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‘The pleasure lies not in discovering truth, but in searching for it.’

Leo Tolstoy, Anna Karenina

‘The Universe is too big to care about something so small.’

Rick and Morty



UNIVERSITY OF SUSSEX

Djuna Lize Croon, Doctor of Philosophy

Pseudo-Goldstone Bosons in Early Universe physics

Abstract

This thesis aims to give an approach to dealing with Hierarchy problems in theoretical physics,

plaguing theories that span a wide range of energy scales. At present, any theory that is formulated

to connect observations of the Early Universe to results in present day particle physics, exhibits the

necessity of (at least one) unnaturally fine-tuned parameter. This has encouraged the sectioning

of of many separate, highly specialized fields - each dealing with Effective Field Theories (EFTs)

valid at a limited range of energy scales only. Here I describe an effort to connect different energy

scales while dynamically accounting for hierarchies.

This thesis discusses the appeal of pseudo-Goldstone bosons (pGBs) for the generation of

scales in Early Universe cosmology. In particular, I will show how models with pGBs address the

radiative instability of mass scales in quantum mechanical theories.

I will start with an introduction to the two hierarchy problems that will be the primary focus

of the thesis: the electroweak hierarchy problem, or the puzzle of the lightness of the Higgs mass;

and the inflationary hierarchy problem, or the flatness of the inflaton potential demanded by the

nearly scale invariant spectrum of the Cosmic Microwave Background. I will briefly introduce

how pGBs arise, and can be described, using an example of a compact Special Orthogonal group

SO(n) breaking to its largest coset SO(n − 1).

I will then explore various models that address the electroweak and the inflationary hierarchy

problem, using appropriate EFT tools such as the Callan-Coleman-Wess-Zumino mechanism and

5D approaches. I will discuss the relative strength of these models compared to existing models

in the literature.

After this discussion I will show that it is possible to address both hierarchy problems in

a unified model, in which an inflaton decays into the Higgs field after inflation, in a process

called reheating. This section will include a detailed derivation of the model, and will explore the

regions of parameter space that lead to inflation, reheating, and electroweak symmetry breaking

compatible with the relevant experimental data.
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This is followed by an excursion in which I will discuss non-compact models, based on

SO(n,1)/SO(n) cosets. I will show how such setups can also give rise to inflation compatible

with the current data, and discuss different scenarios for reheating.

I will finish with an epilogue of the prospects of (holographic) Composite Higgs models - in

which the Higgs is a pGB of the breaking of a strong compact symmetry - at particle colliders.
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Introduction

1.1 Prelude

The measurements of temperature fluctuations in the Cosmic Microwave Background (CMB) by

COBE, WMAP, and Planck [1]–[3] have marked the advent of precision cosmology: physicists

proposing models for the Early Universe now have experimental data to test their predictions.

The energy scale associated with the CMB (the surface at which photons last scattered) is model

dependent, but typically lies around 1014 − 1015 GeV for successful models (with the highest

Bayesian likelihood [4]). Experimental access to a very different spectrum of energy scales comes

from particle colliders, with the discovery of the Higgs boson [5], [6] at 125.09 ± 0.24 GeV [7]

thus far its latest triumph.

Perhaps the biggest challenge in modern particle physics is to bridge the large energetic gap

between these different data sets. Certainly, this gap can be utilized to separate the fields of particle

physics and cosmology, by integrating out the heavy degrees of freedom associated with the Early

Universe, characterizing the success of Effective Field Theories (EFTs) as accurate descriptions

of the Late Universe and collider physics. Such EFTs only require knowledge of the low energy

field content, and parametrize the (undetermined) UV theory in terms of an operator expansion

in inverse powers of the scale at which the UV processes occur. But although EFTs have shown

to be very successful descriptions within their restricted domains of validity, there remain the-

oretical problems with large gaps between energy scales. This is because unless protected by a

symmetry, mass hierarchies between coupled physical theories tend to be flattened out by higher

order quantum effects. Such effects give rise to associated hierarchy problems [8], [9], most fa-

miliarly occurring for ElectroWeak Symmetry Breaking (EWSB) and the Higgs boson mass, but

also for inflation in the Early Universe (characterized by the Lyth bound and the η problem) [10],

the Cosmological Constant [11], and the flavour sector of the Standard Model (SM) [12].

An approach to solving hierarchy problems is defined by the distinction of technical natural-
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ness1 as first defined by ’t Hooft [13]. A model is deemed technically natural if its free parameters

are insensitive to its quantum mechanical evolution over the full range of known energetic scales.

The difficulty in finding solutions to hierarchy problems is exemplified by the fact that very few

particle physics models capture both the Early Universe and physics at collider scales.

A further motivation for linking cosmological events comes from experimental verification.

Although the data from the CMB can be seen as the most important boundary condition for Early

Universe model building, the experimental information it offers is limited. The existing abundance

of models of the Early Universe, and the lacking prospect of discriminating between them, have

lessened the appetite for further contenders. An enhanced exposure to data would therefore be a

desirable asset for a new class of models.

The efforts in this thesis are directed towards capturing different scales in unified models of

particle physics. Linking cosmological events on a fundamental level is a theoretical challenge,

which exposes the model builder to different experimental datasets. Hierarchies of scales can

be generated dynamically, determined by the evolution of the symmetries of the interactions of

fundamental particles. The lightness of Goldstone Bosons (GBs), degrees of freedom associated

with the spontaneous breakdown of a symmetry upon evolving to a lower scale, as compared

to the symmetry breaking scale, results in a gap of scales in the theory. Concurrently, the GB

is insensitive to quantum corrections from above the scale of its emergence; and the resulting

hierarchy is technically natural and radiatively stable.

It is evident that fine-tuning considerations constitute major challenges to such encompassing

particle physics models. Boldly, however, I would argue that the precise numerical assessment and

elimination of models based on fine-tuning is of limited meaning, when the EFTs do not address

open UV problems. If the overarching goal of theoretical physics is to describe the complete

cosmological evolution of the Universe, EFTs at different scales will eventually have to be coupled,

and thus the associated hierarchy problems addressed. Advocating a focus on EFTs with limited

energetic range (to keep numerical fine-tuning small) only promotes a stay of execution.

For example, in a future, complete theory (of everything), the physics of inflation (or alternat-

ive scenarios such as ekpyrosis) will inevitably have to be coupled to the particles of the SM. Thus

a consideration of fine-tuning in models Beyond the SM (BSM) is necessarily incomplete without

the inclusion of a source of fine-tuning from the microphysics in the Early Universe. Fine-tuning

arguments organized around a single cosmological event may indeed be used as guiding principles,

but cannot set the standard for the fine-tuning that arises in more encompassing models.

1With the exception of the flavour hierarchies; which are technically stable (quantum corrections to the masses of

flavour eigenstates do not have cut-off dependence).
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1.2 Hierarchy problems

1.2.1 A paradigm

The radiative instability of fundamental scalars has plagued the theoretical physics community for

almost four decades: the original realization that fundamental scalars are always accompanied by

quadratic mass divergences has been attributed to Kenneth Wilson in 1978 [9]. Besides aesthetic

considerations, the search for "naturalness" stipulates one (naively uncontroversial) requirement

for theories of new physics. Qualitatively,

The experimental predictions of a theory should be stable when its (dimensionless)

input parameters are varied by a small amount.2

With few other theoretical guiding principles in the ambitious quest of discovering how nature

works at unobserved energies, reasoning along these lines has developed itself into the most im-

portant corner-stone for model building.

The hierarchies that will be discussed in this thesis are technically unnatural. This means that

they can be formulated in terms of a small parameter in the classical theory, such as a ratio of

energy scales, which is no longer expected to be small when quantum corrections are taken into

account. Thus the experimental confirmation of the smallness of this parameter (and equivalently

the hierarchy of scales), while unproblematic classically, points to an issue with the full quantum

theory.

An insightful way to see if a theory is technically natural, as identified by ’t Hooft [13], is

by identifying whether setting the small parameter to zero enlarges its symmetry content. If that

is the case the parameter has arisen from the scale of the symmetry breaking, and the theory has

a limited range of validity; in particular, it will be insensitive to effects from higher scales. If

that is not the case, it is impossible to satisfy the naturalness criterium as defined above. Notable

examples of such hierarchy problems in theoretical physics include:3

• The Cosmological Constant problem: the measured accelerated expansion of the Universe

[14] suggests a small cosmological constant, of order 10−47 GeV4 (or 3 × 10−122 in reduced

Planck units). However, a (quantum-mechanical) computation of the zero-point energies of

the known components of the Universe points to a large cosmological constant, at least of

the order M4
p . The discrepancy of order O(120) between the theoretical and experimental

2"Stable" here means "not subject to large variation".
3This is not meant to be an exhaustive list.
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findings arguably constitutes the most prominent theoretical question today. It is a thorn in

the eyes of the community, ever since it came into existence as Einstein’s "blunder", and has

appropriately been described "the worst theoretical prediction in the history of physics" in a

textbook [15].

• The strong CP problem: the QCD θ-parameter is experimentally found to be very small,

θ < 10−10
4. Unless forbidden by a currently unknown symmetry, such a small value is

unnatural. Since CP is broken maximally by the weak interaction, it is surprising that it may

be conserved by the strong interaction. In particular, the breaking of chiral symmetry and

instanton effects both contribute to a non-zero θ.

• The Electroweak Hierarchy Problem (or simply: "the hierarchy problem" in the literature):

the lightness of the Higgs boson, as confirmed by experiments, is in tension with theoret-

ical predictions of radiative corrections to its mass from loops of Standard Model particles.

Such corrections, in particular from the Standard Model top-quark, will be of order of the

cut-off scale of the theory, which in the absence of new physics is given by the Planck scale.

The discrepancy between the Higgs boson mass and the Planck mass has provided a pop-

ular challenge for model building, possibly fuelled by the prospect of access to detailed

experimental tests in the near future.

In this thesis, I will also discuss what can be called the hierarchy problem of inflation: the

flatness of the inflationary potential against radiative corrections. For an effectively single field

model, this can be illustrated by the tension between the Lyth bound [16],

∆φ ∼
( r
0.002

)1/2
(

N
60

)
Mp (1.1)

and the measurements of the CMB anisotropies [14],

Λ
4
inf =

(
2.2 × 1016 GeV

)4
( r
0.2

)
(1.2)

The Lyth bound is a measure of the field excursion necessary to solve the problems inflation

was invented to solve, given in terms of the number of e-foldings N . When one plots the scalar

potential of the inflaton, the Lyth bound and the scaleΛinf constitute the vertical and the horizontal

axes respectively (Fig.1.1). For good measure, one may appreciate that the axes are of the same

order only for very small tensor-to-scalar ratio r < 10−13, pointing to a very flat potential. While

such a stretched inflationary model can be a feature of a theory, the challenge of the inflationary

hierarchy problem is to ensure that this flatness is stable against radiative corrections.

4From measurements of the electric dipole moments of hadrons and nuclei.
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Figure 1.1: Illustration of the hierarchy problem of inflation.

The hierarchy problem of inflation can be described in the more familiar form of an unstable

mass hierarchy: the well known η-problem, where η is the second slow-roll parameter,

η = M2
p

V ′′(φ)
V (φ)

∼
m2
φ

H2 � 1. (1.3)

The inflationary predictions of the slow-roll paradigm crucially depend on the smallness of η (and

the other the slow-roll parameters), and therefore on the relative lightness of the inflaton. The

problem is that one generically expects higher dimensional corrections to the inflation potential,

induced either by the inflaton’s self couplings or couplings to new physics. They can be cast in the

form
cn

Mn−4
p

φn = cn *
,

φn−2

Mn−4
p

+
-
φ2, (1.4)

and as one typically expects that

φ ∼ ∆φ ∼ Mp (1.5)

in generic inflation models, it is clear that these contributions are unsuppressed, and will ruin the

lightness of the inflaton and the inflationary predictions. Therefore any plausible inflation model

must address the η-problem in some way.

Solving hierarchy problems, particularly the Electroweak hierarchy problem and the cosmo-

logical constant problem, has been the object of the creativity and intellect of a generation of

physicists. Proposed solutions may roughly be divided into two main groups:5 solutions that pro-

pose a new symmetry, which stabilizes the hierarchy between energy scales, and those that propose

that hierarchies are dynamically generated. In this thesis we will undemocratically focus on the

latter category.

5Of course, different authors have proposed solutions that fall in between, or completely out of these categories.

Among these are recent proposal such as relaxions [17], and the Higgsplosion [18].
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1.2.2 Dynamical solutions to hierarchy problems

The key notion of a class of solutions to hierarchy problems is that large hierarchies between scales

may be stable against radiative corrections, if they were generated dynamically. The basic ingredi-

ent of such a dynamical generation of scales is the existence of a approximate global symmetry,

broken spontaneously at some energy scale. Hence, by Noether’s and Goldstone’s theorem, one

expects a new scalar degree of freedom below that scale. But because the global symmetry was

not exact, the scalar generated is a pseudo-Goldstone boson (pGB).

A pGB, as opposed to an exact Goldstone boson, may acquire a potential at the loop level.

However, the parameters in a pGB potential are protected from large corrections, as they are

insensitive to virtual effects above the cutoff scale of the effective theory - the scale at which the

approximate global symmetry spontaneously broke. In the low energy theory, the Goldstone boson

has a shift symmetry, that is, the Lagrangian is invariant under

Φ→ Φ + C (1.6)

where C is a constant. For exact Goldstone bosons C is a continuous parameter; for pseudo-

Goldstone bosons it can take on discrete values. While the shift symmetry does not necessarily

imply that the scalar potential is bounded in energy, it forbids the existence of effective operators

proportional to powers of the field.

Let us now consider the effective field theory (EFT) of the pGB, originated by the breaking of

a global symmetry G to a subgroupH at the scale f . An EFT is characterized by the field content

and symmetries of the low energy theory - the SM - and captures the effect of the UV theory in

an operator expansion in powers of the energy scale at which processes of interest occur. These

will be suppressed by a cut-off scale, at which one expects new physics to appear: in this case,

the symmetry breaking scale f . The EFT Lagrangian for pGBs can be derived most easily using

a ’trick’: one first assumes that the full global symmetry G is gauged, such that all physical fields

fall into complete representations of the group. The Goldstone bosons will couple non-linearly

to such representations, as we will see below. Upon writing down all structures that are invariant

under G, one can switch off the unphysical fields to find the low energy EFT Lagrangian.

We will denote the generators of G as Ta ∈ H and T â , where T â are the broken generators.

The resulting pGBs are associated with these broken generators, and we will assume in this thesis

that the inflaton field and Higgs field are linear combinations of them. The mass and couplings of

the pGBs depend on the explicite breaking of the global symmetry. The Goldstone bosons couple

non-linearly, as part of the Σ field,

Σ(x) = Σ0eiΠ(x)/ f where Π = T â
Φ

â (1.7)
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where Σ0 = 〈Σ〉 contains the symmetry breaking vacuum expectation value, and T â are the broken

generators of the global symmetry G. The exponential form in which Φâ appears exemplifies that

its potential will be forbidden by the shift symmetry, Eq. 1.6: here, discrete shifts of 2π f leave the

Lagrangian invariant.

One can proceed to write down the terms that are invariant under the global symmetry. For

gauge fields, these are given by,

Lgauge =
1
2

Pµν
(
Π0(p)Tr(AµAν ) + Π1(p)ΣAµAνΣT

)
(1.8)

where Pµν =
(
ηµν − qµqν/q2

)
projects out the transverse gauge fields.

The form factors Πi parameterize our ignorance about the strongly coupled UV-theory. In

analogy with QCD and technicolour, they can be seen to be proportional to towers of meson

exchange.6 The Π0 are related to the currents of the unbroken group (such that one may redefine

Π0 = Πa)

(PT )µνΠa (q2) = 〈T {Jµa (q)Jνa (−q)}〉 = (q2ηµν − qµqν )
∑
n

f 2
ρn

q2 − m2
ρn

(1.9)

where Jµa are the currents of the unbroken group, and mρn the mass of the nth meson. The constant

fρn = 〈0|J |n〉 gives the amplitude for creating the nth meson from the vacuum. It is related to the

spectral density (or density of states) of the theory and is also referred to as the decay constant.

A linear combination of Π0 and Π1 will be related to the currents of the broken part of the gauge

group (such that one may redefine Πâ = Π0 +
Π1
2 ),

(PT )µνΠâ (q2) = 〈T {Jµ
â

(q)Jνâ (−q)}〉 = (q2ηµν − qµqν )
∑
n

*
,

f 2
an

q2 − m2
an

+
f 2

2q2
+
-

(1.10)

The Goldstone bosons are excited by Πâ , and the fact that this expression does not vanish at q = 0

ensures the mass for the vector bosons.

Now one can obtain an effective Lagrangian by expanding the form factors for low momenta

(compared to the resonance masses), keeping only the physical fields. From the effective Lag-

rangian one can read of the gauge boson masses, as well as the scalar-gauge couplings.

Partial compositeness

As long as the global symmetry G is not explicitly broken (as well as spontaneously), the goldstone

bosons will not have a potential at any order in perturbation theory. An explicit breaking can be

6The pGBs in QCD are pions; in the chiral limit, pions are exact Goldstone bosons, and the charged pions get

a radiative potential from loops of photons. Experimentally, this radiatively generated mass of the charged pions is

consistent with the measurement of the difference m2
± − m2

0.
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induced by interactions between external fields and the states of the strong sector. In Composite

Higgs models, this is achieved through the mechanism of partial compositeness, in which gauge

fields and fermions mix with the composite states of the strong sector, analogously to photon-ρ

mixing in QCD. By integrating out the dynamics of the strong sector it is possible to find the

effective Lagrangian for the external fields.

As is intuitive, the contribution from SU (2)L × U (1) gauge bosons to the potential will not

break electroweak symmetry, as it will align in an SU (2)L ×U (1) preserving manner.7 The mis-

aligned contribution can however come from fermion loops, most importantly the top quark, as it

is heaviest (and thus has the strongest coupling to the Higgs). In partial compositeness fermions

couple linearly to the strong sector: L 3 λψO where ψ is an SM fermion field and O an operator

of the strong sector with the right quantum numbers.

Similar to the previous sector, one can employ a "trick" to derive the effective potential: to

uplift the fermion states to fill complete representations of the global gauge group G, such that

the Lagrangian can be written in a G invariant way. Besides the SM fields, the representations

are filled with non-dynamical (auxiliary) spurion fields. For instance for the Minimal Composite

Higgs Model (MCHM) G = SO(5), which has a spinorial representation 4 = (2,1) + (1,2) (a

Dirac spinor in 5D is composed of two Weyl spinors in 4D8) [19], one can write

Ψq =



qL

·


Ψu =



·



uR

·





Ψd =



·



·

dR





(1.11)

where the dots should be filled by spurion singlets and doublets. The incompleteness of these rep-

resentations signifies the explicit breaking of the global SO(5), and (as is seen below) contributes

to the a scalar potential via fermion loops.

Now one can write down the part of the Lagrangian that contains the interactions between

fermions and Goldsone bosons. The form of this Lagrangian will depend on the choice of fer-

mion representation; here I will give the two simplest examples, the fundamental and the spinorial

representation of G. It is usually sufficient to consider only the contributions of the fermion gen-

eration that couples most strongly to the scalar sector, as it will give the dominant contribution to

the potential, but the generalization is straightforward. The spinorial representation (such as the

MCHM multiplets above), at the quadratic order in the fermion fields and treating Σ as a constant

7The reader is referred to [19],[20] or [21] for an explicit computation.
8Technically this is a statement about the Lorentz group SO(4,1) and SO(3,1), but it is true for SO(5) and SO(4)

in much the same way.
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background, gives

Lquarks =
∑

r=L,R

Ψ̄r /p
(
Π

r
0 (p) + Πr

1 (p)ΓiΣi
)
Ψr + Ψ̄L

(
M0(p) + M1(p)Γ jΣ j

)
ΨR (1.12)

Here i = 1,2, ...,d is the G index (remember that Σ transforms as a vector under G, d = dim G) and

Γi are higher dimensional gamma matrices. Contrarily, fermions in the fundamental representation

couple as

Lquarks =
∑

r=L,R

Ψ
i

r /p
[
Π

r
0 (p)δi j + Πr

1 (p)ΣiΣ j
]
Ψ

j
r + M (p)Ψ

i

LΣiΣ jΨ
j
R + h.c. , (1.13)

As above, the form factors Πi encode the strong dynamics, and cannot be determined perturbat-

ively. However, there are clues: their momentum scaling can be determined, and their poles give

the spectrum of the fermions of the strong sector, as above for gauge fields.

From Lquarks one can find the scalar potential using the 1-loop Coleman Weinberg mechanism

[22]. The (1-loop) Coleman Weinberg mechanism resums the series of 1-loop diagrams with an

arbitrary number of external scalar legs, with zero external momentum:

V (h) = −

∞∑
n=0

1
n!
Γ(0, ...,0)hn

where Γ(Φc ) is the Legendre transform of the generating functional W (J) of the connected dia-

grams (Z[J] = eiW (J )/~) and Φc is the 1PI generating functional. For the MCHM Lagrangian, the

Coleman Weinberg potential from loops of top quarks is given by [19],

V (h) = −2Nc

∫
d4p

(2π)4
*
,
2 log *

,
1 +
Π

tL
1

Π
tL
0

cos
h
f

+
-

+ log *
,
1 −
Π

tR
1

Π
tR
0

cos
h
f

+
-

log *
,
1 −

(M1 sin(h/ f ))2

p2(ΠtL
0 + Π

tL
1 cos(h/ f ))(ΠtR

0 + Π
tR
1 cos(h/ f ))

+
-

+
-

(1.14)

≈ α cos
h
f
− β sin2 h

f
(1.15)

where the last equality stems from expanding the logarithms to first order. This is a good approx-

imation in the assumption that the (ratios of) form factors decrease fast enough at high momentum.

In models with both the quartic coupling and the mass generated at the same order (as above)

one requires an amount of tuning between the parameters to match the measured Higgs mass. 9

To obtain a fully natural Higgs potential, one may think of inducing a tree-level quartic coupling,

while only inducing a loop-level mass term. Models in which this is realized are called "Little

Higgs" models [24]–[32]. Generically this tree-level term arises from mixing with an elementary

scalar φ, which (unlike the Higgs boson) is not protected by symmetry. It therefore has a mass of

9Models with this tuning were classified as "Holographic" in [23]. Holographic Composite Higgs models are the

subject of chapter 6 of this thesis.
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order of the cutoff scale and is integrated out in the effective theory. If this elementary scalar had

a bilinear coupling to the composite Higgs, OφO2
Σ

(where OX creates X), an effective tree-level

quartic coupling for the Higgs can arise. By choosing the quantum numbers of φ carefully, one can

avoid a tree level mass term for h. Unfortunately, in fully natural Little Higgs models the Higgs

mass generically too high: mh = 2v
√
λ ∼ 2vgSM ∼ 500 GeV, such that one cannot avoid some

tuning at a later stage. Although heavily constrained, in some region of the parameter space Little

Higgs models are still compatible with the Higgs mass and electroweak precision data [33].

1.3 Theoretical input forModel Building

There is no recipe to construct a model that addresses a hierarchy problem. That is lucky, because

theoretical physicists tend to hate recipes; it is why many skipped as many undergraduate lab

courses as they could.10 Nevertheless, there is a theoretical toolkit to be aware of; and a generic

range of minimal conditions to fulfil. This section will survey some of these (often unspoken)

theoretical rules that underly the models in this thesis.

1.3.1 Internal consistency

A self-consistent quantum field theory satisfies a host of theoretical constraints. Of particular in-

terest in the current thesis11 are the non-existence of negative energy (ghost) states, the conservation

of (perturbative) unitarity, and the Weak Energy Condition (WEC).

Unless called upon as a theoretical device (such as in the case of "good" Faddeev-Popov

ghosts), theories should not contain ghost fields. Usually, this is a statement of the signature of the

metric tensor: for example, for a scalar field φ, the kinetic term φ̇2 should have a positive definite

coefficient. It also places a degeneracy condition on higher derivative field theories; the equations

of motion need to be (equivalent to) first order [34], otherwise an instability characterized by an

Ostrogradsky ghosts occurs [35].

For the model building in this thesis, the no-ghost condition warrants special consideration

of theories with a negatively curved internal space. In such models the presence or absence of

ghosts is more obvious in some coordinates than in others. In particular, field spaces based on

10The author pleads guilty.
11Without claiming that this is an exhaustive list of theoretical input even for the present works.
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non-compact internal symmetries may appear to have ghost terms for scalar fields, such as

L 3 (∂µφ0)2 − (∂µφi )2 (1.16)

but such terms will be eliminated when the non-compact symmetry is broken to its maximal com-

pact subgroup, a fact that has long been used by the supergravity community [36]. We will see

examples of this in the chapters below.

Perturbative unitarity is a well defined concept for model building. It is expressed in terms of

the scattering S-matrix, which gives the evolution of states from t = −∞ to t = +∞, decomposed

as

S = 1 + iT (1.17)

Unitarity then prescribes S†S = 1, which leads to the optical theorem for the partial wave com-

ponents Tii ;

(ReTii )2 +

(
ImTii −

1
2

)2

=
1
2
. (1.18)

This can be interpreted geometrically in that the eigenvalues of the scattering matrix are con-

strained to lie on the Argand circle (for elastic scattering) or inside it (for inelastic scattering).

The optical theorem holds for exact matrix elements and not order-by-order in perturbation

theory. In particular, it is noted that the amplitude of tree level processes necessarily is real, and

therefore violates the optical theorem. To avoid having to calculate the the contributions of all

orders in perturbation theory, one can rely on the weaker statement: a theory is likely to have

issues with perturbative unitarity if the real and imaginary parts of the partial wave amplitudes are

of the same order. This may give an upper bound to the range of validity of the EFT.

The Higgs particle provides a minimal solution to the violation of perturbative unitarity by

longitudinally polarized modes of the W and Z gauge bosons. Without the Higgs mechanism, the

four point function of these vector bosons is expected to grow quadratically with energy. Any

model that aims to replace the Higgs particle of the SM, should address the question of perturb-

ative unitarity in vector boson scattering. In Composite Higgs models, the pGB Higgs unitarizes

scattering amplitudes partially, that is, up to the scale

Λ ≈
4π f
√
ξ

(1.19)

Above that scale, strong resonances are expected to come in.

The WEC implies that the energy in the inflaton field, and in particular the scalar potential,

should be positive definite. In some popular models of inflation, such as the vanilla Natural Infla-

tion [37], this observation forces the authors to add a phenomenological constant to the potential.

Of course, since such a constant serves as a vacuum energy and is therefore formally part of the



12
Introduction

Cosmological Constant problem, an explanation for its necessity is often taken to be outside of the

scope of the analysis. Notwithstanding, it will be seen that this thesis contains models that do not

require the addition of a constant.

1.3.2 Fine-tuning

While different ways of quantifying the naturalness of a model have been adopted, the most widely

adopted criterium was defined by Barbieri and Giudice [38], and reads

Fine-tuning =
�����
∆y/y

∆x/x0

�����
=

�����
∂ ln y

∂ ln x

�����
(1.20)

where x0 is an input parameter of the Lagrangian evaluated at an appropriate scale12, and where y is

the model’s prediction, for instance a coupling or a mass. While the usefulness of this parameter,

and in particular the value of a meaningful upper bound for the naturalness criterium, can be

debated, the definition above is used most widely across the literature and thus lends itself best to

model comparison for the purposes of this thesis.

1.3.3 Reproducing the StandardModel

As the Standard Model is in excellent agreement with collider and low energy data, it can be inter-

preted as the low energy effective theory of any model for the Early Universe. It may seem very

obvious that candidate theories should produce (conceivably only) the Standard Model particle

content and couplings at low energy, but it is an important boundary condition which has the

power to rule out potential models13. For example, it is generically difficult in supersymmetric

models to find the measured Higgs mass without light stops and gluinos.

Any complete UV theory should therefore at least contain the Standard Model group structure

and quantum numbers. For composite models involving the Higgs boson, this means that the

global symmetry should at least contain SU (2)L×U (1); or more preferably, the custodial SU (2)L×

SU (2)R which protects the electroweak parameters as we will discuss below.

12For models with Goldstone bosons this will be given by the compositeness scale f .
13Any extra light particles are necessarily very weakly coupled to the SM, and should evade cosmological bounds as

well. For example, extra light particles may impact on inflation [39], give rise to spectral distortions [40], Dark Matter

direct detection [41], galaxy rotation curves [42], or are constraint by BBN [43]
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1.4 Experimental Constraints

A good particle physics model is in a constant conversation with experimental data. While the

chronicles describe an era in which science worked through a linear sequence (model → hypo-

thesis→ test), the modern particle physicist is motivated by, aware of, and adaptive to new exper-

imental results. Experiments have changed, too, and are not designed to test a single prediction,

but test many different theories at once.

This section will give an overview - again, far from exhaustive, but relevant to the present

effort - of experimental data to test theoretical models against. This section is subdivided into

two parts: the data acquired by collider experiments and the cosmological data from the Cosmic

Microwave Background.

1.4.1 Collider bounds

Electroweak precision tests

Electroweak Precision tests (EWPT) are powerful tests to distinguish electroweak BSM models

from the Standard Model, and have led to the demise of (vanilla) Technicolor [44]. Deviations

from the Standard Model are effectively captured by the Peskin-Takeuchi S and T parameters

[45],14

The S parameter gives the difference between the number of left- and- right handed fermions

charged under weak isospin,

αS = 4s2
wc2

w

∂

∂q2

(
ΠZZ (0) − Πγγ (0) −

c2
w − s2

w

swcw
ΠZγ (0)

)
(1.21)

where α is the fine structure constant. Theories that add extra (chiral) fermion doublets are strongly

constrained by the upper bounds on S. The T parameter is a measure of isospin violation in the

weak gauge bosons,

αT = ∆ρ =
ΠWW (0)

M2
W

−
ΠZZ (0)

M2
Z

(1.22)

where ρ ≡
m2

W

m2
Z cos2 θW

(θW is the Weinberg angle).15 Equivalently, one can define the experimental

parameters ε i , linear combinations and shifts of the Peskin-Takeuchi parameters [46].

14The U parameter is subdominant, as the first operator to contribute to it is at least dimension-8. It is therefore not

usually applied to constrain BSM models.
15In the SM, ρ = 1.
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As mentioned above, a straightforward way to protect the T-parameter in BSM models is to

postulate the UV theory to be (approximately) invariant under SU (2)L × SU (2)R under which the

Higgs field transforms as a bidoublet [47].

Top partner searches

In Composite Higgs models with partial compositeness, the SM quarks couple linearly to the

strong sector, through

L 3 λQ̄LO + h.c. (1.23)

where O is an operator of the UV strong sector. This opens up the opportunity to produce top

partners directly at colliders.

There are several ways in which top partners can be produced in collider experiments. Be-

cause they necessarily carry QCD charge, as can be seen from the mixing (1.23), they can be pair

produced in QCD interactions. The cross sections of such interactions are functions of the top

partner mass and known parameters [48]. They can also be produced in association with a SM top

or bottom quark, via an interaction with a (SM) vector boson.

Top partners can decay to a top quark (or a lighter top partner) and a SM vector boson. This

gives a particularly clean signal for the lightest top partner decay, with an associated top quark

from either the single or the double production channel.

It might be that new states are too heavy to be directly produced. In that case, their effects

might be detected from the deviations from the SM predictions for the top-quark couplings to

other SM particles.

Higgs couplings

In Composite Higgs models, it is useful to expand around the Higgs vacuum expectation value v.

This allows for a comparison between models using the parameters a, b, and c in the following

expansion

Leff =
1
2

(∂µh)2 +
v2

4
Tr

[
(DµΣ)†(DµΣ)

] (
1 + 2a

h
v

+ b
h2

v2 + . . .

)
−

v
√

2

∑
i, j

(
u(i)
L d (i)

L

)
Σ

(
1 + c

h
v

+ . . .

) (
λui ju

( j )
R , λdi jd

( j )
R

)T
+ V (h) (1.24)

where for the SM a = b = c = 1.

Experimentally, the deviations of the Higgs couplings from the standard model are expressed

in terms of κ-factors,

κ2
i =

σi

σSM
(1.25)
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where σi is the cross section for a particular process in the BSM model, and σSM the corres-

ponding cross section in the Standard Model. For example, the Higgs decaying to vector bosons

is captured by κ2
V , which for generic composite models is given by [49]

κV = a =
√

1 − χ (1.26)

where χ = v2/ f 2.

The deviation from the SM value of the Yukawa coupling of the top quark is described by the

parameter κt . The measurement of the tt̄H coupling is an experimental priority and is expected to

be constrained to O(10%) with the Large Hadron Collider High-Luminosity Upgrade data [50].

Because the largest contribution to the Electroweak hierarchy problem comes from this coupling,

this measurement can be seen as its most important probe. In this thesis, prospects for holographic

Composite Higgs models are discussed in section 6.6.

If the Higgs couples to an extended scalar sector, an array of further constraints applies [51].

For the purposes of this thesis, we will consider the inflaton to be an SU (2) scalar. The most

important constraint in this case comes from mass mixing in the scalar sector after electroweak

symmetry breaking, in the presence of the trilinear coupling c3φh2, where φ is the inflaton and h

is the Higgs. Collider constraints from this effect are discussed in section 4.5.

1.4.2 CMB data

The discovery of the cosmic microwave background (CMB) by Penzias and Wilson in 1965 [52]

is often cited as the birth of modern cosmology. The promise of such a powerful probe of the early

universe makes models falsifiable and cosmology a physical science. Alas, careful excavation has

shown that the CMB is more featureless than we hoped and more perfect than we dreamed. The

philosophical arguments16 for homogeneity and isotropy have been confirmed to an exceptional

degree.

The cosmic microwave background consists of photons from the last scattering surface, at the

time of recombination of the light elements, and as such is the earliest directly observable probe

of our cosmic history. The spectrum of the CMB is consistent with a black body at a temperature

of 2.725 K [53], and is almost uniform in every direction, with small anisotropies varying with

the size of the patch one considers. These small temperature fluctuations encode a wealth of

information about our universe.

The primary anisotropy is given by the two point temperature correlation function, or equi-

valently the angular temperature distribution of the CMB, which probes the geometry and the

16Simplicity, and the belief that the Earth does not occupy a "special" position.
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dynamics of the (Early) Universe. The late time anisotropy, given by spectral distortions and fre-

quency perturbations, probes the thermal history. In this thesis we will mainly be concerned with

the primary anisotropy as encapsulated in the CMB power spectrum, but we recognize that a com-

plete theory should address reheating, baryogenesis, and the electroweak phase transition as well

and as such be consistent with the late time anisotropy.

The CMB power spectrum

The scalar power spectrum (expanded on super-Hubble scales) reads,

PR (k) =
k3

2π2 |Rk |
2 (1.27)

= As

(
k
k∗

) (ns−1)+ 1
2 dns/d ln k ln(k/k∗)+ 1

6 d
2ns/d ln k2 (ln(k/k∗))2+...

(1.28)

It encodes the two-point function of CMB scalar modes, in Fourier space. Similarly, the tensor

power spectrum is given by

Pt (k) = At

(
k
k∗

)nt+
1
2 dnt /d ln k ln(k/k∗)+ 1

6 d
2nt /d ln k2 (ln(k/k∗))2+...

