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Abstract

In this thesis I have analysed several mathematical models, which represent the dynamics

of genetic regulatory networks. Methods of bifurcation analysis and direct numerical

simulations were employed to study the biological phenomena that can occur due to the

presence of time delays, such as stable periodic oscillations induced by Hopf bifurcations.

To highlight the biological implications of time-delayed systems, different models of genetic

regulatory networks as relevant to the onset and development of cancer were studied in

detail, as well as genetic regulatory networks which describe the effects of transcription

factors in the immune system. A network of an oscillator coupled with a switch was

explored, as systems such as these are prevalent in genetic regulatory networks. The

effects of time delays on its oscillatory and bistable behaviour were then investigated, the

results of which were compared with available results from the literature.
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Preface

Genetic regulatory networks (GRNs) are often modelled mathematically to gain informa-

tion about a vast array of life processes within an organism. The ability to derive simple

models which capture the important dynamical behaviours in a biological system, such as

a GRN, allows one to understand the impact of specific system parameters on the network

dynamics. The level of control that can be achieved through parameter tuning can yield

valuable results and help make crucial predictions on biological phenomena outside of an

experimental environment. One such parameter type that can be more easily represented

mathematically, but are more difficult to measure accurately experimentally, are the time

delays associated to transcriptional and translational processes in GRNs. Mathemati-

cal models of GRNs which consider these time delays are essential in obtaining a better

understanding of the processes in their representative biological environment.

In the first part of the thesis I investigate the role of transcriptional and translational

time delays in GRN models, and show how such delays can be introduced in a paradigmatic

two-gene activator-inhibitor GRN. Depending on a particular biological regime in which

a given GRN is operating, it is often possible to encounter a situation where there is

a significant separation of time scales due to, for instance, very fast mRNA dynamics

compared to other characteristic time scales. In such a case it is possible to perform

dimensional reduction and concentrate on the dynamics of a smaller number of variables.

A reduced model of this type is analysed and conditions are derived that lead to a transition

from a stable steady state to stable periodic oscillations that are impossible in the model

without the time delays. This result highlights the importance that time delays have on

the dynamical behaviour of GRNs, revealing information that would have otherwise been

inaccessible. Analysis is then extended to the full nonlinear system to illustrate differences

in stability conditions, and it is shown how critical values of the parameters at the Hopf

boundary change when the time delay increases from zero.
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In order to better understand the role of time delays in genetic regulatory networks, in

the next part of the thesis I derive a delayed model based on the so-called Repressilator.

The model incorporates auto-activation, which is a process present in many gene networks

in the immune system. After proving that the model is well posed, the model is anal-

ysed and conditions are derived for the existence of a Hopf bifurcation leading to stable

periodic oscillations. This result was not possible for the earlier models of the symmetric

Repressilator without a large Hill coefficient. Numerical simulations are performed and

they fully support theoretical findings.

Many GRNs are known to be composed of interconnected sub-networks of oscillators

and switches. To investigate the role of transcriptional and translational time delays on

networks such as these I introduce discrete delays to a five-gene network, which extends

the work in the earlier literature, of the Repressilator coupled with a Toggle switch. I focus

on analysing analytically and numerically the dynamics of the delayed model, and show

the existence of new behaviours, which were not present in the model system without the

time delays.
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Chapter 1

Introduction

The networks of interactions between DNA, RNA, proteins and molecules, are defined as

gene regulatory networks (GRNs). GRNs play a major role in a large number of normal life

processes, including cell differentiation, metabolism, the cell cycle and signal transduction,

hence, significant efforts have been made to develop mathematical techniques for their

analysis [1–3].

The process of protein synthesis by a gene is known as gene expression. In this process

a promoter, which is a regulatory region that precedes the gene in its DNA sequence, de-

termines the rate at which the RNA polymerase (RNAp) transcribes encoded information

into mRNA. mRNA are then translated into proteins, which accumulate and perform a

certain task in the organism. The rate of transcription can be affected by special types

of proteins called transcription factors, which are themselves encoded by genes. External

signals influence whether a transcription factor is in the active state. When active, the

transcription factor binds to the promoter and influences the probability of the RNAp

producing an mRNA [1]. Thus, transcription factors can either activate or repress the

transcription of its target gene. Multiple connections of gene products that regulate tran-

scription of other genes then give rise to GRNs, which are usually formalised as networks

(undirected or directed) where the nodes represent individual genes, proteins etc, and the

edges correspond to some form of regulation between the nodes.

An important consideration to be made is the separation of timescales within each

process of gene expression. The influence of external signals on the transcription factor

typically takes less than a second, binding of transcription factors to its target DNA
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sites takes seconds, whereas transcriptional and translational processes take minutes and

accumulation of protein products can take minutes to hours [1]. It is therefore vital

to account for these timescales within mathematical models of GRNs to enable a more

complete picture of the underlying behaviours within the biological environment.

1.1 Literature Review

1.1.1 Mathematical Models of Gene Regulatory Networks

In the analysis of gene regulatory networks and their dynamics, the first step is the iden-

tification of key modules or components and possible relations between them, which is

often done by interrogating available expression data. Once the topology of the GRN has

been fixed, the next step in modelling the dynamics is making realistic assumptions about

specific rules that govern the expression of particular genes. Depending on the level of

understanding of underlying processes, the complexity of the GRN under investigation,

and the specific questions to be addressed, there are several methodologically different

approaches that can be employed. Endy & Brent [4] and Hasty et al. [5] discuss biological

underpinnings for studying and modelling GRNs, while excellent reviews by de Jong [2],

Bernot et al. [3], Tušek & Kurtanjek [6], and Hecker et al. [7] give an overview of mathe-

matical and statistical techniques that have been successfully used to model GRNs, and

some of these methods are discussed below.

Boolean Networks

Some of the first models developed for modelling GRNs were the so-called Boolean networks

[8–10], where the states of all genes participating in the interactions are represented by

binary variables having the values of ON and OFF, or 1 and 0, with the possibility of

either synchronous or asynchronous update rules for the nodes. Boolean logic rules are

then used to approximate regulatory control of gene expression [11], with updates of

binary states of all genes taking place simultaneously [12]. Boolean networks approach

has been extended in several directions to provide a better approximation of real GRNs.

Shmulevich et al. [13] have proposed a probabilistic analogue of Boolean networks to

account for stochastic nature of many processes involved in gene expression. Silvescu and

Honavar [14] have proposed temporal Boolean networks, where the next state of genes in
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the networks is determined not only by their current state, but also by a fixed number

of their previous states, which effectively allows one to take into account some history of

transitions in a GRN. Recently, Boolean network models of GRNs have been compared to

models based on ordinary differential equations (ODEs), and, in fact, it has been shown

that some Boolean models can be rigorously derived as coarse-grained analogues of some

ODE models [15].

Significant advantage of using Boolean networks to model GRNs lies in the fact that

they allow one to consider networks with a very large number of nodes. At the same time,

there are several deficiencies in this approach. The first one concerns the fact that since

the gene states only admit the values of ON or OFF, this formalism does not take into

account intermediate stages of gene expression [16]. Another issue is that GRNs modelled

by Boolean networks can exhibit behaviour not observed in real life, hence, special care

has to be taken when choosing the class of admissible Boolean functions [17].

Fuzzy Methods

Due to intrinsic imprecision and uncertainty associated with gene expression data, it may

be appropriate to move away from precise rules of Boolean logic in favour of machine

learning techniques based on fuzzy logic. The basic idea is that rather than trying to

reconstruct some assumed fixed gene network topology, one considers the whole family of

possible networks with all possible distributions of links between nodes. The problem lies

in using actual data to assign appropriate probabilities to each of these configurations, so

that for a given input the fuzzy network would provide an output that most resembles

actual data. A significant advantage of fuzzy logic for inferring the structure of GRNs

lies in their ability to rely on already available knowledge of biological relations between

different nodes in the network, and, at the same time, being able to recover important

previously unknown connections. On the other hand, fuzzy methods for GRN inference

are characterised by a high level of computational complexity.

To give a few examples, fuzzy approach has been used to analyse microarray data from

the yeast cell cycle and to recover a set of GRNs, with k-nearest-neighbour algorithm

being used to replace missing data [18]. Woolf and Wang [19] have used a k-means

clustering algorithm to reconstruct and evaluate GRNs for Saccharomyces cerevisiae. In

this approach, groups of co-regulated genes are considered as clusters, and the clustering
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algorithm is then used to detect cluster centres. Volkert and Mahlis [20] have used a smooth

response surface algorithm to recover GRNs from gene expression data for Saccharomyces

cerevisiae. Approaches based on an artificial bee colony search algorithm have allowed the

reconstruction of a GRN in Escherichia coli [21]. A very recent review by Al Qazlan et

al. [22] gives an overview of different fuzzy methods, as well as their combinations with

other approaches, such as ordinary differential equations, with the purpose of optimising

data mining of gene expression and microarray datasets to recover GRNs.

Ordinary and Delay Differential Equation Models

A very powerful and mathematically insightful methodology for analysis of GRNs is based

on nonlinear ordinary or delay differential equations (ODEs or DDEs). In this approach, a

gene regulatory network is represented by concentrations of different mRNAs and proteins,

and the dynamics can be written as a system of ODEs or DDEs using the law of mass

action for individual reactions [1]. Some of the earliest results on ODE models of gene

regulation go back to Goodwin [23, 24], who introduced and studied a negative feedback

loop involving the concentrations of mRNA, an enzyme and a metabolite. It has been

later shown that a negative feedback loop is absolutely essential to ensure the existence of

stable periodic solutions, while positive feedback is required for multi-stationarity [25,26].

This approach was subsequently generalised and expanded [27–30]; reviews by Smolen et

al. [12], de Jong [2] and Hecker et al. [7] discuss some of these models based on systems

of nonlinear ODEs. A very important aspect of all these models is a regulation function

that controls the rates of gene expression. In light of experimental evidence suggesting

monotonic sigmoidal shape of regulation functions [31], a conventional choice for this

function is given by the Hill function [32–34]. Weiss [35] has discussed various chemical

mechanisms associated with the Hill function, including different kinds of ligand binding,

and a more recent review of the uses of the Hill function in GRN models can be found

in [36].

In order to more accurately represent a switch-like behaviour of the gene expression,

several authors have developed models of GRNs using piecewise-linear differential equa-

tions, in which the continuous Hill function is replaced by a discontinuous step func-

tion [37–42]. Besides regular steady states, the piecewise-linear models also allow for sin-

gular steady states, which although important for representing homeostasis in GRNs, are
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complex to analyse due to discontinuities at the thresholds [43,44]. Polynikis et al. [32] dis-

cuss various features of piecewise-linear ODE models and different dynamical regimes that

can be exhibited in these models, including possible periodic solutions, sharp-threshold

dynamics, and the comparison with models based on continuous regulation function.

In terms of applications to cancer, ODE models have explained aberrant dynamics of

the NF-κB transcription factor linked to oncogenesis, tumour progression and resistance

to therapy, as well as the dynamics of IκB-NF-κB [45,46]. Another example is the analysis

of the feedback loop between the tumour suppressor p53 and the oncogene Mdm2 [47],

and the single-cell response of p53 to radiation-induced DNA damage [48]. Clinical evi-

dence suggests that different components of the PI3K/AKT pathway can lead to aberrant

cell growth, metastatic competence and therapy resistance, and some progress has been

made in modelling this pathway and identifying inhibitors responsible for the regulation

of PI3K/AKT signalling [49]. Cheng et al. [50] and Edelman et al. [51] give a number

of examples of the uses of differential equation based models for the analysis of GRNs in

cancer.

Another aspect that has to be properly accounted for in dynamical models is the

fact that transcription and translation during gene expression often take place over non-

negligible time periods. Monk [52] has shown how time delays can cause oscillatory gene

expression and provide insights into the dynamics of interactions between p53 and Mdm2

proteins associated with cancer suppression. Subsequent research has focused on the

role of time delays in GRN dynamics [53–57]. Xiao and Cao [58] have analysed a Hopf

bifurcation in a gene network with two transcriptional delays, which occurs when the sum

of the delays passes through a critical value, and shown how the amplitude and period of

oscillations of gene expression change with the time delays. Due to the fact that it may not

be practically possible to identify discrete transcription/translation time delays, a better

alternative would be to use models with distributed delay [59]. Models with time delays

have been used to understand the regulation of feedback loops involving transcription

factors E2F and Myc, known oncogenes and possible tumour suppressors [60,61]. Ribeiro

et al. [62] have developed a delayed stochastic simulation algorithm for analysis of the

p53-Mdm2 feedback loop whose malfunction is associated with 50% of cancers. Sequences

of multiple reactions with unknown intermediate kinetics can also be successfully analysed

using time-delayed models [63,64].
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Stochastic Models

Experimental evidence suggests that significant stochastic fluctuations are observed dur-

ing gene expression and regulation, hence, in many cases it is paramount to use stochastic

models for studying GRN dynamics [65, 66]. Even in the absence of extrinsic noise as-

sociated with variability in different environmental factors, there are several fundamental

processes responsible for intrinsic stochasticity of gene expression [67, 68]. One of these

is the process of initiation of transcription, which starts by first forming an elongation

complex by binding RNA polymerase (RNAp) to the promoter region of the gene, and

there is a significant variation in the duration of elongation processes between different

transcription events [69–72]. Binding of RNAp to the promoter regions of different genes

results in switching of these genes on and off, thus either blocking or facilitating further

transcription, which gives another major source of noise in GRNs. Stochasticity in ex-

pression of individual gene results in stochastic behaviour of larger genetic circuits and

GRNs [65, 73]. Some of the early work on stochastic gene expression emerged from ex-

periments in synthetic biology [74, 75] that demonstrated how stochasticity can result in

sustained oscillations, and significant amount of research has been subsequently done both

theoretically and experimentally on the analysis of stochastic (and delayed) oscillations in

gene regulatory networks [68, 76–78]. Zavala and Marquez-Lago have recently considered

delay-induced oscillations in deterministic and stochastic models of single-cell gene expres-

sion, highlighting important differences between these two types of models and associated

behaviours [79].

Besides being an intrinsic feature of biological dynamics, stochasticity has proved to

be important in the context of engineered genetic switches [74, 80]. de Jong [2] and El

Samad et al. [81] discuss various methods for modelling stochastic GRN models, including

stochastic master equation and various stochastic simulation algorithms. Bratsun et al.

[78] have developed an algorithm for analysis of non-Markovian dynamics in GRNs with

time delays and showed that these delays are able to induce oscillatory dynamics in the

case where deterministic models do not exhibit oscillations. This methodology was later

improved, and several exact stochastic simulation algorithms have been developed for

simulations of time-delayed models [82, 83]. A review by Ribeiro [72] discusses various

techniques for simulating stochastic time-delayed dynamics of gene expression, and very
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recently Jansen et al. [84] have reviewed the role of delay distribution in the stochastic

dynamics during gene expression.

Another way to approach stochasticity in the analysis and reconstruction of GRNs is

by using so-called Bayesian networks [85], where gene expression values are represented as

random variables, and relations between them are probabilistic. Learning techniques for

Bayesian networks [86,87] allow one to combine expression data with an a priori knowledge

to deduce the structure of GRN that best matches the available expression data. Friedman

et al. [85] have developed an algorithm for deriving Bayesian networks that circumvents

a dimensionality problem, and this method has been used to analyse the cell cycle data

for S. cerevisiae containing numerous measurements of mRNA expression levels [88]. Out

of 800 genes it was possible to identify a few genes controlling the regulation of cell cycle

processes.

1.1.2 Delay Differential Equations

Mathematical investigation into the behaviour caused as a result of the elapsed time

between the initiation and completion of mRNA transcription, and likewise protein trans-

lation, has received great interest [52–58]. Types of models that best capture such infor-

mation are those of delay differential equations. A general delay differential equation with

a single time delay can be written in the form

dx(t)

dt
= f(t, x(t), x(t− τ);µ), (1.1)

where x(t) ∈ Rn is the state variable, τ ∈ R is the time delay, function f is a nonlinear

smooth function and µ ∈ Rm are time-independent parameters. Since the derivative ẋ(t)

depends on the solution at past times, the initial condition for DDEs is defined as a

function over the interval [−τ, 0]. If xt = x0(σ), where −τ < σ < 0 denotes the solution

on the interval [−τ, 0], then for a fixed parameter µ and given the initial solution x0(t)

on [−τ, 0], there is a unique solution x(t) for t ∈ [0,∞). Time delays themselves can be

constant or time/state-dependent.

In the case of multiple constant discrete time delays, a general delay differential equa-
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tion (1.1) can be modified as follows

dx(t)

dt
= f(t, x(t), x(t− τ1), x(t− τ2), ..., x(t− τn);µ), (1.2)

where τ1 ≥ 0, τ2 ≥ 0, ..., τn ≥ 0 are the time delays. In this case, the derivative of x

depends on the solution at some fixed time in the past, represented by the time delays

τ1, τ2, ..., τn and the initial conditions must take the form of an initial function established

over the interval [−τ̃ , 0] where τ̃ = max{τi}, i = 1, ..., n.

The solutions of some delay differential equations can be obtained using the method

of steps [89]. The idea of this method is to compute the solution over a small time

interval using a given initial condition. The solution over that interval is then used as a

history function to calculate the solution over the next interval. This process is continued

indefinitely. As an example of this method, consider the following simple delay differential

equation:

dx(t)

dt
= −x(t− 2), x(s) = 1 for − 2 ≤ s ≤ 0. (1.3)

The solution over a particular time interval must use known initial data, thus the time

step must be chosen accordingly. For a DDE of the form (1.2), the time interval cannot

exceed the size of T = min(τi), i = 1, ..., n. This way all values of x(t − τi) are known

in the interval 0 ≤ t ≤ T . For the case of DDE (1.3) this simply means looking for the

solution in the interval 0 ≤ t ≤ 2 as the first step, which is given by:

x(t) =

∫ t

0
−x(v − 2)dv + x(0) = 1− t.

Next, using this result as a history function, the solution in the interval 2 ≤ t ≤ 4 can be

solved, and is given by:

x(t) =

∫ t

2
−x(v − 2)dv + x(2) =

t2

2
− 2t+ 1.

The solution in the interval 4 ≤ t ≤ 6 can then be found, and so on. This method, however,

becomes tedious in finding solutions over a large time scale, and can be troublesome with

DDE equations that are more difficult to integrate.
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A linear discrete delay differential equation with n delays takes the form:

dx(t)

dt
= A0x(t) +

n∑
i=1

Aix(t− τi), (1.4)

where x ∈ Rn and Ai ∈ Rn×n, i = 0, 1, ..., n. The characteristic equation for (1.4) can be

found in a similar way to ordinary differential equations, by supposing that linear delay

differential equations have exponential solutions. By substituting the solution x(t) = Beλt

into (1.4) and using basic linear algebraic theory, the characteristic equation is expressed

as

det∆(λ) = 0, (1.5)

where

∆(λ) =

(
A0 +

n∑
i=1

Aie
−λτi

)
− λI

is the characteristic matrix, I is the n× n identity matrix, and λ denotes the eigenvalue.

Due to the exponential terms, there are infinitely many eigenvalues that solve equation

(1.5). There is, however, only a finite number of eigenvalues that can lie on and to the

right of the imaginary axis [90]. When a pair of complex conjugate eigenvalues crosses

the imaginary axis into the right half plane, a Hopf bifurcation is induced, generating a

periodic solution in the neighbourhood of a steady state whose stability changes [91].

To highlight the appearance of periodic solutions that can arise as a result of time

delays, first consider the following linear ordinary differential equation:

dx(t)

dt
= ax(t), x(0) = 1, (1.6)

where a ∈ R is a non-zero constant. This can be easily solved using the method of

separation of variables which yields

x(t) = eat.

It can be deduced that the steady state, x̄ = 0, of ODE (1.6) is stable for a < 0 and

unstable for a > 0. To introduce a time delay, consider the following delay differential

equation:

dx(t)

dt
= ax(t− τ), x(s) = 1, s ∈ [−τ, 0). (1.7)
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By seeking a particular solution, xp(t) = Beλt, where B ∈ R∗, and its derivative, ẋp(t) =

Bλeλt, a solution can be obtained by substituting these into (1.7):

Bλeλt = aBeλ(t−τ)

= aBeλte−λτ .

Dividing both sides of this equation by Beλt gives

λ = ae−λτ .

Thus, the solution of the delay differential equation (1.7) is

x(t) = Beλt, where λ = ae−λτ .

In the limit τ = 0, it follows that λ = a. As one would expect, the DDE (1.7) behaves

in the same way as the corresponding ODE (1.6) when τ = 0, that is, in the absence of

the time delay. The steady state x̄ = 0 is unstable when a > 0 and stable when a < 0. It

can be shown that a periodic solution is possible for τ > 0 by alternatively looking for a

particular solution of the form xp(t) = C sin(ωt), its derivative ẋp(t) = Cω cos(ωt), where

C ∈ R∗, and substituting into (1.7), which gives

Cω cos(ωt) = aC sin(ωt− ωτ)

= aC [sin(ωt) cos(ωτ)− cos(ωt) sin(ωτ)] .

