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Summary

The aim of this work is to determine whether any zero temperature features of the scalar
potential strongly influence the finite temperature properties of the electroweak phase
transition. In particular, we address whether one can get an arbitrarily strong phase
transition from zero temperature effects.

We investigate a variety of models of varying complexity. For the models we look
into, we successfully determine that the vacuum energy difference at zero temperature
has a direct influence on the critical temperature. This leads to arbitrarily strong phase
transitions, subject to the caveat that sliding behaviour does not occur. What we call
sliding behaviour is the scenario in which the broken vacuum destabilises under thermal
corrections before reaching the critical temperature. The parameter subspace in which
sliding behaviour does occur often leads to significantly weakened phase transitions.

For a more detailed investigation of the phase transition one must look at the thermal
decay of the false vacuum. Choosing a non-supersymmetric real singlet extension to the
Standard Model, called the xSM, we detail by example how one can systematically in-
vestigate some non-trivial phase transition properties. The specific model we adopt is the
Z2xSM which has a Z2 discrete symmetry imposed on the singlet as well as the Higgs
field. We focus on the non-sliding parameter subspace, which has a minimal zero tem-
perature parameter space of only three free parameters. For this setup, the depth of the
potential at zero temperature has a one-to-one mapping with the strength of the phase
transition at critical temperature so we can trivially choose the strength. This allows for
a systematic approach to investigating very strong phase transitions and their connection
to the amount of supercooling, latent heat, bubble nucleation rate, and a hydrodynamical
friction parameter. We also trace out the parameter region in which runaway bubbles are
expected and discuss the implications for gravitational wave production.
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Chapter 1

Introduction

1.1 What’s hot and what’s not?

The fundamental physics community is in the midst of an exciting and distressing time.

Throughout my last few years as an active researcher within a crossover region between

particle theory and cosmology, there have been two landmark discoveries and a few disap-

pointing results. Both landmark discoveries confirm theoretical predictions in the modern

picture of both particle physics and cosmology.

The first landmark discovery was, of course, the detection of a CP-even Higgs boson

at the Large Hadron Collider (LHC) in CERN [3, 4]. The Higgs is the final SM particle

to be discovered and the first observed fundamental scalar in the history of science. The

second landmark discovery was the observation of gravitational waves at LIGO [5]. What

makes the discovery more exciting is that, from our current understanding, the observed

signal can only be sourced by a binary black hole merger. Both discoveries almost com-

plete the most popular theories in modern theoretical physics: the Standard Model of

particle physics (SM) and the general theory of relativity. It is also fascinating that these

ingredients were hypothesised in works conducted over 50 years [6–8] and 100 years ago

[9, 10], respectively.

On the more disappointing side lies the realm of Beyond the Standard Model (BSM)

physics. The end of Run 2 of the LHC has been disappointing for searches for supersym-

metric extensions of the SM, raising the difficulty in finding an answer to the hierarchy

problem. With nothing but the SM the theory/phenomenology community was rather

deprived of direction, until December 2015. Suddenly, there was a shimmer of light for

the particle physics community. A diphoton excess signal was reported by the ATLAS

and CMS collaborations at the LHC with a greater than 3σ global significance (5σ local
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significance) [11, 12]. A smoking gun was fired, but not with a recognisable signature. Non-

etheless, a cascade of theorists and phenomenologists jumped on the opportunity - against

the advice of experimental particle physicists - swamping the publishing world with the

words 750 GeV diphoton excess. Unfortunately, the signal disappeared as quickly as it

came [13, 14], consistent with the cautionary tales of experimental particle physicists. The

small flash of light was a glitch in the matrix. Without the diphoton signal, the theory

community’s direction was pulled back into the dark.

As far as matters in the dark go, even the world of dark matter is in an uncomfortable

corner. Searches for particle candidates of dark matter are not optimistic. Nought but

null results are reported and soon the parameter space for WIMP dark matter by direct

detection will be exhausted [15]. This is a result of the neutrino background dominating

in the lower cross sections of parameter space [16].

So has the fundamental physics community squandered its fortunes? Could there be

no other physics beyond the SM? The first question may be answered by the predictions

of astrology - in which I am void of expertise - so I can not comment. However, the answer

to the second question - in which I do have expertise - is no.

Although the Higgs boson has been discovered, the SM is far from complete. A de-

sirable “theory of everything” should not only be confined to microscopic (quantum) or

macroscopic (classical) physics, but should also transcend scales. For example, in field the-

ory language, the scalar potential describes the scalar particle content and interactions in

the universe. An approach to transcend between the quantum and classical scales in field

theory is called thermal field theory. This approach cranks up the heat in quantum field

theory, equipping each coupling in the scalar potential with a temperature-dependence. It

is (literally) the hot topic in particle physics.

Since the discovery of gravitational waves, an important question has been raised.

Namely, what implications does the scalar potential have on the production of gravitational

waves produced during cosmological phase transitions? This question can be broken down

via an intermediate step. Existing literature has reviewed in great detail the connection

between gravitational waves and the properties of a first order phase transition [17–19].

The other question is: what implications does the scalar potential have on the phase

transition properties? Such a question is the subject area of this thesis and acts as a

guiding light for the scientific community where purely microscopic/macroscopic questions

have failed.
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1.2 Thesis goal(s)

This thesis relates the subject of BSM theories to an important era in our cosmological

history called the Electroweak Phase Transition (EWPT). The discovery of the Higgs

boson is essential to the EWPT properties. In this regard, I consider myself incredibly

lucky to have studied in the post-Higgs discovery era. This discovery set me up as a

researcher with fresh eyes and one less phenomenological parameter to worry about: the

Higgs mass. In fixing the Higgs mass, implications of BSM physics on the EWPT can be

investigated with all SM content inherently included, i.e. anything new must be sourced

from the BSM sector or is a remnant of the theoretical framework.

The aim of the following work is to determine a one-size-fits-all criteria as to how to

obtain a strong electroweak phase transition from zero temperature effects. We attempt to

establish a connection between the properties of the electroweak phase transition (thermal

field theory quantities) and collider phenomenology (zero temperature, quantum field the-

ory quantities). But why should we care about the strength of the phase transition? In

the mechanism of electroweak baryogenesis, there is a need for what is called a strong elec-

troweak phase transition [20, 21]. The “strength of the phase transition” may be naively

measured through the value of ξc ≡
√

2 vc/Tc, where vc is the Higgs vacuum expecta-

tion value at critical temperature Tc. A strong first order phase transition is necessary

to suppress the sphaleron transition rate from the broken vacuum to symmetric vacuum

during the EWPT [21, 22]. Without a sufficient suppression rate any generated net ba-

ryon number may be washed out, inconsistent with our observed universe. Furthermore,

very strong phase transitions may produce gravitational waves during the phase transition

whose signals may be observed by future gravitational wave detectors [23–29].

We find such a connection between the critical temperature Tc and a zero temperature

quantity called the vacuum energy difference ∆V (0). This quantity is defined as the

difference in potential energy between the broken vacuum and symmetric extremum of

the zero temperature effective scalar potential. A reader familiar with the literature will

recognise this quantity as the free energy density difference evaluated at zero temperature.

This work provides a clear insight of the underlying mechanism that provides arbitrarily

strong phase transitions from zero temperature effects, e.g. tree level barriers, cubic terms,

high number of singlet degrees of freedom.
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1.3 Layout of the thesis

In Chapter 2 we investigate six BSM extensions, one of which is a supersymmetric ex-

tension. All non-supersymmetric scalar effective potentials are renormalised up to one

loop, including the top quark and electroweak gauge bosons only. The supersymmetric

extension we consider, called the Generalised Next-to-Minimal Supersymmetric extension

of the Standard Model (GNMSSM), additionally includes one loop contributions for the

stops (supersymmetric partners of the top quark). For all but the GNMSSM, we derive

analytic expressions for the one loop vacuum energy difference at zero temperature in

Section 2.2. For each model we consider a subspace of our free parameters that is assumed

to capture all physics below the TeV scale. By means of a numerical scan, in Section 2.3

we draw correlations between ∆V (0), the critical temperature Tc, and the strength of the

phase transition, ξc. Throughout this chapter we drop the subscript notation, referring to

the strength as simply ξ.

Parameter points that exhibit sliding behaviour have a reduced strength. There does,

however, exist a well-defined lower branch to the strength of the phase transition. This

encourages an investigation into aspects of the Minimal SM with the Higgs mass as a

free parameter, see Section 2.4. For this simple model, we briefly consider the impact of

the treatment of the effective potential on our numerical results, e.g. zero temperature

radiative effects, inclusion of Higgs into the loop, resummation effects.

As an intermediary, in Chapter 3, we briefly review the formalism behind calculating

less trivial properties of the EWPT. This involves reviewing Coleman’s paper on the decay

of the false vacuum [30]. We discuss the concept of the bounce solution, surface tension,

critical energy of the bubble, and false vacuum decay rate. The following chapter relies on

numerical computation of thermal phase transition quantities discussed in this section.

Our intention in Chapter 4 is to investigate more technical EWPT properties, and

determine whether the hypothesis in Chapter 2 holds for alternative definitions of the

strength of the phase transition used in modern literature. We focus on the non-sliding

parameter region of the Z2xSM model. This region is the parameter subspace discovered

in Chapter 2 that has a one-to-one mapping between the strength of the phase transition

measured at critical temperature ξc =
√

2 vc/Tc, now denoted with an index for clarity,

and the vacuum energy difference ∆V (0). The bounce solution, as approximated by the

minimised path, is described in Section 4.3.1. Though we realise that this may not be the

trajectory in field space taken by the true bounce, it allows us to apply the undershoot-

ing/overshooting procedure to approximate the phase transition properties.
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For non-sliding parameter regions, we describe the vacuum structure of potential at

tree level and at one loop level in Section 4.1. We then analytically derive some desirable

phase transition properties in the high and low temperature expansion. The expressions

found match well with the numerically determined parameter points, where the validity

of the low/high temperature expansion holds. We determine a method to scan over the

parameter space of the two field potential for fixed strength ξc.

We further constrain our parameter space to only include phase transitions that are

expected to have runaway bubble walls during the phase transition, according to the

Bödeker-Moore criterion [31]. This is a choice; the non-runaway region of the non-sliding

parameter space is left for future investigations. We chose this region because it is the

region of maximal supercooling for the non-sliding parameter space, see Section 4.4. This

region is of particular interest in two field models [31, 32]. We draw out the perimeter of

this runaway region for various phase transition properties against the strength ξc. We

finally calculate various measures of the strength of the phase transition and other phase

transition properties for the perimeter of the runaway region. Some of the more advanced

properties calculated are those of an effective friction parameter, with and without hy-

drodynamics considered into the calculation. We also look at the acoustically-generated

gravitational wave relic density produced from the electroweak phase transition [33].

Finally, we summarise our findings and discuss future directions in Chapter 5.
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Chapter 2

A recipe for arbitrarily strong

phase transitions

“N-now th-that that don’t kill slide me

Can only make me stronger”

A variation of Stronger by Kayne West, Graduation album

Since the discovery of a scalar particle of mass 125 GeV at the Large Hadron Collider [3, 4],

the question of how electroweak symmetry breaking happened in the early universe has

gained even more urgency. Also the problem of how to embed the Higgs into a ‘natural’

framework remains.

Supersymmetric extensions to the Standard Model (SM) are strong candidates for

a fundamental theory that describe observations in particle physics and cosmology [34].

These include (a) elegantly unifying all forces at a grand unification scale, (b) providing a

dynamical mechanism for electroweak symmetry breaking, and (c) containing a rich dark

matter particle sector. Other popular areas of research using supersymmetric models are

the theoretical developments [35–43] into obtaining a strong first order electroweak phase

transition. Such phase transitions are necessary for electroweak baryogenesis (for a recent

review see e.g. [44, 45]), i.e. an explanation for the observed matter-antimatter asymmetry

of the universe through a mechanism present during the electroweak phase transition.

There is a similar demand for an understanding of how to obtain a strong phase trans-

ition in non-supersymmetric models [24, 46–55]. However, there does not currently exist

a universal link between a strong phase transition and the zero temperature phenomeno-

logy of any given model. One notable work categorises multiple models into three classes,

distinguished by whether a strong phase transition is driven by tree level, loop level, or
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thermal physics [56]. A strong phase transition in [56] carries the notion of having a large

barrier separating the broken and symmetric vacua. They also remark on the zero tem-

perature phenomenology of parameter regions that exhibit a strong phase transition. Our

paper adopts a similar approach to studying the electroweak phase transition.

We investigate a new perspective on how to understand the phase transition using

a quantity defined at one loop zero temperature: the vacuum energy difference. This

very quantity was already mentioned in [42]. We investigate in detail the role that this

quantity plays for some basic properties of the phase transition for six models. These

models are described in Section 2.1 alongside a review of the one loop effective potential

at zero temperature and with thermal corrections included.

Generally, we find a strong correlation between the vacuum energy difference and the

strength of the phase transition. This correlation only breaks down if, before the critical

temperature, the broken minimum turns into a saddle point upon thermal corrections.

This special case can only occur in multi-field models, where it fortunately is further

disfavoured once experimental constraints have been applied. So typically a strong first

order phase transition is dependent on a mild tuning of the vacuum energy. A tuning at the

level of about 30% is mostly sufficient. This allows one to zoom into the regime of strong

first order phase transitions in a simple and efficient way, including complicated models

such as the Generalised Next-to-Minimal Supersymmetric extension to the Standard Model

(GNMSSM).

In Section 2.2 we define the vacuum energy difference. We then derive analytic ex-

pressions of this quantity for all but the supersymmetric model. We discuss the scanning

procedure and present the numerical results in Section 2.3. The results with and without

phenomenological constraints applied are contrasted against each other. Numerical bounds

that guarantee a strong phase transition are suggested for phenomenologically viable para-

meter regions for each model. Three interesting benchmarks scenarios for the GNMSSM

data are provided and compared. Finally, we draw up conclusions in Section 2.5.

2.1 The scalar potentials

2.1.1 The models

Throughout this work we will be making reference to the SM, three single field modific-

ations to the SM, and two general singlet extensions of the SM (one of which is super-

symmetric). In counting the number of free parameters in each model, we do not include
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those appearing through one loop corrections from the top quark and electroweak (EW)

gauge bosons1, each of whose couplings are well determined. We will proceed by briefly

describing the models that we use.

SM

For the SM Higgs potential, we use the notation

V
[SM]

tree (H) = −µ2
0|H|2 + λ0|H|4, (2.1)

where H = (H+, H0) is the complex SM Higgs doublet and the SM Higgs boson arises

from φ = Re(H0). In setting the Higgs mass to be mh = 125 GeV and choosing the

Vacuum Expectation Value (VEV) of φ, we have no free parameters in this model.

SM with a dimension-six operator

We use the potential [57]

V
[SM+φ6]

tree (H) = −µ2
0|H|2 + λ0|H|4 +

1

M2
|H|6. (2.2)

We identify the free parameter of this model as the mass scale, M , that appears in the

suppression factor of the dimension-six term. The form of this potential can be realised

as the low energy description of some strongly coupled models or from integrating out a

scalar with a high characteristic mass scale.

SM from Gauge Mediation of Exact Scale Breaking (GMESB)

This model is introduced in ref. [58] as

V
[SM+log]

1 loop (0T)(H) = −1

2
m2
h|H|2

(
1 +

(
4λ0v

2

m2
h

− 1

)
log

[
|H|2

v2

])
+ λ0|H|4. (2.3)

This potential is the quantum effective potential at zero temperature. It arises when the

scale symmetry is broken in a hidden sector through quantum corrections and mediated

to the observable sector via gauge interactions only. We identify the free parameter of this

theory to be the quartic self-coupling of the Higgs, λ0. The phase transition of this model

has previously been studied in [59].

1These SM quantum corrections are governed by the top Yukawa coupling, yt, and EW gauge couplings,
g2 and g1.
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SM with an additional Coleman-Weinberg scalar

We use the same potential as that of the SM but include a new real scalar X that con-

tributes a Coleman-Weinberg term at zero temperature

V
[SM+scalar]

1 loop (0T) (H) = V
[SM]

1 loop (0T)(H)+y2|H|2X2+
1

(8π)2
m4
X(H)

(
log

[
m2
X(H)

Q2

]
− 3

2

)
, (2.4)

where m2
X(H) = y2|H|2. The V

[SM]
1 loop (0T)(H) term is the SM one loop Higgs potential.

The free parameter of this theory is the coupling, y, of the new scalar to the Higgs. We

make the additional assumption that the new scalar does not produce thermal corrections

to the potential. We use this model as a probe to distinguish between the impact of zero

and finite temperature corrections to the effective potential. This should be kept in mind

throughout our discussion in Section 2.4.

SM plus a real singlet (xSM)

We write the potential with a similar notation to refs. [48]

V
[xSM]

tree (H,S) = −µ2
0|H|2 + λ0|H|4 +

a1

2
|H|2S +

a2

2
|H|2S2 +

b2
2
S2 +

b3
3
S3 +

b4
4
S4. (2.5)

Here S is a real singlet scalar field. This potential contains three types of terms: purely

H, purely S, and mixed terms. Note that we have cubic terms entering as both an S3 and

S|H|2 term. Essential to phenomenological constraints is the Higgs-singlet mixing angle,

α, defined via h
s

 =

 cosα sinα

− sinα cosα

φ
S

 . (2.6)

We can recognise sinα as the singlet component of the SM Higgs, h. In rewriting the

parameters µ0, a2, b2, and b4 in terms of v, vS , mh, and ms (of which v and mh are fixed)

we are left with a total of five free parameters (two of them being tree level cubic terms).

We will define the new parameter choice more precisely in Section 2.2.2.

GNMSSM

Supersymmetric extensions of the SM are promising settings to realise a strong phase

transition. However, in the Minimal Supersymmetric extension to the Standard Model

(MSSM) with superpotential [34]

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHu ·Hd, (2.7)
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LHC constraints on Higgs properties make a strong phase transition driven by light stops

very unlikely [60]. Here ū, d̄, ē, Q and L are the usual lepton and quark supermultiplets,

yu, yd, and ye are 3 × 3 Yukawa matrices, Hu = (H+
u , H

0
u) and Hd = (H0

d , H
−
d ) are

the “up-type” and “down-type” complex Higgs doublets, and µ is the supersymmetric

analogue of the Higgs mass, commonly referred to as the “µ-parameter”.

Singlet extensions of the MSSM have attractive features for Higgs phenomenology. For

instance, there are mechanisms to increase the natural upper bound of the lightest CP-

even Higgs bosons mass (see e.g. [61, 62]). Also these models often generate a strong phase

transition [35–38, 42, 43, 63]. Singlet extensions of the MSSM are often distinguished by

discrete symmetries. Here we study the most general singlet extension, the Generalised

Next-to-Minimal Supersymmetric extension to the Standard Model (GNMSSM) with the

superpotential

W =WMSSM + λSHu ·Hd + k1S +
1

2
k2S

2 +
1

3
k3S

3, (2.8)

where S is a chiral singlet superfield and λ, k1, k2, and k3 encode couplings and masses.

This model can be derived in a top-down approach based on a discrete R symmetry as

shown in [64]. Not having a discrete symmetry automatically evades a possible domain wall

problem that plagues more constrained setups [65]. Adding the usual soft supersymmetry

breaking terms, the tree level scalar potential is given by

V
[GNMSSM]
tree =

(
|µ+ λS|2 +m2

Hu

)
|Hu|2 +

(
|µ+ λS|2 +m2

Hd

)
|Hd|2 +m2

S |S|2

+|λHu ·Hd + k1 + k2S + k3S
2|2 +

1

8
(g2

2 + g2
1)
(
|Hu|2 − |Hd|2

)2
+

1

2
g2

2 |H
†
dHu|2

+

[(
(bµ+AλλS)Hu ·Hd +Ak1k1S +

1

2
Ak2k2S

2 +
1

3
Ak3k3S

3

)
+ h.c

]
.

(2.9)

The soft supersymmetry breaking parameters aremHu , mHd
, mS , b, Aλ, Ak1 , Ak2 , and Ak3 .

These are all mass dimension one and take on values of the order of the supersymmetry

breaking scale, mSUSY ∼ O(1 TeV). We decompose the Higgs gauge-eigenstates into the

mass-eigenstates via


H0
u

H0
d

S

 =


v sinβ

v cosβ

vS

+
1√
2
R0+


h0

H0

s0

+
i√
2
R0−


G0

A0

η0

 , (2.10)
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u

H−∗d

 = R±

G+

H+

 , (2.11)

where the R’s are the relevant rotation matrices. We only need to understand the contents

of R0+ (the CP-even mass mixing matrix) for this study. In order to more easily compare

the phenomenology of the GNMSSM to that of the xSM, we decouple the heavy CP-even

Higgs boson, H0. In practice this means that we reduce the three-dimensional field space

of eq. (2.10) into a two-dimensional field space by looking in the tanβ direction


H0
u

H0
d

S

 =


φ sinβ

φ cosβ

S

 =


sinβ 0

cosβ 0

0 1


φ
S

 . (2.12)

We will be scanning for parameter points where tanβ varies from low to medium values

so we will keep the β-dependence explicit throughout this work. Just as in the xSM, we

recognise sinα as the singlet component of the CP-even Higgs state, h0. We allow for

either the lightest or next-to-lightest state [61] to be h0, recognised as the 125 GeV Higgs

boson.

It is well known that Higgs sectors of supersymmetric extensions to the SM suffer from

a tree level bound on the lightest CP-even state (see ref. [34] for a review). Radiative

corrections from the stop sector are crucial. The stop squared-masses are given by

m2
t̃1

=
1

2

(
m2
t̃L

+m2
t̃R

+
√

(m2
t̃L
−m2

t̃R
)2 + 4m4

Xt

)

m2
t̃2

=
1

2

(
m2
t̃L

+m2
t̃R
−
√

(m2
t̃L
−m2

t̃R
)2 + 4m4

Xt

)
,

(2.13)

where the squared-mass matrix in the gauge-eigenstate basis (t̃L, t̃R) is given by

m2
t̃

=


m2
t̃L

= m2
Q3

+ y2
t |H0

u|2 + ∆ũL
m2
Xt

= A∗t yt(H
0
u)∗ − (µ+ λS)ytH

0
d

(m2
Xt

)∗ = AtytH
0
u − (µ+ λS)∗yt(H

0
d)∗ m2

t̃R
= m2

ū3
+ y2

t |H0
u|2 + ∆ũR

 , (2.14)

and ∆ũL =
1

4

(
g2

2 −
1

3
g2

1

)(
|H0

u|2 − |H0
d |2
)

, ∆ũR =
1

3
g2

1

(
|H0

u|2 − |H0
d |2
)

, (2.15)

and mQ3 and mū3 are the stop soft masses, At is a third generation soft parameter, and

yt is the top Yukawa coupling.

Assuming there are no CP violating phases and all terms in the potential are real, we

have a total of 16 parameters in this theory. However, not all of these are free parameters.
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Applying the minimum conditions and assuming that only the real parts of the fields

are non-zero in the minimum, we reparameterise the Higgs mass-squared soft parameters

(m2
Hu

, m2
Hd

, and m2
S) by the VEVs in the broken phase (v, tanβ, and vS). We also choose

to remove the singlet linear term in the potential by taking Ak1 = −k2, meaning that a

local extremum will exist at the origin in field space. Finally, we choose a special setup for

the stop soft parameters. Namely that we fix At = (µ+λvS) cotβ so that the off-diagonal

elements of eq. (2.14) vanish at the broken minimum. Furthermore, we impose that the

stop soft mass parameters are nearly degenerate, mQ3 −mu3 = 100 GeV. The value of

mQ3 is fixed such that we have a suitable Higgs with mass 125 GeV. We then count a

total of 11 free parameters in this theory. A brief summary of the free parameters and

scan procedure can be found in Appendix B.

