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Summary 

 Computer models are used to simulate pedestrian behaviour for safety at mass events. 

Previous research has indicated differences between physical crowds of co-present 

individuals, and psychological crowds who mobilise collective behaviour through a shared 

social identity. This thesis aimed to examine the assumptions models use about crowds, 

conduct two studies of crowd movement to ascertain the behavioural signatures of 

psychological crowds, and implement these into a theoretically-driven model of crowd 

behaviour. 

 A systematic review of crowd modelling literature is presented which explores the 

assumptions about crowd behaviour being used in current models. This review demonstrates 

that models portray the crowd as either an identical mass with no inter-personal connections, 

unique individuals with no connections to others, or as small groups within a crowd. Thus, no 

models have incorporated the role of self-categorisation theory needed to simulate collective 

behaviour.  

 The empirical research in this thesis aimed to determine the behavioural effects of 

self-categorisation on pedestrian movement. Findings from a first study illustrate that, in 

comparison to a physical crowd, perception of shared social identities in the psychological 

crowd motivated participants to maintain close proximity with ingroup members through 

regulation of their speed and distance walked. A second study showed that collective self-
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organisation seemed to be increased by the presence of an outgroup, causing ingroup 

members to tighten formation to avoid splitting up.  

 Finally, a computer model is presented which implements the quantified behavioural 

effects of self-categorisation found in the behavioural studies. A self-categorisation parameter 

is introduced to simulate ingroup members self-organising to remain together. This is 

compared to a physical crowd simulation with group identities absent. The results 

demonstrate that the self-categorisation parameter provides more accurate simulation of 

psychological crowd behaviour. Thus, it is argued that models should implement self-

categorisation into simulations of psychological crowds to increase safety at mass events. 
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Context statement 

  

 This thesis is organised in the new format style where chapters 2, 3, 4, and 5 are 

presented as papers for publication. However, in Chapter 1, I provide an overview of the 

thesis in the style similar to a traditional thesis introduction. The figures and tables are 

presented in numerical order across the thesis, and I have presented all references together in 

a single reference list at the end. Sections of Chapter 1 have been taken from two 

publications, Chapter 2 has been published, Chapter 3 is under review, and Chapters 4 and 5 

have both been submitted for publication. I have included details about the publication status 

of each chapter in their title pages. 

 In Chapter 1, I have incorporated aspects from two publications on which I am second 

author. When discussing the Social Identity Model Application, I mention the main 

theoretical concepts that were incorporated into the computer model. Myself and the first 

author, Isabella von Sivers, co-designed the concepts for the computer model and its analysis, 

and co-wrote the paper with feedback from the other authors, Felix Künzner, Gerta Köster, 

John Drury, Andrew Philippides, Tobias Neckel, and Hans-Joachim Bungartz. My main 

contribution to this publication was providing the theoretical background for the model, 

which is the main element discussed in the chapter. In the first paragraph of the ‘Methods and 

measures’ section, I briefly address the potential difficulties of incorporating theoretical 

models into computer models. These concepts have been extracted from a publication by 

Michael Seitz, myself, John Drury, Gerta Köster, and Andrew Philippides. Michael Seitz and 

I collaboratively designed the ideas for the paper, and co-wrote it under the supervision of the 

other authors. For the publication, I lead and wrote the section on including theoretical 

criteria into a model, and co-wrote the section discussing model parameters with Michael 

Seitz. These are the points used in the chapter. 
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 I am lead author of Chapters 2, 3, 4, and 5, followed by my academic supervisors, 

John Drury and Andrew Philippides. In all chapters, we collaboratively designed the ideas for 

the studies, I collected the data, conducted the analysis, and wrote the first draft of each 

paper, and look a lead role in writing the subsequent drafts. Both John Drury and Andy 

Philippides provided valuable feedback throughout the analysis and writing process. In 

Chapter 2, Gerta Köster, Michael Seitz, Isabella von Sivers, Felix Dietrich, and Benedikt 

Zönnchen were integral to affirming the typologies presented by providing helpful feedback 

from a computer science perspective. In Chapters 3 and 4, Michael Seitz and Andrew 

Philippides provided advice and practical support to build MATLAB software that would 

extract data from the footage for analysis. In Chapter 5, I present a computer model of 

collective behaviour with an underlying pedestrian model based on the Optimal Steps Model 

designed by Michael Seitz. Felix Dietrich, Michael Seitz, and Isabella von Sivers provided 

support to recreate a version of the Optimal Steps Model in MATLAB, which I adapted to 

incorporate aspects of self-categorisation theory. Andrew Philippides provided support to 

transfer the behaviour in the simulations into the data that I analysed. 
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Overview of research 

Introduction 

On 26th March, 2011, I participated in my first large-scale protest demonstration: 

‘March for the Alternative’. On the way, the tube carriages were loaded with others going to 

the same demonstration. Their identity was evident by their placards, balloons, badges, and t-

shirts with trade union logos on them. People would notice others with these same emblems 

and follow one another, merging into larger groups as they coordinated through the streets 

towards the starting point of the march. Other people who were not attending the march 

noticed this too; they navigated around the groups of people going to the protest, even 

walking on the road to avoid them. During the protest, there was a stark contrast between the 

behaviour of the crowd walking beside the protest and the crowd of people who were 

protesting. The people around the crowd navigated the pavement either as individuals to 

avoiding bumping into others, or moved together in pairs or small groups. The crowd on the 

pavement moved in different directions and at different speeds, but those participating in the 

protest were coordinated. Protesters chanted together, walked closely together, moved at a 

slower speed that was accessible to everyone, and were smiling despite being knocked into 

one another at times. In essence, the entire crowd of protestors seemed to move together as a 

group.  

The coordinated movement of crowd members can be seen at numerous events, such 

as football fans entering and leaving stadiums, and attendees of music festivals and gigs. This 

behaviour differs from the crowd on the pavement where unconnected individuals or small 

groups were merely co-present in the same physical space, which can also be seen in crowds 

at shopping centres, or commuters at transport hubs. Accurate predictions of crowd behaviour 

are vital for increasing safety at mass events, yet there are key behavioural differences 

between these crowds which need to be understood to improve these predictions.  
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 Computer models of crowd behaviour are a core method used for crowd safety by 

simulating crowd movement in to (ingress) and out of (egress) areas, movement within 

stadiums and other buildings, and planning emergency evacuations in these areas. Research 

on pedestrian dynamics has explored pedestrian movement, and crowd models have 

implemented these factors into models of collective behaviour to better predict and monitor 

movement at crowd events. These models are used to simulate a diverse range of crowds, 

from the movement of pedestrians in transport hubs (Burrows, 2015), to sporting events such 

as the Olympic Games (Owen, 2012). Despite this, computer models are typically based on 

very little research about what ‘collective behaviour’ is and how it emerges. Where collective 

behaviour in crowds has been investigated, modellers have often attempted to model 

animalistic traits such as ‘swarm’ behaviour (Chen & Lin, 2009; Parunak, Brooks, Brueckner, 

& Gupta, 2012), ‘stampedes’ (Cao, YangQuan, & Stuart, 2015), and ‘competitive’ 

parameters in evacuations (Ma, Li, Zhang, & Chen, 2017; Pan, Han, Dauber, & Law, 2007). 

As Sime (1985) indicates, other models often treat people as unthinking, predictable ‘ball-

bearings’. These modelling approaches make advances towards simulating mechanical 

stepping behaviour in pedestrians, but they seldom explore underlying factors that may create 

collective behaviour. They do not address why an entire crowd may be motivated to 

coordinate their movement, such as the protesters at the March for the Alternative. One key 

aspect that these models neglect is how collective behaviour can emerge from psychological 

connections between crowd members.  

 Research from social psychology has focussed on the psychological underpinnings of 

what causes collective behaviour. Crucially, Reicher (2011) argues that there are important 

differences between physical crowds of unconnected people in the same place at the same 

time (such as those on the pavement trying to avoid the protesters), and psychological crowds 

whose collective behaviour occurs through a shared social identity (such as the protesters). 
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Self-categorisation theory (SCT: Turner, Hogg, Oakes, Reicher, & Wetherell, 1987) is a 

fundamental theory to explaining collective behaviour. Research on self-categorisation has 

shown how collective behaviour emerges through shared social identities and the perception 

of others as ingroup or outgroup members. For example, it has been used to explain how the 

perception of others as ingroup members motivates coordinated helping behaviour in 

emergency evacuations (Drury, Cocking, & Reicher, 2009a, 2009b), and safe egress of an 

outdoor music event (Drury, Novelli, & Stott, 2015). Despite crowd models simulating the 

behaviour of emergency evacuations and festivals, which social psychology has shown to 

consist of psychological crowds, the disciplines have only conducted limited collaboration to 

create a model of crowd behaviour that simulates pedestrian behaviour based on 

contemporary social psychological research of collective behaviour.  

 This thesis presents the first attempt to combine methodologies from pedestrian 

dynamics and computer modelling with contemporary theories from social psychology. To 

determine the effect of self-categorisation on pedestrian behaviour, I used methodology from 

social psychology to prime a psychological crowd with a shared social identity, and 

compared their movement to a naturally occurring physical crowd primarily comprised of the 

same people. Using methodology from pedestrian dynamics, I compared the walking speed, 

distance walked, and proximity between people in each crowd condition. I then extended this 

study to prime two large groups with different social identities and had them walk in 

counterflow to determine the influence of another group on speed, distance, and proximity 

compared to when the group walked alone. Finally, I present a computer model which 

demonstrates that models of physical crowd behaviour cannot simulate the coordinated 

behaviour of psychological crowds. In this model I introduce a new self-categorisation 

parameter and illustrate how attraction to ingroup members is needed to begin to simulate the 

micro-level collective movement of psychological crowds. I propose that future models of 
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psychological crowds should incorporate a self-categorisation parameter to better simulate 

the behavioural differences of physical and psychological crowds. 

In this chapter, I first provide an overview of research in pedestrian dynamics and 

argue that the current avenues of research that focus on individualistic traits, social and 

environmental cues, and small group behaviour are insufficient to explain the large-scale 

coordination of psychological crowds. I then demonstrate how computer models that 

implement crowds as consisting of either homogeneous masses, unconnected individuals, or 

small groups cannot model the collective behaviour of psychological crowds. Following this, 

I present theories of crowd behaviour from social psychology and propose that research into 

SCT provides valuable insight into the emergence of collective coordination in psychological 

crowds. In the ‘Methods and measures’ section, I set out the methodological strategy used in 

this thesis and explain the combination of methods that I have used from computer modelling 

and social psychology. Then, I provide a brief overview of the background and methods for 

each chapter in ‘Overview of chapters’, and the key results of each chapter and the overall 

research in ‘Summary of findings’. I then provide a discussion of the theoretical and practical 

importance of this research for both crowd modelling and social psychology in ‘Implications 

of findings’, and address potential limitations of this research and suggest avenues for future 

studies in ‘Limitations and future directions’. Finally, in ‘Conclusions’ I discuss the 

importance of incorporating the behavioural differences of physical and psychological 

crowds into computer models for event safety, and suggest that the inclusion of a self-

categorisation parameter can be used to create more realistic simulations of the collective 

behaviour of psychological crowds at mass events.   

Crowd movement in pedestrian dynamics 

 Research into pedestrian dynamics has aimed to increase the accuracy of computer 

models by exploring the factors that influence pedestrian movement and flow. These have 
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been examined in three main areas: the effect of individual ‘traits’ on decision-making, the 

role of social and environmental cues on movement, and the influence of group behaviour on 

crowd flow. First, the individualist approach has examined how ‘traits’ influence behaviour 

in evacuation scenarios. For example, a computer experiment by Bode, Miller, O’Gorman, 

and Codling (2015) explored the role of altruism in evacuation behaviour, defined as the level 

of help provided to others. In this study, behaviour was compared between when there was no 

risk to the participants’ own safe evacuation if they provided help to others, and when a risk 

was posed to evacuating safely if help was provided. Bode et al. interpreted their results as 

suggesting that participants’ altruistic predispositions to help others decreased in an 

emergency situation, due to a compromise between helping another person and the risk of the 

participant evacuating safely. Other individualist approaches, such as research by Moussaïd 

and Trauernicht (2016), examined how personality types and incentives influenced helping 

behaviour. Here, participants in a virtual evacuation experiment were offered rewards or 

penalties for helping other people to evacuate safely, and then completed a questionnaire 

based on Murphy, Ackermann and Handgraff’s (2011) Social Value Orientation scale. 

Moussaïd and Trauernicht concluded that the level of helping provided in an emergency 

situation was influenced by people’s predisposition to compare receiving rewards against 

penalties to themselves if they helped others.  

 I argue that exploring the role of traits on evacuation behaviour reduces interactions 

between crowd members to people’s sum total of individual differences, and primarily 

focusses on ‘traits’ as a function of risk estimates rather than interactions between people. As 

yet, no research in pedestrian dynamics has ascertained which individual-level characteristics 

can explain collective behaviour in crowds. Individualist approaches neglect the findings 

from other research that indicate how group-level factors can influence crowd behaviour 

during evacuations. For example, a virtual reality experiment by Drury et al. (2009) found 
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that group membership decreased individualist behaviour such as pushing and shoving. In 

this study, participants had to escape an underground railway in a mass emergency 

evacuation, and then complete a questionnaire about their identification with the group. The 

results implied that participants who most highly identified with the group exhibited the most 

cooperation with ingroup members and decreased competitive behaviour. Moreover, the 

research on individual traits implies that behaviour may be different in emergency evacuation 

scenarios and ordinary egress scenarios. However, the effect of social identity on coordinated 

egress has also been found in non-emergency events, such as the psychological crowd of 

attendees of an outdoor music event who collectively self-organised safe egress from 

Brighton beach with ingroup members (Drury et al., 2015). Thus, individualist accounts of 

behaviour bypass the fundamental effect that self-categorisation can have on collective 

behaviour.  

 A second area of research on pedestrian behaviour has examined the role of social and 

environmental cues on movement, such as the extent that evacuation times are influenced by 

how others in the area respond to an emergency evacuation alarm (Chow, 2007; Nilsson & 

Johansson, 2009), and where other pedestrians look in the environment (Gallup, Chong, & 

Couzin, 2012). In a series of controlled behavioural experiments and field observations of 

pedestrian zones, Moussaïd et al. (2009) explored the impact of other pedestrians on 

navigation choice to determine how pedestrians avoid collision with others. They found that 

pedestrian collision avoidance was a mutual interaction based on visual cues of which 

direction the opposing pedestrian moved, and concluded that coordinated evasion of other 

pedestrians is a mutual agreement based on social cues of others’ direction. This area of 

research is a step towards researching how social cues can influence pedestrian navigation, 

but it examines fleeting interactions between individuals solely based on avoiding collision. It 

neglects how an entire crowd can self-organise behaviour for reasons other than collision 
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avoidance based on their shared social identities, such as how the psychological crowd 

collectively self-organised egress from Brighton beach (Drury et al., 2015), or how pilgrims 

at the Hajj coordinated movement for complex religious rituals in high crowd densities and 

felt safe because they perceived themselves to be part of the same group (Alnabulsi & Drury, 

2014). 

 The third area of research in pedestrian movement has examined how groups both 

influence, and are influenced by, crowd behaviour. Köster, Seitz, Treml, Hartmann, and 

Klein (2011) conducted a classroom evacuation experiment to determine how groups of 

varying sizes navigated a corridor together. They found that groups of three people walked 

abreast in low densities, but moved to a ‘V’ formation in higher densities to stay together. 

This was also found by Moussaid, Perozo, Garnier, Helbing, and Theraulaz (2010) when 

analysing footage of 1,500 pedestrian groups, but they further suggested that the group 

formation broke to allow faster movement through the crowd. Other research has extended 

this to show how pairs of pedestrians navigate counterflow and modulate their speed to 

remain close together (Crociani, Gorrini, Nishinari, & Bandini, 2016). This research made 

important contributions towards quantifying how pairs and small groups move within a 

crowd, but it reduced group behaviour to staying together to increase communication. Thus 

far, research in pedestrian dynamics is yet to extend past small group approaches. It does not 

address the underlying processes of why the groups are motivated to stay together, or how 

large crowds move together as a collective. 

Approaches to crowd behaviour in computer modelling 

 The approaches that computer models use to simulate crowd behaviour can be 

grouped into three categories; crowds are portrayed as either a mass of people who act 

identically, individuals who act independently of everyone else, or interact in small groups of 

people with varying levels of social connections. In the first category, computer models 
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which treat the crowds as an aggregate mass with identical characteristics have primarily 

been used to plan for emergency evacuations. Here, the influence of crowd size and density 

on movement has been explored, for example by analysing the effect of density on 

congestion in the crowd (Maury, Roudneff-Chupin, & Santambrogio, 2010), how pedestrian 

flow is affected by calculating the shortest distance to an exit (Zawidzki, Chraibi, & 

Nishinari, 2013), or how bottlenecks affect egress (Kabalan, Argoul, Jebrane, Cumunel, & 

Erlicher, 2016). These models are useful for planning evacuation routes and how crowd flow 

is influenced by avoidance of collision with obstacles or other pedestrians. They leave little 

room, however, for scenarios where groups interact within the crowd, or where the entire 

crowd self-organise to evacuate. In the second category, computer models rendered crowd 

members as unconnected individuals and provided pedestrians with unique features which 

influenced their behaviour, such as their health (Dou et al. 2014; Löhner, 2010), or level of 

competitiveness (Ma et al., 2017). This approach can increase the realism of simulations by 

adding more characteristics to the crowd, but they too assume that crowd members act as 

individuals and neglect the influence of group membership. Thus, they cannot account for 

how crowd members can behave as a group, or how the entire crowd can collectively self-

organise. 

 In the third category, where modellers have included group behaviour, these models 

have been limited to small groups in the crowd with varying levels of social connections. 

This includes small groups who begin and leave the simulation together as an aggregate to 

determine the effect of groups on evacuation time (e.g. Idrees, Warner & Shah, 2014; Zheng 

et al., 2014), leader-follower modellers where ‘groups’ are comprised of a leader and the 

pedestrians who follow it (e.g. Crociani et al., 2016; Zhao, Zhong, & Cai, 2016), and models 

where pedestrians are grouped based on having similar properties (e.g. Musse & Thalmann, 

1997; Pan et al., 2007). However, these approaches are still based on assumptions that the 
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crowd is comprised of small groups of two to five people and do not incorporate the 

movement of larger groups. 

 Overall, these approaches to modelling have not addressed how large groups self-

organise within the crowd, or how the entire crowd can behave as a group. Without 

incorporating the sense of ‘groupness’ from a shared identity, modellers cannot fully simulate 

the collective behaviour that research in social psychology has found in a plethora of crowd 

events. In recent years, there have been some attempts to base computer models on 

contemporary theories of collective behaviour from social psychology. For example, Singh et 

al. (2009) reference literature on SCT in their computer model of subgroup behaviour. 

However, this model focusses on small groups within a physical crowd, and does not 

implement any principles of SCT into an account of large-scale collective behaviour. One 

model that has attempted to incorporate the collective behaviour of groups in a psychological 

crowd based on principles of SCT, is the Social Identity Model Application (SIMA: von 

Sivers et al., 2016).  

 The SIMA model is based on research by Drury et al. (2009a), which examined 

accounts by survivors of behaviour during the July 7th 2005 London bombings. This research 

suggested that the shared danger created a social identity amongst survivors. Here, the crowd 

was characterised by delayed evacuation as the shared identities motivated helping behaviour 

and risk-taking for people who were previously strangers. To replicate this scenario, in the 

SIMA pedestrians were either modelled as healthy or injured so that they required help to 

evacuate. Crucially, SIMA implemented aspects of SCT by allocating each pedestrian the 

ability to have a social identity or not, and healthy pedestrians helped injured pedestrians to 

evacuate if they were ingroup members. Pedestrians who did not have a social identity 

immediately evacuated the train carriage. For those who shared a social identity, however, 
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their target goal of evacuating was compromised by their target of providing aid to injured 

pedestrians, which resulted in longer evacuation time.  

 Von Sivers et al. (2016) present an important step towards modelling collective 

behaviour based on social psychological research. However, the original study by Drury et al. 

is based on self-report data due to the absence of footage of the evacuation, so the SIMA 

cannot be fully validated against the behaviour of the survivors. Quantified data of 

psychological crowd movement is still needed to accurately validate simulations of collective 

behaviour. This poses two problems for crowd modellers. First, they must ensure that the 

crowd they are basing their model on is a psychological crowd. Related to this is the second 

problem: to ensure a crowd is psychological, they must understand from where these 

psychological connections emerge, and use these principles to operationalise the theory into a 

computer model.  

Social psychological theories of collective behaviour  

 Accounts of crowd psychology have attempted to explain collective behaviour as 

either innately anti-social, occurring through social facilitation, or through the emergence of 

norms in novel situations. In an account of the nature of crowds, Le Bon (1985/2002) 

portrayed the crowd as a ‘primitive’ entity, where entering the crowd was believed to release 

people’s ‘uncivilised’ innate nature. Collective behaviour emerged through the crowd’s 

innate susceptibility to suggestion and influence by others, where a person’s individual self 

(and thus their accountability) was lost through submergence in the crowd. Here, ‘contagion’ 

through the crowd was said to occur as people succumbed to their unconscious anti-social 

instincts. This conception continued into Freud’s (1921/1985) approach; being a member of a 

crowd unlocked people’s unconscious and provided a place where they could throw off the 

constraints of socially acceptable behaviour and act according to their uncivilised impulses. 

Inherent in both Le Bon and Freud’s theories is that that entering a crowd incurs a loss of 
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‘self’ and a descent into anti-social ‘primal’ instincts where collective behaviour is inherently 

anti-social. However, this approach neglects how crowds can collectively work together in a 

pro-social manner. For example, their approaches cannot explain the behaviour of the crowd 

members who shared water when others could not easily move due to high crowd density on 

Brighton beach (Drury et al., 2015), or how survivors of the 2005 London bombings stayed 

behind to apply first aid to injured people at a risk to their own safety (Drury et al., 2009a).  

 The individualist approach to crowd behaviour suggests that the collective is a 

nominal fallacy (Allport, 1924). Here, convergence theory proposes that crowds consist of 

numerous like-minded individuals in the same place, and collective behaviour stems from 

social facilitation where the crowd provides an environment to bring out attributes already 

present in those individuals. Individualist explanations, however, exclude how group-level 

factors influence behaviour, and do not address how normative behaviour is collectively 

established. Emergent Norm Theory (ENT: Turner & Killian, 1957) provides one account of 

how collective behaviour emerges through the generation of social norms. It suggests that 

crowd members look to others for cues about how to behave in the novel situation of the 

crowd environment. This is an important step towards incorporating communication and 

norms into collective behaviour, but only accounts for novel situations where norms were 

unestablished prior to the event. As Reicher (1982) indicates, crowds ordinarily come 

together for a reason and have pre-defined norms. ENT cannot explain pre-defined normative 

behaviour that spans numerous crowd events, such as chants used in multiple protest 

marches, fans performing Mexican waves at football games, or mosh-pits at festivals. 

 Two theories which can explain how connections between crowd members and social 

norms influence collective behaviour, are social identity theory (SIT: Tajfel & Turner, 1979) 

and SCT (Turner et al., 1987). SIT moves away from the portrayal of crowds as inherently 

anti-social masses, or individuals who happen to be in the same place at the same time. It 
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suggests that people have a personal identity, which refers to their idiosyncratic differences 

from others, and social identities, which refer to their memberships in different social groups; 

and we understand our self-concept in terms of which identity is salient at a particular time 

(Turner, 1982). SCT suggests that when a particular social identity is salient, self-

stereotyping causes individuals to define their self in terms of their identity as a member of 

that social group rather than their personal identity. Here, social identities become salient 

through the meta-contrast principle (Turner, 1991), where the salience of a group identity is 

influenced by members of the ingroup having fewer differences than the differences between 

their group and members of an outgroup. This leads to the depersonalisation process, where 

group members perceive themselves to be part of the same group and subsequently apply the 

group characterises and norms to themselves when that social identity is salient. 

 SCT explains how collective behaviour emerges as a group process, through 

categorising others as ingroup or outgroup members. The minimal group paradigm (Tajfel, 

Billig, Bundy, & Flament, 1971) indicates that social categorisation under seemingly 

arbitrary criteria for group membership is sufficient to evoke ingroup favouritism if the 

participants self-categorise themselves as being in the group (Grieve & Hogg, 1999; Hertel & 

Kerr, 2001). Research on SCT has demonstrated that even minimal group membership can 

influence how physically close people sit next to one another. Novelli, Drury, and Reicher 

(2010) used a minimal group manipulation to explore how group membership affected 

personal space. Minimal groups were created by having participants estimate the number of 

dots in a random pattern, and they were told the task was related to people’s cognitive 

differences. Following this, each participant was asked to place chairs in the room for other 

participants who were about to arrive. They were only given information about whether the 

other people coming had the same (ingroup) or different (outgroup) tendency as them to 

overestimate or underestimate the number of dots in the pattern. This group manipulation was 
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sufficient to make participants place their chairs closer to ingroup members. Although this 

finding does not directly address collective behaviour, it indicates how proximity may be 

influenced by social identities and the perception of others as ingroup or outgroup members. 

This is an important consideration for computer simulations of crowd density that assume 

pedestrians avoid being close together, as it suggests that ingroup members will move more 

closely to one another than they would to others. 

 One way that people recognise shared group membership in others is through identity 

markers such as group emblems. For example, Levine, Prosser, Evans, and Reicher (2005) 

explored the role of social identity in helping behaviour using group logos to denote 

identities. In this paradigm, the identity of an injured confederate who needed assistance was 

manipulated by their shirt. In study one, participants were primed with a salient identity as 

Manchester United fans, and the confederate was altered to be perceived as either an ingroup 

member by wearing a football shirt of the team the participants supported, an outgroup 

member by wearing a football shirt of a rival football team, or an unbranded shirt in the 

control condition. Crucially, the confederate was more likely to receive help from participants 

when wearing the shirt from the ingroup condition. This research provided evidence that 

participants were more likely to approach and help people perceived to be ingroup, and that 

social identities can be both deciphered and operationalised through group emblems. 

 Importantly for crowd modelling, crowd behaviour can be influenced by the people’s 

social identities as a crowd member. SCT can explain, for example, why a crowd of football 

fans of one team may have social norms of acting violently and why a crowd of fans of 

another team with a different social identity will have a social norm of acting peacefully 

(Stott, Hutchison, & Drury, 2001). This also applies to crowds without a prior identity or 

social norms, such as the survivors of mass emergency disasters who became psychological 
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crowds through their shared fate, and collectively self-organised safe evacuation based on 

their perception of others as ingroup members (Drury et al., 2009b).  

 Although studies have explored the effect of social identities on proximity and 

interactions between members of the same group, this is yet to be applied to an entire 

psychological crowd. The findings of Novelli et al. (2010) suggest that SCT could be a 

crucial aspect of understanding and modelling collective behaviour in crowds, as it implies 

that shared social identities influence people to be closer to ingroup members. Combined with 

research indicating that people can have social identities as a member of a crowd and 

perceive others in the crowd as ingroup members, this suggests that research in pedestrian 

dynamics and crowd models should explore the effects of SCT when an entire crowd share a 

social identity. The finding that ingroup members tend to move closer to one another than to 

outgroup members suggests that one avenue for research is how self-categorisation may 

motivate a crowd to maintain close proximity and how this impacts crowd movement.  

