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Summary 

 

This dissertation investigates how the settings of drug use influence the affective and 

neurobiological response to heroin versus cocaine in addicts. 

Chapter 1 reviews the neuropharmacology of heroin and cocaine and the 

theoretical background for drugs-settings interactions, including a detailed discussion of 

findings from previous studies in animals and humans that show how the same settings can 

influence in opposite directions the reinforcing effect of heroin and cocaine.  Cocaine self-

administration, for example, was greatly facilitated when rats were tested outside the home 

environment relative to rats test at home.  The opposite pattern was found for heroin.  

Translational studies in humans yielded similar results.  Indeed, heroin and cocaine co-

abusers reported using the two drugs in distinct settings: heroin preferentially at home and 

cocaine preferentially outside the home.  The aim of this dissertation is to determine 

whether the setting could also influence in opposite manner the affective and 

neurobiological response to heroin and cocaine in human addicts. 

Chapter 2 illustrates the findings of a study aimed at testing the hypothesis that the 

affective state experienced under cocaine or heroin is the result of an interaction between 

central and peripheral drug effects and the surroundings of drug use.  According to this 

hypothesis, when cocaine is taken at home there is a mismatch between the familiar 

environment and the peripheral effects such as arousal, increased heart rate, increased 

respiratory rate, and increased muscular tension (which are usually produced in stressful 

situations).  This mismatch dampens cocaine-rewarding effects.  A mismatch would also 

occurs when heroin (which produces sedation and decreases heart rate, respiratory rate, 

and muscular tension) is used outside the home in contexts requiring vigilance.  We found 

indeed that co-abusers subjectively experienced opposite changes in arousal, heart rate, 

respiratory rate, and muscular tension in response to cocaine (increase) versus heroin 

(decrease).  Most important, using a novel two-dimensional visual test, we found that in 

agreement with the working hypothesis the valence of the affective state produced by 

heroin and cocaine shifted in opposite directions as a function of the setting of drug use: 

heroin was reported to be more pleasant at home than outside the home, and vice versa for 

cocaine. 

Chapter 3 illustrates the results of in which emotional imagery was combined with 

fMRI to investigation the neurobiological underpinnings of drug and setting interactions in 



addicts.  Heroin and cocaine co-abusers were asked to recreate real-world settings of drug 

use during fMRI.  In agreement with the working hypothesis, we found that heroin and 

cocaine imagery produced opposite changes in BOLD in the prefrontal cortex and in the 

striatum, regions implicated in brain reward in humans.  Furthermore the same pattern of 

dissociation was observed in the cerebellum, suggesting that that a fronto-striatal-cerebellar 

network is implicated in processing drug-setting interactions.   

Chapter 4 includes a summary of the results, a general discussion, and suggestions 

for future research and implication.  The major finding is that the environment 

surrounding drug use can influence in opposite manner the affective and neurobiological 

response to heroin and cocaine, suggesting that therapeutic approaches to the treatment of 

drug addiction should take into account the distinctive effects of different classes of drugs 

as well as the contexts of drug use. 

The Appendix includes reprints of two papers reporting on additional studies 

conducted during the course of the Ph.D. program, which are not directly germane to the 

aims of the dissertation.  Other three papers are in the pre-submission stage. 
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Chapter 1  

Theoretical and Experimental Background 
	

	

1. Introduction 
 

It is often thought, by experts and laypersons alike, that addictive drugs are 

fundamentally the same.  The 2016 Surgeon General's Report on Alcohol, Drugs, 

and Health, for example, offered a very simplified picture of drug addiction, 

according to which all drugs produce subjective pleasure via common 

mechanisms of action and, when taken repeatedly, alter the brain in a similar 

manner, resulting in withdrawal symptoms after abstinence, compulsive 

craving, and eventually relapse into drug seeking.  In the official website the 

National Institute for Drug Abuse 

(https://www.drugabuse.gov/publications/media-guide/science-drug-abuse-

addiction-basics, accessed August 4, 2017) it is stated: “Nearly all addictive 

drugs directly or indirectly target the brain’s reward system by flooding the 

circuit with dopamine. Dopamine is a neurotransmitter present in regions of 

the brain that regulate movement, emotion, cognition, motivation, and feelings 

of pleasure. The overstimulation of this system, which rewards our natural 

behaviors, produces the euphoric effects sought by people who use drugs and 

teaches them to repeat the behaviour.” 

This tendency to oversimplification is not unique to policy documents or 

institutional websites, which target a non-academic audience.  Most theoretical 
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frameworks of drug reward1 and drug addiction are based on core shared 

processes and mechanisms, even if these differ greatly from theory to theory.  

Of course, for some drugs the similarities in mechanisms of action are 

undisputed.  Opioid drugs such as heroin, morphine, and fentanyl, for example, 

are all agonists to the mu opioid receptors; psychostimulant drugs such as 

cocaine, amphetamine, and methamphetamine share the ability to bind the 

transporter responsible for the reuptake of dopamine into the synaptic terminal 

(leading to the blockade of dopamine reuptake in the case of cocaine and to the 

reverse transport of dopamine in the case of amphetamines); alcohol, 

benzodiazepines, and barbiturates bind different sites on the GABAA receptors.  

However, as discussed in the next sections, it is generally held that the 

neurobiological cascades of all drugs converge at a distal level on a common 

transmitter system: the mesolimbic dopaminergic system, which is responsible 

for mediating the core rewarding effect of all addictive drugs.  Furthermore, 

shared neuroplastic adaptations in the dopaminergic system and related 

circuitry are thought to underlie the transition to drug addiction after 

prolonged exposure to addictive drugs.  

Yet, research conducted in the past three decades has provided 

experimental evidence of major differences among the various classes of 

addictive drugs (for reviews see Badiani et al. 2011; Peters et al. 2013; Nutt et al. 

2015).  Actually, it is fair to say that the few studies that investigated more than 

one class of addictive drugs have repeatedly shown the reinforcing effects of 

these drugs are not affected in the same way by pharmacological or 

																																																								
1	The term reward is used in different ways in empirical and theoretical papers.  In 
many cases, reward is used as a synonym of reinforcement, and rewarding effect as a 
synonym of reinforcing effect.  For the purpose of this dissertation the term reward is 
used to indicate the hypothetical psychological construct that is responsible for the 
reinforcing effects of certain stimuli.	
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neurobiological manipulations and, when administered chronically or 

intermittently, do not produce the same type of neuroplastic adaptations. 

Of course, it is reasonable to assume that both shared and unique 

mechanisms and processes are implicated to different extent in the rewarding 

and addictive properties of addictive drugs (and even in those of other non-

pharmacological rewarding stimuli, such as food, sex, gambling, etc.).  The 

challenge for the field is to understand whether the differences among the 

various classes of drugs are only a minor detail in the great picture or if they 

should be taken into account for an understanding of the neurobiological bases 

of drug reward and drug addiction and for the development of effective 

treatments. 

The aim of the present dissertation was to contribute to this inquiry by 

exploring the differential role of the setting of drug use in modulating the 

rewarding effects of two prototypical addictive drugs, heroin and cocaine in 

human addicts.  Previous studies have shown in fact that the setting of drug 

taking can exert a substance-specific influence on the response to these two 

drugs as well as to other drugs of abuse (Badiani 2013). 

In Section 2 below, I will review basic information concerning the 

pharmacodynamics and pharmacokinetics of heroin and cocaine.  In Section 3, I 

will discuss the neurobiological bases of drug reward and examine the overlap 

in the more distal mechanism of action of heroin and cocaine.  In Section 4, I 

will discuss the role of environmental factors in drug addiction and in 

particular I will review the findings from a series of studies providing the 

background for the present dissertation.  Finally, in Section 5, I will provide an 

outline of the two studies included in the dissertation.   
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Chapter 2 will be devoted to the first study, which was concerned with 

the role of setting in modulating the affective state induced by heroin versus 

cocaine in human addicts who co-abused both drugs.  The major finding from 

this study is that the affective states induced by heroin and cocaine are very 

different and are influenced by the setting of drug use in a substance-specific 

manner. 

Chapter 3 will report on the second study, which coupled emotional 

imagery evoking heroin and cocaine use in different settings with fMRI 

scanning to investigate the neural correlates of drug-setting interactions.  I 

found that the pattern of brain activation during drug imagery was the result of 

a complex interaction between drug and setting. 

Finally, Chapter 4 will provide a general discussion of the findings of my 

dissertation. 

 

	

2. Primary mechanisms of action of heroin and cocaine 

 

2.1. Pharmacology of heroin 

Heroin (diacetylmorphine) binds the mu opioid receptors (MOR) and with 

lesser affinity the delta opioid and the kappa opioid receptors (DOR and KOR, 

respectively).  The MOR, DOR, and KOR are seven-transmembrane domain 

receptors coupled with a Gαi/o protein (Figure 1, left panel).  The 

transductional cascade of opioid receptors is thought to be mostly ‘inhibitory’ 

of cell functions in that their activation inhibits the synthesis of cAMP, via 

inhibition of adenylyl cyclase by the αi subunit, and hyperpolarizes the neuron, 
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via the βγ complex-induced activation of inwardly rectifying potassium 

channels (Stein 2016).  A second transductional pathway is represented by the 

β–arrestins (Figure 1, right panel), which are involved in receptor 

internalization, and are thought to be implicated in respiratory depression and 

constipation, as well as in the development of opioid tolerance (Manglik et al. 

2016). 

	

	
Figure 1. Left panel: opioid receptor signaling.  Opioid agonists such as heroin, 6-MAM, 
morphine, and M3G bind the mu opioid receptors, thereby inducing the dissociation of G protein into 
the Gαi and Gβγ subunits.  The Gαi subunit inhibits the adenylyl cyclase thus reducing cAMP (2).  The Gβγ 
subunits close voltage-gated Ca2+ channels and open rectifying K+ channels (3).  The Gβγ subunits can 
also activate the phospholipase C/phosphokinase C pathway (4), which in turn modulates Ca2+ channels 
(5). Right panel: opioid receptor recycling.  Opioid agonists also activate the G protein–coupled 
receptor kinase (GRK), which in turn phosphorylates the activated receptor.  Phosphorylated receptors 
can be bound by arrestins thus undergoing desensitization (1) and internalization via a clathrin-dependent 
pathway.  After internalization the receptors are recycled to the cell membrane (2) or degraded within the 
lysosomes (3). Modified from Stein 2016. 

	

Opioid receptors are widely distributed throughout the peripheral and 

central nervous systems (PNS and CNS, respectively), and therefore their 
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activation produces a host of physiological and behavioural responses.  As 

discussed in Section 3, the rewarding effects of heroin are thought to depend 

mostly on the activation of MOR located in the mesocorticolimbic circuitry of 

the brain. 

The estimated plasma half-life of heroin in the human body is less than 5 

minutes (Rook et al. 2006).  After entering the blood, heroin is in fact rapidly 

transformed by esterases into 6-monoacetylmorphine (6-MAM), which is 

further de-acetylated to morphine (Inturrisi et al. 1984; Rentsch et al. 2001).  

Both 6-MAM and morphine are potent MOR agonists in their own right.  

Morphine is further metabolized to morphine-3-glucuronide (M3G) and 

morphine-6-glucuronide (M6G) (Milne et al. 1996).  While M3G has relatively 

little biological activity, M6G is a potent agonist at MORs (Ulens et al. 2001; 

Penson et al. 2000; Christrup 1997).  Morphine has a terminal half-life of 2-3 

hours in healthy subjects (Wagner and O’Hara 1997).  Thus, it is commonly held 

that the effects of heroin are mostly mediated by its metabolites, above all by 

morphine (Gutstein and Akil 2006). 

Yet, there is some evidence against the notion that heroin is simply a pro-

drug of morphine.  In the first place, it has long been noted that heroin has 

greater euphorigenic effects than morphine, a phenomenon that has been 

attributed to the greater lipophilicity of heroin relative to its metabolites, 

resulting in a more rapid onset of action (Eddy et al. 1957; Martin and Fraser 

1961).  Furthermore, Pasternak and colleagues have proposed the existence of 

MOR subtypes and in particular of a MOR-1 splice variant that has high affinity 

for heroin and M6G but little affinity for morphine (Rossi et al. 1996; Brown et 

al. 1997).  This is an intriguing phenomenon given that plasma and urine of 

heroin addicts have been reported to contain more M6G and less M3G than 
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those of heroin-naive individuals treated with morphine for pain control 

(Antonilli et al. 2003) and that prolonged exposure to high doses of morphine 

does not appear to influence M3G or M6G synthesis (Faura et al. 1998). 

	

 

 

2.2. Pharmacology of cocaine 

Cocaine is a drug with at least two distinct mechanisms of action.  First, 

it blocks the voltage-gated Na+ channels located in the non-myelinated 

portions of axons, thereby blocking the origination and transmission of action 

potentials.  This mechanism is responsible for the well-known local anaesthetic 

effects of cocaine.  The second mechanism of action is represented by the 

interaction with the specialized transporter proteins that mediate the recapture 

of monoamines from the extracellular space back into the cytoplasm (Amara 

and Kuhar 1993; Masson et al. 1999).  These monoamine transporter proteins 

belong to a superfamily of Na+/Cl- dependent transporters that share genetic, 

structural, and functional homologies (Blakely et al. 1994; Uhl and Johnson 

1994).  There are distinct transporters responsible for the reuptake of the 

different monoamines: i) dopamine (DA) neurons express dopamine 

transporters (DATs), ii) epinephrine and norepinephrine (NE) neurons express 

NE transporters (NETs), and iii) serotonin (5-HT) neurons express high affinity 

5-HT transporters (SERTs) and low affinity plasma membrane monoamine 

transporters (PMATs) (Rothman et al. 2003; Zhou et al. 2007). 

Under physiological conditions, the reuptake represents the principal 

mechanism for the termination of monoaminergic signaling at a synaptic level.  

However, in the case of dopamine (see Figure 2) and the other two 



	 8 

catecholamines, there is an additional mechanism of signal termination 

represented by enzymatic degradation to 3-methoxytyramine by the catechol-

O-methyl transferase (COMT).   

 

	

	
Figure 2. Dopaminergic synapse. 

	

The relative role of reuptake versus enzymatic degradation in 

terminating catecholamine transmission depends on the type of neuronal firing 

and on the density of the transporter.  In the case of the meso-telencephalic 

dopaminergic neurons, for example, COMT is thought to play the major role in 

terminating dopamine tonic transmission in the nucleus accumbens (NAcc) as 

well as phasic transmission in the prefrontal cortex (PFCx).  The DAT is thought 

instead to play a major role for the termination of phasic transmission in the 

NAcc (see Figure 3). 
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Figure 3. Top panel: dopamine transmission in the nucleus accumbens (NAcc).  Tonic 
dopamine (DA) release is dependent on slow, irregular spike activity of meso-accumbens dopaminergic 
neurons (1) and is thought to be modulated by glutamatergic afferents from the PFCx and other brain 
regions (2).  Slow, irregular firing produces low of dopamine concentrations (5–20 nM) in the extrasynaptic 
space (3), where dopamine is degraded by COMT (4).  Phasic dopamine transmission is triggered by burst 
firing of meso-accumbens dopaminergic neurons (5), which produces high dopamine concentrations (in 
the mM range) in the synaptic cleft, where it stimulates postsynaptic D2 receptors (6).  Synaptically 
released DA is transported back into the synaptic terminal by the DAT (7).  The concentrations of tonically 
released dopamine are too low to stimulate low-affinity postsynaptic D2 receptors, but are sufficient to 
stimulate high-affinity presynaptic D2 receptors (8), thus inhibiting phasic dopamine release (9). Bottom 
panel: dopamine transmission in the prefrontal cortex (PFCx).  Meso-cortical dopamine 
neurons fire only phasically (1), thus producing high concentrations of dopamine into the synaptic cleft (2).  
Dopaminergic terminals in the PFCx do not contain high levels of DAT.  Thus, the termination of 
dopamine transmission in the PFCx depends mainly on degradation by COMT. Modified from Bilder et al. 
2004. 
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Cocaine binds the transporters at the same binding site of endogenous 

monoamines (Beuming et al. 2008).  However, after binding to the transporters 

cocaine is not transported inside the neuron but blocks the reuptake of 

monoamines, thereby elevating their extracellular concentration.  Thus, cocaine 

acts as an indirect agonist at the receptors for dopamine (D1-5), NE (α1-2 and 

and β1-3), and 5-HT (5-HT1A, 1B, 1D, 1E, 1F, 2A, 2B, 2C, 3, 4, 5A, 5B, 6, 7).  The above-

mentioned receptors are all seven-transmembrane domain G protein-coupled 

receptors, with the exception of the 5-HT3 subtype, which is a ligand-gated 

Na+/Cl- channel. 

Cocaine does not exhibit much selectivity towards the different 

monoamine transporters.  Uptake inhibition assays have shown in fact 

comparable Kis for DA, NE, and 5-HT reuptake (Rothman et al. 2003).  Given 

that DA, NE, and 5-HT neurons are widely distributed throughout the PNS and 

the CNS, it is not surprising that cocaine administration results in a host of 

diverse physiological and behavioural responses.  However, the rewarding 

effects of cocaine are thought to depend mostly on its actions on the terminals 

of the meso-accumbens dopaminergic neurons (see Section 3).  The 

postsynaptic effects of dopamine differ as a function of receptor subtypes.  The 

activation of D1 and D5 receptors (D1-like receptor family) results in increased 

cAMP levels (via activation of adenylyl cyclase by a Gαs/olf protein).  In 

contrast, activation of D2-4 receptors (D2-like receptor family) decreases cAMP 

levels (via inhibition of adenylyl cyclase by a Gαi/o protein) and decreases 

excitability via βγ complex-induced activation of inwardly rectifying potassium 
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channels.  The pharmacology of dopamine receptors is very complex, also 

because they can undergo autodimerization as well as heterodimerization with 

each other (e.g., D1-D2, D1-D3, D2-D4) or with other receptors (e.g., with 

adrenergic and adenosinergic receptors) (Beaulieu et al. 2015).  Dopamine D2-

like receptors have greater affinity for dopamine than D1-like receptors.  While 

D2-like receptors are located both at a presynaptic (auto-receptors) and 

postsynaptic level, D1-like receptors are located only at a post-synaptic level 

(see Figures 2 and 3). 

After intravenous administration in humans, the half-life of cocaine is 

about 40-80 min (Jones 1990; Sholar et al. 1998; Perez-Reyes et al. 1994; Jeffcoat 

et al. 1989).  Less than 5% of cocaine is excreted as such in the urine.  Most of it 

is metabolized in the liver by hydrolytic ester cleavage.  The main metabolites 

of cocaine (all inactive) are represented by benzoylecgonine, ecgonine methyl 

ester, and ecgonine.  When cocaine is co-abused with alcohol, however, the 

ethyl ester of benzoylecgonine (cocaethylene) is formed (Jatlow 1991).  The Ki 

for dopamine reuptake of cocaethylene is comparable to that of cocaine, 

whereas the Ki for NE and 5-HT reuptake is much higher, indicating greater 

selectivity of cocaethylene for DAT relative to NET and SERT (Jatlow 1991; 

Rothman et al. 2003).  Cocaethylene has been found to be equipotent to cocaine 

with regard to self-administration in primates and rats (Jatlow 1991; Landry 

1992) and although it appears to be slightly less euphorigenic than cocaine in 

humans (Perez-Reyes et al. 1994) it is quite possible that it significantly 

contributes to the combined rewarding effects of cocaine and alcohol. 
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3. Neurobiology of cocaine and heroin reward 
	
3.1. Neural substrates of reward 

It is beyond the scope of this dissertation to provide an in-depth discussion of 

the neurobiological bases of reward.  However, it is important to point out that 

research conducted in the past five decades has identified a number of brain 

areas that participate in processing the hedonic properties and the incentive 

motivational value (incentive salience) of rewarding stimuli (and, via 

associative learning, of conditioned stimuli), and their modulation by cognitive 

and emotional processes, as well as by homeostatic signals. 

Figure 4 illustrates some of the circuits that are thought to play a major 

role in reward processing (Russo and Nestler 2013).  As discussed below, the 

greatest degree of attention has focused on the role of the dopamine neurons 

originating in the ventral tegmental area (VTA) and substantia nigra (SN) and 

projecting to the NAcc (ventral striatum), caudate-putamen (dorsal striatum), 

prefrontal cortex (PFCx), amygdala, and hippocampus.  In turn, prefrontal 

cortex, hippocampus, and amygdala send excitatory glutamatergic projections 

to the NAcc/striatum and to the VTA/SN.  As discussed below, the 

NAcc/striatum exert a complex control on the VTA/SN (which in addition to 

dopaminergic neurons contains GABAergic interneurons and GABAergic 

neurons projecting to the thalamus) through two separate pathways. 

Based on a massive volume of theoretical and experimental work, it is 

possible to assign different functional roles to the glutamatergic inputs to the 

NAcc, even though there is no agreement about the fine details (Russo and 

Nestler 2013; Richard et al. 2013).   
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Figure 4. A simplified representation of the major connections of the ventral tegmental area (VTA) and 
nucleus accumbens (NAc).  Modified from Russo and Nestler 2013. 

	

The PFCx, for example, is thought to exert cognitive control by 

computing the relationships between actions and outcomes (Balleine & 

Dickinson, 1998) and therefore to play a major role in reward expectations, in 

decision-making, and in delaying gratification.  The amygdala and the 

hippocampus are thought to relay different types of learned associations 

(emotion-related memories in the case of the amygdala, declarative and spatial 

memory in the case of the hippocampus). 

However, it is important to point out that in addition to the circuitry 

illustrated in Figure 4, a number of other central and peripheral mechanisms 

have been shown to be involved, at various levels, in the processing of 

rewarding stimuli.  The response to food stimuli, for example, is modulated by 

homeostatic signals that can feed onto the meso-telencephalic circuitry, not only 

indirectly (e.g., via the hypothalamic nuclei, the dorsal raphe nucleus, and the 

nucleus of the solitary tract) but also directly (e.g., via ghrelin, released from the 
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gastrointestinal tract, and acting receptors located on dopamine neurons) (see 

Yeo and Heisler 2012). 

Finally, it has been shown that the cerebellum, once thought to play a 

role only in the control and coordination of movement, it is also involved in a 

variety of perceptual, cognitive, and emotional functions independent of motor 

control (Schmahmann 2010; Baumann and Mattingley 2012; Balsters 2013).  

Indeed, the cerebellum is interconnected with the PFC (BA9 and BA46) via 

reciprocal pathways, providing an anatomical basis for cerebellar mediation of 

non-motor “frontal” function including reward processing (Holstege and 

Georgiadis 2004; Ramnani et al. 2004).  In particular, cerebellar activation has 

been observed in substance abusers while performing reward learning tasks 

(Anderson et al. 2006; Martin-Solch et al. 2001), experiencing drug craving 

(Bonson et al. 2002; Olbrich et al. 2006) and, most important for the scope of the 

present dissertation, when recalling drug-related experiences (Grant et al. 1996).  

	

3.2. Dopamine and reward 

The literature linking dopamine to reward is enormous, and there is little doubt 

that meso-accumbens/striatal dopamine neurons play a crucial role in 

motivated behaviour.  Indeed, dopamine concentrations in the terminal regions 

of this system are increased by all major types of rewarding stimuli, including 

food (e.g., Di Chiara et al. 1999), sex (e.g., Fiorino and Philips 1997), and 

addictive drugs (Di Chiara and Imperato 1986).  Furthermore, destruction of 

dopamine neurons produces aphagia and avolition (for a review, see Wise 

2008).  However, there is still not a general consensus about the exact 

information encoded by dopamine transmission.  This is at least in part the 

consequence of five major factors.   
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3.2.1. Meso-accumbens versus meso-striatal dopamine pathways 

There is evidence that the dopaminergic pathways originating in the VTA and 

projecting to the NAcc (or ventral striatum) play a more specific role in reward 

than those originating in the substantia nigra (SN) and projecting to the caudate 

putamen (or dorsal striatum) (Malenka et al. 2009).  However, there is also 

abundant evidence against this simplification.  First of all, the projections of the 

VTA versus SN are not completely segregated, as many VTA dopamine 

neurons project also to the caudate putamen and many SN dopamine neurons 

project also to the NAcc.  Furthermore, dopamine neurons projecting to NAcc 

and dorsal striatum have been reported to respond in a similar manner to 

unconditioned and conditioned stimuli (UCSs and CSs), as well as cues that 

control instrumental behaviour (Montague et al. 1996; Morris et al. 2006; Roesch 

et al. 2007; Schultz 2006; Schultz et al. 1997).  Also, rewarding stimuli and cues 

elicit similar dopamine release in the NAcc and the dorsal striatum (Boileau et 

al. 2006; Darvas and Palmiter 2010; de la Fuente-Fernández et al., 2002; Kishida 

et al., 2011; Phillips et al. 2003; Roitman et al. 2004; Volkow et al. 2012; Wanat et 

al. 2009; Wise 2009; Zaghloul et al. 2009).  Finally, rodents learn equally well to 

emit instrumental behaviour that stimulates dopamine neurons originating in 

either the VTA or the SN (Witten et al. 2011; Nieh et al. 2013; Rossi et al. 2013). 

 

3.2.2. Direct versus indirect NAcc/striatal projection pathways 

The neuronal population of the striatal complex includes both interneurons and 

medium spiny neurons (MSNs), which are GABAergic inhibitory projection 

neurons.  Interneurons represent about 5% of the total number of striatal 

neurons and express either GABA or acetylcholine.  The remaining 95% of 
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striatal neurons are MSNs that can be further differentiated in those that project 

to the midbrain directly (and co-express GABA and encephalin) versus those 

that project indirectly, via globus pallidus and subthalamic nucleus (and co-

express GABA, dynorphin and substance P).  The MSNs of the direct projection 

pathway predominantly express dopamine D1 receptors (D1-type MSNs) 

whereas the neurons of the indirect pathway predominantly express dopamine 

D2 receptors (D2-type MSNs).  A minority or MSNs of the dorsal striatum co-

express D1 and D2 receptors, which can heterodymerize (Marcellino et al. 2008). 

The direct and the indirect striatal pathways regulate in opposite 

directions the activity of the output nuclei of the basal ganglia (SN pars 

reticulata and globus pallidus pars interna), which in turn exert inhibitory 

control over the motor thalamus.  The direct pathway inhibits the output nuclei 

(thus, disinhibiting the thalamus) whereas the indirect pathway excites the 

output nuclei (thus, inhibiting the thalamus). 

The opposite regulation of the output nuclei of the basal ganglia by the 

direct versus the indirect pathways translates in the opposite roles of the two 

pathways in modulating reward and motivation.  As shown in Figure 5, for 

example, mice readily learn to press a lever that triggers optogenetic 

stimulation of the direct pathway whereas they avoid the lever that stimulates 

the indirect pathway (Kravitz et al. 2012), suggesting that the direct pathway 

mediates reward whereas the indirect pathway mediates aversion (even though 

there is little or no evidence that the projections of the NAcc segregate like those 

of the dorsal striatum in direct and indirect pathways).  Thus, it has been 

suggested that for produce maximal rewarding effects dopamine increases need 

to be fast and sufficiently large to stimulate low-affinity D1 receptors in 
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addition to D2 receptors, leading to the activation of the direct pathway and the 

inhibition of the indirect pathway.   

	

	
Figure 5.  Schematic representation of the consequences of the stimulation of the direct versus the 
indirect projection pathway of the basal ganglia.  The light-sensitive cation channel Channelrhodopsin2 
(ChR2) was expressed in D1-type MSNs (using D1-Cre transgenic mice, left panel) and D2-type MSNs 
(using A2A-Cre transgenic mice, right panel) of the dorsomedial striatum.  The mice were placed in a 
chamber with two manipulanda. One manipulandum triggered a pulse of laser light through the optical 
fibre. The other manipulandum was inactive. Blue: direct pathway originating from D1-type MSNs and 
impinging directly on the output nuclei of the basal ganglia: Substantia Nigra pars reticulata (SNr) and 
Globus Pallidus pars interna (GPi).  Red: indirect pathway originating from D2-type MSNs and impinging 
indirectly on the GPi and SNr, via Globus Pallidus pars esterna (GPe) and Subthalamic Nucleus (STN).  The 
thicker the arrow, the greater the relative activity of the projection.  Areas outlined in dark grey send 
inhibitory projections.  Areas outlined in white send excitatory projections.  The mice self-stimulated the 
direct pathway (àpositive reinforcement) but not the indirect pathway (àpunishment).  Modified from 
Paton and Louie 2012. 

