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Abstract 
 

 

The ultimate goal of automatic speech recognition (ASR) research is to 

allow a computer to recognize speech in real-time, with full accuracy, independent of 

vocabulary size, noise, speaker characteristics or accent. Today, systems are trained to 

learn an individual speaker's voice and larger vocabularies statistically, but accuracy is 

not ideal. A small gap between actual speech and acoustic speech representation in the 

statistical mapping causes a failure to produce a match of the acoustic speech signals by 

Hidden Markov Model (HMM) methods and consequently leads to classification errors. 

Certainly, these errors in the low level recognition stage of ASR produce unavoidable 

errors at the higher levels. Therefore, it seems that ASR additional research ideas to be 

incorporated within current speech recognition systems. This study seeks new 

perspective on speech recognition. It incorporates a new approach for speech 

recognition, supporting it with wider previous research, validating it with a lexicon of 

533 words and integrating it with a current speech recognition method to overcome the 

existing limitations. The study focusses on applying image processing to speech 

spectrogram images (SSI). We, thus develop a new writing system, which we call the 

Speech-Image Recogniser Code (SIR-CODE). The SIR-CODE refers to the 

transposition of the speech signal to an artificial domain (the SSI) that allows the 

classification of the speech signal into segments. The SIR-CODE allows the matching 

of all speech features (formants, power spectrum, duration, cues of articulation places, 

etc.) in one process. This was made possible by adding a Realization Layer (RL) on top 

of the traditional speech recognition layer (based on HMM) to check all sequential 

phones of a word in single step matching process. The study shows that the method 

gives better recognition results than HMMs alone, leading to accurate and reliable ASR 

in noisy environments. Therefore, the addition of the RL for SSI matching is a highly 

promising solution to compensate for the failure of HMMs in low level recognition. In 

addition, the same concept of employing SSIs can be used for whole sentences to reduce 

classification errors in HMM based high level recognition. The SIR-CODE bridges the 

gap between theory and practice of phoneme recognition by matching the SSI patterns 

at the word level. Thus, it can be adapted for dynamic time warping on the SIR-CODE 

segments, which can help to achieve ASR, based on SSI matching alone.  
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1 CHAPTER ONE 

 

 

1.1 Introduction 
 

The aim of speech recognition technology, in a general sense, is to build 

machines that can receive spoken information and act appropriately upon that 

information, and is part of the quest for “artificially intelligent” machines.  

There are three categories of speech recognition systems with acceptable performance:  

a. System with small vocabularies (~10- 100 words). 

b. Systems in which words are purposely spoken in isolation from one 

another (vocabularies can exceed 10,000 words). 

c. Those that accept continuous speech but are concerned with relatively 

constrained “task domains”, for example, messages likely to occur in 

office correspondence at a particular company (vocabularies typically 

~1000-5000 words). 

 

Most systems active in practical application are of the small-vocabulary or 

isolated-word type. Existing systems for more natural like human – machine 

communication remain primarily experimental. There is no system, even of those being 

used in practical applications, that is highly robust to environmental noise (office noise, 

factory noise, airport noise, etc.). All perform significantly better if required to 

recognize only a single speaker who trains the system. Even if the system is used to 

recognize multiple speakers, performance is generally improved if the users are also the 

trainers. Although some existing systems take advantage of the grammatical structure 

of the language, only experimental systems have more abstract cognitive abilities like 

discerning meaning or learning from mistakes [1].  

 

The first speech recognition systems could understand only digits (given the 

complexity of human language, it makes sense that engineers first focused on numbers). 

The first paper presenting the idea of speech recognition was published in 1952 and 

described the Bell Labs spoken digit recognizer Audrey [2]. The system relied on 



 

3 

 

measuring spectral resonances during the vowel region of each digit. In the 1960s 

several fundamental ideas, such as filter bank spectrum analysis, zero crossing analysis 

and time-normalization methods in speech recognition were published [3]. In the 1970s 

isolated word recognition became an advanced technology due to fundamental studies 

[4]; also pattern recognition, dynamic programming, and linear predictive coding (LPC) 

ideas were applied to speech recognition. Speech recognition systems were the made 

truly speaker independent [5]. In the 1980s a focus of research was the problem of 

connected word recognition. Speech research was shifted from template based 

approaches to statistical modelling methods, i.e. the hidden Markov model (HMM) 

approach and neural network methods [6]. In the 1990s the main focus of research was 

large vocabulary continuous speech recognition and robust speech recognition, which 

included syntax, semantics, and pragmatics into speech recognition higher level 

processing [1, 7]. Speech recognition systems have been developed for a wide variety 

of applications, ranging from small vocabulary word recognition to large vocabulary 

speech dictation. 

 

 

1.2 Goal of automatic speech recognition (ASR) systems 
 

A distinction is generally made in ASR between recognition of utterances 

from a speaker who has previously enrolled his voice (speaker dependent recognition) 

and a speaker whose voice the recogniser heard previously (speaker independent 

recognition). 

 

Generally speaking, attempts at ASR fall into two categories: a knowledge-

based approach, in which knowledge about the domains of linguistics and phonetics is 

used to construct a set of rules which is in turn used to interpret the acoustic input signal; 

and a pattern-matching approach in which a priori knowledge about speech is mainly 

ignored and techniques of pattern classification are applied to the input signal [8]. In 

particular, there are two levels to the recognition of speech which are summarised in 

Figure 1. 
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Figure 1 the recognition levels in ASR. 

 

ASR systems are basically pattern classification systems [3]. Any utterance 

of speech is modelled as a sequence of sounds. These sounds are either of the phonemes 

in a language, words in that language, or larger units, depending on the vocabulary of 

the system and the task being achieved by it. The complete set of sounds that the ASR 

system has to recognize forms the classes modelled by it. The ASR system then orders 

segments of speech so as to place it into one of these classes. 

 

Classification is not performed using the speech signal directly. Instead, the 

speech signal is parameterized into a sequence of feature vectors, or parameter vectors, 

and classification is performed using these feature vectors. The feature vectors used are 

usually cepstral coefficients [9] or variants of the cepstral [10] derived from the power 

spectral density (PSD) of short windowed segments, or frames of speech. Thus, a 

sequence of speech samples is transformed into a sequence of feature vectors each 

representing a single frame of speech, which is used to perform recognition. 

 

 

1.3 Can the speech wave signal of words which are uttered by 

different persons form a unique spectrogram word pattern? 
 

Spectrograms have demonstrated that human speech utterances can be 

analysed by expert spectrogram readers. Spectrogram reading requires a combination 

of different sources of knowledge such as articulatory movement, phonetics, linguistics 
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and acoustic phonetics [11, 12]. The wave of separate utterances of the same word may 

be very different, but there are likely to be more similarities between spectrograms 

because they better illustrate the vocal tract resonances, which are closely related to the 

positions of the articulators [13]. The spectrograms will differ in detail due to the above 

differences, but different timescale variations will be particularly obvious. 

 

Movement of the vocal tract can be well represented using a wideband 

spectrogram. The wideband spectrogram is generated using a relatively short time 

window that gives good time resolution but less specified frequency resolution. In 

general none of the those spectrogram word patterns will be matched perfectly, but in 

some sense of the word, the speech pattern of a correct word is likely to be a better 

match than a wrong word, because it is generated by more similar articulatory 

movements. Exploiting this similarity is, however, critically dependent on how the word 

patterns are compared. The slow change of the spectrogram word patterns, and the 

accompanying transitions within individual words produce the characteristic contours 

and shapes that are used to identify the sounds [14]. 

 

Pinkowski [15], treats the spectrogram objects as two-dimensional binary 

image objects, in which case shape or contour features such as Fourier descriptors (FD) 

are appropriate. For classifying spectrogram objects, the shape descriptors alone are 

limited, but they are enhanced when they are combined with orientation features 

(relative to some principal axes). Pinkowski has used 17 FDs features to characterize 

shape or contour which were obtained from each binary spectrogram image and used in 

the analysis. To classify the features, cluster analysis was used. Since such measures 

often contain redundant information [16], principal component analysis is used to 

reduce the size of a large feature set. The weak points of this study are, however, that 

(1) principal component analysis does not necessarily select important features for 

separating pattern classes [17], which means there is no perfect extraction of features of 

the shape pattern; (2) cluster analysis for a large number of features (17 FDs), and 

extracting them after converting the wave signal to a spectrogram image, can involve 

long delays which means it is difficult to apply in online speech applications given the 

time efficiency of this algorithm; (3) in this approach the problem of parameter signal 
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extraction is converted to a problem of pattern extraction from an acoustic image 

generated by a binarized speech signal i.e. a binary image. 

 

Steinberg and O'Shaughnessy [18], regard spectrograms as image patterns 

and perform segmentation in order to capture the energy associated with each formant 

using Mathematical Morphology operators, based mainly on the watershed transform 

operators as used in the watershed transform. Two levels of threshold segmentation are 

used and as a result this study has claimed better segmentation results than previous 

algorithms. However, segmentation remains a big challenge. 

    

There is no existing study using images of speech representation as a basis 

for recognising uttered words rather than verifying extracted features from speech 

image representations based on phone information contained in the speech wave signal. 

In addition, all the studies cited above have described the spectrogram objects as a two 

dimensional binary image, in which case there are a major problems which are: firstly, 

threshold level segmentation estimation; secondly, misclassification when objects in the 

spectrograms are mirror images of one another (e.g. the words eel and lee), because the 

method is dependent on shape or contour features (number of pixels, x and y 

coordinates, maximum frequency, etc.) which give the same features for mirror image 

objects; thirdly, methods are not realisable for real time speech applications (due to long 

delays in processing). 

 

Spectrogram-reading experiments have shown that the acoustic signal is 

rich in phonetic information [19]. Without knowing anything about the words that are 

present, an expert spectrogram reader can produce a broad phonetic transcription that 

agrees with a panel of phoneticians from 80% to up to more than 90 % phonemic 

accuracy, depending on the scoring method used [20]. The spectrogram provides a 

rough picture of the energy distribution over time and frequency, but there is no 

representation of harmonic structure, and pitch pulses and onsets are smeared out by the 

modulation filtering. The gross distribution of energy overtime and frequency, however, 

is the information that is best preserved in the presence of acoustic interference. 
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Consequently, we consider the speech spectrogram image as a written text 

in some unknown language and match pattern transitions of words associated with each 

formant. The result can be later used for ASR. The major focus of this thesis is suggested 

a new approach to speech recognition by using image processing on spectrogram speech 

images (SSI).  

 

The thesis contains four main areas which are illustrated in Figure 2. In the 

thesis a combination of algorithms are used solve the problems occurring in these four 

areas. The performance of algorithms was assessed by calculating different test 

parameters; for more reliable results, a lexicon of 533 words was employed in this study 

for testing. 

 

 

Figure 2 Areas of study in the thesis. 

 

Chapter 2 focuses on the methods of speech wave to image conversion and 

gives a comprehensive background of the time-frequency representation (TFR). In this 

chapter it is been discussed why the SSI is selected among the various TFR methods. 

(4) Integrate the SSI words 

recognition with current ASR 

algorithms 

(1) Speech to image converter. 

The study shows that Speech 

Spectrogram Image (SSI) is 

the best method; build 

algorithm to represent speech 

as image.  

(2) Defining the SSI patterns 

based on phonetic speech 

representation 

(3) Define the SSI pattern 

recognition to identify words  
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Also, considered are discussed what parameters can be used to control conversion of a 

speech wave to the SSI and what the optimum values of these parameters are.  

 

In Chapter 3, the individual units of the SSI pattern speech representations 

based on the Phonetics and Phonology speech representation knowledge are described. 

These units are used to create a version of a Speech-Image Recogniser Code (basic SSI 

Patterns). The units of SSI patterns are clear start-end points which can help to solve 

major problem of the speech recognition.  

 

In Chapter 4 the image processing methods for SSI Pattern Recognition are 

introduced, including elements of SSI analysis, Common tasks in SSI recognition are 

used suggest a general algorithm for SSI pattern recognition. The general algorithm is 

applied to a lexicon of 553 sample words of different genders and speakers and various 

utterances, for word level recognition.  

 

In Chapter 5, the general algorithm for SSI recognition has been integrated 

with isolated word recognition by using a statistical approach to achieve for higher 

performance recognition.  

 

Chapter 6 provides a discussion of research of thesis and describes possible 

future work. 
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2 CHAPTER TWO 

Use of the spectrogram in speech analysis 

 

2.1 Introduction  
 

The speech waveform is a non-stationary signal the frequency of which 

changes over time. The analysis of non-stationary signals has been developed to 

improve the description of their frequency domain content. Each of these techniques 

has their own particular domain of focus which addresses certain, but not all, problems 

encountered in the analysis of non-stationary signals. A comparison of these techniques 

is presented below, including some practical examples illustrating how they can be used 

to assist in the analysis of a speech signal.  

 

 

2.2 Time-frequency transforms 

 

2.2.1 Preface  
 

Mathematically, a signal can be represented in a variety of alternative ways 

which are appropriate for a given applications. It is well understood that in engineering 

applications, signals are usually a function of time but in the analysis signals and in 

designing systems, frequency domain representations of the signals are often used.  

 

2.2.2 Primary method of analysis: the Fourier transform (FT) 
 

It is well known that e𝑥 is an elementary function1 , which can be used to 

express a function as a weighted summation of basic elements. The signal is real in 

nature, but writing it as its signal complex counterpart signal has advantages to 

overcome difficulties that arise when considering only a real signal (i.e. the energy 

                                                 
1 Elementary Function: a function built up of a finite combination of constants, with the 

combination using the four elementary operations (+, −,× ,÷).  
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density spectrum of a real signal is always symmetric about the origin, so the average 

frequency will always come out to be zero). So, a signal can be written in complex form 

as 𝑠(𝑡) = 𝐴(𝑡)𝑒𝑗𝜑 (𝑡), which is called a quadrature model. The 𝐴(𝑡) depicts the signal 

behaviour in the phase domain. This gives an intuition that there are an infinite number 

of waysto express the signal. Each new signal expression can be obtained by translating 

a signal through a linearity map2 operator. This operator is called the shift operator, 

which translates a signal from a certain position to another which is displaced by a 

constant, a , within the domain x ; 𝑒𝑎 𝑥 𝑓(𝑥) = 𝑓(𝑥 +  𝑎). The derivative of the sum is 

the sum of the derivatives due to the linearity  𝒜(𝑓 + 𝑔) = 𝒜𝑓 +𝒜𝑔  . Also 

differentiation is a linear operator. Thus the operator can be represented as an 

eigenfunction with an eigenvalue: the operator 𝑑 𝑑𝑥⁄  operating on 𝑒𝑎𝑥 returns 𝑎𝑒𝑎𝑥 , 

and hence 𝑒𝑎𝑥 is an eigenfunction with eigenvalue 𝑎. In this case there are an infinite 

number of eigenfunctions because it can be taken using any number of values 𝑎. The 𝑎 

values can be called a kernel of the transform. 

 

The 𝑎 matrix should be selected as a Hermitian, a self adjoint, symmetric, a 

complex square matrix. The mathematical interpretation of self adjoint requires the 

matrix to satisfy two properties: first the matrix 𝑎 is bounded, which means the elements 

of the matrix 𝑎 are real numbers that are not infinite. Secondly, when the matrix 𝑎 is 

self adjoint then 𝒜 = 𝑎 𝑒𝑎𝑥 and is linear self adjoint operator and  ∫ 𝑔∗(𝑡)𝒜𝑓(𝑡)𝑑𝑡 =

 ∫ 𝑓(𝑡)[𝒜𝑔(𝑡)]∗ 𝑑𝑡  or as vector expression 〈𝒜𝑥|𝑦〉 = 〈𝑥|𝒜∗𝑦〉, so energy is conserved 

within the system. This makes it possible to calculate the dual function (dual space) of 

the analysed function, where 𝑓(𝑡)  and 𝑔(𝑡) are paired functions [21]. The Fourier 

transform (FT) is a Hermitian transformer, which transforms a signal 𝑠(𝑡) in the time 

domain into a spectrum signal 𝑆(𝜔) in the frequency domain, where 𝑠(𝑡) and 𝑆(𝜔) are 

paired functions, i.e. FT pairs. In fact, the FT is an analysis of the density of the energy 

signal  𝑃(𝑡)  to give the characteristic function3  𝑀(𝑎)  of the signal where  𝑀(𝑎) =

∫ 𝑒𝑗𝑎𝑡 𝑃(𝑡) 𝑑𝑡 . On the converse, the characteristic function is a summation of the 

                                                 
2 Linearity map is the superposition principle, i.e., additively 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) with 

homogeneity 𝑓(𝑎𝑥) = 𝑎𝑓(𝑥). 
3 The term characteristic function is used in a different way in probability, is a function defined on 

a set X that indicates membership of an element in a subset M of X, having the value 1 for all elements 

of M and the value 0 for all elements of X not in M. 
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elementary functions of a signal  𝑃(𝑡) =  
1

2𝜋
 ∫𝑀(𝑎) 𝑒−𝑗𝑎𝑡  𝑑𝑎 . This process is a 

synthesis linear combination of associated probabilities of the phase distribution. It is 

thus called a synthesis problem.   

 

Thus a primary analytical tool is that the FT decomposes a signal as the sum 

of weighted sinusoidal functions. The FT is common in many applications and is 

suitable for stationary signals but it does not provide the best method to analyse finite 

signals (non-stationary signals) which occur in many real-life signals such as seismic 

signals, audio signals (including speech and music signals), transition signals, Radar 

signals and FM signals in broadcasting, to list some common examples. Joint time-

frequency transforms were developed for the purpose of characterizing the time-varying 

frequency content of a signal. The well-known time-frequency representation of a time 

signal is the Gabor transform [22] and is known as the short–time Fourier transform 

(STFT). 

 

The time-frequency signal representations (TFRs) analyse signals in a time-

frequency plane which is a 2D time-frequency distribution and so the joint time-

frequency distribution. TFRs give indications as to where the spectral components are 

present at which time. The TFRs are broadly classified into two categories: linear time 

transforms and bilinear transforms (quadratic transforms). 

 

2.2.3 Linear time frequency representations  

 

The linear transforms can be divided into two classes: STFT [23, 24] and 

time-scale representation i.e. various wavelet transforms (WT) [25, 26]. The WT uses a 

windowing process as in the STFT but the basic difference between the WT and the 

STFT is that the window width can be changed in the WT as a function of the analysing 

frequency whilst the STFT uses a fixed time-frequency resolution. The WT uses short 

windows at high frequencies and long windows at low frequencies. This capability has 

made multi-resolution analysis more useful in many practical applications. This allows 

low frequencies to last for the entire duration of the signal, whereas high frequencies 

appear localised in time as short bursts [26]. 
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The TFR linear transform of non-stationary signals is basically a 

transformation between the time domain and frequency domain; conversely, the link 

between the time domain and the frequency domain is the instantaneous frequency4 

(IF). Essentially, the linear transform is a very useful description of the energy density 

or intensity of a signal simultaneously in both the time domain, which is called the 

instantaneous energy, and the frequency domain, which is called the energy density 

spectrum, so providing a powerful tool for the construction of signals with desirable 

properties. It allows the decomposition of a signal into individual frequency components 

and establishes the relative intensity of each component. In addition, it is very 

convenient for reconstructing the decomposed signals, which is one of the 

distinguishing features of a linear system. However, the TFR linear transform has both 

theoretical and practical shortcomings. 

 

The practical shortcomings can be summarized in two points. Firstly, the 

linear transform is represented by the spectrum  and so cannot be used to ascertain or 

define whether a signal is mono-component or not, although in some cases it may give 

an indication that components are present [27]. A good example of signals whose 

frequency content changes rapidly in a complex manner is human speech. Indeed, it was 

the motivation to analyse speech that led to the invention of the sound spectrogram[28]. 

In 1951, the Kay Electric Co. produced the first commercially available machine for 

audio spectrographic analysis. The spectrogram is a quadratic representation that 

performs the mapping of signals into a time-frequency space, showing the spectral 

component of a signal as a function of time. Secondly, windowing aims at assuring a 

local stationarity. However, we need different kinds of trade-off related to time-

frequency localisation in the case of chirp signals i.e. a stationary signal. Thus, there 

exist natural and man-made signals whose spectral content is changing so rapidly that 

finding an appropriate short-time window is problematic since there may not be any 

time interval for which the signal is more or less stationary. Also, decreasing the time 

window so that one may locate events in time reduces the frequency resolution. Hence 

                                                 
4 Instantaneous frequency is one of the basic signal parameters which provide important 

information about the time-varying spectral changes in non-stationary signals. 
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there is an inherent trade-off between time and frequency resolution [23, 29-31], which 

is unavoidable.  

 

The shortcomings are thus related to how the linear TFR represents the 

frequency spectrum in a certain local time interval. This will be so, as long as a window 

function is used as the tool of the linear TFR to capture the shape of a signal and then 

analyse it. As previously mentioned, the time domain signal is divided into shorter data 

sequences, which usually overlap, and are then Fourier transformed to calculate the 

magnitude of the frequency spectrum for each sequence. The selection of window 

function is governed by the need to reduce the spectral leakage with the windowing 

function, which in turn leads to the trade-off in resolution between time and frequency 

domain localization. The normal trade-off variance inherent to any estimation procedure 

is amplified when analysing non-stationary stochastic processes [32]. Furthermore, the 

trade-off resolution must be consistent with the Heisenberg Uncertainty Principle5 

(windowing functions that are localized in the time domain have Fourier transforms that 

are spread out across the frequency domain and vice versa, a phenomenon known as the 

Uncertainty Principle). This has motivated many studies to address the problem of 

devising an adaptive window. The Heisenberg Uncertainty Principle is a fundamental 

limitation of mathematical transformation that must be considered when mapping the 

analysed signal into its TFR, since it forbids any precise temporal localization of 

frequency. Therefore, it has been argued that proper joint distributions cannot exist 

because of the Uncertainty Principle [12, 13]. In other words the Uncertainty Principle 

precludes the existence of proper joint TFRs.  

 

The statistical consideration can be used as a way of introducing and 

interpreting the TFR. From this point of view, the trade-off in resolution is reflected by 

the variance of the window distribution. Moreover, the proper TFRs could be called 

nonnegative TFRs, because they have a correct marginal6 (which is the probability of a 

                                                 
5 The uncertainty principle has implications in two main areas: quantum physics and signal analysis. 

As developed by W. Heisenberg, it is a statement of the effects of wave-particle duality on the properties 

of subatomic objects. Consider the concept of momentum in the wave-like microscopic world. The 

momentum of a wave is given by its wavelength. A wave packet like a photon or electron is a composite 

of many waves. Therefore, it must be made of many momenta. But how can an object have many 

momenta? In signal processing is a fundamental statement regarding Fourier transform pairs.  
6 The word “marginal” is used by probability theory to indicate the individual distribution. The 

marginals are derived from the joint distribution by integrating out the other variables. The term is dubbed 
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single event happening and it is not conditional on any other event occurring). The 

positive joint distributions are easy to construct [6, 13], which can be interpreted as true 

energy densities. The positive result reflects the physical situation of having composed 

the signal from accumulating the signal’s spectrum from zero to infinity (the real signal 

is always a symmetrical spectrum about the origin and the average frequency of the 

spectrum will thus be zero [26, 33]).  

 

The doubt about the existence of positive TFRs is because of a paradox: the 

Uncertainty Principle depends only on the marginal integrating value, but the marginal 

carries no information about covariance. The question here is if it is possible that the 

Uncertainty Principle involves covariance [28, 29]. By this it is meant that any joint 

distribution that has these marginals should satisfy the Uncertainty Principle. 

Summarising, the theoretical shortcomings of the linear TFR are because it provides 

biased estimators of the signal IF and the group delay7.   

 

2.2.4 The bilinear time-frequency transform 

 

The difficulties of the linear TFR have been recognized for some time. This 

was the main motivation [33] for an approach to improve upon the spectrogram, given 

a fundamental analysis and thus clarification of the physical and mathematical ideas 

needed to understand what a time-varying spectrum is. There have been alternative 

approaches, but researchers have put together a unified approach to define the TFR. The 

idea initiated as a formatting of the TFR by the multiplicative comparison of a signal 

with itself, providing a means for finding repeating patterns, expanded in different 

directions about each point in time. A means for deriving time-dependent spectra is by 

generalizing the relationship between the PSD and the autocorrelation. Such 

                                                 
"marginal" because they used to be found by summing values in a table along rows or columns, and 

writing the sum in the margins of the table. Hence we can say that |𝑠(𝑡)|2and |𝑆(𝑤)|2are the marginals 

of 𝑃(𝑡, 𝑤), as in each case the instantaneous energy ∫𝑃(𝑡, 𝑤)  𝑑𝑤 = |𝑠(𝑡)|2 or energy density spectrum 

(the power spectrum of the signal) ∫ 𝑃(𝑡, 𝑤)  𝑑𝑡 = |𝑆(𝑤)|2. 
7  The group delay describes the time lags among different frequencies, which measure the 

propagation time through a system as a function of frequency. Thus, this quantity measures the average 

time arrival of the frequency 𝜔 , 𝜏𝑥(𝜔) =  −
1

2𝜋
 ∙
𝑑(arg 𝑋𝑎(𝜔))

𝑑𝜔
 ,  𝑋𝑎(𝜔)  signal spectrum. 𝑋𝑎 is an analytic 

signal. As a linear system block with frequency domain transform  𝐻(𝑗𝜔) =  𝑒−𝑗𝜔𝑇  , group delay is the 

ideal element that delays a signal by time 𝑇.  
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formulations are known as quadratic TFRs (QTFRs) because the representation is 

quadratic in the signal. This formulation was first described by Wigner in quantum 

mechanics [34] and introduced in signal analysis by Ville to form what is now known 

as the Wigner-Ville distribution (WVD) [23, 24, 33]. The WVD is the prototype of 

distributions that are qualitatively different from the spectrogram, and produces the 

ideal energy concentration along the IF for linear frequency modulated signals. 

 

The WVD, like other bilinear transforms has a shortcoming in that the zero 

frequencies, which should be zero amplitude, have a false component introduced. Those 

false terms are known as “interference cross terms “, that can case difficulties in the 

projections in the time-frequency space and in the reconstruction of the signal, hence 

distributions cannot be considered full correct. A large area of research has been devoted 

to reduction of these cross-terms, using different time-frequency kernels. 

 

In 1966 a formulation was made by Cohen, applied to quantum mechanics 

[35], which included these and an infinite number of other methods as kernel functions. 

The formulation by Cohen was restricted with a constraint on the kernels so the 

marginals could be satisfied. This establishes what is known as Cohen’s class. A large 

number of bilinear TFR’s have been proposed, each differing only in the choice of a 

kernel function [23, 26].  

 

A unified approach can be formulated in a simple manner with the 

advantage that all distributions can be studied together in a consistent way, the general 

form being written [23]: 

 

𝐶(𝑡, 𝜔) =
1

4𝜋2
∫∫∫(𝑠∗ (𝑢 −

1

2
𝜏)

∗ 𝑠 (𝑢 +
1

2
𝜏))  ∅(𝜃, 𝜏) 𝑒−𝑗𝜃𝑡−𝑗𝜏𝑤+𝑗𝜃𝑢 𝑑𝑢  𝑑𝜏  𝑑𝜃 

 

Equation 1 

 

where C(t, ω) is the spectrum of the signal s. ∅(𝜃, 𝜏) is called the kernel. 
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Historically, the kernel identified by Claasen and Mecklenbrauker [36]. The 

kernel may depend explicitly on time and frequency and in addition may also be a 

functional of the signal. If the kernel is independent of the signal, then the distributions 

are said to be bilinear because the signal enters only twice. The approach characterizes 

the TFR by an auxiliary function kernel ∅(𝜃, 𝜏), allowing the selection of a kernel that 

produces a distribution with prescribed and desirable properties. This approach provides 

a simple way of examining different kernels since their effects are reflected in the 

properties of the signal distribution. In addition, since the kernel designs treat time and 

frequency on an equal footing, the two constraints, one for each domain, collapse into 

one. This means the Heisenberg Uncertainty Principle is satisfied by the time and 

frequency marginals, ∅ (0, 𝜏) = 1 and ∅ (𝜃, 0) = 1. Thus, a kernel design is a way to 

overcome practical and theoretical shortcomings of the linear TFR.  

