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Summary 

To increase fitness for survival, organisms not only passively react to environmental changes 

but also actively predict future events to prepare for potential hazards within their environment. 

Accumulating evidence indicates that the human brain is a remarkable predictive machine which 

constantly models causal relationships and predicts future events. This ‘predictive processing’ 

framework, a prediction-based form of Bayesian inference, states that the brain continuously 

generates and updates predictions about incoming sensory signals. This framework has been 

showing notable explanatory power in understanding the mechanisms behind both human 

behaviour and neurophysiological data and elegantly specifies the underlying computational 

principles of the neural system. However, even though predictive processing has the potential to 

provide a unified theory of the brain (Karl Friston, 2010), we still have a limited understanding 

about fundamental aspects of this model, such as how it deals with different types of information, 

learns statistical regularities and perhaps most fundamentally of all what its relationship to 

conscious experience is. This thesis aims to investigate the major gaps in our current understanding 

of the predictive processing framework via a series of studies. Study 1 investigated the fundamental 

relationship between unconscious statistical inference reflected by predictive processing and 

conscious access. It demonstrated that predictions that are in line with sensory evidence accelerate 

conscious access. Study 2 investigated how low level information within the sensory hierarchy is 

dealt with by predictive processing and regularity learning mechanisms through “perceptual echo” 

in which the cross-correlation between a sequence of randomly fluctuating luminance values and 

occipital electrophysiological (EEG) signals exhibits a long-lasting periodic (~100ms cycle) 

reverberation of the input stimulus. This study identified a new form of regularity learning and the 

results demonstrate that the perceptual echo may reflect an iterative learning process, governed by 

predictive processing. Study 3 investigated how supra-modal predictive processing is capable of 



 

 

learning regularities of temporal duration and also temporal predictions about future events. This 

study revealed a supramodal temporal prediction mechanism which processes auditory and visual 

temporal information and integrates information from the duration and rhythmic structures of 

events. Together these studies provide a global picture of predictive processing and regularity 

learning across differing types of predictive information.  
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Chapter 1 

Introduction 

This Chapter will start with a historical review of predictive processing starting with its early 

formulations in visual science to the Bayesian brain hypothesis, a theoretical antecedent of 

predictive processing. It will go on to discuss several key models that have substantially influenced 

the direction of predictive processing e.g. Friston (2005), Rao and Ballard (1999). This Chapter 

then moves on to review key aspects of predictive processing, unconscious inference, hierarchical 

predictive processing and regularity learning. The review reveals that we still have a limited 

understanding about fundamental aspects of predictive processing, such as how it deals with 

different types of information, learns statistical regularities and perhaps most fundamentally of all 

what its relationship to conscious experience is. Finally based on this literature review this Chapter 

discusses the research questions and motivations for the three studies that comprise this thesis. 

1.1 Predictive Processing 

Predictive processing – a theoretical framework of perception and brain function, which 

suggests that the brain continuously generates and updates predictions about incoming sensory 

signals, represents a general principle of neural functioning. The predictive processing framework 

has been shown to have a high explanatory power across a wide range of domains including 

auditory (Baldeweg, 2007; Wacongne et al., 2011), visual (Rao & Ballard, 1999; Summerfield, 

Trittschuh, Monti, Mesulam, & Egner, 2008), sensory-motor (Hickok, Houde, & Rong, 2011) and 

interoceptive (Seth, Suzuki, & Critchley, 2012) processing. Predictive processing is becoming a 

powerful paradigm in cognitive neuroscience (Clark, 2012), especially in understanding the 

computational architecture of perception. Predictive-processing theory (Friston, 2009) proposes 
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that sensory input is compared with predictions generated by a hierarchically organized predictive 

model in order to minimize surprise. The original predictive processing model which attracted wide 

attention within neuroscience was a model of the visual cortex proposed by Rao and Ballard (1999). 

This was a specific model implemented by a hierarchical network and at the time a lot of 

researchers within the field of neuroscience recognised the huge potential of predictive coding. 

This led to a more general instance of the original idea, broadly referred to as predictive processing, 

which describes the brains attempt to constantly model external causal relationships or statistical 

regularities and predict sensory events. Although the predictive processing framework has superior 

explanatory power, its relation to conscious experience and whether it is an universal principle of 

neural processing (Karl Friston, 2010) are still unknown. This thesis will explore this predictive 

processing definition of perception and brain function by investigating conscious access, regularity 

learning, and temporal prediction in a series of studies to gain a deeper understanding of the 

predictive brain. 

1.1.1 Inverse problem and Bayesian brain hypothesis 

Our sensory systems are constantly bombarded by noisy and ambiguous input. This presents 

our sensory systems with the difficult task of tracking, decoding, and forming percepts of relevant 

input which may have multiple interpretations or causes (S. E. Palmer, 1999). A cause here can be 

defined as the source that causes sensory inputs. A simple example of a possible percept is shown in 

Figure 1-1 (a), which appears to be a cube. However, this 2D projection on the retina may be due to 

multiple possible external objects (Figure 1-1b). To infer the actual cause of percept is an 

unsolvable problem, commonly referred to as the “inverse problem of perception”. This specifies 

that to infer the external sensory causes that leads to a particular activation of sensory systems is 

challenging. To understand how the neural system deals with this problem, von Helmholtz 
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proposed that perception is a statistical inference process. His idea was that neural systems compute 

perceptual information from sensory data to construct a probabilistic model of the external world 

where the ultimate goal of perception is to infer the causes that generate sensory inputs (Dayan, 

Hinton, Neal, & Zemel, 1995; Karl Friston, 2012; Helmholtz, 1866). In this theory, a percept is not 

only passively caused by sensory stimulation but involves unconscious inferences, associated 

sensations, and the incorporation of prior knowledge which biases the computation toward a simple 

interpretation (Pizlo, 2001). 

 

 

Figure 1-1(a) an simple example of a visual percept (b) multiple possibilities (hidden causes) that 

can cause the percept  (figure taken from Kersten & Yuille, 2003) 

Motivated by von Helmholtz, in the past century, accumulating evidence in Psychology and 

Neuroscience indicates human cognition may process probabilistically. Specifically, the neural 

system performs Bayesian inference to solve the inverse problem (Friston & Stephan, 2007; 

Kersten & Schrater, 2002; Knill & Pouget, 2004; Knill & Richards, 1996).  

Bayesian inference is a parameter estimation framework that adopts Bayes' theorem to infer 

states of unknown hidden causes when more information (evidence) becomes available. To 



4 

 

 

perform this inference, a Bayesian inference process first constructs a prior distribution, a belief 

probabilistic distribution of all possible hypotheses 𝑝(𝐻) based on prior knowledge. When more 

evidence becomes available the system updates its belief probability distribution (posterior 

distribution), by updating 𝑝(𝐻) to 𝑝(𝐻|𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒) using the following Bayesian rule to integrate 

prior knowledge and new information:  

 𝑝(𝐻|𝐸) =
𝑝(𝐸|𝐻)×𝑝(𝐻)

𝑝(𝐸)
 (1-1) 

 

 

𝑝(𝐸|𝐻) is referred to as the likelihood, which indicates the compatibility of the evidence with 

the given hypothesis. 𝑝(𝐻) is the prior belief of all possible hypotheses. 𝑝(𝐻|𝐸) is the posterior 

distribution indicating the updated belief of all possible hypothesis. 𝑝(𝐸) is the marginal 

likelihood serving as a normalisation term. Following the principle of Bayesian inference, the 

Bayesian brain hypothesis suggests that the brain is trying to infer hidden causes of sensory inputs 

by constructing a generative model which is modelling possible causes and the generative 

processes which describe how the hidden causes yield sensory data (likelihood). When new 

sensory evidence becomes available, the internal representation of hidden causes is updated using 

Bayesian inference. In this view, the human perceptual system can be seen as a “statistical inference 

engine” that extracts statistical and causal relations from the environment to infer hidden causes 

based on these learned relations (Clark, 2012).  

The Bayesian brain hypothesis has been shown to be accurate in describing a wide range of 

human cognitive processes across different domains such as perception (Yuille & Kersten, 2006), 

motor control (Körding & Wolpert, 2004), memory (Anderson & Milson, 1989), and reasoning 

(Oaksford & Chater, 1994). For example, research has demonstrated its explanatory and predictive 
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power using sensory cue integration (Knill & Pouget, 2004). Several studies have found human 

subjects perform cue integration following Bayesian optimization (so called Bayesian ideal 

observer (Knill & Richards, 1996)) both within (Hillis, Watt, Landy, & Banks, 2004; Jacobs, 1999; 

Knill & Saunders, 2003) and across modalities (e.g. sight and touch or sight and sound) (Alais & 

Burr, 2004; Battaglia, Jacobs, & Aslin, 2003; Ernst & Banks, 2002; van Beers, Sittig, & van Der 

Gon, 1999). A study by Ernst and Banks (2002) is a classic example demonstrating how Bayesian 

inference accurately predicts behavioural performance.  

 

Figure 1-2 (a) The experimental setting and stimuli used in the study by Ernst and Banks, (2002). 

Participants were asked to integrate visual and haptic information to estimate the width of a virtual 

ridge. (b) Haptic and visual weights and Point of subjective equality (PSEs). The figure shows how 

the weighting between visual and haptic input changes with noise level for empirical and data 

predicted by Bayesian brain hypothesis. As the visual noise increases a stronger weighting is 

placed on haptic input. (figure adapted from Ernst & Banks, 2002). 

In this study, human participants were required to judge which of two ridges was taller (Figure 

1-2a). Three types of trials were presented. First, only haptic information was presented. 

Participants only received information by touching the ridge. Second, only visual information was 

presented. They were only provided visual information about the ridge. Third, they saw and 
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touched the ridge simultaneously and made integrated judgments based on both types of 

information. The Bayesian brain hypothesis suggests that, when multiple information sources 

become available to infer the hidden cause, the optimal method to integrate information is to 

compute a weighted average between estimations of signal information sources. The weights for 

information are determined by the relative reliabilities of the information sources. When one source 

is more reliable than another, the computation adds a stronger weighting to the more reliable source 

when computing the weighted average.  

In Ernst and Banks’ study, visual stimuli were presented with one of four different noise levels, 

i.e. manipulating the reliability of the visual cue. The results showed that behavioural performance 

in trials in which both visual and haptic cues were presented were very close to the predictions 

made by the Bayesian brain hypothesis (Figure 1-2b). This supports the Bayesian brain’s assertion 

that multiple information sources provide the optimal method to integrate information. As can be 

seen, when the visual noise level increases, the weighting to haptic information also increases, 

again in line with the predictions of the Bayesian brain hypothesis. Similar results have also been 

found in other perceptual and sensory-motor tasks, e.g. colour consistency (Brainard & Freeman, 

1997), motion perception, (Stocker & Simoncelli, 2006) and motion illusions (Weiss, Simoncelli, 

& Adelson, 2002). As a result of these and many other experiments the notion of perception as 

hypothesis testing as suggested by the Bayesian brain hypothesis has become a hot topic within 

Psychology and Neuroscience (Karl Friston, 2012; Gregory, 1968, 1980; Kersten, Mamassian, & 

Yuille, 2004). 
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1.1.2 Predictive coding: From Bayesian inference to Prediction 

1.1.2.1 From Bayesian inference to predictive coding: A history of predictive coding 

The notion of the brain as a hypothesis-testing machine is not a new idea, it has been around 

since the 60’s and became a crucial concept in computational neuroscience (Lee & Mumford, 2003) 

and also in the Bayesian brain framework (Knill & Pouget, 2004). The Bayesian brain hypothesis is 

usually described at Marr’s computational level (Marr, 1982). David Marr (1982) introduced a 

three-level framework to analyse a complex system:  

• Computational Level: What is the goal of the computation, why it is appropriate, and 

what is the logic of the strategy by which it can be carried out? 

• Representation and Algorithm Level: How can this computational theory be 

implemented? In particular, what is the representation of the input and output, and what is 

the algorithm for this transformation? 

• Hardware Implementation Level: How can the representation and algorithm be 

physically realized? 

The Bayesian brain hypothesis suggests a computational principle, i.e. Bayesian optimisation, 

as the ultimate goal of neural systems. Fundamentally, a computational description can be realised 

by multiple types of implementations. One particularly interesting formulation of the Bayesian 

Brain is predictive coding (Clark, 2012; Karl Friston, 2005; Hohwy, 2013; Seth, 2014). As 

mentioned above, the Bayesian brain hypothesis suggests that brains construct a generative model 

to infer the state of hidden causes. A generative model encodes the prior distribution of hidden 



8 

 

 

causes and the generative processes (i.e., the likelihood in Bayesian inference) which represent the 

compatibility of the sensory data with given hidden causes. This implies that generative models 

encode the joint probabilities between hidden causes and sensory data. Using these joint 

probabilities, the generative model can run internal simulations of the external generative processes. 

Therefore, a sensory system can generate predictions about sensory data by combining the current 

best estimation of the hidden causes with the joint probabilities. This allows a particular 

prediction-based form of Bayesian inference i.e. predictive coding. In this approach, generative 

models generate predictions about sensory input by simulating sensory data based on prior 

knowledge and generative processes. The predictions are then compared with actual sensory input. 

If the predicted sensory inputs do not fit the actual sensory inputs, a prediction error i.e. the 

difference between prediction and actual sensory evidence is computed. The model then updates its 

current estimation of the hidden sensory cause and generates new predictions about the sensory 

inputs in an attempt to minimise the current prediction error. By this process, statistical inference 

can be achieved and the model can find the best estimation of hidden causes through prediction 

error minimisation. Therefore, this predictive coding framework is identical to the view of 

“perception as a hypothesis testing process” (Gregory, 1980), in which perceptual systems test 

hypotheses by comparing predictions with actual sensory inputs. Predictive coding inherited all of 

the key characteristics of the Bayesian brain hypothesis. Importantly, predictive coding expanded 

the original framework by providing a physiologically plausible framework that was amenable to 

experimental investigation. 

Recently the predictive coding framework became hugely influential in the modelling and 

description of human cognition and neural imaging data. Currently, many different computational 

predictive coding models have been proposed to interpret empirical neurophysiological data (Karl 

Friston, 2005; Gagnepain, Henson, & Davis, 2012; M.W. Spratling, 2008; Rao & Ballard, 1999; 



9 

 

 

Seth et al., 2012; Spratling, 2012; Wacongne, Changeux, & Dehaene, 2012). Next, I will briefly 

review some of the most influential predictive coding models.  

 Rao and Ballard’s model 

A milestone model proposed by Rao and Ballard attracted large amounts of attention in 

neuroscience. Rao and Ballard (1999) presented a predictive coding model of the visual cortex. The 

model is implemented by a hierarchical network and has a superior explanatory power for 

endstopping effect. In this model, higher level layers generate predictions of the responses of 

neurons in the next lower level (Figure 1-3a) and send predictions to lower layers through feedback 

connections. Lower level layers compute the residual (prediction error) between inhibitory signals, 

from higher level predictions (Figure 1-3b), and its current state. The residual signals are then sent 

back to the higher layers through feedforward connections. These residual signals are then used to 

correct the higher-level estimates of sensory inputs and make new predictions. In this model, a 

higher-level unit connects to multiple lower level units, and therefore, has a larger receptive field. 

Higher level units integrate signals from multiple lower level units to form a new prediction (Figure 

1-3c).  
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Figure 1-3 Hierarchical predictive coding model of the visual cortex by Rao and Ballard (1999) (a) 

architecture of the hierarchical predictive coding model of the visual cortex. Higher level 

predictive estimators (PE) predict the response value of the units in the next lower level. Lower 

level units compute the difference (prediction error) between actual activity and predictions from 

higher levels and send the prediction error signal to higher level units through feedforward 

pathways. (b) The structure of predictive estimators. I: actual sensory inputs. U and UT: synaptic 

weights; r: current estimate of the input signal. rtd: top-down predictions; (c) A three-level 

hierarchical network. Three image patches at level 0 are processed by three level 1 PE units. Three 

level 1 PEs connect to one level 2 PE, suggesting a larger receptive field for higher level units 

(figure adapted from Huang & Rao, 2011) 

This architecture suggests that the top-down signal is crucial for the computation of perceptual 

information and determines the state of lower layers by the predictions at high level layers through 

feedback connections. Therefore, it can naturally explain several characteristics of V1 neurons, for 

example, the so-called end stopping effect. The end stopping effect was first described by Hubel 

and Wiesel (Hubel & Wiesel, 1965). Some neurons (end-stopping neurons) in V1 activate more 

when a contour is within its receptive field. However, their responses become smaller when the 

contour exceeds its receptive field, suggesting suppression from other neurons with receptive fields 

close to this neuron. This effect is well replicated by Rao and Ballard’s model. When the contour is 

longer than the receptive field, higher level layers can successfully predict the content of this 

receptive field by receiving information from neurons surrounding this receptive field. When the 

prediction from higher level layers mirrors the content of the input of this neuron it generates a 

smaller prediction error yielding a smaller activation (Figure 1-4a). Conversely, when the contour 

only falls within the receptive field of a single neuron, the high level layer has no information to 

predict the “atypical” input. Therefore, the higher level layer fails to predict the input content. This 

drives the low level neuron to produce a large prediction error and therefore shows a larger 

activation (Figure 1-4b). In summary, this model parsimoniously explains the endstopping effect 

within a predictive processing framework.  
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Figure 1-4 The end stopping effect simulated with the predictive coding model for visual cortex 

(Rao & Ballard, 1999) (a) a bar stimulus exceeds the central receptive field. Due to the contents of 

the central receptive field being predicted from the content of the neighbouring receptive fields, the 

prediction error generated from the central neuron is small. (b) a bar stimulus only presented in the 

central receptive field. Due to no predictive visual information from neighbouring receptive field, 

the prediction error is large for the central neuron. (figure adapted from Rao & Ballard, 1999) 

 Karl Friston’s model of predictive processing  

The core idea underlying the Bayesian brain and predictive coding frameworks is that the 

brain is an inference engine trying to optimize probabilistic representations of what caused its 

sensory input. Another generalisation form of predictive processing was proposed by Karl Friston 

at University College London (Karl Friston, 2005, 2010). His addition to the predictive processing 

framework was to add a more fundamental principle called the “free energy principle” that links 

predictive processing to statistical physics and information theory. Free energy can be seen as a 

measure that limits surprise when receiving new data into a generative model. Surprise is simply 

the improbability of sensory data, given a model of the environment. Therefore, prediction error 

minimization in predictive processing is equivalent to free energy minimization. Statistical 

inference and learning of a biological system can be achieved by minimizing the free energy of the 

internal generative models. Free-energy principle entails the Bayesian brain hypothesis and 
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predictive processing and can be seen as a biologically plausible implementation of these 

frameworks.   

This section has highlighted two key models that have been influential within the predictive 

processing field, following these models many other predictive processing models have been 

proposed that exhibit strong explanatory power across a wide range of domains (Baldeweg, 2007; 

Seth, 2014; Seth et al., 2012; Wacongne et al., 2011).  

Despite the predictive processing framework being applied to a wide range of behavioural and 

neurophysiological data, and also to phenomenological properties of consciousness such as 

emotion, feelings of presence, and the construction of the self, the role of predictive processing in 

conscious perception remains unclear. The next section will move on to review literature 

concerning the relationship between predictive processing and conscious content.  

1.2 Predictive processing and Conscious Content 

Broadly, consciousness can be broken down into two major components: arousal, which 

ranges from unconsciousness to full waking consciousness, and conscious content, the current 

content of a person’s experience This thesis focuses on conscious content within the predictive 

processing framework.  

Even early formulations of the Bayesian brain hypothesis describe conscious experience as 

the result of Bayesian inference. According to this view information processing and computation 

for perception are unconscious inference (Gregory, 1980; Helmholtz, 1866; MacKay, 1956; Neisser, 

1967; Rock, 1983). Only the results (best estimation of hidden causes) of statistical inference reach 

conscious awareness and form the content of conscious experience. The factors that render the 

computational process under statistical inference unconscious are still unknown. 
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The motion illusion in aperture problem provides a good example of unconscious inference 

(Horn & Schunck, 1981; Wuerger, Shapley, & Rubin, 1996). The aperture problem is confronted 

when using local information to determine a global pattern. Figure 1-5 shows a grating pattern 

presented in an “aperture”. When the grating is moving, a certain moving direction can be 

perceived (usually perpendicular to the line direction of the grating). However, the motion 

information is ambiguous locally because the motion pattern can be caused by infinite possibilities 

of global motion. For example, if the lines of the grating are moving to the left in the aperture, 

global patterns which move left, up-left, and up can produce the same spatial and temporal visual 

inputs (Figure 1-5b). Therefore, it is impossible to determine the global motion direction by local 

information alone.  

However, even though the local information is ambiguous, observers feel no ambiguity about 

the direction of movement, they instantly experience a certain motion direction. This observation 

implies that the computations underlying the orientation of movement is fully unconscious, 

therefore unconscious inference must play a crucial role in what we perceive consciously.  

 

Figure 1-5  The motion illusion in aperture problem. (a) shows a grating pattern presented in an 

“aperture”. The grating pattern is moving globally, but observers can only watch the pattern 

through the aperture. (b) A moving pattern in the aperture can be generated by infinite global 

moving directions, for instance the three examples in this figure. Observers usually perceive the 



14 

 

 

moving direction is perpendicular to the grating line directions. (figure adapted from Weiss et al., 

2002). 

To explain how the visual system solves the aperture problem, Weiss, Simoncelli, and Adelson 

proposed a model using Bayesian inference that describes conscious percepts of the motion 

direction in the aperture problem (Weiss et al., 2002). Following the Bayesian inference, the model 

multiplies prior of motion speed (a probability distribution that encodes previous experience) and a 

likelihood function that describes the probability of motion speed given the local motion pattern in 

the aperture. The model assumes a simple Gaussian prior which favours slow motion, i.e. higher 

probabilities for low velocities than high velocities. The likelihood incorporates sensory precision 

(inverse of sensory noise level). The model predicts that when the image contrast is low the 

precision should also be low and yield less weighting on likelihood. On the other hand, when the 

image contrast is high, the sensory signal is reliable, thus yielding higher weighing on likelihood. 

The final perceptual experience is determined by maximizing the posterior, the hypothesis with 

highest probability in the posterior distribution. This simple Bayesian model beautifully captures 

how the conscious experience of motion direction is affected by contrast, edge orientation, and 

other stimulus features, including the classic observation that stimuli appear to move slower at 

lower contrasts and vice-versa (Figure 1-6). The model also predicts a wide range of unintuitive 

motion phenomena, which are usually attributed to different neural mechanisms. 
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Figure 1-6 Bayesian inference relating to motion speed in the aperture problem. Stimulus contrast 

in an aperture determines the precision of likelihood. As a result, the perceived speed using 

Bayesian inference is modulated by stimulus contrast. A, B, and C illustrate perceived speed using 

three different stimulus contrast values (figure adapted from Hürlimann, Kiper, & Carandini, 

2002). 

 

In this example, conscious experience of motion is the final decision of Bayesian inference. 

More importantly, the complicated neural processes underlying the computation are utterly 
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unconscious. At the conscious level, we are unaware of how the brain integrates multiple features 

using Bayesian rules and computes the posterior distribution of motion directions. We also cannot 

intentionally and consciously access the prior distribution, which should be represented as 

long-term knowledge in the neural system. Therefore, a possible approach to understanding the 

neural basis of conscious perception is to investigate how unconscious inference is able to 

influence conscious perceptual decisions.  

The notion of unconscious perceptual decision making has been addressed throughout the 

history of visual science since e.g. Optics of Ptolemy 100-170 A.D. (Smith, 1996). Nevertheless, 

there is still no theory providing a fully explanatory account of how the result of the unconscious 

inference generates phenomenal experience.  

As Hatfield states (2005, p. 120): “to be fully explanatory, unconscious inference theories of 

perception must explain how the conclusion of an inference about size and distance leads to the 

experience of an object as having a certain size and being at a certain distance, or how a 

conclusion about a spectral reflectance distribution yields the experience of a specific hue. In other 

words, the theories need to explain how the conclusion to an inference, perhaps conceived 

linguistically, can be or can cause visual experience, with its imagistic quality. This is the 

phenomenal experience problem” 

As the explanatory power of predictive processing continues to become more prominent 

within neuroscientific and consciousness research, it is increasingly essential to understand this 

relationship between unconscious statistical inference and conscious experience.  

This section describes how predictive processing plays a crucial role in perception through 

unconscious perceptual inference. The next section will introduce and review the hierarchical 

predictive processing framework, which states that the same principle of perceptual inference can 

be used across sensory hierarchies in order to process differing levels of information. 
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1.3 Hierarchical predictive processing  

Predictive processing has been proposed as a unifying principle underlying all neural 

processing, though whether this ambitious claim stands up in practice remains to be seen. The 

human visual system, for example, is organized hierarchically and has extensive reciprocal 

cortico-cortical connections between different cortical levels (Felleman & Essen, 1991). Predictive 

processing models of vision therefore needed to address the hierarchical structure of neural systems 

and as a result have been primarily discussed in terms of a hierarchical structure (Clark, 2012; Karl 

Friston, 2002; Huang & Rao, 2011; Mumford, 1992). For example, the predictive processing model 

of the visual cortex proposed by Rao and Ballard, is modelled as a hierarchical network, with 

higher level units attempting to predict the responses of units in the next lower level. In the 

hierarchical predictive processing framework, prediction units at higher levels within the model 

aim to predict the states of units at the next lower level through a generative process. Prediction 

errors at lower levels within the model are computed by comparing the prediction generated by the 

higher level and the actual states of the lower level units. The lower level units pass the prediction 

error signal through feedforward pathways to higher level units, which has the effect of adjusting 

estimations of hidden causes and modifying predictions. At the lowest level of this hierarchy, the 

prediction units are tasked with predicting actual sensory inputs. If these predictions do not fit the 

sensory inputs, the prediction errors propagate from lower levels to higher levels one by one 

through feedforward connections between each level. This process iteratively occurs until 

prediction errors have been minimised across the whole hierarchy, which has the effect that the 

prediction closely mirrors the actual input, thus completing the inference process.  
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Deep hierarchical generative models outperform models with single or few levels (Hinton, 

2007). Due to this multilevel structure, hierarchical predictive processing is capable of modelling 

the generative process of external multilevel causal structures and is able to infer abstract hidden 

causes in the environment (Karl Friston, 2005; Hohwy, 2014). The hierarchical structure 

progressively encodes more complex features from lower levels to higher levels and thus is able to 

learn complicated, non-linear relationships in real world scenarios. This hierarchical structure also 

implies hidden causes at different spatial and temporal scales can be inferred and predicted. In 

terms of spatial scale, lower level units predict a smaller spatial input area, whereas higher level 

units encode statistical relationships between several lower level units. Therefore, predictions from 

higher level units cover a larger input area compared to lower level units. Rao and Ballard (1999), 

demonstrated that receptive fields of higher level units are larger than lower level units in a 

hierarchical predictive coding model (Figure 1-3c and Figure 1-7).  

 

Figure 1-7 Learned synaptic weights level-1 and level-2 modules in the hierarchical predictive 

coding model of the visual cortex. The receptive fields of neurons at level-2 are larger than the 

receptive fields of level-1 neurons, consistent with human and animal visual processing hierarchy. 

(taken from Rao & Ballard, 1999, Fig2). 
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In terms of temporal scales, lower levels learn and predict fast changing regularities such as 

contour and orientation. While higher levels generate predictions about longer-term invariant 

regularities such as faces (Hohwy, 2014). An example by Friston et. al., (2009) showed that 

information of size and strength of a bird can be extracted from bird songs, indicating that hidden 

causes in a slower time scale (bird identity) can be inferred by a fast changing time scale (bird 

songs).  

Wacongne et al. directly tested the hierarchical predictive coding hypothesis using a 

hierarchical auditory novelty paradigm using EEG and magnetoencephalography (MEG) 

(Wacongne et al., 2011). Participants were presented with blocks of auditory sound strings 

consisting of a rare sequence pattern (xxxxX) and a frequent pattern (xxxxY). This design creates 

local and global regularities. The local regularity is established by the standard tones (x) which 

made up the majority of the string. Therefore, when a deviant tone (Y) was presented, it violated the 

local regularity and caused a local prediction error. The global regularity was established by 

presenting a frequent pattern (xxxxY) in a block. Presenting a rare sequence pattern (xxxxX) 

violated the global regularity and caused a global prediction error. Wacongne et al. examined the 

human neural correlates of local and global prediction errors using EEG and MEG. The results 

show that the local deviant tone (Y) elicited a Mismatch negativity (MMN), a neurophysiological 

index of auditory change detection, even though the standard pattern (xxxxY) was globally 

predictable, suggesting that the MMN was sensitive to the local regularity but insensitive to the 

global regularity pattern. A temporally late mismatch response was found only responding to the 

violation of the global pattern (xxxxX) even though the stimulus was locally standard (the fifth 

stimulus X in xxxxX). This suggests a higher-order regularity learning mechanism exists which 

generates high-level predictions according to global regularities. To further examine hierarchical 

predictive coding, Wacongne and her colleagues examined the neural responses elicited by 
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stimulus omission. As mentioned above, the hierarchical predictive coding framework suggests 

that higher level predictive units generate predictions about the state of units in the next lower level. 

Therefore, high level predictions indirectly influence low level predictions via feedback 

connections down to the lowest level of the sensory system. To test this hypothesis, the authors 

designed a stimulus omission condition in which an expected stimulus was omitted to test 

top-down prediction. The omissions of the fifth stimulus in xxxxY block was compared with the 

one in xxxxX block. In the xxxxX, the omission of the fifth stimulus (X, the local standard) violates 

only local regularities. In contrast, in xxxxY block, the local deviant stimulus (Y) was expected to 

occur through high level prediction after four local standard stimuli (x). Therefore, the omission of 

the local deviant stimulus (Y) violates both local and global predictions. The result showed that the 

omission in the xxxxY block elicited a larger temporally early mismatch response than the 

omission in the xxxxX block, supporting the prediction by hierarchical predictive coding 

framework.  

To summarize, hierarchical predictive coding is capable of encoding a wide range of 

information types from concrete to abstract, using low to high levels within the hierarchy. The 

benefits of a hierarchical predictive coding model have been demonstrated through numerous 

behavioural and neuroimaging studies (Tenenbaum, Kemp, Griffiths, & Goodman, 2011; Tervo, 

Tenenbaum, & Gershman, 2016; Wacongne et al., 2011). In terms of information processing within 

a sensory hierarchy questions remain about the effects that differing levels of sensory information 

i.e. low, cross-modal and abstract levels of information, have on predictive processing. An 

important feature of these models is that they have been shown to learn regularities and predict 

hidden causes at different spatial and temporal scales. Next I will review the evidence showing 

predictive processing is involved in different types of regularity learning, highlighting an often 

overlooked point, that in order to make a prediction about the future, first a system must learn 
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environmental regularities. 

 

 

 

1.4 Predictive processing and Regularity Learning 

The operation of predictive processing relies largely on adequate knowledge of environmental 

regularities. Effective predictions can only be made when the environmental regularities are 

successfully extracted and learned (Seriès & Seitz, 2013). Theorists have suggested that a system 

using predictive processing should be able to learn environmental regularities and model the causal 

regularities of the external world (Hohwy, 2014). Empirically, previous research has showed that 

the human brain is capable of learning complex statistical relationships (e.g. statistical learning, 

Fiser, Berkes, Orbán, & Lengyel, 2010). However, it is still unclear to what extent the regularities 

in the environment can be learned and incorporated into predictive processing to predict future 

events. In this thesis, I focus on three types of regularity learning: associative learning (Chapter 2), 

sequence learning (Chapter 3), and stimulus repetition (Chapter 4). The following are brief 

introductions to previous research into the relationship between predictive processing and these 

three types of regularity learning.  

1.4.1 Associative learning  

There is a growing body of evidence supporting the claim that neural responses of associative 

learning are compatible with the predictive processing framework (Kok, Brouwer, Gerven, & de 

Lange, 2013; von Kriegstein & Giraud, 2006). A good example carried out by Kok, Jehee, and 
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de Lange demonstrated that during an auditory-visual cross-modal association task there was task 

relevant predictive information located within the visual cortex (Kok, Jehee, & de Lange, 2012) 

using fMRI. In this study participants were required to compare orientations or contrast (in 

different blocks) of two consecutive grating stimuli in each trial. The two grating stimuli were 

always preceded by an auditory tone (the cue). The auditory cue consisted of either a low or high 

tone which 75% of the time predicted the orientation of the subsequent grating stimuli. Therefore, 

after several exposures, participants learned this audio-visual association. With multivariate pattern 

analysis (MVPA), they found when the orientations of the grating stimulus were predicted by the 

cue, MVPA classifiers were better able to classify the orientation from the visual cortex compared 

to unpredicted orientations, suggesting that the cross-modal association shaped the representation 

within the visual cortex. This result is consistent with the expectations of the predictive processing 

framework, which posits that high-level cortical areas can predict and modulate the states of 

low-level neurons. More importantly, Kok et al. found that the amplitude of BOLD signals was 

higher when orientations of the grating stimulus were unexpected compared to expected. A finding 

that is again compatible with a predictive processing framework and suggests the neural processing 

underlying the BOLD signals were driven by the prediction error. When the prediction is not 

consistent with the visual input, low-level visual areas generate larger prediction error signals. 

Additionally, a study by den Ouden et al. showed similar “prediction suppression” and 

prediction-error related neural activation in a cross-modal associative learning task (den Ouden, 

Friston, Daw, McIntosh, & Stephan, 2009). Activity in primary visual cortex and putamen 

progressively positive correlated learning-dependent surprise. Together, the results of these studies 

provide support for the predictive processing framework and suggest that at least some forms of 

associative learning may be driven by predictive processing.  
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1.4.2 Sequence learning  

Sequence learning is a well-studied ability among human and other animals (Conway & 

Christiansen, 2001; Goldstein et al., 2010). Neural systems are capable of learning consecutive 

events with deterministic or probabilistic spatial and temporal relationships. From a predictive 

processing point of view sequence learning is thought to occur due to a generative model, which 

encodes the transitional probabilities between consecutive events from the sequence history. 