2.1.2 At one loop zero temperature

The general form of the one loop zero temperature effective potential in the models we

study is

V1 loop (0T)(φ, S) = Vtree(φ, S) + VCT(φ, S) + VCW(φ, S), (2.16)

where φ = Re(H0) is the SM-like Higgs field and S is a singlet field under each of the SM

gauge groups. The individual terms are given by

Vtree(φ, S) = −µ2
0φ

2 + λ0φ
4 + V

[non-SM]
tree (φ, S),

VCT(φ, S) =
1

2
δm2

φφ
2 +

1

2
δm2

SS
2 +

1

4
δλ0φ

4,

VCW(φ, S) =
1

(8π)2

∑
i

gi(−1)2sim4
i (φ, S)

[
log

(
m2
i (φ, S)

Q2

)
− 3

2

]
,

(2.17)

where the δ’s are the one loop counter terms (CT) and the index i runs over all bosons

and fermions, with gi degrees of freedom and spin si, considered at one loop. Note that we

use the Coleman-Weinberg (CW) effective potential in the modified DR scheme [66] and

Q is the renormalisation scale, chosen to be the mass of the top quark, mt, throughout

this investigation. We will adopt the convention that the VEVs of φ and S in the broken

vacuum at zero temperature are given by 〈φ〉 = v = 174.2 GeV and 〈S〉 = vS , respectively,

and denote the pole mass of the ith particle by mi = mi(φ = v, S = vS).
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We choose the renormalisation conditions

∂Vtree

∂φ

∣∣∣∣
broken

=
∂V1 loop (0T)

∂φ

∣∣∣∣
broken

, (2.18)

∂Vtree

∂S

∣∣∣∣
broken

=
∂V1 loop (0T)

∂S

∣∣∣∣
broken

, (2.19)

∂2Vtree

∂φ2

∣∣∣∣
broken

=
∂2V1 loop (0T)

∂φ2

∣∣∣∣∣
broken

. (2.20)

The condition in eq. (2.20) means that the Higgs mass is unchanged upon radiative cor-

rections. This condition cannot be applied to the GNMSSM due to the tree level bound

on the lightest CP-even Higgs state. Therefore the δλ0 counter term in eq. (2.17) is not

included as part of the renormalisation conditions for the GNMSSM. The other two con-

ditions keep the VEVs in the broken vacuum the same at one loop as their tree level

values. Note that we have chosen renormalisation conditions only in the broken phase,

which is sufficient for our purpose. For a more general analysis, including renormalisation

conditions related to the symmetric phase, see ref. [25].

2.1.3 At one loop finite temperature

In order to study cosmological phase transitions in a quantum field theory framework, the

one loop effective potential ought to take into account a temperature-dependent piece. We

include thermal corrections at one loop, such that the thermal effective potential reads

V1 loop(φ, S;T ) = V1 loop (0T)(φ, S) + VT(φ, S;T ), (2.21)

where [67]

VT(φ, S;T ) =

∞∑
i=f,b

(−1)2sigiT
4

2π2

∫ ∞
0

dxx2 log

[
1 + (−1)2si+1 exp

(
−
√
x2 +

m2
i (φ, S)

T 2

)]
, (2.22)

and T is the temperature of the surrounding plasma. The sum is over all relevant fermions

and bosons in the plasma. Rather than numerically evaluating the integral in eq. (2.22),

we will use the potential in the form of a piecewise function built up of three parts, as

described below. Each part is determined by the value of mi(φ, S)/T for each particle.

Note that we are going to mostly focus on the limit of very strong phase transitions, where

thermal resummations [68] of the potential do not play a crucial role, so we ignore these

for now. In Section 2.4 we briefly investigate the effect of a one loop resummation.

The potential in eq. (2.22) can be rewritten into an analytic form within two approx-
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imations: a low temperature limit, where mi(φ, S)/T is large, and a high temperature

limit, where mi(φ, S)/T is small [67, 69]. We use interpolation functions for intermedi-

ate temperatures, during which the low and high temperature approximations differ from

the exact value by no more than 4%. The interpolation functions are numerical fits de-

termined in [70]. The analytic form of these finite temperature contributions depends

on whether the ith particle is a boson or a fermion. Notably, only bosonic thermal con-

tributions contain temperature-dependent cubic terms which may alter the strength of

the phase transition. All field-dependence appears through the field-dependent mass of

the contributing particle, mi(φ, S). For simplicity, we have omitted writing in the ex-

plicit field-dependence of the mf/b mass terms in the piecewise expressions below. The

expression for an individual fermionic thermal contribution is

V
(f)
T = gfT

4 ×



1

48

(mf

T

)2

+
1

(8π)2

(mf

T

)4

ln

[
m2
f

cfT 2

]
, for

mf

T
< 1.1,

−0.6087 + 0.0856
(mf

T

)
6.321− 0.725

(mf

T

)
+
(mf

T

)2 , for 1.1 <
mf

T
< 3.4,

( mf

2πT

)3/2

exp
(
−mf

T

)(
1 +

15

8

T

mf

)
, for

mf

T
> 3.4.

(2.23)

The expression for an individual bosonic thermal contribution is

V
(b)
T = gbT

4 ×



1

24

(mb

T

)2

− 1

12π

(mb

T

)3

− 1

(8π)2

(mb

T

)4

ln

[
m2
b

cbT 2

]
, for

mb

T
< 1.8,

−0.3904 + 0.0507
(mb

T

)
5.219− 1.885

(mb

T

)
+
(mb

T

)2 , for 1.8 <
mb

T
< 4.5,

( mb

2πT

)3/2

exp
(
−mb

T

)(
1 +

15

8

T

mb

)
, for

mb

T
> 4.5,

(2.24)

where log(cb) = 5.41 and log(cf ) = 2.64 [67, 69]. For early universe considerations, such

as electroweak baryogenesis, we are interested in the strength of the phase transition. In

this work, the critical temperature is defined as the temperature at which the electroweak

broken and symmetric vacua are degenerate. Given our chosen VEV convention, a strong

phase transition is defined2 by ξ ≡
√

2 vc/Tc & 1. Here vc is the value of the φ field in the

broken vacuum at critical temperature Tc. Note that here we have dropped the subscript

“c” for convenience, as it is always evaluated at critical temperature for this work.

2The factor of
√

2 accounts for the chosen normalisation of the Higgs field. This condition satisfies the
baryon preservation criteria [21, 22].
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2.2 The vacuum energy difference

We define the one loop vacuum energy difference at zero temperature between the broken

vacuum and symmetric extremum to be

∆V1 loop (0T) = V1 loop (0T)

∣∣
broken

− V1 loop (0T)

∣∣
symmetric

= V1 loop (0T)(v, vS)− V1 loop (0T)(0, ṽS)

= ∆Vtree + ∆Vrad,

(2.25)

where we have defined the quantities

∆Vtree = Vtree (v, vS)− Vtree (0, ṽS) ,

∆Vrad = [VCT + ∆VCW] (v, vS)− [VCT + ∆VCW] (0, ṽS) ,

(2.26)

and ṽS is the value of the singlet field S in the symmetric extremum. Note that the vacuum

energy difference takes on negative values if the broken vacuum is the global minimum of

the potential.

The potential difference between the symmetric and broken extrema is temperature-

dependent. The critical temperature is defined as the temperature at which this potential

difference is zero. The hypothesis we want to investigate in the following work is:

The smaller the value of |∆V1 loop (0T)|, the stronger the phase transition.

A decrease in |∆V1 loop (0T)| is expected to decrease the critical temperature and there-

fore increase the strength of the phase transition ξ. The concept of the vacuum energy

difference is a more precise prescription of the notion of “flat potentials” in ref. [54].

As we will see below, the one loop vacuum energy difference is often simply related

to the free parameters of the models we investigate. In each model, we consider one loop

(zero temperature and thermal) contributions from the top quark, t, and the EW gauge

bosons, W± and Z0. In the GNMSSM, we also consider the one loop (zero temperature

and thermal) contributions from the stops, t̃1 and t̃2, the supersymmetric partners of the

SM top quark.

In this work we approximate the effective potential at one loop. The impact of higher

loop orders on the effective potential is model dependent. We expect higher loop order

corrections to be more relevant for Coleman-Weinberg type models, where radiative cor-



16

rections play a large role in determining the shape of the potential. This is not the case

for parameter points with a weaker phase transition, such as the SM, since the depth of

the broken vacuum is effectively set by the observed Higgs mass. A possible exception is

the GNMSSM, where the Higgs mass receives crucial one loop contributions. For a weak

phase transition in singlet extensions, the potential at the symmetric extremum is very

close to the potential value at the origin. Loop effects could restore the symmetry in the

singlet direction and we would no longer be able to realise the necessary vacuum structure

to lower the difference between the two extrema. Note that any loop effects affecting this

structure would come with an S-dependence only because φ = 0.

Higher loop order corrections could have a large impact on potentials with a very small

vacuum energy difference, i.e. the broken and symmetric extrema are close to degeneracy

at zero temperature. We expect this to happen for very finely-tuned regions of parameter

space. Overall, we do not expect higher loop effects to have much impact on the depth of

the broken vacuum or symmetric extremum, unless they are close to degeneracy. This is

the region that we hypothesise as providing the strongest phase transitions.

Note that we should remain cautious regarding the gauge-dependence of our results

[71–73]. Interestingly enough, ref. [74, 75] suggests that for certain models the potential

evaluated at its true minimum is gauge-invariant at one-loop. Such works ought to be

taken further to quantify whether this is true for each model we explore.

2.2.1 The vacuum energy difference in single field models

Here we apply the minimum condition and use the Higgs mass to rewrite the quartic

coupling. In the SM, this means µ2
0 = 2λ0v

2 and m2
h = 4λ0v

2. We then read off the tree

level vacuum energy difference as

∆V
[SM]

tree = −λ0v
4 = −1

4
m2
hv

2. (2.27)

Including the top quark, W±, and Z0-boson one loop corrections, we find the one loop

zero temperature vacuum energy difference to be

∆V
[SM]

1 loop (0T) = −1

4
m2
hv

2 − 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)

= −1.185× 108 GeV4 − 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)

= −1.267× 108 GeV4.

(2.28)
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We see that quantum corrections do not drastically affect the vacuum energy difference

in the SM. The top quark dominates the radiative correction and decreases the vacuum

energy difference by 7.2%. Including the EW gauge bosons, it decreases by 6.9%. In other

words, the vacuum energy difference in the SM is effectively set by the Higgs mass (the

tree level contribution).

Let us repeat this procedure for other extensions of the SM. For the SM with a

dimension-six term

∆V
[SM+φ6]

1 loop (0T) = −1

4
m2
hv

2 +
v6

M2
− 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)
, (2.29)

for the SM from GMESB

∆V
[SM+log]

1 loop (0T) = −1

2
m2
hv

2 + λ0v
4, (2.30)

and for the SM with an additional CW scalar

∆V
[SM+scalar]

1 loop (0T) = −1

4
m2
hv

2 − 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z − y4v4

)
. (2.31)

In all these models the vacuum energy difference can be chosen independently of the Higgs

mass, using the remaining free parameter.

2.2.2 The vacuum energy difference (xSM)

Applying the minimum conditions in the broken vacuum,

∂V
[xSM]

tree

∂φ

∣∣∣∣∣
broken

= 0 and
∂V

[xSM]
tree

∂S

∣∣∣∣∣
broken

= 0,

we find

µ2 = 2λ0v
2 −

(
a1

2vS
+
a2

2

)
v2
S and b2 = −

(
a1

2vS
+ a2

)
v2 −

(
b3
vS

+ b4

)
v2
S .

This gives us a tree level vacuum energy difference of

∆V
[xSM]

tree = −λ0v
4 −

[(
a1

2vS
+ a2

)
v2 +

b4
2

(
v2
S − ṽ2

S

)](v2
S − ṽ2

S

2

)

−b3
6

(vS − ṽS)2 (vS + 2ṽS) ,

(2.32)
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where the singlet VEV in the symmetric vacuum is given by

ṽS = − b3
2b4
±

√(
b3
2b4

)2

− b2
b4

. (2.33)

The sign in eq. (2.33) is determined by whichever minimum has the lowest value of the

potential. All one loop contributions considered here are the same as those in the SM.

The one loop zero temperature vacuum energy difference is therefore given by

∆V
[xSM]

1 loop (0T) = −λ0v
4 − 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)

−
[(

a1

2vS
+ a2

)
v2 +

b4
2

(
v2
S − ṽ2

S

)](v2
S − ṽ2

S

2

)

−b3
6

(vS − ṽS)2 (vS + 2ṽS) .

(2.34)

The first line of eq. (2.34) is algebraically identical to the SM vacuum energy difference at

one loop prior to fixing λ0 in favour of the SM Higgs mass, mh. Note that in the case of

ṽS = vS , we recover the SM result.

We rewrite the quartic terms, a2 and b4, in favour of the CP-even mass eigenstates,

mφ1 and mφ2 , where mφ1 < mφ2 ,

m2
φ1,φ2

=
M2

11 +M2
22

2
∓

√(
M2

11 −M2
22

2

)2

+M4
12, (2.35)

and the scalar mass squared matrix is given by

M2 =


4λ0v

2 vSv

(
a1

2vS
+ a2

)

vSv

(
a1

2vS
+ a2

)
−a1v

2

4vS
+ v2

S

(
b3

2vS
+ b4

)
 . (2.36)

This is in agreement with ref. [48]. Note that our chosen particle content in the loop

and renormalisation conditions prevent the above matrix from changing at the broken

minimum upon the inclusion of one loop effects. Using expressions in the form

m2
φ1

+m2
φ2

2
=
M2

11 +M2
22

2
, (2.37)
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m2
φ2
−m2

φ1

2

)2

=

(
M2

11 −M2
22

2

)2

+M4
12, (2.38)

both mφ1 and mφ2 are recognised with the SM-like Higgs mass and singlet mass (mh and

ms, respectively) depending on the ordering of their mass values. Therefore

(a2)± = − a1

2vS
± 1

vSv

√(
m2
φ1
− 4λ0v2

)(
4λ0v2 −m2

φ2

)
and (2.39)

b4 =
1

v2
S

[
m2
φ1

+m2
φ2
− 4λ0v

2 +
a1

2

v2

vS
− b3

3
vS

]
. (2.40)

Given that the quartic coupling, a2, must be a real-valued quantity, we find

m2
φ1
≤ 4λ0v

2 ≤ m2
φ2

. (2.41)

Altogether, we find the one loop zero temperature vacuum energy difference to be

∆V
[xSM]

1 loop (0T) = −λ0v
4 −

[
± v

vS

√
(m2

h − 4λ0v2)(4λ0v2 −m2
s)

+
1

2

(
m2
h +m2

s − 4λ0v
2 +

a1v
2

2vS
− b3

3
vS

)(
1−

ṽ2
S

v2
S

)](
v2
S − ṽ2

S

2

)

−b3
6

(vS − ṽS)2 (2ṽS + vS)− 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)
.

(2.42)

Identifying the free parameters, the above expression contains the two cubic terms (a1 and

b3), two physical Higgs masses (mh and ms), three VEVs (v, vS and ṽS), and the quartic

Higgs self-coupling (λ0). We can again see that we are free to choose the vacuum energy

difference, via the free parameters of the model, despite the Higgs mass being fixed.

Z2 symmetric case (with broken Z2 at zero temperature)

By imposing a Z2 discrete symmetry on the singlet the cubic terms vanish, giving a model

referred to as the Z2xSM. Setting the cubic terms to zero in eq. (2.42), we find a simple

expression for the one loop vacuum energy difference at zero temperature,

∆V
[Z2xSM]
1 loop (0T) = −1

4
m2
hv

2

(
1 +

m2
h − 4λ0v

2

m2
s

)−1

− 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)
. (2.43)

Note that this expression assumes that vS is non-zero, so the Z2 symmetry is spontaneously

broken. This expression is almost identical to the SM expression in eq. (2.28) with the

exception of a multiplicative factor on the tree level term. For this factor to be less than



20

one we must have 4λ0v
2 ≤ m2

h, hence ms < mh is the only way in which a vacuum energy

difference higher than the SM can be obtained. A strange feature is that eq. (2.43) is

independent of the potential’s structure in the singlet direction: only ms and λ0 appear

as free parameters in the vacuum energy difference.

Let us replace λ0 by a new parameter, ε, defined by

4λ0v
2 = εm2

h + (1− ε)m2
s. (2.44)

The inequality of eq. (2.41) translates into 0 ≤ ε ≤ 1. This allows us to rewrite the vacuum

energy difference in the Z2xSM model as

∆V
[Z2xSM]

1 loop (0T) = −1

4

[
m2
hm

2
s

(1− ε)m2
h + εm2

s

]
v2 − 2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)
. (2.45)

The lowest value for |∆V [Z2xSM]
1 loop (0T)| is bounded by the one loop contribution. This happens

when the tree level contribution vanishes, which is only possible if ms goes to zero. We

can rewrite eq. (2.36) into a more useful form, where the Higgs mass squared elements’

dependence on m2
h, m2

s, and ε is explicit. In the gauge eigenstate basis, the scalar mass

squared matrix is given by

M2 =


εm2

h + (1− ε)m2
s ±

√
ε(1− ε)(m2

h −m2
s)

±
√
ε(1− ε)(m2

h −m2
s) (1− ε)m2

h + εm2
s +

a1v
2

4vS
− b3

6
vS

 . (2.46)

Furthermore, we can rewrite the tree level potential such that the importance of ε is

clearer,

V
[Z2xSM]

tree =
1

2
m2
h

[(
φ2

2v2
− 1

)
φ2ε+

(
S2

2v2
S

− 1

)
S2(1− ε)

]

+
1

2
m2
s

[(
S2

2v2
S

− 1

)
S2ε+

(
φ2

2v2
− 1

)
φ2(1− ε)

]

±1

2
(m2

h −m2
s)
√
ε(1− ε)

[
vS
v
φ2 +

v

vS
S2 − 1

vSv
φ2S2

]
.

(2.47)

In the limit that ε → 1 (ε → 0) the tree level potential collapses to a massive Φ4-theory,

where Φ→ φ (Φ→ S). The other piece of the potential corresponds to an invisible sector

that is phenomenologically inaccessible since the φ and S fields no longer mix. Thus we
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expect the Z2xSM to behave in a similar manner to the massive φ4 theory close to these

limits. Taking the tree level piece of eq. (2.45) and solving for the singlet’s mass, we find

ms = mh

(
1 +

1

1− ε

[
∆V

[SM]
tree

∆V
[Z2xSM]

tree

− 1

])−1/2

. (2.48)

If we take ∆V
[Z2xSM]

tree → 0, then eq. (2.48) suggests that the singlet’s mass vanishes irre-

spective of the value of ε. For the case of ε = 0, the singlet mass is determined by the

vacuum energy difference, since ∆V
[Z2xSM]

tree = −m2
sv

2/4. For the case of ε = 1, it naively

appears that the singlet mass must be zero and we recover the SM. However, there is one

special parameter choice that allows the SM Higgs and singlet fields to coexist. This hap-

pens if vS = 0, whereby the two fields decouple yet the mixing term does not disappear.

The limit ε→ 1 in eq. (2.48) is no longer so trivial.

Z2 symmetric case (with unbroken Z2 at zero temperature)

In the special case of a Z2 symmetry with vS = 0, the minimum conditions are different

to the previous case. This change in minimum conditions modifies many of the previous

expressions. Firstly, the pure φ couplings would be the same as those in the SM, m2
h = 2µ2

0

and λ0 = m2
h/(4v

2), since the singlet VEV is zero in the broken phase. This is equivalent

to setting ε = 1 in eq (2.44). Secondly, we can express b4 in terms of the VEV of the singlet

field in the symmetric vacuum, b4 = −b2/ṽ2
S . The vacuum energy difference is given by

∆V
[Z2xSM]

1 loop (0T) = −1

4
m2
hv

2 − 1

4
b2ṽ

2
S −

2

(16π)2

(
gtm

4
t − gWm4

W − gZm4
Z

)
. (2.49)

Compared to the SM vacuum energy difference there is an extra tree level piece in

eq. (2.49), which has the opposite sign to the SM piece if b2 < 0. In other words, the

tree level contribution to the vacuum energy difference will be reduced compared to the

SM if ṽS 6= 0. Since the overall size of this extra term determines the vacuum energy dif-

ference, we should investigate this term more closely. Rewriting b2 in terms of the singlet

mass and coupling a2,

b2 = 2m2
s − a2v

2, (2.50)

we find an upper bound for the singlet mass of m2
s < a2v

2/2. This bound is necessary

to decrease |∆V [Z2xSM]
1 loop (0T)| compared to the SM value. This implies that in order to have

ṽS 6= 0 and the singlet heavier that the SM Higgs, ms > mh, we require a relatively large

coupling a2 & 1. From perturbative unitarity arguments the maximum value of a2 is about
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8π [76], which translates to an upper bound for the singlet mass of ms ∼ 600 GeV. The

singlet mass in the unbroken Z2 case is given by

ms =

√
1

2
a2v2 +

2

ṽ2
S

(
∆V

[SM]
tree −∆V

[Z2xSM]
tree

)
. (2.51)

In contrast to eq. (2.48), the singlet mass does not vanish as we take ∆V
[Z2xSM]

tree → 0. In

order for the singlet mass to be positive within this limit, it is required that a2ṽ
2
S > m2

h.

Given the maximum value of a2 ∼ 8π, we find that |ṽS | & 25 GeV. The a2v
2/2 term in

eq. (2.51) protects the mass of the singlet from vanishing as ∆V
[Z2xSM]

tree → 0. Consequently,

the behaviour in taking the vacuum energy difference to zero in the unbroken Z2 case differs

drastically compared to the behaviour in the broken Z2 case.

2.2.3 The vacuum energy difference (GNMSSM)

To the tree level potential, we apply the usual minimal conditions to eliminate the m2
Hu

,

m2
Hd

, and m2
S soft mass parameters in favour of tanβ and the VEVs, v and vS . The rest of

the analytic work that we concern ourselves with regards the potential in the real singlet

direction, s = Re(S), defined as the potential at Hu = Hd = 0. The resulting potential

takes the form

V
[GNMSSM]

tree (singlet) = k2
1 + [m2

S + k2(Ak2 + k2) + k1k3]s2 +
2

3
k3(Ak3 + 3k2)s3 + k2

3s
4, (2.52)

where we have chosen Ak1 = −k2 in order to remove the linear term in this potential

without loss of generality3. Solving for the extrema in the singlet direction, we find a

trivial extremum at s = 0 whose extremum nature depends on the sign of the quadratic

term in eq. (2.52). Note that for a potential bounded from below, we can only have three

shapes for the potential in the singlet direction:

• Minimum at s = 0: this is the only extremum.

• Minimum at s = 0: there exist two additional extrema, one maximum and one min-

imum. Both additional extrema have s-values of the same sign, with the minimum

having the greater magnitude of s.

• Maximum at s = 0: there exist two additional extrema, both minima, whose s-values

have opposite sign.

3We can recover an arbitrary value of the chosen parameter by a shift in field s.
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In the GNMSSM, we find that the additional extrema are located at

〈s〉± = −Ak3 + 3k2

4k3
±

√[
Ak3 + 3k2

4k3

]2

− 1

2k2
3

[
m2
S + k2(Ak2 + k2) + 2k1k3

]
. (2.53)

For three extrema in the singlet direction, this requires the condition that

(Ak3 + 3k2)2 − 8
[
m2
S + k2(Ak2 + k2) + 2k1k3

]
≥ 0. (2.54)

In meeting this condition, assuming small values of k3, and Ak3 ∼ k2 ∼ mSUSY, there is a

strong tendency for an additional minimum to exist at very large singlet field values. This

is of course without a tuning of Ak3 and k2. It is interesting to note that a tuning to make

the ratio (Ak3 + 3k2)/(k3) smaller is analogous to forcing the effective b3 trilinear singlet

term (as appears in the xSM model) to be zero. To clarify, we can express the ratio in

terms of an effective b3 parameter in place of Ak3 and k2∣∣∣∣Ak3 + 3k2

4k3

∣∣∣∣ ∼ ∣∣∣∣ b38k2
3

∣∣∣∣ . (2.55)

The essential point here is that by capping the additional minimum to less than 10 TeV,

small values of k3 < 10−3 set |b3| . 0.1 GeV. In contrast, large values of k3 ∼ 1 allow

for a far larger cubic term, |b3| ∼ 80 TeV, but at the risk of other complications to the

model. Recall that λ and k3 are the trilinear couplings that appear in the superpotential

of eq. (2.8). Namely that both λ and k3 are large, in tension with theoretical constraints

due to the presence of a Landau pole [77]. In the numerical analysis, we consider points

for the GNMSSM with a cap of 10 TeV on the singlet VEV in the symmetric extrema and

are thus biased toward a large λ and large k3 parameter space.

2.3 Numerical scan

By means of a numerical scan over a selected parameter space, we look at various distribu-

tions related to the variables vc, Tc, ξ, and ∆V1 loop (0T). The scans are conducted with the

aim of covering the range of possibilities. Hence the density of parameter points in the plots

is not necessarily representative of the statistical likelihood of landing in any particular

region. In our numerical analysis, we vary most of the dimensionful parameters between

0 GeV and 1000 GeV to the appropriate power. For details see Appendices A and B.
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2.3.1 Phenomenological constraints

For the Z2xSM and xSM models, we apply the constraints from [78]. This constrains

the value of the mixing angle, | sinα|, against the mass of the singlet, ms. For singlet

masses below 80 GeV there is a bound of | cosα| ≥ 0.985 (| sinα| ≤ 0.173). This bound

comes from collider exclusion limits, including LHC Higgs signal rates. For singlet masses

between 80−180 GeV the mixing angle is constrained by LEP and LHC exclusion bounds.

