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Abstract

PrimPol, (Primase-Polymerase), the most recently identified eukaryotic polymerase, has
roles in both nuclear and mitochondrial DNA maintenance. PrimPol is able to act as a DNA
polymerase, with the ability to extend primers and also bypass a variety of oxidative and
photo-lesions. In addition, PrimPol also functions as a primase, catalysing the preferential
formation of DNA primers in a zinc finger-dependent manner. Although PrimPol’s catalytic
activities have been uncovered in vitro, we still know little about how and why it is targeted
to the mitochondrion and what its key roles are in the maintenance of this multi-copy DNA
molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the
organelle has a number of unique proteins essential for its maintenance, presenting a
differing environment within which PrimPol must function. Here, we discuss what is
currently known about the mechanisms of DNA replication in the mitochondrion, the
proteins that carry out these processes and how PrimPol is likely to be involved in

assisting this vital cellular process.



Mitochondrial DNA - Organisation and structure

Mammalian mitochondria contain multiple copies (~1000 per cell) of a circular DNA
molecule (mtDNA) that is ~16.5 Kb in length [1]. Unlike nuclear genomic DNA, virtually the
entire mtDNA encodes genes that are expressed as 13 proteins, 22 tRNAs and 2 rRNAs
with no introns. Only two non-coding regions exist, the non-coding region, (NCR),
containing the origin of heavy-strand DNA replication and the transcription initiation start

sites HSP and LSP, and O, the origin of light-strand DNA replication.

Strikingly, significant physical differences exist between the mitochondrial genomes of
different eukaryotic organisms (Figure 1). For example, most yeast have linear genomes
ranging in size from ~19 to 150 kb, often consisting of circular permutated copies [2]. In
plants, the mitochondrial genome varies even more in size, from ~200 kb up to a massive
11 Mb, due to a large number of introns and duplications (reviewed in [3,4]). In contrast,
kinetoplast DNA found in the mitochondria of some protists (e.g. trypanosoma) contains
two types of DNA circles, large maxi-circles (20-40 kb) containing the majority of the
coding DNA that are catenated with smaller mini-circles (0.5—-10 kb), which are essential

for the production of functional mMRNA from the uridylate encrypted maxi-circles [5,6].

In mammalian cells, mtDNA is organised into nucleoid structures containing approximately
1-2 copies of the genome, although this is likely to vary depending on tissue type and
energy demand [1,7,8]. Mitochondrial nucleoids are thought to tether mtDNA to the inner
mitochondrial membrane to aid in organisation, distribution and segregation. Nucleoids

consist of a number of proteins involved the maintenance of mtDNA but the main DNA



packaging protein is TFAM, mitochondrial transcription factor A [9,10]. TFAM is a member
of the high mobility group (HMG) of proteins, containing two HMG boxes, and is thought to
condense DNA by inducing bending and then wrapping it into compacted nucleoid
structures. TFAM forms homodimers with each molecule binding a separate DNA strand in
order to generate looped structures or to bring different DNA molecules together leading to

condensation (reviewed in [11]).

One striking feature of mammalian mtDNA is a short triple-stranded region found within
the NCR, where the addition of a third DNA strand (~0.5 kb), termed 7S DNA, forms a
stable displacement D-loop structure [12]. The D-loop was first identified in electron
micrograph images of mtDNA and the 7S DNA was later found and named due to its
sedimentation rate in caesium chloride gradient studies [12,13]. Despite the length of time
since the first identification of 7S DNA and the D-loop, we still know little about its actual
function (reviewed in [14]). Its abundance is found to vary greatly between species and
tissues, with only 8 % of mtDNA molecules having D-loops in HelLa cells, whilst levels of
7S DNA are as high as 55 % in human placenta [15]. The D-loop is thought to have a
number of roles including, acting as a recruitment site for proteins involved in the
organisation of miDNA into nucleoid structures [16,17], maintaining dNTP pools
throughout the cell cycle [18] and functioning as a key component of replication (see
below). Recent work has shown that this structure may actually be more complex with the
identification of an RNA strand on the opposing strand to the 7S DNA forming an R-loop,

which may have a role in the organisation and segregation of mtDNA [19].



A wide range of proteins are involved in the organisation, regulation and replication of the
mitochondrial genome. All of these proteins are encoded within the nuclear genome and
must be transported into the organelle as required. Initially, only a small number of
specialised proteins were thought to be required for these processes but, as techniques
have improved, we are now identifying numerous additional factors that play roles in the
maintenance of mtDNA. Many of these proteins function in both nuclear and mitochondrial
compartments, such as DNA2, Feni, PIF1, Rad51C and XRCC3, some require
specialised isoforms, such as Fen1 and PIF1 while others use the same isoform to

perform these dual roles [20,21,22,23,24,25,26].