(1.29)

where the difference in normalization between ns and nt is by convention.

To great disappointment of the community, the primordial information extracted from the

CMB today can be summarized in three independent primordial numbers (and a multitude of

constraints consistent with zero) [54]:

• The amplitude of the CMB power spectrum

ln(1010 As ) = 3.089 ± 0.036 (1.30)

which can be related to the scale of cosmic inflation, as in (1.2).

• The deviation from scale invariance, as expressed in the tilt of the power spectrum,

ns = 0.9655 ± 0.0062 (1.31)

which is a statement of the shape of the inflaton potential and has ruled out some proposals

(such as a class of models based on string moduli fields), but is consistent with a multitude.

• The amount of inflation, captured by the number of e-foldings before the end of inflation, at

which the pivot scale k∗ exits the Hubble horizon,

N =

∫ te

ti

H (t)dt (1.32)

of which no precise measurement exists, but which sits roughly between 50 and 60.
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All quoted measurements are at the pivot scale by k∗ = a∗H∗ = 0.05 Mpc−1 (for TT modes) by

the Planck collaboration [14], with error bars at at 68 % (or 1σ) confidence level.

Many other important parameters have been constraint with upper and lower bounds, but are

still consistent with zero. Important examples include,

• The amount of primordial gravitational waves, as measured by the polarization of the CMB,

and frequently normalized to the scalar power spectrum as expressed with the tensor-to-

scalar ratio,

r =
Pt (k∗)
PR (k∗)

< 0.11 (1.33)

where the upper bound depends on polarization mask and prior choices.

• The non-Gaussianity of the spectrum, as expressed using the parameters fNL and gNL 17,

f local
NL = 2.5 ± 5.7 (1.34)

glocal
NL = (−0.9 ± 7.7) × 104, (1.35)

which measure the higher-order correlation functions (the bi- and- trispectrum respectively).

These null results imply that the consistency with the concordance ΛCDM model is over-

whelming, and that the seeds of structure formation were adiabatic and Gaussian. The

results favour single field inflation models over multi-field models.

• The number of (extra) effective neutrinos species,

Nf = 3.15 ± 0.23 (1.36)

(compared to the SM value Nf ≈ 3.046) points to a standard big bang nucleosynthesis

(BBN) scenario with no extra light species.

• The running of the spectral tilt,

dns

d ln k
= −0.0084 ± 0.0082 (1.37)

favours simple slow roll models of inflation with a hierarchy of slow roll parameters.

• The fraction of primordial isocurvature modes,

βiso =
PS

PR + PS
6 O(10−3 − 10−1) (1.38)

17For a full definition the reader is referred to [55].
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which measures the relative importance of fluctuations normal to the inflationary traject-

ory.18 Isocurvature modes can be correlated with adiabatic perturbations, and source non-

gaussianity as measured by the parameters fNL and gNL above. As these fluctuations are

only present for models in which other fields fluctuate, this measurement also favours the

single field cases.

Again all quoted data from the pivot scale by k∗ = a∗H∗ = 0.05 Mpc−1 (for TT modes, with 1σ

error bars) by the Planck collaboration [14], [56].

The lack of constraining data complicates the comparison between the wealth of inflationary

models that exist in the literature. It has inspired authors to look for consistency relations (for

instance [54]), encouraged meta studies (such as [57]), and statistical comparisons see for example

[58]). The featurelessness of the CMB can be interpreted as a sign that inflation was driven by a

very simple theory, with minimal field content. However, such an interpretation is mostly aesthetic,

as the data is consistent with a plethora of (simple and less simple) models that reproduce the same

phenomenology.

Spectral distortions

The late time anisotropy expresses itself in terms of distortions of the CMB spectrum. Such

effects may occur when energy (in the form of matter, or as photons) is injected; or when energetic

particles are produced. Interaction with the CMB photons will give rise to deviations from a

perfect blackbody spectrum.

Spectral distortions can be parametrized in the y-type and the µ-type (and linear combina-

tions). A y-distorted spectrum differs from a blackbody because of interactions with hot, isotropic,

thermal electrons with particular Compton y-parameter; µ-type distortions can be captured by an

effective chemical potential [59].

The type of distortion that is expected from an energy injection (or particle production) de-

pends on the redshift at which the process occurs. At sufficiently high redshift, the photons can

redistribute effectively to re-establish full thermodynamic equilibrium. Below this, the heating of

CMB gives rise to a Bose-Einstein spectrum, and energy injections result in µ-distortions: of the

form nx = 1/(ex+µ(x) − 1) where the chemical potential µ is a function of the frequency. At even

lower redshift the thermalization cannot establish a Bose-Einstein spectrum, and energy injections

contribute as nx = nx,0 +∆nx (y) [60]. A measurement of a type of distortion may therefore place

18This is a model dependent measurement, with the strongest bound here corresponding to the "curvaton" scenario,

in which the primordial perturbations are (in whole or in part) generated from isocurvature modes. That is, the adiabatic

and isocurvature perturbations are fully (anti-) correlated.
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limits on the time of the energy release, as µ-type can put a lower bound on the time of energy

release, y-type distortions, an upper limit.

Thermalization of the CMB photons through processes like Bremsstrahlung and (double)

Compton scattering may partially wash the spectral distortions out - but CMB constraints may

still place tight limits on the Universe’s thermal history. Recent experiments Planck and WMAP

have been focussed on the angular distribution, such that the most recent measurements of the

spectrum are from COBE/FIRAS [1]. Proposed experiments such at PIXIE and ASPERa are

aimed at constraining the spectral distortions further and pose an interesting challenge for model

building.

1.5 Outline of this thesis

This thesis contains a collection of published work that was completed as part of my doctoral

degree, which study pseudo-Goldstone Bosons as an answer to hierarchy problems in particle

physics and cosmology. It is structured as follows:

• Chapter 2 contains [61], in which we argued that the flatness of the inflationary potential

could be due to the inflaton’s origin as a pGB,19 and tested a potential derived with EFT

techniques against the CMB data. The merit of the paper was its generality: in particu-

lar, we included a variant of Extra-natural inflation [62] with bulk fermions, and its four

dimensional duals, as well as a discussion of purely four dimensional models inspired by

Composite Higgs physics. This later topic would be a first discussion of a class of natural

inflation models that are sub-Planckian effective theories, in contrast to the original Natural

Inflation.

• In [63], which is chapter 3, we further explored the symmetry arguments and the robustness

against UV corrections of Goldstone Inflation (GI). Our setup involved a GB of the breaking

SO(5)/SO(4) which receives a potential from Coleman Weinberg contributions. Noticing

that both bosonic and fermionic contributions are needed to build a successful inflationary

model, we found that a potential flat enough for inflation implies that fermions have to be

in a spinorial representation of the gauge group. This indicates that the symmetry breaking

pattern giving rise to the Goldstone bosons is from an SO(N) global group to its subgroup.

19This suggestion has priorly been made in different contexts, most notably in Natural Inflation, a model developed

in the 90s [37].
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As Goldstone bosons are expected to have strong momentum dependent self couplings, we

noticed that the model may predict a low scale violation of perturbative unitarity or give

rise to non-Gaussianities in the CMB. Upon confrontation with the data, we found that the

model survives both these theoretical and experimental constraints. The information from

inflationary constraints can be used to draw conclusions about the UV theory. The relevance

of the discussion in this work reaches beyond the particular model considered here, and we

included an outline of its application to both hybrid and multi-field GI.

• Building on the previous work, chapter 4 [64] can be seen as a proof-of-concept example,

which can realize both inflation and populate the Universe with Higgs bosons directly after

this era, via a perturbative decay. The Higgs then subsequently produces all other SM

particles, primarily via decays to the top and massive vector bosons to which it couples

most strongly. The Higgs mechanism, which gives rise to particle masses, finds a natural

implementation in the setup, as does the hierarchy of the mass scales. Our model confronts

CMB and collider data and is in agreement with both. This work is a first step in connecting

the Early Universe to collider physics. As the inflationary scalar and the Higgs boson are

both pGBs from the same symmetry breaking, they are connected. This allows for a simple

scenario for reheating, the production of particles after inflation. The first analysis in this

project focussed on a perturbative decay, but the framework also allows for richer reheating

dynamics, which we are currently exploring.

• Chapter 5 is a lateral approach to GI. In [65] I considered a non-compact coset of the form

SO(n,1)/SO(n) and describe the GBs and their interactions using a geometric formalism.

Of particular interest is the subset of models which can address the hierarchy problem of

inflation: models in which large excursions in field space correspond to a very small change

in potential energy. Such ’compactness’ of the potential is found for specific transformation

properties of the dynamics which explicitly breaks the symmetry. In this limit the potential

is more successful than in the case with a compact coset (and residual discrete symmetry),

and makes inflationary predictions compatible with the current Planck bounds.

• Models in which the Higgs is a pGB have been among the most popular explanations for

its lightness. In chapter 6 [66] we explored such a scenario using higher dimensional (5D)

techniques, instead of relying on 4D approximations as we have done for our remarks on UV

completion of Goldstone Inflation models. 5D gauge invariance and locality are analogues

of the Goldstone symmetry in the 4D theory. Along these lines one can construct a well

defined “dictionary" between an “elementary" weak sector coupled to a strong sector in
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4D and a gauge theory in the bulk of 5D. In this project we use this dictionary to extract

information about the UV theory, in light of the current and future collider bounds.

• Finally, chapter 7 summarizes the main conclusions of the papers as well as describing

possible directions for future research.
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Slow-roll inflation requires the inflaton field to have an exceptionally flat potential, which

combined with measurements of the scale of inflation demands some degree of fine-tuning. Al-

ternatively, the flatness of the potential could be due to the inflaton’s origin as a pseudo-Goldstone

boson, as in Natural Inflation. Alas, consistency with Planck data places the original proposal of

Natural Inflation in a tight spot, as it requires a trans-Planckian excursion of the inflaton. Although

one can still tune the renormalizable potential to sub-Planckian values, higher order corrections

from quantum gravity or sources of breaking of the Goldstone symmetry would ruin the predictiv-

ity of the model. In this paper we show how in more realistic models of Natural Inflation one

could achieve inflation without a trans-Planckian excursion of the field. We show how a variant

of Extra-natural inflation with bulk fermions can achieve the desired goal and discuss its four-

dimensional duals. We also present a new type of four dimensional models inspired in Little

Higgs and Composite Higgs models which can lead to sub-Planckian values of the inflaton field.
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2.1 Introduction

The idea of Inflation [67] is a very successful paradigm, capable of explaining the cosmological

data with the assumption that one field, the inflaton, dominates the evolution of the Universe in its

early stage. Natural Inflation (NI) was first suggested in 1990 by Freese, Frieman and Olinto [37],

[68], in answer to the hierarchy problem of inflation. This hierarchy problem addresses the fact

that the condition for sufficient inflation combined with the amplitudes of the CMB anisotropy

measurements imply that the width of the potential must be much larger than its height. Such

a flat potential is generally considered unstable under radiative corrections, unless protected by

some symmetry.

In Natural Inflation a shift symmetry is invoked to protect the flatness of the inflaton potential.

The inflaton that possesses this shift symmetry is an axion, a Nambu Goldstone boson from a

spontaneously broken Peccei-Quinn symmetry. But as the inflaton potential cannot be fully flat,

the shift symmetry cannot be exact. An explicit symmetry breaking is introduced which generates

a potential for the axion, now a pseudo-Nambu Goldstone boson (pNGB). In its simplest form,

natural inflation has the potential [37], [68]

V (φ) = Λ4
(
1 + cos

(
φ

f

))
. (2.1)

Naturalness requires the spontaneous symmetry breaking scale (parametrized by the axion decay

constant f ) should be sub-Planckian, such that corrections from quantum gravity are suppressed.

Since the advent of the cosmological precision measurements by the WMAP [69] and Planck [70]

satellite, the bounds on the spectral index ns and the tensor to scalar ratio r have significantly im-

proved. The original natural inflation model now needs trans-Planckian scales f to satisfy the

most recent bounds, and therefore loses part of its motivation. A trans-Planckian decay constant f

renders the out of the range of validity of the effective theory. Indeed, albeit the Natural inflation

potential requires a well-behaved potential

VN I � M̃4
P , (2.2)

this renormalizable potential will be corrected by non-renormalizable terms, e.g.

VNR = φ4
(
φ

M̃P

)n
, (2.3)

where M̃p is the reduced Planck mass. Under these circumstances, the success of this inflation-

ary model depends on the ultra-violet (UV) completion of the theory. The origin of these non-

renormalizable terms could be sources of breaking of the quantum gravitational effects, such as

wormholes [71] or any other source of breaking of the shift-symmetry at high-energies.
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Models reconciling natural inflation with the CMB data should offer an explanation as to

why the potential does not receive big gravitational corrections. Different efforts have been made

to do so but strive to achieve sub-Planckian values of the field, for instance, by considering a

hybrid axion model [72] [73], N-flation [74], and axion monodromy [75] and other pseudo-natural

inflation models in Supersymmetry [76].

One of the proposals to improve Natural Inflation relies on a potential generated by a Wilson

line in extra-dimensional models, also known as Extra-natural inflation [62]. In these models, the

inflaton is the fifth component of a gauge field in the extra dimension, and is thus protected from

both higher-order corrections and gravitational effects by its locality in the extra dimension. The

potential is generated as

V (φ) = Λ4
∑
I


(−1)FI

∞∑
n=1

cos
(
n qI

φ
f

)
n5


(2.4)

where FI = 1 (0) for massless bosonic (fermionic) fields with charge qI . Here f is the effective

decay constant f = 1/(2πg4R), with R the size of the extra-dimension and g4 the four-dimensional

(4D) gauge coupling defined by g2
4 = g2

5/(2πR). The n5 term in the denominator comes from the

integration over the extra dimension, as shown explicitly in [77]. In this scenario, loops of gauge

bosons lead to the same form of potential as in the original model of natural inflation but with

a different interpretation of the decay constant. Nevertheless, cosmological data indicates that

f > Mp , leading to the slow-roll conditions

2πg4MpR � 1 (2.5)

which requires a value of g4D � 1/2π for a compactification scale below the Planck mass.

In this case Extra-natural inflation makes predictions for ns and r very similar from the predic-

tions from Natural Inflation, as the higher terms in the sum are surpressed by 1/n5. These terms do

become significant in the higher order slow-roll conditions, as was recently pointed out by [78],

however, as both models predict values for the higher derivatives of the potential V (I I I ) and V (IV )

far below the current experimental limits, it is not possible to distinguish them yet.

Here we will propose a mechanism to keep Extra-natural inflation within the validity of the

effective theory by adding bulk fermions in the effective potential. Besides gauge bosons (with

charge q = 1) we also consider the effects of fermions of fractional charge: up-type fermions of

charge +2/3, and down-type fermions of charge −1/3. We will show that for certain combinations

of gauge bosons and fermions the model can be made compatible with the Planck data for f 6 M̃p .

As a next example of a pNGB playing the role of the inflaton, we will consider a Coleman-

Weinberg type potential generated by gauge and Yukawa couplings. We discuss its general struc-
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ture, and study it numerically for the specific form

V (φ) = Λ4
(
cos

φ

f
− β̃ sin2 φ

f

)
(2.6)

This potential resembles the Minimal Composite Higgs model (MCHM) and the inflationary po-

tential studied in [79] upon choosing f2 = f1/2 and Λ2/2 = Λ1. We show that this model can be

made compatible with the data for particular values of β̃. In the interpretation of φ as a pNGB,

this corresponds to a relation between its couplings to fermions and bosons.

Lastly we will consider the effects of quantum gravity and other UV breaking effects in the

original model of Natural Inflation. We will consider effective higher order operators, which we

parametrize these as

V (φ) = Λ4

1 + cos

(
φ

f

)
+

∑
n=5

cn φ4
(
φ

M̃P

)n−4

We will investigate how these operators will affect the predictions of the model and show how the

effect of tiny values of cn is able to bring the model outside the Planck region. This is an illustration

of how the predictions of inflationary models when f > M̃p are lost unless one specifies very

precisely the UV structure of the model.

The paper is organized as follows. We present the general set-up for the inflaton as a pseudo-

Goldstone boson in Sec. 2.2, moving to discuss the origin of the original Natural Inflation model,

which we call Vanilla Natural Inflation, and its clash with Planck data in Sec. 3.2. We introduce a

variant of the Natural Inflation scenario, namely Extra-Natural Inflation and explain how it leads

to a similar clash unless one introduces bulk fermions, see Sec. 2.4. In Sec. 2.5 e finally move onto

purely four-dimensional models inspired in the ideas of Little Higgs and Composite Higgs, where

the pseudo-Goldstone is generated via Coleman-Weinberg with gauge and Yukawa contributions.

2.2 The general set-up of Natural Inflation

The idea that the inflaton is a pseudo-Goldstone boson could explains the flatness of the potential

required to generate enough inflation, without resorting to fine-tuning. The basic ingredient of all

models of natural inflation is the existence of a approximate global symmetry, broken spontan-

eously at high energies. Hence, one expects a new degree of freedom, a pseudo-Goldstone boson

(pGB).

Φ→ Φ + C (2.7)
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where C is a constant.

In this scenario, the pGB inflaton is originated by the breaking of a global symmetry G to a

subgroup H . We will denote the generators of G as Ta ∈ H and T â), where T â are the broken

generators. The resulting pNGBs are associated with these broken generators, and we will assume

the inflaton field is one linear combination of them. The mass and couplings of the pGB would

depend on how the global symmetry is explicitly broken.

Note that one can express the Goldstone boson as

Σ(x) = Σ0eiΠ(x)/ f where Π = T â
Φ

â (2.8)

AsΦâ appears in exponential form, its potential will be forbidden by the shift symmetry, (2.7).

The inflaton is then a linear combination of the pseudo-Goldstone bosons, and for large symmetry

groups there could be more than one inflaton. In this paper, we will discuss a simple scenario with

only one inflaton but it could be generalized to variants of hybrid inflation.

The potential for the inflaton could be generated in several ways, leading to different predic-

tions for inflation. We will consider various options in this paper, namely

• A gauge group, external to G and H , breaks the symmetry G. The archetypical example is

instanton effects and explicit breaking through quark mass terms, as in models for axions

(QCD or hidden).

• An extra-dimensional gauge theory breaks downs spontaneously via compactification, lead-

ing to extra-dimensional components of the gauge field exhibiting a shift symmetry. The

potential is then generated as a non-zero expectation value of a Wilson line of the inflaton

field, due the explicit breaking via Yukawa and new gauge couplings. This is the proposal

of Extra-natural inflation. We will discuss how the extra-dimensional model has a dual

description in terms of purely four-dimensional models.

• In theories where the inflaton is a 4D Goldstone boson, instead of relying on non-perturbative

instanton effects to generate the potential, one could weakly gauge some of the global sym-

metries and also consider explicit breaking through Yukawa couplings. The potential is then

generated as a Coleman-Weinberg contribution from fermions and gauge bosons. This is a

popular mechanism to build Little Higgs and Composite Higgs models [24].

In this paper we will not consider the situation of the inflaton as a pseudo-Goldstone boson

of the spontaneous breaking of a space-time symmetry, such as the dilaton or the radion in extra-

dimensions, see Ref. [80], [81] for some work along these lines.
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2.3 Vanilla Natural Inflation: Instanton-like potential

In this section we introduce the basic idea of Natural Inflation, with a potential generated

through instanton effects. We will then discuss the current situation of these models when con-

fronted with cosmological data.

Consider a general non-abelian gauge theory X . Instantons are solutions to the gauge equations

of motion

DµFµν = 0 at |x | → ∞ with Aµ → U∂µU† . (2.9)

Instanton solutions can be found when there is a non-trivial element U (x) ∈ π3(G), the third ho-

motopy group of X . These solutions are characterized by the size of the instanton ρ and the number

of possible orientations under the gauge group, e.g. for SU (N ) there are 4N orientations [82]. The

classical action of an instanton solution is given by

Sinst =
8π2

g2 =
2π
α
. (2.10)

Instanton effects are non-perturbative, the suppression e−Sinst selects gauge sectors with α ∼

O(1). Note that instantons here are treated more generally than QCD instantons; they could be

world-sheet, membrane instantons or supersymmetric instanton effects.

Assume that the inflaton is a singlet of the symmetry X and couples to the n-instanton solution

through a term respecting the shift symmetry, (2.7). Then,

Vn−Φ = −Λ4 e−Sn Σ
n (2.11)

But as we must also consider the effect of n-anti-instanton solutions and sum over n,∑
n=1,∞

Vn−Φ + Vn̄−Φ ' −Λ
4 e−

2π
α (Σ + Σ̄) = −2Λ4 e−

2π
α cos(Φ/ f ) (2.12)

the potential generated by instantons becomes of the familiar cos(Φ/ f ) form. This form of the

solution is independent of the origin of X , as all instanton solutions adopt the same form as a

SU (2) instanton [83].

Here we have taken Λ as the scale which allows the inflaton to couple to the instantons. For

example, for QCD instantons, Λ is related to the QCD pion sector via the fermion trace anomaly,

Λ4 ' f 2
πm2

π .

Additional symmetries in the theory can make the instanton contributions to the inflaton in

(2.14) vanish. For example, in Supersymmetry (SUSY) the coupling of instantons to the inflaton
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appears through a superpotential W [84]

WSUSY = M3e−Sn Σ . (2.13)

No contribution with Σ̄ appears in the superpotential, as it is holomorphic in the chiral superfield

Σ. Thus under these circumstances there is no dependence on Φ in the potential generated by F-

terms (|∂W/∂Σ |2) neither in supergravity contributions (∝ |W |2). But this situation changes once

SUSY is broken. For example, assume there is a non-zero F-SUSY breaking term, F ∼ M2
/SUSY

,

then the interference of this source of SUSY breaking term and the inflaton’s would lead again to

a potential

V ' M2
/SUSYΛ

2e−
2π
α cos(Φ/ f ) . (2.14)

Finally we consider the situation that more than one instanton solution contributes to the in-

flaton potential. For example, if the gauge symmetry G is broken down to another non-abelian

gauge symmetry H , instantons from both theories could contribute to the inflaton potential. This

situation again leads to a cosΦ/ f potential [82].

We can use the invariance of the potential under a shift of Φ/ f modulus 2π to rewrite the

solution as a potential with a minimum at Φ = 0, and we will do so in the next section.

2.3.1 The problem with vanilla natural inflation

The vanilla natural inflation model (2.1) is an example of slow-roll inflation; that is, it satisfies the

conditions ε � 1 and η � 1, where ε and η are here given by

ε =
M̃2

p

2

(
V ′(φ)
V (φ)

)2

and η = M̃2
p

V ′′(φ)
V (φ)

. (2.15)

To simplify our expressions, in this section we work in units of reduced Planck mass M̃p ; that

is, we will rescale our parameters φ→ φ

M̃p
and f → f

M̃p
.

The number of e-foldings in the slow-roll approximation is then given by

N =
1
√

2

∫ φI

φE

1
√
ε

(2.16)

where φE is fixed as the field value for which either ε = 1 or η = 1, in other words, the field value

for which the slow-roll approximation breaks down.

For a model with potential (2.1) we have

N = 2 f 2
[
log

(
sin

φE
2 f

)
− log

(
sin

φ

2 f

)]
(2.17)
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Figure 2.1: Values of cosmological parameters in the (ns , r ) plane with N = 60. The red points correspond to f = Mp ' 5M̃p ,

and f = 2Mp ' 10M̃p . The regions correspond to a combination of Planck, WP and BAO data, where the green (pink)

region is the 95% CL assuming the ΛCDM hypothesis and r (and running of the spectral index).

where

φE = f tan−1 *
,

1 − 2 f 2

2
√

2 f
+
-

(2.18)

Now solving for the field in terms of the number of e-foldings, we obtain

φN I = 2 f sin−1

exp *.

,

2 f 2 log
(
sin

(
φE

2 f

))
− N

2 f 2
+/
-


(2.19)

In Fig. 2.1 we show the values of ns and r for this scenario, setting the number of e-foldings

to N = 60. We do not show the line for N = 50, but it lies above the N = 60 with similar

values of f , see for example Ref. [85], [86]. The pink and green regions correspond to a fit of

Planck, WMAP and baryon acoustic oscillations (BAO) to ns and r with and without running of

the spectral index [70].

Successful vanilla natural inflation requires values of the decay constant f � M̃p , hence any

higher-dimensional operator of the type in (2.3) , could dominate over the original renormalizable

potential [71], [87]. In this situation, the inflationary theory ceases to be a good effective de-

scription, losing predictivity unless a complete understanding of the theory in the UV is achieved,

including quantum gravity effects.

Nevertheless, as this term violates the discrete shift symmetry of the original Lagrangian,

one could devise a UV completion which (approximately) respects the symmetry, parametrically

suppressing the dangerous terms. Besides, one could envision taming quantum gravity effects by

embedding the shift symmetry in a gauge symmetry at high-energies [71].
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Also note that extending the axion-like inflationary scenario does not seem to circumvent the

problem of trans-Planckian values of f . This is the case of axion monodromy [75], where one

obtains f � M̃p , or even N-flation [74], where one trades a large f by a large number (∼ 103) of

axion-like inflatons [88].

Let us finish by discussing another way to study this inflationary scenario which does not rely

on the ns , r plane. One can couple the inflaton to gauge fields [89], [90],

∆L = −
1
4

C(φ)ε µνρσFµνFρσ (2.20)

as this transforms as a total derivative and therefore does not induce perturbative corrections to the

inflaton potential: E · B ∼ ε µνρσFµνFρσ ∼ ∂µ
(
ε µνρσAνFρσ

)
; this is reminiscent of the original

use of the axions to solve the strong CP problem. The term (2.20) may give rise non-Gaussianity

and gravitational wave signals, and provides a decay channel for the inflaton.

Mild symmetry breaking effects may further give rise to the term [90]

∆L = −
1
4

B(φ)F2 (2.21)

However, slow-roll requires the effect to be very small, and thus B(φ) to be nearly constant.

It was shown in Refs. [90], [91] by using Hint ∼ E · B in the mean field equations for φ that

sufficiently large coupling to gauge fields causes a back-reaction. This is a purely classical effect,

in which inhomogeneities in the inflaton field are sourced by those in the electromagnetic field.

It increases the amount of inflation by about 10 e-foldings, or, equivalently, changes the spectral

index ns and the tensor to scalar ratio r with the same amount of efoldings. For sufficiently

strong coupling to a large number of gauge fields one could accommodate f < M̃p within the

experimental bounds. For such a coupling the model would also predict observable (but currently

within the bound) non-Gaussianity from inverse decay.

2.4 Extra-natural inflation: a 5D model and its duals

In this section we will explore a different route to generate a pNGB inflaton potential, which

does not rely on instanton effects.The inflaton’s shift symmetry could be the remnant of an extra-

dimensional gauge symmetry broken down by compactification [62]. Moreover, we will discuss

how this extra-dimensional mechanism has dual descriptions in terms of purely four-dimensional

(4D) models.
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To show how this mechanism works, let us discuss a simple example in a five-dimensional

(5D) flat spacetime (the analysis can easily be generalized to warped space-times). Consider a

gauge field in 5D,

S = −
1
4

∫
d5xFMN FMN (2.22)

where M , N run over four-dimensional indexes µ = 0 − 3 and over 5, the index along the fifth

dimension. Before compactification, the 5D gauge invariance is given by

AM (x) → AM (x) − ∂Mα(x) . (2.23)

The reduction from 5D to 4D can be done by compactifying the extra-dimension x5 on an orbifold

S1/Z2 with x5 ∈ [0,L], by specifying the boundary conditions of the gauge field on the orbifold

fixpoints at 0 and L. Let us consider two choices consistent with the orbifold,

4D gauge: ∂5 Aµ = 0 and A5 = 0 at x5 = 0, L

Shift-symmetry: Aµ = 0 and ∂5 A5 = 0 at x5 = 0, L, (2.24)

where ∂5 denotes the derivative along the extra-dimension. In the first case, the low energy theory

exhibits a 4D gauge symmetry, whereas in the second case all the gauge bosons become heavy

except a massless A5 4D zero-mode. The resulting low-energy theory of this zero-mode exhibits

a shift symmetry, remnant of the 5D gauge symmetry. The A5 can couple to any species charged

under the 5D gauge group through a non-local gauge invariant Wilson line, ei
∮ L

0 A5 = ei A5L .

Bulk fields propagating between the two orbifold fixed-points will radiatively generate a non-

zero value for this Wilson line and hence provide a potential for A5, our inflaton candidate. Indeed,

charged fermions and gauge bosons would have non-trivial boundary conditions in the presence

of A5 in the spectrum. For example, the equation of motion of a fermion coupled to A5 would be

solved with modified boundary conditions Ψ(xµ , x5) = Ψ(xµ , x5 + L) eiet
∮
dx5A5 [92]. We can

then obtain the contribution to the inflaton potential from fermion and gauge degrees of freedom

from the bulk as a closed loop of fields propagating in the bulk, with opposite sign fermionic and

bosonic contributions. These contributions are periodic on the inflaton field and also proportional

to the charge of the field under the extra-dimensional gauge symmetry. As announced in the

introduction, the potential in Extra-natural inflation then takes the form,

V (φ) = −Λ4
∑
i

(−1)Fi

∞∑
n=1

1
n5 cos

(
n qi

φ

f

)
,

where Fi is the fermionic number of species i, and qi its charge. The inflationary potential scale is

related to the size of the extra-dimension L = 2πR by the expression [62]

Λ
4 =

3
4π2

1
L4 , (2.25)
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and the inflaton’s decay constant is given by f = 1/(g4DL), with g4D the 4D gauge coupling of

the gauge group which generated A5.

In the next section we will discuss viable models of inflation in this context. But before we

move onto comparing with cosmological data, let us discuss the fact that these models can be

viewed as four-dimensional models, dual versions of the extra-dimensional model. In the 5D

picture, the spontaneous breaking of the gauge symmetry by compactification acts as a Higgsing

mechanism. At low energies compared with the compactification scale (the mass of the Higgsed

gauge bosons), the original gauge symmetry is realized as a global symmetry with A5 a remaining

Goldstone boson.

Deconstructed dual: One 4D dual of Extra-natural inflation is deconstruction [93], [94].

Instead of a 5D model, one could consider a set of N copies of the same 4D gauge group linked

through bi-fundamental fields, called links. The role of the inflaton in this case is played by the

Goldstone mode contained in the link field Σk system. Each link field is given by

Σk = ei
Πk
f̃ (2.26)

and the inflaton is in this case

Φ =
1
√

N

N∑
k=1

Πk (2.27)

Note that as the inflaton is a linear combination of N fields, its decay constant is f =
√

N f̃ with

f̃ the decay constant of each of the links Πk . The potential generated in the deconstructed models

is equivalent to the Extra-natural inflation but instead of a Wilson loop in 5D one computes a

Coleman-Weinberg potential in this gauge configuration. For example, gauge contributions would

lead to [95]

V (Φ) =
−9
4π2

g2 f 4

N2

∞∑
n=1

cos(2πNnΦ/ f )
n(n2N2 − 1)(n2N2 − 4)

. (2.28)

4D Global symmetry dual: Another way to view the Extra-natural inflationary model is the

use holographic methods, based on the AdS/CFT correspondence [96]. In this approach, 4D global

symmetries correspond to 5D gauge equivalents. Therefore, the 4D dual of A5 is a 4D Goldstone

boson resulting from the spontaneous breaking of a global symmetry G down to H . This breaking

is due to some new strongly coupled sector, and the 4D bound states from the strongly coupled

sector are the duals of the Kaluza-Klein excitations in the Extra-natural inflationary model.
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Figure 2.2: Shape of the inflationary potential for different choices of (NU , ND, NV ). Models with more bosons than fermions do

not generate inflation around φ=0.

2.4.1 The issue with the original Extra-natural inflation model, and how to solve it

The original model of Extra-natural inflation [62] considered an inflaton potential generated by

bulk gauge bosons. In this case the model makes predictions for ns and r very similar to Natural

Inflation, and therefore suffers from the same issues. In the 5D picture f > M̃p may not be

problematic (as long as (2.5) is satisfied; that is, for sufficiently small 4D gauge coupling g4), but

in deconstructing dimensions it implies the problematic relation f l ink � M̃p [62].

Here we will investigate the effect of adding fermions to the original model. We consider

gauge bosons (with charge q = 1) and fermions of fractional charge (up-type fermions of charge

+2/3, and down-type fermions of charge −1/3). The potential becomes

V (φ) = Λ4
[
NU cos

(
2φ
3 f

)
+ ND cos

(
φ

3 f

)
− NV cos

(
φ

f

)]
(2.29)

We shall classify the different models using (NU ,ND ,NV ). Considering non-integer charge

fermions eludes the cos(φ/ f ) form of the potential, which would lead to the same situation as in

the vanilla inflation case discussed in the previous section.

We are specifically interested in the flat region around the origin of the potential: our setup

(2.29) may be flatter than the vanilla model in this region. Close to φ = 0 the second derivative of

the potential is approximately given by

V ′′(φ) ≈
(
NV −

ND

9
−

4NU

9

)
φ , (2.30)

hence when NU and ND are small compared to NV , V ′′(φ) has the wrong sign at the origin, see

Fig. 2.2. It is clear that one needs to consider models with fermions to render the inflationary
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Figure 2.3: Values of cosmological parameters in the (ns , r ) plane with N = 60. The bullet points correspond to f = 0.4Mp '

2M̃p , f = Mp/5 ' M̃p and f = Mp/10 ' M̃p/2. The regions correspond to a combination of Planck, WP and BAO

data, where the green (pink) region is the 95% CL assuming the ΛCDM hypothesis and r (and running of the spectral

index).

theory viable.

Therefore, one can classify configurations which could lead to successful inflation using the

condition near the origin, e.g.

(NU ,ND ,NV ) = (0,9,1) , (1,5,1) , (2,1,1) , (2,10,2) , (3,6,2) , (4,2,2) ,

(5,7,3) , (6,3,3) , (7,8,4) . . . (2.31)

In the cases we consider, the flatness of the potential guarantees that r < O(0.1). Therefore we

concentrate on compatibility of the spectral index when confronting the models with the cosmo-

logical data.

Not all these models would give successful inflation for a sub-Planckian decay constant f .

Nonetheless, we do find successful inflation for a number of models, such as (NU ,ND ,NV ) =

(2,1,1), (1,5,1), (3,6,2), (0,9,2) and others, including any integer number of times the values of

(NU ,ND ,NV ) mentioned above.

In Fig. 2.3 we show how for these solutions, successful inflation with sub-Planckian values for

the field can be obtained with very little variation in the value of ns . We have checked that the

higher-derivatives of the potential satisfy the Planck bounds on V (′′′) and V (′′′′).
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2.5 Realistic 4D Inflation: Coleman-Weinberg Inflation

In this section we consider a new type of inflationary model, with the inflaton a four-dimensional

pseudo-Goldstone boson, and a potential generated via Coleman-Weinberg contributions from the

explicit breaking of the global symmetry by weak gauging and Yukawa couplings, as mentioned

in section 2.2. Indeed, loops of gauge bosons and fermions will generate a Coleman-Weinberg

potential for the inflaton,

V g
CW

+ VΨCW =
NV

2
Tr

∫
d4p

(2π)4 log(p2 + M2
V (Φ))

− NψTr
∫

d4p
(2π)4 log(p2 + M†

Ψ
(Φ)MΨ(Φ)) (2.32)

where MV (Φ) (MΨ(Φ)) is the mass term of the gauge bosons (fermions) in the presence of Φ

as a background field. NV is the number of vector degrees of freedom, NV = 2, 3 for massless

(massive) vector bosons and Nψ is the number of Weyl fermions contributing to the potential. We

will consider that our inflaton is a linear combination of the pseudo-Goldstone degrees of freedom

in Φ and label it φ.

