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Abstract

The design of a communication network has a critical impact on its effectiveness at delivering
service to the users of a large scale compute infrastructure. In particular, the reliability of
such networks is increasingly vital in the modern world, as more and more of our commercial
and social activity is conducted using digital platforms. Systems to assure service availability
have been available since the emergence of Mainframes, with the System 360 in 1964, and
although commercially widespread, the scientific understanding is not as deep as the problem
warrants. The basic operating principle of most service assurance systems combines the
gathering of status messages, which we term as events, with algorithms to deduce from the
events where potential failures may be occurring. The algorithms to identify which events
are causal, known as root cause analysis or fault localization, usually rely upon a detailed
understanding of the network structure in order to determine those events that are most
helpful in diagnosing and remediating a service threatening problem. The complex nature of
root cause algorithms introduces scalability limits in terms of the number of events that can
be processed per second. Unfortunately as networks grow, the volume of events produced
continues to increase, often dramatically.

The dependence of root cause analysis algorithms on network structure presents a signifi-
cant challenge as networks continue to grow in scale and complexity. As a consequence of
this, and the growing reliance upon networks as part of the key fabric of the modern econ-
omy, the commercial importance and the scale of the engineering challenges are increasing
significantly.

In this thesis I outline a novel approach to improving the scalability of event processing
using a mathematical property of networks, graph entropy. In the first two papers described in
this thesis, I apply an efficiently computable approximation of graph entropy to the problem
of identifying important nodes in a network. In this context, importance is a measure of
whether the failure of a node is more likely to result in a significant impact on the overall
connectivity of the network, and therefore likely to lead to an interruption of service. I
show that by ignoring events from unimportant network nodes it is possible to significantly
reduce the event rate that a root cause algorithm needs to process. Further, I demonstrate that



x

unimportant nodes produce very many events, but very few root causes. The consequence is
that although some events relating to root causes are missed, this is compensated for by the
reduction in overall event rate. This leads to a significant reduction of the event processing
load on management systems, and therefore increases the effectiveness of current approaches
to root cause analysis on large networks.

Analysis of the topology data used in the first two papers revealed interesting anomalies
in the degree distribution of the network nodes. This motivated the later focus of my research
to investigate how graph entropy and network design considerations could be applied to the
dynamical evolution of networks structures, most commonly described using the Preferential
Attachment model of Barabási and Albert. A common feature of a communication network
is the presence of a constraint on the number of logical or physical connections a device
can support. In the last of the three papers in the thesis I develop and present a constrained
model of network evolution, which demonstrates better quantitative agreement with real
world networks than the preferential attachment model. This model, developed using the
continuum approach, still does not address a fundamental question of random networks as
a model of network evolution. Why should a node’s degree influence the likelihood of it
acquiring connections? In the same paper I attempt to answer that question by outlining a
model that links vertex entropy to a node’s attachment probability. The model successfully
reproduces some of the characteristics of preferential attachment, and illustrates the potential
for entropic arguments in network science.

Put together, the two main bodies of work constitute a practical advance on the state
of the art of fault localization, and a theoretical insight into the inner workings of dynamic
networks. They open up a number of interesting avenues for further investigation.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Summary

In this thesis I will describe the work presented for publication in a number of academic
journals. To provide sufficient background to the papers though, it is first necessary to explain
the motivation for the research and the potential practical benefits it offers to the domain of
Fault Management, Fault Localization in particular.

I begin with an overview of Fault Localization in Section 1.2.1, which describes the
main commercial approaches to the use of event monitoring to identify faults in a monitored
system, hopefully before impact is felt by end users. This is an important discipline, and
most large operators of network and compute infrastructure have substantial investments in
both the tools and manpower necessary to perform this task. In section 1.2.3 I describe how
each of the approaches have fundamental limits in the rate at which they can process event
data. Given that the vast majority of events monitored do not indicate a service impacting
failure (for example in [54] this can be as little as 0.163% of events). Elimination of these
spurious events would vastly increase the scalability of fault localization techniques.

The search for a method of elimination of these noisy events was the focus of my early
research and the subject of the first two papers described in Chapter 4 and 5.

Before describing these papers, in Chapter 2, I introduce and summarize the necessary
Graph Theory background used in the research. The majority of the analysis that I have
undertaken relies upon concepts of Graph Entropy, which is a relatively esoteric mathematical
construct, not often studied. I will attempt in my overview to provide some insight as to what
it measures about the structure of a graph, and the networks we represent graphically.
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During the course of the research aimed at understanding how network topology could
be used to eliminate noisy events, I started to investigate the node degree distributions of the
topology data. I noticed that in many cases the data did not follow the expected pattern of
the most accepted model of network evolution. This became the focus of the last part of my
research and resulted in the paper described in Chapter 6.

I consider the results obtained in all of the three papers presented in this thesis to be
both novel and of practical use. In fact the vertex entropy technique is currently being
implemented at Moogsoft Inc as part of its suite of event management products.

1.2 Fault Localization Background

1.2.1 Overview of Fault Localization

Operational Motivation

For the purposes of my research, I have focused on the important operational discipline of
fault management as applied to large scale real world networks. The discipline concerns
itself with the identification of failure conditions in components of the compute, application
and network infrastructure of a business seeking to digitally support its commercial and
regulatory activities. These failures can result in outages which impact consumers of these
services. Using the latest verified census (statistics taken from [18]), it is estimated that
$5.809 billions of dollars were transacted using digital infrastructure owned and operated
in the private and public sector in 2014, with retail e-commerce growing at 14.3% annually.
Clearly, conditions which render a digital service unavailable or unusably slow can have real
and potentially existential affects upon a business.

The role of fault management is to identify these failures rapidly enough to permit the
remediation of issues in the fastest possible way to minimize such impact. This benefit can
often be quantized by companies as the cost of a minute of downtime, which can run into
thousands and even millions of dollars, depending upon the business.

The typical process of Fault Management divides neatly into two phases, fault localization
and fault remediation. The first phase is measured with the Mean Time to Detect (MTTD)
metric, the second phase with the Mean Time to Resolve (MTTR) metric. Some of the
basic challenges and strategies to overcome them are outlined in [78]. In the context of fault
management this work gives a good example list (their Table 1), of the variety of source
information that is typically available for fault localization, but to standardize terms in this
work we introduce the following definition for a monitored event and an incident:
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• Event: An event is typically a single log message or notification from an underlying
monitoring system. We require that it has a timestamp, topology node identifier and
description. It is not necessarily a notification of a fault condition, but fault conditions
will send out at least one event.

• Incident: An incident is a support ticket raised as a result of some failure or service
interruption. In the context of a management application, an incident is typically raised
upon receiving an event that is deemed to be potentially indicative of such a failure,
and each incident can be linked to a node in the network topology from which the
event was received. Although not all incidents are indicative of a significant impact,
they are an indication that the node has a fault condition that requires investigation.

Practically, each of these types of data object are comprised of a tuple of key value
pairs, each key representing a fundamental property of the event or incident. Each source
of monitored infrastructure will produce different event formats, and a common challenge
before processing is to normalize this event data into a common format appropriate to the
system being used to manage them. There is no absolute standard for the minimal description
of an event (or incident), but it is expected that each event contains:

• Timestamp: Some record of when the event occurred, often measured in epoch seconds,
commonly a UNIX timestamp.

• Host: A network name for the sender of the event, usually associated with the affected
entity in the case of an event or incident. It is this field that relates the topology of the
managed system to the events and incidents. Typically the management system will
include in the host field the label from the underlying topology database and this will
be also be stored in any incidents that are raised as a result of the event being received.
It is common for this field to be a fully qualified domain name, IP address or similar.

• Description: A human readable description of the event.

• Severity: Some measure of severity of the event, in terms of its impact.

Typically events have many more attributes than those listed above, but any valid event
must at least contain these, and the same is true of incidents. In the case of commercial
systems an event may contain upwards of twenty core attributes (see for example [36]).
Critically, though, through the ‘Host’ attribute it is possible to relate events, incidents and
structural topology of a managed infrastructure
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Herein lies the fundamental challenge. The number of events that need to be processed far
outweighs the number of incidents typically experienced in a sizable network infrastructure.
From practical experience with many very large environments from banks such as Royal
Bank of Canada, to web scale companies such as Yahoo and GoDaddy. In industrial scale
networks it is common for the monitoring systems to receive as many as 105 to 109 events
daily, in which there maybe 102 to 104 incidents. Additionally in the literature such as
Stearley et al [53] it is well understood that large scale infrastructure produces a large amount
of event messages, most of which are not actionable. Fault localization is primarily the
identification amongst the field of events, the subset that indicate the causal problems leading
up to the incident. Should these events be properly localized the process of diagnosis and
eventual remediation is significantly simplified.

Many different approaches can be taken to categorize an event as causal (and therefore
interesting), or as background noise. In the following Section 1.2.2 we survey the main ones.
What they all share in common are limitations to their ability to handle high event rates. A
central goal of our research is to identify how the structure of a network can assist in lowering
the event load. As well as identifying potential methods to do so, an interesting side-shoot of
the research has been a novel way to understand how such networks evolve and grow over
time.

1.2.2 Algorithmic Approaches

The collection of algorithms used to perform fault localization is commonly referred to as
Root Cause Analysis (RCA). There are many approaches to doing this, but the fundamental
input to the algorithm is the stream of monitored events, and the output is a list of correlated
alerts (occasionally represented by one root cause alert). In addition to the received events,
most of the algorithms require some description of the underlying system that is being
monitored. In this section we briefly survey the most widespread approaches.

The Steinder-Sethi Categorization

An excellent review of fault localization techniques is presented in the 2004 paper by Steinder
and Sethi [68], and contains a very useful categorization of the approaches to fault localization.
We reproduce the relevant portion of that ontology in Figure 1.1.

This categorization of fault localization techniques attempts to group the various algo-
rithmic approaches to fault localization into the broad classes of ‘AI’ techniques versus
‘Fault propagation models’. Inevitably in any such ontology, there is ambiguity between
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Fault localization techniques

AI techniques

Rules Based Systems

Neural Networks

Model Based Systems

Decision trees

Case-based systems

Fault propagation models

Code-based techniques

Dependency graphs

Bayesian Networks

Causality graphs

Phase structured grammars

Fig. 1.1 Steinder - Sethi Ontology of Fault Localization Techniques

the categories of certain algorithms, for example the difference between decision trees and
dependency graphs is a matter of opinion! For clarity a brief description of each category,
and the relevance to our survey is as follows:

• Rules Based Systems: These algorithms apply a series of boolean if-then-else logical
reductions to the set of events being processed with the result being the inference of a
given root cause. We describe these in detail in Section 1.2.2 "Rules Based Systems"
and Micromuse’s Netcool is a primary example of a system deploying these algorithms.

• Neural Networks: Neural network based systems use a series of features of the events
received and known set of incidents related to them, to train a neural net to recognize
the presence of an underlying incident. These overlap the algorithms describe in
Section 1.2.2 "Machine Learning Based Approaches" and are utilized in the products
of Moogsoft.

• Model Based Systems: Model based systems rely upon the creation of a behavioral
model of the managed system, including the events produced in response to modeled
failure modes. These class of algorithms include those discussed in Section 1.2.2.

• Decision Trees: This class of algorithms attempts to codify the diagnostic process
into a linear flow of tests for the presence of events, which is used to analyze for the
presence or absence of events as symptoms or causes in the system. They are not
considered in this survey as they are not in common usage due to the fact they require
events to arrive in a precisely anticipated order and contain no unanticipated events
[68].
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• Case-based systems: Case based systems rely upon the creation of a knowledge base
of past incidents and the events that were symptomatic and causal. Various techniques
are then applied to the events that are current in a system to relate back to the case. We
do not consider these algorithms here as they are not currently in widespread use due
to scalability limitations [68].

• Code-based techniques: The code-based techniques use an efficient algorithm to
match known event patterns for collections of incidents (described in Section 1.2.2
"Codebook Correlation" as problems) to deduce the most likely set of incidents to have
caused the observed events. EMC Smarts is the most notable example of a commercial
product to use this approach.

• Dependency graphs/Bayesian Networks/Causality Graphs: These algorithms use
a weighted directed graph to model the manner in which failures propagate through the
network by representing failures as nodes and the edges between them the probability
of one failure causing another. In the case of a ‘Dependency Graph’, a one to one
correspondence is then made between failures and events, and predicted events are
compared against actual to deduce which failures are represented by the events received.
Because of the one to one mapping of failures to events these approaches are not widely
used, and not covered here, as in general a single failure can produce many events [68].
‘Bayesian Networks’ and the closely related ‘Causality Graphs’ are a general form of
the approach used in the codebook approach described in Section 1.2.2 "Codebook
Correlation", which to the authors knowledge are the only widespread use of this class
of algorithms. The generalization is the use of the network to model the links between
failure nodes as conditional probabilities. Multiple nodes can connect to a single node,
and the probabilities assigned to the weights of the directed links in the graph represent
the conditional probability of the target of a link in the graph occurring if the source
node exists. In this way multiple events as symptoms of a given failure can be modeled,
and the algorithms proceed by attempting to decide the most likely failures present
from the events being analyzed.

• Phase structured grammars: This class of algorithms utilize a context free system of
grammar to model the complex interdependencies between components in a system. It
accomplishes this by decomposing a dependency graph into a set of paths that represent
how failures propagate. Linear programming techniques then attempt to match these
paths to the largest subset of analyzed events to determine root cause. They are not in
common usage and I do not survey them here as the approach can be considered to be
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a subset of the codebook approach described in Section 1.2.2 "Codebook Correlation"
[68].

A key missing category, which has emerged since Steinder published the ontology, are
systems that use data driven algorithms and machine learning to localize faults. This is a
central focus of companies such as Moogsoft [48], and I will spend some time in Section
1.2.2 describing them.

A shared characteristic of each of these approaches is the use of advanced logic to inspect
the events that come from the source systems to determine the potential impact of the event.
The additional processing that this logic requires effectively throttles the maximum rate at
which events can be processed. It is a fact of modern infrastructures that the event rates
that are operationally required to deal with increase inexorably as the scale of the networks
increase. In essence the objective of fault localization is to correlate a very small subset of
the received events with service impacting outages. This ‘event correlation’ is a term more
common in industry and is used to represent the entire family of fault localization techniques.

Rules Based Systems

Among the first attempts to solve the event correlation problem was the use of rules to
model the behavior of the managed systems. In essence these systems operate as a finite
state machine that models problems as states of the system. Transitions between states are
triggered when a filter matches an event being processed by the system. If the filter matches
the system transitions state, if it does not match the state remains unchanged. In principle
every possible transition is considered for every event arising. A very early example of such
a commercial system was NetExpert, originally developed by OSI Inc [51].

A very simple example of such a system is depicted as a decision tree in Figure 1.2.
The basic operation relies upon the rules being able to make processing decisions by the
application of a suitable logical language on the data contained in the event, or by referencing
a secondary database of information (typically a Configuration Management Database or
CMDB). In the example depicted in Figure 1.2, the state machine operated by the rules based
system is set up to match three different types of events A, B and C. The precise nature of
how these matches are determined depends upon the system deployed, but in essence it is
usually expressed as a set of conditions on the attributes of the events, such as source host
and textual description. In the depicted state machine, the matching of events progresses the
system through 3 states, any of which may be associated with critical conditions and cause the
initiation of some operational intervention (the paging of a support person for example). The



8 Introduction

Start

State 1 State 2

State 3

Event Matches A
Event Matches B

Event B Clears
Event Matches C

Fig. 1.2 Example of a Basic Rules Based System

transition from State 2 back to State 1 is triggered when Event ‘B’ is cleared, that is the event
condition is either manually or automatically closed. This type of logical flow is common
in fault management systems and is to date the most widespread type of fault localization
methodology. The usual language to express the decision logic is a combination of boolean
expressions operating on attributes of the events. We reproduce in Table 1.1 an abbreviated
subset of the common core components of an event message. There is no absolute standard
of what is necessary in an event, though many standards bodies have attempted to produce
such a reference. The most widespread set of standards that rules based systems operate to is
contained in the IT Infrastructure Library (ITIL), a set of manuals produced by the British
Government [52].

Label Typical Contents Data Type
Host Fully Qualified Domain Name of sending host Textual

Severity Notion of Impact, Critical->Clear Enumerated
Timestamp Recorded UTC time that event was originated Numeric, Epoch Seconds
Description Human readable descriptive message Textual

Impacted Service Indication of dependent services Variable/Textual

Table 1.1 Description of Type and Content of Typical Event Attributes

Using the attributes in Table 1.1 an example for "Rule 1" could be of the form ((Host =

"Important Host")∧ (Severity > "Minor")) =⇒ "State 1". In practice implementations of
these types of systems involve thousands of such expressions, often built over many years.
As every event that arrives at the system must be evaluated through every transition between
states, the processing load as scale increases in terms of event rates and complexity of the
state engine can become prohibitive. Although the transition filters can be very simple, in
general it is not possible to make every transition independent from every other transition,
which prohibits an aggressive parallelization strategy for the evaluation of the finite state
machine. As a result, the cost, and even effectiveness, of this approach is questionable and is
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only widespread in older, legacy environments where event rates are low and the underlying
infrastructure is fixed. Precise benchmarks on the performance of rules based systems tend
to be closely guarded, but in papers such as Gardner et al [32], and in Steinder et al [68] and
Kilger et al [39] the highest rates for these systems are measured in thousands per second. In
more modern infrastructures this limitation is prohibitive, and the use of rules based systems
in large scale virtualized infrastructures is becoming less common.

Codebook Correlation

The codebook approach was pioneered in the early 1990s, as is described in Kliger et al [39],
as an attempt to overcome the drawbacks of the rules based systems described in Section
1.2.2. The approach draws upon methods of probabilistic inference on a causality graph.
A causality graph is a representation of cause (’Problems’, which equate to incidents or
root causes) and effect (Symptoms, which equate to events). Once this graph is established,
the assumption is that every event received by the monitoring system is either noise, or a
direct result of a problem having occurred creating the symptom as represented by the event.
As different problems can emit the same events, the core operation of the algorithm is to
distinguish the most likely set of problems that must have existed to result in the observed
symptoms. To further improve the predictive power of the model the causality graph that is
built can have weighted edges to indicate the probability that a given problem will result in a
connected symptom.

The implementation of the algorithm translates the causality graph into a table, which is
essentially a weighted adjacency matrix for the graph, but it is typically non-square as the
number of problems and symptoms are not normally equal.

Once the codebook is calculated from the causality graph, it is used to compare against the
set of events that are received. The events are represented by a feature vector, so for example
if S1 and S3 were recorded the event vector is E = (1,0,1). In this instance the matching of
this vector to a single cause is ambiguous and herein lies the principal drawback of codebook.
In the analysis detailed in [39], the effectiveness is measured by the ‘radius’ of the codebook,
which is defined as half the minimal Hamming distance between codes (columns in the Table
1.2). In the description of their algorithm Kliger et al describe a ‘generalized’ Hamming
distance as being the sum of the integer differences between each of the vectors. In this
way the Hamming distance between two vectors A and B, dH(A,B) = ∑

i
|ai−bi|, where ai

and bi are the components of A and B. For example if A = (1,0,1) and B = (1,1,1), the
Hamming distance, dH(A,B) = 1. It is asserted that providing that the radius is greater than
0.5 then the codebook is effective at distinguishing between candidate problems for any given
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Fig. 1.3 A Simple Codebook Causality Graph

event vector. No proof is offered of this assertion, but the argument is plausible as Hamming
distances of less than 1 would not be obtainable, as it would indicate no differing symptoms.

Symptom P1 P2 P3
S1 0.8 0.3 0.0
S2 0.9 0.1 0.0
S3 0.0 0.9 0.9

Table 1.2 Codebook for Causality Graph in Figure 1.3

The generation of codebooks is a significant drawback of the approach, as detailed
analysis of the cause and effect in the monitored system must be undertaken. The most
classical use of event correlation is the so-called ‘downstream suppression’ problem. A
common approach to network monitoring involves availability checks being undertaken on
a periodic basis. In the case of an IP network, this is often accomplished by sending an
ICMP PING packet to each of the nodes in the network [71]. If the node is operational
and a path exists to the node, an echo will be received and the node will be deemed to be
functional. There are many ways in which an echo may not be received however, that range
from the node not being operational, to a communications problems on the path from the
monitoring host to the monitored node. They may arise from intervening nodes being in a
failure state, or, other more complex issues with the configuration of the network. If a node
close to the monitoring host fails, this may cause spurious ‘ping fail’ events to be received
from all nodes that are ‘downstream’ from the failed node and in a large network this can
produce a significant amount of false alerts. Typically, one imagines that behind a switch
are a collection of important servers that are being monitored by such a periodic poll from a
point in the network. Should this switch malfunction events would be expected to be received
from all of the devices. We illustrate this example in Figure 1.4, and the corresponding
codebook in Table 1.3. In the table we present the symptoms S1,..,S4 as events received
from the management system when there are poll failures of the servers (S1,S2,S3), and a
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Management Host

Switch (P4)

Server1 (P1)Server2 P(2) Server3 P(3)

Fig. 1.4 A Simple Downstream Topology

Symptom P1 P2 P3 P4 P(1,...,4)
S1 1 0 0 1 1
S2 0 1 0 1 1
S3 0 0 1 1 1
S4 1 1 1 1 1

Table 1.3 Codebook for Figure 1.4

poll failure of the switch (S4). The corresponding root causes, or problems P1,...,P4 are the
failure of a single server (P1,P2,P3), and a failure in the switch (P4). The problem P(1,...,4)
is the scenario when all of the devices have failed. The radius of this very simple cookbook,
which is nevertheless a common management scenario, is zero, and the algorithm cannot
distinguish between the failure of the switch and the failure of the switch and all connected
devices. This could occur, for example, in the event of a power failure in a data center. In
fact, as simple as it may seem, this example is one of the reasons that event rates are so high,
as most events are consequential rather than causal. This very low ratio of events from true
causes, versus events from either consequentially affected nodes or simply noise, is one of
the central problems in fault localization. The downstream example above is a very basic
example how one failure can cause the emission of events from functionally operable nodes
that are simply no longer visible from the management server. In the paper of Kliger et al
[39] and also in the work of Stearley et al [53, 66] this low quality of event information is
described. In particular, in a study of 178 million syslog messages in [53], nearly 79% of the
messages were not indicative of a real problem.

Many attempts have been made to improve upon the basic codebook technique, both
in codebook generation and improvements to the causality graph approach (for example
see ([87] and [8]). These range from reducing the complexity of generating the cookbook
in the case of [8], and suggested improvements to eliminating the effect of noise [87].
The fundamental drawback remains which is the reliance upon a well understand failure
propagation model for the system, which may not be available or, at best, complex and
expensive to build and maintain. In any case, this approach, and other similar ones based
upon probabilistic causality graphs have also been proven to be NP-Hard [20], which in
practice means that they are not suitable for use in the large scale environments that I have
studied during my research.
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Topology Driven Active Object Model

At the same time as the codebook approach was being developed an alternative approach
was developed using a topology driven active model. This relied upon an accurate topology
of the network being obtainable that reflected the detailed interconnectivity of components
of the network, such as is depicted in Figure 1.4.

The Active Object Model was built using an extension of the ITU-T, GDMO (Guidelines
for the Definition of Managed Objects, see [37]) standard, part of the Open Systems Inter-
connection (OSI) suite of standards (see [89]). The extensions proposed allowed specific
object classes to be imbued with management behavior, triggered by the addition of specific
events to instances of these classes. A specific use of this behavior was to send messages to
other ‘Active Objects’ when an event was received indicating that the represented system
was in a failure mode. This message could in turn be propagated to other connected devices,
in particular in a direction that is ‘downstream’ from the monitoring system. In this way the
system could handle the downstream suppression use case very effectively.

The correct operation of such a system is dependent upon an accurate topology. The
acquisition of this topology in a large network is not straightforward and the limitations of
using commonly known approaches such as traceroute are well understood (as explained
in [84] and [40]), but fundamentally arise from the fact that Internet Protocol (IP) operates at a
layer in the network which is independent of physical connections and corresponding devices
such as ethernet switches. To overcome these limitations a multi-layer discovery system
was developed inspired by the ‘Fremont’ discovery prototype developed at the University of
Colorado by Wood et al [85].

Once the discovery was completed, for each discovered device an appropriate active
object was instantiated, and the collection of Active Objects was stored in a memory resident
database for efficiency. Re-discovery of the network was continuous to capture changes in
configurations, but once discovered the system was capable of monitoring and performing
fault localization in real time and at scales of many hundreds to thousands of events per
second, somewhat in excess of the capability of the codebook approach. The basic algorithm
is described in Algorithm 1. This algorithm uses a model of all paths through a managed
network to determine which nodes are downstream of any given node in the network. As each
event arrives at the system a recursive walk through the network is undertaken from the node
referenced by the event to all downstream nodes of it, closing any non-causal events that are
consequential of the analyzed event. The system supervises the recursion to prevent looping
through the topology. The suppression is enabled by each node having a class definition that
identifies which types of events are suppressible if a given event exists upstream from it.
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Nevertheless, accuracy was highly dependent upon the topology being complete and
up to date. In the event that this is not the case, incorrect results would be obtained, most
dangerously false negatives where a real problem is suppressed because an ‘upstream’ device
in the topology has a fault, but is no longer ‘upstream’ in the monitored network. The
emergence of fast changing topologies such as Asynchronous Transfer Mode (ATM) and
Software Defined Networking (SDN), makes the application of this approach impractical.

Algorithm 1 Downstream Suppression Algorithm
1: procedure SUPPRESSDOWNSTREAM(Node n, Node managementHost, Event e)
2: downstreamNodes← nodes downstream of n path initiating at managementHost
3: activeObjectClass← class of n
4: eventsInNode← all events on node n of class activeObjectClass
5: for all Event event in eventsInNode do
6: ▷ Check if each event for this node is suppressible by the event e and close
7: if event closable by e in activeObjectClass
8: when downstream of managementHost then
9: CLOSEEVENT(event)

10: ▷ Iterate over all downstream nodes, recursively calling procedure
11: for all Node downstream in downstreamNodes do
12: SUPPRESSDOWNSTREAM(downstream,managementHost,e)

return

Machine Learning Based Approaches

Moogsoft is a pioneer in the application of Machine Learning techniques to the detection
and isolation of faults. The earliest example of data science being applied to the problem
is the work of Stearley et al described in [66],[67], and [54]. Their approach makes use of
Shannon Informational Entropy [62] to attach a metric to each event log received from an
array of managed super computers. The system that was built, ‘Sisyphus’, was presented and
described at a number of conferences but never gained widespread use.

In part this was because the entropy metric merely served to rank the importance of
an event log. In modern contexts the rate at which these log messages may be produced
(often measured in tens of thousands of messages a second) would produce too many high
importance events to be of use. As a pre-conditioning metric this is a good starting point to
create a flow of high quality data to feature detection algorithms.

It is precisely this approach which motivated the research that resulted in the papers
presented in this thesis, and substantially forms part of the product offering of Moogsoft
[48]. The Moogsoft suite of software conducts entropy analysis similar to that described by
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Stearley, and then pipelines the events into a suite of ‘Sigalisers’ that seek to group together
log messages when they are in some way anomalous and believed to be related to an incident
that requires human intervention. A Sigaliser is a module of the Moogsoft software that is
responsible for surfacing clusters of alerts that are deemed to be causal in some sense. In this
context causality means that they are caused by an underlying incident that is actionable, and
each alert in the generated cluster is a valid symptom of the underlying cause.The Sigalisers
use a variety of data driven algorithms including:

• Time Based Matrix Factorization: This approach, based upon a Non-Negative Matrix
Factorization technique, initialized using a Singular Value Decomposition (SVD) ini-
tialization (see [15]), attempts to group together events that have significant correlation
in terms of the pattern of temporal occurrence.

• Language Based Similarity: This approach clusters events which share significant
textual similarity across a selection of attributes. This is done with an SVD initialized
k-means approach (see for example [86]).

• Structural Proximity: This approach clusters events when they are from nodes that are
a small distance in terms of network links, or hops, from each other.

Each of these approaches has been demonstrated to have great practical benefit in terms
of both the precision of the clusters generated and the recall (as measured by those incidents
detected by monitoring as a fraction of all known incidents).

A significant practical advantage of the machine learning based approach is the indepen-
dence the algorithms have from a pre-conceived model of failure modes of the systems being
monitored. In modern infrastructures, in which configuration change is constant and often
instant, this is a significant impediment to techniques such as codebook, or rules based fault
localization. The penalty for this resilience is the requirement of significant computational
power required to conduct the algorithmic analysis of the events.

1.2.3 Known Limitations of Fault Localization

In essence all of these approaches to fault localization suffer from some or all of the following
problems:

• Scalability: As all known approaches involve the individual inspection of each event,
the entire system will have a maximum throughput it can consume. These limits range
from very low (for example in Table 1 of [17] at best 30ms is taken to process each
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rule and therefore event which implies a throughput of 34 events per second), to a few
thousand a second (these are claims typically made by commercial systems [36], [25]).
Anticipated loads in commercial networks may easily exceed these.

• Accuracy: As demonstrated in Section 1.2.2 even sophisticated algorithms are vulner-
able to the inability to distinguish between root causes with the available evidence.
Ultimately this drives a search for ever more complex approaches, inevitably placing
further constraints on scalability.

• Tolerance to Change: With the exception of machine learning, all of the known fault
localization techniques require a detailed model of the monitored system to be able
to localize faults. In older implementations this was not a significant obstacle as the
typical data center technologies in common use before the advent of Software Defined
Networking (SDN), cloud computing and related innovations had change cycles that
permitted the editing of these models.

The need for accurate fault localization techniques is a critical operational requirement of
datacenter technology, and it is vital that techniques and methods are developed to mitigate
these issues. This is the primary original motivation of the research presented in this thesis.

The Need For Event Rate Suppression

A common thread of the issues described in the previous section is the need to contain the
rate of events that fault localization approaches need to process. Without some form of event
rate suppression it is anticipated that most model based techniques will fail to be of practical
use as networks scale and adopt modern technologies. It is not anticipated that event rates
will do anything but continue to increase, and so the search for methodologies to cut down
event rates is of considerable commercial interest.

The techniques described in the first two papers of this thesis (Chapters 4 and 5), offer
the possibility of a way to process network configuration quickly to permit the discarding
of up to 65% of events whilst only sacrificing 20% of incidents. Although missing 20% of
incidents may seem operationally dangerous, it is important to stress that processing 65% of
events discarded may actually result in many fault localization systems missing substantially
all of the incidents, due to the scale limitations mentioned above
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1.2.4 Summary of Research Activities

During the course of my studies, the research activities followed the program outlined in
Figure 1.5, resulting in the publication of three papers, attendance at a number of academic
interest conferences, submission of three papers which were not published, and seminar
presentations. The principal activities include:

• Submission of a poster paper to SIGCOMM 2015, which was not accepted.

• Submission of a conference paper to IEEE NOMS, AnNet workshop in Istanbul, April
2016 which was published [75].

• Attendance of MoN14 in September of 2015 at Oriel College Oxford.

• Presentation of paper to the AnNet workshop, at which I won the best paper award.

• Submission of a paper to the IEEE Infocom in Atlanta May 2017, which was not
accepted.

• Submission of a paper to the International Journal of Network Management, which we
subsequently withdrew in favor of a submission to the Transactions on Network and
Service Management.

• Delivered a work in Progress Seminar at the University of Sussex in June 2016.

• Submitted a talk to MoN15 at the University of Bath, which was accepted [72], which
also resulted in a collaboration with Prof Jonathan Dawes.

• Submitted a full journal paper to Physics Review E on Constrained Attachment, arXiv
preprint here [73],which was rejected by one reviewer after two rounds.

• As the Constrained Attachment paper was accepted by one of the reviewers, the paper
was resubmitted to European Physical Journal B, and is currently being reviewed
following resubmission after one round of comments.