For singlet masses greater than 180 GeV, we apply the constraint of quantum corrections

to the W± boson mass [79]. We expect the validity of the high singlet mass constraint

to breakdown in supersymmetric models due to additional particle content contributing

to loop corrections. For the GNMSSM, we instead apply a bound of | sinα| ≤ 0.55 for

parameter points with a singlet mass greater than 180 GeV [80]. We cut out stop masses

below mt̃2
≤ 95.7 GeV, in accordance with [81], but our analysis is not sensitive to this

choice.

2.3.2 Scan procedure

We produce random parameter configurations by using flat distributions of the paramet-

ers, unless stated otherwise (see Appendices A and B). We then test if these points pass

theoretical and/or phenomenological constraints. These tests are based upon desired fea-

tures of the one loop zero temperature potential and mass spectrum. All parameter points

are subject to theoretically motivated cuts, such as (i) the broken vacuum is the absolute

minimum of the one loop zero temperature effective potential, (ii) positivity and non-

degeneracy of all physical squared masses, (iii) positivity of the quartic couplings4, and

(iv) the imaginary singlet direction does not acquire a VEV.

Procedure in the single field model scans

Starting from the one loop zero temperature potential, we scan over regular intervals

of the vacuum energy difference, ∆V1 loop (0T), whilst recording the corresponding free

parameter of the model. Initially taking the minimum and maximum temperature to be

0 GeV to 200 GeV respectively, we use a simple algorithm to iteratively determine the

critical temperature. Temperatures are updated according to whether the broken vacuum

is higher or lower than the symmetric extremum in the current iteration. The final VEV

of φ and temperature are recorded as the critical values for each parameter point.

4In the xSM, this means λ0, > 0 and b4 > 0, but a2 can have either sign.
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Procedure in the xSM

Since the algebraic form of the one loop zero temperature vacuum energy difference is gen-

erally quite complicated, we adopt a semi-analytic approach to study this model. Rather

than scanning over regular intervals of the one loop vacuum energy difference, we perform

a random scan over the free parameters and rely on a set of conditions to ensure the po-

tential is theoretically well-behaved, i.e. bounded from below with the broken vacuum as

the absolute minimum. Our numerical work confirms that the expressions for the vacuum

energy difference in Section 2.2.2 are correct.

For the Z2 case, we also randomly assign values to the free parameters in accordance

with the ranges in Table A.1 found in Appendix A. For the unbroken Z2 case, λ0 is fixed

by mh, and rather than reparameterising, we scan over the remaining quartics, a2 and b4,

as well as the singlet mass, ms.

Procedure in the GNMSSM

This model is investigated through an almost entirely numerical manner. The code written

to generate GNMSSM parameter points sequentially performs checks at tree, one loop zero

temperature, and one loop finite temperature level.

1. Tree level parameter point scan:

(a) Randomly assign a numerical value to the tree level parameters, in accordance

with Table B.1 in Appendix B.

(b) Find Ak1 and Aλ such that (i) no linear singlet term exists in the potential (we

find Ak1 = −k2 is always the case at tree level) and (ii) that the broken vacuum

is lower than the minimum value in the (φ = 0) singlet direction.

(c) Check the mass spectrum of the Higgs sector. Pass any points that find (i)

the h0 state with mass between 0.5 × 125 GeV and 125 GeV, (ii) the H0, A0,

and H± states have masses exceeding 200 GeV, and (iii) both singlet-dominant

states are positive in mass.

2. One loop zero temperature parameter point scan:

(a) To reduce the number of parameters, we choose the off-diagonal terms of the

stop squared-mass matrix to be zero at the minimum, i.e. At = (µ+ λvS) cotβ.

Furthermore, for the diagonal terms we take mQ3 = mū3 + ∆m3, where ∆m3 =

100 GeV. The phase transition is not affected by these choices since it is not

induced by light stops.
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(b) Given the range ∆m3 < mQ3 ≤ mSUSY, we perform a scan over mQ3 until

the stop contribution to the one loop potential results in a numerical value of

mh0 = 125 GeV. All points find mh0 accurate to within ±0.02 GeV.

3. One loop finite temperature parameter point scan:

(a) Numerically scan over the temperature between 0 GeV and 200 GeV, finding

the broken and symmetric extrema at each temperature.

(b) Reiterate the above step multiple times, closing in on the temperature at which

the vacuum energy difference is zero. Record the critical temperature Tc and

critical field values: vc, (tanβ)c, (vS)c, and (ṽS)c.

2.3.3 Numerical results

Let us discuss the main qualitative features of the numerical results. These features are

best captured by Figures 2.1, 2.2, 2.5, and 2.6. All of these figures show that an increase

in the vacuum energy difference at one loop zero temperature increases the strength of

the phase transition. However, the precise relation between the strength of the phase

transition and the vacuum energy difference requires a detailed investigation.

Single field models

For the single field models investigated, we can understand that the strength of the phase

transition ξ increases as a result of two effects. The first is that the broken vacuum at

critical temperature remains close to its zero temperature field VEV. The second is that

the critical temperature decreases with the magnitude of the vacuum energy difference.

So in the limit |∆V1 loop (0T)| → 0,

vc → v and Tc → 0⇒ ξ →∞. (2.56)

Clearly one would expect metastability of the symmetric phase in the limit of large ξ,

but this is not the focus of the current discussion. One interesting observation from

Figure 2.1 is that there exists a universal behaviour at low values of |∆V1 loop (0T)|. To

understand the reason for such behaviour we need an expression for the strength at low

critical temperature values.

In order to determine an analytic form for the strength of the phase transition we

must take care to use the correct analytic limit for the thermal potential. In the cases

we investigate, the high temperature expansion is always valid close to the symmetric
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Figure 2.1: Strength of the phase transition, ξ, against the magnitude of the vacuum energy
difference, |∆V1 loop (0T)|, for the single field models. The magenta curves display the prediction
for the strength ξ when the broken minimum is considered in a low temperature expansion. Also
shown is the ξ=1 line. Points above this line are considered to have a strong phase transition.

extremum. In terms of the dynamics of increasing temperature, the value of the potential

in the symmetric extremum is shifted proportional to T 4. However, in a neighbourhood

of the broken vacuum, we are in a low temperature regime. In the low temperature limit,

the thermal contribution to the potential is given by [67]

∆Vlow T(φ, T ) =
∞∑

i=f,b

giT
4

(
mi(φ)

2πT

)3/2

exp

(
−mi(φ)

T

)(
1 +

15

8

T

mi(φ)

)
. (2.57)

In the cases we consider in Figure 2.1, the top quark contribution dominates the expression

in eq. (2.57) and so we will neglect the contribution from the EW gauge bosons. Since the

vacuum energy difference is zero at the critical temperature, one may equate the required

thermal contribution to the vacuum energy difference with the zero temperature value.

Assuming vc ≈ v for parameter regions with a low critical temperature, we can derive an

equation for ξ as follows

|∆V1 loop (0T)|
4v4

≈ gtξ−4

[
7π2

720
−
(
yt√

2

ξ

2π

)3/2

exp

(
− yt√

2
ξ

)(
1 +

15

8

√
2

ytξ

)]
, (2.58)

where gt = 12 is the number of degrees of freedom of the top quark. Taking the limit that
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the strength ξ is very large, the exponential term suppresses all ξ-dependent terms inside

the square bracket in eq. (2.58). The strength of the phase transition is then estimated by

ξ ≈
√

2v

(
7π2

720

gt
|∆V1 loop (0T)|

)1/4

. (2.59)

The approximations in eqs. (2.58) and (2.59) are shown in Figure 2.1 and reproduce our

numerical result reasonably well for large values of ξ. As ξ becomes larger than about

5, also the gauge bosons will reach a low temperature regime in the broken phase and

should be included. Adding them in eq. (2.58) leads to a slightly better approximation

labelled as “eq. (2.58)+gauge bosons” in Figure 2.1. So for very strong phase transitions,

the observed universal behaviour is fixed by the number of relevant degrees of freedom

in the plasma. These are the particles which become massless in the symmetric phase

and Boltzmann suppressed in the broken phase. Finally, we can use eq. (2.59) to derive a

simple estimate for the critical temperature,

Tc ≈
(

720

7π2gt
|∆V1 loop (0T)|

)1/4

. (2.60)

In order to guarantee a strong phase transition for each of the single field modifications

to the SM, we find bounds on each of the free parameters (see Table 2.1). For the SM

with a dimension-six operator, the mass suppression favouring a low scale cutoff has been

studied in ref. [46, 47]. These translate as bounds on the vacuum energy difference of

|∆V1 loop (0T)| <


8.83× 107 GeV4 for the SM + φ6,

1.06× 108 GeV4 for the SM + log,

9.95× 107 GeV4 for the SM + CW scalar.

(2.61)

Each hints at the necessity for below TeV scale physics and additional scalar states/extended

Higgs sectors. It is interesting to note that a very mild modification of the vacuum energy

by about 25% is sufficient to induce a strong first order phase transition.

Model: SM+φ6 SM+log SM+CW scalar

Free parameter: M λ0 y
Bound: < 854 GeV > 0.142 > 2.47

Table 2.1: Bounds on the free parameters in the single field models that guarantee a strong phase
transition.



29

(a) Without phenomenological constraints.

(b) With phenomenological constraints.

Figure 2.2: Strength of the phase transition, ξ, against the magnitude of the vacuum energy
difference, |∆V1 loop (0T)|, for the Z2xSM (vS = 0) and Z2xSM (vS 6= 0) singlet extensions. Also
shown is the ξ=1 line.

Non-supersymmetric singlet extension

Next we will remark on Figure 2.2, which shows parameter points for the Z2xSM, where

the Z2 symmetry is either spontaneously broken (vS 6= 0) or unbroken (vS = 0) at zero

temperature. The universal behaviour seen in Figure 2.1 is also observed for a number of

parameter points in the unbroken case. However, there are some parameter points that do
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not follow this universal curve and instead fall somewhere between this curve and another

branch. This other branch happens to be traced out by all points in the spontaneously

broken case. Unfortunately, this second branch fails to meet the hypothesis that the phase

transition becomes strong (let alone arbitrarily strong) as |∆V1 loop (0T)| is decreased.

This second branch exists because the second derivative of the broken vacuum changes

sign in one direction as the potential is thermally evolved to the critical temperature. This

is to say that we lose control over the broken vacuum and it no longer remains close to its

zero temperature location in field space. Instead the broken vacuum slides quickly across

field space upon small changes in temperature. In such scenarios, we observe that the

broken vacuum always slides toward the symmetric phase as the temperature is increased.

This sliding of the broken vacuum is analogous to saying that the tree level barrier between

the symmetric and broken vacua virtually disappears. The only barrier remaining is that

generated through the cubic terms of the EW gauge bosons. The phase transition is

therefore SM-like with the physical Higgs mass replaced by its value at φ = 0 and S = ṽS .

See Section 4.1.4 in the final chapter for more details. To avoid such scenarios, one must

ensure that the Higgs squared mass matrix is always positive in a neighbourhood of the

broken vacuum. The size of this neighbourhood has to be larger if the critical temperat-

ure is higher, because then the broken minimum moves more in field space under thermal

effects. Therefore, we revise our original hypothesis in Section 2.2:

The smaller the value of |∆V1 loop (0T)|, the lower the critical temperature. Further, the

strength of the phase transition ξ will become arbitrarily strong so long as the Higgs

squared mass matrix remains positive in the neighbourhood of the broken vacuum.

We must stress again that in the current work we choose to use the one loop approximation

to the effective potential. In some models the tree level approximation will be sufficient to

indicate a first order phase transition, while in other models higher loop orders will have

non-negligible impact and need to be included.

Let us consider the case where the Z2 symmetry is unbroken at zero temperature.

Parameter points that undergo spontaneous Z2 breaking between zero temperature and

the critical temperature are those observed either between the two branches in Figure 2.2

or lie on the same branch as the parameter points in the Z2 broken at zero temperature

case. The points on the “universal” branch remain unbroken up to the critical temperature.

What we call sliding behaviour therefore carries the notion of a parameter point falling

off the universal branch and, perhaps, onto the lower branch below.
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(a) Fixed coupling, a2 = 1.0.

(b) Fixed singlet mass, ms = 80 GeV.

Figure 2.3: Plot of the field-dependent singlet mass at S = 0 against the φ direction for various
values of ms and a2 in the Z2xSM (unbroken). The Z2 symmetry spontaneously breaks at the
value of φ where the singlet mass squared changes sign. The value of ms controls the offset of the
singlet mass away from ms(φ) = 0. For a given value of a2, a lighter singlet mass brings the Z2

breaking critical field value closer to the zero temperature VEV, v. For a given value of ms, the
higher the value of the quartic coupling a2, the closer the Z2 breaking critical field value is to the
zero temperature VEV, v.

For the case where the Z2 symmetry is unbroken at zero temperature, the field-

dependent singlet mass at S = 0 is given by

m2
s(φ) = m2

s +
a2

2
(φ2 − v2), (2.62)
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Z2xSM (vs≠0), significant sliding

■ Z2xSM (vs=0), sliding region

Z2xSM (vs=0), non-sliding
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Figure 2.4: Critical temperature of the phase transition, Tc, against the magnitude of the vacuum
energy difference, |∆V1 loop (0T)|, for the Z2xSM. This plot outlines the full parameter region using
the same parameter points that appear in Figure 2.2. The colour coding is also the same but we
use a different shade of orange to show where the non-sliding and sliding parameter points exist.

where ms is the mass of the singlet at φ = v. Figure 2.3 shows how the critical Higgs

field value (where the Z2 symmetry breaks) depends on the zero temperature quantities

ms and a2. To avoid the Z2 symmetry breaking due to thermal effects, we must ensure

that the mass-squared value of the singlet remains positive in the broken minimum up to

the critical temperature. One may thus always guarantee a strong phase transition using

our hypothesis by choosing ms and a2 such that eq. (2.62) is positive. A sliding singlet

occurs for a light singlet mass and large a2 coupling. In these cases, the small singlet

mass results from a more or less severe tuning between bare and electroweak symmetry

breaking induced terms.

As a result of sliding behaviour, taking ∆V1 loop (0T) → 0 does not always guarantee

a strong phase transition. However, we observe that ∆V1 loop (0T) → 0 does generally

lead a decrease of the critical temperature. This can be seen in Figure 2.4, which uses

the same parameter points and similar colour coding to Figure 2.2. Rather than showing

the parameter points, we have interpolated between them and outlined the parameter

region instead. This is because, for all of the models investigated in this work, their para-

meter points appear somewhere between the non-sliding and significant sliding boundaries.

Therefore, we cannot guarantee a strong phase transition as ∆V1 loop (0T) → 0 because the

Higgs VEV vc tends to change drastically upon sliding.



33

It should be noted that phenomenological constraints only apply at zero temperature.

Therefore all parameter points in the Z2 unbroken case are viable candidates for a theory

beyond the SM, since there is no Higgs-singlet mixing at zero temperature. However,

a spontaneous breaking of the Z2 symmetry before the start of the electroweak phase

transition disfavours a strong phase transition. A more striking observation is that if the

Z2 is spontaneously broken at zero temperature, none of the parameter points have a strong

phase transition. This may be slightly modified by thermal effects, e.g. an enhancement

of the thermally-induced barrier when the Higgs and singlet are included. Let us also note

that in the case of spontaneous Z2 breaking, phenomenological constraints remove most

of our parameter points. So spontaneous Z2 breaking before the critical temperature is

phenomenologically disfavoured and, if realised, does not lead to a strong phase transition

through T = 0 effects. This observation is consistent with the findings in ref. [48, 50, 51].

Let us now turn to the xSM with the Z2 explicitly broken at zero temperature. The

parameter points for this model can be found in Figure 2.5. In comparison with the Z2xSM

cases in Figure 2.2, we observe identical behaviour including the universal behaviour at

low |∆V1 loop (0T)|. As for the physics, the main qualitative difference between the xSM

and Z2xSM is that the Z2 is explicitly broken rather than possibly spontaneously broken.

An interesting contrast between the xSM and Z2xSM (vS 6= 0) case is that a lot of

parameter points in the xSM do follow our hypothesis. This suggests that for a very

strong phase transition and a non-zero Higgs-singlet mixing at zero temperature, the

potential must contain non-thermal cubic terms for our hypothesis to succeed. In support

of this statement, we find that all parameter points on the undesirable branch (traced by

Z2xSM (vS 6= 0) in Figure 2.2) vanish if we demand a large cubic term, a1 > 250 GeV. We

also observe that phenomenological constraints remove the majority of parameter points.

Those surviving strictly follow our hypothesis that a tuning of the vacuum energy difference

leads to a strong phase transition. After imposing phenomenological constraints, a strong

phase transition is guaranteed if |∆V1 loop (0T)| < 1.03×108 GeV4, i.e. again a 25% tuning

in the vacuum energy is sufficient.

These results are consistent with the findings of ref. [50]. The only exception is that

we have not found any parameter points with a strong phase transition in the one loop

Z2xSM (vS 6= 0) model. This very feature was noted in [50] as being contradictory to

other literature, such as [82]. We have identified that the Z2xSM with 〈S〉 = 0 and

〈S〉 6= 0 in the broken vacuum at critical temperature lead to very different behaviour as

∆V1 loop (0T) → 0. This is understood in ref. [50] and here by the fact that we can only
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(a) Without phenomenological constraints.

(b) With phenomenological constraints.

Figure 2.5: Distribution of the strength of the phase transition, ξ, against the magnitude of
the vacuum energy difference, |∆V1 loop (0T)|, for the xSM with the Z2 explicitly broken at zero
temperature. Also shown is the ξ=1 line.

retain a tree level barrier at critical temperature if 〈S〉 = 0 in the broken vacuum. In the

unbroken case, a very strong phase transition is much more natural to realise.

GNMSSM

Let us now turn to the GNMSSM. Comparing Figures 2.5 and 2.6 there is little difference

between the GNMSSM and the non-supersymmetric singlet extended cases. However, we
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(a) Without phenomenological constraints.

(b) With phenomenological constraints.

Figure 2.6: Distribution of the strength of the phase transition, ξ, against the magnitude of the
vacuum energy difference, |∆V1 loop (0T)|, for the GNMSSM. The three benchmark models, chosen
from the GNMSSM data set and discussed in Section 2.3.4, are marked above. Also shown is the
ξ=1 line.

notice that the GNMSSM parameter points are more dispersed between the two branches.

We suspect that this is because our scanning procedure happens to capture some of the

more finely-tuned parameter regions of the supersymmetric theory. This is apparent when
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Figure 2.7: Distribution of the strength of the phase transition, ξ, against the magnitude of the
vacuum energy difference, |∆V1 loop (0T)|, for the GNMSSM with the mixing shown. Note in the
key: (all) denotes all of the parameter points and (con) denotes the parameter points that satisfy
phenomenology constraints.

we look at the tree level expression for the singlet mass at S = 0,

m2
s(φ) = m2

s + λ(λ− k3 sin 2β)(φ2 − v2), (2.63)

which is the GNMSSM analog of eq. (2.62). Unlike in the xSM where we perform a scan

over potentially large values of the a2 coupling through eq. (2.39), we are forced in the

GNMSSM to keep the λ value small to avoid running into a Landau pole [77]. These

couplings are crucial since they control the second derivative of the singlet field-dependent

mass at S = 0, and hence the chance of finding a parameter point where the potential is

destabilised in the singlet direction. An example of such a situation is benchmark II, with

related Figure 2.10, discussed in Section 2.3.4. Like in the general xSM many parameter

points are excluded by phenomenological constraints, in particular, because of too large a

Higgs-singlet mixing. For the remaining points, there is a clear relationship between the

vacuum energy difference and the strength of the phase transition ξ. Our estimates for

the strength of the phase transition, eq. (2.59), and critical temperature, eq. (2.60), still

apply.

Interestingly, we observe a tendency for points with small mixing, | sinα| < 0.2, to lead
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Figure 2.8: Plot of the singlet mass, ms, against the vacuum energy difference, |∆V1 loop (0T)|, for
the GNMSSM data set with phenomenological constraints applied. Parameter points highlighted
in red have a strong phase transition (ξ > 1), all other points do not (ξ < 1). The blue line
indicates the bound suggested in eq. (2.64).

to a strong ξ-|∆V1 loop (0T)| correlation, as can be seen from Figure 2.7. Similar findings are

reported in ref. [42] which covers the NMSSM in the limit of no mixing, i.e. | sinα| → 0.

For the data set with phenomenological constraints applied we can see an upper bound

of |∆V1 loop (0T)| < 6.98× 107 GeV4 ensures we have a strong phase transition. However,

this bound removes a significant portion of our parameter space with a strong phase

transition. In order to capture more parameter points with a strong phase transition, we

instead impose the simultaneous constraints

ms > (87.1 GeV)×
( |∆V1 loop (0T)|

4.65× 107 GeV4 − 1

)
and |∆V1 loop (0T)| < 1.14× 108 GeV4.

(2.64)

This bound is indicated in Figure 2.8, where it is clear that a significant number of points

with a strong phase transition are captured. It should be stressed that the recipe in

eq. (2.64) is only applicable to the GNMSSM with phenomenological constraints applied.

Without phenomenological constraints applied a significant number of points with a weak

phase transition (many small singlet masses with large Higgs-singlet mixing) appear in

the parameter space covered by eq. (2.64). For the raw data set, we suggest a modified
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bound of

ms > (116 GeV)×
( |∆V1 loop (0T)|

1.14× 108 GeV4

)1/2

and |∆V1 loop (0T)| < 1.14× 108 GeV4.

(2.65)

A similar bound may be found for the non-supersymmetric models. Note how benchmark

III comfortably sits within this territory whereas both benchmarks I and II would be

excluded by eq. (2.64).

In summary, we find that after applying phenomenological constraints a strong first

order phase transition in the GNMSSM requires (modest) tuning of the vacuum energy

difference by around roughly 30%, i.e. from −1.3 × 108 GeV4 to −0.9 × 108 GeV4. This

is not a significant amount of tuning. So a strong first order phase transition is easily

realisable in the context of this model.

2.3.4 GNMSSM benchmark models

Here we will look at three benchmarks in our GNMSSM data set that satisfy phenomen-

ological constraints. We have chosen the benchmarks based on the strength of the phase

transition ξ and the value of the vacuum energy difference. All three are indicated in

Figures 2.6 and 2.8. More specifically, we choose benchmark I (benchmark III) to have a

strong phase transition but large (small) value of |∆V1 loop (0T)| and benchmark II to have

a weak phase transition but relatively tuned vacuum energy difference. For each bench-

mark we give the main parameter values (see Table 2.2) and the Higgs mass spectrum (see

Table 2.3). The full set of defining parameters is given in Appendix C.

For each benchmark, contour plots of the potential at zero temperature and critical

temperature are given in Figures 2.9-2.11. The potential displayed in the contour plots is

offset and normalised according to

Ṽ (φ, S;T ) =
V1 loop(φ, S;T )− V1 loop (0T)(v, vS)

V1 loop (0T)(0, 0)− V1 loop (0T)(v, vS)
. (2.66)

Thus the potential in the broken vacuum at zero temperature corresponds to zero in the

Benchmark λ λAλ k3 vS ṽS mt̃2
∆V1 loop (0T) Tc ξ

I 0.577 641.1 -0.151 -110.1 -234.6 613.1 -1.15× 108 142.5 1.01
II 0.569 130.4 0.280 -161.5 0.0 844.1 -6.99× 107 116.0 0.49
III 0.626 265.2 -0.251 -146.7 -348.3 907.7 -6.79× 106 47.1 5.20

Table 2.2: Some of the more important quantities for each benchmark scenarios. The full set of
parameter values are provided in Appendix C. All masses are in units of GeV.
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Benchmark | sinα| mh mH ms mA mAs mH±

I 0.119 125.0 853.7 107.2 779.1 945.0 839.1
II 0.013 125.0 888.0 33.0 887.1 833.3 883.5
III 0.172 125.0 2586.8 89.3 2586.5 1212.0 2585.0

Table 2.3: One loop zero temperature Higgs mass spectrum in the benchmark scenarios. All
masses are in units of GeV.

displayed potential, Ṽ (v, vS ; 0) = 0, and the origin in field space corresponds to unity,

Ṽ (0, 0; 0) = 1. The broken (symmetric) extremum is marked on each potential as a red

cross (plus).

The key observation is to see how much the broken vacuum has moved away from its

zero temperature value at the critical temperature. Specifically, the singlet value in the

broken vacuum does not change by much in benchmarks with a strong phase transition,

whereas the singlet value of the broken vacuum changes significantly in benchmark II.