Therefore, based on sequence histories, predictive processing is able to generate predictions about 

incoming sensory events. Recent evidence shows that when a sensory event is predictable, due to 

regularities within the sequence pattern, the neural responses elicited by an expected event is 

suppressed, a finding expected within the predictive processing framework (Karl Friston, 2005). 

For example, a study by Aizenstein et al., shows that implicit sequence expectation about colour 

and location is able to supress neural responses to visual input. In this study participants viewed 

consecutive sequences consisting of a series of items with two attributes, colour and location 

(Aizenstein et al., 2004). They were required to press different buttons according to the colour or 

shape of an item. The colours and shapes of items were determined independently and follow two 

different first-order Markov chains (see Figure 1-8). Therefore, this design allows for two sequence 

regularities to be embedded in the sequence, task-relevant (explicit) and task-irrelevant (implicit) 

features. They also monitored the awareness of the sequence knowledge for each participants 

during the whole experiment. The results showed that when the task-irrelevant feature was 

consistent with prediction visual regions (V1, V2, and V3) showed decreased activity, suggesting 

the implicit sequence learning may involve predictive processing.  
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Figure 1-8 The first-order Markov chain transition rules used by Aizenstein et al. (2004). Objects in 

a sequences have two changing attributes, colour and location. The colours and shapes of items 

were determined independently and follow two different first-order Markov chains (a and b). 

(figure adapted from Aizenstein et al., 2004) 

Similarly, Huettel, Song, and McCarthy manipulated sequence uncertainty of a binary 

sequence of eight stimuli so that the uncertainty changed dynamically over time (Huettel, Song, & 

McCarthy, 2005). They found activity in prefrontal, parietal, and insular cortices increased with 

increasing uncertainty, suggesting that predictable sequences elicited lower neural responses.  

A more recent study by Davis and Hasson (Davis & Hasson, 2016) showed that not only 

low-level sensory features, such as colour, shape, etc., but also high-level expected semantic 

features caused a reduction in activation. Suggesting that a marker of predictive processing can also 

be found when a sequence has high-level semantic regularities. The transition probabilities were 

determined by two first-order Markov chains for the location and semantic category of the next 

image. There were three conditions in this study. The sequence was embedded with either the 

location, semantic, or both regularities. All three conditions showed reduction of the BOLD 

response in left rostral anterior cingulate cortex, bilateral putamen, caudate, thalamus, right 

precentral gyrus, and left visual cortex. More importantly, the predictability of the semantic 

category decreased BOLD activity in areas of the ventral visual stream and lateral temporal cortex 

which is considered to be a key semantic processing area. Predictability of location of stimuli 

decreased activation in dorsal fronto-parietal areas which are thought to be responsible for the 

endogenous control of spatial attention. 
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In another study by Reithler, van Mier, and Goebel, participants learned movement sequences 

by continuously tracing paths of different predefined mazes (Reithler, van Mier, & Goebel, 2010). 

They found BOLD signals of learning-related networks of cortical areas decreased over time 

during motor sequence learning. Further analyses showed decreased activation when task 

performance increased in bilateral supplementary motor areas (SMA), posterior intraparietal sulcus, 

and anterior insula. The authors state that continuous motor sequence learning yields efficient 

neural processing in recruited cortical areas. The result can be also interpreted by a reduction in 

prediction errors that are generated when movements more precisely follow the maze paths. A 

similar result was found by Steele and Penhune (2010). They found that across several days of 

motor sequence learning, global BOLD signals decreased along with behavioural performance 

improved in the network for motor learning including cerebellum, premotor cortex, basal ganglia, 

pre-supplementary motor area, and supplementary motor area (Steele & Penhune, 2010).  

1.4.3 Stimulus repetition  

Stimulus repetition is the simplest form of statistical regularity in the environment. Previous 

research has shown neural systems are sensitive to this form of regularity (Kalanit Grill-Spector, 

Henson, & Martin, 2006). Here, I review two well studied neural correlates of stimulus repetition, 

repetition suppression and the odd-ball effect.  

1.4.3.1 Repetition suppression 

Repetition suppression refers to a reduction in neural activation when stimuli are repeated 

(Buckner et al., 1998; K. Grill-Spector et al., 1999; Henson, Shallice, & Dolan, 2000; Kourtzi & 

Kanwisher, 2001; Naccache & Dehaene, 2001; van Turennout, Ellmore, & Martin, 2000; Wiggs & 

Martin, 1998). Studies have demonstrated repetition suppression for different representations 
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across levels of the visual processing hierarchy (Kalanit Grill-Spector & Malach, 2001), suggesting 

a ubiquitous characteristic in neural systems. An earlier theory of repetition suppression suggests 

that decreases in activation are due to neuron fatigue as a result of stimulus repetitions (Kalanit 

Grill-Spector et al., 2006) . This point of view only considers bottom-up information flow through 

sensory cortex.  

In contrast to these early theories, Summerfield and his colleagues showed that expectation 

plays a role in repetition suppression (Summerfield et al., 2008). In this study, the probability of 

stimulus (face) repetition was manipulated. Participants were required to identity inverted faces in 

a stimulus stream. In one block, the probability of face repetition in two consecutive presentations 

was high (75%). Therefore, after exposures to several presentations, participants developed an 

expectation about stimulus repetition. In the other block, stimulus repetition rate was only 25%, and 

hence, repetitions were not expected. The result showed that repetition suppression in the fusiform 

face area (FFA) was significantly larger when stimulus repetitions were expected compared to 

unexpected. This finding is consistent with the predictive processing framework suggesting 

top-down predictions are crucial in modulating neural responses for sensory inputs. When 

repetition is expected, the visual system is able to generate more precise predictions about the 

upcoming face stimulus, resulting in less prediction error.  In contrast with the neuron fatigue 

theory of repetition suppression, the predictive processing framework more parsimoniously 

explains how expectation influences neural responses during repetition of sensory information. In 

sum, the study of repetition suppression supports the notion that statistical regularities can be 

extracted from the environment by the neural systems yielding more precise predictions and lower 

prediction errors.  



27 

 

 

1.4.3.2 The odd-ball effect  

In contrast to repetition suppression, the neural correlates of an unexpected sensory event are 

usually tested with an odd-ball paradigm (Squires, Squires, & Hillyard, 1975). In the odd-ball 

paradigm, successive presentations of frequent stimuli (standard stimuli) are interrupted by 

infrequent stimuli (deviant stimuli). The infrequent stimuli elicit a “surprise response” in neural 

systems. By measuring the surprise responses, one can examine neural mechanisms of expectation 

and novelty (e.g., Folstein & Van Petten, 2008; Hruby & Marsalek, 2002).  

To interpret the result of the odd-ball paradigm within a predictive processing framework, 

when a deviant stimulus is detected, the change of stimulus property causes a prediction error 

which elicits a larger neural response than elicited by standard stimuli. 

One notable example of the odd-ball effect within the auditory domain is the mismatch 

negativity (MMN). MMN is an event-related potential (ERP) component usually shows in the 

auditory odd-ball paradigm. When human subjects are presented with a series of auditory stimuli 

consisting of standard and deviant stimuli, the deviant stimuli elicit larger electric potentials than 

the standard stimuli. The peak of MMN occurs about 100–200 ms from the onset of deviant stimuli 

(Garrido, Kilner, Stephan, & Friston, 2009; Näätänen, 1995). MMN can be elicited without 

attention (Näätänen, Paavilainen, Rinne, & Alho, 2007; Näätänen, Paavilainen, Titinen, Jiang, & 

Alho, 1993, but still under debate, see Sussman, 2007) and can even be found in coma patients 

(Fischer et al., 1999; Fischer, Morlet, & Giard, 2000; Morlet, Bouchet, & Fischer, 2000; Näätänen 

& Escera, 2000; Wijnen, van Boxtel, Eilander, & de Gelder, 2007). Therefore, MMN has been 

considered as a pre-attentive neural response.  

Similar to auditory stimulation, growing evidence shows visual odd-ball stimuli are also able 

to induce mismatch ERPs. The finding of visual mismatch negativity (vMMN) shows similar 
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novelty detection mechanisms between auditory and visual information processing (Stefanics, 

Kremláček, & Czigler, 2014).  

Early theories of MMN focus on two interpretations. The model-adjustment hypothesis 

suggests that MMN was driven by neural processes of the auditory change detection process, 

located in temporal and frontal regions (Näätänen, Jacobsen, & Winkler, 2005; Tiitinen, May, 

Reinikainen, & Näätänen, 1994). This theory emphasises a pre-attentive sensory memory 

mechanism that learns auditory regularities and auditory context in the environment. MMN then is 

driven by a comparison computation in which the current auditory input is compared with the 

memory trace of previous inputs (Näätänen, 1992). According this hypothesis, the MMN is thought 

to reflect a perceptual model updating processes.  

Another theory of the MMN suggests that it is driven by the adaptation of local neurons in the 

auditory cortex. The adaptation hypothesis is proposed by Jääskeläinen et al (2004), who suggests 

that adaptation to repeated auditory input causes attenuation and delay of the N1 (Loveless, 

Levänen, Jousmäki, Sams, & Hari, 1996). In contrast to the model-adjustment hypothesis which 

emphasises novelty detection, the adaptation hypothesis argues that MMN is caused by adaptation 

to standard stimuli. The N1 response to frequent auditory input is delayed and suppressed with 

stimulus repetition. Horváth et al., provides evidence that the amplitude of N1 component is 

affected by deviant stimuli (Horváth et al., 2008). Therefore, suggesting that the MMN may be due 

to adaptation of local neurons although the adaptation hypothesis is still not widely accepted (see 

Näätänen et al., 2005).  

Predictive processing has been considered as a candidate mechanism of MMN. According to 

predictive processing, the auditory system tracks input regularities and makes predictions. A 

comparison between bottom-up inputs and top-down predictions result in computation of 

prediction errors. The resulting comparison (prediction error) is then used to update internal models 
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encoding input regularities. In this framework, MMN is thought to be driven by neural response of 

prediction error. During the repetitions, the sensory inputs can be better predicted. This results in 

lower prediction error and absence of MMN (Baldeweg, 2006; Karl Friston, 2005).  

The predictive processing framework shares several properties with the model-adjustment 

hypothesis. Both theories describe an internal model which learns regularities and makes 

predictions about sensory inputs. Predictive processing further provides a neuronally plausible and 

computational framework for MMN. Friston (2005) therefore considers MMN as neural evidence 

of predictive processing in his model.  

Garrido et al. (2009) re-explained possible MMN mechanisms and proposed that predictive 

processing can also explain the contribution from neural adaptation to MMN as described by the 

adaptation hypothesis. The Bayesian inference nature of predictive processing considers precision 

of information source in inference processes. The result of inference is a weighted average between 

top-down prior and bottom-up sensory input based on their relative precisions. Therefore, when 

standard stimuli are repeated, top-down prior can more precisely predict sensory inputs. This 

results in more weight being assigned to top-down signals and less weight assigned to bottom-up 

input, causing less impact from sensory inputs. This prediction from predictive processing is 

consistent with the adaptation hypothesis. Therefore, predictive processing provides an integrated 

view of MMN that unifies the model-adjustment and the adaptation hypotheses. Garrido et al. 

directly tested potential computational models of MMN by Bayesian model comparison (Garrido et 

al., 2008). The result showing that, as predictive processing expected, the combination of the 

model-adjustment hypothesis and the adaptation hypothesis best explained the generation of MMN. 

More recently, as mentioned in section 2.3, Wacongne et al (2011) provided direct evidence 

showing that the MMN amplitudes in a hierarchical odd-ball paradigm can be best explained by the 

hierarchical predictive coding framework.  
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In summary, the predictive coding framework is able to combine apparently distinct models of 

the MMN, which embodies both adaptation and model-adjustment, while also reconciling previous 

empirical findings relating to MMN.  

1.5 Motivation and outline of dissertation   

As can be seen from the literature review, over the last two decades there has been 

considerable advance in theoretical frameworks and accumulating empirical evidence supporting 

the predictive processing framework. These breakthroughs have highlighted the explanatory power 

of this framework when describing neurophysiological responses, and even giving insights into the 

anatomical organization of the human brain.  

However, crucially we still have a limited understanding about fundamental aspects of 

predictive processing, such as how it deals with different types of information, learns statistical 

regularities and perhaps most fundamentally of all what its relationship to conscious experience is. 

The predictive processing framework has even been touted as a candidate unified theory of the 

brain (Karl Friston, 2010), however it still requires a systematic investigation into the role that 

predictive processing plays across different brain functions for this claim to be accepted. While 

validating a predictive processing based unified theory of the brain is beyond the scope of a single 

thesis, this thesis aims to investigate the major gaps in our current understanding of the predictive 

processing framework via three broad research topics: 

1.The relationship between unconscious statistical inference reflected by predictive 

processing and conscious access.  

2. The relationship between differing levels of information i.e. low level, cross-modal, etc. 

within the sensory hierarchy and the predictive processing framework. 
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3. Differing forms of regularity learning used to make predictions about future events within 

the predictive processing framework. 

The three topics will be addressed across three studies making up Chapters 2, 3, and 4 of this 

thesis. Briefly, I will now describe the motivation behind each chapter. 

1.5.1 Chapter 2 (study 1): Predictive processing and conscious access  

In chapter 2, I investigate the relationship between predictive processing and conscious 

content. I examine whether predictions about visual events caused by auditory cues could facilitate 

conscious access to a visual stimulus. I trained participants to learn cross-modal associations 

between auditory cues and colour changes of a visual stimulus. I hypothesised that conscious 

access to such representations could be influenced by cross-modal cues if strong associations were 

formed via extensive training. To test this, I delivered an auditory cue while a visual target was 

rendered subjectively invisible via MIB, and I then gradually changed the colour of the target to 

assess how the congruency between the cue and the visual sensory event influenced the timing of 

subjective target reappearance. Timing was compared with that from control trials in which the 

target was physically removed. In this way, it was possible to quantify the effects of prediction on 

awareness while minimizing the impact of other cognitive processes such as attention and response 

bias. 

1.5.2 Chapter 3 (study 2): Predictive processing with low-level visual information 

In Chapter 3, I investigated how low level information within the sensory hierarchy is dealt 

with by the predictive processing and its relationship to regularity learning, and how this regularity 

learning can be used to make predictions about future events. A sign that the visual system actively 

processes and predicts sensory signals is revealed by the recently discovered ‘perceptual echo’, in 
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which the cross-correlation between a sequence of randomly fluctuating luminance values and 

occipital electrophysiological (EEG) signals exhibits a long-lasting periodic (~100ms cycle) 

reverberation of the input stimulus (VanRullen & Macdonald, 2012). As yet, the mechanisms 

underlying the perceptual echo and its function are unknown. Reasoning that natural visual signals 

often contain temporally predictable, non-periodic features, we hypothesised that the perceptual 

echo may reflect an underlying iterative learning process (governed by predictive processing) that 

is associated with regularity learning. To test this idea, I presented subjects with successive 

repetitions of a rapid non-periodic luminance sequences, and examined the modulation from 

sequence repetition to perceptual echo. To investigate the perceptual echo further I created a 

predictive processing model to simulate and explain key features of the perceptual echo in order to 

validate that the empirical findings of this could indeed be accounted for by predictive processing 

mechanisms.  

1.5.3 Chapter 4 (study 3): Temporal predictive processing using supra-modal information  

In chapter 4, I investigated how differing levels of information, this time regularity learning of 

temporal duration is dealt with by predictive processing and how this form of regularity learning is 

used to make predictions about future events. Temporal duration comprises abstract and 

supra-modal information that is independent from modality-dependent sensory features. Therefore, 

temporal duration allows us to understand how predictive processing works on high-level, abstract 

information. In this study, I examined predictive processing using a duration odd-ball paradigm 

(Chen, Huang, Luo, Peng, & Liu, 2010; Jacobsen & Schröger, 2003; Näätänen, Paavilainen, & 

Reinikainen, 1989; Tse & Penney, 2006; see also review Ng & Penney, 2014) and examined neural 

responses using EEG. I used a re-designed version of the duration odd-ball paradigm to isolate the 

neural correlates of predictive processing for duration information. I then used event-related 
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potentials (ERPs) and state-of-the-art multivariate pattern analyses (MVPA) to investigate the 

supra-modal nature of temporal predictive processing. Finally, I investigated the neural correlates 

of a high-level temporal regularity learning and prediction mechanisms that receives temporal 

information from visual and auditory inputs and integrates duration and rhythmic information to 

determine a unified temporal prediction about future events.  

1.5.4 An integrated approach  

The three studies were designed to specifically address how predictive processing deals with 

diverse types of predictive information in different contexts and tasks to further provide a broader 

understanding of the predictive processing framework.  

1.5.4.1 Conscious access  

To investigate the relationship between predictive processing and conscious content, Chapter 

2 focuses on quantifying the effects of prediction on conscious access, while Chapter 3 examines 

how low-level visual sequence learning that occurs unconsciously affects predictive processing. 

Chapter 4, investigates the temporal domain using information that is both abstract and 

supra-modal, using a paradigm that has been shown to automatically detect change in sensory 

features without the need for conscious access. Therefore, for each of these experiments it is 

possible to examine the mechanisms of predictive processing in operation at differing conscious 

levels.  

1.5.4.2 Sensory hierarchy 

In terms of information processing in a sensory hierarchy, Chapter 2 focused on cross-modal 

predictive information. Chapter 3 then examined low-level visual luminance dynamics, predictive 

information was embedded in the repetition of the modality-specific low-level visual features. In 
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Chapter 4 the predictive information was supra-modal duration information, in this case the neural 

system needs to extract the abstract temporal information to learn the regularity of duration 

repetition. This thesis will examine predictive processing through the three different levels of 

sensory information (modality-specific, cross-modal, and supra-modal). 

1.5.4.3 Regularity learning 

In terms of how different formats of regularity learning affect predictive processing, in the 

thesis I examined predictive processing via three common types of regulatory leaning utilized in 

previous studies from psychology and neuroscience. Chapter 2 focuses on predictive processing 

using associative learning. Chapter 3 examined predictive processing in sequence learning and 

sequence repetition. In Chapter 4, I examined predictive processing by stimulus repetition. The 

three types of regularity learning cover a broad range of cognitive aspects used in learning 

predictive information. I will investigate and discuss how the three types of regularity learning 

contribute to predictive processing. 

1.6 Unique Contribution 

Overall this thesis provides a global picture of predictive processing that aims to understand 

how the brain uses different types of predictive information in different contexts and tasks. 

This thesis has provided the following novel contributions to the field of predictive processing: 

1. Cross-modal predictive information, due to extensive training, facilitates conscious 

access. 

2. I Identified a new type of temporal regularity learning, reflected by the perceptual echo 

and placed the results within a predictive processing framework. 
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3. I identified a neural correlate of temporal prediction based on duration processing that 

was shared between visual and auditory sensory predictive processing. 
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Chapter 2 

Cross-modal prediction changes the timing of conscious access during motion-induced 

blindness 

2.1 Introduction 

As mentioned in Chapter 1, the increasingly influential framework of ‘predictive processing’ 

(PP) posits that the brain continuously generates and updates predictions about incoming sensory 

signals(Clark, 2012; Karl Friston, 2005; Seth, 2014)(Clark, 2012; Karl Friston, 2005; Seth, 2014) 

(Clark, 2012; Karl Friston, 2005; Hohwy, 2013; Seth, 2014) according to principles of Bayesian 

inference. Accumulating empirical evidence suggests that perceptual predictions or expectations 

strongly influence conscious perception. For example the perceptual hysteresis effect shows that 

prior knowledge can enhance and stabilise conscious perception: previously perceived stimuli can 

bias conscious perception to represent subsequent stimuli in the same form (Hock, Scott, & 

Schöner, 1993; Kanai & Verstraten, 2005; Kleinschmidt, Büchel, Hutton, Friston, & Frackowiak, 

2002; D. Williams, Phillips, & Sekuler, 1986).  

A central aim of this thesis is to link predictive processing with conscious access. Recent 

evidence also suggests that prediction facilitates conscious access (Pinto, Gaal, Lange, Lamme, & 

Seth, 2015). Melloni and colleagues showed that thresholds of subjective visibility for previously 

seen degraded targets were lower than for novel degraded targets, with changes in threshold 

accompanied by a shift in a neurophysiological signature of conscious awareness to an earlier time 

point (Melloni, Schwiedrzik, Müller, Rodriguez, & Singer, 2011). Similarly, Lupyan and Ward 

(2013) found that visually presented objects preceded by congruent auditory cues (spoken words) 

were faster to break through continuous flash suppression than those preceded by incongruent 

cues. These results, and others, collectively suggest that prior knowledge can enhance and 



37 

 

 

accelerate conscious access. However, research on how he development of expectation influences 

this acceleration effect is still lacking.  

The current study was designed to assess how the learning of prior expectations changes the 

timing of conscious access. I intensively trained participants on a cross-modal predictive 

relationship between an auditory tone and a colour change of a visual target, and they were tested 

on separate experimental sessions how the learned predictive association affected the timing of 

conscious access of the visual target. Training phases and test phases were interleaved in order to 

explore the temporal nature of the influence of cross-modal perceptual predictions on conscious 

access. 

To precisely measure the timing of conscious access, I employed the well-known 

motion-induced blindness (MIB) paradigm (Y. Bonneh, Cooperman, & Sagi, 2001). In MIB, a 

peripheral visual target disappears and reappears from awareness periodically when it is presented 

superimposed on a rotating background pattern. Because disappearances and reappearances are 

clear-cut in MIB (as compared to, for instance, binocular rivalry), participants can reliably report 

the timing of conscious access to the target. Moreover, previous research on MIB has shown that 

subjectively unseen visual information can still be integrated and updated to form new object 

representations unconsciously (Mitroff & Scholl, 2005). Furthermore, recently, Wu and 

colleagues demonstrated that a transient visual change (a flashed ring) can influence the timing of 

conscious access of an unseen target (Wu, Busch, Fabre-Thorpe, & VanRullen, 2009). These 

findings speak to the persistence of representations of target stimuli during periods of subjective 

invisibility during MIB. These characteristics of MIB allows us to induce visual expectation, 

while the persisting unconscious visual processing is on going and to examine how learning of 

visual expectation influence the timing of conscious access of the unconscious visual information.  

To establish visual expectation, I trained human participants to learn an audio-visual 
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cross-modal association. Previous studies on association learning have shown that a learned 

association can be reactivated when either a cue or a target is unconscious. For instance, after 

learning in classical conditioning, autonomic responses (e.g. changes in skin conductance) can be 

triggered without conscious knowledge of the CS-US contingencies (Hamm & Vaitl, 1996, 1996; 

Knight, Nguyen, & Bandettini, 2003; Morris, DeGelder, Weiskrantz, & Dolan, 2001; Morris, 

Ohman, & Dolan, 1999; Morris, Ohrnan, & Dolan, 1998; Whalen et al., 1998; M. A. Williams, 

Morris, McGlone, Abbott, & Mattingley, 2004). Moreover, unconscious visual processing has been 

found to be influenced by expectation from explicit cues. In a blindsight patient study, Kentridge et 

al. showed that an explicit valid spatial cue helped discriminate orientations of a target stimulus 

which were presented within the patient’s blind visual field without those targets eliciting 

awareness (Kentridge, Heywood, & Weiskrantz, 2004). This result suggests that informative 

expectations from an explicit cue can modulate visual processing even when the visual information 

is processed unconsciously. Taken together, I predicted that the learned expectation elicited by a 

firm audio-visual association should influence the unconscious visual processing which is visually 

supressed by MIB. 

Previous research has also shown that microsaccades can easily trigger target reappeance in 

MIB (Y. S. Bonneh et al., 2010; Hsieh & Tse, 2009; Martinez-Conde, Macknik, Troncoso, & Dyar, 

2006). Therefore, microsaccades may cause measuring noise in the reappearance timing. To avoid 

potential microsaccades and minimise visual interference in our experiment, it is necessary to 

present the cue through a modality other than vision. In the current study, an auditory informative 

cue was presented to elicit cross-modal expectation. Studies have been shown that concurrent 

presented cross-modal information from tactile (Lunghi, Binda, & Morrone, 2010), olfactory 

(Zhou, Jiang, He, & Chen, 2010), and auditory stimuli (Y.-C. Chen, Yeh, & Spence, 2011; Conrad, 

Bartels, Kleiner, & Noppeney, 2010) can modulate the suppression time of binocular rivalry based 
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on the perceptual or semantic congruency between the cross-modal information and supressed 

visual contents. Therefore, the auditory cue used in our experiment can serve the function of 

inducing visual expectations without interfering with the stability of MIB state.  

I hypothesised that conscious access to such representations could be influenced by 

cross-modal cues if strong associations were formed via extensive training. To test this hypothesis, 

I delivered an auditory cue while visual target was rendered subjectively invisible via MIB, and I 

then gradually changed the colour of the target to assess how the congruency between the cue and 

the visual sensory event influenced the timing of subjective target reappearance. Timing was 

compared with that from control trials in which the target was physically removed. In this way, I 

were able to quantify the effects of prediction on awareness and while minimizing the impact of 

other cognitive process such as attention and response bias. The main prediction was that this 

effect on conscious access can be modulated though the interleaved association training sessions 

across the whole experiment.  

2.2 Methods 

2.2.1 Participants 

Participants were 26 healthy students from the University of Sussex (7 male, 18–31 years; 

mean age 23.15 years, normal or corrected-to-normal vision). All of them provided informed 

consent before the experiment and received £15 or course credits as compensation. Two 

participants were excluded from data analysis because they misunderstood the instructions as to 

key responses. The experiment was approved by the University of Sussex ethics committee. 
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2.2.2 Stimuli and Procedure 

Stimuli were generated using the Psychophysics toolbox (Brainard, 1997) and all visual stimuli 

were presented on a Dell Trinitron CRT calibrated display (resolution 1048x768; refresh rate 100 

Hz) with a black background. Participants sat 50 cm away from the monitor, using a chin rest. A 

linearized colour lookup table was used for gamma correction (𝛾 = 2.2).  

Participants took part in a total of 4 training blocks and 4 MIB (testing) blocks across two 

consecutive days. As shown in Figure 2-1, each participant completed four interleaved training 

and MIB block on each day as follows: (i) Training (200 trials); (ii) MIB (90 trials); (iii) Training 

(100 trials); (iv) MIB (90 trials).  
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Figure 2-1: Organization of the experiment. Participants took part in two sessions on two 

consecutive days. Each session consisted of two 'training' and two 'MIB' blocks. Each MIB block 

consisted of 60 experimental trials interleaved with a block of 30 control trials.  

 

2.2.2.1 The training procedure.   

At the beginning of a training trial, participants were presented with a white fixation point 

and a blue target stimulus (Figure 2-2). The fixation point and the target were both circular dots 

subtending 0.2 degrees of visual angle. The fixation was presented at the centre of the screen and 

the target was to the upper-left of the fixation at 5.4 degrees of visual angle. Participants were 
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instructed to maintain their gaze at the central fixation point and to pay attention to the peripheral 

target during the entire trial. Following a delay (drawn from a random uniform distribution of 1-2 

sec) an auditory cue (500 Hz or 1000 Hz pure tone) was presented for 300 ms. One second 

following the auditory cue onset, the target changed its colour (instantaneously) from its initial 

blue to either red or green. Crucially, the pitch of the auditory cue predicted the colour change 

with 80% validity. For example, after the 500Hz tone there was an 80% chance of a blue-to-red 

colour change and a 20% chance of a blue-to-green change. In this training task, participants 

were required to indicate the new colour of the target by pressing key ‘.>’ (with the right index 

finger) or ‘/?’ (with the right middle finger) as accurately and fast as possible. Feedback was 

presented on the screen after each correct and incorrect trial. The probability mapping between 

the cue and the colour change of the target, and the mapping between the colour changes and the 

response keys, were counterbalanced between participants. 

 

Figure 2-2: The trial sequence during training blocks. A fixation and a target (the blue dot) 

display were presented for 1,000 to 2,000 ms and followed by a 300 ms auditory cue (500Hz or 

1000Hz). 1000 ms following the auditory cue, a colour change of the target occurred. 

Participants were instructed to respond to this colour change by pressing a key. The right panel 

illustrates the probabilistic relationships between the frequencies of the tone and the change of 

colours of the target. 
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2.2.2.2 The MIB procedure 

In the MIB blocks (Figure 2-3a and Figure 2-3b), each trial also started with a central 

fixation point and a peripheral target. To induce MIB of the peripheral target, I presented a 

rotating pattern consisting of an array of 64 (8 x 8) grey crosses occupying 15.6ºx15.6º in the 

background. The speed of rotation was 0.5 cycle/s. The rotating background temporarily induced 

the subjective disappearance of the target, this being MIB. Participants were instructed to indicate 

the target disappearance and reappearance by pressing and releasing the ‘z’ key respectively (with 

the left index finger). Immediately after the report of disappearance, the colour of the target 

started changing gradually and linearly in RGB space from blue to green or red. The complete 

colour change took 3 seconds. While this colour change was occurring, 1 second after target 

disappearance, a 500 Hz or 1000 Hz tone was delivered to the participants. The participants were 

instructed to ignore the tone and to release the key as quickly as possible following subjective 

reappearance of the target. The target remained on the screen for 300 ms after the key was 

released. This was followed by a colour judgement task in which participants had to report the 

new colour of the target with the same response keys as in the training block. In cases where 

participants released the key before the colour change had completed, they were instructed to 

indicate whether the colour was closer to red or green. This response ended the trial. If 

participants released the key (signifying subjective target reappearance) before auditory cue 

presentation, the trial was discarded. The probabilistic relationship between the pitch of the tone 

and the change of the colour remained the same as the training procedure (80%). The time to 

reappearance, defined as the duration between the onset of the cue and reappearance of the target 

reported by key release, was used to measure the influence of prediction on the timing of 

conscious awareness of the target. Before the first MIB block started, participants performed 
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several practice trials (> 20) to learn how to acclimatise to the MIB procedure in order to ensure 

they reliably experienced long periods of target invisibility. 

To exclude the effects of attentional bias and congruency effects at a response stage, 

participants undertook control trials in which the target was physically removed from the stimulus 

display (Figure 2-3c). Participants followed the same instruction in the control trials as in 

experimental trials: They needed to indicate the disappearance and reappearance of the target and 

make a subsequent target colour judgement. To match the individual MIB behavioural profiles 

(see Figure 2-4 for individual distribution of MIB disappearance duration), control trials were 

designed as ‘replays’ of experimental trials within the same block: Durations of subjective 

invisibility and reappearance colours were sampled from the within-block experimental trials. 

Each sampled experimental trial was used to construct four congruent control trials and one 

incongruent control trial. These control trials were randomly inserted into the remaining period of 

the same block. The duration between the onset of a trial and the onset of the physical 

disappearance was randomly selected between 2 to 4 seconds for each control trial. Each MIB 

block consisted of 60 randomly interleaved experimental trials and 30 control trials.  
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Figure 2-3: The trial sequence during motion-induced blindness (MIB) blocks: (a) the subjective 

perceived sequence (b) the experimental sequence. (c) the control sequence. Each MIB 

experimental trial (a, b) started with a central fixation point, a peripheral target, and a constantly 

rotating background. The rotating background temporarily induced the subjective disappearance 

of the target and participants were instructed to indicate subjective disappearance and 

reappearance times by pressing and releasing a key. After the key was pressed (i.e., the onset of 

subjective invisibility), the colour of the target started changing gradually from blue to green (or 

red); the complete change lasted 3 seconds. 1 second after the start of this colour change, a 500 

Hz or 1000 Hz tone (the cue) was delivered. The reappearance duration, defined as the duration 
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between the onset of the cue and the key release was used to estimate the influence of the 

prediction on the conscious awareness of the target. At the end of a trial, participants were 

instructed to indicate whether the colour was more similar to pure red or pure green. In a control 

trial (c), participants followed the same instruction in as in experimental trials. However, the 

target was physically removed from the stimulus display. (d) The time course of colour change in 

the experimental sequence. Note that the colours are highly distinguishable at the (average) 

reappearance time. 

 

Figure 2-4: Distributions of time-to-reappearance from individual participants. There are 

substantial individual differences in the timing of perceptual disappearances in MIB. To match the 

individual MIB behavioural profiles for control trials, I ‘replayed’ experimental trials as control 

trials within the same block: Durations of subjective invisibility and reappearance colours were 

sampled from the within-block experimental trials. Therefore, the timing distribution of physical 

disappearance in the control trials resembles disappearance duration the distribution of 

experimental trials. This design ensures our main results should not be affected by these individual 

differences. Red lines indicates the timing of the sound delivery. 

After completing the fourth MIB block, participants completed a brief questionnaire 
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concerning the subjective evaluation of the influence of the auditory cue on the disappearance 

duration of the visual target (a 5-point-scale question “Do you feel that the pitch of the sound 

influenced your perception of the target during the MIB state? From “1-not at all” to “5-I strongly 

felt the influence”). 

2.3 Results 

2.3.1 Training Blocks 

In the training blocks, analysis of response times (RTs) indicated that participants 

successfully learned the tone-colour probabilistic association. I defined the blockwise congruency 

effect (dependent variable) as the mean RTs of incongruent trials minus the mean of congruent 

trials, for a given block. The congruency effects of each block were submitted to 

Bonferroni-corrected one-tailed one-sample t-tests. I found that all congruency effects were 

significantly higher than 0 (all corrected ps < 0.05, see Figure 4). This indicates that participants 

learned the statistical relationship between the cue and the target in all training blocks. The mean 

accuracy in the training block was 97.65% (SD = 2.03%) and all participants showed above 90% 

mean accuracy. The high accuracy indicates participants correctly performed the task.  



48 

 

 

 

Figure 2-5: Response times (RTs) in the training blocks. The congruency effect was defined as the 

mean RTs of incongruent trials minus the mean RTs of congruent trials. Bonferroni corrected 

one-sample t-tests indicate that the congruency effect was significantly greater than zero in all the 

four training blocks. This indicates that participants learned the statistical relationship between 

the cue and the target at the very beginning of the experiment and maintained the learned 

association across the four training blocks. Error bars represent one standard error of the mean 

across participants. (* P < .05, ** P < .01, *** P < .001) 

Figure 2-6 shows the reaction time data separated by every 50 trials in the training blocks. The 

congruency effect was significant (ps < .05, uncorrected) except the first 50 trials in the first block 

and the last 50 trials in the fourth block. This result implies that participants learned the association 

after 50 trials. Our data shows the dynamics learning of probabilistic knowledge.  
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Figure 2-6: The reaction time data separated by every 50 trials in the training blocks. N.S.: No 

significant difference between conditions. Error bars represent one standard error of the mean 

across participants. 

