1	315	629	1	2	1	0	1 03:05
197 OMT5	OMT	14	417156	417610	417659	417758	1	50	326	601	1	2	1	0	1 03:05
212 OMT5	OMT	15	609608	609836	609993	610269	1	158	409	660	1	2	1	0	1 03:05
39 OMT5	OMT	4	730704	730734	730734	731588	1	1	442	883	1	2	1	0	1 03:05
192 OMT5	OMT	14	121889	121988	122278	122496	1	291	449	606	1	2	1	0	1 03:05
28 OMT5	OMT	3	235472	236284	236284	236387	1	1	458	914	1	2	1	0	1 03:05
88 OMT5	OMT	7	984677	984935	985232	985352	1	298	486	674	1	2	1	0	1 03:05
113 OMT5	OMT	10	99116	99941	99962	100224	1	22	565	1107	1	2	1	0	1 03:05
54 OMT5	OMT	5	267673	268597	268713	268979	1	117	711	1305	1	2	1	0	1 03:05
224 OMT5	OMT	16	67558	68036	68341	68882	1	306	815	1323	1	2	1	0	1 03:05
75 OMT5	OMT	7	254552	255756	255756	256325	1	1	887	1772	1	2	1	0	1 03:05
72 OMT5	OMT	7	165111	165175	165523	166667	1	349	952	1555	1	2	1	0	1 03:05
225 OMT5	OMT	16	82186	82464	83474	83873	1	1011	1349	1686	1	2	1	0	1 03:05
11 OMT5	OMT	2	74920	75084	76470	76676	1	1387	1571	1755	1	2	1	0	1 03:05
3 OMT5	OMT	1	56399	56786	57739	59349	1	954	1952	2949	1	2	1	0	1 03:05
140 OMT5	OMT	11	356064	356100	356315	356343	1	216	247	278	1	3	1	0	1 5:3_6:2_5:3
135 OMT5	OMT	11	80353	80724	80854	81244	1	131	511	890	1	3	1	0	1 5:3_4:4_5:3
132 OMT5	OMT	10	716692	716901	717538	717626	1	638	786	933	1	3	1	0	1 5:3_4:4_5:3_6:2_5:3
162 OMT5	OMT	12	657825	657860	657926	658005	1	67	123	179	1	4	1	0	1 3:5_2:6_3:5
214 OMT5	OMT	15	690299	690558	694301	694394	1	3744	3919	4094	1	4	1	0	1 3:5_4:4_3:5
240 OMT5	OMT	16	700509	702403	703434	703815	1	1032	2169	3305	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5
126 OMT5	OMT	10	513875	515737	527538	528639	1	11802	13283	14763	1	7	1	0	1 5:3_6:2
159 OMT5	OMT	12	572946	573483	574950	575257	1	1468	1889	2310	1	7	1	0	1 5:3 4:4 6:2
221 OMT5	OMT	15	1048437	1048836	1049580	1049902	1	745	1105	1464	1	7	1	0	1 5:3_4:4_5:3_6:2
20 OMT5	OMT	2	515049	515130	515316	515610	1	187	374	560	1	8	1	0	1 3:5_2:6
201 OMT5	OMT	14	652054	652238	652419	652841	1	182	484	786	1	8	1	0	1 2:6_3:5
243 OMT5	OMT	16	900602	900649	901564	901586	1	916	950	983	1	8	1	0	1 3:5_2:6
207 OMT5	OMT	15	303222	303785	304796	304859	1	1012	1324	1636	1	8	1	0	1 2:6_3:5
161 OMT5	OMT	12	623758	623971	624838	627007	1	868	2058	3248	1	8	1	0	1 3:5_2:6
104 OMT5	OMT	9	232253	232425	232425	232621	1	1	184	367	1	10	1	0	1 06:02
139 OMT5	OMT	11	329686	329885	329955	330549	1	71	467	862	1	10	1	0	1 06:02
73 OMT5	OMT	7	197001	197230	197230	197989	1	1	494	987	1	10	1	0	1 06:02
58 OMT5	OMT	5	360556	361242	361243	361787	1	2	616	1230	1	10	1	0	1 06:02
127 OMT5	OMT	10	543291	543878	543880	544523	1	3	617	1231	1	10	1	0	1 06:02
102 OMT5	OMT	9	87789	88444	88448	89046	1	5	631	1256	1	10	1	0	1 06:02
223 OMT5	OMT	16	56116	56137	56137	56152	1	1	18	35	1	10.1	1	0	1 00:02
							-	-			-		-		
47 OMT5	OMT	4	1430578	1430819	1430819	1430837	1	1	130	258	1	10.1	1	0	1 02:06
130 OMT5	OMT	10	581638	581835	581835	581933	1	1	148	294	1	10.1	1	0	1 02:06
36 OMT5	OMT	4	595122	595155	595275	595314	1	121	156	191	1	10.1	1	0	1 02:06
56 OMT5	OMT	5	318564	318778	318778	319090	1	1	263	525	1	10.1	1	0	1 02:06
61 OMT5	OMT	5	461582	461594	461594	462226	1	1	322	643	1	10.1	1	0	1 02:06
27 OMT5	OMT	3	211617	212106	212106	212264	1	1	324	646	1	10.1	1	0	1 02:06

96 OMT5	OMT	8	235099	235973	235973	236137	1	1	519	1037	1	10.1	1	0	1 02:06
193 OMT5	OMT	14	146493	147100	147100	147716	1	1	612	1222	1	10.1	1	0	1 02:06
26 OMT5	OMT	3	163699	164093	164093	165982	1	1	1142	2282	1	10.1	1	0	1 02:06
77 OMT5	OMT	7	329667	330639	330839	331345	1	201	939	1677	2	11	1	0	1 5:3_5:3a
32 OMT5	OMT	4	271809	272060	272385	273003	1	326	760	1193	2	12	1	0	1 3:5_3:5a
85 OMT5	OMT	7	858731	859410	859955	860468	1	546	1141	1736	2	12	1	0	1 3:5_3:5a
219 OMT5	OMT	15	953190	953320	954766	955006	1	1447	1631	1815	2	12	1	0	1 3:5_3:5a
182 OMT5	OMT	13	605754	605794	606066	606299	1	273	409	544	2	13	1	0	1 5:3_4:4_5:3_5:3a
133 OMT5	OMT	11	68802	68824	69425	69662	1	602	731	859	2	13	1	0	1 5:3_6:2_5:3_5:3a
37 OMT5	OMT	4	670771	671025	672865	673237	1	1841	2153	2465	2	13	1	0	1 5:3_5:3a_4:4_5:3
42 OMT5	OMT	4	954954	954963	955755	956552	1	793	1195	1597	2	13	1	0	1 6:2_5:3_5:3a_6:2_5:3a
2 OMT5	OMT	1	51522	51951	54508	54661	1	2558	2848	3138	2	14	1	0	1 3:5_3:5a_2:6_3:5a
115 OMT5	OMT	10	227032	227303	230075	230256	1	2773	2998	3223	2	14	1	0	1 3:5_4:4_3:5_4:4_3:5_3:5a
179 OMT5	OMT	13	392261	392366	392634	392778	1	269	393	516	2	15	1	0	1 5:3_4:4_5:3a
165 OMT5	OMT	12	758595	758853	759341	759438	1	489	666	842	2	15	1	0	1 5:3_4:4_5:3a
222 OMT5	OMT	15	1063605	1063818	1064615	1064799	1	798	996	1193	2	15	1	0	1 5:3_4:4_5:3a
112 OMT5	OMT	10	78874	79092	80055	80196	1	964	1143	1321	2	15	1	0	1 5:3_4:4_5:3a
97 OMT5	OMT	8	380348	380530	381642	381677	1	1113	1221	1328	2	15	1	0	1 5:3_4:4_5:3a
226 OMT5	OMT	16	105874	105972	107496	107754	1	1525	1702	1879	2	15	1	0	1 5:3_4:4_5:3a
57 OMT5	OMT	5	327452	327970	328370	329070	1	401	1009	1617	2	16	1	0	1 3:5_4:4_3:5a
181 OMT5	OMT	13	571457	571706	572658	572735	1	953	1115	1277	2	16	1	0	1 3:5_4:4_3:5a
234 OMT5	OMT	16	474750	475030	475802	476377	1	773	1200	1626	2	16	1	0	1 3:5_4:4_3:5a
71 OMT5	OMT	7	79203	80122	81435	82858	1	1314	2484	3654	2	16	1	0	1 3:5_4:4_3:5a
81 OMT5	OMT	7	609732	609750	610218	610674	1	469	705	941	2	17	1	0	1 5:3_4:4_5:3_4:4_5:3a
137 OMT5	OMT	11	259816	259883	263194	263873	1	3312	3684	4056	2	18	1	0	1 3:5_4:4_3:5a_4:4_3:5_4:4_3:5
87 OMT5	OMT	7	950426	950639	952505	952947	1	1867	2194	2520	2	21	1	0	1 5:3_4:4_5:3_6:2_5:3a_6:2_5:3a
12 OMT5	OMT	2	137392	137522	138346	138529	1	825	981	1136	2	23	1	0	1 5:3_6:2_4:4_5:3a
46 OMT5	OMT	4	1333898	1334061	1335206	1335398	1	1146	1323	1499	2	23	1	0	1 3:5_4:4_2:6_3:5a
109 OMT5	OMT	9	407232	407953	408224	408521 2_nonsis		272	780	1288	3	30	1	0	1 5:3_5:3a
50 OMT5	OMT	4	1478931	1479729	1480271	1480913 2_nonsis		543	1262	1981	3	30	1	0	1 6:2_5:3
55 OMT5	OMT	5	283424	284680	285062	285738 2_nonsis		383	1348	2313	3	30	1	0	1 5:3_6:2
189 OMT5	OMT	14	32426	34396	34917	37063 2_nonsis		522	2579	4636	3	30	1	0	1 5:3_5:3a
122 OMT5	OMT	10	359445	360186	361643	362386 2_nonsis		1458	2199	2940	3	30	1	0	1 2:6_4:4_5:3
194 OMT5	OMT	14	165982	166576	168436	168578 2_nonsis		1861	2228	2595	3	30	1	0	1 5:3_5:3a_5:3b
13 OMT5	OMT	2	146672	147197	148726	149389 2_nonsis		1530	2123	2716	3	30	1	0	1 2:6_4:4_2:6_3:5
107 OMT5	OMT	9	266803	267668	269349	269523 2_nonsis		1682	2201	2719	3	30	1	0	1 3:5_6:2_4:4_3:5a
211 OMT5	OMT	15	586076	586304	586907	587142 2_nonsis		604	835	1065	3	31	1	0	1 4:4ai_2:6
153 OMT5	OMT	12	320997	322903	326213	326929 2_nonsis		3311	4621	5931	3	31	1	0	1 3:5_4:4ai
158 OMT5	OMT	12	545416	545525	547047	547203 2_nonsis		1523	1655	1786	3	31	1	0	1 5:3_6:2_5:3a_4:4ai_3:5
172 OMT5	OMT	13	49588	49712	51433	51596 2_nonsis		1722	1865	2007	3	31	1	0	1 5:3_4:4_4:4ai_4:4_5:3a_6:2_5:3a
216 OMT5	OMT	15	736963	737103	737961	738617 2_nonsis		859	1256	1653	1	1	1	1	0 (5:3)_(4:4aCO)
90 OMT5	OMT	7	999847	999896	999896	1000147 2_nonsis		1	150	299	1	2	1	1	0 (3:5)_(4:4aCO)
244 OMT5	OMT	16	903504	903807	903807	904203 2_nonsis		1	350	698	1	2	1	1	0 (3:5)_(4:4aCO)
123 OMT5	OMT	10	391693	393423	393564	393918 2_nonsis		142	1183	2224	1	2	1	1	0 (3:5)_(4:4aCO)
34 OMT5	OMT	4	395767	396458	396700	397411 2_nonsis		243	943	1643	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
187 OMT5	OMT	13	860181	861184	862092	862695 2_nonsis		909	1711	2513	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
31 OMT5	OMT	4	218815	219142	219340	220878 2_nonsis		199	1131	2062	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
147 OMT5	OMT	12	52409	53039	54071	54226 2_nonsis		1033	1425	1816	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
76 OMT5	OMT	7	270975	271422	271853	272144 2_nonsis		432	800	1168	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
144 OMT5	OMT	11	633026	633545	634635	635970 2_nonsis		1091	2017	2943	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
191 OMT5	OMT	14	113233	113311	113360	113719 2_nonsis		50	268	485	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
154 OMT5	OMT	12	338130	338262	338685	339496 2_nonsis		424	895	1365	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
232 OMT5	OMT	16	296393	297021	297634	298155 2_nonsis		614	1188	1761	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
93 OMT5	OMT	8	159136	159406	159599	159887 2_nonsis		194	472	750	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
203 OMT5	OMT	15	39466	39499	40834	41027 2_nonsis		1336	1448	1560	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
91 OMT5	OMT	8	21033	21160	21727	22121 2_nonsis		568	828	1087	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
190 OMT5	OMT	14	87215	87864	88100	88950 2_nonsis		237	986	1734	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
53 OMT5	OMT	5	223022	223802	223802	224528 2_nonsis		1	753	1505	1	11	1	1	0 (4:4ai)_(4:4bCO)
59 OMT5	OMT	5	378075	378265	379092	379332 2_nonsis		828	1042	1256	1	11	1	1	0 (4:4ai)_(5:3)_(4:4bCO)
236 OMT5	OMT	16	493304	493377	499073	499388 2_nonsis		5697	5890	6083	1	11	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4ai)_(4:4bCO)

100 OMT5	OMT	8	479332	480039	487338	487560 2_nonsis	7300	7764	8227	1	11	1	1	0 (5:3)_(4:4)_(5:3)_(4:4ai)_(6:2)_(4:4bCO)_(5:3)_(6:2)_(4:4b)
24 OMT5	OMT	3	37180	37525	38022	38178 2_nonsis	498	748	997	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
239 OMT5	OMT	16	664861	665235	665970	666185 2_nonsis	736	1030	1323	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
21 OMT5	OMT	2	572025	572093	573399	573446 2_nonsis	1307	1364	1420	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
142 OMT5	OMT	11	527758	528174	529197	529548 2_nonsis	1024	1407	1789	1	12	1	1	0 (5:3)_(6:2)_(4:4)_(4:4aCO)
40 OMT5	OMT	4	850697	850922	851427	853136 2_nonsis	506	1472	2438	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
62 OMT5	OMT	5	467203	467312	469007	469292 2_nonsis	1696	1892	2088	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
35 OMT5	OMT	4	545483	546251	547565	548255 2_nonsis	1315	2043	2771	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
117 OMT5	OMT	10	278411	279038	281006	281289 2_nonsis	1969	2423	2877	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
245 OMT5	OMT	16	910123	910771	918999	919303 2_nonsis	8229	8704	9179	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
41 OMT5	OMT	4	931988	932298	934184	934358 2_nonsis	1887	2128	2369	1	12	1	1	0 (5:3)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
231 OMT5	OMT	16	258986	259333	264524	264575 2_nonsis	5192	5390	5588	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
33 OMT5	OMT	4	356968	357312	359534	360404 2_nonsis	2223	2829	3435	1	12	1	1	0 (3:5)_(2:6)_(4:4)_(3:5)_(2:6)_(3:5)_(4:4aCO)
22 OMT5	OMT	2	702600	702673	702673	703042 2_nonsis	1	221	441	1	15	1	1	0 (6:2)_(4:4aCO)
183 OMT5	OMT	13	619353	619660	619714	619822 2_nonsis	55	262	468	1	15	1	1	0 (6:2)_(4:4aCO)
145 OMT5	OMT	12	21995	22201	22201	22811 2_nonsis	1	408	815	1	15	1	1	0 (6:2)_(4:4aCO)
217 OMT5	OMT	15	795711	796275	796356	796472 2_nonsis	82	421	760	1	15	1	1	0 (6:2)_(4:4aCO)
218 OMT5	OMT	15	891508	891758	891830	892334 2_nonsis	73	449	825	1	15	1	1	0 (6:2)_(4:4aCO)
134 OMT5	OMT	11	74103	74603	74756	74916 2_nonsis	154	483	812	1	15	1	1	0 (6:2)_(4:4aCO)
235 OMT5	OMT	16	490450	490554	491133	491543 2_nonsis	580	836	1092	1	15	1	1	0 (6:2)_(4:4aCO)
86 OMT5	OMT	7	914107	914538	914816	915691 2_nonsis	279	931	1583	1	15	1	1	0 (6:2)_(4:4aCO)
220 OMT5	OMT	15	1011684	1011803	1011803	1013810 2_nonsis	1	1063	2125	1	15	1	1	0 (6:2)_(4:4aCO)
131 OMT5	OMT	10	637980	638018	639365	640236 2_nonsis	1348	1802	2255	1	15	1	1	0 (6:2)_(4:4aCO)
69 OMT5	OMT	6	225457	226036	228093	229247 2_nonsis	2058	2924	3789	1	15	1	1	0 (6:2)_(4:4aCO)
204 OMT5	OMT	15	135770	136025	136025	136228 2_nonsis	1	229	457	1	16	1	1	0 (2:6)_(4:4aCO)
184 OMT5	OMT	13	686613	686772	686772	687199 2_nonsis	1	293	585	1	16	1	1	0 (2:6)_(4:4aCO)
143 OMT5	OMT	11	567633	567960	568041	568283 2_nonsis	82	366	649	1	16	1	1	0 (2:6)_(4:4aCO)
198 OMT5	OMT	14	424418	425075	425075	425369 2_nonsis	1	476	950	1	16	1	1	0 (2:6)_(4:4aCO)
43 OMT5	OMT	4	1084062	1084839	1084864	1085054 2_nonsis	26	509	991	1	16	1	1	0 (2:6)_(4:4aCO)
174 OMT5	OMT	13	235798	236240	236240	236819 2_nonsis	1	511	1020	1	16	1	1	0 (2:6)_(4:4aCO)
70 OMT5	OMT	7	23450	23509	23642	24468 2_nonsis	134	576	1017	1	16	1	1	0 (2:6)_(4:4aCO)
173 OMT5	OMT	13	76243	76517	77019	77135 2_nonsis	503	697	891	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
173 OMT5	OMT	12	232561	233075	233075	234128 2_nonsis	1	784	1566	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
229 OMT5	OMT	16	213597	214067	214963	216380 2_nonsis	897	1840	2782	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
68 OMT5	OMT	6	203845	204006	212520	212940 2_nonsis	8515	8805	9094	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
							0					1	1	
138 OMT5 84 OMT5	OMT OMT	11 7	308786 784372	309009 784625	308786 784372	309009 2_nonsis	0	111 126	222 252	1	100 100	1	1	0 (4:4aCO)
						784625 2_nonsis								0 (4:4aCO)
148 OMT5	OMT	12	100782	101108	100782	101108 2_nonsis	0	163	325	1	100	1	1	0 (4:4aCO)
136 OMT5	OMT	11	164565	164899	164565	164899 2_nonsis	0	167	333	1	100	1	1	0 (4:4aCO)
178 OMT5	OMT	13	387879	388308	387879	388308 2_nonsis	0	214	428	1	100	1	1	0 (4:4aCO)
242 OMT5	OMT	16	876278	876719	876278	876719 2_nonsis	0	220	440	1	100	1	1	0 (4:4aCO)
23 OMT5	OMT	2	736314	736876	736314	736876 2_nonsis	0	281	561	1	100	1	1	0 (4:4aCO)
169 OMT5	OMT	12	990920	991691	990920	991691 2_nonsis	0	385	770	1	100	1	1	0 (4:4aCO)
108 OMT5	OMT	9	377342	378238	377342	378238 2_nonsis	0	448	895	1	100	1	1	0 (4:4aCO)
83 OMT5	OMT	7	677412	678405	677412	678405 2_nonsis	0	496	992	1	100	1	1	0 (4:4aCO)
25 OMT5	OMT	3	74577	76009	74577	76009 2_nonsis	0	716	1431	1	100	1	1	0 (4:4aCO)
167 OMT5	OMT	12	859351	860959	859351	860959 2_nonsis	0	804	1607	1	100	1	1	0 (4:4aCO)
202 OMT5	OMT	14	674690	676368	674690	676368 2_nonsis	0	839	1677	1	100	1	1	0 (4:4aCO)
67 OMT5	OMT	6	85688	87400	85688	87400 2_nonsis	0	856	1711	1	100	1	1	0 (4:4aCO)
45 OMT5	OMT	4	1301405	1303168	1301405	1303168 2_nonsis	0	881	1762	1	100	1	1	0 (4:4aCO)
141 OMT5	OMT	11	368313	370529	368313	370529 2_nonsis	0	1108	2215	1	100	1	1	0 (4:4aCO)
213 OMT5	OMT	15	658496	660722	658496	660722 2_nonsis	0	1113	2225	1	100	1	1	0 (4:4aCO)
4 OMT5	OMT	1	59659	61999	59659	61999 2_nonsis	0	1170	2339	1	100	1	1	0 (4:4aCO)
128 OMT5	OMT	10	544523	547200	544523	547200 2_nonsis	0	1338	2676	1	100	1	1	0 (4:4aCO)
49 OMT5	OMT	4	1455942	1459261	1455942	1459261 2_nonsis	0	1659	3318	1	100	1	1	0 (4:4aCO)
106 OMT5	OMT	9	249546	250194	251980	252174 2_nonsis	1787	2207	2627	2	31	1	1	0 (3:5)_(3:5a)_(4:4ai)_(4:4bCO)
111 OMT5	OMT	10	33525	34030	38250	38373 2_nonsis	4221	4534	4847	2	31	1	1	0 (3:5)_(4:4)_(2:6)_(3:5)_(3:5a)_(2:6)_(3:5)_(4:4ai)_(4:4bCO)
124 OMT5	OMT	10	458442	458980	460257	460723 2_nonsis	1278	1779	2280	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
101 OMT5	OMT	8	514601	517336	517418	518179 2_nonsis	83	1830	3577	2	32	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
14 OMT5	OMT	2	193664	193715	198241	198355 2_nonsis	4527	4609	4690	2	32	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4)_(5:3a)_(4:4aCO)

18 OMT5	OMT	2	434210	434484	435236	435650 2_nonsis		753	1096	1439	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
206 OMT5	OMT	15	245153	245875	246679	247071 2_nonsis		805	1361	1917	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
209 OMT5	OMT	15	478915	479565	480144	482383 2_nonsis		580	2024	3467	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
186 OMT5	OMT	13	713194	713353	716386	716783 2_nonsis		3034	3311	3588	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
241 OMT5	OMT	16	731859	732035	732750	732897 2_nonsis		716	877	1037	3	20	1	1	0 (3:5)_(6:2)_(5:3)_(4:4aCO)
205 OMT5	OMT	15	215043	215265	216270	216376 2_nonsis		1006	1169	1332	3	20	1	1	0 (3:5)_(5:3)_(6:2)_(4:4aCO)
30 OMT5	OMT	4	162718	162819	163967	164298 2_nonsis		1149	1364	1579	3	20	1	1	0 (5:3)_(3:5)_(5:3)_(4:4aCO)
82 OMT5	OMT	7	613998	614457	615842	616159 2_nonsis		1386	1773	2160	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
177 OMT5	OMT	13	321916	322143	323763	324584 2_nonsis		1621	2144	2667	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(4:4aCO)
157 OMT5	OMT	12	533081	533245	535113	535533 2_nonsis		1869	2160	2451	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
10 OMT5	OMT	2	71395	71420	72233	72346 2_nonsis		814	882	950	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(3:5)_(4:4aCO)
233 OMT5	OMT	16	427730	428058	429173	429236 2_nonsis		1116	1311	1505	3	20	1	1	0 (6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
215 OMT5	OMT	15	700551	700804	702553	702696 2_nonsis		1750	1947	2144	3	20	1	1	0 (3:5)_(5:3)_(6:2)_(5:3)_(4:4aCO)
78 OMT5	OMT	7	397325	397929	400713	401117 2_nonsis		2785	3288	3791	3	20	1	1	0 (5:3)_(5:3a)_(4:4)_(3:5)_(4:4aCO)
103 OMT5	OMT	9	102536	102597	104545	104638 2_nonsis		1949	2025	2101	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
237 OMT5 44 OMT5	OMT OMT	16 4	584400 1270902	584447 1272147	586546 1274074	586768 2_nonsis		2100 1928	2234 2884	2367 3840	3	20 20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3a)_(4:4a)_(5:3)_(4:4a)
	OMT	12	1030457	1030472	1033418	1274743 2_nonsis		1928 2947			3	20	1	1	0 (3:5)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
170 OMT5 66 OMT5	OMT	6	53398	54604	55480	1033763 2_nonsis 55864 2_nonsis		2947 877	3126 1671	3305 2465	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a) 0 (3:5)_(4:4ai)_(5:3)_(4:4bCO)
196 OMT5	OMT	14	232241	232438	235424			2987	3778	4568	3	21	1	1	
5 OMT5	OMT	14	70999	71116	74786	236810 2_nonsis 75211 2 nonsis		3671	3941	4211	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(3:5a)_(2:6)_(4:4bCO) 0 (6:2)_(4:4ai)_(3:5)_(4:4ai)_(3:5)_(4:4bCO)
64 OMT5	OMT	5	550011	550177	551411	551830 2_nonsis		1235	1527	1818	3	21	1	1	0 (6:2)_(4:4ai)_(5:3)_(4:4ai)_(3:5)_(4:4ai)_(5:3)_(4:4bCO) 0 (4:4ai)_(5:3)_(4:4ai)_(3:5)_(4:4ai)_(3:5)_(4:4ai)_(5:3)_(4:4bCO)_(5:3)_(4:4b)
246 OMT5	OMT	16	921047	921116	924291	924915 2_nonsis		3176	3522	3867	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(4:4bi)_(3:5)_(4:4b) 0 (5:3)_(4:4)_(4:4ai)_(3:5)_(4:4bCO)_(3:5)_(4:4b)_(3:5)_(2:6)_(3:5)_(4:4b)
8 OMT5	OMT	1	180747	180881	183101	183881 2_sis		2221	2677	3133	0	1	2	0	2 (5:3)_(7:1)_(7:1a)_(5:3a)_(6:2)_(5:3a)_(4:4)
95 OMT5	OMT	8	230913	230956	232174	232258 2_sis		1219	1282	1344	0	1	2	0	2 (5:3)_(4:4)_(5:3a)_(4:4)_(5:3b)_(4:4) 2 (5:3)_(4:4)_(5:3a)_(4:4)_(5:3b)_(4:4)
105 OMT5	OMT	9	247495	247508	247508	247526 2_sis		1217	16	30	0	1	2	0	2 (2:6i)_(4:4)
119 OMT5	OMT	10	315587	315842	316590	317045 2_sis		749	1103	1457	0	1	2	0	2 (7:1)_(7:1a)_(4:4)
120 OMT5	OMT	10	330191	330470	334204	334468	3	3735	4006	4276	0	1	2	0	2 (5:3)_(4:4)_(5:3)_(6:2i)_(4:4ai)_(4:4)
7 OMT5	OMT	1	121235	128637	130975	132066	3	2339	6585	10830	0	2	2	1	1 (3:5)_(4:4aCO)_(4:4bi)_(3:5a)_(2:6)_(4:4a)
15 OMT5	OMT	2	252036	254006	255862	257565	3	1857	3693	5528	0	2	2	1	1 (5:3) (4:4aCO)
19 OMT5	OMT	2	447949	448135	455204	455563	3	7070	7342	7613	0	2	2	1	1 (3:5)_(3:5a)_(2:6i)_(3:5a)_(2:6i)_(3:5a)_(4:4ai)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4bCO)
29 OMT5	OMT	4	55881	57157	62366	62726	3	5210	6027	6844	0	2	2	1	1 (5:3)_(4:4)_(5:3a)_(4:4)_(6:2)_(6:2a)_(4:4aCO)
38 OMT5	OMT	4	698788	699229	699938	700023	3	710	972	1234	0	2	2	1	1 (5:3)_(5:3a)_(4:4aCO)
51 OMT5	OMT	5	65210	65418	69083	69209	3	3666	3832	3998	0	2	2	1	1 (3:5)_(4:4ai)_(3:5)_(5:3)_(4:4bCO)
52 OMT5	OMT	5	98283	98854	117889	118141	4	19036	19447	19857	0	2	2	1	1 (5:3)_(6:2)_(5:3)_(4:4ai)_(4:4)_(5:3)_(2:6)_(6:2a)_(7:1)_(4:4bCO)
65 OMT5	OMT	6	30616	30827	32620	32663	3	1794	1920	2046	0	2	2	1	1 (5:3)_(4:4)_(5:3a)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
94 OMT5	OMT	8	192892	194830	195949	196156	3	1120	2192	3263	0	2	2	1	1 (7:1)_(7:1a)_(7:1b)_(8:0)_(5:3)_(6:2i)_(5:3a)_(4:4aCO)
114 OMT5	OMT	10	195349	196239	197119	204724	3	881	5128	9374	0	2	2	1	1 (3:5)_(4:4ai)_(4:4bCO)
118 OMT5	OMT	10	301236	301476	303151	303215	3	1676	1827	1978	0	2	2	1	1 (2:6)_(3:5)_(4:4ai)_(4:4bCO)_(4:4ai)_(4:4b)
125 OMT5	OMT	10	469702	472011	485198	485447	4	13188	14466	15744	0	2	2	2	0 (1:7)_(3:5)_(4:4aCO)
129 OMT5	OMT	10	570822	573135	574799	576464	4	1665	3653	5641	0	2	2	1	1 (7:1)_(6:2i)_(5:3)_(6:2a)_(5:3a)_(3:5)_(4:4aCO)
163 OMT5	OMT	12	677014	677110	678541	679614	3	1432	2016	2599	0	2	2	1	1 (5:3)_(3:5)_(2:6i)_(1:7)_(2:6a)_(4:4aCO)
166 OMT5	OMT	12	836343	840577	840682	843387	4	106	3575	7043	0	2	2	2	0 (3:5)_(4:4aCO)
180 OMT5	OMT	13	538176	538772	543143	543227	3	4372	4711	5050	0	2	2	1	1 (5:3)_(6:2)_(5:3)_(4:4ai)_(3:5)_(4:4bCO)_(3:5)_(5:3a)_(4:4b)
195 OMT5	OMT	14	216026	216647	216919	218712	3	273	1479	2685	0	2	2	1	1 (5:3)_(5:3a)_(4:4aCO)
227 OMT5	OMT	16	130145	130597	133624	133867	3	3028	3375	3721	0	2	2	1	1 (3:5)_(3:5a)_(2:6)_(4:4aCO)
1 OMT5	OMT	1	28696	28844	32652	32883	3	3809	3998	4186	0	3	2	1	1 (3:5)_(2:6)_(4:4)_(3:5)_(2:6)_(3:5)_(4:4)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(4:4bCO)
74 OMT5	OMT	7	223151	224665	226711	229846 2_nonsis		2047	4371	6694	0	3	2	0	2 (3:5)_(2:6)_(4:4aCO)_(4:4bi)_(4:4CO)
89 OMT5	OMT	7	991998	992205	994782	994829	3	2578	2704	2830	0	3	2	1	1 (3:5)_(4:4)_(4:4aCO)_(3:5a)_(4:4bCO)_(3:5a)_(4:4b)
168 OMT5	OMT	12	938923	939652	951524	951540	4	11873	12245	12616	0	3	2	2	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)_(5:3b)_(3:5)_(4:4bCO)
208 OMT5	OMT	15	416094	416506	418252	418353	3	1747	2003	2258	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(2:6)_(4:4bCO)
221 OMT6	OMT	16	187312	187323	187323	187327	1	1	8	14	1	1	1	0	1 05:03
32 OMT6	OMT	4	202761	202877	202877	202902	1	1	71	140	1	1	1	0	1 05:03
177 OMT6	OMT	13	388416	388450	388450	388681	1	1	133	264	1	1	1	0	1 05:03
226 OMT6	OMT	16	529035	529207	529207	529318	1	1	142	282	1	1	1	0	1 05:03
231 OMT6	OMT	16	754351	754681	754681	754744	1	1	197	392	1	1	1	0	1 05:03
166 OMT6	OMT	12	759015	759188	759288	759341	1	101	213	325	1	1	1	0	1 05:03
162 OMT6	OMT	12	568114	568449	568449	568546	1	1	216	431	1	1	1	0	1 05:03
145 OMT6	OMT	11	519020	519160	519160	519513	1	1	247	492	1	1	1	0	1 05:03
61 OMT6	OMT	5	41545	41566	41711	41961	1	146	281	415	1	1	1	0	1 05:03

89 OMT6	OMT	7	766129	766363	766502	766579	1	140	295	449	1	1	1	0	1 05:03
159 OMT6	OMT	12	514832	514961	514961	515468	1	1	318	635	1	1	1	0	1 05:03
35 OMT6	OMT	4	307984	308058	308257	308500	1	200	358	515	1	1	1	0	1 05:03
146 OMT6	OMT	11	523472	523649	523718	524191	1	70	394	718	1	1	1	0	1 05:03
203 OMT6	OMT	15	371158	371479	371632	371824	1	154	410	665	1	1	1	0	1 05:03
214 OMT6	OMT	15	987247	987667	987667	988081	1	1	417	833	1	1	1	0	1 05:03
23 OMT6	OMT	3	95967	96019	96055	96799	1	37	434	831	1	1	1	0	1 05:03
201 OMT6	OMT	15	226694	227513	227538	227560	1	26	446	865	1	1	1	0	1 05:03
43 OMT6	OMT	4	622991	623053	623197	623798	1	145	476	806	1	1	1	0	1 05:03
164 OMT6	OMT	12	721257	721788	721984	722023	1	197	481	765	1	1	1	0	1 05:03
186 OMT6	OMT	14	198937	199403	199570	199738	1	168	484	800	1	1	1	0	1 05:03
187 OMT6	OMT	14	240441	240587	240933	241136	1	347	521	694	1	1	1	0	1 05:03
148 OMT6	OMT	11	604404	605465	605465	605622	1	1	609	1217	1	1	1	0	1 05:03
98 OMT6	OMT	7	1048158	1048356	1048437	1049349	1	82	636	1190	1	1	1	0	1 05:03
223 OMT6	OMT	16	321586	321864	322313	322652	1	450	758	1065	1	1	1	0	1 05:03
130 OMT6	OMT	10	547820	548463	548463	549376	1	1	778	1555	1	1	1	0	1 05:03
178 OMT6 92 OMT6	OMT OMT	13 7	495304 896389	495559 896765	496159 897484	496520 897531	1	601 720	908 931	1215 1141	1	1	1	0	1 05:03 1 05:03
92 OM16 197 OMT6	OMT	14	733303	733411	734296	734519	1	720 886	1051	1215	1	1	1	0	1 05:03
229 OMT6	OMT			618915	619974		1	1060	1214	1368	1	1	1	0	1 05:03
144 OMT6	OMT	16 11	618638 498225	499168	499999	620007 500101	1	832	1354	1875	1	1	1	0	1 05:03
28 OMT6	OMT	4	62366	62726	63846	64139	1	1121	1447	1772	1	1	1	0	1 05:03
154 OMT6	OMT	12	279533	280412	281289	282215	1	878	1780	2681	1	1	1	0	1 05:03
85 OMT6	OMT	7	398049	398572	400713	401117	1	2142	2605	3067	1	1	1	0	1 05:03
113 OMT6	OMT	9	247495	247522	247522	247526	1	1	16	30	1	2	1	0	1 03:05
184 OMT6	OMT	14	187825	187884	187910	188016	1	27	109	190	1	2	1	0	1 03:05
206 OMT6	OMT	15	533847	533983	533983	534085	1	1	119	237	1	2	1	0	1 03:05
127 OMT6	OMT	10	459351	459420	459431	459643	1	12	152	291	1	2.	1	0	1 03:05
211 OMT6	OMT	15	797043	797205	797205	797362	1	1	160	318	1	2	1	0	1 03:05
80 OMT6	OMT	7	269180	269232	269232	269505	1	1	163	324	1	2	1	0	1 03:05
34 OMT6	OMT	4	301751	301888	301888	302084	1	1	167	332	1	2	1	0	1 03:05
95 OMT6	OMT	7	990505	990538	990659	990718	1	122	167	212	1	2	1	0	1 03:05
190 OMT6	OMT	14	400901	400998	401015	401240	1	18	178	338	1	2	1	0	1 03:05
205 OMT6	OMT	15	511001	511101	511101	511376	1	1	188	374	1	2	1	0	1 03:05
66 OMT6	OMT	5	342731	342945	342945	343116	1	1	193	384	1	2	1	0	1 03:05
42 OMT6	OMT	4	619930	620254	620254	620359	1	1	215	428	1	2	1	0	1 03:05
81 OMT6	OMT	7	271683	271853	271853	272144	1	1	231	460	1	2	1	0	1 03:05
51 OMT6	OMT	4	1108150	1108456	1108511	1108662	1	56	284	511	1	2	1	0	1 03:05
17 OMT6	OMT	2	727268	727326	727581	727716	1	256	352	447	1	2	1	0	1 03:05
230 OMT6	OMT	16	678816	679094	679119	679573	1	26	391	756	1	2	1	0	1 03:05
208 OMT6	OMT	15	682981	683158	683410	683562	1	253	417	580	1	2	1	0	1 03:05
65 OMT6	OMT	5	238975	239168	239238	239782	1	71	439	806	1	2	1	0	1 03:05
151 OMT6	OMT	12	49831	50099	50287	50531	1	189	444	699	1	2	1	0	1 03:05
173 OMT6	OMT	13	82207	82357	82357	83128	1	1	461	920	1	2	1	0	1 03:05
210 OMT6	OMT	15	760366	760705	760705	761321	1	1	478	954	1	2	1	0	1 03:05
16 OMT6	OMT	2	724953	725168	725454	725631	1	287	482	677	1	2	1	0	1 03:05
142 OMT6	OMT	11	345623	345918	345918	346598	1	1	488	974	1	2	1	0	1 03:05
125 OMT6	OMT	10	337582	338042	338042	338561	1	1	490	978	1	2	1	0	1 03:05
218 OMT6	OMT	16	85516	85599	85729	86390	1	131	502	873	1	2	1	0	1 03:05
29 OMT6	OMT	4	78578	78587	78945	79228	1	359	504	649	1	2	1	0	1 03:05
219 OMT6	OMT	16	164740	165213	165244	165730	1	32	511	989	1	2	1	0	1 03:05
48 OMT6	OMT	4	1001692	1001907	1002178	1002467	1	272	523	774	1	2	1	0	1 03:05
37 OMT6	OMT	4	387000	387021	387397	387713	1	377	545	712	1	2	1	0	1 03:05
25 OMT6	OMT	3	210245	210441	210635	211159	1	195	554	913	1	2	1	0	1 03:05
78 OMT6	OMT	7	96337	96869	97109	97316	1	241	610	978	1	2	1	0	1 03:05
118 OMT6	OMT	10	36445	36722	37127	37895	1	406	928	1449	1	2	1	0	1 03:05
8 OMT6	OMT	2	217109	218039	218624	218666	1	586	1071	1556	1	2	1	0	1 03:05
129 OMT6	OMT	10	526176	526730	527538	528639	1	809	1636	2462	1	2	1	0	1 03:05
116 OMT6	OMT	9	406124	406436	408110	408224	1	1675	1887	2099	1	2	1	0	1 03:05
9 OMT6	OMT	2	288339	288484	288990	289129	1	507	648	789	1	3	1	0	1 5:3_6:2_5:3

91 OMT6	OMT	7	892563	893054	894236	894312	1	1183	1466	1748	1	3	1	0	1 5:3_4:4_5:3
225 OMT6	OMT	16	431840	432048	432288	432333	1	241	367	492	1	4	1	0	1 3:5_2:6_3:5
55 OMT6	OMT	4	1398960	1399211	1399679	1399937	1	469	723	976	1	4	1	0	1 3:5_2:6_3:5
133 OMT6	OMT	10	690126	690711	692187	692358	1	1477	1854	2231	1	4	1	0	1 3:5_4:4_3:5_4:4_3:5
106 OMT6	OMT	8	400960	401190	402986	403215	1	1797	2026	2254	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5
170 OMT6	OMT	12	1043284	1043537	1043701	1043895	1	165	388	610	1	7	1	0	1 5:3_6:2
122 OMT6	OMT	10	257310	257383	257831	257958	1	449	548	647	1	7	1	0	1 6:2_5:3
104 OMT6	OMT	8	235099	235912	235973	236137	1	62	550	1037	1	7	1	0	1 5:3_6:2
72 OMT6	OMT	6	94545	95140	95460	95585	1	321	680	1039	1	7	1	0	1 5:3_6:2
181 OMT6	OMT	13	777598	777667	778144	779842	1	478	1361	2243	1	7	1	0	1 5:3_6:2
53 OMT6	OMT	4	1333678	1333799	1334562	1334981	1	764	1033	1302	1	7	1	0	1 5:3_4:4_5:3_4:4_6:2
49 OMT6	OMT	4	1005047	1005151	1005358	1005567	1	208	364	519	1	8	1	0	1 3:5_2:6
195 OMT6	OMT	14	651410	652054	652419	652841	1	366	898	1430	1	8	1	0	1 2:6_3:5
100 OMT6	OMT	8	97715	98248	99112	99909	1	865	1529	2193	1	8	1	0	1 2:6_3:5
193 OMT6	OMT	14	577067	579044	579894	580292	1	851	2038	3224	1	8	1	0	1 2:6_3:5
175 OMT6	OMT	13	352695	353026	353260	353329	1	235	434	633	1	10	1	0	1 06:02
21 OMT6	OMT	3	52371	52418	52418	52747	1	1	188	375	1	10.1	1	0	1 02:06
111 OMT6	OMT	9	215186	215644	215644	215993	1	1	404	806	1	10.1	1	0	1 02:06
215 OMT6	OMT	15	1006918	1007685	1009862	1009919	1	2178	2589	3000	1	10.1	1	0	1 02:06
135 OMT6	OMT	11	30068	31754	33673	34051	1	1920	2951	3982	1	10.1	1	0	1 02:06
58 OMT6	OMT	4	1497628	1497856	1498087	1498561	1	232	582	932	2	11	1	0	1 5:3_5:3a
94 OMT6	OMT	7	919139	919329	919947	920266	1	619	873	1126	2	11	1	0	1 5:3_5:3a
84 OMT6	OMT	7	393263	393326	394550	394643	1	1225	1302	1379	2	11	1	0	1 5:3_5:3a
63 OMT6	OMT	5	201006	201879	203238	203277	1	1360	1815	2270	2	11	1	0	1 5:3_5:3a 1 5:3_5:3a
71 OMT6	OMT				45896		1				2		1	0	
		6	45217	45521		45926	-	376	542	708		12			1 3:5_3:5a
41 OMT6	OMT	4	599865	599964	600480	600632	1	517	642	766	2	12	1	0	1 3:5_3:5a
22 OMT6	OMT	3	76009	76939	78909	79012	1	1971	2487	3002	2	12	1	0	1 3:5_3:5a
228 OMT6	OMT	16	590589	590724	591899	592129	1	1176	1358	1539	2	13	1	0	1 5:3_5:3a_4:4_5:3a_4:4_5:3a
3 OMT6	OMT	1	107970	108457	108928	109735	1	472	1118	1764	2	14	1	0	1 3:5_2:6_3:5_3:5a
40 OMT6	OMT	4	568816	568833	578452	578566	1	9620	9685	9749	2	14	1	0	1 3:5_3:5a_4:4_3:5_4:4_3:5a
90 OMT6	OMT	7	847980	848452	849134	849405	1	683	1054	1424	2	15	1	0	1 5:3_4:4_5:3a
149 OMT6	OMT	12	28820	29085	30008	30375	1	924	1239	1554	2	15	1	0	1 5:3_4:4_5:3a
138 OMT6	OMT	11	263151	263194	265522	265706	1	2329	2442	2554	2	16	1	0	1 3:5_4:4_3:5a
212 OMT6	OMT	15	867663	868024	870449	871008	1	2426	2885	3344	2	16	1	0	1 3:5_4:4_3:5a
222 OMT6	OMT	16	214068	214281	215286	215587	1	1006	1262	1518	2	17	1	0	1 5:3_4:4_5:3a_6:2
54 OMT6	OMT	4	1388273	1388378	1389437	1389786	1	1060	1286	1512	2	17	1	0	1 5:3_4:4_5:3a_6:2
121 OMT6	OMT	10	172240	172657	175309	175369	1	2653	2891	3128	2	17	1	0	1 5:3_4:4_5:3a_6:2_5:3a
68 OMT6	OMT	5	490456	490516	492341	498773	1	1826	5071	8316	2	19	1	0	1 5:3_6:2_5:3a
56 OMT6	OMT	4	1435868	1436177	1436962	1437126	1	786	1022	1257	2	20	1	0	1 3:5_2:6_3:5a
2 OMT6	OMT	1	93563	94472	95748	96047 2_nonsis		1277	1880	2483	3	30	1	0	1 5:3_5:3a
157 OMT6	OMT	12	423854	424103	425696	425939 2_nonsis		1594	1839	2084	3	30	1	0	1 6:2_5:3_3:5
101 OMT6	OMT	8	120445	121477	122169	122633 2_nonsis		693	1440	2187	3	30	1	0	1 6:2_4:4_5:3_2:6
202 OMT6	OMT	15	285417	285557	287386	288164 2_nonsis		1830	2288	2746	3	31	1	0	1 4:4ai_5:3
199 OMT6	OMT	15	168268	168295	168885	169317 2_nonsis		591	820	1048	3	31	1	0	1 5:3_4:4ai_3:5
189 OMT6	OMT	14	391590	391752	393787	394167 2_nonsis		2036	2306	2576	3	31	1	0	1 5:3_4:4ai_5:3a
158 OMT6	OMT	12	509982	510120	511389	511536 2_nonsis		1270	1412	1553	3	31	1	0	1 5:3_4:4ai_3:5_3:5a
140 OMT6	OMT	11	283904	284248	285383	287276 2_nonsis		1136	2254	3371	3	31	1	0	1 5:3_5:3a_4:4ai_3:5
141 OMT6	OMT	11	307722	307855	309294	309310 2_nonsis		1440	1514	1587	3	31	1	0	1 5:3_4:4ai_3:5_5:3_4:4_5:3a
161 OMT6	OMT	12	553728	554116	556056	556208 2_nonsis		1941	2210	2479	3	31	1	0	1 2:6_3:5_2:6_3:5a_2:6_4:4ai
227 OMT6	OMT	16	532161	532319	532319	532708 2_nonsis		1	274	546	1	1	1	1	0 (5:3)_(4:4aCO)
64 OMT6	OMT	5	236202	236672	236672	237191 2_nonsis		1	495	988	1	1	1	1	0 (5:3)_(4:4aCO)
109 OMT6	OMT	9	37068	37170	37222	39244 2_nonsis		53	1114	2175	1	1	1	1	0 (5:3)_(4:4aCO)
6 OMT6	OMT	2	71161	71276	71276	71395 2_nonsis		1	117	233	1	2	1	1	0 (3:5)_(4:4aCO)
167 OMT6	OMT	12	828244	828345	828345	828622 2_nonsis		1	189	377	1	2	1	1	0 (3:5)_(4:4aCO)
180 OMT6	OMT	13	603797	603987	603987	604354 2_nonsis		1	279	556	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
7 OMT6	OMT	2	117726	117972	117972	118304 2_nonsis		1	289	577	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
52 OMT6	OMT	4	1296388	1296525	1296525	1297076 2 nonsis		1	344	687	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
62 OMT6	OMT	5	160248	160729	161767	162008 2 nonsis		1039	1399	1759	1	2	1	1	
	OMT	5 10	160248 596468	160729 596891	596891	_		1039	2413	1759 4824	1	2	1	1	0 (3:5)_(4:4aCO)
132 OMT6						601293 2_nonsis		2127							0 (3:5)_(4:4aCO)
93 OMT6	OMT	7	906630	906758	908884	909136 2_nonsis		2127	2316	2505	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)

10 OMT6	OMT	2	342041	342236	342723	343406 2_nonsis	488	926	1364	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
196 OMT6	OMT	14	698753	699116	700166	700405 2_nonsis	1051	1351	1651	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
156 OMT6	OMT	12	416026	416228	417575	417641 2_nonsis	1348	1481	1614	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
86 OMT6	OMT	7	609044	609405	610218	610674 2_nonsis	814	1222	1629	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
76 OMT6	OMT	7	57501	57822	58485	60729 2_nonsis	664	1946	3227	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
213 OMT6	OMT	15	892334	892523	892736	892829 2_nonsis	214	354	494	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
153 OMT6	OMT	12	223541	223716	224139	224193 2_nonsis	424	538	651	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
44 OMT6	OMT	4	721991	722687	722776	723150 2_nonsis	90	624	1158	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
69 OMT6	OMT	5	545109	545863	545863	546069 2_nonsis	1	480	959	1	11	1	1	0 (4:4ai)_(4:4bCO)
182 OMT6	OMT	13	830002	830235	830613	831156 2_nonsis	379	766	1153	1	11	1	1	0 (4:4ai)_(5:3)_(4:4bCO)
57 OMT6	OMT	4	1475979	1476168	1477311	1477505 2_nonsis	1144	1335	1525	1	11	1	1	0 (4:4ai)_(4:4bCO)_(6:2)_(5:3)_(4:4b)
97 OMT6	OMT	7	1011510	1012069	1014216	1014432 2_nonsis	2148	2535	2921	1	11	1	1	0 (4:4ai)_(3:5)_(2:6)_(4:4bCO)_(3:5)_(4:4b)
26 OMT6	OMT	3	246853	247156	248853	249269 2_nonsis	1698	2057	2415	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
155 OMT6	OMT	12	368695	368748	370768	370966 2_nonsis	2021	2146	2270	1	12	1	1	0 (6:2)_(4:4)_(5:3)_(4:4aCO)
110 OMT6	OMT	9	141141	141212	141911	141990 2_nonsis	700	774	848	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(2:6)_(4:4a)
96 OMT6	OMT	7	999433	999807	1000659	1000855 2_nonsis	853	1137	1421	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(3:5)_(4:4a)
73 OMT6	OMT	6	173398	173500	174951	175060 2_nonsis	1452	1557	1661	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(5:3)_(4:4a)
33 OMT6	OMT	4	296339	296793	299200	299792 2_nonsis	2408	2930	3452	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
5 OMT6	OMT	1	191818	192170	192170	192196 2_nonsis	1	189	377	1	15	1	1	0 (6:2)_(4:4aCO)
124 OMT6	OMT	10	302207	302882	302882	302892 2_nonsis	1	343	684	1	15	1	1	0 (6:2)_(4:4aCO)
131 OMT6	OMT	10	550333	550587	550609	551032 2_nonsis	23	361	698	1	15	1	1	0 (6:2)_(4:4aCO)
188 OMT6	OMT	14	258883	258967	259408	259493 2_nonsis	442	526	609	1	15	1	1	0 (6:2)_(4:4aCO)
77 OMT6	OMT	7	76882	76989	76989	77983 2_nonsis	1	551	1100	1	15	1	1	0 (6:2)_(4:4aCO)
79 OMT6	OMT	7	142176	142353	142710	142935 2_nonsis	358	558	758	1	15	1	1	0 (6:2)_(4:4aCO)
235 OMT6	OMT	16	912387	912564	912647	913446 2_nonsis	84	571	1058	1	15	1	1	0 (6:2)_(4:4aCO)
120 OMT6	OMT	10	122256	122391	123026	123360 2_nonsis	636	870	1103	1	15	1	1	0 (6:2)_(4:4aCO)
70 OMT6	OMT	6	36660	36739	37375	38086 2_nonsis	637	1031	1425	1	15	1	1	0 (6:2)_(4:4aCO)
105 OMT6	OMT	8	352905	353097	354125	354571 2_nonsis	1029	1347	1665	1	15	1	1	0 (6:2)_(4:4aCO)
172 OMT6	OMT	13	79258	79575	79575	79713 2 nonsis	1	228	454	1	16	1	1	0 (2:6) (4:4aCO)
209 OMT6	OMT	15	725534	725550	725863	726404 2_nonsis	314	592	869	1	16	1	1	0 (2:6)_(4:4aCO)
160 OMT6	OMT	12	522914	525267	525539	525791 2_nonsis	273	1575	2876	1	16	1	1	0 (2:6)_(4:4aCO)
46 OMT6	OMT	4	870568	870950	870950	884980 2_nonsis	1	7206	14411	1	16	1	1	0 (2:6)_(4:4aCO)
60 OMT6	OMT	5	27272	27604	27272	27604 2_nonsis	0	166	331	1	100	1	1	0 (4:4aCO)
99 OMT6	OMT	8	17157	17641	17157	17641 2_nonsis	0	242	483	1	100	1	1	0 (4:4aCO)
174 OMT6	OMT	13	164532	165032	164532	165032 2_nonsis	0	250	499	1	100	1	1	0 (4:4aCO)
45 OMT6	OMT	4	835444	836028	835444	836028 2_nonsis	0	292	583	1	100	1	1	0 (4:4aCO)
217 OMT6	OMT	16	73338	73929	73338	73929 2_nonsis	0	295	590	1	100	1	1	0 (4:4aCO)
82 OMT6	OMT	7	349285	349962	349285	349962 2_nonsis	0	338	676	1	100	1	1	0 (4:4aCO)
224 OMT6	OMT	16	348815	349538	348815	349538 2_nonsis	0	361	722	1	100	1	1	0 (4:4aCO)
38 OMT6	OMT	4	407403	408221	407403	408221 2_nonsis	0	409	817	1	100	1	1	0 (4:4aCO)
200 OMT6	OMT	15	218142	219124	218142	219124 2_nonsis	0	491	981	1	100	1	1	0 (4:4aCO)
103 OMT6	OMT	8	186453	187527	186453	187527 2_nonsis	0	537	1073	1	100	1	1	0 (4:4aCO)
191 OMT6	OMT	14	425816	427278	425816	427278 2_nonsis	0	731	1461	1	100	1	1	0 (4:4aCO)
31 OMT6	OMT	4	196851	198376	196851	198376 2_nonsis	0	762	1524	1	100	1	1	0 (4:4aCO)
4 OMT6	OMT	1	132066	135319	132066	135319 2_nonsis	0	1626	3252	1	100	1	1	0 (4:4aCO)
134 OMT6	OMT	11	23532	27301	23532	27301 2_nonsis	0	1884	3768	1	100	1	1	0 (4:4aCO)
30 OMT6	OMT	4	144344	144733	146582	147362 2_nonsis	1850	2434	3017	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
18 OMT6	OMT	2	744519	744640	745895	746171 2_nonsis	1256	1454	1651	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO) 0 (5:3)_(5:3a)_(4:4)_(5:3)_(4:4aCO)
171 OMT6	OMT	12	1051488	1053098	1055717	1055872 2_nonsis	2620	3502	4383	2	30	1	1	0 (5:3)_(5:3a)_(4:4)_(5:3b)_(4:4aCO)
137 OMT6	OMT	11	94121	94372	101564	102604 2_nonsis	7193	7838	8482	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
27 OMT6	OMT	4	51098	51199	53011	53077 2_nonsis	1813	1896	1978	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
185 OMT6	OMT	14	189445	189694	192676	192780 2_nonsis	2983	3159	3334	2	31	1	1	0 (3:5)_(3:5a)_(4:4ai)_(4:4bCO)
88 OMT6	OMT	7	733088	733373	734123	734330 2_nonsis	751	996	1241	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
192 OMT6	OMT							2275	2338		32	1	1	
192 OM16 165 OMT6	OMT	14 12	537564 753571	537637 754314	539848 757131	539903 2_nonsis	2212 2818	3505	2338 4191	2 2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO) 0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
19 OMT6	OMT	2	790890	791057	795035	757763 2_nonsis	2818 3979	3505 4117	4255	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
19 OM16 50 OMT6	OMT	4	1021040	1021881	1026927	795146 2_nonsis 1027140 2_nonsis	3979 5047	5573	4255 6099	2	32	1	1	0 (3:5)_(4:4ai)_(3:5a)_(4:4bCO)
	OMT	2	656699	657139	662444		5047	5573 7657	10008	2	32	1	1	0 (3:5)_(4:4ai)_(3:5a)_(4:4bCO)
13 OMT6 234 OMT6	OMT	2 16	656699 840627	657139 841238	662444 844218	666708 2_nonsis	5306 2981	7657 9849	10008 16717	2 2	32 32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
234 OM16 24 OMT6	OMT			841238 156517	844218 158345	857345 2_nonsis				2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
24 OM16	OMI	3	156289	156517	158345	158451 2_nonsis	1829	1995	2161	2	52	1	1	0 (3:5)_(4:4)_(2:6)_(3:5a)_(4:4aCO)

117 OMT6	OMT	9	424253	424322	425170	425239 2_nonsis		849	917	985	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
150 OMT6	OMT	12	36477	36694	37762	37937 2_nonsis		1069	1264	1459	2	32	1	1	0 (3:5)_(4:4ai)_(2:6)_(4:4bCO)_(3:5a)_(4:4b)
152 OMT6	OMT	12	85270	85385	87470	87559 2 nonsis		2086	2187	2288	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
233 OMT6	OMT	16	830277	831160	834629	834822 2_nonsis		3470	4007	4544	2	32	1	1	0 (5:3)_(4:4ai)_(5:3a)_(6:2)_(5:3a)_(4:4bCO)
179 OMT6	OMT	13	513425	513553	517743	518064 2_nonsis		4191	4415	4638	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(2:6)_(4:4)aCO)
36 OMT6	OMT	4	380668	381268	382830	383033 2_nonsis		1563	1964	2364	2	32	1	1	0 (3:5)_(4:4ai)_(3:5a)_(2:6)_(3:5a)_(4:4bCO)_(3:5a)_(4:4b)
14 OMT6	OMT	2	697503	699461	702673	703042 2_nonsis		3213	4376	5538	2	32	1	1	0 (4:4ai)_(5:3)_(6:2)_(5:3a)_(6:2)_(4:4bCO)_(5:3a)_(6:2)_(4:4b)
12 OMT6	OMT	2	531940	533263	538606	538919 2_nonsis		5344	6161	6978	2	32	1	1	0 (3:5)_(4:4)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
176 OMT6	OMT	13	355563	355571	355763	356149 2 nonsis		193	389	585	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)
87 OMT6	OMT	7	670175	670263	670598	670804 2_nonsis		336	482	628	3	20	1	1	0 (6:2)_(3:5)_(4:4aCO)
20 OMT6	OMT	3	41451	41571	42419	42698 2_nonsis		849	1048	1246	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)
147 OMT6	OMT	11	527758	528174	529197	529548 2_nonsis		1024	1407	1789	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
143 OMT6	OMT	11	434756	434978	436087	436826 2_nonsis		1110	1590	2069	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
47 OMT6	OMT	4	926737	927283	930409	930813 2_nonsis		3127	3601	4075	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)
75 OMT6	OMT	6	226238	226370	227223	227351 2_nonsis		854	983	1112	3	20	1	1	0 (5:3)_(6:2)_(3:5)_(4:4aCO)
216 OMT6	OMT	15	1064466	1064500	1065462	1065522 2_nonsis		963	1009	1055	3	20	1	1	0 (6:2)_(5:3)_(3:5)_(4:4aCO)
112 OMT6	OMT	9	237295	237441	238957	239011 2_nonsis		1517	1616	1715	3	20	1	1	0 (6:2)_(2:6)_(3:5)_(4:4aCO)
194 OMT6	OMT	14	628490	629955	631369	631514 2_nonsis		1415	2219	3023	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(4:4aCO)
119 OMT6	OMT	10	68659	68967	69814	70030 2_nonsis		848	1109	1370	3	20	1	1	0 (5:3)_(3:5)_(5:3)_(4:4)_(4:4aCO)
11 OMT6	OMT	2	392022	392314	393604	393708 2_nonsis		1291	1488	1685	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(5:3)_(4:4aCO)
128 OMT6	OMT	10	466454	467010	467589	469453 2_nonsis		580	1789	2998	3	20	1	1	0 (6:2)_(2:6)_(3:5)_(4:4)_(4:4aCO)
67 OMT6	OMT	5	458865	458964	460411	461582 2_nonsis		1448	2082	2716	3	20	1	1	0 (6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
126 OMT6	OMT	10	389963	390467	392346	392871 2_nonsis		1880	2394	2907	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(3:5a)_(4:4aCO)
15 OMT6	OMT	2	715932	716328	718805	719463 2_nonsis		2478	3004	3530	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(3:5a)_(4:4a)
114 OMT6	OMT	9	337352	337478	340356	340507 2_nonsis		2879	3017	3154	3	20	1	1	0 (6:2)_(5:3)_(6:2)_(3:5)_(4:4aCO)
204 OMT6	OMT	15	492629	492865	494573	494732 2_nonsis		1709	1906	2102	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(4:4)_(2:6)_(4:4aCO)_(6:2)_(4:4a)
163 OMT6	OMT	12	710710	710866	711432	711547 2_nonsis		567	702	836	3	21	1	1	0 (4:4ai)_(5:3)_(4:4ai)_(3:5)_(4:4bCO)
168 OMT6	OMT	12	953884	954049	955645	955822 2_nonsis		1597	1767	1937	3	21	1	1	0 (3:5)_(2:6)_(5:3)_(2:6)_(4:4ai)_(5:3)_(4:4bCO)
1 OMT6	OMT	1	77152	77433	82099	82230 2_sis		4667	4872	5077	0	1	2	0	2 (5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(5:3)_(5:3a)_(4:4)
59 OMT6	OMT	5	18839	18992	18992	19001 2_sis		1	81	161	0	1	2	0	2 (1:7)_(4:4)
83 OMT6	OMT	7	382993	383186	388627	389082	3	5442	5765	6088	0	1	2	0	2 (5:3)_(6:2i)_(7:1)_(6:2i)_(7:1)_(7:1a)_(6:2ai)_(5:3a)_(6:2ai)_(4:4ai)_(4:4)
123 OMT6	OMT	10	290730	290883	291981	292117 2_sis		1099	1243	1386	0	1	2	0	2 (3:5)_(2:6i)_(4:4)_(3:5a)_(2:6a)_(3:5a)_(4:4)
183 OMT6	OMT	14	79763	80071	81857	82092	3	1787	2058	2328	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(4:4)
39 OMT6	OMT	4	546573	547556	551775	551991	3	4220	4819	5417	0	2	2	1	1 (5:3)_(3:5)_(5:3a)_(4:4aCO)_(5:3a)_(4:4bi)_(3:5a)_(4:4a)
102 OMT6	OMT	8	140123	142800	160782	161874	3	17983	19867	21750	0	2	2	1	1 (6:2)_(5:3)_(4:4aCO)_(2:6)_(4:4a)
108 OMT6	OMT	8	515688	516015	519135	519269	4	3121	3351	3580	0	2	2	2	0 (3:5)_(5:3)_(6:2i)_(3:5a)_(3:5b)_(4:4aCO)_(3:5b)_(4:4a)
169 OMT6	OMT	12	1001464	1001833	1003348	1004257	3	1516	2154	2792	0	2	2	1	1 (3:5)_(4:4ai)_(3:5)_(5:3)_(4:4bCO)
207 OMT6	OMT	15	586076	586304	589303	589700	3	3000	3312	3623	0	2	2	1	1 (3:5)_(5:3)_(6:2)_(5:3a)_(4:4ai)_(6:2ai)_(5:3b)_(6:2ai)_(5:3b)_(4:4bCO)
220 OMT6	OMT	16	175137	175312	176684	177089	3	1373	1662	1951	0	2	2	1	1 (6:2)_(4:4aCO)_(3:5)_(4:4a)
232 OMT6	OMT	16	811809	811842	813201	813489	3	1360	1520	1679	0	2	2	1	1 (5:3)_(6:2)_(5:3)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
74 OMT6	OMT	6	203623	203665	213776	214043	3	10112	10266	10419	0	3	2	1	1 (2:6)_(3:5)_(4:4aCO)_(5:3)_(6:2i)_(5:3a)_(6:2i)_(6:2b)_(5:3b)_(4:4bCO)
107 OMT6	OMT	8	420572	420823	424326	425219	3	3504	4075	4646	0	3	2	0	2 (4:4ai)_(4:4bCO)_(5:3)_(4:4b)_(3:5)_(4:4ai)_(3:5a)_(4:4ci)_(4:4CO)
115 OMT6	OMT	9	384418	384629	395522	395890	3	10894	11183	11471	0	3	2	1	1 (5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(2:6i)_(2:6a)_(3:5a)_(4:4bCO)
136 OMT6	OMT	11	67187	67304	71541	71930	3	4238	4490	4742	0	3	2	0	2 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)_(2:6)_(3:5)_(2:6)_(3:5a)_(4:4CO)_(2:6)_(1:7)_(2:6ai)_(3:5b)_(2:6ai)_(2:6b)_(2:6ai)_(3:5b)_(2:6ci)_(3:5c)_(4:4)
139 OMT6	OMT	11	278119	278179	279467	279551 2_nonsis		1289	1360	1431	0	3	2	0	2 (5:3)_(6:2)_(5:3a)_(6:2)_(4:4aCO)_(4:4bi)_(5:3b)_(4:4CO)
198 OMT6	OMT	15	107690	108214	109424	109584	3	1211	1552	1893	0	3	2	1	1 (4:4aCO)_(3:5)_(5:3)_(4:4bCO)
241 OMT6	OMT	1	198713	198815	203111	230218	1	0	15752	31504	0	4	1 NA	N.A	
46 OMT7	OMT	4	1058864	1059094	1059127	1059179	1	34	174	314	1	1	1	0	1 05:03
183 OMT7	OMT	14	559202	559420	559472	559575	1	53	213	372	1	1	1	0	1 05:03
6 OMT7	OMT	1	189970	190025	190031	190402	1	7	219	431	1	1	1	0	1 05:03
88 OMT7	OMT	8	17157	17359	17359	17641	1	1	242	483	1	1	1	0	1 05:03
73 OMT7	OMT	6	228617	229028	229028	229247	1	1	315	629	1	1	1	0	1 05:03
17 OMT7	OMT	5	392544	392785	392785	393180	•	1	318	635	•	1	1		1 05:03
64 OMT7	OMT OMT	5 7	441591 190333	441625 190505	441963 190661	442012	1	339 157	380 463	420 768	1	1	1	0	1 05:03
80 OMT7	OMT		190333 270852	271065	271321	191102	1	257	463 476		1	1	1	0	1 05:03
130 OMT7 115 OMT7	OMT	11 10	270852 421930	422597	422597	271548 422897	1	257	476	695 966	1	1	1	0	1 05:03 1 05:03
115 OM17 119 OMT7	OMT	10	421930 579112	422597 579350	422597 579671	422897 579770	1	322	484 490	966 657	-	1	1	0	1 05:03 1 05:03
119 OM17 126 OMT7	OMT	10	579112 82733	579350 83549	83549	83733	1	322	490 500	65 / 999	1	1	1	0	1 05:03 1 05:03
126 OM17 184 OMT7	OMT	14	585226	585962	585996	586230	1	35	519	1003	1	1	1	0	1 05:03
184 UM17	OMI	14	383226	282962	282996	380230	1	33	519	1003	1	1	1	U	1 05:05

206 OMT7	OMT	16	279975	280422	280470	280994	1	49	534	1018	1	1	1	0	1 05:03
136 OMT7	OMT	11	427874	428081	428081	428986	1	1	556	1111	1	1	1	0	1 05:03
101 OMT7	OMT	9	249032	249546	249546	250194	1	1	581	1161	1	1	1	0	1 05:03
132 OMT7	OMT	11	328709	329482	329686	329885	1	205	690	1175	1	1	1	0	1 05:03
51 OMT7	OMT	4	1416384	1416431	1417050	1417646	1	620	941	1261	1	1	1	0	1 05:03
27 OMT7	OMT	3	102669	103556	103955	104476	1	400	1103	1806	1	1	1	0	1 05:03
171 OMT7	OMT	13	755564	757086	757281	757815	1	196	1223	2250	1	1	1	0	1 05:03
104 OMT7	OMT	9	332503	333073	333581	334640	1	509	1323	2136	1	1	1	0	1 05:03
79 OMT7	OMT	7	178509	179910	180364	181036	1	455	1491	2526	1	1	1	0	1 05:03
182 OMT7	OMT	14	510479	510728	512000	512400	1	1273	1597	1920	1	1	1	0	1 05:03
168 OMT7	OMT	13	686772	687199	688379	689370	1	1181	1889	2597	1	1	1	0	1 05:03
157 OMT7	OMT	13	41174	42127	43336	44157	1	1210	2096	2982	1	1	1	0	1 05:03
147 OMT7	OMT	12	279509	279533	281289	282215	1	1757	2231	2705	1	1	1	0	1 05:03
208 OMT7	OMT	16	337160	337250	337250	337348	1	1	94	187	1	2	1	0	1 03:05
59 OMT7	OMT	5	68996	69083	69083	69209	1	1	107	212	1	2	1	0	1 03:05
55 OMT7	OMT	4	1502380	1502449	1502449	1502604	1	1	112	223	1	2	1	0	1 03:05
103 OMT7	OMT	9	315163	315261	315283	315406	1	23	133	242	1	2	1	0	1 03:05
97 OMT7	OMT	9	85758	85860	85860	86070	1	1	156	311	1	2	1	0	1 03:05
211 OMT7	OMT	16	499073	499315	499315	499388	1	1	158	314	1	2	1	0	1 03:05
19 OMT7	OMT	2	454566	454753	454753	454884	1	1	159	317	1	2	1	0	1 03:05
58 OMT7	OMT	5	53618	53693	53785	53876	1	93	175	257	1	2	1	0	1 03:05
172 OMT7	OMT	13	798333	798592	798593	798732	1	2	200	398	1	2	1	0	1 03:05
202 OMT7	OMT	16	22388	22478	22571	22695	1	94	200	306	1	2	1	0	1 03:05
133 OMT7	OMT	11	385427	385473	385688	385714	1	216	251	286	1	2	1	0	1 03:05
7 OMT7	OMT	1	198299	198699	198713	198815	1	15	265	515	1	2	1	0	1 03:05
216 OMT7	OMT	16	687708	687978	687978	688591	1	1	442	882	1	2	1	0	1 03:05
95 OMT7	OMT	8	488465	488588	488588	489445	1	1	490	979	1	2	1	0	1 03:05
193 OMT7	OMT	15	487166	487809	487838	488123	1	30	493	956	1	2	1	0	1 03:05
15 OMT7	OMT	2	306376	306932	307032	307275	1	101	500	898	1	2	1	0	1 03:05
56 OMT7	OMT	5	33002	33344	33706	33782	1	363	571	779	1	2	1	0	1 03:05
9 OMT7	OMT	2	216250	216513	217015	217070	1	503	661	819	1	2	1	0	1 03:05
128 OMT7	OMT	11	204194	205481	205481	205607	1	1	707	1412	1	2	1	0	1 03:05
35 OMT7	OMT	4	413995	414381	414726	415078	1	346	714	1082	1	2	1	0	1 03:05
116 OMT7	OMT	10	461843	461906	462595	462605	1	690	726	761	1	2	1	0	1 03:05
28 OMT7	OMT	3	186028	186237	186237	187655	1	1	814	1626	1	2	1	0	1 03:05
180 OMT7	OMT	14	404051	404995	405175	405600	1	181	865	1548	1	2	1	0	1 03:05
191 OMT7	OMT	15	233865	234020	234731	235143	1	712	995	1277	1	2	1	0	1 03:05
141 OMT7	OMT	12	86634	87286	88002	88069	1	717	1076	1434	1	2	1	0	1 03:05
93 OMT7	OMT	8	267649	267804	268308	269395	1	505	1125	1745	1	2	1	0	1 03:05
178 OMT7	OMT	14	274328	274637	275457	275934	1	821	1213	1605	1	2	1	0	1 03:05
24 OMT7	OMT	3	55716	56210	56432	58033	1	223	1270	2316	1	2	1	0	1 03:05
187 OMT7	OMT	14	709906	710457	711379	711615	1	923	1316	1708	1	2	1	0	1 03:05
34 OMT7	OMT	4	408894	410728	411189	411335	1	462	1451	2440	1	2	1	0	1 03:05
135 OMT7	OMT	11	400521	400972	401916	402660	1	945	1542	2138	1	2	1	0	1 03:05
189 OMT7	OMT	15	71365	72322	73362	73589	1	1041	1632	2223	1	2	1	0	1 03:05
176 OMT7	OMT	14	185896	186475	186992	187346	1	518	984	1449	1	3	1	0	1 5:3_4:4_5:3
74 OMT7	OMT	6	239696	239766	240682	240940	1	917	1080	1243	1	3	1	0	1 5:3_4:4_5:3
146 OMT7	OMT	12	259051	259126	260496	260584	1	1371	1452	1532	1	3	1	0	1 5:3_4:4_5:3
48 OMT7	OMT	4	1090145	1090269	1093048	1093368	1	2780	3001	3222	1	3	1	0	1 5:3_6:2_5:3
164 OMT7	OMT	13	456970	457507	459508	459995	1	2002	2513	3024	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
76 OMT7	OMT	7	72181	72738	73362	73438	1	625	941	1256	1	4	1	0	1 3:5_4:4_3:5
16 OMT7	OMT	2	313868	314198	315318	315655	1	1121	1454	1786	1	4	1	0	1 3:5_2:6_3:5
100 OMT7	OMT	9	215644	215993	216106	216122	1	1121	296	477	1	7	1	0	1 5:3_2:6_3:5 1 5:3_6:2
30 OMT7	OMT	3	225088	225116	225200	225631	1	85		542	1	7	1	0	1 5:5_6:2 1 6:2_5:3
214 OMT7	OMT	16	677836	678266	678816	679094	1	551	314 904	1257	1	7	1	0	1 6:2_5:3 1 6:2_5:3
214 OM17 38 OMT7	OMT	4	549856	550499	550893	551387	1	395	963	1530	1	7	1	0	
11 OMT7	OMT	2	256767	256925	257565	258058	1	595 641	963	1290	1	7	1	0	1 5:3_6:2 1 6:2_5:3
11 OM17 137 OMT7	OMT	11	469355	469480	469719	469831	1	240	358	475	1	8	1	0	
137 OM17 83 OMT7	OMT	7	469355 384239	469480 384425	469719 384678	469831 384785	1	240 254	358 400	475 545	1	8	1	0	1 2:6_3:5 1 2:6_3:5
71 OMT7	OMT	6	169022	384423 169147	169663	169872	1	517	683	545 849	1	8	1	0	1 3:5_2:6
/1 OM1/	OWI	O	109022	10914/	109003	1098/2	1	317	063	649	1	٥	1	U	1 3.3_2.0

131 OMT7	OMT	11	308754	308786	310035	310373	1	1250	1434	1618	1	8	1	0	1 2:6_3:5
218 OMT7	OMT	16	827752	827895	829386	829418	1	1492	1579	1665	1	8	1	0	1 3:5_2:6
152 OMT7	OMT	12	778158	779222	780728	781856	1	1507	2602	3697	1	8	1	0	1 3:5_2:6
174 OMT7	OMT	13	870588	871217	873246	874942	1	2030	3192	4353	1	8	1	0	1 3:5_2:6
159 OMT7	OMT	13	168722	168744	169808	169962	1	1065	1152	1239	1	8	1	0	1 3:5_2:6_3:5_2:6
181 OMT7	OMT	14	495101	495222	496505	496570	1	1284	1376	1468	1	8	1	0	1 2:6_3:5_4:4_3:5
215 OMT7	OMT	16	681914	682109	682109	682384	1	1	235	469	1	10	1	0	1 06:02
23 OMT7	OMT	3	39861	40089	40205	40294	1	117	275	432	1	10	1	0	1 06:02
67 OMT7	OMT	5	523260	523683	523683	524394	1	1	567	1133	1	10	1	0	1 06:02
12 OMT7	OMT	2	290619	291653	292193	292212	1	541	1067	1592	1	10	1	0	1 06:02
196 OMT7	OMT	15	638644	639033	639042	639159	1	10	262	514	1	10.1	1	0	1 02:06
143 OMT7	OMT	12	107971	108813	108813	109073	1	1	551	1101	1	10.1	1	0	1 02:06
145 OMT7	OMT	12	252885	253274	253791	253941	1	518	787	1055	2	11	1	0	1 5:3_5:3a
96 OMT7	OMT	9	53238	53717	54480	55071	1	764	1298	1832	2	11	1	0	1 5:3_5:3a
42 OMT7	OMT	4	754071	754974	755547	756152	1	574	1327	2080	2	11	1	0	1 5:3_5:3a
41 OMT7	OMT	4	720645	721283	722085	722687	1	803	1422	2041	2	11	1	0	1 5:3_5:3a
166 OMT7	OMT	13	477118	477780	478673	479146	1	894	1461	2027	2	11	1	0	1 5:3_5:3a
203 OMT7	OMT	16	52375	52500	53945	54119	1	1446	1595	1743	2	11	1	0	1 5:3_5:3a
36 OMT7	OMT	4	423787	423847	424526	424905	1	680	899	1117	2	12	1	0	1 3:5_3:5a
65 OMT7	OMT	5	460411	461582	462226	462614	1	645	1424	2202	2	12	1	0	1 3:5_3:5a
94 OMT7	OMT	8	421507	421639	422992	423045	1	1354	1446	1537	2	13	1	0	1 5:3_6:2_5:3_5:3a
111 OMT7	OMT	10	290542	290669	292319	292331	1	1651	1720	1788	2	13	1	0	1 5:3_4:4_5:3_5:3a_4:4_5:3a
200 OMT7	OMT	15	930310	930799	931340	931409	1	542	820	1098	2	15	1	0	1 5:3_4:4_5:3a
61 OMT7	OMT	5	193949	194375	194773	195341	1	399	895	1391	2	15	1	0	1 5:3_4:4_5:3a
45 OMT7	OMT	4	1054109	1054225	1055277	1055562	1	1053	1253	1452	2	16	1	0	1 3:5_4:4_3:5a
127 OMT7	OMT	11	91402	91565	92653	92948	1	1089	1317	1545	2	16	1	0	1 3:5_4:4_3:5a
207 OMT7	OMT	16	306755	307244	308420	308781	1	1177	1601	2025	2	16	1	0	1 3:5_4:4_3:5a
69 OMT7	OMT	6	95849	96304	97819	97944	1	1516	1805	2094	2	16	1	0	1 3:5_4:4_3:5a
1 OMT7	OMT	1	66178	66696	71673	72952	1	4978	5876	6773	2	17	1	0	1 5:3_4:4_5:3a_6:2
163 OMT7	OMT	13	433952	434151	437392	437945	1	3242	3617	3992	2	18	1	0	1 3:5_4:4_3:5a_4:4_3:5a
155 OMT7	OMT	12	1009719	1011169	1012226	1013592	1	1058	2465	3872	2	20	1	0	1 3:5_2:6_3:5a
26 OMT7	OMT	3	71427	71575	75892	76009	1	4318	4450	4581	2	20	1	0	1 3:5_2:6_3:5a
169 OMT7	OMT	13	715257	715590	716783	718679	1	1194	2308	3421	2	22	1	0	1 3:5_2:6_3:5a_4:4_3:5a
204 OMT7	OMT	16	93759	93996	95802	95982	1	1807	2015	2222	2	23	1	0	1 5:3_4:4_6:2_4:4_5:3a
5 OMT7	OMT	1	179247	179614	181957	182519	1	2344	2808	3271	2	23	1	0	1 3:5_4:4_3:5_4:4_2:6_3:5_2:6_4:4_3:5a
68 OMT7	OMT	5	546617	546721	548081	548258 2_nonsis		1361	1501	1640	3	30	1	0	1 3:5_5:3
77 OMT7	OMT	7	80976	81268	82858	84285 2_nonsis		1591	2450	3308	3	30	1	0	1 5:3_5:3a_5:3
31 OMT7	OMT	4	148667	148986	149689	149839 2_nonsis		704	938	1171	3	31	1	0	1 3:5_3:5a_4:4ai
129 OMT7	OMT	11	247692	247882	248806	249447 2_nonsis		925	1340	1754	1	1	1	1	0 (5:3)_(4:4aCO)
149 OMT7	OMT	12	610061	610216	610216	610430 2_nonsis		1	185	368	1	2	1	1	0 (3:5)_(4:4aCO)
102 OMT7	OMT	9	254357	254748	254765	256673 2_nonsis		18	1167	2315	1	2	1	1	0 (3:5)_(4:4aCO)
153 OMT7	OMT	12	789623	791142	791142	794003 2_nonsis		1	2190	4379	1	2	1	1	0 (3:5)_(4:4aCO)
50 OMT7	OMT	4	1341641	1341684	1343357	1343581 2_nonsis		1674	1807	1939	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
72 OMT7	OMT	6	203253	203623	204676	204767 2_nonsis		1054	1284	1513	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
118 OMT7	OMT	10	557648	558226	559033	559588 2_nonsis		808	1374	1939	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
13 OMT7	OMT	2	294230	295028	295912	296774 2_nonsis		885	1714	2543	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
173 OMT7	OMT	13	852220	852413	853001	853271 2_nonsis		589	820	1050	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
18 OMT7	OMT	2	397849	397984	398452	399052 2_nonsis		469	836	1202	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
148 OMT7	OMT	12	340365	340527	341070	341507 2_nonsis		544	843	1141	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
63 OMT7	OMT	5	439039	439206	439545	439909 2_nonsis		340	605	869	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
198 OMT7	OMT	15	720440	720518	720799	721121 2_nonsis		282	481	680	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
2 OMT7	OMT	1	91629	92384	93563	94472 2_nonsis		1180	2011	2842	1	11	1	1	0 (4:4ai)_(4:4bCO)
81 OMT7	OMT	7	197001	197150	197465	197816 2_nonsis		316	565	814	1	11	1	1	0 (5:3)_(4:4ai)_(4:4bCO)
140 OMT7	OMT	12	29085	29131	29612	29773 2_nonsis		482	585	687	1	11	1	1	0 (4:4ai)_(3:5)_(4:4bCO)
25 OMT7	OMT	3	60704	60997	61457	61855 2_nonsis		461	806	1150	1	11	1	1	0 (3:5)_(4:4ai)_(4:4bCO)
123 OMT7	OMT	10	703893	703967	705542	705639 2_nonsis		1576	1661	1745	1	11	1	1	0 (2:6)_(4:4ai)_(4:4bCO)
167 OMT7	OMT	13	554421	555036	556437	557365 2_nonsis		1402	2173	2943	1	11	1	1	0 (5:3)_(4:4ai)_(5:3)_(4:4bCO)
220 OMT7	OMT	16	887709	888159	888652	888868 2_nonsis		494	826	1158	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
217 OMT7	OMT	16	731037	731859	732154	732711 2_nonsis		296	985	1673	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
150 OMT7	OMT	12	657926	658005	658599	659350 2_nonsis		595	1009	1423	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)

37 OMT7	OMT	4	526111	526117	526594	526633 2_nonsis	478	500	521	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
54 OMT7	OMT	4	1495580	1495680	1497214	1497535 2_nonsis	1535	1745	1954	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO)
209 OMT7	OMT	16	374470	374857	376312	377062 2_nonsis	1456	2024	2591	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
43 OMT7	OMT	4	834537	834720	836588	836867 2_nonsis	1869	2099	2329	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
105 OMT7	OMT	9	410521	410692	412645	415204 2_nonsis	1954	3318	4682	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
195 OMT7	OMT	15	601325	601569	602638	603166 2_nonsis	1070	1455	1840	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
161 OMT7	OMT	13	352374	352504	354080	354247 2_nonsis	1577	1725	1872	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
175 OMT7	OMT	14	145227	145293	147100	147466 2_nonsis	1808	2023	2238	1	12	1	1	0 (3:5)_(2:6)_(4:4)_(2:6)_(4:4aCO)
10 OMT7	OMT	2	248159	248659	250789	251134 2_nonsis	2131	2553	2974	1	12	1	1	0 (5:3)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
33 OMT7	OMT	4	366072	366513	369582	369971 2_nonsis	3070	3484	3898	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
49 OMT7	OMT	4	1167232	1167361	1168188	1168767 2_nonsis	828	1181	1534	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4)_(4:4aCO)
53 OMT7	OMT	4	1476514	1476956	1478129	1478319 2_nonsis	1174	1489	1804	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(4:4a)
70 OMT7	OMT	6	114541	114707	116045	116186 2_nonsis	1339	1492	1644	1	12	1	1	0 (6:2)_(5:3)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4a)
158 OMT7	OMT	13	141979	142186	142206	142395 2_nonsis	21	218	415	1	15	1	1	0 (6:2)_(4:4aCO)
144 OMT7	OMT	12	183955	184185	184414	184588 2_nonsis	230	431	632	1	15	1	1	0 (6:2)_(4:4aCO)
39 OMT7	OMT	4	591782	592050	592527	593211 2_nonsis	478	953	1428	1	15	1	1	0 (6:2)_(4:4aCO)
186 OMT7	OMT	14	658861	658915	658915	659022 2 nonsis	1	81	160	1	16	1	1	0 (2:6)_(4:4aCO)
138 OMT7	OMT	11	532742	533318	533318	533844 2 nonsis	1	551	1101	1	16	1	1	0 (2:6)_(4:4aCO)
160 OMT7	OMT	13	229786	230470	230627	230928 2_nonsis	158	650	1141	1	16	1	1	0 (2:6)_(4:4aCO)
8 OMT7	OMT	2	16749	17715	17715	18175 2_nonsis	1	713	1425	1	16	1	1	0 (2:6)_(4:4aCO)
60 OMT7	OMT	5	157999	158386	158931	159422 2_nonsis	546	984	1422	1	16	1	1	0 (2:6)_(4:4aCO)
142 OMT7	OMT	12	104468	105183	105323	106427 2_nonsis	141	1050	1958	1	16	1	1	0 (2:6)_(4:4aCO)
32 OMT7	OMT	4	172175	172830	173380	174831 2_nonsis	551	1603	2655	1	16	1	1	0 (2:6)_(4:4aCO)
154 OMT7	OMT	12	884813	885146	884813	885146 2_nonsis	0	166	332	1	100	1	1	0 (4:4aCO)
112 OMT7	OMT	10	338042	338561	338042	338561 2_nonsis	0	259	518	1	100	1	1	0 (4:4aCO)
44 OMT7	OMT	4	926737	927283	926737	927283 2_nonsis	0	273	545	1	100	1	1	0 (4:4aCO)
205 OMT7	OMT	16	112536	113385	112536	113385 2_nonsis	0	424	848	1	100	1	1	0 (4:4aCO)
87 OMT7	OMT	7	914816	915691	914816	915691 2_nonsis	0	437	874	1	100	1	1	0 (4:4aCO)
151 OMT7	OMT	12	728268	729242	728268	729242 2_nonsis	0	487	973	1	100	1	1	0 (4:4aCO)
131 OM17 139 OMT7	OMT	11	634635	635970	634635	635970 2_nonsis	0	667	1334	1	100	1	1	0 (4:4aCO)
75 OMT7	OMT	7	55957	57501	55957	57501 2_nonsis	0	772	1543	1	100	1	1	0 (4:4aCO)
29 OMT7	OMT	3	190177	191741	190177	191741 2_nonsis	0	782	1563	1	100	1	1	0 (4:4aCO)
107 OMT7	OMT	10	51007	52869	51007	52869 2_nonsis	0	931	1861	1	100	1	1	0 (4:4aCO)
99 OMT7	OMT	9	185865	188629	185865		0	1382	2763	1	100	1	1	
179 OMT7	OMT	14	401251	404051	401251	188629 2_nonsis 404051 2_nonsis	0	1400	2799	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
21 OMT7	OMT	2	662444	666708	662444	666708 2_nonsis	0	2132	4263	1	100	1	1	0 (4:4aCO)
66 OMT7	OMT	5	474031	474077	474191	474245 2_nonsis	115	164	213	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
122 OMT7	OMT	10					468	794	1120		30	1	1	
			696365	696739	697206	697486 2_nonsis				2		1		0 (5:3)_(5:3a)_(4:4aCO)
52 OMT7	OMT	4	1420155	1420281	1421025	1421204 2_nonsis	745	897	1048	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
185 OMT7 106 OMT7	OMT OMT	14 10	605054 40239	606283 40575	608001 41803	610323 2_nonsis	1719 1229	3494 1720	5268 2211	2 2	30 30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
						42451 2_nonsis				2		1	1	0 (4:4ai)_(5:3)_(5:3a)_(4:4bCO)
156 OMT7	OMT	13	20392	20497	22318	22495 2_nonsis	1822	1962	2102		31			0 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
22 OMT7 84 OMT7	OMT	2 7	741732	741884	742721	743655 2_nonsis	838	1380	1922	2 2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(4:4aCO)_(2:6)_(4:4a)_(3:5a)_(4:4a)
	OMT		436628	437973	438333	438433 2_nonsis	361	1083	1804		32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
98 OMT7	OMT OMT	9	98932	99043	100355	100450 2_nonsis	1313	1415 1989	1517 2254	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
20 OMT7		2	583514	583825	585548	585769 2_nonsis	1724			2	32		1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
124 OMT7	OMT	11	10753	13039	14406	14411 2_nonsis	1368	2513	3657	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)
113 OMT7	OMT	10	348930	349396	351617	352052 2_nonsis	2222	2672	3121	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
199 OMT7	OMT	15	846635	846762	848406	848537 2_nonsis	1645	1773	1901	2	32	1	1	0 (3:5)_(4:4)_(3:5a)_(4:4ai)_(4:4bCO)
108 OMT7	OMT	10	79138	79551	87390	87652 2_nonsis	7840	8177	8513	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(3:5b)_(4:4aCO)
86 OMT7	OMT	7	809329	809973	811276	811285 2_nonsis	1304	1630	1955	2	32	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
188 OMT7	OMT	14	735047	735112	737420	737636 2_nonsis	2309	2449	2588	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
201 OMT7	OMT	15	987247	987667	989690	991111 2_nonsis	2024	2944	3863	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
177 OMT7	OMT	14	255895	256217	259694	259989 2_nonsis	3478	3786	4093	2	32	1	1	0 (3:5)_(2:6)_(4:4aCO)_(4:4bi)_(3:5a)_(4:4a)
120 OMT7	OMT	10	631130	632972	636506	637392 2_nonsis	3535	4898	6261	2	32	1	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)_(5:3)_(4:4a)
117 OMT7	OMT	10	467589	469453	469702	470533 2_nonsis	250	1597	2943	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
92 OMT7	OMT	8	240468	240738	245011	245056 2_nonsis	4274	4431	4587	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
213 OMT7	OMT	16	638483	638684	639081	639173 2_nonsis	398	544	689	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
109 OMT7	OMT	10	110925	111085	111408	111784 2_nonsis	324	591	858	3	20	1	1	0 (5:3)_(2:6)_(5:3)_(4:4aCO)
190 OMT7	OMT	15	185134	185240	186679	186762 2_nonsis	1440	1534	1627	3	20	1	1	0 (2:6)_(6:2)_(5:3)_(4:4aCO)

4 OMT7	OMT	1	137336	138499	144826	145634 2_nonsis		6328	7313	8297	3	20	1	1	0 (5:3)_(3:5)_(3:5a)_(4:4aCO)
219 OMT7	OMT	16	839313	839436	839916	840103 2_nonsis		481	635	789	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(6:2)_(4:4aCO)
197 OMT7	OMT	15	640649	640991	642471	642646 2_nonsis		1481	1739	1996	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(6:2)_(4:4a)
210 OMT7	OMT	16	443521	443526	445448	445861 2_nonsis		1923	2131	2339	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)
165 OMT7	OMT	13	471264	472484	475252	476241 2_nonsis		2769	3873	4976	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)
40 OMT7	OMT	4	700440	700614	701137	701178 2_nonsis		524	631	737	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(6:2)_(5:3)_(4:4aCO)
134 OMT7	OMT	11	390798	391848	393359	393512 2_nonsis		1512	2113	2713	3	20	1	1	0 (6:2)_(5:3)_(4:4)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
82 OMT7	OMT	7	324572	324601	326922	326953 2_nonsis		2322	2351	2380	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)_(2:6)_(3:5)_(4:4a)
47 OMT7	OMT	4	1077529	1077787	1079984	1080788 2_nonsis		2198	2728	3258	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(5:3a)_(4:4aCO)_(2:6)_(4:4a)
192 OMT7	OMT	15	479565	480090	482608	483090 2_nonsis		2519	3022	3524	3	20	1	1	0 (3:5)_(3:5a)_(2:6)_(4:4)_(6:2)_(5:3)_(4:4aCO)
162 OMT7	OMT	13	408001	408347	409194	409543 2_nonsis	3	848	1195	1541	3	21	2	0	0 (5:3)_(4:4ai)_(2:6)_(4:4bCO)
14 OMT7 212 OMT7	OMT OMT	2 16	299901 525636	301455 525655	301964 526860	302062 527307 2_sis	3	510 1206	1335 1438	2160 1670	0	1	2	0	2 (1:7)_(4:4ai)_(2:6i)_(3:5)_(4:4) 2 (8:0)_(5:3)_(6:2)_(4:4)
3 OMT7	OMT	10	128756	129063	129517	130254	3	455	976	1497	0	2	2	1	2 (6.0)_(3.5)_(0.2)_(4.4) 1 (4:4ai)_(5:3)_(7:1)_(4:4bCO)
57 OMT7	OMT	5	39651	40307	42708	43035	3	2402	2893	3383	0	2	2	1	1 (4:4a)_(5:5)_(7:1)_(4:4bO) 1 (3:5)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(7:1)_(6:2a)_(4:4a)
62 OMT7	OMT	5	377471	377999	378395	378586	3	397	756	1114	0	2	2	1	1 (3:5)_(4:4aCO)_(6:2)_(4:4a) 1 (3:5)_(4:4aCO)_(6:2)_(3:5a)_(4:4a)
78 OMT7	OMT	7	165317	165523	170880	171278	4	5358	5659	5960	0	2	2	1	1 (3.5)_(4.4aCO)_(3.5a)_(4.4bi)_(4.4a)
85 OMT7	OMT	7	622492	622738	629428	629474	3	6691	6836	6981	0	2	2	1	1 (5:3)_(4:4aCO)_(5:3a)_(3:5)_(2:6i)_(1:7)_(2:6i)_(3:5a)_(4:4a)
90 OMT7	OMT	8	159136	159406	160782	161715	4	1377	1978	2578	0	2	2	1	1 (3:5)_(2:6i)_(3:5a)_(4:4aCO)
91 OMT7	OMT	8	187695	187989	190024	190339	3	2036	2340	2643	0	2	2	1	1 (5:3)_(4:4aCO)_(3:5)_(4:4a)
114 OMT7	OMT	10	391162	391247	391693	392346	3	447	815	1183	0	2	2	1	1 (5:3)_(6:2i)_(4:4)_(2:6)_(4:4aCO)
121 OMT7	OMT	10	662479	663134	665076	665938	3	1943	2701	3458	0	2	2	1	1 (3:5)_(2:6i)_(3:5a)_(5:3)_(4:4ai)_(5:3)_(4:4bCO)
170 OMT7	OMT	13	730533	731517	731841	731964	3	325	878	1430	0	2	2	1	1 (5:3)_(4:4ai)_(2:6)_(4:4bCO)
89 OMT7	OMT	8	114924	115401	123473	123592	4	8073	8370	8667	0	3	2	1	1 (5:3)_(4:4)_(5:3)_(5:3a)_(4:4ai)_(3:5)_(4:4bCO)_(5:3a)_(4:4ci)_(4:4dCO)_(2:6)_(4:4eCO)_(5:3b)_(6:2)_(5:3b)_(5:3c)_(4:4dCO)
110 OMT7	OMT	10	235235	235337	241123	241420	3	5787	5986	6184	0	3	2	1	1 (3:5)_(4:4aCO)_(5:3)_(3:5a)_(2:6)_(4:4a)_(6:2)_(4:4bCO)
125 OMT7	OMT	11	65282	66233	70579	70690	3	4347	4877	5407	0	3	2	1	1 (5:3)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(5:3b)_(6:2)_(4:4bCO)
194 OMT7	OMT	15	501040	501220	503975	504672	3	2756	3194	3631	0	3	2	0	2 (4:4ai)_(5:3)_(4:4bCO)_(5:3)_(6:2i)_(6:2ai)_(4:4CO)
80 OMT8	OMT	7	492175	492247	492247	492317	1	1	71	141	1	1	1	0	1 05:03
110 OMT8	OMT	10	361124	361221	361221	361340	1	1	108	215	1	1	1	0	1 05:03
40 OMT8	OMT	4	1036768	1036886	1036886	1037061	1	1	147	292	1	1	1	0	1 05:03
189 OMT8	OMT	16	370453	370707	370710	370796	1	4	173	342	1	1	1	0	1 05:03
58 OMT8	OMT	5	316361	316556	316681	316709	1	126	237	347	1	1	1	0	1 05:03
150 OMT8	OMT	13	321686	321801	321916	322143	1	116	286	456	1	1	1	0	1 05:03
159 OMT8	OMT	14	197788	198236	198236	198384	1	1	298	595	1	1	1	0	1 05:03
60 OMT8	OMT	5	342057	342537	342537	342667	1	1	305	609	1	1	1	0	1 05:03
122 OMT8	OMT	11	315394	315610	315844	315867	1	235	354	472	1	1	1	0	1 05:03
92 OMT8	OMT	8	190339	190671	190671	191072	1	1	367	732	1	1	1	0	1 05:03
52 OMT8	OMT	5	152335	152616	152858	153026	1	243	467	690	1	1	1	0	1 05:03
23 OMT8	OMT	4	105348	105623	105853	106143	1	231	513	794	1	1	1	0	1 05:03
29 OMT8	OMT	4	592527	593211	593463	593517	1	253	621	989	1	1	1	0	1 05:03
73 OMT8	OMT	7	165317	165523	165523	166667	1	1	675	1349	1	1	1	0	1 05:03
147 OMT8	OMT	13	166364	166589	167027	167431	1	439	753	1066	1	1	1	0	1 05:03
102 OMT8	OMT	9	193298	193815	193815	195082	1	1	892	1783	1	1	1	0	1 05:03
65 OMT8	OMT	6	51193	51257	52024	52738	1	768	1156	1544	1	1	1	0	1 05:03
46 OMT8	OMT	4	1417050	1417646	1419516	1419978	1	1871	2399	2927	1	1	1	0	1 05:03
132 OMT8	OMT	12	245980	246315	248700	248752	1	2386	2579	2771	1	1	1	0	1 05:03
22 OMT8	OMT	4	83626	83684	83687	83831	1	4	104	204	1	2	1	0	1 03:05
144 OMT8 162 OMT8	OMT	13 14	17843 465885	17913 465982	17955 465982	18080	1	43	140 142	236 282	1	2	1	0	1 03:05 1 03:05
		14 7			465982 939794	466168	1	2	142 166	282 329	1	2	1	0	
85 OMT8 118 OMT8	OMT	11	939718	939793	155453	940048	1		241	329 481	1	2	1	0	1 03:05
118 OM18 105 OMT8	OMT	9	155185 360178	155453 360413	360460	155667 360682	1	48	276	503	1	2	1	0	1 03:05 1 03:05
32 OMT8	OMT	4	643929	643973	643973	644532	1	1	302	602	1	2	1	0	1 03:05
32 OMT8 34 OMT8	OMT	4	836867	837275	837275	837527	1	1	330	659	1	2	1	0	1 03:05
124 OMT8	OMT	11	352373	352793	352843	353048	1	51	363	674	1	2	1	0	1 03:05
54 OMT8	OMT	5	182381	182827	182827	183157	1	1	388	775	1	2	1	0	1 03:05
127 OMT8	OMT	11	535712	536243	536243	536702	1	1	495	989	1	2	1	0	1 03:05
93 OMT8	OMT	8	232321	232501	232747	233140	1	247	533	818	1	2	1	0	1 03:05
120 OMT8	OMT	11	260152	260236	260745	260953	1	510	655	800	1	2	1	0	1 03:05
36 OMT8	OMT	4	861257	861707	861727	862580	1	21	672	1322	1	2	1	0	1 03:05
0							-				•	~	•		

178 OMT8	OMT	15	787005	787105	787600	787943	1	496	717	937	1	2	1	0	1 03:05
10 OMT8	OMT	2	531601	531940	531940	533263	1	1	831	1661	1	2	1	0	1 03:05
188 OMT8	OMT	16	310732	310795	311442	311970	1	648	943	1237	1	2	1	0	1 03:05
160 OMT8	OMT	14	389775	391590	391590	391752	1	1	989	1976	1	2	1	0	1 03:05
15 OMT8	OMT	2	757029	757438	757908	758568	1	471	1005	1538	1	2	1	0	1 03:05
62 OMT8	OMT	5	482316	483903	483903	485006	1	1	1345	2689	1	2	1	0	1 03:05
76 OMT8	OMT	7	352964	355166	355292	356141	1	127	1652	3176	1	2	1	0	1 03:05
43 OMT8	OMT	4	1203967	1205010	1206115	1206306	1	1106	1722	2338	1	2	1	0	1 03:05
13 OMT8	OMT	2	662444	666708	666849	668076	1	142	2887	5631	1	2	1	0	1 03:05
164 OMT8	OMT	14	525960	526397	529097	529112	1	2701	2926	3151	1	2	1	0	1 03:05
26 OMT8	OMT	4	212036	212222	212267	212746	1	46	378	709	1	3	1	0	1 5:3_6:2_5:3
8 OMT8	OMT	2	454753	454884	455916	456385	1	1033	1332	1631	1	3	1	0	1 5:3_6:2_5:3
125 OMT8	OMT	11	379560	379623	381721	382140	1	2099	2339	2579	1	3	1	0	1 5:3_4:4_6:2_5:3
95 OMT8	OMT	8	387911	388397	389979	390041	1	1583	1856	2129	1	4	1	0	1 3:5_4:4_3:5
79 OMT8	OMT	7	424734	424942	426675	426969	1	1734	1984	2234	1	4	1	0	1 3:5_4:4_3:5
68 OMT8	OMT	6	226238	226370	228617	229028	1	2248	2519	2789	1	4	1	0	1 3:5_2:6_4:4_3:5_4:4_3:5
19 OMT8	OMT	3	93455	93872	94376	94470	1	505	760	1014	1	7	1	0	1 5:3_6:2
69 OMT8	OMT	6	241984	242028	245875	246259	1	3848	4061	4274	1	7	1	0	1 6:2_5:3
111 OMT8	OMT	10	391555	391631	391693	392346	1	63	427	790	1	8	1	0	1 2:6_3:5
194 OMT8	OMT	16	621480	622057	623258	623271	1	1202	1496	1790	1	8	1	0	1 2:6_3:5
61 OMT8	OMT	5	399399	400005	401106	401545	1	1102	1624	2145	1	8	1	0	1 2:6_3:5
193 OMT8	OMT	16	619292	619388	620007	620016	1	620	672	723	1	8	1	0	1 2:6_3:5_2:6_3:5
129 OMT8	OMT	11	561779	561959	561959	562081	1	1	151	301	1	10	1	0	1 06:02
27 OMT8	OMT	4	215724	215967	215967	216258	1	1	267	533	1	10	1	0	1 06:02
38 OMT8	OMT	4	962545	962923	963004	963556	1	82	546	1010	1	10.1	1	0	1 02:06
9 OMT8	OMT	2	495085	495218	495703	495960	1	486	680	874	2	11	1	0	1 5:3_5:3a
91 OMT8	OMT	8	181132	181682	182092	182246	1	411	762	1113	2	12	1	0	1 3:5_3:5a
72 OMT8	OMT	7	122622	123330	123839	124322	1	510	1105	1699	2	12	1	0	1 3:5_3:5a
45 OMT8	OMT	4	1268439	1268647	1270457	1270902	1	1811	2137	2462	2	12	1	0	1 3:5_3:5a
64 OMT8	OMT	6	24251	24494	26058	26127	1	1565	1720	1875	2	14	1	0	1 3:5_3:5a_4:4_3:5a
166 OMT8	OMT	14	641631	641859	643444	643651	1	1586	1803	2019	2	14	1	0	1 3:5_3:5a_4:4_3:5a
55 OMT8	OMT	5	190829	191462	192221	192670	1	760	1300	1840	2	15	1	0	1 5:3_4:4_5:3a
96 OMT8	OMT	8	450359	450521	451172	452903	1	652	1598	2543	2	15	1	0	1 5:3_4:4_5:3a
185 OMT8	OMT	16	133150	133177	134518	135194	1	1342	1693	2043	2	15	1	0	1 5:3_4:4_5:3a
157 OMT8	OMT	14	116131	116459	117208	117253	1	750	936	1121	2	16	1	0	1 3:5_4:4_3:5a
108 OMT8	OMT	10	302207	302882	303556	303606	1	675	1037	1398	2	16	1	0	1 3:5_4:4_3:5a
182 OMT8	OMT	15	987247	987667	988671	988871	1	1005	1314	1623	2	16	1	0	1 3:5_4:4_3:5a
99 OMT8	OMT	9	87283	87642	89179	89302	1	1538	1778	2018	2	16	1	0	1 3:5_4:4_3:5a
171 OMT8	OMT	15	169772	169851	171849	172081	1	1999	2154	2308	2	16	1	0	1 3:5_4:4_3:5a
59 OMT8	OMT	5	334750	335065	337748	337825	1	2684	2879	3074	2	17	1	0	1 5:3_4:4_5:3a_4:4_5:3a
190 OMT8	OMT	16	425006	425377	428691	428845	1	3315	3577	3838	2	17	1	0	1 5:3_4:4_5:3a_4:4_5:3a
121 OMT8	OMT	11	262447	262597	264863	264974	1	2267	2397	2526	2	18	1	0	1 3:5_4:4_3:5a_4:4_3:5a
170 OMT8	OMT	15	159827	160743	164383	164556	1	3641	4185	4728	2	18	1	0	1 3:5_4:4_3:5a_2:6_3:5a
4 OMT8	OMT	2	83713	83944	85339	85504 2_nonsis		1396	1593	1790	3	30	1	0	1 3:5_2:6_3:5a_3:5b
21 OMT8 12 OMT8	OMT OMT	4 2	19119 626092	19143 626455	19746 628807	19880 2_nonsis		604 2353	682 2637	760 2920	3	31 31	1	0	1 5:3_4:4ai_2:6
12 OM18 134 OMT8	OMT	12	257813	258349	261119	629013 2_nonsis		2353	3268	3764		31	1	0	1 5:3_4:4ai_4:4_3:5
134 OM18 148 OMT8	OMT	13	237813	236240	239896	261578 2_nonsis 240226 2_nonsis		3657	3268 4042	3764 4427	3	31	1	0	1 4:4ai_4:4_5:3_5:3a 1 5:3_4:4ai_5:3a_4:4ai_5:3a_5:3b
181 OMT8	OMT	15	953577	954766	958901			4136	4808	5480	3	31	1	0	
196 OMT8	OMT	16	785578	785712	785737	959058 2_nonsis 785910 2_nonsis		26	4808 179	331	1	1	1	1	1 6:2_5:3_4:4ai_5:3a_6:2_5:3 0 (5:3)_(4:4aCO)
33 OMT8	OMT	4	699436	699549	699549			1	187	373	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
177 OMT8	OMT	15	738211	738617	738654	699810 2_nonsis		38	480	922	1	1	1	1	
177 OM18 14 OMT8	OMT	2	704282	704922	704939	739134 2_nonsis 705275 2_nonsis		38 18	505	922	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
113 OMT8	OMT	10	580119	580576	580666	581143 2_nonsis		91	557	1023	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
168 OMT8	OMT	15	40057	40365	40834	41027 2_nonsis		470	720	969	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
28 OMT8	OMT	4	363511	363860	363860	365434 2_nonsis		470	962	1922	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
28 OM18 24 OMT8	OMT	4	125573	126283	126408	303434 2_nonsis 127476 2_nonsis		126	1014	1922	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
24 OM18 39 OMT8	OMT	4	1002837	1003188	1003188	1003263 2_nonsis		126	213	425	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
126 OMT8	OMT	11	491399	491562	491562	491862 2_nonsis		1	232	462	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
112 OMT8	OMT	10	393918	394217	394217	394408 2_nonsis		1	245	489	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
112 OW116	OWI	10	373710	374417	37441/	J74400 Z_HORSIS		1	243	+07	1	4	1	1	0 (3.3)_(4.4aCO)

63 OMT8	OMT	5	499930	500606	500606	501719 2_nonsis	1	895	1788	1	2	1	1	0 (3:5)_(4:4aCO)
103 OMT8	OMT	9	239821	240376	240939	242535 2_nonsis	564	1639	2713	1	2	1	1	0 (3:5)_(4:4aCO)
31 OMT8	OMT	4	625839	629487	629725	630640 2_nonsis	239	2520	4800	1	2	1	1	0 (3:5)_(4:4aCO)
84 OMT8	OMT	7	936948	937376	937863	938065 2_nonsis	488	802	1116	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
156 OMT8	OMT	14	51050	51868	52925	53465 2_nonsis	1058	1736	2414	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
165 OMT8	OMT	14	531399	531505	531656	532165 2_nonsis	152	459	765	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
100 OMT8	OMT	9	96801	96831	97151	97705 2_nonsis	321	612	903	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
173 OMT8	OMT	15	393958	394357	394716	395073 2_nonsis	360	737	1114	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
11 OMT8	OMT	2	579647	579929	580868	581091 2_nonsis	940	1192	1443	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
136 OMT8	OMT	12	572662	572946	576339	576551 2_nonsis	3394	3641	3888	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
18 OMT8	OMT	3	61855	61894	62698	63052 2_nonsis	805	1001	1196	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
56 OMT8	OMT	5	222293	222394	226861	227104 2_nonsis	4468	4639	4810	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
94 OMT8	OMT	8	319904	320071	320927	321084 2_nonsis	857	1018	1179	1	11	1	1	0 (4:4ai)_(5:3)_(4:4bCO)
119 OMT8	OMT	11	184809	185334	185846	186668 2_nonsis	513	1186	1858	1	11	1	1	0 (4:4ai)_(5:3)_(4:4bCO)
70 OMT8	OMT	7	55263	55957	57501	57822 2_nonsis	1545	2052	2558	1	11	1	1	0 (5:3)_(4:4ai)_(4:4bCO)
82 OMT8	OMT	7	798046	798196	799970	800086 2_nonsis	1775	1907	2039	1	11	1	1	0 (6:2)_(4:4)_(5:3)_(4:4ai)_(4:4bCO)
20 OMT8	OMT	3	204750	207459	211504	211982 2_nonsis	4046	5639	7231	1	11	1	1	0 (4:4ai)_(3:5)_(4:4bCO)_(3:5)_(2:6)_(4:4b)
141 OMT8	OMT	12	884813	885146	885458	885745 2_nonsis	313	622	931	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
158 OMT8	OMT	14	184992	185309	185896	186475 2_nonsis	588	1035	1482	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(4:4aCO)
152 OMT8	OMT	13	457932	458330	459995	460145 2_nonsis	1666	1939	2212	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
7 OMT8	OMT	2	418592	419139	419931	420076 2_nonsis	793	1138	1483	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(5:3)_(4:4a)
78 OMT8	OMT	7	411573	412208	413620	413728 2_nonsis	1413	1784	2154	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
146 OMT8	OMT	13	159018	159085	161406	161572 2_nonsis	2322	2438	2553	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(6:2)_(4:4aCO)
81 OMT8	OMT	7	609325	609405	611510	612267 2_nonsis	2106	2524	2941	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(6:2)_(4:4)_(4:4aCO)
180 OMT8	OMT	15	845688	845796	845840	846014 2_nonsis	45	185	325	1	15	1	1	0 (6:2)_(4:4aCO)
109 OMT8	OMT	10	305635	305904	305977	306157 2_nonsis	74	298	521	1	15	1	1	0 (6:2)_(4:4aCO)
35 OMT8	OMT	4	858862	859191	859191	859510 2_nonsis	1	324	647	1	15	1	1	0 (6:2)_(4:4aCO)
175 OMT8	OMT	15	542952	543498	543498	543780 2_nonsis	1	414	827	1	15	1	1	0 (6:2)_(4:4aCO)
5 OMT8	OMT	2	192441	192576	193122	193664 2_nonsis	547	885	1222	1	15	1	1	0 (6:2)_(4:4aCO)
104 OMT8	OMT	9	307779	307943	308018	308167 2_nonsis	76	232	387	1	16	1	1	0 (2:6)_(4:4aCO)
186 OMT8	OMT	16	202594	202808	202948	203064 2_nonsis	141	305	469	1	16	1	1	0 (2:6)_(4:4aCO)
77 OMT8	OMT	7	384425	384641	384832	385141 2_nonsis	192	454	715	1	16	1	1	0 (2:6)_(4:4aCO)
184 OMT8	OMT	16	73338	73929	73929	74327 2_nonsis	1	495	988	1	16	1	1	0 (2:6)_(4:4aCO)
71 OMT8	OMT	7	66795	67477	67477	68133 2_nonsis	1	669	1337	1	16	1	1	0 (2:6)_(4:4aCO)
117 OMT8	OMT	11	99224	99633	99646	100670 2_nonsis	14	730	1445	1	16	1	1	0 (2:6)_(4:4aCO)
145 OMT8	OMT	13	110245	110807	110970	111909 2_nonsis	164	914	1663	1	16	1	1	0 (2:6)_(4:4aCO)
192 OMT8	OMT	16	497758	497958	497758	497958 2_nonsis	0	100	199	1	100	1	1	0 (4:4aCO)
30 OMT8	OMT	4	595713	596055	595713	596055 2_nonsis	0	171	341	1	100	1	1	0 (4:4aCO)
174 OMT8	OMT	15	413774	414171	413774	414171 2_nonsis	0	198	396	1	100	1	1	0 (4:4aCO)
155 OMT8	OMT	13	820241	820753	820241	820753 2_nonsis	0	256	511	1	100	1	1	0 (4:4aCO)
123 OMT8	OMT	11	328709	329482	328709	329482 2_nonsis	0	386	772	1	100	1	1	0 (4:4aCO)
138 OMT8	OMT	12	703971	704829	703971	704829 2_nonsis	0	429	857	1	100	1	1	0 (4:4aCO)
130 OMT8	OMT	12	88557	89489	88557	89489 2_nonsis	0	466	931	1	100	1	1	0 (4:4aCO)
163 OMT8	OMT	14	478186	479345	478186	479345 2_nonsis	0	579	1158	1	100	1	1	0 (4:4aCO)
167 OMT8	OMT	14	701618	702991	701618	702991 2_nonsis	0	686	1372	1	100	1	1	0 (4:4aCO)
191 OMT8	OMT	16	465383	466824	465383	466824 2_nonsis	0	720	1440	1	100	1	1	0 (4:4aCO)
16 OMT8	OMT	2	768073	769699	768073	769699 2_nonsis	0	813	1625	1	100	1	1	0 (4:4aCO)
2 OMT8	OMT	1	121235	128637	121235	128637 2_nonsis	0	3701	7401	1	100	1	1	0 (4:4aCO)
25 OMT8	OMT	4	146582	147362	147846	147986 2_nonsis	485	944	1403	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
114 OMT8	OMT	10	701848	702817	703332	703339 2_nonsis	516	1003	1490	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
187 OMT8	OMT	16	267749	267830	269309	270158 2_nonsis	1480	1944	2408	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
48 OMT8	OMT	5	12629	12704	14598	14893 2_nonsis	1895	2079	2263	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
169 OMT8	OMT	15	146419	147007	151304	151369 2_nonsis	4298	4624	4949	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
183 OMT8	OMT	15	1039487	1039544	1039824	1040442 2_nonsis	281	618	954	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
6 OMT8	OMT	2	322968	323106	324220	324467 2_nonsis	1115	1307	1498	2	32	1	1	0 (3:5)_(4:4ai)_(3:5a)_(4:4bCO)
51 OMT8	OMT	5	120418	120588	124517	124905 2_nonsis	3930	4208	4486	2	32	1	1	0 (3:5)_(4:4ai)_(3:5a)_(4:4bCO)
139 OMT8	OMT	12	821384	822226	826618	827343 2_nonsis	4393	5176	5958	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
151 OMT8	OMT	13	333862	334198	335383	335404 2_nonsis	1186	1364	1541	2	32	1	1	0 (3:5)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
107 OMT8	OMT	10	135953	135988	137367	137481 2_nonsis	1380	1454	1527	2	32	1	1	0 (3:5)_(4:4)_(2:6)_(3:5a)_(4:4aCO)
89 OMT8	OMT	8	68905	69088	70273	70286 2_nonsis	1186	1283	1380	2	32	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO)_(5:3a)_(4:4a)

44 OMT8	OMT	4	1206428	1212811	1214386	1214533 2_nonsis		1576	4840	8104	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
75 OMT8	OMT	7	269232	269505	272144	272568 2_nonsis		2640	2988	3335	2	32	1	1	0 (2:6)_(3:5)_(2:6)_(3:5a)_(2:6)_(3:5)_(4:4aCO)
88 OMT8	OMT	8	52328	52566	56032	56225 2_nonsis		3467	3682	3896	2	32	1	1	0 (3:5)_(4:4ai)_(3:5a)_(4:4bCO)_(3:5a)_(4:4ai)_(4:4b)
197 OMT8	OMT	16	918763	918769	922391	922477 2_nonsis		3623	3668	3713	2	32	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
142 OMT8	OMT	12	948003	948176	955168	955348 2_nonsis		6993	7169	7344	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
83 OMT8	OMT	7	807540	807662	811131	811176 2_nonsis		3470	3553	3635	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(3:5b)_(4:4aCO)_(3:5b)_(4:4a)_(3:5a)_(4:4a)
74 OMT8	OMT	7	195912	196275	196468	196504 2_nonsis		194	393	591	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
161 OMT8	OMT	14	425816	427278	427295	427451 2_nonsis		18	826	1634	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
1 OMT8	OMT	1	60445	60774	61451	61708 2_nonsis		678	970	1262	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
131 OMT8	OMT	12	196991	197276	198396	198410 2_nonsis		1121	1270	1418	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
41 OMT8	OMT	4	1129980	1130680	1132014	1132218 2_nonsis		1335	1786	2237	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)
143 OMT8	OMT	12	1014976	1015108	1016012	1016099 2_nonsis		905	1014	1122	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(4:4aCO)
49 OMT8	OMT	5	67809	68268	69243	69568 2_nonsis		976	1367	1758	3	20	1	1	0 (3:5)_(5:3)_(3:5)_(4:4aCO)
176 OMT8	OMT	15	682254	682436	683845	683929 2_nonsis		1410	1542	1674	3	20	1	1	0 (2:6)_(3:5)_(4:4aCO)_(5:3)_(4:4a)
57 OMT8	OMT	5	309648	309961	311789	311837 2_nonsis		1829	2009	2188	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
154 OMT8	OMT	13	797587	797644	798889	799519 2_nonsis		1246	1589	1931	3	20	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
53 OMT8	OMT	5	159422	159475	161191	161593 2_nonsis		1717	1944	2170	3	20	1	1	0 (5:3)_(5:3a)_(4:4)_(3:5)_(5:3b)_(4:4aCO)
153 OMT8	OMT	13	671402	672472	675294	675387 2_nonsis		2823	3404	3984	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)_(5:3)_(4:4a)
101 OMT8	OMT	9	149380	149501	152184	152243 2_nonsis		2684	2773	2862	3	20	1	1	0 (2:6)_(4:4)_(3:5)_(4:4)_(3:5a)_(4:4aCO)_(5:3)_(4:4a)
195 OMT8	OMT	16	675149	676046	678816	679094 2_nonsis		2771	3358	3944	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)
67 OMT8	OMT	6	220148	221384	224098	224275 2_nonsis		2715	3421	4126	3	20	1	1	0 (6:2)_(5:3)_(6:2)_(3:5)_(2:6)_(4:4aCO)_(5:3a)_(4:4a)
98 OMT8	OMT	8	505727	505776	507281	507567 2_nonsis		1506	1673	1839	3	20	1	1	0 (5:3)_(4:4)_(5:3a)_(6:2)_(4:4)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
50 OMT8	OMT	5	72502	72694	76382	76636 2_nonsis		3689	3911	4133	3	21	1	1	0 (3:5)_(5:3)_(4:4ai)_(5:3)_(6:2)_(4:4bCO)
3 OMT8	OMT	1	190031	190402	194625	194803 2_nonsis		4224	4498	4771	3	21	1	1	0 (6:2)_(5:3)_(4:4ai)_(3:5)_(2:6)_(3:5)_(4:4bCO)
17 OMT8	OMT	3	51491	51650	52919	53316	3	1270	1547	1824	0	1	2	0	2 (3:5)_(4:4)_(5:3)_(5:3a)_(4:4)
86 OMT8	OMT	7	967722	967869	968811	969304 2 sis	-	943	1262	1581	0	1	2	0	2 (5:3)_(6:2i)_(5:3)_(4:4)
115 OMT8	OMT	11	34051	34159	35874	36243	3	1716	1954	2191	0	1	2	0	2 (5:3)_(4:4)_(5:3a)_(4:4ai)_(5:3b)_(6:2)_(4:4)
116 OMT8	OMT	11	67187	67304	70711	70841	3	3408	3531	3653	0	1	2	0	2 (4:4ai)_(3:5)_(2:6)_(4:4bi)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4)_(5:3)_(5:3)_(4:4)_(5:3)_
179 OMT8	OMT	15	795030	795362	797043	797205 2 sis	-	1682	1928	2174	0	1	2	0	2 (3:5) (2:6i) (2:6a) (4:4)
37 OMT8	OMT	4	955335	955435	960570	960787	3	5136	5294	5451	0	2	2	1	1 (3:5)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
42 OMT8	OMT	4	1168188	1168767	1168770	1168958	3	4	387	769	0	2	2	1	1 (5:3)_(4:4aCO)
47 OMT8	OMT	4	1433731	1433930	1434367	1434455	3	438	581	723	0	2	2	1	1 (5:3)_(3:5)_(4:4aCO)
66 OMT8	OMT	6	95326	95387	95632	95746	3	246	333	419	0	2	2	1	1 (3:5)_(4:4)_(5:3)_(4:4aCO)
87 OMT8	OMT	7	1049349	1050057	1051093	1051991	3	1037	1839	2641	0	2	2	1	1 (5:3)_(4:4)_(5:3a)_(5:3b)_(4:4aCO)
90 OMT8	OMT	8	122169	122633	122674	122848	3	42	360	678	0	2	2	1	1 (4:4ai) (4:4bCO)
97 OMT8	OMT	8	461593	462297	463854	464156	3	1558	2060	2562	0	2	2	1	1 (9.8_(1.7)_(3.5)_(2.6i)_(3.5)_(4.4aCO)
106 OMT8	OMT	9	386051	386090	387314	387368	3	1225	1271	1316	0	2	2	1	1 (5:3)_(4:4a)_(5:3)_(6:2)_(5:3a)_(4:4bCO)_(5:3b)_(4:4b)
128 OMT8	OMT	11	557299	558102	559707	560658	3	1606	2482	3358	0	2	2	1	1 (3.5)_(4.4ai)_(5.3)_(4.4b)_(3.5b)_(4.4b) 1 (3.5)_(4.4ai)_(5.3)_(4.4ai)_(5.3)_(4.4bCO)_(3.5a)_(4.4ci)_(4.4b)
128 OM18 135 OMT8	OMT	12	337299	340008	341507	341678	4	1500	1841	2181	0	2	2	2	1 (3.3)_(4.4ai)_(3.5)_(4.4ai)_(3.5)_(4.4bCO)_(3.3a)_(4.4ci)_(4.4b) 0 (5.3)_(2.6)_(3.5)_(4.4aCO)
137 OMT8	OMT	12	611203	611744	613380		3	1637	2285		0	2	2	1	1 (3:5)_(4:4)_(3:5)_(2:6)_(1:7)_(4:4)_(5:3)_(4:4)_(4:4aCO)
137 OM18 140 OMT8	OMT	12	835509	835608	837543	614136 837595	3	1936	2011	2932 2085	0	2	2	1	
							3	1657	1995	2333	0	2	2	1	1 (3:5)_(3:5a)_(3:5b)_(4:4aCO)
172 OMT8	OMT	15	215808	215865	217521	218142	3					3	2		1 (5:3)_(4:4)_(5:3)_(6:2i)_(5:3a)_(4:4aCO)
133 OMT8 149 OMT8	OMT OMT	12	250711 283368	251635 283562	255317 288558	255485 2_nonsis 289245	3	3683 4997	4228 5437	4773 5876	0	3	2	0	2 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4bi)_(4:4CO)
		13									0				1 (5:3)_(4:4aCO)_(5:3a)_(5:3b)_(4:4bCO)_(4:4ci)_(4:4b)
11 OMT9 74 OMT9	OMT OMT	1	196623 264585	196686	196686 264738	196738 264848	1	1 71	58 167	114 262	1	1	1	0	1 05:03
		5		264668			-				-	-	-	-	1 05:03
138 OMT9	OMT	10	549846	550041	550041	550237	1	1	196	390	1	1	1	0	1 05:03
139 OMT9	OMT	10	633240	633350	633463	633743	1	114	308	502	1	1	1	0	1 05:03
93 OMT9	OMT	7	217121	217417	217461	217697	1	45	310	575	1	1	1	0	1 05:03
76 OMT9	OMT	5	318778	319090	319090	319404	1	1	313	625	1	1	1	0	1 05:03
237 OMT9	OMT	16	171075	171270	171314	171708	1	45	339	632	1	1	1	0	1 05:03
69 OMT9	OMT	4	1422008	1422082	1422082	1422760	1	1	376	751	1	1	1	0	1 05:03
236 OMT9	OMT	16	138435	138747	138809	139202	1	63	415	766	1	1	1	0	1 05:03
20 OMT9	OMT	2	492226	492334	492334	493122	1	1	448	895	1	1	1	0	1 05:03
63 OMT9	OMT	4	1135519	1136116	1136171	1136363	1	56	450	843	1	1	1	0	1 05:03
66 OMT9	OMT	4	1270902	1271755	1271755	1271812	1	1	455	909	1	1	1	0	1 05:03
128 OMT9	OMT	9	405428	405665	405973	406124	1	309	502	695	1	1	1	0	1 05:03
216 OMT9	OMT	14	603874	604244	604244	604879	1	1	503	1004	1	1	1	0	1 05:03
46 OMT9	OMT	4	302250	303051	303140	303260	1	90	550	1009	1	1	1	0	1 05:03
112 OMT9	OMT	8	142863	143543	143727	143824	1	185	573	960	1	1	1	0	1 05:03

243 OMT9	OMT	16	285465	286085	286391	286502	1	307	672	1036	1	1	1	0	1 05:03
73 OMT9	OMT	5	178287	178671	179143	179281	1	473	733	993	1	1	1	0	1 05:03
189 OMT9	OMT	13	166876	167027	167521	167925	1	495	772	1048	1	1	1	0	1 05:03
177 OMT9	OMT	12	819834	820606	820606	821384	1	1	775	1549	1	1	1	0	1 05:03
												1			
64 OMT9	OMT	4	1180090	1181300	1181437	1181528	1	138	788	1437	1	1	1	0	1 05:03
116 OMT9	OMT	8	281264	281430	281430	282877	1	1	807	1612	1	1	1	0	1 05:03
252 OMT9	OMT	16	678266	678517	679119	679575	1	603	956	1308	1	1	1	0	1 05:03
136 OMT9	OMT	10	401166	401242	402145	402267	1	904	1002	1100	1	1	1	0	1 05:03
41 OMT9	OMT	4	159777	159930	161136	162357	1	1207	1893	2579	1	1	1	0	1 05:03
22 OMT9	OMT	2	556121	556210	556210	556272	1	1	76	150	1	2	1	0	1 03:05
122 OMT9	OMT	9	82899	83067	83067	83104	1	1	103	204	1	2	1	0	1 03:05
60 OMT9	OMT	4	955335	955435	955435	955755	1	1	210	419	1	2	1	0	1 03:05
31 OMT9	OMT	3	51209	51405	51491	51650	1	87	264	440	1	2	1	0	1 03:05
211 OMT9	OMT	14	405600	405841	405878	406133	1	38	285	532	1	2	1	0	1 03:05
140 OMT9	OMT	10	639041	639365	639365	639986	1	1	473	944	1	2	1	0	1 03:05
79 OMT9	OMT	5	461594	462226	462226	462614	1	1	510	1019	1	2	1	0	1 03:05
48 OMT9	OMT	4	361942	362378	362378	362993	1	1	526	1050	1	2	1	0	1 03:05
194 OMT9	OMT	13	433720	433878	434234	434450	1	357	543	729	1	2	1	0	1 03:05
113 OMT9	OMT	8	151206	151383	151824	152076	1	442	656	869	1	2	1	0	1 03:05
154 OMT9	OMT	12	27605	28820	28820	29085	1	1	740	1479	1	2	1	0	1 03:05
203 OMT9	OMT	14	39652	40306	40430	41146	1	125	809	1493	1	2	1	0	1 03:05
221 OMT9	OMT	15	218142	219124	219136	219822	1	13	846	1679	1	2	1	0	1 03:05
119 OMT9	OMT	8	470864	471244	471607	472204	1	364	852	1339	1	2	1	0	1 03:05
89 OMT9	OMT	7	93397	94650	94650	95130	1	1	867	1732	1	2	1	0	1 03:05
4 OMT9	OMT		73970		74786		1	597	919	1240	1	_	1	0	
		1		74190		75211	-				-	2			1 03:05
130 OMT9	OMT	10	21859	22066	22895	22911	1	830	941	1051	1	2	1	0	1 03:05
168 OMT9	OMT	12	424103	424315	425059	425314	1	745	978	1210	1	2	1	0	1 03:05
36 OMT9	OMT	3	220112	221651	221877	222524	1	227	1319	2411	1	2	1	0	1 03:05
178 OMT9	OMT	12	822848	823217	823256	826618	1	40	1905	3769	1	2	1	0	1 03:05
43 OMT9	OMT	4	222020	222257	224854	225140	1	2598	2859	3119	1	2	1	0	1 03:05
91 OMT9	OMT	7	147249	147427	147698	148827	1	272	925	1577	1	3	1	0	1 5:3_6:2_5:3
164 OMT9	OMT	12	341507	341678	342190	342448	1	513	727	940	1	4	1	0	1 3:5_2:6_3:5
225 OMT9	OMT	15	619075	619398	620962	621636	1	1565	2063	2560	1	4	1	0	1 3:5_2:6_3:5
161 OMT9	OMT	12	231692	232046	232561	233075	1	516	949	1382	1	4	1	0	1 3:5_4:4_2:6_3:5
99 OMT9	OMT	7	625898	626137	629962	630335	1	3826	4131	4436	1	4	1	0	1 3:5_4:4_3:5_4:4_3:5_2:6_3:5
233 OMT9	OMT	16	19590	19596	21363	21404	1	1768	1791	1813	1	4	1	0	1 3:5_2:6_3:5_2:6_3:5_4:4_3:5_4:4_3:5
107 OMT9	OMT	7	1009812	1010365	1010428	1011166	1	64	709	1353	1	7	1	0	1 5:3_6:2
126 OMT9	OMT	9	332503	333073	333581	334640	1	509	1323	2136	1	7	1	0	1 5:3_6:2
238 OMT9	OMT	16	173018	173053	173981	174782	1	929	1346	1763	1	7	1	0	1 5:3_6:2
68 OMT9	OMT	4	1295582	1295980	1300582	1300834	1	4603	4927	5251	1	7	1	0	1 6:2_5:3
87 OMT9	OMT	7	19850	19896	20580	20692	1	685	763	841	1	7	1	0	1 6:2_4:4_6:2_4:4_6:2
131 OMT9	OMT	10	130065	130174	130263	130584	1	90	304	518	1	8	1	0	1 3:5_2:6
232 OMT9	OMT	15	1043361	1043801	1050821	1051046	1	7021	7353	7684	1	8	1	0	1 2:6_3:5
191 OMT9	OMT	13	251286	251609	252379	252532	1	771	1008	1245	1	8	1	0	1 2:6_4:4_2:6
27 OMT9	OMT	2	727085	727268	728435	728481	1	1168	1282	1395	1	8	1	0	1 3:5_4:4_2:6
67 OMT9	OMT	4	1278056	1278456	1279422	1279680	1	967	1295	1623	1	8	1	0	1 3:5_4:4_2:6
133 OMT9	OMT	10	293368	293436	294827	294918	1	1392	1471	1549	1	8	1	0	1 2:6_4:4_2:6
148 OMT9	OMT	11	264974	265409	266175	266189	1	767	991	1214	1	8	1	0	1 2:6_4:4_2:6_3:5
3 OMT9	OMT	1	67801	68551	70621	70999	1	2071	2634	3197	1	8	1	0	
241 OMT9	OMT	-	254454	254494	254494		1	2071	121		1	10	1	0	1 2:6_3:5_4:4_3:5 1 06:02
		16				254696	-			241	-		-		
157 OMT9	OMT	12	124230	124317	124421	124596	1	105	235	365	1	10	1	0	1 06:02
35 OMT9	OMT	3	210517	210635	210635	211159	1	1	321	641	1	10	1	0	1 06:02
9 OMT9	OMT	1	180982	181085	181334	181491	1	250	379	508	1	10	1	0	1 06:02
212 OMT9	OMT	14	424418	425075	425075	425369	1	1	476	950	1	10	1	0	1 06:02
81 OMT9	OMT	5	544734	545025	545025	545863	1	1	565	1128	1	10	1	0	1 06:02
195 OMT9	OMT	13	464785	464976	465435	465476	1	460	575	690	1	10	1	0	1 06:02
176 OMT9	OMT	12	778158	779222	779222	779322	1	1	582	1163	1	10	1	0	1 06:02
196 OMT9	OMT	13	467817	467994	468499	468637	1	506	663	819	1	10	1	0	1 06:02
229 OMT9	OMT	15	907801	907843	908551	908634	1	709	771	832	1	10	1	0	1 06:02
97 OMT9	OMT	7	588633	588807	589377	589637	1	571	787	1003	1	10	1	0	1 06:02

173 OMT9	OMT	12	610920	611078	611812	611994	1	735	904	1073	1	10	1	0	1 06:02
158 OMT9	OMT	12	127531	128653	130739	130857	1	2087	2706	3325	1	10	1	0	1 06:02
160 OMT9	OMT	12	180683	180796	183318	183574	1	2523	2707	2890	1	10	1	0	1 06:02
18 OMT9	OMT	2	350135	350166	350178	350376	1	13	127	240	1	10.1	1	0	1 02:06
183 OMT9	OMT	12	1058624	1058732	1058785	1058831	1	54	130	206	1	10.1	1	0	1 02:06
47 OMT9	OMT	4	317913	318023	318317	318659	1	295	520	745	1	10.1	1	0	1 02:06
108 OMT9	OMT	7	1013720	1013788	1014216	1014432	1	429	570	711	1	10.1	1	0	1 02:06
32 OMT9	OMT	3	65580	66138	66375	66729	1	238	693	1148	1	10.1	1	0	1 02:06
55 OMT9	OMT	4	699549	699810	700440	700614	1	631	848	1064	1	10.1	1	0	1 02:06
62 OMT9	OMT	4	1126095	1126171	1127082	1127449	1	912	1133	1353	1	10.1	1	0	1 02:06
244 OMT9	OMT	16	371914	372742	373422	373522	1	681	1144	1607	1	10.1	1	0	1 02:06
104 OMT9	OMT	7	913393	913982	914538	915691	1	557	1427	2297	1	10.1	1	0	1 02:06
78 OMT9	OMT	5	458086	458181	460225	460341	1	2045	2150	2254	1	10.1	1	0	1 02:06
214 OMT9	OMT	14	488208	488587	490406	490766	1	1820	2189	2557	1	10.1	1	0	1 02:06
53 OMT9	OMT	4	644966	645102	645102	652022	1	1	3528	7055	1	10.1	1	0	1 02:06
246 OMT9	OMT	16	475496	475562	475802	476379	1	241	562	882	2	11	1	0	1 5:3_5:3a
39 OMT9	OMT	4	46608	46818	48267	48349	1	1450	1595	1740	2	11	1	0	1 5:3_5:3a
151 OMT9	OMT	11	566023	566185	567633	567960	1	1449	1693	1936	2	11	1	0	1 5:3_5:3a
57 OMT9	OMT	4	753858	754044	755801	756152	1	1758	2026	2293	2	11	1	0	1 5:3_5:3a
94 OMT9	OMT	7	244757	245112	245422	245686	1	311	620	928	2	12	1	0	1 3:5_3:5a
110 OMT9	OMT	8	97715	98248	98643	99089	1	396	885	1373	2	15	1	0	1 5:3_4:4_5:3a
209 OMT9	OMT	14	219410	220323	220950	221010	1	628	1114	1599	2	15	1	0	1 5:3_4:4_5:3a
250 OMT9	OMT	16	637334	638483	639362	639417	1	880	1481	2082	2	15	1	0	1 5:3_4:4_5:3a
146 OMT9	OMT	11	230455	230765	231922	232567	1	1158	1635	2111	2	15	1	0	1 5:3_4:4_5:3a
70 OMT9	OMT	4	1486166	1487095	1488106	1488682	1	1012	1764	2515	2	15	1	0	1 5:3_4:4_5:3a
169 OMT9	OMT	12	509219	509342	511071	511197	1	1730	1854	1977	2	15	1	0	1 5:3_4:4_5:3a
19 OMT9	OMT	2	487454	487781	489580	490532	1	1800	2439	3077	2	15	1	0	1 5:3_4:4_5:3a
187 OMT9	OMT	13	91733	91890	94190	94473	1	2301	2520	2739	2	15	1	0	1 5:3_4:4_5:3a
106 OMT9	OMT	7	983164	983358	986049	986380	1	2692	2954	3215	2	15	1	0	1 5:3 4:4 5:3a
115 OMT9	OMT	8	185625	186453	191248	191304	1	4796	5237	5678	2	15	1	0	1 5:3_4:4_5:3a
54 OMT9	OMT	4	678799	679210	680288	680316	1	1079	1298	1516	2	16	1	0	1 3:5_4:4_3:5a
135 OMT9	OMT	10	389413	389929	391693	392871	1	1765	2611	3457	2	17	1	0	1 6:2_5:3_4:4_5:3a
155 OMT9	OMT	12	65523	65606	67821	68071	1	2216	2382	2547	2	17	1	0	1 5:3_6:2_5:3_4:4_5:3a
247 OMT9	OMT	16	481833	482069	483961	485045	1	1893	2552	3211	2	17	1	0	1 5:3_4:4_5:3a_6:2_5:3a
13 OMT9	OMT	2	145486	145751	150492	151117	1	4742	5186	5630	2	17	1	0	1 5:3_6:2_5:3_4:4_5:3a_4:4_5:3a
103 OMT9	OMT	7	839712	839880	843717	843816	1	3838	3971	4103	2	18	1	0	1 3:5_4:4_3:5_2:6_3:5_4:4_3:5a
98 OMT9	OMT	7	609044	609307	610674	611145	1	1368	1734	2100	2	22	1	0	1 3:5_4:4_3:5_2:6_3:5_2:6_3:5a
40 OMT9	OMT	4	86606	87227	94649	95033	1	7423	7925	8426	2	23	1	0	1 5:3_4:4_6:2_5:3a
248 OMT9	OMT	16	492354	493222	493470	494188 2_nonsis		249	1041	1833	3	30	1	0	1 03:05
193 OMT9	OMT	13	407191	407557	408374	408897 2_nonsis		818	1262	1705	3	30	1	0	1 5:3_4:4_3:5
24 OMT9	OMT	2	633129	633214	635127	635445 2_nonsis		1914	2115	2315	3	30	1	0	1 3:5_2:6_5:3
83 OMT9	OMT	6	50137	50410	51257	51370 2_nonsis		848	1040	1232	3	30	1	0	1 3:5_5:3_6:2_5:3
120 OMT9	OMT	8	515162	515676	516811	516908 2_nonsis		1136	1441	1745	3	30	1	0	1 3:5_2:6_4:4_5:3
199 OMT9	OMT	13	792254	793043	798090	798261 2_nonsis		5048	5527	6006	3	30	1	0	1 3:5_2:6_4:4_2:6
117 OMT9	OMT	8	384631	384685	391351	392078 2_nonsis		6667	7057	7446	3	31	1	0	1 4:4ai_2:6
184 OMT9	OMT	13	26922	28623	31858	35547 2_nonsis		3236	5930	8624	3	31	1	0	1 5:3_4:4ai_5:3
92 OMT9	OMT	7	165317	165523	171282	171503 2_nonsis		5760	5973	6185	3	31	1	0	1 6:2_4:4ai_5:3_4:4ai
174 OMT9	OMT	12	689527	689587	692181	692874 2_nonsis		2595	2971	3346	3	31	1	0	1 5:3_6:2_4:4_5:3_4:4ai
59 OMT9	OMT	4	935099	935138	938591	939572 2_nonsis		3454	3963	4472	3	31	1	0	1 4:4ai_3:5_4:4ai_3:5a_4:4_3:5a
96 OMT9	OMT	7	351015	351063	351063	351287 2_nonsis		1	136	271	1	1	1	1	0 (5:3)_(4:4aCO)
33 OMT9	OMT	3	148171	148238	148271	148481 2_nonsis		34	172	309	1	1	1	1	0 (5:3)_(4:4aCO)
25 OMT9	OMT	2	642776	643134	643176	643272 2_nonsis		43	269	495	1	1	1	1	0 (5:3)_(4:4aCO)
90 OMT9	OMT	7	114793	116310	116310	116629 2_nonsis		1	918	1835	1	1	1	1	0 (5:3)_(4:4aCO)
185 OMT9	OMT	13	41174	42127	42127	43336 2_nonsis		1	1081	2161	1	1	1	1	0 (5:3)_(4:4aCO)
170 OMT9	OMT	12	520933	521221	521782	522608 2_nonsis		562	1118	1674	1	1	1	1	0 (5:3)_(4:4aCO)
231 OMT9	OMT	15	1040442	1040775	1041177	1042440 2_nonsis		403	1200	1997	1	1	1	1	0 (5:3)_(4:4aCO)
235 OMT9	OMT	16	130647	130793	131951	132681 2_nonsis		1159	1596	2033	1	1	1	1	0 (5:3)_(4:4aCO)
206 OMT9	OMT	14	122278	122496	124329	124634 2_nonsis		1834	2095	2355	1	1	1	1	0 (5:3)_(4:4aCO)
156 OMT9	OMT	12	81147	81186	81207	81387 2_nonsis		22	131	239	1	2	1	1	0 (3:5)_(4:4aCO)
149 OMT9	OMT	11	353289	353522	353522	353672 2_nonsis		1	192	382	1	2	1	1	0 (3:5)_(4:4aCO)
															. /=\/

123 OMT9	OMT	9	94596	94804	94919	95341 2_nonsis	116	430	744	1	2	1	1	0 (3:5)_(4:4aCO)
219 OMT9	OMT	15	40365	40497	40834	41027 2_nonsis	338	500	661	1	2	1	1	0 (3:5)_(4:4aCO)
37 OMT9	OMT	3	288455	289600	289600	289803 2_nonsis	1	674	1347	1	2	1	1	0 (3:5)_(4:4aCO)
166 OMT9	OMT	12	382702	382931	384821	385142 2_nonsis	1891	2165	2439	1	2	1	1	0 (3:5)_(4:4aCO)
127 OMT9	OMT	9	377342	377556	378456	379276 2_nonsis	901	1417	1933	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
210 OMT9	OMT	14	306527	307339	308436	308655 2_nonsis	1098	1613	2127	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
42 OMT9	OMT	4	196851	198376	200220	200994 2_nonsis	1845	2994	4142	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
220 OMT9	OMT	15	195722	196238	196803	197183 2_nonsis	566	1013	1460	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
61 OMT9	OMT	4	1005257	1005358	1006922	1007012 2_nonsis	1565	1660	1754	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
175 OMT9	OMT	12	713180	713312	715886	715955 2_nonsis	2575	2675	2774	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
208 OMT9	OMT	14	188016	188308	191916	192676 2_nonsis	3609	4134	4659	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
254 OMT9	OMT	16	811965	812355	812845	812990 2_nonsis	491	758	1024	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
242 OMT9	OMT	16	278394	278872	279975	280422 2_nonsis	1104	1566	2027	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
7 OMT9	OMT	1	137336	138499	139404	141984 2_nonsis	906	2777	4647	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
163 OMT9	OMT	12	282215	282385	283463	284270 2_nonsis	1079	1567	2054	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
179 OMT9	OMT	12	835509	835608	843387	844293 2_nonsis	7780	8282	8783	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
16 OMT9	OMT	2	288339	288484	288498	288671 2_nonsis	15	173	331	1	11	1	1	0 (4:4ai)_(4:4bCO)
65 OMT9	OMT	4	1241519	1242658	1242658	1246191 2_nonsis	1	2336	4671	1	11	1	1	0 (4:4ai)_(4:4bCO)
147 OMT9	OMT	11	248004	248274	248310	248487 2_nonsis	37	260	482	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
118 OMT9	OMT	8	421840	422434	422538	422684 2_nonsis	105	474	843	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
111 OMT9	OMT	8	120445	121477	122169	122633 2_nonsis	693	1440	2187	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
249 OMT9	OMT	16	576041	576179	576653	576758 2_nonsis	475	596	716	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)
165 OMT9	OMT	12	348259	348314	349138	349585 2_nonsis	825	1075	1325	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
132 OMT9	OMT	10	145019	145102	146059	146367 2_nonsis	958	1153	1347	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)
245 OMT9	OMT	16	380674	380758	381840	381920 2_nonsis	1083	1164	1245	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
12 OMT9	OMT	2	71395	71420	72420	73226 2_nonsis	1001	1416	1830	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
51 OMT9	OMT	4	566007	566376	567474	567804 2_nonsis	1099	1448	1796	1	12	1	1	0 (5:3)_(6:2)_(4:4)_(4:4aCO)
182 OMT9	OMT	12	1030614	1030831	1031842	1032807 2_nonsis	1012	1602	2192	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
152 OMT9	OMT	11	580815	581481	582756	582855 2_nonsis	1276	1658	2039	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
105 OMT9	OMT	7	918156	918499	919947	920105 2_nonsis	1449	1699	1948	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
255 OMT9	OMT	16	905685	905754	907043	907815 2_nonsis	1290	1710	2129	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
134 OMT9	OMT	10	313986	314406	315888	316551 2_nonsis	1483	2024	2564	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)
230 OMT9	OMT	15	955553	956028	958391	958713 2_nonsis	2364	2762	3159	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
180 OMT9	OMT	12	887437	891755	892436	930472 2_nonsis	682	21858	43034	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
49 OMT9	OMT	4	365434	365716	366629	366913 2_nonsis	914	1196	1478	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)
56 OMT9	OMT	4	703059	703137	703905	706032 2_nonsis	769	1871	2972	1	12	1	1	0 (5:3)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
223 OMT9	OMT	15	302184	302514	304796	304859 2_nonsis	2283	2479	2674	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(5:3)_(4:4a)
201 OMT9	OMT	13	894275	895607	898462	898537 2_nonsis	2856	3559	4261	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)
205 OMT9	OMT	14	76137	76429	76429	76856 2_nonsis	1	360	718	1	15	1	1	0 (6:2)_(4:4aCO)
228 OMT9	OMT	15	905482	905729	905751	906405 2_nonsis	23	473	922	1	15	1	1	0 (6:2)_(4:4aCO)
102 OMT9	OMT	7	797366	797622	798046	798196 2_nonsis	425	627	829	1	15	1	1	0 (6:2)_(4:4aCO)
144 OMT9	OMT	11	77827	78581	79688	79772 2_nonsis	1108	1526	1944	1	15	1	1	0 (6:2)_(4:4aCO)
143 OMT9	OMT	11	14411	18399	18399	19020 2_nonsis	1	2305	4608	1	15	1	1	0 (6:2)_(4:4aCO)
72 OMT9	OMT	5	159624	159875	159882	160010 2_nonsis	8	197	385	1	16	1	1	0 (2:6)_(4:4aCO)
198 OMT9	OMT	13	715590	715643	715953	715971 2_nonsis	311	346	380	1	16	1	1	0 (2:6)_(4:4aCO)
129 OMT9	OMT	9	409125	409496	409916	410027 2_nonsis	421	661	901	1	16	1	1	0 (2:6)_(4:4aCO)
240 OMT9	OMT	16	226631	226745	227039	227828 2_nonsis	295	746	1196	1	16	1	1	0 (2:6)_(4:4aCO)
197 OMT9	OMT	13	644092	644367	645425	645754 2_nonsis	1059	1360	1661	1	16	1	1	0 (2:6)_(4:4aCO)
192 OMT9	OMT	13	387879	388308	387879	388308 2_nonsis	0	214	428	1	100	1	1	0 (4:4aCO)
213 OMT9	OMT	14	435934	436363	435934	436363 2_nonsis	0	214	428	1	100	1	1	0 (4:4aCO)
125 OMT9	OMT	9	267668	268176	267668	268176 2_nonsis	0	254	507	1	100	1	1	0 (4:4aCO)
114 OMT9	OMT	8	181132	181682	181132	181682 2_nonsis	0	275	549	1	100	1	1	0 (4:4aCO)
28 OMT9	OMT	2	736314	736876	736314	736876 2_nonsis	0	281	561	1	100	1	1	0 (4:4aCO)
251 OMT9	OMT	16	648799	649375	648799	649375 2_nonsis	0	288	575	1	100	1	1	0 (4:4aCO)
239 OMT9	OMT	16	219029	219860	219029	219860 2_nonsis	0	415	830	1	100	1	1	0 (4:4aCO)
50 OMT9	OMT	4	504204	505041	504204	505041 2_nonsis	0	418	836	1	100	1	1	0 (4:4aCO)
204 OMT9	OMT	14	46932	49011	46932	49011 2_nonsis	0	1039	2078	1	100	1	1	0 (4:4aCO)
145 OMT9	OMT	11	152355	154732	152355	154732 2_nonsis	0	1188	2376	1	100	1	1	0 (4:4aCO)
215 OMT9	OMT	14	539950	542443	539950	542443 2_nonsis	0	1246	2492	1	100	1	1	0 (4:4aCO)
8 OMT9	OMT	1	167179	170726	167179	170726 2_nonsis	0	1773	3546	1	100	1	1	0 (4:4aCO)