PrimPol- a novel eukaryotic primase-polymerase

A recent example of such a player is Primase-Polymerase (PrimPol), a newly discovered
member of the archaeo-eukaryotic primase (AEP) superfamily of primases [27,28,29,30]
(reviewed in [31,32]). As its name suggests, PrimPol can function both as a primase and
polymerase. A number of studies have demonstrated that PrimPol is able to generate both
DNA and RNA primers on single-stranded (ss) DNA templates, albeit with a strong
preference for dNTPs during synthesis, ~30 fold lower Ky in Mn?* [28,29,33]. In addition,
PrimPol is also able to extend a DNA primer in a template-dependent manner and is
capable of carrying out trans-lesion synthesis (TLS) across a number of different DNA
lesions, such as 8-Oxoguanine (8-0xoG) and 6-4 photoproducts, (6-4 PP) [28,29]. PrimPol
contains an N-terminal AEP domain, which contains the key catalytic residues required for
all its synthesis activities. Its C-terminal UL52-like zinc finger domain is essential for its
priming activity, probably by stabilising the protein’s interaction with ssDNA to allow de

novo dinucleotide synthesis that is subsequently extended to form a primer [34]. PrimPol is



a remarkably unprocessive polymerase, catalysing the insertion of only 1-4 nucleotides
before disassociating from DNA and is highly mutagenic, particularly prone to produce
insertion / deletion (indels) errors [34,35,36]. The limited processivity of PrimPol may act to
limit its mutagenic potential. The elucidation of the structure of the catalytic core of PrimPol
has highlighted its relatively small active site cleft, with limited contacts formed between

the protein and the incoming primer strand [37].

PrimPol is localised in both the nucleus and the mitochondrion, suggesting that it plays
similar roles in maintaining DNA integrity in both compartments [28,29]. Notably, avian
cells (DT40) lacking PrimPol exhibit increased sensitivity to a number of DNA damaging
agents and exhibit a pronounced G arrest after exposure to UV damage [28,29]. Loss of a
PrimPol orthologue (PPL2) in trypanosoma is lethal due to a failure to complete cell
division in Go/M [38] In contrast, loss of PrimPol alone is not overtly detrimental to
mammalian cells, with no obvious signs of damage sensitivity, whilst knockout mice are
viable and born at mendelian ratios [28,29]. These differences likely reflect the replication
poise of these cells as DT40 cells are mostly in S-phase, whilst mammalian cells sit
predominantly in Gs. However, human cells become significantly more sensitive to UV
damage when PrimPol and Pol n, a damage tolerance TLS polymerase, are both absent
[28,39,40]. Strikingly, loss of PrimPol causes an increase in mtDNA copy number and cells
exhibit reduced rates of mtDNA recovery after ethidium bromide-induced mtDNA loss,
suggesting that it is important for maintaining “genome” stability within this organelle
[29,41]. PrimPol has also been shown to functionally interact with a number of other

proteins from both nuclear and mitochondrial compartments. These include mtSSB, RPA,



PoIDIP2 and Twinkle, the mitochondrial helicase, which all appear to play roles in

regulating PrimPol’s cellular activities [35,42,43].

However, much is still to be learned about the function of PrimPol in the maintenance of
replication in both mitochondrial and nuclear compartments. Here, we review what is
currently know about DNA replication processes in the mitochondrion and discuss how our
newfound knowledge of PrimPol’s activities informs us about it’s possible roles in the

duplication of mtDNA.

Priming mtDNA replication — how it all begins

The elusive mitochondrial primase

To begin replication, DNA must first be ‘primed’ by the generation of short primers, which
the replicase is able to extend. In the nucleus, RNA primers are synthesised on ssDNA by
the Pol a-associated primase (PriS / Pri1) (reviewed in [44,45]). However, the enzyme
responsible for the initiation of mammalian mtDNA replication has taken much longer to be
discovered and we are only now beginning to unravel how this process occurs. A
mitochondrial primase activity was first identified back in 1985 [46]. This primase activity
isolated from mitochondria, was distinct from the replicative polymerase y (Pol y) and the
mitochondrial RNA polymerase (POLRMT), and was shown to have the ability to catalyse
the formation of RNA primers between 9-12 nucleotides long, however the enzyme
responsible for this activity was not identified [46]. This activity was further characterised to
show that the primase was able to generate a 5’ oligoribonucleotide primer with a 3’

deoxyribonucleotide termini for polymerase extension and was associated with a structural



RNA molecule, which is essential for its activity [47,48]. Although some further insights
were gained in other species and models of mtDNA replication were proposed, little more
was learnt about DNA priming or the elusive ‘primase’ for the next 20 years. The subject of
DNA replication initiation in the mitochondrion was reignited with the discovery that the
mitochondrial RNA polymerase, POLRMT, was able to initiate lagging strand DNA

replication in vitro [49].

POLRMT- a mitochondrial primase

Mitochondrial RNA polymerase, like the majority of mitochondrial proteins, is encoded
within the nuclear genome and contains an N-terminal mitochondrial targeting sequence,
which localises it to this organelle. POLRMT is a single subunit RNA polymerase, which
shares significant homology with phage RNA polymerases [50,51]. The C-terminal domain
contains the catalytic core and consists of a number of conserved sequence blocks, which
form the characteristic thumb and palm structure. Unlike the C-terminus, the N-terminal
portion of the protein has no sequence similarity to the phage polymerases, instead this
region is structurally related to the T7 RNA polymerase (reviewed in [52]). This structural
homology is also mirrored in its functional uses as phage T7 replication employs the RNA
polymerase in a similar manner to generate RNA primers [53,54,55]. In addition, POLRMT
contains a unique N-terminal extension, containing a novel penta-peptide repeat domain
that is essential for promoter-dependent transcription [56]. Unlike T7 RNA polymerase,
POLRMT is unable to bind to, bend and melt promoter DNA alone and requires a number
of accessory factors to begin transcription. These factors include TFAM, which is thought

to alter the DNA structure, allowing initiation, and TFB2M, which interacts directly with the



RNA polymerase to aid its recruitment [57,58,59,60,61]. Similarly, yeast mitochondrial
RNA polymerase Rpo41 requires transcription factor mtf1 for tight DNA binding (reviewed
in [62]). POLRMT must be targeted to a range of diverse promoter sequences and
additional factors are likely to be important in its localisation to different structural DNA
elements (e.g. O.). The generation of POLRMT conditional knockout mice, which have no
identifiable 7S DNA, confirmed that POLRMT has an essential role in replication initiation

[63].