2.3.2 MIB Blocks 

I next analysed the MIB blocks. The top panel of Figure 2-7 shows the mean 

time-to-reappearance in each condition. The overall time-to-reappearance in control trials was 

longer than in experimental trials (1780 and 1114 ms respectively, t(23) = -14.78, p < .001). This 

was expected due to the ‘replay’ nature of the control trials, which ensures that the response time 

for the experimental trials provides a lower bound on the response times possible in the control 

trials (excluding errors).   

To test if the learned associations modulated timing of conscious access in the MIB blocks, I 
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similarly defined the blockwise congruency effect as the mean time-to-reappearance of 

incongruent trials minus the mean time-to-reappearance of congruent trials. First, I found 

significant differences across block (one-way repeated-measure ANOVA with the four-level 

factor Block, F(3, 69) = 3.20, p = .03, η2 = .12). Next, polynomial contrasts revealed a strong 

linear trend in congruency effect from block 1 to block 4, F(1, 23) = 6.91, p = .015, η2 = .23 

(Figure 2-7 lower panel). Post hoc analyses revealed a significant difference between block 1 and 

3, t(23) = 2.90, p < .01 , and block 1 and 4, t(23) = 2.34, p = .028. These results indicate that the 

congruency effect in the MIB condition increased with successive blocks of training. No 

significant congruency effect was found by ANOVA and polynomial contrast analysis in any 

control blocks (all ps > 0.5). Thus, the learned cross-modal associations significantly accelerated 

conscious access, with this influence reliably increasing over time. 
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Figure 2-7: The upper panel show mean time-to-reappearance in each condition, and by block. The 

lower panel shows the corresponding congruency effects. The congruency effect showed a linear 

trend increment from Block 1 to Block 4 for experimental trials (left) but not for control trials 

(right). Post-hoc t-tests revealed that congruency effects in Block 3 and 4 were significantly 

larger than in Block 1. Error bars represent standard errors. (* P < 0.05, ** P < 0.01)  

To assess that the results were not driven by outlying trial, I tested the congruency effect by 
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defining the blockwise congruency effect as the median time-to-reappearance of incongruent 

trials minus the median time-to-reappearance of congruent trials. First, one-way repeated-measure 

ANOVA with the four-level factor Block reached significance, F(3, 69) = 3.20, p = .03, η2 = .12. 

Next, polynomial contrasts revealed a linear trend in congruency effect from block 1 to block 4, 

F(1, 23) = 10.32, p = .04, η2 = .31. Finally, Post hoc analyses revealed a significant difference 

between block 1 and 3, t(23) = 3.17, p = .004 , and block 1 and 4, t(23) = 3.0, p = .006. No 

significant congruency effect was found by ANOVA and polynomial contrast analysis in any 

control blocks (all ps > 0.6). Therefore, our results were not biased by outliers. 

To ensure the results were not driven by outlying participants, I tested whether the 

congruency effect change was consistent across participants by adopting a general linear model 

(GLM) approach to estimate congruency effect at the individual level. For each participant, a 

GLM with one regressor (congruent versus incongruent) was applied to each block to estimate the 

congruency effect. The standardised regression coefficient of each block and each participant (i.e., 

beta) was computed and entered into the group level analysis as a dependent variable. The results of 

this analysis are highly comparable to the results computed by the mean time-to-reappearance 

difference mentioned above. First, I found significant differences across block (one-way 

repeated-measure ANOVA with the four-level factor Block, F(3, 69) = 4.4, p < .01, η2 = .161, see 

Figure 2-8). Next, a polynomial contrast performed on betas revealed a strong linear trend in 

congruency effect from block 1 to block 4, F(1, 23) = 11.26, p < .01, η2 = .329. Post hoc analyses 

revealed significant differences between block 1 and 2, t(23) = 2.07, p = .05 , 1 and 3, t(23) = 3.02, 

p < .01 , and block 1 and 4, t(23) = 3.2, p < .01. No significant congruency effect was found by 

ANOVA and polynomial contrast analysis in any control blocks (all ps > .3). The results indicate 

that the congruency effect change across blocks was reproducible at an individual-participant level 

and were not driven by outliers.  
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Figure 2-8: Congruency effect using the GLM approach. Error bars represent standard errors. (* 

P < 0.05, ** P < 0.01) 

To further establish that these congruency effects in the MIB blocks were associated 

specifically with the tone-colour training, I performed an additional analysis. I reasoned that if the 

changes of the congruency effects from the first MIB block to the fourth block were influenced by 

the training, then the magnitude of changes in congruency effect over the training blocks should 

predict the magnitude of changes of congruency effect during the experimental sessions. To 

balance training trial numbers in this analysis, I calculated the magnitude of mean congruency 

effect in the first two blocks and last two blocks and the difference between the two means for 

both training and MIB trials, and then examined the correlation in the differences across 

participants. Results confirmed our prediction. Applying a Spearman's rank correlation test, I 

found a significant correlation (rho = .45, p = .026, see Figure 2-9) indicating a linear relationship 

between the change of association strength and the change of influence of prediction on conscious 
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awareness as indexed by congruency effect. There was no significant correlation when the same 

analysis was applied to control trials (rho = -0.16, p = .43). I also performed this Spearman's rank 

correlation analysis with outliers excluded data (by a 3 SD criterion and one data point was 

excluded). The result shows marginal significance, very close to the significance level (p = .052). 

This suggests that the observed correlation was not driven solely by outliers but veridically driven 

by the trend across all participants. 

 

Figure 2-9: A Spearman's rank correlation test on MIB congruency change and the training 

congruency effect change between the first (block 1 and 2) and the second half (block 3 and 4) of 

the experiment. Data from the experimental trials showed a significant correlation. No effect was 

found in the control trials.  

To exclude any possible confound due to problems in discriminating target colour on 

reappearance, I computed the mean accuracy of the colour judgement in the MIB. The accuracy 

was nearly perfect (99.23%, SD = .7%) indicating that participants did not have difficulty in 
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discriminating the colour upon reappearance. Due to the ceiling effect, I did not observe any 

significant differences in accuracy between the congruent and incongruent conditions in both 

experimental and control trials (all p-values > .38). 

Finally, to test whether participants were aware of the influence of prediction on the 

time-to-reappearance, I computed the correlation between the self-evaluation scores from the 

post-experiment questionnaire and the congruency effects. I did not find a significant relationship 

between them (r = -.253, p = .233), suggesting that participants’ self-evaluation of the influence of 

the pitch was independent from the actual strength of influence from the predictive cues.  

2.3.3 Colour Vision Assessment 

In the current study, I did not conduct a formal assessment for colour vision. However, the 

results of our training and MIB trials ensure that our participants had the ability to discriminate the 

colours used in our present study. The Figure 2-10 shows the average accuracy from all participants 

from the training blocks and MIB blocks. All participant performed above 90% accuracy in both 

blocks. This result provides evidence that all participants had the colour vision needed to perform 

these tasks. 
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Figure 2-10: Average accuracy of colour judgments from individual participants in the training 

and MIB blocks. All participant performed above 90% accuracy in both blocks suggesting all 

participants had the colour vision needed to perform these tasks. 

2.3.4 Distributions of time-to-reappearance by blocks 

One potential confound of our main finding of congruency effect increasing by block is that 

participants may have performed the task better over time. Participants may have been able to 

maintain fixation more steadily and increase the time-to-reappearance longer. Therefore, in the 

later blocks, expectation may have had more chance to influence visual processing with more 

practice and enlarge the congruency effect. However, according to this account, the lack of 

congruency effect in earlier blocks was not due to weak learned association in the earlier stage of 

the experiment. Alternately, it may have been caused by larger variance and shorter duration of the 

MIB state. To rule out this potential confound, I compare the distributions of time-to-reappearance 

between blocks. Figure 2-11 shows the distribution of time-to-reappearance. Pairwise 

Kolmogorov-Smirnov tests showed no significant difference between distributions 

(Bonferroni-corrected ps > .05). Therefore, the difference of congruency effect between blocks 

was not driven by the time-to-reappearance profiles in different blocks.  
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Figure 2-11: Distributions of time-to-reappearance in each MIB blocks. The red lines indicate the 

onset of auditory stimuli. Pairwise Kolmogorov-Smirnov tests showed no significant difference 

between distributions (Bonferroni-corrected ps > .05), suggesting that the difference of congruency 

effect between blocks was not driven by the time-to-reappearance profiles in different blocks. 

2.4 Discussion 

This chapter has described psychophysical data showing that learned cross-modal 

associations influence the timing of conscious access during motion-induced blindness. In an 

interleaved training-testing design I trained participants to learn associations between tones and 

colours, and then – using tones as predictive cues – explored whether congruent tone cues 

modulated the subjective timing of reappearance of coloured target stimuli. The results showed that 

cross-modal predictive cueing accelerated time to conscious access, but only after extensive 

training. I found a linear relationship between the amount of training and the degree of facilitation, 
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further underlining that learning of predictive associations can regulate their influence on the 

timing of conscious access. This finding was further supported by a correlation between the 

individual improvements in prediction learning from day one to day two, with the magnitude of the 

prediction effect across the same time period.  

Crucially, the current design allowed us to exclude that the effects of prediction on the timing 

of conscious access were due to motor preparation or feature-based attention. First, the procedures 

and task goals were different for training and MIB blocks. In the training blocks, the task was to 

detect the colour change of target and to respond by pressing one of two keys to report the colour. In 

the MIB blocks, the task was to detect the reappearance of the target and to respond via a single key 

press. This difference in task makes it unlikely that participants adapted a similar motor preparation 

strategy acquired during the training to the MIB blocks. Second, it is well known that feature-based 

attention can facilitate the visual processing and detection performance of attended target features 

(Maunsell & Treue, 2006). One might wonder whether the prediction effect I found in the MIB 

blocks could be attributed to the facilitation of feature-based attention triggered by the auditory cue 

to a specific target colour. However, the control trials exclude this possibility, because the control 

trials were designed to replicate the subjective experience of the experimental trials but with 

physical disappearance and reappearance of the target from the stimulus array. In both experimental 

and control trials, participants performed the same task (detection of target reappearance). 

Crucially in these control trials, I found no difference in subjective time-to-reappearance between 

congruent and incongruent trials. Therefore, feature-based attention cannot account for the 

congruency effects of predictions on the timing of conscious access in this paradigm. In sum, these 

results taken together support that learned cross-modal predictive associations were responsible for 

the shift in the timing of conscious access. 

One important innovation of this study is the demonstration of the flexibility that arbitrary, 
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cross-modal predictions can influence the timing of access to subjectively suppressed visual 

information through training. Previous studies focus on the prediction between long-term bound 

representations, e.g. semantic-object identity (Y.-C. Chen et al., 2011; Lupyan & Ward, 2013) or 

audiovisual speech (Alsius & Munhall, 2013; T. D. Palmer & Ramsey, 2012a) and motion 

integration (Conrad et al., 2010). For example, Conrad and colleagues (Conrad et al., 2010) show 

that, in binocular rivalry, motion sounds can stabilise and lengthen dominance periods for 

congruent visual motion. Similarly, Chen, Yeh, and Spence found that auditory cues shortened the 

suppression period of congruent visual objects. Taken together, these findings suggest that 

cross-modal predictive information exerts substantial influences on unconscious processing, 

conscious perception, and their interaction. 

It is known that saccadic eye movements during MIB can cause immediate target 

reappearance. Previous research have also shown that microsaccades can modulate target 

perceptual transitions (Y. S. Bonneh et al., 2010; Hsieh & Tse, 2009; Martinez-Conde et al., 2006). 

Based on these previous findings, one might wonder whether these results might be explained by 

eye movements occurring preferentially when colour changes were congruent with auditory cues. 

I first note that participants were asked to maintain fixation during each trial, so saccades could 

be expected to be rare. In addition, in this experiment, colour changes happen both gradually and 

during perceptual suppression by MIB, making it is highly unlikely such eye movements could be 

triggered in such specific manner. Additionally, during data analysis, I discarded those trials in 

which the target reappearance preceded the predictive sound onset, where plausibly saccadic 

effects could have caused target reappearance. To sum up, the current result was unlikely caused 

by any impact of eye-movement. 

What implications do the current results have for possible neural mechanisms? One possibility 

is that cross-modal predictions modulate the strength of low-level cortical stimulus representations. 
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Recent findings by Kok, de Lange, and colleagues show that learned auditory to visual predictions 

can create a neuronal template of the expected visual stimulus in the visual cortex (Kok, Failing, & 

de Lange, 2014) and bias visual representations as a result of the facilitation of information 

processing for the expected stimulus (Kok et al., 2013). This direct impact from cross-modal 

prediction to low-level visual representations may lead to a change in timing of conscious access, 

especially if these visual representations can be construed as a stimulus specific priors in a 

Bayesian framework. More generally these results strongly indicate the existence of neural 

pathways capable of conveying cross-modal predictive information. Previous studies have shown 

that, during associative learning, brain connectivity between cortical regions responsible for 

associated events increases in strength with training (Büchel, Coull, & Friston, 1999; den Ouden et 

al., 2009; Mcintosh & Gonzalez-Lima, 1998; von Kriegstein & Giraud, 2006). This suggests the 

possibility that, in the current study, the incremental change of the facilitation effect may be due to 

a gradual build-up of functional connectivity for conveying predictive information across the 

sensory modalities. Future investigations combining psychophysics with neuroimaging 

connectivity analyses could test this hypothesis. 

In the current study, the congruency effect in the second day MIB blocks (the block 3 and 4) 

was much stronger than that in the first day MIB blocks (the block 1 and 2). A potential explanation 

for the second day ‘boost’ is that sleep between the two days facilitated and consolidated the 

associative learning from the first day. It is well known that sleep plays a beneficial role in memory 

consolidation (Stickgold & Walker, 2007; Walker & Stickgold, 2006) as previous studies have 

shown sleep facilitates associative memory (Stickgold, Scott, Rittenhouse, & Hobson, 1999), 

statistical learning (Durrant, Taylor, Cairney, & Lewis, 2011), and perceptual learning (Fenn, 

Nusbaum, & Margoliash, 2003; Karni, Tanne, Rubenstein, Askenasy, & Sagi, 1994; Stickgold, 

James, & Hobson, 2000; Yotsumoto et al., 2009). In the current study, participants learned the 
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statistical relationship between the auditory cue and the visual target. Given the extent literature on 

the role of sleep in learning, it is plausible that sleep strengthened the predictive value of the 

auditory cues, thereby facilitating conscious access to predicted visual events on the second day. 

However, in the current study was not explicitly designed to examine the effect of sleep in this 

experimental paradigm. Thus, I leave this possibility open for future studies. 

The design of the current control trials is unable to rule out possible effect from response bias. 

The auditory cues may lower the response threshold of congruent visual targets. Therefore, in the 

experimental trial, when the visual targets are supressed in the MIB state, the evidence 

accumulation reaches the response threshold in congruent trials than in incongruent trials. However, 

in the current control trials, the visual target physically reappeared immediately avoiding the 

unconscious evidence accumulation process. Therefore, the control trials are unable to verify if the 

current congruency effect is led by the change of the response threshold. Future studies can make 

visual target reappear gradually allowing similar evidence accumulation processes to occur in 

control trial and examine the potential effect of change of response threshold.  

The current results lend support to predictive coding (or predictive processing) frameworks 

for understanding perception (Clark, 2012; Karl Friston, 2005; Rao & Ballard, 1999). On these 

views, perceptual content is determined by probabilistic inference of the most likely external 

causes of sensory signals. The data support the view that conscious access occurs when predictive 

models are verified against sensory inputs so that prediction errors are minimized. On this view, 

valid predictive cues will engage predictive models that are validated against sensory signals more 

rapidly, leading to more rapid conscious access (Lupyan & Ward, 2013; Melloni et al., 2011; Pinto 

et al., 2015; Sherman, Seth, Barrett, & Kanai, 2015). The present results extend this approach by 

showing how predictive influences on perception develop across time via training, and by 

underlining the flexibility of these influences by demonstrating their efficacy using cross-modal 
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and arbitrary associations. These results together suggest that predictive influences may permeate 

and shape conscious experiences more deeply and broadly than previously thought.  
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Chapter 3 

Visual Perceptual Echo Reflects Learning of Temporal Regularities in Rapid Luminance 

Sequences 

3.1 Introduction  

This Chapter aims to investigate how low level information within the sensory hierarchy is 

dealt with by predictive processing via unconscious visual sequence learning. However, relatively 

little is known about how the human visual system tracks, or learns about, such rapidly changing 

stimulus sequences. One recent finding relevant to this question is the ‘perceptual echo’ (VanRullen 

and MacDonald, 2012). This is long-lasting reverberation between a rapidly changing visual input 

and evoked neural activity, apparent in cross-correlations between occipital EEG and the stimulus 

itself. Specifically, when visually presenting a non-periodic dynamic sequence, whose luminance 

randomly fluctuated at a rate of 160 Hz, VanRullen and MacDonald found that the occipital EEG 

response displayed a periodic reverberation or ‘echo’ of the input sequence, which persisted for at 

least one second, and was found specifically in the alpha (~10 Hz) frequency range of the 

cross-correlation function, primarily over occipital electrodes and was observable at the group 

level. 

Specifically, when presenting a random dynamic sequence, whose luminance randomly 

fluctuated at a rate of 160 Hz, the occipital EEG response displayed a periodic reverberation or 

‘echo’ of the input sequence, which persisted for at least one second, and was found specifically in 

the alpha (~10 Hz) frequency range of the cross-correlation function, primarily over occipital 

electrodes. Importantly, the absence of such a reverberation when the luminance sequence of each 

trial was cross-correlated with EEG recorded on a different trial underlines that the perceptual echo 

is a true oscillatory response to the visual stimulation sequence, and not a general property of 
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ongoing EEG signals in response to this kind of stimulation. Furthermore, the seconds-long 

duration of the perceptual ‘echo’– suggests a long-lasting representation of fast-changing sensory 

information over time. However, the functional relevance and the underlying mechanism of the 

perceptual echo have so far remained unclear. 

One interpretation of perceptual echo is that the visual cortex repeatedly “replays” neural 

activation associated with afferent visual information. Supporting this view, studies in awake 

monkeys (Eagleman & Dragoi, 2012), mice and rats (Gavornik & Bear, 2014; Xu, Jiang, Poo, & 

Dan, 2012) found that after learning an association between a cue and a sequence stimulus, 

presenting the cue alone can elicit the same neural activation pattern as evoked by the actual 

stimulus. This replay activation pattern has been interpreted as a mechanism that may facilitate 

learning and memory consolidation (Euston et al., 2007; Skaggs and McNaughton, 1996).  

I reasoned that, if the perceptual echo is indeed associated with visual regularity learning, the 

perceptual echo response should change across repeated presentations of the same luminance 

sequence, as the visual cortex encodes regularities across sequence repetitions. In two experiments, 

I tested this prediction by using random dynamic luminance sequences that were predictable across 

repeated presentations. In Experiment 1, I presented random dynamic luminance sequences that 

were each repeated four times and I calculated the perceptual echo for each presentation. In 

Experiment 2, I added an ‘inverse’ luminance sequence (which has the inverse luminance polarity 

of the original sequence) following the presentation of the fourth repetition of a sequence, which 

was followed by an additional presentation of the original sequence, to test whether changes in 

perceptual echo were specific to the (non-periodic) temporal and luminance information within a 

given sequence.  

Altogether, this data provides first evidence for a predictive mechanism by which the human 

visual system rapidly learns temporal regularities in fast non-periodic sequences, and in doing so 
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provides a functional account of the alpha-band ‘perceptual echo’ response. 

 

3.2 Experiment 1 

3.2.1 Methods 

21 healthy students participated in this study from the University of Sussex (11 male, 18–36 

years; mean age 24.9 years, all had normal or corrected-to-normal vision). All of them provided 

informed consent before the experiment and received £10 or course credits as compensation for 

their time. The experiment was approved by the University of Sussex ethics committee. 

 Participants were seated in a dimly lit electromagnetically shielded room and their heads were 

stabilised in a head-and-chin rest to maintain centrality 50 cm away from a LaCie Electron blue IV 

22" CRT Monitor at a 160Hz refresh rate, which had been manually gamma corrected. Stimuli were 

generated and presented using the Psychophysics toolbox (Brainard, 1997).  
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Figure 3-1: Example of trial structure in Experiment 1. For each trial a specific random luminance 

sequence (e.g. sequence A) was presented four times. Each luminance sequence lasted 3.125s and 

consisted of a disc with randomly changing luminance at 160 Hz. Sequences were separated by an 

inter-sequence-interval (ISI) of 3s. ’Response’ sequences, which contained an embedded square 

image (1s duration, random onset time within sequence), were distributed at random points 

in-between trials throughout the experiment. Participants were requested to press a key after each 

sequence if they noticed a square.  

 

Each experimental session comprised 60 trials utilising 60 unique random non-periodic luminance 

sequences. Each trial consisted of four presentations of the same sequence. Each presentation lasted 

for 3.125s and successive presentations were separated by an inter-sequence-interval (ISI) of 3s. 

Luminance-sequence stimuli were constructed based on VanRullen and Macdonald (2012) as 
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follows. Each sequence consisted of a disc stimulus subtending a visual angle of 7 degrees and its 

centre was placed at 7.5 degrees above a fixation point (a dim grey circle with 0.2 degrees of visual 

angle). The luminance of the disc altered randomly at a rate of 160 Hz, so that each sequence 

consisted of 500 luminance frames (see Figure 3-1). Thus, each sequence comprised a rapid 

non-periodic sequence of luminance changes. To ensure equal power of all temporal frequencies 

within each sequence, all sequences were processed by a whitening procedure. Fourier components 

of each sequence were obtained by fast Fourier transform. Power at all frequencies of each random 

sequence were equalised by normalizing the amplitudes of its Fourier components. An inverse 

Fourier transform was then applied to reconstruct the sequence. Thus, sequences were not 

distinguishable by power characteristics of their temporal frequencies. 

To ensure participants maintained attention, sixty ‘response sequences’ were distributed 

throughout the experiment. Each ‘response sequence’ contained an embedded square image (3.75 

degrees). The target appeared for 1s with onset time selected from a uniformly distributed random 

time during the sequence presentation. Participants were informed that the experiment was a visual 

detection task in which they were required to press the spacebar on a standard keyboard at the end 

of a sequence whenever they detected the target. Each response sequence was randomly assigned to 

a position in-between experimental trials. This was done individually for every response sequence, 

resulting in the possibility of there being one, more than one, or zero, response sequence between 

any two experimental trials. This design made it unlikely that participants could predict the onset of 

an experimental trial based on the occurrence of a response sequence. 

Participants were not informed that there would be any repetition of the luminance sequences. 

The entire experimental session consisted of 300 (240 standard and 60 response) sequences and 

took approximately 1 hour to complete. In a post-experiment interview participants were asked if 

they noticed any repetition of luminance sequences in the experiment. The following questions 
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were asked:  

Did you notice any experimental manipulation during this experiment?  

Did you notice any relationship between any two sequences?  

Did you notice any repetition of any of the sequences? 

 

EEG data were recorded using a 64 channel ANT Neuro amplifier at a sampling rate of 2048 

Hz. A 64 channel Waveguard EEG cap (ANT Neuro, Enschede) employing standard Ag/AgCl 

electrodes placed according to the 10-20 system was used. Horizontal and vertical eye movements 

were recorded using two independent electrode pairs. Impedances of recording electrodes were 

maintained below 10kΩ. No analogue filter was applied during on-line recording.  

 

3.2.1.1 Data Processing and Statistical Analysis 

Pre-processing and data analyses were performed using the EEGLAB toolbox (Delorme and 

Makeig, 2004) under Matlab (Mathworks, Inc. Natick, MA, USA), and custom Matlab scripts. The 

acquired EEG data were downsampled to 160Hz and filtered using a 2-80 Hz bandpass filter. 

Independent component analysis (ICA) was used to identify and remove ocular artefacts. Data in 

each trial were then epoched from 0 to 3.125 seconds time-locked to the stimulus onset (start of the 

luminance sequence).  
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Figure 3-2: Recording and computation of perceptual echo for a representative subject. A. For 

each luminance sequence presentation and EEG sensor, I computed the cross-correlation 

(-1.5s:1.5s) between the luminance value series and the EEG time series. This provides an 

ensemble of cross-correlation time series for each luminance sequence, indexed by sensor and 

presentation number. B. As in VanRullen and Macdonald (2012), averaging the cross-correlations 

for each luminance sequence revealed a long lasting post-onset oscillation (~1.5 sec) in the alpha 

range: the ‘perceptual echo’ (blue line). The red line shows the same analysis with shuffled data 

(see methods), in which no perceptual echo is observed. C. The phase coherence (across trials) of 

the cross-correlation time series shows that the perceptual echo is due to the strong phase 

coherence within the alpha frequency range (~10 Hz).  

 

To identify the perceptual echo, I calculated cross-correlations between EEG time series and 
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luminance time series for all experimental sequences and sensors. Cross-correlations were 

evaluated with lags between -1.5s and 1.5s (Figure 3-2a) by the following definition: 

𝑥𝑐𝑜𝑟𝑟(𝑡) =  ∑ 𝑠𝑡𝑖𝑚(𝑇). 𝑒𝑒𝑔(𝑇 + 𝑡)

𝑇

 

xcorr is the cross-correlation value. stim and eeg denote the standardized stimulus sequence 

and the corresponding standardized EEG response, respectively. 

For each participant, I then averaged the cross-correlations across each sequence for all 

sensors, which revealed a long-lasting post-onset oscillation in the alpha range (Figure 3-2b). This 

revealed a perceptual echo, replicating the results of VanRullen and Macdonald (2012). To quantify 

the amplitude of the echo response, I applied a Fast Fourier Transform on the average 

cross-correlation between 0s and 1s for each participant and sensor to extract the alpha-range (8-12 

Hz) power.   

To compare the echo response across successive presentations of a luminance sequence, the 

cross-correlations were averaged by the order of presentation for each sensor, across trials (e.g., all 

cross-correlations for the first presentation of a given random luminance sequence were averaged 

across trials, and the same for all second, third, and fourth presentations). I then computed the 

amplitude of the echo response for each presentation and participant. 

To verify that the perceptual echo was driven by the EEG response to a specific luminance 

sequence and not by variations in ongoing alpha activity in the raw EEG signal, I created a 

‘shuffled’ set of cross-correlations by randomly rearranging the EEG time series with stimulus 

sequences from different trials. As can be seen from Figure 3-2b (red line), this procedure leads to a 

complete absence of echo response, confirming that the echo response is not driven by the ongoing 

alpha-band EEG response.  

I found that the magnitude of the echo response varied across individuals. Participants with no 
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significant perceptual echo were excluded from the data analysis, as follows. First, 

cross-correlation time series were averaged across all trials, then the distribution of absolute values 

across lags were derived from the averaged cross-correlation for real and shuffled data separately. 

The non-parametric Kolmogorov–Smirnov test was then performed to examine the similarity of the 

two distributions. I excluded those participants with p >.001 (i.e., those participants for whom echo 

responses were not significantly different between the shuffled and non-shuffled data). Seven out 

of twenty-one participants were excluded using this procedure (Figure 3-3). 
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Figure 3-3: Individual echo response and its data distribution for Experiment 1. The magnitude of 

the echo response varied from individual to individual (the left panels in each column). To 

determine a rigorous exclusion criterion, cross-correlation time series were averaged across all 

trials (left panel). Distribution of absolute values across lags were derived from the averaged 
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cross-correlation (the right panels in each column) for non-shuffled (red) and shuffled data (blue). 

An average cross-correlation close to zero leads to a distribution skewed towards zero. The 

non-parametric Kolmogorov–Smirnov test was then performed to examine the similarity of the two 

distributions. We excluded those participants who showed the p-value of the comparison was larger 

than .001 (highlighted in orange). The order of participants is sorted by the result of the 

Kolmogorov–Smirnov test.  

 

3.2.2 Results 

Figure 3-4 shows the average alpha (8-12 Hz) power of the cross-correlation, i.e., the 

amplitude of the perceptual echo response, across all participants and sequence presentations. I 

found a maximal echo response over occipital sensors, centred over POz, consistent with previous 

findings (VanRullen & Macdonald, 2012). To maximize the sensitivity to any potential effect of 

stimulus sequence repetition on echo response, the following analyses were therefore conducted 

with data from POz only.  
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Figure 3-4: The topography of the echo response averaged across all sequence presentations and 

participants. Each line represents data from a single electrode. The topographic plot displays the 

8-12 Hz envelope of the echo response and reveals a maximum at POz with a gradual decrease 

from posterior to anterior electrodes (Arbitrary Units (a.u.)). 

 

To test whether repetitions of a luminance sequence modulated perceptual echo, I compared 

the average amplitude of the perceptual echo for each sequence presentation using polynomial 

contrasts. Supporting this hypothesis that successive presentations would increase echo amplitude, 

I found a strong linear trend from presentation 1 to presentation 4 (F(1, 13) = 7.32, p = .018). 
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Post-hoc paired t-tests revealed a larger echo amplitude for presentation 4 compared to presentation 

1 (bootstrapping test with 10,000 resamples, p < .01), see Figure 3-5a. 

 

Figure 3-5: A. Experiment 1. Perceptual echo amplitude for each sequence presentation, averaged 

across all participants, for electrode POz. The echo amplitude displayed a linear increase across 

successive presentations. B. t-value map of the echo amplitude comparing presentation 4 to 

presentation 1 across all participants. The maximum difference in echo amplitude was located over 

occipital electrodes. (× indicates areas of significant difference between presentations, multiple 

t-test between all electrodes, Bonferroni corrected) C. Average of all participants’ power from 

8-12 Hz (µV2) for each sequence presentation for all trials for electrode POz. Average alpha power 

of the EEG time series was not affected by the repetition of a luminance sequence. D. 

Time-frequency analysis of the effect of sequence repetition on perceptual echo power. The plot 

shows the difference in time-frequency analysis of the perceptual echo between presentation 4 and 

presentation 1, averaged across luminance sequences and subjects, for POz. The echo differs 
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significantly between presentations 4 and 1 within the alpha frequency range from ~375 to 505ms 

(8-12Hz). The outlined area highlighted with a red arrow indicates significant differences using 

multiple t-tests, p<.05, False Discovery Rate (FDR) corrected. Average echo amplitude is 

measured in Arbitrary Units (a.u.); Average power is measured in microvolts squared. To 

effectively represent the variance within subjects, error bars show standard error of the difference 

between the first presentation and all subsequent presentations. 

 

One might wonder whether the increase described above could be attributed to a general effect 

of the repetition of luminance sequences on the spectral power of the occipital EEG. To test this 

possibility, I computed the EEG amplitude spectra of the 3.125 epoch for every luminance 

sequence presentation and then averaged the amplitude spectra across each sequence presentation. I 

compared the average EEG amplitude spectra for each sequence presentation using polynomial 

contrasts, which did not reveal a significant linear relationship between presentation 1 to 

presentation 4 (F(1, 13) = .65, p = .44). Further post-hoc paired t-tests between the 4 presentations 

confirmed this result (all ps > .28). Thus, the increase in echo response amplitude with successive 

sequence presentations cannot be attributed to a general effect of EEG alpha response to these 

stimuli (see Figure 3-5c). 

To examine the topography of the change in echo response from the first to the last 

presentation, I performed t-tests on echo amplitude between presentation 1 and presentation 4 

across subjects and electrodes and plotted the t-values. The largest difference in echo response was 

observed over occipital electrodes (see Figure 3-5b). 

I next computed the difference in echo response between presentations 1 and 4 in 

time-frequency space. This confirmed the repetition enhancement of the echo response, by 

showing that the alpha power of the echo response for presentation 4 was significantly larger than 

for presentation 1, with this effect concentrated within the period of the cross-correlation between 
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375 - 505 ms after sequence onset (ps < .05 FDR corrected, Figure 3-5d). 

In the post-test questionnaire, all participants responded ‘no’ to all of the questions, ruling 

out explicit learning of a sequence as driving the increase in echo response with repeated 

sequence presentations. 

Summarising, the results from Experiment 1 demonstrate that the amplitude of the 

perceptual echo response increases in a linear fashion with successive repetitions of a specific 

dynamic luminance sequence, even though participants were not aware of these repetitions. This 

finding shows that the visual system can encode temporal regularities defining repetitions of a 

specific luminance sequence. I next set out to determine the robustness and stability of this finding.  

3.3 Experiment 2 

Experiment 2 investigated the robustness of the increase in echo amplitude with repeated 

sequence presentations, across time and intervening sensory input. In this experiment, repeated (4) 

presentations of a specific luminance sequence were followed, firstly by an inverse luminance 

sequence, and secondly by another instance of the original (non-inverse) sequence. Each inverse 

sequence was created by inverting the luminance polarity, of the original sequence i.e. reversing 

black and white relative to the middle grey level (see Figure 3-6). This preserved the relative 

luminance values of the sequence while also maintaining a flat luminance power spectrum. I 

reasoned that, if the echo response reflects temporal regularity learning, the dissimilar luminance 

polarities of the inverse sequence should abolish any signature of sequence learning in the echo 

response, since the temporal contingencies of the sequence as a whole (luminance polarities) 

would be completely different while all other temporal and visual characteristics are preserved. I 

further reasoned that, if the learning process is robust across time and to intervening sensory input, 
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the echo response amplitude should recover or further increase in amplitude when the original 

sequence re-appeared following the inverse luminance sequence.  

 Experiment 2 was also designed to eliminate a potential confound in Experiment 1. In 

Experiment 1, each trial consisted of 4 presentations of the same sequence, and response sequences 

were randomly assigned to positions in-between experimental trials. This was done individually for 

each response sequence, resulting in the possibility of there being one, more than one, or zero, 

response sequences between any two experimental trials. This may have led to a potential, but 

highly unlikely, scenario that the distribution of response sequences fell by chance into a regular 

pattern between trials. In this unlikely situation participants may have developed strategies to 

deploy more attention towards the end of a trial in anticipation of a possible response sequence. 