In theories whereΦ is generated as a Goldstone boson, one can write the couplings to fermions

and gauge fields in a general way as

L =
1
2

Pµν
(
Π̃0(p2)Tr (VµVν ) + Π̃1(p2)ΣVµVνΣt

)
+ Ψ̄/p(Π0(p2) + Π1(p2)ΓiΣi )Ψ (2.33)

where Σ is given in (2.8), the fermion Ψ is written in a representation of the group G, and Γi

are the fermionic Gamma matrices in this representation, and related to the broken generators

T â . For example, see Sec. 2.40 for the explicit form of these matrices in the breaking G/H =

SO(5)/SO(4). Pµν is the inverse propagator, namely for a gauge boson Pµν = ηµν − pµpν/p2.

The form of the mass terms MΨ(Φ) and MV (Φ) in (2.31) can be read from (2.32) after spe-

cifying the type of breaking responsible for the emergence of the Goldstone bosons. Generally

speaking, the mass term is also a periodic function of the Goldstones, that is, a combination of

sΦ ≡ sin
Φ

f
and cΦ ≡ cos

Φ

f
, (2.34)

and therefore can be written in generality as

L = ψ̄i /p
(
Π0(p2)i j + Πs

1 (p2)i j sΦ + Πc
1 (p2)i j cΦ

)
ψ j

+
1
2

Pµν
(
Π̃0(p2)Tr (VµVν ) + (Π̃s2

1 s2
Φ + Π̃sc

1 sΦcΦ + Π̃c2

1 c2
Φ)VµVν

)
(2.35)
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where the index i, j run over all Dirac fermions.

In the following we discuss in detail the fermion case, as the vector case is a simpler variation

of the same mechanism.

2.5.1 Fermionic contributions

One can diagonalize Π0(p2)i j and bring the fermion fields to have a canonical kinetic terms. For

diagonal Π0(p2)i j = λ2
i δi j , the scaling is simply ψi → ψi/λi .

We can separate the contributions to the matrix Π1
i j/Π

0
i j = (Π1/Π0)i j for i = j and i , j,

Π
1
i j/Π

0
i j = diδi j + mi j (1 − δi j ),

where no sum is implied and δi j is the Kronecker delta symbol. This leads to a Coleman-Weinberg

potential

V (Φ) = −2
∫

d4p
(2π)4

*.
,

∑
i

log (1 + di ) +
∑
i j

log *
,
1 −

1
p2

m2
i j

d jdi

Π0
iΠ

0
j

Π0
i j

+
-

+/
-

(2.36)

Note that, in general di and mi j will contain sΦ and cΦ terms. Also, the form factors Π(Q2)

need to satisfy a set of Weinberg sum rules to render the integral finite, i.e. limQ2→∞Q2nΠ(Q2) =

0. Whether these conditions are satisfied depends on the realization of the breaking. A common

assumption is that the global symmetry G is a chiral symmetry of some UV fermionic sector.

A new strong interaction, often called Technicolor (TC), is felt by the UV fermions, and causes

fermion bilinears to condense. This condensation triggers the breaking of the global symmetry G

to H . If the new strong force is of the type SU (NTC ), for large values of NTC , one can write the

form factors as a sum over an infinite set of resonances,

Π(Q2) =

∞∑
n=1

f 2
n

Q2 + m2
n

, (2.37)

with mn and fn their mass and decay constant, respectively. The Weinberg sum rules impose

relations among these resonance parameters. For example, in extra-dimensional duals of this

model, these resonances are identified with the Kaluza-Klein resonances, and one can then show

that the form factorsΠ(Q2) do satisfy an infinite number of Weinberg sum rules due to non-locality

in extra-dimensions [97]–[99].

Provided the Weinberg sum rules are satisfied, the logarithm term can be expanded. At leading

and next-to-leading order,

V (Φ) = αccΦ + αs sΦ + βcc2
Φ + βs s2

Φ + . . . (2.38)
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where

αc,s = −2
∑
i

∫
d4p

(2π)4 dc,s
i

β = 2
∑
i, j

∫
d4p

(2π)4

1
p2

*
,

m2
i j

d jdi

Π0
iΠ

0
j

Π0
i j

− did j
+
-

(2.39)

where i, j run over the Dirac fermions.

2.5.2 Inflationary models inspired on the Higgs as a pseudo-Goldstone boson

There is an extensive literature on the Higgs as a pseudo-Goldstone boson. Popular examples of

4D set-ups are Little Higgs [26] and Composite Higgs models [24]. Among those, the minimal

Composite Higgs model (MCHM) is relatively simple and is based on the breaking SO(5) →

SO(4), but more elaborated models can be built with larger symmetry groups [21], [23].

In this section we introduce the structure of the MCHM and use it as a template for inflation

instead of a candidate for Higgs phenomenology. We will then use cosmological data to obtain in-

formation about the structure of the UV model, namely to reconstruct the shape of the form factors

Π(Q2) required to generate inflation. This is meant to serve as an illustration of the mechanism

and it is by no means the only way to write a successful inflationary model. Inspecting (2.37), one

sees that a variety of potentials involving periodic functions arise from different breaking patterns.

In the MCHM, right-handed and left-handed third generation fermions (top and bottom quarks)

contribute to the potential and gauge bosons interactions gauge a sub-group of SO(4). The

spinorial representation of SO(5) is as follows,

Γ
â =



0 σâ

σâ† 0


, Γ5 =



1 0

0 −1


where σâ = {~σ,−i1} (2.40)

In this scenario, not all the possible form factors are generated. Indeed, if we inspect (2.35)

and compare with the MCHM, the following relations are obtained,

ds
i = 0, mc

i j = 0 , (2.41)

and the resulting potential is of the form

V = αcΦ − βs2
Φ . (2.42)

The relation between the parameters α, β and the resonances has been fleshed out in the previ-

ous section. If we consider contributions to the inflaton coming from vector resonances and NF

fermion flavors, one obtains [21], [23]

β

α
= −

9
16NF

dV
dF

(2.43)
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Figure 2.4: In grey V (φ) = sin2 φ/ f , in black V (φ) = cosφ/ f for N = 60(50) for the lower (upper) line. The points f = 10 and

f = 7 are marked.

where d is the ratio of form factors defined in (2.5.1), and the subscript V (F) means vector

(fermion) contributions and NF is the number of Dirac fermions.

In the next section we discuss the viability of this potential as a candidate for Natural Inflation

and find that a specific relation between α and β is required. The interpretation in terms of reson-

ances of a strongly coupled sector responsible for the breaking G/H can be done by noting that

the ratio in (2.42) is related to a sum over bosonic and fermionic resonances.

2.5.3 Inflating with a Higgslike PNGB

We will consider inflation in the case (2.40), that is, a potential of the form

V (φ) = α cos
φ

f
− β sin2 φ

f
(2.44)

It is clear that in the case α = 0 (β = 0) the potential reduces to a simple sin2 φ/ f (cos φ/ f )

potential. As discussed in depth for cos φ/ f and shown in the figure 2.4 for sin2 φ/ f , this can only

be compatible with slow-roll if f > Mp .

Therefore we will explore the range of potentials with both α, β , 0 as it would be the case in

models where the explicit breaking of the global symmetry is carried by both gauge and Yukawa

interactions. We re-parametrize the potential as

V (φ) = Λ4
(
cos

φ

f
− β̃ sin2 φ

f

)
, (2.45)

where β̃ = β/α in (2.43).

The potential has a very flat region around the origin for −1/2 . β̃ < 0 as can be seen from

Fig. 2.5. This range of β̃ can be translated into a region in the resonance parameter space using

(2.42). In turn, it indicates a specific relation between the vector and fermionic masses and decay

constants, using (2.36):

β̃ = −1/2⇒ dV =
32
9

NFdF . (2.46)
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Figure 2.7: Predictions for β̃ = −0.4, β̃ = −0.49, β̃ = −0.495 in the f -ns plane.

At first sight, this relation may seem as unnatural, a partial conspiracy among the form factors of

spin-one and spin one-half particles in the resonance sector. Yet these kind of relations among

form factors can be obtained in models with extra symmetries. For example, these ideas were

used to build technicolor/higgsless models consistent with electroweak precision tests, where a

cancellation between bosonic resonances [99]–[101] or fermionic and bosonic resonances [102]–

[104] was achieved in a walking theory.

This potential can indeed lead to sub-Planckian values for f and agree with Planck data. For

example, we show the region for f = M̃P in figure 2.6 the sensitivity to the value of β̃. In Fig. 2.7

we show that for β̃ close to -1/2, f < M̃p and satisfy Planck’s constraints on ns .
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Figure 2.5: Shape of the potential for f = 1M̃p and

β̃ = −0.49, β̃ = −0.495, β̃ = −0.497
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Figure 2.6: Predictions for β̃ = −0.49, β̃ = −0.495,

β̃ = −0.497 in the ns -r plane

In the cases we consider, r � O(1) (as sees clearly figure 2.6); this remains the case for

different values of f . In figure 2.7 we compare predictions for ns with different f .

To second order, the potential is

V (φ) = Λ4
(
cos

φ

f
− α̃2 cos2 φ

f
+ β̃ sin2 φ

f
+ β̃2 sin2 φ

f

(
1 + cos

2φ
f

))
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where

α̃2 =
α2
q + α2

u

2(αq − αu )
=
α2
q + α2

u

2α
, β̃2 =

β2
f + β2

g

4α

One then expects α̃2 and β̃2 to be small, although larger if αq and αu are very close to each

other.

2.6 The effect of UV completions: Higher-Dimensional Terms

Up to now we have discussed generation of the inflationary potential through infra-red (IR) ef-

fects, such as non-perturbative instanton, a Wilson line or a Coleman-Weinberg potential. As we

discussed in the introduction, when f > M̃P , the effect of UV corrections of the type in (2.3)

is potentially dangerous. These would generate higher-dimensional operators (HDOs) which, for

large values of the field, could dominate over the renormalizable terms. In this section we discuss

the effects of non-renormalizable terms in the case of the Vanilla Natural Inflation discussed in

Sec. 3.2 to show how sensitive these models are to HDOs in the regime of f > M̃p .

We already mentioned wormhole terms in the Introduction, but there are other possible origins

for HDOs. For example, graviton loop corrections [105], [106] would preserve the cosine form of

the potential

δV = M4cn

[
cos

nφ
f

]m
.

By choosing m and n appropriately, one can account for the terms we invoked in the Introduction,

(2.1).

Also higher-order instanton effects could influence the HDOs. As explained in Sec. 3.2, in-

stanton effects would maintain the periodicity of the potential. They thus will be of the form

(n > 1)1

δV = Λ4c̃n cos
nφ
f

= Λ4c̃n
∞∑
k=0

(−1)k
(
nφ
f

)2k

(2k)!
= Λ4cn

∞∑
k=0

(−1)kφ2k (2.47)

Of course, the expanded form masks the underlying shift symmetry, but it allows us to connect

with the HDO language. It is clear that the coefficients cn are growing with n, and will thus ruin

slow-roll inflation unless the coefficients c̃n decrease with n. The extra terms will not influence

the slow-roll predictions from Natural Inflation much in the limits

c̃nn2 � 1 and
φ

f
. 2 (2.48)

1Note that this is the potential of Extra-natural Inflation, in which there is a sum over n. The term n = 1 gives the

natural inflation model.
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This is the case in Extra-natural inflation, in which c̃n ∝ 1/n5. For non gravitational effects, c̃n

decreases with n as e−nS where n is the number of instantons [105].

Finally, UV breaking of the inflaton’s shift symmetry such as new fermion masses could gen-

erate new HDOs.

2.6.1 Adding Higher-Dimensional Operators to Vanilla Natural Inflation

Here we consider the effects of higher order operators added to the vanilla Natural Inflation model.

We parametrise the effect as

V (φ) = Λ4

1 + cos

(
φ

f

)
+

n=8∑
n=5

cn φn


(2.49)

where cn are dimensionless, as we have rescaled all dimensionful parameters by M̃p . These

non-renormalizable terms are higher-dimensional operators (HDOs). Note that the sensitivity of

models with values of the field larger or close to the UV cutoff has been recently studied in, e.g.

Refs. [87], [107] for quantum gravity and SUSY unification HDOs.

Since we assume that the HDO will give corrections to the leading order model, we solve for

φN in this model perturbatively,

φN = φN I + ε φ1 (2.50)

using N (φN I + εφ1) = 60. The zeroth order equation will be solved by (2.19).

In figure 2.8 we show the variation of the coefficients cn (where cm = 0 for m , n) in the

ns − r plane for f = 0.9Mp ' 4.5M̃p . All HDOs give contributions in a similar direction in the

ns , r plane.

The effect of tiny values of cn could bring the model outside the Planck region. For example,

the introduction of a small φ6 term with a c6 ∼ 10−7 does bring the model to unacceptable values of

ns and r . This is an illustration of how the predictions of inflationary models in the trans-Planckian

region are questionable.
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Figure 2.8: Varying the coefficients of HDOs in the ns − r plane for f ' 4.5M̃p . With c5, c6, c7, c8 in blue, black, purple, and

black respectively. At r = 0, ∆φ ∼ φI = 0.21Mp , |ξV | < 4 × 10−5 and $V < 8 × 10−7. At the Natural inflation

reference point (cn = 0, ∀n), ∆φ ∼ φI = 0.24Mp . The point at the edge of the pink region corresponds to c6= 10−7.

Let us finish with some comments on the effect of HDOs in this model. Solving for the values

of the dimensionless constants cn at r = 0 (cm = 0, m , n), we have

r = 0

c5 −1.85 × 10−6

c6 −1.58 × 10−7

c7 −1.32 × 10−8

c8 −1.10 × 10−9

To make the perturbed natural inflation more compatible with the CMB data, the coefficients need

to be small and negative, although the statement can be made less strong if a cancelation between

them occurs.

For different values of f the contributions by the HDOs in the ns , r plane will be similar. This

allows us to find the maximal tensor to scalar ratio r as a function of f for which Natural Inflation

can be made compatible with the Planck data (the green region in plot 2.1, as Natural Inflation

predicts no running) with the aid of HDOs (Fig. 2.9). In particular it predicts a lower bound on f :

f & 0.868Mp = 4.35M̃p .
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Figure 2.9: Maximal tensor to scalar ratio r as a function of f in vanilla Natural Inflation models and the operator c6φ
6.

2.7 Conclusions

The paradigm of slow-roll inflation after the Planck data, albeit very successful parametrization,

requires a questionable field theory approach. The inflationary hierarchy problem, namely the

tension between providing sufficient inflation yet satisfy the amplitude of the CMB anisotropy

measurements, implies that the width of the potential must be much larger than its height. This

tuning is generically unstable unless some symmetry protects the form of the potential. This is

the idea of Natural Inflation [37], [68]: the inflationary potential is protected by a shift symmetry

provided the inflaton is a pseudo-Goldstone boson.

The archetypical example of Natural Inflation is an axion-like inflaton with a potential gener-

ated by instantons. This specific form of the potential requires large values of the inflaton field

to sustain sufficient inflation. Extra-natural inflation, based on an extra-dimensional realization

of the same idea, suffers from the same problem. The unknown higher order corrections could

easily upset the inflationary model predictions, implying that these models are not a good effective

theory.

In this paper we aim at preserving the idea of Natural Inflation as a solution to the cosmolo-

gical hierarchy problem in models with an adequate effective description, where the field does not

undertakes any trans-Planckian excursion. We find that there are many of such models once we go

beyond the original Natural Inflation model.

Indeed, in this paper we have explained how Extra-natural inflation can be generalized to

encompass (more realistic) extra-dimensional models with bulk fermions. A large number of

such bulk configurations do lead to a successful inflationary model with f > M̃P and a moderate

amount of bulk matter content.
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We have shown how four-dimensional models with Higgs-like potentials can also lead to suc-

cessful inflation. We have presented the study of a specific such model based on the Minimal

Composite Higgs model, but also developed a formalism to explore different breaking scenarios.

We also showed how, once the inflationary conditions are set, one can obtain information about the

sector of heavy resonances which accompanies the pseudo-Goldstone boson in these scenarios.

In the case of Vanilla Natural Inflation, we have studied the effect of higher-dimensional oper-

ators. In this case, as f > M̃p , these higher-dimensional effects gives us a sense of how sensitive

is the theory to the UV completion. We have found that moderate values of the operators do

change drastically the cosmological predictions [87], [107], emphasizing once more the necessity

of sub-Planckian field values to retain the predicitivity of the model.
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Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Suc-

cessful Goldstone Inflation should also be robust against UV corrections, such as from quantum

gravity: in the language of the effective field theory this implies that all scales are sub-Planckian.

In this paper we present scenarios which realise both requirements by examining the structure

of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field

models, for which we notice that both bosonic and fermionic contributions are required and that

spinorial fermion representations can generate the right potential shape. We then evaluate the con-

straints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints

on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data

can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum

of new resonances. Finally, we show how hybrid inflation can be realised in the same context,

where both the inflaton and the waterfall fields share a common origin as Goldstones.
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3.1 Introduction

The empirically well supported paradigm of cosmic inflation [67] has a hierarchy problem from

the perspective of particle physics. Parameterised in terms of a slowly rolling scalar field, the scale

of inflation (from CMB data [14]) is exceeded by the field excursion (given by the Lyth bound [16],

[108]) by roughly two orders of magnitude:

Λ
4 =

(
1.88 × 1016 GeV

)4
( r
.10

)
and ∆φ > Mp

√
r

4π
(3.1)

where r is the ratio of the tensor to the scalar power spectrum, and where here Mp = 2.435 ×

1018 GeV is the reduced Planck mass. Meeting both these conditions implies an exceptionally flat

potential for the inflaton, which generically is radiatively unstable.

Natural Inflation (NI) [37], [68] offers a solution to this hierarchy problem by imposing a

symmetry on the inflaton: the inflaton potential exhibits a shift symmetry φ → φ + C with C

a constant, and therefore could protected from higher order corrections. The shift symmetry is

realised by identifying the inflaton with the Goldstone boson (GB) φ of a broken global symmetry

G to its subgroup H (φ ∈ G/H). In turn, the GB obtains a potential through effects that render G

inexact. The resulting degree of freedom is therefore not an exact Goldstone boson, but a pseudo-

Goldstone boson (pGB). Different effects can lead to an inexact global symmetry; we reviewed

the relevant mechanism in [61].

The original and most popular NI model has an axion as the inflaton, the GB of spontaneously

broken Peccei-Quinn symmetry [37], [68]. The axion gets a potential through non-perturbative

(instanton) effects. As shown in Ref. [84] these effects lead to the characteristic cos(φ/ f ) potential

across models, where f is the scale at which G is broken. To obtain the famous NI model one adds

a cosmological constant term to impose the phenomenological constraint V (φmin ) = 0, to obtain,

V (φ) = Λ4(1 + cos φ/ f ) (3.2)

Alas, the original NI model can only be successfully reconciled with the data from CMB

missions for superplanckian scales of the decay constant: f = O(10Mp ). This is evidently a

problem, because above the Planck scale one should expect a theory of Quantum Gravity (QG),

and it is known that theories of QG in general do not conserve global symmetries [109]. Therefore

one generically expects large contributions to the simple potential (3.2), as was shown recently

in [110]. Thus, one may conclude that vanilla NI is not a good effective theory.1

1It is found that it is only possible to maintain control over the backreaction in very specific configurations, such

as [111].
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Different proposals have been made to explain the super-Planckian decay constant while main-

taining the simple potential (3.2) and the explanatory power of the model. Among these are Extra-

Natural inflation [62], hybrid axion models [72], [73], N-flation [74], [112], [113], axion mono-

dromy [75] and other pseudo-natural inflation models in Supersymmetry [76]. These proposals

usually focus on generating an effective decay constant feff in terms of model parameters, such

that feff = O(10Mp ) is no longer problematic. Some of these models rely on a large amount of

tuning or on the existence of extra dimensions, as 4D dual theories suffer from the same problems

as the vanilla model.

In [61] we recognised that pGB inflation does not have to have an axion as the inflaton. There

are other models which generate a natural inflaton potential, protected from radiative corrections

by the same mechanism. In particular, we focussed on compact group structures and showed that

one can find models that fit the CMB constraints for a sub-Planckian symmetry breaking scale f 2.

For example, if the pGB field is coupled to external gauge bosons and fermions, a Coleman-

Weinberg potential is generated for the inflaton. We demonstrated the general mechanism and gave

a specific successful example inspired by the minimal Composite Higgs model MCHM5 [24].

Here we develop a comprehensive approach to Goldstone Inflaton. In Sec. 3.2, we give a full

analysis of the potentials that can be generated, and motivate that the potential that is uniquely

expected to give successful single-field inflation is given by

V (φ) = Λ4
(
CΛ + α cos(φ/ f ) + β sin2(φ/ f )

)
. (3.3)

In Sec. 3.3, we compare its predictions against the CMB data and find that the latter singles out a

specific region in the parameter space. We comment on the fine-tuning necessary and show that

one obtains a successful model with f < Mp at marginal tuning.

As the Goldstone inflaton is expected to have non-canonical kinetic terms, we give an analysis

of the non-Gaussianity predictions. We show that the current bounds are comfortably evaded.

In Sec. 3.4, we further explore the region of parameter space that leads to successful inflation.

The relations that we find by comparison with the Planck data give information about the form

factors that parameterise the UV-theory. We comment on the scaling with momentum we expect

from theoretical considerations. We finish with an analysis of the UV theory, in which we use

QCD-tools to compute the relevant parameters and give a specific example in the approximation

of light resonance dominance in Sec. 3.5. Finally, in the Appendices we give specific examples of

single-field and hybrid inflation coming from Goldstone Inflation.

2One can also consider non-compact groups such as space time symmetries. In [80] the authors consider broken

conformal symmetry and showed that a dilaton inflaton can generate inflation with strictly sub-Planckian scales.
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3.2 A successful Coleman-Weinberg potential

Our starting assumption is that the inflaton is a Goldstone boson, coming from the breaking of

some global symmetry G → H . We parameterise the Goldstone bosons using a non-linear sigma

model

Σ(x) = exp(iT âφâ (x)/ f ), (3.4)

where T â are the broken G/H generators, φa (x) are the Goldstone fields, and f is the scale of

spontaneous symmetry breaking [114]3. Under a G/H symmetry transformation the Goldstone

bosons transform via a shift φa (x) → φa + f αa , for some transformation parameters αa . This

non-linear shift symmetry prevents the Goldstone fields from acquiring a tree-level potential. The

inflaton can only get a potential if there are sources of explicit symmetry-breaking that will render

G inexact. We list two possibilities:

1. If the inflaton is a composite object formed of strongly-interacting UV fermions, then ex-

plicit fermion mass terms could break the symmetry and give the inflaton a non-zero mass.

This would be analogous to the pions of QCD, which acquire a mass from the explicit

breaking of chiral symmetry due to the small up and down quark masses.

2. If the inflaton sector has couplings to particles that do not form complete representations of

G, then loops of these ‘external’ particles will generate a Coleman-Weinberg potential for

the inflaton.

Although 1. is an interesting possibility, in this paper we will explore 2., since the Coleman-

Weinberg potential can be computed perturbatively (up to coefficients determined by strongly

interacting dynamics).

A point worth noting is that, as of yet, we have not fixed the scale at which inflation occurs.

The ‘external’ particles relevant to our calculation are those with masses close to, but below the

scale of symmetry breaking ∼ f . If inflation occurs near the TeV scale, we would have to embed

the SM gauge group and the heavy quarks into representations of G, since these particles would

be expected to have the greatest contributions to the inflaton potential (just as in Composite Higgs

models). If inflation occurs at the GUT scale ∼ 1016 GeV, then our lack of knowledge of the

high-scale particle spectrum means we can be more open-minded. In the following treatment we

leave this question open, considering generic possibilities for the particle content.

3Here we assume the CCZW formalism. A different proposal relying on quark seesaw has been made recently (see

for instance [115] and references therein); however, in this setup the periodicity of the Goldstone field is disguised and

therefore we will stick to CCZW.
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That said, we will not consider the contribution from elementary scalars, our prime motivation

being the unnaturalness of scalar masses much below the Planck scale. The only scalars appearing

in our model will be those coming from the G/H breaking, with masses protected by the non-linear

Goldstone symmetry.

We will work through in detail a scenario in which the strong sector has a global SO(N )

symmetry which breaks to SO(N − 1)4. This symmetry breaking gives rise to N − 1 massless

Goldstone fields, one linear combination of which will play the role of the inflaton. We will

assume that the symmetry-breaking VEV is in the fundamental representation:

Σ0 = 〈Σ〉 =

*.........
,

0

0
...

1

+/////////
-

, (3.5)

so that

Σ(x) = exp(iT âφâ (x)/ f )Σ0, (3.6)

transforms as a fundamental of SO(N ).

If we take the unbroken symmetry SO(N − 1) to be a gauge symmetry, we can gauge away

N − 2 of the Goldstone fields (they give mass to N − 2 gauge bosons), as we show pictorially in

Fig. 3.1. This will leave us with one physical Goldstone field, which we identify with the inflaton.

The same mechanism gives masses to the W± and Z bosons in Composite Higgs models (see for

example [19], [116]). We can gauge a smaller subgroup of SO(N ), although this will leave more

than one Goldstone degree of freedom. Some possibilities are explored in Appendix 3.6.

We now attempt to write down an effective Lagrangian containing couplings of the Goldstone

fields to the SO(N − 1) gauge bosons. A useful trick is to take the whole SO(N ) global symmetry

to be gauged, and only at the end of the calculation setting the unphysical SO(N )/SO(N−1) gauge

fields to zero [21], [23]. The most general effective Lagrangian involving couplings between Σ and

SO(N ) gauge bosons, in momentum space and up to quadratic order in the gauge fields, is

Leff =
1
2

(PT )µν
[
Π

A
0 (p2) Tr{AµAν } + ΠA

1 (p2)ΣT AµAνΣ
]
, (3.7)

where Aµ = Aa
µTa (a = 1, ...,N) are the SO(N ) gauge fields, PµνT = ηµν − qµqν/q2 is the

transverse projector, and ΠA
0,1(p2) are scale-dependent form factors, parameterising the integrated-

out dynamics of the strong sector.

4Many of the results of this section generalise straightforwardly to SU (N ) → SU (N − 1).
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Taking an appropriate choice for the SO(N ) generators and expanding out the matrix expo-

nential in (3.6), we obtain:

Σ =
1
φ

*.........
,

φ1 sin(φ/ f )
...

φN−1 sin(φ/ f )

φ cos(φ/ f )

+/////////
-

, (3.8)

where φ =
√
φâφâ . With an SO(N − 1) gauge transformation we can rotate the φâ fields along

the φ1 direction, so that

Σ =

*.........
,

sin(φ/ f )
...

0

cos(φ/ f )

+/////////
-

. (3.9)

The remaining N − 2 degrees of freedom give masses to as many gauge bosons. Expanding out all

the terms in (3.7) and setting the SO(N )/SO(N − 1) gauge fields to zero as promised, we obtain:

Leff =
1
2

(PT )µν
[
Π

A
0 (p2) +

1
2
Π

A
1 (p2) sin2(φ/ f )

]
Aã
µAã

ν , (3.10)

where Aã
µ are the SO(N −1)/SO(N −2) gauge fields. The remaining (massless) SO(N −2) gauge

fields do not couple to the inflaton (See Fig. 3.1).

SO(N ) global symmetry

SO(N − 1) gauged

SO(N − 2)
unbroken

SO(N − 1)/SO(N − 2) massive gauge bosons,
couple to the inflaton

SO(N − 2) massless gauge bosons,
do not couple to the inflaton

Figure 3.1: Subgroups of the global SO(N ) symmetry.

Using this Lagrangian we can derive a Coleman-Weinberg potential for the inflaton [22]:

V =
3(N − 2)

2

∫
d4pE
(2π)4 log


1 +

1
2
ΠA

1

ΠA
0

sin2(φ/ f )

, (3.11)

where p2
E = −p2 is the Wick-rotated Euclidean momentum. This result can be understood as the

sum over the series of diagrams:
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+ + + ..., (3.12)

in which the inflaton field is treated as a constant, classical background. The factor of 3(N − 2)

comes from the 3 degrees of freedom of each of the massive SO(N −1)/SO(N −2) gauge bosons,

any of which may propagate around the loop.

As discussed in [21], [23], Π1 can be thought of as an order parameter, which goes to zero

in the symmetry-preserving phase at high momenta. Provided the ratio ΠA
1 /Π

A
0 decreases fast

enough, the integral in (3.11) will converge. We can approximate the potential by expanding the

logarithm at leading order. This approximation is equivalent to assuming the dominant contribu-

tion comes from diagrams with one vertex, and that higher order diagrams are suppressed5. This

gives

V (φ) = γ sin2(φ/ f ), (3.14)

where

γ =
3(N − 2)

4

∫
d4pE
(2π)4

*
,

ΠA
1

ΠA
0

+
-
. (3.15)

It is worth pointing out that gauge contributions generically lead to a sin2 type potential at

leading order. A sin2 potential suffers from the same problems as the cosine of Natural Inflation –

it is only flat enough for superplanckian values of f .

However, we should also include contributions from external fermions. Just as with the gauge

case, the easiest way to write down a general effective Lagrangian is to assume that the fermions

are embedded within representations of the full symmetry group SO(N ). First we try embedding

two Dirac fermions (one left and one right handed) in fundamental SO(N ) representations:

ΨL =

*.....
,

ψL

...

0

+/////
-

, ΨR =

*.....
,

0
...

ψR

+/////
-

. (3.16)

The reader will note that fermions placed anywhere other than the first and N th entries of these

fundamentals will not contribute to the inflaton potential, since they will not couple to the rotated

5Equivalently ∫
d4pE
(2π)4

*
,

ΠA
1

ΠA
0

+
-
�

∫
d4pE
(2π)4

1
2

*
,

ΠA
1

ΠA
0

+
-

2

�

∫
d4pE
(2π)4

1
3

*
,

ΠA
1

ΠA
0

+
-

3

� ... (3.13)

If the form factors behave as described in Section 3.5, then this is a reasonable approximation.
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Σ (3.9). We place ψL and ψR in two separate fundamentals for the sake of generality – this

arrangement will avoid cancellations between terms that would occur if we used the embedding

*.....
,

ψL

...

ψR

+/////
-

. (3.17)

The most general SO(N ) invariant effective Lagrangian we can write down, up to quadratic

order in the fermion fields, is

Leff =
∑

r=L,R

Ψ
i

r /p
[
Π

r
0 (p)δi j + Πr

1 (p)ΣiΣ j
]
Ψ

j
r + M (p)Ψ

i

LΣiΣ jΨ
j
R + h.c. , (3.18)

which can be rewritten:

Leff = ψL /p
[
Π

L
0 (p) + ΠL

1 (p) sin2(φ/ f )
]
ψL + ψR/p

[
Π

R
0 (p) + ΠR

1 (p) cos2(φ/ f )
]
ψR

+ M (p) sin(φ/ f ) cos(φ/ f )ψLψR + h.c. (3.19)

We can derive the Coleman-Weinberg potential using the formula

V = −
1
2

Nc

∫
d4pE
(2π)4 Tr

[
log

(
MM†

)]
, (3.20)

which is correct up to terms independent of φ. Here Nc is the number of fermion colours and

Mi j =
∂2L

∂ψi∂ψ j
, (3.21)

for all fermions ψi . We obtain, up to terms independent of φ:

V = −2Nc

∫
d4pE
(2π)4 log

[
1 +
ΠL

1

ΠL
0

sin2(φ/ f ) +
ΠR

1

ΠR
0

cos2(φ/ f ) +
ΠL

1

ΠL
0

ΠR
1

ΠR
0

sin2(φ/ f ) cos2(φ/ f )

+
M2

p2
EΠ

L
0 Π

R
0

sin2(φ/ f ) cos2(φ/ f )
]
. (3.22)

The presence of the sin2 cos2 function inside the logarithm is essentially due to the fact that there

are loops in which both ψL and ψR propagate. We have, among other diagrams, the series:

+ + ... (3.23)

This series includes diagrams with 2n vertices (compare to (3.12), which sums over diagrams

with n vertices). Thus the resummation leads to a higher order term in the argument of the log.

Again we can expand the logarithm at first order to get a potential of the form:

V (φ) = α sin2(φ/ f ) + β sin2(φ/ f ) cos2(φ/ f ). (3.24)
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This potential has a very flat region for α ' β, the flat region being a maximum (minimum) for

β > 0 (β < 0). For realistic inflation we require the flat region to be a local maximum, so that

the inflaton can roll slowly down the potential. However, since we expect the Π0 form factors to

be positive (see, for example [117]), the expansion of the log gives a negative value for β6. The

gauge contribution – being of the form sin2(φ/ f ) – will not help matters.

Therefore we turn to the next simplest option: embedding the fermions in spinorial represent-

ations of SO(N ). Spinors of SO(N ), for odd N , have the same number of components as spinors

of SO(N−1). The extra gamma matrix ΓN is the chiral matrix, which in the Weyl representation is

the only diagonal gamma matrix. Spinors of SO(N ) are built from two spinors of SO(N−2) in the

same way that Dirac spinors are constructed using two Weyl spinors. We denote these SO(N − 2)

spinors χL,R , and embed the fermions as follows:

χL,R =

*.....
,

ψL,R

0
...

+/////
-

, (3.25)

and construct the full SO(N ) spinors thus:

ΨL =
*..
,

χL

0

+//
-
, ΨR =

*..
,

0

χR

+//
-
. (3.26)

This embedding is chosen so as to ultimately give a coupling between ψL and ψR – other em-

beddings that achieve this will lead to the same eventual result. The SO(N ) invariant effective

Lagrangian takes the form

Leff =
∑

r=L,R

Ψ
i

r /p
[
Π

r
0 (p)δi j + Πr

1 (p)Γai jΣ
a

]
Ψ

j
r + M (p)Ψ

i

LΓ
a
i jΣ

a
Ψ

j
R + h.c. , (3.27)

where Γa are the Gamma matrices of SO(N ). If we take

Γ
1 =

*..
,

0 I

I 0

+//
-
, ΓN =

*..
,

I 0

0 −I

+//
-

(3.28)

this can be expanded to give:

Leff = ψL /p
[
Π

L
0 (p) + ΠL

1 (p) cos(φ/ f )
]
ψL + ψR/p

[
Π

R
0 (p) − ΠR

1 (p) cos(φ/ f )
]
ψR

+ M (p) sin(φ/ f )ψLψR + h.c. (3.29)

Combined with the gauge contribution, this will lead to the potential:

V (φ) = α cos(φ/ f ) + β sin2(φ/ f ), (3.30)

6Note that the (ΠL
1 Π

R
1 )/(ΠL

0 Π
R
0 ) term cancels other terms at next order in the expansion, so does not contribute to

the potential.
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where

α = −2Nc

∫
d4pE
(2π)4

*
,

ΠL
1

ΠL
0

−
ΠR

1

ΠR
0

+
-
, β =

∫
d4pE
(2π)4

*
,

3(N − 2)
4

ΠA
1

ΠA
0

− 2Nc
M2

p2
EΠ

L
0 Π

R
0

+
-
. (3.31)

This potential has a flat maximum for α ' 2β, β > 0. The gauge contribution can now give us a

positive value for β. Thus, for a region of parameter space, this is a viable inflationary potential.