Mitochondrial RNA primers (2-10 nucleotides) were first identified at the 5’ end of the 7S
DNA back in 1979 [64]. More recent work has identified that these primers are generated
by POLRMT [49,65,66], originating from the light and heavy strand promoters LSP and
HSP, respectively, within the NCR [67,68]. As well as acting as the start site for
transcription of the mitochondrial genome, LSP was shown to also be the initiation site for
the formation of a persistent RNA-DNA hybrid, believed to act as a primer for leading-
strand DNA replication [69]. Transcription initiated from the light strand promoter suffers
two fates, it is either terminated within a region containing three conserved sequence
blocks (CSBs) and used as a primer for mtDNA replication, or extension continues around
the mtDNA molecule to form a poly-cistronic transcript, which is then processed further
[70,71]. The ends of this short RNA were shown to map close to previously identified sites
of DNA replication initiation and this RNA species was found to be sufficient for the

initiation of replication in vitro [69,72].



Later work showed that CSB Il, a conserved sequence box within the NCR, acted as the
termination site for transcription, controlling the formation of a primer rather than extension
to complete transcription [66]. CSB Il has the potential to form a quadruplex structure, due
to its G-rich sequence. However, although this region can form a DNA quadruplex, the
majority of these species were actually found to form RNA-DNA hybrid intermolecular
quadruplexes [73,74]. These structures act as strong transcription terminators leading to
the formation of primers. Thus, the CSB Il quadruplex acts as a switch regulating the
interplay between transcription and replication of mtDNA. Analysis of variation in the CSB
Il region of human mtDNA has shown that sequences that cause only weak termination of
POLRMT and transcription are avoided. However, all transcription termination events are
localised to the same downstream sequences, revealing the importance of the
conservation of this region [75]. Yet, it is still important that when required, these RNA
molecules are extended into full-length species to provide sufficient mRNA, and therefore
protein, as required by the organelle. This switch is also partly controlled by human
transcription elongation factor, TEFM, shown to prevent replication primer formation by
driving transcription elongation [76,77]. However, the polymerase must then extend the
primer beyond this quadruplex structure and it has been shown that Pol y exhibits a much
decreased extension ability on the CSB Il sequence, compared with a mutant CSB I
sequence that is unable to form a quadruplex structure [73]. In addition, these primer ends
fall short of the identified 5’ ends of newly replicated DNA molecules [78,79], suggesting
things may not be quite so straightforward, therefore we still have much more to learn

about the mechanisms that initiate priming of mtDNA replication in the mitochondrion.
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MtDNA is double-stranded (ds) and therefore replication must also be initiated on the other
strand. The origin of light strand replication, O is located approximately two thirds of the
way around the genome from the NCR and resides in a much smaller non-coding region of
DNA occupying only 30 bp, between the asparagine and cysteine tRNA genes [80].
POLRMT can generate short RNA primers at O, allowing complete leading and lagging
strand replication (when combined with Pol y, Twinkle and mtSSB) of a small circular DNA
substrate in vitro [49]. Further studies in vivo confirmed that POLRMT is able to prime
specifically at O and demonstrated that this specificity is due to a stem loop structure
formed when the O sequence is exposed after leading strand replication uncovers this
region [81]. This stem loop structure is highly evolutionarily conserved and mutations
affecting its structure are significantly under represented in the mitochondrial genome,
whilst insertions and deletions in the loop region are well tolerated, confirming the

importance of such a structure within the mitochondrial genome [82].

PrimPol, the elusive mitochondrial primase?

The discovery of PrimPol within the mitochondria raises a number of important questions
regarding its role as a primase within mtDNA replication [28,29]. Although PrimPol has the
ability to generate both DNA and RNA primers [28,29], it has a strong preference for
utilising dNTPs rather than rNTPs to synthesise primers, and studies using PrimPol
isolated by fractionation of purified mitochondria showed that the enzyme generated DNA
primers of ~2-12 nt in length [29]. This is in clear contrast to the original activity of the
historically unassigned ‘mitochondrial primase’ thus PrimPol appears not to be this elusive

protein and suggests there is still much more to be uncovered. If it is not the replicative
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primase then what are PrimPol’s primase activities required for within the mitochondrion?
Mammalian PrimPol is a non-essential protein as knock-out cell lines and mice strains
have been generated, which exhibited no overt phenotypes [28,39]. Thus, it appears that
the role of PrimPol can be complemented by other proteins within the organelle or it may
itself have a “pback-up” role, which may be only required under certain particular
circumstances. Therefore, it is clear that PrimPol is not the main enzyme responsible for
priming of mtDNA replication and, notably, mtDNA copy number actually increases in the
absence of PrimPol [28]. It seems more likely that PrimPol acts to reprime DNA synthesis,

or bypass lesions by TLS, when the replicase is stalled or blocked.