Previous research has shown that increased attention can amplify the perceptual echo (VanRullen & 

Macdonald, 2012), raising the possibility that the increase in perceptual echo amplitude with 

repeated sequence presentations may have been caused by increased attention to the later 

presentations (i.e. presentation 4). To avoid this potential confound, in Experiment 2 the previous 

response sequences were no longer used. Instead, participants were required to estimate the average 

luminance level of the sequence in every trial, judging if the current sequence was on average 

brighter or darker than the fixation point. This modification meant that all sequences were 

‘response’ sequences, ensuring that participants had to maintain equal attention to all sequences.  

3.3.1 Methods 

18 healthy students from the University of Sussex participated in this study (6 male, 20–36 

years; mean age 25.2 years, normal or corrected-to-normal vision), none of which took part in 

Experiment 1. All provided informed consent before the experiment and received £10 or course 

credits as compensation. The experiment was approved by the University of Sussex ethics 
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committee. The apparatus was the same as in Experiment 1. There were a total of 120 trials. In the 

control condition (60 trials), a specific 3.125s sequence was presented for six times with 3s 

inter-sequence-interval. In the experimental condition (60 trials), a sequence was repeated four 

times. Then, on the fifth presentation, the inverse luminance sequence was presented. Following 

the inverse luminance sequence, the original sequence was presented again, making a total of six 

presentations of a sequence for each trial, see Figure 3-6.  

In cases in which permutation t-tests did not display significant results I quantified how close 

to the null (no difference in amplitude) or alternative hypothesis (difference in amplitude) each 

result was by additional Bayes Factor (BF) analyses of paired sample t-tests using JASP (JASP 

Team, 2016) with a Cauchy prior of .707 half-width at half-maximum suggested by Rouder et al. 

(Rouder, Speckman, Sun, Morey, & Iverson, 2009).  

Participants were asked to indicate whether the average luminance level of each sequence was 

brighter or darker than the luminance of the fixation circle, by pressing the left arrow for darker and 

right arrow for lighter, after each sequence presentation. The average luminance of a sequence was 

closely comparable across all sequence presentations (the standard deviations of the average 

luminance of all sequences relative to the entire luminance dynamic range of all sequences 

were .018% in Experiment 1 and .019% in Experiment 2). Therefore, participants could not use the 

average luminance of a sequence as a potential cue to encode a sequence. The luminance of the 

fixation circle was constant, meaning that the participant’s judgements about the average 

luminance after each sequence were always based on similar information. Across all response 

sequences, participants rated 63.5% of sequences as being brighter than the fixation. One 

participant indicated for all sequences that the average luminance was brighter than the fixation, 

this may have been due to a perceptual bias when rating similar information across sequences, the 

data from this participant still showed a robust echo response and survived the exclusion criteria.  
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Figure 3-6: Experiment 2 trial structure. In a control trial, 6 presentations of the same sequence 

were shown. In an experimental trial, after 4 presentations of a given sequence, the inverse-polarity 

luminance sequence was presented, followed by a final replay of the original (non-inverse) 

sequence. Each sequence lasted 3.125s, separated by an inter-sequence-interval of 3s. 

 

I adopted the same exclusion criterion as in Experiment 1, to exclude participants with no 

significant perceptual echo. Four participants were excluded using this procedure, meaning that 14 

participants’ data were retained for further analyses. 

3.3.2 Results 

To assess whether the main effect of sequence repetition on perceptual echo amplitude was 

present, I compared the amplitude of perceptual echo from presentation 1 to presentation 4 (data 

was pooled from experimental and control conditions) using a polynomial contrast analysis to test 
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the linear dependence between presentations 1 to 4. Although showing an unexpectedly high 

average echo amplitude for the 3rd presentation, the results remain supportive of a linear trend from 

presentation 1 to presentation 4, F(1, 13) = 6.35, p = .026, see Figure 3-7a. 

 

Figure 3-7: A. Echo amplitude as a function of repetition of luminance sequences. For the first 4 

presentations of a given sequence, I observed a linear increase in echo amplitude with successive 

presentations, similar to Experiment 1 (data pooled across experimental and control trials). B. 

Critically, a subsequent ‘inverse’ sequence (experimental trials) showed a reduction in echo 

amplitude to a level similar to initial presentation of a luminance sequence, as compared to a fifth 

presentation of a non-inverse sequence. C. Re-presenting the original sequence following the 

inverse sequence (Replay, experimental trials), showed a recovery of echo amplitude 

indistinguishable from a 6th successive presentation. Perceptual echo amplitude is measured in 

Arbitrary Units, a.u. To effectively represent the variance within subjects, error bars show standard 

error of the difference between the first presentation and all subsequent presentations.  

 

I next examined whether presentation of an inverse luminance sequence would abolish the 
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increase in echo amplitude seen after four successive presentations. I compared the echo amplitude 

elicited by the 5th presentation between experimental (i.e. the inverse luminance sequence) and 

control conditions. In this comparison, the two echo amplitudes were both evoked by the fifth 

presentations: either an inverse sequence (experimental condition), or another presentation of the 

same (non-inverse) sequence (control condition). If the new sequence is able to interrupt the 

repetition effect, we should expect the analysis yields a null-result. The echo amplitude elicited by 

the inverse sequence was significantly lower than elicited by a 5th (non-inverse) presentation 

(two-tailed paired t-test, t(13) = 4.36, p < .002, bootstrap, 10,000 resamples)(see Figure 3-7b). I 

also compared the echo amplitude elicited by the inverse sequence and presentation 1 in 

experimental trials and found no significant difference in echo amplitude between the two 

presentations (two-tailed paired t-test, t(13) = .02, p = .71, bootstrap, 10,000 resamples). 

Traditional statistics hypothesis testing (i.e., t-test) does not provide a quantitative measure about 

how strongly the data supports the null hypothesis. I additionally used Bayes factor analysis to 

further evaluate to what extent the echo amplitude elicited by the inverse sequence supported the 

null hypothesis (i.e. a conclusion of no difference in echo amplitude between the 1st presentation 

and inverse sequence.) or the alternative hypothesis, (i.e. echo amplitude was different between the 

1st presentation and inverse sequence). As expected, I found BF = .29 (less than .33), which 

moderately supports the null (i.e., no difference) over the alternative hypothesis (Dienes, 2011).   

Together these results indicate that an inverse luminance sequence, carefully controlled for a 

range of perceptual and temporal properties, was processed in a similar manner as a new luminance 

sequence, in terms of perceptual echo. This confirms that the visual system is encoding precise 

sequence information, rather than only general temporal properties of luminance sequences (e.g. 

time-frequency dynamic, auto-correlation) or its visual characteristics (e.g. luminance range and 
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variance), since these more general features are shared with the inverse luminance sequence. 

I next compared the topography of the echo response amplitude for the 5th sequence 

presentations between experimental and control trials. I performed t-tests on echo amplitude 

between these presentations across subjects and electrodes and plotted the resulting t-values, see 

Figure 3-8a. Similar to Experiment 1, the largest difference in the echo response was found over 

occipital electrodes, with a maximum over POz. 

 

 

Figure 3-8: A. t-value map of echo amplitude difference between presentation 5 (control condition) 

and the inverse luminance sequence (experimental condition) for all subjects, in Experiment 2. A 

significant difference was centred over occipital electrode POz (outlined, FDR corrected). B. 

t-value map of echo amplitude difference between presentation 6 (control condition) and the replay 

sequence (experimental condition) for all subjects, in Experiment 2. There were no significant 

differences in echo amplitude between the two presentations. 

I then examined whether sequence information encoded across presentations 1 to 4 could 

persist even after the presentation of an inverse luminance sequence. I reasoned that if such 

information does persist, re-presenting the original sequence after the inverse luminance sequence 

should restore the amplitude of the perceptual echo to a level comparable to six sequential 

presentations of a particular sequence. I therefore compared the echo amplitude elicited by the 
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‘replay’ sequence in the experimental condition, and the 6th presentation in the control condition. 

No significant difference was observed (Figure 3-7c); indeed, echo amplitudes for these two 

presentations were almost identical (t = .01, p = .99). I computed BF to evaluate whether the echo 

amplitude elicited by the replay sequence was supportive of the null hypothesis (i.e. no difference 

in echo amplitude between the replay and presentation 6) or the alternative hypothesis, (i.e. echo 

amplitude is different between replay and presentation 6). I expected that the BF should support 

null-hypothesis more than alternative hypothesis. A BF = .27 provides strong evidence (less 

than .33) for accepting the null over the alternative hypothesis, indicating that sequence-specific 

information about a particular luminance sequence persists, for over 9 seconds, even in the 

presence of intervening visual input.  

Finally, I examined the topography of the difference in echo response amplitude between 

presentation 6 (control) and replay (experimental) sequences. I performed t-tests on echo amplitude 

between these presentations across participants and electrodes and plotted the resulting t-values, 

see Figure 3-8b. There were no significant differences at any sensor, indicating that the echo 

response to the replay luminance sequence displayed a similar topography and magnitude as 

presentation 6 (All BF < .79, supporting the null hypothesis).  

3.4 Discussion  

In two experiments, I investigated the functional relevance of the perceptual echo response, 

testing the hypothesis that it reflects a predictive processing mechanism which can encode and 

learn dynamic visual sequences within the visual cortex. 

Supporting this hypothesis, Experiment 1 showed that the perceptual echo response is enhanced by 

repetitions of an identical rapid luminance sequence, suggesting that the perceptual echo reflects a 
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neural signature of temporal regularity learning. 

Control analyses using shuffled data excluded the possibility that increases in perceptual echo 

amplitude could be attributed to general changes in induced alpha-band EEG responses resulting 

from sequence repetitions. 

Experiment 2 established that the repetition-dependent changes in perceptual echo reflect 

specific sequence information. Following 4 presentations of a specific sequence I presented an 

inverse luminance sequence, which preserved all non-sequential spectral and temporal properties 

of the original sequence. Strikingly, the echo amplitude for the inverse sequence returned to a 

level comparable to presentation of a novel sequence (see Figure 3-7b). When the original 

stimulus sequence was presented again (following the inverse sequence), the echo amplitude 

recovered to a level consistent with the number of presentations of this sequence, demonstrating 

that information about an encoded sequence persisted for over 9 seconds and was robust to 

intervening visual input.  

Behavioural studies have demonstrated that humans are able to learn temporal sequences 

presented at different rates (1.7-8.3 Hz) consisting of spatiotemporal information (Song, Jr, & 

Howard, 2008), combinations of visual features (colour and spatial) (Gheysen, Van Opstal, 

Roggeman, Van Waelvelde, & Fias, 2011) and object orientations (Luft, Meeson, Welchman, & 

Kourtzi, 2015). These results extend these findings by showing that the visual system is capable of 

sequence learning even with stimuli presented orders of magnitude faster (160 Hz) than previously 

used. This sensitivity to rapidly changing input is in line with known properties of the human 

auditory system, where auditory sequence learning has been described behaviourally for random 

and meaningless input signals (Gaussian random noise). Notably, as in the present study, signatures 

of sequence-specific learning were found to persist for seconds and be robust to intervening 

auditory inputs (Agus et al.,(2010). 
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Regarding neural substrates of sequence learning, both human and animal studies have 

implicated brain regions outside primary sensory areas. For example, in monkeys, information 

about spatiotemporal sequences is encoded in inferior temporal cortex and also V4 (Li & DiCarlo, 

2008; Meyer & Olson, 2011). However, Gavornik and Bear (2014) found that, in mice, it was 

possible to detect the encoding of spatiotemporal sequence information early in the visual stream, 

within the primary visual cortex. These findings are compatible with the localisation of the 

perceptual echo – and its increase across repeated sequence presentations – to (human) visual 

regions.  

What mechanisms could be responsible for the increase in echo response that I observe with 

successive presentations of luminance sequences? One possibility is that this increase may be a 

consequence of the increasing similarity across sequence repetitions between luminance changes in 

the stimulus sequence and changes in the evoked EEG response. This would result in stronger 

cross-correlations between the EEG and the luminance sequence, with successive presentations, 

and hence an increase in echo amplitude. This could be thought of as ‘sharpening’ of the neuronal 

assemblies representing visual sequences, reflecting increasingly precise representations of 

repeated sequences. Supporting this interpretation, previous studies on perceptual learning have 

shown that repeated exposure to the same visual input sharpens the responsiveness of neuronal 

assemblies representing these inputs (Seitz & Dinse, 2007). For instance, monkeys trained on an 

orientation discrimination task show a post-training decrease in response variability and an 

increase in the slope of orientation-tuning curves in V4 for the trained orientations (Yang & 

Maunsell, 2004). Similarly, the phenomenon of repetition suppression may be caused by a 

sharpening or tuning mechanism, which occurs when repeated exposure to a stimulus leads to a 

more precise and more efficient neural representation of that stimulus (Desimone, 1996; Kok et al., 

2012). At a mechanistic level, neuronal sharpening is thought to depend on Hebbian processes, 
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among which spike-timing dependent plasticity (STDP) is particularly significant when dealing 

with temporal relationships (Bi & Poo, 1998). Markram et al., (1997) found that STDP displayed 

the highest speed and efficacy when spike timing was reliable. Additionally, STDP has been shown 

to make neurons extremely sensitive to repeating spatio-temporal patterns (Guyonneau, VanRullen, 

& Thorpe, 2005; Markram, Lübke, Frotscher, & Sakmann, 1997; Masquelier, Guyonneau, & 

Thorpe, 2008a, 2008b). The repeated presentation of a luminance sequence may have increased 

both the sensitivity and reliability of neural responses facilitating the rapid encoding of sequence 

information found in this study. 

An alternative explanation for the primary finding is that the amplitude of specific evoked 

EEG responses to the luminance sequence could increase across successive repetitions. This would 

lead to an increased signal to noise ratio and thus also to stronger cross-correlations between the 

EEG time series and luminance sequences. While the opposite phenomenon is commonly observed 

(repetition suppression), a wide range of studies investigating perceptual learning have found that 

the neural response to a stimulus can also be enhanced by repeated exposure to identical sensory 

input (Karni & Sagi, 1991; Vogels, 2010). However, the results do not support this alternative 

interpretation since I found no difference in alpha power in the raw EEG signal across repetitions of 

the same luminance sequence, as would be expected if the amplitude of the alpha-band evoked 

EEG signal was driving the increases in echo response across sequence repetitions (Figure 3-5c).  

In summary, the enhancement of the echo response with successive presentations of a 

sequence is most plausibly due to an increase in similarity between luminance changes in the 

stimulus sequence and changes in the evoked EEG response. A candidate mechanism for this 

process is STDP, which has the effect of sharpening the population response for each specific 

sequence, leading to an enhanced echo response with successive presentations of a sequence. 

Could the perceptual echo be a signature of active visual processing? A striking feature of the 
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echo response is its periodicity, this feature suggests that the visual system is actively engaging in 

repeated patterns of activity in response to ongoing sensory stimulation. One might speculate that 

periodicity of the perceptual echo reflects an underlying iterative learning process that updates and 

replays temporal representations at a rate defined by occipital alpha. This interpretation is 

motivated by the influential ‘predictive processing’ account of perception and brain function, in 

which the brain continuously generates and updates predictions about incoming sensory signals 

(Clark, 2012; Karl Friston, 2005; Hohwy, 2013; Seth, 2014). Extended formulations of this account 

suggest that hierarchical predictive generative models update prior knowledge by extracting and 

encoding hidden spatial and temporal regularities in the environment (Tenenbaum et al., 2011). In 

this study, increases in echo response amplitude with successive repetitions of a sequence 

demonstrate that participants were implicitly learning information about each sequence, which may 

reflect perceptual predictions (Bayesian priors) being updated with each sequence. In this view the 

echo response may reflect an iterative process that updates priors about the luminance dynamics of 

a sequence, communicating perceptual predictions at rate defined by the alpha frequency band. 

Further research will be needed to tie perceptual echo to predictive processing more substantively, 

for example by manipulating expectations about temporal regularities, within or across sequence 

presentations. 

Another question that was not fully explored in the present study was the persistence of the 

encoded sequence information. These results demonstrated that this information can persist for 

more than 9 seconds, however the constraints on retention time of this information was not 

systematically examined. If as I suggest the repetition of a luminance sequence selectively 

strengthens synaptic pathways through STDP, then I expect that a long-term enhancement of the 

echo response should be detectable. I also predict that it should be possible in animal studies to 

disable the sequence learning effects found in the present study by using optogenetics to ‘switch’ 
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off receptors critical for long-term potentiation (LTP) , such as NMDA receptors. In such studies 

there should be no effect of sequence repetitions on the perceptual echo.  

To further investigate the perceptual echo responses role in regularity learning within a 

predictive processing framework, future studies could investigate how manipulating the 

predictability of a sequence affects the echo response. Another possibility to verify the perceptual 

echo responses involvement in predictive processing would be to test whether it plays a role in 

periodically transmitting prior information within an alpha defined frequency. By using 

transcranial alternating current stimulation (tACS) over the visual cortex it is possible to entrain a 

specific alpha phase and frequency. This manipulation would allow for the time locking of 

sequence onset to a specific alpha phase. I predict that, if the alpha cycle is critical for the 

transmission of prior information, then sequences presented in-phase with alpha should lead to an 

enhanced echo response in later repetitions of the same sequence.  

Future studies could also investigate a more diverse range of stimuli in the context of 

perceptual echo, since the current study, used only a low-level visual feature: luminance. By 

exploring sensory dimensions including orientation, colour spatial information, it will be possible 

to examine the extent to which perceptual echo responses (and their enhancement with sequence 

repetitions) generalise. These results also motivate investigation into the persistence of the 

encoded sequence information. These data show that this information can persist for more than 9 

seconds, however the constraints on retention time of this information were not systematically 

examined. If as I suggest the repetition of a luminance sequence selectively strengthens synaptic 

pathways through STDP, a long-term enhancement of the echo response may be expected.  
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3.5 Modelling the perceptual echo using a predictive processing framework 

3.5.1 Introduction  

The previous section demonstrated that perceptual echo was modulated by repetitions of a 

specific luminance sequence, suggesting that it reflects a signature of regularity learning within the 

visual system. This result supports predictive processing accounts of the low-level visual system, 

which suggests that perception is an active learning and inference process. In this section, I propose 

a simple predictive coding model that captures several aspects of the perceptual echo and 

demonstrates that the perceptual echo can be generated by this simple system using minimal 

assumptions.  

 

3.5.2 The aims of the model  

This model intends to simulate two intriguing characteristics of perceptual echo. First, the 

10Hz periodical fluctuation in the cross-correlation between luminance sequences and EEG signals 

only shows at positive lags (after stimulus onset) but is absent at negative lags (see Figure 3-2). 

Cross-correlation theorem states that the power spectrum of the cross-correlation of two time series 

is equal to the product of the individual power spectrum, where one of them has been complex 

conjugated (Bracewell, 2004). Therefore, one may expect that the perceptual echo may be driven 

by the alpha oscillations in the raw EEG. However, the perceptual echo is only visible after 

stimulus onset at positive lags. In terms of the cross-correlation analysis this feature indicates that 

all of the sequence information is maintained and embedded in the EEG signal, leading the peak in 

the cross-correlation. This observation implies that the echo reflects a ‘memory trace’ in the human 



91 

 

 

visual system, rather than being driven by the raw EEG alpha, which would affect the 

cross-correlation at both positive and negative lags.  

 

This result is also consistent with the experimental finding of this Chapter that repetitions of 

stimulus sequences only enhanced the echo response (cross-correlation) and was not observed in 

changes in the alpha power of the raw EEG, suggesting that the raw EEG alpha is not related to the 

regularity learning process reflected by the perceptual echo. Therefore, a crucial aim of the model is 

to simulate the asymmetrical cross-correlation pattern between positive and negative lags.  

The second aim of this model is to account for the results of a pilot experiment, in which I 

found a different temporal dynamic of the perceptual echo when the stimulus sequence was 

presented centrally instead of peripherally. In this pilot study, the experiment procedures and design 

were the same as Experiment 1 and Experiment 2 as described in Chapter 3.2 and 3.3 except that 

the luminance sequence was presented at the centre of the visual field instead of peripheral areas. 

Data from 5 subjects showed that when the stimulus sequence was presented centrally the 

morphology of the echo response changed dramatically, showing a more abrupt and greater 

deflection at early lags followed by a quick decay at later lags (Figure 3-9) compared to the echo 

responses elicited by peripheral stimulation (see Figure 3-2). 



92 

 

 

 

Figure 3-9 Perceptual echo elicited by stimulus sequences presented in the centre of the visual field, 

data from a pilot study. Perceptual echo showed a sharp fluctuation at early lags (before 200ms) 

and a quick decay.  

 Examining these two characteristics, the first that the perceptual echo displays multiple peaks 

at positive lags, suggests that the sensory sampling of the external luminance values persists in the 

visual system and influences subsequent EEG signals around every 100ms (10Hz cycle). Therefore, 

I assume that EEG signals are influenced by both the current luminance value of the sample as well 

as the memories of previous luminance samples (this can also be viewed as a Bayesian prior). The 

second characteristic, that the eccentricity of stimulus sequences influences the perceptual echo 

response suggests that the eccentricity influences the weighting between the current visual 

luminance sample and the memories of previous luminance samples on the EEG signal. It is well 

known that the spatial resolution (precision) of central and peripheral vision differ greatly (Loschky, 

McConkie, Yang, & Miller, 2005). Therefore, the sampling precision may plausibly be a factor in 

influencing how the visual system combines the current visual sample and memories of luminance 

values, which may be best explained by a Bayesian/predictive processing framework.  

I propose a simple predictive coding model that uses minimal assumptions in an attempt to 

account for the two perceptual echo characteristics outlined above. An import feature of Bayesian 
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inference and the predictive processing framework is that information is integrated based on the 

weighting derived from their precision (Hohwy, 2012; Knill & Pouget, 2004). The more reliable 

information source is weighted more for computing the result of the integration (Bayesian posterior, 

also see Chapter 1). Therefore, central vision, which has a high precision may lead to a stronger 

weighting on the current sensory sample compared to the prior. When the precision is high, the 

perceptual echo should display higher amplitudes initially and then decay rapidly, due to the 

influence from priors being low, indeed I found the result when using stimuli presented centrally in 

a pilot study. In contrast, peripheral vision, which has lower precision may rely more on prior than 

new sensory evidence. When the precision is low, the perceptual echo should be longer lived as the 

memory of a sample is able to impact perceptual inference on more following samples.  

 

3.5.3 Model computation 

This model is inspired by Kalman filter (Kalman, 1960), a prediction-based perceptual 

inference system. The model consists of two units, a prediction unit and a prediction error unit 

(Figure 3-10a). The prediction unit generates predictions about the next sensory sample, in this case 

of the next luminance value and sends the value to the prediction error unit via a top-down pathway. 

After about 50ms, information transmission time, the prediction error unit samples the next 

external luminance value and computes the difference (prediction error) between the top-down 

luminance prediction about the current luminance value and the actual luminance value from the 

current sensory sample. The prediction error value is then sent to the prediction unit through a 

bottom-up pathway with about 50ms transmission time. The prediction unit integrates and updates 

the prediction by computing a weighted average between the prediction error and the current 

prediction using a weighting factor w. Finally, the new prediction is send to the prediction error unit 
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to initiate the next iterations of the cycle (Figure 3-10b). The model assumes that the information 

transmission time is 50ms and, therefore, a cycle of 100ms is created. 

 

 

Figure 3-10. A predictive coding model of perceptual echo (a) The model consists of a prediction 

unit and a prediction error unit. The prediction unit sends prediction though a top-down pathway. 

The prediction error unit sends a prediction error signal via a bottom-up pathway. The model 

assumes that the information transmission time is 50ms and, therefore, a cycle of 100ms is created. 

(b) Illustration of the model processing steps across time. The model samples external luminance 

values every 100ms. At every sensory sampling point, the low level prediction error unit computes a 

prediction error by computing the difference between a top-down prediction and the current 

sensory input. The high level unit then updates the predictions by computing the weighted average 

between the current prediction and the prediction error using a weighting factor w. This updating 

and prediction error computations causes signal changes in the raw EEG.  

3.5.4 Model implementation and simulation  

Luminance sequences were generated using the same parameters and methods as the two EEG 

experiments of this chapter. Therefore, each luminance sequence was 3.125s and the range of 

luminance values was between 0 to 255.  
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 The EEG time series in each trial was simulated using Eq. 3-1.  

EEG fluctuation was determined by an updated prediction and a prediction error at updating 

(𝑡𝑢𝑝𝑑𝑎𝑡𝑒) and sampling (𝑡𝑠𝑎𝑚𝑝𝑙𝑒) time, respectively. Otherwise, EEG fluctuation was only 

influenced by Gaussian random noise (see Eq. 3-1 and 3-2) added to a baseline EEG activity b. 

𝜖𝐸𝐸𝐺 is a Gaussian random noise sampling from a Gaussian distribution with a mean 𝜇𝐸𝐸𝐺 and a 

standard deviation 𝜎𝐸𝐸𝐺 added to each EEG time series data point (Eq. 3-2). In this simulation, 

𝜇𝐸𝐸𝐺 was fixed to 0 and 𝜎𝐸𝐸𝐺 was fixed to 16% of the dynamic range of luminance values. The 

baseline EEG activity was fixed to the midpoint of the luminance dynamic range (i.e. 127.5).  

When the predictive processing model sampled a luminance value at time 𝑡 (i.e., 𝑡𝑠𝑎𝑚𝑝𝑙𝑒
𝑖 ∈

𝑡𝑠𝑎𝑚𝑝𝑙𝑒), a prediction error was computed by subtracting the last prediction 𝐸𝐸𝐺(𝑡𝑢𝑝𝑑𝑎𝑡𝑒
𝑖−1 ) from 

the sampled luminance value 𝑠𝑒𝑞(𝑡) and reflected in a EEG amplitude change (Eq 3-1). The 

prediction error was then used to update a new prediction at the next update time 𝑡𝑢𝑝𝑑𝑎𝑡𝑒
𝑖  after 

information transmission time 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (Eq. 3-3). 

 

As mentioned above, I assumed the after information transmission time between the 

prediction and the prediction error units is about 50ms. Therefore, I sampled 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 from a 

 

(3-1) 

𝜖𝐸𝐸𝐺~𝑁(𝜇𝐸𝐸𝐺 , 𝜎𝐸𝐸𝐺) (3-2) 

𝑡𝑢𝑝𝑑𝑎𝑡𝑒
𝑖 = 𝑡𝑠𝑎𝑚𝑝𝑙𝑒

𝑖 + 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (3-3) 

𝑡𝑠𝑎𝑚𝑝𝑙𝑒
𝑖+1 = 𝑡𝑢𝑝𝑑𝑎𝑡𝑒

𝑖 + 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (3-4) 

𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛~𝑁(𝜇𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝜎𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ) (3-5) 

https://www.codecogs.com/eqnedit.php?latex=EEG/left( t /right) %3D/begin{cases} seq(t)-EEG(t^{ i -1}_{ update })%2B/epsilon _{ EEG } %26 if/quad t/in t_{ sample } // EEG(t^{ i }_{ update })%2Bw/times EEG(t^{ i }_{ sample })%2B/epsilon _{ EEG } %26 if/quad t/in t_{ update } // b%2B/epsilon _{ EEG } %26 otherwise /end{cases}
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Gaussian distribution with a mean 𝜇𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 50𝑚𝑠 and a standard deviation 

𝜎𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 10𝑚𝑠 (Eq. 3-5). 

At updating time 𝑡𝑢𝑝𝑑𝑎𝑡𝑒
𝑖 , a updated prediction was computed by summing the current 

prediction 𝐸𝐸𝐺(𝑡𝑢𝑝𝑑𝑎𝑡𝑒
𝑖 ) and a weighted prediction error 𝑤×𝐸𝐸𝐺(𝑡𝑠𝑎𝑚𝑝𝑙𝑒

𝑖 ) computed from the 

last sample time 𝑡𝑠𝑎𝑚𝑝𝑙𝑒
𝑖  and reflected in a EEG amplitude change (Eq. 3-1). The updated 

prediction was then used to compute next prediction error after information transmission time (Eq. 

3-4). 

In each trial, the initial luminance prediction was set to 0 because no stimulus was presented before 

the sequence onset (dark background). The model started to sample at t = 0ms, i.e., 𝑡𝑠𝑎𝑚𝑝𝑙𝑒
1 =

0𝑚𝑠.  

To simulate the temporal dependence between adjacent sample points found in real EEG 

signals, a 1D Gaussian filter with a 31ms window size and a 19ms standard deviation was applied 

to the simulated EEG time series in each trial.  

I tested the weighting (w) parameter value changing it from 0.1 (sensory evidence is not 

reliable) to 0.9 (sensory evidence is very reliable) to simulate different reliabilities of sensory 

evidence.  

The simulation was run for 1000 trials for each w. Cross-correlations were computed and 

averaged across trials using the same methods as the two EEG experiments.  

3.5.5 Critical model assumptions  

The model makes two major assumptions. First, based on the fact that perceptual echo mainly 

fluctuates at about 10Hz, the model assumes that information transition time between prediction 

and prediction error units through top-down and bottom-up pathways takes about 50ms, and 

therefore, takes 100ms to complete a cycle for each iteration. Second, the notion that the human 
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visual system samples visual information in a discrete manner at about a 10Hz frequency has been 

proposed and empirical evidence supporting this notion has been accumulating (VanRullen & Koch, 

2003). According to this idea, the model assumes the visual sampling is discrete. Sensory sampling 

only occurs when the prediction error unit needs to compute a prediction error. Based on the first 

assumption, the interval between visual samples is about 100ms. Therefore, this assumption yields 

the visual sampling frequency of this system is 10Hz.  

3.5.6 Results 

Figure 3-11 shows the results of this model. As can be seen this simple predictive processing 

model captures two important aspects of echo responses from the experimental studies of this 

chapter.  

Firstly, the periodical cross-correlation fluctuation only was found in the positive time lags. 

This result confirms that perceptual echo is not only caused by the alpha oscillation in raw EEG 

data but by stimulus-relevant memory in a perceptual system.  

Second, the precision of sensory input modulates the temporal dynamics of the echo response 

(Figure 3-12). As can be seen from this figure higher sensory weights elicited an echo response 

with greater amplitude at early time lags followed by a rapid decay. In contrast, lower sensory 

weights elicited smaller echo responses at early time lags but sustained a longer response. To 

quantify the decay rates, I fitted a two-parameter exponential function 𝑎𝑒𝑏𝑥 to the envelope of 

each cross-correlation from the pick value to the end (Figure 3-13). The exponential terms b 

(growth rate) from the fitting result showed a nearly monotonic increase along w decrease, 

suggesting a faster decay when w is high than when w is low. This result fits the empirical data 

showing that the eccentricity of a stimulus sequence modulates the temporal dynamics of the echo 

response.  



98 

 

 

 

Figure 3-11. The cross-correlation between simulated EEG and repetitions of a luminance 

sequence averaged across trials (for details of trial number etc. refer to methods of Experimental 

sections). The parameter w represents the weights of sensory evidence (precision) in the model, 

with higher values representing higher precision of sensory input. Abscissa represents 

cross-correlation lags in time.  

 

Figure 3-12 A expanded view of Figure 3-11 within positive time lags.  
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Figure 3-13 Fitting envelopes of cross-correlation using exponential functions. Cross-correlation 

data were selected from the maximal value (red dot line) to the end of each cross-correlation series. 

The exponential terms b (growth rate) from the fitting result showed a nearly monotonic increase 

along w decrease. 

To further quantitatively test the difference between perceptual echo at positive and negative 

lags, shuffled cross-correlation data were recruited by computing cross-correlation between EEG 

time series and luminance sequence from different trials. Similar to the experimental results 

showed in Section 3.2, shuffled cross-correlation data showed no perceptual echo response (Figure 

3-14), indicating the sequence-specific nature of perceptual echo. More importantly, even though 

50ms transmission time was explicitly assigned to the model which may cause a large alpha 

oscillation in the simulated EEG data, shuffled cross-correlation data with no phase coherence 

between trials (Figure 3-2) was still unable to generate perceptual echo. 
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Figure 3-14 Comparison between actual data (cross-correlation between a EEG time series and a 

luminance sequence was computed from the same trial) and shuffled data (from different trials). 

Shuffled cross-correlation data showed no echo-like periodic oscillation.  

Similar to the examination of perceptual echo significance for each participant in Section 3.2, 

I compared cross-correlation data distributions at positive and negative lags ranging from -0.7s to 

0.7s for actual and shuffled data with w = 0.1, 0.5 and 0.9 (Figure 3-15). The result showed that 

only non-shuffled data with w = 0.1 and 0.5 showed a significant difference of cross-correlation 

data distribution between positive and negative lags (p < 10-5 and p < 10-3, respectively), suggesting 

perceptual echo only presented at positive lags. The null result of actual data when w was 0.9 

confirmed that with large sensory weight perceptual echo only presented in a short period and 

decayed very quickly. In sum, the model successfully simulated the experimental phenomenon that 

perceptual echo only was found in the positive time lags, suggesting stimulus-relevant memory in a 

perceptual system.  
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Figure 3-15 Echo response data distribution from non-shuffled (nonshuffled, the first row) and 

shuffled (the second row) data. Three different weighting factors (w = 0.1, 0.5, and 0.9, indicated 

by columns) were used. When w is 0.1 and 0.5, cross-correlation data distributions from positive 

lags were significantly different from data distributions from negative lags.  

3.5.7 Discussion 

This simple model provides a computational account of how a predictive coding system 

generates the perceptual echo. As can be seen from this section the resemblance between the echo 

produced by this model and those found experimentally is striking, suggesting that the predictive 

processing interpretation of the perceptual echo as an iterative learning process that updates and 

replays temporal representations is well founded. This model also provides an explanation for the 

basic characteristics of the perceptual echo, via the change in weighting between a prediction and a 

prediction error unit. Finally, this model has explained two essential characteristics of perceptual 

echo that is best accounted for by the predictive processing framework. 

3.6 Conclusion  

The perceptual echo is a long-lasting periodic reverberation in the EEG response to dynamic 
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visual stimulation, reflected by an alpha-band peak in the cross-correlation function between a 

rapidly changing random dynamic luminance sequence and the raw occipital EEG response. I 

investigated the functional properties of the perceptual echo, finding that it can be enhanced by 

repeatedly presenting the same visual sequence, indicating that the human visual system can 

rapidly and automatically learn temporal regularities embedded within such fast-changing dynamic 

stimulus sequences. By comparing echo responses for inverse and non-inverse luminance 

sequences, I further showed that the increase in echo response was sensitive to specific sequence 

information. Finally, I show that the encoded sequence information can persist over many seconds 

even in the presence of additional intervening sensory input. Using a simple predictive coding 

model, with minimal assumptions, I show that the model can capture many of the features of the 

perceptual echo, further supporting the notion that predictive processing underlies the perceptual 

echo. 