Equating coefficients of cos(ωt) and sin(ωt), the following conditions are found:

cos(ωτ) = 0 and sin(ωτ) = −ω
a
.

Since the period of the cosine function is 2π, the two values of ωτ in the range [0, 2π]

that will satisfy the first condition are ωτ = π/2 or ωτ = 3π/2. Combining this with the
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second condition leads to the following possibilities:

(i) ωτ =
π

2
and aτ = −π

2
,

(ii) ωτ =
3π

2
and aτ =

3π

2
.

It then follows that for the particular values of a and τ that satisfy one of these conditions,

the DDE (1.7) admits the harmonic solution, x(t) = C sin(ωt) [91].

1.1.3 Autoinhibition Model with Transcriptional Delay

To motivate the work in this thesis we first look at an existing model of a genetic regulatory

network studied by J. Lewis [92]. Delay differential equations have been used to describe

a self inhibiting gene, giving rise to oscillations which describe the dynamics of the somite

segmentation clock in Zebrafish, see Figure 1.1. To investigate the behaviour of the model

we perform a stability analysis of the steady states of the model analytically. To gain

a better insight into the dynamics, we numerically compute the eigenvalues using the

TraceDDE suite in Matlab, and use direct numerical simulations to illustrate the behaviour

under different parameter schemes and confirm analytical findings.

We consider a single-cell GRN consisting of a single gene which is assumed to inhibit

the production of its own mRNA. Denoting the concentration of proteins as p and con-

centrations of transcribed mRNAs as m, the rate of change of p and m are described by

the following pair of ordinary differential equations:

dp(t)

dt
= am(t)− bp(t),

dm(t)

dt
= f(p(t))− cm(t),

(1.8)

where p(t) is the number of protein molecules per cell at time t, m(t) is the number of

mRNA molecules per cell at time t, a is the protein synthesis initiation rate, f(p) is the

mRNA synthesis initiation rate as a function of p, b is the protein degradation rate, and

c is the mRNA degradation rate. Assume that transcription is inhibited by the protein p,

so that

f(p) =
k

1 + p2/p2
0

,

where k and p0 are constants. However, with more careful consideration of the transcrip-
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X

Figure 1.1: Network motif for the auto-inhibitory gene, X, of the Zebrafish somite segmen-
tation clock. The node is gene X and the loop represents regulation of mRNA production
by self-inhibition.

tion and translation processes, one should note that the concentration of protein deter-

mines the production of mRNA molecules and likewise the amount of mRNA molecules

influence the rate of protein production. There is a significant amount of time that passes

between the initiation of transcription and the arrival of a mature mRNA cell. This is

also the case with the production of a protein molecule after the initiation of translation.

Accounting for these delays, model (1.8) can be modified, giving the following pair of delay

differential equations:

dp(t)

dt
= am(t− Tp)− bp(t),

dm(t)

dt
= f(p(t− Tm))− cm(t),

(1.9)

where Tp is the delay during translation of proteins and Tm is the delay during transcription

of mRNAs. To reduce the number of free parameters in the model, we define a phase-

shifted protein concentration by introducing a new variable:

padvanced(t) = p(t+ Tp), (1.10)

where we shall denote padvanced(t) by padv(t). The first equation of system (1.9) evaluated

at t+ Tp then has the form:

ṗ(t+ Tp) = am(t)− bp(t+ Tp),

and in terms of the new variable (1.10) this can be rewritten as

ṗadv(t) = am(t)− bpadv(t).
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The second equation of system (1.9) transforms into

ṁ(t) = f(padv(t− Tm − Tp))− cm(t).

Thus, omitting the ‘adv’, system (1.9) takes the form:

dp(t)

dt
= am(t)− bp(t),

dm(t)

dt
= f(p(t− τ))− cm(t),

(1.11)

where τ = Tm + Tp is the new combined time delay [92].

Before continuing with any analysis of system (1.11) we first must establish that the

solutions are nonnegative for all time to ensure their biological feasibility. The initial

conditions for model (1.11) are given by:

p(s) = φ1(s), s ∈ [−τ, 0],

m(s) = φ2(s), s ∈ [−τ, 0],

(1.12)

where φi(s) ∈ C([−τ, 0],R) with φi(s) ≥ 0 (−τ ≤ s ≤ 0, i = 1, 2). Here, C([−τ, 0],R) is

the Banach space of continuous mappings of the interval [−τ, 0] into R. It is also assumed

that m(0) > 0, as this ensures that at least some amount of proteins will be produced.

We now prove that the solution (p(t),m(t)) of DDE (1.11) with the initial condition

(1.12) is positive for all t > 0. This result can be proved by contradiction, following the

methodology used in [93]. We begin by showing that m(t) ≥ 0 for all t > 0. Let t1 > 0

be the first time when p(t1)m(t1) = 0; assuming that m(t1) = 0 implies p(t) ≥ 0 for all

t ∈ [0; t1], and since t1 is the first time when m(t1) = 0, this also means dm(t1)/dt ≤ 0,

that is, the function m(t) is decreasing at t = t1. However, evaluating the second equation

of the system (1.11) at t = t1 yields

dm(t1)

dt
=

k

1 + p(t− τ)2/p2
0

> 0,

which gives a contradiction. Since m(0) > 0, this implies m(t) > 0 for all t > 0. Now that

the positivity of m(t) has been established, let t2 > 0 be the first time when p(t2) = 0.

For this to happen, one must have dp(t2)/dt ≤ 0, that is, the function p(t) should be

13



decreasing at t = t2. At the same time, evaluating the first equation of the system (1.11)

at t = t2 yields

dp(t2)

dt
= am(t2) > 0,

which gives a contradiction, therefore, pb(t) > 0 for all t > 0. Hence, solutions p(t) and

m(t) of the model (1.11) are positive for all t > 0.

The steady states p̄ and m̄ of system (1.11) can be found as the roots of the following

system of algebraic equations:

am̄− bp̄ = 0,

k

1 + p̄2/p2
0

− cm̄ = 0.
(1.13)

From the first equation of (1.13) we find that m̄ =
b

a
p̄. Substituting this into the second

equation of (1.13) leads to the following polynomial equation for p̄:

p̄3 + p2
0p̄−

akp2
0

bc
= 0,

where a, b, c, p0, k > 0. Replacing p̄ with u− p20
3u , some algebraic manipulation yields

u6 − akp2
0

bc
u3 − p6

0

27
= 0.

This can be easily solved for u3 as

u3 =
akp2

0

2bc
± 1

2

√
a2k2p4

0

b2c2
+

4p6
0

27
.

There are six solutions for u, namely

u1,2,3 =
3

√
akp2

0

2bc
+

1

2

√
a2k2p4

0

b2c2
+

4p6
0

27
.e

2Kπ
3
i, K = 0, 1, 2,

u4,5,6 =
3

√
akp2

0

2bc
− 1

2

√
a2k2p4

0

b2c2
+

4p6
0

27
.e
π+2Kπ

3
i, K = 0, 1, 2.

(1.14)

A positive real steady state is required in order for it to be biologically relevant, so we
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only need to look at u1 in (1.14) (where K = 0):

u =
3

√
akp2

0

2bc
+

1

2

√
a2k2p4

0

b2c2
+

4p6
0

27
. (1.15)

Substituting (1.15) back into p̄ = u − p20
3u , we are able to express the steady states p̄ and

m̄ of system (1.11) as follows:

p̄ =

(
F
2 + 1

2

√
F 2 +

4p60
27

)2/3

− p20
3(

F
2 + 1

2

√
F 2 +

4p60
27

)1/3
, m̄ =

b
a

[(
F
2 + 1

2

√
F 2 +

4p60
27

)2/3

− p20
3

]
(
F
2 + 1

2

√
F 2 +

4p60
27

)1/3
,

where F =
akp20
bc .

The equation for eigenvalues λ of the linearisation near the steady state (p̄, m̄) of

system (1.11) has the form

λ2 + (b+ c)λ+ bc+ γe−λτ = 0, (1.16)

where

γ =
2akp̄/p2

0

(1 + (p̄2/p2
0))2

> 0.

In the limit τ = 0, (1.16) reduces to the quadratic equation:

λ2 + (b+ c)λ+ bc+ γ = 0,

whose roots always have negative real parts since b > 0, c > 0, and γ > 0. This means

that the steady state (p̄, m̄) is stable for any choice of parameters. Then to investigate if

there is a point at which the steady state loses stability for τ > 0, we notice that λ = 0

is not a valid solution to the characteristic equation (1.16). Thus, the only way in which

the steady state (p̄, m̄) may lose stability is when a pair of complex conjugate roots of

(1.16) cross the imaginary axis. We can investigate this by looking for solutions of the

characteristic equation (1.16) in the form λ = iω for some real ω > 0. Substituting this
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Figure 1.2: Stability boundary of the steady state (p̄, m̄) of system (1.11). The steady
state is stable below the surface in (a) and to the left of the boundary curves shown in
(b). Parameter values are c = 0.23, k = 33, and p0 = 40.

into equation (1.16) and separating into real and imaginary parts gives

γ cos(ωτ) = ω2 − bc,

γ sin(ωτ) = (b+ c)ω.

(1.17)

Squaring and adding these two equations together produces the following equation for

z = ω2:

h(z) = z2 + (b2 + c2)z + b2c2 − γ2 = 0,

which can be solved to give the critical frequency:

ω2
0 =

1

2

[
−(b2 + c2) +

√
(b2 − c2)2 + 4γ2

]
. (1.18)

It should be noted that ω2
0 will only give real values provided bc < γ. This means that for

the values of parameters such that bc ≥ γ, the steady state (p̄, m̄) is stable for all values

of the time delay τ . Note that,

dh(z)

dz
= 2z + b2 + c2 > 0, for any z ≥ 0.

16



0 100 200 300 400
time t

0

200

400

600

(a)

p(t)
m(t)

0 100 200 300 400
time t

0

200

400

600

800
(b)

p(t)
m(t)

Figure 1.3: Numerical solution of system (1.11): (a) τ = 5; (b) τ = 7. Parameter values
are a = 5, b = 0.7, c = 0.23, k = 33, and p0 = 40. The critical time delay is τ0 = 6.1271.

The critical value of the time delay τ0 can be calculated from (1.17) to give

τ0,n =
1

ω0

[
arctan

(
(b+ c)ω0

ω2
0 − bc

)
+ nπ

]
, n = 0, 1, 2, ...,

where ω0 is found from (1.18) and arctan corresponds to the principle value of arctan.

When τ = τ0,n the complex conjugate roots of the characteristic equation (1.16) are on

the imaginary axis. In order to determine if the roots do cross the imaginary axis, with

positive speed, we consider the root λ(τ) = µ(τ)+ iω(τ), of (1.16) near τ = τ0,n, satisfying

µ(τ0,n) = 0 and ω(τ0,n) = ω0, n = 0, 1, 2, .... Then substituting λ = λ(τ) into (1.16) and

differentiating with respect to τ gives

(
dλ

dτ

)−1

=
(2λ+ b+ c)eλτ

λγ
− τ

λ
.

Therefore, it can be found that

sgn

{[
d(Reλ)

dτ

]
τ=τ0,n

}
= sgn

Re

[(
dλ

dτ

)−1
]
τ=τ0,n


= sgn

{
Re

[
(2λ+ b+ c)eλτ

λγ

]
τ=τ0,n

}

= sgn

{
2ω0 cos(ω0τ0,n) + (b+ c) sin(ω0τ0,n)

ω0γ

}
.

Substituting the expressions for cos(ω0τ0,n) and sin(ω0τ0,n) given by (1.17) yields

sgn

{[
d(Reλ)

dτ

]
τ=τ0,n

}
= sgn

{
2(ω2

0 − bc) + (b+ c)2

γ2

}
= sgn

{
h′(zk)

γ2

}
> 0.
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Figure 1.4: Stability boundary of the steady state (p̄, m̄) of system (1.11). The steady
state is stable below the surface in (a) and to the left of the boundary curves shown in
(b). Parameter values are a = 4.5, c = 0.23, and p0 = 40.

Thus, the eigenvalues of the characteristic equation cross the imaginary axis at the point

where τ = τ0 and never goes back across the axis for larger values of τ . Therefore, we

have proven the following result.

Theorem 1.1. If bc ≥ γ, the steady state (p̄, m̄) of the time delayed system (1.11) is stable

for all values of time delay τ ≥ 0. If bc < γ, this steady state is stable for 0 ≤ τ < τ0 and

unstable for τ > τ0 and undergoes a Hopf bifurcation at τ = τ0.

Figure 1.2 illustrates the stability boundary of the steady state (p̄, m̄) of system (1.11)

depending on the time delay τ , protein synthesis initiation rate a, and protein degradation

rate b, with parameter values taken from J. Lewis [92]. This Figure suggests that for a

fixed value of the degradation rate b, the time delay required for the steady state to lose

stability reduces as the protein synthesis initiation rate a, is increased. It also suggests

that when b is fixed, there exists a value, â, such that for 0 < a < â the steady state is

stable irrespective of the value of the time delay.

Figure 1.3 demonstrates the type of behaviour that is observed inside and outside of

the stable region in Figure 1.2. It shows how increasing the time delay τ leads to a Hopf

bifurcation of the steady state (p̄, m̄) inducing a stable periodic orbit. After stability is

lost at the critical time delay, the system exhibits oscillatory behaviour for any larger value
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Figure 1.5: Stability boundary of the steady state (p̄, m̄) of system (1.11). The steady
state is stable below the surface in (a) and to the left of the boundary curves shown in
(b). Parameter values are b = c = 0.23, and p0 = 40.

of τ .

In Figure 1.4 we show how the stability boundary for steady state (p̄, m̄) of system

(1.11) varies depending on protein degradation rate b, the transcription rate k, and the

time delay τ . One can see that by decreasing the value of k, there is a significant reduction

in the range of b where an unstable steady state is possible. As k is increased the stability

boundary tends towards a boundary curve limit as depicted for k = 200 and remains close

to this for any larger value of k.

Figure 1.5 shows the stability boundary for steady state (p̄, m̄) of system (1.11), varying

parameters for protein synthesis initiation rate a, transcription rate k and the time delay

τ . It suggests that for large k, the region for a stable steady state is consistently small for

most of the parameter space. However for very small values of k, and likewise for a, the

region for a stable steady state increases exponentially.

1.2 Thesis Outline

The research in this thesis focuses on mathematical modelling of genetic regulatory net-

works with discrete time delays associated to transcription and translation processes.

In Chapter 2, I use a paradigmatic two-gene network to focus on the role played by

time delays in the dynamics of gene regulatory networks. Dynamics of the reduced model

arising in the limit of fast mRNA dynamics are contrasted with that of the full model.
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Stability of steady states are established in terms of the system parameters and analytical

conditions for a Hopf bifurcation are derived for both models. Numerical simulations are

shown to illustrate the dynamical behaviour under different parameter schemes.

Chapter 3 discusses a mathematical model of a genetic regulatory network relevant

for describing the dynamics of transcription factors in the immune system. A three-gene

network is explored to examine the effects of time delays on its dynamics. Conditions for

stability of each steady state are presented where a Hopf bifurcation is possible for one

of the steady states. Numerical simulations help to further understand the results of the

mathematical analysis.

In Chapter 4, I investigate a mathematical model of a genetic regulatory network which

gives rise to oscillation and switch dynamics. A five-gene network is used to discuss the role

of transcriptional and translational time delays on the dynamical behaviour of one protein

in the gene regulatory network by comparing results with earlier literature. Numerical

simulations are used to depict the existence of new behaviour due to the inclusion of time

delays.

Chapter 5 contains a summary of the main results of the thesis and a discussion of

some open problems.
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Chapter 2

Time-Delayed Models of Gene

Regulatory Networks

Cancer is a complex disease, triggered by multiple mutations in various genes and ex-

acerbated by a number of different behavioural and environmental factors. Some risk

factors associated with possible onset and development of cancer are preventable, such

as, inappropriate diet, physical inactivity, smoking and drinking [94], while other causes

include pathogens (HPV16 and HPV18 are known to cause up to 70% of cervical cancer

cases [95]), as well as genetic pre-disposition. Many studies have focussed on identifying

efficient genetic cancer biomarkers, such as, specific genes and groups of genes associ-

ated with significant number of cases of breast cancer [96], prostate [97] and pancreatic

cancer [98]. Despite this progress, due to significant complexity associated with muta-

tions of various cancer genes, many molecular mechanisms of oncogenesis remain poorly

understood.

Recent advances in microarray and high-throughput sequencing technologies have pro-

vided pathways for measuring the expression of thousands of genes and mapping most

crucial genes and groups of genes controlling different types of cancer.

In order to make progress in understanding the onset and development of cancer, as

well as to develop effective drug targets, it is essential to be able to reconstruct GRNs

pertinent to particular types of cancer from available data. Yeh et al. [99] have used a

K-nearest-neighbours algorithm to identify GRNs correlated with cancer, tumour grade

and stage in prostate cancer. As an alternative approach, Bonnet et al. [100] have utilised
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LeMoNe (Learning Module Networks) algorithms to derive GRNs from gene and mRNA

expression, as measured in lymphoblastoid cell lines of prostate cancer patients. A rule-

based algorithm has been successfully used to determine GRNs in colon cancer [101],

and similar kinds of networks have been identified from microarray data using neural

fuzzy networks [102]. Madhamshettiwar et al. [103] discuss different approaches to infer

GRNs in ovarian cancer, as well as the potential of using these GRNs to develop optimal

drug targets. Bayesian network techniques have been employed to construct GRNs from

microarray data for breast cancer [104]. In a recent paper, Emmert-Streib et al. [105] have

successfully used a BC3Net inference algorithm to analyse a large-scale breast cancer gene

expression data set and reconstruct the associated GRN.

This chapter is devoted to consideration of the effects of transcriptional and transla-

tional time delays on the dynamics of GRNs. We introduce the time-delayed model of a

two-gene activation-inhibition network together with its quasi-steady state simplification,

and estabilish the well-posedness of both models. We derive analytical conditions for sta-

bility and a Hopf bifurcation in the case of very fast mRNA dynamics, before extending

analysis to the full time-delayed system.

2.1 Time-Delayed Models: Derivation and Positivity

To motivate the analysis of time-delayed effects in gene regulatory dynamics, following

Polynikis et al. [32], we consider an activation-inhibition two-gene GRN consisting of two

genes a and b, which are assumed to have no effect on their own expression; at the same

time, protein Pb is assumed to activate the expression of gene a, while protein Pa inhibits

the expression of gene b. This is one of the fundamental motifs, which has been shown

to be functionally relevant in GRNs [50,106]. Denoting the concentrations of proteins Pa

and Pb as pa and pb, and concentrations of transcribed mRNAs as ra and rb, the following

system of equations can be derived for the dynamics of this GRN [32]:

ṙa = mah
+(pb; θb, nb)− γara,

ṙb = mbh
−(pa; θa, na)− γbrb,

ṗa = kara − δapa,

ṗb = kbrb − δbpb,

(2.1)
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Figure 2.1: Hill functions for activation and inhibition of transcription in system (2.1),
varying the Hill coefficient, n. (a) Activation function. (b) Inhibition function.

where mi are the maximum transcription rates, ki are the translation rates, γi are the

mRNA degradation rates, and δi are the protein degradation rates for i = a, b. Equations

(2.1) are called the complete nonlinear model (CNM). To make further analytical progress,

the activation and inhibition functions in the system (2.1) can be written as the following

Hill functions:

h+(pi; θi, ni) =
pnii

pnii + θnii
,

h−(pi; θi, ni) = 1− h+(pi; θi, ni) =
θnii

pnii + θnii
, i = a, b,

where θa and θb are known as activation and inhibition coefficients, and the integer pa-

rameters na and nb, known as Hill coefficients, determine the steepness of Hill curves [1].

The parameters θa and θb give the values of protein concentrations pa and pb, at which the

corresponding Hill function achieves half of its maximum value. Depending on the values

of transcription rates, this would then lead to a significant increase in the respective mR-

NAs regulated by these proteins [3, 32]. A qualitative illustration of the activation and

inhibition Hill functions is given in Figure 2.1.

Due to the fact that the dynamics of mRNA is normally much faster than that of

related proteins, one can use a quasi-steady state assumption to simplify the CNM (2.1)

by reducing the number of equations. Effectively, this means assuming that mRNAs have

already reached their steady-state concentrations, i.e. taking ṙi ≈ 0, i = a, b in the

CNM (2.1), and then focusing on the dynamics of proteins only, as given by the following
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simplified nonlinear model (SNM):

ṗa = k′ah
+(pb; θb, nb)− δapa,

ṗb = k′bh
−(pa; θa, na)− δbpb,

where

k′a =
maka
γa

, k′b =
mbkb
γb

. (2.2)

Polynikis et al. [32] have shown that while the CNM exhibits Hopf bifurcation of a pos-

itive equilibrium, leading to persistent oscillations, in the case of the SNM model this

behaviour can disappear. They have also demonstrated an important role played by the

Hill coefficients, as well as the separation of timescales between mRNA and proteins, with

a larger scale separation favouring a stable equilibrium rather than oscillatory behaviour.