	

Stimulation of NAcc D1 receptors, for example, seems to be sufficient for 

the rewarding effects of cocaine (Caine et al. 2007), whereas D2 receptor 

stimulation is not (Caine et al. 2002; Durieux et al. 2009; Norman et al. 2011), but 

maximal reward requires both D1 receptor and D2 receptor activation (Welter et 

al. 2007).   
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3.2.3. Tonic versus phasic dopamine transmission 

Dopaminergic transmission is a very complex phenomenon, as meso-

telencephalic dopamine neurons have been shown to fire in at least two distinct 

modalities (Grace 2016): i) tonic firing, consisting of slow, irregular spike activity 

(1-8 Hz) that produces low dopamine concentrations, and ii) phasic firing, 

consisting of bursts (>15 Hz) of rapid action potential spiking (burst firing) that 

result in spikes of high dopamine concentration called transients (see Figures 3).  

The regulation of tonic versus phasic transmission depends on the intrinsic 

properties of dopamine neurons and on the balance of the various excitatory 

and inhibitory inputs to the midbrain.  Tonic firing of VTA dopamine neurons 

has been shown to be modulated by afferents from the ventral pallidum and the 

stria terminals (Georges and Aston-Jones 2001; Mahler et al. 2014), whereas 

phasic firing involves excitatory and inhibitory afferents from the 

pedunculopontine tegmentum, the rostromedial tegmental nucleus, the 

subthalamic nucleus, the laterodorsal tegmentum, the NAcc, the globus 

pallidus, and the dorsal raphe (Floresco et al. 2003; Lodge and Grace 2006; 

Paladini and Roeper 2014; Grace 2016).  Tonic and phasic dopamine 

transmissions are thought to play different roles in motivation and reward 

(Covey et al. 2014; Volkow and Morales 2015; Grace 2016). 

The low ambient level of dopamine produced by tonic firing mainly 

stimulate high-affinity D2 receptors and is thought to support movement, 

cognition, and motivational drive.  In contrast, the spikes of high dopamine 

concentrations produced by burst firing stimulate low-affinity D1 receptors.  

Work done by Schultz and coworkers over the past two decades has shown that 

dopamine transients encode key attributes of natural rewards, such as timing, 

cost, magnitude, and probability (Schultz 2015).  Tonic firing initially occurs in 
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response to the unexpected presentation of a natural reward, but then its 

occurrence progressively shifts to the presentation of CSs predicting reward. 

Dopamine transients also exhibit the requisite temporal precision and 

amplitude to promote plasticity of cortico-striatal synapses that is associated 

with reward learning (Reynolds et al. 2001; Arbuthnott and Wickens 2007).  The 

exact information encoded by dopamine transient is still debated, but two main 

conceptual models have emerged.  According to one model phasic dopamine 

transmission encodes a “reward prediction error” (Schultz 2015).  That is, 

unexpected or greater than expected rewards increase burst firing, thus 

reinforcing behaviour, whereas expected rewards do not produce burst firing 

and absent or worse than expected rewards decrease burst firing, thus 

suppressing behaviour.  According to a second model (discussed in the next 

section), phasic dopamine transmission attributes ‘incentive salience’ to reward 

predicting cues and generate subjective craving and appetitive behaviour. 

As a corollary to the points discussed above, it is important to point out 

that teasing out the exact role of dopamine in reward based on findings from 

the literature is complicated not only by differences in the experimental 

paradigm(s) employed, but also by differences in the temporal resolution of the 

various methodologies used to monitor and quantify dopamine transmission, 

which range from the sub-second scale (e.g., fast scan cyclic voltammetry, 

electrophysiology) to the >1 minute scale (e.g., microdialysis, positron emission 

tomography imaging of dopamine receptors).  This makes it difficult to 

compare findings from studies using different methodologies, as the changes in 

dopaminergic activity measured using fast scan cyclic voltammetry and 

electrophysiology probably reflect the phasic firing of dopamine neurons, 
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whereas the changes measured using microdialysis and positron emission 

tomography (PET) imaging reflect their tonic firing. 

 

3.2.4. Competing models of reward and motivation 

The fourth, and probably most important, issue in complicating the 

interpretation of the role of the dopaminergic system in reward is represented 

by competing models of reward based on different definitions of the term itself 

and on the parsing of different subcomponents.  For the purposes of this 

dissertation, two models will be examined.  The first model (Figure 6) was 

initially proposed by Dalbir Bindra (1959, 1974) and then formalized by Toates 

(1986).  According to this model, the reward value of an unconditioned 

stimulus (UCS) is processed by specialized brain reward circuitry that elicits a 

hedonic response and assigns incentive salience to it.  Conditioned stimuli (CSs) 

can acquire, via associative learning, the ability to access the brain reward 

circuitry and produce effects similar to those produced by the UCS.  More 

recently, Kent Berridge and colleagues at the University of Michigan proposed 

a different model of reward and motivation (Robinson and Berridge 1993; 

Berridge et al. 2009; Berridge 2004, 2007, 2012) that builds on the Bindra-Toates 

model but distinguishes two major sub-components (Figure 7): pleasure (the so-

called ‘liking’) and incentive salience (the so-called ‘wanting’).  Thus, in the 

Michigan model, the neurobiological substrates of wanting (which produce 

subjective desire, attracts the animal towards stimuli, and elicit consumption) 

are segregated from those responsible for liking (which produce the subjective 

experience of pleasure as well as unconscious positive affective states).			
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Figure 6.  Bindra-Toates’ model of reward and motivation, according to Robinson and Berridge (1993). 

	

Although UCSs and CSs usually trigger parallel changes in wanting and 

liking, so as to appear inextricably bundled, under certain conditions the two 

processes can be dissociated.	

	

	
Figure 7.  The Michigan model of reward and motivation (Robinson & Berridge 1993).  Modified from 
Berridge (2012). 

	

The two models have powerful implications for the attribution of a 

specific role to dopamine in reward.  Many researchers follow, sometimes 

unwittingly, one version or the other of the Bindra-Toates model and assume 

that subjective or unconscious pleasure is associated to all rewarding UCSs or 

CSs.  Hence, dopaminergic transmission is thought to encode phenomena such 
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as euphoria and ‘yumminess’, a notion that has been very popular in the 1980s 

and 1990s, especially in the field of drug abuse research (Wise 1980, 2008).  

However, in the past two decades, a wealth of animal and human studies have 

shown that the hedonia/anhedonia dopamine hypothesis is incompatible with 

experimental findings (Berridge 2012; Berridge and Kringelbach 2013).  In 

particular, it has been shown that lesions of the dopamine neurons or 

pharmacological blockade of dopamine receptors have little or no effects on the 

‘liking’ component of reward. 

By contrast, according to the Michigan model, dopamine encodes the 

‘wanting’ component of reward but not the ‘liking’ one.  That is, in this model 

the dopaminergic meso-accumbens/striatal system (and related circuitry) 

serves as the ‘incentive salience attributor’ whereas distinct brain mechanisms 

are implicated in the hedonic experience (Berridge and Kringelbach 2013). 

 

3.2.5. The role of dopamine in reward versus aversion 

Finally, it is important to point out that it has been known since the early 1990s 

that restraint stress can increase dopamine levels in the NAcc of the rat 

(Imperato et al. 1991; Puglisi-Allegra et al. 1991), indicating that the mesolimbic 

dopamine system can be activated not only by rewarding stimuli but also by 

aversive stimuli.  Interestingly, Puglisi-Allegra and colleagues found that 

dopamine levels increased at the beginning of restraint and then again when 

the rats were freed.  However, the early dopamine response rapidly adapted 

after repeated exposure to restraint stress, whereas the increase in dopamine 

produced by the release from restraint remained unchanged (Imperato et al. 

1992).  Puglisi-Allegra and colleagues concluded “that the activation of the 

mesolimbic dopaminergic system induced by aversive stimuli adapts to 
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repeated experiences differently from that produced by pleasurable events, 

suggesting that aversive and rewarding experiences involve different neural 

systems.”  Indeed, it has been shown that VTA dopamine neurons are 

anatomically and functionally heterogeneous projecting to different sub-regions 

of the NAcc.  Lammel and colleagues (2014) have recently reviewed the 

literature concerning the different sub-circuits of the mesolimbic dopamine 

system and their differential role in mediating reward versus aversion.  

However, much remains to be done to clarify this topic in order to “explain a 

number of previously confusing observations that suggested a role for DA in 

processing both rewarding as well as aversive events” (Lammel et al. 2014, page 

351). 

	

3.3. Neurobiological substrates of heroin versus cocaine reinforcing effects 

3.3.1. Shared mechanisms of action of addictive drugs 

3.3.1.1. Animal studies.  Despite the very different primary mechanisms of action 

of heroin versus cocaine, there is evidence of partial overlap in the more distal 

neurobiological effects of the two drugs, particularly at the level of the meso-

accumbens/striatal circuitry.  Indeed, as discussed in the previous section, the 

prevailing trend for the past three decades has been to focus on shared 

mechanisms of drug reward, and in particular on the meso-accumbens 

dopaminergic system.  It is widely thought that not only psychostimulants but 

also MOR agonists, as well as nicotine, alcohol, and cannabinoids, impinge 

directly and/or indirectly onto meso-accumbens dopamine neurons, even 

though “these actions may differ across heterogenous subsets of midbrain 

dopamine neurons” (for a recent review, see Covey et al. 2014).  The final 

outcome in all cases is represented by increased dopamine concentrations and 
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increased dopamine transmission as illustrated in Figure 8.  As discussed in 

previous sections, cues that via associative learning acquire the ability to 

predict drug rewards are also thought to act mainly via the phasic activation of 

dopaminergic transmission. 

In the case of cocaine and other psychostimulant drugs (such as 

amphetamine and methamphetamine) the mechanisms responsible for their 

ability to facilitate dopaminergic transmission is easily identified in their 

actions on the DAT (see Section 2) and the consequent increase in dopamine 

levels in the terminal regions of the mesolimbic system.  In contrast, the 

mechanisms implicated in the effects of heroin and other drugs are more 

complex. 

Heroin and other opioid drugs are thought to disinhibit DA neurons by 

acting on MOR located on GABAergic neurons that impinge on mesolimbic 

dopaminergic neurons (see Figure 8).  The most important evidence in support 

of a major role of the mesolimbic dopaminergic system in mediating the effects 

of heroin can be summarized as follows: i) the VTA contains dense 

concentrations of both MOR and KOR (Greenwell et al. 2002; Sesack and Pickel 

1992; Bausch et al. 1995; Garzon and Pickel 2001); ii) systemic and intra-VTA 

administration of MOR agonists increase dopamine release in the ventral 

striatum (Spanagel et al. 1992; Devine et al. 1993; Yoshida et al. 1993; Di Chiara 

and Imperato 1986; Chefer et al. 2003); iii) systemic or intra-VTA administration 

of morphine in anaesthetized animals increase the firing rate of putative 

dopamine neurons, (Gysling and Wang 1983; Melis et al. 2000; Jalabert et al. 

2011; Kiyatkin and Rebec 2001; Matthews and German 1984); iv) the selective 

MOR agonist DAMGO activates putative VTA dopamine neurons in ex vivo 

preparations (Johnson and North 1992; Kiyatkin and Rebec 1997, 2001). 
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Figure 8. All addictive drugs are though to impinge on midbrain dopamine neurons (DA), either directly 
or indirectly, via glutamatergic neurons (GLUT, 1) or GABAergic neurons (GABA, 2).  Facilitation and 
inhibition of neuronal activity are indicated by the positive (+) and negative (-) signs, respectively.  
Opiates are thought to disinhibit dopamine neuron by reducing the inhibitory action of GABAergic 
neurons (2).  Furthermore, opiates up-regulate DA release by increasing the amplitude of phasic relative 
to tonic dopaminergic activity (4).  In contrast, both amphetamine (AMPH) and cocaine bind the DA 
transporter (DAT) thereby increasing the concentrations of DA, which in turn suppresses DA neurons firing 
by acting on D2 autoreceptors located on the cell body (3) or on the terminals (5).  Thus, opiates increase 
DA levels by increasing DA neuron activity, whereas psychostimulants increase DA levels, despite 
reducing DA neuron activity.  Modified from Covey et al. (2014). 

	

Yet, it is important to point out that there are findings that are not 

consistent with the notion that heroin per se increases dopaminergic 

transmission.  Kiyatkin and colleagues, for example, found that while passive 

injection of heroin increases the firing rate of putative VTA dopamine neurons 

in anaesthetized animals (Kiyatkin and Rebec 2001), passive or self-

administered injection of heroin in awake, drug-naïve rats, decrease firing.  In 

particular, Kiyatkin and Rebec showed that the firing rate decreased 

immediately following each self-administration of heroin, slowly recovering 

and peaking just before the next self-administration (Kiyatkin 1994; Kiyatkin 

and Rebec 2001).  However, as pointed out by Fields and Margolis (2015), the 

criteria used to identify VTA neurons as dopaminergic (e.g., dopamine D2 

receptor inhibition, action potential duration, or firing pattern) in the in vivo 
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electrophysiological studies conducted so far are not reliable (Lammel et al. 

2008; Margolis et al. 2006, 2012; Cohen et al. 2012).  Only direct identification of 

the neurotransmitter content of recorded neurons (for example, see Cohen et al. 

2012) in awake animals would allow to determine the effect of heroin and other 

opioid agonists in rodents. 

	

3.3.1.2. Human studies. The effects of addictive drugs on dopamine transmission 

has also been investigated in humans studies using PET imaging of dopamine 

D2 receptors with labeled radiotracers such as [11C]raclopride.  Increased 

dopamine transmission has been consistently found after administration of 

cocaine (e.g., Schlaepfer et al. 1997; Cox et al. 2011), amphetamine (e.g., Laruelle 

1995; Breier et al. 1997; Leyton et al. 2002, 2004), or methylphenidate (e.g., 

Volkow et al. 1999, 2001, 2008, 2014). 

In contrast, at present, there is no evidence of enhanced dopaminergic 

transmission after administration of heroin or other opioid agonists in humans 

(Nutt et al. 2015).  In particular, the only two studies (to the best of my 

knowledge) in which dynamic PET imaging was used in conjunction with 

heroin administration no change of dopamine receptor binding was observed in 

any sub-region of the striatal complex at any point in time during the scan 

(Daglish et al. 2008; Watson et al. 2013).  Furthermore, no change in dopamine 

receptor binding was observed after the presentation of heroin-paired cues that 

were sufficient to elicit a positive affective state (Watson et al. 2013).  It is 

possible that these negative findings might be due to methodological 

limitations, but it is nevertheless striking that the same technique (i.e., dynamic 

PET imaging with [11C]raclopride) has allowed researchers to identify changes 

in dopamine transmission following administration of psychostimulant drugs 
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(or exposure to psychostimulant-associated cues) but not after administration of 

heroin (or exposure to heroin-associated cues). 

 

 

3.3.2.  Shared substrates of drug reward 

3.3.2.1. Animal studies. Evidence from rodent studies indicates that 

dopaminergic transmission is required for the reinforcing effect of cocaine and 

other psychostimulant drugs (for reviews, see Wise 2008; Badiani et al. 2011).  

In contrast, the exact role of the dopaminergic system in mediating the direct 

rewarding effects of non-psychostimulant drugs is less clear than what is 

usually thought, as repeatedly pointed out by Badiani and colleagues (Badiani 

et al. 2011; Badiani 2013, 2014; Badiani et al. 2017). 

In particular, there is experimental evidence from a few comparative 

studies that disruption of dopamine transmission affects the reinforcing effects 

of cocaine but not those of heroin.  Studies from the early 1980s have shown in 

fact that administration of the dopamine receptor antagonist alfa-flupentixol 

(Ettemberg et al. 1982) or 6-hydroxy-dopamine lesions of the mesolimbic 

dopamine system (Pettit et al. 1984) severely impair cocaine self-administration 

but not heroin self-administration.  Similar findings were reported by others 

(Dworkin et al. 1988; Gerrits et al. 1996).  More recently, Pisanu and colleagues 

(2015) found that silencing the RNA encoding for dopamine D1 receptors in the 

shell of the nucleus accumbens completely blocks the acquisition of intravenous 

cocaine self-administration but has no effect on the acquisition of heroin self-

administration. 
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3.3.2.2. Human studies. Also in humans, there is some evidence linking the 

enhancement of dopaminergic transmission produced by psychostimulants to 

subjective measures of reward (e.g., Schlaepfer et al. 1997; Cox et al. 2011), 

amphetamine (e.g., Laruelle 1995; Breier et al. 1997; Leyton et al. 2002, 2004).  In 

contrast, it has been shown that heroin can produce its characteristic euphoriant 

effect in humans without producing any change in dopamine transmission in 

the striatum, as indicated by dynamic PET imaging with the labeled radiotracer 

[11C]raclopride (Daglish et al. 2008; Watson et al. 2013).  Interestingly, also the 

expectation of heroin reward despite producing a positive affective state failed 

to alter dopamine receptor binding (Watson et al. 2013).  

 

3.3.3. Summary 

Evidence from both animal and human studies suggest that the neurobiological 

substrates of the direct rewarding effects of cocaine are at least partly different 

from those of heroin.  More specifically, it appears that while dopaminergic 

transmission plays a major role in psychostimulant reward, this is not the case 

for opiate reward.  The importance of these apparent discrepancies is obvious, 

given that (as discussed in the first section of this chapter) most theoretical 

models of reward, including drug reward, posit the existence of shared 

substrates that are both necessary and sufficient to explain the direct reinforcing 

effects of rewarding stimuli. 

It is possible, that, as already noted above, methodological limitations 

and differences in testing procedures might account for the discrepancies 

observed between opiate and psychostimulant drugs.  In this respect, it is 

important to point out that very few comparative studies including more than 

one class of addictive drugs have been conducted in the past decades.  Most of 
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the experimental evidence comes in fact from studies with cocaine or 

amphetamine.  However, it striking that the few comparative studies with 

cocaine and heroin consistently show major differences in the direct rewarding 

effects of these two drugs, as in the case of the rodent studies that investigated 

the role of dopaminergic transmission in cocaine vs. heroin self-administration 

(Ettenberg et al. 1982; Pettit et al. 1984; Dworkin et al. 1988; Gerrits et al. 1996).  

Additional evidence of dissociation between cocaine and heroin reward has 

been provided by the studies by Badiani and colleagues that will be reviewed in 

Section 4 of this chapter. 

 

 

4. Substance-specific environmental influences on the rewarding 

effects of cocaine and heroin 

 

As discussed in the previous sections, heroin and cocaine act on specific 

binding sites in the reward regions of the brain.  However, it has long been 

noted that the rewarding effects of addictive drugs are not a simple 

consequence of their primary neuropharmacological actions.  A number of 

pharmacological and non-pharmacological factors contribute to shape the 

individual response to drugs.  Previous drug exposure, for example, can induce 

neuroplastic changes in brain reward areas and related areas that alter the 

response to subsequent exposure to the same drug as well as to other drugs (for 

reviews, see Stewart and Badiani 1993; Badiani and Robinson 2004; Robinson 

and Kolb 2004).  The nature of these neuroplastic adaptations and their 

localization varies as a function of the type of drug and of the schedule of drug 

administration.  Also, exposure to adverse life events can produce neuroplastic 
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changes that affect drug responsiveness (for a review, see Caprioli et al. 2007b).  

More in general, the environment can exert its influence on individual 

organisms throughout their life span thereby changing continually their 

phenotype.  It is on these unique phenotypes that drugs act.  That is, the 

individual response to a drug should be seen as the result of an interaction 

between the drug and a unique set of phenotypic characteristics. 

The notion that individual variability in drug responsiveness is not a 

simple function of genotype but is also due to environmental influences is not 

new and it is safe to say that no one in the field of neuropsychopharmacology 

would seriously object to it.  The same can also be said for the notion of 

individual differences in the vulnerability to drug addiction.  A series of 

seminal studies by Tsuang and colleagues (1998, 1999, 2001) and then by 

Kendler and colleagues (2003, 2007) have clearly shown the extent to which the 

propensity to initial drug use and the transition from use to abuse is modulated 

by environmental influences.  In contrast, less attention has been paid to two 

important findings of the studies mentioned above.  The first one is that the role 

of environmental factors weighs more heavily on the susceptibility to heroin 

abuse than on the susceptibility to cocaine abuse.  The second finding offers a 

clear answer to “a central question in the etiology of drug abuse”, that is, “the 

extent to which the risk factors for the use or misuse of a particular class of 

psychoactive substances are specific to that class or are nonspecific in that they 

predispose the individual to the use or misuse of a wide range of such 

compounds” (Kendler et al. 2003, page 687).  Kendler and colleagues found that 

“environmental experiences unique to the person largely determine whether 

predisposed individuals will use or misuse one class of psychoactive substances 

rather than another” (Kendler et al. 2003, page 687).  In particular, it appears 
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that there are environmental factors that are capable to facilitate preferentially 

heroin but not cocaine abuse and vice versa.  However, the exact nature of these 

substance-specific environmental influences is still not known, and even less is 

known about the relative neurobiological substrates. 

One way to begin addressing this issue would be to identify a relatively 

simple environmental manipulation, amenable to experimental investigation 

and capable to affect drug responsiveness in a substance-specific manner.  Most 

research done so far has focused almost exclusively on the ability of acute and 

chronic stressors and of associative learning processes to shape the individual 

set, thereby affecting drug responsiveness.  However, there is no evidence 

suggesting that CSs or stressors exert their modulatory influence in a substance-

specific manner, that is, by facilitating the reinforcing effects of one class of 

drugs but not of others.  In contrast, a series of studies published in the last ten 

years have shown that the surroundings of drug taking (the setting) can have a 

powerful and, most important, substance-specific influence on the rewarding 

effects of heroin versus cocaine in both rodents and humans (Badiani 2013).  In 

the next sections these studies will be reviewed in detail, as they provide the 

rationale for the experiments described in the present dissertation. 

 

4.1. Drug, set and setting 

During the Vietnam War more that 40% of American soldiers made use of 

opioid drugs and about 20% became addicted, mostly to heroin (Robins 1975).  

Yet, once back in the United States only a minority of these veterans continued 

to abuse heroin.  As later pointed out by Robins (1993) “the surprisingly low 

levels of re-addiction and the rarity of addiction to narcotics alone as compared 

with poly-substance dependence are findings still not entirely incorporated into 
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public and scientific views of heroin addiction.”  One of the few scholars to 

propose an explanatory framework for this phenomenon was Norman Zinberg.  

In an influential book titled Drug, Set, and Setting (1984), Zinberg argued that 

drug-taking behaviour is the result of an interaction among: 1) the 

pharmacological properties of the drug; (2) the attitudes and personality of the 

user (the set); and (3) the social and physical environment in which use occurs 

(the setting).  Clearly, what had changed in the life of the Vietnam veterans was 

not the drug or their personality but the setting of drug use. 

Zinberg was concerned mainly with the topic of controlled drug use and 

with the legal and clinical implications of his novel approach to the problem.  

However, the notion of an interaction among drug, set, and setting has clearly 

powerful implications also for the study of the neurobiological bases of drug 

reward and drug abuse.  Nevertheless, of the >1,140 citations received by 

Zinberg’s book (source: Google Scholar, 31 July 2017), only a small minority 

comes from neuroscience publications and often in a very cursory manner.  It is 

fair to say that the field of neuropsychopharmacology has still not fully 

incorporated the innovative perspective proposed by Zinberg. 

Of course, one of the major obstacles to the investigation of drug-set-

setting interactions under controlled conditions comes from the difficult of 

modeling the setting in the laboratory.  However, a few attempts at reproducing 

discrete features of the context of drug taking in animal models have been 

made by laboratories in Italy and France and USA.  Some of these attempts 

have focused on providing rats with alternative rewards such as food (Lenoir 

and Ahmed 2008; Caprioli et al. 2015).  Others approaches have focused on 

manipulating the ‘psychological’ features of the setting of drug use (see Badiani 
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2013).  In the next two sections, I will discuss the findings obtained with this 

last type of animal model and on the translational studies stemming from it. 

 

4.2. Experimental investigation of the setting of drug taking 

Humans can take drugs in a variety of settings, such as the user’s own home, 

friends’ home, pubs, clubs, etc.  Zinberg has argued quite convincingly that the 

behavioural and subjective effects of a drug can change as a function of the 

social and physical characteristics of a specific setting.  However, these settings 

differ not only in social and physical terms but also from the point of view of 

the ‘psychological’ meaning of the setting for the individual.  For example, a 

given apartment might represent the home environment for one person but a 

non-home environment for another, even though the setting is identical from a 

social and physical point of view.  To investigate this feature of the setting of 

drug use in an animal model, Badiani and colleagues adapted an earlier model 

developed in the early 1990s in the laboratory of Terry Robinson at the 

University of Michigan. 

 

4.2.1. An animal model of setting 

An initial series of studies concerning the role setting in modulating drug 

responsiveness in the rat were conducted using psychomotor activity as a proxy 

for the effects of drugs on the activity of the mesolimbic dopaminergic system, 

and psychomotor sensitization as an index of neuroplasticity in the same 

system (for reviews, see Robinson et al. 1998; Badiani and Robinson 2004; 

Caprioli et al. 2007b).  These studies demonstrated that the magnitude of the 

acute and sensitized psychomotor responses to amphetamine, cocaine, 

morphine, and heroin were smaller when the drugs were administered to rats 
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that lived in the test chambers (Home group or Resident group) relative to rats 

that were transferred to physically identical chambers only for the test sessions 

(Novel group or Non-Resident group) (Badiani et al. 1995a, 1995b, 1997, 2000a; 

Crombag et al. 1996; Browman et al. 1998a, 1998b; Fraioli et al. 1999; Ostrander 

et al. 2003; Paolone et al. 2003, 2007).  It is important to note that the setting of 

drug administration did not alter all drug effects in the same way.  Paolone and 

colleagues (2003), for example, demonstrated that morphine-induced 

psychomotor sensitization was facilitated in Non-Resident rats relative to 

Resident rats whereas the prophagic effect was only partly affected and the 

development of tolerance to the analgesic effect was not affected at all.  Finally, 

two studies demonstrated that the ability of environmental context to facilitate 

psychomotor sensitization to amphetamine could be dissociated from its effect 

on acute drug responsiveness and on conditioned responding (Crombag et al. 

2000, 2001). 

Interestingly, the modulatory effect of setting on drug-induced 

psychomotor activity did not seem to depend (at least in the case of 

amphetamine) on differences in pharmacokinetics (Badiani et al. 1997), on the 

involvement of the hypothalamo-pituitary-adrenal (HPA) axis (Badiani et al. 

1995c), or on the facilitation of dopamine release in the NAcc and other sub-

regions of the striatal complex (Badiani et al. 1998, 2000b).  In contrast, an 

interaction between drug and setting was observed downstream from 

dopaminergic transmission in the medium spiny neurons of the striatum 

(Badiani et al. 1998, 1999; Ostrander et al. 2003; Paolone et al. 2007) and in the 

amygdala (Day et al. 2001), as indicated by the expression of the transcription 

factor Fos or of Fos-mRNA. 
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The modulatory influence of setting did not simply change the 

magnitude of drug-induced Fos expression; most importantly, it changed the 

pattern of neuronal activation.  In Resident rats cocaine or amphetamine 

increased Fos-mRNA expression only in D1-like MSNs, whereas in Non-

Resident rats these drugs increased Fos-mRNA expression also in D2-like 

MSNs (Badiani et al, 1999, Uslaner et al. 2001a, 2001b; Ferguson et al. 2003; 

Hope et al. 2006).  Also morphine administration resulted in differential 

activation of D1- versus D2-like MSNs as a function of setting (Ferguson et al. 

2004) but with a pattern quite different from that observed for cocaine and 

amphetamine, as morphine decreased Fos-mRNA expression in D2-like MSNs.  

Another brain area where the setting altered the activating effects of opioid 

drugs in a different manner than for psychostimulants was the somatosensory 

cortex.  In this brain region, Ostrander and colleagues (2003) found no effect of 

setting on the response to repeated administrations of amphetamine.  In 

contrast, Paolone and colleagues (2007) found a significant interaction when the 

same experiment was conducted with heroin. 