Together, these results provide strong evidence for the existence of a previously 

undiscovered predictive temporal regularity learning mechanism that appears to be governed by 

predictive processing, this process being reflected by the perceptual echo.  
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Chapter 4 

Examine temporal prediction from duration processing 

4.1 Introduction 

Complicated human behaviour requires the ability to make predictions about when events will 

occur in the environment. There is a long history of treating perception as a the outcome of 

predictive processes (Gregory, 1968; Helmholtz, 1867), and recently this idea has developed into 

the increasing influential predictive processing approach (Clark, 2012; Karl Friston, 2005; Seth, 

2014). Much previous work has attempted to find the neural correlates of prediction and/or 

prediction error. One classic example is based on neurophysiological event-related potential (ERP) 

component called the mismatch negativity (MMN)(Friston, 2005). MMN is a neural response that 

can be found following experience of infrequent or unexpected events in a sequence.  

The classical version of MMN was reported using rhythmic sequences of auditory events 

wherein the majority of presentations, standard trials (e.g. 80%), are of one pitch (e.g. low pitch) 

and infrequently (20%) a deviant pitch (e.g. high pitch) is presented (references). Under these 

conditions, a difference in ERP is found such that the waveform is deflected, deviating from the 

ERP recorded in standard trials (Näätänen, Gaillard, & Mäntysalo, 1978; Näätänen & Michie, 1979; 

Sams, Paavilainen, Alho, & Näätänen, 1985). Similar findings have also been reported when the 

deviant is temporal rather than features, such that the rhythm of a sequence of events is disrupted by 

one event in the sequence occurring earlier or later than expected based on the rhythm – a temporal 

oddball paradigm (temporal MMN; TMMN, Chen, Huang, Luo, Peng, & Liu, 2010; Jacobsen & 

Schröger, 2003; Näätänen, Paavilainen, & Reinikainen, 1989; Tse & Penney, 2006; see also review 

Ng & Penney, 2014). TMMN has been reported as a neural response of pre-attentive interval timing 

processes that track interval regularities and detect deviants (Grimm, Roeber, Trujillo-Barreto, & 
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Schröger, 2006; Tse & Penney, 2006). However, interpretation of previous TMMN findings is 

complicated by the use of fixed inter-trial-intervals (ITI) (Hsu et al., 2010; Jacobsen & Schröger, 

2003, 2003; Joutsiniemi et al., 1998; Okazaki, Kanoh, Takaura, Tsukada, & Oka, 2006; Roger, 

Hasbroucq, Rabat, Vidal, & Burle, 2009; Takegata, Tervaniemi, Alku, Ylinen, & Näätänen, 2008; 

Tse & Penney, 2006; for non-fixed ITIs see also Chen et al., 2010; Grimm et al., 2006; Grimm, 

Widmann, & Schröger, 2004). Using fixed ITIs, stimulus events across trials inevitably create a 

rhythmic temporal structure. Recent evidence shows that the neural mechanisms of interval timing 

(also called duration-based timing) can be considered as distinct from rhythmic processing (also 

called beat-based timing) (Grube, Cooper, Chinnery, & Griffiths, 2010; Teki, Grube, & Griffiths, 

2012; Teki, Grube, Kumar, & Griffiths, 2011). The transition of rhythmic structures has already 

been shown to cause mismatch responses in both ERPs (Ford & Hillyard, 1981; Vuust et al., 2011) 

and event-related fields (ERF) recorded by magnetoencephalography (Vuust, Ostergaard, Pallesen, 

Bailey, & Roepstorff, 2009). Therefore, in studies that use a temporal oddball paradigm to assess 

neural correlates of temporal prediction, it could be the rhythmic structures caused through fixed 

ITIs that drive the MMN response, not neural mechanisms dedicated to predictions of interval 

timing itself. Considering the evidence for distinct processing of rhythm and duration processing it 

is reasonable to think that a temporal predictive mechanism may exist independently of rhythmic 

structure and, consequently, that violations of predictions about temporal interval (non-rhythmic) 

could also elicit neural processes that may generate mismatch responses. Therefore, TMMN might 

not be driven by predictions about time itself, but prediction of rhythmic structure alone. To 

investigate this possibility we compared mismatch responses in isochronous and anisochronous 

stimulus sequences, in which the ITI was fixed or randomly sampled from a distribution that rules 

out the contribution of global rhythmic structure. We also examined whether the neural 

mechanisms underlying temporal prediction are modality-general or specific. Some studies have 
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suggested that temporal processing might result from modality specific operations (Wearden, Todd, 

& Jones, 2006). However, accurate temporal predictions may benefit from the integration of  

temporal information from different sources (Shi, Church, & Meck, 2013). In such a case we would 

expect to find evidence for similar patterns of neural activation (measured using EEG) elicited by 

violations of temporal prediction across auditory and visual domains, despite the differences in 

sensory evoked potentials between the two modalities.  

To examine these hypotheses, we used a combination of classic (ERP) and cutting edge 

machine learning analysis techniques - multivariate pattern analysis (MVPA) and temporal 

generalisation analysis (TGA; J.-R. King & Dehaene, 2014). We used MVPA to decode neural 

response patterns to violations of temporal prediction embedded in EEG signals. We then used 

TGA to investigate whether decodable neural patterns can be used to decode neural activations at 

other time points both within a given condition, and between conditions that differ in temporal 

properties and/or sensory modality of presentation. If the topographical patterns between standard 

and deviant trials are distinguishable across conditions, a binary classifier should be able to classify 

topographic patterns recorded from different conditions and reach above chance classification 

performance. The combination of MVPA and TGA allowed us to examine the commonalities and 

differences of the neural responses related to temporal predictive mechanisms both between 

isochronous and anisochronous sequences, and between modalities as they evolve over time 

following unpredicted sensory events.  

4.2 Methods 

4.2.1 Participants 

16 healthy students with normal or corrected-to-normal vision were recruited from the 
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University of Sussex (8 males, age range 18–31 years). Written informed consent was acquired 

from all participants prior to the study, which was approved by the University of Sussex ethics 

committee.  Participants received £15 as compensation for their time.  

4.2.2 Procedure and Design 

Participants were seated in a dimly lit electromagnetically shielded room and asked to 

maintain fixation ~ 50 cm away from a gamma corrected LaCie Electron blue IV 22" CRT Monitor. 

Stimuli were generated and presented using the Psychophysics toolbox (Brainard, 1997; Kleiner, 

Brainard, & Pelli, 2007). Auditory stimuli were played through stereo speakers with an intensity 

level of  ~ 65 dB SPL.  

To investigate the processes underlying prediction of temporal intervals, we employed a 

typical temporal oddball paradigm. In each trial, two transient stimuli were presented, the first 

stimulus (S1) defining the beginning and the second stimulus (S2) the end of the specified interval 

(i.e., inter-stimulus-interval, ISI). The interval could be either 150ms or 400ms (Figure 4-1). There 

were two blocks for each experimental condition. In one block an interval of 150ms in duration was 

presented in 200 trials (standard) with an interval of 400ms presented in 50 trials (deviant). In the 

other block, the standard and deviant interval were switched. The position of the deviants within 

the sequence was pseudo-randomised but constrained so that the deviant was presented at least 

once in every five trials. 

Three experimental conditions were examined in this study, auditory isochronous, auditory 

anisochronous, and visual anisochronous. In the auditory conditions, the stimuli consisted of 10ms 

pulses of 1500 Hz pure tones. In the visual condition, the stimuli were 10ms flashes of luminance 

defined Gaussian blobs against a grey background (Michelson contrast of 1). The 

inter-trial-interval (ITI, the time between the first event in one pair and the next) in the isochronous 
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condition was fixed at 1750ms. In the anisochronous conditions, the ITIs were drawn from two 

uniform random distributions between 1000-1500ms or 2000-2500ms (minimum of 1000ms and 

max of 2500 ms) so that the average presentation rate was the same as the ITIs in the isochronous 

condition, but no set of trials ever occurred at that average repetition rate (Figure 4-1).   

There was no explicit task performed in this study. Participants were instructed simply to 

attend to the sequence of events. The order of completion of the six blocks was pseudo-randomised 

across participants. Each block of 250 trials took approximately 10 minutes to complete and the 

entire experiment took approximately 1 hour.  

 

Figure 4-1 Examples of stimulus sequences. (a) An isochronous sequence consisted of short 

standard intervals (150ms) and long deviant intervals (400ms, depicted by red dots). S1 and S2 

denote the first and second transient consecutive stimuli defining a temporal interval. 

Inter-trial-intervals (ITI) were fixed to 1750ms in isochronous sequences. (b) An anisochronous 

sequence with varied ITIs. (c) An isochronous sequence consisting of long standard intervals 

(400ms) and short deviant intervals (150ms). 
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4.2.3 EEG Acquisition 

All EEG data were recorded using a 64 channel ANT Neuro amplifier at a sampling rate of 

2048 Hz. A 64 channel Waveguard EEG cap (ANT Neuro, Enschede) employing standard Ag/AgCl 

electrodes placed according to the 10-20 system was used. Horizontal and vertical eye movements 

were recorded by two independent pairs of electrodes. The impedances of recording electrodes 

were maintained below 10kΩ. No analog filter was applied during on-line recording. 

4.2.4 EEG Preprocessing 

Pre-processing was performed using the EEGLAB toolbox (Delorme & Makeig, 2004) under 

Matlab (Mathworks, Inc. Natick, MA, USA), and custom Matlab scripts. Continuous data were 

first down-sampled to 512 Hz. The signals were then band-pass filtered at 0.5-30 Hz and epoched 

between -140ms and 1400ms relative to onset of the first stimulus in each stimulus pair. Each epoch 

was baseline corrected automatically identified and removed using the automated Independent 

Component Analysis (ICA) rejection algorithms ADJUST (Mognon, Jovicich, Bruzzone, & Buiatti, 

2011) and MARA (Irene Winkler, Haufe, & Tangermann, 2011). Epochs containing signal values 

exceeding a threshold of ±75𝜇𝑉 and deviations greater than by subtracting the signal average of 

the prestimulus interval (-140-0ms). Artefacts were 6 standard deviations of the mean probability 

distribution on any single channel were automatically rejected. For the multivariate pattern 

analyses (MVPA, mentioned below), epochs were further down-sampled to 128 Hz.  

4.2.5 ERP Analysis 

For each ERP analysis, epochs were averaged separately within each comparison condition for 

each participant. Statistical analyses of the ERP data were performed at the group level (16 
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participants, see Statistical Analyses and significance testing) 

4.2.6 Multivariate Pattern Analysis (MVPA) 

4.2.6.1 Decoding EEG activation patterns between standard and deviant evoked responses  

To test whether standard and deviant temporal intervals elicited distinct topographical patterns, 

we applied MVPA to EEG topography. We reasoned that if the topographical patterns between 

standard and deviant trials are distinguishable across conditions, a binary classifier should be able 

to classify topographic patterns recorded from different conditions and reach above chance 

classification performance. We employed a Linear Support Vector Machine (SVM) classifier 

(Vapnik, 2013) for every classification analysis. In the current study, an unbalanced trial number 

between standard and deviant trials (close to 4:1, different trials were excluded during 

pre-processing) was expected because of the nature of the oddball paradigm. To avoid biased 

classification due to training on unbalanced data sets, every MVPA analysis was performed on 

subsampled data sets (Maimon & Rokach, 2005). A subsampled data set consisted of all deviant 

trials and randomly subsampled standard trials with equal trials number of deviant trials.  

For each time point and each participant, we performed the MVPA on the data from 64 

channels as features in two steps. First, to find the optimized regularization parameter (C: Cost), a 

subsampled data set was selected and normalised to z-scores (mean subtracted and divided by 

standard deviation within features, i.e., electrodes) to examine the optimized C. We searched the 

parameter space from 2^-3 to 2^3 (exponentially spaced) and evaluated the classification 

performance (classification accuracy) by stratified ten-fold cross-validation (CV). For each fold of 

the ten-fold CV the subsampled data set was split into training and testing trials with a 9:1 ratio. An 

SVM classifier was fit on the training trials (training set) and tested on the testing trials (testing set). 
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The classification accuracies across ten folds were than averaged as the CV accuracy. The C that 

maximised the CV accuracy was selected as the optimal C value.  

In the second stage, a new subsampled data set was used. The new subsampled data set 

contained no overlapping standard trials from the first step. We performed the same CV procedure 

as the first step except that the C was fixed at the optimal value obtained from the first step. The CV 

accuracy was then computed as the classification accuracy.  

We repeated this procedure 50 times with different subsampled data sets in each repetition. 

The classification accuracies across repetitions were then averaged to obtain a stable and unbiased 

classification performance across entire data set. All classification analysis were conducted by 

LIBSVM library (Chang & Lin, 2001) included in e1071 and Caret packages in R software (Team, 

2014). 

4.2.6.2 Temporal generalization analysis 

To examine the possibility that temporal intervals presented in isochronous and anisochronous 

sequences, and auditory or visual modalities, share some common underlying neural processes, the 

temporal generalisation analysis (TGA) was used (adapted from King & Dehaene, 2014). The 

standard decoding analysis mentioned above is adequate to assess whether EEG signals is 

informative to successfully distinguish standard and deviant evoked activation pattern in a single 

comparison analysis. However, because information processing may evolve differently between 

conditions, an analysis approach that considers potential latency difference between condition is 

needed. For this purpose, TGA was used to evaluate common processing between condition. If a 

classifier trained on activation patterns at a specific time point can also classify activation patterns 

at another time point with an above chance accuracy, there should be similar neural processes 

eliciting the similar topography at the two time points. Therefore, TGA provides an estimation of 
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common processing and can be used to examine the latency difference of common processes 

between conditions (J.-R. King & Dehaene, 2014, p. 2).  

As for the above described MVPA, the TGA procedure was repeated for 50 runs for each 

training time point and participant. In each run, a subsampled data set containing an equal number 

of standard and deviant trials (the training set) for a given training time point (training time, i.e., 

ttraining) in one condition was trained. This classifier was then used to test subsampled, balanced data 

sets in which each data set (testing sets) was the data from a time point (testing time, i.e., ttesting) in 

another condition. Therefore, a trained linear SVM model from one condition was used to predict 

the trial types (standard or deviant) at time points in the data from another condition. For example, 

one can train a classifier using EEG data at 300ms (training set) in auditory anisochronous 

sequence to classify standard and deviant trials. If the trained classifier is able to successfully 

predict the trial types using data at 350ms (testing set) in auditory anisochronous sequence, the 

result suggests that similar decodable information is embedded in the training and testing sets and 

can be captured by the classifier even from different time points and conditions. This procedure 

yielded 198 generalisation accuracies (1.54s epoch with 128Hz sampling rate). The same 

procedure was applied to each training time point (198 training time point in total).  A 

generalization matrix with training time x testing time (198 x 198) was obtained to examine the 

possible shared neural processes between conditions. Finally, the 50 generalisation matrixes from 

the 50 runs were then averaged.  

In a generalization matrix, an above chance generalisation accuracy on the diagonal (training 

time = testing time) suggests shared processes occurring at the same latencies between conditions. 

If a matrix shows an off-diagonal pattern, the shared processes occurs at different timings in the two 

conditions (J.-R. King & Dehaene, 2014; J.-R. King, Gramfort, Schurger, Naccache, & Dehaene, 

2014).   
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4.2.7 Statistical Analyses and significance testing  

Cluster-based permutation analysis with Monte Carlo randomization (Maris & Oostenveld, 

2007) was performed for both ERP and MVPA analyses using custom scripts adapted from the 

FieldTrip (Nichols & Holmes, 2002; Oostenveld, Fries, Maris, & Schoffelen, 2010) and Mass 

Univariate Toolbox’s (Groppe, Urbach, & Kutas, 2011). This method was conducted to reduce the 

family-wise type I error rate due to multiple comparisons. The algorithm considers an effect is a 

true positive when a group of adjacent analysis points (neighbours) reach statistical significance 

together. Two steps were taken in this procedure. First, for every testing point, a statistic across 

participants was computed (e.g. t-value). A critical value was then used for thresholding testing (e.g. 

p < .05, one-tail). Second, adjacent data points that exceeded the critical value together were 

defined as a cluster. For each cluster, the cluster “mass” was computed by summing all statistics 

from each data point within a given cluster. To construct a null distribution from permutations, the 

same procedure was repeated 5000 times with shuffled condition labels for each data point and 

participant. The maximum cluster mass from each permutation was then used to construct the null 

distribution. Finally, the cluster-level p-value was computed by identifying the rank of cluster mass 

from real data in the null distribution (Monte Carlo p value).  

For ERP analyses, the neighbours were defined as adjacent channels and sample time points. 

The adjacent channels were computed by Delaunay triangulation in 2D projection of the sensor 

position. In the first step, critical values were computed using a two-tailed dependent t statistic with 

a p < .05 criterion. 

For, MVPA analyses for 1D data (time only), the neighbours were defined as adjacent sample 

time points. For the TGA, the neighbours were defined as adjacent training and testing time points 

in a 2D space. Because we only considered above chance level classification accuracy, critical 
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values were computed from one-tail one-sample t statistics again using 50% accuracy with a p < .05 

criterion.  

For the robust multilinear regression analysis, a one sample t-test was performed to test the 

Fisher’s z-score for each time point against an average score calculated from the pre-stimulus 

period.  

4.3 Results 

 

Figure 4-2 Unexpected sensory input elicited mismatch responses. ERP mismatch spatiotemporal 

clusters by the contrast between standard and deviant intervals with physically identical stimuli 

(150ms interval). The durations of statistically significant positive and negative clusters are 

depicted by blue and red lines respectively. The representative topographical distributions of each 

cluster are selected from representative time within the time range of each clusters. Electrodes 

marked by symbols indicate spatial ranges of each cluster at the representative time. A-ISO: 

Auditory isochronous sequence. A-ANISO: auditory anisochronous sequence. V-ANISO: visual 

anisochronous sequence.  
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Figure 4-3 Average temporal decoding accuracy across all participants. Classiifiers were trained 

and tested to classify standard and deviant intervals with data from 64 channels. Highlighted red 

areas are statisitcally signnificant time windows by cluster-based permutation with 1D (time) data. 

Unexpected Sensory Input is defined by analyses on trials with short (150ms) stimulus 

intervals.Unexpected omission is defined by analyses on trials with long (400ms) stimulus intervals. 

A-ISO: Auditory isochronous sequence. A-ANISO: auditory anisochronous sequence. V-ANISO: 

visual anisochronous sequence.   

 

 

Figure 4-4 Unexpected omission elicited mismatch response. ERP mismatch spatiotemporal 

clusters by the contrast between standard and deviant intervals with physically identical stimuli 
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(400ms interval). The durations of statistically significant positive and negative clusters are 

depicted by blue and red lines respectively. The representative topographical distributions of each 

cluster are selected from a representative time within the time range of each cluster. Electrodes 

marked by symbols indicate spatial ranges of each clusters at the representative time. A-ISO: 

Auditory isochronous sequence. A-ANISO: auditory anisochronous sequence. V-ANISO: visual 

anisochronous sequence. 

4.3.1 Neural correlates of temporal prediction driven by duration processing 

4.3.1.1 Evidence from unexpected sensory events 

Neural correlates of temporal prediction were first examined by neural responses to 

unexpected sensory events. In a long standard interval block of trials, participants were presented 

with the long standard interval (400ms) and a short interval (150ms) deviant. Consequently, the 

second stimulus (S2) arrived at an unexpected timing (150ms). By comparing the short interval 

(150ms) with physically identical short intervals in the standard trials (150ms) from the 

counterbalanced block, we can examine neural responses driven by temporal predictive processing 

with physically identical sensory stimulation. 

We first replicated the results from previous temporal oddball studies in which rhythmic 

information, due to fixed ITIs (isochronous sequences), also contributed to temporal prediction of 

sensory events. The results from the ERP comparison between standard and deviant trials with the 

same short intervals on the auditory isochronous sequences showed two pairs (both significant 

positive and negative parts within similar time windows) of significant clusters (Figure 4-2). The 

early paired clusters at 227ms-313ms showed a negative ERP deviation in response to the 

unexpected auditory input, with a central to frontal distribution (p = .025 and .014 for the positive 

and the negative cluster, respectively). The late paired clusters showed a similar but 

polarity-reversed distribution at 326ms-475ms (p = .003 and .019 for the positive and the negative 
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cluster, respectively.) These results are consistent with previous findings indicting EEG correlates 

of prediction for rhythmic temporal sequences (Y. Chen et al., 2010; Jacobsen & Schröger, 2003; 

Joutsiniemi et al., 1998). Note that, the latency from the second stimulus onset was 77ms (227ms – 

150ms) and 176ms (326ms – 150ms) for the early and the late effects respectively. The notably 

early 77ms latency suggests the temporal prediction influenced neural responses of early auditory 

processing (Katz, 2014).  

We next examined whether EEG patterns across channels contained information about trial 

types with MVPA. This approach shows better sensitivity than the above univariate ERP analyses. 

Linear SVM could classify standard and deviant EEG patterns in two time windows with above 

chance performance. The later time window showed a longer time range from 203ms to 805ms (p 

< .002) than the ERP analysis suggesting that information about trial type (standard or deviant) was 

embedded across multiple electrode channels and was not captured by traditional univariate 

analyses.  

Surprisingly, we found a remarkably early significant window ranging from 55ms to 125ms (p 

= .03). Note that this time range is earlier than the disclosure of trial types (i.e., 150ms). Therefore, 

the early EEG pattern difference cannot be attributed to any violation of temporal prediction, but 

was more likely due to preparation processing for incoming S2 caused by the rhythmic structure of 

isochronous sequences.  

Having broadly replicated previous results reported for rhythmic sequences, we examined 

whether our anisochronous stimulus sequences that, by design, are free from global rhythmic 

components could also provide evidence for neural correlates of temporal predictive processing. 

For the auditory anisochronous sequences, the ERP analysis (Figure 4-2) revealed a pair of 

significant early clusters (ps < .002 for both positive and negative clusters) and a late negative 

cluster (600ms to 801ms, p < .002). These ERP differences between standard and deviant trials 
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demonstrate that neural correlates of temporal predictions can be found for duration itself, in 

isolation from rhythmic temporal information. 

Similar to the results from the auditory isochronous sequences, a significant early cluster pair 

showed that unexpected auditory input elicited a central-to-frontal negative response at 227ms and 

309ms. The early onset of these clusters suggests that prediction about temporal interval influenced 

very early auditory processing occurring only 77ms from S2 onset time (227ms – 150ms = 77ms). 

In combination with the results from presentation of isochronous sequences, these data indicate that 

both duration and rhythmic predictions modulated early auditory processing.  

However, contrary to the auditory isochronous sequences, ERP analysis of anisochronous 

sequences did not show evidence for the existence of a second cluster (from around 300ms - 

400ms), indicating a unique contribution from rhythmic information to temporal predictive 

processing. Conversely, we found that a late central-to-frontal negative cluster only in auditory 

anisochronous sequences, suggesting a unique contribution of prediction about temporal interval 

distinct from rhythm. 

Next, linear SVMs were used to decode EEG patterns. The results show two time windows 

with above chance decoding accuracies. The early time window is consistent with the early ERP 

cluster and further extends the time range to 383ms (250ms to 383ms, p < .002), suggesting MVPA 

is more sensitive to the neural response difference between standard and deviant trials with 

auditory anisochronous sequences. The second time window occurred at 398ms to 508ms (p 

< .011). This result suggests that some neural responses elicited by unexpected auditory input were 

distributed in a global pattern across multiple electrodes that could not be fully captured by 

traditional univariate ERP analyses.  

With the same ERP and MVPA approaches as applied to the auditory sequences, we also 

examined the neural correlates of temporal prediction for rhythm-free visual sequences. The ERP 
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cluster-based analysis revealed unexpected visual input elicited a significant mismatch cluster 

between 406ms to 580ms (p < .002) around central to frontal areas. With MVPA, again, we showed 

a much longer significant time window with above chance decoding accuracies at 375ms to 719ms 

(p < .002), suggesting that visual prediction about temporal interval was partially encoded by a 

global pattern of neural response that cannot be fully captured by traditional univariate ERP 

analyses. Note that, as compared with the auditory sequences, both ERP and MVPA approaches 

show that the visual mismatch response was much later than auditory one, suggesting a 

fundamental difference in information processing speed between auditory and visual systems, 

consistent with what is known about the difference systems (A. J. King & Palmer, 1985; Regan, 

1989). 

4.3.1.2 Evidence from unexpected omission 

Violation of temporal prediction can also occur for the timing at which a sensory input is 

expected but omitted, rather than being unexpectedly presented. To examine the neural processes 

elicited by unexpected omissions, we compared neural responses from the long standard trials 

(400ms) with those in the long deviant trials (400ms) in which a short (150ms) interval was 

expected and thus S2 was expected to occur 150ms after the S1 onset. In such circumstances, 

anticipation of S2 would be entirely driven by top-down expectation. We would expect that a 

certain noise level in the temporal expectation process would lead the anticipated timing of S2 

arrival to distribute around 150ms across trials. Therefore, we predict that (i) because the time 

course of neural response for the unexpected omission was not aligned across trials, a smaller effect 

was expected in the ERP analysis and the MVPA. (ii) the average neural response driven by 

unexpected omission across trials should be earlier than by unexpected sensory input. This is 

because anticipated time for S2 in some trials is earlier than the time of S2 in standard trials 
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(150ms). However, the neural response for unexpected sensory inputs was always aligned well and 

triggered after a real S2 at 150ms. 

We first examined temporal prediction from isochronous auditory sequences. The ERP 

analysis showed that unexpected omission elicited only a negative ERP at centre-to-frontal areas 

from 217ms to 309ms (p = .023, see Figure 4-4). The MVPA further showed that the EEG pattern 

across channels from standard and deviant trials can be decoded from 188ms to 867ms (p < .002). 

As for the findings driven by unexpected sensory input, this result shows that the human neural 

system can learn temporal regularities and form temporal prediction from rhythmic sequences. 

Note that both the ERP analysis and MVPA show a very early onset time of the effect which is 

earlier than the effect driven by unexpected sensory input (227ms and 203ms for the ERP analysis 

and MVPA, respectively)Error! Bookmark not defined... 

We next tested whether sequences without rhythmic information can also demonstrate 

temporal prediction. Even though the ERP based analyses did not show any significant cluster 

(Figure 4-4), MVPA (Figure 4-3) still showed several significant time windows starting from 

203ms to 727ms (p = .03, .01, .04, and < .001, ordered chronologically) and a very late time 

window at 961ms to 1008ms (p = .04). Again, this result suggests information regarding 

predictions of temporal interval was embedded in the global neural activation pattern that the 

univariate ERP analysis was unable to detect. The onset time of the first significant window (203) 

was again early compared to the effect driven by unexpected sensory input in auditory 

anisochronous sequence (227ms and 250ms for the ERP analysis and MVPA). 

Unexpected visual omission also elicited mismatch responses for visual anisochronous 

sequences. Here, we found an early ERP cluster (352ms to 422ms, p = .02) and a late pair of ERP 

clusters (from 668ms to 951ms, ps < .001). MVPA showed two significant time windows. The first 

window (383ms to 430ms, p = .04) is consistent with the time range of the early ERP cluster. The 
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second cluster starting from 555ms to 711ms (p < .001) partially overlaps with the late ERP cluster, 

showing that the ERP cluster-based analysis and MVPA both captured unique neural response 

differences between standard and deviant trials. Compared to neural responses elicited by 

unexpected auditory omission, the onset of earliest visual response to unexpected visual omissions, 

again, showed a longer delay from S2 onset time in MVPA (383ms for visual omission vs 203ms 

for auditory omission). Importantly, this result suggests that the temporal prediction process takes 

sensory information processing speed into account. Even though the unexpected auditory and 

visual omissions were physically identical (nothing occurred), a delay was still present between the 

onsets of auditory and visual mismatch responses. Similar to the finding in the auditory domain, the 

unexpected visual omission elicited mismatch responses started earlier than the one by unexpected 

visual inputs in ERP analysis (352ms vs 406ms, but similar in MVPA 383ms vs 375ms).  

4.3.1.3 Interim summary  

We replicated TMMN responses elicited using isochronous sequences as reported in previous 

research (Y. Chen et al., 2010; Joutsiniemi et al., 1998; Näätänen et al., 1989, 2007). Examining the 

neural responses in anisochronous sequences by ERP cluster-based analysis and MVPA, we found 

neural responses elicited by violations of prediction for temporal interval for both auditory and 

visual sensory inputs – an explicitly duration MMN. Generally, MVPA showed higher sensitivity 

for EEG differences between standard and deviant trials and could capture information embedded 

in global patterns of neural response that were not detected by the univariate ERP approach.  

4.3.2 Finding cross-modal temporal prediction between audition and vision 

Next, we examined whether the neural responses related to predictions about temporal 

intervals elicited by auditory and visual sequences contained shared information that may be driven 
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by a supramodal temporal predictive processing system. More specifically, if both auditory and 

visual deviant intervals were detected by the same supramodal temporal prediction system we 

expected that we should observe similar neural response patterns embedded within the EEG signal. 

In such a case, a neural pattern classifier trained to decode EEG signals from auditory standard and 

deviant trials should be able to decode EEG signals from visual standard and deviant trials. 

However, as shown above, the information processing speeds of auditory and visual inputs are 

different (auditory was always faster than visual). To accommodate the perceptual latency between 

modalities (A. J. King & Palmer, 1985; Regan, 1989),  we adopted temporal generalisation 

analysis (TGA; J.-R. King & Dehaene, 2014). 

If a classifier trained on EEG signals at a specific time point (training time) is able to classify 

EEG patterns at another time point (testing time) with an above chance accuracy, EEG signals 

between the two time points is likely to contain shared information about trial types (J.-R. King & 

Dehaene, 2014).  
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4.3.2.1 Supra-modal predictions of unexpected sensory input 

 

Figure 4-5 Temporal generalisation analysis for unexpected sensory input between conditions. 

Classifiers were trained on the data at each training time point and tested on data at each testing 

time point. Three diagonal panels depict cross-validation decoding accuracy for within condition 

temporal generalisation analyses. The non-diagonal panels illustrate between condition temporal 

generalisation analyses. Outlines indicate statistically significant clusters. In each panel, along 

diagonal clusters show EEG signals at close training and testing time points share similar 

information. Below diagonal clusters indicate that information at training time point occurs in late 

testing time. Above diagonal clusters indicate that information at training time point occurs in 

early testing time. 
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We first examined whether shared information was embedded in neural patterns elicited by the 

temporally unexpected visual input and unexpected auditory input. At every sample point (training 

time) in the epoch range (-140ms to 1400ms), linear SVM classifiers were trained to classify neural 

patterns elicited by auditory standard and deviant anisochronous sequences (see methods for 

details). These classifiers were then used to classify EEG signals at every time point (testing time) 

in visual anisochronous standard and deviant trials. After repeating the training and testing 

procedure for all combinations of training and testing time, the method created a generalisation 

matrix. The result shows a below-diagonal cluster with above chance classification accuracies (p 

= .021, Figure 4-5). Importantly, the below-diagonal pattern illustrates that the information used to 

decode auditory standard and deviant trials can also be found in the later neural response patterns 

elicited by visual sequences. This result supports the existence of supra-modal temporal interval 

predictions, triggered by auditory information earlier than by visual information.  

Similar results were also found when we reversed the training and testing data sets. That is, we 

trained the classifiers on EEG signals from visual anisochronous sequences and tested on data from 

auditory anisochronous sequences. The generalisation matrix showed an above-diagonal cluster (p 

= .025, Figure 4-5), indicating that the information used to decode neural responses in visual 

standard and deviant trials could successfully classify the neural patterns at earlier time windows.  

We quantified the delay between visual and auditory information processing by computing the 

average delays within the significant clusters. The TGA on anisochronous sequences from auditory 

to visual and from visual to auditory show an average 131ms delay (t(399) = 42.52, p < 10^-149) 

and an average 142ms (t(387) = 46.07, p < 10^-158) delay, respectively. Therefore, our results 

support the existence of a supra-modal temporal predictive process responsible for extracting 

regularities in temporal interval to generate temporal predictions.  
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4.3.2.2 Supra-modal predictions of unexpected omission 

 

Figure 4-6 Temporal generalisation analysis for unexpected omission 

 

We further examined the shared neural response pattern elicited by auditory and visual 

unexpected omissions. However, the TGA showed no cluster with above chance classification 

accuracies (Figure 4-6). This asymmetry between the result from unexpected sensory input and 

unexpected omission may be due to the impact from internal noise to the expected S2 onset 
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timeError! Bookmark not defined.. The internal noise led the expected S2 onset time generated from internal 

top-down prediction vary across trials. This resulted in the classifiers being unable to learn a stable 

neural pattern to classify standard and deviant trials presented in different sensory modality.  

4.3.3 Temporal dynamic of temporal prediction processing: different temporal generalisation 

patterns driven by unexpected presence versus unexpected omission 

The detection of unexpected sensory omission relies on top-down temporal predictions of S2 

onset time which is inevitably biased by random noise in neural systemError! Bookmark not defined.. As a 

result, the expected S2 onset time may vary across different trials. Therefore, a classifier trained on 

data at a certain training time point would be able to decode brain patterns (generalisation) in a 

longer period centred to the training time. For instance, a classifier trained on the data at 250ms 

would be able to decode EEG pattern at 230ms or 270ms because expected S2 onset time in some 

trials, due to the internal noise, would be shifted to earlier or later time points. Compared to 

unexpected sensory omission, unexpected sensory inputs always trigger neural processing 

precisely at the S2 onset time (150ms). This leads to the neural responses elicited by unexpected 

sensory inputs being time-locked to S2 onset time and temporally more consistent across trials. 

Therefore, a decoder would achieve higher decoding accuracies but a shorter range of decoding 

generalisation time.  