• Invitation to join the Technical Program Committee for AnNet 2017 to be held in
Lisbon in May 2017.

• Submission of a paper to the IEEE Transactions on Network and Service Management
journal, which was accepted for publication [74].
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Initially my research was focused solely on the availability of vertex entropy measures of
node importance for use as an automated event filtering mechanism for fault management.
This was motivated by the access I have to a number of interesting real world data sets, in-
cluding months of event, incident and topology data from some large customers of Moogsoft.
A current, and important problem when deploying event management systems is the control
of event rate, and the use of available topology information to do so, seems a logical step.
This was the subject of the first three attempts at publication, but during those studies, and
as a result of exposure to theories of dynamic graph evolution, particularly the standard
scale free model of Barabási et al at the MoN14 conference, I became interested in dynamic
models of network growth [2]. In particular deviations from the predicted power law degree
distributions were noticeable in all of the data sets that I had access to, which lead to the
second major focus of my research, the effect of connectivity limitations in communications
networks on dynamic network evolution. I developed a new model of network evolution
which I presented at MoN15, which was well received, and indeed initially intended to
publish a paper solely on that model. The final focus of my research was motivated by a
potential link between vertex entropy and dynamic network evolution. After experimenting
with a toy model of the statistical mechanics of network evolution from a paper by Newman
and Park [56], I developed my own model using vertex entropy. Ultimately this lead to the
final publication submission to the Physical Review E, and simultaneous open publication on
arXiv. Although the paper was rejected by Physical Review E, one of the reviewers accepted
the paper and was positive about the contribution. After consultation with my co-authors, the
paper has been resubmitted to European Physical Journal B, and is currently going through
its second round of review.

The future direction of my research is very exciting, as the entropic model of network
evolution opens up the possibilities of a different approach to analyzing the robustness and
aging of many networks, including but not limited to communications networks. I have
developed a number of very good collaborative relationships beyond my supervisors, with
academics at Sussex (Dr István Kiss and Luc Berthouze, the former collaborated on the paper
in Chapter 6), University of Bath (Professor Jonathan Dawes was a co-author on the paper in
Chapter 6), Queen Mary University of London (Dr Richard Clegg, organizer of MoN) and
Oxford University (Dr Justin Coon). I am keen to maintain my involvement in the network
science research community after the completion of my doctoral studies.
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Graph Entropy and Fault Localization

Vertex Entropy and Significant Events [75]

Entropic Model of Graph Evolution [73]

Deviation of Degree Distributions from Power Laws [73],[75]

Constraint Models of Graph Evolution [73]

Fig. 1.5 The Journey From Fault Localization to Graph Evolution



Chapter 2

Graph Theory Themes

2.1 Graph Theory Essentials

2.1.1 Basic Definitions

In this section I will describe the essential mathematical concepts of Graph Theory, that are
referenced in the published work. It is not intended to be a comprehensive treatment and
I lean heavily on the standard texts of [13], [14] by Bollobás, and in the section on graph
evolution the recent book by Barabási, [6].

A graph, in the mathematical sense, is a collection of two sets. The first, commonly
written as V is the set of nodes or vertices, and the second E the set of edges ei, j that connect
two vertices vi and v j. In fact, more rigorously, E ⊆V ×V , which, for a simple undirected
graph that we define below in Definition 1 and 2, can have maximum size 1

2n(n−1), where
n = |V |. We refer to the graph by enumerating the two sets as G(V,E).

In the most general case, the edges in a graph can be oriented, and the graph is referred
to as a ‘directed graph’. In a directed graph, for a given vertex vi ∈V , we refer to its degree
as the cardinality of the subsets of E consisting of all edges that begin at vi and those that
end at vi. For the first set of edges originating at vi, we count the ‘out-degree‘ of vi and for
the set of edges terminating at vi the ‘in-degree’ of vi. The total degree, written ki is the sum
of in and out degrees.

In all of our research we focus upon undirected, simple, connected graphs, which we
define, following the terminology of Bollobas [13] as:

Definition 1. A graph G(V,E) is said to be undirected if ∀ ei, j ∈ E, ei, j is indistinguishable

from e j,i. Note that in this case the in and out degrees are the same as the total degree of

every vertex in the graph.
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Fig. 2.1 An Example Graph

Definition 2. A undirected graph G(V,E) is said to be simple if it contains no loops (edges

that start and end at the same vertex), and for any pair of vertices vi,v j, there exists only one

edge ei, j ∈ E or e j,i ∈ E.

Definition 3. A path of length n, P(n) is a sequence of vertices vi ∈V, i = 1 . . .n, such that

each vertex vi ∈ P has an edge ei,i+1 ∈ E, for i ∈ [1,n−1]. A connected graph is a graph

G(V,E), such that for any pair of vertices x,y∈V , there exists a path P(n) with v1 = x,vn = y.

In the case of an undirected graph there is no distinction between in-degree and out-
degree, and the degree of a vertex vi ∈V is simply the number of edges that are incident to
the vertex in the graph.

In Figure 2.1 we draw a simple graph that contains many of the features that would be
encountered in a communications network. Nodes 1 to 5 form part of a highly meshed core,
and 6 to 9 a hub and spoke topology, often seen in the access portion of a network. In terms of
the two sets, we have V = {1,2,3,4,5,6,7,8,9} and E = {e1,2,e1,3,e1,4,e2,3,e2,4,e2,5,e3,5,

e4,5,e5,6,e6,7,e6,8,e6,9}.
A graph is uniquely defined by listing all of its edges, but it is possible to identify

interesting symmetries in the graph by relabelling vertices. Following the treatment in [13],
two graphs are said to be isomorphic if under a re-labelling of vertices the set of edges is
identical, so that only edges that existed between any two vertices before re-labelling, exist
after the re-labelling. Formally two graphs G(V,E) and H(V ′,E ′) are said to be isomorphic
if there is a correspondence between the vertex sets which is adjacency preserving. Recall
that a bijection is a map between two sets A,B of identical size, f : A→ B, which maps
every member of A to a unique and distinct member of B, so that every member of B can be
mapped back to a unique and distinct member of A. Using this definition, two graphs G(V,E)

and H(V ′E ′) are isomorphic if there exists a bijection f : V →V ′ such that an edge between
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Fig. 2.2 Special Graphs of Order Four

vertices x,y ∈V exists, if and only if, there is a corresponding edge between f (x), f (y) ∈V ′.
We can also define permutations of the vertex set V of G(V,E), σ(v), for each vertex v ∈V ,
which can be represented as a relabelling of the vertices of the graph. These permutations
allow us to define an automorphism of the graph, which is simply a permutation of the
vertices, such that the graph with permuted vertices is isomorphic to the original graph. The
set of automorphisms form a group that is used in the original definition of structural graph
entropy, which is important in our later work on vertex entropy.

Some Special Graphs

In the theoretical treatment in the papers presented in Chapters 4 and 5, all of the graphs
are simple, undirected graphs that are fully connected, and reference to a number of special
graphs are made as they are directly relevant to communications networks. We reproduce the
definitions from the papers as follows:

• The Complete Graph (Kn): This graph is formed from a set of n vertices, maximally
connected.

• The Star Graph on n Vertices (Sn): This graph has one vertex v which is connected
to all other vertices, with no other edges in the graph.

• The Path on n Vertices (Pn): This graph is a simple chain of n vertices, connected by
a single edge with no loops. The path has a single start node v1 and end node vn.

• The Cycle on n Vertices (Cn): This graph is a special case of Pn such that v1 = vn;
each node has degree 2.

In Figure 2.2 we present simple examples of these special graphs with n = 4.
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2.1.2 Adjacency, Coloring and Clustering

Of particular importance when quantifying the structure of a graph are Adjacency, Coloring
and Clustering. We take this opportunity to introduce these concepts that are somewhat
foundational to the notions of graph entropy which motivates all of our research.

For each node vi ∈V , for a graph G(V,E), the set of nodes that are neighbors of vi form
a local neighborhood of the vertex. This local neighborhood and the edges between these
nodes, describe the local topology of the graph to the node. We can summarize this for a
whole graph by the definition of the Adjacency matrix of a graph as follows:

Definition 4. The Adjacency matrix Ai j = 1 if ∃ei, j ∈ E, and Ai j = 0 if ∄ei, j ∈ E, or i = j.

Related to the Adjacency matrix are the Degree and Laplacian matrix, which for conve-
nience we define here as:

Definition 5. The Degree matrix of a graph G is defined as Dii = ki and Di j = 0 if i ̸= j.

Definition 6. The Laplacian matrix of a graph G is defined as Li j = Di j−Ai j.

There is a profound relationship between graphs and matrices, and for a complete survey
please consult [4]. In particular the eigenvalues and powers of this matrix yield powerful
clues as to the structure of a graph, For example An

i j computes for each value of i, j the
number of paths of length n between i and j (for a proof see [38]).

The concept of adjacency leads naturally to the coloring of a graph. This analysis
decomposes a graph into sets of vertices that are not neighbors. The term coloring has its
origin in the famous map coloring problem where one seeks to color countries in a map of
the world in such a way as no two countries of the same color share a boundary. In a directly
analogous way, you can assign a color to each vertex of a graph so that no two vertices that
share an edge have the same color. This leads us to the definition, following the treatment in
[13], of a Chromatic Class of vertices as follows:

Definition 7. A Chromatic Class of a Graph G(V,E) is any set of vertices X ⊂V , such that

no two vertices vi,v j ∈ X have a corresponding edge ei, j ∈ E. That is it is a collection of

non-adjacent vertices of G(V,E). In the context of a coloring, each vertex vi ∈ X can be

labeled with the same ‘color’.

In general there are many possible colorings, and therefore chromatic classes of a graph,
but the minimum number of colors required to completely partition the graph into a set of
chromatic classes is termed the ‘Chromatic Number’ of the graph and is denoted as χ(G).
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The Adjacency matrix defines a natural set of eigenvalues and eigenvectors stated in
terms of the eigen problem equation,

Av = λv ,

which only has non zero solutions for v when,

det(A−λ I) = 0 ,

(2.1)

where v is an eigenvector, I is the identity matrix, λ is the eigenvalue, and det() is the
determinant of a matrix. This equation has a spectrum of solutions for v and λ , and this
collection of eigenvalues λi contain important information about the structure of a graph, In
particular, in our exploration of the extrema of entropies for graphs, Wilf et al proved that
the Chromatic number χ(G) of a graph is bounded by χ(G)≤ 1+ kmax ≤ 1+λmax, where
kmax is the maximum degree of a node of the graph and λmax is the largest eigenvalue of the
Adjacency matrix (see [83]).

Another important property of a node in a graph is the degree to which it is clustered.
This is usually defined as the number of edges that the neighborhood of a node has compared
to a fully connected graph. The maximum number of unique edges that an undirected, simple
graph of n nodes may have is 1

2n(n−1). Given a node of degree k has k neighbors, if e is
the number of edges between neighbors of a node v, but not connecting to v, the normal
clustering coefficient C(v) is defined as:

C(v) =
2e

k(k−1)
. (2.2)

Clustering can also be equivalently defined in terms of the number of triangles, that is
fully connected subgraphs of three nodes, in a way which is more general than the one given
above as it is valid for directed as well as undirected graphs. If λv is the number of triangles
that contain the node v, and τv the number of collections of 3 nodes in which v is connected
to the other two, then we may define the clustering coefficient as:

C(v) =
λv

τv
. (2.3)

In the theoretical analysis presented in the papers, use is made of the j-Sphere, S j
i ,

centered at the ith node, introduced by Dehmer in [23]. Dehmer’s original definition relied
upon subsets of vertices of a fixed distance from a given vertex vi. where distance d(vi,v j) is
the shortest distance between distinct vertices vi and v j (i.e. i ̸= j). This definition excluded
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the vertex vi, and other interior nodes for j ≥ 1, but this introduces zeroes for special graphs
such as Sn, when calculating the traditional clustering coefficient. This is because for a star
graph, no edges exist between the neighbors of the central node, or triangles containing the
central node. In our analysis we seek to divide by the clustering coefficient, which would
introduce infinities. The slight modification described in Equation (2.6) below, removes these
zeroes for any connected graph. Our analysis extends the definition of a j-sphere as follows:

Definition 8. For a node vi ∈V , we define, for j ≥ 1, the ‘j-sphere’ centered on vi as:

S j
i = {vk ∈V |d(vi,vk)≤ j} (2.4)

and for convenience when we define the clustering coefficient in Equation (2.6), the related

‘ j-edges’ E j
i as

E j
i = {ek,l ∈ E|vk ∈ S j

i and vl ∈ S j
i } (2.5)

Using the extended version of the j-sphere in Equation (2.4) the generalized clustering
coefficient of a j-Sphere centered at i is defined as:

C j
i =

2|E j
i |

|S j
i |(|S

j
i |−1)

,

and for j = 1, as |S j
i |= ki +1,

C1
i =

2|E1
i |

ki(ki +1)
,

where |E j
i | is the cardinality of the j-edge set.

(2.6)

These definitions are used in the treatment of vertex entropy in the papers of Chapters 4 and
5.

2.2 Graph Entropy

The notion of the entropy of a graph builds upon the basic concepts of Shannon Entropy
first introduced in 1948 by Claude Shannon [62]. This argues by analogy with Statistical
Thermodynamics that it is possible to define the entropy of a series of signals in terms of the
amount of choice, or uncertainty in choosing a given signal. Say for example that a source
of signals emits an alphabet of n possible signals X = {x1,x2, . . .xn}, with a probability of
Pi, i ∈ 1,2, . . . ,n in a given fixed time period. It is then possible to define the entropy H(X)

as follows:
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Definition 9. For a system or alphabet of signals X = {x1,x2, . . .xn}, where each signal xi is

emitted with probability Pi, i ∈ 1,2, . . . ,n, the entropy H(X) is defined as

H(X) =−
n

∑
i=1

Pi log2 Pi (2.7)

The entropy of this alphabet of signals is maximized when the probability of emission
of each of the possible signals is uniformly distributed, which has the effect of minimizing
the relative information conveyed by the arrival of a particular signal. It is possible to prove
this assertion using the method of Lagrange, closely following the proof of Theorem 1 in
the paper presented in Chapter 5. It is argued in the original work of Shannon [62] that the
more uncertainty in which signals will be received, the less information is contained in them.
This is the case when the probability of each signal in the alphabet is uniform and little
information is conveyed by the arrival of any one signal. This situation can be compared
with the sequence of characters in a spoken language, such as English, where each character
has a very different occurrence pattern, and uncommon characters such as ‘q’ can very rarely
be followed by anything other than ‘u’. In this sense ’q’ carries a lot of information, and
conversely the entropy of the alphabet of the English language is low. This basic definition
has been extended to characterize the entropy of a graph in a number of ways, which are
outlined below.

2.2.1 Körner or Structural Entropy

In [41], and beautifully explained in [63], János Körner introduced the concept of the entropy
of a graph in terms of a modified version of Shannon’s original argument. Considering the
alphabet X , as defined above, imagine that not all of the signals are distinguishable. A graph
can be constructed by mapping to the vertex set V each of the signals in the alphabet, so that
vi ∈ V equates to xi and naturally associated with each vertex is a probability of emission
of a signal P(vi) = Pi. Now, each of the vertices are connected with an edge ei, j ∈ E, if and
only if the two signals xi,x j are distinguishable. The original definition given by Körner is
highly technical and defined in terms of the independent sets and automorphism groups of
the graph, where an independent set is equivalent to a chromatic class, that is a collection of
vertices that are not adjacent. An alternative, more consumable definition is given in Section
1.5 of [50], which relies upon the notion of conditional entropy. Before reproducing that
definition let us first define what is meant by conditional entropy, following the treatment in
‘Information Theory’ by J. Stone [69].
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Definition 10. Consider two random variables X, and Y , which can take the following values

from a set of n signals X = {x1,x2, . . .xn}, and m signals Y = {y1,y2, . . .ym}. These variables

are chosen according to the probability distributions P(xi), i ∈ [1,n], P(y j) j ∈ [1,m], and

joint probability distribution P(xi,y j), i ∈ [1,n], j ∈ [1,m]. We then define the conditional

entropy H(X |Y ) as:

H(X |Y ) =−
n

∑
i

m

∑
j

P(xi,y j) log2 P(y j|xi) (2.8)

The conditional entropy is closely related to the mutual information between the two
random variables X and Y , that is the degree of dependence of the two distributions. Mutual
information, usually written as I(X ,Y ) is defined in relation to the entropy of the joint proba-
bility distribution of the two random variables. If the two random variables are independent,
then P(xi,y j) = P(xi)P(y j), however if they are not this identity is broken. One can define
an entropy measure for each of the probability distributions P(xi),P(y j) and P(xi,y j), and
the difference between them is defined as the mutual information. We write this as follows:

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ), where (2.9)

H(X) =−
n

∑
i

P(xi) log2 P(xi), (2.10)

H(Y ) =−
m

∑
j

P(y j) log2 P(y j), and (2.11)

H(X ,Y ) =−
n

∑
i

n

∑
j

P(xi,y j) log2 P(xi,y j) (2.12)

It is easy to prove that I(X ,Y ) = H(Y )−H(Y |X), and we can interpret the identity as
saying that the mutual information between X and Y is the uncertainty in the value of Y

reduced by the uncertainty in Y if we know the value of X . We now have the necessary
elements to define Structural Entropy in terms of the interplay between the probability
distribution of signal emission from a the vertex of the graph and the adjacencies of the
graph as described earlier. Firstly, let us imagine a process whereby we randomly select a
vertex from the graph, producing a probability distribution P(V ) for each vertex, which as
the process of selection is uniform will be identically 1

n for each vertex in a graph of size n.
Each vertex will in turn be a member of an independent set si ∈ S (S is chosen to represent
the independent sets to avoid confusion with I the mutual information). The conditional
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probability P(V |S) is the probability of selecting a given vertex, with knowledge of the stable
set of which it is a member. These probabilities capture important information concerning
the structure of the graph. Associated with P(V |S) is a measure of entropy H(V |S), or the
uncertainty in the choice of vertex when the independent set is known. Using these quantities
we define Structural Entropy as follows:

Definition 11. The Structural Entropy of a Graph G(V,E), over a probability distribution

P(V ), H(G,P), is defined as:

H(G,P) = H(P)−H(V |S) , (2.13)

where S is the set of independent sets of G, or equivalently the set of Chromatic Classes.

Definition 11 can be interpreted as the normal Shannon entropy of P, less the conditional
entropy of a given signal occurring that is not distinguishable from any prior signal (and
therefore being members of an independent set). Equation (2.13) is maximized when H(V |S)
is minimized. From the definition of conditional entropy in Definition (10), a minima is
achieved when the conditional probabilities P(V |S) are either very close to 1, or 0, which
is the converse of the argument for maximization which is achieved when the probabilities
are uniform (this is a standard result from the work of Shannon in [62]). We can interpret
P(V |S) as the probability, given a stable set S of the graph, of a randomly selected vertex
v ∈V being a member of the stable set. For a connected graph, this is a property of graphs
with the fewest edges such as the star graph, cycles and paths. For example the star graph
on n vertices Sn, has two stable sets, one containing the ‘hub’ node, and one containing
all of the other nodes. For the first stable set containing the ‘hub’ node these conditional
probabilities are 1 for the ‘hub node’ and zero for all others, and for the other set it is zero
for the ‘hub’ node and n−1

n for all others. The absence of edges, per the construction of the
graph, means that most symbols are not distinguishable from each other [63], and therefore
little information is conveyed by any one signal. In our papers we prove that the star graph
Sn maximizes structural entropy and the perfect graph Kn minimizes it, in the special case of
each of the probabilities in P being equal.
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2.2.2 Chromatic Entropy

Chromatic entropy is defined in terms of the subsets of V where each vertex in V has the
same color label. These subsets, as defined in Definition 7, are called Chromatic Classes Ci,
with the constraint that

⋃
iCi =V . Chromatic entropy is then naturally defined as:

Definition 12. The Chromatic Entropy of a graph of n vertices is defined as:

Ic(G) = min
{Ci}

[
−∑

i

|Ci|
n

log2

( |Ci|
n

)]
, (2.14)

where the minimization is over all possible collections of chromatic classes, or colorings, of

the graph Ci.

This chromatic entropy is in fact closely related to the second term in Equation (2.13),
H(V |S), and if we assume that the probability distribution P is uniform, (an important
assumption when applied to event management as this amounts to stating that no event is
more likely to occur than any other), we can relate the two entropies with the following
identity.

H(G) = log2 n− Ic(G) (2.15)

2.2.3 Alternative Formulations

There are many other formulations of graph entropy, defined either in terms of matrix
representations or graph ensemble considerations. Notable in the field of network science
are two alternative definitions, which although in the work presented are not considered, we
summarize here.

• Von Neumann Entropy: This definition of entropy utilizes the eigenvalues of the
normalized Laplacian matrix of a graph. (For a good review see [57]). The normalized
Laplacian matrix L is defined as L = D−1/2LD−1/2, where D and L are the normal
degree and Laplacian matrix of the graph. In practice it has components Lii = 1, if
ki > 0, Li j = − 1√

kik j
, if vi and v j are adjacent in the graph and 0 elsewhere. The

definition of Von Neumann entropy is made in direct analogy to the quantum Von
Neumann entropy. Once the eigenvalue spectrum of L is known, the Von Neumann
entropy is computed as the negative log sum over eigenvalues, where λi is the ith

eigenvalue of the normalized Laplacian: −∑i λi log2 λi.
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• Randomized Ensemble Entropy : Introduced in a series of papers by Bianconi, this
definition builds upon the analogies between graphs and statistical thermodynamics
first outlined by Newman and Park in [56]. In particular it considers general distribution
functions for the degrees of nodes in a collection, or ensemble, of graphs sharing some
common constraint (number of nodes, variance in degree and so on). The model then
naturally permits analysis using tools of Statistical Thermodynamics such as Partition
Functions which in turn lead to an Entropy of the ensemble. For a comprehensive
survey see [3].

2.3 Dynamic Graphs and Graph Evolution

The initial work on vertex entropy presented in Chapters 4 and 5, led to an interest in the
structure and degree distribution of the real world networks studied. This is an area that has
been richly studied, and in the paper presented in Chapter 6, we make a novel contribution
to the understanding of the degree distributions of real world networks. The study of these
real world networks, dubbed ‘Network Science’, builds upon two fundamental models of
network evolution and structure. For background we summarize the main points here, but a
comprehensive treatment can be found in [14] and [2].

2.3.1 Random Graphs

The first models of dynamic graph evolution were the random models first introduced and
extensively studied by Paul Erdős, and referred to as Erdős-Rényi or ER models. These
graphs are constructed by first fixing the number of nodes n = |V | and the number of edges
e = |E|, and then randomly selecting e edges from the 1

2n(n−1) possible edges. Essentially
models are built by choosing varying different schemes for the probability of an edge existing
between any two nodes, and it is possible to compute many global properties of a graph such
as the average degree of a node ⟨k⟩, and the probability distribution of node degrees P(k).

Unfortunately when comparing these results with real world networks the models do not
fit well. In particular the degree distributions typically exhibit a binomial distribution, which
in the case of very large networks approximates to a Poisson distribution, whereas it has
been long established that many real world networks have, at least an approximate, degree
distribution that exhibits a power law such that P(k) ∝ k−γ (first established by Faloutsos in
[29]). The precise form of the degree distribution can often be much more complex than a
simple power law, and variations are considered in more detail in section 2.3.3.
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2.3.2 The Preferential Attachment Model

To address these shortcomings, Barabási proposed the preferential attachment model in a
series of papers in collaboration with Réka Albert, [5], [1] and [2]. The model is built using
the following assumptions:

• Growth: Starting with m0 nodes and e0 edges, we add a new node at each unit time
step. When this node is added to the network, it connects to m≪ m0 other nodes. This
process continues indefinitely, such that after t unit time steps, there are m0 + t nodes,
and e0 +mt edges. Eventually the constants in these expressions can be dropped as
insignificant compared to t.

• Preferential Attachment: The node attaches to other nodes with a probability deter-
mined by the degree of the target node, such that more highly connected nodes are
preferred over lower degree nodes.

The set up of the model proposes the probability of a randomly chosen node i, capturing
a connection to a new node, as solely dependent upon its degree ki compared to all other
nodes as:

Πi =
ki

∑ j k j
=

ki

2mt
, (2.16)

Analysis then proceeds using a mean-field approach to finally arrive at a degree distribu-
tion expression:

P(k) =
2m2t

m0 + t
× 1

k3 . (2.17)

The detail of this model is presented in the paper in Chapter 6, but the great triumph
of the approach is the emergence of a power law distribution with γ = 3. This model has
gained widespread acceptance, although it has many points of disagreement with real data,
those disagreements being the central focus of the research that is presented in our final
paper in Chapter 6. In our paper, we modify Equation (2.16), introducing a new form of
the attachment probability Πc

i , as part of a new ‘constrained attachment’ model of network
growth, that acknowledges a network connectivity limit. This does indeed lead to a better
fit with real network data, but perhaps even more intriguingly, allows vertex entropy and
preferential attachment to be linked in a more fundamental way.
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2.3.3 Extensions to Preferential Attachment

Despite the success of the preferential attachment model, as noted above there are some
known limitations of the model (elegantly outlined in Willinger et al [84]), which have
motivated much research to propose additional models of network evolution. In particular
there are three challenges that have received much attention:

• Non Power Law Degree Distributions: It is well established [84, 28, 19, 7] that not
all networks have power law degree distributions, certainly not for all values of degree
k. Accounting for these deviations requires significant modifications to the form of
preferential attachment in Equation (2.16) that I will briefly outline below.

• Younger Nodes can Have Higher Degree: A natural consequence of the preferential
attachment is that older nodes will acquire more links than younger ones [7]. Clearly
in real world networks this is not the case. In the network of WWW site links, Google
though much younger than say Yahoo!, nevertheless has acquired more links. Many
attempts have been made to explain this including the fitness model of Bianconi and
the introduction of initial attractiveness in the work of Dorogovtsev [7, 11, 27]. I will
describe some of these modifications below.

• Additional Attachment Factors other Than Degree: A number of authors have
attempted to introduce other factors than node degree into Equation (2.16) to explain
the appearance of both scale free networks and the more complex form of degree
distributions that are encountered in real world networks. These include approaches
that are motivated by competition and game theory approaches (see for example
Holme et al [34], the competition model of D’Souza [28] and the similarity model
of Papadopoulos et al in [55]). In addition, in the paper presented in Chapter 6, I
propose my own ‘constrained model’ of network evolution that alters Equation (2.16)
by introducing a limitation of a node’s capacity to accept further links.

• Absence of a Physical Model for Preferential Attachment: Despite much attention,
the fundamental origin of Equation (2.16) is still relatively unaddressed. In its most
basic sense it is an observation of network evolution dynamics rather than an axiom of
nature. This has motivated many to explore whether there are other more fundamental
processes at play. Most often these draw inspiration from statistical mechanics, such
as the exponential random graphs studied by Newman and Park in [56], or indeed
generalizations of the fitness models of Bianconi in the Network Geometry with Flavor
(NGF) models that explore the attachment dynamics at higher dimensions in [12, 21].



32 Graph Theory Themes

In the paper I present in Chapter 6, I put forward an argument based upon vertex
entropy that seeks to derive the form of Equation (2.16).

Alternate forms of the Preferential Attachment Probability

The work of Krapivsky et al [42] introduces a general exponent to the degree term in Equation
(2.16), modifying it to kα , where 0 < α < ∞. This introduces several regimes to the degree
distribution the ‘sub-linear’ and ‘super-linear’ regimes. For α = 1, the standard preferential
attachment model is recovered. In the ‘super-linear’ region the network collapses to a hub
and spoke model with one node capturing a connection to every other node. In the ‘sub-linear’
region 0 < α < 1, the degree distribution is a power law with an exponential cut-off. This
model is effectively tunable to produce the degree distribution observed, but is not capable
of explaining why a young node can be more attractive than an older one. An early attempt
to extend the model to include ‘initial attractiveness’ was made by Dorogovtsev in [27], in
which a node is assigned a constant initial attractiveness when it is added to the network. The
model produces a more complex degree distribution than the standard preferential attachment
model, but requires an arbitrary attractiveness parameter that is constant across all nodes.
This model was extensively extended in the fitness model of Bianconi, described below.

In the work of Zhou et al [88], a more complex form of the non linear attachment
probability is introduced, motivated by consideration of positive feedback in the evolution of
the internet. The model uses a modification of the random graph ER model, in which internal
links are introduced between existing nodes, with a probability less than the probability that
the new node connects to a given existing node. This model is parameterized by a form
of Equation (2.16), where node degree ki has an exponent 1+δ log10 ki, where δ is a free
parameter. In the Internet Autonomous System network, empirically the exponent has a best
fit when for all nodes 1+δ log10 ki = 1.166. This is an interesting result, reproducing some
of the same degree distribution behavior seen in the work of Krapivsky.

The model of Zhou also introduces a hybrid between preferential attachment and random
model evolution, which is in some way similar to the empirical model of Tian Bu et al [76],
and indeed the link copying models of Donato et al [26]. In all of these models, in addition
to a probability of attachment arising from a node’s degree additional links are added or
removed subject to a random probability. The justification for the addition and removal of
links arises from considerations of tendency for new nodes in a network such as a web graph,
to replicate the local topology of nodes that they link to, or for links to become deleted as
web sites are decommissioned.
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Models Inspired by Competition and Physical Models

A number of approaches to extend Equation (2.16) have been taken that draw their inspiration
from different models of node attractiveness. These include a broad range of techniques
such as optimization theory in the work of D’Souza et al [28], that seek to explain network
evolution as the solution to an optimization problem. The optimization occurs on a cost
function that seeks to balance closeness of any two given nodes with the cost of connecting a
distant node to the centre of the network. This model produces an exponentially corrected
form of degree distribution with P(k) ∝ k−γe−αk. In addition, the work of Holme et al [34]
attempts to model network growth as an optimization in the traffic carrying capacity of the
network subject to the economic constraints of adding additional network infrastructure.
Using numerical simulations it is able to accurately reproduce the degree distributions and
spatial distribution of the internet. Perhaps the most widely known model that draws from
considerations of competition is the ‘fitness’ model of Bianconi described in [7, 11]. This
model parametrizes the attractiveness of the node using a fitness measure, ηi, which is fixed,
or quenched, at the time of introduction of the node into the network and drawn from a
supplied probability distribution ρ(η). The form of Equation (2.16) is modified to:

Πi =
ηiki

∑ j η jk j
. (2.18)

In their analysis this form of attachment can be solved for a class of distributions ρ(η)

analytically, and successfully reproduces scale free networks with power law exponents
2 < γ < 3 and an exponential cut-off. The model produces a degree distribution P(k) ∼
k−1+C

log(k) , where C is a constant . In this model a deep analogy with statistical mechanics can
be made by re-defining the fitness parameter as εi =− 1

β
logηi, with β being identified as

classical inverse thermodynamic temperature, and the ‘energy level’ εi is populated by a
‘particle’ whenever there is a connection to node i. The denominator of Equation (2.18) is
then easily identified with the partition function Z, familiar from the Bose-Einstein model of
statistical mechanics. Further, it is demonstrated that networks can exhibit behavior similar
to Bose-Einstein condensation where all particles collapse into a single energy level. This
behavior is exhibited when a single node in the network acquires connections to all other
nodes and is an example of the ‘super-linear’ behavior of the Krapivsky model when α > 2.

Recently the model has been significantly extended by Bianconi et al [12, 21], to multi-
dimensional forms of attraction where the interaction is not between nodes but between
groups or simplexes of nodes. A simplex is a fully connected clique of nodes, the number of
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nodes being equal to d +1 where d is the ‘dimension’ of the model. This has deepened the
analogy with both statistical mechanics and some forms of quantum gravity. It is an exciting
development of the network science journey and points to further richness in the preferential
attachment model.