186 OMT9	OMT	13	51256	51335	53537	53642 2_nonsis		2203	2294	2385	2	30	1	1	0 (6:2)_(5:3)_(5:3a)_(4:4aCO)
52 OMT9	OMT	4	584012	584486	587057	588381 2_nonsis		2572	3470	4368	2	30	1	1	0 (6:2)_(5:3)_(5:3a)_(4:4aCO)_(5:3a)_(6:2)_(4:4a)
45 OMT9	OMT	4	294427	295520	296339	296793 2_nonsis		820	1593	2365	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
181 OMT9	OMT	12	1022570	1022675	1025374	1025702 2_nonsis		2700	2916	3131	2	31	1	1	0 (3:5)_(4:4)_(3:5)_(3:5a)_(4:4aCO)
26 OMT9	OMT	2	703042	703256	708952	709993 2_nonsis		5697	6324	6950	2	31	1	1	0 (4:4ai)_(3:5)_(4:4ai)_(3:5)_(3:5a)_(4:4bCO)
207 OMT9	OMT	14	146493	146563	148331	148607 2_nonsis		1769	1941	2113	2	32	1	1	0 (5:3)_(4:4ai)_(5:3a)_(4:4bCO)
38 OMT9	OMT	4	32706	32904	34987	35378 2_nonsis		2084	2378	2671	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
234 OMT9	OMT	16	82464	82826	85601	85621 2_nonsis		2776	2966	3156	2	32	1	1	0 (3:5)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
188 OMT9	OMT	13	103361	104510	107248	107332 2_nonsis		2739	3355	3970	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4ai)_(4:4bCO)
5 OMT9	OMT	1	104068	107245	109735	110713 2_nonsis		2491	4568	6644	2	32	1	1	0 (3:5)_(4:4aCO)_(2:6)_(3:5a)_(4:4a)
58 OMT9	OMT	4	864727	865291	870568	871373 2_nonsis		5278	5962	6645	2	32	1	1	0 (4:4ai)_(5:3)_(6:2)_(5:3a)_(4:4ai)_(4:4bCO)
1 OMT9	OMT	1	31848	31975	37019	37294 2 nonsis		5045	5245	5445	2	32	1	1	0 (6:2)_(5:3)_(6:2)_(5:3a)_(6:2)_(5:3)_(4:4aCO)
153 OMT9	OMT	12	16338	16487	16757	17014 2_nonsis		271	473	675	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)
226 OMT9	OMT	15	656264	656389	657204	657250 2 nonsis		816	901	985	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
121 OMT9	OMT	9	53091	53103	53832	54480 2_nonsis		730	1059	1388	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)
137 OMT9	OMT	10	464438	465021	465816	466454 2_nonsis		796	1406	2015	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
217 OMT9	OMT	14	674690	676368	677207	677352 2_nonsis		840	1751	2661	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO) 0 (2:6)_(6:2)_(4:4aCO)
34 OMT9	OMT	3	156517	156868	158627			1760		2438	3		1	1	0 (2:5)_(5:3)_(4:4aCO)
17 OMT9	OMT	2	347935	348121		158956 2_nonsis		358	2099 524	689	3	20 20	1	1	
					348478	348625 2_nonsis									0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
80 OMT9	OMT	5	473893	473950	474470	474506 2_nonsis		521	567	612	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)
253 OMT9	OMT	16	739009	739133	740090	740140 2_nonsis		958	1044	1130	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(4:4aCO)
150 OMT9	OMT	11	492262	493124	493667	494125 2_nonsis		544	1203	1862	3	20	1	1	0 (4:4aCO)_(2:6)_(5:3)_(4:4a)
227 OMT9	OMT	15	769458	769620	770868	771765 2_nonsis		1249	1778	2306	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
142 OMT9	OMT	10	706608	707018	707655	707903 2_nonsis		638	966	1294	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(6:2)_(4:4aCO)
77 OMT9	OMT	5	392867	393024	395011	395075 2_nonsis		1988	2098	2207	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
162 OMT9	OMT	12	257813	258349	260323	260496 2_nonsis		1975	2329	2682	3	20	1	1	0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(4:4a)
82 OMT9	OMT	5	548562	549247	550834	551094 2_nonsis		1588	2060	2531	3	20	1	1	0 (5:3)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
29 OMT9	OMT	2	770910	771544	776367	777303 2_nonsis		4824	5608	6392	3	20	1	1	0 (5:3)_(6:2)_(3:5)_(2:6)_(3:5)_(4:4aCO)
222 OMT9	OMT	15	256152	256235	259967	260183 2_nonsis		3733	3882	4030	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(3:5)_(4:4aCO)
141 OMT9	OMT	10	642510	643441	643859	643946 2_nonsis		419	927	1435	3	21	1	1	0 (2:6)_(5:3)_(4:4ai)_(4:4bCO)
6 OMT9	OMT	1	128756	129063	130975	132066 2_nonsis		1913	2611	3309	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(4:4bCO)
159 OMT9	OMT	12	142500	143093	144379	144822 2_nonsis		1287	1804	2321	3	21	1	1	0 (2:6)_(5:3)_(4:4ai)_(3:5)_(4:4bCO)
190 OMT9	OMT	13	177865	178128	179582	179588 2_nonsis		1455	1589	1722	3	21	1	1	0 (3:5)_(4:4)_(2:6)_(4:4ai)_(5:3)_(4:4bCO)
167 OMT9	OMT	12	388010	388456	392866	392954 2_nonsis		4411	4677	4943	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(4:4bCO)_(5:3)_(4:4ai)_(3:5)_(2:6)_(4:4b)
23 OMT9	OMT	2	559930	560167	567682	567814 2_nonsis		7516	7700	7883	3	21	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(4:4ai)_(3:5)_(4:4ai)_(3:5a)_(4:4ai)_(5:3a)_(4:4bCO)
10 OMT9	OMT	1	187427	189825	194436	194475	4	4612	5830	7047	0	1	2	0	2 (1:7)_(3:5)_(2:6i)_(3:5a)_(0:8)_(2:6a)_(3:5b)_(4:4)
14 OMT9	OMT	2	160143	160403	164419	164851 2_sis		4017	4362	4707	0	1	2	0	2 (2:6)_(3:5)_(4:4)_(2:6a)_(4:4)
75 OMT9	OMT	5	281237	281289	284190	284613 2_sis		2902	3139	3375	0	1	2	0	2 (3:5)_(3:5a)_(4:4)
85 OMT9	OMT	6	108920	109247	110820	110943	3	1574	1798	2022	0	1	2	0	2 (5:3)_(4:4)_(5:3)_(4:4ai)_(5:3a)_(4:4ai)_(3:5)_(4:4bi)_(4:4)
88 OMT9	OMT	7	53419	53732	55957	57501 2_sis		2226	3154	4081	0	1	2	0	2 (3:5)_(2:6)_(3:5)_(4:4)_(2:6)_(3:5)_(3:5a)_(4:4)
101 OMT9	OMT	7	696994	697261	700278	700504 2_sis		3018	3264	3509	0	1	2	0	2 (3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5a)_(4:4)
171 OMT9	OMT	12	572662	572946	574950	575257	3	2005	2300	2594	0	1	2	0	2 (2:6)_(4:4)_(3:5)_(4:4)_(5:3)_(4:4)
202 OMT9	OMT	13	900142	901050	902696	902762	3	1647	2133	2619	0	1	2	0	2 (6:2)_(4:4)_(5:3)_(5:3a)_(4:4)
2 OMT9	OMT	1	57739	59349	61708	61999	3	2360	3310	4259	0	2	2	1	1 (2:6)_(3:5)_(3:5a)_(4:4aCO)
21 OMT9	OMT	2	504994	505129	506237	506715	3	1109	1415	1720	0	2	2	1	1 (3:5)_(4:4ai)_(2:6i)_(4:4bCO)
30 OMT9	OMT	2	789369	789930	792210	792968	3	2281	2940	3598	0	2	2	1	1 (3:5)_(4:4)_(1:7)_(2:6)_(4:4aCO)
44 OMT9	OMT	4	235676	235902	241206	241406	4	5305	5517	5729	0	2	2	2	0 (3:5)_(2:6)_(3:5a)_(2:6)_(0:8)_(2:6)_(1:7)_(3:5b)_(4:4aCO)
71 OMT9	OMT	5	38064	38431	45019	45548	3	6589	7036	7483	0	2	2	1	1 (4:4ai)_(3:5)_(4:4bi)_(5:3)_(5:3a)_(3:5a)_(4:4bi)_(2:6)_(5:3b)_(6:2)_(5:3b)_(4:4cCO)
84 OMT9	OMT	6	52838	53398	54858	55242	4	1461	1932	2403	0	2	2	2	0 (3:5)_(2:6)_(4:4aCO)
86 OMT9	OMT	6	129391	130480	132667	133039	3	2188	2918	3647	0	2	2	1	1 (2:6)_(6:2)_(5:3)_(4:4aCO)
		8					3	4234				2	2	1	
109 OMT9	OMT		13244	13408	17641	17751			4370	4506	0				1 (6:2)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
172 OMT9 200 OMT9	OMT OMT	12 13	593059 826214	599206 826499	605228	605250 828274	3	6023 1730	9107 1895	12190 2059	0	2	2 2	1	1 (5:3)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)_(5:3a)_(4:4a)
					828228		3				-			-	1 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
15 OMT9	OMT	2	189673	190032	191613	192289 2_nonsis		1582	2099	2615	0	3	2	0	2 (5:3)_(4:4ai)_(4:4bCO)_(6:2)_(4:4b)_(4:4CO)
95 OMT9	OMT	7	270975	271422	272568	273422	3	1147	1797	2446	0	3	2	1	1 (2:6)_(3:5)_(4:4aCO)_(6:2)_(4:4bCO)
100 OMT9	OMT	7	632060	632357	639145	639946	3	6789	7337	7885	0	3	2	1	1 (5:3)_(4:4aCO)_(3:5)_(4:4a)_(5:3a)_(4:4bCO)
124 OMT9	OMT	9	244951	245022	252174	252259	4	7153	7230	7307	0	3	2	1	1 (3:5)_(2:6)_(1:7)_(2:6)_(4:4aCO)_(2:6)_(4:4bCO)
218 OMT9	OMT	14	722025	722231	724724	725092 2_nonsis		2494	2780	3066	0	3	2	0	2 (4:4aCO)_(5:3)_(6:2)_(4:4CO)
224 OMT9	OMT	15	479565	480144	487166	487809	3	7023	7633	8243	0	3	2	1	1 (2:6)_(4:4)_(3:5)_(2:6a)_(4:4aCO)_(5:3)_(6:2)_(4:4bCO)_(2:6)_(4:4b)
137 TCMM15	TCMM	10	265324	265353	265353	265422	1	1	49	97	1	1	1	0	1 05:03

66 TCMM15	TCMM	5	62815	62818	62818	62914	1	1	50	98	1	1	1	0	1 05:03
242 TCMM15	TCMM	14	531520	531611	531611	531656	1	1	68	135	1	1	1	0	1 05:03
72 TCMM15	TCMM	5	378075	378265	378297	378395	1	33	176	319	1	1	1	0	1 05:03
181 TCMM15	TCMM	12	568114	568449	568449	568546	1	1	216	431	1	1	1	0	1 05:03
249 TCMM15	TCMM	14	722231	722345	722345	722690	1	1	230	458	1	1	1	0	1 05:03
100 TCMM15	TCMM	7	730599	731008	731064	731073	1	57	265	473	1	1	1	0	1 05:03
262 TCMM15	TCMM	15	586304	586345	586345	586852	1	1	274	547	1	1	1	0	1 05:03
171 TCMM15	TCMM	12	74294	74484	74484	74872	1	1	289	577	1	1	1	0	1 05:03
246 TCMM15	TCMM	14	643651	643956	643956	644271	1	1	310	619	1	1	1	0	1 05:03
166 TCMM15	TCMM	11	489458	489975	489975	490084	1	1	313	625	1	1	1	0	1 05:03
130 TCMM15	TCMM	10	58607	59185	59202	59484	1	18	447	876	1	1	1	0	1 05:03
138 TCMM15	TCMM	10	268513	269086	269086	269458	1	1	473	944	1	1	1	0	1 05:03
224 TCMM15	TCMM	13	759679	759844	760211	760322	1	368	505	642	1	1	1	0	1 05:03
191 TCMM15	TCMM	12	818015	818577	818577	819069	1	1	527	1053	1	1	1	0	1 05:03
283 TCMM15	TCMM	16	640589	640976	640976	641895	1	1	653	1305	1	1	1	0	1 05:03
19 TCMM15	TCMM	2	633960	635127	635127	635445	1	1	743	1484	1	1	1	0	1 05:03
44 TCMM15	TCMM	4	667986	669064	669064	669601	1	1	808	1614	1	1	1	0	1 05:03
56 TCMM15	TCMM	4	1048403	1049195	1049309	1050120	1	115	916	1716	1	1	1	0	1 05:03
272 TCMM15	TCMM	16	106600	107304	107754	108114	1	451	982	1513	1	1	1	0	1 05:03
280 TCMM15	TCMM	16	492354	493222	493470	494188	1	249	1041	1833	1	1	1	0	1 05:03
127 TCMM15	TCMM	9	380809	380958	381607	382331	1	650	1086	1521	1	1	1	0	1 05:03
23 TCMM15	TCMM	2	746171	747838	747838	748391	1	1	1110	2219	1	1	1	0	1 05:03
189 TCMM15	TCMM	12	763502	763595	764623	764781	1	1029	1154	1278	1	1	1	0	1 05:03
183 TCMM15	TCMM	12	644135	644551	645452	645754	1	902	1260	1618	1	1	1	0	1 05:03
267 TCMM15	TCMM	15	1008443	1009862	1010523	1010592	1	662	1405	2148	1	1	1	0	1 05:03
217 TCMM15	TCMM	13	575127	576259	576343	577948	1	85	1453	2820	1	1	1	0	1 05:03
88 TCMM15	TCMM	7	109784	112158	112158	112793	1	1	1505	3008	1	1	1	0	1 05:03
208 TCMM15	TCMM	13	328760	328866	330411	330819	1	1546	1802	2058	1	1	1	0	1 05:03
2 TCMM15	TCMM	13	167179	170726	170945	172280	1	220	2660	5100	1	1	1	0	1 05:03
155 TCMM15	TCMM	11	84295	84308	84308	84350	1	1	28	54	1	2	1	0	1 03:05
203 TCMM15	TCMM	13	209285	209422	209449	209542	1	28	142	256	1	2	1	0	1 03:05
158 TCMM15	TCMM	11	225480	225609	225609	225834	1	1	177	353	1	2	1	0	1 03:05
30 TCMM15	TCMM	3	254715	254961	254961	255150	1	1	218	434	1	2	1	0	1 03:05
70 TCMM15	TCMM						-				1	2	1	0	
174 TCMM15	TCMM	5 12	263386	263549	263633	263748	1	85	223	361 485	1	2	1	0	1 03:05
			221524	221668	221668	222010	1	64	243		1	2	1		1 03:05
76 TCMM15 277 TCMM15	TCMM TCMM	5	475694 404106	475964	476027	476183	1	0.	276 281	488 560		2	•	0	1 03:05
46 TCMM15	TCMM	16 4	693401	404634	404634	404667	•	1		631	1	2	1	0	1 03:05
				693728	693728	694033	1	1	316		1	_	1	0	
20 TCMM15	TCMM	2	642483	642776	642776	643134	1	-	326	650	1	2	-	-	1 03:05
290 TCMM15	TCMM	16	911898	912387	912387	912564	1	1	333	665	1	_	1	0	1 03:05
145 TCMM15	TCMM	10	470777	471025	471025	471532	1	1	378	754	1	2	1	0	1 03:05
31 TCMM15	TCMM	3	262264	262830	262830	263025	1	1	381	760	1	2	1	0	1 03:05
42 TCMM15 73 TCMM15	TCMM TCMM	4	460852	461027	461027	461615	1	1	382	762 786	1	2	1	0	1 03:05
		5	409394	409516	409528	410181	-		400		1	2	1		1 03:05
287 TCMM15 26 TCMM15	TCMM TCMM	16	696953	697060	697067 77900	697775	1	8	415 420	821 838		2	•	0	1 03:05
		3	77866	77900		78705					1		1		1 03:05
5 TCMM15	TCMM	2	44210	44904	44974	45075	1	71	468	864	1	2	1	0	1 03:05
52 TCMM15	TCMM	4	886289	887179	887179	887504	1	1	608	1214	1	2	1	-	1 03:05
250 TCMM15	TCMM	14	731064	731177	731562	732158	1	386	740	1093	1	2	1	0	1 03:05
7 TCMM15	TCMM	2	116257	116476	116947	117293	1	472	754	1035	1	2	1	0	1 03:05
212 TCMM15	TCMM	13	452181	453503	453503	453745	1	1	782	1563	1	2	1	0	1 03:05
168 TCMM15	TCMM	11	559244	559385	559707	560658	1	323	868	1413	1	2	1	0	1 03:05
32 TCMM15	TCMM	3	272348	273723	273985	274039	1	263	977	1690	1	2	1	0	1 03:05
231 TCMM15	TCMM	14	75675	76137	77017	77179	1	881	1192	1503	1	2	1	0	1 03:05
117 TCMM15	TCMM	8	496013	496308	497380	497537	1	1073	1298	1523	1	2	1	0	1 03:05
8 TCMM15	TCMM	2	123320	123635	124617	124942	1	983	1302	1621	1	2	1	0	1 03:05
244 TCMM15	TCMM	14	551646	552259	552709	553805	1	451	1305	2158	1	2	1	0	1 03:05
153 TCMM15	TCMM	11	51558	52399	53005	53905	1	607	1477	2346	1	2	1	0	1 03:05
230 TCMM15	TCMM	13	842091	842866	844197	844367	1	1332	1804	2275	1	2	1	0	1 03:05
228 TCMM15	TCMM	13	810028	810085	812787	813019	1	2703	2847	2990	1	2	1	0	1 03:05

114 TCMM15	TCMM	8	340650	340958	341299	341482	1	342	587	831	1	3	1	0	1 5:3_6:2_5:3
68 TCMM15	TCMM	5	241522	241980	242472	242481	1	493	726	958	1	3	1	0	1 5:3_4:4_5:3
161 TCMM15	TCMM	11	308325	308425	309294	309310	1	870	927	984	1	3	1	0	1 5:3_6:2_5:3
193 TCMM15	TCMM	12	883503	884813	885216	885247	1	404	1074	1743	1	3	1	0	1 5:3_6:2_5:3
253 TCMM15	TCMM	15	103244	103443	104628	104808	1	1186	1375	1563	1	3	1	0	1 5:3_4:4_5:3
	TCMM	13	239896	240460	241597	242103	1		1672	2206	1	3	1	0	1 5:3_4:4_5:3
123 TCMM15	TCMM	9	235511	236044	237506	237799	1	1463	1875	2287	1	3	1	0	1 5:3_4:4_5:3
	TCMM	4	866436	867508	868704	869191	1		1976	2754	1	3	1	0	1 5:3_6:2_5:3
119 TCMM15	TCMM	9	36103	36166	36801	36833	1	636	683	729	1	3	1	0	1 5:3 6:2 5:3 4:4 5:3
54 TCMM15	TCMM	4	925130	925318	926065	926246	1		932	1115	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
172 TCMM15	TCMM	12	178813	179029	181545	181615	1	2517	2659	2801	1	3	1	0	1 5:3_4:4_5:3_6:2_5:3
	TCMM	12	689626	689793	692181	692874	1	2389	2818	3247	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
	TCMM	12	389953	390142	392292	392407	1	2151	2302	2453	1	3	1	0	1 5:3_4:4_5:3_6:2_5:3_6:2_5:3
182 TCMM15	TCMM	12	602479	603057	603216	603313	1	160	497	833	1	4	1	0	1 3:5_2:6_3:5
	TCMM	14	301618	301887	302316	302384	1	430	598	765	1	4	1	0	1 3:5_4:4_3:5
	TCMM	5	522421	522685	523260	523683	1		919	1261	1	4	1	0	1 3:5_2:6_3:5
	TCMM	16	100143	100432	101603	101698	1		1363	1554	1	4	1	0	1 3:5_4:4_3:5
	TCMM	13	281241	282022	283234	283250	1		1611	2008	1	4	1	0	1 3:5_4:4_3:5
	TCMM	4	368207	368620	369971	370499	1		1822	2291	1	4	1	0	1 3:5_4:4_3:5
150 TCMM15		10	639365	640236	641631	642317	1		2174	2951	1	4	1	0	1 3:5_2:6_3:5
	TCMM	13	603074	603083	605479	605741	1		2532	2666	1	4	1	0	1 3:5_4:4_3:5
92 TCMM15	TCMM	7	267480	268323	270975	272568	1		3870	5087	1	4	1	0	1 3:5_4:4_3:5
	TCMM	2	649354	649588	650619	651379	1		1528	2024	1	4	1	0	1 3:5_2:6_4:4_3:5
	TCMM	13	392003	392080	393147	393355	1		1210	1351	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5
	TCMM	13	703990	704416	706935	707030	1		2780	3039	1	4	1	0	1 3:5_4:4_3:5_4:4_3:5
	TCMM	7	276637	276866	279435	279857			2895	3219	1	4	1	0	1 3:5_2:6_3:5_2:6_3:5
	TCMM	7	295907	296177	299630	299804			3675	3896	1	4	1	0	1 3:5_4:4_3:5_2:6_3:5
	TCMM	6	210590	210664	210721	210741			104	150	1	7	1	0	1 6:2 5:3
	TCMM	13	610293	610441	610501	610660			214	366	1	7	1	0	1 6:2_5:3
	TCMM	16	646670	647349	647471	647721			587	1050	1	7	1	0	1 5:3_6:2
	TCMM	11	493193	493438	493667	494359			698	1165	1	7	1	0	1 5:3_6:2
	TCMM	6	80049	80232	80386	81527			816	1477	1	7	1	0	1 5:3_6:2
	TCMM	11	321714	321765	323019	323096			1318	1381	1	7	1	0	1 6:2_5:3
	TCMM	4	816853	817682	818507	818791			1382	1937	1	7	1	0	1 6:2_5:3
	TCMM	11	180504	182377	184295	184364			2889	3859	1	7	1	0	1 5:3_6:2
134 TCMM15	TCMM	10	158376	158721	159201	160491			1298	2114	1	7	1	0	1 6:2_4:4_6:2
	TCMM	16	657450	657485	659091	659254			1705	1803	1	7	1	0	1 5:3_6:2_4:4_6:2
	TCMM	10	331024	332595	334468	334858	1		2854	3833	1	7	1	0	1 6:2_5:3_4:4_5:3
	TCMM	13	797048	797146	800264	800350			3210	3301	1	7	1	0	1 5:3_4:4_6:2_5:3_4:4_6:2
	TCMM	7	485256	485313	485316	485387			67	130	1	8	1	0	1 2:6_3:5
	TCMM	10	135693	135754	135996	136071			310	377	1	8	1	0	1 2:6_3:5
	TCMM	10	633240	633350	633743	634423			788	1182	1	8	1	0	1 2:6_3:5
	TCMM	15	295611	296401	296804	296918		404	855	1306	1	8		0	1 3:5_2:6
	TCMM	10	302943	303003	303882	304262			1099	1318	1	8	1	0	1 2:6_3:5
	TCMM	5	415894	416514	417310	417511	1		1207	1616	1	8	1	0	1 3:5_2:6
	TCMM	8	99909	101246	102468	102818			2066	2908	1	8	1	0	1 2:6_3:5
	TCMM	13	560428	561397	563317	563599			2546	3170	1	8	1	0	1 2:6_3:5
	TCMM	14	673326	674407	678144	678306			4359	4979	1	8	1	0	1 3:5_2:6
	TCMM	7	18028	18259	18693	18901			654	872	1	8	1	0	1 3:5 4:4 2:6
164 TCMM15	TCMM	11	462930	462985	464192	464456			1367	1525	1	8	1	0	1 2:6_4:4_3:5
	TCMM	12	954849	955099	956854	957115			2011	2265	1	8	1	0	1 2:6_4:4_2:6_3:5_2:6_3:5
	TCMM	16	187312	187323	187323	187327			8	14	1	10	1	0	1 06:02
	TCMM	4	1095230	1095364	1095365	1095467		-	119	236	1	10	1	0	1 06:02
	TCMM	13	831458	831576	831576	832164	1	_	353	705	1	10	1	0	1 06:02
218 TCMM15	TCMM	13	587969	588588	588597	588927	1		484	957	1	10	1	0	1 06:02
	TCMM	12	710116	710420	710710	710866	1		520	749	1	10	1	0	1 06:02
	TCMM	6	95585	95627	95746	96802	1		668	1216	1	10	1	0	1 06:02
245 TCMM15		14	559694	559885	560362	561323	1		1053	1628	1	10	1	0	1 06:02
	TCMM	14	198604	198618	198618	198648	1		22	43	1	10.1	1	0	1 02:06
104 TCMM15		7	905148	905227	905227	905266			59	117	1	10.1	1	0	1 02:06
10+ 1CIVIIVII)	2 CIVIIVI	,	705140	703221	703221	202200	1	1	39	11/		10.1	1	U	. 02.00

64 TCMM15	TCMM	5	18839	18992	18992	19005	1	1	83	165	1	10.1	1	0	1 02:06
159 TCMM15	TCMM	11	248004	248274	248274	248487	1	1	242	482	1	10.1	1	0	1 02:06
279 TCMM15	TCMM	16	474526	474750	474750	475030	1	1	252	503	1	10.1	1	0	1 02:06
226 TCMM15	TCMM	13	793469	793604	793734	794088	1	131	375	618	1	10.1	1	0	1 02:06
51 TCMM15	TCMM	4	870568	870950	870950	871373	1	1	403	804	1	10.1	1	0	1 02:06
106 TCMM15	TCMM	8	11695	12627	12627	12640	1	1	473	944	1	10.1	1	0	1 02:06
15 TCMM15	TCMM	2	371554	371746	371746	372547	1	1	497	992	1	10.1	1	0	1 02:06
113 TCMM15	TCMM	8	329634	330227	330227	330660	1	1	513	1025	1	10.1	1	0	1 02:06
238 TCMM15	TCMM	14	425816	427715	427715	428693	1	1	1439	2876	1	10.1	1	0	1 02:06
80 TCMM15	TCMM	6	76860	77256	78202	78568 2_nonsis	•	947	1327	1707	3	30	1	0	1 2:6_4:4_6:2
	TCMM	14	476731	476810	478186	479345 2_nonsis		1377	1995	2613	3	30	1	0	1 3:5_2:6_3:5a
142 TCMM15	TCMM		357628	358552						4757	3		1	0	
136 TCMM15	TCMM	10 10	256465	256690	361124 258301	362386 2_nonsis 258658 2 nonsis		2573 1612	3665 1902	2192	3	30 30	1	0	1 5:3_6:2_5:3a
						_							-		1 6:2_5:3_4:4_3:5
207 TCMM15	TCMM	13	315598	316408	318454	318678 2_nonsis		2047	2563	3079	3	30	1	0	1 5:3_4:4_5:3_2:6_3:5
22 TCMM15	TCMM	2	735807	736128	739563	739770 2_nonsis		3436	3699	3962	3	30	1	0	1 6:2_5:3_4:4_2:6_3:5
65 TCMM15	TCMM	5	32276	33002	36958	37041 2_nonsis		3957	4361	4764	3	30	1	0	1 3:5_4:4_3:5_4:4_5:3
9 TCMM15	TCMM	2	143613	144820	146169	146217 2_nonsis		1350	1977	2603	3	31	1	0	1 3:5_5:3_3:5_5:3a_4:4ai
198 TCMM15	TCMM	13	10941	11831	13964	14063 2_nonsis		2134	2628	3121	3	31	1	0	1 4:4ai_5:3_6:2_5:3a_4:4_5:3a
199 TCMM15	TCMM	13	77135	77482	81243	81354 2_nonsis		3762	3990	4218	3	31	1	0	1 5:3_6:2_5:3_6:2_5:3a_4:4ai_5:3_4:4_5:3
36 TCMM15	TCMM	4	139293	139499	139926	140600 2_nonsis		428	867	1306	1	1	1	1	0 (5:3)_(4:4aCO)
147 TCMM15	TCMM	10	568805	570822	570822	573135 2_nonsis		1	2165	4329	1	1	1	1	0 (5:3)_(4:4aCO)
170 TCMM15	TCMM	11	629864	630615	633026	633545 2_nonsis		2412	3046	3680	1	1	1	1	0 (5:3)_(4:4aCO)
201 TCMM15	TCMM	13	118473	118891	118891	119087 2_nonsis		1	307	613	1	2	1	1	0 (3:5)_(4:4aCO)
109 TCMM15	TCMM	8	112829	112944	112966	113512 2_nonsis		23	353	682	1	2	1	1	0 (3:5)_(4:4aCO)
143 TCMM15	TCMM	10	394408	394692	394810	395209 2_nonsis		119	460	800	1	2	1	1	0 (3:5)_(4:4aCO)
209 TCMM15	TCMM	13	382384	383224	383224	383408 2_nonsis		1	512	1023	1	2	1	1	0 (3:5)_(4:4aCO)
200 TCMM15	TCMM	13	114535	115183	115471	115959 2_nonsis		289	856	1423	1	2	1	1	0 (3:5)_(4:4aCO)
204 TCMM15	TCMM	13	235798	236410	236833	237159 2_nonsis		424	892	1360	1	2	1	1	0 (3:5)_(4:4aCO)
	TCMM	10	95205	96041	96432	96721 2_nonsis		392	954	1515	1	2	1	1	0 (3:5)_(4:4aCO)
83 TCMM15	TCMM	6	176446	177023	177753	177798 2_nonsis		731	1041	1351	1	2	1	1	0 (3:5)_(4:4aCO)
29 TCMM15	TCMM	3	228130	230267	230267	231791 2_nonsis		1	1831	3660	1	2	1	1	0 (3:5)_(4:4aCO)
278 TCMM15	TCMM	16	423985	424230	425006	425740 2_nonsis		777	1266	1754	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
63 TCMM15	TCMM	4	1450894	1451664	1452723	1453499 2_nonsis		1060	1832	2604	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO) 0 (3:5)_(4:4)_(4:4aCO)
112 TCMM15	TCMM		325071	325184	326185			1002	1196	1389	1		1	1	
16 TCMM15	TCMM	8 2	448827	449152	449588	326461 2_nonsis 450377 2 nonsis		437	993	1549	1	6 7	1	1	0 (4:4aCO)_(3:5)_(4:4a)
						_					-		-	-	0 (5:3)_(6:2)_(4:4aCO)
163 TCMM15	TCMM	11	381058	381640	382201	383052 2_nonsis		562	1278	1993	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
243 TCMM15	TCMM	14	545517	545697	547792	547958 2_nonsis		2096	2268	2440	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
	TCMM	15	953577	954310	954766	955162 2_nonsis		457	1021	1584	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
115 TCMM15	TCMM	8	358468	359669	360186	360415 2_nonsis		518	1232	1946	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
	TCMM	16	899499	899836	900827	901564 2_nonsis		992	1528	2064	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
194 TCMM15	TCMM	12	941016	947200	948612	948698 2_nonsis		1413	4547	7681	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
241 TCMM15	TCMM	14	501363	501440	501631	501828 2_nonsis		192	328	464	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
74 TCMM15	TCMM	5	413281	413862	414190	414243 2_nonsis		329	645	961	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
96 TCMM15	TCMM	7	452589	452990	453324	453639 2_nonsis		335	692	1049	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
10 TCMM15	TCMM	2	181425	181705	185478	185922 2_nonsis		3774	4135	4496	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
53 TCMM15	TCMM	4	893442	893751	893982	895202 2_nonsis		232	996	1759	1	11	1	1	0 (4:4ai)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4bCO)
110 TCMM15	TCMM	8	190339	191248	191304	191691 2_nonsis		57	704	1351	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
101 TCMM15	TCMM	7	732382	733088	733429	733453 2_nonsis		342	706	1070	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
111 TCMM15	TCMM	8	266994	267185	267804	268308 2_nonsis		620	967	1313	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
39 TCMM15	TCMM	4	343448	344216	345017	345134 2_nonsis		802	1244	1685	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
		12	548783	548969	549297	549472 2_nonsis		329	509	688	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)
273 TCMM15	TCMM	16	133388	133624	134038	134203 2_nonsis		415	615	814	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(4:4aCO)
49 TCMM15	TCMM	4	835164	835319	836051	836148 2_nonsis		733	858	983	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
79 TCMM15	TCMM	6	28318	28390	29526	29691 2_nonsis		1137	1255	1372	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
43 TCMM15		4	549856					1277		2134	1		1	1	
	TCMM			550499	551775	551991 2_nonsis			1706		-	12			0 (3:5)_(2:6)_(4:4)_(4:4aCO)
28 TCMM15	TCMM	3	145988	146420	148171	148238 2_nonsis		1752	2001	2249	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)
118 TCMM15	TCMM	8	516184	516318	517036	517336 2_nonsis		719	935	1151	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
	TCMM	4	440689	440889	441738	441971 2_nonsis		850	1066	1281	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
256 TCMM15		15	218142	219124	220974	221075 2_nonsis		1851	2392	2932	1	12	1	1	0 (4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)
37 TCMM15	TCMM	4	239328	239462	241406	241613 2_nonsis		1945	2115	2284	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4)_(6:2)_(4:4aCO)

60 TCMM15		4	1256179	1256876	1258968	1259896 2_nonsis	2093	2905	3716	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)_(3:5)_(4:4a)
	TCMM	3	38178	38318	40205	40294 2_nonsis	1888	2002	2115	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(2:6)_(3:5)_(4:4a)
57 TCMM15	TCMM	4	1062818	1062952	1063008	1063031 2_nonsis	57	135	212	1	15	1	1	0 (6:2)_(4:4aCO)
35 TCMM15	TCMM	4	30545	30752	30752	30908 2_nonsis	1	182	362	1	15	1	1	0 (6:2)_(4:4aCO)
55 TCMM15	TCMM	4	1005358	1005567	1005839	1006075 2_nonsis	273	495	716	1	15	1	1	0 (6:2)_(4:4aCO)
	TCMM	4	673982	674236	674519	674711 2_nonsis	284	506	728	1	15	1	1	0 (6:2)_(4:4aCO)
18 TCMM15	TCMM	2	552727	552889	560167	561765 2_nonsis	7279	8158	9037	1	15	1	1	0 (6:2)_(4:4aCO)
11 TCMM15	TCMM	2	198241	198355	198475	198501 2_nonsis	121	190	259	1	16	1	1	0 (2:6)_(4:4aCO)
62 TCMM15	TCMM	4	1396824	1397034	1397034	1397492 2_nonsis	1	334	667	1	16	1	1	0 (2:6)_(4:4aCO)
59 TCMM15	TCMM	4	1232377	1232436	1232773	1232950 2_nonsis	338	455	572	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	15	744706	745114	745265	745547 2_nonsis	152	496	840	1	16	1	1	0 (2:6)_(4:4aCO)
107 TCMM15	TCMM	8	54302	54591	54591	55333 2_nonsis	1	516	1030	1	16	1	1	0 (2:6)_(4:4aCO)
95 TCMM15	TCMM	7	370897	371489	371625	372033 2_nonsis	137	636	1135	1	16	1	1	0 (2:6)_(4:4aCO)
122 TCMM15	TCMM	9	192389	193262	193298	193815 2_nonsis	37	731	1425	1	16	1	1	0 (2:6)_(4:4aCO)
47 TCMM15	TCMM	4	730199	730652	730734	731588 2_nonsis	83	736	1388	1	16	1	1	0 (2:6)_(4:4aCO)
148 TCMM15	TCMM	10	622874	623040	623040	624389 2_nonsis	1	758	1514	1	16	1	1	0 (2:6)_(4:4aCO)
124 TCMM15	TCMM	9	266255	267764	267764	268176 2_nonsis	1	961	1920	1	16	1	1	0 (2:6)_(4:4aCO)
152 TCMM15	TCMM	11	48808	49402	49402	51203 2_nonsis	1	1198	2394	1	16	1	1	0 (2:6)_(4:4aCO)
197 TCMM15	TCMM	12	1009719	1014198	1014227	1014332 2_nonsis	30	2321	4612	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	3	79797	91287	91287	93455 2_nonsis	1	6829	13657	1	16	1	1	0 (2:6)_(4:4aCO)
213 TCMM15	TCMM	13	465295	465435	465295	465435 2_nonsis	0	70	139	1	100	1	1	0 (4:4aCO)
61 TCMM15	TCMM	4	1311986	1312365	1311986	1312365 2_nonsis	0	189	378	1	100	1	1	0 (4:4aCO)
87 TCMM15	TCMM	7	75209	75611	75209	75611 2_nonsis	0	201	401	1	100	1	1	0 (4:4aCO)
281 TCMM15	TCMM	16	497162	497602	497162	497602 2_nonsis	0	220	439	1	100	1	1	0 (4:4aCO)
265 TCMM15	TCMM	15	917763	918228	917763	918228 2_nonsis	0	232	464	1	100	1	1	0 (4:4aCO)
154 TCMM15	TCMM	11	74103	74603	74103	74603 2_nonsis	0	250	499	1	100	1	1	0 (4:4aCO)
102 TCMM15	TCMM	7	848452	849134	848452	849134 2_nonsis	0	341	681	1	100	1	1	0 (4:4aCO)
105 TCMM15	TCMM	7	914816	915691	914816	915691 2_nonsis	0	437	874	1	100	1	1	0 (4:4aCO)
190 TCMM15	TCMM	12	783530	784454	783530	784454 2_nonsis	0	462	923	1	100	1	1	0 (4:4aCO)
259 TCMM15	TCMM	15	477802	478750	477802	478750 2_nonsis	0	474	947	1	100	1	1	0 (4:4aCO)
1 TCMM15	TCMM	1	66696	67715	66696	67715 2_nonsis	0	509	1018	1	100	1	1	0 (4:4aCO)
233 TCMM15	TCMM	14	163952	165064	163952	165064 2_nonsis	0	556	1111	1	100	1	1	0 (4:4aCO)
38 TCMM15	TCMM	4	314015	315175	314015	315175 2_nonsis	0	580	1159	1	100	1	1	0 (4:4aCO)
156 TCMM15	TCMM	11	130226	131399	130226	131399 2_nonsis	0	586	1172	1	100	1	1	0 (4:4aCO)
90 TCMM15	TCMM	7	166667	167889	166667	167889 2_nonsis	0	611	1221	1	100	1	1	0 (4:4aCO)
248 TCMM15	TCMM	14	701618	702991	701618	702991 2_nonsis	0	686	1372	1	100	1	1	0 (4:4aCO)
239 TCMM15	TCMM	14	440622	442256	440622	442256 2_nonsis	0	817	1633	1	100	1	1	0 (4:4aCO)
196 TCMM15	TCMM	12	972928	974574	972928	974574 2_nonsis	0	823	1645	1	100	1	1	0 (4:4aCO)
	TCMM	10	467589	469453	467589	469453 2_nonsis	0	932	1863	1	100	1	1	0 (4:4aCO)
286 TCMM15	TCMM	16	676743	677025	678599	679573 2_nonsis	1575	2202	2829	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
186 TCMM15	TCMM	12	681614	681851	682536	682671 2_nonsis	686	871	1056	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
176 TCMM15	TCMM	12	258730	259126	260749	261053 2_nonsis	1624	1973	2322	2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)
116 TCMM15	TCMM	8	416109	416265	417114	417265 2_nonsis	850	1003	1155	2	31	1	1	0 (3:5)_(3:5a)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
133 TCMM15	TCMM	10	146059	146367	147143	147927 2_nonsis	777	1322	1867	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
177 TCMM15	TCMM	12	284957	285577	288686	288976 2_nonsis	3110	3564	4018	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(4:4aCO)
4 TCMM15	TCMM	2	16009	16380	20568	21007 2_nonsis	4189	4593	4997	2	32	1	1	0 (3:5)_(4:4)_(4:4aCO)_(3:5a)_(4:4a)
151 TCMM15	TCMM	10	708177	708302	710013	711083 2_nonsis	1712	2309	2905	2	32	1	1	0 (5:3)_(6:2)_(5:3)_(4:4ai)_(5:3a)_(4:4bCO)
	TCMM	14	254149	254281	257904	257986 2_nonsis	3624	3730	3836	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(2:6)_(4:4aCO)
17 TCMM15	TCMM	2	489580	490532	493942	494538 2_nonsis	3411	4184	4957	2	32	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
288 TCMM15	TCMM	16	699663	700042	700309	700480 2_nonsis	268	542	816	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
270 TCMM15	TCMM	16	88282	88336	88834	89075 2_nonsis	499	646	792	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
165 TCMM15	TCMM	11	469480	469538	469831	470250 2_nonsis	294	532	769	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(4:4aCO)
	TCMM	15	572419	572520	573378	573534 2_nonsis	859	987	1114	3	20	1	1	0 (6:2)_(4:4aCO)_(3:5)_(4:4a)
69 TCMM15	TCMM	5	254694	254754	256048	256159 2_nonsis	1295	1380	1464	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
282 TCMM15	TCMM	16	636736	638483	639081	639173 2_nonsis	599	1518	2436	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
184 TCMM15	TCMM	12	647512	647752	649258	649837 2_nonsis	1507	1916	2324	3	20	1	1	0 (6:2)_(2:6)_(3:5)_(4:4aCO)
260 TCMM15	TCMM	15	485588	485898	487028	487809 2_nonsis	1131	1676	2220	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(2:6)_(4:4aCO)
98 TCMM15	TCMM	7	515701	516816	518580	519356 2_nonsis	1765	2710	3654	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(2:6)_(4:4aCO)
236 TCMM15	TCMM	14	333286	334339	335395	335707 2_nonsis	1057	1739	2420	3	20	1	1	0 (2:6)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
33 TCMM15	ICMM	3	277871	278153	281752	283221 2_nonsis	3600	4475	5349	3	20	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(5:3)_(4:4a)

12 TCMM15	TCMM	2	267510	268100	269653	271598 2_nonsis		1554	2821	4087	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(3:5)_(2:6)_(4:4aCO)
67 TCMM15	TCMM	5	184684	185983	188495	188861 2_nonsis		2513	3345	4176	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(5:3)_(4:4aCO)
140 TCMM15	TCMM	10	315888	316590	319398	320192 2_nonsis		2809	3556	4303	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
268 TCMM15	TCMM	15	1049756	1049902	1051958	1052288 2_nonsis		2057	2294	2531	3	21	1	1	0 (5:3)_(4:4)_(3:5)_(4:4ai)_(5:3a)_(4:4bCO)
252 TCMM15	TCMM	15	68988	69357	71365	72322 2_nonsis		2009	2671	3333	3	21	1	1	0 (5:3)_(4:4)_(4:4ai)_(2:6)_(4:4ai)_(6:2)_(5:3)_(6:2)_(4:4bCO)
71 TCMM15	TCMM	5	335461	336936	343350	344171 2_nonsis		6415	7562	8709	3	21	1	1	0 (5:3)_(4:4ai)_(2:6)_(5:3a)_(6:2)_(5:3a)_(4:4bCO)
34 TCMM15	TCMM	4	21075	21083	23155	23241 2_sis		2073	2119	2165	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(4:4)_(3:5a)_(2:6)_(4:4)_(3:5a)_(2:6)_(3:5a)_(4:4)
146 TCMM15	TCMM	10	526176	526730	526730	527538 2_sis		1	681	1361	0	1	2	0	2 (2:6i)_(4:4)
173 TCMM15	TCMM	12	183955	184185	189603	190285	3	5419	5874	6329	0	1	2	0	2 (2:6)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4)
185 TCMM15		12	657926	658599	659350	660046 2_sis	_	752	1436	2119	0	1	2	0	2 (3:5)_(3:5a)_(4:4)
	TCMM	13	665811	666112	667496	668902	3	1385	2238	3090	0	1	2	0	2 (5:3)_(4:4ai)_(1:7)_(4:4)
269 TCMM15	TCMM	16	46435	46551	46551	46637 2_sis	_	1	101	201	0	1	2	0	2 (2:6i)_(4:4)
6 TCMM15	TCMM	2	69355	69616	71161	71276	3	1546	1733	1920	0	2	2	1	1 (5:3)_(4:4)_(5:3a)_(4:4aCO)
13 TCMM15	TCMM	2	295912	296774	301951	301964	3	5178	5615	6051	0	2	2	1	1 (3:5)_(4:4ai)_(3:5a)_(4:4bCO)_(5:3)_(4:4b)_(5:3)_(4:4b)_(5:3)_(4:4b)_(5:3)_(4:4b)
		2	306376	306932	307275	307459	3	344	713	1082	0	2	2	1	1 (2:6)_(1:7)_(4:4)_(4:4aCO)
77 TCMM15	TCMM	5	490952	491135	492341	498773	3	1207 1077	4514	7820 1670	0	2 2	2 2	1	1 (3:5)_(3:5a)_(2:6)_(3:5b)_(2:6)_(4:4aCO)
	TCMM	6	221860	221864	222940	223531	3		1374	4046	0	2	2	1	1 (3:5)_(4:4)_(4:4aCO)
91 TCMM15	TCMM	7	193769	194505 676025	197465 680390	197816	3	2961 4366	3504 4764		0	2	2	1	1 (3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)_(6:2)_(4:4a)
	TCMM TCMM	7	675850 879687			681013		1342	2067	5162 2791	-			1	1 (6:2)_(4:4)_(4:4ai)_(3:5)_(5:3)_(4:4bCO)_(5:3)_(6:2a)_(5:3)_(4:4b)
103 TCMM15 120 TCMM15	TCMM	7 9	51326	879882 51375	881223 55251	882479 56514	3	1342 3877	4532	5187	0	2 2	2 2	1	1 (3:5)_(4:4)_(3:5a)_(2:6)_(3:5a)_(4:4ai)_(4:4bCO)
120 TCMM15 125 TCMM15	TCMM	9	281888	281969	285554	285709	3	3586	4532 3703	3820	0	2	2	1	1 (5:3)_(3:5)_(2:6)_(4:4aCO) 1 (2:5)_(2:5)_(2:6)_(2:5)_(2:6)_(4:4aCO)
126 TCMM15	TCMM	9	345656	345745	347647	347702	3	1903	1974	2045	0	2	2	1	1 (3:5)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5b)_(4:4aCO)
128 TCMM15	TCMM	10	21670	21859	34/04/	36217	3	12235	13391	14546	0	2	2	1	1 (3:5)_(4:4)_(5:3)_(4:4)_(5:3a)_(4:4aCO) 1 (2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5a)_(2:6a)_(3:5a)_(4:4a)
129 TCMM15	TCMM	10	51007	51976	53592	53842	3	1617	2226	2834	0	2	2	1	1 (2.0)_(3.3)_(2.0)_(3.3)_(2.0)_(3.3)_(2.0)_(3.3)_(4.4aCO)_(2.0)_(3.3)_(2.0)_(3.3)_(2.0)_(3.3a)_(2.0a)_(3.3a)_(4.4a) 1 (3:5)_(4:4ai)_(5:3)_(4:4bCO)
169 TCMM15	TCMM	11	589828	589969	590994	592478	3	1026	1838	2649	0	2	2	1	1 (3:3)_(4:4ai)_(3:5)_(4:4bCO) 1 (4:4ai)_(3:5)_(4:4bCO)
175 TCMM15	TCMM	12	224270	225226	229623	230005	3	4398	5066	5734	0	2	2	1	1 (5:3)_(5:3a)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4a)
		12	339496	340008	341688	341926	3	1681	2055	2429	0	2	2	1	1 (5.3)_(5.3a)_(4.7aCO)_(5.3)_(6.2)_(4.4aCO)
202 TCMM15	TCMM	13	168229	168773	171275	171292	3	2503	2783	3062	0	2	2	1	1 (3.5)_(4.4)_(1.7)_(3.5)_(3.5a)_(4.4aCO)
211 TCMM15	TCMM	13	424897	425033	427114	428830	3	2082	3007	3932	0	2	2	1	1 (3:5)_(4:4aCO)_(4:4bi)_(4:4a)
215 TCMM15	TCMM	13	539007	539282	543392	543706	4	4111	4405	4698	0	2	2	1	1 (2:6i)_(3:5)_(2:6i)_(3:5a)_(3:5b)_(4:4aCO)_(3:5b)_(2:6a)_(3:5b)_(4:4a)
221 TCMM15	TCMM	13	645101	645268	646966	647164	3	1699	1881	2062	0	2	2	1	1 (2:6)_(0:8)_(4:4aCO)
	TCMM	13	772587	772812	773689	774661	3	878	1476	2073	0	2	2	1	1 (5:3)_(4:4)_(4:4aCO)
232 TCMM15	TCMM	14	102906	103068	104411	104767	3	1344	1602	1860	0	2	2	1	1 (5:3)_(5:3a)_(4:4aCO)
	TCMM	14	407287	408111	414025	415775	3	5915	7201	8487	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)_(6:2)_(4:4a)_(5:3a)_(4:4a)
255 TCMM15	TCMM	15	198230	198700	200443	201256	3	1744	2385	3025	0	2	2	1	1 (5:3)_(6:2)_(4:4aCO)_(2:6i)_(4:4a)
	TCMM	15	264557	264752	268456	269276	3	3705	4212	4718	0	2	2	1	1 (5:3)_(4:4ai)_(3:5)_(2:6)_(4:4bCO)_(3:5a)_(4:4b)
275 TCMM15	TCMM	16	207823	208076	214358	214888	3	6283	6674	7064	0	2	2	1	1 (3:5)_(4:4)_(3:5)_(4:4)_(2:6)_(6:2)_(7:1)_(6:2)_(5:3)_(6:2a)_(4:4aCO)
24 TCMM15	TCMM	2	786546	786589	787596	787803 2 nonsis		1008	1132	1256	0	3	2	0	2 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4bi)_(4:4CO)
89 TCMM15	TCMM	7	118134	119177	122499	122514	4	3323	3851	4379	0	3	2	1	1 (6:2)_(4:4aCO)_(5:3)_(4:4bCO)_(5:3a)_(5:3)_(6:2)_(4:4b)_(5:3b)_(4:4b)
121 TCMM15	TCMM	9	139714	139937	143092	143414	3	3156	3428	3699	0	3	2	1	1 (5:3)_(6:2)_(4:4aCO)_(6:2a)_(5:3a)_(4:4a)_(2:6)_(3:5)_(4:4bi)_(6:2a)_(5:3a)_(6:2a)_(4:4cCO)
135 TCMM15	TCMM	10	234413	234627	237403	237740	3	2777	3052	3326	0	3	2	1	1 (3:5)_(2:6)_(3:5a)_(5:3)_(4:4aCO)_(3:5b)_(4:4a)_(3:5b)_(3:5c)_(4:4CO)
160 TCMM15	TCMM	11	264372	264393	265409	265522 2_nonsis		1017	1083	1149	0	3	2	0	2 (6:2)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4CO)
192 TCMM15	TCMM	12	874541	875066	880574	880934	4	5509	5951	6392	0	3	2	1	1 (5:3)_(4:4ai)_(4:4bi)_(4:4ai)_(2:6)_(3:5)_(2:6)_(4:4cCO)_(5:3a)_(4:4dCO)
214 TCMM15	TCMM	13	508768	509203	510876	511205 2_nonsis		1674	2055	2436	0	3	2	0	2 (3:5)_(4:4aCO)_(6:2)_(4:4CO)
251 TCMM15	TCMM	14	754799	754814	754814	754815 2_nonsis		1	8	15	0	3	2	0	2 (4:4aCO)_(4:4CO)
254 TCMM15	TCMM	15	190009	191548	193911	195064	3	2364	3709	5054	0	3	2	0	2 (5:3)_(4:4)_(5:3a)_(4:4aCO)_(7:1)_(5:3)_(3:5)_(4:4CO)
264 TCMM15	TCMM	15	830857	831592	833083	833356 2_nonsis		1492	1995	2498	0	3	2	0	2 (5:3)_(4:4aCO)_(5:3a)_(4:4CO)
276 TCMM15	TCMM	16	312892	313236	316205	316676 2_nonsis		2970	3377	3783	0	3	2	0	2 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4bi)_(3:5)_(4:4CO)
369 TCMM15	TCMM	6	15012	15279	18345	18537 NA		3067	3296	3524	0	4	1 NA	NA	4:4_3:5_4:4_3:5
136 TCMM16	TCMM	8	12663	12670	12670	12721	1	1	29	57	1	1	1	0	1 05:03
8 TCMM16	TCMM	2	71825	71828	71828	72018	1	1	97	192	1	1	1	0	1 05:03
89 TCMM16	TCMM	5	378046	378074	378075	378297	1	2	126	250	1	1	1	0	1 05:03
126 TCMM16	TCMM	7	277224	277283	277346	277418	1	64	129	193	1	1	1	0	1 05:03
276 TCMM16	TCMM	15	544813	544924	544976	545061	1	53	150	247	1	1	1	0	1 05:03
299 TCMM16	TCMM	16	431840	432048	432085	432226	1	38	212	385	1	1	1	0	1 05:03
	TCMM	16	538649	538784	538784	539088	1	1	220	438	1	1	1	0	1 05:03
	TCMM	10	157921	158024	158168	158223	1	145	223	301	1	1	1	0	1 05:03
177 TCMM16		10	705235	705450	705542	705639	1	93	248	403	1	1	1	0	1 05:03
283 TCMM16	TCMM	15	768090	768428	768428	768642	1	1	276	551	1	1	1	0	1 05:03

50 TCMM16	TCMM	4	198376	198685	198778	198878	1	94	298	501	1	1	1	0	1 05:03	
60 TCMM16	TCMM	4	784537	784809	784809	785140	1	1	302	602	1	1	1	0	1 05:03	
284 TCMM16	TCMM	15	807285	807291	807631	807840	1	341	448	554	1	1	1	0	1 05:03	
262 TCMM16	TCMM	14	719201	719586	719874	719985	1	289	536	783	1	1	1	0	1 05:03	
194 TCMM16	TCMM	12	17679	17745	18183	18460	1	439	610	780	1	1	1	0	1 05:03	
161 TCMM16	TCMM	10	90733	91114	91264	92203	1	151	810	1469	1	1	1	0	1 05:03	
285 TCMM16	TCMM	15	819625	820504	820842	820906	1	339	810	1280	1	1	1	0	1 05:03	
	TCMM	6	129074	129176	129391	130480	1	216	811	1405	1	1	1	0	1 05:03	
233 TCMM16	TCMM	13	691343	691745	692123	692624	1	379	830	1280	1	1	1	0	1 05:03	
	TCMM	5	559301	559558	560376	560686	1	819	1102	1384	1	1	1	0	1 05:03	
	TCMM	4	221175	222017	222257	223377	1	241	1221	2201	1	1	1	0	1 05:03	
	TCMM	5	521007	521844	522739	522899	1	896	1394	1891	1	1	1	0		
	TCMM	14	437581	439088	439088		1	896	1394	2987	1	1	1	0	1 05:03	
						440569		-			-	-	-		1 05:03	
271 TCMM16	TCMM	15	216181	216247	216247	216270	1	1	45	88	1	2	1	0	1 03:05	
	TCMM	12	54244	54357	54357	54748	1	1	252	503	1	2	1	0	1 03:05	
	TCMM	3	50664	51152	51152	51209	1	1	273	544	1	2	1	0	1 03:05	
	TCMM	8	450572	450770	450770	451138	1	1	283	565	1	2	1	0	1 03:05	
80 TCMM16	TCMM	5	106918	107341	107341	107574	1	1	328	655	1	2	1	0	1 03:05	
90 TCMM16	TCMM	5	439545	439909	439909	440398	1	1	427	852	1	2	1	0	1 03:05	
234 TCMM16	TCMM	13	696571	697269	697269	697465	1	1	447	893	1	2	1	0	1 03:05	
72 TCMM16	TCMM	4	1427252	1427658	1427686	1428259	1	29	518	1006	1	2	1	0	1 03:05	
68 TCMM16	TCMM	4	1278056	1278456	1278613	1278992	1	158	547	935	1	2	1	0	1 03:05	
281 TCMM16	TCMM	15	732609	733385	733489	733608	1	105	552	998	1	2	1	0	1 03:05	
82 TCMM16	TCMM	5	132643	132762	133078	133491	1	317	582	847	1	2	1	0	1 03:05	
158 TCMM16	TCMM	10	57356	58202	58202	58607	1	1	626	1250	1	2	1	0	1 03:05	
301 TCMM16	TCMM	16	452203	453010	453106	453873	1	97	883	1669	1	2	1	0	1 03:05	
142 TCMM16	TCMM	8	428824	429261	429603	430273	1	343	896	1448	1	2	1	0	1 03:05	
	TCMM	16	354279	354478	355469	355495	1	992	1104	1215	1	2	1	0	1 03:05	
	TCMM	2	201456	201932	202580	203030	1	649	1111	1573	1	2	1	0	1 03:05	
	TCMM	5	18839	23192	23192	23309	1	1	2235	4469	1	2	1	0	1 03:05	
	TCMM	15	968047	968186	968504	968918	1	319	595	870	1	3	1	0	1 5:3_6:2_5:3	
215 TCMM16	TCMM	13	30303	30379	31154	31858	1	776	1165	1554	1	3	1	0	1 5:3_4:4_5:3	
	TCMM	2	799093	799230	800316	800859	1	1087	1426	1765	1	3	1	0	1 5:3_6:2_5:3	
		10		282525			1	1126	1434		1	3	1	0	1 5:3_6:2_5:3	
	TCMM		282456		283650	284198	1	1389	1707	1741 2024	1	3	1	0		
	TCMM	16	381362	381922	383310	383387									1 5:3_4:4_5:3	
	TCMM	14	293224	293332	296142	296290	1	2811	2938	3065	1	3	1	0	1 5:3_6:2_4:4_5:3	
239 TCMM16	TCMM	13	775628	776036	777554	777598	1	1519	1744	1969	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3	
	TCMM	5	100108	100213	100307	101018	1	95	502	909	1	4	1	0	1 3:5_4:4_3:5	
	TCMM	15	82066	82213	83327	83622	1	1115	1335	1555	1	4	1	0	1 3:5_2:6_3:5	
	TCMM	7	482042	482318	484452	484780	1	2135	2436	2737	1	4	1	0	1 3:5_4:4_3:5	
44 TCMM16	TCMM	3	259910	260698	263025	264441	1	2328	3429	4530	1	4	1	0	1 3:5_2:6_4:4_3:5	
	TCMM	3	70158	70770	72190	72786	1	1421	2024	2627	1	4	1	0	1 3:5_4:4_2:6_4:4_3:5	
	TCMM	16	825143	825536	827895	828087	1	2360	2652	2943	1	4	1	0	1 3:5_2:6_3:5_2:6_3:5	
266 TCMM16	TCMM	15	52771	52863	56223	56332	1	3361	3461	3560	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5	
293 TCMM16	TCMM	16	105972	106107	106450	106600	1	344	486	627	1	7	1	0	1 6:2_5:3	
32 TCMM16	TCMM	2	718548	718601	718700	719463	1	100	507	914	1	7	1	0	1 6:2_5:3	
102 TCMM16	TCMM	6	56854	58110	58653	58715	1	544	1202	1860	1	7	1	0	1 6:2_5:3	
66 TCMM16	TCMM	4	1141710	1142883	1143495	1143696	1	613	1299	1985	1	7	1	0	1 6:2_5:3	
260 TCMM16	TCMM	14	557698	557959	559202	559575	1	1244	1560	1876	1	7	1	0	1 5:3_6:2	
81 TCMM16	TCMM	5	122439	122503	123598	123734	1	1096	1195	1294	1	7	1	0	1 6:2_4:4_6:2	
35 TCMM16	TCMM	2	761081	761108	763117	763218	1	2010	2073	2136	1	7	1	0	1 6:2_5:3_6:2	
31 TCMM16	TCMM	2	711439	711554	713038	713451	1	1485	1748	2011	1	7	1	0	1 5:3_6:2_5:3_6:2	
	TCMM	2	513202	513337	516896	517356	1	3560	3857	4153	1	7	1	0	1 5:3_6:2_4:4_6:2	
	TCMM	11	523718	524191	524346	524511	1	156	474	792	1	8	1	0	1 2:6 3:5	
113 TCMM16	TCMM	6	244444	245103	245286	245484	1	184	612	1039	1	8	1	0	1 3:5_2:6	
	TCMM	6	53398	54858	55242	55864	1	385	1425	2465	1	8	1	0	1 3:5_2:6	
	TCMM	6	229838	229991	231344	231638	1	1354	1577	1799	1	8	1	0	1 3:5_2:6	
	TCMM	12					1			3305	1	8	1	0		
			1051488	1053478	1054333	1054794	1	856	2081	3305 1997	1	8	1		1 3:5_2:6	
	TCMM	11	74916	75663	76124	76914	-	462	1230		-		-	0	1 2:6_4:4_2:6	
30 TCMM16	ICMM	2	699878	700005	701871	702521	1	1867	2255	2642	1	8	1	0	1 2:6_4:4_2:6	

95 TCMM16	TCMM	5	498820	498872	500606	501719	1	1735	2317	2898	1	8	1	0	1 3:5_4:4_3:5_2:6
264 TCMM16	TCMM	14	741976	742112	744080	744202	1	1969	2097	2225	1	8	1	0	1 3:5_4:4_2:6_3:5_2:6
231 TCMM16	TCMM	13	650997	651148	654624	654748	1	3477	3614	3750	1	8	1	0	1 3:5_4:4_3:5_4:4_3:5_2:6
290 TCMM16	TCMM	16	55962	56116	56116	56137	1	1	88	174	1	10	1	0	1 06:02
151 TCMM16	TCMM	9	93376	93546	93555	93577	1	10	105	200	1	10	1	0	1 06:02
	TCMM	15	533847	533983	533983	534085	1	1	119	237	1	10	1	0	1 06:02
	TCMM	7	80976	81268	81306	81381	1	39	222	404	1	10	1	0	1 06:02
292 TCMM16	TCMM	16	103016	103137	103137	103486	1	1	235	469	1	10	1	0	1 06:02
	TCMM	6	190849	191180	191180	191409	1	1	280	559	1	10	1	0	1 06:02
	TCMM	14	365449	365642	365824	365847	1	183	290	397	1	10	1	0	1 06:02
245 TCMM16		14	40397	40430	40430	41146	1	1	375	748	1	10	1	0	1 06:02
	TCMM	16	228043	228253	228253	228815	1	1	386	771	1	10	1	0	1 06:02
59 TCMM16	TCMM	4	721724	721991	722085	722407	1	95	389	682	1	10	1	0	1 06:02
127 TCMM16	TCMM	7	333791	334340	334340	334584	1	1	397	792	1	10	1	0	1 06:02
206 TCMM16	TCMM	12	568653	568917	568917	569539	1	1	443	885	1	10	1	0	1 06:02
236 TCMM16	TCMM	13	746108	746305	746448	746979	1	144	507	870	1	10	1	0	1 06:02
23 TCMM16	TCMM	2	492334	493122	493123	493536	1	2	602	1201	1	10	1	0	1 06:02
170 TCMM16	TCMM	10	500414	500582	500582	501650	1	1	618	1235	1	10	1	0	1 06:02
164 TCMM16	TCMM	10	192156	192956	193023	193406	1	68	659	1249	1	10	1	0	1 06:02
	TCMM	15	552117	553236	553236	553518	1	1	701	1400	1	10	1	0	1 06:02
	TCMM	7	22405	23215	23509	23516	1	295	703	1110	1	10	1	0	1 06:02
	TCMM	14	530856	531399	531656	532165	1	258	783	1308	1	10	1	0	1 06:02
		9			61787		1				1		1	-	
	TCMM		60879	61323		62057	-	465	821	1177	-	10	-	0	1 06:02
	TCMM	6	172677	173376	173765	174112	1	390	912	1434	1	10	1	0	1 06:02
	TCMM	13	814511	814574	815081	815882	1	508	939	1370	1	10	1	0	1 06:02
304 TCMM16	TCMM	16	502118	503157	503314	503873	1	158	956	1754	1	10	1	0	1 06:02
183 TCMM16	TCMM	11	273206	273474	273882	274746	1	409	974	1539	1	10	1	0	1 06:02
213 TCMM16	TCMM	12	1031842	1032807	1033274	1033418	1	468	1022	1575	1	10	1	0	1 06:02
147 TCMM16	TCMM	9	37222	39244	39244	39277	1	1	1028	2054	1	10	1	0	1 06:02
118 TCMM16	TCMM	7	55263	55957	55957	57501	1	1	1119	2237	1	10	1	0	1 06:02
302 TCMM16	TCMM	16	469730	470217	470860	471369	1	644	1141	1638	1	10	1	0	1 06:02
186 TCMM16	TCMM	11	458003	458672	459513	459567	1	842	1203	1563	1	10	1	0	1 06:02
42 TCMM16	TCMM	3	225710	226498	226498	228130	1	1	1210	2419	1	10	1	0	1 06:02
	TCMM	12	710635	710704	712040	712581	1	1337	1641	1945	1	10	1	0	1 06:02
85 TCMM16	TCMM	5	317416	317740	319090	319404	1	1351	1669	1987	1	10	1	0	1 06:02
	TCMM	13	713980	715257	716494	716783	1	1238	2020	2802	1	10	1	0	1 06:02
	TCMM	10	518880	519660	521093	521645	1	1434	2099	2764	1	10	1	0	1 06:02
	TCMM		888652	888868			1	1831	2154	2477	1	10	1	0	1 06:02
		16			890698	891130									
	TCMM	5	443341	443369	443369	443371	1	1	15	29	1	10.1	1	0	1 02:06
		4	524228	524258	524258	524264	1	1	18	35	1	10.1	1	0	1 02:06
	TCMM	11	571283	571301	571301	571323	1	1	20	39	1	10.1	1	0	1 02:06
		4	20376	20400	20400	20444	1	1	34	67	1	10.1	1	0	1 02:06
	TCMM	13	388681	388700	388700	388751	1	1	35	69	1	10.1	1	0	1 02:06
87 TCMM16	TCMM	5	355008	355019	355038	355237	1	20	124	228	1	10.1	1	0	1 02:06
132 TCMM16	TCMM	7	605710	605793	605833	605941	1	41	136	230	1	10.1	1	0	1 02:06
17 TCMM16	TCMM	2	321553	321773	321773	321857	1	1	152	303	1	10.1	1	0	1 02:06
229 TCMM16	TCMM	13	605965	606066	606066	606299	1	1	167	333	1	10.1	1	0	1 02:06
273 TCMM16	TCMM	15	446616	446899	446899	447004	1	1	194	387	1	10.1	1	0	1 02:06
254 TCMM16	TCMM	14	417156	417610	417610	417659	1	1	252	502	1	10.1	1	0	1 02:06
	TCMM	4	814278	814490	814490	814815	1	1	269	536	1	10.1	1	0	1 02:06
		2	392022	392314	392522	392544	1	209	365	521	1	10.1	1	0	1 02:06
	TCMM	10	503352	503880	503880	504158	1	1	403	805	1	10.1	1	0	1 02:06
	TCMM	10	278226	278337	278337	279038	1	1	406	811	1	10.1	1	0	1 02:06
											1			0	
	TCMM	12	197459	197675	197801	198146	1	127	407	686		10.1	1		1 02:06
	TCMM	13	759082	759285	759582	759679	1	298	447	596	1	10.1	1	0	1 02:06
	TCMM	7	120395	120656	120977	121054	1	322	490	658	1	10.1	1	0	1 02:06
146 TCMM16	TCMM	8	516616	516651	517036	517336	1	386	553	719	1	10.1	1	0	1 02:06
	TCMM	11	461467	462364	462364	462779	1	1	656	1311	1	10.1	1	0	1 02:06
144 TCMM16	TCMM	8	470287	470706	470864	471466	1	159	669	1178	1	10.1	1	0	1 02:06
120 TCMM16	TCMM	7	82858	84285	84285	84308	1	1	725	1449	1	10.1	1	0	1 02:06

45 TCMM16	TCMM	3	281752	283214	283214	283221	1	1	735	1468	1	10.1	1	0	1 02:06
135 TCMM16	TCMM	7	1048437	1049349	1049349	1050057	1	1	810	1619	1	10.1	1	0	1 02:06
93 TCMM16	TCMM	5	473893	473950	474722	474860	1	773	870	966	1	10.1	1	0	1 02:06
219 TCMM16	TCMM	13	164532	165032	165218	166349	1	187	1002	1816	1	10.1	1	0	1 02:06
224 TCMM16	TCMM	13	251736	251941	252532	253248	1	592	1052	1511	1	10.1	1	0	1 02:06
103 TCMM16	TCMM	6	80386	81527	82058	82187	1	532	1166	1800	1	10.1	1	0	1 02:06
97 TCMM16	TCMM	5	540205	540256	541194	541873	1	939	1303	1667	1	10.1	1	0	1 02:06
220 TCMM16	TCMM	13	190411	190535	191569	192110	1	1035	1367	1698	1	10.1	1	0	1 02:06
	TCMM	5	31867	32276	33706	33782	1	1431	1673	1914	1	10.1	1	0	1 02:06
	TCMM	13	194107	194499	195968	196000	1	1470	1681	1892	1	10.1	1	0	1 02:06
	TCMM	5	356837	357566	358357	360247	1	792	2101	3409	1	10.1	1	0	1 02:06
							1								
	TCMM	14	686681	688572	690428	691115	1	1857	3145	4433	1	10.1	1	0	1 02:06
	TCMM	15	46903	47322	47652	47740 2_nonsis		331	584	836	3	30	1	0	1 05:03
	TCMM	12	387927	388010	388801	388930 2_nonsis		792	897	1002	3	30	1	0	1 5:3_2:6
115 TCMM16	TCMM	7	10242	11635	11737	12020 2_nonsis		103	940	1777	3	30	1	0	1 3:5_5:3
21 TCMM16	TCMM	2	426669	426888	430067	431229 2_nonsis		3180	3870	4559	3	30	1	0	1 2:6_3:5
18 TCMM16	TCMM	2	323214	323896	324761	325371 2_nonsis		866	1511	2156	3	30	1	0	1 5:3_6:2_5:3_6:2
148 TCMM16	TCMM	9	54480	55071	56514	57063 2_nonsis		1444	2013	2582	3	30	1	0	1 3:5_4:4_3:5_6:2
287 TCMM16	TCMM	15	930026	930118	931901	932032 2_nonsis		1784	1895	2005	3	30	1	0	1 5:3_4:4_6:2_4:4_2:6
243 TCMM16	TCMM	13	856401	856957	863229	863412 2_nonsis		6273	6642	7010	3	30	1	0	1 5:3_4:4_5:3_4:4_6:2_2:6
1 TCMM16	TCMM	1	41278	41481	45831	46030 2_nonsis		4351	4551	4751	3	30	1	0	1 5:3_4:4_3:5_2:6_3:5_2:6_3:5
176 TCMM16	TCMM	10	664516	664569	664824	665027 2_nonsis		256	383	510	3	31	1	0	1 4:4ai 3:5
	TCMM	10	660786	661017	662479	663134 2_nonsis		1463	1905	2347	3	31	1	0	1 3:5_4:4ai_3:5a_2:6_3:5a_2:6
	TCMM	1	82379	83613	83613	84046 2_nonsis		1	834	1666	1	1	1	1	0 (5:3)_(4:4aCO)
	TCMM	10	160511	161023	161251	162223 2_nonsis		229	970	1711	1	1	1	1	0 (5:3)_(4:4aCO)
														1	
65 TCMM16	TCMM	4	1139381	1139520	1140165	1141284 2_nonsis		646	1274	1902	1	1	1		0 (5:3)_(4:4aCO)
	TCMM	10	323004	323077	323823	324913 2_nonsis		747	1328	1908	1	1	1	1	0 (5:3)_(4:4aCO)
	TCMM	2	624805	626092	626092	626455 2_nonsis		1	825	1649	1	2	1	1	0 (3:5)_(4:4aCO)
	TCMM	5	212029	212818	213929	214752 2_nonsis		1112	1917	2722	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
	TCMM	2	291653	292193	293099	293297 2_nonsis		907	1275	1643	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
188 TCMM16	TCMM	11	520682	521362	522153	522458 2_nonsis		792	1284	1775	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
150 TCMM16	TCMM	9	75941	76162	77594	78985 2_nonsis		1433	2238	3043	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
278 TCMM16	TCMM	15	582005	582071	582149	582404 2_nonsis		79	239	398	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
225 TCMM16	TCMM	13	339889	340680	341020	341111 2_nonsis		341	781	1221	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
257 TCMM16	TCMM	14	517494	517634	518686	518907 2_nonsis		1053	1233	1412	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
218 TCMM16	TCMM	13	120376	120604	120947	120995 2_nonsis		344	481	618	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
181 TCMM16	TCMM	11	230455	230765	231038	231246 2_nonsis		274	532	790	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
63 TCMM16	TCMM	4	930421	930813	931180	931376 2_nonsis		368	661	954	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
185 TCMM16	TCMM	11	351348	351443	351989	352346 2_nonsis		547	772	997	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
	TCMM	8	373732	373987	374794	375059 2_nonsis		808	1067	1326	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
	TCMM	4	1298219	1298337	1299214	1299598 2_nonsis		878	1128	1378	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
	TCMM	3	191932	192715	193107	193828 2_nonsis		393	1144	1895	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
	TCMM	5	44999	45019	46098	46310 2_nonsis		1080	1195	1310	1	12	1	1	0 (5:3)_(4:4aCO)_(6:2)_(4:4a)
223 TCMM16	TCMM	13	224339	224490	225618	225831 2 nonsis		1129	1310	1491	1	12	1	1	0 (2:6)_(4:4aCO)_(0:2)_(4:4a)
						_							-		
	TCMM	13	667065	667456	668408	668902 2_nonsis		953	1395	1836	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
	TCMM	13	848560	848643	849562	850650 2_nonsis		920	1505	2089	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
	TCMM	2	330203	330450	331827	332522 2_nonsis		1378	1848	2318	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
	TCMM	14	59823	59998	61469	62457 2_nonsis		1472	2053	2633	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
	TCMM	15	134063	135587	136572	137220 2_nonsis		986	2071	3156	1	12	1	1	0 (2:6)_(3:5)_(4:4)_(4:4aCO)
133 TCMM16	TCMM	7	787089	787750	789553	789609 2_nonsis		1804	2162	2519	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
54 TCMM16	TCMM	4	315175	316669	318317	318659 2_nonsis		1649	2566	3483	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)
200 TCMM16	TCMM	12	257195	257291	258349	258577 2_nonsis		1059	1220	1381	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
117 TCMM16	TCMM	7	44898	45371	46634	46860 2_nonsis		1264	1613	1961	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
173 TCMM16	TCMM	10	581428	581638	583178	583223 2_nonsis		1541	1668	1794	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
11 TCMM16	TCMM	2	171495	171570	173028	173659 2_nonsis		1459	1811	2163	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
48 TCMM16	TCMM	4	121990	122142	124765	125066 2_nonsis		2624	2850	3075	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(5:3)_(4:4aCO)
38 TCMM16	TCMM	3	57568	58033	60633	60687 2_nonsis		2601	2860	3118	1	12	1	1	0 (5:3)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
	TCMM	2	79359	79464	82087	82573 2_nonsis		2624	2919	3213	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
	TCMM	6	37078	37375	40232	40564 2_nonsis		2858	3172	3485	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(5:3)_(4:4aCO)
57 TCMM16		4	652241	652907	654780	654813 2_nonsis		1874	2223	2571	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
5, 10mmi	1 (1/11/1	7	0022T1	032701	05 T/00	05 1015 Z_nonals		13/4		2011		12			. ()_(1.140)_()_(4.44)

47 TCMM16	TCMM	4	32904	33027	35807	37096 2_nonsis	2781	3486	4191	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
156 TCMM16	TCMM	9	420530	420788	426627	426906 2_nonsis	5840	6108	6375	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
2 TCMM16	TCMM	1	50840	51095	57455	59349 2_nonsis	6361	7435	8508	1	12	1	1	$0 \ (3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5)$
34 TCMM16	TCMM	2	742150	742220	742220	742472 2_nonsis	1	161	321	1	15	1	1	0 (6:2)_(4:4aCO)
282 TCMM16	TCMM	15	738026	738211	738211	738617 2_nonsis	1	296	590	1	15	1	1	0 (6:2)_(4:4aCO)
270 TCMM16	TCMM	15	195644	195722	195722	196238 2_nonsis	1	297	593	1	15	1	1	0 (6:2)_(4:4aCO)
217 TCMM16	TCMM	13	51141	51256	51433	51596 2_nonsis	178	316	454	1	15	1	1	0 (6:2)_(4:4aCO)
111 TCMM16	TCMM	6	225457	226036	226036	226238 2_nonsis	1	391	780	1	15	1	1	0 (6:2)_(4:4aCO)
129 TCMM16	TCMM	7	449895	450034	450372	450623 2_nonsis	339	533	727	1	15	1	1	0 (6:2)_(4:4aCO)
128 TCMM16	TCMM	7	398572	398825	399032	399494 2_nonsis	208	565	921	1	15	1	1	0 (6:2)_(4:4aCO)
15 TCMM16	TCMM	2	270387	271598	271598	271912 2_nonsis	1	763	1524	1	15	1	1	0 (6:2)_(4:4aCO)
155 TCMM16	TCMM	9	338670	339115	339305	340356 2_nonsis	191	938	1685	1	15	1	1	0 (6:2)_(4:4aCO)
137 TCMM16	TCMM	8	67460	67629	68532	68854 2_nonsis	904	1149	1393	1	15	1	1	0 (6:2)_(4:4aCO)
307 TCMM16	TCMM	16	656677	656784	657714	658289 2_nonsis	931	1271	1611	1	15	1	1	0 (6:2)_(4:4aCO)
160 TCMM16	TCMM	10	79840	79972	81028	81358 2_nonsis	1057	1287	1517	1	15	1	1	0 (6:2)_(4:4aCO)
58 TCMM16	TCMM	4	679489	679624	680813	681125 2_nonsis	1190	1413	1635	1	15	1	1	0 (6:2)_(4:4aCO)
279 TCMM16	TCMM	15	624475	624868	625595	626602 2_nonsis	728	1427	2126	1	15	1	1	0 (6:2)_(4:4aCO)
272 TCMM16	TCMM	15	340588	341353	341821	343279 2_nonsis	469	1580	2690	1	15	1	1	0 (6:2)_(4:4aCO)
259 TCMM16	TCMM	14	539950	542443	542443	543829 2_nonsis	1	1940	3878	1	15	1	1	0 (6:2)_(4:4aCO)
297 TCMM16	TCMM	16	373351	373419	375235	376113 2_nonsis	1817	2289	2761	1	15	1	1	0 (6:2)_(4:4aCO)
248 TCMM16	TCMM	14	116678	116796	116796	116881 2_nonsis	1	102	202	1	16	1	1	0 (2:6)_(4:4aCO)
208 TCMM16	TCMM	12	602479	602685	602685	602909 2_nonsis	1	215	429	1	16	1	1	0 (2:6)_(4:4aCO)
26 TCMM16	TCMM	2	585814	585909	585909	586331 2_nonsis	1	259	516	1	16	1	1	0 (2:6)_(4:4aCO)
192 TCMM16	TCMM	11	594186	594303	594303	594718 2_nonsis	1	266	531	1	16	1	1	0 (2:6)_(4:4aCO)
110 TCMM16	TCMM	6	212520	212940	212940	213216 2_nonsis	1	348	695	1	16	1	1	0 (2:6)_(4:4aCO)
274 TCMM16	TCMM	15	461434	461644	461696	462083 2_nonsis	53	351	648	1	16	1	1	0 (2:6)_(4:4aCO)
230 TCMM16	TCMM	13	645786	645859	646181	646241 2_nonsis	323	389	454	1	16	1	1	0 (2:6)_(4:4aCO)
159 TCMM16	TCMM	10	60064	60979	61260	61449 2_nonsis	282	833	1384	1	16	1	1	0 (2:6)_(4:4aCO)
195 TCMM16	TCMM	12	51800	51952	52504	53039 2_nonsis	553	896	1238	1	16	1	1	0 (2:6)_(4:4aCO)
198 TCMM16	TCMM	12	194811	195201	195645	196197 2_nonsis	445	915	1385	1	16	1	1	0 (2:6)_(4:4aCO)
247 TCMM16	TCMM	14	65652	66215	67101	67383 2_nonsis	887	1309	1730	1	16	1	1	0 (2:6)_(4:4aCO)
157 TCMM16	TCMM	10	34093	36217	36357	36722 2_nonsis	141	1385	2628	1	16	1	1	0 (2:6)_(4:4aCO)
291 TCMM16	TCMM	16	73338	73929	74937	75355 2_nonsis	1009	1513	2016	1	16	1	1	0 (2:6)_(4:4aCO)
		5	460225	460411	461594	462226 2_nonsis	1184	1592	2000	1	16	1	1	0 (2:6)_(4:4aCO)
121 TCMM16	TCMM	7	91862	92820	93397	94650 2_nonsis	578	1683	2787	1	16	1	1	0 (2:6)_(4:4aCO)
184 TCMM16	TCMM	11	291136	292055	293072	293792 2_nonsis	1018	1837	2655	1	16	1	1	0 (2:6)_(4:4aCO)
237 TCMM16	TCMM	13	748748	750177	751553	751891 2_nonsis	1377	2260	3142	1	16	1	1	0 (2:6)_(4:4aCO)
53 TCMM16	TCMM	4	310900	310948	313308	313436 2_nonsis	2361	2448	2535	1	16	1	1	0 (2:6)_(4:4aCO)
201 TCMM16		12	293464	293839	296236	296997 2_nonsis	2398	2965	3532	1	16	1	1	0 (2:6)_(4:4aCO)
		13	203948	204520	221642	223597 2_nonsis	17123	18386	19648	1	16	1	1	0 (2:6)_(4:4aCO)
		4	806292	806407	806292	806407 2_nonsis	0	57	114	1	100	1	1	0 (4:4aCO)
109 TCMM16		6	210967	211149	210967	211149 2_nonsis	0	91	181	1	100	1	1	0 (4:4aCO)
		4	1253334	1253523	1253334	1253523 2_nonsis	0	94	188	1	100	1	1	0 (4:4aCO)
		16	450160	450384	450160	450384 2_nonsis	0	112	223	1	100	1	1	0 (4:4aCO)
		4	1420281	1420528	1420281	1420528 2_nonsis	0	123	246	1	100	1	1	0 (4:4aCO)
308 TCMM16		16	718964	719293	718964	719293 2_nonsis	0	164	328	1	100	1	1	0 (4:4aCO)
		8	219461	219876	219461	219876 2_nonsis	0	207	414	1	100	1	1	0 (4:4aCO)
		12	532084	532555	532084	532555 2_nonsis	0	235	470	1	100	1	1	0 (4:4aCO)
		2	537549	538047	537549	538047 2_nonsis	0	249	497	1	100	1	1	0 (4:4aCO)
		7	117612	118134	117612	118134 2_nonsis	0	261	521	1	100	1	1	0 (4:4aCO)
		10	636506	637056	636506	637056 2_nonsis	0	275	549	1	100	1	1	0 (4:4aCO)
		14	483894	484452	483894	484452 2_nonsis	0	279	557	1	100	1	1	0 (4:4aCO)
		4	1394881	1395699	1394881	1395699 2_nonsis	0	409	817	1	100	1	1	0 (4:4aCO)
		7	914816	915691	914816	915691 2_nonsis	0	437	874	1	100	1	1	0 (4:4aCO)
204 TCMM16		12	512877	513766	512877	513766 2_nonsis	0	444	888	1	100	1	1	0 (4:4aCO)
		4	994719	995637	994719	995637 2_nonsis	0	459	917	1	100	1	1	0 (4:4aCO)
		14	394349	395338	394349	395338 2_nonsis	0	494	988	1	100	1	1	0 (4:4aCO)
		5	85578	86696	85578	86696 2_nonsis	0	559	1117	1	100	1	1	0 (4:4aCO)
153 TCMM16		9	184053	185865	184053	185865 2_nonsis	0	906	1811	1	100	1	1	0 (4:4aCO)
138 TCMM16	TCMM	8	140123	142800	140123	142800 2_nonsis	0	1338	2676	1	100	1	1	0 (4:4aCO)

29 TCMM16	TCMM	2	662444	666712	662444	666712 2_nonsis		0	2134	4267	1	100	1	1	0 (4:4aCO)
86 TCMM16	TCMM	5	335065	335254	336702	336936 2_nonsis		1449	1660	1870	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(5:3a)_(4:4aCO)
303 TCMM16	TCMM	16	492354	493222	495673	496633 2_nonsis		2452	3365	4278	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(4:4aCO)
49 TCMM16	TCMM	4	157958	158137	158816	158898 2_nonsis		680	810	939	3	20	1	1	0 (5:3)_(4:4aCO)_(2:6)_(4:4a)
105 TCMM16	TCMM	6	160108	160471	161501	161527 2_nonsis		1031	1225	1418	3	20	1	1	0 (6:2)_(4:4aCO)_(3:5)_(4:4a)
145 TCMM16	TCMM	8	482359	482489	484090	485522 2_nonsis		1602	2382	3162	3	20	1	1	0 (2:6)_(4:4aCO)_(5:3)_(4:4a)
169 TCMM16	TCMM	10	364569	364721	367642	368244 2_nonsis		2922	3298	3674	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
294 TCMM16	TCMM	16	149586	150295	151045	151173 2_nonsis		751	1169	1586	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(2:6)_(4:4aCO)
209 TCMM16	TCMM	12	618891	619230	619971	620772 2_nonsis		742	1311	1880	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(6:2)_(4:4aCO)
108 TCMM16	TCMM	6	194182	194304	197027	197428 2_nonsis		2724	2985	3245	3	20	1	1	0 (6:2)_(5:3)_(3:5)_(4:4)_(4:4aCO)
211 TCMM16	TCMM	12	747817	747822	749136	749273 2_nonsis		1315	1385	1455	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(2:6)_(4:4aCO)
7 TCMM16	TCMM	1	187427	189816	192196	192723 2_nonsis		2381	3838	5295	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(2:6)_(4:4aCO)
207 TCMM16	TCMM	12	572946	573483	574950	575257 2_nonsis		1468	1889	2310	3	20	1	1	0 (2:6)_(3:5)_(4:4)_(2:6)_(4:4)_(6:2)_(4:4aCO)
56 TCMM16	TCMM	4	551775	551991	553867	554904 2_nonsis		1877	2503	3128	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
251 TCMM16	TCMM	14	317977	318057	319911	321214 2_nonsis		1855	2546	3236	3	20	1	1	0 (5:3)_(6:2)_(4:4)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
289 TCMM16	TCMM	15	1018270	1018471	1020208	1020336 2_nonsis		1738	1902	2065	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
131 TCMM16	TCMM	7	584249	584298	586267	586992 2 nonsis		1970	2356	2742	3	20	1	1	0 (2:6)_(4:4)_(3:5)_(4:4)_(2:6)_(4:4)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
14 TCMM16	TCMM	2	256942	257565	259235	259417 2 sis		1671	2073	2474	0	1	2	0	2 (3:5) (4:4) (2:6) (4:4)
22 TCMM16	TCMM	2	448827	449152	449416	449588 2_sis		265	513	760	0	1	2	0	2 (1:7)_(3:5)_(4:4)
52 TCMM16	TCMM	4	269895	270285	273764	273899	3	3480	3742	4003	0	1	2	0	2 (6:2)_(4:4)_(3:5)_(3:5a)_(2:6)_(4:4)
100 TCMM16	TCMM	6	41791	42233	44192	44668 2_sis	,	1960	2418	2876	0	1	2	0	2 (5:3)_(4:4)_(5:3)_(4:4)_(6:2)_(4:4)
114 TCMM16		6	262930	263216	264395	264419	3	1180	1334	1488	0	1	2	0	2 (6:2)_(4:4)_(3:5)_(4:4ai)_(5:3)_(2:6)_(4:4)
203 TCMM16	TCMM	12	507075	507492	507492	508294 2 sis	,	1	610	1218	0	1	2	0	2 (2:6i)_(4:4)
311 TCMM16		16	921161	921247	923175	923621 2_sis		1929	2194	2459	0	1	2	0	
	TCMM			67476			3		4482	4904	0	2	2	1	2 (6:2)_(6:2a)_(4:4)_(6:2a)_(4:4) 1 (3.5) (3.6) (4.8) (3.6) (4.4) (3.5) (3.5) (3.6) (4.4.50)
3 TCMM16		1	66696		71535	71601	-	4060			-			-	1 (3:5)_(2:6)_(0:8)_(2:6)_(4:4)_(2:6)_(3:5a)_(2:6)_(4:4aCO)
5 TCMM16	TCMM	1	91044	91629	92891	94472	3	1263	2345	3427	0	2	2	1	1 (2:6)_(2:6ai)_(4:4aCO)
33 TCMM16	TCMM	2	734046	734409	740026	740164	3	5618	5868	6117	0	2	2	1	1 (5:3)_(6:2)_(5:3a)_(4:4)_(6:2a)_(6:2bi)_(5:3a)_(6:2)_(4:4aCO)
40 TCMM16		3	91287	93230	93230	93455	3	1	1084	2167	0	2	2	1	1 (5:3)_(4:4aCO)
84 TCMM16		5	228943	229119	230421	230583	3	1303	1471	1639	0	2	2	1	1 (2:6)_(0:8)_(2:6)_(4:4aCO)
94 TCMM16	TCMM	5	489026	489879	492329	498796	3	2451	6110	9769	0	2	2	1	1 (2:6)_(4:4)_(0:8)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
165 TCMM16	TCMM	10	235019	235177	238463	238738	3	3287	3503	3718	0	2	2	1	1 (2:6)_(4:4)_(6:2)_(4:4aCO)_(5:3)_(4:4a)
182 TCMM16	TCMM	11	247931	247951	249447	249660	3	1497	1613	1728	0	2	2	1	1 (5:3)_(6:2)_(7:1)_(6:2a)_(7:1)_(6:2a)_(5:3a)_(4:4aCO)
190 TCMM16	TCMM	11	526688	527413	528213	528273	3	801	1193	1584	0	2	2	1	1 (6:2)_(2:6)_(2:6a)_(4:4aCO)
193 TCMM16	TCMM	11	628847	629063	633026	633545	3	3964	4331	4697	0	2	2	1	1 (2:6)_(6:2)_(4:4aCO)
197 TCMM16	TCMM	12	114144	114659	116274	116312	3	1616	1892	2167	0	2	2	1	1 (6:2)_(2:6)_(4:4aCO)
212 TCMM16	TCMM	12	1008786	1008873	1011621	1014017	3	2749	3990	5230	0	2	2	1	1 (2:6)_(5:3)_(4:4aCO)
216 TCMM16	TCMM	13	41174	43336	43336	44157	3	1	1492	2982	0	2	2	1	1 (5:3)_(4:4aCO)
228 TCMM16	TCMM	13	588927	589273	593072	594254	3	3800	4563	5326	0	2	2	1	1 (2:6)_(3:5)_(4:4aCO)_(2:6a)_(3:5a)_(3:5)_(4:4a)
249 TCMM16	TCMM	14	252203	254039	261617	261794	4	7579	8585	9590	0	2	2	1	1 (2:6)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5a)_(2:6a)_(6:2)_(4:4aCO)
263 TCMM16	TCMM	14	734887	734975	737804	737846	3	2830	2894	2958	0	2	2	1	1 (6:2)_(7:1)_(6:2)_(4:4aCO)
269 TCMM16	TCMM	15	186289	186571	187911	188321	3	1341	1686	2031	0	2	2	1	1 (1:7)_(2:6)_(1:7)_(3:5)_(4:4aCO)
286 TCMM16	TCMM	15	866689	866753	868909	869133	3	2157	2300	2443	0	2	2	1	1 (2:6)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
6 TCMM16	TCMM	1	121235	128637	130975	132066	4	2339	6585	10830	0	3	2	2	0 (6:2)_(5:3)_(4:4)_(4:4aCO)_(4:4bCO)
9 TCMM16	TCMM	2	74920	75084	76470	76676 2_nonsis		1387	1571	1755	0	3	2	0	2 (4:4aCO)_(5:3)_(4:4CO)_(3:5)_(4:4)
12 TCMM16	TCMM	2	176636	177287	182892	182901 2_nonsis		5606	5935	6264	0	3	2	0	2 (4:4ai)_(3:5)_(4:4ai)_(5:3)_(4:4bCO)_(5:3)_(4:4b)_(5:3)_(5:3a)_(4:4CO)
27 TCMM16	TCMM	2	617107	617606	620548	621285 2_nonsis		2943	3560	4177	0	3	2	0	2 (4:4aCO)_(5:3)_(4:4CO)_(3:5)_(2:6)_(4:4aCO)
43 TCMM16	TCMM	3	248549	248853	254715	254941	3	5863	6127	6391	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(5:3)_(6:2)_(4:4CO)_(4:4aCO)_(5:3)_(6:2)_(4:4bCO)_(3:5)_(4:4b)
73 TCMM16	TCMM	4	1492673	1492990	1494247	1495338 2_nonsis		1258	1961	2664	0	3	2	0	2 (4:4aCO)_(5:3)_(6:2)_(4:4CO)
75 TCMM16	TCMM	5	26313	26322	28694	29872 2 nonsis		2373	2966	3558	0	3	2	0	2 (2:6)_(3:5)_(4:4CO)_(3:5)_(4:4CO)
124 TCMM16	TCMM	7	140941	141046	143073	143359	4	2028	2223	2417	0	3	2	2	0 (6:2)_(4:4aCO)_(6:2a)_(4:4bCO)
125 TCMM16	TCMM	7	264928	265218	272144	272568	4	6927	7283	7639	0	3	2	2	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4bCO)
141 TCMM16	TCMM	8	422684	422786	423045	423870	3	260	723	1185	0	3	2	1	1 (4:4aCO)_(2:6)_(4:4bCO)
152 TCMM16	TCMM	9	174391	174961	181677	182837 2_nonsis	-	6717	7581	8445	0	3	2	0	2 (6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4CO)
154 TCMM16	TCMM	9	268278	268466	269580	269763	3	1115	1300	1484	0	3	2	1	2 (6.2)_(3.3)_(4.4aCO)_(3.5)_(4.4eCO) 1 (4.4aCO) (3:5) (4:4a) (4:4bCO)
179 TCMM16	TCMM	11	79100	79688	81532	82469	3	1845	2607	3368	0	3	2	0	1 (4:4aCO)_(3:5)_(4:4aCO) 2 (2:6)_(3:5)_(4:4aCO)_(5:3)_(4:4CO)
179 TCMM16 180 TCMM16	TCMM	11	84611	79688 85003	94473	94945	3	9471	9902	10333	0	3	2	1	
227 TCMM16	TCMM		496739	85003 496955		94945 504775	3	6182	7109	10333 8035	0	3	2	1	1 (3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4)_(2:6)_(3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4bCO) 1 (5:2)_(4:4aCO)_(6:2)_(4:4a)_(2:5
		13			503136		3								1 (5:3)_(4:4aCO)_(6:2)_(4:4a)_(3:5)_(3:5a)_(2:6)_(3:5)_(3:5a)_(5:3a)_(4:4bCO)
240 TCMM16	TCMM	13	798090	798332	799763	800212 2_nonsis	4	1432	1777	2121	0	3	2	0	2 (4:4aCO)_(5:3)_(4:4CO)_(2:6)_(4:4) 2 (7:2)_(4:4)_(7:2)_(7:2)_(7:2)_(4:4CO)_(4:4C
244 TCMM16	TCMM	14	20559	21301	24857	25137	4	3557	4067	4577	0	3	2	0	2 (5:3)_(4:4)_(5:3a)_(6:2)_(6:2a)_(4:4aCO)_(4:4CO)
280 TCMM16	1CMM	15	701028	701208	703124	703302 2_nonsis		1917	2095	2273	0	3	2	0	2 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)_(2:6)_(4:4CO)

306 TCMM16		16	651191	651827	654661	655575	3	2835	3609	4383	0	3	2	1	1 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(7:1)_(6:2)_(7:1)_(6:2a)_(4:4aCO)_(5:3a)_(4:4CO)
410 TCMM16		6	15012	15279	16574	16654 NA		1296	1469	1641	0	4	1 NA	NA	4:4_5:3_4:4_5:3_6:2
87 TCMM18		5	62818	62914	62914	63004	1	1	93	185	1	1	1	0	1 05:03
	TCMM	2	71825	71828	71828	72018	1	1	97	192	1	1	1	0	1 05:03
30 TCMM18 244 TCMM18	TCMM	2 14	742472 138172	742660 138230	742660 138230	742690 138404	1	1	109 116	217	1	1	1	0	1 05:03 1 05:03
	TCMM	16	46780	46831	46871	46996	1	41	128	231 215	1	1	1	0	1 05:03
	TCMM	9	40140	40190	40190	40512	1	1	186	371	1	1	1	0	1 05:03
106 TCMM18		6	78069	78202	78202	78568	1	1	250	498	1	1	1	0	1 05:03
32 TCMM18		3	41571	41852	41852	42410	1	1	420	838	1	1	1	0	1 05:03
	TCMM	7	763517	765005	765005	765055	1	1	769	1537	1	1	1	0	1 05:03
138 TCMM18		7	905275	905694	906181	906494	1	488	853	1218	1	1	1	0	1 05:03
	TCMM	10	190298	191257	191621	192156	1	365	1111	1857	1	1	1	0	1 05:03
147 TCMM18	TCMM	8	167785	168208	168879	170402	1	672	1644	2616	1	1	1	0	1 05:03
35 TCMM18	TCMM	3	79797	93230	93230	93455	1	1	6829	13657	1	1	1	0	1 05:03
45 TCMM18	TCMM	4	27258	27277	27277	27377	1	1	60	118	1	2	1	0	1 03:05
24 TCMM18	TCMM	2	593091	593127	593127	593215	1	1	62	123	1	2	1	0	1 03:05
276 TCMM18	TCMM	15	808101	808141	808141	808281	1	1	90	179	1	2	1	0	1 03:05
289 TCMM18	TCMM	16	171860	171885	171885	172109	1	1	125	248	1	2	1	0	1 03:05
300 TCMM18	TCMM	16	560045	560053	560053	560312	1	1	134	266	1	2	1	0	1 03:05
54 TCMM18	TCMM	4	611969	612171	612171	612253	1	1	142	283	1	2	1	0	1 03:05
186 TCMM18	TCMM	10	639041	639136	639136	639365	1	1	162	323	1	2	1	0	1 03:05
149 TCMM18	TCMM	8	293075	293153	293153	293443	1	1	184	367	1	2	1	0	1 03:05
125 TCMM18		7	531741	531976	531976	532147	1	1	203	405	1	2	1	0	1 03:05
	TCMM	4	84518	84625	84632	84947	1	8	218	428	1	2	1	0	1 03:05
	TCMM	2	275372	275994	275994	276052	1	1	340	679	1	2	1	0	1 03:05
	TCMM	9	199527	199623	199628	200296	1	6	387	768	1	2	1	0	1 03:05
8 TCMM18		1	151333	151919	151919	152233	1	1	450	899	1	2	1	0	1 03:05
	TCMM	14 4	88100 1270457	88974 1270902	88974 1270902	89169	1	1	535 649	1068	1	2 2	1	0	1 03:05
	TCMM TCMM	4	1409083	1270902	1270902	1271755 1410029	1	1 459	702	1297 945	1	2	1	0	1 03:05 1 03:05
292 TCMM18		16	245496	245843	246558	246962	1	716	1091	945 1465	1	3	1	0	1 5:3 4:4 5:3
	TCMM	12	259126	260086	260749	261053	1	664	1295	1926	1	3	1	0	1 5:3_6:2_5:3
	TCMM	6	248365	248816	249213	249566	1	398	799	1200	1	4	1	0	1 3:5_4:4_3:5
94 TCMM18		5	317359	317416	318564	318778	1	1149	1284	1418	1	4	1	0	1 3:5_2:6_3:5
117 TCMM18		7	41041	41301	43400	43798	1	2100	2428	2756	1	4	1	0	1 3:5_2:6_3:5
135 TCMM18		7	840315	840622	840852	841693	1	231	804	1377	1	7	1	0	1 6:2_5:3
	TCMM	7	609044	609307	609958	610218	1	652	913	1173	1	7	1	0	1 5:3_6:2
	TCMM	9	67395	68149	69035	69770	1	887	1631	2374	1	7	1	0	1 5:3_6:2
263 TCMM18	TCMM	15	107138	107387	109106	109424	1	1720	2003	2285	1	7	1	0	1 5:3_6:2
262 TCMM18	TCMM	15	90886	91370	91557	91592	1	188	447	705	1	7	1	0	1 6:2_4:4_6:2
306 TCMM18	TCMM	16	885210	885444	885979	886611	1	536	968	1400	1	7	1	0	1 6:2_4:4_6:2
239 TCMM18	TCMM	13	906418	906551	907700	907728	1	1150	1230	1309	1	7	1	0	1 6:2_4:4_6:2
86 TCMM18	TCMM	5	56829	57131	58183	58866	1	1053	1545	2036	1	7	1	0	1 6:2_5:3_6:2
128 TCMM18	TCMM	7	623527	623695	625479	625898	1	1785	2078	2370	1	7	1	0	1 6:2_5:3_4:4_6:2_5:3
183 TCMM18	TCMM	10	526176	526730	526799	527538	1	70	716	1361	1	8	1	0	1 3:5_2:6
	TCMM	7	798380	798397	799262	799613	1	866	1049	1232	1	8	1	0	1 2:6_3:5
	TCMM	10	521093	521645	523373	524003	1	1729	2319	2909	1	8	1	0	1 3:5_2:6
	TCMM	16	414884	415343	418090	418435	1	2748	3149	3550	1	8	1	0	1 2:6_3:5
	TCMM	12	855154	856994	857516	857614	1	523	1491	2459	1	8	1	0	1 2:6_4:4_3:5
	TCMM	12	263065	264597	265441	265975	1	845	1877	2909	1	8	1	0	1 3:5_4:4_2:6
	TCMM	12	632381	632910	636269	637193	1	3360	4086	4811	1	8	1	0	1 2:6_4:4_2:6
	TCMM	12	611078	611179	612564	612630	1	1386	1469	1551	1	8	1	0	1 3:5_2:6_3:5_2:6
	TCMM	10	59308	59484	61260	61449	1	1777	1959	2140	1	8	1	0	1 3:5_4:4_3:5_2:6
	TCMM	16	150295	150413	153125	153659	1	2713	3038	3363	1	8	1	0	1 2:6_4:4_2:6_4:4_2:6
	TCMM TCMM	14 16	224132 523494	224654 523583	226114 530472	226134 530807	1	1461 6890	1731 7101	2001	1	8	1	0	1 3:5_4:4_3:5_2:6_3:5_2:6 1 2:6_3:5_2:6_3:5_2:6_4:4_2:6_3:5_2:6_3:5_4:4_2:6
	TCMM	9	523494 285060	523583 285202	285229	285322	1	6890 28	145	7312	1	10	1	0	1 2:6_3:5_2:6_3:5_2:6_4:4_2:6_3:5_2:6_3:5_4:4_2:6 1 06:02
	TCMM	7	689803	690018	690039	690131	1	28	175	261 327	1	10	1	0	1 06:02
228 TCMM18		13	236410	236819	236819	236833	1	1	212	422	1	10	1	0	1 06:02
220 ICIVIIVIIO	- CIVIIVI	1.3	230410	230017	2,0017	250033	1	1	212	744	•	10	•	Ü	. 00.02

264 TCMM18	TCMM	15	189367	189653	189700	189822	1	48	251	454	1	10	1	0	1 06:02
109 TCMM18	TCMM	6	157416	157760	157828	157884	1	69	268	467	1	10	1	0	1 06:02
9 TCMM18	TCMM	1	190031	190402	190429	190558	1	28	277	526	1	10	1	0	1 06:02
274 TCMM18	TCMM	15	770102	770118	770280	770508	1	163	284	405	1	10	1	0	1 06:02
23 TCMM18	TCMM	2	535775	535946	536146	536197	1	201	311	421	1	10	1	0	1 06:02
160 TCMM18	TCMM	9	93058	93207	93376	93546	1	170	329	487	1	10	1	0	1 06:02
47 TCMM18	TCMM	4	100723	101068	101199	101273	1	132	341	549	1	10	1	0	1 06:02
90 TCMM18	TCMM	5	201879	202172	202285	202470	1	114	352	590	1	10	1	0	1 06:02
57 TCMM18	TCMM	4	770058	770136	770136	770770	1	1	356	711	1	10	1	0	1 06:02
136 TCMM18	TCMM	7	848688	849134	849134	849405	1	1	359	716	1	10	1	0	1 06:02
56 TCMM18	TCMM	4	690964	691222	691222	691713	1	1	375	748	1	10	1	0	1 06:02
60 TCMM18	TCMM	4	794075	794507	794676	794820	1	170	457	744	1	10	1	0	1 06:02
63 TCMM18	TCMM	4	909447	909908	909908	910427	1	1	490	979	1	10	1	0	1 06:02
233 TCMM18	TCMM	13	482522	482985	482985	483557	1	1	518	1034	1	10	1	0	1 06:02
103 TCMM18	TCMM	6	27212	27436	27810	28033	1	375	598	820	1	10	1	0	1 06:02
217 TCMM18	TCMM	12	808452	809313	809313	809749	1	1	649	1296	1	10	1	0	1 06:02
166 TCMM18	TCMM	9	258908	259266	259788	259858	1	523	736	949	1	10	1	0	1 06:02
67 TCMM18	TCMM	4	1034904	1035084	1035697	1035811	1	614	760	906	1	10	1	0	1 06:02
192 TCMM18	TCMM	11	218728	218804	218976	220318	1	173	881	1589	1	10	1	0	1 06:02
97 TCMM18	TCMM	5	358357	359292	359292	360247	1	1	945	1889	1	10	1	0	1 06:02
112 TCMM18	TCMM	6	208668	209238	209430	210544	1	193	1034	1875	1	10	1	0	1 06:02
139 TCMM18	TCMM	7	916059	917004	917454	917686	1	451	1039	1626	1	10	1	0	1 06:02
7 TCMM18	TCMM	1	112136	113132	113326	114283	1	195	1171	2146	1	10	1	0	1 06:02
297 TCMM18	TCMM	16	425481	425740	426505	427075	1	766	1180	1593	1	10	1	0	1 06:02
65 TCMM18	TCMM	4	1013721	1013843	1014713	1015229	1	871	1189	1507	1	10	1	0	1 06:02
225 TCMM18	TCMM	13	75576	75773	77019	77135	1	1247	1403	1558	1	10	1	0	1 06:02
196 TCMM18	TCMM	11	339266	339499	340783	340811	1	1285	1415	1544	1	10	1	0	1 06:02
200 TCMM18	TCMM	12	27605	28820	29612	29773	1	793	1480	2167	1	10	1	0	1 06:02
172 TCMM18	TCMM	9	358980	359077	360460	360682	1	1384	1543	1701	1	10	1	0	1 06:02
180 TCMM18	TCMM	10	407487	407535	407535	411303	1	1	1908	3815	1	10	1	0	1 06:02
251 TCMM18	TCMM	14	412406	412417	412417	412447	1	1	21	40	1	10.1	1	0	1 02:06
194 TCMM18	TCMM	11	278363	278388	278406	278445	1	19	50	81	1	10.1	1	0	1 02:06
205 TCMM18	TCMM	12	412590	412603	412603	412803	1	1	107	212	1	10.1	1	0	1 02:06
25 TCMM18	TCMM	2	595518	595625	595625	595735	1	1	109	216	1	10.1	1	0	1 02:06
241 TCMM18	TCMM	14	82362	82505	82505	82667	1	1	153	304	1	10.1	1	0	1 02:06
124 TCMM18	TCMM	7	529630	529644	529644	529943	1	1	157	312	1	10.1	1	0	1 02:06
303 TCMM18	TCMM	16	724951	725136	725147	725262	1	12	161	310	1	10.1	1	0	1 02:06
44 TCMM18	TCMM	3	299645	299933	299933	300032	1	1	194	386	1	10.1	1	0	1 02:06
280 TCMM18	TCMM	15	968476	968504	968504	968918	1	1	221	441	1	10.1	1	0	1 02:06
151 TCMM18	TCMM	8	404521	404866	404866	404970	1	1	225	448	1	10.1	1	0	1 02:06
66 TCMM18	TCMM	4	1022417	1022660	1022660	1022874	1	1	229	456	1	10.1	1	0	1 02:06
266 TCMM18	TCMM	15	234124	234579	234579	234673	1	1	275	548	1	10.1	1	0	1 02:06
41 TCMM18	TCMM	3	242663	242917	242917	243218	1	1	278	554	1	10.1	1	0	1 02:06
13 TCMM18	TCMM	2	164995	165049	165178	165525	1	130	330	529	-	10.1	1	0	1 02:06
245 TCMM18 96 TCMM18	TCMM TCMM	14 5	201732 349434	201876	201973 349715	202301	1	98	333 336	568 665	1	10.1 10.1	1	0	1 02:06 1 02:06
96 TCMM18 104 TCMM18	TCMM			349710	33340	350100	-	6 410	336 494		1	10.1	-	0	1 02:06
104 TCMM18 187 TCMM18	TCMM	6 10	32918 649035	32931 649585	649660	33496 649976	1	76	508	577 940	1	10.1	1	0	1 02:06
4 TCMM18	TCMM	10	649035 70621	649585 70999	649660 71116	71673	1	118	508 585	940 1051	1	10.1	1	0	1 02:06
261 TCMM18	TCMM	15	79764	79906	80423	80449	1	518	601	684	1	10.1	1	0	1 02:06
261 TCMM18 271 TCMM18	TCMM	15	478915	479565	479565	480144	1	J16 1	615	1228	1	10.1	1	0	1 02:06
271 TCMM18 254 TCMM18	TCMM	15	478915 586560	479565 586773	479565 586871	480144 587725	1	1 99	632	1228 1164	1	10.1	1	0	1 02:06
294 TCMM18	TCMM	16	282512	282651	282651	283933	1	1	711	1420	1	10.1	1	0	1 02:06
294 TCMM18 291 TCMM18	TCMM	16	282512	282651	228043	283933	1	216	711	1213	1	10.1	1	0	1 02:06
291 TCMM18 238 TCMM18	TCMM	13	866753	867864	228043 867864	228253 868389	1	216	715 818	1635	1	10.1	1	0	1 02:06
80 TCMM18	TCMM	4	1394881	1395687	1396041	1396310	1	355	892	1428	1	10.1	1	0	1 02:06
101 TCMM18	TCMM	5	540528	540683	541194	541873	1	512	928	1344	1	10.1	1	0	1 02:06
152 TCMM18	TCMM	8	540528 444367	444619	445557	445735	1	939	1153	1344	1	10.1	1	0	1 02:06
38 TCMM18	TCMM	3	190177	191932	192715	193066	1	784	1836	2888	1	10.1	1	0	1 02:06
253 TCMM18	TCMM	14	539950	542443	542443	543829	1	1	1940	3878	1	10.1	1	0	1 02:06
233 ICIVIIVIIO	Civilvi	14	JJ77JU	J+2++3	J+2++3	343027	1	1	1740	3010	1	10.1	1	U	1 02.00

164 TCMM18	TCMM	9	184053	185865	185865	188629	1	1	2288	4575	1	10.1	1	0	1 02:06
287 TCMM18	TCMM	16	127009	127901	130145	130597	1	2245	2916	3587	1	10.1	1	0	1 02:06
14 TCMM18	TCMM	2	205559	205766	209271	209402	1	3506	3674	3842	1	10.1	1	0	1 02:06
	TCMM	10	658094	658862	658912	660402 2_nonsis		51	1179	2307	3	30	1	0	1 05:03
134 TCMM18	TCMM	7	835169	836201	837577	837741 2_nonsis		1377	1974	2571	3	30	1	0	1 6:2_5:3
108 TCMM18	TCMM	6	114541	114707	115810	116037 2_nonsis		1104	1300	1495	3	30	1	0	1 2:6_4:4_6:2
249 TCMM18	TCMM	14	311614	311670	316253	316782 2_nonsis		4584	4876	5167	3	30	1	0	1 6:2_4:4_2:6_4:4_2:6_3:5_2:6
82 TCMM18	TCMM	4	1415081	1416035	1418139	1418662 2_nonsis		2105	2843	3580	3	31	1	0	1 3:5_4:4_2:6_4:4_4:4ai
298 TCMM18	TCMM	16	495977	496633	499388	499617 2_nonsis		2756	3198	3639	3	31	1	0	1 6:2_5:3_2:6_3:5_4:4ai_6:2_4:4_5:3_4:4_5:3
272 TCMM18	TCMM	15	558497	559459	559768	560108 2_nonsis		310	960	1610	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
285 TCMM18	TCMM	16	104784	105755	106109	106600 2_nonsis		355	1085	1815	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
260 TCMM18	TCMM	15	75017	75243	75710	75779 2_nonsis		468	615	761	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
91 TCMM18	TCMM	5	234931	235495	235773	235812 2_nonsis		279	580	880	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
105 TCMM18	TCMM	6	72559	73471	74705	74753 2_nonsis		1235	1714	2193	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
176 TCMM18	TCMM	10	179749	180268	183834	184212 2_nonsis		3567	4015	4462	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
120 TCMM18	TCMM	7	232997	235967	236277	241275 2_nonsis		311	4294	8277	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
143 TCMM18	TCMM	7	1018075	1018655	1019597	1019728 2_nonsis		943	1298	1652	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
137 TCMM18	TCMM	7	895181	895701	897158	897290 2_nonsis		1458	1783	2108	1	11	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4ai)_(4:4bCO)
195 TCMM18	TCMM	11	281006	281154	281307	281630 2_nonsis		154	389	623	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
267 TCMM18	TCMM	15	265983	266279	266759	266963 2_nonsis		481	730	979	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
268 TCMM18	TCMM	15	302514	302730	303222	303785 2_nonsis		493	882	1270	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
69 TCMM18	TCMM	4	1113566	1113753	1114225	1114859 2_nonsis		473	883	1292	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
146 TCMM18	TCMM	8	163731	164274	165835	165867 2_nonsis		1562	1849	2135	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
50 TCMM18	TCMM	4	196186	196482	198685	198734 2_nonsis		2204	2376	2547	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
277 TCMM18	TCMM	15	939870	940002	940839	941405 2_nonsis		838	1186	1534	1	12	1	1	0 (5:3)_(4:4aCO)_(5:3)_(4:4a)
110 TCMM18	TCMM	6	170473	170899	171501	172334 2_nonsis		603	1232	1860	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
150 TCMM18	TCMM	8	400642	400960	401862	402413 2_nonsis		903	1337	1770	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
31 TCMM18	TCMM	2	784336	784573	785908	786053 2_nonsis		1336	1526	1716	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
34 TCMM18	TCMM	3	66729	66765	68058	68556 2_nonsis		1294	1560	1826	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
189 TCMM18	TCMM	10	705235	705450	707333	707549 2_nonsis		1884	2099	2313	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
220 TCMM18	TCMM	12	875066	875233	877476	877539 2_nonsis		2244	2358	2472	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
210 TCMM18	TCMM	12	623971	624838	627370	627543 2_nonsis		2533	3052	3571	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(4:4aCO)
74 TCMM18	TCMM	4	1261105	1261386	1263883	1264743 2_nonsis		2498	3068	3637	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
158 TCMM18	TCMM	9	53832	54480	57153	57568 2_nonsis		2674	3205	3735	1	12	1	1	0 (6:2)_(4:4)_(5:3)_(4:4aCO)
40 TCMM18	TCMM	3	223676	224009	226498	230267 2_nonsis		2490	4540	6590	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
42 TCMM18	TCMM	3	248853	249269	249994	250253 2_nonsis		726	1063	1399	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(3:5)_(4:4aCO)
116 TCMM18	TCMM	6	251816	252064	253044	253284 2_nonsis		981	1224	1467	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
1 TCMM18	TCMM	1	36160	36524	38361	38490 2_nonsis		1838	2084	2329	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(4:4aCO)
163 TCMM18	TCMM	9	168244	168511	171065	171083 2_nonsis		2555	2697	2838	1	12	1	1	0 (4:4aCO)_(3:5)_(4:4a)_(2:6)_(4:4a)
98 TCMM18	TCMM	5	411277	413233	415894	416514 2_nonsis		2662	3949	5236	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)
70 TCMM18	TCMM	4	1124620	1125098	1129980	1130680 2_nonsis		4883	5471	6059	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(3:5)_(4:4aCO)
295 TCMM18	TCMM	16	359182	359890	362178	362269 2_nonsis		2289	2688	3086	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
19 TCMM18	TCMM	2	482984	483713	485863	487113 2_nonsis		2151	3140	4128	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)
118 TCMM18	TCMM	7	73941	74322	74612	74791 2_nonsis		291	570	849	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
270 TCMM18	TCMM	15	466340	466702	469093	469522 2_nonsis		2392	2787	3181	1	12	1	1	0 (2:6)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4)_(4:4aCO)
281 TCMM18	TCMM	15	1017032	1017296	1020208	1020336 2_nonsis		2913	3108	3303	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)_(3:5)_(4:4a)
170 TCMM18	TCMM	9	308908	310223	311461	311839 2_nonsis		1239	2085	2930	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
132 TCMM18	TCMM	7	774621	774677	774766	774937 2_nonsis		90	203	315	1	15	1	1	0 (6:2)_(4:4aCO)
141 TCMM18	TCMM	7	968274	968486	968486	968708 2_nonsis		1	217	433	1	15	1	1	0 (6:2)_(4:4aCO)
175 TCMM18	TCMM	10	146738	146986	147014	147143 2_nonsis		29	217	404	1	15	1	1	0 (6:2)_(4:4aCO)
190 TCMM18	TCMM	11	19902	19942	20014	20275 2_nonsis		73	223	372	1	15	1	1	0 (6:2)_(4:4aCO)
5 TCMM18	TCMM	1	73490	73633	73733	73855 2_nonsis		101	233	364	1	15	1	1	0 (6:2)_(4:4aCO)
123 TCMM18	TCMM	7	383665	383867	383908	384183 2_nonsis		42	280	517	1	15	1	1	0 (6:2)_(4:4aCO)
36 TCMM18	TCMM	3	109320	109704	109776	109851 2_nonsis		73	302	530	1	15	1	1	0 (6:2)_(4:4aCO)
88 TCMM18	TCMM	5	101365	102020	102020	102185 2_nonsis		1	410	819	1	15	1	1	0 (6:2)_(4:4aCO)
250 TCMM18	TCMM	14	381889	382124	382139	382693 2_nonsis		16	410	803	1	15	1	1	0 (6:2)_(4:4aCO)
265 TCMM18	TCMM	15	199186	199433	199433	200443 2_nonsis		1	629	1256	1	15	1	1	0 (6:2)_(4:4aCO)
304 TCMM18	TCMM	16	726715	727099	727505	727667 2_nonsis		407	679	951	1	15	1	1	0 (6:2)_(4:4aCO)
221 TCMM18	TCMM	12	878875	879756	879756	880251 2_nonsis		1	688	1375	1	15	1	1	0 (6:2)_(4:4aCO)
127 TCMM18	TCMM	7	611358	612267	612267	612759 2_nonsis		1	701	1400	1	15	1	1	0 (6:2)_(4:4aCO)

256 TCMM18	TCMM	14	613459	614988	615001	615141 2_nonsis	14	848	1681	1	15	1	1	0 (6:2)_(4:4aCO)
	TCMM	6	198468	199207	199247	200419 2_nonsis	41	996	1950	1	15	1	1	0 (6:2)_(4:4aCO)
	TCMM	4	1137630	1137761	1138406	1138987 2_nonsis	646	1001	1356	1	15	1	1	0 (6:2)_(4:4aCO)
216 TCMM18	TCMM	12	780728	781856	781856	782839 2_nonsis	1	1056	2110	1	15	1	1	0 (6:2)_(4:4aCO)
	TCMM	3	285783	286611	287188	287614 2_nonsis	578	1204	1830	1	15	1	1	0 (6:2)_(4:4aCO)
22 TCMM18	TCMM	2	531940	533263	533263	535193 2_nonsis	1	1627	3252	1	15	1	1	0 (6:2)_(4:4aCO)
278 TCMM18	TCMM	15	943283	943688	945153	945177 2_nonsis	1466	1680	1893	1	15	1	1	0 (6:2)_(4:4aCO)
301 TCMM18	TCMM	16	609204	609390	609390	609523 2_nonsis	1	160	318	1	16	1	1	0 (2:6)_(4:4aCO)
290 TCMM18	TCMM	16	214358	214684	214684	214724 2_nonsis	1	183	365	1	16	1	1	0 (2:6)_(4:4aCO)
89 TCMM18	TCMM	5	161593	161767	161767	162008 2_nonsis	1	208	414	1	16	1	1	0 (2:6)_(4:4aCO)
201 TCMM18		12	183955	184185	184185	184390 2_nonsis	1	218	434	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	2	45307	45660	45660	45824 2_nonsis	1	259	516	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	13	160037	160135	160280	160611 2_nonsis	146	360	573	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	15	41221	41378	41495	41838 2_nonsis	118	367	616	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	7	253383	253849	253916	254261 2_nonsis	68	473	877	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	5	247750	247981	248412	248444 2_nonsis	432	563	693	1	16	1	1	0 (2:6)_(4:4aCO)
275 TCMM18	TCMM	15	774203	774251	774747	774866 2_nonsis	497	580	662	1	16	1	1	0 (2:6)_(4:4aCO)
179 TCMM18	TCMM	10	323823	325190	325190	325369 2_nonsis	1	773	1545	1	16	1	1	0 (2:6)_(4:4aCO)
129 TCMM18	TCMM	7	640541	640786	640849	642042 2_nonsis	64	782	1500	1	16	1	1	0 (2:6)_(4:4aCO)
235 TCMM18	TCMM	13	661764	662059	662603	662796 2_nonsis	545	788	1031	1	16	1	1	0 (2:6)_(4:4aCO)
51 TCMM18	TCMM	4	396700	397411	397411	398408 2_nonsis	1	854	1707	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	11	394215	394878	395389	395440 2_nonsis	512	868	1224	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	13	559794	560210	560428	561397 2_nonsis	219	911	1602	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	16	74327	74884	75455	75694 2_nonsis	572	969	1366	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	8	503996	505427	505427	505984 2_nonsis	1	994	1987	1	16	1	1	0 (2:6)_(4:4aCO)
6 TCMM18	TCMM	1	79085	79449	80077	80554 2_nonsis	629	1049	1468	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	13	410428	410894	411264	412303 2_nonsis	371	1123	1874	1	16	1	1	0 (2:6)_(4:4aCO)
27 TCMM18	TCMM	2	695479	697455	697503	699461 2_nonsis	49	2015	3981	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	4	1433600	1433731	1435647	1435868 2_nonsis	1917	2092	2267	1	16	1	1	0 (2:6)_(4:4aCO)
161 TCMM18	TCMM	9	139714	139937	142621	142688 2_nonsis	2685	2829	2973	1	16	1	1	0 (2:6)_(4:4aCO)
68 TCMM18	TCMM	4	1095082	1095364	1095467	1102243 2_nonsis	104	3632	7160	1	16	1	1	0 (2:6)_(4:4aCO)
140 TCMM18	TCMM	7	927341	927609	932723	933365 2_nonsis	5115	5569	6023	1	16	1	1	0 (2:6)_(4:4aCO)
	TCMM	4	1498007	1498087	1498007	1498087 2_nonsis	0	40	79	1	100	1	1	0 (4:4aCO)
100 TCMM18	TCMM	5	522810	522899	522810	522899 2_nonsis	0	44	88	1	100	1	1	0 (4:4aCO)
	TCMM	8	76827	76976	76827	76976 2_nonsis	0	74	148	1	100	1	1	0 (4:4aCO)
76 TCMM18	TCMM	4	1293522	1293708	1293522	1293708 2_nonsis	0	93	185	1	100	1	1	0 (4:4aCO)
	TCMM	12	949229	949418	949229	949418 2_nonsis	0	94	188	1	100	1	1	0 (4:4aCO)
	TCMM	2	650411	650619	650411	650619 2_nonsis	0	104	207	1	100	1	1	0 (4:4aCO)
248 TCMM18	TCMM	14	257643	257904	257643	257904 2_nonsis	0	130	260	1	100	1	1	0 (4:4aCO)
58 TCMM18	TCMM	4	781986	782410	781986	782410 2_nonsis	0	212	423	1	100	1	1	0 (4:4aCO)
243 TCMM18	TCMM	14	122717	123158	122717	123158 2_nonsis	0	220	440	1	100	1	1	0 (4:4aCO)
	TCMM	3	57568	58033	57568	58033 2_nonsis	0	232	464	1	100	1	1	0 (4:4aCO)
283 TCMM18	TCMM	16	72872	73338	72872	73338 2_nonsis	0	233	465	1	100	1	1	0 (4:4aCO)
	TCMM	12	723739	724217	723739	724217 2_nonsis	0	239	477	1	100	1	1	0 (4:4aCO)
12 TCMM18	TCMM	2	82087	82573	82087	82573 2_nonsis	0	243	485	1	100	1	1	0 (4:4aCO)
	TCMM	12	319960	320465	319960	320465 2_nonsis	0	252	504	1	100	1	1	0 (4:4aCO)
	TCMM	8	207052	207624	207052	207624 2_nonsis	0	286	571	1	100	1	1	0 (4:4aCO)
	TCMM		1135519	1136116	1135519	1136116 2_nonsis	0	298	596	1	100	1	1	0 (4:4aCO)
	TCMM TCMM	4 5	931376	931988	931376	931988 2_nonsis	0	306	611 640	1	100	1	1	0 (4:4aCO)
			237481	238122	237481	238122 2_nonsis	-	320		1	100	-	1	0 (4:4aCO)
	TCMM	4	549856	550499	549856	550499 2_nonsis	0	321	642	1	100	1	1	0 (4:4aCO)
28 TCMM18	TCMM	2	701871	702521	701871	702521 2_nonsis	0	325	649	1	100	1	1	0 (4:4aCO)
	TCMM	13	810963	811653	810963	811653 2_nonsis	0	345	689	1	100	1	1	0 (4:4aCO)
273 TCMM18	TCMM	15	624868	625559	624868	625559 2_nonsis	0	345	690	1	100	1	1	0 (4:4aCO)
	TCMM	14	49011	49737	49011	49737 2_nonsis	0	363	725	1	100	1	1	0 (4:4aCO)
224 TCMM18	TCMM	13	43336	44157	43336	44157 2_nonsis	0	410	820	1	100	1	1	0 (4:4aCO)
	TCMM	15	965240	966067	965240	966067 2_nonsis	0	413	826	1	100	1	1	0 (4:4aCO)
	TCMM	7	129484	130374	129484	130374 2_nonsis	0	445	889	1	100	1	1	0 (4:4aCO)
	TCMM	2	428064	428982	428064	428982 2_nonsis	0	459	917	1	100	1	1	0 (4:4aCO)
223 TCMM18	TCMM	13	41174	42127	41174	42127 2_nonsis	0	476	952	1	100	1	1	0 (4:4aCO)

246 TCMM18	TCMM	14	221973	222978	221973	222978 2_nonsis		0	502	1004	1	100	1	1	0 (4:4aCO)
174 TCMM18	TCMM	10	98106	99116	98106	99116 2_nonsis		0	505	1009	1	100	1	1	0 (4:4aCO)
17 TCMM18	TCMM	2	316189	317232	316189	317232 2_nonsis		0	521	1042	1	100	1	1	0 (4:4aCO)
185 TCMM18	TCMM	10	577732	578943	577732	578943 2_nonsis		0	605	1210	1	100	1	1	0 (4:4aCO)
252 TCMM18	TCMM	14	414025	415775	414025	415775 2_nonsis		0	875	1749	1	100	1	1	0 (4:4aCO)
227 TCMM18	TCMM	13	219863	221642	219863	221642 2_nonsis		0	889	1778	1	100	1	1	0 (4:4aCO)
181 TCMM18	TCMM	10	467589	469453	467589	469453 2_nonsis		0	932	1863	1	100	1	1	0 (4:4aCO)
184 TCMM18	TCMM	10	570822	573135	570822	573135 2_nonsis		0	1156	2312	1	100	1	1	0 (4:4aCO)
219 TCMM18	TCMM	12	857770	860959	857770	860959 2_nonsis		0	1594	3188	1	100	1	1	0 (4:4aCO)
169 TCMM18	TCMM	9	299287	302738	299287	302738 2_nonsis		0	1725	3450	1	100	1	1	0 (4:4aCO)
122 TCMM18	TCMM	7	305233	305542	305802	305956 2_nonsis		261	492	722	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)
206 TCMM18	TCMM	12	415537	415898	416464	416793 2 nonsis		567	911	1255	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
114 TCMM18	TCMM	6	245286	245484	246293	246533 2_nonsis		810	1028	1246	3	20	1	1	0 (2:6)_(5:3)_(4:4)_(4:4aCO)
198 TCMM18	TCMM	11	567633	567960	569085	569468 2_nonsis		1126	1480	1834	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
15 TCMM18	TCMM	2	255743	255862	258071	258313 2_nonsis		2210	2390	2569	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
258 TCMM18	TCMM	14	710457	711379	713465	713685 2_nonsis		2087	2657	3227	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
79 TCMM18	TCMM	4	1364167	1364482	1366837	1366906 2_nonsis		2356	2547	2738	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
20 TCMM18	TCMM	2	499070	499985	501576	501897 2_nonsis		1592	2209	2826	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(2:6)_(3:5)_(5:3)_(4:4a)
286 TCMM18	TCMM	16	114774	114957	117204	117756 2_nonsis		2248	2615	2981	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
95 TCMM18	TCMM	5	330953	332219	334331			2113	2810	3506	3	20	1	1	
						334460 2_nonsis					0				0 (6:2)_(2:6)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
3 TCMM18	TCMM	1	59659	60198	62679	62754 2_sis		2482	2788	3094		1	2	0	2 (2:6)_(4:4)_(2:6a)_(3:5)_(4:4) 2 (6.2)_(4.4)_(6.2)_(7.1)_(6.2)_(4.4)
39 TCMM18	TCMM	3	211159	211204	213542	213768 2_sis	_	2339	2474	2608	0	1	2	0	2 (6:2)_(4:4)_(6:2)_(7:1)_(6:2)_(4:4)
49 TCMM18	TCMM	4	106899	107966	110696	111349	3	2731	3590	4449	0	1	2	0	2 (6:2)_(2:6)_(0:8)_(2:6)_(4:4)
62 TCMM18	TCMM	4	891889	892825	894075	895202	3	1251	2282	3312	0	1	2	0	2 (7:1)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)
73 TCMM18	TCMM	4	1167961	1168078	1169278	1169426 2_sis		1201	1333	1464	0	1	2	0	2 (6:2)_(6:2a)_(4:4)_(6:2a)_(4:4)
199 TCMM18	TCMM	12	21252	21693	22811	22902 2_sis		1119	1384	1649	0	1	2	0	2 (2:6)_(4:4)_(2:6a)_(4:4)
229 TCMM18	TCMM	13	353026	353180	353429	353814 2_sis		250	519	787	0	1	2	0	2 (2:6)_(4:4)_(2:6a)_(4:4)
302 TCMM18	TCMM	16	663708	664041	665472	665513 2_sis		1432	1618	1804	0	1	2	0	2 (6:2)_(4:4)_(6:2a)_(4:4)
21 TCMM18	TCMM	2	513641	513994	515130	515157	3	1137	1326	1515	0	2	2	1	1 (4:4aCO)_(3:5)_(4:4a)
29 TCMM18	TCMM	2	731564	731596	736946	737232	3	5351	5509	5667	0	2	2	1	1 (6:2)_(4:4)_(5:3)_(3:5)_(4:4)_(5:3)_(2:6)_(3:5)_(4:4aCO)
37 TCMM18	TCMM	3	156517	156868	156868	157443	3	1	463	925	0	2	2	1	1 (3:5)_(4:4aCO)
48 TCMM18	TCMM	4	104069	104854	105623	105784	3	770	1242	1714	0	2	2	1	1 (2:6)_(6:2)_(4:4aCO)
55 TCMM18	TCMM	4	679655	680244	684395	685013	4	4152	4755	5357	0	2	2	1	1 (6:2)_(5:3)_(6:2)_(5:3a)_(6:2)_(4:4aCO)
59 TCMM18	TCMM	4	783598	783897	784537	784809	3	641	926	1210	0	2	2	1	1 (4:4aCO)_(2:6)_(4:4a)
61 TCMM18	TCMM	4	832054	832844	837953	838644	3	5110	5850	6589	0	2	2	1	1 (6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4)_(3:5)_(4:4)_(4:4aCO)
77 TCMM18	TCMM	4	1295582	1295980	1296525	1297076	3	546	1020	1493	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
113 TCMM18	TCMM	6	219786	220148	226036	226238	3	5889	6170	6451	0	2	2	1	1 (6:2)_(4:4aCO)_(3:5)_(4:4a)_(2:6)_(4:4a)_(2:6a)_(4:4a)
142 TCMM18	TCMM	7	1011510	1012069	1012874	1013000	3	806	1148	1489	0	2	2	1	1 (4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
145 TCMM18	TCMM	8	120445	121618	123814	124092	3	2197	2922	3646	0	2	2	1	1 (4:4aCO)_(6:2)_(6:2a)_(4:4a)
156 TCMM18	TCMM	9	35118	35226	36971	36978	3	1746	1803	1859	0	2	2	1	1 (2:6)_(3:5)_(3:5a)_(6:2)_(4:4)_(6:2)_(4:4aCO)_(2:6a)_(4:4a)_(3:5b)_(4:4a)
162 TCMM18	TCMM	9	160170	160514	161651	161738	3	1138	1353	1567	0	2	2	1	1 (7:1)_(5:3)_(4:4aCO)_(5:3a)_(4:4a)
167 TCMM18	TCMM	9	268278	268466	271556	271960	3	3091	3386	3681	0	2	2	1	1 (6:2)_(4:4)_(2:6)_(3:5)_(4:4)_(4:4aCO)
171 TCMM18	TCMM	9	336673	337083	338670	339115	3	1588	2015	2441	0	2	2	1	1 (5:3)_(6:2)_(4:4)_(5:3)_(6:2a)_(5:3a)_(4:4aCO)
191 TCMM18	TCMM	11	34159	34378	35136	35505	3	759	1052	1345	0	2	2	1	1 (6:2)_(4:4)_(4:4aCO)
193 TCMM18	TCMM	11	230455	230837	231603	232567	3	767	1439	2111	0	2	2	1	1 (3:5)_(4:4)_(3:5a)_(5:3)_(4:4aCO)
232 TCMM18	TCMM	13	472484	473000	473172	473320	3	173	504	835	0	2	2	1	1 (3:5)_(5:3)_(4:4aCO)
255 TCMM18	TCMM	14	598176	602658	606111	606283	3	3454	5780	8106	0	2	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4a)
257 TCMM18	TCMM	14	659022	661270	662512	665017	3	1243	3619	5994	0	2	2	1	1 (8:0)_(6:2)_(8:0)_(6:2a)_(4:4aCO)
305 TCMM18	TCMM	16	840263	840416	843391	843720	3	2976	3216	3456	0	2	2	1	1 (2:6)_(1:7)_(2:6)_(0:8)_(2:6)_(4:4aCO)
2 TCMM18	TCMM	1	42635	42684	45030	45831	3	2347	2771	3195	0	3	2	0	2 (6:2)_(4:4aCO)_(5:3)_(4:4bCO)_(5:3)_(4:4b)_(4:4CO)
53 TCMM18	TCMM	4	556934	556996	559582	559935 2 nonsis		2587	2794	3000	0	3	2	0	2 (4:4aCO) (2:6) (3:5) (2:6) (4:4CO)
78 TCMM18	TCMM	4	1300582	1300834	1303188	1303306 2_nonsis		2355	2539	2723	0	3	2	0	2 (4:4aCO)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4CO)
85 TCMM18	TCMM	5	41961	42216	46383	46589	3	4168	4398	4627	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)
99 TCMM18	TCMM	5	502911	502995	509962	510678 2_nonsis		6968	7367	7766	0	3	2	0	2 (5:3)_(4:4aCO)_(4:4CO)_(6:2)_(5:3)_(6:2)_(5:3)_(3:5)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4)
102 TCMM18	TCMM	5	544042	544296	546141	546545 2_nonsis		1846	2174	2502	0	3	2	0	2 (3:5)_(4:4aCO)_(2:6)_(4:4CO)
107 TCMM18	TCMM	6	80386	81527	82679	83125	3	1153	1946	2738	0	3	2	1	1 (4:4aCO)_(6:2)_(4:4bCO)
153 TCMM18	TCMM	8	497211	497276	498771	499032 2_nonsis	,	1496	1658	1820	0	3	2	0	2 (6:2)_(4:4aCO)_(5:3)_(6:2)_(4:4CO)
178 TCMM18	TCMM	10	235976	236393	236674	236901	3	282	603	924	0	3	2	1	1 (6:2)_(4:4aCO)_(4:4bCO)
207 TCMM18	TCMM	12	570914	571412	574096	574439	4	2685	3105	3524	0	3	2	2	0 (2:6)_(6:2)_(4:4aCO)_(4:4bCO)_(8:0)_(6:2a)_(6:2b)_(4:4b)
	TCMM	12	584201	584485	585365	586011 2 nonsis	7	881	1345	1809	0	3	2	0	2 (2:6) (4:4aCO) (4:4CO) 2 (2:6) (4:4aCO) (4:4CO)
206 ICMM18	CIVIIVI	12	364201	204403	202203	380011 2_HORSIS		991	1543	1009	U	3	2	U	2 (2.0)_(4.4aCO)_(4:4CO)

212 TCMM18		12	674080	674152	679633	680510	3	5482	5956	6429	0	3	2	1	1 (6:2)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4CO)_(4:4bCO)
	TCMM	12	744566	744885	753571	754314	3	8687	9217	9747	0	3	2	0	2 (3:5)_(4:4aCO)_(4:4bCO)_(2:6)_(4:4CO)_(2:6)_(4:4)_(3:5a)_(2:6a)_(3:5a)_(2:6a)_(4:4)
	TCMM	12	762220	762817	763199	763325 2_nonsis		383	744	1104	0	3	2	0	2 (4:4aCO)_(4:4CO)
230 TCMM18	TCMM	13	385945	386206	388450	388702 2_nonsis		2245	2501	2756	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)_(6:2)_(4:4)_(6:2)_(4:4)
237 TCMM18	TCMM	13	856957	857240	859155	859920	4	1916	2439	2962	0	3	2	2	0 (4:4aCO)_(6:2)_(4:4bCO)
269 TCMM18	TCMM	15	438163	438791	441487	441731 2_nonsis		2697	3132	3567	0	3	2	1	1 (4:4aCO)_(6:2)_(4:4CO)_(3:5)_(4:4aCO)_(6:2)_(4:4a)
293 TCMM18	TCMM	16	255611	255970	257972	258230	3	2003	2311	2618	0	3	2	1	1 (6:2)_(2:6)_(4:4aCO)_(6:2)_(4:4bCO)
316 TCMM18	TCMM	1	192723	193131	203038	230218	1	0	18747	37494	0	4	1 NA	NA	
615 TCMM18	TCMM	16	924011	924094	925093	948066	1	1000	12527	24054	0	4	1 NA	NA	2:6_4:4_2:6_4:4_2:6
131 TCMM19	TCMM	7	780065	780103	780103	780122	1	1	29	56	1	1	1	0	1 05:03
145 TCMM19	TCMM	8	12640	12663	12670	12721	1	8	44	80	1	1	1	0	1 05:03
47 TCMM19	TCMM	3	128174	128224	128224	128266	1	1	46	91	1	1	1	0	1 05:03
371 TCMM19	TCMM	16	231042	231052	231052	231144	1	1	51	101	1	1	1	0	1 05:03
115 TCMM19	TCMM	6	210590	210664	210664	210721	1	1	66	130	1	1	1	0	1 05:03
243 TCMM19	TCMM	11	642656	642703	642703	642801	1	1	73	144	1	1	1	0	1 05:03
260 TCMM19	TCMM	12	680988	681097	681097	681146	1	1	79	157	1	1	1	0	1 05:03
99 TCMM19	TCMM	5	311423	311515	311515	311716	1	1	147	292	1	1	1	0	1 05:03
322 TCMM19	TCMM	14	779204	779247	779247	779510	1	1	153	305	1	1	1	0	1 05:03
116 TCMM19	TCMM	6	234593	234694	234694	234904	1	1	156	310	1	1	1	0	1 05:03
32 TCMM19	TCMM	2	568465	568762	568762	568783	1	1	159	317	1	1	1	0	1 05:03
	TCMM	11	350945	351226	351226	351268	1	1	162	322	1	1	1	0	1 05:03
82 TCMM19	TCMM	4	1266824	1266952	1266952	1267153	1	1	165	328	1	1	1	0	1 05:03
		4	505462	505577	505577	505795	1	1	167	332	1	1	1	0	1 05:03
296 TCMM19	TCMM	14	187434	187730	187730	187769	1	1	168	334	1	1	1	0	1 05:03
257 TCMM19	TCMM	12	510433	510495	510600	510745	1	106	209	311	1	1	1	0	1 05:03
382 TCMM19	TCMM	16	458912	458958	458958	459330	1	1	209	417	1	1	1	0	1 05:03
189 TCMM19	TCMM	9	360460	360682	360722	360876	1	41	228	415	1	1	1	0	1 05:03
355 TCMM19	TCMM	15	815746	816176	816176	816215	1	1	235	468	1	1	1	0	1 05:03
273 TCMM19	TCMM	13	336425	336566	336695	336784	1	130	244	358	1	1	1	0	1 05:03
310 TCMM19	TCMM	14	532165	532649	532649	532670	1	130	253	504	1	1	1	0	1 05:03
97 TCMM19	TCMM	5	250573	250605	250692	251006	1	88	260	432	1	1	1	0	1 05:03
								138			1	1	1	0	
	TCMM	15	351333	351470 278571	351607 278757	351787	1	138	296	453	1	1	1		1 05:03
300 TCMM19	TCMM	14	278430			278850	-		303	419	-	-	-	0	1 05:03
93 TCMM19	TCMM	5	182242	182338	182381	182827	1	44	314	584	1	1	1	0	1 05:03
121 TCMM19	TCMM	7	170880	171278	171278	171569	1	1	345	688	1	1	1	0	1 05:03
	TCMM	7	667659	667672	667843	668222	1	172	367	562	1	1	1	0	1 05:03
	TCMM	5	198865	198962	199227	199337	1	266	369	471	1	1	1	0	1 05:03
20 TCMM19	TCMM	2	202227	202580	202580	203030	1	1	402	802	1	1	1	0	1 05:03
278 TCMM19	TCMM	13	695793	695805	696177	696333	1	373	456	539	1	1	1	0	1 05:03
117 TCMM19	TCMM	6	244268	244360	244444	245103	1	85	460	834	1	1	1	0	1 05:03
96 TCMM19	TCMM	5	236202	236672	236672	237191	1	1	495	988	1	1	1	0	1 05:03
360 TCMM19	TCMM	15	954766	955006	955483	955552	1	478	632	785	1	1	1	0	1 05:03
	TCMM	9	192389	193262	193298	193815	1	37	731	1425	1	1	1	0	1 05:03
330 TCMM19	TCMM	15	227759	228291	228291	229235	1	1	738	1475	1	1	1	0	1 05:03
	TCMM	8	277301	278461	278461	278994	1	1	847	1692	1	1	1	0	1 05:03
318 TCMM19	TCMM	14	718033	718741	719201	719304	1	461	866	1270	1	1	1	0	1 05:03
236 TCMM19	TCMM	11	492262	493124	493438	494125	1	315	1089	1862	1	1	1	0	1 05:03
212 TCMM19	TCMM	10	449329	450386	450678	451382	1	293	1173	2052	1	1	1	0	1 05:03
326 TCMM19	TCMM	15	170583	170921	171849	172081	1	929	1213	1497	1	1	1	0	1 05:03
172 TCMM19	TCMM	8	505427	505776	506810	506933	1	1035	1270	1505	1	1	1	0	1 05:03
15 TCMM19	TCMM	2	73943	74853	75576	75822	1	724	1301	1878	1	1	1	0	1 05:03
101 TCMM19	TCMM	5	334750	335065	336237	336549	1	1173	1486	1798	1	1	1	0	1 05:03
5 TCMM19	TCMM	1	81306	81604	82379	83613	1	776	1541	2306	1	1	1	0	1 05:03
325 TCMM19	TCMM	15	128123	128405	129671	130049	1	1267	1596	1925	1	1	1	0	1 05:03
53 TCMM19	TCMM	4	52141	52663	53890	54185	1	1228	1636	2043	1	1	1	0	1 05:03
308 TCMM19	TCMM	14	487880	487935	489468	489631	1	1534	1642	1750	1	1	1	0	1 05:03
106 TCMM19	TCMM	5	413862	414190	415484	415894	1	1295	1663	2031	1	1	1	0	1 05:03
384 TCMM19	TCMM	16	474526	474750	476380	476646	1	1631	1875	2119	1	1	1	0	1 05:03
389 TCMM19	TCMM	16	663036	663543	665235	665344	1	1693	2000	2307	1	1	1	0	1 05:03
291 TCMM19	TCMM	14	60029	60034	60034	60050	1	1	11	20	1	2	1	0	1 03:05

365 TCMM19	TCMM	16	46435	46551	46551	46594	1	1	80	158	1	2	1	0	1 03:05
63 TCMM19	TCMM	4	387157	387371	387371	387397	1	1	120	239	1	2	1	0	1 03:05
341 TCMM19	TCMM	15	494461	494556	494573	494732	1	18	144	270	1	2	1	0	1 03:05
42 TCMM19	TCMM	2	798886	799021	799048	799164	1	28	153	277	1	2	1	0	1 03:05
41 TCMM19	TCMM	2	760365	760599	760599	760767	1	1	201	401	1	2	1	0	1 03:05
381 TCMM19	TCMM	16	443763	443833	443969	444028	1	137	201	264	1	2	1	0	1 03:05
301 TCMM19	TCMM	14	303243	303460	303486	303631	1	27	207	387	1	2	1	0	1 03:05
256 TCMM19	TCMM	12	507075	507492	507492	507531	1	1	228	455	1	2	1	0	1 03:05
347 TCMM19	TCMM	15	712306	712727	712727	712794	1	1	244	487	1	2	1	0	1 03:05
200 TCMM19	TCMM	10	180789	181065	181065	181281	1	1	246	491	1	2	1	0	1 03:05
232 TCMM19	TCMM	11	357937	358323	358323	358455	1	1	259	517	1	2	1	0	1 03:05
353 TCMM19	TCMM	15	783046	783587	783587	783594	1	1	274	547	1	2	1	0	1 03:05
23 TCMM19	TCMM	2	321773	321857	322002	322182	1	146	277	408	1	2	1	0	1 03:05
39 TCMM19	TCMM	2	740362	740429	740429	740972	1	1	305	609	1	2	1	0	1 03:05
31 TCMM19	TCMM	2	536197	536637	536700	536754	1	64	310	556	1	2	1	0	1 03:05
281 TCMM19	TCMM	13	768312	768463	768463	768951	1	1	320	638	1	2	1	0	1 03:05
210 TCMM19	TCMM	10	391657	391693	391693	392346	1	1	345	688	1	2	1	0	1 03:05
151 TCMM19	TCMM	8	122169	122634	122674	122848	1	41	360	678	1	2	1	0	1 03:05
374 TCMM19	TCMM	16	301952	302336	302336	302673	1	1	361	720	1	2	1	0	1 03:05
372 TCMM19	TCMM	16	272485	273202	273202	273221	1	1	368	735	1	2	1	0	1 03:05
344 TCMM19	TCMM	15	633360	633825	633825	634186	1	1	413	825	1	2	1	0	1 03:05
130 TCMM19	TCMM	7	745891	745981	746194	746541	1	214	432	649	1	2	1	0	1 03:05
211 TCMM19	TCMM	10	423783	424402	424406	424695	1	5	458	911	1	2	1	0	1 03:05
240 TCMM19	TCMM	11	571639	571872	571872	572586	1	1	474	946	1	2	1	0	1 03:05
289 TCMM19	TCMM	14	22397	22855	22855	23459	1	1	531	1061	1	2	1	0	1 03:05
83 TCMM19	TCMM	4	1289490	1289885	1289972	1290507	1	88	552	1016	1	2	1	0	1 03:05
229 TCMM19	TCMM	11	245116	245907	245907	246336	1	1	610	1219	1	2	1	0	1 03:05
129 TCMM19	TCMM	7	704403	704949	704949	705631	1	1	614	1227	1	2	1	0	1 03:05
354 TCMM19	TCMM	15	813043	813776	813794	814261	1	19	618	1217	1	2	1	0	1 03:05
81 TCMM19	TCMM	4	1257459	1257868	1258312	1258318	1	445	652	858	1	2	1	0	1 03:05
321 TCMM19	TCMM	14	770920	771471	771733	772160	1	263	751	1239	1	2	1	0	1 03:05
252 TCMM19	TCMM	12	346127	346167	346884	347086	1	718	838	958	1	2	1	0	1 03:05
89 TCMM19	TCMM	4	1458516	1459261	1459261	1460259	1	1	872	1742	1	2	1	0	1 03:05
133 TCMM19	TCMM	7	855522	856876	856876	857340	1	1	909	1817	1	2	1	0	1 03:05
35 TCMM19	TCMM	2	629782	630035	630469	631243	1	435	948	1460	1	2	1	0	1 03:05
140 TCMM19	TCMM	7	1021077	1021490	1022196	1022301	1	707	965	1223	1	2	1	0	1 03:05
304 TCMM19	TCMM	14	414025	415877	415877	416164	1	1	1070	2138	1	2	1	0	1 03:05
59 TCMM19	TCMM	4	266398	266488	267406	267874	1	919	1197	1475	1	2	1	0	1 03:05
196 TCMM19	TCMM	10	121522	122256	123026	123360	1	771	1304	1837	1	2	1	0	1 03:05
176 TCMM19	TCMM	9	40593	40898	41980	42365	1	1083	1427	1771	1	2	1	0	1 03:05
254 TCMM19	TCMM	12	404333	405334	406201	406472	1	868	1503	2138	1	2	1	0	1 03:05
155 TCMM19	TCMM	8	159599	159887	160782	161874	1	896	1585	2274	1	2	1	0	1 03:05
363 TCMM19	TCMM	16	22695	22824	22826	26191	1	3	1749	3495	1	2	1	0	1 03:05
171 TCMM19	TCMM	8	485522	485864	487338	487560	1	1475	1756	2037	1	2	1	0	1 03:05
286 TCMM19	TCMM	13	831222	831576	832607	834662	1	1032	2236	3439	1	2	1	0	1 03:05
214 TCMM19	TCMM	10	544322	544484	546603	546746	1	2120	2272	2423	1	2	1	0	1 03:05
343 TCMM19	TCMM	15	594122	594439	594454	601255	1	16	3574	7132	1	2	1	0	1 03:05
11 TCMM19	TCMM	2	29377	36302	36837	37454	1	536	4306	8076	1	2	1	0	1 03:05
234 TCMM19	TCMM	11	434756	434978	435882	436087	1	905	1118	1330	1	3	1	0	1 5:3_4:4_5:3
368 TCMM19	TCMM	16	159167	159487	160357	160565	1	871	1134	1397	1	3	1	0	1 5:3_6:2_5:3
33 TCMM19	TCMM	2	592641	592744	593500	594298	1	757	1207	1656	1	3	1	0	1 5:3_6:2_5:3
198 TCMM19	TCMM	10	149152	149570	150493	150662	1	924	1217	1509	1	3	1	0	1 5:3_6:2_5:3
271 TCMM19	TCMM	13	229786	230470	231382	231506	1	913	1316	1719	1	3	1	0	1 5:3_4:4_5:3
361 TCMM19	TCMM	15	966621	966892	968244	968286	1	1353	1509	1664	1	3	1	0	1 5:3_4:4_5:3
379 TCMM19	TCMM	16	425006	425451	426505	427075	1	1055	1562	2068	1	3	1	0	1 5:3_4:4_5:3
167 TCMM19	TCMM	8	416601	416745	418214	418349	1	1470	1609	1747	1	3	1	0	1 5:3_6:2_5:3
54 TCMM19	TCMM TCMM	4	76974	77295	78644	78945	1	1350	1660	1970	1	3	1	0	1 5:3_6:2_5:3
227 TCMM19 188 TCMM19	TCMM	11	224634 337621	225480 337673	226659 339305	227319 340356	1	1180 1633	1932 2184	2684 2734	1	3	1	0	1 5:3_4:4_5:3
	TCMM	11	573530	574134	575852	340356 576495	1	1633	2184	2734	1	3	1	0	1 5:3_6:2_5:3
241 1CMM19	ICMM	11	5/3530	5/4154	3/3832	3/0493	1	1/19	2342	2904	1	3	1	U	1 5:3_4:4_5:3

159 TCMM19	TCMM	8	267804	268308	274996	275150	1	6689	7017	7345	1	3	1	0	1 5:3_6:2_5:3
259 TCMM19	TCMM	12	676756	677005	677890	677900	1	886	1015	1143	1	3	1	0	1 5:3_6:2_5:3_6:2_5:3
352 TCMM19	TCMM	15	778024	779060	780184	780631	1	1125	1866	2606	1	3	1	0	1 5:3_6:2_5:3_4:4_5:3
213 TCMM19	TCMM	10	461507	461623	463641	464252	1	2019	2382	2744	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
9 TCMM19	TCMM	1	160074	166245	167179	170726	1	935	5793	10651	1	3	1	0	1 5:3_6:2_5:3_6:2_5:3
49 TCMM19	TCMM	3	224261	224961	225116	225200	1	156	547	938	1	4	1	0	1 3:5_2:6_3:5
338 TCMM19	TCMM	15	396805	397231	398023	398146	1	793	1067	1340	1	4	1	0	1 3:5_2:6_3:5
158 TCMM19		8	259528	259588	260343	261563	1	756	1395	2034	1	4	1	0	1 3:5_4:4_3:5
	TCMM	8	422798	422992	424326	425219	1	1335	1878	2420	1	4	1	0	1 3:5_4:4_3:5
146 TCMM19		8	20318	20573	22253	22430	1	1681	1896	2111	1	4	1	0	1 3:5_4:4_3:5
250 TCMM19		12	302004	302144	304381	304627	1	2238	2430	2622	1	4	1	0	1 3:5_4:4_3:5
		5	451413	451710	454403	454697	1	2694	2989	3283	1	4	1	0	1 3:5_4:4_3:5
	TCMM	12	230218	230960	233075	234378	1	2116	3138	4159	1	4	1	0	1 3:5_4:4_2:6_3:5
	TCMM	8	348462	348790	350566	350845	1	1777	2080	2382	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5
		4					1			2943	1	4	1	0	
73 TCMM19			919279	919709	922174	922223		2466	2705						1 3:5_4:4_3:5_4:4_3:5
	TCMM	12	258577	259051	265441	265975	1	6391	6894	7397	1	4	1	0	1 3:5_4:4_2:6_3:5_2:6_3:5_2:6_3:5
		14	137123	137209	140190	140230	1	2982	3044	3106	1		1	0	1 3:5_4:4_3:5_4:4_2:6_3:5_2:6_3:5_4:4_3:5
	TCMM	8	126142	126148	126397	126572	1	250	340	429	1	7	1	0	1 6:2_5:3
144 TCMM19		7	1063290	1063368	1063846	1064130	1	479	659	839	1	7	1	0	1 6:2_5:3
		10	256690	256880	257445	257831	1	566	853	1140	1	7	1	0	1 6:2_5:3
	TCMM	16	895354	895642	896575	896727	1	934	1153	1372	1	7	1	0	1 5:3_6:2
	TCMM	10	136384	136623	138413	138706	1	1791	2056	2321	1	7	1	0	1 5:3_6:2
180 TCMM19	TCMM	9	93058	93207	93376	93546	1	170	329	487	1	7	1	0	1 6:2_4:4_6:2
150 TCMM19	TCMM	8	107008	107309	107606	107993	1	298	641	984	1	7	1	0	1 5:3_4:4_6:2
87 TCMM19	TCMM	4	1420155	1420281	1421240	1421307	1	960	1056	1151	1	7	1	0	1 6:2_4:4_6:2
313 TCMM19	TCMM	14	604879	605054	606872	608001	1	1819	2470	3121	1	7	1	0	1 6:2_4:4_5:3
165 TCMM19	TCMM	8	374065	374774	375825	375930	1	1052	1458	1864	1	7	1	0	1 5:3_6:2_5:3_6:2
175 TCMM19	TCMM	9	34985	35111	37068	37170	1	1958	2071	2184	1	7	1	0	1 6:2_5:3_4:4_5:3_6:2_5:3_6:2_5:3_6:2_5:3_6:2_5:3_6:2
348 TCMM19	TCMM	15	733489	733608	733667	733898	1	60	234	408	1	8	1	0	1 3:5_2:6
174 TCMM19	TCMM	9	32347	32528	33034	33054	1	507	607	706	1	8	1	0	1 2:6_3:5
56 TCMM19	TCMM	4	157958	158137	158965	158981	1	829	926	1022	1	8	1	0	1 3:5_2:6
391 TCMM19	TCMM	16	730292	730534	731036	731859	1	503	1035	1566	1	8	1	0	1 3:5_2:6
369 TCMM19	TCMM	16	170349	170630	171422	171708	1	793	1076	1358	1	8	1	0	1 2:6_3:5
71 TCMM19	TCMM	4	812667	813172	814114	814278	1	943	1277	1610	1	8	1	0	1 2:6_3:5
335 TCMM19		15	290268	290790	291910	292246	1	1121	1549	1977	1	8	1	0	1 2:6_3:5
		2	99228	99630	102116	102386	1	2487	2822	3157	1	8	1	0	1 2:6_3:5
2 TCMM19		1	57739	59349	62361	62648	1	3013	3961	4908	1	8	1	0	1 3:5_2:6
		11	558102	558496	567076	567430	1	8581	8954	9327	1	8	1	0	1 3:5_2:6
		4	654086	654167	655491	656349	1	1325	1794	2262	1	8	1	0	1 3:5_4:4_3:5_2:6_3:5_2:6
	TCMM	5	15888	15940	17824	18174	1	1885	2085	2285	1	8	1	0	1 3:5_4:4_3:5_4:4_3:5_2:6
221 TCMM19		11	10753	13039	14273	14406	1	1235	2444	3652	1	8	1	0	1 3:5_4:4_3:5_2:6_3:5_2:6
370 TCMM19		16	187312	187323	187323	187324	1	1233	6	11	1	10	1	0	1 06:02
	TCMM	7	625898	626137	626137	626170	1	1	136	271	1	10	1	0	1 06:02
		14	525575	525857	525857	525960	1	1	193	384	1	10	1	0	1 06:02
		16	538649	538784	538784	539088	1	1	220	438	1	10	1	0	1 06:02
223 TCMM19		11					1	1	240	436	1	10	1	0	
			135691	136140	136140	136171	-	-							1 06:02
	TCMM	9	117717	117795	117809	118304	1	15	301	586	1	10	1	0	1 06:02
		11	74103	74603	74603	74756	1	1	327	652	1	10	1	0	1 06:02
		13	809325	809473	809473	810028	1	1	352	702	1	10	1	0	1 06:02
312 TCMM19		14	552035	552259	552429	552569	1	171	352	533	1	10	1	0	1 06:02
13 TCMM19		2	60478	60545	60793	60945	1	249	358	466	1	10	1	0	1 06:02
169 TCMM19	TCMM	8	455368	455642	455862	455976	1	221	414	607	1	10	1	0	1 06:02
205 TCMM19	TCMM	10	332735	332945	333136	333385	1	192	421	649	1	10	1	0	1 06:02
220 TCMM19		10	705865	705917	706135	706547	1	219	450	681	1	10	1	0	1 06:02
156 TCMM19	TCMM	8	236191	236227	236251	237146	1	25	490	954	1	10	1	0	1 06:02
	TCMM	14	452428	452892	453029	453469	1	138	589	1040	1	10	1	0	1 06:02
364 TCMM19	TCMM	16	28409	28513	29041	29091	1	529	605	681	1	10	1	0	1 06:02
177 TCMM19	TCMM	9	45259	45367	46102	46131	1	736	804	871	1	10	1	0	1 06:02
226 TCMM19	TCMM	11	218804	218858	218976	220318	1	119	816	1513	1	10	1	0	1 06:02
228 TCMM19	TCMM	11	241707	242410	242410	243550	1	1	922	1842	1	10	1	0	1 06:02