To quantify the change of any field value in the broken vacuum, we define the fractional

change to be

δ(Φ) =
|Φbroken(T = 0)− Φbroken(T = Tc)|

v
, (2.67)

where Φ is to be recognised with one of our fields. A low fraction corresponds to the

VEV at critical temperature remaining close to its zero temperature value, whereas a

high fraction corresponds to the VEV at critical temperature being far from its zero

temperature value. In Table 2.4 we display the values for each benchmark. This allows us

to qualitatively link our hypothesis to each of the benchmarks. Namely, that the broken

minimum should remain in a neighbourhood of its zero temperature value if we want a

strong phase transition.

All of our benchmarks have small Higgs-singlet mixing in accordance with experimental

constraints. The singlet state is always lighter than the SM-like Higgs and for benchmark

II it is significantly lighter. For all benchmarks the Higgs-singlet coupling λ is close to the

upper bound that prevents running into a Landau pole [77]. All other Higgs states are

Benchmark δ(φ) δ(S) Behaviour

I 0.42 0.030 Minimally strong phase transition, minimal tuning of |∆V1 loop (0T)|

II 0.77 0.90 Weak phase transition, irrespective of the tuning of |∆V1 loop (0T)|

III 6.0× 10−5 1.1× 10−3
Very strong phase transition, significant tuning of |∆V1 loop (0T)|

Table 2.4: Fractional change of the φ and S fields using eq. (2.67) and the behaviour of each
benchmark.
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(a) Potential at zero temperature.

(b) Potential at critical temperature.

Figure 2.9: The above plots show the shape of the one loop effective potential in (φ, S) field
space at (a) zero temperature and (b) critical temperature for benchmark I. The broken (sym-
metric) vacuum is marked by a red cross (plus). At zero temperature, the broken and symmetric
vacua are located at (174.2, −110.1) and (0,−234.6), respectively. At the critical temperature,
Tc = 142.5 GeV, the broken and symmetric vacua are located at (101.5, −115.4) and (0,−234.6),
respectively. All fields are in units of GeV. The potential displayed is defined in eq. (2.66).
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(a) Potential at zero temperature.

(b) Potential at critical temperature.

Figure 2.10: The above plots show the shape of the one loop effective potential in (φ, S) field space
at (a) zero temperature and (b) critical temperature for benchmark II. The broken (symmetric)
vacuum is marked by a red cross (plus). At zero temperature, the broken and symmetric vacua are
located at (174.2, −161.5) and (0,0), respectively. At the critical temperature, Tc = 116.0 GeV,
the broken and symmetric vacua are located at (40.0, −5.19) and (0,0), respectively. All fields are
in units of GeV. The potential displayed is defined in eq. (2.66).



42

(a) Potential at zero temperature.

(b) Potential at critical temperature.

Figure 2.11: The above plots show the shape of the one loop effective potential in (φ, S) field space
at (a) zero temperature and (b) critical temperature for benchmark III. The broken (symmetric)
vacuum is marked by a red cross (plus). At zero temperature, the broken and symmetric vacua are
located at (174.2, −146.7) and (0,−348.3), respectively. At the critical temperature, Tc = 47.1 GeV,
the broken and symmetric vacua are located at (173.2, −146.9) and (0,−348.3), respectively. All
fields are in units of GeV. The potential displayed is defined in eq. (2.66).
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heavy and decouple from the phase transition.

Benchmark I has a very moderate tuning of |∆V1 loop (0T)| and does not suffer from

a sliding singlet instability, so we arrive at a phase transition with ξ = 1.01. This is

just strong enough to avoid baryon number washout. In Figure 2.9, we see that the

symmetric and broken extrema are well separated by a barrier which does not disappear

as we approach the critical temperature, Tc = 142.5 GeV. We also note that the λAλ cubic

term is largest for this benchmark. Since the critical temperature is relatively high, the

critical Higgs field vc is noticeably different from its zero temperature value v. However,

we notice that the singlet VEV hardly moves during the phase transition.

In benchmark III we significantly tune the vacuum energy difference to a small value,

whilst keeping the singlet relatively heavy. This results in a very strong first order phase

transition with ξ = 5.20 and a much reduced critical temperature of Tc = 47.1 GeV. In

Figure 2.11 we see a greatly enhanced barrier compared to Figure 2.9. Both VEVs hardly

move in this case. We expect the symmetric vacuum to be metastable in this case so

the phase transition may not actually take place. This could be checked by computing

the energy of the critical bubble which, however, goes beyond the scope of this chapter.

Starting from this benchmark and reducing the tuning of the vacuum energy difference,

we would expect to retain a strong phase transition but enter a regime where the phase

transition actually takes place.

Benchmark II is very much different to the already discussed benchmarks, as is appar-

ent in Figure 2.10, which contains a valley connecting the symmetric and broken extrema.

In this case the singlet is rather light and the λAλ cubic term has the lowest value com-

pared to the others benchmarks. As discussed in the non-supersymmetric case, as the

temperature is increased the Higgs mass squared matrix develops a negative eigenvalue

and the broken vacuum slides toward the symmetric extremum. This is indicated by

the big change in the singlet field (see Table 2.4). As a result the critical temperature,

Tc = 116.0 GeV, is not as low as the vacuum energy difference suggests. This can be

understood by Figure 2.4.

Overall, these benchmarks indicate that a strong first order phase transition can be

enforced by having a not too light singlet state with small mixing to the Higgs and a

moderately tuned vacuum energy difference.
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2.4 The Minimal Standard Model with variable Higgs mass

From the investigation thus far, we observe two distinct scenarios. One scenario we call

non-sliding, whereby parameter points have vc → v as Tc → 0 monotonically by a tuning

of |∆V1 loop (0T)| → 0. Universal behaviour for low Tc explains the well-defined branch in

the first scenario, see eq. (2.59)-(2.60). Parameter points in this scenario satisfy our initial

hypothesis in Section 2.2.

The other scenario we call sliding, where parameter points have vc � v as Tc decreases

by a tuning of |∆V1 loop (0T)| → 0. Note in the sliding case that Tc decreases monotonically

as |∆V1 loop (0T)| → 0 but does not necessarily go to zero. This is discussed in the section

below and can be seen in Figure 2.14. In this scenario, Figure 2.2 revealed that many of

the Z2xSM (vS = 0) parameter points fall on another well-defined branch. This branch

is exactly traced out by the Z2xSM (vS 6= 0) parameter points. These parameter points

comfortably reside in the sliding region and are thus interpreted as having experienced

significant sliding behaviour. For singlet extended models, parameter points that experi-

ence significant sliding characteristically have 〈S〉broken ≈ 〈S〉symm at critical temperature,

where 〈S〉broken is far away from its value at zero temperature. This typically occurs for

parameter points whose broken vacuum destabilises at a temperature significantly lower

than critical temperature, i.e. shortly after zero temperature.

2.4.1 The significant sliding branch

In this section we would like to convince the reader that the well-defined, significant sliding

branch has the same phase transition properties as the Minimal SM when the Higgs mass

is treated as a free parameter, therefore implying that this branch originates from the

Minimal SM-like features of the potential.

The tree level potential in the SM can be found in eq. (2.1). Recall that φ = Re(H0)

is recognised as the Higgs field. Here we will relax the condition that the Higgs mass is

mh = 125 GeV. Instead we choose the value of 0 GeV < mh ≤ 125 GeV. The Higgs

mass is then the free parameter used to tune the tree level contribution of the vacuum

energy difference ∆V
[SM]

tree , see eq. (2.27). Such a one field scalar potential is no longer

physically realisable since the discovery of the Higgs boson. However it is still very useful

for investigating various extensions of the SM. As we previously mentioned, the same

phase transition properties (vc, Tc, and ξ) are found for models that experience significant

sliding behaviour. This is a direct result of the phase transition being solely driven by the

SM content in the radiative piece of the effective potential.
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Firstly, we repeat the analysis conducted in Section 2.3 using the Higgs mass as a

free parameter. We will only include the top quark and electroweak gauge bosons in loop

corrections, unless otherwise stated. This ensures that our approach is consistent with

that in the Section 2.3. The numerically determined branch is shown by the faded red

curve in Figure 2.12. The resulting relations between vc, Tc, and ∆V1 loop (0T) are exactly

the same as those found for singlet extended models that experience significant sliding

behaviour, e.g. the lower branches in Figures 2.2 and 2.5.

There is a slight deviation between the non-supersymmetric branch and the GNMSSM

branch displayed in Figure 2.6. This is because the supersymmetric model includes stops

in the one loop effective potential. This is necessary to attain a 125 GeV Higgs mass.

Note that we also include the stops into thermal radiative corrections. Within a high

temperature expansion of the thermal effective potential, deviations between the branches

can be explained by the presence of additional thermally-induced cubic terms. If we instead

consider the low temperature expansion of the thermal effective potential, the deviation

can be explained by the additional number of degrees of freedom in the plasma. Although

we should keep in mind that the stops in our data set tend to have heavy explicit masses

(from the softly broken supersymmetry), and so we would expect them to decouple from
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One Loop (ring impr.)

Tree+Thermal+Higgs

One Loop+Higgs

One Loop+Higgs (ring impr.)
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ξ

Figure 2.12: Plot of the strength of the phase transition at critical temperature ξ against the
zero temperature vacuum energy difference |∆V1 loop (0T)|. We display the result with (dashed)
and without (faded solid) the Higgs boson included as a T = 0 and thermal one loop correction.
Similarly, the red and orange coloured curves represent the result for an effective potential with
and without the inclusion of the ring term in eq. (2.70), respectively. We include set of blue curves
that represent the result when the zero temperature one loop contributions are ignored.
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the phase transition due to their terms being Boltzmann suppressed in the low temperature

effective potential.

We have chosen to decrease |∆V1 loop (0T)| by lowering the value of mh, eq. (2.28).

However, the smaller the value of mh the more significant the radiative corrections’ effect

on the shape of the potential and the phase transition. Therefore we expect parameter

points that lie on the lower branch and in the low |∆V1 loop (0T)| region to be most sensitive

to our treatment of the effective potential, e.g. higher loop order and resummation effects.

2.4.2 Dependence of results on the treatment of the effective potential

Here we will address some important questions regarding the treatment of the effective

potential. We display the numerically determined branch for the potential treated in

three unique setups in Figure 2.12. Each setup further excludes or includes the Higgs

boson in zero temperature and thermal one loop corrections. We will describe each of

the setups below in order of their significance on the shape of the strength ξ against

|∆V1 loop (0T)| curve. Note that each curve should be contrasted against the red faded

curve in Figure 2.12, which is determined by the same setup as models in preceding

sections of this chapter.

Tree + thermal only

The blue curve deviates the most from the red curve. The setup used to determine the

blue curve ignores all zero temperature radiative corrections, but includes them in the

thermal corrections. In other words there are no Coleman-Weinberg type terms in the

scalar potential. We argue that this approach is risky; ignoring the zero temperature

one loop contribution but taking only the thermal one loop contribution to the effective

potential is a dangerous move.

Our reasoning as to why this approach is dangerous is the following. As the Higgs mass

becomes smaller, radiative corrections to the potential have an increasingly significant

effect on the properties and overall shape of the zero temperature potential. This can

be seen from the fact that as mh → 0, the potential becomes not only locally flat in the

broken vacuum but also globally flat. This is suggestive of the potential being sensitive

to radiative corrections, with more sensitivity the closer we are to |∆V1 loop (0T)| = 0 in

the Figure 2.12. For low |∆V1 loop (0T)| the value of Tc is also low, so thermal terms in the

effective potential are likely Boltzmann suppressed in the broken vacuum, see Section 2.3.3

for an explanation. Thermal effects therefore bring down the symmetric extremum toward
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the broken vacuum in the zero temperature potential. The shape of the potential at critical

temperature and hence the phase transition properties are likely determined by the shape

of the potential at zero temperature. Therefore one ought to include one loop effects when

mh takes on small values.

This justifies our approach in the preceding work whereby we include at least the top

quark and electroweak gauge bosons in the one loop correction. Hence the red curve in

Figure 2.12 comes from a more reliable approach than the blue curve. It is nonetheless in-

teresting that the “tree+thermal only” approach finds arbitrarily strong phase transitions,

in accordance with the initial hypothesis in Section 2.2. The reason for this difference is

explained below.

The importance of radiative effects

As the Higgs mass goes to zero, the critical temperature is lowered. This results in the

tree level piece of the potential vanishing so that only the one loop piece of the potential

remains. Therefore only the radiative piece of the potential can determine the strength

of the phase transition at the lowest value of |∆V1 loop (0T)|. This effect can be seen in

Figures 2.13 and 2.14.

Here we decrease the top quark mass in order to reduce the one loop contribution to

the vacuum energy difference. Our results are consistent with FIG 3 in [69]. We do not

change the electroweak gauge boson masses in order to keep the thermally-induced cubic

terms the same. We also confirm that each result is independent of the renormalisation

scale Q. This is achieved by setting Q as either (i) fixed to the observed top mass of

173.07 GeV or (ii) varying with the freely chosen top quark mass. It just so happens that

for a top quark mass greater than mt & 165 GeV, a few GeV below the experimentally

measured value, the strength of the phase transition does not exceed unity, i.e. ξ . 1.

Figure 2.14 is particularly insightful. For most curves, as the Higgs mass is taken

toward zero the critical temperature does not go to zero but to a positive value. These

curves have a top mass that corresponds to ∆V1 loop (0T) < ∆Vtree. Between the purple

and black curves exists a curve which, as the Higgs mass goes to zero, goes to exactly

Tc → 0. This occurs for a top quark mass of

mt =

(
gWm

4
W + gZm

4
Z

gt

)1/4

= 78.60 GeV, (2.68)

which coincides with the one loop zero temperature vacuum energy difference contribution

in eq. (2.28) being exactly zero. A top quark mass lower than this value, corresponding to



48

mt=70 GeV

mt=90 GeV

mt=110 GeV

mt=130 GeV

mt=150 GeV

mt=170 GeV

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

mh [GeV]

ξ

(a) The strength ξ at critical temperature against the Higgs mass mh at zero
temperature. This plot is directly comparable with FIG 3 in [69].
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(b) The strength ξ at critical temperature against |∆V1 loop (0T)|.

Figure 2.13: Plots to show how the Minimal SM branch changes with the top quark mass. The
top quark mass is given by the legend. We use an effective potential with the top quark and
electroweak gauge bosons and no Higgs boson in the radiative corrections. The original curve (the
red faded curve in Figure 2.12) is roughly the same as the red dashed branch in the above figure.

∆V1 loop (0T) > ∆Vtree, would have Tc → 0 with mh > 0 as ∆V1 loop (0T) → 0. We suspect

that ∆V1 loop (0T) > ∆Vtree is a condition whereby one will guarantee an arbitrarily strong

phase transition as ∆V1 loop (0T) → 0. Otherwise, the heavy top quark mass and its

large number of degrees of freedom will prevent Tc → 0. Hence the initial hypothesis
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Figure 2.14: Plot of the critical temperature against the Higgs mass in the Minimal SM with
variable Higgs mass. Each curve is found numerically for a chosen top quark mass. The top quark
mass is given by the legend. We use an effective potential with the top quark and electroweak
gauge bosons and no Higgs boson in the radiative corrections. For too high a top mass, we find
Tc > 0 as mh → 0. Therefore we cannot get an arbitrarily strong phase transition in taking
∆V1 loop (0T) → 0. The magenta error bars display the lattice result from ref. [2].

in Section 2.2 fails. With SM particle content, the condition that ∆V1 loop (0T) > ∆Vtree

can only be realised by including sufficiently many or heavy bosons into T = 0 radiative

corrections to counter the top quark’s effect.

As an alternative to changing the top quark mass, we can add bosonic degrees of

freedom to change the radiative piece, ∆V1 loop (0T) − ∆Vtree. This is more desirable for

BSM studies. Let us assume the existence of a new boson coupled to the Higgs, with

gb degrees of freedom and a field-dependent mass of the form mb(φ) = mb
v φ. A further

constraint is that the broken electroweak vacuum is the true vacuum at zero temperature,

0 > ∆V1 loop (0T). Therefore, for 0 > ∆V1 loop (0T) > ∆Vtree, the pole mass of the new

boson must be

318.6 GeV < (gb)
1/4mb < 632.5 GeV. (2.69)

An example of such a potential is the SM with an additional Coleman-Weinberg scalar,

described in Section 2.1.1, and can be realised through a two Higgs doublet model [52, 83–

86]. In fact, Figure 5.10(a) in ref. [84] shows that one can obtain an arbitrarily strong

phase transition by taking the vacuum energy difference to ∆V1 loop (0T) → 0. They found

∆V1 loop (0T) → 0 occurs when mH → 480 GeV, where mH is the heavy neutral Higgs

boson. For our previous investigation, we took gb = 1 and found mb > 430.2 GeV for a

strong phase transition ξ & 1, see Table 2.1. This satisfies the range in eq. (2.69) in which
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we expect the phase transition to be arbitrarily strong because Tc → 0 as ∆V1 loop (0T) → 0.

This is consistent with the result in Figure 2.1. We also remark that either reducing the

top mass or including an additional Higgs-coupled scalar(s) improves the vacuum stability

of the potential.

A recent study also revealed how to obtain a strong phase transition by varying the

top Yukawa coupling between the broken and symmetric extrema [87]. In ref. [87] the

phase transition is strengthened by thermal effects. This is a different mechanism to what

we describe in this section which regards the T = 0 vacuum energy radiative correction.

According to the lattice results in ref. [2] a weak first order phase transition is found

for the Minimal SM. In comparing with the branches in Figure 2.12 the red curve (one

loop) is closer to the lattice result than the blue curve (tree+thermal only). A lattice

determination of this branch is desirable, but beyond the scope of this thesis. Rather than

abandoning perturbation theory we can further validate which approach is more accurate

by resumming part of the thermal effective potential.

Including one loop ring-improvement terms (resummation)

For the resummation, we follow the procedure in ref. [68] up to one loop order. This

amounts to including a term of the form [68]

∆Vring = −gi(L)
T

12π

[
M3

i (φ, T )−m3
i (φ)

]
(2.70)

into the bosonic contributions to the high temperature expansion part of the effective

thermal potential. This gives what is known as the ring-improved effective potential.

Note that only the scalars and longitudinal gauge boson modes appear in the ring term,

where their degrees of freedom are denoted by gi(L) in the above. Here Mi(φ, T ) and

mi(φ) are the field-dependent thermal mass and field-dependent mass of the ith boson,

respectively. The thermal mass (squared) is of the form

M2
i (φ, T ) = m2

i (φ) + Πi(φ, T ), (2.71)

where Πi(φ, T ) is a Debye mass term. To leading order Πi(φ, T ) ∝ T 2. The field-dependent

masses are given by

m2
W (φ) =

1

2
g2

2φ
2 =

m2
W

v2
φ2, (2.72)

m2
Z(φ) =

1

2
(g2

2 + g2
1)φ2 =

m2
Z

v2
φ2, (2.73)
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m2
t (φ) = y2

t φ
2 =

m2
t

v2
φ2, (2.74)

m2
h(φ) =

1

2

∂2V
[SM]

tree (φ)

∂φ2
=
m2
h

2v2

(
−v2 + 3φ2

)
. (2.75)

The thermal (squared) masses are given by

M2
W (φ, T ) =

m2
W

v2

(
φ2 +

11

3
T 2

)
, (2.76)

M2
Z(φ, T ) 0

0 M2
γ(φ, T )

 = diag


m2
W

v2

(
φ2 +

11

3
T 2

)
−mZ

√
m2
Z −m2

W

φ2

v2

−mZ

√
m2
Z −m2

W

φ2

v2

(m2
Z −m2

W )

v2

(
φ2 +

11

3
T 2

)
 ,

(2.77)

M2
h(φ, T ) =

m2
h

2v2

(
−v2 + 3φ2 +

1

12
T 2

)
+

(m2
t + 2m2

W + 2m2
Z)

8v2
T 2. (2.78)

The resummation has a noticeable impact of decreasing the strength of the phase trans-

ition, see Figure 2.12. This is more consistent with the lattice result [2]. The strength

decreases by 10% where the Higgs mass is very small and 30% for mh = 125 GeV. If we

include the Higgs into the radiative corrections, the resummation decreases the strength

by 10% for any value of the Higgs mass.

Including the Higgs into one loop radiative corrections

Having established that the faded red curve in Figure 2.12 is reliable under our treatment

of the effective potential so far, we turn to the final question. Would the shape of the

branch change if we include the Higgs in the radiative corrections?

As before, we numerically determine the branch for each set up but now with the Higgs

included. To be more specific, we always include the Higgs thermal corrections. Only in

the case of the “tree + thermal only” setup do we not include the Higgs in the T = 0

radiative corrections, otherwise we do. Similarly, we include a ring term for the Higgs, see

eq. (2.70), for the ring-improved one loop potential set up. Comparing the same-coloured

dashed and faded curves in Figure 2.12, we can see that including the Higgs has a very

small effect on the shape of the branch. The effect is small because the Higgs boson only

has one degree of freedom, gh = 1, which is negligible compared to the top quark’s and

electroweak gauge bosons’ number of degrees of freedom.

We notice that the Higgs correction has slightly more impact for larger |∆V1 loop (0T)|

on a given curve. Comparing branches for various properties against mh, we observe

that this effect primarily results from a decrease in the critical temperature, as shown in
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Figure 2.15: Plot of the critical temperature of the phase transition Tc against the Higgs mass
mh. Both axes are in units of GeV. See Figure 2.12 or text for a description of the curves.

Figure 2.15. This decrease becomes less significant as mh → 0. This can be understood

by calculating the Higgs one loop contribution to the vacuum energy difference,

∆V
[SM]

1 loop (0T) + Higgs = ∆V
[SM]

1 loop (0T) +
1

2(16π)2
ghm

4
h (15 + log(4)− i 2π) . (2.79)

The imaginary piece above derives from the field-dependent Higgs mass squared being

negative at the origin, m2
h(φ = 0) = −1

2m
2
h, see eq. (2.75). This negative term appears

in the argument of a log term. We ignore this imaginary piece for the same reason that

calculations are performed by taking the real part of the potential. Including the one loop

correction for a Higgs of mass 125 GeV decreases the vacuum energy by 6.2% of its tree

level value. A more accurate value of the one loop vacuum energy difference for the SM is

therefore ∆V (0) = −1.259× 108 GeV4, compared to eq. (2.28). A more meaningful value

is how much the Higgs contributes to the radiative piece of the vacuum energy difference.

For mh ≤ 125 GeV, the Higgs contributes a less than 10% decrease to the radiative piece.

This contribution decreases with mh, until the vacuum energy is exactly that from the

top quark and electroweak gauge bosons.

To summarise, a heavier Higgs has a larger effect on the shape of the branch because it

changes the depth of the radiative vacuum energy more. In line with our initial hypothesis,

this results in a decrease in the critical temperature compared to the potential without

the Higgs included. However, this effect reduces with the Higgs mass until the effective

thermal potential is that generated from the top quark and electroweak gauge bosons.
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Overall the Higgs radiative contribution has a very small effect on the shape of the branch

in the Minimal SM with a variable Higgs mass. We expect it may have a more significant

effect in BSM extensions, where the Higgs mass is 125 GeV, so the 10% decrease of the

radiative contribution to the vacuum energy persists for all |∆V1 loop (0T)|.

This analysis reveals that the shape of the Minimal SM branch is defined by a combin-

ation of the existence of the thermal cubic terms from the electroweak gauge bosons and

the value of the top quark mass. According to Figure 2.13, the branch is rather sensitive

to the top quark mass for low |∆V1 loop (0T)|. A significant enough decrease in the top

mass allows for a potential with ∆V1 loop (0T) > ∆Vtree, instead of ∆V1 loop (0T) < ∆Vtree.

This lets us tune for an arbitrarily strong phase transition through Tc → 0, instead of

Tc → constant, as |∆V1 loop (0T)| → 0.

2.5 Concluding remarks

In this work, we have investigated in detail the one loop vacuum energy difference at zero

temperature, ∆V1 loop (0T), and its implications on the strength of the electroweak phase

transition, ξ =
√

2 vc/Tc. The study was conducted using three single field modifications

to the SM, one non-supersymmetric singlet extension to the SM, and a supersymmetric

singlet extension (the GNMSSM).

For the single field models investigated, we find that a decrease in |∆V1 loop (0T)| also

decreases the critical temperature. In turn the critical field value remains close to its

zero temperature value. This leads to a strong ξ-∆V1 loop (0T) correlation with universal

behaviour observed at very low |∆V1 loop (0T)|, as can be seen in Figure 2.1. This universal

behaviour is found in Section 2.3.3 to be fixed by the number of relevant degrees of freedom

in the plasma. Parameter points with a strong phase transition are guaranteed with only

a moderate tuning of the vacuum energy difference, see eq. (2.61), relative to the SM value

in eq. (2.28).