Mitochondrial DNA replication — copying the circle

Pol y, the mitochondrial polymerase

Although a wide range of polymerases are required to replicate and repair nuclear DNA,
only one polymerase was identified within the mitochondria and this was believed to be
responsible for all of the replication and repair processes that take place within this
organelle [83]. Although Pol y was first identified as early as 1977, it took many more
years for it to be isolated from Drosophila and confirmed as the key mitochondrial
replicase due to the abundance of nuclear polymerases [84,85]. Pol y is a heterotrimeric
complex consisting of two nuclear-encoded components. PolG1 or A is a 140 kDa subunit
belonging to the PolA family of polymerases and is thought to share a common ancestry
with the T-odd polymerase gp5 [86]. It is essential for mtDNA maintenance and its loss is
embryonic lethal [87]. As well as 5’-3' polymerase activity, POLG1 also contains a highly

conserved 3'-5" exonuclease domain, which confers a key part of its high fidelity, ~100-
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fold greater than that observed for nuclear polymerases [88,89]. In addition, POLG1 also
has 5’ dRP lyase activity, which allows the enzyme to execute base excision repair, again
increasing its fidelity and strengthening its role in DNA repair within mitochondria [90]. The
crystal structure of the Pol y complex has provided further insights into its mechanism and
the unique interactions between its subunits. Analysis of a wide number of disease
causing mutations within the context of this structure has led to a greater understanding of

the molecular changes that these alterations induce [91,92] (reviewed in [93]).

POLG2 or B, is a 55 kDa homodimeric accessory subunit required for tight binding of the
holoenzyme on DNA [94]. It is also vital for increasing the processivity of the replication
complex and interacts with Twinkle at the replication fork [95,96]. POLG2 evolved from
class lla aminoacyl-tRNA synthases and appears to be less conserved than its catalytic
counterpart, with no orthologues identified in fungi [97]. The binding of POLG2 significantly
increases the processivity of the enzyme due to a change in the structure of POLGH1,
which increases its DNA interaction “footprint” from 10 to 25 bp [91]. The addition of
POLG2 to the complex decreases the proofreading capacity of the enzyme, which is likely
due to a decrease in the ability to switch the template DNA from the polymerase to the

exonuclease active site [88,96].

The polymerase is assisted in the completion of replication by a number of other
components including Twinkle, the mitochondria helicase, and MtSSB (SSBP1), a single-
stranded DNA binding protein. More recently, a much wider range of proteins have been

associated with mtDNA replication and repair, many of which have already been identified
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based on their roles in nuclear DNA metabolism. These include the helicases DNA2, PIF1
and RecQL4, topoisomerases Toplmt, Topllla, ToplIB [21,22,23,24,98,99,100,101], Fen1,

DNA ligase Ill, RNAse H1 [25,102,103,104,105,106].

Mechanisms of mammalian mtDNA replication

The first studies of mtDNA replication were carried out using electron microscopy, which
highlighted a number of unique structures within the observed molecules, including double
forked structures with one single-stranded branch [107,108,109]. These studies lead to the
proposal of a strand-displacement model of mtDNA replication [108,110,111]. This model
proposes that replication continues in an asynchronous, unidirectional manner, replication
proceeds on the H-strand extending from the primer generated in the NCR region, whilst
the unreplicated ssDNA becomes coated with mtSSB. After replication has proceeded two
thirds of the way around the molecule then O_ becomes exposed, allowing replication to
be primed in the reverse direction, again continuing unidirectionally around the circle to

generate a fully duplicated daughter molecule [112].

The use of 2D neutral agarose gel electrophoresis (2D AGE) uncovered a second distinct
replication mechanism of mtDNA replication. This technique relies on the fact that DNA
can be isolated dependent on its mass and shape by altering separation conditions [113].
Strikingly, when mtDNA replication intermediates were examined by this method, a
number of conventional replication bubbles and forks were observed. These structures
were resistant to ssDNA nucleases, suggesting a conventional strand-coupled mechanism

of replication [114,115,116,117]. Although such dsDNA molecules had been observed
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much earlier in EM images of rat liver mtDNA, a strand-coupled mechanism was not
pursued [108,109,118,119]. Replication is believed to initiate in a bidirectional manner
from a broad zone termed ori Z, however, Oy acts as a strong replication barrier therefore
DNA replicases are stalled and unable to pass bidirectionally through this region

[114,116].

In addition to conventional strand-coupled replication intermediates, 2D AGE also
identified replication intermediates with significant regions of RNA-DNA hybridisation
[79,117]. This lead to the proposal of the Ribonucleotide Incorporation ThroughOut the
Lagging Strand (RITOLS) mechanism of mtDNA replication, where RNA is bound to the
displaced strand during asynchronous replication rather than mtSSB [79]. This RNA was
identified as mtDNA transcripts, which are thought to be laid down when the L strand is
released as ssDNA during replication and in organello labelling allowed these RNA
species to be followed as replication proceeds [120]. More recent EM studies support this
model as it was observed that when conditions were optimised to preserve fragile RNA, no
ss mtDNA regions were present [121]. Variations in the types of replication intermediates
was observed across different tissues and under different stresses (e.g. damage or
mtDNA depletion) suggesting that different mechanisms may be utilised under various

circumstances [122].

However, there is still much controversy and disagreement over these different replication
mechanisms, with recent work showing that mtSSB occupancy is increased between Oy

and O_ on the displaced heavy strand, favouring the strand-displacement model [123].
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Whilst it has been claimed that mtSSB is lost due to proteinase K treatments used to
observe RITOLS intermediates and that R-loops are prevalent in mtDNA but not
replication intermediates, others claim RNA loss during preparation leads to mtSSB
binding [121,123,124]. Although more studies are required to fully unravel the mechanisms
of mMiDNA replication, it seems likely that this process consists of a combination of the

proposed models.