Including more fermions in our model will lead to a wider class of diagrams contributing to

the Coleman-Weinberg potential. If we expand consistently to first order in Π1/Π0 and (M/Π0)2

however, the only terms that appear at leading order will be those coming from diagrams in which

only a single fermion, or an alternating pair of fermions, propagates around the loop. Equation

(3.30) will therefore be the generic leading order result, although the coefficients will be modified.

In particular, α will be given generally by

α = −2Nc

∫
d4pE
(2π)4

*
,

∑
i

(−1)ai
Πi

1

Πi
0

+
-
, (3.32)

where ai = 0 if ψi is embedded in the upper half of an SO(N ) spinor, and ai = 1 if ψi is embedded

in the lower half.

We should also consider whether including NLO terms in the log expansion changes any of

the above conclusions. Assuming that the log expansion is valid, we expect the NLO terms to be

suppressed. A small sin4(φ/ f ) or cos(φ/ f ) sin2(φ/ f ) addition to the potential will only have the

effect of changing slightly the conditions on the coefficients. For example, the potential

V (φ) = α cos(φ/ f ) + β sin2(φ/ f ) + δ cos(φ/ f ) sin2(φ/ f ), (3.33)

has the flatness condition α = 2(β + δ).

To satisfy the phenomenological constraint that the inflaton potential should be zero at its

minimum V (φmin) = 0, we now insert a constant term CΛ by hand:

V (φ) = CΛ + α cos(φ/ f ) + β sin2(φ/ f ). (3.34)

In this case, CΛ = α. As conventional when writing inflaton potentials we may factor out a scale

Λ4 to obtain (3.3), with a redefinition of the coefficients α and β.

The result that fermions in fundamental representations cannot induce a satisfactory inflation

potential holds generically for any group, for precisely the reasons outlined above. It is for this

reason that we did not consider SU (N ) symmetries, since the only single-index representations of

SU (N ) are fundamental (or anti-fundamental) representations. Embedding fermions in spinorial

representations will generally lead, at first order, to a potential of the form (3.30). Since spinorial

representations only exist in SO(N ), we conclude that an SO(N ) symmetry of the strong sector

is the simplest and most natural way to generate a realistic inflaton potential. Isomorphisms such
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as SO(6) ' SU (4) and SO(4) ' SU (2) × SU (2) allows us to extend this result a little further.

For example, embedding fermions in a vector of SO(4) should lead to the same result as fermions

embedded in a (2,2) of SU (2) × SU (2).

3.3 Constraints from Inflation

After our discussion of the general structure of the inflaton potential, let us discuss the restrictions

coming from inflation. We list some potentials that can give rise to inflation in Table 3.1.

We parameterise the flatness of the potential as usual in the slow roll approximation (SRA).

That is, we require ε � 1 and η � 1, where ε and η are here given by

ε =
M2

p

2

(
V ′(φ)
V (φ)

)2

and η = M2
p

V ′′(φ)
V (φ)

. (3.35)

To simplify our expressions, in this section we work in units of reduced Planck mass Mp ; that

is, we will rescale our parameters φ→ φ
Mp

and f → f
Mp

.

The number of e-foldings in the slow-roll approximation is then given by

N =
1
√

2

∫ φI

φE

1
√
ε

(3.36)

where φE is fixed as the field value for which either ε = 1 or η = 1, in other words, the field value

for which the SRA breaks down. In our models slow roll breaks down by the second condition.

Here and in the following we conservatively choose N = 60 for our predictions, and this allows

us to find the initial condition for φ.

We compare the predictions of our model and the CMB data for the spectral tilt and the tensor-

to-scalar ratio, which can be expressed in the SRA as

ns = 1 + 2η − 6ε (3.37)

r = 16ε (3.38)

respectively.

A generic potential for a pseudo-Goldstone boson would contain powers of periodic functions,

cφ = cos φ/ f and sφ = sin φ/ f , which we parametrize as

V (φ) = Λ4 (CΛ +
∑
n

αncnφ + βn snφ ) (3.39)

The derivatives of this potential are again proportional to the same periodic functions. Roughly

speaking, the flatness of the potential can be achieved in two ways. One possibility is setting
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Model | β̃ | = | β/α | β/| β | CΛ (pheno)

V = Λ4
(
CΛ + α cos φf + β sin φ

f

)
Like vanilla NI: no +/− CΛ =

√
α2 + β2

solution for f 6 Mp

V = Λ4
(
CΛ + α cos

φ

f
+ β sin2 φ

f

)
= Λ4

(
C̃Λ + α cos

φ

f
− β cos2 φ

f

) . 1/2 +
CΛ = α

C̃Λ = α + β

V = Λ4
(
CΛ + α sin2 φ

f
+ β sin2 φ

f
cos2 φ

f

)
= Λ4

(
C̄Λ − α cos2 φ

f
+ β sin2 φ

f
cos2 φ

f

)
= Λ4

(
CΛ + (α + β) sin2 φ

f
− β sin4 φ

f

)
= Λ4

(
C̄Λ + (β − α) cos2 φ

f
− β cos4 φ

f

)
. 1/2 +

CΛ = α

C̄Λ = 2α

Table 3.1: Goldstone models for inflation: Trigonometric inflationary potentials, grouped by equivalence upon a rotation in para-

meter space.

the argument, φ/ f , to be very small (modulo 2π) as in the Natural Inflation scenario. As the

fluctuations of the inflaton can be large, this condition typically implies f & Mp , hence spoiling

the predictivity of the model.

Another possibility, and that is what we pursue here, is to look for models with f < Mp , which

in turn implies that two oscillating terms contribute to the flatness of the potential. This may seem

like it would introduce fine-tuning in the model, but in the next section we quantify that tuning,

finding it is milder than e.g. Supersymmetry with TeV scale superpartners.

Note that different models are equivalent from a cosmological perspective and can be trans-

formed into each other by a rotation in parameter space. We list these redefinitions of the para-

meters and the cosmological constant in Table 3.1 as well.

In the limit that the ratio β̃ = β/α is ±1/2, the potential is exactly flat at the origin and the

spectrum is scale-invariant, i.e. ns = 1 as shown in Fig. 4.2.

As the Planck data indicates a small deviation from scale invariance, we expect a small devi-

ation of β̃ with respect to 1/2. We find that the smaller f compared to Mp , the closer β̃ must be to

the values in the table. The deviation δ β̃ = 1/2 − β is then

1 × 10−2
(

f
Mp

)2

< δ β̃ < 2 × 10−2
(

f
Mp

)2

(3.40)

for all models in the table, but most importantly the model motivated in the previous section (3.34).

This is the range of β̃ for which the model is compatible with the Planck data, as we plot

in Fig. 3.3. for the well motivated example V = Λ4
(
CΛ + α cos φ/ f + β sin2 φ/ f

)
. Our models
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Figure 3.2: Shape of the potential for β̃ = ±1/2 respectively. Different values will interpolate between these extreme cases. We

show the shape of the vanilla NI (3.2) for comparison. The height of the potential is normalised to Λ.

predict negligible tensors, so the measurement of r imposes no constraint on β̃. In fact, the tensor

to scalar ratio will scale as

r ∝
(

f
Mp

)4

(3.41)

such that the lower the symmetry breaking scale, the smaller the predicted tensor modes are.

The scale of inflation can be found from the amplitude of the scalar power spectrum, as meas-

ured by Planck [14],

As =
Λ4

24π2M4
pε

=
e3.089

1010 (3.42)

where ε = r/16 is the first slow roll parameter. For our case this implies

Λin f ≈ 1015
(

f
Mp

)
GeV. (3.43)

It is seen that Λin f is expected to be of order of the GUT scale, but can be lower if we allow for

tuning. The symmetry breaking should occur before the onset of inflation, and therefore the scale

f is expected to lie in the interval Λin f < f < Mp . Indeed, from the above relation, it is seen that

Λin f ≈ 10−3 f . Lowering the scale f as a result of more tuning thus directly results in lowering the

scale inflation; for example, the model predicts f ≈ MGUT → Λin f ≈ 1012 GeV for δ β̃ ≈ 10−6.

We will quantify the tuning in the model more precisely in the next section.
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Figure 3.3: Parameters ns and r plotted against the Planck 2015 data [14] for the model (3.34) for f = Mp (red upper bound). For

lower values f < Mp , r → 0 (shaded region).

3.3.1 Fine-tuning

One may note that the specific relationship between α and β in the model described above requires

one to fine-tune it. Here we quantify the amount of fine-tuning that one will typically expect.

Defining tuning as is customary in Particle Physics [38], [118], we have7

∆ =
�����
∂ log ns

∂ log β̃

�����
=

�����
β̃

ns

∂ ns

∂ β̃

�����
≈ [1.02 − 1.05]

(
f

Mp

)−2

(3.44)

This relation is not unexpected because for large f > Mp the potential will very flat over a

large field range ∆φ, and this flatness is not sensitive to the specific value of β̃. For f < Mp one

needs a (partial) cancelation in α and β, at the cost of fine-tuning.

Then we can define the percentage of tuning as

Percentage tuning =
100
∆

% ≈ 95
(

f
Mp

)2

%

It is seen in particular that if we take the upper bound f = Mp seriously, the minimal tuning is at

95%. In Fig. 3.4 we plot the tuning ∆ as defined in (4.35) for the model at hand, (3.3). It is seen

that for Mp/10 . f < Mp one expects no tuning below the percent level. One should note that

f < 10−2Mp ≈ MGUT is not expected, as the symmetry breaking pattern should occur before the

onset of inflation.

7Here we have chosen to measure tuning in terms of ns , but one may instead be interested in the tuning of the

combination (ns − 1). In this case one may use (4.35) to find ∆ ≈ [19.7 − 43.9] ( f /Mp )−2. In both cases, the tuning in

r is negligible compared to the tuning in the spectral index.
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One can compare this amount of tuning with the one required to avoid the de-stabilization

of the electroweak scale in Supersymmetry. For example, stops at 1 TeV require a much worse

fine-tuning, at the level of 1% [119].

It is also noteworthy that the tuning necessary in the other models in Table 3.1 will be very

similar to the tuning in V = Λ4
(
CΛ + α cos φ/ f + β sin2 φ/ f

)
.

10-2 10-1 1
102

103

104

100

10-1

10-2

f

Mp

D %

Figure 3.4: The parameter ∆ as defined above for V = Λ4
(
CΛ + α cosφ/ f + β sin2 φ/ f

)
. Outside of the pink zone the spectral

index ns predicted by the model is incompatible with the Planck data (ns < .948 above the region, ns > .982 below).

3.3.2 Non-Gaussianity and its relation to Goldstone scattering

Even before switching on the Coleman Weinberg potential, Goldstone bosons interact with them-

selves through higher-order derivative terms. Indeed, consistent with the shift symmetry, one can

write terms containing a number of derivatives of the field,

L =
∑
n

cn
f 2n−4 Xn , with X =

1
2
∂µΣ ∂

µ
Σ
† (3.45)

The first order term (n = 1) is the usual kinetic term, whereas any other term (n > 2) would

involve interactions of 2n pions. This expansion is called in the context of Chiral Perturbation

Theory [120]–[122] as order O(pn ) in reference to the number of derivatives involved. Goldstone

self-interactions appear at order O(p4).

Alongside the Coleman-Weinberg potential we derived in the previous section, the derivative

self-interactions are relevant for inflation as well, as a nontrivial speed of sound arises from a non-

canonical kinetic term. Specifically, the sound speed is a parameterisation of the difference of the
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coefficients of the spatial and temporal propagation terms for the Goldstone bosons φ:

L 3 (∂tφ)2 − c2
s (∂iφ)2 (3.46)

This difference arises from higher dimensional kinetic terms Xn and the fact that inflation breaks

Lorentz invariance. This can of course already be seen from the metric,

ds2 = (dt)2 − a(t)2(dxi )2 → g00 , gii (3.47)

The speed of sound is then given by

c2
s =

(
1 + 2

XLXX

LX

)−1

(3.48)

where LX and LXX denote the first and the second derivative of the Lagrangian with respect to

X respectively, and where cs is expressed in units of the speed of light. It is immediately seen that

models with a canonical kinetic term predict cs = 1. The background equations of motion can be

used to relate coefficients to the Hubble expansion parameter,

XLX = Ḣ M2
p ≈ c1 f 4 (3.49)

To second order, the kinetic term will have the form8

L2 =
M2

p Ḣ + M2
p Ḣ (cs − 1)

f 4 (∂tφ)2 =
M2

p Ḣcs
f 4 (∂tφ)2 (3.50)

Canonically normalising the kinetic term thus implies,

f 4 = 2Ḣ M2
pcs (3.51)

These higher order derivatives are also constrained by arguments of unitarity, analyticity and

crossing symmetry of Goldstone scattering amplitudes such as shown in Fig. 3.5,

φ(p1) φ(p2) → φ(p3) φ(p4) . (3.52)

This scattering amplitude must be a function of the Mandelstam parameters s, t and u, e.g. s =

(p1 + p2)2 = (p3 + p4)2.9 This amplitude A(s, t,u) must be analytical in the complex s plane,

except for branch cuts (due to unitarity) and isolated points (due to the possible exchange of a

resonance) [125]–[128]. Unitarity then implies the existence of a branch at some position s >

s0. Similarly, other branch crossings can be obtained by using crossing symmetry. Using these

arguments, one can show that the amplitude would be non-analytical for s > 4m2
φ , where mφ is the

8Here we use the expansions L ∈ (XLX + 2X2LXX )(∂tφ)2/ f 4 and cs − 1 ≈ XLXX
LX

9In this simplified analysis we have neglected the curvature of space-time. Various issues related to the curvature,

and the relevant assumptions one should make to obtain the positivity constraint were discussed in [123] and [124].



61
Goldstone Inflation

Unitarity

CMB data

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Èc2È x

cs

Figure 3.5: Predictions for c2 x. In dark grey the Planck bound; the shaded region indicates the perturbativity bound. The continu-

ous lines are the predictions for c2 > 0, which is relevant for our model as discussed in the text. We also indicate the

hypothetical situation c2 < 0 with dashed curves. It is seen that the prediction approaches the asymptote cs = 1/
√

3 for

large c2, as expected from (3.55).

mass of the pseudo-Goldstone. Moreover, analyticity restricts the dependence of the amplitude on

s, namely

d2

ds2 A(s, t,u) > 0 (3.53)

where s, t and u are restricted to the physical region, e.g. s 6 4m2
φ . This translates into bounds for

the coefficients of the Lagrangian in (3.45). At leading order in the Goldstone interactions,

L (p4) = c2 f −4(∂µφ†∂µφ)2 (3.54)

the aforementioned conditions lead to a bound for c2. In particular, c2 must be positive and larger

than some function of the Goldstone mass. 10

The positivity of c2 constrains possible deviations from the speed of sound in the model with

Goldstone inflatons. Indeed,

cs =

(
1 + 2

2c2X
f 2 + 2c2X

)−1/2

=

(
1 + 2

2 c2x
1 + 2 c2x

)−1/2

(3.55)

Where we have defined the dimensionless parameter x = X/ f 2. As X ∼ p2, we expect the

effective theory to be valid up to

X 6 (4π f )2 or x 6 (4π)2 (3.56)

10Note that c2 in the case of two- and three-flavour QCD have been computed, assuming that its dominant contribu-

tion comes from vector meson exchange [129], [130] or with the inclusion of scalar and pseudo-scalar resonances [131]
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The current bound by Planck is cs > .024 [14]. In Fig. 3.5 one can see how for positive c2 the

speed of sound is in agreement with Planck for any value of c2 x.

As mentioned above, the sound speed is also constrained by arguments of (perturbative) unit-

arity. The scale at which violation of perturbative unitarity occurs was computed by Ref. [132]

(and corrected in [133]) from imposing partial wave unitarity in the quartic interaction, and reads,

Λ
4
u =

24π
5

*
,

2M2
p |Ḣ |c

5
s

1 − c2
s

+
-

(3.57)

We are in particular concerned with how Λu relates to the symmetry breaking scale f . If Λu < f ,

the action needs a completion below the symmetry breaking scale, possibly in terms of strongly

coupled dynamics or new low-energy physics. The effective theory is therefore no longer a good

description. One may thus consider a critical sound speed (cs )∗, defined by [133]

Λ
4
u =

24π
5

*
,

2M2
p |Ḣ |(cs )5

∗

1 − (cs )2
∗

+
-

= f 4 (3.58)

For cs > (cs )∗ our model predicts Λu > f . Canonically normalising using (3.51), we have

24π
5

(
(cs )4

∗

1 − (cs )2
∗

)
> 1 (3.59)

This theoretical lower bound is also shown in Fig. 3.5 for different values of x (subject to (3.56)).

One can see how, once axiomatic conditions from Goldstone scattering are imposed, the inflaton

evades both bounds.

The speed of sound is related to non-Gaussianity by

f eqNL ∼
1
c2
s

(3.60)

One does not expect significant contributions to non-Gaussianity from the non-derivative terms in

the potential, as they will be slow-roll suppressed.

It is worth noting that a deviation from one in the speed of sound will modify the tensor to

scalar ratio

r = 16εcs (3.61)

The predictions for r will in this case be lowered, but as the Planck bound is consistent with r = 0,

this is only to the merit of models with a pGB inflaton.

3.4 Link to UV models

We saw above that the model (3.3) gives inflation compatible with the CMB data for particular

relations between the coefficients. Here we discuss what these relations indicate for the UV theory.
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Firstly, we noticed that to have the right shape of the potential, we should require β to be

positive, that is

β =

∫
d4pE

(2πΛ)4
*
,

3(N − 2)
4

ΠA
1

ΠA
0

− 2Nc
M2

p2
EΠ

L
0 Π

R
0

+
-
> 0 (3.62)

Then we saw in Table table that the requirement of a sufficiently flat potential gives the condi-

tion α ≈ 2β, which will give a relation between the form factors of the form

α = −2Nc

∫
d4pE

(2πΛ)4
*
,

ΠL
1

ΠL
0

−
ΠR

1

ΠR
0

+
-

= 2
∫

d4pE
(2πΛ)4

*
,

3(N − 2)
4

ΠA
1

ΠA
0

− 2Nc
M2

p2
EΠ

L
0 Π

R
0

+
-

= 2β (3.63)

Lastly we have that the phenomenological condition V (φmin ) = 0 gives a preferred value of

the constant CΛ in terms of the model parameters. In explicit models this will give a condition of

the form11

α = −2Nc

∫
d4pE

(2πΛ)4



ΠL
1

ΠL
0

−
ΠR

1

ΠR
0


= CΛ (3.64)

where CΛ is a cosmological constant during inflation.

To obtain explicit expressions for the form factors ΠX one would need a UV-complete the-

ory. However, using the relations above we can make some general remarks about their large

momentum behaviour. First, we can use an operator product expansion to find the scaling of Π1.

This implies that Π1 scales as 〈O〉/pd−2, where O is the lowest operator responsible for the break-

ing G → H , with mass dimension d. In our case, we expect O to be a fermion condensate with

d = 6. Secondly we can require finiteness of the fermion Lagrangian (3.27). The scaling of the

other form factors can be found by consideration of the kinetic terms in the high momentum limit.

We will discuss this in the next section. We summarise our conclusions in Table 3.2.

In the next section we will assume a light resonance connection to derive more specific con-

clusions in this approximation.

3.5 Light resonance connection

In this section we attempt to derive some of the properties of the UV theory, assuming that the

integrated-out dynamics is dominated by the lightest resonances of the strong sector.

11Note that in some models CΛ will be related to α ± β ≈ 3/2 α, as is seen in Table 3.1.
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Form factor Large momentum behaviour Argument

Π1 ∼ 〈O〉/pd−2 = 1/p4 OPE coupling

Π0 ∼ p2 Recovering the bosonic Lagrangian

Πr
1 ∼ 1/p6 OPE coupling

Πr
0 ∼ p0 Recovering the fermion Lagrangian

Mr ∼ 1/p2 OPE coupling

Table 3.2: Connection to the UV theory: Scaling of the form factors derived from an operator product expansion and symmetry

restoration at high energies.

To simplify what follows, we note that the form factor M in equation (3.29) is ‘naturally’ small

in the ’t Hooft sense [13]. This is because in the limit M → 0 we have an enhanced U (1)L×U (1)R

global symmetry under which ψL and ψR transform with independent phase-rotations. Therefore

in the following we will assume that the dominant contributions to α and β come from the Πi
0,1

form factors. Note that this observation makes it very plausible that condition (3.62) is satisfied.

Note that to ensure a convergent behaviour of the form factors at high scales Q2, one would

have to introduce a number of resonances to saturate the Weinberg sum rules. The minimum

number of resonances depends on the behaviour of the form factor with Q. This behaviour is

described in the previous section. Tthe convergence of these form factors in the large-Q regime is

not a necessary condition for a generic model of strong interactions, but rather helps on describing

the interpolation between the low-energy regime of the theory with an asymptotically free UV

theory (provided this is the case).

Irrespective of these issues of interpolation with the UV behaviour, one can consider a spectral

decomposition of the form factor. A common description, valid for a SU (N ) gauge sector in

the large-N limit is form factors as infinite sums over narrow resonances of the strong dynamics

[134], [135]. In the following, we assume that the Πi
1 form factors can be well approximated by

considering only the contribution from the lightest of these resonances.

We expect that Πi
1 has a pole at the mass of the lightest resonance m2

i , and that the residue of

this pole is equal to the square of the amplitude to create the resonance from the vacuum. This

amplitude, f i , is equivalent to the decay constant of the resonance. This leads us to the following

approximation for the fermionic Πi
1:

Π
i
1(p2) =

f 2
i

p2 + m2
i

. (3.65)

In the gauge case, this expression is modified to

1
p2Π

A
1 (p2) =

f 2

p2 +
f 2
A

p2 + m2
A

, (3.66)
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which now has a pole at p2 = 0, since the broken SO(N )/SO(N − 1) currents can excite the

Goldstones from the vacuum [21], [23].

We approximate the Π0 form factors with their tree level values. By inspecting (3.7) and

(3.27), we see that to recover the tree level fermion and gauge Lagrangians we must have Π0 = 1

in the fermionic case, and Π0 = p2/g2 in the gauge case, where g is the gauge coupling.

Let us study the minimal model we can construct that leads to successful inflation. We will

only need one external fermion – in this case we take the ψR of Sec. 3.2. Then α and β will be

given by

α = 2Nc

∫
d4p

(2πΛ)4
*
,

ΠR
1

ΠR
0

+
-
, β =

3(N − 2)
4

∫
d4p

(2πΛ)4
*
,

ΠA
1

ΠA
0

+
-
. (3.67)

Now we assume that ΠR
1 and ΠA

1 are given respectively by (3.65) and (3.66). With a single

resonance, we cannot guarantee convergence of the integrals in (3.67) – generally this can be done

by introducing more resonances and demanding that the form factors satisfy Weinberg sum rules

[136], [137]. However we can argue that, since our effective theory is only expected to be valid up

to a scale ΛUV = 4π f , we should cut off the momentum integrals at p2 = Λ2
UV .

Putting all this together, we find:

α =
a

8π2Λ4

∫ Λ2
UV

0
dp2 p2 f 2

R

p2 + m2
R

=
a f 2

R

8π2Λ4


Λ

2
UV − m2

R log *
,

m2
R + Λ2

UV

m2
R

+
-


, (3.68)

where a = 2Nc , and

β =
bg2

8π2Λ4

∫ Λ2
UV

0
dp2 f 2 =

b g2

8π2


Λ

2
UV f 2 + Λ2

UV f 2
A − f 2

Am2
A log *

,

m2
A + Λ2

UV

m2
A

+
-


, (3.69)

where b = 3(N − 2)/4.

The approximate relation α ' 2β then implies a relationship between the parameters of the

UV theory. If we demand that the quadratic cutoff dependence cancels, we obtain the relation

a f 2
R = 2bg2( f 2 + f 2

A), (3.70)

and

a f 2
Rm2

R log *
,

m2
R + Λ2

UV

m2
R

+
-

= 2bg2 f 2
Am2

A log *
,

m2
A + Λ2

UV

m2
A

+
-
. (3.71)

Inserting (3.70) into (3.71) we obtain

2bg2 f 2
A

a f 2
R

=
f 2
A

f 2 + f 2
A

=
m2

R log[(m2
R + Λ2

UV )/m2
R]

m2
A

log[(m2
A

+ Λ2
UV )/m2

A
]
, (3.72)

which implies that mR < mA.

If fA � f , one finds that mR ' mA, i.e. there would be a degeneracy between fermionic and

bosonic resonances. Note that this condition will be satisfied no matter the scale factor between

α and β is, as long as they are proportional, α ∝ β. This kind of mass-matching situation [100],
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[101], [138] where resonances from different sectors acquire the same mass is reminiscent of what

had been found in trying to build successful Technicolor models, namely Cured Higgsless [103],

[104] and Holographic Technicolor [98], [99] models.

3.6 Discussion and Conclusions

The framework of slow-roll inflation has been corroborated to a good precision by the Planck

data. This framework, however, suffers from an inflationary hierarchy problem, namely the strain

of providing sufficient inflation while still satisfying the amplitude of the CMB anisotropy meas-

urements. This balancing act requires a specific type of potential, with a width much larger than

its height.

This tuning is generically unstable unless some symmetry protects the form of the potential.

In this paper we explored the idea that this potential could be related to the inflaton as a Goldstone

boson, arising from the spontaneous breaking of a global symmetry.

Another issue for inflationary potentials, including Goldstone Inflation, is that they are only

effective descriptions of the inflaton physics. With the inflationary scale relatively close to the

scale of Quantum Gravity, one expects higher-dimensional corrections to the inflationary potential.

These corrections would de-stabilise the inflationary potential unless the model is small-field [87],

[105]. In other words, as the inflaton field value approaches Mp the Effective Theory approach

breaks down.

We found out that in Goldstone Inflation a predictive effective theory is indeed possible, and

that the compatibility with data has specific implications for the theory. For example, in single-

field inflation, we computed the most general Coleman-Weinberg inflaton potential and learnt that

1.) Only the breaking of SO(N ) groups provide successful inflation and 2.) fermionic and bosonic

contributions to the potential must be present and 3.) for fermions in single-index representations,

a successful inflaton potential is given uniquely by V = Λ4(CΛ + α cos(φ/ f ) + β sin2(φ/ f )), with

α ≈ 2β. When linking to UV completions of Goldstone Inflation, we have been able to show how

relations among the fermionic and bosonic resonances are linked to the flatness of the potential.

As we have developed a specific model for inflation, we were able to address the amount of

tuning required to make it work, and found that it is not dramatic. Indeed, we found that the tuning

is milder than that found in Supersymmetric models nowadays.

Another advantage of this framework is the ability to examine the higher-order derivative

terms in the Goldstone Lagrangian from several different points of view: modifications of the
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CMB speed of sound, constraints from unitarity and also axiomatic principles from Goldstone

scattering.

We have presented results in a rather generic fashion and for single-field inflation, and deleg-

ated to the appendices a discussion of a specific model of single-field inflation, and few examples

of hybrid inflation which originate from this framework.

There are other aspects of Goldstone Inflation which deserve further study. For example,

in these models, hybrid inflation and reheating are quite predictive as the inflaton and waterfall

fields come from the same object and naturally the inflaton can decay to other, lighter pseudo-

Goldstones. Moreover, there may be interesting features of the phase transition causing the spon-

taneous breaking of the global symmetry, which we plan to investigate.
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Appendix A: Successful patterns of breaking: an example of single field

The simplest instance of the general model outlined in Section 3.2 takes the global symmetry of

the strong sector to be SO(3), breaking to SO(2).12 This gives rise to two Goldstone bosons, one

of which is eaten when we gauge the remaining SO(2) symmetry. We parameterise the Goldstones

via:

Σ(x) = exp(iT âφâ/ f )Σ0, (3.73)

with â = 1,2. We can take the generators of SO(3) to be

T1 =
i
√

2

*.....
,

0 0 0

0 0 −1

0 1 0

+/////
-

, T2 =
i
√

2

*.....
,

0 0 1

0 0 0

−1 0 0

+/////
-

, T3 =
i
√

2

*.....
,

0 −1 0

1 0 0

0 0 0

+/////
-

. (3.74)

The broken generators satisfy T âΣ0 , 0. If, following Sec. 3.2, we take Σ0 to be

Σ0 =

*.....
,

0

0

1

+/////
-

, (3.75)

then T1 and T2 are the broken generators. T3 remains unbroken, and will generate the SO(2)

gauge symmetry. A suitable gauge transformation then allows us to set φ1 = φ, φ2 = 0, and we

can write

Σ =

*.....
,

sin(φ/ f )

0

cos(φ/ f )

+/////
-

. (3.76)

Following (3.7) the effective Lagrangian for the SO(2) gauge boson is

Leff =
1
2

(PT )µν
[
Π

A
0 (p2)A3

µA3
ν Tr{T3T3} + ΠA

1 (p2) A3
µA3

νΣ
TT3T3

Σ
]
, (3.77)

=
1
2

(PT )µν
[
Π

A
0 (p2) +

1
2
Π

A
1 (p2) sin2(φ/ f )

]
A3
µA3

ν . (3.78)

This leads to the Coleman-Weinberg potential

V =
3
2

∫
d4p

(2π)4 log

1 +

1
2
ΠA

1

ΠA
0

sin2(φ/ f )

. (3.79)

Now we embed a fermion in an SO(3) spinor:

ΨL =
*..
,

ψL

0

+//
-
. (3.80)

12This coset was also studied in the context of inflation in [139].
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The gamma matrices of SO(3) can be taken to be the Pauli matrices σa . Thus the most general

effective Lagrangian for the fermion is

Leff = ΨL /p
[
Π

L
0 (p) + ΠL

1 (p)σa
Σ
a

]
ΨL . (3.81)

We find that

σa
Σ
a =

*..
,

cos(φ/ f ) sin(φ/ f )

sin(φ/ f ) − cos(φ/ f )

+//
-
, (3.82)

so

Leff = ΨL /p
[
Π

L
0 (p) + ΠL

1 (p) cos(φ/ f )
]
ΨL , (3.83)

from which we derive the Coleman-Weinberg potential:

V = −2Nc

∫
d4p

(2π)4 log

1 +
ΠL

1

ΠL
0

cos(φ/ f )

. (3.84)

Combining both gauge and fermion contributions, and expanding the logs at first order, we obtain

V (φ) = α cos(φ/ f ) + β sin2(φ/ f ), (3.85)

where

α = −2Nc

∫
d4p

(2π)4
*
,

ΠL
1

ΠL
0

+
-
, β =

3
4

∫
d4p

(2π)4
*
,

ΠA
1

ΠA
0

+
-
. (3.86)

Appendix B: Successful patterns of breaking: an example of hybrid inflation

We can also construct models in which more than one physical Goldstone degree of freedom is

left in the spectrum. This can be done by only gauging a subgroup of the unbroken SO(N − 1)

symmetry. Let us look briefly at a simple example of such a model, in which we take the global

symmetry breaking to be SO(5) → SO(4). In such a case we have four Goldstone bosons, and Σ

is given by

Σ =
sin(φ/ f )

φ

*.............
,

φ1

φ2

φ3

φ4

φ cot(φ/ f )

+/////////////
-

, (3.87)

where we have φ =
√
φâφâ , as before.
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φ1,2,3

φ1,2,3

φ1,2,3

φ1,2,3

φ1

φ1

φ2,3

φ2,3

Figure 3.6: Goldstone quartic interactions

If we gauge only SO(2) ∈ SO(4), taking for instance the gauged generator to be

T1
g =

i
√

2

*.............
,

0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

+/////////////
-

, (3.88)

then the gauge freedom allows us to set φ4 = 0.

Following the same steps as before, the effective Lagrangian for the gauge field will be

Leff =
1
2

(PT )µν

Π

A
0 (p2) +

1
2
Π

A
1 (p2)

(
φ1

φ

)2

sin2(φ/ f )


AµAν . (3.89)

If we, as in Appendix 3.6, consider the contribution from a single left-handed fermion, now

embedded in an SO(5) spinor like so:

ΨL =

*.........
,

ψL

0

0

0

+/////////
-

, (3.90)

then in fact the effective fermion Lagrangian will still be given by (3.83). Thus the Coleman-

Weinberg potential will be given by

V (φ) = α cos(φ/ f ) + β

(
φ1

φ

)2

sin2(φ/ f ), (3.91)

with α and β given by

α = −2Nc

∫
d4p

(2π)4
*
,

ΠL
1

ΠL
0

+
-
, β =

3
4

∫
d4p

(2π)4
*
,

ΠA
1

ΠA
0

+
-
. (3.92)

If we expand the trigonometric functions for small field excursions, we obtain, up to constant

terms:

V (φ1, φ2, φ3) =
1
f 2

(
β −

α

2

)
φ2

1 −
α

2 f 2

(
φ2

2 + φ2
3

)
+

1
f 4

(
α

24
−
β

3

)
φ4

1

+
α

24 f 4

(
φ4

2 + φ4
3

)
+

1
f 4

(
α

12
−
β

3

) (
φ2

1φ
2
2 + φ2

1φ
2
3

)
+

α

12 f 4 φ
2
2φ

2
3 + O

(
φ6

f 6

)
. (3.93)
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We see that the three Goldstones have masses

m2
1 = β − α/2 , m2

2 = m2
3 = −α/2, (3.94)

and we have, among others, the quartic interactions shown in Fig. 3.6.

We can remove another of the Goldstone fields by gauging a further generator of SO(2). For

instance, if we gauge

T2
g =

i
√

2

*.............
,

0 0 −1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

+/////////////
-

, (3.95)

then the potential will be exactly as in (3.93), with φ3 set to zero. We must also replace β → 2β,

since the potential now receives contributions from two gauge bosons.

We note further that if instead we gauged the generator

T2
g =

i
√

2

*.............
,

0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

+/////////////
-

, (3.96)

then we obtain

V (φ) = α cos(φ/ f ) + β *
,

φ2
1 + φ2

2

φ2
+
-

sin2(φ/ f ) = α cos(φ/ f ) + β sin2(φ/ f ), (3.97)

which is symmetric in φ1 and φ2.