 The influence of social identities on collective behaviour suggests that crowd safety 

professionals should look to SCT when planning for psychological crowds. Research in 

pedestrian dynamics and computer models are one of the key tools used to plan for crowd 

behaviour, yet, with the exception of Sivers et al. (2016), they are yet to quantify and include 

how social identities and self-categorisation can influence collective behaviour. As such, the 

aim of this thesis is to quantify the behavioural differences between physical and 

psychological crowds, and use these to incorporate principles of self-categorisation into a 

computer model of psychological crowd behaviour, to improve simulations of collective 

behaviour for mass events.  

Methods and measures 

Methodological strategy  
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 This thesis aims to combine methodology from social psychology, pedestrian 

dynamics, and computer modelling to a) determine how self-categorisation influences crowd 

behaviour and b) to replicate this by implementing aspects of SCT in a computer model. To 

measure the behavioural effects of self-categorisation, I compared the behaviour of a crowd 

of people walking when they did not share a social identity to when a shared social identity 

was salient. This necessitated a mixture of observational methodology to record the natural 

movement of a physical crowd, and a controlled experiment to prime the crowd to share a 

social identity. To create a computer model of psychological crowd behaviour, I used an 

existing model of physical crowd behaviour and implemented an additional self-

categorisation parameter based on aspects of SCT. The self-categorisation parameter is 

validated by testing both versions of the model against the behaviour of the psychological 

crowd to determine which provides the best simulation of behaviour. 

In this section, I first address barriers to implementing complex theoretical models 

into computer models. Following this, I discuss current methods from computer modelling to 

validate and operationalise models based on analysis of pedestrian dynamics from 

behavioural data of real crowd events. I address the computational challenges of modelling 

crowd behaviour, and I describe a pedestrian movement model that can simulate physical 

crowd behaviour. Finally, I provide an overview of group priming methods and measures of 

group identification from social psychology to ensure participants shared a social identity and 

that the behavioural effects of self-categorisation were measured.   

Computer modelling methodology  

 One reason that computer modellers may not have incorporated aspects of SCT is due 

to the difficulty of creating models that can replicate complex social phenomena. Assuming a 

modeller understands the social identities and norms of the particular crowd being modelled, 

achieving a perfect replication of social norms, connections between individuals, and 
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interactions with other crowds would require numerous model parameters. A high number of 

parameters incurs a heavy computational load that mean fewer scenarios can be simulated, 

particularly for mass events due to the large number of pedestrians. Moreover, the model 

would become increasingly untestable as the number of parameters increase; it would be 

difficult to determine where in the model the behaviour originated from.  

The number of parameters provides a fundamental issue in modelling behaviour; 

however, from the perspective of social psychology it would be reductionist to exclude social 

identities as these are necessary to simulate the collective behaviour that exists in real 

psychological crowds. On one hand, macroscopic models which treat the crowd as a mass 

without interactions between individuals (e.g. Lei, Li, Gao, Hao, & Deng, 2012) would 

ignore how crowds self-organise between the individuals. On the other, microscopic models 

which focus on local interactions between individuals (e.g. Degond, Appart-Rolland, 

Moussaïd, Pettre, & Theraulaz, 2013) would exclude how self-categorising oneself as part of 

a group, and categorising others into outgroups, is crucial to explain collective behaviour. 

The model would also need to be tested against real crowds to ascertain how successfully it 

replicates the behaviour; yet, as Moussaïd and Nelson (2014) suggest, there is the potential to 

over fit a model so that it only becomes applicable to one scenario and therefore is not 

versatile enough for other events. Thus, a model of one group and their relevant social norms 

would not be able to capture the collective behaviour in other groups. Instead, a first step for 

modelling collective behaviour should be to determine the fundamental behavioural 

signatures that arise from shared social identities in pedestrian movement in psychological 

and physical crowds. By doing this, a parsimonious model can be created which has minimal 

parameters and can be applied to numerous mass events.    

 To model social identities in each pedestrian, and to allow social identities to motivate 

behaviour, inspiration is taken from the SIMA model (Sivers et al., 2016). The SIMA uses 
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agent-based modelling which allows pedestrians (agents) to have individual attributes, goals, 

and cognition. In the SIMA model, pedestrians are allocated either a personal identity or a 

social identity. For those who share a social identity, pedestrian navigation is affected by 

helping nearby injured pedestrians to escape if they are ingroup members. One limitation of 

the SIMA, however, is that healthy and injured pedestrians evacuate together in pairs or 

triplets. Thus, although the model introduces social identity, it reduces the collective 

behaviour of the entire crowd to subgroups. The model I present increases the number of 

ingroup members to which pedestrians can orientate their behaviour, therefore allowing the 

entire crowd to coordinate as a group.  

Another limitation of the SIMA model is that it is over fitted to the behaviour of the 

survivors of the 2005 London bombings. The model only explores the effect of social 

identities in one psychological crowd where people stay behind to help others if they share a 

social identity. This makes it difficult to apply to other crowd events. The issue of parsimony 

is addressed in the model I present by replicating the quantified micro-level movement of 

participants in Chapter 3 and 4: pedestrians who shared a group identity attempt to stay 

together, which affects their speed and distance. I argue that the regulation to maintain close 

proximity between ingroup members is a fundamental behavioural signature of how 

psychological crowds move and can therefore be applied to numerous crowd events. 

A final criticism of SIMA is that it is not based on behavioural data. Computer models 

commonly use real pedestrian behaviour to operationalise movement and validate their 

models. For example, Moussaïd et al. (2010) used CCTV footage to analyse how group 

formations were influenced by high and low density crowds, and Vizzari, Manenti, Ohtsuka, 

and Shimura (2015) aimed to quantify how group sizes influenced evacuation by telling 

participants to walk in contraflow either as individuals, in pairs, groups of three, or groups of 

six. As such, in Chapters 3 and 4 of this thesis I primed participants to share a social identity 
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and to perceive others as either ingroup or outgroup members, and I then use their behaviour 

to operationalise and validate the effects of self-categorisation in the computer model 

presented in Chapter 5.  

 When deciding which computer model of pedestrian behaviour to use as the basis for 

my simulations in Chapter 5, I first examined two main approaches that are used for 

modelling collective behaviour: social force models in continuous space and in cellular 

automata. Flow-based models broadly treat the crowd as Sime’s (1985) ball-bearings 

example where pedestrians move on a non-discretised floor in continuous space and are 

navigated by attractive forces to a target, while repulsion forces guide them away from 

obstacles and other pedestrians. This approach requires high computational effort when 

simulating large crowds due to the number of calculations of attraction and repulsion in 

continuous space for each pedestrian, and can incur frequent overlapping of pedestrians (for 

an extended overview of the limitations, see Dietrich, Köster, Seitz, & von Sivers, 2014). 

Navigation in cellular automata is also guided by attraction and repulsion forces, but 

movement is based on floor-fields of discretised cells which pedestrians move between. The 

use of discretised cells requires less computational effort than the social force models, but 

navigation is limited to the shape of the cell, which decreases the acute pedestrian navigation 

required for large crowds who collectively regulate their behaviour.  

 The computer model presented in Chapter 5 uses the Optimal Steps Model (OSM: 

Seitz & Köster, 2012) as it provides acute navigation at a low computational load. As in the 

social force models and cellular automata, the OSM is based on attraction and repulsion 

forces where pedestrians are attracted to targets while being repulsed by other pedestrians and 

obstacles in the environment. The OSM overcomes the navigational limitations of cellula 

automata and high computational load of social forces by using a step-circle to influence 

steering. Here, realistic stepping behaviour in both dense and sparse crowds is achieved by 
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allowing the pedestrian to move varying lengths on a step-circle around each pedestrian that 

dictates how many areas of the circle the pedestrian can move to.  

 I use analysis from computer modelling to explore the effect of self-categorisation on 

pedestrian behaviour. I measure the speed and distance walked based on research that 

explores the influence of groups on speed and movement during ingress and egress (e.g. 

Idrees et al., 2014; Zheng et al., 2014). Following from research on how small groups 

maintain formation in crowds (e.g. Köster et al., 2011; Moussaid et al., 2010), I analyse the 

proximity between group members by measuring the space around each pedestrian based on 

distance to their nearest neighbours. Thus, the model is used to simulate the speed of 

movement, distance walked, and proximity of pedestrians in physical and psychological 

crowds.  

Methods from social psychology 

 Previous research exploring the effect of SCT on behaviour has primarily used 

controlled experiments (e.g. Novelli et al., 2010). This method allows behaviour to be 

measured in carefully controlled environments to ensure that the results are due to the 

manipulation of particular variables. Field observations have the benefit of analysing 

naturally occurring behaviour, but when introducing variables it can be difficult to decipher 

whether that particular variable affects behaviour or whether it is due to confounding 

variables. This thesis aims to quantify the behavioural differences of physical and 

psychological crowds to determine the effects of self-categorisation. Initially, I considered 

filming a type of crowd that prima facie evidence has suggested to be psychological (such as 

football fans entering a stadium), but this method was not chosen as it would pose two 

problems. First, although research on football fans has shown that they share a social identity, 

I would not be able to measure their level of identification with the group and therefore be 

sure that the behaviour was due to self-categorisation. Second, I would not be able to 
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compare the behaviour of those people to when they walked in a physical crowd to determine 

the differences. Instead, I considered conducting experiments where participants were 

recruited to be in a physical crowd and then a psychological crowd which would have 

allowed manipulation checks and to ascertain levels of identification. This posed a particular 

difficulty, however, as testing participants for the physical crowd at the same time could 

create a shared identity through the shared task and therefore would not be measuring 

physical crowd behaviour.  

 Due to the limitations of both approaches, in Chapter 3, a compromise between a field 

observation and controlled experiment is adopted. First, a field observation was conducted to 

obtain footage of the physical crowd in a naturally occurring environment with limited 

influence on behaviour. Following this, I used experimental methods from social psychology 

to prime a social identity in the same participants and have them walk in the same area as a 

psychological crowd. This method allowed me to compare the behaviour of the pedestrians 

pre-manipulation and post-manipulation. Manipulation checks were not used in this study as 

it would have been difficult to provide questionnaires to the physical crowd without 

influencing their behaviour. However, in Chapter 4, manipulation checks were conducted on 

participants once they were primed to have salient social identities to ensure that they 

identified with ingroup members. 

 To determine the behavioural effects of self-categorisation, I needed to ensure that the 

pedestrians categorised themselves as being in the same group. As mentioned, the minimal 

group paradigm (Tajfel et al., 1971) indicates that social categorisation even under seemingly 

arbitrary criteria for group membership is sufficient to evoke (inter)group behaviour. 

Research by Reicher, Templeton, Neville, Ferrari, and Drury (2016) found that a university 

membership can be primed and used as a basis to operationalise group membership. 

Participants were primed to have either a local social identity as a student of their particular 
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university, or a superordinate identity as a university student, by asking them to write down 

things that they liked about being a member of their allocated group. Results indicated that 

priming the participants to think about their membership of either a university or as a 

university student was enough to influence the perception of others based on their group 

status. Based on these results, in Chapter 3 group manipulation techniques and identity logos 

are used to prime participants to share a social identity based on their existing membership as 

Sussex Psychology students. The participants were informed that they were being selected to 

take part in the study because they were Sussex Psychology students, and were provided with 

caps with ‘Sussex Psychology’ logos on them to act as a further identity prime and ensure 

that participants were able to see who else was in their group. Notably, ‘Sussex Psychology’ 

was selected rather than ‘Sussex University’ to ensure that the participants identified with one 

another and not other people that they would come across while walking during the 

experiment who could also be Sussex University students. Following the use of minimal 

groups by Novelli et al. (2010), in Chapter 4 arbitrary team membership is used to create two 

groups with different social identities. Participants were randomly allocated into either team 

A or team B, were split into different locations, and were provided with either a black cap 

with a ‘A’ logo denoted on it, or a red cap with ‘B’ on it. Again, the hats ensured that 

participants could perceive the group membership of others.  

 Collective behaviour is dependent on self-categorising oneself as a member of the 

group, therefore manipulation checks on group identification based on Doosje, Ellemers and 

Spears (1995) were used in Chapter 4 to ensure that participants knew their group 

membership and to determine their level of identification with both their own group and the 

outgroup. Thus, the research in this thesis quantifies the behavioural differences between a 

physical crowd and a psychological crowd (Chapter 3), quantifies the behaviour of two large 

groups with different social identities in counterflow (Chapter 4), and incorporates principles 
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of self-categorisation into a computer model of collective behaviour to simulate aspects of the 

behaviour found in these studies (Chapter 5).  

Overview of chapters 

 In Chapter 2 of this thesis, I present a systematic review of 140 articles on computer 

models of crowds to establish the assumptions that modellers use about collective behaviour. 

Specifically, I critically examine the implicit and explicit assumptions held about ‘groups’ 

and ‘crowds’ that are incorporated into their models. Where the literature did not explicitly 

state their theoretical basis for crowd behaviour, I inferred it from how the crowd behaviour 

was modelled and any psychological literature that was referenced. It was found that the 

literature conceptualised the crowd in one of five ways; as a ‘homogeneous mass’, a ‘mass of 

individuals’, or consisting of ‘non-perceptual groups’, ‘perceptual groups’, or ‘cognitive 

groups’.  

 The most prominent models are the ‘homogeneous mass’ and the ‘mass of 

individuals’ approaches, and a trend analysis demonstrates that these have become 

increasingly popular in recent years. In the ‘homogeneous mass’ models, the crowd is seen as 

a large physical mass of pedestrians who have the same characteristics and act in the same 

manner. These models are primarily used to predict movement in evacuations based on 

collision avoidance and crowd densities (e.g. Fang, Lo, & Lu, 2003; Lee & Hughes, 2006). A 

critique of this design assumption, however, is that the connections between crowd members 

are limited to how they avoid collision with one another. In the ‘mass of individuals’ 

approach, granularity of crowd behaviour is increased by allocating individuals to have 

different properties, such as velocities or health status (e.g. Dou et al., 2014; Shi, Ren & 

Chen, 2009). Here, there is no connection between individuals at all, and therefore it is not 

suitable to model collective behaviour where pedestrians orientate their behaviour based on 

social connections between them.  
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 The ‘non-perceptual groups’ subtype introduces small groups into the crowd for the 

purposes of determining the effect of groups on egress (e.g. Dogbe, 2012; Idrees et al., 2014). 

These groups, however, merely stay together throughout the simulation as an aggregate 

without any level of social cognition. The ‘perceptual groups’ subtype incorporates more 

complex dynamics between the pedestrians by having leader pedestrians who direct other 

follower pedestrians to the appropriate area in an evacuation (e.g. Moore, Flajšlik, Rosin, & 

Marshall, 2008; Qui & Hu, 2010). However, these treat group behaviour as a symptom of 

individuals following whichever leader is nearest at the time, and thus group structure is an 

antecedent of which leader is closest. The final approach, ‘cognitive groups’, model the most 

complex social groups of all the approaches. Here, a group is determined by which properties 

that agents share, and agents can seek out who matches their properties (e.g. Franca, Marietto 

& Steinberger, 2009).  

 Overall, Chapter 2 provides the first comprehensive review of crowd modelling 

literature since Sime’s (1985) review. It demonstrates that when this review was conducted, 

only the model by von Sivers, Templeton, Köster, Drury, and Philippides (2014) had 

incorporated aspects of social identity into a computer model to explain collective behaviour. 

I propose that to accurately simulate collective behaviour, computer models must include 

groups and the ability of individuals to be aware of their own social identity and the identity 

of others. To do this, I suggest that modellers should implement aspects of SCT to explain 

how crowd behaviour can be motivated by shared social identities.   

 Chapter 3 builds upon the systematic review by quantifying the behavioural 

differences between physical and psychological crowds on which to base a computer model 

of collective behaviour. I apply methodology from computer modelling to determine the 

differences in speed of movement, distance walked, and spatial proximity between a naturally 

occurring physical crowd, and a psychological crowd mainly comprised of the same people 
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but who were primed to share a social identity. In the psychological crowd condition, I used 

minimal group manipulation from social psychology to prime the participants to share 

identities as Sussex Psychology students by using baseball caps with a ‘Sussex Psychology’ 

logo on them. Following the group manipulation, participants were instructed to walk along a 

path to the opposite side of campus. To ascertain the movement of the pedestrians, I used 

custom-made MATLAB software to map participants’ trajectories by tracking the positions 

of their heads as they walked through the footage. I then obtained their feet positions by 

transforming the coordinates of the head positions in the camera footage to a directly top-

down planar view of the ground. The distance each participant walked was calculated by 

summing the distances between their coordinates, and their walking speed was calculated 

through their distance walked divided by the time they spent in the footage. The space 

between pedestrians was calculated using Sievers’s (2012) method for Voronoi 

decomposition which measures the space between pedestrians based on the distance between 

neighbours.  

 Using this analysis, I demonstrate that participants primed to share a social identity 

walked significantly slower and further, and in closer proximity than when the same people 

walked in the physical crowd condition. Moreover, Latent Growth Curve Analysis 

demonstrated that the psychological crowd maintained closer proximity with one another 

than any other groups or individuals regardless of the number of people around them. Finally, 

a prima facie exploration using cluster analysis indicated that the psychological crowd 

consisted of larger subgroups within the crowd that the physical crowd or the pedestrians who 

walked around the psychological crowd.  

 Based on this research, I provide quantified evidence of the behavioural differences 

between psychological and physical crowds. I propose that shared social identity motivated 

participants to attempt to remain together with ingroup members and that this caused them to 
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collectively self-regulate their speed of movement and distance walked. Finally, I recommend 

that crowd safety professionals and crowd modellers should create plans for mass events that 

account for the behavioural differences between physical and psychological crowds.  

 In Chapter 4, I build upon the findings of Chapter 3 to quantify how the presence of 

another group with a different social identity affects the speed, distance and proximity of 

group members. Using a minimal group manipulation, I randomly allocated participants into 

arbitrary teams (team A or team B). Participants were given identity primes through hats that 

denoted their team membership, and were directed to different locations. Prior to walking, 

participants completed questionnaires which measured their level of affinity, bond, and 

commitment with members of their own team and the other team, taken from Doosje et al.’s 

(1995) measures of group identification. Results showed that members of both teams reported 

significantly higher levels of identification for ingroup members than for outgroup members.  

 To determine how the presence of another group influenced behaviour, I filmed team 

A when walking alone and measured their speed, distance, and proximity. Following this, 

team A and B walked in counterflow and their behaviour was measured again. Comparisons 

between team A when walking alone and team A when walking in the counterflow condition 

showed that participants significantly reduced their speed and distance walked to keep closer 

proximity with ingroup members and maintain formation as they walked against the other 

group. I used Latent Growth Curve Analysis to determine whether proximity between 

ingroup members changed in the presence of the outgroup, and found that the presence of an 

outgroup increased the proximity of the ingroup members so that they could maintain their 

group formation while waking in counterflow. Thus, in Chapter 4, I provide the first 

quantified evidence of how pedestrian behaviour is influenced by the presence of another 

group with a different social identity. I conclude by suggesting that crowd modellers should 
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incorporate the behaviour of large groups in their models, including how groups regulate their 

speed, distance, and proximity in the presence of other groups.  

 Finally, in Chapter 5, I simulate the collective behaviour of psychological crowds by 

introducing aspects of SCT through a self-categorisation parameter into the OSM (Seitz & 

Köster, 2012). This is done through two versions of the model. First, a physical crowd is 

presented which simulates unconnected pedestrians with personal identities, and navigation is 

based on repulsion potentials to avoid collision between pedestrians. Second, a psychological 

crowd is simulated where pedestrians share a salient social identity and a self-categorisation 

parameter governs pedestrian navigation through attraction to ingroup members while 

navigating to a target location. The maintenance of close proximity with fellow ingroup 

members influences their speed and distance, so ultimately affects the length of time taken to 

reach their target. Crowd models commonly aim to replicate how the speed and distance 

walked is influenced by group formation. Thus, I validate the physical and psychological 

crowd models by comparing the speed, distance, and proximity produced in the simulations 

to the data of the participants from the physical and psychological crowds in Chapter 3. I 

demonstrate that aspects of psychological crowd behaviour can be replicated using the self-

categorisation parameter, but that the physical crowd simulation cannot achieve the same 

behaviour. Overall, this chapter presents the first computer model that incorporates aspects of 

SCT to simulate the behavioural difference between physical and psychological crowds, and 

is validated against real crowd behaviour.  

Summary of findings 

 The findings presented in this thesis provide evidence that self-categorisation caused 

key pedestrian behavioural differences in psychological crowds and large group behaviour. 

Specifically, I demonstrate that shared social identities cause crowd members to collectively 

self-regulate their speed of movement and distance walked to maintain close proximity with 
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ingroup members. Therefore computer modellers should incorporate these behavioural 

signatures into their simulations of psychological crowd behaviour. In Chapter 2, I show that 

the crowd modelling literature uses inaccurate assumptions about crowds where the crowd is 

perceived to either be a mass who act identically, individuals who act independently of one 

another, or as consisting of small groups within a crowd with varying degrees of social 

complexity. Moreover, I indicate that in recent years, models which treat the crowd as either 

an identical mass or as individuals are becoming increasingly popular. As such, computer 

models to do not account for how large groups collectively self-organise based on their 

shared social identities, or even how an entire crowd can regulate their behaviour to move 

together.   

 In Chapter 3, through a field experiment I quantify the behavioural differences 

between physical crowds which are comprised of individuals and small groups, and 

psychological crowds where members perceive themselves to be in the same group. I 

demonstrated that categorising others as ingroup members caused pedestrians to maintain 

close proximity with one another as they walked. Moreover, the attempt to stay together 

influenced the speed and distance walked, indicating that the psychological crowd prioritised 

staying together over moving quickly. Based on these results, I argue that the key behavioural 

differences between physical and psychological crowds should be incorporated in crowd 

models to produce more accurate simulations of psychological crowd behaviour for the 

plethora of mass events that social psychology has shown to include psychological crowds, 

such as at sporting events, music festivals, and religious pilgrimages.  

 In Chapter 4, I build upon the results found in Chapter 3 to determine how large group 

behaviour is affected by the presence of another group with a different social identity. I 

demonstrate that when a large group walks alone the shared social identities cause them to 

regulate their speed and distance to remain close to ingroup members, but that these effects 
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increase in the presence of an outgroup walking in contraflow. Specifically, the groups 

reduced their speed and walked less distance to enable them to remain close to ingroup 

members and maintain group formation to avoid the outgroup. I suggest that the behavioural 

effects caused by the proximity of an outgroup should be incorporated into models which 

simulate intergroup events, such as football fans entering or leaving a stadium, or crowds at a 

music festival with multiple stages.  

 Finally, in Chapter 5, I present the first computer model that implements aspects of 

SCT to replicate the collective behaviour of the pedestrians in Chapters 3. I present a model 

where self-categorisation motivates pedestrian movement through a desire to stay close to 

ingroup members and collectively regulate their behaviour to move together while reaching a 

target. This model is validated against the real behaviour of the physical and psychological 

crowds presented in Chapter 3. The model is proposed as a method for crowd modellers to 

introduce principles of SCT into simulations of crowd events to replicate aspects of how self-

categorisation can motivate collective behaviour.  

 Overall, this thesis incorporates methodology from social psychology and crowd 

modelling to quantify the behavioural effects of self-categorisation on crowd behaviour and 

how this differs from that of physical crowds. Finally, it presents a computer model that 

incorporates some of the behavioural effects of self-categorisation to demonstrate how SCT 

can be implemented into crowd models to produce more realistic simulations of collective 

behaviour to increase safety at mass events. The findings presented in this thesis have 

theoretical and practical implications for both social psychology and crowd modelling, which 

are discussed below.  

 

Implications of findings 

Theoretical implications 
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 The research presented in this thesis demonstrates the first attempt to incorporate SCT 

into computer modelling, and quantify the behavioural effects of self-categorisation on crowd 

movement. A review of the assumptions about crowd modelling had not been conducted 

since Sime (1985). As shown in Chapter 2, crowd modelling is becoming increasingly 

popular but the modelling literature uses outdated assumptions about the crowd as either 

acting identically, behaving as individuals without any interpersonal connections, or as only 

consisting of small groups and individuals. 

 This thesis also contributes to social psychology by quantifying the behavioural 

effects of self-categorisation in large groups and psychological crowds. Previous research in 

psychology has conceptualised that there are differences between physical and psychological 

crowds, and broadly explained collective behaviour in terms of group norms. I provide the 

first evidence that there are key behavioural differences between psychological and physical 

crowds at the fundamental movement level. I demonstrate that ingroup members regulated 

their speed of walking and distance walked to prioritise remaining in close proximity, and 

provide the first application of SCT to the pedestrian movement of crowds and large groups. 

Moreover, this research supports the findings of Novelli et al. (2010) that people will choose 

to be physically closer to people they perceive to be ingroup members. However, Novelli et 

al. were unable to determine whether the closer proximity was a result of preference for 

ingroup members or an attempt to be further from outgroup members. In Chapters 3 and 4, I 

ascertain that close proximity is a function of preference for ingroup members, but Chapter 4 

demonstrates that this effect is increased by the presence of an outgroup.  

Practical implications  

 This thesis provides quantified differences between physical and psychological 

crowds, and how group movement is influenced by the presence of an outgroup. Specifically, 

it first demonstrates that crowd modellers should incorporate principles from SCT to simulate 
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how ingroup members prioritise walking together through the regulation of speed and 

distance walked. Second, it provides evidence that the effects of SCT are increased by the 

presence of an outgroup. In Chapter 5, I demonstrate how crowd modellers can implement 

principles of SCT into their models. I show that the close proximity of psychological crowds 

can be simulated by allocating pedestrians group identities, and having ingroup members be 

attracted to one another while using basic collision avoidance. I validate the model against 

the behaviour of a real psychological crowd where participants were primed to have social 

identities. Thus, I provide a computer model of collective behaviour that accurately captures 

the differences in proximity caused by self-categorisation, and propose that this should be 

used to better simulate collective behaviour to improve the safety of crowds at mass events. 

 I demonstrate that current computer models of crowds portray the crowd as either a 

mass who act identically, numerous individuals, or consisting of small groups within the 

crowd. Crucially, they do not account for the different behaviour of physical and 

psychological crowds. This thesis suggests that future plans and models for crowd safety 

should incorporate how self-categorisation influences pedestrians’ use of space, and how this 

influences crowd flow. It provides evidence that people with a shared social identity appear 

to prioritise staying together rather than using space available, or walking at an optimal speed 

and distance. In particular, Chapter 4 demonstrates that ingroup members will move even 

closer together to avoid breaking formation when in the presence of another group even 

though this requires them to reduce their speed and impede crowd flow. Equally importantly, 

Chapter 3 shows that people surrounding a psychological crowd will walk further and more 

quickly in order to avoid walking into the crowd, rather than choosing the most optimal route 

to a target. 

The behavioural differences of physical and psychological crowds outlined in this 

thesis are particularly important for crowd safety plans that make predictions regarding how 
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pedestrians use space, avoid collision, and which factors influence their speed and distance 

during ingress and egress. These models often assume that pedestrians will spread out to 

maintain low crowd densities, choose optimal routes, and opt to increase crowd flow. This 

thesis, however, demonstrates that ingroup members may not use all of the space available 

when navigating through an area and instead prefer to be with ingroup members, that those 

around the psychological crowd will alter their trajectories to avoid entering it, and these 

decisions take priority over maintaining crowd flow.  