In summary, using the animal model of setting described above it was 

found that psychomotor sensitization to both psychostimulant and opioid 

drugs was facilitated when drugs were administered outside the home 

environment relative to the home environment.  However, the setting seemed 

to affect in a different manner the neurobiological response to psychostimulant 

versus opioid drugs.  These findings were obtained with non-contingent drug 

administrations (that is, the drugs were administered by the experimenter).  As 

discussed in the following section, the same environmental manipulation was 

later adapted to study the influence of setting on the rewarding effects of self-

administered cocaine, amphetamine, and heroin. 
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4.2.2. Substance-specific influence of setting on drug use: Animal studies 

Drugs can act as reinforcing stimuli not only in humans but also in animals, 

including the laboratory rat.  Rats with intravenous catheters spontaneously 

work to self-administer the same addictive drugs taken intravenously by 

humans: cocaine, amphetamine, methamphetamine, heroin, etc. (for reviews, 

see Mello and Negus 1996; Haney and Spealman 2008).  A typical apparatus for 

drug self-administration experiments consists of a chamber equipped with an 

‘active’ lever, the pressing of which activates an electronic pump that delivers, 

via a syringe connected with the catheter, a bolus of drug into the jugular vein 

of the rat.  An ‘inactive’ lever (the pressing of which does not trigger drug 

delivery) is often used as a control manipulandum.  Depending on the specific 

aim of the study, experimental protocols can vary greatly in terms of: i) 

manipulanda (levers, holes for nose-poking, etc.); ii) availability of contextual 

and discrete cues paired with drug delivery; iii) schedule of drug 

reinforcement; iv) duration and frequency of drug availability; v) speed of drug 

delivery; and a variety of other parameters.  By using appropriate combinations 

of drug self-administration parameters, researchers have been able to 

investigate the role of CSs in controlling drug taking, the motivation to take the 

drug, the resistance to extinction of drug-taking behaviour, and other important 

information. 

However, drug self-administration in the rat represents, per se, simply an 

animal model of drug use and does not necessarily provide information about 

the mechanisms responsible for the development of drug addiction.  Indeed, 

several animal models have been developed to reproduce, with different 

degrees of face validity, some of the most relevant features of drug addiction.  
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Hence, to investigate the interaction between drug and setting in drug reward 

and addiction, Badiani and colleagues combined the animal model of setting, 

already described in previous section, with animal models of drug taking and 

of relapse first proposed by Stewart and colleagues (Shaham et al. 2003), as 

illustrated in the upper panel of Figure 9.  In addition, Badiani and colleagues 

developed an animal model of drug choice in which rats were given the 

opportunity to choose between different types of drugs within the same 

experimental session.  To this end, rats received double-lumen catheters and the 

self-administration apparatus was programmed so that by pressing on one 

lever or the other of the self-administration apparatus a rat was able to choose 

whether to self-administer one drug (e.g., cocaine) or another (e.g., heroin).  A 

synopsis of the main results of the studies by Badiani and colleagues is 

illustrated in Table 1. 

	
Table 1.  

	
 Heroin Cocaine 
Intake 
Caprioli et al. 2007a, 2008, 2009 
Celentano et al. 2009 
 

Rats take more heroin at 
home than outside the home 

Rats take more cocaine 
outside the home than at 
home 

‘Motivation’ (PR) 
Caprioli et al. 2007a, 2008 
Celentano et al. 2009 
 

Rats are willing to work 
harder for heroin at home 
than outside the home 
 

Rats are willing to work 
harder for cocaine outside 
the home than at home 

Choice: Heroin vs. Cocaine 
Caprioli et al. 2009 
De Luca et al., in preparation 
 

Rats tend to choose heroin 
at home 

Rats tend to choose 
cocaine outside the home 

‘Pleasure’ (50 kHz USVs) 
Avvisati et al. 2016 
 

Heroin ‘pleasure’ is greater 
than cocaine pleasure at 
home 
 

Cocaine ‘pleasure’ is 
greater than heroin 
pleasure outside the home 
 

‘Craving’ after abstinence 
(Relapse) 
Montanari et al. 2015 
 

Rats relapse into heroin 
seeking at home but not 
outside the home 

Rats relapse into cocaine 
seeking outside the home 
but not at home 
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Overall, it can be seen that the setting consistently modulated in opposite 

direction the response to heroin versus cocaine.  Resident rats took more heroin 

than Non-Resident rats (Figure 9, bottom panel) and worked harder (as 

indicated by progressive ratio schedule of reinforcement) for it.  The opposite 

was observed for cocaine and amphetamine (Caprioli et al. 2007a, 2008; 

Celentano et al. 2009).   

	

	
Figure 9.  Drug taking as a function of setting in the rat: Some rats were transferred to standard two-
lever self-administration chambers (one lever paired with drug infusions, the other lever inactive) 
immediately before the sessions (Non-Resident rats), while other rats were kept in these chambers at all 
times (Resident rats).  Heroin was more rewarding in the Resident rats than in the Non-residents rats 
(indicated by an upward and left shift in the dose-response curve).  In contrast, cocaine was more 
rewarding in the Non-resident rats than in the Residents rats (indicated by a left shift in the dose-response 
curve).  Modified from Badiani et al. 2011. 

	

Furthermore, rats with double-lumen catheters that had been trained to 

self-administer both cocaine and heroin and were then given the opportunity to 

choose between the two drugs, made their choice as a function of setting 

(Figure 10).  The majority of Resident rats preferred heroin to cocaine whereas 
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Non Resident rats tended to prefer cocaine to heroin (Caprioli et al. 2009).  

Resident rats also emitted more 50 kHz ultrasonic vocalizations (USVs) in 

response to heroin than to cocaine, and the opposite was observed for Non-

Resident rats (Avvisati et al. 2016).  It has been proposed that that 50 kHz USVs 

reflect the positive affective valence of drug experience in the rat, as they are 

emitted in response to presumably rewarding stimuli, including food, sex, 

tickling, playing, and addictive drugs (Knutson et al. 1998; Panksepp and 

Burgdorf 2000; White et al. 1990; McGinnis and Vakulenko 2003; Barker et al. 

2010).  Thus, it seems that the setting modulates in opposite direction not only 

the intake of and the motivation for heroin versus cocaine but also the affective 

response to the two drugs. 

	

	
Figure 10. Drug preference as a function of setting in the rat: Resident and Non-Resident rats with 
double-lumen catheters were first trained to self-administer heroin and cocaine on alternate days and 
were then given the opportunity to choose between cocaine and heroin within the same session.  Most 
Resident rats preferred heroin over cocaine whereas most Non-Resident rats preferred cocaine over 
heroin. Modified from Badiani et al. 2011. 
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In addition to modulating drug use, the setting exerted a powerful 

influence on the vulnerability to relapse into drug seeking after abstinence 

(Montanari et al. 2015).  Rats with double-lumen catheters were trained to self-

administer both cocaine and heroin on alternate days and then underwent a 10-

day extinction procedure during which upon completion of each instrumental 

task they received vehicle (paired with the appropriate drug cue) instead of the 

drug solution.  After extinction the rats were tested in a reinstatement 

procedure at the beginning of which they received a single ‘priming’ 

intravenous infusion of different doses of either heroin or cocaine.  Remarkably, 

only Resident rats relapsed into heroin seeking, as indicated by non-reinforced 

responding on the ‘heroin lever’, whereas only Non-Resident rats relapsed into 

cocaine seeking, as indicated by non-reinforced responding on the ‘cocaine 

lever’ (Figure 11).  These findings indicate that the internal state produced by 

heroin and cocaine may precipitate drug craving in some settings but not in 

others, suggesting that a ‘lapse’ into drug use may lead to actual relapse into 

drug addiction in some settings but not in others. 

	

	
Figure 11.  Reinstatement of heroin versus cocaine seeking as a function of the setting of drug priming.  
Data from Montanari et al. (2015). 
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In summary, the same physical setting can acquire, by a very simple 

manipulation of its ‘psychological’ meaning (i.e., home versus outside the home 

environment), the ability to influence in opposite manner the rewarding 

properties of cocaine and heroin, including their ability to trigger relapse into 

drug seeking in rat model of relapse.  The neurobiological basis of this 

phenomenon are not known but experiments conducted with repeated non-

contingent drug administrations suggest that the setting modulates in a very 

different manner the effects of opioids and psychostimulants on the activity of 

the striatal complex and the somatosensory cortex.  These striking findings led 

to conduct the translational studies described in the next section. 

 

4.2.3. Substance-specific influence of setting on drug use: Human studies 

Building on the findings from the animal studies described above, Badiani and 

colleagues conducted a series of studies in human addicts to investigate the 

setting of drug taking for heroin versus cocaine, using retrospective reports 

(Caprioli et al. 2009; Badiani and Spagnolo 2013).  Heroin and cocaine co-

abusers, recruited among the outpatients of a public drug addiction clinic in 

Rome (Italy), were interviewed about the circumstances of drug taking in the 

previous three months.  The criteria for recruitment included: i) DSM-IV-R 

criteria for cocaine and/or heroin dependence; ii) no other major psychiatric 

disorder; iii) a fixed address.  The participants were also asked to specify 

whether the setting of drug use represented a real preference or was the result 

of constraints.  They all confirmed that their choice of setting was a real 

preference. 

As illustrated in Figure 12, the addicts reported distinct setting 

preferences for the two drugs: heroin was used exclusively or preferentially at 
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home whereas cocaine was used exclusively or preferentially outside the home.  

These data concern only the separate use of heroin and cocaine in distinct 

occasions.  Of the few participants who reported injecting heroin and cocaine in 

combination (speedball), 70% preferred exclusively the home setting, whereas 

23% always preferred a non-home setting. 

The data were also analyzed in subgroups of addicts using different 

routes of administration.  Regardless of whether the addicts injected both drugs 

intravenously or took both drugs via insufflation, setting preferences were the 

same.  This suggests that setting preferences were not the result of practical 

constraints associated with the rituals of drug injection or of snorting.  Most 

important, these setting preferences did not appear to depend on the social 

features of the setting because they were evident also in addicts who took both 

drugs in the company of others. 

 

 

Figure 12. Setting Preferences for cocaine vs. heroin use in co-abusers (N=160).  Data from Caprioli et 
al. (2009) and Badiani and Spagnolo (2013).  

All co-abusers (N=160) 

‘Snorters’ only (N=34) 

IV users only (N=52) 

Social users only (N=48) 
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4.2.4. Summary 

Both animal and human studies indicate that the setting of drug use exerts a 

powerful and substance specific influence on drug reward.  Specifically, heroin 

was more rewarding than cocaine when rats self-administered these drugs in 

their home environment, whereas cocaine was more rewarding than heroin 

outside the home.  All measures of drug reward (intake, motivation, affect) 

were affected in a similar manner (Caprioli et al. 2007a, 2008; Celentano et al. 

2009; Avvisati et al. 2016).  Furthermore, when given the choice between heroin 

and cocaine the rats preferred heroin to cocaine in the home environment and 

cocaine to heroin outside the home (Caprioli et al. 2009).  Finally, the ability of a 

priming dose of heroin or cocaine to precipitate drug seeking in animal model 

of relapse was also affected by the setting (Montanari et al. 2015). 

Translational studies conducted in addicts (Caprioli et al. 2009; Badiani 

and Spagnolo 2013) have shown that even in humans drug and setting interact 

in a manner similar to that observed in rats, even if the experimental design 

was necessarily different.  Heroin and cocaine co-abusers reported in fact to use 

heroin prevalently at home and cocaine prevalently outside the home. 

 

4.3. An emotional appraisal hypothesis of drug reward 

The substance-specificity of the modulatory influence of setting on drug reward 

was at least initially (Caprioli et al. 2007a, 2008) an unexpected finding.  Indeed, 

the results described in the previous sections were at odds with the prevalent 

conception of drug reward as a unitary phenomenon and could not be easily 

accommodated in any extant theoretical model.  To account for these findings, 

Badiani has proposed a novel model of drug reward, according to which the 

setting may influence drug reward “by acting as an ecological backdrop for the 
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appraisal of drug effects.” (Badiani 2013).  In particular, Badiani hypothesized 

that each addictive drug produces a distinctive spectra of central and peripheral 

effects that do not always ‘match’ the setting where the drug is used.  Cocaine, 

for example, produces a state of central arousal and sympathomimetic effects 

that would be perceived as at odds with a familiar home environment.  In 

contrast, the sedative effects of heroin would be at odds with dangerous non-

domestic environments.  In summary, according to this model, the overall 

rewarding effect of a drug is thwarted in the presence of a mismatch between 

its central and peripheral effects and the setting of drug taking. 

A number of predictions derived from the hypothesis highlighted above 

can be subjected to experimental verification in animals and humans.  This has 

led me to conduct the experiments outlined in Section 5. 

 

 

5.  Aims of the present dissertation 

 

My dissertation aims at testing two predictions derived from the hypothesis put 

forward by Badiani (2013) and summarized in Section 4.4.  The first prediction 

is that the affective state produced by cocaine and heroin may undergo a 

change in valence as a function of the setting.  In particular, Badiani’s 

hypothesis predicts that the affective valence of heroin is more positive when 

the drug is taken at home than when is taken outside the home.  The opposite 

should occur for cocaine.  Initial support for this has been provided by an 

animal study, already described in Section 4.2.2, in which 50 kHz USVs were 

used to assess the emotional valence of drug experience (Avvisati et al. 2016).  

In Chapter 2, I will report on a study designed to investigate this prediction in 
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human addicts using a two-dimensional model of affect (Russell 1980).  This 

model posits that affective states arise from two independent 

neurophysiological systems related to arousal (a low-high energy continuum) 

and to valence (a pleasure-displeasure continuum).  The main advantage of this 

model is that it allowed us to test the more specific prediction of a shift in the 

affective valence of heroin in the individuals who experienced its sedative effect.  

The same line reasoning applied to the activating effects of cocaine. 

Another prediction derived from Badiani’s hypothesis was that the 

setting might alter in opposite directions the effects of heroin and cocaine in at 

least some of the brain areas implicated in brain reward.  In Chapter 3, I will 

report on a study in which we used emotional imagery and 3T functional 

Magnetic Resonance Imaging (fMRI) to investigate drug and setting interaction 

in addicts with a history of heroin and cocaine abuse.  We adapted an emotional 

imagery procedure based on previous work by Lang and colleagues (1979, 

1993) to recreate two different real-world settings of drug use and asked the 

participants to imagine taking heroin and cocaine.  We hypothesized a double 

dissociation of the BOLD signal in the brain regions implicated in drug reward, 

such as the prefrontal cortex and the striatum.	  
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Chapter 2 

Affective valence of heroin versus cocaine reward in human 
addicts: the role of setting 

	

	

1. Introduction 

 

1.1. Background 

As discussed in Chapter 1, retrospective studies in human addicts have shown 

that the preferred setting of use is not same for all drugs.  Indeed, when heroin 

and cocaine co-abusers were asked about the circumstances of drug taking, they 

indicated distinct settings for the two drugs: heroin being used preferentially at 

home and cocaine preferentially outside the home (Caprioli et al. 2009; Badiani 

and Spagnolo 2013).  The fact that similar findings were obtained also in rats 

(for a review see Badiani 2013) suggests that these preferences were not a trivial 

consequence of the “addicts’ conscious decision to take a sedative drug in a 

place where one can ‘slouch on a sofa’, and an activating drug where one can 

[…] move around“, but reflected a more fundamental and substance-specific 

influence of setting on drug reward. 

The literature offers many examples of environmental influences on drug 

taking, including stress and CSs (for a review see Caprioli et al. 2007b).  

However, there is no theoretical or experimental reason to think that any of 

these environmental factors should act in a substance-specific manner, and even 

less to the point of modulating in opposite direction the rewarding effects of 

two prototypical addictive drugs.  Furthermore, extant theoretical frameworks 
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of drug reward and drug addiction are unitary in nature and tend to minimize 

the differences among the various classes of drugs. 

It has been proposed (Badiani 2013) that the overall rewarding effects of 

addictive drugs are determined not only by their ability to produce euphoria 

(‘flash’) or to activate the neural mechanism of incentive salience (Berridge et al. 

2009) but by a complex interaction between their central and peripheral effects 

and the setting of drug use.  Cocaine, for example, produces, in addition to the 

characteristic ‘flash’, a state of arousal by activating noradrenergic transmission 

both centrally (locus coeruleus) and peripherally (sympathetic nervous system) 

(Billman 1995; Sofuoglu and Sewell 2009). 	This state of central and peripheral 

arousal (characterized by alertness, anxiety, aggressivity, tachycardia, 

tachypnea, etc.) usually occurs when the individual is exposed to exciting, 

potentially dangerous contexts.  When cocaine is taken at home, the 

exteroceptive information signalling a safe environment conflicts with the 

interoceptive information signalling danger.  Thus, a mismatch between 

exteroceptive and interoceptive information is produced.  The mismatch is 

much reduced or absent when cocaine is used outside the home environment.  

According to Badiani’s hypothesis, the mismatch reduces the positive valence 

of using cocaine at home relative to non-home environments.   

The reverse line of reasoning applies to heroin.  Indeed, except for the 

powerful ‘flash’, the effects of heroin are in many respects the opposite of those 

of cocaine.  Heroin depresses the central nervous system (producing sedation 

and anxiolysis and depressing respiration) and acts in complex manner on the 

periphery producing, among other effects, bradycardia (Haddad and Lasala 

1987; Thornhill et al. 1989).  When heroin is taken at outside the home, there is a 

mismatch between exteroceptive information requiring alertness and vigilance 
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and interoceptive information signalling reduced arousal and relaxation, 

whereas there is no mismatch when heroin is used at home.  Therefore, the 

mismatch reduces the positive valence of using heroin outside the home 

relative to the home environment. 

In summary, the setting of drug use provides “an ecological backdrop” 

against which the central and peripheral effects of drugs are appraised (Badiani 

2013).  When a “mismatch” between exteroceptive and interoceptive 

information is detected, the rewarding effect of the drug is thwarted (Badiani 

2013).  Putting this hypothesis to test in real world addicts presents a series of 

major challenges.  In the next two sections, I will examine the methodological 

issues concerning the measure of drug effects and emotional valence. 

 

1.2. Subjective appraisal of peripheral and central drug effects 

As detailed in the previous section, heroin and cocaine produce, in addition to a 

pleasurable ‘flash’, a number of central and peripheral effects.  Cocaine, for 

example acts centrally to produce arousal, anxiety, aggressivity, suppression of 

thirst and appetite, and activates the sympathetic nervous system, thus 

producing effects such as tachycardia, tachypnea, hypertension, mydriasis, 

reduced salivation, muscular tension, etc. (Hallman et al. 2012a; Billman 1995; 

Sofuoglu and Sewell 2009; Antoniazzi et al. 2017).  The effects of heroin are very 

different, as it depresses the central nervous system, thus producing sedation, 

anxolysis, and respiratory depression, and acts peripherally (partly via the 

parasympathetic nervous system) to produce bradycardia, hypotension, miosis, 

and constipation (Larson. 2008, Haddad and Lasala 1987; Thornhill et al. 1989; 

Nilsson et al. 2016).  In summary, while the peripheral effects of cocaine can be 
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summarized as sympathomimetic, those of heroin are parasympathomimetic-

like. 

The role of physiological changes in the appraisal of emotion has been 

hypothesized first by William James (1884) and then developed in different 

ways by various theorists, most remarkably by Rober Zajonc who hypothesized 

that emotional appraisal does not require conscious appreciation of the stimuli 

(1980).  Yet, it is often forgotten that the subjective appraisal of the activity of 

the autonomic nervous system contributes to the self-assessment of one’s own 

state of wellbeing and to emotional processing (Kreibig 2010).  Owing to the 

dichotomy in the involvement of the sympathetic versus the parasympathetic 

nervous system in emotional processing (Kreibig 2010), it would important to 

verify the ability of cocaine and heroin co-abusers to appraise the distinctive 

peripheral effects of the two drugs and to rate their intensity.  In particular, we 

were interested in the subjective appraisal of peripheral effects associated 

positively or negatively with arousal: increased or decreased heart rate 

(tachycardia or bradycardia), increased or decreased respiratory rate 

(tachypnea or bradypnea), increase or decrease in muscular tension.  As 

detailed in the Methods section, the magnitude of these effects was measured 

using a 5-point Likert scale. 

 

1.3. Subjective appraisal of emotional valence 

The study of affective states presents a major challenge in neuroscience.  This is 

partly due to the multiplicity of theories and constructs of emotions and to the 

availability of several alternative measures.  However, the general consensus is 

that there is not a single gold-standard method for measuring affective states 

(Scherer 2005).  Researchers have been using both objective measures of 
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emotional state: non-verbal behaviour (e.g. facial and vocal expression) and 

psychophysiological indicators (e.g. skin conductance, heart rate, respiration 

rate), and subjective measures such as self-report questionnaire.  As noted by 

Scherer (2005) while objective measures can be used to infer the emotional state 

of a person, there is not an objective method of access to the subjective 

experience other than to ask an individual to report about the nature of the 

experience itself.  

The limits and the reliability of self-reports are mainly due to the fact 

that emotions are described using terms of natural language, and this might 

represent a potential issue in the translation of concepts due to cross-cultural 

differences and language-specific conceptualizations.  Another critical point is 

related to the existence of unconscious affective reactions of which the person 

might be simply not aware, even when explicitly asked to report on their 

conscious mental state (Winkielman and Berridge 2003).  Furthermore, asking 

the respondent directly to focus the attention on his/her own experience might 

induce a retrospective judgment of the experience itself, which can distort the 

declared emotion (Köster and Mojet 2015).  This last point can become 

especially relevant in the field of drug addiction, where the social undesirability 

and stigma related to drug use may lead the respondents to conceal certain 

behaviours.  However, evidence suggests that self-reports offer a sufficiently 

reliable, valid and legitimate method for studying the behaviour of illicit drug 

users (for a review see Darke 1998).  

Affective neuroscientists in order to obtain self-report of emotional 

experience usually adopt one the following approaches: 1) the discrete 

emotional approach, and 2) the dimensional approach.  
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The discrete approach is based on the idea, first proposed by Darwin 

(1872), that basic emotions reflect universal psychobiological responses, which 

can be treated as separate and independent entities. Conventionally, it relies on 

the semantic categorization present for each emotion in the natural language.  

Usually, the self-report is composed by a checklist of emotional terms, and the 

individual is asked to rate whether the respective emotion was experienced, on 

a nominal, ordinal, or interval scale (Ekman, 1999; Izard, 1992). 

The dimensional approach was first proposed by Wundt (1874) in an 

attempt to use introspection in the experimental setting.  Wundt introduced the 

idea that internal subjective feelings can be described by their position on 

continuous multidimensional space.  Modern emotional theorists have 

developed different dimensional models  (Larsen & Diener, 1992; Russell, 2003; 

Schlosberg, 1952; Watson et al. 1999) and although they are still poorly 

represented in neuroscience and psychiatry, they could offer valuable insight in 

pathologies that involve a disorder of affects (Posner et al. 2005).  

Clinicians and researchers are aware of the difficulty that some people 

experience in assessing, discerning, and describing their emotional states 

(Saarni 1999).  This may be in part due to fact that affective states are often 

highly correlated and lack defined borders (Russell and Fehr 1994). 

Furthermore, the subjective experience of neurophysiological changes of 

pleasure and arousal tend to be labeled as a cognitive interpretation in relation 

to an eliciting stimulus, and within situational contexts, culminating in the 

subjective experience of a specific affective state (Russell 2003).  To overcome 

these limitations, in the present study we adopted the Circumplex Model of 

Affect proposed by Russell (1980) as a theoretical framework to investigate the 

relation between drug and setting. 
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The Circumplex Model of Affect posits that all affective states arise from 

core sensations produced by two independent neurophysiological systems: 

arousal (along high-low energy continuum) and valence (pleasure-displeasure 

continuum).  From this perspective, each emotion arises as a linear combination 

of these two dimensions, or as varying degrees of pattern of activation of both 

valence and arousal. The Circumplex model has shown reliability and validity 

across cultures (Russell 1983).  Using standardized objective probes, researchers 

have observed that peripheral physiological responses to affective stimuli vary 

incrementally accordingly with subjective ratings of valence and arousal.  For 

instance, it has been shown a high correlation in the increase of skin 

conductance and heart rate accelerations with subjective ratings of arousal 

(Lang et al. 1993).  Similarly, subjective valence ratings have been correlated 

with facial electromyographic (EMG) measurements of changes in musculature 

contraction (Cacioppo et al. 1986; Lang et al. 1993).  

 

1.4. Aims of the present study 

The present study had two major aims.  In Experiment 1, we verified the ability 

of heroin and cocaine co-abusers to appraise subjectively the distinct spectra of 

peripheral effects produced by the two drugs.  In Experiment 2, we verified the 

hypothesis that the affective states produced by cocaine and heroin undergo a 

shift in valence as a function of the setting.  In particular, it was predicted that 

the affective valence of heroin would be more positive when the drug is taken 

at home than when is taken outside the home.  The opposite should occur for 

cocaine.  
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2. Materials and Methods 

 

2.1. Participants 

All procedures and methods were approved by the University of Sussex Science 

and Technology Cross-Schools Research Ethics Committee (C-REC).  Participation in 

the studies was voluntary, and no monetary or non-monetary incentives were 

offered.  Prospective participants were recruited during their daily visit at the 

Substance Misuse Services of Villa Maraini (Rome, Italy) by the social workers 

and the medical staff and invited to participate in the study.  Prospective 

participants were then screened to exclude major psychiatric disorders and 

severe alcohol dependence (as indicated by a state of inebriation at recruitment 

or by treatment for alcohol abuse).  Inclusion criteria included: age between 18 

and 68 years; at least 12 consecutive months of heroin and/or cocaine use; fixed 

residence at time of regular drug use; good understanding of the Italian or 

English language.  After the study had been described to the prospective 

participants, informed consent was obtained before the start of the study.  

Participants were informed that the questionnaires focused on questions about 

their current (or past) experience with heroin and cocaine. Furthermore, the 

participants were assured that data were anonymous and confidential, that they 

were free to withdraw from the study at any time they wished, and that they 

were allowed to skip all questions they were not comfortable to answer.  The 

questions were presented in a fixed order between participants with the 

question relative to heroin before cocaine.  This method was chosen based on 

previous pilot interviews in order to avoid carryover effects of the recollection 

of cocaine experiences. 
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2.1.1. Experiment 1 

Fifty-one addicts (mean age = 35.96, SD=9.99), who self-identified as females 

(12) or males (39), participated in this experiment.  All participants had a long 

history of heroin (15.12 years, SD=9.36) and cocaine (14.15 years, SD=7.88) co-

abuse.  Nearly all participants (97.96%) had made heavy use of street heroin in 

their life (i.e., daily use for 3 or more months).  Most of them (97.83%) were 

enrolled in methadone programs (59.66 mg/day, SD=53.60) but current heroin 

use (i.e., at least one episode in the last three months) was still prevalent 

(78.43% of subjects).  The main route for heroin administration was intravenous 

injection (46.81%), followed by insufflation (i.e., intranasal administration; 

27.66%) and inhalation (smoking-‘chasing the dragon’ method; 25.53%). 

Most participants (77.55%) had made also heavy use of cocaine and 

70.83% of them were still current users (i.e., at least one episode in the last 3 

months).  The main route for cocaine administration was insufflation (37.23%), 

followed by inhalation (smoking-‘water bottle’ method; 35.11%) and 

intravenous injection (27.66%). 

Table 1 summarizes the socio-demographic characteristics of the sample 

and basic information about drug use.  

 

2.1.2. Experiment 2 

Fifty-three addicts (mean age = 37.11, SD=10.42), who self-identified as females 

(11) or males (42), participated in this experiment (43 of them also participated 

in Experiment 1).  The sample included 45 heroin and cocaine co-abusers, 7 

were cocaine-only abusers and 1 heroin-only abuser.  They all had a long 

history of heroin (15.96, SD=10.31) and/or cocaine (14.44, SD=8.51) use.  Nearly 

all participants (97.83%) had been heavy users of street heroin.   Most of them 
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(84.91%) were enrolled in methadone programs (59.66 mg/day, SD=53.60) but 

current heroin use was still prevalent (73.91% of subjects).  Also in this group, 

the main route for heroin administration was intravenous injection (54.35%), 

followed by inhalation (23.91%) and insufflation (21.74%). 

Most participants (73.08%) reported heavy use of cocaine at some time in 

life and 55.77% of them were current users.  The main route for cocaine 

administration was insufflation (48.00%), followed by inhalation (26.00%), and 

intravenous injection (26.00%). 

Table 1 summarizes the socio-demographic characteristics of the sample 

and basic information about drug use.  The majority of the participants (86.79%) 

had a fixed residence at the time of their enrolment in the study.  However, it is 

important to point out that the information concerning the setting of drug use 

referred to periods in which the participants had a fixed residence. 

 

2.2. Data collection 

The data were collected using the online survey host Survey-Gizmo in a quiet 

testing room.  Computerized interview methodology is considered a faster, 

more relaxing, and more engaging way to collect data from alcohol and drug 

users relative to other forms of self-report (Skinner et al. 1983).  The data were 

entered using the offline mode by the interviewer.  In addition to the general 

information described in the previous section, we collected the data detailed in 

the next sections. 