For singlet extended models, we find a similar ξ-∆V1 loop (0T) correlation so long as the

fields in the broken vacuum do not slide under thermal effects. This sliding behaviour is

most obvious in Section 2.3.3 when we look at the non-supersymmetric model with a Z2

symmetry imposed on the singlet, called the Z2xSM. We find that a spontaneous breaking

of the Z2 before the critical temperature disfavours a strong phase transition. Such para-

meter points fall onto an undesirable region in ξ-∆V1 loop (0T) space. With the exception

of the Z2xSM unbroken at zero temperature, parameter points on this undesirable region

almost completely disappear after imposing phenomenological constraints. This can be
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seen in Figures 2.2, 2.5, 2.6, and 2.7. The reason so many points are removed is because the

phenomenological constraints disallow light singlet states with large Higgs-singlet mixing,

see Figure 2.7. In other words, phenomenological constraints work in favour of a strong

ξ-∆V1 loop (0T) correlation. This also suggests that to have Higgs-singlet mixing at zero

temperature as well as a very strong phase transition, the potential must contain explicit

Z2 symmetry breaking terms.

For the non-supersymmetric singlet extended model with the Z2 explicitly broken at

zero temperature, phenomenological constraints remove the majority of parameter points

in our data set. Nonetheless, the surviving points follow the usual ξ-∆V1 loop (0T) correla-

tion and a strong phase transition is guaranteed if |∆V1 loop (0T)| < 1.03× 108 GeV4.

For the GNMSSM, similar observations to those in the non-supersymmetric singlet

extension are made. Three benchmark scenarios are analysed in detail in Section 2.3.4.

Once phenomenological constraints are applied, a strong phase transition is guaranteed if

|∆V1 loop (0T)| < 6.98 × 107 GeV4. However, this is at the cost of excluding a significant

portion of the parameter space with a strong phase transition. Instead a far more useful

bound is provided in eq. (2.64). From Figure 2.8 we can see that this bound captures far

more of the parameter space with a strong phase transition.

The treatment of the effective potential in this work has allowed us to glimpse at the

distinction between tree and T = 0 radiative effects on the phase transition. This is

understood through our investigation into the Minimal SM with variable Higgs mass. The

ξ-∆V1 loop (0T) curve found for this model closely resembles the significant sliding branch

of singlet extended models. This observation carries the notion that the sliding of the

broken vacuum reduces the tree level barrier. Significant sliding is therefore the extreme

case whereby no tree level barrier remains at critical temperature. The phase transition

is then determined solely by the radiative piece of the potential.

To summarise our investigation in this chapter, we highlight the take away message in

the below box:

Hypothesis

As ∆V1 loop (0T) → 0,


Tc → 0 so ξ →∞, if sliding does not occur,

Tc > 0 so ξ → finite, if sliding occurs,

Tc → 0 so ξ →∞, if ∆V1 loop (0T) > ∆Vtree.
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We stress that this work does not address the surface tension, tunnelling rate, or the

latent heat of the phase transition as measures of the strength of the phase transition.

These quantities will indeed depend on the actual height of the barrier, so that we do not

necessarily expect a universal behaviour correlated to the vacuum energy. Such investig-

ations will be carried out throughout the rest of this thesis.

We hope that our results make phenomenological studies with parameters exhibiting

a strong phase transition far easier to address. This can be useful for model builders that

want a strong phase transition, without the need for any finite temperature calculations.
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Chapter 3

Phase transitions: a technical

interlude

“Imagine two adjacent hills in a grassy field. One hill is higher than the other.

Where on the higher hill would you release a ball in order for the ball to come

to rest exactly on top of the lower hill?”

A two field scalar potential is a smooth surface with a set of local extrema and ridges/valleys

between them. The potential looks like a series of hills of various sizes in a field of very

well cut grass, hence the above statement. Such potentials are found in any extension of

the SM by an additional scalar sector.

For a dedicated investigation of the electroweak phase transition, one must determine

what is known as the bounce solution. This can be a very involved task for models with a

scalar potential described by two or more fields. Finding the bounce solution is analogous

to correctly answering the question immediately below the heading of this chapter. The

keen experimentalist may well have the urge to find the starting point of the ball by trial

and error. This is an impossible task; the condition of the ball coming to a stop at the

exact peak of the hill requires an infinite precision in the starting location. However, the

ball will pass close to the peak at a minimal speed for some starting points. One would

hope that such paths the ball takes are not dissimilar.

Before jumping into the deep end with a two field potential, it is worth reviewing a

far simpler case first: that of a single field potential. In this short chapter we will review

the bounce solution and the decay of the false vacuum [30, 88–92]. Here we describe the

mathematical formalism of the bounce solution and its connection with the properties of

the phase transition.
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3.1 The bounce solution

To find the bubble configuration for a scalar potential with n fields, one must solve the

equations of motion [92]

d2φi(ρ)

dρ2
+
α− 1

ρ

dφi(ρ)

dρ
=
dV (φ1, φ2, ...φn)

dφi
for i = 1, 2, ...n, (3.1)

where α carries the notion of a damping factor and φi(ρ) is the ith field as a function of

a radial coordinate ρ. The radial coordinate is the only argument of the fields because

of an assumed O(α) spherical spacetime symmetry. Alongside our hills in a field analogy

of the scalar potential, the α parameter can be seen as representative of the frictional

effects acting on the ball, i.e. air resistance or not so well cut grass. In thermal field

theory, the time direction carries the notion of inverse temperature, so α = 3 for thermally

induced vacuum-to-vacuum transitions. We do not consider the possibility of relaxing this

symmetry since it will make the problem far more difficult.

There are many solutions to eq. (3.1). Conceptually these solutions are trajectories

that a ball would follow on the inverted potential, in accordance with the classical laws

of Newtonian mechanics. However, we are only interested in those that describe the

transition from false vacuum to true vacuum. This type of solution is subject to the

boundary conditions
dφi(0)

dρ
= 0 and φi(∞) = (φi)false (3.2)

and is called a bounce solution. Conceptually, the bounce solution is the trajectory taken

by a classical particle released from rest somewhere close to the true vacuum and coming

to rest at exactly the false vacuum after an infinite amount of time on the surface of the

inverted potential. Attempting to find the bounce solution for a potential with two or

more fields can be difficult, especially when the potential lacks (geometrical) symmetry.

For a single field potential, finding the bounce solution by numerical means is trivial.

Depending on the initial field value, the trajectory will either undershoot or overshoot

the false vacuum. Undershooting refers to the solution not reaching the false VEV and

then oscillating about the minimum of the inverted potential. Overshooting refers to the

solution reaching the false VEV and then blowing up due to the inverted potential being

bound from above. An under/overshooting iterative procedure is used to determine the

bounce solution. There even exists a special single field potential whereby the bounce

solution can be found analytically. This is the subject for the remainder of this chapter.

The reader familiar with the work in refs. [30, 88–91] can skip to Chapter 4.
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3.2 Quantum phase transitions

Any model described by quantum field theory (at zero temperature) has a scalar poten-

tial that is, in general, determined by three types of quantities. These quantities are

the scalar fields (space-time dependent objects), the masses of the relevant particles in

the theory (dimensionful objects), and couplings of interactions (dimensionless objects).

Each quantity in the potential further depends on the renormalisation scale. So for a

fixed renormalisation scale, all quantities are fixed. With masses and couplings fixed by

observations, the (zero temperature) potential only depends explicitly on the fields.

Taking the φ4 theory tree level potential,

V (φ) =
m2
h

4v2

(
φ2 − v2

)2
, (3.3)

we will review phase transitions in parallel with [30]. This is a single field potential with

exactly degenerate minima and can be used to determine the bounce solution analytically.

For the case of one spacetime coordinate we have α = 1. This is referred to as the case

of no damping since α = 1 kills the first order derivative in eq. (3.1). One can derive the

solution to the equation of motion, with eq. (3.2) boundary conditions, to be

φ(ρ) = v tanh

[
ρ

Lw

]
. (3.4)

where Lw =
√

2/mh is the wall thickness. This is called the thin wall solution. This

solution starts at φ(ρ → −∞) = −v and ends at φ(ρ → +∞) = v. Using the solution in

eq. (3.4), the kinetic energy is given by

K(ρ) ≡ 1

2

[
φ′(ρ)

]2
= V0 sech4

[
ρ

Lw

]
, (3.5)

where V0 = 1
4m

2
hv

2 is the barrier height. This is consistent with the principle of conserva-

tion of energy: the maximum kinetic energy occurs for the minimum potential energy in

the inverted potential. The one-dimensional action, known as the surface tension, is

S1 =

∫ +∞

−∞
dρ [K(ρ) + V (ρ)] =

4
√

2

3

V0

mh
=

√
2

3
mhv

2. (3.6)

Given mh, the surface tension is an effective measure of the barrier height. By definition

it is evaluated for a potential (at a temperature) when the relevant vacua are degenerate,

so it is always calculable in the thin wall approximation.
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To calculate the action in four-dimensional space-time, a spherically symmetric space-

time is assumed for simplicity. The thin wall approximation may then be considered as

the solution in the radial direction ρ ≥ 0. The solution is suggested in [30] to be

φ(ρ) =


−v for ρ� R,

v tanh

[
ρ−R
Lw

]
for ρ ≈ R,

v for ρ� R,

(3.7)

where R is the critical radius of the bubble. Note there is a shift of the radial coordinate

ρ to the positive domain [0,+∞]. The four-dimensional Euclidean action, in the thin wall

approximation, is given by

S4 = 2π2

∫ +∞

0
dρρ3 [K(ρ) + V (ρ)] ≈ 2π2R3S1. (3.8)

Once we consider a model in thermal field theory, the potential changes shape depending

on the temperature of the surrounding plasma. The critical temperature Tc is defined at

when the two relevant vacua are degenerate. The start of the phase transition (nucleation

temperature Tn) cannot happen at Tc but occurs at a lower temperature. The thin wall

approximation is most reliable when Tn is very close to the critical temperature. We

introduce a term to the potential that breaks the vacuum degeneracy to see how the

action S4 changes, but not by too much as to invalidate the solution in eq. (3.4). The

term originally added to eq. (3.3) to break the degeneracy is linear in the field,

Vnon-deg(φ) =
|∆V (0)|

2v
(φ+ v). (3.9)

This modifies the four-dimensional Euclidean action of eq. (3.8) to give

S4 ≈ 2π2R3S1 −
1

2
π2R4|∆V (0)|. (3.10)

Note that ∆V (0) ≡ V (φi, T = 0)|true−V (φi, T = 0)|false is the vacuum energy difference at

zero temperature, where the true vacuum is at φ = v. Minimising the action in eq. (3.10)

with respect to R, we find that the critical radius is given by R ≈ 3S1/|∆V (0)|. The

four-dimensional Euclidean action is written compactly as

S4 ≈
27π2S4

1

2|∆V (0)|3
. (3.11)
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Physically, this action describes a purely quantum mechanical vacuum-to-vacuum trans-

ition, i.e. a quantum phase transition. Its corresponding decay rate is given by [30, 88]

(
Γ

V

)
quantum

= A exp [−S4] , where A ∼ O(1). (3.12)

3.3 Thermal vacuum transitions

Since we are interested in the electroweak phase transition what we really want is the

three-dimensional Euclidean action, where the time coordinate carries the notion of inverse

temperature [89–91]. This is achieved by a Wick rotation of the time coordinate, known

in thermal field theory as the imaginary (Matsubara) time formalism. Schematically this

means our four-dimensional Euclidean action may be written as

S4 =

∫ 1/T

0
dβ

∫ ∞
−∞

d3xL(T ) =
1

T

∫ ∞
−∞

d3xL(T ) =
S3(T )

T
, (3.13)

where the time direction β is periodic in 1/T . The formal treatment of turning on tem-

perature comes at the level of connecting a thermal ensemble to the partition function

Z = Tr
[
exp(−βĤ)

]
=
∑
n

〈n| exp(−βĤ)|n〉. (3.14)

where Ĥ is the Hamiltonian. As an example, this modifies all two-point correlation func-

tions (propagators) of the theory

〈φ1φ2〉 = Tr
[
exp(−βĤ)φ1φ2

]
(3.15)

and adds a temperature-dependent term to the propagator. The temperature-dependence

reduces the mass of the propagating particle as the temperature is increased.

Returning to phase transition analytics, we may recycle most of the expressions found

in the zero temperature case where the thin wall approximation ought to be valid. Note

that vacuum degeneracy now means ∆V (T ) → 0. Thin wall is expected to be valid at

temperatures close to the critical temperature. The three-dimensional action is given by

S3(T ) ≈ 4πR2S1 −
4

3
πR3|∆V (T )|, (3.16)

where the critical radius is given by R ≈ 2S1/|∆V (T )|. Hence the thin wall approximation
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is more valid as this radius blows up. Written compactly, the three-dimensional action is

S3(T ) ≈ 16πS3
1

3|∆V (T )|2
. (3.17)

For the electroweak phase transition, we will be interested in various properties at nuc-

leation temperature Tn. Note that the temperature-dependence of both S3 and R come

through the free energy density difference at temperature, ∆V (T ).

Therefore at nucleation temperature the relations eq. (3.16)-(3.17) are only reliable if

Tn ≈ Tc, where the thin wall approximation is valid. The contrasting case is that of a

phase transition with significant supercooling Tn � Tc, whereby |∆V (Tn)|3/4 is not small

compared with S1. In such a case, we must rely on a numerical computation for S3(Tn).

The thermal decay rate is given by [89–91]

(
Γ

V

)
thermal

= AT 4

(
S3(T )

2πT

)3/2

exp

[
−S3(T )

T

]
, where A ∼ O(1). (3.18)

The probability of nucleating a bubble through thermal effects is zero at T = 0 and

T = Tc. Both are caused by the exponent in eq. (3.18) becoming largely negative. At

zero temperature, S3(T ) is finite and T → 0 trivially blows up the exponent. At critical

temperature S3(Tc) → ∞ as the critical radius tends to infinity in order to compensate

for |∆V (Tc)| → 0, refer to eq. (3.16).

3.4 Concluding remarks

In reality, both the quantum and thermal phase transitions are “switched on” and therefore

the decay rates superimpose to provide a total decay rate for the false to true vacuum

transition. However, we will ignore the quantum phase transition (zero temperature)

contribution to the decay rate. Although it would positively contribute to the decay rate,

it is often negligible compared to the thermal decay rate at electroweak scale temperatures.

Note that for the work in the next chapter, the start of the phase transition is often

far from the critical temperature. This means that the thin wall approximation will not

likely hold and, hence, neither will most expressions in this chapter. Nonetheless, we can

calculate the phase transition properties by numerical means using the concepts covered

in this chapter.
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Chapter 4

Singlet extended SM: the

unbroken Z2xSM

“Everything should be made as simple as possible but not simpler.”

- Albert Einstein

A useful guiding principle in theoretical physics is to explore interesting phenomena using

models with as few free parameters as possible. In this chapter we will explore one such

model. The model we choose is a real singlet extension of the Standard Model (SM).

A minimal number of free parameters is found if we impose a Z2 symmetry on the real

singlet S field and set 〈S〉 = 0 in the broken vacuum. We occasionally refer to this as the

unbroken Z2xSM. This model therefore has a simple two field scalar potential. A simple

two field potential is a desirable (to use an appropriate word) step in understanding the

cosmological history of the universe [93].

Previous literature has explored the realm of singlet-extended potentials with a Z2

symmetry to either:

(i) understand the vacuum structure and model configurations,

(ii) determine the nature of the electroweak phase transition,

(iii) test parameter points against collider/dark matter constraints,

(iv) address the viability of electroweak baryogenesis,

(v) investigate the production of gravitational waves at the electroweak scale,

or amalgamations of the above points [24, 27, 73, 93–101]. The following work fits into

the (i) and (ii) categories, with a brief section on (v). Although our primary focus is on
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the nature of the phase transition for a specific parameter subspace for this model. This

parameter subspace is the physically allowed region in which bubbles’ walls are expected

to be runaway, or very fast detonations, at the start of the phase transition [31]. Our

work (literally) draws out this region of the parameter space which promises the strongest

and most supercooled electroweak phase transitions. Towards the end of the study we

investigate some implications that the phase transition properties have on acoustically-

generated gravitational wave production [33, 102].

In Section 4.1 we describe the tree level and one loop (including thermal evolution)

vacuum structure in detail. Here we explore the vacuum structure of the potential using

an analytic approach. Our analysis is complimentary to that in ref. [99]. This includes

low/high temperature analytic expressions to the thermal evolution of the Higgs field in

the broken vacuum. We discuss the parameter region of interest that will be explored

in Section 4.2. We comment on the symmetry breaking pattern necessary to realise this

desirable scenario for studying very strong electroweak phase transitions. Any reader

interested in only the numerical results can skip to Section 4.2.

In Section 4.3 we outline the region in which the phase transition is expected to proceed

by bubbles with runaway walls. This is the region of maximal supercooling for the non-

sliding parameter space. Three physical scenarios at the start of the phase transition

describe the edges around this region. These edges are associated to when (1) the bubble

wall velocity is expect to runaway, (2) roughly one bubble is nucleated per Hubble volume,

and (3) the symmetric vacuum destabilises. Finally, we calculate an effective friction

parameter and the expected relic density from acoustically-generated gravitational waves,

produced during the electroweak phase transition. We conclude in Section 4.7.
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4.1 The unbroken Z2xSM: analytics

Our choice of model is motivated by its simple structure and richness in studying the elec-

troweak phase transition. This model may be realisable in many UV completions of the

Standard Model (SM), including composite Higgs and supersymmetric singlet extensions

such as the GNMSSM. It was found in [1, 27, 96, 99, 103] that the unbroken Z2xSM can

easily be tuned to have an arbitrarily strong phase transition, as measured by
√

2 〈φ〉/T

at critical temperature. The phase transition becomes strong by lowering the symmetric

extremum of the zero temperature potential towards the broken vacuum by an additional

field direction. This tuning of the zero temperature potential is the most obvious mech-

anism for reducing the critical temperature of the phase transition [1, 95, 96, 104].

4.1.1 At tree level

The tree level potential is given by

Vtree(φ, S) =
1

2
m2
hφ

2

(
φ2

2v2
− 1

)
+
a2

2
φ2S2 +

1

2
m̃2
sS

2

(
S2

2ṽ2
S

− 1

)
, (4.1)

where φ = Re(H0) and H0 is the neutral component of the SM Higgs doublet. This is

the simplest singlet extension of the Standard Model (SM). The singlet sector consists of

a real singlet with a Z2 symmetry imposed on it. We only consider potentials with the

broken vacuum at (φ, S) = (v, 0) and the symmetric extremum at (φ, S) = (0, ṽS) at zero

temperature. We use the convention that v = 174.2 GeV.

The field dependent Higgs/singlet mass is

M2
h,s(φ, S) =

1

2

[
m2
φ(φ, S) +m2

S(φ, S)
]
±
√

1

4

[
m2
φ(φ, S)−m2

S(φ, S)
]2

+ (a2φS)2, (4.2)

where the field dependent masses in the φ and S field directions are given by

m2
φ(φ, S) =

m2
h

2

(
3
φ2

v2
− 1

)
+
a2

2
S2 and m2

S(φ, S) =
m̃2
s

2

(
3
S2

ṽ2
S

− 1

)
+
a2

2
φ2, (4.3)

respectively. In both the broken and (possibly) symmetric vacua the Higgs and singlet

do not mix at zero temperature. Throughout this chapter we define the following zero
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temperature masses:

Broken vacuum Symmetric extremum

Higgs m2
h ≡M2

h(v, 0) = m2
φ(v, 0) m̃2

h ≡M2
h(0, ṽS) = m2

φ(0, ṽS)

Singlet m2
s ≡M2

s(v, 0) = m2
S(v, 0) m̃2

s ≡M2
s(0, ṽS) = m2

S(0, ṽS)

(4.4)

We insist on the following zero temperature vacuum structure for this study:

(1) The broken electroweak vacuum is a local minimum.

This requires m2
h > 0 and m2

s = 1
2(a2v

2 − m̃2
s) > 0. Therefore

m̃2
s < a2v

2. (4.5)

(2) The broken vacuum is the deepest vacuum.

By condition (1), the broken vacuum is one of two possible local minima. The other

possible vacuum is the symmetric extremum located at φ = 0 and S = ṽS . For the

broken vacuum to be lower than the symmetric extremum Vtree(v, 0) < Vtree(0, ṽS),

or

|m̃sṽS | < |mhv|. (4.6)

(3) The depth of the potential is less than that in the SM.

The potential in the S = 0 direction is fixed by the SM. The potential difference

between the broken and symmetric extrema can only be reduced by bring down the

symmetric extremum. Without radiative corrections, this can only be realised if

m2
S(0, 0) < 0 so that ṽS 6= 0.

(4) Potential bounded from below in all field space.

By condition (3), the potential along the singlet direction (along φ = 0) initially

decreases upon increasing S field values. We must ensure that the potential turns

over so that it increases upon increasing values of S. This requires m̃2
s > 0. Given

condition (1) this also means a2 > 0.

(5) Symmetric extremum: saddle point or local minimum?

Finally, we evaluate the curvature of the potential in the symmetric extremum, m̃2
h =

1
2(a2ṽ

2
S − m2

h). Given condition (4), the sign of m̃2
h determines the nature of the
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symmetric extremum at zero temperature:

Saddle point: m̃2
h ≤ 0⇒ a2ṽ

2
S ≤ m2

h, (4.7)

Local minimum (vacuum): m̃2
h > 0⇒ a2ṽ

2
S > m2

h. (4.8)

The Higgs and singlet only communicate to each other through the mixing term of the

form φ2S2. The coupling can be rewritten as a2 = (2m2
s + m̃2

s)/v
2. Therefore this mixing

is simply a comparison of the singlet mass scales. The study in [100] remarks on the

reliability of the perturbative approach to this model, to which they find a value of a2 & 10

is questionable. We therefore regard a2 = 10 as the upper bound for a reliable perturbative

analysis. From condition (4) above, negative values of a2 are forbidden. This is essential

because it would result in m2
s < 0 and the broken vacuum would have 〈S〉 6= 0. Although

this is not forbidden, the resulting phase transition strength tends to be significantly

weaker, see Figure 2.2.

With regards to collider constraints, the h→ ss channel opens up if ms ≤ mh/2. This

results in a significant broadening of the Higgs decay width [98]. We choose to ignore

this bound throughout this work. This is because we are more interested in exploring

how the singlet mass effects the phase transition properties. Nonetheless, it turns out

ms < mh/2 only occurs for a2 = 1 if the phase transition is very strong. This can be

seen in our numerical results, see Figure 4.12(a). Imposing perturbative unitarity of the

singlet results in m̃2
s . 4ṽ2

S [76]. For our parameter points in Section 4.4 this means all

points with a2 = 10 violate unitarity, whereas all points with a2 = 1 satisfy the unitarity

constraint. The ρ parameter, which arises from corrections to the W boson mass, does

not constrain this model. This is because the Higgs and singlet strictly do not mix in the

broken vacuum for this model. Constraints from the ρ parameter are expected to appear

at two loop level.

If m̃2
h > 0 there exists one extra local extremum in the potential. This is because

of the geometry of the potential: if the symmetric extremum is a local minimum there

must be a maximum in the minimised path (see Section 4.3.1) since both the broken and

symmetric extrema are both minima. To be along the minimised path, the peak of the

potential barrier must have both a minimum and maximum direction. This non-trivial

extremum is therefore a saddle point. Minimising the potential in the φ and S directions,
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we find the extra local extremum at

φ = C
m̃h

mh
v and S = C

ms

m̃s
ṽS , (4.9)

where C is a constant given by

C =
√

2

[(
a2

v

mh

ṽS
m̃s

)2

− 1

]−1/2

. (4.10)

The combination of conditions (2) and m̃2
h > 0 imply that C2 > 0.