Limitations and future directions 

 There are some potential limitations to this thesis: possible effects of group norms, 

confounds, non-independence of data, the generalisability of the findings to other crowd 

events, and the accuracy of the computer model. In Chapter 3, participants were primed to 

share a social identity as Sussex Psychology students using group manipulation and priming 

techniques that have been effective in previous research. One potential confound of this 

method is that there may have been norms specific to the social identity of ‘Sussex 

psychology students’ which influenced their walking behaviour; however, I am unaware of 

any such norms. Another potential confound is that the information sheets given to 

participants included the title of the study ‘Walking Together’, due to the title used in the 

ethical application. To limit any effect of this, participants were first given verbal instructions 

for the study that specifically did not mentioning walking together, were then presented with 

their information sheet and consent form, and the instructions were repeated verbally to 

emphasise focus on the spoken instructions rather than the information sheet. Both confounds 

are resolved in Chapter 4, as I used minimal group manipulation two create new identities of 

team A and team B, which did not have any pre-existing norms, and did not mention walking 

together in any of the material. Crucially, the same behaviour emerged in both Chapters 3 and 
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4, suggesting that the behaviour of participants in Chapter 3 was not due to any pre-existing 

norms or instructions to walk together.  

 Another potential limitation of Chapter 3 is that I did not measure participants’ level 

of identification with the ingroup to ensure that the collective behaviour was due to self-

categorisation. In Chapter 4, however, I used very similar group manipulation and priming 

techniques and further measured participants’ strength of identification with both ingroup and 

outgroup members. The results showed that participants identified significantly more strongly 

with ingroup members than the outgroup, suggesting that the manipulation did work as 

intended. Crucially, the same regulation of behaviour occurred in Chapters 3 and 4, 

suggesting that the group manipulation and priming used in Chapter 3 was the cause of their 

behaviour. In Chapter 4, I did not provide physical crowd comparisons to analyse how the 

teams walked without manipulation, and did not obtain manipulation checks for a physical 

crowd condition to compare the levels of identification. There were three reasons that I did 

not include a physical crowd condition for Chapter 4. First, prior to recruitment for the 

manipulated scenario with team A and B, I did not know who would be taking part and so 

could not compare their footage prior to the study. Second, if I had filmed the participants 

walking in a physical crowd at a later date, it would have been difficult to find the people in 

the naturally occurring crowd, and it is unlikely they would have been walking with the same 

participants to allow a direct comparison of behaviour. Finally, a physical crowd comprised 

of different people in the same area would not have allowed a direct comparison between 

participants when their social identities were salient and when they were not.   

 A further two potential critiques of the design in Chapter 3 are that the data could be 

non-independent because the participants within the conditions affect one another, and the 

people walking around the participants were somewhat different in the two conditions. This is 

a particular difficulty of field studies; it is difficult to control the environment. I attempted to 
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limit this by keeping the conditions as similar as possible. In Chapter 3, I argue that non-

independence caused by pre-existing connections between participants is consistent across 

both conditions because they are primarily comprised of the same people. Moreover, I aimed 

to keep the number of people walking around the participants as similar as possible, and 

specifically explore the effect of number of people in the area. Due to the similarity of 

conditions, I suggest that the main difference is the presence of primed social identities.  

 A further potential limitation of this research is that, in Chapter 4, I could not compare 

each participant’s behaviour with their corresponding self-reported level of identification 

with the ingroup and outgroup. Future research could match the behaviour of each participant 

with their reported level of identification, to investigate whether there is a relationship 

between the strength of ingroup identification and the strength of the behavioural effects. 

 Another potential limitation of this thesis is that I used an artificial crowd for the 

psychological crowd in Chapter 3, and artificial large groups in Chapter 4. As discussed in 

the Methods and Measures section, I chose this method to ensure that the participants were 

primed to share social identities. A pitfall of this is that it raises the issue of how 

representative and generalisable the findings are to other psychological crowds. Further 

studies are needed with different populations to explore whether these behavioural signatures 

occur across multiple crowd events. Future research could explore the behavioural effects of 

social identities in crowds that have been previously found to share social identities. For 

example, to determine how movement in physical crowds differs from psychological crowds 

of football fans leaving a stadium, protestors on a march, or at attendees at music festivals. 

Notably, if possible, these should be combined with manipulation checks to ensure that the 

crowds presumed to be psychological have a salient social identity and perceive other crowd 

members as ingroup. 
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 Although ordinary psychological crowd events occur more frequently than emergency 

evacuations, computer models often aim to simulate pedestrian behaviour for emergency 

evacuations. Another possible limitation of this thesis is that we do not present a model of 

behaviour during an emergency evacuation. Due to the ethical considerations of simulating 

an emergency evacuation that could produce realistic behaviour a study of this nature is 

beyond the scope of this thesis1. Previous research in social psychology, however, has shown 

that the shared fate of emergency situations can evoke a shared social identity and cause 

people to coordinate with fellow group members to evacuate (e.g. Drury et al., 2009b). If 

footage could be obtained of behaviour in an emergency evacuation, future research could 

investigate whether the behavioural effects of self-categorisation found in this thesis occur in 

an emergency evacuation, and if so then how the choice to maintain close proximity instead 

of using optimal space affects evacuation egress. 

 There are potential limitations of the computer model presented in Chapter 5. 

Although the model can replicate the close proximity of ingroup members, the agents in the 

best version of the simulation walk further and more quickly than the participants in the 

psychological crowd from Chapter 3. The inclusion of the self-categorisation parameter 

makes a first step towards simulating the collective self-organisation of psychological 

crowds, but future models should alter the underlying pedestrian model to achieve the speed 

and distance of the real crowd. One solution could be to alter the number of potential 

directions on the step circle. This would allow direct forward stepping and create smoother 

trajectories, which would decrease the distance and speed walked. Additionally, to increase 

the reliability of the model presented in Chapter 5, future research could modify the size of 

the psychological crowd or the number of groups present in the area to determine how 

                                                           
1 Throughout the research presented in this thesis I have collected over 3 million data points, 

generated from both the crowd footage and computer simulations.  
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movement is affected. Finally, the participants in Chapters 3 and 4 walked along a path of 

3.75 metres in width and attempted to remain on the path instead of moving onto the grass. 

Future studies could replicate the studies in a larger area to determine how ingroup members 

maintain proximity and avoid outgroup members when there is more space available to move 

in. This would provide data of different scenarios to validate the model against, which would 

enable the simulation of more diverse crowd events. 

Conclusions 

 This thesis aimed to combine methodology from crowd psychology and computer 

modelling to quantify the behavioural differences between physical crowds of individuals and 

small groups, and psychological crowds where members of the crowd shared a social 

identity, and place these into a model of collective behaviour. The behavioural effects of 

social identity on crowd behaviour have been discussed since Reicher’s (1984) analysis of the 

St Paul’s riots, in which he states: 

The fascination of crowd psychology lies in the fact that it seeks to account for 

behaviour that shows clear social coherence - in the sense of a large amount of people 

acting in the same manner - despite the lack of either pre-planning or any structured 

design. (Reicher, 1984, p. 1). 

 This thesis presents the first attempt to identify the behavioural differences in 

psychological crowd movement caused by social identities and the categorisation of others as 

either ingroup or outgroup members.  

 The research presented in this thesis provides evidence that there are key behavioural 

differences between physical and psychological crowds, and suggests that crowd modellers 

should incorporate SCT into their models to better simulate collective behaviour. I 

demonstrate that social identities motivate ingroup members to maintain close proximity with 

one another while avoiding others, and that this influences their speed of movement and 
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distance walked. Moreover, these effects are increased by the presence of an outgroup, 

causing ingroup members to move closer together to maintain group formation. I present a 

computer model that simulates aspects of the collective self-regulation of ingroup members to 

maintain close proximity by implementing a self-categorisation parameter. Here, agents are 

allocated social identities and navigation is influenced by attraction to ingroup members, 

causing agents to collectively self-organise with one another’s movement to move together 

when reaching a target location.  

 Crowd modelling is being increasingly used to predict and monitor crowd behaviour 

to improve safety at mass events, yet I show that crowd models use incorrect and outdated 

assumptions about crowd behaviour and neglect the behavioural differences between physical 

and psychological crowds. Although crowd models are effective at predicting the behaviour 

of physical crowds, I demonstrate that psychological crowds prioritise being close to ingroup 

members, and this requires regulating their speed and distance to remain together. The 

distinctive behavioural signatures of psychological crowds suggest that current crowd models 

cannot accurately simulate their behaviour. This raises important questions about how well 

the models can plan for the safety of the psychological crowds. I present a computer model 

that incorporates aspects of SCT to simulate the close proximity of psychological crowds, and 

this is validated against real crowd behaviour. I propose that modellers should acknowledge 

the behavioural differences between physical and psychological crowds, and present a 

method to incorporate aspects of SCT into their simulations in order to increase the safety of 

people at mass events.  

 

 

 



55 
 

Chapter 2 

Paper 1 - From mindless masses to small groups: Conceptualising collective behaviour 

in crowd modelling 

 

Reference: 

Templeton, A., Drury, J., & Philippides, A. (2015). From mindless masses to small groups: 

Conceptualizing collective behavior in crowd modelling. Review of General Psychology, 

19(3), 215-229. http://dx.doi.org/doi:10.1037/gpr0000032 
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Abstract 

 Computer simulations are increasingly used to monitor and predict behaviour at large 

crowd events, such as mass gatherings, festivals and evacuations. We critically examine the 

crowd modelling literature and call for future simulations of crowd behaviour to be based 

more closely on findings from current social psychological research. A systematic review 

was conducted on the crowd modelling literature (N = 140 articles) to identify the 

assumptions about crowd behaviour that modellers use in their simulations. Articles were 

coded according to the way in which crowd structure was modelled. It was found that two 

broad types are used: mass approaches and small group approaches. However, neither the 

mass nor the small group approaches can accurately simulate the large collective behaviour 

that has been found in extensive empirical research on crowd events. We argue that to model 

crowd behaviour realistically, simulations must use methods which allow crowd members to 

identify with each other, as suggested by SCT. 
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Introduction 

Reconciling the gap: Crowd modelling and crowd psychology 

 Computer simulations are increasingly used to monitor and predict behaviour at large 

crowd events, such as mass gatherings, festivals, and evacuations. Recent approaches to 

crowd modelling have proved effective in explaining patterns in aggregates of people 

together in the same place, such as pedestrians in a busy street (e.g., Helbing, Molnar, Farkas, 

& Bolay, 2001; Moussaïd, Helbing, & Theraulaz, 2011) and small group behaviour within 

crowd flow (e.g., Köster et al., 2011; Moussaïd, Perozo, Garnier, Helbing, & Theraulaz, 

2010; Singh et al., 2009). However, as yet, computer modellers have not created models 

which can adequately simulate certain key psychological features of large crowd behaviour. 

 In a commentary on collective behaviour, Turner (1987) argued that instead of 

treating crowds as individuals without any connections to one another, we need to explain the 

mental unity of real life crowds where the crowd behaves as one. As Reicher (1984) states, 

“the fascination of crowd psychology lies in the fact that it seeks to account for behaviour 

that shows clear social coherence—in the sense of a large amount of people acting in the 

same manner—despite the lack of either pre-planning or any structured design” (p. 1). There 

are numerous real world examples of such collective behaviour, for example football 

supporters performing a Mexican wave, protestors chanting together, or people coordinating 

their egress in emergencies. In each case, there is not only a physical crowd - an aggregate of 

individuals in the same location - but also a psychological crowd, that is, a shared 

psychological unity in those individuals and hence coordinated behaviour (Reicher & Drury, 

2011). Indeed, in some crowd events there may be more than one large psychological group 

which exists within a physical crowd. For example, in the case of a football match, the fans of 

each team make up two psychological crowds that behave differently from each other within 

one large physical crowd of people in the same stadium. 
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 For a number of years, researchers modelling crowd behaviour have recognized that 

to enhance the realism of simulations, and to better approximate collective behaviour, greater 

granularity or psychological detail is required (for examples see Galea, 2006; Gerodimos, 

2006). Thus, some modellers have explicitly looked to the social sciences for both evidence 

and concepts for understanding collective behaviour (e.g., Franca et al., 2009; Fridman & 

Kaminka, 2007; Helbing, Farkas, & Vicsek, 2000; Johnson & Feinberg, 1997). In different 

ways, these and other modellers have argued that more accurate simulations will require the 

inclusion of groups within a crowd (e.g., Aguirre, El-Tawil, Best, Gill, & Fedorov, 2011; 

Bruno, Tosin, Tricerri, & Venuti, 2011; Singh et al., 2009). However, this raises the question 

of what is meant by the concept of ‘group.’ In both psychology and computer science there 

are different understandings of what is meant by a ‘group.’ Some of these understandings 

may be better than others in helping to produce a more realistic simulation of behaviour in a 

psychological crowd. 

 This article will critically examine existing crowd computer simulations by first 

outlining how understandings of group and collective behaviour have developed within social 

psychology, before presenting a systematic review of the implicit and explicit assumptions in 

modellers’ treatment of ‘groups’ and ‘crowds’. On the basis of this review we will argue that 

crowd modellers will benefit from incorporating aspects of SCT (Turner, 1982; Turner et al., 

1987) in to their models in order to create realistic simulations of collective behaviour in line 

with findings from empirical psychological research. 

Toward an understanding of collective behaviour 

 In early understandings of collective behaviour, crowds were treated as either a mass 

of people under one ‘group mind,’ or a mass of numerous unconnected individuals within the 

crowd. In ‘group mind’ accounts, crowds were understood as homogeneous entities where 

upon entering a crowd individuals lost both their individual ability to reason and their 
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personality. Here every crowd member became indistinguishable from the others as they 

tended toward indiscriminate violence (Le Bon, 1985/2002). Individualist accounts, such as 

Allport (1924), argued that the idea of the collective is a nominal fallacy; groups and crowds 

are merely aggregates of individuals. Any collectivity was seen to occur only through social 

facilitation, whereby the presence of others stimulated behaviour that was already present in 

each individual. Later research demonstrated that neither group mind nor individualism could 

explain the social form of collective behaviour; the mechanisms posited by Le Bon, Allport 

and others to explain collectively were inherently primitive, irrational, and mindless. For both 

positions, collective behaviour tends to indiscriminate violence. However, extensive 

empirical research has shown that most crowds are not violent, and that even in riots and 

violent crowds, behaviour is rational, discriminate, and often shows a pattern which is in line 

with shared conceptions of legitimacy (e.g., Fogelson, 1971; Reicher, 1984, 1996; Reicher & 

Stott, 2011; Thompson, 1971). 

 In the current literature, collective behaviour is often characterised as ‘contagion’ 

where the mere sight or sound of others’ behaviour apparently influences individuals in a 

crowd to behave in the same way (e.g., Gallup et al., 2012; Mann, Faria, Sumpter, & Krause, 

2013). However, social psychologists examining crowd behaviour have argued that the 

concept of ‘contagion’ cannot explain group boundaries to social influence. Thus, Milgram 

and Toch (1969) pointed out that a different model of collective behaviour was required to 

explain why the rousing effects of a demagogue affected the behaviour of protesters but not 

the riot police who were physically copresent in the same crowd. Psychological group 

boundaries in ‘contagion’ have also been demonstrated experimentally (van der Schalk et al., 

2011). 

 Later interactionist approaches focused on group norms and interactions, and treated 

groups as psychological entities. Asch (1952) claimed that to understand the individual we 
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must pay some attention to the group they belong to on the principle that the parts get their 

meaning from their relationship within the whole. Sherif (1967) proposed that being in a 

group has psychological consequences which are separate to those of the individual, and 

collectivity emerged when individuals had shared meanings and beliefs. The ideas of these 

and other Gestalt social psychologists were crucial for influencing psychological research to 

view individuals as members of a shared social field which was separate from them as 

individuals. Some sociologists began to take up this idea of interaction and applied it to 

crowds by focusing upon meaning-seeking and social norms for individuals to gauge 

acceptable behaviour in a novel situation where how to behave is not immediately obvious 

(Turner & Killian, 1957). 

 Other sociologists such as Aveni (1977) criticized previous research for treating 

crowds as “spatially proximate collections of individuals … undergoing some common 

experience” (p. 96) and also noted that previous research has paid little attention to the 

structure of crowds. Aveni’s criticism of this approach was followed by research looking at 

the affiliation between some members of the crowd. Various studies showed that in an 

evacuation people will attempt to remain with the small group that they have pre-existent 

affiliative bonds with, such as friends and family, even if this results in their evacuation time 

increasing or causing a hazard to themselves (Johnson, 1988; Mawson, 2005; Sime, 1983). 

However, approaches to crowd behaviour focusing on small groups fall short of explaining 

large collective behaviour. For example, these accounts cannot explain why in emergency 

situations a crowd of strangers can become united and help those who were previously 

strangers (Drury, 2012), or even that two large psychological crowds can exist who act 

together (intragroup) yet oppose one another (intergroup) (Reicher, 1996). Although there are 

many theories of crowd behaviour, such as the individualist and contagion approaches 

mentioned above, one of the most widely accepted and utilized accounts of collective 
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behaviour in social psychology, which is grounded in extensive empirical research and can 

explain the collective behaviour of psychological crowds, is SCT (Turner, 1982; Turner et al., 

1987). 

The psychological crowd: A self-categorisation approach 

 SCT suggests that shared social identity - people’s cognitive representation of their 

relationship to others - is what makes collective behaviour possible (Turner, 1985). SCT can 

therefore explain how physical aggregates of individuals can come together psychologically 

within a crowd and how a single physical crowd may consist of one, two (or more) 

psychological crowds who each act as a large group without prior interpersonal relationships 

or interpersonal interaction. SCT suggests that collective behaviour occurs through the 

process of depersonalisation. Here, individuals self-stereotype themselves in line with the 

definition of a social category and see themselves as being interchangeable with others in 

their social category. In doing this, individuals shift from their personal identity to their 

identity as a member of a particular social group (Turner et al., 1987). 

 A plethora of crowd phenomena has been explained by SCT, such as urban riots 

(Reicher, 1984), mass emergency evacuations (Drury et al., 2009a, 2009b), religious mass 

gatherings (Alnabulsi & Drury, 2014), music festivals (Neville & Reicher, 2011), and 

collective action (Drury, Reicher, & Stott, 2003). An example of this behaviour can be seen 

during the London bombings of July 7th 2005, where individual commuters became united 

through a shared identity in relation to the threat of the bombs. On the basis of their shared 

identity, the commuters helped each other and reported feelings of ‘unity,’ and felt ‘part of a 

group’ (Drury et al., 2009a, p. 81). The ability of SCT to explain behaviour in numerous 

situations indicates that modellers would benefit from applying this theory to their models in 

order to adequately simulate a broader variety of crowd behaviour. 
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 Over the past decade, there has been an increased recognition among modellers that 

the concept of social identity is necessary for more realistic crowd simulations (for examples, 

see Aguirre et al., 2011; Köster et al., 2011; Langston, Masling, & Asmar, 2006; Smith et al., 

2009). Here we examine whether any computer models of crowds have responded to this 

perceived need and adequately implemented a model of crowd behaviour in line with 

empirical research in crowd psychology. The following section will address the main 

modelling techniques that have been used to simulate crowds before we present the analysis 

of the conceptions of crowd behaviour found in the modelling literature. 

Psychological requirements for modelling the crowd 

 Social psychological research on crowd psychology suggests a set of theoretical 

criteria that computer simulations of crowds should adhere to. In particular, a simulation must 

be able to model individuals who have the required perceptual and cognitive abilities to 

recognize identities - both their own and others’. Two commonly used approaches for 

simulating crowd behaviour are social force models and cellular automata. Both model types 

are typically based upon set rules and equations which have the same rules for every 

individual. In these models, the behaviour of individuals is determined by attraction and 

repulsion potentials such as attraction to an area in the virtual environment and repulsion 

from other individuals to avoid collision (e.g., Burstedde, Klauck, Schadschneider, & Zittartz, 

2001; Zhang, Zhao, & Liu, 2009; Zhao, Yang, & Li, 2008).  

 Modelling techniques such as flow-based models which treat all members of the 

crowd as identical (e.g., Fang et al., 2003) are inappropriate as they cannot model the variable 

cognitive processes in individuals. However, other models such as agent-based models 

(ABMs) do have the potential to simulate these individual capacities as each agent can have 

different characteristics which affect their behaviour. ABMs can represent varying levels of 

perceptual and cognitive processes. Importantly, they are also dynamic, as the behaviour of 
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the agents (people) within the crowd, their individual characteristics, and the ‘information’ 

that the agents receive, together drive their actions and can be updated at each time step of the 

simulation (e.g., Fang, Yuan, Wang, & Lo, 2008; Ji & Gao, 2007; Köster et al., 2011). ABMs 

thus lend themselves to modelling complex crowd behaviour and, in particular, situations in 

which individuals’ characteristics alter as their social identities change during the simulation. 

They can also represent more complex abilities, specifically the ability of individuals to 

perceive their own group membership and the group membership of other agents in the 

simulation. For instance, membership has been used to alter agent behaviour through 

governing an agent’s spatial location based on the perception of their own group membership 

and the group membership of others, such as in leader and follower models (e.g., Qiu & Hu, 

2010; Yuan & Tan, 2007). As such, ABMS have the ability to simulate psychological 

components of group identity and self-categorisation in crowds. In this review, we will 

explore how the principles of identity and categorization have been implemented in existing 

ABMs and similar models of crowd behaviour. 

Methodology 

Reviewing the literature  

 A systematic review of the crowd modelling literature was conducted, in which 

publications were coded according to the psychological basis used to model crowd behaviour. 

Literature was sourced from the Science Direct database and Google Scholar search engine 

(see Figure 1). In order to locate the relevant literature, the search string of “crowd” was 

used. Articles and conference proceedings about crowd models were selected from the 

generated results. Publications recommended by Science Direct due to their similarity to the 

articles identified were also incorporated in to the collection, and the references cited in 

relevant literature were also used to source additional literature. Where the same articles were 
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generated by both Science Direct and Google Scholar, the abstracts were read and 

incorporated into the corpus only once. 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

Figure 1. Search criteria and exclusion process for relevant articles.  

 

Crowd modelling typology  

 Each article was analysed according to how the behaviour of the crowd was treated. 

Where the theoretical basis for the crowd behaviour being implemented was not explicitly 

stated by the authors, it was inferred from how the crowd behaviour was modelled and what 

psychological literature was referenced, if any. Throughout data collection, it became evident 

that in the literature the crowd was conceptualised and implemented in one of five possible 

Results from Science Direct: 

33,280 

Abstracts read: 

1,000 

 

Results from Google Scholar: 

1,360,000 

Abstracts read: 

600 

Articles about crowd 

modelling which matched 

our inclusion criteria:  

140  

Inclusion criteria for article: 

1. Simulations of crowd events taken from footage in real life scenarios 

2. The effect of crowds in planning for events using computer simulations 

3. Examination of techniques for modelling crowd behaviour 

 

Search string of 

‘crowd’ 
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subtypes. These subtypes fit in to two major types. In the first type, the crowd is treated as a 

mass. In the second type, the crowd is treated as consisting of a number of small groups. 

 The prima facie validity of the subtypes was established by presenting descriptions of 

each category (with examples) to an audience of crowd modellers. To ascertain that the 

reliability of the subtypes by the first coder were correct, an interrater reliability analysis was 

conducted on the scheme used to divide cases into types and subtypes. Fourteen articles were 

randomly selected, and for each article an excerpt was chosen which represented the 

approach taken toward crowd behaviour (minimum length of excerpt = 107 words, maximum 

length of excerpt = 341). These excerpts were presented to an independent judge, along with 

definitions of each subtype, and she assigned each article to a subtype. There was very good 

agreement between the allocation of the raters, Cohen’s Kappa κ = .90 (p < .001) 95% CI 

(0.68, 1.00). 

Results 

 The most prominent models were the mass approaches to crowd behaviour, which 

could be divided in to two subtypes; the ‘homogeneous mass’ approach (52 articles) and the 

‘mass of individuals’ approach (31 articles). Within the small groups type, small groups are 

included in the crowd simulations but the understanding of ‘groups’ and methods to 

implement group behaviour varied. Thus there were three subtypes of small group 

simulations; ‘non-perceptual groups’ (33 articles), ‘perceptual groups’ (14 articles), 

‘cognitive groups’ (10 articles). The allocation of all models in to subtypes is shown in Table 

1, and the number of articles in each subtype is shown in Figure 2. 
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Table 1  

Authors of the crowd modelling literature and their respective subtypes 

Authors Year Typology 

Aguirre, El-Tawil, Best, Gill, & Federov 2011 Perceptual groups 

Andrade, Blunsden, & Fisher 2006 Homogeneous mass 

Banarjee, Grosan, & Abraham  2005 Homogeneous mass 

Bandini, Gorrini, & Vizzari  2014 Perceptual groups 

Bicho, Rodrigues, Musse, Jung, Paravisi, & Magalhaes  2012 Non-perceptual groups 

Bierlaire, Antonini, & Weber  2003 Mass of individuals 

Bodgi, Erlicher, & Argoul  2007 Homogeneous mass 

Bruno, Tosin, Tricerri, & Venuti  2011 Homogeneous mass 

Burstedde, Klauck, Schadschneider, & Zittarz  2001 Homogeneous mass 

Carroll, Owen, & Hussein  2013 Homogeneous mass 

Chen & Huang 2011 Non-perceptual groups 

Chen & Lin  2009 Non-perceptual groups 

Chen, Wang, Wu, Chen, Khan, Kolodziej, Tian, Huang, & Liu  2013 Perceptual groups 

Cho & Kang 2014 Non-perceptual groups 

Chong, Liu, Huang, & Badler  2014 Non-perceptual groups 

Chow 2007 Homogeneous mass 

Chrysostomou, Sirakoulis, & Gasteratos  2014 Non-perceptual groups 

Davidich & Köster  2013 Mass of Individuals 

Degond & Hua  2013 Homogeneous mass 

Dogbe  2012 Non-perceptual groups 

Dou, Chen, Chen, Chen, Deng, Zhang, Xi, & Wang  2014 Mass of Individuals 

Fang, Lo, & Lu  2003 Homogeneous mass 

Fang, Yuan, Wang, & Lo  2008 Homogeneous mass 

Fienberg & Johnson  1995 Non-perceptual groups 

Franca, Marietto, & Steinberger  2009 Cognitive groups 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c34


67 
 

Authors Year Typology 

Fridman & Kaminka  2007 Non-perceptual groups 

Galea, Owen, & Lawrence  1996 Mass of individuals 

Gawroński & Kulakowski  2011 Perceptual groups 

Georgoudas, Kyriakos, Sirakoulis, & Andreadis  2010 Homogeneous mass 

Goldenstein, Karavelas, Metaxas, Guibas, Aaron, & Goaswami  2001 Non-perceptual groups 

Gutierrez, Frischer, Cerezo, Gomez, & Seron  2007 Mass of individuals 

Haciomeroglu, Barut, Ozcan, & Sever  2013 Non-perceptual groups 

Heïgeas, Luciani, Thollot, & Castagne  2003 Homogeneous mass 

Helbing, Farkas, & Vicsek  2000 Homogeneous mass 

Helbing, Farkas, Molnar, & Vicsek 2002 Homogeneous mass 

Helbing, Johansson, & Al-Abideen 2007 Mass of Individuals 

Helbing, Molnar, Farkar, & Bolay 2001 Non-perceptual groups 

Heliövaara, Korhonen, Hostikka, & Ehtamo  2012 Homogeneous mass 

Henein & White 2007 Homogeneous mass 

Hu, Zheng, Wang, & Li  2013 Mass of individuals 

Hughes  2000 Homogeneous mass 

Hussain, Yatim, Hussain, & Yan  2011 Non-perceptual groups 

Idrees, Warner, & Shah  2014 Non-perceptual groups 

Ji & Gao 2007 Perceptual groups 

Ji, Zhou, & Ran  2013 Homogeneous mass 

Jiang, Xu, Mao, Li, Xia, & Wang  2010 Non-perceptual groups 

Jiang, Zhang, Wong, & Liu  2010 Homogeneous mass 

Ji-hua, Cheng-zhi, Zhi-Feng, & Bo  2013 Homogeneous mass 

Johansson, Batty, Hayashi, Bar, Marcozzi, & Memish  2012 Mass of individuals 

Johnson & Feinberg 1977 Perceptual groups 

Johnson & Feinberg 1997 Perceptual groups 

Johnson, Hart, & Hui 1999 Mass of individuals 

Kamkarian & Hexmoor 2013 Mass of individuals 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c45
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c50
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c53
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c54
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c55
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c56
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c57
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c58
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c59
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c60
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c61
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c62
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c63
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c65
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c66
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c67
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c68
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Authors Year Typology 