Models with Additional Factors to Node Degree

The fundamental premise of preferential attachment is that node degree is the sole contributor
to a node’s ability to attract new connections. In the work of Papadopoulos et al, it is argued
that similarity could be another factor in a node’s attractiveness. Similarity is introduced as a
free parameter that measures a node’s compatibility to a new node in the network in terms
of interests. For example, when a new blog site is created, it is likely to be linked to blog
sites that the author knows as well as popular websites, such as search engines, with many
connections. The model developed from this basis is again capable of producing scale free
degree distributions with power law exponent in a range 2 < γ < 3.

In the paper presented in Chapter 6, the approach taken to produce a model with more
realistic degree distributions introduces the concept of a node capacity. This capacity will be
familiar from the design of real networks, where a network switch, for example, has a finite
number of connections it can support. The model produces a scale free distribution of node
degree, at least for small values of k, but the evolution of a node’s degree is capped by the
capacity constraint.

Models with additional constraints are capable of producing better fits to the degree
distributions of real world networks, and there are many possible potential modifications.
They still do not, however, explain the origin of node attractiveness, an important open
problem.



Chapter 3

Overview of Published Work

3.1 Towards and Approximate Graph Entropy Measure
for Identifying Incidents in Network Event Data

This paper was prepared for the IEEE NOMS 2016 AnNet workshop, and was accepted for
presentation and publication. It contains the first set of results that were obtained using the
vertex entropy technique to analyze the topology, event and incident data harvested from a
customer of my employer Moogsoft Inc, and from the Internet Topology Zoo [40].

The initial definitions of vertex entropy were somewhat modified in later publications, but
contain the essential approach of combining locally definable properties of a node to create
measures of vertex entropy that can be used to filter out events from unimportant nodes. I
extended the definitions for node level entropy in [23] and [24] to obtain the form for the
vertex entropies used in the paper and the initial results from the real world data gave strong
indication of a correlation between high values of vertex entropy and a higher tendency for a
node to produce incidents.

The paper (described in Chapter 4) was presented at the conference in Istanbul and was
awarded ‘Best Paper’ for the workshop.

3.2 Vertex Entropy as a Critical Node Measure in Network
Monitoring

Following on from the conference paper, I significantly extended the analysis of the datasets,
and outlined the theoretical treatment of the measures in much more detail. This included
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proving that the vertex entropy definitions act, at least in their limiting behavior, as good
analogs of the global entropy variants. I was also able to prove that as an entropy measure
they obey the requirements of additivity, maximality, positivity, and symmetry.

Initially this was submitted as a main track conference paper for INFOCOM 2017, but
was rejected. The comments received were used to shape the full paper presented in Chapter
5. In particular I extended the entropy measures to investigate the use of clustering coefficient
as a node probability and also introduced Fβ measures, based upon F1 scoring (described in
[59]), to strengthen the experimental analysis.

The paper after two rounds of review has been accepted for publication in the IEEE
Transactions on Network and Service Management and is currently in the production process.
It is available by following the pre-publication reference here [74].

3.3 Constraints and Entropy in a Model of Network Evo-
lution

During the research for the first two papers, I became interested in the degree distributions of
real world networks. This was initially motivated by discussions I had at the Mathematics
of Networking 15 conference at Oriel College. In particular I noticed that the commercial
network data did not follow a scale free distribution as would be expected from [2], and other
standard works.

For communications networks, the presence of physical and logical constraints in their
construction is at odds with the fundamental assumption in the standard treatments of
preferential attachment that a network node can indefinitely acquire connections. This led to
investigation of an extension to the theory of scale free networks, which I call Constrained
Attachment, using a simple uniform constraint on the maximum degree of a node. As this
yielded good early indications of a better fit to the data, the model was properly developed
and presented in the submitted paper.

As an addendum, I also became interested in ways in which the dynamical evolution of
networks could be related back to concepts of entropy, introduced in the earlier publications.
The paper concludes with an intriguing result that shows how vertex entropy could be used
to build a scale free model of network evolution.

These results were collected together into the paper presented in Chapter 6, and is
currently under review by the editors of European Physical Journal B. Initial submission to
Physical Review E was rejected after two rounds of review, although one of the reviewers
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recommended publication. After consultation with my co-authors we felt that the manuscript
should be submitted to another high impact journal and European Physical Journal B was
chosen.

3.4 Other Submissions and Conference Talks

During the course of my research I gave three research talks, presenting the results of my
work. The first of these was at the IEEE NOMS 2016 conference in Istanbul, where I
presented the paper described in Chapter 4.

This talk was extended into a work in progress seminar I delivered at Sussex in June of
2016, including early results from the work on constrained attachment. Finally I applied
to, and was accepted, as a speaker at the Mathematics of Networking 15 conference at
the University of Bath. At that conference I presented the current state of the constrained
attachment model, and met Jonathan Dawes, which began a collaboration which culminated
in his participation in the paper presented in Chapter 6.





Chapter 4

Towards and Approximate Graph
Entropy Measure for Identifying
Incidents in Network Event Data

4.1 Background to First Publication

4.1.1 Motivation and Summary of Contribution

The original motivation for the research was to identify novel, easy to compute measures, of
node importance in a communications network that could be used to eliminate noisy events.
This is a significant problem when deploying fault localization software at scale.

The original work was conducted upon toy graph models such as in Figure 2.1, with
attempts to try and single out nodes that have critical importance to the connectivity of a
network. This work resulted in the first forms of vertex entropy and a poster paper was
prepared for SIGCOM 2015. This poster was rejected, mostly due to the work not having
any justification from application to real data.

The work to produce this analysis was underway but not mature enough to present in
the poster. The paper submitted to the AnNet workshop at IEEE NOMS 2016 was the first
opportunity to collate and present this work, together with the results obtained from applying
the methods to the data we had obtained from a large web portal customer of my employer.
For confidentiality reasons I am not able to identify the company and the data can only
be used for analysis and is not publicly shareable. We are working to anonymize the data
sufficiently, but at this time it is still only accessible under a strict confidentiality undertaking.
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Particularly pleasing was that not only was this paper selected for the conference, but it
went on to win ‘Best Paper’ at the end of the session.

4.1.2 Theoretical Contribution

The starting point for the analysis was the concept of node importance. There are many
available measures of importance, mostly based around the concept of centrality ([65], [82],
and [50] are good overviews). One particular measure of complexity in graph theory had
received little attention, namely entropy.

The history of entropy as a measure of information in computer science dates all the way
back to Claude Shannon’s breakthrough work (see [62] for details), where the concept of
entropy is related back to the probability of certain signals being emitted, and measures the
so-called relative degree of surprise when receiving a given signal. In a similar way a graph
can be considered to contain information about how nodes are connected to each other. The
basic supposition is that a node that is connected in an unusual (i.e. a high entropy) way
could be more important as it would indicate that the node is in some way carrying more
information about how the network is constructed.

The significant impediment to this is that all of the measures of entropy for graphs that are
well understood are global, have nothing to say about an individual node, and are expensive
to compute ( this is discussed in this and the following publication, but the relevant references
are [41], [63], [57] and [50]).

In this paper, we build upon the work of Dehmer [23, 24] to introduce valid local measures
of vertex entropy. We do not, in this publication, explore the detail of the theoretical treatment
due to constraints on the length of the paper, but this is covered in much more detail in the
publication described in Chapter 5. What we are able to demonstrate is that against the
event, incident and topology data we have from a real world communications network, these
measures are successful in identifying nodes that are more likely to surface incidents, which
is the conclusion of the paper.

4.1.3 Data and Methods Used

The data that was analyzed came from two principal sources. The first was an academic
repository of the network topologies of large service providers, the ‘Internet Topology Zoo’
(ITZ) [40], and the second a large operational dataset from the web portal customer. The ITZ
is a useful repository of varied real world networks against which to test the operation of
the analysis harness, and also to investigate how effective the algorithms were at identifying
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critical nodes in an easy to visualize way. The ITZ comes with a suite of online visualization
tools, from which we extracted the images in Figures 9 and 10 of the paper. Unfortunately
this dataset is static and contains no operational data relating to faults and incidents.

The commercial data contains a rich source of event and incident data, and in particular
allows the analysis of event and incident rates in the context of their originating nodes. The
principal goal of the research was to obtain data relating to the distribution of event and
incident data by entropy metric of the originating node. To achieve this a range of software
tools were written to process the source data. They were implemented in JAVA, and operated
in conjunction with a MySQL database for permanent storage. The analysis programs built
included:

• graph_analyser: This executable was built to ingest source topology as a list of
edges in either a Comma Separated Values (CSV) or GraphML (details on this format
are available here [33]). The executable could also optionally load data from a table
containing a list of edges. The program could be directed to produce tables of all of
the entropy metrics, and also distribution tables of degree, clustering coefficient, and
each of the defined entropies. These tables were stored in the database for later query,
both for analysis and use in the other programs.

• event_analyser: This executable can ingest an individual event file, or read a di-
rectory for all suitable event files. Each file contains a list of events with attributes
separated by a ‘|’ symbol, as supplied by the customer. The analyzer reads these files
and maps each field to a token, which is subsequently used to create records in the
database for each event. The event format follows the general pattern as described
in Chapter 1, and contains a record of the originating node along with other useful
descriptors of the event condition. The analyzer performs basic duplicate suppression
using a hash key built from a subset of fields in the event to mirror the operation of a
typical fault management system (see [36]). As part of the record stored in the database
the analyzer looks up the values of the various entropy metrics, clustering coefficient
and degree, and also builds an event count distribution for each of them.

• incident_analyzer: This executable operates in an almost identical fashion to the
event analyzer, but instead analyzes data that is obtained from a report ran on the
customer’s incident management system. This system records every escalation of
an event to successive layers of technical support and records for each incident the
level of escalation. The incident analysis harness extracts a subset of these escalations,
according to the customer’s process, to include those incidents that were deemed
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sufficiently impacting to warrant escalation beyond the first layer of triage. In a similar
way to the event analyzer the output is a record of distribution of incidents by the
various entropy measures, clustering coefficient and degree. These values are obtained
from the node associated to the incident, being used to look up the values from the
output of the graph_analyser.

Once the analysis programs were run, results were extracted and plotted to produce the
results presented in the paper.

4.1.4 Contributions from Co-Authors

Although the work outlined in the paper is substantially my own, both of my co-authors
contributed much in helping to shape the argument presented, checking and critiquing the
manuscript and shepherding me through the submission process.

4.1.5 Related Work

In a series of articles from 2004 onwards, Jon Stearley et al of Sandia Laboratories published
details of the Sisyphus log management tools( [66],[67], and [54]). In these papers Stearley
describes a system that uses term frequency to construct an entropy measure for each entry
in a system log, and then uses that measure to prioritize the log message. A derivative of this
approach has been successfully developed at my company Moogsoft Inc, and is the subject
of patents I authored. It is used to assist in the automatic elimination of noise in event feeds.

This method, using characteristics intrinsic to the event data to suppress the bulk of events
that are not causal, was the starting point for the program or research. The key difference that
vertex entropy has to event entropy is the use of auxiliary topology data to provide context to
the significance of events. Rather than focus upon the information carried in the text of the
events, I chose to focus on the information contained in the structure of the network. This
approach I believe is completely novel, and to date there is no published work that directly
implicates the graph entropy of a network in the operational significance of events.
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Abstract—A key objective of monitoring networks is to identify
potential service threatening outages from events within the
network before service is interrupted. Identifying causal events,
Root Cause Analysis (RCA), is an active area of research, but
current approaches are vulnerable to scaling issues with high
event rates. Elimination of noisy events that are not causal is key
to ensuring the scalability of RCA. In this paper, we introduce
vertex-level measures inspired by Graph Entropy and propose
their suitability as a categorization metric to identify nodes that
are a priori of more interest as a source of events.

We consider a class of measures based on Structural, Chro-
matic and Von Neumann Entropy. These measures require NP-
Hard calculations over the whole graph, an approach which ob-
viously does not scale for large dynamic graphs that characterise
modern networks. In this work we identify and justify a local
measure of vertex graph entropy, which behaves in a similar
fashion to global measures of entropy when summed across the
whole graph. We show that such measures are correlated with
nodes that generate incidents across a network from a real data
set.

I. INTRODUCTION

An important objective when monitoring a large scale
network is detecting failures in critical nodes. This is accom-
plished by collecting notifications or events from the network
and analysing these events to determine failed nodes. Events
occur at a high rate, and do not always directly indicate a
problem. To illustrate, at a typical large enterprise network1,
the event rate is 135 million events a day, generated by just a
few hundred ‘actionable incidents’.

Identifying which events are the cause of actual outages
is called Root Cause Analysis (RCA) [1]. Many algorithms
are used to perform RCA [1], but scalability limitations make
applying these algorithms to the full event stream impractical.
To perform RCA across all events, the flow of events has to
be significantly reduced (for example see [2]).

The most common approach to reducing the event rate is
the simple act of discarding uninteresting events with a manual
filter or exclusion list, a process known as ‘blacklisting’. This
process is extremely time consuming and error prone. At
industrial scale, blacklisting can require thousands of rules; in
a fast changing network, such an approach is not practical. A

1This work is underpinned by the experience at Moogsoft in supplying
large scale network management software to many blue chip customers.

method to automatically eliminate uninteresting events would
yield significant savings.

In this paper, we introduce a novel technique derived from
Graph and Information Theory that determines, which events
can be treated as noisy based on the location of their source in
the network. The technique relies upon the use of Information
Entropy [3], and Graph Entropy [4], [5]. We hypothesise that
nodes contributing most to the entropy of a graph are the
nodes most likely to generate incidents when events occur.
An alternative formulation of the problem is that those nodes
contributing most to the connectivity of a graph are most
likely to generate incidents when they fail. Graph Entropy is,
however, computationally expensive, so we propose alternative
formulations that provide similar properties to graph entropy
but can be calculated using known global graph properties
and information local to the node. We demonstrate that these
measures correlate well to the node event pairs that result in
incidents.

II. NETWORK STRUCTURE AND OTHER WORK

Following the influential analysis of Barabàsi and Albert
[12], there was much work investigating the structure of
communication networks, such as by Faloutsos et al [7] and Li
et al [8]. The approach primarily focused on datasets generated
by discovery protocols such as traceroute. This approach
was used by Barabási and Albert to assert that communications
networks have a power law node degree sequence, possessing
the Scale-Free property, whereby, node degree distributions
obey the inverse power distribution law. This was further used
to justify the claim that communications networks, like the
Internet, are both robust to random attack and vulnerable to
targeted attack (the central arguments are outlined in [9], [10],
[11], and again in [12]).

The drawbacks of traceroute as a discovery protocol
are well understood, and outlined clearly in [13] and [14],
but essentially arise from the fact that the nature of the
traceroute tool hides network structure at protocol layers
other than IP, and creates many false, high degree nodes. Using
more accurate data, built manually from operational change
tracking databases of real world networks, is a far better
way to analyze networks for vulnerability, and includes true
connectivity not confined to the IP protocol. We have gained
access to a number of datasets from customers of Moogsoft,978-1-5090-0223-8/16/$31.00 c© 2016 IEEE
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which number in excess of 200,000 devices and cover many
autonomous networks. We can easily dispel the notion of
simple power law degree sequences, and hence the generalities
implied in [12] and [11], with this dataset, as illustrated in
Figure 1 and using the network data published in the Internet
Topology Zoo [14] in Figure 2. What is evident from the
degree distribution analysis is that at best the power law is
an approximation at low degree, with significant deviations as
degree increases. Furthermore for the proprietary dataset the
distribution has a notable cluster at high degree values.

Nevertheless, this approach of analyzing communications
network using graph invariants such as node degree and
other related metrics, does indicate that there are methods
of identifying nodes, which are of more interest from a
network vulnerability perspective. The individual contribution
of a network node to the overall connectedness of a network,
and hence the potential impact of that node failing is an
important problem in network management, and the subject of
much commercial activity. This has typically been confined to
behavioral models of the network (see for example [1], [15]),
but these are susceptible to poor scaling behavior on large
networks where changes in network topology are frequent.
This has particular impact in current networking technologies
such as SDN (Software Defined Networking), a compelling
illustration being [16].

Much focus has been spent in the literature on degree
based characterizations of networks from an analysis basis,
but it is accepted that degree sequences do not uniquely
determine the connectivity properties of a network. Indeed
the determination of metrics that allow two networks to be

compared for similarity is a much studied and challenging
problem in graph theory ([6], [17]). It is the object of this work
to establish whether there are other, deeper, node level metrics
that can identify the important nodes in a network and yield
a useful operational tool to identify operational vulnerabilities
of communications networks.

III. TOWARDS LOCAL MEASURES FOR GRAPH ENTROPY

Historically, entropy has been defined in Graph Theory2 as
a measure of complexity of the global structure of a graph.
As a metric it captures many important characteristics, which
are of direct interest in a number of applied fields, including
the analysis of failure modes of communication networks. In
particular, networks with non uniform connectivity will have
high values of entropy. Unfortunately the three most well
understood measures of entropy involve calculations that have
impractical computational complexity, as a graph scales in
terms of the number of vertices and edges. What is worse,
any change to either the edges or vertices of a graph requires
an entirely new computation across the whole graph, and it is
extremely difficult to compute the contribution of an individual
node to the entropy of the graph. The three variants of Graph
Entropy that we shall concern ourselves with are:
• Chromatic Entropy: Chromatic entropy is defined by

partitioning a graph into sets (or colorings) of discon-
nected vertices.

• Körner or Structural Entropy: The original entropy
measure defined on a graph, intended to capture the
mutual informational of stable sets.

• Von Neumann Entropy: Introduced in analogy to the
entropy of quantum systems, this is defined against the
eigenvalues of the Laplacian matrix associated to a graph.

A valid entropy measure is expected to satisfy the following
conditions: maximality, additivity, symmetry and positivity
[4], [18].

In our treatment we make reference to a number of special
graphs, which we define here as:
• Kn The Complete Graph: This graph is formed from a

set of n vertices, maximally connected.
• Sn The Star Graph on n Vertices: This graph has one

vertex v which is connected to all other vertices, with no
other edges in the graph.

• Pn The Path on n Vertices: This graph is a simple chain
of n vertices with no loops, and a start node v1 and an
end node vn.

• Cn The Cycle on n Vertices: This graph is a special
case of Pn such that v1 = vn; each node has degree 2.

A central objective of our work is to establish easily com-
putable metrics that measure the contribution of an individual
node to the entropy of the whole graph. We will establish
that the values, when summed across the whole graph give
values consistent with the global measures, and have minimum
and maximum values for the same types of special graphs.

2We follow standard graph theory notation for edges and vertices in our
presentation.



This analysis establishes the proposed metrics as candidates
for local vertex entropy measures, and in further work we
investigate the relationship between the metrics in more detail.

Recent work by Dehmer on Graph Entropy [19],[20] pro-
vides a framework that unifies the three global invariants
discussed, and provides a pathway to extend these measures
in a more computable direction. In particular, both Structural
and Chromatic entropy rely upon partitions of the vertex
set of the graph, which are known NP-Hard problems, and,
Von Neumann Entropy requires an expensive computation of
eigenvalues for the Laplacian Matrix of the graph.

Dehmer defines the concept of a local functional for a
vertex, which can be scoped to calculate values for every
vertex based upon the local topology of the graph. The degree
of locality in the treatment is controlled by using the concept of
j-spheres, Sj in the graph, centered at a given vertex. Formally
if we denote by d(vi, vj) the shortest distance between nodes
vi and vj , the definition of a j-sphere proceeds as follows:

Definition 1: For a node vi ∈ V , we define the ‘j-Sphere’
centered on vi as:

Sj = {v ∈ V |d(vi, v) = j, j ≥ 1} (1)

and for convenience later, the related ‘j-Edges’ Ej as

Ej = {eij ∈ E|vi ∈ Sj and vj ∈ Sj} (2)

Using this definition, we then equip each Sj with a positive
real-valued function fi : Sj → R+, and further construct a
probability functional for each vertex as

pi =
fi∑

vj∈V fj
(3)

which trivially satisfies
∑

i pi = 1.
The principal direction of Dehmer’s proposition is that

these functions fi can be constructed from any structural
measure valid and calculable within the ‘j-Sphere’ of a vertex.
In the published work [19],[20], however, these functions
are somewhat complex expressions, which introduce global
invariants of the graph complicating their computation. We
now move on to the important result of this paper, which is the
introduction of a variant of Dehmer’s approach that uses purely
local properties of the neighborhood subgraph of a vertex, and
global constants of a graph, such as, the number of nodes n
or the number of edges |E|.

A. Local Vertex Entropy Measures

Given the constraint of locality, a number of constructs can
be designed that satisfy the probability functional defined in
equation (3) up to a normalization constant. It is possible to
define the notion of locality using the general concept of j-
spheres, but in our treatment we restrict the constructions to
a 1-sphere for simplicity of explanation. In the immediate
neighborhood of a vertex the available measures are restricted
to the degree of the vertex and the presence of cycles in
the local subgraph. It is important that the measures that are
constructed are bounded in an acceptable way, when summed
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Fig. 3. Frequency Distribution of V E(v).

across the whole graph and satisfy the fundamental properties
of an entropy measure: maximality, additivity, symmetry and
positivity [4], [18].

1) Inverse Degree: The first, and most basic probability
functional that we can construct on the 1-sphere of a vertex
is its inverse degree. In this case we write the probability at a
vertex as:

pi(vi) =
1

dvi
(4)

and the corresponding entropy of the vertex V E(vi), and
whole graph HInvDegree as

V E(vi) =
1

dvi
log2(dvi), HInvDegree =

i<n∑

i=0

1

dvi
log2(dvi)

(5)
The first observation is that the sum of inverse degrees does

not satisfy the constraint
∑

i pi = 1. However, one can observe
that for any given graph G, this probability functional sums
to the constant:

C =
i<n∑

i=0

pi =

∑i<n
i=0

(∏
j 6=i dj

)

∏i<n
i=0 di

(6)

We note that pi = C× 1
dvi

, and discard the constant as part
of the normalization.

We can, however, establish bounds for the value of
HInvDegree, algebraically. As pi < 1, we can expand (5) to
obtain:

HInvDegree ≈ −
i<n∑

i=0

1

dvi

(
1− 1

dvi
. . .
)

(7)

Firstly the value is maximized in the case of all degrees
being equal and at their maximum. This is satisfied by the
complete graph Kn. The minimum requires that the average
degree for the graph is at a minimum. This is satisfied by the
star graph on n vertices, Sn.

Using the same collection of experimental data used to
generate Figure 1, we plot the distribution of values of Inverse
Degree Entropy for all nodes in Figure 3. The presence of a
large number of edge nodes of degree 1, heavily skews the
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distribution, but there is a significant cluster of nodes at a
value of 0.5.

2) Fractional Degree Entropy: Inverse degree is unsatisfac-
tory in some regards. Firstly the probability functional is not
naturally defined to satisfy the unity sum constraint. Secondly,
and more importantly, the degree of a vertex does not capture
how ‘hub-like’ the node is relative to others. To capture this,
we can define an alternative functional, which is based upon
the ratio of the vertex degree to the total number of edges in
the graph, as follows:

pi(vi) =
dvi
2|E| (8)

Given that
∑

v∈V d(v) = 2|E| this functional directly
satisfies the unity sum constraint. In a parallel way to equation
(5), we define the fractional degree entropy as:

V E′(vi) =
dvi
2|E| log2

(2|E|
dvi

)
(9)

HFractDegree =
i<n∑

i=0

dvi
2|E| log2

(2|E|
dvi

)
(10)

Following the treatment of Inverse Degree Entropy we es-
tablish bounds on this measure by considering the extremal
graphs Kn and Sn,Pn. If we expand the logarithmic term in
equation (9) we obtain the following higher order term for
HFractDegree:

HFractDegree ≈
i<n∑

i=0

{
d2i
|E|2 −

di
|E|

}
(11)

This is minimized for the graph over n vertices with
minimum degree sum Pn and maximized by Kn.

We plot this value distribution in Figure 4. The distribution
of the values is more spread out compared to the Inverse
Degree Entropy, but still shows the ‘Double Bump’ feature
with a cluster centered around a value of 0.1, and a smaller
cluster around 0.5. The presence of this ‘Double Bump’ in
both measures is a necessary but not sufficient condition for
these metrics to be useful in highlighting nodes whose impact
on connectivity is proportionately higher than others, as both
cleanly segregate the nodes into two sets of high and low
vertex entropy.
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Fig. 5. Frequency Distribution of NV E(v).

3) Normalized Degree Entropy: There is a considerable
practical difference between a star network topology and a
fully meshed one, that is, between Sn and Kn. In the former,
the network is vulnerable to the loss of its central high degree
vertex; in the latter, the loss of any one vertex can never create
isolated vertices. Both prior measures make no distinction
between these two topologies, but there are available metrics
measurable at one hop distance that capture this concept.
Introduced in [21] and [12] is the concept of the clustering
coefficient of a vertex. Utilizing the degree of the vertex i,
di, it is possible to calculate the fraction of possible edges
in the local neighborhood and thereby define the clustering
coefficient as:

Ci =
2|Ei|

di(di + 1)
(12)

This metric captures how well meshed a node is into its
local neighborhood, and therefore serves as an ideal candidate
for further refining the vertex measures introduced earlier.
In essence, we want to highlight vertices whose clustering
coefficient is low, that is, their local neighborhood is more
similar to Sn locally than Kn. To that end we define the
following Normalized Vertex Entropies:

Definition 2: We define for a graph G(V,E) the following
Normalized Inverse Degree Entropy for both vertex and total
graph as follows:

NV E(vi) =
1

Ci
× V E(vi) (13)

HNormInvDegree =
i<n∑

i=0

(dvi + 1)

2|Ei|
log2(dvi) (14)

and the corresponding definition for fractional vertex en-
tropy is defined similarly:

NV E′(vi) =
1

Ci
× V E′(vi) (15)

HNormFractDegree =
i<n∑

i=0

d2vi(dvi + 1)

4|E||Ei|
log2

(2|E|
dvi

)
(16)

Using similar arguments to those used for the non-
normalized versions, it is simple to verify that these quantities
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Fig. 7. Frequency Distribution of NV E′(v) & V E′(v) for the Internet
Topology Zoo.

are minimized by the graph Pn, and, maximized by the
complete graph Kn.

For the same dataset used previously, we plot the distri-
butions of these quantities in Figure 5 and Figure 6. It is
interesting to note that both quantities share the same ‘Double
Bump’ distribution as the non-normalized forms, with a more
pronounced separation of the two clusters. We can apply
the same analysis to the data in the Internet Topology Zoo
[14] and we obtain the distributions in Figure 7 and Figure
8. Although the Internet Topology Zoo is a smaller dataset
(19,476 vertices in total) than the proprietary dataset, it still
demonstrates a noticeable cluster at high values of both the
normalized and raw values of vertex entropy. This ‘Double
Bump’ style distribution is a necessary, though not sufficient,
feature of this metric for it to be useful as a tool in identifying
nodes of crucial importance in network monitoring.

To illustrate the bounding values of these normalized quan-
tities for our normalized entropies, summed across our special
graphs, we summarize the values in Table I.

From this it is possible to conclude that for NVE, Cn

maximizes the value, whereas, Sn minimizes it, and for NVE’
Pn gives the maximum value and Kn the minimum.

IV. CONCLUSIONS

The main aim of this paper is to introduce computable,
node level alternatives to structural entropy measures that are
defined across the whole graph. Inspired by the advances made
in Barabási’s pivotal paper, and suggestions made in the work
of Dehmer, we have advanced two computable metrics using
structural information available within one hop of a network
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Fig. 8. Frequency Distribution of NV E(v) & V E(v) for the Internet
Topology Zoo.

TABLE I
VALUES OF NORMALIZED ENTROPY FOR SPECIAL GRAPHS

NVE NVE’

Sn
n

2(n−1)
log2(n− 1) 1

2(n−1)
log2{2(n− 1)}+ n

4

Kn
n

n−1
log2(n− 1) log 2(n)

Pn
3
4
(n− 2) 1

n−1
+ 3n−4

2(n−1)
log2(n− 1)

Cn
3
4
n 3

2
log 2(n)

node. Both of these measures we applied to the proprietary
data set, and, to the Internet Topology Zoo data, in both a raw
and normalized form. The normalization adjusts the degree
based values by the extent to which the local neighborhood
of the node is clustered. When these values are applied to the
datasets we obtain a distribution, which contains two peaks in
value, the second peak at higher values of the metric involving
far fewer nodes than the first.

The utility of these local measures of entropy requires such
a distribution if it is to be effective at identifying specific
nodes in the networks, which introduce vulnerability to the
network in terms of overall connectivity. This is more precise
than simply selecting the nodes of highest degree, which is
central to the scale free argument that a few highly connected
nodes, well chosen, represent the bulk of the vulnerability of
a network. Nodes with high degree may be critical to the
functioning of the network, but are equally likely to be in a
highly meshed and therefore redundant part of the topology. It
is the purpose of the normalization of the vertex entropy values
to suppress high degree nodes in highly meshed parts of the
network over high degree nodes, which are less redundantly
wired into the network.

The ultimate test of these values is to examine failure
modes in real networks, and, identify if a high value of
NV E(v) or NV E′(v) does correlate with those nodes whose
failure, and removal, cause more operational impact on the
functioning of the network. For that purpose, we have analyzed
the commercial datasets we have access to at Moogsoft and
present in Figure 11 an encouraging indication of the utility of
one of our measures NV E′(v). We analyzed the distribution



Fig. 9. Critical Nodes in Interoute Network as Identified by NV E(v).

Fig. 10. Critical Nodes in Interoute Network as Identified by NV E′(v).

of over a month of event information from the network, and the
subset of those events which were escalated by the customers
as incidents. It is evident that events distribute around a peak
at 0.175 NV E′(v) whereas, incidents cluster at a peak of 0.95
NV E′(v).

As further justification of the validity of the approach the de-
tailed nature of the data in the Internet Topology Zoo provides
the opportunity to see how the local entropy measures are
distributed when calculated against real network topologies. In
Figures 9 and 10, we highlight against the Interoute topology
the top 10% of nodes by value of NV E(v) and NV E′(v)
respectively. It is striking to note that in both cases these
nodes are indeed at critical points in the graph. For example,
the nodes with high values occur at points where their removal
would cause the creation of a large disconnected component of
the graph, and therefore, inflict the highest level of interruption
of the operation of the network.

Although the general claims of scale freedom do not fully
hold with the real world data we have analyzed in this paper,
the motivation to use network structure to identify vulnerable
nodes appears promising, and yields two candidates that are
locally computable and mirror the behavior of Chromatic and
Structural entropy. The justification of studying these values in
practical networks has been achieved in theory, and in further
work we intend to analyze more real world datasets and extend
our entropy measures to include j-spheres for j > 1.
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4.2 Discussion

4.2.1 The General Application of Vertex Entropy as a Root Cause In-
dicator

As is demonstrated in the following paper presented in Chapter 5, and the discussion that
follows in Section 5.2, the vertex entropy measures come close to an effective root cause
classifier. However it must be stressed that this is not the intended application of the entropy
metrics. The primary motivation for the use of the metrics is to eliminate noise and reduce
load on a root cause engine as part of an end to end fault management strategy.

As an example, consider a tree network consisting of a single top of rack switch con-
necting to N egress switches, each of which has n connections. It is open to debate which
of the switches is actually of higher importance to the overall connectivity of the network,
and this depends heavily on the overall connectivity. As a matter of fact in this scenario, for
n > N, inverse degree entropy V E of the top switch is smaller, whereas fractional degree
entropy V E ′ is larger. The normalized variants behave differently as the local topology of
each switch is a star network Sn. The modified clustering coefficient of each switch decreases
strongly with the degree of the switch node and both normalized variants there increase with
increasing degree of the network node. So, in general the switch with the most connections
will have a higher entropy metric and be considered more impacting in the topology. Ideally
you would want the metric to pass alerts from each of the switches to a system capable of
applying downstream logic to such a network, that is the ability to distinguish between alerts
on the basis of likely causality due to its position in the networks. Given all of the metrics
favor nodes that have a lot of connections and are not locally meshed, it is likely that both of
the switches will have a relatively higher value of any of the entropy metrics, compared to,
for example, servers connected to the egress switch. In this case, the top of rack switch is
likely to be causal if events are present from all of the switches. This further underlines the
need for vertex entropy to be used in conjunction with a secondary algorithm to determine
root cause.