	TCMM	10	700864	701241	701601	702817	1	361	1157	1952	1	10	1	0	1 06:02
	TCMM	5	517549	517944	522900	523260	1	4957	5334	5710	1	10	1	0	1 06:02
186 TCMM19	TCMM	9	247495	247508	247508	247522	1	1	14	26	1	10.1	1	0	1 02:06
51 TCMM19	TCMM	4	22448	22481	22481	22513	1	1	33	64	1	10.1	1	0	1 02:06
285 TCMM19	TCMM	13	828291	828323	828323	828384	1	1	47	92	1	10.1	1	0	1 02:06
358 TCMM19	TCMM	15	849274	849337	849337	849390	1	1	58	115	1	10.1	1	0	1 02:06
85 TCMM19	TCMM	4	1341577	1341639	1341693	1341749	1	55	113	171	1	10.1	1	0	1 02:06
75 TCMM19	TCMM	4	976876	977181	977181	977275	1	1	200	398	1	10.1	1	0	1 02:06
394 TCMM19	TCMM	16	888239	888536	888536	888652	1	1	207	412	1	10.1	1	0	1 02:06
377 TCMM19	TCMM	16	352228	352381	352499	352575	1	119	233	346	1	10.1	1	0	1 02:06
65 TCMM19	TCMM	4	521269	521409	521536	521623	1	128	241	353	1	10.1	1	0	1 02:06
276 TCMM19	TCMM	13	421952	422261	422261	422449	1	1	249	496	1	10.1	1	0	1 02:06
201 TCMM19	TCMM	10	189105	189441	189441	189631	1	1	263	525	1	10.1	1	0	1 02:06
79 TCMM19	TCMM	4	1235870	1236152	1236284	1236427	1	133	345	556	1	10.1	1	0	1 02:06
142 TCMM19	TCMM	7	1042643	1043244	1043244	1043695	1	1	526	1051	1	10.1	1	0	1 02:06
102 TCMM19	TCMM	5	342057	342537	342731	342945	1	195	541	887	1	10.1	1	0	1 02:06
162 TCMM19	TCMM	8	322176	322381	322533	323234	1	153	605	1057	1	10.1	1	0	1 02:06
153 TCMM19	TCMM	8	143824	143930	144393	144688	1	464	664	863	1	10.1	1	0	1 02:06
385 TCMM19	TCMM	16	487851	488388	488388	489307	1	1	728	1455	1	10.1	1	0	1 02:06
72 TCMM19	TCMM	4	915507	916363	916363	917683	1	1	1088	2175	1	10.1	1	0	1 02:06
331 TCMM19	TCMM	15	238440	238504	241259	241438	1	2756	2877	2997	1	10.1	1	0	1 02:06
143 TCMM19	TCMM	7	1046648	1046925	1049349	1050057	1	2425	2917	3408	1	10.1	1	0	1 02:06
191 TCMM19	TCMM	10	21859	22066	24307	26108	1	2242	3245	4248	1	10.1	1	0	1 02:06
17 TCMM19	TCMM	2	140643	140850	141579	142181 2_nonsis	•	730	1134	1537	3	30	1	0	1 6:2_5:3
263 TCMM19	TCMM	12	772380	774096	775537	777814 2 nonsis		1442	3438	5433	3	30	1	0	1 2:6 5:3
25 TCMM19	TCMM	2	360531	360769	361468	361594 2_nonsis		700	881	1062	3	30	1	0	1 5:3_4:4_3:5
60 TCMM19	TCMM	4	300521	300709	302084	302250 2 nonsis		1164	1446	1728	3	30	1	0	1 5:3 4:4 6:2
18 TCMM19	TCMM	2	149872	150200	151407	151865 2_nonsis		1208	1600	1992	3	30	1	0	1 3:5_5:3_3:5
94 TCMM19	TCMM	5	193949	194375	195765			1391	1636	1880	3	30	1	0	
217 TCMM19	TCMM	10	636506	637392	639365	195830 2_nonsis		1391	2852	3729	3	30	1	0	1 2:6_3:5_5:3
88 TCMM19	TCMM	4	1423727	1424231	1427252	640236 2_nonsis 1427658 2_nonsis		3022	2852 3476	3930	3	30	1	0	1 5:3_6:2_5:3a 1 3:5_5:3_3:5
123 TCMM19	TCMM	7	355292								3	30	1	0	1 6:2_5:3_3:5
				356141	359148	359394 2_nonsis		3008	3555	4101	3		-	0	
113 TCMM19	TCMM	6	76126	76268	77181	77256 2_nonsis		914	1022	1129		30	1	-	1 2:6_4:4_6:2_5:3
323 TCMM19	TCMM TCMM	15	42859	43012	45210	46201 2_nonsis		2199	2770	3341	3	30	1	0	1 2:6_3:5_2:6_3:5a
316 TCMM19		14	706575	707137	711379	711615 2_nonsis		4243	4641	5039	3	30	1		1 5:3_6:2_4:4_3:5
138 TCMM19	TCMM	7	951700	951733	952025	952040 2_nonsis		293	316	339	3	30	1	0	1 2:6_4:4_6:2_4:4_2:6
378 TCMM19	TCMM	16	383083	383310	384917	385830 2_nonsis		1608	2177	2746	3	30	1	0	1 2:6_4:4_5:3_4:4_5:3
139 TCMM19	TCMM	7	969753	969826	977494	978531 2_nonsis		7669	8223	8777	3	30	1	0	1 5:3_4:4_5:3_4:4_2:6
233 TCMM19	TCMM	11	381058	381640	385769	385778 2_nonsis		4130	4425	4719	3	30	1	0	1 6:2_4:4_3:5_4:4_3:5_4:4_2:6_3:5
351 TCMM19	TCMM	15	769620	770027	774457	774673 2_nonsis		4431	4742	5052	3	30	1	0	1 2:6_3:5_2:6_3:5_2:6_3:5a_2:6_3:5a
183 TCMM19	TCMM	9	149380	149501	152419	152956 2_nonsis		2919	3247	3575	3	30	1	0	1 5:3_3:5_3:5a_4:4_3:5_2:6_3:5_4:4_3:5
317 TCMM19	TCMM	14	714903	715086	716522	716912 2_nonsis		1437	1723	2008	3	31	1	0	1 4:4ai_3:5_3:5a
194 TCMM19	TCMM	10	77203	78874	80439	80673 2_nonsis		1566	2518	3469	3	31	1	0	1 4:4ai_3:5_4:4_3:5a_4:4_3:5a
218 TCMM19	TCMM	10	680328	680733	689090	689592 2_nonsis		8358	8811	9263	3	31	1	0	1 5:3_4:4ai_3:5_5:3_6:2_5:3a_4:4ai
279 TCMM19	TCMM	13	698569	698988	698988	699056 2_nonsis		1	244	486	1	1	1	1	0 (5:3)_(4:4aCO)
26 TCMM19	TCMM	2	452218	452891	452891	453095 2_nonsis		1	439	876	1	1	1	1	0 (5:3)_(4:4aCO)
22 TCMM19	TCMM	2	295058	295631	295912	296073 2_nonsis		282	648	1014	1	1	1	1	0 (5:3)_(4:4aCO)
376 TCMM19	TCMM	16	340194	340409	341647	341700 2_nonsis		1239	1372	1505	1	1	1	1	0 (5:3)_(4:4aCO)
	TCMM	2	695479	697455	697455	698250 2_nonsis		1	1386	2770	1	1	1	1	0 (5:3)_(4:4aCO)
187 TCMM19	TCMM	9	289127	292446	292446	292870 2_nonsis		1	1872	3742	1	1	1	1	0 (5:3)_(4:4aCO)
70 TCMM19	TCMM	4	801845	801939	802711	805658 2_nonsis		773	2293	3812	1	1	1	1	0 (5:3)_(4:4aCO)
58 TCMM19	TCMM	4	263811	264106	264106	264197 2_nonsis		1	193	385	1	2	1	1	0 (3:5)_(4:4aCO)
392 TCMM19	TCMM	16	784888	785578	785578	785712 2_nonsis		1	412	823	1	2	1	1	0 (3:5)_(4:4aCO)
109 TCMM19	TCMM	5	499930	500567	500567	501719 2_nonsis		1	895	1788	1	2	1	1	0 (3:5)_(4:4aCO)
36 TCMM19	TCMM	2	633960	635127	635880	636267 2_nonsis		754	1530	2306	1	2	1	1	0 (3:5)_(4:4aCO)
216 TCMM19	TCMM	10	577732	578943	579361	579663 2_nonsis		419	1175	1930	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
327 TCMM19	TCMM	15	192748	193685	193911	194961 2_nonsis		227	1220	2212	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
209 TCMM19	TCMM	10	386527	387413	388253	388388 2_nonsis		841	1351	1860	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
288 TCMM19	TCMM	13	887934	888376	889638	889717 2_nonsis		1263	1523	1782	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
225 TCMM19	TCMM	11	162073	162583	162828	163173 2_nonsis		246	673	1099	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)

292 TCMM19	TCMM	14	81857	82092	83228	83675 2_nonsis	1137	1477	1817	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
287 TCMM19	TCMM	13	864888	866108	866477	867864 2_nonsis	370	1673	2975	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
157 TCMM19	TCMM	8	248649	248808	250465	250575 2_nonsis	1658	1792	1925	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
349 TCMM19	TCMM	15	735184	735517	735678	735877 2_nonsis	162	427	692	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
319 TCMM19	TCMM	14	739169	739459	739738	739896 2_nonsis	280	503	726	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
314 TCMM19	TCMM	14	608001	610323	610397	611511 2_nonsis	75	1792	3509	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
7 TCMM19	TCMM	1	118997	119350	121235	128637 2_nonsis	1886	5763	9639	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
383 TCMM19	TCMM	16	463723	464194	464194	464400 2_nonsis	1	339	676	1	11	1	1	0 (4:4ai)_(4:4bCO)
253 TCMM19	TCMM	12	395350	395431	395850	395986 2_nonsis	420	528	635	1	11	1	1	0 (4:4ai)_(3:5)_(4:4bCO)
199 TCMM19	TCMM	10	156143	156360	161251	161596 2_nonsis	4892	5172	5452	1	11	1	1	0 (4:4ai)_(5:3)_(6:2)_(5:3)_(4:4bCO)_(5:3)_(4:4b)
215 TCMM19	TCMM	10	573135	573950	574310	574412 2_nonsis	361	819	1276	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
266 TCMM19	TCMM	12	1028782	1030239	1030472	1030577 2 nonsis	234	1014	1794	1	12	1	1	0 (4:4aCO) (2:6) (4:4a)
258 TCMM19	TCMM	12	571412	571899	572946	573483 2_nonsis	1048	1559	2070	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
69 TCMM19	TCMM	4	781475	781568	784537	784809 2_nonsis	2970	3152	3333	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
77 TCMM19	TCMM	4	1150675	1150691	1151034	1151759 2_nonsis	344	714	1083	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
362 TCMM19	TCMM	15	1048196	1048227	1048953	1048990 2_nonsis	727	760	793	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
154 TCMM19	TCMM	8	150894	150909	151824	152274 2_nonsis	916	1148	1379	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
14 TCMM19	TCMM	2	69901	70006	71420	71553 2_nonsis	1415	1533	1651	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
	TCMM	7	250680	252024	252806	253122 2_nonsis	783	1612	2441	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
293 TCMM19	TCMM	14	87215	88013	89169	89494 2_nonsis	1157	1718	2278	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)
261 TCMM19	TCMM	12	683018	683405	684785	685228 2 nonsis	1381	1795	2209	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)
311 TCMM19	TCMM	14	537806	538122	539848	539903 2_nonsis	1727	1912	2096	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)
178 TCMM19	TCMM	9	53832	54480	55837	56514 2_nonsis	1358	2020	2681	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
	TCMM	3	50269	51152	52919	53316 2_nonsis	1768	2407	3046	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
270 TCMM19	TCMM	13	218113	218127	219863	221252 2_nonsis	1737	2438	3138	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO)
125 TCMM19	TCMM	7	580060	580178	582987	583179 2_nonsis	2810	2964	3118	1	12	1	1	0 (5:3)_(4:4)_(6:2)_(4:4aCO)
134 TCMM19	TCMM	7	886106	886758	887887	888005 2_nonsis	1130	1514	1898	1	12	1	1	0 (5:3)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
	TCMM	15	107138	107387	108945	109088 2_nonsis	1559	1754	1949	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
62 TCMM19	TCMM	4	356226	356562	358197	358230 2_nonsis	1636	1820	2003	1	12	1	1	0 (6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
390 TCMM19	TCMM	16	694969	695201	697067	697775 2 nonsis	1867	2336	2805	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
3 TCMM19	TCMM	1	69112	69280	70621	71116 2_nonsis	1342	1673	2003	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
34 TCMM19	TCMM	2	606623	607563	609547	610045 2_nonsis	1985	2703	3421	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)
342 TCMM19	TCMM	15	586345	586852	590260	590710 2 nonsis	3409	3887	4364	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
302 TCMM19	TCMM	14	338162	338424	342499	342707 2 nonsis	4076	4310	4544	1	12	1	1	0 (4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4a)_(5:3)_(4:4a)
166 TCMM19	TCMM	8	394959	395132	399021	399235 2_nonsis	3890	4083	4275	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
	TCMM	12						7708		1	12		1	
248 TCMM19 206 TCMM19		10	282385 338561	283463 338643	290479 338643	290784 2_nonsis	7017 1	323	8398 644	1	15	1	1	0 (6:2)_(4:4)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
						339206 2_nonsis				-			1	0 (6:2)_(4:4aCO)
84 TCMM19 66 TCMM19	TCMM TCMM	4	1322306 551387	1322553 551638	1322553	1323143 2_nonsis	1 354	419 534	836 714	1	15 15	1	1	0 (6:2)_(4:4aCO)
					551991	552102 2_nonsis				1		1	1	0 (6:2)_(4:4aCO)
120 TCMM19	TCMM	7	125147	125177	125333	125513 2_nonsis	157	261	365	•	16	1	1	0 (2:6)_(4:4aCO)
265 TCMM19 277 TCMM19	TCMM TCMM	12 13	931517 610928	931804 611569	931890 611569	931997 2_nonsis	87 1	283 486	479 970	1	16 16	1	1	0 (2:6)_(4:4aCO)
100 TCMM19	TCMM	5	328370	329070	329109	611899 2_nonsis 329730 2 nonsis	40	700	1359		16	1	1	0 (2:6)_(4:4aCO)
		14	456295		458514	_	2078	2200	2322	1		1	1	0 (2:6)_(4:4aCO)
307 TCMM19	TCMM	15		456437		458618 2_nonsis		2737		1	16		1	0 (2:6)_(4:4aCO)
329 TCMM19	TCMM		213659	214699	216499	217333 2_nonsis	1801		3673	1	16 100	1		0 (2:6)_(4:4aCO)
		14	373799	373925	373799	373925 2_nonsis		63	125	-			1	0 (4:4aCO)
24 TCMM19 74 TCMM19	TCMM TCMM	2	331580 947412	331804 947805	331580 947412	331804 2_nonsis	0	112 196	223 392	1	100 100	1	1	0 (4:4aCO)
						947805 2_nonsis				1		-	-	0 (4:4aCO)
118 TCMM19	TCMM	6	248365	248816	248365	248816 2_nonsis	0	225	450	1	100	1	1	0 (4:4aCO)
380 TCMM19	TCMM	16	428065	428562	428065	428562 2_nonsis	0	248	496	1	100	1	1	0 (4:4aCO)
78 TCMM19	TCMM	4	1174453	1174994	1174453	1174994 2_nonsis	0	270	540	1	100	1	1	0 (4:4aCO)
137 TCMM19	TCMM	7	948202	949014	948202	949014 2_nonsis	0	406	811	1	100	1	1	0 (4:4aCO)
290 TCMM19	TCMM	14	37986	39122	37986	39122 2_nonsis	0	568	1135	1	100	1	1	0 (4:4aCO)
230 TCMM19	TCMM	11	293792	295309	293792	295309 2_nonsis	0	758	1516	1	100	1	1	0 (4:4aCO)
	TCMM	14	674690	676368	674690	676368 2_nonsis	0	839	1677	1	100	1	1	0 (4:4aCO)
357 TCMM19	TCMM	15	841378	843188	841378	843188 2_nonsis	0	905	1809	1	100	1	1	0 (4:4aCO)
57 TCMM19	TCMM	4	196851	198685	196851	198685 2_nonsis	0	917	1833	1	100	1	1	0 (4:4aCO)
224 TCMM19	TCMM	11	141109	143878	141109	143878 2_nonsis	0	1384	2768	1	100	1	1	0 (4:4aCO)
	TCMM	3	171207	174943	171207	174943 2_nonsis	0	1868	3735	1	100	1	1	0 (4:4aCO)
264 TCMM19	TCMM	12	892436	930472	892436	930472 2_nonsis	0	19018	38035	1	100	1	1	0 (4:4aCO)

294 TCMM19		14	122217	122278	122717	123158 2_nonsis		440	690	940	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
	TCMM	1	73733	73855	77494	77528 2_nonsis		3640	3717	3794	2	30	-	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(6:2)_(4:4aCO)
346 TCMM19	TCMM	15	700551	700804	700968	701028 2_nonsis		165	321	476	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
298 TCMM19	TCMM	14	235424	236810	240009	240414 2_nonsis		3200	4095	4989	2	31	1	1	0 (2:6)_(3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)_(4:4bi)_(3:5a)_(4:4bi)_(4:4a)
141 TCMM19	TCMM	7	1027359	1027579	1029881	1029980 2_nonsis		2303	2462	2620	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
	TCMM	5	53899	54237	57281	57855 2_nonsis		3045	3500	3955	2	32	1	1	0 (3:5)_(4:4)_(3:5)_(4:4ai)_(3:5a)_(4:4bCO)
114 TCMM19	TCMM	6	157416	157884	159955	160108 2_nonsis		2072	2382	2691	2	32	1	1	0 (5:3)_(6:2)_(4:4)_(6:2)_(4:4)_(5:3a)_(4:4aCO)
163 TCMM19	TCMM	8	326640	326679	329295	329634 2_nonsis		2617	2805	2993	2	32	1	1	0 (2:6)_(3:5)_(2:6)_(3:5a)_(4:4aCO)_(2:6)_(3:5a)_(4:4a)
76 TCMM19	TCMM	4	1045146	1045482	1062037	1062818 2_nonsis		16556	17114	17671	2	32	1	1	0 (5:3)_(4:4)_(4:4ai)_(5:3a)_(4:4bCO)_(5:3a)_(6:2)_(5:3a)_(6:2)_(5:3)_(6:2)_(4:4b)
52 TCMM19	TCMM	4	46608	46818	47365	47467 2_nonsis		548	703	858	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
280 TCMM19	TCMM	13	715257	715590	716317	716783 2_nonsis		728	1127	1525	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
170 TCMM19	TCMM	8	460801	461318	463473	463665 2_nonsis		2156	2510	2863	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
50 TCMM19	TCMM	3	266002	266699	267793	267916 2_nonsis		1095	1504	1913	3	20	1	1	0 (2:6)_(5:3)_(3:5)_(4:4aCO)
268 TCMM19	TCMM	13	111909	112670	113641	114304 2_nonsis		972	1683	2394	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)
350 TCMM19	TCMM	15	745265	745659	747125	747490 2_nonsis		1467	1846	2224	3	20	1	1	0 (3:5)_(5:3)_(5:3a)_(4:4aCO)
334 TCMM19	TCMM	15	285010	285417	287386	288164 2_nonsis		1970	2562	3153	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)
249 TCMM19	TCMM	12	291386	293464	295063	295222 2_nonsis		1600	2718	3835	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)
29 TCMM19	TCMM	2	489241	489580	492226	492334 2_nonsis		2647	2870	3092	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
375 TCMM19	TCMM	16	309089	309787	310159	310530 2_nonsis		373	907	1440	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)
275 TCMM19	TCMM	13	406917	407179	409194	409543 2_nonsis		2016	2321	2625	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(2:6)_(4:4aCO)
192 TCMM19	TCMM	10	53843	54311	56177	56675 2_nonsis		1867	2349	2831	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(3:5)_(4:4aCO)
112 TCMM19	TCMM	6	37552	38102	40232	40564 2_nonsis		2131	2571	3011	3	20	1	1	0 (2:6)_(3:5)_(2:6)_(6:2)_(4:4aCO)
272 TCMM19	TCMM	13	298845	300558	302628	303266 2_nonsis		2071	3246	4420	3	20	1	1	0 (6:2)_(5:3)_(3:5)_(6:2)_(4:4aCO)
55 TCMM19	TCMM	4	103533	104069	106899	107966 2_nonsis		2831	3632	4432	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
119 TCMM19	TCMM	7	75686	75728	79203	80122 2_nonsis		3476	3956	4435	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(5:3)_(4:4aCO)
67 TCMM19	TCMM	4	610896	611056	612573	612828 2 nonsis		1518	1725	1931	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
262 TCMM19	TCMM	12	769396	769555	770890	771882 2 nonsis		1336	1911	2485	3	20	1	1	0 (3:5)_(2:6)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
44 TCMM19	TCMM	3	60354	60633	62698	63052 2_nonsis		2066	2382	2697	3	20	1	1	0 (5:3)_(3:5)_(2:6)_(4:4)_(3:5)_(4:4aCO)
242 TCMM19	TCMM	11	619045	619085	621619	621733 2 nonsis		2535	2611	2687	3	20	1	1	0 (6:2) (2:6) (4:4aCO) (6:2) (5:3) (4:4a)
92 TCMM19	TCMM	5	60891	60924	61974	62815 2_nonsis		1051	1487	1923	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)_(6:2)_(5:3)_(4:4a)
366 TCMM19	TCMM	16	53945	54119	55625	56116 2_nonsis		1507	1839	2170	3	20	1	1	0 (3:5)_(5:3)_(6:2)_(4:4)_(3:5)_(4:4)_(4:4aCO)
299 TCMM19	TCMM	14	273306	273490	275457	275934 2_nonsis		1968	2298	2627	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a) (3:5)_(4:4a)
	TCMM	15	919749	920281	922957	923092 2_nonsis		2677	3010	3342	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
179 TCMM19	TCMM	9	87283	87642	90521	90599 2_nonsis		2880	3098	3315	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)_(6:2)_(4:4a)
	TCMM	4	1406566	1406793	1410669	1411239 2 nonsis		3877	4275	4672	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)_(2:6)_(3:5)_(4:4a)
367 TCMM19	TCMM	16	132693	132838	137962	138601 2 nonsis		5125	5516	5907	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(4:4)_(3:5)_(4:4aCO)
132 TCMM19	TCMM	7	829946	829998	834267	835147 2 nonsis		4270	4735	5200	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)
333 TCMM19	TCMM	15	267950	268100	272275	272573 2_nonsis		4176	4399	4622	3	20	1	1	0 (5:3)_(4:4)_(3:5)_(4:4aCO)_(3:5a)_(4:4a)_(3:5a)_(4:4a)_(3:5a)_(5:3a)_(2:6)_(4:4a)_(3:5a)_(2:6)_(3:5a)_(4:4a)
267 TCMM19	TCMM	13	20392	20497	22318	22495 2_nonsis		1822	1962	2102	3	21	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4bi)_(4:4a)_(3:5)_(4:4a) 0 (6:2)_(4:4aCO)_(5:3)_(4:4bi)_(4:4a)_(3:5)_(4:4a)
336 TCMM19	TCMM	15		315748	321368				6042	6463	3	21	1	1	0 (3:5)_(4:4ai)_(5:3)_(4:4bCO)_(5:3)_(4:4ai)_(3:5)_(4:4ai)_(4:4b)
103 TCMM19	TCMM	5	315191 367125	367786	372487	321655 2_nonsis 372822 2 nonsis		5621 4702	5199	5696	3	21	1	1	0 (3:3)_(4:4ai)_(5:3)_(4:4bCO)_(5:3)_(4:4ai)_(4:4b) 0 (4:4ai)_(5:3)_(4:4ai)_(5:3)_(3:5)_(3:5)_(3:5)_(4:4bCO)_(5:3a)_(4:4b)
	TCMM	12	336007	336315	343120	343396 2_nonsis		6806	7097	7388	3	21	1	1	0 (4:4ai)_(5:3)_(4:4ai)_(5:3)_(5:3)_(5:3)_(4:4bCO)_(5:3a)_(4:4b) 0 (5:3)_(6:2)_(5:3)_(4:4ai)_(3:5)_(3:5a)_(4:4bCO)_(5:3a)_(4:4b)_(5:3a)_(4:4b)
10 TCMM19	TCMM		179796	179942			2	2578		4084	0	1	2	0	
	TCMM	1 2	44210	179942 44904	182519 49603	183881 49789	3	4700	3331	5578	0	1	2	0	2 (2:6)_(4:4)_(5:3)_(5:3)_(5:3)_(4:4)
							3		5139			-			2 (5:3)_(4:4)_(3:5)_(4:4)_(6:2)_(4:4)_(5:3a)_(3:5)_(4:4)
27 TCMM19	TCMM TCMM	2	465690	465714 321836	465714	465795 2_sis		1	53 30	104 58	0	1	2 2	0	2 (6:2i)_(4:4)
			321785		321836	321844 2_sis		1			-	-			2 (6:2i)_(4:4)
105 TCMM19	TCMM	5	409531	410181	411277	412632 2_sis		1097	2099	3100	0	1	2	0	2 (6:2)_(7:1)_(5:3)_(4:4)
107 TCMM19	TCMM	5	439285	439545	440923	441329 2_sis		1379	1711	2043	0	1	2	0	2 (5:3)_(6:2)_(4:4)
127 TCMM19	TCMM	7	634549	634898	637771	637913 2_sis		2874	3119	3363	0	1	2	0	2 (5:3)_(4:4)_(6:2)_(4:4)
161 TCMM19	TCMM	8	291336	291357	291357	291367	3	1	16	30	0	1	2	0	2 (2:6)_(4:4)
193 TCMM19	TCMM	10	59239	59484	60064	60979 2_sis		581	1160	1739	0	1	2	0	2 (3:5)_(3:5a)_(4:4)
204 TCMM19	TCMM	10	279361	279703	281056	281289 2_sis		1354	1641	1927	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(3:5)_(4:4)
	TCMM	10	375038	375069	376315	376343 2_sis		1247	1276	1304	0	1	2	0	2 (2:6)_(4:4)_(3:5)_(4:4)_(3:5a)_(4:4)
237 TCMM19	TCMM	11	505564	505715	506729	506760 2_sis		1015	1105	1195	0	1	2	0	2 (5:3)_(4:4)_(5:3a)_(4:4)
244 TCMM19	TCMM	12	21869	21957	23981	25985 2_sis		2025	3070	4115	0	1	2	0	2 (6:2)_(4:4)_(6:2)_(7:1)_(6:2)_(5:3)_(4:4)_(5:3)_(4:4)
245 TCMM19	TCMM	12	222227	222430	225447	225620 2_sis		3018	3205	3392	0	1	2	0	2 (3:5)_(4:4)_(3:5)_(2:6i)_(1:7)_(3:5a)_(4:4)
269 TCMM19	TCMM	13	168885	169412	170002	170932 2_sis		591	1319	2046	0	1	2	0	2 (3:5)_(4:4)_(3:5a)_(4:4)
284 TCMM19	TCMM	13	818603	818759	819776	819989 2_sis		1018	1202	1385	0	1	2	0	2 (3:5)_(2:6i)_(3:5)_(4:4)
297 TCMM19	TCMM	14	221673	221973	224991	225318 2_sis		3019	3332	3644	0	1	2	0	2 (3:5)_(3:5a)_(4:4)_(3:5a)_(4:4)
305 TCMM19	TCMM	14	417659	417758	418123	418195 2_sis		366	451	535	0	1	2	0	2 (2:6i)_(3:5)_(4:4)

328 TCMM19		15	198105	198213	199433	200443 2_sis		1221	1779	2337	0	1	2	0	2 (3:5)_(1:7)_(2:6)_(4:4)
332 TCMM19	TCMM	15	256152	256235	257554	257615 2_sis		1320	1391	1462	0	1	2	0	2 (2:6)_(0:8)_(1:7)_(3:5)_(4:4)
340 TCMM19	TCMM	15	477077	477610	478915	479565 2_sis		1306	1897	2487	0	1	2	0	2 (3:5)_(4:4)_(2:6i)_(4:4)
8 TCMM19	TCMM	1	132066	135319	144406	145634	4	9088	11328	13567	0	2	2	1	1 (6:2)_(5:3)_(3:5)_(5:3a)_(3:5)_(4:4aCO)_(3:5)_(4:4bi)_(4:4a)
21 TCMM19	TCMM	2	207220	207859	218624	219197	4	10766	11371	11976	0	2	2	1	1 (6:2)_(7:1)_(8:0)_(7:1)_(8:0)_(6:2)_(5:3)_(6:2ai)_(5:3)_(4:4ai)_(4:4bi)_(3:5)_(2:6)_(4:4ci)_(4:4dCO)
30 TCMM19	TCMM	2	497645	497990	502305	502581	3	4316	4626	4935	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
37 TCMM19	TCMM	2	662444	666712	668082	669586	3	1371	4256	7141	0	2	2	1	1 (5:3)_(4:4aCO)_(2:6)_(4:4a)
80 TCMM19	TCMM	4	1240123	1240299	1242658	1246191	3	2360	4214	6067	0	2	2	1	1 (4:4aCO)_(5:3)_(4:4a)
98 TCMM19	TCMM	5	278802	279481	284680	285018	3	5200	5708	6215	0	2	2	1	1 (3:5)_(4:4)_(5:3)_(4:4)_(4:4aCO)_(3:5a)_(4:4a)_(3:5a)_(4:4a)
104 TCMM19	TCMM	5	377471	377999	379332	379879	3	1334	1871	2407	0	2	2	1	1 (6:2)_(5:3)_(4:4aCO)
110 TCMM19	TCMM	5	504481	505113	511509	511800	3	6397	6858	7318	0	2	2	1	1 (6:2)_(4:4)_(3:5)_(2:6)_(3:5)_(2:6ai)_(3:5a)_(6:2)_(5:3)_(4:4aCO)
124 TCMM19	TCMM	7	458458	458629	463348	463843	3	4720	5052	5384	0	2	2	1	1 (5:3)_(4:4)_(3:5)_(4:4)_(2:6)_(4:4)_(4:4aCO)_(3:5a)_(4:4a)
135 TCMM19	TCMM	7	904221	904249	906758	906845	3	2510	2567	2623	0	2	2	1	1 (3:5)_(3:5a)_(4:4ai)_(2:6)_(5:3)_(4:4ai)_(5:3a)_(3:5a)_(2:6)_(4:4bCO)
136 TCMM19	TCMM	7	914538	914816	915939	916059	4	1124	1322	1520	0	2	2	2	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
147 TCMM19	TCMM	8	23857	23964	27080	27293	3	3117	3276	3435	0	2	2	1	1 (5:3)_(4:4aCO)_(7:1)_(8:0)_(5:3a)_(4:4a)
148 TCMM19	TCMM	8	33397	33844	36592	36778	3	2749	3065	3380	0	2	2	1	1 (3:5)_(4:4)_(2:6)_(4:4)_(1:7)_(2:6ai)_(3:5a)_(5:3)_(4:4aCO)
149 TCMM19	TCMM	8	67460	67629	70434	70542	3	2806	2944	3081	0	2	2	1	1 (2:6)_(3:5)_(4:4)_(2:6a)_(4:4aCO)_(2:6a)_(4:4a)
173 TCMM19	TCMM	8	518458	518620	522909	523061	3	4290	4446	4602	0	2	2	1	1 (3:5)_(4:4)_(3:5)_(4:4)_(2:6)_(0:8)_(1:7)_(2:6a)_(4:4aCO)_(3:5a)_(4:4a)_(3:5a)_(4:4a)
190 TCMM19	TCMM	9	396557	396639	398583	398957	3	1945	2172	2399	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(4:4)_(5:3a)_(4:4)_(6:2a)_(4:4aCO)
202 TCMM19	TCMM	10	235976	236393	236615	236901	3	223	574	924	0	2	2	1	1 (2:6i)_(4:4aCO)
207 TCMM19	TCMM	10	358755	359101	366482	366671	3	7382	7649	7915	0	2	2	1	1 (3:5)_(4:4)_(4:4ai)_(5:3)_(6:2)_(5:3a)_(3:5a)_(5:3a)_(3:5a)_(4:4bCO)
235 TCMM19	TCMM	11	475733	475940	479195	479521	3	3256	3522	3787	0	2	2	1	1 (5:3)_(4:4ai)_(5:3)_(4:4ai)_(3:5)_(2:6)_(3:5a)_(4:4bCO)
282 TCMM19	TCMM	13	795326	795946	798889	799519	3	2944	3568	4192	0	2	2	1	1 (2:6)_(3:5)_(5:3)_(6:2)_(5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(5:3a)_(3:5)_(4:4a)
339 TCMM19	TCMM	15	432006	433358	433358	434027	3	1	1011	2020	0	2	2	1	1 (5:3)_(4:4aCO)
345 TCMM19	TCMM	15	650943	651516	658010	658322	3	6495	6937	7378	0	2	2	1	1 (6:2)_(4:4)_(5:3)_(4:4ai)_(6:2ai)_(7:1)_(6:2b)_(5:3a)_(4:4bCO)
356 TCMM19	TCMM	15	822183	823421	826212	826624	3	2792	3616	4440	0	2	2	1	1 (4:4ai)_(5:3)_(3:5)_(4:4bCO)
373 TCMM19	TCMM	16	276934	277322	278394	278872	3	1073	1505	1937	0	2	2	1	1 (6:2)_(4:4)_(6:2a)_(5:3)_(4:4aCO)
386 TCMM19	TCMM	16	496835	497162	502118	503157	4	4957	5639	6321	0	2	2	1	1 (3:5)_(4:4)_(2:6)_(0:8)_(1:7)_(2:6a)_(3:5a)_(5:3)_(2:6b)_(2:6ci)_(3:5b)_(2:6b)_(4:4aCO)
388 TCMM19	TCMM	16	636736	638483	640119	640589	3	1637	2745	3852	0	2	2	1	1 (3:5)_(5:3)_(3:5a)_(4:4ai)_(4:4bCO)
1 TCMM19	TCMM	1	32989	33040	45198	45831	4	12159	12500	12841	0	3	2	2	0 (3:5)_(2:6)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)_(5:3)_(6:2i)_(5:3)_(3:5a)_(4:4bCO)
6 TCMM19	TCMM	1	103577	103866	112136	113132	3	8271	8913	9554	0	3	2	1	1 (5:3)_(6:2)_(5:3a)_(5:3b)_(4:4aCO)_(4:4CO)_(5:3)_(5:3c)_(4:4bCO)
19 TCMM19	TCMM	2	157617	158200	160020	160143	3	1821	2173	2525	0	3	2	1	1 (4:4aCO)_(5:3)_(4:4a)_(3:5)_(2:6)_(3:5a)_(4:4bCO)
28 TCMM19	TCMM	2	474402	475397	476602	476950 2_nonsis		1206	1877	2547	0	3	2	0	2 (6:2)_(4:4aCO)_(2:6)_(4:4CO)
40 TCMM19	TCMM	2	742220	742472	745298	745349	3	2827	2978	3128	0	3	2	0	2 (3:5)_(2:6)_(4:4)_(2:6a)_(4:4aCO)_(3:5a)_(4:4CO)
181 TCMM19	TCMM	9	111631	111711	115136	115941	3	3426	3868	4309	0	3	2	1	1 (6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4bCO)
184 TCMM19	TCMM	9	159685	160007	168511	169256	3	8505	9038	9570	0	3	2	1	1 (6:2)_(4:4)_(5:3)_(5:3)_(5:3)_(6:2a)_(5:3)_(4:4)_(4:4aCO)_(3:5)_(4:4a)_(2:6)_(4:4CO)_(2:6)_(5:3b)_(4:4bCO)
195 TCMM19	TCMM	10	89273	90197	98106	99116	3	7910	8876	9842	0	3	2	1	1 (3:5)_(4:4aCO)_(2:6)_(3:5a)_(4:4bCO)_(3:5a)_(2:6)_(3:5a)_(4:4b)
238 TCMM19	TCMM	11	525008	525421	527534	527598	4	2114	2352	2589	0	3	2	2	0 (6:2)_(5:3)_(4:4aCO)_(3:5)_(5:3a)_(4:4bCO)
274 TCMM19	TCMM	13	396864	397127	398818	398916 2_nonsis		1692	1872	2051	0	3	2	0	2 (2:6)_(3:5)_(4:4aCO)_(5:3)_(6:2)_(4:4CO)
320 TCMM19	TCMM	14	743441	743682	745944	746165 2_nonsis		2263	2493	2723	0	3	2	0	2 (3:5)_(4:4aCO)_(2:6)_(3:5)_(4:4bi)_(3:5)_(4:4bi)_(3:5a)_(2:6)_(4:4CO)
393 TCMM19	TCMM	16	880945	881165	881834	882467 2_nonsis		670	1096	1521	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
515 TCMM19	TCMM	7	9430	9885	12326	12853 NA		2442	2932	3422	0	4	1 NA	NA	4:4_3:5_4:4
88 TCMM4	TCMM	7	778013	778064	778064	778073	1	1	30	59	1	1	1	0	1 05:03
79 TCMM4	TCMM	7	140207	140223	140227	140416	1	5	107	208	1	1	1	0	1 05:03
58 TCMM4	TCMM	4	1412352	1412444	1412444	1412726	1	1	187	373	1	1	1	0	1 05:03
163 TCMM4	TCMM	13	807655	807742	807924	807956	1	183	242	300	1	1	1	0	1 05:03
157 TCMM4	TCMM	13	451375	451502	451502	451971	1	1	298	595	1	1	1	0	1 05:03
39 TCMM4	TCMM	4	550699	550893	550893	551387	1	1	344	687	1	1	1	0	1 05:03
188 TCMM4	TCMM	15	522252	522596	522596	523000	1	1	374	747	1	1	1	0	1 05:03
174 TCMM4	TCMM	14	487880	487935	487991	488587	1	57	382	706	1	1	1	0	1 05:03
17 TCMM4	TCMM	2	649588	649927	649927	650411	1	1	412	822	1	1	1	0	1 05:03
110 TCMM4	TCMM	10	323078	323243	323333	323823	1	91	418	744	1	1	1	0	1 05:03
112 TCMM4	TCMM	10	359859	360186	360316	360588	1	131	430	728	1	1	1	0	1 05:03
71 TCMM4	TCMM	6	41791	42233	42346	42943	1	114	633	1151	1	1	1	0	1 05:03
211 TCMM4	TCMM	16	871620	871663	871860	872872	1	198	725	1251	1	1	1	0	1 05:03
205 TCMM4	TCMM	16	501709	502118	502118	503192	1	1	742	1482	1	1	1	0	1 05:03
31 TCMM4	TCMM	3	191932	192715	193107	193600	1	393	1030	1667	1	1	1	0	1 05:03
111 TCMM4	TCMM	10	330470	331024	331024	332595	1	1	1063	2124	1	1	1	0	1 05:03
55 TCMM4	TCMM	4	1288209	1288775	1289490	1289885	1	716	1196	1675	1	1	1	0	1 05:03
42 TCMM4	TCMM	4	769508	769848	770770	771211	1	923	1313	1702	1	1	1	0	1 05:03
12 1011111			707500	. 07010			•	,20			•	•	•	,	

5 TCMM4	TCMM	1	113326	114283	114824	115629	1	542	1422	2302	1	1	1	0	1 05:03
33 TCMM4	TCMM	3	243219	246581	246581	246789	1	1	1785	3569	1	1	1	0	1 05:03
176 TCMM4	TCMM	14	525271	525274	525274	525277	1	1	3	5	1	2	1	0	1 03:05
34 TCMM4	TCMM	4	21075	21083	21083	21086	1	1	6	10	1	2	1	0	1 03:05
129 TCMM4	TCMM	11	267712	267738	267738	267822	1	1	55	109	1	2	1	0	1 03:05
29 TCMM4	TCMM	3	148041	148135	148135	148171	1	1	65	129	1	2	1	0	1 03:05
90 TCMM4	TCMM	7	897158	897290	897290	897315	1	1	79	156	1	2	1	0	1 03:05
96 TCMM4	TCMM	9	102536	102597	102597	102706	1	1	85	169	1	2	1	0	1 03:05
38 TCMM4	TCMM	4	240005	240165	240165	240185	1	1	90	179	1	2	1	0	1 03:05
22 TCMM4	TCMM	2	787620	787638	787638	787803	1	1	92	182	1	2	1	0	1 03:05
115 TCMM4	TCMM	10		459858	459858		1	1	111	220	1	2	1	0	
			459643			459864	-						-		1 03:05
210 TCMM4	TCMM	16	769908	770049	770049	770162	1	1	127	253	1	2	1	0	1 03:05
60 TCMM4	TCMM	4	1429855	1430016	1430016	1430118	1	1	132	262	1	2	1	0	1 03:05
12 TCMM4	TCMM	2	460270	460340	460385	460520	1	46	148	249	1	2	1	0	1 03:05
103 TCMM4	TCMM	10	147613	147905	147905	147927	1	1	157	313	1	2	1	0	1 03:05
133 TCMM4	TCMM	11	565671	565988	565988	566023	1	1	176	351	1	2	1	0	1 03:05
126 TCMM4	TCMM	11	83795	84171	84171	84187	1	1	196	391	1	2	1	0	1 03:05
16 TCMM4	TCMM	2	564884	565189	565189	565389	1	1	253	504	1	2	1	0	1 03:05
185 TCMM4	TCMM	15	467407	467641	467641	467927	1	1	260	519	1	2	1	0	1 03:05
168 TCMM4	TCMM	14	154539	154853	154853	155065	1	1	263	525	1	2	1	0	1 03:05
140 TCMM4	TCMM	12	278673	278823	278861	279188	1	39	277	514	1	2	1	0	1 03:05
134 TCMM4	TCMM	11	575852	576492	576492	576495	1	1	322	642	1	2	1	0	1 03:05
183 TCMM4	TCMM	15	271388	271422	271727	271758	1	306	338	369	1	2	1	0	1 03:05
21 TCMM4	TCMM	2	744063	744356	744519	744640	1	164	370	576	1	2	1	0	1 03:05
26 TCMM4	TCMM	3	77900	78844	79012	79096	1	169	682	1195	1	2	1	0	1 03:05
171 TCMM4	TCMM	14	433271	434561	434561	435509	1	1	1119	2237	1	2	1	0	1 03:05
178 TCMM4	TCMM	14	772480	776872	776872	776904	1	1	2212	4423	1	2	1	0	1 03:05
137 TCMM4	TCMM	11	594186	594303			-	2804	2884	2963	1	3	1	0	
					597106	597150	1								1 5:3_4:4_5:3_4:4_5:3
124 TCMM4	TCMM	10	704426	704499	705014	705235	1	516	662	808	1	4	1	0	1 3:5_2:6_3:5
158 TCMM4	TCMM	13	601760	603029	603221	603486	1	193	959	1725	1	4	1	0	1 3:5_2:6_3:5
3 TCMM4	TCMM	1	47206	47518	48286	48591	1	769	1077	1384	1	4	1	0	1 3:5_2:6_3:5
135 TCMM4	TCMM	11	580815	581385	582336	582622	1	952	1379	1806	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5
152 TCMM4	TCMM	13	286996	287260	287338	287411	1	79	247	414	1	7	1	0	1 6:2_5:3
77 TCMM4	TCMM	6	238279	238329	238462	238877	1	134	366	597	1	7	1	0	1 6:2_5:3
204 TCMM4	TCMM	16	492354	493222	493304	493377	1	83	553	1022	1	7	1	0	1 5:3_6:2
109 TCMM4	TCMM	10	313030	313808	313986	314624	1	179	886	1593	1	7	1	0	1 5:3_6:2
206 TCMM4	TCMM	16	525308	525445	526263	526602	1	819	1056	1293	1	7	1	0	1 6:2_5:3_6:2
92 TCMM4	TCMM	7	911599	911857	913222	913982	1	1366	1874	2382	1	7	1	0	1 6:2_5:3_6:2
18 TCMM4	TCMM	2	679385	680726	681557	682449	1	832	1948	3063	1	7	1	0	1 6:2_4:4_5:3
156 TCMM4	TCMM	13	405840	406116	408001	408347	1	1886	2196	2506	1	7	1	0	1 6:2_5:3_6:2
122 TCMM4	TCMM	10	646775	646861	648638	649585	1	1778	2294	2809	1	7	1	0	1 6:2_4:4_6:2
40 TCMM4	TCMM	4	555346	555365	557710	557899	1	2346	2449	2552	1	7	1	0	1 6:2_4:4_5:3
97 TCMM4	TCMM	9	171578	171632	172074	172693	1	443	779	1114	1	7	1	0	1 5:3_6:2_4:4_6:2
14 TCMM4	TCMM	2	525492	525674	526931	527102	1	1258	1434	1609	1	7	1	0	1 5:3_6:2_5:3_6:2
173 TCMM4	TCMM	14	479932	480082	481081	481350	1	1000	1209	1417	1	7	1	0	1 5:3_6:2_5:3_6:2_5:3_6:2
141 TCMM4	TCMM	12	504004	504031	504236	504665	1	206	433	660	1	8	1	0	1 3:5_2:6
							1						1		
166 TCMM4	TCMM	14	116131	116459	116678	116796		220	442	664	1	8		0	1 3:5_2:6
106 TCMM4	TCMM	10	195849	195964	196239	196517	1	276	472	667	1	8	1	0	1 2:6_3:5
153 TCMM4	TCMM	13	336381	336424	336845	337176	1	422	608	794	1	8	1	0	1 2:6_3:5
102 TCMM4	TCMM	10	143678	144558	144800	145019	1	243	792	1340	1	8	1	0	1 3:5_2:6
82 TCMM4	TCMM	7	433416	433556	433865	434126	1	310	510	709	1	8	1	0	1 2:6_4:4_3:5
130 TCMM4	TCMM	11	327663	327707	328373	328613	1	667	808	949	1	8	1	0	1 2:6_4:4_3:5
132 TCMM4	TCMM	11	492262	493124	495036	495081	1	1913	2366	2818	1	8	1	0	1 3:5_4:4_2:6
145 TCMM4	TCMM	12	721788	721983	724901	725366	1	2919	3248	3577	1	8	1	0	1 2:6_3:5_2:6
91 TCMM4	TCMM	7	904347	904567	908162	908324	1	3596	3786	3976	1	8	1	0	1 2:6_4:4_2:6
70 TCMM4	TCMM	6	16574	16654	16824	17029	1	171	313	454	1	8	1	0	1 3:5_2:6_3:5_2:6
155 TCMM4	TCMM	13	355271	355413	356149	356409	1	737	937	1137	1	8	1	0	1 2:6_3:5_2:6_3:5
208 TCMM4	TCMM	16	656563	656605	659469	660498	1	2865	3400	3934	1	8	1	0	1 2:6_4:4_3:5_4:4_2:6
52 TCMM4	TCMM	4	1198548	1199289	1206115	1206306	1	6827	7292	7757	1	8	1	0	1 2:6_3:5_2:6_3:5_2:6
197 TCMM4	TCMM	16	63198	63205	63205	63234	1	1	18	35	1	10	1	0	1 06:02

1 TCMM4	TCMM	1	32989	33040	33048	33070	1	9	45	80	1	10	1	0	1 06:02
47 TCMM4	TCMM	4	1056079	1056232	1056242	1056383	1	11	157	303	1	10	1	0	1 06:02
98 TCMM4	TCMM	9	215993	216106	216122	216326	1	17	175	332	1	10	1	0	1 06:02
98 TCMM4 9 TCMM4	TCMM	2	338226	338408	338408	338664	1	17	219	437	1	10	1	0	1 06:02
180 TCMM4	TCMM	15	153615	153774	153774	154056	1	1	221	440	1	10	1	0	1 06:02
							1								
203 TCMM4	TCMM	16	431492	431631	431787	431837	1	157	251	344	1	10	1	0	1 06:02
186 TCMM4	TCMM	15	480909	481143	481143	481447	1	1	269	537	1	10	1	0	1 06:02
101 TCMM4	TCMM	10	21371	21499	21670	21758	1	172	279	386	1	10	1	0	1 06:02
53 TCMM4	TCMM	4	1266546	1266696	1266696	1267153	1	1	304	606	1	10	1	0	1 06:02
117 TCMM4	TCMM	10	523373	523995	523995	524003	1	1	315	629	1	10	1	0	1 06:02
63 TCMM4	TCMM	5	67575	67809	67809	68268	1	1	347	692	1	10	1	0	1 06:02
170 TCMM4	TCMM	14	350057	350461	350601	350676	1	141	380	618	1	10	1	0	1 06:02
119 TCMM4	TCMM	10	579770	580075	580119	580576	1	45	425	805	1	10	1	0	1 06:02
66 TCMM4	TCMM	5	301647	302478	302478	302509	1	1	431	861	1	10	1	0	1 06:02
107 TCMM4	TCMM	10	236674	236901	237213	237403	1	313	521	728	1	10	1	0	1 06:02
64 TCMM4	TCMM	5	85693	86861	86861	86888	1	1	598	1194	1	10	1	0	1 06:02
7 TCMM4	TCMM	1	129075	129476	129517	130254	1	42	610	1178	1	10	1	0	1 06:02
182 TCMM4	TCMM	15	268456	269276	269497	269591	1	222	678	1134	1	10	1	0	1 06:02
43 TCMM4	TCMM	4	830619	830754	831259	831876	1	506	881	1256	1	10	1	0	1 06:02
69 TCMM4	TCMM	5	516553	516748	517321	517944	1	574	982	1390	1	10	1	0	1 06:02
121 TCMM4	TCMM	10	636506	637056	637795	637967	1	740	1100	1460	1	10	1	0	1 06:02
125 TCMM4	TCMM	11	80353	80724	81532	82469	1	809	1462	2115	1	10	1	0	1 06:02
138 TCMM4	TCMM	12	94920	97490	97654	98431	1	165	1838	3510	1	10	1	0	1 06:02
199 TCMM4	TCMM	16	187312	187324	187324	187327	1	1	8	14	1	10.1	1	0	1 02:06
93 TCMM4	TCMM	7	939184	939208	939212	939290	1	5	55	105	1	10.1	1	0	1 02:06
144 TCMM4	TCMM	12	677763	677815	677815	677890	1	1	64	126	1	10.1	1	0	1 02:06
202 TCMM4	TCMM	16	359989	360040	360040	360123	1	1	67	133	1	10.1	1	0	1 02:06
202 TCMM4 212 TCMM4	TCMM	16	899969	900008	900042	900148	-	35	107	178	1	10.1	1	0	1 02:06
							1								
76 TCMM4	TCMM	6	205702	205793	205793	205932	1	1	115	229	1	10.1	1	0	1 02:06
73 TCMM4	TCMM	6	97372	97617	97617	97630	1	1	129	257	1	10.1	1	0	1 02:06
160 TCMM4	TCMM	13	661764	661888	661888	662059	1	1	148	294	1	10.1	1	0	1 02:06
67 TCMM4	TCMM	5	327059	327079	327079	327363	1	1	152	303	1	10.1	1	0	1 02:06
150 TCMM4	TCMM	13	177865	178128	178203	178325	1	76	268	459	1	10.1	1	0	1 02:06
94 TCMM4	TCMM	7	958623	958930	958955	959157	1	26	280	533	1	10.1	1	0	1 02:06
87 TCMM4	TCMM	7	650278	650477	650623	650709	1	147	289	430	1	10.1	1	0	1 02:06
68 TCMM4	TCMM	5	342057	342537	342537	342667	1	1	305	609	1	10.1	1	0	1 02:06
189 TCMM4	TCMM	15	586076	586304	586345	586852	1	42	409	775	1	10.1	1	0	1 02:06
179 TCMM4	TCMM	15	93175	93845	93845	94096	1	1	461	920	1	10.1	1	0	1 02:06
20 TCMM4	TCMM	2	740518	740972	741197	741235	1	226	471	716	1	10.1	1	0	1 02:06
148 TCMM4	TCMM	12	989846	990344	990547	990749	1	204	553	902	1	10.1	1	0	1 02:06
25 TCMM4	TCMM	3	73479	74002	74202	74394	1	201	558	914	1	10.1	1	0	1 02:06
4 TCMM4	TCMM	1	61164	61414	61708	61999	1	295	565	834	1	10.1	1	0	1 02:06
190 TCMM4	TCMM	15	605119	606232	606232	606336	1	1	609	1216	1	10.1	1	0	1 02:06
146 TCMM4	TCMM	12	809313	809749	809989	810333	1	241	630	1019	1	10.1	1	0	1 02:06
207 TCMM4	TCMM	16	533457	533820	534401	534572	1	582	848	1114	1	10.1	1	0	1 02:06
35 TCMM4	TCMM	4	163031	163327	163967	164298	1	641	954	1266	1	10.1	1	0	1 02:06
143 TCMM4	TCMM	12	624838	627007	627007	627201	1	1	1182	2362	1	10.1	1	0	1 02:06
61 TCMM4	TCMM	5	18839	18992	18992	23192	1	1	2177	4352	1	10.1	1	0	1 02:06
56 TCMM4	TCMM	4	1341826	1342306	1345379	1345632	1	3074	3440	3805	1	10.1	1	0	1 02:06
100 TCMM4	TCMM	9	388227	388673	388673	389156 2_nonsis	•	1	465	928	3	30	1	0	1 05:03
78 TCMM4	TCMM	7	10242	11635	11737	12020 2_nonsis		103	940	1777	3	30	1	0	1 3:5_5:3
										2236			1	0	
128 TCMM4	TCMM	11	244570	245116	245907	246807 2_nonsis		792	1514		3	30			1 3:5_5:3
51 TCMM4	TCMM	4	1126921	1127082	1127836	1127919 2_nonsis		755	876	997	3	30	1	0	1 6:2_5:3_6:2
45 TCMM4	TCMM	4	888734	889358	890461	890830 2_nonsis		1104	1600	2095	3	30	1	0	1 2:6_3:5_5:3
120 TCMM4	TCMM	10	631130	632972	633743	634423 2_nonsis		772	2032	3292	3	30	1	0	1 2:6_4:4_6:2
191 TCMM4	TCMM	15	608818	608958	609836	609993 2_nonsis		879	1027	1174	3	30	1	0	1 3:5_2:6_4:4_2:6
159 TCMM4	TCMM	13	624027	624297	627290	627607 2_nonsis		2994	3287	3579	3	30	1	0	1 5:3_4:4_5:3_5:3a_6:2
23 TCMM4	TCMM	3	41571	41852	43618	43868 2_nonsis		1767	2032	2296	3	31	1	0	1 5:3_4:4_6:2_4:4_6:2_5:3a_4:4ai
167 TCMM4	TCMM	14	117901	118803	118803	119174 2_nonsis		1	637	1272	1	1	1	1	0 (5:3)_(4:4aCO)
200 TCMM4	TCMM	16	222957	224069	224069	224707 2_nonsis		1	875	1749	1	1	1	1	0 (5:3)_(4:4aCO)

65 TCMM4	TCMM	5	213929	214752	214752	215059 2_nonsis	1	565	1129	1	2	1	1	0 (3:5)_(4:4aCO)
19 TCMM4	TCMM	2	695479	697455	697503	698250 2_nonsis	49	1410	2770	1	2	1	1	0 (3:5)_(4:4aCO)
89 TCMM4	TCMM	7	784625	785199	785318	785851 2_nonsis	120	673	1225	1	3	1	1	0 (5:3)_(4:4)_(4:4aCO)
48 TCMM4	TCMM	4	1057601	1058554	1059396	1059445 2_nonsis	843	1343	1843	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
99 TCMM4	TCMM	9	332503	333073	335079	336156 2_nonsis	2007	2830	3652	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
108 TCMM4	TCMM	10	291106	291152	291438	291807 2_nonsis	287	494	700	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
74 TCMM4	TCMM	6	183406	183476	183881	184083 2_nonsis	406	541	676	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
194 TCMM4	TCMM	15	843195	843305	846762	846878 2_nonsis	3458	3570	3682	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
41 TCMM4	TCMM	4	698508	698668	699938	700023 2_nonsis	1271	1393	1514	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
59 TCMM4	TCMM	4	1419261	1419516	1420794	1420932 2_nonsis	1279	1475	1670	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
127 TCMM4	TCMM	11	93041	93302	94945	95374 2_nonsis	1644	1988	2332	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
81 TCMM4	TCMM	7	426969	427020	428940	429278 2_nonsis	1921	2115	2308	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
10 TCMM4	TCMM	2	345288	346363	347935	348121 2_nonsis	1573	2203	2832	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
192 TCMM4	TCMM	15	619647	619861	620962	621636 2_nonsis	1102	1545	1988	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(4:4aCO)
195 TCMM4	TCMM	15	967263	967506	969660	969713 2_nonsis	2155	2302	2449	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
50 TCMM4	TCMM	4	1103339	1103455	1106292	1106884 2_nonsis	2838	3191	3544	1	12	1	1	0 (6:2)_(5:3)_(4:4)_(6:2)_(4:4aCO)
113 TCMM4	TCMM	10	380369	380706	383067	383417 2_nonsis	2362	2705	3047	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4aCO)
151 TCMM4	TCMM	13	190186	190411	193159	194053 2_nonsis	2749	3308	3866	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(4:4)_(2:6)_(4:4aCO)
201 TCMM4	TCMM	16	286979	287057	287130	287198 2_nonsis	74	146	218	1	15	1	1	0 (6:2)_(4:4aCO)
72 TCMM4	TCMM	6	93077	93192	93404	93664 2_nonsis	213	400	586	1	15	1	1	0 (6:2)_(4:4aCO)
175 TCMM4	TCMM	14	502322	503261	503261	503609 2 nonsis	1	644	1286	1	15	1	1	0 (6:2)_(4:4aCO)
184 TCMM4	TCMM	15	274382	274550	275191	275863 2_nonsis	642	1061	1480	1	15	1	1	0 (6:2)_(4:4aCO)
161 TCMM4	TCMM	13	682560	683622	683958	685502 2_nonsis	337	1639	2941	1	15	1	1	0 (6:2)_(4:4aCO)
32 TCMM4	TCMM	3	198539	201185	201258	202229 2_nonsis	74	1882	3689	1	15	1	1	0 (6:2)_(4:4aCO)
104 TCMM4	TCMM	10	150493	150662	161596	162223 2_nonsis	10935	11332	11729	1	15	1	1	0 (6:2)_(4:4aCO)
84 TCMM4	TCMM	7	533747	533847	533847	533952 2_nonsis	1	103	204	1	16	1	1	0 (2:6)_(4:4aCO)
131 TCMM4	TCMM	11	457094	457349	457446	457465 2_nonsis	98	234	370	1	16	1	1	0 (2:6)_(4:4aCO)
198 TCMM4	TCMM	16	163301	163406	163478	163732 2_nonsis	73	252	430	1	16	1	1	0 (2:6)_(4:4aCO)
8 TCMM4	TCMM	1	180161	180219	180509	180583 2_nonsis	291	356	421	1	16	1	1	0 (2:6)_(4:4aCO)
46 TCMM4	TCMM	4	955335	955435	955686	956552 2_nonsis	252	734	1216	1	16	1	1	0 (2:6)_(4:4aCO)
139 TCMM4	TCMM	12	233075	234128	234378	234633 2_nonsis	251	904	1557	1	16	1	1	0 (2:6)_(4:4aCO)
57 TCMM4	TCMM	4	1382859	1383592	1385846	1385858 2_nonsis	2255	2627	2998	1	16	1	1	0 (2:6)_(4:4aCO)
2 TCMM4	TCMM	1	38120	38361	38120	38361 2 nonsis	0	120	240	1	100	1	1	0 (4:4aCO)
187 TCMM4	TCMM	15	482608	483090	482608	483090 2 nonsis	0	241	481	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
6 TCMM4	TCMM	13	116905	117399	116905	117399 2_nonsis	0	241	493	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
	TCMM	2										1		
13 TCMM4 28 TCMM4	TCMM	3	491476 101597	492001 102360	491476 101597	492001 2_nonsis 102360 2_nonsis	0	262 381	524 762	1	100 100	1	1	0 (4:4aCO)
							0						1	0 (4:4aCO)
136 TCMM4	TCMM	11	590994	592577	590994	592577 2_nonsis	0	791	1582	1	100	1		0 (4:4aCO)
37 TCMM4	TCMM	4	173074	174736	173074	174736 2_nonsis		831	1661	1	100	1	1	0 (4:4aCO)
116 TCMM4	TCMM	10	467589	469453	467589	469453 2_nonsis	0	932	1863	1	100	1	1	0 (4:4aCO)
147 TCMM4	TCMM	12	811301	813365	811301	813365 2_nonsis	0	1032	2063	1	100	1	1	0 (4:4aCO)
165 TCMM4	TCMM	14	32426	34569	32426	34569 2_nonsis	0	1071	2142	1	100	1		0 (4:4aCO)
177 TCMM4	TCMM	14	682580	686654	682580	686654 2_nonsis	0	2037	4073	1	100	1	1	0 (4:4aCO)
105 TCMM4	TCMM	10	171357	171829	173479	173515 2_nonsis	1651	1904	2157	2	30	1	1	0 (5:3)_(5:3a)_(6:2)_(4:4aCO)
196 TCMM4	TCMM	15	986894	986977	989301	991111 2_nonsis	2325	3271	4216	2	30	1	1	0 (5:3)_(5:3a)_(4:4)_(5:3a)_(4:4)_(4:4aCO)
193 TCMM4	TCMM	15	660805	661531	661971	662027 2_nonsis	441	831	1221	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
172 TCMM4	TCMM	14	449114	449640	452892	453029 2_nonsis	3253	3584	3914	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
49 TCMM4	TCMM	4	1090283	1090578	1091591	1091826 2_nonsis	1014	1278	1542	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
36 TCMM4	TCMM	4	167826	170953	171817	172830 2_nonsis	865	2934	5003	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)
181 TCMM4	TCMM	15	206545	206718	207320	207397 2_nonsis	603	727	851	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
95 TCMM4	TCMM	7	1041395	1041814	1043244	1043695 2_nonsis	1431	1865	2299	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(4:4aCO)
11 TCMM4	TCMM	2	406787	407477	411233	411750 2_nonsis	3757	4360	4962	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
209 TCMM4	TCMM	16	663321	663543	664160	664567 2_nonsis	618	932	1245	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
86 TCMM4	TCMM	7	642373	642480	644388	645493 2_nonsis	1909	2514	3119	3	20	1	1	0 (5:3)_(6:2)_(4:4)_(2:6)_(4:4aCO)
54 TCMM4	TCMM	4	1275069	1275148	1278056	1278456 2_nonsis	2909	3148	3386	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
30 TCMM4	TCMM	3	171207	174943	179122	180127 2_nonsis	4180	6550	8919	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(5:3)_(4:4aCO)
62 TCMM4	TCMM	5	26549	26594	33348	34050 2_nonsis	6755	7128	7500	3	20	1	1	0 (6:2)_(5:3)_(6:2)_(4:4)_(5:3)_(5:3a)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
75 TCMM4	TCMM	6	191945	192279	193039	193175 2_sis	761	995	1229	0	1	2	0	2 (6:2)_(4:4)_(5:3)_(4:4)
85 TCMM4	TCMM	7	611358	611515	611515	612267 2_sis	1	455	908	0	1	2	0	2 (6:2i)_(4:4)
118 TCMM4	TCMM	10	524618	526730	527538	528639 2_sis	809	2415	4020	0	1	2	0	2 (3:5)_(2:6)_(4:4)

142 TCMM4	TCMM	12	507075	507492	507531	508294	3	40	629	1218	0	1	2	0	2 (2:6i)_(5:3)_(4:4)
44 TCMM4	TCMM	4	842070	842326	845136	845227	3	2811	2984	3156	0	2	2	1	1 (2:6)_(4:4)_(2:6)_(6:2)_(4:4aCO)_(2:6a)_(4:4a)
83 TCMM4	TCMM	7	448887	449525	452589	452990	3	3065	3584	4102	0	2	2	1	1 (3:5)_(2:6)_(4:4)_(3:5)_(5:3)_(6:2)_(4:4aCO)
154 TCMM4	TCMM	13	340906	341020	343482	343909	3	2463	2733	3002	0	2	2	1	1 (2:6)_(4:4)_(3:5)_(6:2)_(5:3)_(6:2)_(4:4aCO)
162 TCMM4 169 TCMM4	TCMM TCMM	13 14	741880 288198	742214 288680	747492 289457	747874 289633	3	5279 778	5636 1106	5993 1434	0	2 2	2	1	1 (2:6)_(3:5)_(2:6)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5a)_(4:4aCO)_(3:5a)_(2:6)_(4:4a)
169 TCMM4 15 TCMM4	TCMM	2	288198 554757	555319	289457 556857		3	1539	2216	2893	0	3	2	0	1 (6:2)_(8:0)_(4:4aCO)_(5:3)_(4:4a)
80 TCMM4	TCMM	7	195912	196275	199024	557651 2_nonsis 199690	4	2750	3264	2893 3777	0	3	2	0	2 (2:6)_(4:4)_(4:4aCO)_(5:3)_(4:4CO) 2 (4:4aCO)_(3:5)_(4:4a)_(2:6)_(1:7)_(2:6)_(4:4CO)_(2:6ai)_(3:5a)_(4:4bCO)
114 TCMM4	TCMM	10	391693	392346	394217	394408	3	1872	2293	2714	0	3	2	0	2 (4:4aCO) (3:5) (4:4bCO) (3:5) (4:4bCO) (3:5) (4:4bCO)
123 TCMM4	TCMM	10	666742	667389	667686	667942 2_nonsis	3	298	749	1199	0	3	2	0	2 (4:4aCO)_(5:3)_(4:4cO) 2 (4:4aCO)_(5:3)_(4:4CO)
149 TCMM4	TCMM	13	69113	70292	70356	71137 2_nonsis		65	1044	2023	0	3	2	0	2 (4:4aCO)_(4:4CO)
164 TCMM4	TCMM	13	851409	851822	855302	855635	3	3481	3853	4225	0	3	2	2	0 (4:4aCO)_(6:2)_(4:4a)_(3:5)_(3:5a)_(3:5)_(3:5a)_(4:4bCO)
67 TCMM8	TCMM	4	1224626	1224630	1224630	1224684	1	1	29	57	1	1	1	0	1 05:03
156 TCMM8	TCMM	9	183552	183567	183567	183795	1	1	122	242	1	1	1	0	1 05:03
5 TCMM8	TCMM	1	101193	101198	101198	101547	1	1	177	353	1	1	1	0	1 05:03
145 TCMM8	TCMM	8	319609	319904	319904	320071	1	1	231	461	1	1	1	0	1 05:03
153 TCMM8	TCMM	9	96388	96801	96801	96860	1	1	236	471	1	1	1	0	1 05:03
336 TCMM8	TCMM	16	920877	921047	921154	921247	1	108	239	369	1	1	1	0	1 05:03
328 TCMM8	TCMM	16	537122	537410	537410	537617	1	1	248	494	1	1	1	0	1 05:03
270 TCMM8	TCMM	14	465885	465982	466168	466216	1	187	259	330	1	1	1	0	1 05:03
327 TCMM8	TCMM	16	497602	497758	497758	498200	1	1	299	597	1	1	1	0	1 05:03
201 TCMM8	TCMM	11	393512	393589	393718	394215	1	130	416	702	1	1	1	0	1 05:03
37 TCMM8	TCMM	4	115646	116157	116157	116482	1	1	418	835	1	1	1	0	1 05:03
254 TCMM8	TCMM	14	122172	122216	122564	122677	1	349	427	504	1	1	1	0	1 05:03
2 TCMM8 187 TCMM8	TCMM TCMM	1 10	67729 666742	68551 667126	68551 667152	68621 667627	1	1 27	446 456	891 884	1	1	1	0	1 05:03 1 05:03
103 TCMM8	TCMM	5	560376	560715	561069	561108	1	355	543	731	1	1	1	0	1 05:03
127 TCMM8	TCMM	7	470658	470964	470964	471870	1	333	606	1211	1	1	1	0	1 05:03
242 TCMM8	TCMM	13	477118	478087	478297	478448	1	211	770	1329	1	1	1	0	1 05:03
19 TCMM8	TCMM	2	248980	250316	250316	250537	1	1	779	1556	1	1	1	0	1 05:03
95 TCMM8	TCMM	5	408950	409183	409528	410181	1	346	788	1230	1	1	1	0	1 05:03
218 TCMM8	TCMM	12	253791	253941	254610	254773	1	670	826	981	1	1	1	0	1 05:03
169 TCMM8	TCMM	10	159201	160491	160511	160930	1	21	875	1728	1	1	1	0	1 05:03
228 TCMM8	TCMM	12	863244	864291	864291	864999	1	1	878	1754	1	1	1	0	1 05:03
206 TCMM8	TCMM	11	590994	592478	592577	593181	1	100	1143	2186	1	1	1	0	1 05:03
283 TCMM8	TCMM	15	190009	191548	191548	192333	1	1	1162	2323	1	1	1	0	1 05:03
205 TCMM8	TCMM	11	582622	582756	583946	584258	1	1191	1413	1635	1	1	1	0	1 05:03
210 TCMM8	TCMM	11	635970	636244	638139	638298	1	1896	2112	2327	1	1	1	0	1 05:03
227 TCMM8	TCMM	12	837962	840577	840682	843387	1	106	2765	5424	1	1	1	0	1 05:03
108 TCMM8	TCMM	6	76048	76053	76053	76126	1	1	39	77	1	2	1	0	1 03:05
47 TCMM8	TCMM	4 13	345524 804802	345541 804888	345541	345638	1	1	57 57	113	1	2 2	1	0	1 03:05
247 TCMM8 310 TCMM8	TCMM TCMM	16	22544	22571	804888 22571	804916 22695	1	1	76	113 150	1	2	1	0	1 03:05 1 03:05
175 TCMM8	TCMM	10	284198	284309	284309	284375	1	1	89	176	1	2	1	0	1 03:05
40 TCMM8	TCMM	4	159284	159315	159315	159567	1	1	142	282	1	2	1	0	1 03:05
97 TCMM8	TCMM	5	439255	439285	439285	439545	1	1	145	289	1	2	1	0	1 03:05
219 TCMM8	TCMM	12	278546	278659	278673	278823	1	15	146	276	1	2	1	0	1 03:05
323 TCMM8	TCMM	16	426150	426395	426395	426505	1	1	178	354	1	2	1	0	1 03:05
101 TCMM8	TCMM	5	490952	491135	491135	491327	1	1	188	374	1	2	1	0	1 03:05
32 TCMM8	TCMM	3	153706	153719	153719	154234	1	1	264	527	1	2	1	0	1 03:05
321 TCMM8	TCMM	16	378890	378909	378909	379426	1	1	268	535	1	2	1	0	1 03:05
306 TCMM8	TCMM	15	985932	986343	986343	986501	1	1	285	568	1	2	1	0	1 03:05
93 TCMM8	TCMM	5	326423	326990	327059	327079	1	70	363	655	1	2	1	0	1 03:05
167 TCMM8	TCMM	10	113314	113443	113443	114082	1	1	384	767	1	2	1	0	1 03:05
263 TCMM8	TCMM	14	301506	301548	301887	301978	1	340	406	471	1	2	1	0	1 03:05
256 TCMM8	TCMM	14	188387	189221	189221	189381	1	1	497	993	1	2	1	0	1 03:05
81 TCMM8	TCMM	5	39304	39651	39651	40307	1	1	502	1002	1	2	1	0	1 03:05
186 TCMM8	TCMM	10	641346	641571	641631	642317	1	61	516	970	1	2	1	0	1 03:05
68 TCMM8	TCMM	4	1265921	1266546	1266696	1266824	1	151	527	902	1	2	1	0	1 03:05
311 TCMM8	TCMM	16	39420	39693	39840	40351	1	148	539	930	1	2	1	0	1 03:05

278 TCMM8	TCMM	15	55428	55437	55845	56223	1	409	602	794	1	2	1	0	1 03:05
179 TCMM8	TCMM	10	526176	526730	526730	527538	1	1	681	1361	1	2	1	0	1 03:05
21 TCMM8	TCMM	2	265831	266338	266358	267213	1	21	701	1381	1	2	1	0	1 03:05
142 TCMM8	TCMM	8	181049	181082	181744	182078	1	663	846	1028	1	2	1	0	1 03:05
141 TCMM8	TCMM	8	174093	174717	175253	175365	1	537	904	1271	1	2	1	0	1 03:05
320 TCMM8	TCMM	16	371914	372742	373291	373351	1	550	993	1436	1	2	1	0	1 03:05
54 TCMM8	TCMM	4	727318	727624	728057	728918	1	434	1017	1599	1	2	1	0	1 03:05
277 TCMM8	TCMM	15	39810	39886	41378	41470	1	1493	1576	1659	1	2	1	0	1 03:05
157 TCMM8	TCMM	9	205094	210741	210741	210751	1	1473	2829	5656	1	2	1	0	1 03:05
51 TCMM8	TCMM	4	542170	542225	542914	543278	1	690	899	1107	1	3	1	0	1 5:3_4:4_5:3
							1				-	3	1		
80 TCMM8	TCMM	4	1490715	1490879	1491912	1492309		1034	1314	1593	1			0	1 5:3_4:4_5:3
233 TCMM8	TCMM	12	1053841	1054279	1055872	1056105	1	1594	1929	2263	1	3	1	0	1 5:3_4:4_5:3
34 TCMM8	TCMM	3	261331	262264	263025	264441	1	762	1936	3109	1	3	1	0	1 5:3_4:4_5:3
237 TCMM8	TCMM	13	262219	262578	263835	264337	1	1258	1688	2117	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
75 TCMM8	TCMM	4	1391941	1391986	1394881	1395687	1	2896	3321	3745	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3_4:4_5:3
272 TCMM8	TCMM	14	534658	535369	538640	539186	1	3272	3900	4527	1	3	1	0	1 5:3_4:4_5:3_4:4_6:2_5:3_4:4_5:3
246 TCMM8	TCMM	13	793076	793469	793752	794088	1	284	648	1011	1	4	1	0	1 3:5_2:6_3:5
307 TCMM8	TCMM	15	1019122	1019282	1019806	1020132	1	525	767	1009	1	4	1	0	1 3:5_4:4_3:5
191 TCMM8	TCMM	10	723534	723550	724337	724397	1	788	825	862	1	4	1	0	1 3:5_2:6_3:5_2:6_3:5
55 TCMM8	TCMM	4	750125	750698	751490	751579	1	793	1123	1453	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5
122 TCMM8	TCMM	7	140207	140227	144484	144500	1	4258	4275	4292	1	4	1	0	1 3:5_4:4_3:5_2:6_4:4_3:5_4:4_2:6_3:5_4:4_2:6_4:4_3:5
313 TCMM8	TCMM	16	50846	50873	50951	50992	1	79	112	145	1	7	1	0	1 6:2_5:3
165 TCMM8	TCMM	10	31505	31566	31686	31756	1	121	186	250	1	7	1	0	1 6:2_5:3
135 TCMM8	TCMM	8	10615	10670	10795	10934	1	126	222	318	1	7	1	0	1 5:3_6:2
76 TCMM8	TCMM	4	1421908	1421954	1422450	1422760	1	497	674	851	1	7	1	0	1 5:3_6:2
199 TCMM8	TCMM	11	308325	308425	309009	309090	1	585	675	764	1	7	1	0	1 6:2_5:3
190 TCMM8	TCMM	10	704627	704699	705235	705450	1	537	680	822	1	7	1	0	1 5:3_6:2
289 TCMM8	TCMM	15	311489	312220	312575	312919	1	356	893	1429	1	7	1	0	1 6:2_5:3
							1				-	7		-	
286 TCMM8	TCMM	15	231231	232193	232797	233424	-	605	1399	2192	1		1	0	1 5:3_6:2
220 TCMM8	TCMM	12	340695	341678	342709	343120	1	1032	1728	2424	1	7	1	0	1 6:2_5:3
7 TCMM8	TCMM	1	111180	113132	113326	114652	1	195	1833	3471	1	7	1	0	1 6:2_5:3
88 TCMM8	TCMM	5	192670	192683	192792	192820	1	110	130	149	1	7	1	0	1 6:2_4:4_6:2
194 TCMM8	TCMM	11	92193	92251	92441	92653	1	191	325	459	1	7	1	0	1 6:2_4:4_6:2
217 TCMM8	TCMM	12	247833	248314	248752	249052	1	439	829	1218	1	7	1	0	1 5:3_4:4_6:2
309 TCMM8	TCMM	15	1047912	1047968	1048990	1049465	1	1023	1288	1552	1	7	1	0	1 6:2_4:4_5:3
195 TCMM8	TCMM	11	116904	117207	118487	119310	1	1281	1843	2405	1	7	1	0	1 6:2_4:4_5:3
253 TCMM8	TCMM	14	116459	116678	117410	117759	1	733	1016	1299	1	7	1	0	1 6:2_5:3_4:4_5:3
264 TCMM8	TCMM	14	307920	308304	310209	310493	1	1906	2239	2572	1	7	1	0	1 6:2_4:4_5:3_6:2
78 TCMM8	TCMM	4	1467260	1467745	1469510	1469852	1	1766	2179	2591	1	7	1	0	1 5:3_6:2_4:4_5:3_6:2_5:3_6:2
106 TCMM8	TCMM	6	34741	34967	36660	36739	1	1694	1846	1997	1	7	1	0	1 6:2_5:3_6:2_5:3_6:2_5:3_4:4_5:3
216 TCMM8	TCMM	12	234128	234194	234378	234633	1	185	345	504	1	8	1	0	1 3:5_2:6
255 TCMM8	TCMM	14	138230	138404	138539	138817	1	136	361	586	1	8	1	0	1 2:6_3:5
116 TCMM8	TCMM	6	226919	227043	227223	228092	1	181	677	1172	1	8	1	0	1 3:5_2:6
240 TCMM8	TCMM	13	434413	434538	434776	435813	1	239	819	1399	1	8	1	0	1 2:6_3:5
18 TCMM8	TCMM	2	201932	202108	202227	203566	1	120	877	1633	1	8	1	0	1 2:6_3:5
91 TCMM8	TCMM	5	270473	271135	271703	271934	1	569	1015	1460	1	8	1	0	1 3:5_2:6
117 TCMM8	TCMM	6	239854	240289	241206	241690	1	918	1377	1835	1	8	1	0	1 2:6_3:5
6 TCMM8	TCMM	1	107970	108718	108814	110713	1	97	1420	2742	1	8	1	0	1 2:6_3:5
92 TCMM8	TCMM	5	309648	309961	311423	311716	1	1463	1765	2067	1	8	1	0	1 3:5_2:6
143 TCMM8	TCMM	8	185625	186453	187989	188673	1	1537	2292	3047	1	8	1	0	1 3:5_2:6
							1				1	8	1		
138 TCMM8	TCMM	8	74101	74246	74632	74705	-	387	495	603	-			0	1 3:5_4:4_2:6
111 TCMM8	TCMM	6	118346	118792	119127	119229	1	336	609	882	1	8	1	0	1 2:6_4:4_2:6
62 TCMM8	TCMM	4	1078009	1078458	1078881	1079059	1	424	737	1049	1	8	1	0	1 2:6_3:5_2:6
66 TCMM8	TCMM	4	1216099	1216309	1217501	1217807	1	1193	1450	1707	1	8	1	0	1 2:6_4:4_2:6
98 TCMM8	TCMM	5	460008	460131	461594	462614	1	1464	2035	2605	1	8	1	0	1 2:6_3:5_2:6
244 TCMM8	TCMM	13	608323	608383	610501	611332	1	2119	2564	3008	1	8	1	0	1 2:6_3:5_2:6
110 TCMM8	TCMM	6	114275	114340	114707	115088	1	368	590	812	1	8	1	0	1 2:6_3:5_2:6_3:5
72 TCMM8	TCMM	4	1343357	1343962	1345079	1345315	1	1118	1538	1957	1	8	1	0	1 3:5_2:6_3:5_2:6
302 TCMM8	TCMM	15	899806	900141	903846	903919	1	3706	3909	4112	1	8	1	0	1 2:6_3:5_4:4_3:5
12 TCMM8	TCMM	1	198604	198630	198630	198648	1	1	22	43	1	10	1	0	1 06:02

45 TCMM8	TCMM	4	264106	264197	264197	264290	1	1	92	183	1	10	1	0	1 06:02
63 TCMM8	TCMM	4	1092561	1092723	1092723	1092764	1	1	102	202	1	10	1	0	1 06:02
15 TCMM8	TCMM	2	137272	137392	137392	137522	1	1	125	249	1	10	1	0	1 06:02
172 TCMM8	TCMM	10	236615	236674	236674	236901	1	1	143	285	1	10	1	0	1 06:02
99 TCMM8	TCMM	5	475154	475295	475308	475496	1	14	178	341	1	10	1	0	1 06:02
203 TCMM8	TCMM	11	523152	523472	523472	523649	1	1	249	496	1	10	1	0	1 06:02
281 TCMM8	TCMM	15	161509	161586	161586	162027	1	1	259	517	1	10	1	0	1 06:02
296 TCMM8	TCMM	15	637574	637797	637797	638136	1	1	281	561	1	10	1	0	1 06:02
86 TCMM8	TCMM	5	118179	118197	118211	118734	1	15	285	554	1	10	1	0	1 06:02
299 TCMM8	TCMM	15	700551	700804	700948	701028	1	145	311	476	1	10	1	0	1 06:02
57 TCMM8	TCMM	4	843009	843125	843125	843647	1	1	319	637	1	10	1	0	1 06:02
82 TCMM8	TCMM	5	41961	42646	42646	42708	1	1	374	746	1	10	1	0	1 06:02
322 TCMM8	TCMM	16	394211	394424	394442	395015	1	19	411	803	1	10	1	0	1 06:02
196 TCMM8	TCMM	11	177551	178198	178268	178399	1	71	459	847	1	10	1	0	1 06:02
316 TCMM8	TCMM	16	166118	166274	166465	166927	1	192	500	808	1	10	1	0	1 06:02
43 TCMM8	TCMM	4	229868	230128	230153	230893	1	26	525	1024	1	10	1	0	1 06:02
16 TCMM8	TCMM	2	139079	139949	140021	140131	1	73	562	1051	1	10	1	0	1 06:02
102 TCMM8	TCMM	5	544734	545109	545109	545863	1	1	565	1128	1	10	1	0	1 06:02
334 TCMM8	TCMM	16	840627	841449	841571	841702	1	123	599	1074	1	10	1	0	1 06:02
262 TCMM8	TCMM	14	288573	288680	289222	289345	1	543	657	771	1	10	1	0	1 06:02
326 TCMM8	TCMM	16	456671	456724	456878	458489	1	155	986	1817	1	10	1	0	1 06:02
87 TCMM8	TCMM	5	162474	162567	163290	163835	1	724	1042	1360	1	10	1	0	1 06:02
250 TCMM8	TCMM	13	872837	873141	873246	874942	1	106	1105	2104	1	10	1	0	1 06:02
28 TCMM8	TCMM	2	790813	790890	792247	792968	1	1358	1756	2154	1	10	1	0	1 06:02
177 TCMM8	TCMM	10	465816	467589	467589	469453	1	1	1819	3636	1	10	1	0	1 06:02
149 TCMM8	TCMM	8	465769	465801	465801	465803	1	1	17	33	1	10.1	1	0	1 02:06
230 TCMM8	TCMM	12	877560	877606	877625	877699	1	20	79	138	1	10.1	1	0	1 02:06
305 TCMM8	TCMM	15	984011	984169	984169	984206	1	1	98	194	1	10.1	1	0	1 02:06
317 TCMM8	TCMM	16	198355	198637	198637	198653	1	1	149	297	1	10.1	1	0	1 02:06
154 TCMM8	TCMM	9	102496	102536	102597	102742	1	62	154	245	1	10.1	1	0	1 02:06
118 TCMM8	TCMM	6	245159	245286	245286	245484	1	1	163	324	1	10.1	1	0	1 02:06
104 TCMM8	TCMM	6	17252	17394	17399	17582	1	6	168	329	1	10.1	1	0	1 02:06
234 TCMM8	TCMM	13	14857	14911	15055	15133	1	145	210	275	1	10.1	1	0	1 02:06
314 TCMM8	TCMM	16	74885	74937	74937	75355	1	1	235	469	1	10.1	1	0	1 02:06
290 TCMM8	TCMM	15	410084	410118	410276	410471	1	159	273	386	1	10.1	1	0	1 02:06
50 TCMM8	TCMM	4	443547	443924	443924	444097	1	1	275	549	1	10.1	1	0	1 02:06
147 TCMM8	TCMM	8	379789	379863	379863	380348	1	1	280	558	1	10.1	1	0	1 02:06
139 TCMM8	TCMM	8	76095	76580	76580	76673	1	1	289	577	1	10.1	1	0	1 02:06
259 TCMM8	TCMM	14	256273	256778	256789	256857	1	12	298	583	1	10.1	1	0	1 02:06
300 TCMM8	TCMM	15	745265	745547	745659	745778	1	113	313	512	1	10.1	1	0	1 02:06
74 TCMM8	TCMM	4	1385858	1385998	1386016	1386524	1	19	342	665	1	10.1	1	0	1 02:06
60 TCMM8	TCMM	4	954985	955099	955335	955686	1	237	469	700	1	10.1	1	0	1 02:06
192 TCMM8	TCMM	11	21787	21803	21803	22806	1	1	510	1018	1	10.1	1	0	1 02:06
258 TCMM8	TCMM	14	205874	206853	206892	207121	1	40	643	1246	1	10.1	1	0	1 02:06
41 TCMM8	TCMM	4	171661	171817	172175	172830	1	359	764	1168	1	10.1	1	0	1 02:06
304 TCMM8	TCMM	15	980032	981230	981571	981575	1	342	942	1542	1	10.1	1	0	1 02:06
94 TCMM8	TCMM	5	342057	342537	343263	343350	1	727	1010	1292	1	10.1	1	0	1 02:06
129 TCMM8	TCMM	7	640432	640541	640849	642144	1	309	1010	1711	1	10.1	1	0	1 02:06
236 TCMM8	TCMM	13	219620	221252	221252	221642	1	1	1011	2021	1	10.1	1	0	1 02:06
25 TCMM8	TCMM	2	623818	624009	624805	625298	1	797	1138	1479	1	10.1	1	0	1 02:06
35 TCMM8	TCMM	4	19281	19322	21255	21300	1	1934	1976	2018	1	10.1	1	0	1 02:06
10 TCMM8	TCMM	1	173966	174674	174674	175307 2_nons	is	1	671	1340	3	30	1	0	1 03:05
30 TCMM8	TCMM	3	79797	91287	93230	93455 2_nons	is	1944	7801	13657	3	30	1	0	1 2:6_5:3
105 TCMM8	TCMM	6	31880	31946	32447	32524 2_nons	is	502	573	643	3	30	1	0	1 6:2_3:5_2:6
65 TCMM8	TCMM	4	1161819	1161892	1163376	1163436 2_nons	is	1485	1551	1616	3	30	1	0	1 6:2_4:4_2:6
170 TCMM8	TCMM	10	162540	162711	164155	164308 2_nons	is	1445	1606	1767	3	30	1	0	1 6:2_4:4_3:5
266 TCMM8	TCMM	14	340939	340966	342707	342782 2_nons	is	1742	1792	1842	3	30	1	0	1 5:3_6:2_5:3a
164 TCMM8	TCMM	9	406124	406436	408110	408224 2_nons	is	1675	1887	2099	3	30	1	0	1 2:6_3:5_2:6
229 TCMM8	TCMM	12	873300	874112	875259	876120 2_nons	is	1148	1984	2819	3	30	1	0	1 6:2_4:4_2:6
49 TCMM8	TCMM	4	407403	408374	411785	412382 2_nons	is	3412	4195	4978	3	30	1	0	1 6:2_4:4_2:6

3 TCMM8	TCMM	1	70621	70999	71616	71673 2_nonsis	618	835	1051	3	30	1	0	1 6:2_5:3_4:4_3:5
33 TCMM8	TCMM	3	208489	209380	211617	212942 2_nonsis	2238	3345	4452	3	30	1	0	1 2:6_4:4_5:3_6:2
176 TCMM8	TCMM	10	330001	330191	333992	334125 2_nonsis	3802	3963	4123	3	30	1	0	1 3:5_2:6_4:4_6:2
152 TCMM8	TCMM	9	55251	56514	58630	58961 2_nonsis	2117	2913	3709	3	30	1	0	1 6:2_5:3_6:2_5:3_6:2
288 TCMM8	TCMM	15	282006	282038	288307	288781 2_nonsis	6270	6522	6774	3	30	1	0	1 5:3_4:4_5:3_6:2_4:4_6:2_5:3_4:4_2:6
120 TCMM8	TCMM	7	35217	35543	46050	46197 2_nonsis	10508	10744	10979	3	30	1	0	1 6:2_5:3_6:2_5:3_6:2_5:3_4:4_5:3_6:2_4:4_3:5
107 TCMM8	TCMM	6	45217	45870	46872	46998 2_nonsis	1003	1392	1780	3	31	1	0	1 3:5_4:4ai
53 TCMM8	TCMM	4	635784	636465	636465	636737 2_nonsis	1	477	952	1	1	1	1	0 (5:3)_(4:4aCO)
162 TCMM8	TCMM	9	370178	370386	370388	370992 2_nonsis	3	408	813	1	2	1	1	0 (3:5)_(4:4aCO)
293 TCMM8	TCMM	15	499294	499626	499626	500197 2_nonsis	1	452	902	1	2	1	1	0 (3:5)_(4:4aCO)
200 TCMM8	TCMM	11	372458	372830	372830	373379 2_nonsis	1	461	920	1	2	1	1	0 (3:5)_(4:4aCO)
70 TCMM8	TCMM	4	1333898	1334061	1334389	1335206 2 nonsis	329	818	1307	1	2	1	1	0 (3:5) (4:4aCO)
174 TCMM8	TCMM	10	275597	275984	276704	277465 2_nonsis	721	1294	1867	1	2	1	1	0 (3:5)_(4:4aCO)
9 TCMM8	TCMM	1	155505	159623	159724	159877 2_nonsis	102	2237	4371	1	2	1	1	0 (3:5)_(4:4aCO)
13 TCMM8	TCMM	2	44210	44904	45075	45660 2_nonsis	172	811	1449	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
168 TCMM8	TCMM	10	153254	154954	155705	156143 2_nonsis	752	1820	2888	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
188 TCMM8	TCMM	10	675595	675709	676590	677087 2_nonsis	882	1187	1491	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
64 TCMM8	TCMM	4	1105249	1105561	1105780	1106241 2_nonsis	220	606	991	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
38 TCMM8	TCMM	4	124765	125066	125172	125573 2_nonsis	107	457	807	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO) 0 (2:6)_(3:5)_(4:4aCO)
			348398							1		-	1	
319 TCMM8	TCMM	16		348431	348815	349538 2_nonsis	385	762	1139		10	1		0 (2:6)_(3:5)_(4:4aCO)
238 TCMM8	TCMM	13	265689	266099	266262	267158 2_nonsis	164	816	1468	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
202 TCMM8	TCMM	11	401916	402660	403407	403558 2_nonsis	748	1195	1641	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
193 TCMM8	TCMM	11	32124	33673	34444	34686 2_nonsis	772	1667	2561	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
89 TCMM8	TCMM	5	194646	194693	195341	195356 2_nonsis	649	679	709	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
285 TCMM8	TCMM	15	216399	217333	217521	218142 2_nonsis	189	966	1742	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
292 TCMM8	TCMM	15	486327	486494	487166	487809 2_nonsis	673	1077	1481	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
171 TCMM8	TCMM	10	204730	205042	205946	206436 2_nonsis	905	1305	1705	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
248 TCMM8	TCMM	13	810229	810415	811756	812113 2_nonsis	1342	1613	1883	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
46 TCMM8	TCMM	4	280191	280598	282024	283030 2_nonsis	1427	2133	2838	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
136 TCMM8	TCMM	8	64197	64748	65412	65566 2_nonsis	665	1017	1368	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
42 TCMM8	TCMM	4	211933	212036	212746	213315 2_nonsis	711	1046	1381	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
52 TCMM8	TCMM	4	550893	551387	552102	552354 2_nonsis	716	1088	1460	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
115 TCMM8	TCMM	6	213776	214043	214589	215586 2_nonsis	547	1178	1809	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(4:4aCO)
159 TCMM8	TCMM	9	253488	253992	254765	255654 2_nonsis	774	1470	2165	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(4:4aCO)
252 TCMM8	TCMM	14	49737	50444	51868	52069 2_nonsis	1425	1878	2331	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
39 TCMM8	TCMM	4	129270	129783	131512	131875 2_nonsis	1730	2167	2604	1	12	1	1	0 (6:2)_(4:4)_(5:3)_(4:4aCO)
189 TCMM8	TCMM	10	683353	683820	685208	686511 2_nonsis	1389	2273	3157	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)
155 TCMM8	TCMM	9	129907	130294	132269	132429 2_nonsis	1976	2249	2521	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(4:4aCO)
260 TCMM8	TCMM	14	260618	261617	264607	265328 2_nonsis	2991	3850	4709	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
211 TCMM8	TCMM	12	29131	29612	30884	30930 2_nonsis	1273	1536	1798	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(5:3)_(6:2)_(4:4a)
22 TCMM8	TCMM	2	322122	322182	324185	324220 2_nonsis	2004	2051	2097	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
125 TCMM8	TCMM	7	350649	351015	352964	355166 2_nonsis	1950	3233	4516	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
279 TCMM8	TCMM	15	93845	94096	97478	97910 2_nonsis	3383	3724	4064	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
119 TCMM8	TCMM	6	263658	263716	265792	265986 2_nonsis	2077	2202	2327	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(4:4a)_(5:3)_(4:4a)
303 TCMM8	TCMM	15	953320	953577	956617	956880 2_nonsis	3041	3300	3559	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4aCO)
132 TCMM8	TCMM	7	902661	903030	905275	905694 2_nonsis	2246	2639	3032	1	12	1	1	0 (6:2)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4a)_(5:3)_(4:4a)_(5:3)_(4:4a)
133 TCMM8	TCMM	7	994015	994032	994032	994097 2_nonsis	1	41	81	1	15	1	1	0 (6:2)_(4:4aCO)
126 TCMM8	TCMM	7	440241	440359	440359	440438 2_nonsis	1	99	196	1	15	1	1	0 (6:2)_(4:4aCO)
331 TCMM8	TCMM	16	696490	696582	696582	696879 2_nonsis	1	195	388	1	15	1	1	0 (6:2)_(4:4aCO)
17 TCMM8	TCMM	2	162271	162420	162420	162680 2 nonsis	1	205	408	1	15	1	1	0 (6:2)_(4:4aCO)
231 TCMM8	TCMM	12	949489	949843	949843	949938 2 nonsis	1	225	448	1	15	1	1	0 (6:2) (4:4aCO)
241 TCMM8	TCMM	13	474938	475013	475160	475252 2_nonsis	148	231	313	1	15	1	1	0 (6:2)_(4:4aCO)
297 TCMM8	TCMM	15	670961	671534	671534	671818 2_nonsis	148	429	856	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
		7					336			1	15	1	1	
130 TCMM8	TCMM		670175	670263	670598	670804 2_nonsis	336	482	628 979			1	1	0 (6:2)_(4:4aCO)
100 TCMM8	TCMM	5	488899	489026	489026	489879 2_nonsis	1	490		1	15			0 (6:2)_(4:4aCO)
148 TCMM8	TCMM	8	423045	423870	423870	424191 2_nonsis	117	573	1145 1243	1	15	1	1	0 (6:2)_(4:4aCO)
282 TCMM8	TCMM	15	181640	182622	182738	182884 2_nonsis		680		-	15	-	-	0 (6:2)_(4:4aCO)
221 TCMM8	TCMM	12	370487	370966	370966	371874 2_nonsis	1	694	1386	1	15	1	1	0 (6:2)_(4:4aCO)
48 TCMM8	TCMM	4	349591	350046	350462	350645 2_nonsis	417	735	1053	1	15	1	1	0 (6:2)_(4:4aCO)
131 TCMM8	TCMM	7	833796	834010	834267	835147 2_nonsis	258	804	1350	1	15	1	1	0 (6:2)_(4:4aCO)

318 TCMM8	TCMM	16	279235	279259	279975	280422 2_nonsis	717	952	1186	1	15	1	1	0 (6:2)_(4:4aCO)
207 TCMM8	TCMM	11	595509	596220	597223	597399 2_nonsis	1004	1447	1889	1	15	1	1	0 (6:2)_(4:4aCO)
274 TCMM8	TCMM	14	605054	606283	606872	608001 2_nonsis	590	1768	2946	1	15	1	1	0 (6:2)_(4:4aCO)
61 TCMM8	TCMM	4	1066006	1066159	1067784	1068162 2_nonsis	1626	1891	2155	1	15	1	1	0 (6:2)_(4:4aCO)
223 TCMM8	TCMM	12	521782	522608	522914	525267 2_nonsis	307	1896	3484	1	15	1	1	0 (6:2)_(4:4aCO)
1 TCMM8	TCMM	1	57455	57739	59349	59659 2_nonsis	1611	1907	2203	1	15	1	1	0 (6:2)_(4:4aCO)
181 TCMM8	TCMM	10	570822	573950	574412	574799 2_nonsis	463	2220	3976	1	15	1	1	0 (6:2)_(4:4aCO)
225 TCMM8	TCMM	12	731012	732527	732527	736073 2_nonsis	1	2531	5060	1	15	1	1	0 (6:2)_(4:4aCO)
324 TCMM8	TCMM	16	431787	431837	431840	432226 2_nonsis	4	221	438	1	16	1	1	0 (2:6)_(4:4aCO)
276 TCMM8	TCMM	14	711379	711615	711615	711951 2_nonsis	1	286	571	1	16	1	1	0 (2:6)_(4:4aCO)
90 TCMM8	TCMM	5	250692	251006	251036	251267 2_nonsis	31	303	574	1	16	1	1	0 (2:6)_(4:4aCO)
56 TCMM8	TCMM	4	770352	770770	770770	771211 2_nonsis	1	430	858	1	16	1	1	0 (2:6)_(4:4aCO)
239 TCMM8	TCMM	13	355195	355271	355763	356149 2_nonsis	493	723	953	1	16	1	1	0 (2:6)_(4:4aCO)
291 TCMM8	TCMM	15	425274	425464	425518	426767 2_nonsis	55	774	1492	1	16	1	1	0 (2:6)_(4:4aCO)
112 TCMM8	TCMM	6	121761	122971	122971	123435 2_nonsis	1	837	1673	1	16	1	1	0 (2:6)_(4:4aCO)
31 TCMM8	TCMM	3	136159	136789	137256	137490 2_nonsis	468	899	1330	1	16	1	1	0 (2:6)_(4:4aCO)
85 TCMM8	TCMM	5	111137	111209	111137	111209 2_nonsis	0	36	71	1	100	1	1	0 (4:4aCO)
298 TCMM8	TCMM	15	675019	675258	675019	675258 2_nonsis	0	119	238	1	100	1	1	0 (4:4aCO)
151 TCMM8	TCMM	8	505427	505727	505427	505727 2_nonsis	0	150	299	1	100	1	1	0 (4:4aCO)
173 TCMM8	TCMM	10	270332	270695	270332	270695 2_nonsis	0	181	362	1	100	1	1	0 (4:4aCO)
257 TCMM8	TCMM	14	197788	198236	197788	198236 2_nonsis	0	224	447	1	100	1	1	0 (4:4aCO)
144 TCMM8	TCMM	8	276840	277301	276840	277301 2_nonsis	0	230	460	1	100	1	1	0 (4:4aCO)
197 TCMM8	TCMM	11	179745	180215	179745	180215 2_nonsis	0	235	469	1	100	1	1	0 (4:4aCO)
69 TCMM8	TCMM	4	1296525	1297076	1296525	1297076 2_nonsis	0	275	550	1	100	1	1	0 (4:4aCO)
280 TCMM8	TCMM	15	146419	147007	146419	147007 2_nonsis	0	294	587	1	100	1	1	0 (4:4aCO)
333 TCMM8	TCMM	16	812552	813147	812552	813147 2_nonsis	0	297	594	1	100	1	1	0 (4:4aCO)
295 TCMM8	TCMM	15	517314	518019	517314	518019 2_nonsis	0	352	704	1	100	1	1	0 (4:4aCO)
59 TCMM8	TCMM	4	929368	930077	929368	930077 2_nonsis	0	354	708	1	100	1	1	0 (4:4aCO)
198 TCMM8	TCMM	11	224634	225480	224634	225480 2_nonsis	0	423	845	1	100	1	1	0 (4:4aCO)
325 TCMM8	TCMM	16	453010	453873	453010	453873 2_nonsis	0	431	862	1	100	1	1	0 (4:4aCO)
243 TCMM8	TCMM	13	556437	557365	556437	557365 2_nonsis	0	464	927	1	100	1	1	0 (4:4aCO)
24 TCMM8	TCMM	2	586331	587309	586331	587309 2_nonsis	0	489	977	1	100	1	1	0 (4:4aCO)
267 TCMM8	TCMM	14	391752	392860	391752	392860 2_nonsis	0	554	1107	1	100	1	1	0 (4:4aCO)
140 TCMM8	TCMM	8	171347	172563	171347	172563 2_nonsis	0	608	1215	1	100	1	1	0 (4:4aCO)
329 TCMM8	TCMM	16	591899	593126	591899	593126 2_nonsis	0	613	1226	1	100	1	1	0 (4:4aCO)
335 TCMM8	TCMM	16	880945	882337	880945	882337 2_nonsis	0	696	1391	1	100	1	1	0 (4:4aCO)
36 TCMM8	TCMM	4	60151	62061	60151	62061 2_nonsis	0	955	1909	1	100	1	1	0 (4:4aCO)
224 TCMM8	TCMM	12	625064	627007	625064	627007 2_nonsis	0	971	1942	1	100	1	1	0 (4:4aCO)
180 TCMM8	TCMM	10	568805	570822	568805	570822 2_nonsis	0	1008	2016	1	100	1	1	0 (4:4aCO)
11 TCMM8	TCMM	1	187427	189821	187427	189821 2_nonsis	0	1197	2393	1	100	1	1	0 (4:4aCO)
161 TCMM8	TCMM	9	299287	302738	299287	302738 2_nonsis	0	1725	3450	1	100	1	1	0 (4:4aCO)
275 TCMM8	TCMM	14	651410	655138	651410	655138 2_nonsis	0	1864	3727	1	100	1	1	0 (4:4aCO)
273 TCMM8	TCMM	14	539950	543829	539950	543829 2_nonsis	0	1939	3878	1	100	1	1	0 (4:4aCO)
26 TCMM8	TCMM	2	662444	666712	662444	666712 2_nonsis	0	2134	4267	1	100	1	1	0 (4:4aCO)
183 TCMM8	TCMM	10	596891	601293	596891	601293 2_nonsis	0	2201	4401	1	100	1	1	0 (4:4aCO)
226 TCMM8	TCMM	12	802287	808209	802287	808209 2_nonsis	0	2961	5921	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
212 TCMM8	TCMM	12	85916	86081	87580	87661 2_nonsis	1500	1622	1744	2	30	1	1	0 (4.4aCO) 0 (5:3)_(5:3a)_(6:2)_(4:4aCO)
160 TCMM8	TCMM	9	267764	268176	268690			1050	1584	2	30	1	1	
						269349 2_nonsis	515			2		1	1	0 (6:2)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
58 TCMM8 14 TCMM8	TCMM TCMM	4 2	848977 71636	849478 72018	851043 75084	851602 2_nonsis	1566 3067	2095 3497	2624 3927	2	30 32	1	1	0 (6:2)_(4:4)_(5:3)_(5:3a)_(6:2)_(4:4aCO)
83 TCMM8	TCMM		51944	53297	53899	75564 2_nonsis	603					1	1	0 (6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
		5 9				54237 2_nonsis		1448	2292	2	32	-	1	0 (5:3)_(4:4aCO)_(5:3a)_(4:4a)_(6:2)_(4:4a)
158 TCMM8	TCMM		244951	245022	247894	248675 2_nonsis	2873	3298	3723	2	32	1		0 (5:3)_(6:2)_(5:3a)_(6:2)_(5:3a)_(6:2)_(4:4aCO)
204 TCMM8	TCMM	11	526209	526649	526688	527413 2_nonsis	40	622	1203	3	20	1	1	0 (6:2)_(3:5)_(4:4aCO)
114 TCMM8	TCMM	6	201959	202421	202731	203115 2_nonsis	311	733	1155	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)
23 TCMM8	TCMM	2	495085	495218	496048	496540 2_nonsis	831	1143	1454	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
269 TCMM8	TCMM	14	432420	433148	435934	436363 2_nonsis	2787	3365	3942	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
124 TCMM8	TCMM	7	245686	247666	249983	250183 2_nonsis	2318	3407	4496	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
215 TCMM8	TCMM	12	225332	225447	225921	225953 2_nonsis	475	548	620	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
146 TCMM8	TCMM	8	342786	343035	343561	344320 2_nonsis	527	1030	1533	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
134 TCMM8	TCMM	7	1050064	1050446	1051093	1051973 2_nonsis	648	1278	1908	3	20	1	1	0 (6:2)_(4:4aCO)_(3:5)_(4:4a)

332 TCMM8	TCMM	16	784177	784888	785737	785910 2_nonsis		850	1291	1732	3	20	1	1	0 (5:3)_(2:6)_(3:5)_(4:4aCO)
166 TCMM8	TCMM	10	68967	69094	71182	71728 2_nonsis		2089	2425	2760	3	20	1	1	0 (3:5)_(5:3)_(6:2)_(4:4aCO)
163 TCMM8	TCMM	9	397090	397178	398583	398957 2_nonsis		1406	1636	1866	3	20	1	1	0 (6:2)_(5:3)_(4:4aCO)_(2:6)_(4:4a)
184 TCMM8	TCMM	10	628891	629879	633425	633463 2_nonsis		3547	4059	4571	3	20	1	1	0 (4:4aCO)_(5:3)_(4:4a)_(2:6)_(4:4a)
330 TCMM8	TCMM	16	654661	656181	656861	657485 2_nonsis		681	1752	2823	3	20		1	0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(6:2)_(4:4a)
287 TCMM8	TCMM	15	264752	264924	267577	267756 2_nonsis		2654	2829	3003	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(2:6)_(4:4)_(4:4aCO)
121 TCMM8	TCMM	7	120395	120656	123330	123839 2_nonsis		2675	3059	3443	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(6:2)_(4:4aCO)
251 TCMM8	TCMM	14	21451	21949	24616	24781 2_nonsis		2668	2999	3329	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(5:3)_(3:5a)_(4:4aCO)
44 TCMM8	TCMM	4	238635	238826	242772	242997 2_nonsis		3947	4154	4361	3	20		1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)_(3:5)_(4:4a)_(2:6)_(3:5)_(2:6)_(4:4a)_(3:5)_(4:4a)
4 TCMM8	TCMM	1	80077	80554	82379	83613	3	1826	2681	3535	0	1	_	0	2 (6:2)_(5:3)_(7:1)_(6:2a)_(8:0)_(6:2a)_(4:4)_(2:6)_(4:4)
79 TCMM8	TCMM	4	1476514	1477174	1479403	1479729 2_sis		2230	2722	3214	0	1		0	2 (5:3)_(4:4)_(6:2)_(4:4)
96 TCMM8	TCMM	5	411277	412632	414642	414720 2_sis		2011	2727	3442	0	1		0	2 (2:6)_(4:4)_(2:6a)_(4:4)
150 TCMM8	TCMM	8	493409	493855	497537	497907 2_sis		3683	4090	4497	0	1		0	2 (3:5)_(2:6)_(4:4)_(2:6a)_(4:4)
8 TCMM8	TCMM	1	128637	129476	130975	132066	3	1500	2464	3428	0	2		1	1 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
20 TCMM8	TCMM	2	255862	256941	259438	265684	3	2498	6160	9821	0	2		1	1 (5:3)_(4:4)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
73 TCMM8	TCMM	4	1364750	1365372	1367355	1367748	3	1984	2491	2997	0	2	-	1	1 (6:2i)_(7:1)_(6:2i)_(5:3)_(4:4aCO)_(7:1)_(5:3)_(4:4a)
109 TCMM8	TCMM	6	93934	94545	95308	95627	3	764	1228	1692	0	2	_	1	1 (3:5)_(2:6)_(0:8)_(1:7)_(4:4aCO)
113 TCMM8	TCMM	6	196563	196793	198468	199207	3	1676	2160	2643	0	2	-	1	1 (6:2)_(4:4aCO)
123 TCMM8	TCMM	7	225112	225889	226151	226711	3	263	931	1598	0	2	_	1	1 (5:3)_(6:2)_(5:3)_(4:4aCO)
128 TCMM8	TCMM	7	608090	608216	611358	611510	3	3143	3281	3419	0	2	_	1	1 (5:3)_(4:4)_(5:3a)_(4:4aCO)_(6:2)_(4:4a)_(5:3a)_(4:4a)
185 TCMM8	TCMM	10	636506	637392	639365	640236	3	1974	2852	3729	0	2	2	1	1 (2:6)_(4:4)_(4:4aCO)_(3:5)_(4:4a)_(3:5a)_(2:6a)_(4:4a)
208 TCMM8	TCMM	11	613247	613583	616950	617457	3	3368	3789	4209	0	2		1	1 (6:2)_(5:3)_(6:2)_(8:0)_(6:2)_(4:4aCO)
213 TCMM8	TCMM	12	139322	140166	140300	141153	3	135	983	1830	0	2		1	1 (2:6)_(4:4)_(4:4aCO)
232 TCMM8	TCMM	12	1011952	1014017	1014227	1014332	3	211	1295	2379	0	2	_	1	1 (2:6)_(4:4aCO)
249 TCMM8	TCMM	13	857787	857842	862092	862695	4	4251	4579	4907	0	2	2	1	1 (5:3)_(6:2)_(5:3)_(3:5)_(4:4aCO)
261 TCMM8	TCMM	14	270838	271001	273928	274637	3	2928	3363	3798	0	2	2	1	1 (6:2)_(3:5)_(4:4aCO)_(2:6)_(3:5)_(2:6)_(4:4a)
268 TCMM8	TCMM	14 15	394167	394349	395338	395701	3	990 724	1262 988	1533 1251	0	2 2		1	1 (5:3)_(3:5)_(4:4aCO)
301 TCMM8	TCMM TCMM		781222 1023212	781633 1023785	782356 1026039	782474	3	2255	2735		0	2		1	1 (2:6)_(4:4)_(2:6a)_(4:4aCO)
308 TCMM8 312 TCMM8	TCMM	15 16	46114	46273	47566	1026427 48262	3	1294	1721	3214 2147	0	2	_	1	1 (2:6)_(3:5)_(2:6)_(4:4aCO)_(6:2)_(4:4a) 1 (6:2)_(4:4)_(3:5)_(2:6)_(4:4aCO)
312 TCMM8 315 TCMM8	TCMM	16	159167	159487	159707	159936	3	221	495	768	0	2		1	1 (6:2)_(4:4)_(5:3)_(2:0)_(4:4aCO) 1 (5:3)_(4:4)_(4:4aCO)
27 TCMM8	TCMM	2	735096	735582	736946	737232	3	1365	1750	2135	0	3		0	2 (3:5)_(2:6)_(4:4aCO) (4:4CO)
29 TCMM8	TCMM	3	38857	39123	39861	40089	3	739	985	1231	0	3		0	2 (3:5)_(1:7)_(4:4aCO)_(4:4CO) 2 (3:5)_(1:7)_(4:4aCO)_(2:6)_(4:4CO)
71 TCMM8	TCMM	4	1341496	1341514	1341514	1341520 2 nonsis	,	1	12	23	0	3		0	2 (4:4aCO) (4:4CO)
77 TCMM8	TCMM	4	1431919	1432329	1435091	1435647	3	2763	3245	3727	0	3	2	1	[1(2-6)(_35)(_26)(_44:4aCO)(_26)(_44:4bCO)
84 TCMM8	TCMM	5	57281	57855	70969	71501	4	13115	13667	14219	0	3	2	1	1 (6:2)_(5:3)_(6:2)_(4:4)_(6:2a)_(4:4)_(6:2a)_(4:4)_(2:6)_(3:5)_(2:6)_(1:7)_(3:5a)_(2:6)_(3:5a)_(2:6)_(3:5a)_(2:6)_(2:6a)_(3:5a)_(0:8)_(4:4aCO)_(2:6a)_(4:4bCO)_(4:4a
137 TCMM8	TCMM	8	67629	68025	72171	72247 2_nonsis		4147	4382	4617	0	3		0	2 (5:3)_(4:4)_(5:3)_(3:5)_(5:3)_(4:4bCO)_(4:4CO)
178 TCMM8	TCMM	10	500582	501650	503352	503880 2_nonsis		1703	2500	3297	0	3		0	2 (3:5)_(4:4ai)_(4:4bC)_(2:6)_(4:4C)
182 TCMM8	TCMM	10	580104	580583	584062	584131 2 nonsis		3480	3753	4026	0	3		0	2 (6:2)_(5:3)_(4:4aCO)_(5:3a)_(4:4CO)_(5:3a)_(4:4)
209 TCMM8	TCMM	11	624274	624461	628158	628202	3	3698	3813	3927	0	3		1	1 (5:3)_(4:4a(C)_(5:3)_(4:4a)_(5:3)_(6:2)_(5:3a)_(4:4bCO)
214 TCMM8	TCMM	12	184588	185813	188360	188452 2_nonsis		2548	3206	3863	0	3	2	0	2 (5:3)_(3:5)_(5:3)_(3:5)_(4:4CO)
222 TCMM8	TCMM	12	510803	511071	514581	514693 2_nonsis		3511	3700	3889	0	3	2	0	2 (6:2)_(4:4aCO)_(5:3)_(4:4CO)
235 TCMM8	TCMM	13	202482	203606	203948	204520 2 nonsis		343	1190	2037	0	3	2	0	2 (4:4aCO) (4:4CO)
245 TCMM8	TCMM	13	771775	771796	774012	774661	3	2217	2551	2885	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)_(6:2)_(4:4bCO)
265 TCMM8	TCMM	14	317360	317738	318591	318794	3	854	1144	1433	0	3	2	0	2 (3:5)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4CO)
271 TCMM8	TCMM	14	489765	490190	490766	491097	3	577	954	1331	0	3	2	1	1 (4:4aCO)_(5:3)_(3:5)_(4:4bi)_(4:4cCO)
284 TCMM8	TCMM	15	193911	194961	196577	196695 2_nonsis		1617	2200	2783	0	3	2	0	2 (5:3)_(4:4)_(5:3)_(4:4)_(4:4aCO)_(6:2)_(4:4CO)
294 TCMM8	TCMM	15	501502	502195	504786	505006	3	2592	3048	3503	0	3	2	0	2 (2:6)_(4:4)_(5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4CO)
590 TCMM8	TCMM	13	913943	914143	917449	924431	3	3307	6897	10487	0	4	1 NA	NA	5:3_6:2_5:3_7:1_5:3_6:2*_4:4_5:3_6:2*_5:3_6:2
97 TCMN1	TCMN	7	293303	294083	296376	296534	1	2294	2762	3230	1	7	1	0	1 6:2_4:4_6:2
70 TCMN1	TCMN	5	465974	466898	469569	470253	1	2672	3475	4278	1	7	1	0	1 6:2_4:4_6:2
54 TCMN1	TCMN	4	1333527	1333678	1333678	1333799	1	1	136	271	1	10	1	0	1 06:02
79 TCMN1	TCMN	6	210742	210967	210967	211149	1	1	204	406	1	10	1	0	1 06:02
85 TCMN1	TCMN	6	262930	263216	263216	263436	1	1	253	505	1	10	1	0	1 06:02
227 TCMN1	TCMN	13	468637	468937	468937	469276	1	1	320	638	1	10	1	0	1 06:02
58 TCMN1	TCMN	4	1496573	1497025	1497133	1497214	1	109	375	640	1	10	1	0	1 06:02
205 TCMN1	TCMN	12	784477	784820	784820	785227	1	1	375	749	1	10	1	0	1 06:02
83 TCMN1	TCMN	6	249889	249944	250075	251006	1	132	624	1116	1	10	-	0	1 06:02
191 TCMN1	TCMN	12	180860	181545	181616	182125	1	72	668	1264	1	10		0	1 06:02
112 TCMN1	TCMN	7	924899	925190	925313	926236	1	124	730	1336	1	10	1	0	1 06:02

128 TCMN1	TCMN	8	267804	268308	268308	269395	1	1	796	1590	1	10	1	0	1 06:02
160 TCMN1	TCMN	10	207747	208362	208641	209220	1	280	876	1472	1	10	1	0	1 06:02
171 TCMN1	TCMN	11	7067	7529	8031	8317	1	503	876	1249	1	10	1	0	1 06:02
89 TCMN1	TCMN	7	76620	76882	76989	78426	1	108	957	1805	1	10	1	0	1 06:02
49 TCMN1	TCMN	4	846137	847005	847053	848136	1	49	1024	1998	1	10	1	0	1 06:02
230 TCMN1	TCMN	13	668408	668902	669832	670228	1	931	1375	1819	1	10	1	0	1 06:02
198 TCMN1	TCMN	12	369919	370090	370966	371874	1	877	1416	1954	1	10	1	0	1 06:02
180 TCMN1	TCMN	11	504362	504740	505937	506135	1	1198	1485	1772	1	10	1	0	1 06:02
156 TCMN1	TCMN	10	119064	119720	120394	121384	1	675	1497	2319	1	10	1	0	1 06:02
247 TCMN1	TCMN	14	761636	761851	763402	763447	1	1552	1681	1810	1	10	1	0	1 06:02
259 TCMN1	TCMN	15	729941	730011	731576	731874	1	1566	1749	1932	1	10	1	0	1 06:02
172 TCMN1	TCMN	11	98834	99633	101183	101384	1	1551	2050	2549	1	10	1	0	1 06:02
189 TCMN1	TCMN	12	124317	124421	126014	126853	1	1594	2065	2535		10	1	0	1 06:02
11 TCMN1	TCMN	2 7	86293	86416	88022	89351	1	1607	2332	3057	1	10 10	1	0	1 06:02
93 TCMN1 133 TCMN1	TCMN		159705	161545	162215	164025		671	2495	4319	1			0	1 06:02
81 TCMN1	TCMN TCMN	8	491435 236256	491810 236557	494116	494183 239639	1	2307 2510	2527	2747 3382	1	10 10	1	0	1 06:02 1 06:02
114 TCMN1		6			239066		1		2946		1	10	1		
114 TCMN1 127 TCMN1	TCMN TCMN	7 8	965717 253019	966356 253492	968737 256342	969304 256905	1	2382 2851	2984 3368	3586 3885	1	10	1	0	1 06:02 1 06:02
192 TCMN1	TCMN	12	184588	185813	189070	189603	1	3258	4136	5014	1	10	1	0	1 06:02
280 TCMN1	TCMN	16	350221	350341	354840	355341	1	4500	4810	5119	1	10	1	0	1 06:02
210 TCMN1	TCMN	12	1007701	1008390	1012226	1013592	1	3837	4864	5890	1	10	1	0	1 06:02
208 TCMN1	TCMN	12	822848	823256	826618	829421	1	3363	4968	6572	1	10	1	0	1 06:02
3 TCMN1	TCMN	1	88008	90330	95552	95748	1	5223	6481	7739	1	10	1	0	1 06:02
57 TCMN1	TCMN	4	1475397	1476168	1482150	1483110	1	5983	6848	7712	1	10	1	0	1 06:02
1 TCMN1	TCMN	1	41987	42103	42103	42115	1	1	64	127	1	10.1	1	0	1 02:06
264 TCMN1	TCMN	15	978537	978614	978614	978665	1	1	64	127	1	10.1	1	0	1 02:06
270 TCMN1	TCMN	16	64053	64204	64204	64299	1	1	123	245	1	10.1	1	0	1 02:06
27 TCMN1	TCMN	3	148271	148481	148481	148587	1	1	158	315	1	10.1	1	0	1 02:06
221 TCMN1	TCMN	13	235740	235798	235798	236240	1	1	250	499	1	10.1	1	0	1 02:06
196 TCMN1	TCMN	12	301472	301852	301852	302004	1	1	266	531	1	10.1	1	0	1 02:06
50 TCMN1	TCMN	4	863685	863843	863843	864219	1	1	267	533	1	10.1	1	0	1 02:06
109 TCMN1	TCMN	7	839712	839880	839900	840315	1	21	312	602	1	10.1	1	0	1 02:06
254 TCMN1	TCMN	15	466340	466702	466762	467008	1	61	364	667	1	10.1	1	0	1 02:06
235 TCMN1	TCMN	14	43912	44757	44757	44844	1	1	466	931	1	10.1	1	0	1 02:06
77 TCMN1	TCMN	6	184083	184225	184483	184798	1	259	487	714	1	10.1	1	0	1 02:06
104 TCMN1	TCMN	7	599725	599815	599896	600628	1	82	492	902	1	10.1	1	0	1 02:06
64 TCMN1	TCMN	5	65418	65622	65985	66105	1	364	525	686	1	10.1	1	0	1 02:06
96 TCMN1	TCMN	7	288805	289212	289440	289648	1	229	536	842	1	10.1	1	0	1 02:06
288 TCMN1	TCMN	16	712507	713201	713201	713880	1	1	687	1372	1	10.1	1	0	1 02:06
291 TCMN1	TCMN	16	892106	892211	892709	892994	1	499	693	887	1	10.1	1	0	1 02:06
23 TCMN1	TCMN	3	96055	96799	96988	97369	1	190	752	1313	1	10.1	1	0	1 02:06
61 TCMN1	TCMN	4	1520098	1521369	1521427	1521711	1	59	836	1612	1	10.1	1	0	1 02:06
223 TCMN1	TCMN	13	331787	332507	332932	333053	1	426	846	1265	1	10.1	1	0	1 02:06
170 TCMN1	TCMN	10	709369	709746	709747	711083	1	2	858	1713	1	10.1	1	0	1 02:06
211 TCMN1	TCMN	12	1028477	1028782	1028782	1030239	1	1	881	1761	1	10.1	1	0	1 02:06
204 TCMN1	TCMN	12	629690	629914	630568	630870	1	655	917	1179	1	10.1	1	0	1 02:06
135 TCMN1	TCMN	9	33227	33678	34273	34525	1	596	947	1297	1	10.1	1	0	1 02:06
177 TCMN1	TCMN	11	374411	375794	375794	376307	1	1	948	1895	1	10.1	1	0	1 02:06
76 TCMN1	TCMN	6	152137	153281	153344	153974	1	64	950	1836	1	10.1	1	0	1 02:06
215 TCMN1	TCMN	13	91960	92531	92531	93961	1	1	1001	2000	1	10.1	1	0	1 02:06
113 TCMN1	TCMN	7	944010	944981	945166	946206	1	186	1191	2195	1	10.1	1	0	1 02:06
31 TCMN1	TCMN	3	230267	231791	231858	232833	1	68	1317	2565	1	10.1	1	0	1 02:06
56 TCMN1	TCMN	4	1347683	1349666	1350213	1350342	1	548	1603	2658	1	10.1	1	0	1 02:06
32 TCMN1	TCMN	3	235472	236284	236961	238082	1	678	1644	2609	1	10.1	1	0	1 02:06
121 TCMN1	TCMN	8	73929	73993	75768	76067	1	1776	1957	2137	1	10.1	1	0	1 02:06
141 TCMN1	TCMN	9	246806	246926	248675	249032	1	1750	1988	2225	1	10.1	1	0	1 02:06
148 TCMN1	TCMN	9	368217	368576	370178	370992	1	1603	2189	2774	1	10.1	1	0	1 02:06
88 TCMN1	TCMN	7	54056	54723	55957	57501	1	1235	2340	3444	1	10.1	1	0	1 02:06
218 TCMN1	TCMN	13	138042	138343	140328	140757	1	1986	2350	2714	1	10.1	1	0	1 02:06

159 TCMN1	TCMN	10	148569	149059	151245	151609	1	2187	2613	3039	1	10.1	1	0	1 02:06
78 TCMN1	TCMN	6	201959	203115	205431	205702	1	2317	3030	3742	1	10.1	1	0	1 02:06
145 TCMN1	TCMN	9	329125	334329	334775	334877	1	447	3099	5751	1	10.1	1	0	1 02:06
66 TCMN1	TCMN	5	122503	122997	126071	126254	1	3075	3413	3750	1	10.1	1	0	1 02:06
226 TCMN1	TCMN	13	445712	446574	449412	450562	1	2839	3844	4849	1	10.1	1	0	1 02:06
279 TCMN1	TCMN	16	307847	308140	311970	312483	1	3831	4233	4635	1	10.1	1	0	1 02:06
87 TCMN1	TCMN	7	46634	46860	50656	51330	1	3797	4246	4695	1	10.1	1	0	1 02:06
130 TCMN1	TCMN	8	372612	372964	377086	377259	1	4123	4385	4646	1	10.1	1	0	1 02:06
25 TCMN1	TCMN	3	133913	134648	138345	139189	1	3698	4487	5275	1	10.1	1	0	1 02:06
80 TCMN1	TCMN	6	225130	225428	229991	230223	1	4564	4828	5092	1	10.1	1	0	1 02:06
286 TCMN1	TCMN	16	515535	516710	524743	525272	1	8034	8885	9736	1	10.1	1	0	1 02:06
166 TCMN1	TCMN	10	568805	572936	574799	578943 2_nonsis		1864	6001	10137	3	30	1	0	1 2:6_6:2
263 TCMN1	TCMN	15	957717	957993	959820	960152 2_nonsis		1828	2131	2434	3	30	1	0	1 2:6_4:4_6:2
184 TCMN1	TCMN	11	614318	614450	617753	618317 2_nonsis		3304	3651	3998	3	30	1	0	1 6:2_2:6_6:2
241 TCMN1	TCMN	14	388819	389266	392860	393703 2_nonsis		3595	4239	4883	3	30	1	0	1 2:6_6:2_2:6
7 TCMN1	TCMN	1	190429	190880	194952	195144 2_nonsis		4073	4394	4714	3	30	1	0	1 6:2_4:4_2:6
169 TCMN1	TCMN	10	651682	652362	656567	656822 2 nonsis		4206	4673	5139	3	30	1	0	1 6:2_2:6_4:4_2:6
14 TCMN1	TCMN	2	252423	252499	252589	253219 2 nonsis		91	443	795	1	12	1	1	0 (2:6) (4:4) (4:4aCO)
176 TCMN1	TCMN	11	276275	276893	276968	277294 2_nonsis		76	547	1018	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
265 TCMN1	TCMN	15	1006391	1007049	1007685	1008443 2_nonsis		637	1344	2051	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
248 TCMN1	TCMN	15 2	44801 527102	45210	46201	46903 2_nonsis		992	1547	2101	1	12 12	1	1	0 (6:2)_(4:4)_(4:4aCO)
18 TCMN1	TCMN			527601	528108	528212 2_nonsis		508	809	1109					0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
74 TCMN1	TCMN	6	113910	114171	115119	115151 2_nonsis		949	1095	1240	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
229 TCMN1	TCMN	13	663189	663903	664811	665349 2_nonsis		909	1534	2159	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
199 TCMN1	TCMN	12	392012	392046	393632	394020 2_nonsis		1587	1797	2007	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
84 TCMN1	TCMN	6	254411	254477	256222	256299 2_nonsis		1746	1817	1887	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
290 TCMN1	TCMN	16	778795	779145	780767	780924 2_nonsis		1623	1876	2128	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
95 TCMN1	TCMN	7	183038	183709	185240	185280 2_nonsis		1532	1887	2241	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
100 TCMN1	TCMN	7	443342	443602	445067	446059 2_nonsis		1466	2091	2716	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
73 TCMN1	TCMN	6	29993	30249	32259	32355 2_nonsis		2011	2186	2361	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
157 TCMN1	TCMN	10	135448	135579	137767	138413 2_nonsis		2189	2577	2964	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
123 TCMN1	TCMN	8	99112	99909	104568	105227 2_nonsis		4660	5387	6114	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
155 TCMN1	TCMN	10	81409	81757	88033	88303 2_nonsis		6277	6585	6893	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
246 TCMN1	TCMN	14	724364	724425	728369	729511 2_nonsis		3945	4546	5146	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)_(6:2)_(4:4a)
33 TCMN1	TCMN	3	273452	273723	273788	273881 2_nonsis		66	247	428	1	15	1	1	0 (6:2)_(4:4aCO)
55 TCMN1	TCMN	4	1335206	1335398	1335398	1335831 2_nonsis		1	313	624	1	15	1	1	0 (6:2)_(4:4aCO)
46 TCMN1	TCMN	4	775671	775941	776086	776259 2_nonsis		146	367	587	1	15	1	1	0 (6:2)_(4:4aCO)
152 TCMN1	TCMN	9	407154	407232	407232	407953 2_nonsis		1	400	798	1	15	1	1	0 (6:2)_(4:4aCO)
16 TCMN1	TCMN	2	497990	498089	498404	498575 2_nonsis		316	450	584	1	15	1	1	0 (6:2)_(4:4aCO)
34 TCMN1	TCMN	3	275423	275765	275817	276449 2_nonsis		53	539	1025	1	15	1	1	0 (6:2)_(4:4aCO)
281 TCMN1	TCMN	16	366380	366595	367091	367109 2_nonsis		497	613	728	1	15	1	1	0 (6:2)_(4:4aCO)
63 TCMN1	TCMN	5	46984	47089	47165	48256 2_nonsis		77	674	1271	1	15	1	1	0 (6:2)_(4:4aCO)
212 TCMN1	TCMN	13	44503	45656	45656	45908 2_nonsis		1	703	1404	1	15	1	1	0 (6:2)_(4:4aCO)
283 TCMN1	TCMN	16	444920	445448	445985	446142 2_nonsis		538	880	1221	1	15	1	1	0 (6:2)_(4:4aCO)
117 TCMN1	TCMN	7	982112	982548	983164	983358 2_nonsis		617	931	1245	1	15	1	1	0 (6:2)_(4:4aCO)
40 TCMN1	TCMN	4	151093	152053	152269	152758 2_nonsis		217	941	1664	1	15	1	1	0 (6:2)_(4:4aCO)
126 TCMN1	TCMN	8	248808	249226	249527	250465 2_nonsis		302	979	1656	1	15	1	1	0 (6:2)_(4:4aCO)
39 TCMN1	TCMN	4	106143	106727	106899	107966 2_nonsis		173	998	1822	1	15	1	1	0 (6:2)_(4:4aCO)
60 TCMN1	TCMN	4	1505853	1506604	1506992	1507780 2_nonsis		389	1158	1926	1	15	1	1	0 (6:2)_(4:4aCO)
119 TCMN1	TCMN	7	1016232	1017661	1017661	1018655 2_nonsis		1	1212	2422	1	15	1	1	0 (6:2)_(4:4aCO)
140 TCMN1	TCMN	9	240376	242535	242863	243088 2_nonsis		329	1520	2711	1	15	1	1	0 (6:2)_(4:4aCO)
110 TCMN1	TCMN	7	843110	843717	844986	845098 2_nonsis		1270	1629	1987	1	15	1	1	0 (6:2)_(4:4aCO)
285 TCMN1	TCMN	16	459333	460996	461367	462342 2_nonsis		372	1690	3008	1	15	1	1	0 (6:2)_(4:4aCO)
15 TCMN1	TCMN	2	269036	269402	270387	271598 2_nonsis		986	1774	2561	1	15	1	1	0 (6:2)_(4:4aCO)
274 TCMN1	TCMN	16	106600	107304	108552	109014 2_nonsis		1249	1831	2413	1	15	1	1	0 (6:2)_(4:4aCO)
249 TCMN1	TCMN	15	125806	126267	127669	128123 2_nonsis		1403	1860	2316	1	15	1	1	0 (6:2)_(4:4aCO)
6 TCMN1	TCMN	1	166820	166931	167179	170726 2_nonsis		249	2077	3905	1	15	1	1	0 (6:2)_(4:4aCO)
234 TCMN1	TCMN	14	39652	40306	42185	42326 2_nonsis		1880	2277	2673	1	15	1	1	0 (6:2)_(4:4aCO)
252 TCMN1	TCMN	15	323813	323974	325987	326413 2 nonsis		2014	2307	2599	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
2 TCMN1	TCMN	1	80554	80715	82379	83613 2_nonsis		1665	2362	3058	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
2	1 0.1111		55554	00/13	02317	05015 2_HOHAIS		1000	2502	2020		1.5			. ()_(

217 TCMN1	TCMN	13	98310	98939	100803	101176 2_nonsis	1865	2365	2865	1	15	1	1	0 (6:2)_(4:4aCO)
245 TCMN1	TCMN	14	637457	639165	640431	640932 2_nonsis	1267	2371	3474	1	15	1	1	0 (6:2)_(4:4aCO)
151 TCMN1	TCMN	9	390275	393280	393280	395260 2_nonsis	1	2493	4984	1	15	1	1	0 (6:2)_(4:4aCO)
239 TCMN1	TCMN	14	207358	207879	210240	210438 2_nonsis	2362	2721	3079	1	15	1	1	0 (6:2)_(4:4aCO)
30 TCMN1	TCMN	3	223339	228130	228130	230267 2_nonsis	1	3464	6927	1	15	1	1	0 (6:2)_(4:4aCO)
67 TCMN1	TCMN	5	187071	187243	190541	190754 2_nonsis	3299	3491	3682	1	15	1	1	0 (6:2)_(4:4aCO)
101 TCMN1	TCMN	7	450623	451100	454212	454910 2_nonsis	3113	3700	4286	1	15	1	1	0 (6:2)_(4:4aCO)
236 TCMN1	TCMN	14	49011	49737	52925	53465 2_nonsis	3189	3821	4453	1	15	1	1	0 (6:2)_(4:4aCO)
220 TCMN1	TCMN	13	194821	195330	196123	202482 2_nonsis	794	4227	7660	1	15	1	1	0 (6:2)_(4:4aCO)
202 TCMN1	TCMN	12	565625	566307	570142	570914 2_nonsis	3836	4562	5288	1	15	1	1	0 (6:2)_(4:4aCO)
45 TCMN1	TCMN	4	589875	590328	596055	597058 2_nonsis	5728	6455	7182	1	15	1	1	0 (6:2)_(4:4aCO)
243 TCMN1	TCMN	14	503261	504296	510838	511502 2_nonsis	6543	7392	8240	1	15	1	1	0 (6:2)_(4:4aCO)
207 TCMN1	TCMN	12	803833	808209	813365	814017 2_nonsis	5157	7670	10183	1	15	1	1	0 (6:2)_(4:4aCO)
284 TCMN1	TCMN	16	447002	448559	456671	458489 2_nonsis	8113	9800	11486	1	15	1	1	0 (6:2)_(4:4aCO)
237 TCMN1	TCMN	14	103068	103902	117410	117759 2_nonsis	13509	14100	14690	1	15	1	1	0 (6:2)_(4:4aCO)
24 TCMN1	TCMN	3	103649	103757	103813	103955 2_nonsis	57	181	305	1	16	1	1	0 (2:6)_(4:4aCO)
115 TCMN1	TCMN	7	972982	973057	973111	973354 2_nonsis	55	213	371	1	16	1	1	0 (2:6)_(4:4aCO)
71 TCMN1	TCMN	5	498820	499353	499353	499401 2_nonsis	1	291	580	1	16	1	1	0 (2:6)_(4:4aCO)
287 TCMN1	TCMN	16	623051	623271	623271	623671 2_nonsis	1	310	619	1	16	1	1	0 (2:6)_(4:4aCO)
42 TCMN1	TCMN	4	228508	228806	228806	229191 2_nonsis	1	342	682	1	16	1	1	0 (2:6)_(4:4aCO)
136 TCMN1	TCMN	9	47054	47493	47656	47766 2_nonsis	164	438	711	1	16	1	1	0 (2:6)_(4:4aCO)
122 TCMN1	TCMN	8	77306	77625	77625	78204 2_nonsis	1	449	897	1	16	1	1	0 (2:6)_(4:4aCO)
53 TCMN1	TCMN	4	1270902	1271755	1271812	1271871 2_nonsis	58	513	968	1	16	1	1	0 (2:6)_(4:4aCO)
224 TCMN1	TCMN	13	399473	399941	399941	400537 2_nonsis	1	532	1063	1	16	1	1	0 (2:6)_(4:4aCO)
35 TCMN1	TCMN	4	38202	38924	38924	39272 2_nonsis	1	535	1069	1	16	1	1	0 (2:6)_(4:4aCO)
163 TCMN1	TCMN	10	374415	375038	375163	375392 2_nonsis	126	551	976	1	16	1	1	0 (2:6)_(4:4aCO)
276 TCMN1	TCMN	16	193383	193773	193788	194710 2_nonsis	16	671	1326	1	16	1	1	0 (2:6)_(4:4aCO)
185 TCMN1	TCMN	11	619794	620047	620500	620816 2_nonsis	454	738	1021	1	16	1	1	0 (2:6)_(4:4aCO)
158 TCMN1	TCMN	10	144558	144958	145341	145726 2_nonsis	384	776	1167	1	16	1	1	0 (2:6)_(4:4aCO)
278 TCMN1	TCMN	16	303354	304561	304734	304831 2_nonsis	174	825	1476	1	16	1	1	0 (2:6)_(4:4aCO)
244 TCMN1	TCMN	14	546237	546338	546598	547766 2_nonsis	261	895	1528	1	16	1	1	0 (2:6)_(4:4aCO)
125 TCMN1	TCMN	8	185625	186453	186453	187527 2_nonsis	1	951	1901	1	16	1	1	0 (2:6)_(4:4aCO)
233 TCMN1	TCMN	13	860181	861184	861205	862065 2 nonsis	22	953	1883	1	16	1	1	0 (2:6)_(4:4aCO)
91 TCMN1	TCMN	7	91031	91449	91862	92820 2 nonsis	414	1101	1788	1	16	1	1	0 (2:6) (4:4aCO)
94 TCMN1	TCMN	7	168156	169165	169612	170211 2_nonsis	448	1251	2054	1	16	1	1	0 (2:6)_(4:4aCO)
182 TCMN1	TCMN	11	558690	559170	559707	560658 2_nonsis	538	1253	1967	1	16	1	1	0 (2:6)_(4:4aCO)
131 TCMN1	TCMN	8	448997	449277	450359	450521 2_nonsis	1083	1303	1523	1	16	1	1	0 (2:6)_(4:4aCO)
255 TCMN1	TCMN	15	468364	468561	469548	470004 2_nonsis	988	1314	1639	1	16	1	1	0 (2:6)_(4:4aCO)
105 TCMN1	TCMN	7	642731	643019	643019	645676 2_nonsis	1	1473	2944	1	16	1	1	0 (2:6)_(4:4aCO)
256 TCMN1	TCMN	15	487028	487809	488859	488996 2_nonsis	1051	1509	1967	1	16	1	1	0 (2:6)_(4:4aCO)
165 TCMN1	TCMN	10	464438	465282	465795	467010 2 nonsis	514	1543	2571	1	16	1	1	0 (2:6)_(4:4aCO)
181 TCMN1	TCMN	11	534319	535346	536243	536702 2_nonsis	898	1640	2382	1	16	1	1	0 (2:6)_(4:4aCO)
197 TCMN1	TCMN	12	346698	346884	348364	348561 2_nonsis	1481	1672	1862	1	16	1	1	0 (2:6)_(4:4aCO)
275 TCMN1	TCMN	16	141675	141867	143532	143626 2_nonsis	1666	1808	1950	1	16	1	1	0 (2:6)_(4:4aCO)
106 TCMN1	TCMN	7	703857	705631	706439	706722 2_nonsis	809	1837	2864	1	16	1	1	0 (2:6)_(4:4aCO)
203 TCMN1	TCMN	12	625064	627007	627543	628274 2_nonsis	537	1873	3209	1	16	1	1	0 (2:6)_(4:4aCO)
209 TCMN1	TCMN	12	983190	986295	986469	986946 2_nonsis	175	1965	3755	1	16	1	1	0 (2:6)_(4:4aCO)
52 TCMN1	TCMN	4	1056739	1057249	1058864	1059094 2_nonsis	1616	1985	2354	1	16	1	1	0 (2:6)_(4:4aCO)
150 TCMN1	TCMN	9	384922	385024	387056	387285 2 nonsis	2033	2198	2362	1	16	1	1	0 (2:6)_(4:4aCO)
179 TCMN1	TCMN	11	471663	472114	474020	474395 2_nonsis	1907	2319	2731	1	16	1	1	0 (2:6)_(4:4aCO)
103 TCMN1	TCMN	7	557181	557367	559498	559914 2_nonsis	2132	2432	2732	1	16	1	1	0 (2:6)_(4:4aCO)
29 TCMN1	TCMN	3	210635	211159	212063	214762 2_nonsis	905	2516	4126	1	16	1	1	0 (2:6)_(4:4aCO)
190 TCMN1	TCMN	12	168352	168861	171076	171335 2_nonsis	2216	2599	2982	1	16	1	1	0 (2:6)_(4:4aCO)
262 TCMN1	TCMN	15	897794	898703	900879	900929 2_nonsis	2177	2656	3134	1	16	1	1	0 (2:6)_(4:4aCO)
174 TCMN1	TCMN	11	168746	169345	171261	172151 2_nonsis	1917	2661	3404	1	16	1	1	0 (2:6)_(4:4aCO)
51 TCMN1	TCMN	4	866041	866146	868704	869203 2_nonsis	2559	2860	3161	1	16	1	1	0 (2:6)_(4:4aCO)
167 TCMN1	TCMN	10	582845	583178	585466	586827 2_nonsis	2289	3135	3981	1	16	1	1	0 (2:6)_(4:4aCO)
134 TCMN1	TCMN	8	521047	521132	524576	524611 2_nonsis	3445	3504	3563	1	16	1	1	0 (2:6)_(4:4aCO)
72 TCMN1	TCMN	5	500606	501719	504481	505113 2_nonsis	2763	3635	4506	1	16	1	1	0 (2:6)_(4:4aCO)
102 TCMN1	TCMN	7	473951	474282	477384	478308 2_nonsis	3103	3730	4356	1	16	1	1	0 (2:6)_(4:4aCO)
		•								-	-			

258 TCMN1	TCMN	15	659154	660208	662842	664181 2_nonsis	2635	3831	5026	1	16	1	1	0 (2:6)_(4:4aCO)
277 TCMN1	TCMN	16	195918	196451	200515	200755 2_nonsis	4065	4451	4836	1	16	1	1	0 (2:6)_(4:4aCO)
260 TCMN1	TCMN	15	795030	795362	799553	800155 2_nonsis	4192	4658	5124	1	16	1	1	0 (2:6)_(4:4aCO)
44 TCMN1	TCMN	4	582739	583013	587057	588381 2_nonsis	4045	4843	5641	1	16	1	1	0 (2:6)_(4:4aCO)
153 TCMN1	TCMN	9	412588	412645	417395	417709 2_nonsis	4751	4936	5120	1	16	1	1	0 (2:6)_(4:4aCO)
168 TCMN1	TCMN	10	589894	590704	590704	601293 2_nonsis	1	5700	11398	1	16	1	1	0 (2:6)_(4:4aCO)
47 TCMN1	TCMN	4	825422	831279	831279	837275 2_nonsis	1	5927	11852	1	16	1	1	0 (2:6)_(4:4aCO)
183 TCMN1	TCMN	11	587530	587779	593181	594179 2_nonsis	5403	6026	6648	1	16	1	1	0 (2:6)_(4:4aCO)
161 TCMN1	TCMN	10	233724	233805	240364	240782 2_nonsis	6560	6809	7057	1	16	1	1	0 (2:6)_(4:4aCO)
108 TCMN1	TCMN	7	796858	798046	805722	806818 2_nonsis	7677	8818	9959	1	16	1	1	0 (2:6)_(4:4aCO)
289 TCMN1	TCMN	16	775448	775673	775448	775673 2_nonsis	0	112	224	1	100	1	1	0 (4:4aCO)
266 TCMN1	TCMN	15	1031754	1032017	1031754	1032017 2_nonsis	0	131	262	1	100	1	1	0 (4:4aCO)
17 TCMN1	TCMN	2	515316	515610	515316	515610 2_nonsis	0	147	293	1	100	1	1	0 (4:4aCO)
111 TCMN1	TCMN	7	898107	898653	898107	898653 2_nonsis	0	273	545	1	100	1	1	0 (4:4aCO)
173 TCMN1	TCMN	11	106973	107555	106973	107555 2_nonsis	0	291	581	1	100	1	1	0 (4:4aCO)
222 TCMN1	TCMN	13	237159	237882	237159	237882 2_nonsis	0	361	722	1	100	1	1	0 (4:4aCO)
216 TCMN1	TCMN	13	96022	96832	96022	96832 2_nonsis	0	405	809	1	100	1	1	0 (4:4aCO)
271 TCMN1	TCMN	16	66527	67491	66527	67491 2_nonsis	0	482	963	1	100	1	1	0 (4:4aCO)
116 TCMN1	TCMN	7	979753	980911	979753	980911 2_nonsis	0	579	1157	1	100	1	1	0 (4:4aCO)
187 TCMN1	TCMN	12	38737	39963	38737	39963 2_nonsis	0	613	1225	1	100	1	1	0 (4:4aCO)
48 TCMN1	TCMN	4	844304	845613	844304	845613 2_nonsis	0	654	1308	1	100	1	1	0 (4:4aCO)
272 TCMN1	TCMN	16	77509	78895	77509	78895 2_nonsis	0	693	1385	1	100	1	1	0 (4:4aCO)
282 TCMN1	TCMN	16	421124	422575	421124	422575 2_nonsis	0	725	1450	1	100	1	1	0 (4:4aCO)
10 TCMN1	TCMN	2	67361	68817	67361	68817 2_nonsis	0	728	1455	1	100	1	1	0 (4:4aCO)
26 TCMN1	TCMN	3	141799	143316	141799	143316 2_nonsis	0	758	1516	1	100	1	1	0 (4:4aCO)
59 TCMN1	TCMN	4	1503574	1505138	1503574	1505138 2_nonsis	0	782	1563	1	100	1	1	0 (4:4aCO)
188 TCMN1	TCMN	12	40119	41721	40119	41721 2_nonsis	0	801	1601	1	100	1	1	0 (4:4aCO)
267 TCMN1	TCMN	15	1069426	1071028	1069426	1071028 2_nonsis	0	801	1601	1	100	1	1	0 (4:4aCO)
206 TCMN1	TCMN	12	800672	802287	800672	802287 2_nonsis	0	807	1614	1	100	1	1	0 (4:4aCO)
154 TCMN1	TCMN	10	26958	28612	26958	28612 2_nonsis	0	827	1653	1	100	1	1	0 (4:4aCO)
144 TCMN1	TCMN	9	320712	323343	320712	323343 2_nonsis	0	1315	2630	1	100	1	1	0 (4:4aCO)
37 TCMN1	TCMN	4	43482	46608	43482	46608 2_nonsis	0	1563	3125	1	100	1	1	0 (4:4aCO)
195 TCMN1	TCMN	12	262367	265975	262367	265975 2_nonsis	0	1804	3607	1	100	1	1	0 (4:4aCO)
5 TCMN1	TCMN	1	131303	135319	131303	135319 2_nonsis	0	2008	4015	1	100	1	1	0 (4:4aCO)
228 TCMN1	TCMN	13	469552	473747	469552	473747 2_nonsis	0	2097	4194	1	100	1	1	0 (4:4aCO)
4 TCMN1	TCMN	1	121235	128637	121235	128637 2_nonsis	0	3701	7401	1	100	1	1	0 (4:4aCO)
240 TCMN1	TCMN	14	235424	235706	240152	240414 2_nonsis	4447	4718	4989	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
164 TCMN1	TCMN	10	377800	378111	383067	383417 2_nonsis	4957	5287	5616	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
200 TCMN1	TCMN	12	404478	405334	413032	413115 2_nonsis	7699	8168	8636	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
68 TCMN1	TCMN	5	220166	220626	221827	222207 2_nonsis	1202	1621	2040	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
28 TCMN1	TCMN	3	165706	165982	167541	167741 2_nonsis	1560	1797	2034	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
162 TCMN1	TCMN	10	367642	368244	370407	371132 2_nonsis	2164	2827	3489	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
178 TCMN1	TCMN	11	403561	404302	406489	407067 2_nonsis	2188	2847	3505	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
186 TCMN1	TCMN	11	629639	629864	632117	633545 2_nonsis	2254	3080	3905	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
273 TCMN1	TCMN	16	88834	89075	93022	93712 2_nonsis	3948	4413	4877	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
43 TCMN1	TCMN	4	367564	368207	372757	372821 2_nonsis	4551	4904	5256	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
257 TCMN1	TCMN	15	505622	505999	514857	516270 2_nonsis	8859	9753	10647	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
292 TCMN1	TCMN	16	912647	913446	915200	915973 2_nonsis	1755	2540	3325	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
69 TCMN1	TCMN	5	385850	385956	391914	392090 2_nonsis	5959	6099	6239	3	20	1	1	0 (2:6)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
142 TCMN1	TCMN	9	280331	280761	292870	296453 2_nonsis	12110	14116	16121	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(2:6)_(4:4aCO)
175 TCMN1	TCMN	11	211408	211676	213763	213930 2_nonsis	2088	2305	2521	3	20	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(2:6)_(4:4a)
238 TCMN1	TCMN	14	155435	155903	161474	161874 2_nonsis	5572	6005	6438	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
124 TCMN1	TCMN	8	135729	135947	139506	141400 2_sis	3560	4615	5670	0	1	2	0	2 (2:6)_(0:8)_(4:4)
139 TCMN1	TCMN	9	158276	160453	165039	165195 2_sis	4587	5753	6918	0	1	2	0	2 (0:8)_(2:6)_(4:4)_(2:6)_(4:4)
194 TCMN1	TCMN	12	252885	253274	256406	256727 2_sis	3133	3487	3841	0	1	2	0	2 (0:8)_(2:6)_(4:4)
232 TCMN1	TCMN	13	828518	828927	829545	830002 2_sis	619	1051	1483	0	1	2	0	2 (0:8)_(2:6)_(4:4)
253 TCMN1	TCMN	15	408540	408953	415035	415710 2_sis	6083	6626	7169	0	1	2	0	2 (2:6)_(0:8)_(2:6a)_(4:4)
8 TCMN1	TCMN	2	26161	27032	28960	35660	3 1929	5714	9498	0	2	2	1	1 (8:0)_(4:4aCO)
9 TCMN1	TCMN	2	44047	44210	48762	49603	3 4553	5054	5555	0	2	2	1	1 (6:2)_(4:4)_(2:6)_(6:2a)_(4:4aCO)
12 TCMN1	TCMN	2	113452	113971	120585	121110	3 6615	7136	7657	0	2	2	1	1 (8:0)_(6:2)_(8:0)_(6:2)_(4:4aCO)