Karni & Schmeidler  1986 Homogeneous mass 

Khaleghi, Xu, Wang, Li, Lobos, Liu, & Son  2013 Homogeneous mass 

Kirchner & Schadschneider  2002 Non-perceptual groups 

Kirchner, Klüpfel, Nishinari, Schadschneider, & 

Schreckenberg 

2003 Homogeneous mass 

Köster, Seitz, Treml, Hartmann, & Klein  2011 Perceptual groups 

Kountouriotis, Thomopoulos, & Papelis  2014 Perceptual groups 

Krausz & Bauckhage  2012 Homogeneous mass 

Lachapelle & Wolfram  2011 Non-perceptual groups 

Langston, Masling, & Asmar 2006 Mass of individuals 

Lee & Hughes  2006 Homogeneous mass 

Lee & Hughes  2007 Homogeneous mass 

Lei, Li, Gao, Hao, & Deng  2012 Mass of individuals 

Li & Qin  2012 Homogeneous mass 

Lister & Day 2012 Homogeneous mass 

Lo, Fang, Lin, & Zhi  2004 Mass of individuals 

Löhner  2010 Non-perceptual groups 

Lozano, Morillo, Orduña, Cavero, & Vigueras  2009 Non-perceptual groups 

Ma, Lo, Song, Wang, Zhang, & Liao  2013 Homogeneous mass 

Ma & Song 2013 Perceptual groups 

Manfredi, Vezzani, Calderara, & Cucchiara  2014 Non-perceptual groups 

Marana, Velastin, Costa, & Lotufo  1998 Mass of individuals 

Maury, Roudneff-Chupin, & Santambrogio  2010 Homogeneous mass 

Mazzon, Tahir, & Cavallaro  2012 Mass of individuals 

Mehran, Oyama, & Shah  2009 Non-perceptual groups 

Mekni 2013 Cognitive groups 

Moore, Flajšlik, Rosin, & Marshall  2008 Perceptual groups 

Moussaïd, Helbing, & Theraulaz  2011 Mass of individuals 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c69
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c70
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c72
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c71
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c71
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c73
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c74
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c75
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c76
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c77
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c79
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c80
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c81
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c82
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c83
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c84
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c85
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c87
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c88
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c89
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c90
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c92
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c93
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c95
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c96
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c97
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c99
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c100
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Authors Year Typology 

Moussaïd, Perozo, Garnier, Helbing, & Theraulaz  2010 Non-perceptual groups 

Mukovskiy, Slotine, & Giese 2013 Homogeneous mass 

Musse & Thalmann  1997 Cognitive groups 

Musse & Thalmann  2001 Cognitive groups 

Musse, Babski, Çapın, & Thalmann 1998 Cognitive groups 

Narain, Golas, Curtis, & Lin  2009 Homogeneous mass 

Nilsson & Johansson  2009 Non-perceptual groups 

Oğuz, Akaydın, Yılmaz, & Güdükbay 2010 Non-perceptual groups 

Pan, Han, Dauber, & Law  2007 Cognitive groups 

Parunak, Brooks, Brueckner, & Gupta  2012 Cognitive groups 

Pelechano, Allbeck, & Badler  2007 Mass of Individuals 

Pires 2005 Homogeneous mass 

Qui & Hu  2010 Perceptual groups 

Ramesh, Shanmughan, & Prabha  2014 Mass of individuals 

Ran, Sun, & Gao  2014 Non-perceptual groups 

Ryan, Denman, Fookes, & Sridharan  2014 Homogeneous mass 

Sagun, Bouchlaghem, & Anumba 2011 Homogeneous mass 

Sarmady, Haron, & Talib  2011 Homogeneous mass 

Shao, Dong, & Tong 2013 Non-perceptual groups 

Shendarkar, Vasudevan, Lee, & Son  2008 Perceptual groups 

Shi, Ren, & Chen 2009 Mass of individuals 

Shi, Zhong, Nong, He, Shi, & Feng 2012 Mass of individuals 

Silverberg, Bierbaum, Sethna & Cohen  2013 Homogeneous mass 

Singh, Arter, Dodd, Langston, Lester, & Drury 2009 Non-perceptual groups 

Smith, James, Jones, Langston, Lester, & Drury 2009 Cognitive groups 

Song, Gong, Cui, Fang, & Cao  2013 Mass of Individuals 

Spieser & Davison  2009 Homogeneous mass 

Tajima & Nagatani  2001 Homogeneous mass 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c101
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c102
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c104
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c105
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c103
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c106
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c108
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c110
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c111
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c112
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c180
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c113
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c114
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c120
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c123
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c124
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c125
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c181
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c127
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c128
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c131
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c132
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c133
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c134
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c135
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Authors Year Typology 

Thiel-Clemen, Köster, & Sarstedt  2011 Non-perceptual groups 

Thompson & Marchant  1995 Non-perceptual groups 

Tong & Cheng 2013 Mass of individuals 

Varas, Cornejo, Mainemer, Toledo, Rogan, Munoz, & Valdivia  2007 Homogeneous mass 

Vasudevan & Son  2011 Cognitive groups 

Vigueras, Lozano, Orduña, & Grimaldo 2010 Homogeneous mass 

Wagner & Agrawal  2014 Homogeneous mass 

Wang, Li, Khaleghi, Xu, Lobos, Vo, Lien, Liu, & Son  2013 Homogeneous mass 

Wang, Zhang, Cai, Zhang, & Ma  2013 Mass of individuals 

Wang, Zheng, & Cheng  2012 Mass of individuals 

Weifeng & Hai  2011 Mass of individuals 

Wu & Radke  2014 Mass of individuals 

Xiong, Cheng, Wu, Chen, Ou, & Xu  2012 Non-perceptual groups 

Xiong, Lees, Cai, Zhou, & Low  2010 Homogeneous mass 

Yamamoto, Kokubo, & Nishiniari  2007 Homogeneous mass 

Yan, Tong, Hui, & Zongzhi 2012 Mass of Individuals 

Yaseen, Al-Habaibeh, Su, & Otham  2013 Non-perceptual groups 

Yu & Johansson 2007 Homogeneous mass 

Yuan & Tan  2007 Cognitive groups 

Yücel, Zanlungo, Ikeda, Miyashita, & Hagita  2013 Perceptual groups 

Zanlungo  2007 Mass of individuals 

Zanlungo, Ikeda, & Kanda  2012 Homogeneous mass 

Zawidzki, Chraibi, & Nishinari 2013 Mass of Individuals 

Zhang, Liu, Liu, & Zhao  2007 Homogeneous mass 

Zhang, Liu, Wu, & Zhao  2007 Homogeneous mass 

Zhang, Weng, Yuan, & Chen  2013 Mass of individuals 

Zhao, Wang, Huang, Cui, Qui, & Wang  2014 Mass of individuals 

Zhao, Yang, & Li  2008 Homogeneous mass 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c136
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c138
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c139
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c148
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c149
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c150
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c152
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c155
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c153
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c154
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c156
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c157
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c159
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c160
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c161
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c162
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c163
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c164
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c165
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c166
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c167
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c168
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c169
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c170
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c171
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c173
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c175
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568938/#c174
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Authors Year Typology 

Zheng & Cheng  2011 Non-perceptual groups 

Zheng, Li, & Guan 2010 Homogeneous mass 

Zheng, Sun, & Zhong  2010 Homogeneous mass 

Zheng, Zhao, Cheng, Chen, Liu, & Wang  2014 Non-perceptual groups 

 

 

Figure 2. The number of articles published in journals and conference proceedings per 

subtype. 

 

Mass crowd simulations 

 Simulations which fall in to this category treat crowds as consisting of numerous 

‘individuals’ in a large mass. Despite research demonstrating that there are often small 

psychological groups within physical crowds and extensive research showing that collective 

behaviour requires individuals to see themselves as part of a large psychological crowd or 

group, groups are not implemented in these types of models. 

 ‘Homogeneous mass’ subtype 

 The most commonly used approach within the crowd modelling literature is the 

homogeneous mass subtype. In examples of this subtype, the crowd is treated as an aggregate 

mass where every person is allocated identical properties. Within this subtype the crowd is 
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regarded as a very large physical mass of individuals who coincidentally share the same goal 

- for example evacuating their environment. Literature in this subtype is therefore also 

characterised by modelling very basic agent behaviour, often simply avoiding collisions with 

one another. This approach is predominantly used in order to model the effect of crowd size 

and crowd density on egress in emergency evacuations and ordinary environments. For 

example, Fang et al. (2003) modelled a crowd flow pattern in an emergency situation to 

examine the effect of crowd density on the speed of evacuation. Similarly, to examine the 

effect of crowd size on the speed of egress, Lee and Hughes (2006) manipulated the size of 

the crowd and the complexity of the environment to determine the effect on pedestrian 

walking speed. Although the assumptions underlying this approach are adequate to model the 

movement of one crowd in a specific situation, these assumptions cannot accurately capture 

the behaviour of crowds in more complex scenarios, such as collective movement based on 

more than collision avoidance. When other crowds are introduced in to the model, modellers 

need to simulate different crowd movement and dynamic group identities. Thus, the 

assumptions of this subtype cannot be applied to other scenarios where there is more than one 

psychological crowd. 

 ‘Mass of individuals’ subtype 

 The mass of individuals approach differs from the homogeneous mass approach in 

that agents are given unique properties which make them act as individuals within the crowd. 

Usually, individual differences are implemented in order to examine the factors that can 

affect evacuation egress. For example, Shi et al. (2012) assign individuals different attributes 

such as response time, walking speed, and endurance in order to create a more realistic 

simulation of pedestrian evacuation in a heterogeneous crowd in a metro station in China. 

Other example attributes include different pedestrian velocities or health status (e.g., Dou et 

al., 2014). As in the previous subtype, the crowd members act independently but with the 
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same goal of evacuating as quickly as possible. Some models include elaborate environments 

which affect the egress of individuals in more realistic simulations; for example Shi, Ren, and 

Chen (2009) manipulate the egress time of individual agents by causing the agents to be 

affected by the level of smoke in the room and how injured the individuals are. However, 

although these models can become very intricate, the premise of the model is still that of 

individual behavioural differences within a ‘mass’, rather than acting as a collective. 

‘Small group’ types 

 This subtype is characterised by small groups within the crowd. The small groups are 

usually implemented to determine the effect of groups on egress time, following Aveni’s 

(1977) research that suggested that crowds may be comprised of small groups and 

individuals. The type of groups that are implemented varied and can be divided in to three 

subtypes on an ordinal scale of psychological realism. However, all of these models represent 

sociality merely in terms of relations within small groups where collective behaviour is 

reduced to being similar to interpersonal behaviour rather than the crowd being a group itself. 

 ‘Non-perceptual groups’ subtype 

 Models of this subtype simulate physical groups but not psychological groups. That 

is, groups are implemented as homogeneous physical aggregates of people with no intragroup 

connection or individual knowledge of group membership. Instead, these are essentially small 

pre-existing groups, which physically stick together in the crowd regardless of the situation. 

Thus, they move as one homogeneous aggregate, as though they are one large and slow 

individual. Simulations which fell in to this subtype model small groups in order to 

investigate the effect of groups on egress, particularly at bottlenecks and exits (e.g., Idrees et 

al., 2014). 

 The implementation of small groups in this type of simulation is in some ways similar 

to the ‘mass of individuals’ approach. Instead of being an individual who acts independently 
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within the mass, the group is an aggregate cluster of individuals which act as one within the 

crowd. Although no psychological connection between the groups is modelled, affiliative 

theories are often referenced (e.g., Aveni, 1977) to justify the inclusion of a group which 

stays together in a crowd situation (e.g., Feinberg & Johnson, 1995). For example, Dogbe 

(2012) modelled group behaviour using attraction and repulsion interactions, where social 

groups (assumed to be friends and family in this model) are attracted to move together 

throughout the simulation, but are repulsed by other neighbouring groups. By implementing 

group behaviour in this way, Dogbe is simulating a crowd where the groups are essentially 

small numbers of people clumped together within the crowd, with no meaningful interaction 

other than to change formation in order to stay together as they move throughout the crowd. 

Although it is an advance in terms of psychological theory used that these models simulate 

groups which are visible through their movement, the focus on small groups neglects the fact 

that groups can coincide and that an entire crowd can move together as a unit. 

 ‘Perceptual groups’ subtype 

 In contrast to the non-perceptual groups subtype, in perceptual groups individuals are 

able to perceive their own group membership, the identity of others within the crowd, and act 

according to their role. Often models which fall in to this subtype include ‘leaders’ and 

‘followers’ where followers are treated as being together as a group because of their 

connection to leaders as the simulation unfolds (e.g., Moore et al., 2008). Although in 

simulations of this subtype, individuals are able to perceive their own group membership and 

the group identity of other individuals, their movement is derived from the idea that people 

will come together as a group because they are looking for signs and information about how 

to act in a novel situation. This approach to group behaviour draws close parallels with ENT 

(Turner & Killian, 1957, 1987), as the agents are in a novel situation and look for leaders and 

social norms to discern how to act. However, a common problem with these models is that 
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the agent’s priority is to move to the nearest leader, which causes clusters of individuals to 

form groups without the individuals ever having a psychological bond with any other person 

(e.g., Qui & Hu, 2010). This could be criticized as these groups are based upon being in the 

same spatial location rather than being together because they share a group identity, and 

agents have no perception of others aside from avoiding collision and knowing who is a 

‘leader’ or a ‘follower.’ 

 ‘Cognitive groups’ subtype  

 In this subtype, individuals are able to perceive their own group membership and the 

group membership of others, just as in the ‘perceptual’ models. However, there is an extra 

component; individuals can share similar properties which are treated as ‘cognition’ by the 

authors. Here, agents who share the same properties are treated as being in a group. 

Additionally, the properties of each agent can change throughout the simulation, which 

causes the groups to change. As new information about the environment is given to the 

agents, the agents adapt their properties and seek out who they perceive to match their 

properties. Within this subtype, articles again tend to reference ENT to justify why they 

implement interaction between crowd members. For example, Franca et al. (2009) assign 

each agent certain properties. Here, when new information is introduced to the agents, the 

agents begin to communicate to establish new norms and they seek out others who share their 

properties or are affected in the same way by information, and consequently move into 

groups with agents who share the same properties as them. 

 The principles behind simulations of the ‘cognitive’ subtype are the closest to 

psychological realism and lend themselves to more diverse implementations of both group 

and individual behaviour. This approach is closest to SCT theory because it allows for the 

implementation of both individual properties and the ability to become a group member. It 

has also been used to simulate people acknowledging their group membership but being able 
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to decide whether to act with their group or to act as an individual. Yuan and Tan (2007) 

created a scenario where a crowd of people have to evacuate a room, but agents can decide 

whether to leave with their group members or not. Moreover, this subtype focuses on the fact 

that groups exist based on shared properties, which is theoretically in line with the proposal 

of SCT that groups exist due to a sense of commonality between their members. 

Trend analysis 

 As Figure 3 shows, although the initial models of crowd behaviour began with a mix 

of articles from all subtypes, since 2007 the ‘homogeneous mass’, ‘mass of individuals’ and 

‘non-perceptual’ subtypes have been more prominent. Although there was an initial spike of 

articles in the ‘cognitive groups’ subtype in 2001, then another in 2009, this subtype has 

largely been overtaken by the ‘mass’ approaches. One factor which could have contributed to 

the rise in crowd modelling articles over the years is increased access to crowd modelling 

software. The upsurge of crowd simulations - particularly in the ‘homogeneous mass’, ‘mass 

of individuals’ and ‘non-perceptual groups’ subtypes - over the last decade could be due to 

the availability of modelling software such as SIMULEX (e.g., see Thompson & Marchant, 

1995) and FIREScape (e.g., see Feinberg & Johnson, 1995), which provide tools to simulate 

crowds without focusing on group behaviour (for a detailed analysis of emergency evacuation 

simulation models, see Santos & Aguirre, 2004). 
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Figure 3: Prevalence of subtype per year of publication. 

Discussion 

Misrepresenting the crowd 

 This review has discerned that a plethora of models of crowd behaviour have 

successfully simulated crowds of individuals. Notably, the majority of models have not aimed 

to incorporate psychological theories in to their rationale for crowd behaviour. However, to 

accurately monitor and predict the collective behaviour exhibited in psychological crowds 

specifically, it is imperative that models being used for crowd safety management have an 

accurate understanding of collective behaviour taken from empirical research. In line with 

what is known in crowd psychology, a realistic model of collective behaviour must include 

the capacity to simulate the difference between physical crowds and psychological crowds. 

Specifically, it must be able to model both the members of a crowd categorising themselves 

as individuals distinct from other individuals, and the situation where the same individuals 

categorise themselves as members of the crowd and hence share an identity. Simulations of 

psychological crowds must therefore address the way in which people can identify with one 

another and how collective behaviour emerges from this process. 

 This review has found that some crowd modellers have begun to approach 

psychological realism by incorporating groupness (e.g., Aguirre et al., 2011; Moore et al., 

2008) in their models of crowd behaviour, particularly those we denoted as the ‘cognitive 
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groups’ subtype. However, these developments have not occurred at the same rate. Over the 

previous decade, there has been an increase in models which have implemented the 

‘homogeneous mass’, ‘mass of individuals’ and ‘non-perceptual group’ approaches. The 

advantages and limitations of each subtype will be discussed, and we propose the theoretical 

advances that must be made in order for crowd models to simulate collective behaviour more 

accurately across a variety of collective behaviour scenarios. 

Constructing the relationship between the individual and the group 

 Examples of the mass type of model support Sime’s (1985) assertion that in computer 

simulations people are treated as ball-bearings; they are unthinking and act at a very base 

level of simply moving without interacting with one another. The homogeneous mass 

approach is also similar to the Le Bonian (1985/2002) notion of crowds as an unthinking 

mass who act at a primitive psychological level, where there is no sense of individuality and 

thus is reminiscent of the broader mass society narrative, where the crowd is treated as an 

‘undifferentiated whole’ (Giner, 1976, p. 47); the mass lacks capacity for moral sense, or a 

sense of direction. Models in this subtype are not behaviourally realistic because there are no 

individuals, and therefore there is no room for individual cognition from which meaningful 

group behaviour can emerge. As mentioned previously, although models in this approach can 

simulate one crowd where members move together in a limited number of scenarios such as 

evacuation through one route, this account cannot explain collective behaviour in all 

situations, such as where there are two or more psychological crowds, or two crowds in 

contraflow. 

 In Galea, Owen, and Lawrence’s (1996) model, the importance of each member of the 

crowd having individual attributes which change how people act throughout the simulation is 

emphasized. Although this was an important development for approaching psychological 

realism, it was at the cost of modelling collective behaviour. Granularity is obtained at the 
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cost of collectivity. In the mass of individuals approach, there is no collective behaviour 

because the crowd members act as individuals without any sense of the commonality which is 

required for collective group behaviour. To create a realistic model of collective behaviour, 

modellers need to understand how the individual can become part of a psychological crowd. 

Thus, modellers need to implement the capacity of crowd members to act either as an 

individual or as a member of the crowd depending upon whether the person categorises 

themselves as an individual within a physical crowd, or as a member of the psychological 

crowd. 

The crowd as small groups 

 Unlike the ‘mass’ type, models within the ‘small groups’ type have various levels of 

connections between the members of the crowd. The models in this subtype are a significant 

development in crowd modelling as they recognize and implement the importance of 

groupness and how this can affect the behaviour of the crowd members. However, the ‘small 

groups’ type falls short of realistically modelling large crowd behaviour as it only includes 

small groups within a crowd. Increasing granularity (small-group level variation within a 

physical crowd) loses the sense of ‘groupness’ at the crowd level because the focus is upon 

numerous small groups within the crowd. The approach therefore does not explain collective 

behaviour where the crowd is one group. By doing this, the models are unable to simulate the 

behaviour of large psychological crowds where the entire crowd shares one group identity. 

However, each subtype within the ‘small groups’ type has its own specific advantages and 

drawbacks. 

 In the ‘non-perceptual groups’ subtype of simulation, groups are treated as physical 

entities rather than being together due to a psychological bond between the members of the 

group. The original models in this subtype (e.g., Goldenstein et al., 2001; Thompson & 

Marchant, 1995) were very important for the development of simulations of crowd behaviour 
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because they introduced groups in to the crowd. However, groups are only incorporated in 

order to make simulations more realistic by claiming that the groups are families or friends. 

Group membership has no effect on the behaviour of the group apart from staying together 

throughout the simulation. Although there are now groups, there is no sense of collective 

behaviour based on a shared group identity. 

 Within the ‘perceptual groups’ subtype, modellers represent crowd members as being 

able to know their own group identity and the group identity of others. Although the ability of 

the crowd members to perceive group membership and act in accordance with it is in line 

with SCT (Turner et al., 1987), here groups are treated simply as people that are in the same 

spatial location. Although group membership is dependent upon group members actively 

categorising themselves as members of that specific group, group membership is limited and 

only goes as far as crowd members having roles as either a ‘leader’ or a ‘follower’ as 

opposed to group membership arising from a sense of common identity. Empirical research 

on group behaviour suggests that psychological group membership is more versatile than this; 

when people are in a novel crowd situation they can come together through sharing a group 

identity and act together in a coordinated way, such as by self-organizing and helping one 

another (Drury, 2012; Drury et al., 2009a). In addition, group membership does not need to 

be limited to those people within the same spatial location. The shared group identity can 

spread to include the entire crowd, where people have a shared social identity with others in 

the crowd and act in a coordinated way with them even if they are not near to each other, for 

example football fans in a stadium. 

Incorporating cognition for collective behaviour 

 Models in the subtype that come closest to explicating the underlying components of 

cognitive group membership, and which is consistent with psychological research, is the 

‘cognitive groups’ subtype. Examples of this subtype not only incorporated the perception of 
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group membership, but also went further than the ‘perceptual groups’ subtype by 

incorporating what is claimed as ‘cognition.’ In this subtype ‘cognition’ is instantiated as the 

ability of people to perceive their own beliefs and the beliefs of others, and group 

membership is dependent upon shared beliefs and desired actions. Moreover, in some 

simulations (e.g., Yuan & Tan, 2007), the agents are able to choose whether to act with a 

group or to act as an individual. 

 The incorporation of ‘cognition’ brings this subtype closest to implementing 

principles of SCT in a crowd simulation. Although not explicitly stated in any of the literature 

that has been reviewed, it could be argued that models in this subtype actually model 

something of the cognitive shift from being psychologically an individual to becoming a 

member of a particular social group and taking on that salient identity, which is crucial for 

collective behaviour to emerge. However, despite these advantages, this approach does not 

completely model a psychological crowd as the models are yet to make the leap from small 

‘cognitive’ groups to large crowds where the members share the same group identity. For 

example - although not specifically a model of crowd behaviour - van Rooy (2012) uses an 

ABM to examine SCT by grouping individuals depending upon their shared opinions. Within 

this model the individuals could communicate their opinions with others and change group 

affiliation to be with others who shared the same opinions. By defining groups as those who 

share common opinions van Rooy’s definition of groups approaches psychological realism by 

basing group membership on a sense of commonality. While groups are still treated as 

consisting of small numbers, future work could ascertain whether these principles could be 

extended to an entire crowd. 

Toward a cognitive model of collective behaviour 

 There are a number of factors that must be addressed in order for modellers to create 

an accurate simulation of collective behaviour. One component that is fundamental to 
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collective behaviour is the perception of groupness: the ability of an individual to know their 

own group identity and perceive the group identities of others. An issue here is how to 

quantify the level of identification that a member feels with their group. Identification with a 

group is not simply a binary ‘identify’ or ‘do not identify’ scenario; modellers should create 

agents with the potential for variable levels of group identification which are dependent upon 

the context that the individual is in. Similarly, the effect of group identity upon behaviour is 

not necessarily linear. Although an increased level of identification may cause individuals to 

behave in line with the norms of the group, other variables may act as moderators, such as 

beliefs about legitimacy of actions and levels of self-efficacy. One example of a model which 

has effectively employed aspects of SCT to simulate collective crowd behaviour is von Sivers 

et al. (2014). The study described in this article is a first step toward examining the effect of 

SCT upon collective crowd behaviour during an emergency, and could be used as a marker 

for future work simulating collective behaviour. 

 This has been the first comprehensive and up-to-date review of how computer models 

have conceptualised groups and crowd behaviour. Despite the importance that models used 

for crowd management and safety are able to realistically simulate crowd behaviour, until 

now there has not been a review of how modellers approach collective behaviour, or indeed 

whether they approach it at all. An earlier review by Sime (1985) found that the idea of ‘mass 

panic’ was influential in how modellers implemented crowd behaviour in safety planning and 

the design of public spaces. However, modelling approaches have evolved since Sime’s 

review. There has been an upsurge in the number of crowd simulations since then, with some 

articles even referencing Sime in their justification for their new approaches to modelling 

crowd behaviour (e.g., Feinberg & Johnson, 1995; Kamkarian & Hexmoor, 2013). In 

addition, a recent review of building evacuation simulations by Aguirre et al. (2011) found 

that modellers using ABMs placed an emphasis on individuality and mass panic and 
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suggested that evacuation simulations need to include other social scientific factors such as 

norms, leadership, and group identification and membership. 

 Though both of these reviews were very important for addressing improvements the 

needed to be made in the crowd modelling literature, our review has gone further than this. 

We have comprehensively reviewed a broad scope of crowd modelling scenarios from 1977 

to 2014, including simulations of crowd events taken from real life events, simulations of 

crowds in planning for events, literature looking at techniques for modelling crowd behaviour 

using simulations, and articles which addressed the techniques used to model crowd 

behaviour. Moreover, we have examined the theoretical underpinnings of each of these 140 

articles to determine what assumptions modellers are making about crowd behaviour. This is 

the first systematic comparison of the crowd modelling literature with current models of 

crowd behaviour in social psychology. 

 By examining what crowd modellers are creating and comparing it to empirical 

research of collective behaviour, we can see what future models need to change. Although 

models have been successful in simulating crowds without a group identity, as yet 

simulations have not aimed to model large psychological crowd behaviour. Modellers are yet 

to model the transformation of people from identifying as an individual to identifying as a 

member of the crowd. Without this they cannot model meaningful collective behaviour where 

the behaviour of a large crowd can be understood in terms of group membership, which is 

needed to explain scenarios where there is more than one crowd present (such as the football 

fans mentioned previously). To create a realistic model of crowd behaviour, crowd modellers 

must look to the extensive empirical research on group and crowd behaviour in social 

psychology. 