Reheating with a Composite Higgs

Djuna Croon1, Verónica Sanz1 and Ewan R. M. Tarrant1

1Department of Physics and Astronomy, Pevensey II Building, University of Sussex, BN1 9RH,

UK

The flatness of the inflaton potential and lightness of the Higgs could have the common origin

of the breaking of a global symmetry. This scenario provides a unified framework of Goldstone

Inflation and Composite Higgs, where the inflaton and the Higgs both have a pseudo–Goldstone

boson nature. The inflaton reheats the Universe via decays to the Higgs and subsequent secondary

production of other SM particles via the top and massive vector bosons. We find that inflationary

predictions and perturbative reheating conditions are consistent with CMB data for sub–Planckian

values of the fields, as well as opening up the possibility of inflation at the TeV scale. We explore

this exciting possibility, leading to an interplay between collider data cosmological constraints.
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4.1 Introduction

Scalar fields are popular protagonists in cosmological theories. They play chief roles in the leading

paradigms for important events, such as inflation and electroweak symmetry breaking. However,

it has been long known that fundamental scalars suffer radiative hierarchy problems: for theory

to match observations, one requires an unnatural cancelation of UV corrections. In inflation, this

radiative instability can be quantified by the tension between the Lyth bound [16] on the slow roll

phase of the field, pushing towards ∆φ > Mp , and the measurement of CMB anisotropies, which

indicate Λin f . 1015 GeV. For electroweak symmetry breaking (EWSB), one usually considers

the large separation of scales between the Higgs mass and the Planck scale as an illustration, as

the latter is where the theory should be cut off for an elementary Higgs.

Here we will discuss the appeal of pseudo–Goldstone bosons (pGBs) for the dynamical gen-

eration of scales in both paradigms. The realisation that Goldstone bosons can solve hierarchy

problems is not new: for EWSB, there is popular branch of model building that goes by Compos-

ite Higgs theory which postulates a new strongly coupled sector of which the Higgs is a bound

state [19] (for a review see [23]). The effective theory then has a cut-off, such that the Higgs mass

is not sensitive to effects above the compositeness scale.

Likewise, in inflationary model building “Natural Inflation” provides an inflaton candidate

protected from UV corrections using essentially the same mechanism with an axionic GB [37].

Alas, vanilla Natural Inflation requires trans–Planckian scales to predict the measured Cosmic Mi-

crowave Background (CMB) spectrum and thus has questionable value as a valid effective theory.1

In [61] the idea of a pGB inflaton was generalised, and it was shown there and in [63] that differ-

ent models may realise inflation compatible with data from the Cosmic Microwave Background

(CMB) without the issues that the original Natural Inflation has.

In this paper we will show how both mechanisms can be unified, thus realizing radiative sta-

bility for both models in a single simple set–up. We will explore the minimal symmetry breaking

pattern that realises a Higgs SU (2) doublet and an inflaton singlet. We discuss both the generation

of an inflaton potential and reheating in this model. Interestingly, both can be fully perturbative

processes. The inflationary predictions are shown to be compatible with the latest CMB data by

Planck [14] without the necessity of introducing trans-Planckian scales in the effective theory.

After inflation the inflaton decays into Higgs bosons, which subsequently decay into the Standard

1There have been several proposals to explain the trans–Planckian decay constant while maintaining the simple po-

tential and the explanatory power of the model. Among these are Extra–Natural inflation [62], hybrid axion models [72],

[73], N-flation [74], [113], axion monodromy [75] and other pseudo-natural inflation models in Supersymmetry [76].
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Model particles. Importantly, we find that the question if reheating can take place perturbatively

crucially depends on the CP assignment in the model.

Figure 4.1: Pseudo-Goldstone bosons naturally realize mass hierarchies. CMB data and constraints on perturbative reheating allow

us to relate the complete spectrum to the symmetry breaking scale f and the Planck scale Mp .

We will finish by showing how the model naturally connects to electroweak physics. The

inflaton mass and couplings to the Higgs could be of the same order, leading to the possibility of

looking for the inflaton through their mixing with the Higgs.

In Fig. 4.1 we show a graphic of the relevant scales in our model. The global symmetry is

broken at the scale f , which is below the Planck scale at which we expect a UV completion in

the form of a theory of quantum gravity. The scale of inflation is then expected to be paramet-

rically smaller than f , as we will show. The Coleman Weinberg masses of the goldstone boson

inflaton and Higgs are fixed by CMB and electroweak data respectively. Likewise, the values of

the coefficients of the (self-) couplings in the potential can be fixed in light of the data, modulo the

scale of inflation. This is a free parameter in our model. As usual for slow roll inflation, it is most

naturally found around the GUT scale (1015 GeV), but can be as low as ∼ 105 GeV if one allows

for a degree of tuning.

Finally we would like to highlight some recent developments that may be of interest to the

reader. In [17] a dynamical solution to the electroweak hierarchy problem was proposed, in terms

of a Higgs boson coupling to an inflaton and an axion–like field. Although critics have pointed

out several shortcomings, among which the necessity of a very large number of e–foldings and

the low cut–off (which makes one arguably expect new physics around the EW scale) [140], the

scanning mechanism is a new facet worth investigating. As the model behind the mechanism bears

similarities with our set–up, it seems like a worthwhile exercise to look for a realisation in the
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present context. A second recent result that is interesting in the present context is the observation

in [141] that the Higgs-inflaton coupling c4h2η2 may drastically alter the Higgs dynamics in the

Early Universe, thereby stabilising the electroweak vacuum. As we will see the coupling c4 will

automatically be present in our model.

4.2 The Lagrangian of the Higgs and the Inflaton

4.2.1 Inflaton–Higgs couplings for perturbative reheating

The condition that the inflaton field must decay completely into relativistic particles to complete

the reheating process dictates the interaction structure in a successful theory of inflation. After

the end of inflation, the inflaton field η begins to oscillate about the minimum of its potential

with amplitude Φ(t). The universe is completely dominated by the zero–mode, 〈η(t)〉, which may

be interpreted as a condensate of non–relativistic zero–momentum η–particles of mass mη . The

condensate oscillation amplitude decays as Φ(t) ∼ t−1 due to the Hubble expansion and due to

interactions with the higgs field. Trilinear couplings, 1
2σηh2, and quartic couplings, 1

2g
2η2h2,

with the higgs are to be expected on fairly general grounds, as we argue in the following section.

As we will show in section 4.4, provided that the coupling constants σ,g2 and the amplitude Φ(t)

are small enough such that non–perturbative particle production processes are absent, the energy

loss experienced by the condensate can be described by the Boltzmann equation

d
dt

(
a3ρη

)
= −

σ2Φ2
0mη

64π
−
g4Φ4

0mη

128πa3 , (4.1)

where a is the scale factor and Φ0 is the initial amplitude of the inflaton oscillations at the start

of reheating. The contribution from the quartic interaction decreases as a−3 ∼ t−2, which, as

is well known [142]–[144], poses a major problem for theories which do not contain a trilinear

interaction. Specifically, since the Hubble rate decreases as H ∼ a−3/2 ∼ t−1, volume dilution

due to the Hubble expansion takes place faster than the annihilation process φφ → χ χ can drain

energy from the condensate and so reheating never completes. In order to successfully reheat the

universe, a trilinear coupling must be present. We will use this result as a guiding principle when

constructing the Lagrangian for the composite Higgs model.
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4.2.2 Symmetry breaking: the minimal coset

The inflaton and Higgs corresponds to five scalar degrees of freedom which could come from the

breaking of SO(6) to SO(5) or, equivalently SU (4) to Sp(4). This breaking pattern is very popular

in building models of Composite Higgs, as it preserves custodial symmetry.

The breaking gives rise to five Goldstone bosons, transforming as a 5 of SO(5). The most

general vacuum which breaks SO(6) → SO(5) ∼ SU (4) → Sp(4) as shown in Ref. [145] is given

by2

Σ0 =

*.........
,

0 eiα cos(θ) sin(θ) 0

−eiα cos(θ) 0 0 sin(θ)

− sin(θ) 0 0 −e−iα cos(θ)

0 − sin(θ) e−iα cos(θ) 0

+/////////
-

(4.2)

where α and θ are real angles. One recovers a well known choice of vacuum in Composite Higgs

models [116] in the limit α → mod(π) and θ → mod(π).

In fact, the vacuum in which we have θ = mod(π) the vacuum has an enhanced custodial sym-

metry [145], as in this case the unbroken generators generate SU(2) × SU(2) ⊂ Sp(4). Likewise,

the limit α = mod(π) parametrises the conservation of CP by the vacuum.

One can then parametrise the Goldstone bosons via the field Σ(x),

Σ(x) = eiΠ
a (x)T a

⊥ /
√

2 f
Σ0 , (4.3)

whereΠa (x) are the Goldstone fields with decay constant f , corresponding to the broken SO(6) �

SU (4) generators Ta
⊥ . A linear combination of three of the Goldstone fields is eaten by the Stand-

ard Model gauge fields such that the corresponding generators can be recognised as their longitud-

inal components. The two remaining Goldstone bosons remain in the spectrum as massless scalar

fields and couple via the broken generators T4
⊥ and T5

⊥:3

T4
⊥ =

*..
,

0 σ2

σ2 0

+//
-
, T5

⊥ =
*..
,

cθeiα12 −isθσ2

isθσ2 cθeiα12

+//
-
. (4.4)

2The discussion in Ref. [145] assumes the presence of CP conserving vacua, as well as CP breaking vacua, such

that the Pfaffian of the inflaton is real.
3Here we use generalized expressions from Ref. [145]; obtained by assuming the general vacuum (Eq. A. 17) in the

rotation Eq. B. 25.
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Expanding the matrix exponential, we obtain

Σ(x) =

*............
,

cπ +
√

2 f ieiαcθ sπη√
π2
a

0 0 i
√

2 f sπ (−ih−sθη)
√
π2
a

0 cπ +
√

2 f ieiαcθ sπη√
π2
a

i
√

2 f sπ (ih+sθη)
√
π2
a

0

0 i
√

2 f sπ (sθη−ih)
√
π2
a

cπ −
i
√

2 f eiαcθ sπη√
π2
a

0

i
√

2 f sπ (ih−sθη)
√
π2
a

0 0 cπ −
i
√

2 f eiαcθ sπη√
π2
a

+////////////
-

Σ0(4.5)

where we have suppressed space-time dependence of the fields h = h(x) and η = η(x), and where

we use the shorthands,

h(x)2 + η(x)2 = π2
a and sπ = sin

*..
,

√
π2
a

√
2 f

+//
-

, cπ = cos
*..
,

√
π2
a

√
2 f

+//
-

sθ = sin(θ) , cθ = cos(θ) . (4.6)

We will further assume that gauging the theory breaks SU (4) to the Standard Model group4

SU (2)L × U (1)Y and U (1)η . This latter shift symmetry for η will assure that it does not get a

potential from gauge bosons. Then the kinetic term becomes,

f 2

8
Tr|DµΣ |

2 =
1
2

(
η∂µh − h∂µη

)2

h2 + η2 +
g2

4
h2

(
W+
µW−µ +

1
cos2 θw

ZµZ µ

)

≈
1
2

(∂µh)2 +
1
2

(∂µη)2 +
1
2

(
h∂µh + η∂µη

)2

1 − h2 − η2 +
g2

4
h2

(
W+
µW−µ +

1
cos2 θw

ZµZ µ

)
(4.7)

where the following field redefinitions are made:

h2s2
π f 2/π2

a → h2 η2s2
π f 2/π2

a → η2

(∂µh sπ f /
√
π2
a )2 → (∂µh)2 (∂µη sπ f /

√
π2
a )2 → (∂µη)2

(4.8)

corresponding to dropping the operators with more than four powers in the field (they will be

effectively suppressed by f ). For the sigma model, there is an equivalence between the original

and rotated fields. However, the rotated fields couple to gauge bosons as in (4.7) and are as such

the physically relevant choice.

At this level, the η and h fields are true Goldstone bosons. (Small) explicit breaking of the

symmetry will generate a Coleman-Weinberg contributions to the scalar potential, via gauge and

Yukawa interactions. This potential accounts, then, for resummations of loops of gauge bosons

and fermions. Rather than considering the fully generic case, we can use the information from the

previous section as prior information about what a Lagrangian which gives perturbative reheating

will look like. In particular, the necessity of terms with odd powers of the singlet η in the scalar

4Here we do not address the colour group SU (3)c .
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potential implies that the singlet η has specific transformation properties under CP that differ from

the Composite Higgs model. This can be understood in the following way: if we for a moment

assume that CP is unbroken, we can set α = 0. As we will see, the way we parametrise the

coupling between η and (Dirac) fermions can schematically be written as

ηF̄ (ceven + icoddγ5)F (4.9)

Clearly, for codd = 0, η behaves as a scalar, such that the trilinear interaction ηh2 is allowed by

the symmetry. However in the Composite Higgs case (codd , 0) where η behaves as a (partial)

pseudo-scalar, the term ηh2 breaks CP.

In contrast, the breaking of the enhanced custodial symmetry by taking θ , 0 does not have

such a direct impact on the predictions for perturbative reheating. It is expected to give rise to

mass mixing, i.e. terms of the form V 3 ci η h. Deviations from custodial symmetry in the Higgs

sector are rather constrained by low-energy data and it will therefore be practical to assume θ = 0

in the following. This choice corresponds to identifying the Higgs with the bi-doublet under the

subgroup SO(4) � SU (2)L × SU (2)R , and η with the singlet: 1 ⊕ 4 = (1,1) ⊕ (2,2).

As the scalar η does not couple to the SU (2)L gauge group, see (4.7), couplings to gauge

bosons do not help with generating a cubic term. The difference in dynamics between the different

vacua has to come from the couplings to fermions.

As an example, we implement the fermions in a 6 of SU(4) (corresponding to the vector

representation of SO(6)). Other options for fermion representations, such 4 and the 10, have their

own difficulties to address [116].

The 6 of SU(4) decomposes as (2,2) ⊕ (1,1) ⊕ (1,1) under SU(2)L × SU(2)R , such that we

can implement the fermions as [116]

Ψq =
1
2

*..
,

0 Q

−QT 0

+//
-

Ψu = Ψ+
u + εuΨ

−
u Ψ

±
u =

1
2

*..
,

±U 0

0 U

+//
-

(4.10a)

Ψq′ =
1
2

*..
,

0 Q′

−Q′T 0

+//
-

Ψd = Ψ+
d + εdΨ

−
d Ψ

±
d =

1
2

*..
,

±D 0

0 D

+//
-

(4.10b)

where Q = (0,qL ), Q′ = (qL ,0), U = uRiσ2 and D = dRiσ2. The εu,d are complex free

parameters defining the embedding of the quarks into the singlets, and consecutively the CP-

assignment of η. In the limit |εu,d | = 1 the fermions have definite charges under U (1)η and it is

therefore expected that η is massless.
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The coupling of Σ to fermions will be of the form

Le f f =
∑

r=q,u,q′,d

[
Π

r
0 Tr[Ψ̄r /pΨr ] + Πr

1 Tr
[
Ψ̄rΣ

]
/pTr[ΨrΣ

†]
]

+ MuTr
[
Ψ̄qΣ

]
Tr[ΨuΣ

†] + MdTr
[
Ψ̄q′Σ

]
Tr[ΨdΣ

†] (4.11)

4.2.3 Composite Higgs limit: CP assignment in the fermion sector

As we show in the Appendix, loops of fermions and gauge bosons will generate a Coleman Wein-

berg potential at one loop, which will be of the form [116]

V (κ,h) = a1h2 + λh4 + |κ |2
(
a2 + a3h2 + a4 |κ |

2
)

where κ =

√
f 2 − η2 − h2 + iε tη(4.12)

where ai are dimensionful constants dependent on the form factors of the UV theory as given in

the Appendix. Here ε t is the parameter that defines the embedding of the up-type fermion in the

global symmetry and determines the mass and CP assignment of η, as we demonstrated above. It

is easy to see that the scenario in which ε t is real is distinctly different from the case in which it

can be complex. For ε t ∈ R, we find that η behaves like a pseudoscalar (codd , 0 and ceven = 0 in

(4.9)), and we can expand (4.12) to obtain the following CP and custodially symmetric potential:

V (η,h) = m2
hh2 + λhh4 + m2

ηη
2 + ληη

4 + c4η
2h2 (4.13)

Here, in terms of the parameters above we have defined

m2
h = (a1 + a3 − a2 − a4) (4.14a)

λh = (λ − a3 + a4) (4.14b)

m2
η = (1 − ε2

t )(−a2 − a4) (4.14c)

λη = (1 − ε2
t )2a4 (4.14d)

c4 = (1 − ε2
t )(−a3 + 2a4) (4.14e)

And as announced the trilinear term is absent. If we allow for complex coupling to fermions,

ε t = εRE
t + iε IMt (4.15)

where ε IMt , 0, we will find η has ceven , 0 in (4.9).5 In this case the scalar potential will include

a trilinear interaction and a tadpole for η, both of which multiply ε IMt ,

V = ctadη + m2
ηη

2 + c̃ηη3 + ληη
4 + m2

hh2 + λhh4 + c3ηh2 + c4η
2h2 (4.16)

5In the boundary case εRE
t = 0, ε IMt , 0 η behaves like a scalar.
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where

c̃η = 4a4ε
IM
t

(
1 − (εRE

t )2
) √

f 2 − η2 − h2 (4.17a)

c3 = (4a4 − 2a3)(ε IM )
√

f 2 − η2 − h2 (4.17b)

c4 = (a3 − 2a4)(εRE )2 − 4a4(ε IM )2 + 2a4 − a3 (4.17c)

and the other coefficients remain as above. The tadpole and trilinear interaction term violate CP

for εRE
t , 0. We may shift away the tadpole ctadη by an appropriate vacuum expectation value

vη , which solves,

ctad + 2m2
ηvη + 3c̃ηv2

η + 4ληv3
η = 0 (4.18)

this will also shift the parameters,

m2
η → m2

η + 3c̃ηvη + 6ληv2
η (4.19a)

c̃η → c̃η + 4vηλη (4.19b)

m2
h → m2

h + c3vη + c4v
2
η (4.19c)

c3 → c3 + 2c4vη (4.19d)

In terms of the shifted parameters the potential becomes

V = m2
ηη

2 + c̃ηη3 + ληη
4 + m2

hh2 + λhh4 + c3ηh2 + c4η
2h2 (4.20)

This potential has the required form to be a suitable candidate for inflation followed by perturbative

reheating.

4.2.4 Spontaneously broken CP by the inflaton (α , 0)

For the Composite Higgs vacuum discussed above α = 0 and CP is unbroken by the vacuum. Here

we relax this constraint we introduce CP breaking in the model to

0 < α 6 1/2π (4.21)

For α = 1/2π both fields have a quadratic term and do not interact. For the open interval, 0 < α <

1/2π, we indeed find the same potential as at the end of the previous sector, to fourth order in the

fields:

V (η,h) = m2
ηη

2 + c̃ηη3 + ληη
4 + m2

hh2 + λhh4 + c3ηh2 + c4η
2h2 . (4.22)
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The coefficients are in general nonzero, except for at α = 1/4π. We refer the reader to the Ap-

pendix for a discussion, and an example computation. Importantly, in these vacua we are not

required to introduce explicit CP breaking by a complex fermion representation to get the η-odd

terms as we were for α = 0, that is, we may have either ∈ R or ∈ C.

In these vacua the η field couples directly to fermions as

(η ūR /p uR) ∈ L, (4.23)

an effect proportional to (1 − ε2
u ). Indeed, is seen that the odd powers of η in the potential (which

includes the trilinear coupling) are multiplied by (1 − ε2
u ) and (b1 − b2 ε

2
u ) for some constants bi

(from the linear and the second order expansion of the logarithm respectively). This combination

plays the role that ε IMt played in the previous section, as an order parameter of CP breaking.

As expected from periodicity, the two quadrants 0 < α < 1/2π and 1/2π < α < π are

equivalent, modulo a redefinition of the fields:6

η → −η and h → −h (4.24)

We demonstrate this explicitly in the appendix.

We will finish this section with a comment on the appearance domain walls [146]. As we

introduced the possibility of breaking CP spontaneously, one may be worried that these will be

present, and become energetically important. However, if the vaccuum breaks CP spontaneously,

it does it at the scale of symmetry breaking f . But, as we will see in the next section, we expect

inflation to occur below this scale, Λin f < f , hence the domain walls will be diluted during

inflation.

4.3 Inflation

In this section we study inflation due to the field η. As the scale of inflation will turn out to be

much larger than the electroweak scale, the Higgs field would be stabilized at the minimum of

its potential during inflation, and so we set h = 0. Hence, we neglect the dynamics of the Higgs

field during inflation, and the model is effectively single field. We can canonically normalise the

inflationary sector via the field redefinition

φ = f arcsin (η/ f ) , (4.25)

6Because of custodial symmetry, which shows up here as a Z2 symmetry for h, h → −h is a symmetry over the

whole range. The latter substitution is therefore made for free.
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such that the scalar potential becomes, in the unbroken CP limit,

VCP (φ) = m2
η f 2 sin(φ/ f )2 + λη f 4 sin(φ/ f )4 . (4.26)

This is equivalent to the Goldstone Inflation [63] potential

V (φ) = Λ4
(
sin2(φ/ f ) − β̃ sin4(φ/ f )

)
, (4.27)

if we identify

λη f 4 = − β̃Λ4 and m2
η f 2 = Λ4.

In figure 4.2 we show a plot of the form of the potential, for the moment with c̃η/m2
η = 0. This

model would lead to inflation with f < Mp (where Mp is the reduced planck mass) and spectral

index within the bounds allowed by Planck (at 2σ) [14],7

ns = [.948 − .982] for β̃ . 1/2 → λη f 2 & −1/2m2
η

As in Goldstone Inflation, the sensitivity to the exact value of β̃ that predicts the right spectral

Figure 4.2: Form of the potential for λη f 2 & −1/2m2
η .

index is a function of ( f /Mp )2:

4 × 10−4
(

f
Mp

)2

< δ β̃ < 3 × 10−3
(

f
Mp

)2

where δ β̃ = 1/2 − β̃ (4.28)

As in [63], this feeds into the amount of tuning needed in the model, which we will discuss below.

7Of course, the factor in the relation between the parameters mη and λη depends on their normalization chosen in

the scalar potential. In particular, a canonical mass term would eliminate the factor 1/2.
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Likewise, the model has the initial condition for the start of slow roll as a function of ( f /Mp )2,

φi − 1/2π f = (0.020 − 0.025)
(

f
Mp

)2

Mp . (4.29)

As in all models of Goldstone Inflation, the tensor to scalar ratio will also be subject to fine tuning,

but its value is generically very small:

r ≈ 10−6( f /Mp )4 . (4.30)

A measurement of CMB tensor modes would fix the symmetry breaking scale f (as well as the

scale of inflation, as usual) in our model.

In the CP breaking fermion implementation described above there is an additional term

V��CP (φ) = c̃η sin3(φ/ f )
√

1 − sin2(φ/ f ) = c̃η sin3(φ/ f ) cos(φ/ f ) . (4.31)

This term imposes modulations on the potential with period π f , as seen from Fig. 4.2. Increasing

the CP breaking in the model corresponds to increasing the value of the tensor to scalar ratio r .

The bound r < 0.1 gives

c̃η 6 O(10−1) m2
η f 2 . (4.32)

The effect of the CP breaking term is illustrated for an order of magnitude below this bound in

Fig. 4.3.

The scale of inflation is related to the amplitude of the scalar power spectrum, as measured by

Planck [14],

As =
Λ4

24π2M4
pε

=
e3.089

1010 (4.33)

where ε is the first slow roll parameter. For our case (Eq. ((4.30)), where r = 16ε in the slow roll

approximation) this implies

Λ ≈ 1015
(

f
Mp

)
GeV . (4.34)

Interestingly, we can see from this relation that the onset of inflation is related to the scale of the

symmetry breaking: Λ ∼ 10−3 f . That is, fitting to the CMB data implies a mass gap of roughly

three orders of magnitude between the two scales.

4.3.1 Tuning

Following convention, tuning can be expressed numerically using the Barbieri-Giudice [38] para-

metrization as follows

∆ =
�����
∂ log ns

∂ log β̃

�����
=

�����
β̃

ns

∂ ns

∂ β̃

�����
≈ [8.1 − 8.5]

(
f

Mp

)−2

(4.35)
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Figure 4.3: Model predictions against the Planck 2015 2σ bounds [14]. For convenience, we have set Mp = 1 here. In green: the

TT spectrum and polarisation data at low-` (lowP); in pink the combined spectra TT, TE, EE +lowP.

-� -� -� -� �
�

�

��

��

�����(�/��)

�����Δ

Figure 4.4: Fine-tuning, numerically defined as in (4.35).

See Fig. 4.4 below. It is seen that the parameters are sensitive to the square of the ratio of scales.

However, the relation β̃ ≈ .5 can be seen as a consequence of a symmetry in the sector respons-

ible for the breaking of the global symmetry SO(6)/SO(5).8 This would agree with naturalness

in the ’t Hooft interpretation. In this case the fact that the small deviation δ β̃ is sensitive to the

relation of the scales f and Mp implies that a symmetry in the sector is broken at the same time as

SO(6)/SO(5). In [63] we related this symmetry to the spectrum of resonances in the composite

sector.

When we identify the other scalar resonance with the Higgs, we introduce a second source

of tuning, between the electroweak scale v and the symmetry breaking scale f . This source of

8This would lead to a mass-matching situation [100], [101], [138], in which resonances from different sectors

acquire degenerate masses, such as in Cured Higgsless [103], [104] and Holographic Technicolor [98], [99] models.
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tuning coincides with the tuning in the Minimal and the Next to Minimal Composite Higgs model,

and is a function of (v/ f )2, see for instance [19]. As this is a tuning of the parameters in the

Higgs potential, which are independent combinations of the input parameters (the form factors,

vacuum angles, and fermion representation), this tuning is independent and additive. The Barbieri-

Giudice function will then take the form ∆total = c1
(
Mp/ f

)2
+ c2 ( f /v)2, where c1 and c2 are

O(1) constants. This suggests that the Barbieri-Giudice function is minimized for ∆total( f 2 =

4√c1/c2 Mpv) ∼ 1016, which is a large, but technically natural fine-tuning.

4.4 Reheating

At the end of inflation, the inflation field approaches, overshoots and begins to oscillate about the

minimum of its potential. At this stage, the universe is completely dominated by the zero–mode

of the oscillating inflaton field 〈φ(t)〉. Interactions with the higgs field, which we have so far neg-

lected, lead to dissipation which drains energy from 〈φ(t)〉, and excites relativistic higgs particles.

We refer to these collective processes as reheating (see e.g., [142], [147] for reviews). The calcula-

tion that we present below section is semi–classical: we treat the inflaton condensate as a classical

source in the mode equations for the quantum fluctuations of the higgs field. This treatment neg-

lects many of the complicated processes which are present during the reheating phase, such as

thermal corrections, re–scatterings of the produced higgs particles on the inflaton condensate, and

the thermalisation process. As we discuss at the end of this section, these effects can in general

modify the rate of decay of the condensate. Our approach does however provide an estimate for

the perturbative decay rate of 〈φ(t)〉 into higgs particles, and allows us to estimate the reheating

temperature TR .

4.4.1 Equations ofMotion

To begin, we study the classical inflaton background. As a first approximation, we neglect in-

teractions with the higgs field and set h = 0. As before, the inflaton sector can be canonically

normalised through the field redefinition η(t) = f sin(φ(t)/ f ). We neglect excitations of the in-

flaton field, δφ, and so for simplicity label the zero–mode φ(t) ≡ 〈φ(t)〉 which obeys the usual

Klein Gordon equation:

φ̈ + 3H φ̇ +
∂V
∂φ
|h=0 = 0 , (4.36)
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where the potential is given by (4.27). After inflation, the inflaton field approaches, overshoots and

begins to oscillate about its minimum. This region of the potential, where φ/ f � 1, is essentially

quadratic:

Vh=0(φ) ≈
1
2

m2
φφ

2 , m2
φ ≡ 2m2

η ≈ 2 × 10−14
(

f
MP

)2

M2
P , (4.37)

where we have used the Planck constraint on the amplitude of scalar power spectrum (4.34) to

determine the mass mφ in terms of the scale f . To describe the oscillations, notice that (4.36) can

be written as
d2

dt2 (a3/2φ) +

[
m2
φ −

(
9
4

H2 +
3
2

Ḣ
)]

(a3/2φ) = 0 . (4.38)

At the onset of oscillation, m2
φ � H2, Ḣ and under this condition, (4.38) has the damped sinusoidal

solution:

φ(t) =
Φ0

a3/2(t)
sin

(
mφt + ϑ

)
, Φ0 ≈ 0.6

(
f

MP

)
MP . (4.39)

The numerical value for the initial amplitude, Φ0, was obtained by matching the above solution

with an exact numerical integration of Eq.(4.36) – see the left hand panel of Fig. 4.5 for illustration.

Subscript zero denotes evaluation at the onset of oscillations (start of reheating), and we set a0 = 1.

The scale factor, averaged over many oscillations, grows as a(t) ∼ t2/3, while the energy density

of the field decreases as:

ρφ (t) =
1
2
φ̇2(t) +

1
2

m2
φφ

2(t) '
m2
φΦ

2
0

2a3 . (4.40)

We see that the vacuum energy of the inflaton field exists as spatially coherent oscillations, which

can be interpreted as a condensate of non–relativistic zero–momentum φ–particles. The amplitude

of the oscillations decay due to the Hubble expansion and also due production of higgs particles.

We can obtain an estimate for this particle production rate by considering propagation of higgs

fluctuations, hk , in the background of the classical inflaton condensate.

We begin by canonically normalising the higgs kinetic sector (given by (4.7)) by performing

the following field redefinition:

∂µ χ(x) =

√
f 2 − η2(t)

f 2 − η2(t) − h2(x)
∂µh(x) , (4.41)

such that

h(x) = f cos(φ(t)/ f ) sin χ̂(x) , χ̂(x) ≡
χ(x)

f cos2(φ(t)/ f )
. (4.42)

We will henceforth drop the space–time labels and write χ = χ(x), φ = φ(t): it is to be understood

that the higgs is inhomogeneous, whilst the inflaton condensate is homogeneous, and described by
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(4.39). Under these field redefinitions we obtain:

L = −
1
2
∂µ χ∂

µ χ −
1
2

[
1 + sin2(φ/ f )tan2 χ̂

]
∂µφ∂

µφ −
[
sin(φ/ f ) tan χ̂

]
∂µ χ∂

µφ − V (φ, χ) ,

(4.43)

where the potential is given by (4.22). The canonically normalised higgs equation of motion is

obtained by varying the action with respect to χ:

χ̈ −
∇2

a2 χ + 3H χ̇ = −
∂V (φ, χ)
∂ χ

+ sin (φ/ f ) tan χ̂
∂V (φ)
∂φ

|h=0 −
φ̇2

f 2 K (φ, χ) , (4.44)

where

K (φ, χ) ≡
f sin χ̂ cos2 χ̂ cos4(φ/ f ) + 2χcos χ̂ sin2(φ/ f ) − f sin χ̂ cos(φ/ f ) + f sin χ̂ cos3(φ/ f )

cos3(φ/ f ) cos3 χ̂
.(4.45)

In deriving (4.44), we have used (4.36) to eliminate φ̈ which arises from the variation of the action.

The task at hand is to solve (4.44) given the inflaton background (4.39). This is made tractable by

expanding the RHS of (4.44) about φ/ f = 0, and about χ/ f = 0:

χ̈ −
∇2

a2 χ + 3H χ̇ ≈ −

[
m2
χ + σφ + g2φ2 +

φ̇2

f 2

]
χ + · · · , (4.46)

where we have defined

m2
χ ≡ 2m2

h , σ ≡ 2c3 , g2 ≡ 2
[
m2

h/ f 2 − m2
η/ f 2 + c4

]
. (4.47)

The expansion in φ/ f is permitted since the amplitude of the inflaton oscillations are small with

respect to the scale f : Φ0/a3/2(t) ∼ 0.6 f /a3/2(t). The expansion in χ/ f is permitted since

we assume that the higgs field is stabilised at the minimum of its potential throughout inflation,

〈χ(x, t)〉 = 0. Furthermore we consider perturbative reheating only: we restrict ourselves to

regions of parameter space where the coupling constants σ and g2 are small enough such that res-

onant enhancement of higgs modes is not possible. This ensures that χ � f throughout reheating.

We will discuss the conditions for perturbative reheating shortly. Notice that inflaton mass, m2
η ,

and the higgs mass, m2
h
, enter the definition of the coupling g2: their presence may be traced back

to canonical normalisation of the higgs kinetic term.

For the analysis of (4.46) it is convenient to define a co–moving field

µk (τ) ≡ a(τ) χk (τ) , (4.48)

and to work in conformal time, which is related to cosmic time by an integral over the scale factor:

t(τ) =

∫ τ

τ0

dτ′a(τ′) . (4.49)
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Figure 4.5: Left panel: Comparison between the exact numerical solution of (4.36) and the approximate analytic solution (4.39).

Right panel: Comparison between the exact ‘mass’ (the coefficient of the term linear in χ of (4.44)) and M2
eff

(t ) as

defined in (4.53).

According to standard arguments, we may decompose this field into creation and annihilation

operators:

µ(τ,x) =

∫
d3k

(2π)3/2

[
akµk (τ) + a†

−kµ
∗
k (τ)

]
eik·x , (4.50)

where the mode functions obey

µ′′k (τ) + ω2
k (τ)µk (τ) = 0 , (4.51)

and where a prime denotes differentiation with respect to conformal time. The time dependent

frequency is given by

ω2
k (τ) ≡ k2 + a2M2

eff (τ) −
a′′

a
,

a′′

a
=

a2

6M2
P

(
ρφ − 3Pφ

)
, (4.52)

where Pφ ' 0 is the pressure of the field, and we have defined the effective mass:

M2
eff (t) ≡ m2

χ +
σΦ0

a3/2(t)
sin(mφt + ϑ) +

g2Φ2
0

a3(t)
sin2(mφt + ϑ) +

Φ2
0m2

φ

f 2a3(t)
cos2(mφt + ϑ) . (4.53)

The final term on the RHS of M2
eff

(t) is the leading contribution from φ̇2/ f 2: we have neglected

terms which decay faster than a−3. In the right panel of Fig. 4.5, we plot the effective mass against

the coefficient of the term linear in χ of (4.44), which demonstrates the accuracy of this expansion.

Equations of the type (4.51), with time dependent mass (4.53) have been extensively studied in
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the context of (p)reheating after inflation. For certain regions of {σ,g2,Φ0} parameter space, the

mode functions experience exponential growth as parametric instability develops, a phenomenon

known as parametric resonance [142], [144], [148], [149]. To be specific, when any one of the

three terms in M2
eff

(t) is dominant, the oscillator equation (4.51) may written

d2µk

dz2 +
[
Ak − 2qi cos(2z)

]
µk = 0 , (4.54)

q0 ≡
Φ2

0

4 f 2a3 , q3 ≡
σΦ0

m2
φa3/2

, q4 ≡
g2Φ2

0

4m2
φa3

, Ak ≡
k2 + m2

χ

m2
φa2

+ 2q(0,4) , (4.55)

following a time redefinition of the form z ≡ mφt+const. Here we have ignored terms proportional

to H/mφ (recall that H � mφ during reheating). (4.54) is known as the Mathieu equation, which

is known to possess instability bands for certain values of Ak and qi . For qi � 1, a large region of

parameter space is unstable and broad parametric resonance can develop. Throughout this paper

we restrict ourselves to regions of parameter space where qi � 1, such that non–perturbative

preheating processes are negligible. With Φ0 ≈ 0.6 f , we find q0 = 0.09, and so parametric

instability cannot be triggered by this term. Meanwhile, q3,4 � 1 requires:

σ �
m2
φ

Φ0
, g2 �

(
mφ

Φ0

)2

, (4.56)

or, in terms of the original parameters of the potential (4.22):

c3 � m2
η/ f , m2

h/ f 2 + c4 � 10m2
η/ f 2 . (4.57)

This relation for the smallness of the CP breaking term c3 in terms of the inflaton mass is consist-

ent with the similar relation for cη found in the previous section. Likewise, the constraint on c4 is

consistent with our expectations from the computation of the potential, as can be verified with the

appendix. We always ensure that the above bounds are respected, and do not consider parametric

resonance in this paper.