4.2.2 Post Publication Perspective

This paper was considerably extended in the following publication presented in Chapter 5.
A number of the key concepts were treated differently in this publication, due to both the
constraints of brevity inherent in a conference proceedings publication, but also due to the
evolved understanding of the subject material and the production of many more results from
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experiments on the data. in particular, a number of specific statements and claims in the
paper I have modified in the subsequent publication. These include:

• Section III : In the first paragraph I state that entropy always increases for networks
with non-uniform connectivity. In fact, as the analysis shows in the paper, and in
particular in the following publication in Chapter 5 this is not strictly true. I prove that
the perfect graph maximizes Chromatic Entropy, and minimizes Structural Entropy.
The measure of complexity operates in opposite directions for these two entropies and
it would have been more strictly correct to have stated so.

• Section III-A : The notation in this section has been significantly modified and tight-
ened in the publication presented in Chapter 5. In particular I have adopted the more
common notation of ki for the degree of vertex vi. In Equation (4) of the paper for
example the current notation of pi(vi) =

1
dvi

is confusing and is written in the following

paper as Equation (14) pi =
1
ki

.

• Section III-A : A number of statements regarding the extremal behavior of the various
entropy measures are made without proof or citation. In particular after Equation (7),
(11) and (16) claims are made regarding the extremal behavior of the vertex entropy
measures. In this paper, due to constraints of brevity, proofs were omitted. In the
paper presented in Chapter 5, detailed proofs of these assertions are made, which
are consistent with these claims. No available citations were known at the time of
publication.

• Section III-A: In the discussion after equation (6) I incorrectly write pi =C× 1
dvi

. I

should have written pi =
1
C × 1

dvi
.

• Section III: In Definition 1 of a j-Sphere is inconsistent with how we define the same
set in the subsequent paper and how the construct is used to calculate vertex entropies.
The inclusion of j ≥ 1 inside the brackets is not good practice, and the later use of the
j-Sphere to capture the central node requires that the distance condition be d(vi,v)≤ j.
Definition 1should be more correctly written as it is in Chapter 2, Definition 8.



Chapter 5

Vertex Entropy as a Critical Node
Measure in Network Monitoring

5.1 Background to Second Publication

5.1.1 Motivation and Summary of Contribution

The submission to the IEEE journal Transactions on Network and Service Management
(TNSM) was motivated as an opportunity to present the full extent of the work on Vertex
Entropy that was initially published in the AnNet workshop. Due to the length constraints
of the conference format, the original publication did not have the scope to include much
of the theoretical work that underpinned the choice of vertex entropy metrics. From an
experimental perspective, the results in the first paper are also significantly expanded in this
publication and include a methodology to select appropriate values of the entropy metrics to
use as a threshold for discarding events.

This submission also benefited from the rejection of a full conference track paper that
was submitted to INFOCOM 2017. The reviewers comments are substantially addressed in
the manuscript presented to TNSM. After the AnNet publication I was invited to submit an
article to the International Journal of Network Management. A manuscript was prepared and
submitted, but I subsequently withdrew the paper in favor of this submission.

5.1.2 Theoretical Contribution

A key motivation for the initial research was to identify a viable measure of the contribution
of an individual vertex to the entropy of a graph. I significantly built upon the formalism
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developed by Dehmer in [23] and [49]. To be able to understand the viability of the proposed
forms of entropy it is necessary to establish whether the vertex entropies, when summed
across the whole graph, result in an entropy value that is both admissible as an entropy
measure and has similar extremal behavior to the more well understood measures.

To be admissible as an entropy metric there are four criteria outlined in [63] and [50],
namely Maximality, Additivity, Positivity and Symmetry. For each of the proposed metrics a
proof is presented of the compliance of the proposed vertex metrics to each of these criteria.

To compare extremal behavior, we first observe that we are only concerned with undi-
rected, connected graphs (see 2), and then establish and prove results demonstrating which
networks maximize and minimize the two chosen measures of global graph entropy. The two
global measures compared against were structural entropy as defined by Körner in [41], and
Chromatic Entropy (this and structural entropy are described in detail in [50]).

The text pays special attention to a small number of prototypal ‘special’ graphs on n

nodes, Sn, Kn, Pn and Cn (see Chapter 2). These special graphs are commonly encountered in
communications networks, with Kn representing highly redundantly wired networks and Sn

found in aggregation and access networks. The path (Pn) and cycle (Cn) are found in more
legacy technologies for local area networks such as token ring and ethernet.

In general Chromatic Entropy is maximized by Kn and minimized by Sn, and structural
entropy operates in the opposite way. The paper contains extremal proofs and calculations
of extrema for each of these special graphs, both for the proposed vertex entropies and the
global entropies, which I believe are novel. These calculations allow identification of which
proposed vertex measures behave like structural entropy and which behave like chromatic
entropy.

5.1.3 Data and Methods Used

The results presented in this paper were obtained from the same experimental software
analysis tools used to generate the results for the first paper. Following comments from the
INFOCOM submission however two new vertex entropy measures were added using the
clustering coefficient of a node as a direct probability functional following the theoretical
formalism of Dehmer.

In addition, statistical tests of correlation were applied to the data using a 2-sample
Kolmogorov-Smirnov goodness of fit on the cumulative incident and event distributions [30],
to disprove the null hypothesis that the incident and event distributions by vertex entropy are
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in fact only different by chance. In each case the null hypothesis could be rejected with a
greater than 95% confidence.

The paper also presents analysis using a modified Fβ score to identify an ideal value of
vertex entropy to use as a threshold above which events are processed. This modified metric
balances recall and precision (recall defined as the percentage of incidents at a given value of
entropy processed, precision the percentage of incident producing events versus non incident
producing events) to bias heavily towards recall. This reflects the fact that the operational
usage of vertex entropy is to pre-process events for a root cause detection system in order to
reduce event rate load.

5.1.4 Contributions from Co-Authors

As in Chapter 4, the work in this paper is substantially my own, but my co-authors contributed
significantly to the development of the ideas, approach and methodology used to analyze the
data. In particular the mathematical treatment benefited from a thorough review with my
co-authors prior to submission and many hints at data analysis methods (for example the
null hypothesis testing) was their suggestion. In addition the manuscript for the paper was
prepared and refined with their editorial help.

5.1.5 Related Work

As the paper was an extension to the AnNet workshop paper, the related work is substantially
the same. The approach of calculating a graphical entropy as an alert conditioning metric is
novel, the closest approach being that of Stearley et al described in [66],[67], and [54]
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Abstract—Understanding which node failures in a network
have more impact is an important problem. Current under-
standing, motivated by the scale free models of network growth,
places emphasis on the degree of the node. This is not a
satisfactory measure; the number of connections a node has
does not capture how redundantly it is connected into the whole
network. Conversely, the structural entropy of a graph captures
the resilience of a network well, but is expensive to compute, and,
being a global measure, does not attribute any specific value to
a given node. This lack of locality prevents the use of global
measures as a way of identifying critical nodes. In this paper we
introduce local vertex measures of entropy which do not suffer
from such drawbacks. In our theoretical analysis we establish
the possibility that our local vertex measures approximate global
entropy, with the advantage of locality and ease of computation.
We establish properties that vertex entropy must have in order
to be useful for identifying critical nodes. We have access to
a proprietary event, topology and incident dataset from a large
commercial network. Using this dataset, we demonstrate a strong
correlation between vertex entropy and incident generation over
events.

Index Terms—Computer Network Management, Network
topology, Network theory, Graph Theory, Entropy.

I. INTRODUCTION AND RELATED WORK

Network fault management is principally concerned with the
analysis of notifications or events (log messages, SNMP traps
etc.) from network devices, with the goal of identifying failures
in critical nodes before service is impacted. Events often occur
at a very high rate, ranging from 102 to 106 events per second
(eps). In most cases they do not directly indicate a problem. To
illustrate, at a typical large enterprise network1 the event rate is
135 million events a day, whereas there are just a few hundred
‘actionable incidents’. The reason for this disparity between
the volume of events, and the number of incidents is the over-
instrumentation of monitored systems, and the tendency to
collect every event for post incident analysis, in case a cause
is missed. It is important to state that this heavy event load
can render current algorithms used to surface important events
unusable, and in many cases operational networks rely upon
users reporting failures.

1This work is motivated by the experience gained deploying network
management software at large commercial scale.

For the purposes of this work we define an event and an
incident as follows:
• Event: An event is typically a single log message or

notification from an underlying monitoring system. We
require that it has a timestamp, topology node identifier
and description. It is not necessarily a notification of a
fault condition, but fault conditions will generally send
out at least one event.

• Incident: An incident is a support ticket raised as a
result of receiving an event, and each incident references
a topology node from which the event was received.
Although not all incidents are indicative of a significant
impact, they are an indication that the node has a fault
condition that requires investigation. Typically an incident
ticket is raised manually by a support person, or automat-
ically from a monitoring system. Incidents can reference
one or more events.

In this paper, we base our analysis on a very large real world
network delivering global internet services. More specifically,
we have access to the following data2:
• Topology. The topology is a combination of automat-

ically discovered and manually created datasets. It is
normally an example of a Multiplex network, as described
in [1]. The analysis presented in this paper is for a
network of 225, 239 nodes.

• Events. Gathered from the same network is a collection
of network events that were monitored over a period
of several weeks. For the topology above we analyze
96, 325, 275 events.

• Incidents. For the same period in which the events were
collected, this resulted in 37, 099 such incidents being
raised, which in turn refer back to the source event.

Identifying which events are the cause of actual outages is
called Root Cause Analysis (RCA) [2]. Many algorithms are
used to perform RCA (for a detailed example see [3]), but
scalability limitations make applying these algorithms to the
full event stream impractical. In many cases the maximum
event throughput of such algorithms is of the order of 102 to

2The source of the data is currently confidential, but we are working towards
permission to release this dataset with appropriate anonymisation.
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Fig. 1: Ideal Thresholding Cumulative Distribution of Inci-
dents and Events

103 events per second (eps). In the example described above
the average event rate is 1562 eps, but, from our experience,
this can peak to 20,000 eps. To perform RCA across all events,
the flow of events has to be significantly reduced, by many
orders of magnitude (for example see [4]). Even commonly
known techniques, such as compressing repeat events with de-
duplication techniques (as described in [5]), which can result
in a reduction of events by a factor of 10-100 are not sufficient
when event throughputs are often measured in terms of billions
of events per day. Failure to control this event rate overload
is a principal cause of service outages going undetected by
monitoring tools.

The most common approach to reducing the event rate is
the simple act of removing uninteresting events with a manual
filter or exclusion list, a process known as ‘blacklisting’.
Blacklisting , which originated in the security event monitoring
discipline [6], is extremely time consuming and error prone.
At industrial scale, blacklisting can require thousands of rules;
in a fast changing network, such an approach is not practical.
It is also extremely easy to accidentally blacklist a critical
node and miss an event which leads to a service impacting
outage. A method to automatically eliminate uninteresting
events would yield significant savings, and is the central goal
of our research. In particular, we seek a method which can
take the topology of a network and automatically discard un-
interesting events. The central difference in such an approach
from blacklisting is that due to the efficient computability
of the metrics discussed in this paper the method can be
used even with a dynamic network topology. Blacklisting, by
design, is static and requires human intervention to adapt to
network changes. Although it may seem potentially risky to
throw away events, admitting the possibility that causal events
are discarded along with unimportant noise, the alternative is
being unable to monitor any events and therefore missing every
causal event.

A. Characteristics of an Ideal Metric

An effective metric should able to identify which nodes are
more likely to produce events that will escalate into incidents.
An ideal result, given that in the example above only 0.0003%
of events get escalated into alerts, would be a metric that
can discard 99.999% of events, whilst retaining the few that
become incidents. Practically though, given that the goal is

to fix the scalability limitations of RCA, we are seeking a
metric that can reduce the load by 90%. Further for this to
be a practical approach, calculating the metric must itself not
present scalability challenges. An ideal metric must:

1) identify which nodes are most likely to produce an
incident.

2) allow the discarding of at least 90% of events by the
network topology alone.

3) be easy to calculate (not involve any intrinsically non-
scalable computational steps) from the network topology
alone.

4) be easy to update when the topology changes, ideally
involving only computations for a small number of
nodes in the region of the network where changes
occurred.

5) Assuming a uniform probability of a node emitting an
event3, the metric must clearly segregate a small subset
of critical nodes.

Ultimately the measure of RCA is its ability to capture
all root causes and not mis-identify any false positives. This
is best described in the language of machine learning using
precision and recall. In particular the F1 score (see [7] for a
good description), is a popular measure of the effectiveness of
a categorization algorithm such as RCA. Any method which
discards root causes (false negatives) along with uninteresting
events (true negatives) (or conversely any method that flags
root causes (true positives) along with uninteresting events
(false positives)) will affect the F1 score of the overall system.
The F1 metric is most usually defined as the harmonic mean
of precision and recall, which we define in Equation (1). In our
context precision is measured as the fraction of incidents in
the events remaining after discarding all events and incidents
that occur below a given value of our metric. Similarly, recall
is the fraction of incidents remaining after this discard over
all recorded incidents. The value of β in this equation, when
set to 1, recovers the standard F1 measure. In essence when
precision and recall are balanced, F1 is maximized. For our
purposes we set a value of β higher to bias the importance of
recall over precision in monitoring applications.

Fβ = (1 + β2)× precision× recall
β2 × precision+ recall

(1)

In Figure 1 we illustrate an idealized cumulative distribution
of events versus incidents for an ideal metric. This distribution
would be achieved if incidents were more likely to occur on
nodes with high values of the metric, versus events, according
to a distribution around a distinct mean value. This type of
skew of incidents towards a higher metric value would allow
us to discard events below a given threshold that would remove
proportionately far more events than incidents.

A starting place to identify a workable metric is the work
of Barabàsi and Albert [8] on network resilience, which was
based upon data described by Faloutsos et al [9] and Li et al
[10]. Analysis of this data was used by Barabási and Albert
to assert that communications networks have a power law

3Experience from commercial deployments points to this assumption being
reasonable.
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Fig. 2: Cumulative Distribution of Incidents and Events by Node Degree (a) and Betweenness Centrality (b)

node degree sequence, possessing the Scale-Free property,
whereby, node degree distributions obey the inverse power
distribution law. This was further used to justify the claim that
communications networks, like the Internet, are both robust to
random attack and vulnerable to targeted attack (the central
arguments are outlined in [11], [12], [13], and again in [8]).
In essence, when removing nodes from a graph randomly, the
collapse in connectivity, as measured by the reduction in the
size of the giant component, is gradual. However, if nodes are
removed by choosing those with highest degree, this reduction
is much more rapid (typically removing less than 10% of the
nodes will reduce the size of the giant component by more
than 90% [8]). It is therefore natural to postulate that node
degree could be a metric that satisfies our criteria.

In Figure 2a we present the cumulative distribution of events
and incidents by node degree. When we inspect the distribution
in Figure 2a the lack of distinction between the cumulative
event and incident distribution makes it clear that this does
not conform to the idealized distribution in Figure 1. This
distinction, which is apparent in the idealized distribution
described above, means, at a fixed value of the metric, a
far larger proportion of events initiate from nodes of values
below this point than incidents. The absence of this preferential
tendency for high degree nodes to produce incidents, means
degree is a poor metric to achieve a suitable cutoff that would
preferentially discard events over incidents. Although degree
is extremely easy to calculate (3rd criterion), it fails the first
and most important criterion, as it does not provide any useful
way of identifying nodes more likely to produce an incident.
This lack of correlation is most likely due to high degree nodes
being redundantly connected into the network and they may
also not impact network function when they fail.

Beyond degree measures there are many other proposed
metrics that measure node importance, often centering around
centrality measures such as betweenness and eigenvalue cen-
trality ([14], [15]). In Figure 2b we plot the cumulative distri-
bution of events and incidents by betweenness centrality, for
our sample data. Betweenness centrality measures the number
of shortest paths between any two points in the network that
pass by a given node as a fraction of all shortest paths. High
values of centrality indicate a node that is critical to the
connectivity of the network. It is clear that the effectiveness
of this metric is far higher than degree, which is unsurprising
as centrality quantifies the importance of a node in terms of
connectivity between all points in the graph. Unfortunately the

calculation of betweenness centrality scales badly. In the best
case for betweenness centrality the fastest known algorithm
developed by Brandes ([16], still scales as O(|V |×|E|), which
in the case of our proprietary data is practically unfeasible to
compute. To illustrate the problem, on our sample data this
calculating the centrality for every node in our proprietary data
set required 41 days on server grade hardware. This compares
with the entropy metrics described in Section IV, which in
identical conditions, require around 1.5 hours to compute every
metric for every node sequentially. As our metrics only depend
upon local properties of a node and could be calculated locally
without a whole graph computation. In practice this means that
for a given node, our most efficient metrics V E and V E′,
compute in less than a second, opening up the possibility
that they can be maintained automatically in even the most
dynamic environments.

The focus of our research has been with graph entropy,
building on the entropy metric presented by Tee et al in
[17]. Entropy has been studied in other contexts for anomaly
detection (recently [18], and [19] applied the approach to
traffic anomaly detection), but graph entropy has received little
attention in the context of fault management. As a measure
of graph structure it has serious computational drawbacks as
its calculation is well known to be NP-Hard ([20]), which
may account for this. However if these could be overcome
with a node level, vertex, approximation, it would be ideal.
Using such a node level measure of graph entropy, the
proposed technique would be automatically driven from a
graph representation of the topology of the monitored network,
and importantly could be quickly computed from available
inventory databases. Ideally, such a metric would conform to
the cumulative distribution illustrated in Figure 1. In this way,
at the expense of missing a small number of incidents, the
volume of events that need processing can be significantly
reduced. As all incidents have an associated event, it is not
expected that the distribution would allow perfect recall of
incidents as you discard events, but any actual distribution
approximating this would be useful in establishing an entropy
threshold to allow the discarding of events from nodes less
likely to produce an incident. We will seek to demonstrate
that our proposed vertex entropy metrics approximate this
distribution. A central objective of our research has been to
identify easily computable metrics that measure the contri-
bution of an individual node to the entropy of the whole
graph. Additionally, for these metrics to be valid entropy
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measures, we need to establish their extremal behavior satisfies
the criteria of maximality, and demonstrate that they satisfy the
other essential entropic properties of additivity, symmetry and
positivity [21], [22]. Ideally the extremal values of our local
variants would coincide with the global entropy measures and
provide confidence that these metrics measure the complexity,
and therefore, resilience of the networks they represent.

B. Overview

In this paper we describe both the theoretical approach for
choosing a valid vertex entropy measure, and also analyze
the results when this is applied to our “ground truth” data.
Our core motivation is to identify an approximate way of
measuring the contribution an individual node makes to the
whole graph’s entropy, and use that as our metric to eliminate
noisy events. However, traditional definitions of graph entropy
have insurmountable computational difficulties when applied
to networks at scale. The starting point for our investigation is
to establish whether there exists node or vertex level measures
that when summed across the whole graph behave like the tra-
ditional measures. Establishing the existence of such a vertex
level metric necessitates an exploration of the characteristics
of global entropy measures on simple connected graphs. In
section II we present an overview of graph entropy, introducing
both Chromatic and Structural Entropies. Structural Graph
Entropy quantifies the degree of connectivity resilience of a
graph to edge removal, with low values of structural entropy
corresponding to a fully connected or perfect graph, and
high values a non-uniform graph with low resilience to edge
removal. Chromatic Graph Entropy operates in the reverse
sense, with uniform graphs having high chromatic entropy.

A valid entropy measure must satisfy the criteria of max-
imality, additivity, symmetry and positivity. Although addi-
tivity, symmetry and positivity are satisfied trivially by the
definitions of global entropy, maximality is investigated in
detail in Section III. We only concern ourselves with simple
connected graphs and we prove that for an arbitrary sized
graph, the Star Graph (Sn) and the Complete Graph (Kn) are
extremal for both Structural and Chromatic Entropies. Ideally
these properties should be shared by our vertex level metrics
when summed across the whole graph.

A framework for the construction of node level entropies
has been extensively explored in the work of Dehmer et al,
and summarized in [23]. In section IV we build upon this
framework to introduce our proposed forms of local vertex
entropy, and investigate their extremal behavior. An important
result of our paper is that the vertex entropies we propose
have strong analogous behavior to the global variants, when
summed across the whole graph, and satisfy maximality,
additivity, symmetry and positivity. We further demonstrate
that our metrics share similar extremal behavior to both global
variants.

In section V we evaluate the proposed measures over a
large enterprise network. The principal result of our paper is
that the vertex entropy measures provide a computable and
effective way to identify important nodes that are more likely
to produce incidents. This is established by identifying that
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B C

(b) S4

A D

B C

(c) P4
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Fig. 3: Special Graphs on Four Nodes

the distribution of event and incident frequency by vertex
entropy strongly favors incident production at high values
of the metric, verified by analysis of the data using a 2
sample Kolmogorov-Smirnov null hypothesis test to identify
whether the distribution of incidents and events by our metrics
are trivially correlated. In all cases we can dismiss the null
hypothesis and conclude that the metrics produce independent
distributions of the events versus the incidents. In addition
we calculate for the data a version of the F1 score, adjusted
to account for the preponderance of raw events. Again all
proposed metrics demonstrate acceptable improvement in the
pre-conditioning of the event data. It is certainly not the case
that all incidents occur above a fixed threshold, but at the cost
of missing 20% of the incidents, 60-70% of the events can be
safely ignored. We conclude our paper in Section VI, with an
outlook regarding further research directions.

II. THEORETICAL BACKGROUND

Historically, entropy was defined in Graph Theory as a
measure of the complexity and non-uniformity of the global
structure of a graph. Its use as an analytical tool in network
science has been most studied in the dynamical evolution of
network growth (see for example [24] and [25]). As a metric
it captures many important characteristics, which are of direct
interest in a number of applied fields, including the analysis
of failure modes of communication networks (see [3]). In
particular, networks with non-uniform connectivity will have
high values of entropy. Unfortunately the most well understood
measures of entropy involve calculations that have impractical
computational complexity, as a graph scales in size (see [20]
for a good explanation of this point). Further, any change to
either the edges or vertices of a graph requires recomputing
entropy across the whole graph. It is also extremely difficult
to compute the contribution of each individual node to the
graph entropy. The variants of Graph Entropy that we explore
in this paper are, Körner or Structural Entropy and Chromatic
Entropy. Structural entropy measures the mutual information
of the stable sets of vertices defined on a graph, a string proxy
for the complexity of the graph. Chromatic entropy is defined
using the size of subsets of non adjacent vertices, or colorings,
of a graph.

In our treatment we confine ourselves to simple, undirected
graphs that are connected, and make reference to a number of
special graphs, which we define as follows:
• The Complete Graph (Kn): This graph is formed from

a set of n vertices, maximally connected.
• The Star Graph on n Vertices (Sn): This graph has one

vertex v which is connected to all other vertices, with no
other edges in the graph.

• The Path on n Vertices (Pn): This graph is a simple
chain of n vertices, connected by a single edge with no
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loops. The path has a single start node v1 and end node
vn.

• The Cycle on n Vertices (Cn): This graph is a special
case of Pn such that v1 = vn; each node has degree 2.

In Figure 3 we present simple examples of these special graphs
with n = 4.

Any valid entropy measure must satisfy a number of criteria,
(for detailed descriptions see [21], [22]) to be admissible as
a well behaved entropy metric. We define these properties on
the entropy H of two graphs F (V,E) and G(V,E) as follows:

Definition 1. For all graphs F (V,E) and G(V,E′), sharing
the same vertex set V a valid entropy H(G) must satisfy:

1) Additivity: H(F ∪G) ≤ H(F ) +H(G)
2) Symmetry: H(F ∪G) = H(G ∪ F )
3) Positivity: ∀G,H(G) ≥ 0
4) Maximality: For a given collection of vertices V there

is an edge set E such that the entropy H(G) of a graph
G(V,E) is maximized

As we explore our candidate entropy measures we will seek
to prove that they satisfy these criteria where proofs do not
exist in the standard literature.

III. EXTREMAL BEHAVIOR OF GLOBAL GRAPH
MEASURES

A. Chromatic Entropy

A proper coloring of a graph is the division of the set of
vertices V into a collection of subsets such that no member of
any subset is adjacent to another member of the same subset.

For a given graph G there maybe multiple colorings, which
amount to a collection, or set, of subsets of V . Each of these
subsets we call a Chromatic Class Ci, with the constraint that⋃
i Ci = V . The Chromatic Number of a graph, χ(G), is the

smallest number of such subsets that satisfy this constraint.
The chromatic number of an graph is bounded by the maxi-
mum vertex degree kmax [26], [27]:

1 ≤ χ(G) ≤ (1 + kmax) (2)

Definition 2. Chromatic Entropy

Ic(G) = min

[
−
∑

Ci

|Ci|
n

log2

( |Ci|
n

)]
,∀Ci. (3)

where the minimization is over all possible colorings of the
graph, and the summation is over all chromatic classes Ci,
for a given coloring.

It is possible to establish the following limit on the value
of IC(G) :

Theorem 1. For all graphs G, the Chromatic Entropy Ic(G)
is bounded by:

0 ≤ Ic(G) ≤ log2(n) (4)

Proof. We note that the lower bound is trivial, and consider
the upper bound. We need only to maximize the function
f(pi) = −∑i pi log2(pi) (in our case pi = |C|

n ), subject
to the constraint

∑
i pi = 1 and pi ≤ 1,∀i, with equality

only in the case of a trivial graph of one vertex. Given the

definition of IC(G) as the minimum of equation (3) over
all possible colorings, our maximum value will always be
an upper bound of IC . To maximize, we use the method
of Lagrange multipliers, considering the following construct,
subject to the unity sum constraint

∑
i pi = 1 where pi =

|Ci|
n :

L = max
pi

[
−
∑

i

pi log2 pi − (λ− 1)

(∑

i

pi − 1

)]
(5)

Differentiating by pi and setting to zero we obtain:
∂L
∂pi

= 0; =⇒
(
pi = 2(1−λ−

1
ln(2)

)
)
∀i (6)

From equation (6) our maximum is achieved when all values
of pi are identical and constant. In this case each chromatic
class Ci is of identical size |Ci| = n

χ(G) . Feeding this back
into equation (3), and substituting for the bounds on χ(G)
from (2) we obtain the desired result.

0 ≤ Ic(G) ≤ log2(n)

In practice these extremal values for Ic(G) are achieved by
the perfect graph on n vertices Kn for the maximum, which
has a Chromatic Entropy of log2(n), and its complement Kn,
where the set of edges is empty, has the minimum value of
zero. However Kn is not a connected graph; for connected
graphs we make the following proposition.

Proposition 1. For all connected, simple graphs G(V,E) of
order n > 3 it holds that Sn minimizes Ic(G)

Proof. For n > 3 any graph G of n vertices, can be created
by progressively adding edges to either Sn or Pn, and by
inspection of Table I, Sn has lower entropy than Pn. We
will prove our proposition if we can demonstrate that the
addition of an edge to any connected graph increases its
chromatic entropy, as all graphs obtainable from Sn would
have higher chromatic entropy than Sn. Consider any star
graph Sn for n > 3. If any edge is removed, Sn will cease to
be connected, and so by definition is not under consideration
of the proposition. As we add edges to the graph Sn the change
in chromatic number δ(χ(G)), can only ever be ≥ 1, or 0. So
to complete the proof we consider both cases upon addition
of an edge:

Case 1, δ(χ(G)) ≥ 1 : The addition of a single edge
creates an adjacency between two nodes, which must previ-
ously have been in the same chromatic class as δ(χ(G)) ≥ 1.
If the vertices where not in the same class we cover this in
Case 2. The recoloring of the graph will take one or both of
the vertices connected by the new edge and add to, or create,
a chromatic class of size x. This will reduce the size of a
prior chromatic class of size y by x. Edge addition operations
that increase chromatic number will always produce classes
of increasingly uniform size as we approach a perfect graph
Kn. Without loss of generality we will assume that y > x,
as classes that grow to uniformity will by necessity borrow
from larger classes as the size of all classes tend to unity. The
change in chromatic information due to this re-assignment is:

δIc(G) =
x

n
log2

(n
x

)
−
(
y

n
log2

(n
y

)
−y − x

n
log2

( n

y − x
))
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We seek to prove that δIc(G) ≥ 0 for all x, y where y > x.
Elementary manipulation yields the following inequality:

δIc(G) ≥ 0→ x log2

(
y

x
− 1

)
≥ y log2

(
1− x

y

)

As y
x−1 > 1− x

y when y > x, we conclude that the inequality
holds and δ(Ic(G)) ≥ 0,∀n > 3 under the operation of edge
addition when δ(χ(G)) ≥ 1.

Case 2, δ(χ(G)) = 0 : In this instance the addition of
an edge does not increase the chromatic number. and as
no chromatic classes need to change size, δIc(G) = 0.

Eventually additional edges increase the number of adjacen-
cies and consequentially the chromatic number of the graph to
its maximum of n, until we arrive at the complete graph Kn,
which maximizes Ic(G).In all cases we have seen that adding
edges creates a δIc(G) ≥ 0, and as the first additional edge
must belong to Case 1, the proposition is proved.

B. Structural Entropy

The original paper of Körner [28], [21] introduced the en-
tropy of graphs by extending traditional Shannon informational
entropy. Körner’s analysis considered an alphabet of signals,
emitted according to a probability distribution, with not all
of the alphabet being distinguishable. A graph is constructed
such that each member of the alphabet is considered a vertex,
with two vertices being connected by an edge if they are
distinguishable, and a probability of emission, P (V ), being
associated with each vertex. To develop the mathematical for-
mulation of structural entropy, Körner introduces a probability
distribution P (V ), to the normal construct of a graph G(V,E),
and defines S to be the maximal set of stable sets of G(V,E).
A stable set is a subset of the vertices which are not adjacent
to any other member of the stable set, the maximal set being
the collection of largest stable sets.. A number of equivalent
definitions of structural entropy, H(G,P ) are possible, of
which the simplest is in terms of the mutual information
between P (V ) and G(V,E) as follows [21]

Definition 3. Körner or Structural Graph Entropy

H(G,P ) = H(P )−H(P |S) (7)

This measure, which we call structural entropy, is related
closely to the Chromatic Entropy. In our treatment we identify
P (V ) with the probability of the emission of an event, which
we further assume to be uniform. With that simplification the
two quantities are related as follows (for an in depth treatment
see [22]):

H(G,P ) = log2(n)− Ic(G) (8)

Structural entropy can most easily be interpreted as quantify-
ing the extent to which the local neighborhood of a node is
unique. In other words the value of H(G,P ) is minimized
when all vertices are equivalently connected, and maximized
when each node is distinguishable by its local topology. Given
equation (8) we can state the following lemma on the bounds
for H(G,P ).

Lemma 1. For any graph G(V,E) on n nodes, assuming
that P is uniform, the structural graph entropy is bounded as
follows:

0 ≤ H(G,P ) ≤ log2(n) (9)

Proof. This bounding of H(G,P ) is easily verified by direct
substitution of (4) into (8), and as such the proof is trivial.

We summarize the extremal behavior of our global graph
measures in table II.