 We propose that to make more realistic simulations of collective behaviour, which 

can be applied to a broad range of scenarios, modellers must implement aspects from SCT. 
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Specifically, these simulations should be based on the aspects of SCT which can explain how 

members of a large crowd share the same group identity, the transformation from the 

individual identities to the identities as group members, and the subsequent actions which 

follow from being part of that group. While this would create more realistic models of 

collective behaviour for modellers, this interdisciplinary work could also benefit social 

psychologists. By creating models which incorporate SCT and accurately simulate the 

behaviour that we have found in empirical search, it could help to develop theories of 

collective behaviour in social psychology. Only by incorporating these aspects that are based 

on extensive empirical social psychological research will crowd modellers be able to 

realistically simulate, monitor, and predict collective behaviour in crowds across a wide range 

of crowd events. 
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Chapter 3 

 

Paper 2 - Walking together: Behavioural signatures of psychological crowds 

 

Reference: 

Templeton, A. Drury, J., Philippides, A. (in review in Royal Society: Open Science). 

Walking together: Behavioural signatures of psychological crowds. 
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Abstract 

 Research in crowd psychology has demonstrated key differences between the 

behaviour of physical crowds where members are in the same place at the same time, and the 

collective behaviour of psychological crowds where the entire crowd perceive themselves to 

be part of the same group through a shared social identity. As yet, no research has 

investigated the behavioural effects that a shared social identity has on crowd movement at a 

pedestrian level. To investigate the direction and extent to which social identity influences the 

movement of crowds, 280 trajectories were tracked as participants walked in one of two 

conditions: 1) a psychological crowd primed to share a social identity; 2) a naturally 

occurring physical crowd. Behaviour was compared both within and between the conditions. 

In comparison to the physical crowd, members of the psychological crowd i) walked slower, 

ii) walked further, and iii) maintained closer proximity. In addition, pedestrians who had to 

manoeuvre around the psychological crowd walked further and faster than pedestrians who 

walked in the naturally physical occurring crowd. We conclude that the behavioural 

differences between physical and psychological crowds must be taken into account when 

considering crowd behaviour in event safety management and computer models of crowds.   
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Introduction 

 Coordinated crowd movement can be seen in numerous situations: a crowd of football 

fans celebrating together (Stott et al., 2001), pilgrims undertaking the Hajj in Saudi Arabia 

(Alnabulsi & Drury, 2014), and people in disasters coming together to support one another 

(Drury et al., 2009a, 2009b). The complexity of crowd movement has made the underlying 

causes of crowd behaviour a source of fascination across multiple research disciplines. 

Crowd psychologists have attempted to look at the relationship between individuals and 

groups in influencing the perceptions and behaviour of the crowd (e.g. Pandey, Stevenson, 

Shankar, Hopkins, & Reicher, 2014). Computer modellers have researched the factors 

influencing pedestrian movement in order to create models which accurately predict 

movement in a variety of crowd scenarios, from evacuations (Gu, Liu, Shiwakoti, & Yang, 

2016; Köster, Hartmann, & Klein, 2011), to pedestrian flow in crowded spaces (Kielar & 

Borrmann, 2016; Lovreglio, Ronchi, & Nilsson, 2015; Zhao et al., 2016). Biologists have 

shown that we can gain insight to human crowd movement by looking to the behavioural 

patterns of social insects, fish and other non-human animals (Couzin, Krause, Franks, & 

Levin, 2005; Rosenthal, Twomey, Hartnett, Wu, & Couzin, 2015). Additionally, physicists 

have demonstrated that crowd movement can be understood by comparing behaviour to 

particle physics and Newtonian forces (Moore et al., 2008; Moussaïd et al., 2010). While 

these disciplines may use separate paths to understand crowd movement, they share the goal 

of understanding crowd behaviour by exploring how people in crowds self-organise. Crowd 

psychology has shown that there are differences between physical crowds of co-present 

members, and the collective behaviour of psychological crowds where members act as a 

group due to their shared social identity. No research, however, has examined the behavioural 

effects social identities can have at a pedestrian movement level. This paper reports a study in 

which we examine the movement of crowds in one of two conditions: 1) a psychological 
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crowd where the entire crowd is primed to share a social identity; 2) a naturally occurring 

physical crowd comprised of small groups and individuals; and determine the factors 

underlying self-organising behaviour in crowd movements by drawing on theories from 

social psychology.  

Self-organisation in crowds  

 The way in which crowds self-organise has been researched in four broad areas. First, 

the effect of socially transferred information on crowd movement has been examined in 

diverse disciplines. For example, research on birds, marine insects and fish has suggested that 

collective movement is influenced by non-verbal cues of velocity and the direction of 

movement of others (Ward, Sumpter, Couzin, Hart, & Krause, 2008), and knowledge of 

group structures based on cues from individuals (Couzin, Krause, James, Ruxton, & Franks, 

2002). Visual perception in human crowds has also been suggested to affect movement based 

on cues on where others in the crowd look (Gallup, Chong, & Couzin, 2012; Gallup et al., 

2011) and walk (Boos, Pritz, Lange, & Belz, 2014). A second focus has been the role of 

leadership and how crowds reach consensus decisions. For example, researchers have 

investigated how information is disseminated and how effectively crowds reach a target 

depending on which members of the crowd were informed (Acemonglu, Ozdaglar, & 

ParandehGheibi, 2010; Conradt & Roper, 2005; Dyer, Johansson, Helbing, Couzin, & 

Krause, 2009; Faria, Dyer, Tosh, & Krause, 2010; Moussaïd, Garnier, Theraulaz, & Helbing, 

2009; Sumpter, 2006). Third, the influence of both macroscopic and microscopic level 

features of crowd behaviour on coordinated movement of the crowd have been analysed. 

Macroscopic computer models have examined the influence of factors such as density on 

pedestrian movement in emergency situations (Fang et al., 2003; Johansson et al., 2012; Lee 

& Hughes, 2006). Conversely, microscopic modelling has examined the effect of an 

individual’s movements on physical crowds, such as a pedestrian’s motivation to avoid 
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collisions (Degond et al., 2013; Moussaïd et al., 2009) and their stepping behaviour (Seitz, 

Dietrich, & Köster, 2014, 2015). 

 An important growing fourth area of research is examining the effect of group 

behaviour on crowd movement. For instance, Moussaïd et al. (2010) looked at the formations 

of approximately 1,500 pedestrian groups in natural conditions to analyse their walking 

patterns and how groups influenced crowd flow, finding that small groups form ‘V’ 

formations as they move through the crowd. Research by Vizzari et al. (2015) explored the 

role of groups on crowd flow by manipulating the size of group to be either a single 

pedestrian, three pairs of pedestrians, two groups of three pedestrians, or two groups of six 

pedestrians. This unique experiment told the pedestrians in the group conditions to stay 

together as friends or relatives would, and found that when the groups tried to maintain a 

formation it increased their travel time. The effect of groups in crowds have also been applied 

to affiliation behaviour in evacuations (Sime, 1983), egress (Bode, Holl, Mehner, & Seyfried, 

2015; Braun, Musse, Oliveira, & Bodmann, 2003; Yang, Zhao, Li, & Fang, 2005) and the 

walking formations of groups in crowds (Köster, Treml, Seitz, & Klein, 2014; Reuter et al., 

2014). 

 Crucially, however, these studies investigate subgroups within a crowd rather than 

when an entire crowd acts as a group nor, with the exception of Vizzari et al. (2015), do they 

analyse what makes a ‘group’. Indeed, very few studies on the self-organisation of crowds 

have examined the psychological underpinnings of what a ‘crowd’ is and how this could 

influence movement. Such an understanding is needed to explain why one type of crowd 

exhibits greater, or different, self-organising collective behaviour compared to another. One 

social psychological approach that has shown that there are key differences between crowds 

who share a social identity and those who do not, and can elucidate whether and how social 

psychological factors may influence crowd self-organisation, is SCT (Turner et al., 1987). 
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Defining the ‘crowd’ 

 Understanding the psychology of a crowd can help explain important behavioural 

differences between, for example, a crowd of commuters walking during rush hour and a 

crowd of sightseeing tourists who coordinate their behaviour to remain together. Reicher 

(2011) distinguishes between physical crowds, which are comprised of individuals who are 

physically co-present but do not share a sense of being in the same group (such as the 

commuters), and psychological crowds where members also share a sense of ‘group-ness’ 

(such as the sightseeing tourists who see themselves as a group). SCT can explain this 

distinction and demonstrates that physical aggregates of individuals can become a 

psychological group through the process of depersonalisation: individuals self-stereotype 

themselves as being in a group, so they shift from their personal identity to identifying as a 

member of a group (Turner et al. 1987). It is through this shared social identity that collective 

behaviour becomes possible (Turner, 1985). 

 SCT has been applied to a multitude of crowd scenarios to show how social identity 

can explain features of psychological crowds, such as feelings of safety during the Hajj 

(Alnabulsi & Drury, 2014), people coordinating their actions in emergency evacuations 

(Drury et al., 2009a, 2009b; Drury et al., 2015), and intimacy behaviours (Neville & Reicher, 

2011). However, only a limited number of studies have examined the behavioural 

consequences of shared social identity in a crowd, and none have applied the principles to 

modelling pedestrian behaviour. Indeed, one of the key behavioural predictions of SCT - that 

ingroup members will remain together based on their shared social identities - is yet to be 

quantified in large crowd behaviour. 

 Experimental research has examined the extent to which social identity can affect 

behaviour such as the maintenance of physical distance (or proximity) between small groups 

of people. Research by Novelli et al. (2010) found that when participants defined themselves 
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as being in the same group as another person in the room, the participants moved their chairs 

significantly closer together than if the other person was perceived to be a member of a 

different group. Crucially, Drury et al. (2009a) found that survivors of the 2005 London 

bombings became a psychological crowd in the aftermath of the bombs and remained 

together to help one another. We suggest that these findings can be used to derive predictions 

about the effect of social identity on proximity behaviours in walking crowds: specifically, 

those who are in the same group are willing to be closer to one another and will therefore try 

to stay together, which will have consequences for flow rates.  

 Given the findings from social psychology that people with a shared social identity 

coordinate their behaviour and are willing to be physically closer to ingroup members, our 

research investigates the effect of social identity on the movement of psychological crowds 

compared to physical crowds. We argue that due to ingroup members attempting to remain 

together, there are distinct behavioural signatures which distinguish psychological crowds 

from physical crowds, and that these are explicable in terms of shared social identity. Using 

minimal group manipulation techniques from social psychology (Haslam, 2004), we compare 

the walking behaviour of a psychological crowd and a physical crowd to assess the effect a 

shared social identity has on walking behaviour. In particular, we analyse differences in 

walking speed, distance walked, and proximity between the crowd members. We hypothesise 

that shared social identity will cause members of the psychological crowd to 1) alter their 

speed to remain with other psychological crowd members, 2) alter the distance walked to 

remain together, and 3) stay together by 3a) maintaining closer proximity and 3b) walking in 

larger subgroups than in the physical crowds.  

Methodology 

Design and materials  
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 A field study of walking behaviour in two crowds was conducted at the University of 

Sussex campus in England. In the experimental condition, a psychological crowd was created 

by priming participants to share a social identity. These participants (N = 120) signed up to be 

part of a study on walking behaviour and were selected based on their attendance of a second 

year Psychology lecture. A shared social identity amongst participants was evoked using 

standard forms of social identity manipulation (Haslam, 2004): we provided every participant 

in the psychological crowd with an identity prime of a black baseball cap with a ‘Sussex 

Psychology’ logo on it. This logo was emblematic of a social identity already available to 

each participant and was used to make that social identity salient. It also enabled participants 

to see who else was in their group and allowed the experimenters to track who had been 

primed to share a social identity. Each participant was asked to walk from the lecture to a 

nearby location on campus. Around these recruited participants were an additional 47 

pedestrians walking in the same area. 

 One week prior to the experimental conditions, we filmed a control condition 

consisting of 121 participants who were primarily comprised of the same second year 

Psychology students at Sussex as they left their lecture to walk to the other side of campus. 

This was a naturally occurring physical crowd, as the participants were not manipulated. We 

ensured that the person filming was visible by wearing high visibility jacket and filming from 

a low bridge directly above the path the crowd walked under. We attempted to keep the 

conditions as similar as possible within the limits of fieldwork. Both crowds were filmed at 

the same time of day a fortnight apart in the same weather conditions (sunny) after their 

lecture to ensure they had the same timetable commitments. Importantly, participants in both 

the psychological and physical crowd conditions were largely comprised of the same people 

to ensure that any pre-existing relationships between the crowd members were the same 
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before priming the crowd to share a social identity, thus keeping any friendship groups 

consistent in both conditions.   

 Filming was performed with a Nikon PixPro AZ361 digital camera with a 36x wide 

24-864mm equivalent Aspheric HD Zoom Lens with no zoom or lens distortion. We filmed 

the participants from above to aid participant tracking as they walked along a section of the 

path on the route (length = 10 metres, width = 3.75 metres), with the camera set up at the 

centre of a low bridge crossing the path perpendicularly. We selected this path as it is an area 

where students walk between lectures and the main campus, and by keeping conditions as 

similar as possible, hoped that the participants would be met with similar counterflow 

pedestrians around both crowds. There were 55 people in counterflow to the physical crowd, 

and 34 people in counterflow to the psychological crowd. Additionally, there were 13 people 

walking the same direction as the psychological crowd in that condition, but on the other side 

of the path to those walking in counterflow.  

 To enable between-groups analysis, those in the footage were classified as follows: 

participants primed to share a social identity were classified as Group 1 (n = 112); the people 

who were not recruited and were walking in the same direction as the psychological crowd 

(towards the camera) were classified as Group 2 (n = 13), and those who were walking in 

counterflow to the crowd (away from the camera) were classified as Group 3 (n = 34). Within 

the physical crowd condition, those walking towards the camera were classified as Group 4 

(n = 66), and those walking away from the camera were classified as Group 5 (n = 55). Please 

see Figure 4 for snapshots of the groups in the footage, where picture (a) depicts the groups in 

the experimental condition, and picture (b) depicts the groups in the control condition. 
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(a)                                                                                                     (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Snapshots of the pedestrians in both crowd conditions.  

  

Trajectory analysis  

 The positions of the crowd members were extracted using custom-made MATLAB 

software which allowed manual selection of each participant every 5 frames (frame rate 24 

frames per second), to reconstruct their trajectories as they walked throughout the footage. 

Head positions were tracked because the pedestrians’ positions on the ground could not be 

derived from the pedestrians’ feet positions, as these were not always visible due to the 

density of the crowd and angle of filming. The data was transformed from the camera angle 

above the bridge to a directly top-down planar view in order to assess the locations of the 

pedestrians on the ground, defined to be approximately the centre-of-mass of their bodies. 

The transformation matrix was derived by selecting corners of a 3.75 metres by 5 metres 

rectangle painted on the ground.  
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 To perform the transformation to a planar view, we assumed a constant height for the 

participants of 169 cm (which is the middle height between the average heights of UK men 

and women) and that their heads were directly above their centre-of-mass. This process will 

lead to errors from swaying of heads and height differences. To quantify the extent of these 

errors, we used a sample of participants whose feet were visible, and compared the planar 

positions derived from their feet positions (the average position between their feet) to the 

planar positions derived from head positions. While there are some large differences, the 

median and interquartile ranges for the differences are 18 +/- 13 cm for the physical crowd, 

and 28 +/- 17 cm for the psychological crowd. Importantly, the differences within 

participants’ trajectories are consistent, suggesting that the differences are predominantly 

caused by height variation between participants. This is reinforced by the fact that errors are 

greater in the y-axis which is perpendicular to the camera plane and decrease as the 

participants come towards the camera. Since the errors are approximately consistent within 

each trajectory, they do not affect measures of speed and distance travelled.  

 The pedestrians’ projected feet positions were then used to ascertain their walking 

speed, distance walked, and the proximity between individuals. Speed for each pedestrian 

was calculated as distance/time, where time = 0.2085 = 1 second divided by frame rate 

multiplied by 5 (as 5 is the frame gap used when tracking trajectories). The distance each 

pedestrian walked was calculated by summing the distance between the coordinates of each 

step. The space around each pedestrian was measured using Voronoi tessellation areas which 

sets a polygon around each member of the crowd based on the distance to their nearest 

neighbours at each time point. These areas were calculated using Sievers’s (2012) method for 

Voronoi decomposition and implemented in MATLAB, with vertices constrained so that the 

maximum tessellation area radius is 1 metre to avoid artificially inflating the space around 

individuals walking alone or on the periphery of the crowd. 
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 To ascertain how much space individuals maintained around them, the footage of both 

crowds was sliced into time points to get snapshots of the pedestrian locations every 4.17 

seconds (100 frames), producing 10 time points for each condition and spanning the entirety 

of the psychological crowd footage. One possible issue is that there were different numbers 

of people at different time points in the experimental condition compared to the control 

condition, and the number of people around the psychological crowd changes as they walk 

through the footage. As such, Latent Growth Curve Analysis was used in R to determine 1) 

whether there were differences in tessellation areas between groups, 2) whether their 

tessellation areas changed over time, and 3) whether this was affected by the number of 

people in the area.   

 Following this, a prima facie analysis was conducted to determine how pedestrian 

groups maintained formation while walking. Hierarchical agglomerative cluster analysis was 

used with between-groups linkage, Euclidian distance and standardised z-scores, to group 

participants based on the distance between their locations at the different time points. This 

explored whether the crowds split into smaller groups through classifying sub-groups (or 

clusters) by examining the optimum number of clusters within each time point. We then also 

compared which participants were in clusters in successive time points to ascertain whether 

clusters remained together. 

Results 

Speed of movement 

 Kolmogorov-Smirnov tests revealed that Groups 1, 2, 3, and 5 did not significantly 

deviate from normal distribution, but Group 4 was non-normally distributed (see Table 2 for 

D-values, degrees of freedom, and p-values, and Figure 5 for means and standard errors). 

Independent t-tests were used to compare groups that were parametric, and Kruskal-Wallis 

tests were used to compare groups where one or both groups were non-parametric.  
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Table 2    

Kolmogorov-Smirnov tests for each group for speed of movement, distance walked, and 

tessellation areas. Non-normal distributions are indicated in bold   

    Speed     Distance     

Tessellation 

areas   

  D df p D df p D df p 

Group 1 .06 112 .200 .10 112 .014 .10 418 .001 

Group 2 .15 13 .200 .29 13 .005 .12 25 .200 

Group 3 .11 34 .200  .34 34 .001 .07 56 .200 

Group 4 .15 66 .001 .07 66 .200 .07 47 .200 

Group 5 .08 55 .200 .08 55 .200 .10 52 .200 

 

 

 

 When comparing the groups within conditions, on average, Group 1 walked 

significantly slower than those in Group 2 (walking in the same direction as Group 1), -45.17, 

BCa 95% CI [-58.93, -31.41], t(12.15) = -7.13, p < .001, r = .899. Group 1 also walked 

significantly slower than those in Group 3 (in counterflow to Group 1), -26.82, BCa 95% CI 

[-34.41, -19.24], t(34.17) = -7.18, p < .001, r = .776. On average, Group 2 walked faster than 

Group 3, -18.35, BCa 95% CI [3.97, 32.73], t(45) = 2.57, p = .014, r = .358. In the control 

condition, Group 4 (Mean rank = 66.88) walked significantly faster than Group 5 (those 

walking in counterflow to Group 4, Mean rank = 53.95), H(1) = 5.19,  p = .023.   

 When comparing the group across crowd conditions, crucially, on average 

participants walked significantly more slowly when they were primed to share social identity 

(Group 1 Mean rank = 58.30), than when they were not (Group 4 Mean rank = 142.44), H(1) 

= 110.72, p < .001. An independent t-test found that Group 1 also moved significantly slower 

than those in counterflow in the control condition, Group 5 -16.389, BCa 95% CI [-19.78, 

13.00], t(64.08) = -9.66, p < .001, r = .770. Those going around the psychological crowd 

(Group 2 Mean rank = 59.54) walked faster than those going the same direction in the control 
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crowd (Group 4 Mean rank = 36.15), H(1) = 11.28, p < .001, suggesting that the 

psychological crowd has an effect on people walking in the same area due to manoeuvring 

around it. This is also found when comparing those in counterflow to the psychological 

crowd (Group 3) who walked significantly faster than and those walking the same direction 

in the control condition (Group 5) -10.44, BCa 95% CI [2.30, 18.57], t(45.89) = 2.58, p = 

.013, r = .356. Overall, these results confirm Hypothesis 1.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Means and standard errors for the speed each group walked, * indicates p < .05, 

*** indicates p < .001. SE for groups: 1 = 0.49; 2 = 6.30; 3 = 3.70; 4 = 1.63; 5 = 1.63.  
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Distance 

 Kolmogorov-Smirnov tests revealed the distance of Groups 1, 2, and 3 were non-

normally distributed, but Groups 4 and 5 did not deviate significantly from normal (see Table 

2 for D-values, degrees of freedom, and p-values, see Figure 6 for means and standard 

errors). Again, independent t-tests were used to compare groups that were parametric, and 

Kruskal-Wallis tests were used to compare groups where one or both groups were non-

parametric. 

 Between-groups analysis for groups within conditions showed that participants in 

Group 1 (Mean rank = 68.49) walked significantly further when compared to Group 2 (Mean 

rank = 15.69), H(1) = 24.73, p < .001, and when Group 1 (Mean rank = 83.08) was 

compared to Group 3 (Mean rank = 41.94),  H(1) = 24.68, p < .001. Group 3 (Mean rank = 

28.88) also walked significantly further than Group 2 (Mean rank = 11.23), H(1) = 15.59, p < 

.001, possibly due to Group 3 being in counterflow with Group 1 and 2 so having to 

manoeuvre around them. In the control condition, Group 4 walked significantly further than 

Group 5, -6.02, BCa 95% CI [-10.83, - 1.22], t(119) = -2.48, p = .014, r = .05. 

 Comparisons across crowd conditions found that Group 1 (Mean rank = 122) walked 

significantly further than Group 4 (Mean rank = 35.50), H(1) = 123.48, p < .001, supporting 

Hypothesis 2 that those who share a social identity walked further in order to remain together. 

Group 1 (Mean rank = 111.50) also walked faster than Group 5 (Mean rank = 28), H(1) = 

110.01, p < .001. Group 2 (Mean rank = 73) walked significantly further than Group 4 (Mean 

rank = 33.50), H(1) = 32.18, p < .001. Group 3 (Mean rank = 72.50) also walked 

significantly further than its counterpart in the control condition, Group 5 (Mean rank = 28), 

H(1) = 62.33, p < .001, again suggesting that the psychological crowd affected those around 

it.  
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Figure 6: Means and standard errors for the distance each group walked, * indicates p < .05, 

*** indicates p < .001. SE for groups: 1 = 6.47; 2 = 19.52; 3 = 26.20; 4 = 1.19; 5 = 1.56.  

 

Proximity 

 Distance measures  

 Kolmogorov-Smirnov tests indicated the mean tessellation areas of Group 1 were 

non-normally distributed, but all others groups did not deviate significantly from normal (see 

Table 2 for D-values, degrees of freedom, and p-values). The mean tessellation areas for each 

group across all time points were, Group 1: M = 10383.29, SD = 5503.68; Group 2: M = 

20218.67, SD = 5626.12; Group 3: M = 17732.70, SD = 6493.58; Group 4: M = 20506.39, SD 

= 6404.64, Group 5: M = 18298.48, SD = 7006.30. Please see Figure 7 for group medians and 

standard deviations, where red lines indicate the medians, boxes cover the 25th and 75th 
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percentile and whiskers extend to 1.5 times the inter-quartile range, and red +’s indicate 

outliers.  

 Between-groups analysis was conducted on the mean tessellation areas across all time 

points. The tessellation areas of people in Group 1 were significantly smaller than those for 

people in all other groups, supporting our Hypothesis 3a. Group 1 (Mean rank = 212.23) has 

significantly smaller tessellation areas than Group 2 (Mean rank = 385.32), H(1) = 43.11, p < 

.001; and Group 3 (Group 1 Mean rank = 220.10, Group 3 Mean rank = 367.38), H(1) = 

57.10, p < .001; and Group 4 (Group 1 Mean rank = 214.95, Group 4 Mean rank = 393.54), 

H(1) = 74.63, p < .001; and Group 5 (Group 1 Mean rank = 218.65, Group 5 Mean rank = 

370.94), H(1) = 58.14, p < .001, showing that those in the psychological crowd maintained 

less space around them. A one-way ANoVA demonstrated that all other between-groups 

comparisons were non-significant suggesting there was no effect of group on tessellation 

size, F(3, 176) = 2.13, p = .099, w = .135. The linear trend was non-significant, F(1, 176) = 

.38, p = .536, w = .171, indicating no proportional change with group number.  

 

Figure 7: The distribution of tessellation areas for the different groups gathered over 10 time 

points. 
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 Latent Growth Curve modelling was used to predict 1) the effect of group on 

tessellation areas, 2) the effect of group on changes in tessellation areas over three time 

points, and 3) the effect of number of people on the tessellation areas. We used the 

tessellation areas of participants from when their first tessellation area was calculated (Time 

1), and their tessellation areas at the following two time points (Time 2 and Time 3). The 

intercept was weighted as 1 on each time point to constrain them as equal. The slope was 

weighted on the time points as Time 10, Time 21, and Time 32 as the times were equally 

spaced at 4.17 seconds apart. The intercept and slopes were extracted across Time 1, Time 2, 

and Time 3 and used as estimates of (a) baseline tessellation areas and (b) increase or decline 

in tessellation areas across the successive time points. We allowed a direct relationship 

between the number of people in the area at each time point and the corresponding 

tessellation areas of the participants at those time points. Group was regressed on to the 

intercept and slope, and participants were coded in their relevant groups. Robust maximum 

likelihood and full information maximum-likelihood (FIML) were used for missing data in 

Time 3 as the faster speed of pedestrians in Groups 4 and 5 meant that some participants 

could only be tracked across two time points.  

 We used the criteria suggested by Hu and Bentler (1999) to assess model fit, which 

suggests RMSEA < .06, SRMR < .08, CFI > .95. This led us to consider our model provided 

adequate fit, RMSEA = .07, SRMR = .08, CFI = .98. Notably, chi-squared was non-

significant, χ2(7) = 11.60, p = .114. In the model, the number of people was a non-significant 

predictor on tessellation areas at Time 1, β = .090, p = .167, and Time 2, β = .011, p = .167, 

but was a significant predictor at Time 3, β = .128, p = .024, which had the highest number of 

people. The groups have significantly different initial tessellation areas at Time 1, β = .347, p 

< .001, with people in Groups 2, 3, 4, and 5 appearing to have larger initial tessellation areas. 

Group was a significant predictor of change over time, β = .244, p = .029, indicating that the 
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change of tessellation areas over time were different for the groups when including the 

number of people in the area (see Figure 8 for path diagram and R2 values). As can be seen in 

Figure 9, as the number of people increases the tessellation areas were affected in Groups 2, 

3, 4, and 5, but the tessellation areas for Group 1 remained mostly constant regardless of the 

number of people in the area. This indicates support for our Hypothesis 3a that those who 

shared a social identity remained in closer proximity even when there was space available to 

spread out. 

 

Figure 8: Path model where standardised estimates indicate tessellation areas as a function of 

group and number of people in the area. Solid lines indicate significant pathways, and dotted 

lines indicate non-significant pathways (*p < .05, **p < .01, ***p < .001). 
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Figure 9: The median tessellation areas of each group as the number of pedestrians increase. 

Error bars indicate the 25th and 75th percentiles of the data.  