20 TCMN1	TCMN	2	783892	784213	786589	789930	3	2377	4207	6037	0	2	2	1	1 (2:6)_(2:6a)_(0:8)_(2:6a)_(0:8)_(4:4aCO)
22 TCMN1	TCMN	3	71310	71391	79460	79758	3	8070	8259	8447	0	2	2	1	1 (2:6)_(4:4)_(2:6)_(0:8)_(2:6a)_(6:2)_(4:4aCO)
38 TCMN1	TCMN	4	57910	58341	62205	62366	3	3865	4160	4455	0	2	2	1	1 (2:6)_(6:2)_(8:0)_(4:4aCO)
62 TCMN1	TCMN	5	40898	41432	45019	45548	4	3588	4119	4649	0	2	2	1	1 (2:6)_(6:2)_(8:0)_(6:2a)_(4:4aCO)
75 TCMN1	TCMN	6	116839	118034	123435	123676	3	5402	6119	6836	0	2	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4a)
82 TCMN1	TCMN	6	241206	241524	243667	243783	3	2144	2360	2576	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
86 TCMN1	TCMN	7	40619	40984	43798	44099	3	2815	3147	3479	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
90 TCMN1	TCMN	7	79203	80122	85628	86321	3	5507	6312	7117	0	2	2	1	1 (6:2)_(8:0)_(6:2)_(4:4aCO)
98 TCMN1	TCMN	7	321824	322208	331760	332360	3	9553	10044	10535	0	2	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4a)
120 TCMN1	TCMN	8	36778	37084	38190	38418	3	1107	1373	1639	0	2	2	1	1 (6:2)_(4:4)_(2:6)_(4:4aCO)
137 TCMN1	TCMN	9	54480	55071	57173	57568	3	2103	2595	3087	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)
143 TCMN1	TCMN	9	296453	297675	299287	302738	3	1613	3949	6284	0	2	2	1	1 (2:6)_(4:4aCO)
147 TCMN1	TCMN	9	359494	359599	363925	364352	4	4327	4592	4857	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(2:6)_(4:4aCO)
193 TCMN1	TCMN	12	199043	199425	201727	202093	3	2303	2676	3049	0	2	2	1	1 (6:2)_(8:0)_(4:4aCO)
213 TCMN1	TCMN	13	71397	71867	73368	75046	3	1502	2575	3648	0	2	2	1	1 (2:6)_(4:4aCO)
214 TCMN1	TCMN	13	83417	83709	83964	84058	3	256	448	640	0	2	2	1	1 (6:2)_(4:4aCO)
219 TCMN1	TCMN	13	145063	146198	146198	149583	3	1	2260	4519	0	2	2	1	1 (2:6)_(4:4aCO)
231 TCMN1	TCMN	13	795326	795946	800977	801034	3	5032	5370	5707	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
268 TCMN1	TCMN	16	34674	35338	43958	44051	3	8621	8999	9376	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
293 TCMN1	TCMN	16	918448	918658	920048	920779	3	1391	1861	2330	0	2	2	1	1 (6:2)_(4:4aCO)_(2:6)_(0:8)_(2:6)_(4:4a)
13 TCMN1	TCMN	2	123008	123103	125786	125843 2_nonsis		2684	2759	2834	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4CO)_(6:2)_(4:4aCO)
19 TCMN1	TCMN	2	659928	660972	668082	669586	3	7111	8384	9657	0	3	2	0	2 (6:2)_(6:2a)_(4:4aCO)_(4:4CO)
21 TCMN1	TCMN	3	40637	40987	43346	43513	4	2360	2618	2875	0	3	2	2	0 (2:6)_(4:4aCO)_(4:4bCO)_(2:6a)_(4:4b)
36 TCMN1	TCMN	4	41360	41423	43075	43335	3	1653	1814	1974	0	3	2	1	1 (2:6)_(4:4aCO)_(4:4bCO)
41 TCMN1	TCMN	4	154129	155368	167826	169331	3	12459	13830	15201	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)
65 TCMN1	TCMN	5	103937	104269	105493	105743 2_nonsis		1225	1515	1805	0	3	2	1	1 (6:2)_(4:4aCO)_(4:4aCO)
92 TCMN1	TCMN	7	93397	94650	94650	96070	3	1	1337	2672	0	3	2	1	1 (4:4aCO)_(4:4bCO)
107 TCMN1	TCMN	7	763517	765055	768165	768310	4	3111	3952	4792	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(2:6a)_(4:4bCO)
129 TCMN1	TCMN	8	326461	327083	329634	330227	3	2552	3159	3765	0	3	2	1	1 (4:4aCO)_(8:0)_(6:2)_(4:4CO)_(6:2)_(4:4aCO)
132 TCMN1	TCMN	8	483502	483796	488588	489445	4	4793	5368	5942	0	3	2	0	2 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
138 TCMN1	TCMN	9	98294	98672	100530	102247 2_nonsis		1859	2906	3952	0	3	2	0	2 (2:6)_(4:4)_(2:6)_(4:4aCO)_(4:4CO)
146 TCMN1	TCMN	9	338145	338225	348958	349855	4	10734	11222	11709	0	3	2	1	1 (2:6)_(4:4)_(6:2)_(2:6a)_(4:4aCO)_(6:2a)_(8:0)_(6:2)_(4:4bCO)_(6:2)_(4:4CO)
149 TCMN1	TCMN	9	382403	382459	383079	383427	3	621	822	1023	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4bCO)
201 TCMN1	TCMN	12	538633	539092	547203	548297	3	8112	8888	9663	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
225 TCMN1	TCMN	13	406917	408897	410894	411113	4	1998	3097	4195	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2a)_(4:4bCO)
242 TCMN1	TCMN	14	416620	416832	420961	421631	3	4130	4570	5010	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4bCO)
250 TCMN1	TCMN	15	190009	191548	192333	193685 2_nonsis		786	2231	3675	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
251 TCMN1	TCMN	15	199130	199433	214878	215265	4	15446	15790	16134	0	3	2	2	0 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)_(6:2a)_(4:4b)
261 TCMN1	TCMN	15	838603	839012	840426	840781	3	1415	1796	2177	0	3	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
269 TCMN1	TCMN	16	46921	46996	48911	48928	3	1916	1961	2006	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
129 TCMN2	TCMN	15	900141	900879	905801	906405	1	4923	5593	6263	1	8	1	0	1 2:6_4:4_2:6
123 TCMN2	TCMN	15	216376	216399	216399	216499	1	1	62	122	1	10	1	0	1 06:02
68 TCMN2	TCMN	9	30609	30632	30632	30845	1	1	118	235	1	10	1	0	1 06:02
11 TCMN2	TCMN	2	476602	476950	477263	477343	1	314	527	740	1	10	1	0	1 06:02
61 TCMN2	TCMN	8	10046	10240	10670	10789	1	431	587	742	1	10	1	0	1 06:02
14 TCMN2	TCMN	2	673785	674021	676125	676899	1	2105	2609	3113	1	10	1	0	1 06:02
47 TCMN2	TCMN	5	521881	523683	525075	525798	1	1393	2655	3916	1	10	1	0	1 06:02
1 TCMN2	TCMN	1	68551	71312	71616	73633	1	305	2693	5081	1	10	1	0	1 06:02
136 TCMN2	TCMN	16	649916	650861	653932	654370	1	3072	3763	4453	1	10	1	0	1 06:02
17 TCMN2	TCMN	2	714638	715332	718805	719463	1	3474	4149	4824	1	10	1	0	1 06:02
25 TCMN2	TCMN	4	126408	127476	131084	131276	1	3609	4238	4867	1	10	1	0	1 06:02
79 TCMN2	TCMN	10	377800	378111	384523	385172	1	6413	6892	7371	1	10	1	0	1 06:02
26 TCMN2	TCMN	4	173074	173380	180800	181678	1	7421	8012	8603	1	10	1	0	1 06:02
70 TCMN2	TCMN	9	92966	92996	92996	92999	1	1	17	32	1	10.1	1	0	1 02:06
49 TCMN2	TCMN	6	82265	82465	82465	82648	1	1	192	382	1	10.1	1	0	1 02:06
37 TCMN2	TCMN	4	1279422	1279680	1280121	1280319	1	442	669	896	1	10.1	1	0	1 02:06
101 TCMN2	TCMN	13	21556	21881	22318	22495	1	438	688	938	1	10.1	1	0	1 02:06
100 TCMN2	TCMN	12	1011952	1012226	1012226	1013592	1	1	820	1639	1	10.1	1	0	1 02:06
2 TCMN2	TCMN	1	130776	130897	131303	132066	1	407	848	1289	1	10.1		0	1 02:06
130 TCMN2	TCMN	15	942759	943167	943688	944039	1	522	901	1279	1	10.1	1	0	1 02:06

127 TCMN2	TCMN	15	660805	661971	662365	662487	1	395	1038	1681	1	10.1	1	0	1 02:06
67 TCMN2	TCMN	8	513034	514468	515162	515676	1	695	1668	2641	1	10.1	1	0	1 02:06
34 TCMN2	TCMN	4	847053	848136	848341	850484	1	206	1818	3430	1	10.1	1	0	1 02:06
87 TCMN2	TCMN	11	308425	308754	310373	310507	1	1620	1851	2081	1	10.1	1	0	1 02:06
102 TCMN2	TCMN	13	26434	26922	28623	28695	1	1702	1981	2260	1	10.1	1	0	1 02:06
110 TCMN2	TCMN	13	627290	627607	629399	629793	1	1793	2148	2502	1	10.1	1	0	1 02:06
128 TCMN2	TCMN	15	786510	786645	788305	789501	1	1661	2326	2990	1	10.1	1	0	1 02:06
82 TCMN2	TCMN	10	718719	720598	720763	723650	1	166	2548	4930	1	10.1	1	0	1 02:06
138 TCMN2	TCMN	16	709031	709506	711691	712507	1	2186	2831	3475	1	10.1	1	0	1 02:06
119 TCMN2	TCMN	14	455102	456295	458618	459935	1	2324	3578	4832	1	10.1	1	0	1 02:06
66 TCMN2	TCMN	8	470753	470864	475549	475984	1	4686	4958	5230	1	10.1	1	0	1 02:06
12 TCMN2	TCMN	2	510710	512166	518451	518569	1	6286	7072	7858	1	10.1	1	0	1 02:06
59 TCMN2	TCMN	7	635861	636413	643019	645676	1	6607	8211	9814	1	10.1	1	0	1 02:06
120 TCMN2	TCMN	14	536942	537303	545697	545731	1	8395	8592	8788	1	10.1	1	0	1 02:06
93 TCMN2	TCMN	12	565625	566307	574726	574950	1	8420	8872	9324	1	10.1	1	0	1 02:06
137 TCMN2	TCMN	16	683285	684164	692741	693047	1	8578	9170	9761	1	10.1	1	0	1 02:06
107 TCMN2	TCMN	13	404381	404404	427114	428830	1	22711	23580	24448	1	10.1	1	0	1 02:06
27 TCMN2	TCMN	4	289475	290079	294427	295520 2_nonsis		4349	5197	6044	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
113 TCMN2	TCMN	13	801823	801852	803211	803536 2_nonsis		1360	1536	1712	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
42 TCMN2	TCMN	5	233356	234239	235495	235642 2_nonsis		1257	1771	2285	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
126 TCMN2	TCMN	15	630587	632823	634307	634570 2_nonsis		1485	2734	3982	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
29 TCMN2	TCMN	4	385243	385363	385586	385750 2_nonsis		224	365	506	1	15	1	1	0 (6:2)_(4:4aCO)
104 TCMN2	TCMN	13	83417	83709	83964	84058 2_nonsis		256	448	640	1	15	1	1	0 (6:2)_(4:4aCO)
90 TCMN2	TCMN	11	612809	613087	613259	613583 2_nonsis		173	473	773	1	15	1	1	0 (6:2)_(4:4aCO)
140 TCMN2	TCMN	16	858788	859250	859250	860233 2_nonsis		1	723	1444	1	15	1	1	0 (6:2)_(4:4aCO)
9 TCMN2	TCMN	2	340843	341186	341632	341930 2_nonsis		447	767	1086	1	15	1	1	0 (6:2)_(4:4aCO)
65 TCMN2	TCMN	8	461593	461762	461762	463767 2_nonsis		1	1087	2173	1	15	1	1	0 (6:2)_(4:4aCO)
24 TCMN2	TCMN	4	122512	123344	123436	124765 2_nonsis		93	1173	2252	1	15	1	1	0 (6:2)_(4:4aCO)
75 TCMN2	TCMN	10	22158	22350	22914	24205 2_nonsis		565	1306	2046	1	15	1	1	0 (6:2)_(4:4aCO)
139 TCMN2	TCMN	16	795316	796263	797247	797530 2_nonsis		985	1599	2213	1	15	1	1	0 (6:2)_(4:4aCO)
132 TCMN2	TCMN	16	108114	108552	109647	110433 2_nonsis		1096	1707	2318	1	15	1	1	0 (6:2)_(4:4aCO)
41 TCMN2	TCMN	5	199337	200053	201006	201879 2_nonsis		954	1748	2541	1	15	1	1	0 (6:2)_(4:4aCO)
73 TCMN2	TCMN	9	299287	302738	302738	302793 2_nonsis		1	1753	3505	1	15	1	1	0 (6:2)_(4:4aCO)
5 TCMN2	TCMN	2	36837	39234	39607	40029 2_nonsis		374	1783	3191	1	15	1	1	0 (6:2)_(4:4aCO)
112 TCMN2	TCMN	13	748748	750177	751108	751553 2_nonsis		932	1868	2804	1	15	1	1	0 (6:2)_(4:4aCO)
89 TCMN2	TCMN	11	518221	518577	520682	521296 2_nonsis		2106	2590	3074	1	15	1	1	0 (6:2)_(4:4aCO)
76 TCMN2	TCMN	10	95205	96041	98106	99116 2_nonsis		2066	2988	3910	1	15	1	1	0 (6:2)_(4:4aCO)
30 TCMN2	TCMN	4	550893	551387	553867	554904 2_nonsis		2481	3246	4010	1	15	1	1	0 (6:2)_(4:4aCO)
15 TCMN2	TCMN	2	695479	699461	701832	702521 2_nonsis		2372	4707	7041	1	15	1	1	0 (6:2)_(4:4aCO)
62 TCMN2	TCMN	8	122169	122633	126792	128125 2_nonsis		4160	5058	5955	1	15	1	1	0 (6:2)_(4:4aCO)
13 TCMN2	TCMN	2	658507	658797	662444	666708 2_nonsis		3648	5924	8200	1	15	1	1	0 (6:2)_(4:4aCO)
81 TCMN2	TCMN	10	635321	640236	643946	644548 2_nonsis		3711	6469	9226	1	15	1	1	0 (6:2)_(4:4aCO)
7 TCMN2	TCMN	2	248980	250316	259158	259235 2_nonsis		8843	9549	10254	1	15	1	1	0 (6:2)_(4:4aCO)
99 TCMN2	TCMN	12	887437	891755	930773	931517 2_nonsis		39019	41549	44079	1	15	1	1	0 (6:2)_(4:4aCO)
35 TCMN2	TCMN	4	907845	908202	908284	908478 2_nonsis		83	358	632	1	16	1	1	0 (2:6)_(4:4aCO)
53 TCMN2	TCMN	6	218261	218594	218751	219393 2_nonsis		158	645	1131	1	16	1	1	0 (2:6)_(4:4aCO)
125 TCMN2	TCMN	15	546837	547266	547477	547969 2_nonsis		212	672	1131	1	16	1	1	0 (2:6)_(4:4aCO)
50 TCMN2	TCMN	6	110959	111466	111948	111956 2_nonsis		483	740	996	1	16	1	1	0 (2:6)_(4:4aCO)
108 TCMN2	TCMN	13	559794	560428	560428	561397 2_nonsis		1	802	1602	1	16	1	1	0 (2:6)_(4:4aCO)
122 TCMN2	TCMN	15	109584	110892	110892	111208 2_nonsis		1	812	1623	1	16	1	1	0 (2:6)_(4:4aCO)
36 TCMN2	TCMN	4	1076035	1077398	1077428	1077787 2_nonsis		31	891	1751	1	16	1	1	0 (2:6)_(4:4aCO)
51 TCMN2	TCMN	6	113910	114171	114918	115088 2_nonsis		748	963	1177	1	16	1	1	0 (2:6)_(4:4aCO)
28 TCMN2	TCMN	4	314500	315119	315175	316669 2_nonsis		57	1113	2168	1	16	1	1	0 (2:6)_(4:4aCO)
115 TCMN2	TCMN	14	215285	216026	216647	216919 2_nonsis		622	1128	1633	1	16	1	1	0 (2:6)_(4:4aCO)
134 TCMN2	TCMN	16	447002	448559	448839	448989 2_nonsis		281	1134	1986	1	16	1	1	0 (2:6)_(4:4aCO)
118 TCMN2	TCMN	14	439088	440569	440622	441344 2_nonsis		54	1155	2255	1	16	1	1	0 (2:6)_(4:4aCO)
96 TCMN2	TCMN	12	715235	715595	716777	716852 2_nonsis		1183	1400	1616	1	16	1	1	0 (2:6)_(4:4aCO)
18 TCMN2	TCMN	2	794237	794296	795692	795756 2_nonsis		1397	1458	1518	1	16	1	1	0 (2:6)_(4:4aCO)
83 TCMN2	TCMN	11	80353	80724	81532	82469 2_nonsis		809	1462	2115	1	16	1	1	0 (2:6)_(4:4aCO)
91 TCMN2	TCMN	12	51956	53039	54071	54226 2_nonsis		1033	1651	2269	1	16	1	1	0 (2:6)_(4:4aCO)

106 TCMN2	TCMN	13	315598	316408	317836	318108 2_nonsis		1429	1969	2509	1	16	1	1	0 (2:6)_(4:4aCO)
46 TCMN2	TCMN	5	489026	489879	491556	491806 2_nonsis		1678	2229	2779	1	16	1	1	0 (2:6)_(4:4aCO)
114 TCMN2	TCMN	14	78386	79032	80433	81575 2_nonsis		1402	2295	3188	1	16	1	1	0 (2:6)_(4:4aCO)
133 TCMN2	TCMN	16	245496	245843	248123	249056 2_nonsis		2281	2920	3559	1	16	1	1	0 (2:6)_(4:4aCO)
116 TCMN2	TCMN	14	230681	230897	233897	234026 2_nonsis		3001	3173	3344	1	16	1	1	0 (2:6)_(4:4aCO)
98 TCMN2	TCMN	12	882746	883237	885989	886838 2_nonsis		2753	3422	4091	1	16	1	1	0 (2:6)_(4:4aCO)
22 TCMN2	TCMN	3	240922	241753	243219	246581 2_nonsis		1467	3563	5658	1	16	1	1	0 (2:6)_(4:4aCO)
38 TCMN2	TCMN	4	1352299	1353241	1355944	1357024 2_nonsis		2704	3714	4724	1	16	1	1	0 (2:6)_(4:4aCO)
77 TCMN2	TCMN	10	197119	197244	197272	204724 2_nonsis		29	3817	7604	1	16	1	1	0 (2:6)_(4:4aCO)
43 TCMN2	TCMN	5	360556	361242	364465	365762 2_nonsis		3224	4215	5205	1	16	1	1	0 (2:6)_(4:4aCO)
95 TCMN2	TCMN	12	688789	689216	693687	693756 2_nonsis		4472	4719	4966	1	16	1	1	0 (2:6)_(4:4aCO)
92 TCMN2	TCMN	12	119524	120550	124986	126014 2_nonsis		4437	5463	6489	1	16	1	1	0 (2:6)_(4:4aCO)
58 TCMN2	TCMN	7	584527	584635	589840	590527 2_nonsis		5206	5603	5999	1	16	1	1	0 (2:6)_(4:4aCO)
39 TCMN2	TCMN	5	39651	40307	45665	46022 2_nonsis		5359	5865	6370	1	16	1	1	0 (2:6)_(4:4aCO)
31 TCMN2	TCMN	4	667858	667986	667858	667986 2_nonsis		0	64	127	1	100	1	1	0 (4:4aCO)
105 TCMN2	TCMN	13	172679	172925	172679	172925 2_nonsis		0	123	245	1	100	1	1	0 (4:4aCO)
84 TCMN2	TCMN	11	91796	92069	91796	92069 2_nonsis		0	136	272	1	100	1	1	0 (4:4aCO)
16 TCMN2	TCMN	2	713038	713316	713038	713316 2_nonsis		0	139	277	1	100	1	1	0 (4:4aCO)
33 TCMN2	TCMN	4	765017	765331	765017	765331 2_nonsis		0	157	313	1	100	1	1	0 (4:4aCO)
10 TCMN2	TCMN	2	373012	373340	373012	373340 2 nonsis		0	164	327	1	100	1	1	0 (4:4aCO)
40 TCMN2	TCMN	5	98507	98854	98507	98854 2_nonsis		0	173	346	1	100	1	1	0 (4:4aCO)
45 TCMN2	TCMN	5	398975	399399	398975	399399 2_nonsis		0	212	423	1	100	1	1	0 (4:4aCO)
4 TCMN2	TCMN	2	24379	24823	24379	24823 2_nonsis		0	222	443	1	100	1	1	0 (4:4aCO)
111 TCMN2	TCMN	13	746448	746979	746448	746979 2_nonsis		0	265	530	1	100	1	1	0 (4:4aCO)
44 TCMN2	TCMN	5	388982	389531	388982	389531 2_nonsis		0	274	548	1	100	1	1	0 (4:4aCO)
78 TCMN2	TCMN	10	372633	373437	372633	373437 2_nonsis		0	402	803	1	100	1	1	0 (4:4aCO)
85 TCMN2	TCMN	11	119339	120268	119339	120268 2_nonsis		0	464	928	1	100	1	1	0 (4:4aCO)
8 TCMN2	TCMN	2	304384	305499	304384	305499 2_nonsis		0	557	1114	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
54 TCMN2	TCMN	7	122622	123839	122622	123839 2_nonsis		0	608	1216	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
88 TCMN2	TCMN	11	374411	375794	374411	375794 2 nonsis		0	691	1382	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
109 TCMN2	TCMN	13	576343	577768	576343	577768 2_nonsis		0	712	1424	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
97 TCMN2	TCMN	12	791142	793555	791142	793555 2_nonsis		0	1206	2412	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
		8						0			1				
64 TCMN2	TCMN		331868	334431	331868	334431 2_nonsis			1281	2562		100	1	1	0 (4:4aCO)
72 TCMN2 23 TCMN2	TCMN TCMN	9	185865	188629	185865	188629 2_nonsis		0	1382	2763	1	100 100	1	1	0 (4:4aCO)
		4	43482	46608	43482	46608 2_nonsis			1563	3125			1		0 (4:4aCO)
3 TCMN2	TCMN	1	132066	135319	132066	135319 2_nonsis		0	1626	3252	1	100	1	1	0 (4:4aCO)
55 TCMN2	TCMN	7	226711	230011	226711	230011 2_nonsis		0	1650	3299		100	1	1	0 (4:4aCO)
20 TCMN2	TCMN	3	171207	174943	171207	174943 2_nonsis		0	1868	3735	1	100	1	1	0 (4:4aCO)
121 TCMN2	TCMN	14	682580	686654	682580	686654 2_nonsis		0	2037	4073	1	100	1	1	0 (4:4aCO)
103 TCMN2	TCMN	13	31154	35547	31154	35547 2_nonsis		0	2196	4392	1	100	1	1	0 (4:4aCO)
48 TCMN2	TCMN	6	53398	58238	53398	58238 2_nonsis		0	2420	4839	1	100	1	1	0 (4:4aCO)
80 TCMN2	TCMN	10	590704	601293	590704	601293 2_nonsis		0	5294	10588	1	100	1	1	0 (4:4aCO)
124 TCMN2	TCMN	15	250259	250527	251789	252485 2_nonsis		1263	1744	2225	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
131 TCMN2	TCMN	15	996702	996896	997902	999293 2_nonsis		1007	1799	2590	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
6 TCMN2	TCMN	2	202227	202580	205157	205382 2_nonsis		2578	2866	3154	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
56 TCMN2	TCMN	7	266087	266369	274448	275758 2_nonsis		8080	8875	9670	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
52 TCMN2	TCMN	6	207080	207279	210514	210544 2_sis		3236	3350	3463	0	1	2	0	2 (2:6)_(4:4)_(2:6a)_(4:4)
57 TCMN2	TCMN	7	392382	392993	406503	407307 2_sis		13511	14218	14924	0	1	2	0	2 (2:6)_(0:8)_(2:6)_(4:4)
135 TCMN2	TCMN	16	458958	460996	472825	473286 2_sis		11830	13079	14327	0	1	2	0	2 (2:6)_(0:8)_(2:6)_(4:4)
21 TCMN2	TCMN	3	204750	207459	212063	214762	3	4605	7308	10011	0	2	2	1	1 (0:8)_(4:4aCO)
32 TCMN2	TCMN	4	706032	706601	714483	714588	3	7883	8219	8555	0	2	2	1	1 (8:0)_(6:2)_(2:6)_(4:4aCO)
63 TCMN2	TCMN	8	139506	141400	151824	152076	3	10425	11497	12569	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
71 TCMN2	TCMN	9	173732	174345	184053	185865	3	9709	10921	12132	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
74 TCMN2	TCMN	9	390275	393280	398583	398957	3	5304	6993	8681	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
94 TCMN2	TCMN	12	674199	674615	683018	683405	3	8404	8805	9205	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
117 TCMN2	TCMN	14	401251	404051	404051	404995	3	1	1872	3743	0	2	2	2	0 (8:0)_(4:4aCO)
60 TCMN2	TCMN	7	880548	881223	888005	888305 2_nonsis		6783	7270	7756	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)
100 TCMN3	TCMN	9	323883	324390	326071	326249	1	1682	2024	2365	1	7	1	0	1 6:2_4:4_6:2
51 TCMN3	TCMN	5	23494	23976	34985	36820	1	11010	12168	13325	1	7	1	0	1 6:2_4:4_6:2
131 TCMN3	TCMN	12	394339	394373	397495	398071	1	3123	3427	3731	1	8	1	0	1 2:6_4:4_2:6

167 TCMN3	TCMN	15	97199	97478	97478	97910	1	1	356	710	1	10	1	0	1 06:02
17 TCMN3	TCMN	2	439035	439486	439486	440337	1	1	651	1301	1	10	1	0	1 06:02
152 TCMN3	TCMN	13	858111	859063	859063	859920	1	1	905	1808	1	10	1	0	1 06:02
101 TCMN3	TCMN	9	338670	339115	339305	340356	1	191	938	1685	1	10	1	0	1 06:02
149 TCMN3	TCMN	13	695850	697269	697520	697993	1	252	1197	2142	1	10	1	0	1 06:02
106 TCMN3	TCMN	10	192156	192956	193406	194259	1	451	1277	2102	1	10	1	0	1 06:02
88 TCMN3	TCMN	8	198762	199794	200500	200720	1	707	1332	1957	1	10	1	0	1 06:02
119 TCMN3	TCMN	11	189718	190193	191290	191390	1	1098	1385	1671	1	10	1	0	1 06:02
12 TCMN3	TCMN	2	183084	184932	185478	186753	1	547	2108	3668	1	10	1	0	1 06:02
47 TCMN3	TCMN	4	1421768	1421908	1423727	1424231	1	1820	2141	2462	1	10	1	0	1 06:02
114 TCMN3	TCMN	10	535930	539012	539012	540433	1	1	2252	4502	1	10	1	0	1 06:02
172 TCMN3	TCMN	15	246178	247071	248980	249136	1	1910	2434	2957	1	10	1	0	1 06:02
121 TCMN3	TCMN	11	442302	442829	445342	445854	1	2514	3033	3551	1	10	1	0	1 06:02
159 TCMN3	TCMN	14	410443	410941	414025	415788	1	3085	4215	5344	1	10	1	0	1 06:02
13 TCMN3	TCMN	2	196745	198355	202227	202580	1	3873	4854	5834	1	10	1	0	1 06:02
96 TCMN3	TCMN	9	128732	129806	133870	135647	1	4065	5490	6914	1	10	1	0	1 06:02
55 TCMN3	TCMN	5	207710	208304	219608	219959	1	11305	11777	12248	1	10	1	0	1 06:02
3 TCMN3	TCMN	1	78802	78910	79085	79449	1	176	411	646	1	10.1	1	0	1 02:06
61 TCMN3	TCMN	6	16654	16725	17029	17210	1	305	430	555	1	10.1	1	0	1 02:06
178 TCMN3	TCMN	15	778005	778022	778024	779060	1	3	529	1054	1	10.1	1	0	1 02:06
87 TCMN3	TCMN	8	160782	161715	161715	161874	1	1	546	1091	1	10.1	1	0	1 02:06
71 TCMN3	TCMN	7	216479	216869	217121	217417	1	253	595	937	1	10.1	1	0	1 02:06
158 TCMN3	TCMN	14	407287	408111	408124	408508	1	14	617	1220	1	10.1	1	0	1 02:06
63 TCMN3	TCMN	6	95387	95460	95460	96667	1	1	640	1279	1	10.1	1	0	1 02:06
146 TCMN3	TCMN	13	524991	525537	525744	526308	1	208	762	1316	1	10.1	1	0	1 02:06
160 TCMN3	TCMN	14	427295	427451	427715	428693	1	265	831	1397	1	10.1	1	0	1 02:06
2 TCMN3	TCMN	1	54508	54661	55327	55508	1	667	833	999	1	10.1	1	0	1 02:06
6 TCMN3	TCMN	1	129517	130254	130776	130897	1	523	951	1379	1	10.1	1	0	1 02:06
14 TCMN3	TCMN	2	289723	289906	290619	291653	1	714	1322	1929	1	10.1	1	0	1 02:06
9 TCMN3	TCMN	2	40882	40992	41298	43330	1	307	1377	2447	1	10.1	1	0	1 02:06
98 TCMN3	TCMN	9	268278	269349	270121	270435	1	773	1465	2156	1	10.1	1	0	1 02:06
112 TCMN3	TCMN	10	489721	490750	491023	492405	1	274	1479	2683	1	10.1	1	0	1 02:06
194 TCMN3	TCMN	16	875078	876719	876914	877898	1	196	1508	2819	1	10.1	1	0	1 02:06
7 TCMN3	TCMN	1	138907	139263	139277	141984	1	15	1546	3076	1	10.1	1	0	1 02:06
165 TCMN3	TCMN	15	15782	15886	17484	17634	1	1599	1725	1851	1	10.1	1	0	1 02:06
35 TCMN3	TCMN	4	545047	545265	546573	547556	1	1309	1909	2508	1	10.1	1	0	1 02:06
168 TCMN3	TCMN	15	98981	99650	101052	101400	1	1403	1911	2418	1	10.1	1	0	1 02:06
185 TCMN3	TCMN	16	117927	118110	119752	120748	1	1643	2232	2820	1	10.1	1	0	1 02:06
156 TCMN3	TCMN	14	285483	286688	288680	288926	1	1993	2718	3442	1	10.1	1	0	1 02:06
45 TCMN3	TCMN	4	1288775	1289394	1291853	1291869	1	2460	2777	3093	1	10.1	1	0	1 02:06
37 TCMN3	TCMN	4	630640	631885	635136	635208	1	3252	3910	4567	1	10.1	1	0	1 02:06
46 TCMN3	TCMN	4	1343357	1343581	1347437	1347683	1	3857	4091	4325	1	10.1	1	0	1 02:06
													1	0	
77 TCMN3 142 TCMN3	TCMN TCMN	7 13	448887 345829	449525 346005	454212 351095	454910 351608	1	4688 5091	5355 5435	6022 5778	1	10.1 10.1	1	0	1 02:06 1 02:06
							1				1	10.1	1	0	
130 TCMN3	TCMN	12	323570	325206	330320	330526	-	5115	6035	6955	-		-		1 02:06
41 TCMN3	TCMN	4	927283	927319	933019	933755	1	5701	6086	6471	1	10.1	1	0	1 02:06
136 TCMN3	TCMN	12	832633	833476	840682	843387	1	7207	8980	10753	1	10.1	1	0	1 02:06
177 TCMN3	TCMN	15	680588	680779	690558	690678	1	9780	9935	10089	1	10.1	1	0	1 02:06
105 TCMN3	TCMN	10	171357	171764	181820	182087	1	10057	10393	10729	1	10.1	1	0	1 02:06
190 TCMN3	TCMN	16	653426	653739	658323	658481 2_nonsis		4585	4820	5054	3	30	1	0	1 6:2_2:6
84 TCMN3	TCMN	7	1007272	1007947	1017661	1018655 2_nonsis		9715	10549	11382	3	30	1	0	1 6:2_2:6
169 TCMN3	TCMN	15	111249	111554	112140	112969 2_nonsis		587	1153	1719	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
126 TCMN3	TCMN	12	51956	53039	53575	54071 2_nonsis		537	1326	2114	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
139 TCMN3	TCMN	12	1009719	1011169	1011952	1012226 2_nonsis		784	1645	2506	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
176 TCMN3	TCMN	15	612123	613660	614674	614917 2_nonsis		1015	1904	2793	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
143 TCMN3	TCMN	13	354882	355195	356625	356924 2_nonsis		1431	1736	2041	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
127 TCMN3	TCMN	12	119524	120550	121567	122138 2_nonsis		1018	1816	2613	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
59 TCMN3	TCMN	5	526303	526638	528932	529325 2_nonsis		2295	2658	3021	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
21 TCMN3	TCMN	2	627055	627481	630094	630469 2_nonsis		2614	3014	3413	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
103 TCMN3	TCMN	10	31838	31900	34903	35185 2_nonsis		3004	3175	3346	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
			2.1000	21700	21,700	<u>-</u>		2001	2.13	-510	•		•	-	

on men n.a	mon or		210050	242205	215104		2000	2022						
97 TCMN3	TCMN	9	210959	212207	215186	215644 2_nonsis	2980	3832	4684	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
166 TCMN3	TCMN	15	56753	56980	59664	59868 2_nonsis	2685	2900	3114	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
141 TCMN3	TCMN	13	222095	223597	229786	230470 2_nonsis	6190	7282	8374	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
148 TCMN3	TCMN	13	677217	677238	677238	677418 2_nonsis	1	101	200	1	15	1	1	0 (6:2)_(4:4aCO)
82 TCMN3	TCMN	7	619415	619777	619787	620023 2_nonsis	11	309	607	1	15	1	1	0 (6:2)_(4:4aCO)
95 TCMN3	TCMN	9	93903	94143	94263	94456 2_nonsis	121	337	552	1	15	1	1	0 (6:2)_(4:4aCO)
163 TCMN3	TCMN	14	745944	746165	746431	746539 2_nonsis	267	431	594	1	15	1	1	0 (6:2)_(4:4aCO)
29 TCMN3	TCMN	4	83831	84443	84518	84625 2_nonsis	76	435	793	1	15	1	1	0 (6:2)_(4:4aCO)
23 TCMN3	TCMN	2	757908	758568	758608	758926 2_nonsis	41	529	1017	1	15	1	1	0 (6:2)_(4:4aCO)
138 TCMN3	TCMN	12	998854	999870	999870	1000003 2_nonsis	1	575	1148	1	15	1	1	0 (6:2)_(4:4aCO)
73 TCMN3	TCMN	7	350649	351015	351287	351684 2_nonsis	273	654	1034	1	15	1	1	0 (6:2)_(4:4aCO)
187 TCMN3	TCMN	16	195285	195615	195918	196451 2_nonsis	304	735	1165	1	15	1	1	0 (6:2)_(4:4aCO)
151 TCMN3	TCMN	13	810229	810415	810963	811653 2_nonsis	549	986	1423	1	15	1	1	0 (6:2)_(4:4aCO)
18 TCMN3	TCMN	2	477199	477343	477368	479516 2_nonsis	26	1171	2316	1	15	1	1	0 (6:2)_(4:4aCO)
22 TCMN3	TCMN	2	739892	740026	741235	741285 2_nonsis	1210	1301	1392	1	15	1	1	0 (6:2)_(4:4aCO)
109 TCMN3	TCMN	10	390521	390617	391693	392058 2 nonsis	1077	1307	1536	1	15	1	1	0 (6:2)_(4:4aCO)
91 TCMN3	TCMN	8	513034	514468	515162	515676 2_nonsis	695	1668	2641	1	15	1	1	0 (6:2)_(4:4aCO)
15 TCMN3	TCMN	2	292680	292748	294230	295028 2_nonsis	1483	1915	2347	1	15	1	1	0 (6:2)_(4:4aCO)
145 TCMN3	TCMN	13	507502	508576	509691	510245 2_nonsis	1116	1929	2742	1	15	1	1	0 (6:2)_(4:4aCO)
72 TCMN3	TCMN	7	343687	343768	345521	345912 2_nonsis	1754	1989	2224	1	15	1	1	0 (6:2)_(4:4aCO)
94 TCMN3	TCMN	9	87283	87642	89500	89756 2_nonsis	1859	2166	2472	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
175 TCMN3	TCMN	15	487166	487809	489366	489971 2_nonsis	1558	2181	2804	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
31 TCMN3	TCMN	4	200994	201329	203329		2001	2198	2394	1	15	1	1	
						203389 2_nonsis				1		1	-	0 (6:2)_(4:4aCO)
8 TCMN3	TCMN	1	151919	152233	153182	155505 2_nonsis	950	2268	3585	-	15	-	1	0 (6:2)_(4:4aCO)
26 TCMN3	TCMN	3	68233	68852	70785	71079 2_nonsis	1934	2390	2845	1	15	1	1	0 (6:2)_(4:4aCO)
192 TCMN3	TCMN	16	751611	752166	754744	755194 2_nonsis	2579	3081	3582	1	15	1	1	0 (6:2)_(4:4aCO)
113 TCMN3	TCMN	10	528639	529735	532916	534212 2_nonsis	3182	4377	5572	1	15	1	1	0 (6:2)_(4:4aCO)
133 TCMN3	TCMN	12	593059	599905	600676	601080 2_nonsis	772	4396	8020	1	15	1	1	0 (6:2)_(4:4aCO)
90 TCMN3	TCMN	8	288884	289659	293740	293780 2_nonsis	4082	4489	4895	1	15	1	1	0 (6:2)_(4:4aCO)
4 TCMN3	TCMN	1	108928	110856	114283	114652 2_nonsis	3428	4576	5723	1	15	1	1	0 (6:2)_(4:4aCO)
195 TCMN3	TCMN	16	884283	884616	889742	890080 2_nonsis	5127	5462	5796	1	15	1	1	0 (6:2)_(4:4aCO)
180 TCMN3	TCMN	15	946536	946808	952140	952654 2_nonsis	5333	5725	6117	1	15	1	1	0 (6:2)_(4:4aCO)
58 TCMN3	TCMN	5	469424	469569	476465	476681 2_nonsis	6897	7077	7256	1	15	1	1	0 (6:2)_(4:4aCO)
132 TCMN3	TCMN	12	498457	499674	506259	507075 2_nonsis	6586	7602	8617	1	15	1	1	0 (6:2)_(4:4aCO)
118 TCMN3	TCMN	11	98834	99224	109640	110327 2_nonsis	10417	10955	11492	1	15	1	1	0 (6:2)_(4:4aCO)
107 TCMN3	TCMN	10	284309	284375	284375	284867 2_nonsis	1	279	557	1	16	1	1	0 (2:6)_(4:4aCO)
147 TCMN3	TCMN	13	527901	528307	528368	528469 2_nonsis	62	315	567	1	16	1	1	0 (2:6)_(4:4aCO)
32 TCMN3	TCMN	4	289365	289475	289475	290079 2_nonsis	1	357	713	1	16	1	1	0 (2:6)_(4:4aCO)
85 TCMN3	TCMN	8	46274	46457	46457	47060 2_nonsis	1	393	785	1	16	1	1	0 (2:6)_(4:4aCO)
34 TCMN3	TCMN	4	539680	540228	540228	540514 2_nonsis	1	417	833	1	16	1	1	0 (2:6)_(4:4aCO)
181 TCMN3	TCMN	15	1000015	1000082	1000334	1000780 2_nonsis	253	509	764	1	16	1	1	0 (2:6)_(4:4aCO)
108 TCMN3	TCMN	10	323823	324913	324924	325190 2_nonsis	12	689	1366	1	16	1	1	0 (2:6)_(4:4aCO)
74 TCMN3	TCMN	7	379162	379420	379937	380073 2_nonsis	518	714	910	1	16	1	1	0 (2:6)_(4:4aCO)
150 TCMN3	TCMN	13	778675	779631	779842	780034 2_nonsis	212	785	1358	1	16	1	1	0 (2:6)_(4:4aCO)
153 TCMN3	TCMN	13	862092	862695	863229	863412 2_nonsis	535	927	1319	1	16	1	1	0 (2:6)_(4:4aCO)
183 TCMN3	TCMN	16	38867	39420	39840	40527 2_nonsis	421	1040	1659	1	16	1	1	0 (2:6)_(4:4aCO)
76 TCMN3	TCMN	7	443602	443639	444683	444932 2_nonsis	1045	1187	1329	1	16	1	1	0 (2:6)_(4:4aCO)
66 TCMN3	TCMN	7	55263	55957	55957	57822 2_nonsis	1	1280	2558	1	16	1	1	0 (2:6)_(4:4aCO)
128 TCMN3	TCMN	12	221668	222046	223075	223258 2_nonsis	1030	1310	1589	1	16	1	1	0 (2:6)_(4:4aCO)
154 TCMN3	TCMN	14	30923	32285	32426	34396 2_nonsis	142	1807	3472	1	16	1	1	0 (2:6)_(4:4aCO)
36 TCMN3	TCMN	4	625839	628602	628602	629487 2_nonsis	1	1824	3647	1	16	1	1	0 (2:6)_(4:4aCO)
		9								1		1	1	
92 TCMN3 102 TCMN3	TCMN TCMN	9	46189 422571	46556 422694	48252 424776	48606 2_nonsis	1697 2083	2057 2189	2416 2294	1	16 16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
						424866 2_nonsis				1		1		0 (2:6)_(4:4aCO)
33 TCMN3	TCMN	4	311602	311752	314015	314500 2_nonsis	2264	2581	2897	-	16	1	1	0 (2:6)_(4:4aCO)
184 TCMN3	TCMN	16	49169	50572	52500	53686 2_nonsis	1929	3223	4516	1	16	-	1	0 (2:6)_(4:4aCO)
38 TCMN3	TCMN	4	768390	769038	772698	773522 2_nonsis	3661	4396	5131	1	16	1	1	0 (2:6)_(4:4aCO)
79 TCMN3	TCMN	7	520227	521004	525413	525947 2_nonsis	4410	5065	5719	1	16	1	1	0 (2:6)_(4:4aCO)
10 TCMN3	TCMN	2	73943	74853	79464	79692 2_nonsis	4612	5180	5748	1	16	1	1	0 (2:6)_(4:4aCO)
86 TCMN3	TCMN	8	137028	137997	142863	143543 2_nonsis	4867	5691	6514	1	16	1	1	0 (2:6)_(4:4aCO)
125 TCMN3	TCMN	12	23981	25369	31473	32690 2_nonsis	6105	7407	8708	1	16	1	1	0 (2:6)_(4:4aCO)

188 TCMN3	TCMN	16	379426	379885	389187	389519 2_nonsis		9303	9698	10092	1	16	1	1	0 (2:6)_(4:4aCO)
144 TCMN3	TCMN	13	469552	473747	482985	485052 2_nonsis		9239	12369	15499	1	16	1	1	0 (2:6)_(4:4aCO)
173 TCMN3	TCMN	15	286975	287386	314073	314395 2_nonsis		26688	27054	27419	1	16	1	1	0 (2:6)_(4:4aCO)
157 TCMN3	TCMN	14	319024	319149	319024	319149 2_nonsis		0	62	124	1	100	1	1	0 (4:4aCO)
193 TCMN3	TCMN	16	758616	758824	758616	758824 2_nonsis		0	104	207	1	100	1	1	0 (4:4aCO)
78 TCMN3	TCMN	7	458629	458878	458629	458878 2_nonsis		0	124	248	1	100	1	1	0 (4:4aCO)
11 TCMN3	TCMN	2	121643	121908	121643	121908 2_nonsis		0	132	264	1	100	1	1	0 (4:4aCO)
42 TCMN3	TCMN	4	937167	937517	937167	937517 2_nonsis		0	175	349	1	100	1	1	0 (4:4aCO)
43 TCMN3	TCMN	4	1077428	1077787	1077428	1077787 2_nonsis		0	179	358	1	100	1	1	0 (4:4aCO)
39 TCMN3	TCMN	4	777671	778122	777671	778122 2_nonsis		0	225	450	1	100	1	1	0 (4:4aCO)
44 TCMN3	TCMN	4	1283592	1284111	1283592	1284111 2_nonsis		0	259	518	1	100	1	1	0 (4:4aCO)
68 TCMN3	TCMN	7	116629	117199	116629	117199 2_nonsis		0	285	569	1	100	1	1	0 (4:4aCO)
120 TCMN3	TCMN	11	238513	239211	238513	239211 2_nonsis		0	349	697	1	100	1	1	0 (4:4aCO)
54 TCMN3	TCMN	5	77918	78787	77918	78787 2_nonsis		0	434	868	1	100	1	1	0 (4:4aCO)
64 TCMN3	TCMN	6	151218	152137	151218	152137 2_nonsis		0	459	918	1	100	1	1	0 (4:4aCO)
19 TCMN3	TCMN	2	479752	480693	479752	480693 2_nonsis		0	470	940	1	100	1	1	0 (4:4aCO)
49 TCMN3	TCMN	4	1513338	1514440	1513338	1514440 2_nonsis		0	551	1101	1	100	1	1	0 (4:4aCO)
122 TCMN3	TCMN	11	481321	482428	481321	482428 2_nonsis		0	553	1106	1	100	1	1	0 (4:4aCO)
140 TCMN3	TCMN	13	37125	38744	37125	38744 2_nonsis		0	809	1618	1	100	1	1	0 (4:4aCO)
24 TCMN3	TCMN	3	18173	20235	18173	20235 2_nonsis		0	1031	2061	1	100	1	1	0 (4:4aCO)
129 TCMN3	TCMN	12	320997	323570	320997	323570 2_nonsis		0	1286	2572	1	100	1	1	0 (4:4aCO)
99 TCMN3	TCMN	9	320712	323343	320712	323343 2_nonsis		0	1315	2630	1	100	1	1	0 (4:4aCO)
25 TCMN3	TCMN	3	65580	68233	65580	68233 2_nonsis		0	1326	2652	1	100	1	1	0 (4:4aCO)
117 TCMN3	TCMN	11	23532	27301	23532	27301 2_nonsis		0	1884	3768	1	100	1	1	0 (4:4aCO)
50 TCMN3	TCMN	5	18839	23192	18839	23192 2_nonsis		0	2176	4352	1	100	1	1	0 (4:4aCO)
116 TCMN3	TCMN	10	697654	705639	697654	705639 2_nonsis		0	3992	7984	1	100	1	1	0 (4:4aCO)
28 TCMN3	TCMN	3	238082	238725	239004	239394 2_nonsis		280	796	1311	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
80 TCMN3	TCMN	7	581660	581705	582429	582987 2_nonsis		725	1026	1326	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
174 TCMN3	TCMN	15	423370	423571	424455	424779 2_nonsis		885	1147	1408	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
5 TCMN3	TCMN	1	116905	117399	118997	119344 2_nonsis		1599	2019	2438	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
179 TCMN3	TCMN	15	814706	814826	817513	818089 2_nonsis		2688	3035	3382	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
115 TCMN3	TCMN	10	622386	622799	624648	627140 2_nonsis		1850	3302	4753	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
161 TCMN3	TCMN	14	475211	475712	478186	479609 2_nonsis		2475	3436	4397	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
89 TCMN3	TCMN	8	211042	211315	218189	218688 2_nonsis		6875	7260	7645	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
162 TCMN3	TCMN	14	644875	646799	655324	655447 2_nonsis		8526	9549	10571	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
191 TCMN3	TCMN	16	694716	694965	704396	705129 2_nonsis		9432	9922	10412	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
56 TCMN3	TCMN	5	378586	379092	381978	382688 2_nonsis		2887	3494	4101	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
60 TCMN3	TCMN	5	543765	544042	550011	550177 2_nonsis		5970	6191	6411	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
67 TCMN3	TCMN	7	65309	66501	73684	73727 2_nonsis		7184	7801	8417	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(6:2)_(4:4aCO)
155 TCMN3	TCMN	14	199570	199738	211003	211753 2_nonsis		11266	11724	12182	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4)_(2:6)_(4:4aCO)
20 TCMN3	TCMN	2	484159	485003	498959	499985 2_sis		13957	14891	15825	0	1	2	0	2 (2:6)_(0:8)_(2:6a)_(4:4)
52 TCMN3	TCMN	5	40898	41432	48594	49397 2_sis		7163	7831	8498	0	1	2	0	2 (8:0)_(6:2)_(4:4)
1 TCMN3	TCMN	1	30662	30669	42257	42484	3	11589	11705	11821	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
16 TCMN3	TCMN	2	327003	327596	328340	328525	3	745	1133	1521	0	2	2	1	1 (4:4aCO)_(2:6)_(4:4a)
27 TCMN3	TCMN	3	215020	215336	223339	228130	3	8004	10557	13109	0	2	2	1	1 (2:6)_(4:4)_(0:8)_(2:6)_(4:4aCO)
40 TCMN3	TCMN	4	807222	816386	840697	842326	4	24312	29708	35103	0	2	2	1	1 (6:2)_(0:8)_(2:6)_(4:4aCO)
53 TCMN3	TCMN	5	68996	69083	76382	76636	3	7300	7470	7639	0	2	2	1	1 (8:0)_(6:2)_(4:4)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
57 TCMN3	TCMN	5	424029	424927	426333	429823	3	1407	3600	5793	0	2	2	1	1 (6:2)_(4:4aCO)
62 TCMN3	TCMN	6	45521	45740	59811	61005	3	14072	14778	15483	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
65 TCMN3	TCMN	6	216669	216972	232697	233456	4	15726	16256	16786	0	2	2	1	1 (2:6)_(2:6a)_(0:8)_(2:6b)_(4:4aCO)
69 TCMN3	TCMN	7	122622	123839	124460	124671	3	622	1335	2048	0	2	2	1	1 (0:8)_(4:4aCO)
70 TCMN3	TCMN	7	201093	201499	209671	210401	3	8173	8740	9307	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
83 TCMN3	TCMN	7	845918	846464	846750	851797	3	287	3083	5878	0	2	2	1	1 (0:8)_(4:4aCO)
110 TCMN3	TCMN	10	406334	407487	407535	411303	3	49	2509	4968	0	2	2	1	1 (6:2)_(4:4aCO)
135 TCMN3	TCMN	12	697961	701229	709102	709117	3	7874	9515	11155	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
137 TCMN3	TCMN	12	867405	869664	873155	873227	3	3492	4657	5821	0	2	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4a)
164 TCMN3	TCMN	14	761147	761193	762860	763294	3	1668	1907	2146	0	2	2	1	1 (2:6)_(4:4aCO)
170 TCMN3	TCMN	15	149247	149394	153615	153774	3	4222	4374	4526	0	2	2	1	1 (2:6)_(6:2)_(4:4aCO)
171 TCMN3	TCMN	15	156059	157101	168885	169317	3	11785	12521	13257	0	2	2	1	1 (6:2)_(8:0)_(6:2)_(4:4aCO)
182 TCMN3	TCMN	15	1034400	1034658	1043807	1044139	4	9150	9444	9738	0	2	2	1	1 (2:6)_(4:4)_(6:2)_(2:6a)_(4:4aCO)

30 TCMN3	TCMN	4	173380	174736	177160	177756	3	2425	3400	4375	0	3	2	1	1 (4:4aCO)_(2:6)_(4:4bCO)
48 TCMN3	TCMN	4	1444364	1444445	1458516	1459261	3	14072	14484	14896	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4bCO)
81 TCMN3	TCMN	7	613734	613788	617292	617675 2_nonsis		3505	3723	3940	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
93 TCMN3	TCMN	9	49641	51046	63202	63470	4	12157	12993	13828	0	3	2	2	0 (6:2)_(6:2a)_(2:6)_(4:4aCO)_(2:6)_(4:4bCO)
104 TCMN3	TCMN	10	151846	152040	158376	158721	4	6337	6606	6874	0	3	2	2	0 (0:8)_(2:6)_(4:4aCO)_(2:6)_(4:4bCO)
111 TCMN3	TCMN	10	464438	465282	472296	484073	4	7015	13325	19634	0	3	2	1	1 (8:0)_(4:4aCO)_(6:2)_(4:4a)_(2:6)_(4:4bCO)
124 TCMN3	TCMN	11	629129	629639	639711	641421 2_nonsis		10073	11182	12291	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)
134 TCMN3	TCMN	12	693267	693579	694951	696350	3	1373	2228	3082	0	3	2	1	1 (6:2)_(2:6)_(4:4aCO)_(6:2)_(4:4bCO)
186 TCMN3	TCMN	16	139609	139660	142047	142339 2_nonsis		2388	2559	2729	0	3	2	0	2 (2:6)_(4:4)_(4:4aCO)_(2:6)_(4:4CO)
189 TCMN3	TCMN	16	649916	650861	651959 912589	652093 2_nonsis	1	1099	1638	2176	0	3 8	2	0	2 (6:2)_(4:4aCO)_(4:4aCO) 1 2 6 4 4 2 6
169 TCMN4 57 TCMN4	TCMN TCMN	16 6	910123 46998	910771 47804	49483	912647 50137	1	1819 1680	2171 2409	2523 3138	1	8	1	0	1 2:6 4:4 2:6 1 2:6 4:4 2:6
104 TCMN4	TCMN	11	469271	469355	469355	469480	1	1080	105	208	1	10	1	0	1 2:6_4:4_2:6 1 06:02
100 TCMN4	TCMN	11	265409	265522	265522	265706	1	1	149	296	1	10	1	0	1 06:02
40 TCMN4	TCMN	4	1291676	1291853	1291853	1292138	1	1	231	461	1	10	1	0	1 06:02
89 TCMN4	TCMN	10	42694	42739	42745	43261	1	7	287	566	1	10	1	0	1 06:02
24 TCMN4	TCMN	4	49108	49497	49666	49881	1	170	471	772	1	10	1	0	1 06:02
56 TCMN4	TCMN	6	16574	16654	17029	17210	1	376	506	635	1	10	1	0	1 06:02
87 TCMN4	TCMN	10	36853	37127	37127	37895	1	1	521	1041	1	10	1	0	1 06:02
3 TCMN4	TCMN	1	91629	92566	92566	92743	1	1	557	1113	1	10	1	0	1 06:02
33 TCMN4	TCMN	4	654890	655011	655491	656349	1	481	970	1458	1	10	1	0	1 06:02
156 TCMN4	TCMN	15	1002614	1003809	1004312	1004474	1	504	1182	1859	1	10	1	0	1 06:02
77 TCMN4	TCMN	8	283683	283957	284440	285871	1	484	1336	2187	1	10	1	0	1 06:02
46 TCMN4	TCMN	4	1485012	1486166	1486166	1487794	1	1	1391	2781	1	10	1	0	1 06:02
29 TCMN4	TCMN	4	263030	263811	264290	265338	1	480	1394	2307	1	10	1	0	1 06:02
145 TCMN4	TCMN	15	448080	448955	449944	450086	1	990	1498	2005	1	10	1	0	1 06:02
155 TCMN4	TCMN	15	986838	986894	988081	988671	1	1188	1510	1832	1	10	1	0	1 06:02
103 TCMN4	TCMN	11	385892	386072	386882	388314	1	811	1616	2421	1	10	1	0	1 06:02
79 TCMN4	TCMN	8	387002	387439	388791	388948	1	1353	1649	1945	1	10	1	0	1 06:02
144 TCMN4	TCMN	15	311489	312220	313126	313924	1	907	1671	2434	1	10	1	0	1 06:02
51 TCMN4	TCMN	5	104648	105087	106918	107341	1	1832	2262	2692	1	10	1	0	1 06:02
118 TCMN4	TCMN	12	658599	659350	661927	662311	1	2578	3145	3711	1	10	1	0	1 06:02
102 TCMN4	TCMN	11	345918	346598	349940	350196	1	3343	3810	4277	1	10	1	0	1 06:02
15 TCMN4	TCMN	2	678799	679276	682449	683592	1	3174	3983	4792	1	10	1	0	1 06:02
65 TCMN4	TCMN	7	605025	605491 250075	611358	612267	1	5868	6555	7241	1	10	1	0	1 06:02
59 TCMN4 8 TCMN4	TCMN TCMN	6 1	249053 198604	250075 198618	257686 198618	261543 198639	1	7612 1	10051 18	12489 34	1	10 10.1	1	0	1 06:02 1 02:06
8 TCMN4 152 TCMN4	TCMN	15	849274	849337	849337	198639 849390	1	1	58	115	1	10.1	1	0	1 02:06
152 TCMN4 150 TCMN4	TCMN	15	849274 826642	849337 826798	849337 826798	826879	1	1	38 119	236	1	10.1	1	0	1 02:06
31 TCMN4	TCMN	4	443292	443491	443491	443547	1	1	128	254	1	10.1	1	0	1 02:06
101 TCMN4	TCMN	11	333757	334135	334135	334655	1	1	449	897	1	10.1	1	0	1 02:06
20 TCMN4	TCMN	3	107312	108225	108293	108503	1	69	630	1190	1	10.1	1	0	1 02:06
117 TCMN4	TCMN	12	567266	567957	568114	568449	1	158	670	1182	1	10.1	1	0	1 02:06
69 TCMN4	TCMN	7	801373	801946	802249	802512	1	304	721	1138	1	10.1	1	0	1 02:06
25 TCMN4	TCMN	4	133023	133068	133068	134550	1	1	764	1526	1	10.1	1	0	1 02:06
109 TCMN4	TCMN	12	92960	93301	93954	94031	1	654	862	1070	1	10.1	1	0	1 02:06
81 TCMN4	TCMN	8	494825	494966	495688	496308	1	723	1103	1482	1	10.1	1	0	1 02:06
98 TCMN4	TCMN	11	231038	231246	231922	232606	1	677	1122	1567	1	10.1	1	0	1 02:06
17 TCMN4	TCMN	2	693243	694151	694512	695405	1	362	1262	2161	1	10.1	1	0	1 02:06
154 TCMN4	TCMN	15	940023	940429	941715	942129	1	1287	1696	2105	1	10.1	1	0	1 02:06
54 TCMN4	TCMN	5	526303	526638	527534	528932	1	897	1763	2628	1	10.1	1	0	1 02:06
147 TCMN4	TCMN	15	630587	632023	632823	633360	1	801	1787	2772	1	10.1	1	0	1 02:06
123 TCMN4	TCMN	13	25508	25638	26922	27948	1	1285	1862	2439	1	10.1	1	0	1 02:06
167 TCMN4	TCMN	16	812552	812762	814215	814896	1	1454	1899	2343	1	10.1	1	0	1 02:06
112 TCMN4	TCMN	12	253274	253791	255522	255647	1	1732	2052	2372	1	10.1	1	0	1 02:06
141 TCMN4	TCMN	15	136572	137220	138847	139359	1	1628	2207	2786	1	10.1	1	0	1 02:06
14 TCMN4	TCMN	2	499985	500498	502627	503196	1	2130	2670	3210	1	10.1	1	0	1 02:06
64 TCMN4	TCMN	7	542283	542388	545099	545143	1	2712	2786	2859	1	10.1	1	0	1 02:06
26 TCMN4	TCMN	4	154129	155368	157554	157843	1	2187	2950	3713	1	10.1	1	0	1 02:06
126 TCMN4	TCMN	13	235304	235740	238534	238681	1	2795	3086	3376	1	10.1	1	0	1 02:06

157 TCMN4 TCMN 15 1014090 1015192 1018794 1019036 2_nonsis 3603 4274 4945 1 12 1 1 0 (4:4aCC 138 TCMN4 TCMN 14 747445 747531 754802 755545 2_nonsis 7272 7686 8099 1 12 1 1 0 (2:6)_4 139 TCMN4 TCMN 15 40057 40697 41495 41838 2_nonsis 799 1290 1780 1 12 1 1 0 (2:6)_4 107 TCMN4 TCMN 11 625303 625924 626765 627471 2_nonsis 842 1505 2167 1 12 1 1 0 (2:6)_4 148 TCMN4 TCMN 15 733608 733667 735184 735517 2_nonsis 1518 1713 1908 1 12 1 1 0 (2:6)_4 18 TCMN4 TCMN 9 87283 87642 89179 89302 2_nonsis 1538 1778 2018 1 12 1 1 0 (2:6)_4 15 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1979 2247 2514 1 12 1 1 0 (2:6)_4 15 TCMN4 TCMN 5 307383 308000 309961 310175 2_nonsis 1962 2377 2791 1 12 1 1 0 (2:6)_4 17 TCMN4 TCMN 7 101679 1017661 1019728 1019751 2_nonsis 2068 2513 2958 1 12 1 1 0 (2:6)_4 14 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1838 2844 3496 4148 1 12 1 1 1 0 (2:6)_4 15 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 1 0 (6:2)_6 14 15 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 1 0 (6:2)_6 15 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 1 12 1 1 1 0 (6:2)_6 14 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062	4_2:6
Performant TCMN	4_2:6 2_4:4_2:6 4:4:1_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
42 TCMN4 TCMN 4 141916 1419978 1423727 1424231 1 3750 4232 4714 1 10.1 1 0 0 1 0.206 34 TCMN4 TCMN 4 673873 673951 678460 678773 1 4510 4704 4897 1 10.1 1 0 1 0.206 11 TCMN4 TCMN 2 379629 379629 379974 389960 385751 1 3987 5054 6121 1 10.1 1 0 1 0.206 159 TCMN4 TCMN 16 70600 71375 77995 78895 1 6621 7458 8294 1 10.1 1 0 1 1 0 0 10.206 159 TCMN4 TCMN 8 206103 320439 208656 208748 2,000618 1238 6 2244 3 30 1 0 1 62.26 10 TCMN4 TCMN 8 2 322610 322823 324761 325371 2,000618 1721 4480 7239 3 30 1 0 1 62.24 120 TCMN4 TCMN 11 165754 166502 167778 168140 2,000618 1727 1831 2385 1 12 1 1 0 0 1.206 159 TCMN4 TCMN 11 165754 166502 167778 168140 2,000618 1727 1831 2385 1 12 1 1 0 0 62.64 135 TCMN4 TCMN 15 1014090 1015192 1018794 1019036 2,000618 1727 1831 2385 1 12 1 1 0 0 64.64 135 TCMN4 TCMN 14 747445 747531 754802 755545 2,000618 799 1200 1780 1 12 1 1 0 0 62.64 137 TCMN4 TCMN 11 625303 625924 626765 627471 2,000618 139 120 1780 1 12 1 1 0 0 62.64 137 TCMN4 TCMN 11 625303 625924 626765 627471 2,000618 159 1780 1 12 1 1 1 0 0 62.64 187 TCMN TCMN 1 1 625303 625924 626765 627471 2,000618 159 159 159 159 159 159 159 159 159 159	4_2:6 2_4:4_2:6 4:4:1_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
34 TCMN4	4_2:6 2_4:4_2:6 4:4:1_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
II TCMN4	4_2:6 2_4:4_2:6 4:4:1_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
159 TCMN4	4_2:6 2_4:4_2:6 4:4:1_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
75 TCMN4 TCMN 8 206103 206439 208566 208748 2_nonsis 2128 2386 2644 3 3 30 1 0 1 6.2_26.0 10 TCMN4 TCMN 1 2 322610 322823 324761 325371 2_nonsis 1939 2550 2760 3 3 0 1 0 1 6.2_46.2 10 TCMN4 TCMN 12 791142 793555 795275 795838 2_nonsis 1721 4480 7239 3 3 0 1 0 1 2.6_46.2 10 TCMN4 TCMN 11 165754 166502 167778 168140 2_nonsis 1727 1831 2385 1 1 12 1 1 0 (2.6_1.6 157 TCMN4 TCMN 15 1014090 1015192 1018794 1019036 2_nonsis 3603 4274 4945 1 12 1 1 0 (2.6_1.6 138 TCMN4 TCMN 14 74745 747531 747802 755455 2_nonsis 7272 7686 8090 1 12 1 1 0 (2.6_1.6 138 TCMN4 TCMN 15 40057 40697 41495 41838 2_nonsis 7272 7686 8090 1 1 12 1 1 0 (2.6_1.6 139 TCMN4 TCMN 15 50.0 1 1 1 1 0 (2.6_1.6 139 TCMN4 TCMN 15 50.0 1 1 1 1 0 (2.6_1.6 139 TCMN4 TCMN 15 73508 733667 735184 73517 2_nonsis 1518 1713 1908 1 1 1 1 1 1 0 (2.6_1.6 148 TCMN4 TCMN 15 73508 733667 735184 73517 2_nonsis 1518 1713 1908 1 1 1 1 1 0 (2.6_1.6 148 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1518 1718 1718 1908 1 1 1 1 1 0 (2.6_1.6 148 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1528 1778 2018 1 1 1 1 1 0 (2.6_1.6 148 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1902 2377 2791 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2_nonsis 1902 2377 2791 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1902 2377 2791 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1902 2377 2791 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1836 2742 3648 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1836 2742 3648 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1836 2742 3648 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1836 2742 3648 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 1836 2742 3648 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 15 151910 1 152407 155250 156059 2_nonsis 1836 244 3496 4148 1 1 1 1 1 1 0 (2.6_1.6 142 TCMN4 TCMN 14 450594 41451	4_2:6 2_4:4_2:6 4:4:1_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
10 TCMN4	4_2:6 2_4:4_2:6 4:4:1_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) 4:4]_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
120 TCMN4	2_4:4_2:6 (4:4)_(4:4aCO) O_(6:2)_(4:4a) (4:4)_(4:4aCO) (4:4)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
97 TCMN4 TCMN 11 165754 166502 167778 168140 2_nonsis 1277 1831 2385 1 12 1 1 0 (2:0)_c4 157 TCMN4 TCMN 15 1014090 1015192 1018794 1019036 2_nonsis 3603 4274 4945 1 12 1 1 0 (4:4aCC 138 TCMN4 TCMN 14 747445 747531 754802 755545 2_nonsis 7272 7686 8099 1 12 1 1 1 0 (2:0)_c4 139 TCMN4 TCMN 15 40057 40697 41495 41838 2_nonsis 799 1290 1780 1 12 1 1 1 0 (2:0)_c4 107 TCMN4 TCMN 15 40057 40697 41495 41838 2_nonsis 799 1290 1780 1 12 1 1 1 0 (2:0)_c4 11 15 1 1 0 (2:0)_c4 11 15 1 1 1 1 0 (2:0)_c4 11 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(4:4)_(4:4aCO) O)_(6:2)_(4:4a) (4:4)_(4:4aCO) (4:4)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
157 TCMN4 TCMN	O)_(6:2)_(4:4a) (4:4)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
138 TCMN4 TCMN	(4:4)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
139 TCMN4 TCMN	4:4aCO)_(2:6)_(4:4a) 4:4)_(2:6)_(4:4aCO) 4:4)_(2:6)_(4:4aCO) 4:4)_(2:6)_(4:4aCO) 4:4)_(2:6)_(4:4aCO) 4:4)_(2:6)_(4:4aCO) 4:4)_(2:6)_(4:4aCO) 4:4aCO)_(2:6)_(4:4a) 4:4aCO)_(2:6)_(4:4a)
107 TCMN4 TCMN	(4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
148 TCMN4 TCMN 15 733608 733667 735184 735517 2_nonsis 1518 1713 1908 1 12 1 1 0.026_14 82 TCMN4 TCMN 9 87283 87642 89179 89302 2_nonsis 1538 1778 2018 1 12 1 1 0.26_14 70 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1979 2247 2514 1 12 1 1 0.26_14 70 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1962 2377 2791 1 12 1 1 0.26_14 72 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2_nonsis 2068 2513 2958 1 12 1 1 0.26_14 43 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2_nonsis 2068 2513 2958 1 12 1 1 0.026_14 43 TCMN4 TCMN 4 1450894 1451664 1453499 1454543 2_nonsis 1836 2742 3648 1 12 1 1 0.026_14 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 0.062_14 28 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6602 67556 7450 1 12 1 1 0.62_14 28 TCMN4 TCMN 4 230153 230663 233966 234088 2_nonsis 3304 3619 3934 1 12 1 1 0.62_14 146 TCMN4 TCMN 4 752863 752908 752995 753858 2_nonsis 88 541 994 1 15 1 1 0.62_14 36 TCMN4 TCMN 4 752863 752908 752995 753858 2_nonsis 88 541 994 1 15 1 1 0.62_14 37 TCMN4 TCMN 8 21160 21541 21727 22121 2_nonsis 187 574 960 1 155 1 1 0.62_14 38 TCMN4 TCMN 9 272261 272369 272672 273183 2_nonsis 187 574 960 1 15 1 1 0.62_14 39 TCMN4 TCMN 4 1482150 1483110 148310 1483402 2_nonsis 187 574 960 1 15 1 1 0.62_14 31 TCMN4 TCMN 4 620943 621879 621894 622375 2_nonsis 187 574 960 1 15 1 1 0.62_14 32 TCMN4 TCMN 4 620943 621879 621894 622375 2_nonsis 187 574 960 1 15 1 1 0.62_14 31 TCMN4 TCMN 4 620943 621879 621894 622375 2_nonsis 187 574 960 1 15 1 1 0.62_14 32 TCMN4 TCMN 14 620943 621879 621894 622375 2_nonsis 187 574 960 1 155 1 1 0.662_14 31 TCMN4 TCMN 14 600943 621879 621894 622375 2_nonsis 187 574 960 1 155 1 1 0.662_14 31 TCMN4 TCMN 14 700775 70166 701618 70291 2_nonsis 187 574 960 1 155 1 1 0.662_14 31 TCMN4 TCMN 14 700775 70166 701618 70291 2_nonsis 187 574 960 1 155 1 1 0.662_14 31 TCMN4 TCMN 14 700775 70166 701618 70291 2_nonsis 187 574 960 1 155 1 1 0.662_14 31 TCMN4 TCMN 16 17964 180404 180992 1816649 2_nonsis 187 1116 2044 1 155 1 1 0.662_14 310 TCMN4 TCMN 16 179	(4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
82 TCMN4 TCMN 9 87283 87642 89179 89302 2_nonsis 1538 1778 2018 1 12 1 1 0 (2:6)_(4 70 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1979 2247 2514 1 12 1 1 0 (2:6)_(4 52 TCMN4 TCMN 5 307383 308000 309961 310175 2_nonsis 1962 2377 2791 1 12 1 1 0 (2:6)_(4 72 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2_nonsis 2068 2513 2958 1 12 1 1 0 (2:6)_(4 43 TCMN4 TCMN 4 1450894 1451664 1453499 1454543 2_nonsis 1836 2742 3648 1 12 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 14 15 15 1 1 0 (2:6)_(4 15 15 1 0 (2:6)_(4 15 1	(4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
70 TCMN4 TCMN 7 805147 805562 807540 807662 2_nonsis 1979 2247 2514 1 12 1 1 0 (2:6)_(4 52 TCMN4 TCMN 5 307383 308000 309961 310175 2_nonsis 1962 2377 2791 1 12 1 1 0 (2:6)_(4 72 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2_nonsis 2068 2513 2958 1 12 1 1 0 (2:6)_(4 72 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2_nonsis 2068 2513 2958 1 12 1 1 1 0 (2:6)_(4 143 TCMN4 TCMN 4 1450894 1451664 1453499 1454543 2_nonsis 1836 2742 3648 1 12 1 1 1 0 (2:6)_(4 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 1 0 (6:2)_(4 12 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 1 0 (6:2)_(4 12 TCMN4 TCMN 4 230153 230663 233966 234088 2_nonsis 3304 3619 3934 1 12 1 1 0 (6:2)_(4 12 TCMN4 TCMN 15 151914 15 451948 452278 452536 452641 2_nonsis 3304 3619 3934 1 12 1 1 0 (6:2)_(4 12 TCMN4 TCMN 15 451948 452278 452536 452641 2_nonsis 88 541 994 1 15 1 1 0 (6:2)_(4 12 TCMN4 TCMN 15 451948 452278 452536 452641 2_nonsis 88 541 994 1 15 1 1 0 (6:2)_(4 12 TCMN4 TCMN 15 451948 452278 452536 452641 2_nonsis 88 541 994 1 15 1 1 0 (6:2)_(4 12 TCMN4 TCMN 15 451948 452278 452536 452641 2_nonsis 88 541 994 1 15 1 1 0 (6:2)_(4 12 TCMN4 TCMN 16 148110 1483110	(4:4)_(2:6)_(4:4aCO) (4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
52 TCMN4 TCMN 5 307383 308000 30961 310175 2 nonsis 1962 2377 2791 1 12 1 1 0 (25) (4) 72 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2 nonsis 2068 2513 2958 1 12 1 1 0 (25) (4) 4 43 TCMN4 TCMN 4 1450894 1451664 1453499 1454543 2 nonsis 1836 2742 3648 1 12 1 1 0 (25) (4) 185 187 CMN4 TCMN 16 34674 35338 41399 42125 2 nonsis 6062 6756 7450 1 12 1 1 0 (62) (4) 185 TCMN4 TCMN 4 230153 230663 233966 234088 2 nonsis 3304 3619 3934 1 12 1 1 0 (62) (4) 15 1 1 0 (62) (4) 15 1 1 0 (62) (4) 15 <td< td=""><td>(4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)</td></td<>	(4:4)_(2:6)_(4:4aCO) (4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
72 TCMN4 TCMN 7 1016792 1017661 1019728 1019751 2_nonsis 2068 2513 2958 1 12 1 1 0 (2:6)_(4 43 TCMN4 TCMN 4 1450894 1451664 1453499 1454543 2_nonsis 1836 2742 3648 1 12 1 1 0 (2:6)_(4 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 1 0 (6:2)_(4 142 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 12 1 1 0 (6:2)_(4 142 TCMN4 TCMN 4 230153 230663 233966 234088 2_nonsis 3304 3619 3934 1 12 1 1 0 (6:2)_(4 146 TCMN4 TCMN 15 451948 452278 452536 452641 2_nonsis 259 476 692 1 15 1 1 0 (6:2)_(4 145 TCMN4 TCMN 4 752863 752908 752995 753858 2_nonsis 88 541 994 1 15 1 1 0 (6:2)_(4 145 TCMN4 TCMN 8 21160 21541 21727 22121 2_nonsis 187 574 960 1 15 1 1 0 (6:2)_(4 145 TCMN4 TCMN 9 272261 272369 272672 273183 2_nonsis 304 613 921 1 15 1 1 0 (6:2)_(4 145 TCMN4 TCMN 4 1482150 1483110 1483110 1483102 2_nonsis 187 574 960 1 15 1 1 0 (6:2)_(4 145 TCMN4 TCMN 4 1482150 1483110 1483110 1483102 2_nonsis 187 574 960 1 15 1 1 0 (6:2)_(4 145 TCMN4 TCMN 4 1482150 1483110 1483102 2_nonsis 187 574 960 1 15 1 1 0 (6:2)_(4 15 TCMN4 TCMN 4 1482150 1483110 1483102 2_nonsis 11 626 1251 1 15 1 1 0 (6:2)_(4 15 TCMN4 TCMN 4 620943 621879 621894 622375 2_nonsis 16 724 1431 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 13 695850 697269 697269 697465 2_nonsis 16 724 1431 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 13 164304 165032 165218 166349 2_nonsis 187 1116 2044 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 14 700775 701567 701618 702991 2_nonsis 52 1134 2215 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 1 15 1 1 0 (6:2)_(4 113 TCMN4 TCMN 16 179634 18	(4:4aCO)_(2:6)_(4:4a) (4:4aCO)_(2:6)_(4:4a)
43 TCMN4 TCMN 4 1450894 1451664 1453499 1454543 2_nonsis 1836 2742 3648 1 12 1 1 0 (2:6)_64 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 0 (6:2)_64 188 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 12 1 1 0 (6:2)_64 28 TCMN4 TCMN 4 230153 230663 233966 234088 2_nonsis 3304 3619 3934 1 12 1 1 0 (6:2)_64 146 TCMN4 TCMN 15 451948 452278 452545 452641 2_nonsis 259 476 692 1 15 1 1 0 (6:2)_64 36 TCMN4 TCMN 4 752863 752995 753888 2_nonsis 88 541 994	(4:4aCO)_(2:6)_(4:4a)
43 TCMN4 TCMN 4 1450894 1451664 1453499 1454543 2_nonsis 1836 2742 3648 1 12 1 1 0 (2:6)_64 142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 0 (6:2)_64 188 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 12 1 1 0 (6:2)_64 28 TCMN4 TCMN 4 230153 230663 233966 234088 2_nonsis 3304 3619 3934 1 12 1 1 0 (6:2)_64 146 TCMN4 TCMN 15 451948 452278 452545 452641 2_nonsis 259 476 692 1 15 1 1 0 (6:2)_64 36 TCMN4 TCMN 4 752863 752995 753888 2_nonsis 88 541 994	(4:4aCO)_(2:6)_(4:4a)
142 TCMN4 TCMN 15 151910 152407 155250 156059 2_nonsis 2844 3496 4148 1 12 1 1 0 (62)_(4 158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 12 1 1 0 (62)_(4 2 14 15 1 1 0 (62)_(4 14 15 1 1 1 1 0 (62)_(4 14 15 1 1 1 1 0 (62)_(4 14 15 1 1 1 0 (62)_(4 14 15 1 1 1 1 0 (62)_(4 14 15 1 1 1 1 0 (62)_(4 14 15 1 1 1 1 0 (62)_(4 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
158 TCMN4 TCMN 16 34674 35338 41399 42125 2_nonsis 6062 6756 7450 1 12 1 1 0 (62)_(4 2 1 1 1 0 (62)_(4 2 1 1 1 0 (62)_(4 2 1 1 1 0 (62)_(4 2 1 1 1 0 (62)_(4 2 1 1 1 0 (62)_(4 2 1 1 1 0 (62)_(4 2 1 1 0 (62)_(4 2 1 1 0 (62)_(4 2 1 1 0 (62)_(4 2 1 1 0 (62)_(4 2 1 0 (62)_	
28 TCMN4 TCMN 4 230153 230663 233966 234088 2_nonsis 3304 3619 3934 1 12 1 1 0 (622_461 146 TCMN4 TCMN 15 451948 452278 452536 452641 2_nonsis 259 476 692 1 15 1 1 0 (62_461 15 1 1 0 (62_461 15 1 1 0 (62_461 15 1 1 0 (62_461 15 1 1 0 (62_461 15 1 1 0 (62_461 15 1 1 0 (62_461 15 1 1 0 (62_461 15 1 0 1 0 (62_461 15 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(4:4aCO)_(6:2)_(4:4a)
146 TCMN4 TCMN 15 451948 452278 452536 452641 2_nonsis 259 476 692 1 15 1 1 0 (622_(4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(4:4)_(6:2)_(4:4aCO)_(6:2)_(4:4a)
36 TCMN4 TCMN 4 752863 752908 752995 753858 2_nonsis 88 541 994 1 15 1 1 0 (62)_(4 73 TCMN4 TCMN 8 21160 21541 21727 22121 2_nonsis 187 574 960 1 15 1 1 0 (62)_(4 83 TCMN4 TCMN 9 272261 272369 272672 273183 2_nonsis 304 613 921 1 15 1 1 0 (62)_(4 45 TCMN4 TCMN 4 1482150 1483110 1483110 1483402 2_nonsis 10 620_(4 14311 1 15 1 1 0 (62)_(4 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
73 TCMN4 TCMN 8 21160 21541 21727 22121 2_nonsis 187 574 960 1 15 1 1 0 (62)_(4 83 TCMN4 TCMN 9 272261 272369 272672 273183 2_nonsis 304 613 921 1 15 1 1 0 (62)_(4 45 TCMN4 TCMN 4 1482150 1483110 148310 1483402 2_nonsis 1 626 1251 1 15 1 1 0 (62)_(4 12) 1 1 15 1 1 0 (62)_(4 12) 1 1 15 1 1 0 (62)_(4 12) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
83 TCMN4 TCMN 9 272261 272369 272672 273183 _nonsis 304 613 921 1 15 1 1 0 (62)_(4 4 5 TCMN4 TCMN 4 1482150 1483110 1483110 1483402 _nonsis 1 626 1251 1 15 1 1 0 (62)_(4 32 TCMN4 TCMN 4 620943 621879 62189 622375 _nonsis 16 724 1431 1 15 1 1 0 (62)_(4 129 TCMN4 TCMN 13 695820 697269 697269 697465 _nonsis 1 808 1614 1 15 1 1 0 (62)_(4 113 TCMN4 TCMN 12 282626 283463 283731 284270 _nonsis 269 956 1643 1 15 1 1 0 (62)_(4 125 TCMN4 TCMN 13 164304 165032 165218 166349 _nonsis 187 1116 2044 1 15 1 1 0 (62)_(4 13 TCMN4 TCMN 14 700775 701567 701618 70291 _nonsis 52 1134 2215 1 15 1 1 0 (62)_(4 16 TCMN4 TCMN 16 179634 180404 180992 181434 _nonsis 589 1194 1799 1 15 1 1 0 (62)_(4 16 TCMN4 TCMN TCMN 2 685681 686221 686757 687872 _nonsis 537 1364 2190 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN TCMN 14 37986 39122 40430 41146 _nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN TCMN 14 37986 39122 40430 41146 _nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN TCMN 14 37986 39122 40430 41146 _nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN TCMN 14 37986 39122 40430 41146 _nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN TCMN 14 37986 39122 40430 41146 _nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN TCMN TCMN 14 37986 39122 40430 41146 _nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN TCMN TCMN TCMN TCMN TCMN TCMN TCMN	
45 TCMN4 TCMN 4 1482150 1483110 1483100 1483402 2_nonsis 1 626 1251 1 15 1 1 0 (6:2)_(4:32 TCMN4 TCMN 4 620943 621879 621894 622375 2_nonsis 16 724 1431 1 15 1 1 0 (6:2)_(4:4) 129 TCMN4 TCMN 13 695850 697269 697269 697465 2_nonsis 1 808 1614 1 15 1 1 0 (6:2)_(4:4) 13 TCMN4 TCMN 12 282626 283463 283731 284270 2_nonsis 269 956 1643 1 15 1 1 0 (6:2)_(4:4) 125 TCMN4 TCMN 13 164304 165032 165218 166349 2_nonsis 187 1116 2044 1 15 1 1 0 (6:2)_(4:4) 137 TCMN4 TCMN 14 700775 701567 701618 702991 2_nonsis 52 1134 2215 1 15 1 1 0 (6:2)_(4:4) 161 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4:4) 16 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4:4) 16 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4:4) 16 TCMN4 TCMN 17 TCMN 18 686221 686757 687872 2_nonsis 537 1364 2190 1 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 18 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 15 0 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 15 0 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 15 0 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 15 1 1 0 (6:2)_(4:4) 132 TCMN4 TCMN 14 37986 39122 40430 41	
32 TCMN4 TCMN 4 620943 621879 621894 622375 _nonsis 16 724 1431 1 15 1 1 0 (62)_(4 129 TCMN4 TCMN 13 695850 697269 697269 697465 2_nonsis 1 808 1614 1 15 1 1 0 (62)_(4 113 TCMN4 TCMN 12 282626 283463 283731 284270 2_nonsis 269 956 1643 1 15 1 1 0 (62)_(4 125 TCMN4 TCMN 13 164304 165032 165218 166349 2_nonsis 187 1116 2044 1 15 1 1 0 (62)_(4 137 TCMN4 TCMN 14 700775 701567 701618 702991 2_nonsis 52 1134 2215 1 15 1 1 0 (62)_(4 161 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (62)_(4 137 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 187 1364 2190 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 187 1364 2190 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 187 1364 2190 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 15 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 1 15 1 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 1 15 1 1 1 0 (62)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 1 15 1 1 1 0 (62)_(4 132 TCMN4 TCMN 14 180992 181434 181416 2_nonsis	
129 TCMN4 TCMN 13 695850 697269 697269 697465 nonsis 1 808 1614 1 15 1 1 0 (62)_(4 113 TCMN4 TCMN 12 282626 283463 283731 284270 2_nonsis 269 956 1643 1 15 1 1 0 (62)_(4 125 TCMN4 TCMN 13 164304 165032 165218 166349 2_nonsis 187 1116 2044 1 15 1 1 0 (62)_(4 137 TCMN4 TCMN 14 700775 701567 701618 702991 2_nonsis 52 1134 2215 1 15 1 1 0 (62)_(4 161 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (62)_(4 161 TCMN4 TCMN 1	
113 TCMN4 TCMN 12 282626 283463 283731 284270 2_nonsis 269 956 1643 1 15 1 1 0 (6:2)_c(4 125 TCMN4 TCMN 13 164304 165032 165218 166349 2_nonsis 187 1116 2044 1 15 1 1 0 (6:2)_c(4 137 TCMN4 TCMN 14 700775 701567 701618 702991 2_nonsis 52 1134 2215 1 15 1 1 0 (6:2)_c(4 161 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_c(4 161 TCMN4 TCMN 2 685681 686221 686787 687872 2_nonsis 537 1364 2190 1 15 1 1 0 (6:2)_c(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234	
125 TCMN4 TCMN 13 164304 165032 16518 166349 2_nonsis 187 1116 2044 1 15 1 1 0 (6:2)_(4 137 TCMN4 TCMN 14 700775 701567 701618 702991 2_nonsis 52 1134 2215 1 15 1 1 0 (6:2)_(4 161 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 16 TCMN4 TCMN 2 685681 68621 686757 687872 2_nonsis 537 1364 2190 1 15 1 1 0 (6:2)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4	
137 TCMN4 TCMN 14 700775 701567 701618 702991 2_nonsis 52 1134 2215 1 15 1 1 0 (6:2)_(4 161 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 16 TCMN4 TCMN 2 685681 68621 686757 687872 2_nonsis 537 1364 2190 1 15 1 1 0 (6:2)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4 13 0	
161 TCMN4 TCMN 16 179634 180404 180992 181434 2_nonsis 589 1194 1799 1 15 1 1 0 (6:2)_(4 16 TCMN4 TCMN 2 685681 686221 686757 687872 2_nonsis 537 1364 2190 1 15 1 1 0 (6:2)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4	
16 TCMN4 TCMN 2 685681 686221 686757 687872 _nonsis 537 1364 2190 1 15 1 1 0 (6:2)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4 132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4 132 TCMN4 TCMN 14 170 TCMN 15 TC	
132 TCMN4 TCMN 14 37986 39122 40430 41146 2_nonsis 1309 2234 3159 1 15 1 1 0 (6:2)_(4	
_	
93 ICMIN4 ICMIN 10 400334 40/467 40/333 411303 2_HOHSIS 49 2309 4906 1 13 1 1 0 (0:2) (5	
6 TCMN4 TCMN 1 166369 166429 167179 170726 2 nonsis 751 2554 4356 1 15 1 1 0 (6:2)_(4	
163 TCMN4 TCMN 16 532319 532708 534749 535407 2_nonsis 2042 2565 3087 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 822252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 82252 823256 826618 2_nonsis 1005 3119 5233 1 15 1 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 82252 823256 826618 2_nonsis 1005 3119 5233 1 1 15 1 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 82252 823256 826618 2_nonsis 1005 3119 5233 1 1 15 1 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 82252 823256 826618 2_nonsis 1005 3119 5233 1 1 15 1 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 82252 82356 826618 2_nonsis 1005 3119 5233 1 1 15 1 1 1 0 (6:2)_(4 121 TCMN4 TCMN 12 821384 82252 82356 826618 82184 8218	
121 ILMIN4 ILMIN 12 621364 622252 62220 620016 ZIDIBIS 1003 3119 3223 1 13 1 1 0.022/16 85 TCMN4 TCMN 9 327096 329125 33581 Z.DIBIS 1 3243 6484 1 15 1 1 0.622/16 (6.22.16)	
6.7 LORING 1 CART 9 32/1920 32/122 32/2021 2/10/10/10/10 1 1 1 0 (02.2)(4 1 1 1 1 1 0 (02.2)(4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
60 TCMN4 TCMN 7 19894 200351 205307 205559 2_nonsis 4957 5311 5664 1 15 1 1 0 (6:2)_(4	
164 TCMN4 TCMN 16 668392 669691 675149 676046 2_nonsis 5459 6556 7653 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 264165 270332 270695 2_nonsis 6168 6570 6971 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 15 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 270695 2_nonsis 6168 6570 6971 1 1 1 0 (6:2)_(4 92 TCMN4 TCMN 10 263723 2706	
_	
_	
_	
106 TCMN4 TCMN 11 567076 567430 567633 567960 2_nonsis 204 544 883 1 16 1 1 0 (2:6)_4	
_	(4:4aCO)
124 TCMN4 TCMN 13 37125 38744 38744 39077 2_nonsis 1 976 1951 1 16 1 1 0 (2:6)(4	(4:4aCO) (4:4aCO)
47 TCMN4 TCMN 4 1505853 1506604 1506992 1507780 2_nonsis 389 1158 1926 1 16 1 1 0 (2:6)(4	(4:4aCO) (4:4aCO) (4:4aCO)
	(4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO)
	(4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO)
136 TCMN4 TCMN 14 531656 532165 532945 533519 2_nonsis 781 1322 1862 1 16 1 1 0 (2:6)_(4	(4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO)
136 TCMN4 TCMN 14 531656 532165 532945 533519 2_nonsis 781 1322 1862 1 16 1 1 0 (2:6)_(4 50 TCMN4 TCMN 5 77697 77918 79059 79231 2_nonsis 1142 1338 1533 1 16 1 1 0 (2:6)_(4 50 TCMN4 TCMN 5 77697 77918 79059 79231 2_nonsis 1142 1338 1533 1 16 1 1 0 (2:6)_(4 50 TCMN4 TCMN 5 TCMN5 TCM	(4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO) (4:4aCO)
136 TCMN4 TCMN 14 531656 532165 532945 533519 2_nonsis 781 1322 1862 1 16 1 1 0 (2:6)_(4	4:4aCO) 4:4aCO) 4:4aCO) 4:4aCO) 4:4aCO) 4:4aCO) 4:4aCO) 4:4aCO)

39 TCMN4	TCMN	4	1267153	1267740	1268647	1270902 2_nonsis		908	2328	3748	1	16	1	1	0 (2:6)_(4:4aCO)
96 TCMN4	TCMN	11	14411	19020	19020	19563 2_nonsis		1	2576	5151	1	16	1	1	0 (2:6)_(4:4aCO)
133 TCMN4	TCMN	14	158538	159120	161474	161874 2_nonsis		2355	2845	3335	1	16	1	1	0 (2:6)_(4:4aCO)
151 TCMN4	TCMN	15	833472	833904	837247	837630 2_nonsis		3344	3751	4157	1	16	1	1	0 (2:6)_(4:4aCO)
84 TCMN4	TCMN	9	308908	310160	311839	314742 2_nonsis		1680	3757	5833	1	16	1	1	0 (2:6)_(4:4aCO)
135 TCMN4	TCMN	14	353111	353474	356935	357348 2_nonsis		3462	3849	4236	1	16	1	1	0 (2:6)_(4:4aCO)
168 TCMN4	TCMN	16	880884	881834	885979	886611 2_nonsis		4146	4936	5726	1	16	1	1	0 (2:6)_(4:4aCO)
49 TCMN4	TCMN	5	68268	68547	73131	74196 2_nonsis		4585	5256	5927	1	16	1	1	0 (2:6)_(4:4aCO)
68 TCMN4	TCMN	7	771558	772420	777630	777952 2_nonsis		5211	5802	6393	1	16	1	1	0 (2:6)_(4:4aCO)
48 TCMN4	TCMN	5	24628	24661	30664	31247 2_nonsis		6004	6311	6618	1	16	1	1	0 (2:6)_(4:4aCO)
23 TCMN4	TCMN	4	18805	18882	26111	26523 2_nonsis		7230	7474	7717	1	16	1	1	0 (2:6)_(4:4aCO)
61 TCMN4	TCMN	7	248225	249983	257078	257715 2_nonsis		7096	8293	9489	1	16	1	1	0 (2:6)_(4:4aCO)
12 TCMN4	TCMN	2	459961	460243	468402	468870 2_nonsis		8160	8534	8908	1	16	1	1	0 (2:6)_(4:4aCO)
119 TCMN4	TCMN	12	697759	697961	708261	708383 2_nonsis		10301	10462	10623	1	16	1	1	0 (2:6)_(4:4aCO)
30 TCMN4	TCMN	4	305599	306893	316669	317220 2_nonsis		9777	10699	11620	1	16	1	1	0 (2:6)_(4:4aCO)
160 TCMN4	TCMN	16	79797	82464	96592	98464 2_nonsis		14129	16398	18666	1	16	1	1	0 (2:6)_(4:4aCO)
78 TCMN4	TCMN	8	334431	334860	351073	351418 2_nonsis		16214	16600	16986	1	16	1	1	0 (2:6)_(4:4aCO)
76 TCMN4	TCMN	8	237328	237556	237328	237556 2_nonsis		0	114	227	1	100	1	1	0 (4:4aCO)
35 TCMN4	TCMN	4	750901	751203	750901	751203 2_nonsis		0	151	301	1	100	1	1	0 (4:4aCO)
90 TCMN4	TCMN	10	147143	147445	147143	147445 2_nonsis		0	151	301	1	100	1	1	0 (4:4aCO)
38 TCMN4	TCMN	4	899764	900294	899764	900294 2_nonsis		0	265	529	1	100	1	1	0 (4:4aCO)
53 TCMN4	TCMN	5	524520	525075	524520	525075 2_nonsis		0	277	554	1	100	1	1	0 (4:4aCO)
74 TCMN4	TCMN	8	104568	105227	104568	105227 2_nonsis		0	329	658	1	100	1	1	0 (4:4aCO)
95 TCMN4	TCMN	10	589894	590704	589894	590704 2_nonsis		0	405	809	1	100	1	1	0 (4:4aCO)
55 TCMN4	TCMN	5	539346	540205	539346	540205 2_nonsis		0	429	858	1	100	1	1	0 (4:4aCO)
105 TCMN4	TCMN	11	498054	499168	498054	499168 2_nonsis		0	557	1113	1	100	1	1	0 (4:4aCO)
166 TCMN4	TCMN	16	770637	771861	770637	771861 2_nonsis		0	612	1223	1	100	1	1	0 (4:4aCO)
62 TCMN4	TCMN	7	274448	275758	274448	275758 2_nonsis		0	655	1309	1	100	1	1	0 (4:4aCO)
71 TCMN4	TCMN	7	951675	953718	951675	953718 2_nonsis		0	1021	2042	1	100	1	1	0 (4:4aCO)
122 TCMN4	TCMN	12	964739	967075	964739	967075 2_nonsis		0	1168	2335	1	100	1	1	0 (4:4aCO)
7 TCMN4	TCMN	1	187280	189706	187280	189706 2_nonsis		0	1213	2425	1	100	1	1	0 (4:4aCO)
88 TCMN4	TCMN	10	39393	42694	39393	42694 2_nonsis		0	1650	3300	1	100	1	1	0 (4:4aCO)
18 TCMN4	TCMN	2	695479	699461	695479	699461 2_nonsis		0	1991	3981	1	100	1	1	0 (4:4aCO)
130 TCMN4	TCMN	13	713980	715257	715971	716317 2_nonsis		715	1526	2336	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
41 TCMN4	TCMN	4	1295582	1295980	1297076	1297562 2_nonsis		1097	1538	1979	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
127 TCMN4	TCMN	13	257640	257811	259263	259663 2_nonsis		1453	1738	2022	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
80 TCMN4	TCMN	8	459885	460708	461762	463854 2_nonsis		1055	2512	3968	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
21 TCMN4	TCMN	3	148589	149594	149594	151925 2_sis		1	1668	3335	0	1	2	0	2 (0:8)_(4:4)
44 TCMN4	TCMN	4	1474507	1475249	1477994	1478129 2_sis		2746	3184	3621	0	1	2	0	2 (6:2)_(8:0)_(6:2a)_(4:4)
1 TCMN4	TCMN	1	33892	33996	42527	42554	4	8532	8597	8661	0	2	2	1	1 (6:2)_(2:6)_(0:8)_(2:6a)_(4:4aCO)
4 TCMN4	TCMN	1	112136	114283	117940	118997	3	3658	5259	6860	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
5 TCMN4	TCMN	1	121235	128637	132066	135319	4	3430	8757	14083	0	2	2	2	0 (2:6)_(0:8)_(4:4aCO)
37 TCMN4	TCMN	4	837953	840598	847053	848136	3	6456	8319	10182	0	2	2	1	1 (2:6)_(2:6a)_(2:6)_(4:4aCO)
58 TCMN4	TCMN	6	77256	77340	77619	77922	3	280	473	665	0	2	2	1	1 (6:2)_(2:6)_(4:4aCO)
66 TCMN4	TCMN	7	622492	622738	629348	629428	3	6611	6773	6935	0	2	2	1	1 (2:6)_(4:4)_(2:6a)_(4:4aCO)
114 TCMN4	TCMN	12	320469	320997	322903	323570	3	1907	2504	3100	0	2	2	1	1 (2:6)_(2:6a)_(4:4aCO)
131 TCMN4	TCMN	13	866477	866753	889183	889570	3	22431	22762	23092	0	2	2	1	1 (2:6)_(6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
140 TCMN4	TCMN	15	83853	84190	89846	90174	4	5657	5989	6320	0	2	2	1	1 (2:6)_(6:2)_(8:0)_(6:2a)_(4:4aCO)
143 TCMN4	TCMN	15	184291	184504	199433	201256	3	14930	15947	16964	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
153 TCMN4	TCMN	15	890957	891275	892334	892523	3	1060	1313	1565	0	2	2	1	1 (2:6)_(4:4)_(2:6a)_(4:4aCO)
94 TCMN4	TCMN	10	465795	467010	467589	469453	3	580	2119	3657	0	3	2	1	1 (2:6)_(4:4aCO)_(4:4bCO)
99 TCMN4	TCMN	11	245116	246336	253608	254095	4	7273	8126	8978	0	3	2	2	0 (6:2)_(4:4aCO)_(6:2a)_(4:4bCO)
128 TCMN4	TCMN	13	535437	535671	541246	541397	3	5576	5768	5959	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4bCO)
149 TCMN4	TCMN	15	810411	810751	822183	823421	3	11433	12221	13009	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
162 TCMN4	TCMN	16	194832	195093	198834	198912 2_nonsis		3742	3911	4079	0	3	2	2	0 (6:2)_(4:4aCO)_(2:6)_(4:4CO)
165 TCMN4	TCMN	16	747971	748400	748650	749484 2_nonsis		251	882	1512	0	3	2	0	2 (4:4aCO)_(4:4CO)
229 TCMN4	TCMN	6	261543	265223	265223	270161	1	0	4309	8617	0	4	1 NA	NA	
340 TCMN4	TCMN	16	920048	920779	925093	948066	1	0	14009	28017	0	4	1 NA	NA	
62 TCMN5	TCMN	5	200070	200245	204261	204525	1	4017	4236	4454	1	7	1	0	1 6:2_4:4_6:2
165 TCMN5	TCMN	12	515064	515666	516236	516783	1	571	1145	1718	1	8	1	0	1 2:6_4:4_2:6

37 TCMN5	TCMN	4	441971	442320	444672	445249	1	2353	2815	3277	1	8	1	0	1 2:6_4:4_2:6	
72 TCMN5	TCMN	6	218127	218244	221542	221657	1	3299	3414	3529	1	8	1	0	1 2:6_4:4_2:6	
130 TCMN5	TCMN	10	43681	44482	51007	51976	1	6526	7410	8294	1	8	1	0	1 2:6_4:4_2:6	
11 TCMN5	TCMN	2	327936	327972	327989	328054	1	18	68	117	1	10	1	0	1 06:02	
235 TCMN5	TCMN	16	653824	653857	653932	654370	1	76	311	545	1	10	1	0	1 06:02	
94 TCMN5	TCMN	7	909752	910360	910360	910494	1	1	371	741	1	10	1	0	1 06:02	
223 TCMN5	TCMN	15	889642	889988	890036	890409	1	49	408	766	1	10	1	0	1 06:02	
194 TCMN5	TCMN	14	189046	189221	189445	189694	1	225	436	647	1	10	1	0	1 06:02	
121 TCMN5	TCMN	9	41980	42365	42595	42679	1	231	465	698	1	10	1	0	1 06:02	
182 TCMN5	TCMN	13	437392	437945	437945	438469	1	1	539	1076	1	10	1	0	1 06:02	
31 TCMN5	TCMN	4	145096	145686	145805	146231	1	120	627	1134	1	10	1	0	1 06:02	
169 TCMN5	TCMN	12	679180	679614	679633	680510	1	20	675	1329	1	10	1	0	1 06:02	
229 TCMN5	TCMN	16	69892	70402	70600	71375	1	199	841	1482	1	10	1	0	1 06:02	
119 TCMN5	TCMN	8	438307	438697	439148	439617	1	452	881	1309	1	10	1	0	1 06:02	
10 TCMN5	TCMN	2	251134	252027	252499	252589	1	473	964	1454	1	10	1	0	1 06:02	
87 TCMN5	TCMN	7	448887	449525	450034	450372	1	510	997	1484	1	10	1	0	1 06:02	
204 TCMN5	TCMN	14	498514	499188	499366	500627	1	179	1146	2112	1	10	1	0	1 06:02	
222 TCMN5	TCMN	15	864480	864723	865407	866653	1	685	1429	2172	1	10	1	0	1 06:02	
206 TCMN5	TCMN	14	576688	579044	579121	579520	1	78	1455	2831	1	10	1	0	1 06:02	
214 TCMN5	TCMN	15	269468	269497	271047	271168	1	1551	1625	1699	1	10	1	0	1 06:02	
21 TCMN5	TCMN	2	778544	778890	780187	781183	1	1298	1968	2638	1	10	1	0	1 06:02	
86 TCMN5	TCMN	7	428152	428408	429941	430559	1	1534	1970	2406	1	10	1	0	1 06:02	
203 TCMN5	TCMN	14	460625	462377	463310	463775	1	934	2042	3149	1	10	1	0	1 06:02	
109 TCMN5	TCMN	8	120445	121477	123006	123099	1	1530	2092	2653	1	10	1	0	1 06:02	
33 TCMN5	TCMN	4	166022	166634	167826	169331	1	1193	2251	3308	1	10	1	0	1 06:02	
78 TCMN5	TCMN	7	76620	76882	79203	80122	1	2322	2912	3501	1	10	1	0	1 06:02	
65 TCMN5	TCMN	5	519704	521844	523683	524394	1	1840	3265	4689	1	10	1	0	1 06:02	
136 TCMN5	TCMN	10	305004	305635	308559	308682	1	2925	3301	3677	1	10	1	0	1 06:02	
183 TCMN5	TCMN	13	455851	456415	459508	459995	1	3094	3619	4143	1	10	1	0	1 06:02	
90 TCMN5	TCMN	7	830690	830766	834267	835147	1	3502	3979	4456	1	10	1	0	1 06:02	
15 TCMN5	TCMN	2	498959	499985	503402	504535	1	3418	4497	5575	1	10	1	0	1 06:02	
43 TCMN5	TCMN	4	805658	805687	807222	816386	1	1536	6132	10727	1	10	1	0	1 06:02	
129 TCMN5	TCMN	9	419432	419479	419479	419544	1	1	56	111	1	10.1	1	0	1 02:06	
77 TCMN5	TCMN	7	47968	47998	47998	48191	1	1	112	222	1	10.1	1	0	1 02:06	
2 TCMN5	TCMN	1	44150	44384	44384	44588	1	1	219	437	1	10.1	1	0	1 02:06	
131 TCMN5	TCMN	10	53592	53842	53843	54311	1	2	360	718	1	10.1	1	0	1 02:06	
97 TCMN5	TCMN	7	936416	936948	936948	937376	1	1	480	959	1	10.1	1	0	1 02:06	
209 TCMN5	TCMN	15	72322	72737	72842	73180	1	106	482	857	1	10.1	1	0	1 02:06	
60 TCMN5	TCMN	5	25332	25874	25929	26265	1	56	494	932	1	10.1	1	0	1 02:06	
102 TCMN5	TCMN	7	1021857	1022119	1022470	1022499	1	352	497	641	1	10.1	1	0	1 02:06	
100 TCMN5	TCMN	7	1006262	1006307	1006778	1006862	1	472	536	599	1	10.1	1	0	1 02:06	
59 TCMN5	TCMN	4	1498969	1499708	1499760	1500051	1	53	567	1081	1	10.1	1	0	1 02:06	
9 TCMN5	TCMN	2	246613	246942	247399	247522	1	458	683	908	1	10.1	1	0	1 02:06	
193 TCMN5	TCMN	14	166733	167934	168003	168178	1	70	757	1444	1	10.1	1	0	1 02:06	
57 TCMN5	TCMN	4	1360167	1361014	1361086	1361801	1	73	853	1633	1	10.1	1	0	1 02:06	
74 TCMN5	TCMN	6	232697	233456	234009	234160	1	554	1008	1462	1	10.1	1	0	1 02:06	
239 TCMN5	TCMN	16	887552	887933	888652	888868	1	720	1018	1315	1	10.1	1	0	1 02:06	
80 TCMN5	TCMN	7	162215	164025	164025	164428	1	1	1107	2212	1	10.1	1	0	1 02:06	
29 TCMN5	TCMN	4	95036	96116	96674	96799	1	559	1161	1762	1	10.1	1	0	1 02:06	
76 TCMN5	TCMN	7	43798	44099	44898	45371	1	800	1186	1572	1	10.1	1	0	1 02:06	
178 TCMN5	TCMN	13	166349	167027	168134	168774	1	1108	1766	2424	1	10.1	1	0	1 02:06	
127 TCMN5	TCMN	9	376613	377236	378238	379276	1	1003	1833	2662	1	10.1	1	0	1 02:06	
13 TCMN5	TCMN	2	340843	341186	342723	343245	1	1538	1970	2401	1	10.1	1	0	1 02:06	
116 TCMN5	TCMN	8	330660	331641	331868	334431	1	228	1999	3770	1	10.1	1	0	1 02:06	
142 TCMN5	TCMN	10	623220	624389	624648	627140	1	260	2090	3919	1	10.1	1	0	1 02:06	
189 TCMN5	TCMN	14	20559	21301	22855	23245	1	1555	2120	2685	1	10.1	1	0	1 02:06	
163 TCMN5	TCMN	12	494429	495002	496489	497835	1	1488	2447	3405	1	10.1	1	0	1 02:06	
99 TCMN5	TCMN	7	985524	985797	987893	988358	1	2097	2465	2833	1	10.1	1	0	1 02:06	
63 TCMN5	TCMN	5	429823	429972	432416	432695	1	2445	2658	2871	1	10.1	1	0	1 02:06	
38 TCMN5	TCMN	4	451867	452236	454502	455316	1	2267	2858	3448	1	10.1	1	0	1 02:06	

58 TCMN5	TCMN	4	1364514	1364750	1369029	1369744	1	4280	4755	5229	1	10.1	1	0	1 02:06
155 TCMN5	TCMN	11	633641	634414	638298	641421	1	3885	5832	7779	1	10.1	1	0	1 02:06
52 TCMN5	TCMN	4	1228404	1228584	1234670	1235372	1	6087	6527	6967	1	10.1	1	0	1 02:06
118 TCMN5	TCMN	8	407637	407923	424326	425219	1	16404	16993	17581	1	10.1	1	0	1 02:06
111 TCMN5	TCMN	8	157612	158110	163422	163731 2_nonsis		5313	5716	6118	3	30	1	0	1 6:2 2:6
34 TCMN5	TCMN	4	173380	174736	179903	180800 2 nonsis		5168	6294	7419	3	30	1	0	1 2:6 6:2
20 TCMN5	TCMN	2	750883	752417	775579	777303 2_nonsis		23163	24791	26419	3	30	1	0	1 2:6_6:2
108 TCMN5	TCMN	8	76095	76580	78270	79037 2_nonsis		1691	2316	2941	3	30	1	0	1 6:2_4:4_2:6
213 TCMN5	TCMN	15	240239	240519	244803	245153 2_nonsis		4285	4599	4913	3	30	1	0	1 2:6_6:2_4:4_2:6
151 TCMN5	TCMN	11	531608	531920	532520	532628 2_nonsis		601	810	1019	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
117 TCMN5	TCMN	8	378642	378942	379863	380348 2_nonsis		922	1314	1705	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
124 TCMN5	TCMN	9	240376	242535	242863	243088 2_nonsis		329	1520	2711	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
81 TCMN5	TCMN	7	173276	173856	174975	175590 2_nonsis		1120	1717	2313	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
217 TCMN5	TCMN	15	484571	485571	487028	487166 2_nonsis		1458	2026	2594	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
240 TCMN5	TCMN	16	916877	917110	922391	922477 2_nonsis		5282	5441	5599	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
167 TCMN5	TCMN	12	650767	657027	660916	661444 2_nonsis		3890	7283	10676	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
123 TCMN5	TCMN	9	141990	142169	143302	143414 2_nonsis		1134	1279	1423	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
159 TCMN5	TCMN	12	176622	176833	178408	178716 2_nonsis		1576	1835	2093	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
231 TCMN5	TCMN	16	227039	227828	232560	232568 2_nonsis		4733	5131	5528	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
201 TCMN5	TCMN	14	397399	397432	401251	404051 2_nonsis		3820	5236	6651	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
171 TCMN5	TCMN	12	766775	767243	769888	770182 2_nonsis		2646	3026	3406	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(4:4aCO)
184 TCMN5	TCMN	13	467764	467817	467817	467994 2_nonsis		1	115	229	1	15	1	1	0 (6:2)_(4:4aCO)
180 TCMN5	TCMN	13	391888	391938	392080	392165 2_nonsis		143	210	276	1	15	1	1	0 (6:2)_(4:4aCO)
85 TCMN5	TCMN	7	424734	424942	424942	425181 2_nonsis		1	224	446	1	15	1	1	0 (6:2)_(4:4aCO)
132 TCMN5	TCMN	10	56885	57032	57144	57356 2_nonsis		113	292	470	1	15	1	1	0 (6:2)_(4:4aCO)
98 TCMN5	TCMN	7	965717	965888	965888	966356 2_nonsis		1	320	638	1	15	1	1	0 (6:2)_(4:4aCO)
188 TCMN5	TCMN	13	887633	887824	887934	888376 2_nonsis		111	427	742	1	15	1	1	0 (6:2)_(4:4aCO)
82 TCMN5	TCMN	7	266087	266369	266369	266948 2_nonsis		1	431	860	1	15	1	1	0 (6:2)_(4:4aCO)
158 TCMN5	TCMN	12	128659	129489	129489	129657 2 nonsis		1	499	997	1	15	1	1	0 (6:2) (4:4aCO)
22 TCMN5	TCMN	3	37180	37525	37687	38022 2_nonsis		163	502	841	1	15	1	1	0 (6:2)_(4:4aCO)
126 TCMN5	TCMN	9	373284	373728	373971	374268 2_nonsis		244	614	983	1	15	1	1	0 (6:2)_(4:4aCO)
186 TCMN5	TCMN	13	667511	667766	667766	668902 2_nonsis		1	696	1390	1	15	1	1	0 (6:2)_(4:4aCO)
238 TCMN5	TCMN	16	772693	773280	773283	774130 2_nonsis		4	720	1436	1	15	1	1	0 (6:2)_(4:4aCO)
35 TCMN5	TCMN	4	255481	255722	256213	256518 2_nonsis		492	764	1036	1	15	1	1	0 (6:2)_(4:4aCO)
84 TCMN5	TCMN	7	396713	397929	398049	398572 2_nonsis		121	990	1858	1	15	1	1	0 (6:2)_(4:4aCO)
179 TCMN5	TCMN	13	260820	261191	261864	262219 2_nonsis		674	1036	1398	1	15	1	1	0 (6:2)_(4:4aCO)
181 TCMN5	TCMN	13	426590	426949	427114	428830 2_nonsis		166	1203	2239	1	15	1	1	0 (6:2)_(4:4aCO)
161 TCMN5	TCMN	12	280412	281289	281896	282215 2_nonsis		608	1205	1802	1	15	1	1	0 (6:2)_(4:4aCO)
19 TCMN5	TCMN	2	746171	748391	748391	748916 2_nonsis		1	1373	2744	1	15	1	1	0 (6:2)_(4:4aCO)
137 TCMN5	TCMN	10	328971	329323	330470	330974 2_nonsis		1148	1575	2002	1	15	1	1	0 (6:2)_(4:4aCO)
174 TCMN5	TCMN	12	1031618	1032807	1033895	1034027 2_nonsis		1089	1749	2408	1	15	1	1	0 (6:2)_(4:4aCO)
66 TCMN5	TCMN	5	526150	526303	527534	528932 2_nonsis		1232	2007	2781	1	15	1	1	0 (6:2)_(4:4aCO)
199 TCMN5	TCMN	14	326497	326545	328483	328646 2_nonsis		1939	2044	2148	1	15	1	1	0 (6:2)_(4:4aCO)
83 TCMN5	TCMN	7	389105	389508	391279	391475 2_nonsis		1772	2071	2369	1	15	1	1	0 (6:2)_(4:4aCO)
192 TCMN5	TCMN	14	109033	109383	112128	112194 2_nonsis		2746	2953	3160	1	15	1	1	0 (6:2)_(4:4aCO)
26 TCMN5	TCMN	3	251945	252079	255168	255891 2_nonsis		3090	3518	3945	1	15	1	1	0 (6:2)_(4:4aCO)
68 TCMN5	TCMN	6	51370	51603	53398	58238 2_nonsis		1796	4332	6867	1	15	1	1	0 (6:2)_(4:4aCO)
147 TCMN5	TCMN	11	218976	220318	224634	225480 2_nonsis		4317	5410	6503	1	15	1	1	0 (6:2)_(4:4aCO)
6 TCMN5	TCMN	2	67361	68817	73472	73641 2_nonsis		4656	5468	6279	1	15	1	1	0 (6:2)_(4:4aCO)
140 TCMN5	TCMN	10	445855	446477	452919	453420 2_nonsis		6443	7004	7564	1	15	1	1	0 (6:2)_(4:4aCO)
232 TCMN5	TCMN	16	270630	271083	281703	281895 2_nonsis		10621	10943	11264	1	15	1	1	0 (6:2)_(4:4aCO)
233 TCMN5	TCMN	16	284937	285327	296393	297021 2_nonsis		11067	11575	12083	1	15	1	1	0 (6:2)_(4:4aCO)
215 TCMN5	TCMN	15	387208	387907	400124	400317 2_nonsis		12218	12663	13108	1	15	1	1	0 (6:2)_(4:4aCO)
5 TCMN5	TCMN	1	197812	197867	197983	198013 2_nonsis		117	159	200	1	16	1	1	0 (2:6)_(4:4aCO)
149 TCMN5	TCMN	11	355272	355411	355474	355535 2_nonsis		64	163	262	1	16	1	1	0 (2:6)_(4:4aCO)
105 TCMN5	TCMN	8	14965	15038	15239	15293 2_nonsis		202	265	327	1	16	1	1	0 (2:6)_(4:4aCO)
122 TCMN5	TCMN	9	44979	45096	45096	45530 2_nonsis		1	276	550	1	16	1	1	0 (2:6)_(4:4aCO)
145 TCMN5	TCMN	11	79100	79688	79772	79796 2_nonsis		85	390	695	1	16	1	1	0 (2:6)_(4:4aCO)
177 TCMN5	TCMN	13	163286	163391	163519	164021 2_nonsis		129	432	734	1	16	1	1	0 (2:6)_(4:4aCO)
230 TCMN5	TCMN	16	72506	72844	72872	73929 2_nonsis		29	726	1422	1	16	1	1	0 (2:6)_(4:4aCO)

226 TCMN5	TCMN	15	1041487	1042440	1042440	1043118 2_nonsis	1	816	1630	1	16	1	1	0 (2:6)_(4:4aCO)
212 TCMN5	TCMN	15	221112	221192	221900	222314 2_nonsis	709	955	1201	1	16	1	1	0 (2:6)_(4:4aCO)
216 TCMN5	TCMN	15	408540	409273	409753	410084 2_nonsis	481	1012	1543	1	16	1	1	0 (2:6)_(4:4aCO)
196 TCMN5	TCMN	14	197191	197707	198392	198574 2_nonsis	686	1034	1382	1	16	1	1	0 (2:6)_(4:4aCO)
198 TCMN5	TCMN	14	288680	288926	289819	289920 2_nonsis	894	1067	1239	1	16	1	1	0 (2:6)_(4:4aCO)
39 TCMN5	TCMN	4	510697	511129	511815	512370 2_nonsis	687	1180	1672	1	16	1	1	0 (2:6)_(4:4aCO)
164 TCMN5	TCMN	12	499857	500275	500833	501707 2_nonsis	559	1204	1849	1	16	1	1	0 (2:6)_(4:4aCO)
79 TCMN5	TCMN	7	117199	117612	118134	119177 2_nonsis	523	1250	1977	1	16	1	1	0 (2:6)_(4:4aCO)
211 TCMN5	TCMN	15	123921	124780	125570	125806 2_nonsis	791	1338	1884	1	16	1	1	0 (2:6)_(4:4aCO)
120 TCMN5	TCMN	8	503996	505427	505984	506159 2_nonsis	558	1360	2162	1	16	1	1	0 (2:6)_(4:4aCO)
128 TCMN5	TCMN	9	393280	395260	395260	396306 2_nonsis	1	1513	3025	1	16	1	1	0 (2:6)_(4:4aCO)
25 TCMN5	TCMN	3	220112	221651	221877	223339 2_nonsis	227	1727	3226	1	16	1	1	0 (2:6)_(4:4aCO)
30 TCMN5	TCMN	4	115646	116157	117449	117831 2_nonsis	1293	1739	2184	1	16	1	1	0 (2:6)_(4:4aCO)
50 TCMN5	TCMN	4	1127082	1127449	1128837	1129980 2_nonsis	1389	2143	2897	1	16	1	1	0 (2:6)_(4:4aCO)
49 TCMN5	TCMN	4	1051761	1054524	1055277	1055562 2_nonsis	754	2277	3800	1	16	1	1	0 (2:6)_(4:4aCO)
4 TCMN5	TCMN	1	176948	178602	180161	180219 2_nonsis	1560	2415	3270	1	16	1	1	0 (2:6)_(4:4aCO)
113 TCMN5	TCMN	8	217536	218189	220206	220708 2_nonsis	2018	2595	3171	1	16	1	1	0 (2:6)_(4:4aCO)
154 TCMN5	TCMN	11	622708	623698	625985	626193 2_nonsis	2288	2886	3484	1	16	1	1	0 (2:6)_(4:4aCO)
96 TCMN5	TCMN	7	930638	930881	932540	935766 2_nonsis	1660	3394	5127	1	16	1	1	0 (2:6)_(4:4aCO)
190 TCMN5	TCMN	14	42360	42594	45407	46489 2_nonsis	2814	3471	4128	1	16	1	1	0 (2:6)_(4:4aCO)
112 TCMN5 225 TCMN5	TCMN	8	204203 984169	204657	207745	208403 2_nonsis	3089	3644 3687	4199	1	16	1	1	0 (2:6)_(4:4aCO)
225 TCMN5 224 TCMN5	TCMN TCMN	15 15		984206 940429	987667	988081 2_nonsis	3462	4143	3911 4674	1	16 16	1	1	0 (2:6)_(4:4aCO)
135 TCMN5	TCMN	10	940023 298271	298682	944039 302943	944698 2_nonsis 303003 2_nonsis	3611 4262	4143	4731	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
237 TCMN5	TCMN	16	700285	702403	707796		5394	6635	7876	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
221 TCMN5	TCMN	15	820504	820842	829444	708162 2_nonsis 829911 2_nonsis	8603	9005	9406	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
187 TCMN5	TCMN	13	826921	827091	826921	827091 2_nonsis	0	85	169	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
91 TCMN5	TCMN	7	838500	838743	838500	838743 2_nonsis	0	121	242	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
7 TCMN5	TCMN	2	120122	120369	120122	120369 2 nonsis	0	123	246	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
51 TCMN5	TCMN	4	1133503	1133759	1133503	1133759 2_nonsis	0	128	255	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
162 TCMN5	TCMN	12	342190	342448	342190	342448 2_nonsis	0	129	257	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
104 TCMN5	TCMN	7	1063846	1064130	1063846	1064130 2_nonsis	0	142	283	1	100	1	1	0 (4:4aCO)
197 TCMN5	TCMN	14	259694	259989	259694	259989 2_nonsis	0	147	294	1	100	1	1	0 (4:4aCO)
45 TCMN5	TCMN	4	922382	922757	922382	922757 2_nonsis	0	187	374	1	100	1	1	0 (4:4aCO)
134 TCMN5	TCMN	10	251884	252286	251884	252286 2_nonsis	0	201	401	1	100	1	1	0 (4:4aCO)
16 TCMN5	TCMN	2	567077	567676	567077	567676 2_nonsis	0	299	598	1	100	1	1	0 (4:4aCO)
36 TCMN5	TCMN	4	306893	307571	306893	307571 2_nonsis	0	339	677	1	100	1	1	0 (4:4aCO)
168 TCMN5	TCMN	12	666935	667631	666935	667631 2_nonsis	0	348	695	1	100	1	1	0 (4:4aCO)
12 TCMN5	TCMN	2	333434	334196	333434	334196 2_nonsis	0	381	761	1	100	1	1	0 (4:4aCO)
146 TCMN5	TCMN	11	203378	204194	203378	204194 2_nonsis	0	408	815	1	100	1	1	0 (4:4aCO)
176 TCMN5	TCMN	13	68292	69113	68292	69113 2_nonsis	0	410	820	1	100	1	1	0 (4:4aCO)
88 TCMN5	TCMN	7	477384	478308	477384	478308 2_nonsis	0	462	923	1	100	1	1	0 (4:4aCO)
114 TCMN5	TCMN	8	277301	278461	277301	278461 2_nonsis	0	580	1159	1	100	1	1	0 (4:4aCO)
3 TCMN5	TCMN	1	82379	83613	82379	83613 2_nonsis	0	617	1233	1	100	1	1	0 (4:4aCO)
185 TCMN5	TCMN	13	576343	577768	576343	577768 2_nonsis	0	712	1424	1	100	1	1	0 (4:4aCO)
53 TCMN5	TCMN	4	1237229	1238791	1237229	1238791 2_nonsis	0	781	1561	1	100	1	1	0 (4:4aCO)
219 TCMN5	TCMN	15	664631	666379	664631	666379 2_nonsis	0	874	1747	1	100	1	1	0 (4:4aCO)
191 TCMN5	TCMN	14	46932	49011	46932	49011 2_nonsis	0	1039	2078	1	100	1	1	0 (4:4aCO)
42 TCMN5	TCMN	4	703905	706032	703905	706032 2_nonsis	0	1063	2126	1	100	1	1	0 (4:4aCO)
207 TCMN5	TCMN	14	652841	655138	652841	655138 2_nonsis	0	1148	2296	1	100	1	1	0 (4:4aCO)
89 TCMN5	TCMN	7	643019	645676	643019	645676 2_nonsis	0	1328	2656	1	100	1	1	0 (4:4aCO)
148 TCMN5	TCMN	11	293792	296531	293792	296531 2_nonsis	0	1369	2738	1	100	1	1	0 (4:4aCO)
1 TCMN5	TCMN	1	39162	41987	39162	41987 2_nonsis	0	1412	2824	1	100	1	1	0 (4:4aCO)
205 TCMN5	TCMN	14	554217	557562	554217	557562 2_nonsis	0	1672	3344	1	100	1	1	0 (4:4aCO)
144 TCMN5	TCMN	11	14411	19020	14411	19020 2_nonsis	0	2304	4608	1	100	1	1	0 (4:4aCO)
27 TCMN5	TCMN	3	291220	296463	291220	296463 2_nonsis	0	2621	5242	1	100	1	1	0 (4:4aCO)
156 TCMN5	TCMN	12	51956	53039	54357	54748 2_nonsis	1319	2055	2791	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
125 TCMN5	TCMN	9	329125	334329	336223	336673 2_nonsis	1895	4721	7547	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
208 TCMN5	TCMN	14	765330	765537	766008	766895 2_nonsis	472	1018	1564	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
195 TCMN5	TCMN	14	192780	193276	194143	194260 2_nonsis	868	1174	1479	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)

8 TCMN5	TCMN	2	166607	166703	167650	167794 2_nonsis		948	1067	1186	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(6:2)_(4:4aCO)
17 TCMN5	TCMN	2	662444	666708	668082	669586 2_sis		1375	4258	7141	0	1	2	0	2 (0:8)_(2:6)_(2:6a)_(4:4)
32 TCMN5	TCMN	4	156591	157148	160731	161006 2_sis		3584	3999	4414	0	1	2	0	2 (2:6)_(0:8)_(2:6)_(4:4)
44 TCMN5	TCMN	4	844304	845613	848136	850484 2_sis		2524	4352	6179	0	1	2	0	2 (6:2)_(8:0)_(4:4)
47 TCMN5	TCMN	4	951669	952018	960570	960787 2_sis		8553	8835	9117	0	1	2	0	2 (2:6)_(0:8)_(2:6)_(4:4)
64 TCMN5	TCMN	5	472756	472959	475154	475295 2_sis		2196	2367	2538	0	1	2	0	2 (2:6)_(0:8)_(2:6)_(4:4)
70 TCMN5	TCMN	6	129176	129391	130480	131237 2_sis		1090	1575	2060	0	1	2	0	2 (6:2)_(8:0)_(4:4)
101 TCMN5	TCMN	7	1009263	1009276	1016792	1017661	3	7517	7957	8397	0	1	2	0	2 (6:2)_(4:4)_(0:8)_(2:6)_(4:4)
106 TCMN5	TCMN	8	31980	32029	34675	34710 2_sis		2647	2688	2729	0	1	2	0	2 (2:6)_(4:4)_(2:6a)_(4:4)
150 TCMN5	TCMN	11	525008	525645	529197	529548 2_sis		3553	4046	4539	0	1	2	0	2 (6:2)_(8:0)_(6:2)_(4:4)
172 TCMN5	TCMN	12	1007084	1007701	1011621	1013592	3	3921	5214	6507	0	1	2	0	2 (2:6)_(8:0)_(4:4)
202 TCMN5	TCMN	14	424418	425075	433271	434561	3	8197	9170	10142	0	1	2	0	2 (2:6)_(0:8)_(2:6)_(6:2)_(4:4)
227 TCMN5	TCMN	15	1059960	1060063	1063605	1063818 2_sis		3543	3700	3857	0	1	2	0	2 (6:2)_(8:0)_(6:2)_(4:4)
14 TCMN5	TCMN	2	479752	480693	484159	485003	3	3467	4359	5250	0	2	2	1	1 (6:2)_(6:2a)_(4:4aCO)
23 TCMN5	TCMN	3	57568	58033	59925	60354	3	1893	2339	2785	0	2	2	1	1 (2:6)_(0:8)_(4:4aCO)
28 TCMN5	TCMN	4	75223	76111	78945	79107	3	2835	3359	3883	0	2	2	1	1 (8:0)_(6:2)_(4:4aCO)
40 TCMN5	TCMN	4	548255	548809	555783	556617	3	6975	7668	8361	0	2	2	1	1 (2:6)_(4:4)_(2:6)_(4:4)_(2:6a)_(4:4aCO)
41 TCMN5	TCMN	4	698417	698508	703137	703208	4	4630	4710	4790	0	2	2	1	1 (2:6) (0:8) (2:6a) (4:4aCO)
46 TCMN5	TCMN	4	924351	924464	929665	930059	3	5202	5455	5707	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
54 TCMN5	TCMN	4	1270457	1270902	1282347	1283112	3	11446	12050	12654	0	2	2	1	1 (2:6)_(4:4)_(0:8)_(2:6a)_(0:8)_(2:6a)_(4:4aCO)
55 TCMN5	TCMN	4	1328369	1329703	1338084	1338120	3	8382	9066	9750	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
56 TCMN5	TCMN	4	1341051	1341287	1347017	1347437	3	5731	6058	6385	0	2	2	1	1 (2:6)_(4:4)_(0:8)_(2:6)_(4:4aCO)
67 TCMN5	TCMN	6	25366	25514	29751	29945	3	4238	4408	4578	0	2	2	1	1 (2:6)_(2:6a)_(4:4)_(2:6a)_(4:4)_(2:6a)_(0:8)_(2:6)_(4:4aCO)
73 TCMN5	TCMN	6	223291	223531	227351	227543	3	3821	4036	4251	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
75 TCMN5	TCMN	6	244444	245103	250075	251006	4	4973	5767	6561	0	2	2	1	1 (0:8)_(2:6)_(0:8)_(2:6a)_(4:4aCO)
92 TCMN5	TCMN	7	846740	851797	853451	853758	4	1655	4336	7017	0	2	2	2	0 (0:8)_(4:4aCO)_(6:2)_(2:6)_(4:4a)
110 TCMN5	TCMN	8	139506	141400	141400	142863	3	1055	1679	3356	0	2	2	1	1 (6:2)_(4:4aCO)
110 TCMN5	TCMN	8	279197	279622	283226	283558	3	3605	3983	4360	0	2	2	1	
		10					3				0	2	2	1	1 (8:0)_(4:4)_(6:2)_(4:4aCO)
133 TCMN5 138 TCMN5	TCMN TCMN	10	191621 355564	192156 355601	193406 362546	194259 362886	3	1251 6946	1944 7134	2637 7321	0	2	2	1	1 (6:2)_(4:4)_(4:4aCO) 1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
139 TCMN5	TCMN	10	384523	385172	398997	399390	4	13826	14346	14866	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO) 1 (6:2)_(4:4)_(2:6)_(0:8)_(2:6a)_(4:4aCO)
139 TCMN5	TCMN	10	707903	708090	709746	711083	3	15826	2418	3179	0	2	2	1	
- 10 10							3				-				1 (6:2)_(4:4aCO)_(2:6)_(4:4a)
152 TCMN5	TCMN	11	569085	569468	592577	593181		23110	23603	24095	0	2	2	1	1 (6:2)_(8:0)_(4:4aCO)
157 TCMN5	TCMN	12	95188	98056	100782	101108	4	2727	4323	5919	0	2	2	2	0 (8:0)_(4:4aCO)
160 TCMN5	TCMN	12	256406	256727	262367	265975	3	5641	7605	9568	0	2	2	1	1 (2:6)_(2:6a)_(0:8)_(4:4aCO)
166 TCMN5	TCMN	12	566431	566615	567266	568114	3	652	1167	1682	0	2	2	1	1 (6:2)_(4:4)_(4:4aCO)
170 TCMN5	TCMN	12	719910	721257	721257	721983	3	1	1037	2072	0	2	2	1	1 (2:6)_(4:4aCO)
220 TCMN5	TCMN	15	763727	764378	765404	766151	3	1027	1725	2423	0	2	2	1	1 (2:6)_(4:4aCO)
228 TCMN5	TCMN	16	22826	26114	68341	68882	4	42228	44142	46055	0	2	2	1	1 (6:2)_(8:0)_(6:2)_(2:6)_(4:4aCO)
234 TCMN5	TCMN	16	458660	458912	470217	470860	3	11306	11753	12199	0	2	2	1	1 (6:2)_(2:6)_(4:4aCO)
236 TCMN5	TCMN	16	679119	679573	682384	682729	3	2812	3211	3609	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)
18 TCMN5	TCMN	2	684988	685165	701832	702521	4	16668	17100	17532	0	3	2	2	0 (2:6)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(2:6a)_(4:4bCO)
24 TCMN5	TCMN	3	71752	71885	79797	83502	3	7913	9831	11749	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(0:8)_(2:6a)_(4:4bCO)
69 TCMN5	TCMN	6	87634	87949	94545	94981 2_nonsis		6597	6972	7346	0	3	2	0	2 (6:2)_(4:4aCO)_(2:6)_(4:4CO)
71 TCMN5	TCMN	6	192445	192534	199343	201607	3	6810	7986	9161	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
93 TCMN5	TCMN	7	877161	878070	880304	880399 2_nonsis		2235	2736	3237	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
95 TCMN5	TCMN	7	914816	915691	920266	920986	3	4576	5373	6169	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)
103 TCMN5	TCMN	7	1024337	1025033	1039298	1039425	3	14266	14677	15087	0	3	2	1	1 (2:6)_(4:4aCO)_(4:4bCO)
107 TCMN5	TCMN	8	45102	46055	56808	57698	3	10754	11675	12595	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6a)_(0:8)_(2:6b)_(0:8)_(2:6)_(4:4CO)
141 TCMN5	TCMN	10	553415	554502	558676	558889 2_nonsis		4175	4824	5473	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
153 TCMN5	TCMN	11	606908	608039	611219	612138 2_nonsis		3181	4205	5229	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4CO)_(2:6)_(4:4aCO)
173 TCMN5	TCMN	12	1015108	1015543	1017718	1018933 2_nonsis		2176	3000	3824	0	3	2	1	1 (4:4aCO)_(4:4CO)_(6:2)_(4:4aCO)
175 TCMN5	TCMN	13	40511	41051	50109	50514	3	9059	9531	10002	0	3	2	1	1 (4:4aCO)_(2:6)_(4:4bCO)
210 TCMN5	TCMN	15	85011	85161	95393	95966	3	10233	10594	10954	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2a)_(2:6)_(4:4CO)
218 TCMN5	TCMN	15	574716	577841	590260	590710	3	12420	14207	15993	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)
384 TCMN5	TCMN	10	718719	720598	725123	745751	1	0	13516	27031	0	4	1 NA	NA	
430 TCMN5	TCMN	13	908047	908906	917449	924431 NA		8544	12464	16383	0	4	1 NA	NA	6:2_4:4_6:2_8:0_6:2
451 TCMN5	TCMN	15	40057	40834	40057	40834	1	0	388	776	0	4	1 NA	NA	
97 TCMN6	TCMN	14	135855	135879	135879	135908	1	1	27	52	1	10	1	0	1 06:02
123 TCMN6	TCMN	15	1045508	1045539	1045539	1045615	1	1	54	106	1	10	1	0	1 06:02

131 TCMN6	TCMN	16	664160	664567	664567	664678	1	1	259	517	1	10	1	0	1 06:02
130 TCMN6	TCMN	16	621160	621301	621480	622057	1	180	538	896	1	10	1	0	1 06:02
115 TCMN6	TCMN	15	484571	485571	485588	485898	1	18	672	1326	1	10	1	0	1 06:02
80 TCMN6	TCMN	12	679180	679614	679633	680510	1	20	675	1329	1	10	1	0	1 06:02
59 TCMN6	TCMN	9	347270	348431	348726	348958	1	296	992	1687	1	10	1	0	1 06:02
28 TCMN6	TCMN	5	460411	461582	461877	462226	1	296	1055	1814	1	10	1	0	1 06:02
51 TCMN6	TCMN	8	235099	235912	236251	237146	1	340	1193	2046	1	10	1	0	1 06:02
104 TCMN6	TCMN	14	651098	652238	652841	655138	1	604	2322	4039	1	10	1	0	1 06:02
37 TCMN6	TCMN	7	91862	92820	94650	95130	1	1831	2549	3267	1	10	1	0	1 06:02
118 TCMN6	TCMN	15	605119	606232	609553	609608	1	3322	3905	4488	1	10	1	0	1 06:02
73 TCMN6	TCMN	11	566212	566530	570049	570688	1	3520	3998	4475	1	10	1	0	1 06:02
86 TCMN6	TCMN	13	390393	390486	390486	390597	1	1	102	203	1	10.1	1	0	1 02:06
124 TCMN6	TCMN	16	162337	162602	162602	162746	1	1	205	408	1	10.1	1	0	1 02:06
40 TCMN6	TCMN	7	197001	197150	197230	197465	1	81	272	463	1	10.1	1	0	1 02:06
78 TCMN6	TCMN	12	645780	645971	645971	646705	1	1	463	924	1	10.1	1	0	1 02:06
44 TCMN6	TCMN	7	361880	362105	362105	363325	1	1	723	1444	1	10.1	1	0	1 02:06
98 TCMN6	TCMN	14	166733	167934	168003	168178	1	70	757	1444	1	10.1	1	0	1 02:06
117 TCMN6	TCMN	15	520372	520499	521161	521442	1	663	866	1069	1	10.1	1	0	1 02:06
42 TCMN6	TCMN	7	253383	253849	254552	255756	1	704	1538	2372	1	10.1	1	0	1 02:06
93 TCMN6	TCMN	14	30923	32285	32426	34396	1	142	1807	3472	1	10.1	1	0	1 02:06
105 TCMN6	TCMN	14	686681	688572	689310	689558	1	739	1808	2876	1	10.1	1	0	1 02:06
35 TCMN6	TCMN	7	44099	44898	46197	46424	1	1300	1812	2324	1	10.1	1	0	1 02:06
67 TCMN6	TCMN	11	124424	125000	125651	127396	1	652	1812	2971	1	10.1	1	0	1 02:06
64 TCMN6	TCMN	10	465795	467010	467589	469453	1	580	2119	3657	1	10.1	1	0	1 02:06
7 TCMN6	TCMN	2	144991	145073	147245	147314	1	2173	2248	2322	1	10.1	1	0	1 02:06
8 TCMN6	TCMN	2	158200	158707	160618	160810	1	1912	2261	2609	1	10.1	1	0	1 02:06
72 TCMN6	TCMN	11	531920	532520	534319	535346	1	1800	2613	3425	1	10.1	1	0	1 02:06
88 TCMN6	TCMN	13	447619	448761	450640	451369	1	1880	2815	3749	1	10.1	1	0	1 02:06
108 TCMN6	TCMN	15	100319	100603	103524	103968	1	2922	3285	3648	1	10.1	1	0	1 02:06
4 TCMN6	TCMN	2	66717	66852	68834	72096	1	1983	3681	5378	1	10.1	1	0	1 02:06
126 TCMN6	TCMN	16	352228	352381	356245	356407	1	3865	4022	4178	1	10.1	1	0	1 02:06
33 TCMN6	TCMN	6	215867	216669	221934	222095	1	5266	5747	6227	1	10.1	1	0	1 02:06
21 TCMN6	TCMN	4	271809	272060	273273	273764 2_nonsis		1214	1584	1954	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
114 TCMN6	TCMN	15	407771	408436	410084	410118 2_nonsis		1649	1998	2346	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
100 TCMN6	TCMN	14	256273	256857	256857	256929 2_nonsis		1	328	655	1	15	1	1	0 (6:2)_(4:4aCO)
58 TCMN6	TCMN	9	260488	260891	261499	261805 2_nonsis		609	963	1316	1	15	1	1	0 (6:2)_(4:4aCO)
70 TCMN6	TCMN	11	204194	205481	205840	206732 2_nonsis		360	1449	2537	1	15	1	1	0 (6:2)_(4:4aCO)
55 TCMN6	TCMN	9	52260	53016	53717	54480 2_nonsis		702	1461	2219	1	15	1	1	0 (6:2)_(4:4aCO)
99 TCMN6	TCMN	14	216026	216647	216919	218712 2_nonsis		273	1479	2685	1	15	1	1	0 (6:2)_(4:4aCO)
127 TCMN6	TCMN	16	474370	474526	475802	476377 2_nonsis		1277	1642	2006	1	15	1	1	0 (6:2)_(4:4aCO)
119 TCMN6	TCMN	15	662842	664181	664631	666379 2_nonsis		451	1994	3536	1	15	1	1	0 (6:2)_(4:4aCO)
30 TCMN6	TCMN	5	524520	525075	526712	527126 2_nonsis		1638	2122	2605	1	15	1	1	0 (6:2)_(4:4aCO)
9 TCMN6	TCMN	2	192576	193122	194226	195735 2_nonsis		1105	2132	3158	1	15	1	1	0 (6:2)_(4:4aCO)
56 TCMN6	TCMN	9	153913	154387	156304	156711 2_nonsis		1918	2358	2797	1	15	1	1	0 (6:2)_(4:4aCO)
22 TCMN6	TCMN	4	313461	313566	315175	316669 2_nonsis		1610	2409	3207	1	15	1	1	0 (6:2)_(4:4aCO)
25 TCMN6	TCMN	5	235812	236202	238396	238975 2_nonsis		2195	2679	3162	1	15	1	1	0 (6:2)_(4:4aCO)
110 TCMN6	TCMN	15	144479	144655	147007	147540 2_nonsis		2353	2707	3060	1	15	1	1	0 (6:2)_(4:4aCO)
10 TCMN6	TCMN	2	290619	291653	294230	295028 2_nonsis		2578	3493	4408	1	15	1	1	0 (6:2)_(4:4aCO)
26 TCMN6	TCMN	5	256810	258361	261062	261627 2_nonsis		2702	3759	4816	1	15	1	1	0 (6:2)_(4:4aCO)
43 TCMN6	TCMN	7	273707	274428	278975	279315 2_nonsis		4548	5078	5607	1	15	1	1	0 (6:2)_(4:4aCO)
53 TCMN6	TCMN	8	321084	321902	327083	327845 2_nonsis		5182	5971	6760	1	15	1	1	0 (6:2)_(4:4aCO)
89 TCMN6	TCMN	13	588661	588927	594694	595371 2_nonsis		5768	6239	6709	1	15	1	1	0 (6:2)_(4:4aCO)
65 TCMN6	TCMN	10	469702	470610	472296	484073 2_nonsis		1687	8029	14370	1	15	1	1	0 (6:2)_(4:4aCO)
	TCMN	15	391650	392258	401076	401767 2_nonsis		8819	9468	10116	1	15	1	1	0 (6:2)_(4:4aCO)
113 TCMN6						260252 2		112	467	821	1	16	1	1	0 (2:6)_(4:4aCO)
125 TCMN6	TCMN	16	259430	259987	260098	260252 2_nonsis									
125 TCMN6 39 TCMN6	TCMN TCMN	7	193477	193769	193769	194505 2_nonsis		1	514	1027	1	16	1	1	0 (2:6)_(4:4aCO)
125 TCMN6 39 TCMN6 34 TCMN6	TCMN TCMN TCMN	7 7	193477 36018	193769 36691	193769 37058	194505 2_nonsis 37087 2_nonsis		1 368	718	1068	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
125 TCMN6 39 TCMN6 34 TCMN6 57 TCMN6	TCMN TCMN TCMN TCMN	7 7 9	193477 36018 252448	193769 36691 253199	193769 37058 253199	194505 2_nonsis 37087 2_nonsis 253992 2_nonsis		1 368 1	718 772	1068 1543	1	16 16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
125 TCMN6 39 TCMN6 34 TCMN6	TCMN TCMN TCMN	7 7	193477 36018	193769 36691	193769 37058	194505 2_nonsis 37087 2_nonsis		1 368	718	1068	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)

92 TCMN6	TCMN	13	830613	831156	831576	832164 2_nonsis		421	986	1550	1	16	1	1	0 (2:6)_(4:4aCO)
101 TCMN6	TCMN	14	345121	345280	346206	346414 2_nonsis		927	1110	1292	1	16	1	1	0 (2:6)_(4:4aCO)
18 TCMN6	TCMN	4	164298	164984	165551	166022 2_nonsis		568	1146	1723	1	16	1	1	0 (2:6)_(4:4aCO)
16 TCMN6	TCMN	3	189052	190177	190177	191741 2_nonsis		1	1345	2688	1	16	1	1	0 (2:6)_(4:4aCO)
63 TCMN6	TCMN	10	382565	383067	384052	384310 2_nonsis		986	1365	1744	1	16	1	1	0 (2:6)_(4:4aCO)
47 TCMN6	TCMN	7	526419	526675	528501	528674 2_nonsis		1827	2041	2254	1	16	1	1	0 (2:6)_(4:4aCO)
45 TCMN6	TCMN	7	374606	374962	376592	377296 2_nonsis		1631	2160	2689	1	16	1	1	0 (2:6)_(4:4aCO)
54 TCMN6	TCMN	8	381693	382565	384685	385098 2_nonsis		2121	2763	3404	1	16	1	1	0 (2:6)_(4:4aCO)
81 TCMN6	TCMN	12	826618	830392	831136	831658 2_nonsis		745	2892	5039	1	16	1	1	0 (2:6)_(4:4aCO)
128 TCMN6	TCMN	16	504597	505893	508709	508976 2_nonsis		2817	3598	4378	1	16	1	1	0 (2:6)_(4:4aCO)
74 TCMN6	TCMN	11	628847	629063	632654	633545 2_nonsis		3592	4145	4697	1	16	1	1	0 (2:6)_(4:4aCO)
69 TCMN6	TCMN	11	168746	169345	173133	173315 2_nonsis		3789	4179	4568	1	16	1	1	0 (2:6)_(4:4aCO)
68 TCMN6	TCMN	11	160799	161178	165087	165249 2_nonsis		3910	4180	4449	1	16	1	1	0 (2:6)_(4:4aCO)
41 TCMN6	TCMN	7	226711	230011	232615	232997 2_nonsis		2605	4445	6285	1	16	1	1	0 (2:6)_(4:4aCO)
87 TCMN6	TCMN	13	432244	432613	436769	437012 2_nonsis		4157	4462	4767	1	16	1	1	0 (2:6)_(4:4aCO)
94 TCMN6	TCMN	14	80433	81575	85405	85712 2_nonsis		3831	4555	5278	1	16	1	1	0 (2:6)_(4:4aCO)
96 TCMN6	TCMN	14	114676	114732	119295	119414 2_nonsis		4564	4651	4737	1	16	1	1	0 (2:6)_(4:4aCO)
121 TCMN6	TCMN	15	938699	939507	943688	944698 2_nonsis		4182	5090	5998	1	16	1	1	0 (2:6)_(4:4aCO)
48 TCMN6	TCMN	7	622133	622186	627463	627883 2_nonsis		5278	5514	5749	1	16	1	1	0 (2:6)_(4:4aCO)
31 TCMN6	TCMN	6	49483	50137	53398	58238 2_nonsis		3262	6008	8754	1	16	1	1	0 (2:6)_(4:4aCO)
20 TCMN6	TCMN	4	264197	264290	264197	264290 2_nonsis		0	46	92	1	100	1	1	0 (4:4aCO)
120 TCMN6	TCMN	15	757318	757677	757318	757677 2_nonsis		0	179	358	1	100	1	1	0 (4:4aCO)
11 TCMN6	TCMN	2	489897	490532	489897	490532 2_nonsis		0	317	634	1	100	1	1	0 (4:4aCO)
61 TCMN6	TCMN	10	159830	160491	159830	160491 2_nonsis		0	330	660	1	100	1	1	0 (4:4aCO)
91 TCMN6	TCMN	13	748055	748748	748055	748748 2_nonsis		0	346	692	1	100	1	1	0 (4:4aCO)
15 TCMN6	TCMN	2	797893	798747	797893	798747 2_nonsis		0	427	853	1	100	1	1	0 (4:4aCO)
109 TCMN6	TCMN	15	123921	124780	123921	124780 2_nonsis		0	429	858	1	100	1	1	0 (4:4aCO)
14 TCMN6	TCMN	2	746171	748391	746171	748391 2_nonsis		0	1110	2219	1	100	1	1	0 (4:4aCO)
32 TCMN6	TCMN	6	199339	201607	199339	201607 2_nonsis		0	1134	2267	1	100	1	1	0 (4:4aCO)
111 TCMN6	TCMN	15	192333	196238	192333	196238 2_nonsis		0	1952	3904	1	100	1	1	0 (4:4aCO)
27 TCMN6	TCMN	5	309648	309961	316361	316681 2_nonsis		6401	6717	7032	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
1 TCMN6	TCMN	1	121235	128637	129517	130254	3	881	4950	9018	0	1	2	0	2 (0:8)_(6:2)_(4:4)
85 TCMN6	TCMN	13	379442	379637	388700	388702 2_sis		9064	9162	9259	0	1	2	0	2 (2:6)_(0:8)_(4:4)_(2:6)_(4:4)
23 TCMN6	TCMN	4	557710	557899	557899	558895	4	1	593	1184	0	2	2	2	0 (8:0)_(4:4aCO)
36 TCMN6	TCMN	7	82858	85120	85628	86297	4	509	1974	3438	0	2	2	2	0 (8:0)_(4:4aCO)
50 TCMN6	TCMN	8	141400	142863	143727	143824	3	865	1644	2423	0	2	2	1	1 (2:6)_(0:8)_(4:4aCO)
62 TCMN6	TCMN	10	235668	235976	249099	249294	4	13124	13375	13625	0	2	2	1	1 (8:0)_(0:8)_(4:4aCO)
79 TCMN6	TCMN	12	657536	657602	661444	661750	3	3843	4028	4213	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
82 TCMN6	TCMN	12	874541	875035	881235	882746	3	6201	7203	8204	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
83 TCMN6	TCMN	12	892436	930472	892436	930472	4	0	19018	38035	0	2	2	2	0 (4:4aCO)
84 TCMN6	TCMN	13	72351	73368	81243	81991	4	7876	8758	9639	0	2	2	2	0 (8:0)_(4:4aCO)
95 TCMN6	TCMN	14	89494	89776	91169	91989	4	1394	1944	2494	0	2	2	2	0 (8:0)_(4:4aCO)
112 TCMN6	TCMN	15	252891	253882	255268	256152	3	1387	2324	3260	0	2	2	2	0 (8:0)_(4:4aCO)
13 TCMN6	TCMN	2	666849	668076	669668	669956 2_nonsis		1593	2350	3106	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)
210 TCMN6	TCMN	12	31473	32690	31473	32690 NA		0	608	1216	0	4	1 NA	NA	
84 TN1	TN	14	559022	559202	559202	559420	1	1	199	397	1	10	1	0	1 06:02
3 TN1	TN	2	195960	196145	196145	196362	1	1	201	401	1	10	1	0	1 06:02
9 TN1	TN	3	211504	211617	211617	211982	1	1	239	477	1	10	1	0	1 06:02
93 TN1	TN	15	722554	722838	722838	723053	1	1	250	498	1	10	1	0	1 06:02
100 TN1	TN	16	832084	832297	832535	832685	1	239	420	600	1	10	1	0	1 06:02
82 TN1	TN	14	370839	371516	371658	372088	1	143	696	1248	1	10	1	0	1 06:02
21 TN1	TN	4	1278613	1278992	1279422	1279680	1	431	749	1066	1	10	1	0	1 06:02
91 TN1	TN	15	477802	478649	478915	479565	1	267	1015	1762	1	10	1	0	1 06:02
64 TN1	TN	12	604223	604915	606088	606112	1	1174	1531	1888	1	10	1	0	1 06:02
27 TN1	TN	6	46998	47804	49258	49483	1	1455	1970	2484	1	10	1	0	1 06:02
72 TN1	TN	13	145373	145748	146198	149583	1	451	2330	4209	1	10	1	0	1 06:02
35 TN1	TN	7	591242	591949	594432	594587	1	2484	2914	3344	1	10	1	0	1 06:02
52 TN1	TN	10	557590	557648	560603	560828	1	2956	3097	3237	1	10	1	0	1 06:02
41 TN1	TN	8	37931	37944	42065	42238	1	4122	4214	4306	1	10	1	0	1 06:02
43 TN1	TN	9	32569	32674	36872	36921	1	4199	4275	4351	1	10	1	0	1 06:02

58 TN1	TN	11	502693	502906	507899	508337	1	4994	5319	5643	1	10	1	0	1 06:02
61 TN1	TN	12	224592	225174	225332	225620	1	159	593	1027	1	10.1	1	0	1 02:06
55 TN1	TN	11	225909	226549	226659	227319	1	111	760	1409	1	10.1	1	0	1 02:06
18 TN1	TN	4	794075	794507	794820	795302	1	314	770	1226	1	10.1	1	0	1 02:06
4 TN1	TN	2	335092	337090	337090	337453	1	1	1181	2360	1	10.1	1	0	1 02:06
44 TN1	TN	9	52260	53016	53717	54480	1	702	1461	2219	1	10.1	1	0	1 02:06
81 TN1	TN	14	365847	366158	368183	368877	1	2026	2528	3029	1	10.1	1	0	1 02:06
57 TN1	TN	11	474020	474395	476611	477203	1	2217	2700	3182	1	10.1	1	0	1 02:06
94 TN1	TN	15	801555	802374	804694	804884	1	2321	2825	3328	1	10.1	1	0	1 02:06
32 TN1	TN	7	195692	195804	198476	198752	1	2673	2866	3059	1	10.1	1	0	1 02:06
14 TN1	TN	4	373089	373363	375932	376661	1	2570	3071	3571	1	10.1	1	0	1 02:06
86 TN1	TN	14	760406	760949	763742	763922	1	2794	3155	3515	1	10.1	1	0	1 02:06
26 TN1	TN	5	541194	541518	544392	545025	1	2875	3353	3830	1	10.1	1	0	1 02:06
97 TN1	TN	16	244939	245420	248123	249056	1	2704	3410	4116	1	10.1	1	0	1 02:06
67 TN1	TN	12	803833	808209	810333	811301	1	2125	4796	7467	1	10.1	1	0	1 02:06
90 TN1	TN	15	427719	428753	430036	430667 2_nonsis		1284	2116	2947	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
50 TN1	TN	10	461089	461507	461975	462161 2_nonsis		469	770	1071	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
36 TN1	TN	7	610218	610674	612267	612759 2 nonsis		1594	2067	2540	1	12	1	1	0 (6:2) (4:4) (6:2) (4:4aCO)
79 TN1	TN	14	74669	75232	77185	77306 2_nonsis		1954	2295	2636	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
96 TN1	TN	16	131325	131623	134518	135194 2_nonsis		2896	3382	3868	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
5 TN1	TN	2	430067	431229	434210	434300 2_nonsis		2982	3607	4232	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
89 TN1	TN	15	216181	216247	220880	220974 2_nonsis		4634	4713	4792	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
69 TN1	TN	12	832387	832594	837962	840577 2_nonsis		5369	6779	8189	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
34 TN1	TN	7	415307	415568	415592	415703 2_nonsis		25	210	395	1	15	1	1	0 (6:2)_(4:4aCO)
47 TN1	TN	10	140425	140646	140649	140994 2_nonsis		4	286	568	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
68 TN1	TN	12	819713	819771	819834	820606 2_nonsis		64	478	892	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
66 TN1	TN	12	783055	783530	783530	784218 2_nonsis		1	582	1162	1	15	1	1	0 (6:2)_(4:4aCO)
60 TN1	TN	12	66129	66235	66714	66854 2_nonsis		480	602	724	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
98 TN1	TN	16	496835	497140	497758	497958 2 nonsis		619	871	1122	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2) (4:4aCO)
49 TN1	TN	10	236912	237017	238135	238262 2_nonsis		1119	1234	1349	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
70 TN1	TN	12	964739	967075	967075	967302 2_nonsis		1119	1234	2562	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
70 TN1 87 TN1	TN	15	83362		84553			932	1282		1	15	1	1	
87 IN1 59 TN1	TN	11	532742	83622 533318		85000 2_nonsis		1002	1803	1637	1	15	1	1	0 (6:2)_(4:4aCO)
		7			534319	535346 2_nonsis				2603			1		0 (6:2)_(4:4aCO)
38 TN1 71 TN1	TN TN	12	936948 1009719	937376	939318 1012226	939675 2_nonsis		1943 1058	2335 2465	2726 3872	1	15 15	1	1	0 (6:2)_(4:4aCO)
				1011169		1013592 2_nonsis					-		1		0 (6:2)_(4:4aCO)
85 TN1	TN	14	710457	711615	713465	713685 2_nonsis		1851	2539	3227	1	15	-	1	0 (6:2)_(4:4aCO)
11 TN1	TN	4	83389	83626	86165	86337 2_nonsis		2540	2744	2947	1	15	1	1	0 (6:2)_(4:4aCO)
45 TN1	TN	9	185865	188629	190035	190142 2_nonsis		1407	2842	4276	1	15	1	1	0 (6:2)_(4:4aCO)
7 TN1	TN	2	782581	783142	786053	786204 2_nonsis		2912	3267	3622	1	15	1	1	0 (6:2)_(4:4aCO)
30 TN1	TN	6	195471	195636	198468	199207 2_nonsis		2833	3284	3735	1	15	1	1	0 (6:2)_(4:4aCO)
39 TN1	TN	7	966356	966466	970088	970143 2_nonsis		3623	3705	3786	1	15	1	1	0 (6:2)_(4:4aCO)
37 TN1	TN	7	802249	802512	805722	806818 2_nonsis		3211	3890	4568	1	15	1	1	0 (6:2)_(4:4aCO)
95 TN1	TN	15	913489	914118	917763	918228 2_nonsis		3646	4192	4738	1	15	1	1	0 (6:2)_(4:4aCO)
33 TN1	TN	7	269551	269881	274448	275758 2_nonsis		4568	5387	6206	1	15	1	1	0 (6:2)_(4:4aCO)
92 TN1	TN	15	638364	638644	638644	639033 2_nonsis		1	335	668	1	16	1	1	0 (2:6)_(4:4aCO)
15 TN1	TN	4	552557	552846	552846	553583 2_nonsis		1	513	1025	1	16	1	1	0 (2:6)_(4:4aCO)
28 TN1	TN	6	73933	74035	74485	74647 2_nonsis		451	582	713	1	16	1	1	0 (2:6)_(4:4aCO)
99 TN1	TN	16	760748	760865	761136	761833 2_nonsis		272	678	1084	1	16	1	1	0 (2:6)_(4:4aCO)
83 TN1	TN	14	468958	469102	469170	470301 2_nonsis		69	706	1342	1	16	1	1	0 (2:6)_(4:4aCO)
63 TN1	TN	12	430703	431555	431739	431957 2_nonsis		185	719	1253	1	16	1	1	0 (2:6)_(4:4aCO)
51 TN1	TN	10	544523	545038	545233	546078 2_nonsis		196	875	1554	1	16	1	1	0 (2:6)_(4:4aCO)
16 TN1	TN	4	630640	631885	631885	632423 2_nonsis		1	892	1782	1	16	1	1	0 (2:6)_(4:4aCO)
31 TN1	TN	7	59403	60729	60729	61349 2_nonsis		1	973	1945	1	16	1	1	0 (2:6)_(4:4aCO)
20 TN1	TN	4	1250653	1251183	1251845	1252116 2_nonsis		663	1063	1462	1	16	1	1	0 (2:6)_(4:4aCO)
25 TN1	TN	5	490102	490231	491262	491424 2_nonsis		1032	1177	1321	1	16	1	1	0 (2:6)_(4:4aCO)
17 TN1	TN	4	726870	727318	728057	728918 2_nonsis		740	1394	2047	1	16	1	1	0 (2:6)_(4:4aCO)
75 TN1	TN	13	576343	577768	577948	579159 2_nonsis		181	1498	2815	1	16	1	1	0 (2:6)_(4:4aCO)
74 TN1	TN	13	304685	304946	306097	306566 2_nonsis		1152	1516	1880	1	16	1	1	0 (2:6)_(4:4aCO)
73 TN1	TN	13	181240	182183	183219	184027 2_nonsis		1037	1912	2786	1	16	1	1	0 (2:6)_(4:4aCO)
77 TN1	TN	13	850650	851409	853271	853565 2_nonsis		1863	2389	2914	1	16	1	1	0 (2:6)_(4:4aCO)