If we regard the inflaton condensate φ to be a collection of zero–momentum inflaton ‘particles’,

then the effective mass M2
eff

(t) has a physical interpretation in terms of Feynman diagrams:

These diagrams describe the three–leg, − 1
2σφχ

2, and four–leg, − 1
2g

2φ2 χ2, interaction terms

which reside in the canonically normalised Lagrangian – (4.43). Since we have not quantised the

inflaton, there are no φ–propagators, which allows for tree–level diagrams only. These diagrams

describe the perturbative decay of a single inflaton ‘particle’ with mass mφ into two higgs particles

of comoving momentum k ∼ amφ/2, and the annihilation of a pair of φ ‘particles’ into pair of

χ particles with comoving momentum k ∼ amφ respectively. We use the term inflaton ‘particle’
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Figure 4.6: Inflaton-Higgs couplings in SO(6)/SO(5).

rather loosely here, since what we are really describing is creation of higgs particles from a clas-

sical inflaton condensate. This diagrammatic representation does however offer intuition for the

physical processes at work.

4.4.2 Bogoliubov Calculation

We wish to solve (4.51) with frequency (4.52). Our calculation closely follows that of Ref. [144].

First, we notice that since the inflaton condensate behaves like a collection of non–relativistic

particles with zero pressure, Pφ ≈ 0, and so we have a′′/a ≈ 2a2H2. Therefore, for the modes

k2 ∼ a2m2
φ which we expect to be produced, we can safely neglect a′′/a, given that H � mφ

during reheating. In the adiabatic representation, the solution to the mode equation (4.51) may be

written in the WKB form (see eg. [142], [144]):

µk (τ) =
αk (τ)
√

2ωk (τ)
e−iΨk (τ) +

βk (τ)
√

2ωk (τ)
e+iΨk (τ) , (4.58)

where the accumulated phase is given by

Ψk (τ′) ≡
∫ τ′

τ0

dτ′′ωk (τ′′) . (4.59)

(4.58) is a solution of (4.51) provided that the Bogoliubov coefficients satisfy the following coupled

equations:

α′k (τ) = βk (τ)
w′
k

(τ)

2wk (τ)
e+2iΨk (τ) , β′k (τ) = αk (τ)

w′
k

(τ)

2wk (τ)
e−2iΨk (τ) , (4.60)

which also implies that:

µ′k (τ) = −iαk (τ)

√
wk (τ)

2
e−iΨk (τ) + i βk (τ)

√
wk (τ)

2
e+iΨk (τ) . (4.61)
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The wronskian condition, W [µk (t), µ∗
k

(t)] = i, demands that the Bogoliubov coefficients are nor-

malised as |αk (t) |2 − | βk (t) |2 = 1. In this basis, the Hamiltonian of the χ field is instantaneously

diagonalised. The single particle mode occupation number nk , is defined as the energy of the

mode, 1
2 |µ
′
k
|2 + 1

2ω
2
k
|µk |

2, divided by the frequency of the mode:

nk (τ) =
|µ′

k
(τ) |2 + ω2

k
(τ) |µk (τ) |2

2ωk (τ)
−

1
2

= | βk (τ) |2 . (4.62)

The −1/2 corresponds to subtraction of the zero–point energy, and the last equality is obtained

via substitution of the WKB solution (4.58). In terms of the classical mode functions, creation

of higgs particles occurs due to departure from the initial positive–frequency solution: the initial

conditions therefore at τ = τ0 (the start of reheating) are then αk = 1, βk = 0, and so nk (τ0) = 0.

Since we work in the perturbative regime specified by (4.56) the mode occupation numbers remain

small, | βk (τ) |2 � 1, and so we can iterate (4.60) to obtain

βk (τ) ≈
∫ τ

τ0

dτ′
ω′
k

(τ′)

2ωk (τ′)
e−2iΨk (τ′) . (4.63)

In the perturbative regime we can approximate

Ψk (τ′) ≈ k
∫ τ′

τ0

dτ′′

√
1 +

(
a(τ′′)mχ

k

)2

, (4.64)

whilst for the frequency we have

ω′
k

2ωk
≈

a3/2(τ′)Φ0mφ

4k2



σ + 2Φ0(g2 − m2
φ/ f 2)a−3/2(τ′)sin(mφt(τ′) + ϑ)

1 + a2(τ′)m2
χ/k2


cos(mφt(τ′) + ϑ) ,

(4.65)

where we have neglected terms containing derivatives of the scale factor. Inserting these results

into (4.63) gives:

βk (τ) =
σΦ0mφ

8k2

∫ τ

τ0

dτ′ a3/2(τ′)
1 + a2(τ′)m2

χ/k2

[
e+iψ−3,k (τ′)

+ e−iψ
+
3,k (τ′)

]

+
(g2 − m2

φ/ f 2)Φ2
0mφ

8ik2

∫ τ

τ0

dτ′

1 + a2(τ′)m2
χ/k2

[
e+iψ−4,k (τ′)

− e−iψ
+
4,k (τ′)

]
, (4.66)

where we have defined the phases

ψ±3,k (τ) ≡ ±2Ψk (τ) + mφt(τ) + ϑ , ψ±4,k (τ) ≡ ±2Ψk (τ) + 2(mφt(τ) + ϑ) . (4.67)

As discussed in Ref. [144], (see also [142]), the integrals in (4.66) can be evaluated using the

method of stationary phase: they are dominated near the instants τ3,k and τ4,k where

d
dτ
ψ−3,k (τ) |τ3,k = 0 , ⇒ k =

1
2

mφa(τ3,k )
√

1 − 4δ2
M ,

d
dτ
ψ−4,k (τ) |τ4,k = 0 , ⇒ k = mφa(τ4,k )

√
1 − δ2

M , (4.68)
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where we have defined δM ≡ mχ/mφ . For the 3–leg interaction, the above result corresponds to

the creation of pair of higgs particles with momentum k ∼ amφ/2 from an inflaton with mass mφ

at the instant τ3,k of the resonance between the mode k and the inflaton condensate. A similar

interpretation may be given for the 4–leg interaction. Upon performing the integrals, we find:

nk (τ) =
πσ2Φ2

0mφ

32k4

(
1 − 4δ2

M

) a3(τ3,k )
a′(τ3,k )

+
π(g2 − m2

φ/ f 2)4Φ2
0mφ

64k4

(
1 − δ2

M

)
a′(τ4,k )

+
πσ(g2 − m2

φ/ f 2)Φ3
0mφ

32k4

√
2
(
1 − 4δ2

M

) (
1 − δ2

M

)
I(τ3,k τ4,k ) , (4.69)

where we have defined

I(τ3,k τ4,k ) ≡

√
a3(τ3,k )

a′(τ3,k )a′(τ4,k )
sin

[
ψ−4,k (τ4,k ) − ψ−3,k (τ3,k )

]
. (4.70)

As discussed in [144], the oscillatory term I(τ3,k τ4,k ) represents the interference between the two

decay channels (φ→ χ χ and φφ→ χ χ) of the inflaton. It is present because we have treated the

inflaton as a classical oscillating source, and not an honest collection of particles.

4.4.3 Boltzmann Equations

Since mφ � mχ the higgs particles are relativistic when produced. This means we can effectively

treat them as a bath of radiation with g∗ number of degrees of freedom. We define the co–moving

energy density in the higgs field as

a4ρχ ≡

∫ ∞

0

d3k
(2π)3 ωknk

=
σ2Φ2

0mφ

64π

(
1 − 4δ2

M

) ∫ ∞

0

dk
k2

√
k2 + a2(τ)m2

χ

a3(τ3,k )
a′(τ3,k )

+
(g2 − m2

φ/ f 2)2Φ4
0mφ

128π

(
1 − δ2

M

) ∫ ∞

0

dk
k2

√
k2 + a2(τ)m2

χ
1

a′(τ4,k )

+
σ(g2 − m2

φ/ f 2)Φ3
0mφ

64π

√
2
(
1 − 4δ2

M

) (
1 − δ2

M

) ∫ ∞

0

dk
k2

√
k2 + a2(τ)m2

χ I(τ3,k τ4,k ) .

(4.71)

At first glance these integrals appear divergent. This however is not the case, as can be seen from

the requirement that the higgs particles be produced perturbatively. (4.68) enforces:

1
2

mφa0

√
1 − 4δ2

M < k <
1
2

mφa(τ)
√

1 − 4δ2
M , for φ→ χ χ (4.72)

mφa0

√
1 − δ2

M < k < mφa(τ)
√

1 − δ2
M , for φφ→ χ χ . (4.73)

Hence, the limits of the first and the third integrals on the RHS of (4.71) should be replaced by

the limits of (4.72), whist those of the second integral should be replaced by (4.73). Once again
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neglecting derivatives of a, we obtain

d
dτ

(
a4ρχ

)
≈ a2 σ

2Φ2
0mφ

64π

√
1 − 4δ2

M + a−1
(g2 − m2

φ/ f 2)2Φ4
0mφ

128π

√
1 − δ2

M , (4.74)

where we have discarded the interference term since it vanishes when averaged over time. Repla-

cing factors of a using ρφ ≈ m2
φΦ

2
0/(2a3), we are left with the familiar Boltzmann equation:

a−4 d
dt

(
a4ρχ

)
≈ Γφ→χχ ρφ + 2

[σφφ→χχv]v=0

mφ
ρ2
φ , (4.75)

where

Γφ→χχ =
σ2

32πmφ

√√
1 − 4

m2
χ

m2
φ

, [σφφ→χχv]v=0 =
(g2 − m2

φ/ f 2)2

64πm2
φ

√√
1 −

m2
χ

m2
φ

. (4.76)

The decay rate Γφ→χχ agrees with the tree–level result obtained from QFT. The cross section

σφφ→χχ also agrees with QFT so long as the Feynman amplitude is evaluated at zero relative

velocity, v = 0.

Note that φ, as a CP odd particle, could have couplings to vector bosons as an axion. For

example, it could have couplings to gluons and photons as

LCP =
cγα

f
φ Fµν F̃µν +

cγαs

f
φTrGµνG̃µν (4.77)

as well as to W and Z bosons. These couplings could be generated by triangle diagrams involving

fermionic degrees of freedom coupled to SM gauge interactions. Whether these are present or

not is a highly-model dependent question, whereas we have focused in this paper on interactions

between the Goldstone bosons (the Higgs and the inflaton). We refer the reader to Refs. [150],

[151] for a thorough analysis of preheating due to non-zero couplings to gauge bosons.

Conservation of energy demands a−3 d
dt

(
a3ρφ

)
= −a−4 d

dt

(
a4ρχ

)
, which gives

d
dt

(
a3ρφ

)
= −Γφ→χχ

(
a3ρφ

)
− 2

[σφφ→χχv]v=0

mφa3

(
a3ρφ

)2
. (4.78)

If the trilinear interaction is absent (σ = 0) we can integrate (4.78) to show that a3ρφ → const

as t → ∞. This means that the inflaton does not completely decay: volume dilution due to the

Hubble expansion takes place faster than the annihilation process φφ→ χ χ can drain energy from

the inflaton condensate. In order to successfully reheat the universe, the trilinear coupling must

be present. Indeed, in the absence of φφ → χ χ annihilations, (if g2 = m2
φ/ f 2) we can integrate

(4.78) to show that a3ρφ ∼ e−Γt : in a time of order Γ−1
φ→χχ the inflaton has decayed completely.

For the remainder of this section we set g2 = m2
φ/ f 2 in order to place order–of–magnitude bounds

on the model parameters.
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Up to this point we have neglected the decay of the higgs to the SM. The dominant channel is

χ → bb̄, with width

Γχ→bb̄ =
3mχ

8π

(
mb

vχ

)2
*
,
1 −

4m2
b

m2
χ

+
-

3/2

∼ 5 MeV . (4.79)

Since mχ � mb , the bb̄ decay products are produced relativistically:

a−4 d
dt

(
a4ρb

)
= Γχ→bb̄ ρb . (4.80)

With φφ→ χ χ processes absent, energy conservation demands:

a−4 d
dt

(
a4ρχ

)
≈ Γφ→χχ ρφ − Γχ→bb̄ ρb , a−3 d

dt

(
a3ρφ

)
= −Γφ→χχ ρφ . (4.81)

(4.80) and (4.81) are the final Boltzmann equations describing perturbative reheating in the

composite higgs model. The approximations involved in their derivation will begin to break down

when the energy density of the decay products becomes comparable to the energy density of the

inflaton condensate. Furthermore, as pointed out in [152], and discussed in detail in [153], [154],

Γφ→χχ develops a temperature dependence due to interactions (which we have not accounted for)

between the decay products and the condensate. Indeed, as the decay products thermalise via

scatterings and further decays, they acquire a temperature dependent ‘plasma’ mass mp (T ) of the

order ∼ λT2, where λ is a typical coupling constant for a particle in the plasma. The presence of

these ‘thermal’ masses prevent decay of the condensate if m2
φ ≈ λT2: the decay process becomes

kinematically forbidden. An important consequence of these finite temperature corrections is that

the reheating temperature, TR (the temperature at the onset of the radiation dominated phase) is

generally higher compared to the naive estimate obtained via setting Γ = H (see the following

section).

In addition to the effect of thermal masses, the produced χ particles can ‘rescatter’ off the

oscillating condensate 〈φ〉 to excite δφ particles. This opens another possible channel for decay

of the condensate. We illustrate this schematically in Fig. 4.7 for the case of the 4–leg interaction.

In the language of our Bogoliubov calculation, this process corresponds to the term χ2φδφ which

results from expanding φ about the mean field: φ(x) = φ(t) +δφ(x). There is also a sub–dominant

process of the type χ χ → δφδφ, which is phase space suppressed. Such processes, which we have

neglected in this work, will promote the decay rate Γφ→χχ from a constant to a function of time

and temperature. To include these processes would require recourse to non–equilibrium thermal

field theory, which is beyond the scope of this paper. Having acknowledged these caveats, we use

the Boltzmann Equations (4.80) and (4.81) to place rough bounds on our model parameters only.
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Figure 4.7: The vacuum energy of the inflaton field exists as spatially coherent oscillations, which can be interpreted as a con-

densate of non-relativistic zero momentum φ particles. The condensate decays via three-leg, − 1
2σφχ

2, and four-leg,

− 1
2 g

2φ2χ2 interactions. The Bogoliubov calculation presnted in section 4.4.2 treats the condensate as a classical

source, and so ’rescattering’ processes between the produced Higgs particles and the condensate which excite δφ

particles are ignored.

4.4.4 Parameter Constraints from Reheating

Combining the Planck constraint on the inflaton mass, (4.37), with the bound (4.56), we find that

for reheating to proceed perturbatively:(
σ

MP

)2

� 10−27
(

f
MP

)2

, (4.82)

where we have used Φ0 ∼ 0.6 f . This provides an upper bound on the trilinear coupling σ in

terms of the scale f . A lower bound on σ can be obtained from the condition that the universe

be totally radiation dominated before the BBN epoch. This requires knowledge of the reheating

temperature TR , which may be estimated as follows: Reheating completes at time tc , when the

Hubble rate H2 = ρ/3M2
P ∼ t−2

c drops below the decay rate Γφ→χχ . The density of the universe at

this moment is then

ρ(tc ) ' 3M2
P H2(tc ) = 3M2

PΓ
2
φ→χχ . (4.83)

Provided that the higgs particles are produced in thermal and chemical equilibrium, the temper-

ature of the higgs plasma is TR . Treating this ultrarelativistic gas of particles with Bose–Einstein
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statistics, the energy density of the universe in thermal equilibrium is then

ρ(TR) '
(
π2

30

)
g∗T4

R , (4.84)

where the factor g∗(TR) ∼ 102−103 depends on the number of ultrarelativistic degrees of freedom.

Comparing Eqs. (4.83) and (4.84) we arrive at

TR ≈ 0.1
√
Γφ→χχMP (4.85)

In order not to spoil the success of BBN, the universe must be completely dominated by re-

lativistic particles before the BBN epoch. This constrains the reheating temperature to be TR &

5 MeV [155], [156], which in turn implies9:

Γφ→χχ & 10−40MP . (4.86)

Combining Eqs. (4.37),(4.76),(4.86) we find:(
σ

MP

)2

& 10−45
(

f
MP

)
. (4.87)

Finally, combining this temperature bound with the bound for perturbative reheating Eq. (4.82),

we find:

f � 10−18MP . (4.88)

4.5 TeV Inflaton and its consequences

With the inflaton and Higgs doublet originated by the breaking of the same global symmetry, the

Coleman-Weinberg contributions to their potential are naturally of the same order. Therefore, we

would expect the mass of both particles to be not far from each other, mη ∼ mh , as well as similar

size couplings. From perturbative reheating we require mη > 2mh as well as a condition on the

cubic coupling Eq.( 4.57), namely

c3

f
�

(
mη

f

)2

, (4.89)

which is technically natural as the parameter c3 breaks the symmetry η → −η.

Inflation would also impose a bound on the mass of the inflaton respect to the scale of breaking,

see (4.34) and (4.3), mη/ f ' 10−6, a hierarchy which is again technically natural. On the other

9We note that since TR also enters expressions for the primordial observables, the lower bound on Γφ→χχ given by

(4.86) may be tightened if our model were to be confronted with CMB data – see for example Ref. [157].
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hand, in our inflationary potential we could have added a constant term, a phenomenological

cosmological constant which could change this condition and allow closer values of f and mη .

One should also keep in mind that inflation cannot last to reach energies around the MeV

when the very predictive theory of Big-Bang Nucleosynthesis takes on [158]. Another constraint

to keep in mind is the generation of baryon asymmetry in the Universe, which in the context of

Electroweak Baryogenesis (see Ref. [159] and references therein) would require inflation to end

some time before the electroweak scale. One additional attractive feature of this model is that the

conditions for reheating, which in turn require CP violation, could be helpful for baryogenesis,

e.g. see Ref. [160] for a study of electroweak baryogenesis in a similar model.

If the inflaton is heavier than the Higgs doublet, one can integrate it out leading to an Effective

Field Theory (EFT). In Ref. [161] one can find a more general discussion on the EFT due the

presence of a singlet like η, and its phenomenology.

Interestingly, the cubic term c3 is the main player in the reheating discussion as well as the

collider phenomenology. The cubic term, when the Higgs acquires a vacuum expectation value

v, would lead to a mixing of the singlet with the Higgs, resulting in two mass eigenstates with an

admixture of η and h. The mixing angle is given by

sθ '
c3v

m2
η

(4.90)

The mixing, then, changes the way the physical SM-like Higgs behaves, as well as induces

new couplings of the heavy η-like state to vector bosons and fermions. Detailed studies from

Electroweak Precision Tests (EWPT) at LEP, as well as current constraints from the measurement

of the Higgs properties imposes strong bounds on this mixing. Moreover, the heavier state can be

searched for directly and the reach for these searches is related to the amount of mixing.

In Figure 4.8, we show current and future constraints on these parameters. They include 1.)

a χ2 fit to Higgs coupling measurements [162]–[171], 2.) The 95% C.L. exclusion prospects for

LHC at 14 TeV with L = 300 fb−1 and L = 3000 fb−1, by assuming that future measurements of

Higgs signal strengths will be centered at the SM value, and use the projected CMS sensitivities,

3.) A fit to the oblique parameters S,T,U using the best-fit values and standard deviations from

the global analysis of the GFitter Group [172], and finally 4.) Future limits on EW precision

observables from e+e− colliders (see e.g. [173]), ILC and FCC-ee.

The corrections to S and T from the inflaton-Higgs mixing given by

∆S =
1
π

s2
θ


−HS

*
,

m2
h

m2
Z

+
-

+ HS
*
,

m2
η

m2
Z

+
-



∆T =
g2

16 π2 c2
W αEM

s2
θ


−HT

*
,

m2
h

m2
Z

+
-

+ HT
*
,

m2
η

m2
Z

+
-


(4.91)
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Figure 4.8: Present and future 95% C.L. exclusion limits in the (mη, c3) plane from ATLAS and CMS measurements of Higgs

signal strengths (denoted by Run1 indirect) and from EWPT (denoted by LEP). Values above the red-dashed line are ex-

cluded at 95% C.L. by the combination (EWPT and Higgs signal strength). Above the green line may also be excluded

by constraints from heavy scalar searches at LHC, although these limits could be evaded in the presence of new decay

modes for η. Also shown is the projected exclusion reach from Higgs signal strengths at the 14 TeV run of LHC with

L = 300 fb−1and at HL-LHC with L = 3000 fb−1 in blue, as well as projections from measurements of the S and T

oblique parameters with ILC-GigaZ and FCC-ee in dashed-blue.

with the functions HS (x) and HT (x) defined in Appendix C of [174].

Regarding future colliders, we assumed a SM best-fit value, and interpreted the ILC GigaZ

program’s expected precision is σS = 0.017 and σT = 0.022 [172], [175] and the FCC-ee pro-

spects of σS = 0.007 and σT = 0.004 [176]. As one can see, colliders are sensitive to relatively

large values of the triple coupling, whereas perturbative reheating is sensitive to lower values of

the coupling.

Finally, note that in the explicit CP breaking scenario, there would be direct couplings of the

inflaton to SM fermions (ε f ) an these would be proportional to c3, see (4.17b).

4.6 Conclusions

We have presented a single model that can realise inflation, perturbative reheating, and electroweak

symmetry breaking in a natural way. In the minimal model the five Goldstone bosons from the

global symmetry breaking SO(6) ∼ SU (4) → SO(5) ∼ Sp(4) play the role of a Higgs doublet and
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an inflaton singlet. We have argued that a trilinear coupling between the latter (η) and two Higgs

bosons (h) is necessary for successful reheating, and shown under which condition this term can

be present. In particular, the model needs to have broken CP, which can be realised spontaneously

or explicitly. A detailed derivation of the scalar potential for h and η arising from loops of SU (2)

gauge bosons and fermions in the 6 of SU (4) was given in the first section.

The CMB results [14] allow us relate the parameters in our model, and explain mass hierarch-

ies. A range of energy scales for inflation, or equivalently for the mass of the inflaton was presented

in the second section. To the merit of the model, none of the relevant scales are expected to be

affected by quantum gravity.

The motive of perturbative reheating further fixes the parameters in the potential. For a par-

ticular range of parameter space (given by Eq. (4.57)) parametric instability is not triggered

and non-perturbative effects are subdominant. With a Bogoliubov calculation [144] we find the

single particle occupation numbers, and as usual the evolution of the fields is established using

Boltzmann equations. We finished this section by an exposition of the numerical constraints on

the reheating temperature and the model parameters from perturbativity (4.86)-(4.88).

We have also explored the possibility of TeV values of the inflaton mass and coupling to the

Higgs. As an effective theory, the inflaton’s effect at low energies is inducing a mixing effect in the

Higgs particle properties, an effect which is constrained by precise electroweak data as well as the

LHC. We discussed the future reach for colliders on the inflaton-Higgs parameter space, finding

that while perturbative reheating explores a region of small mixing, colliders are most sensitive to

large values of this parameter.

The model building presented in this paper hints at interesting opportunities for further studies.

The fact that the model is able to address and connect normally unrelated cosmological events in a

natural way makes that the considerations here may indeed tempt the reader to further inquiry, in

the light of recent developments. As mentioned in the introduction, the discussion of cosmological

relaxation by an interplay between the Higgs and a pGB [17] offers an attractive example. Other

directions include an investigation of the changed evolution of the Higgs dynamics and its implic-

ations on electroweak stability [141], possible UV completions for which the present theory is a

boundary condition at low energy (on which we commented in [63]), as well as the implications

of CP violation and the inflaton degree of freedom for electroweak baryonenesis.
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Appendix A: Computation of the scalar potential

Composite Higgs vacuum

At one loop, the Coleman-Weinberg potential due to up-type quarks coupling to Σ as in (4.11) is

given by10

V (h, η) = −2Nc

∫
d4p

(2π)4 log
(
p2
ΠuLΠuR −

��ΠuLuR
��2
)

(4.92)

where we have used new form factors for simplicity, which are just rotations of the original para-

meters in the Lagrangian (4.11):

ΠuL =
Π

q
0 + Π

q′

0

2
− Π

q
1

Tr[Ψ̄qΣ]/pTr[ΨqΣ
†]

ūL /puL
(4.93a)

ΠuR = Πu
0 − Π

u
1

Tr[Ψ̄uΣ]/pTr[ΨuΣ
†]

ūR/puR
(4.93b)

ΠuLuR = Mu
1

Tr[Ψ̄qΣ]Tr[ΨuΣ
†]

ūLuR
(4.93c)

as explained in the main text, we refer to Ψ as the fermion multiplets in the 6 of SU(4).

If we assume the ratios form factors fall off rapidly enough with momentum to make the

integrals converge, we may expand the logarithms to find the following Lagrangian to fourth order

in the fields:11

V (φ,h) = a1h2 + λh4 + |κ |2
(
a2 + a3h2 + a4 |κ |

2
)

(4.94)

10In general there will be contributions from down type quarks and gauge bosons as well. In fact, it should be noted

that at least one other fermion generation is needed to make the CP assignment physical [177]. However, these will not

lead to different couplings in the scalar potential, and here we take them to be sub-leading corrections to the coefficients.
11This is a common assumption, motivated by the fact that higher order terms are expected to be suppressed by

squares of ratios of form factors. In other words, this falls under the same assumption as the convergence of the

integrals.
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where κ =
√

f 2 − h2 − η2 + iε tη. The coefficients are given by integrals over the form factors

of the fields contributing to the CW potential: the gauge bosons, and the up-type and down-type

fermions. If we assume the contributions are dominated by the heaviest up-type quark, which we

will call the top as in the Standard Model (while this quark is not necessarily identified with the

Standard Model top), the coefficients are given by:

a1 = −2 f 2Nc

∫
d4p

(2π)4

1
Π0

(
−4Πq

1Π
t
0

)
(4.95a)

a2 = −2 f 2Nc

∫
d4p

(2π)4

1
Π0

(
−2Πq

0Π
t
1 − 2Πq′

1 Π
t
1

)
(4.95b)

a3 = −2Nc

∫
d4p

(2π)4

1
Π0

*.
,
−

4|M1
t |

2

p2 +
8Πq

0Π
q
1Π

t
0Π

t
1

Π0
+

8Πq
1Π

q′

1 Π
t
0Π

t
1

Π0
+ 16Πq

1Π
t
1

+/
-

(4.95c)

a4 = −2Nc

∫
d4p

(2π)4

1
Π0

*.
,

2(Πq
0 )2(Πt

1)2

Π0
+

4Πq
0Π

q′

1 (Πt
1)2

Π0
+

2(Πq′

1 )2(Πt
1)2

Π0

+/
-

(4.95d)

λ = −2Nc

∫
d4p

(2π)4

1
Π0

*
,

8(Πq
1 )2(Πt

0)2

Π0
+
-

(4.95e)

where Π0 is the relevant field independent factor:

Π0 =
1
2
Π

t
0

(
Π

q
0 + Π

q′

0

)
(4.96)

i.e., a function of the different propagation terms for the fermions, the first terms in the fermion

Lagrangian (4.11). Also, note we have defined

p→ p/ f (4.97)

for simplicity.

CP breaking vacuum

Here we repeat the exercise in the previous section to compute the coefficients of the CP breaking

vacuum potential,

V (η,h) = ctadη + m2
ηη

2 + c̃ηη3 + ληη
4 + m2

hh2 + λhh4 + c3ηh2 + c4η
2h2 (4.98)

The coefficients ci are in general nonzero, except for at α = 1/4π. Below we compute the para-

meters in an example with α = 1/3π case. As argued in the main text, the α = 2/3π case can be
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obtained from this by making the substitution η → −η in the potential:12

ctad = −2Nc f 3
∫

d4p
(2π)4

1
2Π0

√
3ηΠt

1((εu − 4)εu − 1)(Πq
0 + Π

q′

0 ) (4.99a)

m2
η = −2Nc f 2

∫
d4p

(2π)4

1
Π0

*.
,

3Πt
1((εu − 4)εu − 1)2(Πq

0 + Π
q′

0 )2

8Π0
− Πt

1

(
ε2
u − 1

)
(Πq

0 + Π
q′

0 ))+/
-

(4.99b)

c̃η = −2Nc f
∫

d4p
(2π)4

*.
,
−

√
3η3(Πt

1)2(ε2
u − 1)((εu − 4)εu − 1)(Πq

0 + Π
q′

0 )
(
Π

q
0 + Π

q′

0

)
2Π2

0

+/
-

(4.99c)

λη = −2Nc

∫
d4p

(2π)4

(Πt
1)2

(
ε2
u − 1

)2 (
Π

q
0 + Π

q′

0

)2

2Π2
0

(4.99d)

m2
h = −2Nc

∫
d4p

(2π)4

(
p2

(
Πt

1

(
ε2
u + 3

)
(Πq

0 + 2Πq
1 + Π

q′

0 ) − 2Πq
1Π

t
0

)
− 2M2

t

(
ε2
u + 3

))
2p2Π0

(4.99e)

λh = −2Nc f 2
∫

d4p
(2π)4

(
ε2
u + 3

) (
M2

q − p2Π
q
1Π

t
1

)
p2Π0

+

(
Πt

1

(
ε2
u + 3

)
(Πq

0 + 2Πq
1 + Π

q′

0 ) − 2Πq
1Π

t
0

)2

8Π2
0

(4.99f)

c3 = −2Nc f
∫

d4p
(2π)4

*.
,

√
3((εu − 4)εu − 1)

(
M2

t − p2Π
q
1Π

t
1

)
p2Π0

(4.99g)

+

√
3Πt

1((εu − 4)εu − 1)(Πq
0 + Π

q′

0 )
(
Πt

1

(
ε2
u + 3

)
(Πq

0 + 2Πq
1 + Π

q′

0 ) − 2Πq
1Π

t
0

)
4Π2

0

+/
-

(4.99h)

c4 = −2Nc

∫
d4p

(2π)4
*.
,

2
(
ε2
u − 1

) (
p2Π

q
1Π

t
1 − M2

t

)
p2Π0

(4.99i)

−
η2h2Πt

1

(
ε2
u − 1

)
(Πq

0 + Π
q′

0 )
(
Πt

1

(
ε2
u + 3

)
(Πq

0 + 2Πq
1 + Π

q′

0 ) − 2Πq
1Π

t
0

)
2Π2

0

+/
-

(4.99j)

where again Π0 is the relevant field independent factor, here given by:

Π0 =
1
2

(Πq
0 + Π

q′

0 )
(
Π

t
0 − 2Πt

1

(
ε2
u + 1

))
(4.100)

As explained in the main text, the tadpole term can be shifted away by an appropriate shift in the

other parameters, corresponding to a vev for η:

ctad + 2m2
ηvη + 3c̃ηv2

η + 4ληv3
η = 0

12These are again the parameters before shifting away the tadpole term, in exactly the same way as above.
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The new parameters will then be given in terms of the quoted parameters as

m2
η → m2

η + 3c̃ηvη + 6ληv2
η (4.101a)

c̃η → c̃η + 4vηλη (4.101b)

m2
h → c3vη + c4v

2
η (4.101c)

c3 → c3 + 2c4vη (4.101d)
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We explore Goldstone boson potentials in non-compact cosets of the form SO(n,1)/SO(n). We

employ a geometric approach to find the scalar potential, and focus on the conditions under which

it is compact in the large field limit. We show that such a potential is found for a specific misalign-

ment of the vacuum. This result has applications in different contexts, such as in Composite Higgs

scenarios and theories for the Early Universe. We work out an example of inflation based on a

non-compact coset which makes predictions which are consistent with the current observational

data.
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5.1 Introduction

Goldstone bosons are popular actors in theories beyond the Standard Model of Particle Physics.

They resolve the dichotomy between the aptness of scalars in cosmological theories and the theor-

etical hierarchy problems that fundamental scalars suffer. The study of their Effective Field Theory

is further motivated by their omnipresence in UV theories with global symmetries, such as models

for axions [178]–[180], and supersymmetry [181]–[183].

There is a vast body of literature which focuses on Goldstone bosons in compact cosets, that

is, on theories in which a compact global symmetry breaks spontaneously to its compact sub-

group. An example is the Minimal Composite Higgs Model MCHM5, in which SO(5)→SO(4).

In theories of this kind the Goldstone bosons lie on a compact manifold, such as the hypersphere

S4 ' SO(5)/SO(4). Their interactions are invariant under a shift symmetry, such that a potential

is forbidden at all orders in perturbation theory.

In the presence of a source of explicit breaking of the global group the shift symmetry is

broken, and a potential for the pseudo-Goldstone Bosons (pGBs) may be generated. Such an

explicit breaking can be mediated by external gauge bosons which gauge part of the global group,

as is common in Composite Higgs models, or by couplings to instantons which do not respect the

symmetry, as is the case with axions. The resulting potential will have a remnant periodic shift

symmetry, stabilizing it against quantum corrections. Examples which employ such a scenario are

Composite Higgs models[19], Natural Inflation [37], Goldstone Inflation [63], [64], and composite

dark matter [184].

Goldstone bosons in non-compact cosets have received far less attention. Of particular interest

are models in which a non-compact group breaks to its compact subgroup. There are indications

that such cosets could give promising models of inflation [185] and electroweak symmetry break-

ing [186]. Like in the compact case, these cosets may address hierarchy problems by giving rise

to stable scalar potentials.

Here we will explore the idea that scalar sectors can be studied in a coordinate-invariant way,

something that has recently attracted some attention in the context of Higgs Effective Field Theory

[186]–[188]. It has been observed [189] that results in non-compact cosets may be extrapolated

from corresponding compact cosets by considering imaginary parameters, such that the corres-

ponding manifold undergoes a Wick rotation. Here we instead follow a more general, geometric

approach to study the potential of the Goldstone bosons of the hyperbolic space SO(n,1)/SO(n). In

section 5.2 we describe the different models for hyperboloids that are of interest to this analysis.

The shift symmetry in the non-compact case will also be broken in the presence of explicit
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symmetry breaking effects, misaligned with the original breaking. For SO(n,1)/SO(n) the remnant

symmetry takes the form of a discrete scaling symmetry. We will parametrize the explicit breaking

without choosing a particular particle physics interpretation, bearing in mind the different ways of

breaking the shift symmetry. Our approach generalizes the analysis of [185] in the context of

inflation, and provides an alternative description of the discussion of Goldstone bosons in non-

compact cosets in [188]. The models are intimately related to models with a negatively curved

field space resulting from a non-minimal coupling to gravity, such as Starobinsky inflation [190],

supergravity models with particular Kähler potentials [191], and (more generally) the α-attractor

models [192]–[194].