While the transcription and translation may be faster than characteristic times as-

sociated with significant changes in protein concentrations (of the order of 5 minutes for

transcription + translation and 1 hour for a 50% change in the concentration of translated

protein for E. coli. [1]), these are, in fact, multi-step processes consisting of thousands of

consecutive chemical reactions. Hence, the duration of transcription and translation is

non-negligible when considered in the context of GRN dynamics [72, 84], and has to be

correctly accounted for in mathematical models. To analyse the effects of transcriptional

and translational time delays we introduce the following model [107]:

ṙa = mah
+(pb(t− τra); θb, nb)− γara,

ṙb = mbh
−(pa(t− τrb); θa, na)− γbrb,

ṗa = kara(t− τpa)− δapa,

ṗb = kbrb(t− τpb)− δbpb,

(2.3)

where τra and τrb are the delays during transcription of mRNAs ra and rb, and τpa and

τpb are the delays during translation of proteins pa and pb, respectively. This model will

be referred to as the delayed complete non-linear model (DCNM). Similar to the case of

instantaneous transcription and translation, the quasi-steady-state assumption simplifies
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A B

Figure 2.2: Network motif for the activation-inhibition model of the DCNM and DSNM.
The nodes are genes A and B where expression of gene B is inhibited by gene A, whilst
expression of gene A is activated by gene B.

the system (2.3) to the following delayed simplified non-linear model (DSNM):

ṗa = k′ah
+(pb(t− τra − τpa); θb, nb)− δapa,

ṗb = k′bh
−(pa(t− τrb − τpb); θa, na)− δbpb,

(2.4)

with parameters k′a and k′b defined in (2.2).

Before proceeding with the analysis, one has to augment the models (2.3) and (2.4)

with the appropriate initial conditions and establish that these models are well-posed, i.e.

that their solutions remain non-negative for all time to ensure their biological feasibility.

The initial conditions for the DCNM model (2.3) are given by

ra(s) = φ1(s), s ∈ [−τmax, 0],

rb(s) = φ2(s), s ∈ [−τmax, 0],

pa(s) = φ3(s), s ∈ [−τmax, 0],

pb(s) = φ4(s), s ∈ [−τmax, 0],

(2.5)

where τmax = max(τra , τrb , τpa , τpb) and φi(s) ∈ C([−τmax, 0],R) with φi(s) ≥ 0 (−τmax ≤

s ≤ 0, i = 1, .., 4), and similarly for the DSNM model (2.4). Here, C([−τmax, 0],R) is

the Banach space of continuous mappings of the interval [−τmax, 0] into R. It is further

assumed that ra(0) > 0, rb(0) > 0 to ensure that at least some amount of proteins will be

produced.

We now prove that the solution (ra(t), rb(t), pa(t), pb(t)) of the DCNM model (2.3)

with the initial condition (2.5) is positive for all t > 0. This result can be proven by

contradiction, following the methodology used in [93]. As a first step, let us show that

rb(t) ≥ 0 for all t > 0. Let t1 > 0 be the first time when pa(t1)rb(t1) = 0; assuming that

rb(t1) = 0 implies pa(t) ≥ 0 for all t ∈ [0; t1], and since t1 is the first time when rb(t1) = 0,

this also means drb(t1)/dt ≤ 0; that is, the function rb(t) is decreasing at t = t1. On the
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other hand, evaluating the second equation of the system (2.3) at t = t1 yields

drb(t1)

dt
=

mbθ
na
a

pa(t1 − τrb)na + θnaa
> 0,

which gives a contradiction. Since rb(0) > 0, this implies rb(t) > 0 for all t > 0. Now that

the positivity of rb(t) has been established, let t2 > 0 be the first time when pb(t2) = 0. In

order for this to happen, one must have dpb(t2)/dt ≤ 0; that is, the function pb(t) should

be decreasing at t = t2. At the same time, evaluating the last equation of the system (2.3)

at t = t2 yields

dpb(t2)

dt
= kbrb(t2 − τpb) > 0,

which gives a contradiction and, therefore, pb(t) > 0 for all t > 0. In a similar manner,

the positivity of pb(t) implies the positivity of ra(t), which in turn implies the positivity

of pa(t). Hence, all solutions ra(t), rb(t), pa(t) and pb(t) of the DCNM model (2.3) are

positive for all t > 0. The same approach can be employed to show positivity of solutions

of DSNM model (2.4).

Steady states (r̄a, r̄b, p̄a, p̄b) of the DCNM model can be found as roots of the following

system of algebraic equations:

mah
+(p̄b; θb, nb)− γar̄a = 0,

mbh
−(p̄a; θa, na)− γbr̄b = 0,

kar̄a − δap̄a = 0,

kbr̄b − δbp̄b = 0.

This gives

r̄a =
δa
ka
p̄a, r̄b =

δb
kb
p̄b, p̄b =

φbθ
na
a

θnaa + p̄naa
,

where p̄a satisfies the polynomial equation

θnbb

nb∑
k=0

(
nb
k

)
p̄na(nb−k)+1
a θnaka + (p̄a − φa)(φbθnaa )nb = 0, (2.6)

and we used the notation

φa =
maka
γaδa

, φb =
mbkb
γbδb

.
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Even for realistically small values of Hill coefficients, such as n = 2, 3 [108] or n = 4-

8 [109], (2.6) is too complicated to allow one to analytically find closed form expressions

for p̄a and other state variables. Despite not having explicit formulae for possible steady

states (r̄a, r̄b, p̄a, p̄b), one can still perform the analysis of stability in terms of system

parameters, and such results would be valid for the values of steady state variables that

can be accurately and efficiently determined through numerical solution of the polynomial

equation (2.6).

2.2 Analysis of the Delayed Simplified Nonlinear Model

(DSNM)

In order to gain some first insights into the role of transcriptional and translational delays

on the dynamics of GRN, we focus on the behaviour of the delayed simplified nonlinear

model (DSNM) (2.4). To reduce the number of free parameters in the model, we introduce

the new variables:

p̂a(t) = pa(t), p̂b(t) = pb(t− τra − τpa), (2.7)

which transform the first equation of system (2.4) into

ṗa = k′ah
+(pb(t− τra − τpa); θb, nb)− δapa ⇐⇒ ˙̂pa(t) = k′ah

+(p̂b(t); θb, nb)− δap̂a(t).

The second equation of system (2.4) evaluated at t− τra − τpa has the form

ṗb(t− τra − τpa) = k′bh
−(pa(t− τra − τpa − τrb − τpb); θa, na)− δbpb(t− τra − τpa),

and in terms of the new variables (2.7) this can be rewritten as

˙̂pb(t) = k′bh
−(p̂a(t− τra − τpa − τrb − τpb); θa, na)− δbp̂b(t).

Thus, system (2.4) takes form

˙̂pa(t) = k′ah
+(p̂b(t); θb, nb)− δap̂a(t),

˙̂pb(t) = k′bh
−(p̂a(t− τ); θa, na)− δbp̂b(t),

(2.8)
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where

τ = τra + τpa + τrb + τpb

is the new combined time delay. The equation for eigenvalues λ of the linearisation near

a steady state (p̄a, p̄b) of system (2.8) has the form

(λ+ δa)(λ+ δb) +DDSNMe
−λτ = 0, (2.9)

where

DDSNM = k′ak
′
bnanb

θnaa θnbb p̄
(na−1)
a p̄

(nb−1)
b

(θnaa + p̄naa )2(θnbb + p̄nbb )2
= nanbδaδb

p̄naa
θnaa + p̄naa

θnbb
θnbb + p̄nbb

.

In the limit τ = 0, this equation reduces to the quadratic equation [32]:

λ2 + (δa + δb)λ+ δaδb +DDSNM = 0,

whose roots always have negative real parts, since δa > 0, δb > 0 and DDSNM > 0. This

implies that, for τ = 0, the steady state (p̄a, p̄b) is stable for any values of parameters. To

investigate whether this steady state can lose stability for τ > 0, one can note that λ = 0

is not a solution of the characteristic equation (2.9). Hence, the only possible way that the

steady state (p̄a, p̄b) can lose its stability is when a pair of complex conjugate eigenvalues

crosses the imaginary axis. In the light of this observation, one can look for eigenvalues

of (2.9) in form λ = iω for some real ω > 0. Substituting this into (2.9) and separating

into real and imaginary parts gives

ω2 − δaδb = DDSNM cos(ωτ),

(δa + δb)ω = DDSNM sin(ωτ).

(2.10)

Squaring and adding these two equations yields the following equation for z = ω2:

h(z) = z2 + (δ2
a + δ2

b )z + δ2
aδ

2
b −D2

DSNM = 0,

which can be solved to give the critical frequency as

ω2
0 =

1

2

[
−(δ2

a + δ2
b ) +

√
(δ2
a + δ2

b )
2 − 4(δ2

aδ
2
b −D2

DSNM)

]
. (2.11)
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One should note that ω2
0 will only admit positive real values, provided δaδb < DDSNM,

which implies that, for δaδb ≥ DDSNM, the steady state (p̄a, p̄b) is stable for all values of

the time delay τ . Note that

dh(z)

dz
= 2z + δ2

a + δ2
b > 0 for any z ≥ 0.

The critical value of the time delay τ can be found from (2.10), which gives

τ0,n =
1

ω0

[
arctan

(
(δa + δb)ω0

ω2
0 − δaδb

)
+ nπ

]
, n = 0, 1, 2, ...,

where ω0 is determined by (2.11), and arctan corresponds to the principal value of arctan.

When τ = τ0,n, the characteristic equation (2.9) has a pair of purely imaginary roots.

To determine whether or not these roots do indeed cross the imaginary axis, we consider

λ(τ) = µ(τ) + iω(τ) as a root of (2.9) near τ = τ0,n, satisfying µ(τ0,n) = 0, ω(τ0,n) = ω0,

and j = 0, 1, 2, .... Substituting λ = λ(τ) into (2.9) and differentiating with respect to τ

yields (
dλ

dτ

)−1

=
(2λ+ δa + δb)e

λτ

λDDSNM
− τ

λ
.

From this equation, one can find

sgn

{[
d(Reλ)

dτ

]
τ=τ0,n

}
= sgn

Re

[(
dλ

dτ

)−1
]
τ=τ0,n


= sgn

{
Re

[
(2λ+ δa + δb)e

λτ

λDDSNM

]
τ=τ0,n

}

= sgn

{
2ω0 cos(ω0τ0,n) + (δa + δb) sin(ω0τ0,n)

ω0DDSNM

}
.

Substituting the expressions for cos(ω0τ0,n) and sin(ω0τ0,n) from system (2.10) gives

sgn

{[
d(Reλ)

dτ

]
τ=τ0,n

}
= sgn

{
2(ω2

0 − δaδb) + (δa + δb)
2

D2
DSNM

}
= sgn

{
h′(ω2

0)

D2
DSNM

}
> 0.

Hence, the eigenvalues of the characteristic equation cross the imaginary axis at τ = τ0

(here, τ0 = τ0,0) and never cross back for higher values of τ . Thus, we have proved the

following result.
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Figure 2.3: Stability boundary of the steady state (p̄a, p̄b) of DSNM system (2.8). The
steady state is stable below the surface in (a) and to the left of the boundary curves
shown in (b). Parameter values are ma = mb = 2.35, θa = θb = 0.21, na = nb = 3, and
ka = kb = γa = γb = 1.

Theorem 2.1. If δaδb ≥ DDSNM, the steady state (p̄a, p̄b) of DSNM system (2.8) is stable

for all values of the time delay τ ≥ 0. If δaδb < DDSNM, this steady state is stable for

0 ≤ τ < τ0 and unstable for τ > τ0 and undergoes a Hopf bifurcation at τ = τ0.

Figure 2.3 illustrates the stability boundary of the steady state (p̄a, p̄b) of the DSNM

system (2.8) depending on the time delay τ and the protein degradation rates δa and δb,

with the parameter values taken from Polynikis et al. [32]. This Figure suggests that, for

any fixed value of one of such rates, there is only a limited range of positive values of

the other degradation rate, for which, at a given time delay τ , the positive equilibrium is

unstable. For sufficiently high values of δa and δb, this steady state is stable regardless of

the value of the time delay τ , confirming the result proved in Theorem 2.1.

In Figure 2.4 we show how the stability boundary varies depending on the parameters

θa and θb, and the time delay τ . One observes that, for sufficiently high values of θb, the

range of possible values of θa for which the steady state is unstable is significantly reduced,

thus making the system more prone to support a stable positive equilibrium rather than

exhibit oscillations. At the Hopf bifurcation, the associated critical value of the time delay

τ monotonically increases with the parameter θa. At the same time, there is a minimum
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Figure 2.4: Stability boundary of the steady state (p̄a, p̄b) of DSNM system (2.8). The
steady state is stable below the surface in (a) and (c) and to the left of the boundary
curves shown in (b) and (d). Parameter values are ma = mb = 2.35, na = nb = 3, and
ka = kb = δa = δb = γa = γb = 1.

value of the time delay τ , such that for τ smaller than this value the steady state (p̄a, p̄b)

is stable for any value of θa.

In a similar way, the effects of the transcription rates ma and mb are illustrated in Fig-

ure 2.5, which shows that the critical transcription rate of the inhibitor ma increases with

decreasing τ , and, similar to Figure 2.4, below certain value of τ , the steady state (p̄a, p̄b)

is stable for any value of ma. Qualitatively similar dependence is observed between the

critical value of τ and the transcription rate mb, though this dependence is not completely

monotonic.

Figure 2.6 demonstrates how increasing the overall time delay τ results in a Hopf

bifurcation of the steady state (p̄a, p̄b) and the emergence of a stable periodic orbit. The
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Figure 2.5: Stability boundary of the steady state (p̄a, p̄b) of DSNM system (2.8). The
steady state is stable below the surface in (a), and to the left of the boundary curves
shown in (b). Parameter values are θa = θb = 0.21, na = nb = 3, and ka = kb = δa = δb =
γa = γb = 1.
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Figure 2.6: Numerical solution of DSNM system (2.8): (a) τ = 0.5; (b) τ = 2. Parameter
values are ma = mb = 2.35, θa = θb = 1, na = nb = 3, and ka = kb = δa = δb = γa = γb =
1. The critical time delay is τ0 = 0.9762.

shift between individual time series for pa and pb can be interpreted in the same way as in

predator-prey or activator-inhibitor systems [110]. In accordance with Theorem 2.1, once

the stability of the steady state (p̄a, p̄b) is lost, it can never be regained for higher values

of τ , so the system will be exhibiting oscillatory behaviour. This result highlights the

significance of correct mathematical representation of the transcription and translation

processes, since inclusion of transcriptional and translational delays can lead to sustained

periodic oscillations even in the simplified model, where such oscillations were impossible

when the time delays were neglected.
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2.3 Analysis of the Delayed Complete Nonlinear Model

(DCNM)

Linearisation of the full nonlinear DCNM model (2.3) near the steady state (r̄a, r̄b, p̄a, p̄b)

results in the following characteristic equation:

(λ+ γa)(λ+ γb)(λ+ δa)(λ+ δb) +DDCNMe
−λτ = 0, (2.12)

where

DDCNM = mambkakbθ
na
a θnbb

nanbp̄
(na−1)
a p̄

(nb−1)
b

(θnaa + p̄naa )2(θnbb + p̄nbb )2
= nanbδaδbγaγb

p̄naa
θnaa + p̄naa

θnbb
θnbb + p̄nbb

,

and

τ = τra + τrb + τpa + τpb .

It immediately follows from the form of the characteristic equation (2.12) that stability of

the steady state (r̄a, r̄b, p̄a, p̄b) is determined not by individual transcriptional and transla-

tional delays but rather by their overall combined duration. In the case τra = τrb = τpa =

τpb = 0, the characteristic equation of the DCNM model reduces to the one analysed in

Polynikis et al. [32].

The characteristic equation (2.12) can be recast in the form

λ4 +Aλ3 +Bλ2 + Cλ+ (D +DDCNMe
−λτ ) = 0, (2.13)

where

A = γa + γb + δa + δb,

B = γaγb + γaδa + γaδb + γbδa + γbδb + δaδb,

C = γaγbδa + γaγbδb + γaδaδb + γbδaδb,

D = γaγbδaδb.

(2.14)

At τ = 0, (2.13) reduces to a quartic

λ4 +Aλ3 +Bλ2 + Cλ+ (D +DDCNM) = 0. (2.15)
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By the Routh-Hurwitz criterion [110], the necessary and sufficient conditions for all roots

of (2.15) to have negative real parts are given by

∆1 = A > 0,

∆2 = AB − C > 0,

∆3 = ABC −A2(D +DDCNM) > 0,

∆4 = (D +DDCNM)(ABC −A2(D +DDCNM)− C2) = (D +DDCNM)(∆3 − C2) > 0.

From the fact that all system parameters are positive and using the definitions of A, B,

and C in (2.14), it follows that ∆1 > 0 and ∆2 > 0 for any values of the parameters. Since

D +DDCNM > 0, it is sufficient to require ∆4 > 0 to ensure that condition ∆3 > 0 is also

satisfied. This leads to the following result.

Lemma 2.1. Let τ = 0. The steady state (r̄a, r̄b, p̄a, p̄b) of the system (2.3) is stable

whenever the condition ABC −A2(D +DDCNM)− C2 > 0 holds.

From now on, we will assume that the condition in Lemma 2.1 holds and analyse

whether stability can be lost as τ increases. Since both D and DDCNM are positive,

this means that λ = 0 is not a root of the characteristic equation (2.13), so once again

the stability can only be lost through a possible Hopf bifurcation. To investigate this

possibility, we look for solutions of (2.13) in the form λ = iω for some real ω > 0.

Substituting this into (2.13) and separating into the real and imaginary parts gives

ω4 −Bω2 +D = −DDCNM cos(ωτ),

−Aω3 + Cω = DDCNM sin(ωτ).

(2.16)

Squaring and adding these equations yields a quartic equation as follows:

g(z) = z4 + az3 + bz2 + cz + d = 0, (2.17)
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where z = ω2 and

a = A2 − 2B,

b = B2 + 2D − 2AC,

c = C2 − 2BD,

d = D2 −D2
DCNM.

Without loss of generality, suppose that (2.17) has four positive real roots, denoted by

z1, z2, z3, z4, respectively, which would give four possible values of ω:

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3, ω4 =

√
z4.

Dividing the two equations in (2.16) gives

tan(ωkτk) =
Aω3

k − Cωk
ω4
k −Bω2

k +D
=⇒ τk,j =

1

ωk

[
arctan

(
Aω3

k − Cωk
ω4
k −Bω2

k +D

)
+ jπ

]
,

k = 1, .., 4, j = 0, 1, 2, ....

Define

τ0 = min
1≤k≤4

{τk,0}, ω0 = ωk0 , k0 ∈ {1, 2, 3, 4},

and then τ0 is the first value of τ > 0 such that the characteristic equation (2.13) has a

pair of purely imaginary roots. We have the following result.

Theorem 2.2. Suppose the conditions of Lemma 2.1 hold and g′(z0) > 0, where g(z)

is defined in (2.17). Then the steady state (r̄a, r̄b, p̄a, p̄b) of system (2.3) is stable for

0 ≤ τ < τ0 and unstable for τ > τ0 and undergoes a Hopf bifurcation at τ = τ0.

Proof. The conclusion of Lemma 2.1 ensures the steady state (r̄a, r̄b, p̄a, p̄b) of system (2.3)

is stable at τ = 0, and the fact that the roots of the characteristic equation (2.13) depend

continuously on τ implies that the steady state (r̄a, r̄b, p̄a, p̄b) is also stable for sufficiently

small positive values of τ . Since τ0 is the first positive τ , for which the eigenvalues lie on the

imaginary axis, in order to verify whether or not the steady state actually loses stability
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at τ = τ0, one has to compute the sign of dRe(λ)/dτ |τ=τ0 . Let λ(τ) = µ(τ) + iω(τ) be the

root of the characteristic equation (2.13) near τ = τ0, satisfying µ(τ0) = 0 and ω(τ0) = ω0.

Substituting λ = λ(τ) into (2.13) and differentiating both sides with respect to τ gives

(
dλ

dτ

)−1

=
(4λ3 + 3Aλ2 + 2Bλ+ C)eλτ

λDDCNM
− τ

λ
.

This implies, with λ(τ0) = iω0,

sgn

{[
d(Reλ)

dτ

]
τ=τ0

}
= sgn

{
Re

[(
dλ

dτ

)−1
]
τ=τ0

}

= sgn

{
Re

[
(4λ3 + 3Aλ2 + 2Bλ+ C)eλτ

λDDCNM

]
τ=τ0

}

= sgn

{
(2Bω0 − 4ω3

0) cos(ω0τ0) + (C − 3Aω2
0) sin(ω0τ0)

ω0DDCNM

}
.