We performed the within condition temporal generalisation analysis on the EEG responses 

from unexpected sensory events and unexpected omission. According to previous experimental and 

simulation studies (J.-R. King & Dehaene, 2014; J.-R. King et al., 2014), a narrow diagonal pattern 

in a generalisation matrix represents a series of consecutive but briefly sustained processes. On the 

contrary, a broad distributed pattern suggests long lasting processes across time. We therefore can 

examine within condition generalisation matrixes. The results showed that the temporal 
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generalisation for unexpected sensory inputs in two conditions yielded a narrow diagonal pattern 

(Figure 4-5Figure 4-4). In contrast, the temporal generalisation for unexpected omission revealed a 

broader pattern (Figure 4-6). This result indicates that, as we expected, neural processes elicited by 

unexpected omissions were distributed in a wider time range across trials. 

 

4.3.4 Contribution to temporal prediction from rhythmic information  

 

 

Figure 4-7 Comparison between mismatch responses in auditory isochronous sequence and 

auditory anisochronous sequence. The red highlighted area indicates the time range of the cluster. 

ERP waveforms were averaged from electrodes marked by x.  

When presenting an isochronous sequence, temporal predictions can be derived from both 

rhythmic and interval regularities, and therefore, should be more precise than temporal predictions 

derived from only interval information. Previous research has demonstrated that unexpected 

auditory events elicit larger neural response amplitudes when predictability of events is higher 

(Bendixen, Schröger, & Winkler, 2009; Wacongne et al., 2011). We reasoned that violations of 
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more accurate predictions should lead to a larger prediction error reflected by an increase in 

response amplitude, but no difference in the temporal dynamics of neural response. We tested this 

hypothesis by comparing ERP mismatch responses elicited by unexpected auditory inputs between 

isochronous and anisochronous sequences. 

The results showed a significant central-to-frontal positive cluster within a time window 

around 400ms (354 to 422ms, p <.01, Figure 4-7) indicating that unexpected sensory inputs in the 

isochronous sequence elicited a larger positive mismatch response than in the anisochronous 

sequence. This result confirms the data presented in the previous ERP analyses indicating that 

unexpected auditory inputs in isochronous sequences elicit a pair of ERP clusters from 326ms to 

475ms that are absent in anisochronous sequences, suggesting a unique contribution from rhythmic 

information to temporal predictive processing.  

More importantly, the temporal dynamic of ERP mismatch response was comparable between 

isochronous and anisochronous auditory sequences in this time window (Figure 4-7), suggesting 

that the extra rhythmic information only changed the amplitude of the mismatch response, but not 

the spatial-temporal dynamic of the neural activation pattern. To test whether similar activation 

patterns were shared between the two conditions, we performed TGA to examine whether 

information used to decode EEG patterns in the anisochronous sequence can also be used to decode 

EEG patterns in isochronous sequences even with the involvement of rhythmic-related processes. 

The results showed a significant cluster along diagonal when training using data from the auditory 

isochronous sequence and testing on data from the auditory anisochronous sequence. The decoders 

were able to classify EEG patterns (p < .01) with above chance decoding accuracies. Note that the 

significant period along diagonal was from 219ms to 523ms, suggesting a similar dynamic of EEG 

patterns shared between isochronous and anisochronous sequences within this period. The reverse 

temporal generalisation analysis (training on data from auditory isochronous sequences and testing 
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on data from auditory anisochronous sequences) also showed a significant cluster with a similar 

generalisation pattern and time range (diagonal significant period from 219ms to 516ms, p < .01), 

suggesting robust common predictive neural activity shared by auditory isochronous and 

anisochronous sequences.  

4.4 Discussion  

Here we examined the neural correlates of temporal prediction using EEG. We first 

re-examined the temporal oddball design using a combination of univariate (ERP cluster-based 

permutation analysis) and multivariate (multivariate pattern analysis) approaches. We found that, 

in the absence of a rhythmic structure in an auditory stimulus sequence, human subjects could still 

acquire temporal prediction from repeated exposure to a temporal interval. The violation of the 

temporal prediction yielded a deviation of EEG responses similar to previous findings using 

sequences that included rhythmic information. These results provide evidence for an explicitly 

duration based process of temporal prediction. We further found similar but delayed neural 

response patterns induced by visual stimulus sequences as found for auditory sequences, 

suggesting the involvement of a supramodal temporal prediction mechanism. Finally, we identified 

unique contributions from duration and rhythmic information to temporal prediction. Together 

these results suggest the existence of a unified neural mechanism for temporal prediction which 

integrates temporal information from different sources, including different sensory modalities, to 

generate an integrated temporal prediction about sensory events. 

4.4.1 Temporal prediction from duration and rhythmic processing  

Our results are consistent with previous findings suggesting independent neural substrates 
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underlying duration and rhythmic processing (Teki et al., 2011). We showed that, in the absence of 

rhythmic information, regularity of duration was sufficient to elicit neural responses to prediction 

violation. Sequences containing both duration and rhythmic information elicited larger ERP 

responses than sequences with duration information only, implying the unique contribution from 

rhythm. This finding agrees with studies suggesting a dissociation between duration-based and 

beat-based timing (Grube, Cooper, et al., 2010; Grube, Lee, Griffiths, Barker, & Woodruff, 2010; 

Teki et al., 2012, 2011).  

4.4.2 Duration predictions are processed supramodally 

Our results showed that decoders trained on data from one modality (auditory or visual) could 

successfully decode EEG patterns elicited by deviant intervals from the other modality, suggesting 

shared neural processes for temporal prediction between the two modalities. It has long been 

debated whether duration information is processed in a modality specific or a modality-general 

manner (Buonomano & Karmarkar, 2002; Grondin, 2010; Mauk & Buonomano, 2004). The 

modality-specific hypothesis suggests that the representation of temporal information is encoded 

independently and specific to the sensory modalities (Bueti, Bahrami, & Walsh, 2008; Droit-Volet, 

Meck, & Penney, 2007; Ivry & Schlerf, 2008; Lustig & Meck, 2011; Penney, Gibbon, & Meck, 

2000; Takahashi & Watanabe, 2012). The supramodal hypothesis suggests that duration exists as an 

abstract feature and is encoded in a supramodal/amodal representation (N’Diaye, Ragot, Garnero, 

& Pouthas, 2004; Rammsayer & Ulrich, 2005; Shih, Kuo, Yeh, Tzeng, & Hsieh, 2009; van 

Wassenhove, Buonomano, Shimojo, & Shams, 2008; Wassenhove, 2009; Wearden et al., 2006). 

Using the temporal generalisation analysis, we showed similar, though delayed, neural response 

patterns elicited by the presence of unexpected sensory information for auditory and visual stimuli. 

That a similar pattern was found at the delayed time point indicates that latencies of information 
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processing between modalities should be taken in to account when comparing neural responses 

from different modalities, something typically not easily addressed in standard ERP analyses of 

MMN.  

 

4.4.3 Relation of duration MMN to previous MMN 

Our ERP cluster-based analyses showed that violations of temporal prediction caused by 

unexpected auditory inputs in both isochronous and anisochronous sequences elicited an earlier 

central-to-frontal negative cluster. The topographical distribution and the significant time window 

of this cluster is consistent with previous reported temporal MMN typically found in auditory 

temporal oddball paradigms with peak at  100~250 ms after S1 onset or 50~150 ms after S2 onset 

(Y. Chen et al., 2010; Joutsiniemi et al., 1998; Näätänen et al., 1989, 2007).  This result suggests 

that temporal MMN identified in previous research using temporal oddball paradigms was not 

merely triggered by temporal prediction from rhythmic structure but also contributed to by 

temporal prediction from interval timing. A similar cluster was also elicited by unexpected auditory 

omission in isochronous but not in anisochronous sequences. The weaker temporal MMN-like 

activation elicited by unexpected omission may due to internal noise1. 

In addition to the temporal MMN-like cluster, violations of temporal prediction in the auditory 

isochronous sequence elicited a central-to-frontal positive cluster which was absent in the 

anisochronous sequence. The topographical distribution and the significant time window (176 ms 

to 325 ms after S2 onset) of the later cluster was comparable with P2 auditory ERP component with 

a latency of approximately 150–250 ms (Crowley & Colrain, 2004; Katz, 2014). P2 was found to 

be modulated by deviant auditory stimuli in oddball paradigms and was considered an index of 

stimulus classification processes (Canales-Johnson et al., 2015; Novak, Ritter, & Vaughan, 1992). 
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Using auditory anisochronous sequences, unexpected auditory events elicited a late frontal 

negative cluster. The time window and polarity was close to the reorienting negativity (RON) 

reported in a previous study using the temporal oddball paradigm (Roeber, Widmann, & Schröger, 

2003). In that study, participants were asked to discriminate spatial location of auditory stimuli and 

ignored infrequent changes of stimulus presentation duration. The result showed a larger RON 

elicited by infrequent duration (deviant) suggesting a re-orientation from the detected change to the 

original attentional focus. This RON-like component in the current study was only present in 

anisochronous auditory sequences, suggesting that the rhythmic structure in the isochronous 

sequence may serve a function in maintaining participants’ attention to the stimulus sequence and 

preventing distractions from temporally unexpected events.  

Unexpected visual inputs elicited a central-to-frontal positive cluster. The topographical 

distribution and time window (256-430 ms after S2 onset) is close to the p300, more specifically 

p3a, component found using passive oddball paradigms and considered an index of an automatic 

orienting to novel and salient stimulus features (Polich, 2007). Interestingly, instead of this positive 

cluster, we found that unexpected visual omission elicited an earlier central-to-frontal negative 

cluster suggesting distinct neural activities during computations of prediction errors caused by 

actual visual inputs and absences.  

Unexpected visual omissions in the visual anisochronous sequence elicited a late cluster pair. 

To our knowledge, no previous study has reported similar late ERP components using visual 

temporal oddball designs. The very late component may reflect higher-order cognitive processes, 

e.g. attention reorientation, sensory updating, or error correction (Horváth, Roeber, & Schröger, 

2009; Schröger & Wolff, 1998; Yeung, Botvinick, & Cohen, 2004). Further research is needed to 

elucidate the functional rule of this effect in predictive processing.  
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4.4.4 Auditory and visual information differ in  duration prediction access time 

Our data showed a longer neural response latency for unexpected visual than auditory events. 

This suggests that visual information takes longer to access temporal predictive processes than 

auditory information. When examining the latency difference (the onset of the first significant time 

window) from unexpected sensory input, ERP analyses and MVPA showed 179ms (406ms – 

227ms) and 125ms (375ms – 250ms) delays between visual and auditory evoked responses, 

respectively. The temporal generalisation analyses on data from auditory and visual sequences 

showed averages of 131ms (trained on auditory and tested on visual data) and 142ms (trained on 

visual and tested on auditory data). These results indicate that access to temporal predictive 

processing for visual information was, at least, 125ms slower than auditory information. This 

difference was longer than previous studies showing that brain responses occur roughly 30ms to 

50ms earlier for the auditory signal (A. J. King & Palmer, 1985; Regan, 1989). Therefore, the larger 

difference gives a rough estimate of the difference in processing time (~100 ms longer for vision) 

for generating predications for auditory and visual duration information. However, it is important 

to note that, in the current design, we did not  make any attempt to equate the saliency and intensity 

level of the visual and auditory stimuli, properties which have been shown to affect sensory 

information processing speed (Nissen, 1977; Töllner, Zehetleitner, Gramann, & Müller, 2011). 

Further research is needed to evaluate the impact of stimulus saliency on duration prediction 

processing speed across sensory domains. Future studies should test this idea more thoroughly by 

examining whether temporal predictions consider knowledge about processing latencies when 

standard and deviant durations are presented in different modalities, for example, presenting the 

standard duration in audition and the deviant in vision, or vice versa. 

Interestingly, when examining the difference in neural response latency between unexpected 
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visual and auditory omissions, the result showed a similar latency difference of 180ms (383ms – 

203ms), even though the inputs were physically the same (no input presented). This result is 

consistent with previous studies on unexpected omission (NITTONO, 2005; Simson, Vaughan Jr., 

& Walter, 1976), suggesting that neural processing of temporal prediction takes modality-specific 

latencies of information processing into account.  

4.4.5 Neural response to unexpected omission 

In the current study, we found asymmetrical neural responses between unexpected sensory 

inputs and unexpected omissions. This finding replicates previous studies in finding a difference 

between “increment” (deviant intervals are longer than standard intervals) and “decrement” 

(deviant intervals are shorter than standard intervals) temporal MMN. (Takegata et al., 2008). A 

parsimonious explanation is the presence of internal noise within the temporal predictive 

processing mechanisms. In the current experiment, the unexpected sensory inputs were perfectly 

time-locked 150ms after S1 onset time. Therefore, neural responses elicited by unexpected sensory 

inputs would be expected to be triggered at similar timing across trials. However, the onset time of 

neural responses to unexpected omissions must be determined by only predictions for S2 onset time. 

Consequently, by contrast with unexpected sensory inputs, the onset time of neural responses to 

unexpected omissions is more susceptible to noise within the predictive processing mechanisms 

generating predictions of S2. This may result in larger variance in the time course of the neural 

responses across trials. Our data showed convergent results supporting this possibility. First, we 

expected that temporal prediction of S2 onset time would occur earlier in some trials and lead to 

earlier onset time due to the internal noise1. Both our data and the data from Takegata et al (2008) 

showed, in most analyses, that the onset time of the mismatch response to unexpected omission was 

earlier than for unexpected sensory input (see Table 1 and Table 1 in Takegata et al 2008). Second, 
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we expected a smaller effect size for unexpected omission than unexpected sensory input due to the 

variance of temporal predictions of S2 onset time across trials. Both our data and Takegata et al 

2008 are consistent with this prediction (see Table 1 in Takegata et al 2008). Third, we directly 

examined an internal noise account using the within condition temporal generalisation analyses. 

The results showed that temporal generalisation patterns were notably broader in unexpected 

omission than in unexpected sensory input. This result indicates that the neural response pattern 

elicited by unexpected omissions can be found at other time points within a broader temporal 

window, suggesting less temporal specificity of neural response to unexpected omissions across 

trials. In sum, our results suggest that the neural processes that rely only on internal prediction to 

detect prediction violations are more vulnerable to internal noise and cause larger temporal 

variation in neural dynamic across experimental trials. 

Standard vs Deviant 

 

ERP 

 

MVPA 

  

unexpected 

sensory input 

unexpected 

omission   

unexpected  

sensory input 

unexpected 

omission 

A-ISO 227 217 

 

203 188 

A-ANISO 227 N.A. 

 

252 203 

V-ANISO 406 352   375 382 

Table 1 The first significant time points of neural responses elicited by violation of temporal 

predictions in ERP analyses and MVPA 

4.4.6 Null results in this study 

The null results I presented in this chapter should be interpreted with caution. A more 

reasonable way to present these null results is to provide Bayes factors. However, because all the 

statistical tests in this chapter were performed by the cluster-based permutation analysis with 

Monte Carlo randomization, I cannot derive an intuitive way to compute Bayes factors. Future 

research is needed to develop Bayesian statistics for cluster-based permutation analysis.  
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4.5 Conclusion 

Complex human behaviour requires the ability to make predictions about the temporal 

properties of events occurring in the environment. Our findings demonstrate that humans can 

acquire and maintain predictions specifically related to duration, in the absence of rhythmic 

information. We further showed that similar processing components are present when a prediction 

of duration is violated regardless of presentation modality, indicating that processing of prediction 

for duration occurs supramodally. Our data suggest that duration as a property of sensory events 

can be encoded and used to generate predictions, and further, that the associated temporal 

predictive mechanisms are shared across sensory modality, in line with a general predictive 

processing framework for perception. 
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Chapter 5 

General Discussion 

In this chapter, I will first summarise the results of my three studies (Chapter 2, 3, 4) and 

interpret them in my three key research questions according to the predictive processing framework. 

I will move on to discuss the time course of regularity learning and neural signatures of predictive 

processing in an integrated view across the three current studies. In the final section, I will discuss 

limitations of this thesis. 

5.1 Overview of findings 

5.1.1 Cross-modal prediction changes the timing of conscious access during motion-induced 

blindness 

Chapter 2 investigated the relationship between predictive processing and conscious content. I 

examined whether predictions of visual events by auditory cues facilitated conscious access to 

visual stimuli. I trained participants to learn associations between auditory cues and colour 

changes. I then asked whether congruency between auditory cues and target colours would speed 

access to consciousness. I did this by rendering a visual target subjectively invisible using 

motion-induced blindness and then gradually changing its colour while presenting congruent or 

incongruent auditory cues. Results showed that the visual target gained access to consciousness 

faster in congruent compared to incongruent trials; a control condition excluded the potential 

confounds of attention and motor responses influencing the results. The expectation effect was 

gradually established over successive blocks suggesting a role for extensive training in 

accelerating conscious access. These findings indicate that predictions learned through 
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cross-modal training can facilitate conscious access to visual stimuli, lending support to predictive 

processing frameworks of perception (Clark, 2012; Friston, 2005; Rao & Ballard, 1999). Within 

the context of these predictive processing frameworks perceptual content is determined by 

probabilistic inference of the most likely external causes of sensory signals. The data from this 

Chapter supports the view that conscious access occurs when predictive models are verified against 

sensory inputs leading to the prediction errors being minimized. The results are also consistent with 

previous findings showing that valid expectation can accelerate conscious access of supressed 

visual contents using continuous flash suppression (Pinto et al., 2015) and shift a 

neurophysiological signature of conscious awareness to an earlier time point (Melloni et al., 2011). 

I suggest that effective predictive cues in this study facilitated the validation of predictive models 

with sensory signals, leading to more rapid conscious access for this sensory information. 

Furthermore, the present results extend the predictive processing framework by showing how 

predictive influences on perception develop across time due to training, and by underlining the 

flexibility of these influences by demonstrating their efficacy using cross-modal arbitrary 

associations. Together these results suggest that predictive influences may permeate and shape 

conscious experiences more deeply and broadly than previously thought.  

5.1.2 Visual Perceptual Echo Reflects Learning of Temporal Regularities in Rapid Luminance 

Sequences 

In Chapter 3, I investigated predictive processing for low-level visual features via unconscious 

visual sequence learning. A sign that the visual system actively processes and predicts sensory 

signals is revealed by the recently discovered ‘perceptual echo’, in which the cross-correlation 

between a sequence of randomly fluctuating luminance values and electrophysiological (EEG) 

signals exhibits a long-lasting periodic (~100ms cycle) reverberation of the input stimulus 
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(VanRullen & Macdonald, 2012). I hypothesised that the perceptual echo may reflect a periodic 

process associated with regularity learning using predictive processing. In two experiments and a 

simulation, I investigated the functional relevance of the perceptual echo response, testing the 

hypothesis that it reflects a predictive processing mechanism which can encode and learn dynamic 

visual sequences within the visual cortex. 

In Experiment 1, I found that the perceptual echo response was enhanced by repetitions of an 

identical rapid luminance sequence, indicating that the information about such sequences is 

encoded by the visual system. Control analyses using shuffled data excluded the possibility that 

increases in perceptual amplitude could be attributed to general changes in induced alpha-band 

EEG responses resulting from sequence repetitions. 

Experiment 2 first replicated the main finding of Experiment 1, that echo amplitude increases 

with successive presentations of a random dynamic luminance sequence, and confirmed that the 

perceptual echo reflected specific sequence information. Following 4 presentations of a specific 

sequence I compared the echo response elicited by a 5th presentation with that elicited by an 

‘inverse’ sequence, which preserved all non-sequential spectral and temporal properties of the 

original sequence. Strikingly, the echo amplitude for the inverse sequence returned to a level 

comparable to presentation of a novel sequence, while a 5th presentation of a non-inverse sequence 

continued to elicit a strong echo response. I also found that information about an encoded sequence 

persisted over 9 seconds and was robust to intervening visual input, by showing that the echo 

response to a re-presented (non-inverse) sequence, following an inverse sequence, recovered to a 

level indistinguishable from a 6th successive presentation of a given luminance sequence. 

To investigate the perceptual echo further I created a predictive processing model, inspired by 

the Kalman filter (Kalman, 1960), to simulate key features of the perceptual echo. This model 

provided a computational account of how a predictive coding system may generate the perceptual 
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echo and also provided insights into the temporal dynamics and morphology of the echo response. 

The results of this study results extend those of VanRullen & Macdonald (2012) by providing a 

functional account of the perceptual echo response, demonstrating that it reflects a neural index of 

the encoding of fast-changing dynamic luminance sequences. 

Altogether, this data indicates that human visual areas are capable of rapidly encoding 

fast-changing dynamic stimuli that appear to be governed by the predictive processing framework, 

this process being reflected by the perceptual echo. This information persists in the visual system 

for at least 9 seconds, even in the presence of novel intervening sensory input. 

5.1.3 The neural correlates of temporal predictive mechanisms based on interval timing 

Chapter 4 investigated the neural correlates of temporal predictive processing in a temporal 

oddball design using EEG. The interpretation of previous findings using temporal oddball designs 

to study temporal predictions about interval is complicated due to the use of fixed 

inter-trial-intervals (ITI), which inevitably confound temporal predictions based on rhythmic 

information with those based on duration per se. I hypothesized that violations of predictions about 

temporal intervals (non-rhythmic) could also elicit neural responses related to temporal (rhythmic) 

violations.  

With ERP analyses and MVPA, I found that without rhythmic information in the sequence 

structure violation of prediction about temporal intervals still elicited neural responses related to 

temporal violations. This finding suggests the existence of specific neural correlates of temporal 

prediction that are based on interval timing. In addition, I also found a unique ERP component 

related to rhythmic sequence structures. I further found a central-to-frontal positive ERP 

component with a larger but similar amplitude when the sequence contained both interval and 

rhythmic information, compared to sequences with only an interval prediction. This finding 
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suggests a unified predictive mechanism that integrates both interval and rhythmic information to 

make more precise temporal predictions about incoming events.  

I further investigated whether the neural mechanisms for temporal prediction are modality 

specific or supra-modal. Using temporal generalisation analysis (J.-R. King & Dehaene, 2014), I 

found that the neural response patterns elicited by violation of predictions about auditory temporal 

intervals at earlier time points were similar to those elicited by violation of prediction about visual 

temporal intervals at later time points. Even though the information processing speeds are very 

different between these modalities, the results from the temporal generalisation analysis (TGA) that 

predictive information from auditory and visual temporal intervals can be acquired through a 

supra-modal predictive mechanism and can be used to generate predictions about both auditory and 

visual events.   

In summary, combining traditional univariate ERP analyses with MVPA and TGA, I 

successfully identified neural correlates of prediction for temporal intervals (independently of 

rhythm) and revealed the supra-modal nature of the temporal predictive mechanism. In general, 

with multivariate approaches, neural responses to the violation of temporal predictions can be 

detected in longer time windows suggesting that temporal predictions that influence neural 

processes are more profound than previously thought. 

5.2 Thesis research questions: 

5.2.1 Predictive processing, conscious access and unconscious inference  

Overall, the experimental results of Chapter 2 and Chapter 3 support the notion that neural 

computations of predictive processing mainly operate unconsciously. This finding fits traditional 

interpretations of predictive processing, an implementation of the Bayesian brain hypothesis, 
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which generally posits “perception as unconscious inference” (Gregory, 1980; Helmholtz, 1866; 

MacKay, 1956; Neisser, 1967; Rock, 1983). According to this view information processing and 

computation for perception occurs at the unconscious level. Only the final decision of statistical 

inference reaches conscious awareness and forms the content of conscious experience. In Chapter 2, 

visual information was supressed during the MIB state. However, I found that cross-modal 

predictive information can nevertheless facilitate conscious access of visual information supressed 

under the MIB state, suggesting an unconscious integration between cross-modal predictive 

information and supressed visual information. These results confirm traditional predictive 

processing concepts, that information integration and computations associated with perceptual 

inference operate at the unconscious level, with only the final result of this inference being 

accessible consciously. 

Note that Chapter 2 only examined the impact on conscious access from predictive 

information learned from a simple cross-modal association. Whether other types of predictive 

information (e.g., information represented at higher levels in the sensory hierarchy) are also 

processed and computed at the unconscious level is still unknown. I will discuss this limitation in 

the following Limitations and Future Research Section.  

The MIB study was also designed to assess how cross-modal predictions can influence the 

timing of access to subjectively suppressed (unconscious) visual information. Previous studies that 

have investigated how valid predictive cues accelerate conscious perception across modalities have 

focused on the predictions between long-term representations, e.g. semantic-object identity (Y.-C. 

Chen et al., 2011; Lupyan & Ward, 2013), audio-visual speech (Alsius & Munhall, 2013; T. D. 

Palmer & Ramsey, 2012b) or motion integration (Conrad et al., 2010). For example, Conrad and 

colleagues show that, in binocular rivalry, motion sounds can stabilise and lengthen dominance 

periods for congruent visual motion (Conrad et al., 2010). Similarly, Chen, Yeh, and Spence found 



142 

 

 

that auditory cues shortened the suppression period of congruent visual objects (Y.-C. Chen et al., 

2011). In contrast to these findings, the present study further showed that predictive information 

learned through short-term, flexible, and learned associations demonstrated a similar impact on 

conscious perception. Taken together, these findings suggest that cross-modal predictive 

information exerts substantial influences on unconscious statistical inference, conscious perception, 

and their interaction.  

I theorized that the validity of the predictive information provides different prior information 

for visual perceptual inference and therefore should affect the inference process. Valid predictive 

information should accelerate conscious access as the result of unconscious inference, biasing the 

inference to rapidly arrive at the “correct result” and therefore minimizing the prediction error. 

Supporting this theory, I found that predictions that were in line with sensory evidence accelerate 

conscious access. This finding is comparable with previous research showing that perceptual 

decision criteria shift in different directions based on congruency between perceptual expectations 

and actual sensory inputs, suggesting decision bias in unconscious inference (Sherman et al., 

2015).These results extend the theoretical knowledge about how predictive information affects 

conscious access by showing how predictive influences on unconscious perceptual inference 

develop across time as the result of training. . 

In Chapter 3, I found that in two experiments, all participants were unaware of repetitions of 

luminance sequences although the amplitude of the perceptual echo was still able to reveal the 

effects of sequence learning. From a predictive processing perspective, after the first presentation 

of a sequence, an interpretation might be that the specific sequence information is encoded as  

prior knowledge and modulates the perceptual echo in subsequent presentations of the same 

sequence. The fact that participants failed to explicitly recognise sequence patterns suggests that 

the sequence knowledge (prior) and the computations underlying the perceptual echo were 
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unconscious in nature. Furthermore, we observed a peak echo response at approximately 400ms 

post stimulus onset, suggesting that the visual system was able to detect repetitions of a specific 

sequence extremely rapidly, within half a second. This result points to the rapid integration between 

prior knowledge and current sensory signals that operates at an unconscious level. Additionally, we 

found that the encoded sequence information can persist over many seconds even in the presence of 

additional intervening sensory input. This finding highlights a number of interesting observations, 

firstly that sequence specific information (prior knowledge) had been encoded by the visual system 

unconsciously, an observation supported by the fact that the results of unconscious inference are 

still available over 9 seconds after the original sequence was presented. Secondly, that the results of 

unconscious inference between sensory input and prior occurred in this study extremely rapidly, by 

approximately 400ms. Note that due to the limitation of the current design, this study did not assess 

the impact from the rapid unconscious inference on conscious perception of the luminance changes. 

Further research is needed to examine how prior knowledge sequence patterns influences 

conscious luminance perception.  

A central question of this thesis has been to explore the relationship between unconscious 

statistical inference reflected by predictive processing and conscious access. This thesis has added 

to our understanding of this question by demonstrating that predictive information is processed 

unconsciously, and that this information can influence unconscious inference speeding conscious 

access. 

5.2.2 Differing levels of information within the predictive processing framework 

As mentioned in the introduction hierarchical predictive coding is capable of encoding a wide 

range of information types from concrete to abstract. This framework predicts that in humans both 

low and high level information should operate through the same predictive processing mechanisms. 
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The studies in this thesis were designed to manipulate the level of information presented and 

examine predictive mechanisms across these different levels of sensory information. Chapter 3, 

used low-level sensory information (luminance), Chapter 2 used cross-modal information 

(auditory-visual) while Chapter 4 utilized supra-modal information (temporal duration).  

In Chapter 3, I found increases in echo amplitude with successive repetitions of a sequence 

demonstrating that participants were implicitly learning information about each sequence, which 

may reflect perceptual predictions (priors) being updated with the presentation of each sequence. 

The results of modelling this process (Section 3.3) suggests that the echo response reflects an 

iterative process that updates priors about the luminance dynamics of a sequence, communicating 

perceptual predictions at rate defined by the alpha frequency band. Taken together the findings of 

Chapter 3 support the idea that predictive processing may operate using low-level visual 

information.  

Chapter 2 demonstrated that a visual target gains access to consciousness faster when 

cross-modal predictions are congruent with the supressed visual inputs. The result is in line with 

the view that predictive processing in the neural system is organised in a hierarchical manner in 

which high-level units integrate information across modalities and generate top-down predictions 

about modality-specific sensory data (Altieri, 2014; Arnal, Wyart, & Giraud, 2011). Previous 

research on Bayesian brain hypothesis has emphasised the importance of cross-modal perceptual 

inference (Deneve & Pouget, 2004; Ernst & Banks, 2002; Körding et al., 2007; Shams & 

Beierholm, 2010). Because an external event typically causes multimodal information which can 

be perceived by multiple sensory channels, perceptual inference should consider information 

across modalities to accurately infer the sensory cause. In the predictive coding framework, 

information from one modality can be used to establish prior of sensory causes and generate precise 

predictions about sensory inputs from another modality. Therefore, prediction about sensory inputs 
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can be effectively constrained (Alais & Burr, 2004) by cross-modal predictive information. The 

current result suggests that cross-modal predictive processing exists in the sensory hierarchy and 

facilitate perceptual inference by using predictive information from different modalities. 

Chapter 4 showed that when an infrequent temporal duration was presented either by visual or 

auditory modalities the surprise EEG response pattern contained similar and decodable 

topographical information, suggesting a common predictive mechanism tracking temporal duration 

regularities across modalities. The result point to a high-level predictive mechanism which operates 

on abstract supra-modal temporal information that is not modality specific.  

Collectively, the results of this thesis answer one of my primary research questions by 

showing that predictive processing appears to operate across differing levels of sensory information, 

low-level, cross-modal, and supra-modal.  

5.2.3 Regularity learning within the predictive processing framework 

How are differing forms of regularity learning used to make predictions about future events 

within the predictive processing framework? This thesis examined predictive processing via three 

common types of regulatory leaning utilized in previous studies from psychology and neuroscience. 

Chapter 2 focused on predictive processing using extensive training to establish predicative 

relationships between cross modal information. The results showed that cross-modal predictive 

cues accelerated time to conscious access – but only after extensive training associating specific 

visual and auditory stimuli. I found a linear relationship between the amount of training and the 

degree of facilitation, highlighting that the learning of predictive associations can regulate their 

influence on the timing of conscious access. The results showed how predictive associations 

develop across time as the result of extensive associative training and how this influences 

conscious perception. Note that, as discussed in Chapter 2, although this training is extensive it is 



146 

 

 

still much shorter as compared to the long-term bound representations, e.g. semantic-object 

identity and audio-visual speech.  

The results of Chapter 3 showed that the human visual system is capable of rapidly and 

automatically encoding and learning temporal regularities embedded within fast-changing dynamic 

stimulus sequences. This study showed an enhancement of the perceptual echo due to sequence 

repetition, suggesting the involvement of predictive processing in low-level sequence learning. 

In Chapter 4 I identified the neural correlates of predictive mechanisms that tracks temporal 

duration regularities. The temporal predictive mechanisms were able to acquire the predictive 

temporal information from duration repetition in a duration oddball paradigm. Based on the 

temporal information it was able to make temporal predictions about future sensory inputs. 

Previous studies on temporal duration using duration oddball paradigm have always suffered from 

a fundamental confound of having two types of temporal information embedded within the 

paradigm, rhythmic and duration information. This experiment successfully isolated and identified 

the neural responses relating to temporal duration tracking within this paradigm, independently of 

rhythmic information. The findings of this study suggest that predictive mechanisms are involved 

in detecting, extracting, and learning regularities from repetitions of abstract sensory information in 

the environment, in this case the temporal duration between sensory events. 

Together these studies suggest that predictive mechanisms use distinct types of regularity 

learning to generate valid predictions about future events.  

5.3 The time course of regularity learning and conscious access within predictive 

processing 

The EEG results of Chapter 3 and Chapter 4 showed that the neural signatures of sequence and 
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duration regularity learning can be detected within seconds. Chapter 3 showed that the echo 

enhancement due to sequence repetition linearly increased and rapidly became observable, 

reaching significance after 4 successive presentations of the same sequence. My data suggests that 

the regularities encompassing a given sequence was encoded by the 4th repetition (around 24.5 s). 

This finding is compatible with the learning of random noise sequences in the auditory domain 

(Agus et al., 2010). In their study Agus et al., demonstrate that the human auditory system can 

rapidly learn temporal sequence (1s) properties of a random and meaningless input signal 

(Gaussian random noise) within 10 repetitions (Agus et al., 2010).  

Chapter 4 showed that the neural responses of temporal prediction violations were able to be 

detected using a sequence with 4:1 standard and deviant duration ratio which has often been used in 

previous MMN studies (Näätänen, Pakarinen, Rinne, & Takegata, 2004). Previous research using 

the odd-ball paradigm has shown that the MMN elicited by a deviant stimulus is detectable after 

just a few repetitions of the standard stimuli (Baldeweg, Klugman, Gruzelier, & Hirsch, 2004; 

Haenschel, 2005). For example, the MMN latency decreases with only two repetitions of deviant 

stimuli after over 30 repetitions of standard stimuli (Liégeois-Chauvel, Musolino, Badier, Marquis, 

& Chauvel, 1994). These results suggest that the mechanism of regularity learning underlying 

MMN can be elicited with just a few repetitions.  

Together, the regularity learning of sequence repetition in Chapter 3 and acquisition of 

temporal information from duration repetition in Chapter 4 suggests a short-term, flexible, and 

adaptive mechanism that operates in the timescale of seconds. However, Chapter 2 showed that the 

facilitation of conscious access caused by predictive information was gradually established over a 

much larger time-scale using cross-modal associative training, suggesting that the impact on 

conscious access is through a long-term (at least several minutes) regularity and extensive (tens to 

hundreds samples) learning process.   
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What are the possible reasons behind the differences in the timescale of regularity learning 

found in this thesis? 