4.1.2 At one loop zero temperature

We will only consider one loop contributions to the potential that come from the top quark

and electroweak gauge bosons. By not including the Higgs and singlet in the one loop

corrections, only the purely φ dependent terms of the potential are modified upon loop

corrections. At zero temperature, loop effects are included using Coleman-Weinberg type

terms [105] to give the effective one loop potential

V1 loop(φ, S) = Vtree(φ, S) + Vct(φ) + ∆V1 loop(φ), (4.11)

where we adopt counter terms in the form

Vct(φ) =
1

2
δmφ

2 +
1

4
δλφ

4. (4.12)

The one loop Coleman-Weinberg type effective potential in DR scheme is given by

∆V1 loop(φ) =
1

64π2

φ4

v4

∑
i

gi(−1)2sim4
i

{
log

[
m2
iφ

2

Q2v2

]
− 3

2

}
, (4.13)

where gi, si, and mi are the number of degrees of freedom, spin, and pole mass of ith

particle, respectively. The symbol Q is the renormalisation scale. Unless otherwise stated

we choose Q = mt. We choose our renormalisation conditions such that the Higgs mass

mh and vacuum expectation value v in the broken vacuum are unchanged upon radiative

corrections. The counter terms are found to be δm = −ζm/v2 and δλ = ζλ/v
4, where

ζm =
1

(4π)2
(gtm

4
t − gWm4

W − gZm4
Z) (4.14)
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and

ζλ =
1

(4π)2

(
gtm

4
t log

[
m2
t

Q2

]
− gWm4

W log

[
m2
W

Q2

]
− gZm4

Z log

[
m2
Z

Q2

])
. (4.15)

This results in a potential of the form

V1 loop(φ, S) = −1

2

[
m2
hv

2 + ζm
] φ2

v2
+

1

4

[
m2
hv

2 + ζm

(
3

2
− log

[
φ2

v2

])]
φ4

v4

+
a2

2
φ2S2 +

1

2
m̃2
sS

2

(
S2

2ṽ2
S

− 1

)
.

(4.16)

Compared to the tree level potential, an additional term of the form φ4 log[φ2/v2] appears

and ζm is the only loop level parameter in the potential. Since ζλ does not appear, the

potential is independent of the renormalisation scale Q. Only m2
φ(φ, S) is modified upon

one loop corrections. The first expression in eq. (4.3) changes to

m2
φ(φ, S) =

m2
h

2

(
3
φ2

v2
− 1

)
+
a2

2
S2 − ζm

2v4

[
v2 + φ2

(
−1 + 3 log

[
φ2

v2

])]
. (4.17)

The vacuum structure conditions are modified as follows:

(1) The broken electroweak vacuum is a local minimum.

Unchanged.

(2) The broken vacuum is the deepest vacuum.

Requires V1 loop(v, 0) < V1 loop(0, ṽS). Only the potential in the broken vacuum is

modified, V1 loop(v, 0) = Vtree(v, 0)− ζm/8. Therefore

|m̃sṽS | < |mhv|

√
1 +

ζm
2m2

hv
2
. (4.18)

(3) The depth of the potential is less than that in the SM.

Unchanged.

(4) Potential bounded from below in all field space.

Due to the presence of the log term in the potential, the quartic coupling turns

negative for too large a value of φ. This drives the potential along S = 0 downwards

for |φ| > |φinstab|. The value of φinstab is the φ solution to

[
1−

(
1 +

m2
hv

2

ζm

)−1

log

(
φ

v

)2
](

φ

v

)2

= 1. (4.19)
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Given that ζm and mh are fixed by experimentally measured values, we numerically

determine that φinstab = 1.084×104 GeV. It is interesting to note that as mh → 0, the

field value at which the potential turns over is φinstab → v. In the limit φinstab � v,

the expression in eq. (4.19) is approximated by the term in the square brackets being

equal to zero. We can then analytically express the field value as

φinstab ≈ v exp

[
1

2

(
1 +

m2
hv

2

ζm

)]
= 1.085× 104 GeV. (4.20)

Compared to the numerically determined value, there is a 0.1% difference. The po-

tential difference (barrier height) between the broken vacuum and this field value is

V1 loop(φinstab, 0)− V1 loop(v, 0) = 1.218× 1014 GeV4.

(5) Symmetric extremum: saddle point or local minimum?

The change in the field dependent mass in the φ direction modifies this condition to:

Saddle point: m̃2
h ≤ 0⇒ a2ṽ

2
S ≤ m2

h +
ζm
v2

, (4.21)

Local minimum: m̃2
h > 0⇒ a2ṽ

2
S > m2

h +
ζm
v2

. (4.22)

Finding one loop corrections to eqs. (4.9) and (4.10) exactly is impossible because the

presence of the log term in the potential. We do not attempt to find any further zero

temperature results by analytic means.

4.1.3 At thermal one loop (high temperature approximation)

At non-zero temperatures, T 6= 0, one loop thermal effects are included using a high

and low temperature approximation [106, 107], where relevant, in combination with an

interpolation between the two approximations to provide the effective one loop thermal

potential VT (φ, S) [70]. See eqs. (2.23) and (2.24) for the piecewise analytic expressions

for a given particle. We include thermal radiative corrections from the top quark and

electroweak gauge bosons via a high temperature expansion,

∆VHT(φ;T ) = constant× T 4 +
1

2

[
DT 2

] φ2

v2
− 1

3
[ET ]

φ3

v3
+

1

4

{
ζT (T ) + ζm log

[
φ2

v2

]}
φ4

v4
,

(4.23)

where

D =
1

24
(gtm

2
t + 2gWm

2
W + 2gZm

2
Z), E =

1

4π
(gWm

3
W + gZm

3
Z), and (4.24)
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ζT (T ) =
1

(4π)2

(
gtm

4
t log

[
m2
t

cFT 2

]
− gWm4

W log

[
m2
W

cBT 2

]
− gZm4

Z log

[
m2
Z

cBT 2

])
. (4.25)

The finite temperature parameters are given by cF = exp(5.41) and cB = exp(2.64). The

addition of the above thermal piece to the potential in eq. (4.16) results in

VHT(φ, S;T ) = V1 loop(φ, S) + ∆VHT(φ;T )

= constant× T 4 +
1

2

[
DT 2 − (m2

hv
2 + ζm)

] φ2

v2
− 1

3
[ET ]

φ3

v3

+
1

4

[
m2
hv

2 +
3

2
ζm + ζT (T )

]
φ4

v4
+
a2

2
φ2S2 +

1

2
m̃2
sS

2

(
S2

2ṽ2
S

− 1

)
.

(4.26)

Note that the log terms in the zero temperature and thermal corrections cancel exactly.

The effective thermal quartic coupling is λT = λT (T ), such that VHT(φ, S;T ) ⊃ 1
4λTφ

4.

To explicitly see the temperature-dependence of λT (T ) we split the function λT (T ) into

two parts, λT (T ) = λQ + ∆λT (T ). Recalling the definition of ζλ in eq. (4.15) we find

λQ ≡ λT (Q) = [m2
hv

2 + 3
2ζm + ζλ − ζc]/v4 and ∆λT (T ) = [2ζm log(Q/T )]/v4, where

ζc =
1

(4π)2

(
gtm

4
t log cF −

(
gWm

4
W + gZm

4
Z

)
log cB

)
. (4.27)

Therefore the effective thermal quartic coupling goes as

λT (T ) = λQ + 2
ζm
v4

log

[
Q

T

]
. (4.28)

Field thermal evolution without sliding behaviour

Let us assume the broken electroweak vacuum remains at S = 0 between zero temperature

and the critical temperature Tc of the electroweak phase transition1. Minimising the

potential in the φ direction, we find

∂φVHT = 0 occurs for


φ = 0

φ(T ) =
1√
λT

[
1

2
εTT ±

√
1

4
ε2
TT

2 +M2
h(T )

]
,

(4.29)

where we have defined

εT =
1√
λT

E

v3
and M2

h(T ) =
m2
hv

2 + ζm −DT 2

v2
. (4.30)

1Sliding behaviour is defined by the scenario in which the broken vacuum exists at S 6= 0 at critical
temperature. This may similarly be described by the destabilisation of the broken vacuum in the S
direction as the temperature is increased before reaching critical temperature.
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Figure 4.1: The thermal evolution of the Higgs φ(T ) and singlet S(T ) fields in the broken vacuum
between 0 < T < Tc for a non-sliding parameter point with ξc ≡

√
2 vc/Tc = 1 and any value

of a2 (green curves). An increase in the strength ξc decreases the critical temperature Tc with a
one-to-one mapping. Therefore the choice of strength ξc only determines the endpoint in T of the
green trajectories. For example, had we chosen ξc > 1 we would follow the same green trajectories
but the endpoint (the critical temperature) would be lower. Therefore, any parameter points in
the non-sliding region with the same strength ξc will have the same φ(T ) trajectory. At zero
temperature φ(0) = v and S(0) = 0 as shown by the solid and dotted green curves, respectively.
The red and blue dashed curves are the high and low temperature approximation solutions for
φ(T ) respectively, see eq. (4.29) and eq. (4.40).

The minimised potential in the S direction gives the same result as in eq. (4.46), since

no couplings to the singlet have any temperature dependence in our setup. The thermal

evolution of the field dependent Higgs mass along the S = 0 direction is given by

M2
h(T )(φ, S = 0;T ) = −1

2
M2
h(T )−

√
λT εTTφ+

3

2
λTφ

2. (4.31)

The second quantity in eq. (4.30) is thus directly related to the Higgs mass evaluated at

the origin. Noting eq. (4.28), the non-trivial solution in eq. (4.29) can be explicitly written

in terms of the temperature.

In Figure 4.1, we display the φ(T ) solution in eq. (4.29) with a positive sign before

the square root by the red dashed curve. This solution coincides with the numerically

determined parameter points from Section 4.4 that have a high critical temperature. The

high temperature expansion breaks down for low temperatures. The numerically determ-

ined trajectory and the high temperature solution for φ(T ) differ by more than 10% for

temperatures T . 50 GeV.

Finally, we plug the solution for φ(T ) into the potential to calculate the free energy
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density in the high temperature approximation. This results in

∆VHT(T ) = VHT(φ(T ), 0;T )− VHT(0, 0;T )− V1 loop(0, ṽS)

=
1

4
m̃2
s ṽ

2
S −

1

16λT

{
M2
h(T ) +

1

6
εTT

(
εTT +

√
4M2

h(T ) + ε2
TT

2

)}
×
(
εTT +

√
4M2

h(T ) + ε2
TT

2

)2

.

(4.32)

Field thermal evolution with sliding behaviour

Here we lift the assumption that the broken vacuum remains at S = 0 for T ≤ Tc. Instead

we solve the non-trivial solutions to the minimum condition simultaneously, i.e. φ(T ) 6= 0

and S(T ) 6= 0. It turns out the thermal evolution of the φ(T ) field is identical to eq. (4.29),

but with the following substitutions:

M2
h(T )→M2

h(T )− a2ṽ
2
S and λT (T )→ λT (T )−

(
a2ṽS
m̃s

)2

. (4.33)

The former substitution effectively replaces the zero temperature Higgs massmh in eq. (4.30)

with the Higgs mass in the symmetric extremum m̃h. Thus the φ(T ) and S(T ) trajector-
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Figure 4.2: The thermal evolution of the Higgs φ(T ) and singlet S(T ) fields in the broken vacuum
between 0 < T < Tc (orange curves). Each orange curve represents the trajectory found for a
parameter point with a unique singlet mass ms. All parameter points have fixed strength ξc = 1
and coupling a2 = 1. Darker orange trajectories correspond to lighter singlet masses, hence
experience more sliding. The red dashed curve is the same high temperature solution as displayed
in Figure 4.1 and coincides with the trajectory for non-sliding parameter points. The purple dashed
curve is the solution for φ(T ) (now describing a sliding parameter point) in eq. (4.29) but with the
substitutions in eq. (4.33).
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Figure 4.3: Same as Figure 4.2 but zoomed into the trajectories on the right hand side. All
trajectories, except the one with lowest critical temperature, experience sliding behaviour and are
highly non-trivial to calculate. Trajectories coming in at T ∼ 140 GeV from above (below) are
the Higgs φ(T ) trajectories (singlet S(T ) trajectories). We mark out the field values at critical
temperature by the purple and dark green circles for the Higgs and singlet trajectories, respectively.
Refer to previous caption for further details.

ies in eq. (4.29) are no longer fixed by SM parameters. Instead they depend on a2, ms,

and ṽS . That mh is replaced with m̃h may explain why parameter points that experience

significant sliding share similar phase transition properties to the Minimal SM with free

Higgs mass, as explored in Section 2.4. The only expected deviation between their phase

transition properties arise from the additional singlet degrees of freedom.

We plot numerically determined solutions for φ(T ) and S(T ) for parameter points that

exhibit sliding behaviour in Figure 4.2. These solutions are found for parameter points

with a fixed strength ξc ≡
√

2 vc/Tc = 1 and coupling a2 = 1, but variable singlet mass ms.

For each parameter point we vary the singlet mass linearly from 0 GeV < ms < v/
√

2 =

123.2 GeV in increments of 1.22 GeV.

In Figure 4.2 we zoom in on the high temperature region of the trajectories, where the

high temperature behaviour of sliding trajectories is clearer. We mark out the field values

at critical temperature by the purple and dark green circles. The sudden jump between

non-sliding to sliding endpoints shows that, without an extreme fine-tuning of the singlet

mass, most sliding parameter points have a significantly weakened phase transition. This

is where our notion of sliding behaviour being rapid in the Z2xSM comes from.
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4.1.4 At thermal one loop (low temperature approximation)

We derive the expected solution for φ(T ) using a low temperature expansion of the thermal

effective potential. Our derivation relies on a Taylor expansion about φ = v in both the

zero temperature potential, see eq. (4.16), and the thermal part of the potential in the low

temperature approximation,

∆VLT(φ;T ) = −T 4
∑
i

{
gi

(
miφ

2πTv

)3/2

exp

[
−miφ

Tv

](
1 +

15

8

Tv

miφ

)}
. (4.34)

The Taylor expansion of the zero temperature potential is necessary to write the potential

in a polynomial form. This is in contrast to the high temperature expansion case, which

has an exact cancellation of the log terms in the zero and high temperature pieces of the

potential. After the Taylor expansion, we schematically write the potential in the form

VLT(φ;T ) ≈ B0 −B1

(
φ

v

)
+

1

2
B2

(
φ

v

)2

. (4.35)

The coefficients are determined to be

B0 =
3

4
m2
hv

2 − ζm
8
− 1

2

∑
i

Vi
(

1 +
31

8

T

mi
+

19

2

T 2

m2
i

+
45

4

T 3

m3
i

)
, (4.36)

B1 = 2m2
hv

2 −
∑
i

Vi
(

1 +
23

8

T

mi
+

45

8

T 2

m2
i

+
45

8

T 3

m3
i

)
, and (4.37)

B2 = 2m2
hv

2 −
∑
i

Vi
(

1 +
15

8

T

mi
+

15

4

T 2

m2
i

+
15

4

T 3

m3
i

)
. (4.38)

To shorten the Bn expressions, we have identified a repeating term and denoted it by

Vi =
1

(2π)3/2
gim

4
i

√
T

mi
exp

[
−mi

T

]
. (4.39)

Minimising the expression in eq. (4.35), we find

φ(T )

v
=
B1

B2
=

2m2
hv

2 −
∑

i Vi
(

1 +
23

8

T

mi
+

45

8

T 2

m2
i

+
45

8

T 3

m3
i

)
2m2

hv
2 −

∑
i Vi
(

1 +
15

8

T

mi
+

15

4

T 2

m2
i

+
15

4

T 3

m3
i

) . (4.40)



75

This solution is represented by the blue dashed curve in Figure 4.1. Given eq. (4.40), we

approximate the thermal evolution of the vacuum energy difference to be

∆VLT(T ) = VLT(φ(T ), 0;T )− VHT(0, 0;T )− V1 loop(0, ṽS)

= B0 −
B2

1

2B2
− VHT(0, 0;T ) +

1

4
m̃2
s ṽ

2
S

= ∆V (0) +m2
hv

2 +
π2

90

(
7

8
gt + gW + gZ

)
T 4

−1

2

{∑
i

Vi
(

1 +
31

8

T

mi
+

19

2

T 2

m2
i

+
45

4

T 3

m3
i

)
+
B2

1

B2

}
.

(4.41)

As a consistency check, in the limit T → 0 the term in the curly brackets goes to 2m2
hv

2,

hence ∆VLT(T )→ ∆V (0).

4.2 The strongest of phase transitions

We will denote the one loop zero temperature potential by V (φ, S) throughout the rest

of this work, unless otherwise stated. An important remark about our setup is that the

symmetric extremum does not move throughout the phase transition. This is because we

ignore the Higgs and singlet loop contributions to the effective potential.

We choose this approach for two reasons. Firstly, we can directly compare the analytic

predictions in Section 4.1 with our numerical results. Our analytic results only include the

top quark and electroweak gauge bosons in one loop corrections, under the assumption that

they have the most influence on the phase transition properties. Secondly, it allows for the

singlet vacuum expectation value to be trivially written in terms of the zero temperature

vacuum energy difference as

ṽS =
2

m̃s

√
|∆V (0)SM| − |∆V (0)|. (4.42)

Here ∆V (0)SM = −1.267 × 108 GeV4 is the one loop zero temperature vacuum energy

difference for the SM. We therefore have three free parameters at zero temperature: ∆V (0),

ms, and a2. The quantity ∆V (0) ≡ V (v, 0)−V (0, ṽs) is useful for investigating properties

of the electroweak phase transition [1, 104]. It has a strong correlation to the critical

temperature, hence the strength of the phase transition. There even exists a one-to-one

mapping for a certain region of this model’s parameter space; we call this subspace the

non-sliding region and it is described below.
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4.2.1 The non-sliding parameter region

Unique to this two field model, in fixing ∆V (0) we simultaneously fix the strength of

the phase transition ξc ≡
√

2 vc/Tc and the critical temperature Tc. The value of φ in the

broken vacuum at critical temperature, vc, and the critical temperature can be determined

numerically. Recalling our chosen upper limit to a2 from Section 4.1.1, we have the freedom

to scan over 0 < a2 ≤ 10. The singlet mass is bounded by

a2

2

(
v2 − v2

c

)
< m2

s <
a2

2
v2. (4.43)

The lower bound in eq. (4.43) prevents sliding behaviour occurring below critical temper-

ature. Sliding behaviour describes the scenario in which the broken vacuum is destabilised

along the S direction as the potential evolves from zero to critical temperature. This scen-

ario disfavours obtaining a strong phase transition, ξc & 1, through a tuning of ∆V (0).

This does not rule out the possibility of a strong phase transition through other mechan-

isms2, but it effectively does in our setup. The upper bound in eq. (4.43) ensures that

ṽs 6= 0 which allows us to set a value of |∆V (0)| that is lower than the SM value.

The upper bound for the singlet mass is
√

a2
2 v GeV. So a coupling of a2 . 1 requires a

singlet mass of ms . 123 GeV, whereas a coupling of a2 . 10 means that ms . 390 GeV.

In combination with the observation that vc → v monotonically as the phase transition

gets stronger, a2 effectively sets the mass scale of the singlet for weaker phase transitions.

In other words, given a2, the weaker the phase transition the narrower the range of possible

values for ms. This effect is seen by the size of the available parameter space between the

green and red curves in Figure 4.4. Each panel in Figure 4.4 has a different integer-value

of the strength ξc and scans over the full non-sliding parameter space.

4.2.2 Symmetry breaking pattern

For our setup the symmetric extremum does not move throughout the phase transition.

To determine whether the parameter point is physically realisable, we must consider the

symmetry breaking pattern upon thermal evolution. As well as the critical temperature

of the electroweak phase transition Tc, we must also find the critical temperature at which

the broken singlet symmetry is restored, T̃c. Namely we require that T̃c > Tc. The analysis

in ref. [97] reveals that this requirement is often satisfied, but we ought to confirm this.

A more complete treatment would involve including the Higgs and singlet in the one

2For example, the size of the cubic term can be increased by tree level or thermal effects.
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(a) Strength of ξc = 1.0
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(b) Strength of ξc = 2.0
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(c) Strength of ξc = 3.0
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Figure 4.4: Contours of the surface tension S1 for fixed values of the strength ξc. The surface
tension is given in units of GeV3. Each panel displays the singlet mass at the broken vacuum ms

(in GeV) against the Higgs-singlet mixing coupling a2. The red and green curves illustrate the
upper and lower bound of the singlet mass from eq. (4.43), respectively. Between these bounds
is the non-sliding parameter subspace. It should be noted that S1 varies significantly across each
region, but the variation is smoother for stronger phase transitions.

loop (zero temperature and thermal) effective potential. This would give rise to a thermal

S-dependence as well as modifying properties of the electroweak phase transition. Cru-

cially, it allows for a restoration of the broken symmetry in the singlet direction.

Here we will determine the value of T̃c using a naive approximation. To the effective

potential in the singlet direction, we add the leading order high temperature term

V (0, S;T )→ V (0, S;T ) +
1

24

[
g̃hm

2
φ(0, S) + g̃sm

2
S(0, S)

]
T 2, (4.44)

where m2
φ/S(φ, S) is the field-dependent squared mass in eq. (4.3) and g̃h/s the corres-

ponding number of degrees of freedom of the Higgs/singlet in the symmetric extremum.

Assuming the singlet symmetry is approximately a second order phase transition, we de-
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termine the restoration temperature as

T̃c ≈ 2
√

6

(
g̃h
a2

m̃2
s

+ g̃s
3

ṽ2
s

)−1/2

. (4.45)

This will be used later in our numerical results, see Figure 4.12(c). Otherwise, we choose

not to include the Higgs and singlet in the loop for the remainder of our investigation.

4.3 Phase transition properties

4.3.1 An approximation to the bounce

To find properties of the phase transition, one must find the trajectory taken in field

space from one vacuum to another for a given shape (temperature) of the potential. The

true trajectory is given by the bounce solution [30]. For multi-field potentials this can be

non-trivial to calculate [92] so we will instead adopt the following procedure.

We will approximate the trajectory taken by the bounce as the minimised path between

the two vacua [108]. This path is found by minimising the potential in the direction or-

thogonal to the direct path between the vacua. The path length from φ = 0 can be

treated as a new field Φ and the bounce solution found by application of the undershoot-

Figure 4.5: An example of an inverted two field scalar potential with both the broken (blue point)
and symmetric (green point) vacua nearly degenerate. The illustration shows two paths: the direct
path (black curve) and the minimised path (red curve) between the two vacua.
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Figure 4.6: Contour plot of the potential displayed in Figure 4.5. In the above, we show the direct
path (black) and minimised path (red) between the broken vacuum (blue point) and symmetric
vacuum (green point). This potential is close to critical temperature Tc where the two vacua are
almost degenerate. Both fields are given in units of GeV.

ing/overshooting procedure on the one field potential Vpath(Φ). This procedure is most

easily performed numerically for a given parameter point at a given temperature.

Throughout our calculations we have noticed that the shape of the potential can be

highly path dependent. In extreme cases the potential along the direct path can be very

different compared with the potential along the minimised path. Therefore, we must

carefully define what we mean by the direct path and the minimised path. The direct

path is the linear path between the symmetric and broken extrema. We then define a set

of orthogonal paths. These are the family of linear paths that are orthogonal to the direct

path. The minimised path is the continuous path found by minimising the potential along

each of the orthogonal paths sequentially from the symmetric extremum to the broken

vacuum.

An example parameter point at critical temperature is illustrated in Figures 4.5-4.7.

Using Figure 4.5 as a visual aid, the minimised path as an approximation to the bounce

path can be justified on mechanics grounds. In the upright potential the minimised path is
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Figure 4.7: The potential along the path length Φ for the direct path (black) and minimised path
(red) between the broken and symmetric vacua. This potential is close to critical temperature
Tc where the two vacua are almost degenerate. Note that the broken vacuum is further for the
minimised path than the direct path, because the path length Φ is longer for a curved trajectory.
In this case, the barrier is widened by 23% of the distance between vacua in the direct path case.

the stable valley between two local minima. In the inverted potential the minimised path

is the unstable ridge between two local maxima. Of course, the minimised path cannot be

the exact trajectory taken by the true bounce. If we imagine releasing a classical particle

from rest close to the broken vacuum on the minimised path, it would always fall off

the ridge in the direction tangential to the minimised path. It therefore seems intuitive

that the true bounce trajectory lies somewhere between the direct and minimised path.

From Figure 4.7 it is clear that the size and shape of the potential barrier may change

significantly between the direct and minimised path. For the rest of this work, we assume

the minimum path provides an adequate approximation to the trajectory taken by the

true bounce.

4.3.2 Convergence of the minimum path

Minimising the tree level potential in the S direction, see eq. (4.1), we find

∂SVtree = 0 occurs at


S = 0 ∀ φ,

S(φ) = ±ṽS

√
1− a2φ

2

m̃2
s

.
(4.46)

We observe that the minimised path and the non-zero S(φ) path convergence within a

neighbourhood of the symmetric extremum. See Figures 4.8 and 4.9 for an illustration of

the a2 = 1 and a2 = 10 zero temperature potentials, respectively. The parameters chosen
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Figure 4.8: A sample of one loop effective potentials at zero temperature with the choice a2 = 1.
The displayed potentials V ∗(φ, S) are the projections onto the V − φ plane of one of two possible
trajectories in field space. The solid curves correspond to the potential along the numerically found
minimised path. The dashed curves correspond to the same parameter point, but along the S(φ)
path in eq. (4.46). Each colour represents a parameter point on the runaway boundary with a
selected phase transition strength ξc. The red, orange, green, blue, and purple curves correspond
to potentials with ξc = 1.0, 1.5, 2.0, 2.5, and 3.0, respectively.