Although it currently seems unlikely that PrimPol plays a direct role in replicating
mitochondrial DNA, as it is non-essential in mammalian cells, it probably plays roles in
maintaining on-going replication when the replicative complex of Pol y and Twinkle hits an
obstacle. Cells are clearly able to maintain replication in the absence of PrimPol and,
notably, the majority of yeast species lack PrimPol orthologues. However, the presence of
this additional primase-polymerase is likely to aid in overcoming replication barriers thus

ensuring timely completion of replication.

Damage tolerance during mtDNA replication

For many years, it was believed that mitochondria did not have their own DNA repair
proteins / pathways as they were unable to remove CPDs after UV damage [125]. Thus,
replication must be able to proceed beyond such damage, which is likely to be
perpetuated within the DNA. However, these original ideas have now been refuted and
many new players in the maintenance and repair of mtDNA are regularly being added to
the team of proteins maintaining the “genome” within this organelle. Although a wide range

of repair pathways are now known to be able to remove DNA lesions within mitochondria,

16



this can be a relatively slow process and therefore Pol y probably requires additional

damage tolerance / bypass mechanisms to allow timely progression of replication.

Bypass of lesions- overcoming obstacles on DNA

Along with its ability to generate primers, PrimPol is also a template-dependent
polymerase with the ability to bypass some lesions. For example, it has the ability to
perform TLS bypass of 8-0xoG lesions, a prevalent product of oxidative damage but is
unable to bypass abasic sites or thymidine glycol lesions unless supplemented with
manganese [28,29]. In addition, PrimPol has the ability to bypass damage caused by UV
exposure and, unlike known mammalian polymerases, PrimPol can bypass distorting 6-4
PPs lesions that induce DNA bending. Although it is not able to directly bypass CPDs in
the presence of magnesium, it can extend from this lesion when templated with two dA
residues, unlike many other polymerases [28]. In addition, PrimPol has been reported to
scrunch the template, realigning the priming strand in order to bypass intolerable DNA
lesions, which seems the more likely mode of bypass given the proteins small active site
cleft [36,37]. Thus, it seems likely that PrimPol may also play a role in the TLS bypass of

these types of damage within the mitochondrial genome (Figure 2).

UV damage has been shown to accumulate in mitochondrial DNA, particularly in skin cells
that are regularly exposed to low levels of UV irradiation (reviewed in [126]). These lesions
are commonly repaired by the nucleotide excision repair (NER) pathway [127]. However,
this pathway has not been identified within the mitochondria therefore such lesions must

be repaired by other pathways such as BER, MMR, NHEJ or homologous recombination
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and may even persist within the DNA. To prevent the catastrophic formation of double-
strand breaks during DNA replication, the organelle must have a method to bypass such
lesions. Studies have shown that Pol y has the ability to bypass CPD lesions in vitro, albeit
at a level much lower than that of undamaged DNA [128]. Although it often incorporates
the incorrect base at such sites, it is still able to excise these mutations using its
exonuclease domain. However, such methods of bypass either by PrimPol or Pol y are
likely to significantly delay the completion of replication. Although the mitochondria has
multiple DNA copies, unperturbed replication of the full genome is thought to take up to
one hour [110], therefore only a small amount of damage is likely to have a drastic effect
on the organelles functionality as a whole. Indeed, although low levels of UV or oxidative
damage do not affect the mitochondrial DNA copy number, they do cause changes in the
mechanism of DNA replication [129]. It has been shown that after such UV damage,
replication switches from a RITOLS mechanism to a strand-coupled mechanism, likely due
to its ability to complete replication more rapidly and allow mtDNA copy number to be
maintained in the presence of damage [129]. It is believed that the RITOLS mechanism
may represent a high fidelity method of genome replication, whilst the strand-coupled
mechanism may be more error-prone but allow replication to be completed. Notably,
tissues with a higher oxidative stress load use a higher degree of strand-coupled
replication[122][129]. However, for strand-coupled replication to be successful, particularly
in the presence of DNA damage, the replication machinery must be able to generate

multiple new primers to allow the continuation of the replication fork.

PrimPol can also reprime DNA synthesis after lesions and it is this function that is likely to

be vital in allowing replication to proceed after DNA stalling. Allowing the replication fork to
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continue beyond such lesions would significantly decrease the completion time and thus
allow processes that take a longer time, such as repair of the lesion itself, to take place in
a post-replicative fashion. PrimPol is a poorly processive polymerase, only capable of
incorporating 1-4 bases before falling off the DNA, suggesting it may be required to
produce short primers for the more accurate and exonuclease-containing polymerase, Pol
y to take over and complete mtDNA replication. PrimPol interacts with RPA, mtSSB and
PoIDIP2, which modulate its synthesis activities in vitro [35,42]. Although PrimPol’s
polymerase activity is stimulated by Twinkle [43], mtDNA replication studies showed that
PrimPol is unable to enhance replication after Pol y stalling at oxidative lesions [43].
Therefore, although it has the capability to perform TLS in vitro, the jury is still out on

whether or not PrimPol actually uses such a mechanism to restart replication in vivo.