The focus of this paper will be on the conditions under which the Goldstone boson potential

is bounded, i.e. confined to lie in a specific region in the limit in which the field excursion of the

scalars is large. This is of particular interest for inflationary model building, as in typical scenarios

one has to explain the gap between the magnitude of the scalar potential (V 1/4 ∼ 1015 GeV) and

the large field excursion (∆φ ∼ Mp), highlighted by the familiar Lyth bound [16]. In section

5.3 we will show that a bounded potential is generated when the symmetry breaking parameters

transform as a null vector of the hyperbolic space.

In the last section we will discuss the application of this class of models to inflation. We will

explore the inflationary predictions, and compare them to data from the Planck collaboration [14].

5.2 Models of hyperbolic space

Below the scale of the spontaneous breaking SO(n,1)→SO(n), the relevant degrees of freedom are

a set of Goldstone bosons which lie on the non-compact, n-dimensional hyperbolic sheet given

by SO(n,1)/SO(n). In the absence of any additional sources of breaking, the Goldstone bosons

respect a shift symmetry which forbids a scalar potential. They will obtain a potential when they

couple to a source of explicit breaking. This is for instance the case if a smaller group is gauged by

external bosons such as in Composite Higgs models. This case is well studied; it has for instance

recently been discussed in [186] in the context of Higgs Effective Field Theory. Here we use a less

restrictive approach, in which we focus on the transformation properties of the symmetry breaking

parameters which couple to the Goldstone bosons.

The coset SO(n,1)/SO(n) can be described as a sheet of a space-like hyperbola,1 defined by the

1The terminology in this chapter is adopted often in analogy with space-time symmetries, however, the reader is

assured that we consider internal symmetries only in this paper.
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interval

L = {(x1, ..., xn+1)) : x2
n+1 − x2

n − x2
n−1 − ... − x2

1 = `2 and xn+1 > 0} (5.1)

ds2
L = ηαβdxαdxβ = dx2

n+1 −

n∑
i=1

dx2
i (5.2)

where xn+1 > 0. This space is associated with the Hermitian form or dot product with the signature

(n,1),

gµν xµ yν = xµ yµ = −x1y1 + x2y2 + ... + xn yn (5.3)

It has constant negative curvature,

R f ieldspace = −n(1 + n) < 0. (5.4)

As we will see in the following, the model "L" is not always the most transparent choice to

describe the features of the Goldstone potential. An alternative choice is the Poincare disk model,

which is defined by

J = {(x1, ..., xn+1)) : x2
1 + ... + x2

n+1 = `2 and xn+1 > 0} (5.5)

ds2
J =

dx2
n+1 +

∑n
i=1 dx2

i

x2
n+1

(5.6)

This model is related to "L" by a central projection from the point (−`,0, ...,0),

L → J, (x1, ..., xn , xn+1) 7→ (x1`/xn+1, ..., xn`/xn+1, `
2/xn+1) (5.7)

Another choice is the Poincare Half plane model, which reduces to the well known complex

projective coordinates often employed in supersymmetry for n = 2. The Half plane model is

defined by

H = {(1, x2, ..., xn+1)) : xn+1 > 0} (5.8)

ds2
H =

dx2
n+1 +

∑n
i=2 dx2

i

x2
n+1

(5.9)

The Half plane model can in turn be related to J by a central projection from the point (0, ...,0, `),

i.e. the mapping

J → H, (x1, ..., xn , xn+1) 7→ (−`, 2`x2/(x1 − `), ..., 2`xn+1/(x1 − `)) (5.10)

From this, it follows that "H" and "L" are related by the mapping,

L → H, (x1, ..., xn , xn+1) 7→ (−`, 2`x2/(x1 − xn+1), ..., 2`2/(x1 − xn+1)) (5.11)
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Figure 5.1: Models of the coset in two dimensions. An arbitrary point on the hyperbola, {x
L

1 , x
L

n+1 } (in black), can be projected it

unto the sphere x2
1 + x2

n+1 = 1 from the point {−1, 0}. This gives the coordinates in the Disk model, {xJ
1 , x

J
n+1 } =




x
L

1

x
L

n+1

, 1
x
L

n+1




(in blue). A further projection from the point {1, 0} onto the line x1 = −1 gives the coordinates in "H"

{xH
1 , x

H
n+1 } =



−1, 2/ *

,
x
L

n+1
*
,
1 −

x
L

1

x
L

n+1

+
-

+
-




(in pink).

5.3 Compact potentials from non-compact cosets

Before the second symmetry breaking, the Goldstone bosons are massless and their target metric

is described by the hyperboloid SO(n,1)/SO(n). In the previous section we have shown different

ways to describe such a field space.

A potential for the Goldstone bosons of the coset SO(n,1)/SO(n) is generated in the presence

of symmetry breaking effects, misaligned from the original vacuum. We use a very minimal

description, based on particular choices for the transformation properties of the symmetry breaking

parameters under the higher dimensional Lorentz group. Here we derive which transformation

properties lead to a compact potential, i.e., a potential that does not diverge in the large field limit.

First we observe the following,

x
L

n+1 − x
L

1 = 2`2/xH
n+1 (5.12)

(and as we saw above xH
n+1 > 0). This combination corresponds to an (n+1) dimensional null

vector of SO(n,1). Notice that the symmetry always allows one to rotate the spacelike components

of a vector into the x1 direction. Thus if the symmetry breaking parameters transform as a null

vector, that is,

VL =
Vµ xµ

`
= V *

,

xL
n+1 − xL

1

`
+
-

(5.13)
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where V is just the normalization of the vector, we recover compactness in the “H" coordinates,

VH =
2`V
xH
n+1

. (5.14)

The theory is then defined by this potential and the target metric in “H", such that (dropping the

superscripts)

L = Lkin − V =
f 2

4
dx2

2 + ... + dx2
n+1

x2
n+1

−
V1

xn+1
(5.15)

As this Lagrangian is invariant under a shift symmetry for all xk (k , n + 1), it is seen that one

can always find stationary points where xk is constant. In particular, it is always possible to find

a field space trajectory for which only xn+1 evolves. In that light, we may canonically normalize

xn+1 in terms of the field φ,

φ =
f
√

2
log xn+1 (5.16)

such that we arrive at the negative exponential potential

L =
1
2

(∂φ)2 − V1e−
√

2φ/ f (5.17)

Note that the positivity of xn+1 guarantees that φ is a real direction and that −∞ < φ 6 ∞.
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Figure 5.2: Mapping of a transformation in two dimensions. It is seen that a time-like vector from an arbitrary point on the hyper-

bolic manifold will map to a finite projection in the model "H".

Similarly, a timelike vector is mapped to its inverse by L → J,

x
L

n+1 = `2/xJ
n+1 (5.18)

Following similar steps in this simpler example we arrive at the same result

L =
1
2

(∂φ)2 − V1e−
√

2φ/ f (5.19)
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Note that this exponential potential respects a classical scale invariance, under which

φ→ φ + ε, xµ → xµeε/
√

2 f . (5.20)

and the action is just rescaled by e
√

2ε/ f .

In general, the transformation rule of the symmetry breaking parameters allows for a constant

term and higher order terms as well, suppressed by the relevant scale Λ. If the symmetry breaking

effects can be parametrized in terms of a single vector Vµ which couples linearly to the Goldstones,

higher order terms can be built from invariants of the form Vµ xµ , such that,

VL = V0 +

∞∑
j=1

gj
(Vµ x

µ

` ) j

Λ4( j−1) = V0 +

∞∑
j=1

g̃jΛ
4
( xn+1 − x1

`

) j
(5.21)

where g̃j = gj (V1/Λ
4) j . The above steps will generate the exponential potential

V = V0 − V1e−
√

2φ/ f +

∞∑
j=2

(−1) j g̃jΛ4e− j
√

2φ/ f (5.22)

which also respects the scaling symmetry, as it must. Generically one expects the higher harmonics

to be of the size (V1/Λ
4) j [74]. In this limit (gj = 1), the potential can be resummed,

V = V0 + V1

∞∑
j=1

(
V1

Λ4

) j−1

(−e−
√

2φ/ f ) j = V0 − V1
e−
√

2φ/ f

1 + (V1/Λ4)e−
√

2φ/ f
(5.23)

We have seen that one may recover a bounded single field potential for any n, when the sym-

metry breaking dynamics transforms as a vector of SO(n,1). The field space dimensionality of the

potential is unsurprising when one considers that an SO(n) transformation may always rotate the

spacelike components along one direction, such that the only distinct cases are timelike, spacelike,

and null.

In the limit of exactly massless, non-interacting spectator fields, we do not expect the phe-

nomenology to be altered with respect to the single field case. Let us consider the massless Gold-

stone fields in (5.15), with the field redefinition

χi = xi f /
√

2 i , n + 1 (5.24)

such that GBs have mass dimension 1. As only derivative interactions respect the shift symmetry

for the (n-1) massless Goldstones, the lowest dimension couplings to fermions are dimension

d = 5 and of the form ∂µ χi ψ̄γ
µψ.

Another possibility is that the (n-1) massless Goldstones are "eaten" to become the longitudinal

components of gauge bosons, if the misalignment of the vacuum is due to gauging a subgroup of

SO(n,1). Examples of such subgroups are given in Table 5.1. The effective mass of these gauge

bosons will be set by the field φ, which may develop a vacuum expectation value, reminiscent of
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the Higgs mechanism. This vev is dependent on the form of the scalar potential, which is sensitive

to deviations from gj = 1, but is expected to be at least of the order of they symmetry breaking

scale f .

n Subgroup

9 SU(3)

8 SU(2)xSU(2)xU(1)

7 SU(2)xSU(2) or SO(4)

6 SU(2)xU(1)xU(1)

5 SU(2)xU(1)

4 SU(2) or SO(3)

3 U(1)xU(1)

2 U(1)

Table 5.1: Gauged subgroups such that n-1 Goldstone Bosons are "eaten".

5.4 Inflation along the compact direction

We have successfully constructed a compact potential in the large field limit based on the non-

compact cosets SO(n,1)/SO(n). This is a promising candidate for an inflationary theory, in which

one typically considers a large field excursion ∆φ ∼ Mp , while measurements of the density

perturbations forces the magnitude of the scalar potential to be orders of magnitude lower V 1/4/ε ∼

1015 GeV (where ε � 1 is the first slow roll parameter).

To interpret the pGB as the inflaton, consider the potential (5.23),

V = V0 + V1

∞∑
j=1

gj

(
V1

Λ4

) j−1

(−e−
√

2φ/ f ) j (5.25)

where here we phenomenologically impose V0 = Λ4 to render the potential positive definite. We

will work out an example with gj = 1 such that the potential is bounded from below, however, as

we will find below, the inflationary results only depend strongly on the first term in the sum and

are therefore insensitive to this assumption. With these assumptions, the potential can be rewritten

as

V =
Λ4

αe−
√

2φ/ f + 1
(5.26)
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where α = V1/Λ
4. This model can reproduce the inflationary predictions from the Planck data

[14]. It is, to a first approximation, a single field model, with slow roll parameters given by

ε =
M2

p

2

(
V ′(φ)
V (φ)

)2

=
M2

p

f 2

α2(
α + e

√
2φ/ f

)2 (5.27)

η = M2
p

(
V ′′(φ)
V (φ)

)
−

M2
p

2

(
V ′(φ)
V (φ)

)2

=
M2

p

f 2

α
(
α − 2e

√
2φ/ f

)
(
α + e

√
2φ/ f

)2 (5.28)

where Mp is the reduced Planck mass. It is seen that for a slow roll scenario to take place below the

Planck scale ( f < Mp), one has to be in the regime α � e
√

2φ/ f . Thus, to study inflation it would

have been sufficient to only consider the first term in the series expansion; we have considered the

resummed potential here to show that it is bounded from below.

Slow roll ends when ε → 1. We use this relation to estimate

φE =
log(α(β − 1))

√
2β

(5.29)

where β = ( f /Mp )−1. The number of e-foldings is then given by

N =
1

M2
p

∫ φe

φi

V (φ)
V ′(φ)

dφ (5.30)

In figure 5.3 we show the inflationary predictions of the model in terms of the spectral index

ns and the tensor- to scalar ratio r . The values that fall are allowed by the Planck data, and satisfy

f
Mp

< 1 (5.31)

lowering this ratio implies reducing the prediction for the tensor to scalar ratio, as is common to

Goldstone Inflation models [63], [64]. For comparison, we have also shown the predictions of the

Starobinsky model [190], in which the negative field space curvature results from a non-minimal

coupling to gravity.

As shown in the previous section, the other GB fields (χi = xi f /
√

2, i , n + 1 ) are exactly

massless in this model, and the inflationary dynamics is therefore completely dominated by the

inflaton field φ. It is well known that for light spectator fields with V ′′( χi )/H2 � 1 the non-

Gaussianity parameter fNL is suppressed and there is no observable effect on the inflationary

power spectrum. This effect can be checked explicitly for the current model (with a non-trivial

field space metric) using the methodology described in [195].

However, the effects of the massless GB fields may become manifest during reheating after the

slow-roll phase. The leading couplings between the massive field φ and other fields carry at least

dimension five. A two-body decay to Standard Model gauge bosons from a coupling to the field
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Figure 5.3: Inflationary predictions of ns versus r . The biggest dot marks the point N = 60, f ≈ Mp , the smaller dot marks

N = 50, f ≈ Mp . Lowering the scale f corresponds to lowering the tensor to scalar ratio, as indicated by the sweeping

lines in the plot. The teal dots represent the predictions of the Starobinsky model for N = 60, 50 respectively. In green

the TT spectrum and polarisation data at low-` (lowP) from [14]; in pink the combined spectra TT, TE, EE +lowP.

strength would for instance be given by the decay rate ΓφF2 = 1/(8π) |M|2/mφ ' 1/(8π)m3
φ/M

2
p .

When φ is interpreted as the inflaton, this may lower the reheat temperature, typically given by

Tr =
√
ΓφF2 Mp .

The coupled kinetic term (5.15) mixes the evolution of the scalar fields. As we will see, the

curved field-space metric may give rise to a backreaction on the inflaton dynamics that forms the

background for reheating. This effect is distinct from the usual Hubble induced mass for spectator

fields (for instance such as described in [196]). From the equations (5.15), (5.16), (5.24), the

equation of motion for the φ and χi fields are given by (conform [89])

χ̈i + 3H χ̇i −
2
√

2
f

χ̇i φ̇ = 0 (5.32)

φ̈ + 3H φ̇ +
2
√

2
f

e−
2
√

2φ
f ( χ̇i )2 +

√
2V1

f
e−

√
2φ
f = 0 (5.33)

Here the Hubble parameter is given by

H2 =
1

3M2
p

[
1
2

(
φ̇2 + e−

2
√

2φ
f χ̇2

i

)
+ V (φ)

]
(5.34)

where summation over the field index i is implied in both (5.33) and (5.34). The curved metric

becomes important in the regime H � φ̇/ f , for which the last term in (5.32) dominates. In this

limit the equation is solved by

χ̇i = c1 f 2e
2
√

2φ
f (5.35)

Inserting this result to solve the equation of motion for the inflaton, we find

φ̈ + 3H φ̇ + 2
√

2 (n − 1) f 3e
2
√

2φ
f +

√
2V1

f
e−

√
2φ
f = 0 (5.36)
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For instance, in the limit φ/ f � 1, this is solved by

φ/ f ≈ c1ei f̃
2
n

t
f + c2e−i f̃

2
n

t
f −
√

2
f̂ 4
n

f̃ 4
n

(5.37)

where we have defined

f̃ 4
n = 2 (n − 1) f 4 − V1/2 (5.38)

f̂ 4
n = 2 (n − 1) f 4 + V1. (5.39)

The coefficients c1 and c2 are set by the value of the field when inflation ends, usually estimated

as φ/ f |ε=1 = c1 + c2 −
√

2. For V1 � f 4 the oscillation simplifies to

φ/ f ≈ c1ei
√

2 (n−1) f t + c2e−i
√

2 (n−1) f t −
√

2 (5.40)

Thus we can see that the dimension of the symmetry breaking can play a role in the oscillation

period of the inflaton after inflation, and thus affect timescale of reheating.

5.5 Conclusions

Here we have considered a geometric approach to describe Goldstone bosons in the non-compact

coset SO(n,1)/SO(n), by considering different models to describe the hyperbolic field space. Since

the dynamics of the Goldstone bosons is specified by the target metric of this manifold, this ap-

proach lends itself to simple visualizations. The Goldstone bosons obtain a potential when their

shift symmetry is broken by terms that explicitely break SO(n,1) and couple to the Goldstone bo-

sons. This can also be described geometrically, and without choosing a specific model, in terms

of symmetry breaking parameters.

It was well known that pGB potentials based on compact cosets are compact, that is, the

resulting potential is bounded in the large field limit. Here we have shown for cosets describing

hyperbolic manifolds (in arbitrary dimensions) that the pGB potential can be compact as well. We

have shown two examples, in which the parameters that break the global symmetry transform like

a time-like or null vector of the hyperbolic space. This result is promising for models of inflation,

and gives predictions compatible with the data from Planck [14] as shown in Fig.5.3.

Our result cannot in general be extrapolated to the breaking of different non compact cosets.

For example, if one would consider the breaking of an indefinite orthogonal group to its maximal

compact subgroup, i.e. the coset SO(p,q)/SO(p), one will encounter ghost fields.

The geometric approach may also be applied in other contexts. The negative exponential

potential is reminiscent of the first ekpyrotic models [197], though this case which has one effective
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degree of freedom does not reproduce a (nearly) scale invariant spectrum of perturbations. It

remains an open question whether a similar result can be found for an effectively multifield model.

The techniques described here may also find an application in Higgs physics, complimentary

to recent HEFT studies in spaces with negative curvature [186]–[188]. Such a study may allow a

unified understanding of the dynamics in an arbitrary number of dimensions.
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Simple Composite Higgs models predict new vector-like fermions not too far from the elec-

troweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we

explore the holographic dual of the minimal model, MCHM5, to try and alleviate this tension

without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the

UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this

corresponds to increasing the number of “colours" N , thus increasing the decay constant of the

Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which is known to reduce

some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at

the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be

suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D.

We conclude that the 5D holographic realisation of the MCHM5 with a small UV cutoff is not in

tension with the current experimental data.
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6.1 Introduction

The discovery of the Higgs boson at LHC [5], [6], which so-far appears to be very Standard Model-

like, and the non observation of new physics raises the question of the origin of the electroweak

scale. Among some well motivated explanations of this scale, such as supersymmetry or extra

dimensions, is Higgs compositeness. In this framework the Higgs field is composed of some

particles interacting via a strongly interacting gauge theory which confines at the TeV scale. A

“little hierarchy" between the electroweak scale and the new physics scale can arise naturally if

the Higgs bound state is a pseudo-Goldstone boson of this new strongly interacting sector.

Despite difficulties in extracting predictions from strongly coupled gauge theories, several

methods have been developed. The most basic of these makes use of large N approximations in

SU (N ) gauge theories, and of the global symmetry structure in the low energy effective theory

[117], [198]–[204]. These methods, although useful, can be rather limited since precise calcula-

tions of form factors are impracticable. This means that one is unable to extract precise values of

physical quantities, such as the mass spectrum of particles and their couplings. For these reasons

it is difficult to constrain the models using experimental data.

It is possible to make progress beyond this using computational tools such as lattice simu-

lations, and while determining baryon states is still challenging, some studies in non-minimal

Composite Higgs models have been done regarding the structure of the meson states [131], [205],

[206]. In this paper we adopt another popular method, namely holography, which has been proven

useful to describe another strongly coupled theory, QCD at low energies [97], [207]–[210] as well

as a way to develop new, non-QCD like, models of Technicolor [98], [99], [211], [212]. In the

context of Composite Higgses, the pioneer papers of Contino et al. [19], [21], followed an intense

exploration of the Higgs as a holographic pseudo-Goldstone boson in warped extra-dimensions,

see e.g. [24]. Holography is a method based on the conjectured duality between strongly interact-

ing gauge theories in 4D and weakly coupled gravitational theories on a 5D AdS space. Since the

dual theory is weakly coupled, we are able to extract precise predictions for the form factors and

all masses and couplings in the model. Here the word precision comes from the determination of

4D observables in terms of the 5D model parameters after dimensional reduction, yet the relation

with the target strongly coupled 4D theory is still a conjecture and hence bound to an inherent

uncertainty.

The physics of 5D AdS spaces [213]–[216] was studied independently of its application to

composite Higgs models, and many of the results and constraints are the same in both cases. The

most important of these are the constraints imposed by the electroweak precision observables. In
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the absence of additional symmetries, large corrections to the T parameter imply a lower bound on

the spin-1 resonances of ∼ 8 TeV [217], [218]. Some ways of improving this bound are to account

for incalculable contributions to the operators in the 5D bulk [217], consider modifications to the

AdS geometry [218], employ models with more than one extra dimension [219], or introduce large

brane kinetic terms for gauge fields [220]. The most natural way to protect larger contributions to

the T parameter however, is to extend the gauge sector in the bulk to include a custodial symmetry

[221], [222]. This mechanism is employed in most realistic composite Higgs models, and allows

for spin-1 resonances with masses as low as about 2.5 TeV.

The space of composite Higgs models is parametrised by the global symmetry structure of

the low energy effective theory, and the embedding of the quarks and leptons into this global

symmetry. A large literature exists on the simplest composite Higgs models. We will focus on

what is known as the Minimal Composite Higgs Model (MCHM) [19], [21] with the quarks and

leptons embedded in fundamental representations of the global symmetry (MCHM5) [20], [223].

This model has a global SO(5) symmetry broken to SO(4) at the TeV scale, thus employing the

custodial protection of the T parameter. A detailed discussion of this model is reserved for section

2. For further details on the model-building approaches in Composite Higgs models see [46],

[115], [224]–[232].

Using the holographic approach it has been shown that it is possible to reproduce the correct

top mass, Higgs vev and Higgs mass quite naturally. However it is found that this usually requires

light top partners [20], [223]. Typically top partners below about 700 GeV are required, and this

is already in tension with bounds on vector-like quarks at the LHC [233], [234] which, for single

channel final states, already reach 900 GeV. For specific information on top partner phenomeno-

logy we refer the reader to [48], [235]–[246] and for general LHC phenomenology of the MCHM

to [177], [247]–[257].

There have been some attempts to alleviate the need for the light top partners in holographic

models. It has been shown that by embedding the leptons in larger representations, their contribu-

tions to the Higgs potential can help alleviate the need for light top partners [220]. Also using the

holographic realisations (although with a flat background), authors in [258] use larger embeddings

for the third generation to reduce the fine-tuning in the Higgs potential and allow for heavier top-

partners. More recently, models of composite Higgs with more than one breaking scale have been

studied in a 4D realisation, and it was found that this also allows for heavier top partners [259].

In general, tension from light top partners is not as much of a problem in the 4D explicit real-

isations as it is in the holographic models. In [199], [260] it has been demonstrated that one can

achieve heavy top partners while having a light Higgs and keeping the fine-tuning at acceptable
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values. The correspondence between the 4D and 5D models can be described in terms of a dic-

tionary from which one can relate the 4D and 5D parameters. One entry in this relates the number

of “colours" in the strongly coupled 4D gauge theory to the UV cutoff in the 5D AdS theory. In

this work we investigate how the top partner spectrum changes as we vary this parameter. The

effects of lowering this UV cutoff has been studied previously in 5D AdS scenarios in which the

Higgs is not a pseudo-Goldstone boson, these models are referred to as “Little Randall-Sundrum"

(LRS) models [261], [262]. It has been shown that these models reduce bounds on some flavour

and electroweak observables. In models of gauge-Higgs unification, lowering the UV cutoff al-

lows for lower values of v/ fπ while keeping the Kaluza-Klein (KK) scale constant. In the dual

theory this is related to an increase in the number of colours “N". In doing this we find that, while

keeping the KK scale and the Higgs and top quark masses at the observed values, we can increase

the mass of the lightest top resonance. This is easily understood in the KK picture, where lowering

the UV scale modifies the couplings of the KK modes. The LRS models have also found use in

recent attempts to explain the di-photon excess detected at ATLAS [263] and CMS [264] in terms

of a KK graviton or a radion [265], [266], where the KK graviton interpretation requires some

extra brane kinetic terms to explain its relatively small mass [267], [268]. One important aspect of

these LRS models is that there must be some dynamics which kills the graviton zero mode arising

from fluctuations of the background metric. Since we only use these holographic models as tools

for calculating effective theories for Composite Higgs models, this simply means that there is no

massless spin-2 composite state arising from the strongly coupled field theory which gives us the

Higgs.

Having constructed a MCHM without light top partners, we investigate deviations in the top

Yukawa coupling, motivated by the ongoing experimental effort at LHC to put bounds on devi-

ations from the SM prediction. In composite Higgs models the top Yukawa is generally suppressed

compared to the SM. If this effect is too large, it could lead to a potential conflict with current or

future data. We study the top Yukawa coupling in the 5D realisation and find that in some regions

of parameter space the deviations to the SM can be suppressed relative to what is expected from

pure (4D) symmetry arguments. This will be very relevant once the experimental precision on the

top Yukawa increases.

Overall, we find that our 5D holographic realisation of the MCHM5 with a smaller UV cutoff is

not in tension with current experimental data (both on the top partner spectrum and the top Yukawa

coupling). In fact, we find that having a lower 5D cut-off allows for a better comparison between

the holographic and 4D explicit realisations, and we find good agreement between the results. The

mechanisms we study that allow for heavier top partners and suppressed Yukawa deviations are
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very general, and in particular do not rely on any specific coset or fermion embedding. Therefore,

we expect that these results will generalise to non-minimal versions of composite Higgs, and it

will be interesting and fruitful to study this in detail in the future.

6.2 Overview of theMCHM5

Composite Higgs models posit a new strong sector with a global symmetry (SO(5) × U (1)X in

the MCHM) which spontaneously breaks to its subgroup (SO(4) ×U (1)X ), below its confinement

scale. The resulting four Goldstone bosons, transforming in the fundamental representation of

SO(4) (or equivalently as a bi-doublet of SU (2)L×SU (2)R), are identified with the Higgs doublet.

A tree-level potential for the Goldstone bosons is forbidden by shift-symmetry, but a potential is

generated radiatively if we introduce a further explicit breaking. This is done by gauging the

subgroup SU (2)L ×U (1)Y of SO(4) ×U (1)X and by choice of the fermion interaction structure.

The new strong sector adds heavy bound states, with masses around the breaking scale, to

the Standard Model field content. Mixing between the new states and the SM results in modified

couplings; constraints can be placed on these modifications normalised to the SM prediction. Most

stringently, electroweak precision tests put bounds the gauge boson self-energy parametrised by

the oblique parameters. In the MCHM the T-parameter is protected from large corrections due

to the custodial symmetry. However, as we will see, the S-parameter bounds form an important

constraint on the scale of new spin-1 resonances.

The spectrum of the spin-1 states is fixed by the symmetry breaking pattern, but there is some

freedom for the new spin- 1
2 states. One has to choose how to embed the standard model quarks

and leptons into the SO(5) × U (1)X symmetry, and how to introduce an explicit breaking. As

the third generation of the SM couples most strongly to the Higgs, we will focus on that for our

present work, as is customary.

Embedding the standard model SU (2)L doublets in bi-doublets of SU (2)L × SU (2)R protects

the Zbb̄ from large corrections. A simple way to do this is to embed each standard model quark

generation into two fundamentals of SO(5) ×U (1)X ,

ξq1 =



ψ ′
q1, (L,R)

ψq1, (L,R)

ηq1, (L,R)

 2
3

, ξq2 =



ψq2, (L,R)

ψ ′
q2, (L,R)

ηq2, (L,R)

− 1
3

(6.1)

where the ψ fields transform as a bi-doublet of SU (2)L × SU (2)R and the η fields transform as

singlets. The elements of each multiplet have left and right-handed components such that the new
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fermionic states couple to the gauge fields in a vector-like way. The Standard Model left-handed

doublets are identified with one linear combination of ψq1,L and ψq2,L , while the other linear

combination is made massive. The right-handed fields are identified with ηq1,R and ηq2,R . The

charge under U (1)X is assigned such that the fields carry the correct hypercharge, Y = T3
R + X .

As the SM is the low energy limit of the theory, the non-SM fields are assumed to have masses

of the order of the breaking scale. The SM fields have heavy spin- 1
2 partners with the same

quantum numbers. The spurious fields give rise to additional exotic multiplets with charges Y = 7
6

and Y = − 5
3 .

Fermionic contributions to the Higgs potential are introduced via linear SO(5) violating coup-

lings to heavy composite fermionic degrees of freedom. This mechanism is known as partial

compositeness. The same couplings are also responsible for generating the masses and Yukawa

couplings of the SM fields.

It has long been known that the 4D model described here has a dual in 5D gauge-Higgs uni-

fication. The strong coupling in the 4D action makes it impossible to compute the form factors

perturbatively, but the weak coupling in the dual allows one to calculate them explicitly. 5D meth-

ods therefore provide very useful analytical tools for studying strongly coupled 4D gauge theories.

In the next section we will describe in more detail a 5D model leading to the low energy physics

as the MCHM5 described in this section.

6.3 A holographic model

In this section we follow closely the calculational procedure of [223]. We will consider a 5D AdS

bulk space bounded by two 3-branes,

ds2 =
R2

r2 (ηµνdxµdxν − dr2), (6.2)

where r is a conformal co-ordinate related to the fifth spatial co-ordinate, y, by r = 1
k eky , in

which k is the curvature of the 5D space. The branes are located at r = R = 1/k (the UV) and

r = R′ = 1
MKK

∼ O(TeV−1) (the IR). The position of the IR brane is related to the scale of

spontaneous symmetry breaking in 4D.

In the MCHM dual, the 5D bulk has a local SO(5) × U (1)X gauge symmetry. To describe

the third quark generation, we require four fermion multiplets living in the 5D bulk, transforming

as fundamentals of SO(5). Two of these correspond to ξq1 and ξq2, with U (1)X charges 2
3 and

− 1
3 . And the other two, ξu and ξd , correspond to the composite states required by the partial
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compositeness mechanism. The boundary conditions of the 5D fields are assigned as follows,

Aa (++), Aâ (+−)

ξq1 =



ψ ′
q1(−+)

ψq1(++)

ηq1(−−)

 2
3

, ξq2 =



ψq2(++)

ψ ′
q2(−+)

ηq2(−−)

− 1
3

(6.3)

ξu =



ψ ′u (+−)

ψu (+−)

ηu (−+)

 2
3

, ξd =



ψd (+−)

ψ ′
d

(+−)

ηd (−+)

− 1
3

where Aa and Aâ are the SO(4) × U (1)X and broken generators, respectively. Here the + (−)

represents a Neumann (Dirichlet) boundary condition, and the order of these is to be understood

as (UV, IR). For the gauge fields we denote the boundary condition on the (µ, ν) component, while

the A5 components will have the opposite boundary conditions. For the fermion fields we denote

the boundary condition on the left-handed mode, while the right-handed modes will also have the

opposite boundary conditions. It follows that fermion fields with (++) will have a massless left-

handed component, while those with (−−) have a massless right-handed component, and fields

with (+−) or (−+) have no massless components. For the gauge fields, components with (++)

boundary conditions will have a massless Aµ mode, while components with (−−) will have a

massless A5 scalar mode, and again the components with (+−) or (−+) will not have any massless

component.

The SO(5)×U (1)X symmetry on the UV brane should be broken to the SM electroweak group

in such a way that Y = T3
R + X . In addition to this, the linear combination (ψq1,L − ψq2,L ) should

be given a mass on the UV brane so that only (ψq1,L +ψq2,L ) has a massless component. We then

identify the SM left-handed doublet as ψq = (ψq1,L + ψq2,L ). Taking all of this into account, the

low energy theory now looks very much like the SM before electroweak symmetry breaking.

6.3.1 The 5D gauge sector

In the 5D models the composite Higgs can be identified with the zero mode of the fifth component

of the 5D gauge fields, i.e. A0
5. The only A5 fields which have a massless zero mode are those

with (−−) boundary conditions. From eq. 6.3 it can be seen that these precisely correspond to

the SO(5)/SO(4) generators, as expected. With the description of the model given so far, the

dynamics of the 5D gauge sector is fixed. The only free parameters being the scale MKK and the
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ratio of UV/IR scales, ln(Ω). In principle we could also include brane kinetic terms, but these are

expected to be radiatively induced and we assume their effects to be negligible.

From the 5D model one can derive expressions for observables in the 4D composite Higgs

model. Firstly, the decay constant of the Goldstone fields is found to be,

f 2
π =

4M2
KK

g2 lnΩ
(6.4)

where g is the EW gauge coupling ∼ 0.65 and Ω = R′

R is the ratio of scales in the model. This

expression can be generalized to non-AdS warped metrics as in Refs. [100], [269], [270].

Since the Higgs doublet is a Goldstone field, its couplings are of the form sin(h/ fπ ). Once

electroweak symmetry is broken, obtaining the correct W and Z boson masses requires that

sin2
(

h
fπ

)
≡ s2

h =
v2

f 2
π

=
m2
W

M2
KK

ln(Ω). (6.5)

Thus deviations in the Higgs boson couplings can depend as much on the UV scale as they do

the IR. The holographic picture relates the 1/N (large number of “colours") expansion in a 4D

strongly coupled gauge theory to an expansion in a small 5D gauge coupling g5 in AdS space.

From this picture the following correspondence arises,

1
N

=
g2

5 k

16π2 , (6.6)

where g2
5 k = g2 ln(Ω). This allows us to think of the ratio of scales in the 5D theory as dual to

the number of colours in the 4D picture: larger N implies a smaller ln(Ω), which is also related to

the cutoff of the theory [270]. Note that there is no reason to keep Ω ∼ 1015, as is done in some

warped extra dimensional models to solve the Planck-electroweak hierarchy problem. We should

remember that the 5D NDA condition for calculability requires that g2 ln(Ω)
24π2 << 1, but even with

ln(Ω) = 40 this is ∼ 0.07. Lastly, an important bound on these models comes in the form of the

electroweak S-parameter, which can be expressed as,

S '
3
8

N
π

s2
h =

6π
g2 lnΩ

s2
h =

3πv2

2M2
KK

. (6.7)

The constraints for S are correlated with the T parameter: for an exact custodial symmetry, T = 0,

the bound is S < 0.02 (implying MKK > 3.8 TeV), allowing for maximal contribution to T it

relaxes to S < 0.3 (which is saturated for MKK ' 1 TeV). In this latter case the lightest gauge

KK modes are approximately at 3π
4 MKK ∼ 2.35 TeV. Note that as long as some hierarchy exists

between the IR and UV scales, the S-parameter only depends on the IR scale.
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6.3.2 The 5D quark sector

In the quark sector, to familiarise ourselves with the parameters of the model, it is instructive to

look at the 5D action for the fields,

SΦ =

∫
d4x

∫ R′

R

dr
√
|g |

∑
i=q,u

(
1
2

(
ξ̄iγ

M DM ξi − DM ξ̄iγ
M ξi

)
− ci k ξ̄iξi

)
, (6.8)

+

∫
d4x

(
mu ξ̄

b
q ξ

b
u + Mu ξ̄

s
qξ

s
u + h.c.