Using the expressions for cos(ω0τ0) and sin(ω0τ0) from (2.16) gives

sgn

{[
d(Reλ)

dτ

]
τ=τ0

}
= sgn

{
4ω6

0 + (3A2 − 6B)ω4
0 + (2B2 + 4D − 4AC)ω2

0 + C2 − 2BD

D2
DCNM

}
= sgn

{
g′(ω2

0)

D2
DCNM

}
> 0,

which means that at τ = τ0 a pair of complex conjugate eigenvalues of the characteristic

equation (2.13) crosses the imaginary axis with a positive speed. This implies that the

steady state (r̄a, r̄b, p̄a, p̄b) of system (2.3) does lose its stability at τ = τ0. �

Figure 2.7 shows the stability boundary of the steady state (r̄a, r̄b, p̄a, p̄b) of system

(2.3) depending on the transcription rates ma and mb and the total time delay τ . In a

manner similar to that for the simplified model, the critical value of the transcription rate

ma at the Hopf bifurcation reduces with increasing τ . However, a major difference from

the DSNM model, as shown in Figure 2.5, is that now the Hopf bifurcation can take place

even at τ = 0, as the DCNM system is able to support sustained oscillations [32]. In

Figure 2.8 we illustrate the transition from a stable steady state (r̄a, r̄b, p̄a, p̄b) to a stable

periodic solution around this steady state as the time delay passes through the critical

value of τ = τ0.
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Figure 2.7: Stability boundary of the steady state (r̄a, r̄b, p̄a, p̄b) of DCNM system (2.3).
The steady state is stable below the surface in (a), (c), and below the boundary curves
shown in (b), (d). Parameter values: θa = θb = 0.21, na = nb = 3 and ka = kb = δa =
δb = γa = γb = 1.

2.4 Discussion

In this chapter we have discussed mathematical models for the analysis of GRNs and

focussed on the role played by the transcriptional and translational time delays in the

dynamics of a two-gene activator-inhibitor GRN. By reducing the model to the one with a

single time delay, we have considered possible behaviour in the quasi-steady state approx-

imation of very fast mRNA dynamics, which has resulted in a lower-dimensional system

of DDEs. Due to the presence of time delays, even this simplified model is able to exhibit

loss of stability of the positive equilibrium through a Hopf bifurcation and a subsequent

emergence of sustained periodic oscillations, which was not possible in the absence of the
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Figure 2.8: Numerical solution of DCNM system (2.3): (a) τ = 0.25; (b) τ = 2. Parameter
values: ma = 0.6, mb = 0.3, θa = θb = 0.21, na = nb = 3, and ka = kb = δa = δb = γa =
γb = 1. The critical time delay is τ0 = 0.5314.

time delays, as discussed in Polynikis et al. [32]. We have found analytically the boundary

of the Hopf bifurcation depending on the total time delay and other system parameters

and illustrated different types of behaviour by direct numerical simulations. Our results

suggest that once the positive steady state loses its stability, it can never regain it for

higher values of the time delay.

We have also studied the stability of a positive steady state in the full system and

showed that this steady state can also undergo a Hopf bifurcation depending on the time

delay and system parameters. Our analysis extends an earlier result of Polynikis et al. [32]

by showing how the critical values of the parameters at the Hopf boundary change when

the time delay increases from zero. Numerical simulations have illustrated the transition

from a stable positive steady state to a stable periodic solution as the time delay exceeds

its critical value.

Besides providing insights into the dynamics of GRNs, there are several practical ways

in which models similar to the one described in this chapter are helpful for monitoring

and treatment of cancer. GRN models based on differential equations coupled with other

techniques, such as machine learning and Bayesian networks, have proved effective in

identifying specific oncogenes that can be used as biomarkers or drug targets [50,104,111–

114]. Similar kinds of models are useful for modelling cancer cell growth and understanding

interactions between tumour growth and immune response and for analysis of the effects of
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chemotherapy (or immunotherapy) and drug resistance [50,51,115,116]. The methodology

described in this chapter can be directly used to improve the performance of these models

by elucidating the role of transcriptional and translational time delays in GRN dynamics

and its impact on various aspects of cancer onset and development.
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Chapter 3

Time-Delayed Model of a Genetic

Regulatory Network in the

Immune System

Recent studies have highlighted the physical applications of GRNs to model cell dynamics

in the immune system [117]. The immune system is a complex system of cells and molecules

that can provide us with a basic defence against pathogenic organisms. Like the nervous

system, the immune system performs pattern recognition tasks, learns, and retains a

memory of the antigens that it has fought. Furthermore, the immune response develops

in time and the description of its time evolution is an interesting problem in dynamical

systems [118].

An area of research in immunology that is of particular interest is the ability to develop

deterministic models for cell fates. Sciammas et al. [119] have used a chemical kinetic

approach based on ordinary differential equations (ODEs) to develop a model for a GRN

that regulates the cell fate dynamics of activated B cells undergoing a germinal centre

(GC) response and then differentiating into plasma cells. The architecture of this GRN

involves the mutual repression of several transcription factors (TFs), namely a TF of the

plasma-cell program, Blimp1, as well as Bcl6 which is essential for GC B cells. In this

network design there exists a TF, IRF4, which activates both genes, and also positive

feedback based on the mutual activation of Blimp1 and IRF4 [117]. The dynamics that

appear as a result of the varied connections between transcription factors provide valuable
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insight into the behaviour of proteins in the immune system.

Modelling dynamics of T cells have also been extensively studied [120–123]. H. J. van

den Ham et al. developed a simple master regulator for the Th1/Th2 paradigm, which

can be extended to higher dimensions for larger networks and enables the analysis of

other cell types. This general model, however, is mechanistic in characterising binding

of transcription factors but due to its simplicity, allows for the study of larger networks.

A more deterministic approach was carried out by W. C. Lo [123], who modelled the

concentrations of the transcription factors T-Bet (Th1), Gata3 (Th2), and Foxp3 (Treg)

in a cell using ODEs. This meant they were able to account for influences from external

activators, mutual inhibition, and auto-activation which is modelled using Hill functions.

However, mathematical analysis of larger networks using this approach would be very

challenging.

Due to the vast number of connections between transcription factors in the immune

system, the aim is to be able to model complex networks whilst still capturing useful

information about the system dynamics. There have been many different network motifs

explored and analysed to various degrees of complexity [124–127]. T. Hong et al. build

on their previous work by exploring a three and four master regulator symmetric motif,

to describe the interactions between the master transcription factors T-Bet, Gata3, Foxp3

and Rorγt (Th17). It is shown that mathematical analysis and numerical simulation

agree with experimental data. This observation motivates investigation into networks

with multiple nodes, where inhibition and positive feedback loops are present, to model

the dynamics of GRNs in the immune system.

This chapter focuses on the transcriptional and translational delays in a system of three

genes, each of which promotes the growth of its own proteins, and expresses unidirectional

inhibition. We discuss the works of Andrecut et al. [128] and H. El Samad et al. [129] and

derive a delayed model based on the so-called Repressilator. We analyse the model and

derive conditions for the existence of a Hopf bifurcation leading to periodic oscillations,

which could not be present for such a low Hill coefficient in the symmetric Repressilator

model. Numerical simulations are discussed, which give rise to interesting patterns of

stability regions in the parameter space due to the inclusion of multiple time delays. It

is also illustrated that only one of the possible 9 steady states has the potential to lose

stability.
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3.1 Derivation of the Time-Delayed Model

We take insight from the general model studied by Andrecut et al. [128] for describing

auto-activation and mutual repression between two general proteins, which has equations

given by

dx

dt
=

ax

xy + bx+ cy + d
− fx,

dy

dt
=

ay

xy + by + cx+ d
− fy,

(3.1)

where x and y are the two system variables of the generic dynamical system, which can

be taken to describe the concentrations of protein x and protein y. The first term of each

equation in (3.1) describe both auto-activation and mutual inhibition, and the second

terms are degradation for each protein. Note that the growth terms are of the form

(
x

θx + x

)(
θxy

θxy + y

)
=

θxyx

xy + θxyx+ θxy + θxθxy
, (3.2)

where the left hand side of the equation consists of two Hill functions with Hill coefficient

n = 1; the first term representing auto-activation of protein x, and the second is repression

of x by protein y.

Here we investigate a three-gene asymmetric model with time delays accounting for

those present in auto-activation and mutual repression processes. The model is given by

the following set of delay differential equations:

dx

dt
=

a1x(t− τax)

x(t− τax)z(t− τrx) + b1x(t− τax) + c1z(t− τrx) + d1
− f1x,

dy

dt
=

a2y(t− τay)
y(t− τay)x(t− τry) + b2y(t− τay) + c2x(t− τry) + d2

− f2y,

dz

dt
=

a3z(t− τaz)
z(t− τaz)y(t− τrz) + b3z(t− τaz) + c3y(t− τrz) + d3

− f3z,

(3.3)

where τax, τay and τaz are the transcriptional delays associated to the auto-activation of

proteins x, y, and z, while τrx, τry, and τrz are the transcriptional delays associated to the

repression of proteins x, y, and z respectively.
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X

YZ

Figure 3.1: Network motif of the Repressilator with auto-activation model. The nodes are
genes X, Y, and Z, which are connected by edges, in red, representing regulation of each
gene by inhibition from the preceding gene in the cycle. The loops, in blue, represent self
activation of each gene.

In the work by H. El Samad et al. [129], they discuss a two-gene network given by

ṙ1 = −δ1r1 + f1(p2),

ṗ1 = r1 − δ2p1,

ṙ2 = −δ1r2 + f2(p1),

ṗ2 = r2 − δ2p2,

where f1(p2) =
a2

2

1 + pn2
and f2(p1) =

a2
1p
n
1

1 + pn1
are Hill functions with n being the Hill coefficient.

They show that the linearisation of the system does not have positive eigenvalues if n ≤ 2.

Thus, oscillations do not occur unless the Hill coefficient exceeds n = 2. H. El Samad et

al. then look at a three-gene fully symmetric circuit, where the Hill functions are all of

the form fi(p) =
a2

1 + pn
and therefore represents a network where each protein represses the

transcription of the next. This network is known as the symmetric Repressilator [74]. It

is shown that periodic solutions are possible for certain choices of the system parameters.

Oscillations can occur provided that n > 4/3.

The model described by (3.3) is essentially an asymmetric repressilator where each

gene also promotes the transcription of its own proteins. As demonstrated in equation

(3.2), the growth term in each equation of system (3.3) is composed of two Hill functions

with Hill coefficient n = 1. Figure 3.2 shows a time profile of system (3.3) where all time

delays are equal to zero. We see there are sustained oscillations, which illustrates that
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Figure 3.2: Numerical solution of three-gene Repressilator model with auto-activation and
without time delays. Parameter values: τx = τy = τz = 0, α1 = 4, α2 = 5, α3 = 6, b1 = 4,
b2 = 3, b3 = 1, c1 = 8, c2 = 10, c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

the inclusion of auto-activation and asymmetry within the repressilator model can lead to

periodic solutions, even with Hill coefficients n = 1. Without time delays, system (3.3)

can still give rise to sustained oscillations given a small Hill coefficient.

In (3.3) we assume, for simplicity, that the time delays associated with auto-activation

and inhibition are equal for each respective gene. Thus, let τax = τrx = τx and τay =

τry = τy and τaz = τrz = τz. We may also rescale the system to reduce the number of free

parameters by introducing

t =
1

f1
t̄.

Omitting the bar .̄, model (3.3) can be rewritten as follows:

dx

dt
=

α1x(t− τx)

x(t− τx)z(t− τx) + b1x(t− τx) + c1z(t− τx) + d1
− x,

dy

dt
=

α2y(t− τy)
y(t− τy)x(t− τy) + b2y(t− τy) + c2x(t− τy) + d2

− γ2y,

dz

dt
=

α3z(t− τz)
z(t− τz)y(t− τz) + b3z(t− τz) + c3y(t− τz) + d3

− γ3z,

(3.4)

where α1 =
a1

f1
, α2 =

a2

f1
, α3 =

a3

f1
, γ2 =

f2

f1
, γ3 =

f3

f1
, and all system parameters have positive real

values. This model will be referred to as the delayed repressilator with auto-activation

model (DRAM). We investigate analytically the conditions for oscillations to occur and

also examine as to what extent the inclusion of time delays affect steady state stability.
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3.2 Time Delayed Model: Positivity and Steady States

Before continuing with any analysis of the DRAM model, first we must define initial

conditions where appropriate and address whether all solutions to the model give positive

values for all time to guarantee it’s biological feasibility. The initial conditions for the

DRAM model are

x(s) = φ1(s), s ∈ [−τmax, 0],

y(s) = φ2(s), s ∈ [−τmax, 0], (3.5)

z(s) = φ3(s), s ∈ [−τmax, 0],

where τmax = max(τx, τy, τz) and φi(s) ∈ C([−τmax, 0],R) with φi(s) ≥ 0 (−τmax ≤ s ≤ 0,

i = 1, 2, 3). C([−τmax, 0],R) is the Banach space of continuous mappings of the interval

[−τmax, 0] into R. It is also assumed that x(0) > 0, y(0) > 0, and z(0) > 0 to be sure that

some proteins are produced.

Now we prove that the solution (x(t), y(t), z(t)) of system (3.4) with initial condition

(3.5) is positive for all t > 0. As we did in the last chapter, the proof for this makes use of

the methodology applied in [93]. First, we show x(t) > 0 for all t > 0 by contradiction. Let

t1 > 0 be the first time that x(t1)z(t1) = 0; assuming that x(t1) = 0 implies z(t) ≥ 0 for all

t ∈ [0; t1] and since t1 is the first time when x(t1) = 0, this also means that dx(t1)/dt ≤ 0,

meaning the function x(t) is decreasing at t = t1. However, evaluating the first equation

of system (3.4) at t = t1 gives

dx(t1)

dt
=

α1x(t1 − τx)

x(t1 − τx)z(t1 − τx) + b1x(t1 − τx) + c1z(t− τx) + d1
> 0,

which yields a contradiction. This implies that x(t) ≥ 0 for all t > 0. In a similar way to

this, we can prove the positivity of y(t) and z(t). Hence, all solutions x(t), y(t), and z(t)

of model (3.4) are positive for all t > 0, that is, the model is well posed.

The steady states (x̄, ȳ, z̄) of (3.4) can be found as roots of the following system of
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algebraic equations:

α1x̄

x̄z̄ + b1x̄+ c1z̄ + d1
− x̄ = 0,

α2ȳ

ȳx̄+ b2ȳ + c2x̄+ d2
− γ2ȳ = 0,

α3z̄

z̄ȳ + b3z̄ + c3ȳ + d3
− γ3z̄ = 0.

(3.6)

This gives

(1) (x1, y1, z1) = (0, 0, 0),

(2) (x2, y2, z2) =

(
0, 0,

α3 − d3γ3

b3γ3

)
,

(3) (x3, y3, z3) =

(
0,
α2 − d2γ2

b2γ2
, 0

)
,

(4) (x4, y4, z4) =

(
0,
α2 − d2γ2

b2γ2
,
γ3(γ2(c3d2 − b2d3)− α2c3) + α3b2γ2

γ3(γ2(b2b3 − d2) + α2)

)
,

(5) (x5, y5, z5) =

(
α1 − d1

b1
, 0, 0

)
,

(6) (x6, y6, z6) =

(
γ3(b3(α1 − d1) + c1d3)− α3c1

γ3(b1b3 − d3) + α3
, 0,

α3 − d3γ3

b3γ3

)
,

(7) (x7, y7, z7) =

(
α1 − d1

b1
,
γ2(c2(d1 − α1)− b1d2) + α2b1

γ2(α1 + b1b2 − d1)
, 0

)
,

and the final two x̄ steady states are found by solving the following quadratic for x8 and

x9:

ζx2
8,9 + ρx8,9 + φ = 0,

where

ζ = γ2(γ3(b1b3 + c2c3 − d3) + α3 − b1c2γ2),

ρ = γ2(γ3(b3(b1b2 + d1 − α1) + c1(c2c3 − d3) + c3d2 − b2d3) + γ2(α1c2 − b1d2 − c2d1)

+ α3(b2 + c1) + α2b1)− α2c2γ3,

φ = γ2(γ3(b2(b3(d1 − α1)− c1d3) + c1c3d2) + (α1 − d1)(d2γ2 − α2) + α3b2c1)− α2c1c3γ3,

with respective ȳ and z̄ components given by

y8,9 =
α2 − γ2(c2x8,9 + d2)

γ2(x8,9 + b2)
, z8,9 =

α3 − γ3(c3y8,9 + d3)

γ3(y8,9 + b3)
.
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Now that we have explicit formulae for steady states (1)-(7) and implicit forms for the

final two steady states, we can use these to perform the stability analysis in terms of the

system parameters.

3.3 Analysis of the Delayed Repressilator with

Auto-activation Model (DRAM)

The equation for eigenvalues λ of the linearisation near a steady state (x̄, ȳ, z̄) of system

(3.4) has the form

(
α1(c1z̄ + d1)e−λτx

(x̄z̄ + b1x̄+ c1z̄ + d1)2
− 1− λ

)(
α2(c2x̄+ d2)e−λτy

(ȳx̄+ b2ȳ + c2x̄+ d2)2
− γ2 − λ

)(
α3(c3ȳ + d3)e−λτz

(z̄ȳ + b3z̄ + c3ȳ + d3)2
− γ3 − λ

)
−
(

α1x̄(x̄+ c1)e−λτx

(x̄z̄ + b1x̄+ c1z̄ + d1)2

)(
α2ȳ(ȳ + c2)e−λτy

(ȳx̄+ b2ȳ + c2x̄+ d2)2

)(
α3z̄(z̄ + c3)e−λτz

(z̄ȳ + b3z̄ + c3ȳ + d3)2

)
= 0.

(3.7)

For the zero steady state (x̄, ȳ, z̄) = (0, 0, 0), equation (3.7) simplifies to

(
α1

d1
e−λτx − 1− λ

)(
α2

d2
e−λτy − γ2 − λ

)(
α3

d3
e−λτz − γ3 − λ

)
= 0. (3.8)

For the non-zero steady states, substitutions can be made to simplify analysis of the

characteristic equation (3.7). Using the system of equations (3.6), we have

x̄z̄ + b1x̄+ c1z̄ + d1 = α1,

ȳx̄+ b2ȳ + c2x̄+ d2 = α2/γ2,

z̄ȳ + b3z̄ + c3ȳ + d3 = α3/γ3,

so that the characteristic equation for non-zero steady states reads

(
c1z̄ + d1

α1
e−λτx − 1− λ

)(
γ2

2(c2x̄+ d2)

α2
e−λτy − γ2 − λ

)(
γ2

3(c3ȳ + d3)

α3
e−λτz − γ3 − λ

)
−
(
x̄(x̄+ c1)

α1
e−λτx

)(
γ2

2 ȳ(ȳ + c2)

α2
e−λτy

)(
γ2

3 z̄(z̄ + c3)

α3
e−λτz

)
= 0. (3.9)
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3.3.1 Stability of Steady States with a Zero Component

First we look at the characteristic equation (3.8) for the zero steady state, (x1, y1, z1) =

(0, 0, 0). In the limit τx = τy = τz = 0, equation (3.8) reduces to

(
α1

d1
− 1− λ

)(
α2

d2
− γ2 − λ

)(
α3

d3
− γ3 − λ

)
= 0,

which gives the following result.

Lemma 3.1. Let τx = τy = τz = 0. The steady state (x1, y1, z1) = (0, 0, 0) of system (3.4)

is stable whenever the following conditions hold:

i) α1 < d1,

ii) α2 < γ2d2,

iii) α3 < γ3d3.

We now assume that the conditions in Lemma 3.1 hold and analyse whether stability

can be lost as τx, τy, and τz increases. To investigate whether this steady state loses

stability for τx > 0, τy > 0, τz > 0 one can note that λ = 0 is not a root of the

characteristic equation (3.8). Therefore, the only way the steady state (x1, y1, z1) can lose

stability is if a pair of complex conjugate eigenvalues cross the imaginary axis. Hence,

we can look for solutions of (3.8) of the form λ = iω, with real ω > 0. We investigate

the possible choices of τx, τy and τz, starting with the limit τy = τz = 0, and τx > 0, to

see whether the steady state (x1, y1, z1) can lose stability. In the limit τy = τz = 0, and

τx > 0, equation (3.8) reduces to

(
α1

d1
e−λτx − 1− λ

)(
α2

d2
− γ2 − λ

)(
α3

d3
− γ3 − λ

)
= 0.

Since Lemma 3.1 is satisfied the only way the steady state (x1, y1, z1) can lose stability is

if a pair of complex conjugate roots of α1
d1
e−λτx − 1 − λ = 0 crosses the imaginary axis.
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Substituting λ = iω into this equation and separating into real and imaginary parts gives

cos(ωτx) =
d1

α1
,

sin(ωτx) = −d1ω

α1
.

Squaring and adding these two equations together we have

ω2 =
α2

1

d2
1

− 1,

which is a contradiction since ω is a positive real number however condition i) of Lemma

3.1 implies that
α2
1

d21
< 1. Hence, in the limit τy = τz = 0, there does not exist a value of

τx > 0 that causes the steady state (x1, y1, z1) to lose stability. Analogous to the above

analysis, it follows that we have the same situation in the limit where one or more of τx,

τy, or τz are zero, so this analysis is not shown here.