  

 Subgroup size 

 Cluster analysis compared the number of subgroups within each group and found that 

those with a shared social identity (Group 1) walked in larger subgroups. The largest clusters 

in Groups 4 and 5 comprised three people, compared to clusters of 11 in Group 1. Moreover, 

the subgroups typically remained together while walking along the path throughout the 

progression of the time points, supporting our Hypothesis 3b that the psychological crowd 

would remain together in larger groups than in the physical crowd when they were not 

primed to share a social identity. This provides prima facie support for our Hypothesis 3b that 

larger subgroups occur and are maintained in the psychological crowd, rather than splitting 

into the smaller groups that can be seen in physical crowds. For a snapshot of the clusters, see 

Figure 10 where green diamonds denote pedestrians whose trajectories across the entire 

footage have been demonstrated. The progression of one group is shown in the psychological 
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crowd, but two groups are shown in the physical crowd due to the faster walking pace of the 

pedestrians meaning they could not be tracked across all three time points (note that there are 

two groups shown in time point 8 of the physical crowd).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The progression of groups identified by cluster analysis over three time points in 

the physical and psychological crowds.  
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Discussion 

 By priming a crowd to share a social identity and comparing their behaviour to a 

naturally occurring crowd, we show core behavioural differences between psychological and 

physical crowds. We demonstrate that a shared sense of social identity motivated more 

coordinated behaviour amongst the participants. First, the psychological crowd walked 

slower than the other groups. Second, they walked further than the other groups. Third, they 

maintained closer proximity regardless of the number of people in the area. Fourth, they 

consisted of larger groups within the crowd and did not split into the small clusters seen in 

physical crowd.  

 Further, those who had to manoeuvre around the psychological crowd walked faster 

and walked further than when no psychological crowd was present (even when in 

counterflow), while people walking the same direction as the psychological crowd 

maintained more distance around themselves than people in the physical crowd condition. 

This is additional but complementary to our hypotheses, and suggests that when a large 

psychological crowd was present, those outside it change their behaviour in order to avoid 

walking through the crowd.  

 These behavioural patterns have implications for understanding the self-organising 

behaviour of psychological crowds. Research in social psychology has shown that numerous 

crowds with shared social identities exhibit self-organising behaviour and would be 

considered a psychological crowd as defined in this study. For example, at the Hajj when 

pilgrims coordinate their behaviour to perform rituals in potentially dangerous densities 

(Alnabulsi & Drury, 2014), or when a physical crowd become a psychological crowd in an 

emergency and form orderly lines to evacuate and let others go first and stay back to help 

people who are injured (Drury et al., 2009a). Here we provide quantified behavioural 
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signatures of the movements of both psychological and physical crowds, showing how a 

shared social identity leads to different behaviours. 

 To our knowledge, there is no group-specific norm among Sussex Psychology 

students of walking in close proximity. As such, our findings can be extrapolated to other 

psychological crowds and have particular relevance to research on the effect of information 

transference and leadership in crowd behaviour, as we demonstrate that social identity has an 

effect on self-organising behaviour in psychological crowds. In contrast to previous literature 

(such as Acemonglu et al., 2010; Dyer et al., 2009; Moussaïd et al., 2009) in our study we 

provided no leader or information other than the location they were directed to, which group 

the members were in, and who else was in their group (indicated by the identity markers on 

their hats). Having identity markers as a source of information for crowd members might be 

thought to be artificial, but it is seen in other crowd events, such as sporting events where 

fans wear team memorabilia, or music events where attendees wear band emblems. We 

showed that shared social identity was the key information held by participants and the cause 

of the coordinated behaviour. While research on leadership and transference of information 

may be applied to physical crowds, our results suggest that leadership is not necessary for 

self-organised coordination in psychological crowds.  

 People walking in counterflow to the psychological crowd, rather than attempting to 

walk through the psychological crowd, steered to the side of the crowd and walked in 

counterflow between the psychological crowd and those who were walking in the same 

direction as the psychological crowd. This could indicate that they treated the psychological 

crowd as one group and could distinguish between the psychological crowd and those in 

Group 2 who were walking in the same direction. Similarly, rather than joining the 

psychological crowd, Group 2 avoided the crowd and moved around it, indicating that they 

too perceived the crowd as an entity due to the coordinated behaviour. We thus suggest that a 
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psychological crowd may cause people around the crowd to walk differently than when a 

merely physical crowd is present. However, one limitation of the present study is that these 

avoidance behaviours could be due to the lack of available room to walk in (due to the higher 

density of Group 1 than all other groups) rather than perception of the psychological group as 

a whole. Future research should examine whether the psychological crowd was perceived as 

an entity by outsiders, and whether the same behaviour occurs when there is more space 

available for the pedestrians to avoid the crowd. 

 In previous research, social identity has been shown to affect how a crowd interacts in 

emergency evacuations, such as survivors stopping to stay with and help others in their 

group, therefore delaying evacuation time (Drury et al., 2009a; Reuter et al., 2012). Our 

results indicate that the crowd members may cluster together even when there is space 

available. The decreased walking speed of the psychological crowd supports the findings of 

Vizzari et al. (2015) that the speed of groups is reduced when they attempt to keep formation. 

This is an important consideration for safety planning of crowd events and crowd models that 

assume crowds will split up into smaller subgroups (Braun et al., 2003). Our results suggest 

that when a shared social identity is salient, the members of the crowd may remain in larger 

groups rather than splitting up or acting as individuals, as we observed in the physical crowd. 

Future research could extend this principle to crowd safety to explore the effect of social 

identity on cluster sizes within crowds, and how large clusters remaining together effects 

ingress and egress time. 

 As Reuter et al. (2014) indicate, computer models are increasingly being used to plan 

for crowd behaviour in public spaces, and to do this safely they must be validated using real-

world data. However, a recent systematic review of crowd simulations (Templeton, Drury, & 

Philippides, 2015) and found that, as yet, modellers have not incorporated the different 

behaviour of psychological crowds where an entire crowd shares a social identity. Here we 
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quantify how social identity influences the behaviour of people in psychological crowds 

indicating that it should be considered in interpretations of self-organising crowd behaviour. 

The differences in speed, distance and proximity are crucial factors to consider when 

planning how a crowd will behave during ingress, egress, or in the event of an emergency 

situation. Crowd safety professionals and crowd modellers should thus develop crowd 

planning and simulations that distinguish the behavioural signatures of psychological and 

physical crowds in order to accurately replicate these different behavioural patterns.  
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Chapter 4 

 

Paper 3 - Placing intragroup and intergroup relations into pedestrian flow dynamics 

 

Reference: 

Templeton, A., Drury, J., & Philippides, A. (Submitted to Royal Society: Open Science). 

Placing intragroup and intergroup relations into pedestrian flow dynamics. 
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Abstract 

 Understanding pedestrian flow is important to predict crowd behaviour at mass 

events, but research in crowd dynamics has often treated crowds as either a mass of 

individuals acting independently or merely involving small groups. Little research has 

examined how large groups interact in a shared space, for example at sporting events, 

festivals, and transport hubs. Previous research in social psychology has demonstrated that 

social identities can influence the micro-level movement of psychological groups, yet thus 

far, no research has investigated the behavioural effects social identities can have when two 

large psychological groups are co-present. The present study investigates the effect that the 

presence of large groups with different social identities can have on pedestrian behaviour, 

focussing on how groups with different social identities walk in counterflow. Participants (N 

= 54) were split into two groups and primed to have identities as either ‘team A’ or ‘team B’. 

Prior to walking, questionnaires measured identification towards ingroup and outgroup 

members. The trajectories of all pedestrians were tracked to measure their i) speed of 

movement and distance walked, and ii) proximity between participants when a) team A were 

the only group present, and b) team A and team B walked in counterflow. Results indicate 

that, in comparison to walking alone, the presence of another group caused team A to 

collectively self-organise to reduce their speed and distance walked in order to remain closer 

to ingroup members. We discuss the significance of intragroup and intergroup dynamics on 

ingress and egress in computer models of pedestrian flow. 
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Introduction 

 

Predicting and monitoring pedestrian behaviour is crucial for safety at mass events. 

Crowd models are commonly used to predict behaviour at sporting events such as at the 

Olympic Games (Owen, 2012); the religious pilgrimage of the Hajj (Crowdvision, 2017); and 

to plan for pedestrian behaviour in transport hubs both in ordinary scenarios and emergency 

evacuations (Burrows, 2015). Crowd models are based on key assumptions about what 

motivates pedestrian behaviour, but the factors underlying collective behaviour are widely 

debated. One approach suggests that crowd members merely act as they would as individuals 

according to their personality (e.g. Bode et al., 2015; Moussaïd & Trauernicht, 2016). Other 

research proposes that crowd members are guided by visual cues in the environment, such as 

the distance of the pedestrian to obstacles and other pedestrians (Moussaïd et al., 2009; 

Moussaïd et al., 2011). A third area of research focusses on how group formations both 

influence and are influenced by crowd flow (Vizzari et al., 2015). However, these approaches 

are yet to incorporate current developments in social psychology to address how large group 

members interact, and how they are influenced by the presence of another large group in 

counterflow. The present study investigates the impact of social identity on pedestrian 

behaviour when a large group walk on their own, and when two large groups with different 

group identities walk in counterflow. We examine how social identities affect self-organising 

behaviour to maintain close proximity to ingroup members through regulation of the speed 

and distance walked, when a) walking alone and b) when walking in counterflow to an 

outgroup.  

Approaches to pedestrian behaviour 

 Numerous approaches have attempted to explain pedestrian behaviour in crowds. 

Some accounts have suggested that pedestrian behaviour in crowds is simply a derivative of 
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the personalities or characteristics already present in individuals in the crowd. For example, a 

virtual evacuation experiment by Moussaïd and Trauernicht (2016) examined cooperation 

during emergencies based on personality types. Participants’ personality types were measured 

based on their Social Value Orientation scores (Murphy et al., 2011), to assess how 

participants allocated resources between themselves and another person. During the 

simulation, participants were allocated rewards or penalties for helping other people escape 

an evacuation at varying levels of risk to the participants escaping safely themselves. 

Moussaïd and Trauernicht found that behaviour in emergency situations was due to 

participants’ pre-existing tendencies of weighing up their chance of success if they helped 

others. This individualistic approach to crowds - where crowd behaviour is treated as a 

derivative of numerous individuals within the crowd without psychological connections to 

one another - is often used in computer models which employ principles from particle 

physics, such as social force models (for examples, see Gawroński & Krzysztof, 2011; 

Gutierrz, Frischer, Cerezo, Gomez, & Seron, 2007; Heliovaara, Korhonen, Hostikka, & 

Ehtamo, 2012). While these approaches are important to model crowds of individuals during 

ingress or egress scenarios, they reduce crowd flow and interactions between pedestrians to 

how individuals can best reach targets while manoeuvring around others. These approaches 

neglect the role of connections between pedestrians, and how groups acting together can 

influence crowd flow. 

 Other research has understood pedestrian behaviour as being a response to social 

information in the environment, such as how the perception of other people’s behaviour can 

influence individual navigation through crowds. For example, research suggests that 

pedestrians self-organise to create walking lanes and follow pedestrians in front of them 

when in counterflow (Helbing et al., 2001) and choose the direction that will least decrease 

their speed (Moussaïd et al., 2009). Other examples include how pedestrians are influenced 
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by where other pedestrians look and walk (Gallup et al., 2012; Helbing et al., 2000) and how 

quickly other pedestrians respond at the beginning of an evacuation (Chow, 2007; Purser & 

Bensilum, 2001; Nilsson & Johansson, 2009). A key study conducted by Bode, Wogoum, 

and Codling (2014) examined the role of information from other pedestrians in a simulated 

crowd experiment. They compared the influence of signs, the movement of other pedestrians, 

and previously memorised information about the environment. They found that the 

movement of other pedestrians and the memorised information did not have a significant 

effect on exit choice alone, but when the memorised information about the environment and 

the movement of other pedestrians were combined to be in contrast to the signs in the 

environment, the number of participants who followed the signs reduced. However, this 

research examines how individuals are influenced by the behaviour of others who they are 

unconnected to. They do not address the effect of pre-existing connections between crowd 

members, or how groups collectively self-organise within a crowd to move together. 

 One study which does investigate such group behaviour examines how groups create 

and maintain formations as they progress through a crowd. Moussaïd et al. (2010) analysed 

1,500 pedestrian groups and suggest that group members will aim to walk side-by-side when 

in a crowd of low density, or a ‘V’ formation to ease communication as they progress through 

a higher density crowd. However, as the crowd density increases these formations can be 

broken to allow faster movement. A similar finding occurs in Köster et al. (2011) who found 

that students in an evacuation would try to walk abreast to enhance communication. This 

principle was extended by Vizzari et al. (2015) to analyse the effect of group size on 

pedestrian flow and formation. Vizzari et al. (2015) manipulated the size of the group to have 

pedestrians walk together in counterflow either as single pedestrians, pairs, a group of three, 

or a group of six, and found that pedestrian evacuation time was increased when the groups 

maintained their formations throughout the crowd. 
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 Such analysis on the role of collision avoidance, social cues, and group formations 

have made important contributions to understanding pedestrian behaviour in crowds. 

However, these have predominantly dealt with individuals receiving social cues, or small 

groups walking through a crowd. They have not addressed the underlying factors that make a 

‘group’. Moreover, despite the regular occurrence of crowds in counterflow such as at fans at 

sporting events and music festivals, most research has looked at when small groups of people 

walk in counterflow. Little research has addressed what happens when two large groups come 

into counterflow, such as pedestrians at large sporting events going to different areas in an 

arena, and festival goers moving between different stages. One theory from social psychology 

that can help to understand the collective behaviour of large groups, and is based on extensive 

empirical research, is SCT (Turner et al., 1987).  

Incorporating intra- and intergroup psychology   

To understand large group behaviour, a useful distinction can be drawn between 

physical crowds and psychological crowds (Reicher, 2011). Physical crowds comprise 

individuals and small groups of friends or family members, for example crowds in shopping 

centres and transport hubs, who are simply in the same space together. Psychological crowds, 

however, are those where the members of the crowd share the sense of being in the same 

group; people who are part of such crowds act in accordance with their identity as a member 

of that group. Therefore a single physical crowd may contain none, one, two, three or more 

psychological crowds within it. SCT explains that when a person’s identity as a member of 

that group (their social identity) is salient, a process of depersonalisation occurs where the 

individuals define themselves in terms of their social identity rather than their personal 

identity. It demonstrates how people categorise themselves and others into groups and how 

social identities can affect people’s perceptions and feelings. One way that people understand 

their group identities is how much one perceives oneself to be similar to members of their 
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ingroup compared to members of another outgroup. The meta-contrast principle (Turner, 

1991) indicates that a group is more likely to be perceived as a group if the differences 

between ingroup members are smaller than the differences between the ingroup and outgroup 

members. 

Research in this area has shown how shared social identities increased people’s 

feelings of safety in dangerous crowd densities at the Hajj (Alnabulsi & Drury, 2014), 

mitigated perceptions of the cold at the Magh Mela festival (Pandey et al., 2014), and 

increased positive experience amongst festival goers, protestors, and football supporters 

(Neville & Reicher, 2011). Shared social identities can also influence the behaviour of crowd 

members. For example, during a free outdoor music event on Brighton beach, 2002, the 

crowd reached such a high density that emergency services were unable to enter the crowd. 

However, the shared social identity amongst the attendees led the crowd to self-organise to 

provide other group members – who were previously strangers - with water and coordinate 

their movement during egress to evacuate the beach safely (Drury et al., 2015). There is also 

evidence that a shared social identity led survivors of the July 7th 2005 London bombings to 

come together to apply first aid to one another and organise escaping safely in orderly queues 

in the absence of emergency services (Drury et al., 2009b). The effect of group identification 

on evacuation behaviour has also been demonstrated by Drury et al. (2009) using a virtual 

reality simulation. In this simulation, participants had to escape a fire in an underground rail 

station. Their research indicated that cooperation amongst participants increased among those 

who most highly identified with the group due to the shared fate induced by the evacuation, 

and this decreased competitive behaviour such as shoving and pushing during egress. 

Crucially, social identity has also been shown to affect the maintenance of physical 

distance between people. Novelli et al. (2010) found that when participants defined 

themselves as being in the same group as another person in the room, the participants moved 
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their chairs significantly closer together than if the other person was perceived to be a 

member of a different group. Overall, this research provides prima facie evidence that large 

groups with a shared social identity collectively self-organise their behaviour with ingroup 

members, and that people prefer to be closer to ingroup than outgroup members. 

The Current Study 

 This study aims to examine the hypothesis from social psychology that people with a 

shared social identity will coordinate their behaviour with their ingroup to be closer to 

ingroup members over outgroup members. Specifically, we analyse pedestrian flow to 

determine how social identities affect the proximity between participants. Further, we utilise 

the meta-contrast principle to explore whether proximity is increased in the presence of an 

outgroup, and the consequences this has for pedestrian flow. Using a minimal group 

manipulation, we created two teams and explored their group identification and movement 

behaviour. We hypothesised that shared social identity will cause group members to, 1) 

regulate their speed and distance to remain together, and 2) regulate their behaviour to 

maintain closer proximity when in the presence of an outgroup. 

Methodology 

Procedure 

Participants were selected based on their attendance of a second year Psychology lecture 

at the University of Sussex, and were recruited under the guise of participating in a study 

researching how people walk. Before leaving their lecture, participants were randomly 

allocated into team A (n = 28) or team B (n = 26) using a random number generator2. We 

used standard forms of social identity manipulation based on minimal group paradigms by 

priming participants to perceive themselves as being in different groups to get participants to 

                                                           
2 Initially there were 28 participants in both teams, but two participants from Team B left before the first phase 

of the study. 
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discriminate on the basis of group membership (Haslam, 2004). To do this, we primed 

separate identities for the two teams with the aim of making their identities as team A or team 

B members more salient than any pre-existing bonds amongst the participants. After the 

participants exited the lecture theatre, research assistants instructed them to look at the tables 

on opposite sides of a courtyard. One table had a large ‘Team A’ sign, while the other table 

had a large ‘Team B’ sign, and participants were instructed to go to their allocated team table. 

Participants were given baseball caps as further identity primes; participants in team A were 

provided with black baseball caps with an ‘A’ logo on the front, and participants in team B 

were given red caps with ‘B’ logo on them. These identity primes allowed participants to 

perceive which team the other participants were in, and additionally enabled the researcher to 

allocate participants into the correct groups during the coding of the video data.  

Group identity manipulation check   

Prior to walking, participants were given questionnaires based on group identification 

measures from Doosje et al. (1995) to measure their identification with members of their own 

team (ingroup members) versus identification with members of the other team (outgroup 

members). First, participants were asked to declare which group they were a member of and 

name who the other group were. Participants were then asked to rate their level of 

identification towards their own team and the opposite team, using identical questions about 

their bond, affinity, and commitment towards each group on a Likert scale of 1 (not at all) to 

7 (very much). The questions were; ‘I feel a bond with the people in this group’, ‘I feel an 

affinity with this group’, and ‘I feel committed to this group’ (the full questionnaire is 

provided in Appendix 1). 

Behavioural data 

The research took place at the University of Sussex on a main pathway through the 

campus. Filming was conducted with a Nikon PixPro AZ361 digital camera with a 36x wide 
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24-864mm equivalent Aspheric HD Zoom Lens with no zoom or lens distortion, and took 

place from a low bridge above the path the participants walked along to enable object 

tracking of their movement. A section of the path (length = 10 metres, width = 3.75 metres) 

was selected as it was wide enough for the two teams to walk in counterflow without 

reaching a dangerous density. This path serves as the main route between their lecture where 

the study began, and two areas at opposite ends of the path where participants were asked to 

walk to (please see Figure 11 for a map of the locations, where the area that was filmed is 

indicated by the dashed line).  

 

  

Figure 11: Map of area (not drawn to scale). 

 

Behavioural data was collected in three phases. In the first phase, team A were given 

the instruction ‘people who are in team A, please walk to [Area 1] where you will be met by a 
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research assistant who will give you further instructions’. When team A arrived there, the 

assistant sent them to Area 2 on the other side of campus which enabled the experimenters to 

film team A walking along a pathway without any other groups present. This data provided a 

comparison of how the team walked when sharing a social identity but when they were not in 

counterflow with another group who shared a different social identity. 

In the second phase, once team A had arrived at their destination, participants in team 

B were given the instructions ‘people who are in team B, please walk to [Area 1] where you 

will be met by a research assistant who will give you further instructions’. This location was 

chosen as it positioned team A and team B on opposite sides of the bridge where filming was 

conducted. 

In the final phase, the research assistants instructed team A to walk back to Area 1 

and team B to walk to Area 2. To reach their destinations, the participants would need to 

walk along the main path at the same time from opposite directions, meaning that they would 

be in counterflow. When the teams walked in counterflow, 4 pedestrians walked the same 

direction as team A and 1 pedestrian walked in the same direction at team B. These extra 

pedestrians were not included in the analysis for speed or distance, but were included when 

using the number of people present in the area as a predictor of the proximity between 

pedestrians.  

Due to the density of the groups and the angle of filming from the bridge, it was not 

possible to ascertain the feet positions of the participants. Instead, the positions of the 

pedestrians’ heads were identified using MATLAB software to manually mark the coordinate 

positions of the participants every 5 frames (frame rate 24 frames per second, approximately 

1/3 of a step) to reconstruct their trajectories as they walked along the pathway. The data was 

transformed from the camera angle to a directly top-down planar view to assess the location 

of the pedestrians on the ground. The transformations were calculated using the corners of a 
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3.75 metre by 5 metre rectangle painted on the pathway, assuming the participants had a 

constant height of 169 cm (taken as the midpoint between the average heights of men and 

women in the UK). This leads to potential error both from height deviations from the 

assumed height, and from swaying of heads of the participants walked. The median and 

interquartile ranges were 21 +/- 14cm for both crowd conditions (the camera did not move between 

the conditions where team A walked alone and when teams A and B walked in counterflow). 

Importantly, the differences were consistent across the participants, so they do not affect measures of 

speed and distance travelled.  

Speed and distance of movement 

The positions of the participants’ feet were used to ascertain the distance walked, speed 

of movement, and the proximity between individuals. Distance was calculated in MATLAB 

by summing the distance between the coordinates of each projected location. The speed was 

calculated as speed = distance/time (time = 0.2085 as 1 second/frame rate * 5 for the frame 

gap). The speed and distance were measured for team A when walking alone, and both team 

A and team B when walking in contraflow to determine whether there was a difference in 

speed and distance when the team A walked alone and when they walked in counterflow. 

Proximity between ingroup members 

To ascertain how much space individuals maintained around them, a snapshot of the 

pedestrians’ projected locations was taken every 4.17 seconds (100 frames) to produce the 

positions of the pedestrians at eight time points. The space around each pedestrian was 

calculated using Sievers’s (2012) method for Voronoi decomposition, with the tessellation 

areas given an upper bound of 1 metre to avoid inflating the space around individuals 

walking on the periphery of the groups. Following this, Latent Growth Curve Modelling was 

used to determine whether 1) group membership was a predictor of tessellation areas over 

three time points in the counterflow condition, and 2) the number of people present in the 



122 
 

area at different time points predicted the tessellation areas by using the number of people 

present as a time-varying covariate.  

Results 

Manipulation checks 

A 2x2 mixed design ANoVA showed that ratings of identification were significantly 

higher towards the ingroup (team A: M = 3.13, SE = 0.28; team B: M = 2.96, SE = 0.27), than 

towards the outgroup (team A: M = 1.91, SE = 0.17; team B: M = 1.49, SE = 0.17), F(1) = 

69.73, p < .001. The difference in ratings of identification given by team A and B were non-

significant, F(1) = 0.64, p = .427, indicating that both groups rated higher identification 

towards the ingroup than the outgroup. 

Speed and distance 

 Kolmogorov-Smirnov tests revealed that when team A walked alone neither their 

speed or distance deviated significantly from normal. In the counterflow condition, neither 

the speed of team A or B deviated significantly from normal, however, the distance of both 

teams were non-normal. When examining tessellation areas across the eight time points, the 

tessellation areas of team A were normal when walking alone, but tessellation areas for team 

A and team B in counterflow were non-normal (see Table 3 for D-values, degrees of 

freedom, and p-values).  

 Independent t-tests revealed that team A walked significantly faster when walking 

alone (M = 111.94, SE = 1.41) than they did when walking in counterflow (M = 57.91, SE = 

0.76), 54.03, BCa 95% CI [50.79, 57.27], t(51) = 33.73, p < .001, r = .978. They also walked 

significantly further when alone (M = 937.18, SE = 7.75) than when in counterflow (M = 

520.52, SE = 4.78), 416.66, BCa 95% CI [403.12, 430.21], t(51) = 61.77, p < .001, r = .993. 

Together, these results suggest that the speed of movement and distance both decreased in the 

presence of an outgroup. 
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Table 3  

The D-values, degrees of freedom, and p-values for speed, distance, and tessellations areas 

of groups in each condition 

    Speed     Distance     
Tessellation 

areas 
  

  D df p D df p D df p 

Team A alone .11 27 .200 .12 27 .200 .08 77 .200 

Team A counterflow .08 26 .082 .20 26 .008 .12 112 .001 

Team B counterflow .17 26 .060 .19 26 .013 .15 115 .001 

 

In the counterflow condition, an independent t-test showed team A (M = 57.82, SE = 0.79) 

walked significantly faster than team B (M = 55.52, SE = 0.81), 2.30, BCa 95% CI [0.031, 

4.57], t(50) = 2.04, p = .047, r = .276. A Kruskal-Wallis test showed that there was a non-

significant difference in distance walked between the different teams (team A: Mean rank = 

32.60; team B Mean rank = 27.53), χ2(1) = 1.45, p = .229.  

Table 4  

Means and standard deviations for team A and team B 

 

Speed 

(metres per second) 

Distance  

(metres) 

Tessellation Areas 

(cm2) 

 
Mean SD Mean SD Mean SD 

Team A 57.82 4.01 519.79 25.05 9246.14 5546.68 

Team B 55.52 4.13 519.06 17.80 7791.71 5647.99 

 

Tessellation areas 

 Kolmogorov-Smirnov tests revealed that the tessellation areas of team A when 

walking alone were normal across the eight time points, but the tessellation areas for team A 

when walking alone and team B were non-normal across the 5 time points (see Table 3 for D-
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values, degrees of freedom, and p-values). As such, a Kruskal-Wallis test was used and 

revealed a significant difference between the tessellation areas of team A when alone (Mean 

rank = 116) than when in counterflow (Mean rank = 55.38), H(1) = 65.67, p < .001, 

providing support for Hypothesis 2 that team A members maintained closer proximity in the 

presence of team B (see Figure 12 for a snapshot of team A in both conditions, where the 

heads of team A are depicted in purple dots and team B in red dots). Moreover, team A 

(Mean rank = 123.71) had significantly greater tessellation areas than team B (Mean rank = 

104.55), H(1)= 4.83, p = .028 when walking in counterflow (see Table 4 for a comparison of 

means, standard deviations and test statistics for each group). 

Latent Growth Curve Modelling was used to ascertain 1) whether group was a 

predictor of tessellation areas across three time points, and 2) the effect of the number of 

people in the area on the tessellation areas. Due to participants walking through the footage, 

each participant was present for approximately three-points of total eight time points. As 

such, we used the tessellation areas of participants from when their first tessellation area was 

calculated (Time 1), and their tessellation areas at the following two time points (Time 2 and 

Time 3). The intercept was weighted as 1 on each time point to constrain them as equal. The 

slope was weighted on the time points as Time 10, Time 21, and Time 32, as the times were 

equally spaced at 4.17 seconds apart. The intercept and slopes were extracted across Time 1, 

Time 2, and Time 3, and used as estimates of (a) baseline tessellation areas before coming 

into contact with the outgroup (Time 1) and (b) increase or decline in tessellation areas across 

the successive time points when the groups are in counterflow. To determine whether the 

number of people predicted tessellation areas, we used the number of people in the area at 

each time point as a time-varying covariate with the corresponding tessellation areas of the 

participants at those time points. Group was regressed onto the intercept and slope, and 

participants were coded in their relevant groups (team A = 1, team B = 0). Robust maximum 
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likelihood was used due to the non-normal distributions of team B, and we chose full 

information maximum-likelihood (FIML) as there were 5 missing data-points across Time 2 

and Time 3 due to people moving outside the parameters of the footage. 