In addition, POLRMT may also play a key role in repriming DNA replication within the
mitochondrion. Although POLRMT has been demonstrated to initiate replication at three
defined sites in the genome, it is also capable of generating RNA primers on ssDNA
[49,130,131]. In contrast to PrimPol, it generates RNA primers of ~ 25-75 nucleotides long
[49,130], although these have been found to be as short as 9-18 nt in yeast in the
presence of the transcription factor mtf1 [131]. These differences suggest both may play

key roles in repriming but under different circumstances.

More than one polymerase on the block

Unlike mammalian mitochondria, which for many years were thought to contain only a
single DNA polymerase, a number of additional polymerases have been found to also

reside within yeast mitochondria. Like mammalian mtDNA replication, the main replicative
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polymerase is a Pol y homologue, Mip1, that consists only of the large catalytic subunit,
with no PolG2 homologue identified [132,133]. In addition, Pol a has also been identified
within the mitochondria in S. cerevisiae [134]. Its dual localisation was confirmed by
immunofluorescent labelling and, although its function within the organelle is yet to be
elucidated, it is likely to have a role in repair and gap-filling as it is unable to rescue cells
lacking Mip1 [134]. In another S. cerevisiae study, Pol ¢, consisting of Rev3, Rev7 and
Rev1, was also found to localise within the mitochondria as well as in the nucleus. [135].
Whilst depletion of Rev3 or Rev7 had no effect on mitochondrial mutation levels, loss of
Rev1 lead to a decrease in the frequency of spontaneous mutations within the mtDNA.
[135] Further studies have shown that, although loss of Pol ¢ causes a decrease in
spontaneous and UV-C induced frame-shift mutations, it also causes a large increase in
point mutations after UV-C damage, suggesting an alternative, more mutagenic, pathway
is used in its absence [136]. Interestingly, over-expression of Pol C is able to rescue
pathological Mip1 mutants, which cause an increase in mutations [137], whilst over-
expression of the protein in the nucleus causes an increase in mutations [138]. In addition,
a proportion of Pol n has also been identified within the mitochondria of budding yeast
[139]. Like Pol ¢, it was also found that loss of Pol n causes an increase in the number of
mutations produced after UV-C damage within the mitochondrial DNA, confirming an
important role in the maintenance of DNA integrity. Other organisms have also been found
to have a much wider range of mtDNA polymerases (Figure 1), with trypanosomes having

a large number of Pol 3 and Pol k-like polymerases [6,140].

New players join the mammalian mitochondria polymerase team
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A recent study using a mtDNA-specific damaging agent has provided clear evidence for
additional polymerases within mammalian mitochondria. Pol 6 is a member of the A family
of DNA polymerases but, unlike many of the other members, it is a highly promiscuous
polymerase that exhibits a wide range of activities on a broad variety of substrates.
Indeed, it appears to have roles in inter-strand crosslink repair, BER, microhomology-
mediated end-joining (MMEJ), translesion synthesis, as well as having lyase activity
[141,142,143](reviewed in [144]). Although it has no mitochondrial targeting sequence, it
is recruited to the organelle after oxidative damage [145]. Strikingly, loss of Pol 6 leads to
a decrease in cellular oxygen consumption and mitochondrial membrane potential,
indicative of decreased oxidative phosphorylation, whilst mtDNA actually shows a
decrease in mutations, suggesting that other types of damage may abound [145]. This is
not unique, as loss of Pol C in the nucleus has a similar effect on mutation levels [146,147].
Although these TLS polymerases are useful for maintaining replication across lesions,
thus preventing the formation of possible DSBs as replication and the cell cycle
progresses, their ability to perform TLS comes with a high mutagenic cost. Therefore, the
cell must balance such consequences to ensure that a functional copy of the genome is
passed on to daughter cells. In the mitochondrion, mutations represent less of a risk than
in the nucleus, as each gene is available in multiple copies, thus any mutated copy
represents a much smaller fraction of the available product pool. Although mutations have
been shown to cause a range of mitochondrial diseases, some with catastrophic
consequences for cellular survival, these mutations must cross a threshold level before
their effects are observed. Mitochondrial DNA copy number appears to be relatively
flexible and it has been reported, in a number of model organisms, that copy number

varies widely across tissues and with age [148,149]. Interestingly, mtDNA copy number
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has been found to vary widely across different cancers, likely due to mutations in a
number of regulatory genes and, in a number of cases, mtDNA copy number has been
linked to prognostic outcomes [150,151,152]. In addition, it has been reported that high
levels of random mutations are tolerated by cells. For example, studies on mice lacking
the exonuclease domain of Pol y showed premature ageing. However, when mutation
levels were analysed in the heterozygotes, they were shown to be almost as high as

homozygote litter mates but showed no premature ageing phenotypes [153].

In addition, extension of work initially carried out in yeast has shown that a specific isoform
of Rev3 is also found within mammalian mitochondria, yet unlike in yeast, the other
components that form Pol ¢ have not been identified [154]. Loss of this protein causes

mitochondrial dysfunction and an increase in DNA damage after UV-C irradiation [154].