TABLE I: Values of Global Entropies for Special Graphs

Ic(G) H(G,P ) - P Uniform

Sn
n−1
n

log2
(
n
n−1

)

− 1
n
log2(n)

n−1
n

log2(n− 1))

Kn log2(n) 0

Pn, n even 1 log2(n)− 1

Pn, n odd 1 + log2(n)− (n+ 1) log2(n+ 1)

−(n− 1) log2(n− 1)

(n+ 1) log2(n+ 1)

+(n− 1) log2(n− 1)

−1

Cn, n even 1 log2(n)− 1

Cn, n odd log2(n)− n−1
n

(
1− log2(n− 1)

)
1−n
n

(
1− log2(n− 1)

)

TABLE II: Graph Types that Maximise and Minimize Entropy

Chromatic Structural
Maximum Kn Sn

Minimum Sn Kn

IV. LOCAL VERTEX ENTROPY MEASURES

Recent work on Graph Entropy by Dehmer [23], [29] pro-
vides a framework that unifies the global invariants discussed,
and provides a pathway to extend these measures in a more
computable direction. Both Structural and Chromatic entropy
rely upon partitions of the vertex set of the graph, which are
known NP-Hard problems.

Dehmer defines the concept of a local functional for a
vertex, which can be scoped to calculate values for every
vertex based upon the local topology of the graph. The degree
of locality in the treatment is controlled by using the concept
of j-spheres, Sj in the graph, centered at a given vertex. For
clarity, in the definition that follows a superscript indicates the
order of the j-sphere, whereas subscripts run over the members
of the vertex set of the graph. Dehmer’s original definition
relied upon subsets of vertices of a fixed distance from a given
vertex vi. where distance d(vi, vj) is the shortest distance
between distinct vertices vi and vj (i.e. i 6= j). The distance is
measured in the number of edges traversed in a walk from vi to
vj , and in communications networks is commonly referred to
as the ‘hop’ count. This definition excluded the vertex vi, and
other interior nodes for j ≥ 1, but in our later treatment this
introduces problematic zeroes when we define the clustering
coefficient. We extend the definition of a j-sphere to include
the node vi as part of the set. This avoids certain special graphs
such as Sn having zero clustering coefficients that would
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introduce infinities into our later definitions of normalized
entropies. This is different to the definition given by Dehmer,
in that we include all interior nodes to a given j-Sphere. The
definition so modified is as follows:

Definition 4. For a graph G(V,E), we define for a node
vi ∈ V , the ‘j-sphere’ centered on vi as:

Sji = {vk ∈ V |d(vi, vk) ≤ j, j ≥ 1} ∪ {vi} (10)

and for convenience when we define the clustering coefficient
in equation (21), the related ‘j-edges’ Eji as

Eji = {ekl ∈ E|vk, vl ∈ Sji } (11)

In essence the sets Sji and Eji are the local j-hop neighbor-
hood of the node vi, with Sji being the collection of all nodes
j hops away from vi, and Eji being the set of edges between
them.

The concept of j-spheres is a very convenient formalism to
capture locality in the graph. Essentially j can range from 1 to
the diameter, D(G), of the graph (as defined as the maximum
length shortest path between two nodes). By breaking a large
graph into j-spheres, we can progressively examine complex
combinatorial quantities such as graph entropy on increasingly
larger subsets of the graph until at j = D(G) the global value
is being effectively computed. Using our extended definition,
we proceed by equipping each Sji with a positive real-valued
function fi : vi ∈ Sji → R+. This function is proposed to be
dependent upon properties of the nodes that are members of
the j-sphere, such as their degree, number of cycles and so
on, which capture the local structural properties of the graph.
From this, we can construct a probability function for each
vertex as

pi =
fi∑

vj∈V fj
(12)

which trivially satisfies
∑
i pi = 1.

Essentially these functions are used to construct entropy
measures in direct analogy to Shannon entropy as follows:

H(vi) = −pi log2 pi (13)

The principal direction of Dehmer’s proposition is that these
functions fi when used to construct entropy, describe the
local ‘information’ that a given vertex carries about the global
structure of the graph. However, in the published work [23],
[29], these functions are complex expressions, which introduce
global invariants of the graph complicating their computation.

We can now apply Dehmer’s formalism using the available
invariants available in j-spheres for different values of j. For
reasons of computational simplicity in this work we restrict
ourselves to j = 1, which is the immediate local neighborhood
of a given node. Although this sacrifices global structure of
the graph, we will show that the results are still of operational
significance and, because of locality, very efficient to compute.
Indeed if 〈k〉 is the average degree of a node, most of our
metrics are computable in O(|V | × 〈k〉), significantly less
than, for example, centrality measures. Given the constraint of
locality, a number of constructs can be designed that satisfy
the probability functional defined in equation (12) up to a
normalization constant. In the immediate neighborhood of a

vertex the available measures are restricted to the degree of the
vertex ki, and the presence of cycles in the local subgraph. It is
important that the measures that are constructed are bounded
in an acceptable way, when summed across the whole graph
and satisfy the fundamental properties of an entropy measure:
maximality, additivity, symmetry and positivity [21], [22].

In Table III we summarize the available probability con-
structs that we will investigate. For j-spheres where j > 1
we have not conducted any analysis, and this remains an
open question for further research. It should be noted though
that as j approaches D(G), the diameter of the network, the
probability functionals approach a constant value, which is
unlikely to reveal much of the structure of the network.

TABLE III: Local Probability Functional Constructs on a j-
sphere

j = 1 j > 1 j = D(G)

1
ki

V E(v) Unexplored, 1

|Ej
i |

Constant Value 1
|E|

ki
|E| V E′(v)) Unexplored,

|Ej
i |
|E| Constant Value 1

Cji
NV E(v),NV E′(v),

Unexplored Unexplored
CE(v),CV E′(v)

A. Inverse Degree Entropy

The first and most basic probability functional, which we
can construct on the 1-sphere of a vertex, uses its inverse
degree ki and is defined as follows:

pi =
1

ki
(14)

and the corresponding entropy of the vertex V E(vi), and
whole graph HInvDegree as

V E(vi) =
1

ki
log2(ki), (15)

for the whole graph:

HV E =
i<n∑

i=0

1

ki
log2(ki) (16)

The first observation is that the sum of inverse degrees does
not satisfy the constraint

∑
i pi = 1. However, one can observe

that for any given graph G, this probability functional sums
to the constant:

C =
i<n∑

i=0

pi =

∑i<n
i=0

(∏
j 6=i kj

)

∏i<n
i=0 ki

(17)

We note that pi = 1
C × 1

ki
, and discard the constant as part of

the normalization.
As the expression in equation (15) involves a sum of

logarithmic terms (which are all positive), the conditions of
additivity, symmetry and positivity are satisfied trivially, in
particular for additivity as the combination of two graphs
must as a minimum increase the degree of a vertex from each
graph, or leave the degrees of the two graphs unchanged, the
combined graphs entropy will be greater than or equal to the
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sum of the two graphs, thereby satisfying the additivity criteria
of Definition 1.

Regarding maximality, it suffices to establish that equation
(16) has a maximum for a fixed set of vertices and edges. This
can be done using Lagrange multipliers with the constraint∑
i

pi = C, where C is the constant from equation (17). This

yields an expression for the pi as pi = 2(C−1−λ), where
λ is the Lagrange multiplier, confirming that the entropy
has a maximal value for a graph whose degrees are equal.
Referring to Table IV, we can see this is obtained by the
cycle graph on n vertices Cn. Indeed the special graphs are
ordered by increasing inverse degree entropies in the sequence
Sn < Kn < Pn < Cn.

TABLE IV: Values of Vertex Entropy for Special Graphs

V E(n) V E′(n)

Sn
1

n−1
log2(n− 1) 1 + 1

2
log2(n− 1)

Kn
n
n−1

log2(n− 1) log2(n)

Pn
n−2
2

1
n−1

+ log2(n− 1)

Cn
n
2 log2(n)

B. Fractional Degree Entropy

Inverse degree is unsatisfactory. Firstly the probability
functional is not naturally defined to satisfy the unity sum
constraint. Secondly, and more importantly, the degree of a
vertex does not capture how ‘hub-like’ the node is relative to
others. To capture this, we can define an alternative functional,
which is based upon the ratio of the vertex degree to the total
number of edges in the graph, as follows:

pi =
ki
2|E| (18)

Given that
∑
vi∈V ki = 2|E| this functional directly satisfies

the unity sum constraint. In a parallel way to equation (15),
we define the fractional degree entropy as:

V E′(vi) =
ki
2|E| log2

(2|E|
ki

)
, (19)

for the whole graph:

HV E′ =
i<n∑

i=0

ki
2|E| log2

(2|E|
ki

)
(20)

Following the treatment of Inverse Degree Entropy, we note
that the expression in equation (20) again involves a sum of
logarithmic terms (which are all positive), so the conditions of
additivity, symmetry and positivity are satisfied. To establish
maximality, we can again use the technique of Lagrange
multipliers using the constraint

∑
i

pi = 1, which yields a

similar result to inverse degree entropy that the maximal value
is obtained for a graph with equal vertex degrees satisfying
pi = 21−λ. In Table IV this is satisfied by Kn and Cn. The
special graphs using this measure are ordered in increasing
fractional degree entropy as Sn < Pn < Cn = Kn. We
summarize these results in Table V.

TABLE V: Extremal Graphs for Unnormalized Vertex Entropy

V E V E′

Maximum Cn Kn = Cn

Minimum Sn Sn

C. Normalized Degree Entropy

There is a considerable practical difference between a star
network topology (Sn) and a fully meshed one (Kn). In the
former, the network is vulnerable to the loss of its central
high degree vertex; in the latter, the loss of any one vertex
can never create isolated vertices. Both prior measures make
little distinction between these two topologies for nodes of
identical degree, but there are available metrics measurable at
one hop distance that capture this concept. Indeed, in the case
of fractional degree, there is no way for the degree to capture
the intricacies of the local topology of the node. Introduced
in [30] and [8] is the concept of the clustering coefficient
of a vertex. The traditional definition counts edges between
neighbors of a vertex, which yields a zero value for Sn that
is problematic in our treatment. We avoid zeros using our
extended version of the j-sphere in equation (10). In terms of
the degree of vertex i, ki, the following definition captures how
similar the j-sphere surrounding a vertex is to the complete
graph Kn and is defined in terms of the 1-sphere edge set Eji
as:

C1
i =

2|Eji |
ki(ki + 1)

(21)

In essence the clustering coefficient measures the probability
that two randomly chosen nodes in the 1-hop subgraph have
an edge between them. In this way the lower the value of the
coefficient, the higher the likelihood that the failure of the node
at the center of the subgraph will cause two nodes to become
disconnected (see for example [31]). This completely captures
how well meshed a node is into its local neighborhood, and
therefore serves as an ideal candidate for further refining the
vertex measures introduced earlier. In particular, we want to
highlight vertices whose clustering coefficient is low, that is,
their local neighborhood is more similar to Sn locally than
Kn. To that end we define the following Normalized Vertex
Entropies:

Definition 5. We define for a graph G(V,E) the following
Normalized Inverse Degree Entropy for both vertex and total
graph as follows:

NV E(vi) =
1

C1
i

× V E(vi), (22)

for the whole graph:

HNV E =
i<n∑

i=0

(ki + 1)

2|E1
i |

log2(ki), (23)

and the corresponding definition for fractional vertex entropy
is defined similarly:

NV E′(vi) =
1

C1
i

× V E′(vi), (24)
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and total entropy:

HNV E′ =
i<n∑

i=0

k2i (ki + 1)

4|E||E1(vi)|
log2

(2|E|
ki

)
(25)

Proving compliance with Definition 1 for these normalized
values is not as straightforward as the non normalized values.
However, as the expression in equation (21) is always pos-
itive, the symmetry and positivity criteria are automatically
satisfied. With regard to additivity and criteria 1 of Definition
1, although not a rigorous proof, considering two graphs
being minimally joined by a single vertex, the clustering
coefficient of that vertex will decrease and so the value of
NV E or NV E′ of the shared vertex will increase, satisfying
the inequality.

For maximality, the introduction of the clustering coefficient
complicates the use of the Lagrange multiplier method, as pi
and C1

i are related quantities. It is the beyond the scope of
this work to present a formal proof of maximality but we can
calculate the values of the normalized entropies for our special
graphs and we summarize the results in Tables VI and VII. The
special graphs using NV E ordered in increasing entropy are in
the sequence Sn,Kn, Pn, Cn and for NV E′, Kn, Cn, Pn, Sn.
With the assumption that it is possible to maximize these
entropies these values are admissible measures of entropy. It is
interesting to note that the distinction between star topologies
and meshed ones is much less distinct with NV E. Comparing
extremal behaviors to our global entropy measures, we identify
NV E with Chromatic entropy and NV E′ with Structural
entropy.

TABLE VI: Values of Normalized Entropy for Special Graphs

NV E NV E′

Sn
n

2(n−1)
log2(n− 1) 1

2
log2{2(n− 1)}+ n

4

Kn
n
n−1

log2(n− 1) log 2(n)

Pn
3
4
(n− 2) 1

n−1
+ 3n−4

2(n−1)
log2(n− 1)

Cn
3
4
n 3

2
log 2(n)

TABLE VII: Maximal and Minimal Total Vertex Entropy
Graph Types

NV E NV E′

Maximum Cn Sn

Minimum Sn Kn

D. Alternative Vertex Entropy Constructions

The local clustering coefficient C1
i can also be used to

construct two alternative probability functionals, which an
exhaustive study necessitates. In the first instance, as the
clustering coefficient itself is a value strictly in the range (0, 1]
it is a valid informational functional in its own right. We can
define a clustering coefficient entropy, CE(vi) by identifying
pi = C1

i , as follows:

Definition 6. For a graph G(V,E) the clustering coefficient
entropy, CE(vi) of a vertex vi is defined as

CE(vi) = C1
i log2 C

1
i , (26)

and for the whole graph:

HCE =
i<n∑

i=0

C1
i log2 C

1
i (27)

In addition, we can also approach the normalization of the
fractional vertex entropy by defining an alternative probability
functional using the clustering coefficient as:

pi =
1

C1
i

× ki
|E| (28)

This probability functional is within the range (0, 1] as
for a given vertex this simplifies to pi =

|E1
i |

(ki+1)|E| , which
for a connected node is strictly non-zero and |E1

i | ≤ |E|.
It is not possible to extend the inverse degree functional in
a similar way as the equivalent definition pI = 1

kiC1
i

is
not bounded to fall into the range (0, 1]. We therefore make
the following definition for the Cluster Coefficient Fractional
Degree Entropy as follows:

Definition 7. For a graph G(V,E) the Cluster Coefficient
Fractional Degree Entropy CV E′(vi) of a vertex vi is defined
as:

CV E′(vi) =
ki

C1
i |E|

log2

(
C1
i |E|
ki

)
, (29)

and for the whole graph:

HCV E′ =

i<n∑

i=0

ki
C1
i |E|

log2

(
C1
i |E|
ki

)
, (30)

Using similar arguments to the previous entropy types
we can establish conformance with additivity, symmetry and
positivity of Definition 1 by observing that in equations (27)
and (30) are sums of logarithms . The remaining property
of maximality, in complex to verify due to similar issues
to the normalized entropy values NV E and NV E′. It is
beyond the scope of this paper to present a rigorous proof
of maximality, but we can calculate the values for our special
graphs, which we summarize in Table VIII. The special graphs
using CE ordered by increasing entropy are in the sequence
Kn, Sn, Pn, Cn and for CV E′, Sn, Cn, Pn,Kn.

TABLE VIII: Values of Clustering Coefficient Entropies for
Special Graphs

CE CV E′

Sn
2
n
log2(

n
2
) log2(n− 1)− n

2
log2(n)

Kn 0 2 log 2(
n
2
)

Pn
2(n−2)

3
log2(

3
2
) 1

n−1

[
3(n− 2) log2(

n−1
3

)− 2 log2(n− 1)
]

Cn
2n
3

log2(
3
2
) 3 log2(

n
3
)

From these calculations we can summarize in Table IX the
extremal graphs for these entropies.
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Fig. 4: Frequency Distributions for a Network of 225,239 Nodes

TABLE IX: Extremal Graphs for Clustering Coefficient En-
tropy

CE CV E′

Maximum Cn Kn

Minimum Kn Sn

V. EVALUATION AND DISCUSSION

A. Data and Methods

We analyzed data from a large operational dataset obtained
from a web portal operator. In previous work [17] we also
applied our techniques to the ‘Internet Topology Zoo’ (ITZ)
([32]), but this critically does not have any event or incident
data.

Our commercial data, however, contains a rich source of
events and incidents, and in particular allows the analysis of
event and incident distribution by originating node. The analy-
sis was performed using a suite of software tools implemented
in JAVA, and operated in conjunction with a MySQL database
for permanent storage4. A brief description is below:

4The source code for these analysis tools is available at
https://github.com/philtee2001/analyzer.git, and instructions for building
are available from phil@moogsoft.com

• graph_analyser: This executable was built to ingest
source topology as a list of edges in a comma separated
file format. The program calculates all of the metrics
described in Section IV and betweenness centrality and
stores the results both in raw and frequency distribution
format in the database. The value stored in the database
are used by the other analysis programs to produce
distributions of events and incidents by node metric.

• event_analyser: This executable ingests and parses
the full sample of events obtained from the customer.
Each event is presented as a string of symbols separated
by the ‘|’ character. The format of the events followed
a fixed pattern with the syntax: timestamp |datacenter
| application | node | description. After each event is
parsed the executable populates a distribution of event
count by value of the metric for each value of ‘node’.

• incident_analyzer: This executable operates in an
almost identical fashion to the event analyzer, but instead
analyzes data that is obtained from a report ran on the
customer’s incident management system. Each incident
represents an event that has been escalated according
to their manual triage process and is presented with
the following syntax: date | timestamp |datacenter |
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Fig. 5: Cumulative Distributions of Events and Incidents in a Network of 225,239 Nodes

ticket number | node | type | property | agent |
description. node field ties directly back to the topology
data and is used to populate a distribution of incidents
by considered metric. For this data not all values of
‘type’ are considered, as they indicate whether or not
the incident was deemed to be significant. We discard
any incidents that were not accepted by the help desk
without escalation.

B. Evaluation

Using the dataset described in Section V-A, we begin in
Figure 4 by plotting the distribution of nodes by the various
entropy measures. For a number of the metrics, the data
is heavily skewed by large numbers of the nodes having a
zero of low value. In Figures 4a, 4c, 4d, 4e and 4f we plot
the distribution excluding these values, rescaled. All of the
measures share a common feature in that the vast majority
of the nodes posses a heavy skew towards low values of the
metrics. This is encouraging, because for an entropy metric to
be useful in identifying important nodes a uniform distribution
would be unexpected. Except in the case of fractional degree

entropy V E′ (Figure 4b) the skew is so pronounced that
to illustrate the distribution above minimal values of the
metric we have embedded a subgraph rescaled to eliminate
the dominating cluster of values towards the low values of the
metric.

With both inverse degree V E(v) and fractional degree
entropy V E′(v) the distribution achieves the first objectives
of being non-uniform and separating out a small subset of
nodes with high values of the metric. In the earlier discussion
in section I, this distribution profile was a necessary condition
of the metric having utility when identifying nodes likely to
produce incidents. However, these metrics do not distinguish
between a high degree node that has many redundant paths
into the network and one that does not. In our theoretical
analysis in Section III, we identified the need to highlight
nodes whose local topology was more similar to Sn than Kn,
which the non-normalized metrics do not. The point of our
normalized metrics is to capture this aspect of local topology
and provide a way of identifying nodes that have high degree
but low redundancy. From considerations of network design,
these nodes are more likely to produce events that escalate
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Fig. 6: Fβ Score Plots in a Network of 225,239 Nodes

into incidents when they fail.
To establish whether the data supports this hypothesis,

we turn to the distributions of normalized inverse degree
NV E(v) and normalized fractional degree entropy NV E′(v)
in Figure 4c and Figure 4d. It is interesting to note that both
quantities share the same non-uniform distribution as the non-
normalized forms, with a much more pronounced separation
of the extremal values. This is consistent with our supposition
that the normalized metrics exclude a subset of high degree
nodes that have multiple paths through the network.

To fully exhaust all potential metrics available on a 1-sphere,
we also plot the distributions for clustering coefficient CE(v)
and cluster coefficient fractional entropy CV E′(v) in Figures
4e and 4f. Again these distributions are skewed fairly heavily
towards low values of the metric, and show interesting, much
smaller clusters at higher values of the metrics.

Our central claim is that the local measures of vertex entropy
are more effective at identifying nodes that will generate
incidents than simply selecting the nodes of highest degree,
as suggested by scale free models of dynamic networks. In
Figure 2a we presented the distribution of events and incidents
by node degree, from which it is clear that there is very little
difference in the distribution between events and incidents, and

that there are no useful distinctions between the distribution
of incidents by degree versus events. Although high degree
nodes are more likely to cause impact than low degree nodes
when failing, network design usually mitigates failure points
by adding in redundant paths through the network to avoid
single points of failure. This is further underlined by the
cumulative distribution plot in Figure 2a, where it is evident
that the distribution of events and incidents is effectively the
same. In Table XI we note that the 2-sample Kolmogorov-
Smirnov test does not allow us to dismiss the null hypothesis,
with a P-Value in excess of the α value, indicating that degree
is not a discriminatory factor. A side effect of this analysis
is affirmation that one of our key assumptions that events are
emitted with uniform probability across all nodes. For these
reasons, degree is not a reliable indicator of impact when a
node fails.

To contrast this with our entropy based metrics in Figure 5
we plot the cumulative distributions of events and incidents
by each of our candidate metrics. In each case there is a
heavy skew towards higher values of the metrics for incidents
versus events. This is the first indication that the vertex entropy
metrics are indeed useful for identifying nodes more likely
to produce incidents. As discussed in the introduction we can
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make use of the F score methodology to identify how effective
our entropy metrics are at optimizing recall and precision.
To do so, however, we must build upon the basic measure
introduced in [7] to take account of the fact that our metric is
being proposed to pre-condition data before a categorization
algorithm (RCA) is used to determine whether an event is
causal. In general raw events contain many duplicate noti-
fications which can be compressed by the application of a
de-duplication (see for example [5]). This can result in the
number of events being compressed by a factor of 10-100. In
addition, the cost of a missed incident is significantly more
impactful to a business than the cost of processing an event.
As the basic measure of an F score assumes equal weight,
we instead adopt a weighting factor β and measure the Fβ
score for our event and incident distributions. The Fβ score
is defined in equation (1). Effectively this metric measures
the balanced effectiveness of an algorithm at identifying true
positives without producing too much noise in the form of false
positives. In the context of event management and RCA, this
is the ability of an algorithm to capture every incident without
surfacing false incident notifications. The typical application
of the Fβ score though weights precision and recall evenly,
and given that a missed incident is potentially costly, the β
parameter allows us to bias in favor of recall. We choose a
heavy bias of β = 100.

In Figure 6 we plot for each of our metrics the Fβ scores
as a function of the metric for a β = 10 and β = 100.
Plotting the Fβ score identifies a value of the entropy metric
that maximizes the Fβ score. This maximum corresponds to
the best threshold to use to discard events from nodes with
a value of entropy that is below it, allowing you to reduce
event load whilst preserving events that are likely to escalate
into incidents. These plots illustrate the importance of the
weighting factor in the Fβ score for identifying the correct
choice of entropy to set a discard threshold at. In each case the
β = 100 establishes a lower discard threshold as you would
expect, given that we are treating recall as more important
than precision, as the maxima of the Fβ score occurs at a
lower value of the entropy measure. In Table X we collect the
discard rates at the maximum of the Fβ score for β = 100. In
each case it is evident that it is possible to choose a value of
the metric, in this case our choice of vertex entropy, that will
selectively discard many more events than incidents, and in
fact, by the nature of the scaling of the Fβ score, at a value of
entropy that would discard 20% of the incidents, some 65%
or 15, 000, 000 events can be safely discarded. For the data
we analyzed , this amounts to discarding 62, 600, 000 events
before expensive RCA processing. This amounts to reducing
the event rate from approximately 12 per second to 4, which
operationally could be very significant. In order to replicate
this result using manual blacklisting, this would require the
maintenance of a list of nodes that are relatively unimportant.
In the case of the network we analyzed, that would amount to
some 200, 000 nodes, which are apt to change frequently. As
we indicated in the Section I alternative simpler metrics such
as node degree are unable to achieve similar effectiveness in
identifying important incident producing nodes as our entropy
metrics or centrality measures.

TABLE X: Maximal % Discards of Events and Incidents (β =
100)

Metric Max Value % Events %Incidents
VE 0.116 87% 52%
VE’ 0.170 68% 22%
NVE 0.400 57% 12%
NVE’ 3.200 85% 45%

CE 0.127 67% 20%
CVE’ 4.000 76% 32%

To further test the correlation between our vertex entropies
and incident creation, statistical hypothesis testing of the
distributions using a 2-sample Kolmogorov-Smirnov goodness
of fit between cumulative distributions of events and incidents
was undertaken. Using an α of 5%, and assuming the Null Hy-
pothesis that both event and incident distributions of all metrics
shared the same cumulative distribution, very low P-Values
were obtained, indicating that the difference in distributions is
highly unlikely to be the effect of randomness. We summarize
the findings in Table XI. This result convincingly contradicts
the Null Hypothesis, and we can safely conclude the difference
in the distribution is a result of a strong correlation between
high values of both metrics, and a higher likelihood of events
escalating into incidents. This result continues to be valid
down to values of α = 1%, and is a strong indication that
our local metrics are capturing enough of the local topology
of the network to be useful as a way of assessing the impact
of a nodes failure on the overall connectivity of the network.
In essence, impact is a result of the node being part of a large
number of shortest paths between any two arbitrary points
in the network. Although high degree makes it more likely,
the similarity of the local topology of the node to Kn versus
Sn mitigates that, and our normalized metrics successfully
account for this subtlety. It is interesting to note that the Null
Hypothesis cannot be dismissed for the degree distributions as
the P-Value is higher than α = 5%.

It is interesting to speculate which of the metrics is the most
effective metric to use to pre-condition events for RCA. In
practice any of the metrics investigated appear to have merit,
but it is important to note that the local clustering coefficient
of a node can be expensive to compute for highly connected
and nodes in a heavily meshed network. For a network that
is maximally connected with n nodes, the calculation of the
clustering coefficient is an O(n3) calculation, as each of the
n nodes will have n(n−1)

2 edges. This is to be balanced
with the more favorable Kolmogorov-Smirnov analysis of the
normalized entropies NV E, and NV E′, which yield lower
P-Values. This lower value indicates greater predictive power,
but at the expense of a more expensive calculation.

VI. CONCLUSIONS

In this paper we introduced computable, node level alter-
natives to structural entropy measures that are useful when
identifying critical nodes in a network. Building on the ap-
proach of network science established in Barabási’s pivotal
paper, and suggestions made in the work of Dehmer, we have
advanced computable metrics using structural information
available within one hop of a network node. By analyzing
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TABLE XI: Kolmogorov-Smirnov Analysis of Null Hypothe-
sis for Event Incident Distributions

Metric D-stat D-Crit α P Value Significant
VE 0.5055 0.0396 5% 0.63% Yes
VE’ 0.4624 0.0399 5% 0.26% Yes
NVE 0.4489 0.0399 5% 0.19% Yes
NVE’ 0.4462 0.0404 5% 0.16% Yes

CE 0.4665 0.0399 5% 0.29% Yes
CVE’ 0.4394 0.0403 5% 0.14% Yes

Degree 0.0368 0.0403 5% 9.29% No

the extremal properties of well known global graph entropies,
we were able to identify that they satisfy the criteria required
to be a valid entropy, and have similar extremal behavior to
the global values when considering special graphs. Critically,
the introduction of normalization based upon the clustering
coefficient of a nodes neighborhood improves the utility of the
metric. We applied these measures to our proprietary data set.
Applied to the datasets, we obtain a distribution that isolates a
small subset of nodes with high values, a necessary condition
to be acceptable as a metric.

This analysis is further supported when we look at the
distribution of events and incidents by the value of the metric.
We have a clear correlation between high values of the metric
and the propensity for the node to produce incidents. This is
substantiated by hypothesis testing to eliminate the possibility
that the distributions are similar to each other, and therefore
that any difference in distribution of events and incidents is
purely random. Additional precision and recall analysis using
a modified Fβ score indicates that there is the possibility
of establishing a value of the metric whereby minimal loss
of recall (20% of incidents missed) is tolerable to achieve a
reduction of 65% in the event rate that needs to be processed.
In the context of the large and dynamic networks of current
implementations this could be a critical improvement in the
performance of root cause algorithms.

All of our analysis has been constrained to the immediate
one-hop neighborhood of a node. The justification of studying
these values in practical networks has been achieved in theory,
and in further work we intend to analyze more real world
datasets, and extend our entropy measures to include j-spheres
for j > 1. In addition, we plan to compare vertex entropy
against other node importance measures such as betweenness,
to assess the difference in effectiveness as compared to cost
of calculation.
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Correction to ”Vertex Entropy as a Critical Node
Measure in Network Monitoring”

Philip Tee
George Parisis and Ian Wakeman

I. CORRECTED PROOF OF PROPOSITION 1
From Definition 2 in the paper we have for a simple graph

G = (V,E), the following expression for the chromatic
entropy IC(G) of a graph:

IC(G) = min
{Ci}
−

Nc∑

i=1

|Ci|
n

log2
|Ci|
n

(1)

We seek to prove the following proposition related to this
form of entropy.

Proposition 1. For all connected, simple graphs G = (V,E)
of order n > 3 the star graph Sn minimizes the chromatic
entropy Ic(G).

Proof. Let G be a connected, simple graph of order n. From
the definition of chromatic entropy, we know:

IC(G) = min
{Ci}
−

Nc∑

i=1

|Ci|
n

log2
|Ci|
n

(2)

where −
Nc∑

i=1

|Ci|
n

log2
|Ci|
n

(3)

= −
Nc∑

i=1

|Ci|
n

log2 |Ci|+
Nc∑

i=1

|Ci|
n

log2(n) (4)

= − 1

n

Nc∑

i=1

|Ci| log2 |Ci|+ log2 n (5)

where Nc is the number of chromatic classes of each color-
ing under consideration. In order to minimize the chromatic
entropy, the expression

FNc
=

Nc∑

i=1

|Ci| log |Ci| (6)

must be maximized for all possible colorings and graphs (we
have used the fact that log2(x) = log(x)/ log(2) so that log2
is maximized whenever log is maximized; we will hence use
the natural log from now on).

Because G is connected it follows immediately that any
coloring of G needs to have at least 2 chromatic classes. In
the case of 2 chromatic classes, maximizing F2 reduces to
finding the maximum of

c1 log c1 + (n− c1) log(n− c1) (7)

with respect to c1 and with the boundary conditions 1 ≤ c1 ≤
n−1. Taking the derivative with respect to c1 we find the well-
known result that the only extremum is at c1 = n

2 and that this

is a minimum (as confirmed by the second derivative). Hence,
the maximum is achieved at the two (equivalent) boundaries
c1 = 1 and c1 = n − 1. The star graph Sn achieves this
maximum of F2 = (n− 1) log(n− 1).
It remains to be shown that no other graph with some coloring
of 3 or more chromatic classes might achieve a higher value
for FNc

. We show this by induction.

Lemma 1. The maximal value for FNc for any coloring with
Nc ≥ 2 chromatic classes is achieved when ci = |Ci| = 1 for
all but one class and cj = |Cj | = n− (Nc − 1). The value of
FNc

is then (n− (Nc − 1)) log(n− (Nc − 1)).