 

 

 

(a)       (b) 

 

 

 

 

 

 

 

 

 

Figure 12: Snapshots from footage from (a) team A walking alone compared to (b) when 

team A and B walk in counterflow.  

 

 

We used the criteria suggested by Hu and Bentler (1999) to assess model fit, where 

the model fit is based on RMSEA < 0.06, SRMR < 0.08, CFI >  0.95. This led us to consider 

our model provided overall adequate fit, RMSEA = 0.07, SRMR = 0.07, CFI = 0.98, with a 

non-significant chi-square, χ2(15) = 9.05, p = 0.249. In the model, the number of people was 

a non-significant predictor on tessellation areas at Time 1, β = -0.849, p = .073, but a 

significant predictor at Time 2, β = -0.253, p < .001, and Time 3, β = -0.387, p < .001, 
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indicating that the tessellation areas were influenced by the overall number of people in the 

area, providing support for Hypothesis 2 (for path diagram, see Figure 13). As can be seen in 

Figure 14, the tessellation areas decrease as the number of people in the area increase, 

indicating that participants move closer to the ingroup when in the presence of an outgroup. 

In Figure 14, tessellation areas are taken from each pedestrian’s first occurrence in the 

footage (Time 1) and subsequent two time points (Time 2 and Time 3). The x-axis denotes 

the data binned between ranges of people present to show mean tessellation areas as number 

of people present in the area increases. The means and standard deviations for each group 

across all eight time points and corresponding number of people in the area are presented in 

Table 5. 

Using group as a predictor on the intercept revealed that the groups have significantly 

different initial tessellation areas at Time 1, β = 0.550, p < .001, with people in team B having 

larger initial tessellation areas (see Figure 14). Group was also a significant predictor of 

change over time, β = -0.849, p < .001, indicating that the change of tessellation areas over 

time were different for the groups when including the number of people in the area. The 

number of people present in the area was a non-significant predictor of tessellation areas at 

Time 1, β = -0.163, p = .073, but was a significant predictor of tessellation areas at Time 2, β 

= 0.253, p = .007, and Time 3, β = .387, p < .001. However, as can be seen in Figure 14, the 

tessellation area for both groups decreased in the presence of the outgroup overall.  

 

 

 

 

 

 



127 
 

Combining speed, distance, and proximity 

In summary, when walking alone, team A maintained close proximity with ingroup members, 

walked faster, and walked further. In the contraflow condition, team A maintained closer 

proximity and reduced their speed and distance. This provides support for Hypothesis 1 that 

participants regulated their movement and speed to remain together, and Hypothesis 2 that 

the participants regulated their speed and distance walked to maintain a closer proximity with 

ingroup members when outgroup members were present. Although we could not obtain data 

of team B walking alone, Figure 16 demonstrates that the distance, speed, and tessellation 

areas of both team A and B in counterflow were less than Team A walking alone, tentatively 

suggesting that team B were also affected by the presence of another group counterflow.  

 

Figure 13. Path diagram depicting results for Latent Growth Curve Modelling with 

standardised estimates indicating tessellation areas as a function of group and number of 

people in the area. Solid lines indicate significant pathways, and dotted lines indicate non-

significant pathways (*p < .05, **p < .01, ***p < .001). 
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Figure 14: The mean tessellation areas and standard deviations for team A and team B used 

in the Latent Growth Curve Model.   

 

Table 5 

The mean tessellation areas and standard deviations for both teams as the number of people 

in the area increases 

 

Number of people in the area 

15 20 21 23 23 28 30 34 

Team 

A 

Mean 10276.31 10444.21 10274.28 9725.41 10837.26 6293.34 7800.33 6355.74 

SD 5823.80 5186.01 4426.48 7318.68 4642.58 5283.16 4680.84 4603.63 

Team 

B 

Mean 8996.22 7968.93 7681.54 7301.19 7035.53 6278.72 5462.18 5615.28 

SD 6218.25 4006.80 3397.70 6309.65 5026.07 5669.84 4387.73 4405.69 
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Figure 16: The speed, distance, and tessellation areas of team A walking alone, team A 

walking in counterflow, and team B walking in counterflow.  

Discussion 

 This study suggests that social identity motivated large groups to self-organise to 

remain together, that this was increased by the presence of an outgroup, and that this 

influenced pedestrian flow when in counterflow with others. The manipulation check found 

that participants reported higher identification with members of their ingroup than the 

outgroup, which supports the suggestion that it was the social identity manipulation, and not 

another factor, that led to some of the behaviours observed. Specifically, shared social 

identity had three key behavioural effects. First, having a shared social identity caused the 

participants to self-organise to walk together, as can be seen by the proximity of team A 

members to each other when walking alone. Second, the presence of a group with a different 

social identity enhanced this behaviour as participants moved closer to one another in order to 

stay together as a group. The slower speed and reduced distance walked by team A when 

walking in counterflow compared to walking alone indicates that participants prioritised 

remaining together over easing pedestrian flow. Notably this occurred on quite a narrow path 

of 3.75 metres in width that was surrounded by grass that they could walk on. Participants 
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could have chosen to move through the crowd more quickly by splitting in to smaller groups, 

or even moving as individuals. Instead, participants regulated their behaviour in order to keep 

formation as a group on the path, electing to stay two, three, or four people abreast and move 

closer together. 

 The attempt by participants to remain with team members supports the formations 

found in the low density crowds reported by Moussaïd et al. (2010), but instead of breaking 

up in higher densities, participants maintained their formations even as the number of people 

in the area increased. The participants attempted to stay abreast while walking, replicating the 

formations found by Köster et al. (2011), and decreased their speed in order to stay together, 

repeating the small group behaviour found in Vizzari et al. (2015). The fact that participants 

with a shared social identity did not split up appears to be inconsistent with much research in 

pedestrian flow. For example, the participants did not form the multiple single lanes found by 

Helbing et al. (2001), instead electing to create two large lanes to stay together. Moreover, in 

contrast to Moussaïd et al. (2009), they did not choose the direction of movement which 

would least decrease their speed, instead prioritising staying with ingroup members. These 

findings suggest that when considering pedestrian counterflow in crowds, research should 

consider that groups with a shared social identity prioritise staying together even when it 

impedes their speed. 

There are potential limitations to this study pointing to avenues for future research. 

Due to the angle of filming from the bridge, it was only possible to capture a section of the 

path where the groups were already only six metres away from coming into contact. This 

meant that participants were already in the process of manoeuvring to take over a section of 

the path compared to the outgroup. Future research should aim to examine behaviour 

beginning from a point when they are further apart. Moreover, this path was quite narrow and 

the participants may have perceived the edge of the path as a barrier instead of walking on the 
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grass. Future research should examine proximity and formations when there is more space 

available for the pedestrians to move in. Although there were only five additional pedestrians 

to our primed participants in the counterflow condition, ideally other pedestrians would not 

have been present to evaluate how the teams interacted solely with one another. In this study 

we were unable to obtain footage of Team B walking alone to compare their behaviour to the 

counterflow condition, thus having to compare Team A in both conditions only. Future 

research would benefit from replicating this study where both groups are filmed prior to 

walking in counterflow, in order to compare how the presence of another group influenced 

their behaviour more thoroughly. Finally, we analysed 61 participants across three time 

points for Latent Growth Curve Modelling. Although there is debate about the optimum 

number of participants needed to reliably estimate growth models (see Curran, Obeidat, & 

Losardo, 2010, for an overview), this is dependent upon the complexity of the model and 

variance explained by the model. Our model indices imply that the model was an adequate 

fit, but future research using Latent Growth Curve Modelling should aim to have more 

participants for increased reliability.  

Large psychological groups and psychological crowds who move on their own or in 

contraflow are a common occurrence in mass crowd events. For example, ingress and egress 

of fans at a concert, festival-goers moving to different stages, sports fans of opposing teams 

entering or leaving a stadium, protests and counter-protests, large groups travelling to and 

from these events at transport hubs, and emergency evacuations. Often, these psychological 

groups and crowds are present within a larger physical crowd. The present study indicates 

that sharing a group identity causes ingroup members to collectively self-regulate to walk 

together. Moreover, this effect is increased when in the presence of another psychological 

group in counterflow, leading participants to decrease their speed in order to remain together 

and maintain their formation. This is contrary to the research of Helbing et al. (2001) and 
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Moussaïd et al. (2009) which suggests that groups split up to improve crowd flow; in our 

experiment participants with a shared identity prioritised staying together over moving 

quickly. In order to adequately plan for crowd safety, modellers and safety practitioners 

should consider the behavioural differences between physical crowds and psychological 

crowds. Crucially, they should incorporate how people with a shared identity prioritise 

moving together over easing crowd flow, and how this can affect the ingress and egress of 

both psychological crowds on their own, and psychological crowds within physical crowds. 
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Chapter 5 

 

Paper 4 - Incorporating self-categorisation into a computer model of crowd behaviour 

 

Reference: 

Templeton, A., Drury, J., & Philippides, A. (Submitted to Scientific Reports). Incorporating 

self-categorisation into a computer model of crowd behaviour. 
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Abstract 

 Computer models are used to simulate crowd behaviour for safety at mass events. 

However, these models are often based on incorrect assumptions that crowds behave simply 

as individuals or consist only of small groups. SCT has suggested that there are differences 

between physical crowds of unconnected individuals, and psychological crowds whose 

collective behaviour is based on a shared social identity. Research into behavioural effects of 

self-categorisation has demonstrated that pedestrians in a psychological crowd collectively 

self-organise to maintain close proximity to ingroup members, which requires regulation of 

their walking speed and distance to move as a large group. As yet, no computer model has 

incorporated how large crowds regulate close proximity based on their shared social 

identities. Moreover, popular approaches to crowd modelling are limited in how realistically 

they can simulate dense crowds due to either high computational load or limited capacity for 

agent navigation. We present the first attempt to introduce principles of SCT into a computer 

model of collective behaviour based on empirical data on crowd movement. Using the OSM, 

we incorporate a self-categorisation parameter that attracts pedestrians to ingroup members. 

We validate the model by comparing the speed, distance, and proximity of pedestrians to 

footage of a crowd who i) walked without having social identities primed (physical crowd), 

and ii) walked when primed to share a social identity (psychological crowd). We discuss the 

implications of incorporating SCT into computer models of psychological crowds to simulate 

collective behaviour, and the importance of understanding social identities for crowd safety 

planning.  
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Introduction 

Computer models of collective behaviour provide a key tool for planning and 

monitoring pedestrian behaviour at crowd events, including crowd flow during ingress and 

egress at transport hubs, concerts, sporting events, and behaviour during emergency 

evacuations. Two main approaches have been used to model crowd flow: force-based models 

in continuous space (e.g. Langston et al., 2006; Zeng, Chen, Najamura, & Iryo-Asano, 2014) 

and cellular automata (e.g. Dijkstra, Jessurun, & Timmermans, 2001; Kirik, Yurge’yan, & 

Krouglov, 2007). These approaches use repulsion potentials to simulate the role of navigation 

in collision avoidance while being attracted to a target during ingress and egress. However, 

social force models require high computational effort, and cellular automata often have 

limited capacity for the acute steering required for pedestrians in large groups. Moreover, a 

systematic review of the crowd modelling literature by Templeton et al. (2015) found that 

crowd models rarely address the underlying principles of what makes a ‘group’ or ‘crowd’. 

Modellers simulated crowds where pedestrians either behaved as a homogeneous mass, acted 

as individuals without connections to one another, or consisted of small groups with varying 

levels of inter-personal social connections. These models did not distinguish between 

physical crowds acting as individuals or small groups of people, and psychological crowds 

(Reicher, 2011) who collectively self-organise their behaviour due to a sense of being in the 

same social category. One theory that can explain the basis of these psychological 

differences, is SCT (Turner et al., 1987). 

 Research based on SCT has indicated that group behaviour can be understood through 

shared social identities. For example, SCT has demonstrated that people will sit in closer 

proximity to unknown people who are perceived to be ingroup members than outgroup 

members (Novelli et al., 2010), and how members of a crowd who perceived others as 

ingroup members coordinated their actions for safe egress from a music event (Drury et al., 



136 
 

2015). Recent research by Templeton et al. (in preparation) indicates that social identities can 

also influence pedestrian movement in crowds. They compared the walking behaviour of a 

physical crowd comprised of individuals and small groups in the same place at the same time, 

and a psychological crowd where most of the people present in the physical crowd were 

primed to share a social identity. Comparisons between the crowds suggest that a shared 

social identity motivated psychological crowd members to collectively self-regulate to 

maintain close proximity with ingroup members while walking, causing them to reduce their 

speed and walk further to remain together. Importantly, the collective self-regulation to 

obtain close proximity in large groups was not found in the physical crowd scenario.  

 The behavioural differences between physical and psychological crowds have 

important implications for computer models of pedestrian flow that implement navigation 

primarily through repulsion potentials and attraction to targets. It suggests that these models 

are missing a key element for modelling the collective behaviour of psychological crowds: 

how self-categorisation causes attraction between ingroup members on a large scale, and how 

this attraction effects the speed and distance walked by crowd members. Based on the 

evidence of collective self-regulation in psychological crowds to maintain close proximity, 

computer models aiming to simulate psychological crowd flow should incorporate the 

importance of ingroup members regulating their speed of movement and distance walked to 

remain close together. Instead of simply modelling small groups within a larger physical 

crowd, these models should simulate the collective coordination of large groups within a 

crowd, or even the entire crowd acting as a group.  

 This paper aims to demonstrate the effect of social identities on crowd flow by 

incorporating the collective self-regulation behaviour found in the psychological crowd into a 

computer model of crowd movement. First, this paper will briefly address the theoretical and 

practical considerations for modelling large crowds where pedestrians share a category 
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membership. Second, we present a pedestrian model of physical crowd behaviour based on 

collision avoidance through repulsion potentials. The speed of walking, distance walked, and 

proximity between pedestrians are validated against the behaviour of pedestrians in footage 

of a physical crowd. We then demonstrate that variations of the speed and repulsion 

potentials in the physical crowd cannot simulate the collective self-organisation to maintain 

close proximity that was found in footage of a psychological crowd, and therefore another 

factor is required to model psychological crowd behaviour. Third, we model the 

psychological crowd behaviour by introducing a self-categorisation parameter to the 

pedestrian model that incorporates principles from SCT to implement attraction potentials 

towards ingroup members. To validate the self-categorisation parameter, we adjust the 

attraction potentials between ingroup members and compare the model outputs of speed, 

distance and proximity to the behavioural data of a real psychological crowd. Finally, we 

discuss the implications of the self-categorisation parameter for simulating psychological 

crowd flow, and the importance of understanding social identities to safely plan for mass 

crowd events.  

Theoretical considerations: The psychology of the crowd 

 Previous research has suggested that there are key psychological differences between 

physical crowds, which consist of small groups and unconnected individuals in the same 

space at the same time, and psychological crowds whose collective behaviour occurs through 

their shared social identity as members of the same group (Reicher, 2011). SCT (Turner et 

al., 1987) makes a distinction between personal identities, which refer to peoples’ 

idiosyncratic differences from each other, and social identities that refer to peoples’ 

conception of themselves as members of social groups. It suggests that social categorisation 

leads to the formation of psychological groups; a process of self-stereotyping leads 

individuals to shift from their personal identity to a salient social identity. Here, they perceive 
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themselves as relatively interchangeable with ingroup members based on their similarity as 

members of the same group. Crucially, collective behaviour is possible when group members 

share social identity.  

 Research has found emotional and behavioural effects of shared social identities on 

crowd members in numerous mass events. For example, a sense of relatedness through shared 

social identities was found to influence positive emotions at sporting events (Stott et al., 

2001) and protests (Neville & Reicher, 2011). Moreover, Novelli, Drury, Reicher, and Stott 

(2013) indicated that when people identified with the crowd they perceived a music event and 

protest demonstration to be less crowded and subsequently had increased positive emotions. 

Together with the findings of Novelli et al. (2010) that participants sit in closer proximity to 

ingroup members, the effect of social identity on perception of crowdedness suggests that 

physical models of crowd behaviour where pedestrians avoid dense crowding may not apply 

to crowds that share a social identity.  

More recently, Templeton et al. (in preparation) indicates that social identity also 

affects the underlying movement of crowds and subsequently pedestrian flow. A physical 

crowd was filmed walking along a path between two locations, and the same participants 

were also filmed walking in the same location after being primed to share a social identity 

(psychological crowd scenario). The coordinates of the pedestrians were tracked as they 

walked through the footage, and their speed of movement, distance waked, and the proximity 

between members were measured. In the physical crowd, pedestrians walked either as 

individuals and maintained more space around themselves when navigating around others, or 

in groups that were limited to a maximum of four people who moved through the area 

together. In the psychological crowd, the pedestrians collectively regulated their behaviour to 

walk in close proximity with ingroup members, subsequently decreasing their walking speed 

and increasing their distance to maintain formation. 
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 The findings of Templeton et al. (in preparation) imply a different behaviour from the 

assumptions that are implemented in current movement models. Rather than pedestrians 

walking as a mass of unconnected people or walking simply in small groups, it suggests that 

pedestrians in psychological crowds self-regulate their behaviour to maintain close proximity, 

and this can be applied to an entire crowd regulating their behaviour to walk together. We 

propose that computer models can improve their simulations of collective behaviour by 

incorporating principles of SCT. First, models should be able to provide pedestrians with a 

social identity to create a psychological group. Second, pedestrians should have the ability to 

know the social identity of others, so that they can coordinate their behaviour with fellow 

ingroup members. Third, to simulate the attempts of pedestrians with a shared social identity 

to stay close to ingroup members, models should include the ability for pedestrians to 

collectively self-organise their movement relative to the positions of other ingroup members 

so that they can remain together. 

 While recent approaches to crowd modelling have successfully simulated aggregates 

of people in the same area (e.g. Moussaïd et al., 2011) and small group behaviour in crowd 

flow (e.g., Köster et al., 2011; Moussaïd et al., 2010), as yet only one model has incorporated 

aspects of social identity into a simulation of crowd behaviour. Von Sivers et al. (2016) 

quantified and formalised research by Drury et al. (2009) which examined accounts by 

survivors and witnesses of the July 7th 2005 London underground bombings. Drury et al. 

found that survivors reported being strangers prior to the attack, but developed a shared social 

identity due to their shared fate during the bombings. Crucially, this shared identification 

caused survivors to help others in the group to evacuate, even at risk to their own safety. 

Instead of usual egress models which focus on people escaping as individuals or moving as 

small groups, von Sivers et al. introduced principles from SCT to implement the behaviour of 

helping injured ingroup members to evacuate. This was an important first step to introducing 
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social identities into a computer model, but as von Sivers et al. note, this is based on self-

reports of behaviour and cannot be validated with behavioural data. Real-world and 

experimental behavioural data are increasingly being used to validate pedestrian models (e.g. 

Kretz, Grunebohm, & Schreckenberg, 2006; Lerner, Chrysanthou, & Lischinski, 2007; 

Seyfried et al., 2009), but despite the behavioural differences between physical and 

psychological crowds, no model has been validated using empirical behavioural data from 

crowds who were primed to share a social identity.   

Practical considerations 

 There are two key practical requirements for simulating psychological crowd 

behaviour. First, it must have the capacity to simulate both low densities for physical crowds 

and high densities of psychological crowds who walk in close proximity with ingroup 

members. Second, it must incorporate acute steering in reaction to fellow group members and 

others so that the crowd can collectively self-regulate their movement in high densities. 

Social force models - inspired by Newtonian mechanics and granular flow - model pedestrian 

steering as a function of attraction and repulsion forces (for an example of such models, see 

Helbing & Molnar, 1995; Moussaid et al., 2011). In these models, pedestrians are attracted to 

targets while being repelled by other pedestrians and obstacles in continuous space and time, 

and acceleration is treated as a function of friction between the attraction and repulsion 

potentials. This approach, however, requires high computational effort when simulating large 

crowds, and poses difficulties when predicting behaviour of sparse crowds without 

introducing additional features such as repulsive forces on the ground to guide more realistic 

navigation. As Dietrich et al. (2014) note, social force models can lead to inertia and 

pedestrian overlapping which can only be reduced by introducing extra parameters, leading to 

overly complex models. 
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 Cellular automata are also based on attraction and repulsion forces but use floor-fields 

based on discretised cells where pedestrians step from cell to cell. The floor-field can be 

adapted to create more realistic pedestrian movement, such as by using different cell shapes 

(e.g. Chen, Barwolff, & Schwandt, 2014), or smaller cells where pedestrians can occupy 

multiple cells at once (e.g. Guo & Huang, 2008), but ultimately the direction of stepwise 

movement is limited to the structure of the floor-field. The restricted orientation of 

pedestrians around the environment poses difficulties for simulating movement in dense 

crowds, as pedestrians may require more acute options of movement to progress forward and 

avoid inertia (for a fuller overview of the limitations of cellular automata, see Craesmeyer & 

Schadschneider, 2014; Steffen & Seyfried, 2010). 

 One model that has the potential to provide acute navigation for both sparse and dense 

crowds at low computational effort, is the OSM (Seitz & Köster, 2012). The OSM combines 

the rule-based approach of stepwise movement from cellular automata without the 

restrictions of a cellular grid. Is uses discretised space locally on a step-circle around each 

pedestrian which dictates where the pedestrian can move to, but allows for individual free-

flow in continuous space rather than being on a pre-defined grid. The OSM lends itself to 

high density crowds as steering is based on a step-circle around the pedestrian which has 

multiple optional step positions that can potentially be moved to (see Figure 17 for a diagram 

of the OSM step-circle, based on Seitz & Köster, 2012). Navigation is based on attraction to 

targets while being repulsed by obstacles, but acute steering in dense crowds is achieved by 

having the radius of the circle as the maximum stride length. Pedestrians can also move less 

distance than the maximum size of the allocated step circle, to allow for smaller steps if a 

smaller step is the optimal choice. This also lends itself to sparse crowds by adjusting the 

repulsive potentials of pedestrians and obstacles to enhance realistic navigation. In the study 

reported here, we use the OSM as our pedestrian model to simulate psychological crowds due 
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to its flexibility to alter attraction and repulsion potentials for pedestrians, targets, and 

obstacles, and its ability to realistically simulate movement in both sparse and dense 

psychological crowds.  

 

 

 

 

Figure 17: The OSM step-circle. The black circle demonstrates the maximum step length of 

the pedestrian, and the red dots indicate 14 potential directions of movement.  

 

Methodology: The model 

Agent navigation  

 Following the OSM, the direction of agents was determined by 14 equidistant 

positions on the step-circle radius around each pedestrian to allow acute steering in high 

densities. Each step choice was a function of the aggregated potential at each point on the 

step circle to find the optimal direction between attraction to the target and repulsion from 

obstacles and other pedestrians. Here, the more repulsive the potential of a position, the 

higher the value. The point that was closest to the target was denoted by zero, which allowed 

the agent to calculate the lowest utility using an optimisation algorithm to determine the best 

route given fourteen potential directions on the step-circle. Each agent had an assigned 

maximum step length of 0.7 metres on a radius around the agent. This number of optional 

directions and the ability to vary step length allowed for finer navigation in dense crowds 

while not requiring heavy computational load. To avoid pedestrians overlapping, we 

employed the repulsion potentials set by the OSM to be equal to the body lengths of the 

agents to prevent them from colliding. 
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 According to Köster et al. (2011), the OSM allows each pedestrian to be driven by 

their fixed desired maximum speed and step-length, combined with the direction of the 

pedestrian in relation to their target and obstacles. The OSM is particularly appropriate for 

dense crowd situations because the speed and step-length can decrease if the pedestrian is 

obstructed. The OSM uses Sethian’s (1996) Fast Marching algorithm on a two-dimensional 

grid to compute the floor field for targets and obstacles. We include pedestrians themselves 

as targets when they share a social identity, or obstacles when there was not a shared social 

identity. A priority queue was updated sequentially to avoid collisions, where the first agent 

generated was the first agent in the queue and so moved first. The model updated at the end 

of each iteration of the queue to allow all pedestrians an opportunity to move.  

Implementing aspects of self-categorisation 

 A set of theoretical criteria are needed to implement some principles of SCT in a 

computer model that simulates some behavioural effects of shared social identities in 

pedestrian flow. First, the model must allow agents to have social identities and to know their 

social identities in order to be members of social groups. This can be either one social 

identity for the entire crowd or multiple psychological crowds within a larger physical crowd 

to simulate the behaviour of different groups. Second, it necessitates instantiating the 

perceptual abilities for each agent to recognise the identities of other agents to perceive 

whether they are ingroup or outgroup members. This is necessary for the agents to orientate 

their behaviour according to group membership and allow ingroup members to be attracted to 

one another.  

 Computer models which treat the crowd as homogeneous agents who merely avoid 

collision with one another cannot realistically implement a psychological crowd whose 

agents are motivated to regulate their behaviour to move together based on their shared social 

identities. In our model, we used agent-based modelling to allocate each agent an identity, 
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and the ability to perceive the identities of other agents to determine who was a member of 

their group. The user could assign a specified number of pedestrians to share a social identity 

so that those agents are motivated to move together, and the user could create a number of 

groups with different social identities for each simulation. Although not used in this study, 

this would allow the creation of numerous scenarios, from individuals acting independently, 

to small groups, to where the entire crowd shared a social identity. In this study, we 

demonstrated two crowd scenarios to show the influence of self-categorisation on pedestrian 

flow: a physical crowd of unconnected individuals, and a psychological crowd who shared a 

social identity. 

 In the physical crowd model, each pedestrian was allocated a separate identity so that 

they navigated through the path while avoiding collision with other pedestrians. In the 

psychological model pedestrians were allocated the same social identity. To instantiate the 

tendency to maintain close proximity between ingroup members found by Novelli et al. 

(2010) and Templeton et al. (in preparation), the self-categorisation parameter rendered 

attraction potentials towards ingroup agents while the agents navigated towards a target. 

Thus, the self-categorisation parameter caused them to act according to their group 

membership when interacting with others to remain close to ingroup members.  

 Attraction to other pedestrians was dependent on the pedestrians being able to ‘detect’ 

another pedestrian within a fixed radius of themselves. Crucially, in the psychological crowd 

condition of Templeton et al. (in preparation), the attempt of participants to walk together 

resulted in reduced walking speed and walking a further distance due to acute navigation in 

the close density. The OSM is appropriate to model this as the walking speed of each agent 

can decrease depending on the agent’s ability to move at the desired speed. Thus, we 

hypothesised that in the psychological crowd simulation, the self-categorisation parameter 
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which attracted ingroup members to one another would replicate the reduced speed and 

increased distance exhibited in the real psychological crowd behaviour.  