65 TN1	TN	12	708261	708383	710710	710866 2_nonsis		2328	2466	2604	1	16	1	1	0 (2:6)_(4:4aCO)
78 TN1	TN	14	32426	34396	34917	37063 2_nonsis		522	2579	4636	1	16	1	1	0 (2:6)_(4:4aCO)
56 TN1	TN	11	368313	369378	371814	372140 2_nonsis		2437	3132	3826	1	16	1	1	0 (2:6)_(4:4aCO)
19 TN1	TN	4	818791	819541	822719	823198 2_nonsis		3179	3793	4406	1	16	1	1	0 (2:6)_(4:4aCO)
62 TN1	TN	12	338685	339496	342709	343120 2_nonsis		3214	3824	4434	1	16	1	1	0 (2:6)_(4:4aCO)
29 TN1	TN	6	171501	172334	175597	175923 2_nonsis		3264	3843	4421	1	16	1	1	0 (2:6)_(4:4aCO)
6 TN1	TN	2	659928	660972	662444	666708 2_nonsis		1473	4126	6779	1	16	1	1	0 (2:6)_(4:4aCO)
8 TN1	TN	3	162694	163059	167541	167741 2_nonsis		4483	4765	5046	1	16	1	1	0 (2:6)_(4:4aCO)
13 TN1	TN	4	196851	198376	202229	202572 2_nonsis		3854	4787	5720	1	16	1	1	0 (2:6)_(4:4aCO)
48 TN1	TN	10	197272	204724	205745	206436 2_nonsis		1022	5093	9163	1	16	1	1	0 (2:6)_(4:4aCO)
40 TN1	TN	8	20117	20294	20117	20294 2_nonsis		0	88	176	1	100	1	1	0 (4:4aCO)
54 TN1	TN	11	223790	224066	223790	224066 2 nonsis		0	138	275	1	100	1	1	0 (4:4aCO)
24 TN1	TN	5	376468	376801	376468	376801 2_nonsis		0	166	332	1	100	1	1	0 (4:4aCO)
22 TN1	TN	5	67809	68268	67809	68268 2_nonsis		0	229	458	1	100	1	1	0 (4:4aCO)
23 TN1	TN	5	215491	216124	215491	216124 2_nonsis		0	316	632	1	100	1	1	0 (4:4aCO)
53 TN1	TN	11	204194	205481	204194	205481 2_nonsis		0	643	1286	1	100	1	1	0 (4:4aCO)
42 TN1	TN	8	141400	142863	141400	142863 2_nonsis		0	731	1462	1	100	1	1	0 (4:4aCO)
80 TN1	TN	14	216919	218712	216919	218712 2_nonsis		0	896	1792	1	100	1	1	0 (4:4aCO)
2 TN1	TN	14	187280	189706	187280	189706 2_nonsis		0	1213	2425	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
10 TN1	TN	3	212063	214762	212063	214762 2_nonsis		0	1349	2698	1	100	1	1	0 (4:4aCO)
46 TN1	TN	9	289127	292353	289127	292353 2_nonsis	_	0	1613	3225	1	100	1	1	0 (4:4aCO)
12 TN1	TN	4	125172	125573	130967	131084	3	5395	5653	5911	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
1 TN1	TN	1	57739	59349	61451	61708	3	2103	3036	3968	0	3	2	1	1 (2:6)_(4:4)_(2:6)_(4:4aCO)_(6:2)_(4:4bCO)
76 TN1	TN	13	778647	779631	783789	784138	3	4159	4825	5490	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4bCO)
88 TN1	TN	15	180685	180906	184609	185107	3	3704	4063	4421	0	3	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
112 TN2	TN	15	82066	82183	84553	85000	1	2371	2652	2933	1	7	1	0	1 6:2_4:4_6:2
10 TN2	TN	2	491476	492001	494596	494992	1	2596	3056	3515	1	7	1	0	1 6:2_4:4_6:2
39 TN2	TN	7	122622	123839	129484	130374	1	5646	6699	7751	1	7	1	0	1 6:2_4:4_6:2
5 TN2	TN	1	198604	198630	198630	198648	1	1	22	43	1	10	1	0	1 06:02
29 TN2	TN	5	216211	216261	216261	216469	1	1	129	257	1	10	1	0	1 06:02
110 TN2	TN	14	754799	754802	754802	755545	1	1	373	745	1	10	1	0	1 06:02
117 TN2	TN	15	919749	920281	920281	920643	1	1	447	893	1	10	1	0	1 06:02
45 TN2	TN	7	586087	586177	586177	586992	1	1	453	904	1	10	1	0	1 06:02
91 TN2	TN	13	434658	434927	434958	435813	1	32	593	1154	1	10	1	0	1 06:02
64 TN2	TN	10	317989	318240	318628	318819	1	389	609	829	1	10	1	0	1 06:02
121 TN2	TN	16	298955	299549	300071	300401	1	523	984	1445	1	10	1	0	1 06:02
53 TN2	TN	8	245056	245608	246309	246363	1	702	1004	1306	1	10	1	0	1 06:02
54 TN2	TN	8	351889	352905	353343	354035	1	439	1292	2145	1	10	1	0	1 06:02
59 TN2	TN	9	172074	172693	173732	174345	1	1040	1655	2270	1	10	1	0	1 06:02
88 TN2	TN	13	282738	283144	284491	284713	1	1348	1661	1974	1	10	1	0	1 06:02
106 TN2	TN	14	495918	496505	497369	498514	1	865	1730	2595	1	10	1	0	1 06:02
41 TN2	TN	7	268323	269104	270608	270688	1	1505	1935	2364	1	10	1	0	1 06:02
2 TN2	TN	1	104068	107245	107538	108457	1	294	2341	4388	1	10	1	0	1 06:02
44 TN2	TN	7	578137	578374	580425	581017	1	2052	2466	2879	1	10	1	0	1 06:02
87 TN2	TN	13	166349	167027	168885	169477	1	1859	2493	3127	1	10	1	0	1 06:02
42 TN2	TN	7	351287	351684	352964	355166	1	1281	2580	3878	1	10	1	0	1 06:02
31 TN2	TN	5	415894	416514	418874	419038	1	2361	2752	3143	1	10	1	0	1 06:02
71 TN2	TN	11	46439	48790	49756	51512	1	967	3020	5072	1	10	1	0	1 06:02
80 TN2	TN	12	414993	415537	418481	418904	1	2945	3428	3910	1	10	1	0	1 06:02
43 TN2	TN	7	430869	431116	432076	432412	1	2943 961	1252	1542	1	10.1	1	0	1 08:02
111 TN2	TN	15	54339	55102	55845	56223	1	744	1314	1883	1	10.1	1	0	1 02:06
36 TN2	TN	6	161261	161767	162872	163447	1	1106	1646	2185	1	10.1	1	0	1 02:06
50 TN2	TN	8	69180	69741	70883	71625	1	1143	1794	2444	1	10.1	1	0	1 02:06
32 TN2	TN	5	466898	467203	468838	469111	1	1636	1924	2212	1	10.1	1	0	1 02:06
55 TN2	TN	8	388949	390446	391559	392078	1	1114	2121	3128	1	10.1	1	0	1 02:06
94 TN2	TN	13	737651	737933	739584	740463	1	1652	2232	2811	1	10.1	1	0	1 02:06
90 TN2	TN	13	385180	387028	388995	389031	1	1968	2909	3850	1	10.1	1	0	1 02:06
25 TN2	TN	4	1475397	1476168	1479784	1480271	1	3617	4245	4873	1	10.1	1	0	1 02:06
70 TN2	TN	11	19942	19981	22806	27301	1	2826	5092	7358	1	10.1	1	0	1 02:06
67 TN2	TN	10	618846	621779	624648	627140	1	2870	5582	8293	1	10.1	1	0	1 02:06

114 TN2	TN	15	511443	511466	511738	512726 2_nonsis	273	778	1282	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
79 TN2	TN	12	320997	322903	324050	325206 2_nonsis	1148	2678	4208	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
18 TN2	TN	4	262409	262808	264290	265338 2_nonsis	1483	2206	2928	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
52 TN2	TN	8	188873	189026	189310	189521 2_nonsis	285	466	647	1	15	1	1	0 (6:2)_(4:4aCO)
19 TN2	TN	4	740221	741463	741463	741683 2_nonsis	1	731	1461	1	15	1	1	0 (6:2)_(4:4aCO)
107 TN2	TN	14	542443	543829	543829	544303 2_nonsis	1	930	1859	1	15	1	1	0 (6:2)_(4:4aCO)
85 TN2	TN	12	1017718	1018933	1019284	1019357 2_nonsis	352	995	1638	1	15	1	1	0 (6:2)_(4:4aCO)
122 TN2	TN	16	478714	479396	480004	480360 2_nonsis	609	1127	1645	1	15	1	1	0 (6:2)_(4:4aCO)
74 TN2	TN	11	524346	524511	525645	526035 2_nonsis	1135	1412	1688	1	15	1	1	0 (6:2)_(4:4aCO)
23 TN2	TN	4	1385147	1385256	1386524	1386851 2_nonsis	1269	1486	1703	1	15	1	1	0 (6:2)_(4:4aCO)
62 TN2	TN	9	393280	395260	395260	396306 2_nonsis	1	1513	3025	1	15	1	1	0 (6:2)_(4:4aCO)
97 TN2	TN	13	840667	841022	842091	842866 2_nonsis	1070	1634	2198	1	15	1	1	0 (6:2)_(4:4aCO)
13 TN2	TN	2	798747	798886	801020	801218 2_nonsis	2135	2303	2470	1	15	1	1	0 (6:2)_(4:4aCO)
123 TN2	TN	16	636736	638483	640119	640589 2_nonsis	1637	2745	3852	1	15	1	1	0 (6:2)_(4:4aCO)
105 TN2	TN	14	427715	428693	430407	431640 2_nonsis	1715	2820	3924	1	15	1	1	0 (6:2)_(4:4aCO)
37 TN2	TN	6	203172	204006	206548	206614 2_nonsis	2543	2992	3441	1	15	1	1	0 (6:2)_(4:4aCO)
28 TN2	TN	5	210793	211386	213929	214752 2_nonsis	2544	3251	3958	1	15	1	1	0 (6:2)_(4:4aCO)
120 TN2	TN	16	155661	156518	160357	160565 2_nonsis	3840	4372	4903	1	15	1	1	0 (6:2)_(4:4aCO)
125 TN2	TN	16	896727	896834	902268	902643 2_nonsis	5435	5675	5915	1	15	1	1	0 (6:2)_(4:4aCO)
60 TN2	TN	9	274413	274516	280761	280877 2_nonsis	6246	6355	6463	1	15	1	1	0 (6:2)_(4:4aCO)
1 TN2	TN	1	61708	61999	68551	71312 2_nonsis	6553	8078	9603	1	15	1	1	0 (6:2)_(4:4aCO)
81 TN2	TN	12	460709	490608	490675	493339 2_nonsis	68	16349	32629	1	15	1	1	0 (6:2)_(4:4aCO)
73 TN2	TN	11	383538	383706	383706	383913 2_nonsis	1	188	374	1	16	1	1	0 (2:6)_(4:4aCO)
33 TN2	TN	5	523683	524394	524394	524497 2_nonsis	1	407	813	1	16	1	1	0 (2:6)_(4:4aCO)
72 TN2	TN	11	228576	229432	229432	229903 2_nonsis	1	664	1326	1	16	1	1	0 (2:6)_(4:4aCO)
22 TN2	TN	4	1079984	1080788	1080869	1081335 2_nonsis	82	716	1350	1	16	1	1	0 (2:6)_(4:4aCO)
96 TN2	TN	13	811756	812562	812787	813019 2_nonsis	226	744	1262	1	16	1	1	0 (2:6)_(4:4aCO)
61 TN2	TN	9	340858	341514	341515	342354 2_nonsis	2	749	1495	1	16	1	1	0 (2:6)_(4:4aCO)
78 TN2	TN	12	259210	260086	260323	260496 2_nonsis	238	762	1285	1	16	1	1	0 (2:6)_(4:4aCO)
46 TN2	TN	7	676875	677169	677412	678405 2_nonsis	244	887	1529	1	16	1	1	0 (2:6)_(4:4aCO)
27 TN2	TN	5	155958	156904	157328	157488 2_nonsis	425	977	1529	1	16	1	1	0 (2:6)_(4:4aCO)
11 TN2	TN	2	547559	548176	548443	549466 2_nonsis	268	1087	1906	1	16	1	1	0 (2:6)_(4:4aCO)
66 TN2	TN	10	467589	469453	469520	469702 2_nonsis	68	1090	2112	1	16	1	1	0 (2:6)_(4:4aCO)
57 TN2	TN	8	469169	469438	470287	470706 2_nonsis	850	1193	1536	1	16	1	1	0 (2:6)_(4:4aCO)
21 TN2	TN	4	1012978	1013721	1013983	1015229 2_nonsis	263	1257	2250	1	16	1	1	0 (2:6)_(4:4aCO)
12 TN2	TN	2	717754	717945	718805	719463 2_nonsis	861	1285	1708	1	16	1	1	0 (2:6)_(4:4aCO)
109 TN2	TN	14	749073	749402	750473	750670 2_nonsis	1072	1334	1596	1	16	1	1	0 (2:6)_(4:4aCO)
89 TN2	TN	13	301274	303266	303638	303755 2_nonsis	373	1427	2480	1	16	1	1	0 (2:6)_(4:4aCO)
77 TN2	TN	12	233075	234128	234824	235352 2_nonsis	697	1487	2276	1	16	1	1	0 (2:6)_(4:4aCO)
113 TN2	TN	15	294448	294529	295611	296401 2_nonsis	1083	1518	1952	1	16	1	1	0 (2:6)_(4:4aCO)
49 TN2	TN	7	997225	999392	999433	1000433 2_nonsis	42	1625	3207	1	16	1	1	0 (2:6)_(4:4aCO)
86 TN2	TN	13	84059	84178	85411	86109 2_nonsis	1234	1642	2049	1	16	1	1	0 (2:6)_(4:4aCO)
103 TN2	TN	14	270838	271707	272956	273091 2_nonsis	1250	1751	2252	1	16	1	1	0 (2:6)_(4:4aCO)
51 TN2	TN	8	122169	122633	123878	124457 2_nonsis	1246	1767	2287	1	16	1	1	0 (2:6)_(4:4aCO)
48 TN2	TN	7	914107	914517	916059	917004 2_nonsis	1543	2220	2896	1	16	1	1	0 (2:6)_(4:4aCO)
101 TN2	TN	14	78386	79032	80433	81575 2_nonsis	1402	2295	3188	1	16	1	1	0 (2:6)_(4:4aCO)
30 TN2	TN	5	241522	241980	243892	244317 2_nonsis	1913	2354	2794	1	16	1	1	0 (2:6)_(4:4aCO)
100 TN2	TN	14	32426	34717	34917	37063 2_nonsis	201	2419	4636	1	16	1	1	0 (2:6)_(4:4aCO)
69 TN2	TN	10	676590	677087	678760	679959 2_nonsis	1674	2521	3368	1	16	1	1	0 (2:6)_(4:4aCO)
8 TN2	TN	2	293630	293954	295912	296774 2_nonsis	1959	2551	3143	1	16	1	1	0 (2:6)_(4:4aCO)
102 TN2	TN	14	102722	102793	106004	106090 2_nonsis	3212	3290	3367	1	16	1	1	0 (2:6)_(4:4aCO)
124 TN2	TN	16	830004	830277	833382	833734 2_nonsis	3106	3418	3729	1	16	1	1	0 (2:6)_(4:4aCO)
17 TN2	TN	4	145805	146216	149689	149839 2_nonsis	3474	3754	4033	1	16	1	1	0 (2:6)_(4:4aCO)
93 TN2	TN	13	673402	673803	677418	677544 2_nonsis	3616	3879	4141	1	16	1	1	0 (2:6)_(4:4aCO)
84 TN2	TN	12	822539	826618	826618	830392 2_nonsis	1	3927	7852	1	16	1	1	0 (2:6)_(4:4aCO)
82 TN2	TN	12	609572	609824	613380	614456 2_nonsis	3557	4220	4883	1	16	1	1	0 (2:6)_(4:4aCO)
15 TN2	TN	3	208795	208954	215020	215336 2_nonsis	6067	6304	6540	1	16	1	1	0 (2:6)_(4:4aCO)
6 TN2	TN	2	23707	24209	36837	39607 2_nonsis	12629	14264	15899	1	16	1	1	0 (2:6)_(4:4aCO)
20 TN2	TN	4	928988	929454	928988	929454 2_nonsis	0	233	465	1	100	1	1	0 (4:4aCO)
63 TN2	TN	10	84062	84655	84062	84655 2_nonsis	0	296	592	1	100	1	1	0 (4:4aCO)
· -		-	- · · · -		-									

95 TN2	TN	13	795326	795946	795326	795946 2_nonsis		0	310	619	1	100	1	1	0 (4:4aCO)
119 TN2	TN	16	47566	48262	47566	48262 2_nonsis		0	348	695	1	100	1	1	0 (4:4aCO)
115 TN2	TN	15	617162	617892	617162	617892 2_nonsis		0	365	729	1	100	1	1	0 (4:4aCO)
56 TN2	TN	8	421693	422434	421693	422434 2_nonsis		0	370	740	1	100	1	1	0 (4:4aCO)
99 TN2	TN	13	861205	862065	861205	862065 2_nonsis		0	430	859	1	100	1	1	0 (4:4aCO)
116 TN2	TN	15	803637	804529	803637	804529 2 nonsis		0	446	891	1	100	1	1	0 (4:4aCO)
83 TN2	TN	12	810333	811301	810333	811301 2_nonsis		0	484	967	1	100	1	1	0 (4:4aCO)
58 TN2	TN	9	62207	63202	62207	63202 2_nonsis		0	497	994	1	100	1	1	0 (4:4aCO)
76 TN2	TN	12	124986	126014	124986	126014 2_nonsis		0	514	1027	1	100	1	1	0 (4:4aCO)
		7						0			1		1		
38 TN2 104 TN2	TN TN	14	118134 333286	119177 334339	118134 333286	119177 2_nonsis		0	521	1042 1052	1	100		1	0 (4:4aCO)
						334339 2_nonsis			526			100	1		0 (4:4aCO)
7 TN2	TN	2	255862	257565	255862	257565 2_nonsis		0	851	1702	1	100	1	1	0 (4:4aCO)
98 TN2	TN	13	858111	859920	858111	859920 2_nonsis		0	904	1808	1	100	1	1	0 (4:4aCO)
3 TN2	TN	1	108928	110856	108928	110856 2_nonsis		0	964	1927	1	100	1	1	0 (4:4aCO)
9 TN2	TN	2	404173	406111	404173	406111 2_nonsis		0	969	1937	1	100	1	1	0 (4:4aCO)
40 TN2	TN	7	232997	235967	232997	235967 2_nonsis		0	1485	2969	1	100	1	1	0 (4:4aCO)
14 TN2	TN	3	171207	174943	171207	174943 2_nonsis		0	1868	3735	1	100	1	1	0 (4:4aCO)
108 TN2	TN	14	682580	686654	682580	686654 2_nonsis		0	2037	4073	1	100	1	1	0 (4:4aCO)
34 TN2	TN	6	53398	58238	53398	58238 2_nonsis		0	2420	4839	1	100	1	1	0 (4:4aCO)
68 TN2	TN	10	635321	640236	635321	640236 2_nonsis		0	2457	4914	1	100	1	1	0 (4:4aCO)
24 TN2	TN	4	1407535	1412849	1407535	1412849 2_nonsis		0	2657	5313	1	100	1	1	0 (4:4aCO)
75 TN2	TN	11	594987	595260	597889	598496 2_sis		2630	3069	3508	0	1	2	0	2 (6:2)_(8:0)_(6:2)_(4:4)
4 TN2	TN	1	187062	189746	191617	193131	3	1872	3970	6068	0	2	2	1	1 (2:6)_(4:4aCO)
16 TN2	TN	4	60151	60639	62829	62973	4	2191	2506	2821	0	2	2	2	0 (2:6)_(4:4aCO)
26 TN2	TN	5	24670	24749	27272	27604	3	2524	2729	2933	0	2	2	1	1 (6:2)_(4:4)_(4:4aCO)
35 TN2	TN	6	93404	93664	96991	97235	3	3328	3579	3830	0	2	2	1	1 (6:2)_(6:2a)_(4:4aCO)
47 TN2	TN	7	796858	798046	798848	800148	3	803	2046	3289	0	2	2	1	1 (2:6)_(4:4aCO)
65 TN2	TN	10	407535	411303	413049	414104	3	1747	4158	6568	0	2	2	1	1 (6:2)_(4:4aCO)
92 TN2	TN	13	591615	592775	595371	595605	3	2597	3293	3989	0	3	2	1	1 (4:4aCO) (2:6) (4:4bCO)
118 TN2	TN	15	1002614	1003809	1008443	1009862 2_nonsis	-	4635	5941	7247	0	3	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4aCO)
6 TN3	TN	1	198618	198621	198621	198648	1	1	15	29	1	10	1	0	1 06:02
163 TN3	TN	16	126620	126726	126726	126838	1	1	109	217	1	10	1	0	1 06:02
91 TN3	TN	10	461089	461507	461507	461623	1	1	267	533	1	10	1	0	1 06:02
129 TN3	TN	13	168885	169464	169464	169477	1				1		1	0	1 06:02
76 TN3	TN	9	26499	26507	26801	26833	1	1 295	296 314	591 333	1	10 10	1	0	1 06:02
											-				
4 TN3	TN	1	181197	181334	181491	181752	1	158	356	554	1	10	1	0	1 06:02
44 TN3	TN	5	456429	456505	456801	456960	1	297	414	530	1	10	1	0	1 06:02
173 TN3	TN	16	887552	888159	888239	888536	1	81	532	983	1	10	1	0	1 06:02
35 TN3	TN	4	1497628	1497856	1498087	1498561	1	232	582	932	1	10	1	0	1 06:02
160 TN3	TN	16	39420	39693	39840	40527	1	148	627	1106	1	10	1	0	1 06:02
102 TN3	TN	11	224634	225480	225609	225834	1	130	665	1199	1	10	1	0	1 06:02
156 TN3	TN	15	825345	826024	826212	826624	1	189	734	1278	1	10	1	0	1 06:02
30 TN3	TN	4	1273954	1274074	1274743	1274867	1	670	791	912	1	10	1	0	1 06:02
139 TN3	TN	14	39652	40306	40430	41146	1	125	809	1493	1	10	1	0	1 06:02
13 TN3	TN	2	484159	485003	485567	485863	1	565	1134	1703	1	10	1	0	1 06:02
61 TN3	TN	7	785907	786618	787089	787750	1	472	1157	1842	1	10	1	0	1 06:02
47 TN3	TN	5	533244	534911	535145	535342	1	235	1166	2097	1	10	1	0	1 06:02
85 TN3	TN	10	35185	35365	36583	36722	1	1219	1378	1536	1	10	1	0	1 06:02
99 TN3	TN	11	118109	118487	119339	120268	1	853	1506	2158	1	10	1	0	1 06:02
79 TN3	TN	9	183089	183795	184053	185865	1	259	1517	2775	1	10	1	0	1 06:02
3 TN3	TN	1	155505	158814	158870	159623	1	57	2087	4117	1	10	1	0	1 06:02
94 TN3	TN	10	623220	624389	624648	627140	1	260	2090	3919	1	10	1	0	1 06:02
101 TN3	TN	11	125651	127396	127396	129862	1	1	2106	4210	1	10	1	0	1 06:02
121 TN3	TN	12	572294	572662	574950	575257	1	2289	2626	2962	1	10	1	0	1 06:02
107 TN3	TN	11	627471	628158	632117	632654	1	3960	4571	5182	1	10	1	0	1 06:02
134 TN3	TN	13	755812	757200	761318	761436	1	4119	4871	5623	1	10	1	0	1 06:02
134 TN3 14 TN3	TN	2	491216	491476	496540	497133	1	5065	5491	5916	1	10	1	0	1 06:02
43 TN3	TN	5	443341	450195	453437	454403	1	3243	7152	11061	1	10	1	0	1 06:02
43 IN3 90 TN3	TN	10	315888	316551	323333	454403 323823	1	6783	7359	7934	1	10	1	0	1 06:02
90 IN3 147 TN3	TN		100319	100603	107690	323823 108214		7088			1		1	0	1 06:02
147 TN3	IN	15	100319	100603	107690	108214	1	7088	7491	7894	1	10	1	0	1 00:02

25 TN3	TN	4	402050	402371	408894	410728	1	6524	7601	8677	1	10	1	0	1 06:02
105 TN3	TN	11	534319	535346	546863	546903	1	11518	12051	12583	1	10	1	0	1 06:02
52 TN3	TN	7	23297	23450	23602	23642	1	153	249	344	1	10.1	1	0	1 02:06
164 TN3	TN	16	131951	132681	132855	132909	1	175	566	957	1	10.1	1	0	1 02:06
72 TN3	TN	8	120247	120364	120445	121477	1	82	656	1229	1	10.1	1	0	1 02:06
40 TN3	TN	5	228115	228711	229119	229265	1	409	779	1149	1	10.1	1	0	1 02:06
143 TN3	TN	14	530856	531399	531656	532165	1	258	783	1308	1	10.1	1	0	1 02:06
111 TN3	TN	12	38338	38565	38737	39963	1	173	899	1624	1	10.1	1	0	1 02:06
11 TN3	TN	2	332654	332940	333434	334196	1	495	1018	1541	1	10.1	1	0	1 02:06
65 TN3	TN	8	9169	9385	10670	10789	1	1286	1453	1619	1	10.1	1	0	1 02:06
55 TN3	TN	7	268323	269104	270374	270491	1	1271	1719	2167	1	10.1	1	0	1 02:06
104 TN3	TN	11	400972	401736	403011	403407	1	1276	1855	2434	1	10.1	1	0	1 02:06
104 TN3	TN	11	567076	567430	569085	569468	1	1656	2024	2391	1	10.1	1	0	1 02:06
71 TN3	TN	8	98484	98622	99909	101246	1	1288	2025	2761	1	10.1	1	0	1 02:06
83 TN3	TN	9	329125	333581	333581	334329	1	1 2 6 6	2602		1	10.1	1	0	1 02:06
										5203					
166 TN3	TN	16	193788	194710	196727	197567	1	2018	2898	3778	1	10.1	1	0	1 02:06
174 TN3	TN	16	917515	918199	920877	921047	1	2679	3105	3531	1	10.1	1	0	1 02:06
159 TN3	TN	15	1053414	1053882	1057536	1057626	1	3655	3933	4211	1	10.1	1	0	1 02:06
126 TN3	TN	12	956371	956584	960131	961196	1	3548	4186	4824	1	10.1	1	0	1 02:06
171 TN3	TN	16	844218	857345	857345	858788	1	1	7285	14569	1	10.1	1	0	1 02:06
45 TN3	TN	5	465974	466823	473281	474191	1	6459	7338	8216	1	10.1	1	0	1 02:06
115 TN3	TN	12	242737	243937	252072	252507	1	8136	8953	9769	1	10.1	1	0	1 02:06
167 TN3	TN	16	294083	294452	303354	304351	1	8903	9585	10267	1	10.1	1	0	1 02:06
119 TN3	TN	12	460709	490608	490675	493339	1	68	16349	32629	1	10.1	1	0	1 02:06
123 TN3	TN	12	867405	870134	872807	873021 2_nonsis		2674	4145	5615	3	30	1	0	1 2:6_6:2
161 TN3	TN	16	54119	54725	55474	55562 2_nonsis		750	1096	1442	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
95 TN3	TN	10	627141	627999	628891	629879 2_nonsis		893	1815	2737	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
29 TN3	TN	4	1078009	1078458	1080788	1080869 2_nonsis		2331	2595	2859	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
142 TN3	TN	14	425890	427278	428883	430018 2_nonsis		1606	2867	4127	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
151 TN3	TN	15	511738	512726	516270	517169 2_nonsis		3545	4488	5430	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
38 TN3	TN	5	61280	61456	63253	63373 2_nonsis		1798	1945	2092	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
28 TN3	TN	4	730704	731588	733663	734357 2_nonsis		2076	2864	3652	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
128 TN3	TN	13	163519	164021	167027	167444 2_nonsis		3007	3466	3924	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
169 TN3	TN	16	674314	674569	678816	679094 2_nonsis		4248	4514	4779	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
120 TN3	TN	12	516236	516783	520933	521221 2_nonsis		4151	4568	4984	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
63 TN3	TN	7	908884	909136	919947	920105 2_nonsis		10812	11016	11220	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
109 TN3	TN	12	23199	23393	23393	23475 2_nonsis		1	138	275	1	15	1	1	0 (6:2)_(4:4aCO)
89 TN3	TN	10	285555	285967	286028	286125 2_nonsis		62	316	569	1	15	1	1	0 (6:2)_(4:4aCO)
54 TN3	TN	7	164025	164428	164429	164774 2_nonsis		2	375	748	1	15	1	1	0 (6:2)_(4:4aCO)
118 TN3	TN	12						17			1		1	1	
		7	386700	387140	387156	387519 2_nonsis			418	818		15		1	0 (6:2)_(4:4aCO)
58 TN3	TN		446910	447534	447534	447761 2_nonsis		1	426	850	1	15	1		0 (6:2)_(4:4aCO)
67 TN3	TN	8	38662	38887	39238	39521 2_nonsis		352	605	858	1	15	1	1	0 (6:2)_(4:4aCO)
136 TN3	TN	13	810415	810832	810963	811653 2_nonsis		132	685	1237	1	15	1	1	0 (6:2)_(4:4aCO)
66 TN3	TN	8	25945	26177	27080	27293 2_nonsis		904	1126	1347	1	15	1	1	0 (6:2)_(4:4aCO)
155 TN3	TN	15	820906	821660	822183	823421 2_nonsis		524	1519	2514	1	15	1	1	0 (6:2)_(4:4aCO)
74 TN3	TN	8	393074	393364	394728	394959 2_nonsis		1365	1625	1884	1	15	1	1	0 (6:2)_(4:4aCO)
154 TN3	TN	15	772232	773455	774457	774673 2_nonsis		1003	1722	2440	1	15	1	1	0 (6:2)_(4:4aCO)
117 TN3	TN	12	326213	326929	328075	328990 2_nonsis		1147	1962	2776	1	15	1	1	0 (6:2)_(4:4aCO)
150 TN3	TN	15	446025	446514	448080	448955 2_nonsis		1567	2248	2929	1	15	1	1	0 (6:2)_(4:4aCO)
8 TN3	TN	2	67361	68817	68834	72096 2_nonsis		18	2376	4734	1	15	1	1	0 (6:2)_(4:4aCO)
110 TN3	TN	12	25985	28820	29781	30008 2_nonsis		962	2492	4022	1	15	1	1	0 (6:2)_(4:4aCO)
19 TN3	TN	3	63929	64304	65580	68233 2_nonsis		1277	2790	4303	1	15	1	1	0 (6:2)_(4:4aCO)
168 TN3	TN	16	430826	431177	433373	434269 2_nonsis		2197	2820	3442	1	15	1	1	0 (6:2)_(4:4aCO)
68 TN3	TN	8	46274	46457	49378	49451 2_nonsis		2922	3049	3176	1	15	1	1	0 (6:2)_(4:4aCO)
92 TN3	TN	10	463257	463428	465795	467010 2_nonsis		2368	3060	3752	1	15	1	1	0 (6:2)_(4:4aCO)
56 TN3	TN	7	343251	343639	346294	346793 2_nonsis		2656	3099	3541	1	15	1	1	0 (6:2)_(4:4aCO)
127 TN3	TN	13	49898	50109	53276	53532 2_nonsis		3168	3401	3633	1	15	1	1	0 (6:2)_(4:4aCO)
152 TN3	TN	15	589839	590260	593587	594122 2_nonsis		3328	3805	4282	1	15	1	1	0 (6:2)_(4:4aCO)
96 TN3	TN	10	631130	635210	635321	640236 2_nonsis		112	4609	9105	1	15	1	1	0 (6:2)_(4:4aCO)
2 TN3	TN	1	121235	128637	129517	130254 2_nonsis		881	4950	9018	1	15	1	1	0 (6:2)_(4:4aCO)
		•			/-/	2_1011113		001	.,,,,		•		•	-	· (·· /=(· · · · · · · / · · · · · · · · · · ·

86 TN3	TN	10	61449	61680	66738	67153 2_nonsis	5059	5381	5703	1	15	1	1	0 (6:2)_(4:4aCO)
133 TN3	TN	13	671402	672472	677544	678210 2_nonsis	5073	5940	6807	1	15	1	1	0 (6:2)_(4:4aCO)
75 TN3	TN	8	398452	398985	404521	404866 2_nonsis	5537	5975	6413	1	15	1	1	0 (6:2)_(4:4aCO)
153 TN3	TN	15	652513	654602	659154	660208 2_nonsis	4553	6124	7694	1	15	1	1	0 (6:2)_(4:4aCO)
48 TN3	TN	5	538885	539082	546617	546721 2_nonsis	7536	7686	7835	1	15	1	1	0 (6:2)_(4:4aCO)
57 TN3	TN	7	388315	388627	398572	399494 2_nonsis	9946	10562	11178	1	15	1	1	0 (6:2)_(4:4aCO)
158 TN3	TN	15	1047512	1047566	1047626	1047731 2_nonsis	61	140	218	1	16	1	1	0 (2:6)_(4:4aCO)
35 TN3	TN	13	765900	766029	766042	766186 2_nonsis	14	150	285	1	16	1	1	0 (2:6)_(4:4aCO)
14 TN3	TN	12	164945	165084	165084	165412 2_nonsis	1	234	466	1	16	1	1	0 (2:6)_(4:4aCO)
93 TN3	TN	10	470777	471195	471195	471532 2_nonsis	1	378	754	1	16	1	1	0 (2:6)_(4:4aCO)
130 TN3		13					283			1		1		
	TN		216954	217030	217312	217508 2_nonsis		418	553		16		1	0 (2:6)_(4:4aCO)
172 TN3	TN	16	885683	885979	885979	886611 2_nonsis	1	464	927	1	16	1	1	0 (2:6)_(4:4aCO)
146 TN3	TN	15	71043	71268	71365	72322 2_nonsis	98	688	1278	1	16	1	1	0 (2:6)_(4:4aCO)
88 TN3	TN	10	189655	190275	190298	191249 2_nonsis	24	809	1593	1	16	1	1	0 (2:6)_(4:4aCO)
23 TN3	TN	4	199393	200025	200220	200994 2_nonsis	196	898	1600	1	16	1	1	0 (2:6)_(4:4aCO)
53 TN3	TN	7	55957	57501	57855	58033 2_nonsis	355	1215	2075	1	16	1	1	0 (2:6)_(4:4aCO)
60 TN3	TN	7	609044	609405	610218	610674 2_nonsis	814	1222	1629	1	16	1	1	0 (2:6)_(4:4aCO)
12 TN3	TN	12	72514	72811	73852	74146 2_nonsis	1042	1337	1631	1	16	1	1	0 (2:6)_(4:4aCO)
64 TN3	TN	7	1011203	1012213	1012425	1013720 2_nonsis	213	1365	2516	1	16	1	1	0 (2:6)_(4:4aCO)
21 TN3	TN	3	239515	240922	240922	242663 2_nonsis	1	1574	3147	1	16	1	1	0 (2:6)_(4:4aCO)
78 TN3	TN	9	84138	85680	86442	86586 2_nonsis	763	1605	2447	1	16	1	1	0 (2:6)_(4:4aCO)
81 TN3	TN	9	267764	268176	269580	269763 2_nonsis	1405	1702	1998	1	16	1	1	0 (2:6)_(4:4aCO)
36 TN3	TN	5	25332	25874	27272	27604 2 nonsis	1399	1835	2271	1	16	1	1	0 (2:6)_(4:4aCO)
73 TN3	TN	8	126792	128125	129265	129586 2_nonsis	1141	1967	2793	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
73 IN3 27 TN3	TN	4	599029	599103	600978		1876	2265	2653	1	16	1	1	
						601683 2_nonsis								0 (2:6)_(4:4aCO)
34 TN3	TN	4	1478319	1478581	1480517	1480913 2_nonsis	1937	2265	2593	1	16	1	1	0 (2:6)_(4:4aCO)
42 TN3	TN	5	393630	393855	396138	396428 2_nonsis	2284	2541	2797	1	16	1	1	0 (2:6)_(4:4aCO)
59 TN3	TN	7	592271	592334	594933	595174 2_nonsis	2600	2751	2902	1	16	1	1	0 (2:6)_(4:4aCO)
140 TN3	TN	14	58317	58553	61007	61469 2_nonsis	2455	2803	3151	1	16	1	1	0 (2:6)_(4:4aCO)
165 TN3	TN	16	149586	150219	152472	152993 2_nonsis	2254	2830	3406	1	16	1	1	0 (2:6)_(4:4aCO)
15 TN3	TN	2	661374	662094	662444	666708 2_nonsis	351	2842	5333	1	16	1	1	0 (2:6)_(4:4aCO)
97 TN3	TN	10	658912	660402	663134	663261 2_nonsis	2733	3541	4348	1	16	1	1	0 (2:6)_(4:4aCO)
13 TN3	TN	12	111878	111976	115422	116205 2_nonsis	3447	3887	4326	1	16	1	1	0 (2:6)_(4:4aCO)
33 TN3	TN	4	1463190	1463798	1467260	1467803 2_nonsis	3463	4038	4612	1	16	1	1	0 (2:6)_(4:4aCO)
45 TN3	TN	14	752591	753318	756919	757068 2_nonsis	3602	4039	4476	1	16	1	1	0 (2:6)_(4:4aCO)
10 TN3	TN	2	215181	215962	219381	220055 2_nonsis	3420	4147	4873	1	16	1	1	0 (2:6)_(4:4aCO)
31 TN3	TN	13	282738	283144	287574	287682 2_nonsis	4431	4687	4943	1	16	1	1	0 (2:6)_(4:4aCO)
37 TN3	TN	5	43260	43494	48594	49908 2_nonsis	5101	5874	6647	1	16	1	1	0 (2:6)_(4:4aCO)
32 TN3	TN	4	1420608	1420794	1427252	1427658 2_nonsis	6459	6754	7049	1	16	1	1	0 (2:6)_(4:4aCO)
17 TN3	TN	2	780187	781183	794651		13469	14041	14612	1	16	1	1	
						794800 2_nonsis				-				0 (2:6)_(4:4aCO)
37 TN3	TN	13	837907	838133	837907	838133 2_nonsis	0	113	225	1	100	1	1	0 (4:4aCO)
9 TN3	TN	2	107438	107671	107438	107671 2_nonsis	0	116	232	1	100	1	1	0 (4:4aCO)
32 TN3	TN	13	494333	494582	494333	494582 2_nonsis	0	124	248	1	100	1	1	0 (4:4aCO)
22 TN3	TN	4	24937	25195	24937	25195 2_nonsis	0	129	257	1	100	1	1	0 (4:4aCO)
03 TN3	TN	11	398547	398874	398547	398874 2_nonsis	0	163	326	1	100	1	1	0 (4:4aCO)
7 TN3	TN	2	47244	47612	47244	47612 2_nonsis	0	184	367	1	100	1	1	0 (4:4aCO)
41 TN3	TN	5	232874	233255	232874	233255 2_nonsis	0	190	380	1	100	1	1	0 (4:4aCO)
08 TN3	TN	12	20228	20609	20228	20609 2_nonsis	0	190	380	1	100	1	1	0 (4:4aCO)
87 TN3	TN	10	76754	77140	76754	77140 2_nonsis	0	193	385	1	100	1	1	0 (4:4aCO)
46 TN3	TN	5	526712	527126	526712	527126 2_nonsis	0	207	413	1	100	1	1	0 (4:4aCO)
51 TN3	TN	6	237488	237962	237488	237962 2_nonsis	0	237	473	1	100	1	1	0 (4:4aCO)
98 TN3	TN	11	48808	49402	48808	49402 2_nonsis	0	297	593	1	100	1	1	0 (4:4aCO)
26 TN3	TN	4	502277	502877	502277	502877 2_nonsis	0	300	599	1	100	1	1	0 (4:4aCO)
41 TN3	TN	14	205208	205814	205208	205814 2_nonsis	0	303	605	1	100	1	1	0 (4:4aCO)
69 TN3	TN	8	54591	55333	54591	55333 2_nonsis	0	371	741	1	100	1	1	0 (4:4aCO)
48 TN3	TN		112140				0	414		1	100	1		
		15		112969	112140	112969 2_nonsis			828	-		-	1	0 (4:4aCO)
124 TN3	TN	12	875259	876120	875259	876120 2_nonsis	0	430	860	1	100	1	1	0 (4:4aCO)
62 TN3	TN	7	789735	790683	789735	790683 2_nonsis	0	474	947	1	100	1	1	0 (4:4aCO)
	TN	3	43877	45058	43877	45058 2_nonsis	0	590	1180	1	100	1	1	0 (4:4aCO)
18 TN3 100 TN3	TN	11	121247	122945	121247	122945 2_nonsis	0	849	1697	1	100	1	1	0 (4:4aCO)

12 TN3	TN	2	385751	387602	385751	387602 2_nonsis		0	925	1850	1	100	1	1	0 (4:4aCO)
162 TN3	TN	16	64540	66393	64540	66393 2_nonsis		0	926	1852	1	100	1	1	0 (4:4aCO)
144 TN3	TN	14	686681	688572	686681	688572 2_nonsis		0	945	1890	1	100	1	1	0 (4:4aCO)
138 TN3	TN	14	32426	34396	32426	34396 2_nonsis		0	985	1969	1	100	1	1	0 (4:4aCO)
80 TN3	TN	9	185865	188629	185865	188629 2_nonsis		0	1382	2763	1	100	1	1	0 (4:4aCO)
82 TN3	TN	9	299287	302738	299287	302738 2_nonsis		0	1725	3450	1	100	1	1	0 (4:4aCO)
16 TN3	TN	2	695479	699461	695479	699461 2_nonsis		0	1991	3981	1	100	1	1	0 (4:4aCO)
122 TN3	TN	12	849651	854846	849651	854846 2_nonsis		0	2597	5194	1	100	1	1	0 (4:4aCO)
125 TN3	TN	12	892436	930472	892436	930472 2_nonsis		0	19018	38035	1	100	1	1	0 (4:4aCO)
170 TN3	TN	16	783719	783796	784888	785197 2_nonsis		1093	1285	1477	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
31 TN3	TN	4	1407535	1412849	1418139	1418662 2_nonsis		5291	8209	11126	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
24 TN3	TN	4	234944	235604	245765	246213 2_nonsis		10162	10715	11268	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
70 TN3	TN	8	58733	59498	62455	62601 2_sis		2958	3413	3867	0	1	2	0	2 (6:2)_(4:4)_(6:2a)_(4:4)
1 TN3	TN	1	66696	67476	77554	77737	4	10079	10560	11040	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(8:0)_(6:2a)_(4:4aCO)
5 TN3	TN	1	187280	189706	191617	193131	3	1912	3881	5850	0	2	2	1	1 (8:0)_(6:2)_(4:4aCO)
49 TN3	TN	6	63394	64252	96814	96853	3	32563	33011	33458	0	2 2	2	1	1 (0:8)_(2:6)_(4:4)_(2:6a)_(4:4)_(6:2)_(4:4aCO)
116 TN3	TN	12	320997	322903	324050	325206	3	1148	2678	4208	0		2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
149 TN3 157 TN3	TN TN	15	211687 941405	213206	215550	215808	3	2345	3233 13119	4120	0	2 2	2 2	1	1 (6:2)_(4:4aCO)
		15		942129	954766	955006	4	12638		13600					1 (6:2)_(6:2a)_(4:4aCO)
39 TN3 50 TN3	TN TN	5 6	106822 190264	106918 190849	112437 194606	113066 195375	4	5520 3758	5882 4434	6243 5110	0	3	2 2	2	0 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
77 TN3	TN	9	39559	40140	40593	40898 2_nonsis	4	3758 454	4434 896	1338	0	3	1	2	0 (4:4aCO)_(8:0)_(4:4a)_(6:2)_(4:4bCO) -1 (2:6)_(4:4aCO)_(4:4CO)
84 TN3	TN	9	404802	405428	405945			518	844		0	3	1	2	-1 (2:6)_(4:4aCO)_(4:4CO) -1 (4:4aCO)_(6:2)_(4:4CO)
301 TN3	TN	12	1057759	1058607	1059378	405973 2_nonsis 1078177	1	0	10209	1170 20417	0	4	1 NA	NA	-1 (4:4aCO)_(6:2)_(4:4CO)
16 TN4	TN	3	63052	63257	63929	64304	1	673	962	1251	1	7	1	0	1 6:2_4:4_6:2
98 TN4	TN	11	517983	518221	519160	519513	1	940	1235	1529	1	8	1	0	1 2:6_4:4_2:6
55 TN4	TN	6	262295	262470	266918	266983	1	4449	4568	4687	1	8	1	0	1 2:6_4:4_2:6
18 TN4	TN	3	101152	101285	101285	101527	1	1	188	374	1	10	1	0	1 06:02
138 TN4	TN	14	739169	739459	739477	739640	1	19	245	470	1	10	1	0	1 06:02
114 TN4	TN	12	1019768	1020076	1020245	1020463	1	170	432	694	1	10	1	0	1 06:02
54 TN4	TN	6	232697	233456	233456	233643	1	1	473	945	1	10	1	0	1 06:02
61 TN4	TN	7	385570	386428	386428	387199	1	1	815	1628	1	10	1	0	1 06:02
141 TN4	TN	15	109106	109424	109584	110892	1	161	973	1785	1	10	1	0	1 06:02
130 TN4	TN	13	900142	901050	901535	901903	1	486	1123	1760	1	10	1	0	1 06:02
30 TN4	TN	4	771211	772626	772698	773522	1	73	1192	2310	1	10	1	0	1 06:02
84 TN4	TN	10	219354	220326	220637	221804	1	312	1381	2449	1	10	1	0	1 06:02
142 TN4	TN	15	132713	134063	134063	135587	1	1	1437	2873	1	10	1	0	1 06:02
1 TN4	TN	1	60915	61084	62361	62648	1	1278	1505	1732	1	10	1	0	1 06:02
6 TN4	TN	2	125843	126130	126921	128153	1	792	1551	2309	1	10	1	0	1 06:02
117 TN4	TN	13	69113	70163	71382	71390	1	1220	1748	2276	1	10	1	0	1 06:02
10 TN4	TN	2	335092	337090	337786	338226	1	697	1915	3133	1	10	1	0	1 06:02
35 TN4	TN	4	1079984	1080788	1082232	1082379	1	1445	1920	2394	1	10	1	0	1 06:02
136 TN4	TN	14	643444	643651	644271	646799	1	621	1988	3354	1	10	1	0	1 06:02
37 TN4	TN	4	1277377	1278056	1279875	1280061	1	1820	2252	2683	1	10	1	0	1 06:02
139 TN4	TN	14	762860	763294	765537	765758	1	2244	2571	2897	1	10	1	0	1 06:02
49 TN4	TN	5	438396	438684	440923	441329	1	2240	2586	2932	1	10	1	0	1 06:02
143 TN4	TN	15	136228	136572	138847	139359	1	2276	2703	3130	1	10	1	0	1 06:02
60 TN4	TN	7	270046	270374	272568	273422	1	2195	2785	3375	1	10	1	0	1 06:02
44 TN4	TN	5	67085	67131	69789	70022	1	2659	2798	2936	1	10	1	0	1 06:02
67 TN4	TN	7	913393	913982	916059	916953	1	2078	2819	3559	1	10	1	0	1 06:02
111 TN4	TN	12	835791	836156	837962	840577	1	1807	3296	4785	1	10	1	0	1 06:02
104 TN4	TN	12	277961	278475	281289	281896	1	2815	3375	3934	1	10	1	0	1 06:02
2 TN4	TN	1	111180	112136	116905	117399	1	4770	5494	6218	1	10	1	0	1 06:02
78 TN4	TN	8	496308	496975	503996	505427	1	7022	8070	9118	1	10	1	0	1 06:02
58 TN4	TN	7	196910	196914	196914	196917	1	1	4	6	1	10.1	1	0	1 02:06
46 TN4	TN	5	131490	131495	131495	131499	1	1	5	8	1	10.1	1	0	1 02:06
125 TN4	TN	13	574226	574746	574746	575064	1	1	419	837	1	10.1	1	0	1 02:06
38 TN4	TN	4	1420281	1420528	1420794	1420932	1	267	459	650	1	10.1	1	0	1 02:06
83 TN4	TN	10	84062	84655	84848	85363	1	194	747	1300	1	10.1	1	0	1 02:06
113 TN4	TN	12	1011952	1012226	1012226	1013592	1	1	820	1639	1	10.1	1	0	1 02:06

56 TN4	TN	7	17649	18259	18693	18901	1	435	843	1251	1	10.1	1	0	1 02:06
69 TN4	TN	7	985834	987319	987319	987893	1	1	1030	2058	1	10.1	1	0	1 02:06
13 TN4	TN	2	678799	679276	680044	680219	1	769	1094	1419	1	10.1	1	0	1 02:06
103 TN4	TN	12	211226	212081	212873	213037	1	793	1302	1810	1	10.1	1	0	1 02:06
82 TN4	TN	10	26202	26529	26958	28612	1	430	1420	2409	1	10.1	1	0	1 02:06
23 TN4	TN	3	262154	262264	263025	264441	1	762	1524	2286	1	10.1	1	0	1 02:06
63 TN4	TN	7	396713	397929	398572	399494	1	644	1712	2780	1	10.1	1	0	1 02:06
122 TN4	TN	13	352513	352695	354466	354798	1	1772	2028	2284	1	10.1	1	0	1 02:06
107 TN4	TN	12	490675	493339	493890	494326	1	552	2101	3650	1	10.1	1	0	1 02:06
120 TN4	TN	13	229786	230470	232186	232627	1	1717	2279	2840	1	10.1	1	0	1 02:06
21 TN4	TN	3	224791	228130	228130	230267	1	1	2738	5475	1	10.1	1	0	1 02:06
159 TN4	TN	16	161519	161768	164063	164740	1	2296	2758	3220	1	10.1	1	0	1 02:06
157 TN4	TN	16	117204	117756	119752	120748	1	1997	2770	3543	1	10.1	1	0	1 02:06
166 TN4	TN	16	643795	644568	646670	647322	1	2103	2815	3526	1	10.1	1	0	1 02:06
100 TN4 123 TN4	TN	13	356463	356625	356625	362992	1	1	3265	6528	1	10.1	1	0	1 02:06
							1						1		
148 TN4	TN	15	491483	492036	495462	495679		3427	3811	4195	1	10.1		0	1 02:06
95 TN4	TN	11	68184	68250	72330	72431	1	4081	4164	4246	1	10.1	1	0	1 02:06
53 TN4	TN	6	156790	156928	161527	161720	1	4600	4765	4929	1	10.1	1	0	1 02:06
89 TN4	TN	10	523373	523974	527538	529735	1	3565	4963	6361	1	10.1	1	0	1 02:06
128 TN4	TN	13	675970	676095	689746	690170	1	13652	13926	14199	1	10.1	1	0	1 02:06
129 TN4	TN	13	858111	859063	861205	862065 2_nonsis		2143	3048	3953	3	30	1	0	1 2:6_6:2
86 TN4	TN	10	263244	263508	270752	272069 2_nonsis		7245	8035	8824	3	30	1	0	1 2:6_6:2
80 TN4	TN	9	141514	141703	156029	156304 2_nonsis		14327	14558	14789	3	30	1	0	1 2:6_6:2
133 TN4	TN	14	195358	195766	196345	196819 2_nonsis		580	1020	1460	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
135 TN4	TN	14	397680	397986	398966	399462 2_nonsis		981	1381	1781	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
64 TN4	TN	7	437349	438009	440241	440359 2_nonsis		2233	2621	3009	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
33 TN4	TN	4	1019664	1020939	1022238	1023685 2_nonsis		1300	2660	4020	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
25 TN4	TN	4	84947	85442	88345	88760 2_nonsis		2904	3358	3812	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
47 TN4	TN	5	330953	332219	344307	345204 2_nonsis		12089	13170	14250	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
140 TN4	TN	15	40057	40697	41957	42031 2_nonsis		1261	1617	1973	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
24 TN4	TN	3	274124	274173	275765	275817 2_nonsis		1593	1643	1692	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
137 TN4	TN	14	697058	697554	699152	700166 2_nonsis		1599	2353	3107	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
168 TN4	TN	16	830277	831160	834185	834395 2_nonsis		3026	3572	4117	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
27 TN4	TN	4	353682	354016	358348	358389 2_nonsis		4333	4520	4706	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
87 TN4	TN	10	392871	393423	397607	398093 2_nonsis		4185	4703	5221	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
92 TN4	TN	10	708349	708426	713263	713502 2_nonsis		4838	4995	5152	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
57 TN4	TN	7	162215	164025	168582	169165 2_nonsis		4558	5754	6949	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
100 TN4	TN	12	28820	29085	38338	38565 2_nonsis		9254	9499	9744	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
52 TN4	TN	6	18862	18920	18920	19068 2_nonsis		1	103	205	1	15	1	1	0 (6:2)_(4:4aCO)
28 TN4	TN	4	480096	480135	480231	480345 2_nonsis		97	173	248	1	15	1	1	0 (6:2)_(4:4aCO)
154 TN4	TN	15	977155	977302	977302	977533 2 nonsis		1	189	377	1	15	1	1	0 (6:2) (4:4aCO)
150 TN4	TN	15	717433	717973	717973	718015 2_nonsis		1	291	581	1	15	1	1	0 (6:2)_(4:4aCO)
5 TN4	TN	2	58787	59164	59199	59500 2_nonsis		36	374	712	1	15	1	1	0 (6:2)_(4:4aCO)
134 TN4	TN	14	264607	265328	265328	265388 2_nonsis		1	391	780	1	15	1	1	0 (6:2)_(4:4aCO)
50 TN4	TN	5	461594	461877				1		1019		15	1	1	
30 TN4 156 TN4	TN	16	39840	40527	461877 40527	462614 2_nonsis		1	510 535	1019	1	15	1	1	0 (6:2)_(4:4aCO)
						40910 2_nonsis		-						1	0 (6:2)_(4:4aCO)
127 TN4	TN	13	619660	619714	620208	620381 2_nonsis		495	608	720	1	15	1	-	0 (6:2)_(4:4aCO)
32 TN4	TN	4	886289	887150	887179	887504 2_nonsis		30	622	1214	1	15	1	1	0 (6:2)_(4:4aCO)
20 TN4	TN	3	210517	210635	211617	211982 2_nonsis		983	1224	1464	1	15	1	1	0 (6:2)_(4:4aCO)
160 TN4	TN	16	228253	228815	229768	229960 2_nonsis		954	1330	1706	1	15	1	1	0 (6:2)_(4:4aCO)
45 TN4	TN	5	72694	72790	73131	75084 2_nonsis		342	1366	2389	1	15	1	1	0 (6:2)_(4:4aCO)
167 TN4	TN	16	686122	687687	687978	688591 2_nonsis		292	1380	2468	1	15	1	1	0 (6:2)_(4:4aCO)
26 TN4	TN	4	196851	198376	198878	199316 2_nonsis		503	1484	2464	1	15	1	1	0 (6:2)_(4:4aCO)
106 TN4	TN	12	421117	421364	422565	423102 2_nonsis		1202	1593	1984	1	15	1	1	0 (6:2)_(4:4aCO)
161 TN4	TN	16	305812	306080	307505	307579 2_nonsis		1426	1596	1766	1	15	1	1	0 (6:2)_(4:4aCO)
91 TN4	TN	10	624648	627140	627141	627999 2_nonsis		2	1676	3350	1	15	1	1	0 (6:2)_(4:4aCO)
164 TN4	TN	16	459333	460996	461367	462319 2_nonsis		372	1679	2985	1	15	1	1	0 (6:2)_(4:4aCO)
51 TN4	TN	5	564664	564705	566388	566434 2_nonsis		1684	1727	1769	1	15	1	1	0 (6:2)_(4:4aCO)
42 TN4	TN	4	1506992	1507780	1508751	1509719 2_nonsis		972	1849	2726	1	15	1	1	0 (6:2)_(4:4aCO)
165 TN4	TN	16	463723	464194	465383	466824 2_nonsis		1190	2145	3100	1	15	1	1	0 (6:2)_(4:4aCO)

132 TN4	TN	14	78386	79032	80433	81575 2_nonsis	1402	2295	3188	1	15	1	1	0 (6:2)_(4:4aCO)
7 TN4	TN	2	138346	138529	140964	141015 2_nonsis	2436	2552	2668	1	15	1	1	0 (6:2)_(4:4aCO)
101 TN4	TN	12	124986	126014	127531	128653 2_nonsis	1518	2592	3666	1	15	1	1	0 (6:2)_(4:4aCO)
40 TN4	TN	4	1465791	1466217	1467260	1470646 2_nonsis	1044	2949	4854	1	15	1	1	0 (6:2)_(4:4aCO)
76 TN4	TN	8	379353	379789	382565	383029 2_nonsis	2777	3226	3675	1	15	1	1	0 (6:2)_(4:4aCO)
151 TN4	TN	15	720799	721121	723552	725550 2_nonsis	2432	3591	4750	1	15	1	1	0 (6:2)_(4:4aCO)
59 TN4	TN	7	223151	224665	226711	230011 2_nonsis	2047	4453	6859	1	15	1	1	0 (6:2)_(4:4aCO)
8 TN4	TN	2	206083	207171	211332	211895 2_nonsis	4162	4987	5811	1	15	1	1	0 (6:2)_(4:4aCO)
85 TN4	TN	10	223465	225236	229307	229619 2_nonsis	4072	5113	6153	1	15	1	1	0 (6:2)_(4:4aCO)
131 TN4	TN	13	910045	910304	914143	916782 2_nonsis	3840	5288	6736	1	15	1	1	0 (6:2)_(4:4aCO)
145 TN4	TN	15	283315	283744	290268	290790 2_nonsis	6525	7000	7474	1	15	1	1	0 (6:2)_(4:4aCO)
31 TN4	TN	4	775671	775941	776086	776259 2_nonsis	146	367	587	1	16	1	1	0 (2:6)_(4:4aCO)
17 TN4	TN	3	72190	72786	72786	73095 2_nonsis	1	453	904	1	16	1	1	0 (2:6)_(4:4aCO)
152 TN4	TN	15	861195	861567	861653	862224 2_nonsis	87	558	1028	1	16	1	1	0 (2:6)_(4:4aCO)
99 TN4	TN	11	626218	626428	626765	627471 2_nonsis	338	795	1252	1	16	1	1	0 (2:6)_(4:4aCO)
65 TN4	TN	7	622738	623479	623527	624442 2_nonsis	49	876	1703	1	16	1	1	0 (2:6)_(4:4aCO)
155 TN4	TN	15	1058879	1058977	1059744	1059916 2_nonsis	768	902	1036	1	16	1	1	0 (2:6)_(4:4aCO)
12 TN4	TN	2	675106	676110	676125	676899 2_nonsis	16	904	1792	1	16	1	1	0 (2:6)_(4:4aCO)
34 TN4	TN	4	1075642	1075812	1075948	1077398 2_nonsis	137	946	1755	1	16	1	1	0 (2:6)_(4:4aCO)
144 TN4	TN	15	141147	141631	141631	143222 2_nonsis	1	1038	2074	1	16	1	1	0 (2:6)_(4:4aCO)
118 TN4	TN	13	164304	165032	165218	166349 2_nonsis	187	1116	2044	1	16	1	1	0 (2:6)_(4:4aCO)
97 TN4	TN	11	515018	515114	516391	516569 2_nonsis	1278	1414	1550	1	16	1	1	0 (2:6)_(4:4aCO)
121 TN4	TN	13	307804	308296	309490	309570 2_nonsis	1195	1480	1765	1	16	1	1	0 (2:6)_(4:4aCO)
75 TN4	TN	8	259045	259495	260343	261563 2_nonsis	849	1683	2517	1	16	1	1	0 (2:6)_(4:4aCO)
68 TN4	TN	7	950639	951196	951675	953718 2_nonsis	480	1779	3078	1	16	1	1	0 (2:6)_(4:4aCO)
43 TN4	TN	5	27272	27604	28694	29872 2_nonsis	1091	1845	2599	1	16	1	1	0 (2:6)_(4:4aCO)
105 TN4	TN	12	320997	322903	323570	324050 2_nonsis	668	1860	3052	1	16	1	1	0 (2:6)_(4:4aCO)
15 TN4	TN	3	50269	51152	52418	52747 2_nonsis	1267	1872	2477	1	16	1	1	0 (2:6)_(4:4aCO)
96 TN4	TN	11	226659	227480	228576	229432 2_nonsis	1097	1935	2772	1	16	1	1	0 (2:6)_(4:4aCO)
66 TN4	TN	7	794643	795956	796858	798046 2_nonsis	903	2153	3402	1	16	1	1	0 (2:6)_(4:4aCO)
14 TN4	TN	2	797893	798747	800316	800758 2_nonsis	1570	2217	2864	1	16	1	1	0 (2:6)_(4:4aCO)
36 TN4	TN	4	1261452	1262394	1263883	1264743 2_nonsis	1490	2390	3290	1	16	1	1	0 (2:6)_(4:4aCO)
158 TN4	TN	16	151184	151370	153677	153797 2_nonsis	2308	2460	2612	1	16	1	1	0 (2:6)_(4:4aCO)
19 TN4	TN	3	204750	207459	208954	209143 2_nonsis	1496	2944	4392	1	16	1	1	0 (2:6)_(4:4aCO)
124 TN4	TN	13	568585	568895	572476	572646 2_nonsis	3582	3821	4060	1	16	1	1	0 (2:6)_(4:4aCO)
79 TN4	TN	9	48626	48813	52260	53016 2_nonsis	3448	3919	4389	1	16	1	1	0 (2:6)_(4:4aCO)
77 TN4	TN	8	461762	463767	466551	466922 2_nonsis	2785	3972	5159	1	16	1	1	0 (2:6)_(4:4aCO)
90 TN4	TN	10	566114	566519	568805	572936 2_nonsis	2287	4554	6821	1	16	1	1	0 (2:6)_(4:4aCO)
109 TN4	TN	12	757131	757763	762049	762111 2_nonsis	4287	4633	4979	1	16	1	1	0 (2:6)_(4:4aCO)
4 TN4	TN	2	27441	27663	28960	35642 2_nonsis	1298	4749	8200	1	16	1	1	0 (2:6)_(4:4aCO)
119 TN4	TN	13	221642	222095	226133	227957 2_nonsis	4039	5177	6314	1	16	1	1	0 (2:6)_(4:4aCO)
163 TN4	TN	16	447002	448559	453873	454184 2_nonsis	5315	6248	7181	1	16	1	1	0 (2:6)_(4:4aCO)
149 TN4	TN	15	587565	588022	594499	600811 2_nonsis	6478	9862	13245	1	16	1	1	0 (2:6)_(4:4aCO)
102 TN4	TN	12	209847	209884	209847	209884 2_nonsis	0	18	36	1	100	1	1	0 (4:4aCO)
41 TN4	TN	4	1493916	1494247	1493916	1494247 2_nonsis	0	165	330	1	100	1	1	0 (4:4aCO)
88 TN4	TN	10	467199	467589	467199	467589 2_nonsis	0	195	389	1	100	1	1	0 (4:4aCO)
71 TN4	TN	7	1008259	1008695	1008259	1008695 2_nonsis	0	218	435	1	100	1	1	0 (4:4aCO)
48 TN4	TN	5	436763	437266	436763	437266 2_nonsis	0	251	502	1	100	1	1	0 (4:4aCO)
108 TN4	TN	12	616330	616917	616330	616917 2_nonsis	0	293	586	1	100	1	1	0 (4:4aCO)
153 TN4	TN	15	913489	914118	913489	914118 2_nonsis	0	314	628	1	100	1	1	0 (4:4aCO)
9 TN4	TN	2	323214	323896	323214	323896 2_nonsis	0	341	681	1	100	1	1	0 (4:4aCO)
62 TN4	TN	7	388315	389082	388315	389082 2_nonsis	0	383	766	1	100	1	1	0 (4:4aCO)
70 TN4	TN	7	992385	993196	992385	993196 2_nonsis	0	405	810	1	100	1	1	0 (4:4aCO)
29 TN4	TN	4	766047	767007	766047	767007 2_nonsis	0	480	959	1	100	1	1	0 (4:4aCO)
147 TN4	TN	15	489366	490345	489366	490345 2_nonsis	0	489	978	1	100	1	1	0 (4:4aCO)
22 TN4	TN	3	258915	259910	258915	259910 2_nonsis	0	497	994	1	100	1	1	0 (4:4aCO)
94 TN4	TN	11	32124	33673	32124	33673 2_nonsis	0	774	1548	1	100	1	1	0 (4:4aCO)
116 TN4	TN	13	37125	38744	37125	38744 2_nonsis	0	809	1618	1	100	1	1	0 (4:4aCO)
126 TN4	TN	13	575127	577768	575127	577768 2_nonsis	0	1320	2640	1	100	1	1	0 (4:4aCO)
72 TN4	TN	7	1046941	1050057	1046941	1050057 2_nonsis	0	1558	3115	1	100	1	1	0 (4:4aCO)
							-			-				

3 TN4	TN	1	132066	135319	132066	135319 2_nonsis		0	1626	3252	1	100	1	1	0 (4:4aCO)
93 TN4	TN	11	23532	27301	23532	27301 2_nonsis		0	1884	3768	1	100	1	1	0 (4:4aCO)
39 TN4	TN	4	1423134	1423374	1424231	1424583 2_nonsis		858	1153	1448	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
162 TN4	TN	16	309089	309787	314461	314704 2_nonsis		4675	5145	5614	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
146 TN4	TN	15	442786	442914	443923	444015 2_nonsis		1010	1119	1228	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
115 TN4	TN	13	12902	13242	21556	21881 2_nonsis		8315	8647	8978	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
73 TN4	TN	8	15653	16157	17751	18086 2_sis		1595	2014	2432	0	1	2	0	2 (6:2)_(8:0)_(4:4)
11 TN4	TN	2	499985	500498	506915	507219	3	6418	6826	7233	0	2	2	1	1 (2:6)_(4:4)_(2:6a)_(4:4aCO)
74 TN4	TN	8	33105	33337	37198	37339	3	3862	4048	4233	0	2	2	1	1 (8:0)_(6:2)_(8:0)_(6:2a)_(4:4aCO)
81 TN4	TN	9	292870	296453	299287	302738	4	2835	6351	9867	0	2	2	2	0 (6:2)_(8:0)_(6:2a)_(4:4aCO)
110 TN4	TN	12	821384	822252	826618	829421	3	4367	6202	8036	0	2	2	1	1 (6:2)_(2:6)_(6:2a)_(4:4aCO)
112 TN4	TN	12	1001464	1001833	1009719	1011169 2_nonsis		7887	8796	9704	0	3	2	0	2 (6:2)_(4:4aCO)_(2:6)_(4:4CO)
337 TN4	TN	16	917515	918199	925093	948066	1	0	15275	30550	0	4	1 NA	NA	
33 TRM1	TRM	7	363968	364007	364007	364128	1	1	80	159	1	1	1	0	1 05:03
5 TRM1	TRM	2	71825	71828	71828	72018	1	1	97	192	1	1	1	0	1 05:03
104 TRM1	TRM	16	785712	785737	785737	785910	1	1	99	197	1	1	1	0	1 05:03
19 TRM1	TRM	4	924351	924464	924464	924561	1	1	105	209	1	1	1	0	1 05:03
22 TRM1	TRM	4	1019082	1019195	1019208	1019310	1	14	121	227	1	1	1	0	1 05:03
61 TRM1	TRM	11	429005	429076	429143	429210	1	68	136	204	1	1	1	0	1 05:03
93 TRM1	TRM	15	662208	662245	662365	662487	1	121	200	278	1	1	1	0	1 05:03
59 TRM1	TRM	11	340811	341198	341198	341302	1	1	246	490	1	1	1	0	1 05:03
101 TRM1	TRM	16	663036	663321	663321	663543	1	1	254	506	1	1	1	0	1 05:03
67 TRM1	TRM	12	606928	607451	607458	607531	1	8	305	602	1	1	1	0	1 05:03
37 TRM1	TRM	7	611510	611515	611515	612267	1	1	379	756	1	1	1	0	1 05:03
21 TRM1	TRM	4	963556	963777	963777	964418	1	1	431	861	1	1	1	0	1 05:03
50 TRM1	TRM	10	335305	335788	335788	336181	1	1	438	875	1	1	1	0	1 05:03
27 TRM1	TRM	5	100108	100307	100307	101018	1	1	455	909	1	1	1	0	1 05:03
87 TRM1	TRM	14	515028	515081	515537	515602	1	457	515	573	1	1	1	0	1 05:03
12 TRM1	TRM	3	103955	104476	104476	105047	1	1	546	1091	1	1	1	0	1 05:03
20 TRM1	TRM	4	959563	959874	960101	960464	1	228	564	900	1	1	1	0	1 05:03
49 TRM1	TRM	10	26958	26988	26988	28612	1	1	827	1653	1	1	1	0	1 05:03
30 TRM1	TRM	6	35993	36288	37375	37482	1	1088	1288	1488	1	1	1	0	1 05:03
36 TRM1	TRM	7	545277	545279	545279	545319	1	1	21	41	1	2	1	0	1 03:05
17 TRM1	TRM	4	681992	682085	682094	682121	1	10	69	128	1	2	1	0	1 03:05
45 TRM1	TRM	9	254153	254261	254261	254315	1	1	81	161	1	2	1	0	1 03:05
25 TRM1	TRM	5	18839	18930	18949	19001	1	20	91	161	1	2	1	0	1 03:05
73 TRM1	TRM	13	388416	388450	388450	388681	1	1	133	264	1	2	1	0	1 03:05
16 TRM1	TRM	4	636352	636465	636465	636737	1	1	193	384	1	2	1	0	1 03:05
75 TRM1	TRM	13	438816	438970	438970	439214	1	1	199	397	1	2	1	0	1 03:05
32 TRM1	TRM	7	140227	140416	140416	140631	1	1	202	403	1	2	1	0	1 03:05
94 TRM1	TRM	15	977995	978537	978665	978755	1	129	444	759	1	2	1	0	1 03:05
91 TRM1	TRM	15	271047	271168	271422	271727	1	255	467	679	1	2	1	0	1 03:05
18 TRM1	TRM	4	769038	769356	769508	769848	1	153	481	809	1	2	1	0	1 03:05
66 TRM1	TRM	12	340839	341507	341688	341926	1	182	634	1086	1	2	1	0	1 03:05
26 TRM1	TRM	5	19005	23151	23160	23192	1	102	2098	4186	1	2	1	0	1 03:05
24 TRM1	TRM	4	1062037	1062818	1063052	1063171	1	235	684	1133	1	3	1	0	1 5:3_4:4_5:3
86 TRM1	TRM	14	372616	372745	374157	374306	1	1413	1551	1689	1	3	1	0	1 5:3_6:2_5:3
65 TRM1		11	571259	571283	571329		1			379	1	7	1	0	
8 TRM1	TRM					571639		47	213		-		1	0	1 6:2_5:3
56 TRM1	TRM TRM	2	305677 634739	305801	307032	307275	1	1232	1415	1597 2997	1	7 7	1	0	1 5:3_6:2
		10		635210	637464	637737	1	2255	2626						1 6:2_5:3_4:4_5:3
57 TRM1	TRM	10	662479	663134	663948	664155	1	815	1245	1675	1	8	1	0	1 2:6_4:4_2:6
42 TRM1	TRM	8	93770	96126	98643	99089	1	2518	3918	5318	1	8	1	0	1 2:6_3:5_2:6_3:5
72 TRM1	TRM	13	169412	169464	169464	169477	1	1	33	64	1	10	1	0	1 06:02
79 TRM1	TRM	13	589414	589588	589588	589690	1	1	138	275	1	10	1	0	1 06:02
39 TRM1	TRM	7	892212	892452	892452	892541	1	1	165	328	1	10	1	0	1 06:02
103 TRM1	TRM	16	742152	742296	742684	743518	1	389	877	1365	1	10	1	0	1 06:02
92 TRM1	TRM	15	481860	482126	486511	487028	1	4386	4777	5167	1	10	1	0	1 06:02
10 TRM1	TRM	2	541389	541474	541474	541477	1	1	44	87	1	10.1	1	0	1 02:06
69 TRM1	TRM	12	936676	937242	937414	937738	1	173	617	1061	1	10.1	1	0	1 02:06
2 TRM1	TRM	1	187427	189825	190031	190402 2_nonsis		207	1591	2974	3	30	1	0	1 2:6_3:5

96 TRM1	TRM	16	371406	371706	373422	373522 2_nonsis		1717	1916	2115	3	30	1	0	1 3:5_4:4_6:2
99 TRM1	TRM	16	516982	517099	519038	519153 2_nonsis		1940	2055	2170	3	30	1	0	1 3:5_4:4_5:3_6:2_4:4_6:2
64 TRM1	TRM	11	568347	568472	568472	568685 2_nonsis		1	169	337	1	1	1	1	0 (5:3)_(4:4aCO)
98 TRM1	TRM	16	514359	514583	514728	515057 2_nonsis		146	422	697	1	2	1	1	0 (3:5)_(4:4aCO)
11 TRM1	TRM	3	41852	42410	42419	42698 2 nonsis		10	428	845	1	2	1	1	0 (3:5) (4:4aCO)
44 TRM1	TRM	8	301054	301804	301804	303274 2 nonsis		1	1110	2219	1	2	1	1	0 (3:5)_(4:4aCO)
84 TRM1	TRM	14	318794	318845	319268	319642 2_nonsis		424	636	847	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
68 TRM1	TRM	12	645780	645971	647512	647752 2_nonsis		1542	1757	1971	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
77 TRM1	TRM	13	509359	509691	511256	511585 2_nonsis		1566	1896	2225		9			0 (3:5)_(2:6)_(4:4aCO)
		11			510755						1	10	1	1	
62 TRM1	TRM TRM		510240 69403	510698 69677	70071	510872 2_nonsis		58	345 610	631 824	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
1 TRM1		1				70228 2_nonsis		395					1	1	0 (2:6)_(3:5)_(4:4aCO)
90 TRM1	TRM	14	770920	771471	772272	772448 2_nonsis		802	1165	1527	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
3 TRM1	TRM	1	192723	193131	195144	195324 2_nonsis		2014	2307	2600	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
31 TRM1	TRM	6	114541	114707	114918	115088 2_nonsis		212	379	546	1	11	1	1	0 (4:4ai)_(5:3)_(4:4bCO)
78 TRM1	TRM	13	513425	513778	514088	514095 2_nonsis		311	490	669	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)
13 TRM1	TRM	3	155018	155616	156517	156868 2_nonsis		902	1376	1849	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)
29 TRM1	TRM	6	32886	32901	33496	33797 2_nonsis		596	753	910	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(4:4aCO)
85 TRM1	TRM	14	342917	343407	345744	345915 2_nonsis		2338	2668	2997	1	12	1	1	0 (4:4aCO)_(5:3)_(6:2)_(4:4a)_(5:3)_(4:4a)
83 TRM1	TRM	14	109914	110232	112194	112491 2_nonsis		1963	2270	2576	1	12	1	1	0 (5:3)_(4:4aCO)_(6:2)_(5:3)_(4:4a)_(6:2)_(5:3)_(4:4a)
43 TRM1	TRM	8	254647	254816	255648	256020 2_nonsis		833	1103	1372	1	15	1	1	0 (6:2)_(4:4aCO)
6 TRM1	TRM	2	235113	235877	235882	236188 2_nonsis		6	540	1074	1	16	1	1	0 (2:6)_(4:4aCO)
80 TRM1	TRM	13	591615	592775	592777	593048 2_nonsis		3	718	1432	1	16	1	1	0 (2:6)_(4:4aCO)
7 TRM1	TRM	2	250316	250537	251134	251548 2_nonsis		598	915	1231	1	16	1	1	0 (2:6)_(4:4aCO)
4 TRM1	TRM	2	47244	47612	47971	48762 2_nonsis		360	939	1517	1	16	1	1	0 (2:6)_(4:4aCO)
81 TRM1	TRM	13	684406	685502	685884	686613 2_nonsis		383	1295	2206	1	16	1	1	0 (2:6)_(4:4aCO)
38 TRM1	TRM	7	614580	615404	616159	616580 2_nonsis		756	1378	1999	1	16	1	1	0 (2:6)_(4:4aCO)
74 TRM1	TRM	13	410660	410894	410660	410894 2_nonsis		0	117	233	1	100	1	1	0 (4:4aCO)
23 TRM1	TRM	4	1020648	1020939	1020648	1020939 2_nonsis		0	145	290	1	100	1	1	0 (4:4aCO)
52 TRM1	TRM	10	458980	459291	458980	459291 2 nonsis		0	155	310	1	100	1	1	0 (4:4aCO)
100 TRM1	TRM	16	524220	524743	524220	524743 2_nonsis		0	261	522	1	100	1	1	0 (4:4aCO)
55 TRM1	TRM	10	559033	559588	559033	559588 2_nonsis		0	277	554	1	100	1	1	0 (4:4aCO)
70 TRM1	TRM	12	938923	939652	938923	939652 2_nonsis		0	364	728	1	100	1	1	0 (4:4aCO)
97 TRM1	TRM	16	376312	377062	376312	377062 2_nonsis		0	375	749	1	100	1	1	0 (4:4aCO)
47 TRM1	TRM	9	339305	340356	339305			0	525		1	100	1	1	
47 TRM1 14 TRM1	TRM	3	228130	230267	228130	340356 2_nonsis 230267 2 nonsis		0	1068	1050 2136	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
						_		-			-		1	1	
54 TRM1	TRM	10	504158	506424	504158	506424 2_nonsis		0	1133	2265	1	100	1	1	0 (4:4aCO)
89 TRM1	TRM	14	662512	665017	662512	665017 2_nonsis		0	1252	2504	1	100	1	1	0 (4:4aCO)
48 TRM1	TRM	9	412645	415204	412645	415204 2_nonsis		0	1279	2558	1	100	1	1	0 (4:4aCO)
53 TRM1	TRM	10	467589	469453	471532	472163 2_nonsis		2080	3327	4573	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
34 TRM1	TRM	7	373766	373940	378538	379046 2_nonsis		4599	4939	5279	2	32	1	1	0 (5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)
51 TRM1	TRM	10	440160	440847	443517	444241 2_nonsis		2671	3376	4080	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(4:4ai)_(4:4bCO)
71 TRM1	TRM	12	953059	953141	954772	954849 2_nonsis		1632	1711	1789	2	32	1	1	0 (2:6)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
102 TRM1	TRM	16	739738	739829	740140	740246 2_nonsis		312	410	507	3	20	1	1	0 (5:3)_(4:4aCO)_(3:5)_(4:4a)
9 TRM1	TRM	2	458640	458701	459961	460243 2_nonsis		1261	1432	1602	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
46 TRM1	TRM	9	275972	276080	277526	277693 2_nonsis		1447	1584	1720	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
40 TRM1	TRM	7	900753	902479	903790	904076 2_nonsis		1312	2317	3322	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
95 TRM1	TRM	16	214684	214724	216696	217014 2_nonsis		1973	2151	2329	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
41 TRM1	TRM	7	974457	974639	977122	977277 2_nonsis		2484	2652	2819	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
82 TRM1	TRM	13	789974	790001	792254	793043 2 nonsis		2254	2661	3068	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
88 TRM1	TRM	14	517634	517889	527330	527794 2_nonsis		9442	9801	10159	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4a)
60 TRM1	TRM	11	399626	399800	405007	405343 2_nonsis		5208	5462	5716	3	21	1	1	0 (4:4ai)_(3:5)_(4:4ai)_(5:3)_(5:3a)_(3:5)_(4:4ai)_(4:4bCO)
35 TRM1	TRM	7	426211	426538	430810	431116 2_nonsis		4273	4589	4904	3	21	1	1	0 (2:6)_(3:5)_(2:6)_(5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(6:2)_(5:3a)_(4:4a)_(4:4b)_(4:4a)_(6:2)_(5:3a)_(5:3)_(6:2)_(4:4a)
58 TRM1	TRM	11	98452	98488	100670	101183	3	2183	2457	2730	0	2	2	1	1 (3:5)_(3:5a)_(4:4aCO)
76 TRM1	TRM	13	490109	490393	491864	492116	3	1472	1739		0	2	2	1	
76 TRM1	TRM	4	550893	551387	552354	552846	3	968	1/39	2006 1952	0	3	2	1	1 (3:5)_(4:4)_(2:6)_(3:5a)_(4:4aCO) 1 (4:4aCO)_(2:5)_(4:4bCO)_(3:5a)_(4:4b)
	TRM						3				0	3	2	1	1 (4:4aCO)_(3:5)_(4:4bCO)_(3:5a)_(4:4b) 1 (2:C)_(4:A)_(5:2)_(4:4a-CO)_(5:2)_(4:A)_(5:2)_(5:2)_(4:4b-CO)_(5:2)_(5
63 TRM1		11	513097	513249	516391	516569	3	3143	3307	3471			2	-	1 (2:6)_(4:4)_(6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(5:3)_(4:4bCO)
11 TRM2	TRM	2	465690	465714	465714	465795		1	53	104	1	1	1	0	1 05:03
140 TRM2	TRM	13	420582	420683	420683	420689	1	1	54	106	1	1	1	0	1 05:03
83 TRM2	TRM	7	826948	827004	827004	827066	1	1	59	117	1	1	1	0	1 05:03
117 TRM2	TRM	11	618772	618816	618845	619007	1	30	132	234	1	1	1	0	1 05:03

98 TRM2	TRM	9	407953	408110	408110	408224	1	1	136	270	1	1	1	0	1 05:03
118 TRM2	TRM	12	157806	158132	158132	158461	1	1	328	654	1	1	1	0	1 05:03
177 TRM2	TRM	16	729469	729729	729729	730141	1	1	336	671	1	1	1	0	1 05:03
131 TRM2	TRM	12	818577	819282	819282	819432	1	1	428	854	1	1	1	0	1 05:03
41 TRM2	TRM	4	1079984	1080788	1080788	1080869	1	1	443	884	1	1	1	0	1 05:03
119 TRM2	TRM	12	252885	253274	253274	253791	1	1	453	905	1	1	1	0	1 05:03
81 TRM2	TRM	7	763747	765005	765005	765055	1	1	654	1307	1	1	1	0	1 05:03
12 TRM2	TRM	2	503402	504535	504587	504755	1	53	703	1352	1	1	1	0	1 05:03
110 TRM2	TRM	11	171261	172151	172151	172715	1	1	727	1453	1	1	1	0	1 05:03
99 TRM2	TRM	10	26958	26988	26988	28612	1	1	827	1653	1	1	1	0	1 05:03
54 TRM2	TRM	5	201879	202172	202626	203184	1	455	880	1304	1	1	1	0	1 05:03
120 TRM2	TRM	12	299532	300182	300539	300946	1	358	886	1413	1	1	1	0	1 05:03
16 TRM2	TRM	3	38022	38178	38857	39123	1	680	890	1100	1	1	1	0	1 05:03
160 TRM2	TRM	15	660805	661531	661971	662174	1	441	905	1368	1	1	1	0	1 05:03
73 TRM2	TRM	7	463111	463843	464314	464972	1	472	1166	1860	1	1	1	0	1 05:03
32 TRM2	TRM	4	748324	748386	749531	749726	1	1146	1274	1401	1	1	1	0	1 05:03
25 TRM2	TRM	4	523139	523141	523141	523161	1	1	11	21	1	2	1	0	1 03:05
1 TRM2	TRM	1	203038	203105	203111	203117	1	7	43	78	1	2	1	0	1 03:05
93 TRM2	TRM	9	138346	138455	138455	138490	1	1	72	143	1	2	1	0	1 03:05
152 TRM2	TRM	15	216270	216376	216399	216499	1	24	126	228	1	2	1	0	1 03:05
44 TRM2	TRM	4	1219901	1219991	1219991	1220176	1	1	138	274	1	2	1	0	1 03:05
91 TRM2	TRM	9	73686	73841	73899	73949	1	59	161	262	1	2	1	0	1 03:05
113 TRM2	TRM	11	231246	231464	231543	231603	1	80	218	356	1	2	1	0	1 03:05
114 TRM2	TRM	11	317104	317375	317375	317549	1	1	223	444	1	2	1	0	1 03:05
70 TRM2	TRM	7	344550	344881	344881	345010	1	1	230	459	1	2	1	0	1 03:05
158 TRM2	TRM	15	627675	627997	627997	628281	1	1	303	605	1	2	1	0	1 03:05
121 TRM2	TRM	12	372738	373260	373260	373385	1	1	324	646	1	2	1	0	1 03:05
170 TRM2	TRM	16	474750	475211	475211	475484	1	1	367	733	1	2	1	0	1 03:05
79 TRM2	TRM	7	702791	703157	703157	703857	1	1	533	1065	1	2	1	0	1 03:05
166 TRM2	TRM	16	104784	105356	105527	105755	1	172	571	970	1	2	1	0	1 03:05
146 TRM2	TRM	14	184449	184629	184992	185309	1	364	612	859	1	2	1	0	1 03:05
88 TRM2	TRM	8	254816	255648	255648	256087	1	1	636	1270	1	2	1	0	1 03:05
82 TRM2	TRM	7	800442	801373	801373	801844	1	1	701	1401	1	2	1	0	1 03:05
23 TRM2	TRM	4	452728	452771	453092	453903	1	322	748	1174	1	2	1	0	1 03:05
45 TRM2	TRM	4	1277186	1277374	1278056	1278456	1	683	976	1269	1	2	1	0	1 03:05
36 TRM2	TRM	4	931988	932298	933019	933755	1	722	1244	1766	1	2	1	0	1 03:05
103 TRM2	TRM	10	402004	402145	403036	404816	1	892	1852	2811	1	2	1	0	1 03:05
66 TRM2	TRM	7	147855	148827	149109	151606	1	283	2017	3750	1	2	1	0	1 03:05
10 TRM2	TRM	2	350797	350900	351335	351500	1	436	569	702	1	3	1	0	1 5:3_6:2_5:3
124 TRM2	TRM	12	514581	514693	515666	515811	1	974	1102	1229	1	3	1	0	1 5:3_4:4_5:3
34 TRM2	TRM	4	811642	811697	814278	814490	1	2582	2715	2847	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
159 TRM2	TRM	15	656887	657104	657959	658010	1	856	989	1122	1	4	1	0	1 3:5_2:6_3:5
42 TRM2	TRM	4	1093378	1093591	1094698	1095022	1	1108	1376	1643	1	4	1	0	1 3:5_4:4_3:5
46 TRM2	TRM	4	1332047	1332400	1334981	1335206	1	2582	2870	3158	1	4	1	0	1 3:5_4:4_3:5
105 TRM2	TRM	10	488230	488779	493019	494265	1	4241	5138	6034	1	4	1	0	1 3:5_2:6_3:5
84 TRM2	TRM	7	909136	909541	913000	913222	1	3460	3773	4085	1	4	1	0	1 3:5_4:4_3:5_4:4_2:6_3:5
128 TRM2	TRM	12	601825	601834	603154	603159	1	1321	1327	1333	1	4	1	0	1 3:5_2:6_4:4_3:5_2:6_4:4_3:5
27 TRM2	TRM	4	599722	599821	600037	600120	1	217	307	397	1	7	1	0	1 6:2_5:3
21 TRM2	TRM	4	330814	330985	332115	332376	1	1131	1346	1561	1	7	1	0	1 6:2_5:3
102 TRM2	TRM	10	389963	390467	392871	393423	1	2405	2932	3459	1	7	1	0	1 6:2_5:3_4:4_5:3
72 TRM2	TRM	7	448887	449549	452296	452589	1	2748	3225	3701	1	7	1	0	1 5:3_4:4_5:3_4:4_6:2
2 TRM2	TRM	2	71420	71553	72420	73226	1	868	1337	1805	1	7	1	0	1 6:2_4:4_6:2_5:3_6:2_5:3
126 TRM2	TRM	12	522914	525267	525800	526016	1	534	1818	3101	1	8	1	0	1 2:6_4:4_2:6
29 TRM2	TRM	4	652176	653010	660498	660681	1	7489	7997	8504	1	8	1	0	1 2:6_3:5_2:6_3:5_2:6_3:5_2:6_3:5_2:6_3:5_2:6
57 TRM2	TRM	5	443371	443378	443378	443383	1	1	6	11	1	10	1	0	1 06:02
78 TRM2	TRM	7	669985	670014	670014	670080	1	1	48	94	1	10	1	0	1 06:02
77 TRM2	TRM	7	627896	627924	627934	628012	1	11	63	115	1	10	1	0	1 06:02
30 TRM2	TRM	4	699436	699549	699549	699810	1	1	187	373	1	10	1	0	1 06:02
38 TRM2	TRM	4	993391	993416	993571	993715	1	156	240	323	1	10	1	0	1 06:02
109 TRM2	TRM	11	99224	99633	99646	100670	1	14	730	1445	1	10	1	0	1 06:02

132 TRM2	TRM	12	823217	826618	826618	827343	1	1	2063	4125	1	10	1	0	1 06:02
43 TRM2	TRM	4	1163374	1163376	1163376	1163379	1	1	3	4	1	10.1	1	0	1 02:06
52 TRM2	TRM	5	131479	131495	131495	131499	1	1	10	19	1	10.1	1	0	1 02:06
139 TRM2	TRM	13	388681	388700	388700	388702	1	1	11	20	1	10.1	1	0	1 02:06
37 TRM2	TRM	4	966228	966303	966303	966390	1	1	81	161	1	10.1	1	0	1 02:06
112 TRM2	TRM	11	202124	202182	202188	202339	1	7	111	214	1	10.1	1	0	1 02:06
169 TRM2	TRM	16	328786	329095	329095	329314	1	1	264	527	1	10.1	1	0	1 02:06
142 TRM2	TRM	13	830613	831156	832164	832607 2_nonsis		1009	1501	1993	3	30	1	0	1 3:5_3:5a
156 TRM2	TRM	15	545340	546162	547477	547969 2_nonsis		1316	1972	2628	3	30	1	0	1 6:2_5:3_5:3a
141 TRM2	TRM	13	773634	774011	776252	776333 2_nonsis		2242	2470	2698	3	30	1	0	1 6:2_4:4_3:5
137 TRM2	TRM	13	175894	176006	181240	182183 2_nonsis		5235	5762	6288	3	30	1	0	1 3:5_2:6_3:5a
150 TRM2	TRM	14	738960	739015	740460	740592 2_nonsis		1446	1539	1631	3	30	1	0	1 3:5_2:6_4:4_5:3
101 TRM2	TRM	10	275984	276470	280699	281003 2_nonsis		4230	4624	5018	3	30	1	0	1 5:3_4:4_2:6_5:3
95 TRM2	TRM	9	210959	212207	216122	216326 2_nonsis		3916	4641	5366	3	30	1	0	1 5:3_4:4_5:3_4:4_2:6
107 TRM2	TRM	10	701848	702981	705639	705848 2_nonsis		2659	3329	3999	3	30	1	0	1 3:5_2:6_4:4_2:6_4:4_5:3
133 TRM2	TRM	13	39174	39438	42127	44157 2_nonsis		2690	3836	4982	3	31	1	0	1 5:3_4:4ai_5:3
168 TRM2	TRM	16	284937	285327	287422	288762 2 nonsis		2096	2960	3824	3	31	1	0	1 3:5 2:6 3:5 4:4ai 4:4 3:5
165 TRM2	TRM	15	908551	908634	911484	911625 2 nonsis		2851	2962	3073	3	31	1	0	1 5:3 6:2 5:3a 6:2 5:3 4:4ai
92 TRM2	TRM	9	89868	90720	95013	95341 2_nonsis		4294	4883	5472	3	31	1	0	1 4:4ai_5:3_4:4_6:2_5:3a_6:2_5:3a_4:4_5:3a
161 TRM2	TRM	15	700968	701028	701028	701208 2_nonsis		1	120	239	1	1	1	1	0 (5:3)_(4:4aCO)
172 TRM2	TRM	16	520684	520764	520832	521292 2_nonsis		69	338	607	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
4 TRM2	TRM	2	99228	99630	99630	100295 2_nonsis		1	534	1066	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
7 TRM2	TRM		184236	184932						1241	1	1	1	1	
125 TRM2	TRM	2 12	520183	520774	184941 521410	185478 2_nonsis		10 637	626 1034	1430	1	1	1	1	0 (5:3)_(4:4aCO)
						521614 2_nonsis							-	1	0 (5:3)_(4:4aCO)
89 TRM2	TRM	8	334431	334860	336133	336486 2_nonsis		1274	1664	2054	1	1	1	-	0 (5:3)_(4:4aCO)
35 TRM2	TRM	4	856201	856278	856278	856646 2_nonsis		1	223	444	1	2	1	1	0 (3:5)_(4:4aCO)
180 TRM2	TRM	16	841449	841490	842086	842864 2_nonsis		597	1006	1414	1	2	1	1	0 (3:5)_(4:4aCO)
60 TRM2	TRM	6	74035	74065	74254	74647 2_nonsis		190	401	611	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
53 TRM2	TRM	5	198962	199099	200070	200245 2_nonsis		972	1127	1282	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
136 TRM2	TRM	13	140137	140328	140970	141600 2_nonsis		643	1053	1462	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
24 TRM2	TRM	4	507130	507490	508845	509591 2_nonsis		1356	1908	2460	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
100 TRM2	TRM	10	143166	143550	144558	144785 2_nonsis		1009	1314	1618	1	11	1	1	0 (5:3)_(4:4ai)_(4:4bCO)
3 TRM2	TRM	2	83662	83698	86465	86473 2_nonsis		2768	2789	2810	1	11	1	1	0 (4:4ai)_(4:4bCO)_(3:5)_(4:4b)
176 TRM2	TRM	16	672209	672569	673223	673927 2_nonsis		655	1186	1717	1	11	1	1	0 (5:3)_(4:4ai)_(5:3)_(4:4ai)_(4:4bCO)
145 TRM2	TRM	14	133191	133521	135855	135913 2_nonsis		2335	2528	2721	1	11	1	1	0 (2:6)_(3:5)_(4:4ai)_(4:4bCO)_(3:5)_(4:4b)
5 TRM2	TRM	2	161757	161840	166703	167174 2_nonsis		4864	5140	5416	1	11	1	1	0 (4:4ai)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4bCO)
56 TRM2	TRM	5	376468	376801	377102	377190 2_nonsis		302	512	721	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
59 TRM2	TRM	6	46998	47804	48510	48613 2_nonsis		707	1161	1614	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
174 TRM2	TRM	16	611686	612509	613103	613637 2_nonsis		595	1273	1950	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
19 TRM2	TRM	3	251657	251939	252633	253903 2_nonsis		695	1470	2245	1	12	1	1	0 (5:3)_(6:2)_(4:4)_(4:4aCO)
64 TRM2	TRM	7	52694	53079	54306	54483 2_nonsis		1228	1508	1788	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
163 TRM2	TRM	15	846027	846878	847716	848376 2_nonsis		839	1594	2348	1	12	1	1	0 (5:3)_(4:4aCO)_(5:3)_(4:4a)
178 TRM2	TRM	16	773283	774130	775174	775448 2_nonsis		1045	1605	2164	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
39 TRM2	TRM	4	1044635	1044751	1049309	1050120 2_nonsis		4559	5022	5484	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(4:4aCO)
106 TRM2	TRM	10	638018	638343	639618	639986 2_nonsis		1276	1622	1967	1	12	1	1	0 (6:2)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
134 TRM2	TRM	13	70356	71137	72351	73368 2_nonsis		1215	2113	3011	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(4:4aCO)
26 TRM2	TRM	4	596055	596902	597668	597800 2_nonsis		767	1256	1744	1	12	1	1	0 (2:6)_(3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
127 TRM2	TRM	12	534194	534611	536245	536548 2_nonsis		1635	1994	2353	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(4:4aCO)
173 TRM2	TRM	16	605225	605750	610303	610635 2_nonsis		4554	4982	5409	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
87 TRM2	TRM	8	229448	230585	236251	237146 2_nonsis		5667	6682	7697	1	12	1	1	0 (3:5)_(2:6)_(4:4)_(3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(4:4)_(4:4aCO)
164 TRM2	TRM	15	860391	861174	861653	862224 2_nonsis		480	1156	1832	1	15	1	1	0 (6:2)_(4:4aCO)
115 TRM2	TRM	11	403011	403407	403561	404302 2_nonsis		155	723	1290	1	16	1	1	0 (2:6)_(4:4aCO)
18 TRM2	TRM	3	155243	155502	158956	159547 2_nonsis		3455	3879	4303	1	16	1	1	0 (2:6)_(4:4aCO)
123 TRM2	TRM	12	510745	510855	510745	510855 2_nonsis		0	55	109	1	100	1	1	0 (4:4aCO)
129 TRM2	TRM	12	660046	660371	660046	660371 2_nonsis		0	162	324	1	100	1	1	0 (4:4aCO)
55 TRM2	TRM	5	301990	302478	301990	302478 2_nonsis		0	244	487	1	100	1	1	0 (4:4aCO)
157 TRM2	TRM	15	606336	606849	606336	606849 2_nonsis		0	256	512	1	100	1	1	0 (4:4aCO)
147 TRM2	TRM	14	215285	216026	215285	216026 2_nonsis		0	370	740	1	100	1	1	0 (4:4aCO)
68 TRM2	TRM	7	244757	245112	245686	247666 2 nonsis		575	1742	2908	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
65 TRM2	TRM	7	81435	82858	84308	84678 2_nonsis		1451	2347	3242	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO) 0 (5:3)_(5:3a)_(4:4aCO)
OJ TRIVIZ	1 IXIVI	,	01433	02030	0+300	07070 Z_HOHSIS		1+31	4J41	J242	-	30	1		· (5.5)_(5.5a)_(4.4aco)

144 TRM2	TRM	14	92521	94896	96406	102722 2_nonsis		1511	5856	10200	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
49 TRM2	TRM	4	1474578	1475249	1476956	1477116 2_nonsis		1708	2123	2537	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
130 TRM2	TRM	12	748908	749136	751398	751824 2_nonsis		2263	2589	2915	2	32	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
48 TRM2	TRM	4	1433731	1433930	1436744	1436939 2_nonsis		2815	3011	3207	2	32	1	1	0 (5:3)_(4:4ai)_(4:4)_(5:3a)_(6:2)_(5:3a)_(4:4ai)_(4:4bCO)
40 TRM2	TRM	4	1059127	1059179	1059396	1059445 2_nonsis		218	268	317	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
62 TRM2	TRM	6	166317	167037	167410	168102 2_nonsis		374	1079	1784	3	20	1	1	0 (5:3)_(2:6)_(4:4aCO)
90 TRM2	TRM	9	53832	54480	55461	56514 2_nonsis		982	1832	2681	3	20	1	1	0 (5:3)_(3:5)_(5:3a)_(4:4aCO)
104 TRM2	TRM	10	417590	417877	419940	420014 2_nonsis		2064	2244	2423	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(4:4aCO)
22 TRM2	TRM	4	391561	391712	394339	394723 2_nonsis		2628	2895	3161	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(4:4aCO)
171 TRM2	TRM	16	479932	480004	482104	482155 2_nonsis		2101	2162	2222	3	20	1	1	0 (5:3)_(6:2)_(4:4aCO)_(2:6)_(4:4a)
28 TRM2	TRM	4	643256	643436	644629	652022 2_nonsis		1194	4980	8765	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(3:5)_(4:4a)
69 TRM2	TRM	7	325784	325875	327277	327346 2_nonsis		1403	1482	1561	3	20	1	1	0 (6:2)_(4:4)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
15 TRM2	TRM	2	735399	735582	737232	737329 2_nonsis		1651	1790	1929	3	20	1	1	0 (5:3)_(4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)
175 TRM2	TRM	16	615022	615128	616944	617005 2_nonsis		1817	1900	1982	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(4:4aCO)_(5:3a)_(4:4a)
167 TRM2	TRM	16	169623	169662	172925	173018 2_nonsis		3264	3329	3394	3	20	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(3:5)_(4:4aCO)
149 TRM2	TRM	14	539186	539561	542443	543829 2_nonsis		2883	3763	4642	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(3:5)_(5:3)_(4:4aCO)
94 TRM2	TRM	9	202086	202303	205094	210741 2_nonsis		2792	5723	8654	3	20	1	1	0 (3:5)_(4:4)_(6:2)_(5:3)_(6:2)_(4:4aCO)
71 TRM2	TRM	7	370897	371116	373958	374507 2_nonsis		2843	3226	3609	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(3:5)_(2:6)_(3:5)_(4:4aCO)
61 TRM2	TRM	6	92224	92733	95746	95849 2_nonsis		3014	3319	3624	3	20	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)_(2:6)_(4:4a)
63 TRM2	TRM	6	231775	232615	236256	236557 2_nonsis		3642	4212	4781	3	20	1	1	0 (3:5)_(5:3)_(2:6)_(4:4aCO)_(5:3)_(6:2)_(5:3)_(4:4a)
20 TRM2	TRM	3	275423	275765	280971	281752 2 nonsis		5207	5768	6328	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(3:5)_(5:3a)_(4:4aCO)
9 TRM2	TRM	2	320583	320632	325889	326118 2_nonsis		5258	5396	5534	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(3:5)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
154 TRM2	TRM	15	405136	405535	411283	411906 2_nonsis		5749	6259	6769	3	20	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(3:5)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)
155 TRM2	TRM	15	492036	492191	498928	499156 2_nonsis		6738	6929	7119	3	20	1	1	0 (3:5),(2:6)_(3:5),(2:6)_(5:3)_(4:4a)_(5:3)_(4:4a)_(5:3)_(4:4a)
96 TRM2	TRM	9	265508	265732	268526	268579 2_nonsis		2795	2933	3070	3	21	1	1	0 (5:3)_(4:4ai)_(3:5)_(2:6)_(4:4bCO)
85 TRM2	TRM	7	970290	970527	973354	974385 2_nonsis		2828	3461	4094	3	21	1	1	0 (4-4ai)_(5:3)_(4-4ai)_(3:5)_(4-4bCO)
179 TRM2	TRM	16	779486	779914	786015	786161 2_nonsis		6102	6388	6674	3	21	1	1	0 (5:3), (3:5), (4:4ai), (5:3a), (4:4bCO)
50 TRM2	TRM	5	18839	18930	23151	23976 2_sis		4222	4679	5136	0	1	2	0	2 (2:6) (4:4)
97 TRM2	TRM	9	325450	325617	326724	327096 2_sis		1108	1377	1645	0	1	2	0	2 (5:3), (4:4), (6:2), (4:4)
122 TRM2	TRM	12	506259	507492	507492	508649 2 sis		1	1195	2389	0	1	2	0	2 (2:6)[-(4:4)
153 TRM2	TRM	15	256412	256446	270164	270370 2_sis		13719	13838	13957	0	1	2	0	2 (2:6) (3:5)_(1:7)_(0:8)_(1:7)_(0:8)_(1:7)_(0:8)_(1:7)_(2:6a)_(4:4)
6 TRM2	TRM	2	180607	181279	182901	183084	3	1623	2050	2476	0	2	2	1	1 (5:3) (5:3) (6:34) (4:44CO)
13 TRM2	TRM	2	638716	639238	654891	655336	4	15654	16137	16619	0	2	2	2	(3.5) (4.44a) (2.6) (4.44) (3.5) (4.44) (3.5) (4.44a) (2.6) (3.5a) (2.6) (3.5a) (2.6) (3.5a) (2.6) (3.5a) (3.5b) (4.4bCO)
14 TRM2	TRM	2	695479	697455	710109	710907	4	12655	14041	15427	0	2	2	1	1 (3:5) (2:6i) (1:7) (2:6i) (1:7) (2:6ii) (2:6bi) (4:4ii) (3:3) (6:2) (4:4bi) (3:5) (4:4bC) (3:5) (4:4bC) (3:5)
17 TRM2	TRM	3	72786	73095	74074	74394	3	980	1294	1607	0	2	2	1	1 (3.5) (24.40) (2.7) (2.44) (2.44)
31 TRM2	TRM	4	743850	744215	746186	746381	3	1972	2251	2530	0	2	2	1	1 (5:3) (=-4-4CU) (=-4-4CU) (1:4-4CU)
33 TRM2	TRM	4	800984	801463	808940	810702	3	7478	8598	9717	0	2	2	1	1 (3:5), (4:4), (3:5), (2:6), (5:3), (4:4aCO), (5:3a), (4:4a), (5:3a), (4:4a), (6:2), (5:3a), (4:4a), (5:3a), (4:4a), (5:3a), (4:4a)
47 TRM2	TRM	4	1419516	1419978	1420608	1420714	3	631	914	1197	0	2	2	1	1 (6.2) (4.4) (4.4) (4.4) (4.4)
51 TRM2	TRM	5	54453	55841	77098	77310	3	21258	22057	22856	0	2	2	1	1 (0:2)_(4:4aCO)_(3:5)_(4:4a) 1 (3:5)_(2:6)_(3:5)_(2:6a)_(2:6)_(3:5)_(2:6a)_(3:5)_(4:4)_(2:6)_(1:7)_(2:6)_(1:7)_(2:6)_(0:8)_(2:6)_(1:7)_(1
74 TRM2	TRM	7	472609	472656	475390	475467	3	2735	2796	2857	0	2		1	
74 TRM2 75 TRM2	TRM	7	609314	609405	611515	612267	4	2/35	2532	2952	0	2	2 2	1	1 (2-6) (5/3) (4/4ai), (3/5) (2-6) (3/5a) (4/4b) (4/4cCO)
111 TRM2	TRM	11	190915	191290	192038	192111	3	749	972	1195	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(6:2)_(4:4ai)_(5:3a)_(4:4bCO)_(6:2ai)_(4:4b) 1 (6:2)_(2:6)_(4:4ai)_(3:5)_(4:4bCO)
111 TRM2	TRM	11	573116	573289	575843	576495	3	2555	2967	3378	0	2	2	1	
	TRM	15	193911	194961	205904	205962	3	10944			0	2	2	1	1 (3:5, (3:5a), (5:3), (6:2), (5:3), (4:4aCO)
151 TRM2							3		11497	12050		2	2	1	1 (5:3)_(6:2)_(7:1)_(5:3a)_(4:4aCO)
162 TRM2 8 TRM2	TRM TRM	15 2	769620 309822	770102 310032	775426	775432	3	5325 1645	5568	5811 2344	0	3	2	0	1 (6:2)_(5:3)_(6:2)_(5:3)_(4:4)_(5:3a)_(2:6)_(4:4aCO)_(5:3b)_(4:4a)
					311676	312167 2_nonsis			1995			-			2 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4CO)
67 TRM2 76 TRM2	TRM TRM	7 7	177165 614580	177524 615404	183038 618272	184145 2_nonsis 618689 2 nonsis		5515 2869	6247 3489	6979 4108	0	3	2 2	0	2 (4-4ai)_(5:3)_(4-4bCO)_(5:3a)_(4-4CO)_(2:6)_(4:4)
						_						3			2 (5:3)_(4:4ai)_(5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(4:4bCO)_(5:3)_(6:2)_(4:4CO)
80 TRM2	TRM	7	737189	737501	739321	739622 2_nonsis		1821	2127	2432	0	3	2	0	2 (4·4ai)_(5·3)_(4·4bCO)_(5·3)_(4·4b)_(5·3)_(4·4cO)
86 TRM2	TRM	8	69180	69741	74727	74846	3	4987	5326	5665	0	3	2	1	1 (3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4bi)_(5:3)_(4:4cCO)_(5:3)_(5:
108 TRM2	TRM	11	69153	69417	72681	73029 2_nonsis		3265	3570	3875	0	3	2	0	2 (3:5)_(4:4ai)_(4:4bCO)_(5:3)_(4:4CO)_(5:3a)_(4:4)_(3:5)_(4:4)
135 TRM2	TRM	13	97600	98070	101176	101469 2_nonsis	_	3107	3488	3868	0	3	2	0	2 (3:5)_(4:4)_(4:4aCO)_(5:3)_(6:2)_(4:4a)_(5:3a)_(3:5a)_(4:4CO)
138 TRM2	TRM	13	331787	332732	341111	341630	3	8380	9111	9842	0	3	2	1	1 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(2:6)_(4:4a)_(2:6a)_(4:4bCO)_(3:5b)_(4:4b)
143 TRM2	TRM	14	80433	81575	86054	86180	3	4480	5113	5746	0	3	2	1	1 (2:6)_(3:5)_(4:4)_(2:6)_(3:5a)_(3:5b)_(4:4aCO)
148 TRM2	TRM	14	279881	280112	282032	283073 2_nonsis		1921	2556	3191	0	3	2	0	2 (3:5)_(4:4aCO)_(3:5a)_(4:4a)_(2:6)_(4:4CO)
228 TRM3	TRM	16	560045	560053	560053	560087	1	1	21	41	1	1	1	0	1 05:03
54 TRM3	TRM	4	1201657	1201701	1201701	1201847	1	1	95	189	1	1	1	0	1 05:03
79 TRM3	TRM	7	17018	17097	17097	17234	1	1	108	215	1	1	1	0	1 05:03
53 TRM3	TRM	4	1149251	1149368	1149368	1149478	1	1	114	226	1	1	1	0	1 05:03
24 TRM3	TRM	3	233678	233870	233870	233910	1	1	116	231	1	1	1	0	1 05:03

220 TRM3	TRM	16	188788	188889	188889	189026	1	1	119	237	1	1	1	0	1 05:03
89 TRM3	TRM	7	754453	754648	754670	754678	1	23	124	224	1	1	1	0	1 05:03
45 TRM3	TRM	4	761375	761459	761459	761692	1	1	159	316	1	1	1	0	1 05:03
5 TRM3	TRM	2	96287	96328	96328	96610	1	1	162	322	1	1	1	0	1 05:03
36 TRM3	TRM	4	375374	375530	375542	375690	1	13	164	315	1	1	1	0	1 05:03
149 TRM3	TRM	13	91086	91149	91161	91448	1	13	187	361	1	1	1	0	1 05:03
103 TRM3	TRM	8	326640	326679	326679	327083	1	1	222	442	1	1	1	0	1 05:03
44 TRM3	TRM	4	671041	671079	671207	671379	1	129	233	337	1	1	1	0	1 05:03
182 TRM3	TRM	14	351650	351718	351888	352081	1	171	301	430	1	1	1	0	1 05:03
181 TRM3	TRM	14	324247	324447	324447	324866	1	1	310	618	1	1	1	0	1 05:03
55 TRM3	TRM	4	1229430	1229808	1229808	1230069	1	1	320	638	1	1	1	0	1 05:03
116 TRM3	TRM	10	104033	104395	104395	104685	1	1	326	651	1	1	1	0	1 05:03
91 TRM3	TRM	7	794244	794286	794323	794878	1	38	336	633	1	1	1	0	1 05:03
210 TRM3	TRM	15	667235	667477	667488	668097	1	12	437	861	1	1	1	0	1 05:03
159 TRM3	TRM	13	610928	611569	611569	611899	1	1	486	970	1	1	1	0	1 05:03
104 TRM3	TRM	8	346315	347026	347026	347311	1	1	498	995	1	1	1	0	1 05:03
145 TRM3	TRM	12	703971	704793	704829	704992	1	37	529	1020	1	1	1	0	1 05:03
41 TRM3	TRM	4	567805	567972	568131	568816	1	160	585	1010	1	1	1	0	1 05:03
69 TRM3	TRM	5	354038	355019	355038	355237	1	20	609	1198	1	1	1	0	1 05:03
27 TRM3	TRM	3	288246	288455	288455	289600	1	1	677	1353	1	1	1	0	1 05:03
14 TRM3	TRM	2	515316	515610	515996	516344	1	387	707	1027	1	1	1	0	1 05:03
119 TRM3	TRM	10	315327	315571	315888	316551	1	318	771	1223	1	1	1	0	1 05:03
142 TRM3	TRM	12	534194	534611	535113	535533	1	503	921	1338	1	1	1	0	1 05:03
209 TRM3	TRM	15	657269	657824	658496	658645	1	673	1024	1375	1	1	1	0	1 05:03
190 TRM3	TRM	14	589995	591830	591853	592102	1	24	1065	2106	1	1	1	0	1 05:03
217 TRM3	TRM	15	1048437	1048875	1049756	1049902	1	882	1173	1464	1	1	1	0	1 05:03
82 TRM3	TRM	7	113828	114793	114793	116310	1	1	1241	2481	1	1	1	0	1 05:03
137 TRM3	TRM	11	610232	610502	611219	612138	1	718	1312	1905	1	1	1	0	1 05:03
178 TRM3	TRM	14	162623	163370	163952	165064	1	583	1512	2440	1	1	1	0	1 05:03
187 TRM3	TRM	14	530418	530856	532165	532649	1	1310	1770	2230	1	1	1	0	1 05:03
169 TRM3	TRM	13	804869	804888	804888	804916	1	1	24	46	1	2	1	0	1 03:05
121 TRM3	TRM	10	459643	459751	459751	459766	1	1	62	122	1	2	1	0	1 03:05
110 TRM3	TRM	9	138346	138486	138486	138490	1	1	72	143	1	2	1	0	1 03:05
211 TRM3	TRM	15	752002	752064	752064	752146	1	1	72	143	1	2	1	0	1 03:05
203 TRM3	TRM	15	448955	448985	448985	449105	1	1	75	149	1	2	1	0	1 03:05
199 TRM3	TRM	15	260677	260759	260759	260837	1	1	80	159	1	2	1	0	1 03:05
63 TRM3	TRM	5	18839	18930	18949	19001	1	20	91	161	1	2	1	0	1 03:05
8 TRM3	TRM	2	288119	288197	288197	288303	1	1	92	183	1	2	1	0	1 03:05
168 TRM3	TRM	13	800816	800900	800900	801034	1	1	109	217	1	2	1	0	1 03:05
7 TRM3	TRM	2	132333	132460	132460	132576	1	1	122	242	1	2	1	0	1 03:05
47 TRM3	TRM	4	786128	786193	786207	786378	1	15	132	249	1	2	1	0	1 03:05
197 TRM3	TRM	15	207058	207203	207252	207320	1	50	156	261	1	2	1	0	1 03:05
164 TRM3	TRM	13	763221	763289	763289	763537	1	1	158	315	1	2	1	0	1 03:05
196 TRM3	TRM	15	205242	205541	205541	205574	1	1	166	331	1	2	1	0	1 03:05
131 TRM3	TRM	11	358089	358323	358323	358455	1	1	183	365	1	2	1	0	1 03:05
22 TRM3	TRM	3	114298	114644	114644	114698	1	1	200	399	1	2	1	0	1 03:05
11 TRM3	TRM	2	356648	356805	356805	357199	1	1	276	550	1	2	1	0	1 03:05
218 TRM3	TRM	16	29604	29674	29856	30029	1	183	304	424	1	2	1	0	1 03:05
165 TRM3	TRM	13	768344	768494	768514	768951	1	21	314	606	1	2	1	0	1 03:05
38 TRM3	TRM	4	396610	396700	396700	397411	1	1	401	800	1	2	1	0	1 03:05
112 TRM3	TRM	9					1	68	475	881	1	2	1	0	1 03:05
232 TRM3	TRM		245693	245765 704396	245832 704396	246575 705129	1	1		979	1	2	1	0	1 03:05
232 TRM3 234 TRM3	TRM	16	704149 770699	704396	704396		1	2	490 582		1	2	1	0	1 03:05
		16 12				771861	1			1161	1	2	1	0	
146 TRM3	TRM TRM	12	788350 229448	788475 230585	788874 230585	789356 230894	1	400	703 723	1005 1445	1	2	1	0	1 03:05 1 03:05
101 TRM3		7					1	497		1037	1	2	1		
94 TRM3	TRM		1022196	1022320	1022816	1023234			767		-		-	0	1 03:05
99 TRM3	TRM	8	159962	160782	160782	161688	1	1	863	1725	1	2	1	0	1 03:05
74 TRM3	TRM	6	27763	27810	28662	28792	-	853	941	1028	1	2 2	1	0	1 03:05
93 TRM3	TRM	7	914816	915691	916059	916953	1	369	1253	2136	1	2	1	0	1 03:05
1 TRM3	TRM	1	60198	60267	61451	61708	1	1185	1347	1509	1	2	1	0	1 03:05

64 TRM3	TRM	5	19005	23151	23160	23192	1	10	2098	4186	1	2	1	0	1 03:05
72 TRM3	TRM	5	491556	491960	492329	498773	1	370	3793	7216	1	2	1	0	1 03:05
65 TRM3	TRM	5	67809	68268	68996	69083	1	729	1001	1273	1	3	1	0	1 5:3_6:2_5:3
171 TRM3	TRM	13	829176	829431	831156	831222	1	1726	1886	2045	1	3	1	0	1 5:3_4:4_5:3
67 TRM3	TRM	5	182381	182827	184363	184684	1	1537	1920	2302	1	3	1	0	1 5:3_4:4_5:3
172 TRM3	TRM	13	869428	870074	875718	876530	1	5645	6373	7101	1	3	1	0	1 5:3_6:2_5:3_4:4_5:3_4:4_5:3
177 TRM3	TRM	14	145206	145227	145376	145535	1	150	239	328	1	4	1	0	1 3:5_2:6_3:5
18 TRM3	TRM	2	717754	717945	718601	718700	1	657	801	945	1	4	1	0	1 3:5_4:4_3:5
158 TRM3	TRM	13	605013	605479	606387	606680	1	909	1288	1666	1	4	1	0	1 3:5_2:6_3:5
26 TRM3	TRM	3	252633	253903	254715	254941	1	813	1560	2307	1	4	1	0	1 3:5_4:4_3:5
130 TRM3	TRM	11	317104	317375	318939	319143	1	1565	1802	2038	1	4	1	0	1 3:5_4:4_3:5
128 TRM3	TRM	11	174833	175169	176780	177108	1	1612	1943	2274	1	4	1	0	1 3:5_4:4_3:5
42 TRM3	TRM	4	635526	635784	638098	638176	1	2315	2482	2649	1	4	1	0	1 3:5_4:4_3:5_4:4_3:5
126 TRM3	TRM	10	705639	705848	707333	707549	1	1486	1698	1909	1	4	1	0	1 3:5_4:4_3:5_2:6_3:5_4:4_3:5
229 TRM3	TRM	16	576041	576179	576287	576345	1	109	206	303	1	7	1	0	1 5:3_6:2
225 TRM3	TRM	16	366758	366909	367806	368095	1	898	1117	1336	1	7	1	0	1 6:2_5:3
135 TRM3	TRM	11	597543	597866	598922	599337	1	1057	1425	1793	1	7	1	0	1 5:3_6:2
147 TRM3	TRM	12	837543	837595	837962	840577	1	368	1701	3033	1	7	1	0	1 5:3_6:2
184 TRM3	TRM	14	399462	400449	400901	400998	1	453	994	1535	1	7	1	0	1 5:3_4:4_5:3_6:2
12 TRM3	TRM	2	493942	494538	496540	497133	1	2003	2597	3190	1	7	1	0	1 6:2_5:3_6:2_5:3
61 TRM3	TRM	4	1468724	1468738	1468802	1468862	1	65	101	137	1	8	1	0	1 2:6_3:5
90 TRM3	TRM	7	771558	771837	772172	772420	1	336	599	861	1	8	1	0	1 3:5_2:6
163 TRM3	TRM	13	751891	752227	752521	752958	1	295	681	1066	1	8	1	0	1 2:6_3:5
17 TRM3	TRM	2	706983	707207	707509	708202	1	303	761	1218	1	8	1	0	1 3:5_2:6
106 TRM3	TRM	8	379070	379353	379863	380348	1	511	894	1277	1	8	1	0	1 3:5_2:6
71 TRM3	TRM	5	415894	416514	416927	417310	1	414	915	1415	1	8	1	0	1 2:6_3:5
134 TRM3	TRM	11	581619	581803	583405	583946	1	1603	1965	2326	1	8	1	0	1 2:6_3:5
39 TRM3	TRM	4	408894	410728	411785	412382	1	1058	2273	3487	1	8	1	0	1 3:5_4:4_3:5_2:6
167 TRM3	TRM	13	789347	789974	791709	791894	1	1736	2141	2546	1	8	1	0	1 2:6_3:5_4:4_2:6_3:5
37 TRM3	TRM	4	386093	386162	386162	386167	1	1	37	73	1	10	1	0	1 06:02
28 TRM3	TRM	3	298120	298326	298597	298764	1	272	458	643	1	10	1	0	1 06:02
205 TRM3	TRM	15	490456	491189	491190	491476	1	2	511	1019	1	10	1	0	1 06:02
108 TRM3	TRM	9	49641	51046	53832	54480	1	2787	3813	4838	1	10	1	0	1 06:02
154 TRM3	TRM	13	432019	432230	432230	432244	1	1	113	224	1	10.1	1	0	1 02:06
189 TRM3	TRM	14	575525	576199	576199	576383	1	1	429	857	1	10.1	1	0	1 02:06
152 TRM3	TRM	13	420077	420098	420528	420568	1	431	461	490	1	10.1	1	0	1 02:06
215 TRM3	TRM	15	967253	967257	967611	967862	1	355	482	608	1	10.1	1	0	1 02:06
97 TRM3	TRM	8	70138	70273	70542	70883	1	270	507	744	1	10.1	1	0	1 02:06
109 TRM3	TRM	9	55837	56514	56514	57063	1	1	613	1225	1	10.1	1	0	1 02:06
96 TRM3	TRM	7	1050446	1051057	1051093	1051973	1	37	782	1526	1	10.1	1	0	1 02:06
75 TRM3	TRM	6	38974	39275	40232	40564	1	958	1274	1589	1	10.1	1	0	1 02:06
52 TRM3	TRM	4	1106617	1106884	1109358	1109568	1	2475	2713	2950	1	10.1	1	0	1 02:06
56 TRM3	TRM	4	1251240	1251845	1252149	1252244 2_nonsis		305	654	1003	3	30	1	0	1 3:5_6:2
170 TRM3	TRM	13	824885	825266	826921	827271 2_nonsis		1656	2021	2385	3	30	1	0	1 2:6_3:5
33 TRM3	TRM	4	181807	181859	184221	184727 2_nonsis		2363	2641	2919	3	30	1	0	1 3:5_3:5a_3:5
175 TRM3	TRM	14	42594	43912	45407	46489 2_nonsis		1496	2695	3894	3	30	1	0	1 5:3_5:3a_6:2
153 TRM3	TRM	13	424537	425033	429559	429941 2_nonsis		4527	4965	5403	3	30	1	0	1 6:2 5:3 4:4 2:6
32 TRM3	TRM	4	163327	163443	167826	169331 2_nonsis		4384	5194	6003	3	30	1	0	1 5:3_4:4_5:3_4:4_5:3_5:3a
216 TRM3	TRM	15	994385	995303	996329	996896 2_nonsis		1027	1769	2510	3	31	1	0	1 4:4ai_3:5_6:2_5:3
213 TRM3	TRM	15	780823	781222	783046	783669 2_nonsis		1825	2335	2845	3	31	1	0	1 3:5_2:6_3:5a_4:4ai_3:5a_4:4ai
57 TRM3	TRM	4	1300834	1301253	1303716	1304109 2_nonsis		2464	2869	3274	3	31	1	0	1 3:5_4:4_4:4ai_3:5_2:6_3:5_4:4ai
162 TRM3	TRM	13	716342	716494	724837	726144 2_nonsis		8344	9073	9801	3	31	1	0	1 4:4ai_6:2_3:5_2:6_3:5_2:6_4:4_3:5a
141 TRM3	TRM	12	532399	532555	532555	532747 2_nonsis		1	174	347	1	1	1	1	0 (5:3)_(4:4aCO)
173 TRM3	TRM	13	898277	898408	898692	898776 2_nonsis		285	392	498	1	1	1	1	0 (5:3)_(4:4aCO)
60 TRM3	TRM	4	1458432	1459261	1459261	1459669 2_nonsis		1	619	1236	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
66 TRM3	TRM	5	85103	85578	85693	86770 2_nonsis		116	891	1666	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
123 TRM3	TRM	10	524618	526730	526730	528639 2_nonsis		1	2011	4020	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
204 TRM3	TRM	15	455342	456606	457679	458312 2_nonsis		1074	2022	2969	1	1	1	1	0 (5:3)_(4:4aCO) 0 (5:3)_(4:4aCO)
176 TRM3	TRM	13	52324	52659	52925	53465 2 nonsis		267	704	1140	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
43 TRM3	TRM	4	639649	640367	640565	640997 2_nonsis		199	773	1347	1	2	1	1	0 (3:5)_(4:4aCO) 0 (3:5)_(4:4aCO)
43 IRNI	1 KIVI	4	037049	0+0307	040303	U+U271 Z_HOHSIS		199	113	1347	1	2	1	1	0 (3.3)_(+.4aCO)

30 TRM3	TRM	4	91959	93521	94379	95033 2_nonsis	859	1966	3073	1	2	1	1	0 (3:5)_(4:4aCO)
198 TRM3	TRM	15	208985	209157	209698	209867 2_nonsis	542	712	881	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
151 TRM3	TRM	13	322180	323059	323763	324584 2_nonsis	705	1554	2403	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
125 TRM3	TRM	10	632972	633146	633240	633350 2_nonsis	95	236	377	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
185 TRM3	TRM	14	480718	480827	480999	481081 2_nonsis	173	268	362	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
127 TRM3	TRM	11	88618	88890	89569	89674 2_nonsis	680	868	1055	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
113 TRM3	TRM	9	279199	279316	279526	279602 2_nonsis	211	307	402	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
21 TRM3	TRM	3	70617	70770	71079	71223 2_nonsis	310	458	605	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
212 TRM3	TRM	15	769092	769431	769620	770027 2_nonsis	190	562	934	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
13 TRM3	TRM	2	500498	500795	500915	501073 2_nonsis	121	348	574	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
117 TRM3	TRM	10	106394	106893	107092	107239 2_nonsis	200	522	844	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
224 TRM3	TRM	16	346506	347009	347684	347716 2_nonsis	676	943	1209	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
6 TRM3	TRM	2	126921	128153	129488	130349 2_nonsis	1336	2382	3427	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
183 TRM3	TRM	14	389775	391590	392860	393703 2_nonsis	1271	2599	3927	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
214 TRM3	TRM	15	944698	945099	945099	945153 2_nonsis	1	228	454	1	11	1	1	0 (4:4ai)_(4:4bCO)
157 TRM3	TRM	13	586528	586744	590250	590486 2_nonsis	3507	3732	3957	1	11	1	1	0 (4:4ai)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4bCO)
124 TRM3	TRM	10	581933	582214	582415	582424 2_nonsis	202	346	490	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
122 TRM3	TRM	10	461660	461801	462170	462595 2_nonsis	370	652	934	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
207 TRM3	TRM	15	592970	593587	594122	594439 2_nonsis	536	1002	1468	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
201 TRM3	TRM	15	377730	377924	378233	378285 2_nonsis	310	432	554	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(4:4aCO)
143 TRM3	TRM	12	568114	568449	568917	569539 2_nonsis	469	947	1424	1	12	1	1	0 (6:2)_(4:4)_(5:3)_(4:4aCO)
92 TRM3	TRM	7	893319	893535	894550	894616 2_nonsis	1016	1156	1296	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
129 TRM3	TRM	11	307722	307923	309310	309621 2_nonsis	1388	1643	1898	1	12	1	1	0 (4:4aCO)_(6:2)_(5:3)_(4:4a)
87 TRM3	TRM	7	609760	609887	611515	612267 2_nonsis	1629	2068	2506	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO)
50 TRM3	TRM	4	1000380	1001608	1003950	1004000 2_nonsis	2343	2981	3619	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)
9 TRM3	TRM	2	291653	292193	293099	293297 2_nonsis	907	1275	1643	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(5:3)_(4:4a)
102 TRM3	TRM	8	237633	238630	239430	240144 2_nonsis	801	1656	2510	1	12	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)
186 TRM3	TRM	14	488598	488965	491114	491255 2_nonsis	2150	2403	2656	1	12	1	1	0 (3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
3 TRM3	TRM	1	187427	190025	191026	191704 2_nonsis	1002	2639	4276	1	12	1	1	0 (3:5)_(2:6)_(4:4)_(2:6)_(4:4aCO)
208 TRM3	TRM	15	639042	639159	642679	643115 2_nonsis	3521	3797	4072	1	12	1	1	0 (3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
70 TRM3	TRM	5	400915	401106	405271	406216 2_nonsis	4166	4733	5300	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
77 TRM3 219 TRM3	TRM TRM	6	197486 155906	197726 156745	202500 158264	202731 2_nonsis	4775 1520	5010 2306	5244 3092	1	12 12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
155 TRM3	TRM	16 13	452181	453503	456535	158999 2_nonsis	3033	3785	3092 4536	1	12	1	1	0 (2:6)_(3:5)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
85 TRM3	TRM	7	383665	383867	383908	456718 2_nonsis	3033 42	280	4536 517	1	15	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4aCO)
		8				384183 2_nonsis	42			1		1	1	0 (6:2)_(4:4aCO)
105 TRM3 202 TRM3	TRM TRM	15	375097 410471	375221 410731	375221 410754	375658 2_nonsis 411250 2_nonsis	24	281 401	560 778	1	15 15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
133 TRM3	TRM	11	488294	488405	488665		261	712	1163	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
31 TRM3	TRM	4	114170	114468	114797	489458 2_nonsis 115526 2_nonsis	330	843	1355	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
150 TRM3	TRM	13	256691	257090	257090	257217 2_nonsis	1	263	525	1	16	1	1	0 (2:6)_(4:4aCO)
16 TRM3	TRM	2	701871	702521	702600	702673 2_nonsis	80	441	801	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
15 TRM3	TRM	2	641914	642355	642483	642776 2_nonsis	129	495	861	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
62 TRM3	TRM	5	15966	16323	16323	17065 2_nonsis	1	550	1098	1	16	1	1	0 (2:6)_(4:4aCO)
230 TRM3	TRM	16	586309	586497	587432	587665 2_nonsis	936	1146	1355	1	16	1	1	0 (2:6)_(4:4aCO)
51 TRM3	TRM	4	1056242	1056383	1059534	1059598 2_nonsis	3152	3254	3355	1	16	1	1	0 (2:6)_(4:4aCO)
88 TRM3	TRM	7	748310	748532	748310	748532 2_nonsis	0	111	221	1	100	1	1	0 (4:4aCO)
120 TRM3	TRM	10	317491	317989	317491	317989 2_nonsis	0	249	497	1	100	1	1	0 (4:4aCO)
19 TRM3	TRM	2	738241	738886	738241	738886 2_nonsis	0	322	644	1	100	1	1	0 (4:4aCO)
95 TRM3	TRM	7	1024337	1024993	1024337	1024993 2_nonsis	0	328	655	1	100	1	1	0 (4:4aCO)
180 TRM3	TRM	14	295066	295803	295066	295803 2 nonsis	0	368	736	1	100	1	1	0 (4:4aCO)
10 TRM3	TRM	2	314330	315082	314330	315082 2_nonsis	0	376	751	1	100	1	1	0 (4:4aCO)
4 TRM3	TRM	2	72420	73226	72420	73226 2_nonsis	0	403	805	1	100	1	1	0 (4:4aCO)
195 TRM3	TRM	15	147007	150962	147007	150962 2_nonsis	0	1977	3954	1	100	1	1	0 (4:4aCO)
80 TRM3	TRM	7	80122	80305	81268	81306 2_nonsis	964	1074	1183	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)
111 TRM3	TRM	9	160585	160764	164332	164883 2_nonsis	3569	3933	4297	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
179 TRM3	TRM	14	195766	195994	200066	200248 2_nonsis	4073	4277	4481	2	30	1	1	0 (5:3)_(5:3a)_(4:4aCO)_(5:3a)_(6:2)_(4:4a)
223 TRM3	TRM	16	323207	323715	326546	326955 2_nonsis	2832	3290	3747	2	30	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(5:3a)_(6:2)_(4:4aCO)
81 TRM3	TRM	7	96869	96992	97411	97616 2_nonsis	420	583	746	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
2 TRM3	TRM	1	121235	128756	132066	135319 2_nonsis	3311	8697	14083	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)
115 TRM3	TRM	10	92203	92413	95205	96041 2_nonsis	2793	3315	3837	2	31	1	1	0 (3:5)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)

222 TRM3	TRM	16	308140	308234	309089	309787 2_nonsis		856	1251	1646	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(4:4aCO)
174 TRM3	TRM	14	37986	39122	40430	41146 2_nonsis		1309	2234	3159	2	32	1	1	0 (3:5)_(4:4aCO)_(3:5a)_(4:4a)
144 TRM3	TRM	12	678793	678817	682839	683018 2_nonsis		4023	4124	4224	2	32	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
76 TRM3	TRM	6	189847	190129	192732	192850 2_nonsis		2604	2803	3002	2	32	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
98 TRM3	TRM	8	72400	72478	75187	75639 2_nonsis		2710	2974	3238	2	32	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(2:6)_(4:4aCO)_(3:5a)_(4:4a)
160 TRM3	TRM	13	662059	662421	667065	667202 2_nonsis		4645	4894	5142	2	32	1	1	0 (5:3)_(6:2)_(5:3)_(6:2)_(5:3a)_(6:2)_(5:3a)_(4:4aCO)
140 TRM3	TRM	12	286350	286840	288047	288269 2_nonsis		1208	1563	1918	3	20	1	1	0 (2:6)_(5:3)_(4:4aCO)
46 TRM3	TRM	4	765553	766047	766973	767007 2_nonsis		927	1190	1453	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
118 TRM3	TRM	10	152343	152475	154973	154996 2_nonsis		2499	2576	2652	3	20	1	1	0 (2:6)_(4:4aCO)_(5:3)_(4:4a)
25 TRM3	TRM	3	239515	240922	242917	243218 2_nonsis		1996	2849	3702	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
139 TRM3	TRM	12	254610	254773	255522	255647 2_nonsis		750	893	1036	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(6:2)_(4:4aCO)
40 TRM3	TRM	4	482050	482676	483837	484026 2 nonsis		1162	1569	1975	3	20	1	1	0 (6:2)_(5:3)_(4:4aCO)_(2:6)_(4:4a)
148 TRM3	TRM	13	79761	79783	82357	83128 2_nonsis		2575	2971	3366	3	20	1	1	0 (5:3)_(4:4)_(2:6)_(3:5)_(4:4aCO)
193 TRM3	TRM	14	743177	743251	744105	744202 2_nonsis		855	940	1024	3	20	1	1	0 (3:5)_(2:6)_(4:4aCO)_(5:3)_(6:2)_(4:4a)
29 TRM3	TRM	4	48046	48241	50436	50586 2_nonsis		2196	2368	2539	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(4:4aCO)_(3:5)_(4:4a)
132 TRM3	TRM	11	368145	368193	370652	370874 2_nonsis		2460	2594	2728	3	20	1	1	0 (3:5)_(4:4)_(2:6)_(4:4aCO)_(5:3)_(4:4a)
200 TRM3	TRM	15	300301	300580	303222			2643	3063	3483	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4aCO)_(6:2)_(4:4a)
200 TRM3	TRM		525308	525445	526860	303785 2_nonsis			1707	1998	3		1	1	
188 TRM3	TRM	16 14	554217	557562	559575	527307 2_nonsis		1416 2014	3745	5476	3	20 20	1	1	0 (3:5)_(4:4)_(4:4aCO)_(5:3)_(4:4a)_(6:2)_(4:4a)
						559694 2_nonsis							-		0 (3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO)_(2:6)_(4:4a)
206 TRM3	TRM	15	543780	544647	548227	548302 2_nonsis		3581	4051	4521	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(5:3)_(4:4aCO)
58 TRM3	TRM	4	1315127	1315764	1318378	1318539 2_nonsis		2615	3013	3411	3	20	1	1	0 (3:5)_(6:2)_(4:4aCO)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4a)
231 TRM3	TRM	16	672902	672984	676743	677025 2_nonsis		3760	3941	4122	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(4:4aCO)_(2:6)_(3:5)_(4:4a)
49 TRM3	TRM	4	842636	842982	843857	843908	3	876	1074	1271	0	1	2	0	2 (2:6)_(3:5)_(6:2)_(4:4)_(5:3)_(6:2)_(4:4)
78 TRM3	TRM	7	10242	11635	11635	11737 2_sis		1	748	1494	0	1	2	0	2 (2:6i)_(4:4)
83 TRM3	TRM	7	140227	140416	140416	140631 2_sis		1	202	403	0	1	2	0	2 (2:6i)_(4:4)
114 TRM3	TRM	10	26958	26988	26988	28612 2_sis		1	827	1653	0	1	2	0	2 (6:2i)_(4:4)
156 TRM3	TRM	13	490393	490598	493334	493391 2_sis		2737	2867	2997	0	1	2	0	2 (6:2)_(7:1)_(6:2)_(8:0)_(4:4)_(5:3)_(4:4)_(6:2)_(4:4)
20 TRM3	TRM	2	750883	752417	756267	756533	3	3851	4750	5649	0	2	2	1	1 (5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
23 TRM3	TRM	3	222542	223339	224038	224261	3	700	1209	1718	0	2	2	1	1 (5:3)_(3:5)_(1:7)_(4:4aCO)
34 TRM3	TRM	4	209035	210091	214494	214858	3	4404	5113	5822	0	2	2	1	1 (3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4)_(4:4aCO)_(5:3)_(4:4a)
35 TRM3	TRM	4	286258	287699	289475	290079	3	1777	2799	3820	0	2	2	1	1 (4:4aCO)_(3:5)_(4:4a)
59 TRM3	TRM	4	1410669	1411239	1420941	1421204	3	9703	10119	10534	0	2	2	1	1 (6:2)_(6:2a)_(5:3)_(4:4aCO)_(5:3)_(4:4a)
84 TRM3	TRM	7	270688	270975	272144	272568	3	1170	1525	1879	0	2	2	1	1 (3:5)_(4:4ai)_(4:4bCO)
86 TRM3	TRM	7	444932	445067	454910	455013	4	9844	9962	10080	0	2	2	1	1 (5:3)_(4:4)_(5:3)_(4:4)_(2:6)_(3:5)_(2:6)_(4:4ai)_(3:5a)_(3:5b)_(5:3a)_(4:4bi)_(4:4cCO)
166 TRM3	TRM	13	770912	771046	774331	774570	3	3286	3472	3657	0	2	2	1	1 (6:2)_(7:1)_(8:0)_(6:2a)_(4:4aCO)
191 TRM3	TRM	14	640932	641101	641631	641859	3	531	729	926	0	2	2	1	1 (6:2)_(7:1)_(6:2)_(4:4aCO)
221 TRM3	TRM	16	254494	254696	260871	261137	3	6176	6409	6642	0	2	2	1	1 (5:3)_(6:2)_(5:3)_(6:2)_(7:1)_(6:2)_(7:1)_(6:2)_(4:4aCO)
48 TRM3	TRM	4	805798	806142	808094	808170 2_nonsis		1953	2162	2371	0	3	2	0	2 (3:5)_(2:6)_(4:4aCO)_(6:2)_(5:3)_(4:4CO)
68 TRM3	TRM	5	211770	211989	213399	213423	3	1411	1532	1652	0	3	2	1	1 (2:6)_(4:4aCO)_(3:5)_(4:4bCO)
100 TRM3	TRM	8	187989	188673	192694	192776 2_nonsis		4022	4404	4786	0	3	2	0	2 (3:5)_(2:6)_(4:4aCO)_(4:4CO)
107 TRM3	TRM	8	488465	488588	491290	491435 2_nonsis		2703	2836	2969	0	3	2	0	2 (5:3)_(4:4aCO)_(3:5)_(4:4CO)_(2:6)_(4:4)
136 TRM3	TRM	11	606908	608039	608568	608639 2 nonsis		530	1130	1730	0	3	2	0	2 (3:5)_(4:4aCO)_(3:5)_(2:6)_(4:4CO)
138 TRM3	TRM	12	121057	121160	124986	126014	3	3827	4392	4956	0	3	2	1	1 (3:5)_(5:3)_(4:4aCO)_(5:3)_(6:2)_(5:3a)_(6:2)_(5:3a)_(6:2)_(4:4bCO)
161 TRM3	TRM	13	701024	701374	704739	704858 2_nonsis		3366	3600	3833	0	3	2	0	2 (3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)_(5:3)_(3:5)_(4:4CO)_(3:5)_(4:4)
192 TRM3	TRM	14	650921	650977	652419	652841 2_nonsis		1443	1681	1919	0	3	2	0	2 (5:3)_(4:4)_(4:4aCO)_(4:4CO)_(5:3)_(4:4)
194 TRM3	TRM	15	39607	39768	40593	40834 2_nonsis		826	1026	1226	0	3	2	0	2 (2:6)_(3:5)_(4:4aCO)_(4:4CO)
226 TRM3	TRM	16	461013	461079	464470	464526	3	3392	3452	3512	0	3	2	1	1 (3:5)_(6:2)_(5:3)_(4:4aCO)_(3:5a)_(2:6)_(4:4bCO)_(6:2)_(5:3)_(4:4aCO)
233 TRM3	TRM	16	715017	715923	717952	718160 2_nonsis	-	2030	2586	3142	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
235 TRM3	TRM	16	821491	821586	823454	824056 2_nonsis		1869	2217	2564	0	3	2	0	2 (5:3)_(2:6)_(4:4aCO)_(6:2)_(4:4CO)
236 TRM3	TRM	16	912387	912589	914775	915113	3	2187	2456	2725	0	3	2	1	1 (6:2) (4:4aCO) (3:5) (5:3) (6:2a) (5:3) (6:2a) (4:4bCO)
161 TRM4	TRM	14	728185	728255	728255	728276	1	1	46	90	1	1	1	0	1 (0.2)_(4.4acO)_(3.3)_(3.3)_(0.2a)_(4.4acO) 1 05:03
33 TRM4	TRM	4	565654	565705	565705	565786	1	1	66	131	1	1	1	0	1 05:03
												1	1		
56 TRM4	TRM	5	213244	213277	213277	213399	1	1	78	154	1	-		0	1 05:03
173 TRM4	TRM	15	670513	670593	670593	670904	1	1	196	390	1	1	1	0	1 05:03
59 TRM4	TRM	5	349434	349710	349715	350100	1	6	336	665	1	1	1	0	1 05:03
64 TRM4	TRM	5	468178	468234	468382	468715	1	149	343	536	1	1	1	0	1 05:03
171 TRM4	TRM	15	579517	580206	580206	580333	1	1	408	815	1	1	1	0	1 05:03
8 TRM4	TRM	2	314330	315082	315082	315271	1	1	471	940	1	1	1	0	1 05:03
34 TRM4	TRM	4	600978	601683	601683	602153	1	1	588	1174	1	1	1	0	1 05:03
84 TRM4	TRM	7	763747	765005	765005	765055	1	1	654	1307	1	1	1	0	1 05:03

182 TRM4	TRM	16	309089	309787	310045	310159	1	259	664	1069	1	1	1	0	1 05:03
98 TRM4	TRM	10	59496	59791	59791	60979	1	1	742	1482	1	1	1	0	1 05:03
190 TRM4	TRM	16	680837	681479	681836	682109	1	358	815	1271	1	1	1	0	1 05:03
96 TRM4	TRM	10	26958	26988	26988	28612	1	1	827	1653	1	1	1	0	1 05:03
113 TRM4	TRM	12	225226	225265	226242	226353	1	978	1052	1126	1	1	1	0	1 05:03
178 TRM4	TRM	15	835187	835656	836419	836747	1	764	1162	1559	1	1	1	0	1 05:03
15 TRM4	TRM	3	102360	102669	103955	104476	1	1287	1701	2115	1	1	1	0	1 05:03
188 TRM4	TRM	16	534581	534749	536429	536720	1	1681	1910	2138	1	1	1	0	1 05:03
175 TRM4	TRM	15	730821	731576	733608	733667	1	2033	2439	2845	1	1	1	0	1 05:03
10 TRM4	TRM	2	503196	503310	503310	503402	1	1	103	205	1	2	1	0	1 03:05
4 TRM4	TRM	2	28614	28912	28912	28960	1	1	173	345	1	2	1	0	1 03:05
86 TRM4	TRM	7	882241	882479	882479	882613	1	1	186	371	1	2	1	0	1 03:05
176 TRM4	TRM	15	745265	745547	745547	745659	1	1	197	393	1	2	1	0	1 03:05
158 TRM4	TRM	14	625573	625861	625861	626122	1	1	275	548	1	2	1	0	1 03:05
36 TRM4	TRM	4	656959	657366	657390	657549	1	25	307	589	1	2	1	0	1 03:05
83 TRM4	TRM	7	676218	676517	676517	676840	1	1	311	621	1	2	1	0	1 03:05
153 TRM4	TRM	14	365847	366158	366158	366581	1	1	367	733	1	2	1	0	1 03:05
44 TRM4	TRM	4	955755	955831	955831	956552	1	1	399	796	1	2	1	0	1 03:05
102 TRM4	TRM	11	21695	21787	21803	22806	1	17	564	1110	1	2	1	0	1 03:05
132 TRM4	TRM	13	245624	246258	246258	246803	1	1	590	1178	1	2	1	0	1 03:05
37 TRM4	TRM	4	801527	802100	802328	802553	1	229	627	1025	1	2	1	0	1 03:05
73 TRM4	TRM	7	10242	11635	11635	11737	1	1	748	1494	1	2	1	0	1 03:05
42 TRM4	TRM	4	929665	930059	930421	930813	1	363	755	1147	1	2	1	0	1 03:05
92 TRM4	TRM	9	53832	54480	55251	55362	1	772	1151	1529	1	2	1	0	1 03:05
160 TRM4	TRM	14	706575	707137	707187	708870	1	51	1173	2294	1	2	1	0	1 03:05
18 TRM4	TRM	3	174943	175328	175328	177291	1	1	1174	2347	1	2	1	0	1 03:05
186 TRM4	TRM	16	504597	505893	506604	507005	1	712	1560	2407	1	2	1	0	1 03:05
104 TRM4	TRM	11	282383	282489	283904	284248	1	1416	1640	1864	1	2	1	0	1 03:05
27 TRM4	TRM	4	103054	103456	105623	105784	1	2168	2449	2729	1	2	1	0	1 03:05
133 TRM4	TRM	13	372583	378680	378680	379214	1	1	3316	6630	1	2	1	0	1 03:05
43 TRM4	TRM	4	934184	934468	935575	935830	1	1108	1377	1645	1	3	1	0	1 5:3_6:2_5:3
156 TRM4	TRM	14	539950	542443	544998	545184	1	2556	3895	5233	1	3	1	0	1 5:3_4:4_5:3
125 TRM4	TRM	12	992002	992572	994078	994177	1	1507	1841	2174	1	3	1	0	1 5:3_4:4_5:3_4:4_5:3
129 TRM4	TRM	13	161385	161406	164021	164304	1	2616	2767	2918	1	3	1	0	1 5:3_6:2_5:3_6:2_5:3
16 TRM4	TRM	3	147587	147882	148481	148587	1	600	800	999	1	4	1	0	1 3:5_4:4_3:5
185 TRM4	TRM	16	423985	424087	424858	425006	1	772	896	1020	1	4	1	0	1 3:5_4:4_3:5
48 TRM4	TRM	4	1293998	1294207	1295100	1295582	1	894	1239	1583	1	4	1	0	1 3:5_4:4_3:5
151 TRM4	TRM	14	261812	262159	263848	263968	1	1690	1923	2155	1	4	1	0	1 3:5_4:4_3:5
193 TRM4	TRM	16	908942	909096	911014	911060	1	1919	2018	2117	1	4	1	0	1 3:5_4:4_3:5
170 TRM4	TRM	15	563779	564207	566373	566430	1	2167	2409	2650	1	4	1	0	1 3:5_4:4_3:5
52 TRM4	TRM	5	18839	18930	23160	23192	1	4231	4292	4352	1	4	1	0	1 3:5_2:6_3:5
110 TRM4	TRM	12	181616	181770	183574	183669	1	1805	1929	2052	1	4	1	0	1 3:5_4:4_3:5_4:4_3:5
24 TRM4	TRM	4	31776	31987	32114	32217	1	128	284	440	1	7	1	0	1 6:2_5:3
180 TRM4	TRM	16	173330	173535	173952	174782	1	418	935	1451	1	7	1	0	1 5:3_6:2
19 TRM4	TRM	3	177969	178367	178453	179122	1	87	620	1152	1	8	1	0	1 3:5_2:6
40 TRM4	TRM	4	860927	861257	861727	862580	1	471	1062	1652	1	8	1	0	1 3:5_2:6
138 TRM4	TRM	13	589690	590250	590865	591615	1	616	1270	1924	1	8	1	0	1 3:5_2:6
23 TRM4	TRM	3	248057	248367	249541	249898	1	1175	1508	1840	1	8	1	0	1 3:5_2:6
38 TRM4	TRM	4	806292	806407	806514	806992	1	108	404	699	1	8	1	0	1 2:6_4:4_2:6
146 TRM4	TRM	14	37986	39122	40430	41146	1	1309	2234	3159	1	8	1	0	1 2:6_3:5_2:6_3:5
111 TRM4	TRM	12	185198	185813	188905	189387	1	3093	3641	4188	1	8	1	0	1 3:5_2:6_3:5_2:6
74 TRM4	TRM	7	21868	21891	21891	21893	1	1	13	24	1	10	1	0	1 06:02
137 TRM4	TRM	13	557365	557409	557409	557425	1	1	30	59	1	10	1	0	1 06:02
148 TRM4	TRM	14	135441	135521	135521	135598	1	1	79	156	1	10	1	0	1 06:02
139 TRM4	TRM	13	610070	610099	610099	610293	1	1	112	222	1	10	1	0	1 06:02
29 TRM4	TRM	4	149839	150172	150172	150223	1	1	192	383	1	10	1	0	1 06:02
130 TRM4	TRM	13	178325	178570	178570	178780	1	1	228	454	1	10	1	0	1 06:02
120 TRM4	TRM	12	722745	722835	722982	723283	1	148	343	537	1	10	1	0	1 06:02
143 TRM4	TRM	13	810832	810963	810963	811653	1	1	411	820	1	10	1	0	1 06:02
53 TRM4	TRM	5	130380	130887	131075	131173	1	189	491	792	1	10	1	0	1 06:02