Proof. We prove the lemma by induction.
Induction start: Let Nc = 2. This is the case discussed above.
Induction assumption: The claim is true for Nc chromatic
classes.
Induction step: For Nc + 1 chromatic classes, we consider
a split where the first class has size c1, and the remaining
classes are thus of such size that

∑Nc+1
i=2 ci = n− c1. We can

split the expression for FNc+1 into

FNc+1 = c1 log c1 +

Nc+1∑

i=2

ci log ci (8)

We already know that the second term is maximized, for any
given value of c1, when the remaining Nc classes split into
Nc−1 classes of size 1 and one class of size n−(Nc−1)−c1
and hence the maximal value for FNc+1 as a function of c1
is:

FNc+1 = c1 log c1 + (n− (Nc − 1)− c1) log(n− (Nc − 1)− c1)
(9)

= c1 log c1 + (n′ − c1) log(n
′ − c1) (10)

where we have denoted n − (Nc − 1) = n′. The resulting
expression as a function of c1 is the same as equation (7)
investigated above and its maximum with respect to c1 is hence
achieved for c1 = 1 or c1 = n′−1. Both of these solutions lead
to the final solution claimed and to FNc+1 = (n−Nc) log(n−
Nc) as required.

The lemma shows that the maximum value for FNc for any
number Nc of chromatic classes is (n−(Nc−1)) log(n−(Nc−
1)) which is decreasing in Nc and hence has its maximal value
for the minimal possible value Nc = 2. This demonstrates that
no other graph can possibly do better than the star graph Sn

which achieves Nc = 2 and c1 = 1 on its best coloring,
leading to the maximal value of FNc and hence minimal
chromatic entropy.
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5.2 Discussion

5.2.1 Comparing Vertex Entropy and Graph Entropy of Sampled Graphs

In the paper [75], and the paper presented in this chapter, it is referenced that the various
proposed vertex entropy measures behave in analogous ways to known global measures of
graph entropy when summed across a whole graph. In both papers the analytical comparison
is limited to the exploration of the extremal behavior of the vertex measures as compared to
the extremal behaviors of the global metrics. No attempt is made to state or prove that the
local measures are an accurate approximation to global entropy, however the question of how
closely they approximate global measures was left as an open question. One way to establish
the correlation is to numerically compare the vertex and global measures against a range of
randomly generated graphs. We present in this section the results of such an analysis.

Experimental Approach

The calculation of the chromatic information content and structural entropy is known to be
NP-complete. We can make use of the following relation from [50] for simple, connected,
undirected graphs to reduce the computation load to just the calculation of Chromatic
Information::

H(G) = log2(n)− IC(G) (5.1)

To compute IC(G) we can exploit a greedy algorithm, as described in [47] to calculate the
the approximate chromatic classes of a graph. The value obtained by the greedy algorithm
will produce a value for the chromatic number, and hence chromatic classes, which will be
bounded below by the actual value for the graph. Nevertheless it is computable for relatively
large graphs and the value of chromatic information obtained is a reasonable approximation
to the actual value for the graph. Calculating the optimal chromatic coloring of a graph is
not computable with the exception of trivial graphs of small values of n. Once the chromatic
entropy, IC(G), is computed it is simple to calculate structural entropy using equation (5.1).

In our analysis, we consider two classes of random graphs, the classic Erdős-Rényi
random graph G(N, p) on N nodes with link probability p , and scale free graphs generated
with preferential attachment following the scale free model of Barabási Albert, as described
in [14, 6]. Simulating using the two different approaches is considered valuable as scale
free graphs are considered more realistic models of real networks, and traditional random
graphs will have very different clustering properties, which will produce different types of
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graph colorings. For the case of Erdős-Rényi random graphs we produce a sample of graphs
with a varying value of p, to produce graphs with increasing density of edges as p increases,
but with a fixed number of 100 vertices. For the scale free graphs, we produce two separate
samples. In the first sample of graphs with 300 nodes, we vary the new node connections
parameter m which results in graphs of increasing edge density, and in the second sample we
vary the number of vertices from 70 to 270, and adjust the value of m to produce graphs with
approximately similar edge density. This approach is taken to isolate whether varying edge
density or graph size breaks the correlation between vertex entropy measures and global
graph entropy.

Generating the graphs for analysis was performed using the simulator program pa_simulator

developed during the research program in two different modes. For the Erdős-Rényi graphs a
series of 100 node graphs were generated varying the connection probability between 0.3 and
0.7, incrementing by 0.2. The value of 0.3 was chosen as this places the random graph in the
super critical regime of the graph where the giant component of the graph is likely to contain
all 100 nodes ( as described in [6]), and at greater than 0.7 the graphs become progressively
completely connected. This experiment specifically tests the effect of edge density on the
correlation.

For the scale free graphs we sampled a number of 300 node graphs, stepping the attach-
ment parameter m from 2 to 23. This generated graphs with edge densities that range from 2%
to 25% fully connected (a fully connected 300 node graph has 44,850 edges). This choice
of range was chosen to produce a giant component containing over 90% of the nodes in the
graph, whilst not producing a graph with too high an edge density. Additionally we produced
a sample of graphs of increasing size (70 to 270 nodes, whilst adjusting the parameter m to
maintain a constant edge density of approximately 94%. This experiment specifically isolates
the effect of vertex count on any correlation between vertex and global entropy measures,
across a selection of similarly densely connected graphs.

Analysis

In Figures 5.1, 5.2 and 5.3 we present plots of both Structural and Chromatic entropy against
sums of vertex entropy for the principal four measures studied (VE(v), VE’(v), NVE(v),
NVE’(v)). Analysis was not conducted on the cluster entropy measures described in the
paper, which were introduced as comparative variants of the first four versions of vertex
entropy. In every case, there is evidence of a correlation between the whole graph entropy
measures and the vertex entropy measures when summed across the whole graph. This
approximate correlation is intriguing, and may indicate a relationship between the global
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graph entropy measures and the local vertex approximations. Whilst falling short of a proof
of an exact relationship between the two approaches to graph entropy, the result motivates
further investigation and certainly supports and substantiates the use of the vertex entropy
measure in the papers presented in Chapters 4 and 5.

In further work it would be interesting to investigate this relationship with additional
simulations, and for other measures of both vertex and global entropy. In particular no
account is taken of Von Neumann entropy as a global measure (as described in [57]), and
of course vertex entropy described on larger j-Spheres. It is also possible that other node
importance measures such as centrality may also correlate well with both global and vertex
measures of entropy.

5.3 Fβ Analysis and ROC curves

5.3.1 Fβ Analysis with β=100

Standard F1 score analysis [59], uses the harmonic mean of precision and recall to assess the
effectiveness of an algorithm as a binary classifier. It can be written as:

F1 =
2(

1
precision +

1
recall

) , (5.2)

and consequently the value of the F1 score ranges from 0 < F1 ≤ 1, with 1 being the case of
perfect recall and precision. Implicit in this definition is an equal weighting of both precision
and recall, so there is no way to distinguish from a sub-optimal F1 score whether it is recall
or precision that has caused the value to be less than 1. In addition the samples are extremely
unbalanced as we are comparing approximately 1,500 incidents against 23,000,000 events,
where an incident is counted as a positive outcome, and an event could be either positive or
negative. In many applications one of the two measures is more practically important, and to
capture that the Fβ extension introduces a free parameter β to allow the score to be biased
accordingly. The definition as given in Equation (1) of the paper presented in this chapter is:

Fβ = (1+β
2)× precision× recall

β 2× precision+ recall
, (5.3)

which for β > 1 biases recall and for β < 1 biases precision.
In the case of our application to events and incidents, the cost of a missed incident

is far higher to a network operator than the time spent analyzing a captured incident that
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contains spurious events. Typically the ratio of events to incidents is extremely large (in the
data set analyzed over 96 million events that produced approximately 37,000 incidents, or
nearly 2,600 events per incident. Although a typical value of β in many applications is 2, to
accurately capture this wide disparity between the number of events and incidents, it was
felt a much higher value of β was required. The choice of β = 100, was motivated by the
fact that in most commercial fault management applications a 100 : 1 compression of events
to alerts is expected by the simple application of de-duplication techniques [36, 25, 48]. As
β → ∞, Equation (5.3) collapses to equate to the value of recall, and a concern of choosing
β = 100 is that the Fβ score obtained is not sufficiently distinguished from recall to provide
any further insight. In Figure 5.4, we present a plot of the Fβ scores for β = 10 and β = 100,
alongside recall for one of our metrics, normalized fractional vertex entropy, NV E ′(v). As
expected, at high values of vertex entropy the measures all converge, but for low values of
the metric there is a considerable difference between recall and Fβ , including the absence
of a maximum. It is this maximum that is practically useful for choosing an optimal vertex
entropy threshold, and I conclude that the Fβ analysis is a useful approach.

5.3.2 ROC Curve Analysis

In the paper we present the analysis of the effectiveness of the vertex entropy cutoff using
the Fβ analysis described above. The experimental data, is however, amenable to the use of a
Receiver Operating Characteristic (ROC) curve approach, (an excellent survey of the ROC
approach is presented in Powers et al [59]). We have performed this analysis and present the
results here. Unfortunately the paper was too far progressed in the publication process to
substitute wholesale the Fβ analysis and length constraints did not permit the inclusion.

It is important to remember that the vertex entropy metrics are not intended to be used as
a standalone binary classifier, but as part of a pipeline of algorithms that effectively classify
events as causal or non-causal. Instead the algorithms are intended to pre-process the event
data to remove load from the downstream fault localization techniques that we surveyed
in Chapter 1. ROC curves plot the value of the False Positive Rate (FPR) against the True
Positive Rate (TPR), which we obtain from the incident and event data. In this data, incidents
are assumed to indicate the presence of a causal event, that we deem a positive outcome
for the classifier. However, the incidents and events are only linked by their node attributes,
for which we have a value of each entropy metric. We do not know which events caused
the incident, but the presence of an incident means that at least one of the events from that
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node is causal. In our analysis we assume that one event from an incident producing node is
causal.

The entropy metrics are proposed to be used as a filter threshold, such that any events
originating from nodes with an entropy value below the threshold are discarded. The purpose
of the ROC curve is therefore to measure the effectiveness of this threshold at classifying
events as either causal or non-causal.

The experimental points in the ROC curve that we will generate, correspond to choices
of the given vertex entropy, and, before embarking on the analysis it is helpful to define the
terms and relate them back to the data we are analyzing, which we do in Table 5.1 below.

Metric Definition Method
True Positive (TP) Number of correct positive

predictions of classifier
The number of events that
are mapped to respective inci-
dents from nodes above or at
the cutoff point. Based upon
the assumption of one causal
event per incident, this is nu-
merically equal to the number
of incidents at or above the
threshold.

True Negative (TN) Number of correct negative
predictions of classifier

The number of events from
nodes below the cutoff point
excluding the ones for which
there is a recorded incident.

False Positive (FP) Number of incorrect positive
predictions of classifier

The number of events from
nodes above or at the cutoff
point excluding the ones for
which there is a recorded inci-
dent.

False Negative (FN) Number of incorrect negative
predictions of classifier

The number of events that
are mapped to respective in-
cidents from nodes below the
cutoff point. Based on the as-
sumption of one causal event
per incident, this is numeri-
cally equal to the number of
incidents from nodes below
the cutoff point.

Table 5.1 Calculation of ROC Components in Event and Incident Data
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Using these definitions we can make a reliable estimate of the True Negative Rate (TNR)
and make use of the identity FPR = 1−T NR from [16]. The calculation for TNR, for a
value of entropy h ∈ [0,hmax] is:

T NR =
T N(h)

T N(h)+FP(h)
. (5.4)

Using this approach, the data was linearly bucketed into 1,000 buckets of events and
incidents for equal increments of each entropy metric concerned, from zero to the maximum
value. Unfortunately most of the metrics exhibit a very significant cluster of events at the
zero value of the metric, which is not amenable to adjustments to the bucketing strategy, to
for example a logarithmic, or fixed event/incident count buckets. This inevitably means that
there is a gap in the ROC curves between the highest false positive rate and the (1,1) point
of maximum FPR and TPR.

In addition to plotting the ROC curves, numerical trapezoidal integration was used to
calculate the Area Under the Curve (AUC) of the ROC plots. This is a well established
measure of the effectiveness of a binary classifier, and is linked to the probability of a
randomly chosen positive example being correctly labelled, as compared to a randomly
chosen negative example. The values are presented in Table 5.2.

Metric AUC
VE 0.7619
VE’ 0.7204
NVE 0.7863
NVE’ 0.7824

CE 0.7296
CVE’ 0.7072

Table 5.2 Area Under the ROC Curve (AUC) Analysis of Entropy Measures

In Figure 5.5 the ROC curve plots for each of the vertex entropy types are presented.
Despite the fact that the vertex entropy measures are not intended to be used as a standalone
binary classifier, the measures perform reasonably well. For example, using the AUC
measure, a perfect classifier would have an AUC of 1.0, which would indicate that with 0%
false positives 100% recall is achieved. As a heuristic any classifier with > 80% AUC would
be considered excellent or good (see for example [77], [16]), and values of less than 70%
being considered poor and 50% effectively a random classifier. In the case of our metrics, the
normalized entropy measures NV E and NV E ′ come close to 80% and may even have utility
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as a standalone classifier on that basis. In any case this analysis provides further evidence
that the metrics are effective as a noise reduction step, prior to a causal analysis algorithm
such as those described in Chapter 1.

5.3.3 Corrected Proof of Proposition 1

Post the publication of the paper, discussions with colleagues highlighted a flaw in the proof
of Proposition 1. The proof rests upon all graphs of order n being achievable from either a
Star Graph Sn or a Path, Pn. This is not the case and can be demonstrated by considering the
following graph of order 5, which cannot be created by adding edges to either S5, or P5:

1

32 4

5

Fig. 5.6 A Counter Example Graph to the Claim in Proposition 1.

However, suggestions from colleagues provided a correct proof. Unfortunately the paper
was already accepted and in post production, so I was not able to amend the proof in the
original paper, but I have submitted an erratum to the journal which is being processed. I
outline the new proof here:

Proposition 1. For all connected, simple graphs G = (V,E) of order n > 3 the star graph

Sn minimizes the chromatic entropy Ic(G).

Proof. Let G be a connected, simple graph of order n. From the definition of chromatic
entropy, we know:

IC(G) = min
{Ci}
−

Nc

∑
i=1

|Ci|
n

log2
|Ci|
n

(5.5)

where −
Nc

∑
i=1

|Ci|
n

log2
|Ci|
n

(5.6)

=−
Nc

∑
i=1

|Ci|
n

log2 |Ci|+
Nc

∑
i=1

|Ci|
n

log2(n) (5.7)

=−1
n

Nc

∑
i=1
|Ci| log2 |Ci|+ log2 n (5.8)
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where Nc is the number of chromatic classes of each coloring under consideration. In order
to minimize the chromatic entropy, the expression

FNc =
Nc

∑
i=1
|Ci| log |Ci| (5.9)

must be maximized for all possible colorings and graphs (we have used the fact that
log2(x) = log(x)/ log(2) so that log2 is maximized whenever log is maximized; we will
hence use the natural log from now on).

Because G is connected it follows immediately that any coloring of G needs to have
at least 2 chromatic classes. In the case of 2 chromatic classes, maximizing F2 reduces to
finding the maximum of

c1 logc1 +(n− c1) log(n− c1) (5.10)

with respect to c1 and with the boundary conditions 1≤ c1 ≤ n−1. Taking the derivative
with respect to c1 we find the well-known result that the only extremum is at c1 =

n
2 and that

this is a minimum (as confirmed by the second derivative). Hence, the maximum is achieved
at the two (equivalent) boundaries c1 = 1 and c1 = n− 1. The star graph Sn achieves this
maximum of F2 = (n−1) log(n−1).
It remains to be shown that no other graph with some coloring of 3 or more chromatic classes
might achieve a higher value for FNc . We show this by induction.

Lemma 1. The maximal value for FNc for any coloring with Nc ≥ 2 chromatic classes is

achieved when ci = |Ci|= 1 for all but one class and c j = |C j|= n− (Nc−1). The value of

FNc is then (n− (Nc−1)) log(n− (Nc−1)).

Proof. We prove the lemma by induction.
Induction start: Let Nc = 2. This is the case discussed above.
Induction assumption: The claim is true for Nc chromatic classes.
Induction step: For Nc +1 chromatic classes, we consider a split where the first class has
size c1, and the remaining classes are thus of such size that ∑

Nc+1
i=2 ci = n− c1. We can split

the expression for FNc+1 into

FNc+1 = c1 logc1 +
Nc+1

∑
i=2

ci logci (5.11)
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We already know that the second term is maximized, for any given value of c1, when the
remaining Nc classes split into Nc−1 classes of size 1 and one class of size n− (Nc−1)−c1

and hence the maximal value for FNc+1 as a function of c1 is:

FNc+1 = c1 logc1 +(n− (Nc−1)− c1) log(n− (Nc−1)− c1) (5.12)

= c1 logc1 +(n′− c1) log(n′− c1) (5.13)

where we have denoted n− (Nc−1) = n′. The resulting expression as a function of c1 is
the same as equation (5.10) investigated above and its maximum with respect to c1 is hence
achieved for c1 = 1 or c1 = n′−1. Both of these solutions lead to the final solution claimed
and to FNc+1 = (n−Nc) log(n−Nc) as required.

The lemma shows that the maximum value for FNc for any number Nc of chromatic classes
is (n− (Nc−1)) log(n− (Nc−1)) which is decreasing in Nc and hence has its maximal value
for the minimal possible value Nc = 2. This demonstrates that no other graph can possibly do
better than the star graph Sn which achieves Nc = 2 and c1 = 1 on its best coloring, leading
to the maximal value of FNc and hence minimal chromatic entropy.

5.3.4 Normalization of Inverse Degree Entropy

In section IV.A of the paper there is a discussion regarding the use of pi =
1
ki

as a probability
functional, and in equation (17) I present an expression for the value of its sum over all
vertices. The probability definition of in Dehmer’s original treatment [23] would more clearly
have been represented, as suggested post publication, by writing equation (14) as:

pi =

1
ki

∑
n
i

1
ki

(5.14)

The denominator of this expression sums to a constant value for all vertices, C. If we
write pi =

1
ki

, this will break the normalization of the sum over all vertex probabilities, and so
needs to be divided by C to be a valid probability. The effect of including the normalization
constant would complicate the subsequent discussion of the inverse degree entropy, and
so I took the decision to exclude it. The motivation was that the essential aspects of the
complexity of the graph structure is captured by just using the inverse degree of the vertex as
the probability in the entropy measure. In retrospect this reasoning could have been more
explicit in the paper, but was reduced in rigor due to length constraints.
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5.3.5 Shannon’s Desiderata

In standard texts on entropy such as ‘Information theory’ by J.Stone [69] and the work of
Csiszár [22], a number of constraints are enumerated upon a valid entropy metric. These
constraints, or ‘desiderata’, are used to argue the necessary form of the entropy equation, and
in particular the need for the introduction of logarithms to guarantee additivity, symmetry,
maximality and positivity. In the Definition 1 of the paper, I reproduce these requirements as
a test to ensure that any entropy metrics subsequently defined are well behaved relative to the
‘desiderata’.

In the case of symmetry, the metric automatically inherits the intrinsic symmetry of
the graph union operation, and therefore the requirement is always trivially satisfied. The
inclusion was made to underline the analogy in reasoning between graph entropy and standard
Shannon entropy. The maximality condition could also have been more unambiguous in
regard to the uniqueness of the maxima. Uniqueness is not proven in the text of the paper,
nor is it essential to the scientific content of the contribution. This point could have been
made more concretely in the definition. Additionally, as the graphs considered are finite, the
existence of a maximum is trivially satisfied.

5.3.6 Definition of the j-Sphere

Definition 4 of the paper contains a potentially confusing, and unnecessary union with the
central node vi. As the distance condition is written as d(vi,v j) ≤ 1, the central vertex is
automatically captured. Originally written to stress the inclusion of the vertex, in retrospect
this can obscure the definition. Additionally the condition j ≥ 1 inside the set definition is
not good practice in defining sets, despite being the notation employed by Dehmer in his
series of papers [23, 24]. Definition 4 should be more correctly be written as it is in Chapter
2, Definition 8.
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Fig. 5.1 Sampled sum of Vertex Entropies for G(N, p) Erdős-Rényi Graphs, with p∈ [0.3,0.7]
and |V |= 100
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Fig. 5.2 Sampled sum of Vertex Entropies for Scale Free Graphs with m ∈ [2,23] and
|V |= 300
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Fig. 5.3 Sampled sum of Vertex Entropies for Scale Free Graphs with for |V | ∈ [70,270], and
edge density 94-98%
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(a) ROC curve for VE(v)
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(b) ROC curve for VE’(v)
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(c) ROC curve for NVE(v)
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(d) ROC curve for NVE’(v)
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(e) ROC curve for CE(v)
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(f) ROC curve for CVE’(v)

Fig. 5.5 ROC Curve Analysis for Event and Incident Distribution for each Vertex Entropy
Metric





Chapter 6

Constraints and Entropy in a Model of
Network Evolution

6.1 Background to Third Publication

6.1.1 Motivation and Summary of Contribution

Towards the end of the research into the relationship between vertex entropy and incident
production, I became interested in the departure of network structure from canonical models
such as preferential attachment [2]. In particular, at the MoN15 conference it was clear,
that although the preferential attachment model was regarded as effective at explaining the
macroscopic behavior of dynamic network growth, it has many shortcomings when applied
to actual network data (there are many references but [9], [28] outline the main arguments,
and indeed Section VIII of [2] summarizes many of the previous avenues of attack).

A common feature of communications networks is the presence of a physical constraint.
These constraints are often practical, or economic in nature, and manifest as a limitation in the
number of connected devices a network switch can support. This simple fact is in opposition
to a fundamental principle of the preferential attachment that a node can indefinitely acquire
new connections. This motivated the exploration of an alternative, constrained attachment,
model in which the presence of a hard constraint could be elevated to an axiom of the model.

After developing the model, and observing that the results were in good agreement with
the initial data available, I expanded the analysis to include many other types of networks. A
primary source of such data was found in the Stanford Large Network Dataset [43], which
contained a broad collection of real network data. The agreement between the new model
and experimental data remained excellent.
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Despite the empirical support for the constrained attachment model, I still felt that the
approach of postulating an attraction mechanism to be unsatisfactory. It would be more
elegant if an underlying physical reason for nodes to preferentially seek attachment to other
nodes could be found. Motivated by the work of [56], I began to explore the relationship
of vertex entropy to preferential attachment, and in Section 4 of this paper I presented the
culmination of my research efforts, which demonstrated that indeed preferential attachment
could be derived as a consequence of the universal law of maximal entropy.

An initial presentation of the work prompted discussions with Jonathan Dawes and István
Kiss, which led to their collaboration in the production of this paper, and I outline their
contribution in Section 6.1.4.

6.1.2 Theoretical Contribution

The paper presented describes two novel contributions to the understanding of dynamic
network evolution:

• Constrained Model: I proposed a new form of the preferential attachment probability
that incorporates the notion of a maximum node degree. This is motivated by the
considerations outlined above. The model is a simple extension to the canonical form
of preferential attachment, but benefits from having only one additional parameter -
the maximum node degree. Comparison of the predictions of this model against both
simulated and real data confirms both its consistency and validity as a model of real
networks. Crucially it establishes the concept that the correct form of the preferential
attachment probability may contain higher powers of node degree.

• Entropic Model: To conclude the paper I describe a potential mechanism describing
how preferential attachment could arise as a mechanism to maximize the entropy of
the graph. From our first and second papers we have an expression for the entropy of
an individual node of a graph, and node that in one particular case it is maximized
as graphs tend towards highly non-uniform, i.e. disordered, graphs. We can then
use this expression to derive a probability of attachment, which we note for the early
evolution of the degree of a node is approximately similar to the canonical preferential
attachment expression.

The two models in the paper neatly unify the work on dynamic network evolution and
vertex entropy.
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6.1.3 Data and Methods Used

The data analyzed was derived from a number of sources, building upon the data presented
in the first two papers. In addition to the digital service provider topology, and ITZ, we also
analyzed:

• The Stanford Large Network Dataset [43],[45],[46],[44], and [70]: The Stanford
Network Analysis Project (SNAP), maintains a large repository of network topology
covering a wide range of networks. These include citation graphs, social gaming user
graphs, road networks, website linkage graphs and physical network topologies.

• The Twitter Follower Network [31]: This is a very large dataset comprising a snapshot
of the Twitter follower network and comprises 1.9 billion edges. Each edge represents
a followership relation between the nodes, and the nodes represent a unique user.

• The Openflights Network [58]: This dataset is a maintained repository of all commer-
cial flight routes between airports across the world. This builds a graph where each
node is an airport and each edge an available flight. The analyzed dataset comprised
61,000 routes.

• The Published Data by Barabási et al [2]: The publications of Barabási and Albert,
summarize many useful statistics including average degree, power law exponent and
max degree for a wide variety of networks. Although not directly analyzable in the
same way as the primary datasets, it is useful as a source of parameters for simulation
and comparison with the theoretical model.

The data is generally available as a CSV file of edges, and was analyzed using the same
tools described in Section 4.1.3. A key addition was made to create a graph simulator,
pa_simulator that creates graphs by simulating the operation of the constrained attachment
model. This can be parameterized by supplying values for the maximum node degree (c), the
starting size of the seed graph (m0), and the number of nodes to attach to at each time-step
(m). The simulator begins with a fully connected graph of size m0, and then adds a node at
each iteration step that connects with a probability proportional to Equation (12) of the paper.
The output of the simulator is the degree distribution of the simulated graph, used to produce
the results in Figures 1, 3a, 3b, 4a, 4b, 5a and 5b of the paper.

The primary objective of the experimental work was to obtain degree distributions from
each of the datasets and measure the power law exponent γ . Measuring the power law
exponent was done following the methodology outlined in Clauset et al [19], produced the
results in Table 2 of the paper.
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6.1.4 Contributions from Co-Authors

The paper benefited from many helpful comments from all of the co-authors, and of course
my supervisors provided the early feedback on the model and approach. István Kiss helped
me refine the exposition of the constrained attachment model, particularly after the initial
comments from the reviewers spotted an inconsistency in the original form of the constrained
attachment probability. He also provided useful advice in the construction of the network
simulator and use of the results to demonstrate the validity of the model. Jonathan Dawes
provided the analytical solution to Equation (24) of the paper and the subsequent simulations
and results presented in Figure 6 of the paper. Jonathan also contributed to the general
refinement of the arguments in the entropic model and overall production of the paper.

6.1.5 Related Work

The study of dynamic network evolution is a very richly researched topic. Since the pub-
lication of the initial work on preferential attachment, there have been many attempts to
challenge and extend the model. Much of the related work is summarized beautifully in
[2] and in Barabási’s recent text [6], but it is worth pointing to two models in particular.
Firstly, introduced independently by Dorogovtsev [27] and Krapivsky [42] were models that
explicitly incorporated a value of γ less than 3, which is the classic result of the preferential
attachment model. This is accomplished using a variable initial attractiveness of nodes which
is not strictly dependent on the degree of the node, and in the case of Krapivsky by specifying
the value of γ .

The second model is the fitness model of Bianconi described in [7] and [11]. This model
allows each node to have a fitness parameter that is used to scale the attractiveness of the
node in the attachment probability. The model is not analytically soluble in the same way as
preferential attachment, but can be approximately solved if assumptions are made about the
distribution of attractiveness across the network. In those cases values of γ less than three
and exponential cut-offs are all achievable.

A key part of the argument in the paper is that the constrained model reproduces a better
fit to real world data without having to introduce artificial parameters such as described in the
models above. It is also derived directly from considerations of network design. This more
fundamental approach to the problem of network evolution in the entropic model also gives
good agreement with constrained attachment model and could be the basis of a unifying
framework for dynamic network evolution.
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Abstract. Barabási-Albert’s ‘Scale Free’ model is the starting point for much of the accepted theory of
the evolution of real world communication networks. Careful comparison of the theory with a wide range
of real world networks, however, indicates that the model is in some cases, only a rough approximation to
the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of
degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values
between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node
degree, which indicates the existence of maximal node degrees for these networks.
In this paper we propose a simple extension to the ‘Scale Free’ model, which offers better agreement
with the experimental data. This improvement is satisfying, but the model still does not explain why the
attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical
networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a
first principles derivation for the ‘Scale Free’ and ‘constraints’ model from thermodynamic principles, and
demonstrate that both preferential attachment and constraints could arise as a natural consequence of the
second law of thermodynamics.

1 Introduction and Background

1.1 Overview

The ‘Scale Free’ model of Barabási-Albert [1] is widely ac-
cepted as the definitive model of how real world networks
evolve. This and other dynamic network models consider
real world networks as graphs G(V,E), where V (t) is the
set of vertices and E(t) the set of edges. Its success at over-
coming the difficulties of applying the Erdős-Rényi (ER)
random graph model (for a detailed description see [2]) to
real world networks is well understood. In particular the
model naturally results in a power law degree distribution,
as opposed to the random graph model, which has a bino-
mial distribution of node degree, which in the continuum
limit of a very large network is approximately Poisson,
with well defined higher statistical moments that establish
the ‘scale’ of the graph. This is in stark contrast to the
scale free model which does not have well defined moments
above the mean. The model described by Barabási-Albert
in [3] and [1] builds upon, and provides an explanation for,
the notion of the small world network, first introduced by

Watts and Strogatz [4] and has been used to analyze a
wide variety of real world graphs.

On close examination, the scale free model has a number
of theoretical challenges, and, it is well understood that
the behavior of real world networks has deeper complex-
ity than a single constant power law degree distribution.
Of course balanced against the success of the model in
generating networks that share the small world property
and scale free degree distributions, these challenges can be
viewed as opportunities for refinement of the fundamen-
tal approach. In this work we focus on extensions to the
model which provide improvements in the following three
areas:

– Absence of Constraints: There is an assumption that
a graph can continue to evolve indefinitely, uncon-
strained by any system wide or external resources. For
most real world networks this is not the case. For ex-
ample in communication networks every node in the
network has a natural maximum connectivity. In the
scale free model there is no such upper limit to node
degree.
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– Fit to Real World Data: The standard scale free model
produces a degree distribution that follows a power law
with exponent γ = 3. It is well understood that this is
not an exact fit to real world data, which we highlight
in Section 3. Many extensions exist that produce a
better fit, some of which we survey later. It is clear that
the degree distributions of real networks have more
complex behavior than a simple fixed exponent power
law.

– Absence of a Physical Model: The notion of scale free-
dom derives directly from the hypothesis of preferential
attachment, that is in a dynamically evolving graph
new nodes will more likely attach to nodes of higher
degree. Whilst the scale free model provides a theoret-
ical framework that points to high node degree making
a node more likely to attract new connections, there is
no fundamental explanation of why that should be so,
and what physical processes may be at work that could
produce that effect. It would be desirable if this could
be explained using a first principles argument involv-
ing well understood mechanisms. This would further
strengthen the fundamental premise of the scale free
model.