 

Hence, the kernel should be independent of time and frequency. 

 𝑒𝑗𝜏𝑤𝑓(𝑡) = 𝑓(𝑡 + 𝜏) is a translation of the signal by an amount 𝜏 in the distribution. 

That is, if the spectrum is a fixed frequency at the shifting moment, a shift in the time 

domain of the signal produces a corresponding shift in the frequency domain 

  𝑒𝑗𝜃𝜏𝑆(𝜔) = 𝑆(𝜔 + 𝜃) by a constant frequency 𝜃. Both of these cases can be handled 

together.  

 

There are two advantages for seeking decomposition of a signal. The first 

advantage is a classification by doing a singular value decomposition of each class to 

get a set of singular values and eigenfunctions that are all different from each other. The 

second is extraction a signal in a noisy environment. Actually, decomposing the source 

of signals into sinusoidal components in the frequency-domain does not allow 

extraction of the whole signal. Rather, the sinusoidal signal decomposition cannot be 

applied to extract small duration of the signal since these are  small magnitude and 

pattern-less, and may be just random noise perturbations [37]. Thus researchers have 

tried to solve that shortcoming by adding a new domain, the scale domain ( 𝑑𝑢 ) to the 

two traditional domains of time 𝑑𝜏 and frequency 𝑑𝜃. A scale-domain description of a 

signal breaks it into similarly shaped signal fragments of varying sizes. Actually, the 

concepts developed for multicomponent signals in the time-frequency plane can be 

generalized to generate the concept of a time scale plane [27]. The scale domain can be 
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the instantaneous scale and the spread of instantaneous scale. The scale domain analysis 

is approached using two concepts, the correlation method and the Doppler effect8 of 

electromagnetic waves between a source and a receiver. One of the three scenarios is 

when the distance between the source and receiver of electromagnetic waves remains 

constant, in which case the frequency waves is the same at both the source and the 

receiver. Those frequencies are estimated by the correlation method which is used to 

determine the of time delay between replicas of an unknown continuous waveforms 

when these replicas are contaminated by additive noise [38]. Extension of this method 

requires estimation a joint expression of the differential time offsets 𝜏 and differential 

frequency offsets 𝜃. This joint is the complex ambiguity function, which is a joint of the 

time and Doppler frequency which is thus the natural generalization of the correlation 

process [39]. It can be used to handle sources of nonstationary waveforms that are 

highly localized in the TFR and, provides extraction of the signal from background 

additive noise. The Equation 1 can then be rewritten as: 

 

where,  

𝐴 (𝜃, 𝜏) =
1

2𝜋
∫𝑒𝑗𝜃𝑢 ∙ 𝑆∗ (𝑢 −

1

2
𝜏) 𝑆 (𝑢 +

1

2
𝜏) 𝑑𝑢  

Equation 3 

 

𝐴 (𝜃, 𝜏) is the symmetrical ambiguity function, 𝜔 = 𝑗
𝑑

𝑑𝑡
 is the frequency 

operator in the time domain, 𝜔 is the spectra of a signal, with representation in the 

frequency domain 𝜃, 𝜔 ∈  𝜃,𝜏 = 𝑗
𝑑

𝑑𝜔
  is the time operator in the frequency domain, 𝑡 is 

the moment of a signal and represents the signal in the time domain, 𝑡 ∈  𝜏. 

 

By way of example and by no means exhaustively, some well-known 

bilinear TFRs are: Choi-Williams, which is one of the members of Cohen's class of 

transform functions [40]; Zhao-Atlas-Marks transforms [41]; second-order quadratic 

                                                 
8 The Doppler effect is the change in frequency of a wave for an observer moving relative to its 

source, which was proposed by Austrian physicist Christian Doppler in 1842.   

𝐶(𝑡, 𝜔) =
1

2𝜋
∫∫𝑒−𝑗𝜃𝑡−𝑗𝜏𝜔 ∙ 𝐴 (𝜃, 𝜏) ∙ ∅(𝜃, 𝜏) 𝑑𝜏 𝑑𝜃 

Equation 2 
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representations which are spectrograms and the so-called scalograms. The scalogram is 

a visual method of displaying a WT and is the squared modulus of the wavelet transform 

[25, 42]. The quadratic representations are the squared magnitudes of the linear TFRs.  

 

All bilinear TFDs belong to of Cohen's class of transforms. The WVD is a 

prototype TFR. In fact, the WVD is a short-time Fourier transform with a window 

function that is perfectly matched to the signal. The WVD is highly concentrated in time 

and frequency and is a quasi-probability distribution, but it is also highly nonlinear and 

non-local. The Cohen's class is a kind of "smoothed" WVD, employing a smoothing 

kernel that can reduce sensitivity of the distribution to noise and restrains cross-

components [43], at the expense of smearing the distribution in the TFR. This smearing 

causes the distribution to be non-zero in regions where the true WVD shows no energy.  

 

The quadratic representations are 2D matrices. Interpretation quantitatively 

might not be straightforward but should allow the extraction of useful 1D information 

such as the computation of the mean instantaneous frequency, the mean instantaneous 

bandwidth9, the group delay and the marginal integration10[24, 44]. Table 1 shows a list 

of some quadratic distributions and their corresponding kernels together with their 

application properties. 

 

Table 1 listing of some well-known quadratic distributions, their 

corresponding kernels and their application properties. 

 

                                                 
9 The instantaneous bandwidth is an indication of the frequency spread at a given time. 
10 The marginal Integration is integration of the spectrogram along the time axis which equals the 

power spectrum of the signal.  
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2.3 Why the STFT is an effective method for speech signal analysis  
 

Cohen’s class quadratic (which is QTFR) was designed for continuous 

signals in quantum mechanics, whereas the applications in signal analysis are to discrete 

time signals. The extension of TFR from a continuous plan to a discrete TFR plane is 

not straightforward. Unfortunately, all the properties of the continuous QTFR are not 

preserved by discretization, due to effects aliasing in the discrete version. This means 

after the limitation imposed by the Uncertainty Principle on the small time intervals is 

addressed by using the Cohen’s class quadratic, there is new limiting factor which is the 

Uncertainty Principle applied to the whole bandwidth of the signal. The short duration 

signals have inherently large bandwidth. There are many studies that have examined 

applying WVD to discrete date [45-47]. The limitation of this technique is that it 

estimates the spectrum of short duration signals [21, 28]. But, in practical applications, 

it could be that there occurs a signal that is a long transient of a nonstationary process. 

Thus, the most common approach is to divide the time domain signal up in to short 

transient signals by a sliding window approach before analysing the contained signal by 

the QTFD. However, there may be another problem that would arise of choosing the 

time length of the window that matches the interval in which the signal undergoes 

significant spectral variation, that is, the interval in which the signal is considered 

"essentially stationary" with respect to the window. The question then arises as to how 

to deal with infinite sequences of arbitrary forms such as the nonstationary signals 

contained within a speech pattern.  

 

Added to these are problems of nonlinear TFR. Historically, the STFT was 

developed before other QTFD methods during the 1940’s century as mentioned in 

Section 2.2.3. The STFT was developed for speech analysis to display and estimate the 

multiple component of a speech signal where the components are called formants (read 

visually as of speech spectrogram images [48] ), with some subsequent developments 

being applied to the analysis of nonstationary signals in general. Different TFRs roughly 

give the same results in regard to the existence of the various components with maybe 

somewhat different representations [27]. That made the STFT became a standard 
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powerful tool for the analysis of speech signals and other nonstationary signals [23, 48-

54]. The concept behind it is simple and can be implemented by using the fast Fourier 

transform (FFT). It provides powerful estimate of the spectral density of a signal with a 

simple interpretation of how the signal frequency spectrum varies as a function of time 

when the signal is stationery.  

 

Also, the STFT is invertible after taking in to consideration overlap of the 

frames causing artefacts at the boundary. The inverse STFT (ISTFT) allows the original 

signal to be recovered from the transformed signal and is  thus an important and versatile 

signal processing method [55]. In contrast, the summation for computing the dual 

function could be unbounded, which is not suitable for numerical implementation. This 

has motivated many researchers to seek and prove existence of the discrete version of 

the STFT and ISTFT [56-60]. 

 

 

2.4 Spectrogram  
 

The spectrogram is used to display the magnitude variations of the spectral 

signal versus time as a three dimensional plot (i.e. time vs. frequency as amplitude). As 

mentioned in Section 2.2.4, the spectrogram has been developed for representing sound 

data and is similar to the process employed in human hearing which is based on forming 

a real-time spectrogram encoded by the cochlea of the inner ear and used by the brain 

to classify and recognise patterns of sound samples. The spectrogram of signal 𝑠 is 

estimated by computing the squared magnitude STFT of the signal. It is important to 

note that the phase of the signal is not retained din this process. Thus:  

 

𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚 (𝜏, 𝜔) =  |𝑆𝑇𝐹𝑇(𝜏, 𝜔)|2  Equation 4 

 

Actually, the STFT splits the time domain signal into many frames of length 

L by the windowing processing, and then take the FT of each frame as shown in Figure 

3. 

 

http://en.wikipedia.org/wiki/Spectral_density
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If the window ℎ(𝑘) has the constant hop size 𝑀 (the hop size is the number 

of samples between the start-times of adjacent frames), then the STFT is a matrix of 

size (m, n). 

 

𝐶𝑚,𝑛 = 𝑆𝑇𝐹𝑇[𝑚 𝑀 , 𝑛 ] =  ∑𝑠[𝑘]  ℎ∗[𝑘 − 𝑚 𝑀]

𝑘=0

𝑊𝑁
−𝑛𝑘 

Equation 5 

 

where 𝑀 is the hop size, m is frame index, and 𝑛 is the size of the discrete 

Fourier transform (DFT) which is equal to the hop size. When, the length of the hop 

size is less than 𝑛, the segment of the hop size is padded with trailing zero to length 𝑛.  

 

2.4.1 The windowing process 
 

For a given input signal 𝑠(𝑡)  of arbitrary duration equal to 𝐿𝑠 , the 

windowing process extracts data segments at regular intervals using a window limited 

ℎ(𝑘) ; these signal segments or frames can be expressed as 𝑠𝑚(𝑘) = ℎ(𝑘)𝑠(𝑘 +

𝑚𝑀), 0 ≤ 𝑘 ≤ 𝐿𝑊𝐷, where 𝐿𝑊𝐷 is the window length, 𝑚 is a frame index, and 𝑀 is the 

hop size (i.e. the number of samples between the star-times of adjacent frames) and the 

index 𝑘 is the local time index , i.e. an index (not length) relative to the start of the 

sliding window. The 𝑠𝑚(𝑘) is the modified signal, which is a function of two times; the 

fixed time (local time) upon which the window is centred on at 𝑘, and the running 

time,𝑛 . So, we can say 𝑓𝑠(𝑘; 𝑛)  is a frame of signal 𝑠(𝑘)  of length 𝐿𝑊𝐷  (window 

duration) ending at n, i.e. 𝑓𝑠(𝑘; 𝑛)  = 𝑠(𝑘)ℎ(𝑛 − 𝑘). This period then covers the small 

duration of signal where the signal is time invariant and gets smeared out as vertical 

striations on the spectrogram due the frequency content in this duration. The number of 

striations is equal to the number of frame, 𝑚 =  ‖
𝐿𝑠

𝑀
‖ which is the ratio of fixed time to 

running time. 
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Figure 3 illustration of the Short-Time Fourier Transform (STFT). 

 

The simple window is a rectangular window. The power spectrum of a 

rectangular window (low pass filter) is shown in Figure 4. 

 

 

Figure 4 shows the rectangular window and its magnitude spectrum. Note that the 

normal bandwidth is 𝟐𝛑 𝐧⁄ . 

 

Therefore desirable features of a window are a narrow bandwidth main lobe 

and large attenuation in the sidelobes. The window function length 𝐿𝑊𝐷 is inversely 

proportional to the bandwidth of main lobe (i.e. the width of the lobe is decreases 

with 𝐿𝑊𝐷) and approximately constant with attenuation of the sidelobes. Therefore, a 

large value for 𝐿𝑊𝐷 begins to defeat the purpose of windowing. The difficulty caused 
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by abrupt truncation is solved by use of the smoother truncation windows such as the 

Kaiser, Hamming, Hanning, and Blackman windows. Actually, smoother windows tend 

to distort the temporal waveform on the range of 𝐿𝑊𝐷, but with the benefit of less abrupt 

truncations at the boundaries (i.e. 10-60 dB better than a rectangular window for 

example the sidelobe attenuation of the popular Hamming window being -30dB) [1]. In 

addition, the smoother windows have a wider main lobe than the rectangular window 

for a given 𝐿𝑊𝐷. As a consequence of that, the windowing process is mainly defined by 

setting window type, length of the window and the percentage of windows overlap. The 

overlap of the windows is to compensate for the loss of signal energy, which is drops 

because of abrupt truncation at the boundaries of the window and causes spectral 

leakage in the frequency domain. The overlap of 𝑀 samples of the rectangular window 

is 50% of 𝐿𝑊𝐷, while the overlap of smoother windows, such as the Hamming, is 75% 

[61].  

 

2.4.2 Window length in speech processing 
 

Generally in speech processing, smoother windows such as the Hamming 

window are used, so the window type is fixed. To improve the spectral resolution, 𝐿𝑊𝐷 

must be increased to get more time domain information. However,  𝐿𝑊𝐷 is bounded by 

two limitations, which are the stationary duration of the signal and the Uncertainty 

Principle. Thus, the maximum length of 𝐿𝑊𝐷 is limited by the stationary duration of the 

signal. The speech signal is a slowly time varying signal over short periods of time 

between 5 𝑎𝑛𝑑 100 𝑚𝑠𝑒𝑐. As a rule of thumb, the window length in speech can be 

assumed to remain stationary for frames on the order of 20 𝑚𝑠𝑒𝑐 [3]. 

 

The Uncertainty Principle involvement in the waveform analysis is not 

concerned with measurement of the time energy density |𝑠(𝑡)|2and frequency energy 

density |𝑆(𝜔)|2; instead it states that the effective duration of a signal cannot be less 

than the inverse of the effective bandwidth of the signal 𝑊𝐷  [21]. Typical human 

speech communication is limited to a bandwidth of 7 − 8 𝑘𝐻𝑧, with effective speech 

possible with a bandwidth 𝑊𝐷 = 3.5 − 4 𝑘𝐻𝑧, so the estimated minimum duration of 

the window is 1 𝑊𝐷 = 0.25 𝑚𝑠𝑒𝑐 ⁄ . 
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2.4.3 Speech spectrogram types 
 

The Uncertainty Principle is often written: ∆𝑡∆𝜔 ≥  
1

2
 , ( ∆ represents the 

standard deviation). It is important to mention that using the word ‘uncertainty’ is a 

misnomer when applied to single processing. The Uncertainty principle is simply states 

that is that a narrow waveform ∆𝑡 yields a wide spectrum ∆𝜔, and vice versa, and each 

cannot be made small simultaneously. Thus consideration of the spectrum to select the 

length of window is preferred. The trade-off of processing between ∆𝑡 and ∆𝜔 forces 

concentration on one variable, by defining the stationary time period and allows the 

frequency domain is stable during the design process leading to both a narrow-band 

spectrogram and a wide-band spectrogram. 

 

In narrow-band spectrogram analysis (long time window length), the 

bandwidth is appreciably less than the fundamental frequency of phonation. It is useful 

for determining the intonation (tone) of an utterance by showing the harmonics structure 

clearly, but blurs the rapid changes. The narrow- band window analysis is used to 

separate the individual harmonics (phones) of the voiced excitation source [13, 62]. 

Figure 5 shows a narrow-band spectrogram of the sentence “she had your dark suit in 

greasy wash water all year” created with a window length equal to 35 msec. 

 

 

Figure 5 narrow-band spectrogram of “she had your dark suit in greasy wash water 

all year’’. 
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In wide-band spectrogram analysis (short time window length), the 

bandwidth contains at most the response of the fundamental frequency of phonation and 

thus cannot display the harmonic structure because, the bandwidth of the equivalent 

filter is wider than the fundamental frequency and so the harmonics will not be 

separated. However, it is very accurate in the time dimension, showing each vibration 

of the vocal cords as a separate vertical line and indicating the precise moment of a stop 

burst with a vertical spike. It is thus suitable for the separation of  the phonemes [13, 

62]. Figure 6 shows a wide-band spectrogram of the sentence “she had your dark suit in 

greasy wash water all year’’ created with window length equal to 5 msec.  

 

Figure 6  wide-band spectrogram of “she had your dark suit in greasy wash water 

all year’’. 

 

2.4.4 Window size versus data length for FFT 

 

The window function is usually described in 𝑚𝑠𝑒𝑐 to make it independent 

of the frequency sampling. The length of window in sample points is   𝐿𝑊𝐷 =

 𝑇𝑊𝐷 𝑇𝑓𝑠⁄ =  𝑇𝑊𝐷 ∙  𝑓𝑠. as shown in Figure 7.  
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Figure 7 relation between length of window and sampling frequency. 

 

Increasing the length of the FFT increase the resolution of the sampling 

frequency of the spectrum, which makes the SSI smoother. As an example, a narrow 

band spectrogram, obtained using a time domain window of a duration of 64 𝑚𝑠𝑒𝑐 is 

sampled at 16 kHz (equivalent to length of 1024 sample points) may be directly 

frequency analysed by an FFT of length 1024. Then, the FFT gives a  resolution of 15.6 

Hz which is more than reasonable for display of a speech signal, the smaller frequency 

differences between the first three formats being around 300Hz [63]. The display 

resolution will increase when the window is decreased to get a wide-band spectrogram 

whilst employed fixed length of FFT of 1024 sample points. 

 

 

2.5 Time localisation of the signal on Spectrogram (Running time) 

 

The need for inspection of a local time (i.e. a certain event) in a signal on 

its spectrogram and vice versa visa might be necessary to extract information from the 

signal. As mentioned in Section 2.4.1, the number of frames is equal to the ratio of the 

fixed time to the running time. That means each frame of the signal contains M points 

to be displayed as a point in running time of the spectrogram. As shown in Figure 8, a 

duration of fixed time of length M ≈ 20 points are displayed as stripe on spectrogram. 

Thus, the location of stripe on the spectrogram, i.e., localisation of fixed frequencies, 

corresponds a period of length M in the fixed time of the signal. That is an indication of 

an error equal to the time resolution ∆t of the spectrogram. This explains why the wide-

band spectrogram is suitable for standing phonemes.  

T
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Figure 8 illustration of the ratio of the fixed line to running time. 

 

There are some speech databases that have comprehensive details like the 

exact duration of the phones (start and end of words and phones). The time location in 

SSI can help to verify such information above. 

 

 

2.6 Spectrograms information superiority waveform representation 
 

As mentioned in Section 2.4.1 the speech signal is stationary within the 

short term. Spectrograms are better than waveforms of segments to provide reliable 

measurements since the differences among vowels, nasals and laterals can be seen on 

spectrograms, whereas it may be impossible to see these differences in the waveforms. 

Those differences could be related to linguistic properties (i.e. places of articulation) 

and voice quality aspects of a speaker’s speech habits. 

 

2.6.1 The spectrogram as linguistic  
 

Linguistic spectrograms show display the following qualities: 

 

a) Vowel quality is indicated by the spectrogram. The vowel quality is 

described by the International Phonetic Alphabet chart (schematic IPA 

vowel diagram) which describe vowels in terms of three common 
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articulatory features: height (vertical dimension), tongue backness 

(horizontal dimension) and roundedness (lip articulation). The first formant 

certainly show relative vowel height quite accurately and the distance 

between the first and second formants reflect the degree of blankness quite 

well, but there may be misperceptions due to differences in the degree of 

lips rounding.  

 

b) Voice from voiceless sound can be separated by the spectrogram. 

 

c) Consonants begin as stops, because affrication of a stop can be seen on 

most occasions. For example one can usually see whether a stop has been 

weakened to a fricative, or even to an approximant.  

d) Consonant trill sounds can be separated from taps since one can also 

observe the relative rates of movement of different articulations.  

 

However, Spectrograms cannot be used to: measure degrees of nasalization 

or differentiate between adjacent places of articulation.  

 

In person’s voice, there are individual characteristics recorded in the 

spectrogram which are indicative of the speaker’s voice quality rather than the linguistic 

aspects of the sounds. These are: the position of the fourth and higher formant of vowels; 

and the rate of transition of the formants after voiced stops that give individuals shape 

related to the speaker’s voice quality. 

 

 

2.7 Conclusion 
 

The aim of this chapter was to represent speech waves as an image and 

interpret their patterns. We have used the SSI for the purpose of analysing the speech 

signals. This has been done for the following reasons: first, the SSI is easy to implement 

and is suitable for speech online application; second, the SSI effectively represents most 

speech wave fluctuations. This is one of the reasons that it is popularly used in many 

studies. Thus, it is realistic to use the SSI patterns for creating an initial image 

http://en.wikipedia.org/wiki/Consonant
http://en.wikipedia.org/wiki/Stop_consonant
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representation and a classification model. The study employs narrow band spectrogram 

analysis to create the SSI because of its high frequency resolution. This also paves the 

way for other types of speech wave to be represented as images to allow for 

improvements in SSI patterns classification.  
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3 CHAPTER THREE 

Phonetics, Phonology and SSI patterns for speech 

representation. 

3.1 Introduction  
 

A speech segment is a unit that can be identified by either physical (place 

of articulations) or auditory (consonants and vowels) characteristics. Speech segments 

are considered as a linear sequence to give meaningful field analysis, such as a mora or 

a syllable, or a morpheme in morphology [64]. Computational linguistics is a 

combination of knowledge in the linguistics, computer and electrical engineering fields 

to develop methodologies and technologies to enable recognition and translation of a 

spoken language into text by computer. Phonemes show significantly lower redundancy 

than letters, but redundancy has an effect of increasing the task difficulty of first- or 

second-order phonemic probability guessing ( first- or second order HMM) [65]. In this 

chapter, we work to define a written transcription that can help either in enhancing 

speech recognition or can establish a new approach for speech recognition. 

 

 

3.2 Phonetics and Phonology speech representations 
 

Speech interpretation can be classified, from the engineering point of view, 

into two levels: an acoustic processing (which is the low level) and a language 

processing (which is the high level). The two processing stages are guided by phonetics 

and phonology, respectively. Phonetics and phonology are integrated in order to 

understand the speech of any language. Phonetics is concerned with the physical 

acoustic production, the transition and perception of speech sounds by using phoneme 

units. Whereas phonology is concerned with the way the sounds are gathered across a 

language to encode meaning by using phoneme units. Phonetics is descriptive 

linguistics, whilst phonology is theoretical linguistics. In American English, a set of 62 

alphabetises may form a code which can be encoded and decoded for understanding 

speech in the English language. The well-known phoneme classification (41 phonemes) 
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is based continuant/ noncontinuant properties [1]. The continuant (stationary) are 

vowels and consonants. The continuant consonants are: fricatives, whisper, affricates, 

and nasals. The non-continuant are: diphthongs, semivowels and stops. 

 

From the listener’s point of view, speech sounds are linear combinations the 

units of phonemes, syllables and words. Unfortunately, speech sounds physically 

overlap. The speech sound unit is influenced by both surrounding sounds, the preceding 

sound and the following sound. On the other hand, the speech sound signal has some 

acoustics cues (e.g. voice onset, places of articulation, stress, etc.) that are used to 

differentiate speech sounds in phonetic categories. The speech recognition problem can 

be defined as finding an accurate written transcription of spoken utterances in units 

(phonemes, syllables words or other units). The accuracy of transcription is measured 

in terms of the distance (the smaller the distance the more accurate) between a reference 

transcription and a sequence output in a continuous speech model. 

 

 

3.3 Phoneme classification 
 

The phonemes can be classified based on different properties. The history 

of developing and revising them are basic to the understanding and applications of the 

speech field: 

1. Time waveform: gives a primary interest in waveforms and what they 

reveal about the physiological and acoustic aspects of speech.  

2. Frequency waveform: gives significant information about the physical 

phenomena from frequency domain plots derived from acoustic waveforms. 

3. Manner of articulation: gives the configuration and interaction of the 

articulators (speech organs such as the tongue, lips, and palate) when 

making a speech sound. It describes how closely the speech organs approach 

one another.  

4. Place of articulation: describes the place of contact where an occlusion 

occurs in the vocal tract between an articulatory gesture, an active 

articulator (the degree of narrowing in the oral tract) and a passive location 

which gives a consonant. This gives a consonant its distinctive sound. 



 

34 

 

5. Type of excitation: the speech sound is produced in two elemental 

excitation manners: voiced and unvoiced excitation. The combinations of 

voiced and unvoiced and silence are usually outlined for modelling and 

classification purposes (mixed, plosive, whisper and silence). 

6. Stationary phonemes: describe if the speech sound is produced by a 

steady-state vocal tract configuration. A phoneme is a non-continuant if a 

change in the vocal-tract configuration is required during production of the 

speech sound.  

 

So, speaking can be described as trying to associate a symbol to each sound 

in all of the known languages in the world. The most known set of symbols for phonetic 

transcriptions is the International Phonetic Alphabet (IPA). In Paris in 1886 a small 

group of teachers and linguists from France, Germany, Britain and Denmark (recently 

called the International Phonic Association) formalized a meeting. This group created a 

standardized format for expressing the phonetic sounds used in the various spoken 

human languages. At the time of the IPA, classification started based on subjective 

methods (Auditory phonetics: the study of the reception and perception of speech 

sounds by the listener). A phoneme is the basic theoretical unit of a language for 

describing how speech conveys linguistic meaning. It is a distinctive unit of sound 

because the whole of a phoneme must be substituted to make a different word.  The IPA 

has been developed and revised several times since the end of the 18th century based 

on objective methods (Acoustic phonetics: the study of the physical transmission of 

speech sounds from the speaker to the listener using phones which are small units of 

sounds produced in speaking). 

 

 

3.4 The International Phonetic Alphabet (IPA) 
 

This phonetic notation which is based on the Latin alphabet, tries to 

represent only those qualities of speech that are part of oral language: phonemes, 

intonation, and the separation of words and syllables. For representing additional 

qualities of speech (i.e. teeth gnashing, lisping and sounds made with a cleft palate) an 

extension to the IPA may be used in a narrow transcription. Among the symbols of the 
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English IPA, 20 letters represent vowels and 24 letters represent consonants, and 5 

additional signs indicate suprasegmentally qualities such as length, tone, stress, and 

intonation [1], with the overall total being 49 phonemes. The IPA is not usually 

available on computers because it makes extensive use of letters. So, the ARPABET 

were proposed as mappings from IPA to "computer-friendly" ASCII symbols. The 

ARPABET of the English language are based on 62 phones, the table below showing 

the IPA and ARPABET symbols of phonemes [66]. 

 

 

Figure 9 the IPA and ARPABET symbols of phonemes. 
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3.5 SSI pattern speech representations 
 

Our approach to understand a speech signal can be realised by processing 

at two levels. The first level is word recognition by image matching of SSI patterns; the 

word level paves the way for writing word-level speech down in a sentence of SSIs 

patterns. The second level is sentence interpretation which could be achieved by SSI 

pattern matching also.  