99 TRM4	TRM	10	159830	160511	160511	160930	1	1	550	1099	1	10	1	0	1 06:02
164 TRM4	TRM	15	252891	253882	253966	253991	1	85	592	1099	1	10	1	0	1 06:02
166 TRM4	TRM	15	285663	286242	286759	286903	1	518	879	1239	1	10	1	0	1 06:02
124 TRM4	TRM	12	952346	952469	953351	953629	1	883	1083	1282	1	10	1	0	1 06:02
135 TRM4	TRM	13	458051	458330	459995	460145	1	1666	1880	2093	1	10	1	0	1 06:02
46 TRM4	TRM	4	1163374	1163376	1163376	1163379	1	1	3	4	1	10.1	1	0	1 02:06
95 TRM4	TRM	9	350021	350025	350025	350044	1	1	12	22	1	10.1	1	0	1 02:06
63 TRM4	TRM	5	456116	456140	456140	456259	1	1	72	142	1	10.1	1	0	1 02:06
90 TRM4	TRM	8	122674	122848	122880	123006	1	33	182	331	1	10.1	1	0	1 02:06
141 TRM4	TRM	13	667202	667456	667511	667766	1	56	310	563	1	10.1	1	0	1 02:06
179 TRM4	TRM	15	943283	943688	943688	944039	1	1	378	755	1	10.1	1	0	1 02:06
183 TRM4	TRM	16	414884	415343	415490	415608	1	148	436	723	1	10.1	1	0	1 02:06
149 TRM4	TRM	14	210033	210155	210617	210679	1	463	554	645	1	10.1	1	0	1 02:06
69 TRM4	TRM	6	76491	76608	77256	77340	1	649	749	848	1	10.1	1	0	1 02:06
155 TRM4	TRM	14	531520	531611	532165	532649	1	555	842	1128	1	10.1	1	0	1 02:06
192 TRM4	TRM	16	833262	833341	834395	834534	1	1055	1163	1271	1	10.1	1	0	1 02:06
101 TRM4	TRM	10	568805	570822	570822	573135 2 nonsis		1	2165	4329	3	30	1	0	1 03:05
134 TRM4	TRM	13	445293	445712	447488	447619 2 nonsis		1777	2051	2325	3	30	1	0	1 3:5 4:4 6:2
50 TRM4	TRM	4	1422082	1422450	1424826	1424907 2_nonsis		2377	2601	2824	3	30	1	0	1 2:6_4:4_6:2
11 TRM4	TRM	2	530065	531256	533611	535193 2_nonsis		2356	3742	5127	3	30	1	0	1 3:5_4:4_6:2
2 TRM4	TRM	1	109735	110856	114824	115629 2_nonsis		3969	4931	5893	3	30	1	0	1 5:3_6:2_5:3
68 TRM4	TRM	6	41152	41461	43673	43907 2_nonsis		2213	2484	2754	3	30	1	0	1 3:5_3:5a_4:4_3:5
163 TRM4	TRM	15	183244	183991	187423	187590 2_nonsis		3433	3889	4345	3	30	1	0	1 3:5_5:3_6:2_5:3a
109 TRM4	TRM	11	641421	641652	643005	643139 2_nonsis		1354	1536	1717	3	30	1	0	1 3:5_3:5a_2:6_3:5a_2:6
172 TRM4	TRM	15	613660	614674	617280			2607	3419	4231	3	30	1	0	1 5:3_3:5_2:6_3:5a_4:4_2:6
172 TRM4 107 TRM4	TRM	11	580815	581385	584769	617892 2_nonsis		3385	3757	4231	3	30	1	0	
						584944 2_nonsis									1 3:5_2:6_3:5_4:4_3:5_4:4_6:2_5:3
108 TRM4	TRM	11	586366	586587	586587	586747 2_nonsis		1	191	380	3	31	1	0	1 4:4ai
49 TRM4	TRM	4	1310837	1311566	1314589	1315113 2_nonsis		3024	3650	4275	3	31	1	0	1 5:3_6:2_5:3a_4:4ai_5:3
78 TRM4	TRM	7	428022	428152	428152	428325 2_nonsis		1	152	302	1	1	1	1	0 (5:3)_(4:4aCO)
80 TRM4	TRM	7	597592	598397	598397	598538 2_nonsis		1	473	945	1	1	1	1	0 (5:3)_(4:4aCO)
123 TRM4	TRM	12	873300	874112	875066	875233 2_nonsis		955	1444	1932	1	1	1	1	0 (5:3)_(4:4aCO)
114 TRM4	TRM	12	337082	338130	339496	340008 2_nonsis		1367	2146	2925	1	1	1	1	0 (5:3)_(4:4aCO)
79 TRM4	TRM	7	431867	432076	432076	432412 2_nonsis		1	273	544	1	2	1	1	0 (3:5)_(4:4aCO)
103 TRM4	TRM	11	243838	244481	244570	245116 2_nonsis		90	684	1277	1	2	1	1	0 (3:5)_(4:4aCO)
13 TRM4	TRM	2	662444	666708	666712	666849 2_nonsis		5	2205	4404	1	2	1	1	0 (3:5)_(4:4aCO)
162 TRM4	TRM	14	748773	748858	750473	750670 2_nonsis		1616	1756	1896	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
128 TRM4	TRM	13	82027	82207	85849	85889 2_nonsis		3643	3752	3861	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
7 TRM4	TRM	2	257565	258058	258153	258313 2_nonsis		96	422	747	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
117 TRM4	TRM	12	535963	536152	538497	539092 2_nonsis		2346	2737	3128	1	11	1	1	0 (4:4ai)_(2:6)_(3:5)_(2:6)_(4:4)_(2:6)_(3:5)_(2:6)_(4:4bCO)
12 TRM4	TRM	2	564041	564884	565133	565189 2_nonsis		250	699	1147	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
87 TRM4	TRM	7	902661	903030	904567	904780 2_nonsis		1538	1828	2118	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
76 TRM4	TRM	7	209130	209279	210194	210401 2_nonsis		916	1093	1270	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)
184 TRM4	TRM	16	417099	417454	418435	418963 2_nonsis		982	1423	1863	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
136 TRM4	TRM	13	493832	494083	495559	495665 2_nonsis		1477	1655	1832	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
9 TRM4	TRM	2	447420	447949	449416	449588 2_nonsis		1468	1818	2167	1	12	1	1	0 (3:5)_(4:4aCO)_(2:6)_(4:4a)
3 TRM4	TRM	1	135325	136910	138499	138650 2_nonsis		1590	2457	3324	1	12	1	1	0 (5:3)_(4:4aCO)_(5:3)_(4:4a)
118 TRM4	TRM	12	555957	555993	557420	558341 2_nonsis		1428	1906	2383	1	12	1	1	0 (3:5)_(4:4)_(2:6)_(4:4)_(4:4aCO)
152 TRM4	TRM	14	337051	337646	339555	340266 2_nonsis		1910	2562	3214	1	12	1	1	0 (2:6)_(4:4)_(3:5)_(2:6)_(4:4aCO)
142 TRM4	TRM	13	751553	751891	754263	754594 2_nonsis		2373	2707	3040	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)_(3:5)_(4:4a)
189 TRM4	TRM	16	599131	599378	602439	603262 2_nonsis		3062	3596	4130	1	12	1	1	0 (3:5)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
14 TRM4	TRM	2	736946	737232	740518	740972 2_nonsis		3287	3656	4025	1	12	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4aCO)
105 TRM4	TRM	11	354308	355025	359854	360238 2_nonsis		4830	5380	5929	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)_(3:5)_(4:4a)
127 TRM4	TRM	13	26922	28623	31154	31858 2_nonsis		2532	3734	4935	1	12	1	1	0 (4:4aCO)_(5:3)_(4:4a)_(6:2)_(5:3)_(4:4a)
20 TRM4	TRM	3	184706	185221	190177	191932 2_nonsis		4957	6091	7225	1	12	1	1	0 (2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
169 TRM4	TRM	15	493264	493331	496482	496659 2_nonsis		3152	3273	3394	1	12	1	1	0 (6:2)_(5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)
91 TRM4	TRM	9	36872	36921	36921	36971 2_nonsis		1	50	98	1	15	1	1	0 (6:2)_(4:4aCO)
51 TRM4	TRM	4	1506604	1506887	1506887	1506970 2_nonsis		1	183	365	1	15	1	1	0 (6:2)_(4:4aCO)
26 TRM4	TRM	4	50767	51098	51199	51817 2_nonsis		102	576	1049	1	15	1	1	0 (6:2)_(4:4aCO)
22 TRM4	TRM	3	236387	236702	236946	238082 2_nonsis		245	970	1694	1	15	1	1	0 (6:2)_(4:4aCO)
194 TRM4	TRM	16	922942	923175	924130	924152 2_nonsis		956	1083	1209	1	15	1	1	0 (6:2)_(4:4aCO)
			· · · -												

150 TRM4	TRM	14	216026	216647	216919	218712 2_nonsis		273	1479	2685	1	15	1	1	0 (6:2)_(4:4aCO)
167 TRM4	TRM	15	348389	348459	348459	348630 2_nonsis		1	121	240	1	16	1	1	0 (2:6)_(4:4aCO)
147 TRM4	TRM	14	109383	109413	109533	109626 2_nonsis		121	182	242	1	16	1	1	0 (2:6)_(4:4aCO)
77 TRM4	TRM	7	355193	355292	355292	356141 2_nonsis		1	474	947	1	16	1	1	0 (2:6)_(4:4aCO)
41 TRM4	TRM	4	926737	927283	927438	927608 2_nonsis		156	513	870	1	16	1	1	0 (2:6)_(4:4aCO)
60 TRM4	TRM	5	377471	377999	378297	378395 2_nonsis		299	611	923	1	16	1	1	0 (2:6)_(4:4aCO)
116 TRM4	TRM	12	512877	513766	513766	514165 2_nonsis		1	644	1287	1	16	1	1	0 (2:6)_(4:4aCO)
32 TRM4	TRM	4	547907	548255	548909	549184 2_nonsis		655	966	1276	1	16	1	1	0 (2:6)_(4:4aCO)
97 TRM4	TRM	10	36445	36722	36445	36722 2_nonsis		0	138	276	1	100	1	1	0 (4:4aCO)
126 TRM4	TRM	12	1015108	1015543	1015108	1015543 2_nonsis		0	217	434	1	100	1	1	0 (4:4aCO)
121 TRM4	TRM	12	724901	725366	724901	725366 2_nonsis		0	232	464	1	100	1	1	0 (4:4aCO)
54 TRM4	TRM	5	133686	134157	133686	134157 2_nonsis		0	235	470	1	100	1	1	0 (4:4aCO)
88 TRM4	TRM	7	1011510	1012069	1011510	1012069 2_nonsis		0	279	558	1	100	1	1	0 (4:4aCO)
55 TRM4	TRM	5	166218	166839	166218	166839 2_nonsis		0	310	620	1	100	1	1	0 (4:4aCO)
119 TRM4	TRM	12	627543	628215	627543	628215 2_nonsis		0	336	671	1	100	1	1	0 (4:4aCO)
61 TRM4	TRM	5	380871	381575	380871	381575 2_nonsis		0	352	703	1	100	1	1	0 (4:4aCO)
47 TRM4	TRM	4	1268647	1269918	1268647	1269918 2_nonsis		0	635	1270	1	100	1	1	0 (4:4aCO)
94 TRM4	TRM	9	320712	323343	320712	323343 2_nonsis		0	1315	2630	1	100	1	1	0 (4:4aCO)
25 TRM4	TRM	4	43482	46115	43482	46115 2_nonsis		0	1316	2632	1	100	1	1	0 (4:4aCO)
17 TRM4	TRM	3	171207	174943	171207			0	1868	3735	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
17 TRM4 159 TRM4	TRM	14	682580	686654	682580	174943 2_nonsis 686654 2_nonsis		0	2037	4073	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
139 TRM4 145 TRM4	TRM	14	23552	23618	26602			2985	3675	4365	2	30	1	1	0 (4:4aCO) 0 (5:3)_(5:3a)_(4:4aCO)
						27918 2_nonsis									
82 TRM4	TRM	7	625479	625898	628498	628553 2_nonsis		2601	2837	3073	2	31	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(3:5)_(3:5a)_(4:4aCO)
106 TRM4	TRM	11	399930	399948	403407	403558 2_nonsis		3460	3544	3627	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4aCO)
191 TRM4	TRM	16	784177	784693	785910	786015 2_nonsis		1218	1528	1837	2	32	1	1	0 (3:5)_(2:6)_(3:5a)_(2:6)_(4:4aCO)
28 TRM4	TRM	4	119010	120812	123436	124765 2_nonsis		2625	4190	5754	2	32	1	1	0 (4:4ai)_(5:3)_(6:2)_(5:3a)_(5:3)_(4:4bCO)
181 TRM4	TRM	16	285465	286085	288762	289053 2_nonsis		2678	3133	3587	2	32	1	1	0 (5:3)_(6:2)_(4:4)_(5:3)_(4:4)_(5:3)_(6:2)_(5:3a)_(4:4aCO)
35 TRM4	TRM	4	604439	604670	608921	609170 2_nonsis		4252	4491	4730	2	32	1	1	0 (5:3)_(6:2)_(4:4aCO)_(5:3a)_(4:4a)_(5:3a)_(4:4a)_(5:3a)_(4:4a)
100 TRM4	TRM	10	411632	412419	414104	414830 2_nonsis		1686	2442	3197	3	20	1	1	0 (5:3)_(3:5)_(4:4aCO)
144 TRM4	TRM	13	841022	841302	841704	841879 2_nonsis		403	630	856	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
140 TRM4	TRM	13	646440	646658	647871	648168 2_nonsis		1214	1471	1727	3	20	1	1	0 (3:5)_(4:4)_(5:3)_(4:4aCO)
168 TRM4	TRM	15	459052	459568	463406	463444 2_nonsis		3839	4115	4391	3	20	1	1	0 (5:3)_(2:6)_(3:5)_(4:4aCO)
154 TRM4	TRM	14	517494	517634	518602	518686 2_nonsis		969	1080	1191	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(6:2)_(4:4aCO)
45 TRM4	TRM	4	1126843	1126921	1128108	1128135 2_nonsis		1188	1240	1291	3	20	1	1	0 (5:3)_(6:2)_(2:6)_(4:4aCO)_(3:5)_(4:4a)
58 TRM4	TRM	5	248412	248522	251006	251267 2_nonsis		2485	2670	2854	3	20	1	1	0 (2:6)_(3:5)_(2:6)_(4:4aCO)_(6:2)_(4:4a)
1 TRM4	TRM	1	74786	75211	77737	78187 2_nonsis		2527	2964	3400	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(4:4)_(2:6)_(4:4aCO)
39 TRM4	TRM	4	847587	847735	851927	852118 2_nonsis		4193	4362	4530	3	20	1	1	0 (6:2)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(4:4a)
187 TRM4	TRM	16	520194	520400	524220	524743 2_nonsis		3821	4185	4548	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(2:6)_(4:4)_(5:3)_(4:4aCO)_(6:2)_(4:4a)
85 TRM4	TRM	7	796586	796791	801373	801844 2_nonsis		4583	4920	5257	3	20	1	1	0 (2:6)_(4:4)_(5:3)_(6:2)_(5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(4:4aCO)
131 TRM4	TRM	13	196231	202482	210922	211049 2_nonsis		8441	11629	14817	3	20	1	1	0 (5:3)_(6:2)_(5:3)_(4:4)_(5:3)_(3:5)_(2:6)_(4:4aCO)_(3:5)_(4:4a)
93 TRM4	TRM	9	168511	169256	173732	174345 2_nonsis		4477	5155	5833	3	20	1	1	0 (3:5)_(2:6)_(4:4)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4)_(6:2)_(4:4aCO)_(5:3)_(4:4a)
174 TRM4	TRM	15	700551	700804	703419	710553 2_nonsis		2616	6309	10001	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)_(6:2)_(4:4a)_(5:3)_(6:2)_(5:3)_(4:4a)_(5:3)_(6:2)_(4:4a)
65 TRM4	TRM	5	473950	474031	475154	475295 2_nonsis		1124	1234	1344	3	21	1	1	0 (2:6)_(4:4ai)_(5:3)_(4:4bCO)
5 TRM4	TRM	2	72420	73226	79837	80052 2_nonsis		6612	7122	7631	3	21	1	1	0 (4:4aCO)_(3:5)_(3:5a)_(3:5)_(4:4bi)_(5:3)_(3:5a)_(4:4bi)_(3:5)_(4:4bi)_(6:2)_(4:4a)
21 TRM4	TRM	3	233678	233870	233870	233910 2_sis		1	116	231	0	1	2	0	2 (6:2i)_(4:4)
70 TRM4	TRM	6	203253	203623	204894	204909 2_sis		1272	1464	1655	0	1	2	0	2 (3:5)_(3:5a)_(2:6)_(3:5a)_(4:4)
75 TRM4	TRM	7	140227	140416	140416	140631 2_sis		1	202	403	0	1	2	0	2 (2:6i)_(4:4)
81 TRM4	TRM	7	611510	611515	611515	612267 2_sis		1	379	756	0	1	2	0	2 (6:2i)_(4:4)
115 TRM4	TRM	12	507075	507492	507531	508649	4	40	807	1573	0	1	2	0	2 (3:5)_(6:2i)_(4:4)
157 TRM4	TRM	14	552259	552403	554217	557562 2_sis		1815	3559	5302	0	1	2	0	2 (6:2)_(5:3)_(5:3a)_(4:4)
165 TRM4	TRM	15	260677	260759	260759	260837 2_sis		1	80	159	0	1	2	0	2 (2:6i)_(4:4)
6 TRM4	TRM	2	82087	82573	87833	88022	4	5261	5598	5934	0	2	2	2	0 (5:3)_(3:5)_(3:5a)_(4:4ai)_(3:5a)_(4:4bi)_(3:5b)_(4:4bi)_(5:3a)_(6:2)_(5:3a)_(4:4cCO)
30 TRM4	TRM	4	167048	167295	167826	169331 2_nonsis		532	1407	2282	0	3	2	0	2 (6:2)_(2:6)_(4:4aCO)_(4:4CO)
31 TRM4	TRM	4	368620	368735	374909	375032	3	6175	6293	6411	0	3	2	1	1 (5:3)_(4:4aCO)_(2:6)_(3:5)_(5:3a)_(6:2)_(5:3a)_(4:4bCO)
57 TRM4	TRM	5	236202	236672	238122	238396	3	1451	1822	2193	0	3	2	1	1 (3:5)_(4:4aCO)_(2:6)_(3:5)_(4:4bCO)
62 TRM4	TRM	5	406935	407141	410947	411277 2_nonsis	-	3807	4074	4341	0	3	2	0	2 (6:2)_(5:3)_(3:5)_(2:6)_(4:4aCO)
66 TRM4	TRM	5	489897	490102	492329	492341	3	2228	2336	2443	0	3	2	1	2 (6:2)_(3:5)_(3:3)_(2:6)_(4:4aCO)_(4:4eCO) 1 (2:6)_(3:5)_(4:4aCO)_(2:6)_(3:5a)_(4:4bCO)_(3:5a)_(5:3)_(4:4b)
71 TRM4	TRM	6	211652	211974	214843	215586 2_nonsis	,	2870	3402	3933	0	3	2	0	1 (2:6)_(3:5)_(4:4aCO)_(2:0)_(3:3a)_(4:4aCO)_(3:3a)_(4:4aCO) 2 (4:4aCO)_(3:5)_(4:4CO)_(3:5)_(5:3)_(3:5)_(4:4aCO)
71 TRM4 72 TRM4	TRM	6	254081	254393	255483	255612 2_nonsis		1091	1311	1530	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)_(2:6)_(4:4)
72 TRM4 89 TRM4	TRM	8	37944	38190	39721			1532	1759	1986	0	3	2	0	
69 1 KW14	I KIVI	٥	31944	39130	39721	39931 2_nonsis		1332	1739	1960	U	3	2	U	2 (5:3)_(4:4aCO)_(6:2)_(4:4CO)_(5:3)_(4:4)

112 TRM4	TRM	12	190951	192023	194811	195201 2_nonsis		2789	3519	4249	0	3	2	0	2 (4:4aCO)_(6:2)_(5:3)_(4:4CO)_(5:3)_(4:4)
122 TRM4	TRM	12	837595	837962	840682	843387 2_nonsis		2721	4256	5791	0	3	2	0	2 (4:4aCO)_(5:3)_(4:4CO)
177 TRM4	TRM	15	802784	803471	805899	806960	3	2429	3302	4175	0	3	2	1	1 (4:4aCO)_(2:6)_(4:4bCO)
301 TRM4	TRM	10	724397	724519	726314	745751 NA		1796	11575	21353	0	4	1 NA	NA	2:6_4:4_3:5_1:7
126 TRM5	TRM	12	1042365	1042381	1042381	1042503	1	1	69	137	1	1	1	0	1 05:03
23 TRM5	TRM	3	233678	233870	233870	233910	1	1	116	231	1	1	1	0	1 05:03
40 TRM5	TRM	4 1	856001	856201	856201	856278	1	1	139	276	1	1 1	1	0	1 05:03
3 TRM5	TRM		101193	101198	101198	101547	1	1	177	353	1		1	0	1 05:03
68 TRM5 1 TRM5	TRM TRM	7 1	11635 60915	11737 61084	11737 61164	12020 61414	1	81	193 290	384 498	1	1 1	1	0	1 05:03 1 05:03
180 TRM5	TRM	16	829386	829418	829418	830004	1	1	309	617	1	1	1	0	1 05:03
42 TRM5	TRM	4	928114	928279	928279	928753	1	1	320	638	1	1	1	0	1 05:03
32 TRM5	TRM	4	423912	424131	424226	928733 424517	1	96	350	604	1	1	1	0	1 05:03
91 TRM5	TRM	10	315888	316551	316551	316590	1	1	351	701	1	1	1	0	1 05:03
98 TRM5	TRM	10	658094	658862	658862	658912	1	1	409	817	1	1	1	0	1 05:03
89 TRM5	TRM	10	278226	278337	278411	279038	1	75	443	811	1	1	1	0	1 05:03
43 TRM5	TRM	4	931013	931142	931376	931988	1	235	605	974	1	1	1	0	1 05:03
64 TRM5	TRM	6	44192	44668	45006	45201	1	339	674	1008	1	1	1	0	1 05:03
160 TRM5	TRM	15	427406	427719	427719	428753	1	1	674	1346	1	1	1	0	1 05:03
29 TRM5	TRM	4	264290	265338	265749	265807	1	412	964	1516	1	1	1	0	1 05:03
146 TRM5	TRM	14	477388	478186	478186	479345	1	1	979	1956	1	1	1	0	1 05:03
27 TRM5	TRM	4	127476	129270	129783	130517	1	514	1777	3040	1	1	1	0	1 05:03
70 TRM5	TRM	7	218950	218961	218961	219113	1	1	82	162	1	2	1	0	1 03:05
105 TRM5	TRM	11	464192	464453	464453	464456	1	1	132	263	1	2	1	0	1 03:05
111 TRM5	TRM	12	84153	84378	84378	84504	1	1	176	350	1	2	1	0	1 03:05
104 TRM5	TRM	11	358089	358323	358323	358455	1	1	183	365	1	2	1	0	1 03:05
149 TRM5	TRM	14	592518	592909	592909	593099	1	1	291	580	1	2	1	0	1 03:05
36 TRM5	TRM	4	653323	653336	653336	653906	1	1	292	582	1	2	1	0	1 03:05
51 TRM5	TRM	5	68798	68910	69083	69209	1	174	292	410	1	2	1	0	1 03:05
138 TRM5	TRM	14	86730	87215	87215	87864	1	1	567	1133	1	2	1	0	1 03:05
100 TRM5	TRM	11	261949	262136	262641	263151	1	506	854	1201	1	2	1	0	1 03:05
166 TRM5	TRM	15	690980	691843	692888	693526	1	1046	1796	2545	1	2	1	0	1 03:05
128 TRM5	TRM	13	103361	104510	105409	106249	1	900	1894	2887	1	2	1	0	1 03:05
102 TRM5	TRM	11	316845	317019	317375	317549	1	357	530	703	1	4	1	0	1 3:5_4:4_3:5
159 TRM5	TRM	15	422652	423321	423598	424102	1	278	864	1449	1	4	1	0	1 3:5_4:4_3:5
49 TRM5	TRM	4	1165728	1165878	1169278	1169426	1	3401	3549	3697	1	4	1	0	1 3:5_4:4_2:6_4:4_3:5_4:4_3:5_4:4_3:5_2:6_3:5_4:4_3:5_2:6_3:5_4:4_3:5
88 TRM5	TRM	10	176002	176039	180354	180756	1	4316	4535	4753	1	7	1	0	1 5:3_6:2
38 TRM5	TRM	4	795372	795537	800984	801463	1	5448	5769	6090	1	7	1	0	1 6:2_4:4_6:2_4:4_6:2
115 TRM5	TRM	12	401097	401327	402030	402353	1	704	980	1255	1	8	1	0	1 3:5_2:6
87 TRM5	TRM	10	108954	109360	109926	110584	1	567	1098	1629	1	8	1	0	1 3:5_2:6
123 TRM5	TRM	12	836343	837497	837595	840577	1	99	2166	4233	1	8	1	0	1 2:6_3:5
92 TRM5	TRM	10	360767	360976	361340	362386	1	365	992	1618	1	8	1	0	1 3:5_2:6_3:5_2:6
119 TRM5	TRM	12	514243	514581	519358	520183	1	4778	5359	5939	1	8	1	0	1 3:5_2:6_3:5_2:6
117 TRM5	TRM	12	407016	407206	408486	408647	1	1281	1456	1630	1	8	1	0	1 2:6_4:4_3:5_4:4_2:6_3:5
110 TRM5	TRM	11	623830	624124	627471	628158	1	3348	3838	4327	1	8	1	0	1 3:5_4:4_2:6_3:5_2:6_3:5_4:4_2:6
136 TRM5	TRM	13	759082	759285	759298	759350	1	14	141	267	1	10	1	0	1 06:02
173 TRM5	TRM	16	299735	299834	299834	300071	1	1	168	335	1	10	1	0	1 06:02
151 TRM5	TRM	14	646157	646249	646249	646547	1	1	195	389	1	10	1	0	1 06:02
165 TRM5	TRM	15	571945	572030	572030	572407	1	1	231	461	1	10	1	0	1 06:02
150 TRM5	TRM	14	640393	640431	640431	640932	1	1	270	538	1	10	1	0	1 06:02
8 TRM5	TRM	2	150200	150465	150492	151397	1	28	612	1196	1	10	1	0	1 06:02
45 TRM5	TRM	4	1061634	1061961	1062037	1062818	1	77	630	1183	1	10	1	0	1 06:02
157 TRM5	TRM	15	287386	288164	288307	288781	1	144	769	1394	1	10	1	0	1 06:02
11 TRM5	TRM	2	371139	371446	371746	372547	1	301	854	1407	1	10	1	0	1 06:02
82 TRM5	TRM	9	247495	247508	247508	247526	1	1	16	30	1	10.1	1	0	1 02:06
114 TRM5	TRM	12	252779	252873	252873	252898	1	1	60	118	1	10.1	1	0	1 02:06
21 TRM5	TRM	3	208072	208091	208091	208234	1	1	81	161	1	10.1	1	0	1 02:06
78 TRM5	TRM	8	66280	66557	66557	66569	1	1	145	288	1	10.1	1	0	1 02:06
16 TRM5	TRM	2	723102	723175	723232	723385	1	58	170	282	1	10.1	1	0	1 02:06
133 TRM5	TRM	13	510245	510365	510379	510599	1	15	184	353	1	10.1	1	0	1 02:06

163 TRM5	TRM	15	511101	511376	511443	511466	1	68	216	364	1	10.1	1	0	1 02:06
52 TRM5	TRM	5	70531	70852	70852	70969	1	1	219	437	1	10.1	1	0	1 02:06
44 TRM5	TRM	4	1011430	1011449	1011449	1011936	1	1	253	505	1	10.1	1	0	1 02:06
135 TRM5	TRM	13	701024	701244	701374	701606	1	131	356	581	1	10.1	1	0	1 02:06
83 TRM5	TRM	9	273547	273624	273888	274009	1	265	363	461	1	10.1	1	0	1 02:06
24 TRM5	TRM	4	19746	19880	20223	20376	1	344	487	629	1	10.1	1	0	1 02:06
55 TRM5	TRM	5	123378	123491	123734	124202	1	244	534	823	1	10.1	1	0	1 02:06
152 TRM5	TRM	14	701567	701618	701618	702991	1	1	712	1423	1	10.1	1	0	1 02:06
108 TRM5	TRM	11	604059	604356	604404	605465	1	49	727	1405	1	10.1	1	0	1 02:06
35 TRM5	TRM	4	629725	630640	630640	631576	1	1	926	1850	1	10.1	1	0	1 02:06
20 TRM5	TRM	3	76973	77505	77900	78705	1	396	1064	1731	1	10.1	1	0	1 02:06
28 TRM5	TRM	4	261620	261828	262808	263012 2_nonsis		981	1186	1391	3	30	1	0	1 5:3_3:5
107 TRM5	TRM	11	597543	597866	600536	601065 2_nonsis		2671	3096	3521	3	30	1	0	1 3:5_2:6_5:3
69 TRM5	TRM	7	188960	189229	191348	192332 2_nonsis		2120	2746	3371	3	30	1	0	1 5:3_6:2_4:4_3:5
96 TRM5	TRM	10	587243	587401	590704	591944 2_nonsis		3304	4002	4700	3	30	1	0	1 3:5_3:5a_4:4_3:5
46 TRM5	TRM	4	1090817	1091087	1095230	1095364 2_nonsis		4144	4345	4546	3	30	1	0	1 3:5_4:4_5:3_6:2_5:3_4:4_5:3
112 TRM5	TRM	12	105323	106427	110610	110807 2_nonsis		4184	4834	5483	3	30	1	0	1 3:5_4:4_3:5_4:4_5:3_6:2_4:4_6:2
116 TRM5	TRM	12	403568	404007	404007	404478 2_nonsis		1	455	909	3	31	1	0	1 4:4ai
6 TRM5	TRM	2	77328	77577	77699	77714 2_nonsis		123	254	385	1	1	1	1	0 (5:3)_(4:4aCO)
53 TRM5	TRM	5	73006	73131	73131	74196 2_nonsis		1	595	1189	1	1	1	1	0 (5:3)_(4:4aCO)
56 TRM5	TRM	5	222592	222851	222851	222941 2_nonsis		1	175	348	1	2	1	1	0 (3:5)_(4:4aCO)
154 TRM5	TRM	15	198772	199130	199186	199433 2_nonsis		57	359	660	1	2	1	1	0 (3:5)_(4:4aCO)
15 TRM5	TRM	2	620443	620548	620548	621285 2_nonsis		1	421	841	1	2	1	1	0 (3:5)_(4:4aCO)
141 TRM5	TRM	14	171927	173272	173725	173830 2_nonsis		454	1178	1902	1	2	1	1	0 (3:5)_(4:4aCO)
85 TRM5	TRM	9	339115	339305	340858	341514 2_nonsis		1554	1976	2398	1	5	1	1	0 (3:5)_(4:4)_(4:4aCO)
18 TRM5	TRM	3	38318	38619	39706	39861 2_nonsis		1088	1315	1542	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
14 TRM5	TRM	2	501201	501490	501753	501897 2_nonsis		264	480	695	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
25 TRM5	TRM	4	28578	28798	30128	30404 2_nonsis		1331	1578	1825	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
145 TRM5	TRM	14	388136	388819	389671	391590 2_nonsis		853	2153	3453	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
57 TRM5	TRM	5	229778	230208	232802	232869 2_nonsis		2595	2843	3090	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
30 TRM5	TRM	4	311476	311602	311890	312042 2_nonsis		289	427	565	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
34 TRM5	TRM	4	616750	616883	617276	617367 2_nonsis		394	505	616	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
170 TRM5	TRM	15	929212	929593	930131	930244 2_nonsis		539	785	1031	1	9	1	1	0 (3:5)_(2:6)_(4:4aCO)
47 TRM5	TRM	4	1111885	1111980	1113224	1113566 2_nonsis		1245	1463	1680	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
169 TRM5	TRM	15	799553	800155	802489	802784 2_nonsis		2335	2783	3230	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
147 TRM5	TRM	14	516484	516536	519077	525141 2_nonsis		2542	5599	8656	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
158 TRM5	TRM	15	408436	408540	410228	410276 2_nonsis		1689	1764	1839	1	11	1	1	0 (6:2)_(4:4)_(5:3)_(4:4ai)_(4:4bCO)
12 TRM5	TRM	2	390744	391464	391731	392022 2_nonsis		268	773	1277	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
77 TRM5	TRM	7	914816	915939	916953	917004 2_nonsis		1015	1601	2187	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
172 TRM5	TRM	16	171729	171822	173054	173921 2_nonsis		1233	1712	2191	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
71 TRM5	TRM	7	351287	351684	352895	352964 2_nonsis		1212	1444	1676	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
59 TRM5	TRM	5	335687	335874	337830	337863 2_nonsis		1957	2066	2175	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
177 TRM5	TRM	16	669691	670096	672902	672984 2_nonsis		2807	3050	3292	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
129 TRM5	TRM	13	140757	140935	143613	144479 2_nonsis		2679	3200	3721	1	12	1	1	0 (5:3)_(4:4)_(5:3)_(4:4aCO)
66 TRM5	TRM	6	198468	199207	201959	202421 2_nonsis		2753	3353	3952	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
140 TRM5	TRM	14	116678	116796	121108	121220 2_nonsis		4313	4427	4541	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
139 TRM5	TRM	14	105047	105280	106177	106295 2_nonsis		898	1073	1247	1	12	1	1	0 (3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
171 TRM5	TRM	15	976799	976981	977995	978236 2_nonsis		1015	1226	1436	1	12	1	-	0 (4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
61 TRM5	TRM	5	465974	466823	468715	468771 2_nonsis		1893	2345	2796	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
39 TRM5	TRM	4	802711	805658	806992	807121 2_nonsis		1335	2872	4409	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(4:4aCO)
121 TRM5	TRM	12	747529	747710	751142	751398 2_nonsis		3433	3651	3868	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(3:5)_(4:4aCO)
80 TRM5	TRM	9	102480	102536	105213	105556 2_nonsis		2678	2877	3075	1	12	1	1	0 (6:2)_(5:3)_(6:2)_(5:3)_(6:2)_(4:4aCO)
132 TRM5	TRM	13	483557	485052	487393	487573 2_nonsis		2342	3179	4015	1	12	1		0 (2:6)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)
10 TRM5	TRM	2	337090	337453	341451	341632 2_nonsis		3999	4270	4541	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)_(2:6)_(4:4a) 0 (6:3)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(6:3)_(4:4a)
75 TRM5	TRM	7	806907	807474	809973	810159 2_nonsis		2500	2876	3251	1	12	1		0 (6:2)_(4:4aCO)_(5:3)_(4:4a)_(5:3)_(6:2)_(4:4a) 0 (2:5)_(2:6)_(4:4a-CO)_(2:5)_(2:5)_(2:5)_(4:4a)_(2:5)_(2:5)_(4:4a)_(2:5)_(4:4a)_(2:5)_(4:4a)_(4:5)_(4:5)_(4:4a)_(4:5)_(5:5)
76 TRM5 63 TRM5	TRM TRM	7 6	902661 22425	903061 22527	905084 28662	905104 2_nonsis 28792 2_nonsis		2024 6136	2233 6251	2442 6366	1	12 12	1	1	0 (3:5)_(2:6)_(4:4aCO)_(3:5)_(2:6)_(3:5)_(4:4a)_(3:5)_(2:6)_(3:5)_(4:4a) 0 (3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(2:6)_(3:5)_(2:6)_(3:5)_(2:6)_(4:4aCO)
37 TRM5	TRM	4	655090	655473	655473			0130		400	1	15	1	1	
37 TRM5 13 TRM5	TRM	2	436236	436888	436905	655491 2_nonsis 437154 2 nonsis		18	201 468	917	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
15 TRM5	TRM	15	216499	217333	217521	43/134 2_nonsis 218142 2_nonsis		189	468 916	1642	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
133 1 KM3	I KIVI	13	210499	21/333	21/321	210142 Z_HORSIS		109	910	1042	1	13	1	1	0 (0.2)_(+.+aCO)

33 TRM5	TRM	4	507535	507634	508191	508845 2_nonsis		558	934	1309	1	15	1	1	0 (6:2)_(4:4aCO)
99 TRM5	TRM	10	699696	699851	700864	701827 2_nonsis		1014	1572	2130	1	15	1	1	0 (6:2)_(4:4aCO)
103 TRM5	TRM	11	320103	320335	320400	320565 2_nonsis		66	264	461	1	16	1	1	0 (2:6)_(4:4aCO)
120 TRM5	TRM	12	568653	568917	568917	569539 2_nonsis		1	443	885	1	16	1	1	0 (2:6)_(4:4aCO)
9 TRM5	TRM	2	189223	190032	190032	190128 2_nonsis		1	453	904	1	16	1	1	0 (2:6)_(4:4aCO)
19 TRM5	TRM	3	74577	75202	75202	75484 2_nonsis		1	454	906	1	16	1	1	0 (2:6)_(4:4aCO)
72 TRM5	TRM	7	462199	462937	462984	463064 2_nonsis		48	456	864	1	16	1	1	0 (2:6)_(4:4aCO)
31 TRM5	TRM	4	370634	370756	371085	371249 2_nonsis		330	472	614	1	16	1	1	0 (2:6)_(4:4aCO)
144 TRM5	TRM	14	368045	368183	368391	368877 2_nonsis		209	520	831	1	16	1	1	0 (2:6)_(4:4aCO)
153 TRM5	TRM	15	181640	182622	182626	182727 2_nonsis		5	546	1086	1	16	1	1	0 (2:6)_(4:4aCO)
174 TRM5	TRM	16	374857	375235	375235	376113 2_nonsis		1	628	1255	1	16	1	1	0 (2:6)_(4:4aCO)
167 TRM5	TRM	15	716400	716849	717433	717703 2_nonsis		585	944	1302	1	16	1	1	0 (2:6)_(4:4aCO)
109 TRM5	TRM	11	618845	619007	620085	620113 2_nonsis		1079	1173	1267	1	16	1	1	0 (2:6)_(4:4aCO)
131 TRM5	TRM	13	234542	235023	235798	236240 2_nonsis		776	1237	1697	1	16	1	1	0 (2:6)_(4:4aCO)
73 TRM5	TRM	7	546929	547580	548503	549148 2_nonsis		924	1571	2218	1	16	1	1	0 (2:6)_(4:4aCO)
95 TRM5	TRM	10	504158	506424	507301	508327 2_nonsis		878	2523	4168	1	16	1	1	0 (2:6)_(4:4aCO)
65 TRM5	TRM	6	78202	78667	78202	78667 2_nonsis		0	232	464	1	100	1	1	0 (4:4aCO)
162 TRM5	TRM	15	507308	507811	507308	507811 2_nonsis		0	251	502	1	100	1	1	0 (4:4aCO)
93 TRM5	TRM	10	363087	363678	363087	363678 2_nonsis		0	295	590	1	100	1	1	0 (4:4aCO)
137 TRM5	TRM	13	862092	862695	862092	862695 2_nonsis		0	301	602	1	100	1	1	0 (4:4aCO)
164 TRM5	TRM	15	569110	569770	569110	569770 2_nonsis		0	330	659	1	100	1	1	0 (4:4aCO)
54 TRM5	TRM	5	121371	122148	121371	122148 2_nonsis		0	388	776	1	100	1	1	0 (4:4aCO)
130 TRM5	TRM	13	227027	227957	227027			0		929	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
						227957 2_nonsis		-	465		1		1	1	
41 TRM5	TRM	4	894075	895202	894075	895202 2_nonsis		0	563	1126		100		-	0 (4:4aCO)
7 TRM5	TRM	2	90715	92062	90715	92062 2_nonsis		0	673	1346	1	100	1	1	0 (4:4aCO)
84 TRM5	TRM	9	299287	302738	299287	302738 2_nonsis		0	1725	3450	1	100	1	1	0 (4:4aCO)
79 TRM5	TRM	9	82237	82538	84138	85680 2_nonsis		1601	2522	3442	2	30	1	1	0 (5:3)_(5:3a)_(5:3)_(4:4aCO)
125 TRM5	TRM	12	998854	999870	1002952	1003093 2_nonsis		3083	3661	4238	2	30	1	1	0 (5:3)_(4:4)_(5:3)_(5:3a)_(4:4aCO)
124 TRM5	TRM	12	849651	854846	857849	859351 2_nonsis		3004	6352	9699	2	32	1	1	0 (5:3)_(4:4)_(5:3a)_(4:4aCO)
179 TRM5	TRM	16	821711	822057	824738	824936 2_nonsis		2682	2953	3224	2	32	1	1	0 (2:6)_(3:5)_(2:6)_(3:5a)_(4:4aCO)
148 TRM5	TRM	14	529097	529112	531656	532165 2_nonsis		2545	2806	3067	2	32	1	1	0 (2:6)_(3:5)_(4:4)_(3:5a)_(4:4aCO)_(3:5a)_(4:4a)
122 TRM5	TRM	12	822252	822430	830741	830945 2_nonsis		8312	8502	8692	2	32	1	1	0 (6:2)_(5:3)_(6:2)_(5:3a)_(4:4aCO)_(5:3a)_(4:4a)
181 TRM5	TRM	16	921271	921352	921490	921713 2_nonsis		139	290	441	3	20	1	1	0 (3:5)_(5:3)_(4:4aCO)
142 TRM5	TRM	14	237838	238024	239023	239950 2_nonsis		1000	1556	2111	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
127 TRM5	TRM	13	75046	75133	75864	76140 2_nonsis		732	913	1093	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
74 TRM5	TRM	7	609044	609307	610218	610674 2_nonsis		912	1271	1629	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
161 TRM5	TRM	15	480673	480906	483971	484571 2_nonsis		3066	3482	3897	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
26 TRM5	TRM	4	53536	54185	57426	57781 2_nonsis		3242	3743	4244	3	20	1	1	0 (3:5)_(4:4aCO)_(5:3)_(4:4a)
86 TRM5	TRM	9	401375	402165	409125	409496 2_nonsis		6961	7541	8120	3	20	1	1	0 (5:3)_(6:2)_(5:3a)_(6:2)_(3:5)_(4:4aCO)
113 TRM5	TRM	12	192599	193426	196538	196849 2_nonsis		3113	3681	4249	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(6:2)_(2:6)_(4:4aCO)
178 TRM5	TRM	16	804145	810641	813879	814896 2_nonsis		3239	6995	10750	3	20	1	1	0 (3:5)_(2:6)_(3:5)_(4:4)_(6:2)_(5:3)_(4:4aCO)
106 TRM5	TRM	11	569085	569468	573116	573289 2_nonsis		3649	3926	4203	3	20	1	1	0 (2:6)_(4:4)_(3:5)_(4:4)_(3:5)_(4:4)_(5:3)_(4:4aCO)
134 TRM5	TRM	13	526564	526779	529948	530525 2_nonsis		3170	3565	3960	3	20	1	1	0 (3:5)_(4:4)_(3:5)_(4:4)_(3:5)_(5:3)_(3:5)_(5:3)_(4:4aCO)
67 TRM5	TRM	6	224275	224581	228349	228509 2_nonsis		3769	4001	4233	3	20	1	1	0 (5:3)_(4:4)_(5:3)_(6:2)_(4:4aCO)_(3:5)_(4:4a)_(3:5)_(4:4a)
101 TRM5	TRM	11	278179	278223	284656	284914 2_nonsis		6434	6584	6734	3	20	1	1	0 (3:5)_(3:5a)_(2:6)_(3:5a)_(2:6)_(4:4aCO)_(2:6)_(3:5a)_(2:6)_(4:4a)_(6:2)_(4:4a)
143 TRM5	TRM	14	310209	310493	315912	316244 2_nonsis		5420	5727	6034	3	21	1	1	0 (3:5)_(5:3)_(4:4ai)_(5:3)_(4:4bCO)
48 TRM5	TRM	4	1120367	1120689	1125071	1125228	3	4383	4622	4860	0	1	2	0	2 (3:5)_(5:3)_(3:5)_(2:6)_(3:5a)_(5:3a)_(4:4)
50 TRM5	TRM	5	18839	18930	23192	23309 2_sis	,	4263	4366	4469	0	1	2	0	2 (2:6i)_(4:4)
2 TRM5	TRM	1	66696	67715	69403	69677	3	1689	2335	2980	0	2	2	1	1 (3:5)_(3:5a)_(5:3)_(3:5a)_(4:4aCO)
4 TRM5	TRM	1	128756	129063	132066	135319	4	3004	4783	6562	0	2	2	2	0 (3:5)_(5:3a)_(4:4aCO)
5 TRM5	TRM	1	189825	189970	192196	192723	4	2227	2562	2897	0	2	2	1	1 (2:6)_(4:4ai)_(3:5)_(4:4ai)_(2:6)_(3:5)_(3:5a)_(1:7)_(3:5a)_(4:4bCO)
17 TRM5	TRM	2	786204	786307	787344	787463	3	1038	1148	1258	0	2	2	1	1 (2:6)_(4:4)_(3:5)_(4:4aCO)
58 TRM5	TRM	5	315416	315857	319404	319971	3	3548	4051	4554	0	2	2	1	
												2		1	1 (6:2)_(4:4)_(6:2a)_(4:4aCO)
90 TRM5	TRM	10	286743 389963	287049	288267	288305	3	1219	1390	1561	0	2	2 2	1	1 (2:6)_(3:5)_(2:6ai)_(3:5)_(4:4aCO)_(3:5)_(4:4a)
94 TRM5	TRM	10		390467	395307	395395		4841	5136	5431	0			-	1 (5:3)_(4:4)_(6:2)_(4:4)_(6:2)_(5:3a)_(4:4aCO)
97 TRM5	TRM	10	639041	639136	639519	639986	3	384	664	944	0	2	2	1	1 (3:5)_(4:4)_(4:4aCO)
156 TRM5	TRM	15	270656	270687	271168	271314	3	482	570	657	0	2	2	1	1 (6:2)_(6:2a)_(5:3)_(4:4aCO)
168 TRM5	TRM	15	777500	777648	781222	781811	3	3575	3943	4310	0	2	2	1	1 (6:2)_(5:3)_(5:3a)_(4:4ai)_(5:3a)_(4:4bCO)
175 TRM5	TRM	16	461367	462319	466824	467922	4	4506	5530	6554	0	2	2	1	1 (6:2)_(4:4ai)_(3:5)_(3:5a)_(2:6i)_(4:4bCO)
176 TRM5	TRM	16	525636	525655	525874	526176	3	220	380	539	0	2	2	1	1 (6:2)_(2:6)_(3:5)_(4:4aCO)

22 TRM5	TRM	3	221877	222524	223339	223676 2_nonsis		816	1307	1798	0	3	2	0	2 (6:2)_(4:4aCO)_(4:4CO)
60 TRM5	TRM	5	372082	372263	373154	373393 2_nonsis		892	1101	1310	0	3	2	0	2 (4:4aCO)_(3:5)_(4:4CO)
81 TRM5	TRM	9	168511	169444	173732	174345	3	4289	5061	5833	0	3	2	1	1 (5:3)_(4:4aCO)_(5:3)_(6:2)_(4:4CO)_(6:2)_(5:3a)_(4:4bi)_(4:4aCO)_(2:6)_(4:4a)
118 TRM5	TRM	12	459475	490579	493890	494326 2_nonsis		3312	19081	34850	0	3	2	0	2 (3:5)_(2:6)_(4:4aCO)_(4:4CO)
251 TRM5	TRM	6	245875	246893	269707	270161	1	0	12143	24285	0	4	1 NA	NA	
358 TRM5	TRM	16	19545	19582	19545	19582	1	0	18	36	0	4	1 NA	NA	
124 TRM6	TRM	12	829398	829421	829421	829429	1	1	16	30	1	1	1	0	1 05:03
119 TRM6	TRM	12	617208	617274	617302	617371	1	29	96	162	1	1	1	0	1 05:03
43 TRM6	TRM	4	1462852	1462884	1462884	1463093	1	1	121	240	1	1	1	0	1 05:03
33 TRM6	TRM	4	923081	923093	923093	923384	1	1	152	302	1	1	1	0	1 05:03
116 TRM6	TRM	12	278823	278845	278861	279188	1	17	191	364	1	1	1	0	1 05:03
72 TRM6	TRM	7	547580	547656	547744	547892	1	89	200	311	1	1	1	0	1 05:03
120 TRM6	TRM	12	619230	619476	619476	619650	1	1	210	419	1	1	1	0	1 05:03
87 TRM6	TRM	8	261641	261724	261724	262100	1	1	230	458	1	1	1	0	1 05:03
157 TRM6	TRM	15	195170	195386	195386	195644	1	1	237	473	1	1	1	0	1 05:03
8 TRM6	TRM	2	307860	307919	308006	308284	1	88	256	423	1	1	1	0	1 05:03
76 TRM6	TRM	7	649342	649559	649559	649865	1	1	262	522	1	1	1	0	1 05:03
134 TRM6	TRM	13	511585	512090	512090	512189	1	1	302	603	1	1	1	0	1 05:03
142 TRM6	TRM	13	818603	818759	818970	819018	1	212	313	414	1	1	1	0	1 05:03
143 TRM6	TRM	13	831458	831576	831576	832164	1	1	353	705	1	1	1	0	1 05:03
91 TRM6	TRM	9	177082	177586	177586	177853	1	1	386	770	1	1	1	0	1 05:03
177 TRM6	TRM	16	785712	785737	786161	786518	1	425	615	805	1	1	1	0	1 05:03
24 TRM6	TRM	4	328835	328957	329319	329842	1	363	685	1006	1	1	1	0	1 05:03
74 TRM6	TRM	7	624636	625276	625479	625898	1	204	733	1261	1	1	1	0	1 05:03
51 TRM6	TRM	5	475014	475088	475676	475964	1	589	769	949	1	1	1	0	1 05:03
122 TRM6	TRM	12	789373	789615	789623	791142	1	589 9	769 889	1768	1	1	1	0	1 05:03
												1			
31 TRM6	TRM	4	834899	835164	836028	836051	1	865	1008	1151	1	1	1	0	1 05:03
113 TRM6	TRM	12	25985	27605	29131	29612	1	1527	2577	3626	1	1	1	0	1 05:03
26 TRM6	TRM	4	525590	525595	525595	525607	1	1	9	16	1	2	1	0	1 03:05
44 TRM6	TRM	5	18926	18930	18949	18964	1	20	29	37	1	2	1	0	1 03:05
4 TRM6	TRM	1	203038	203105	203111	203117	1	7	43	78	1	2	1	0	1 03:05
112 TRM6	TRM	11	578824	578904	578904	578942	1	1	59	117	1	2	1	0	1 03:05
151 TRM6	TRM	14	400797	400813	400849	400901	1	37	70	103	1	2	1	0	1 03:05
54 TRM6	TRM	6	28170	28318	28318	28390	1	1	110	219	1	2	1	0	1 03:05
68 TRM6	TRM	7	451921	452209	452209	452296	1	1	188	374	1	2	1	0	1 03:05
57 TRM6	TRM	6	95460	95585	95632	95849	1	48	218	388	1	2	1	0	1 03:05
35 TRM6	TRM	4	1079059	1079189	1079258	1079450	1	70	230	390	1	2	1	0	1 03:05
106 TRM6	TRM	11	195050	195153	195269	195507	1	117	287	456	1	2	1	0	1 03:05
1 TRM6	TRM	1	42484	42527	42684	43004	1	158	339	519	1	2	1	0	1 03:05
174 TRM6	TRM	16	664861	665235	665344	665441	1	110	345	579	1	2	1	0	1 03:05
80 TRM6	TRM	7	911599	911857	911857	912297	1	1	349	697	1	2	1	0	1 03:05
16 TRM6	TRM	2	575802	576303	576303	576535	1	1	367	732	1	2	1	0	1 03:05
131 TRM6	TRM	13	330241	330411	330584	330819	1	174	376	577	1	2	1	0	1 03:05
108 TRM6	TRM	11	231038	231246	231543	231603	1	298	431	564	1	2	1	0	1 03:05
67 TRM6	TRM	7	355166	355193	355292	356141	1	100	537	974	1	2	1	0	1 03:05
159 TRM6	TRM	15	246178	247071	247117	247341	1	47	605	1162	1	2	1	0	1 03:05
164 TRM6	TRM	15	627354	627543	627997	628281	1	455	691	926	1	2	1	0	1 03:05
6 TRM6	TRM	2	216631	216794	217109	218039	1	316	862	1407	1	2	1	0	1 03:05
71 TRM6	TRM	7	477384	478308	478509	478940	1	202	879	1555	1	2	1	0	1 03:05
101 TRM6	TRM	10	713591	714056	714056	715501	1	1	955	1909	1	2	1	0	1 03:05
84 TRM6	TRM	8	159962	160782	160782	161874	1	1	956	1911	1	2	1	0	1 03:05
20 TRM6	TRM	4	125573	126283	126408	127476	1	126	1014	1902	1	2	1	0	1 03:05
77 TRM6	TRM	7	677412	678405	678883	679675	1	479	1371	2262	1	2	1	0	1 03:05
38 TRM6	TRM	4	1242241	1242658	1242658	1246191	1	1	1975	3949	1	2	1	0	1 03:05
45 TRM6	TRM	5	19005	23151	23309	23976	1	159	2565	4970	1	2	1	0	1 03:05
14 TRM6	TRM	2	512888	513202	514671	514746	1	1470	1664	1857	1	3	1	0	1 5:3_6:2_5:3
150 TRM6	TRM	14	335395	335707	336952	336970	1	1246	1410	1574	1	3	1	0	1 5:3_6:2_5:3_4:4_5:3
130 TRM6	TRM	13	442504	442723	445293	445712	1	2571	2889	3207	1	3	1	0	1 5:3_6:2_5:3_4:4_5:3
32 TRM6	TRM	13 4	896324	442723 896532	445293 896774	445/12 897251	1	25/1	2889 585	3207 926	1	4	1	0	1 5:3_6:2_5:3_4:4_5:3 1 3:5 2:6 3:5
114 TRM6		12		53554	54226		1	673			1	4	1	0	
114 IKM6	TRM	12	53089	53554	54226	54244	1	673	914	1154	1	4	1	U	1 3:5_2:6_3:5

100 TRM6	TRM	10	709147	709369	710013	711083	1	645	1290	1935	1	4	1	0	1 3:5_2:6_3:5
96 TRM6	TRM	10	143550	143678	145040	145102	1	1363	1457	1551	1	4	1	0	1 3:5_4:4_3:5
13 TRM6	TRM	2	501490	501576	503196	503310	1	1621	1720	1819	1	4	1	0	1 3:5_2:6_3:5
55 TRM6	TRM	6	47804	48166	52738	52838	1	4573	4803	5033	1	4	1	0	1 3:5_2:6_3:5
161 TRM6	TRM	15	478915	480090	482126	483090	1	2037	3106	4174	1	4	1	0	1 3:5_2:6_3:5_4:4_3:5
22 TRM6	TRM	4	196851	198734	200994	201329	1	2261	3369	4477	1	4	1	0	1 3:5_4:4_3:5_2:6_3:5
170 TRM6	TRM	16	380368	380443	381362	381840	1	920	1196	1471	1	7	1	0	1 5:3_6:2
50 TRM6	TRM	5	375017	375200	376468	376801	1	1269	1526	1783	1	7	1	0	1 6:2_5:3
83 TRM6	TRM	8	145861	146232	147573	147641	1	1342	1561	1779	1	7	1	0	1 6:2_5:3
98 TRM6	TRM	10	460257	460723	467162	467199	1	6440	6691	6941	1	7	1	0	1 5:3_4:4_6:2
148 TRM6	TRM	14	186992	187730	187910	187964	1	181	576	971	1	8	1	0	1 2:6_3:5
79 TRM6	TRM	7	893550	893850	894515	894550	1	666	833	999	1	8	1	0	1 3:5_2:6
12 TRM6	TRM	2	463842	464330	465156	465417	1	827	1201	1574	1	8	1	0	1 2:6_3:5
140 TRM6	TRM	13	776333	776870	778144	778647	1	1275	1794	2313	1	8	1	0	1 2:6_3:5
146 TRM6	TRM	14	79050	79165	80433	81575	1	1269	1897	2524	1	8	1	0	1 3:5_2:6
58 TRM6	TRM	6	106583	106692	107042	107101	1	351	434	517	1	8	1	0	1 3:5_4:4_2:6
137 TRM6	TRM	13	645101	645268	646658	646699	1	1391	1494	1597	1	8	1	0	1 3:5_4:4_2:6
90 TRM6	TRM	9	165195	166074	166934	167635	1	861	1650	2439	1	8	1	0	1 3:5_4:4_2:6
105 TRM6	TRM	11	99224	99633	99646	100443	1	14	616	1218	1	10	1	0	1 06:02
160 TRM6	TRM	15	404582	405136	405487	405535	1	352	652	952	1	10	1	0	1 06:02
61 TRM6	TRM	6	224892	224997	226036	226238	1	1040	1193	1345	1	10	1	0	1 06:02
42 TRM6	TRM	4	1342837	1342926	1342926	1342986	1	1	75	148	1	10.1	1	0	1 02:06
118 TRM6	TRM	12	412590	412603	412603	412803	1	1	107	212	1	10.1	1	0	1 02:06
103 TRM6	TRM	11	37740	38242	38242	38739	1	1	500	998	1	10.1	1	0	1 02:06
125 TRM6	TRM	12	1002086	1002952	1003348	1004176 2_nonsis		397	1243	2089	3	30	1	0	1 3:5_3:5a
172 TRM6	TRM	16	640976	641225	642071	642462 2_nonsis		847	1166	1485	3	30	1	0	1 5:3_5:3a_5:3
60 TRM6	TRM	6	208668	209238	210590	210664 2_nonsis		1353	1674	1995	3	30	1	0	1 6:2_4:4_2:6
145 TRM6	TRM	14	51050	51868	54694	54722 2_nonsis		2827	3249	3671	3	30	1	0	1 2:6_3:5_3:5a
99 TRM6	TRM	10	568805	570822	576464	576551 2_nonsis		5643	6694	7745	3	30	1	0	1 6:2_2:6_3:5
37 TRM6	TRM	4	1167562	1167700	1169732	1170023 2_nonsis		2033	2247	2460	3	30	1	0	1 5:3_6:2_5:3a_6:2_5:3
65 TRM6	TRM	7	333791	334340	337618	338262 2_nonsis		3279	3875	4470	3	30	1	0	1 5:3_4:4_5:3_5:3a_6:2
109 TRM6	TRM	11	253028	253608	257258	257878 2_nonsis		3651	4250	4849	3	30	1	0	1 5:3_6:2_5:3_6:2_5:3_6:2_5:3a
46 TRM6	TRM	5	158705	158931	162567	163290 2_nonsis		3637	4111	4584	3	30	1	0	1 2:6_3:5_4:4_2:6_3:5_4:4_5:3_6:2
69 TRM6	TRM	7	455013	455625	459245	459317 2_nonsis		3621	3962	4303	3	30	1	0	1 3:5_2:6_3:5_2:6_3:5a_2:6_3:5a_2:6_3:5
9 TRM6	TRM	2	311099	311267	312473	313283 2_nonsis		1207	1695	2183	3	31	1	0	1 3:5_4:4ai_3:5
144 TRM6	TRM	14	18306	18562	19760	20559 2_nonsis		1199	1726	2252	3	31	1	0	1 5:3_6:2_5:3_4:4ai
171 TRM6	TRM	16	430826	431177	432506	432538 2_nonsis		1330	1521	1711	3	31	1	0	1 6:2_5:3_4:4ai_4:4_5:3a
62 TRM6	TRM	7	30150	30348	32037	32065 2_nonsis		1690	1802	1914	3	31	1	0	1 5:3_4:4ai_3:5_5:3_4:4ai_5:3a
73 TRM6	TRM	7	549178	549493	554163	554830 2_nonsis		4671	5161	5651	3	31	1	0	1 5:3_4:4_5:3_4:4ai_5:3_4:4ai
169 TRM6	TRM	16	359182	359890	361590	361807 2_nonsis		1701	2163	2624	3	31	1	0	1 3:5_4:4_3:5_4:4ai_4:4_3:5_4:4_3:5_2:6
141 TRM6	TRM	13	815081	815882	815882	815905 2_nonsis		1	412	823	1	1	1	1	0 (5:3)_(4:4aCO)
41 TRM6	TRM	4	1338120	1338269	1338669	1339080 2_nonsis		401	680	959	1	1	1	1	0 (5:3)_(4:4aCO)
111 TRM6	TRM	11	484474	484739	485195	485495 2_nonsis		457	739	1020	1	1	1	1	0 (5:3)_(4:4aCO)
135 TRM6	TRM	13	557425	557517	557517	558987 2_nonsis		1	781	1561	1	1	1	1	0 (5:3)_(4:4aCO)
17 TRM6	TRM	2	766200	766339	767430	768073 2_nonsis		1092	1482	1872	1	1	1	1	0 (5:3)_(4:4aCO)
93 TRM6	TRM	9	298626	299287	299287	302738 2_nonsis		1	2056	4111	1	1	1	1	0 (5:3)_(4:4aCO)
92 TRM6	TRM	9	289127	292353	292870	296453 2_nonsis		518	3922	7325	1	1	1	1	0 (5:3)_(4:4aCO)
7 TRM6	TRM	2	269210	269402	269402	269653 2_nonsis		1	222	442	1	2	1	1	0 (3:5)_(4:4aCO)
21 TRM6	TRM	4	161421	162357	162819	163031 2 nonsis		463	1036	1609	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
75 TRM6	TRM	7	636413	636660	637960	638253 2_nonsis		1301	1570	1839	1	4	1	1	0 (4:4aCO)_(5:3)_(4:4a)
132 TRM6	TRM	13	379442	379637	379984	380209 2_nonsis		348	557	766	1	6	1	1	0 (4:4aCO)_(3:5)_(4:4a)
175 TRM6	TRM	16	678652	678709	679119	679575 2_nonsis		411	667	922	1	7	1	1	0 (5:3)_(6:2)_(4:4aCO)
47 TRM6	TRM	5	222472	222545	222851	222941 2_nonsis		307	388	468	1	8	1	1	0 (6:2)_(5:3)_(4:4aCO)
127 TRM6	TRM	13	102320	102554	102686	103133 2_nonsis		133	473	812	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
86 TRM6	TRM	8	222295	222996	223791	223885 2_nonsis		796	1193	1589	1	10	1	1	0 (2:6)_(3:5)_(4:4aCO)
19 TRM6	TRM	3	214762	215005	218143	218372 2_nonsis		3139	3374	3609	1	11	1	1	0 (5:3)_(4:4ai)_(4:4bCO)_(6:2)_(4:4b)
138 TRM6	TRM	13	675083	675245	675387	675697 2_nonsis		143	378	613	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
49 TRM6	TRM	5	372836	373154	373442	373736 2_nonsis		289	594	899	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)
139 TRM6	TRM	13	774012	774570	774827	774965 2 nonsis		258	605	952	1	12	1	1	0 (3:5)_(4:4aCO)_(3:5)_(4:4a)
163 TRM6	TRM	15	558128	558487	559768	560108 2_nonsis		1282	1631	1979	1	12	1	1	0 (2:6)_(4:4aCO)_(3:5)_(4:4a)
					227700	200100 2_101010		- 202		-212	•		•	-	

66 TRM6	TRM	7	350649	351015	352489	352538 2_nonsis	1475	1682	1888	1	12	1	1	- (
23 TRM6	TRM	4	312599	312701	314500	315175 2_nonsis	1800	2188	2575	1	12	-	1	
89 TRM6	TRM	9	102742	103011	106806	106983 2_nonsis	3796	4018	4240	1	12	1	1	. (** /=(***/=(**************************
34 TRM6	TRM		942264	942309 29930	942309	942662 2_nonsis	231	199 277	397	1	15 15	1	1	(
95 TRM6	TRM	10	29870		30160	30194 2_nonsis	231		323	1		1	1	(0-2()
11 TRM6	TRM	2	461887	462229	462229	462485 2_nonsis		299	597	1	15			· (· /-/ · · · · · /
25 TRM6	TRM	4	394798	395086	395086	395767 2_nonsis	1	485	968	1	15	1	1	· (· /-/ · · · · · /
126 TRM6	TRM	12	1042570	1042844	1043157	1043284 2_nonsis	314	514	713	1	15	1	1	· (· /-/ · · · · · /
59 TRM6	TRM	6	109247	109334	109334	109402 2_nonsis	1	78	154	1	16	1	1	
167 TRM6	TRM	15	924485	924624	924624	924831 2_nonsis	1	173	345	1	16	1	1	· /=· /
15 TRM6	TRM	2	574173	574257	574371	574533 2_nonsis	115	237	359	1	16	1	1	
129 TRM6	TRM	13	209285	209422	209542	209890 2_nonsis	121	363	604	1	16	1	1	* (**)=(* * ** * *)
5 TRM6	TRM	2	23707	24209	24355	24379 2_nonsis	147	409	671	1	16	1	1	(200/2(11000))
70 TRM6	TRM	7	463348	463843	463843	464170 2_nonsis	1	411	821	1	16	1	1	
121 TRM6	TRM	12	703971	704793	704829	704992 2_nonsis	37	529	1020	1	16	1	1	
153 TRM6	TRM	14	480527	480558	481081	481350 2_nonsis	524	673	822	1	16	1	1	(-10/2(11424)
102 TRM6	TRM	10	717626	718159	717626	718159 2_nonsis	0	266	532	1	100	1	1	- ()
130 TRM6	TRM	13	326810	327622	326810	327622 2_nonsis	0	406	811	1	100	1	1	* (******)
107 TRM6	TRM	11	203378	204194	203378	204194 2_nonsis	0	408	815	1	100	1	1	
63 TRM6	TRM	7	81435	82858	81435	82858 2_nonsis	0	711	1422	1	100	1	1	
136 TRM6	TRM	13	637295	638784	637295	638784 2_nonsis	0	744	1488	1	100	1	1	
147 TRM6	TRM	14	182462	182621	184992	185309 2_nonsis	2372	2609	2846	2	30	1	1	(616)_(616)_(1166)
158 TRM6	TRM	15	197183	197943	199433	201256 2_nonsis	1491	2782	4072	2	30	1	1	. ()=()=()=()
39 TRM6	TRM	4	1250194	1250522	1252379	1252668 2_nonsis	1858	2166	2473	2	30	1	1	(110)_(110)_(110)_(110)_(110)
2 TRM6	TRM	1	59659	60198	61999	62308 2_nonsis	1802	2225	2648	2	31	1	1	(10)_(10)_(10)_(10)_(10)_(10)_(10)_(10)_
52 TRM6	TRM	5	490231	490291	491327	491424 2_nonsis	1037	1115	1192	2	32	1	1	- V
110 TRM6	TRM	11	287808	288159	292695	293072 2_nonsis	4537	4900	5263	2	32	1	1	- (
88 TRM6	TRM	8	327422	327845	329634	330227 2_nonsis	1790	2297	2804	2	32	1	1	
10 TRM6	TRM	2	351083	351158	352358	352751 2_nonsis	1201	1434	1667	2	32	1	1	(10)_()_()_()_()_()
29 TRM6	TRM	4	715058	715352	716832	716915 2_nonsis	1481	1669	1856	2	32	1	1	- (
97 TRM6	TRM	10	254247	254489	257445	257831 2_nonsis	2957	3270	3583	2	32	1	1	. (
155 TRM6	TRM	15	43313	43318	44801	45210 2_nonsis	1484	1690	1896	2	32	1	1	
117 TRM6	TRM	12	338685	339496	341507	341678 2_nonsis	2012	2502	2992	3	20	1	1	
128 TRM6	TRM	13	145748	146198	149583	150480 2_nonsis	3386	4059	4731	3	20	1	1	· /= / /= /
28 TRM6	TRM	4	682509	682954	683860	683890 2_nonsis	907	1144	1380	3	20	1	1	(44)_(44)_(44)_(44)_(44)_(44)_(44)_(44)
82 TRM6	TRM	8	68532	68854	69741	70108 2_nonsis	888	1232	1575	3	20	1	1	. ()=()=()=()
78 TRM6	TRM	7	849524	849571	850323	850359 2_nonsis	753	794	834	3	20	1	1	- V
18 TRM6	TRM	3	95029	95071	96055	96799 2_nonsis	985	1377	1769	3	20	1	1	- V
30 TRM6	TRM	4	812212	812580	814490	814815 2_nonsis	1911	2257	2602	3	20	1	1	. (2.17)
64 TRM6	TRM	7	268323	269104	272568	273422 2_nonsis	3465	4282	5098	3	20	1	1	(446)_(446)_(446)_(446)_(446)
165 TRM6	TRM	15	831592	832096	834472	834731 2_nonsis	2377	2758	3138	3	20	1	1	
176 TRM6	TRM	16	751172	751586	754351	754681 2_nonsis	2766	3137	3508	3	20	1	1	. (
27 TRM6	TRM	4	607973	608132	610717	610801 2_nonsis	2586	2707	2827	3	20	1	1	
56 TRM6	TRM	6	55021	55242	65094	65183 2_nonsis	9853	10007	10161	3	20	1	1	
149 TRM6	TRM	14	294681	294859	295990	296137 2_nonsis	1132	1294	1455	3	21	1	1	1 7=1 7=1 7=1 7
48 TRM6	TRM	5	335812	335874	338773	339113 2_nonsis	2900	3100	3300	3	21	1	1	
3 TRM6	TRM	1	101193	101198	101198	101547 2_sis	1	177	353	0	1	2	0	· /=· /
40 TRM6	TRM	4	1266824	1266952	1270457	1270902 2_sis	3506	3792	4077	0	1	2	0	
104 TRM6	TRM	11	68369	68377	70841	71068	3 2465	2582	2698	0	1	2	0	
166 TRM6	TRM	15	836747	837056	837630	838080 2_sis	575	954	1332	0	1	2	0	· /=· /=· /
81 TRM6	TRM	7	993849	994015	997972	998377	3 3958	4243	4527	0	2	2	1	
123 TRM6	TRM	12	820606	821384	823256	827343	3 1873	4305	6736	0	2	2	1	(2.42)
152 TRM6	TRM	14	433271	434561	437581	439088	3 3021	4419	5816	0	2	2	1	4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-
162 TRM6	TRM	15	484571	485571	488732	488859	3 3162	3725	4287	0	2	2	1	
168 TRM6	TRM	15	1036160	1036163	1039824	1040442	4 3662	3972	4281	0	2	2	1	
173 TRM6	TRM	16	653303	653426	656784	656861	3 3359	3458	3557	0	2	2	1	
36 TRM6	TRM	4	1145144	1145628	1147847	1147937 2_nonsis	2220	2506	2792	0	3	2	0	
85 TRM6	TRM	8	182354	183701	190339	190671	3 6639	7478	8316	0	3	2	1	. (===>=(====>=(===>=(===>=(===>=(===>=(===>=(===>=(===>=(===>=(===>=(===>=(====>=(===>=(===>=(===>=(===>=(===>=(===>=(===>=(===>=(===>=(======
94 TRM6	TRM	9	329125	332459	335079	336156 2_nonsis	2621	4826	7030	0	3	2	0	
115 TRM6	TRM	12	184390	184414	185813	186034 2_nonsis	1400	1522	1643	0	3	2	0	2 (2:6)_(4:4aCO)_(5:3)_(4:4CO)

												_			
154 TRM6	TRM	14	604250	605032	608001	610323 2_nonsis		2970	4521	6072	0	3	2	0	2 (3:5)_(4:4aCO)_(3:5)_(4:4CO)
156 TRM6	TRM	15	80664	80920	84226	84370	3	3307	3506	3705	0	3	2	0	2 (5:3)_(6:2)_(5:3a)_(5:3)_(6:2)_(4:4aCO)_(6:2)_(4:4CO)
242 TRM6	TRM	7	8977	9007	10242	11737	1	1236	1998	2759	0	4	1 NA	NA	6:2_5:3_6:2_5:3_4:4_5:3
80 TRMS1	TRMS	10	256690	256880	256992	257216	1	113	319	525	1	8	1	0	1 2:6_4:4_2:6
120 TRMS1	TRMS	14	135855	135879	135879	135908	1	1	27	52	1	10	1	0	1 06:02
153 TRMS1	TRMS	16	536711	536720	536720	536802	1	1	46	90	1	10	1	0	1 06:02
14 TRMS1	TRMS	2	742150	742220	742220	742472	1	1	161	321	1	10	1	0	1 06:02
93 TRMS1	TRMS	11	264063	264372	264372	264463	1	1	200	399	1	10	1	0	1 06:02
96 TRMS1	TRMS	11	362017	362101	362299	362315	1	199	248	297	1	10	1	0	1 06:02
43 TRMS1	TRMS	4	1279154	1279416	1279422	1279680	1	7	266	525	1	10	1	0	1 06:02
34 TRMS1	TRMS	4	851602	851855	851875	852118	1	21	268	515	1	10	1	0	1 06:02
23 TRMS1	TRMS	4	296244	296284	296339	296793	1	56	302	548	1	10	1	0	1 06:02
58 TRMS1	TRMS	7	276935	277086	277287	277346	1	202	306	410	1	10	1	0	1 06:02
35 TRMS1	TRMS	4	930077	930409	930421	930813	1	13	374	735	1	10	1	0	1 06:02
85 TRMS1	TRMS	10	462170	462595	462689	462896	1	95	410	725	1	10	1	0	1 06:02
40 TRMS1	TRMS	4	1152100	1152705	1152705	1153009	1	1	455	908	1	10	1	0	1 06:02
36 TRMS1	TRMS	4	954530	954939	955230	955309	1	292	535	778	1	10	1	0	1 06:02
37 TRMS1	TRMS	4	994719	995637	995637	995820	1	1	551	1100	1	10	1	0	1 06:02
53 TRMS1	TRMS	6	28062	28170	28662	28792	1	493	611	729	1	10	1	0	1 06:02
29 TRMS1	TRMS	4	750125	750698	750901	751203	1	204	641	1077	1	10	1	0	1 06:02
8 TRMS1	TRMS	2	289530	289601	289966	290536	1	366	686	1005	1	10	1	0	1 06:02
150 TRMS1	TRMS	16	121751	122624	122624	123134	1	1	692	1382	1	10	1	0	1 06:02
77 TRMS1	TRMS	9	386757	386765	387502	387531	1	738	756	773	1	10	1	0	1 06:02
122 TRMS1	TRMS	14	199873	200718	200718	201732	1	1	930	1858	1	10	1	0	1 06:02
159 TRMS1	TRMS	16	729729	730436	730436	731859	1	1	1065	2129	1	10	1	0	1 06:02
97 TRMS1	TRMS	11	381664	381721	382980	383052	1	1260	1324	1387	1	10	1	0	1 06:02
160 TRMS1	TRMS	16	783424	785712	786020	786518	1	309	1701	3093	1	10	1	0	1 06:02
3 TRMS1	TRMS	1	104068	107245	107245	107538	1	1	1735	3469	1	10	1	0	1 06:02
18 TRMS1	TRMS	4	119010	120812	121811	121990	1	1000	1990	2979	1	10	1	0	1 06:02
105 TRMS1	TRMS	12	320997	323570	324050	325206	1	481	2345	4208	1	10	1	0	1 06:02
76 TRMS1	TRMS	9	364755	366456	373063	375595	1	6608	8724	10839	1	10	1	0	1 06:02
25 TRMS1	TRMS	4		525622	525629		1	8	40	71	1	10.1	1	0	
			525607			525679	1								1 02:06
15 TRMS1	TRMS	3	212109	212264	212321	212415		58	182	305	1	10.1	1	0	1 02:06
144 TRMS1	TRMS	15	670593	670904	670904	670961	1	1	184	367 374	1	10.1	1	0	1 02:06
142 TRMS1	TRMS	15	609162	609382	609382	609537	-	1	188		1	10.1	1	0	1 02:06
24 TRMS1	TRMS	4	357201	357312	357312	357632	1	1	216	430	1	10.1	1	0	1 02:06
151 TRMS1	TRMS	16	127985	128230	128274	128399	1	45	229	413	1	10.1	1	0	1 02:06
111 TRMS1	TRMS	13	247126	247484	247502	247728	1	19	310	601	1	10.1	1	0	1 02:06
156 TRMS1	TRMS	16	622904	622932	623271	623671	1	340	553	766	1	10.1	1	0	1 02:06
16 TRMS1	TRMS	3	236772	236946	236961	238082	1	16	663	1309	1	10.1	1	0	1 02:06
63 TRMS1	TRMS	7	836443	837183	837489	837577	1	307	720	1133	1	10.1	1	0	1 02:06
116 TRMS1	TRMS	13	719868	720435	720681	721068	1	247	723	1199	1	10.1	1	0	1 02:06
128 TRMS1	TRMS	14	478186	479345	479395	479609	1	51	737	1422	1	10.1	1	0	1 02:06
98 TRMS1	TRMS	11	486393	486704	487567	487615	1	864	1043	1221	1	10.1	1	0	1 02:06
130 TRMS1	TRMS	14	651410	652054	652419	653557	1	366	1256	2146	1	10.1	1	0	1 02:06
124 TRMS1	TRMS	14	333286	335341	335341	336158	1	1	1436	2871	1	10.1	1	0	1 02:06
86 TRMS1	TRMS	10	467589	469453	469520	470533	1	68	1506	2943	1	10.1	1	0	1 02:06
88 TRMS1	TRMS	10	576551	576835	577732	578943	1	898	1645	2391	1	10.1	1	0	1 02:06
118 TRMS1	TRMS	13	859155	859920	861205	861520	1	1286	1825	2364	1	10.1	1	0	1 02:06
20 TRMS1	TRMS	4	195474	196150	198376	198685	1	2227	2719	3210	1	10.1	1	0	1 02:06
69 TRMS1	TRMS	8	76976	77201	79512	80825	1	2312	3080	3848	1	10.1	1	0	1 02:06
143 TRMS1	TRMS	15	638136	639159	639455	639510 2_nonsis		297	835	1373	3	30	1	0	1 2:6_6:2
89 TRMS1	TRMS	10	700864	701241	701478	701601 2_nonsis		238	487	736	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
106 TRMS1	TRMS	12	606562	606799	606928	607451 2_nonsis		130	509	888	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
95 TRMS1	TRMS	11	326807	327038	327707	327893 2_nonsis		670	878	1085	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
50 TRMS1	TRMS	5	465974	466823	466898	467945 2_nonsis		76	1023	1970	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
12 TRMS1	TRMS	2	640000	640627	641467	641914 2_nonsis		841	1377	1913	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
62 TRMS1	TRMS	7	785318	785828	786983	787089 2_nonsis		1156	1463	1770	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
107 TRMS1	TRMS	12	668550	669123	670460	670933 2_nonsis		1338	1860	2382	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
81 TRMS1	TRMS	10	300402	300732	302943	303003 2_nonsis		2212	2406	2600	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)

46 TRMS1	TRMS	5	41711	41961	42708	43260 2_nonsis	748	1148	1548	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
146 TRMS1	TRMS	15	766612	766910	768090	768428 2_nonsis	1181	1498	1815	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
61 TRMS1	TRMS	7	670804	671038	672419	672632 2_nonsis	1382	1605	1827	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
101 TRMS1	TRMS	12	34343	35616	36792	36833 2_nonsis	1177	1833	2489	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
13 TRMS1	TRMS	2	678799	679276	680726	681166 2_nonsis	1451	1909	2366	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
39 TRMS1	TRMS	4	1139987	1140038	1140165	1143943 2_nonsis	128	2042	3955	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
113 TRMS1	TRMS	13	490598	490970	494666	495115 2_nonsis	3697	4107	4516	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
112 TRMS1	TRMS	13	344348	344475	344475	344829 2_nonsis	1	241	480	1	15	1	1	0 (6:2)_(4:4aCO)
51 TRMS1	TRMS	5	490952	491251	491327	491522 2_nonsis	77	323	569	1	15	1	1	0 (6:2)_(4:4aCO)
70 TRMS1	TRMS	8	121987	122169	122169	122633 2_nonsis	1	323	645	1	15	1	1	0 (6:2)_(4:4aCO)
103 TRMS1	TRMS	12	183745	184185	184185	184390 2_nonsis	1	323	644	1	15	1	1	0 (6:2)_(4:4aCO)
31 TRMS1	TRMS	4	811697	811787	811992	812212 2_nonsis	206	360	514	1	15	1	1	0 (6:2)_(4:4aCO)
21 TRMS1	TRMS	4	234211	234361	234547	234831 2_nonsis	187	403	619	1	15	1	1	0 (6:2)_(4:4aCO)
157 TRMS1	TRMS	16	659091	659254	659469	659868 2_nonsis	216	496	776	1	15	1	1	0 (6:2)_(4:4aCO)
28 TRMS1	TRMS	4	699436	699549	699549	700440 2_nonsis	1	502	1003	1	15	1	1	0 (6:2)_(4:4aCO)
147 TRMS1	TRMS	15	865407	866653	866689	866753 2_nonsis	37	691	1345	1	15	1	1	0 (6:2)_(4:4aCO)
72 TRMS1	TRMS	9	258253	259266	259266	259784 2_nonsis	1	766	1530	1	15	1	1	0 (6:2)_(4:4aCO)
54 TRMS1	TRMS	6	73933	74753	75101	75368 2_nonsis	349	892	1434	1	15	1	1	0 (6:2)_(4:4aCO)
71 TRMS1	TRMS	8	460801	462297	462825	463320 2_nonsis	529	1524	2518	1	15	1	1	0 (6:2)_(4:4aCO)
60 TRMS1	TRMS	7	584298	584414	585695	586087 2_nonsis	1282	1535	1788	1	15	1	1	0 (6:2)_(4:4aCO)
123 TRMS1	TRMS	14	272416	272546	273928	274328 2_nonsis	1383	1647	1911	1	15	1	1	0 (6:2)_(4:4aCO)
83 TRMS1	TRMS	10	452919	455260	455335	457950 2_nonsis	76	2553	5030	1	15	1	1	0 (6:2)_(4:4aCO)
131 TRMS1	TRMS	14	736660	736686	736686	736739 2_nonsis	1	40	78	1	16	1	1	0 (2:6)_(4:4aCO)
6 TRMS1	TRMS	2	216513	216541	216541	216631 2_nonsis	1	59	117	1	16	1	1	0 (2:6)_(4:4aCO)
49 TRMS1	TRMS	5	339113	339244	339325	339466 2_nonsis	82	217	352	1	16	1	1	0 (2:6)_(4:4aCO)
99 TRMS1	TRMS	11	619607	619794	619794	620047 2_nonsis	1	220	439	1	16	1	1	0 (2:6)_(4:4aCO)
91 TRMS1	TRMS	11	80854	81244	81244	81361 2_nonsis	1	254	506	1	16	1	1	0 (2:6)_(4:4aCO)
45 TRMS1	TRMS	4	1476514	1476956	1476956	1477116 2_nonsis	1	301	601	1	16	1	1	0 (2:6)_(4:4aCO)
30 TRMS1	TRMS	4	794075	794507	794603	794676 2_nonsis	97	349	600	1	16	1	1	0 (2:6)_(4:4aCO)
102 TRMS1	TRMS	12	147585	148018	148120	148252 2_nonsis	103	385	666	1	16	1	1	0 (2:6)_(4:4aCO)
110 TRMS1	TRMS	13	178203	178325	178570	178780 2_nonsis	246	411	576	1	16	1	1	0 (2:6)_(4:4aCO)
92 TRMS1	TRMS	11	217058	217298	217514	217814 2_nonsis	217	486	755	1	16	1	1	0 (2:6)_(4:4aCO)
17 TRMS1	TRMS	4	29701	30086	30545	30752 2_nonsis	460	755	1050	1	16	1	1	0 (2:6)_(4:4aCO)
44 TRMS1	TRMS	4	1361086	1361801	1362236	1362620 2_nonsis	436	985	1533	1	16	1	1	0 (2:6)_(4:4aCO)
125 TRMS1	TRMS	14	355289	355500	355500	357348 2_nonsis	1	1030	2058	1	16	1	1	0 (2:6)_(4:4aCO)
134 TRMS1	TRMS	15	296804	296918	297302	298844 2_nonsis	385	1212	2039	1	16	1	1	0 (2:6)_(4:4aCO)
94 TRMS1	TRMS	11	309310	309621	310861	310963 2_nonsis	1241	1447	1652	1	16	1	1	0 (2:6)_(4:4aCO)
117 TRMS1	TRMS	13	796648	796868	798261	798332 2_nonsis	1394	1539	1683	1	16	1	1	0 (2:6)_(4:4aCO)
139 TRMS1	TRMS	15	572419	572520	573534	574716 2_nonsis	1015	1656	2296	1	16	1	1	0 (2:6)_(4:4aCO)
56 TRMS1	TRMS	6	201959	202421	203799	204006 2_nonsis	1379	1713	2046	1	16	1	1	0 (2:6)_(4:4aCO)
11 TRMS1	TRMS	2	527703	528294	529552	530826 2_nonsis	1259	2191	3122	1	16	1	1	0 (2:6)_(4:4aCO)
133 TRMS1	TRMS	15	196803	197943	199433	200443 2_nonsis	1491	2565	3639	1	16	1	1	0 (2:6)_(4:4aCO)
5 TRMS1	TRMS	2	177287	177793	180379	181279 2_nonsis	2587	3289	3991	1	16	1	1	0 (2:6)_(4:4aCO)
38 TRMS1	TRMS	4	1034345	1034463	1034345	1034463 2_nonsis	0	59	117	1	100	1	1	0 (4:4aCO)
141 TRMS1 79 TRMS1	TRMS TRMS	15 10	586076 254247	586304 254489	586076 254247	586304 2_nonsis	0	114 121	227 241	1	100 100	1	1	0 (4:4aCO)
79 TRMS1 78 TRMS1	TRMS	10	71182	71728	71182	254489 2_nonsis 71728 2_nonsis	0	273	545	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
149 TRMS1	TRMS	16	74327	71728	74327	71728 2_nonsis 74884 2_nonsis	0	278	545 556	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
84 TRMS1	TRMS	10	459431	460257	459431	460257 2_nonsis	0	413	825	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
55 TRMS1	TRMS	6	79488	80386	79488	80386 2_nonsis	0	449	823 897	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
137 TRMS1	TRMS	15	493415	494313	493415	494313 2_nonsis	0	449	897	1	100	1	1	0 (4:4aCO)
137 TRMS1	TRMS	15	409351	410471	493413	410471 2_nonsis	0	560	1119	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
2 TRMS1	TRMS	13	71616	72952	71616	72952 2_nonsis	0	668	1335	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
129 TRMS1	TRMS	14	487250	488587	487250	488587 2_nonsis	0	668	1336	1	100	1	1	0 (4:4aCO)
158 TRMS1	TRMS	16	712507	713880	712507	713880 2_nonsis	0	686	1372	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
87 TRMS1	TRMS	10	559033	560471	559033	560471 2_nonsis	0	719	1437	1	100	1	1	0 (4:4aCO)
136 TRMS1	TRMS	15	491483	493178	491483	493178 2_nonsis	0	847	1694	1	100	1	1	0 (4:4aCO)
127 TRMS1	TRMS	14	456437	458514	456437	458514 2_nonsis	0	1038	2076	1	100	1	1	0 (4:4aCO)
66 TRMS1	TRMS	7	956057	958235	956057	958235 2_nonsis	0	1089	2177	1	100	1	1	0 (4:4aCO)
57 TRMS1	TRMS	7	248225	250680	248225	250680 2_nonsis	0	1227	2454	1	100	1	1	0 (4:4aCO)

126 TRMS1	TRMS	14	453937	456437	453937	456437 2_nonsis		0	1250	2499	1	100	1	1	0 (4:4aCO)
7 TRMS1	TRMS	2	284108	286708	284108	286708 2_nonsis		0	1300	2599	1	100	1	1	0 (4.4aCO)
115 TRMS1	TRMS	13	692858	695679	692858	695679 2_nonsis		0	1410	2820	1	100	1	1	0 (4.4aCO)
27 TRMS1	TRMS	4	696499	699436	696499	699436 2_nonsis		0	1468	2936	1	100	1	1	0 (4:4aCO)
33 TRMS1	TRMS	4	848341	851311	848341	851311 2_nonsis		0	1485	2969	1	100	1	1	0 (4:4aCO)
73 TRMS1	TRMS	9	267668	270689	267668	270689 2_nonsis		0	1510	3020	1	100	1	1	0 (4:4aCO)
140 TRMS1	TRMS	15	574716	577827	574716	577827 2_nonsis		0	1555	3110	1	100	1	1	0 (4:4aCO)
74 TRMS1	TRMS	9	329125	332459	329125	332459 2_nonsis		0	1667	3333	1	100	1	1	0 (4:4aCO)
26 TRMS1	TRMS	4	586457	590328	586457	590328 2_nonsis		0	1935	3870	1	100	1	1	0 (4:4aCO)
108 TRMS1	TRMS	12	803833	808209	803833	808209 2_nonsis		0	2188	4375	1	100	1	1	0 (4:4aCO)
148 TRMS1	TRMS	15	1037505	1037595	1037757	1038438 2_nonsis		163	548	932	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
22 TRMS1	TRMS	4	284001	284171	284557	285372 2_nonsis		387	879	1370	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
1 TRMS1	TRMS	1	33077	33147	33358	33548 2_nonsis		212	341	470	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
19 TRMS1	TRMS	4	176519 614501	176588	177780	177807 2_nonsis		1193	1240	1287	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
155 TRMS1 114 TRMS1	TRMS	16 13	651148	614631 651277	615882 654624	616361 2_nonsis 654748 2_nonsis		1252 3348	1556 3474	1859 3599	3	20 20	1	1	0 (2:6) (4:4aCO) (6:2) (4:4a)
47 TRMS1	TRMS	5	115890	115997	116577	054748 2_nonsis 117072 2_sis		581	3474 881	3399 1181	0	20	2	0	0 (2:6)_(4:4)_(2:6)_(4:4aCO)_(6:2)_(4:4a) 2 (0:8)_(4:4)
109 TRMS1	TRMS	13	157807	159018	159018	160135 2 sis		361	1164	2327	0	1	2	0	
109 TRMS1	TRMS	15	745114	745138	745929	746695 2_sis		792	1186	1580	0	1	2	0	2 (0:8)_(4:4) 2 (2:6)_(0:8)_(2:6a)_(4:4)
4 TRMS1	TRMS	13	112136	113132	129075	129476	3	15944	16642	17339	0	2	2	1	2 (2.0)_(0.0)_(2.0a)_(4.4) 1 (6:2)_(6:2a)_(4:4aCO)
32 TRMS1	TRMS	4	843125	843494	847587	848341	3	4094	4655	5215	0	2	2	1	1 (6:2) (6:29) (4:48CO) (16:20) (4:48CO)
41 TRMS1	TRMS	4	1153966	1161539	1162787	1163371	3	1249	5327	9404	0	2	2	1	1 (6:2)_(5:6)_(6:2)_(4:4aC0)
68 TRMS1	TRMS	7	989982	990395	997225	997372	3	6831	7110	7389	0	2	2	1	1 (0.8) (4.4) (4.4) (0.8) (4.4
75 TRMS1	TRMS	9	332503	333073	334775	334877	3	1703	2038	2373	0	2	2	1	1 (6:2)_(4:4)_(2:6)_(4:4aCO)
152 TRMS1	TRMS	16	383387	383599	383599	385830	3	1	1222	2442	0	2	2	1	(6:2)(4:4aCO)
9 TRMS1	TRMS	2	432851	435650	435951	436119 2_nonsis	,	302	1785	3267	0	3	2	0	2 (2:6)_[4:4aCO]_(4:4CO)
48 TRMS1	TRMS	5	262042	262212	269239	269982 2_nonsis		7028	7484	7939	0	3	2	0	2 (2:6)_(4:4aC0)_(2:6)_(4:4a)_(2:6)_(4:4C0)
64 TRMS1	TRMS	7	848688	849134	849134	849405	3	1	359	716	0	3	2	1	1 (4:48CO)_(4:45CO)
82 TRMS1	TRMS	10	332672	337220	341586	342031	4	4367	6863	9358	0	3	2	1	1 (6:2)_(4:4)_(6:2a)_(4:4aCO)_(4:4bCO)
90 TRMS1	TRMS	11	68014	68298	71964	72168 2_nonsis		3667	3910	4153	0	3	2	0	2 (6:2)_(4:4aCO)_(2:6)_(4:4CO)
100 TRMS1	TRMS	12	17162	17865	18460	19080 2_nonsis		596	1257	1917	0	3	2	0	2 (2:6)_(4:4aCO), (2:6)_(4:4CO)
138 TRMS1	TRMS	15	531055	531368	532110	538230 2_nonsis		743	3959	7174	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
89 TRMS2	TRMS	16	187312	187323	187323	187324	1	1	6	11	1	10	1	0	1 06:02
72 TRMS2	TRMS	14	135855	135879	135879	135908	1	1	27	52	1	10	1	0	1 06:02
15 TRMS2	TRMS	4	1161819	1161892	1161892	1161927	1	1	54	107	1	10	1	0	1 06:02
23 TRMS2	TRMS	5	341688	342057	342057	342537	1	1	425	848	1	10	1	0	1 06:02
29 TRMS2	TRMS	7	49026	49323	49965	50143	1	643	880	1116	1	10	1	0	1 06:02
4 TRMS2	TRMS	2	451373	451982	452891	453417	1	910	1477	2043	1	10	1	0	1 06:02
75 TRMS2	TRMS	14	196345	196819	198236	198384	1	1418	1728	2038	1	10	1	0	1 06:02
48 TRMS2	TRMS	10	570822	573135	574412	576464	1	1278	3460	5641	1	10	1	0	1 06:02
52 TRMS2	TRMS	11	89262	89273	89285	89332	1	13	41	69	1	10.1	1	0	1 02:06
65 TRMS2	TRMS	13	209199	209233	209248	209422	1	16	119	222	1	10.1	1	0	1 02:06
58 TRMS2	TRMS	12	341507	341678	342190	342448	1	513	727	940	1	10.1	1	0	1 02:06
67 TRMS2	TRMS	13	453503	453738	454197	454515	1	460	736	1011	1	10.1	1	0	1 02:06
94 TRMS2	TRMS	16	842086	842864	843042	843391	1	179	742	1304	1	10.1	1	0	1 02:06
78 TRMS2	TRMS	14	433271	434561	434561	435509	1	1	1119	2237	1	10.1	1	0	1 02:06
45 TRMS2	TRMS	9	49641	51046	51375	53832	1	330	2260	4190	1	10.1	1	0	1 02:06
83 TRMS2	TRMS	15	295611	296401	296475	296786 2_nonsis		75	625	1174	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
34 TRMS2	TRMS	7	370360	370393	371116	372223 2_nonsis		724	1293	1862	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
16 TRMS2	TRMS	4	1168663	1168940	1170023	1170239 2_nonsis		1084	1330	1575	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
10 TRMS2	TRMS	4	521269	521409	521536	521623 2_nonsis		128	241	353	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
1 TRMS2	TRMS	1	51522	51774	52632	52846 2_nonsis		859	1091	1323	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
26 TRMS2	TRMS	6	63014	64252	65326	65504 2_nonsis		1075	1782	2489	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
60 TRMS2	TRMS	12	871504	872180	873300	874112 2_nonsis		1121	1864	2607	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
3 TRMS2	TRMS	2	99630	100295	101704	102053 2_nonsis		1410	1916	2422	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
36 TRMS2	TRMS	7	461146	461588	463348	463843 2_nonsis		1761	2229	2696	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
31 TRMS2	TRMS	7	74791	75209	80976	81268 2_nonsis		5768	6122	6476	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
77 TRMS2	TRMS	14	306527	307339	311556	311614 2_nonsis		4218	4652	5086	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(4:4aCO)
21 TRMS2	TRMS	5	42280	42354	46756	46832 2_nonsis		4403	4477	4551	1	12	1	1	0 (6:2) (4:4) (6:2) (4:4aCO) (6:2) (4:4a)
74 TRMS2	TRMS	14	186475	186921	186992	187434 2_nonsis		72	515	958	1	15	1	1	0 (6:2)_(4:4aCO)

88 TRMS2	TRMS	15	968360	968476	968991	969441 2_nonsis		516	798	1080	1	15	1	1	0 (6:2)_(4:4aCO)
81 TRMS2	TRMS	14	667685	668135	668135	669471 2 nonsis		1	893	1785	1	15	1	1	0 (6:2)_(4:4aCO)
17 TRMS2	TRMS	4	1268647	1269918	1269918	1270457 2 nonsis		1	905	1809	1	15	1	1	0 (6:2)_(4:4aCO)
61 TRMS2	TRMS	12	876120	877476	877699	878238 2_nonsis		224	1171	2117	1	15	1	1	0 (6:2)_(4:4aCO)
43 TRMS2	TRMS	7	1007272	1008949	1009315	1010365 2_nonsis		367	1730	3092	1	15	1	1	0 (6:2)_(4:4aCO)
46 TRMS2	TRMS	9	185865	188629	188919	189195 2_nonsis		291	1810	3329	1	15	1	1	0 (6:2)_(4:4aCO)
37 TRMS2	TRMS	7	701596	701914	702791	704403 2_nonsis		878	1842	2806	1	15	1	1	0 (6:2)_(4:4aCO)
55 TRMS2	TRMS	11	525514	525645	527630	527758 2_nonsis		1986	2115	2243	1	15	1	1	0 (6:2)_(4:4aCO)
11 TRMS2	TRMS	4	625839	629487	629532	631576 2_nonsis		46	2891	5736	1	15	1	1	0 (6:2)_(4:4aCO)
93 TRMS2	TRMS	16	736980	739339	741423	741972 2_nonsis		2085	3538	4991	1	15	1	1	0 (6:2)_(4:4aCO)
91 TRMS2	TRMS	16	348056	348373	356993	357487 2_nonsis		8621	9026	9430	1	15	1	1	0 (6:2)_(4:4aCO)
84 TRMS2	TRMS	15	384791	384919	384919	384942 2_nonsis		1	76	150	1	16	1	1	0 (2:6)_(4:4aCO)
80 TRMS2	TRMS	14	544744	545184	545184	545273 2_nonsis		1	265	528	1	16	1	1	0 (2:6)_(4:4aCO)
9 TRMS2	TRMS	4	263811	264106	264197	264290 2_nonsis		92	285	478	1	16	1	1	0 (2:6)_(4:4aCO)
30 TRMS2	TRMS	7	51531	51819	51819	52326 2_nonsis		1	398	794	1	16	1	1	0 (2:6)_(4:4aCO)
8 TRMS2	TRMS	4	171661	171817	172175	172830 2_nonsis		359	764	1168	1	16	1	1	0 (2:6)_(4:4aCO)
69 TRMS2	TRMS	13	759679	759844	760322	760768 2_nonsis		479	784	1088	1	16	1	1	0 (2:6)_(4:4aCO)
54 TRMS2	TRMS	11	309823	310035	310798	310828 2_nonsis		764	884	1004	1	16	1	1	0 (2:6)_(4:4aCO)
62 TRMS2	TRMS	13	25638	25829	26434	26922 2_nonsis		606	945	1283	1	16	1	1	0 (2:6)_(4:4aCO)
32 TRMS2	TRMS	7	253916	254088	254273	255756 2_nonsis		186	1013	1839	1	16	1	1	0 (2:6)_(4:4aCO)
38 TRMS2	TRMS	7	886106	886758	887281	887698 2_nonsis		524	1058	1591	1	16	1	1	0 (2:6)_(4:4aCO)
59 TRMS2	TRMS	12	776373	777814	778158	779222 2_nonsis		345	1597	2848	1	16	1	1	0 (2:6)_(4:4aCO)
	TRMS		211226	212026	213226	213278 2_nonsis		1201	1626	2051	1	16	1	1	
56 TRMS2 87 TRMS2	TRMS	12 15	810765	811006	812380			1375	1636	1896	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
						812662 2_nonsis					-		-	-	
50 TRMS2	TRMS	10	704426	705450	705450	707903 2_nonsis		1	1739	3476	1	16	1	1	0 (2:6)_(4:4aCO)
20 TRMS2	TRMS	5	24112	25325	26594	26638 2_nonsis		1270	1898	2525	1	16	1	1	0 (2:6)_(4:4aCO)
19 TRMS2	TRMS	4	1335831	1338084	1339443	1340160 2_nonsis		1360	2844	4328	1	16	1	1	0 (2:6)_(4:4aCO)
28 TRMS2	TRMS	6	205395	205576	209430	210003 2_nonsis		3855	4231	4607	1	16	1	1	0 (2:6)_(4:4aCO)
27 TRMS2	TRMS	6	196194	196491	196194	196491 2_nonsis		0	148	296	1	100	1	1	0 (4:4aCO)
51 TRMS2	TRMS	11	31754	32124	31754	32124 2_nonsis		0	185	369	1	100	1	1	0 (4:4aCO)
90 TRMS2	TRMS	16	217557	217929	217557	217929 2_nonsis		0	186	371	1	100	1	1	0 (4:4aCO)
66 TRMS2	TRMS	13	243623	244001	243623	244001 2_nonsis		0	189	377	1	100	1	1	0 (4:4aCO)
47 TRMS2	TRMS	9	267764	268176	267764	268176 2_nonsis		0	206	411	1	100	1	1	0 (4:4aCO)
2 TRMS2	TRMS	1	130362	130776	130362	130776 2_nonsis		0	207	413	1	100	1	1	0 (4:4aCO)
49 TRMS2	TRMS	10	641631	642317	641631	642317 2_nonsis		0	343	685	1	100	1	1	0 (4:4aCO)
14 TRMS2	TRMS	4	1008685	1009606	1008685	1009606 2_nonsis		0	460	920	1	100	1	1	0 (4:4aCO)
68 TRMS2	TRMS	13	556437	557365	556437	557365 2_nonsis		0	464	927	1	100	1	1	0 (4:4aCO)
64 TRMS2	TRMS	13	170002	170932	170002	170932 2_nonsis		0	465	929	1	100	1	1	0 (4:4aCO)
33 TRMS2	TRMS	7	329667	330839	329667	330839 2_nonsis		0	586	1171	1	100	1	1	0 (4:4aCO)
24 TRMS2	TRMS	5	450386	451710	450386	451710 2_nonsis		0	662	1323	1	100	1	1	0 (4:4aCO)
7 TRMS2	TRMS	4	133023	134651	133023	134651 2 nonsis		0	814	1627	1	100	1	1	0 (4:4aCO)
53 TRMS2	TRMS	11	299201	300874	299201	300874 2_nonsis		0	836	1672	1	100	1	1	0 (4:4aCO)
6 TRMS2	TRMS	2	695479	698250	695479	698250 2_nonsis		0	1385	2770	1	100	1	1	0 (4:4aCO)
85 TRMS2	TRMS	15	563779	566628	563779	566628 2_nonsis		0	1424	2848	1	100	1	1	0 (4:4aCO)
								0			1		1	1	
79 TRMS2	TRMS	14 13	539950	543829	539950	543829 2_nonsis			1939	3878		100	1	1	0 (4:4aCO)
70 TRMS2	TRMS		798063	798090	798261	798332 2_nonsis		172	220	268	3	20			0 (6:2)_(2:6)_(4:4aCO)
13 TRMS2	TRMS	4	878186	884761	885455	885734 2_nonsis		695	4121	7547	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
40 TRMS2	TRMS	7	986604	986691	988528	988550 2_sis		1838	1892	1945	0	1	2	0	2 (0:8)_(4:4)_(0:8)_(4:4)_(0:8)_(4:4)_(0:8)_(4:4)_(0:8)_(4:4)_(0:8)_(4:4)
42 TRMS2	TRMS	7	1004566	1005019	1006156	1006862 2_sis		1138	1717	2295	0	1	2	0	2 (6:2)_(4:4)_(6:2a)_(4:4)
12 TRMS2	TRMS	4	699436	699549	703905	706032	3	4357	5476	6595	0	3	2	1	1 (6:2)_(4:4)_(6:2)_(4:4aCO)_(6:2)_(4:4a)_(4:4bCO)
39 TRMS2	TRMS	7	950639	951196	952040	952100	3	845	1153	1460	0	3	2	0	2 (4:4aCO)_(4:4CO)_(6:2)_(0:8)_(4:4)
76 TRMS2	TRMS	14	287504	287606	289345	289457 2_nonsis		1740	1846	1952	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)
86 TRMS2	TRMS	15	771781	772232	774747	774866 2_nonsis		2516	2800	3084	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)
208 TRN1	TRN	16	170258	170349	170759	170856	1	411	504	597	1	7	1	0	1 6:2_4:4_6:2
118 TRN1	TRN	10	194259	194790	196724	197018	1	1935	2347	2758	1	7	1	0	1 6:2_4:4_6:2
11 TRN1	TRN	2	175526	175964	179266	180070	1	3303	3923	4543	1	7	1	0	1 6:2_4:4_6:2
85 TRN1	TRN	7	613788	613946	620150	620222	1	6205	6319	6433	1	8	1	0	1 2:6_4:4_2:6
4 TRN1	TRN	1	102864	103068	103110	103141	1	43	160	276	1	10	1	0	1 06:02
67 TRN1	TRN	5	487274	487436	487470	487609	1	35	185	334	1	10	1	0	1 06:02
65 TRN1	TRN	5	370850	370893	370940	371210	1	48	204	359	1	10	1	0	1 06:02
	••	-										-		-	

115 TRN1	TRN	10	122256	122391	122391	122718	1	1	231	461	1	10	1	0	1 06:02
204 TRN1	TRN	16	21426	21432	21642	21690	1	211	237	263	1	10	1	0	1 06:02
2 TRN1	TRN	1	66148	66178	66178	66696	1	1	274	547	1	10	1	0	1 06:02
12 TRN1	TRN	2	181425	181705	181705	182128	1	1	352	702	1	10	1	0	1 06:02
114 TRN1	TRN	10	63405	63597	63597	64213	1	1	404	807	1	10	1	0	1 06:02
60 TRN1	TRN	5	180284	180460	180460	181108	1	1	412	823	1	10	1	0	1 06:02
132 TRN1	TRN	11	374056	374207	374411	375324	1	205	736	1267	1	10	1	0	1 06:02
109 TRN1	TRN	9	368159	368214	368868	369297	1	655	896	1137	1	10	1	0	1 06:02
73 TRN1	TRN	6	88777	89605	89980	90217	1	376	908	1439	1	10	1	0	1 06:02
202 TRN1	TRN	15	1038535	1038714	1039824	1040442	1	1111	1509	1906	1	10	1	0	1 06:02
209 TRN1	TRN	16	173330	173979	175137	175312	1	1159	1570	1981	1	10	1	0	1 06:02
3 TRN1	TRN	1	71616	73633	74190	74538	1	558	1740	2921	1	10	1	0	1 06:02
205 TRN1	TRN	16	31264	32078	33006	33858	1	929	1761	2593	1	10	1	0	1 06:02
174 TRN1	TRN	13	738608	739012	740606	741174	1	1595	2080	2565	1	10	1	0	1 06:02
162 TRN1	TRN	12	1034264	1035874	1036112	1038435	1	239	2205	4170	1	10	1	0	1 06:02
							-	779		4647	-		-		
8 TRN1	TRN	1	137336	138499	139277	141984	1		2713		1	10	1	0	1 06:02
169 TRN1	TRN	13	414719	415535	417524	418982	1	1990	3126	4262	1	10	1	0	1 06:02
123 TRN1	TRN	10	628891	629879	629879	635210	1	1	3160	6318	1	10	1	0	1 06:02
19 TRN1	TRN	2	695479	699461	700423	701135	1	963	3309	5655	1	10	1	0	1 06:02
5 TRN1	TRN	1	104068	108457	108928	110856	1	472	3630	6787	1	10	1	0	1 06:02
97 TRN1	TRN	8	203922	204071	209742	210057	1	5672	5903	6134	1	10	1	0	1 06:02
43 TRN1	TRN	4	462986	463089	469779	470731	1	6691	7218	7744	1	10	1	0	1 06:02
196 TRN1	TRN	15	698870	700016	703419	710179	1	3404	7356	11308	1	10	1	0	1 06:02
148 TRN1	TRN	12	409113	409269	416918	417083	1	7650	7810	7969	1	10	1	0	1 06:02
212 TRN1	TRN	16	444028	444118	444118	444202	1	1	87	173	1	10.1	1	0	1 02:06
20 TRN1	TRN	2	711439	711722	711722	711792	1	1	177	352	1	10.1	1	0	1 02:06
27 TRN1	TRN	3	70158	70491	70491	70617	1	1	230	458	1	10.1	1	0	1 02:06
92 TRN1	TRN	8	110129	110256	110256	110685	1	1	278	555	1	10.1	1	0	1 02:06
140 TRN1	TRN	12	29131	29612	29612	29773	1	1	321	641	1	10.1	1	0	1 02:06
203 TRN1	TRN						1	1	321	649	1		1		
203 TRN1 87 TRN1		15 7	1043151	1043361	1043361	1043801	-		325			10.1	1	0	1 02:06
	TRN		970527	970797	970797	971296	1	1		768	1	10.1	-	0	1 02:06
25 TRN1	TRN	2	792247	792968	792968	793142	1	1	448	894	1	10.1	1	0	1 02:06
112 TRN1	TRN	9	427210	428011	428011	428213	1	1	502	1002	1	10.1	1	0	1 02:06
47 TRN1	TRN	4	931988	932298	932535	933005	1	238	627	1016	1	10.1	1	0	1 02:06
151 TRN1	TRN	12	566615	567266	567266	567957	1	1	671	1341	1	10.1	1	0	1 02:06
53 TRN1	TRN	4	1378471	1379733	1379733	1380091	1	1	810	1619	1	10.1	1	0	1 02:06
10 TRN1	TRN	2	73354	73472	73943	74853	1	472	985	1498	1	10.1	1	0	1 02:06
86 TRN1	TRN	7	678883	679675	679675	681013	1	1	1065	2129	1	10.1	1	0	1 02:06
16 TRN1	TRN	2	551109	551347	552407	552625	1	1061	1288	1515	1	10.1	1	0	1 02:06
94 TRN1	TRN	8	125140	125249	126397	126572	1	1149	1290	1431	1	10.1	1	0	1 02:06
54 TRN1	TRN	4	1382859	1383527	1384710	1384770	1	1184	1547	1910	1	10.1	1	0	1 02:06
90 TRN1	TRN	7	1046941	1050057	1050064	1050446	1	8	1756	3504	1	10.1	1	0	1 02:06
32 TRN1	TRN	4	51985	52534	53890	54185	1	1357	1778	2199	1	10.1	1	0	1 02:06
155 TRN1	TRN	12	623758	624838	627543	628215	1	2706	3581	4456	1	10.1	1	0	1 02:06
178 TRN1	TRN	14	95765	96083	96482	102681	1	400	3658	6915	1	10.1	1	0	1 02:06
211 TRN1	TRN	16	428065	428562	432538	433340	1	3977	4626	5274	1	10.1	1	0	1 02:06
141 TRN1	TRN	12	63859	65485	69317	69569	1	3833	4771	5709	1	10.1	1	0	1 02:06
34 TRN1	TRN	4	108917	109331			1		5933	6728	1	10.1	1	0	1 02:06
					114468	115646		5138							
38 TRN1	TRN	4	278692	280191	286258	287699	1	6068	7537	9006	1	10.1	1	0	1 02:06
158 TRN1	TRN	12	892436	930472	932256	932270	1	1785	20809	39833	1	10.1	1	0	1 02:06
102 TRN1	TRN	8	506475	506810	507567	508481 2_nonsis		758	1382	2005	3	30	1	0	1 2:6_6:2
44 TRN1	TRN	4	539680	540228	546573	547556 2_nonsis		6346	7111	7875	3	30	1	0	1 6:2_2:6
121 TRN1	TRN	10	618846	621779	624474	624648 2_nonsis		2696	4249	5801	3	30	1	0	1 6:2_4:4_2:6
84 TRN1	TRN	7	609887	609903	609958	610218 2_nonsis		56	193	330	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
173 TRN1	TRN	13	677544	678210	678756	680399 2_nonsis		547	1701	2854	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
128 TRN1	TRN	11	49756	52399	55280	56302 2_nonsis		2882	4714	6545	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
	TRN	5	228115	228711	229493	229569 2_nonsis		783	1118	1453	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
62 TRN1			73727	73810	74791	75209 2_nonsis		982	1232	1481	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
62 TRN1 79 TRN1	TRN	7	13121												
	TRN TRN	7	783589	783778	785066	785146 2_nonsis		1289	1423	1556	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)

64 TRN1	TRN	5	367125	367786	369120	369437 2_nonsis	1335	1823	2311	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
103 TRN1	TRN	9	93804	93903	96388	96801 2_nonsis	2486	2741	2996	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
41 TRN1	TRN	4	386506	386891	390027	390097 2_nonsis	3137	3364	3590	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
215 TRN1	TRN	16	529749	529944	533888	534359 2_nonsis	3945	4277	4609	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
186 TRN1	TRN	14	727862	728049	733411	733695 2_nonsis	5363	5598	5832	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
193 TRN1	TRN	15	476972	477610	487166	487809 2_nonsis	9557	10197	10836	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
160 TRN1	TRN	12	1006428	1006617	1006617	1006629 2_nonsis	1	101	200	1	15	1	1	0 (6:2)_(4:4aCO)
77 TRN1	TRN	6	246034	246259	246293	246533 2_nonsis	35	267	498	1	15	1	1	0 (6:2)_(4:4aCO)
142 TRN1	TRN	12	71722	72088	72088	72448 2_nonsis	1	363	725	1	15	1	1	0 (6:2)_(4:4aCO)
39 TRN1	TRN	4	292517	292751	292776	293276 2_nonsis	26	392	758	1	15	1	1	0 (6:2)_(4:4aCO)
147 TRN1	TRN	12	406709	406726	407016	407362 2_nonsis	291	472	652	1	15	1	1	0 (6:2)_(4:4aCO)
72 TRN1	TRN	6	41791	42233	42346	42743 2_nonsis	114	533	951	1	15	1	1	0 (6:2)_(4:4aCO)
119 TRN1	TRN	10	380706	380992	381120	381644 2_nonsis	129	533	937	1	15	1	1	0 (6:2)_(4:4aCO)
18 TRN1	TRN	2	590982	592600	592749	592905 2_nonsis	150	1036	1922	1	15	1	1	0 (6:2)_(4:4aCO)
52 TRN1	TRN	4	1355944	1357024	1357270	1357979 2_nonsis	247	1141	2034	1	15	1	1	0 (6:2)_(4:4aCO)
210 TRN1	TRN	16	177345	178167	179066	179451 2_nonsis	900	1503	2105	1	15	1	1	0 (6:2)_(4:4aCO)
200 TRN1	TRN	15	962816	965123	965240	966067 2_nonsis	118	1684	3250	1	15	1	1	0 (6:2)_(4:4aCO)
135 TRN1	TRN	11	540879	541329	542924	542955 2_nonsis	1596	1836	2075	1	15	1	1	0 (6:2)_(4:4aCO)
197 TRN1	TRN	15	717433	717703	718752	720202 2_nonsis	1050	1909	2768	1	15	1	1	0 (6:2)_(4:4aCO)
104 TRN1	TRN	9	133870	135647	136172	137266 2_nonsis	526	1961	3395	1	15	1	1	0 (6:2)_(4:4aCO)
176 TRN1	TRN	14	45407	46489	46932	49011 2_nonsis	444	2024	3603	1	15	1	1	0 (6:2)_(4:4aCO)
15 TRN1	TRN	2	451502	451982	454207	454272 2_nonsis	2226	2498	2769	1	15	1	1	0 (6:2)_(4:4aCO)
138 TRN1	TRN	11	638298	639711	642207	642394 2_nonsis	2497	3296	4095	1	15	1	1	0 (6:2)_(4:4aCO)
30 TRN1	TRN	3	236387	236702	239515	240922 2_nonsis	2814	3674	4534	1	15	1	1	0 (6:2)_(4:4aCO)
127 TRN1	TRN	10	717437	718433	720763	723650 2_nonsis	2331	4272	6212	1	15	1	1	0 (6:2)_(4:4aCO)
150 TRN1	TRN	12	511581	511773	516236	516783 2_nonsis	4464	4833	5201	1	15	1	1	0 (6:2)_(4:4aCO)
45 TRN1	TRN	4	714934	715058	719896	720645 2_nonsis	4839	5275	5710	1	15	1	1	0 (6:2)_(4:4aCO)
99 TRN1	TRN	8	311445	311928	317561	317992 2_nonsis	5634	6090	6546	1	15	1	1	0 (6:2)_(4:4aCO)
182 TRN1	TRN	14	284847	285069	291665	292265 2_nonsis	6597	7007	7417	1	15	1	1	0 (6:2)_(4:4aCO)
37 TRN1	TRN	4	172175	172830	183023	183468 2_nonsis	10194	10743	11292	1	15	1	1	0 (6:2)_(4:4aCO)
69 TRN1	TRN	5	539346	540205	551411	551635 2_nonsis	11207	11748	12288	1	15	1	1	0 (6:2)_(4:4aCO)
116 TRN1	TRN	10	127063	127567	146059	146367 2_nonsis	18493	18898	19303	1	15	1	1	0 (6:2)_(4:4aCO)
194 TRN1	TRN	15	564208	564299	564299	564575 2_nonsis	1	184	366	1	16	1	1	0 (2:6)_(4:4aCO)
76 TRN1	TRN	6	226238	226370	226370	226615 2_nonsis	1	189	376	1	16	1	1	0 (2:6)_(4:4aCO)
66 TRN1	TRN	5	476465	476681	476809	476888 2_nonsis	129	276	422	1	16	1	1	0 (2:6)_(4:4aCO)
63 TRN1	TRN	5	312176	312320	312496	312588 2_nonsis	177	294	411	1	16	1	1	0 (2:6)_(4:4aCO)
61 TRN1	TRN	5	182242	182338	182381	182827 2_nonsis	44	314	584	1	16	1	1	0 (2:6)_(4:4aCO)
48 TRN1	TRN	4	936290	936980	936980	937139 2_nonsis	1	425	848	1	16	1	1	0 (2:6)_(4:4aCO)
106 TRN1	TRN	9	229515	230147	230147	230680 2_nonsis	1	583	1164	1	16	1	1	0 (2:6)_(4:4aCO)
199 TRN1	TRN	15	905801	906405	906405	907000 2_nonsis	1	600	1198	1	16	1	1	0 (2:6)_(4:4aCO)
152 TRN1	TRN	12	569539	569709	569709	570914 2_nonsis	1	688	1374	1	16	1	1	0 (2:6)_(4:4aCO)
129 TRN1	TRN	11	89072	89262	89674	90100 2_nonsis	413	720	1027	1	16	1	1	0 (2:6)_(4:4aCO)
49 TRN1	TRN	4	1013843	1013924	1013983	1015229 2_nonsis	60	723	1385	1	16	1	1	0 (2:6)_(4:4aCO)
134 TRN1	TRN	11	533318	533844	534319	535346 2_nonsis	476	1252	2027	1	16	1	1	0 (2:6)_(4:4aCO)
36 TRN1	TRN	4	167826	169331	169331	170532 2_nonsis	1	1353	2705	1	16	1	1	0 (2:6)_(4:4aCO)
113 TRN1	TRN	10	44863	45922	46312	47473 2_nonsis	391	1500	2609	1	16	1	1	0 (2:6)_(4:4aCO)
13 TRN1	TRN	2	354720	355349	356462	356648 2_nonsis	1114	1521	1927	1	16	1	1	0 (2:6)_(4:4aCO)
145 TRN1	TRN	12	288686	288976	290359	290479 2_nonsis	1384	1588	1792	1	16	1	1	0 (2:6)_(4:4aCO)
201 TRN1	TRN	15	1010673	1011684	1011803	1013810 2_nonsis	120	1628	3136	1	16	1	1	0 (2:6)_(4:4aCO)
82 TRN1	TRN	7	375933	376066	377296	378026 2_nonsis	1231	1662	2092	1	16	1	1	0 (2:6)_(4:4aCO)
95 TRN1	TRN	8	139506	141400	141400	142863 2_nonsis	1	1679	3356	1	16	1	1	0 (2:6)_(4:4aCO)
110 TRN1	TRN	9	383441	383530	385232	385272 2_nonsis	1703	1767	1830	1	16	1	1	0 (2:6)_(4:4aCO)
181 TRN1	TRN	14	242111	242759	243530	245040 2_nonsis	772	1850	2928	1	16	1	1	0 (2:6)_(4:4aCO)
184 TRN1	TRN	14	538640	539186	539950	542443 2_nonsis	765	2284	3802	1	16	1	1	0 (2:6)_(4:4aCO)
126 TRN1	TRN	10	711083	711149	713591	715501 2_nonsis	2443	3430	4417	1	16	1	1	0 (2:6)_(4:4aCO)
21 TRN1	TRN	2	713781	714130	717754	717945 2_nonsis	3625	3894	4163	1	16	1	1	0 (2:6)_(4:4aCO)
26 TRN1	TRN	3	64304	64391	68233	68852 2_nonsis	3843	4195	4547	1	16	1	1	0 (2:6)_(4:4aCO)
107 TRN1	TRN	9	263911	267668	270599	270689 2_nonsis	2932	4855	6777	1	16	1	1	0 (2:6)_(4:4aCO)
29 TRN1	TRN	3	211504	211617	216424	216599 2_nonsis	4808	4951	5094	1	16	1	1	0 (2:6)_(4:4aCO)
111 TRN1	TRN	9	420788	420931	426032	426151 2_nonsis	5102	5232	5362	1	16	1	1	0 (2:6)_(4:4aCO)

35 TRN1	TRN	4	155836	156500	160479	162357 2_nonsis		3980	5250	6520	1	16	1	1	0 (2:6)_(4:4aCO)
190 TRN1	TRN	15	190009	191548	196465	196695 2_nonsis		4918	5802	6685	1	16	1	1	0 (2:6)_(4:4aCO)
108 TRN1	TRN	9	338670	339115	344826	344902 2_nonsis		5712	5972	6231	1	16	1	1	0 (2:6)_(4:4aCO)
146 TRN1	TRN	12	299315	299490	305929	308379 2_nonsis		6440	7752	9063	1	16	1	1	0 (2:6)_(4:4aCO)
56 TRN1	TRN	4	1473117	1473635	1482150	1483402 2_nonsis		8516	9400	10284	1	16	1	1	0 (2:6)_(4:4aCO)
59 TRN1	TRN	5	18839	23192	29923	31247 2_nonsis		6732	9570	12407	1	16	1	1	0 (2:6)_(4:4aCO)
139 TRN1	TRN	12	23826	23900	23826	23900 2_nonsis		0	37	73	1	100	1	1	0 (4:4aCO)
89 TRN1	TRN	7	1014216	1014432	1014216	1014432 2_nonsis		0	108	215	1	100	1	1	0 (4:4aCO)
68 TRN1	TRN	5	490952	491222	490952	491222 2_nonsis		0	135	269	1	100	1	1	0 (4:4aCO)
165 TRN1	TRN	13	75275	75558	75275	75558 2_nonsis		0	141	282	1	100	1	1	0 (4:4aCO)
191 TRN1	TRN	15	272726	273137	272726	273137 2_nonsis		0	205	410	1	100	1	1	0 (4:4aCO)
149 TRN1	TRN	12	507075	507492	507075	507492 2_nonsis		0	208	416	1	100	1	1	0 (4:4aCO)
156 TRN1	TRN	12	788874	789356	788874	789356 2_nonsis		0	241	481	1	100	1	1	0 (4:4aCO)
133 TRN1	TRN	11	406489	407067	406489	407067 2_nonsis		0	289	577	1	100	1	1	0 (4:4aCO)
216 TRN1	TRN	16	670672	671392	670672	671392 2_nonsis		0	360	719	1	100	1	1	0 (4:4aCO)
192 TRN1	TRN	15	283744	284515	283744	284515 2_nonsis		0	385	770	1	100	1	1	0 (4:4aCO)
96 TRN1	TRN	8	159962	160782	159962	160782 2_nonsis		0	410	819	1	100	1	1	0 (4:4aCO)
98 TRN1	TRN	8	309135	309963	309135	309963 2_nonsis		0	414	827	1	100	1	1	0 (4:4aCO)
122 TRN1	TRN	10	627141	627999	627141	627999 2_nonsis		0	429	857	1	100	1	1	0 (4:4aCO)
183 TRN1	TRN	14	293347	294319	293347	294319 2_nonsis		0	486	971	1	100	1	1	0 (4:4aCO)
136 TRN1	TRN	11	603048	604059	603048	604059 2_nonsis		0	505	1010	1	100	1	1	0 (4:4aCO)
57 TRN1	TRN	4	1485012	1486166	1485012	1486166 2_nonsis		0	577	1153	1	100	1	1	0 (4:4aCO)
143 TRN1	TRN	12	184588	185813	184588	185813 2_nonsis		0	612	1224	1	100	1	1	0 (4:4aCO)
7 TRN1	TRN	1	135325	136910	135325	136910 2_nonsis		0	792	1584	1	100	1	1	0 (4:4aCO)
167 TRN1	TRN	13	255052	256691	255052	256691 2 nonsis		0	819	1638	1	100	1	1	0 (4:4aCO)
198 TRN1	TRN	15	821660	823421	821660	823421 2_nonsis		0	880	1760	1	100	1	1	0 (4:4aCO)
22 TRN1	TRN	2	749103	750883	749103	750883 2_nonsis		0	890	1779	1	100	1	1	0 (4:4aCO)
180 TRN1	TRN	14	216919	218712	216919	218712 2_nonsis		0	896	1792	1	100	1	1	0 (4:4aCO)
9 TRN1	TRN	2	41298	43330	41298	43330 2_nonsis		0	1016	2031	1	100	1	1	0 (4:4aCO)
130 TRN1	TRN	11	148157	150866	148157	150866 2_nonsis		0	1354	2708	1	100	1	1	0 (4:4aCO)
6 TRN1	TRN	1	132066	135319	132066	135319 2_nonsis		0	1626	3252	1	100	1	1	0 (4:4aCO)
28 TRN1	TRN	3	79797	83502	79797	83502 2_nonsis		0	1852	3704	1	100	1	1	0 (4:4aCO)
28 TRN1 124 TRN1	TRN	10	635321	640236				0	2457	4914			1		
					635321	640236 2_nonsis					1	100		1	0 (4:4aCO)
125 TRN1	TRN	10	697654	705639	697654	705639 2_nonsis		0	3992	7984	1	100	1	1	0 (4:4aCO)
93 TRN1	TRN	8	115113	115246	119053	119946 2_nonsis		3808	4320	4832	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
46 TRN1	TRN	4	825422	831279	837654	837953 2_nonsis		6376	9453	12530	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
179 TRN1	TRN	14	194143	194260	194860	195358 2_nonsis		601	908	1214	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
171 TRN1	TRN	13	504889	505551	507334	507502 2_nonsis		1784	2198	2612	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
33 TRN1	TRN	4	61275	62061	64539	64917 2_nonsis		2479	3060	3641	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
42 TRN1	TRN	4	433470	433591	439851	440205 2_nonsis		6261	6498	6734	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
188 TRN1	TRN	15	54339	55102	57166	57520 2_nonsis		2065	2623	3180	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)_(6:2)_(4:4a)
131 TRN1	TRN	11	345623	345918	348351	348497 2_nonsis		2434	2654	2873	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
58 TRN1	TRN	5	11381	11439	13009	13159 2_nonsis		1571	1674	1777	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)_(6:2)_(4:4a)
100 TRN1	TRN	8	481410	481494	485261	485522 2_nonsis		3768	3940	4111	3	20	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(2:6)_(4:4aCO)
74 TRN1	TRN	6	93664	93934	102071	102489 2_nonsis		8138	8481	8824	3	20	1	1	0 (6:2)_(2:6)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
78 TRN1	TRN	7	51330	51531	57855	58033	4	6325	6514	6702	0	1	2	0	2 (2:6)_(4:4)_(2:6)_(2:6a)_(0:8)_(8:0)_(2:6)_(4:4)
105 TRN1	TRN	9	138346	138429	145412	145517 2_sis		6984	7077	7170	0	1	2	0	2 (2:6)_(4:4)_(2:6a)_(4:4)
153 TRN1	TRN	12	572294	572662	579316	581223 2_sis		6655	7792	8928	0	1	2	0	2 (2:6)_(4:4)_(2:6a)_(4:4)
159 TRN1	TRN	12	936676	937242	939994	940048 2_sis		2753	3062	3371	0	1	2	0	2 (2:6)_(2:6a)_(4:4)
214 TRN1	TRN	16	520404	520684	521328	521940 2_sis		645	1090	1535	0	1	2	0	2 (6:2)_(8:0)_(4:4)
14 TRN1	TRN	2	427091	427568	436905	437703	3	9338	9975	10611	0	2	2	1	1 (2:6)_(0:8)_(2:6)_(4:4aCO)
17 TRN1	TRN	2	554757	555319	566265	566831	3	10947	11510	12073	0	2	2	1	1 (2:6)_(4:4)_(2:6)_(6:2)_(4:4aCO)
31 TRN1	TRN	3	249994	250855	266002	266699	3	15148	15926	16704	0	2	2	1	1 (2:6)_(4:4)_(2:6)_(0:8)_(2:6)_(0:8)_(2:6a)_(4:4)_(2:6a)_(4:4aCO)
40 TRN1	TRN	4	359534	360404	363511	363860	3	3108	3717	4325	0	2	2	1	1 (8:0)_(6:2)_(8:0)_(6:2a)_(4:4aCO)
55 TRN1	TRN	4	1415193	1416035	1417646	1417706	3	1612	2062	2512	0	2	2	1	1 (6:2)_(8:0)_(4:4aCO)
70 TRN1	TRN	6	26489	26713	29306	29691	3	2594	2898	3201	0	2	2	1	1 (2:6)_(6:2)_(4:4)_(4:4aCO)
71 TRN1	TRN	6	38359	38588	40232	40564	3	1645	1925	2204	0	2	2	1	1 (6:2)_(4:4aCO)_(6:2a)_(4:4a)_(6:2a)_(4:4a)
81 TRN1	TRN	7	222691	224665	226711	230011	3	2047	4683	7319	0	2	2	1	1 (6:2)_(6:2a)_(4:4aCO)
88 TRN1	TRN	7	1003534	1004173	1005941	1006143	3	1769	2189	2608	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
120 TRN1	TRN	10	385772	385990	387794	387923	3	1805	1978	2150	0	2	2	1	1 (2:6)_(0:8)_(4:4aCO)
			· · · -				-				-	-			

137 TRN1	TRN	11	629639	631180	634635	635348	3	3456	4582	5708	0	2	2	1	1 (8:0)_(6:2)_(4:4aCO)
164 TRN1	TRN	13	15705	16287	21269	21523	3	4983	5400	5817	0	2	2	1	1 (2:6)_(6:2)_(2:6a)_(4:4aCO)
172 TRN1	TRN	13	581966	582869	587075	587600	3	4207	4920	5633	0	2	2	1	1 (2:6)_(0:8)_(4:4aCO)
177 TRN1	TRN	14	51868	52069	55899	57439	3	3831	4701	5570	0	2	2	1	1 (0:8)_(2:6)_(0:8)_(2:6a)_(4:4aCO)
185 TRN1	TRN	14	641892	642568	652841	655138	4	10274	11760	13245	0	2	2	2	0 (6:2)_(2:6)_(4:4aCO)
189 TRN1	TRN	15	79906	79930	92712	93135	3	12783	13006	13228	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
217 TRN1	TRN	16	840627	841238	844218	858788	3	2981	10571	18160	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
1 TRN1	TRN	1	61164	61414	62990	63992 2_nonsis		1577	2202	2827	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4CO)
23 TRN1	TRN	2	764110	764239	775579	777303	4	11341	12267	13192	0	3	2	1	1 (2:6)_(4:4)_(2:6a)_(4:4aCO)_(4:4bCO)
50 TRN1	TRN	4	1115900	1116554	1117013	1117890 2_nonsis		460	1225	1989	0	3	2	0	2 (4:4aCO)_(2:6)_(4:4CO)
51 TRN1	TRN	4	1248319	1248513	1259982	1260779 2_nonsis		11470	11965	12459	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)_(2:6)_(4:4CO)
80 TRN1	TRN	7	169612	170211	172407	172596	3	2197	2590	2983	0	3	2	1	1 (8:0)_(4:4aCO)_(2:6)_(4:4bCO)_(2:6)_(4:4b)
91 TRN1	TRN	8	23109	23521	27293	27988	4	3773	4326	4878	0	3	2	1	1 (4:4aCO)_(6:2)_(0:8)_(2:6)_(4:4bCO)
101 TRN1	TRN	8	490515	490863	493409	493855	3	2547	2943	3339	0	3	2	1	1 (4:4aCO)_(6:2)_(4:4bCO)
117 TRN1	TRN	10	161596	162223	163140	163580	3	918	1451	1983	0	3	2	1	1 (4:4aCO)_(4:4bCO)
144 TRN1	TRN	12	223946	224012	247140	247370	3	23129	23276	23423	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4bCO)_(2:6)_(4:4b)
157 TRN1	TRN	12	821384	822252	823256	826618	4	1005	3119	5233	0	3	2	1	1 (4:4aCO)_(4:4bCO)_(2:6)_(4:4aCO)
161 TRN1	TRN	12	1008837	1008873	1014017	1014198	3	5145	5253	5360	0	3	2	1	1 (6:2)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(6:2a)_(4:4bCO)
163 TRN1	TRN	12	1041901	1042079	1043638	1043701	3	1560	1680	1799	0	3	2	1	1 (6:2)_(4:4aCO)_(4:4bCO)_(2:6)_(4:4b)
166 TRN1	TRN	13	245624	247126	253309	253845 2_nonsis		6184	7202	8220	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
168 TRN1	TRN	13	335534	335853	354882	355271	4	19030	19383	19736	0	3	2	2	0 (2:6)_(4:4)_(6:2)_(4:4aCO)_(6:2)_(8:0)_(4:4a)_(8:0)_(6:2a)_(8:0)_(4:4bCO)
170 TRN1	TRN	13	487831	489569	496159	496520	3	6591	7640	8688	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
175 TRN1	TRN	13	742337	744735	762006	762346	4	17272	18640	20008	0	3	2	2	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4bCO)
187 TRN1	TRN	15	42586	42784	45210	45897 2_nonsis		2427	2869	3310	0	3	2	0	2 (6:2)_(4:4)_(6:2)_(4:4aCO)_(4:4CO)
195 TRN1	TRN	15	642471	642646	648237	648434 2_nonsis		5592	5777	5962	0	3	2	1	1 (6:2)_(4:4)_(6:2)_(4:4aCO)_(2:6)_(4:4CO)
206 TRN1	TRN	16	34674	35338	77509	77995	4	42172	42746	43320	0	3	2	1	1 (6:2)_(6:2a)_(8:0)_(4:4)_(2:6)_(4:4aCO)_(2:6a)_(4:4a)_(6:2b)_(2:6b)_(4:4bCO)
207 TRN1	TRN	16	85729	86390	87536	88155 2_nonsis		1147	1786	2425	0	3	2	0	2 (2:6)_(4:4)_(2:6)_(4:4aCO)_(4:4CO)
213 TRN1	TRN	16	468648	469629	470217	470860 2_nonsis		589	1400	2211	0	3	2	0	2 (6:2)_(4:4aCO)_(4:4CO)
243 TRN1	TRN	2	800115	800195	801524	813184	3	1330	7199	13068	0	4	1 NA	NA	6:2_6:2
296 TRN1	TRN	7	24468	25442	24468	25442	1	0	487	973	0	4	1 NA	NA	
358 TRN1	TRN	11	656226	656592	658549	666816	1	0	5295	10589	0	4	1 NA	NA	
407 TRN1	TRN	14	778885	779009	781274	784333	1	2266	3857	5447	0	4	1 NA	NA	2:6_4:4_2:6_4:4_2:6_4:4_2:6
170 TRN10	TRN	12	876120	876459	881235	882746	1	4777	5701	6625	1	7	1	0	1 6:2_4:4_6:2
189 TRN10	TRN	13	765059	765109	765706	765773	1	598	656	713	1	8	1	0	1 2:6_4:4_2:6
26 TRN10	TRN	3	117992	118273	120719	121150	1	2447	2802	3157	1	8	1	0	1 2:6_4:4_2:6
137 TRN10	TRN	10	642375	642483	645565	646018	1	3083	3363	3642	1	8	1	0	1 2:6_4:4_2:6
224 TRN10	TRN	15	546393	546837	553518	554715	1	6682	7502	8321	1	8	1	0	1 2:6_4:4_2:6
198 TRN10	TRN	14	135855	135879	135879	135908	1	1	27	52	1	10	1	0	1 06:02
219 TRN10	TRN	15	221900	222314	222314	222653	1	1	377	752	1	10	1	0	1 06:02
77 TRN10	TRN	7	73286	73309	73727	73810	1	419	471	523	1	10	1	0	1 06:02
122 TRN10	TRN	10	125246	125687	125897	126262	1	211	613	1015	1	10	1	0	1 06:02
85 TRN10	TRN	7	372926	373531	373766	373940	1	236	625	1013	1	10	1	0	1 06:02
129 TRN10	TRN	10	388844	389073	389413	389929	1	341	713	1084	1	10	1	0	1 06:02
178 TRN10	TRN	13	308338	308762	309305	309395	1	544	800	1056	1	10	1	0	1 06:02
206 TRN10	TRN	14	425890	427278	427451	427715	1	174	999	1824	1	10	1	0	1 06:02
108 TRN10	TRN	8	396723	397520	398182	398452	1	663	1196	1728	1	10	1	0	1 06:02
192 TRN10	TRN	13	831576	832164	832607	833534	1	444	1201	1957	1	10	1	0	1 06:02
204 TRN10	TRN	14	396967	397399	398211	398753	1	813	1299	1785	1	10	1	0	1 06:02
110 TRN10	TRN	8	421840	422434	423045	423870	1	612	1321	2029	1	10	1	0	1 06:02
8 TRN10	TRN	2	100413	101103	102053	102116	1	951	1327	1702	1	10	1	0	1 06:02
163 TRN10	TRN	12	614751	616056	616330	617274	1	275	1399	2522	1	10	1	0	1 06:02
96 TRN10	TRN	7	985834	987315	987893	988358	1	579	1551	2523	1	10	1	0	1 06:02
233 TRN10	TRN	15	1004534	1007049	1007049	1007685	1	1	1576	3150	1	10	1	0	1 06:02
24 TRN10	TRN	2	797893	798747	799806	800055	1	1060	1611	2161	1	10	1	0	1 06:02
99 TRN10	TRN	8	56032	56225	57698	57905	1	1474	1673	1872	1	10	1	0	1 06:02
240 TRN10	TRN	16	529035	529207	529944	532161	1	738	1932	3125	1	10	1	0	1 06:02
197 TRN10	TRN	14	87215	87864	89494	89648	1	1631	2032	2432	1	10	1	0	1 06:02
20 TRN10	TRN	2	680726	681166	682449	683592	1	1284	2075	2865	1	10	1	0	1 06:02
203 TRN10	TRN	14	267621	268398	270133	270523	1	1736	2319	2901	1	10	1	0	1 06:02
62 TRN10	TRN	5	312348	312465	314632	315416	1	2168	2618	3067	1	10	1	0	1 06:02

64 TRN10	TRN	5	379092	379879	381978	382688	1	2100	2848	3595	1	10	1	0	1 06:02
229 TRN10	TRN	15	787105	787507	790680	790997	1	3174	3533	3891	1	10	1	0	1 06:02
42 TRN10	TRN	4	694587	694831	698508	698788	1	3678	3939	4200	1	10	1	0	1 06:02
231 TRN10	TRN	15	814826	815222	819348	819414	1	4127	4357	4587	1	10	1	0	1 06:02
13 TRN10	TRN	2	451124	451175	455916	456385	1	4742	5001	5260	1	10	1	0	1 06:02
190 TRN10	TRN	13	816350	816512	821494	822331	1	4983	5482	5980	1	10	1	0	1 06:02
68 TRN10	TRN	6	33008	33158	39488	39674	1	6331	6498	6665	1	10	1	0	1 06:02
216 TRN10	TRN	15	187590	188321	193685	196238	1	5365	7006	8647	1	10	1	0	1 06:02
103 TRN10	TRN	8	320071	320927	331868	334431	1	10942	12651	14359	1	10	1	0	1 06:02
109 TRN10	TRN	8	417913	418214	418214	418349	1	10742	218	435	1	10.1	1	0	1 02:06
	TRN			467407							1		1		
223 TRN10		15	467149		467407	467641	1	1	246	491		10.1		0	1 02:06
165 TRN10	TRN	12	784218	784454	784477	784820	1	24	313	601	1	10.1	1	0	1 02:06
105 TRN10	TRN	8	341515	342157	342157	342405	1	1	445	889	1	10.1	1	0	1 02:06
5 TRN10	TRN	1	181119	181197	181491	181752	1	295	464	632	1	10.1	1	0	1 02:06
47 TRN10	TRN	4	931988	932298	932298	933005	1	1	509	1016	1	10.1	1	0	1 02:06
161 TRN10	TRN	12	576339	576702	576702	577535	1	1	598	1195	1	10.1	1	0	1 02:06
19 TRN10	TRN	9	407232	407953	408110	408521	1	158	723	1288	1	10.1	1	0	1 02:06
17 TRN10	TRN	2	633960	635127	635127	635445	1	1	743	1484	1	10.1	1	0	1 02:06
17 TRIVIO	TRN	10	279703	280016	280598	280699	1	583	789	995	1	10.1	1	0	1 02:06
											1				
155 TRN10	TRN	12	165496	165796	166515	166641	1	720	932	1144	-	10.1	1	0	1 02:06
74 TRN10	TRN	6	247354	247915	248365	248816	1	451	956	1461	1	10.1	1	0	1 02:06
154 TRN10	TRN	12	160756	161156	161416	162493	1	261	999	1736	1	10.1	1	0	1 02:06
131 TRN10	TRN	10	412419	412734	413049	414104	1	316	1000	1684	1	10.1	1	0	1 02:06
94 TRN10	TRN	7	806818	806907	807791	807996	1	885	1031	1177	1	10.1	1	0	1 02:06
200 TRN10	TRN	14	228789	229890	230322	230542	1	433	1093	1752	1	10.1	1	0	1 02:06
12 TRN10	TRN	8	483502	483796	484407	485261	1	612	1185	1758	1	10.1	1	0	1 02:06
4 TRN10	TRN	1	170945	172092	172585	172844	1	494	1196	1898	1	10.1	1	0	1 02:06
50 TRN10	TRN	11	590760	592478	592577	593181	1	100	1260	2420	1	10.1	1	0	1 02:06
60 TRN10	TRN	12	387156	387519	388456	388801	1	938	1291	1644	1	10.1	1	0	1 02:06
											1				
39 TRN10	TRN	10	713591	715501	715592	716361	1	92	1431	2769	-	10.1	1	0	1 02:06
55 TRN10	TRN	5	130380	130887	131558	132643	1	672	1467	2262	1	10.1	1	0	1 02:06
72 TRN10	TRN	12	1013592	1014017	1015108	1015543	1	1092	1521	1950	1	10.1	1	0	1 02:06
77 TRN10	TRN	13	237159	237882	238681	239557	1	800	1599	2397	1	10.1	1	0	1 02:06
06 TRN10	TRN	8	351610	352512	353343	354035	1	832	1628	2424	1	10.1	1	0	1 02:06
33 TRN10	TRN	10	467589	469453	469702	470610	1	250	1635	3020	1	10.1	1	0	1 02:06
74 TRN10	TRN	13	54586	54867	56369	56748	1	1503	1832	2161	1	10.1	1	0	1 02:06
18 TRN10	TRN	9	344556	344691	346155	346766	1	1465	1837	2209	1	10.1	1	0	1 02:06
24 TRN10	TRN	10	205252	205704	207452	207693	1	1749	2095	2440	1	10.1	1	0	1 02:06
75 TRN10	TRN	7	33274	33441	35451	35543	1	2011	2140	2268	1	10.1	1	0	1 02:06
42 TRN10	TRN	11	238513	239211	240992		1	1782	2343	2904	1	10.1	1	0	1 02:06
						241418									
35 TRN10	TRN	10	581933	582214	584209	584647	1	1996	2355	2713	1	10.1	1	0	1 02:06
51 TRN10	TRN	4	1106884	1107089	1109568	1109736	1	2480	2666	2851	1	10.1	1	0	1 02:06
67 TRN10	TRN	12	823256	826618	826618	829421	1	1	3083	6164	1	10.1	1	0	1 02:06
95 TRN10	TRN	14	52925	53465	56445	57439	1	2981	3747	4513	1	10.1	1	0	1 02:06
48 TRN10	TRN	16	754744	755194	758960	759209	1	3767	4116	4464	1	10.1	1	0	1 02:06
98 TRN10	TRN	7	997225	999165	1002898	1003128	1	3734	4818	5902	1	10.1	1	0	1 02:06
49 TRN10	TRN	16	844218	857345	857345	858788	1	1	7285	14569	1	10.1	1	0	1 02:06
52 TRN10	TRN	11	627471	628616	635970	636244	1	7355	8064	8772	1	10.1	1	0	1 02:06
84 TRN10	TRN	13	556437	557365	565610	565803	1	8246	8806	9365	1	10.1	1	0	1 02:06
3 TRN10	TRN	15	155505	158814	167179	170726	1	8366	11793	15220	1	10.1	1	0	1 02:06
							1				-				
57 TRN10	TRN	5	177603	177849	186890	187027 2_nonsis		9042	9233	9423	3	30	1	0	1 2:6_6:2
73 TRN10	TRN	13	44503	45656	51084	51141 2_nonsis		5429	6033	6637	3	30	1	0	1 6:2_2:6_4:4_2:6
66 TRN10	TRN	5	477110	477476	486863	486920 2_nonsis		9388	9599	9809	3	30	1	0	1 6:2_2:6_4:4_6:2
97 TRN10	TRN	7	989982	990718	991126	991917 2_nonsis		409	1172	1934	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
138 TRN10	TRN	10	706135	706547	707550	707655 2_nonsis		1004	1262	1519	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
57 TRN10	TRN	12	275125	276029	276866	277094 2_nonsis		838	1403	1968	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
215 TRN10	TRN	15	132713	135587	138847	139359 2_nonsis		3261	4953	6645	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
120 TRN10	TRN	10	30160	30194	31175	31246 2_nonsis		982	1034	1085	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO
	TRN	15	408540	408953	410731			1779	1990	2201	1	12	1	1	
		15	406540	408933		410742 2_nonsis					-		-	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4
221 TRN10 185 TRN10	TRN	13	616649	617093	618959	619338 2_nonsis		1867	2278	2688	1	12	1		0 (6:2)_(4:4aCO)_(6:2)_(4:4

7 TRN10	TRN	2	92818	93100	95376	96034 2_nonsis	2277	2746	3215	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
46 TRN10	TRN	4	842636	842982	846137	846996 2_nonsis	3156	3758	4359	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
11 TRN10	TRN	2	388386	388424	394430	394726 2_nonsis	6007	6173	6339	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
199 TRN10	TRN	14	192780	193276	200248	200718 2_nonsis	6973	7455	7937	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
162 TRN10	TRN	12	591568	591955	606238	606436 2_nonsis	14284	14576	14867	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
143 TRN10	TRN	11	288741	289501	295309	296531 2_nonsis	5809	6799	7789	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
63 TRN10	TRN	5	373736	374737	377471	377999 2_nonsis	2735	3499	4262	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
243 TRN10	TRN	16	650861	651044	660697	660982 2_nonsis	9654	9887	10120	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
37 TRN10	TRN	4	307671	307920	307920	307984 2_nonsis	1	157	312	1	15	1	1	0 (6:2)_(4:4aCO)
156 TRN10	TRN	12	229498	229597	229623	230005 2_nonsis	27	267	506	1	15	1	1	0 (6:2)_(4:4aCO)
41 TRN10	TRN	4	688689	688805	688841	689207 2_nonsis	37	277	517	1	15	1	1	0 (6:2)_(4:4aCO)
144 TRN10	TRN	11	308786	309009	309188	309294 2_nonsis	180	344	507	1	15	1	1	0 (6:2)_(4:4aCO)
179 TRN10	TRN	13	327938	328333	328409	328706 2_nonsis	77	422	767	1	15	1	1	0 (6:2)_(4:4aCO)
213 TRN10	TRN	14	764495	764938	765005	765537 2_nonsis	68	555	1041	1	15	1	1	0 (6:2)_(4:4aCO)
82 TRN10	TRN	7	284996	285065	285407	286154 2_nonsis	343	750	1157	1	15	1	1	0 (6:2)_(4:4aCO)
130 TRN10	TRN	10	395874	396515	396640	397262 2_nonsis	126	757	1387	1	15	1	1	0 (6:2)_(4:4aCO)
101 TRN10	TRN	8	73441	73687	74372	74397 2_nonsis	686	821	955	1	15	1	1	0 (6:2)_(4:4aCO)
81 TRN10	TRN	7	171278	171503	172231	172407 2_nonsis	729	929	1128	1	15	1	1	0 (6:2)_(4:4aCO)
38 TRN10	TRN	4	395767	396458	396700	397411 2_nonsis	243	943	1643	1	15	1	1	0 (6:2)_(4:4aCO)
69 TRN10	TRN	6	45217	45521	46302	46380 2_nonsis	782	972	1162	1	15	1	1	0 (6:2)_(4:4aCO)
91 TRN10	TRN	7	678883	679675	679675	681013 2_nonsis	1	1065	2129	1	15	1	1	0 (6:2)_(4:4aCO)
182 TRN10	TRN	13	384784	384946	385945	386028 2_nonsis	1000	1122	1243	1	15	1	1	0 (6:2)_(4:4aCO)
159 TRN10	TRN	12	372524	373651	373666	374858 2_nonsis	16	1175	2333	1	15	1	1	0 (6:2)_(4:4aCO)
61 TRN10	TRN	5	306189	308000	308152	308551 2_nonsis	153	1257	2361	1	15	1	1	0 (6:2)_(4:4aCO)
12 TRN10	TRN	2	442879	444175	444774	444887 2_nonsis	600	1304	2007	1	15	1	1	0 (6:2)_(4:4aCO)
23 TRN10	TRN	2	746171	748391	748391	748916 2_nonsis	1	1373	2744	1	15	1	1	0 (6:2)_(4:4aCO)
127 TRN10	TRN	10	349631	350244	351259	351479 2_nonsis	1016	1432	1847	1	15	1	1	0 (6:2)_(4:4aCO)
49 TRN10	TRN	4	1051761	1054524	1054662	1055183 2_nonsis	139	1780	3421	1	15	1	1	0 (6:2)_(4:4aCO)
147 TRN10	TRN	11	464192	464453	466102	466582 2 nonsis	1650	2020	2389	1	15	1	1	0 (6:2) (4:4aCO)
209 TRN10	TRN	14	507599	508159	509646	510203 2_nonsis	1488	2046	2603	1	15	1	1	0 (6:2)_(4:4aCO)
169 TRN10	TRN	12	865078	867405	867405	869664 2_nonsis	1	2293	4585	1	15	1	1	0 (6:2)_(4:4aCO)
234 TRN10	TRN	16	21870	21970	22826	26114 2_nonsis	857	2550	4243	1	15	1	1	0 (6:2)_(4:4aCO)
36 TRN10	TRN	4	89925	90257	91959	93521 2_nonsis	1703	2649	3595	1	15	1	1	0 (6:2)_(4:4aCO)
168 TRN10	TRN	12	849651	854846	854846	855144 2_nonsis	1	2747	5492	1	15	1	1	0 (6:2)_(4:4aCO)
246 TRN10	TRN	16	710553	710988	713201	713880 2 nonsis	2214	2770	3326	1	15	1	1	0 (6:2)_(4:4aCO)
212 TRN10	TRN	14	682580	686654	686681	688572 2_nonsis	28	3010	5991	1	15	1	1	0 (6:2)_(4:4aCO)
60 TRN10	TRN	5	266722	268597	270473	271135 2_nonsis	1877	3145	4412	1	15	1	1	0 (6:2)_(4:4aCO)
6 TRN10	TRN	1	189825	190402	193260	193807 2_nonsis	2859	3420	3981	1	15	1	1	0 (6:2)_(4:4aCO)
148 TRN10	TRN	11	530688	531524	534319	535579 2_nonsis	2796	3843	4890	1	15	1	1	0 (6:2)_(4:4aCO)
102 TRN10	TRN	8	190671	191072	194830	195005 2_nonsis	3759	4046	4333	1	15	1	1	0 (6:2)_(4:4aCO)
117 TRN10	TRN	9	327096	333581	334383	334640 2_nonsis	803	4173	7543	1	15	1	1	0 (6:2)_(4:4aCO)
10 TRN10	TRN	2	342383	342611	347192	347803 2_nonsis	4582	5001	5419	1	15	1	1	0 (6:2)_(4:4aCO)
145 TRN10	TRN	11	378901	379079	384363	384792 2_nonsis	5285	5588	5890	1	15	1	1	0 (6:2)_(4:4aCO)
113 TRN10	TRN	8	513034	514468	520252	521047 2_nonsis	5785	6899	8012	1	15	1	1	0 (6:2)_(4:4aCO)
242 TRN10	TRN	16	641294	642071	648637	648799 2_nonsis	6567	7036	7504	1	15	1	1	0 (6:2)_(4:4aCO)
27 TRN10	TRN	3	123928	123999	131879	133715 2_nonsis	7881	8834	9786	1	15	1	1	0 (6:2)_(4:4aCO)
25 TRN10	TRN	3	83816	93455	105854	106362 2_nonsis	12400	17473	22545	1	15	1	1	0 (6:2)_(4:4aCO)
104 TRN10	TRN	8	339656	339696	339696	340031 2 nonsis	1	188	374	1	16	1	1	0 (2:6)_(4:4aCO)
247 TRN10	TRN	16	715923	716297	716297	716554 2 nonsis	1	316	630	1	16	1	1	0 (2:6)_(4:4aCO)
238 TRN10	TRN	16	424578	424841	425006	425302 2_nonsis	166	445	723	1	16	1	1	0 (2:6)_(4:4aCO)
202 TRN10	TRN	14	251477	251609	251874	252203 2_nonsis	266	496	725	1	16	1	1	0 (2:6)_(4:4aCO)
39 TRN10	TRN	4	399202	399570	399570	400197 2_nonsis	1	498	994	1	16	1	1	0 (2:6)_(4:4aCO)
235 TRN10	TRN	16	113385	114050	114102	114414 2_nonsis	53	541	1028	1	16	1	1	0 (2:6)_(4:4aCO)
134 TRN10	TRN	10	515737	516190	516436	516831 2_nonsis	247	670	1093	1	16	1	1	0 (2:6)_(4:4aCO)
87 TRN10	TRN	7	424261	424512	424942	425181 2_nonsis	431	675	919	1	16	1	1	0 (2:6)_(4:4aCO)
132 TRN10	TRN	10	464438	465282	465282	465795 2_nonsis	1	679	1356	1	16	1	1	0 (2:6)_(4:4aCO)
222 TRN10	TRN	15	455108	455286	455342	456606 2_nonsis	57	777	1497	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
128 TRN10	TRN	10	367642	368828	368840	369255 2_nonsis	13	813	1612	1	16	1	1	0 (2:6)_(4:4aCO)
218 TRN10	TRN	15	218142	219124	219136	219822 2 nonsis	13	846	1679	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
35 TRN10	TRN	4	24937	25195	25835	26111 2_nonsis	641	907	1173	1	16	1	1	0 (2:6)_(4:4aCO)
33 IKN10	ININ	-	24731	23173	23033	20111 2_HOHSIS	0+1	201	11/3	1	10		1	v (2.0)_(4.4dCO)