2.2.1. Experiment 1 

Participants were informed that the survey focused on questions about their 

current (or past) experience with heroin and cocaine.  The general instruction 

was to recall a typical drug experience and to rate the magnitude of the 
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perceived effect. Participants were instructed to exclude instances of combined 

heroin and cocaine use (‘speedball’).   

“In this part of the survey, you will be asked to rate the physiological changes 
of which you are aware of when under the effect of a specific drug.  Please rate 
to what extent each change applies to your typical experience with heroin 

and/or cocaine.  
The alterations can be in both directions (Increase – Decrease).” 

 
In addition, to changes in heart rate, respiratory, and muscular tension we 

also assessed the subjective appraisal of intestinal function (bowel movements), 

urinary function, visual acuity, salivation, sexual drive, and appetite.   

The magnitude of the perceived effect (relative to baseline conditions, 

that is, in an undrugged state) was rated using a bi-directional 5-point Likert 

scale, with the anchors 1=small-effect, 5 = large-effect (0 = no perceived effect).  

 

2.2.2. Experiment 2 

The participants were instructed to recall a typical drug experience and to rate 

the affective state produced by heroin versus cocaine in two setting (at home 

versus outside the home).  Also in this case, the participants were instructed to 

exclude instances of combined heroin and cocaine use (‘speedball’). 

The emotional state induced by the drug was assessed using a graphic 

approach based on the Circumplex Model of Affect (Russell 1980; see Figure 1, 

left panel), already described in Section 1.  Our aim was to develop a user-

friendly, intuitive test that could be completed rapidly without relying on the 

cognitive processes required for the verbal description and interpretation of 

emotional states (see Schrerer et al. 2001), which could have represented a 

confounding factor given the addicts’ negative feelings about their own 

addiction (Dearing et al. 2005; Luoma et al. 2012, Luoma et al. 2013).  Thus, we 
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created the diagram illustrated in the right panel of Figure 1, representing a 

two-dimensional space of emotional state with arousal on the vertical 

dimension and valence on the horizontal dimension.  Emoticons and colours 

were added to increase the evocative power of the diagram (Kaye et al. 2016; 

Nathanson et al. 2016). 

For each combination of drug and setting the participant was asked to 

choose the quadrant that best reflected the affective states experienced while 

under the influence of the drug: i) top-right yellow quadrant if the emotional 

state was simultaneously pleasurable and arousing; ii) bottom-right green 

quadrant if the emotional state was simultaneously pleasurable and sedating; 

iii) bottom-left blue quadrant if the emotional state was simultaneously 

unpleasant and sedating; (iv) top-left red quadrant if the emotional state was 

simultaneously unpleasant and arousing. 

 

	
Figure 1. Emotional Model of Arousal and Valence. Left Panel: Graphic representation of the 
Circumplex Model of Affect (Russel 1980).  Right panel: Bidimensional representation of affective states 
used in Study 2.  This test was developed based on the Circumplex Model of Affect illustrated in the left 
panel, by removing the labels indicating different levels for each dimension, and by adding emoticons. 

 

We expected that in some case the affective state experienced while 

under the effect of the drug could not be the reduced to a single condition.  For 
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this reason and in order to not affect the ecological validity of the data, no 

restriction was placed on the number of affective states that the participant 

could report for each combination of set and setting. 

 

2.3. Data analysis and Statistics 

2.3.1. Experiment 1 

The scores for each effect were compared with a pre-specified null hypothesis 

(0 change) using one-sample Mann-Whitney test.  The two-tailed Wilcoxon 

signed rank test for paired data was used to assess differences between heroin 

and cocaine scores for each effect.  We also calculated the Pearson’s correlation 

as a measure of effect size.  According to Cohen (1992), a value of 0.1 is 

considered a small effect, 0.3 a medium effect and a value of 0.5 or greater, a 

large effect size.  All analyses were performed using R (version 3.3.3) Statistical 

Software (R Core Team 2014).  

 

2.3.2. Experiment 2 

In this experiment, the participants were allowed to select, for each combination 

of drug and setting, one or more of the four quadrants of the diagram 

illustrated in Figure 1.  As shown in Table 3, in 82.7% of cases the participants 

indicated a single quadrant, more rarely two quadrants (15.3%) and only in 2% 

of cases they selected three or four quadrants.  In 11.2% of cases the selection of 

more than one quadrant resulted in a mixed valence.  That is, in 88.8% of cases 

the valence was either entirely pleasant or entirely unpleasant.  These data were 

classified and analysed in three different ways in order to test three separate 

hypotheses.  
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2.3.2.1. The ‘pleasure’ hypothesis.  As discussed in Chapter 1 and in Section 1, it is 

often assumed that all drugs are the same in producing ‘pleasure’.  For each 

combination of drug and setting, we calculated the observed frequency of the 

following three categories: i) pleasant (by combining the frequency of entries 

for quadrants ‘pleasant-arousing’ and ‘pleasant-sedating’), ii) unpleasant (by 

combining the frequency of entries for quadrants ‘unpleasant-arousing’ and 

‘unpleasant-sedating’), and iii) mixed valence (for all the instances in which 

both pleasant and unpleasant quadrants were selected).  We used the one-

sample Kolmogorov-Smirnov test (Massey 1951) to assess the degree to which 

the observed frequencies differed from the expected frequencies based on the 

null hypothesis (pleasant:mixed:unpleasant = 1:0:0).  We also tested a ‘weak’ 

version of the ‘pleasure’ hypothesis in which the categories pleasant and mixed 

were combined (pleasant/mixed:unpleasant = 1:0). 

 

2.3.2.2. Shift in valence (hypothesis 1).  The working hypothesis (see Section 1.1) 

predicted a complete or partial shift in the affective valence of heroin and 

cocaine as a function of setting.  The data were arranged in a 2x2 contingency 

table and the McNemar’s test was used to assess the difference between the two 

correlated proportions (McNemar 1947).  Of course, only co-abusers were 

included in this analysis. 

 

2.3.2.3. Shift in valence (hypothesis 2).  A more rigorous reading of the working 

hypothesis would require limiting the analysis to the individuals who 

experienced heroin-induced sedation in both settings and to those who 

experienced cocaine-induced activation in both settings.  That is, all cases in 
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which there was a discrepancy for the dimension ‘arousal’ were excluded from 

the analysis.  Also this hypothesis was tested using the McNemar’s test. 

 

 

3. Results 
 

3.1. Experiment 1 

As illustrated in Table 2 and Figures 2 and 3, the profile of the subjective effects 

of heroin and cocaine were very different, consistent with the working 

hypothesis.  It should be noticed that the perceived drug effects of heroin and 

cocaine were rarely unidirectional, that is, for most measures some participants 

reported an increase and others a decrease (see Table 2 and Figure 2).  The only 

exception concerned cocaine, which increased heart rate, respiratory rate, and 

muscular tension in most participants, whereas no participant reported the 

opposite.   

 

3.1.1. Heart rate: opposite changes induced by cocaine vs. heroin 

Nearly all participants (98%) reported an increase in heart rate when under the 

influence of cocaine; not surprisingly the ratings were significantly different 

from zero (p<0.001).  In contrast, heroin tended to decrease heart rate (p<0.01), 

even though only 33% subject reported this effect whereas 63% reported no 

change and 4% an increase.  There was a significant difference between the 

scores for cocaine and those for heroin (Z=5.86, p<0.0001, r=0.8). 
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3.1.2. Respiratory rate: opposite changes induced by cocaine vs. heroin 

Cocaine increased their respiratory rate (p<0.001), as reported by 80% of 

participants, whereas heroin tended to reduce it (p<0.01), even though only 41% 

of participants reported this effect.  Also in this case, there was a significant 

difference between the scores for cocaine and those for heroin (Z=-6.15, 

p<0.0001, r=0.9).  

 

3.1.3. Muscular tension: opposite changes induced by cocaine vs. heroin  

The majority of participants reported opposite changes in muscular tension for 

heroin vs. cocaine.  Cocaine increased muscular tension (p<0.001) in 78% of 

participants whereas heroin decreased it (p<0.001) in 82% of participants.  

Again, there was a significant difference between the scores for cocaine and 

those for heroin (Z=5.78, p<0.0001, r=0.8). 

 

 

3.1.4. Intestinal function: opposite changes induced by cocaine and heroin 

As expected, the majority of subjects (74%) reported that heroin decreased their 

intestinal function (p<0.001), a well-known effect of opioid agonists (Camilleri 

2011; Holzer 2009).  Surprisingly, 45% of the participants reported an increase in 

intestinal function after cocaine (p<0.05), probably due to adulterants present in 

street-grade cocaine, such as mannitol (Cunningham et al. 1984).  There was a 

significant difference between the scores for cocaine and those for heroin (Z=5, 

p<0.0001, r=0.7). 
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3.1.5. Urinary function: modest reduction by heroin but not cocaine 

There was no significant change in urinary function after cocaine (p=0.31) and 

modest decrease after heroin (p<0.05), consistent with previous reports (Redan 

et al. 2016).  However, there was a significant difference between the scores for 

cocaine and those for heroin (Z=3.14, p=0.002, r=0.4). 

 

3.1.6. Salivation: decreased by both cocaine and heroin 

Salivation was decreased by cocaine (p<0.001) and, to a lesser degree, by heroin, 

with significant differences between the scores for the two drugs (Z=2.06, 

p=0.03, r=0.3). 

 

3.1.7. Appetite: suppressed by cocaine 

Not surprisingly, the majority of the participants (87%) reported decreased 

appetite after cocaine (Cochrane et al. 1998; Ersche et al. 2013) whereas there 

was no significant change after heroin (p=0.73), with 34% of participants 

reporting a decrease, 30% an increase, and the 37% no change in appetite.  

There was a significant difference between the scores for cocaine and those for 

heroin (Z=4.34, p=0.0001, r=0.6).  

 

3.1.8. Visual acuity: reduced by heroin but not by cocaine 

The participants reported a modest but highly significant decrease in visual 

acuity after heroin (p<0.001) but no change after cocaine, heroin, with no 

significant differences between the scores for the two drugs (Z=1.65, p=0.09 ns, 

r=0.2). 
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3.1.9. Sexual drive: no changes 

There was no significant change in sexual drive after either cocaine or heroin 

use.  This was somewhat surprising, given that cocaine is thought to increase 

sexual desire (Johnson et al. 2017). 

 

3.2. Experiment 2 

3.2.1. Drug ‘pleasure’  

As illustrated in Table 3 and Figure 4, the overall valence of the typical drug 

experience was not always pleasurable, with important differences as a function 

of both drug and setting.  When heroin was taken at home, the majority of 

participants (89.1%) experienced a pleasant affective state, whereas only 6.5% 

reported an unpleasant state and 4.3% a mixed state (both pleasant and 

unpleasant).  The observed frequencies were not significantly different (p>0.2) 

from those expected on the basis of either the strong 

(pleasant:mixed:unpleasant = 1:0:0) or the weak version 

(pleasant/mixed:unpleasant = 1:0) of the ‘pleasure’ hypothesis (Table 5).  In 

contrast, when heroin was used outside the home the overall experience was 

pleasant in only 39.1% of participants, whereas 50% reported an unpleasant 

experience.  These frequencies differed significantly from both the strong and 

the weak version of the ‘pleasure’ hypothesis (p<0.0001). 

Cocaine use at home produced a pleasurable state only in 26.9% of 

participants whereas 61.5% experienced an unpleasant state and 11.6% a mixed 

state.  These frequencies differed significantly from both the strong and the 

weak version of the ‘pleasure’ hypothesis (p<0.0001).  Also when taken outside 

the home cocaine resulted in an unpleasant experience for a sizeable number of 

participants (32.7%) and only 50% reported a pleasant state from both the 
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strong and the weak version of the ‘pleasure’ hypothesis (p<0.0001).  Also in 

this case, the observed frequencies differed significantly from both the strong 

and the weak version of the ‘pleasure’ hypothesis (p<0.0001).   

In summary, only in the case of heroin use at home, the emotional state 

induced by the drug was rated as overall pleasant by the majority of 

participants.  This is not consistent with the notion that all addictive drugs 

produce a pleasurable affective state. 

 

3.2.2. Shift in valence (hypothesis 1) 

As illustrated in Table 5, in 56.5% of participants the valence shifted from 

mainly positive at home to mainly negative outside the home, in agreement 

with the main prediction of our working hypothesis.  Only in 2.2% of 

participants (1 individual) the shift was opposite to the predicted one. The 

McNemar’s test indicated that the shift was highly significant (p<0.0001).  In 

41.3% of participants there was no shift in valence. 

Also in the case of cocaine (see Table 5), the McNemar’s test indicated a 

significant shift in valence as a function of setting (p=0.0014).  For 48% of 

participants, the valence shifted from mainly negative at home to mainly 

positive outside the home, in agreement with the main prediction of our 

working hypothesis.  Only in 12% of participants, the shift was opposite to the 

predicted one.  In 40% of participants there was no change in valence as a 

function of setting.   

 

3.2.3. Shift in valence (hypothesis 2) 

The working hypothesis predicted that the shift in valence was the result of a 

mismatch between exteroceptive and interoceptive information (a mismatch 
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arousing effects of cocaine in a home environment and the sedative effects of 

heroin outside the home).  The data were thus re-analyzed, including only the 

case in which there was concordance for the vertical dimension (see Figure 1).  

Also this sub-set of data was consistent with the working hypothesis, as the 

McNemar’s test indicated that a significant shift in valence as a function of 

setting for both heroin (p<0.001) and cocaine (p=0.0015).  

 

 

4. Discussion 

 

The present study investigated the subjective effects of heroin and cocaine in 

drug addicts who co-abused both drugs.  I report here three major findings.  

First, we found that heroin and cocaine produced very different spectra of 

subjectively perceived central and peripheral effects.  Second, we found that the 

affective state produced by heroin and cocaine is not always pleasurable.  Third, 

we found that the affective state produced by heroin and cocaine can undergo a 

shift in valence as a function of setting. 

 

4.1. Subjective appraisal of central and peripheral effects of heroin and 

cocaine 

In Experiment 1 we assessed the subjective appraisal of central and peripheral 

effects of heroin and cocaine, as reported by experienced co-abusers.  The 

direction and magnitude of these changes are illustrated in Table 2 and Figures 

2 and 3.  To the best of my knowledge, no previous study has compared the 

subjective effects of cocaine versus heroin in human addicts. 
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The spectra of effects of the two drugs were very different and in many 

cases virtually the opposite.  The majority of participants reported that under 

the influence of cocaine they perceived an increase in heart rate, respiratory rate, 

and muscular tension, as well as a decrease in salivation.  These subjective 

effects are consistent with previous reports from the literature (Hallman & 

Lyskov 2012, Billman 1995, Sofuoglu and Sewell 2009, Maceira et al. 2014; 

Antoniazzi et al. 2017) and can be easily attributed to the blockade of the 

norepinephrine transporter on the terminals of the sympathetic nervous system.  

In contrast the same co-abusers reported that under the influence of heroin they 

perceived a reduction in heart rate and respiratory rate.  The mechanisms 

responsible for these effects are only partly known and might involve both 

central (depression of the bulbar respiratory centres) and peripheral 

mechanisms (including parasympathetic and sympathetic mechanisms) 

(Haddad and Lasala 1987; Thornhill et al. 1989).  The participants also reported 

a reduction in muscular tone, which may be related to the depression of the 

central nervous system and/or to the anxiolytic effect and/or to the analgesic 

effect produced by heroin.  However, to best of my knowledge, there are no 

scholarly reports that can shed light on the mechanisms responsible for this 

subjective effect.  In summary, regardless of the exact mechanisms involved, 

cocaine produced classical sympathomimetic effects whereas heroin produced 

parasympathomimetic-like effects.  The importance of this dichotomic pattern 

lies in the role played by the autonomic nervous system in regulating emotional 

processing (Levenson 2014; Kreibeg 2010), which will be discussed in Section 

4.3 below. 

There were also significant differences for other subjective effects of 

cocaine and heroin: intestinal function, urinary function, salivation, and 
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appetite.  While these differences might have contributed to create distinct 

spectra of subjective effects in response to heroin versus cocaine, it is unlikely 

they might have contributed to determine the substance-specific interaction 

between drug and setting.  

 

4.2. Drug ‘pleasure’ 

Although it was not the major aim of the present study, the collection of data 

concerning the emotional valence of the drug experience gave us the 

opportunity to address a contentious issue in the field of drug addiction 

research.  As discussed in Chapter 1, it is often thought even by experts (Wise 

1980, 2008) that all addictive drugs “directly or indirectly target the brain’s 

reward system by flooding the circuit with dopamine […] in regions of the 

brain that regulate […] feelings of pleasure.  The overstimulation of this system, 

which rewards our natural behaviors, produces the euphoric effects sought by 

people who use drugs and teaches them to repeat the behavior.” 

(https://www.drugabuse.gov/publications/media-guide/science-drug-abuse-

addiction-basics).  However, two decades of animal and human studies have 

shown that the hedonia/anhedonia dopamine hypothesis is incompatible with 

experimental findings and that addictive drugs can affect in a very different 

manner distinct aspects of the rewarding process as suggested by Berridge and 

colleagues (Smith et al. 2011 Berridge et al. 2009; Berridge 2012; Berridge and 

Kringelbach 2013). 

Our data not only indicate that even prototypical addictive drugs like 

heroin and cocaine do not produce necessarily a pleasurable affective state in all 

contexts.  Actually, we have shown that in certain settings almost two-thirds of 

experienced drug users report that cocaine produces a mainly unpleasant 
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affective state even during the period of regular use.  This is consistent with 

reports by Ettenberg and colleagues (2004, 2009) that heroin elicits pure 

approach behavior in the rat, whereas cocaine elicits more complex approach-

avoidance behaviour.   

 

4.3. Shift in affective valence as a function of setting 

Studies in rats, already reviewed in Chapter 1 and in the previous sections of 

this Chapter, have shown that drug preferences are a function of setting, heroin 

being rewarding at home than outside the home and cocaine being more 

rewarding outside the home than at home (Caprioli et al. 2007, 2008).  Also in 

humans, drugs and settings are associated in a substance-specific manner.  

Heroin and cocaine co-abusers tend in fact to prefer (albeit not exclusively) the 

home environment for heroin use and non-home environments for cocaine use 

(Caprioli et al. 2009; Badiani and Spagnolo 2013).  On the basis of these and 

other findings, it has been proposed the rewarding effects of addictive drugs 

are the results of complex interaction among central and peripheral effects and 

the setting of drug taking (Badiani 2013).  In particular, it has been proposed 

that the affective valence of cocaine is thwarted when the drug is taken in a 

home environment because of the mismatch between exteroceptive information 

(i.e., safe home environment) and interoceptive information (i.e., the central and 

peripheral arousal produced by cocaine).  Similarly, the affective valence of 

heroin is thwarted when the drug is taken in an exciting, potentially dangerous 

environment because of the mismatch between the latter and the state of 

sedation produced by heroin.  Preliminary support for this hypothesis was 

provided by a study in rats in which it was found, using 50 kHz ultrasonic 

vocalizations as an index of positive affect, that the affective valence of cocaine 
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and heroin reward was modulated by the setting (Avvisati et al. 2016): rats 

vocalized more for heroin than for cocaine at home, whereas they vocalized 

more for cocaine then heroin outside the home.  The main goal of the present 

study was to investigate if the same type of environmental modulation occurs 

in human addicts.  The findings reported here indicate that this is indeed the 

case. 

Using a novel bi-dimensional test developed on the basis of the 

Circumplex Model of Affect (Russel 1983), we found that the affective state 

produced by heroin was indeed appraised as more pleasant when the drug was 

used at home then when used outside the home, whereas the affective state 

produced by cocaine was more pleasant when the drug was used outside the 

home then when used at home.  More specifically, our data confirmed that the 

shift in the affective valence of heroin occurred in association with its sedative 

effects (that is, a shift was observed in the subset of individual reporting 

sedation after heroin), whereas the shift in the affective valence of cocaine 

occurred in association with its arousing effects (that is, a shift was observed in 

the subset of individual reporting arousal after cocaine).  It is reasonable to 

assume that the sympathomimetic effects of cocaine and the 

parasympathomimetic-like effect of heroin (see Section 4.1) contributed to 

generate the emotional state of arousal and sedation produced by cocaine and 

heroin, respectively.   

Taken together these results are in agreement with the hypothesis that a 

mismatch between interoceptive and exteroceptive information decreases the 

positive valence of drug experience (Badiani 2013).  As pointed out by Badiani 

(2013) “It is important to emphasize that emotional appraisal does not 

necessarily entail the conscious elaboration of stimuli (Zajonc 1980, Chritchley 
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2009, Gray et al. 2012) which, incidentally, would be difficult to envisage in 

rats”.  

 

 

4.4. Conclusions 

Further studies are necessary to investigate the causal relationships in the 

interaction between exteroceptive and interoceptive information relevant to the 

appraisal of drug reward.  However, the results reported here strongly suggest 

a major role of interoception in modulating the affective response to addictive 

drugs. 

In the last few years, there has been a growing interest in the role of 

interoception in emotional processing.  The term interoception, first introduced 

by Sherrington (1906), refers to the “sense of the physiological condition of the 

body”, and is thought to be “influenced by the dynamic state of physiological 

arousal” (Craig 2002; Herbert et al. 2012). 	Interoception is crucially important 

for homeostasis, but does not necessarily involve the cognitive appraisal of the 

information.  In contrast, interoceptive awareness, which requires direct 

conscious attention to internal bodily sensations, is thought to be important for 

cognitive processes involved in emotional self-regulation (Mehling et al. 2009).  

In particular, recent clinical research in drug addiction has suggested an 

important role of interoception for emotional self-regulation (Goldstein et al. 

2009; Paulus et al. 2009, Noël et al. 2013; Paulus and Stewart 2014; Price and 

Smith-DiJulio 2016). 

In Chapter 4, I will discuss the implications of the present findings for 

the development of novel therapeutic approaches to the treatment of substance 

use disorders.  
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Table 1. Socio-demographic information 
 

 Study 1 (N= 51) 
mean (SD) 

Study 2 (N= 53) 
mean (SD) 

Drug use    

• Heroin and cocaine 
• Heroin only 
• Cocaine only 

100% 
0% 
0% 

84.91% 
1.89% 

13.21% 
Age (years) 35.96 (9.99) 37.11 (10.42) 
Sex/gender (females) 24% 21% 
Education (years)   11.68 (3.67) §a 11.21 (3.47) §b 
Ethnicity   

• Caucasian 
• Multiethnic 
• Black/African 
• Indian/Pakistani/Bangladeshi 

86.27% 
9.80% 
1.96% 
1.96% 

88.68% 
7.55% 
1.89% 
1.89% 

Employment status⌘   

• Employed 
• Retired/Disability 
• Controlled environment 
• Unemployed 

48.71% 
5.13% 
5.13% 

41.03% 

46.34% 
9.76% 
9.76% 

34.15% 
Fixed Residence 86.27%ua 86.79% 

Household   

• Family/partner 
• Alone 
• Flatmates 

-- 
-- 
-- 

82.61% 
10.87% 
6.52% 

City of residence (no. inhabitants)   

• <100.000 
• 10.000-100.000 

89.80% 
10.20% 

90.57% 
9.43% 

Methadone program 
mg/day 

97.83% 

59.66 (53.60) #a 

84.91% 

55.91 (57.24) #b 

Heroin °a  
Years of use 15.12 (9.36) 15.96 (10.31) 
Main route of administration   

• Intravenous injection 46.81% 54.35% 

• inhalation (smoked) 25.53% 23.91% 

• insufflation (snorted) 27.66% 21.74% 
Cocaine    

Years of use 14.15 (7.88) 14.44 (8.51) 
Main route of administration °a °b 

• Intravenous injection 27.66% 26.00% 

• inhalation (smoked) 35.11% 26.00% 
• insufflation (snorted) 37.23% 48.00% 

Notes: Education: §a Missing data for 14 participants, §b Missing data for 12 participants; 
Employment: ⌘ Missing data for 12 participants; Fixed Residence: ua Missing data for 2 
participants; Methadone program (mg/day): #a Missing data for 15 participants, #b Missing data 
for 11 participants; Main routes of administration: °a Missing data for 2 participants, °b Missing 
data for 2 participants. 
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Table 2.  Subjective appraisal of the central and peripheral effects of cocaine and heroin. 
 
 

Increase 
(% participants) 

Decrease 
(% participants) 

No Effect 
(% participants) 

 Cocaine Heroin Cocaine Heroin Cocaine Heroin 

Effect Large Moderate total Large Moderate total Large Moderate total Large Moderate total   

Heart rate*** 73 25 98 0 4 4 0 0 0 8 25 33 2 63 

Respiratory 
rate*** 39 41 80 2 6 8 0 0 0 14 27 41 20 51 

Muscular 
tension*** 45 33 78 2 2 4 0 0 0 41 41 82 22 14 

Intestinal 
function*** 20 25 45 0 2 2 6 14 20 39 35 74 35 24 

Urinary 
function** 10 20 30 4 14 18 10 8 18 27 16 43 53 39 

Visual acuity 18 8 26 4 4 8 16 22 38 6 41 47 37 45 

Salivation* 8 8 16 2 6 8 39 35 74 14 27 41 10 51 

Sexual drive 12 18 30 12 24 36 12 18 30 14 20 34 43 31 

Appetite*** 2 6 8 8 22 30 69 18 87 18 16 34 6 37 

 
Asterisks indicate significance differences (Wilcoxon signed rank test) between heroin and cocaine; *p<0.05, **p<0.005, ***p<0.0001 
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Figure 2.  Percent distribution of individual responses for the subjective appraisal of central and peripheral effects of cocaine and 
heroin (same data of Table 2). 
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Figure 3.  Mean score (±SEM) for the appraisal of the effects of cocaine and heroin on the Autonomic Nervous System function 
and on other systems (same data of Table 2 and Figure 2). Hashtags indicate significant changes from baseline (one-sample Mann-
Whitney test); #p<0.05, ##p<0.01, ###p<0.001.  Asterisks indicate significance differences (Wilcoxon signed rank test) between 
heroin and cocaine; *p<0.05, **p<0.01, ***p<0.001 
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Table 3. Subjective appraisal of the emotional valence of drug experience as 
a function of drug and setting (same data of Figure 4) 
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Figure 4.  Subjective appraisal of the emotional valence of drug experience 
as a function of drug and setting. 
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Table 4. Observed subjective appraisal for the emotional valence of drug 
experience versus expected frequencies (based on the ‘pleasure’ theory of 
drug reward), as a function of drug and setting. 
 

 
 
  

Observed frequencies
Kolmogorov-Smirnov one-sample test for the 

comparison with expected frequencies based on 
‘pleasure’ theory 

Pleasant P/U Unpleasant
Expected frequencies 

‘strong’ version 
Pleasant:mixed:unpleasant 

(1:0:0) 

Expected frequencies 
‘strong’ version 

Pleasant/mixed:unpleasant 
(1:0:0) 

Heroin
at home 41/46 2/46 3/46 p>0.05 p>0.05 

Heroin
outside the 
home

18/46 5/46 23/46 p<0.01 p<0.01 

Cocaine
at home 14/52 6/52 32/52 p<0.01 p<0.01 

Cocaine
outside the 
home

26/52 9/52 17/52 p<0.01 p<0.01 
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Table 5. Shift in valence of heroin and cocaine subjective experience as a 
function of setting.  The McNemar's Test indicated a significant shift in valence 
for both cocaine and heroin; *p<0.00001, #p=0.0014. 
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Chapter 3 

An fMRI study of heroin- versus cocaine-related imagery in 
human addicts: the role of setting 

 

 

1. Introduction 

 

The subjective and behavioural effects of addictive drugs are not a simple 

consequence of their primary neuropharmacological actions.  It has long been 

pointed out that contextual variables play an important in shaping the 

subjective effects of drugs (Zinberg 1984).  Our understanding of the nature of 

contextual influences on drug reward is still very limited.  So far, most 

preclinical and clinical research has focused on the role of stress and of drug 

cues (see Caprioli et al. 2007).  However, we have recently reported that the 

setting of drug taking can affect drug reward in a substance-specific manner 

and that it does so in a way that is not easily reducible to stress or conditioning.  