When τx > 0, τy > 0, and τz > 0, the characteristic equation (3.8) reads

(
α1

d1
e−λτx − 1− λ

)(
α2

d2
e−λτy − γ2 − λ

)(
α3

d3
e−λτz − γ3 − λ

)
= 0.

Again, since Lemma 3.1 is satisfied the only way the steady state (x1, y1, z1) can lose

stability is if a pair of complex conjugate roots of α1
d1
e−λ1τx − 1 − λ1 = 0 or α2

d2
e−λ2τy −

γ2 − λ2 = 0 or α3
d3
e−λ3τz − γ3 − λ3 = 0 crosses the imaginary axis. Substituting λ1 = iη

and λ2 = iω and λ3 = iν, for some real η, ω, ν > 0, into the respective equations and

performing the same type of analysis as before, we have equations for η, ω and ν given by

η2 =
α2

1

d2
1

− 1, ω2 =
α2

2

d2
2

− γ2
2 , ν2 =

α2
3

d2
3

− γ2
3 ,

which again leads to a contradiction since Lemma 3.1 gives us that
α2
1

d21
< 1,

α2
2

d22
< γ2

2 and

α2
3

d23
< γ2

3 . It follows that there does not exist a value of τx, τy, τz > 0 such that the steady

state (x1, y1, z1) loses stability.

Next we investigate the stability criteria for steady states (xi, yi, zi), i = 2, 3, ..., 7. The

characteristic equation for these steady states can be reduced from equation (3.9), taking
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Figure 3.3: Parameter regions for stable and unstable steady states of DRAM system
(3.4). Each colour coded number is the indice of the corresponding steady state which is
stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
Parameter values: τx = τy = τz = 0, α3 = 6, b1 = 4, b2 = 3, b3 = 1, c1 = 8, c2 = 10,
c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

the form

(
c1z̄ + d1

α1
e−λτx − 1− λ

)(
γ2

2(c2x̄+ d2)

α2
e−λτy − γ2 − λ

)(
γ2

3(c3ȳ + d3)

α3
e−λτz − γ3 − λ

)
= 0.

(3.10)

First we investigate (x2, y2, z2), so that equation (3.10) reduces to

(
c1(α3 − γ3d3) + b3γ3d1

α1b3γ3
e−λτx − 1− λ

)(
γ2

2d2

α2
e−λτy − γ2 − λ

)(
γ2

3d3

α3
e−λτz − γ3 − λ

)
= 0.

In the limit τx = τy = τz = 0, the characteristic equation is given by

(
c1(α3 − γ3d3) + b3γ3d1

α1b3γ3
− 1− λ

)(
γ2

2d2

α2
− γ2 − λ

)(
γ2

3d3

α3
− γ3 − λ

)
= 0,

Lemma 3.2. Let τx = τy = τz = 0. The steady state (x2, y2, z2) of system (3.4) is stable

whenever the following conditions hold:

i) c1(α3 − γ3d3) < b3γ3(α1 − d1),

ii) γ2d2 < α2,

iii) γ3d3 < α3.
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Figure 3.4: Numerical solutions of DRAM system (3.4): (a) α1 = 13. (b) α1 = 25.
Parameter values: τx = τy = τz = 0, α2 = 17, α3 = 6, b1 = 4, b2 = 3, b3 = 1, c1 = 8,
c2 = 10, c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

Assuming Lemma 3.2 is satisfied, we investigate whether the steady state can lose stability

for possible choices of τx, τy, and τz. In the limit τy = τz = 0 and τx > 0, the only way

the steady state (x2, y2, z2) can lose stability is if a pair of complex conjugate eigenvalues

of c1(α3−d3γ3)+b3γ3d1
α1b3γ3

e−λτx − 1−λ = 0 crosses the imaginary axis. Substituting λ = iω into

this equation and separating into real and imaginary parts we have

cos(ωτx) =
α1b3γ3

c1(α3 − γ3d3) + b3γ3d1
,

sin(ωτx) = − α1b3γ3ω

c1(α3 − γ3d3) + b3γ3d1
.

Squaring and adding these equations together yields

ω2 =

(
c1(α3 − γ3d3) + b3γ3d1

α1b3γ3

)2

− 1,

which, similarly to the steady state (x1, y1, z1), leads to a contradiction as a result of i)

and iii) in Lemma 3.2. This result shows that in the limit τy = τz = 0, there does not

exist a value of τx > 0 where the steady state (x2, y2, z2) experiences a loss of stability.

The same result arises for all other choices of τx, τy and τz, and also holds true for all

steady states (xi, yi, zi) where i = 3, 4, ..., 7. Assuming that the conditions for stability in

the limit τx = τy = τz = 0 are satisfied, each steady state remains stable for any time

delay.

Figures 3.3, 3.5, 3.6, and 3.7 represent steady state stability regions of system (3.4)
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Figure 3.5: Parameter regions for stable and unstable steady states of DRAM system
(3.4). Each colour coded number is the indice of the corresponding steady state which is
stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
Parameter values: τx = τy = τz = 0, α1 = 4, α2 = 5, α3 = 6, b1 = 4, b2 = 3, b3 = 1,
c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

Figure 3.6: Parameter regions for stable and unstable steady states of DRAM system
(3.4). Each colour coded number is the indice of the corresponding steady state which is
stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
Parameter values: τx = τy = τz = 0, α1 = 4, α2 = 5, α3 = 6, b1 = 4, b2 = 3, b3 = 1,
c1 = 8, c2 = 10, c3 = 15, d3 = 0.2, γ2 = 0.8, γ3 = 2.

for the DRAM model, however the time delays have been equated to zero. These plots

therefore depict the stability regions for the ODE description of the Repressilator with

auto-activation. The numbers assigned to each colour coded region are the indices of the

respective steady state, i.e. 1 = (x1, y1, z1), 2 = (x2, y2, z2), . . . , 9 = (x9, y9, z9). The
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parameter regions that are represented by these colours signify where the corresponding

steady state is stable. For example, if a region is colour coded with the number 2 then

this means that steady state (x2, y2, z2) is stable and all other steady states are either

unstable or biologically infeasible in this region. The dark blue coloured regions labelled

0 are areas where system parameter choices that lie here lead to instability of all steady

states, and give rise to oscillatory solutions.

In Figure 3.3, we can observe how the relationship between parameters α1 and α2 can

lead to the destabilisation of steady state (x9, y9, z9). For example if we fix α2 = 17 the

system undergoes a Hopf bifurcation as α1 is increased through α1 = 8.4. The system then

reverts back as α1 is increased beyond α1 = 18.28, to the stable steady state (x9, y9, z9). We

can also observe stability switching between many of the possible steady states throughout

the parameter space. Figure 3.4 shows two solution diagrams. The parameter scheme for

Figure 3.4(a) lies in the 0 region of Figure 3.3, and Figure 3.4(b) lies just to the right

of the 0 region. In Figure 3.4(a) we see sustained oscillations around the steady state

(x9, y9, z9), then in Figure 3.4(b) we have a solution that tends towards the stable steady

state (x9, y9, z9).

In Figure 3.5 we see a strong dependence between parameters c1 and c2 for stability

of steady states. For stability, either both parameters must be reasonably small or else if

one grows, the other must remain small. We see therefore, a large parameter region exists

where all steady states are unstable, and oscillations occur. Therefore, the model is not

robust against variations in parameters c1 and c2 with regards to steady state stability.

Figure 3.6 shows that for d2 < 5.69, the steady state (x9, y9, z9) gains stability as d1

is increased, followed by a subsequent switch of stability to (x7, y7, z7) and then a switch

to (x3, y3, z3). For 5.69 < d2 < 5.82, as d1 is increased, the steady states are unstable

followed by a gain in stability of (x9, y9, z9) for a very small parameter region before steady

state (x4, y4, z4) becomes stable and stays stable for any larger d1. For 5.82 < d2 < 6.25,

(x4, y4, z4) is stable for any choice of parameter d1, and likewise for (x2, y2, z2) when

d2 > 6.25.

In a similar fashion to Figure 3.3, Figure 3.7 shows a small pocket in the parameter

space where all steady states are unstable. This means that close to this region, if we

increase γ2, the steady state (x9, y9, z9) switches from stable to unstable and then stable
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Figure 3.7: Parameter regions for stable and unstable steady states of DRAM system
(3.4). Each colour coded number is the indice of the corresponding steady state which is
stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
Parameter values: τx = τy = τz = 0, α1 = 4, α2 = 5, α3 = 6, b1 = 4, b2 = 3, b3 = 1,
c1 = 8, c2 = 10, c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2.

again. In the rest of the parameter space we notice switches of stability between the

different steady states, so it can be inferred that the relationship between the parameters

γ2 and γ3, i.e. the degradation rates of proteins y and z, have a strong impact on the long

term behaviour of the system.

Even without time delays present it is not possible for any of the steady states

(x1, y1, z1), (x2, y2, z3), . . . , (x7, y7, z7) to undergo a Hopf bifurcation and lose stability

by varying the system parameters. The rest of this chapter investigates the stability prop-

erties of the remaining two steady states and the effect that time delays have on the long

term system behaviour.

3.3.2 Stability of Steady States with Non-zero Components

We wish to investigate stability of the steady states (x8, y8, z8) and (x9, y9, z9), which have

non zero values in all components. Here, the number of free parameters of system (3.4) is

reduced in order to simplify analysis of the DRAM model which has 3 time delays. From

here on, it is assumed that protein x is a different type to proteins y and z. Protein x is

expressed under a smaller time scale to y and z, such that the time delays associated with

protein x are negligible, relative to the delays associated with proteins y and z. Thus, we

take the limit τx = 0 and relabel τy = τ1 and τz = τ2. The system of equations for this
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model is then given by

dx

dt
=

α1x

xz + b1 + c1 + d1
− x,

dy

dt
=

α2y(t− τ1)

y(t− τ1)x(t− τ1) + b2y(t− τ1) + c2x(t− τ1) + d2
− γ2y,

dz

dt
=

α3z(t− τ2)

z(t− τ2)y(t− τ2) + b3z(t− τ2) + c3y(t− τ2) + d3
− γ3z.

(3.11)

This model will be referred to as the simplified delayed repressilator with auto-activation

model (SDRAM). The initial conditions for model SDRAM are

x(s) = φ1(s), s ∈ [−τmax, 0],

y(s) = φ2(s), s ∈ [−τmax, 0],

z(s) = φ3(s), s ∈ [−τmax, 0],

where τmax = max(τ1, τ2) and φi(s) ∈ C([−τmax, 0],R) with φi(s) ≥ 0 (−τmax ≤ s ≤ 0,

i = 1, 2, 3). C([−τmax, 0],R) is the Banach space of continuous mappings of interval

[−τmax, 0] into R. It is also assumed that x(0) > 0, y(0) > 0, and z(0) > 0. The proof

for the positivity of solutions follows the same methodology to that of system (3.4). Since

time delays have no affect on the calculation of steady states, the equilibria of system

(3.11) are the same as for system (3.4). Therefore, to investigate the stability properties

of (x8, y8, z8) and (x9, y9, z9) with respect to the new reduced system, the characteristic

equation of system (3.11) for non-zero steady states reads

(
c1z̄ + d1

α1
− 1− λ

)(
γ2

2(c2x̄+ d2)

α2
e−λτ1 − γ2 − λ

)(
γ2

3(c3ȳ + d3)

α3
e−λτ2 − γ3 − λ

)
−
(
x̄(x̄+ c1)

α1

)(
γ2

2 ȳ(ȳ + c2)

α2
e−λτ1

)(
γ2

3 z̄(z̄ + c3)

α3
e−λτ2

)
= 0

⇔ λ3 + λ2(1 + γ2 + γ3 − κ1 − κ2e
−λτ1 − κ3e

−λτ2) + λ((κ1 − γ3 − 1)κ2e
−λτ1

+ (κ1 − γ2 − 1)κ3e
−λτ2 + κ2κ3e

−λ(τ1+τ2) + γ2 + γ3 + γ2γ3 − κ1(γ2 + γ3))

+ (κ1 − 1)(γ3κ2e
−λτ1 + γ2κ3e

−λτ2 − κ2κ3e
−λ(τ1+τ2) − γ2γ3) + ξ1ξ2ξ3e

−λ(τ1+τ2) = 0,

(3.12)
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where

κ1 =
c1z̄ + d1

α1
,

κ2 =
γ2

2(c2x̄+ d2)

α2
,

κ3 =
γ2

3(c3ȳ + d3)

α3
,

ξ1 =
x̄(x̄+ c1)

α1
,

ξ2 =
γ2

2 ȳ(ȳ + c2)

α2
,

ξ3 =
γ2

3 z̄(z̄ + c3)

α3
.

In the limit τ1 = τ2 = 0, the characteristic equation (3.12) becomes

λ3 +Aλ2 +Bλ+ C = 0,

where

A = 1 + γ2 + γ3 − κ1 − κ2 − κ3,

B = (κ1 − γ3 − 1)κ2 + (κ1 − γ2 − 1)κ3 + κ2κ3 + γ2 + γ3 + γ2γ3 − κ1(γ2 + γ3),

C = (κ1 − 1)(γ3κ2 + γ2κ3 − κ2κ3 − γ2γ3) + ξ1ξ2ξ3.

Lemma 3.3. Let τ1 = τ2 = 0. By the Routh-Herwitz criterion, the steady state (x8, y8, z8)

or (x9, y9, z9) of system (3.11) is stable provided that A > 0, B > 0, C > 0 and AB > C.

Assuming that the conditions of Lemma 3.3 are satisfied, we analyse whether stability

can be lost by the existence of a sufficiently large time delay. In the limit τ2 = 0 and

τ1 > 0, the characteristic equation (3.12) becomes

λ3 + λ2(D − κ3e
−λτ1) + λ(Ee−λτ1 + F ) +Ge−λτ1 +H = 0, (3.13)

56



where

D = 1 + γ2 + γ3 − κ1 − κ3,

E = κ2(κ1 + κ3 − γ3 − 1),

F = κ3(κ1 − γ2 − 1) + γ2 + γ3 + γ2γ3 − κ1(γ2 + γ3),

G = κ2(κ1 − 1)(γ3 − κ3) + ξ1ξ2ξ3,

H = γ2(κ1 − 1)(κ3 − γ3).

We look for solutions of (3.13) of the form λ = iω for some real ω > 0. Substituting this

into (3.13) and separating into real and imaginary parts we have

Dω2 −H = (κ3ω
2 +G) cos(ωτ1) + Eω sin(ωτ1),

ω(F − ω2) = (κ3ω
2 +G) sin(ωτ1)− Eω cos(ωτ1).

(3.14)

Squaring and adding together gives a cubic equation of the form:

g(z) = z3 + pz2 + qz + r = 0, (3.15)

where z = ω2 and

p = D2 − 2F − κ2
3,

q = F 2 − 2DH − 2Gκ3 − E2,

r = H2 −G2.

Without loss of generality, suppose that (3.15) has 3 positive real roots, denoted by z1, z2,

z3, respectively, which would give 3 possible values of ω: ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3.

Some algebraic manipulation of (3.14) gives

cos(ωkτ1,k) =
(E + κ3)ω4

k + (DG− EF −Hκ3)ω2
k −GH

κ2
3ω

4
k + (E2 + 2Gκ3)ω2

k +G2

⇒ τ1,k,j =
1

ωk

[
arccos

(
(E + κ3)ω4

k + (DG− EF −Hκ3)ω2
k −GH

κ2
3ω

4
k + (E2 + 2Gκ3)ω2

k +G2

)
+ 2jπ

]
,

k = 1, ..., 3, j = 0, 1, 2, ....
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Define,

τ1,0 = min
1≤k≤3

{τ1,k,0}, ω0 = ωk0 , k0 ∈ {1, 2, 3},

then τ1,0 is the first value of τ1 > 0 whereby the characteristic equation (3.13) has a pair

of purely imaginary roots. We have the following result.

Theorem 3.1 Suppose the conditions of Lemma 3.3 hold and that g′(ω2) > 0, where g(z)

is defined in (3.15). In the limit τ2 = 0, the steady state (x8, y8, z8) or (x9, y9, z9) of

system (3.11) is stable for 0 ≤ τ1 ≤ τ1,0 and unstable for τ1 > τ1,0 and undergoes a Hopf

bifurcation at τ1 = τ1,0.

Proof. The conclusion of Lemma 3.3 ensures that the steady state (x8, y8, z8) or (x9, y9, z9)

of system (3.11) is stable at τ1 = 0, and the fact that the roots of the characteristic

equation (3.13) depend continuously on τ1 implies that either steady state is also stable

for sufficiently small positive values of τ1. Since τ1,0 is the first positive τ1, for which the

eigenvalues lie on the imaginary axis, in order to verify whether or not the steady state

actually loses stability at τ1 = τ1,0, one has to compute the sign of dRe(λ)/dτ1|τ1=τ1,0 .

Let λ(τ1) = µ(τ1) + iω(τ1) be the root of the characteristic equation (3.13) near τ1 =

τ1,0, satisfying µ(τ1,0) = 0 and ω(τ1,0) = ω0. Substituting λ = λ(τ1) into (3.13) and

differentiating both sides with respect to τ1 yields

(
dλ

dτ1

)−1

=
(3λ2 + 2Dλ+ F )eλτ1

λ(−κ3λ2 + Eλ+G)
+

E − 2κ3λ

λ(−κ3λ2 + Eλ+G)
− τ1

λ
.

From this equation, one can find

sgn

{[
d(Reλ)

dτ1

]
τ1=τ1,0

}
= sgn

Re

[(
dλ

dτ1

)−1
]
τ1=τ1,0


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Figure 3.8: Parameter regions for stable and unstable steady states of SDRAM system
(3.11). Each colour coded number is the indice of the corresponding steady state which
is stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
(b) is a magnified view of (a). Parameter values: τ2 = 0, α2 = 5, α3 = 6, b1 = 4, b2 = 3,
b3 = 1, c1 = 8, c2 = 10, c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

= sgn

{
Re

[
(3λ2 + 2Dλ+ F )eλτ1

λ(−κ3λ2 + Eλ+G)

]
τ1=τ1,0

+ Re

[
E − 2κ3λ

λ(−κ3λ2 + Eλ+G)

]
τ1=τ1,0

}

= sgn{ (E2ω4
0 + (κ3ω

2
0 +G)2ω2

0

)−1 [(F − 3ω2
0)[ω0(κ3ω

2
0 +G) sin(ω0τ1,0)

− Eω2
0 cos(ω0τ1,0)] + 2Dω0

[
ω0(κ3ω

2
0 +G) cos(ω0τ1,0) + Eω2

0 sin(ω0τ1,0)
]

− E2ω2
0 − 2κ3ω

2
0(κ3ω

2
0 +G)}.

Substituting the expressions from system (3.14) gives

sgn

{[
d(Reλ)

dτ1

]
τ1=τ1,0

}
= sgn{Λ−1[(F − 3ω2

0)(F − ω2
0) + 2D(Dω2

0 −H)− E2

− 2κ3(κ3ω
2
0 +G)]}

= sgn{Λ−1[3ω4
0 + (2D2 − 4F − 2κ2

3)ω2
0 + F 2 − 2DH

− 2κ3G− E2]}
= sgn

{
g′(ω2

0)

Λ

}
> 0,

where Λ = E2ω2
0 + (κ3ω

2
0 + G)2. Hence, the eigenvalues of the characteristic equation

(3.13) crosses the imaginary axis at τ1 = τ1,0 with a positive speed. This implies that the

steady state (x8, y8, z8) or (x9, y9, z9) of system (3.11) does lose its stability at τ1 = τ1,0.�
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Figure 3.8 demonstrates how increasing the time delay τ1 results in a Hopf bifurcation

of the steady state (x9, y9, z9) and the emergence of a stable periodic orbit. For 0 < α1 <

0.5058 and 0.5058 < α1 < 1.963, steady state (x3, y3, z3) and (x7, y7, z7), respectively,

are stable for any time delay. However for 1.963 < α1 < 2.083, there exists a critical

time delay which leads to sustained oscillations when τ1 passes this value. In accordance

with Theorem 3.1, once the stability of the steady state (x9, y9, z9) is lost, it can never

be regained for higher values of τ , so the system will be exhibiting oscillatory behaviour.

Beyond α1 = 2.083 the steady states are unstable for all τ1.

In the limit τ1 = 0 with τ2 > 0, the story is identical to the limit τ2 = 0 with τ1 > 0, so

this analysis has not been included here. Next we look at the case where τ1 = τ2 = τ > 0.

The characteristic equation is given by

λ3 + λ2(I − Je−λτ ) + λ(Ke−λτ + Le−2λτ +M) +Ne−λτ + Pe−2λτ +Q = 0, (3.16)

where

I = 1 + γ2 + γ3 − κ1,

J = κ2 + κ3,

K = κ2(κ1 − γ3 − 1) + κ3(κ1 − γ2 − 1),

L = κ2κ3,

M = γ2 + γ3 + γ2γ3 − κ1(γ2 + γ3),

N = (κ1 − 1)(γ3κ2 + γ2κ3),

P = κ2κ3(1− κ1) + ξ1ξ2ξ3,

Q = γ2γ3(1− κ1).