Validation procedure 

 The simulation results for speed of movement, distance walked, and proximity 

between agents were validated by comparing them with the behavioural data of the physical 

and psychological crowds in Templeton et al. (in preparation) (see Table 6 for the mean 

speed, distance, and tessellation areas of the real crowds). Following the methodology used 

by Templeton et al., the speed of agents in the simulation was calculated as speed = 

distance/time, where distance was calculated by summing the distance between the 

coordinates of each agents’ steps. The proximity between agents were calculated using 

Sievers’ (2012) method for Voronoi decomposition which calculated the space around agents 

based on the proximity to their neighbours. In the real footage, the participants walked along 

a path but were only filmed as they walked along a 10 metre segment towards the camera. To 

keep the model as consistent as possible with the conditions in the footage, we used lines as 

obstacles to replicated the width of the pathway that the real pedestrians walked along (3.75 

metres), and had the agents walk in an arena 50 metres in length but recorded their data 

within an allocated segment of 10 metres. The agents were randomly generated at the top of 

the path, and each agent was allocated the same target at the bottom of the path to replicate 

the direction of the pedestrians, and agents navigated along a path towards the target while 

they negotiated movement around other pedestrians in the area. This is conducted in two 

versions of the model; a) a physical crowd of unconnected individuals (N = 66) using 

repulsion potentials, and b) a psychological crowd where every member shares a social 

identity (N = 66)3 and is attracted to ingroup members. 

                                                           
3 In the study by Templeton, Drury, and Philippides (in preparation), there were 66 pedestrians in the physical 

crowd, and 112 in the psychological crowd. In this study, 66 pedestrians are used in both conditions for 

consistency, to demonstrate that the effects on speed, distance, and tessellation areas are not due to different 

numbers of people. 
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Table 6  

The mean speed, distance, and tessellation areas obtained in the behavioural data of 

Templeton et al. (in preparation)  

 

Speed 

 (metres per second) 

Distance walked 

(metres) 

Tessellation area 

(cm2) 

Physical crowd 1.10 7.80 20506.39 

Psychological crowd 0.89 14.13 10383.29 

 

(a) Physical crowd  

 The physical crowd in Templeton et al. (in preparation) walked 1.10 metres per 

second and the psychological crowd walked 0.89 metres per second. As such, we ran 

simulations with maximum walking speeds from 0.5 metres per second in increments of 0.3 

to 1.7 metres per second. For each maximum walking speed, we examined the effect of 

corresponding repulsion distributions ranging from 0.5 metres (the body width of agents) in 

increments of 0.5 metres to two metres radius around the agents, and the height of the 

repulsion also ranging from 0.5 metres to two metres. We compared the effects of maximum 

walking speed and repulsion potentials on the mean tessellation areas, distance, and speed 

and determine which version of maximum speed and repulsion potentials best captured the 

speed, distance, and tessellation areas of the real physical crowd.  

 One potential argument against incorporating a self-categorisation parameter to 

simulate the psychological crowd behaviour is that the close proximity of crowd members 

could be obtained by having low repulsion potential values so that crowd members are able to 

be close together. However, we argue that basing proximity on low repulsion cannot simulate 

psychological crowd behaviour, as this does not capture how crowd members attempted to 

remain together throughout the scenario. A second argument could be that if a modeller 
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knows that psychological crowds move more slowly, one could set a slower speed for the 

entire crowd. This, however, would not capture how speed was reduced due to the 

maintenance of close proximity. While a model with reduced speed may be able to simulate 

the slower movement of the psychological crowd, this would not capture the close proximity 

that caused the slower speed and therefore would not provide an accurate simulation of the 

overall behaviour. To ascertain whether a self-categorisation parameter was needed to 

simulate psychological crowd behaviour, we used the physical model to determine whether 

the lower tessellation areas and reduced speed in the psychological crowd i) could be 

achieved using low repulsion potentials, and ii) whether there was a relationship between 

tessellation areas and speed walked.  

(b) Psychological crowd 

 The psychological crowd model was tested using the maximum walking speed that 

best replicated the physical crowd behaviour. To determine how the attraction potentials 

between ingroup members affected the mean tessellation areas, speed, and distance, different 

attraction potentials are simulated based on the same repulsion distribution and heights in the 

physical crowd (from 0.5 metres to two in increments of 0.5 metres). Finally, we compare the 

attraction parameters to determine which values produced the best simulation of the 

tessellations areas, speed, and distance of the real psychological crowd.    

m all simulations, Tables 8, 9, and 10 show the mean distance, speed, and tessellations areas 

respectively for each maximum walking speed and repulsion parameter variation based on 

five simulations of each version, and Figure 19 provides a visual indication of these trends. 

 When analysing the best simulation of the physical crowd, Kolmogorov-Smirnov tests 

showed that the mean tessellation areas, speed, and distance of the simulation were 

significantly non-normal (tessellation areas, D(198) = .281, p < .001; speed, D(198) = .163, p 

< .001; distance, D(198) = .148, p < .001); therefore non-parametric tests were used to 
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compare behaviour. A Kruskal-Wallis test found that there was a non-significant difference 

between the tessellation areas of the agents in the simulation (Mean rank = 124.50) and the 

tessellation areas of the pedestrians in the footage (Mean rank = 116.68), H(1) = 0.491, p = 

.483, r = -.04. However, there was a significant difference in the speed walked by the agents 

in the simulation (Mean rank = 141.50) and the pedestrians in the footage (Mean rank = 

105.50), H(1) = 19.03, p < .001, r = -.27. There was also a significant difference between the 

distance walked by the agents in the simulation (Mean rank = 165.50), and the pedestrians in 

the footage (Mean rank = 33.50), H(1) = 150.12, p < .001, r = .75. The significant differences 

in speed and proximity are unpacked in the discussion section, but we take this to be the best 

replication of the behavioural data from the footage of the physical crowd given the non-

significant difference between tessellation areas, very similar mean speeds, and that all other 

versions of the simulation had greater differences. 

Simulation results 

(a) Physical crowd simulation 

The best simulation of the physical crowd  

 The simulation which achieved the most similar behaviour to the pedestrians in the 

physical crowd footage was when maximum walking speed was set to 1.1 with the repulsion 

distribution of 0.5 metres and height of 1 metre. Table 2 shows a comparison of the means 

and standard deviations for speed, distance, and proximity, for the real crowd behaviour and 

the best simulation, and Figure 12 provides snapshots of both crowds. To demonstrate the 

data from all simulations, Tables 8, 9, and 10 show the mean distance, speed, and tessellations 

areas respectively for each maximum walking speed and repulsion parameter variation based on 

five simulations of each version, and Figure 19 provides a visual indication of these trends. 

When analysing the best simulation of the physical crowd, Kolmogorov-Smirnov tests 

showed that the mean tessellation areas, speed, and distance of the simulation were significantly 
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non-normal (tessellation areas, D(198) = .281, p < .001; speed, D(198) = .163, p < .001; distance, 

D(198) = .148, p < .001); therefore non-parametric tests were used to compare behaviour. A 

Kruskal-Wallis test found that there was a non-significant difference between the tessellation 

areas of the agents in the simulation (Mean rank = 124.50) and the tessellation areas of the 

pedestrians in the footage (Mean rank = 116.68), H(1) = 0.491, p = .483, r = -.04. However, there 

was a significant difference in the speed walked by the agents in the simulation (Mean rank = 

141.50) and the pedestrians in the footage (Mean rank = 105.50), H(1) = 19.03, p < .001, r = -.27. 

There was also a significant difference between the distance walked by the agents in the 

simulation (Mean rank = 165.50), and the pedestrians in the footage (Mean rank = 33.50), H(1) = 

150.12, p < .001, r = .75. The significant differences in speed and proximity are unpacked in the 

discussion section, but we take this to be the best replication of the behavioural data from the 

footage of the physical crowd given the non-significant difference between tessellation areas, 

very similar mean speeds, and that all other versions of the simulation had greater differences. 

 

 

Table 7 

The distance, speed, and tessellation areas of the physical crowd in the behavioural data and 

the best version of the simulation 

Physical crowd 

Distance walked  

(metres) 

Speed  

(metres per second) 

Proximity  

(cm2) 

Data Simulation Data Simulation Data Simulation 

M SD M SD M SD M SD M SD M SD 

7.80 0.15 11.59 1.21 1.10 0.13 1.10 0.00 20506.39 6404.64 20395.90 415.84 
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(a)       (b) 

 

 

 

 

 

 

 

 

Figure 18. Snapshots of the physical crowds, denoting (a) the pedestrians in the physical 

crowd footage, and (b) excerpt from the physical crowd simulation where data was recorded. 

Red circles indicate agents, and the black lines represent the width of the path.  

 

Table 8   

Distance walked by agents for each variation of the repulsion parameters  
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 Distance (metres) 

Maximum speed allocation 

0.5 0.8 1.1 1.4 1.7 

Repulsion  M SD M SD M SD M SD M SD 

0.5, 0.5 10.29 3.33 11.64 1.37 11.76 1.35 12.18 1.46 12.14 1.56 

0.5, 1 11.28 2.67 11.52 1.24 11.76 1.31 11.91 1.54 12.59 1.81 

0.5, 1.5 10.93 3.14 11.67 1.35 12.13 1.51 11.75 1.29 11.92 1.43 

0.5, 2 10.51 3.47 12.13 1.75 12.31 1.55 12.01 1.37 11.89 1.49 

1, 0.5 10.71 3.63 12.58 1.96 12.71 1.80 12.89 1.76 12.98 1.89 

1, 1 11.11 3.73 12.80 1.74 12.83 1.79 12.70 1.89 13.21 1.77 

1, 1.5 10.84 6.68 12.54 2.55 13.14 1.72 13.09 1.81 12.89 1.75 

1, 2 10.36 3.90 12.87 1.89 12.84 1.59 13.08 1.89 12.81 1.95 

1.5, 0.5 10.31 2.60 12.04 1.68 11.84 1.59 11.88 1.79 11.94 1.67 

1.5, 1 10.90 2.83 11.99 1.54 11.88 1.55 11.96 1.49 11.84 1.45 

1.5, 1.5 10.76 2.86 11.80 1.38 11.99 1.57 11.99 1.56 11.96 1.48 

1.5, 2 10.24 2.86 11.86 1.43 11.95 1.51 11.89 1.33 11.88 1.34 

2, 0.5 9.99 2.10 11.15 2.36 11.87 2.74 11.82 1.4 12.20 3.15 

2, 1 9.61 2.52 11.10 1.71 11.38 1.76 11.57 1.97 11.31 1.72 

2, 1.5 10.01 2.66 11.55 1.31 11.57 1.32 11.43 1.49 11.74 1.61 

2, 2 10.23 2.71 11.43 1.54 11.62 1.75 11.98 1.63 11.74 1.61 
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Table 9 

Speed walked by agents for each variation of the repulsion parameters  

 

 

Figure 19. The mean speed, mean distance, and mean tessellation areas for each variation of 

repulsion distribution and height.  

Speed (metres per second) 

  Maximum speed allocation 

0.5 0.8 1.1 1.4 1.7 

Repulsion M SD M SD M SD M SD M SD 

0.5 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 

0.8 0.80 0.00 0.80 0.00 0.80 0.00 0.80 0.00 0.80 0.00 

1.1 1.10 0.00 1.10 0.00 1.10 0.00 1.10 0.00 1.10 0.00 

1.4 1.40 0.00 1.40 0.00 1.40 0.00 1.40 0.00 1.40 0.00 

1.7 1.70 0.00 1.70 0.00 1.70 0.00 1.70 0.00 1.70 0.00 
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Table 10 

Tessellation areas of agents for each variation of the repulsion parameters  

 

 

Tessellation areas (cm2) 

 0.5 0.8 1.1 1.4 1.7 

M SD M SD M SD M SD M SD 

0.5, 0.5 19474.38 422.70 20392.82 310.35 20223.03 385.40 19515.51 206.96 19034.29 319.17 

0.5, 1 19436.93 441.23 20314.60 328.16 20538.06 621.76 19567.24 984.09 18735.10 900.82 

0.5, 1.5 18308.18 414.55 19991.68 396.03 19239.27 460.74 20494.78 213.01 19733.99 395.41 

0.5, 2 19363.15 920.91 19417.11 289.18 19388.83 468.44 19634.03 733.96 19683.18 348.38 

1, 0.5 19363.15 920.91 20872.26 453.21 20668.52 630.45 20864.93 595.28 20294.77 335.41 

1, 1 21947.32 551.65 22534.74 298.19 22581.33 492.00 22920.59 274.82 22137.83 261.17 

1, 1.5 23512.68 968.06 23636.57 503.05 22968.89 626.06 23188.17 337.49 23509.26 465.61 

1, 2 23741.41 1009.22 19060.85 9447.62 23779.20 537.00 23799.44 459.60 23857.59 358.83 

1.5, 0.5 22766.57 265.01 22714.33 439.84 23541.64 66.21 23109.61 239.51 22798.53 224.57 

1.5, 1 24279.42 2499.84 25752.60 439.84 26127.18 228.12 25609.48 244.01 25782.86 425.65 

1.5, 1.5 26779.20 362.65 27242.25 121.28 26843.55 80.54 27059.96 285.56 27127.41 74.65 

1.5, 2 27818.35 275.66 27945.21 708.03 27708.61 176.26 27820.36 120.72 27608.76 557.87 

2, 0.5 25708.19 556.64 25472.77 165.35 25995.64 144.64 26310.51 135.12 25855.10 210.49 

2, 1 28216.43 556.64 28253.25 348.98 28332.94 311.99 28275.10 195.64 28233.28 290.89 

2, 1.5 29401.86 288.97 29768.24 281.05 29304.50 158.36 29416.75 121.37 29349.50 293.77 

2, 2 30161.39 137.60 30510.94 57.97 30332.96 62.63 30324.31 58.72 30092.85 48.83 
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Simulating the psychological crowd with a physical crowd model 

 To determine whether the low tessellation areas and related reduced walking speed of 

the psychological crowd could be obtained by simply allocating agents low repulsion 

potentials, the results of physical crowd simulation that produced the lowest tessellation areas 

were compared to the footage of the psychological crowd behaviour. The physical crowd 

simulation that produced the lowest tessellation areas (M = 18308.18) were when the 

maximum walking speed was set to 0.5 with repulsion distribution of 0.5 metres and height 

of 1.5 metres. A Kruskal-Wallis test showed that the tessellation areas produced by this 

simulation (Mean rank = 468.76) were still significantly larger than the tessellation areas of 

the real psychological crowd (Mean rank = 228.20), H(1) = 245.31, p < .001, r = .34. 

Moreover, the agents in the simulation walked significantly faster (Mean rank= 93.00) than 

the pedestrians in the psychological crowd (Mean rank = 213.50), H(1) = 231.42, p < .001, r 

= .98. This suggests that low repulsion parameters were not sufficient to replicate the 

tessellation areas of the psychological crowd, or how close proximity reduced walking speed.    

To ascertain whether the physical crowd model could simulate how pedestrians 

walking in close proximity reduced speed, we examined the relationship between allocated 

maximum walking speed and tessellation areas across all simulations (taken as the 

tessellation areas across all repulsion potential variations for each speed). Jonckheere’s test 

revealed that the trend was non-significant, J = 781,848,584.00, z = .923, p = .356, r = .01, 

showing that the tessellations areas did not change across the different speeds. However, a 

Kruskal-Wallis test showed a significant difference in tessellation areas between allocated 

maximum speeds, H(4) = 59.65, p < .001. Pairwise comparisons for each allocated maximum 

speed with adjusted p-values and r-values are shown in Table 11. Overall, this indicated that 

there is some difference between tessellation areas for particular walking speeds, but there is 

no overall significant trend. This supports our hypothesis that the physical crowd model was 
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not sufficient to simulate how reduced speed was a function of close proximity in the 

psychological crowd. 

 

Table 11   

Pairwise comparisons of maximum allocated speeds, with significant differences in bold   

Maximum walking speeds 

Adjusted p-

values r-values 

0.5 and 0.8 .001 -.04 

0.5 and 1.1 .017 -.02 

0.5 and 1.4 .001 -.04 

0.5 and 1.7 1.00 .04 

0.8 and 1.1 .401 .01 

0.8 and 1.4 1.00 -.01 

0.8 and 1.7 .001 .03 

1.1 and 1.4 .023 -.02 

1.1 and 1.7 .109 .02 

1.4 and 1.7 .001 .04 

 

(b) Psychological crowd simulation 

Comparison of speed, distance, and tessellation area to the psychological crowd 

 The simulation that produced the most similar behaviour to the behaviour of the real 

psychological crowd was when attraction distribution was set to 1 metre radius around the 

agent, with an attraction height of 2 (see Table 12 for a comparison of the means for distance 

walked, speed, and tessellation areas of the real psychological crowd and the simulated 

version, and Figure 20 for snapshots of the real crowd and the simulation). The effect of 

attraction distributions and heights on mean speed, distance, and tessellation areas are shown 

in Table 13 and Figure 21 (this is based on three simulations of each version). 
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 Kolmogorov-Smirnov tests revealed that all variables were significantly non-normally 

distributed: distance, D(198) = .107, p < .001; speed, D(198) = .148, p < .001, and 

tessellation areas, D(198) = .107, p < .001. A Kruskal-Wallis test demonstrated that there was 

a non-significant difference between the tessellation areas of the agents in the simulation 

(Mean rank = 328.17) and the tessellation areas of the pedestrians in the real psychological 

crowd (Mean rank = 299.17), H(1) = 3.576, p = .059, r = .08, suggesting that attraction 

potentials were able to replicate the maintenance of close proximity between ingroup 

members. However, the agents in the simulation walked a significantly faster (Mean rank = 

179.27) than the pedestrians in the psychological crowd (Mean rank = 108.09), H(1) = 

45.272, p < .001, r = .38, and the agents in the simulation walked significantly further (Mean 

rank = 188.45) than the pedestrians in the real crowd (Mean rank = 91.41), H(1) = 84.038, p 

< .001, r = .52. The significant differences in speed and distance are addressed in the 

discussion section. 

 Despite the significant differences in speed and distance for this particular simulation, 

Jonckheere’s test was used to determine whether increased attraction to ingroup members 

affected speed and distance across all simulations. It revealed that attraction levels did 

significantly affect speed and distance: as attraction increased, the speed of agents decreased, 

J = 1,331,926.00, z = -32.287, p < .001, r = -0.6, and distance walked increased, J = 

2,983,249.00, z = 36.436, p < .001, r = .07. Overall, this suggests that attraction to ingroup 

members was able to replicate the decreased speed and increased distance walked that 

occurred in the psychological crowd.  
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Table 12  

The mean distance, speed, and tessellation areas of psychological crowds in the behavioural 

data and the best version of the simulation 

Psychological crowd 

Distance walked  

(metres) 

Speed  

(metres per second) 

Proximity 

(cm2) 

Data Simulation Data Simulation Data Simulation 

M SD M SD M SD M SD M SD M SD 

14.13 0.68 19.69 3.27 0.89 0.05 0.95 0.05 10383.29 5503.68 10141.37 1087.82 

 

 

(a)       (b) 

 

 

 

 

 

 

 

 

Figure 20: Snapshots of the psychological crowd condition, denoting (a) the pedestrians in 

the psychological crowd scenario, and (b) the simulated version of scenario. 
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Table 13   

The mean distance walked, speed, and tessellation areas for each variation of the attraction 

parameters  

Psychological crowd  

Attraction 

(distribution, height) 

Distance walked 

(metres) 

Speed 

(metres per second) 

Tessellation areas 

(cm2) 

 M SD M SD M SD 

0.5, 0.5 10.98 1.22 1.10 0.00 20745.79 466.55 

0.5, 1 11.25 1.47 1.10 0.00 19502.62 401.75 

0.5, 1.5 10.88 1.24 1.09 0.00 20879.92 453.39 

0.5, 2 12.49 2.03 1.10 0.00 24161.77 661.88 

1, 0.5 13.25 1.79 1.10 0.01 15537.70 240.72 

1, 1 12.22 3.43 1.09 0.04 13103.50 635.36 

1, 1.5 15.99 2.99 1.07 0.05 13622.66 947.36 

1, 2 19.69 3.27 0.95 0.05 10141.37 1087.82 

1.5, 0.5 14.28 2.19 1.09 0.03 13651.23 47.37 

1.5, 1 12.91 1.92 1.10 0.00 24011.70 596.13 

1.5, 1.5 21.36 8.78 0.89 0.07 8743.26 330.81 

1.5, 2 13.32 1.84 1.10 0.01 23528.61 228.26 

2, 0.5 17.61 3.56 1.05 0.06 10635.42 459.41 

2, 1 22.42 3.02 0.81 0.12 5400.08 1557.01 

2, 1.5 20.97 1.02 0.91 0.18 12968.05 1027.28 

2, 2 26.52 4.08 0.85 0.19 8515.87 1233.11 
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Figure 21: The mean speed, mean distance, and mean tessellation areas for each variation of 

repulsion distribution and height. 

 

Discussion 

This paper presents the first attempt to simulate the collective self-organisation of 

psychological crowds using aspects of SCT based on behaviour data. We addressed the key 

differences between the movement of physical and psychological crowds, and demonstrated 

that a self-categorisation parameter was needed to replicate the close proximity maintained by 

the psychological crowd to move together as a large group. First, we showed that our 

pedestrian movement model could replicate the proximity between members of a physical 

crowd using repulsion potentials. Second, we showed that allocating low repulsion potentials 

and a slow maximum walking sleep in the physical crowd were not sufficient to simulation 

the behaviour of the psychological crowd. Although allocating low repulsion potentials 

resulted in closer proximity between crowd members (although still significantly further than 

the proximity of the psychological crowd), and setting a slow maximum walking speed 

achieved the similar slow speed to the psychological crowd, they could not simultaneously 

replicate how the speed of the psychological crowd was reduced by ingroup members 

maintaining close proximity. Finally, we presented a model of psychological crowd 
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behaviour validated against the proximity found in the behavioural data. We demonstrated 

that close proximity between ingroup members could be maintained by implementing a self-

categorisation parameter based on aspects of SCT that provided agents with a shared social 

identity and allowed them to coordinate their behaviour according to attraction towards 

ingroup members. 

Our simulations of psychological crowd behaviour could not replicate the walking 

speed and distance of the real psychological crowd, but we demonstrate that the maintenance 

of close proximity resulted in the trend of decreased speed and increased distance found in 

the psychological crowd behaviour. Thus, our computer model progresses from previous 

models of pedestrian crowd behaviour which assess small groups in crowd flow (e.g. 

Moussaïd et al., 2010; Moussaïd et al., 2011), as we demonstrate that attraction potentials can 

be used to simulate the close proximity of an entire crowd moving together as a group. 

Crucially, our model incorporates self-categorisation to simulate the attempt of large 

psychological groups with a shared social identity to remain together. 

 There are some potential limitations to this model and avenues for future research. 

The model is validated against the behavioural data from footage obtained by Templeton et 

al. (in preparation). In those studies, a naturally occurring physical crowd was filmed to 

obtain natural crowd behaviour and compare it to when the pedestrians were primed to share 

a social identity. This method was chosen to ensure that the behaviour of the crowd was due 

to categorising one another as ingroup members, in order to compare behaviour between 

when participants shared a salient social identity and when they did not. However, this 

artificially created psychological crowd may lack ecological validity and generalisability to 

other psychological crowds. Future research could examine the model against naturally 

occurring psychological crowds at events where crowds have been found to share social 

identities, such as protests and music festivals (Neville & Reicher, 2011; Novelli, et al., 
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2013), football fans (Stott et al., 2001), religious pilgrimages (Alnabulsi & Drury, 2014), and 

emergency evacuations (Cocking & Drury, 2014; Drury et al., 2009a, 2009b; Drury et al., 

2015). The model allows users to vary group sizes and have multiple groups with different 

social identities; the model could also be tested against behavioural data of both physical and 

psychological crowds of different sizes, densities, and group numbers to determine whether 

this model is applicable to different crowd sizes and group compositions.  

 Another limitation of the model is that there were significant differences between the 

speed and distances walked in the real crowds and the simulated crowds that were chosen as 

the best fit. This could be an artefact of the model; agents will walk the maximum speed 

possible if they are not obstructed by other agents. In the physical crowd simulations, almost 

every agent walks the maximum speed possible because they are not obstructed by others, but 

this effect is not found in the psychological crowd where speed is reduced due to attraction to 

ingroup members even when agents are not obstructed. Overall, this trend is consistent with 

the behavioural data from the real crowds, and the mean speeds of the real and simulated 

physical crowd are identical. The differences appears to arise from the distribution of speeds 

in the real crowd compared to the identical speeds of all agents in the physical crowd. 

 The longer distance walked in both the physical and psychological crowd simulations 

could also be an artefact of the number of positions allocated to the step circle, which 

although increases the number of potential directions of movement, in our model it does not 

allow for direct forward stepping and thus increases the distance as the agents progress 

forward due to slight zig-zagging. Notably, speed is calculated using distance, so if the 

distance is increased then so is the overall speed which could explain the faster speed of 

agents in the simulations. Future research could increase the number of potential directions 

on the step-circle to determine the optimal amount for fluid movement while maintaining low 

computational load. Additional parameters may also be needed to influence steering in the 
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simulation, for example by increasing the repulsion potentials of obstacles on the floor-field 

(such as paths or walls), or altering attraction potentials of targets. Moreover, we echo Seitz 

and Köster (2012) who suggest that the circular shapes used in the OSM could be replaced 

with ellipses to better model the human body. Ellipses would more accurately simulate how 

agents manoeuvre around each other, which could be particularly importantly for modelling 

heavily dense crowds such as at bottlenecks, crowd crushes, and the effect of shockwaves. 

 Crowd modelling is a useful tool for planning for the safety of mass events, 

particularly for predicting and monitoring crowd behaviour. We provide evidence that to 

simulate psychological crowd events accurately, models should include the shared 

identification between group members and attraction towards ingroup members. Equally 

important, however, is understanding the psychology of the crowd that is being planned for. 

Our model can replicate the close proximity maintained amongst ingroup members, but social 

groups also have a set of social norms associated with them which guide behaviour, leading 

different crowds to behave in distinctive ways. For example, research by Stott et al. (2001) 

demonstrates that fans of one football team had a social norm of acting in a disorderly way, 

while fans of another team had a social norm of non-violence causing them to behave in 

different ways. Future models of psychological crowd behaviour could build on our 

psychological crowd movement model to include social norms of particular crowds, such as 

the helping behaviour implemented in von Sivers et al. (2016). Models which attempt to 

simulate social norms, however, should be conscious of the potential to over-fit a model to 

one particular crowd and limit its generalisability to other crowd events. 

Research from social psychology has shown that understanding the crowd can be 

crucial to maintaining the safety of crowd events, such as stopping potentially dangerous 

behaviour and crushes at a music event (Drury et al., 2015), and in mass decontaminations 

where understanding of the needs of the crowd and importance of social identities increased 
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people’s willingness to respond to safety professionals (Carter, Drury, Amlôt, Rubin and 

Williams, 2014). We provide a crowd model which makes the first steps towards accurately 

simulating psychological crowd behaviour, but we argue that this should be combined with a 

broader understanding of social norms to ensure the maximum chance of safety at mass 

events.  
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Appendix 1: Questionnaire  

Walk This Way 

Thank you for agreeing to take part in this study. Please answer the following questions to the 

best of your ability.  

Section 1 

Which group are you a member of?        ________________________________________ 

Please answer the following questions based on your feelings towards your group. Please 

answer from 1 (not at all) to 7 (very much).     

         (1: Not at all)                  (7: Very much) 

 

 

Section 2 

Who are the other group?             ____________________________________________ 

Please answer the following questions based on your feelings towards the other group. 

Please answer from 1 (not at all) to 7 (very much).  

           (1: Not at all)                  (7: Very much) 

 

 

Thank you for answering these questions. Please return this questionnaire to the 

researcher and await further instruction.  

I feel a bond with the people in this group 1 2 3 4 5 6  7 

I feel an affinity with this group   1 2 3 4 5 6  7 

I feel committed to this group 1 2 3 4 5 6  7 

I feel a bond with the people in this group 1 2 3 4 5 6  7 

I feel an affinity with this group   1 2 3 4 5 6  7 

I feel committed to this group 1 2 3 4 5 6  7 
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