Intravenous self-administration (SA) experiments in the rat, for example, have 

shown that the relative preference for heroin vs. cocaine varies as a function of 

the setting.  The rewarding effects of heroin appear to be greater in rats that 

reside in the self-administration environment (which is therefore also their 

home environment) than in rats that do not reside in the self-administration 

chamber (which is an environment distinct from the home cage), whereas the 

opposite is observed for the rewarding effects of cocaine (which was greater in 

non resident rats than in resident rats).  This relatively simple manipulation of 

the setting of drug taking exerts a substance-specific influence on all aspects of 

cocaine vs. heroin reward, including drug intake, motivation to work for the 
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drug (Caprioli et al. 2007b; 2008), drug discrimination (Paolone et al. 2004; 

Caprioli et al. 2007b), drug affect (Avvisati et al. 2016), drug choice (Caprioli et 

al. 2009), and vulnerability to relapse into cocaine or heroin seeking after a 

period of abstinence in an animal model of relapse (Montanari et al. 2015). 

Translational studies conducted in addicts have shown that even in 

humans drug and setting interact in a manner reminiscent to that observed in 

rats, even if the experimental design was necessarily different (Caprioli et al. 

2009; Badiani and Spagnolo 2013).  Heroin and cocaine co-abusers reported in 

fact to prefer different settings for cocaine versus heroin.  Most addicts reported 

using heroin prevalently at home and cocaine prevalently outside the home.  

Location preferences reflected real preferences rather than social or practical 

considerations, as indicated by the fact that similar results were observed for 

both solitary and social use and for all routes of drug taking. 

The main aim of this study was to begin an investigation of the neural 

basis of the interaction between drug and setting in humans.  In situ 

hybridization and immunohistochemistry studies in rats have shown that the 

pattern of neuronal activation (as indicated by the expression of Fos and Fos 

mRNA) in response to addictive drugs such as amphetamine, cocaine, heroin, 

and morphine is very different in rats taking the drug at home relative to rats 

taking the drug outside the home (Badiani et al. 1998, 1999; Ferguson and 

Robinson 2004; Hope et al. 2006; Paolone et al. 2007; Celentano et al. 2009).  

These differences were particularly evident in the striatal complex and in the 

Prefrontal Cortex (PFCx), two regions implicated in drug reward in both 

rodents and humans (Breiter et al. 1997; Cox et al. 2009; Kufahl et al. 2005; 

Leyton and Vezina 2013; Risinger et al. 2005; Volkow et al. 1999; Watson et al. 

2014). In the present study, we used emotional imagery and 3T functional 
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Magnetic Resonance Imaging (fMRI) to investigate drug and setting interaction 

in addicts with a history of heroin and cocaine abuse.  Functional MRI 

methodology detects the magnetic properties of oxygenated vs deoxygenated 

haemoglobin and transforms it into an indirect measure of neural activity.  The 

signal detected is also referred to as the blood oxygen level dependent (BOLD) 

signal. 

Our everyday perception of the environment reflects the interaction 

between exteroceptive and interoceptive information.  However, even in the 

absence of bottom-up signals it is still possible to generate internal visual 

representations using top-down signals only, commonly referred to as mental 

imagery (Lee et al. 2012).  A growing body of literature indicates that mental 

imagery involves high-level cognitive functions such as perception, memory, 

emotion, and motor control (Rollins 1992; Kosslyn, Ganis, and Thompson 2001; 

Owen et al. 2006; Berger and Ehrsson 2014).  Previous studies have reported 

similar neural substrates for imagery and perception (Ishai and Sagi 1995; Ganis, 

Thompson, and Kosslyn 2004).  However, imagery is often seen as a “weak 

version of perception” (Lee, Kravitz, and Baker 2012).  There is evidence 

suggesting that despite the similarities, imagery and perception represent two 

distinct functions.  For example, studies on patients with lesions revealed that 

there is a double dissociation between the two functions, with some patients 

exhibiting preserved imagery despite an impaired perception and vice versa 

(Behrmann, Winocur, and Moscovitch 1992; Behrmann, Moscovitch, and 

Winocur 1994; Lee, Kravitz, and Baker 2012). 

Hence, mental imagery seems to represent a reliable method to 

investigate virtual drug and setting interactions in real-time using the fMRI 

technique. We, therefore, adapted an emotional imagery procedure based on 
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previous work by Lang and colleagues (Lang 1979; Lang et al. 1980) to recreate 

two different real-world settings of drug use and asked the participants to 

imagine taking heroin and cocaine.  We hypothesized a double dissociation of 

the BOLD signal in the brain regions implicated in drug reward, such as the 

prefrontal cortex and the striatum.  

 

 

2. Material and Methods 

 

2.1 Participants 

Twenty male addicts (aged 35.35±8.13 years) with history of heroin (13.20±6.29 

years) and cocaine (15.25±5.74 years) abuse were recruited among the 

outpatients of the Substance Misuse Services of Villa Maraini (Rome, Italy).  

Participants were enrolled at the moment of their daily visit by the medical staff 

and social operators of Villa Maraini and underwent a comprehensive 

diagnostic interview.  Criteria for inclusion in the study were: 1) drug 

dependence criteria for cocaine and/or heroin (DSM-IV-R); 2) no other major 

psychiatric disorder (DSM-IV-R); 3) fixed address; 4) heroin and/or cocaine use 

at least once/week in the past 12 months; 5) no history of neurological disorder 

or head trauma with loss of consciousness exceeding 30 min; and 6) have no 

contraindications to MRI.  Individuals with alcohol use requiring medical 

detoxification were excluded.  Nineteen participants were enrolled in 

methadone replacement programs (mean±SD dose = 39.47±29.62).  Additional 

demographic information is reported in Table 1. 

All procedures were approved by the IRCSS Santa Lucia Foundation 

Ethics Committee and carried out in accordance with the Declaration of 
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Helsinki.  The participants were legally competent and did not exhibit a 

compromised ability/capacity to provide informed written consent.  The 

participants received a flat reimbursement of 20 euro for their time.  

Refreshments were provided during the pre and post-scanning time.  

 

2.2. Emotional Imagery procedures 

2.2.1. Scripts 

The scripts for the imagery task were developed based on self-reports collected 

in occasion of previous studies (Caprioli et al. 2009; Badiani and Spagnolo 2013) 

and on the basis of pilot interviews with individuals satisfying the inclusion 

criteria used in the present study.  

During mental imagery, perceptual representations can be evoked in the 

absence of external sensory input.  Previous studies have reported similar 

neural substrates for imagery and perception demonstrating that it is possible 

to induce a subjective experience resembling an actual perceptual experience by 

using verbal instructions based on an appropriate script and instructions (Lang 

1979; Reddy et al. 2010; Cichy et al. 2012; Lee et al. 2012).   

In particular, it appears that emotional imagery procedures are capable 

of eliciting a mental representation that is not simply a picture scanned with the 

“mind’s eye” but a dynamic scenario based on real-life experience.  In 

agreement with previous emotional imagery studies (Lang 1979; Lang et al. 

1980; Costa et al. 2010; Cuthbert et al. 2003; Dougherty et al. 1999; McTeague et 

al. 2009), each script was structured to include: 

1. The instruction to create a mental image; 
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2. The description of the scenario to be imagined.  In this case, one of two 

naturalistic settings: the participant’s own home (‘home’ condition) and 

the participant’s habitual club (‘outside-the-home’ condition); 

3. The instruction to imagine oneself engaging in heroin or cocaine use (at 

home or outside the home) ‘as if’ it were really happening.  

Thus, we created two scripts for the baseline imagery task, in which 

participants were asked to visualize themselves relaxing at home or in their 

usual club, and four scripts for the drug imagery task, one script for each 

combination of drug and setting: i) cocaine at home, ii) cocaine outside the 

home, iii) heroin at home, iv) heroin outside the home.  The scripts did not 

include any information specific to the individual; that is, the scripts had a 

standard format that was applicable to all subjects (Table 2).  The scripts were 

then recorded and played during the imagery tasks.  

 

2.2.2. Imagery training session 

A week prior to the fMRI session, the subjects underwent an imagery training 

session conducted at the addiction clinic “Villa Maraini”.  The main aim of the 

session was to familiarize the participants with the imagery procedure while 

listening to a recording of the scanner noise through headphones. Previous 

studies have shown that imagery training can also increase the emotional 

response during the imagery task (Miller et al. 1987; Sinha 2009). 

The participants were asked to complete the following imagery 

questionnaires (adapted to Italian by Antonietti and Crespi, unpublished 

manuscript): 1) Vividness of Visual Imagery Questionnaire (VVIQ; Marks 1989) 

in which the participants were instructed to visualize themselves in standard 

environmental contexts; 2) Vividness of Movements Imagery Questionnaire 
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(VMIQ; Isaac et al. 1986) in which participants were instructed to visualize 

themselves while performing specific movements; 3) Test of Visual Imagery 

Control (TVIC; Gordon 1949), in which the participants were instructed to 

operate a transformation on a mental image; 4) An adaptation of the 

Questionnaire on “Imagery induction of emotional state” (Wright and Mischel 

1982), in which participants were instructed to imagine situations associated 

with a ‘positive’ emotional state (serene, happy, surprised and relaxed) or to a 

‘negative’ emotional state (hungry, fearful, disgusted, sad).  The participants 

were instructed to close their eyes, to ignore as far as possible the noise of the 

scanner, to create a mental scenario for each condition (based on hypothetical or 

real events from their personal life), to imagine ‘living’ this scenario, and finally 

to rate the vividness of the imagery by assigning a score from 1 (not clear at all) 

to 5 (perfectly clear) to each item in the questionnaires.  The imagery training 

session lasted approximately 40 min.  Participants with a performance of less 

25% of the maximum total score for two imagery scales, or who exhibited sign 

of distress due to the noise of the scanner were excluded from the study. 

 

2.3 fMRI procedures 

On the day of the fMRI scan, participants underwent a urine drug screen for 

amphetamine, barbiturates, benzodiazepines, cocaine, methadone, opiates, 

methamphetamine, and THC at the addiction clinic Villa Maraini.  They were 

then transferred to the Brain Imaging facility of the Santa Lucia Foundation.  

Sixteen participants took their usual dose of methadone before the leaving the 

Clinic.  Participants who smoked were allowed to smoke prior to the scan.   
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All the participants were blind about the content of the experimental session. 

Just before the fMRI session, participants were instructed to complete the 

imagery task using their own personal experience with heroin and cocaine but 

were asked to exclude instances of combined heroin and cocaine use 

(‘speedball’). 

Before entering the fMRI scanner, the participants received the following 

instructions by the experimenter: 

“You will be asked to imagine yourself in two different settings, 
specifically to be either at your own home or in your usual club. Your 
task will be to visualize as vividly as possible the setting in your mind 
and to focus intensely on this situation as if it were really happening at 
that moment.  You will then be asked to imagine to use heroin or cocaine 
in that very same setting.  You should try to focus on the effects produced 
by the drug while in that specific setting. 

When asked to imagine being at home it is really important that it is 
your own home.  You can imagine being in any part of your home (living 
room, bedroom, bathroom, kitchen) where you usually take or have taken 
the drug.  If you have never taken that drug in that setting, try to 
imagine how it would be actually to do so.  The imagined event should 
take place in the evening, at 21:00 hours. 

When asked to imagine being in a club, it is really important that it 
is, or has been, your usual club.  You can imagine being in any part of 
the club where you usually take or have taken the drug.  If you have 
never taken that drug in that setting, try to imagine how it would be to 
actually to do so.  The imagined event should take place in the evening, at 
21:00 hours.” 

 

The study design is outlined in Figure 1A.  During the fMRI session, each 

participant underwent a total of eight scans, two for each combination of drug 

and setting (i.e., heroin at home, cocaine at home, heroin outside, cocaine 

outside), in a pseudo-random sequence, counterbalanced across subjects.  
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Subjects were equipped with headphones, and each scan was preceded by 

audio and video instructions guiding them through the imagery task. 

Each trial consisted of 60 s baseline imagery (relaxing at home or outside 

the home), followed by 120 s of drug imagery, and 60 s of rest in which subjects 

were asked to stop imagery (see Figure 1).  Immediately after the end of each 

trial, the participants rated the vividness of the imagery on using a VAS (visual 

analogue scale) ranging from 1 (‘not vivid at all’) to 10 (‘perfectly vivid’) 

displayed on a screen, using a push button controller.  

Rating of craving intensity and pleasure were collected at the end of the 

fMRI session using the following VASs:  

Craving: “Please rate the intensity of your desire to use heroin/cocaine at the 

moment”; with the anchors 1 (‘absent’) and 10 (‘extremely high’). 

Pleasure: “Please rate the level of pleasure experienced in each of the following 

conditions: i) taking heroin at home; ii) taking cocaine at home; iii) taking heroin 

outside the home; iv) taking cocaine outside the home”; with the anchors 1 (‘non 

pleasurable at all’) and 10 (‘extremely pleasurable’). 

Finally, we asked the participants to rank the four conditions based on 

the level of pleasure, from 1 (most pleasurable) to 4 (least pleasurable) 

 

2.4 Apparatus and image acquisition 

Functional MRI runs sensitive to blood oxygenation level-dependent (BOLD) 

contrast were collected in a block-design using a Siemens Allegra scanner 

(Siemens Medical Systems, Erlangen, Germany) 3.0 Tesla scanner operating at 

the Neuroimaging Laboratory, Foundation Santa Lucia.  Stimuli were generated 

by a control computer located outside the MR room, running an in-house 

software implemented in MatLab (Galati et al., 2008, Sulpizio et al. 2013, Boccia 
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et al., 2014).  Instructions were presented simultaneously in audio and video 

modalities.  An LCD video was used to project instructions to a back projector 

screen mounted inside the MR tube and visible through a mirror located inside 

the head coil.  Presentation timing was synchronized by the acquisition of fMRI 

images.  Responses were given through push button connected to the computer 

by optic fibers.  

Head movements were minimized by mild restraint and cushioning.  

Functional MRI images were acquired for the entire brain using a gradient echo 

planar imaging (EPI) sequence covering the whole brain (34 slices, in-plane 

resolution=3x3 mm, slice thickness=3 mm, inter-slice distance=1.25 mm, 

repetition time [TR]=2210 ms, echo time [TE]=30 ms, flip angle=70° deg). For 

each scan, a total of 113 fMRI volumes were acquired. High-resolution 3D T1-

weighted MRI scan was acquired for each subject using a magnetization-

prepared rapid gradient echo sequence (Siemens MPRAGE, 176 slices, in-plane 

resolution= 0.5 mm, in-plane resolution=0.5x0.5 mm, slice thickness=1 mm, 

TR=2000 ms, TE=4.38 ms, flip angle=8° deg).   

 

2.5. Image analysis 

Image analyses were performed using SPM8 (Wellcome Department of 

Cognitive Neurology, London, UK http://www.fil.ion.ucl.ac.uk/spm) 

implemented in MatLab (MATLAB 2011a, The MathWorks, Inc., Natick, MA, 

USA).  The first four volumes of each scan were discarded to allow for T1 

equilibration effects. 

Functional time series from each subject, were temporally corrected for 

slice timing, using the middle volume in time as a reference, and then spatially 

corrected for head movement (realigned), using a least-squares approach and 
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six parameters rigid body spatial transformation.  The images were then 

coregistered onto their T1 image and spatially normalized using an automatic 

nonlinear stereotaxic normalization procedure (final voxel size: 3x3x3 mm) and 

spatially smoothed with a three dimensional Gaussian filter (6 mm full-width-

half-maximum (FWHM).  The template image for spatial normalization into a 

standard stereotaxic space was based on Montreal Neurological Institute (MNI-

152) EPI template and conform to a standard coordinate referencing system 

(Talairach and Tournoux 1988).  

Images were analyzed using a standard random-effect procedure. The 

time series of functional MR images obtained from each participant were 

analyzed separately.  The effect of the experimental paradigm was estimated on 

a voxel by voxel basis, according to the general linear model extend to allow the 

analysis of fMRI data as time series.  The model included a temporal high-pass 

filter to remove low frequency confounds with a period >128 s.  Serial 

correlations in the fMRI time series were estimated with a restricted maximum 

likelihood (ReML) algorithm assuming the same correlation structure for each 

voxel, within each scan.  The ReML estimates were then used to whiten the data. 

Initially, neural activation during the imagery task was modeled as a 

box-car function spanning the whole duration of the imagery period and 

convolved with a canonical haemodynamic response function (HRF), chosen to 

represent the relationship between neuronal activation and blood oxygenation 

(Friston et al. 1998).  Images of subject-specific parameter estimates, which 

represented activation relative to the baseline, were calculated for each of the 

four drug imagery scenarios and compared to the respective baseline imagery. 

The resting period was excluded from the data analysis due to potential 

carryover effect of the imagery period. 
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Using an “omnibus” F-contrast, we searched for voxels exhibiting 

differences in the BOLD signal between the baseline and the imagery task 

irrespective of the specific drug-setting combination.  The resulting statistical 

parametric map was corrected for multiple comparisons based on family-wise 

error (FWE) at cluster level p=0.05, and is shown on Figure 2.  These initial 

analyses aimed at selecting a map of regions implicated in the drug imagery 

task. 

To avoid the risk of circularity (Kriegeskorte et al. 2009), we adopted an 

exploratory (rather than hypothesis-driven) approach to the identifications of 

the ROIs.  That is, the regions identified based on this functional map (see Table 

3) were further analyzed by creating a Region of Interest (ROI) from each 

maxima in the cluster analysis and by grouping together all neighboring voxels 

at a maximum distance of 16mm from the peak (Poldrack 2007).  We computed 

a regional estimate of the amplitude of the haemodynamic response in each 

experimental condition by entering a spatial average (across all voxels in that 

region) of the pre-processed time series into the GLM.  

 The modulation of drug and setting on the signal from the resulting 

brain regions was then estimated by applying a deconvolution approach to the 

regionally averaged time courses from each region. We modelled each trial as a 

set of twelve finite impulse response (FIR) basis functions (Burock and Dale 

2000; Ollinger et al. 2001) spanning 10 s each, starting from the onset of the 

imagery task. Such approach allows for a flexible haemodynamic response 

function (HRF) modelling without any assumption on the shape of the 

hemodynamic response in the time period within each trial where the 

difference in the signal arose, although remaining in the General Linear Model 

(GLM) framework (Steffener et al. 2010).  
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To directly examine the interactions relevant to our experimental 

questions, the resulting regional hemodynamic responses were analysed using 

3-way analysis of variance (ANOVA) with repeated measures on the factors 

drug (2 levels: heroin vs. cocaine), setting (2 levels: home vs. outside the home) 

and time (12 levels). 

 

 

3. Results 

 

3.1. fMRI 

3.1.1. Whole brain analyses 

Whole-brain effects of the drug imagery task compared to the baseline is 

provided in Figure 2 (see also Table 3). 

The general picture of the drug related imagery as a function of different 

context, show significantly activated different regions (specifically dominant in 

the left hemisphere) in six regional clusters of the prefrontal cortex (PFCx), 

[Broadman Area (BA) 6, 8, 44, 45, 46], the supplementary motor area (BA 32), 

the insula, the angular gyrus, the posterior cingulum and the precuneus. 

Bilateral activations were present at the level of the caudate, thalamus, brain 

stem, inferior temporal gyrus, and cerebellum.  

 

3.1.2. FIR analysis 

The changes in BOLD signal during drug imagery followed three distinct 

temporal patterns.  
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Some regions of the left PFCx, Caudate and Cerebellum exhibited a 

double dissociation in BOLD signal.  The change in BOLD signal was, in fact, 

greater when the addicts were asked to imagine taking heroin outside the home 

and cocaine at home (the less preferred settings), compared to heroin at home 

and cocaine outside the home (the preferred settings).  Three of these clusters 

were located in the inferior and middle frontal gyrus of the left PFCx: BA44 

(F(1,19)=10.72; p=0.004), BA 8, (F(1,19)=4.88; p=0.04), and BA 46 (F(1,19)=7.05; 

p=0.016) (Figure 3).  Other clusters were located in the left caudate (F(1,19)=4.20, 

p=0.05), in Crus I and II of the left (F (1,19)=6.45, p=0.02) and right (F (1,19)=7.9, 

p=0.01) cerebellum (Figure 4), and in the right brain stem (F (1,19)=5.52, p=0.03). 

Furthermore, in these regions there was also a drug x setting x time 

interaction: BA 44 (F(11,209)=5.45; p<0.0001), BA 8, (F(11,209)=2.20; p=0.015), BA 46 

(F(11,209)=71.78; p=0.058), left caudate (F(11,209)=3.92, p<0.0001), left cerebellum 

(F(11,209)=3.38, p<0.0001), right cerebellum (F(11,209)=5.81, p<0.0001), right brain 

stem (F(11,209)=2.02, p=0.028). 

In other areas brain areas such as the left angular gyrus, there was no 

such dissociation, and the change in BOLD signal was greater in the ‘home’ 

compared to the ‘outside the home’ condition, for both heroin and cocaine 

showing a significant main effect of the setting  (F(1,19)=7.15, p=0.015). The 

opposite pattern was found in the left supplementary motor area (BA 32), 

where the change in BOLD signal was in fact greater in the ‘outside the home’ 

than in the ‘at home’ condition for both drugs, although there was not a 

significant main effect of the setting (F(1,19)=3.2, p=0.09).  
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The functional map shown no main effect the drug, apart from a 

marginally significant difference in the left precuneus, (F(1,19)=3.82, p=0.06) 

with cocaine showing greater activation compared to heroin.  

In all the other regions, there were no significant differences in BOLD 

signal as a function of drug or setting, and there were no interactions. 

 

 

 

3.2. Subjective measures 

3.2.1. Imagery Vividness 

A non-parametric Friedman test among shown there were no significant 

differences in subjective vividness among the four drug imagery conditions 

χ²=3.30, p=0.3 (Figure 1b). 

 

3.2.2. Subjective Pleasure 

No significant differences in the ratings of subjective pleasure among the four 

conditions were found at the end of the fMRI task (χ²=1.46, p=0.7) (Figure 6a).  

However, when we asked the participants to rank the conditions for subjective 

pleasure (from 1 = most pleasurable to 4 = least pleasurable) the Test of Friedman 

indicated significant differences among conditions (χ²=20.46, p=0.001).  As 

predicted, heroin at home ranked significantly higher (1.6±018) than heroin 

outside the home (3±0.20) (Wilcoxon Signed-Rank Test, one-tailed, Z=-1.88, 

p=0.03, r=0.4).  In contrast, there were no significant differences between 

cocaine at home (3.0±0.15) and cocaine outside the home (3.2±0.22), Z=-0.66, p= 

0.2, r=0.1 (Figure 6, bottom panel). 



	 115 

 

3.2.3. Heroin and Cocaine Craving 

A two-tailed Wilcoxon signed rank test for paired data was conducted to 

determine whether there was a difference in the craving for heroin and cocaine 

pre and post-fMRI.  As illustrated in Figure 6 (top panel), craving pre-fMRI for 

heroin was significantly higher (M=5.43, SEM=0.67) compared to cocaine 

(M=3.28, SEM=0.63), Z=1.93, p=0.05, r=0.4.  However, the difference between 

the rating for the two drugs post-fMRI shown no significant difference (heroin: 

M=4.85, SEM=0.86; cocaine: M=4.35, SEM=0.67), Z=0.45, p=0.6, r=0.1. Cocaine 

craving showed a significant increase pre and post-scanner, Z=2.26, p=0.02, 

r=0.5, while no significant effects were reported for heroin craving, Z=0.74, 

p=0.4, r=0.2. 
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4. Discussion 

 

The present study yielded two major novel findings.  First, we found that 

cocaine- and heroin-related imagery in addicts induced distinct patterns of 

activation in the prefrontal cortex, caudate, and cerebellum.  Second, the setting 

of drug taking influenced in opposite direction the effects of cocaine- versus 

heroin-related imagery on the activity of these brain regions. 

Our working hypothesis predicted was that the setting should alter in 

opposite directions the effects of heroin and cocaine in at least some of the brain 

areas implicated in brain reward.  Not only did our results confirm our 

prediction, but more surprisingly we found the same pattern of dissociation 

also in the cerebellum.  Another surprising finding was represent by 

directionality of BOLD signal changes. 

 

4.1. BOLD signal changes in the PFCx and Caudate 

As illustrated in Figure 2, a limited number of cortical and subcortical regions 

were activated during the drug imagery tasks, including PFCx (BA6, BA8, BA44, 

BA45, BA46), Inferior Parietal cortex (BA40), Precuneus (BA7), Angular gyrus, 

Supplementary Motor area (BA32), Temporal gyrus (BA21), Posterior 

Cingulum, Caudate, Thalamus, Cerebellum (Crus I and Crus II), and Brain stem.  

However, only three regions we found an interaction between drug and setting: 

PFCx, Caudate, and Cerebellum.  

Previous fMRI studies have shown an involvement of the PFCx and the 

Striatum in encoding drug reward (Goldstein and Volkow 2002; Cox et al. 2009; 

Volkow et al. 2012; Leyton and Vezina 2013; Goldstein and Volkow 2011).  Thus, 

it was not surprising that the pattern of BOLD signal changes in these regions 
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during the imagery task exhibited the same dissociation in the interaction 

between drug and setting previously reported for a number of reward related 

measures in both humans and animals.  Specifically, the two settings of drug 

use investigated here and in other studies (home environment versus non home 

environment) have been shown to influence in opposite direction the behavioural 

and subjective response to cocaine versus heroin (see Chapter 1 and 2).  Thus, 

we did predict that also the changes BOLD signal in the PFCx and the Striatum 

in response to cocaine versus heroin imagery would be affected in opposite 

direction by the two settings. 

A somewhat interesting aspect of our results is that portion of the 

Striatum most involved in the interaction was the dorsal Caudate and not the 

ventral Striatum (NAcc).  (It must be noted, however, that the exact pattern of 

brain activation in brain imaging studies is also a function of the thresholds 

used in the statistical elaboration of the raw data.  Thus, it is not possible to 

exclude that if we had pre-selected the ventral Striatum as a region of interest, 

also this area would have exhibited a pattern of activation similar to that 

observed in the Caudate.)  Previous imaging studies in addicts have reported a 

selective involvement of the dorsal versus ventral striatum (Boileau et al. 2007; 

Volkow al. 2006; Wong, et al. 2006).  A possible explanation for the selective 

involvement of the Caudate in the present study may derive from theoretical 

models that posit a shift in the processing of drug reward from the ventral to 

the dorsal Striatum with the development of ‘habits’ after extensive drug use 

(Everitt & Robbins 2016).  However, a recent PET study with [11C]raclopride 

has shown that the dorsal caudate is selectively activated by drug cues even in 

after relatively little cocaine use, that is prior to the onset of addiction (Cox et al. 

2017). 
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4.2. BOLD signal changes in the Cerebellum 

A most interesting finding of the present study is represented by the bilateral 

involvement of the Cerebellum in processing drug setting interactions.  There is 

now growing evidence that also the cerebellum is involved in processing drug 

reward and might play a role in drug addiction (for a review see Moulton et al. 

2014; Miquel et al. 2009).  In the past two decades, the traditional view of the 

cerebellum as primarily a motor structure has undergone a major upheaval 

based on increasing evidence indicating that it plays a pivotal role in 

modulating affective processes such as: i) emotional perception and encoding, 

ii) evaluation of emotional contexts, of bodily and facial expressions, of social 

interactions, and iii) regulation of emotional states in relation to motor, 

cognitive, and context-dependent tasks (Schmahmann 1996; Schmahmann and 

Sherman 1998; Schmahmann 2004; Scheuerecker et al. 2007; Stoodley 2012; 

Buckner 2013; Adamaszek et al. 2014; Van Overwalle et al. 2015; Adamaszek et 

al. 2017).  Schmahmann and Sherman (1998) first coined the term “cerebellar 

cognitive affective syndrome” (CCAS), after observing in patients with focal 

cerebellar lesions a consistent pattern of impaired affect and cognitive ability 

(Schmahmann 1991; Schmahmann 2004).  Cerebellar-dependant behavioural 

and emotional disorders have been conceptualized “as either excessive or 

reduced responses to the external or internal environment” (Schmahmann et al. 

2007). 

In brief, anatomically, the cerebellum receives sensory input from the 

spinal cord and integrates them with cortical input from prefrontal and 

association cortices to execute motor tasks (Ivry 1997; Kelly and Strick 2003; Ito 

2006; Buckner 2013).  Resting state fMRI (rs-fMRI) studies, examining the 
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functional connectivity (FC) of intrinsic brain networks have shown that the 

role of the cerebellum in a variety of functional resting state networks (RSN) 

associated with cortical area, far beyond motor areas (Habas et al. 2009; Buckner 

et al. 2011; Dobromyslin et al. 2012; Liu et al. 2017; Shinn et al. 2017).  For 

example, it has been shown that there is an association between the cerebellar 

areas Crus I, with RSNs related to executive and associative processing and 

with brain regions involved in cognitive control, such as the dorsolateral PFCx 

and the dorsomedial PFCx (Buckner et al. 2011).  Furthermore, other studies 

revealed an association between Crus I with an RSN that included the anterior 

insula and anterior cingulate cortex, which are areas involved in processing of 

stimulus salience (Habas et al. 2009) and interoception (Craig 2002; Paulus and 

Stewart 2014). 