Figure 4.9: Same as Figure 4.8 but with the choice a2 = 10. Note that both paths cross through
the symmetric extremum and the peak barrier height. This is irrespective of the strength of the
phase transition ξc or the size of the neighbour in which the paths converge. This is most obvious
for the red coloured potentials, where the strength is ξc = 1.0.

are those on the runaway boundary, see Section 4.4 for details.

For all zero temperature potentials explored, the S(φ) path maps out the minimised

path between the symmetric extremum and (if it exists) the peak barrier height very

well for ξc & 1.5. Although zero temperature barriers are more obvious for the a2 = 10
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potentials, there is a very small barrier peaked at φ ≈ 10 GeV for ξc = 1.0 and a2 = 1.

In other words, S(φ) tends to be a good approximation to the minimised path in a

neighbourhood of the symmetric extremum. As the strength of the phase transition ξc

increases, the minimised path and the non-trivial path found above converge within a

greater neighbourhood of the symmetric extremum. Using S(φ) as an approximation to

the true bounce trajectory, this in principle allows for a quick determination of the bounce

solution. This approximation is likely to be more valid for stronger phase transitions and

for bubble configurations with thick bubble walls, i.e. the initial field value is further away

from the broken vacuum.

Further work is required to validate this observation. Similarly, this may be developed

into a useful technique for studying very strong phase transitions in a simple way. For

example, we found an application for this observation when attempting to understand the

potential close to the symmetric extremum in Section 4.4.3.

4.3.3 The surface tension

Let us denote the one field potential traced out by the bounce trajectory by Vpath(Φ),

where Φ is the path length of the field from the symmetric vacuum. The surface tension

is defined at critical temperature by

S1 =

∫ Φc

0
dΦ
√

2 [Vpath(Φ)− Vpath(0)], (4.47)

where Φ = Φc (Φ = 0) at the broken (symmetric) vacuum. Contour plots of the surface

tension for various values of the strength ξc are shown in Figure 4.4. The surface tension

is the one dimensional action, see Section 3.2.

4.3.4 At nucleation temperature

To find the thermal decay rate of the false vacuum, see Section 3.3, one must find a similar

quantity to the surface tension S1. This quantity is the three-dimensional Euclidean

action S3(T ). This action assumes a spherically static space-time solution. Assuming

the probability rate of bubble production is a rapidly varying function, we estimate the

nucleation temperature Tn by the condition that S3(Tn)/Tn = 135. We allow for a ±1 error

to S3(Tn)/Tn when numerically determining the nucleation temperature. This definition

of the nucleation temperature is expected to lead to conservative parameter regions in our

numerical work, for the following reason. The decay rate at the time of nucleation can be
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approximated by
Γ(Tn)

H4
≈
(
Tn
H

)4

exp

(
−S3(Tn)

Tn

)
∼ 1. (4.48)

Rearranging for S3(Tn)/Tn gives

S3(Tn)

Tn
∼ 4 log

(
2ζMPL

Tn

)
, (4.49)

where the Hubble parameter H = T 2/(2ζMPL), ζ ≈ 1/34, and MPL = 1.22 × 1019 GeV

is the Planck mass. All parameter points in Section 4.4 have 10 GeV < Tn < 135 GeV.

From eq. (4.49), we would expect 155 > S3(Tn)/Tn > 145 for this temperature range.

Therefore the actual nucleation temperature is always higher than that determined by

S3(Tn)/Tn = 135± 1.

Definitions of bubble properties

The latent heat to radiation density ratio is defined by [19, 102, 109]

α(T∗) ≡
1

ρ∗

(
−∆V (T∗) +

1

4
T∗

∂∆V (T )

∂T

∣∣∣∣
T∗

)
, (4.50)

where T∗ is a temperature of interest and the denominator is the thermal energy density

of the plasma in the symmetric phase ρ∗ = (π2geffT
4
∗ )/30, where geff = 108.75 is the total

number of effective degrees of freedom in the plasma. The bubble nucleation rate per

Hubble volume at temperature T∗ is defined as

(
β

H

)
∗
≡ T∗

d

dT

(
S3(T )

T

)∣∣∣∣
T∗

. (4.51)

Application of analytics

Here we will plug in the low and high temperature analytics, found in Sections 4.1.3 and

4.1.4, into some useful phase transition properties. For the latent heat ratio in eq. (4.50)

we are interested in the free energy density

∆VHT/LT(T∗) ≡ ∆Vφ(T∗)− V1 loop(0, ṽS), (4.52)

which in the high (low) temperature approximation is given by eq. (4.32) (eq. (4.41)). Note

that the free energy density between the broken vacuum and the origin in field space,

∆Vφ(T∗), contains all the temperature dependence. Curves for ∆Vφ(T∗) are displayed

in Figure 4.10. Using Figure 4.10 one may determine the critical temperature of the
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Figure 4.10: Plot showing the thermal evolution of the free energy density difference between
the broken vacuum and the origin. The red and blue curves represent the analytic result in the
high and low temperature expansion, respectively. The green dots are the parameter points that
define the perimeter of the runaway region, displayed in Figures 4.12-4.14, for both values of a2.
The quantities plotted are ∆V (Tn)− 1

4m̃
2
sṽ

2
S against Tn which is consistent with the definition in

eq. (4.52). That these points exist between the two approximations emphasises the importance of
having both a low and high temperature expansion, as well as an interpolation between them, to
describe the thermal effective potential.

electroweak phase transition by solving ∆VHT/LT(Tc) = 0, or equivalently

∆Vφ(Tc) = −1

4
m̃2
s ṽ

2
S = ∆VSM(0)−∆V (0), (4.53)

where ∆VSM(0) = −1
4m

2
hv

2− 1
8ζm = −1.267×108 GeV4; see condition (2) in Section 4.1.2.

In other words, after selecting the value of |m̃sṽS |, the critical temperature can be directly

read off the plot.

The key point here is that the thermal evolution of the free energy density is the same

for all non-sliding parameter points with the same strength ξc. This is because the thermal

field evolution of φ(T ) in Figure 4.1 determines the ∆Vφ(T ) trajectory and the strength

∆V (0) determines the endpoint of the trajectory Tc. Similarly, we determine the latent

heat to energy density ratio at arbitrary temperature T∗ to be

α(T∗) =
1

ρ∗

[
−∆VHT/LT(T∗) +

1

4
T∗
∂∆VHT/LT(T )

∂T

∣∣∣∣
T∗

]

= −1

4

m̃2
s ṽ

2
S

ρ∗
+

1

ρ∗

[
−∆Vφ(T∗) +

1

4
T∗
∂∆Vφ(T )

∂T

∣∣∣∣
T∗

]
.

(4.54)

We display the square bracketed term in the above expression using the high/low approx-
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Figure 4.11: Plot showing the thermal evolution of the latent heat density to energy density ratio
of the phase transition. The red and blue curves represent the analytic result in the high and low
temperature expansion, respectively. The green dots are the numerically determined perimeter of
the runaway region, displayed in Figures 4.12-4.14, for both values of a2. The quantities plotted
are αn + ( 1

4m̃
2
sṽ

2
S)/ρn against Tn, where ρn is the normalisation factor in eq. (4.50).

imation for ∆Vφ(T∗) in Figure 4.11. With the combination of Figures 4.10 and 4.11, one

can read off the free energy density and latent heat ratio for a given value of 1
4m̃

2
s ṽ

2
S (zero

temperature quantity) and at any temperature T∗ (thermal quantity). The difficulty arises

in determining the nucleation temperature. For this reason, we must rely on a numerical

analysis for the remainder of this work.

4.4 The runaway region

A physical scenario that may favour a significant production of gravitational waves is that

of a very strong phase transition with runaway bubble walls [32, 110]. Runaway behaviour

describes bubble walls that accelerate to ultra-relativistic speeds. In other words the

bubble wall velocity vw → 1 and the corresponding Lorentz factor blows up. This is

because the pressure inside the bubble exceeds that of the friction exerted on the wall by

the plasma in the symmetric phase.

4.4.1 Runaway bubble walls

We use the Bödeker-Moore prescription in [31] to distinguish between runaway and non-

runaway behaviour at nucleation temperature. We will use this prescription to trace out

a boundary that captures the parameter space of runaway bubble scenarios. We find an
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analytic form for the runaway prescription as follows. Including only the quadratic in φ

piece of the thermal effective potential

VT (quad)(φ, S) = V (φ, S) +
1

2

[
DT 2

] φ2

v2
, (4.55)

where D is the quadratic coefficient in the high temperature expansion, see eq. (4.24). The

runaway criterion states that VT (quad)(vn, 0) ≤ VT (quad)(0, ṽS), whereby vn = 〈φ(Tn)〉 in

the broken vacuum and the nucleation temperature Tn are both determined using the full

thermal effective potential. Therefore, runaway bubble solutions occur if the supercooling

exceeds
Tn
Tc
≤
√

2v

vnTc

√
−∆V (0) + V (v, 0)− V (vn, 0)

D
. (4.56)

If the inequality in the above expression is equal, then Tn coincides with the temperature

at which nucleated bubbles are expected to runaway Trun. It is interesting to note that

bubbles could have runaway walls during a fraction of the duration between the start

and end of the phase transition, whereby Trun < Tn. We assume that relatively few

parameter points have such a phase transition, but they would exist close to runaway

boundary. This assumption is good if the phase transition proceeds sufficiently fast. Note

that as Tn decreases, vn approaches v monotonically. So for very strong phase transitions

|V (v, 0)− V (vn, 0)| � |∆V (0)| and eq. (4.56) simplifies to

Tn
Tc

.

√
2

Tc

√
−∆V (0)

D
. (4.57)

The approximation in eq. (4.57) is equivalent to a runaway prescription that says “run-

away occurs if the broken vacuum is lower than the symmetric vacuum in the potential

VT (quad)(φ, S)”. Nonetheless, the prescription for distinguishing between runaway and

not runaway at nucleation temperature is determined by the amount of supercooling for

a given value of ∆V (0), hence corresponding strength ξc and critical temperature Tc.

In summary, an increasing amount of supercooling is necessary to have a runaway

bubble scenario for increasingly stronger phase transitions. It then follows that phase

transitions that proceed with runaway bubbles (or at least, very fast detonations) exist in

the most supercooled regions of the parameter space. Parameter points with Tn = Trun

are numerically determined and displayed by the dashed curves in Figures 4.12-4.14. We

refer to this as the runaway boundary.
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Figure 4.12: Plots showing the runaway region for a2 = 1 (blue) and a2 = 10 (orange). The
runaway, stuck-in-false, and destabilisation boundaries are represented by dashed, solid, and dotted
curves, respectively. All quantities are evaluated at the nucleation temperature, except the singlet
mass ms (T = 0) and the strength ξc & surface tension S1 (T = Tc). The black curve in panel (b)
corresponds to the critical temperature for a given strength ξc. The purple (red) shaded region in
panel (c) corresponds to parameter points with a2 = 1 (a2 = 10) which are expected to have the
wrong symmetry breaking pattern, according to eq. (4.45). Here we use g̃h = 4 and g̃s = 1.
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Figure 4.13: Plots displaying the runaway region, continued from previous figure. See caption in
Figure 4.12 for curve colour and shading details.
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Figure 4.14: Plots displaying the runaway region, continued from previous figure. See caption in
Figure 4.12 for curve colour and shading details. In panel (a) we display ξn = ξc by the thin black
curve. The red (purple) shaded region in panel (d) corresponds to the a2 = 10 (a2 = 1) parameter
space in which the phase transition may not complete. This is according to the criteria derived in
Section 4.4.4.
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4.4.2 Stuck in the false vacuum

Here we will consider the case of Tn < Trun. This would result in faster bubble wall speeds

at nucleation temperature, since bubble walls would have already started to runaway. To

have bubbles with faster and faster wall velocities nucleating at Tn, the pressure difference

−∆V (Tn) across the wall must be increased compared with that in the Tn = Trun case.

Similarly, more supercooling requires a larger surface tension. However, if too large, any

nucleated bubbles will collapse under the surface tension and the phase transition will not

proceed by bubble nucleation. All of these features are evident in panels (a) and (b) in

Figure 4.13.

Therefore there exists a maximum surface tension which coincides with a temperature

Tstuck at which we can only nucleate a few bubbles per Hubble volume. We define Tstuck

by (β/H)n ≈ 0, corresponding to a minimum in S3(T )/T . This is consistent with the

solid curve in Figure 4.14(c). We refer to this as the stuck-in-false boundary.

4.4.3 Destabilisation of the symmetric vacuum

There is an important feature that occurs as we take the strength to arbitrarily large values

along both the runaway and stuck-in-false boundaries. As we increase the strength ξc, the

potential gets generically flatter as both the vacuum energy difference |∆V (0)| and the

surface tension S1 decrease, see Figure 4.13. If the potential is too flat, thermal corrections

can spontaneously break the symmetric vacuum at T ≤ Tn. This destabilisation of the

symmetric vacuum results in either the potential barrier disappearing or a second false

electroweak broken vacuum emerging at φ 6= 0. These are described below.

• Case (i): Destabilisation at a temperature just below Tn, no barrier:

This behaviour is observed for the a2 = 1 runaway boundary at 4.25 < ξc < 4.50, the

a2 = 1 stuck-in-false boundary at 3.25 < ξc < 3.50, and the a2 = 10 stuck-in-false

boundary at 3.75 < ξc < 4.00.

The disappearance of the barrier means that the phase transition does not proceed by

bubble nucleation, despite appearing very strongly first order at critical temperature.

In such a scenario, both criteria to find the runaway and stuck-in-false parameter

points are ruined. The former because there is no longer a potential barrier in

VT (quad)(φ, S) at Trun. The latter because no minimum in S3(T )/T exists.

• Case (ii): Destabilisation at a temperature just below Tn, barrier remains:

This behaviour is observed for the a2 = 10 runaway boundary at 4.75 < ξc < 5.00.
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The phase transition can still proceed by bubble nucleation at nucleation temperat-

ure. With a φ 6= 0 false vacuum, we must be careful to calculate the phase transition

properties as going to the false vacuum and not to the saddle point along φ = 0.

This is important when calculating the strength ξn ≡
√

2 vn/Tn at nucleation tem-

perature, the latent heat to radiation density ratio αn, and the bubble nucleation

rate (β/H)n. We will leave the investigation of this region for further study, but

note that a similar observation was made in ref. [111] for a toy two field model.

Below we calculate the temperature at which the symmetric vacuum destabilises using

the thermal effective potential in the high temperature expansion, given by eq. (4.26).

The temperature at which the symmetric vacuum along φ = 0 becomes a maximum is

determined to be

Tdes ≤

√
−2m̃2

hv
2

D
, (4.58)

where D is given by eq. (4.24). The above expression is sensible because we can only have

the symmetric vacuum destabilise at non-zero temperature if the symmetric extremum is

a saddle point at zero temperature, i.e. if m̃2
h < 0. Note that for all but the a2 = 10

runaway boundary, the temperature Tdes is the temperature at which the phase transition

character changes from first order to second order. However, at this temperature the

phase transition bubble properties cannot be calculated since no barrier exists. Therefore

we must rethink our strategy.

Recall our observation in Section 4.3.2 that the stronger the phase transition, the larger

the neighbourhood in which the minimised path and the S(φ) path in eq. (4.46) converge.

Let us substitute the expression for S(φ) into the high temperature potential in eq. (4.26).

This serves as a good approximation to the minimised path in a neighbourhood of the

symmetric extremum, because we are only concerned by the potential very close to the

symmetric vacuum. We will calculate phase transition properties when the nucleation

temperature coincides with the temperature at which the φ 6= 0 extremum is expected to

be an inflex point. This temperature is determined to be

Tdestab ≈

√
−2m̃2

hv
2

D − E2/(4λQ)
, (4.59)

where λQ ≈ (−1
2C

2m2
hv

2+ 3
2ξm) comes from Section 4.1.3. Here we ignore the temperature

dependent term in the quartic coefficient, λT (T ) ≈ λQ. The quantity C2 is defined in

eq. (4.10). Compared to the temperature in eq. (4.59), the numerically determined value

of Tdestab is always 10−3−10−2 GeV higher. The extremum at φ = 0 is always a minimum
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(i.e. symmetric vacuum) at this temperature since Tdestab > Tdes.

The boundary in which Tn = Tdestab can be traced along as the final edge of the run-

away parameter region for the unbroken Z2xSM. We refer to this as the destabilisation

boundary. The destabilisation boundary coincides with the runaway boundary when

Tn = Trun = Tdestab and with the stuck-in-false boundary when Tn = Tstuck = Tdestab.

These are displayed by the dotted curves in Figures 4.12-4.14.

4.4.4 Does the phase transition complete?

A final question we must ask is whether bubbles of broken electroweak phase can saturate

the surrounding universe. This is important if the phase transition is close to being stuck

in the false vacuum, because the Hubble volume of symmetric vacuum could expand at a

greater rate than the expansion of bubbles of broken vacuum, since the bubble nucleation

rate (β/H)n is small. Assuming that the phase transition is very fast, we determine that

any phase transition with a nucleation rate satisfying

(
β

H

)
n

&
(7000 GeV)

Tn
(4.60)

will fully saturate the Hubble volume with the broken vacuum, i.e. the phase transition

completes. See Appendix D for details and a derivation. This can be regarded as the

most pessimistic bound for (β/H)n; any phase transition with a nucleation rate satisfying

eq. (4.60) will saturate the universe with broken electroweak phase. Phase transitions with

a nucleation rate that does not satisfy this bound may have a completed phase transition,

but must be confirmed through a more detailed analysis.

4.4.5 Comments on the runaway region

The runaway region for a2 = 1 and a2 = 10 are shown in Figures 4.12-4.14 by the blue

and orange shaded areas. Each of the boundaries is described above. There are a number

of observations that we make.

The most obvious observation is that the value of a2 sets the scale of the singlet mass

in the runaway region, see Figures 4.12(a). A larger value of a2 also tends to reduce

(β/H)n along the runway boundary. Otherwise, the runaway regions map out an expanse

of parameter space that does not care so much about the value of a2.

The strength ξc gets rapidly stronger as the singlet massms is lowered in Figure 4.12(a).

We can see that the maximum strength ξc we can reach slightly depends on the value of

a2. With the exception of large ξc, the a2 = 1 runaway region covers slightly more of the
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parameter space of finite temperature quantities than the a2 = 10 runaway region. In

Figure 4.12(c), the grey region is determined by calculating T̃c < Tn along each boundary

and interpolating between them. The temperature T̃c is estimated in eq. (4.45). Therefore,

realising the symmetry breaking pattern is only of concern if we have a stronger a2 coupling

but just satisfy the criteria for a strong phase transition ξc ∼ 1.

Generally, there is not a strong trend between the strength ξc and the amount of

supercooling Tn/Tc. This can be seen by the fact that a point with ξc = 1 on the stuck-in-

false boundary is more supercooled than a point with ξc ∼ 4.5 on the runaway boundary.

However, there is more supercooling for stronger phase transitions on either the runaway

or stuck-in-false boundary. The nucleation temperature along the runaway boundary can

be inferred from eq. (4.56). Along the stuck-in-false boundaries Tn is roughly given by

(Tn)stuck ≈

 (110 GeV) exp
[
−2

5ξc
]

for a2 = 1, (accurate for Tn & 40 GeV)

(120 GeV) exp
[
−2

5ξc
]

for a2 = 10. (accurate for Tn & 30 GeV)

(4.61)

There is a clear connection between the strength ξc and all other measures of the

strength of the phase transition. This includes the strength ξn and the latent heat to

energy density ratio of the phase transition αn at nucleation temperature, as can be seen

in panels (a) and (b) in Figure 4.14, respectively. The latter is consistent with the relation

in [109] (corrected in [110]) for weaker phase transitions. Performing a numerical fit along

the runaway boundary in Figure 4.14(b) we find

(αn)run ≈ (4.9× 10−3)ξ2
c + (3.8× 10−4)ξ4

c . (4.62)

For a given strength ξc, being on the stuck-in-false boundary can increase αn by an order

of magnitude compared to the being on runaway boundary, (αn)stuck ≈ 10(αn)run.

As the strength ξc increases, the ratio ∆V (Tn)/∆V (0) increases along each boundary,

see Figure 4.13(c). This does not mean that |∆V (Tn)| increases since the increase in ξc

is obtained by a decrease in |∆V (0)|. In fact, the functional form of |∆V (Tn)| against ξc

in Figure 4.13(b) is closer to the functional form of the surface tension S1 against ξc in

Figure 4.13(a).

We cannot go to arbitrarily strong phase transitions since the barrier vanishes, as

described in Section 4.4.3. The largest strength ξc for a given a2 occurs when the runaway

and destabilisation boundaries coincide. This is where the dashed and dotted curves meet

in Figures 4.12-4.14. Notice that the value of (β/H)n sharply increases at this point in
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Figure 4.14(c). This is means that the value of S3(T )/T changes significantly over a small

change in temperature T . This is a signature of the barrier disappearing as we approach

the destabilisation boundary. To the left of this boundary we have a (strongly) first order

transition, but to the right we have a second order transition. Therefore, it is sensible to

suspect that the phase transition is more likely to thermally tunnel as we approach the

boundary, reflected by an increase in (β/H)n.

Assuming one finds a mechanism to prevent (or delay) the appearance of the destabil-

isation boundary, the further parameter space may not be physically realisable as the

phase transition may not complete. This is because the required value of (β/H)n in-

creases as the nucleation temperature decreases according to eq. (4.60). As the nucleation

temperature decreases, the phase transition strength increases. Therefore the bound in

eq. (4.60) becomes more relevant for stronger phase transitions in Figure 4.14(c).

4.5 The effective friction parameter

We will calculate an effective friction parameter η using the approach in [112]. In the rest

frame of the bubble wall, the Higgs equation of motion is given by

d2Φ(ρ)

dρ2
=
∂Vpath(Φ, Tn)

∂Φ
+ ηv

Φ2

Tn

dΦ(ρ)

dρ
, (4.63)

where v is the bulk velocity of the fluid and Φ is our effective field. In the rest frame of

the unperturbed fluid outside the bubble, the bulk velocity of the fluid is zero because the

plasma is unperturbed. We will be addressing the runaway parameter region where the

bubble wall is ultra-relativistic, vw → 1. In the rest frame of the bubble wall the fluid

velocity would appear to approach the bubble wall with equal speed v ≈ vw. This type of

bubble falls into the category of a very fast detonation. The friction parameter defined in

[112] is assumed to be constant in the regime where the velocity is ultra-relativistic, i.e.

η(v)→ constant for v → 1.

4.5.1 Without hydrodynamics

To avoid complications that arise from hydrodynamics, we assume that the temperature

and fluid velocity are constant across the phase boundary. In which case eq. (4.63) is

sufficient to describe the system. The friction parameter is determined by numerically

fitting η to the solution Φ(ρ) that starts at the symmetric vacuum and ends at the broken

vacuum Φ = Φn. Note that this solution is not the same as the bounce solution determining
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Figure 4.15: The friction parameter η calculated along runaway boundary for a2 = 1 (blue) and
a2 = 10 (orange). The dashed curves are calculated for the case where hydrodynamic effects are
ignored. Including hydrodynamics, we check a few points on the runaway boundary. These are
displayed by the purple and red crosshairs for a2 = 1 and a2 = 10, respectively. The numer-
ically fitted friction parameter is in relatively good agreement with and without hydrodynamics
considered.

the decay of the false vacuum. Instead the field profile Φ(ρ) starts and ends at the false

and true vacua, respectively.

The friction parameter is calculated for the runaway boundary and is displayed in

Figure 4.15. One can see that as the strength of the phase transition ξc increases, we

generally see a decrease in the effective friction parameter η as the strength increases.

The values we find are roughly consistent with the results of Table 2 in ref. [112], though

we note that their results are for subsonic bubble walls. This is supportive of the friction η

being independent of the wall velocity and strictly dependent on the strength ξc. We also

observe that the effective friction parameter is slightly higher for larger a2, in agreement

with ref. [98].

4.5.2 Including hydrodynamics

A more accurate calculation of η involves the inclusion of hydrodynamic effects. Put

simply, we must solve for the field Φ(ρ), temperature T (ρ), and fluid velocity v(ρ) variation

across the bubble wall. This requires solving eq. (4.63) along with the following set of
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(a) The field profile Φ(ρ).
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(b) The change in surrounding fluid temperature profile,
δT (ρ) = T (ρ)− T (0).
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(c) The change in the unboosted fluid velocity profile δv(ρ) =
v(ρ)− v(0).