It is now becoming clear that, like nuclear DNA maintenance, mitochondria also utilise a
broad range of repair and tolerance mechanisms to overcome DNA damage, which may
occur spontaneously or arise due to many different environmental issues. The presence of
several TLS polymerases within the organelle suggests that mitochondria also utilise such
specialised polymerases to overcome DNA lesions. As well as direct extension of the
replication fork, such polymerases are also likely to be vital for post-replicative repair
across lesions. In many cases where the fork is stalled, replication may be reprimed
beyond a lesion by PrimPol or POLRMT allowing replication to proceed. However, a
polymerase able to bypass the lesion is then required to fill in the gap left behind, thus
allowing repair of the lesion that must be done on dsDNA to prevent the formation of

double-strand breaks, which are highly deleterious for the cell.
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DNA structural barriers in mitochondria - bypass of G4 quadruplex structures

G4 quadruplexes (G4s) are stable DNA secondary structures formed through the planer
stacking of quartets of Hoogsteen-bonded guanine bases. They are thought to have a
wide range of roles within cells including, replication initiation, telomere maintenance,
epigenetic instability, regulated recombination in the immune system and transcription
regulation [155]. G4s form in both DNA and RNA and can be either intra-molecular, within
one DNA strand, or inter-molecular, between two or more DNA/RNA strands [156]. Along
with the well-studied RNA/DNA quadruplex found in the NCR, in silico studies have
identified a number of other potential G4 forming sequences within mtDNA [157,158]. 80-
90 potential quadruplex forming sequences have been found throughout the human
mitochondrial genome, strongly biased towards the heavy strand of DNA, which has a
significantly high content of guanine nucleotides. Yeast mtDNA contains ~0.373 potential
quadruplex-forming sequences per 1000 base pairs, which is an order of magnitude larger
than in nuclear DNA (~0.034-0.067) [159,160]. Interestingly, some studies suggest that,
along with other helix distorting and intrinsically curved regions of DNA, G4s may be a
significant cause of DNA instability within the mitochondrial genome [161]. Dong et al.
have identified a number of quadruplexes with 2 or 3 consecutive guanines within the
mitochondrial genome that are associated with sites of common mitochondrial deletions
[158]. They proposed that such structures may induce genome deletions in a number of
possible ways including the stalling of replication, causing DNA breaks or extensive tracts
of vulnerable ssDNA or through aberrant DNA repair mechanisms [158]. In addition,
potential quadruplex forming sequences are found close to sites of common pathological
deletions and such sequences are inefficiently unwound by the mitochondrial helicase,

Twinkle, suggesting they may cause a significant impediment to progressing replication
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forks [162]. In addition, a number of other DNA structures may also persist within mtDNA,
which may slow or stall the replicative polymerase, such as triplex or Z DNA, intrinsically

bent structures or hairpin loops, such as the loop shown to form at O_ [161,163].

It has recently been demonstrated that PrimPol is crucial for the bypass of G4s in the
nucleus of vertebrate cells [164]. Although PrimPol is unable to replicate directly through
these structures, it is capable of repriming directly after G4s in a process termed “close-
coupled repriming” that enables replication to be restarted almost immediately
downstream of G4s (Figure 2). In the absence of PrimPol, a significant amount of
uncoupling of the replication fork was observed in cells as large tracts of late replicated
DNA in the region of the quadruplex on the leading strand, which was associated with the
loss of epigenetic histone marks [164]. This recent discovery has led to speculate that
PrimPol is likely to play a similar role in the replication of such structures within the
mitochondrial genome. Although Twinkle shows poor activity when confronted with G4
structures [162], a number of helicases have been found to be involved in the bypass of
such structures in the nucleus, one of which (Pif1) is also localised to the mitochondria

[21,165].

Tolerance of chain terminating Nucleoside Analogues

Another situation where PrimPol has recently been shown to play a vital role is in the
maintenance of replication in the presence of chain terminating nucleoside analogues
(CTNAs), such as acyclovir and abacavir. Cells lacking PrimPol showed increased

sensitivity to such drugs, whilst PrimPol was found to be able to incorporate a number of
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these nucleotide analogues and also perform close-coupled repriming downstream of such
lesions in vitro [40,166]. CTNAs typically lack the essential 3’ hydroxyl moiety required for
phosphodiester bond formation and therefore prevent on-going replication when
incorporated into DNA by terminating strand extension. They are commonly used to
control viral infections, (e.g HIV), as they are readily incorporated into DNA by reverse
transcriptase, significantly slowing viral replication processes. However, they do have a
range of toxic side effects caused by mitochondrial toxicity (reviewed in [167,168,169]),
with long-term use of AZT, (azidothymidine) causing a decrease in mitochondrial DNA in
skeletal muscle and cumulative mitochondrial myopathy [170,171]. More precisely, these
affects have been attributed to the incorporation of these nucleoside analogues by Pol y
(reviewed in [172]). Pol y inserts nucleoside analogues with varying ease, some
incorporated at concentrations similar to standard nucleotides, while others require ~2-5
fold higher concentrations to be efficiently incorporated [173,174,175]. All analogues share
the ability to inhibit Pol y-mediated replication in vitro by preventing any further synthesis
and therefore they must be rapidly removed otherwise on-going replication is inhibited
[174]. The attempted removal of CTNAs from the elongating DNA strand is likely to be first
tackled by the exonuclease domain of Pol y, whose role it is to check newly replicated
DNA for accuracy and quickly remove any incorrectly incorporated bases to prevent
mutations from being generated [88]. The exonuclease domain of Pol y increases its
fidelity by improving nucleotide selection by a factor of ~200 [88]. Notably, removal of
nucleoside analogues by this exonuclease is a slow process. For example, the ddC
analogue Zalcitidine has a half-life in DNA of ~2.4 hours due to its stronger binding affinity,

compared to standard nucleotides, for the polymerisation domain [176]. In addition, other
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analogues (e.g. AZT) have also been shown to inhibit the exonucleolytic activity of Pol v,

causing a decrease in fidelity [174].