Here we use an iterative procedure adopted from B. Rahman et al. [130] to find a new

function F (ω), the roots of which give the Hopf frequency associated with the purely

imaginary roots of the characteristic equation (3.16). The procedure we employ for find-

ing the function F (ω) works as follows. Consider a general transcendental characteristic
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equation [131–133],

∆(τ, λ) =

n∑
k=0

pk(λ)e−kλτ , (3.17)

where τ ≥ 0; pk(λ), k = 0, 1, 2, ..., are polynomials in λ; and |pk(λ)/p0(λ)| < 1, k =

1, 2, ..., n, for |λ| → ∞ and Re(λ) ≥ 0. Substituting λ = iω into (3.17) and conjugating

∆(τ, iω) gives

∆(τ, iω) =

n∑
k=0

pk(iω)e−kiωτ , ∆(τ, iω) =

n∑
k=0

pk(iω)ekiωτ .

Clearly, ∆(τ, iω) = 0 if and only if ∆(τ, iω) = 0. Define ∆(j)(τ, iω) recursively as

∆(1)(τ, iω) = p0(iω)∆(τ, iω)− pn(iω)e−niωτ∆(τ, iω) =
n−1∑
k=0

p
(1)
k (iω)e−kiωτ ,

...

∆(j)(τ, iω) = p
(j−1)
0 (iω)∆(j−1)(τ, iω)− p(j−1)

n−j+1(iω)e−(n−j+1)iωτ∆(j−1)(τ, iω)

=

n−j∑
k=0

p
(j)
k (iω)e−kiωτ ,

...

∆(n−1)(τ, iω) = p
(n−1)
0 (iω) + p

(n−1)
1 (iω)e−iωτ .

From p
(j+1)
0 (iω) we obtain

p
(j+1)
0 (iω) = |p(j)

0 (iω)|2 − |p(j)
n−j(iω)|2, j = 0, 1, 2, ..., n− 2.

Moreover, from ∆(n−1)(τ, iω), let

F (ω) = |p(n−1)
0 (iω)|2 − |p(n−1)

1 (iω)|2.

If ∆(τ, iω) = 0, then ω is a root of F (ω) = 0.

Now returning to (3.16) one can use the same argument as above with n = 2 to find

the function F (ω):

F (ω) = |p1
0(iω)|2 − |p1

1(iω)|2,
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where

p1
0(iω) = ω6 + (I2 − 2M)ω4 + (M2 − L2 − 2IQ)ω2 +Q2 − P 2, (3.18)

p1
1(iω) =− (IJ +K)ω4 + (J(Q− P ) +K(M − L)− IN)ω2 +N(Q− P )

+ i[Jω5 + (N − J(L+M)− IK)ω3 + (K(P +Q)−N(L+M))ω].

The function F (ω) is then calculated to give

F (ω) = ω12 +A1ω
10 +A2ω

8 +A3ω
6 +A4ω

4 +A5ω
2 +A6, (3.19)

where,

A1 = 2I2 − J2 − 4M,

A2 = I4 − (J2 + 4M)I2 + 2[J(J(L+M)−N) + 3M2 − 2IQ− L2]−K2,

A3 =− 4I3Q+ [2(M2 − JN − L2)−K2]I2 + 2[J(J(Q− P )− 2KL) + 4MQ]I

− 4M3 − J2M2 + 2[J(2N − JL) +K2 + 2L2]M + J [4(LN −KP )− JL2]

− 2(K2L+ P 2)−N2 + 2Q2,

A4 = M4 − [2(2IQ+ JN + L2) +K2]M2 + 2[K2L+N2 − 2Q2 + 2(J(KP − LN)

+ P 2)]M + (6Q2 −N2 − 2P 2)I2 + 2[K2(P +Q) + 2L2Q+ 2N(J(Q− P )−KL)]I

+ L4 − (2JN +K2)L2 + 2(2JKQ+N2)L+ J2[P (2Q− P )−Q2]− 4KNP,

A5 = [2(I(Q− P )− LM)− L2 −M2]N2 + 2[2(Q(JP +KL) +KMP )− J(P 2 +Q2)]N

+ 2P 2(2IQ+ L2 −M2)−K2(P +Q)2 + 2Q2(M2 − L2 − 2IQ),

A6 = (P 2 −Q2)2 −N2(P −Q)2.

If A6 < 0 in (3.19), then the function F (ω) has at least one positive root, ω, satisfying

F (ω) = 0. We can prove this as follows. Assuming A6 < 0 implies that F (0) = A6 < 0.

Since F (ω) is a continuous function of ω, and also limω→∞ F (ω) = ∞, this means there

exists a positive root ω > 0 such that F (ω) = 0.

We now consider the case where A6 ≥ 0. Let z = ω2, then the equation F (ω) = 0 can
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be written as

h(z) = z6 +A1z
5 +A2z

4 +A3z
3 +A4z

2 +A5z +A6 = 0. (3.20)

Without loss of generality, suppose that (3.20) has six positive real roots denoted by z1,

z2, z3, z4, z5, z6, respectively, which would give six possible values of ω:

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3, ω4 =

√
z4, ω5 =

√
z5, ω6 =

√
z6.

Now looking for solutions of (3.16) of the form λ = iω for some real ω > 0, and separating

into real and imaginary parts we have

(Jω2 +N) cos(ωτ) +Kω sin(ωτ) = Iω2 −Q− [P cos(2ωτ) + Lω sin(2ωτ)],

−(Jω2 +N) sin(ωτ) +Kω cos(ωτ) = ω(ω2 −M) + P sin(2ωτ)− Lω cos(2ωτ).

Squaring and adding together gives

β cos(u) + δ sin(u) = ε,

where

u = 2ωτ,

β = 2[P (Iω2 −Q) + Lω2(ω2 −M)],

δ = 2ω[P (M − ω2) + L(Iω2 −Q)],

ε = (Iω2 −Q)2 + ω2(ω2 −M)2 + ω2(L2 −K2) + P 2 − (Jω2 +N)2.

Dividing by
√
β2 + δ2 we obtain

β cos(u)√
β2 + δ2

+
δ sin(u)√
β2 + δ2

=
ε√

β2 + δ2
. (3.21)

Note that, (
β√

β2 + δ2

)2

+

(
δ√

β2 + δ2

)2

= 1.
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Hence, there must exist a value θ such that

cos(θ) =
β√

β2 + δ2
, sin(θ) =

δ√
β2 + δ2

, and θ = arctan

(
δ

β

)
.

Thus we can rewrite (3.21) as follows:

cos(u) cos(θ) + sin(u) sin(θ) =
ε√

β2 + δ2

⇔ cos(u− θ) =
ε√

β2 + δ2
.

Through some algebraic manipulation we are able to find the critical time delays given by

τk,j =
1

2ωk

arctan

(
δk
βk

)
+ arccos

 εk√
β2
k + δ2

k

+ jπ

 ,
k = 1, 2, . . . , 6, j = 0, 1, 2, . . . .

Define,

τ0 = min
1≤k≤6

τk,0, ω0 = ωk0 , k0 ∈ {1, 2, 3, 4, 5, 6},

then τ0 is the first value of τ > 0 such that the characteristic equation (3.16) has a

pair of purely imaginary roots. We can state some implicit conditions on whether a Hopf

bifurcation arises at the critical time delay by looking to prove the transversality condition.

Let λ(τ) = µ(τ) + iω(τ) be the root of the characteristic equation (3.16) near τ = τ0,

satisfying µ(τ0) = 0 and ω(τ0). Substituting λ = λ(τ) into (3.16) and differentiating both

sides with respect to τ yields

(
dλ

dτ

)−1

=
3λ2 + 2Iλ+M + (K − 2Jλ)e−λτ + Le−2λτ

λ[(−Jλ2 +Kλ+N)e−λτ + (2Lλ+ 2P )e−2λτ ]
− τ

λ
.
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From this equation we have

sgn

{[
d(Reλ)

dτ

]
τ=τ0

}
= sgn

{
Re

[(
dλ

dτ

)−1
]
τ=τ0

}

= sgn

{
Re

[
3λ2 + 2Iλ+M + (K − 2Jλ)e−λτ + Le−2λτ

λ[(−Jλ2 +Kλ+N)e−λτ + (2Lλ+ 2P )e−2λτ ]

]
τ=τ0

}

= sgn{(ω2(R2 + S2))−1[(2KP − LN − 5JLω2) sin(ωτ)

− ω(4JP + 3KL) cos(ωτ) + ω(2(JN + L2) +K2 − 2J2ω3

+R(M − 3ω2) + 2SIω)]},

where

R = −Kω cos(ωτ) + (Jω2 +N) sin(ωτ)− 2Lω cos(2ωτ) + 2P sin(2ωτ),

S = (Jω2 +N) cos(ωτ) +Kω sin(ωτ) + 2P cos(2ωτ) + 2Lω sin(2ωτ).

If sgn{[d(Reλ)/dτ ]τ=τ0} > 0 then the steady state undergoes a Hopf bifurcation at the

critical time delay τ0. Alternatively, we can state the following result.

Theorem 3.2. Suppose the conditions of Lemma 3.3 hold. If h′(z0)p1
0(iω0) > 0, where

h(z) and p1
0(iω) are defined in (3.20) and (3.18), respectively, and z0 = ω2

0, then the steady

state (x8, y8, z8) or (x9, y9, z9) of system (3.11) is stable for 0 ≤ τ ≤ τ0 and unstable for

τ > τ0 and undergoes a Hopf bifurcation at τ = τ0.

Proof. Firstly, by Lemma 3.3, the steady state (x8, y8, z8) or (x9, y9, z9) of system (3.11)

is stable at τ = 0. We have shown that τ0 is the first value of τ whereby the characteristic

equation (3.16) has a pair of purely imaginary eigenvalues λ = ±iω0. We cannot obtain an

explicit proof of the existence of a Hopf bifurcation through direct computation. Thus we

follow the methodology of Li et al. [132] and Rahman et al. [130] instead by introducing

a function

S1(ω) = sgn[ωF ′(ω)p1
0(iω)],

which determines possible changes in the number of roots with positive real part of (3.16).
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Figure 3.9: Parameter regions for stable and unstable steady states of SDRAM system
(3.11). Each colour coded number is the indice of the corresponding steady state which
is stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
Parameter values: τ2 = 15, α2 = 5, α3 = 6, b1 = 4, b2 = 3, b3 = 1, c1 = 8, c2 = 10,
c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

From the definition of the function h(z), we have

F (ω) = h(ω2) ⇒ F ′(ω) = 2ωh′(ω2) = 2ωh′(z),

which, under the assumption that h′(z0)p1
0(iω0) > 0, implies

S1(ω0) = sgn[ω0F
′(ω0)p1

0(iω0)] = sgn[2ω2
0h
′(z0)p1

0(iω0)] = sgn[h′(z0)p1
0(iω0)] > 0.

From Theorem 2 in [132] we have

sgn

{[
dRe[λ(τ)]

dτ

]
τ=τ0

}
> 0,

hence the steady state (x8, y8, z8) or (x9, y9, z9) undergoes a Hopf bifurcation at τ = τ0.�

Finally we would like to investigate, analytically, the case where τ1 6= τ2. The corre-

sponding characteristic equation is given by

λ3 + λ2(U − κ2e
−λτ1 − κ3e

−λτ2) + λ(V e−λτ1 +We−λτ2 + Le−λ(τ1+τ2) +M) +Xe−λτ1

+ Y e−λτ2 + Pe−λ(τ1+τ2) +Q = 0, (3.22)
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Figure 3.10: Parameter regions for stable and unstable steady states of SDRAM system
(3.11). Each colour coded number is the indice of the corresponding steady state which
is stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
Parameter values: τ2 = 15, α1 = 4, α2 = 5, α3 = 6, b1 = 4, b2 = 3, b3 = 1, c2 = 10,
c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

where

U = 1 + γ2 + γ3 − κ1,

V = (κ1 − γ3 − 1)κ2,

W = (κ1 − γ2 − 1)κ3,

X = (κ1 − 1)γ3κ2,

Y = (κ1 − 1)γ2κ3,

and L, M , P , Q are the same as defined for (3.16). However the number of free parame-

ters, time delays and exponential terms in the coefficients of the characteristic polynomial

on the left hand side of (3.22) makes it infeasible to perform any meaningful mathemat-

ical analysis on the characteristic equation (3.22). We leave this case to be analysed

numerically.

In Figure 3.9 the parameters are the same as in Figure 3.8, however, now τ2 is not

chosen in the limit τ2 = 0 but instead, τ2 = 15. In this scenario, notice how in the param-

eter region 1.963 < α1 < 2.309, for small τ1 all steady states are unstable but then as τ1

is increased, steady state (x9, y9, z9) experiences a diminishing switch-like behaviour be-

tween stable and unstable. Unlike Figure 3.8, when stability is lost at a critical time delay,
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Figure 3.11: Parameter regions for stable and unstable steady states of SDRAM system
(3.11). Each colour coded number is the indice of the corresponding steady state which
is stable in that region, whilst all other steady states are unstable or infeasible. The blue
region labelled 0 is where all steady states are unstable, leading to sustained oscillations.
Parameter values: τ2 = 15, α1 = 4, α2 = 5, α3 = 6, b1 = 4, b2 = 3, b3 = 1, c1 = 8, c2 = 10,
c3 = 15, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2.

the steady state (x9, y9, z9) does not remain unstable for larger values of τ1. This result

highlights the importance of correct mathematical representation of the transcription and

translation processes, since inclusion of multiple transcriptional and translational delays

can lead to regions in the parameter space where, depending on the careful choice of time

delay values, either sustained periodic oscillations occur or the solution tends towards a

stable steady state.

Figure 3.10 looks at the stability relationship between c1 and τ1. We see that there are

only two attainable stable steady states through varying the parameter c1. In the region

of parameter space where (x6, y6, z6) is stable, it remains so for any time delay. There is

again a region in the parameter space where switching occurs between stable and unstable

steady state (x9, y9, z9) as τ1 is increased. Notice the spiking behaviour of the unstable

region for 1.195 < c1 < 1.348.

We see that Figure 3.11 appears almost as a flipped image of Figure 3.9. In the regions

of the parameter space where steady state (x3, y3, z3) or (x7, y7, z7) are stable, they remain

so for any time delay τ1. Similar to parameter α1, there exists a region 2.215 < d1 < 2.563

where if the steady state (x9, y9, z9) loses stability due to an increase in τ1, it experiences

switching behaviour between stable and unstable for larger τ1.

68



(a)

τ2

R
e 

Λ
m

ax

0 20 40
τ1

0

20

40

0

0.05

0.1

0.15

(b)

τ2

R
e 

Λ
m

ax

0 40 80
τ1

0

20

40

-0.03

-0.015

0

0.015

(c)

τ2
R

e 
Λ

m
ax

0 20 40
τ1

0

20

40

-0.1

-0.05

0

(d)

τ2

R
e 

Λ
m

ax

0 20 40
τ1

0

20

40

-0.01

0

0.01

0.02

Figure 3.12: The values of Max(Re(λ)) in the (τ1, τ2) parameter space for steady state
(x9, y9, z9) of SDRAM system. All other steady states are either unstable or infeasible for
these parameter schemes. (a) Parameter values: α1 = 4, α2 = 5, α3 = 6, b1 = 4, b2 = 3,
b3 = 1, c1 = 8, c2 = 10, c3 = 15, d1 = 0.5, d2 = 2, d3 = 0.2, γ2 = 0.8, γ3 = 2. (b) α1 = 2.
(c) c1 = 1. (d) d1 = 2.4. All other parameters remain the same as (a) in (b)-(d).

Figure 3.12 shows stability regions in the (τ1, τ2) parameter space. The parameters

fixed in Figure 3.12(a) are the same as those used throughout Figures 3.8-3.11. However,

notice how the value of α1 = 4 places the parameter choice beyond the range of the y

axis in Figure 3.9, and thus it sits in the region where all steady states are unstable for

any τ1. This is also illustrated in Figure 3.12(a), the steady states are unstable for any

choices of either time delay. In Figure 3.12(b), the parameter α1 = 2 is fixed. Notice

that this parameter choice lies in the region of Figure 3.8 where steady state (x9, y9, z9)

is stable and subsequently loses stability as τ1 is increased. We see that Figure 3.12(b)

produces rich dynamics of switching between regions where steady state (x9, y9, z9) is stable

(Max(Re(λ)) < 0) and regions where all steady states are unstable (Max(Re(λ)) > 0). In

Figures 3.12(c) and 3.12(d) parameters c1 and d1 are fixed so that they lie in the regions

of Figures 3.10 and 3.11, respectively, where steady state (x9, y9, z9) is stable. All other
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parameters remain the same. Again we see spiking regions that spread across the entire

parameter space.

In all Figures it can be seen that the losses and gains in stability all occur around

(x9, y9, z9), showing that the stability of this steady state is not robust against parameter

variations. This result is highlighted further by Figure 3.12 as it shows the sensitivity

of steady state (x9, y9, z9) to losing stability through changes in the transcriptional and

translational time delays.

3.4 Discussion

In this chapter we have discussed a mathematical model for the analysis of a GRN and

focussed on the role played by the transcriptional and translational time delays in the

dynamics of a three-gene Repressilator model with auto-activation. We have established

conditions for stability of seven equilibria and found that none of these can undergo a

switch in stability due to the existence of time delays. By reducing the model to the one

with two time delays, we could investigate the last two steady states by considering a

scenario where protein x is expressed under a smaller time scale to y and z, such that the

time delays associated with protein x are negligible. We found, analytically, the boundary

of the Hopf bifurcation depending on the two time delays and other system parameters,

and illustrated different types of behaviour by direct simulation. Mathematical analysis

has shown that only the steady states with non-zero x, y, and z components (labelled

(x8, y8, z8) and (x9, y9, z9)) have the potential to undergo a Hopf bifurcation depending

on the time delays. However numerical simulations show us that it is in fact only steady

state (x9, y9, z9) that can undergo a Hopf bifurcation as a result of increasing time delays.

Our results also suggest that under certain parameter choices, steady state (x9, y9, z9)

can alternate between stable and unstable as a time delay is increased. The numerical

simulations reveal switching between different stable steady states through variations in

the system parameters. This is in agreement with the biology, as the changes in stable

steady states can account for different cell fates of GRNs in the immune system.
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Chapter 4

Time-Delayed Model of a Genetic

Network with Switches and

Oscillations

The two types of systems that are of particular interest in this chapter are the Repressilator

[74] and the Toggle switch [80]. As mentioned in the previous chapter, the Repressilator

is a model comprised of three genes which are connected in such a way that the protein

coded by each gene inhibits the expression of the next gene in the cycle, thus acting as a

repressor. The Toggle switch is made up of two genes with mutually repressing proteins,

which leads to bistability. Bistability is a type of switch which permits the coexistence of

two stable steady states, and is known to be a key component in biological systems such

as cell fates of GRNs during the immune response to an antigen.

The Repressilator and Toggle switch have been studied in a variety of ways [134–138],

however all of these models looked at the two systems independently of each other. A paper

by Gonze [139] looked to combine the two and unravel the compositional rules that govern

its dynamics. This type of model was warranted since biological systems are composed

of interconnected positive and negative circuits [140]. They investigated the dynamical

properties that arise through the coupling of the Repressilator and Toggle switch. Two

forms of coupling were investigated. In the first case, one protein of the Repressilator

activates the expression of one gene in the Toggle switch. In the second case, a protein

in the Toggle switch activates the expression of one gene in the Repressilator. Both types
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are what’s known as master/slave systems, since one subsystem is under the control of

the other through unidirectional coupling. In the study, Gonze accounted for the coupling

through a linear function and it was addressed that using a more elaborate coupling

term leads to qualitatively similar results. Gonze first investigated the system where a

protein in the Repressilator activates the Toggle switch. It was shown through numerical

simulation, and using the coupling term as a bifurcation parameter, that the amplitude of

the oscillatory coupling may lead to four different dynamical behaviour scenarios. When

the amplitude of the coupling is sufficiently large, oscillations of the Repressilator are

able to induce a periodic switch in the Toggle switch. However, when the amplitude of

coupling is insufficient, a periodic switch cannot be induced. Instead, the trajectory of

the coupled protein, X, in the Toggle switch oscillates with low-amplitude around the

lower steady state. When the amplitude of coupling is very low there are two possible

scenarios. Under certain conditions it is possible for X to oscillate with low-amplitude

around the upper steady state, or a phenomenon of birythmicity occurs. Birythmicity

is where, under particular initial conditions, low-amplitude oscillations around the upper

steady state are induced, whilst under a different set of initial conditions there are low-

amplitude oscillations around the lower steady state. Gonze also investigated the effect of

the period of oscillations on the dynamical behaviour of the Toggle switch. No periodic

switch is observed given a sufficiently small period.