 

The speech signal can be represented in different ways (e.g. FFT and linear 

code prediction LCP spectra, spectrograms, fundamental frequency). Technically, the 

representations are derived from an FFT (which can be a Mel-scale filter bank) with 

various weighting schemes applied to the coefficients and measurement of their rates of 

change with time which augment the recognition of speech sounds. Actually, each 

method of acoustic speech representation has some capability to identify certain 

phonemes more than others, e.g. the LCP spectra are more accurate in recognising the 

frequency components of vowels and semivowels. In Chapter 2, we mentioned the 

spectrogram can be used for speech representation as an image. It is important to 

consider the strengths and weaknesses of features of the spectrogram’s ability to 

represent the speech signal as SSI patterns. The spectrogram is a comprehensive method 

that allows examination of the dynamic changes in a speech spectrum [67]. The 

spectrograms can demonstrate precisely the acoustic cues and changes of a speech 

signal. For example, it can display accurately: stop burst in the changes of consonants, 

vowel frequency fluctuations, and the change between vowels to consonants etc. 

Dickinson et.al. [68] believe that the spectrogram helps us in automatically determining 

phonemes, because the SSI is powerful for the segmentation of speech, its labelling into 

categories and provides the clearest visual cues to the boundaries between phonemes. 

On the other hand, the SSIs do not provide precise measurements of formants of vowels 

that is due to the trade-off representation among time-frequency resolutions, as 

discussed in Chapter 2. 

 

Historically, in the middle of the 20th  century, phonetics researchers used 

the SSI sounds to study and identify individual phonemes, allowing a relatively simple 
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way to analyse speech sounds without significant mathematical analysis and computer 

modelling [62]. Then later, Zue and Cole [69] used visual examination of an unknown 

utterance to label their spectrograms phonetically. The spectrogram reading 

experiments revealed the spectrogram as a rich source of phonetic information that can 

be extracted by applying clear rules. 

 

Dennis et al. [20] tested 19 sentences representing data from 5 talkers as a 

visual examination of spectrograms. In total, the experimenters scanned a 200 word 

lexicon. They reported that 10% of phones were omitted, 40% of phones were 

transcribed only partially in terms of phonetic features and that 17% of phones were 

incorrectly transcribed which could be because they were beyond the spectrogram 

resolution. 

 

Recognising semivowels is a challenging problem because semivowels are 

similar to the vowels [70]. Pinkowski [14], has shown that the spectrogram (SSI) word 

patterns show changes and that the accompanying transitions within individual words 

produce the characteristic contours and shapes that are used to identify the English 

semivowels (phonemes):/w y l r/. Pinkowski has used a binary image with strong 

contours and shapes of words and applied Fourier descriptors for characterizing the 

boundary of the segmented words. Steinberg et al. [71] have performed segmentation 

of voiced phonemes in order to capture the energy in phonemes associated with each 

formant (between f0 to f4 formant frequencies) as spots to create speech spectrograms 

that can be read visually by trained experts. Khunarsal et al. [72], recognise the word in 

a singing signal with background music by using the concept of spectrogram pattern 

matching. Dey et al. [73] used a spectrogram to analyse a set of five different speakers 

to generate a dataset, which is used in recognising speech by an artificial neural network 

and speaker recognition by a hidden Markov model. 

 

All this research has in common the use of the traditional pattern matching 

techniques of SSI for the phonetic level, where they focus on vowels phone patterns as 

an approach for verifying coefficients of the speech signal. In contrast, in our work we 

do not look up individual SSI phones but rather we are interested in classifying the 

speech sound into patterns of the SSIs. These patterns are shaped by frequency 
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transitions and fluctuations of sound groups. We believe that the embedded sound 

information in the patterns of the SSIs can be represented as a code, where its parameters 

can be defined based on image processing, and we claim that is no one has done such 

an approach before. 

 

 

3.6 The SSI patterns can be a more useful phoneme representation 
 

We use in this study English language phonemes for mapping into SSI 

patterns; however, the methods developed can be applied in other languages with the 

same procedures. As we mentioned, the SSI patterns form a kind of writing system. So, 

the method produces a more or less permanent record that can be used to represent 

speech. The SSI pattern system involves a mapping between SSI patterns and sounds. 

The expectation is that the SSI pattern is a larger duration length than the sound units, 

since the SSI pattern is a unit of combination of speech sounds. The finite set of SSI 

patterns form words, which potentially form an infinite set in any language. However, 

a system based on large units can be more successful than one that is phoneme based. 

This is because the end point deduction of a phone is still a challenging process and 

large units are over limiting in their influence on coarticulation. However, the large unit 

models could need less computation than the phone (small unit) feature models and it 

is easy to count them. Kirchhoff [74] concludes that such co-articulatory modelling 

(syllable templates) is more effective than carrying out feature based recognition. King 

and et al. [75, 76] propose a syllable model rather than phone level model by recognising 

the phonetic features and decoding at a syllable level by using a neural network. The 

aim is to allow modelling of coarticulation effects to get better recognition. 

 

It is expected that the SSI patterns are slightly similar to the syllable 

structures, but the number of SSI patterns is not the same as the number syllable 

structures. This is because the syllable structures are not the same for different 

languages, but languages can share the same types of SSI patterns. Another reason is to 

overcome the difficulty of syllable distinction (this is critical for deciding between 

syllables). In contrast, the SSI patterns are easily visually distinguished. 
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The syllable “is a phonological units of organisation containing one or more 

segments” [77], and the, syllable usually contains a vowel. A word can consist of: a 

single, two, three or more syllables. They are of different forms: the nucleus, onset, and 

coda as shown in Figure 10.  

 

Figure 10 the syllable structure. 

 

Typically, the nucleus of a syllable is the vowel and any following 

semivowels (diphthongs consist of a vowel and glide (semivowel) together); the onset 

is the preceding consonant, and the coda is the consonant after the vowel. Together, the 

nucleus and coda form the rhyme. The stress is a syllable more prominent with increased 

loudness and vowel length than its surroundings [77]. 

 

The stop gap (oral stop) helps distinguish the presence of a stop consonant. 

The sonority hierarchy is a ranking of speech sounds by amplitudes and helps in 

analysing syllable structures. The vowel sounds are more likely to be in the middle of 

words while oral stops and voiceless fricatives occur near the edges [68]. 

 

Traditional speech recognition is based on formant recognition. However, 

there is an inherent speech problem with formant recognition since it is not always 

possible to define correctly formants of fricatives or nasalised sounds and the amplitude 

is needed to distinguish certain phone types such as nasalised sounds and voiced vowels. 

That is not the full story of the speech recognition problem as many of the speech feature 

cues that are required for precise recognition are not able well defined. Tactically, the 

solution is by a sequential training process of extracted formants features (e.g. using 

HMMs), which also has some limitations [6]. 
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In contrast, the spatial matching of features by SSI patterns allows the 

matching of whole actual speech features (formants, power spectrum, duration, cues of 

place articulation etc.) in one process. The spatial matching of features by using SSIs 

map the whole speech features but it scales down the time signal as shown in Figure 11. 

The time axis of the spectrogram is 41 times less than the wave time. Since the SSI 

patterns are a large units, they are less effected by the time resolution scale down. This 

could be useful for the prediction of continuous SSI patterns where determination of the 

time scaling is important in some ASR applications. 

 

 

Figure 11 the time in the spectrogram is 41 times less than the wave time.  

 

English is similar to other languages in having ambiguity (e.g. words have 

multiple naming, unintended meaning, and different contexts). Adding to the ambiguity, 

we do not have an idea of exactly how many of the SSI patterns exist, and they need to 

be found using a visual process initially. A question arises, do the SSI patterns have 

more or less permanents structures so that they can be implemented as image matching 

filters? Is it possible to add extra marks to SSI patterns using image processing methods 

to make SSI patterns richer? Not all these questions will be answered completely; rather 

we are going to establish essential steps for a Speech-Image Recogniser Code (SIR-

CODE). 
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3.7 The Speech-Image Recogniser Code (SIR-CODE) 
 

To look at our problem, it is helpful to ask the following: Is it possible to 

define the smallest units (segment) of the SSIs as decoding speech units to build a new 

speech recogniser by using image pattern recognition rather than phonemes units? 

Indeed, what is the entropy11 to build this SIR-CODE? Which is kind of lossy data 

compression code can represent the speech wave as units?  

 

The code parameters (symbols) can be defined by researching how the SIR-

CODE parameters match the information in the speech signal to allow for recognition. 

The SIR-CODE entropy can be defined by counting all stabile parameters (not be 

affected by spectrogram resolution and speaker variations) in SSIs using image 

processing and classifying them into groups of patterns depending on phoneme 

properties. This can be estimated by using a limited number of words (small lexicon) 

based on the notes of expert spectrogram readers, which is done in this study. However, 

optimising the SIR-CODE entropy needs comparison results of SSI recognition to 

correlate with the-state-of-the-art techniques of HMM for a huge lexicon. Maybe, it 

needs to add extra symbols (indications) on some SSI patterns during image processing 

that can help to make the SIR-CODE a more robust code. 

 

In other words, the SIR-CODE can be designed for different recognition 

purposes. In general, these may be either a word recognition by the SSI, which is a 

spatial matching of features of a word by SSI patterns, or prediction of continuous SSI 

patterns. The prediction of continuous SSI patterns can be the entirely of a speech 

recognition system by image processing. Therefore, the SSI patterns predictions can be 

achieved when optimisation of the SIR-CODE entropy is defined perfectly. The 

optimising of the SIR-CODE entropy aims to find as close as possible the minimum 

entropy of the SSI patterns that can determine how much information in the SSI patterns 

is needed to represent a model of speech recognition (lexicon) perfectly. We expect the 

                                                 
11 Entropy is a measure of how much information observations (unpredictable information about the 

SSI patterns) can be used to give a certain order to a random process (a word is an ordered sequence of 

the SSI patterns). 
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code would not only work for ASR, but it could also be a new way for deaf people to 

learn and read, since they can then perceive speech of other people. Since children with 

hearing impairment learn to read words as a whole, they can recognize printed words 

by recoding them into a visual representation. 

 

 

3.8 Defining a basic SSI pattern 
 

Using an approach based on syllables, phonemes will be classified into SSI 

patterns starting from the full formant pattern structures (periodic segments of voiced 

utterances) to the full noise pattern structures (unvoiced). Usually, formant frequencies 

of a speech signal appear as dark peaks making horizontal bands in the spectrogram; 

the darkness reflects the reduced amplitude of a speech signal in certain frequency 

bands. The vowel speech sounds appear as vertical striations in the spectrogram due to 

the periodic nature of the glottal excitation since the  majority of vowel sounds in speech 

are voiced, whereas the unvoiced speech sounds appear as rectangular dark patterns due 

to their noise-like excitation [62]. 

 

It could be premature to discuss the image processing on SSI patterns, but 

it is important to draw attention to the fact that all the images that have been used in this 

study have a noise redacted background (the noise background reduction algorithm is 

employed). It will be explained in detail later in section 3.12.1 of this chapter. 

 

Nearly all lexical words have vowel sounds. The SSI (spectrogram) can 

resolve a vowel and diphthong (consisting of two vowels) sounds clearly into patterns 

containing 4 formants (or possibly 5 formants depending on the loudness and SSI 

resolution). These formants are strong enough to be maintained after applying an image 

threshold prior to application of the noise background reduction algorithm. Therefore, 

we call this type of SSI pattern the Full Formant Pattern (FFP), which has vertical 

striations due to the periodic nature of the glottal excitation [voiced speech]. Those lines 

are very close together and form this shape of consecutive line patterns at the lowest 

frequencies. A type of FFP, which is representative of certain compound sounds, has 

the same locations and transition of the lower three formants to form a uniquely shaped 
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pattern. The higher formant varies slightly from speaker to speaker and can be is used 

for a speaker identification. Peak formant frequencies appear as dark horizontal bands 

in the SSI pattern. The FFP has a more stable pattern richer in features that results in 

each FFP pattern consisting of a unique structure. Figure 12 shows the FFP patterns in 

the word “need”. This has two different kinds of FFP pattern. Based on this image, it is 

easy to make a distinction using image processing based on the FFP, which means 

automatic image matching is possible too. 

 

Figure 12 demonstration of the different FFP patterns in the SSI of the word 

“need”. 

 

Furthermore, the formant locations, and distance between the two of them, 

result in the FFP having variable start and end points. Within the formant, the maximum 

amplitudes can be increasing or decreasing or have a flat transition as shown in Figure 

13.  

FFP (1) FFP (2) 
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Figure 13 an SSI of the words ‘heed’, ‘hid’, ‘head’, ‘had’, ‘hood’, ‘hawed’, 

‘hood’, and ‘who’d’ as spoken by a male speaker of American English. The locations 

of the first three formants are shown by arrows [78]. 

 

Semivowels (glides and liquids) have the same characteristics of vowels but 

they are much shorter in duration than vowels and the glides and liquid formants are 

weaker than vowel sounds [1, 78]. Nasal sounds are normally weaker in energy than 

vowels [78] but they are the same as vowels too. Therefore, after applying the image 

threshold for the noise background reduction algorithm on those pattern types which are 

created by Semivowels and Nasals, the patterns look like the FFPs but more faint. We 

call them Semi- Full Formant Patterns (SFFP). The SFFP has a formant structure similar 

to the FFP type, except that the bands of the 3 formants are somewhat fainter. Since the 

nature of the SFFP is similar to the FFP, the expectation is that the kinds of SFFP type 

are unique too, unless a kind of SFFP type is affected by the noise background reduction 

algorithm that can then generate some suspicious patterns. Figure 14 shows two kinds 

of SFFP. Since they are not totally extinguished and they can be recognised easily. 
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Figure 14 patterns of the word “money”, showing SFFP and FFP patterns.  

 

The FFP and SFFP can be called SSI Format structures (SSIFS). The SSIFS 

shares a common parameter which is a high PSD strength at the first formants. The first 

formant is located in a small dynamic range location, the average first formant locations 

for vowels sounds (/IY/, /IH/, /EH/, /AE/, /AA/, /AO/, /UH/, /UW/, /AH/, ER/) being: 

270, 390, 530, 660, 730, 570, 440, 300, 640 and 490 Hz, respectively [1]. The average 

first formant location for vowels sounds is 502 Hz. Phonetically, the FFP and SFFP are 

under a nucleus syllable structure. The nucleus syllables occur more frequently than 

other syllables. Usually, an SSIFS contains either of an FFP or combination of FFP and 

SFFP; thus the SSIF is inevitably a unique form as it contains a unique kind of FFP. 

 

Consonants (expect Nasals sound) are responsible for random noise pattern 

SSIs. The random patterns are spread in different ways; starting from an upper limit and 

extending down to different locations in the middle of the SSI, or scattered from the 

middle to the lower part of the SSI, centred on the middle or scattered in the whole 

pattern, depending on the unvoiced sound type. In Fricative and Affricates, the random 

noise pattern is in the higher frequencies (6 kHz), and extending to different regions of 

the lower frequencies, depending on the place of articulation for the fricative sound (e.g. 

in /SH/ this extends to about 2.5 kHz and /Z/ and /F/ extends to a lower part of the 

frequency scale less than 0.5 kHz) [18]. With stops in sound, the random noise patterns 

are in the lower frequencies and extend to different locations of higher frequencies 

depending on the place of articulation. Usually, the duration of stops are shorter sound 

SFFP; /m/ and /n/ 

respectively  
FFP 
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patterns (even a sharp pattern) and weaker (with a fainter PSD) as compared to both 

Fricative and Affricate patterns. Therefore, stop patterns are more likely to be affected 

by the image threshold of the noise background reduction algorithm. Some patterns are 

common which are clearly absent of formant patterns. Therefore, we call them Absent 

Full Formant Patterns (AFP). They appear as rectangular dark patterns (scattered spots 

appearing as a noise structure) with wide or narrow durations, centred and extended in 

different locations. There are also random occurrences of weak oscillations due to 

sudden variations in energy (unvoiced speech). In general, the AFP patterns can be 

classified into two types of AFP: Short duration Absent Formant Patterns (SAFP), as 

shown in Figure 15, and Long duration Absent Formats Pattern (LAFP), as shown in 

Figure 16. 

 

  

Figure 15 examples of the SAFP. 
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K 
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Figure 16 example of the LAFP. 

 

The high intensity power spectra of the random patterns (spots) are less 

impacted by threshold processing of the noise background reduction algorithm applied 

to the SSIs. Therefore, the remainder of the spots are scattered around different 

centroids, mostly concentrated on the top, centre, bottom or whole rectangular AFP that 

can be used to classify the AFP types into subtypes for both the SAFP and LAFP forms. 

 

Moving from systematic patterns to noisy patterns, we pass through of a 

hybrid of systematic and noisy patterns which we call a nested pattern. The nested 

pattern is created mostly by the Whisper sound /HH/; some textbooks count it as a 

consonant sound rather than a vowel [1], since its characteristics fluctuate between a 

formant structure and a random structure depending on its position in a word. As an 

example, Figure 17 shows the SSI of the word ‘Higher’, which contains two sounds of 

/HH/ at the start and the middle. The sound /HH/ at the start is like an AFP pattern while 

in middle more like an FFP pattern. 

 

LAFP 
FFP 

LAFP 
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Figure 17 shows the SSI of word ‘Higher’. 

 

In some cases, Nasal sounds are affected by surrounding sounds to give 

nested patterns too. The nested patterns do not have stable features and tend to random 

structures more than formant pattern structures as shown in Figure 18. Anyway, for 

more simplification of the recognition problem of SSI patterns, nested patterns can be 

supposed to be in either the AFP or FFP category. 

 

 

Had 

  

 

Hand 

  

 

Has 

  

 

Have 

  



 

49 

 

 

Help 

  

 

His 

  

 

History 

  

 

How 

  

 

Huge 

  

Figure 18 shows nested patterns produced by the sound /HH/ in different words. 

 

Gap patterns are created by the stops sound (voiceless/P, T, K/ and voiced / 

B, D, G/). This sudden explosion and aspiration of the air characterizes the stop 

consonants [1, 78]. As we mentioned previously, the fraction of unvoiced stops is longer 

than voiced stops. Usually, the gap is followed by the noise of unvoiced stops [78] as 

shown Figure 19. 
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Figure 19 shows gap pattern examples. 

 

All the English phoneme classes (vowels, diphthongs, semivowels, stops, 

Fricatives, Whisper, Affricatives, and nasals) have been scanned and identified using 

comments of expert speech spectrogram readers. However, that does not mean all the 

possible parameters have been defined. Further, a deeper study of the SSI patterns 

within the phone level can be used to define sub-SSI patterns that can make the SIR-

CODE richer still. 

 

An example is that of classifying the word “need” into SSI patterns which 

are: SFFP, FFP, G, and AFP is shown in Figure 20. All SSI patterns in this word can be 

easily identified by eye. It is also easy to distinguish between the SSI “need” and all the 
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SSIs in this study. Therefore, treating the SSI patterns as images it is possible to design 

matched filters based on the SSI patterns parameters for recognising such words. 

 

 

 

 

Figure 20 demonstration of the 4 main SSI patterns in the word “need”. 

 

To do so, it is important to summarise the basic SSI patterns in a table, 

which helps in designing the SIR-CODE for different recognition levels of complexity 

and purposes. In general, we divide the process into two levels: level 1 is word 

recognition by SSI, and level 2 is prediction of continuous SSI patterns. Table 2 includes 

parameters such systematics, randomness, power spectrum sonority, duration, and gap. 

 

The amount entropy in these basic parameters is unknown, and it is 

unknown how many symbols can represent each pattern to create the optimal SIR-

CODE entropy. Thus, we have to test recognition ability of single examples, as well as 

permutations and combinations, of the SSI patterns by image matching in order to define 

the SIR-CODE symbols. As an example, a kind of FFP type symbol can be defined by 

estimating its probability of occurring in a certain lexicon (of limited number of words). 

While estimating permutations (order patterns) and combinations (group parameters), 

the probably of patterns can define entropy symbols for a word code in that lexicon. 

 

 

(4)AFP  (2)FFP 

(3) Gap  

(1) SFFP 
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Table 2 basic parameters of SSI patterns. 

 

 

After defining the SIR-Code entropy symbols, this can be used to design 

entropy coding (lossless coding) of the coder and decoder for the SIR-CODE. In other 

words, the SIR-CODE symbols can be represented in different symbol styles for use in 

applications either in writing for the deaf or in ASR. Figure 21 shows a basic SIR-

CODE for use in ASR by employing a barcode for representation of the speech signal. 

 

Figure 21 shows a basic SIR-CODE employed in ASR. 

 

All spoken languages have vowels and consonants. The same linguistic 

definitions can be used to analyse vowels and consonants in all languages. The 

perception of the difference between a vowel and a consonant, however, may vary quite 

a bit. Even when two languages have similar sets of phonemes, other factors come into 

play, such as stress or intonation, length of phonemes, rhythm, speed, etc. The central 

part in our work is that all spoken languages have SSIFS and SSIRS patterns. This 

means all languages share the classification shown in Table 2. 
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3.9 Missing phonemes in SSI patterns 
 

Missing phonemes in spectrograms have been reported, but never defined. 

Dennis el at. [20] have reported that 10% of phonemes in their test sample were omitted. 

That could be because of spectrogram reader inefficiency or coarticulation phenomena 

(phonemes are speech units including articulation information and so represent 

individual sound or speaker variations which are affected by spectrogram resolution 

(resulting in some sound parameters becoming hidden). Of course, this percentage 

increases somewhat after applying the noise background reduction algorithm, which is 

an essential step for SSI matching. 

 

In some ways, the missing phonemes can be regarded as embedded into SSI 

patterns. Actually, we rely on only stable SSI patterns. Add to that, words are multi SSI 

patterns. So, it is expected that the entropy of stable patterns and their order can provide 

enough information (entropy) for recognition. We have mentioned that the SAFP 

classes are more likely affected by the threshold for the noise background reduction 

algorithm. On the other hand, the G pattern is evidence of the SAFP existence (usually 

G is followed by the SAFP). However, the use of the noise background reduction 

algorithm partially eliminates the SAFP, if not all of it. The G pattern is evidence that 

can fill the gap of missing information. 

 

As an example, Figure 22 shows 18 samples of the SSIs of the word ‘Dark’ 

(which contains stops sounds /D/, and /K/). These samples belong to different genders 

of speakers and have had applied to them the same level of reduction of background 

clutter. The ‘Dark’ word can be classified it into three SSI patterns type: SAFP, FFP, 

and G, in the order SAFP, G, FFP, G and SAFP. Although the 18 samples of the SSI of 

the word ‘Dark’ are disparate, it can be easily determined from them. 

 

As another example, this time for the stop sound /T/ which is been shown 

in 18 samples of the word ‘Suit’ in Figure 23. The word ‘Suit’ consists of  LAFP, SAFP, 

FFP, and G, SSI patterns in the order: LAFP, FFP, G and SAFP. Both SSIs of the words 

‘Dark’ and ‘Suit’ have one type of FFP pattern, but different classes of FFP. Obviously, 
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it is easy to distinguish between ‘Dark’ SSIs and ‘Suit’ SSIs visually, so that we can 

look to invest in this ability of visual recognition in the image matching process.  

  

   

   

   

   

   

   
Figure 22 shows variant SSI samples of the word “Dark”, where;                 and        

are the FFP, SAFP and G patterns, respectively.   
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Figure 23  shows variants SSI samples of the word “Suit”, where;                 and        

are the FFP, SAFP, LAFP and G patterns, respectively. 
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The database that has used in this study is the TIMIT12 database, and it 

should provide a standard signal to noise power ratio. However, studying case of 

missing phonemes in SSI patterns is a challenge due to threshold problem of the noise 

background reduction algorithm. Nevertheless, this can be optimised and will provide 

more information about SSI patterns. This can be done when all the types and kinds for 

a certain lexicon are defined. Surely, then we can make the SIR-CODE entropy richer. 

 

 

3.10 Distortion problems of SSI patterns 
 

The SSI represents a speech signal in three dimensions: frequency, time and 

power spectrum intensity. In general, all SSI patterns are governed by speaker 

variations. The speaker variations, e.g. realisation, speaking style, the gender of the 

speaker affecting the anatomy of the vocal tract, speed of speech, regional and social 

dialects etc., have the strongest effect in the time dimension rather than the frequency 

dimension of the SSIs. 

 

We have mentioned that nucleus syllables are occur more frequently in 

speech. Also, their format structures are suitable for image matched filtering than the 

random structures of SSIs. The SSIFS of the same word for different speakers (including 

different genders) is effected by frequency and time dimension distortion more than 

variations in pixel contrast (which is due to variations of speaker power in the speech). 

Only exact position of the higher formants is slightly varied from speaker to speaker, 

while the low frequencies are the same for the same word [62, 79, 80]. On the other 

hand, the vertical distortion (frequency dimension) in the SSIFS is due to the pitch of 

the voice. The pitch is due to the parodic nature of glottal excitations (the fundamental 

frequency) of the voice and appears as vertical striations in the SSIFS. Figure 24 

demonstrates the pitch distortion on the SSIFS by displaying two SSI samples of the 

words ‘Murky’ and ‘Dark’, where they belong to different genders and speakers. 

Usually, a female’s pitch (bound of frequencies) is higher than the male, and appears to 

                                                 
12 TIMIT is a database designed to further acoustic-phonetic familiarity for use in automatic speech 

recognition systems. For more information, see, https://catalog.ldc.upenn.edu/LDC93S1. 
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generate more sharp vertical striations than the male voice in the SSIFS. Although, there 

is a slight vertical distortion in the SSIFS, there is still a big correlation between the two 

different SSIFSs of the same class in an SSI word. Thus, the vertical distortion may not 

be a serious problem for the image matching. 

 

Male Female 

Murky 

  

Dark 

 
 

Figure 24 shows pitch voice distortion in the frequency dimension of the SSI. 

 

However, the SSIFS may be distorted badly by the time dimension change 

(i.e. how fast a word is uttered). The duration has the effect of stretching or shrinking 

some or all the SSI patterns, and ruins their positions within SSI too (there are different 

start and end positions for almost the same durations of two utterances of the same 

words). Figure 25 shows the time variation in the SSI pattern of the same word for 

different speakers. It is obvious that the individual SSI pattern has different durations 

and location within the same SSIs for utterance of the word ‘Dark’ by different speakers. 
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Dark 

  

  

  

  
Figure 25 shows the time duration effect on SSI patterns. 

 

However, the differences among SSIFSs result in some distortions. The 

techniques derived from invariant pattern recognition can accommodate these 

distortions. We have used normalized length durations of the SSIFS patterns. Word 

recognition by using SSI patterns has been shown in our work [81] and most details of 

it will be explained in Section 3.12.1 of this chapter. 
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The PSD of speech is the third piece of information provided by the SSI, 

which is represented by pixel intensity values. In a simple form, image matching is 

accomplished by pixel intensity matching. However, when there is variation in speaker 

loudness, the SSI patterns of the same word by speakers have some range of power 

spectrum disruption. That can be determined clearly from all the SSI figures (of the 

same word) that are provided in this study. 

 

Because of the particulate nature of the FFPs (which is the mean of the 

SSIFSs), they have a higher average power spectrum than other SSI patterns. Therefore, 

the SSIFS is less effective than the SSIRS due to variation of the power spectrum of 

speakers. Actually, the correlation measurement of SSI patterns is affected badly by the 

SSIRS due to the random nature of it. On other hand, the SSIRS type of data make the 

regularities of shape help pattern recognition. 

 

 

3.11 Example of using basic parameters of SSI patterns table for 

design case L1 
 

We use Table 2 is to select common parameters or combined parameters. It 

is used to help to define the SIR-CODE entropy for certain purposes. This, then should 

be implemented in image analysis and mathematical morphology design. The level 1 

can distinguish the SSIFS types among the SSIRS and gap types. The SSIFS entropy is 

a common parameter between the FFP and SFFP which is the approximate location of 

the high power spectrum of the first formant. The complementary information is the 

SSIRS. Level 1 may be enough for recognition of isolated SSI words. 