Given this propensity for incorporation of CTNAs into replicating mitDNA, it seems likely
that PrimPol also plays a key role in repriming replication after the incorporation of these
nucleoside analogues by Pol y (Figure 2). PrimPol-deficient cells are more sensitive to the
presence of these analogues and this sensitivity can be complimented by the addition of
PrimPol, but not by a primase-deficient mutant of this enzyme [40], indicating that
repriming is essential for this process. In addition, PrimPol is able to reprime downstream
of incorporated nucleoside analogues in vitro, further supporting this proposed role in
replication restart. Interestingly, PrimPol is itself able to incorporate a number of the FDA
approved CTNAs into DNA, albeit less efficiently than natural nucleotides, with a distinct
discrimination profile compared to Pol y [166]. Thus, PrimPol may also create its own

problems, but its low processivity [34] is likely to limit such potential toxicity in vivo.

Conclusions

Despite its small size, mitochondrial DNA can represent ~1 % of the total DNA in some
cells due to its polyploid nature [17]. However, our understanding of DNA replication
processes within this organelle still trails well behind that of nuclear genome duplication.
Mitochondrial DNA has its own specialised replicative polymerase and mechanisms that
vary from those observed in the nucleus, although some controversy remains within the
field over the abundance and validity of the different proposed replication models.
However, we are beginning to uncover that mtDNA replication and repair mechanisms

may in fact be more similar to those in the nucleus than was initially thought, as many
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proteins identified within the nucleus are now also being found to have additional roles in
mtDNA replication. Clearly, there is much more to understand about the replication of this

small, but far from insignificant, molecule of DNA.

PrimPol is likely to play a similar role within the mitochondrion as it does in the nucleus,
maintaining the progression of the replication fork after replisome stalling. Emerging data
suggests that PrimPols key role is likely to be in repriming replication restart after a fork
stalling lesion or DNA structure [40,164]. In this review, we propose that it is highly likely
that PrimPol plays the same roles in mitochondria by repriming DNA replication to allow

replication to be completed in an efficient and timely manner (Fig. 2).

However, mitochondrial DNA organisation varies significantly from the compaction of
nuclear DNA and therefore the replication mechanisms and proteins required for its
duplication are adapted for these different environments suggesting that PrimPol must be
a highly flexible protein, which is able to adapt its functions depending on its partners and
the problems it encounters. It seems likely that its main role is to reprime the initiation of
DNA synthesis after Pol y is stalled by DNA damage, secondary structures or chain
terminating events. This allows replication to proceed, leaving behind the cause of the
stalling event to be processed and corrected in a post-replicative fashion. However, its
ability to perform TLS opposite template lesions, such as 8-oxoG, may also be significant
[28,29]. Complete replication of a mitochondrial DNA molecule is thought to take ~1 hr
[110] thus, although each cell contains multiple copies of the mitochondrial genome, it is
essential that each round of replication is completed in a timely manner to prevent the
accumulation of multiple stalled and / or collapsed replication forks. Indeed, in the absence
of PrimPol, the mtDNA copy number is considerably increased suggesting that more

copies are required to fully maintain organelle functionality.
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Although we have primarily discussed the possible roles of PrimPol during mitochondrial
genome replication, it is possible that it may also play additional roles in the repair of
damaged DNA in the absence of on-going replication. For example, almost all DNA repair
pathways utilise polymerases to fill in gaps generated by nucleolytic repair processes,
such as base / nucleotide excision and resection. Notably in this regard, distinct primase-
polymerases have evolved to play such bespoke roles in various DNA repair processes in
prokaryotes, such as NHEJ [31,32]. We still have much more to learn about the roles and
regulation of PrimPol in both the mitochondria and the nucleus and further research is
required to better understand the functions this fascinating enzyme fulfils within the cell.
[177] A range of PrimPol mutations have been found in cancer cells and other conditions
suggesting possible connections to human disease, including mitopathies, although these

pathological associations remain to be established. [178].
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Figure legends

Figure 1. The diversity of mitochondrial genomes. This table shows the wide variety of
mtDNA sizes found across different kingdoms and how their organisation and replication
mechanisms differ. Also highlighted are primases and polymerases shown to be, or
speculated to be (?), involved in these processes. Black strands represent parental DNA,

with newly synthesised DNA shown in blue and RNA in red.

Figure 2. Potential functions of PrimPol during mtDNA replication. Highlighted here
are ways in which PrimPol may play key roles in allowing the maintenance of mtDNA
replication in a number of fork stalling situations. A. After Pol y is stalled by a lesion
(yellow star), PrimPol is able to reprime synthesis downstream to allow replication to
proceed while the slower process of replication across the lesion is dealt with by Pol y
itself or another specialised TLS polymerase. Alternatively, PrimPol may act as a TLS
polymerase that directly bypasses the lesion. B. PrimPol may play a role in repriming
synthesis when the replication fork is stalled by DNA secondary structures, e.g. G4s. By
priming after the structure, it allows replication to continue downstream, while specialised
helicases are recruited to facilitate synthesis through the structure. C. Nucleoside
analogues (cyan star), incorporated into the newly synthesised strand, prevent further
elongation and must be removed by the exonuclease of Pol y, which is a slow process.
PrimPol may reprime downstream of CTNAs to allow replication to continue in a timely
fashion, whilst the process of removing these is completed. In each case, the second DNA
strand is shown as dsDNA for simplicity, however, this could be coated with mtSSB or

RNA transcripts, depending on the mode of replication.
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