9 TRN10	TRN	2	250316	250789	251134	252027 2_nonsis	346	1028	1710	1	16	1	1	0 (2:6)_(4:4aCO)
50 TRN10	TRN	4	1079258	1079450	1079984	1080788 2_nonsis	535	1032	1529	1	16	1	1	0 (2:6)_(4:4aCO)
211 TRN10	TRN	14	678661	678891	679089	680556 2_nonsis	199	1047	1894	1	16	1	1	0 (2:6)_(4:4aCO)
245 TRN10	TRN	16	665970	666185	666924	667377 2_nonsis	740	1073	1406	1	16	1	1	0 (2:6)_(4:4aCO)
180 TRN10	TRN	13	339889	340680	341111	341630 2_nonsis	432	1086	1740	1	16	1	1	0 (2:6)_(4:4aCO)
141 TRN10	TRN	11	90751	91192	92069	92108 2_nonsis	878	1117	1356	1	16	1	1	0 (2:6)_(4:4aCO)
67 TRN10	TRN	6	26889	28318	28662	28792 2_nonsis	345	1124	1902	1	16	1	1	0 (2:6)_(4:4aCO)
239 TRN10	TRN	16	509084	509810	510291	510985 2_nonsis	482	1191	1900	1	16	1	1	0 (2:6)_(4:4aCO)
44 TRN10	TRN	4	777389	777638	779023	779427 2_nonsis	1386	1712	2037	1	16	1	1	0 (2:6)_(4:4aCO)
181 TRN10	TRN	13	379248	379442	380997	381204 2_nonsis	1556	1756	1955	1	16	1	1	0 (2:6)_(4:4aCO)
194 TRN10	TRN	14	46932	49011	49011	50444 2_nonsis	1	1756	3511	1	16	1	1	0 (2:6)_(4:4aCO)
40 TRN10	TRN	4	625839	628602	628602	629487 2_nonsis	1	1824	3647	1	16	1	1	0 (2:6)_(4:4aCO)
65 TRN10	TRN	5	451710	452483	453437	454403 2_nonsis	955	1824	2692	1	16	1	1	0 (2:6)_(4:4aCO)
31 TRN10	TRN	3	201258	202229	203463	204750 2_nonsis	1235	2363	3491	1	16	1	1	0 (2:6)_(4:4aCO)
29 TRN10	TRN	3	140025	140422	143843	144261 2_nonsis	3422	3829	4235	1	16	1	1	0 (2:6)_(4:4aCO)
52 TRN10	TRN	4	1366294	1366606	1370179	1370923 2_nonsis	3574	4101	4628	1	16	1	1	0 (2:6)_(4:4aCO)
220 TRN10	TRN	15	402509	402926	406895	406989 2_nonsis	3970	4225	4479	1	16	1	1	0 (2:6)_(4:4aCO)
43 TRN10	TRN	4	769508	769848	773893	774079 2_nonsis	4046	4308	4570	1	16	1	1	0 (2:6)_(4:4aCO)
45 TRN10	TRN	4	825422	831279	831279	837275 2_nonsis	1	5927	11852	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
125 TRN10	TRN	10	264413	264641	270332		5692	5987	6281	1	16	1	1	
						270695 2_nonsis								0 (2:6)_(4:4aCO)
90 TRN10	TRN	7	589840	590641	596681	596824 2_nonsis	6041	6512	6983	1	16	1	1	0 (2:6)_(4:4aCO)
153 TRN10	TRN	12	150671	151170	159272	159591 2_nonsis	8103	8511	8919	1	16	1	1	0 (2:6)_(4:4aCO)
205 TRN10	TRN	14	409872	410941	419038	419074 2_nonsis	8098	8650	9201	1	16	1	1	0 (2:6)_(4:4aCO)
71 TRN10	TRN	6	90244	90659	98766	99605 2_nonsis	8108	8734	9360	1	16	1	1	0 (2:6)_(4:4aCO)
22 TRN10	TRN	2	731596	731934	743673	743899 2_nonsis	11740	12021	12302	1	16	1	1	0 (2:6)_(4:4aCO)
201 TRN10	TRN	14	235956	236810	248236	249065 2_nonsis	11427	12268	13108	1	16	1	1	0 (2:6)_(4:4aCO)
230 TRN10	TRN	15	810765	811006	810765	811006 2_nonsis	0	120	240	1	100	1	1	0 (4:4aCO)
58 TRN10	TRN	5	188873	189254	188873	189254 2_nonsis	0	190	380	1	100	1	1	0 (4:4aCO)
244 TRN10	TRN	16	662220	662624	662220	662624 2_nonsis	0	202	403	1	100	1	1	0 (4:4aCO)
84 TRN10	TRN	7	346294	346793	346294	346793 2_nonsis	0	249	498	1	100	1	1	0 (4:4aCO)
80 TRN10	TRN	7	112158	112793	112158	112793 2_nonsis	0	317	634	1	100	1	1	0 (4:4aCO)
164 TRN10	TRN	12	621288	621936	621288	621936 2_nonsis	0	324	647	1	100	1	1	0 (4:4aCO)
175 TRN10	TRN	13	96883	97548	96883	97548 2_nonsis	0	332	664	1	100	1	1	0 (4:4aCO)
28 TRN10	TRN	3	134648	135329	134648	135329 2_nonsis	0	340	680	1	100	1	1	0 (4:4aCO)
217 TRN10	TRN	15	197183	197943	197183	197943 2_nonsis	0	380	759	1	100	1	1	0 (4:4aCO)
88 TRN10	TRN	7	482421	483344	482421	483344 2_nonsis	0	461	922	1	100	1	1	0 (4:4aCO)
21 TRN10	TRN	2	686757	687872	686757	687872 2_nonsis	0	557	1114	1	100	1	1	0 (4:4aCO)
196 TRN10	TRN	14	80433	81575	80433	81575 2_nonsis	0	571	1141	1	100	1	1	0 (4:4aCO)
225 TRN10	TRN	15	554987	556316	554987	556316 2_nonsis	0	664	1328	1	100	1	1	0 (4:4aCO)
151 TRN10	TRN	11	603048	604404	603048	604404 2_nonsis	0	678	1355	1	100	1	1	0 (4:4aCO)
78 TRN10	TRN	7	94650	96070	94650	96070 2_nonsis	0	710	1419	1	100	1	1	0 (4:4aCO)
19 TRN10	TRN	2	676125	677644	676125	677644 2_nonsis	0	759	1518	1	100	1	1	0 (4:4aCO)
48 TRN10	TRN	4	1013983	1015515	1013983	1015515 2_nonsis	0	766	1531	1	100	1	1	0 (4:4aCO)
226 TRN10	TRN	15	556316	558487	556316	558487 2_nonsis	0	1085	2170	1	100	1	1	0 (4:4aCO)
176 TRN10	TRN	13	170002	172478	170002	172478 2_nonsis	0	1238	2475	1	100	1	1	0 (4:4aCO)
79 TRN10	TRN	7	97616	100362	97616	100362 2_nonsis	0	1373	2745	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
166 TRN10	TRN	12	811301	815763	811301		0	2231	4461	1	100	1	1	
18 TRN10	TRN	2	662444	668076	662444	815763 2_nonsis	0	2816	5631	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
						668076 2_nonsis								
171 TRN10	TRN	12	892436	930472	892436	930472 2_nonsis	0	19018	38035	1	100	1	1	0 (4:4aCO)
191 TRN10	TRN	13	824885	825266	826214	826499 2_nonsis	949	1281	1613	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
227 TRN10	TRN	15	624112	624475	625649	625813 2_nonsis	1175	1438	1700	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
59 TRN10	TRN	5	255702	256032	256810	258361 2_nonsis	779	1719	2658	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
214 TRN10	TRN	15	117525	123864	124780	124867 2_nonsis	917	4129	7341	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
15 TRN10	TRN	2	536450	536637	540838	541062 2_nonsis	4202	4407	4611	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
34 TRN10	TRN	3	242917	243218	247472	248057 2_nonsis	4255	4697	5139	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
16 TRN10	TRN	2	628807	629013	631768	632896 2_nonsis	2756	3422	4088	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
236 TRN10	TRN	16	150643	151045	154774	155088 2_nonsis	3730	4087	4444	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
89 TRN10	TRN	7	548503	549148	554163	554830 2_nonsis	5016	5671	6326	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
70 TRN10	TRN	6	51748	52738	62459	63014 2_nonsis	9722	10494	11265	3	20	1	1	0 (2:6)_(6:2)_(2:6)_(4:4aCO)
183 TRN10	TRN	13	504889	505362	520382	521041 2_nonsis	15021	15586	16151	3	20	1	1	0 (2:6)_(6:2)_(4:4)_(2:6)_(4:4aCO)

207 TRN10	TRN	14	480883	480999	486092	486859 2_nonsis		5094	5535	5975	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(6:2)_(4:4aCO)
33 TRN10	TRN	3	221877	223339	238082	238725	4	14744	15796	16847	0	1	2	0	2 (0:8)_(8:0)_(6:2)_(4:4)
32 TRN10	TRN	3	204750	207459	216599	218143	4	9141	11267	13392	0	2	2	1	1 (8:0)_(4:4aCO)_(8:0)_(6:2)_(4:4a)
53 TRN10	TRN	4	1450144	1450588	1455942	1458372	3	5355	6791	8227	0	2	2	1	1 (6:2)_(4:4)_(6:2)_(8:0)_(6:2)_(4:4aCO)
83 TRN10	TRN	7	287343	287487	293303	294083	3	5817	6278	6739	0	2	2	1	1 (8:0)_(4:4aCO)
92 TRN10	TRN	7	783224	783677	785907	786618	3	2231	2812	3393	0	2	2	1	1 (6:2)_(4:4aCO)_(6:2a)_(4:4a)
93 TRN10	TRN	7	796858	798046	804084	804378	3	6039	6779	7519	0	2	2	1	1 (6:2)_(4:4)_(2:6)_(0:8)_(2:6)_(4:4aCO)_(2:6a)_(4:4a)
107 TRN10	TRN	8	359669	359915	377460	377707	3	17546	17792	18037	0	2	2	1	1 (2:6)_(0:8)_(2:6)_(0:8)_(2:6)_(4:4aCO)
111 TRN10	TRN	8	451172	452903	464743	465244	4	11841	12956	14071	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(0:8)_(4:4aCO)
114 TRN10	TRN	9	93804	94143	103227	103838	3	9085	9559	10033	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)
115 TRN10	TRN	9	124830	125455	128732	129806	3	3278	4127	4975	0	2	2 2	1	1 (6:2)_(2:6)_(4:4aCO)
140 TRN10 149 TRN10	TRN TRN	11 11	44603 557299	45993 558102	48808 569085	49402 569468	3 4	2816 10984	3807 11576	4798 12168	0	2	2	1	1 (2:6)_(6:2)_(4:4aCO)
149 TKN10 158 TRN10	TRN	12	281289	281896	301472		3	19577	20070		0	2	2	1	1 (6:2)_(2:6)_(0:8)_(2:6)_(4:4aCO)
188 TRN10	TRN	13	755812	757200	763221	301852 763537	3	6022	6873	20562 7724	0	2	2	1	1 (2:6)_(0:8)_(2:6)_(2:6a)_(2:6b)_(2:6)_(0:8)_(2:6b)_(4:4aCO) 1 (2:6)_(6:2)_(4:4aCO)
228 TRN10	TRN	15	630587	632023	670328	670892	3	38306	39305	40304	0	2	2	1	1 (2:6)_(6:2)_(4:4aCO) 1 (2:6)_(6:2)_(8:0)_(6:2)_(4:4aCO)
232 TRN10	TRN	15	967611	967862	968504	968918	3	643	975	1306	0	2	2	1	1 (2:0)_(0:2)_(6:0)_(0:2a)_(0:0)_(0:2)_(4:4aCO) 1 (2:6)_(6:2)_(4:4aCO)
1 TRN10	TRN	13	71616	73633	80077	80554	3	6445	7691	8937	0	3	2	0	2 (2:6)_(4:4aCO)_(8:0)_(6:2)_(4:4CO)
2 TRN10	TRN	1	117940	118997	121235	128637 2_nonsis	3	2239	6468	10696	0	3	2	0	2 (2:0)_(4:4aCO)_(6:0)_(0:2)_(4:4CO) 2 (4:4aCO)_(2:6)_(4:4CO)_(6:2)_(4:4)
14 TRN10	TRN	2	463842	464330	469344	474261	3	5015	7717	10418	0	3	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
54 TRN10	TRN	5	50279	50918	53537	53565	3	2620	2953	3285	0	3	2	0	2 (8:0)_(4:4aCO)_(2:6)_(4:4CO)
56 TRN10	TRN	5	134484	136262	136730	137133 2_nonsis	,	469	1559	2648	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4CO)
72 TRN10	TRN	6	110959	111466	114918	115088 2 nonsis		3453	3791	4128	0	3	2	0	2 (4:4aCO)_(2:6)_(4:4CO)
73 TRN10	TRN	6	188428	188704	203172	204006	4	14469	15023	15577	0	3	2	2	0 (6:2)_(4:4aCO)_(4:4bCO)_(2:6)_(4:4cCO)
76 TRN10	TRN	7	65309	66501	69578	70474 2_nonsis	·	3078	4121	5164	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)
95 TRN10	TRN	7	935766	935861	936416	937376 2_nonsis		556	1083	1609	0	3	2	0	2 (4:4aCO)_(4:4CO)
100 TRN10	TRN	8	59498	59614	68905	69088	3	9292	9441	9589	0	3	2	0	2 (6:2)_(4:4)_(4:4aCO)_(6:2a)_(6:2)_(4:4CO)
116 TRN10	TRN	9	265508	265732	268278	269349	3	2547	3194	3840	0	3	2	1	1 (4:4aCO)_(6:2)_(4:4bCO)
121 TRN10	TRN	10	62076	62571	74077	74857	3	11507	12144	12780	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)_(2:6)_(4:4aCO)
123 TRN10	TRN	10	146059	146367	147445	147612 2 nonsis		1079	1316	1552	0	3	2	0	2 (6:2) (4:4aCO) (4:4CO)
136 TRN10	TRN	10	587861	589894	590704	601293	3	811	7121	13431	0	3	2	1	1 (4:4aCO)_(6:2)_(4:4bCO)
146 TRN10	TRN	11	446566	447357	454128	454594	4	6772	7400	8027	0	3	2	2	0 (6:2)_(4:4aCO)_(4:4bCO)
186 TRN10	TRN	13	620664	620984	627607	627725	3	6624	6842	7060	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)
187 TRN10	TRN	13	652808	652911	654160	654563	3	1250	1502	1754	0	3	2	1	1 (6:2)_(4:4)_(6:2a)_(4:4aCO)_(6:2b)_(4:4bCO)
193 TRN10	TRN	14	34917	37986	40430	41146	3	2445	4337	6228	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
208 TRN10	TRN	14	495472	495918	504296	505410 2_nonsis		8379	9158	9937	0	3	2	0	2 (2:6)_(6:2)_(4:4aCO)_(4:4CO)
210 TRN10	TRN	14	537806	538122	539639	539821 2_nonsis		1518	1766	2014	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4a)_(2:6)_(4:4CO)
237 TRN10	TRN	16	254813	255611	258364	258671 2_nonsis		2754	3306	3857	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4CO)
241 TRN10	TRN	16	610303	610743	617005	618453	3	6263	7206	8149	0	3	2	1	1 (6:2)_(4:4aCO)_(2:6)_(4:4bCO)
256 TRN10	TRN	2	36837	39234	45824	46603 NA		6591	8178	9765	0	4	1 NA	NA	2:6_0:8_2:6
370 TRN10	TRN	10	22158	22350	22158	22350	1	0	96	191	0	4	1 NA	NA	
391 TRN10	TRN	10	720763	723650	725123	745751	1	0	12494	24987	0	4	1 NA	NA	
78 TRN11	TRN	12	13986	14785	23981	25985	1	9197	10598	11998	1	8	1	0	1 2:6_4:4_2:6
1 TRN11	TRN	1	28975	29007	29007	29009	1	1	17	33	1	10	1	0	1 06:02
104 TRN11	TRN	14	21451	21949	21949	22021	1	1	285	569	1	10	1	0	1 06:02
94 TRN11	TRN	13	467817	467994	468051	469276	1	58	758	1458	1	10	1	0	1 06:02
101 TRN11	TRN	13	769971	770091	771058	771109	1	968	1053	1137	1	10	1	0	1 06:02
52 TRN11	TRN	7	1050064	1050785	1051093	1051973	1	309	1109	1908	1	10	1	0	1 06:02
53 TRN11	TRN	8	77625	78204	78270	79894	1	67	1168	2268	1	10	1	0	1 06:02
75 TRN11	TRN	11	256790	257878	258943	259176	1	1066	1726	2385	1	10	1	0	1 06:02
81 TRN11	TRN	12	320997	322903	324050	325937	1	1148	3044	4939	1	10	1	0	1 06:02
91 TRN11	TRN	13	10479	10737	13572	13768	1	2836	3062	3288	1	10	1	0	1 06:02
125 TRN11	TRN	16	832084	832297	834906	836893	1	2610	3709	4808	1	10	1	0	1 06:02
69 TRN11	TRN	11	13973	19020	21803	22806	1	2784	5808	8832	1	10	1	0	1 06:02
26 TRN11	TRN	4	928279	928753	938225	939572	1	9473	10383	11292	1	10	1	0	1 06:02
117 TRN11	TRN	15	474069	475032	487028	487166	1	11997	12547	13096	1	10	1	0	1 06:02
28 TRN11	TRN	4	1163374	1163376	1163376	1163436	1	1	31	61	1	10.1	1	0	1 02:06
100 TRN11	TRN TRN	13	766972	767001 208091	767001	767075	1	1	52	102	1	10.1	1	0	1 02:06
14 TRN11	TRN	3	208072	208091 379448	208091 379448	208234 379794	1	1	81 230	161 459	1	10.1 10.1	1	0	1 02:06
82 TRN11	IKN	12	379334	3/9448	3/9448	3/9/94	1	1	250	439	1	10.1	1	U	1 02:06

6 TRN11	TRN	2	190128	190246	190452	190583	1	207	331	454	1	10.1	1	0	1 02:06
32 TRN11	TRN	4	1380270	1381111	1381111	1381693	1	1	712	1422	1	10.1	1	0	1 02:06
15 TRN11	TRN	3	262264	262830	262830	264441	1	1	1089	2176	1	10.1	1	0	1 02:06
7 TRN11	TRN	2	524475	524659	525492	526248	1	834	1303	1772	1	10.1	1	0	1 02:06
49 TRN11	TRN	7	852125	852577	853758	854329	1	1182	1693	2203	1	10.1	1	0	1 02:06
36 TRN11	TRN	5	33706	34247	34985	36820	1	739	1926	3113	1	10.1	1	0	1 02:06
34 TRN11	TRN	4	1422969	1424231	1425814	1426000	1	1584	2307	3030	1	10.1	1	0	1 02:06
2 TRN11	TRN	1	137063	138499	139076	141984	1	578	2749	4920	1	10.1	1	0	1 02:06
74 TRN11	TRN	11	229929	230043	232839	234299	1	2797	3583	4369	1	10.1	1	0	1 02:06
120 TRN11	TRN	16	79797	82464	84812	84945	1	2349	3748	5147	1	10.1	1	0	1 02:06
99 TRN11	TRN	13	734873	734975	738421	739584	1	3447	4079	4710	1	10.1	1	0	1 02:06
21 TRN11	TRN	4	629487	629725	634632	635008	1	4908	5214	5520	1	10.1	1	0	1 02:06
29 TRN11	TRN	4	1193279	1193452	1200337	1201144	1	6886	7375	7864	1	10.1	1	0	1 02:06
87 TRN11	TRN	12	833667	834769	840682	843387	1	5914	7817	9719	1	10.1	1	0	1 02:06
124 TRN11	TRN	16	526860	527307	527574	528017 2_nonsis		268	712	1156	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
86 TRN11	TRN	12	727539	727901	728268	729242 2_nonsis		368	1035	1702	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
59 TRN11	TRN	9	405973	406436	411094	411481 2_nonsis		4659	5083	5507	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
73 TRN11	TRN	11	202339	203074	203124	203378 2_nonsis		51	545	1038	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
55 TRN11	TRN	8	516468	516908	519792	520081 2_nonsis		2885	3249	3612	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
60 TRN11	TRN	10	63405	63597	72040	72884 2_nonsis		8444	8961	9478	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
41 TRN11	TRN	5	509188	509437	509654	509797 2_nonsis		218	413	608	1	15	1	1	0 (6:2)_(4:4aCO)
51 TRN11	TRN	7	1044371	1045136	1045214	1045427 2_nonsis		79	567	1055	1	15	1	1	0 (6:2)_(4:4aCO)
23 TRN11	TRN TRN	4	761151	762170	762170	762450 2_nonsis		1	650	1298	1	15	1	1	0 (6:2)_(4:4aCO)
106 TRN11		14	159822	160170	160170	161277 2_nonsis		1	728	1454		15	1	1	0 (6:2)_(4:4aCO)
62 TRN11 10 TRN11	TRN TRN	10 2	173515 778895	173883 779836	174303 780187	175220 2_nonsis		421 352	1063 1320	1704 2287	1	15 15	1	1 1	0 (6:2)_(4:4aCO)
10 TRN11 111 TRN11	TRN	14	667685	669471	669471	781183 2_nonsis		352	1378	2754	1	15	1	1	0 (6:2)_(4:4aCO)
88 TRN11	TRN	12	866643	867405	867405	670440 2_nonsis		1	1511	3020	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
37 TRN11	TRN	5	161191	161593	162567	869664 2_nonsis 163290 2_nonsis		975	1537	2098	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
5 TRN11	TRN	2	186753	187142	188032	189113 2 nonsis		891	1625	2359	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
22 TRN11	TRN	4	707555	707900	709241	709492 2_nonsis		1342	1639	1936	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
85 TRN11	TRN	12	716177	716369	717529	718593 2_nonsis		1161	1788	2415	1	15	1	1	0 (6:2)_(4:4aCO)
8 TRN11	TRN	2	590982	592905	593500	594298 2_nonsis		596	1956	3315	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
108 TRN11	TRN	14	408508	408778	410443	410941 2_nonsis		1666	2049	2432	1	15	1	1	0 (6:2)_(4:4aCO)
3 TRN11	TRN	1	189825	190402	191617	193131 2_nonsis		1216	2261	3305	1	15	1	1	0 (6:2)_(4:4aCO)
68 TRN11	TRN	10	629879	631130	631130	635210 2_nonsis		1	2666	5330	1	15	1	1	0 (6:2)_(4:4aCO)
83 TRN11	TRN	12	382702	382931	385961	386700 2_nonsis		3031	3514	3997	1	15	1	1	0 (6:2)_(4:4aCO)
47 TRN11	TRN	7	432934	433211	437195	438101 2_nonsis		3985	4576	5166	1	15	1	1	0 (6:2)_(4:4aCO)
66 TRN11	TRN	10	565667	566045	568805	572936 2_nonsis		2761	5015	7268	1	15	1	1	0 (6:2)_(4:4aCO)
109 TRN11	TRN	14	536139	536830	542443	543829 2_nonsis		5614	6652	7689	1	15	1	1	0 (6:2)_(4:4aCO)
9 TRN11	TRN	2	767430	769699	775579	777303 2_nonsis		5881	7877	9872	1	15	1	1	0 (6:2)_(4:4aCO)
19 TRN11	TRN	4	269406	269544	277276	278692 2_nonsis		7733	8509	9285	1	15	1	1	0 (6:2)_(4:4aCO)
44 TRN11	TRN	7	221407	221698	221698	221962 2_nonsis		1	278	554	1	16	1	1	0 (2:6)_(4:4aCO)
46 TRN11	TRN	7	395416	395553	395752	395815 2_nonsis		200	299	398	1	16	1	1	0 (2:6)_(4:4aCO)
77 TRN11	TRN	11	496962	497576	497576	497626 2_nonsis		1	332	663	1	16	1	1	0 (2:6)_(4:4aCO)
11 TRN11	TRN	2	782384	782557	782581	783142 2_nonsis		25	391	757	1	16	1	1	0 (2:6)_(4:4aCO)
103 TRN11	TRN	13	902696	902762	902762	903664 2_nonsis		1	484	967	1	16	1	1	0 (2:6)_(4:4aCO)
45 TRN11	TRN	7	378538	379046	379162	379420 2_nonsis		117	499	881	1	16	1	1	0 (2:6)_(4:4aCO)
64 TRN11	TRN	10	186025	186317	186317	187044 2_nonsis		1	510	1018	1	16	1	1	0 (2:6)_(4:4aCO)
76 TRN11	TRN	11	393718	394215	394215	394878 2_nonsis		1	580	1159	1	16	1	1	0 (2:6)_(4:4aCO)
115 TRN11	TRN	15	283315	283744	283744	284515 2_nonsis		1	600	1199	1	16	1	1	0 (2:6)_(4:4aCO)
112 TRN11	TRN	14	737192	737420	737900	737930 2_nonsis		481	609	737	1	16	1	1	0 (2:6)_(4:4aCO)
48 TRN11	TRN	7	604120	604147	604147	605491 2_nonsis		1	686	1370	1	16	1	1	0 (2:6)_(4:4aCO)
107 TRN11	TRN	14	190048	190426	190801	191177 2_nonsis		376	752	1128	1	16	1	1	0 (2:6)_(4:4aCO)
30 TRN11	TRN	4	1202939	1203967	1203967	1205010 2_nonsis		1	1036	2070	1	16	1	1	0 (2:6)_(4:4aCO)
122 TRN11 27 TRN11	TRN TRN	16 4	280470	281659 1016426	282326	282651 2_nonsis		668 172	1424 1586	2180 3000	1	16	1	1 1	0 (2:6)_(4:4aCO)
90 TRN11	TRN	12	1015515 953059	953351	1016597 956047	1018516 2_nonsis 956371 2_nonsis		2697	3004	3311	1	16 16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
90 TRN11 119 TRN11	TRN	15	718180	719433	722071	722470 2_nonsis		2639	3464	4289	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
43 TRN11	TRN	7	203693	205294	208986	209066 2_nonsis		3693	4533	5372	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
-5 IKMII	11111	,	203073	203274	200700	207000 2_HORSIS		5073	7,33	3312		10			0 (2.0)_(T.TaCO)

95 TRN11	TRN	13	469552	473747	476241	476482 2_nonsis		2495	4712	6929	1	16	1	1	0 (2:6)_(4:4aCO)
71 TRN11	TRN	11	115995	116643	121247	122945 2_nonsis		4605	5777	6949	1	16	1	1	0 (2:6)_(4:4aCO)
20 TRN11	TRN	4	551991	552102	557899	558895 2_nonsis		5798	6351	6903	1	16	1	1	0 (2:6)_(4:4aCO)
84 TRN11	TRN	12	638087	638411	644551	645452 2_nonsis		6141	6753	7364	1	16	1	1	0 (2:6)_(4:4aCO)
18 TRN11	TRN	4	248008	249264	261167	261458 2_nonsis		11904	12677	13449	1	16	1	1	0 (2:6)_(4:4aCO)
80 TRN11	TRN	12	315642	316064	315642	316064 2_nonsis		0	211	421	1	100	1	1	0 (4:4aCO)
113 TRN11	TRN	15	172646	173080	172646	173080 2_nonsis		0	217	433	1	100	1	1	0 (4:4aCO)
33 TRN11	TRN	4	1382859	1383527	1382859	1383527 2_nonsis		0	334	667	1	100	1	1	0 (4:4aCO)
72 TRN11	TRN	11	131539	132251	131539	132251 2_nonsis		0	356	711	1	100	1	1	0 (4:4aCO)
89 TRN11	TRN	12	950047	950788	950047	950788 2_nonsis		0	370	740	1	100	1	1	0 (4:4aCO)
54 TRN11	TRN	8	325621	326461	325621	326461 2_nonsis		0	420	839	1	100	1	1	0 (4:4aCO)
50 TRN11	TRN	7	914816	915691	914816	915691 2_nonsis		0	437	874	1	100	1	1	0 (4:4aCO)
102 TRN11	TRN	13	881086	882052	881086	882052 2 nonsis		0	483	965	1	100	1	1	0 (4:4aCO)
96 TRN11	TRN	13	556209	557425	556209	557425 2_nonsis		0	608	1215	1	100	1	1	0 (4:4aCO)
116 TRN11	TRN	15	382531	383827	382531	383827 2 nonsis		0	648	1295	1	100	1	1	0 (4:4aCO)
35 TRN11	TRN	4	1488904	1490210	1488904	1490210 2 nonsis		0	653	1305	1	100	1	1	0 (4:4aCO)
67 TRN11	TRN	10	585466	586827	585466	586827 2_nonsis		0	680	1360	1	100	1	1	0 (4:4aCO)
24 TRN11	TRN	4	771211	772626	771211	772626 2_nonsis		0	707	1414	1	100	1	1	0 (4:4aCO)
61 TRN11	TRN	10	75279	76754	75279	76754 2_nonsis		0	737	1474	1	100	1	1	0 (4:4aCO)
16 TRN11	TRN	4	91959	93521	91959	93521 2_nonsis		0	781	1561	1	100	1	1	0 (4:4aCO)
57 TRN11	TRN	9	265732	267668	265732	267668 2_nonsis		0	968	1935	1	100	1	1	0 (4:4aCO)
13 TRN11	TRN	3	73479	75484	73479	75484 2_nonsis		0	1002	2004	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
		2									1			1	
4 TRN11	TRN		66584	68817	66584	68817 2_nonsis		0	1116	2232	1	100	1		0 (4:4aCO)
97 TRN11	TRN	13	692123	694367	692123	694367 2_nonsis		0	1122	2243		100		1	0 (4:4aCO)
42 TRN11	TRN	7	82858	85120	82858	85120 2_nonsis		0	1131	2261	1	100	1	1	0 (4:4aCO)
31 TRN11	TRN	4	1254292	1256876	1254292	1256876 2_nonsis		0	1292	2583	1	100	1	1	0 (4:4aCO)
110 TRN11	TRN	14	662512	665097	662512	665097 2_nonsis		0	1292	2584	1	100	1	1	0 (4:4aCO)
79 TRN11	TRN	12	25985	28820	25985	28820 2_nonsis		0	1417	2834	1	100	1	1	0 (4:4aCO)
12 TRN11	TRN	3	65266	68233	65266	68233 2_nonsis		0	1483	2966	1	100	1	1	0 (4:4aCO)
70 TRN11	TRN	11	23532	27301	23532	27301 2_nonsis		0	1884	3768	1	100	1	1	0 (4:4aCO)
58 TRN11	TRN	9	329125	334329	329125	334329 2_nonsis		0	2602	5203	1	100	1	1	0 (4:4aCO)
39 TRN11	TRN	5	403078	403557	408144	408389 2_nonsis		4588	4949	5310	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
38 TRN11	TRN	5	292698	293301	296971	297515 2_nonsis		3671	4244	4816	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
40 TRN11	TRN	5	471885	472051	476912	477110 2_sis		4862	5043	5224	0	1	2	0	2 (0:8)_(2:6)_(4:4)
56 TRN11	TRN	9	125455	126162	142621	142688 2_sis		16460	16846	17232	0	1	2	0	2 (6:2)_(4:4)_(6:2)_(8:0)_(6:2a)_(4:4)
98 TRN11	TRN	13	695850	697269	709549	709740	3	12281	13085	13889	0	1	2	0	2 (0:8)_(2:6)_(6:2)_(4:4)
118 TRN11	TRN	15	656264	657201	662487	662592 2_sis		5287	5807	6327	0	1	2	0	2 (2:6)_(2:6a)_(4:4)_(2:6a)_(4:4)
17 TRN11	TRN	4	127476	130517	130537	130640	3	21	1592	3163	0	2	2	1	1 (6:2)_(4:4aCO)
25 TRN11	TRN	4	825422	831279	842636	842982	3	11358	14459	17559	0	2	2	1	1 (8:0)_(6:2)_(4:4aCO)
65 TRN11	TRN	10	323823	325190	334468	334858	3	9279	10157	11034	0	2	2	1	1 (6:2)_(4:4)_(6:2a)_(4:4)_(6:2a)_(4:4)_(6:2a)_(4:4aCO)
92 TRN11	TRN	13	55582	55751	57144	58688	4	1394	2250	3105	0	2	2	1	1 (2:6)_(6:2)_(4:4)_(4:4aCO)
93 TRN11	TRN	13	125006	125244	129456	129926	3	4213	4566	4919	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)
105 TRN11	TRN	14	78386	79032	86730	88013	3	7699	8663	9626	0	2	2	1	1 (8:0)_(6:2)_(8:0)_(4:4aCO)
114 TRN11	TRN	15	262203	262766	276153	277467	3	13388	14326	15263	0	2	2	1	1 (2:6)_(0:8)_(4:4aCO)
121 TRN11	TRN	16	155906	156308	156745	157225	3	438	878	1318	0	2	2	1	1 (6:2)_(4:4)_(4:4aCO)
63 TRN11	TRN	10	181820	182087	182825	183608 2_nonsis		739	1263	1787	0	3	2	0	2 (4:4aCO)_(2:6)_(4:4CO)
123 TRN11	TRN	16	420758	421124	433373	434613 2_nonsis		12250	13052	13854	0	3	2	0	2 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4CO)
13 TRN2	TRN	2	514077	514468	515936	515987	1	1469	1689	1909	1	7	1	0	1 6:2_4:4_6:2
85 TRN2	TRN	9	136172	136619	146041	146193	1	9423	9722	10020	1	7	1	0	1 6:2_4:4_6:2
10 TRN2	TRN	2	392022	392314	399796	400827	1	7483	8144	8804	1	7	1	0	1 6:2_4:4_6:2_4:4_6:2
119 TRN2	TRN	12	107971	108813	109497	109602	1	685	1158	1630	1	8	1	0	1 2:6_4:4_2:6
149 TRN2	TRN	14	68923	69145	80433	81575	1	11289	11970	12651	1	8	1	0	1 2:6_4:4_2:6_4:4_2:6
151 TRN2	TRN	14	107060	107345	119414	119721	1	12070	12365	12660	1	8	1	0	1 2:6_4:4_2:6_4:4_2:6
3 TRN2	TRN	1	130362	130776	130776	130897	1	1	268	534	1	10	1	0	1 06:02
17 TRN2	TRN	2	700423	700950	701207	701303	1	258	569	879	1	10	1	0	1 06:02
128 TRN2	TRN	12	663368	663839	664157	664658	1	319	804	1289	1	10	1	0	1 06:02
58 TRN2	TRN	6	244444	245103	245922	246034	1	820	1205	1589	1	10	1	0	1 06:02
47 TRN2	TRN	5	80671	80717	81713	82641	1	997	1483	1969	1	10	1	0	1 06:02
148 TRN2	TRN	13	914143	916639	916816	917194	1	178	1614	3050	1	10	1	0	1 06:02
103 TRN2	TRN	11	19020	19563	21006	21221	1	1444	1822	2200	1	10	1	0	1 06:02
		••	1,020	.,,,,,,	21000	2.22.	•		.022	2200	•		•		- ****

97 TRN2	TRN	10	414104	414830	416075	416512	1	1246	1827	2407	1	10	1	0	1 06:02
98 TRN2	TRN	10	464438	465282	467010	467107	1	1729	2199	2668	1	10	1	0	1 06:02
11 TRN2	TRN	2	402177	402843	404173	406111	1	1331	2632	3933	1	10	1	0	1 06:02
20 TRN2	TRN	2	773089	773889	775579	777303	1	1691	2952	4213	1	10	1	0	1 06:02
57 TRN2	TRN	6	199343	201607	203172	204006	1	1566	3114	4662	1	10	1	0	1 06:02
135 TRN2	TRN	13	28854	29616	31154	35547	1	1539	4116	6692	1	10	1	0	1 06:02
154 TRN2	TRN	14	368045	368391	373799	373925	1	5409	5644	5879	1	10	1	0	1 06:02
79 TRN2	TRN	8	384685	385098	392676	393017	1	7579	7955	8331	1	10	1	0	1 06:02
43 TRN2	TRN	4	1476956	1477116	1477174	1477237	1	59	170	280	1	10.1	1	0	1 02:06
63 TRN2	TRN	7	263382	263421	263851	263909	1	431	479	526	1	10.1	1	0	1 02:06
150 TRN2	TRN	14	95222	96083	96083	96181	1	1	480	958	1	10.1	1	0	1 02:06
109 TRN2	TRN	11	365453	365937	366213	366486	1	277	655	1032	1	10.1	1	0	1 02:06
134 TRN2	TRN	12	1011952	1012226	1012226	1013592	1	1	820	1639	1	10.1	1	0	1 02:06
177 TRN2	TRN	16	348815	349538	350221	350251	1	684	1060	1435	1	10.1	1	0	1 02:06
133 TRN2	TRN	12	997285	997480	998377	998806	1	898	1209	1520	1	10.1	1	0	1 02:06
116 TRN2	TRN	12	29131	29612	30558	30657	1	947	1236	1525	1	10.1	1	0	1 02:06
179 TRN2	TRN	16	498689	498848	500018	500240	1	1171	1361	1550	1	10.1	1	0	1 02:06
15 TRN2	TRN	2	662272	662444	662444	666708	1	1	2218	4435	1	10.1	1	0	1 02:06
23 TRN2	TRN	3	223339	224310	224793	228130	1	484	2637	4790	1	10.1	1	0	1 02:06
130 TRN2	TRN	12	802287	803833	803833	808209	1	1	2961	5921	1	10.1	1	0	1 02:06
112 TRN2	TRN	11	528277	528685	530688	532520	1	2004	3123	4242	1	10.1	1	0	1 02:06
102 TRN2	TRN	10	706608	707018	720763	723650	1	13746	15394	17041	1	10.1	1	0	1 02:06
82 TRN2	TRN	8	509758	509846	511654	511765 2_nonsis		1809	1908	2006	3	30	1	0	1 2:6_6:2
8 TRN2	TRN	2	176261	176636	183084	184932 2_nonsis		6449	7560	8670	3	30	1	0	1 2:6_6:2
170 TRN2	TRN	15	695231	696182	700856	700946 2_nonsis		4675	5195	5714	3	30	1	0	1 6:2_2:6_4:4_2:6
53 TRN2	TRN	5	545025	545863	546141	546545 2_nonsis		279	899	1519	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
182 TRN2	TRN	16	905582	905685	906627	907043 2_nonsis		943	1202	1460	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
25 TRN2	TRN	4	32706	33135	35807	37096 2_nonsis		2673	3531	4389	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
108 TRN2	TRN	11	289859	292055	295309	296531 2_nonsis		3255	4963	6671	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
173 TRN2	TRN	15	1038438	1038535	1038960	1039487 2_nonsis		426	737	1048	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
142 TRN2	TRN	13	495773	496159	498745	499915 2_nonsis		2587	3364	4141	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
125 TRN2	TRN	12	541773	542794	545673	546249 2_nonsis		2880	3678	4475	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
136 TRN2	TRN	13	37125	38744	44157	44254 2_nonsis		5414	6271	7128	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
48 TRN2	TRN	5	229778	230208	234579	234626 2_nonsis		4372	4610	4847	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
35 TRN2	TRN	4	1011299	1011430	1011430	1011449 2_nonsis		1	75	149	1	15	1	1	0 (6:2)_(4:4aCO)
46 TRN2	TRN	5	78895	79059	79059	79231 2_nonsis		1	168	335	1	15	1	1	0 (6:2)_(4:4aCO)
160 TRN2	TRN	15	90400	90802	90802	90886 2_nonsis		1	243	485	1	15	1	1	0 (6:2)_(4:4aCO)
80 TRN2	TRN	8	395744	396036	396060	396288 2_nonsis		25	284	543	1	15	1	1	0 (6:2)_(4:4aCO)
152 TRN2	TRN	14	124154	124235	124329	124691 2_nonsis		95	316	536	1	15	1	1	0 (6:2)_(4:4aCO)
88 TRN2	TRN	9	182483	182837	182939	183064 2_nonsis		103	342	580	1	15	1	1	0 (6:2)_(4:4aCO)
115 TRN2	TRN	11	656736	657110	657311	657441 2 nonsis		202	453	704	1	15	1	1	0 (6:2) (4:4aCO)
42 TRN2	TRN	4	1474394	1474416	1474507	1475249 2_nonsis		92	473	854	1	15	1	1	0 (6:2)_(4:4aCO)
65 TRN2	TRN	7	392382	392993	393263	393326 2_nonsis		271	607	943	1	15	1	1	0 (6:2)_(4:4aCO)
40 TRN2	TRN	4	1461111	1461391	1461584	1462308 2_nonsis		194	695	1196	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
40 TRN2 44 TRN2	TRN	5	28312					95	827	1559	1	15	1	1	
178 TRN2	TRN	16	397049	28600 397584	28694 398024	29872 2_nonsis		441	958	1475	1	15	1	1	0 (6:2)_(4:4aCO)
						398525 2_nonsis									0 (6:2)_(4:4aCO)
118 TRN2	TRN	12	40119	41721	42243	42404 2_nonsis		523	1404	2284	1	15	1	1	0 (6:2)_(4:4aCO)
68 TRN2	TRN	7	702791	703857	703857	705631 2_nonsis		1	1420	2839	1	15	1	1	0 (6:2)_(4:4aCO)
180 TRN2	TRN	16	620016	620505	621480	622057 2_nonsis		976	1508	2040	1	15	1	1	0 (6:2)_(4:4aCO)
71 TRN2	TRN	7	911277	911494	913000	913222 2_nonsis		1507	1726	1944	1	15	1	1	0 (6:2)_(4:4aCO)
172 TRN2	TRN	15	952140	952654	953577	954766 2_nonsis		924	1775	2625	1	15	1	1	0 (6:2)_(4:4aCO)
36 TRN2	TRN	4	1102795	1102879	1104572	1105534 2_nonsis		1694	2216	2738	1	15	1	1	0 (6:2)_(4:4aCO)
111 TRN2	TRN	11	477203	477776	479521	480070 2_nonsis		1746	2306	2866	1	15	1	1	0 (6:2)_(4:4aCO)
121 TRN2	TRN	12	257813	258349	260323	260496 2_nonsis		1975	2329	2682	1	15	1	1	0 (6:2)_(4:4aCO)
94 TRN2	TRN	10	111408	111784	113443	115860 2_nonsis		1660	3056	4451	1	15	1	1	0 (6:2)_(4:4aCO)
54 TRN2	TRN	6	24251	24494	26889	28318 2_nonsis		2396	3231	4066	1	15	1	1	0 (6:2)_(4:4aCO)
164 TRN2	TRN	15	318818	319505	322341	322691 2_nonsis		2837	3355	3872	1	15	1	1	0 (6:2)_(4:4aCO)
19 TRN2	TRN	2	759221	759357	763528	763762 2_nonsis		4172	4356	4540	1	15	1	1	0 (6:2)_(4:4aCO)
161 TRN2	TRN	15	123921	124780	128730	129347 2_nonsis		3951	4688	5425	1	15	1	1	0 (6:2)_(4:4aCO)
78 TRN2	TRN	8	141400	142863	147763	148132 2_nonsis		4901	5816	6731	1	15	1	1	0 (6:2)_(4:4aCO)

61 TRN2	TRN	7	252806	253383	259594	260137 2_nonsis	6212	6771	7330	1	15	1	1	0 (6:2)_(4:4aCO)
126 TRN2	TRN	12	611203	611744	618297	618795 2_nonsis	6554	7073	7591	1	15	1	1	0 (6:2)_(4:4aCO)
24 TRN2	TRN	3	239515	242917	248853	249269 2_nonsis	5937	7845	9753	1	15	1	1	0 (6:2)_(4:4aCO)
41 TRN2	TRN	4	1463190	1463798	1471524	1471935 2_nonsis	7727	8236	8744	1	15	1	1	0 (6:2)_(4:4aCO)
45 TRN2	TRN	5	62117	62599	74196	75084 2_nonsis	11598	12282	12966	1	15	1	1	0 (6:2)_(4:4aCO)
72 TRN2	TRN	7	991938	991971	991971	992205 2_nonsis	1	134	266	1	16	1	1	0 (2:6)_(4:4aCO)
99 TRN2	TRN	10	471195	471532	471532	471814 2_nonsis	1	310	618	1	16	1	1	0 (2:6)_(4:4aCO)
21 TRN2	TRN	3	57568	58033	58033	59028 2_nonsis	1	730	1459	1	16	1	1	0 (2:6)_(4:4aCO)
123 TRN2	TRN	12	337082	338262	338295	338685 2_nonsis	34	818	1602	1	16	1	1	0 (2:6)_(4:4aCO)
84 TRN2	TRN	9	41664	41898	42679	42866 2_nonsis	782	992	1201	1	16	1	1	0 (2:6)_(4:4aCO)
56 TRN2	TRN	6	171501	172334	172612	173376 2_nonsis	279	1077	1874	1	16	1	1	0 (2:6)_(4:4aCO)
117 TRN2	TRN	12	36398	36458	37705	37937 2_nonsis	1248	1393	1538	1	16	1	1	0 (2:6)_(4:4aCO)
38 TRN2	TRN	4	1396824	1397034	1398006	1398785 2_nonsis	973	1467	1960	1	16	1	1	0 (2:6)_(4:4aCO)
141 TRN2	TRN	13	397289	397850	399189	399408 2_nonsis	1340	1729	2118	1	16	1	1	0 (2:6)_(4:4aCO)
158 TRN2	TRN	14	749652	749744	750744	752223 2 nonsis	1001	1786	2570	1	16	1	1	0 (2:6)_(4:4aCO)
127 TRN2	TRN	12	628424	629441	630568	630870 2_nonsis	1128	1787	2445	1	16	1	1	0 (2:6)_(4:4aCO)
100 TRN2	TRN	10	495458	496029	497589	497615 2_nonsis	1561	1859	2156	1	16	1	1	0 (2:6)_(4:4aCO)
29 TRN2	TRN	4	407403	408065	408894	410728 2_nonsis	830	2077	3324	1	16	1	1	0 (2:6)_(4:4aCO)
1 TRN2	TRN	1	67476	67715	68551	71312 2_nonsis	837	2336	3835	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
163 TRN2	TRN	15	191548	193685	193685	196238 2_nonsis	1	2345	4689	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
167 TRN2	TRN	15	472780	474069	475809	476517 2_nonsis	1741	2739	3736	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
59 TRN2	TRN	7	20580	20692	23516	23602 2_nonsis	2825	2923	3021	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
7 TRN2	TRN	2	110746	110917	113452			3233	3929	1	16	1	1	
28 TRN2						114676 2_nonsis	2536			1		1	1	0 (2:6)_(4:4aCO)
	TRN	4	333754	334214	336943	337582 2_nonsis	2730	3279	3827	-	16	-	-	0 (2:6)_(4:4aCO)
175 TRN2	TRN	16	72872	73929	77239	77440 2_nonsis	3311	3939	4567	1	16	1	1	0 (2:6)_(4:4aCO)
174 TRN2	TRN	16	22695	22824	26952	27014 2_nonsis	4129	4224	4318	1	16	1	1	0 (2:6)_(4:4aCO)
168 TRN2	TRN	15	580351	581450	586345	586852 2_nonsis	4896	5698	6500	1	16	1	1	0 (2:6)_(4:4aCO)
162 TRN2	TRN	15	183754	183991	190009	191548 2_nonsis	6019	6906	7793	1	16	1	1	0 (2:6)_(4:4aCO)
64 TRN2	TRN	7	267726	268323	274448	276180 2_nonsis	6126	7290	8453	1	16	1	1	0 (2:6)_(4:4aCO)
110 TRN2	TRN	11	368313	369378	376721	376929 2_nonsis	7344	7980	8615	1	16	1	1	0 (2:6)_(4:4aCO)
156 TRN2	TRN	14	671317	674407	680930	682206 2_nonsis	6524	8706	10888	1	16	1	1	0 (2:6)_(4:4aCO)
132 TRN2	TRN	12	982257	986295	994215	994222 2_nonsis	7921	9943	11964	1	16	1	1	0 (2:6)_(4:4aCO)
171 TRN2	TRN	15	740202	741051	751727	752002 2_nonsis	10677	11238	11799	1	16	1	1	0 (2:6)_(4:4aCO)
2 TRN2	TRN	1	71312	73633	85751	87490 2_nonsis	12119	14148	16177	1	16	1	1	0 (2:6)_(4:4aCO)
93 TRN2	TRN	9	387393	387502	387393	387502 2_nonsis	0	54	108	1	100	1	1	0 (4:4aCO)
9 TRN2	TRN	2	196417	196581	196417	196581 2_nonsis	0	82	163	1	100	1	1	0 (4:4aCO)
50 TRN2	TRN	5	311515	311716	311515	311716 2_nonsis	0	100	200	1	100	1	1	0 (4:4aCO)
31 TRN2	TRN	4	660197	660411	660197	660411 2_nonsis	0	107	213	1	100	1	1	0 (4:4aCO)
34 TRN2	TRN	4	1009654	1009957	1009654	1009957 2_nonsis	0	151	302	1	100	1	1	0 (4:4aCO)
49 TRN2	TRN	5	309648	309961	309648	309961 2_nonsis	0	156	312	1	100	1	1	0 (4:4aCO)
81 TRN2	TRN	8	410489	410833	410489	410833 2_nonsis	0	172	343	1	100	1	1	0 (4:4aCO)
114 TRN2	TRN	11	579153	579541	579153	579541 2_nonsis	0	194	387	1	100	1	1	0 (4:4aCO)
37 TRN2	TRN	4	1153303	1153699	1153303	1153699 2_nonsis	0	198	395	1	100	1	1	0 (4:4aCO)
12 TRN2	TRN	2	512167	512684	512167	512684 2_nonsis	0	258	516	1	100	1	1	0 (4:4aCO)
51 TRN2	TRN	5	407419	407957	407419	407957 2_nonsis	0	269	537	1	100	1	1	0 (4:4aCO)
70 TRN2	TRN	7	841068	841693	841068	841693 2_nonsis	0	312	624	1	100	1	1	0 (4:4aCO)
113 TRN2	TRN	11	575852	576492	575852	576492 2_nonsis	0	320	639	1	100	1	1	0 (4:4aCO)
30 TRN2	TRN	4	429969	430665	429969	430665 2_nonsis	0	348	695	1	100	1	1	0 (4:4aCO)
62 TRN2	TRN	7	261126	261844	261126	261844 2_nonsis	0	359	717	1	100	1	1	0 (4:4aCO)
14 TRN2	TRN	2	620443	621285	620443	621285 2_nonsis	0	421	841	1	100	1	1	0 (4:4aCO)
169 TRN2	TRN	15	690980	691843	690980	691843 2_nonsis	0	431	862	1	100	1	1	0 (4:4aCO)
73 TRN2	TRN	7	1011203	1012213	1011203	1012213 2_nonsis	0	505	1009	1	100	1	1	0 (4:4aCO)
87 TRN2	TRN	9	162266	163427	162266	163427 2_nonsis	0	580	1160	1	100	1	1	0 (4:4aCO)
165 TRN2	TRN	15	431558	433358	431558	433358 2_nonsis	0	900	1799	1	100	1	1	0 (4:4aCO)
67 TRN2	TRN	7	468105	469926	468105	469926 2_nonsis	0	910	1820	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
77 TRN2	TRN	8	139506	141400	139506	141400 2 nonsis	0	947	1893	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
106 TRN2	TRN	11	203378	205481	203378	205481 2 nonsis	0	1051	2102	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
89 TRN2	TRN	9	240376	242535	240376	205481 2_nonsis 242535 2 nonsis	0	1051	2102	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
89 TRN2 181 TRN2	TRN		240376 860540	242535 863244	240376 860540	_	0	1352	2703	1	100	1	1	
		16				863244 2_nonsis								0 (4:4aCO)
22 TRN2	TRN	3	204750	207459	204750	207459 2_nonsis	0	1354	2708	1	100	1	1	0 (4:4aCO)

90 TRN2	TRN	9	320712	323487	320712	323487 2_nonsis		0	1387	2774	1	100	1	1	0 (4:4aCO)
83 TRN2	TRN	8	512291	515162	512291	515162 2_nonsis		0	1435	2870	1	100	1	1	0 (4:4aCO)
18 TRN2	TRN	2	749103	752417	749103	752417 2_nonsis		0	1657	3313	1	100	1	1	0 (4:4aCO)
107 TRN2	TRN	11	235115	238513	235115	238513 2_nonsis		0	1699	3397	1	100	1	1	0 (4:4aCO)
52 TRN2	TRN	5	426333	429823	426333	429823 2_nonsis		0	1745	3489	1	100	1	1	0 (4:4aCO)
122 TRN2	TRN	12	262367	265975	262367	265975 2_nonsis		0	1804	3607	1	100	1	1	0 (4:4aCO)
96 TRN2	TRN	10	407535	411303	407535	411303 2_nonsis		0	1884	3767	1	100	1	1	0 (4:4aCO)
129 TRN2	TRN	12	798382	802287	798382	802287 2_nonsis		0	1952	3904	1	100	1	1	0 (4:4aCO)
16 TRN2	TRN	2	695479	699461	695479	699461 2_nonsis		0	1991	3981	1	100	1	1	0 (4:4aCO)
157 TRN2	TRN	14	682580	686654	682580	686654 2_nonsis		0	2037	4073	1	100	1	1	0 (4:4aCO)
104 TRN2	TRN	11	41369	45993	41369	45993 2_nonsis		0	2312	4623	1	100	1	1	0 (4:4aCO)
32 TRN2	TRN	4	825422	837275	825422	837275 2_nonsis		0	5926	11852	1	100	1	1	0 (4:4aCO)
92 TRN2	TRN	9	340507	340858	342462	342976 2_nonsis		1605	2037	2468	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
69 TRN2	TRN	7	798848	800148	801373	801946 2_nonsis		1226	2162	3097	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
26 TRN2	TRN	4	50767	51098	53077	53471 2_nonsis		1980	2342	2703	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
66 TRN2	TRN	7	463843	464170	466985	467277 2_nonsis		2816	3125	3433	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
27 TRN2	TRN	4	182019	182862	183901	183975 2_nonsis		1040	1498	1955	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
137 TRN2	TRN	13	98070	98310	101176	101469 2_nonsis		2867	3133	3398	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
176 TRN2	TRN	16	242227	242326	245496	246320 2_nonsis		3171	3632	4092	3	20	1	1	0 (6:2)_(4:4)_(2:6)_(4:4aCO)
74 TRN2	TRN	7	1023965	1024005	1025187	1025688 2_nonsis		1183	1453	1722	3	20	1	1	0 (2:6)_(4:4)_(4:4aCO)_(6:2)_(4:4a)
145 TRN2	TRN	13	821494	822331	825884	826148 2_nonsis		3554	4104	4653	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(6:2)_(4:4aCO)
33 TRN2	TRN	4	959248	959287	963004	963556 2_nonsis		3718	4013	4307	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
60 TRN2	TRN	7	191252	192332	193477	193769 2_sis		1146	1831	2516	0	1	2	0	2 (2:6)_(2:6a)_(4:4)
124 TRN2	TRN	12	535113	535290	538633	539092 2_sis		3344	3661	3978	0	1	2	0	2 (2:6)_(2:6a)_(4:4)
153 TRN2	TRN	14	243530	244185	245680	246824 2_sis		1496	2395	3293	0	1	2	0	2 (6:2)_(4:4)_(6:2a)_(4:4)
4 TRN2	TRN	1	182210	182380	182447	183881	3	68	869	1670	0	2	2	1	1 (6:2)_(4:4aCO)
39 TRN2	TRN	4	1403147	1403669	1407535	1412849	3	3867	6784	9701	0	2	2	1	1 (6:2)_(4:4aCO)
76 TRN2	TRN	8	23964	24334	34071	34328	3	9738	10051	10363	0	2	2	1	1 (6:2)_(8:0)_(6:2)_(4:4aCO)
86 TRN2	TRN	9	148671	148730	158276	160453	3	9547	10664	11781	0	2	2	1	1 (6:2)_(4:4)_(6:2a)_(4:4)_(6:2a)_(4:4aCO)_(2:6)_(4:4a)
101 TRN2	TRN	10	658862	660402	672815	672937	3	12414	13244	14074	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4a)
131 TRN2	TRN	12	967302	969880	972928	974574	3	3049	5160	7271	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(4:4aCO)
138 TRN2	TRN	13	223609	224126	230470	230627	3	6345	6681	7017	0	2	2	1	1 (6:2)_(4:4)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
140 TRN2	TRN	13	383224	384682	395765	395969	4	11084	11914	12744	0	2	2	2	0 (2:6)_(0:8)_(2:6a)_(4:4aCO)
146 TRN2	TRN	13	856957	857240	864272	864551	3	7033	7313	7593	0	2	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(8:0)_(6:2)_(4:4a)
147 TRN2	TRN	13	908047	908906	912584	912804	3	3679	4218	4756	0	2	2	1	1 (6:2)_(8:0)_(4:4aCO)
155 TRN2	TRN	14	433271	435509	445056	446017	3	9548	11147	12745	0	2	2	1	1 (6:2)_(2:6)_(4:4aCO)
166 TRN2	TRN	15	437180	437266	442944	443071	3	5679	5785	5890	0	2	2	1	1 (6:2)_(6:2a)_(4:4aCO)
5 TRN2	TRN	2	36507	36690	36837	39234	3	148	1437	2726	0	3	2	1	1 (4:4aCO)_(4:4bCO)
6 TRN2	TRN	2	105973	106303	108452	108510	3	2150	2343	2536	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4bCO)
55 TRN2	TRN	6	93664	93934	98152	98330	3	4219	4442	4665	0	3	2	1	1 (4:4aCO)_(6:2)_(4:4bCO)
75 TRN2	TRN	7	1042643	1043244	1051093	1051973	3	7850	8590	9329	0	3	2	0	2 (4:4aCO)_(4:4CO)_(2:6)_(4:4)_(2:6)_(4:4bCO)
91 TRN2	TRN	9	324424	325450	335079	336156	3	9630	10681	11731	0	3	3	3	0 (4:4aCO)_(2:6)_(2:6a)_(4:4bCO)
95 TRN2	TRN	10	270752	271477	284198	284309	4	12722	13139	13556	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(2:6)_(0:8)_(2:6a)_(4:4CO)_(2:6a)_(0:8)_(4:4)_(2:6a)_(4:4)_(6:2a)_(4:4bCO)
105 TRN2	TRN	11	77172	77759	80353	80724	4	2595	3073	3551	0	3	2	2	0 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
120 TRN2	TRN	12	223258	223495	238547	238758 2_nonsis		15053	15276	15499	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4CO)
139 TRN2	TRN	13	378772	378833	381609	382044 2_nonsis		2777	3024	3271	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)_(6:2)_(4:4)
143 TRN2	TRN	13	507334	508576	511632	512087	4	3057	3905	4752	0	3	2	2	0 (4:4aCO)_(6:2)_(4:4bCO)
144 TRN2	TRN	13	687199	687331	701668	702452	3	14338	14795	15252	0	3	2	0	2 (6:2)_(8:0)_(6:2)_(4:4aCO)_(6:2)_(4:4CO)
159 TRN2	TRN	15	78123	78272	87042	88455	3	8771	9551	10331	0	3	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
203 TRN2	TRN	2	794651	794800	801524	813184	1	0	9266	18532	0	4	1 NA	NA	
259 TRN2	TRN	7	1063378	1063622	1064130	1090940	1	0	13781	27561	0	4	1 NA	NA	
129 TRN20	TRN	13	538839	539007	541435	541511	1	2429	2550	2671	1	7	1	0	1 6:2_4:4_6:2
25 TRN20	TRN	4	695576	695611	700250	700440	1	4640	4752	4863	1	7	1	0	1 6:2_4:4_6:2
173 TRN20	TRN	16	500339	500407	503192	503305	1	2786	2876	2965	1	7	1	0	1 6:2_4:4_6:2_4:4_6:2
76 TRN20	TRN	9	131891	132148	132756	133353	1	609	1035	1461	1	8	1	0	1 2:6_4:4_2:6
122 TRN20	TRN	13	24775	24787	26434	26922	1	1648	1897	2146	1	8	1	0	1 2:6_4:4_2:6
54 TRN20	TRN	7	171676	171763	173856	174098	1	2094	2258	2421	1	8	1	0	1 2:6_4:4_2:6
6 TRN20	TRN	2	110153	110550	116102	116107	1	5553	5753	5953	1	8	1	0	1 2:6_4:4_2:6
64 TRN20	TRN	7	970143	970290	970290	970357	1	1	107	213	1	10	1	0	1 06:02
4 TRN20	TRN	2	45269	45304	45304	45660	1	1	196	390	1	10	1	0	1 06:02

99 TRN20	TRN	11	208745	209107	209107	209296	1	1	276	550	1	10	1	0	1 06:02
59 TRN20	TRN	7	553132	553711	553711	553821	1	1	345	688	1	10	1	0	1 06:02
155 TRN20	TRN	15	486327	486494	486511	487028	1	18	359	700	1	10	1	0	1 06:02
87 TRN20	TRN	10	380706	380992	381120	381644	1	129	533	937	1	10	1	0	1 06:02
172 TRN20	TRN	16	298955	299549	299834	300071	1	286	701	1115	1	10	1	0	1 06:02
79 TRN20	TRN	9	262630	263455	263911	265508	1	457	1667	2877	1	10	1	0	1 06:02
69 TRN20	TRN	8	369898	370655	372114	372426	1	1460	1994	2527	1	10	1	0	1 06:02
17 TRN20	TRN	2	769903	770335	772342	772685	1	2008	2395	2781	1	10	1	0	1 06:02
43 TRN20	TRN	5	376275	376375	378586	379092	1	2212	2514	2816	1	10	1	0	1 06:02
125 TRN20	TRN	13	89876	90409	92531	93860	1	2123	3053	3983	1	10	1	0	1 06:02
55 TRN20	TRN	7	241708	244757	245686	247666	1	930	3444	5957	1	10	1	0	1 06:02
23 TRN20	TRN	4	196851	198376	202761	202877	1	4386	5206	6025	1	10	1	0	1 06:02
151 TRN20	TRN	15	318818	319505	325359	326413	1	5855	6725	7594	1	10	1	0	1 06:02
135 TRN20	TRN	14	80433	81575	88100	89169	1	6526	7631	8735	1	10	1	0	1 06:02
152 TRN20	TRN	15	346743	347366	354510	355477	1	7145	7939	8733	1	10	1	0	1 06:02
179 TRN20	TRN	16	694434	694716	704149	704396	1	9434	9698	9961	1	10	1	0	1 06:02
133 TRN20	TRN	13	751108	751553	761480	761798	1	9928	10309	10689	1	10	1	0	1 06:02
8 TRN20	TRN	2	191242	191470	191470	191528	1	1	143	285	1	10.1	1	0	1 02:06
103 TRN20	TRN	11	398924	399102	399102	399300	1	1	188	375	1	10.1	1	0	1 02:06
72 TRN20	TRN	8	482776	482818	482961	483130	1	144	249	353	1	10.1	1	0	1 02:06
94 TRN20	TRN	11	69153	69417	69425	69662	1	9	259	508	1	10.1	1	0	1 02:06
182 TRN20	TRN	16	826929	827031	827234	827379	1	204	327	449	1	10.1	1	0	1 02:06
95 TRN20	TRN	11	71211	71541	71541	71930	1	1	360	718	1	10.1	1	0	1 02:06
40 TRN20	TRN	5	219306	219359	219608	219959	1	250	451	652	1	10.1	1	0	1 02:06
75 TRN20	TRN	9	60434	60844	60879	61323	1	36	462	888	1	10.1	1	0	1 02:06
42 TRN20	TRN	5	360318	360499	360556	361242	1	58	491	923	1	10.1	1	0	1 02:06
148 TRN20	TRN	15	109424	109584	109584	110892	1	1	734	1467	1	10.1	1	0	1 02:06
176 TRN20	TRN	16	526860	527307	528017	528301	1	711	1076	1440	1	10.1	1	0	1 02:06
176 TRN20 144 TRN20	TRN	14	486092	487177	487663	487830	1	487	1112	1737	1	10.1	1	0	1 02:06
105 TRN20	TRN	11	547337	547817	548704	548884	1	888	1217	1546	1	10.1	1	0	1 02:06
105 TRN20 115 TRN20	TRN	12	516783	516845	517958	518152	1	1114	1217	1346	1	10.1	1	0	1 02:06
							1								
177 TRN20 149 TRN20	TRN TRN	16 15	686122 146419	687687 147007	687978 148159	688591 148210	1	292 1153	1380 1472	2468 1790	1	10.1 10.1	1	0	1 02:06 1 02:06
86 TRN20	TRN	10	364028	364186	365022	366471	1	837	1640	2442	1	10.1	1	0	1 02:06
57 TRN20	TRN	7	414779	415307	416143	417265	1	837	1661	2485	1	10.1	1	0	1 02:06
161 TRN20	TRN	15	741453	741916	743338	743656	1	1423	1813	2202	1	10.1	1	0	1 02:06
78 TRN20	TRN	9	252174	252259	254108	254153	1	1850	1914	1978	1	10.1	1	0	1 02:06
45 TRN20	TRN	5	438946	439039	441415	441532	1	2377	2481	2585	1	10.1	1	0	1 02:06
186 TRN20	TRN	16	908156	908420	911060	911898	1	2641	3191	3741	1	10.1	1	0	1 02:06
127 TRN20	TRN	13	218051	218113	224985	225529	1	6873	7175	7477	1	10.1	1	0	1 02:06
171 TRN20	TRN	16	274818	275384	282651	283933	1	7268	8191	9114	1	10.1	1	0	1 02:06
90 TRN20	TRN	10	624648	627140	640236	640392	1	13097	14420	15743	1	10.1	1	0	1 02:06
12 TRN20	TRN	2	483944	484110	485003	485258 2_nonsis		894	1104	1313	3	30	1	0	1 6:2_2:6
49 TRN20	TRN	6	73471	73840	76126	76268 2_nonsis		2287	2542	2796	3	30	1	0	1 2:6_6:2
28 TRN20	TRN	4	888488	888611	895202	895289 2_nonsis		6592	6696	6800	3	30	1	0	1 6:2_2:6
114 TRN20	TRN	12	400601	400709	401664	402030 2_nonsis		956	1192	1428	3	30	1	0	1 6:2_4:4_2:6
50 TRN20	TRN	6	92224	92733	96853	96991 2_nonsis		4121	4444	4766	3	30	1	0	1 2:6_4:4_6:2
51 TRN20	TRN	6	110959	111466	112159	112326 2_nonsis		694	1030	1366	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
52 TRN20	TRN	6	171501	172334	172677	173376 2_nonsis		344	1109	1874	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
7 TRN20	TRN	2	119450	119490	120585	121110 2_nonsis		1096	1378	1659	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
163 TRN20	TRN	15	843892	843925	845840	846014 2_nonsis		1916	2019	2121	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
39 TRN20	TRN	5	182381	182827	190106	190541 2_nonsis		7280	7720	8159	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
145 TRN20	TRN	14	510203	510728	511580	511838 2_nonsis		853	1244	1634	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
1 TRN20	TRN	1	44150	44384	46030	46375 2_nonsis		1647	1936	2224	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
100 TRN20	TRN	11	254358	254796	256637	256761 2_nonsis		1842	2122	2402	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
84 TRN20	TRN	10	318987	319218	321279	321299 2_nonsis		2062	2187	2311	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
178 TRN20	TRN	16	689677	691459	692547	693047 2_nonsis		1089	2229	3369	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
120 TRN20	TRN	12	1009697	1011169	1012226	1013592 2_nonsis		1058	2476	3894	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
110 TRN20	TRN	12	177778	178195	181616	182125 2_nonsis		3422	3884	4346	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
91 TRN20	TRN	10	648638	649035	653249	653590 2_nonsis		4215	4583	4951	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
	•							-							·

60 TRN20	TRN	7	661173	661245	665921	666261 2_nonsis	4677	4882	5087	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
73 TRN20	TRN	9	36872	36921	42866	44800 2_nonsis	5946	6937	7927	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
29 TRN20	TRN	4	954530	954939	967966	968331 2_nonsis	13028	13414	13800	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
16 TRN20	TRN	2	741999	742150	745793	745895 2_nonsis	3644	3770	3895	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
180 TRN20	TRN	16	781741	783424	788617	788833 2_nonsis	5194	6143	7091	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
81 TRN20	TRN	10	127878	128296	140425	140646 2_nonsis	12130	12449	12767	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
143 TRN20	TRN	14	469170	470301	474965	475172 2_nonsis	4665	5333	6001	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4)_(4:4aCO)
96 TRN20	TRN	11	93734	93852	93867	94121 2_nonsis	16	201	386	1	15	1	1	0 (6:2)_(4:4aCO)
119 TRN20	TRN	12	953629	953884	953884	954049 2_nonsis	1	210	419	1	15	1	1	0 (6:2)_(4:4aCO)
162 TRN20	TRN	15	836747	837056	837247	837673 2_nonsis	192	559	925	1	15	1	1	0 (6:2)_(4:4aCO)
139 TRN20	TRN	14	236860	237099	237838	238024 2_nonsis	740	952	1163	1	15	1	1	0 (6:2)_(4:4aCO)
153 TRN20	TRN	15	473069	474069	474069	475032 2_nonsis	1	982	1962	1	15	1	1	0 (6:2)_(4:4aCO)
68 TRN20	TRN	8	350845	351418	351889	352512 2_nonsis	472	1069	1666	1	15	1	1	0 (6:2)_(4:4aCO)
33 TRN20	TRN	4	1270902	1271755	1272147	1272726 2_nonsis	393	1108	1823	1	15	1	1	0 (6:2)_(4:4aCO)
142 TRN20	TRN	14	439088	440569	440622	441344 2_nonsis	54	1155	2255	1	15	1	1	0 (6:2)_(4:4aCO)
136 TRN20	TRN	14	122564	123158	123896	124154 2_nonsis	739	1164	1589	1	15	1	1	0 (6:2)_(4:4aCO)
154 TRN20	TRN	15	478915	479565	480144	480673 2_nonsis	580	1169	1757	1	15	1	1	0 (6:2)_(4:4aCO)
20 TRN20	TRN	3	273911	273985	275018	275423 2_nonsis	1034	1273	1511	1	15	1	1	0 (6:2)_(4:4aCO)
26 TRN20	TRN	4	703905	706032	706032	706601 2_nonsis	1	1348	2695	1	15	1	1	0 (6:2)_(4:4aCO)
184 TRN20	TRN	16	887070	887343	888536	888868 2_nonsis	1194	1496	1797	1	15	1	1	0 (6:2)_(4:4aCO)
109 TRN20	TRN	12	124986	126014	127219	127478 2_nonsis	1206	1849	2491	1	15	1	1	0 (6:2)_(4:4aCO)
117 TRN20	TRN	12	808279	809313	810333	811301 2_nonsis	1021	2021	3021	1	15	1	1	0 (6:2)_(4:4aCO)
21 TRN20	TRN	4	43482	46608	46818	47365 2_nonsis	211	2047	3882	1	15	1	1	0 (6:2)_(4:4aCO)
58 TRN20	TRN	7	430869	431116	432934	433211 2_nonsis	1819	2080	2341	1	15	1	1	0 (6:2)_(4:4aCO)
82 TRN20	TRN	10	223465	225236	226353	226665 2_nonsis	1118	2159	3199	1	15	1	1	0 (6:2)_(4:4aCO)
124 TRN20	TRN	13	56369	56748	59135	59485 2_nonsis	2388	2752	3115	1	15	1	1	0 (6:2)_(4:4aCO)
130 TRN20	TRN	13	543227	543392	545936	546319 2_nonsis	2545	2818	3091	1	15	1	1	0 (6:2)_(4:4aCO)
106 TRN20	TRN	11	588209	588593	590994	592478 2_nonsis	2402	3335	4268	1	15	1	1	0 (6:2)_(4:4aCO)
97 TRN20	TRN	11	165363	165754	169627	170362 2_nonsis	3874	4436	4998	1	15	1	1	0 (6:2)_(4:4aCO)
35 TRN20	TRN	4	1392322	1392396	1397878	1398006 2_nonsis	5483	5583	5683	1	15	1	1	0 (6:2)_(4:4aCO)
66 TRN20	TRN	8	14965	15038	24526	24674 2_nonsis	9489	9599	9708	1	15	1	1	0 (6:2)_(4:4aCO)
56 TRN20	TRN	7	247749	249983	259222	259380 2_nonsis	9240	10435	11630	1	15	1	1	0 (6:2)_(4:4aCO)
46 TRN20	TRN	5	479237	479528	480101	480122 2_nonsis	574	729	884	1	16	1	1	0 (2:6)_(4:4aCO)
92 TRN20	TRN	10	660402	660786	661171	661626 2_nonsis	386	805	1223	1	16	1	1	0 (2:6)_(4:4aCO)
128 TRN20	TRN	13	417524	418982	418982	419424 2_nonsis	1	950	1899	1	16	1	1	0 (2:6)_(4:4aCO)
37 TRN20	TRN	5	26413	26549	27272	27604 2_nonsis	724	957	1190	1	16	1	1	0 (2:6)_(4:4aCO)
167 TRN20	TRN	16	64540	66393	66527	66703 2_nonsis	135	1149	2162	1	16	1	1	0 (2:6)_(4:4aCO)
47 TRN20	TRN	5	482316	483903	483903	485006 2_nonsis	1	1345	2689	1	16	1	1	0 (2:6)_(4:4aCO)
146 TRN20	TRN	14	615762	617566	617566	618548 2_nonsis	1	1393	2785	1	16	1	1	0 (2:6)_(4:4aCO)
98 TRN20	TRN	11	204194	205481	205840	206732 2_nonsis	360	1449	2537	1	16	1	1	0 (2:6)_(4:4aCO)
77 TRN20	TRN	9	149978	150261	151918	152184 2_nonsis	1658	1932	2205	1	16	1	1	0 (2:6)_(4:4aCO)
101 TRN20	TRN	11	388737	389905	390798	391848 2_nonsis	894	2002	3110	1	16	1	1	0 (2:6)_(4:4aCO)
13 TRN20	TRN	2	486878	487183	489622	489703 2_nonsis	2440	2632	2824	1	16	1	1	0 (2:6)_(4:4aCO)
157 TRN20	TRN	15	623604	624112	627024	627279 2_nonsis	2913	3294	3674	1	16	1	1	0 (2:6)_(4:4aCO)
137 TRN20	TRN	14	156760	156907	161874	162100 2_nonsis	4968	5154	5339	1	16	1	1	0 (2:6)_(4:4aCO)
116 TRN20	TRN	12	564860	565172	570142	570914 2_nonsis	4971	5512	6053	1	16	1	1	0 (2:6)_(4:4aCO)
48 TRN20	TRN	6	53398	57870	61610	61904 2_nonsis	3741	6123	8505	1	16	1	1	0 (2:6)_(4:4aCO)
140 TRN20	TRN	14	245307	245680	252203	254039 2 nonsis	6524	7628	8731	1	16	1	1	0 (2:6)_(4:4aCO)
160 TRN20	TRN	15	728798	729380	739134	739347 2 nonsis	9755	10152	10548	1	16	1	1	0 (2:6)_(4:4aCO)
38 TRN20	TRN	5	63146	63176	75084	75225 2_nonsis	11909	11994	12078	1	16	1	1	0 (2:6)_(4:4aCO)
53 TRN20	TRN	7	113828	114793	128483	128648 2_nonsis	13691	14255	14819	1	16	1	1	0 (2:6)_(4:4aCO)
31 TRN20	TRN	4	1060416	1060655	1060416	1060655 2_nonsis	0	119	238	1	100	1	1	0 (4:4aCO)
15 TRN20	TRN	2	495218	495468	495218	495468 2_nonsis	0	125	249	1	100	1	1	0 (4:4aCO)
111 TRN20	TRN	12	222641	223058	222641	223058 2_nonsis	0	208	416	1	100	1	1	0 (4:4aCO)
11 TRN20	TRN	2	399052	399535	399052	399535 2_nonsis	0	241	482	1	100	1	1	0 (4:4aCO)
24 TRN20	TRN	4	314500	315119	314500	315119 2_nonsis	0	309	618	1	100	1	1	0 (4:4aCO)
181 TRN20	TRN	16	815485	816173	815485	816173 2_nonsis	0	344	687	1	100	1	1	0 (4:4aCO)
183 TRN20	TRN	16	880884	881834	880884	881834 2_nonsis	0	475	949	1	100	1	1	0 (4:4aCO)
30 TRN20	TRN	4	1057601	1058554	1057601	1058554 2 nonsis	0	476	952	1	100	1	1	0 (4:4aCO)
19 TRN20	TRN	3	160427	161541	160427	161541 2_nonsis	0	557	1113	1	100	1	1	0 (4:4aCO)
							•	55,		•	- 50	•	-	- X - (mmm/

158 TRN20	TRN	15	630587	632023	630587	632023 2_nonsis		0	718	1435	1	100	1	1	0 (4:4aCO)
107 TRN20	TRN	12	40119	41721	40119	41721 2_nonsis		0	801	1601	1	100	1	1	0 (4:4aCO)
62 TRN20	TRN	7	900753	902391	900753	902391 2_nonsis		0	819	1637	1	100	1	1	0 (4:4aCO)
168 TRN20	TRN	16	79797	82464	79797	82464 2_nonsis		0	1333	2666	1	100	1	1	0 (4:4aCO)
85 TRN20	TRN	10	357628	361124	357628	361124 2_nonsis		0	1748	3495	1	100	1	1	0 (4:4aCO)
89 TRN20	TRN	10	568805	572936	568805	572936 2_nonsis		0	2065	4130	1	100	1	1	0 (4:4aCO)
27 TRN20	TRN	4	807222	816386	807222	816386 2_nonsis		0	4582	9163	1	100	1	1	0 (4:4aCO)
14 TRN20	TRN	2	491216	491476	492334	493122 2_nonsis		859	1382	1905	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
74 TRN20	TRN	9	55678	55716	58630	58961 2_nonsis		2915	3099	3282	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
185 TRN20	TRN	16	895917	896116	896854	897258 2_nonsis		739	1040	1340	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)
123 TRN20	TRN	13	46860	48814	54192	54469 2_nonsis		5379	6494	7608	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)_(2:6)_(4:4a)
147 TRN20	TRN	15	78272	78367	93175	94096 2_nonsis		14809	15316	15823	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(2:6)_(4:4a)
41 TRN20	TRN	5	344307	344574	348013	348215 2_sis		3440	3674	3907	0	1	2	0	2 (2:6)_(0:8)_(2:6)_(4:4)
44 TRN20	TRN	5	392326	392813	394357	394774 2_sis		1545	1996	2447	0	1	2	0	2 (2:6)_(0:8)_(2:6a)_(4:4)
112 TRN20	TRN	12	227856	228348	235940	236342	3	7593	8039	8485	0	1	2	0	2 (2:6)_(4:4)_(6:2)_(6:2a)_(4:4)
159 TRN20	TRN	15	652513	654602	656264	657201 2_sis		1663	3175	4687	0	1	2	0	2 (2:6)_(2:6a)_(4:4)
169 TRN20	TRN	16	83474	83873	86716	86878 2_sis		2844	3124	3403	0	1	2	0	2 (2:6)_(4:4)_(2:6)_(4:4)_(2:6a)_(4:4)
2 TRN20	TRN	1	79085	79449	80946	81253	3	1498	1833	2167	0	2	2	1	1 (6:2)_(4:4)_(6:2a)_(4:4aCO)
10 TRN20	TRN	2	390461	390744	394376	394430	3	3633	3801	3968	0	2	2	1	1 (2:6)_(2:6a)_(4:4aCO)
18 TRN20	TRN	3	72190	72786	77505	77826	3	4720	5178	5635	0	2	2	1	1 (6:2)_(6:2a)_(4:4aCO)
32 TRN20	TRN	4	1110571	1111002	1115198	1115651	3	4197	4638	5079	0	2	2	1	1 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
63 TRN20	TRN	7	942173	944010	947080	947885	3	3071	4391	5711	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4a)
65 TRN20	TRN	7	973354	975047	976713	976931	3	1667	2622	3576	0	2	2	1	1 (6:2)_(6:2a)_(4:4aCO)
83 TRN20	TRN	10	289772	289825	311129	311660	3	21305	21596	21887	0	2	2	1	1 (6:2)_(2:6)_(4:4aCO)_(2:6a)_(4:4a)
104 TRN20	TRN	11	523472	523649	524820	525008	3	1172	1354	1535	0	2	2	1	1 (6:2)_(4:4aCO)_(6:2a)_(4:4a)
113 TRN20	TRN	12	243937	244048	269839	270392	3	25792	26123	26454	0	2	2	1	1 (6:2)_(4:4aCO)_(6:2)_(8:0)_(6:2)_(4:4a)
118 TRN20	TRN	12	823256	830392	823256	830392	4	0	3568	7135	0	2	2	2	0 (4:4aCO)
126 TRN20	TRN	13	169522	170001	174577	174640	3	4577	4847	5117	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)
165 TRN20	TRN	15	989301	991111	993116	993617	3	2006	3161	4315	0	2	2	1	1 (6:2)_(4:4aCO)
170 TRN20	TRN	16	155661	155901	160237	160357	3	4337	4516	4695	0	2	2	1	1 (6:2)_(4:4)_(6:2)_(4:4)_(6:2a)_(4:4)_(6:2a)_(4:4aCO)
174 TRN20	TRN	16	506360	506595	510020	510985	3	3426	4025	4624	0	2	2	1	1 (6:2)_(8:0)_(4:4aCO)
3 TRN20	TRN	1	190429	190880	191617	193131	4	738	1720	2701	0	3	2	2	0 (2:6)_(4:4aCO)_(4:4bCO)
5 TRN20	TRN	2	90715	92062	97590	97676 2_nonsis		5529	6245	6960	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4CO)
9 TRN20	TRN	2	284437	284893	291653	292254	3	6761	7289	7816	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)_(4:4CO)
22 TRN20	TRN	4	161421	162357	163031	163324 2_nonsis		675	1289	1902	0	3	2	0	2 (4:4aCO)_(2:6)_(4:4CO)
34 TRN20	TRN	4	1345632	1346089	1347683	1349666 2_nonsis		1595	2814	4033	0	3	2	0	2 (6:2)_(4:4aCO)_(4:4CO)
36 TRN20	TRN	4	1418662	1418928	1424907	1424978	3	5980	6148	6315	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4bCO)_(2:6a)_(4:4b)
61 TRN20	TRN	7	728724	729111	729111	729333 2_nonsis		1	305	608	0	3	2	0	2 (4:4aCO)_(4:4CO)
67 TRN20	TRN	8	276840	277301	284440	285871 2_nonsis		7140	8085	9030	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)
70 TRN20	TRN	8	441044	441251	444619	444856	4	3369	3590	3811	0	3	2	2	0 (6:2)_(8:0)_(6:2)_(6:2a)_(4:4aCO)_(6:2a)_(4:4bCO)
71 TRN20	TRN	8	457249	457364	461762	463767 2_nonsis		4399	5458	6517	0	3	2	0	2 (2:6)_(4:4)_(2:6)_(4:4aCO)_(6:2)_(4:4CO)_(2:6)_(4:4)
80 TRN20	TRN	9	268278	269349	275507	275789	3	6159	6835	7510	0	3	2	1	1 (6:2)_(4:4aCO)_(4:4bCO)
88 TRN20	TRN	10	464438	465282	471532	471814	3	6251	6813	7375	0	3	2	0	2 (2:6)_(4:4)_(6:2)_(6:2a)_(4:4aCO)_(2:6)_(4:4CO)
93 TRN20	TRN	10	715592	716361	717437	718433 2_nonsis		1077	1959	2840	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)
102 TRN20	TRN	11	394215	394878	396831	397099 2_nonsis		1954	2419	2883	0	3	2	0	2 (4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)_(2:6)_(4:4CO)
108 TRN20	TRN	12	91515	91951	91992	92468 2_nonsis		42	497	952	0	3	2	0	2 (4:4aCO)_(4:4CO)
121 TRN20	TRN	12	1042570	1042844	1043701	1043895 2_nonsis		858	1091	1324	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)
131 TRN20	TRN	13	668902	669285	673975	674192 2_nonsis		4691	4990	5289	0	3	2	0	2 (2:6)_(4:4)_(2:6)_(4:4aCO)_(6:2)_(4:4a)_(4:4CO)
132 TRN20	TRN	13	699586	700248	703253	703444	3	3006	3432	3857	0	3	2	0	2 (2:6)_(0:8)_(2:6)_(4:4aCO)_(4:4CO)
134 TRN20	TRN	13	774012	774331	776909	777163	3	2579	2865	3150	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(2:6)_(4:4CO)
138 TRN20	TRN	14	196834	197191	202811	203039	3	5621	5913	6204	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)
141 TRN20	TRN	14	357524	357852	362994	363234	3	5143	5426	5709	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4CO)_(2:6a)_(4:4)
150 TRN20	TRN	15	190009	192333	201256	202129	3	8924	10522	12119	0	3	2	1	1 (2:6)_(2:6a)_(4:4)_(2:6a)_(4:4)_(4:4aCO)_(4:4bCO)
156 TRN20	TRN	15	496163	496422	499909	499981 2_nonsis		3488	3653	3817	0	3	2	0	2 (4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4CO)
164 TRN20	TRN	15	954766	955006	960152	960232 2_nonsis		5147	5306	5465	0	3	2	0	2 (4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4CO)
166 TRN20	TRN	15	996896	997902	1006391	1007049	3	8490	9321	10152	0	3	2	1	1 (2:6)_(4:4)_(2:6)_(4:4)_(4:4aCO)_(4:4bCO)_(6:2)_(4:4aCO)
175 TRN20	TRN	16	512760	513619	520684	521328	3	7066	7817	8567	0	3	2	2	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2a)_(4:4CO)
187 TRN20	TRN	16	920048	920779	922477	922622	3	1699	2136	2573	0	3	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4bCO)
53 TRN4	TRN	7	978531	978858	979683	979753	1	826	1024	1221	1	7	1	0	1 6:2_4:4_6:2
126 TRN4	TRN	15	162872	163253	164284	164383	1	1032	1271	1510	1	7	1	0	1 6:2_4:4_6:2

440 mpy4	mpar	4.0	054055	0.550.40	0.0101	041101		20.12	2504	1221		_			1.40.11.40
110 TRN4	TRN	13	856957	857240	860181	861184	1	2942	3584	4226	1	7	1	0	1 6:2_4:4_6:2
87 TRN4	TRN	12	530404	531361	534611	535533	1	3251	4190	5128	1	7	1	0	1 6:2_4:4_6:2
129 TRN4	TRN	15	316412	316429	316433	316591	1	5	92	178	1	10	1	0	1 06:02
47 TRN4	TRN	7	612267	612759	612759	612980	1	1	357	712	1	10	1	0	1 06:02
101 TRN4	TRN	13	340906	341020	341111	341630	1	92	408	723	1	10	1	0	1 06:02
22 TRN4	TRN	4	318659	319317	319317	319482	1	1	412	822	1	10	1	0	1 06:02
43 TRN4	TRN	7	327931	328052	328052	329109	1	1	589	1177	1	10	1	0	1 06:02
57 TRN4	TRN	8	375825	375930	376477	376578	1	548	650	752	1	10	1	0	1 06:02
10 TRN4	TRN	2	371139	371446	371746	372547	1	301	854	1407	1	10	1	0	1 06:02
112 TRN4	TRN	13	914143	916782	916782	916813	1	1	1335	2669	1	10	1	0	1 06:02
39 TRN4	TRN	5	516974	517321	518464	519506	1	1144	1838	2531	1	10	1	0	1 06:02
125 TRN4	TRN	15	152407	153180	154173	156059	1	994	2323	3651	1	10	1	0	1 06:02
103 TRN4	TRN	13	383224	384682	385945	387028	1	1264	2534	3803	1	10	1	0	1 06:02
66 TRN4	TRN	10	79553	79717	82809	82930	1	3093	3235	3376	1	10	1	0	1 06:02
44 TRN4	TRN	7	473951	474708	482421	483344	1	7714	8553	9392	1	10	1	0	1 06:02
130 TRN4	TRN	15	373492	374879	384491	384665	1	9613	10393	11172	1	10	1	0	1 06:02
25 TRN4	TRN	4	824244	831279	844304	848341	1	13026	18561	24096	1	10	1	0	1 06:02
45 TRN4	TRN	7	525956	526158	526158	526419	1	1	232	462	1	10.1	1	0	1 02:06
28 TRN4	TRN	4	1282347	1283112	1283387	1283592	1	276	760	1244	1	10.1	1	0	1 02:06
124 TRN4	TRN	15	39434	39886	40057	41027	1	172	882	1592	1	10.1	1	0	1 02:06
151 TRN4	TRN	16	842086	843391	843720	843861	1	330	1052	1774	1	10.1	1	0	1 02:06
12 TRN4	TRN	2	562773	564041	564041	565133	1	1	1180	2359	1	10.1	1	0	1 02:06
4 TRN4	TRN	2	41298	43330	43348	43654	1	19	1187	2355	1	10.1	1	0	1 02:06
92 TRN4	TRN	12	729962	731012	731012		1	19	1283	2564	1	10.1	1	0	
						732527									1 02:06
145 TRN4	TRN	16	659091	659254	660498	661094	1	1245	1624	2002	1	10.1	1	0	1 02:06
90 TRN4	TRN	12	674877	677323	677323	678512	1	1	1818	3634	1	10.1	1	0	1 02:06
61 TRN4	TRN	9	136172	138253	139068	139273	1	816	1958	3100	1	10.1	1	0	1 02:06
111 TRN4	TRN	13	889717	890524	890524	893651	1	1	1967	3933	1	10.1	1	0	1 02:06
35 TRN4	TRN	5	232874	233356	234931	235773	1	1576	2237	2898	1	10.1	1	0	1 02:06
68 TRN4	TRN	10	343574	344460	346113	346401	1	1654	2240	2826	1	10.1	1	0	1 02:06
137 TRN4	TRN	15	808677	808993	811067	811738	1	2075	2568	3060	1	10.1	1	0	1 02:06
62 TRN4	TRN	9	265508	265732	268278	269349	1	2547	3194	3840	1	10.1	1	0	1 02:06
96 TRN4	TRN	13	18729	20392	23353	23573	1	2962	3903	4843	1	10.1	1	0	1 02:06
71 TRN4	TRN	10	568805	572936	574799	577387	1	1864	5223	8581	1	10.1	1	0	1 02:06
139 TRN4	TRN	16	50951	51382	56290	63657	1	4909	8807	12705	1	10.1	1	0	1 02:06
94 TRN4	TRN	12	892436	930472	940926	947200	1	10455	32609	54763	1	10.1	1	0	1 02:06
81 TRN4	TRN	11	612809	613087	616059	616404 2_nonsis		2973	3284	3594	3	30	1	0	1 6:2_2:6
88 TRN4	TRN	12	576339	577535	585365	586124 2_nonsis		7831	8808	9784	3	30	1	0	1 2:6_6:2
132 TRN4	TRN	15	527323	529292	546837	547266 2_nonsis		17546	18744	19942	3	30	1	0	1 6:2_2:6
23 TRN4	TRN	4	419911	420270	422794	423046 2_nonsis		2525	2830	3134	3	30	1	0	1 2:6_4:4_6:2
42 TRN4	TRN	7	197225	197228	197230	197465 2_nonsis		3	121	239	1	12	1	1	0 (6:2)_(4:4)_(4:4aCO)
128 TRN4	TRN	15	311489	312220	313126	313924 2_nonsis		907	1671	2434	1	12	1	1	0 (4:4aCO)_(6:2)_(4:4a)
37 TRN4	TRN	5	348780	349106	350543	350741 2_nonsis		1438	1699	1960	1	12	1	1	0 (4:4aCO)_(0:2)_(4:4a)
13 TRN4	TRN	2	672354	672487	674481	675106 2_nonsis		1995	2373	2751	1	12	1	1	0 (2:6)_(4:4)_(4:4aCO)
1 TRN4	TRN	1	57739	59349	62990			3642	4947	6252	1	12	1	1	
						63992 2_nonsis									0 (4:4aCO)_(2:6)_(4:4a)
82 TRN4	TRN	11	631559	632039	634424	634635 2_nonsis		2386	2731	3075	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
97 TRN4	TRN	13	85411	86109	101176	101469 2_nonsis		15068	15563	16057	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
148 TRN4	TRN	16	723296	723524	726638	726715 2_nonsis		3115	3267	3418	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(6:2)_(4:4aCO)
56 TRN4	TRN	8	199940	200213	203922	204071 2_nonsis		3710	3920	4130	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4)_(2:6)_(4:4aCO)
74 TRN4	TRN	10	671183	671903	675511	675536 2_nonsis		3609	3981	4352	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
48 TRN4	TRN	7	716908	716964	716964	717207 2_nonsis		1	150	298	1	15	1	1	0 (6:2)_(4:4aCO)
19 TRN4	TRN	4	28656	28798	29152	29441 2_nonsis		355	570	784	1	15	1	1	0 (6:2)_(4:4aCO)
21 TRN4	TRN	4	237971	238826	239002	239328 2_nonsis		177	767	1356	1	15	1	1	0 (6:2)_(4:4aCO)
7 TRN4	TRN	2	202227	202580	203030	203566 2_nonsis		451	895	1338	1	15	1	1	0 (6:2)_(4:4aCO)
24 TRN4	TRN	4	546573	547556	548255	548809 2_nonsis		700	1468	2235	1	15	1	1	0 (6:2)_(4:4aCO)
54 TRN4	TRN	8	49378	49451	50752	51058 2_nonsis		1302	1491	1679	1	15	1	1	0 (6:2)_(4:4aCO)
121 TRN4	TRN	14	679089	680930	680930	682206 2_nonsis		1	1559	3116	1	15	1	1	0 (6:2)_(4:4aCO)
108 TRN4	TRN	13	569867	571706	572735	573292 2_nonsis		1030	2227	3424	1	15	1	1	0 (6:2)_(4:4aCO)
114 TRN4	TRN	14	191916	192676	194860	195019 2_nonsis		2185	2644	3102	1	15	1	1	0 (6:2)_(4:4aCO)
30 TRN4	TRN	4	1361801	1362620	1364750	1365372 2_nonsis		2131	2851	3570	1	15	1	1	0 (6:2)_(4:4aCO)

147 TRN4	TRN	16	674900	676149	678266	678517 2_nonsis	2118	2867	3616	1	15	1	1	0 (6:2)_(4:4aCO)
64 TRN4	TRN	9	340356	340507	343174	343775 2_nonsis	2668	3043	3418	1	15	1	1	0 (6:2)_(4:4aCO)
113 TRN4	TRN	14	147866	148161	151307	151701 2_nonsis	3147	3491	3834	1	15	1	1	0 (6:2)_(4:4aCO)
50 TRN4	TRN	7	845918	851797	852125	852577 2_nonsis	329	3494	6658	1	15	1	1	0 (6:2)_(4:4aCO)
104 TRN4	TRN	13	395179	395296	399189	399471 2_nonsis	3894	4093	4291	1	15	1	1	0 (6:2)_(4:4aCO)
63 TRN4	TRN	9	311143	311461	315406	315641 2_nonsis	3946	4222	4497	1	15	1	1	0 (6:2)_(4:4aCO)
144 TRN4	TRN	16	504044	505893	509084	509810 2_nonsis	3192	4479	5765	1	15	1	1	0 (6:2)_(4:4aCO)
34 TRN4	TRN	5	107929	109005	113148	113457 2_nonsis	4144	4836	5527	1	15	1	1	0 (6:2)_(4:4aCO)
3 TRN4	TRN	1	121235	128637	129517	130254 2_nonsis	881	4950	9018	1	15	1	1	0 (6:2)_(4:4aCO)
138 TRN4	TRN	15	940429	940454	945784	946490 2_nonsis	5331	5696	6060	1	15	1	1	0 (6:2)_(4:4aCO)
86 TRN4	TRN	12	391460	391658	396641	398325 2_nonsis	4984	5924	6864	1	15	1	1	0 (6:2)_(4:4aCO)
98 TRN4	TRN	13	133437	133610	139664	140131 2_nonsis	6055	6374	6693	1	15	1	1	0 (6:2)_(4:4aCO)
2 TRN4	TRN	1	100840	101607	108928	110856 2_nonsis	7322	8669	10015	1	15	1	1	0 (6:2)_(4:4aCO)
55 TRN4	TRN	8	166655	167453	175480	176184 2_nonsis	8028	8778	9528	1	15	1	1	0 (6:2)_(4:4aCO)
152 TRN4	TRN	16	844011	858788	860540	861771 2_nonsis	1753	9756	17759	1	15	1	1	0 (6:2)_(4:4aCO)
134 TRN4	TRN	15	648434	649497	659154	660208 2_nonsis	9658	10716	11773	1	15	1	1	0 (6:2)_(4:4aCO)
142 TRN4	TRN	16	338953	339078	339098	339477 2_nonsis	21	272	523	1	16	1	1	0 (2:6)_(4:4aCO)
115 TRN4	TRN	14	196834	197191	197191	197707 2_nonsis	1	437	872	1	16	1	1	0 (2:6)_(4:4aCO)
60 TRN4	TRN	9	97151	97705	97705	98039 2_nonsis	1	444	887	1	16	1	1	0 (2:6)_(4:4aCO)
109 TRN4	TRN	13	594379	594694	594694	595371 2_nonsis	1	496	991	1	16	1	1	0 (2:6)_(4:4aCO)
89 TRN4	TRN	12	634219	634488	634488	635382 2_nonsis	1	582	1162	1	16	1	1	0 (2:6)_(4:4aCO)
58 TRN4	TRN	8	459885	460708	460801	461318 2_nonsis	94	763	1432	1	16	1	1	0 (2:6)_(4:4aCO)
150 TRN4	TRN	16	833734	834026	834629	834822 2_nonsis	604	846	1087	1	16	1	1	0 (2:6)_(4:4aCO)
131 TRN4	TRN	15	474069	475032	475032	475809 2_nonsis	1	870	1739	1	16	1	1	0 (2:6)_(4:4aCO)
118 TRN4	TRN	14	439088	440569	440622	441344 2_nonsis	54	1155	2255	1	16	1	1	0 (2:6)_(4:4aCO)
135 TRN4	TRN	15	740202	740490	741453	741916 2_nonsis	964	1339	1713	1	16	1	1	0 (2:6)_(4:4aCO)
15 TRN4	TRN	3	156289	156517	157807	157881 2_nonsis	1291	1441	1591	1	16	1	1	0 (2:6)_(4:4aCO)
29 TRN4	TRN	4	1354002	1355589	1355853	1357024 2_nonsis	265	1643	3021	1	16	1	1	0 (2:6)_(4:4aCO)
17 TRN4	TRN	3	220054	221651	221877	223339 2_nonsis	227	1756	3284	1	16	1	1	0 (2:6)_(4:4aCO)
33 TRN4	TRN	5	88547	88700	90218	91109 2_nonsis	1519	2040	2561	1	16	1	1	0 (2:6)_(4:4aCO)
27 TRN4	TRN	4	1276813	1277186	1279416	1279422 2_nonsis	2231	2420	2608	1	16	1	1	0 (2:6)_(4:4aCO)
32 TRN4	TRN	5	28312	28600	30664	31247 2_nonsis	2065	2500	2934	1	16	1	1	0 (2:6)_(4:4aCO)
116 TRN4	TRN	14	241440	242111	243530	245040 2_nonsis	1420	2510	3599	1	16	1	1	0 (2:6)_(4:4aCO)
100 TRN4	TRN	13	298131	301151	301274	303266 2_nonsis	124	2629	5134	1	16	1	1	0 (2:6)_(4:4aCO)
18 TRN4	TRN	3	243219	246581	247472	248367 2_nonsis	892	3020	5147	1	16	1	1	0 (2:6)_(4:4aCO)
102 TRN4	TRN	13	350372	351095	354466	354798 2_nonsis	3372	3899	4425	1	16	1	1	0 (2:6)_(4:4aCO)
31 TRN4	TRN	4	1421456	1421579	1426206	1427025 2_nonsis	4628	5098	5568	1	16	1	1	0 (2:6)_(4:4aCO)
20 TRN4	TRN	4	58356	58765	63704	63839 2_nonsis	4940	5211	5482	1	16	1	1	0 (2:6)_(4:4aCO)
59 TRN4	TRN	9	74541	74723	77594	82232 2_nonsis	2872	5281	7690	1	16	1	1	0 (2:6)_(4:4aCO)
14 TRN4	TRN	2	715932	716328	725754	726633 2_nonsis	9427	10064	10700	1	16	1	1	0 (2:6)_(4:4aCO)
146 TRN4 65 TRN4	TRN TRN	16 9	672569	672668 345871	672569 345656	672668 2_nonsis	0	49 107	98 214	1	100 100	1	1	0 (4:4aCO)
	TRN		345656			345871 2_nonsis			233	1	100	1	1	0 (4:4aCO)
140 TRN4		16	128692	128926	128692	128926 2_nonsis	0	117		1		1	1	0 (4:4aCO)
85 TRN4	TRN	12	274580	274968	274580	274968 2_nonsis	0	194	387	1	100		1	0 (4:4aCO)
73 TRN4 49 TRN4	TRN TRN	10 7	641631 782525	642317 783224	641631 782525	642317 2_nonsis	0	343 349	685 698	1	100 100	1	1	0 (4:4aCO) 0 (4:4aCO)
	TRN	11	252204		252204	783224 2_nonsis	0			1	100	1		
77 TRN4 91 TRN4				252966		252966 2_nonsis		381	761	1		1	1	0 (4:4aCO)
78 TRN4	TRN	12	728268	729242	728268	729242 2_nonsis	0	487	973	1	100	1	1	0 (4:4aCO)
78 TRN4 11 TRN4	TRN TRN	11 2	292055 498923	293072 499985	292055 498923	293072 2_nonsis 499985 2_nonsis	0	508 531	1016 1061	1	100 100	1	1	0 (4:4aCO) 0 (4:4aCO)
117 TRN4	TRN	14	391752	392860	391752	392860 2_nonsis	0	554	1107	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
117 TRN4 105 TRN4	TRN	13	403536	404983	403536	404983 2_nonsis	0	723	1446	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
143 TRN4	TRN	16	502052	503873	502052	503873 2_nonsis	0	910	1820	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
70 TRN4	TRN	10	513875	515737	513875	515737 2_nonsis	0	931	1861	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
69 TRN4	TRN	10	467589	469453	467589	469453 2_nonsis	0	931	1863	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
95 TRN4	TRN	12	1009176	1011169	1009176	1011169 2_nonsis	0	996	1992	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
93 TRN4 93 TRN4	TRN	12	732527	736073	732527	736073 2_nonsis	0	1773	3545	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
46 TRN4	TRN	7	533539	542099	533539	542099 2_nonsis	0	4280	8559	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
72 TRN4	TRN	10	590704	601293	590704	601293 2_nonsis	0	5294	10588	1	100	1	1	0 (4:4aCO) 0 (4:4aCO)
123 TRN4	TRN	15	22043	39402	22043	39402 2_nonsis	0	8679	17358	1	100	1	1	0 (4:4aCO)
123 11014	INI	1.5	22043	37402	22043	37402 2_HOHAIA	3	0077	17550		100		1	5 (1.1 aco)

141 TRN4	TRN	16	169613	170076	171708	172192 2_nonsis		1633	2106	2578	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
16 TRN4	TRN	3	215020	215336	216257	216424 2_nonsis		922	1163	1403	3	20	1	1	0 (2:6)_(4:4)_(6:2)_(4:4aCO)
80 TRN4	TRN	11	524820	525008	531608	531920 2_nonsis		6601	6850	7099	3	20	1	1	0 (6:2)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4a)
119 TRN4	TRN	14	492875	494368	496792	497090 2_sis		2425	3320	4214	0	1	2	0	2 (2:6)_(4:4)_(2:6a)_(4:4)
127 TRN4	TRN	15	185240	185951	192333	196238 2_sis		6383	8690	10997	0	1	2	0	2 (6:2)_(8:0)_(4:4)
6 TRN4	TRN	2	149400	149762	152171	152423	3	2410	2716	3022	0	2	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)
9 TRN4	TRN	2	253219	254436	258516	265770	4	4081	8316	12550	0	2	2	2	0 (2:6)_(0:8)_(2:6a)_(4:4aCO)
36 TRN4	TRN	5	236672	237191	242693	242801	3	5503	5816	6128	0	2	2	1	1 (2:6)_(4:4)_(6:2)_(2:6a)_(4:4aCO)
40 TRN4	TRN	5	519704	521844	521881	523683	4	38	2008	3978	0	2	2	2	0 (6:2)_(4:4aCO)
41 TRN4	TRN	7	165523	166667	181138	182388	3	14472	15668	16864	0	2	2	1	1 (2:6)_(2:6a)_(4:4aCO)
52 TRN4	TRN	7	959381	959587	976931	977277	3	17345	17620	17895	0	2	2	1	1 (6:2)_(8:0)_(6:2a)_(8:0)_(4:4aCO)_(6:2)_(8:0)_(6:2a)_(4:4a)_(6:2a)_(4:4a)
67 TRN4	TRN	10	325369	325803	342031	342558	4	16229	16709	17188	0	2	2	2	0 (2:6)_(0:8)_(4:4aCO)_(2:6a)_(4:4a)
76 TRN4	TRN	11	60173	65282	68377	68447	3	3096	5685	8273	0	2	2	1	1 (8:0)_(6:2)_(4:4aCO)
84 TRN4	TRN	12	259210	260086	271951	272455	4	11866	12555	13244	0	2	2	1	1 (8:0)_(6:2)_(6:2a)_(4:4aCO)
107 TRN4	TRN	13	555444	555852	565076	565610	3	9225	9695	10165	0	2	2	1	1 (2:6)_(2:6a)_(0:8)_(2:6)_(4:4aCO)
5 TRN4	TRN	2	56974	57115	73943	75564 2_nonsis		16829	17709	18589	0	3	2	0	2 (6:2)_(4:4)_(4:4aCO)_(6:2)_(4:4CO)
8 TRN4	TRN	2	204536	205151	207859	208543	3	2709	3358	4006	0	3	2	1	1 (4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4bCO)
26 TRN4	TRN	4	939749	940069	951351	951669	3	11283	11601	11919	0	3	2	2	0 (6:2)_(6:2a)_(6:2)_(4:4aCO)_(6:2)_(4:4CO)
38 TRN4	TRN	5	407419	407957	412632	413862	3	4676	5559	6442	0	3	2	1	1 (4:4aCO)_(2:6)_(4:4bCO)
51 TRN4	TRN	7	902661	903030	907598	908105 2_nonsis		4569	5006	5443	0	3	2	0	2 (6:2)_(4:4aCO)_(4:4CO)
75 TRN4	TRN	10	697654	705639	707260	707549	3	1622	5758	9894	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4bCO)
79 TRN4	TRN	11	433660	433721	436087	436826 2_nonsis		2367	2766	3165	0	3	2	0	2 (2:6)_(4:4aCO)_(6:2)_(4:4CO)
83 TRN4	TRN	12	254321	254610	257504	258349	4	2895	3461	4027	0	3	2	2	0 (6:2)_(2:6)_(4:4aCO)_(4:4bCO)
99 TRN4	TRN	13	222095	224126	235798	237159	4	11673	13368	15063	0	3	2	2	0 (4:4aCO)_(6:2)_(2:6)_(4:4bCO)
106 TRN4	TRN	13	406917	410079	411264	411358 2_nonsis		1186	2813	4440	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4CO)
120 TRN4	TRN	14	641101	641452	643956	644875 2_nonsis		2505	3139	3773	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4a)_(2:6)_(4:4CO)
133 TRN4	TRN	15	582005	582404	585323	585644	3	2920	3279	3638	0	3	2	1	1 (4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4bCO)_(6:2)_(4:4b)
136 TRN4	TRN	15	801285	801441	803637	804529	3	2197	2720	3243	0	3	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4bCO)
149 TRN4	TRN	16	795316	796263	798282	798490 2_nonsis	,	2020	2597	3173	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)
48 TRS10	TRS	16	520194	520400	520684	521940	1	285	1015	1745	1	10	1	0	1 06:02
17 TRS10	TRS	4	1455942	1458372	1459261	1459669	1	890	2308	3726	1	10	1	0	1 06:02
46 TRS10	TRS	16	345110	347009	347399	347684	1	391	1482	2573	1	10.1	1	0	1 02:06
8 TRS10	TRS	3	102669	103556	104476	105047	1	921	1649	2377	1	10.1	1	0	1 02:06
45 TRS10	TRS	16	226745	226835	228253	228815 2 nonsis	1	1419	1744	2069	3	30	1	0	1 6:2 2:6
1 TRS10	TRS	2	81826	81997	87294	87772 2_nonsis		5298	5622	5945	3	30	1	0	1 2:6_6:2_4:4_6:2
51 TRS10	TRS	16	781741	783796	788320	788362 2_nonsis		4525	5573	6620	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
44 TRS10	TRS	15	700551	700804	701028	701208 2_nonsis		225	441	656	1	15	1	1	0 (6:2)_(4:4aCO)
11 TRS10	TRS	4	833772	833834	834899	835164 2_nonsis		1066	1229	1391	1	15	1	1	0 (6:2)_(4:4aCO)
23 TRS10	TRS	6	199247	200563	200563	201948 2_nonsis		1000	1351	2700	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
	TRS	10	488230	488779	489013				1377	2519	1		1	1	
35 TRS10 7 TRS10	TRS	2	540568	540838	547559	490750 2_nonsis 548176 2_nonsis		235 6722	7165	7607	1	15 15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
32 TRS10	TRS	10	273531	273972	281056	281289 2_nonsis		7085	7421	7757	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
12 TRS10	TRS	4	960787	961189	962545			1357	1746	2135	1	16	1	1	
31 TRS10	TRS	10	189655	190275	191621	962923 2_nonsis		1347	1924	2500	1	16	1	1	0 (2:6)_(4:4aCO)
		15				192156 2_nonsis					1		1	1	0 (2:6)_(4:4aCO)
43 TRS10	TRS TRS	2	534200 95376	536230	536230 97884	538230 2_nonsis		1 1275	2015 2184	4029 3093	1	16 16	1	1	0 (2:6)_(4:4aCO)
2 TRS10				96610		98470 2_nonsis									0 (2:6)_(4:4aCO)
5 TRS10	TRS TRS	2	399796 1111638	400827	402177	404155 2_nonsis		1351 2406	2855 3209	4358 4012	1	16 16	1	1	0 (2:6)_(4:4aCO)
13 TRS10		9		1112793	1115198	1115651 2_nonsis					-		-	-	0 (2:6)_(4:4aCO)
30 TRS10	TRS	-	329125	332459	333581	334696 2_nonsis		1123	3347	5570	1	16	1	1	0 (2:6)_(4:4aCO)
25 TRS10	TRS	7	223151	224665	226711	229846 2_nonsis		2047	4371	6694	1	16	1	1	0 (2:6)_(4:4aCO)
18 TRS10	TRS	4	1465397	1465791	1470784	1470991 2_nonsis		4994	5294	5593	1	16	1	1	0 (2:6)_(4:4aCO)
33 TRS10	TRS	10	311915	312326	317491	317989 2_nonsis		5166	5620	6073	1	16	1	1	0 (2:6)_(4:4aCO)
36 TRS10	TRS	10	574412	574799	574412	574799 2_nonsis		0	193	386	1	100	1	1	0 (4:4aCO)
14 TRS10	TRS	4	1241519	1242241	1241519	1242241 2_nonsis		0	361	721	1	100	1	1	0 (4:4aCO)
40 TRS10	TRS	13	273267	274088	273267	274088 2_nonsis		0	410	820	1	100	1	1	0 (4:4aCO)
9 TRS10	TRS	3	115183	116011	115183	116011 2_nonsis		0	414	827	1	100	1	1	0 (4:4aCO)
4 TRS10	TRS	2	206083	207171	206083	207171 2_nonsis		0	544	1087	1	100	1	1	0 (4:4aCO)
24 TRS10	TRS	7	81435	82858	81435	82858 2_nonsis		0	711	1422	1	100	1	1	0 (4:4aCO)
37 TRS10	TRS	10	618846	621779	618846	621779 2_nonsis		0	1466	2932	1	100	1	1	0 (4:4aCO)
21 TRS10	TRS	6	76126	76268	80386	81527 2_nonsis		4119	4760	5400	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(2:6)_(4:4a)

34 TRS10	TRS	10	423063	423483	425486	426379 2_sis		2004	2660	3315	0	1	2	0	2 (2:6)_(0:8)_(4:4)
49 TRS10	TRS	16	525874	526176	531193	531957 2_sis		5018	5550	6082	0	1	2	0	2 (6:2)_(8:0)_(6:2)_(4:4)
3 TRS10	TRS	2	193122	193664	194226	195735	3	563	1588	2612	0	2	2	1	1 (8:0)_(6:2)_(4:4aCO)
10 TRS10	TRS	3	243219	246581	247158	247472	4	578	2415	4252	0	2	2	2	0 (8:0)_(4:4aCO)
15 TRS10	TRS	4	1274423	1274743	1280622	1281921	3	5880	6689	7497	0	2	2	1	1 (2:6)_(0:8)_(2:6)_(0:8)_(2:6)_(4:4aCO)
16 TRS10	TRS	4	1418937	1419231	1423497	1424231	3	4267	4780	5293	0	2	2	1	1 (2:6)_(0:8)_(2:6a)_(4:4aCO)
22 TRS10	TRS	6	97979	98011	100276	100356	3	2266	2321	2376	0	2	2	1	1 (2:6)_(2:6a)_(4:4aCO)
39 TRS10	TRS	13	157807	159018	160611	160665	3	1594	2226	2857	0	2	2	1	1 (0:8)_(2:6)_(4:4aCO)
47 TRS10	TRS	16	446142	446457	456724	458489	4	10268	11307	12346	0	2	2	2	0 (2:6)_(2:6a)_(0:8)_(2:6a)_(4:4aCO)
59 TRS10 71 TRS10	TRS TRS	3 5	59171 96109	59465 97220	60354 96109	60633 NA 97220	1	890 0	1176 555	1461 1110	0	4	1 NA 1 NA	NA NA	06:02
105 TRS10	TRS	16	916537	916779	925093	948066	1	0	15764	31528	0	4	1 NA	NA	
43 TW1	TW	9	174391	174961	174961	175104	1	1	357	712	1	10	1	0	1 06:02
64 TW1	TW	12	88002	88069	88557	89489	1	489	988	1486	1	10	1	0	1 06:02
73 TW1	TW	13	301274	302548	302628	303266	1	81	1036	1991	1	10	1	0	1 06:02
79 TW1	TW	13	850650	851409	852118	852413	1	710	1236	1762	1	10	1	0	1 06:02
49 TW1	TW	10	303882	304262	305004	305635	1	743	1248	1752	1	10	1	0	1 06:02
19 TW1	TW	4	1086670	1087085	1087412	1088864	1	328	1261	2193	1	10	1	0	1 06:02
5 TW1	TW	2	705633	706449	707509	708202	1	1061	1815	2568	1	10	1	0	1 06:02
103 TW1	TW	16	840488	840627	842086	842864	1	1460	1918	2375	1	10	1	0	1 06:02
46 TW1	TW	9	329125	332459	332503	333073	1	45	1996	3947	1	10	1	0	1 06:02
58 TW1	TW	11	224634	225480	227482	227625	1	2003	2497	2990	1	10	1	0	1 06:02
21 TW1	TW	4	1333799	1333898	1335831	1337219	1	1934	2677	3419	1	10	1	0	1 06:02
27 TW1	TW	5	472756	473209	476048	476183	1	2840	3133	3426	1	10	1	0	1 06:02
84 TW1	TW	14	731562	732158	735174	735440	1	3017	3447	3877	1	10	1	0	1 06:02
51 TW1	TW	10	377543	378111	381650	381896	1	3540	3946	4352	1	10	1	0	1 06:02
17 TW1	TW	4	966497	966501	966501	966514	1	1	9	16	1	10.1	1	0	1 02:06
45 TW1	TW	9	247495	247522	247522	247526	1	1	16	30	1	10.1	1	0	1 02:06
87 TW1	TW	15	316361	316429	316429	316433	1	1	36	71	1	10.1	1	0	1 02:06
60 TW1	TW	11	364194	364367	364367	364384	1	1	95	189	1	10.1	1	0	1 02:06
94 TW1	TW	15	978995	979059	979155	979379	1	97	240	383	1	10.1	1	0	1 02:06
39 TW1	TW	8	233575	233885	234858	234994	1	974	1196	1418	1	10.1	1	0	1 02:06
6 TW1	TW	2	746171	747838	748391	748916	1	554	1649	2744	1	10.1	1	0	1 02:06
38 TW1	TW	8	136744	137997	139506	140123	1	1510	2444	3378	1	10.1	1	0	1 02:06
57 TW1	TW	11	51558	52399	53905	54957	1	1507	2453	3398	1	10.1	1	0	1 02:06
34 TW1	TW	7	800442	801373	803311	803587	1	1939	2542	3144	1	10.1	1	0	1 02:06
11 TW1	TW	4	238389	238635	241065	241166	1	2431	2604	2776	1	10.1	1	0	1 02:06
77 TW1	TW	13	673806	673846	676462	676599	1	2617	2705	2792	1	10.1	1	0	1 02:06
66 TW1	TW	12	200917	201288	204575	204907	1	3288	3639	3989	1	10.1	1	0	1 02:06
80 TW1	TW	14	74669	75232	78386	79032	1	3155	3759	4362	1	10.1	1	0	1 02:06
71 TW1	TW TW	12	867405	870134	872401	872807	1	2268	3835	5401	1	10.1	1	0	1 02:06
35 TW1 15 TW1	TW	7	973111 833834	973354 834320	979753 837572	980911	1	6400 3253	7100	7799 3819	1	10.1 30	1	0	1 02:06
15 TW1 89 TW1	TW	15	583999	584081	588933	837654 2_nonsis 589146 2 nonsis		4853	3536 5000	5146	3	30	1	0	1 6:2_4:4_2:6 1 2:6_4:4_6:2
32 TW1	TW	7	558809	558946	559269	559414 2 nonsis		324	464	604	1	12	1	1	0 (4:4aCO) (2:6) (4:4a)
22 TW1	TW	4	1392696	1393214	1394881	1395687 2_nonsis		1668	2329	2990	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
69 TW1	TW	12	537242	538121	543116	543240 2_nonsis		4996	5497	5997	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
44 TW1	TW	9	185865	188629	189843	189896 2_nonsis		1215	2623	4030	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a) 0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
25 TW1	TW	5	157999	158386	158386	158684 2_nonsis		1	343	684	1	15	1	1	0 (6:2)_(4:4aCO)
8 TW1	TW	3	136159	136789	136789	137021 2_nonsis		1	431	861	1	15	1	1	0 (6:2)_(4:4aCO)
100 TW1	TW	16	517881	518479	518518	518836 2_nonsis		40	497	954	1	15	1	1	0 (6:2)_(4:4aCO)
61 TW1	TW	11	401916	402660	402809	403011 2_nonsis		150	622	1094	1	15	1	1	0 (6:2)_(4:4aCO)
99 TW1	TW	16	371406	371706	371706	372742 2_nonsis		1	668	1335	1	15	1	1	0 (6:2)_(4:4aCO)
14 TW1	TW	4	699436	699549	700250	700440 2_nonsis		702	853	1003	1	15	1	1	0 (6:2)_(4:4aCO)
18 TW1	TW	4	1063173	1064173	1064285	1064864 2_nonsis		113	902	1690	1	15	1	1	0 (6:2)_(4:4aCO)
16 TW1	TW	4	938591	939572	940217	940688 2_nonsis		646	1371	2096	1	15	1	1	0 (6:2)_(4:4aCO)
1 TW1	TW	2	124959	125762	126565	126921 2_nonsis		804	1383	1961	1	15	1	1	0 (6:2)_(4:4aCO)
54 TW1	TW	10	629879	631130	631130	632972 2_nonsis		1	1547	3092	1	15	1	1	0 (6:2)_(4:4aCO)
90 TW1	TW	15	730821	731874	732609	733385 2_nonsis		736	1650	2563	1	15	1	1	0 (6:2)_(4:4aCO)
7 TW1	TW	3	45838	46119	47306	48335 2_nonsis		1188	1842	2496	1	15	1	1	0 (6:2)_(4:4aCO)

101 TW1	TW	16	697945	698725	700101	700285 2_nonsis		1377	1858	2339	1	15	1	1	0 (6:2)_(4:4aCO)
2 TW1	TW	2	314330	315271	316189	317232 2_nonsis		919	1910	2901	1	15	1	1	0 (6:2)_(4:4aCO)
40 TW1	TW	8	330660	331641	331868	334431 2_nonsis		228	1999	3770	1	15	1	1	0 (6:2)_(4:4aCO)
95 TW1	TW	15	1063186	1063200	1065166	1065443 2_nonsis		1967	2112	2256	1	15	1	1	0 (6:2)_(4:4aCO)
75 TW1	TW	13	470916	472484	473747	474399 2_nonsis		1264	2373	3482	1	15	1	1	0 (6:2)_(4:4aCO)
41 TW1	TW	8	515688	516015	518179	518458 2_nonsis		2165	2467	2769	1	15	1	1	0 (6:2)_(4:4aCO)
63 TW1	TW	11	624919	624949	627471	628397 2_nonsis		2523	3000	3477	1	15	1	1	0 (6:2)_(4:4aCO)
83 TW1	TW	14	659022	661270	662512	665017 2_nonsis		1243	3619	5994	1	15	1	1	0 (6:2)_(4:4aCO)
13 TW1	TW	4	590328	590885	594269	594975 2_nonsis		3385	4016	4646	1	15	1	1	0 (6:2)_(4:4aCO)
65 TW1	TW	12	105323	106427	109886	110400 2_nonsis		3460	4268	5076	1	15	1	1	0 (6:2)_(4:4aCO)
67 TW1	TW	12	233075	234128	238303	238370 2_nonsis		4176	4735	5294	1	15	1	1	0 (6:2)_(4:4aCO)
93 TW1	TW	15	843925	845688	849394	850123 2_nonsis		3707	4952	6197	1	15	1	1	0 (6:2)_(4:4aCO)
98 TW1	TW	16	171422	171708	171708	171729 2_nonsis		1	154	306	1	16	1	1	0 (2:6)_(4:4aCO)
20 TW1	TW	4	1275612	1275693	1276002	1276281 2_nonsis		310	489	668	1	16	1	1	0 (2:6)_(4:4aCO)
81 TW1	TW	14	366762	367502	367644	367843 2_nonsis		143	612	1080	1	16	1	1	0 (2:6)_(4:4aCO)
36 TW1	TW	7	1041874	1042463	1042643	1043244 2_nonsis		181	775	1369	1	16	1	1	0 (2:6)_(4:4aCO)
88 TW1	TW	15	477077	477610	477802	478649 2_nonsis		193	882	1571	1	16	1	1	0 (2:6)_(4:4aCO)
76 TW1	TW	13	645101	645268	646336	646440 2_nonsis		1069	1204	1338	1	16	1	1	0 (2:6)_(4:4aCO)
92 TW1	TW	15	831592	832096	833083	833356 2_nonsis		988	1376	1763	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
											1		1	1	
48 TW1	TW	10	110584	110925	112239	112791 2_nonsis		1315	1761	2206		16		-	0 (2:6)_(4:4aCO)
26 TW1	TW	5	430620	430899	432416	432695 2_nonsis		1518	1796	2074	1	16	1	1	0 (2:6)_(4:4aCO)
91 TW1	TW	15	763262	763613	765140	765404 2_nonsis		1528	1835	2141	1	16	1	1	0 (2:6)_(4:4aCO)
3 TW1	TW	2	325371	325802	327003	327875 2_nonsis		1202	1853	2503	1	16	1	1	0 (2:6)_(4:4aCO)
23 TW1	TW	4	1416734	1416909	1418662	1418928 2_nonsis		1754	1974	2193	1	16	1	1	0 (2:6)_(4:4aCO)
29 TW1	TW	7	370897	371116	372926	373531 2_nonsis		1811	2222	2633	1	16	1	1	0 (2:6)_(4:4aCO)
86 TW1	TW	15	219136	219822	221862	221900 2_nonsis		2041	2402	2763	1	16	1	1	0 (2:6)_(4:4aCO)
30 TW1	TW	7	425497	426136	428152	428325 2_nonsis		2017	2422	2827	1	16	1	1	0 (2:6)_(4:4aCO)
28 TW1	TW	7	93397	94650	96337	96869 2_nonsis		1688	2580	3471	1	16	1	1	0 (2:6)_(4:4aCO)
68 TW1	TW	12	366239	366378	369062	369919 2_nonsis		2685	3182	3679	1	16	1	1	0 (2:6)_(4:4aCO)
24 TW1	TW	5	67809	68268	70969	71501 2_nonsis		2702	3197	3691	1	16	1	1	0 (2:6)_(4:4aCO)
50 TW1	TW	10	313986	314406	317491	317989 2_nonsis		3086	3544	4002	1	16	1	1	0 (2:6)_(4:4aCO)
85 TW1	TW	15	159369	159827	163253	163486 2_nonsis		3427	3772	4116	1	16	1	1	0 (2:6)_(4:4aCO)
82 TW1	TW	14	518162	518600	519077	525249 2_nonsis		478	3782	7086	1	16	1	1	0 (2:6)_(4:4aCO)
97 TW1	TW	16	66715	67491	70600	71375 2_nonsis		3110	3885	4659	1	16	1	1	0 (2:6)_(4:4aCO)
52 TW1	TW	10	384523	385172	388844	389073 2_nonsis		3673	4111	4549	1	16	1	1	0 (2:6)_(4:4aCO)
53 TW1	TW	10	463641	464252	467589	469453 2_nonsis		3338	4575	5811	1	16	1	1	0 (2:6)_(4:4aCO)
59 TW1	TW	11	307562	307722	307562	307722 2_nonsis		0	80	159	1	100	1	1	0 (4:4aCO)
74 TW1	TW	13	387576	387784	387576	387784 2_nonsis		0	104	207	1	100	1	1	0 (4:4aCO)
62 TW1	TW	11	572601	573116	572601	573116 2_nonsis		0	257	514	1	100	1	1	0 (4:4aCO)
55 TW1	TW	10	690126	690711	690126	690711 2_nonsis		0	292	584	1	100	1	1	0 (4:4aCO)
4 TW1	TW	2	505298	506138	505298	506138 2_nonsis		0	420	839	1	100	1	1	0 (4:4aCO)
31 TW1	TW	7	523740	524713	523740	524713 2_nonsis		0	486	972	1	100	1	1	0 (4:4aCO)
70 TW1	TW	12	836343	837497	836343	837497 2_nonsis		0	577	1153	1	100	1	1	0 (4:4aCO)
96 TW1	TW	16	49169	50572	49169	50572 2_nonsis		0	701	1402	1	100	1	1	0 (4:4aCO)
9 TW1	TW	3	228130	230267	228130	230267 2_nonsis		0	1068	2136	1	100	1	1	0 (4:4aCO)
78 TW1	TW	13	835125	837907	835125	837907 2_nonsis		0	1391	2781	1	100	1	1	0 (4:4aCO)
56 TW1	TW	11	23532	27301	23532	27301 2_nonsis		0	1884	3768	1	100	1	1	0 (4:4aCO)
47 TW1	TW	9	377556	378238	379276	379313 2_nonsis		1039	1398	1756	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
37 TW1	TW	8	45102	46055	50752	51058 2_nonsis		4698	5327	5955	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
10 TW1	TW	4	126408	127476	129270	130517 2_sis		1795	2952	4108	0	1	2	0	2 (6:2)_(8:0)_(4:4)
							2				0	-			
12 TW1	TW	4	356226	356562	358348	358389	3	1787	1975	2162	0	2	2	1	1 (6:2)_(2:6)_(4:4aCO)
33 TW1	TW	7	737189	737501	743803	743974		6303	6544	6784		2	2 2	1	1 (2:6)_(4:4aCO)_(2:6a)_(4:4a)_(2:6a)_(4:4a)
72 TW1	TW	12	947218	947402	952886	953059	3	5485	5663	5840	0	2		1	1 (2:6)_(4:4)_(6:2)_(4:4aCO)
42 TW1	TW	9	87789	88444	89868	90521 2_nonsis		1425	2078	2731	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)
110 TW1	TW	2	800316	800859	801020	813184	1	0	6434	12867	0	4	1 NA	NA	
118 TW2	TW	16	694434	694716	697864	697918	1	3149	3316	3483	1	8	1	0	1 2:6_4:4_2:6
3 TW2	TW	1	198604	198630	198630	198642	1	1	19	37	1	10	1	0	1 06:02
87 TW2	TW	12	675042	675394	675407	675924	1	14	448	881	1	10	1	0	1 06:02
28 TW2	TW	4	1324886	1325344	1325346	1325849	1	3	483	962	1	10	1	0	1 06:02
73 TW2	TW	11	224634	225480	225480	225609	1	1	488	974	1	10	1	0	1 06:02

64 TW2	TW	10	255746	256123	256465	256690	1	343	643	943	1	10	1	0	1 06:02
1 TW2	TW	1	137336	138499	138650	139076	1	152	946	1739	1	10	1	0	1 06:02
10 TW2	TW	2	488899	489241	489580	490532	1	340	986	1632	1	10	1	0	1 06:02
111 TW2	TW	16	52231	52375	53348	53378	1	974	1060	1146	1	10	1	0	1 06:02
95 TW2	TW	13	713980	715257	715643	715773	1	387	1090	1792	1	10	1	0	1 06:02
83 TW2	TW	12	301472	301852	302944	303043	1	1093	1332	1570	1	10	1	0	1 06:02
37 TW2	TW	5	543192	543765	545109	545863	1	1345	2008	2670	1	10	1	0	1 06:02
78 TW2	TW	12	95236	97490	98655	99028	1	1166	2479	3791	1	10	1	0	1 06:02
114 TW2	TW	16	161120	161768	164063	164740	1	2296	2958	3619	1	10	1	0	1 06:02
121 TW2	TW	16	897661	898057	901144	901264	1	3088	3345	3602	1	10	1	0	1 06:02
82 TW2	TW	12	263151	263230			1	3399	3573	3747	1	10	1	0	1 06:02
					266628	266899									
74 TW2	TW	11	283495	283662	283662	283710	1	1	108	214	1	10.1	1	0	1 02:06
56 TW2	TW	8	421410	421507	421693	421840	1	187	308	429	1	10.1	1	0	1 02:06
85 TW2	TW	12	417974	418307	418481	418904	1	175	552	929	1	10.1	1	0	1 02:06
97 TW2	TW	14	78004	78115	78386	79032	1	272	650	1027	1	10.1	1	0	1 02:06
55 TW2	TW	8	334431	334860	335220	335465	1	361	697	1033	1	10.1	1	0	1 02:06
15 TW2	TW	3	38022	38178	38857	39123	1	680	890	1100	1	10.1	1	0	1 02:06
29 TW2	TW	4	1416431	1416617	1417706	1417872	1	1090	1265	1440	1	10.1	1	0	1 02:06
8 TW2	TW	2	324185	324220	325371	325802	1	1152	1384	1616	1	10.1	1	0	1 02:06
20 TW2	TW	4	105853	106143	106899	107966	1	757	1435	2112	1	10.1	1	0	1 02:06
35 TW2	TW	5	377471	377999	379092	379332	1	1094	1477	1860	1	10.1	1	0	1 02:06
48 TW2	TW	7	546929	547580	548503	549148	1	924	1571	2218	1	10.1	1	0	1 02:06
24 TW2	TW	4	698508	698668	700250	700440	1	1583	1757	1931	1	10.1	1	0	1 02:06
33 TW2	TW	5	140433	140700	142227	142565	1	1528	1830	2131	1	10.1	1	0	1 02:06
80 TW2	TW	12	233075	234128	235352	235684	1	1225	1917	2608	1	10.1	1	0	1 02:06
32 TW2	TW	5	18839	18972	18972	23192	1	1	2177	4352	1	10.1	1	0	1 02:06
59 TW2	TW	9	213470	213953	215186	216864	1	1234	2314	3393	1	10.1	1	0	1 02:06
39 TW2	TW	4	1464680	1465187	1467260	1467745	1	2074		3064	1	10.1	1	0	
									2569						1 02:06
13 TW2	TW	2	725754	726633	729547	730031	1	2915	3596	4276	1	10.1	1	0	1 02:06
62 TW2	TW	10	81409	81757	86001	86090	1	4245	4463	4680	1	10.1	1	0	1 02:06
54 TW2	TW	8	284440	285871	290985	291312	1	5115	5993	6871	1	10.1	1	0	1 02:06
2 TW2	TW	1	180982	181085	181957	182519 2_nonsis		873	1205	1536	3	30	1	0	1 2:6_4:4_6:2
25 TW2	TW	4	1052088	1052356	1053946	1054109 2_nonsis		1591	1806	2020	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
105 TW2	TW	15	420277	421530	423361	423370 2_nonsis		1832	2462	3092	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
109 TW2	TW	15	942317	942594	945647	945784 2_nonsis		3054	3260	3466	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(6:2)_(4:4a)
38 TW2	TW	6	95632	95746	95746	95849 2_nonsis		1	109	216	1	15	1	1	0 (6:2)_(4:4aCO)
86 TW2	TW	12	543240	543480	543544	543808 2_nonsis		65	316	567	1	15	1	1	0 (6:2)_(4:4aCO)
94 TW2	TW	13	496739	496955	496955	497568 2_nonsis		1	415	828	1	15	1	1	0 (6:2)_(4:4aCO)
22 TW2	TW	4	322680	323098	323200	323612 2_nonsis		103	517	931	1	15	1	1	0 (6:2)_(4:4aCO)
116 TW2	TW	16	466976	467922	467922	468494 2_nonsis		1	759	1517	1	15	1	1	0 (6:2)_(4:4aCO)
98 TW2	TW	14	239023	239950	240152	240414 2_nonsis		203	797	1390	1	15	1	1	0 (6:2)_(4:4aCO)
21 TW2	TW	4	302250	303051	303504	303806 2_nonsis		454	1005	1555	1	15	1	1	0 (6:2)_(4:4aCO)
75 TW2	TW	11	360940	361043	362017	362101 2_nonsis		975	1068	1160	1	15	1	1	0 (6:2)_(4:4aCO)
76 TW2	TW	11	499168	499999	500449	501047 2_nonsis		451	1165	1878	1	15	1	1	0 (6:2)_(4:4aCO)
17 TW2	TW	3	76009	76939	77505	77826 2_nonsis		567	1192	1816	1	15	1	1	0 (6:2)_(4:4aCO)
47 TW2	TW	7	457721	457920	459157	459245 2 nonsis		1238	1381	1523	1	15	1	1	0 (6:2)_(4:4aCO)
53 TW2	TW	8	271207	272321	273222	273580 2 nonsis		902	1637	2372	1	15	1	1	0 (6:2) (4:4aCO)
117 TW2	TW	16	501709	502052	503314	503873 2_nonsis		1263	1713	2163	1	15	1	1	0 (6:2)_(4:4aCO)
45 TW2	TW	7	305233	305542	307066			1525	1713	1914	1	15	1	1	
96 TW2	TW	13	859174	859920		307148 2_nonsis			1816	2345	1	15	1	1	0 (6:2)_(4:4aCO)
					861205	861520 2_nonsis		1286							0 (6:2)_(4:4aCO)
34 TW2	TW	5	201006	201879	203277	203706 2_nonsis		1399	2049	2699	1	15	1	1	0 (6:2)_(4:4aCO)
39 TW2	TW	6	112435	112767	114707	114918 2_nonsis		1941	2212	2482	1	15	1	1	0 (6:2)_(4:4aCO)
44 TW2	TW	7	209279	209637	211975	212009 2_nonsis		2339	2534	2729	1	15	1	1	0 (6:2)_(4:4aCO)
71 TW2	TW	11	60173	62759	62759	65282 2_nonsis		1	2555	5108	1	15	1	1	0 (6:2)_(4:4aCO)
6 TW2	TW	2	194226	195735	196964	198241 2_nonsis		1230	2622	4014	1	15	1	1	0 (6:2)_(4:4aCO)
61 TW2	TW	9	336673	337083	339305	340356 2_nonsis		2223	2953	3682	1	15	1	1	0 (6:2)_(4:4aCO)
42 TW2	TW	7	85628	86297	88718	89311 2_nonsis		2422	3052	3682	1	15	1	1	0 (6:2)_(4:4aCO)
77 TW2	TW	11	629129	629639	633026	633545 2_nonsis		3388	3902	4415	1	15	1	1	0 (6:2)_(4:4aCO)
52 TW2	TW	8	155587	156307	159962	160782 2_nonsis		3656	4425	5194	1	15	1	1	0 (6:2)_(4:4aCO)
5 TW2	TW	2	121643	121908	126263	126565 2_nonsis		4356	4639	4921	1	15	1	1	0 (6:2)_(4:4aCO)

27 TW2	TW	4	1198548	1199289	1202939	1205010 2_nonsis		3651	5056	6461	1	15	1	1	0 (6:2)_(4:4aCO)
68 TW2	TW	10	543880	543944	543944	544103 2_nonsis		1	112	222	1	16	1	1	0 (2:6)_(4:4aCO)
81 TW2	TW	12	256727	257091	257091	257195 2_nonsis		1	234	467	1	16	1	1	0 (2:6)_(4:4aCO)
90 TW2	TW	12	1000048	1000203	1000203	1000542 2_nonsis		1	247	493	1	16	1	1	0 (2:6)_(4:4aCO)
12 TW2	TW	2	702673	703042	703042	703256 2_nonsis		1	292	582	1	16	1	1	0 (2:6)_(4:4aCO)
26 TW2	TW	4	1091826	1092239	1092239	1092561 2_nonsis		1	368	734	1	16	1	1	0 (2:6)_(4:4aCO)
99 TW2	TW	14	273490	273762	273928	274328 2_nonsis		167	502	837	1	16	1	1	0 (2:6)_(4:4aCO)
9 TW2	TW	2	481949	482720	482720	482984 2_nonsis		1	518	1034	1	16	1	1	0 (2:6)_(4:4aCO)
65 TW2	TW	10	280699	281003	281289	281583 2_nonsis		287	585	883	1	16	1	1	0 (2:6)_(4:4aCO)
115 TW2	TW	16	319694	320279	320399	320885 2_nonsis		121	656	1190	1	16	1	1	0 (2:6)_(4:4aCO)
108 TW2	TW	15	772232	773455	773455	773833 2_nonsis		1	801	1600	1	16	1	1	0 (2:6)_(4:4aCO)
101 TW2	TW	14	542443	543829	543829	544303 2_nonsis		1	930	1859	1	16	1	1	0 (2:6)_(4:4aCO)
50 TW2	TW	7	896389	896765	897531	897580 2_nonsis		767	979	1190	1	16	1	1	0 (2:6)_(4:4aCO)
84 TW2	TW	12	341070	341507	342190	342448 2_nonsis		684	1031	1377	1	16	1	1	0 (2:6)_(4:4aCO)
7 TW2	TW	2	290619	291653	292290	292401 2_nonsis		638	1210	1781	1	16	1	1	0 (2:6)_(4:4aCO)
43 TW2	TW	7	93397	95130	95130	96070 2_nonsis		1	1337	2672	1	16	1	1	0 (2:6)_(4:4aCO)
70 TW2	TW	10	662479	663134	664330	664516 2_nonsis		1197	1617	2036	1	16	1	1	0 (2:6)_(4:4aCO)
31 TW2	TW	5	14955	15170	16323	17065 2_nonsis		1154	1632	2109	1	16	1	1	0 (2:6)_(4:4aCO)
14 TW2	TW	2	772685	773889	774954	775070 2_nonsis		1066	1725	2384	1	16	1	1	0 (2:6)_(1:4aCO)
11 TW2	TW	2	586331	587309	588509	588671 2_nonsis		1201	1770	2339	1	16	1	1	0 (2:6)_(4:4aCO)
69 TW2	TW	10	545233	546078	547200	547730 2_nonsis		1123	1810	2496	1	16	1	1	0 (2:6)_(4:4aCO)
36 TW2	TW	5	522010	522421	523683	524394 2_nonsis		1263	1823	2383	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
18 TW2	TW	3	228130	230267	230267			1203	1831	3660	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
41 TW2	TW	6	223659	224098	225457	231791 2_nonsis 226036 2_nonsis		1360	1868	2376	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
102 TW2	TW		662512								1		1	1	
		14		665017	665502	665847 2_nonsis		486	1910	3334		16			0 (2:6)_(4:4aCO)
119 TW2	TW	16	832925	833262	834906	835242 2_nonsis		1645	1981	2316	1	16	1	1	0 (2:6)_(4:4aCO)
106 TW2	TW	15	556316	558487	559477	559768 2_nonsis		991	2221	3451	1	16	1	1	0 (2:6)_(4:4aCO)
104 TW2	TW	15	266279	266696	268456	269276 2_nonsis		1761	2379	2996	1	16	1	1	0 (2:6)_(4:4aCO)
23 TW2	TW	4	615641	615694	618471	618665 2_nonsis		2778	2901	3023	1	16	1	1	0 (2:6)_(4:4aCO)
110 TW2	TW	15	987247	987667	989690	991111 2_nonsis		2024	2944	3863	1	16	1	1	0 (2:6)_(4:4aCO)
63 TW2	TW	10	153254	154954	157189	157299 2_nonsis		2236	3140	4044	1	16	1	1	0 (2:6)_(4:4aCO)
120 TW2	TW	16	886776	886812	890080	890467 2_nonsis		3269	3480	3690	1	16	1	1	0 (2:6)_(4:4aCO)
46 TW2	TW	7	312031	312110	315611	315872 2_nonsis		3502	3671	3840	1	16	1	1	0 (2:6)_(4:4aCO)
103 TW2	TW	14	688572	689029	692612	692960 2_nonsis		3584	3986	4387	1	16	1	1	0 (2:6)_(4:4aCO)
92 TW2	TW	13	191452	191569	195572	195860 2_nonsis		4004	4206	4407	1	16	1	1	0 (2:6)_(4:4aCO)
79 TW2	TW	12	190522	190951	195645	196197 2_nonsis		4695	5185	5674	1	16	1	1	0 (2:6)_(4:4aCO)
40 TW2	TW	6	222196	222477	222196	222477 2_nonsis		0	140	280	1	100	1	1	0 (4:4aCO)
91 TW2	TW	13	95529	95911	95529	95911 2_nonsis		0	191	381	1	100	1	1	0 (4:4aCO)
72 TW2	TW	11	79874	80353	79874	80353 2_nonsis		0	239	478	1	100	1	1	0 (4:4aCO)
113 TW2	TW	16	153125	153659	153125	153659 2_nonsis		0	267	533	1	100	1	1	0 (4:4aCO)
51 TW2	TW	8	69180	69741	69180	69741 2_nonsis		0	280	560	1	100	1	1	0 (4:4aCO)
93 TW2	TW	13	479746	480327	479746	480327 2_nonsis		0	290	580	1	100	1	1	0 (4:4aCO)
100 TW2	TW	14	370839	371516	370839	371516 2_nonsis		0	338	676	1	100	1	1	0 (4:4aCO)
49 TW2	TW	7	825852	826536	825852	826536 2_nonsis		0	342	683	1	100	1	1	0 (4:4aCO)
4 TW2	TW	2	44210	44904	44210	44904 2_nonsis		0	347	693	1	100	1	1	0 (4:4aCO)
88 TW2	TW	12	729962	730685	729962	730685 2_nonsis		0	361	722	1	100	1	1	0 (4:4aCO)
112 TW2	TW	16	120748	121553	120748	121553 2_nonsis		0	402	804	1	100	1	1	0 (4:4aCO)
60 TW2	TW	9	237829	238849	237829	238849 2_nonsis		0	510	1019	1	100	1	1	0 (4:4aCO)
16 TW2	TW	3	47306	48335	47306	48335 2_nonsis		0	514	1028	1	100	1	1	0 (4:4aCO)
67 TW2	TW	10	524618	526176	524618	526176 2_nonsis		0	779	1557	1	100	1	1	0 (4:4aCO)
89 TW2	TW	12	837962	840577	837962	840577 2 nonsis		0	1307	2614	1	100	1	1	0 (4:4aCO)
66 TW2	TW	10	344939	345047	346529	346858 2_nonsis		1483	1701	1918	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
19 TW2	TW	4	60151	61039	62366	62726	3	1328	1951	2574	0	2.0	2	1	1 (6:2)_(6:2a)_(2:6)_(4:4aCO)
58 TW2	TW	9	87789	88444	89500	89756	3	1057	1512	1966	0	2	2	1	1 (6:2)_(6:2a)_(2:6)_(4:4aCO) 1 (6:2)_(4:4aCO)
107 TW2	TW	15	722071	722470	727650	727823	3	5181	5466	5751	0	2	2	1	
57 TW2	TW	8	511414	511546	514601	72/823 515162 2_nonsis	3	3056	3402	3747	0	3	2	0	1 (2:6)_(6:2)_(4:4aCO)
	TW			233456			1			3/4/ 1891	1	7	1		2 (2:6)_(4:4)_(2:6)_(4:4aCO)_(4:4CO)
30 TW3		6	232697		234160	234589	1	705	1298					0	1 6:2_4:4_6:2
2 TW3	TW	1	113326	114283	116327	117399	1	2045	3059	4072	1	8	1	0	1 2:6_4:4_2:6
51 TW3	TW	10	236615	236674	236674	236901	1	1	143	285	1	10	1	0	1 06:02
85 TW3	TW	13	346842	346988	346988	347381	1	1	270	538	1	10	1	0	1 06:02

71 TW3	TW	12	246315	246534	246804	246946	1	271	451	630	1	10	1	0	1 06:02
32 TW3	TW	7	121932	122011	122622	123330	1	612	1005	1397	1	10	1	0	1 06:02
106 TW3	TW	16	130597	130644	131754	131951	1	1111	1232	1353	1	10	1	0	1 06:02
31 TW3	TW	7	22405	23215	23642	24468	1	428	1245	2062	1	10	1	0	1 06:02
99 TW3	TW	15	55233	55283	56472	56753	1	1190	1355	1519	1	10	1	0	1 06:02
58 TW3	TW	10	631130	632972	633743	634423	1	772	2032	3292	1	10	1	0	1 06:02
94 TW3	TW	14	252203	254039	255192	255432	1	1154	2191	3228	1	10	1	0	1 06:02
60 TW3	TW	11	223790	224066	226092	226549	1	2027	2393	2758	1	10	1	0	1 06:02
64 TW3	TW	11	588930	589078	590994	592478	1	1917	2732	3547	1	10	1	0	1 06:02
96 TW3	TW	14	518162	518600	519077	525141	1	478	3728	6978	1	10	1	0	1 06:02
28 TW3	TW	6	182500	182752	186589	186739	1	3838	4038	4238	1	10	1	0	1 06:02
							1								
53 TW3	TW	10	358569	358755	363087	363678	-	4333	4721	5108	1	10	1	0	1 06:02
88 TW3	TW	13	388681	388700	388700	388702	1	1	11	20	1	10.1	1	0	1 02:06
47 TW3	TW	9	350021	350025	350025	350044	1	1	12	22	1	10.1	1	0	1 02:06
45 TW3	TW	9	247495	247522	247522	247526	1	1	16	30	1	10.1	1	0	1 02:06
98 TW3	TW	14	763402	763447	763447	763497	1	1	48	94	1	10.1	1	0	1 02:06
49 TW3	TW	10	30793	30891	30927	31175	1	37	209	381	1	10.1	1	0	1 02:06
67 TW3	TW	12	29131	29612	29781	30008	1	170	523	876	1	10.1	1	0	1 02:06
39 TW3	TW	8	142863	143543	143727	143824	1	185	573	960	1	10.1	1	0	1 02:06
50 TW3	TW	10	80439	80673	81028	81358	1	356	637	918	1	10.1	1	0	1 02:06
93 TW3	TW	14	160630	161277	161474	161874	1	198	721	1243	1	10.1	1	0	1 02:06
12 TW3	TW	4	225248	226059	226209	227127	1	151	1015	1878	1	10.1	1	0	1 02:06
11 TW3	TW	4	104069	104854	105348	105623	1	495	1024	1553	1	10.1	1	0	1 02:06
55 TW3	TW	10	462170	462595	463641	464252	1	1047	1564	2081	1	10.1	1	0	1 02:06
80 TW3	TW	12	1027717	1028133	1028782	1030239	1	650	1586	2521	1	10.1	1	0	1 02:06
95 TW3	TW	14	300452	300720	303090	303243	1	2371	2581	2790	1	10.1	1	0	1 02:06
26 TW3	TW	5	525075	525798	527534	528932	1	1737	2797	3856	1	10.1	1	0	1 02:06
107 TW3	TW	16	255970	256183	257972	258230 2_nonsis		1790	2025	2259	3	30	1	0	1 6:2_4:4_6:2_2:6
42 TW3	TW	9	52260	53016	53103	53238 2_nonsis		88	533	977	1	12	1	1	0 (4:4aCO)_(2:6)_(4:4a)
87 TW3	TW	13	353814	354080	356625	356924 2_nonsis		2546	2828	3109	1	12	1	1	0 (2:6)_(4:4)_(2:6)_(4:4aCO)
1 TW3	TW	1	45030	45198	50024	50204 2_nonsis		4827	5000	5173	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
43 TW3	TW	9	58961	59552	59639	60280 2_nonsis		88	703	1318	1	15	1	1	0 (6:2)_(4:4aCO)
74 TW3	TW	12	559898	560519	560519	561781 2_nonsis		1	942	1882	1	15	1	1	0 (6:2)_(4:4aCO)
100 TW3	TW	15	212020	212816	213233	213488 2_nonsis		418	943	1467	1	15	1	1	0 (6:2)_(4:4aCO)
91 TW3	TW	13	858111	859063	859174	859920 2_nonsis		112	960	1808	1	15	1	1	0 (6:2)_(4:4aCO)
7 TW3	TW	2	569235	569496	570301	570754 2_nonsis		806	1162	1518	1	15	1	1	0 (6:2)_(4:4aCO)
24 TW3	TW	5	342057	342537	344171	344307 2_nonsis		1635	1942	2249	1	15	1	1	0 (6:2)_(4:4aCO)
92 TW3	TW	14	79032	79050	80433	81575 2_nonsis		1384	1963	2542	1	15	1	1	0 (6:2)_(4:4aCO)
44 TW3	TW	9	239431	239659	240939	242535 2_nonsis		1281	2192	3103	1	15	1	1	0 (6:2)_(4:4aCO)
34 TW3	TW	7	178509	179910	181138	181935 2_nonsis		1229	2327	3425	1	15	1	1	0 (6:2)_(4:4aCO)
59 TW3	TW	10	689090	689249	691434	691648 2 nonsis		2186	2372	2557	1	15	1	1	0 (6:2) (4:4aCO)
5 TW3	TW	2	152894	153007	155354	155739 2_nonsis		2348	2596	2844	1	15	1	1	0 (6:2)_(4:4aCO)
37 TW3	TW	7	967106	967359	969826	969927 2_nonsis		2468	2644	2820	1	15	1	1	0 (6:2)_(4:4aCO)
6 TW3	TW	2	345288	346363	348664			2302	2903	3504	1	15	1	1	0 (6:2)_(4:4aCO) 0 (6:2)_(4:4aCO)
						348793 2_nonsis									
22 TW3	TW	5	255503	255702	258489	258531 2_nonsis		2788	2908	3027	1	15	1	1	0 (6:2)_(4:4aCO)
72 TW3	TW	12	279533	280412	282626	283463 2_nonsis		2215	3072	3929	1	15	1	1	0 (6:2)_(4:4aCO)
46 TW3	TW	9	329125	332459	333581	334640 2_nonsis		1123	3319	5514	1	15	1	1	0 (6:2)_(4:4aCO)
68 TW3	TW	12	141390	141933	145067	145416 2_nonsis		3135	3580	4025	1	15	1	1	0 (6:2)_(4:4aCO)
70 TW3	TW	12	227490	227856	231430	231524 2_nonsis		3575	3804	4033	1	15	1	1	0 (6:2)_(4:4aCO)
10 TW3	TW	4	91959	93521	96538	96663 2_nonsis		3018	3861	4703	1	15	1	1	0 (6:2)_(4:4aCO)
65 TW3	TW	11	636244	637026	639711	641421 2_nonsis		2686	3931	5176	1	15	1	1	0 (6:2)_(4:4aCO)
108 TW3	TW	16	424230	424365	428065	428562 2_nonsis		3701	4016	4331	1	15	1	1	0 (6:2)_(4:4aCO)
27 TW3	TW	6	52838	53398	56854	58110 2_nonsis		3457	4364	5271	1	15	1	1	0 (6:2)_(4:4aCO)
4 TW3	TW	2	67361	68817	72420	73226 2_nonsis		3604	4734	5864	1	15	1	1	0 (6:2)_(4:4aCO)
66 TW3	TW	12	22201	22416	22509	22811 2_nonsis		94	352	609	1	16	1	1	0 (2:6)_(4:4aCO)
109 TW3	TW	16	865226	865451	865498	865918 2_nonsis		48	370	691	1	16	1	1	0 (2:6)_(4:4aCO)
48 TW3	TW	9	367929	368031	368217	368576 2_nonsis		187	417	646	1	16	1	1	0 (2:6)_(4:4aCO)
21 TW3	TW	5	70022	70335	70531	70852 2 nonsis		197	513	829	1	16	1	1	0 (2:6)_(4:4aCO)
61 TW3	TW	11	307266	307466	307855	307923 2_nonsis		390	523	656	1	16	1	1	0 (2:6)_(4:4aCO)
20 TW3	TW	5	43260	43494	43959	44019 2_nonsis		466	612	758	1	16	1	1	0 (2:6)_(4:4aCO)
20 1 143	,	,	73200	7,7,7	73737	PTO1 / 2_HOHSIS		400	012	750		10	1		V (2.0)_(aco)

38 TW3	TW	7	1016640	1016792	1017034	1017661 2_nonsis		243	632	1020	1	16	1	1	0 (2:6)_(4:4aCO)
25 TW3	TW	5	409531	410181	410473	410947 2_nonsis		293	854	1415	1	16	1	1	0 (2:6)_(4:4aCO)
41 TW3	TW	8	487644	488458	488588	489445 2_nonsis		131	966	1800	1	16	1	1	0 (2:6)_(4:4aCO)
62 TW3	TW	11	451133	452823	452823	453079 2_nonsis		1	973	1945	1	16	1	1	0 (2:6)_(4:4aCO)
110 TW3	TW	16	866682	867792	867792	868671 2_nonsis		1	995	1988	1	16	1	1	0 (2:6)_(4:4aCO)
56 TW3	TW	10	495458	496029	496029	497589 2_nonsis		1	1066	2130	1	16	1	1	0 (2:6)_(4:4aCO)
76 TW3	TW	12	754651	754945	755890	755941 2_nonsis		946	1118	1289	1	16	1	1	0 (2:6)_(4:4aCO)
75 TW3	TW	12	656891	657792	658599	659350 2_nonsis		808	1633	2458	1	16	1	1	0 (2:6)_(4:4aCO)
29 TW3	TW	6	225130	225313	226825	226919 2_nonsis		1513	1651	1788	1	16	1	1	0 (2:6)_(4:4aCO)
69 TW3	TW	12	198146	198396	199541	200350 2_nonsis		1146	1675	2203	1	16	1	1	0 (2:6)_(4:4aCO)
79 TW3	TW	12	875259	876120	877476	877606 2_nonsis		1357	1852	2346	1	16	1	1	0 (2:6)_(4:4aCO)
104 TW3	TW	15	1038535	1038675	1040775	1041126 2_nonsis		2101	2346	2590	1	16	1	1	0 (2:6)_(4:4aCO)
84 TW3	TW	13	119630	120376	122362	122498 2_nonsis		1987	2427	2867	1	16	1	1	0 (2:6)_(4:4aCO)
18 TW3	TW	4	1249116	1249974	1252379	1252668 2_nonsis		2406	2979	3551	1	16	1	1	0 (2:6)_(4:4aCO)
83 TW3	TW	13	80821	80887	83964	84058 2_nonsis		3078	3157	3236	1	16	1	1	0 (2:6)_(4:4aCO)
102 TW3	TW	15	585323	585644	588536	588756 2_nonsis		2893	3163	3432	1	16	1	1	0 (2:6)_(4:4aCO)
54 TW3	TW	10	389929	389963	392871	393423 2_nonsis		2909	3201	3493	1	16	1	1	0 (2:6)_(4:4aCO)
52 TW3	TW	10	347951	348292	351479	351611 2_nonsis		3188	3424	3659	1	16	1	1	0 (2:6)_(4:4aCO)
89 TW3	TW	13	699056	699584	702605	703253 2_nonsis		3022	3609	4196	1	16	1	1	0 (2:6)_(4:4aCO)
77 TW3	TW	12	823256	826618	828844	829264 2_nonsis		2227	4117	6007	1	16	1	1	0 (2:6)_(4:4aCO)
3 TW3	TW	1	187427	189821	192723	193131 2_nonsis		2903	4303	5703	1	16	1	1	0 (2:6)_(4:4aCO)
35 TW3	TW	7	394219	394474	399537	399782 2_nonsis		5064	5313	5562	1	16	1	1	0 (2:6)_(4:4aCO)
23 TW3	TW	5	333688	334031	340292	340779 2_nonsis		6262	6676	7090	1	16	1	1	0 (2:6)_(4:4aCO)
78 TW3	TW	12	872180	872401	872180	872401 2_nonsis		0	110	220	1	100	1	1	0 (4:4aCO)
14 TW3	TW	4	598729	599029	598729	599029 2_nonsis		0	150	299	1	100	1	1	0 (4:4aCO)
103 TW3	TW	15	881577	882091	881577	882091 2_nonsis		0	257	513	1	100	1	1	0 (4:4aCO)
105 TW3	TW	16	41399	42125	41399	42125 2_nonsis		0	363	725	1	100	1	1	0 (4:4aCO)
90 TW3	TW	13	843360	844197	843360	844197 2_nonsis		0	418	836	1	100	1	1	0 (4:4aCO)
81 TW3	TW	12	1031842	1032807	1031842	1032807 2_nonsis		0	482	964	1	100	1	1	0 (4:4aCO)
13 TW3	TW	4	286258	287699	286258	287699 2_nonsis		0	720	1440	1	100	1	1	0 (4:4aCO)
33 TW3	TW	7	165523	167076	165523	167076 2_nonsis		0	776	1552	1	100	1	1	0 (4:4aCO)
86 TW3	TW	13	347796	349796	347796	349796 2_nonsis		0	1000	1999	1	100	1	1	0 (4:4aCO)
57 TW3	TW	10	568805	570822	568805	570822 2_nonsis		0	1008	2016	1	100	1	1	0 (4:4aCO)
15 TW3	TW	4	703905	706032	703905	706032 2_nonsis		0	1063	2126	1	100	1	1	0 (4:4aCO)
82 TW3	TW	13	31858	35547	31858	35547 2_nonsis		0	1844	3688	1	100	1	1	0 (4:4aCO)
8 TW3	TW	3	171207	174943	171207	174943 2_nonsis		0	1868	3735	1	100	1	1	0 (4:4aCO)
73 TW3	TW	12	285823	285976	288686	288976 2_nonsis		2711	2932	3152	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
9 TW3	TW	3	226498	228130	232833	233654 2_nonsis		4704	5930	7155	3	20	1	1	0 (2:6)_(6:2)_(4:4aCO)
101 TW3	TW	15	485588	485898	486511	487028 2_nonsis		614	1027	1439	3	20	1	1	0 (2:6)_(4:4aCO)_(6:2)_(4:4a)
63 TW3	TW	11	522153	522458	525645	526035 2_nonsis		3188	3535	3881	3	20	1	1	0 (2:6)_(4:4)_(2:6)_(6:2)_(4:4aCO)
16 TW3	TW	4	830066	830234	837275	837527	3	7042	7251	7460	0	2	2	1	1 (6:2)_(2:6)_(4:4aCO)
19 TW3	TW	4	1493732	1493869	1497031	1497133	3	3163	3282	3400	0	2	2	1	1 (2:6)_(4:4aCO)_(6:2)_(4:4a)
36 TW3	TW	7	956057	956978	962886	963014	3	5909	6433	6956	0	2	2	1	1 (6:2)_(4:4aCO)_(6:2)_(4:4a)_(8:0)_(6:2a)_(4:4a)
97 TW3	TW	14	604879	605032	606438	606872	3	1407	1700	1992	0	2	2	1	1 (2:6)_(4:4)_(6:2)_(4:4aCO)
17 TW3	TW	4	1108696	1109358	1113224	1113566 2_nonsis		3867	4368	4869	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)
40 TW3	TW	8	341249	341299	343561	344320 2_nonsis		2263	2667	3070	0	3	2	0	2 (2:6)_(4:4aCO)_(2:6)_(4:4CO)
62 TW4	TW	11	135691	136103	136103	136140	1	1	225	448	1	10	1	0	1 06:02
87 TW4	TW	14	646799	646869	647100	647124	1	232	278	324	1	10	1	0	1 06:02
66 TW4	TW	11	530289	530499	530688	531524	1	190	712	1234	1	10	1	0	1 06:02
27 TW4	TW	4	1453499	1453865	1455029	1455133	1	1165	1399	1633	1	10	1	0	1 06:02
79 TW4	TW	13	673147	673402	674283	675083	1	882	1409	1935	1	10	1	0	1 06:02
99 TW4	TW	16	339516	339687	341332	341647	1	1646	1888	2130	1	10	1	0	1 06:02
74 TW4	TW	13	40511	41051	42127	43336	1	1077	1951	2824	1	10	1	0	1 06:02
92 TW4	TW	15	587565	588022	590260	590710	1	2239	2692	3144	1	10	1	0	1 06:02
12 TW4	TW	2	765669	765957	768073	769699	1	2117	3073	4029	1	10	1	0	1 06:02
10 TW4	TW	2	660972	661314	662444	666708	1	1131	3433	5735	1	10	1	0	1 06:02
64 TW4	TW	11	467333	467504	471237	471301	1	3734	3851	3967	1	10	1	0	1 06:02
81 TW4	TW	13	719868	720435	723996	724346	1	3562	4020	4477	1	10	1	0	1 06:02
65 TW4	TW	11	519020	519160	523718	524191	1	4559	4865	5170	1	10	1	0	1 06:02
15 TW4	TW	3	224038	224261	228130	230267	1	3870	5049	6228	1	10	1	0	1 06:02

77 TW4	TW	13	331787	332507	337176	337732	1	4670	5307	5944	1	10	1	0	1 06:02
38 TW4	TW	7	900087	900140	900146	900198	1	7	59	110	1	10.1	1	0	1 02:06
40 TW4	TW	8	11695	12627	12627	12640	1	1	473	944	1	10.1	1	0	1 02:06
44 TW4	TW	8	340523	340650	341299	341482	1	650	804	958	1	10.1	1	0	1 02:06
102 TW4	TW	16	667536	667966	668032	669691	1	67	1111	2154	1	10.1	1	0	1 02:06
100 TW4	TW	16	481072	481542	482429	482737	1	888	1276	1664	1	10.1	1	0	1 02:06
93 TW4	TW	15	601325	601569	602638	603166	1	1070	1455	1840	1	10.1	1	0	1 02:06
82 TW4	TW	13	830235	830562	831576	832164	1	1015	1472	1928	1	10.1	1	0	1 02:06
49 TW4	TW	9	258908	259266	260488	260891	1	1223	1603	1982	1	10.1	1	0	1 02:06
4 TW4	TW	2	81136	81655	82573	83659	1	919	1721	2522	1	10.1	1	0	1 02:06
26 TW4	TW	4	1393304	1393417	1394881	1395687	1	1465	1924	2382	1	10.1	1	0	1 02:06
56 TW4	TW	10	517919	518880	519660	521093	1	781	1977	3173	1	10.1	1	0	1 02:06
101 TW4	TW	16	490554	490756	492354	493222	1	1599	2133	2667	1	10.1	1	0	1 02:06
96 TW4	TW	15	930310	930799	932673	933245	1	1875	2405	2934	1	10.1	1	0	1 02:06
19 TW4	TW	4	196851	198376	201393	201643	1	3018	3905	4791	1	10.1	1	0	1 02:06
86 TW4	TW	14	550773	551646	554217	557562	1	2572	4680	6788	1	10.1	1	0	1 02:06
67 TW4	TW	12	22811	22902	23475	23826 2_nonsis		574	794	1014	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
6 TW4	TW	2	116168	116257	117972	118304 2_nonsis		1716	1926	2135	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
76 TW4	TW	13	191318	191452	193159	194053 2_nonsis		1708	2221	2734	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4aCO)
37 TW4	TW	7	846529	846601	848688	849134 2_nonsis		2088	2346	2604	1	12	1	1	0 (2:6)_(4:4aCO)_(2:6)_(4:4a)
22 TW4	TW	4	698788	699229	702278	702480 2_nonsis		3050	3371	3691	1	12	1	1	0 (6:2)_(4:4aCO)_(6:2)_(4:4a)
23 TW4	TW	4	923102	923384	925318	925618 2_nonsis		1935	2225	2515	1	12	1	1	0 (6:2)_(4:4)_(6:2)_(4:4)_(4:4aCO)
52 TW4	TW	9	384418	384680	384922	385024 2_nonsis		243	424	605	1	15	1	1	0 (6:2)_(4:4aCO)
61 TW4	TW	11	96250	96552	96630	97113 2_nonsis		79	471	862	1	15	1	1	0 (6:2)_(4:4aCO)
70 TW4	TW	12	341974	342190	342533	342709 2_nonsis		344	539	734	1	15	1	1	0 (6:2)_(4:4aCO)
98 TW4	TW	16	280470	280994	280994	281659 2_nonsis		1	595	1188	1	15	1	1	0 (6:2)_(4:4aCO)
55 TW4	TW	10	361221	361485	361643	362386 2_nonsis		159	662	1164	1	15	1	1	0 (6:2)_(4:4aCO)
90 TW4	TW	15	240094	240194	240538	241147 2_nonsis		345	699	1052	1	15	1	1	0 (6:2)_(4:4aCO)
13 TW4	TW	3	40637	40987	41571	41852 2 nonsis		585	900	1214	1	15	1	1	0 (6:2) (4:4aCO)
9 TW4	TW	2	487781	488751	489241	489580 2_nonsis		491	1145	1798	1	15	1	1	0 (6:2)_(4:4aCO)
103 TW4	TW	16	774844	774964	775873	776566 2_nonsis		910	1316	1721	1	15	1	1	0 (6:2)_(4:4aCO)
43 TW4	TW	8	187989	188673	189521	190024 2_nonsis		849	1442	2034	1	15	1	1	0 (6:2)_(4:4aCO)
58 TW4	TW	10	633425	633463	634739	635210 2_nonsis		1277	1531	1784	1	15	1	1	0 (6:2)_(4:4aCO)
51 TW4	TW	9	343174	343775	344902	345129 2_nonsis		1128	1541	1954	1	15	1	1	0 (6:2)_(4:4aCO)
28 TW4	TW	5	34247	34324	34985	36820 2 nonsis		662	1617	2572	1	15	1	1	0 (6:2)_(4:4aCO)
5 TW4	TW	2	106396	107123	108822	108951 2_nonsis		1700	2127	2554	1	15	1	1	0 (6:2)_(4:4aCO)
8 TW4	TW	2	451502	451813	453704	454122 2_nonsis		1892	2256	2619	1	15	1	1	0 (6:2)_(4:4aCO)
59 TW4	TW	10	695217	695391	697654	697926 2_nonsis		2264	2486	2708	1	15	1	1	0 (6:2)_(4:4aCO)
57 TW4	TW	10	543075	543177	545233	546078 2_nonsis		2057	2530	3002	1	15	1	1	0 (6:2)_(4:4aCO)
72 TW4	TW	12	731012	732527	732527	736073 2_nonsis		1	2531	5060	1	15	1	1	0 (6:2)_(4:4aCO)
97 TW4	TW	16	131951	132681	134518	135194 2_nonsis		1838	2540	3242	1	15	1	1	0 (6:2)_(4:4aCO)
41 TW4	TW	8	53097	53214	55477	56225 2_nonsis		2264	2696	3127	1	15	1	1	0 (6:2)_(4:4aCO)
48 TW4	TW	9	240939	242535	244304	244618 2_nonsis		1770	2724	3678	1	15	1	1	0 (6:2)_(4:4aCO)
78 TW4	TW	13	539282	539498	542119	542201 2_nonsis		2622	2770	2918	1	15	1	1	0 (6:2)_(4:4aCO)
33 TW4	TW	7	390274	390472	393326	393647 2_nonsis		2855	3114	3372	1	15	1	1	0 (6:2)_(4:4aCO)
45 TW4	TW	8	373101	373555	376829	377068 2_nonsis		3275	3621	3966	1	15	1	1	0 (6:2)_(4:4aCO)
83 TW4	TW	14	20018	20559	23618	24221 2_nonsis		3060	3631	4202	1	15	1	1	0 (6:2)_(4:4aCO)
63 TW4	TW	11	305056	306214	309310	309621 2 nonsis		3097	3831	4564	1	15	1	1	0 (6:2)_(4:4aCO)
31 TW4	TW	6	167037	167318	167410	168102 2_nonsis		93	579	1064	1	16	1	1	0 (2:6)_(4:4aCO)
21 TW4	TW	4	680128	680244	680813	681125 2_nonsis		570	783	996	1	16	1	1	0 (2:6)_(4:4aCO)
36 TW4	TW	7	659437	659791	660464	660488 2_nonsis		674	862	1050	1	16	1	1	0 (2:6)_(4:4aCO)
46 TW4	TW	9	46189	46556	47054	47493 2_nonsis		499	901	1303	1	16	1	1	0 (2:6)_(4:4aCO)
30 TW4	TW	6	129391	130480	130480	131200 2_nonsis		1	905	1808	1	16	1	1	0 (2:6)_(4:4aCO)
80 TW4	TW	13	709549	709740	710402	710752 2_nonsis		663	933	1202	1	16	1	1	0 (2:6)_(4:4aCO)
35 TW4	TW	7	584200	584249	585274	585476 2_nonsis		1026	1151	1275	1	16	1	1	0 (2:6)_(4:4aCO)
11 TW4	TW	2	674481	675106	675106	676899 2_nonsis		1020	1209	2417	1	16	1	1	0 (2:6)_(4:4aCO)
88 TW4	TW	14	698189	698660	699152	700166 2_nonsis		493	1235	1976	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
39 TW4	TW	7	1050064	1050446	1051093	1051973 2_nonsis		648	1278	1908	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
29 TW4	TW	5	377471	377999	379092	379332 2 nonsis		1094	1477	1860	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
7 TW4	TW	2	331827	332522	333382	334070 2_nonsis		861	1552	2242	1	16	1	1	0 (2:6)_(4:4aCO) 0 (2:6)_(4:4aCO)
/ 1 174	1 44	-2	33102/	334344	333362	JJ4070 Z_HOHSIS		001	1332	2242	1	10	1	1	0 (2.0)_(4.4aCO)

68 TW4	TW	12	35064	35190	36777	36792 2_nonsis		1588	1658	1727	1	16	1	1	0 (2:6)_(4:4aCO)
1 TW4	TW	1	91044	91629	92891	93563 2_nonsis		1263	1891	2518	1	16	1	1	0 (2:6)_(4:4aCO)
69 TW4	TW	12	122930	123453	124986	126014 2_nonsis		1534	2309	3083	1	16	1	1	0 (2:6)_(4:4aCO)
71 TW4	TW	12	498565	500275	501707	502161 2_nonsis		1433	2514	3595	1	16	1	1	0 (2:6)_(4:4aCO)
34 TW4	TW	7	578731	578856	581949	582077 2_nonsis		3094	3220	3345	1	16	1	1	0 (2:6)_(4:4aCO)
84 TW4	TW	14	77543	77941	80433	81575 2_nonsis		2493	3262	4031	1	16	1	1	0 (2:6)_(4:4aCO)
25 TW4	TW	4	1250091	1250153	1253598	1253640 2_nonsis		3446	3497	3548	1	16	1	1	0 (2:6)_(4:4aCO)
42 TW4	TW	8	68532	68854	72247	72400 2_nonsis		3394	3631	3867	1	16	1	1	0 (2:6)_(4:4aCO)
89 TW4	TW	15	106264	106384	109584	110892 2_nonsis		3201	3914	4627	1	16	1	1	0 (2:6)_(4:4aCO)
14 TW4	TW	3	208234	208480	212528	212637 2_nonsis		4049	4226	4402	1	16	1	1	0 (2:6)_(4:4aCO)
32 TW4	TW	7	223151	224665	226711	229846 2_nonsis		2047	4371	6694	1	16	1	1	0 (2:6)_(4:4aCO)
54 TW4	TW	10	238738	238867	238738	238867 2_nonsis		0	64	128	1	100	1	1	0 (4:4aCO)
17 TW4	TW	4	30545	30752	30545	30752 2_nonsis		0	103	206	1	100	1	1	0 (4:4aCO)
94 TW4	TW	15	702696	702920	702696	702920 2_nonsis		0	112	223	1	100	1	1	0 (4:4aCO)
16 TW4	TW	3	246853	247156	246853	247156 2_nonsis		0	151	302	1	100	1	1	0 (4:4aCO)
24 TW4	TW	4	993715	994135	993715	994135 2_nonsis		0	210	419	1	100	1	1	0 (4:4aCO)
53 TW4	TW	10	60064	60979	60064	60979 2_nonsis		0	457	914	1	100	1	1	0 (4:4aCO)
60 TW4	TW	11	21803	22806	21803	22806 2_nonsis		0	501	1002	1	100	1	1	0 (4:4aCO)
47 TW4	TW	9	84138	85680	84138	85680 2_nonsis		0	771	1541	1	100	1	1	0 (4:4aCO)
18 TW4	TW	4	133068	134651	133068	134651 2_nonsis		0	791	1582	1	100	1	1	0 (4:4aCO)
73 TW4	TW	12	837962	840577	837962	840577 2_nonsis		0	1307	2614	1	100	1	1	0 (4:4aCO)
50 TW4	TW	9	320712	323343	320712	323343 2_nonsis		0	1315	2630	1	100	1	1	0 (4:4aCO)
2 TW4	TW	1	121235	128637	121235	128637 2_nonsis		0	3701	7401	1	100	1	1	0 (4:4aCO)
3 TW4	TW	1	143085	143679	143852	144406 2_nonsis		174	747	1320	3	20	1	1	0 (6:2)_(2:6)_(4:4aCO)
85 TW4	TW	14	245680	246824	248236	249065	3	1413	2399	3384	0	2	2	1	1 (6:2)_(4:4)_(4:4aCO)
91 TW4	TW	15	456645	457110	457110	457531	3	1	443	885	0	2	2	1	1 (0:8)_(4:4aCO)
20 TW4	TW	4	366072	366513	369971	370499	3	3459	3943	4426	0	3	2	1	1 (2:6)_(4:4aCO)_(2:6)_(4:4bCO)
75 TW4	TW	13	55803	56231	57144	57911 2_nonsis		914	1511	2107	0	3	2	0	2 (2:6)_(4:4aCO)_(4:4CO)
95 TW4	TW	15	737331	737496	741072	741418 2_nonsis		3577	3832	4086	0	3	2	0	2 (6:2)_(4:4aCO)_(6:2)_(4:4CO)

```
#
#SNP_indel_insolator
#Extraction of variant positions from the PySamStats output
#This is run twice for each spore, once for S288c, once for SK1.
#The example code here is for S288c, but the SK1 criteria are identical.
#
SNP indel isolator S288c <- function(df, filename, polys) {
#Chromosome names must be converted to numbers in order to match those in the variant table.
#(Chromosome names need to be roman numerals for PySamStats)
df$chrom <- as.character(df$chrom)</pre>
 df$chrom[df$chrom == "XVI"] <- "16"
 df$chrom[df$chrom == "XV"] <- "15"
 df$chrom[df$chrom == "XIV"] <- "14"
 df$chrom[df$chrom == "XIII"] <- "13"
 df$chrom[df$chrom == "XII"] <- "12"
 df$chrom[df$chrom == "XI"] <- "11"
 df$chrom[df$chrom == "IX"] <- "9"
 df$chrom[df$chrom == "X"] <- "10"
 df$chrom[df$chrom == "VIII"] <- "8"
 df$chrom[df$chrom == "VII"] <- "7"
 df$chrom[df$chrom == "VI"] <- "6"
 df$chrom[df$chrom == "IV"] <- "4"
 df$chrom[df$chrom == "V"] <- "5"
 df$chrom[df$chrom == "III"] <- "3"
 df$chrom[df$chrom == "II"] <- "2"
 df$chrom[df$chrom == "I"] <- "1"
#making a subtable from the coverage file containing only the important columns
```

df<- subset(df, select = c(chrom, pos, reads all, deletions, insertions, A, C, T, G))

```
df <-rename(df, c("pos"="pos_c"))</pre>
 merged_data <- merge(polys, df, by=c("chrom", "pos_c"), all=FALSE, sort=FALSE)</pre>
 #This merges the coverage dataset with the SNP table according to chromosome and position (this
is why it's important to have the same chromosome names).
 #all=FALSE means that any positions in the coverage file that are not in the SNP table are discarded.
 merged_data<- subset(merged_data, select = c(uID, sID, chrom, pos_c, pos_k, seq_c, seq_k, type_c,
       type_k, Var_len, reads_all, deletions, insertions, A, C, T, G))
 write.table(merged_data,file=sprintf("%sOut_S288c.txt",filename), row.names=F, quote=F,
sep='\t')
}
#SNP_indel_caller
#Genotype calling and production of statistics file
#This is run twice for each spore, once for S288c, once for SK1.
#The example code here is for the S288c call, but the SK1 call criteria are identical.
SNP indel caller S288c <- function(df, filename, threshold s, threshold i, threshold k){
 #df - dataframe to use
 #filename - name for files produced
 #threshold i-minimum number of reads for a SNP to be called (5)
 #threshold s -minimum number of reads for an indel to be called (5)
 #threshold_k - additional threshold for indels (10) - if reads are above this limit, they have a more
lenient calling threshold
 #remove mitochondrial reads
 df <- df[which(df$chrom!='mt'),]
```

#creates two new columns c and k containing the number of S288c and SK1 reads respectively for each position

#Because the reads were aligned to S288c, any indels will be relative to S288c.