 

In fact, SSIFSs are dominant in the English language due to their variety 

and probabilities of occurrence. Beside, a word that is a multi SSI type has at least to 

contain one type of SSIFS (it is supposed to be a unique type). Consequently, 

recognising a particular type of SSIFS among SSI patterns by using image matching 

may provide enough entropy for recognition of a word by its SSI in a certain lexicon. 

Recognition by SSI may fail due to some difficult types of SSIFSs being unrecognisable 

by using image processing procedures. Then we must consider including higher levels 
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of L1 (e.g. level 1- 2 of the SIR-Code in Table 2) to increase the entropy. Therefore, 

identifying the type of SSIFS by image matching is a first priority. This guesswork has 

to be tested by image analysis and mathematical morphology. Then, we implement 

higher levels until we define perfectly the SIR-CODE entropy that can help to make SSI 

pattern prediction applicable. 

 

The image matching methods are grayscale based and edge-based matching. 

The SSI patterns are not constant; they have many edges that are disrupted from exactly 

symmetric shapes. Besides, they are multi-variate in intensity contrast due to variable 

loudness of speakers. However, they generally have an average intensity contrast. 

Therefore, it may be that the correlation function works well for recognising SSI 

patterns. Add to that the correlation results can easily interpreted by eye which can help 

to define some naive procedures for SSI pattern recognising. 

 

 

3.12 Some naive procedures for SSI pattern recognition 
 

Matching techniques fall into two broad categories: area based matching 

(ABM) and feature based matching (FBM), respectively. The correlation and the least 

squares matching approach are well known methods for ABM. FBM determines the 

correspondence between image features and does not require very precise initial 

estimates. The correlation and the least squares matching approach are well known 

methods for area based matching in image recognition. Normalised cross-correlation 

(NCC) is a basic but effective method to provide a similarity measure and is often 

adopted for similarity measurements due to it is good robustness [82]. The NCC is a 

grayscale based matching method and is affected by variable intensity contrast of the 

object. Figure 26 shows a naive sample of the SSI (without any enhancements). The 

background is full of clutter, which is random in location and varying in intensity 

contrast which affects badly the NCC result. 
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Figure 26 the SSI of the word ‘Dark’ without noise background reduction. 

 

To maximise the NCC between the SSI pattern templates and the input 

image (to which the SSI is being matched), the variation in the SSI must be minimised, 

if possible by some form of pre-processing operation on the raw spectrogram data. 

Many of the disruptions to spectrogram images are related to clutter in the raw images 

and recognition improvements depend on how much this can be reduced. However, in 

addition, the speech signals of words which are uttered by different persons give rise to 

spectrograms with only quasi common shapes. If these shapes can be made more similar 

by appropriate pre -processing, the resulting NCC between the SSIs from different 

speakers will increase. 

 

3.12.1  Reduction of Clutter in the SSI 
 

Speech-only excerpts are difficult to obtain as we rarely encounter real-

world segments with no noise. The spectrogram is usually accompanied by different 

forms of noise, including those formed during sound recording [83], and those produced 

during the transformation to the frequency domain which result from spectral leakage 

when the power spectra are computed. Thus the resultant spectrograms contain 

important sound patterns of the signal immersed in contaminating noise and disrupted 

by artefacts generated during discrete Fourier transformation to the frequency domain. 

Therefore, cleaning the signal in the time domain will not ensure a completely pure 

spectrogram [84]. 
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3.12.2  The noise background reduction algorithm 
 

The noise contaminating the spectrograms can have almost the same power 

level as the weaker power spectrum formant features at the same frequency which when 

removed from the whole spectrogram will thus necessarily eliminate the weaker 

formant patterns located at higher frequencies. However, this effect is not very critical 

since recognition depends largely on the high power lower frequency formant 

components of the SSIs. The dynamic range is limited to - 40 dB below the maximum 

value for all tested sounds [75]. Therefore, any points with a power value outside this 

range, that includes the noise as well as very weak formant patterns, are eliminated from 

the spectrogram. Figure 27 shows the same word sample in the naive SSI shown above 

in Figure 26, but with noise below -55dB eliminated, while with the threshold set at -40 

dB the SSI has the appearance shown in Figure 28. 

 

 

Figure 27 shows the SSI of the word ‘Dark’ with noise background threshold of -

55dB. 

 

Figure 28 shows that the AFT types are affected partly while the formant 

structures (type of SSIFS in this example of the SSI of the word ‘Dark’) are not affected 

and are more obvious. Importantly, the type of SSIFS forms a word identity. 

Consequently, the -45 dB threshold level for noise reduction has been used in this study. 
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The SSI is relatively stable in the presence of high levels of background noise and 

reverberation [85],  which provides a significant improvement in performance on highly 

reverberant speech for ASR . 

 

Figure 28 shows the SSI of the word ‘Dark’ with noise background threshold of -

40dB. 

 

Matching the two SSIs (‘dark’) is shown in Figure 29(a) and (b), in which 

the latter SSI is wider than the former but not sufficiently so to disrupt the NCC process 

significantly. However, the matching operation results in only part of the greater width 

image being matched with the smaller width image as shown in Figure 29(c). The NCC 

result is displayed in Figure 29(d). The NCC peak position is calculated with respect to 

the first line of pixels of both images (the template and input images are the same 

height), so the displacement of the maximum point of the NCC gives the starting 

position displacement of the matching area between the greater width image and the 

smaller width image. After clutter reduction, the NCC value is increased from 0.80771 

to 0.82757 as shown in Figure 29(d) and Figure 30(d) the reduction from the normalised 

value being due to inexactly matched durations of the two SSIs in this example but 

demonstrating an effective match can be made despite this. In the latter figure, the 

position of the correlation peak is shown to be unaffected by the noise removal process. 
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Figure 29 shows matching between two SSIs without clutter reduction: (a) Smaller 

width SSI (of the word ‘Dark’); (b) Greater width SSI (of the same word uttered by 

different persons); (c) The part of the greater width image matched with the smaller 

width image; and (d) Display of the NCC value and the position of matching of the 

greater width image with the smaller width image. 

 

 

Figure 30 shows matching between two SSIs without clutter reduction: (a) Smaller 

width SSI (of the word ‘Dark’); (b) Greater width SSI (of the same word uttered by 

different persons); (c) The part of the greater width image matched with the smaller 

width image; and (d). Display of the NCC value and the position of matching of the 
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greater width image with the smaller width image (unchanged from the position in the 

unfiltered SSIs). 

 

To show the reliability of the clutter reduction, the same procedure was 

repeated for matching of two SSIs of others words, as illustrated in Table 3. 

 

Table 3 shows the increase of the NCC after clutter reduction of the SSIs of the 

words indicated 

 

Two SSIs 

compared for the 

words shown 

 

SSI: 

NCC, before 

reducing the 

image clutter  

NCC, after 

reducing the 

image clutter 

 

Dark 

 

 

 

0.80771 

 

 

0.85813 

 

Water 

 

 

 

0.81826 

 

 

0.87309 

 

Wash 

 

 

 

0.79392 

 

 

0.8195 

 

Get 

 

 

 

0.70692 

 

 

0.80723 

 

 

3.12.3  Normalising the time dimension of the SSI based on 

increasing NCC value (overcoming speaker variation or 

speaker style) 
 

The NCC is well known to be sensitive to differences in the scaling between 

the reference image (template image) and the matching pattern (input image) ; thus SSIs 
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should be, ideally, normalised in time duration before matching is attempted (since of 

course, SSIs have variation in time duration). 

 

The SSIs are not restricted by source or sensor specifications, but are created 

from these by an analytical transformation. Thus the resolution of the SSI, in both 

frequency and time, is controllable. We choose a recommended image resolution that is 

easily recognised by an expert human reader of sound spectrogram images. Thus the 

SSI resolution that we use in this study has a size of 256 × (var) pixels which is fixed 

on the vertical (frequency representation) axis but dynamic along the horizontal (time) 

axis. This is because the time representation depends on the time duration of the uttered 

words which is related to the speed of speech and the number of word phonemes 

included in the speech utterances, and so varies accordingly. 

 

The frequency ranges within any particular word which is uttered by 

different people have relatively equal position of the low formants and slightly different 

positions in the high formants (which we have previously mentioned). The first formant 

in the SSIF types have very similar in positions along the frequency axis and so do not 

need to be explicitly corrected. 

 

However, this is not the case with the duration of the SSIs which can vary 

considerably depending on the speed of speech. Figure 31(a) and (b) show a shorter and 

longer SSI length image of the word ‘dark’, the latter being almost double the time 

duration of the first. NCC between these results is a low value of 0.63668 due to this 

scale change. 
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Figure 31 shows the matching between SSIs from different speakers without 

normalisation of the length of Frequency Transition FT: (a) Shorter FT length of SSI 

(of the word ’Dark’); (b) Longer length FT of same SSI from different speakers; (c) 

The part of the longer SSI width is matched with the shorter (FT) length image; and 

(d) Display of the NCC value and the position of matching between the two SSIs. 

 

Consequently, the correlation of SSIs is affected by scaling invariance, 

mostly in the x-axis variable, i.e. time. Therefore, it is important to perform the 

correlation after transforming the input SSI and the reference SSI (they are expected to 

be of the same word type) to a domain such that the effect of scaling invariance is a 

minimum. Thus, the transformation can be represented as: 

 

𝐼 (𝑥, 𝑦) = 𝐼(𝑥 − (𝑎 + 𝑏𝑥), 𝑦) ≈ (𝑎 + 𝑏𝑥)𝐼𝑥 (𝑥, 𝑦) Equation 6 

 

The parameters (a and b) can be found by forcing the partial derivatives of 

the error to zero and solving the system:  

 

∑(𝐼(𝑥, 𝑦) − (𝑎 + 𝑏𝑥) ∙ 𝐼𝑥 (𝑥, 𝑦))
2 = 𝑚𝑖𝑛

𝑥∈𝜌

 
Equation 7 

 

Since our work focusses on a real - time implementation, we have avoided 

computationally expensive transformation to reduce the effect of scaling invariance.  
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In this study, this problem is solved at the individual level of the word by 

extending the shorter FT image to make it closer to the longer FT image and vice-versa 

i.e. changing the length of both images to a chosen normalized value.  Figure 32(a) 

shows an initially longer time SSI compressed in length and Figure 32(b) shows an 

initially shorter time SSI lengthened, so they both match to a given standardised pixel 

count. This will clearly improve the NCC between the two SSIs which increases to a 

value of 0.86685 to reflect the fact that the two SSIs are now very similar. However, to 

achieve this normalisation successfully we need to reliably detect the FTs at the 

beginning and the end of the SSIs. Thus we use the FTs as markers for the SSI 

boundaries and normalise the pixel count (along the time axis) between them. 

 

Figure 32 shows the matching with the normalised the length of SSI: (a) Smaller 

width (originally longer length) of SSI (of the word ’Dark’); (b) Greater width 

(originally shorter) of SSI; (c) The part of the greater width image matched with the 

smaller width image, showing full coverage of the SSI; and (d) Display of the NCC 

value and the position of matching for the normalised SSI. 

 

Normalising the time dimension of the SSI could generate some spacious 

matching when the input SSI overlaps a part of the reference SSI (template image) and 

so gives a high NCC. Defining all the classes and types of a certain lexicon can help to 

avoid these causes of false overlap matching. It should be that each class of SSI’s type 

has an average length duration. Another alternative solution has been used by us 

previously [81], which is matching only SSIFS in the SSI of a word rather than whole 
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SSI matching. The form of the SSIFS is assumed as unique, so the probability of false 

overlap matching will be very low. The Pre-processing steps for preparing an SSI are 

summarised in Figure 33. 

1- 

 

 

2- 

 
3- 

 
4- 

 

 

Figure 33 Pre-processing steps for preparing SSI. 

 

A test (1) was conducted between a reference SSI and a group of twelve 

SSIs of the word ‘Dark’, each spoken by different individuals. The reference SSI has a 

formant transition (FT) length equal to 108 pixels and the test SSIs have FT lengths of: 

150, 145, 171, 169, 157, 122, 129, 111, 100, 120, 215 and 121 units, respectively. The 

test has been repeated for cases: 1) without applying the pre-processing steps; 2) after 

applying only clutter reduction; and finally 3) by applying all pre-processing steps. Thus 

the test of case 3 was done by re-sizing the SSIFS lengths of the test group so they each 

become closer to the SSIFS length of the reference SSI, resulting in the SSIFS lengths 

of the test group becoming modified to be: 108, 107, 106, 108, 107, 104, 106, 100, 106, 

1-Sound signal of a word  

2-Convert speech signal into 

SSI with certain resolution  

(256 × (var) pixels) 

3-Clutter reduction, capture 

the pixels falling in range of 

40 dB from the maximum 

power anywhere in the SSI 

(Reduced Clutter Image) 

4-Segment region of SSI 

(cute only the SSIFS type) 
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108 and 107 units, respectively. Figure 34 shows how the results of the NCCs are 

improved after applying the pre-processing procedure. It can be observed that the NCC 

values become high enough to give an average similarity around 78%, a significant 

improvement from the approximately 60% average obtained without pre-processing. 

 

Figure 34 the pre-processing procedure is shown to improve the NCCs between 

the reference SSI and the test group SSIs of the same word ’Dark’. 

 

Test (2) was run to recognise the SSI of the word ‘Dark’ (reference SSI) 

among a set of SSIs of words [‘Dark’, ‘Water, ‘Wash’ and ‘Get’] ( as input SSIs). The 

results of the NNC between the reference SSI and input SSI are: 0.8568, 0.6557, 

0.6247, and 0.5987, respectively for the input SSIs: ‘Dark’, ‘Water, ‘Wash’ and ‘Get’. 

 

The pre-processing procedures described in this study form a sequence of 

steps prior to matching two SSIs of any given word. The steps are straightforward and 

can be implemented computationally efficiently. The results presented in Figure 34 

show some preliminary but encouraging results indicating the described pre-processing 

operations when applied to the SSIs do indeed improve subsequent inter-person NCC 

based word recognition. 
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3.13 The start and end points of words on the SIR-CODE (L1-2) 

classification  
 

The endpoint detection is a process to separate the speech segments of an 

utterance from the background, i.e., the non-speech segments. Endpoint detection is a 

verification of speech segments that becomes relatively difficult in noisy environments. 

A problem of the endpoint detection is that it cannot be recovered in the later stages of 

recognition. Thus, when a word is actually spoken, the speech segments can be reliably 

separated from the non-speech segments in the initial stage of recognition. One of the 

advantages of the SSI is that it is robust for speech noise. Indeed, the start and end points 

of the segments of five patterns (FFP, SFFP, LAFP, SAFP and G in the SIR-CODE-L1-

2) are very clear. There is no overlap of any of the patterns of L1-2 over each other. 

This is obvious through the figures demonstrated previously in this chapter. The four 

segments of L1-2 (apart from the G pattern) already have an underlying information 

and the combination of them including the G segment makes a word in language have 

a unique image object. Therefore, the SIR-CODE (L1-2) can increase the performance 

of ASR effectively.  

 

Clear start-end points can help to implement the dynamic time warping of 

the SSI patterns. This is very important for implementing a continuous speech 

recognition based only on SSI recogniser.  

 

3.14  Labelled and segmented speech of TIMIT Database 
 

The TIMIT database defines the units of speech into deferent levels: 

continuous speech sentence level; word level; and phone level, that can be trained. The 

success of the training algorithms is highly dependent on the quality and detail of the 

annotation of those units. TIMIT contains a total of 6300 sentences, 10 sentences spoken 

by each of 630 speakers from 8 major dialect regions of the United States. TIMIT 

transcriptions are based on 61 phones [86]. TIMIT has become the database most widely 

used by the speech recognition research community. 
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However, we have observed an important observation of the TIMIT speech 

database. Some words in TIMIT are incorrectly different in regard to starting and ending 

points. This variation has been checked both by hearing them and by comparing their 

SSIs. As an example, Figure 26 shows some such words : 

‘Did’, ’This’, ’Will’, ’The ’, ’In’, ’From’, ’And’ and ’To’. Each word has been displayed 

by 4 SSIs to present visually the difference in pronunciations of four different speakers 

and from different sentences in the TIMIT database for the same word. The SSI words 

on the right hand side of Figure 35 are very different from the first three signatures and 

that is due to the inaccurate defining of the start and end of some words. In fact, the 

issue of the difference in starting of ending points is more obvious in short words like 

‘And’, ‘To’, and ‘In’. That shows the shortcomings in the TIMIT database rather than 

the failure of SSI recognition ability. 

w
o

rd
 Three examples of the same word for different 

speakers and genders from different sentences.  
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Figure 35 shows the shortcomings in the TIMIT database in defining start and end 

points for some words. 

 

 

3.15  Discussion 
 

Our work is focussed on the English language, but in principle it could be 

applicable for all spoken languages. Speech segmentation is a mental process used by 

humans (subjective process) to identify the boundaries between words, syllables and 

phonemes in spoken languages. Speech segmentation is also applied by artificial 

processes (objective processes) to a natural language for recognition. The gap between 

the subjective and the objective processes, in terms of their phoneme levels, cannot be 

adequately solved without training algorithms, which are sensitive to any background 

noise. 

 

The SSI is a robust speech recognition method for background noise and 

reverberation because the SSI patterns are relatively stable in their presence which 

makes the subsequent ASR effective. Also, the SSI matching technique is useful in 

matching the same word uttered by different persons. Indeed, the SSI of a word uttered 
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by different people has locality features that are adequate for recognising it. This type 

of matching allows for whole feature matching of a word in one process, which cannot 

be achieved by the traditional speech processing, which is a sequential training process. 

The technique of matching at one time is suitable for recognising an isolated word or 

improving ASR performance. The one-go matching technique is suitable for recognition 

at the word level. Then, it can be used for improving ASR performance, in general.  

 

The one go matching technique has many advantages, which we will 

explore later in Chapter 4 is discussing word level recognition. This does not mean that 

predicting speech processes such the dynamic time warping technique or HMMs cannot 

by applied on SSI patterns. However, they surely need adaptations to work properly 

with such prediction processes. We are interested in showing that the SSI patterns have 

sufficient speech features that they can be used for speech recognition. Hopefully, this 

will draw the attention of researchers to develop the SIR-CODE as an independent 

method for ASR. 

 

It is important to emphasise that in this chapter only words that contain 

SSIFS patterns have been tested for SSI recognition and the results are effective and 

reliable. As we mentioned, most words in the English language contain the FFP (one of 

the two patterns of SSIFS), consequently, a word can be classified into the number and 

order in the SSI patterns and can be easily recognised. We will look for this feature and 

explore other image matching techniques in the next chapter that deals with image 

techniques to analyse the SSI patterns. 
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4 CHAPTER FOUR  

SSI Pattern Recognition (SSIPR) 

4.1 Introduction 
 

In general, image analysis techniques can be divided into three basic areas: 

(1) low-level pre-processing; (2) intermediate-level pre-processing; and (3) high-level 

pre-processing [82]. Low –level-pre-processing deals with the image sensor that may 

involve an automatic reaction to be applied not requiring intelligent functions in order 

to perform compensation actions such as noise reduction or image de-blurring. 

Extracting and characterizing components are tasks of intermediate-level pre-

processing of an image using techniques of segmentation and description. Finally, high-

level pre-processing deals with recognition and interpretation. 

 

The image pre-processing methods we have used in SSI recognition are 

based on those in Table 2 in Chapter 3. These methods are based on deep understanding 

of SSI patterns and their sub- pattern structure. Therefore, we will now discuss some 

concepts and strategies from image pre-processing and recognition that can be used to 

perform precise matching of SSI patterns. 

 

 

4.2 SSI Analysis Techniques 
 

The SSI is in the form of an image. It is a mathematical transformation to 

display the magnitude of the signal spectral components versus time as a three-

dimensional plot (time vs. frequency vs. amplitude). Therefore, the accuracy of 

displaying the SSI is controlled by a windowing process, as has been discussed in detail 

in Chapter 2. Therefore, the SSI analysis is somewhat different from sensor image 

analysis, mainly in the form of image enhancements required. In addition, template 

matching (finding small parts of an image by matching a template image) is usually 

applied in image recognition. In contrast, the whole image can be matched to the SSI 

target in SSI recognition (rather than part of the image). 
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Some issues of SSI analysis and matching have been addressed in a paper 

by Al-Darkazali et al [81] and part of the procedure has been explained in Chapter 3. 

The details of analysis of SSIs in this work [81] can be summarised in three stages, as 

illustrated in Figure 36. 

 

 

 

Figure 36 Elements of SSI analysis. 

 

4.2.1 The three elements of SSI analysis: 

 

1) The SSI low-level analysis deals with functions to represent a speech 

signal as an image (SSI). We have explained in Chapter 2 the methods of representing 

a speech signal as an image by using time-frequency transforms, and what the optimum 

values are of the parameters in these transforms. Indeed, the spectrogram has been 

created for speech analysis. Although, it has some limitations it is the most commonly 

used method for speech analysis because it provides a simple and powerful means to 

read speech information. 

 

2) The SSI intermediate-level pre-processing deals with the task of 

extracting SSI patterns. To do so, the first stage is the reduction of clutter in the SSI 
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which has been introduced in Chapter 3. The reduction of clutter makes abrupt changes 

in the grey level values of the SSI patterns more obvious which can help to define the 

discontinuity and similarity of the SSI patterns which is a basis of extracting objects 

from an image [82]. The detection of isolated objects in SSI patterns can be made easier 

if the SSI is converted to what we have called a semi-binary SSI. The structure of the 

semi-binary SSI is an SSI that contains the SSI patterns embedded in a zero intensity 

level pixel background. Therefore, we avoid using traditional image segmentation to 

isolate objects (patterns) in the SSI. As mentioned previously, the pixel intensities of 

the SSI patterns (PSD) show important features of the speech wave signal that assist in 

the next recognition stage. 

 

We have suggested a method to create the semi binary SSI (SBSSI) of an 

SSI in our previous work [81]. The method is based on spectral subtraction. Technically, 

speech s(n) (a clean speech signal) is modulated as a random process to which 

uncorrelated random noise d(n) (the degrading noise) is added which results in y(n) [1]: 

 

𝑦(𝑛) = 𝑠(𝑛) + 𝑑(𝑛)  Equation 8 

 

The power density spectrum of Equation 8 is: 

C𝑦(𝜔) = C𝑠(𝜔) + C𝑑(𝜔)  Equation 9 

 

By normalising the range of the colour map image, the semi binary SSI of 

the SSI of is created as shown in Figure 37. Having achieved the semi binary SSI, the 

route to the next (final) stage has been prepared. Thus thresholding and region splitting 

can then be used on the SSI patterns. The SBSSI allows us to employ both digital image 

pre-processing and image matching. 
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Clutter reduction the SSI Normalised SSI 

  
Figure 37 shows the semi-binary SSI of the SSI of the word ‘Dark’. 

 

3) SSI recognition and interpretation is the automatic analysis of the SSI 

into its pattern regions, which can be achieved with PR techniques (to identify them). 

The PR of the SSI can include both fixed and dynamic methods of recognition. The 

fixed method is implemented by matching a part of the complete SSI pattern to make 

the recognition decision. Dynamic sliding of the template to achieve recognition can be 

applied for continuous SSI patterns produced from natural speech. Indeed, the patterns 

are characterised in terms of primitive elements, sub-patterns, and their relationships 

[87]. PR can help to segment the SSI into classes and produce SSI clustering. PR 

methods applied to the SSI problem are used to identify the multiple classes and 

discriminate between them so allowing speech interpretation based on image pre-

processing methods. 

 

4.2.2 Matching technique for PR 
 

Matching techniques fall into two broad categories: area based matching 

and feature based matching, respectively. The cross-correlation and the least squares 

matching approach are well known methods for area based matching. Feature based 

matching determines the correspondence between image features and does not require 

very precise initial estimates. 

 

The area image matching methods can be classified as grayscale based and 

edge-based matching. The SSI patterns are not a one-target pattern (as occurs in 

template matching). Also, the SSI patterns have a large number of edges and there are 

disruptions to these patterns so that they do not have exactly symmetrical shapes. Also, 
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the SSI patterns are variable in intensity contrast due to the variable loudness of 

speakers. However, the SSI patterns have limited levels of pixel intensity. Therefore, it 

may be that the normalised cross correlation function works well for recognising SSI 

patterns. Add to this that the cross correlation results can easily be interpreted in terms 

of image pre-processing which can help to define some naive procedures for SSI pattern 

recognition. 

 

4.2.3 Normalised cross-correlation 
 

The most straightforward method of matching is a minimum distance 

classifier which yields an optimum performance for an n-dimensional pattern in spatial 

space (more suitable for hyperploid patterns). Traditional image correlation is based on 

finding matches of a sub-image 𝑤(𝑥, 𝑦)  of size 𝐽 × 𝐾 within an image 𝑓(𝑥, 𝑦) of size 

𝑀 ×𝑁 , where 𝐽 ≤ 𝑀 and 𝐾 ≤ 𝑁. The correlation between 𝑓(𝑥, 𝑦) and 𝑤(𝑥, 𝑦) is: 

 

𝑐(𝑠, 𝑡) =∑∑𝑓(𝑥, 𝑦)𝑤(𝑥 − 𝑠, 𝑦 − 𝑡)

𝑦𝑥

 
Equation 10 

 

where s=0,1,2….,M-1 , t=0,1,2,….,N-1 , and the summation is taken over 

the image region where w and f overlap [82], as shown in Figure 38. 

 

 

Figure 38 Template matching [82]. 
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Images of SSIs are of equal width (J=M). Therefore, it is necessary to 

modify the conventional NCC to make it work with equal dimensional matching. This 

has been done in our reported work [81]. We called that process global matching.  The 

global matching is to measure the similarity of the SSIs of two speech signal words 

uttered by different persons by calculating the NCC at each different displacement along 

the time axis between two comparative images, one being the greater width image 

𝑔𝑆𝑆𝐼 (𝑥, 𝑦) of size M×K and the other the smaller width image 𝑓𝑆𝑆𝐼  (𝑥, 𝑦) of size M×N, 

as shown in Figure 39. 

 

 

Figure 39 process global matching for SSIs. 

 

The correlation between 𝑓𝑆𝑆𝐼(𝑥, 𝑦) and 𝑔𝑆𝑆𝐼(𝑥, 𝑦) is:  

 

𝑐(𝑡) =∑∑𝑓𝑆𝑆𝐼(𝑥, 𝑦)𝑔𝑆𝑆𝐼(𝑥, 𝑦 − 𝑡)

𝑦𝑥

 
Equation 11 

 

where t=0,1,2,….,N-1is the position of the maximum of the correlation 

output which gives the starting position of the region within the greater width image 

that matches with the smaller width image. 

 

Therefore, the normalised cross correlation (NCC) of SSIs can be written 

as: 

𝑁𝐶𝐶𝑆𝑆𝐼(𝑡)

=  
∑ ∑ [[𝑓𝑆𝑆𝐼(𝑥, 𝑦) − 𝑓(̅𝑥, 𝑦)][𝑔𝑆𝑆𝐼(𝑥, 𝑦 − 𝑡) − 𝑔̅]]𝑦𝑥

{∑ ∑ [𝑓𝑆𝑆𝐼(𝑥, 𝑦) − 𝑓(̅𝑥, 𝑦)]
2
∙  ∑ ∑ [𝑔𝑆𝑆𝐼(𝑥, 𝑦 − 𝑡) − 𝑔̅]2𝑦𝑥𝑦𝑥 }

1
2⁄
 

 

Equation 12 
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where 𝑔̅ is the average pixels value in 𝑔𝑆𝑆𝐼(𝑥, 𝑦), which is computed once, 

𝑓(̅𝑥, 𝑦) is the average value of 𝑓𝑆𝑆𝐼(𝑥, 𝑦)  in the region coincident with the current 

location of 𝑔𝑆𝑆𝐼(𝑥, 𝑦), and the summations are taken over the coordinates common to 

both of 𝑓𝑆𝑆𝐼 and 𝑔𝑆𝑆𝐼. The 𝑁𝐶𝐶𝑆𝑆𝐼 is independent of change in amplitude of 𝑓𝑆𝑆𝐼(𝑥, 𝑦) 

and 𝑔𝑆𝑆𝐼(𝑥, 𝑦) (in a range between -1 to 1). However, since the NCC is average pixel 

based, the unvoiced patterns affect badly the NCC value, because the unvoiced patterns 

appear like image clutter and have no specific spatial structure. 