Figure 4.16: A sample of solutions with hydrodynamics included, for parameter points on the
a2 = 1 runaway boundary. The profiles for ξ = 1, 2, 3, and 4 are represented by the purple, blue,
orange, and red curves, respectively. Each solution has been cut off at the point closest to the
broken phase.
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coupled differential equations [113]

(
4aT 4 − T

∂Vpath(Φ, T )

∂T

)
γ2v = C1, (4.64)

(
4aT 4 − T

∂Vpath(Φ, T )

∂T

)
γ2v2 + aT 4 − Vpath(Φ, T ) +

1

2

[
dΦ(ρ)

dρ

]2

= C2, (4.65)

where C1 and C2 are integration constants that are determined by the initial value, the

Lorentz factor is given by γ = (1 − v2)−1/2, and the quantity a = π2geff/90. These

additional differential equations derive from energy and momentum conservation across

the phase boundary.

We want the bulk fluid velocity in the rest frame of the universe, i.e. in front of or

far behind the bubble wall. As we have very fast detonations, the wall velocity is highly

relativistic. Therefore the fluid velocity v is in a boosted frame of reference, as it appears

in the above differential equations. This is reflected by our finding dramatically different

solutions for v(ρ) as we take the initial value of v closer to one. We can undo the boosting

effect by the following relativistic transformation [112]

vboosted → vunboosted =
vboosted

1− v2
boosted

. (4.66)

In the unboosted frame of reference, solutions for v(ρ) converge as v(0)→ 1.

Since we are dealing with detonations, all initial values are known. In the symmetric

phase, the initial values are in theory φ(0) = 0, T (0) ≈ Tn, and v(0) = 1. But this would

lead to the field profile remaining at the symmetric vacuum for an infinite amount of time

and the Lorentz factor blowing up. So we instead choose 0.002 . φ(0) . 0.5, T (0) = Tn,

and v(0) = 0.999. By evolving the equations of motion we qualitatively expect a decrease

in the bulk velocity of the fluid as it passes through the bubble wall, v(ρ) < v(0), and a

corresponding temperature increase of the plasma, T (ρ) > T (0) [109, 114].

We find solutions to eq. (4.63)-(4.65) using a few parameter points along the runaway

boundaries and, again, numerically determine the friction parameter η. For a given para-

meter point, we find all three profiles by numerical means using the method in Appendix E.

A sample of profiles are displayed in Figure 4.16. Each coloured curve corresponds to a

parameter point on the a2 = 1 runaway boundary with different strength. Each solution

is cut off at the value of ρ in which the field is closest to the broken VEV. The solutions

for δT (ρ) and δv(ρ) appear to have quite a sudden cut off, because of the fine-tuning of

the initial parameters required to obtain the correct solution. This is more obvious for
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solutions in Figure 4.16 with higher strengths ξc. As the strength increases, the change in

temperature and velocity across the wall also increases. Both the temperature and fluid

velocity reach a peak value then drop to the original temperature.

4.6 Acoustic gravitational wave relic density

We will calculate the expected relic density of gravitational waves produced during the

electroweak phase transition. Gravitational wave production is a byproduct of bubble

collisions. The fine details of this process are beyond the scope of this thesis. Instead we

will focus on the gravitational wave relic density predicted from αn and (β/H)n in panels

(b) and (c) of Figure 4.14, respectively. In the envelope approximation [17, 18], the relic

density is predicted to be

Ωea
GW ≈

0.11v3
w

0.42 + v2
w

(
β

H

)−2

n

κ2α2
n

(1 + αn)2
, (4.67)

where κ is an efficiency factor that determines the fraction of latent heat density that goes

into the bulk motion of the fluid. In the limit of fast bubble walls, this is given by [109]

κ ≈ αn
0.73 + 0.083

√
αn + αn

. (4.68)

Gravitational waves produced by the standard “colliding thin shell” mechanism decay

shortly after the time of production. A more durable source of gravitational waves may

dominate observations in the present day [33]. These are acoustically-generated gravita-

tional waves and have a corresponding relic density of

Ωaco
GW

Ωea
GW

≈ 3(8π)1/3Ω̃GW

0.11vw(0.42 + v2
w)

(
β

H

)
n

, (4.69)

where Ω̃GW ≈ 0.04 is determined numerically in [102]. The relic density Ωaco
GW is calculated

for the runaway regions, see Figure 4.17. For our explored parameter space there is an

important feature of the relic density. Namely that the relic density blows up along the

stuck-in-false boundary. This results from our definition that this boundary is determined

through tuning (β/H)n ≈ 0.

The relic density does, however, have an upper bound. This bound is determined by

the value of (β/H)n such that the phase transition completes, see Section 4.4.4. A phase

transition with a relic density above this upper bound may not necessarily saturate the

universe with the true vacuum. Regions in which the phase transition may not complete
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Figure 4.17: Plot of the relic density of acoustically-produced gravitation waves against the latent
heat density of the phase transition. The blue (orange) area is the runaway region for a2 = 1
(a2 = 10). The runaway and destabilisation boundaries are represented by dashed and dotted
curves, respectively. The stuck-in-false boundaries blow up Ωaco

GW as a result of our definition that
(β/H)n ≈ 0.

are highlighted in Figure 4.17. The boundary is calculated assuming the values of αn and

Tn of the closest boundary in Figure 4.14(c). This boundary is the stuck-in-false boundary,

unless the phase transition is very strong in which it is the destabilisation boundary. This

assumption overestimates the value of αn and Tn, and so (β/H)n would decrease. Both

an increase in αn and a decrease in (β/H)n have opposite effects on Ωaco
GW. Therefore,

we cannot say with certainty whether the calculated bound in Figure 4.17 underestimates

or overestimates the size of the red/purple region compared to the accurately calculated

boundary.

In summary, we have explored a region of the unbroken Z2xSM parameter space that

corresponds to the greatest possible gravitational wave relic densities for a given strength

ξc of the electroweak phase transition. This is the region of phase transitions with the

most supercooling and the highest risk of the phase transition not completing.

4.7 Concluding remarks

We we have investigated the non-sliding parameter region of the unbroken Z2xSM. For

smaller values of ξc, the mass scale of the singlet is effectively set by a2 through ms ∼√
a2/2v. A larger value of ξc allows for a broader range of singlet masses ms, as can be

seen in Figure 4.4.
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We do not include the Higgs and singlet in the one loop (including thermal) correc-

tions. Therefore the results of this study must be digested with this setup in mind. One

important consideration is the symmetry breaking pattern of the phase transition. By

the calculation in Section 4.2.2, we can see that most of the parameter space realises the

required symmetry breaking pattern.

Our calculation of the phase transition properties rely on two assumptions. The first is

that the minimised path is an adequate approximation to the trajectory taken by the true

bounce solution. The second is that we define the nucleation temperature by the condition

that S3(T )/T = 135± 1. The second assumption means that our outlined runaway region

in Figures 4.12 is rather conservative, i.e. the phase transition definitely starts for any

parameter point enclosed within the runaway region.

The runaway region is the non-sliding parameter subspace with the most supercooled

phase transitions. This derives from the Bödeker-Moore prescription of runaway [31].

Both low and high temperature approximations [69] are necessary to explore the runaway

region. The runaway region is bounded by the stuck-in-false-vacuum scenario, whereby

no nucleated bubbles are expected to expand to fill the universe with broken electroweak

phase.

In attempting to take the strength ξc to arbitrarily high values, we encounter an

issue with the symmetric vacuum destabilising as the temperature is lowered from the

critical temperature. If destabilisation occurs at a higher temperature than nucleation

temperature, one of two scenarios occur. Either the phase transition does not proceed

by bubble nucleation, as the barrier vanishes, or the symmetric vacuum slides to φ 6=

0, breaking the electroweak symmetry. The latter scenario would proceed by bubble

nucleation as usual but in a sea of “slightly” massive particles in the plasma. We only

observe this scenario in Section 4.4.3 for a strong coupling, a2 = 10. We note that this

was previously observed in the context of a two field model [111]. This scenario was also

realised for very strong phase transitions as ∆V (0)→ 0 in a two Higgs doublet model, see

Figure 5.8 in ref. [84]. This could make for an interesting cosmological scenario as the Higgs

and singlet have a small window of mixing with a strong coupling in this false vacuum.

Nonetheless, the destabilisation boundary marks out the final edge of the runaway region.

The destabilisation of the symmetric vacuum prevents one from getting arbitrarily

strong phase transitions. It is worth searching for a method to remove, or delay, the

appearance of the destabilisation boundary. However, the region of even stronger phase

transitions comes at the risk of the phase transition not completing. This can be seen in
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Figure 4.14(c).

It is our hope that the runaway regions we provide capture most of the parameter

space for models driven to a very strong phase transition by Tc → 0 and with a lot of

supercooling. More studies into the runaway region for other models can validate this.

For example, these parameter regions could be matched to the projected eLISA sensitivity

curves in Figure 5 of ref. [110]. If more gravitational wave signals are discovered in the

future, new physics can be extracted.
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Chapter 5

Conclusion

Throughout this work we have studied aspects of the electroweak phase transition whilst

only including the thermally-induced cubic terms from the electroweak gauge bosons. This

was intended to explore how a strong electroweak phase transition can arise from tree level

barriers and, in general, zero temperature aspects of the scalar potential.

In Chapter 2, we established a strong correlation between a zero temperature quantity

and the strength of the electroweak phase transition at critical temperature. This zero

temperature quantity is the vacuum energy difference between the broken and symmetric

extrema. This mechanism works by monotonically lowering the critical temperature of the

phase transition, whilst keeping the broken vacuum close to its zero temperature location,

as the broken and symmetric extrema tend toward degeneracy at zero temperature. We

found that for some models, or specific parameter regions, this allows one to tune the

vacuum energy difference to get an arbitrarily strong phase transition. Parameter points

that do not follow this correlation exhibit a feature that we refer to as sliding behaviour.

Sliding behaviour is the scenario in which the broken vacuum destabilises, then the broken

vacuum moves rapidly in field space toward the symmetric extremum. This has the effect

to (sometimes significantly) weaken the strength of the phase transition.

Chapter 3 was a short technical chapter, where we discussed the formalism behind

phase transitions. Most of the analytic expressions explored in Chapter 3 are not valid in

Chapter 4. Nonetheless the basic concepts do still hold, so the phase transition properties

in Chapter 4 are calculated numerically.

We conducted a thorough study into the non-sliding parameter region of the Z2xSM

in Chapter 4. We further constrained ourselves to parameter regions in which the phase

transition is expected to proceed by bubbles with runaway walls. Referred to as run-

away regions, these have the most supercooled phase transitions for a given strength. In
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attempting to take the strength to arbitrarily large values, we found that the symmet-

ric vacuum may destabilise at a temperature just below nucleation temperature. The

phase transition would initially proceed by bubble nucleation but then quickly crosses

over to a second order phase transition as the barrier vanishes. Finally, we determined

the range of acoustically-produced gravitational wave relic densities from runaway region

phase transition properties. The highest relic densities are found to have the strongest

phase transitions, the most supercooling, and the highest risk of the phase transition not

completing.

There are many unanswered questions throughout this thesis, which may develop into

exciting studies of the electroweak phase transition. For example, how does the non-

sliding, non-runaway region compare with the non-sliding, runaway region explored in

Chapter 4? We expect the non-runaway region to be bound by the same runaway boundary

and a continuation of the destabilisation boundary extended up to ξc = 1. This region

would appear on the opposite side of the dashed line to the runaway (shaded) region

displayed in Figures 4.12 and 4.17. Similarly, we may ask what phase transition properties

are attainable in the sliding parameter region? Like the spread of parameter points in

Figures 2.2 and 2.4 compared to the spread in more complicated SM extensions, see

Figures 2.5-2.6, perhaps the Z2xSM also maps out a substantial expanse of the more

advanced phase transition properties, e.g. surface tension, supercooling, latent heat of the

phase transition, bubble nucleation rate.

Our results emphasise the importance of the geometry of the zero temperature potential

on the properties of the electroweak phase transition. Namely, the depth of the potential,

discrete symmetries, and the location of the broken vacuum play a role in obtaining a very

strong phase transition for any model. This enables one to understand phase transition

properties through the geometrical features of a generic potential, rather than model-

dependent features of a specific potential.
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[115] José M. No Redondo. Aspects of phenomenology and cosmology in hidden sector

extensions of the standard model. 2009. 118



114

Appendix A

Parameter space scan (xSM)

Throughout the numerical scan, the (Z2)xSM parameters are assigned random values

following the below table. These parameters are chosen through linear distributions. For

our numerical scan, the mass scale is chosen to be M = 1 TeV.

Parameter: Mass dimension, n: Minimum: Maximum: Determined:

λ0 0 m2
φ1
/(4v2) m2

φ2
/(4v2) Random assignment

vS 0 −M 0 Random assignment
|a1| 1 0 M Random assignment
|b3| 1 0 M Random assignment
ms 1 0 M Random assignment

|a2| 0 0 10 Reparameterisation
b4 0 0 10 Reparameterisation
µ 1 − − Minimum condition
b2 2 − − Minimum condition
mh 1 125 125 Fixed

Table A.1: Table of real values randomly assigned to each (Z2)xSM parameter throughout the
numerical scan. The dimension column is given in units of mass dimension, i.e. [M ]n. The final
column labels how the numerical value is determined.
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Appendix B

Parameter space scan (GNMSSM)

Throughout the numerical scan, the parameters are assigned with a natural description

for the GNMSSM at low energy scales. This implies that the GNMSSM may easily be

described via a top-down approach with a low enough supersymmetry breaking scale, so as

to not demand a huge fine-tuning of the parameters. Therefore, we choose mSUSY = 1 TeV

for our numerical scan. All parameters are randomly chosen through linear distributions,

except for |λ| and |k3| which are determined through log10 distributions.

Parameter: Mass dimension, n: Minimum: Maximum: Determined:

tanβ 0 1 10 Random assignment
|λ| 0 1.0× 10−3 0.7 Random assignment
vS 1 −250 0 Random assignment
|µ| 1 0 mSUSY Random assignment
|k1| 2 0 m2

SUSY Random assignment
|k2| 1 0 mSUSY Random assignment
|k3| 0 1.0× 10−3 0.7 Random assignment
|bµ| 1 0 m2

SUSY Random assignment
|k2Ak2 | 1 0 m2

SUSY Random assignment
|k3Ak3 | 1 0 mSUSY Random assignment
|λAλ| 1 0 mSUSY Random assignment ∗

mQ3 1 ∆m3 mSUSY Fixed for mh

mū3 1 − − Fixed
∆m3 1 100 100 Fixed
At 1 − − Fixed
mh0 1 125 125 Fixed
mHu 1 − − Minimum condition
mHd

1 − − Minimum condition
mS 1 − − Minimum condition
|Ak1 | 1 0 mSUSY No linear term in S

Table B.1: Table of real values randomly assigned to each GNMSSM parameter throughout the
numerical scan. The dimension column is given in units of mass dimension, i.e. [M ]n. The final
column labels how the numerical value is determined.
∗Note that the Aλ parameter is randomly assigned subject to the broken vacuum being the absolute
minimum of the one loop effective potential.
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Appendix C

GNMSSM benchmarks:

parameter points

The assigned parameter values for each of the benchmark scenarios is provided in the table

below.

Parameter: Benchmark I: Benchmark II: Benchmark III:

tanβ 1.350 2.355 5.133
λ 0.5770 0.5690 0.6266

vS [GeV] −110.1 −161.5 −146.7
µ [GeV] 463.7 275.5 278.6

k1 [GeV]2 −6.820× 105 −7.547× 105 8.624× 105

k2 [GeV] −303.7 367.8 529.2
k3 −0.1513 0.2804 −0.2508

bµ [GeV]2 7.843× 105 7.621× 105 8.057× 105

k2Ak2 [GeV]2 −6.072× 105 3.440× 104 −2.065× 105

k3Ak3 [GeV] −124.5 −233.8 456.6
λAλ [GeV] 641.1 130.4 265.2
mQ3 [GeV] 688.8 926.7 991.7

Table C.1: Table of values assigned to each of the considered GNMSSM benchmark scenarios.
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Appendix D

Bubble nucleation rate

approximation for a completed

phase transition

Let us define S(T ) ≡ S3(T )/T and B(T ) ≡ β(T )/H(T ), such that

β(T )

H(T )
= T

∂S3(T )

∂T
→ S′(T ) =

B(T )

T
. (D.1)

Taylor expanding B(T ) about T = T∗, we have

S′(T ) =
B(T∗)

T
+

(
1− T∗

T

)
∂B(T )

∂T

∣∣∣∣
T∗

+ ...+
1

n!

(
1− T∗

T

)n
T (n−1) ∂

nB(T )

∂Tn

∣∣∣∣
T∗

. (D.2)

Integrating this expression from T∗ to T

S(T ) =

∫ T

T∗

dT̃
[
S′(T̃ )

]
= S(T∗) +

(
B(T∗)− T∗B′(T∗) +

1

2
T 2
∗B
′′(T∗) + ...

)
log

(
T

T∗

)
+

(
−T∗B′(T∗) +

1

2
T 2
∗B
′′(T∗) + ...

)(
1− T

T∗

)
+

(
1

2
T 2
∗B
′′(T∗) + ...

)
1

2

(
1− T

T∗

)2

+O
(

1− T

T∗

)3

.

(D.3)
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Henceforth, we will use the shorthand notation that any quantity F (T ) evaluated at T = T∗

is denoted by F (T∗) = F∗. We can rewrite the above expression as

S(T ) = S∗ +
(
B∗ +B

(1)
∗ +B

(2)
∗ + ...+B

(k)
∗

)
log

(
T

T∗

)
+
(
B

(1)
∗ +B

(2)
∗ +B

(3)
∗ + ...+B

(k)
∗

)(
1− T

T∗

)
+

1

2

(
B

(2)
∗ +B

(3)
∗ + ...+B

(k)
∗

)(
1− T

T∗

)2

+O
(

1− T

T∗

)3

,

(D.4)

where

B
(k)
∗ ≡

(−1)k

k!
T k∗

∂kB(T )

∂T k

∣∣∣∣
T∗

. (D.5)

Thus we have

e−S(T ) ≈ e−S∗
(
T∗
T

)(B∗+B1)
[

1−B1

(
1− T

T∗

)
+

1

2

(
B2

1 −B2

)(
1− T

T∗

)2
]

, (D.6)

where B1 =

k∑
i=1

B
(i)
∗ and B2 =

k∑
i=2

B
(i)
∗ .

The value of k is the power of (1 − T∗/T ) at which the original Taylor expansion in

eq. (D.2) is truncated. For the simplest approximation, we assume that B(T ) is constant

with respect to temperature. More specifically that B(T ) ≈ Bn is constant between the

nucleation and finalisation temperature of the phase transition. This should be valid for

very fast phase transitions where both the nucleation and finalisation temperatures are

far away from temperatures where B(T ) blows up1, i.e. B
(0)
n � B

(k)
n for all k > 0.

This expression can be plugged into the expected volume of bubbles normalised to the

Hubble volume, f(T ). The finalisation temperature of the phase transition Tf is defined

at when the Hubble volume is saturated with broken electroweak phase f(Tf ) = 1 [115].

f(Tf ) =
4πv3

w

3
(2ζMPL)4

∫ Tn

Tf

dT

[
1

T 5
e−S(T )

(
1− T 2

T 2
n

)3
]

. (D.7)

This expression assumes all bubbles nucleate at nucleation temperature and we ignore

the excess volume from overlapping bubbles. The resulting finalisation temperature is

therefore an overestimate. Noting that

(
1− T 2

T 2
n

)3

= 1− 3
T 2

T 2
n

+ 3
T 4

T 4
n

− T 6

T 6
n

, (D.8)

1For example, B(T ) → ∞ as T → Tc and, if a barrier exists at zero temperature, B(T ) → ∞ as T → 0.
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we can solve the integral in eq. (D.7) to find

f(Tf ) =
4πv3

w

3
(2ζMPL)4 e−Sn(Tn)Bn

[
−T

−Bn−4

Bn + 4
+

3

T 2
n
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Bn + 2
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T 4
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+

1

T 6
n
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Bn − 2

]Tn
Tf
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−
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− 1
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− 3
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+
1

Bn − 2

(
Tf
Tn

)6
]}

(D.9)

Recall that Bn ≡ (β/H)n is the bubble nucleation rate at nucleation temperature. Apply-

ing the condition that f(Tf ) = 1 to eq. (D.9), we determine a lower bound for (β/H)n. We

also assume vw ≈ 1, ζ ≈ 1/34, Sn ≈ 135, and MPL = 1.22×1019 GeV. This lower bound is

necessary to have a phase transition that completes, i.e. saturates the universe with broken

phase. This is achieved by finding numerical solutions for (β/H)n against Tn with fixed

Tf/Tn, and (β/H)n against Tf/Tn with fixed Tn. Both are plotted in Figures D.1-D.2.
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Figure D.1: Contour plot of the lower bound of the bubble nucleation rate (β/H)n against the
nucleation temperature Tn. The contours represent a fixed value of Tf/Tn in accordance with the
legend. For not-so-fast phase transitions, Tf/Tn . 0.98, the value of (β/H)n is approximately
constant in Tn. However, our assumption that B(T ) is constant around Tn is mostly likely valid if
Tf/Tn → 1. This solution is given by eq. (D.10) and is displayed by the red, dashed curve.



120

Figure D.2: Density plot of the lower bound of the bubble nucleation rate (β/H)n against the ratio
Tf/Tn. The density represents the nucleation temperature Tn. For not-so-fast phase transitions,
Tf/Tn . 0.98, the value of (β/H)n is approximately constant in Tn. The red, dashed curve
approximates the Tn → 0 solution and is given by eq. (D.11).

Our assumption that B(T ) is constant is most likely valid for very fast phase trans-

itions, Tf/Tn → 1. In this limit, we determine that the nucleation rate must be

(
β

H

)
n

&
(7000 GeV)

Tn
(D.10)

for the phase transition to complete. This can be regarded as the most pessimistic bound

for (β/H)n; any phase transition with a nucleation rate satisfying eq. (D.10) will complete.

It is interesting to note the behaviour of the solutions of (β/H)n against Tn as the value

of Tf/Tn moves away from unity. At high temperatures, solutions are well approximated by

eq. (D.10). But as the nucleation temperature lowers, the solution plateaus to a constant

value of (β/H)n. This constant is roughly given by

(
β

H

)
n

≈ 1.8

(
1−

Tf
Tn

)−1

. (D.11)

This observation is illustrated in Figure D.2.
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Appendix E

Numerical approach in accurately

determining friction

We discretise the differential equations and then evolve the resulting difference equations

from their initial condition. However, in order to solve eq. (4.64) and eq. (4.65), one

would need to know the temperature variation of Vpath. In this work we resort to Taylor

expanding the potential about its value at the previous temperature; for the ith iteration

this is Ti. Up to quartic order

Vpath(Φ, Ti+1) = Vpath(Φ, Ti) + (δT )
∂Vpath(Φ, T )

∂T

∣∣∣∣
T=Ti

+
(δT )2

2

∂2Vpath(Φ, T )

∂T 2

∣∣∣∣
T=Ti

+
(δT )3

3!

∂3Vpath(Φ, T )

∂T 3

∣∣∣∣
T=Ti

+
(δT )4

4!

∂4Vpath(Φ, T )

∂T 4

∣∣∣∣
T=Ti

+O(δT )5.

(E.1)

Manipulating this expression, we can see that

∂Vpath(Φ, Ti+1)

∂Ti+1
=
∂Vpath(Φ, T )

∂T

∣∣∣∣
T=Ti

+ (δT )
∂2Vpath(Φ, T )

∂T 2

∣∣∣∣
T=Ti

+O(δT )2. (E.2)

Adopting the notation V±a = Vpath(Φ, Ti±a(δT0)), we determine the derivatives at T = Ti

in the following way. We linearise the equations for Taylor expanded potentials V−2, V−1,

V0, V+1 and V+2. This recovers expressions for the finite-sized derivatives up to fourth

order:
∂Vpath(Φ, T )

∂T

∣∣∣∣
T=Ti

=
V+1 − V−1

2(δT0)
, (E.3)

∂2Vpath(Φ, T )

∂T 2

∣∣∣∣
T=Ti

=
V+1 − 2V0 + V−1

(δT0)2
, (E.4)
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∂3Vpath(Φ, T )

∂T 3

∣∣∣∣
T=Ti

=
V+2 − 2V+1 + 2V−1 − V−2

2(δT0)3
, (E.5)

∂4Vpath(Φ, T )

∂T 4

∣∣∣∣
T=Ti

=
V+2 − 4V+1 + 6V0 − 4V−1 + V−2

(δT0)4
. (E.6)

Using a feasible step size δT0 is essential for reliable estimates of these derivatives. Al-

though this step size is ideally small, we must be mindful of any errors residing from

numerical precision. For our investigation in Section 4.5.2, we take δT0 = 0.1 GeV.
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