)
r=R′

where EM
a is the fünfbein, EM

a γa = γM , γa = (γµ , iγ5) are the gamma matrices in flat space,

and ωM is the spin connection. The b and s superscripts in the brane mixing terms denote the

bi-doublet and singlet components of the fermion multiplets. The IR brane masses control the

breaking of SO(5): for mu , 1/Mu it is broken explicitly, preserving the SO(4) subgroup.

Varying the 5D mass parameters (cq and cu) determines the degree of compositeness of the

fermionic operators. The field ξq has a left-handed zero mode and hence becomes more composite

as cq moves in a negative direction. Whereas ξu has a right-handed zero mode so becomes more

composite as cu moves in a positive direction. For cq = −cu the fields have the same degree of

compositeness. In the Kaluza-Klein picture these mass parameters control the localisation of any

massless zero modes in the spectrum: a greater composite component corresponds to more IR

localisation.

We have defined ψq = (ψq1,L + ψq2,L ), but when calculating the Higgs potential the state

with the most composite mixing will contribute the most. Thus when calculating the top quark

contribution to the Higgs potential we will assume ψq1,L to be most composite and take ψq '

ψq1,L .

6.3.3 The effective action

Once the model is defined, one can write down the most general effective Lagrangian compatible

with the symmetry structure. In the case of the MCHM5 this is,

Leff = −
Pµµt

2



2
g2

5

W+
µ

*
,
Π0 +

s2
h

2
Π1+

-
W−ν + Aµ *

,

1
g2

5

Π0 +
c2
w − s2

x

g2
5,X

Π
X
0

+
-

Aν

+Zµ *
,

c2
w + s2

x s2
w

g2
5

Π0 +
c2
x s2

w

g2
5,X

Π
X
0 +

s2
h

2c2
wg

2
5

Π1+
-

Zν


+ q̄L
*
,
Π

q
0 +

s2
h

2
Π

q
1 HcHc†+

-
�pqL

+ ūR
*
,
Π

u
0 +

s2
h

2
Π

u
1

+
-
�puR +

shch
√

2
Mu

1 q̄LHcuR + h.c. (6.9)
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The form factors ΠX
0 are associated with the U (1)X gauge field, and the mixing angles sx and

cx arise via the breaking to the SM subgroup on the UV brane. For more details on the how

this effective action is derived we refer the reader to [223]. In a 4D approach one can only es-

timate the momentum dependence of these form factors based on sum-rules and Large-N gauge

theory results. But in the 5D holographic approach they can be explicitly calculated, the results of

these calculations are presented in the appendix. It is expected that the form factors will contain

poles corresponding to massive composite resonances at p2 ∼ M2
KK . In the 5D approach these

are simply the Kaluza-Klein states one obtains from the 5D gauge and fermion fields. While the

masses of the spin-1 resonances are solely determined by MKK , the masses of the spin- 1
2 reson-

ances depend also on cq , cu , mu and Mu . Before EWSB, when sh = 0, they can be expressed in

terms of the above form factors as,

m1/6 = zeros{�pΠ
q
0 }

m2/3 = zeros{�pΠ
u
0 }

m7/6 = poles{�p(Πu
0 + Πu

1 )}.

(6.10)

After EWSB the (1/6) and (2/3) states mix resulting in a tower of top partners with (2/3) charge

and masses determined by the zeros of,


p2 *

,
Π

q
0 +

s2
h

2
Π

q
1

+
-

*
,
Π

u
0 +

s2
h

2
Π

u
1

+
-
−

s2
h

c2
h

2
(Mu

1 )2

. (6.11)

There will also be a tower of states with hypercharge (5/3) and mass equal to m7/6. It is generally

found that when one or both of the multiplets has a large composite mixing, there will generally

be relatively light fermionic states in the model. This large compositeness also generally implies

a large gap in the masses of the lightest (1/6), (2/3) and (7/6) top partners. Thus, by varying the

5D mass parameters, we can significantly alter the spectrum of top partners we expect to observe.

Summarising, from the 5D description of the model we have six parameters,

MKK lnΩ cq cu mu Mu . (6.12)

We can use three observables to fit to: v, mh and mt , leaving us with three free parameters. Here

we will demonstrate the freedom that these parameters give in the top sector. In particular, there

are three aspects we wish to study,

• How the 5D parameters are related to the top partner masses;

• How the top partner masses are related to sh , and;

• How much 5D contributions alter the top Yukawa deviation expected from 4D composite

Higgs models.
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6.4 Higgs potential and EWSB

From the effective action for the gauge fields and the top quark it is a simple exercise to write

down the Coleman-Weinberg expression for the one-loop Higgs potential. After a Wick rotation

we arrive at the following field-dependent potential,

V (h) =

∫
d4pE
(2π)4

*
,

3
2

log
[
1 +

3
2
Π1

Π0

]
− 6 log


*
,
1 +

s2
h

2
Π

q
1

Π
q
0

+
-

*
,
1 +

s2
h

2
Πu

1

Πu
0

+
-

+
s2
h

c2
h

2
(Mu

1 )2

p2
EΠ

q
0Π

u
0


+
-

(6.13)

where we have neglected the effects of the U (1)X field. Expanding these logs, it is found that the

potential has the following form,

V (h) ' (αG + αF )s2
h − βF s2

hc2
h (6.14)

where the F and G subscripts refer to gauge and fermion contributions. Notice that without the

fermion contribution one cannot achieve EWSB at all. Minimising this we find that the Higgs

potential has a non-trivial ground state when βF > 0 and βF > |αF + αG |, situated at

s2
h =

1
2
−
αG + αF

2βF
. (6.15)

Taking the second derivative of V (h) we find,

m2
H =

8βF
f 2
π

s2
hc2

h . (6.16)

After EWSB it is found that the mass of the top is given by,

m2
t '

s2
h

c2
h

2
(Mu

1 )2

(Πq
0 +

s2
h

2 Π
q
1 )(Πu

0 +
s2
h

2 Π
u
1 )

�����p2=(174GeV)2
. (6.17)

Since the top quark gives by far the most dominant contribution to the potential, we should expect

a lot of correlation between the top partner spectrum and the Higgs mass. Approximating the form

factors by their limiting expressions for vanishing momentum, we can write this in terms of the

5D parameters as

m2
t '

Muv
√

(c̃q − 2)c̃q (c̃u − 2)c̃u
√

1 − v2

f 2
π

(1 − muMu )

fπL1

√
−(c̃q − 2)M2

u +
c̃uv2(m2

uM
2
u−1)

f 2
π

+ c̃u

√
M2

u

(
c̃qm2

u

(
2 − v2

f 2
π

)
− 2c̃u + 4

)
+

c̃qv2

f 2
π

,

(6.18)

where we have defined

cu =
c̃u − 1

2
and cq =

1 − c̃q
2

, (6.19)

such that 0 6 c̃q , and c̃u 6 2, and the profiles are flat (cq,u = ±1/2) for c̃q,u = 0.
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6.4.1 Yukawa couplings in the holographicMCHM5

From the discussion above it is seen that the Yukawa coupling of the top quark in MCHM5 deviates

from its Standard Model value. Following the definition of the effective Yukawa coupling by [247],

y(0)
ψ '

dm(0)
ψ

dv
, (6.20)

we will be interested in the quantity

κt =
y(0)
t

y(0)
t,SM

=
y(0)
t v

m(0)
t

. (6.21)

The current LHC ATLAS bounds are κt = 0.94 ± 0.21 at 2σ [271]. This bound is expected to be

strengthened to the ten percent level after the current run.

From (6.17) we may calculate κt in terms of the 5D form factors. To quartic order in sh =

v/ fπ , we have

κt = 1 −
s2
h

c2
h

− s2
h

*
,

Π
q
1

2Πq
0

+
Πu

1

2Πu
0

+
-

+ s4
h

*
,

(Πq
1 )2

4(Πq
0 )2

+
(Πu

1 )2

4(Πu
0 )2

+
-

+ O
(
s5
h

)
. (6.22)

As by definition, the Standard Model result (κt = 1) is recovered in the limit sh → 0. Also,

as we have noted above, if the IR brane masses are related as Mu = −1/mu , the fermion form

factors vanish (Πq
1 = Πu

1 = 0). In this case the BSM Yukawa corrections are universal and equal

to −s2
h
/c2

h
(to all orders in sh). From (6.18), in terms of the fermion profiles we have,

y(0)
ψ v

m(0)
ψ

= 1 −
s2
h

c2
h

− s2
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,
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m2

uM2
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(
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)
2M2

u
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−c̃qm2

u − (2 − c̃u )
) (

(2 − c̃q )M2
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-

+ O
(
s4
h

)
.

(6.23)

In section 6 we will study how these additional contributions proportional to
(
m2

uM2
u − 1

)
can play

a role in alleviating tensions with bounds from the LHC.

6.5 Top partners in holographicMCHM5

Taking the values of sh and ch at the minimum of V (h), we can re-write the Higgs mass term from

eq. 6.16 as,

m2
H =

2
f 2
π

β2 − α2

β
. (6.24)

The α and β terms are of dimension four and we can expect them to be ∼ M4
KK . Thus to obtain a

light Higgs we require a degree of cancellation among the terms in the Higgs potential. A similar
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cancellation is also required to obtain a light vacuum expectation value. Due to the required

cancellation among these terms, the precise value of sh alone is only a crude estimate of the

fine-tuning of the model.

It has been shown that if MKK ∼ 1 TeV, and fπ ∼ 500 GeV, one requires the ξu multiplet to

have a large composite mixing in order to get the correct degree of cancellation in α and β, and

thus obtain the correct values of mH , mt,pole and v [20]. This implies that light top partners are

expected in models with a large mass gap among the different charged states. Similar results have

been observed in the 4D realisations, however in these cases there is more freedom with the model

and light top partners can be avoided more easily. Currently, the prediction of light top partners

from holographic models is in tension with observations at the LHC.

The obvious way to avoid these constraints is to push up MKK , but in doing one severely in-

creases the fine-tuning of the model and it becomes “un-natural". There have been several attempts

at alleviating the need for light top partners without increasing the fine-tuning, in both the purely

4D and the holographic picture. An example of the former is [117], [260], in which the authors

show that by embedding the third generation in different representations of SO(5), the structure of

the Higgs mass term can be altered. For particular cases a light Higgs could be obtained with top

partners ∼ 1 TeV in this way. The authors point out that to achieve a light Higgs with moderate

fine-tuning, it is preferred to have mT / fπ ∼ 1, where mT is the scale of the top partner masses.

To highlight an example of a holographic approach, in [220] the realisation of the model includes

leptonic contributions to the Higgs potential, which allow the authors to show that a light Higgs

can be achieved while having top partners ∼ 1 TeV, with only moderate fine-tuning.

In this paper we wish to investigate an alternative method of reducing the need for light top

partners in the holographic realisation of the model. Moving the top zero mode wave functions

away from the IR brane increases the mass of the top partners, but simultaneously results in an

increase in the Higgs mass. However, by lowering the UV scale (i.e. lowering ln (Ω)) we increase

fπ and suppress the Higgs mass. Using this mechanism we can push the top zero mode wave

functions further from the IR, pushing up the top partner masses, while keeping the Higgs mass at

the observed value. In the 4D dual, lowering the UV scale should correspond to an increase in the

number of colours “N" of the strongly coupled gauge theory [20], [262].

To illustrate this idea we perform a scan in which we fix MKK = 1.1 TeV and vary the

other parameters in the ranges 0.2 < cq < 0.4, −0.4 < cu < 0.4, −2 < muMu < −0.5 and

20 < ln(Ω) < 50. For cq = 0.5 (cu = −0.5) the 5D profile of the left-handed (right-handed) zero

mode will be flat. So the choices of fermion localisations ensure that the composite mixing for qL

is small, whereas the mixing of the tR state is allowed to be large or small. We find two distinct
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cases in the results, |mu | < 1.4 and |mu | > 1.4. In figures 6.1 and 6.2 below we show how cu and

ln(Ω) are correlated after we fix mt,pole , mH , and v to their observed values.

Figure 6.1: Correlation between cu and ln(Ω) when |mu | < 1.4.Figure 6.2: Correlation between cu and ln(Ω) when |mu | > 1.4.

From these plots it is clear that for a large value of ln(Ω) (& 35), a light Higgs requires the

spurious multiplet to have large positive values of cu . However by allowing for smaller values of

ln(Ω) we can have significantly different values for this cu parameter. The effects of this on the

top partner spectrum are shown below in figures 6.3 and 6.4.

Figure 6.3: Correlation between cu and the top partner masses

when |mu | < 1.4. Here the green points corres-

pond to the top partner with hypercharge (2/3), the

orange with (1/6), and the blue with (7/6).

Figure 6.4: Correlation between cu and the top partner masses

when |mu | > 1.4. As in the left panel, the differ-

ent coloured points correspond to top partners with

different hypercharge.

If we were to fix ln(Ω) to be > 35, we would be forced to have cu & 0.3. This results

in a distinct top partner spectrum in which the left-handed top partner and exotic top partners

are . 1 TeV while the right-handed top partner is ∼ 2 TeV. However, by lowering the value of

ln(Ω) we can move cu to regions with less composite mixing in which the top partner spectrum

is remarkably different. We can easily have scenarios where all the top partners have masses & 1

TeV, and where the mass gap among the different charged states is very small. Note that, in the
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4D picture, having ln(Ω) ∼ 37 means having the number of colours at ∼ 10. Lowering ln(Ω) to

∼ 25 means that N ∼ 15. In the case of figure 6.3, we can say that the mass gap between the top

partners is strongly related to their degree of compositeness.

Since we fix MKK = 1.1 TeV and fix the vev, varying ln(Ω) is analogous to varying sh . In

figures 6.5 and 6.6 we see the correlation between top partner masses and sh explicitly.

Figure 6.5: Correlation between sh and the top partner masses

when |mu | < 1.4. As above, the different col-

oured points correspond to top partners with differ-

ent hypercharge.

Figure 6.6: Correlation between sh and the top partner masses

when |mu | > 1.4.

From figure 6.5 it appears that reducing the mass gap between the top partners is strongly

correlated with a reduction in sh . However we do not see this behaviour in figure 6.6. Thus from

the above figures we can conclude that, when |mu | . 1.4 we can have less composite mixing and

a smaller sh is correlated with a smaller mass gap among the top partners, and an increase in the

mass of the lightest top partner. Whereas for |mu | & 1.4, we are forced to have a larger composite

mixing, and lowering sh doesn’t alter the top partner spectrum very much.

Taking the case where |mu | < 1.4, it is useful to plot the masses of the 7/6 partners against the

masses of the 2/3 partners and to look at how sh varies here. From figure 6.7 we see that lower

values of sh are not necessarily correlated with a smaller mass gap, but with heavier 7/6 partners.
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Figure 6.7: Here we plot the masses of the hypercharge 7/6 multiplet against the hypercharge 2/3

singlet and show how the value of sh depends on these masses.

In figures 6.8 and 6.9 we perform similar scans, except we allow MKK to vary. In one case, we

have a very light top partner with a large mass gap, and in the other we have no light top partners

and a small mass gap.

Figure 6.8: cq = 0.4, 0 6 −cu 6 0.4, 1 6 MKK (TeV) 6 2

TeV, 20 . ln(Ω) . 30 and mu = −1/Mu . As

above, the different coloured points correspond to

top partners with different hypercharge.

Figure 6.9: cq = 0.2, 0 6 cu 6 0.4, 1 6 MKK (TeV) 6 2

TeV, 20 . ln(Ω) . 30 and mu = −1/Mu .

One would naturally expect that by reducing sh , the mass of the top partners increase. What

we show here is that this is only true in the case that 0 6 −cu 6 0.4, i.e. when there is less

composite mixing for ξu . When 0 6 cu 6 0.4, i.e. large composite mixing, we clearly show that

lowering sh does not result in an increase in the mass of the lightest state. This is hinted at in

figure 6.6, and re-enforced by the data in figure 6.9.

In studying composite Higgs models in 4D it is found that one expects the following approx-

imate relation to hold,

m2
H ∼

3
16π2

(
v

fπ

)2

m2
T (6.25)
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where mT is the mass of the top partners. Since we fix v to its SM value, this implies a linear rela-

tion between the Higgs mass and both the top partner masses and the ratio v/ f . In the figures 6.10

and 6.11 test we test the latter relation, finding that this relation receives O(1) corrections in the

dual model.

Figure 6.10: cq = 0.4, 0 6 cu 6 0.4, 1 6 MKK (TeV) 6 2

TeV, 20 . ln(Ω) . 30 and mu = −1/Mu . As

above, the different coloured points correspond to

top partners with different hypercharge.

Figure 6.11: cq = 0.2, 0 6 −cu 6 0.4, 1 6 MKK (TeV) 6 2

TeV, 20 . ln(Ω) . 30 and mu = −1/Mu .

It is useful at this point to compare our results to those obtained in explicit 4D realisations.

Although varying ln(Ω) produces results which differ from what is usually expected in the holo-

graphic models, it appears that doing this allows for a better comparison to the 4D models.

In fact, the results we have obtained here, with the mass gap among the top partners varying,

agree quite well with the explicit 4D realisations in [199], [203]. In these works they show that

m2
H ∼ ln(m7/6/m2/3), implying that a smaller mass gap results in a lighter Higgs, which is exactly

what we find here.

In [223] it was shown that increasing the scale MKK in this 5D realisation leads to heavier

top partners and lower values of sh , but also a larger fine-tuning. It is now interesting to ask

what effect lowering ln(Ω) has on the fine-tuning in this model, since it also leads to heavier top

partners and lower values of sh , one might expect an increase in the fine-tuning. To quantify the

fine-tuning in our model, in accordance with what was done in [223], we use the Barbieri-Giudici

parameterisation,

∆BG =

√√∑
i

*
,

∂ log s2
h

∂ log ki
+
-

(6.26)

where ki are our input parameters MKK , cu , cq , mu , Mu , and ln(Ω). The ∆BG parameter measures

the sensitivity of s2
h

to changes in the input parameters. In figure 6.12 we plot the values of this

parameter for the data we have with |mu | < 1.4 as a function of the 5D localisation cu and ln(Ω).

On the same plots we include the values of 1/s2
h

for each point to show how sh and ∆BG are

correlated. Other observables for these data points have been shown in figures 6.1, 6.3, 6.5, and
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6.7.

Figure 6.12: The blue points are the values of ∆BG calculated from eq. 6.26, while the orange points are the values of 1/s2
h

for

each point.

These plots show us something very interesting, that is, lowering ln(Ω) allows for a reduced

fine-tuning in the Higgs potential and heavier top partners. This result should not be too surprising

since varying ln(Ω) in the 5D models results in changes to the effective couplings between KK

states and the Higgs in the effective theory, and it has been shown using an explicit 4D realisation

in [260] that the fine-tuning in Composite Higgs models depends strongly on these couplings. We

can see from the plots that the fine-tuning is minimised for cu ∼ 0.2 and 25 < ln(Ω) < 30, which

is slightly IR localised, and corresponds to the lightest top partner being just above 1 TeV (7/6

partner), with the next top partner laying just above 2 TeV (2/3 partner).

6.6 Higgs couplings to the top sector

In this section we study deviations to the top Yukawa coupling and possible future measurements

of the Higgs in association with a hard object (vector boson, jet) as a probe for the Higgs-top-

antitop form factor. First of all, we look at the top Yukawa coupling. We expect an inverse scaling

between Mu and (the negative of) mu . We will take a mildly more general relation

Mu = −
a1

mu
(6.27)

with a1 a real constant. In this case our expression simplifies to

y(0)
ψ v

m(0)
ψ

= 1 −
s2
h

c2
h

− s2
h

(
a2

1 − 1
) *

,

c̃q
2a2

1 c̃q + 2(2 − c̃u )M2
u

−
c̃u

(2 − c̃q )M2
u + c̃u

+
-

+ O
(
s4
h

)
(6.28)
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It is now obvious that the additional Yukawa correction due to 5D effects vanishes for either

a1 = ±1, and for flat profiles. It is also seen that the contribution switches sign for a2
1 = 1 and for

a2
1 =

1
2

+
M2

u

(
(2 − c̃q )c̃q − 2(2 − c̃u )c̃u

)
2c̃q c̃u

In other words, in the region

1
2

+
M2

u

(
(2 − c̃q )c̃q − 2(2 − c̃u )c̃u

)
2c̃q c̃u

< a2
1 < 1

there can be an effective cancelation between the universal contribution and the Yukawa contribu-

tion.

Figure 6.13: Profile contribution to the Yukawa coupling: on the left, cq = 0.4 (c̃q = 0.2) and a1 = 1.2; on the right, cq = 0.4

(c̃q = 0.2) and a1 = 0.8. It is seen that the contribution is larger for IR localised fermions, and that the sign is

dependent on the sign of (a1 −1). The values of Mu are chosen such that the scan results will map between the curves.

We can see this explicitly for two benchmark scenarios, a1 = 0.8 and a1 = 1.2. Writing

y(0)
ψ v

m(0)
ψ

= 1 − s2
h

*
,

1
c2
h

− x+
-

+ O
(
s4
h

)
(6.29)

where x is the Yukawa correction (modulo s−2
h

),

x =
(
1 − a2

1

) *
,

c̃q
2a2

1 c̃q + 2(2 − c̃u )M2
u

−
c̃u

(2 − c̃q )M2
u + c̃u

+
-
.

We plot this isolated mode contribution for the benchmarks in figure 6.13. Here we see indeed that

the sign of the correction is dependent on the sign of a1 − 1, that is, on the relation between the

brane masses Mu and mu . It is also seen that the correction is expected to be out of experimental

reach for a small departure of a1 = 1. However, the contribution can be made more sizeable

values of a1. For instance, in the case in which a1 = 1.5, one finds a maximum of x = 0.6 for

c̃u ≈ 1.7. We use this large case to plot the range of imaginable contributions in the κV − κt plane

in figure 6.14.
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Figure 6.14: Profile contribution to the Yukawa coupling: in terms of the experimental variables κt and κV . In light and dark green

the ATLAS 1σ and 2σ limits from [272].

6.6.1 Higgs differential distributions as a test of compositeness

In equations 6.10 and 6.11 we see the combinations of form factors whose zeros correspond to the

top partner masses. The expressions also contain information on the two point functions for these

fields away from p2 = m2
n , where n denotes the nth resonance. In principle, one should be able

to see the effect of these resonances in the form factor of the coupling of the Higgs to tops and

top-partners. To produce the Higgs with some inherent momentum, we can produce the Higgs in,

e.g., association with a vector boson or with a hard jet,

pp→ V H where V = Z , W± or pp→ H + j (6.30)

Differential distributions of, e.g., the Higgs pT would be a good proxy to understand this form

factor. In [246], [273], [274] the authors have studied, using 4D realisations of Composite Higgs

models, the effects of the top partners in the differential distribution of the Higgs pT for the pro-

cess pp → H + j. In these studies the authors only include the effects of one top-partner, with

the Yukawa couplings fixed by a mixing between the top and top-partner. This cross-section is

proportional to the Yukawa couplings and is suppressed at high energies by the PDFs of the initial

state gluons. They find that the presence of top partners has a visible effect in this differential

distribution, and that this technique can be used to probe a large range of top partner masses. The

method outlined there is useful for studying the effects of new heavy states on the Higgs produc-

tion, but it does not include effects arising in the Higgs couplings due to the compositeness of the

fields. This can only be done if one can determine the momentum dependence of the Higgs coup-

lings, and one advantage of the 5D holographic realisations is that they allow us to do this. The
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momentum dependence is encoded in the form factors we discussed in section 3, and the effects

of all top-partners are accounted for in these terms.

Figure 6.15: Here we plot the momentum dependence of the form factor for the HtL tR coupling. The masses quoted in the legend

are for the hypercharge-1/6 top-partners, however the effects of other top-partners are also seen in the coupling.

In figure 6.15 we plot the momentum dependence of the HtLtR form factor. We look at cases

where the lightest hypercharge-1/6 top partner ranges from ∼ 780 GeV to ∼ 2400 GeV, while

reproducing the correct Higgs mass, top mass and v.e.v.. At low momenta we see the coupling

settles at a constant value close to one, as expected. However at larger momenta, near the top-

partner masses, we see that the resonances are actually visible in the momentum dependence of

this coupling. Thus, one would imagine that this effect could be seen in the differential distribution

of the Higgs pT for gg → H + j.

In another work [275] we are using these form factor techniques to perform a similar analysis

as done in the previous works. The purpose of this is two-fold; firstly we will be able to include

the effects of the whole tower of top-partners and the momentum dependence of the coupling in

the calculation, and secondly, this will allow us to directly compare collider predictions from the

4D and 5D realisations of Composite Higgs models.

6.7 Conclusions

In this paper we addressed the question of whether or not a light Higgs implies light top partners

in the Minimal Composite Higgs Model (MCHM5). The experimental constraints on the detection

of top partners can be avoided by increasing the scale MKK , but this is at the cost of a severe fine-

tuning. Attempts at realising the MCHM5 model without light top partners and large fine-tuning
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have been primarily focussed on the fermion sector: 4D approaches include a different embedding

of the third generation of quarks in representations of SO(5); holographic realisations include

leptonic contributions to the Higgs potential. Here we propose an alternative method to alleviate

the tension: we show that if the degree of composite mixing in the multiplets is reduced, the mass

of the lightest top parters can be increased, without increasing the compositeness scale MKK . To

maintain a light Higgs, the cutoff in the 5D model (measured by lnΩ) is reduced. Interestingly,

we find that the Higgs mass is proportional to the mass gap between the 7/6 and 2/3 charged top

partners, in agreement with what is found in 4D explicit models [199], [203].

Since heavier top partners might naively lead one to expect more fine-tuning, we calculated

this and found that as we lower ln(Ω) the minimum value of the Barbieri-Giudici parameter tends

to decrease. This is particularly nice, since we now know that increasing MKK and lowering ln(Ω)

both allow for heavier top partners and lower values of sh , however only lowering ln(Ω) does not

lead to an increased fine-tuning. This result also correlates well with the 4D explicit realisations,

where the Higgs mass and the fine-tuning are proportional to the coupling between the top partners

and the Higgs, a quantity which is controlled by ln(Ω) in the holographic models. We find that,

with spin-1 states at ∼ 2.5 TeV and the left-handed top localised away from the IR, the fine-tuning

is reduced when the lightest top partner is above 1 TeV.

With an eye to the next LHC run we discuss the phenomenology of this version of the MCHM5.

In anticipation of improved LHC constraints on the lightest top Yukawa coupling, we show that

a deviation from the relation between IR brane masses mu = −1/Mu can reduce or enhance the

Composite Higgs prediction for yt as derived from symmetry arguments alone. The deviation

from the Standard Model is captured in the parameters κV and κT , which allow for a comparison

with the ATLAS data. In particular, it is seen that relaxing the brane mass relation may relieve the

tension slightly by increasing the predicted coupling.

We further discussed the expected phenomenology of the top partner states in future searches.

Testing the relation between the Higgs and top partner masses as a function of sh , we find that the

masses scale approximately linearly, as expected, with a slight deviation for the (2/3) exotic state.

The form factors computed in the 5D dual contain qualitative information about the spec-

trum of top partners. In particular, in the last section we show the momentum dependence of the

form factor encoding the HtLtR coupling, upon which the differential distribution of Higgs pT in

pp→ H + j will strongly depend. Future searches at the LHC are expected to contain decisive in-

formation about the state of the MCHM5, both through measurements of the top yukawa coupling

and through differential distributions of the Higgs momentum.
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Appendix A: Form factors in the holographicMCHM5

In this appendix we present the explicit forms of the form factors introduced in section 3.3, we

follow a similar procedure as in [223]. Neglecting brane kinetic terms, the form factors for the

gauge interactions can be written as,

Π
(+) (p) = p

Y0(pR′)J0(pR) − J0(pR′)Y0(pR)
Y0(pR′)J1(pR) − J0(pR′)Y1(pR)

(6.31)

Π
(−) (p) = p

Y1(pR′)J0(pR) − J1(pR′)Y0(pR)
Y1(pR′)J1(pR) − J1(pR′)Y1(pR)

, (6.32)

and are sometimes written in terms of Π0 = Π(+) and Π1 = (Π(−) − Π(+)).

The fermionic form factors are more complicated due to the brane mixings in the IR. We use

the following holographic profiles as building blocks,

G+(r,c) =
√

r
(
Yc− 1

2
(pR′)Jc+ 1

2
(pr) − Jc− 1

2
(pR′)Yc+ 1

2
(pr)

)
(6.33)

G−(r,c) =
√

r
(
Yc− 1

2
(pR′)Jc− 1

2
(pr) − Jc− 1

2
(pR′)Yc− 1

2
(pr)

)
, (6.34)

where c = ±cq,u represents the 5D fermion mass parameter, and q and u represent the appropriate

fermion multiplets. From now on we denote G±(R,c) simply as G±(c). Assuming no brane kinetic

terms, and only two quark multiplets with real mixings, we can write the form factors as,

Π
q
0 (p) =

1
p

G+(−cu )G−(cq ) + m2
uG−(cu )G+(−cq )

G+(cq )G+(−cu ) − m2
uG−(−cq )G−(cu )

(6.35)

Π
u
0 (p) = −

1
p

G+(cu )G−(cq ) + M2
uG−(cu )G+(cq )

G−(cq )G−(cu ) − M2
uG+(cq )G+(−cu )

(6.36)

Mu
0 (p) =

1
2

mu

p
G+(cq )G+(−cq ) + G−(cq )G−(−cq ) + G+(cu )G+(−cu ) + G−(cu )G−(−cu )

G+(cq )G+(−cu ) − m2
uG−(−cq )G−(cu )

(6.37)

Π
q
1 (p) = Π

q
0

(
mu →

1
Mu

)
− Π

q
0 (6.38)

Π
u
1 (p) = Πu

0

(
Mu →

1
mu

)
− Πu

0 (6.39)

Mu
1 (p) = Mu

0 − Mu
0

(
mu →

1
Mu

)
. (6.40)

It is clear now that Πq,u
1 → 0 when mu → ±

1
Mu

and Mu
1 → 0 when mu →

1
Mu

. To get the Wick

rotated form factors one simply has to rotate p → ipE , the resulting form factors are expressed in

terms of modified Bessel functions Iα and Kα .
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7.1 Summary of the thesis

This thesis has studied aspects of dynamical symmetry breaking as an answer to hierarchy prob-

lems in particle physics and cosmology. This thesis has considered the flatness of the inflation

potential through the lens of Composite Higgs models, and shown that a similar framework could

stabilize it from radiative corrections, which spoil its inflationary predictions.

The first paper included in this thesis, chapter 2, can be seen as a first exploration into mech-

anisms to evade the problems of the vanilla Natural Inflation, which are set out in detail, while

maintaining its merits. It includes an example of an extra-dimensional model as well as a four

dimensional dual which succeed in this objective.

Chapter 3 includes a more detailed study of an inflation model based on cosets of the form

SO(n)/SO(n − 1) (n > 3) and fermions in spinorial representations of SO(n). The model’s infla-

tionary predictions are compared to experimental data, and the paper briefly alludes to boundary

conditions for a UV completion that the data suggest for this model.

From this setup chapter 4 considers the possibility that the dynamical generation of scales

in the inflaton and Higgs sector are related, by proposing that both scalars are pseudo-Goldstone

Bosons of the same global symmetry breaking. This connection also suggests a reheating mech-

anism, of which a proof-of-concept calculation in the perturbative regime has been performed.

Combining the Higgs and the inflation sector allows the model to be tested at colliders; this work

illustrates that the collider bounds on the model parameters of the present model are consistent

with successful reheating.

Chapter 5 includes an excursion from the compact cosets on which the rest of the thesis is

based, to the non-compact groups SO(n,1)/SO(n). It is shown in this chapter that a successful

inflationary model can be realized in such a setup. It also surveys the implications from the field

space curvature on the reheating mechanism.
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Lastly, chapter 6 presents a study of the near-future prospects of holographic Composite Higgs

models at colliders, focussing in particular on the minimal SO(5)/SO(4). This paper finds rela-

tions between parameters of the 5D and 4D duals, and discussed the phenomenological prospects

for top partner searches.

7.2 Directions for further study

The treatise of Goldstone fields in cosmology in this thesis has been far from complete; and

moreover, it has openend up new avenues for further studies. Here I give a few examples.

7.2.1 A full classification of pGB potentials for inflation

This work has proposed proof-of-concept models of inflation and EWSB linked via a single global

symmetry breaking. A full classification of such models which links to UV completion would be

a logical next step. This would include geometric approaches to the effective theory of symmetry

breaking, and the applicability of the results for Goldstone potentials in different group theoretic

structures, such as I explored recently [65] for non-compact groups.

7.2.2 A conclusive analysis of spectator fields during inflation

Given the strong constraints on primordial isocurvature modes [56], in particular when (anti-)

correlated with adiabatic perturbations, the status of any light fields during inflation is presently

uncertain. Moreover, unlike in single field models, the curvature fluctuations are not automatically

conserved on super-horizon scales by conservation of energy-momentum.

After inflaton decay, the decay products will inherit its perturbation. It has been sugges-

ted [276] that the isocurvature modes from a light field, which is subdominant in energy, are

"swamped" by the adiabatic contributions of the inflaton and its decay products. The model in

chapter 4, in which the inflaton decays into the (lighter) Higgs, could lead to an interesting scen-

ario for the relative importance of adiabatic and isocurvature modes.
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7.2.3 Tachyonic reheating after Goldstone Inflation

A full analysis of the parameter space of the model in chapter 4, which allows for non-perturbative

processes, besides the perturbative reheating channels that provide the proof of concept in our

work. Allowing for the non-perturbative decay is expected to open up a larger range of parameter

space in the model. In particular, a trilinear coupling between an inflaton and the Standard Model

Higgs boson opens up an exponentially enhanced decay channel. Such a coupling is generically

present in a combined Goldstone Inflation and Composite Higgs scenario.

An analysis of the tachyonic reheating channel for the effective Lagrangian in 4 has been done

analytically in [277] and more recently on the lattice [278]. A new bound on the trilinear coupling

is derived from vacuum stability of the Higgs field; as the variance of the Higgs field grows the

model becomes susceptible to vacuum decay.

Interestingly, the studies [277], [278] both indicate1 that the tachyonic enhancement does not

have the capacity to drain all energy from the inflaton field, before the growth of the Higgs vari-

ances shuts it off. It therefore seems that a successful model necessarily contains a perturbative

decay channel through which some of the inflaton energy dissipates.

7.2.4 Electroweak Baryognesis after Goldstone Inflation

The possibility of electroweak baryogenesis in the context of Goldstone Inflation and reheating.

The model we have used as a proof of concept suggests the presence of CP-violating couplings

in the scalar sector. In fact, this CP breaking may both be explicit and spontaneous, as a nonzero

vacuum expectation value for a pseudo-scalar may be generated. Therefore, there may be a region

in the parameter space in which electroweak baryogenesis occurs.

As was recently discussed in [279], electroweak baryogenesis with a singlet scalar coupling

to the Higgs in a CP violating way can lead to a strongly first order phase transition due to a

tree-level barrier and baryogenesis, without the fine-tuning that is usually expected in two Higgs

doublet models.

1In agreement with early studies of the authors of chapter 4.
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