Emotional processing stem from subcortical networks that influence 

cortical activity. In particular, it has been suggested that two discrete and 

distinct neural substrates subserve emotional processing: one operating at an 

explicit level and the other at an implicit level, with the cerebellum, generally 

being considered as part of the network associated with implicit processing 

(Scheuerecker et al. 2007).  Positive and negative emotions have been both 

considered to be processed by the cerebellar circuits (Turner et al. 2007; 

Baumann and Mattingley 2012), although a predominance of negative emotions 

processing has been suggested (Park et al. 2010; Ferrucci et al. 2012; Lupo et al. 

2015).  Recent neuroimaging evidences has shown that noxious heat and the 

passive viewing of unpleasant pictures activated the same regions in the 

cerebellum.  This functional overlap between different unpleasant sensory 

modalities suggests that the cerebellum might be specifically involved in 

encoding aversive process. Thus, the activation of the cerebellar areas was 
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interpreted from the authors as reflecting aversion rather than stimulus salience 

(Moulton et al. 2011). 

These results suggest that responses in these cerebellar regions may 

reflect multi-modal aversive processing which is not specific to pain processing, 

but also apply to other aversive sensory and affective experiences (Diano et al. 

2016).  An rCBF PET study that induced craving for cocaine found a response in 

the left posterior cerebellum (Kilts et al. 2001) while in heroin users cerebellar 

activitation has been correlated with self-reports of ‘feeling tense’ and 

‘withdrawal symptoms’ during cue evoked craving (Sell et al. 2000).  These 

findings support the idea that cerebellar activation may reflect aversive 

processing that is not specific to drug craving per se.  In this respect, it is 

important to notice that the cerebellum is interconnected with the dopaminergic 

systems in the basal ganglia (Bostan et al. 2010) and even though this system is 

usually associated with positive reward (Drevets et al. 2001; Schultz 2007b; 

Leknes and Tracey 2008), there is evidence that dopamine neurons also respond 

to aversive events (Ungless, Magill, and Bolam 2004; Schultz 2007a; Leknes and 

Tracey 2008). 

It has been proposed that cerebellum’s principal function is ‘modulation’, 

which would affect all the different domains based on the afferent functional 

input that the cerebellum receives, (Schmahmann 2004; D’Angelo and Casali 

2012). “This theory suggests that the cerebellum could optimize performance by 

modulating behavior according to context, acting as an oscillation dampener. 

For example, the cerebellum may modulate emotional processes by integrating 

positive and negative affective inputs in the same way that it modulates fine 

motor control by integrating sensory inputs” (Moulton et al. 2014, page 319).  

The functional correlation between the cerebellum and the cortico-limbic 
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networks subserving emotion processing, executive control, drug craving, 

interoception and salience and its function as multimodal modulator indicates 

that the cerebellum plays a crucial role in maintaining the homeostatic balance 

between internal and external environment.  

 

4.3. Direction of BOLD signal changes 

In the present study we found a significant interaction between drug and 

setting in the region of the medial PFCx, in the striatum and the cerebellum. But 

interestingly, these regions shown an increased BOLD activity for the ‘less 

preferred’ conditions such as “heroin outside the home” and “cocaine at home” 

compared to the ‘preferred’ (heroin at home and cocaine outside the home’).  

Although the relationship between the BOLD signal and its underlying neural 

events is still not clear (Logothetis 2008), a possible interpretation is that a 

fronto-striatal-cerebellar network (see Figure 5) is responsible for the drug and 

setting interactions, and the specific increased activity may be related to the 

potential mismatch produced by the peripheral effects of the drugs and the 

external environment (see Chapter 2 for a full discussion of this issue).  Thus, 

the sympathomimetic effects of cocaine may be encoded as potentially ‘aversive’ 

events if experienced in the home environment, compared to a non-home 

environment.  The same line of reasoning may be applied to heroin, with the 

parasympatomimetic effects of heroin may be valued as ‘aversive’ in a non-

domestic environments compared to a safer home setting as proposed by 

Badiani (2013). 
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4.4. Conclusions 

The finding reported here demonstrate that setting of drug use exerts a 

substance-specific influence not only on the behavioural and subjective 

response to heroin and cocaine but also on the activity of brain regions 

implicated in processing drug reward and related information.  The unforeseen 

involvement of the cerebellum in processing drug-setting interactions is in 

agreement with the recent theoretical model of cerebellar function 

(Schmahmann 2004; D’Angelo and Casali 2012) suggesting that this brain 

region modulates emotional processes by integrating positive and negative 

affective (Moulton et al. 2014). 
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Table 1. Socio-demographic information, diagnostic characteristics and pre-
scan data of the study sample (n=20) 
 
 Mean (SD) 

Age (years) 35.35 (8.13) 

Education (years) 13.60 (3.31) 

Employed 85% 

Handedness (left/ambidextrous/right) 2/0/18 

Methadone program 
mg/day 

95% 

39.47 (30.00) 

Heroin  

Years of use 13.20 (6.29) 

Age of first use§ 20.39 (4.30)  

Main route of administration  

• Intravenous injection 55% 

• inhalation (smoked) 35% 

• insufflation (snorted) 10% 

Cocaine   

Years of use 15.25 (5.73) 

Age of first use§ 18.83 (6.86)  

Main route of administration  

• Intravenous injection 35% 

• inhalation (smoked) 10% 

• insufflation (snorted) 55% 

Pre-scan drug screen (% posit ive)#  

• Methadone 90% 

• Morphine 65% 

• Cannabis 55% 

• Benzodiazepines 20% 

• Cocaine 20% 

• Barbiturates 0% 

• Amphetamine 0% 

• Methamphetamine 0% 

Training Imagery Questionnaires 
‘Medium-High’ performance (<50% of the maximum score) 

 

• VVIQ  90% 

• VMIQ 90% 

• TVIC 95% 

• IIES–Positive emotional states 90% 

• IIES–Negative emotional states 90% 

VVIQ, Vividness of Visual Imagery Questionnaire; VMIQ, Vividness of Movements Imagery Questionnaire; 
TVIC, Test of Visual Imagery Control; IIES; Imagery Induction of Emotional States (adapted version). 
§ Missing data for 2 participants 
# Missing data for 1 participant 
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Table 2. Imagery scripts 

 
BASELINE IMAGERY 

AT HOME 
 

 
BASELINE IMAGERY 
OUTSIDE THE HOME 

 
1) Imagine as vividly as possible that 
you are at home. 
2) Imagine you are relaxing at home. 
 

 
1) Imagine as vividly as possible that 
you are in a club. 
2) Imagine you are relaxing in the club. 

 
DRUG IMAGERY 

AT HOME 
 

 
DRUG IMAGERY 

OUTSIDE THE HOME 
 

 
1) Imagine as vividly as possible that 
you are at home. 
2) Imagine to take heroin at home. 
 

 
1) Imagine as vividly as possible that 
you are in a club. 
2) Imagine to take heroin in the club. 

or 
 
1) Imagine as vividly as possible that 
you are at home. 
2) Imagine to take cocaine. 
 

or 
 
1) Imagine as vividly as possible that 
you are in a club. 
2) Imagine to take cocaine in the club. 
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Table 3. – Functional Regions of Interest (ROIs) 
 

 
Hemisphere 

 

ROI 
(probable Brodmann Area) 

 
x 

 
y 

 
z 

Dim 
(voxels) 

Volume 
(mm3) 

 
Left 

 
Middle Frontal gyrus (BA44) 
 

 
-39 

 
11 

 
34 

 
69 

 
1863 

Left Inferior Frontal gyrus (BA45) 
 

-51 26 25 88 2376 

Left Inferior Parietal lobe (BA40 
 

-36 -58 40 170 4590 

Left Angular gyrus 
 

-57 -46 28 19 513 

Left Inferior Frontal gyrus (BA45) 
 

-48 44 7 17 459 

Left Middle Frontal gyrus (BA46) 
 

-33 56 19 4 108 

Left Precentral gyrus (BA6) -36 2 61 14 378 
 

Left Middle Frontal gyrus (BA8) 
 

-24 17 64 7 189 

Left Caudate 
 

-18 5 19 62 1674 

Left Cerebellum (Crus I and Crus II) 
 

-36 -61 -32 118 3186 

Left Posterior Cingulum 
 

-3 -34 31 24 648 

Left Precuneus (BA7) 
 

-9 -67 43 19 513 

Left Supplementary motor area (BA32) 
 

-6 20 46 8 216 

Left Temporal gyrus (BA21) 
 

-63 -43 -5 28 756 

Left Temporal gyrus (BA21) 
 

-60 -13 -11 70 1890 

Left Thalamus 
 

-3 -10 10 64 1728 

Left Brain stem 
 

-3 -28 -14 11 297 

Right 
 

Caudate 18 5 16 38 1026 

Right 
 

Cerebellum 15 -79 -35 224 6048 

Right Temporal gyrus (BA21) 
 

51 -25 -8 194 5238 

Right 
 

Thalamus 3 -7 7 52 1404 

Right 
 

Brain stem 15 -25 -11 7 189 
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Figure 1. Experimental Design and Vividness Ratings. A. Overview of the 
imagery task.  There were 8 trials, 2 for each combination of drug and setting.  Each 
trial began with a baseline imagery period of 60 s, during which the participant were 
asked to imagine relaxing either at home or outside the home.  The participants 
were then asked to imagine to use heroin or cocaine at home or in a club for 120 s 
(drug imagery).  This period was followed by 60 s of rest, during which the 
participants were asked to not engage in imagery.  Finally, the participants were 
asked to rate the vividness of the imagery on a VAS (1-10 points), by pressing a 
button.  Immediately after completing the VAS the next trial began.  The graph in 
panel B depicts the vividness rating for each participant after the imagery period 
(indicating no significant differences among the four conditions). 
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Figure 2: Whole brain analysis map. Neuronal activation during the drug imagery 
period was modeled as a box-car function spanning the whole duration of the imagery 
period and convolved with the hemodynamic response function (HRF) relative to the 
baseline imagery period. Whole brain analysis conducted in SPM8 using an “omnibus” F 
contrast, revealed significant changes in the regions showed below (PFWE <0.05, corrected for 
multiple comparison with family-wise error (FWE) at cluster level).  

 

  

Map of Activation (PFWE <0.05) 

Z Score 

0 � 2 �
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Figure 3. Left PFCx. Histograms (top panels) represent the mean (±SEM) change 
in BOLD signal during the drug imagery task (relative to baseline imagery) in the BA 
46, BA 44, and BA 8 obtained by averaging the values of 12 10-s bins (FIR analysis, 
bottom panels). 
 
 

 
 

  

-0.05 

0 

0.05 

0.1 

-0.1 

-0.05 

0 

0.05 

0.1 

1 2 3 4 5 6 7 8 9 10 11 12 

-0.1 

-0.05 

0 

0.05 

0.1 

1 2 3 4 5 6 7 8 9 10 11 12 

10-s bins 

Cocaine 

Heroin 

Cocaine Heroin 

10-s bins 

-0.05 

0 

0.05 

0.1 

-0.1 

-0.05 

0 

0.05 

0.1 

1 2 3 4 5 6 7 8 9 10 11 12 

-0.1 

-0.05 

0 

0.05 

0.1 

1 2 3 4 5 6 7 8 9 10 11 12 

Cocaine Heroin 

Cocaine 

Heroin 

10-s bins 

10-s bins 

-0.05 

0 

0.05 

0.1 

-0.1 

-0.05 

0 

0.05 

0.1 

1 2 3 4 5 6 7 8 9 10 11 12 

-0.1 

-0.05 

0 

0.05 

0.1 

1 2 3 4 5 6 7 8 9 10 11 12 

Cocaine Heroin 

Cocaine 

Heroin 

10-s bins 

10-s bins 

%
 B

O
LD

 s
ig

na
l c

ha
ng

e 
%

 B
O

LD
 s

ig
na

l c
ha

ng
e 

%
 B

O
LD

 s
ig

na
l c

ha
ng

e 

Left Prefrontal Cortex (middle frontal gyrus) 

BA8BA44BA46

Home 
Outside the home 

drug x setting: p=0.016 
drug x setting x time: p=0.058 

drug x setting: p=0.004 
drug x setting x time: p<0.0001 

drug x setting: p=0.04 
drug x setting x time: p=0.015 



	 129 

Figure 4. Left caudate and cerebellum: Histograms (top panels) represent the 
mean (±SEM) change in BOLD signal during the drug imagery task (relative to 
baseline imagery) in the left caudate obtained by averaging the values of 12 10-s 
bins (FIR analysis, bottom panels). 
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Figure 5. Fronto-str iatal-cerebellar network. 
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Figure 6. Subjective Ratings of Drug Craving and Preference.  
Drug Craving. Mean (±SEM) craving (VAS scale) for heroin or cocaine before and 
after fMRI. * Cocaine pre- versus cocaine post-fMRI p=0.05.  Preference.  Mean 
(±SEM) ranking preference for the four combinations of drug and setting, ranging 
from 1 (most pleasurable) to 4 (least pleasurable). * Heroin at home versus heroin 
outside the home p=0.05. 
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Chapter 4 

General Discussion 
 

 

1. Aims of the dissertation 

 

Previous studies in animals and humans have shown that the setting of drug 

taking can exert a substance-specific influence on the response to heroin and 

cocaine (for a review, see Chapter 1).  On the basis of these findings, a novel 

hypothesis of drug reward was proposed to explain the role of setting in 

modulating drug reward (Badiani 2013).  According to this hypothesis, it has 

been proposed (Badiani 2013) that the overall rewarding effects of addictive 

drugs are determined not only by their euphoriant effects or by their ability to 

activate the neural mechanism of incentive salience (Berridge et al. 2009) but 

by the emotional appraisal of central and peripheral drug effects as a function 

of the setting of drug use.  Specifically, it was hypothesized that the 

interoceptive information produced by the central and peripheral effects of 

drugs is evaluated against the background of the exteroceptive information 

related to setting of drug use.  In the presence of a mismatch between 

interoceptive and exteroceptive information, the positive valence of drug 

experience would be reduced.  For example, the state of central and 

peripheral arousal (usually associated by exposure to danger) produced by 

psychostimulant drugs such as cocaine would generate, when cocaine is taken 

in a safe home environment, a mismatch between exteroceptive and 

interoceptive information.  Likewise, the state of central and peripheral 
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sedation (usually experienced in safe, familiar environments) produced by 

heroin would result in a mismatch when heroin is taken in potentially unsafe 

settings.  This hypothesis could be put to test only using a comparative 

approach, that is by studying the effects of cocaine and heroin side by side 

and possibly within-subject. 

The first aim of this dissertation was to investigate the role of setting in 

modulating the affective state induced by heroin versus cocaine in real world 

addicts who co-abused both drugs (see Chapter 2).  I first collected 

retrospective information on the subjective central and peripheral effects of 

heroin and cocaine and then assessed the affective state experienced while 

under the effect of these drugs using a novel test developed on the basis on 

the Circumplex Model of Affect (Russell 1980). 

The second aim of my dissertation was to test a second prediction of 

the working hypothesis: the setting of drug use should modulate in opposite 

direction the effects of heroin and cocaine on brain reward regions.  Thus, I 

conducted an emotional imagery study coupled with fMRI to investigate the 

interaction of drug setting on the brain activity of human co-abusers (see 

Chapter 3). 

 

 

2. Main findings 
 

The present dissertation reports four major findings. 
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2.1. Subjective appraisal of the central and peripheral effects of heroin and 

cocaine 

Heroin and cocaine produced distinct constellations of central and peripheral 

effects.  Most important, the spectra of effects of the two drugs were almost 

the opposite in mimicking the activity of the autonomic nervous system: 

cocaine producing a sympathomimetic pattern and heroin a 

parasympathomimetic-like pattern.  Thus, opposite interoceptive information 

was generated by the actions of heroin and cocaine in the brain and body of 

the addicts.  Given the role of the autonomic nervous in emotional processing 

(Kreibig 2010, Levenson 2014) it is reasonable to assume that this information 

contributed to a differential emotional appraisal of heroin versus cocaine 

described below. 

To the best of my knowledge, this is the first study to directly compare 

the subjective effects of cocaine versus heroin in human addicts.   

 

2.2. Shift in the emotional valence of heroin and cocaine as a function of 

setting 

The affective state induced by heroin and cocaine changed as a function of the 

setting of drug use.  As expected heroin produced, both in the home and the 

non home setting, a state of sedation in most addicts.  However, in agreement 

with the ‘mismatch’ hypothesis highlighted above, most addicts reported that 

the overall experience was pleasurable when heroin was taken at home but 

not when taken outside the home.  In contrast, cocaine produced (regardless 

of setting) a state of arousal in most addicts.  Again in agreement with the 

‘mismatch’ hypothesis, the overall experience resulted more pleasurable 

when cocaine was taken outside the home than when taken outside the home. 
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To the best of my knowledge, this is the first study to compare the 

emotional appraisal of cocaine versus heroin use in human addicts. 

 

2.3. Drug ‘pleasure’ 

A corollary of the finding described above is represented by the fact that it 

provides further evidence that addictive drugs do not always produce a 

pleasurable affective state.  Actually, we found that in certain settings almost 

two-thirds of experienced drug users reported a mainly unpleasant affective 

state under the influence of cocaine.  This confirms that addictive drugs can 

affect in a very different manner distinct aspects of the rewarding process as 

suggested by Berridge and colleagues (Smith et al. 2011; Berridge et al. 2009). 

 

2.4. Differential patterns of brain activation as a function of drug and 

setting 

Consistent with our working hypothesis, we found that cocaine- and heroin-

related imagery in addicts induced distinct patterns of activity in the 

prefrontal cortex, caudate, and cerebellum brain activation and, most 

important, that the setting of drug taking influenced in opposite direction the 

changes in BOLD signal in these regions.  Furthermore, we found quite 

surprisingly the same pattern of dissociation in the cerebellum, indicating the 

importance of further investigating the role of this structure in modulating 

positive and negative affect. 

To the best of my knowledge, this is the first study to directly compare 

cocaine and heroin in an emotional imagery task coupled with fMRI. 
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3. General Discussion 
 

For a full discussion of the results reported here see Chapter 2 and 3. 

Overall, these studies clearly show that the affective and 

neurobiological states experienced when taking heroin and cocaine are not a 

simple function of drug actions.  These findings support the hypothesis 

(Badiani 2013) that the affective state resulting from drug use is the result of 

an interaction between exteroceptive information (related to the setting) and 

interoceptive information (including the specific central and peripheral effects 

of the drug).  On the basis of these earlier findings, we proposed that the 

affective valence of cocaine is thwarted when the drug is taken in a home 

environment because of the mismatch between exteroceptive information (i.e., 

safe home environment) and interoceptive information (i.e., the central and 

peripheral arousal produced by cocaine).  Similarly, the affective valence of 

heroin is thwarted when the drug is taken in an exciting, potentially 

dangerous environment because of the mismatch between the latter and the 

state of sedation produced by heroin.  The findings reported here indicate 

that this is indeed the case.  Using a novel bi-dimensional test developed on 

the basis of the Circumplex Model of Affect (Russel 1980), we found that the 

affective state produced by heroin was indeed appraised as more pleasant 

when the drug was used at home then when it was when used outside the 

home, whereas the affective state produced by cocaine was more pleasant 

when the drug was used outside the home then when used at home.  More 

specifically, our data confirmed that the shift in the affective valence of heroin 
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occurred in association with its sedative effects, whereas the shift in the 

affective valence of cocaine occurred in association with its arousing effects.  

It is reasonable to assume that the sympathomimetic effects of cocaine and the 

parasympathomimetic-like effect of heroin contributed to generate the 

emotional state of arousal and sedation produced by cocaine and heroin, 

respectively (Levenson 2014; Kreibig 2010).  Indeed, we have found  that 

under the influence of cocaine addicts perceive an increase in heart rate, 

respiratory rate, and muscular tension, as well as a decrease in salivation.  In 

contrast, when the same individuals were under the influence of heroin, they 

perceived a reduction in heart rate and respiratory rate.   

Our working hypothesis also predicted that the setting should alter in 

opposite directions the effects of heroin and cocaine in the PFCx and the 

striatum, regions implicated in brain reward in humans.  Indeed, we found a 

significant interaction between drug and setting in the PFCx, in the striatum 

and the cerebellum.  Interestingly, these regions showed an increased BOLD 

activity for the ‘less preferred’ conditions such as “heroin outside the home” 

and “cocaine at home” compared to the ‘preferred’ ones (heroin at home and 

cocaine outside the home’).  Although the relationship between the BOLD 

signal and its underlying neural events is still not clear (Logothetis 2008), a 

possible interpretation is that a fronto-striatal-cerebellar network is 

responsible for the drug and setting interactions, and the specific increased 

activity may be related to the potential mismatch produced by the peripheral 

effects of the drugs and the external environment. 

It is important to note here that the opposite spectra of action of heroin 

and cocaine on the autonomic nervous system and the differential role setting 

in modulating affective valence (see Chapter 2) may be somewhat related to 
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the unforeseen involvement of the Cerebellum in processing drug and setting 

interaction (see Chapter 3). Indeed, a recent Magneto-Encephalography 

(MEG) study revealed a differential spatiotemporal profile in the neural 

responses within the cerebellum during the processing of emotion along the 

arousal and valence dimensions, suggesting a complex role of the cerebellum 

in emotional processing (Styliadis et al. 2015).  Furthermore, it has been 

shown that patients with cerebellar lesions exhibit a decrease in heart rate 

associated with fear conditioning and decreased skin conductance in response 

to negative stimuli (Maschke et al. 2002; Annoni et al. 2003).  These studies 

provide support for a critical role for the cerebellum in integrating the 

autonomic responses and higher-order neural circuitry involved in emotional 

processing, with a particular role of the cerebellar involvement in the implicit 

responses mediated by the autonomic neural pathways that subserve the 

cardiovascular system and emotional regulation (Blood et al. 2015). A possible 

interpretation is that the cerebellum is a cerebral structure able to rapidly 

synchronize the motor, sensory and emotional processing to the complexity of 

the external and internal environment by serial and parallel computations 

networks involved in stimulus perception (Snow et al. 2014; Baumann et al. 

2015).   

Although it was not the major aim of the present study, the collection 

of data concerning the emotional valence of the drug experience gave us the 

opportunity to address an important issue in the field of drug addiction 

research.  It is often thought even by experts that all addictive drugs “directly 

or indirectly target the brain’s reward system by flooding the circuit with 

dopamine […] in regions of the brain that regulate […] feelings of pleasure.  

The overstimulation of this system, which rewards our natural behaviors, 
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produces the euphoric effects sought by people who use drugs and teaches 

them to repeat the behavior.” 

(https://www.drugabuse.gov/publications/media-guide/science-drug-

abuse-addiction-basics).  Our data challenge this notion by showing that even 

prototypical addictive drugs like heroin and cocaine do not necessarily 

produce a pleasurable affective state in all contexts.  Actually, in certain 

settings almost two-thirds of experienced drug users report that cocaine 

produces a mainly unpleasant affective state even during the period of 

regular use, although they still use the drug in such settings.  This is 

consistent with the theory that the mechanisms underlying the motivation to 

use drugs are separable from those implicated in generating drug ‘pleasure’ 

(Robinson & Berridge 2008; Berridge & Kringelbach 2013). 

In summary, the data reported here demonstrate that setting of drug 

use exerts a substance-specific influence not only on the behavioural and 

subjective response to heroin and cocaine but also on the activity of brain 

regions implicated in processing drug reward and related information.   

The within-subject design of our studies makes the findings especially 

compelling, because the results cannot be easily ascribed to differences in 

drug availability, peer influence or other socio-demographic factors.  These 

findings may help to explain epidemiological data indicating unique 

environmental influences on heroin versus cocaine abuse (Kendler et al. 2003) 

and suggest that therapeutic approaches to the treatment of drug addiction 

should take into account the distinctive effects of different classes of drugs as 

well as the contexts of drug use. 
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3.1. Limitations 

 

The studies reported here present a number of limitations.  In the first place, it 

relies on retrospective reports and subjective appraisal.  As discussed in the 

next section, technological developments may provide more objective 

measures of drug effects in real world addicts without interfering with their 

daily life.  However, for the time being these techniques are still in their 

infancy.  Furthermore, as discussed in Chapter 2, the risk of conscious or 

unconscious biases in relaying information by drug addicts, and humans in 

general has been often emphasized.  However, in our case, it is difficult to see 

in what way and for what reason our participants should have provided us 

with biased information, as they were not aware of the hypothesis being 

tested and the nature of our questionnaires and tasks was not likely to elicit 

answers that ‘pleases’ the researchers.  Finally, the within-subject structure of 

our studies, with repeated measures for heroin and cocaine in the same 

individuals, further reduced the probability that individual biases contributed 

to the produce the dissociations observed. 

Another potential limitation of my dissertation is represented by the 

lack of measures taken while the addicts are under the direct influence of 

drugs.  We are currently conducting studies to add this type of information.  

However, it should be noted that there are ethical and procedural constraints 

that make this type of studies more difficult to conduct.  Furthermore, the 

nature of the experiments that could be done under controlled conditions 

deviates substantially from the real-world characteristics of drug taking.  

Finally, it should be noted that the complex pharmacological actions of drugs 
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can complicate the interpretation of findings obtained with behavioural 

testing and imaging techniques. 

 

3.2. Future directions 

 

The hypothesis explored in the present dissertation could be further explored 

using methodologies that are still under development.  For example, the 

increasing use of new technology for interventional purposes, such as 

smartphones and non-invasive sensor-based technologies had opened up new 

opportunities for monitoring behaviour and affective states of people in real-

time in their daily environment (Kanjo et al. 2015).  Affective computing is a 

recent area, which focuses on the development of systems able to detect, 

interpret and possibly deliver feedback “all the time everywhere” (Kanjo et al. 

2015, page 1198).  The increasing popularity of wearable and wireless devices 

might allow researchers to measure physiological signals (i.e., galvanic skin 

conductance, heart rate variability) over an extended period of time with 

minimal interference with the users’ normal activity.  The joint use of daily 

self-report and physiological measures not only can help to obtain richer 

information and to formulate finer theoretical interpretations.  Indeed, it is 

hoped that by using Ecological Momentary Assessment (EMA) methodology 

it will be possible to gather data not obtainable in controlled experimental 

settings (Stone and Shiffman 1994; Epstein et al. 2009; Horvath et al. 2017).  

Furthermore, the use of EMA can have a therapeutic application and support 

the rehabilitation process.  Indeed, the ability to gather information about the 

patients’ physiological and emotional state, to assess their symptomatology, 

and detect possible risk factors, seems to offer a valuable resource in support 
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of behavioural change therapy, providing tools for instant and tailored 

clinical interventions.  
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Chapter 5 
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the present dissertation 

 
A manuscript including the he findings reported in Chapter 2 and Chapter 3 
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2. Other manuscripts in preparation 
 
During the course of my Ph.D. program, I contributed to other research 
projects that were not strictly germane to this dissertation.  Two manuscripts 
reporting the relative findings are in preparation. 
 
2.1. De Pirro S, Parkinson J, Badiani A, The effect of alcohol on sense of 
agency: an intentional binding study on healthy subjects 
 
2.2. De Pirro S, Martinez Cornelio P, Badiani A, Subramanian S, The effect of 
alcohol on sense of agency in touchless system interactions. 
 