 

4.2.4 Frequency matching 
 

The multiplication in the frequency space is identical to convolution is the 

spatial domain. On the other hand the Fourier domain filter can be attenuated at certain 

frequencies and pass others. Therefore, frequency domain image matching can be used 

in classifying image objects. The object distortion and cluttered background are 

obstacles in image PR. Therefore, filters such as the Maximum Average Correlation 

Height (MACH) filter has been used to overcome some of these difficulties. The MACH 

filter has been used for classification of objects. It is employed in palm printer 

identification [88]. The MACH filter also has the ability to suppress clutter noise [89]. 

 

The optimal -trade-off (OT) Mach filter in the frequency domain is 

expressed as: 

 

𝑂𝑇 =
𝜔𝑥

𝛼 𝐶𝑥 + 𝛽 𝐷𝑥 + 𝛾 𝑆𝑥
 

Equation 13 

 

𝜔𝑥  is in the frequency domain and can be represented by training 

vectors 𝑥1, 𝑥2, … 𝑥𝑁 . 𝐶𝑥  is the diagonal of the matrix of the PSD of the object with 

additive input noise. 𝐷𝑥 is the diagonal average PSD of the training images. 𝑆𝑥 denotes 

the similarity matrix of the training images [89]. The MACH filter needs to be tuned by 

parameters (𝛼, 𝛽, 𝑎𝑛𝑑 𝛾) based on the object of interest. The noise can be considered as 

any unwanted objects. Mainly, the clutter noise is the additive noise which is added by 

the image sensor. Therefore, image clutter is random and mostly of low PSD.  
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4.3 Feature based matching 
 

Pattern classification can be achieved by characterizing the quantitative 

information (features) of the SSI pattern; these features are primitive components such 

as abrupt endings, branching and merging, and disconnected segments. They are, 

together with their relative sizes and location, features of the patterns that help to 

provide recognition. In this section, we present some of the general methods to classify 

SSI patterns based on speech waveform distinguishing features. 

 

4.3.1 Grey-level slicing 
 

One of the fundamental first steps in any speech recognition system is the 

classification of frames as voiced or unvoiced. That is equivalent to classifying the SSI 

patterns of a word into the SSIFS and the SSIRS patterns. On first inspection, one of 

the features of the voiced frames is that they tend to be higher energy than unvoiced 

frames. Usually, the SSIFS are of higher energy [90]. Therefore, the SSIFS regions are 

represented as a darker colour than the SSIRS region in the SSIs. This can be a key to 

highlighting a specific range of grey levels for separating the voiced part in the SSI by 

using grey-level-slicing. Grey-level-slicing is one approach that can be used to display 

a high value for all grey levels in the range of interest (e.g. SSIFS intensity 

representation) and low values, below the set threshold to background grey-level 

tonality [82]. There are several ways of doing level slicing but they have the same basis 

by rounding the elements of an image to the nearest integer greater than or equal to the 

image. 

 

4.3.2 Image Subtraction 
 

The difference between the original SSI and sub-image (e.g. the SSIFS 

pattern of the SSI) to give an image with remaining interesting patterns in the SSI is 

accomplished by an image pixel by pixel subtraction, which can be expressed as: 
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gSSI(x, y)⏟      
remaining 

 patterns of SSI

= fSSI(x, y)⏟    
whole SSI

− hSSI(x, y)⏟      
part of SSI

 Equation 14 

 

4.3.3 Spatial matching 
 

Image filters can emphasise certain features or remove other features. Image 

filtering is useful for applications such as removing noise, and smoothing, sharping, and 

edge enhancement image. It is known that in an image, the high frequency components 

characterise edges and other sharp details in the image, whilst image noise is a random 

variation of pixel intensities. On this basis, it is possible to build a filter for 

discrimination between the SSIFS and the SSIRS of SSI patterns. 

 

The equivalent in the spatial domain of frequency domain filtering can be 

implemented by convolution processing, which multiplies the elements of the kernel by 

the matching pixel values when the kernel is centred over a pixel. The result is array 

elements of the same size of the kernel that are weighted by their neighbour values 

replacing the original pixel values.  

 

Filtering can be equivalently applied in the frequency domain (FFP of the 

kernel), and it is often more suitable for filtering a range of frequencies. Based on the 

application, the filter types are low pass filter, high pass filter, directional filtering, and 

Laplacian of a Gaussian (i.e. band pass) filtering. 

 

 

4.4 Common tasks in SSI recognition 
 

As we have mentioned before, the SSI of a language consists of image 

patterns, which are a series of shapes interfaced to create a type. Thus, a language can 

be classified into types of SSI (e.g. SSIFS and SSIRS) so that they interface to create 

the SSI of a word. A type can be classified into different kinds, which defines how this 

pattern is implemented (e.g. each sound of Vowels, or Diphthong, or Semivowels, etc. 

creates a different kind of SSIFS). 
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The SSIPR involves the extraction parameters, the detection of regions of 

interest (segmentation of SSI patterns) and, finally, the identification of the class of the 

SSI (category). Thus, the SSIPR process contains algorithms of segmentation, 

classification, and parsing. The parsing searches algorithm parameters for constructing 

structural descriptions (tree classifiers) to identify the segmented SSI patterns and their 

relationships in descriptions. The SSI recognition decision (2-D SSI) needs appropriate 

positional relations to be used as a method for reducing it into 1-D structures of the 

strings for PR. The tree structure graph helps to discriminate complex structures in a 

straight forward way because we seek to design and build machines that can recognise 

patterns automatically. 

 

4.4.1 The tree structure example 
 

A natural generalisation of trees is a graph that allows the description of 

complex structures in a straightforward way on a high, problem-oriented level. Figure 

40 shows an example of describing the SSI of the word ‘needs’ into its primitive 

elements or sub-patterns, and their relationships based on Table 2 in Chapter 3. The 

word ‘need’ can be classified into SSIFS and SSIRS types.  The type SSIFS can be 

classified into kinds of FFP and SFFP while the type SSRFS into kinds of Gap and 

SAFP. A type or kind can be classified into classes (e.g. SSIFS can be created by 

different speech sounds). 

 

However, it may be possible to continue down in levels for further 

subdivision units based on image qualitative descriptors. Proceeding down the tree can 

resolve different regions in the SSI for more precise recognition of the class type of an 

SSI. 

 

Consequently, the SSIPR decision can be by integrating both a numerical 

decision by SSI matching (quantitative) and category decision by the SSI structure 

(qualitative) or by one of the methods individually. 
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Figure 40 A tree description of the SSI of the word ‘need’ based on L1-1 

categories (Table 2, Chapter 3). 

 

 



 

87 

 

4.5 Lexicon speech recognition 
 

The lexicon has been used in this study for providing the basic acoustic units 

of the SSI recogniser. Our lexicon is a data set consisting of the same 10 digits and some 

other words extracted from the TIMIT database. The data is of 39 words. Each word in 

the Lexicon has 15 samples and is uttered by 10 persons; ('one', 'two', 'three', 'four', 'five', 

'six', 'seven', 'eight', 'nine', 'zero', 'start', 'stop', 'yes', 'no', 'go', 'help', 'erase', 'rubout', 

'repeat', 'enter', 'dark', 'she', 'your', 'suit', 'greasy', 'wash', 'all', 'year', 'ask', 'carry', 'oily', 

'rag', 'like', 'that', and 'him' ). An exception is for four words, which have seven samples, 

i.e.: ('crab', 'challenged', 'quick', 'stab'). The total number of differently pronounced 

words is therefore equal to 553. 

 

 

4.6 Lexicon word recognition by SSI matching (numerical decision) 
 

This work comes out of standard speech recognition. So to demonstrate the 

results all the lexicon words have to be compared. In Chapter 3, it has been shown that 

the NCC does recognise the SSIFS patterns more effectively than the SSIRS. Moreover, 

the SSIRS patterns can effect badly the value of the correlation by decreasing the 

correlation value between SSIs of the same word (by a different speaker) or increasing 

the correlation value between SSIs of different words. This is because the SSIRS have 

random pixel distributions. Therefore, the expected matching of the SSI of a word (input 

image) with the remaining SSIs of the lexicon words cannot give encouraging results 

with NCC. 

 

The recognition decision by matching only has been tested by both spatial 

and frequency matching. Figure 41 demonstrates the maximum cross correlation (MCC) 

of the SSI of the word ’two’ with the whole lexicon words. The label MCC in Figure 

41 points to the input word location in the database (lexicon), which is row 2 of index 

9. The X-axis demonstrates the same word index (word uttered by different speakers), 

whereas the Y-axis demonstrates the lexicon words. The NCC values of the word input 

with lexicon words are mapped in the range of the colour bar. The maximum value of 

the MCC is the result of correlation between the SSI of the word input ‘two’ with itself. 
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As expected the NCC values are affected by matching of SSIRS patterns. The results of 

Figure 41 show that the maximum NCC values on row 2 which contains the word ‘two’ 

but still there are other values that are close to the MCC of the word ‘two’. 

 

 

Figure 41 illustrates matching the SSI of the word’ ‘two’ with the lexicon words in 

the spatial domain by NCC. 

 

In this case, we determine that the SSIRS is a noise component in SSI and 

it is necessary to suppress it. Next, we have applied the MACH filter for recognising an 

SSI pattern. The SSIR is random pixels but it has high PSD values such as in the SSIFS. 

In order to suppress the SSIRS noise, the MACH filter should be tuned to properly 

remove its affect as far as possible. 

 

The MACH filter tuning is accomplished by estimating three parameters (α, 

β, and γ) and has to determine their value for each SSI pattern to be recognised. So, the 
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trade-off between (α and β) should be dealt with first. Figure 42 shows the procedure to 

optimise the MACH filter parameters. 

 

 

Figure 42 shows the procedure to optimise the MACH filter parameters. 

 

We find the maximum peak at the best trade-off of α and β. The peak value 

is used to normalise the frequency matching results between an SSI of the input word 

and whole the lexicon words in order to display the result in the same way as the NCC 

matching of the SSI. Figure 43 shows the results of frequency matching between the 

word ‘two’ and the whole content of the lexicon words. The MACH filter produces 

better recognition results than NCC matching but still there are some incorrect 

recognition cases such as with words ‘no’ and ‘go’. 
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Figure 43 shows results of MACH filter matching the SSI of the word ‘two’ with 

other lexicon words. 

 

It seems that the randomness of the SSIRS patterns cannot be completely 

suppressed by tuning the MACH filter. Indeed the SSIRS random patterns have some 

pixel values almost the same as the SSIFS pattern pixels. However, the fingerprint of 

the SSI is represented by the SSIFS patterns. Therefore, the tuning of the MACH filter 

cannot discriminate the SSIFS pattern(s) in an SSI properly. 

 

Therefore, choosing a region of interest for matching is necessary. In other 

words, segmenting the area of interest based on Table 2 (in Chapter 3) of the SSI is 

required to improve the accuracy of the recognition decision of the SSI. The SSI patterns 

have been suggested by this study. Therefore, there is no literature for segmenting SSI 
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patterns in such as SSIFS and SSIRS. In addition, the SSI patterns have regularity in the 

shape but there are no fixed number of features such as of point, line and pixel values. 

Therefore, standard image segmentation methods must be modified to be suitable for 

this kind of SSI image. A new method of SSI pattern segmentation will this be proposed 

in this study. 

 

 

4.7 SSI Pattern recognition for L1-1 categories 
 

The L1-1 category is a classifier level to classify an SSI as to which type of 

SSIFS and SSIRS patterns it contains. The differences between the SSIFS and the 

SSIRS speech are clearly visible in the SSI. The SSIFS speech has a comb-like spectrum 

transition (i.e. has sharp details); the SSIRS exhibits a non-harmonic spectral structure 

(such as image noise). Furthermore, the SSIRS segments have most of their energy at 

high frequencies. On other hand, speech tends to consist of periods of high power 

(voiced phonemes), followed by periods of low PSD e.g. unvoiced phonemes and inter-

word pauses [90]. 

 

 

4.8 Distinguishing between SSIFS and SSIRS in the SSI (L1-1 

categories) 
 

Segmentation refers to the labelling of objects and change of the 

representation of an image into something that is more simple and meaningful for 

analysis. By that means we can get an object of interest surrounded by zeros pixels. 

Recognition of an SSI pattern by matching needs accurate image segmentation. 

Therefore, the object of interest should be close to the true value (in precision and 

reproducibility). In image segmentation, unrelated operations of image analysis can be 

employed such as interpolation, (grey-level) filtering, and registration to optimise the 

performance of the image segmentation to provide all needed object information. 

Practically, the extent of the image segmentation is because it could be that the object 

of interest is a 3D object detected by different image sensors. The image registration is 

to align multiple sensor data into a single integrated image in regard of time and 
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viewpoint. The integrating of the single image that is intensity-based and feature-based 

are suitable for computer vision, medical imaging and target recognition. The intensity-

based method is a correlation metric of comparing intensity patterns in an image, while 

the feature-based methods find a correspondence between points, lines and contours 

(image features). The SSI patterns are 2D shapes formed by chaotic arrangement of 

pixel values, so it could be that there are no continuous lines in these regions. 

 

4.8.1 Specific Segmentation algorithm for the SSI based on 

pixel grey-level 
 

Words uttered by different speakers produce different acoustic energy 

levels. The acoustic spectral density of speech is the amount of acoustic energy that is 

represented as pixel values in the SSI. Moreover, the first formant pixels are expected 

to be the higher values in the SSI. Therefore, the difference in peak values of input 

speech can avoided by normalising pixel values in the SSI. Then, the threshold from the 

maximum (Th-M) can be applied to leave only the higher value pixels, which are 

equivalent to approximating the higher spectral format(s) in the SSI. In other words, the 

SSI patterns can be classified as bands of pixel values from the maximum regions in an 

SSI. 

 

To explain this issue let us take the experimental example shown in Figure 

44. The two matrices are slightly different in value and are displayed as images that 

represent SSI images. Normalisation of the two image is shown in part 6 of Figure 44. 

Then, a high-pass filter between the range of 1: Th-M= 0.94 is applied to both. The 

results are shown for the same separation in part 8 of Figure 44. Then, putting zeros 

instead of the first segmented part, the remainder images are obtained as shown in part 

10 of Figure 44. Pixels values in both remainder images are almost in the same value 

range. The image can be segmented to a further level in the remainder image after 

renormalizing the remainder images by applying the same sequences (except Th-M 

=0.93) on the remainder images to segment a new level as shown part 12 of Figure 44, 

and so on, for further lower level equivalent pixels in the image example. 
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Thus, the equivalent high PSD regions of a speech signal in an SSI can be 

segmented in the same way. The core idea in this study is to segment the SSI patterns. 

The algorithm is based on the noise background reduction algorithm. The noise 

background reduction method has been used in Chapter 3 to represent a speech wave 

signal (within only maximum and a minimum human generated PSD) into the 

equivalent pixels in the SSI. Therefore, clutter in the SSI can be cut at level that does 

not destroy the SSI patterns of a word. 
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Figure 44 shows the threshold example of segmented regions of the higher pixel 

values in the SSI. 
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4.8.2 First formant segmentation in the SSI algorithm 
 

The FFP is the part of the SSIFS that contains the highest PSD in the SSI 

which is represented by darker pixels in the SSI (red colour). The FFP can be segmented 

by increasing the level cut until leaving only the FFP pattern in the SSI (SSI pixel values 

should be normalised). In other words, the SSI patterns are formed of different pixel 

levels (different PSD).  

 

Then, segmenting of the SSI patterns can be controlled between the 

maximum pixels (maximum PSD) to a lower certain level (threshold value) to leave 

only pixels equivalent to the higher PSD of a word by the SBSSI. 

 

Figure 45 shows images of the SSI of the word ‘carry’ and the SSITh=0.8. The 

SSITh=0.8 contains only the first format in the SSIFS in the word ‘carry’. Indeed, the 

SSITh=0.8 contains only pixels within 0.8% from the maximum in the PSD of the word 

‘carry’. 

 

A) The SSI of the word ‘Carry’ B) The SSITh=0.8 

 
 

The whole patterns of the word 

‘carry’ 

The SBSSI of the word ‘carry’ 

Figure 45 shows cutting of the first format in the SSIs of the word ’carry’. 

 

There is no guarantee that the remaining pixels even approximately 

represent the first formant in an SSI. To make sure that this is the case it is necessary to 

avoid the appearance of unexpected remainder pixels in an SSITh apart from those in the 

first formant. This can be done by cutting a strip of SSI0.8 between 5 to 40 horizontal 

lines in the SSI0.8 and adding it to a zero matrix of the same size as the SSI. 
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Finally, the binary image containing only the segmented part of relevance 

can be created by replacing all the remainder pixel values of the part of relevance by 

ones. These steps are illustrated in Figure 46. As a result of this a binary image has been 

obtained that allows the determination of the location of the approximate first formant 

in the SSI. 

 

(1) SSI 

 

(2) SSI0.8 

 

The SSI0.8 contains non-relevant conponent 

(3) Zeors Template of same SSI size 

 

(4) The clip of onle first format in SSI 

 

 

 

 

(5) Result of adding steps 3 & 4 (SBSSI) 

 

 

(6) Image segmentation of first formant in 

the SSI word ‘carry’. 

 

Figure 46 shows steps to segment the FFP in the SSI (higher PSD part of SSI). 

 

The SSIFS in the word ‘carry’ consists of only an FFP pattern (the SSIFS is 

either only an FFP pattern or both an FFP plus an SFFP pattern). In this case, the 
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discriminant FFP leads to recognition of the SSIFS in the SSI and so the SSIRS can be 

discriminated too. Figure 47 (A) shows the SSIFS is indicated by a black rectangular 

area so differentiating between the SSIFS and SSIRS part in the SSI of the word ‘carry’ 

as shown in (B) and (C) in Figure 47. 

 

Figure 47 shows an example of differentiating between the SSIFS and SSIRS 

patterns based on a segmented first format in the word ‘carry’. 

 

The SSIs are combinations of different types of patterns of FFP, SFFP, 

LAFP, SAFP, and G. Thus the discrimination between all SSI patterns is not as simple 

as the example of the SSI of the word ’carry’. Therefore, the algorithm needs to be 

improved to be more generally effective. 

 

A) The SSI 

 

B) The SSIRS 

 

C) The SSIFS 
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However, this specific segmentation algorithm for the FFP in the SSI is the 

core of a general algorithm for discriminating all SSI types. The differentiation between 

the SSIFS and SSIRS patterns allows the collection of statistical information about these 

patterns in an SSI (e.g. location, centroid, dimension etc.) for PR. 

 

Matching SSIFS patterns is much easier than matching the FFP patterns for 

the following reasons: firstly, the precise capture of the FFP patterns from within the 

SSI patterns is avoided (the segmentation of the FFPs is approximate); secondly, 

matching of SSIFSs (FFP+SFFP) is richer than matching only FFPs, because the SSIFS 

contains additional information to the FFP pattern. 

 

The SSIFS pattern could be formed of FFP and SFFP patterns. As an 

example, the SSI of word ‘seven’ can be classified into SSIFS (in the orange box) and 

SSIRS patterns as shown in Figure 48. In this example, the SSIRS is shaped by the 

sound /S/ and the SSIFS consists of the FFP (/EY/ and /AX/) plus an SFFP /N/, while, 

the /V/ is part of the SSIFS because it is effected by surrounding sounds of the FFP.  

 

 

Figure 48 shows the SSI patterns of the word ‘seven’. 

 

 

SSIFS 

SSIR

S 
/N/ 

SFFP

P 

/AX/ /V/ /EY

/ 

/S/ 
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4.9 General algorithm for segmentation of SSIFS and SSIRS 

patterns in the SSI 
 

Since the SSITh binary image is available, further MatLab image processing 

functions can be used. The general algorithm is based on finding connected components 

in the SSITh. The MatLab function “bwconncomp” returns the connected components 

in a binary image. However, it may return objects as connected components which are 

located linked to each other as shown in part 3 of Figure 49. Actually, we are interested 

in gathering connected components within objects based on their horizontal order 

indices since, this gives the length of the relevant object (FFP pattern). Therefore, there 

should be mapping of the connected components into the horizontal component indices. 

Then, based on the distance between the horizontal components indices it can be 

decided how many relevant objects in the SSITh there are. 

 

From now on, when an index component is mentioned, this means the 

horizontal component indices. The adjacent index components are formed around an 

object. Then, the MatLab function “regionpriorps” can be applied to measure properties 

of the identified objects in the SSITh. 

 

(1) Input ‘nine’ 

 

(2)  

 

Labeling the connected components in the binary image of the high PSD in the 

word ‘nine’.  

(3) e.g. lableling results of indices 

(2 and 3)  

(4) mapping components based on 

horizontal order indices 
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(5) Componnents are ordered based on 

horizontal indices 

(6) The adjacent components are 

gathered into one object.  

  

 

Figure 49 shows steps in creating a relevant object of connected components based 

on the identified horizontal component indices. 

 

4.9.1 Composition the SSIFS pattern  

 

The SSIFS is composed of the FFP and the SFFP. Then the general 

algorithm can summarised by the following steps: 

 

1. The FFP Segmentation: applying the “regionpriorps” on identified 

object regions in the SSI gives information such as the bounding box dimension of 

the objects. The number of FFP objects existing in an SSI can be obtained by 

scanning the distance between two consecutive indices of an object. Then, two 

objects exist if the distance is bigger than 15 units (where 15 is an estimated a typical 

dimension). Therefore, the number of the FFPs is equal to the number of distances 

greater than 15 plus one. These steps have been applied to the SSI of the word ‘seven’ 

Reassemble 

components based 

on horizontal order  



 

101 

 

(which contains two of the FFPs) and the result is displayed in Figure 50. The 

algorithm demonstrates successful distinguishing of the FFP patterns. 

 

 

Figure 50 demonstrates the FFP pattern segmentation in the SSI of the word 

‘seven’. 

 

2. SSIFS segmentation: the next step is the approximate segmentation of 

the SSIFS pattern. Let us first name the initial segmentation processing results. To 

do this we go back to the results of segmentation of the FFP pattern pixels in the SSI 

of the word ‘seven’ which is illustrated in Figure 51. The segmented FFP pattern is 

denominated by SSITh1, which is at the first threshold, and the remainder of the 

patterns are denominated by SSIRem1. The process is applied to the SSI, which is 

denominated by SSISeg1. 
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SSISeg1 

The FFP patterns in the word 

‘seven’ which is the SSITh1.  

The remainder patterns in the SSI of 

the word ‘seven’ after subtracting the 

FFP patterns, SSIRem1.  

  

 

Figure 51 shows the SSISeg1 results of processing of the word ‘seven’. 

 

3. SFFP segmentation: the next target is to capture the SFFP patterns from 

the SSIRem1. The SFFP is the high PSD content in the SSIRem1. Moreover, the first 

formant location contains the higher PSD in the SSI. Thus, the same steps can be 

applied as to the SSISeg1 with a new threshold on the SSIRem1 to segment the SFFP 

pattern which is denoted by SSISeg2. The threshold cut-off for the SFFP is less than 

the FFP, which could be within the range of the SSIRS pixels. Therefore, the SSIRem1 

needs to perform the necessary action to avoid the area of the SSIRS in the SSIRem1 

as shown in part 2 of Figure 52 to obtain what is denoted by SSITh2, as shown in part 

3 in Figure 52. The SSITh2 contains only equivalent pixels of high PSD in the location 

of the first format in the SSIRem1. These locations are approximate locations of the 

SFFP in an SSI.  
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Figure 52 illustration the segmentation of the SFFP patterns in the SSI of the word 

‘seven’. 

 

4. Composing the SSIFS: finally, by adding the result of Figure 48 

(containing the FFP pattern) with the result of Figure 52 (containing the SFFP) we 

can compose the SSISF pattern in the SSI of the word ‘seven’ as shown in part 4 of 

Figure 53. By this recognition process, the SSIFS in the SSI leads us to be able to 

distinguish the SSIRS in the SSI. 

 

 

Figure 53 shows the SSI of the word ’seven’ separated from the SSIFS-seven and 

SSRS-seven. 
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4.9.2 Steps in general algorithm segmentation of the SSI based 

on the L1-1 category 
 

The main steps of distinguishing between the SSIFS and the SSIRS patterns 

of the SSI of a word are shown summarised in Figure 54.  

 

 

 

Figure 54 shows the main steps of segmenting the SSIFS and the SSIRS patterns 

in the SSI of a word. 
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4.10 Testing and results of the general algorithm segmentation of the 

SSI 
 

The general algorithm for distinguishing between the SSIFS and the SSIRS 

patterns of a word has been applied on the lexicon words. Since it is difficult to display 

all the lexicon word results, three random samples of each word (the lexicon contains 

15 or 7 samples for each word) has been displayed in Figure 55 to Figure 62. 

 

The algorithm demonstrates good accuracy, with zero error in 

distinguishing between the SSIFS and SSIRS patterns for the whole lexicon of words. 

In addition, there is not a big difference in the capturing of the SSIFS and the SSIRS 

patterns for the three samples. Indeed, by optimising thresholds (i.e. Th-M) the 

algorithm can achieve perfect capturing of the SSIFS from the SSI. However, that is not 

the focus of this study. This study wishes to demonstrate that speech recognition of 

words by matching SSIs should be considered for ASR applications. 
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Figure 55 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words: ‘one’, ‘two’, ‘three’, ‘four’, and ‘five’. 
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Figure 56 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words; ‘six’, ‘seven’, ‘eight, ‘nine, and ‘zero’. 
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Figure 57 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words; ’start’, ‘stop’, ‘yes’, ‘no, and ‘go’. 
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Figure 58 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words: ‘help’, ‘erase’, ‘rubout’, ‘repeat’, 

‘enter’. 
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Figure 59 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words: ’dark’, ‘she’, ‘your’, ‘suit’, and ‘greasy’. 

 

 

 

 

 

 



 

111 

 

 

(2
6
) 

W
as

h
 

   

(2
7
) 

A
ll

 

   

(2
8
) 

Y
ea

r 

 
  

(2
9
) 

A
sk

 

   

(3
0
) 

C
ar

ry
 

   
Figure 60 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words; ‘wash’, ‘all’, ‘year’, ‘ask’, and ‘carry’. 
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Figure 61 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words; ‘oily’, ‘rag’, ‘like’, ‘that’, and ‘crab’. 

 

 

 

 

 

 

 

 (
3
1
) 

O
il

y
 

  
 

(3
2
) 

R
ag

 

  
 

(3
3
) 

L
ik

e 

  
 

(3
4
) 

T
h
at

 

   

(3
5
) 

C
ra

b
 

  
 



 

113 

 

 

Figure 62 discrimination between the SSIFS and the SSIRS by using general 

algorithm segmentation of the SSI for words; ‘challenged’, ‘quick’, ‘stab’, and ‘him’. 