One possibility is that predictive processing underlying the results of Chapter 2 compared to 

Chapters 3 and 4 used different prior knowledge acquired from regularity learning. The regularities 

in the environment between chapters may have been extracted by different predictive processing 

systems working at different time scales. This notion is compatible with the taxonomy of sensory 

expectation proposed by Seriès and Seitz, who suggest two different categories of sensory 

expectation. (Seriès & Seitz, 2013). Seriès and Seitz described the two types of expectation as 

contextual and structural expectations (Figure 5-1): 

“Structural expectations are the ‘default’ expectations that human observers use based on 

implicit learning of the statistics of the natural environment. These expectations usually reflect 

long-term learning over the lifetime, or may be innate… Contextual expectations, on the other hand, 

can be manipulated rapidly, explicitly or implicitly, through sensory, or by the spatial, temporal, or 

stimulus context in which a stimulus is shown” (Seriès & Seitz, 2013, p. 2). 
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Figure 5-1 Structural vs. contextual expectations. (A) Our priors tells us that light must come from 

the top of the figure, known as the “light-from-above” prior. Therefore, this percept is biased by a 

long-term prior knowledge of the light direction (structural expectation). (B) This ambiguous and 

bistable figure was more frequently perceived as a duck, rather than the alternative (a rabbit) due 

being paired with the presentation of a prime of flying ducks. This biased percept shows the 

short-term influence from the context (context expectation). (figure adapted from Seriès & Seitz, 

2013). 

Following from this perspective, the associative learning used in the MIB study in Chapter 2 

may have caused structural expectations to develop, which were established through extensive 

training between the auditory cue and the colour of the target. Through the intensive exposure of 

the contingency between auditory and visual stimuli, the neural system may have built firm 

long-term knowledge of the cross-modal regularity. In contrast the sequence and duration 

repetitions in Chapter 3 and 4 may have formed a temporary context across stimuli leading to a 

short-term, flexible contextual expectation. The contextual expectation quickly adapts to the new 

context, as shown by the rapid enhancement of the echo response to a new stimulus sequence found 

in Chapter 3. The new sequence immediately re-established the linear enhancement of echo 

response. Similarly, the results of Chapter 4 demonstrate that the MMN can quickly adapt to new 

stimulus features. A deviant duration can immediately change the neural response elicited by the 

following standard duration, suggesting that at least for the MMN neural systems can very rapidly 

form contextual expectations. Note that, although the associative training described in Chapter 2 is 

extensive, whether the training is able to establish a firm structural expectation (e.g., the light from 

above effect) is still unknown. Future research is needed to clarify how extensive training 

influences structural expectations.  

Together the results of this thesis show that the time course of regularity learning varied across 

experiments. This may have been due to the differing structural and contextual expectations 

developed by each experimental manipulation. I suggest that the change of conscious access speed 
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found in Chapter 2 may be affected by structural expectations that are developed by a large amount 

of learning, such as the associative training used in the MIB experiment in Chapter 2. 

5.4  The neural signatures of predictive processing may not always be dissociable 

Previous neurophysiological evidence of predictive processing has mainly focused on the 

neural correlates of the prediction error (See review in Bastos et al., 2012; Karl Friston, 2005). That 

is, if neural responses are enhanced when predictions are inconsistent with sensory inputs, the 

activities are considered to represent prediction errors. Evidence for this claim has been found in 

human EEG and MEG (Baldeweg, 2006; Khouri & Nelken, 2015; Stefanics et al., 2014, p. 2; István 

Winkler & Czigler, 2012), human fMRI (Alink, Schwiedrzik, Kohler, Singer, & Muckli, 2010; Kok 

& de Lange, 2014; Summerfield & Egner, 2009), and also at the neuronal level in an animal study 

(Keller, Bonhoeffer, & Hübener, 2012). Consistent with these findings, Chapter 4 showed that 

when sensory events were presented at unexpected timing (the deviant duration) the EEG signal 

showed a large deflection, which I suggest represents a neural signature of the prediction error.  

However, Chapter 3 shows that the perceptual echo, a potential neurophysiological index of 

low-level visual predictive mechanism, was enhanced by repetitions of a stimulus sequence. 

Furthermore, the enhancement was not associated with a power change in the raw EEG alpha 

oscillation. As discussed in Section 3.4, this result suggests that the activation level of raw neural 

responses (raw EEG alpha) in this low-level visual predictive processing were not modulated by 

the predictability of sensory inputs. The enhancement of perceptual echo by sequence repetitions 

was more likely caused by the increasing similarity between sequence specific information 

(luminance) and the evoked EEG response (see 3.4). As mentioned in the Chapter 3, this effect can 

be thought of as sharpening of the neural assemblies encoding the visual sequences in order to form 
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a more precise representation of the sequence. The central assumptions of the model created in 

Chapter 3 also suggests that the simulated EEG signals was modulated not only by prediction error 

computation but also by neural activity representing the prediction of luminance values.  

Taken together, the results of Chapter 3 suggest that the prediction and prediction error 

neurons may be spatially indistinguishable using a spatially coarse neural imaging method, such as 

EEG. Previous research has shown that neurons responsible for prediction and prediction error 

computations can be found within the same cortical areas. For example, in a mouse study, Keller, 

Bonhoeffer, and Hübener (2012) investigated predictive neural signals from motor areas and 

prediction error signals in the primary visual cortex by manipulating visual-flow feedback during 

locomotion in a virtual reality environment using two-photon imaging of neurons expressing a 

genetically encoded calcium indicator. The results showed that neural activates in mouse primary 

visual cortex were driven by locomotion and by the mismatch between actual and expected visual 

feedback, suggesting that mouse early visual areas are involved with both predictions and 

prediction error computations. More importantly, the result showed no indications for spatial 

clustering of different response types, confirming that different neural indexes of predictive 

processing would not be dissociable using scalp recorded EEG.  

In summary, the results of this thesis related to the perceptual echo demonstrates that the 

neural evidence of predictive processing may not always be revealed by prediction error activity 

alone. In the case of the perceptual echo I did not observe an increase in neural activity (alpha 

oscillation) as would be expected with a prediction error when a new sequence was presented. 

Therefore, it is possible to observe neural indexes of predictive processing without an explicit 

prediction error signal. 

Future research requires more sophisticated methods of data analysis to validate the predictive 

processing framework across multiple experiments. Promising methods have already been applied 
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to this aim. For example, Garrido et al. showed that MMN, an index of prediction error, could be 

explained by changes in the strength of the functional connectivity between cortical sources 

(Garrido et al., 2008). Additionally, Arnal et al. found, using MEG, that delta neural oscillations (3–

4 Hz) conveyed prediction signals from higher-order speech areas, while low-beta (14–15 Hz) / 

high-gamma (60–80 Hz) coupling represented prediction errors within multisensory areas (Arnal et 

al., 2011; see also Sedley et al., 2016).  

5.5 Limitations and future research  

5.5.1 How does the method of acquisition of predictive information affect predictive processing?  

Participants in all the studies within this thesis acquired predictive information from exposure 

to environmental regularities manipulated experimentally. This thesis focused on experimental 

manipulations which meant that predictive information and the statistical regularities had to be 

spontaneously extracted and learned from the experimental environments.  In Chapter 2, 

participants learned statistical relationships between auditory cues and visual targets from intensive 

associative learning training. In Chapter 3, participants were not informed about the repetitions of 

luminance sequences and when probed about their experiences in the study reported that they were 

unaware of any repetitions throughout the whole experiments. In Chapter 4, participants were not 

informed about the statistical structure of standard and deviant trials. However, in real life, 

predictive information is not always learned through the statistical structure of external events. 

Instead, humans are able to learn and update prior knowledge and predictive relationships by other 

means, for example verbal instruction. To my knowledge, no study has been conducted to 

systematically investigate the difference of using prior knowledge learned from exposure to 

statistical regularities compared to explicit linguistic information about the same predictive 
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relationship.  

Nevertheless, some behavioural and neural evidence suggests that neural systems processes 

predictive information acquired through different routes in dissimilar ways. For example, linguistic 

rules when learning a second language (L2) can be acquired either by exposure to form implicit 

knowledge or by overtly being taught the form explicit knowledge (Ellis, 2005). Hulstijn (2002) 

suggests that implicit and explicit L2 knowledge involve different acquisition mechanisms that are 

represented in different brain areas (Paradis, 1994), and the different types of L2 knowledge need to 

be accessed by different tasks (Ellis, 2005). Additional support for the idea that predictive 

information may be processed in differing ways comes from imaging studies that find that implicit 

and explicit predictive knowledge induces different neural responses. In a fMRI study by 

Aizenstein et al. participants viewed consecutive sequences consisting of a series of items with two 

attributes, colour and location (Aizenstein et al., 2004). Participants were required to press different 

buttons according to the colour or shape of an item. The colours and shapes of items were 

determined independently and follow two different first-order Markov chains. Participants were 

only informed about the existence of the statistical relationship of one stimulus feature and 

responded to it as quickly as possible (task-relevant) and learned the sequence rule of the other 

feature (task-irrelevant) implicitly through exposure. The results showed that when the 

task-relevant feature was consistent with predictions that were generated from explicit knowledge, 

visual regions (V1, V2, and V3) showed increased activity. Interestingly, when the task-irrelevant 

features were consistent with predictions from implicit knowledge, the same visual regions showed 

decreased activity. These results suggest that different neural mechanisms were involved in 

predictive processing when using explicit and implicit knowledge.  

Taken together, future behavioural and imaging studies should consider the impact of 

explicitly and implicitly learned knowledge in the predictive processing framework. More research 
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is needed to systematically examine how different prior knowledge influences the neural 

computation of prediction and how the route of the acquisition of statistical regularities affects how 

the brain processes this information.  

 

5.5.2 Can sequence knowledge become conscious? 

Chapter 3 showed that sequence repetitions linearly enhanced perceptual echo amplitude in 

the absence of awareness of the sequence repetitions. This suggests that the human visual system 

encodes knowledge of dynamic luminance sequences unconsciously, even when a sequence was 

repeated up to 6 times. However, the current study did not test whether this implicit knowledge may 

become explicit with many more repetitions of a sequence.  

Previous research has demonstrated that humans are capable of learning implicit sequence 

knowledge underlying motor, cognitive and even social skills (Cleeremans, Destrebecqz, & Boyer, 

1998; Kaufman et al., 2010; Lieberman, 2000; Nemeth et al., 2011; Romano Bergstrom, Howard, 

& Howard, 2012). However, some evidence suggests, after repeated exposures of a stimulus 

sequence, human subjects may be able to acquire explicit knowledge of the sequence presentation 

rules. A classic example of this phenomenon can be found in the serial reaction time task 

(Cleeremans & McClelland, 1991; Knopman & Nissen, 1987; Nissen & Bullemer, 1987; Peigneux 

et al., 2000, 2003; Willingham, Nissen, & Bullemer, 1989). In this task, subjects are required to 

respond as fast and as accurately as possible to the appearance of a target stimulus arranged 

horizontally on a screen by pressing the spatially corresponding key. Without informing the 

participants, the order of target locations used in these studies follows deterministic, probabilistic, 

or grammatical rules. After a short training period on these tasks, participants generally improve 

their reaction times without being able to explicitly describe the rules that determine the stimulus 
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order, suggesting that they have acquired implicit knowledge about the rules. Interestingly, 

individuals often gain explicit awareness of the sequence in the latter phases of the practice session 

(Nissen & Bullemer, 1987), suggesting that the explicit knowledge system takes more time and 

exposure to acquire the embedded rules of target location.  

The current experimental design of Chapter 3 was not optimised to assess the impact of 

sequence repetition on conscious awareness of these repetitions. Future research to investigate this 

research question should use a behavioural recognition task. For example, Agus et al. investigated 

sequence learning in humans within the auditory domain and demonstrated that the auditory system 

can rapidly learn and form memories of repeated sequences constructed of Gaussian random noise 

(Agus et al., 2010). In this study, participants were instructed to perform a judgment task to report 

whether or not they heard a repetition of an audio clip. The result showed that the learning of 

auditory sequences occurred very rapidly, participants were able to learn a novel sequence in less 

than 10 repetitions. Similarly, previous investigation on artificial grammar learning (Reber, 1967) 

used a binary judgment task to assess conscious knowledge of embedded sequence rules (Dienes & 

Altmann, 1997; Zoltán Dienes & Scott, 2005). Participants are first exposed to sequences generated 

by one grammars (grammar A) in the training phase. In the test phase, sequences generated by 

grammar A and another grammar (grammar B) are randomly presented. Participants are asked to 

classify the test items (A or B). Using the binary judgment task, the basic conscious knowledge of 

artificial grammars embedded in sequences can be examined. A similar experimental design could 

be adopted to evaluate whether human participants were able to acquire explicit knowledge of the 

fast changing dynamic luminance sequences used in Chapter 3. 
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Chapter 6 

Conclusion 

This thesis investigated the behavioural and neural correlates of predictive processing and 

regularity learning across differing levels of predictive information and conscious access. It has 

demonstrated how predictive influences on conscious access develop across time via training, and 

how they permeate and shape conscious experiences more deeply and broadly than previously 

thought. It provides electrophysiological and modelling evidence that the perceptual echo reflects 

the existence of a previously undiscovered temporal regularity learning and predictive processing 

mechanism. It identified a neural correlate of temporal prediction based on duration processing 

that was shared between visual and auditory sensory predictive processing. 

Overall this thesis has added to our understanding of the relationship between unconscious 

statistical inference and conscious access by demonstrating that predictive information is processed 

unconsciously but can influence conscious access. This thesis has also shown that predictive 

processing operates across differing levels of sensory information, low-level, cross-modal, and 

supra-modal. Finally, this thesis suggests that predictive processing mechanisms use different types 

of regularity learning to generate valid predictions about future events.  

Together this thesis has added to our understanding of predictive processing and regularity 

learning across differing types of predictive information.  

 



157 

 

 

References 

Agus, T. R., Thorpe, S. J., & Pressnitzer, D. (2010). Rapid Formation of Robust Auditory 

Memories: Insights from Noise. Neuron, 66(4), 610–618. 

https://doi.org/10.1016/j.neuron.2010.04.014 

Aizenstein, H. J., Stenger, V. A., Cochran, J., Clark, K., Johnson, M., Nebes, R. D., & Carter, C. S. 

(2004). Regional Brain Activation during Concurrent Implicit and Explicit Sequence 

Learning. Cerebral Cortex, 14(2), 199–208. https://doi.org/10.1093/cercor/bhg119 

Alais, D., & Burr, D. (2004). The Ventriloquist Effect Results from Near-Optimal Bimodal 

Integration. Current Biology, 14(3), 257–262. https://doi.org/10.1016/j.cub.2004.01.029 

Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus Predictability 

Reduces Responses in Primary Visual Cortex. The Journal of Neuroscience, 30(8), 2960–

2966. https://doi.org/10.1523/JNEUROSCI.3730-10.2010 

Alsius, A., & Munhall, K. G. (2013). Detection of Audiovisual Speech Correspondences Without 

Visual Awareness. Psychological Science, 24(4), 423–431. 

https://doi.org/10.1177/0956797612457378 

Altieri, N. (2014). Multisensory integration, learning, and the predictive coding hypothesis. 

Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00257 

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive perspective. Psychological 

Review, 96(4), 703. 

Arnal, L. H., Wyart, V., & Giraud, A.-L. (2011). Transitions in neural oscillations reflect prediction 

errors generated in audiovisual speech. Nature Neuroscience, 14(6), 797–801. 

https://doi.org/10.1038/nn.2810 



158 

 

 

Baldeweg, T. (2006). Repetition effects to sounds: evidence for predictive coding in the auditory 

system. Trends in Cognitive Sciences, 10(3), 93–94. https://doi.org/10.1016/j.tics.2006.01.010 

Baldeweg, T. (2007). ERP Repetition Effects and Mismatch Negativity Generation. Journal of 

Psychophysiology, 21(3), 204–213. https://doi.org/10.1027/0269-8803.21.34.204 

Baldeweg, T., Klugman, A., Gruzelier, J., & Hirsch, S. R. (2004). Mismatch negativity potentials 

and cognitive impairment in schizophrenia. Schizophrenia Research, 69(2–3), 203–217. 

https://doi.org/10.1016/j.schres.2003.09.009 

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. (2012). 

Canonical Microcircuits for Predictive Coding. Neuron, 76(4), 695–711. 

https://doi.org/10.1016/j.neuron.2012.10.038 

Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory 

signals for spatial localization. JOSA A, 20(7), 1391–1397. 

Bendixen, A., Schröger, E., & Winkler, I. (2009). I Heard That Coming: Event-Related Potential 

Evidence for Stimulus-Driven Prediction in the Auditory System. Journal of Neuroscience, 

29(26), 8447–8451. https://doi.org/10.1523/JNEUROSCI.1493-09.2009 

Bi, G.-Q., & Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: 

Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of 

Neuroscience, 18(24), 10464–10472. 

Bonneh, Y., Cooperman, A., & Sagi, D. (2001). Motion-induced blindness in normal observers. 

Nature, 411(6839), 798–801. https://doi.org/10.1038/35081073 

Bonneh, Y. S., Donner, T. H., Sagi, D., Fried, M., Cooperman, A., Heeger, D. J., & Arieli, A. (2010). 

Motion-induced blindness and microsaccades: Cause and effect. Journal of Vision, 10(14), 1–

15. https://doi.org/10.1167/10.14.22 

Bracewell, R. (2004). Fourier analysis and imaging. Springer Science & Business Media. 



159 

 

 

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. 

https://doi.org/10.1163/156856897X00357 

Brainard, D. H., & Freeman, W. T. (1997). Bayesian color constancy. Journal of the Optical Society 

of America A, 14(7), 1393–1411. https://doi.org/10.1364/JOSAA.14.001393 

Büchel, C., Coull, J. T., & Friston, K. J. (1999). The Predictive Value of Changes in Effective 

Connectivity for Human Learning. Science, 283(5407), 1538–1541. 

https://doi.org/10.1126/science.283.5407.1538 

Buckner, R. L., Goodman, J., Burock, M., Rotte, M., Koutstaal, W., Schacter, D., … Dale, A. M. 

(1998). Functional-anatomic correlates of object priming in humans revealed by rapid 

presentation event-related fMRI. Neuron, 20(2), 285–296. 

Bueti, D., Bahrami, B., & Walsh, V. (2008). Sensory and Association Cortex in Time Perception. 

Journal of Cognitive Neuroscience, 20(6), 1054–1062. 

https://doi.org/10.1162/jocn.2008.20060 

Buonomano, D. V., & Karmarkar, U. R. (2002). Book Review: How Do We Tell Time? The 

Neuroscientist, 8(1), 42–51. 

Canales-Johnson, A., Silva, C., Huepe, D., Rivera-Rei, Á., Noreika, V., Garcia, M. del C., … 

Bekinschtein, T. A. (2015). Auditory Feedback Differentially Modulates Behavioral and 

Neural Markers of Objective and Subjective Performance When Tapping to Your Heartbeat. 

Cerebral Cortex, bhv076. https://doi.org/10.1093/cercor/bhv076 

Chang, C., & Lin, C.-J. (2001). LIBSVM: a Library for Support Vector Machines. 

Chen, Y., Huang, X., Luo, Y., Peng, C., & Liu, C. (2010). Differences in the neural basis of 

automatic auditory and visual time perception: ERP evidence from an across-modal delayed 

response oddball task. Brain Research, 1325, 100–111. 

https://doi.org/10.1016/j.brainres.2010.02.040 



160 

 

 

Chen, Y.-C., Yeh, S.-L., & Spence, C. (2011). Crossmodal constraints on human perceptual 

awareness: auditory semantic modulation of binocular rivalry. Frontiers in Psychology, 2, 212. 

https://doi.org/10.3389/fpsyg.2011.00212 

Clark, A. (2012). Whatever Next ? Predictive Brains , Situated Agents , and the Future of Cognitive 

Science . Behavioral and Brain Sciences, 1–86. 

Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the front. 

Trends in Cognitive Sciences, 2(10), 406–416. 

https://doi.org/10.1016/S1364-6613(98)01232-7 

Cleeremans, A., & McClelland, J. L. (1991). Learning the structure of event sequences. Journal of 

Experimental Psychology: General, 120(3), 235–253. 

https://doi.org/10.1037/0096-3445.120.3.235 

Conrad, V., Bartels, A., Kleiner, M., & Noppeney, U. (2010). Audiovisual interactions in binocular 

rivalry. Journal of Vision, 10(10). https://doi.org/10.1167/10.10.27 

Conway, C. M., & Christiansen, M. H. (2001). Sequential learning in non-human primates. Trends 

in Cognitive Sciences, 5(12), 539–546. https://doi.org/10.1016/S1364-6613(00)01800-3 

Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent 

component process: age, sleep and modality. Clinical Neurophysiology, 115(4), 732–744. 

https://doi.org/10.1016/j.clinph.2003.11.021 

Davis, B., & Hasson, U. (2016). Predictability of what or where reduces brain activity, but a 

bottleneck occurs when both are predictable. NeuroImage. 

https://doi.org/10.1016/j.neuroimage.2016.06.001 

Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine. Neural 

Computation, 7(5), 889–904. 



161 

 

 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial 

EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 

134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 

den Ouden, H. E. M., Friston, K., Daw, N. D., McIntosh, A. R., & Stephan, K. E. (2009). A Dual 

Role for Prediction Error in Associative Learning. Cerebral Cortex, 19(5), 1175–1185. 

https://doi.org/10.1093/cercor/bhn161 

Deneve, S., & Pouget, A. (2004). Bayesian multisensory integration and cross-modal spatial links. 

Journal of Physiology-Paris, 98(1–3), 249–258. 

https://doi.org/10.1016/j.jphysparis.2004.03.011 

Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. 

Proceedings of the National Academy of Sciences, 93(24), 13494–13499. 

Dienes, Z. (2011). Bayesian Versus Orthodox Statistics: Which Side Are You On? Perspectives on 

Psychological Science, 6(3), 274–290. https://doi.org/10.1177/1745691611406920 

Dienes, Z., & Altmann, G. (1997). Transfer of implicit knowledge across domains: How implicit 

and how abstract. How Implicit Is Implicit Learning, 5, 107–123. 

Dienes, Z., & Scott, R. (2005). Measuring unconscious knowledge: distinguishing structural 

knowledge and judgment knowledge. Psychological Research, 69(5–6), 338–351. 

https://doi.org/10.1007/s00426-004-0208-3 

Droit-Volet, S., Meck, W. H., & Penney, T. B. (2007). Sensory modality and time perception in 

children and adults. Behavioural Processes, 74(2), 244–250. 

https://doi.org/10.1016/j.beproc.2006.09.012 

Durrant, S. J., Taylor, C., Cairney, S., & Lewis, P. A. (2011). Sleep-dependent consolidation of 

statistical learning. Neuropsychologia, 49(5), 1322–1331. 

https://doi.org/10.1016/j.neuropsychologia.2011.02.015 



162 

 

 

Eagleman, S. L., & Dragoi, V. (2012). Image sequence reactivation in awake V4 networks. 

Proceedings of the National Academy of Sciences, 109(47), 19450–19455. 

https://doi.org/10.1073/pnas.1212059109 

Ellis, R. (2005). Measuring implicit and explicit knowledge of a second language: A psychometric 

study. Studies in Second Language Acquisition, 27(02), 141–172. 

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a 

statistically optimal fashion. Nature, 415(6870), 429–433. https://doi.org/10.1038/415429a 

Felleman, D. J., & Essen, D. C. V. (1991). Distributed Hierarchical Processing in the Primate 

Cerebral Cortex. Cerebral Cortex, 1(1), 1–47. https://doi.org/10.1093/cercor/1.1.1 

Fenn, K. M., Nusbaum, H. C., & Margoliash, D. (2003). Consolidation during sleep of perceptual 

learning of spoken language. Nature, 425(6958), 614–616. 

https://doi.org/10.1038/nature01951 

Fischer, C., Morlet, D., Bouchet, P., Luaute, J., Jourdan, C., & Salord, F. (1999). Mismatch 

negativity and late auditory evoked potentials in comatose patients. Clinical Neurophysiology, 

110(9), 1601–1610. https://doi.org/10.1016/S1388-2457(99)00131-5 

Fischer, C., Morlet, D., & Giard, M. (2000). Mismatch negativity and N100 in comatose patients. 

Audiology & Neuro-Otology, 5(3–4), 192–197. https://doi.org/13880 

Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal perception and learning: 

from behavior to neural representations. Trends in Cognitive Sciences, 14(3), 119–130. 

Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 

component of the ERP: A review. Psychophysiology, 45(1), 152–170. 

https://doi.org/10.1111/j.1469-8986.2007.00602.x 

Ford, J. M., & Hillyard, S. A. (1981). Event-related potentials (ERPs) to interruptions of a steady 

rhythm. Psychophysiology, 18(3), 322–330. 



163 

 

 

Friston, K. (2002). Functional integration and inference in the brain. Progress in Neurobiology, 

68(2), 113–143. https://doi.org/10.1016/S0301-0082(02)00076-X 

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society 

B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622 

Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive 

Sciences, 13(7), 293–301. https://doi.org/10.1016/j.tics.2009.04.005 

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 

11(2), 127–138. https://doi.org/10.1038/nrn2787 

Friston, K. (2012). The history of the future of the Bayesian brain. NeuroImage, 62(2), 1230–1233. 

https://doi.org/10.1016/j.neuroimage.2011.10.004 

Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 364(1521), 1211–1221. 

https://doi.org/10.1098/rstb.2008.0300 

Friston, K., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417–458. 

https://doi.org/10.1007/s11229-007-9237-y 

Gagnepain, P., Henson, R. N., & Davis, M. H. (2012). Temporal Predictive Codes for Spoken 

Words in Auditory Cortex. Current Biology, 22(7), 615–621. 

https://doi.org/10.1016/j.cub.2012.02.015 

Garrido, M. I., Friston, K., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The 

functional anatomy of the MMN: A DCM study of the roving paradigm. NeuroImage, 42(2), 

936–944. https://doi.org/10.1016/j.neuroimage.2008.05.018 

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. (2009). The mismatch negativity: A 

review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463. 

https://doi.org/10.1016/j.clinph.2008.11.029 



164 

 

 

Gavornik, J. P., & Bear, M. F. (2014). Higher brain functions served by the lowly rodent primary 

visual cortex. Learning & Memory, 21(10), 527–533. https://doi.org/10.1101/lm.034355.114 

Gheysen, F., Van Opstal, F., Roggeman, C., Van Waelvelde, H., & Fias, W. (2011). The Neural 

Basis of Implicit Perceptual Sequence Learning. Frontiers in Human Neuroscience, 5. 

https://doi.org/10.3389/fnhum.2011.00137 

Goldstein, M. H., Waterfall, H. R., Lotem, A., Halpern, J. Y., Schwade, J. A., Onnis, L., & Edelman, 

S. (2010). General cognitive principles for learning structure in time and space. Trends in 

Cognitive Sciences, 14(6), 249–258. https://doi.org/10.1016/j.tics.2010.02.004 

Gregory, R. L. (1968). Perceptual Illusions and Brain Models. Proceedings of the Royal Society of 

London. Series B, Biological Sciences, 171(1024), 279–296. 

Gregory, R. L. (1980). Perceptions as Hypotheses. Philosophical Transactions of the Royal Society 

of London. B, Biological Sciences, 290(1038), 181–197. 

https://doi.org/10.1098/rstb.1980.0090 

Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of 

stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. 

https://doi.org/10.1016/j.tics.2005.11.006 

Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). 

Differential processing of objects under various viewing conditions in the human lateral 

occipital complex. Neuron, 24(1), 187–203. 

Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: a tool for studying the functional 

properties of human cortical neurons. Acta Psychologica, 107(1), 293–321. 

Grimm, S., Roeber, U., Trujillo-Barreto, N. J., & Schröger, E. (2006). Mechanisms for detecting 

auditory temporal and spectral deviations operate over similar time windows but are divided 



165 

 

 

differently between the two hemispheres. NeuroImage, 32(1), 275–282. 

https://doi.org/10.1016/j.neuroimage.2006.03.032 

Grimm, S., Widmann, A., & Schröger, E. (2004). Differential processing of duration changes 

within short and long sounds in humans. Neuroscience Letters, 356(2), 83–86. 

https://doi.org/10.1016/j.neulet.2003.11.035 

Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience 

findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582. 

https://doi.org/10.3758/APP.72.3.561 

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain 

potentials/fields I: A critical tutorial review: Mass univariate analysis of ERPs/ERFs I: Review. 

Psychophysiology, 48(12), 1711–1725. https://doi.org/10.1111/j.1469-8986.2011.01273.x 

Grube, M., Cooper, F. E., Chinnery, P. F., & Griffiths, T. D. (2010). Dissociation of duration-based 

and beat-based auditory timing in cerebellar degeneration. Proceedings of the National 

Academy of Sciences, 107(25), 11597–11601. https://doi.org/10.1073/pnas.0910473107 

Grube, M., Lee, K.-H., Griffiths, T. D., Barker, A. T., & Woodruff, P. W. (2010). Transcranial 

magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, 

duration-based from relative, beat-based perception of subsecond time intervals. Auditory 

Cognitive Neuroscience, 1, 171. https://doi.org/10.3389/fpsyg.2010.00171 

Guyonneau, R., VanRullen, R., & Thorpe, S. J. (2005). Neurons Tune to the Earliest Spikes 

Through STDP. Neural Computation, 17(4), 859–879. 

https://doi.org/10.1162/0899766053429390 

Haenschel, C. (2005). Event-Related Brain Potential Correlates of Human Auditory Sensory 

Memory-Trace Formation. Journal of Neuroscience, 25(45), 10494–10501. 

https://doi.org/10.1523/JNEUROSCI.1227-05.2005 



166 

 

 

Hamm, A. O., & Vaitl, D. (1996). Affective learning: Awareness and aversion. Psychophysiology, 

33(6), 698–710. https://doi.org/10.1111/j.1469-8986.1996.tb02366.x 

Hatfield, G. (2005). Perception as Unconscious Inference. In D. H. P. D. essor of Psychology & R. 

of C. Science (Eds.), Perception and the Physical World (pp. 113–143). John Wiley & Sons, 

Ltd. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/0470013427.ch5/summary 

Helmholtz, H. von. (1866). Concerning the perceptions in general. Treatise on Physiological 

Optics, 3. 

Helmholtz, H. von. (1867). Treatise on Physiological Optics, 3. 

Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of 

repetition priming. Science, 287(5456), 1269–1272. 

Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor Integration in Speech Processing: 

Computational Basis and Neural Organization. Neuron, 69(3), 407–422. 

https://doi.org/10.1016/j.neuron.2011.01.019 

Hillis, J. M., Watt, S. J., Landy, M. S., & Banks, M. S. (2004). Slant from texture and disparity cues: 

Optimal cue combination. Journal of Vision, 4(12). https://doi.org/10.1167/4.12.1 

Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 

11(10), 428–434. https://doi.org/10.1016/j.tics.2007.09.004 

Hock, H. S., Scott, J., & Schöner, G. (1993). Bistability and hysteresis in the organization of 

apparent motion patterns. Journal of Experimental Psychology: Human Perception and 

Performance, 19(1), 63–80. https://doi.org/10.1037/0096-1523.19.1.63 

Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in 

Psychology, 3(April), 96. https://doi.org/10.3389/fpsyg.2012.00096 

Hohwy, J. (2013). The Predictive Mind. Oxford University Press. 



167 

 

 

Hohwy, J. (2014). The Predictive Mind. Oxford, United Kingdom ; New York, NY, United States of 

America: Oxford University Press. 

Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1), 

185–203. https://doi.org/10.1016/0004-3702(81)90024-2 

Horváth, J., Czigler, I., Jacobsen, T., Maess, B., Schröger, E., & Winkler, I. (2008). MMN or no 

MMN: No magnitude of deviance effect on the MMN amplitude. Psychophysiology, 45(1), 

60–69. https://doi.org/10.1111/j.1469-8986.2007.00599.x 

Horváth, J., Roeber, U., & Schröger, E. (2009). The utility of brief, spectrally rich, dynamic sounds 

in the passive oddball paradigm. Neuroscience Letters, 461(3), 262–265. 

Hruby, T., & Marsalek, P. (2002). Event-related potentials-the P3 wave. Acta Neurobiologiae 

Experimentalis, 63(1), 55–63. 

Hsieh, P.-J., & Tse, P. U. (2009). Microsaccade Rate Varies with Subjective Visibility during 

Motion-Induced Blindness. PLoS ONE, 4(4), e5163. 

https://doi.org/10.1371/journal.pone.0005163 

Hsu, W.-Y., Cheng, C.-H., Lin, H.-C., Liao, K.-K., Wu, Z.-A., Ho, L.-T., & Lin, Y.-Y. (2010). 

Memory-based mismatch response to changes in duration of auditory stimuli: An MEG study. 

Clinical Neurophysiology, 121(10), 1744–1750. https://doi.org/10.1016/j.clinph.2010.04.003 

Huang, Y., & Rao, R. P. N. (2011). Predictive coding. Wiley Interdisciplinary Reviews: Cognitive 

Science, 2(5), 580–593. https://doi.org/10.1002/wcs.142 

Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate 

visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28(2), 229–289. 

Huettel, S. A., Song, A. W., & McCarthy, G. (2005). Decisions under uncertainty: probabilistic 

context influences activation of prefrontal and parietal cortices. The Journal of Neuroscience, 

25(13), 3304–3311. 



168 

 

 

Hürlimann, F., Kiper, D. C., & Carandini, M. (2002). Testing the Bayesian model of perceived 

speed. Vision Research, 42(19), 2253–2257. 

Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in 

Cognitive Sciences, 12(7), 273–280. https://doi.org/10.1016/j.tics.2008.04.002 

Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., … 

Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness. 

Proceedings of the National Academy of Sciences of the United States of America, 101(17), 

6809–6814. https://doi.org/10.1073/pnas.0303760101 

Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 

39(21), 3621–3629. 