2.3. De Pirro S, Badiani A, Temporal patterns of heroin and cocaine use in 
human co-abusers. 
 

3. Published papers 
 
In the last two years I co-authored the following two papers reporting 
findings not related to the present dissertation (see reprints at the end of the 
Dissertation). 
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a  b  s  t  r  a  c  t

Background:  There  is evidence  of  associations  between  tobacco  and  cannabis  use  that  are  consistent
with  both  a classical  stepping-stone  scenario  that  posits  the  transition  from  tobacco  use  to cannabis
use  (‘gateway’  effect  of  tobacco)  and  with  the reverse  process  leading  from  cannabis  use  to tobacco
abuse  (‘reverse  gateway’  effect  of  cannabis).  The  evidence  of  direct  causal  relationships  between  the  two
disorders  is  still  missing.
Methods:  We  analysed  data  from  the  Christchurch  Health  and  Development  Study  (CHDS) longitudi-
nal  birth  cohort  using  advanced  statistical  modelling  to  control  for  fixed  sources  of  confounding  and  to
explore  causal  pathways.  The  data  were  analysed  using  both:  (a)  conditional  fixed  effects  logistic  regres-
sion  modelling;  and  (b)  a  systematic  structural  equation  modelling  approach  previously  developed  to
investigate psychiatric  co-morbidities  in  the  same  cohort.
Results:  We  found  significant  (p  < 0.05)  associations  between  the extent  of cannabis  use and  tobacco
smoking  and vice  versa,  after  controlling  for  non-observed  fixed  confounding  factors  and  for  a number
of  time-dynamic  covariate  factors  (major  depression,  alcohol  use  disorder,  anxiety  disorder,  stressful  life
events, deviant  peer  affiliations).  Furthermore,  increasing  levels  of  tobacco  smoking  were  associated  with
increasing  cannabis  use (p = 0.02)  and  vice  versa  (p  <  0.001)  over  time.
Conclusions:  Our  results  lend  support  to the  notion  of both  of  ‘gateway’  and  ‘reverse  gateway’  effects.  That
is, the  association  between  tobacco  and cannabis  use  arises  from  a reciprocal  feedback  loop  involving
simultaneous  causation  between  tobacco  use  disorder  and  cannabis  use  disorder.

© 2015  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

Tobacco and cannabis are two of the most abused recreational
substances worldwide, ranking second and third in prevalence
of use after alcohol (Degenhardt et al., 2008). Both tobacco and
cannabis are mostly taken via smoking (Agrawal et al., 2012), and
the two substances are often co-administered in the form of ‘joints’
or ‘blunts’ (cannabis rolled in cigar paper; Ream et al., 2008). Fur-
thermore, many tobacco and cannabis users are co-users; that is,
they use the two substances independently of each other either in

! Supplementary material can be found by accessing the online version of this
paper at http://dx.doi.org and by entering doi:10.1016/j.drugalcdep.2015.02.015.

∗ Corresponding author. Tel.: +64 3 372 0406; fax: +64 3 372 0407.
E-mail address: joseph.boden@otago.ac.nz (J.M. Boden).

distinct occasions or in a sequence (e.g., Mayet et al., 2011; Richter
et al., 2004).

A multi-criteria analysis of drug harm (Nutt et al., 2010) indi-
cates that tobacco and cannabis are among the four most damaging
recreational substances in terms of direct and indirect economic
costs to society. Furthermore, it has been proposed that tobacco and
cannabis may  serve as gateway drugs, leading to the use and abuse
of other substances (Anthony, 2012). Gateway theory has been the
subject of some controversy in the literature, having been criticized
in terms of both drug sequence and causal modelling (Baumrind,
1983; Degenhardt et al., 2009, 2010). However, it is clear that a bet-
ter understanding of the factors involved in initiating tobacco and
cannabis use may  shed considerable light on the factors responsible
for their use.

Tobacco users who  are also cannabis users are more likely to be
daily smokers and develop dependence than non-cannabis users

http://dx.doi.org/10.1016/j.drugalcdep.2015.02.015
0376-8716/© 2015 Elsevier Ireland Ltd. All rights reserved.
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(Agrawal et al., 2011; Degenhardt et al., 2010; Korhonen et al., 2008,
2010; Timberlake et al., 2007). On the other hand, tobacco smok-
ers who experiment with cannabis are more likely to progress to
full-blown cannabis abuse than non-smokers (Ream et al., 2008;
Timberlake et al., 2007). Using data collected from the National
Household Survey on Drug Use and Health (NSDUH) in 2009,
Agrawal et al. (2012) estimated that the probability to develop a
cannabis use disorder was more than eight times greater in tobacco
users than in non-users and that the probability to develop nico-
tine dependence in cannabis users was more than three-fold that
of non-users. These findings are consistent both with the classical
stepping-stone scenario that posits the transition from tobacco use
to cannabis use and with the reverse process leading from cannabis
use to tobacco abuse (reverse gateway effect of cannabis; Patton
et al., 2005; Timberlake et al., 2007; Viveros et al., 2006). Indeed,
there are at least three possible explanations for the comorbid-
ity of tobacco and cannabis use disorders. First, it is possible to
hypothesize the existence of common or correlated genetic and/or
environmental factors that predispose the individual to both sub-
stance use disorders. A second possibility is that the association
is caused by tobacco acting as a gateway drug to cannabis or vice
versa. Finally, it is possible that the associations arise from a recip-
rocal feedback loop involving simultaneous causation between
tobacco use disorder and cannabis use disorder.

Previous studies aimed at investigating these different possi-
bilities have not been conclusive. Mayet et al. (2011), for example,
used a homogenous Markov multi-state model to analyze data from
a repeated cross-sectional survey to estimate the prevalence of
tobacco and cannabis use disorders and their relationship. Their
findings were compatible with a process mixing the gateway the-
ory, the reverse gateway theory, and the route of administration
model (Agrawal and Lynskey, 2009; Prince van Leeuwen et al.,
2011). Thus, the authors concluded that longitudinal studies were
necessary to explore the causal relationship between tobacco use
disorder and cannabis use disorder. The need of longitudinal studies
has also been stressed by Agrawal et al. (2012, 2011).

In the present study, we used data from a 35-year longitudinal
study of a New Zealand birth cohort to explore the causal rela-
tionships between tobacco use and cannabis use on the basis of
the prevalence and frequency of use at five time periods (ages
18, 21, 25, 30 and 35 years). The data were analysed using the
same analytic approach previously developed to study the asso-
ciations between major depression and both alcohol use disorder
(Fergusson et al., 2009) and tobacco use (Boden et al., 2010),
and between internalizing disorders and substance use disorders
(Fergusson et al., 2011). This analytic method incorporates: (a)
the use of conditional fixed-effects regression models, augmented
by time-dynamic covariate factors, to control for non-observed
sources of confounding (Hamerle and Ronning, 1995; Hausman
et al., 1984; Judge et al., 1980); and (b) structural equation mod-
elling. This combination of analytic approaches allows inferences
concerning possible causal associations between cannabis use and
tobacco smoking, and permits examination of the likely direction
of causality in the associations between cannabis use and tobacco
smoking.

2. Methods

2.1. Participants

Data were gathered during the course of the Christchurch Health and Devel-
opment Study (CHDS), a study of a birth cohort of 1265 children (635 males, 630
females) born in the Christchurch (New Zealand) urban region in mid-1977. The
cohort has been studied at birth, 4 months, 1 year and annually to age 16 years, and
again at ages 18, 21, 25, 30, and 35 years (Fergusson and Horwood, 2001; Fergusson
et  al., 1989). All study information was collected on the basis of signed consent from
study participants and is fully confidential, and is approved by the Canterbury (NZ)
Ethics Committee.

2.2. Frequency of cannabis use (ages 17–18, 20–21, 24–25, 29–30, and 34–35
years)

At each assessment at ages 18, 21, 25, 30 and 35 years, cohort members
were asked about the frequency with which they had used cannabis over the
twelve-month period prior to the assessment. For the purposes of this analysis, the
frequency data were classified using a three-level variable with the following class
intervals: (i) no cannabis use; (ii) >0 times and <1 time per week, and (iii) ≥1 time
per week. While these class intervals are somewhat arbitrary, it should be noted
that, consistent with previous research (Fergusson and Horwood, 2000; Fergusson
et  al., 2002), experimentation with alternative classifications produced essentially
the  same conclusions to those reported here.

2.3. Tobacco smoking (ages 18, 21, 25, 30, and 35 years)

At each assessment at ages 18, 21, 25, 30 and 35 years, cohort members were
asked about the frequency with which they currently smoked cigarettes. For the pur-
poses of this analysis, the smoking frequency data were classified using a three-level
variable with the following class intervals: (i) no tobacco smoking, (ii) >0 cigarettes
and  <10 cigarettes per day, and (iii) ≥10 cigarettes per day. As with the cannabis fre-
quency data described above, the use of alternative classifications produced similar
conclusions to those reported here.

2.4. Time-dynamic covariate factors (ages 18, 21, 25, 30 and 35 years)

In order to control for the effects of possible comorbid mental health and
substance use disorders and the effects of stressful life events in the analyses,
five time-dynamic covariate factors were obtained from the study database. These
included: (a) concurrent DSM-IV major depression; (b) concurrent DSM-IV alcohol
use  disorder; (c) concurrent DSM-IV anxiety disorder; (d) a count measure of the
number of stressful life events experienced during the twelve months prior to each
assessment; and (e) a measure of the number of cohort members’ deviant peers
who either used illicit drugs, or were in trouble in the law. Further details of these
measures are given in the Online Supplement.

2.5. Statistical analyses

Associations between frequency of cannabis use and frequency of tobacco smoking:
In  the first stage of the analyses, the pooled associations between the measures of
the frequency of cannabis use and tobacco smoking at ages 18, 21, 25, 30, and 35
years were estimated using Generalized Estimating Equation (GEE) methods (Liang
and Zeger, 1986; Zeger and Liang, 1986). Two  models were fitted: one in which
cannabis use predicted tobacco smoking; and a second model in which tobacco
smoking predicted cannabis use. In order to address issues of non-linear trend in
each of the predictors, effect proportional scoring methods were used. Specifications
of  these models are given in Supplementary material1.

Fixed effects model for covariate adjustment: To adjust the associations between
cannabis use and tobacco smoking for both: (a) non-observed fixed sources of con-
founding; and (b) observed time-dynamic covariate factors, conditional fixed effects
logistic regression models were fitted to the joint data for each prediction model
(cannabis use predicting tobacco smoking; tobacco smoking predicting cannabis
use) over the measurement periods (Hamerle and Ronning, 1995; Hausman et al.,
1984; Judge et al., 1980). See the Supplementary material2 for a detailed description
of  the basis for the fixed effects modelling and model specification.

Structural equation modelling of reciprocal causal pathways: To examine the pos-
sibility of a reciprocal causal relationship in which cannabis use led to increased
risks of tobacco smoking, and tobacco smoking led to increased risks of cannabis
use, a structural equation model was  fitted to the variance-covariance matrix of the
repeated measures of cannabis use and tobacco smoking at each assessment (ages
18,  21, 25, 30, and 35 years), using Mplus and weighted least squares estimation. An
example of the reciprocal causal model is displayed in Fig. 1. The model assumes that
the reported frequency of tobacco use at these time periods (t = 1 to 5) is influenced
by fixed sources of variation (T), which are constant over time, and by time-dynamic
sources of variation (UT). Likewise, the reported frequency of cannabis use is influ-
enced by fixed sources of variation (C) and by time-dynamic sources of variation (UC).
The model allows the fixed factors T and C to be correlated. The model also assumes
that UT and UC are linked by autoregressive processes in which past frequencies
predict future frequencies. Finally, the model assumes that UT and UC are recipro-
cally related at t = 2, 3, 4, or 5, so that current UT influences current UC and vice versa,
with these reciprocal effects assumed to be constant over time. Further details of the
model assumptions and model fitting are provided in the Supplementary material3.

1 Supplementary material can be found by accessing the online version of this
paper at http://dx.doi.org and by entering doi:10.1016/j.drugalcdep.2015.02.015.

2 Supplementary material can be found by accessing the online version of this
paper at http://dx.doi.org and by entering doi:10.1016/j.drugalcdep.2015.02.015.

3 Supplementary material can be found by accessing the online version of this
paper at http://dx.doi.org and by entering doi:10.1016/j.drugalcdep.2015.02.015.
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Fig. 1. Reciprocal structural model of the associations between cannabis use and tobacco smoking.

2.6. Sample size and sample bias

The present analyses were based on 1025 (age 18), 1011 (age 21), 1003 (age
25), 987 (age 30), and 962 (age 35) individuals, representing 76–80% of the original
cohort. To examine the effects of sample losses on sample representativeness, the
obtained samples with complete data at each age were compared with the remaining
sample members on a series of socio-demographic measures collected at birth. These
results suggested that there were statistically significant (p < 0.01) tendencies for
the  obtained samples to under-represent individuals from socially-disadvantaged
backgrounds. To address this issue, data weighting methods described by Carlin et al.
(1999) were used to re-analyze the data, producing the same pattern of results to
those  reported here, suggesting that the conclusions of this study were unlikely to
have been influenced by selection bias.

3. Results

3.1. Patterns of cannabis use, tobacco smoking and co-use4

As shown in Fig. 2 and Tables 1a and 1b, more than half of
the cohort (54.5%) reported smoking tobacco and/or cannabis at

4 Throughout this paper, the term co-use indicates the use of both tobacco and
cannabis in distinct occasions by the same individual, and not the co-administration
of  the two drugs via ‘joints’ or ‘blunts’.
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Fig. 2. Prevalence of use in the past 12 months at ages 18, 21, 25, 30, and 35 years,
for: (A) ‘light tobacco smokers-only’ (<10 cigarettes per day), ‘light cannabis users-
only’ (<1 time per week), and light co-users; (B) ‘heavy tobacco smokers-only’ (>10
cigarettes per day), ‘heavy cannabis users-only’ (≥1 time per week), and heavy co-
users; (C) heavy tobacco-light cannabis co-users and light tobacco-heavy cannabis
co-users.

age 18 years. The overall number of users peaked at age 21 and
progressively decreased, so that at age 35 only 35.3% of the cohort
was still smoking tobacco and/or cannabis. Fig. 2 also illustrates
the changes in the prevalence of tobacco and cannabis co-use and
indicates that the decline in use concerned all types of users and co-
users, except those who were ‘heavy tobacco smokers-only’ (>10
cigarettes per day) or ‘heavy cannabis users-only’ (≥1 time per
week). Fig. 3A shows that among ‘tobacco smokers-only’ the pro-
portion of heavy users more than tripled from age 18 years to age
35 years. This was not the case for either ‘cannabis users-only’ or
for co-users (Fig. 3B and C).

3.2. Associations between cannabis use and tobacco smoking

Table 1a shows the associations between the frequency of
cannabis use and the probability of being a tobacco smoker at ages
18, 21, 25, 30, and 35 years. Table 1b shows the frequency of tobacco
smoking and the probability of using cannabis at ages 18, 21, 25,
30, and 35 years. The data in both tables were analysed using a

Table 1a
Associations between frequency of cannabis use and probability of tobacco smoking,
ages 18, 21, 25, 30, and 35 years.

Age Level of
cannabis use

n % reporting
tobacco smoking

18 None 598 22.1
<Weekly 329 56.5
≥Weekly 98 83.7

21 None 538 23.4
<Weekly 340 54.4
≥Weekly 133 69.2

25 None 559 26.3
<Weekly 353 49.3
≥Weekly 91 67.0

30 None 657 21.5
<Weekly 262 45.0
≥Weekly 68 72.1

35 None 747 16.7
<Weekly 163 41.7
≥Weekly 52 61.5

Population-averaged
rates

% OR (95% CI)

None 21.7 1 (–)
<Weekly 49.9 5.30 (4.24–6.62)
≥Weekly 67.6 28.22 (18.17–43.82)

random effects GEE model to estimate the associations between:
(i) cannabis use and tobacco smoking, and (ii) tobacco smoking
and cannabis use. Both analyses show the presence of strong linear
associations (p < 0.0001) between the extent of cannabis/tobacco
use and the probabilities of tobacco smoking/cannabis use, as indi-
cated by the relative OR’s.

3.3. Adjustments for confounding

Tables 2a and 2b show the results of analyses controlling for
both (i) non-observed fixed confounding factors; and (ii) a num-
ber of time-dynamic covariate factors, including: major depression;
alcohol use disorder; anxiety disorder; stressful life events; and

Table 1b
Associations between frequency of tobacco smoking and probability of cannabis use,
ages  18, 21, 25, 30, and 35 years.

Age Level of
cigarette
smoking

n % reporting
cannabis use

18 None 625 25.4
<10/day 271 60.1
10+/day 129 81.4

21 None 608 37.2
<10/day 221 66.5
10+/day 182 71.4

25 None 621 33.7
<10/day 203 52.7
10+/day 179 71.6

30 None 677 23.8
<10/day 149 47.0
10+/day 161 61.5

35 None 737 15.6
<10/day 104 45.2
10+/day 121 43.8

Population-averaged
rates

% OR  (95% CI)

None 25.7 1 (–)
<10/day 56.3 5.51 (4.49–6.76)
10+/day 66.7 30.57 (20.09–45.60)
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Fig. 3. Proportion of light versus heavy use (at ages 18, 21, 25, 30, and 35 years) for:
(A)  tobacco smokers-only; (B) cannabis users-only; (C) co-users. For the definition
of  ‘light’ and ‘heavy’ see text and Fig. 1.

deviant peer affiliations. Table 2a shows the estimates of the
covariate-adjusted coefficients for the prediction of smoking from
cannabis use and Table 2b those for the prediction of cannabis
use from smoking. Both analyses showed that control for non-
observed fixed factors and time-dynamic covariate factors reduced
the magnitude of the associations between tobacco smoking and
cannabis use. Nonetheless, the adjusted associations remained sta-
tistically significant (p < 0.05) and substantial, suggesting that the

Table 2a
Associations between frequency of cannabis use and probability of tobacco smoking,
after adjustment for both: (a) non-observed fixed sources of confounding; and (b)
time-dynamic covariate factors.

Cigarette smoking

Level of cannabis use OR (95% CI)
None 1 (–)
<Weekly 2.90 (2.34–3.58)
≥Weekly 8.41 (5.48–12.82)

Statistically significant (p < 0.05) time dynamic covariate factors: major depression;
alcohol use disorder; anxiety disorder; life stress; deviant peer affiliation.

Table 2b
Associations between frequency of tobacco smoking and probability of cannabis use,
after adjustment for both: (a) non-observed fixed sources of confounding; and (b)
time-dynamic covariate factors.

Cannabis use

Level of cigarette smoking OR (95% CI)
None 1 (–)
<10/day 2.69 (2.21–3.28)
10+/day 7.24 (4.88–10.76)

Statistically significant (p < 0.05) time dynamic covariate factors: major depression;
alcohol use disorder; life stress; deviant peer affiliation.

associations between cannabis use and tobacco smoking could not
be accounted for by non-observed sources of confounding, or time-
dynamic covariate factors.

3.4. Testing for reverse causality

The findings in Tables 1a and 1b and 2a and 2b are consis-
tent with three general explanations of the associations between
cannabis use and tobacco smoking: (1) cannabis use leads to
tobacco smoking; (2) tobacco smoking leads to cannabis use; and
(3) there is a reciprocal causal relationship in which both (1) and (2)
hold simultaneously. One advantage of longitudinal data is that it is
possible to fit structural equation models (SEMs) that permit recip-
rocal causal pathways (Boden et al., 2010; Fergusson et al., 2009).
To examine this possibility, the SEM depicted in Fig. 1 was fitted to
the data (see Section 2) using Mplus (the full set of coefficients is
available upon request from the corresponding author).

The method of modelling (described in detail in the Supplemen-
tary material5) estimates two  key parameters of interest: (i) the
parameter B1 reflecting the causal effect of cannabis use on the
level of tobacco smoking, and (ii) the parameter B2 reflecting the
causal effect of tobacco smoking on the level of cannabis use.

The model depicted in Fig. 1 was  fitted to the repeated meas-
ures data on levels of tobacco use and cannabis use over the five
time periods from age 18–35. The model showed an excellent fit
to the observed data [model !2(25) = 32.7, p = 0.14; RMSEA = 0.019;
CFI = 0.99]. Further, the model showed that after control for non-
observed fixed sources of confounding, there was evidence of
modest but statistically significant reciprocal associations in which:
(i) increasing levels of cannabis use were associated with increas-
ing tobacco smoking (B1 = 0.099; SE = 0.03; 95% CI: 0.040–0.158;
p < 0.001), and (ii) increasing levels of tobacco smoking were asso-
ciated with increasing cannabis use (B2 = 0.066; SE = 0.027; 95% CI:
0.013–0.119; p = 0.02).

4. Discussion

The present study analysed data from the Christchurch Health
and Development Study (CHDS) longitudinal birth cohort using
advanced statistical modelling to control for fixed sources of con-
founding, and to explore causal pathways in the associations
between cannabis use and tobacco smoking. The findings of these
analyses and their implications are outlined below.

4.1. Patterns of tobacco smoking and cannabis use

More than half of the CHDS cohort reported using tobacco and/or
cannabis at age 18 years, with an overall prevalence of 54.5%. At
this age, most of these users (regardless of the frequency of use)
were co-users. This pattern is consistent with previous studies

5 Supplementary material can be found by accessing the online version of this
paper at http://dx.doi.org and by entering doi:10.1016/j.drugalcdep.2015.02.015.
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investigating a similar age bracket (e.g., Agrawal et al., 2011). The
overall prevalence of use peaked at age 21 and then progressively
decreased to 35.3% by age 35 years.

However, age-dependent changes in the prevalence of use were
very different as a function of drug and of intensity of use. The
prevalence of use at age 35 years was in fact half that observed
at age 18 years for light (<weekly) and heavy (≥weekly) cannabis
users (−47.5% and −43.75%, respectively), and for light tobacco
smokers (<10 cigarettes per day; −59.1%). In contrast, the preva-
lence of heavy tobacco smoking at age 35 years was exactly the
same observed at age 18 years. More specifically, there was  an
age-related decline for all types of users and co-users, except for
those who were ‘heavy tobacco smokers-only’ or ‘heavy cannabis
users-only’ (see Fig. 1), indicating the emergence of more selec-
tive drug preferences. This was particularly true of heavy tobacco
smokers-only, whose prevalence increased more than 200% from
age 18 years to age 35 years (see Figs. 1C and 2A) whereas for
heavy cannabis users-only the increase was only by 31%, confirming
that the addictive potential of tobacco is much greater than that of
cannabis, whereas the probability of remission from dependence is
much lower (Lopez-Quintero et al., 2011a, 2011b).

An important aspect of the CHDS birth cohort is that the
prevalence of use for cannabis-only was comparable to that for
tobacco-only at ages 18 and 35, a pattern that is characteristic of
New Zealand and Australia (e.g., Degenhardt et al., 2008; Swift et al.,
2012) and that stands in sharp contrast with that observed in most
other countries, where the prevalence of tobacco use is much higher
than that of cannabis (e.g., Agrawal et al., 2012; Degenhardt et al.,
2008). The similarity in the prevalence of tobacco and cannabis use
is ideally suited to investigate the reciprocal influences between
the two conditions.

4.2. Reciprocal influences between tobacco smoking and cannabis
use

In agreement with previous studies (Agrawal et al., 2011;
Degenhardt et al., 2010; Korhonen et al., 2008, 2010; Ream et al.,
2008; Timberlake et al., 2007), we found a significant association
between tobacco smoking and cannabis use. Light cannabis users
had approximately five times greater odds of being tobacco smok-
ers than non-users. Also the odds of light tobacco smokers of being
cannabis users were about five-fold those of non-smokers. The odds
of co-use greatly increased in heavy users. Both heavy tobacco
smokers and heavy cannabis users were about thirty times more
likely to co-use the other substance than the respective non-users.

One possible explanation for these associations is that they arose
because of common confounding factors, including non-observed
fixed effects as well as time dynamic covariate factors, such as con-
current psychiatric disorders (major depression, alcohol use dis-
order, and anxiety disorder), stressful life events and deviant peer
affiliations. However, significant and robust associations remained
evident even after adjustment for both non-observed fixed con-
founding and time-dynamic covariate factors, suggesting that the
associations between cannabis use and tobacco use could not be
explained by confounding. After adjustment, light users of either
substance had approximately three times the adjusted odds of also
using the other substance relative to the respective non-users. In
heavy users of either substance the adjusted odds were seven to
eight times greater than those of the respective non-users. This pat-
tern of findings suggests a possible reciprocal causal association in
which cannabis use increases the risk of tobacco use, and vice-versa.

To explore the possible pathways between tobacco smoking
and cannabis use, structural equation modelling was used to fit a
reciprocal causation model. This analysis suggested that the best-
fitting model was one in which there was a bidirectional association
between tobacco smoking and cannabis smoking, in which: (i) the

use of one substance leads to the use the other substance; and (ii)
the greater the intensity of use of one substance the greater the
intensity of use of the other substance.

To the best of our knowledge, this is the first longitudinal study
to investigate the reciprocal causal relationships between tobacco
smoking and cannabis use. Our findings confirm and extend those
other longitudinal studies concerned with unidirectional influ-
ences of tobacco use on cannabis use or vice versa. A 10-year cohort
study conducted by Patton et al. (2005) investigated the role of
cannabis use in the later initiation of tobacco use and progres-
sion to dependence. They found that at least one report of weekly
cannabis use in the teens was associated to a more than eight-fold
increase in the odds of later initiation of tobacco use whereas daily
cannabis use at age 21 years was  associated to a more than three-
fold increase in the odds of progressing to tobacco dependence.
A more recent longitudinal study by Prince van Leeuwen et al.
(2014) examined whether tobacco use during adolescence affected
the likelihood to abuse cannabis. They found that both early-onset
tobacco use and continued tobacco use in adolescence doubled the
likelihood of developing a cannabis use disorder.

The findings reported here have important implications for
the ‘gateway’ hypotheses, which posits a progression in drug use,
beginning with tobacco and alcohol, moving on to cannabis, and
then to other illicit drugs (Botvin et al., 2000; Kandel and Faust,
1975; Kandel, 1984; Kandel et al., 1992; Lynskey et al., 2003).
The nature of these “gateway” effects is a matter of some debate
(Degenhardt et al., 2010; Fergusson et al., 2006; Kandel et al., 2006;
MacCoun, 2006; Morral et al., 2002; Prince van Leeuwen et al., 2011;
Vanyukov et al., 2012). In particular, it is not clear whether the pre-
dictive association between cannabis and other illicit drug use is
causal or reflects confounding factors (Fergusson et al., 2006; Hall
and Lynskey, 2005; Kandel and Faust, 1975; Kandel, 1984; Kandel
et al., 2006; MacCoun, 2006; Morral et al., 2002). Furthermore, there
is data suggesting a “reverse gateway” effect of cannabis use on
tobacco use (Patton et al., 2005; Viveros et al., 2006). The systematic
structural equation model used in the present study indicates the
simultaneous occurrence of ‘gateway’ and ‘reverse gateway’ effects.
That is, the association between tobacco and cannabis use arises
from a reciprocal feedback loop involving simultaneous causation
between tobacco use and cannabis use.

With the present study adding to the growing evidence concern-
ing a possible gateway role of tobacco in linkages with cannabis and
other illicit drugs, further questions arise concerning the mech-
anisms underpinning these linkages. The route of administration
model (Agrawal and Lynskey, 2009) would suggest that the ori-
gins of these linkages are either physiological or cultural in nature,
in which the use of either tobacco or cannabis is increased by:
(a) the act of smoking one or the other substance causes aero-
respiratory changes; and/or (b) social and cultural practices in
which tobacco and cannabis are consumed simultaneously (via
“joints” or “blunts”). Further research is necessary to better dis-
tinguish between these accounts of the linkages between tobacco
and cannabis use.

A further possible explanation for the observed associations
between cannabis and tobacco is the common liability model
(Prince van Leeuwen et al., 2011), in which genetic and individ-
ual factors are thought to increase the risk of the use of multiple
substances. However, it would seem to be the case that such fac-
tors should have been accounted for in the present analyses by: (a)
the use of conditional fixed-effects models; and (b) the correlated
latent indices for cannabis and tobacco in the structural models.

4.3. Limitations of the study

It is important to recognize that the conclusions drawn in this
analysis rely on some underlying assumptions. The most pervasive
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of these assumptions is that the pattern of causal relationships can
be modelled as a stable causal process that was operative through-
out the course of this study. This is clearly a strong assumption,
but it is essential for both the fixed-effects and reciprocal-causes
models. Additional research is required to verify whether our
assumption is correct. It is also possible that our structural equa-
tions do not adequately reflect the complexity of all the factors at
play, an issue that can be addressed only by further investigations
based on models partly or radically different from the one used
here. Finally, it should also be noted that specific instances of co-
use of cannabis and tobacco (e.g. rolled together in “joints”) was
not measured in the present study.
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ABSTRACT 
Touchless interfaces allow users to view, control and 
manipulate digital content without physically touching an 
interface. They are being explored in a wide range of 
application scenarios from medical surgery to car 
dashboard controllers. One aspect of touchless interaction 
that has not been explored to date is the Sense of Agency 
(SoA). The SoA refers to the subjective experience of 
voluntary control over actions in the external world. In this 
paper, we investigated the SoA in touchless systems using 
the intentional binding paradigm. We first compare 
touchless systems with physical interactions and then 
augmented different types of haptic feedback to explore 
how different outcome modalities influence users’ SoA. 
From our experiments, we demonstrated that an intentional 
binding effect is observed in both physical and touchless 
interactions with no statistical difference. Additionally, we 
found that haptic and auditory feedback help to increase 
SoA compared with visual feedback in touchless interfaces. 
We discuss these findings and identify design opportunities 
that take agency into consideration. 