 

 

4.11 Classification of the lexicon words by the general algorithm 
 

If the symbol A is given to the SSIFS and the symbol B to the SSIRS, the 

lexicon words can be classified into codes A and B by the general algorithm. The codes 

are then: A, BA, AB, BAB, ABAB, ABA and BABA. These, then appear in the lexicon 

words as follows. The code A appears in 7 words which are: ‘one’, ‘nine’, ‘no’, ‘your’, 

‘all’, ‘year’, and ‘oily’. The code BA is appears in 9 words which are ‘two’, ‘three’, 

‘four’, ‘seven’, ‘zero’, ‘go’, ‘she’, ‘carry’, and ‘him’. The code AB is appears in 7 words 

which are: ‘yes’, ‘erase’, ‘rubout’, ‘wash’, ‘ask’, ‘like’, and ‘rag’. The code BAB 
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appears in 13 words which are: ‘five’, ‘six’, ‘eight’, ‘stat’, ‘stop’, ‘help’, ‘dark’, ‘suit’, 

‘that’, ‘crab’, ‘challenged’, ‘quick’, and ‘stab’. The code is appeared in ABAB 1 word 

which is ‘repeat’. The code ABA appears in one word which is ‘creasy’. The last code 

BABA is appeared 1 word which is ‘enter’. The codes are shown in Figure 63 to Figure 

68. 
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Figure 63 shows the lexicon words of code A. 
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Figure 64 shows the lexicon words of code BA. 
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Figure 65 shows the lexicon words of code AB. 
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Eight  Start 

 
 

Stop Help 

  

Dark Suit 

  

Figure 66 shows the lexicon words of code BAB, group (1). 
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Challenged Quick 

  

Stab 

 

Figure 67 shows the lexicon words of code BAB, group (2). 
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Figure 68 shows the lexicon word of code BABA, ABA and ABAB. 

 

Then, the lexicon word can be parsed in a tree classification of the set codes 

of A and B as shown in Figure 69. The classification tree is based on the L1-1 category. 

The tree classification reduces the number of matches of the SSI of the word input with 

the lexicon words. 
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Figure 69 the tree classification codes of the lexicon words based on the L1-1 

category. 

 

 

4.12 Parsing input word and matching decision based on the L1-1 

category 
 

Parsing a word into the SSI patterns based on the L1-1 category can help to 

make the SSI recognition decision more accurate and reduce the number of false 

matches of the input word with lexicon words. Indeed, the matching is only for the 

SSIFS of the word input and lexicon words. Figure 70 shows the general steps for 

recognition of a word by parsing the word input based on the L1-1 category. 
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Figure 70 shows the SSI recognition by parsing and matching of the SSI patterns. 

 

 

4.13 Lexicon word recognition 
 

4.13.1  Test No.3 
 

An unsuccessful recognition example of recognition of the word ‘two’ by 

NCC and the MACH filter are displayed in Figure 41 and Figure 43, respectively. The 

same input word ‘two’ has been retested by NCC matching of the SSI based on the L1-

1 category. The results are displayed in Figure 71, which shows successful recognition 

of the word ‘two’. Indeed, the lexicon has 15 samples of word the ‘two’, which is 

represented in row two in Figure 71. The successful recognition of the word ‘two’ is 

indicated by the minimum NCC of index 15 NCC15 (=0.8319) and is located in row 2 

column 13 where the maximum value is located, while the NCC16 (= 0.7173) is located 

in row 11 column 15 which is the word ‘start’. Then, the word ‘two’ of index 13 (the 

minimum NCC of the word ‘two’ in the previous test) has been selected as input to be 

matched with the lexicon words. The matching is successful for recognition of the word 

‘two’, as shown in Figure 72. The NCC15 = 0.7973 is located in row 2 column 7, while 

NCC16 (=0.70475) is matched with the word ‘that’ that is located in row 34 column 11. 
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Figure 71 matching the SSI of the word’ ‘two’ of index 9 with the lexicon words 

in the spatial domain by NCC based on the L1-1 category of the SSI pattern 

classification algorithm. 

 

 

Figure 72 shows matching the SSI of the word’ ‘two’ of index 13 with the lexicon 

words in the spatial domain by NCC based on the L1-1 category of the SSI pattern 

classification algorithm. 
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4.13.2 Test No.4 
 

For improved reliability, a test of a random selection words from groups of 

code: BAB, A, BA, and AB were selected as an input image and matched with lexicon 

words. The input word was selected from 12/7 samples (the lexicon contains 15/7 

samples of the same word uttered by different persons). The results of group BAB words 

are displayed in Figure 73 and Figure 74 and the result of groups A, BA, and AB are 

displayed in: Figure 75, Figure 76, and Figure 77 respectively. The remaining groups 

of codes: ABA, ABAB, and BABA have only one element. Therefore, there is no need 

for distinguishing them by matching. The test performs successful recognition for all 

words that is obvious by the high NCC similarity, represented by the red coloured row, 

which shows the results of matching the word input with other instances of the same 

word uttered by different persons. 
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Random words from group of code BAB_ group 1:(6 words) 

Input word ‘five’ Input word ‘six’ 

 
 

Input word ‘eight’ Input word ‘start’ 

 

 
Input word ‘stop’ Input word ‘help’ 

  
Figure 73 shows successful discrimination of random words from code BAB_ 

group 1 by NCC matching of the SSI. 
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Random words from group code BAB_ group 2: (7 words) 

Input word ‘dark’ Input word ‘suit’ 

  
Input word ‘that’ Input word ‘carb’ 

  
Input word ‘challenge’ Input word ‘quick’ 

  
Input word ‘stab’ 

 
Figure 74 shows successful discrimination of random words from code BAB_ 

group 2 by NCC matching of the SSI. 
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Random words from code A (7  words) 

Input word ‘one’ Input word ‘nine 

  
Input word ‘no  Input word ‘your’ 

  
Input word ‘all’ Input word ‘year’ 

  
Input word ‘oily’ 

 

Figure 75 shows successful discrimination of random words from code A by NCC 

matching of the SSI. 
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Random words from group of code BA (9 words) 

Input word ‘Two’ Input word ‘three 

  
Input word ‘four’ Input word ‘seven’ 

  
Input word ‘zero’  Input word ‘go’ 

  
Input word ‘She’ Input word ‘carry’ 

  
Input word ‘him’ 

 
Figure 76 shows successful discrimination of random words from code BA by 

NCC matching of the SSI. 
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Random words from group of code AB (7 words) 

Input word ‘yes’ Input word ‘erase’ 

  
Input word ‘rubout’ Input word ‘wash’ 

  
Input word ‘ask’ Input word ‘rag’ 

  

Input word ‘like’ 

 
Figure 77 shows successful discrimination of random words from group of code 

AB by NCC matching of the SSI. 
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Discrimination of the word input has been made based on prior-information, 

which, is that the number of words which are the same is known i.e. 15 or 7 words. 

Consequently, we used the NCC15 or NCC07 to make the recognition decision if it is 

located in the same row of a word input in the lexicon which means the NCC matching 

of the SSI is able to distinguish the input word. The row colour is mostly red as shown 

in Figure 73 to Figure 77 which reflects the high NCC value. The average of NCC 

values of a word (values of the red coloured row) in their code sets (A, BA, AB, and 

BAB) is displayed in Figure 78 by the blue curve. The orange curve represents the 

NCC15 values, which are the minimum NCC values matching a word with the same 

word uttered by different persons. NCC16 is the maximum NCC value for matching of 

a word with other lexicon words, which are represented by the grey curve.  

 

Practically, the recognition decision should be made by a global threshold, 

which can be used for A and B to make the recognition decision for all the lexicon 

words. The threshold should be less than the average of the NCC15 values at a distance 

far enough from NCC16 values to obtain high recognition reliability. 

 

In any case, in our example test the NCC16 values do not exceed the NCC15 

values. This means a global threshold can be defined. However, the procedure for  NCC 

matching of the SSI that  has been used in this example test does not show a big enough 

gap between the NCC15 and NCC16 values for high reliably recognition. On the other 

hand, this gap can be made bigger by optimising the parameters for the translation 

matching of SSIFSs and the thresholding parameters of the SSI separating it into the 

SSIFS and SSIRS patterns (i.e. Th-Ms). Figure 78 shows that for test No.4 the results 

indicate that the global threshold cannot be defined for whole lexicon word. 
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Figure 78 shows the threshold gap of the matching test based on the L1-1 category 

algorithm. 

 

The local set codes are considered separately for defining the local 

threshold. Codes of sets A, BA, and BAB show that there is a possibility to define a 

threshold as shown in Figure 79 to Figure 81. However, the threshold is not sufficient 

for reliable application because the maximum NCC value can easily be changed slightly 

based on the starting point of the matching. In addition, for the code AB it is not possible 

to define a local threshold, as shown in Figure 82. 

 

 

Figure 79 shows the local threshold for the group code A for the lexicon words of 

the study. 

 

Th 
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Figure 80 shows the local threshold for the group code BA for the lexicon words of 

the study. 

 

 

Figure 81.shows the local threshold for the group code BAB for the lexicon words 

of the study. 

 

T

h 

Th 



 

132 

 

 

Figure 82 shows the local threshold for the group code AB for the lexicon words of 

the study. 

 

The general algorithm based on the L1-1 category has been test only with 

NCC matching of the SSI, showing good results can be obtained. The expectation is 

that the MACH filter could perform better than NCC matching of the SSI. In addition, 

it is still possible to add a further enhancement to the performance of the NCC matching 

of the SSI. 

 

 

4.14 Conclusion 
 

The aim of this chapter is to show there is a promising approach to a word 

recognition by using the SSI patterns. Therefore, we tried to establish a general 

approach for SSI pattern recognition, which can be perfected with further work. On the 

other hand, we have used only the L1-1 category. Of course, the higher levels of SSI 

pattern classification can make the recognitions decision more reliable. The modularity 

of ASR is based on the recognition of training data sets by HMM or neural network 

methods. There has been an enormous amount of work during the last 85 years of 

research and the building of commercial applications. Therefore, integrating the SSI 

recognition with the current ASR is a necessary requirement. This is the aim of the next 

chapter. 
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5 CHAPTER FIVE  

 

Improving Hidden Markov model recognition, 

by integration with phoneme pattern recognition. 

 

 

5.1 Introduction  
 

Human speech production begins with an idea and through a series of 

neurological processes and muscular movements produces an acoustic sound pressure 

wave that is received by a listener’s auditory system, processed and converted back to 

neurological signals. 

 

To achieve this, a speaker forms an idea to convey, converts that idea into a 

linguistic structure by choosing appropriate words or phrases to represent that idea, 

utters the words or phrases based on learning grammatical rules associated with the 

particular language, and finally adds any additional local or global characteristics such 

as pitch intonation or stress to emphasize aspects important for overall meaning. 

 

The availability of a small seed lexicon is assumed to represent a speech 

signal and then lean the pronunciations of new words directly from speech that is 

transcribed at word-level. The small seed lexicon are called ‘pieces’ of a speech signal 

which are matched to words in the recognition lexicon. The word-level is low-level 

recognition of speech and then there is the high level (language modelling) which is 

related to context dependency, and repetition. 

 

The piece of the speech is called a phoneme (field phonemic) which allows 

for more pronunciations per word in the recognition lexicon. It is called phone (field 

phonetic) and is matched by training data to get better statistical models of acoustic 

variation in an objective way. 
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5.2 Converting speaker (articulatory phonetics) to listener (auditory 

phonetics) 
 

As mentioned above, the theoretical unit of conveying linguistic meaning is 

a phoneme. Therefore, each phoneme has a unique set of articulatory gestures, which is 

a low level unit recognition of speech sound. Phonemes conveys the position and 

movement of the vocal tract articulators to produce a speech sound. 

 

From the signal processing point of view, the frequency domain spectra 

derived from the acoustic waveform of speech can infer significant information about 

the speech signal. In addition, from a system modelling point of view, the articulators 

give the properties of the speech system filter. So each vocal tract shape (which 

produces a certain phoneme) can be characterised by a set of resonant frequencies, 

which are formants. The formants’ frequency is a centre of frequencies. The type of 

excitation is one of the principal features of any speech sound. Thus, phonemes are 

practically measured by their frequency structure, the time waveform characteristic as 

acoustic sounds and then the unit is called a phone. Therefore, the motor program 

needed for performing a sequence of the phonemes produces a word or phrase. 

 

For expression based recognising of speech (sentence level) a tonal pattern 

of pitch, syllable stresses and timing to a rhythmic speech pattern are used and are called 

prosodic features. The prosodic cues are intonation and stress. The prosodic features are 

said to be super-segmental which is extended more than the normal one phoneme 

segment [1]. The prosodic features are local and global characteristics which are 

important for the meaning of a sentence.  

 

A speech sound production has another phenomenon which is called co-

articulation, which is a change in the phoneme articulation and acoustics caused by the 

influence of another sound and requires movement of articulators in the glottal source 

and vocal tract. Technically, articulations of phonemes typically overlap each other in 

time, thereby causing sound patterns to be in transition most of the time.  
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The anticipatory co-articulation is categorised as right-to-left and left to 

right. The right-to-left is because a phoneme (the right) induces motion to the present 

phoneme and for the next phoneme (to the left). So, when an articulatory gesture does 

not influence the following phoneme, the given articulator may move toward a position 

more appropriate for the following phoneme. But when the articulator does conflict with 

the following phoneme, this will begin to move during phoneme production earlier than 

others in anticipation of the next phoneme. Thus, left-to-right occurs when some of the 

present phoneme features drift into the following phoneme. The anticipatory co-

articulation suggests that syllables are the building blocks of words. Syllables occur 

when vowels have an optional initial and final margin with consonants. Syllables can 

influence the rhythm of a language, its prosody, its poetic meter and its stress patterns. 

 

This suggests that the motor program needed for performing a sequence of 

sounds, syllables and words appears to anticipate the number of remaining speech units 

to be produced within a breath group, shortens those which simply needs to be produced, 

but retains the reachability of the consonant constrictions and the recognisability of the 

stressed syllables. 

 

 

5.3 The gap between phonology and acoustic transcription 
 

The aim of theoretical linguistics is to construct models that help us 

understand a language in some meaningful manner. Therefore, linguistic theory seeks 

to achieve explicit, falsifiable, predictive, and complete theories in mathematical 

models, including the formal descriptions of generative linguistics. 

 

In models of phonology, the underlying form of the word is an abstract form 

that is postulated before any phonological rules have been applied to it. In, generative 

grammar, this is called the underlying representation [91]. A system of phonetic 

implementation relates surface phonological structures to measurable phonetic forms. 

These aspects of the linguistic system is studied theoretically in the dialects theoretical 

background, methods of measurement and phonological classification.  
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It is hypothesized, that the acoustic speech models are enough to quantify a 

wider range to cover speaking styles. Tactically, an acoustical speech model unit is an 

abstract (Acoustic feature) of a phonemic unit. Therefore, there is a gap between actual 

speech and acoustic speech representation. Actually, the gap is an error accumulation 

of speech representation unit, acoustical models and recognition algorithms. Speech 

engineers have been working to enhance speech recognition by working on better 

feature extractions, pronunciation modelling, acoustic modelling and noise handling 

[92]. 

 

5.4 Automatic speech Recognition (ASR) 
 

5.4.1 Fundamentals of speech processing 
 

The speech recognition models are hierarchically decomposed into different 

levels: the acoustic, phonetic and linguistic. With this decomposition, models of entire 

utterances can be classified into sharing sub-models (e.g. sentence into word models, 

and word models into sub-word models). There are a variety of types of sub-word model 

that are used including phoneme, bi-phone, syllable, or demi-syllable models.  

 

The problem of how fundamental units (phones, syllables and, words) may 

be concatenated, in what order, in what context and with intended meaning, is more 

involved than simply programming the correct grammatical rules for the language. 

Therefore, the problem is approached with two broad categories: acoustic decoder (low 

level) then followed by linguistic decoder (high level), with the indicated direction of 

the flow of information given in Figure 83. 
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Figure 83 A general speech recogniser. 

 

5.4.2 Speech processing engineering 
 

From the speech processing engineering prospective, speech recognition is 

a special case of pattern recognition which is supervised by training and testing. The 

speech recognition types are isolated words, connected words, continuous speech, 

spontaneous speech and speaker recognition. An ASR with spontaneous speech ability 

is able to handle a variety of natural speech features such as the words running together. 

The ASR may be viewed as working in four stages: analysis (pre-processing), feature 

extraction, modelling and, testing (post-processing) as shown in Figure 84. The main 

difference between classes of speech recognition is the modelling stage. 
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Figure 84 ASR system. 

 

The training and test phases employ powerful statistical signal processing 

approaches. There are two basic classes of statistical signal processing methods which 

are: template matching (i.e. dynamic time warping) and a stochastic approach (i.e. 

hidden Markov models and artificial neural networks). These algorithms form the basis 

upon which almost all contemporary speech recognition algorithms using sequential 

computation rely. The HMM has been the basis of several successful commercial 

speech recognition systems, because it is amenable to computation on conventional 

sequential computing machines [1]. The HMM is a stochastic finite state automaton 

(machine) used to model a speech utterance. The utterance may be a word, a sub-word 

unit, or in principle, a complete sentence or paragraph. 

 

From this point of view, there is no real loss of generality when using 

HMMs (which tends to model words). We selected words from continuous speech data 

to process them in HMM. These isolate words are considered as models of sub-word 

units (new units), models of words or models of phrases. Therefore, we are going to 

show the modelling by studying isolated word speech recognition (IWSR) which is 

fundamental to speech recognition systems [1]. The IWSR is based only on acoustic 

modelling, where there is no syntax or semantics to constrain the choice of words. The 

four stages of IWSR are shown in Figure 85 these are summarised below: 

 



 

141 

 

Analysis stage: at this stage, the speech is applied to a low pass filter and 

segmented by using the frame size and shifted to be in the range of 10-30 msec. 

 

Feature extraction: Acoustic observations are extracted over time frames 

of uniform length, then a Mel-scale filter is applied to get for example ten coefficients 

chosen to be an acoustic feature vector. Those features are normalized in energy and are 

called Mel Frequency Cepstral Coefficient (MFCC). 

 

Modelling: is a process of establishing statistical representations for the 

acoustic feature vector as states of the HMM. Researchers have proposed a variety of 

modifications and extensions for HMM based acoustic models to overcome their 

limitations. The HMM is a formal foundation for making probabilistic models of a liner 

sequence. The recognition processing can be done by recasting of the similarity between 

a recognition model and a segment of a speech signal as a probability. 

 

Acoustic Model: The phonetic models describe the statistical structure of 

words. Usually, the decision trees are used to produce word pronunciation. The acoustic 

models describe the structure of sound for each in a probability distribution over a 

varying length sequence of feature vectors. Acoustic models typically used to represent 

the distribution of each feature vector include parametric mixture densities. 

 

Testing stage: in general, it is a maximum of the likelihoods which are 

computed by the recognition model. 
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Figure 85 Isolated word speech recognition system. 

 

The recognition of a word in the ISWR algorithm is accomplished in two 

steps: first is estimation of the observations of sequential features of a word speech 

waveform [𝑜1, 𝑜2,… 𝑜𝑇]. Observations of a word can be supervised (in training) to 

create discrete observations of state transitions; the second step is recognition of the 

observation by using HMM. Actually, the word we want to be recognised (observation 

of the same word as that trained) should give the same state transitions. For running 

matching in a consistent way and while including as much as possible the difference of 

word features during various utterances, vector quantisation (VQ) is used to compress 

word observations to a fixed length vector. Associated with VQ is a distortion penalty 

but there is an incentive to keep the codebook as small as possible without endangering 

recognition ability since a larger codebook implies more computation. 

 

 

5.5 Probabilistic Model and the training problem 
 

It is well known that using probability as a prediction (i.e. propositions) is 

known as Bayesian probability, but the question is: it is possible to train a process 

probability to get better results and how can that be done. 
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5.5.1 What does training process probability mean and how 

can a given class generate certain feature vectors 
 

Suppose we have a set of words indexed by integers, 𝑤 = 1,2, … . 𝑅 which 

are outcomes of the word random variable 𝑤 ,which could be represented as a sequence 

of HMMs. The number of HMM states might equal the average number of phonemes 

within a word (e.g. 5 states). On the other hand, we have a feature vector modelled by 

the random vector 𝑂 extracted from the utterance of the word to be recognized. Ideally, 

the given vector outcome 𝑂 = 𝑂.  

 

The acoustic observations (𝑂; 𝑜1, 𝑜2, 𝑜3,… 𝑜𝑇) are given, so the optimal 

word sequence (𝑊̂) can be obtained from a conventional ASR engine as the probability 

below: 

 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟
𝑤

𝑃([𝑤 = 𝑤]|𝑂)  Equation 15 

where, w is a class represent a sequence of possible phones or words in 

ASR. 

 

However, in the learning process a given class will generate a certain 

feature vector, rather than the converse: 

 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟
𝑤

𝑃(𝑂|[𝑤 = 𝑤]) Equation 16 

 

By the definition of Bayes’ rule we have: 

 

𝑃(𝑊|𝑂)⏟    
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏.𝑜𝑓

 𝑐𝑙𝑎𝑠𝑠[𝑡𝑎𝑟𝑔𝑒𝑡] (𝑊)

𝑔𝑖𝑣𝑒𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 

 [𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒]  (𝑂)

=
𝑃(𝑂|𝑊)⏞    

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 
𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 
𝑎 𝑔𝑖𝑣𝑒𝑛 𝑐𝑙𝑎𝑠𝑠

 

𝑃(𝑊)⏞  

𝑐𝑙𝑎𝑠𝑠
 𝑝𝑟𝑖𝑜𝑟 
𝑝𝑟𝑜𝑏.

𝑃(𝑂)⏟  
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟
𝑝𝑟𝑖𝑜𝑟
𝑝𝑟𝑜𝑏.

[𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒]

 

 

Equation 17 

 

and 
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𝑃(𝑊|𝑂) 𝑃(𝑂) =  𝑃(𝑂|𝑊)𝑃(𝑊) Equation 18 

 

However, the observation is given, so P(O)  does not depend on 

probability P(W), therefore: 

 

𝑃([𝑤 = 𝑤]|𝑂)  =  𝑃(𝑂|[𝑤 = 𝑤])𝑃([𝑤 = 𝑤]) Equation 19 

 

Usually, the word probabilities are equal, so 

𝑃([𝑤 = 𝑤]) =
1

𝑅
 ,      𝑤 = 1,2, … , 𝑅, 

Equation 20 

 

Thus the maximization does not depend on P(w): 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟
𝑤

𝑃([𝑤 = 𝑤]|𝑂) =  𝑎𝑟𝑔𝑚𝑎𝑥⏟
𝑤

𝑃(𝑂|[𝑤 = 𝑤]) Equation 21 

 

Then 

 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟
𝑤

𝑃(𝑂|[𝑤 = 𝑤]) Equation 22 

 

Equation 22 is the training process conditional probability. 

 

5.5.2 The probability estimation of speech recognition 
 

The probability estimation process of ASR is a two part process: acoustic 

modelling, followed by language modelling [93]: 

 

𝑃(𝑊|𝑂) =
𝜌(𝑂|𝑊)

𝜌(𝑂)⏟    
𝐀𝐜𝐨𝐮𝐬𝐭𝐢𝐜 𝐦𝐨𝐝𝐞𝐥𝐥𝐢𝐧𝐠,

dependent probability

 𝑃(𝑊)⏟  
𝐥𝐚𝐧𝐠𝐮𝐚𝐠𝐞 𝐦𝐨𝐝𝐞𝐥𝐥𝐢𝐧𝐠,

the prior probabilities of
 sentence models

 
Equation 23 
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where ρ represents a probability density and P represents a probability 

[93]. 

 

Usually, acoustic modelling and language modelling are traded 

independently, and ρ(O) is assumed to be equal across the model [93]. 

 

 

5.6 Training the HMM 
 

This section summarizes the HMM concept, implements the HMM for 

recognition, and shows how the HMM training improves speech recognition. The HMM 

is based on a random process called a Markov chain process, which describes a 

transition from one state to another in a state space. 

 

5.6.1 Markov chain 
 

In stochastic processes, the conditional independence probability is 

different from the unconditional independence probability (marginal probability). That 

is the conditional independence can imply some factorization of an existing joint 

distribution. That can yield huge computational savings (e.g. forward and backward 

algorithms) [94]. A stochastic process can be combined with a Markov chain t =1, 2,.. 

and the transition probabilities between chains are independent of time, so the Markov 

chain is said to be homogeneous or stationary. 

 

Therefore, the joint probability of random variables can be calculated from 

a different set of random variables (i.e. factorisation of joint probability) by using only 

a chain rule. A graphical model is used to represent the relation between a set 

conditional independence factorisation of random variables which is called a Bayesian 

network.  

 

Let us have a set of variables (s1, s2,…..,sn ) that can come in order as shown 

which is called the first order of the Markov chain. 
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Figure 86 State diagram of first order Markov chain. 

 

One of the important properties of the Markov process is called the Markov 

property which states that the future is conditionally independent on the past given the 

present [95]: 

 

𝑃(𝑆𝑡+1|𝑆𝑡, 𝑆𝑡−1, … , 𝑆1) = 𝑃(𝑆𝑡+1|𝑆𝑡) Equation 24 

 

Therefore, the joint probability of the first order Markov is the memoryless 

property of a stochastic process: 

𝑃(𝑠1, 𝑠2 , … , 𝑠𝑛) = 𝑃(𝑠1) ∙ 𝑃(𝑠2|𝑠1) ∙ 𝑃(𝑠3|𝑠2)…𝑃(𝑠𝑛|𝑠𝑛−1)  Equation 25 

 

Actually, the joint probability can be factored in different ways of 

conditional probability factorisation to give a different order of the Markov chain. The 

probability of a second order Markov chain can thus be 

 

𝑃(𝑠1, 𝑠2 , … , 𝑠𝑛)

= 𝑃(𝑠1) ∙ 𝑃(𝑠2|𝑠1)𝑃(𝑠3|𝑠1,𝑠2)

∙ 𝑃(𝑠3|𝑠2)𝑃(𝑠4|𝑠2,𝑠3)…𝑃(𝑠𝑛|𝑠𝑛−1)𝑃(𝑠𝑛|𝑠𝑛−1, 𝑠𝑛−2) 

Equation 26 

 

 

Equation 26 can be represented as a state diagram as shown in Figure 87 

 

 

Figure 87 the second order Markov chain. 
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5.6.2 Elements of HMM 
 

The Markov property is a basis of elementary HMM. The HMM is suitable 

for working with sequential data of temporal pattern (e.g. speech and music). A hidden 

Markov process is a stochastic process of two stages: an underlying process of states. 

The hidden state space is assumed to consist of one of N possible values, 𝑠1, … . , 𝑠𝑇 

which is hidden from observation 𝑜1,… . 𝑜𝑇and the observation process (stochastic 

process) which is determined by the underlying process.  

 

The HMM is the simplest dynamic Bayesian network13. Figure 88 shows 

the elements of a HMM. It should be apparent that the simple HMM that corresponds 

to the “hidden states” and the “observation process” is one in which each state 

corresponds to a specific state, and for which an observation probability is defined for 

each state. The choice of states is dictated by the state transition matrix of the HMM. 

The HMM is a powerful statistical tool for modelling generative sequences that can be 

characterised by an underlying process generating an observable sequence. In other 

words, to recognise the behaviour of a random variable (𝑂) among a model (𝑆), which 

is a set of random variables, a huge number of observations of that random variable are 

required to provide enough accuracy. The observations can be represented as the 

probability 𝑃(𝑂|𝑆) of a track of a few of the states. Then, any new random variable 

observations (which require to be recognised) will give almost the same track states 

with is a high likelihood (max. of 𝑃(𝑜|𝑠)) of that random variable among a model of 

random variables.  

 

Figure 88 Elements of HMM. 