Investigating the second type of coupling, where the Toggle switch activates the Re-

pressilator, a transient perturbation was also considered. It was shown that an external

signal acting on the Toggle switch has the potential to induce oscillations in the Repres-

silator or in fact stop any existing oscillations. This paper by Gonze highlights how one

can obtain control, through parameter tuning and network structure, over the dynamical

behaviour of an oscillatory system coupled with a bistable switch. This is important as

unidirectional coupling is likely to be present at multiple stages of gene regulatory net-

works which were shown to be hierarchical [139]. It should be noted that bidirectional

(mutual) coupling between biological switches and oscillators also exist in many biologi-

cal networks, such as bidirectional coupling between the ATM switch and the p53-Mdm2

oscillator in the p53 signaling network [141], and this form of coupling between the Toggle

switch and Repressilator has also been studied [142].

This chapter explores the impact of transcriptional and translational delays on a five-
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gene system with unidirectional coupling, where the expression of a gene in the Toggle

switch is under the control of a protein in the Repressilator. Although the literature

studied the effects of coupling amplitude on the oscillatory dynamics of the system, in

this chapter stability analysis is also performed to establish the conditions for a Hopf

bifurcation where solutions exhibit such oscillations. We then make a comparative analysis

between the delayed model, described using delay differential equations, and the existing

ODE model in the literature. This is done by studying the dynamical behaviours observed

in numerical simulations of the DDE system, and comparing the results to those found by

Gonze. The existence of new dynamical behaviours are shown which were impossible in

the model system without the time delays.

4.1 The Delayed Model

The Repressilator is a model composed of three genes which are cyclically connected in

such a way that the protein coded by each gene in the system acts as a repressor for

the transcription of the next gene in the cycle [139]. The dynamics of this model can be

described by the following set of ordinary differential equations:

dMi

dt
= T

(
−Mi +

αi
1 + Pmmod(i+1,3)

)
, with i = 1, 2, 3,

dPi
dt

= T (βiMi − γiPi), with i = 1, 2, 3.

Here, Mi and Pi represent the concentrations of mRNA and protein, respectively, of the

corresponding ith gene in the system. The Hill function αi/(1 + Pmmod(i+1,3)) accounts

for the inhibition where “mod” is the modulo function. The parameter αi represents the

maximum rate of mRNA synthesis of gene i. Parameter T has been introduced to allow

us to easily control time scale of the dynamics. Variables and time have been rescaled and

adimensionalised.

The dynamics of the Toggle switch system, which consists of two genes that mutually

inhibit each other, are described by the following ODEs:

dX

dt
=

a1

1 + Y n
− d1X + b1,

dY

dt
=

a2

1 +Xn
− d2Y + b2.
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G3

G2G1

X Y

Figure 4.1: Network motif of the Repressilator coupled with a Toggle switch. The nodes
are genes G1, G2, and G3 of the Repressilator, which are connected by edges, in red,
representing regulation of each gene by inhibition from the preceding gene in the cycle.
The genes X and Y of the Toggle switch are connected by edges, in red, representing
regulation of each gene by mutual repression. The Repressilator and Toggle switch are
coupled through an edge, in blue, connecting gene G1 with X which represents regulation
of gene X by activation from G1.

There is no distinction made between the gene and the protein, unlike in the Repressilator

model. Qualitatively, the results will be the same if we were to include equations which

account for the evolution of mRNAs for X and Y . In this model, the inhibition is described

by the Hill functions a1/(1 + Y n) and a2/(1 +Xn) where a1 and a2 denote the maximum

rate of X and Y mRNA synthesis, respectively, and n is the cooperativity. Parameters

b1 and b2 describe an independent synthesis source of X and Y , resulting from another

promoter perhaps, which is unaffected by the inhibition of X and Y , but can be controlled

by external factors. Again, variables and time have been rescaled and adimensionalised.

We are interested in the type of coupling where the Repressilator is in control of the

Toggle switch, see Figure 4.1. This model, studied by Gonze [139], is given by the following

ODEs:

dMi

dt
= T

(
−Mi +

αi
1 + Pmmod(i+1,3)

)
, with i = 1, 2, 3,

dPi
dt

= T (βiMi − γiPi), with i = 1, 2, 3,

dX

dt
=

a1

1 + Y n
− d1X + b1,

dY

dt
=

a2

1 +Xn
− d2Y + b2,

(4.1)
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where a1 = AP1 + B is the linear coupling parameter, which depends on the variable

P1. In this system, it is assumed that one protein of the Repressilator, P1, promotes the

expression of gene X of the Toggle switch.

In Figure 4.2, the numerical simulation results of model (4.1) from [139] have been

reproduced. We see that a periodic switch can be observed when amplitude of the forcing

is sufficient, which is shown in Figure 4.2(a) and (b). Figure 4.2(c) and (d) then shows

that when the amplitude of forcing is not high enough, a switch cannot be induced,

instead X remains close to the bottom steady state branch. When the forcing amplitude

is further reduced, it is possible to induce birythmicity. Whereby, depending on the initial

conditions, X can undergo small amplitude oscillations around the upper or lower steady

state branch, shown in Figure 4.2(e) and (f). As stated in [139], there are conditions

on the values of the coupling parameters A and B to obtain oscillation-induced switches.

Figure 4.3(a) summarizes these results for the types of behaviours that can be observed

as a function of the values of A and B. When B is sufficiently small and A is sufficiently

large, a periodic switch can be observed. This is denoted by the dark blue region in Figure

4.3(a). When both A and B are small, the system cannot jump from the bottom branch

to the top branch so low-amplitude oscillations occur around the lower branch (light blue

region). When B is large, the system cannot jump from the top branch to the bottom

branch. When this is the case, either A is large (green region) or A is small enough where

the system is unable to jump from the bottom branch to the top branch and, depending

on the initial conditions, the system will be stuck around the bottom or top branch, and

thus birythmicity is present (yellow region). Also, although it is not shown, when B is

very large (B > 6.8) only low-amplitude oscillations around the upper branch occurs.

In the rest of this chapter, we look at the effect of transcriptional and translational

delays on the dynamical behaviour of system (4.1). We will see how the necessary condi-

tions for phenomena such as birythmicity and periodic switching can change due to time

delays. To account for these delays we can rewrite system (4.1) as the following set of
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Figure 4.2: Periodic switch induced by oscillations. Red curve is the X steady state as a
function of the coupling parameter a1. (a) Bifurcation diagram of variable X as a function
of parameter a1. This parameter is a function of P1 of the Repressilator and therefore
oscillates. The blue curve corresponds to the trajectory of X and shows that this vari-
able switches between the lower and upper steady states. (b) Time evolutions of X and
Y . (c) When the amplitude of the coupling is insufficient, a periodic switch cannot be
induced. instead it oscillates around the lower steady state. (d) Time evolutions of X
and Y . (e) When amplitude of coupling is very low, oscillations of the Repressilator can
induce phenomenon of birythmicity: depending on initial conditions, variable X can un-
dergo small-amplitude oscillations around upper or lower steady states. (f) Corresponding
evolutions of X and Y . Parameters: T = 0.2, α1 = α2 = α3 = 100, β1 = β2 = β3 = 5,
γ1 = γ2 = γ3 = 5, d1 = d2 = 1, b1 = b2 = 0, a2 = 2, m = 2, n = 4. Coupling parameters:
A = 0.21, B = 0 ((a) and (b)), A = 0.19, B = 0 ((c) and (d)), A = 0.08, B = 2 ((e)
and (f)). For the latter case, initial conditions are X(0) = 0.1 and Y (0) = 0.9 (denoted
by CI1), leading to the lower limit cycle or X(0) = 0.9 and Y (0) = 0.1 (denoted by CI2),
leading to the upper limit cycle.
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delay differential equations:

dMi

dt
= T

(
−Mi +

αi
1 + Pmod(i+1,3)(t− τmi)m

)
, with i = 1, 2, 3,

dPi
dt

= T (βiMi(t− τpi)− γiPi), with i = 1, 2, 3,

dX

dt
=

a1

1 + Y (t− τX)n
− d1X + b1,

dY

dt
=

a2

1 +X(t− τY )n
− d2Y + b2,

(4.2)

where a1 = AP1 +B is the linear coupling parameter, τmi are the delays associated with

the transcription of mRNA from gene i in the Repressilator, τpi are the delays accounting

for those present in translation processes of gene i, τX and τY are the transcriptional delays

associated with the mutual inhibition processes of gene X and Y in the Toggle switch.

4.2 Time Delayed Model: Positivity and Steady States

Before continuing with analysis of the model, first we must define initial conditions where

appropriate and address whether all solutions to the model give positive values for all time

to guarantee it’s biological feasibility. The initial conditions for model (4.2) are

M1(s) = φ1(s), s ∈ [−τmax, 0],

P1(s) = φ2(s), s ∈ [−τmax, 0],

M2(s) = φ3(s), s ∈ [−τmax, 0],

P2(s) = φ4(s), s ∈ [−τmax, 0],

M3(s) = φ5(s), s ∈ [−τmax, 0],

P3(s) = φ6(s), s ∈ [−τmax, 0],

X(s) = φ7(s), s ∈ [−τmax, 0],

Y (s) = φ8(s), s ∈ [−τmax, 0],

(4.3)

where τmax = max(τm1 , τp1 , τm2 , τp2 , τm3 , τp3 , τX , τY ) and φj(s) ∈ C([−τmax, 0],R) with

φj(s) ≥ 0 (−τmax ≤ s ≤ 0, j = 1, 2, ..., 8). C([−τmax, 0],R) is the Banach space of

continuous mappings of interval [−τmax, 0] into R. It is also assumed that M1(0) > 0,

P1(0) > 0, M2(0) > 0, P2(0) > 0, M3(0) > 0, P3(0) > 0, X(0) > 0, and Y (0) > 0 to be

sure that some proteins are produced.
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Now we prove that the solution (M1(t), P1(t),M2(t), P2(t),M3(t), P3(t), X(t), Y (t)) of

model (4.2) with initial condition (4.3) is positive for all t > 0. Again, the proof for

this makes use of the methodology applied in [93]. First, we show M1(t) > 0 for all

t > 0 by contradiction. Let t1 > 0 be the first time that M1(t1)P2(t1) = 0; assuming

that M1(t1) = 0 implies P2(t1) ≥ 0 for all t ∈ [0; t1] and since t1 is the first time when

M1(t1) = 0, this also means that dM1(t1)/dt ≤ 0; meaning the function M1(t) is decreasing

at t = t1. However, evaluating the first equation of system (4.2) at t = t1 gives

dM1(t1)

dt
= T

(
α1

1 + P2(t1 − τm1)m

)
> 0,

which yields a contradiction. This implies that M1(t) ≥ 0 for all t > 0. Similarly, let

t2 > 0 be the first time that M1(t2)P1(t2) = 0. As we know that M1(t) > 0 for all t > 0,

the only way this can happen is if P1(t2) = 0. This means that dP1(t2)/dt ≤ 0. However,

evaluating the second equation of system (4.2) at t = t2 gives

dP1(t2)

dt
= Tβ1M1(t2 − τp1) > 0,

which gives a contradiction, implying that P1(t) ≥ 0 for all t > 0. In an analogous way to

this we can prove the positivity of M2(t), P2(t), M3(t), P3(t), X(t), and Y (t). We then

have that all solutions of model (4.2) are greater than or equal to zero for all t > 0, that

is, the model is well posed.

The steady states (M̄1, P̄1, M̄2, P̄2, M̄3, P̄3, X̄, Ȳ ) of model (4.2) can be found as roots
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of the following system of algebraic equations:

T

(
α1

1 + P̄m2
− M̄1

)
= 0,

T (β1M̄1 − γ1P̄1) = 0,

T

(
α2

1 + P̄m3
− M̄2

)
= 0,

T (β2M̄2 − γ2P̄2) = 0,

T

(
α3

1 + P̄m1
− M̄3

)
= 0,

T (β3M̄3 − γ3P̄3) = 0,

a1

1 + Ȳ n
− d1X̄ + b1 = 0,

a2

1 + X̄n
− d2Ȳ + b2 = 0.

The P̄1 component can then be found by solving the algebraic formula

P̄1 = α1β1/γ1

1 +

 α2β2

γ2

(
1 +

(
α3β3

γ3(1+P̄m1 )

)m)
m .

Hence we can find steady state values for X̄ and Ȳ as

X̄ =
1

d1

 AP̄1 +B

1 +
(

1
dn2

(
a2

1+X̄n + b2

)n) + b1

 , Ȳ =
1

d2

(
a2

1 + X̄n
+ b2

)
.

The steady state values for the remaining variables can then be found as follows:

M̄3 =
α3

1 + P̄m1
, P̄3 =

β3

γ3
M̄3, M̄2 =

α2

1 + P̄m3
, P̄2 =

β2

γ2
M̄2, M̄1 =

α1

1 + P̄m2
.
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Figure 4.3: Effect of the coupling parameters A and B on the oscillation-induced peri-
odic switch in the ODE and DDE systems, (4.1) and (4.2), respectively. (a) Oscillatory
behaviour of X in the ODE model (4.1). (b) Behaviour of X in the DDE model (4.2)
with delays only in the Repressilator. Dark blue region: When B is sufficiently small
and A sufficiently large, a periodic switch is observed. Light blue region: When A and B
are small, low amplitude oscillations around the lower steady state branch are observed.
Green region: When both A and B are large enough, we see low amplitude oscillations
around the upper steady state branch. Yellow region: When A is sufficiently small and B
large, birythmicity is observed. Parameter values: τR = 1 and τS = 0 ((b) only). T = 0.2,
α1 = α2 = α3 = 100, β1 = β2 = β3 = 5, γ1 = γ2 = γ3 = 5, d1 = d2 = 1, b1 = b2 = 0,
a2 = 2, m = 2, n = 4.

4.3 Analysis of the Delayed Repressilator Coupled with

Toggle Switch Model

The equation for eigenvalues λ of the linearisation near a steady state of system (4.2) has

the form

[
(λ+ T )3(λ+ γ1T )(λ+ γ2T )(λ+ γ3T ) + T 6ρe−λτR

] [
(λ+ d1)(λ+ d2) + σe−λτS

]
= 0,

(4.4)

where τR = τm1 + τp1 + τm2 + τp2 + τm3 + τp3 and τS = τX + τY , and

ρ =
α1α2α3β1β2β3m

3P̄m−1
1 P̄m−1

2 P̄m−1
3

(1 + P̄1)2(1 + P̄2)2(1 + P̄3)2
, σ =

−n2a2(AP̄1 +B)X̄n−1Ȳ n−1

(1 + X̄n)2(1 + Ȳ n)2
.

In the limit τR = 0, τS = 0, the characteristic equation reduces to

[
(λ+ T )3(λ+ γ1T )(λ+ γ2T )(λ+ γ3T ) + T 6ρ

]
[(λ+ d1)(λ+ d2) + σ] = 0, (4.5)
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For the steady state (P̄1, M̄1, P̄2, M̄2, P̄3, M̄3, X̄, Ȳ ) to be stable we require that the roots

of equation (4.5) have negative real part. We can therefore look at the polynomials in the

square brackets independently. Looking at the second bracket and expanding we have

λ2 + (d1 + d2)λ+ d1d2 + σ = 0.

The eigenvalues have negative real part provided that d1d2 + σ > 0 and d1 + d2 > 0. The

latter relation is satisfied since d1 > 0 and d2 > 0.

Now looking at the first square bracket on the left hand side of equation (4.5), we have

the equation

λ6 + ã1λ
5 + ã2λ

4 + ã3λ
3 + ã4λ

2 + ã5λ+ ã6 = 0, (4.6)

where

ã1 = T (γ1 + γ2 + γ3 + 3) > 0,

ã2 = T 2[γ1(γ2 + γ3 + 3) + γ2(γ3 + 3) + 3γ3 + 3] > 0,

ã3 = T 3[γ1(γ2(γ3 + 3) + 3γ3 + 3) + γ2(3γ3 + 3) + 3γ3 + 1] > 0,

ã4 = 3T 4[γ1(γ2(γ3 + 1) + γ3 + 1/3) + γ2(γ3 + 1/3) + (γ3/3)] > 0,

ã5 = 3T 5[γ3(γ2(γ1 + 1/3) + (γ1/3)) + (γ1γ2/3)] > 0,

ã6 = T 6(γ1γ2γ3 + ρ) > 0.

Then using the Routh-Hurwitz criterion, the remaining non-zero elements of the Routh

array are as follows:

b̃1 =
ã1ã2 − ã0ã3

ã1
, b̃2 =

ã1ã4 − ã0ã5

ã1
, b̃3 = ã6,

c̃1 =
b̃1ã3 − ã1b̃2

b̃1
, c̃2 =

b̃1ã5 − ã1b̃3

b̃1
,

d̃1 =
c̃1b̃2 − b̃1c̃2

c̃1
, d̃2 = b̃3,

ẽ1 =
d̃1c̃2 − c̃1d̃2

d̃1

,

f̃1 = d̃2.

Then by the Routh-Hurwitz criterion, all roots of (4.6) have negative real part provided
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that b̃1, c̃1, d̃1, ẽ1, f̃1 > 0. This leads to the following result.

Lemma 4.1. Let τR = τS = 0. The steady state (P̄1, M̄1, P̄2, M̄2, P̄3, M̄3, X̄, Ȳ ) of the

system (4.2) is stable whenever the conditions b̃1, c̃1, d̃1, ẽ1, f̃1 > 0 and d1d2 +σ > 0 hold.

As in previous chapters, we assume the conditions of Lemma 4.1 hold for the remainder

of the analysis. The only way the steady state (P̄1, M̄1, P̄2, M̄2, P̄3, M̄3, X̄, Ȳ ) of system

(4.2) can lose stability is if a pair of complex conjugate eigenvalues cross the imaginary

axis.

4.3.1 The Effect of Delays in the Toggle Switch

We wish to investigate whether there exists a critical time delay of τS or τR that can induce

a Hopf bifurcation resulting in sustained oscillations. Since τR and τS appear exclusively

in the first and second square brackets of (4.4), respectively, we can look at each case

independently of one another. First, we look at the case where τS > 0 and τR = 0, that

is, there are no delays in the Repressilator sub-network.

Substituting λ = iν, for real ν, into the equation

(λ+ d1)(λ+ d2) + σe−λτS = 0, (4.7)

and separating into real and imaginary parts gives

cos(ντS) =
ν2 − d1d2

σ
,

sin(ντS) =
(d1 + d2)ν

σ
.

(4.8)

Squaring and adding together we have

ν4 + (d2
1 + d2

2)ν2 + d2
1d

2
2 − σ2 = 0.

Let z = ν2 then we define

h(z) = z2 + (d2
1 + d2

2)z + d2
1d

2
2 − σ2 = 0,
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which can be solved to give the critical frequency as

ν2
0 =

1

2

[
−(d2

1 + d2
2) +

√
(d2

1 + d2
2)2 − 4(d2

1d
2
2 − σ2)

]
. (4.9)

One should note that ν2
0 will only admit positive real values, provided d2

1d
2
2 < σ2, which

implies that, for d2
1d

2
2 ≥ σ2, the roots of (4.7) have negative real parts for all values of the

time delay τS . Note that

dh(z)

dz
= 2z + d2

1 + d2
2 > 0 for any z ≥ 0.

The critical value of the time delay τS can be found from (4.8), which gives

τS0,j =
1

ν0

[
arctan

(
(d1 + d2)ν0

ν2
0 − d1d2

)
+ jπ

]
, j = 0, 1, 2, ...,

where ν0 is determined by (4.9). When τS = τS0,j , the equation (4.7) has a pair of purely

imaginary roots. In order to verify whether or not the steady state actually loses stability

at τS0,j one has to compute the sign of dRe(λ)/dτS |τS=τS0,j
. Let λ(τS) = µ(τS) + iν(τS)

be the root of (4.7) near τS = τS0,j satisfying µ(τS0,j) = 0 and ν(τS0,j) = ν0. Substituting

λ = λ(τS) into (4.7) and differentiating both sides with respect to τS yields

(
dλ

dτS

)−1

=
(2λ+ d1 + d2)eλτS

σλ
− τS

λ
.

From this equation, we can find

sgn

{[
d(Reλ)

dτS

]
τS=τS0,j

}
= sgn

Re

[(
dλ

dτS

)−1
]
τS=τS0,j


= sgn

{
Re

[
(2λ+ d1 + d2)eλτS

σλ

]
τS=τS0,j

}

= sgn

{
2σν2

1 cos(ν1τS0) + σν1(d1 + d2) sin(ν1τS0)

σ2ν2
1

}
.

Substituting expressions from system (4.8) gives

sgn

{[
d(Reλ)

dτS

]
τS=τS0,j

}
=

2ν2
1 + d2

1 + d2
2

σ2
=
h′(ν2

1)

σ2
> 0.

Hence, the roots of the equation (4.7) cross the imaginary axis at τS = τS0 , and never
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cross back for higher values of τS . Here, τS0 is the first value of time delay τS ≥ 0 where

the roots lie on the imaginary axis. Thus, we can state the following result.