In this paper we will attempt to address these challenges.
We do so by proposing a simple extension to the standard
scale free model, which introduces a hard cut off in the de-
gree of a node, motivated by considerations from commu-
nications network design. This model has some attractive
features, amongst which is a more accurate prediction of
the power law exponent. Although extensions to the pref-
erential attachment approach (most notably [5], [6] and
[7]), can result in values of the power law exponent less
than 3, we believe our model achieves this through a sim-
ple and natural extension to the traditional preferential
attachment paradigm. Furthermore, as a consequence of
introducing the constraint, we identify that the attach-
ment probability introduces superlinear polynomial terms
in node degree. This additional structure to the attach-
ment probability is responsible for a richer scaling regime
in node degree evolution. This structure allows us to com-
pare in Section 4 both the constraints and scale free model
to a novel model of evolution that argues from a stochastic
perspective based upon recent developments in the struc-
tural entropy of a graph. By developing the outline of an
entropic model we illustrate how both the standard scale
free and our constrained model could be viewed as ap-
proximations to a more fundamental, statistical thermo-
dynamic model of network growth.
In this section we will begin with a brief overview of the
continuum analysis used in [1] to derive the principle re-
sults of scale free models, and at a very high level subse-
quent attempts to build upon and extend the model. We
will make use of the same continuum approximation in
our analysis.
We show in section 2 how the introduction of a simple en-
vironmental constraint into the scale free model can sig-
nificantly improve its predictive power, and compare our
constrained model to a range of more contemporary net-
work data in section 3. As part of the verification of our

constrained model, we also present results of simulations
of network growth using our modified attachment prob-
ability defined in Section 2. An attractive feature of our
extended model is that it reproduces the scale free model
when we allow our constraint to tend to infinity. We are
able to significantly outperform the ability of the scale free
model to predict the exponent γ of the power law distri-
bution across a wide range of real world data (results are
summarized in Table 2). In particular for ten of the twenty
three data sets analyzed (marked in Table 2 in bold) we
are able to predict γ to within 10%, whereas the scale free
model overestimates the value of γ by an average of 35%
and in only four cases does it predict within the range
10-20%. Our constrained model therefore performs better
than the standard scale free model on the first two issues
identified above, but not on the third.
In Section 4 we propose a novel statistical thermodynami-
cal (i.e. entropic) model of network growth. This addresses
the third objective. Recent work on the behavior of com-
munications networks by Tee et al [8,9] introduced a mea-
sure of the structural entropy of a node, derived from its
degree and clustering coefficient. We show how this can
lead to a direct derivation of scale free and constraint
models, potentially explaining why scale freedom arises
and why our constrained model is a better fit for networks
as they grow and encounter connectivity limitations. We
present in the same section some early results from numer-
ical simulations of the entropic model, which show many of
the features of the real world data we analyzed in Section
3.

1.2 The Scale Free Model

The Scale Free Model of Barabási, Albert and Jeong [3],
[1] is based on two simple and fundamental assumptions:

– Growth: Starting with m0 nodes and e0 edges, we add
a new node at each unit time step. When this node is
added to the network, it connects to m � m0 other
nodes. This process continues indefinitely, such that
after t unit time steps, there are m0+t nodes, and e0+
mt edges. Eventually the constants in these expressions
can be dropped as they are insignificant compared to
t.

– Preferential Attachment: The node attaches to other
nodes with a probability determined by the degree
of the target node, such that more highly connected
nodes are preferred over lower degree nodes.

Using a mean field theory approach the analysis explains
both the power law scaling of real world networks [10],
and the simultaneous resilience and vulnerability of net-
works to random and targeted attacks, respectively [11].
The approach taken in [3] begins by proposing the proba-
bility of a randomly chosen node i, capturing a connection
to a new node, as solely dependent upon its degree ki as:

Πi =
ki∑
j kj

=
ki

2mt
, (1)
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In the strictest sense the approximation
∑
j kj = 2mt

should include the original nodes m0 and their degrees,
however for large values of t this can be effectively ig-
nored, without loss of generality, as 2e0 � 2mt. By tak-
ing the continuous approximation, this naturally leads to
the following ordinary differential equation for the time
evolution of node i’s degree ki(t):

dki(t)

dt
= mΠi =

ki(t)

2t
. (2)

Equation (2), can be solved subject to an initial condition
that at time ti, when node i is added, its degree ki = m
to yield:

ki(t) = m

(
t

ti

)1/2

. (3)

In order to derive the degree distribution begin by assum-
ing that t is fixed. At this stage the probability that ki(t)
is smaller than a given degree k is:

P (ki(t) < k) = P

(
ti >

m2t

k2

)
= 1− P

(
ti ≤

m2t

k2

)
.

Developing the mean field approach we note that the ith
node was chosen at random, so its time of introduction
into the network ti is a random variable. Given that nodes
are added at each time step, the range of possible val-
ues for ti are 1, 2, . . . , (m0 + t), and each value can occur
with probability 1

(m0+t)
. We can conclude that the ran-

dom variable ti is uniformly distributed and can write the

probability of choosing a node i with a ti smaller than m2t
k2

as:

P

(
ti ≤

m2t

k2

)
=

1

(m0 + t)
× m2t

k2
.

We can now state that the probability of a node having
degree k < ki as:

P (ki(t) < k) = 1− m2t

k2(m0 + t)
=

∫ k

m

P (x)dx ,

implying that P (k) = ∂P (ki(t)<k)
∂k , yielding the principal

result of the Barabási-Albert Scale Free model:

P (k) =
2m2t

m0 + t

1

k3
. (4)

This predicts that on a log/log scale the slope of the degree
distribution γ is identically 3. The result has been com-
pared against many real world networks, and indeed the
power law behavior has been seen in many examples and
is one of the triumphs of the scale free model. The model,
however, generally overestimates the value of γ and cannot
explain the non linear behavior of the degree distribution
at high values of k (as outlined in [12]). Reproduced in Ta-
ble 1 from the data in [1] are some key parameters from a

selection of the analyzed real world networks. The data is
taken from a wide range of sources, which we supplement
in Section 3, including the classic movie actor collabora-
tion network from IMDB, a physical communications net-
work, a biological network and a number of collaboration
networks. A striking feature of all of these networks is both
a limit to the degree of a node, and also that the value
of γ is significantly lower than predicted by the scale free
model (γ is calculated as described in Section 3.1.). Re-
cent work [13] has highlighted a number of deficiencies in
the scale free model, including deviations from the scale
free degree distributions and the presence of cut offs in
the maximum degree. It must be stated however that the
model is strikingly powerful in its ability from a simple
set of assumptions to explain many features of complex
networks, from their small world property to the absence
of a ‘scale’ in the degree distributions. This simplicity is
powerful and hints at fundamental processes underlying
the dynamics of network evolution.
Failure to capture the detail of the degree distributions of
real world networks however, indicates that this simplicity
must be supplemented with additional facets to the model
of node attachment. In addition the appeal to node degree
being the primary determinant of attachment probability
is a modeling assumption and does not explain why that is
the case. The principal argument is based on the concept
of “the rich get richer”, which is an equivalent statement
to equation (1). In our view this is not a ‘first principles
argument’, based upon fundamental physics. Given the
success of the model and widespread acceptance of its va-
lidity and application in many fields from genetics to net-
work design, it would be satisfying to link the derivation of
equation (1) to core principles of physics. In this paper we
start by exploring a next degree of approximation to the
model to identify how environmental influences such as
the presence of a top constraint for node degree alter the
form of equation (1). In the model we propose this yields
polynomial terms in k, which we hypothesize may be part
of a series of corrections to the attachment probability.
Using arguments based upon applying ensemble statisti-
cal mechanics to the entropy of a network vertex, we then
propose an entropic model which naturally produces the
concept of preferential attachment and constraints, and
hints at further structure to the form of attachment prob-
ability in equation (1).

Table 1: Degree Distribution Parameters of some Real
Networks [1]

Source 〈k〉 Max Degree γ

IMDB Movie Actors 28.78/127.331 900 2.3

Internet Router 2.57 30 2.48

Metabolic, E. coli 7.4 110 2.2

Co-authors, SPIRES 173 1100 1.2

Co-authors, neuro 11.54 400 2.1

Co-authors, math 3.9 120 2.5



4 Philip Tee et al.: Constraints and Entropy in a Model of Network Evolution

1.3 Extensions to the Scale Free Model

Before embarking on an investigation of our model, it is
important to stress that many proposals to extend prefer-
ential attachment have been advanced. These alternative
models to preferential attachment rely upon modifications
to the probability of attachment beyond simple depen-
dence on the degree of the node. The extensions range
from ecologically inspired models such as the competition
based approach of D’Souza in [15], to direct alterations
of the form of equation (1) by introducing ‘super-linear’
terms in k, that is arbitrary powers of k. The model of
Krapivsky et al [7], explicitly explores forms of attach-
ment probability where the term in k is replaced by an
exponential form kα, where the exponent α can vary in
the range 0 < α < ∞. By varying α it is possible to and
produce very different forms of the degree distribution.
These range from stretched exponential degree distribu-
tion to a super-linear zone for α > 2 where one node
captures a connection to all other nodes. In other work,
notably Dorogovtsev et al [5], the concept of initial at-
tractiveness of a node is introduced, which permits values
of the power law exponent to vary and produces values
of γ that are between 2 < γ < 3. These models depend
upon the concept of some nodes starting with a higher
initial attractiveness than others in their ability to gain
connections to new nodes. In some ways this is the oppo-
site approach to the constrained model we propose in this
paper, where nodes become progressively less attractive
as they acquire connections and approach their limit.
It is perhaps the ecological, and physically inspired ex-
tensions that are most attractive alternatives to prefer-
ential attachment. We have already mentioned the com-
petition based model of D’Souza [15] that uses an opti-
mization approach in which the minimization of a cost
function upon every node addition is used to determine
which node the new node attaches to. This model pro-
duces an exponentially corrected degree distribution of the
form P (k) ∝ k−γe−αk. This degree distribution is similar
to that which we see in the data analyzed in Section 3,
and is an encouraging advance on the original preferential
attachment model.
Another widely accepted approach, which builds upon the
work of Dorogovtsev, was developed by Barabási in col-
laboration with Bianconi, This model parametrizes the
attractiveness of the node using a fitness measure, ηi, and
was introduced in [6], [16] and further developed in the
work of Moriano et al [17], and Su et al [18].
The extended model proposes that the probability of at-
tachment is modified to include the fitness parameter in
the most general sense, as follows:

Πi =
ηiki∑
j ηjkj

. (5)

To prevent this model requiring as many independent vari-
ables as there are nodes, the attractiveness η is fixed, or
quenched, at node addition and is randomly assigned from
an assumed probability distribution ρ(η) for the param-
eter. The model permits an analogy between the graph

and the Bose-Einstein treatment of ideal gases. This anal-
ogy relies upon the identification of a node vertex with an
energy level of the gas εi, with the degree corresponding
to the occupancy number of the energy level. Derivation
of graph properties from statistical mechanical arguments
is long established, including in the work of Newman and
Park on exponential random graphs described in [19]. In
the Bianconi-Barabási model the fitness parameter is de-
fined as εi = − 1

β log ηi, with β being identified as classical

inverse thermodynamic temperature. The denominator of
equation (5) is then easily identified with the partition
function Z, familiar from the Bose-Einstein model of sta-
tistical mechanics. Using the probability distribution ρ(η)
of the nodes’ fitness parameter as outline in [6], P (k) can
be analytically solved for in the case of the uniform dis-
tribution to yield:

P (k) ∼ k−1+C

log(k)
, where C is a constant (6)

This model is attractive, and indeed does provide a closer
fit to the data, including the presence of a cut-off on the
maximum degree of a node.
The models described thus far all share a similar set up
to the original preferential attachment mechanism, in that
they consider a stepwise addition of a single node which
connects to a variable number of pre-existing nodes. In
recent work by Bianconi et al, this has been generalized
to investigate models based upon the addition of sim-
plicial complexes to a network rather than nodes as de-
scribed in [20,21]. These models, referred to as Network
Geometry with Flavor (NGF), introduce the concept of a
d dimensional simplex, which is a fully connected clique
of d + 1 nodes. When d = 1 the model reduces down
to the Bianconi-Barabási model, but higher dimensional
simplices are hypothesized to more correctly represent the
growth of networks where the unit of addition is a clique,
such as a citation network being built from sub networks
of frequently collaborating authors. The NGF model pro-
ceeds by adding a single node and links, so as to produce a
new d dimensional simplex in the graph, by attaching the
simplex to a randomly chosen d − 1 existing face in the
graph, governed by a generalized form of equation (5).
The attachment probability is further parameterized by
a flavor variable s which can take the values of −1, 0, 1
that allows the introduction of a generalized degree which
counts the number of d dimensional simplices incident to
a node. The range of flavor ensures that the form of at-
tachment probability, which is beyond the scope of this
survey to outline, produces a well behaved probability.
The survey in [20] has a full and complete overview of the
model. The attraction of these models is the generation
of a rich set of possible graph geometries, including scale
free, Apollonian and a form of graph deeply analogous to
the form of graphs proposed in a range of approaches to
Quantum Gravity.
Together with the competition model of D’Souza these
more physically and ecologically inspired models provide
motivation to explore other analogies with such processes
to improve upon the standard preferential attachment. It
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would be a significant insight if we could explain the ex-
perimental data based upon solely intrinsic properties of
the graph such as node degree and local clustering coef-
ficient of a node, with reference to how these relate to
fundamental properties such as entropy and constraints.
In the next section we propose an extension, based upon
the concept of constraints to the maximum degree of a
node. This constraint is motivated from real world con-
cerns in many networks. For example in communications
networks the number of physical connections a node can
maintain has a hard limit, and even in social networks
building a network of friends is subject to constraints of
time and physical space. In Section 4 we show how both
constraints and non-linear preferential attachment could
arise from a deeper, more fundamental, entropic model.

2 A Pure Constraint Based Model

A core assumption of the scale free model is that new
nodes attach to other nodes with a probability that is de-
termined only by the degree of the target node; no other
factors affect Πi and attachment is unconditional. In most
networks though this is not a fully accurate assumption,
as most nodes will have some inherent upper limit on
their capability to establish connections. We can imag-
ine a network comprised of nodes capable of maintaining
a maximum of c connections, with ci(t) being the point in
time capacity of node i at time t. To simplify the treat-
ment we assume the capacity of all nodes is equal across
the network. In this case we could imagine modifying the
probability of attachment to account for the nodes capac-
ity as they accumulate connections, with a multiplicative
factor to the preferential attachment probability Πi. This
assumption of uniform maximum capacity is an approx-
imation that we justify by the simplicity of the theoret-
ical analysis it permits. We seek to avoid introducing a
family of free parameters, which would equate to a fam-
ily of constraints, to preserve the theoretical elegance of
the treatment. When we come to compare our constrained
model to real world data it does require us to make rea-
sonable estimates for the effective average constraint. We
assume that this acts as a scaling factor for the attach-
ment probability, similarly to the fitness factor introduced
in the Barabási-Bianconi model [6],[16], in essence acting
like a conditioning of the probability of attachment with
the probability the node can accept the connection. In
the most general sense, we can write this as the ratio of
the nodes capacity relative to the time varying, average
capacity of an arbitrary node, 〈c(t)〉 as:

Πc
i = ζi ×Πi, where ζi =

(c− ki(t))
〈c(t)〉

and Πi =
ki(t)

2mt

(7)

To calculate 〈c(t)〉, we observe that at any time t a given
node i will have an expected value of capacity 〈ci(t)〉 =
〈c − ki(t)〉. As we assume that c is a shared maximum

capacity across all nodes this reduces to 〈ci(t)〉 = c −
〈ki(t)〉, and we note that 〈ki(t)〉 is the expected value of
a node’s degree ki = 〈ki〉, which will be useful in section
3 when we will compare our constrained model against
real networks. We can also estimate the expected value
of the capacity of a node, by assuming a base uniform
distribution of attachments in the absence of preference.
After n nodes have been added, we will have added nc
capacity to the graph, and consumed 2nm connections.
In the simplest case for the average capacity of a node,
after adding a large number of nodes n, we note that the
average capacity must evolve to a constant as following:

〈c(t)〉 =
nc− n2m

n
= c− 2m . (8)

Unfortunately as written this attachment probability is
not sufficient as

∑
i

Πc
i 6= 1. This can be demonstrated by

expanding Equation (7) as follows:

∑

i

Πc
i =

1

(c− 2m)2mt

∑

i

(c− ki(t))ki(t),

=
1

(c− 2m)2mt

{
c2mt−

∑

i

ki(t)
2

}
.

If we define δ as

δ =
σ∑

i

ki(t)
=

σ

2mt
where, (9)

σ =
∑

i

ki(t)
2 −

∑

i

〈ki(t)〉2 (10)

the normalization sum becomes,

∑

i

Πc
i = 1− δ

c− 2m
.

In general δ could be a function of time and degree, but as
an approximation in our model we treat it as a constant
of the system. We test that assumption in the simulations
presented later in this section, which indicate that it is
valid to assume that δ eventually stabilizes to a constant as
the network evolves. We run these simulations of network
growth to mimic the parameters for a selection of the real
network data we analyze. Investigation of models where
δ is a function of time (and potentially ki) is an current
avenue of research, and the subject of future work. For our
attachment probability to be a valid probability measure
we need to establish that δ

(c−2m) ≥ 0 and that δ
(c−2m) ≤ 1.

In the first instance the numerator of Equation (9), as
defined in Equation (10), is the variance of ki across the
graph, and so is strictly positive. Providing that c > 2m,
we can safely assume δ ≥ 0.
Regarding the upper limit of δ, we can appeal to Popvi-
ciu’s inequality (see [22]) for a bounded distribution, with
kmax = c and kmin = m. This states:
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σ ≤ 1

4
(kmax − kmin)2 ≤ 1

4
(c−m)2 ,

⇒ δ

(c− 2m)
≤ (c−m)2

8(c− 2m)mt
.

For times t > (c−m)2

8m(c−2m) , we then conclude that as required
δ

(c−2m) ≤ 1. With these limits established, we can modify

the attachment probability by adding in δ to produce a
form for the attachment probability, which sums to unity
at each time step across all nodes, below:

Πc
i = ζi ×Πi, where ζi =

(c+ δ − ki(t))
c− 2m

and Πi =
ki(t)

2mt

(11)

For convenience, we can further simplify the expression
for ζi, as follows:

ζi = α

(
1− ki(t)

(c+ δ)

)
,

where α =
c+ δ

c− 2m
, or equivalently α =

c+ δ

c− 2〈ki〉
.

(12)

We can now write the complete probability of attachment
as:

Πc
i =

αki(t)(c+ δ − ki(t))
2m(c+ δ)t

. (13)

For comparison with the Barabási-Albert model, using
α = c+δ

(c−2m) from equation (8) we can rewrite Πc
i as fol-

lows:

Πc
i = ki(t)

( c+δ−ki(t)c−2m )

2mt
≈ ki(t)

1

2mt
, for large c.

This recovers the standard Barabási-Albert model in the
case that the constraint c is infinite and therefore does not
interfere with the dynamics of the network’s evolution.
Following the continuum approach, and dropping the ex-
plicit time dependency of ki for clarity, we can substitute
this into equation (2), to obtain

∂ki
∂t

= mΠc
i =

αki(c+ δ − ki)
2(c+ δ)t

=
αki
2t
− αk2i

2(c+ δ)t
, (14)

with the fraction multiplied out for convenience later. This
is directly solvable by separating as follows:

1

α

∫
dki

ki(c+ δ − ki)
=

1

α(c+ δ)

∫ { 1

ki
+

1

c− ki

}
dki

=
1

2(c+ δ)

∫
dt

t
,

whose solution is:

log

(
ki

c+ δ − ki

)
=
α

2
log(t) + θ ,

or in simplified form

ki = (c+ δ)eθ

(
tα/2

eθtα/2 + 1

)
.

Following the continuum method in [1] we apply the initial
condition that ki(t) = m at time t = ti, to obtain:

ki(t) =

(
ρ(c+ δ)

(
t
ti

)α/2
)

1 + ρ
(
t
ti

)α/2

)
,

with ρ defined as, ρ =
m

c+ δ −m .

(15)

Again, we note that as c→∞, ρ(c+ δ)→ m, α→ 1, and
so equation (6) reduces to

ki(t) = m

(
t

ti

)1/2

,

the standard result from the continuum analysis of Barabási
and Albert [1],[3]. We then note that the probability that
a node has degree ki(t) < k is:

P (ki(t) < k) = P
(
ti >

ρ2/α(c+ δ − k)2/αt

k2/α

)

= 1− P
(
ti ≤

ρ2/α(c+ δ − k)2/αt

k2/α

)
.

Assuming uniform probability for the choice of node in-
troduction time ti of 1

(m0+t)
we arrive at the expression:

P (ki(t) < t) = 1− ρ2/α(c+ δ − k)2/αt

k2/α(m0 + t)
.

Although somewhat more complex than the expression in
[1] it is nevertheless simple to compute the distribution

equation P (k) = ∂(ki(t)<k)
∂k to obtain the main result of

our constrained model:

P (k) =
2(c+ δ)ρ2/αt

α(t+m0)

(
(c+ δ − k)

2
α−1

k
2
α+1

)
. (16)

In appendix A we examine the asymptotic behavior of
Equation (16), which verifies that by careful manipula-
tion the standard result of the scale free model γ = 3, is
recovered in the limit c → ∞. Further, this analysis also
indicates that the dominant contribution to degree distri-
bution for k � (c+ δ), produces a scale free log linearity
with power law exponent γ = 2

α + 1. This equivalence to
a more straight forward power law, but with an exponent
γ < 3 for values of k � (c+ δ) indicates that the presence
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of a constraint influences the behavior of our model even
for nodes early in their evolution. This is a significant re-
sult and we make use of it to compare the predictions of
our theory against real network data and simulations in
section 3.

The result in equation (16) has some interesting implica-
tions, as the presence of a finite capacity c alters the scale
factor for the distribution of the nodes, whilst preserving
the essential aspects of scale free behavior. By way of ex-
ample, the data for the IMDB movie actor database, as
presented in Table 1, is plotted in Figure 1b, along with
results from a simulation of our model. The movie actor
database naturally produces a graph by assigning a vertex
for each actor and connecting two vertices when the actors
have acted in the same film. Figure 1b contains a theoret-
ical plot of the distribution taken directly from equation
(16), using 〈k〉 = 127, c = 900 and with initial conditions
of m0 = 100, which we take from Table 1 . For this plot we
set δ = 205, which we take directly from the simulation,
which we discuss in the next paragraph. The unmodified
scale free model would give a value of γ of exactly 3, but
our modification has an initial value of γ = 2

α + 1, which
increases as k → c and reaches a limit when k = c. To
calculate γ we can take c = 900 from the dataset in Table
1 and k = 127.33, with the estimated value of δ = 243
(we average the ratio of δ to c), to yield γ = 2.35, versus
the measured value of 2.3 in [1] and 2.43 from our simula-
tion. By comparison, to the scale free model, our approach
predicts the value of γ to 2.29%, compared to 30.4% for
scale free, a significant improvement. In addition, there is
no explanation in the scale free model for the degree of a
node in the graph having a maximum value.

To further verify our model, and in particular the assump-
tion that δ can be effectively treated as a constant, simu-
lations were run using the form of preferential attachment
probability in equation (13), for a network sharing the
same parameters of maximum degree and average degree
as the IMDB network. We present those results in Figure
1a. The simulation was run for a selection of initial param-
eters to asses the evolution of δ, and in each case the value
quickly converges to a constant. Turning to the simulation
of degree distribution, in Figure 1b the essential scale free
nature of the network obtained is visible on the log scale
graph, as is the goodness of fit and agreement between the
simulation with a theoretical plot of P (k) using the same
simulation parameters. Using the techniques described in
[23], we can measure γ, and obtain a value of 2.40 versus
a calculated value from equation (16) of 2.41, which is in
close agreement.

We also ran simulations for the Patents Citation graph
(Figure 1c) and the Web Provider network (Figure 1d),
which both produce similarly good results to the IMDB
network in terms of the closeness of fit between the sim-
ulated and theoretically obtained P (k). We can conclude
that the constrained model is a good representation of
networks with a simple maximum degree constraint.

Motivated by this example and simulation, in the following
section we extend our analysis to a range of more recent,

publicly available, network data to investigate further the
accuracy of our constrained model.

3 Analysis and Comparison of Constrained
versus Preferential Attachment

3.1 Data and Methods

In this section we present the analysis of an extensive col-
lection of network datasets comprising virtual, transport,
and communications networks. The bulk of this data is
publicly available through the Stanford Large Datasets
Collection [24] which comprises an excellent repository of
large graphs. The Twitter follower data is provided by [25],
and the rest of the datasets are reproduced from publica-
tions such as [1], the Internet Topology Zoo [26]. We have
one proprietary graph built from the topology taken from
a large commercial deployment of network infrastructure
used to deliver a top 10 Internet portal service (see [8]).
The produced graphs fall into the following categories:

– Social Networks. These include Twitter, Facebook, Pokec
graphs of the relationships between users. Typically
each user is a node and nodes have links if the users
have some form of relationship with each other. For ex-
ample in the case of Twitter this relationship derives
from one user ‘following’ another.

– Collaboration and Citation Networks. These cover a
wide range of publicly available data, including the
Arxiv citation, Patent Citation and co-authorship graphs
as examples. Graphs are constructed by creating a ver-
tex for each unique user or paper and then connecting
the vertices if they share authorship with another ver-
tex or directly cite it.

– Communications Networks. These networks, such as
the Internet Router, IT Zoo, Web Provider and Berke-
ley Stanford Web Graph are constructed by represent-
ing physical or virtual nodes by a vertex in the graph
and communications links as edges connecting the ver-
tices.

– Biological Networks. These networks use a graph to
represent a biological process, for example the metabolism
of the E. coli organism. Nodes in the graph represent
a molecule or intermediate state in the process used
by E. coli to release energy from its food sources, with
edges connecting nodes where a reaction or transition
occurs. Similar networks exist for other biological pro-
cesses (e.g. for the genetic cause and effect in cancers
and disease epidemic spreads).

Analysis of the data was undertaken using a program and
graph datastore which is available from the authors on
request. The source data was often very large (the Twit-
ter data contains for example over 10 million edges), and
extracting values for the max degree and 〈k〉 is not nec-
essarily evident. Some of the data had some extreme out-
liers in terms of node degree, and to avoid skewing the
results, we estimated the constraint at the 99th percentile
of k rather than the maximum value in the data. This



8 Philip Tee et al.: Constraints and Entropy in a Model of Network Evolution

0 10000 20000 30000 40000 50000
Iterations

0.1

0.2

0.3

0.4

0.5

δ/
(c
-2
m
)

m=32
m=64
m=127

Time evolution of δ  to t=50000
c=900

(a) Convergence of δ
(c−2m)

over 50, 000 Iterations in a Sim-

ulation of Constrained Attachment

1x102 1x103

k

1x10-5

1x10-4

1x10-3

1x10-2

0.1

P(
k)

Simulated
Theoretical

Theoretical and 
Simulated for
c=900, m=63, <k>=127
Measured  γ=2.40
Calculated  γ=2.41

(b) Simulation and Theoretical Degree Distribution using
Equation(13) and IMDB Parameters at t = 50, 000

1x101 1x102

k

1x10-5

1x10-4

1x10-3

1x10-2

0.1

1

P(
k)

Simulated
Theoretical

Theoretical and
Simulated for
c=41, m=3     <k>=6.5
Measured γ=2.41
Calculated γ=2.37

(c) Simulation and Theoretical Degree Distribution using
Equation(13) and Patents Parameters at t = 50, 000

10 100
k

0.0001

0.001

0.01

0.1

P(
k)

Simulated
Theoretical

Theoretical and
Simulated for
c=181, m=11, <k>=22.9
Measured  γ=2.46
Calculated  γ=2.47

(d) Simulation and Theoretical Degree Distribution using
Equation(13) and Web Provider Parameters at t = 50, 000

Fig. 1: Simulation Results for Constrained Attachment

is consistent with the methodology taken in the theoret-
ical analysis, where we made an assumption of the node
degree constraint being constant for all nodes. This is a
simplification, but one with great benefit in the analyt-
ical treatment of the model. The elimination of outliers
at first sight may seem inconsistent with the assumption
of a single constraint in the capacity of a node, but it
is expected that the real world data will contain perhaps
many different constraints, and that the average behav-
ior of the graph will be most influenced by the effective
maximum established at the 99th percentile. Further, the
data above the 99th percentile in k is typically very sparse
and may contain spurious data points, which this cut off
eliminates. In Figure 2 we present the variation of the cal-
culated value of γ with the choice of percentile at which
to choose c. The range of calculated values as we move
from the 98.2th to the 100th percentile is 2.20 to 2.69, a
range of ±9% either side of the chosen value of c = 41.
We believe this further strengthens our choice of the 99th

percentile as the appropriate cut off for measuring c.

For 〈k〉 we require the expected value of the degree. This
was calculated by computing the weighted mean, a dis-
crete approximation of 〈k〉, which is truly only valid if k is
a continuous variable. This is consistent with the approx-
imation of continuity inherent in the continuum analysis
approach.

To compare against the actual value of γ, power law expo-
nent, we followed the techniques outlined in [23] to both
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Fig. 2: Variation of Calculated Values of γ with Choice of
Percentile for c for the Patents Graph

asses the presence of a scale free distribution and obtain
the value of γ. For the datasets we analyzed, which can
be seen visually in Figures 3, 4 and 5, there is a consider-
able portion of the distribution which has a well defined
straight line on the log/log plots, illustrating the intrin-
sic power law distribution of node degree. We capture the
measured values of these power law exponents in Table 2.

3.2 Analysis

In the summary Table 2 it is compelling to note that in
all but a few cases the constrained model is more accu-
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Table 2: Comparison of γ Predictions Between Preferential Attachment and Constraints Model

Source < k > c γ Calculated γ Measured ∆ Constraints ∆ Scale Free

Patent Citation2 6.57 41 2.33 2.31 0.75% 29.66%

IT Zoo1 2.26 10 2.32 2.36 1.63% 27.19%

Internet Router7 2.57 30 2.44 2.48 1.64% 20.97%

Arxiv - Condensed Matter2 9.13 51 2.32 2.37 2.18% 26.39%

IMDB Movie Actors 7 127.33 900 2.35 2.30 2.29% 30.43%

Pokec3 39.27 180 2.30 2.25 2.29% 33.34%

Airport Connections9 11.18 126 2.35 2.29 2.82% 31.19%

Arxiv - HepTh (Cit) 2 26.75 165 2.34 2.44 3.82% 23.10%

Twitter (Circles)4 33.94 264 2.37 2.47 3.90% 21.43%

Arxiv - HepTh (Collab)2 22.05 285 2.37 2.51 5.37% 19.67%

Web Provider5 4.18 36 2.09 2.23 6.33% 34.48%

Co-authors, math7 3.90 400 2.69 2.5 7.60% 20.00%

Berkeley Stanford Web6 24.59 173 2.31 2.35 10.45% 27.74%

Metabolic, E. coli7 53.51 137 2.47 2.20 12.20% 36.36%

AS Skitter2 54.13 150 1.94 2.34 17.27% 28.14%

Facebook4 42.99 198 2.25 2.75 18.08% 9.23%

Arxiv - Astro Phys2 23.81 144 2.33 2.87 18.70% 4.61%

Co-authors, neuro7 11.54 400 2.53 2.1 20.42% 42.86%

Enron Email6 40.25 280 1.84 2.42 23.87% 24.02%

Twitter (Follower)8 8.63 90 1.56 2.39 34.77% 25.46%

PA Road Network6 5.41 9 1.71 2.69 36.27% 11.71%

Co-authors, SPIRES 7 173.00 1100 2.69 1.2 124.17% 150.00%

rate in its predictions of γ than the standard scale free
model. Indeed in the case of the Patent Citation, Internet
Topology Zoo, Pokec, the real world network from a Web
Provider, and a number of the citation networks and so-
cial networks, it comes very close to an exact prediction.
Given that the motivation to investigate the constrained
model originated from considerations of network design in
communications networks, it is interesting to see that this
has some strong applicability to non-physical networks.
We also present the analysis both as a collection of log/log
distribution graphs in Figures 3, 4 and 5 and also summa-
rize the key prediction of γ against the standard value of
3.0 from preferential attachment in Table 2. In the log/log
plots we overlay the value of c at 99th percentile, the aver-
age value of γ to this constraint and the expected value of
the node degree 〈k〉. In each of Figures 3, 4 and 5, we also
overlay the theoretical prediction for the distribution P (k)
obtained by substituting the values of γ from Table 2 into
Equation (16). The agreement between the predicted val-
ues of γ and the measured ones for our datasets is evident
from these combined theoretical and experimental plots,
at least for portions of the distribution. A consequence of
the selection of c at the 99th percentile is that our theoret-
ical curve displays a cut off earlier than the experimental
data, which is to be expected.
The striking feature of many of the degree distributions is
the absence of strict linearity, contrary to the predictions

of the standard scale free model, and also the marked in-
crease in γ at high values of k, a key prediction of our
constrained model and a necessary precursor to a hard
constraint in the value of k. In the social network data we
analyzed this is best illustrated in Figures 3a, 3c and 3b.
Similar behavior is also present in the citation network
(perhaps the best example being Figure 4d), and again in
the infrastructure graphs, particularly the Internet Topol-
ogy Zoo (Figure 5a). It is interesting to speculate what the
nature of the constraint is in the social networks, but this
is perhaps explained by the effective limitations, no mat-
ter how small, on the amount of time people can feasibly
spend on social networking platforms. Indeed in almost
every conceivable network a constraint is a natural fea-
ture. Whether the node in the graph is a physical device,
and individual engaged in an activity such as writing pa-
pers, or web site hyperlinks, there is a limitation to the
connections a node can have. In some cases these are hard
design limits such as ports on a network switch, in others
it is simply the capacity of a human being, with a fixed
lifespan, to blog, interact, star in a movie or engage in any
other social activity. In every case our experimental data
bears this out.
In the following Section 4 we point out how the two models
may well be related to a fundamental dynamical principle
that arises from thermodynamic considerations of network
evolution. Critically this analysis derives the form of pref-
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erential attachment presented as an axiom in the scale free
model.