                                                 
13 Bayesian network is a statistical model. A probabilistic graphical model represents that a set of 

random variables and their conditional dependencies via a directed acyclic graph (DAG). 
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The joint probability represented in Figure 88 can be factored into a 

conditional probability; 

 

𝑃(𝑜1, … 𝑜𝑇 , 𝑠1,…𝑠𝑇) = 𝑃(𝑂1
𝑇 , 𝑆1

𝑇)

= 𝑃(𝑠1)𝑃(𝑜1|𝑠1)∏𝑃(𝑠𝑧|𝑠𝑧−1) 𝑃(𝑜𝑧|𝑠𝑧)

𝑇

𝑧=2

 

Equation 27 

 

 

Equation 27 can be rewritten as probabilities: 

 

𝑃(𝑜1, . . . 𝑜𝑇 , 𝑠1,. . . 𝑠𝑇)

= 𝑃(𝑜1|𝑠1)𝑃(𝑜2|𝑠2). . 𝑃(𝑜𝑇|𝑠𝑇−1)
× 𝑃(𝑠1) 𝑃(𝑠2|𝑠1)𝑃(𝑠3|𝑠2)…𝑃(𝑠𝑇|𝑠𝑇−1) 

Equation 28 

 

 

For convenience we write the probability of the HMM: 

 

𝑀 = (𝜋, 𝐴, 𝐵) Equation 29 

 

These probabilities can be classified as parameters as follows: 

 

Transition probability (𝐀) : 𝑃(𝑠𝑧+1 = 𝑗|𝑠𝑧 = 𝑖) = 𝑎(𝑗|𝑖) ,       𝑖, 𝑗 ∈

(1,…𝑚) . The transition probability is a square matrix of size × 𝑆 , where, 𝑆 is the 

number of states in the HMM. 

For each of the n possible states, there is a set of emission probabilities 

governing the distribution of the observed variable at a particular time given the state 

of the hidden variable at that time. Usually, (𝑂, 𝑜𝑓 𝐾 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) is a probability 

density function (PDF). In this case, the emission is a PFD as well. 

 

Emission probability(𝑩): (𝑜𝑇 = 𝑖|𝑠𝑧 = 𝑖) = 𝑏(𝑜|𝑖) , 𝑖 ∈ (1, …𝑚)  , The 

Emission probability is a matrix of size K×S . 
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Initial probability(𝝅):(𝑠1) : how to choose initial estimates of the HMM 

parameters to maximize the likelihood function is not simple or straightforward to 

answer. By experience, initial estimates can be obtained in many ways; maximum 

likelihood segmentation of observations with averaging, segmentation of the 

observation sequences into states with averaging of observations within states; and 

segmental k-means segmentation with clustering [6]. 𝜋(𝑡) = [𝑝(𝑜1 = 1),… , 𝑝(𝑜1 =

𝑆)]𝑇, where 𝑥𝑡 is the state random process. 

 

We can also add the number of states as a control parameter to a HMM 

model; (S) is number of hidden states of the HMM. In implementing HMMs. There are 

two schools of thought as to the number of states to use in each word model. One idea 

is to let the number of states correspond roughly to the number of phonemes within the 

word; hence appropriate models would have from 2 to 10 states. The other idea is to let 

the number of states correspond roughly to the average number of observations in a 

spoken version of the word, which is called the Bakis model [6, 96]. 

 

Actually, in choosing types of HMM parameters, the model (e.g. ergodic or 

left to right), type of observation symbols (discrete or continuous, signal or multi-

mixture), and the number of states are made depending on the signal being modelled. 

There is no simple way making such choices [6]. 

 

 

5.7 Creating group observations of certain vocabulary systems 
 

The voice signal of a word is a sequence temporal patterns (frames). There 

are many utterances possible of a word that produce different acoustic models. The 

patterns can be represented as a vector of probability density functions, which have 

different waveform length. Therefore, the feature vectors of waveforms of a word 

(codebook representation) have different lengths as well. To unite the length and to 

represent data in one vector, the K-mean algorithm (Vector quantization) is usually 

used. The vector quantization is originally a set of data symbols compressed to create 

the vector distribution. It can be called a prototype vector of a word. The prototype 
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vector is a fingerprint word model and it can be used to sort out any probability density 

function of the word to create a word observation.  

 

As an example, steps in creating a fingerprint model of words of ten digits 

(0 to 9) are shown in Figure 89. 

 

 

Figure 89 computation of fingerprint of aquatics model of digits (0:9). 

 

An observation vector of any word of the ten digit model can be made by 

comparing each frame of features of a word with the fingerprint matrix of the 

vocabulary system. The observation is the position (column number) of the minimum 

Euclidean distance between the fingerprint matrix and vector frames of the word 
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features which are matched one by one, with the fingerprint matrix placed as a column 

member in the observation vector. By repeating the same procedure for all model words, 

the group of observations of the ten digit vocabulary system can be collected as shown 

in Figure 90. 

 

Figure 90 Computation of observation matrix of word digits (0:9). 

 

 

5.8 HMM designed for isolated word recognition 
 

For isolated word recognition with a distinct HMM designed for each word 

in the vocabulary, a left-right model HMM should be used that it is more appropriate 

than an ergodic model because the observation sequences (underlying the state 

sequence) associated with the model has the property that as time increases the state 
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index increases [6]. We can then associate time with model states in a fairly 

straightforward manner.  

 

First, let us define the elements of a discrete observation HMM; 

 

 

𝑀⏟
𝐴 𝑚𝑜𝑑𝑒𝑙 

 = ( 𝑆⏟
 

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟
 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 
𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

, 𝜋(𝑡)⏟
𝑇ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
𝑠𝑡𝑎𝑡𝑒  

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 
𝑡𝑖𝑚𝑒 𝑡

, 𝐴⏟
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛
𝑚𝑎𝑡𝑟𝑖𝑥 
𝑜𝑓 𝑠𝑖𝑧𝑒 
𝑆×𝑆

, 𝐵⏟
𝑂𝑏𝑠𝑒𝑣𝑎𝑡𝑖𝑜𝑛 
𝑚𝑎𝑡𝑟𝑖𝑥 
𝑜𝑓 𝑠𝑖𝑧𝑒 
𝐾×𝑆

, )) Equation 30 

 

 

The HMM requires specification of the two model parameters, S and K (S 

is number of states, K is k-means clustering number of clusters) and the other variable 

represent three probability measures A, B, π (1). 

 

Thus, the training problem is to adjust the model parameters to maximise 

the likelihood ρ(O W⁄ ), where this is the probability of the observation sequence O1
T =

( o(1), o(2),…… . . o(T)) , given the model W1
T = (w(1),w(2),……w(T)), which is 

fixed a state sequence. 

 

The ρ(O W⁄ ) can be computed in terms of local joint densities at particular 

state w(t), and a word is represented by a particular state sequence; Consider a specific 

state sequence through the HMM of proper length T, say I1
T = ( i(1), i(2),…… . . i(T)). 

The probability of the observation sequence being produced over this state sequence is  

 

𝑃(𝑜|𝑖, 𝑤) = 𝑏(𝑜1|𝑖1)𝑏(𝑜2|𝑖2). . . 𝑏(𝑜𝑇|𝑖𝑇)  Equation 31 

 

The probability of the state sequence i is: 

 

𝑃(𝑖|𝑤) =  𝑃(𝑜1 = 𝑖1) 𝑎(𝑖2|𝑖1)…𝑎(𝑖𝑇|𝑖𝑇−1) Equation 32 
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Therefore: 

𝑃(𝑜, 𝑖|𝑤) = 𝑏(𝑜1|𝑖1)𝑏(𝑜2|𝑖2) . . . 𝑏(𝑜𝑇|𝑖𝑇)
× 𝑃(𝑜1 = 𝑖1) 𝑎(𝑖2|𝑖1)…𝑎(𝑖𝑇|𝑖𝑇−1) 

Equation 33 

 

The P(o, i|w) represents any path in the HMM. In order to find the P(o|w), 

we must sum this result over all possible paths, because it represents mutually exclusive 

events:  

 

𝑃(𝑂|𝑊) =  ∑𝑃(𝑜, 𝑖|𝑤)

𝑎𝑙𝑙

 Equation 34 

 
 

The HHM is built in levels, if we assume that the set of V word HMMs as 

wv, 1 ≤ v ≤ V , then to find the optimum sequence of HHMs that matches we maximize 

the likelihood by using the Viterbi algorithm. Therefore, it is required to do a Viterbi 

match against O for each HMMwv and at each level ℓ. So, we start at frame 1 of the 

observation interval on level 1, then retain each possible frame t [1]. 

 

The Equation 33 is a naive approach (direct computation) because it 

consumes a big number of computations (requires the calculation of 2TST ,which for 

S=5, and T = 100, needs 2 × 100 × 5100 ≈ 1.6 × 1072  multiplies) [1]. 

 

To avoid this numerical problem, in practice, the computations of ρ(O W⁄ ) 

are divided into two recursions stages to reduce the computations, because the recursion 

is a reuse of earlier computations. In this case, the observation sequences (O1
T =

( o(1), o(2), …… . . o(T))  are divided in two partial sequences (O1
t , Ot=1

T ). The first 

recursion is the joint probability of having the forward partial sequence of O1
t  having 

arrived at state i at the tth step, and the second is the backward partial sequence Ot+1
T  

which given the state sequence emerges from i at time t. This is called the forward-

backward algorithm (F-B algorithm) as shown in Figure 91. 
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Figure 91 Bayesian network of forward -backward algorithm. 

 

The forward algorithm for the HMM is the joint probability in a supposed 

state (𝑖) which has the forward partial sequence of O1
t , and for which the emission and 

transition probabilities are known, as illustrated in Figure 92 and described by Equation 

35. 

 

 

Figure 93 Bayesian network of forward algorithm. 

 

𝑃(𝑊𝑡, 𝑂𝑡) = 𝑃(𝑤1, …𝑤𝑡, 𝑜1, … 𝑜𝑡)
= 𝑃(𝑤1, 𝑤2, 𝑜1, 𝑜2) + 𝑃(𝑤3, 𝑤4, 𝑜3, 𝑜4) + ⋯
+ 𝑃(𝑤𝑡−1, 𝑤𝑡, 𝑜𝑡−1, 𝑜𝑡)

=∑ 𝑃(𝑤𝑘−1, 𝑤𝑘, 𝑜𝑘−1, 𝑜𝑘)
𝑡

𝑘=2
 

 

Equation 35 

 

 

This joint probability P(wk−1, wk, ok−1, ok)  can be factored as a 

combination of marginal probabilities and a joint probability: 
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𝑃(𝑤𝑡, 𝑜𝑡)

=∑𝑃(𝑜𝑡|𝑤𝑡, 𝑤𝑡−1, 𝑜𝑡−1)𝑃(𝑤𝑡|𝑤𝑡−1, 𝑜𝑡−1)𝑃(𝑤𝑡−1, 𝑜𝑡−1)

𝑘

 

Equation 36 

 

 

But ot  is independent of  wt−1, ot−1 , and wt  is independent of ot−1 , 

therefore: 

𝑃(𝑤𝑡, 𝑜𝑡) = ∑ 𝑃(𝑜𝑡|𝑤𝑡)⏟      
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏.

(𝑘𝑛𝑜𝑤𝑛) 

𝑃(𝑤𝑡|𝑤𝑡−1)⏟      
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏.

(𝑘𝑛𝑜𝑤𝑛)

𝑃(𝑤𝑡−1, 𝑜𝑡−1)

𝑘,1..𝑛

 Equation 37 

 

As, we know both the emission and transition probabilities already, 

therefore the Equation 37 can be rewritten as: 

 

𝛼(𝑤𝑡) = 𝑃(𝑤𝑡, 𝑜𝑡) =∑𝑏(𝑡)𝑎(𝑡)𝛼(𝑤𝑡−1)

𝑘

 Equation 38 

 

where α is forward HMM, and so we need to know the initial forward 

probability: 

 

𝛼1 = 𝑃(𝑤1, 𝑜1) = 𝑃(𝑤1)𝑃(𝑜1|𝑤1) =  𝜋(1)𝑏(1) Equation 39 

Therefore, now we have all information to calculate α. 

 

For the backward algorithm for the HMM the goal of is to compute 

𝑃(𝑜𝑡+1, 𝑜𝑡+2, … , 𝑜𝑇|𝑤𝑡) as illustrated in Figure 94 and described by Equation 40 

 

 

Figure 94 Bayesian network of backward algorithm. 
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𝑃(𝑜𝑡+1, 𝑜𝑡+2, … , 𝑜𝑇|𝑤𝑡)
= 𝑃(𝑜𝑡+1, 𝑤𝑡+1|𝑤𝑡) + 𝑃(𝑜𝑡+2, 𝑤𝑡+2|𝑤𝑡+1)
+ 𝑃(𝑜𝑡+3, 𝑤𝑡+3|𝑤𝑡+2) + ⋯

= ∑ 𝑃(𝑜𝑡+1, 𝑤𝑡+1|𝑤𝑡)

𝑇

𝑘=𝑡+1

 

Equation 40 

 

 

 

𝑃(𝑜𝑡+1, 𝑜𝑡+2, … , 𝑜𝑇|𝑤𝑡) =∑𝑃(𝑜𝑡+1, 𝑤𝑡+1|𝑤𝑡)

𝑇

𝑘=𝑡

= 𝑃(𝑜𝑡+2|𝑤𝑡+1, 𝑤𝑡, 𝑜𝑡+1)
+ 𝑃(𝑜𝑡+3|𝑤𝑡+2, 𝑤𝑡+1, 𝑜𝑡+2)
+ 𝑃(𝑜𝑡+4|𝑤𝑡+3, 𝑤𝑡+2, 𝑜𝑡+3)+.. 

Equation 41 

 

 
P(ot+1, ot+2, … , oT|wt)

=  ∑P(ot+2, ot+3, ot+4, … , oT|wt+1, wt, ot+1)

k

∗ P(ot+1|wt+1, wt)P(wt+1|wt) 

Equation 42 
 

 
But 𝑜𝑡+2, 𝑜𝑡+3, 𝑜𝑡+4, … , 𝑜𝑇|𝑤𝑡+1 are conditionally independent on 𝑤𝑡, 𝑜𝑡+1, 

and 𝑜𝑡+1|𝑤𝑡+1 is conditionally independent on 𝑤𝑡, therefore:  

 

 

𝛽(𝑤𝑡) =  ∑𝛽(𝑤𝑡+1) 𝑃(𝑜𝑡+1|𝑤𝑡+1)⏟        
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏.
(𝑘𝑛𝑜𝑤𝑛) 

𝑃(𝑤𝑡+1|𝑤𝑡)⏟      
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏.

(𝑘𝑛𝑜𝑤𝑛)
𝑘

 Equation 44 

 

Then the likelihood ρ(O|W) for each word can be found: 

 

𝜌(𝑂 𝑊⁄ ) =∑𝜌(𝑜, 𝑖|𝑤)14

𝐽

=∑ 𝜌(𝑜|𝑖, 𝑤)⏞      

𝑜𝑏𝑠𝑒𝑣𝑎𝑡𝑖𝑜𝑛 
𝑠𝑦𝑚𝑏𝑜𝑙𝑒 𝑃𝑟𝑜𝑏.

 

×

𝐽

𝜌(𝑖|𝑤)⏞    

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛
𝑃𝑟𝑜𝑏.

 

Equation 45 

 
 

                                                 
14 Sum rule probability: 𝑝(𝑋) =  ∑ 𝑝(𝑋, 𝑌)𝑌 , and product rule probability 𝑝(𝑋, 𝑌) = 𝑝(𝑌 𝑋⁄ )𝑝(𝑋) 

𝑃(𝑜𝑡+1, 𝑜𝑡+2, … , 𝑜𝑇|𝑤𝑡)⏟              
𝛽𝑡

= ∑𝑃(𝑜𝑡+2, 𝑜𝑡+3, 𝑜𝑡+4, … , 𝑜𝑇|𝑤𝑡+1)⏟                    
𝛽𝑡+1

𝑃(𝑜𝑡+1|𝑤𝑡+1)⏟        
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏.

(𝑘𝑛𝑜𝑤𝑛) 

𝑃(𝑤𝑡+1|𝑤𝑡)⏟      
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏.

(𝑘𝑛𝑜𝑤𝑛)
𝑘

 

Equation 43 
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𝜌(𝑂 𝑊⁄ ) =∑𝑏(𝑤1|𝑞𝑖1) 𝑏(𝑤2 𝑖2⁄ ). . 𝑏(𝑤𝑇 𝑖𝑇⁄ ) 

𝐽

× 𝑝(𝑥1 = 𝑖1)⏟      
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
𝑃𝑟𝑜𝑏.

 𝑎(𝑖2 𝑖⁄ ) 𝑎(𝑖3 𝑖2⁄ )…𝑎(𝑖𝑇 𝑖𝑇−1⁄ ) 

Equation 46 

 

𝛼̃(𝑂1
𝑡 , 𝑖) =∑ 𝛼̃(𝑂1

𝑡−1, 𝑖)
𝑆

𝑗=1
𝑎(𝑖 𝑗⁄ ) 𝑏(𝑂𝑡 𝑖⁄ ) 

Equation 47 

 

𝛽(𝑂𝑡+1
𝑇 , 𝑖) = ∑ 𝛽(𝑂𝑡+2

𝑇 , 𝑗)
𝑆

𝑗=1
𝑎(𝑗 𝑖⁄ ) 𝑏(𝑂𝑡+1 𝑗⁄ ) 

Equation 48 

 

It is important to note that this recursion 𝛽(𝑂𝑡+1
𝑇 , 𝑖) is initialized by 

defining 𝑂𝑡+1
𝑇  to be a partial sequence such that: 

 

𝛽(𝑂𝑡+1
𝑇 , 𝑖) ≝  {

1, 𝑖𝑓 𝑖 𝑖𝑠 𝑎 𝑙𝑒𝑔𝑎𝑙 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

  Equation 49 

 

where the legal final state “is one at which a path through the model may 

end” [1]. This means that the ordinate of the lattice point at time T must be a state in 

the model. 

 

The F-B algorithm has a disadvantage which is an underflow condition 

coming out of the large numbers of multiplications of numbers less than unity [1]. 

Therefore, the α(./.) and β(./.) must scale in each step with ct , as follows: 

 

𝑐𝑡 = (∑𝛼̃(𝑂1
𝑡 , 𝑖)

𝑆

𝑖=1

)

−1

 
Equation 50 

 

𝛼̃(𝑂1
𝑡, 𝑖) = 𝑐𝑡 ∙ 𝛼̃(𝑂1

𝑡, 𝑖) Equation 51 

 

𝛽(𝑂𝑡+1
𝑇 , 𝑖) =  𝑐𝑡 ∙  𝛽(𝑂𝑡+1

𝑇 , 𝑖) Equation 52 
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Therefore, based on the scaled forward/backward recursions, the process 

can be started by creating random matrices of π(1), A and B and the training 

observation, O1
T = o1, o2, … , oT, then computing a new mode of the HMM,  M =

[ S, π̅(1), A̅, B̅, O1
T] as: 

 

𝑎̅(𝑗 𝑖⁄ ) =
∑ 𝛼̃(𝑂1

𝑇|𝑖) 𝑎(𝑗|𝑖) 𝑏(𝑂𝑡+1|𝑗) 𝛽̃(𝑂1+2
𝑇 |𝑗)𝑇−1

𝑡=1

∑ 𝛼̃(𝑂1
𝑡|𝑖)𝑇−1

𝑡=1 𝛽(𝑂1+1
𝑇 |𝑖)

 
Equation 53 

 

𝑏̅(𝑘|𝑗) =
∑ 𝛼̃(𝑂1

𝑡, 𝑗)𝛽̃(𝑂1+1
𝑇 |𝑗)

𝑇

𝑜𝑡=𝑘,𝑡=1

∑ 𝛼̃(𝑂1
𝑡, 𝑖)𝑇

𝑡=1 𝛽(𝑂1+1
𝑇 |𝑗)

 

Equation 54 

 

𝜋̅(1) = 𝑝(𝑥1 = 𝑖) =  
𝛼̃(𝑂1

𝑡, 𝑖)𝛽(𝑂2
𝑇|𝑖)

𝑐1
 

Equation 55 

 

If the likelihood has increased such that 𝜌𝑛𝑒𝑤(𝑂 𝑊⁄ ) − 𝜌𝑜𝑙𝑑(𝑂 𝑊⁄ )  ≥  𝜀 , 

where 𝜀 is a given tolerance, then we re-estimate the model with  𝑀𝑜𝑙𝑑 = 𝑀𝑛𝑒𝑤 .  

 

The speech recognition problem is able to transcribe the sequence of 

words (a sentence) corresponding to a spoken utterance. 

 

The required likelihood can be obtained at any time in the lattice of Figure 

91 and is described by: 

 

𝜌(𝑂 𝑊⁄ ) =  ∑𝛼(𝑂1
𝑡, 𝑖)𝛽(𝑂1+1

𝑇 |𝑖)

𝑆

𝑖=1

 
Equation 56 

 

By using condition of Equation 52 (end of path model)  

 

𝜌(𝑂 𝑊⁄ ) =∑  𝛼(𝑂1
𝑇 , 𝑖)

𝑆

𝑖=1
= (∏𝑐𝑇

𝑇

𝜏=1

)

−1

 

Equation 57 
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𝜌(𝑂 𝑊⁄ ) is could be a small value. Therefore, to avoid numerical 

problems, the log – likelihood measure is used instead [1]: 

 

log 𝜌(𝑂 𝑊⁄ ) =  −∑log 𝑐𝑇

𝑇

𝜏=1

 
Equation 58 

 

 

5.9 Recognition using the HMM 
 

For a given (but unknown) observation sequence and a given HMM trained 

on certain words (model), we can calculate the log-likelihood that the HMM produced 

a sequence. 

 

Thus, assume we have a vocabulary of (R) words to be recognized and that 

each word is to be modelled by a distinct HMM (M), as shown in Figure 85. The 

measurement of the observation, which are converted into VQ of size (K), are followed 

by calculation of model likelihoods for all possible models P(O/W_R). Finally, this is 

followed by selection of the word whose model likelihood is highest. 

 

 

5.10 Why speech recognition is expensive and time consuming 
 

Researchers of speech recognition have used the correct pronunciation (i.e. 

none include alternative pronunciations) of a word which can be found in a lexicon. But 

the reality of spontaneous speech includes a variety of phenomena for a speech 

recognition task to cope with: false starts, human and nonhuman noises, new words and 

alternative pronunciations.  

 

During the training, the phonetic units will be contaminated with inadequate 

acoustics. Then, the overall performance of the recognizer will degrade if the phonetic 

transcriptions in the dictionary do not match the actual occurrences in the database. 
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Therefore, creating dictionaries with alternative pronunciation and 

functional words has required more effort by speech recognition researchers who have 

suggested pronunciation models to modify the dictionary. Modifications are based on 

hand training (i.e. applying phonological rules to a given lexicon). 

 

However, the hand training introduces the kinds of errors described below 

[97]. The correct phonetic transcription of a word is the aim of the experts. But in 

implementation of an acoustic model it is important to note that, firstly, the correct 

phonetic transcription of a word is not necessarily the most frequent transcription for a 

given task. Secondly, actual pronunciations can be very different from the "correct" 

pronunciation. In spontaneous speech and in dialects a lot of alternative pronunciations 

are used which are not always easy to predict. 

 

With increasing number of basic phonetic units (usually between 40 and 

100) and number of entries in the dictionary, it becomes more difficult to use the 

phonetic units consistently across dictionary entries. 

  

The maintainer of the dictionary software can easily miss statistically 

relevant forms because it is hard to say which variants are statistically relevant for a 

given task. Therefore, correcting and modifying what is in existence in a lexicon of 

phonetic transcriptions of a word is a preoccupation of speech recognition experts. 

  

The accuracy of automatic speech recognition relies on the accuracy of 

describing an alternate acoustic modelling as a different sequence of phonetic units 

using canonical pronunciations, since, in general, there are many utterances possible 

producing different acoustic models. It is unfeasible to produce a distinct model for each 

possible variation for a speech recognition system. Necessarily, there needs to be a 

distinction between idiosyncratic and systematic features of pronunciation. Thus, the 

acoustic modelling should include both the pronunciation variation (underlying 

distinctive information) and predictable features of each lexical item. Therefore, the 

speech recognition systems normally use handcrafted pronunciation lexicons designed 

by linguistic experts. Because of this speech recognition is expensive and time 

consuming. The accepted from of a handcrafted pronunciation lexicon is to assign and 
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maximise a probability of the time sequence of states given a word sequence. An 

acoustic model may have been previously trained to synthesize the speech data.  

 

There are many available commercial products that successfully recognize 

certain types of speech. Also, modelling techniques for accommodating and 

representing the variability in pronunciation have been developing. However, there still 

is a gap between the theoretical representation of speech (phonemes) and acoustic 

representation (phones), which affect badly the accuracy of the speech recognition 

systems. 

 

 

5.11 Error acoustic modelling 
 

The speech recognition systems that are based on the HMM aim to 

demonstrate acoustic-phonetic features of the elemental sounds of a selected language 

by determining how well the temporal variability of speech matches the state of each 

HMM by fitting a frame, i.e. a short temporal window, of coefficients that represent the 

acoustic input. 

  

The problem of error acoustic modelling has been studied using various 

strategies to increase noise robustness by robust signal acquisition and feature 

compensation, model compensation and robust feature extraction. In other words, the 

problem requires contributions from the digital communications, signal processing, 

information theory, statistics and artificial intelligence communities. Technically, the 

problem is approached in two parts. The first is in the areas of signal processing and 

digital communications, which are applied to the analysis and synthesis of speech in 

order to represent the frames of speech (units) as abstract features (e.g. linear prediction 

analysis and cepstral analysis). The second is in the area of statistical and artificial 

intelligence, which allow a statistical mapping (each state of each HMM fitting in a 

frame) that is constructed from the abstract phonemic units to produce their context 

dependent realization as surface phonetic units. Therefore, the aim is by definition less 

abstract and less variable than for acoustic realizations. 

  



 

162 

 

Despite, the fact that HMMs have some limitations, the method has worked 

extremely well for certain types of speech recognition problems. A frame of speech in 

a word is influenced by other surrounding frames, which form the word. One of the 

HMMs limitations is the assumption that successive observations,  𝑃(𝑂1
𝑇;  𝑜(1),

𝑜(2), … 𝑜(𝑇)), forming frames of speech that make a word, are independent sequences. 

Therefore, the probability of a sequence of frames can be written as a product of 

probabilities of individual observations   𝑃(𝑂1
𝑇;  𝑜(1), 𝑜(2), . . 𝑜(𝑇)) = ∏ 𝑃(𝑜𝑖)

𝑇
𝑖=1 . A 

second limitation that the probability of being in a given state at time t is only dependent 

on the state at time t-1 , which is inappropriate because speech sounds have 

dependencies often extending through several states. The assumption that distributions 

of individual observation parameters can be represented by a mixture of Gaussian or 

autoregressive densities is the third limitation [98]. 

 

Due to these limitations of the HMM models (i.e. imperfect statistical 

mapping), overfitting occurs which describes random errors or noise instead of the 

underling relationship. The problem is that maximum likelihood estimation (MLE) of 

the joint probability of training data gives some finite error rate of incorrectly decoded 

label frames. From the point view of machine learning, the problem is that of 

unobserved data (unseen data). The selection of a model according to its accuracy on 

the training dataset, instead of its selection accuracy on an unseen test dataset, results in 

a high chance it has lower accuracy on an unseen test dataset. This is due to the lack of 

the model generalization. 

  

The error of embedded minimum classification is measured by competing 

HMMs (in the stage of the maximum likelihood estimation). To reduce this error, 

researchers have proposed an alternative, factorial method (a stream) amalgamated with 

Viterbi decoding, in order to make modifications to the standard HMM topology. The 

reason is to minimize error within the frames level [99, 100]. The result is a reduction 

in the classification error occurring between the likelihood incorrect paths (e.g. N-best 

paths) selected from HMM and the correct path. 