#Thus for Sk1 reads I take insertions or deletions, but do not need to do the same for S288c.

```
\label{eq:distype_k=='i', distance} distance d
```

#Note: the first base of an in/del will always be called as reference now since it is the same in both backgrounds

#For insertions relative to the reference, insertion hits are subtracted from reference hits

#because the first base of an insertion is common to both parents, meaning it will always get 'reference' hits.

df\$SNPreads <- (df\$c+df\$k) #total number of SNP (C and K) reads

```
df$reads_all <-ifelse(df$type_k=='s', (df$reads_all+df$insertions), df$reads_all)
 #insertions don't count seperately to 'reads_all'.
 #When the type is S, we are expecting a SNP.
 #if there are insertion or deletion reads, they should count against it being called as a SNP.
 #deletion reads already count towards reads_all.
 ##Calling the genotypes##
 #CP for S288C (higher confidence = > 5 reads)
 #KP for SK1 (higher confidence = > 5 reads)
 #CF for S288C with fewer than 5 reads
 #KF for SK1 with fewer than 5 reads
 #HP for het with = > 5 reads
 #HF for het with < 5 reads
 #NP for ambiguous with = >5 reads
 #NF for ambiguous with <5 reads
 df$b <- ifelse(df$type_k=='i' & df$reads_all<threshold_i & (df$k/(df$reads_all))>=0.3, "KF",
         ifelse(df$type_k=='i' & df$reads_all>=threshold_i & (df$k/(df$reads_all))>=0.3, "KP",
             ifelse(df$type_k=='i' & df$reads_all>=threshold_i & df$k>=threshold_k &
(df$k/(df$reads_all))>=0.2, "KP",
                 ifelse(df$type_k=='i' & df$reads_all>=threshold_i & df$Var_len>=20 &
(df$k/(df$reads all))>=0.2, "KP",
                     #lower pass threshold for long insertions and positions with at least 10
insertion hits
                     ifelse(df$type_k=='i' & df$reads_all>=threshold_i & df$k<2 &
(df$c/(df$reads_all))>=0.95, "CP",
                         ifelse(df$type k=='i' & df$reads all<threshold i & df$k<2 &
(df$c/(df$reads_all))>=0.95, "CF",
                             #if there aren't any insertion reads, it's probably S288c (unless read
depth is low).
                             #But need to check that the majority of reads match the reference as
well, else it might be a variant table error
```

```
ifelse(df$type_k=='d' & df$reads_all<threshold_i &
(df$k/(df$reads_all))>=0.3, "KF",
                                 ifelse(df$type_k=='d' & df$reads_all>=threshold_i &
(df$k/(df$reads all))>=0.3, "KP",
                                    ifelse(df$type k=='d' & df$reads all>=threshold i &
df$k>=threshold_k & (df$k/(df$reads_all))>=0.2, "KP",
                                        ifelse(df$type_k=='d' & df$reads_all>=threshold_i &
df$Var len>=20 & (df$k/(df$reads all))>=0.2, "KP",
                                            #as with insertions there is a reduced threshold for
positions with at least (threshold_k) deletion hits, and for longer deletions.
                                            #deletion thresholds are higher than insertion
thresholds because they aren't affected by the first base being the same,
                                            #but they still have a lower theshold than SNPs because
they don't align as well
                                            ifelse(df$type_k=='d' & df$reads_all<threshold_i &
df$k<2 & (df$c/(df$reads all))>=0.95, "CF",
                                                ifelse(df$type_k=='d' & df$reads_all>=threshold_i &
df$k<2 & (df$c/(df$reads all))>=0.95, "CP",
                                                    #if there aren't any deletion reads, it's probably
S288c (unless read depth is low).
                                                    #But need to check that the majority of reads
match the reference as well, else it might be a variant table error
                                                    #S288c hits are only evaluated if insertions =0 or
1
                                                    ifelse(df$type_k=='s' &
df$reads_all<threshold_s & (df$k/(df$reads_all))>=0.75, "KF",
                                                        ifelse(df$type_k=='s' &
df$reads all<threshold s & (df$c/(df$reads all))>=0.9, "CF",
                                                            ifelse(df$type k=='s' &
df$reads_all>=threshold_s & (df$k/(df$reads_all))>=0.75, "KP",
                                                                ifelse(df$type_k=='s' &
df$reads_all>=threshold_s & (df$c/(df$reads_all))>=0.9, "CP",
                                                                    ifelse((df$reads_all)<threshold_s
& ((df$SNPreads)/df$reads all)>0.9 & (df$c/(df$SNPreads))<0.7 & (df$k/(df$SNPreads))<0.7, "HF",
```

ifelse((df\$reads_all)>=threshold_s & ((df\$SNPreads)/df\$reads_all)>0.9 & (df\$c/(df\$SNPreads))<0.7 &

(df\$k/(df\$SNPreads))<0.7, "HP",

```
#heteroduplex calls for
```

all variant types. Note, for indels, these should NOT be later converted - only used for statistical purposes.

```
#note, it is important to
```

do the H calls before the N calls because the H calls also fit the criteria for N calls

#insertions never get

called H with these criteria, (because insertions don't count seperately to 'reads all'?)

ifelse(df\$type k=='i' &

df\$reads_all<threshold_i & (df\$c/(df\$reads_all))<0.95 & (df\$k/(df\$reads_all))<0.3, "NF",

ifelse(df\$type_k=='i'

& df\$reads_all>=threshold_i & (df\$c/(df\$reads_all))<0.95 & (df\$k/(df\$reads_all))<0.3, "NP",

ifelse(df\$type_k=='d' & df\$reads_all<threshold_i & (df\$c/(df\$reads_all))<0.95 & (df\$k/(df\$reads_all))<0.3, "NF",

ifelse(df\$type_k=='d' & df\$reads_all>=threshold_i & (df\$c/(df\$reads_all))<0.95 & (df\$k/(df\$reads_all))<0.3, "NP",

 $ifelse(df\$type_k=='s' \& df\$reads_all<threshold_s \& (df\$c/(df\$reads_all))<0.9 \& (df\$k/(df\$reads_all))<0.75, "NF",$

ifelse(df\$type_k=='s' & df\$reads_all>=threshold_s & (df\$c/(df\$reads_all))<0.9 & (df\$k/(df\$reads_all))<0.75, "NP",

"U"))))))))))))))))))))))))

###Collapsing deletions###

df_before_collapse <- df

dels <- df[which(df\$type k=='d'),]

delsFB <-dels[which(dels\$seq_k!="-"),] #keep only the first base of each deletion

delsOB <-dels[which(dels\$seq_k=="-"),] #the other bases of the deletions

#1bp = 100% (1 call)

#5bp = 40% (2 calls)

#10bp= 33% (3 calls)

#20bp= 25% (5 calls)

```
#50bp= 16% (8 calls)
 #100bp=10% (10 calls)
 #100+ =5%
 # Save delsFB to a new data frame so results can be compared afterward.
 delsFB_new <- delsFB
 # Loop through the unique uID values in delsOB.
 for (unique_id in unique(delsFB$uID)) { #rarely, there may be occurences of uIDs in delsOB that
are not in delsFB, which causes an error when combining the tables. So only run the loop for uIDs in
delsFB.
  # Subset delsOB for the current unique uID.
  current_delsOB_subset <- delsOB[delsOB$uID == unique_id, ]</pre>
  current_length <- current_delsOB_subset[1,10]-1 #store length of current indel for working out
the average reads
  # Assign desired value to result based on the conditions.
  totalc = sum(current_delsOB_subset$c) #total c reads
  totalk = sum(current_delsOB_subset$k) #total k reads
  avgc <- totalc/current_length #average c reads</pre>
  avgk <- totalk/current_length #average k reads</pre>
  # Assign desired value to result based on the conditions.
  if ("KP" %in% current_delsOB_subset$b & "CP" %in% current_delsOB_subset$b) {
   result <- "HP"
  }
  else if ("KP" %in% current_delsOB_subset$b) {
   # Nested conditional logic to ensure a minimum proportion of "KP" values, according to the
number of instances.
   #Only if the number of KPs or CPs >0, or it will give /0=infinite
   if (length(current_delsOB_subset$b) == 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "KP"]) == 1) {
    result <- "KP"
   }
```

```
else if (length(current_delsOB_subset$b) > 1 & length(current_delsOB_subset$b) <= 5 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "KP"]) >= 1 &
length(current delsOB subset$b[current delsOB subset$b ==
"KP"])/length(current_delsOB_subset$b) >= 0.4) {
    result <- "KP"
   }
   else if (length(current_delsOB_subset$b) > 5 & length(current_delsOB_subset$b) <= 10 &
length(current delsOB subset$b[current delsOB subset$b == "KP"]) >= 1 &
length(current delsOB subset$b[current delsOB subset$b ==
"KP"])/length(current_delsOB_subset$b) >= 0.33) {
    result <- "KP"
   }
   else if (length(current_delsOB_subset$b) > 10 & length(current_delsOB_subset$b) <= 20 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "KP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"KP"])/length(current_delsOB_subset$b) >= 0.25) {
    result <- "KP"
   }
   else if (length(current_delsOB_subset$b) > 20 & length(current_delsOB_subset$b) <= 50 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "KP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"KP"])/length(current_delsOB_subset$b) >= 0.16) {
    result <- "KP"
   }
   else if (length(current_delsOB_subset$b) > 50 & length(current_delsOB_subset$b) <= 100 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "KP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"KP"])/length(current_delsOB_subset$b) >= 0.1) {
    result <- "KP"
   }
   else if (length(current_delsOB_subset$b) > 100 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "KP"]) >= 1 &
length(current delsOB subset$b[current delsOB subset$b ==
"KP"])/length(current_delsOB_subset$b) >= 0.05) {
    result <- "KP"
   }
  }
```

```
else if ("CP" %in% current_delsOB_subset$b) {
   # Nested conditional logic to ensure a minimum proportion of "CP" values, according to the
number of instances.
   #Only if the number of KPs or CPs >0, or it will give /0=infinite
   if (length(current_delsOB_subset$b) == 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "CP"]) == 1) {
    result <- "CP"
   }
   else if (length(current_delsOB_subset$b) > 1 & length(current_delsOB_subset$b) <= 5 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "CP"]) >= 1 &
length(current delsOB subset$b[current delsOB subset$b ==
"CP"])/length(current_delsOB_subset$b) >= 0.4) {
    result <- "CP"
   }
   else if (length(current_delsOB_subset$b) > 5 & length(current_delsOB_subset$b) <= 10 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "CP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"CP"])/length(current_delsOB_subset$b) >= 0.33) {
    result <- "CP"
   }
   else if (length(current_delsOB_subset$b) > 10 & length(current_delsOB_subset$b) <= 20 &
length(current delsOB subset$b[current delsOB subset$b == "CP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"CP"])/length(current_delsOB_subset$b) >= 0.25) {
    result <- "CP"
   }
   else if (length(current delsOB subset$b) > 20 & length(current delsOB subset$b) <= 50 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "CP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"CP"])/length(current delsOB subset$b) >= 0.16) {
    result <- "CP"
   }
   else if (length(current_delsOB_subset$b) > 50 & length(current_delsOB_subset$b) <= 100 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "CP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"CP"])/length(current delsOB subset$b) >= 0.1) {
    result <- "CP"
```

```
}
   else if (length(current_delsOB_subset$b) > 100 &
length(current_delsOB_subset$b[current_delsOB_subset$b == "CP"]) >= 1 &
length(current_delsOB_subset$b[current_delsOB_subset$b ==
"CP"])/length(current_delsOB_subset$b) >= 0.05) {
    result <- "CP"
   }
  }
  else {
   result <- "U"
  }
  # Insert the result into delsFB$b.
  delsFB_new[delsFB_new$uID == unique_id, ]$b <- result
  delsFB_new[delsFB_new$uID == unique_id, ]$c <- avgc #replace the c reads for the first base with
the average c reads from the other bases
  delsFB_new[delsFB_new$uID == unique_id, ]$k <- avgk</pre>
}
 #put delsFB rows back into dataframe#
 df <- df[which(df$type_k!='d'),] #remove old del entries</pre>
 df <- rbind(df, delsFB_new) #adding the converted dels back in
 df <- df[order(df$chrom, df$pos_c),] #sort back into correct order
 sub<- subset(df, select = c(uID, sID, chrom, pos_c, pos_k, type_c, type_k, Var_len, c, k, b))
 write.table(sub,file=sprintf("%sCalled_S288c.txt",filename),row.names=F, quote=F, sep='\t')
 ##Make a dataframe to hold statistics##
 S_reads<- df[which(df$type_k=='s'),]</pre>
 I_reads<- df[which(df$type_k=='i'),]</pre>
 D_reads_after <- df[which(df$type_k=='d'),]</pre>
 D_reads_before <-df_before_collapse[which(df_before_collapse$type_k=='d'),]
```

```
statistic <-
c('Median_SNP_reads','Mean_SNP_reads','Total_SNP_reads','Min_SNP_Reads','Max_SNP_reads',
'read depth threshold', 'Percent failing read depth threshold',
'Number_failing_read_depth_threshold', 'Number_CF', 'Number_CP', 'Number_KF', 'Number_KP',
'Number_NF', 'Number_NP', 'Number_HF', 'Number_HP', 'Percent_CF', 'Percent_CP', 'Percent_KF',
'Percent KP', 'Percent NF', 'Percent NP', 'Percent HF', 'Percent HP', 'Total C', 'Total K', 'Total N',
'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H', 'Number_U', 'Percent_U')
statstable <- data.frame(statistic, value)</pre>
#Stats about the number of reads - Median_SNP_reads, Mean_SNP_reads, Total_SNP_reads,
Min_SNP_Reads,
 #Max_SNP_reads, read_depth_threshold, Percent_failing_read_depth_threshold,
Number_failing_read_depth_threshold
statstable[1,2] <- median(S_reads$reads_all)
statstable[2,2] <- mean(S_reads$reads_all)
statstable[3,2] <- sum(S_reads$reads_all)
statstable[4,2] <- min(S_reads$reads_all)
statstable[5,2] <- max(S_reads$reads_all)
statstable[6,2] <- threshold_s
statstable[7,2] <- 100*(sum(S_reads$reads_all < threshold_s)/sum(S_reads$reads_all))
 statstable[8,2] <- sum(S reads$reads all<threshold s)
 #More stats - 'Number CF', 'Number CP', 'Number KF', 'Number KP', 'Number NF', 'Number NP',
'Number_HF', 'Number_HP'
statstable[9,2] <- sum(S_reads$b=='CF')
statstable[10,2] <- sum(S_reads$b=='CP')
statstable[11,2] <- sum(S_reads$b=='KF')
statstable[12,2] <- sum(S_reads$b=='KP')
statstable[13,2] <- sum(S_reads$b=='NF')
statstable[14,2] <- sum(S_reads$b=='NP')
statstable[15,2] <- sum(S_reads$b=='HF')
 statstable[16,2] <- sum(S_reads$b=='HP')
```

```
#'Percent_CF', 'Percent_CP', 'Percent_KF', 'Percent_KP', 'Percent_NF', 'Percent_NP', 'Percent_HF',
'Percent_HP'
    statstable[17,2] <-
100*(stat stable [9,2]/(stat stable [9,2] + stat stable [10,2] + stat stable [11,2] + stat stable [12,2] + stat stable [11,2] + stat stable [12,2] + stable [12,2] + stat stable [12,2] + stable [12,2] + stat stable [12
3,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
   statstable[18,2] <-
100*(statstable[10,2]/(statstable[9,2]+statstable[10,2]+statstable[11,2]+statstable[12,2]+statstable[
13,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
    statstable[19,2] <-
100*(statstable[11,2]/(statstable[9,2]+statstable[10,2]+statstable[11,2]+statstable[12,2]+statstable[
13,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
   statstable[20,2] <-
100*(statstable[12,2]/(statstable[9,2]+statstable[10,2]+statstable[11,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]+statstable[12,2]
13,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
   statstable[21,2] <-
100*(statstable[13,2]/(statstable[9,2]+statstable[10,2]+statstable[11,2]+statstable[12,2]+statstable[
13,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
    statstable[22,2] <-
100*(statstable[14,2]/(statstable[9,2]+statstable[10,2]+statstable[11,2]+statstable[12,2]+statstable[
13,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
   statstable[23,2] <-
100*(statstable[15,2]/(statstable[9,2]+statstable[10,2]+statstable[11,2]+statstable[12,2]+statstable[
13,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
   statstable[24,2] <-
100*(statstable[16,2]/(statstable[9,2]+statstable[10,2]+statstable[11,2]+statstable[12,2]+statstable[
13,2]+statstable[14,2]+statstable[15,2]+statstable[16,2]))
    #'Total_C', 'Total_K', 'Total_N', 'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H'
    statstable[25,2] <- (statstable[9,2] + statstable[10,2])
    statstable[26,2] <- (statstable[11,2] + statstable[12,2])
    statstable[27,2] <- (statstable[13,2] + statstable[14,2])</pre>
    statstable[28,2] <- (statstable[15,2] + statstable[16,2])
    statstable[33,2] <- sum(S reads$b=='U')
     statstable[29,2] < -100*(statstable[25,2]/(statstable[25,2] + statstable[26,2] + statstable[27,2] + statst
statstable[28,2]+statstable[33,2]))
    statstable[30,2] < 100*(statstable[26,2]/(statstable[25,2] + statstable[26,2] + statstable[27,2] + statsta
statstable[28,2]+statstable[33,2]))
```

```
statstable[31,2] < 100*(statstable[27,2]/(statstable[25,2] + statstable[26,2] + statstable[27,2] + statsta
statstable[28,2]+statstable[33,2]))
    statstable[32,2] < 100*(statstable[28,2]/(statstable[25,2] + statstable[26,2] + statstable[27,2] + statsta
statstable[28,2]+statstable[33,2]))
    statstable[34,2] < 100*(statstable[33,2]/(statstable[25,2] + statstable[26,2] + statstable[27,2] + statsta
statstable[28,2]+statstable[33,2]))
    statstable$value <- round(statstable$value, digits = 3)
    statstable <- rename(statstable, c("value"=paste(match.call()[3])))
    write.table(statstable,file=sprintf("%sSNP_Stats_S288c.txt",filename),row.names=F, quote=F,
sep='\t')
#Insertion stats#
   statistic2 <-
c('Median_insertion_reads','Mean_insertion_reads','Total_insertion_reads','Min_insertion_Reads','
Max_insertion_reads', 'read_depth_threshold', 'Percent_failing_read_depth_threshold',
'Number failing read depth threshold', 'Number CF', 'Number CP', 'Number KF', 'Number KP',
'Number_NF', 'Number_NP', 'Number_HF', 'Number_HP', 'Percent_CF', 'Percent_CP', 'Percent_KF',
'Percent KP', 'Percent NF', 'Percent_NP', 'Percent_HF', 'Percent_HP', 'Total_C', 'Total_K', 'Total_N',
'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H', 'Number_U', 'Percent_U')
    statstable2 <- data.frame(statistic2, value2)
    #Stats about the number of reads - Median_SNP_reads, Mean_SNP_reads, Total_SNP_reads,
Min_SNP_Reads,
    #Max_SNP_reads, read_depth_threshold, Percent_failing_read_depth_threshold,
Number failing read depth threshold
    statstable2[1,2] <- median(I reads$reads all)
    statstable2[2,2] <- mean(I reads$reads all)
    statstable2[3,2] <- sum(I reads$reads all)
    statstable2[4,2] <- min(I reads$reads all)
```

```
statstable2[5,2] <- max(I_reads$reads_all)
    statstable2[6,2] <- threshold_i
    statstable2[7,2] <- 100*(sum(I_reads$reads_all < threshold_i)/sum(I_reads$reads_all))
    statstable2[8,2] <- sum(I_reads$reads_all<threshold_i)
    #More stats - 'Number_CF', 'Number_CP', 'Number_KF', 'Number_KP', 'Number_NF', 'Number_NP',
'Number_HF', 'Number_HP'
    statstable2[9,2] <- sum(I_reads$b=='CF')
    statstable2[10,2] <- sum(I_reads$b=='CP')
    statstable2[11,2] <- sum(I_reads$b=='KF')
    statstable2[12,2] <- sum(I_reads$b=='KP')
    statstable2[13,2] <- sum(I_reads$b=='NF')
    statstable2[14,2] <- sum(I_reads$b=='NP')
    statstable2[15,2] <- sum(I_reads$b=='HF')
    statstable2[16,2] <- sum(I_reads$b=='HP')
    #'Percent_CF', 'Percent_CP', 'Percent_KF', 'Percent_KP', 'Percent_NF', 'Percent_NP', 'Percent_HF',
'Percent HP'
    statstable2[17,2] <-
100*(statstable2[9,2]/(statstable2[9,2]+statstable2[10,2]+statstable2[11,2]+statstable2[12,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statst
able2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
   statstable2[18,2] <-
100*(statstable2[10,2]/(statstable2[9,2]+statstable2[10,2]+statstable2[11,2]+statstable2[12,2]+statstable2[10,2]/(statstable2[12,2]+statstable2[10,2]+statstable2[10,2]/(statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+statstable2[10,2]+sta
table2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
   statstable2[19,2] <-
100*(statstable2[11,2]/(statstable2[9,2]+statstable2[10,2]+statstable2[11,2]+statstable2[12,2]+stats
table2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
    statstable2[20,2] <-
100*(statstable2[12,2]/(statstable2[9,2]+statstable2[10,2]+statstable2[11,2]+statstable2[12,2]+stats
table2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
   statstable2[21,2] <-
100*(stat stable 2 [13,2]/(stat stable 2 [9,2] + stat stable 2 [10,2] + stat stable 2 [11,2] + stat stable 2 [12,2] + stat stable 2 [12
table2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
   statstable2[22,2] <-
100*(statstable2[14,2]/(statstable2[9,2]+statstable2[10,2]+statstable2[11,2]+statstable2[12,2]+stats
table2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
```

```
statstable2[23,2] <-
100*(statstable2[15,2]/(statstable2[9,2]+statstable2[10,2]+statstable2[11,2]+statstable2[12,2]+stats
table2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
statstable2[24,2] <-
100*(statstable2[16,2]/(statstable2[9,2]+statstable2[10,2]+statstable2[11,2]+statstable2[12,2]+stats
table2[13,2]+statstable2[14,2]+statstable2[15,2]+statstable2[16,2]))
#'Total_C', 'Total_K', 'Total_N', 'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H'
statstable2[25,2] <- (statstable2[9,2] + statstable2[10,2])
statstable2[26,2] <- (statstable2[11,2] + statstable2[12,2])
statstable2[27,2] <- (statstable2[13,2] + statstable2[14,2])
statstable2[28,2] <- (statstable2[15,2] + statstable2[16,2])
statstable2[33,2] <- sum(I_reads$b=='U')
 statstable2[29,2] <- 100*(statstable2[25,2]/(statstable2[25,2] + statstable2[26,2]+
statstable2[27,2]+ statstable2[28,2]+statstable2[33,2]))
statstable2[30,2] <- 100*(statstable2[26,2]/(statstable2[25,2] + statstable2[26,2]+
statstable2[27,2]+ statstable2[28,2]+statstable2[33,2]))
statstable2[31,2] <- 100*(statstable2[27,2]/(statstable2[25,2] + statstable2[26,2]+
statstable2[27,2]+ statstable2[28,2]+statstable2[33,2]))
statstable2[32,2] <- 100*(statstable2[28,2]/(statstable2[25,2] + statstable2[26,2]+
statstable2[27,2]+ statstable2[28,2]+statstable2[33,2]))
statstable2[34,2] <- 100*(statstable2[33,2]/(statstable2[25,2] + statstable2[26,2]+
statstable2[27,2]+ statstable2[28,2]+statstable2[33,2]))
statstable2$value2 <- round(statstable2$value2, digits = 3)
statstable2 <- rename(statstable2, c("value2"=paste(match.call()[3])))
 #rename this column so it will have the sample name for merging
write.table(statstable2,file=sprintf("%sinsertion_Stats_S288c.txt",filename),row.names=F, quote=F,
sep='\t')
```

##########

#Deletion stats - After#

```
statistic3 <-
c('Median_deletion_reads','Mean_deletion_reads','Total_deletion_reads','Min_deletion_Reads','Ma
x deletion reads', 'read depth threshold', 'Percent failing read depth threshold',
'Number_failing_read_depth_threshold', 'Number_CF', 'Number_CP', 'Number_KF', 'Number_KP',
'Number NF', 'Number NP', 'Number HF', 'Number HP', 'Percent CF', 'Percent CP', 'Percent KF',
'Percent_KP', 'Percent_NF', 'Percent_NP', 'Percent_HF', 'Percent_HP', 'Total_C', 'Total_K', 'Total_N',
'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H', 'Number_U', 'Percent_U')
statstable3 <- data.frame(statistic3, value3)</pre>
 #Stats about the number of reads - Median_SNP_reads, Mean_SNP_reads, Total_SNP_reads,
Min_SNP_Reads,
 #Max_SNP_reads, read_depth_threshold, Percent_failing_read_depth_threshold,
Number_failing_read_depth_threshold
statstable3[1,2] <- median(D_reads_after$reads_all)
statstable3[2,2] <- mean(D_reads_after$reads_all)
statstable3[3,2] <- sum(D_reads_after$reads_all)
statstable3[4,2] <- min(D_reads_after$reads_all)
statstable3[5,2] <- max(D_reads_after$reads_all)
statstable3[6,2] <- threshold_i
 statstable3[7,2] <- 100*(sum(D reads after$reads all <
threshold_i)/sum(D_reads_after$reads_all))
statstable3[8,2] <- sum(D_reads_after$reads_all<threshold_i)
 #More stats - 'Number_CF', 'Number_CP', 'Number_KF', 'Number_KP', 'Number_NF', 'Number_NP',
'Number_HF', 'Number_HP'
statstable3[9,2] <- sum(D_reads_after$b=='CF')
statstable3[10,2] <- sum(D_reads_after$b=='CP')
statstable3[11,2] <- sum(D reads after$b=='KF')
statstable3[12,2] <- sum(D reads after$b=='KP')
statstable3[13,2] <- sum(D reads after$b=='NF')
statstable3[14,2] <- sum(D reads after$b=='NP')
 statstable3[15,2] <- sum(D reads after$b=='HF')
```

```
statstable3[16,2] <- sum(D_reads_after$b=='HP')
    #'Percent_CF', 'Percent_CP', 'Percent_KF', 'Percent_KP', 'Percent_NF', 'Percent_NP', 'Percent_HF',
'Percent HP'
   statstable3[17,2] <-
100*(stat stable 3[9,2]/(stat stable 3[9,2]+stat stable 3[10,2]+stat stable 3[11,2]+stat stable 3[12,2]+stat stable 3[12,2]+stable 3[12,2]+stabl
able3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   statstable3[18,2] <-
100*(statstable3[10,2]/(statstable3[9,2]+statstable3[10,2]+statstable3[11,2]+statstable3[12,2]+stats
table3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   statstable3[19,2] <-
100*(stat stable 3 [11,2]/(stat stable 3 [9,2] + stat stable 3 [10,2] + stat stable 3 [11,2] + stat stable 3 [12,2] + stat stable 3 [12
table3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   statstable3[20,2] <-
100*(statstable3[12,2]/(statstable3[9,2]+statstable3[10,2]+statstable3[11,2]+statstable3[12,2]+stats
table3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   statstable3[21,2] <-
100*(stat stable 3[13,2]/(stat stable 3[9,2] + stat stable 3[10,2] + stat stable 3[11,2] + stat stable 3[12,2] + stat stable 3[12,
table3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   statstable3[22,2] <-
100*(statstable3[14,2]/(statstable3[9,2]+statstable3[10,2]+statstable3[11,2]+statstable3[12,2]+stats
table3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   statstable3[23,2] <-
100*(statstable3[15,2]/(statstable3[9,2]+statstable3[10,2]+statstable3[11,2]+statstable3[12,2]+stats
table3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   statstable3[24,2] <-
100*(statstable3[16,2]/(statstable3[9,2]+statstable3[10,2]+statstable3[11,2]+statstable3[12,2]+stats
table3[13,2]+statstable3[14,2]+statstable3[15,2]+statstable3[16,2]))
   #'Total_C', 'Total_K', 'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H'
   statstable3[25,2] <- (statstable3[9,2] + statstable3[10,2])
   statstable3[26,2] <- (statstable3[11,2] + statstable3[12,2])
   statstable3[27,2] <- (statstable3[13,2] + statstable3[14,2])
   statstable3[28,2] <- (statstable3[15,2] + statstable3[16,2])
   statstable[33,2] <- sum(D reads after$b=='U')
   statstable3[29,2] <- 100*(statstable3[25,2]/(statstable3[25,2] + statstable3[26,2]+
statstable3[27,2]+ statstable3[28,2]+statstable3[33,2]))
```

```
statstable3[30,2] <- 100*(statstable3[26,2]/(statstable3[25,2] + statstable3[26,2]+
statstable3[27,2]+ statstable3[28,2]+statstable3[33,2]))
statstable3[31,2] <- 100*(statstable3[27,2]/(statstable3[25,2] + statstable3[26,2]+
statstable3[27,2]+ statstable3[28,2]+statstable3[33,2]))
statstable3[32,2] <- 100*(statstable3[28,2]/(statstable3[25,2] + statstable3[26,2]+
statstable3[27,2]+ statstable3[28,2]+statstable3[33,2]))
statstable3[34,2] <- 100*(statstable3[33,2]/(statstable3[25,2] + statstable3[26,2]+
statstable3[27,2]+ statstable3[28,2]+statstable3[33,2]))
statstable3$value3 <- round(statstable3$value3, digits = 3)
statstable3 <- rename(statstable3, c("value3"=paste(match.call()[3])))
#rename this column so it will have the sample name for merging
write.table(statstable3,file=sprintf("%sdeletion Stats after S288c.txt",filename),row.names=F,
quote=F, sep='\t')
############
 #Deletion stats - Before#
statistic4 <-
c('Median deletion reads','Mean deletion reads','Total deletion reads','Min deletion Reads','Ma
x deletion reads', 'read depth threshold', 'Percent failing read depth threshold',
'Number_failing_read_depth_threshold', 'Number_CF', 'Number_CP', 'Number_KF', 'Number_KP',
'Number NF', 'Number NP', 'Number HF', 'Number HP', 'Percent CF', 'Percent CP', 'Percent KF',
'Percent_KP', 'Percent_NF', 'Percent_NP', 'Percent_HF', 'Percent_HP', 'Total_C', 'Total_K', 'Total_N',
'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H', 'Number_U', 'Percent_U')
statstable4 <- data.frame(statistic4, value4)
#Stats about the number of reads - Median_SNP_reads, Mean_SNP_reads, Total_SNP_reads,
Min SNP Reads,
#Max SNP reads, read depth threshold, Percent failing read depth threshold,
Number_failing_read_depth_threshold
statstable4[1,2] <- median(D_reads_before$reads_all)
```

```
statstable4[2,2] <- mean(D_reads_before$reads_all)
   statstable4[3,2] <- sum(D_reads_before$reads_all)
   statstable4[4,2] <- min(D_reads_before$reads_all)
   statstable4[5,2] <- max(D_reads_before$reads_all)
   statstable4[6,2] <- threshold_i
   statstable4[7,2] <- 100*(sum(D_reads_before$reads_all <
threshold_i)/sum(D_reads_before$reads_all))
   statstable4[8,2] <- sum(D_reads_before$reads_all<threshold_i)
   #More stats - 'Number_CF', 'Number_CP', 'Number_KF', 'Number_KP', 'Number_NF', 'Number_NP',
'Number_HF', 'Number_HP'
   statstable4[9,2] <- sum(D_reads_before$b=='CF')
   statstable4[10,2] <- sum(D_reads_before$b=='CP')
   statstable4[11,2] <- sum(D_reads_before$b=='KF')
   statstable4[12,2] <- sum(D reads before$b=='KP')
   statstable4[13,2] <- sum(D reads before$b=='NF')
   statstable4[14,2] <- sum(D reads before$b=='NP')
   statstable4[15,2] <- sum(D reads before$b=='HF')
   statstable4[16,2] <- sum(D reads before$b=='HP')
   #'Percent CF', 'Percent CP', 'Percent KF', 'Percent KP', 'Percent NF', 'Percent NP', 'Percent HF',
'Percent_HP'
   statstable4[17,2] <-
100*(statstable4[9,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statst
able4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
  statstable4[18,2] <-
100*(statstable4[10,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+statstable4[10,2]/(statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+stat
table4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
  statstable4[19,2] <-
100*(statstable4[11,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+stats
table4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
  statstable4[20,2] <-
100*(statstable4[12,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+stats
table4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
```

```
statstable4[21,2] <-
100*(statstable4[13,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+statstable4[12,2]+statstable4[12,2]+statstable4[13,2]/(statstable4[12,2]+statstable4[13,2]/(statstable4[12,2]+statstable4[13,2]/(statstable4[12,2]+statstable4[13,2]/(statstable4[12,2]+statstable4[13,2]/(statstable4[12,2]+statstable4[13,2]/(statstable4[12,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]+statstable4[13,2]
table4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
  statstable4[22,2] <-
100*(statstable4[14,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+stats
table4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
  statstable4[23,2] <-
100*(statstable4[15,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+stats
table4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
  statstable4[24,2] <-
100*(statstable4[16,2]/(statstable4[9,2]+statstable4[10,2]+statstable4[11,2]+statstable4[12,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+statstable4[10,2]+stats
table4[13,2]+statstable4[14,2]+statstable4[15,2]+statstable4[16,2]))
  #'Total_C', 'Total_K', 'Total_N', 'Total_H', 'Percent_C', 'Percent_K', 'Percent_N', 'Percent_H'
  statstable4[25,2] \leftarrow (statstable4[9,2] + statstable4[10,2])
  statstable4[26,2] <- (statstable4[11,2] + statstable4[12,2])
  statstable4[27,2] <- (statstable4[13,2] + statstable4[14,2])
  statstable4[28,2] <- (statstable4[15,2] + statstable4[16,2])
  statstable4[33,2] <- sum(D_reads_before$b=='U')
  statstable4[29,2] <- 100*(statstable4[25,2]/(statstable4[25,2] + statstable4[26,2]+
statstable4[27,2]+ statstable4[28,2]+statstable4[33,2]))
  statstable4[30,2] <- 100*(statstable4[26,2]/(statstable4[25,2] + statstable4[26,2]+
statstable4[27,2]+ statstable4[28,2]+statstable4[33,2]))
  statstable4[31,2] <- 100*(statstable4[27,2]/(statstable4[25,2] + statstable4[26,2]+
statstable4[27,2]+ statstable4[28,2]+statstable4[33,2]))
  statstable4[32,2] <- 100*(statstable4[28,2]/(statstable4[25,2] + statstable4[26,2]+
statstable4[27,2]+ statstable4[28,2]+statstable4[33,2]))
  statstable4[34,2] <- 100*(statstable4[33,2]/(statstable4[25,2] + statstable4[26,2]+
statstable4[27,2]+ statstable4[28,2]+statstable4[33,2]))
  statstable4$value4 <- round(statstable4$value4, digits = 3)
  statstable4 <- rename(statstable4, c("value4"=paste(match.call()[3])))
   #rename this column so it will have the sample name for merging
   write.table(statstable4,file=sprintf("%sdeletion_Stats_before_S288c.txt",filename),row.names=F,
quote=F, sep='\t')
```

```
}
```

```
#
#Genotype calling is combined for each spore in a tetrad/octad
#Heteroduplex calling is performed on msh2 tetrads
#This is run twice for each spore, once for S288c, once for SK1.
#The example code here is for S288c, but the SK1 criteria are identical.
#
#Called SNPs Combiner
#Combines the 8 members of an octad into 1 file
table1 <- read.table("OM5ACalled_S288c.txt",header=T)
table2 <- read.table("OM5AlphaCalled S288c.txt",header=T)
table3 <- read.table("OM5BCalled S288c.txt",header=T)
table4 <- read.table("OM5BetaCalled S288c.txt",header=T)
table5 <- read.table("OM5CCalled S288c.txt",header=T)
table6 <- read.table("OM5GammaCalled S288c.txt",header=T)
table7 <- read.table("OM5DCalled S288c.txt",header=T)
table8 <- read.table("OM5DeltaCalled S288c.txt",header=T)
library(plyr)
#plyr is needed for the renaming function so all the c, k and b columns don't have the same name
table1 <- rename(table1, c("c"="c1", "k"="k1", "b"="b1"))
table2 <- rename(table2, c("c"="c2", "k"="k2", "b"="b2"))
table3 <- rename(table3, c("c"="c3", "k"="k3", "b"="b3"))
table4 <- rename(table4, c("c"="c4", "k"="k4", "b"="b4"))
table5 <- rename(table5, c("c"="c5", "k"="k5", "b"="b5"))
table6 <- rename(table6, c("c"="c6", "k"="k6", "b"="b6"))
```

table7 <- rename(table7, c("c"="c7", "k"="k7", "b"="b7"))

```
#merges the 8 dataframes into 1
merged <- merge(table1, table2, by=c("uID", "sID", "chrom", "pos_c", "pos_k", "type_k", "type_c",
"Var len"), all=FALSE, sort=FALSE)
merged <- merge(merged, table3, by=c("uID", "sID", "chrom", "pos_c", "pos_k", "type_k", "type_c",
"Var len"), all=FALSE, sort=FALSE)
merged <- merge(merged, table4, by=c("uID", "sID", "chrom", "pos_c", "pos_k", "type_k", "type_c",
"Var_len"), all=FALSE, sort=FALSE)
merged <- merge(merged, table5, by=c("uID", "sID", "chrom", "pos_c", "pos_k", "type_k", "type_c",
"Var len"), all=FALSE, sort=FALSE)
merged <- merge(merged, table6, by=c("uID", "sID", "chrom", "pos_c", "pos_k", "type_k", "type_c",
"Var len"), all=FALSE, sort=FALSE)
merged <- merge(merged, table7, by=c("uID", "sID", "chrom", "pos_c", "pos_k", "type_k", "type_c",
"Var len"), all=FALSE, sort=FALSE)
merged <- merge(merged, table8, by=c("uID", "sID", "chrom", "pos_c", "pos_k", "type_k", "type_c",
"Var_len"), all=FALSE, sort=FALSE)
#Puts the columns in the right order
merged <- merged[c("uID", "sID", "chrom", "pos_c", "pos_k", "type_c", "type_k", "Var_len", "c1",
"c2", "c3", "c4", "c5", "c6", "c7", "c8",
          "k1", "k2", "k3", "k4", "k5", "k6", "k7", "k8", "b1", "b2", "b3", "b4", "b5", "b6", "b7", "b8")]
#renames these two columns to match MC's specification
merged <- rename(merged, c("chrom" = "chr"))</pre>
write.table(merged,file="OM5 combined S288c.txt", row.names=F, quote=F, sep='\t')
```

table8 <- rename(table8, c("c"="c8", "k"="k8", "b"="b8"))

#call heteroduplex in tetrads

#Only for msh2 tetrads

#tetrad data is adapted to the octad pipeline by duplicating each spore.

#If a msh2 tetrad has a position called 'HP', one copy of the spore should have it converted to KP and the other to CP.

#Thus 'octadifying' the tetrad and making it a 7:1 event.

#Issue: Commonly, heteroduplex occurs near the end of chromosomes which is probably actually just from repetitive sequences.

#This creates small 'U' events entirely composed of hDNA. These can be removed from the event table.

```
df <- read.table("OM5_combined_S288c.txt", header=T)</pre>
```

#only if the type==S (indels seem to never be called HP anyway, and dels get converted to NP earlier - but may as well be on the safe side)

```
df$b1 <- as.character(df$b1)
```

df\$b2 <- as.character(df\$b2)

df\$b3 <- as.character(df\$b3)

df\$b4 <- as.character(df\$b4)

df\$b5 <- as.character(df\$b5)

df\$b6 <- as.character(df\$b6)

df\$b7 <- as.character(df\$b7)

df\$b8 <- as.character(df\$b8)

#ifelse statements don't work properly on factors - they return the factor level - so make sure these columns contain characters

```
df$b1 <- ifelse(df$type k=='s' & df$b1 == 'HP', 'KP', df$b1)
```

df\$b2 <- ifelse(df\$type k=='s' & df\$b2 == 'HP', 'CP', df\$b2)

 dfb3 \leftarrow ifelse(df$type k=='s' & df$b3 == 'HP', 'KP', df$b3)$

 dfb4 \leftarrow ifelse(df$type k=='s' & df$b4 == 'HP', 'CP', df$b4)$

 dfb5 \leftarrow (df$type_k=='s' & df$b5 == 'HP', 'KP', df$b5)$

df\$b6 <- ifelse(df\$type_k=='s' & df\$b6 == 'HP', 'CP', df\$b6)

df\$b7 <- ifelse(df\$type_k=='s' & df\$b7 == 'HP', 'KP', df\$b7)

 dfb8 \leftarrow felse(df$type_k=='s' & df$b8 == 'HP', 'CP', df$b8)$

write.table(df,file="OM5_combined_ConvertedHPs_S288c.txt", row.names=F, quote=F, sep='\t')

```
###
###Make HPs File - table containing all positions called as HP in at least 1 spore###
###For analysis to make sure they don't occur in the same place in multiple samples##
df <- read.table("OM5_combined_S288c.txt", header=T)</pre>
HPs1 < -df[which(df$b1=='HP'),]
HPs2 < -df[which(df$b2=='HP'),]
HPs3 <-df[which(df$b3=='HP'),]
HPs4 < -df[which(df$b4=='HP'),]
HPs5 <-df[which(df$b5=='HP'),]
HPs6 < -df[which(df$b6=='HP'),]
HPs7 < -df[which(df$b7=='HP'),]
HPs8 < -df[which(df$b8=='HP'),]
total <- rbind(HPs1, HPs2, HPs3, HPs4, HPs5, HPs6, HPs7, HPs8)
total <- total[!duplicated(total), ]
write.table(total,file="HP-list_OM5_S288c.txt", row.names=F, quote=F, sep='\t')
####End###
###############
#SK1 S288c Combiner
#Reconcilation of genotype calls against SK1 and S288c.
#Produces a binary file compatible with the event caller script.
#Also creates a 'gr2' file containing raw reads and binary calls, for event imaging.
###############
####IMPORTANT NOTE: Only use 'Converted HPs' version for msh2 tetrads.#########
dfc <- read.table("OM5_combined_S288c.txt", header=T)
#dfc <- read.table("OM5_combined_ConvertedHPs_S288c.txt", header=T)
dfk <- read.table("OM5_combined_SK1.txt", header=T)
```

```
#dfk <- read.table("OM5_combined_ConvertedHPs_SK1.txt", header=T)</pre>
```

```
dfkc <- merge(dfk, dfc, by=c("uID", "sID", "chr", "pos_c", "pos_k", "type_k", "type_c", "Var_len"), sort=F, all=T)
```

dfkc <- dfkc[order(dfkc\$chr, dfkc\$pos_c),]</pre>

#it's important to sort after rather than during the merge, because otherwise it gets sorted on pos_k #and messes up the order.

#there are rarely some rows in one set but not the other, they are kept if all=T but will contain NA #turn NAs to 0

dfkc[is.na(dfkc)] <- 0

#this will give some warnings, because it doesn't want to convert the b columns to a number when they previously contained a string.

#It's OK for them to remain NA, as long as the c and k columns are converted to 0.

```
dfkc$c1 <- (dfkc$c1.x+dfkc$c1.y)
```

dfkc\$c2 <- (dfkc\$c2.x+dfkc\$c2.y)

dfkc\$c3 <- (dfkc\$c3.x+dfkc\$c3.y)

dfkc\$c4 <- (dfkc\$c4.x+dfkc\$c4.y)

dfkc\$c5 <- (dfkc\$c5.x+dfkc\$c5.y)

dfkc\$c6 <- (dfkc\$c6.x+dfkc\$c6.y)

dfkc\$c7 <- (dfkc\$c7.x+dfkc\$c7.y)

dfkc\$c8 <- (dfkc\$c8.x+dfkc\$c8.y)

dfkc\$k1 <- (dfkc\$k1.x+dfkc\$k1.y)

dfkc\$k2 <- (dfkc\$k2.x+dfkc\$k2.y)

dfkc\$k3 <- (dfkc\$k3.x+dfkc\$k3.y)

dfkc\$k4 <- (dfkc\$k4.x+dfkc\$k4.y)

dfkc\$k5 <- (dfkc\$k5.x+dfkc\$k5.y)

dfkc\$k6 <- (dfkc\$k6.x+dfkc\$k6.y)

dfkc\$k7 <- (dfkc\$k7.x+dfkc\$k7.y)

dfkc\$k8 <- (dfkc\$k8.x+dfkc\$k8.y)

#adding up k and c reads from the two alignments.

#These were previously divided by 2 to give the average, but that was removed to show the seperation better when plotting on a log scale.

```
dfkc$b1<-ifelse(dfkc$kb1 == "KP" & dfkc$b1=='CP', NA, ifelse(dfkc$kb1 == "CP" & dfkc$b1=='KP', NA, ifelse(dfkc$kb1 == "CP" & dfkc$kb1 == "CP" & dfkc$kb1== "CP" & dfkc$kb1== "CP" & dfkc$kb1== "CP" & d
ifelse(dfkc$kb1 == "KP", 0, ifelse(dfkc$kb1 == "CP", 1, ifelse(dfkc$b1 == "KP", 0, ifelse(dfkc$b1 ==
"CP", 1, NA))))))
dfkc$b2<- ifelse(dfkc$kb2 == "KP" & dfkc$b2=='CP', NA, ifelse(dfkc$kb2 == "CP" & dfkc$b2=='KP', NA,
ifelse(dfkc$kb2 == "KP", 0, ifelse(dfkc$kb2 == "CP", 1, ifelse(dfkc$b2 == "KP", 0, ifelse(dfkc$b2 ==
"CP", 1, NA)))))
dfkc$b3<- ifelse(dfkc$kb3 == "KP" & dfkc$b3=='CP', NA, ifelse(dfkc$kb3 == "CP" & dfkc$b3=='KP', NA,
ifelse(dfkc$kb3 == "KP", 0, ifelse(dfkc$kb3 == "CP", 1, ifelse(dfkc$b3 == "KP", 0, ifelse(dfkc$b3 ==
"CP", 1, NA))))))
dfkc$b4<- ifelse(dfkc$kb4 == "KP" & dfkc$b4=='CP', NA, ifelse(dfkc$kb4 == "CP" & dfkc$b4=='KP', NA,
ifelse(dfkc$kb4 == "KP", 0, ifelse(dfkc$kb4 == "CP", 1, ifelse(dfkc$b4 == "KP", 0, ifelse(dfkc$b4 ==
"CP", 1, NA))))))
dfkc$b5<- ifelse(dfkc$kb5 == "KP" & dfkc$b5=='CP', NA, ifelse(dfkc$kb5 == "CP" & dfkc$b5=='KP', NA,
ifelse(dfkc$kb5 == "KP", 0, ifelse(dfkc$kb5 == "CP", 1, ifelse(dfkc$b5 == "KP", 0, ifelse(dfkc$b5 ==
"CP", 1, NA))))))
dfkc$b6<- ifelse(dfkc$kb6 == "KP" & dfkc$b6=='CP', NA, ifelse(dfkc$kb6 == "CP" & dfkc$b6=='KP', NA,
ifelse(dfkc$kb6 == "KP", 0, ifelse(dfkc$kb6 == "CP", 1, ifelse(dfkc$b6 == "KP", 0, ifelse(dfkc$b6 ==
"CP", 1, NA)))))
dfkc$b7<- ifelse(dfkc$kb7 == "KP" & dfkc$b7=='CP', NA, ifelse(dfkc$kb7 == "CP" & dfkc$b7=='KP', NA,
ifelse(dfkc$kb7 == "KP", 0, ifelse(dfkc$kb7 == "CP", 1, ifelse(dfkc$b7 == "KP", 0, ifelse(dfkc$b7 ==
"CP", 1, NA))))))
dfkc$b8<- ifelse(dfkc$kb8 == "KP" & dfkc$b8=='CP', NA, ifelse(dfkc$kb8 == "CP" & dfkc$b8=='KP', NA,
ifelse(dfkc$kb8 == "KP", 0, ifelse(dfkc$kb8 == "CP", 1, ifelse(dfkc$b8 == "KP", 0, ifelse(dfkc$b8 ==
"CP", 1, NA)))))
#If the two files conflict, value is NA e.g. if kb1=="KP" & b1=="CP".
#value is also NA if neither call produced a KP or CP
#c=1 k=0
```

##work out how many rows contain at least one NA, and so will be discarded later##

c1,c2,c3,c4,c5,c6,c7,c8,k1,k2,k3,k4,k5,k6,k7,k8,b1,b2,b3,b4,b5,b6,b7,b8, type_k, Var_len))

dfkc<- subset(dfkc, select = c(chr, pos c,

```
statistic5 <- c('Total_Rows', 'Removed_Rows', 'Percent_Removed_Rows', 'S_total', 'I_total', 'D_total',
'Removed_S', 'Percent_Removed_S', 'Removed_I', 'Percent_Removed_I', 'Removed_D',
'Percent Removed D')
value5 <- c(0,0,0,0,0,0,0,0,0,0,0,0)
statstable5 <- data.frame(statistic5, value5)
#Work out some stats about the number of rows containing at least one NA (which will be
discarded)
dfkc_noNA <- dfkc[complete.cases(dfkc),]</pre>
statstable5[1,2] <- nrow(dfkc)
statstable5[2,2] <- (nrow(dfkc) - nrow(dfkc noNA))
statstable5[3,2] <- (statstable5[2,2]/statstable5[1,2])*100
s <- dfkc[which(dfkc$type_k=='s'),]
i <- dfkc[which(dfkc$type_k=='i'),]</pre>
d <- dfkc[which(dfkc$type_k=='d'),]</pre>
s_noNA <- dfkc_noNA[which(dfkc_noNA$type_k=='s'),]</pre>
i_noNA <- dfkc_noNA[which(dfkc_noNA$type_k=='i'),]
d_noNA <- dfkc_noNA[which(dfkc_noNA$type_k=='d'),]</pre>
statstable5[4,2] <- nrow(s)
statstable5[5,2] <- nrow(i)
statstable5[6,2] <- nrow(d)
statstable5[7,2] <- nrow(s)-nrow(s_noNA)
statstable5[8,2] <- ((statstable5[7,2]/statstable5[4,2])*100)
statstable5[9,2] <- nrow(i)-nrow(i_noNA)
statstable5[10,2] <- ((statstable5[9,2]/statstable5[5,2])*100)
statstable5[11,2] <- nrow(d)-nrow(d_noNA)
statstable5[12,2] <- ((statstable5[11,2]/statstable5[6,2])*100)
statstable5$value5 <- round(statstable5$value5, digits = 2)
write.table(statstable5,file="OM5_additional_Stats_S288c_SK1.txt", row.names=F, quote=F,
sep='\t')
```

```
#makes the gr2 file which can be visualized in R
```

```
####Make gr2 with only INDEL 8-0 positions removed####
```

gr2 <- dfkc

gr2\$temp <- (gr2\$b1 + gr2\$b2 + gr2\$b3 + gr2\$b4 + gr2\$b5 + gr2\$b6 + gr2\$b7 + gr2\$b8)

gr2i <- gr2[which(gr2\$type_k=='i' & gr2\$temp!=0 & gr2\$temp!=8),] #This also removes ones where the total is NA.

 $gr2d \leftarrow gr2[which(gr2\$type_k=='d' \& gr2\$temp!=0 \& gr2\$temp!=8),]$

gr2s <- gr2[which(gr2\$type_k=='s'),]

gr2NA <- subset(gr2, is.na(gr2\$temp)) #subset the ones where the total is NA

gr2 <- rbind(gr2i, gr2d, gr2s, gr2NA)

gr2 <- gr2[order(gr2\$chr, gr2\$pos_c),]

#remove the temp column

gr2<- subset(gr2, select = c(chr, pos_c,

c1,c2,c3,c4,c5,c6,c7,c8,k1,k2,k3,k4,k5,k6,k7,k8,b1,b2,b3,b4,b5,b6,b7,b8, type k, Var len))

gr2 <- unique(gr2) #remove any duplicates that may have been introduced from SNPs totalling NA

write.table(gr2,file="OM5 gr2 SNPEZ CK.txt", row.names=F, quote=F, sep='\t')

#This section makes the file compatible with the event caller

sub <- subset(dfkc, select = c(b1,b2,b3,b4,b5,b6,b7,b8))

#isolates the b columns

sub[!!rowSums(is.na(sub)),] <- NA

#if any column contains an NA, then all columns for that row are converted to NA

dfkc\$b1 <- sub\$b1

dfkc\$b2 <- sub\$b2

```
dfkc$b3 <- sub$b3
dfkc$b4 <- sub$b4
dfkc$b5 <- sub$b5
dfkc$b6 <- sub$b6
dfkc$b7 <- sub$b7
dfkc$b8 <- sub$b8
#Puts the b columns back into the dataframe
write.table(dfkc,file="OM5_binarized_CK.txt", row.names=F, quote=F, sep='\t')
df <- read.table("OM5_binarized_CK.txt", header=T)</pre>
df$temp <- (df$b1 + df$b2 + df$b3 + df$b4 + df$b5 + df$b6 + df$b7 + df$b8)
#This outputs a table containing 8-0 positions for examination as they may not actually be SNPs
nonsnps8 <-df[which(df$temp==8),]
nonsnps0 <-df[which(df$temp==0),]
total <- rbind(nonsnps0, nonsnps8)</pre>
write.table(total,file="EZ-list_OM5_KC.txt", row.names=F, quote=F, sep='\t')
####Make binary with only INDEL 8-0 positions removed####
dfi <- df[which(df$type_k=='i' & df$temp!=0 & df$temp!=8),]
dfd <- df[which(df$type_k=='d' & df$temp!=0 & df$temp!=8),]
dfs <- df[which(df$type_k=='s'),]
df3 <- rbind(dfi, dfd, dfs)
df3 <- df3[order(df3$chr, df3$pos_c),]
statistic6 <- c('Total_Rows', 'Indel 8-0s Removed')
value6 <- c(0,0)
statstable6 <- data.frame(statistic6, value6)</pre>
```

```
statstable6[1,2] <- nrow(df)
statstable6[2,2] <- (nrow(df) - nrow(df3))
write.table(statstable6,file="OM5_Indel_8-0s_Removed.txt", row.names=F, quote=F, sep='\t')
#remove the temp column and the c and k columns
df3<- subset(df3, select = c(chr, pos_c, b1,b2,b3,b4,b5,b6,b7,b8))
#To remove 'NA's, select only rows containing 0 or 1
df3 <- df3[df3$b1 %in% c(0, 1), ]
write.table(df3,file="OM5_binary_5.5.CK.HP.EZIn.txt", row.names=F, quote=F, sep='\t')
#This file is compatible with the event caller.
##seperate for statistical purposes###
dfk$b1<- ifelse(dfk$kb1 == "KP", 0, ifelse(dfk$kb1 == "CP", 1, NA))
dfk$b2<- ifelse(dfk$kb2 == "KP", 0, ifelse(dfk$kb2 == "CP", 1, NA))
dfk$b3<- ifelse(dfk$kb3 == "KP", 0, ifelse(dfk$kb3 == "CP", 1, NA))
dfk$b4<- ifelse(dfk$kb4 == "KP", 0, ifelse(dfk$kb4 == "CP", 1, NA))
dfk$b5<- ifelse(dfk$kb5 == "KP", 0, ifelse(dfk$kb5 == "CP", 1, NA))
dfk$b6<- ifelse(dfk$kb6 == "KP", 0, ifelse(dfk$kb6 == "CP", 1, NA))
dfk$b7<- ifelse(dfk$kb7 == "KP", 0, ifelse(dfk$kb7 == "CP", 1, NA))
dfk$b8<- ifelse(dfk$kb8 == "KP", 0, ifelse(dfk$kb8 == "CP", 1, NA))
dfk<- subset(dfk, select = c(chr, pos_c, type_k,
c1,c2,c3,c4,c5,c6,c7,c8,k1,k2,k3,k4,k5,k6,k7,k8,b1,b2,b3,b4,b5,b6,b7,b8))
##work out how many rows contain at least one NA, and so will be discarded later##
statistic5 <- c('Total Rows', 'Removed Rows', 'Percent Removed Rows', 'S total', 'I total', 'D total',
'Removed_S', 'Percent_Removed_S', 'Removed_I', 'Percent_Removed_I', 'Removed_D',
'Percent_Removed_D')
value5 <- c(0,0,0,0,0,0,0,0,0,0,0,0)
statstable5 <- data.frame(statistic5, value5)</pre>
```

```
#Work out some stats about the number of rows containing at least one NA (which will be
discarded)
df_noNA <- dfk[complete.cases(dfk),]</pre>
statstable5[1,2] <- nrow(dfk)
statstable5[2,2] <- (nrow(dfk) - nrow(df_noNA))
statstable5[3,2] <- (statstable5[2,2]/statstable5[1,2])*100
s <- dfk[which(dfk$type_k=='s'),]
i <- dfk[which(dfk$type_k=='i'),]</pre>
d <- dfk[which(dfk$type_k=='d'),]</pre>
s_noNA <- df_noNA[which(df_noNA$type_k=='s'),]</pre>
i_noNA <- df_noNA[which(df_noNA$type_k=='i'),]</pre>
d_noNA <- df_noNA[which(df_noNA$type_k=='d'),]</pre>
statstable5[4,2] <- nrow(s)
statstable5[5,2] <- nrow(i)
statstable5[6,2] <- nrow(d)
statstable5[7,2] <- nrow(s)-nrow(s_noNA)
statstable5[8,2] <- ((statstable5[7,2]/statstable5[4,2])*100)
statstable5[9,2] <- nrow(i)-nrow(i_noNA)
statstable5[10,2] <- ((statstable5[9,2]/statstable5[5,2])*100)
statstable5[11,2] <- nrow(d)-nrow(d_noNA)
statstable5[12,2] <- ((statstable5[11,2]/statstable5[6,2])*100)
statstable5$value5 <- round(statstable5$value5, digits = 2)
write.table(statstable5,file="OM5_additional_Stats_SK1.txt", row.names=F, quote=F, sep='\t')
##seperate for statistical purposes###
dfc$b1<- ifelse(dfc$b1 == "KP", 0, ifelse(dfc$b1 == "CP", 1, NA))
dfc$b2<- ifelse(dfc$b2 == "KP", 0, ifelse(dfc$b2 == "CP", 1, NA))
dfc$b3<- ifelse(dfc$b3 == "KP", 0, ifelse(dfc$b3 == "CP", 1, NA))
```

```
dfc$b4<- ifelse(dfc$b4 == "KP", 0, ifelse(dfc$b4 == "CP", 1, NA))
dfc$b5<- ifelse(dfc$b5 == "KP", 0, ifelse(dfc$b5 == "CP", 1, NA))
dfc$b6<- ifelse(dfc$b6 == "KP", 0, ifelse(dfc$b6 == "CP", 1, NA))
dfc$b7<- ifelse(dfc$b7 == "KP", 0, ifelse(dfc$b7 == "CP", 1, NA))
dfc$b8<- ifelse(dfc$b8 == "KP", 0, ifelse(dfc$b8 == "CP", 1, NA))
dfc<- subset(dfc, select = c(chr, pos_c, type_k,
c1,c2,c3,c4,c5,c6,c7,c8,k1,k2,k3,k4,k5,k6,k7,k8,b1,b2,b3,b4,b5,b6,b7,b8))
##work out how many rows contain at least one NA, and so will be discarded later##
statistic5 <- c('Total_Rows', 'Removed_Rows', 'Percent_Removed_Rows', 'S_total', 'I_total', 'D_total',
'Removed_S', 'Percent_Removed_S', 'Removed_I', 'Percent_Removed_I', 'Removed_D',
'Percent_Removed_D')
value5 <- c(0,0,0,0,0,0,0,0,0,0,0,0)
statstable5 <- data.frame(statistic5, value5)
#Work out some stats about the number of rows containing at least one NA (which will be
discarded)
df_noNA <- dfc[complete.cases(dfc),]</pre>
statstable5[1,2] <- nrow(dfc)
statstable5[2,2] <- (nrow(dfc) - nrow(df_noNA))
statstable5[3,2] <- (statstable5[2,2]/statstable5[1,2])*100
s <- dfc[which(dfc$type k=='s'),]
i <- dfc[which(dfc$type_k=='i'),]</pre>
d <- dfc[which(dfc$type_k=='d'),]</pre>
s_noNA <- df_noNA[which(df_noNA$type_k=='s'),]</pre>
i_noNA <- df_noNA[which(df_noNA$type_k=='i'),]
d_noNA <- df_noNA[which(df_noNA$type_k=='d'),]</pre>
statstable5[4,2] <- nrow(s)
statstable5[5,2] <- nrow(i)
statstable5[6,2] <- nrow(d)
statstable5[7,2] <- nrow(s)-nrow(s_noNA)
```

```
statstable5[8,2] <- ((statstable5[7,2]/statstable5[4,2])*100)
statstable5[9,2] <- nrow(i)-nrow(i_noNA)
statstable5[10,2] <- ((statstable5[9,2]/statstable5[5,2])*100)
statstable5[11,2] <- nrow(d)-nrow(d_noNA)
statstable5[12,2] <- ((statstable5[11,2]/statstable5[6,2])*100)
statstable5$value5 <- round(statstable5$value5, digits = 2)
write.table(statstable5,file="OM5_additional_Stats_S288c.txt", row.names=F, quote=F, sep='\t')
###############
##Sorting events##
#This automatically categorizes events based on a few criteria.
#The categorized events can then be manually inspected to ensure consistency.
#It also calculates Spo11 hits per event.
#This script was adapted from scripts written by Marie-Claude Marsolier and Matt Neale.
###############
event sorter <- function(b, u, filename){
#b: event table from event caller script
#u: event table with U events (unclassified)
b$nb seg <- 0
b$groupe <- 0
#split file into three groups: sortable NCOs, sortable COs, anything else
#COs to sort - consider only the CO events with 2 non-sister chromatids.
b1<-b[which(b$CO==1 & b$chromatids=="2 nonsis"),]
```

```
#NCOs to sort - consider only the non-CO events with 1 chromatid or 2 non-sister chromatids
 b2<-b[which(b$CO==0 & (b$chromatids=="1" | b$chromatids=="2_nonsis")),]
 #remove sortable entries from original list
 b3 <- b[which(b$CO>1),] #more than 1 CO
 if(nrow(b3)>0){b3$classe <-3}
 b4 <- b[which(b$CO==1 & b$chromatids!="2_nonsis"),]
 if(nrow(b4)>0){b4$classe <-2}
 b5 <- b[which(b$CO==0 & (b$chromatids=="2_sis" | b$chromatids=="3" | b$chromatids=="4")),]
 if(nrow(b5)>0){b5$classe <-1}
 b6 <- u[which(u$CO=="U"),]
 if(nrow(b6)>0){
  b6$groupe <-0
  b6$seg_len <-0
  b6$seg_start <-0
  b6$seg_stop <-0
  b6$nb_seg <-0
  b6$classe <-4
  b6 <-b6[c("id","chr", "start5", "start3","stop5", "stop3", "type","CO", "chromatids",
"len_min","len_mid", "len_max",
       "commande", "groupe", "seg_len", "seg_start", "seg_stop", "nb_seg", "classe", "nb_snp")]
  #To keep 'U' events from at the end of the chromosomes, use the information from the old event
caller
  #and match the format of the file from the new event caller
}
###(Run CO and NCO sorters)###
# We call trans hDNA the segments 5:3 and 5:3a or the segments 3:5 and 3:5a belonging to a given
 # We call "incompatible events" the events containing both (5:3 or 6:2 segments) and (3:5 or 2:6
segments).
```

```
##CO Sorter##
# We make 3 groups:
# - group 1 = the events without trans hDNA nor incompatibility,
# - group 2 = the events with trans hDNA but without incompatibility,
# - group 3 = the incompatible events.
for (i in 1:length(b1$type)){
 s<-as.character(b1$type[i])</pre>
 b1$groupe[i]<-ifelse(length(grep("[5 6]:",s))*length(grep("[2 3]:",s)) > 0,3,
             ifelse(length(grep("[5:3 3:5]a",s))==1,2,1))
}
# Inside each group, we classify the events into different classes:
for (i in 1:length(b1$type)){
 s<-as.character(b1$type[i])</pre>
 len<-strsplit(s,"_")</pre>
 b1$nb_seg[i]<-length(len[[1]])
 if (b1$groupe[i]==1){
  b1$classe[i]<-ifelse(s=="(4:4aCO)",100,
              ifelse(s=="(5:3)_(4:4aCO)",1,
                  ifelse(s=="(3:5)_(4:4aCO)",2,
                      ifelse(s=="(5:3)_(4:4)_(4:4aCO)",3,
                          ifelse(s=="(4:4aCO)_(5:3)_(4:4a)",4,
                              ifelse(s=="(3:5)_(4:4)_(4:4aCO)",5,
                                   ifelse(s=="(4:4aCO)_(3:5)_(4:4a)",6,
                                       ifelse(s=="(5:3)_(6:2)_(4:4aCO)",7,
                                           ifelse(s=="(6:2)_(5:3)_(4:4aCO)",8,
                                               ifelse(s=="(3:5)_(2:6)_(4:4aCO)",9,
```

```
ifelse(length(grep("4:4.i",s))==1,11,
                                                         ifelse(s=="(6:2)_(4:4aCO)",15,
ifelse(s=="(2:6)_(4:4aCO)",16,12)))))))))))
  if (b1$groupe[i]==3){
   b1$classe[i]<-ifelse(length(grep("4:4.i",s))==1,21,20)}
  if (b1$groupe[i]==2){
   b1$classe[i]<-ifelse(length(grep("5:3\\)_\\(5:3a",s))==1,30,
              ifelse(length(grep("3:5\\)_\\(3:5a",s))==1,31,32))}
}
# The b file is then ordered by 1) class, 2) nb of segments and 3) len_mid.
b1<-b1[order(b1$groupe, b1$classe,b1$nb_seg,b1$len_mid),]
####NCO sorter####
# We consider only the non-CO events with 1 chromatid or 2 non-sister chromatids
# Elimination of (4:4) final and parentheses.
b2$type<-gsub("_\\(4:4\\)$","",b2$type)
b2$type<-gsub("\\(","",b2$type)
 b2$type<-gsub("\\)","",b2$type)
# We call trans hDNA the segments 5:3 and 5:3a or the segments 3:5 and 3:5a belonging to a given
event.
# We make 3 groups:
# - group 1 with chromatids=="1" but without TRANS hDNA,
```

ifelse(s=="(2:6)_(3:5)_(4:4aCO)",10,

```
# - group 2 with chromatids=="1" and with TRANS hDNA,
# - group 3 with chromatids = "2_nonsis".
for (i in 1:length(b2$type)){
 s<-as.character(b2$type[i])</pre>
 len<-strsplit(s,"_")</pre>
 b2$nb_seg[i]<-length(len[[1]])
 b2$groupe[i]<-ifelse(b2$chromatids[i]=="2_nonsis",3,
             ifelse(length(grep("[5:3 3:5]a",s))==1,2,1))}
# Inside each group, we classify the events into different classes:
for (i in 1:length(b2$type)){
 s<-as.character(b2$type[i])</pre>
 if (b2$groupe[i]==1){
  b2$classe[i]<-ifelse(s=="5:3",1,
              ifelse(s=="3:5",2,
                  ifelse(length(grep("^5:3",s))*length(grep("5:3$",s))==1,3,
                      ifelse(length(grep("^3:5",s))*length(grep("3:5$",s))==1,4,
                          ifelse(s=="6:2",10,
                              ifelse(s=="2:6",10.1,
                                   ifelse(length(grep("6:2",s))==1,7,
                                       ifelse(length(grep("2:6",s))==1,8,9))))))))
 if (b2$groupe[i]==2) {
  b2$classe[i]<-ifelse(s=="5:3_5:3a",11,
              ifelse(s=="3:5_3:5a",12,
                  ifelse(length(grep("5:3_5:3a",s))==1,13,
                      ifelse(length(grep("3:5_3:5a",s))==1,14,
```

```
ifelse(s=="5:3_4:4_5:3a",15,
                              ifelse(s=="3:5_4:4_3:5a",16,
                                  ifelse(length(grep("5:3_4:4_5:3a",s))==1,17,
                                      ifelse(length(grep("3:5_4:4_3:5a",s))==1,18,
                                          ifelse(s=="5:3_6:2_5:3a",19,
                                              ifelse(s=="3:5_2:6_3:5a",20,
                                                  ifelse(length(grep("5:3_6:2_5:3a",s))==1,21,
ifelse(length(grep("3:5_2:6_3:5a",s))==1,22,23))))))))))))
  if (b2$groupe[i]==3) {
   b2$classe[i]<-ifelse(length(grep("4:4.i",s))==1,31,30)}
}
 # The b file is then ordered by 1) class, 2) nb of segments and 3) len_mid.
 b2<-b2[order(b2$groupe, b2$classe,b2$nb_seg,b2$len_mid),]
 ####Continue####
 b7 <- rbind(b2, b1, b5, b4, b3, b6) #adding the sets back together
 #b2: sortable NCOs
 #b5: unsortable NCOs (2_sis)
 #b1: sortable COs
 #b4: unsortable COs (3 and 4 chromatids)
 #b3: Unsortable COs (multiple COs)
 #b6: Class U events - at end of chromosome, never return to 4:4 so impossible to know if they are
CO or NCO
```

```
# Calculate Spo11 hits per event here and add column
 #Loop through events and calculate Pan HpM for each event, then add to table b6$PanHpM.
 Pan <- read.delim("FullMap.Cer3_Pan_HA_1_4h_c.txt")
TotalHits=sum(Pan$Watson+Pan$Crick)
 Pan$TotalHpM=(Pan$Watson+Pan$Crick)/TotalHits*1000000 # Convert Pan data to Hits per million
reads (HpM)
for (i in 1:nrow(b7)){
 Pan.1=subset(Pan, Chr==b7[i,"chr"] & Pos>=b7[i,"start5"] & Pos <=b7[i,"stop3"])
 b7[i,"PanHpM"]=sum(Pan.1$TotalHpM)
}
 b7$PanHpM=round(b7$PanHpM,2) # Round PanHpM output to 2 decimals
 # Now some extra bits:
 b7$GenomeHpM=round(1/12.01*b7$len_max,2) # What is the expected HpM for an interval this
size (assuming uniform Spo11-oligo hits across the 12.01 Mbp genome)?
 b7$Obs Exp HpM=round(b7$PanHpM/b7$GenomeHpM,2) # What is the fold difference between
observed and expected association with Spo11 hits for each event?
 b7$GenomeHpM=round(1/12.01*b7$len_max,0) #round to nearest whole number before plotting
 ##Auto-classification##
 ##Suggested values only: Adjust manually during visual inspection##
 b7$Notes <- "" #blank space to write in any notes during inspection
 #min and max number of breaks necessary to explain the event. note: the breaks are not
necessarily formed by Spo11.
b7$CutMin <-ifelse(b7$CO==1 & b7$groupe==3, 2, #COs with incompatible hDNA
          ifelse(b7$groupe==0 & (b7$classe==1 | b7$classe==2 | b7$classe==3), 2, #NCO 2sis, CO
3/4 chromatids, multiple COs
```

```
b7$CutMax <-ifelse(b7$CO == 0 & b7$groupe == 3,2, #NCOs with incompatible hDNA
          ifelse(b7$CO==1 & (b7$classe==15 | b7$classe==16 |b7$groupe==3), 2, #COs with gap
(could be double cut), and COs with incompatible hDNA
             ifelse(b7$groupe==0 & (b7$chromatids=="2_sis" | b7$chromatids==3)
&(b7$classe==1 | b7$classe==2), 2, #NCO 2_sis and CO with 3 chromatids
                ifelse(b7$groupe==0 & b7$chromatids==4 & b7$classe==2, 3, #Co with 4
chromatids
                   ifelse(b7$groupe==0 & b7$classe==3, 2, #multiple COs on 2/3/4 chromatids
                       1)))))
#Likely Spo11 Breaks: if there are multiple breaks, how many are likely to be caused by Spo11? i.e.
how many hit an additional chromo?
b7$LSB <-ifelse(b7$groupe==0 & (b7$classe==1 | b7$classe==2), 2, #NCO 2_sis, CO with 3 or 4
chromatids, multiple COs
        ifelse(b7$groupe==0 & b7$classe==3 & b7$chromatids=="2_nonsis", 1,
           ifelse(b7$groupe==0 & b7$classe==3 & (b7$chromatids=="2_sis" | b7$chromatids==3
| b7$chromatids==4), 2, #multiple COs on 3 or 4 chromatids
              1)))
write.table(b7,file=sprintf("%s",filename), col.names =TRUE, row.names = FALSE, quote = FALSE,
sep="\t")
}
#Event Table and gr2 file Combiner
#Event and gr2 tables are combined into master tables for analysis and imaging
#This script is adapted from a script authored by Matt Neale.
```

Create new empty master dataframe

```
master=NULL
library(stringr)
# Sequentially imports each Event Table and combines into a Master Table
#with additional identified columns for Meiosis, Threshold, Genotype and GenotypeID (e.g. OM2,
1500, OM, 2)
files = list.files(pattern="SEvents_") # import files names with "SEvents_" string into variable "files"
files1 = length(files) # Count number of files
files2 = read.table(text = files, sep = "_", as.is = TRUE) #Split file names by "_" separator and create
table "files2"
for (j in 1:files1) {
 data=NULL
 data <- read.table(files[j], sep = "\t", header=TRUE) #Import datatable from files number 1 to j
 data["Meiosis"]=files2[j,2] # Insert Meiosis identifier from files2 into a new column
 data["threshold"]=files2[j,3] # Insert threshold value from files2 into a new column
 data["Genotype"]=gsub('([A-Z]+).*','\\1',files2[j,2]) # Extracts character portion of string
 data["GenotypeID"]=gsub('.*([0-9]+)','\\1',files2[j,2]) # Extracts digit portion of string
 data["midpoint"]=(data$start5+data$start3+data$stop5+data$stop3)/4 # Add midpoint column
 data["debut"]=(data$midpoint-(0.5*data$len mid)) # Add event start column
 data["fin"]=(data$midpoint+(0.5*data$len mid)) # Add event end column
 master <- rbind(master, data) # Combine data into master table
}
# Reorder columns
```

```
# Reorder columns

master=master[c("id","Meiosis","threshold","Genotype","GenotypeID","chr","start5",

"start3","stop5","stop3","midpoint","debut","fin","type","CO",

"chromatids","len_min","len_mid","len_max", "nb_seg", "seg_len",

"seg_start", "seg_stop", "PanHpM", "GenomeHpM","Obs_Exp_HpM",

"nb_snp", "groupe", "classe", "Notes","CutMin", "CutMax", "LSB", "commande")]
```

```
#Write out master files
wd = getwd()
out = paste(wd,"/","Output_Files","/","MasterEventTable_", Sys.time(),sep="")
write.table(master, out, col.names =TRUE, row.names = FALSE, quote = FALSE, sep="\t",
append=TRUE)
# Create new empty master dataframe
masterGR=NULL
require(stringr)
# Sequentially imports each gr2 Table and combines into a Master Table with additional identified
columns
#for Meiosis, Threshold, Genotype and GenotypeID (e.g. OM2, 1500, OM, 2)
filesGR = list.files(pattern=" gr2 ") # import files names with " gr2 " string into variable "files"
filesGR1 = length(filesGR) # Count number of files
filesGR2 = read.table(text = filesGR, sep = " ", as.is = TRUE) #Split file names by " " separator and
create table "files2"
for (j in 1:filesGR1)
{data <- read.table(filesGR[j], sep = "\t", header=TRUE, stringsAsFactors=FALSE) #Import datatable
from files number 1 to j
data["Meiosis"]=filesGR2[j,1] # Insert Meiosis identifier from filesGR2 into a new column
data["Genotype"]=gsub('([A-Z]+).*','\\1',filesGR2[j,1]) # Extracts character portion of string
data["GenotypeID"]=gsub('.*([0-9]+)','\\1',filesGR2[j,1]) # Extracts digit portion of string
masterGR <- rbind(masterGR, data) # Combine data into masterGR table
}
```

Create deriviative masterGR_noNA table that removes any line containing an NA call in the binary columns.

Removes positions with read depth that was too low to make a call.

This allows haplotype calls to be contiguous across such positions (rather than having gaps when drawn).

masterGR_noNA=na.omit(masterGR)
rownames(masterGR_noNA)=NULL

Add inter-SNP interval start and stop locations

masterGR_noNA[,"offset+1"]=masterGR_noNA[c(2:nrow(masterGR_noNA),NA),"pos_c"]
masterGR_noNA[,"offset-1"]=masterGR_noNA[c(NA,1:nrow(masterGR_noNA)-1),"pos_c"]

masterGR_noNA[,"startdif"]=(((masterGR_noNA[,"pos_c"]-masterGR_noNA[,"offset-1"])/2)+abs((masterGR_noNA[,"pos_c"]-masterGR_noNA[,"offset-1"])/2))/2 # Adding together real and absolute values and dividing by 2 creates zeros for negative values

masterGR_noNA[,"stopdif"]=(((masterGR_noNA[,"offset+1"]-masterGR_noNA[,"pos_c"])/2)+abs((masterGR_noNA[,"offset+1"]-masterGR_noNA[,"pos_c"])/2))/2 # Adding together real and absolute values and dividing by 2 creates zeros for negative values

masterGR_noNA[,"startdif"][masterGR_noNA[,"startdif"] == 0] <- NA # Syntax to convert all zeros to NA

masterGR_noNA[,"stopdif"][masterGR_noNA[,"stopdif"] == 0] <- NA # Syntax to convert all zeros to NA

masterGR_noNA[,"startSNP"]=masterGR_noNA[,"startdif"]+masterGR_noNA[,"offset-1"] # Calculate startSNP

 $master GR_noNA[,"stopSNP"] = master GR_noNA[,"stopdif"] + master GR_noNA[,"pos_c"] \ \# \ Calculate \ stopSNP$

Add inter-SNP interval start and stop locations to masterGR table

```
masterGR[,"offset+1"]=masterGR[c(2:nrow(masterGR),NA),"pos_c"]
masterGR[,"offset-1"]=masterGR[c(NA,1:nrow(masterGR)-1),"pos_c"]
masterGR[,"startdif"]=(((masterGR[,"pos_c"]-masterGR[,"offset-1"])/2)+abs((masterGR[,"pos_c"]-
masterGR[,"offset-1"])/2))/2 # Adding together real and absolute values and dividing by 2 creates
zeros for negative values
masterGR[,"stopdif"]=(((masterGR[,"offset+1"]-masterGR[,"pos_c"])/2)+abs((masterGR[,"offset+1"]-
masterGR[,"pos_c"])/2))/2 # Adding together real and absolute values and dividing by 2 creates
zeros for negative values
masterGR[,"startdif"][masterGR[,"startdif"] == 0] <- NA # Syntax to convert all zeros to NA
masterGR[,"stopdif"][masterGR[,"stopdif"] == 0] <- NA # Syntax to convert all zeros to NA
masterGR[,"startSNP"]=masterGR[,"startdif"]+masterGR[,"offset-1"] # Calculate startSNP
masterGR[,"stopSNP"]=masterGR[,"stopdif"]+masterGR[,"pos_c"] # Calculate stopSNP
#Write out masterGR and masterGR_noNA files
wd = getwd()
out = paste(wd,"/","Output_Files","/","MasterGRTable_", Sys.time(),sep="")
write.table(masterGR, out, col.names =TRUE, row.names = FALSE, quote = FALSE, sep="\t",
append=TRUE)
wd = getwd()
out = paste(wd,"/","Output_Files","/","MasterGRnoNATable_", Sys.time(),sep="")
```

write.table(masterGR_noNA, out, col.names =TRUE, row.names = FALSE, quote = FALSE, sep="\t",

append=TRUE)

#Event_Imager

##Imaging events for manual inspection

#Plots variant positions above main graph

#plots indel locations and lengths. Triangle point down - deletion, triangle point up - insertion (relative to S288c)

#Plots Spo11 profile, hotspot strength values, RMM profile, Rec8 peaks, genes.

#This script was adapted from scripts written by Marie-Claude Marsolier and Matt Neale.

master\$Meiosis <- as.character(master2\$Meiosis)

masterGR\$Var len2 <- (masterGR\$Var len-1)

masterGR noNA\$Var len2 <- (masterGR noNA\$Var len-1)

#the variant lengths stored in this column are actually 1bp too long because they include the first base upstream.

#Subtract 1 to make it more accurate.

#Opening files containing profiles for Spo11, hotspot, RMM, genes, Rec8

spo_file <- read.delim("FullMap.Cer3_Pan_HA_1_4h_c.txt")</pre>

smooth_spo_file <- read.delim("Spo11Cer3PanHA100bp.txt")</pre>

TotalHits=sum(spo_file\$Watson+spo_file\$Crick)

spo_file\$TotalHits=(spo_file\$Watson+spo_file\$Crick)

spo_file\$TotalHpM=(spo_file\$Watson+spo_file\$Crick)/TotalHits*1000000 # Convert Pan data to Hits per million reads (HpM)

oldhotspots<- read.delim("Hotspot.Table.Cer3_Pan_HA_1_4h.txt")

hotspots<- read.delim("Pan.Hotspots.IGR.SacCer3_2016.08.10.txt")

rmm_file<-read.delim("RMMSubSamp_simple")</pre>

AllElementsDUB = read.table("AllElementsDUB.txt", sep = "\t", header=TRUE) #Import datatable rec_file<-read.delim("Rec8Marg.txt")

hotspots\$Total_HpM <-hotspots\$HITS/TotalHits*1000000

```
hotspots$Total_HpM=round(hotspots$Total_HpM,1)
# Subset the datatable
draw<-master2 # Temp holding table for events that will be drawn.
# Hash out and/or amend the following lines to subset the datatable as required
draw=subset(draw,threshold ==1500) # Threshold = 500,1500,5000 : Specifies which event calls to
view. Event painting is controlled by the next variable: "Mainoverlaythreshold"
mainoverlaythreshold=1500 # The variable that specifies the threshold to use for main event
painting/overlay
draw=subset(draw,Meiosis =="OM5") # Meiosis = OM2, OMT10, etc (refers to a specific meiosis)
ordre=1:8 # Order of plotting spores
extend=5000 # How many bp to extend the plotting either side of the event
# Automated PDF generation
wd = getwd(); out = paste(wd,"/","Output Files","/","Images ±",
extend,"bp_",Sys.time(),".pdf",sep=""); pdf(file=out, width=21,height=9);
# Replace funtion call with a loop that steps through the draw subtable
if(nrow(draw)==0){print("no lines in draw")}
if(nrow(draw)>0){
for (j in 1: nrow(draw)) {
  meiosis=draw[j,"Meiosis"]
  chromo=draw[j,"chr"]
  debut=draw[j,"debut"]
  fin=draw[j,"fin"]
  # How much to extend the plotting either side of the event
```

```
debut=debut-extend
  fin=fin+extend
  # This sets up the graphing parameters: mfrow calculates number of rows of graphics to be drawn.
mar sets the margins of the graph
  layout(matrix(c(0,1,1,1,2:17,18,18,19,19,20,20,21,22,22,23,23,24,24,24,0),35,1,byrow = T))
  par(mar=c(0,6,0,2),oma=c(4,0,0,0),las=1) # Sets margins per graph and outside margins per
grouped set
  # Subset the masterGR tables for the region of interest
  a<-subset(masterGR,Meiosis==meiosis & chr == chromo & (debut) <= pos_c & pos_c <= (fin))
  a1<-subset(masterGR_noNA,Meiosis==meiosis & chr == chromo & (debut) <= pos_c & pos_c <=
(fin))
  while (nrow(a1)<20){ # Check whether the region of interest contains sufficient SNPs to draw - this
is important to prevent an error when a/a1 contain no rows due to rare zero SNP events (i.e. COs)
that also lack SNPs in flanking thresholded region.
   debut=debut-1000
   fin=fin+1000
   a<-subset(masterGR,Meiosis==meiosis & chr == chromo & (debut) <= pos c & pos c <= (fin))
   a1<-subset(masterGR noNA,Meiosis==meiosis & chr == chromo & (debut) <= pos c & pos c <=
(fin))
  }
  if(nrow(a)>0){
   # Subset master based on Meiosis and Chromosome being drawn
   e2=subset(master2, Meiosis==meiosis & chr == chromo)
```

Specify event colours based on type (CO or NCO) - fill in master table with this information

for (i in 1:nrow(e2)){

if(e2[i,"CO"]==1){e2[i,"eventcolour"]="wheat"}

if(e2[i,"CO"]==0){e2[i,"eventcolour"]="thistle2"}

```
if(e2[i,"CO"]==2){e2[i,"eventcolour"]="wheat"}
    if(e2[i,"CO"]==3){e2[i,"eventcolour"]="wheat"}
    if(e2[i,"CO"]=="U"){e2[i,"eventcolour"]="powderblue"}
   }
   #Subset e2 based on threshold values so that each can be plotted
   e1000=subset(e2, Meiosis==meiosis & chr == chromo & threshold==1000)
   e1500=subset(e2, Meiosis==meiosis & chr == chromo & threshold==1500)
   e2000=subset(e2, Meiosis==meiosis & chr == chromo & threshold==2000)
   mainoverlay=subset(e2,Meiosis==meiosis & chr == chromo & threshold==mainoverlaythreshold)
   ######add SNP coordinates as text######
plot(a$pos_c,a[,1],type="n",ylim=c(0,300),ylab=paste("SNPs"),cex.lab=1,font=1,xlab="",xlim=c(debut
,fin), xaxt="n",yaxt="n", axes=FALSE, xaxs="i",yaxs="i")
   #type=n for no plotting. axes=FALSE gets rid of border.
   text(a$pos c, y=100, labels = a$pos c, srt=90, pos=3, cex=1)
   #cex=1 controls the size of the text; however, making it smaller doesn't really help with overlap
   arrows(a$pos c,0,a$pos c,50,col="black",length=0,lwd=1, code=3, lend=1)
   # Graphs of raw data
   for (i in (ordre+2)){
plot(a$pos_c,a[,i],type="l",lwd=2,col=2,cex.axis=0.8,ylim=c(0.6,300),yaxp=c(1,100,1),ylab=paste("S",i
-2,sep=""),cex.lab=1,font=1,xaxs="i",yaxs="i",xlab="",xlim=c(debut,fin), xaxt="n", log="y")
    points(a$pos_c,a[,i],pch=4,col=2,cex=2)
    points(a$pos_c,a[,(i+8)],pch=4,col=4,cex=2)
    lines(a$pos_c,a[,(i+8)],col=4,lwd=2)
    points(a$pos_c,rep(100,length(a$pos_c)),pch=-1*a[,(i+16)]+17,cex=1.5,col=-2*a[,(i+16)]+4)
   } #End of i first loop
```

```
# Graphs of binary data
   position=c(85,95,85,95,85,95,85,95)
   haut<-0
   for (i in (ordre+2)){
    plot(a$pos_c,rep(100,length(a$pos_c)),xaxt="n",yaxt="n",type="n",ylab=paste("S",i-
2,sep=""),cex.lab=1,font=2,xaxs="i",yaxs="i",ylim=c(50,130),axes=FALSE,xlim=c(debut,fin))
    alt<-ifelse(haut==0,120,120)
    bas<-ifelse(haut==0,60,60)
arrows(mainoverlay$debut,90,mainoverlay$fin,90,col=mainoverlay$eventcolour,length=0,lwd=30,
lend=1) # Underlay a highlighting box across all event regions
    arrows(a$pos_c,position[i-2]-30,a$pos_c,position[i-2]+30,col=-2*a[,(i+16)]+4,length=0,lwd=1)
    arrows(a1$startSNP,position[i-2],a1$stopSNP,position[i-2],col=-
2*a1[,(i+16)]+4,length=0,lwd=15, lend=1) # Add SNP start/stop boundary overlays
    haut<-1-haut
   } #End of i second loop
   #Top <-1 Top toggles the lengths of the lines between top = 0 and top = 1
   # Addition of plots that indicate the events specified by 1000 and 2000bp event-calling
thresholds
plot(a$pos_c,rep(100,length(a$pos_c)),xaxt="n",yaxt="n",type="n",ylab=paste("Events"),cex.lab=1.2
5,font=2,xaxs="i",yaxs="i",ylim=c(0,165),axes=FALSE,xlim=c(debut,fin))
   arrows(e1000$debut,140,e1000$fin,140,col=e1000$eventcolour,length=0,lwd=12, code=3,
lend=1); text(debut,140, "1.0 kb merge",pos=4) # Underlay a highlighting box across all event regions
   arrows(e1500$debut,100,e1500$fin,100,col=e1500$eventcolour,length=0,lwd=12, code=3,
lend=1); text(debut,100, "1.5 kb merge",pos=4) # Underlay a highlighting box across all event regions
   arrows(e2000$debut,60,e2000$fin,60,col=e2000$eventcolour,length=0,lwd=12, code=3, lend=1);
text(debut,60, "2.0 kb merge",pos=4) # Underlay a highlighting box across all event regions
```

```
# Plot event midpoints
  arrows(e1000$midpoint,130,e1000$midpoint,150,col="black",length=0,lwd=1, code=3, lend=1)
  arrows(e1500$midpoint,90,e1500$midpoint,110,col="black",length=0,lwd=1, code=3, lend=1)
   arrows(e2000$midpoint,50,e2000$midpoint,70,col="black",length=0,lwd=1, code=3, lend=1)
   ###plot indels as triangles with length underneath###
plot(a$pos_c,a[,1],type="n",ylim=c(0,300),ylab=paste("Indels"),cex.lab=1.25,font=2,xlab="",xlim=c(d
ebut,fin), xaxt="n",yaxt="n", axes=FALSE, xaxs="i",yaxs="i")
  #type=n for no plotting. axes=FALSE gets rid of border.
   aDEL=subset(a, type_k=="d")
   if(nrow(aDEL)>0){
   yDEL =rep(200, nrow(aDEL))
   points(aDEL$pos c, yDEL, type = "p", pch=25, col="dimgrey", cex=2)
   text(aDEL$pos c, (yDEL-145), labels = aDEL$Var len2, pos=3, cex=1)
   }
   aINS=subset(a, type k=="i")
   if(nrow(aINS)>0){
   yINS =rep(200, nrow(aINS))
   points(aINS$pos_c, yINS, type = "p", pch=24, col="dimgrey", cex=2)
   text(aINS$pos c, (yINS-145), labels = aINS$Var len2, pos=3, cex=1)
   }
   rbPal <- colorRampPalette(c('black','blue','red','pink')) # Creates a colour palette if chosing to plot
Spo11 as a coloured histogram "h"
   spo_file$Col <- rbPal(10)[as.numeric(cut(spo_file$TotalHits,breaks = 10))]
   map<-subset(spo_file,Chr == chromo & debut <= Pos & Pos <= fin)
   map2<-subset(rmm_file,chr == chromo & debut <= pos & pos <= fin)
```

```
map6<-subset(rec_file,Chr == chromo & debut <= Position & Position <= fin)
  map7<-subset(smooth_spo_file,chr == chromo & debut <= pos & pos <= fin)
plot(map7$pos,map7$spo,type="l",xlim=c(debut,fin),ylim=c(10,max(map7$spo)),yaxp=c(100,round(
max(map7$spo),-2),2),ylab="Spo11",bty="u",xaxs="i",lwd=2,xaxt="n",cex.axis=0.9,cex.lab=1.25)
plot(map5$midpoint,map5$Total_HpM,type="n",ylim=c(0,300),ylab="",cex.lab=1.25,font=2,xlab="",
xlim=c(debut,fin), xaxt="n",yaxt="n", axes=FALSE, xaxs="i",yaxs="i")
  #type=n for no plotting. axes=FALSE gets rid of border.
  if(nrow(map5)>0){
   arrows(map5$HS_START,140,map5$HS_END,140,col='lightsteelblue',length=0,lwd=12, code=3,
lend=1); text="" # Underlay a highlighting box across all event regions
   text(map5$midpoint, y=0, labels = map5$Total_HpM, pos=3, cex=1)
  }
#Now plot the gene datatrack
  #First subset the relevant data
  genes=AllElementsDUB #First make a copy of the ALLElements table
  genes=subset(genes,chr==chromo & start>(debut-10000) & stop<(fin+10000)) #Make a sub-table
of ALLElements where chr = 1 and has limits just beyond plot range
  genes=subset(genes,type=="gene") #Make a sub-table of ALLElements
  #Now perform the plot
  plot(genes$start,genes$start, xaxt="n",yaxt="n",type="n",
ylab=paste("Genes"),cex.lab=1.5,font=2, xlim=c(debut,fin), ylim=c(0,120),axes=FALSE) #set up empty
plot
  # Following module draws arrows for each element
  xrange=fin-debut
  ahead=xrange/25 #make arrowhead length proportional to plot range
```

map5<-subset(hotspots,CHROM == chromo & debut <= HS_START & HS_END <= fin)

```
ahead[(ahead>500)]=500 #limit max length to 500
   av=75 #arrow vertical location relative to plot dimensions
   ahw=15 #arrow/head width
   genesW=subset(genes,genename !="Dubious_ORF" & orientation =="+") #Make a sub-table of
ALLElements
   if(nrow(genesW)>0){
    for (i in 1:nrow(genesW)){
     polygon(c(genesW[i,"start"], genesW[i,"stop"]-ahead, genesW[i,"stop"]-
ahead,genesW[i,"stop"], genesW[i,"stop"]-ahead, genesW[i,"stop"]-ahead,
genesW[i,"start"]),c(av+ahw,av+ahw,av+ahw+ahw,av,av-ahw-ahw,av-ahw, av-ahw),
col="palegreen", border="palegreen4")
     text((genesW[i,"start"]+genesW[i,"stop"])/2,av, font=3, genesW[i,"genename"], cex=0.9) }
   }
   genesW=subset(genes,genename=="Dubious_ORF" & orientation =="+") #Make a sub-table of
ALLElements
   if(nrow(genesW)>0){
    for (i in 1:nrow(genesW)){
     polygon(c(genesW[i,"start"], genesW[i,"stop"]-ahead, genesW[i,"stop"]-
ahead, genesW[i, "stop"], genesW[i, "stop"]-ahead, genesW[i, "stop"]-ahead,
genesW[i,"start"]),c(av+ahw,av+ahw,av+ahw+ahw,av-ahw-ahw,av-ahw, av-ahw),
col="palegreen", border="palegreen4", lty=2)
     text((genesW[i,"start"]+genesW[i,"stop"])/2,av, font=3, genesW[i,"sysname"], cex=0.9) }
   }
   av=25 #arrow vertical location for Crick genes relative to plot dimensions
   genesC=subset(genes,genename !="Dubious ORF" & orientation =="-") #Make a sub-table of
ALLElements
   if(nrow(genesC)>0){
    for (i in 1:nrow(genesC)){
     polygon(c(genesC[i,"stop"], genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,genesC[i,"start"],
genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,
genesC[i,"stop"]),c(av+ahw,av+ahw,av+ahw+ahw,av,av-ahw-ahw,av-ahw), col="lightpink",
border ="lightpink4")
```

```
text((genesC[i,"start"]+genesC[i,"stop"])/2,av, font=3, genesC[i,"genename"], cex=0.9) }
   }
   genesC=subset(genes,genename=="Dubious_ORF" & orientation =="-") #Make a sub-table of
ALLElements
   if(nrow(genesC)>0){
    for (i in 1:nrow(genesC)){
     polygon(c(genesC[i,"stop"], genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,genesC[i,"start"],
genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,
genesC[i,"stop"]),c(av+ahw,av+ahw,av+ahw+ahw,av,av-ahw-ahw,av-ahw, av-ahw), col="lightpink",
border ="lightpink4", lty=2)
     text((genesC[i,"start"]+genesC[i,"stop"])/2,av, font=3, genesC[i,"sysname"], cex=0.9) }
   }
   ####Plot RMM track###
plot(map2$pos,map2$rmm,type="l",xlim=c(debut,fin),ylim=c(1,max(map2$rmm)),yaxp=c(1,round(m
ax(map2$rmm),0),2),ylab="RMM",bty="u",xaxs="i",lwd=4,col='darkgoldenrod',
      xaxp=c((round(debut,-3)),(round(fin,-3)),(round(round(fin,-3)-round(debut,-3)) /
500)),cex.axis=0.9, cex.lab=1.25)
   if(nrow(map6)>0){
    arrows(map6$Position,0,map6$Position,50,col="black",length=0,lwd=1, code=3, lend=1)
   }
   ###Make figure legend###
   title(xlab = paste(sep="","Red=S288c, Blue=SK1",
             "\n",
             meiosis, " Id=", draw[j,"id"],
             " Chromosome=",chromo,
             " Threshold=", draw[j,"threshold"], "bp",
             " Mid Length=", draw[j,"len_mid"]," bp",
             "\n",
             " Group=", draw[j,"groupe"],
             " Class=", draw[j,"classe"],
             " No. of COs=", draw[j,"CO"],
```

```
" Variants=", draw[j,"nb_snp"],
           " Spo11 HpM=", draw[j,"PanHpM"],
           " Type=", draw[j,"type"]),
     outer = T, line = 2, cex.lab=1.4) # Cex.lab controls the labelling size
 }
} #End of j loop
}
dev.off()
#After manual annotation, events identified as clusters can be split into the constituent events
#This script was adapted from a script written by Matt Neale.
# Create new empty master dataframe
masterA=NULL
library(stringr)
#library(data.table)
# Sequentially imports each Event Table and combines into a Master Table with additional identified
columns for Meiosis, Threshold, Genotype and GenotypeID (e.g. OM2, 1500, OM, 2)
files = list.files(pattern="Aevents_") # import files names with "AEvents_" string into variable "files"
files1 = length(files) # Count number of files
files2 = read.table(text = files, sep = "_", as.is = TRUE) #Split file names by "_" separator and create
table "files2"
for (j in 1:files1) {
data=NULL
```

```
data <- read.table(files[j], sep = "\t", header=TRUE)
 #data <- fread(files[j],select = c(1:27), sep = "\t", header=TRUE) #Import datatable from files
number 1 to j. Read only 27 columns
 data <- data[,c(1:27)]
 data["Meiosis"]=files2[j,2] # Insert Meiosis identifier from files2 into a new column
 data["threshold"]=str_extract(files2[j,3],"[[:digit:]]+") # Extracts digit portion of string
 #data["Genotype"]=str_extract(data[j,"Meiosis"],"[A-z]+") # Extracts character portion of string
 #data["GenotypeID"]=str_extract(data[j,"Meiosis"],"[[:digit:]]+") # Extracts digit portion of string
 data["Genotype"]=gsub('([A-Z]+).*','\1',files2[j,2])
 data["GenotypeID"]=gsub('.*([0-9]+)','\1',files2[j,2])
 data["midpoint"]=(data$start5+data$start3+data$stop5+data$stop3)/4 # Add midpoint column
 data["debut"]=(data$midpoint-(0.5*data$len_mid)) # Add event start column
 data["fin"]=(data$midpoint+(0.5*data$len_mid)) # Add event end column
 masterA <- rbind(masterA, data) # Combine data into master table
}
#Remove mitotic or false events
masterA <- masterA[which(masterA$LSB!=0),]
masterA <- masterA[which(masterA$threshold==1500),]</pre>
masterA$CO[masterA$CO == "U"] <- NA
masterA$CO <- as.numeric(as.character(masterA$CO))</pre>
masterA$LCO <- masterA$CO
masterA$LNCO <- (masterA$LSB-masterA$CO)</pre>
masterA$MaxNCO <- (masterA$CutMax-masterA$CO)</pre>
masterA$MinNCO <- (masterA$CutMin-masterA$CO)</pre>
masterA$midpoint1 <- 0
masterA$midpoint2 <- 0
```

```
masterA$midpoint1 <-ifelse(masterA$LSB ==2, masterA$midpoint-(masterA$len_mid/4),
              ifelse(masterA$LSB ==3, masterA$midpoint-(masterA$len_mid/3),
                  masterA$midpoint))
masterA$midpoint2 <-ifelse(masterA$LSB ==2, masterA$midpoint+(masterA$len_mid/4),
              ifelse(masterA$LSB ==3, masterA$midpoint,
                  NA))
masterA$midpoint3 <-ifelse(masterA$LSB ==3, masterA$midpoint+(masterA$len_mid/3),
              NA)
# Reorder columns
masterA=masterA[c("id","Meiosis","threshold","Genotype","GenotypeID","chr","start5",
         "start3", "stop5", "stop3", "debut", "fin", "type",
         "chromatids","len_min","len_mid","len_max", "nb_seg", "seg_len",
         "seg_start", "seg_stop", "PanHpM", "GenomeHpM", "Obs_Exp_HpM",
         "nb_snp", "groupe", "classe", "LSB", "LCO", "LNCO",
         "CutMin", "CutMax", "MaxNCO", "MinNCO", "midpoint", "midpoint1", "midpoint2",
"midpoint3",
         "commande", "Notes")]
#Write out master files
wd = getwd()
out = paste(wd,"/","Output_Files","/","MasterAEventTable_", Sys.time(),sep="")
write.table(masterA, out, col.names =TRUE, row.names = FALSE, quote = FALSE, sep="\t",
append=TRUE)
masterA$MId <-0 #set a master ID for each event
for(i in 1:nrow(masterA)){ masterA[i,41] <- i }</pre>
```

```
masterB <- masterA
masterB <- masterB[rep(seq.int(1,nrow(masterB)), masterB$LSB),] #duplicate lines for cluster events
masterB$CO_NCO <- "U"
masterC <- NULL
for(i in 1:nrow(masterA)){
subset <- masterB[which(masterB$MId==i),] #take all rows belonging to an event region i.e. if its a
cluster of 3 events, take those 3 rows
for(j in 1:nrow(subset)){ #for each row of the subset,
  subsubset <- subset[j,] #just look at that row,
  if(is.na(subsubset$LCO) ==FALSE){ #if there isn't an NA in LCO (which is the case for U events),
   if(j==1 && subsubset$LSB==1 && subsubset$LCO ==0){ #if there is likely 1 break and no COs, the
type is NCO
    subsubset$CO NCO ="NCO"
    subsubset$midpoint = subsubset$midpoint1
    masterC = rbind(masterC,subsubset)} #bind the line into masterC
   if(j=1 \&\& subsubset$LSB==1 && subsubset$LCO ==1){ #if there is likely 1 break and 1 CO, the
type is CO
    subsubset$CO_NCO ="CO"
    subsubset$midpoint = subsubset$midpoint1
    masterC = rbind(masterC,subsubset)}
   if(j==1 && subsubset$LSB==2 && subsubset$LCO ==0){ #if these are 2 breaks and no COs, type is
NCO (first row)
    subsubset$CO_NCO ="NCO"
    subsubset$midpoint = subsubset$midpoint1
    masterC = rbind(masterC,subsubset)}
   if(j==2 && subsubset$LSB==2 && subsubset$LCO ==0){ #if these are 2 breaks and no COs, type is
NCO (second row)
    subsubset$CO_NCO ="NCO"
    subsubset$midpoint = subsubset$midpoint2
    masterC = rbind(masterC,subsubset)}
```

```
if(j==1 && subsubset$LSB==2 && subsubset$LCO ==1){ #if these are 2 breaks and one CO, type is
CO (first row)
    subsubset$CO_NCO ="CO"
    subsubset$midpoint = subsubset$midpoint1
    masterC = rbind(masterC,subsubset)}
   if(j==2 && subsubset$LSB==2 && subsubset$LCO ==1){ #if these are 2 breaks and one NCO, type
is NCO (second row)
    subsubset$CO_NCO ="NCO"
    subsubset$midpoint = subsubset$midpoint2
    masterC = rbind(masterC,subsubset)}
   if(j==1 && subsubset$LSB==2 && subsubset$LCO ==2){#if these are 2 breaks and two COs, type is
CO (first row)
    subsubset$CO_NCO ="CO"
    subsubset$midpoint = subsubset$midpoint1
    masterC = rbind(masterC,subsubset)}
   if(j==2 && subsubset$LSB==2 && subsubset$LCO ==2){ #if these are 2 breaks and two COs, type
is CO (second row)
    subsubset$CO_NCO ="CO"
    subsubset$midpoint = subsubset$midpoint2
    masterC = rbind(masterC,subsubset)}
   if(j==1 && subsubset$LSB==3 && subsubset$LCO ==3){ #if these are 3 breaks and 3 COs, type is
CO (first row)
    subsubset$CO NCO ="CO"
    subsubset$midpoint = subsubset$midpoint1
    masterC = rbind(masterC,subsubset)}
   if(j==2 && subsubset$LSB==3 && subsubset$LCO ==3){ #if these are 3 breaks and 3 COs, type is
CO (second row)
    subsubset$CO_NCO ="CO"
    subsubset$midpoint = subsubset$midpoint2
    masterC = rbind(masterC,subsubset)}
   if(j==3 && subsubset$LSB==3 && subsubset$LCO ==3){ #if these are 3 breaks and 3 COs, type is
CO (third row)
    subsubset$CO_NCO ="CO"
```

```
subsubset$midpoint = subsubset$midpoint3
    masterC = rbind(masterC,subsubset)}
  }
  if(is.na(subsubset$LCO) ==TRUE) { #if the event is a U event
   subsubset$midpoint = subsubset$midpoint1
   masterC = rbind(masterC,subsubset)
  }
}
}
# Reorder columns
masterC=masterC[c("id", "Meiosis", "threshold", "Genotype", "GenotypeID", "chr", "start5",
          "start3", "stop5", "stop3", "debut", "fin", "type",
          "chromatids", "len_min", "len_mid", "len_max", "nb_seg", "seg_len",
          "seg_start", "seg_stop", "PanHpM", "GenomeHpM", "Obs_Exp_HpM",
          "nb_snp", "groupe", "classe", "LSB", "midpoint", "MId", "CO_NCO",
          "commande", "Notes")]
#Write out master files
wd = getwd()
out = paste(wd,"/","Output_Files","/","SplitMasterAEventTable_", Sys.time(),sep="")
write.table(masterC, out, col.names =TRUE, row.names = FALSE, quote = FALSE, sep="\t",
append=TRUE)
```

#Detection and imaging of 'hDNA' tracts in octads and MSH2 tetrads

#Thought to actually represent novel duplications.

#Parts of this script were adapted from scripts written by Matt Neale and Marie-Claude Marsolier.

##PART 1. Remove common hDNA positions, which likely represent naturally duplicated regions of the genome##

#Make Master hDNA table#

Create new empty master dataframe

masterH=NULL

library(stringr)

Sequentially imports each and combines into a Master Table with additional identified oclumns for Meiosis, Threshold, Genotype and GenotypeID (e.g. OM2, 1500, OM, 2)

files = list.files(pattern="HP-list") # import files names with "HP-list" string into variable "files"

files1 = length(files) # Count number of files

files2 = read.table(text = files, sep = "_", as.is = TRUE) #Split file names by "_" separator and create table "files2"

```
for (j in 1:files1) {
    data=NULL
    data <- read.table(files[j], sep = "\t", header=TRUE) #Import datatable from files number 1 to j
    data["Meiosis"]=files2[j,2] # Insert Meiosis identifier from files2 into a new column
    data["Genotype"]=gsub('([A-Z]+).','\\1',files2[j,2]) # Extracts character portion of string
    data["GenotypeID"]=gsub('.*([0-9]+).*','\\1',files2[j,2]) # Extracts digit portion of string
    masterH <- rbind(masterH, data) # Combine data into master table
}
```

#Write out master files

```
wd = getwd()
```

```
out = paste(wd,"/","MasterHPTable_", Sys.time(),sep="")
write.table(masterH, out, col.names =TRUE, row.names = FALSE, quote = FALSE, sep="\t",
append=TRUE)
library(plyr)
hpdf<- subset(masterH, select = c(chr, pos_c))
hpdf <- hpdf[order(hpdf$chr, hpdf$pos_c),]</pre>
dfccounts <- ddply(hpdf,.(chr,pos_c),nrow) #count up how many repeats
write.table(dfccounts,file="AllS288cHPs.txt", row.names=F, quote=F, sep='\t')
dfccounts <-dfccounts[which(dfccounts$V1>=2),]
write.table(dfccounts,file="commonS288cHPs.txt", row.names=F, quote=F, sep='\t')
##PART 2. Examine Unique hDNA positions##
##Remove Common HPs###
commonS288c <- read.table("commonS288cHPs.txt",header=T)</pre>
common$288c$common <- "yes"
remove_common_HPs <- function(df){</pre>
df <- merge(df, commonS288c, by=c("chr", "pos c"), all=TRUE, sort=FALSE)
df <- df[which(is.na(df$common)),]</pre>
df <- subset(df, select=-c(V1,common))</pre>
}
##Work out whether HPs are consectutive- part of a hDNA tract, and also how long are the hDNA
tracts
##Output a list of positions of consecutive tracts (to match up w/events?)
library(stringr)
library(plyr)
```

```
tract_length <- function(df,filename){</pre>
 df <- df[order(df$sID),]</pre>
 df$tractno <- 0
j<-1
 for(i in 1:nrow(df)){
  if(df[i,33]==0){df[i,33]=j} #if tract no. has not been assigned yet, assign a new number
  if(i!=nrow(df))\{if(df[i,4] ==(df[i+1,4]-1))\{df[i+1,33]=df[i,33]\}\} #if the row is not the last one in the
dataframe, check if the next row has an sID one higher than the current row. If so, the next row
should have the same tract no. as the current row.
  if(i!=1){if(df[i,4] ==(df[i-1,4]+1)){df[i-1,33]=df[i,33]}} #if the row is not the first one in the
dataframe, check if the previous row has an sID one lower than the current row. If so, the previous
row should have the same tract no. as the current row.
  j<-j+1
}
 tractlen <- table(df$tractno)
 tractlen <- data.frame(tractlen, stringsAsFactors=FALSE)</pre>
 tractlen <-rename(tractlen, c("Var1"="tractno", "Freq"="Tract_len_var"))
 df <- merge(df, tractlen, by=c("tractno"), all=TRUE, sort=TRUE)</pre>
 df_new <-df
 df_new$Tract_len_bp <-0
 for(k in 1:max(df new$tractno)){
  current_subset <- df_new[df_new$tractno == k, ]</pre>
  if(nrow(current_subset)>0){
   result <- max(current_subset$pos_c) - min(current_subset$pos_c)</pre>
   df new[df_new$tractno == k, ]$Tract_len_bp <- result}</pre>
}
 df_new <-df_new[c("uID", "sID", "chr", "pos_c", "pos_k", "type_c", "type_k", "Var_len",
"tractno","Tract_len_var", "Tract_len_bp",
```

```
"c1","c2","c3","c4","c5","c6","c7","c8","k1","k2","k3","k4","k5","k6","k7","k8","b1","b2","b3","b4","
b5","b6","b7","b8")]
 write.table(df new,file=sprintf("%s hDNA tracts S288c.txt",filename),row.names=F, quote=F,
sep='\t')
 newdf <- NULL
 for(i in 1:max(df_new$tractno)){
  df2 <- df_new[which(df_new$tractno == i),]
  if(nrow(df2)>0) {
   df2min <- min(df2$pos c)
   df2max <- max(df2$pos c)
   df2$length <- df2max-df2min
   df2$midpoint <- mean(df2$pos c)
   newdf <- rbind(df2,newdf)</pre>
  }
 }
 newdf <-newdf[c("uID", "sID", "chr", "pos_c", "pos_k", "type_c", "type_k", "Var_len",</pre>
"tractno", "Tract_len_var", "Tract_len_bp", "length", "midpoint",
"c1","c2","c3","c4","c5","c6","c7","c8","k1","k2","k3","k4","k5","k6","k7","k8","b1","b2","b3","b4","
b5","b6","b7","b8")]
 write.table(newdf,file=sprintf("%s_hDNA_tracts_S288c_imaging.txt",filename),row.names=F,
quote=F, sep='\t')
}
###Remove common HPS from pGAL-NDT80 strains###
files = list.files(pattern="HP-list") # import files names with "NF-list" string into variable "files"
files1 = length(files) # Count number of files
files2 = read.table(text = files, sep = "_", as.is = TRUE) #Split file names by "_" separator and create
table "files2"
```

```
for (j in 1:files1) {
 data=NULL
 data <- read.table(files[j], sep = "\t", header=TRUE) #Import datatable from files number 1 to j
 name=files2[j,2]
 data <- remove_common_HPs(data)
 if(nrow(data)>1){tract_length(data, name)}
}
#Make Master hDNA table#
setwd("/mnt/nfs2/gdsc/mc482/hDNA_Tracts")
# Create new empty master dataframe
masterH=NULL
library(stringr)
# Sequentially imports each and combines into a Master Table with additional identified oclumns for
Meiosis, Threshold, Genotype and GenotypeID (e.g. OM2, 1500, OM, 2)
files = list.files(pattern="_hDNA_tracts_S288c_imaging") # import files names with "HP-list" string
into variable "files"
files1 = length(files) # Count number of files
files3 = read.table(text = files, sep = "_", as.is = TRUE) #Split file names by "_" separator and create
table "files2"
for (j in 1:files1) {
 data=NULL
 data <- read.table(files[j], sep = "\t", header=TRUE) #Import datatable from files number 1 to j
 data["Meiosis"]=files3[j,1] # Insert Meiosis identifier from files2 into a new column
 data["Genotype"]=gsub('([A-Z]+).','\\1',files3[j,1]) # Extracts character portion of string
 data["GenotypeID"]=gsub('.*([0-9]+).*','\\1',files3[j,1]) # Extracts digit portion of string
```

```
data["debut"]=(data$midpoint-(0.5*data$length)) # Add event start column
 data["fin"]=(data$midpoint+(0.5*data$length)) # Add event end column
 data <- subset(data, !duplicated(data$tractno))</pre>
 masterH <- rbind(masterH, data) # Combine data into master table
}
# Reorder columns
masterH=masterH[c("uID", "sID", "Meiosis", "Genotype", "GenotypeID", "chr", "pos_c",
         "pos_k","type_c","type_k","midpoint","debut","fin",
         "Var_len","tractno","Tract_len_var", "Tract_len_bp", "length")]
#Write out master files
wd = getwd()
out = paste(wd,"/","MasterhDNATable_", Sys.time(),sep="")
write.table(masterH, out, col.names =TRUE, row.names = FALSE, quote = FALSE, sep="\t",
append=TRUE)
##Count how Many HPs remain in TN and TRN##
TN <- masterH[which(masterH$Genotype == "TN"),]
TRN <- masterH[which(masterH$Genotype == "TRN"),]
TCMN <- masterH[which(masterH$Genotype == "TCMN"),]
OM <- masterH[which(masterH$Genotype == "OM"),]
OMT <- masterH[which(masterH$Genotype == "OMT"),]
TW <- masterH[which(masterH$Genotype == "TW"),]
avgOM <- nrow(OM)/9
avgOMT <- nrow(OMT)/10
avgWT <- nrow(WT)/4
```

```
avgTN <- nrow(TN)/4
avgTRN <- nrow(TRN)/6
avgTCMN <- nrow(TCMN)/6
TN <- TN[which(TN$Tract_len_var >1),]
TRN <- TRN[which(TRN$Tract_len_var >1),]
TCMN <- TCMN[which(TCMN$Tract_len_var >1),]
OM <- OM[which(OM$Tract_len_var >1),]
OMT <- OMT[which(OMT$Tract_len_var >1),]
TW <- TW[which(TW$Tract_len_var >1),]
# Automated PDF generation
wd = getwd()
out = paste(wd,"/","hDNA tract length in variants histograms.pdf", sep="")
pdf(file=out); par(mfrow=c(3,2));
hist(TN$Tract_len_var, breaks=(max(TN$Tract_len_var)-min(TN$Tract_len_var)+1),
xlim=c(min(TN$Tract_len_var), max(TN$Tract_len_var)), xlab="Tract Length", main="hDNA tracts in
NDT80 arrest")
hist(TRN$Tract len var, breaks=(max(TRN$Tract len var)-min(TRN$Tract len var)+1),
xlim=c(min(TRN$Tract_len_var),max(TRN$Tract_len_var)), xlab="Tract Length", main="hDNA tracts
in rad24 NDT80 arrest")
hist(TCMN$Tract_len_var, breaks=(max(TCMN$Tract_len_var)-min(TCMN$Tract_len_var)+1),
xlim=c(min(TCMN$Tract_len_var),max(TCMN$Tract_len_var)), xlab="Tract Length", main="hDNA
tracts in pCLB2-MEC1 NDT80 arrest")
hist(TW$Tract_len_var,breaks=(max(TW$Tract_len_var)-min(TW$Tract_len_var)+1),
xlim=c(min(TW$Tract_len_var), max(TW$Tract_len_var)), xlab="Tract Length", main="hDNA tracts
in WT")
hist(OM$Tract len var, breaks=(max(OM$Tract len var)-min(OM$Tract len var)+1),
xlim=c(min(OM$Tract_len_var),max(OM$Tract_len_var)), xlab="Tract Length", main="hDNA tracts
in msh2")
```

```
hist(OMT$Tract_len_var, breaks=(max(OMT$Tract_len_var)-min(OMT$Tract_len_var)+1),
xlim=c(min(OMT$Tract_len_var), max(OMT$Tract_len_var)), xlab="Tract Length", main="hDNA
tracts in tel1msh2")
dev.off()
wd = getwd()
out = paste(wd,"/","hDNA tract length in bp histograms.pdf", sep="")
pdf(file=out); par(mfrow=c(3,1));
hist(TN$Tract_len_bp, breaks=(max(TN$Tract_len_bp)-min(TN$Tract_len_bp)/100),
xlim=c(min(TN$Tract len bp), max(TN$Tract len bp)), xlab="Tract Length", main="hDNA tracts in
NDT80 arrest")
hist(TRN$Tract_len_bp, breaks=(max(TRN$Tract_len_bp)-min(TRN$Tract_len_bp)/100),
xlim=c(min(TRN$Tract_len_bp),max(TRN$Tract_len_bp)), xlab="Tract Length", main="hDNA tracts
in rad24 NDT80 arrest")
hist(TCMN$Tract_len_bp, breaks=(max(TCMN$Tract_len_bp)-min(TCMN$Tract_len_bp)/100),
xlim=c(min(TCMN$Tract_len_bp),max(TCMN$Tract_len_bp)), xlab="Tract Length", main="hDNA
tracts in pCLB2-MEC1 NDT80 arrest")
hist(TW$Tract_len_bp,breaks=(max(TW$Tract_len_bp)-min(TW$Tract_len_bp)+1),
xlim=c(min(TW$Tract_len_bp), max(TW$Tract_len_bp)), xlab="Tract Length", main="hDNA tracts in
WT")
hist(OM$Tract_len_bp, breaks=(max(OM$Tract_len_bp)-min(OM$Tract_len_bp)/100),
xlim=c(min(OM$Tract len bp),max(OM$Tract len bp)), xlab="Tract Length", main="hDNA tracts in
msh2")
hist(OMT$Tract_len_bp, breaks=(max(OMT$Tract_len_bp)-min(OMT$Tract_len_bp)/100),
xlim=c(min(OMT$Tract_len_bp),max(OMT$Tract_len_bp)), xlab="Tract Length", main="hDNA tracts
in tel1msh2")
dev.off()
##Plot Individual Tracts##
#######################
setwd("/mnt/nfs2/gdsc/mc482/Event Table combining and imaging/Output Files")
```

```
masterGR_noNA <- read.delim("MasterGRnoNATable_2016-09-22")
masterGR <- read.delim("MasterGRTable_2016-09-22")</pre>
masterGR$Var_len2 <- (masterGR$Var_len-1)
masterGR_noNA$Var_len2 <- (masterGR_noNA$Var_len-1)</pre>
#the variant lengths stored in this column are actually 1bp too long because they include the first
base upstream.
#Subtract 1 to make it more accurate.
setwd("/mnt/nfs2/gdsc/mc482/Event_Table_combining_and_imaging")
spo_file <- read.delim("FullMap.Cer3_Pan_HA_1_4h_c.txt")
smooth_spo_file <- read.delim("Spo11Cer3PanHA100bp.txt")</pre>
TotalHits=sum(spo_file$Watson+spo_file$Crick)
spo_file$TotalHits=(spo_file$Watson+spo_file$Crick)
spo_file$TotalHpM=(spo_file$Watson+spo_file$Crick)/TotalHits*1000000 # Convert Pan data to Hits
per million reads (HpM)
oldhotspots<- read.delim("Hotspot.Table.Cer3 Pan HA 1 4h.txt")
hotspots<- read.delim("Pan.Hotspots.IGR.SacCer3 2016.08.10.txt")
rmm file<-read.delim("RMMSubSamp simple")
AllElementsDUB = read.table("AllElementsDUB.txt", sep = "\t", header=TRUE) #Import datatable
rec file<-read.delim("Rec8Marg.txt")</pre>
hotspots$Total_HpM <-hotspots$HITS/TotalHits*1000000
hotspots$Total_HpM=round(hotspots$Total_HpM,1)
setwd("/mnt/nfs2/gdsc/mc482/hDNA_Tracts")
#masterH <- read.delim("MasterhDNATable_2016-09-21")</pre>
masterH$Meiosis <- as.character(masterH$Meiosis)
# Subset the datatable
draw<-masterH # Temp holding table for events that will be drawn.
```

```
# Hash out and/or amend the following lines to subset the datatable as required
#draw=subset(draw,Meiosis =="OMT7") # Meiosis = OM2, OMT10, etc (refers to a specific meiosis)
#draw <- draw[which(draw$Meiosis =="OMTNS1" | draw$Meiosis == "OMT1TN"),]
#draw=subset(draw,Genotype =="TN") # Genotype = OM, OMT, TN, TRN, TCMM, TRS, etc (refers to
a genotype containing multiple repeats)
draw <- draw[which(draw$Tract_len_var >1 & draw$Genotype == "TW"),]
ordre=1:8 # Order of plotting spores
extend=500 # How many bp to extend the plotting either side of the event
# Automated PDF generation
wd = getwd(); out = paste(wd,"/","Images_A^{\pm}", extend,"bp_",Sys.time(),".pdf",sep=""); pdf(file=out,
width=21,height=9);
for (j in 1: nrow(draw)) {
 meiosis=draw[j,"Meiosis"]
chromo=draw[j,"chr"]
 debut=draw[j,"debut"]
 fin=draw[j,"fin"]
 # How much to extend the plotting either side of the event
 debut=debut-extend
 fin=fin+extend
# This sets up the graphing parameters: mfrow calculates number of rows of grpahics to be drawn.
mar sets the margins of the graph
layout(matrix(c(0,1,1,1,2:17,18,18,19,19,20,20,21,22,22,23,23,24,24,24,0),35,1, byrow = T))
 #layout.show(20)
 par(mar=c(0,6,0,2),oma=c(4,0,0,0),las=1) # Sets margins per graph and outside margins per
grouped set
```

```
a<-subset(masterGR,Meiosis==meiosis & chr == chromo & (debut) <= pos_c & pos_c <= (fin))
a1<-subset(masterGR_noNA,Meiosis==meiosis & chr == chromo & (debut) <= pos_c & pos_c <=
(fin))
while (nrow(a1)<20){ # Check whether the region of interest contains sufficient SNPs to draw - this
is important to prevent an error when a/a1 contain no rows due to rare zero SNP events (i.e. COs)
that also lack SNPs in flanking thresholded region.
  debut=debut-500
  fin=fin+500
  a<-subset(masterGR,Meiosis==meiosis & chr == chromo & (debut) <= pos_c & pos_c <= (fin))
  a1<-subset(masterGR_noNA,Meiosis==meiosis & chr == chromo & (debut) <= pos_c & pos_c <=
(fin))
}
 if(nrow(a)>0){
  # Subset master based on Meiosis and Chromosome being drawn
  e2=subset(masterH, Meiosis==meiosis & chr == chromo)
  #####add SNP coordinates as text#####
plot(a$pos_c,a[,1],type="n",ylim=c(0,300),ylab=paste("SNPs"),cex.lab=1,font=1,xlab="",xlim=c(debut
,fin), xaxt="n",yaxt="n", axes=FALSE, xaxs="i",yaxs="i")
  #type=n for no plotting. axes=FALSE gets rid of border.
  text(a$pos_c, y=100, labels = a$pos_c, srt=90, pos=3, cex=1)
  #cex=1 controls the size of the text; however, making it smaller doesn't really help with overlap
  arrows(a$pos_c,0,a$pos_c,50,col="black",length=0,lwd=1, code=3, lend=1)
  # Graphs of raw data
  for (i in (ordre+2)){
```

Subset the masterGR tables for the region of interest

```
plot(a$pos_c,a[,i],type="l",lwd=2,col=2,cex.axis=0.8,ylim=c(0.6,300),yaxp=c(1,100,1),ylab=paste("S",i
-2,sep=""),cex.lab=1,font=1,xaxs="i",yaxs="i",xlab="",xlim=c(debut,fin), xaxt="n", log="y")
   points(a$pos_c,a[,i],pch=4,col=2,cex=2)
   points(a$pos_c,a[,(i+8)],pch=4,col=4,cex=2)
   lines(a$pos_c,a[,(i+8)],col=4,lwd=2)
   points(a$pos_c,rep(100,length(a$pos_c)),pch=-1*a[,(i+16)]+17,cex=1.5,col=-2*a[,(i+16)]+4)
  } #End of i first loop
  # Graphs of binary data
  position=c(85,95,85,95,85,95,85,95)
  haut<-0
  for (i in (ordre+2)){
   plot(a$pos_c,rep(100,length(a$pos_c)),xaxt="n",yaxt="n",type="n",ylab=paste("S",i-
2,sep=""),cex.lab=1,font=2,xaxs="i",yaxs="i",ylim=c(50,130),axes=FALSE,xlim=c(debut,fin))
   alt<-ifelse(haut==0,120,120)
   bas<-ifelse(haut==0,60,60)
   arrows(e2$debut,90,e2$fin,90,col="mediumpurple",length=0,lwd=30, lend=1) # Underlay a
highlighting box across all event regions
   arrows(a$pos_c,position[i-2]-30,a$pos_c,position[i-2]+30,col=-2*a[,(i+16)]+4,length=0,lwd=1)
   arrows(a1$startSNP,position[i-2],a1$stopSNP,position[i-2],col=-2*a1[,(i+16)]+4,length=0,lwd=15,
lend=1) # Add SNP start/stop boundary overlays
   haut<-1-haut
  } #End of i second loop
  # Addition of plots that indicate the events specified by 1000 and 2000bp event-calling thresholds
plot(a$pos_c,rep(100,length(a$pos_c)),xaxt="n",yaxt="n",type="n",ylab=paste("Events"),cex.lab=1.2
5,font=2,xaxs="i",yaxs="i",ylim=c(0,165),axes=FALSE,xlim=c(debut,fin))
```

```
arrows(e2$debut,140,e2$fin,140,col="mediumpurple",length=0,lwd=12, code=3, lend=1);
text(debut,140, "hDNA tract",pos=4) # Underlay a highlighting box across all event regions
 # Plot event midpoints
 arrows(e2$midpoint,130,e2$midpoint,150,col="black",length=0,lwd=1, code=3, lend=1)
 ###plot indels as triangles with length underneath###
plot(a$pos_c,a[,1],type="n",ylim=c(0,300),ylab=paste("Indels"),cex.lab=1.25,font=2,xlab="",xlim=c(d
ebut,fin), xaxt="n",yaxt="n", axes=FALSE, xaxs="i",yaxs="i")
 #type=n for no plotting. axes=FALSE gets rid of border.
 aDEL=subset(a, type k=="d")
 if(nrow(aDEL)>0){
  yDEL =rep(200, nrow(aDEL))
  points(aDEL$pos_c, yDEL, type = "p", pch=25, col="dimgrey", cex=2)
  text(aDEL$pos_c, (yDEL-145), labels = aDEL$Var_len2, pos=3, cex=1)
 }
 aINS=subset(a, type_k=="i")
 if(nrow(aINS)>0){
  yINS =rep(200, nrow(aINS))
  points(aINS$pos_c, yINS, type = "p", pch=24, col="dimgrey", cex=2)
  text(alNS$pos_c, (ylNS-145), labels = alNS$Var_len2, pos=3, cex=1)
 }
 rbPal <- colorRampPalette(c('black','blue','red','pink')) # Creates a colour palette if chosing to plot
Spo11 as a coloured histogram "h"
 spo_file$Col <- rbPal(10)[as.numeric(cut(spo_file$TotalHits,breaks = 10))]
 map<-subset(spo_file,Chr == chromo & debut <= Pos & Pos <= fin)
```

```
map2<-subset(rmm_file,chr == chromo & debut <= pos & pos <= fin)
    map5<-subset(hotspots,CHROM == chromo & debut <= HS_START & HS_END <= fin)
    map6<-subset(rec_file,Chr == chromo & debut <= Position & Position <= fin)</pre>
    map7<-subset(smooth_spo_file,chr == chromo & debut <= pos & pos <= fin)
plot(map7$pos,map7$spo,type="l",xlim=c(debut,fin),ylim=c(10,max(map7$spo)),yaxp=c(100,round(
max(map7$spo),-2),2),ylab="Spo11",bty="u",xaxs="i",lwd=2,xaxt="n",cex.axis=0.9,cex.lab=1.25)
plot(map5\$midpoint, map5\$Total\_HpM, type="n", ylim=c(0,300), ylab="", cex.lab=1.25, font=2, xlab="", ylim=c(0,300), ylab="", cex.lab=1.25, font=2, xlab="", ylim=c(0,300), ylab="", ylim=c(0,300), ylab=", ylim=c(0,300), ylab=", ylim=c(0,300), ylab=", ylab=(0,300), yla
xlim=c(debut,fin), xaxt="n",yaxt="n", axes=FALSE, xaxs="i",yaxs="i")
    #type=n for no plotting. axes=FALSE gets rid of border.
    if(nrow(map5)>0){
      arrows(map5$HS_START,140,map5$HS_END,140,col='lightsteelblue',length=0,lwd=12, code=3,
lend=1); text="" # Underlay a highlighting box across all event regions
      text(map5$midpoint, y=0, labels = map5$Total_HpM, pos=3, cex=1)
    }
#Now plot the gene datatrack
    #First subset the relevant data
    genes=AllElementsDUB #First make a copy of the ALLElements table
    genes=subset(genes,chr==chromo & start>(debut-10000) & stop<(fin+10000)) #Make a sub-table
of ALLElements where chr = 1 and has limits just beyond plot range
    genes=subset(genes,type=="gene") #Make a sub-table of ALLElements
    #Now perform the plot
    plot(genes$start,genes$start, xaxt="n",yaxt="n",type="n",
ylab=paste("Genes"),cex.lab=1.5,font=2, xlim=c(debut,fin), ylim=c(0,120),axes=FALSE) #set up empty
plot
    # Following module draws arrows for each element
    xrange=fin-debut
```

```
ahead=xrange/25 #make arrowhead length proportional to plot range
  ahead[(ahead>500)]=500 #limit max length to 500
  av=75 #arrow vertical location relative to plot dimensions
  ahw=15 #arrow/head width
  genesW=subset(genes,genename !="Dubious_ORF" & orientation =="+") #Make a sub-table of
ALLElements
  if(nrow(genesW)>0){
   for (i in 1:nrow(genesW)){
    polygon(c(genesW[i,"start"], genesW[i,"stop"]-ahead, genesW[i,"stop"]-
ahead,genesW[i,"stop"], genesW[i,"stop"]-ahead, genesW[i,"stop"]-ahead,
genesW[i,"start"]),c(av+ahw,av+ahw,av+ahw+ahw,av,av-ahw-ahw,av-ahw, av-ahw),
col="palegreen", border="palegreen4")
    text((genesW[i,"start"]+genesW[i,"stop"])/2,av, font=3, genesW[i,"genename"], cex=0.9) }
  }
  genesW=subset(genes,genename=="Dubious_ORF" & orientation =="+") #Make a sub-table of
ALLElements
  if(nrow(genesW)>0){
   for (i in 1:nrow(genesW)){
    polygon(c(genesW[i,"start"], genesW[i,"stop"]-ahead, genesW[i,"stop"]-
ahead, genesW[i, "stop"], genesW[i, "stop"]-ahead, genesW[i, "stop"]-ahead,
genesW[i,"start"]),c(av+ahw,av+ahw,av+ahw+ahw,av,av-ahw-ahw,av-ahw),
col="palegreen", border="palegreen4", lty=2)
    text((genesW[i,"start"]+genesW[i,"stop"])/2,av, font=3, genesW[i,"sysname"], cex=0.9) }
  }
  av=25 #arrow vertical location for Crick genes relative to plot dimensions
  genesC=subset(genes,genename !="Dubious ORF" & orientation =="-") #Make a sub-table of
ALLElements
  if(nrow(genesC)>0){
   for (i in 1:nrow(genesC)){
    polygon(c(genesC[i,"stop"], genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,genesC[i,"start"],
genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,
```

```
genesC[i,"stop"]),c(av+ahw,av+ahw,av+ahw+ahw,av,av-ahw-ahw,av-ahw), col="lightpink",
border ="lightpink4")
    text((genesC[i,"start"]+genesC[i,"stop"])/2,av, font=3, genesC[i,"genename"], cex=0.9) }
  }
  genesC=subset(genes,genename=="Dubious_ORF" & orientation =="-") #Make a sub-table of
ALLElements
  if(nrow(genesC)>0){
   for (i in 1:nrow(genesC)){
    polygon(c(genesC[i,"stop"], genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,genesC[i,"start"],
genesC[i,"start"]+ahead, genesC[i,"start"]+ahead,
genesC[i,"stop"]),c(av+ahw,av+ahw,av+ahw+ahw,av,av-ahw-ahw,av-ahw), col="lightpink",
border ="lightpink4", lty=2)
    text((genesC[i,"start"]+genesC[i,"stop"])/2,av, font=3, genesC[i,"sysname"], cex=0.9) }
  }
  ####Plot RMM track###
plot(map2$pos,map2$rmm,type="l",xlim=c(debut,fin),ylim=c(1,max(map2$rmm)),yaxp=c(1,round(m
ax(map2$rmm),0),2),ylab="RMM",bty="u",xaxs="i",lwd=4,col='darkgoldenrod',
    xaxp=c((round(debut,-3)),(round(fin,-3)),(round(round(fin,-3)-round(debut,-3)) /
1000)),cex.axis=0.9, cex.lab=1.25)
  if(nrow(map6)>0){
   arrows(map6$Position,0,map6$Position,50,col="black",length=0,lwd=1, code=3, lend=1)
  ###Make figure legend###
  title(xlab = paste(sep="","Red=S288c, Blue=SK1",
            " Id=", meiosis,
            " Chromosome=",chromo,
            " Tract Max Length=", draw[j,"length"], "bp",
            " No. Variants=", draw[j,"Tract len var"]),
     outer = T, line = 2, cex.lab=1.4) # Cex.lab controls the labelling size
}
} #End of j loop
```

dev.off()