4 Dynamical Evolution of Scale Freedom

In our treatment thus far we have followed the continuum
model of Barabási-Albert with the addition of a constraint-
based factor to the attachment probability. However, we
can attack the problem from a more fundamental view-
point. Essentially, we argue that the evolution of a graph
satisfies the criteria for a treatment based upon consid-
erations of entropy from a statistical mechanics perspec-
tive, in accordance with the 2nd law of thermodynamics.
In any isolated physical system the entropy of the system
will tend to a maximum unless energy is input to prevent
that. For a classic treatment see [32]. In natural processes
this tendency to increase entropy can be modeled as a
macroscopic force on the system. This entropic force is re-
sponsible for both the elasticity of certain polymers and
the biological process of osmosis. Indeed if thermodynamic
temperature is written as T and entropy S, one can state
the entropic force F acting on a body when a process
changes entropy as follows:

F = T∆S . (17)

To begin our treatment of graph evolution from funda-
mental thermodynamic principles, it suffices to pose the
problem in an appropriate manner. Consider an existing
graph of m0 nodes and e0 edges in thermal equilibrium
with an infinite supply of unattached nodes, each capa-
ble of connecting to m nodes in the event that it comes
into contact with the existing graph. At every time-step
we imagine that such an interaction occurs and the new
node connects to m others. Our problem is to identify
the probability of attachment for a node according to its
degree k, and thus derive the degree distribution. More
strictly, it is necessary to consider an ensemble of all pos-
sible graph configurations, at every time step, to enable
statistical treatment of this process. This requirement to
consider an ensemble of configurations is at first sight an
added complication, but in fact is critical in permitting
the analysis of the model. Whenever we consider a ran-
domly selected node, for example in equation (18), it is
important to recognize that we must average any inter-
action with the remaining graph over all possible graphs
that can be constructed from the subgraph obtained by
removing the randomly selected node and all edges con-
nected to it. This ensemble average is further constrained
by the total number of vertices and edges being unchanged
after the removal of the random node. This requirement to
average over all possible graph configurations at each time
step justifies the approximation we make to calculate, for
example, the average clustering coefficient.
The probability of attachment to a random node must sta-
tistically and universally seek to maximize total entropy.
Our model proposes that the probability of this random
node acquiring new links is a result of the relative strength

of the entropic force of attachment to the randomly cho-
sen node versus any other node in the graph. Those nodes
which exert the highest entropic force relative to the rest
of the nodes in the network will gain the most links, and
we write this mathematically as:

Πi =
F (vi)∑
j 6=i F (vj)

(18)

where F (vi) is the entropic force of attraction to node i.
This expression governs the individual interaction that our
randomly selected node has with a particular graph con-
figuration, analogous to the elastic collision equations used
to formulate the statistical treatment of ideal gases. In a
similar way we cannot easily analytically formulate the
dynamical equations of the graph from this equation as
they are very large, and so to derive the degree evolution
equations from this formulation we utilize statistical en-
semble arguments. Considering all possible configurations
of the graph G(V (t), E(t)) at a fixed time t, the denomina-
tor of equation (18) is computed as an expectation value
of the relative force of attaching to any other node, across
all possible graphs at time t in the ensemble that our ran-
dom node could be connected to. At a given time t in the
evolution of the graph the numbers of vertices |V (t)| and
edges |E(t)| are constant, but we do have to consider all
possible graph configurations of that number of vertices
and edges. This will ultimately change the average of the
change in entropy that the node could make on connecting
to any other node in the graph other than our randomly
selected node vi. In this way we collapse the denomina-
tor to the expected value of this entropy change, averaged
across all possible connection points in all possible mem-
bers of the ensemble. We write this as T×|V |×E(∆S). As
the graph becomes larger, we make the assumption that
the value of |V |×E(∆S) is effectively constant, and factor
this out. We base this assumption on the fact that most
real world networks do indeed demonstrate some form of
steep drop in the distribution of node degrees, so that
the vast majority of nodes posses low degree (an impor-
tant claim of [4] and [1]). It seems reasonable to assume
that with such a restricted degree sequence most nodes
will contribute a similar amount to the change in entropy,
and this expected value will stabilize to a constant. More
complex analysis could admit a time varying value of this
constant, as strictly both V and E(∆S) may have complex
time dependence, but for simplicity we assume:

ε =
1

|V | × E(∆S)
.

With this assumption equation (18) simplifies and T fac-
tors out to yield

Πi = ε∆Si . (19)

In general Si is a function of potentially many variables
xi, but certainly depends upon ki and time t. We can cal-
culate ∆Si as a total differential, ∆Si(xj) =

∑
xj

∂Si
∂xj

∆xj ,

but we can assume for simplicity that t is fixed and the de-
pendence is purely upon ki. In this case ∆Si = dSi

dki
×∆ki,
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(c) Facebook Friendship Network [29]
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(d) Twitter Follower Network [25]
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(e) Enron Email Communication Network [30]
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(f) Berkley Stanford Web Interconnection Network [30]

Fig. 3: Degree Distributions from Social Networking and Web Networks on a Logarithmic Scale

with, for a single time step, ∆ki = 2m. This gives us our
expression for attachment probability:

Πi = ε2m
dSi(ki)

dki
. (20)

To make use of equation (20) we require an expression
for the entropy of a node in the graph. The subject of
the entropy of a graph has a long history, originating in
the work of Körner on the informational entropy of signals
described in [33] and [34]. Many approaches to calculating
the entropy of a graph have been proposed, including the
use of the eigenvalues of the adjacency matrix (see [35],
and ensembles of networks with similar degree sequences
(proposed in [36]). Unfortunately these concepts relate to
the global value of entropy for a graph, and do not have

utility when calculating the change in entropy as a new
node connects.

A series of papers by Dehmer ([37],[38]) formalized the
concept of the individual entropy of a node. In recent work
[8] we built upon this formulation to define a local vertex
measure (referred to in [8] as NV E′, and equivalent to our
definition of Si here) in terms of its relative degree as:

Si(ki, t) =
1

C1
i

× ki
2|E(t)| log

2|E(t)|
ki

, (21)

where C1
i represents a modified clustering coefficient of

the 1-hop neighborhood of the node vi. Contrary to the
more common point-deleted neighborhood clustering coef-
ficient, C1

i preserves the node in the calculation to measure
similarity to the local perfect graph Kn of order n = ki+1.
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(a) Arxiv Condensed Matter Citation Network, Theoret-
ical and Experimental [27]
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(b) Patent Citation Network, Theoretical and Experimen-
tal [27]
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(c) Arxiv Astro-Physics Citation Network [27]
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(d) Arxiv High Energy Physics Citation Network [27]
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(e) Arxiv High Energy Physics Collaboration Network [27]

Fig. 4: Degree Distributions from Collaboration and Citation Networks on a Logarithmic Scale

For convenience we give an explicit definition of the 1-hop
neighborhood N1

i :

N1
i = {v ∈ V | d(vi, v) ≤ 1} ∪ {vi} ,

and the related ‘1-edges’ E1
i as

E1
i = {ejk ∈ E | vj ∈ N1

i and vk ∈ N1
i } .

We can then define the modified clustering coefficient to
be

C1
i =

2|E1
i |

ki(ki + 1)
. (22)

At this point we can make use of the fact that we must
consider all possible intermediate graph configurations to
assume effective uniformity in the graph to calculate |E1

i |,

and assert that for a given node, |E1
i | = ki+1

|V | × |E(t)|.
This then yields for the clustering coefficient the following
expression:

C1
i =

2|E(t)|
ki|V (t)| . (23)

Given that at every time-step we add one node to the
graph, connecting to m other nodes we can write |V | =
m0+t, and |E| = e0+mt. In general as the model evolves,
t � m0 and similarly, mt � e0, these simplify to |V | = t
and |E| = mt. Substituting back in we obtain the following
equation for vertex entropy at vi at time t as:

Si(ki, t) =
k2i

4m2t
log

(
2mt

ki

)
. (24)
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(b) Airport Flight Interconnection Network, Theoretical
and Experimental [31]
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(c) Web Provider Datacenter Network [8]
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(d) Internet Autonomous Systems Network [27]

Fig. 5: Degree Distributions from Infrastructure and Communications Networks on a Logarithmic Scale

In the analysis undertaken by Tee et al in [8,9], this quan-
tity was identified as sharing some of the properties of
the structural entropy of the graph when summed across
all vertices. In particular, the extremal behavior of the
summed vertex entropy was proven to be minimized by
the perfect graph of order n, Kn, and maximized by the
star graph of order n, Sn, for simply connected undirected
graphs. From the perspective of dynamical evolution of
networks, this is consistent with the approach in our anal-
ysis. The perfect graph Kn will tend towards a more node
level disordered graph such as Sn as addition of nodes
selects targets such as to increase the value of Si in Equa-
tion (24). From a purely statistical mechanics perspec-
tive one can consider each connected graph on n nodes
and |E| edges as representing a micro-state. The perfect
graph is achievable in precisely one unique configuration if
edges are indistinguishable, whereas other configurations,
Sn for example, can be achieved by selecting any one of
the nodes as the hub vertex. In this way the result that
increases in entropy tends to destroy cliques and regu-
lar ordered graphs is consistent. From this perspective we
would expect dynamic processes to favor the attachment
to nodes where the increase in Si is greatest. From here it
is straightforward to follow through the continuum anal-
ysis as described in [1]. For the time evolution of k the
following equation, is obtained:

dki
dt

= 2mΠi = −εki
t

{
1

2
+ log

(
ki

2mt

)}
. (25)

Although at first sight this nonlinear ODE appears in-
tractable, in fact an analytic solution is available. Making
the change of variables y = log k and x = log t, so that
dy
dx = t

k
dk
dt , we see that (25) becomes

dy

dx
= −ε

[
1

2
+ y − log(2m)− x

]

This is now a linear ODE which can be solved by standard
methods. Applying the initial condition ki(ti) = m the
solution is found to be most conveniently expressed in the
form

log ki(t) = log(2mt)− 1

2
− 1

ε
+

[
1

2
+

1

ε
− log(2ti)

](
ti
t

)ε (26)

For values of ε < 1 the behavior of ki(t) is similar to
the Barabasi–Albert model: degrees increase monotoni-
cally but at an ever decreasing rate. An analytic form for
the degree distribution, analogous to (3) does not seem
straightforward to derive.
Figure 6 compares numerically computed degree distri-
butions from the model (26) (shown in figure 6a) and
the Barabasi–Albert model, shown in figure 6b. In each
case a new node was added to the network every 0.5 time
units, setting m = 5 and growing the degrees of existing
nodes according to (26) or (3) respectively. Degree distri-
butions are plotted for fixed end times tend, taking the
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Fig. 6: Degree distributions for growing networks at fixed end times tend = 3 × 102, 103, 3 × 103, 104, and 3 × 104.
(a) Entropy-based model. (b) Barabasi–Albert model. In both cases a new node is introduced every ∆t = 0.5 and
the node degrees evolve according to (26) or (3), in (a) and (b) respectively. Parameter values: m = 5, ε = 0.1. For
illustration we have plotted the power law distribution lines at γ = −3 and −2.5.

values 3× 102, 103, 3× 103, 104, and 3× 104. The degree
distributions for the entropy-based model do not clearly
follow any power law behaviour, at least in the regime
explored here, while the Barabasi–Albert model quickly
assumes a form very close to a power-law degree distribu-
tion with exponent γ = 3 as we expect.
While any systematic analysis of (26) seems difficult, for
large enough networks we might expect that this model
is comparable to the classes of sub-linear preferential at-
tachment models studied rigorously by Dereich & Mörters
[39,40]. These authors prove that preferential attachment
rules based on concave functions of node degree will asymp-
totically result in degree distributions with exponent γ =
3. This suggests that the long time dynamics of the entropy-
based model might also show this behavior, but at inter-
mediate times the more complex distributions illustrated
in figure 6(a) might well be more typical.

5 Conclusion and Future Directions

In Section 2 we introduced a modification to the preferen-
tial attachment model to account for the maximum con-
nections a node may have in a network. From the mathe-
matical analysis we were able to predict both the value of
the power law exponent γ and the presence of a hard limit
on the degree distribution. In Section 3 we applied the
analysis to an extensive range of social, citation and phys-
ical infrastructure graphs, and found that the constraint
model’s values for γ more accurately fitted the data. In
addition, the constrained model implicitly contains a hard
limit in the node degree, and the data analyzed had de-
gree distributions with far fewer nodes of extremely large
k than a pure power law would predict. This is an im-
portant result because the value is arrived at as a natural
consequence of the presence of constraints on the maxi-
mum node degree, rather than by introducing a distribu-
tion of additional parameters such as in the fitness model.

Fitness is a valuable concept, and indeed in further work
it is intended to investigate the role of a top constraint
in a model extended to include the concept of fitness, or
indeed generalized in a similar way to the NGF models. In
particular the analogy with Bose-Einstein statistical me-
chanics is interesting, and opens up many applications of
network science in more general theoretical physics, but
the method outlined in this paper captures the essential
features of real degree distributions without requiring the
concept of fitness.

Motivated by the interesting results when applying con-
cepts from statistical mechanics, and the results for vertex
entropy arrived at in [8], we also set out to see if scale
free models could be arrived at from pure thermodynamic
principles of entropic force. In Section 4 we were able to
obtain, from first principles, an evolution equation for the
degree of a random node, which although soluble analyt-
ically, presents challenges when deriving the degree dis-
tributions according to the continuum analysis. The Tay-
lor series for log(x) converges only for values of x in the
range 0 < x ≤ 2, but as k ≤ 2mt, and, both terms are
always strictly positive, we can safely expand the log term
in equation (25). The validity of this expansion is not valid
for k � 2mt as the series for log(x) converges very slowly
as x → 0. However at early times after the introduction
of the node into the graph, k

2mt will be closer to 1 and we
can expand the log to yield:

log

(
k

2mt

)
≈ k

2mt
− 1 + higher order terms.

For the same period of time this expression is valid we can
see that the leading terms in this expansion contribute to
the ODE time evolution of k the following:

dk

dt
≈ εk

2t
− εk2

2mt
+ higher order terms. (27)



Philip Tee et al.: Constraints and Entropy in a Model of Network Evolution 15

What can be asserted is that for a period of time after a
node is introduced into the network its behavior will be
governed by the first terms in this expansion, with much
more complex behavior as the network evolves. This is
illustrated nicely in Figure 6 obtained from our numer-
ical simulations. These first two terms in the expansion
are identical in form to the evolution of k with time in
the Barabási-Albert model, and also a correction identi-
cal in form to our constrained model. This would indi-
cate that for small t the behavior of the entropic model
should closely resemble scale free, with a correction for
constraints. As t increases the model will become more
complex.

The model introduces ε as a free parameter, and it is a
legitimate question to ask what the correct value of this
should be. In the numerical simulations we chose, for il-
lustrative purposes, ε = 0.1. The choice of ε will have a
profound affect on the family of graphs that can emerge
from the initial conditions and in particular the slope of
the power law degree distribution obtained. For example,
values of ε > 1 will tend to generate power laws with
γ < 3, and conversely ε < 1 will produce γ > 3, at least
in the regime where the first term of equation(27) dom-
inates. Given that the origin of the parameter is in the
relative entropic force of the graph compared to a ran-
domly picked node of degree k, one could speculate that
its value measures the relative affect of an additional link
on the bulk of the graph to increase entropy compared
to an individual node of varying degree. High values of
ε perhaps indicate relatively more homogeneous graphs
than low values, indicating that degree distributions drop
off more slowly the more ordered a graph’s initial state.
In future work we intend to investigate the dependency
of graph evolution on ε in more detail, and whether the
more complex evolution behavior of our dynamic model
has utility in revealing more detail on the internal struc-
ture of dynamically evolving graphs.

We believe that there is a deep connection between vertex
entropy and the evolution of networks. An attractive fea-
ture of our model is that it predicts scale free and more
complex network evolution behavior from a first principles
argument without appeal to any heuristics, node by node
parameters, or indeed a stated but not justified property
of nodes to seek out other high degree nodes with which to
preferentially attach. Instead we argue from the safety of
the second law of thermodynamics to a model which repro-
duces the essential features of scale freedom, and also the
constrained model which we demonstrated provides a bet-
ter fit to the experimental data. It is possible that higher
terms in the expansion of equation (25) could yield insight
into the detailed evolution of networks, and provide pow-
erful analytical tools to for example determine the age of
a network. Nevertheless, it is attractive to speculate that
scale freedom, and similar models, may be a manifestation
of the second law of thermodynamics as applied to graph
evolution.

Beyond investigating the entropic model, there are many
potential enhancements to the constrained model. In fur-
ther work we intend to conduct analysis of more net-

work datasets and also investigate corrections to the con-
strained model to improve our estimate of (c − 2m) or
(c−〈k〉) for the average occupancy of a node, by iterating
the resultant distribution in equation (16) to calculate 〈k〉
as 〈k〉 =

∫ +∞
−∞ kP (k)dk.
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A - Derivation of γ in Constrained
Attachment

We recall from the main body of Section 2 our expression
for P (k) in Equation (16):

P (k) =
2(c+ δ)ρ2/αt

α(t+m0)

(
(c+ δ − k)

2
α−1

k
2
α+1

)
∼ 1

kγ
.

We can simplify this by collapsing the uninteresting details
as follows:

P (k) =
A(B − k)

2
α−1

k
2
α+1

, where

A =
2(c+ δ)ρ2/αt

α(t+m0)
, and B = (c+ δ)

(28)

Now, as ab = exp{b log(a)}, we can write (B − k)
2
α−1 =

exp{( 2
α − 1) log(B− k)}. Substituting back into Equation

(28), and taking the logarithm of both sides, we obtain:

log(P (k)) = logA+
( 2

α
−1
)

log(B−k)−
( 2

α
+1
)

log(k) .

We can further simplify by noting that log(B − k) =

log{B(1 − k
B )} = logB + log

(
1 − k

B

)
. We note that if

k � B, either by taking small values of k or allowing
c→∞, then k

B → 0, so that log(B− k) = logB+ log(1 +
0) = logB. Bringing this altogether we have:

log(P (k)) = logA+
( 2

α
− 1
)

logB −
( 2

α
+ 1
)

log(k) .

Taking the exponential of both sides we end with the main
result:
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P (k) =
2(c+ δ)ρ2/αt

α(t+m0)
× (c+ δ)(

2
α−1)

k(
2
α+1)

,

which is of the form,

P (k) ∝ 1

k(
2
α+1)

.

(29)

In Equation (29), we arrive at the familar form of a scale
free distribution with γ = 2/α+1. It is interesting to note
that, as c > 2m, by definition, α ≥ 1 with equality in
the limit that c → ∞. This yields a range for the power
law exponent γ as 1 ≤ γ ≤ 3, with the familiar result of
γ = 3 recovered in the case of the constraint being infinite,
and therefore unimportant to the dynamics of the network
growth.
We can also examine Equation (28) in the asymptotic limit
of c→∞. We recall that ρ = m

c+δ−m , and that α = c+δ
c−2m .

At the limit c → ∞, α = 1, which reduces Equation (28)
to:

P (k) ≈ 2c(mc )2t

(t+m0)
×
{
c

k3
− 1

k2

}
,

which multiplying out and allowing c→∞, gives

P (k) ≈ 2m2t

(t+m0)
× 1

k3
.

(30)

As expected, this is precisely the form of the degree dis-
tribution in the standard preferential attachment model,
which emerges as the constraint becomes infinite, and there-
fore unimportant in the dynamical growth of the network.

References

1. R. Albert, A.L. Barabási, Review of Modern Physics 74
(2002)

2. B. Bollobás, Random Graphs, 2nd edn. (Cam-
bridge University Press, 2001), ISBN 9780521797221,
http://dx.doi.org/10.1017/CBO9780511814068
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6.2 Discussion

The paper presented in this chapter contains two specific contributions, the first a concrete
model of network evolution in the presence of degree constraints, and the second a specula-
tive investigation of the extent to which considerations of entropy underpin the mechanisms
of random network growth. This second part of the paper is worthy of some additional
discussion, and indeed in the review process for the paper, the far reaching implication of the
second law being the actual mechanism behind dynamic network growth was singled out as
distracting from the main discourse of the constrained attachment model. We subsequently
changed the title of the paper from "Is Preferential Attachment the 2nd law of Thermodynam-
ics in Disguise" to "Constraints and Entropy in a Model of Network Evolution" to respond to
this comment. Nevertheless, I stand behind the belief that the maximization of informational
entropy is a valid constraint in random network evolution processes, and I lay out here some
of the supporting arguments.

In the general literature of theoretical physics there is increased interest in the ‘it from
bit’ hypothesis of nature [64]. This has included a new approach to gravity as an emergent
force developed by Verlinde et al [79, 80, 35], an attempt to explain Brownian motion using
the same entropic approach by Roos [60], and even attempts to describe the electrostatic
‘Coulomb’ force as entropic in origin [81]. It is this broad consideration of entropy as
the fundamental principle behind a wide range of physical phenomena that motivated the
approach described in Section 4 of the paper in this Chapter.

In each of these treatments the starting point is entropic force. This is a well understood
property of physical processes that have an element of equilibrium choice, which when
treated using a stochastic process exhibit a measurable force that drives the system towards
maximum entropy. The classic example of this is the contraction of a polymerized molecule
in a heat bath, which is exhibited when the polymer has a series of molecular ‘joints’ that
can be freely oriented in space. The system will ‘choose’ a configuration of molecular angles
such that entropy is maximized, and this generally leads to a more compact molecule. If
the molecule is stretched out, this forces the orientation of the molecular bonds into a more
consistent and therefore ordered and lower entropy state, and it resists the pull with a force
F, equal to F = T∆S. Similar arguments exist for the cellular process of Osmosis and are
surveyed in [80, 60].

In the case of graph evolution, the paper attempts to set out the sketch of an approach
based around the maximization of graph entropy as the driver of network growth. In the set
up of the argument, you consider the classic case of the preferential attachment model that
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envisages the addition of a node at unit time step that randomly connects to m other nodes.
Crucially, rather than asserting that the probability of selecting a given node is determined by
its relative degree, instead we consider an ensemble of many different graphs that share the
same node and edge count of the graph at this point in its evolution. We can then assert that
the most likely nodes selected will be precisely those that maximize the graph’s entropy.

To quantify this selection probability, we use the vertex entropy introduced in the paper
presented in Chapter 5, and assert that the probability of a node being selected for attachment
is proportional to the relative entropic force the new node has to connect to the selected node,
versus all other nodes. Now it should be emphasized that I am not suggesting that this force
is a real measurable force. Indeed from dimensional analysis all informational entropy is
dimensionless, and would need to be multiplied by a constant (in statistical physics this is
the famous Boltzmann constant), to deliver a physical force. However the argument is sound
as it is a comparative ‘force’ that factors out inconvenient physical constants and quantities
such as temperature.

The analysis in the paper, via an approximation of the vertex entropy of a randomly
chosen graph in the ensemble, yields the following result for the time evolution of a node’s
degree:

dki

dt
= 2mΠi =−ε

ki

t

{
1
2
+ log

(
ki

2mt

)}
. (6.1)

The central thrust of the argument is that this form of degree evolution replicates many
of the features of scale free network, including both linear and logarithmic cut-off terms in
the differential equation. It is clear that this does not amount to a proof of the link between
vertex entropy and scale free network evolution, but it as an avenue for future investigation
to explore this link further.

As a direction of research the approach is not isolated. For example in the paper by
Newman et al [56], the approach of analyzing the behavior of dynamic networks using
a statistical mechanical analysis of network ensembles is extensively explored. In this
work, the analysis considers ensembles of graphs G , in which a particular graph G ∈
G occurs with a probability P(G). This probability is constrained to sum to unity, and
generate some measurable graph property as an expectation value when summed across all
graphs. For example let m(G) be the number of edges of a graph, the constraint would read

∑
G∈G

P(G)m(G) = ⟨m⟩, and ∑
G∈G

P(G) = 1. Entropy of this ensemble is then simply defined

as S =− ∑
G∈G

P(G)log2P(G). The analysis proceeds in direct analogy with statistical physics,
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defining a partition function Z (for a classic treatment of partition functions in statistical
physics see [61]), which describes the precise distribution of the ensemble across possible
configurations or states, and an implicit maximization of entropy. Newman refers to these
graphs as ‘exponential random graphs’.

This approach has been extended by many authors, notably Bianconi et al in [10, 3] where
the analysis is further constrained to consider only ensembles of networks with identical
degree distributions. In earlier work by Bianconi et al, a series of articles develops this analogy
with statistical physics, and leads to the prediction of Bose-Einstein condensation of random
networks [7, 11]. The analogy between random graphs and statistical thermodynamics is
well established, and has led to deeper insight into the dynamics of network evolution.

In this context the proposal in the work presented in this Chapter can be contextualized.
Fundamentally the contribution avoids working backwards from an unknown probability
distribution of graph configurations (the precise arrangement of |V | vertices and |E| edges in
a graph G(V,E)), in an ensemble to measures of entropy and a partition function. Instead our
analysis starts with an estimation of the vertex entropy for a randomly selected node, in a
random member of a graph ensemble, at a fixed point in the evolution of all of the graphs
in the ensemble. Using this estimation we can derive Equation (6.1) to describe the degree
evolution dynamics of any node in the ensemble of graphs. It is encouraging for further work
that even with such a broad estimation of vertex entropy, it is possible to infer linear and
non-linear node degree evolution.



Chapter 7

Conclusion and Future Directions

The papers presented in Chapters 4,5 and 6 form a continuous thread investigating the
possibilities and implications of defining a measure of structural graph entropy at the node or
vertex level of a graph. In the first two papers this is specifically confined to an important
problem in the operational management of communications networks, and I was able to prove
that the measures are practically useful in identifying important nodes from a monitoring
perspective.

The final paper may appear to be a disconnected problem, but the principle motivation for
analyzing dynamic network growth was to identify whether vertex entropy could be of use
in explaining deviations of real network structure from the current best theory preferential
attachment. The paper successfully concludes that a dynamic theory using vertex entropy
could explain preferential attachment and also a basic extension that was proposed to better
model networks that have a natural degree constraint. In section 5.2.1 of the thesis, an
analysis is conducted to compare the values of our vertex entropy measures, summed across
the whole graph, with global entropy measures. The conclusion of this analysis is that
there could be a relationship between our proposed form of vertex entropy and the more
established, global, formulations of entropy.

During the course of the research both of the major avenues of investigation have inter-
esting open questions.

• Vertex Entropy : The analysis of vertex entropy relied upon the definition of a j-
Sphere, which we exclusively used for values of j = 1. No investigation has been
undertaken at values of j > 1, and this is an important open question. There are
also many other alternative definitions of node importance such as betweenness and
eigenvalue centrality, and it is interesting to ask how vertex entropy and centrality may
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be related. In the case of eigenvalue centrality, the definition may well have a profound
relationship to Von Neumann entropy. Only limited analysis was undertaken to experi-
mentally verify whether the local vertex entropy, summed across the whole graph, is
correlated with either structural or chromatic entropy. However, the results offered
some encouragement that such a correlation exists, which is an exciting possibility as
this would open up the possibility of a computationally cheap way to approximate the
calculation of graph entropy, a known NP-Hard problem.

• Constrained Attachment : There are a number of assumptions made in the con-
strained attachment model that could be modified and investigated. In particular. it is
assumed that both ⟨ci(t)⟩, and δ are constants (the latter we explicitly prove in simu-
lations), but it would be interesting to extend the model to allow for these quantities
to vary with time. The model also only admits one capacity limitation, but in real
networks this would actually be multiple constraints, which may themselves change
over time or be subject to a distribution. Extending the model to admit these changes
may lead to even better fit to the experimental data.

Regarding the entropic model of network growth, only one of the variants of vertex
entropy was used to construct the model, and an obvious extension would be to
consider other definitions. The solution of the resultant equation for P(k), was only
possible numerically, and it may be that the problem is amenable to a perturbation
style approximation, which may yield interesting insight into higher order corrections
to preferential attachment. It is also noted that the additional structure in the model
may make it possible to identify how mature a network is in its dynamic evolution,
which could lead to many practical applications.

It is the case that both research topics have a rich set of questions to further investigate,
and beyond this work I look forward to engaging with them!
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Personal Biography

In my professional career, I have been involved in a considerable number of companies that
have produced fault management products.My usual role in these businesses has been part
of the founding team with particular responsibility for the invention and productization of
the company’s software products. This activity has spanned two and a half decades and the
products built in these companies have been widely deployed in many large scale enterprises.
This experience formed a strong part of the motivation for me to engage in my doctoral
studies to deepen the theoretical understanding of the operation and limitations of these
products.

A brief summary of these activities is as follows:

• Avante Garde Computing: I was involved in the engineering team, based in Sun-
nyvale, responsible for Net/Command. This product was a very early rules based
management system, as described in Section 1.2.2, that associated every incoming alert
with a script, written in REXX, that would perform diagnostic checks. I was involved
in the engineering of a number of components, including the rules execution engine.

• Micromuse Inc: I was part of the founding team of Micromuse and was the primary
inventor and designer of the company’s product Netcool/OMNIbus. This product was
the first software product to include an active in memory database that was capable of
executing boolean logic on alerts with far greater throughput than competitive products,
and as such is an example of a rules based system described in Section 1.2.2. It is
still in use today in over 1000 large scale enterprises, including most communications
service providers and banks. The company was listed on NASDAQ in 1998 and was
acquired by IBM in 2006.
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• RiverSoft Plc: I founded RiverSoft in 1998 and designed and built the company’s
product OpenRiver. The product was the first to use an ‘Active Object’ approach to
modeling a network, and included a novel distributed network discovery engine as
described in Section 1.2.2. The product has been deployed at over 1000 enterprises and
is still in wide usage today. The company was listed on the London Stock Exchange in
2000 and was acquired by Micromuse in 2002.

• Promethyan Labs LLC: As part of the founding team of Promethyan I prototyped and
designed the products that went on to be the core offering of a number of companies.
Notable amongst those was Prelert Inc, which was acquired in 2017 by Elastic Search.
It was an early example of a a data driven management application described in Section
1.2.2, and is now part of the Elastic Search suite of data management tools.

• Moogsoft Inc: I currently serve as Chief Executive, and Chief Technologist of Moog-
soft Inc, the company I founded in 2012. At Moogsoft I designed the first fault
management product that uses machine learning as the primary method to perform
fault localization, and is an example of the approach described in Section 1.2.2. This
has resulted in 15 patents being filed, with 5 in full grant. Today the product is in use
at over 75 large scale operations and the company is expanding rapidly.
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