 

A HMM error model has been made by employing multi–stream 

transformation, including factorial methods. The transformation can, for example, 
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transfer the feature vectors of a data sequence into an observation space. When the data 

is transferred from the observation space into some normalized space, it is considered 

as independent and identically distributed data. The model is based on using a 

transformation stream in synchronism with the model stream (i.e. simple single state) 

which means it is an approximation to the discrete stream system without a dramatic 

increase in the number of model parameters. In 1999, The Hidden Markov Model 

Toolkit (HTK) was introduced as a portable toolkit for building and manipulating 

hidden Markov model [100]. An up-grade (HTK 3.4.1) has now been released. Gales 

[101] has suggested a 2-stream factorial model using a feature-space transformation 

stream. Xiong et al [102] investigate a generalization capability to improve robustness 

when the testing and training data are from different distributions, in the context of 

speech recognition. Taemin et al [99] minimized the number of incorrectly decoded 

labels in a frame by applying a smooth function that is arbitrarily close to the exact 

frame error rate and minimize it directly using a gradient-based optimization algorithm. 

Bing Hwang et al [103] differentiate the method of classifier design by way of 

distribution estimation and the discriminative method of minimizing classification 

error. The authors compare the traditional maximum likelihood method (based on the 

distribution estimation formulation) with a minimum classification error metric (MCE). 

 

The natural way to minimize error detection in acoustic models is to reduce 

recognition errors. The aim is to improve the robustness of statistical speech 

transcription systems. We argue that it is possible to modify the traditional methods of 

MCE by adding a parallel layer. This layer we call a realization layer (RL) which can 

be employed to correct the performance of the HMM both in the training and 

recognition phase. The RL is thus a complementary layer. It can be integrated with any 

other methods of MCE and corrects the remaining statistical mapping error from MCE 

methods in the recognition phase. The RL is a word spectrogram matching technique. 

To clarify our argument, we initially explain image recognition in the next section and 

elaborate upon this in the subsequent section. 
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5.12 Testing the performance of HMMs by two dimensional matching 

of SSI of words 

 

An IWSR can be used to demonstrate the avoidance of the overfitting 

problems of ASR. We have implemented the HMM procedure in 5.8, using the database 

of ten digits (0:9), i.e. test No.5. Each word contains ten samples and so a total is 100 

samples were used in the training phase of the HMM model. If the same data as the 

training set is used to run the recognition phase, the HMM model fails to recognize 9 of 

the 100 word inputs. 

 

After analysis of the results, we have determined where errors are made. 

The guesses of the HMM (word digits) are ranked in likelihood of ten HMM options. 

The results are depicted in Figure 12. 

 

 

Figure 95 Chart showing where the right guesses (G) are located in likelihood 

options of the HMM. 

 

The results of the test No.5 are shown in Figure 96, in which the errors of 

the HMM are obvious and can be corrected employing a 2-D template matching 

technique. As an example, the first error (as shown in Figure 96) is that the input of 

word digit “one” is recognized as the word of digit “nine”. However, there is a clear 

deference between the SSI of words for the digit one and nine when viewed as the 2-D 

SSIs shown in Figure 96. 
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Figure 96 Illustration of how it is possible to detect errors in the guess of the 

HMM by employing the SSIs. 

 

Therefore, adding a new layer to the recognition system to review the 

decision of the HMM by using the 2-D information provided by the SSIs of words can 

be effective in improving the error rate. 

 

 

5.13 Realization layer (RL) 
 

The RL is proposed to consist of three main parts: image recognition 

method, SSI library, and stack memory. The SSI library has SSIs of all the words of a 

model. The output values of the maxi mum likelihood stage of the HMM are mapped 

into primary keys of the SSI library and put in their order of maximization in stack 

memory (the last entry of which should be the highest likelihood). 

 

The content of the stack memory is pushed one by one to the output buffer 

and calls the SSI of a word from the SSI library words. This processing is repeated until 
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there is conformity to the HMM recognition results. Conformation can be achieved by 

matching the same word input of the HMM after it has been stored as a SSI temporarily 

in a buffer memory to be ready for matching with a 2-D image called from the SSI 

library as shown in Figure 97. If the matching result is negative (which occurs rarely 

since the first option is the highest likelihood from the HMM stage), then the next option 

in the stack memory will be called, and so on, until the SSI matching is positive and so 

the correct word recognition is achieved. 

 

 

Figure 97 Organization of the RL to improve HMM performance. 
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As stated previously, the image recognition is performed by 2-D template 

matching. Pre-processing of the input by a HMM produces a ranking, which is revised 

by the template matching process to correct the erroneous output of the HMM. The 

results produced in the test No.5 described are shown Figure 98. It is apparent that the 

performance of the hybrid of the HMM/RL processing systems is perfect without any 

error, and the MCE has been reduced to zero. 
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Figure 98 Illustration of the ability of 2-D template matching to correct mistakes in 

HMM recognition. 
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Looking for further confirmation for our model, test No. 6 was performed. 

We have used the lexicon defined in section 4.5. The data set consists of the same 10 

digits and some other words extracted from TIMIT.  

 

The HMM gives a statistical analysis. Therefore, each training of the Baum 

Welch algorithm with the same data gives a different stochastic transition matrix 𝐴 =

(𝑎𝑖𝑗) ,and so a different success of recognition since there are numerical errors in 

calculation of the K-mean classification and clustering error estimation in the  training 

phase. This is why modifications based on hand training is one of way of improving 

HMM recognition. 

 

The data of test No. 6 has been run in training phases first, then has been 

run on recognition tests several times, each run giving a different Baum-Welch matrix. 

If we define the recognition efficiency of the Baum-Welch matrix as:  1 −

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑤𝑜𝑟𝑑𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠  𝑡𝑒𝑠𝑡𝑒𝑑
, then the efficiency of the HMMs were between 0.8210 

and 0.6546. We chose the Baum-Welch matrix with minimum errors to integrate with 

our RL (2-D template matching layer) for mitigating the HMM’s errors. The test shows 

that the best HMM result has 99 errors for 553 word inputs. The 99 errors occurred in 

7 groups depending upon: 1) the number of repetitions that fail to recognize the same 

word (as shown in Table 4); and 2) the location of the right guess is after the maximum 

likelihood (RGAML) in the likelihood vector of the HMM. The RGAML is the target 

for our RL to correct the recognition errors of the HMM. Therefore, the RGAML 

provides the input used to analyse the test results. 
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Table 4 Details of the HMM errors for test No.6. 

 

 

Figure 99 shows the histogram of the RGAMLs in the HMM likelihood 

vector (the vector of lexicon words of the study case). The analysis shows that the 

HMM recognition has the same behaviour as in test No.5, most of RGAMLs being 

located in the first and second location in the likelihood vector, which accounts for 

around 84 % of the total errors occurring. 
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Figure 99 The histogram shows where the correct guesses are located in the 

likelihood vector of the HMM of the lexicon words in case study No.6. 

 

The location error of the RGAML in the likelihood vector and the number 

of occurrences of the same error are counted as worst guesses of the HMM recognition. 

In this test, the worst guesses of the HMM are the words 

‘oily’, ’your’, ’nine’, ’him’, ’rag’, and ’all’. The RGAML of ‘oily’ occurs once in 

location 22 and five times in the 1 location. The RGAML of ‘your’ occurs five times in 

locations 5, 6, 9, 11, 13 and once in the location 1. The RGAML of ‘nine’ occurs once 

in location 10 and five times in the location 1. The RGAML of ‘him’ occurs once in 

location 9, twice in the location 4 and three times in location 1. The RGAML of ‘rag’ 

occurs twice in location 7, and once in the locations 6, 3, 2, 1. Finally the RGAML of 

‘all’ occurs twelve times, six of them at 2, three at 1, one at 3, and one in location 4 

(after the maximum value of the likelihood vector of the HMM). The 99 errors are fed 

to the RL (for 2D template matching). The RL again demonstrates its ability to correct 

all HMM recognition errors. The RL corrections have been displayed in two categories 

dependent on the depth of the RGAML in the likelihood vector. 
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Firstly, the errors of the RGAML of depth equal to and greater than the 3rd 

location in the likelihood vector are illustrated in Figure 100 to Figure 104 to show the 

RL’s path when finding the correct match for the HMM input. The actual SSI word (i.e. 

the input to the HMM) is indicated by a green rectangle and the RL detection by a black 

rectangle around the individual frame. 

 

 

 
Figure 100 the RL path when detecting the correct SSI of the word ‘oily’ 

through the maximum likelihood vector of the HMM. 
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The RL detects the deeper error of the word ‘your’ in location RGAML 

=13 as shown in Figure 101. 

 

 
 

Figure 101 the RL path when detecting the correct SSI of the word ‘your’ through 

the maximum likelihood vector of the HMM. 
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The Figure 102 shows the RL detecting the deeper error of the word ‘nine’ 

in RGAML =10. 

 

Figure 102 the RL path when detecting the correct SSI of the word ‘nine’ through 

the maximum likelihood vector of the HMM. 
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The Figure 103 shows the RL detecting the deeper error of the word ‘him’ 

in RGAML =9. 

 

 

Figure 103 the RL path when detecting the correct SSI of the word ‘him’ through 

the maximum likelihood vector of the HMM. 
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The Figure 104 shows the RL detecting the deeper error of the word ‘rag 

in RGAML =7 

 

Figure 104 the RL path when detecting the correct SSI of the word ‘rag’ through 

the maximum likelihood vector of the HMM. 
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Secondly, all the other errors which are of RGAML depth equal to 1, 2 and 

3 and are displayed in Figure 105 and Figure 106.The SSI of an actual word input to the 

HMM is displayed in the left hand column, in the middle column is shown the SSI of 

the HMM estimation, while the right hand column shows the RL detection. The pictorial 

illustrations of the RL show clearly that the RL can easily correct the HMM errors. On 

the other hand, there is a difficulty in matching the SSIs of the word ‘stop’ and ‘start’. 

This is because the start and end of both words generate the same patterns. 

 
 

Figure 105 The RL when detecting the errors in the HMM with the RGAML 

depth equal to one and two (group 1). 
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Figure 106 The RL when detecting the errors in the HMM with RGAML depth 

equal to one and two (group 2) 

 

 

Robust feature extraction is one method for improving the performance of 

HMM recognitions in ASR. Methods of extracting features from the speech signal (e.g. 
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(LPC), Perceptual Linear Predictive Coefficients (PLP), (MFCC) all provide means of 

improving the HMM recognition ability. We have used LPC with in training features 

which is not an optimal way of reducing HMM speech recognition errors. Rather, in 

this chapter, we demonstrate that the 2-D template matching technique can improve 

upon the statistical decisions made HMM. Therefore, the selected optimum matching 

method of speech feature extraction can still be used in combination with our method. 

 

 

5.14  Conclusion 
 

The reason for using an IWSR is that this can be the ideal model to build on 

to create an ASR system. The low level of the ASR is almost similar to IWSR except 

there are long pauses between words in IWSR. 

 

ASR is based on HMMs but, in the low level stages of ASR, a small gap in 

the statistical mapping causes a failure to produce a match of the acoustic speech signal 

features by the statistical process of the HMM and so some classification errors occur. 

Certainly, the errors in the low level recognition stage of ASR produces unavoidable 

errors in high level recognition. 

 

It has been shown that each word has certain patterns of frequency 

transitions and can thus be recognized as a distinct image pattern. The SSIs allow for 

matching whole features of a word on one process which gives better recognition results 

than HMMs which are sequential data training. Therefore, we believe that the addition 

of the RL is a highly promising solution to compensate for the failure of HMMs in low 

level recognition. In addition, the same concept of employing SSIs can be used for 

whole sentences to reduce classification errors in HMM based high level recognition. 
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6 CHAPTER SIX  

Conclusion and future work 

 

 

6.1 Conclusion  
 

The major focus of this thesis was to generate new speech recognition 

systems, based on matching the spectrograms of speech signals. Both the unsupervised 

training correlation of the 1 dimensional signal process and 2 dimensional correlation 

techniques were implemented and tested. The uniqueness of the study is the use of the 

2 dimensional correlation, to improve current speech recognition systems and establish 

new speech recognition based on image processing. After more than seven decades of 

research in the field of speech recognition, a new approach may seem ambitious in the 

light of current information around speech recognition. This study is a comprehensive 

project of new perspectives on speech recognition. The comprehensive study includes: 

theorizing a new approach for speech recognition, supporting it with wider previous 

research, validating it with a lexicon of 533 words, and integrating it with the current 

HMM based speech recognising system. Consequently, we hope this study will draw 

attention of researchers for increasing research in the field of SSIs. 

 

Chapter 2 focuses on the TFR of a speech signal. A speech wave signal has 

characteristics in both the time and frequency domain which is used for classifying 

speech (in any language) in fundamental units. So, recognising a speech segment needs 

to compare combined information of both the time and frequency features. A speech 

signal is a nonstationary signal, and the linear transformation of the speech signal into 

the TFR is an uncertainty process. The problem in the TFR is that the location in time 

or frequency domain (uncertainty principle) cannot be coherently transformed into a 

TFR. The small duration signals have inherently large bandwidth within the signal. The 

way to overcome this problem is by nonlinear (bilinear) representation. All the research 

on the bilinear TFR are on continuous signals, while the speech signal is a discrete 

signal. In the spectrogram, the time varying spectrum of the speech signal does not have 
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to be accurate for recognising a word by SSI matching. However, the speech frequency 

features (frequency locations in the spectrum) are mostly important. Therefore, the 

spectrogram is a linear representation of the speech signal and the most powerful in 

speech analysis. The discrete WT is different from the STFT in the sense, that the 

window width can be changed in the WT to get high frequency resolution, so it is more 

useful for speaker identification. It can be used in future studies of the SSI for 

recognising the stress (louder, longer, and higher in pitch) and rhythm (two types of 

stresses; syllable stress in words and word stress in sentences) in a speech language.  

 

The SSI is a simple and effective way for analysing a speech signal, used in 

this study. The SSI has some advantages in describing transitions and fluctuations of a 

speech signal and so it has been used for classifying speech into patterns. Secondly, the 

SSI has been addressed in many studies making it rich enough to support new 

approaches of classification speech unit’s, as has been done in Chapter 3. Thirdly, the 

SSI is easy to implement in real time speech applications as it can be integrated with 

the current speech recognition applications, as described in Chapter 5.  

 

Speech recognition problems occurring for uttered words can be classified 

into two: firstly, satisfying the visual speech segmentations of the speech in units, which 

is influenced by the co-articulatory and the start-end point of speech segments. 

Secondly, satisfying the speaker variations, which modifies the frequency locations in 

the spectrum and an uttered word duration in the TFR. The visual process of speech 

signal segmentation (phonemes) is related to understanding a writing system, which is 

important for verifying the recognition of the word level in ASR. Chapter 3 defines a 

new writing system based on the SSI patterns. In this writing system, it is not necessary 

to satisfy the phoneme interpretation but only the word level recognition by matching 

its SSI patterns. Also, in Chapter 3, boundaries for defining the redundancy of the code 

(the entropy) of this new writing system, that we have called the SIR-CODE, has been 

discussed.  

 

The SIR-CODE refers to transferring the speech signal to an artificial 

domain (the SSI) that allows the classification of the speech signal into segments. This 

classification is based on the speech signal behaviour (transition and fluctuations of 
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signal frequencies) in the new domain rather than the visual segmentation of the speech 

process into phonemes. This solves the issue of trying to fill the gap between theory and 

practice of phoneme recognition by matching the SSI patterns at the word level. Since, 

the new domain classifies the speech signal into segments, it is independent of the co-

articulatory influences of speech sounds. Besides, these patterns have clear start-end 

points. This resolves the problems of endpoints in speech recognition, leading to a high 

recognition performance. 

 

In this study, the phoneme properties have been used to classify the SIR-

CODE to satisfy the mental process of understanding and speech recognition. The 

phonemes properties used to satisfy the L1-2 entropy of the SIR-CODE, is classified in 

the English language into five main types: FFP, SFFP, SAFP, LAFP, and G. Each type 

consists of classes based on the vowels and consonant behaviour of sounds, except the 

G Type. Hence, this can be applied to all spoken languages. The class is formed of 

different combinations of frequencies. These types are subsumed into two patterns 

under the L1-1. The L1-1 entropy has been verified by matching the SSI patterns in 

Chapter 4.  

 

The SSI matching is suitable for satisfying the LI-1 entropy of finite words 

(small lexicon). While a natural active language can contain a huge number of words, 

this does not contradict the use of SSI matching. It is an independent way for 

demonstrating the SIR-CODE recognition ability (big lexicon). The missing phonemes 

in the SSI patterns can be a shortcoming for the visual process of speech segmentation 

of phonemes. On the other hand (in Chapter 4), the SSI matching shows that it contains 

underlying information that has the capability for speech recognition at the word level.  

 

Using dynamic time warping on the SIR-CODE segments can help verify a 

huge word dictionary. This can provide an entropy measure to allow the SIR-CODE 

achieve the ASR, based on SSI matching only. The feature of the SIR-CODE segments 

is that it has clear endpoints, which makes the dynamic time warping process accurate 

for ASR. The higher level of SIR-CODE provides more entropy, in terms of a high 

recognition performance, but needs more sophisticated algorithms to reach that level of 

classification. We believe that the SIR-CODE L1-3 can be achieved by modifying the 
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same methods used to classify the SIR-CODE L1-1. The higher level of SIR-CODE can 

be achieved by using Statistical Learning/Pattern Recognition on SSI patterns to 

estimate more features and encode them into symbols. Symbols should be enough to 

satisfy perfect coding of the speech signal of a language into the SIR-CODE. 

 

For the purpose of establishing a link between the visual process of speech 

segmentation and the SSI pattern matching process, there is an initial introduction of 

image processing methods for recognising the SSI patterns in Chapter 3. Image 

processing methods have been discussed in more detail in Chapter 4. The results in 

Chapter 4 show that the SSI pattern matching can overcome the speaker variation 

problems easily. The speaker variations appear mostly as differences in the time 

dimension of the SSI, which is reflected as a challenge in the SSI pattern matching. This 

issue has been resolved in Section 3.12.3 by normalising the width of the two SSIFSs 

in the compared SSIs. The SSI width is modified based on the proportion of the 

normalised SSIFSs in the compared SSIs. The process of normalising is suggested as a 

part of the process, we called the pre-processing element of SSI matching. This process 

has shown very promising results in matching the same word, pronounced by different 

people. It works effectively with an SSI that has one pattern of SSIFS. Therefore, 

classifying the SSI of a word into SSIFS and SSIRS becomes necessary to normalize 

the SSIFS and further reduce the speaker variation for the SSI of a word, uttered by 

different people. This issue has been dealt with in Chapter 4. Chapter 4 also addresses 

the image scaling problem in image processing of the SSI and discusses improvements 

in the SSI matching for reliable recognition.  

 

Some SSI patterns have regions that are formed by a noise-like region of 

pixel values. Therefore, there are no continuous lines or pixel values in the SSI patterns. 

Thus, finding the most likely matching of the SSI patterns is not straightforward, neither 

intensity-based (correlation intensity matching) nor feature-based (corresponding 

matched between points and lines or contours). The SSIFS is one of the two main 

patterns in the SSI and has more regularity than the SSIRS patterns. The SSIRS are 

formed of scattered regions appearing as a noise structure in the SSI with some more 

regular patterns. Therefore, the SSIRS is affected adversely in both the intensity and 



 

186 

 

feature based matching between two SSIs of the same uttered word (as shown in 

Section 4.6).  

 

The reason behind this unfavourable matching is that the random scattered 

regions of the SSIRS match with the other types of SSIFS patterns, located in the same 

area of the SSIs, which gives random false matching. In contrast, the SSIFS patterns are 

more solid and have stable values of matching for recognising the class of the SSIFS 

type. The parsing process of the SSI patterns has been used to compensate for the 

influence of the SSIRS pattern matching on the likely matching value.  

 

The SSI parsing process that classifies the SSI into SSIFS and SSIRS has 

been implemented in Chapter 4. The SSI parsing provides more entropy of the SIR-

CODE in terms of improvement in the SSI recognition. The SSI parsing restricts the 

SSIRS of the input SSI to match only with the same type of SSI to stop false matching. 

The SSI parsing can help effectively in processing with dynamic time warping for 

continuous speech recognitions by the SIR-CODE only.  

 

In this study, the parsing process has been implemented by using an 

intensity-level slicing process. Instead of highlighting a specific range of gray level in 

the SSI over other levels, the process keeps a specific range from the normalised 

maximum value to a certain lower level of gray level in an SSI. We have called this the 

general algorithm for segmentation of the SSI. In this algorithm, the pixels that are less 

than the lower level are replaced by zeros. We call this new image as the SBSSI. The 

remaining pixels represent the highest PSD formants in an SSI. The SBSSI allows us to 

measure the properties of regions in the SSI. Indeed, the general algorithm segmentation 

of the SSI is similar to the process of getting rid of the noise in an SSI which has been 

discussed earlier in Chapter 3.  

 

The general algorithm for segmentation has been used to classify the SSI 

into SSIFS and SSIRS regions rather than finding the precise start and end points of 

them. The general algorithm for segmentation is integrated either with spatial based 

matching or frequency based matching (using the MACH filter) to improve the SSI 

recognition. This process only matches the same order between the compared SSIs. 
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The general algorithm for segmentation shows an increase in the 

performance of the NCC matching (spatial matching) that successfully recognises 

whole words of the lexicon. However, defining a reliable threshold for the NCC 

matching for the whole lexicon was difficult. The correlation requires that the template 

and image have the same scale and orientation. The correlation value deteriorates when 

the template is not identical to the image. So the scale dependence of correlation has to 

be overcome. The correlation dependence on scale has been overcome precisely in 

Section 3.12.3 for the words consisting only of the SSIFS pattern because it is easier to 

find the start-end points for these. Therefore, defining both the order of the SSIFS and 

SSIRS and their precise start-end points is the strategy for updating the reliable 

threshold of the lexicon. In other words, this means applying the SIR-CODE-L2 

implicitly on SSI patterns, which adds more entropy for a precise SSI recognition.  

 

As mentioned earlier in Sections 4.6 and 3.8, nearly all lexical words have 

an SSIFS. The SSIFS in an SSI has a unique pattern which is the fingerprint of any 

word. Therefore, we may combine the results of individual matching of the SSIFS and 

SSIRS for the compared SSIs. This extra process can be achieved with less 

computations to give high recognition performance. In this study, expensive 

computations and transformations for achieving robust scaling in the SSI have been 

avoided for real-time application purposes. 

 

The SSI segmentations are used to review one of the well-known and 

reliable speech databases, the TIMIT. We have found errors on defining the start and 

end points of some words in this database by using the SSI patterns matching. The study 

illustrates some examples of TIMIT’s errors in defining the start and end points. This 

also provides evidence that the SIR-CODE segments are more powerful in recognising 

uttered words.    

 

With this acceptable recognition ability of the SSIs, by using the general 

algorithm and spatial matching, we integrate the SSIs recogniser with traditional speech 

recognition (HMM). Indeed, continuous speech can be represented as a chain of phones 

with ambiguous start-end points of words. We comparing methods of dynamic time 
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warping to predict the phone sequences for a recognised word to overcome the start-

end point ambiguities. The problem around speaker variation is dealt by representing 

acoustic speech of a word within trained statistical models for different speakers. 

Acoustic speech models of lexicon words should be quantifiable enough to cover a wide 

range of speaking styles. Therefore, researchers have tried to fill the gap between actual 

speech and acoustic speech representations. One of the good features of the HMM is 

that it can incorporate a stochastic model into other stochastic models from several 

hierarchical knowledge sources. Thus, it can compare acoustic probability of unknown 

utterances generated by each word’s model with trained known utterances. However, 

the problem of parameter estimation with these models is that they are very sensitive to 

background noise. Due to the HMM’s limitations and the influence of background 

noise, the models (i.e. imperfect statistical mapping) suffer from overfitting, which 

appears as random errors or noise instead of the underling relationship. In case of any 

error in dynamic correlation of the chain of phones for a word, the accuracy of 

recognising the word is affected adversely. Further, this also affects the higher levels 

(the sentence level) in ASR.  

 

In Chapter 5, we have suggested a realization layer on top of the traditional 

speech recognition layer (based on HMM) to check all sequential phones of a word in 

one go matching. The role of the realisation layer is to call the word according to the 

maximum likelihood of the HMM to match with the input word.  Therefore, this results 

in either confirming the HMM result, suggesting successful recognition, or the input 

word will go through the SSI recogniser to select the right identifier of the input word. 

The recognition test of the 533 words of the study lexicon was successful. This 

integration of the two types of speech recognisers i.e. wave speech signal analysis and 

SSI matching, exploits the underlying information in SSI patterns to overcome the 

shortcoming of representing speech signals in acoustic models perfectly. Consequently, 

the ASR performance will be more accurate, and reliable in noisy environments which 

is still the biggest challenge in the application of ASR. We have tested a limited lexicon 

capacity of words with the SSI recogniser, which is sufficient to test for all the 

possibilities of the SSI patterns by the SSI recogniser. So, we believe that this test will 

be a foregone conclusion for a large lexicon too. 
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This study is based on a new package of speech system recognition 

integrated with the HMM. This paves way for future work in the field, summarised in 

the next section.  

 

 

6.2 Future work  
 

While this thesis has demonstrated improved speaker independent word 

recognition, many opportunities for extending the scope of this thesis remain. This 

section highlights some of these directions: 

 

6.2.1 Speech representation as an image  

 

In our work, speech signals are represented in the TFR by the SAFP. The 

discrete WT spectrogram can also be very useful in the SSI recogniser as it is much 

better in displaying frequency resolution. Thus it is effective in recognising the stress 

and rhythm in a speech language. Both stress and rhythm have not been studied in this 

thesis, which are important elements to understand the structure of the sentence. 

 

6.2.2 Adapting speech databases of a huge lexicon for SSI 

patterns 
 

In our study, the SSI pattern speech representations are classified based on 

phonemes and tested with a small lexicon by SSI pattern matching. For more reliability, 

it is important to expand the test of classifying the SSI pattern speech representations to 

a bigger lexicon by the SSI pattern recogniser.  

 

Our study elaborates extensively on speech representations as SSI patterns. 

The mapping of English phonemes in to five SSI patterns have been discussed in this 

study. However, we are yet to explore the causes of the nested patterns. The nested 

patterns could consist of either SSIFS or SSIRS, or both. This creates an ambiguity as 

to which phonemes create what pattern. This can be achieved by incorporating a human 

interface to classify the nested patterns and resolve the ambiguity in these patterns.  
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This information provided by expert spectrogram readers will help to adapt 

the traditional database to our classification of speech signals in the SSI patterns. Thus, 

this database will comprise the precise start-end points of all the SSI patterns for a huge 

lexicon of the English language.  

 

6.2.3 The SIR-CODE-L1-2 and L1-3 recogniser 

 

Using SIR-CODE_L1-1, we classified patterns of any word as SSIFS and 

SSIRS. At SIR-CODE_L1-2, the SSIFS is further divided into two patterns, the FFP 

and SFFP. Similarly, the SSIRS can be divided into LAFP and SAFP and the fifth 

pattern is G (silent duration). We have demonstrated the classification of the SSIFS into 

an FFP and SFFP in the study. We did not extend this to classify the SSIRS patterns, 

which, can be achieved by the same strategy used to classify the SSIFS patterns. The 

entropy in the SIR-CODE_L1-2 will enhance the speech recognition in terms of word 

level and words in a sentence structure for the ASR system. 

 

The next important stage is to define the start-end points of all the SSI 

patterns precisely to reach SIR-CODE_L1-3 which can then provide a highly precise 

recognition of a speech signal at word level and sentence structure level (e.g. mora), 

and also provide statistical information (duration, frequency, etc.) of the L1-3 patterns.  

 

6.2.4 Continuous speech recognition by SIR-CODE 

 

Our study used isolated words for SSI pattern speech representation for 

word level recognition. We need to implement this process for continuous speech. For 

this, we would require statistical information to define the average window slide length 

to capture the SSI patterns, through either the STFT or discrete WT representation. This 

will encourage wider applications of the SIR-CODE. More research is needed to 

integrate the SIR-CODE with the traditional techniques of speech recognition to 

enhance the existing methods that are struggling with the issue of speech recognition in 

a noisy environment.  
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