Theorem 4.1 Suppose the conditions of Lemma 4.1 hold and that τR = 0. If d2
1d

2
2 ≥ σ2,

the steady state (P̄1, M̄1, P̄2, M̄2, P̄3, M̄3, X̄, Ȳ ) of system (4.2) is stable for all values of the

time delay τS ≥ 0. If d2
1d

2
2 < σ2, this steady state is stable for 0 ≤ τS < τS0 and unstable

for τS > τS0 and undergoes a Hopf bifurcation at τS = τS0.

4.3.2 The Effect of Delays in the Repressilator

Next we investigate whether there exists a critical value of the time delay τR which can

induce sustained oscillations through a Hopf bifurcation. Here it is assumed that τS = 0

and τR > 0. Substituting λ = iω, with real ω > 0, into the equation

(λ+ T )3(λ+ γ1T )(λ+ γ2T )(λ+ γ3T ) + T 6ρe−λτR = 0 (4.10)

and separating into real and imaginary parts gives

cos(ωτR) =
ω6 − ã2ω

4 + ã4ω
2 − T 6γ1γ2γ3

T 6ρ
,

sin(ωτR) =
ã1ω

5 − ã3ω
3 + ã5ω

T 6ρ
.

(4.11)

Squaring and adding together we have

ω12 + (ã2
1 − 2ã2)ω10 + (2(ã4 − ã1ã3) + ã2

2)ω8 + (2(ã1ã5 − ã2ã4 − γ1γ2γ3T
6) + ã2

3)ω6

+ (2(ã2γ1γ2γ3T
6 − ã3ã5) + ã2

4)ω4 + (ã2
5 − 2ã4γ1γ2γ3T

6)ω2 + T 12(γ2
1γ

2
2γ

2
3 − ρ2) = 0.

Let z = ω2 then we have

g(z) = z6 + (ã2
1 − 2ã2)z5 + (2(ã4 − ã1ã3) + ã2

2)z4 + (2(ã1ã5 − ã2ã4 − γ1γ2γ3T
6) + ã2

3)z3

+ (2(ã2γ1γ2γ3T
6 − ã3ã5) + ã2

4)z2 + (ã2
5 − 2ã4γ1γ2γ3T

6)z

+ T 12(γ2
1γ

2
2γ

2
3 − ρ2) = 0.

(4.12)
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Without loss of generality, suppose that this equation has 6 positive real roots, denoted

by z1, z2, z3, z4, z5, z6 respectively, which would give 6 possible values of ω: ω1 =
√
z1,

ω2 =
√
z2, ω3 =

√
z3, ω4 =

√
z4, ω5 =

√
z5, and ω6 =

√
z6. With some algebraic

manipulation we obtain

τRk,j =
1

ωk

[
arctan

(
ã1ω

5
k − ã3ω

3
k + ã5ωk

ω6
k − ã2ω4

k + ã4ω2
k − T 6γ1γ2γ3

)
+ jπ

]
, j = 0, 1, 2, ..., k = 1, 2, ..., 6.

Define

τR0 = min
1≤k≤6

{τRk,0}, ω0 = ωk0 , k0 ∈ {1, 2, 3, 4, 5, 6}.

τR0 is the first value of the time delay τR > 0 where (4.10) has purely imaginary roots.

We can state the following result.

Theorem 4.2 Let τS = 0. Suppose the conditions of Lemma 4.1 hold and g′(z0) > 0,

where g(z) is defined in (4.12). Then the steady state (M̄1, P̄1, M̄2, P̄2, M̄3, P̄3, X̄, Ȳ ) of

system (4.2) is stable for 0 ≤ τR < τR0 and unstable for τR > τR0 and undergoes a Hopf

bifurcation at τR = τR0.

Proof. The conclusion of Lemma 4.1 ensures the steady state (M̄1, P̄1, M̄2, P̄2, M̄3, P̄3, X̄, Ȳ )

of system (4.2) is stable at τR = τS = 0 and guarantees that the roots of (4.7) have negative

real part when τS = 0. Now to prove that the steady state (M̄1, P̄1, M̄2, P̄2, M̄3, P̄3, X̄, Ȳ )

loses stability at the critical time delay τR0 , let λ(τR) = µ(τR) + iω(τR) be the root of

(4.10) near τR = τR0 satisfying µ(τR0) = 0 and ω(τR0) = ω0. Substituting λ = λ(τR) into

(4.10) and differentiating with respect to τR yields

(
dλ

dτR

)−1

=
(6λ5 + 5ã1λ

4 + 4ã2λ
3 + 3ã3λ

2 + 2ã4λ+ ã5)eλτR

T 6ρλ
− τR

λ
.
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From this we find

sgn

Re

[(
dλ

dτR

)−1
]
τR=τR0


= sgn

{
Re

[
(6λ5 + 5ã1λ

4 + 4ã2λ
3 + 3ã3λ

2 + 2ã4λ+ ã5)eλτR

T 6ρλ

]
τR=τR0

}

= sgn

{
T 6ρ[(6ω5

0 − 4ã2ω
3
0 + 2ã4ω0) cos(ω0τR0) + (5ã1ω

4
0 − 3ã3ω

2
0 + ã5) sin(ω0τR0)]

T 12ρ2ω0

}
.

Then substituting expressions from (4.11) it follows that

sgn

Re

[(
dλ

dτR

)−1
]
τR=τR0

 = sgn

{
g′(ω2

0)

T 12ρ2

}
> 0.

Hence, the eigenvalues of the characteristic equation cross the imaginary axis at τR = τR0 ,

thus the steady state (M̄1, P̄1, M̄2, P̄2, M̄3, P̄3, X̄, Ȳ ) of system (4.2) does lose stability at

τR = τR0 . �

Using the results of Theorem 4.1 and Theorem 4.2 we obtain the following result for

the case where τR > 0 and τS > 0.

Theorem 4.3. Suppose the conditions of Lemma 4.1 hold and σ2 > d2
1d

2
2 and g′(z0) > 0,

where g(z) is defined in (4.12). Then the steady state (M̄1, P̄1, M̄2, P̄2, M̄3, P̄3, X̄, Ȳ ) of

system (4.2) is stable for 0 ≤ τS < τS0 and 0 ≤ τR < τR0, and unstable for τS > τS0 or

τR > τR0, and undergoes a Hopf bifurcation at τS = τS0 or τR = τR0.

4.4 Oscillatory Behaviour of the DDE System

In previous chapters, time delays have been shown to have a significant impact on the

dynamical behaviour of GRNs when modelled using DDEs. However in past research the

effect of time delays on steady state stability has been investigated, here we wish to study

the effect of time delays on the oscillatory behaviour of a protein from the Toggle switch

sub-network in (4.2) with regards to switching and birythmicity. For the purpose of making

a comparative analysis between the ODE and DDE models, we adopt the methodology

in [139] to display our findings.

We now investigate the effects of time delays in the DDE model (4.2) on the parameter-
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Figure 4.4: Effect of the coupling parameters A and B on the oscillation-induced periodic
switch in the DDE system (4.2) with delays only in the Toggle switch. (b) is a magnifi-
cation of (a). Dark blue: When B is sufficiently small and A sufficiently large, a periodic
switch is observed. Light blue: When A and B are small, low amplitude oscillations
around the lower steady state branch are observed. Green: When both A and B are large
enough, we see low amplitude oscillations around the upper steady state branch. Yellow:
When A is sufficiently small and B large, birythmicity is observed. Orange: For small B
there is a range of possible choices of A where, depending on initial conditions, low am-
plitude oscillations around the upper steady state branch or periodic switch is observed.
Pink: For small B if A is sufficiently small and within a certain range, depending on initial
conditions, low amplitude oscillations around the lower steady state branch or periodic
switch is observed. Parameter values: τR = 0, τS = 40, T = 0.2, α1 = α2 = α3 = 100,
β1 = β2 = β3 = 5, γ1 = γ2 = γ3 = 5, d1 = d2 = 1, b1 = b2 = 0, a2 = 2, m = 2, n = 4.

dependent periodic switch and general system behaviour. Firstly it should be noted that

with regards to stability of steady states, the individual time delays were not important.

What’s important, is the combined time delay of the Toggle switch and likewise the com-

bined time delay of the Repressilator, i.e. the sum of the individual time delays present

in each respective sub-network. This is also the case with regards to the effect of time

delays on the system behaviour after oscillations are induced. Therefore, we denote the

combined time delay in the Repressilator as τR = τm1 + τp1 + τm2 + τp2 + τm3 + τp3 , and

the combined delay in the Toggle switch as τS = τX + τY .

In Figure 4.3(b) the combined time delay in the Repressilator is increased to τR = 1,

whilst the time delay in the Toggle switch is kept as τS = 0. The presence of delays in

the Repressilator simply makes the upright boundary line shift slightly to the left, whilst

the point of intersection of this line and the vertical axis remains at B = 6.8. It therefore

requires a smaller coupling amplitude to induce birythmicity. Overall, the time delays

from the Repressilator have little effect on the oscillatory dynamics of X in the Toggle
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Figure 4.5: Oscillatory behaviour in the DDE model (4.2). (a) Bifurcation diagram of
variable X as a function of parameter a1. The blue curve shows that this variable switches
between the lower and upper steady states, with different dynamics than seen in the
ODE model (4.1). (b) Time evolutions of X and Y . (c) When amplitude of coupling
is insufficient, a periodic switch cannot be induced and variable X oscillates around the
lower steady state. (d) Corresponding time evolution of X and Y . (e) When amplitude of
coupling is high, oscillations around the upper steady state can occur. (f) Corresponding
time evolution of X and Y . (g) When amplitude of coupling is very low, oscillations
of the Repressilator can induce birythmicity. (h) Corresponding evolutions of X and Y .
Parameter values: τR = 0, τS = 40, T = 0.2, α1 = α2 = α3 = 100, β1 = β2 = β3 = 5,
γ1 = γ2 = γ3 = 5, d1 = d2 = 1, b1 = b2 = 0, a2 = 2, m = 2, n = 4. Coupling parameters:
A = 0.3, B = 0.5 ((a) and (b)), A = 0.05, B = 0.5 ((c) and (d)), A = 0.3, B = 2.5
((e) and (f)), A = 0.05, B = 2.5 ((g) and (h)). For the latter case, initial conditions are
X(0) = 0.1 and Y (0) = 10 (denoted by CI1), leading to the lower limit cycle or X(0) = 10
and Y (0) = 0.1 (denoted by CI2), leading to the upper limit cycle.
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Figure 4.6: New Oscillatory behaviour found in the DDE model (4.2). (a) For sufficiently
large amplitude of coupling, it is possible to induce a phenomenon where, depending on
initial conditions, variable X can undergo small-amplitude oscillations around the upper
steady state or undergo a periodic switch. (b) Time evolution of corresponding X and Y .
(c) For a sufficiently small amplitude of coupling, a type of behaviour is possible where,
depending on initial conditions, variable X can undergo a periodic switch or undergo small-
amplitude oscillations around the lower steady state. (d) Corresponding time evolution
of X and Y . Parameter values: τR = 0, τS = 40, T = 0.2, α1 = α2 = α3 = 100,
β1 = β2 = β3 = 5, γ1 = γ2 = γ3 = 5, d1 = d2 = 1, b1 = b2 = 0, a2 = 2, m = 2, n = 4.
Coupling parameters: A = 0.3, B = 1.25 ((a) and (b)), A = 0.12, B = 1 ((c) and (d)).
Initial conditions are X(0) = 0.1 and Y (0) = 10 (denoted by CI1), or X(0) = 10 and
Y (0) = 0.1 (denoted by CI2).

switch. With this in mind we now ignore the presence of time delays in the Repressilator

and investigate the effects of time delays in the Toggle switch.

The types of oscillatory behaviour that can occur as a result of delays in the Toggle

switch is summarized in Figure 4.4. The same four behaviours of periodic switching, lower

oscillations, upper oscillations, and birythmicity are still present in the DDE system as

appeared in the ODE model. Interestingly, the inclusion of these time delays in the Toggle

switch has given rise to new behaviours as well, unseen in the ODE model. The dynamics
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of X remain the same for choices of A and B which lie in the light blue region (lower

oscillations), green region (upper oscillations), and yellow region (birythmicity). However,

in the dark blue region a periodic switch is still induced in X although the dynamical

behaviour is drastically different, shown in Figure 4.5(a) and (b). The solution for X

begins to oscillate around the upper steady state branch but as a1 becomes very small X

switches for a short time to the lower branch before switching back to the upper branch.

More importantly, the new behaviour that occurs due to the inclusion of time delays in

the Toggle switch is seen in the orange and pink regions of Figure 4.4. When the coupling

parameter B is small and amplitude of coupling A is sufficiently large such that it lies in

the orange region, a phenomenon is induced whereby, depending on the initial conditions,

X will either oscillate around the upper steady state branch or undergo a periodic switch.

These dynamics are depicted in Figure 4.6(a) and (b). Similarly, another new type of

behaviour is observed in the pink region of Figure 4.4 where, depending on the initial

conditions, X will either oscillate around the lower steady state branch or undergo a

periodic switch. These dynamics are illustrated in Figure 4.6(c) and (d).

The bifurcation and solution diagrams shown here reveal new types of behaviour that

could not be possible in the network described by the ODE model (4.1). If we look at the

periodic switch observed in Figure 4.2(a) and (b) we see that in the model without delays

the solution of X stays near the lower steady state branch for a long time before passing

the second saddle node, where it then goes to the upper branch. X only stays along the

upper branch for a short time before switching to the lower branch again. Conversely, if

we look at the periodic switch observed in the DDE model, in Figure 4.5(a) and (b), we

see that X does not move far along the lower steady state branch. The dynamics also

contrast in that more time is spent along the upper branch, shown in Figure 4.5(b), than

in the ODE model.

We see that the time delays associated with the two parts of the network, namely, the

Repressilator and Toggle switch need to be treated separately. Compared to the behaviours

seen in Figure 4.3(a), the plot in Figure 4.3(b) reveals very little change. Overall, the

inclusion of delays in the Repressilator doesn’t produce a dramatic difference in dynamics

of X.

The final comparison that can be made between the results of the DDE model and

those found by Gonze [139] is the appearance of two new oscillatory dynamics. Figure 4.4
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gives rise to parameter regions where X is capable of undergoing a periodic switch and

either upper or lower oscillations depending on initial conditions. The new behaviours

that appear as a result of the delays in the Toggle switch are not limited to this, other

forms of spiking dynamics in the oscillations of X can also be observed (not shown here).

It is evident that in modelling systems where non-negligible time delays exist, such as in

GRNs, careful consideration of these delays can help unravel new information that may

have otherwise been lost.

4.5 Discussion

In this chapter we have discussed a mathematical model for the analysis of a GRN com-

prised of the Repressilator [74] coupled with the Toggle switch [80] where one protein in

the Toggle switch is under the control of one protein in the Repressilator in a master/slave

setup. We have focussed on the role of transcriptional and translational time delays on

the dynamics of the coupled GRN. Our analysis extends an ealier result of Gonze [139]

by introducing time delays into the system, where we were able to find new dynamical

behaviours that were not possible in the absence of the time delays. Numerical simulations

have allowed us to observe these new behaviours and make direct comparisons with the

earlier results.

The results in this chapter show that although it may be difficult to control values of

coupling parameters in practice, other parameters in the oscillator itself could be altered

to produce the desired amplitude of oscillations. Likewise, time delays would also be

difficult to alter however understanding the potential effects that time delays can have on

the system dynamics could indeed help to provide greater control over parameter tuning

in an artificial and experimental environment.
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Chapter 5

Discussion and Future Work

5.1 Summary and Conclusions

Research into mathematical models of genetic regulatory networks has provided great

insight into the behaviour and development of key life processes in an organism, in a

quantitative as well as qualitative way. Correct mathematical representation of real bio-

logical systems is vital to achieve a more complete picture of the mechanisms at work in

the biological environment. Inclusion of time delays into these models can help unravel

the causes of certain phenomena such as Hopf bifurcations and help understand their

biological implications.

This thesis examined the effects of time delays in systems describing the dynamics of

genetic regulatory networks. In a real biological setting, these delays are associated with

the transcription and translation processes during gene expression and, due to the relative

time scales of the intrinsic processes, are non-negligible and therefore need to be properly

accounted for. We have considered three different GRN network motifs, each with its own

forms of regulation between genes. Delay differential equations have been used to describe

each model and comparisons have been made with the equivalent ODE description.

The first model focused on the role of transcriptional and translational time delays in

an activation-inhibition GRN, and discussed the relevance of behaviour in such models to

the onset and development of certain types of cancer. The analysis provided analytical ex-

pressions of steady states and showed conditions for the occurrence of periodic oscillations

due to the time delays. The results from numerical simulations illustrated the presence
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of new oscillatory behaviour in the simplified delayed model, with fast mRNA dynamics,

which could not be seen in the existing ODE model in the literature. It also showed the

relationships between various system parameters and the time delays, and their effect on

steady state stability.

The second model focused on the role of transcriptional and translational time delays

in a three-gene network where each gene inhibits the expression of the next gene in the

cycle, whilst promoting the expression of itself. It was shown that although the literature

suggests that oscillations cannot exist in a Repressilator model with a small Hill coefficient,

the inclusion of auto-activation and asymmetry could in fact give rise to oscillations. The

results of the analysis showed that only one of the steady states has the potential to lose

stability through parameter variations, and that the presence of multiple delays can lead

to periodic switching of stability for this steady state. The switching between stability

of the other steady states was representative of cell fate decisions in the immune system,

which showed the importance of parameter tuning on the long term system behaviour.

The third model focused on the effect of transcriptional and translational time delays

on the Repressilator model coupled with a Toggle switch. This was done by making a

comparative analysis between the DDE model and an ODE model from earlier literature.

Steady state stability analysis was performed to provide analytical conditions for the

occurrence of oscillations due to time delays, and numerical simulations were used to

study the effect of the delays on the different types of oscillations that can be exhibited

by one of the system proteins. The results suggest that with regards to both stability and

behaviour of oscillations, it is the combined delays of each respective sub-network that has

an impact on the system dynamics, rather than the individual delays. It was found that

the delays in the Repressilator have little effect on the dynamics of the observed protein in

the Toggle switch, however the delays in the Toggle switch lead to new types of oscillatory

behaviour, which were impossible in the ODE system. These results stress the importance

of transcriptional and translational time delays in not only steady state stability, but also

the system behaviour once oscillations have been induced.

The outcomes of this thesis stress the significance of time delays within GRNs. With-

out careful consideration of delays, it may be likely that one could miss vital information

surrounding the genetic model; whether it be oscillations induced by delay dependent

Hopf bifurcations, or rich dynamical patterns which exist only in a delayed model setting.
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Indeed direct mathematical analysis of such systems can become troublesome and in some

cases impossible using known mathematical methods, especially for larger systems. How-

ever, advances in computational power and computational methods may lead to greater

possibilities and permit further understanding of delayed genetic systems.

5.2 Future Research

The work presented in the thesis can be extended in several interesting and important

research directions. One possibility would be to account for the fact that in most experi-

ments the transcriptional and translational time delay are not fixed but rather obey some

form of a delay distribution. Recent work on the effects of delay distribution on system

dynamics [143–145] has shown that, even for the same mean delay, details of the distri-

bution can also play an important role. He and Cao [59] have used Lyapunov functional

approach to derive conditions for global stability of equilibria in some types of GRNs with

distributed delays, and it would be insightful to investigate the possibility of extending

this methodology to other types of GRNs and various types of delay kernels. Alternatively,

one could use the framework of a master stability function for systems with distributed

delays [146] to study possible synchronization dynamics in GRNs with a large number of

proteins involved.

Since GRNs are known to be made up of multiple feedback networks, further inves-

tigation into other network motifs of coupled switches and oscillators could be explored.

Gonze [139] looked at another type of connection between the Toggle switch and Repres-

silator where, instead, a protein in the Repressilator is under the control of a protein in

the Toggle switch. It is then shown that an external signal acting on the Toggle switch

can induce oscillations in the Repressilator or in fact stop the existing oscillations. It

would most certainly be worth incorporating time delays into systems such as these which

include external signals, as these signals are known to play an important role in GRNs in

the immune system, such as T cell development. Other forms of coupling within delayed

systems of the Repressilator and Toggle switch could also be studied, such as bidirectional

coupling [142].

As it has already been mentioned, in some cases gene expression behaviour is charac-

terised by a switch-like behaviour that can be better modelled using piecewise-linear rather
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than continuous transcription functions [38, 41]. Whilst some preliminary work has been

done recently on the analysis of piecewise-linear systems with discrete time delays, pri-

marily in engineering applications [147–149], the dynamics of GRNs with piecewise-linear

transcription functions and transcriptional/translational delays have remained completely

unexplored. Further inclusion of distributed delays would make such models mathemati-

cally very challenging, but it could provide a new level of understanding of GRN dynamics.

95



Bibliography

[1] U. Alon, An Introduction to Systems Biology, Champan & Hall, Boca Raton, USA,

2007.

[2] H. de Jong, “Modeling and simulation of genetic regulatory systems: a literature

review,” Journal of Computational Biology, vol. 9, no. 1, pp. 67-103, 2002.

[3] G. Bernot, J.-P. Comet, A. Richard, M. Chaves, J.-L. Gouzé, and R. Dayan, “Model-
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