Jacobsen, T., & Schröger, E. (2003). Measuring duration mismatch negativity. Clinical 

Neurophysiology, 114(6), 1133–1143. https://doi.org/10.1016/S1388-2457(03)00043-9 

JASP Team. (2016). JASP (Version 0.7.5.5)[Computer software]. 

Joutsiniemi, S.-L., Ilvonen, T., Sinkkonen, J., Huotilainen, M., Tervaniemi, M., Lehtokoski, A., … 

Näätänen, R. (1998). The mismatch negativity for duration decrement of auditory stimuli in 

healthy subjects. Electroencephalography and Clinical Neurophysiology/Evoked Potentials 

Section, 108(2), 154–159. https://doi.org/10.1016/S0168-5597(97)00082-8 

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of 

Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552 

Kanai, R., & Verstraten, F. A. J. (2005). Perceptual manifestations of fast neural plasticity: Motion 

priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45(25–26), 

3109–3116. https://doi.org/10.1016/j.visres.2005.05.014 



169 

 

 

Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: evidence for 

primary visual cortex plasticity. Proceedings of the National Academy of Sciences, 88(11), 

4966–4970. 

Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J., & Sagi, D. (1994). Dependence on REM 

sleep of overnight improvement of a perceptual skill. Science, 265(5172), 679–682. 

https://doi.org/10.1126/science.8036518 

Katz, J. (2014). Handbook of Clinical Audiology (North American ed edition). Philadelphia: 

Lippincott Williams and Wilkins. 

Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. (2010). 

Implicit learning as an ability. Cognition, 116(3), 321–340. 

Keller, G. B., Bonhoeffer, T., & Hübener, M. (2012). Sensorimotor mismatch signals in primary 

visual cortex of the behaving mouse. Neuron, 74(5), 809–15. 

https://doi.org/10.1016/j.neuron.2012.03.040 

Kentridge, R. W., Heywood, C. A., & Weiskrantz, L. (2004). Spatial attention speeds 

discrimination without awareness in blindsight. Neuropsychologia, 42(6), 831–835. 

https://doi.org/10.1016/j.neuropsychologia.2003.11.001 

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object Perception as Bayesian Inference. Annual 

Review of Psychology, 55(1), 271–304. 

https://doi.org/10.1146/annurev.psych.55.090902.142005 

Kersten, D., & Schrater, P. (2002). Pattern inference theory: A probabilistic approach to vision. na. 

Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current Opinion in 

Neurobiology, 13(2), 150–158. https://doi.org/10.1016/S0959-4388(03)00042-4 

Khouri, L., & Nelken, I. (2015). Detecting the unexpected. Current Opinion in Neurobiology, 35, 

142–147. https://doi.org/10.1016/j.conb.2015.08.003 



170 

 

 

King, A. J., & Palmer, A. R. (1985). Integration of visual and auditory information in bimodal 

neurones in the guinea-pig superior colliculus. Experimental Brain Research, 60(3), 492–500. 

https://doi.org/10.1007/BF00236934 

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the 

temporal generalization method. Trends in Cognitive Sciences, 18(4), 203–210. 

https://doi.org/10.1016/j.tics.2014.01.002 

King, J.-R., Gramfort, A., Schurger, A., Naccache, L., & Dehaene, S. (2014). Two Distinct 

Dynamic Modes Subtend the Detection of Unexpected Sounds. PLoS ONE, 9(1), e85791. 

https://doi.org/10.1371/journal.pone.0085791 

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? In 30th European 

Conference on Visual Perception. 

Kleinschmidt, A., Büchel, C., Hutton, C., Friston, K., & Frackowiak, R. S. . (2002). The Neural 

Structures Expressing Perceptual Hysteresis in Visual Letter Recognition. Neuron, 34(4), 

659–666. https://doi.org/10.1016/S0896-6273(02)00694-3 

Knight, D. C., Nguyen, H. T., & Bandettini, P. A. (2003). Expression of conditional fear with and 

without awareness. Proceedings of the National Academy of Sciences of the United States of 

America, 100(25), 15280–15283. https://doi.org/10.1073/pnas.2535780100 

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and 

computation. Trends in Neurosciences, 27(12), 712–719. 

https://doi.org/10.1016/j.tins.2004.10.007 

Knill, D. C., & Richards, W. (1996). Perception as Bayesian Inference. Cambridge University 

Press. 



171 

 

 

Knill, D. C., & Saunders, J. A. (2003). Do humans optimally integrate stereo and texture 

information for judgments of surface slant? Vision Research, 43(24), 2539–2558. 

https://doi.org/10.1016/S0042-6989(03)00458-9 

Knopman, D. S., & Nissen, M. J. (1987). Implicit learning in patients with probable Alzheimer’s 

disease. Neurology, 37(5), 784–784. 

Kok, P., Brouwer, G. J., Gerven, M. A. J. van, & de Lange, F. P. (2013). Prior Expectations Bias 

Sensory Representations in Visual Cortex. The Journal of Neuroscience, 33(41), 16275–

16284. https://doi.org/10.1523/JNEUROSCI.0742-13.2013 

Kok, P., & de Lange, F. P. (2014). Shape Perception Simultaneously Up- and Downregulates Neural 

Activity in the Primary Visual Cortex. Current Biology, 24(13), 1531–1535. 

https://doi.org/10.1016/j.cub.2014.05.042 

Kok, P., Failing, M. F., & de Lange, F. P. (2014). Prior Expectations Evoke Stimulus Templates in 

the Primary Visual Cortex. Journal of Cognitive Neuroscience, 1–9. 

https://doi.org/10.1162/jocn_a_00562 

Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012). Less Is More: Expectation Sharpens 

Representations in the Primary Visual Cortex. Neuron, 75(2), 265–270. 

https://doi.org/10.1016/j.neuron.2012.04.034 

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal 

Inference in Multisensory Perception. PLoS ONE, 2(9), e943. 

https://doi.org/10.1371/journal.pone.0000943 

Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 

427(6971), 244–247. https://doi.org/10.1038/nature02169 



172 

 

 

Kourtzi, Z., & Kanwisher, N. (2001). Representation of Perceived Object Shape by the Human 

Lateral Occipital Complex. Science, 293(5534), 1506–1509. 

https://doi.org/10.1126/science.1061133 

Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of 

the Optical Society of America A: Optics and Image Science, and Vision, 20(7), 1434–1448. 

Li, N., & DiCarlo, J. J. (2008). Unsupervised Natural Experience Rapidly Alters Invariant Object 

Representation in Visual Cortex. Science, 321(5895), 1502–1507. 

https://doi.org/10.1126/science.1160028 

Lieberman, M. D. (2000). Intuition: a social cognitive neuroscience approach. Psychological 

Bulletin, 126(1), 109. 

Liégeois-Chauvel, C., Musolino, A., Badier, J. M., Marquis, P., & Chauvel, P. (1994). Evoked 

potentials recorded from the auditory cortex in man: evaluation and topography of the middle 

latency components. Electroencephalography and Clinical Neurophysiology/Evoked 

Potentials Section, 92(3), 204–214. https://doi.org/10.1016/0168-5597(94)90064-7 

Loschky, L., McConkie, G., Yang, J., & Miller, M. (2005). The limits of visual resolution in natural 

scene viewing. Visual Cognition, 12(6), 1057–1092. 

https://doi.org/10.1080/13506280444000652 

Loveless, N., Levänen, S., Jousmäki, V., Sams, M., & Hari, R. (1996). Temporal integration in 

auditory sensory memory: neuromagnetic evidence. Electroencephalography and Clinical 

Neurophysiology/Evoked Potentials Section, 100(3), 220–228. 

https://doi.org/10.1016/0168-5597(95)00271-5 

Luft, C. D. B., Meeson, A., Welchman, A. E., & Kourtzi, Z. (2015). Decoding the future from past 

experience: learning shapes predictions in early visual cortex. Journal of Neurophysiology, 

113(9), 3159–3171. https://doi.org/10.1152/jn.00753.2014 



173 

 

 

Lunghi, C., Binda, P., & Morrone, M. C. (2010). Touch disambiguates rivalrous perception at early 

stages of visual analysis. Current Biology, 20(4), R143–R144. 

https://doi.org/10.1016/j.cub.2009.12.015 

Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise unseen objects into visual 

awareness. Proceedings of the National Academy of Sciences. 

https://doi.org/10.1073/pnas.1303312110 

Lustig, C., & Meck, W. H. (2011). Modality differences in timing and temporal memory throughout 

the lifespan. Brain and Cognition, 77(2), 298–303. 

https://doi.org/10.1016/j.bandc.2011.07.007 

MacKay, D. M. (1956). The epistemological problem for automata. 

Maimon, O., & Rokach, L. (2005). Data mining and knowledge discovery handbook (Vol. 2). 

Springer. 

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. 

Journal of Neuroscience Methods, 164(1), 177–190. 

https://doi.org/10.1016/j.jneumeth.2007.03.024 

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of Synaptic Efficacy by 

Coincidence of Postsynaptic APs and EPSPs. Science, 275(5297), 213–215. 

https://doi.org/10.1126/science.275.5297.213 

Marr, D. (1982). Vision: A computational investigation into the human representation and 

processing of visual information. Henry Holt and Co., New York. 

Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades 

Counteract Visual Fading during Fixation. Neuron, 49(2), 297–305. 

https://doi.org/10.1016/j.neuron.2005.11.033 



174 

 

 

Masquelier, T., Guyonneau, R., & Thorpe, S. J. (2008a). Competitive STDP-Based Spike Pattern 

Learning. Neural Computation, 21(5), 1259–1276. 

https://doi.org/10.1162/neco.2008.06-08-804 

Masquelier, T., Guyonneau, R., & Thorpe, S. J. (2008b). Spike Timing Dependent Plasticity Finds 

the Start of Repeating Patterns in Continuous Spike Trains. PLOS ONE, 3(1), e1377. 

https://doi.org/10.1371/journal.pone.0001377 

Mauk, M. D., & Buonomano, D. V. (2004). The Neural Basis of Temporal Processing. Annual 

Review of Neuroscience, 27(1), 307–340. 

https://doi.org/10.1146/annurev.neuro.27.070203.144247 

Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in 

Neurosciences, 29(6), 317–322. https://doi.org/10.1016/j.tins.2006.04.001 

Mcintosh, A. R., & Gonzalez-Lima, F. (1998). Large-Scale Functional Connectivity in Associative 

Learning: Interrelations of the Rat Auditory, Visual, and Limbic Systems. Journal of 

Neurophysiology, 80(6), 3148–3162. 

Melloni, L., Schwiedrzik, C. M., Müller, N., Rodriguez, E., & Singer, W. (2011). Expectations 

Change the Signatures and Timing of Electrophysiological Correlates of Perceptual 

Awareness. The Journal of Neuroscience, 31(4), 1386–1396. 

https://doi.org/10.1523/JNEUROSCI.4570-10.2011 

Meyer, T., & Olson, C. R. (2011). Statistical learning of visual transitions in monkey 

inferotemporal cortex. Proceedings of the National Academy of Sciences, 108(48), 19401–

19406. https://doi.org/10.1073/pnas.1112895108 

Mitroff, S. R., & Scholl, B. J. (2005). Forming and updating object representations without 

awareness: evidence from motion-induced blindness. Vision Research, 45(8), 961–967. 

https://doi.org/10.1016/j.visres.2004.09.044 



175 

 

 

Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact 

detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–

240. https://doi.org/10.1111/j.1469-8986.2010.01061.x 

Morlet, D., Bouchet, P., & Fischer, C. (2000). Mismatch negativity and N100 monitoring: potential 

clinical value and methodological advances. Audiology & Neuro-Otology, 5(3–4), 198–206. 

https://doi.org/13881 

Morris, J. S., DeGelder, B., Weiskrantz, L., & Dolan, R. J. (2001). Differential extrageniculostriate 

and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 

124(6), 1241–1252. 

Morris, J. S., Ohman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala 

mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United 

States of America, 96(4), 1680–1685. https://doi.org/10.1073/pnas.96.4.1680 

Morris, J. S., Ohrnan, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in 

the human amygdala. Nature, 393(6684), 467–470. https://doi.org/10.1038/30976 

Mumford, D. (1992). On the computational architecture of the neocortex. Biological Cybernetics, 

66(3), 241–251. https://doi.org/10.1007/BF00198477 

M.W. Spratling. (2008). Predictive coding as a model of biased competition in visual attention. 

Vision Research, 48(12), 1391–1408. https://doi.org/10.1016/j.visres.2008.03.009 

Näätänen, R. (1992). Attention and brain function. Psychology Press. 

Näätänen, R. (1995). The mismatch negativity: a powerful tool for cognitive neuroscience. Ear and 

Hearing, 16(1), 6–18. 

Näätänen, R., & Escera, C. (2000). Mismatch negativity: clinical and other applications. Audiology 

& Neuro-Otology, 5(3–4), 105–110. https://doi.org/13874 



176 

 

 

Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on 

evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329. 

https://doi.org/10.1016/0001-6918(78)90006-9 

Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch 

negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 25–32. 

https://doi.org/10.1111/j.1469-8986.2005.00256.x 

Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: A 

critical review and reinterpretation. Biological Psychology, 8(2), 81–136. 

https://doi.org/10.1016/0301-0511(79)90053-X 

Näätänen, R., Paavilainen, P., & Reinikainen, K. (1989). Do event-related potentials to infrequent 

decrements in duration of auditory stimuli demonstrate a memory trace in man? Neuroscience 

Letters, 107(1–3), 347–352. https://doi.org/10.1016/0304-3940(89)90844-6 

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in 

basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 

2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026 

Näätänen, R., Paavilainen, P., Titinen, H., Jiang, D., & Alho, K. (1993). Attention and mismatch 

negativity. Psychophysiology, 30(5), 436–450. 

https://doi.org/10.1111/j.1469-8986.1993.tb02067.x 

Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): 

towards the optimal paradigm. Clinical Neurophysiology, 115(1), 140–144. 

https://doi.org/10.1016/j.clinph.2003.04.001 

Naccache, L., & Dehaene, S. (2001). The Priming Method: Imaging Unconscious Repetition 

Priming Reveals an Abstract Representation of Number in the Parietal Lobes. Cerebral Cortex, 

11(10), 966–974. https://doi.org/10.1093/cercor/11.10.966 



177 

 

 

N’Diaye, K., Ragot, R., Garnero, L., & Pouthas, V. (2004). What is common to brain activity 

evoked by the perception of visual and auditory filled durations? A study with MEG and EEG 

co-recordings. Cognitive Brain Research, 21(2), 250–268. 

https://doi.org/10.1016/j.cogbrainres.2004.04.006 

Neisser, U. (1967). Cognitive psychology. Appleton-Century-Crofts.[aAC] Nelson, K.(2003) Self 

and social functions: Individual autobiographical memory and collective narrative. Memory, 

11(2), 12536. 

Nemeth, D., Janacsek, K., Csifcsak, G., Szvoboda, G., Howard Jr, J. H., & Howard, D. V. (2011). 

Interference between sentence processing and probabilistic implicit sequence learning. PLoS 

One, 6(3), e17577. 

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional 

neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25. 

https://doi.org/10.1002/hbm.1058 

Nissen, M. J. (1977). Stimulus intensity and information processing. Perception & Psychophysics, 

22(4), 338–352. 

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from 

performance measures. Cognitive Psychology, 19(1), 1–32. 

https://doi.org/10.1016/0010-0285(87)90002-8 

NITTONO, H. (2005). Missing-stimulus potentials associated with a disruption of 

human-computer interaction. Psychologia, 48(2), 93–101. 

Novak, G., Ritter, W., & Vaughan, H. G. (1992). Mismatch Detection and the Latency of Temporal 

Judgments. Psychophysiology, 29(4), 398–411. 

https://doi.org/10.1111/j.1469-8986.1992.tb01713.x 



178 

 

 

Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data 

selection. Psychological Review, 101(4), 608–631. 

https://doi.org/10.1037/0033-295X.101.4.608 

Okazaki, S., Kanoh, S., Takaura, K., Tsukada, M., & Oka, K. (2006). Change detection and 

difference detection of tone duration discrimination. Neuroreport, 17(4), 395–399. 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2010). FieldTrip: Open Source Software 

for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. 

Computational Intelligence and Neuroscience, 2011, e156869. 

https://doi.org/10.1155/2011/156869 

Palmer, S. E. (1999). Vision science: Photons to phenomenology. MIT press. 

Palmer, T. D., & Ramsey, A. K. (2012a). The function of consciousness in multisensory integration. 

Cognition, 125(3), 353–364. https://doi.org/10.1016/j.cognition.2012.08.003 

Palmer, T. D., & Ramsey, A. K. (2012b). The function of consciousness in multisensory integration. 

Cognition, 125(3), 353–364. https://doi.org/10.1016/j.cognition.2012.08.003 

Paradis, M. (1994). Neurolinguistic aspects of implicit and explicit memory: Implications for 

bilingualism and SLA. Implicit and Explicit Learning of Languages, 393, 419. 

Peigneux, P., Laureys, S., Fuchs, S., Destrebecqz, A., Collette, F., Delbeuck, X., … Degueldre, C. 

(2003). Learned material content and acquisition level modulate cerebral reactivation during 

posttraining rapid-eye-movements sleep. Neuroimage, 20(1), 125–134. 

Peigneux, P., Maquet, P., Meulemans, T., Destrebecqz, A., Laureys, S., Degueldre, C., … Franck, G. 

(2000). Striatum forever, despite sequence learning variability: a random effect analysis of 

PET data. Human Brain Mapping, 10(4), 179–194. 



179 

 

 

Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals 

on clock speed and temporal memory. Journal of Experimental Psychology: Human 

Perception and Performance, 26(6), 1770. 

Pinto, Y., Gaal, S. van, Lange, F. P. de, Lamme, V. A. F., & Seth, A. K. (2015). Expectations 

accelerate entry of visual stimuli into awareness. Journal of Vision, 15(8), 13–13. 

https://doi.org/10.1167/15.8.13 

Pizlo, Z. (2001). Perception viewed as an inverse problem. Vision Research, 41(24), 3145–3161. 

https://doi.org/10.1016/S0042-6989(01)00173-0 

Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 

118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 

Rammsayer, T., & Ulrich, R. (2005). No evidence for qualitative differences in the processing of 

short and long temporal intervals. Acta Psychologica, 120(2), 141–171. 

https://doi.org/10.1016/j.actpsy.2005.03.005 

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional 

interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–

87. https://doi.org/10.1038/4580 

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and 

Verbal Behavior, 6(6), 855–863. https://doi.org/10.1016/S0022-5371(67)80149-X 

Regan, D. (1989). Human brain electrophysiology: evoked potentials and evoked magnetic fields 

in science and medicine. 

Reithler, J., van Mier, H. I., & Goebel, R. (2010). Continuous motor sequence learning: Cortical 

efficiency gains accompanied by striatal functional reorganization. NeuroImage, 52(1), 263–

276. https://doi.org/10.1016/j.neuroimage.2010.03.073 

Rock, I. (1983). The logic of perception. 



180 

 

 

Roeber, U., Widmann, A., & Schröger, E. (2003). Auditory distraction by duration and location 

deviants: a behavioral and event-related potential study. Cognitive Brain Research, 17(2), 

347–357. https://doi.org/10.1016/S0926-6410(03)00136-8 

Roger, C., Hasbroucq, T., Rabat, A., Vidal, F., & Burle, B. (2009). Neurophysics of temporal 

discrimination in the rat: A mismatch negativity study. Psychophysiology, 46(5), 1028–1032. 

https://doi.org/10.1111/j.1469-8986.2009.00840.x 

Romano Bergstrom, J. C., Howard, J. H., & Howard, D. V. (2012). Enhanced implicit sequence 

learning in college‐age video game players and musicians. Applied Cognitive Psychology, 

26(1), 91–96. 

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for 

accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. 

https://doi.org/10.3758/PBR.16.2.225 

Sams, M., Paavilainen, P., Alho, K., & Näätänen, R. (1985). Auditory frequency discrimination and 

event-related potentials. Electroencephalography and Clinical Neurophysiology/Evoked 

Potentials Section, 62(6), 437–448. https://doi.org/10.1016/0168-5597(85)90054-1 

Schröger, E., & Wolff, C. (1998). Attentional orienting and reorienting is indicated by human 

event‐related brain potentials. Neuroreport, 9(15), 3355–3358. 

Sedley, W., Gander, P. E., Kumar, S., Kovach, C. K., Oya, H., Kawasaki, H., … Griffiths, T. D. 

(2016). Neural signatures of perceptual inference. ELife, 5, e11476. 

https://doi.org/10.7554/eLife.11476 

Seitz, A. R., & Dinse, H. R. (2007). A common framework for perceptual learning. Current 

Opinion in Neurobiology, 17(2), 148–153. https://doi.org/10.1016/j.conb.2007.02.004 

Seriès, P., & Seitz, A. R. (2013). Learning what to expect (in visual perception). Frontiers in 

Human Neuroscience, 7, 668. https://doi.org/10.3389/fnhum.2013.00668 



181 

 

 

Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: Explaining the 

puzzle of perceptual presence and its absence in synesthesia. Cognitive Neuroscience, 1–22. 

https://doi.org/10.1080/17588928.2013.877880 

Seth, A. K., Suzuki, K., & Critchley, H. (2012). An interoceptive predictive coding model of 

conscious presence. Frontiers in Consciousness Research, 2, 395. 

https://doi.org/10.3389/fpsyg.2011.00395 

Shams, L., & Beierholm, U. R. (2010). Causal inference in perception. Trends in Cognitive 

Sciences, 14(9), 425–432. https://doi.org/10.1016/j.tics.2010.07.001 

Sherman, M. T., Seth, A. K., Barrett, A. B., & Kanai, R. (2015). Prior expectations facilitate 

metacognition for perceptual decision. Consciousness and Cognition, 35, 53–65. 

https://doi.org/10.1016/j.concog.2015.04.015 

Shi, Z., Church, R. M., & Meck, W. H. (2013). Bayesian optimization of time perception. Trends in 

Cognitive Sciences, 17(11), 556–564. https://doi.org/10.1016/j.tics.2013.09.009 

Shih, L. Y. L., Kuo, W.-J., Yeh, T.-C., Tzeng, O. J. L., & Hsieh, J.-C. (2009). Common neural 

mechanisms for explicit timing in the sub-second range: NeuroReport, 20(10), 897–901. 

https://doi.org/10.1097/WNR.0b013e3283270b6e 

Simson, R., Vaughan Jr., H. G., & Walter, R. (1976). The scalp topography of potentials associated 

with missing visual or auditory stimuli. Electroencephalography and Clinical 

Neurophysiology, 40(1), 33–42. https://doi.org/10.1016/0013-4694(76)90177-2 

Smith, A. M. (1996). Ptolemy’s Theory of Visual Perception: An English Translation of the" 

Optics" with Introduction and Commentary. Transactions of the American Philosophical 

Society, 86(2), iii-300. 



182 

 

 

Song, S., Jr, J. H. H., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time 

task. Experimental Brain Research, 189(2), 145–158. 

https://doi.org/10.1007/s00221-008-1411-z 

Spratling, M. W. (2012). Predictive coding as a model of the V1 saliency map hypothesis. Neural 

Networks, 26(0), 7–28. https://doi.org/10.1016/j.neunet.2011.10.002 

Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive 

waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical 

Neurophysiology, 38(4), 387–401. https://doi.org/10.1016/0013-4694(75)90263-1 

Steele, C. J., & Penhune, V. B. (2010). Specific increases within global decreases: a functional 

magnetic resonance imaging investigation of five days of motor sequence learning. The 

Journal of Neuroscience, 30(24), 8332–8341. 

Stefanics, G., Kremláček, J., & Czigler, I. (2014). Visual mismatch negativity: a predictive coding 

view. Frontiers in Human Neuroscience, 8, 666. https://doi.org/10.3389/fnhum.2014.00666 

Stickgold, R., James, L., & Hobson, J. A. (2000). Visual discrimination learning requires sleep after 

training. Nature Neuroscience, 3(12), 1237–1238. https://doi.org/10.1038/81756 

Stickgold, R., Scott, L., Rittenhouse, C., & Hobson, J. A. (1999). Sleep-Induced Changes in 

Associative Memory. Journal of Cognitive Neuroscience, 11(2), 182–193. 

https://doi.org/10.1162/089892999563319 

Stickgold, R., & Walker, M. P. (2007). Sleep-dependent memory consolidation and reconsolidation. 

Sleep Medicine, 8(4), 331–343. https://doi.org/10.1016/j.sleep.2007.03.011 

Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human 

visual speed perception. Nature Neuroscience, 9(4), 578–585. https://doi.org/10.1038/nn1669 

Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in 

Cognitive Sciences, 13(9), 403–409. https://doi.org/10.1016/j.tics.2009.06.003 



183 

 

 

Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural 

repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 

1004–1006. https://doi.org/10.1038/nn.2163 

Sussman, E. (2007). A New View on the MMN and Attention Debate. Journal of Psychophysiology, 

21(3), 164–175. https://doi.org/10.1027/0269-8803.21.34.164 

Takahashi, K., & Watanabe, K. (2012). Short-term memory for event duration: Modality specificity 

and goal dependency. Attention, Perception, & Psychophysics, 74(8), 1623–1631. 

https://doi.org/10.3758/s13414-012-0347-3 

Takegata, R., Tervaniemi, M., Alku, P., Ylinen, S., & Näätänen, R. (2008). Parameter-specific 

modulation of the mismatch negativity to duration decrement and increment: Evidence for 

asymmetric processes. Clinical Neurophysiology, 119(7), 1515–1523. 

https://doi.org/10.1016/j.clinph.2008.03.025 

Team, R. C. (2014). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0. 

Teki, S., Grube, M., & Griffiths, T. D. (2012). A unified model of time perception accounts for 

duration-based and beat-based timing mechanisms. Frontiers in Integrative Neuroscience, 5, 

90. https://doi.org/10.3389/fnint.2011.00090 

Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct Neural Substrates of 

Duration-Based and Beat-Based Auditory Timing. The Journal of Neuroscience, 31(10), 

3805–3812. https://doi.org/10.1523/JNEUROSCI.5561-10.2011 

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to Grow a Mind: 

Statistics, Structure, and Abstraction. Science, 331(6022), 1279–1285. 

https://doi.org/10.1126/science.1192788 



184 

 

 

Tervo, D. G. R., Tenenbaum, J. B., & Gershman, S. J. (2016). Toward the neural implementation of 

structure learning. Current Opinion in Neurobiology, 37, 99–105. 

https://doi.org/10.1016/j.conb.2016.01.014 

Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in 

humans is governed by pre-attentive sensory memory. Nature, 372(6501), 90–92. 

https://doi.org/10.1038/372090a0 

Töllner, T., Zehetleitner, M., Gramann, K., & Müller, H. J. (2011). Stimulus Saliency Modulates 

Pre-Attentive Processing Speed in Human Visual Cortex. PLOS ONE, 6(1), e16276. 

https://doi.org/10.1371/journal.pone.0016276 

Tse, C.-Y., & Penney, T. B. (2006). Preattentive timing of empty intervals is from marker offset to 

onset. Psychophysiology, 43(2), 172–179. https://doi.org/10.1111/j.1469-8986.2006.389.x 

van Beers, R. J., Sittig, A. C., & van Der Gon, J. J. D. (1999). Integration of proprioceptive and 

visual position-information: An experimentally supported model. Journal of Neurophysiology, 

81(3), 1355–1364. 

van Turennout, M., Ellmore, T., & Martin, A. (2000). Long-lasting cortical plasticity in the object 

naming system. Nature Neuroscience, 3(12), 1329–1334. https://doi.org/10.1038/81873 

van Wassenhove, V., Buonomano, D. V., Shimojo, S., & Shams, L. (2008). Distortions of 

Subjective Time Perception Within and Across Senses. PLoS ONE, 3(1), e1437. 

https://doi.org/10.1371/journal.pone.0001437 

VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive 

Sciences, 7(5), 207–213. https://doi.org/10.1016/S1364-6613(03)00095-0 

VanRullen, R., & Macdonald, J. S. P. (2012). Perceptual Echoes at 10 Hz in the Human Brain. 

Current Biology, 22(11), 995–999. https://doi.org/10.1016/j.cub.2012.03.050 

Vapnik, V. (2013). The Nature of Statistical Learning Theory. Springer Science & Business Media. 



185 

 

 

Vogels, R. (2010). Mechanisms of Visual Perceptual Learning in Macaque Visual Cortex. Topics in 

Cognitive Science, 2(2), 239–250. https://doi.org/10.1111/j.1756-8765.2009.01051.x 

von Kriegstein, K., & Giraud, A.-L. (2006). Implicit Multisensory Associations Influence Voice 

Recognition. PLoS Biol, 4(10), e326. https://doi.org/10.1371/journal.pbio.0040326 

Vuust, P., Brattico, E., Glerean, E., Seppänen, M., Pakarinen, S., Tervaniemi, M., & Näätänen, R. 

(2011). New fast mismatch negativity paradigm for determining the neural prerequisites for 

musical ability. Cortex, 47(9), 1091–1098. https://doi.org/10.1016/j.cortex.2011.04.026 

Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C., & Roepstorff, A. (2009). Predictive coding of 

music – Brain responses to rhythmic incongruity. Cortex, 45(1), 80–92. 

https://doi.org/10.1016/j.cortex.2008.05.014 

Wacongne, C., Changeux, J.-P., & Dehaene, S. (2012). A Neuronal Model of Predictive Coding 

Accounting for the Mismatch Negativity. Journal of Neuroscience, 32(11), 3665–3678. 

https://doi.org/10.1523/JNEUROSCI.5003-11.2012 

Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. 

(2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. 

Proceedings of the National Academy of Sciences of the United States of America, 108(51), 

20754–9. https://doi.org/10.1073/pnas.1117807108 

Walker, M. P., & Stickgold, R. (2006). Sleep, Memory, and Plasticity. Annual Review of 

Psychology, 57(1), 139–166. https://doi.org/10.1146/annurev.psych.56.091103.070307 

Wassenhove, V. van. (2009). Minding time in an amodal representational space. Philosophical 

Transactions of the Royal Society of London B: Biological Sciences, 364(1525), 1815–1830. 

https://doi.org/10.1098/rstb.2009.0023 



186 

 

 

Wearden, J. H., Todd, N. P. M., & Jones, L. A. (2006). When do auditory/visual differences in 

duration judgements occur? The Quarterly Journal of Experimental Psychology, 59(10), 

1709–1724. https://doi.org/10.1080/17470210500314729 

Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature 

Neuroscience, 5(6), 598–604. https://doi.org/10.1038/nn0602-858 

Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee Michael, B., & Jenike, M. A. 

(1998). Masked presentations of emotional facial expressions modulate amygdala activity 

without explicit knowledge. Journal of Neuroscience, 18(1), 411–418. 

Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. Current 

Opinion in Neurobiology, 8(2), 227–233. https://doi.org/10.1016/S0959-4388(98)80144-X 

Wijnen, V. J. M., van Boxtel, G. J. M., Eilander, H. J., & de Gelder, B. (2007). Mismatch negativity 

predicts recovery from the vegetative state. Clinical Neurophysiology, 118(3), 597–605. 

https://doi.org/10.1016/j.clinph.2006.11.020 

Williams, D., Phillips, G., & Sekuler, R. (1986). Hysteresis in the perception of motion direction as 

evidence for neural cooperativity. Nature, 324(6094), 253–255. 

https://doi.org/10.1038/324253a0 

Williams, M. A., Morris, A. P., McGlone, F., Abbott, D. F., & Mattingley, J. B. (2004). Amygdala 

Responses to Fearful and Happy Facial Expressions under Conditions of Binocular 

Suppression. Journal of Neuroscience, 24(12), 2898–2904. 

https://doi.org/10.1523/JNEUROSCI.4977-03.2004 

Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural 

knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 

1047. 



187 

 

 

Winkler, I., & Czigler, I. (2012). Evidence from auditory and visual event-related potential (ERP) 

studies of deviance detection (MMN and vMMN) linking predictive coding theories and 

perceptual object representations. International Journal of Psychophysiology, 83(2), 132–143. 

https://doi.org/10.1016/j.ijpsycho.2011.10.001 

Winkler, I., Haufe, S., & Tangermann, M. (2011). Automatic Classification of Artifactual 

ICA-Components for Artifact Removal in EEG Signals. Behavioral and Brain Functions, 7, 

30. https://doi.org/10.1186/1744-9081-7-30 

Wu, C.-T., Busch, N. a, Fabre-Thorpe, M., & VanRullen, R. (2009). The temporal interplay 

between conscious and unconscious perceptual streams. Current Biology : CB, 19(23), 2003–

7. https://doi.org/10.1016/j.cub.2009.10.017 

Wuerger, S., Shapley, R., & Rubin, N. (1996). On the visually perceived direction of motion by 

Hans Wallach: 60 years later. Perception-London, 25(11), 1317–1368. 

Xu, S., Jiang, W., Poo, M., & Dan, Y. (2012). Activity recall in a visual cortical ensemble. Nature 

Neuroscience, 15(3), 449–455. https://doi.org/10.1038/nn.3036 

Yang, T., & Maunsell, J. H. R. (2004). The Effect of Perceptual Learning on Neuronal Responses in 

Monkey Visual Area V4. The Journal of Neuroscience, 24(7), 1617–1626. 

https://doi.org/10.1523/JNEUROSCI.4442-03.2004 

Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The Neural Basis of Error Detection: Conflict 

Monitoring and the Error-Related Negativity. Psychological Review, 111(4), 931–959. 

https://doi.org/10.1037/0033-295X.111.4.931 

Yotsumoto, Y., Sasaki, Y., Chan, P., Vasios, C. E., Bonmassar, G., Ito, N., … Watanabe, T. (2009). 

Location-Specific Cortical Activation Changes during Sleep after Training for Perceptual 

Learning. Current Biology, 19(15), 1278–1282. https://doi.org/10.1016/j.cub.2009.06.011 



188 

 

 

Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis? Trends in 

Cognitive Sciences, 10(7), 301–308. https://doi.org/10.1016/j.tics.2006.05.002 

Zhou, W., Jiang, Y., He, S., & Chen, D. (2010). Olfaction Modulates Visual Perception in Binocular 

Rivalry. Current Biology, 20(15), 1356–1358. https://doi.org/10.1016/j.cub.2010.05.059 

 


	PhD Coversheet
	PhD Coversheet
	Hopkins, Suzanna

	Chang, Acer Yu-Chan