Author Keywords 
Touchless interfaces; haptics; the sense of agency; 
intentional binding; gestures. 

ACM Classification Keywords 
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INTRODUCTION 
Recent advances in gesture recognition technologies [31, 
40] are driving a new class of interactive systems where a 
user is able to view, control and manipulate digital content 
without touching the interface. For example, touchless 
interactions are being explored as part of medical surgery 
[51], to design games that benefit children with Autism 
Spectrum Disorder (ASD) [4], and touchless controllers for 
car dashboards [2](see Figure 1). There is a strong user 
appetite for such systems as they are intuitive and enable 
greater freedom of user-movements. 

One aspect of touchless interaction that has not been 
studied is the SoA in such interactions. The SoA can be 
defined as the feeling of one’s voluntary actions causing 
events in the external world [22] and having the awareness 
of owning the actions’ outcomes. This “Attribution of 
judgement” allows us to distinguish our actions and their 
sensory effects from those of other people [25].  

 
Figure 1. A mosaic of touchless interactions in surgery and 

driving scenarios. 

For example, in touchless applications scenarios in which 
perceiving a responsive system is relevant (e.g. surgery and 
driving), if users do not experience perception of causation 
(causal relationship between action and outcome), they 
could diminish self-attribution of an unfavorable outcome. 
However, although this perception is independent of correct 
performance of the device or system (i.e. personal agency), 
different interaction paradigms can improve this perception 
in order to enhance user’s SoA through a responsive 
touchless system. Here, we explored these possibilities 

To understand users’ SoA when interacting with touchless 
interfaces, we conducted two user studies. Our studies use 
the intentional binding paradigm, which provides an 
implicit and quantitative measure of the SoA [23, 43]. In the 
first experiment, we compared a camera-based button-click 
gesture with a physical button press, using both visual and 
auditory feedback. Our results show that both physical and 
gestural input modalities produce intentional binding. 
Additionally, we found that participants exhibited 
significantly more SoA when the touchless input action was 
accompanied by an auditory outcome rather than a visual 
outcome. In the second study, we compared the camera-
based click gesture both with and without tactile stimuli to 
examine if haptic feedback can enhance SoA. Our results 
show that haptic feedback provides higher intentional 
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binding when gesture-based action precedes it, compared 
with visual feedback. 

The main contributions of our paper are: 
x We investigate agency effects for touchless gesture-

based interaction. 
x We demonstrate by implicit and quantitative metrics 

that touchless gesture-based input modality could be as 
responsive as a physical touch-based input modality. 

x We show that auditory and haptic feedback help to 
increase user’s SoA in touchless interaction compared 
with visual feedback. 

x We discuss our findings and identify design 
opportunities that take agency into consideration. 

RELATED WORK 
The background for our work comes from the areas of 
experimental paradigms of agency in neuroscience, agency 
experiments within HCI and touchless interaction systems. 
Next, we will provide an overview of these areas. 

The Sense of Agency 
There is growing interest in investigating an important 
aspect of self-consciousness that concerns the awareness of 
being in control of our own actions: the Sense of Agency 
(SoA), which refers to “Attribution of judgement”. 
Georgieff and Jeannerod defined this phenomenon as a 
“Who” system that permits the identification of the agent of 
an action and thus differentiates the self from external 
agents [18]. This concept has been studied extensively in 
cognitive neuroscience to analyze how the deficit in 
people’s sense of agency is a consequence of some diseases 
or mental disorders like schizophrenia; patients with this 
disorder do not feel they are in control of their own actions 
and sometimes their thoughts [39]. 

Currently, two models explain the origins of agency: 
prediction and postdiction [59]. According to the predictive 
model, the SoA is generated by the intention to act, which 
arises from neural processes that regulate initiation of 
voluntary motor movement [42]. The postdictive model 
relies on retrospective reflection, so that the SoA arises 
after perceiving the action’s outcome [34, 62]. Here, the 
perception of causation (causal relationship between action 
and outcome) is a result of post-action information. 

One example of supportive evidence of the predictive 
model is the work of Benjamin Libet [30], who studied the 
timeline regarding brain neural activity and the conscious 
experience of executing a motor movement. His results 
suggest that the intention of movement is generated by a 
brain process over which we have no control, as at that 
moment we are not consciously aware. However, the 
subjective experience of free will emerges 200 ms before 
the actual motor movement. Some researchers have 
suggested that free will could be described as “free won’t” 
as this process seems to have more to do with the decision 

 to execute an action or not, before the action itself [52]. 

On the other hand, many studies have shown evidence of 
the postdictive explanation of agency. Johansson et al. [26] 
observed postdictive influence over subjects’ actions based 
on choice blindness. In this study, participants were asked 
to visually choose one option among others. Then, the 
experimenters swapped the participants’ chosen option with 
a new one, and presented this new option as their original 
choice. When participants were asked to explain the reason 
for their choice, they tried to justify why they chose the 
swapped option, even though it was clearly different to the 
original choice.  

Another example is the study by Takahata et al. [60] who 
conducted an experiment where participants were primed 
with rewarding and punishing outcomes by associating 
auditory stimuli with positive, neutral and negative 
monetary outcomes. Their results showed that participants 
attributed an action to themselves depending on outcome 
condition; they generally attributed the action to an external 
factor when its effect produced a negative outcome. 

Body ownership also plays an important role in the 
experience of agency. Participants in [3] falsely attributed 
an action (speaking) to themselves. The experiment 
consisted of a virtual reality scene in which participants saw 
a life-size speaking avatar seen from the first person 
perspective through a virtual mirror. Participants received 
thyroid cartilage vibrotactile stimulation synchronized with 
the avatar’s speech. The movements of the virtual body and 
participant body were also synchronized so that they 
created the illusion of body ownership.  

They demonstrated that participants thought they were 
speaking the words when they actually were not. In a more 
recent work they found illusion of agency over walking in 
seated participants [28]. These findings suggest that people 
experience SoA even when there is no previous intention to 
act i.e. in absence of prediction, priming or cause preceding 
the effect. Although the studies differ in explanations about 
the initiation of SoA, both models are considered valid [59].  

Agency in HCI 
Although the experience of agency is central in cognitive 
neuroscience, recent research has focused on studying how 
personal agency changes with use of technology. These 
studies have opened a new area which aims to explore how 
“in-control” users feel when interacting with an interface, 
i.e. have the awareness to say, “I am, who is controlling 
this”. McEneaney et al. [37] executed a series of 
experiments to demonstrate that the experience of agency 
not only applies for physical situations but also in HCI. 
They focused on answering: “Are agency effects observed 
in desktop computing environments typical of HCI?” 

They based their studies on measuring perception of click-
responses through visual stimuli on-screen and auditory 
feedback to compare human-initiated actions with 



computer-controlled actions. Their results showed that an 
agency effect exists in typical HCI desktop computer 
environments. This finding supports the claim that user 
perception of on-screen events depends on agency cues. 
However, they found that the perception in time of 
participants differed depending on whether an auditory 
effect followed a machine or human-initiated click action.  
Coyle et al. [12] compared a new input modality (Skinput 
[24]) with physical interaction (button-press) to explore the 
experience of agency in HCI environments. Skin-based 
input modality consisted of a piezoelectric microphone on 
participants’ forearm so that a tap on the skin can be 
recognized as a “button-press” action, preceding an audio 
feedback in response. The results showed that skin-based 
input could elicit greater SoA unlike typical keyboard input. 

In another example, Limerick et al. [32] explored voice 
command input. This technique consists of asking 
participants to say the word “go” as an instruction/action 
preceding an audio feedback. Their results showed a low 
SoA in this input modality, suggesting that this low feeling 
of control contributes to the low uptake of speech interfaces 
for interactive applications, despite the availability of high 
accuracy voice recognition techniques (e.g. 97.3% 
recognition rate). This research suggests that a system that 
evokes a low sense of agency will discourage users from 
using it, preventing widespread use of the system. On the 
other hand, the research of Coyle creates a large 
opportunity for on-body interaction systems. We need a 
similar understanding of the SoA for touchless systems in 
order to improve touchless interface design and thus enable 
wider uptake of such systems. 

Touchless Systems 
Interactive systems that use a touchless approach typically 
require no physical contact with a surface or object, 
avoiding the constraints of ordinary interaction paradigms 
(e.g. mouse and keyboard). These systems often rely on 
gesture-tracking technologies to detect mid-air gestures. 
The most common approaches rely on optical technology 
[61, 68] and electromyography (EMG) [38, 50]. However 
more recent devices offer higher resolution of gesture-
sensing based on radar [31] and sonar [49] technologies.  

Taking advantage of its properties, touchless systems are 
being deployed to perform interactions in many critical 
situations such as surgery and dashboard control. Touchless 
manipulation of medical images allows surgeons to 
maintain the sterile environment required in surgery, 
without the help of assistants [51]. Another example is 
driving; today there are many dashboard panels that allow 
users to control car elements from a distance [2, 29]. The 
use of gesture recognition and proximity to manipulate car 
controllers allows the user to release the visual channel, and 
thus aims to promote a safer driving environment.  

Although mid-air gesture-based devices may consist of a 
wide range of capabilities, most radar, sonar or optical 

tracking-based gestures typically share common 
characteristics with mice and tablets. In both devices the 
main interplay consists of pointing and clicking actions 
[65]. In these mid-air gesture interaction systems, pointing 
is represented by hand tracking and clicking is represented 
by “activation gestures” [65], which define the intention to 
communicate with the system [20]. These gestures must be 
natural and intuitive, but uncommon, so that they are not 
performed accidentally [7]. Following this, the user expects 
a confirmation of the activation, i.e. a perceptible response 
from the system. This refers to “system attention” [5], 
which is attained with multisensory feedback. Feedback is 
important in touchless systems as there is no physical 
contact with an object (e.g. floating images or virtual 
keyboard). However, it is not necessary to physically touch 
an object to have the perception of a “button-press” if it is 
associated with an effect in response. 

Visual, audio and haptic feedback 
Touchless interaction can be helped by sensory effects in 
order for the user to perceive “system attention” [5]. This 
can be achieved by providing users with multisensorial 
feedback, i.e. visual, auditory and haptic [20]. Freeman and 
Lantz added light, audio and tactile displays to assist users 
to know “where to gesture” [16]. Markussen et al. 
implemented a gestural typing system helped with visual 
feedback through a virtual keyboard [36]. Liu et al. added 
visual hand-cursors on-screen to make users know the state 
of the bare-hand postures and gestures [33]. Wu and Rank 
explored different audio feedback designs for hand gestures 
for encouraging immersion in games [66]. In a recent work 
they found that in-air gestures with responsive audio 
feedback leads to a higher immersion and enjoyment in 
video games [67].  Müller et al. developed a technique to 
“touch” and manipulate sound in mid-air by combining 
audio, visual and tactile feedback [48]. 

A common criticism of touchless systems is that users lack 
haptic feedback for action confirmation. However, mid-air 
haptic feedback is a recent technique to make the user 
aware of “system attention” in touchless interaction. 
Airwave [21], UltraHaptics [8] and AIREAL [57] are 
examples of emerging systems that can provide this missing 
tactile feedback in mid-air with bare hands. This technology 
allows users to perceive tactile sensation even in the 
absence of physical objects. Based on this approach, 
Monnai et al. proposed a system to interact with floating 
images, using not only visual feedback (through light 
beams), but also mid-air haptic feedback through ultrasound 
in order to create the sensation of touching a virtual screen 
[41]. In a more recent work, Makino et al. introduced a 
system to clone real objects into virtual ones. It consisted of 
floating images that replicate haptic properties of real 
objects using ultrasound, providing realistic interaction of 
touch in mid-air without wearable devices [35]. 

The above examples represent complex systems of 
touchless input commands with different kinds of feedback. 



However, the role of agency during the interaction with 
these systems has not been investigated. In other words, it is 
unclear if adding tactile feedback helps user feel SoA when 
interacting with touchless systems. We believe that agency 
implication should be considered in touchless interface 
design in order to improve user involvement, intuitiveness 
and instinctive sense of control during the interaction.  

This is the seventh of Shneiderman’s Eight Golden Rules of 
Interface Design; this rule indicates that interface design 
should “support an internal locus of control”[56] which 
refers to users’ need to feel they are the agents of the 
system’s  responses (i.e. “they are in charge of the 
system”). This is a relevant aspect for new application 
scenarios (e.g. surgery and driving) in which feeling 
ownership of the outcomes of one’s actions is essential. To 
investigate user’s SoA beyond traditional input in these new 
scenarios, we explored agency by employing the intentional 
binding paradigm and the Libet clock in a set of input 
command actions (physical and touchless) and sensory 
responses that include audio, visual and haptic feedback. 

THE INTENTIONAL BINDING PARADIGM 
We used the intentional binding paradigm for our studies. It 
was developed to provide an implicit and quantitative 
measure of the SoA [23]. In 2002 Patrick Haggard showed 
that the perceived time of a voluntary action and its sensory 
outcomes are shifted towards each other, so that the interval 
between action and outcome is perceived as shorter than it 
actually is, leading to a perception of compression of time 
[23] (see Figure 2 right). As shown in Figure 2 right, the 
action binding represents the interval between the actual 
and perceived action; it occurs when the action is perceived 
to occur later than the moment when it actually did. 
Similarly, the outcome binding represents the interval 
between the actual and perceived outcome, it occurs when 
the sensory effect is perceived earlier than the moment 
when it actually happened. The sum of these two elements 
represents a total binding value. Consequently, higher total 
binding value is related to a higher SoA [12, 14, 45].  

According to this method, the action binding and outcome 
binding can be measured quantitatively. They are calculated 
from four conditions (see Table 1) consisting of two 
baseline- (baseline action & baseline outcome) and two 
active- (active action & active outcome) conditions. As 
illustrated in Table 1, in the action baseline condition, 
participants performed the action (physical or touchless) but 
receive no feedback. In the outcome baseline condition, 
participants received feedback (visual, auditory or haptic) 
without performing any action. In the active conditions, 
both action and outcome occurred. During the task, both 
actual time (the time logged by the system) and perceived 
time (reported by the user using a Libet clock) of the action 
and outcome was recorded. The errors were calculated by 
the difference between perceived and actual moments of 
time. Following this, the intentional binding is calculated 
through the formulas shown in Figure 3 [46]. 

 
Figure 2. Illustration of the intentional binding effect (right). 

The Libet clock (left). 

 
Table 1. Intentional binding measurement blocks and 

calculations for error estimation. 

 
Figure 3. Intentional binding conditions and calculation 

formulas. For action, participants executed either a physical 
button-press or a touchless button-click gesture. For outcome, 

they received one action confirmation: visual on-screen, 
auditory (a beep), vibrotactile or mid-air haptic feedback. 

As shown in Figure 3, in baseline conditions participants 
perceived the action earlier but the outcome later when 
compared to the actual time. However, in active conditions 
the effect was the opposite. The active conditions create an 
effect where action and outcome are shifted towards each 
other [23]. This is evidence of both predictive and 
postdictive influence of the origination of agency in the 
intentional binding paradigm [13, 43].    



The Libet clock  
We employed Libet’s method to measure participants’ 
time-subjective experience, in order to investigate volitional 
control of movement and thus to record perception of time 
(the Libet clock). It consists of a clock that rotates 
clockwise once every 2560ms (see Figure 2 left). 
Participants reported the position of the clock at the 
moment when they either performed the action or received 
the outcome (see Table 1) to indicate their perceived time. 
The experience of agency can be also measured with 
alternative methods, for example “Interval estimation” [15, 
43], which consists of reporting an estimate of the time 
interval between the action and the outcome. Another 
method is self-reporting questionnaires and scales that are 
related to binary answers about whether the user was the 
agent of the action or not. However, the intentional binding 
paradigm with the Libet Clock has been shown as a robust 
technique to implicitly measure the SoA [43, 45, 53, 54]. 
We therefore use this method in our experiments. 

TOUCHLESS BUTTON CLICK 
In order to investigate the relationship between states of the 
in-air gesture input and the system’s responses, we wanted 
to explore how gesture actions influence agency. We 
measured intentional binding during simple micro-
interactions typical of desktop computing environments. 
We based our selection gesture on a study by Saffer, who 
states that “The best, most natural designs, then, are those 
that match the behavior of the system to the gesture humans 
might actually do to enable that behavior. Simple examples 
include pushing a button to turn something on or off” [55]. 
Consequently, we chose a fundamental gesture action to use 
(touchless button-click) in order to compare it with typical 
touch input (button-press). 

In this context, a button-press movement is common in our 
everyday interaction with computers and smartphones. 
Besides, it can be reliably tracked with devices such as 
Leap Motion, which is specifically focused on hand and 
fingers tracking. In common desktop computing 
environments, a physical button-press generally produces 
three kinds of effect: (1) visual on-screen: when we press a 
button or key of the keyboard we normally expect a visual 
change on-screen (e.g. typing tasks), (2) auditory feedback: 
because we can perceive a click sound through mechanical 
pressure on the actuator; and (3) haptic: because of the 
obvious physical contact with the mechanoreceptors of the 
skin. Therefore, we provided participants with visual, 
auditory and haptic feedback as the outcome of our physical 
and gestural action input to examine how states of input 
(physical and touchless) map onto states of the system.  

INVESTIGATING AGENCY IN TOUCHLESS INTERFACES  
Touchless systems are being used in a wide range of 
applications; however, the role of SoA in this kind of 
interaction is unknown. Does the user perceive a touchless 
command as being as responsive as a physical one? Does 

haptic feedback help to increase user’s SoA in touchless 
interfaces? To answer these questions, we conducted two 
studies. In our Study 1, we explored touchless input 
modality and compared it with physical-based input. So far, 
only auditory and visual outcomes have been employed as a 
means of action confirmation to investigate agency (as 
mentioned in related work section); however, in our Study 
2, we introduced haptic feedback (vibrotactile and mid-air) 
as a new output modality to investigate if tactile sensation 
can enhance users’ SoA in touchless interactions. 

Method and Materials 
Participants judged their perception of time by reporting the 
position of a rotating dot around a Libet clock at the 
moment when they either executed an action (baseline 
action and active action blocks) or received the feedback 
(baseline outcome and active outcome blocks) as shown in 
Table 1. The numbers of the clock were not used in order to 
avoid creating visual patterns during the task. This is 
because in pilot studies we noticed that participants tended 
to “identify” with their gaze a number as a reference, (e.g. 
“I’m going to do the action when the dot reaches the 
number 3”). This does not reflect the volition/urge to 
execute a motor action. Thereby participants used an 
external controller (Griffin Powermate USB Controller) to 
place the dot on the perceived position. The Libet clock size 
500 pixels in diameter, was placed at the center of a screen 
(24 inch, 1920 x 1080 resolution). The perceived and actual 
times were recorded to calculate the intentional binding. In 
the trials with user-performed action, the action was either a 
touchless click gesture or a physical button-press. The 
outcome was presented in one of four different feedback 
methods: on-screen visual, auditory (a beep), wearable 
vibrotactile, and mid-air haptic feedback. 

Gesture Action 
Participants moved their index finger, mimicking a press-
button action (i.e. up-down finger movement of 2 cm). The 
gesture was captured using a Leap Motion controller with 
capture rates of about 300 fps. Participants rested their hand 
(palm down) at a fixed position of about 20 cm height from 
the surface of the Leap Motion device in all feedback 
conditions preceding the gesture (see Figure 4). After a 
period of 250 ms a sensory effect was given to participants.  

Auditory Outcome 
Auditory stimulus is the common sensory effect used in the 
intentional binding paradigm. We considered audio 
feedback to have baseline comparison with new outcome 
modalities. In the conditions when there was auditory 
feedback, participants heard a tone that lasted 200 ms at 
900 Hz in frequency using headphones.  However, they 
always wore headphones during the full study. 

Visual Outcome 
Visual feedback was in the form of an on-screen button 
(250 pixels in diameter) that was presented at the center of 
the screen, and inside the Libet clock. When participants 



performed the click gesture, they could see the animation of 
this button changing state (the button sank as if it had been 
pressed; changed from red to green; and returned to its 
original state after 200 ms). The procedure for presenting 
visual stimuli and the Libet clock is similar to previous 
studies [37, 47]. Possible time delays due to the refresh rate 
of the screen used in our study (60 Hz) in the visual 
conditions on-screen, including the rotation of the Libet 
clock, was compensated for by following the procedure of 
previous studies [58]. We executed a preliminary test with a 
photodetector and high-speed camera placed in the middle 
of the screen in order to count the number of frames shown 
within specific periods of time. This was done in order to 
identify and compensate for missing frames. Our system 
was consistent in missing one frame in each trial, so to 
correct this delay, we subtracted the duration of one tick 
(16.66ms) from our interval durations as in [17]. 

 
Figure 4. Experimental setup. 

Vibrotactile Haptic Outcome 
Vibrotactile feedback was given to participants using a 
wearable glove with an embedded coin vibration motor 
(model 310-103 by Precision Microdrives), 1cm in diameter 
and positioned in the glove so that the vibration is provided 
on a participant’s fingertip (index finger). This motor 
vibrated at a speed of 12,000 rpm and 250 Hz in frequency. 
The typical rise time of 87 ms was compensated for to 
preserve timing as accurately as possible. Each vibration 
lasted 200 ms, which was easily recognizable over the 
tactile channel [19]. Participants did not wear the glove 
during visual, auditory and mid-air haptic feedback blocks. 

Mid-air Haptic Outcome 
Mid-air haptic feedback was provided using the 
UltraHaptics kit [8]. This device uses low-intensity and 
low-frequency ultrasound pressure waves to create multiple 
focal points in mid-air for tactile-sensation. The user can 
perceive the focal points using bare hands due to the 
receptors in the hand evoking a haptic sensation. To 
equalize two haptic feedback conditions in terms of 
stimulation area, we simulated vibrotactile outcome 
features with an UltraHaptics kit. Five focal points were 
created on participants’ fingertip (index finger) to cover an 
area of 1 cm2 with the same frequency as the vibrotactile 
condition (250 Hz).  The stimulation lasted for 200ms.  

STUDY 1. TOUCHLESS VS PHYSICAL 
In this experiment, we compared physical-based and 
gestural-based touchless inputs preceding auditory and 
visual feedback as the outcome. This resulted in four 
combinations of action + outcome: physical & auditory, 
physical & visual, gestural & auditory and gestural & 
visual, as shown in Figure 5. 

Procedure   
Participants were asked to sit in front of a screen at a 
distance of about 100 cm. Every trial started when they 
pressed a footswitch to indicate they were ready to start. 
After this, a Libet clock with a rotating dot was presented at 
the center of a screen. The dot always started at a random 
position. After one full revolution of the dot, participants 
were asked to perform the action:  a physical button-press 
using a keyboard (space key) or a click gesture in mid-air. 
For touchless action, the hand always stayed palm down 
and rested on top of a supporting structure (as in Figure 4). 
For physical action, this structure was not used and the 
Leap Motion device was replaced by a computer keyboard. 
Participants always executed the action (gestural and 
physical) using their dominant hand.  

After a period of 250 ms, the outcome was presented in the 
form of auditory (a beep) and visual feedback on-screen. 
Then, participants judged their perception of time by 
reporting the position of the dot on the clock. Participants 
wore noise-cancelling headphones to eliminate any audible 
noise from the devices. Participants performed 20 trials in 
each condition resulting in 320 trials per participant (20 
trails x 4 intentional binding blocks x 4 combinations of 
action + feedback). The experiment was completed in a 
maximum time of 90min; there was a short break between 
conditions. Figure 5 shows the procedure of a single trial.  

 
Figure 5. Experimental trial of Study 1 (*not done in baseline 

outcome blocks, ** not done in baseline action blocks). 

Participants  
Twelve right-handed participants (4 Male, mean age=30.92 
years, SD=3.03) took part in the experiment. They had 
normal or corrected-to-normal vision. The local ethics 
committee approved this study and participants were not 
paid for their participation.   

Results 
A Repeated Measure design was used to compare the 
effects of touchless input modality with physical-based 
input and visual and auditory feedback. We report the



 
Figure 6.  Average of action binding and outcome binding in milliseconds of each action and outcome modality. The sign of 

outcome binding effects on the chart bars has been inverted to allow for comparison with action binding. Error bars represent 
standard error of mean. 

partial eta squared (ηp
2) as a measure of effect size. 

According to Cohen [11], a value of 0.01 is considered a 
small effect, 0.06 a medium effect and a value of 0.14 or 
greater, a large effect size. 

 
Table 2. Average of action, outcome and total binding in 

milliseconds (with standard deviation in brackets) grouped by 
combination of action & outcome. 

 
Figure 7. Average of total binding in milliseconds for each 
combination of action and outcome. Error bars represent 

standard error of mean. 

A 2X2 within subjects’ ANOVA, with the type of action 
(touchless gesture-based click vs physical button-press) and 
the type of feedback (visual vs auditory) as factors, revealed 
no significant effect of type of action on total binding 
F(1,11)=0.003, p=0.96, ηp

2=0.00. We also found no 
significant interaction between the type of action and type 
of feedback F(1,11)=0.63, p=0.45, ηp

2=0.05. However there 
was a significant main effect of the type of feedback 
F(1,11)=5.31, p=0.04, ηp

2=0.33 with the auditory feedback 
scoring higher compared to the visual feedback. Figure 7 

shows the average total binding with different action and 
feedback modalities. 

An identical ANOVA was then performed for the action 
binding, showing no significant interaction F(1,11)=0.36, 
p=0.56, ηp

2=0.03, and no main effect of the type of action 
F(1,11)=0.12, p=0.74, ηp

2=0.01 and the type of feedback, 
F(1,11)=0.79, p=0.39, η p

2=0.07.  

The outcome binding, however, showed a significant main 
effect of the type of feedback F(1,11)=9.17, p=0.01, 
ηp

2=0.45, with auditory outcome producing an increased 
binding in both the physical button-press (M=-37.48ms, 
SD=106.23ms) and the touchless gesture-based click    
(M=-32.02ms, SD=81.73ms) compared to visual feedback 
respectively in the physical action (M=11.99ms, 
SD=92.28ms) and in the touchless gesture-based click 
(M=0.57ms, SD=81.25ms). A breakdown of these means in 
relation to action and outcome binding is shown in Table 2. 
Figure 6 shows action binding and outcome binding effects. 

Discussion of Study 1 
Our results from the Study 1 revealed an intentional binding 
effect when both input modalities gestural and physical 
preceded an auditory feedback. However, this effect was 
not observed with visual feedback. As shown in Figure 6 
the visual outcome did not shift towards the action. This 
suggests that the touchless system exhibited significantly 
more intentional binding when the input action was 
accompanied by auditory outcome compared with visual 
outcome. As expected, the physical button-press preceding 
an auditory outcome produced intentional binding, as 
shown in a large number of studies on SoA.  

Interestingly we found no statistically significant difference 
in the action binding across the different combinations of 
action and outcome. This could suggest that participants 
may have perceived the touchless action to be as responsive 
as the physical action in terms of intentional binding, even 
when the touchless action did not involve typical 
characteristics of touching and object i.e. proprioceptive 
perception. The proprioceptive perception plays an 



important role in terms of feeling an immediate haptic 
feedback (as in pressing a physical button) additionally 
from the feedback system. In the previous work from Coyle 
et al. [12], participants reported increased intentional 
binding for skin-based input modality as this action 
involved tactile sensation in both the finger and the arm.  
Thereby, this seems a challenge for touchless action where 
implicit tactile feedback is not committed.  

However, although in our touchless condition there was not 
a simultaneous action-feedback like in physical button-
press, interestingly we still found an intentional binding 
effect, as the touchless action execution always involved 
participants’ motor movement followed a prior intention. 
Previous studies have suggested that the SoA principally 
arises due to internal motor signals [6, 42] and also that 
intention to act influences action attribution, when 
reafferent signals (e.g. motor or visual) match with 
intention retrospectively [9, 10, 64]. Thereby ideomotor 
signals produced by the touchless action could have served 
as a contributory factor in our results on intentional binding.  

Furthermore, we also attribute these findings to the 
influence of the postdictive model of origination of agency. 
As we state, “it is not necessary to physically touch an 
object to have the perception of a “button-press” if it is 
associated with an effect in response (see Visual, audio and 
haptic feedback section). Although the touchless action did 
not involve immediate tactile feedback, participants always 
received a confirmation with a visual or auditory outcome. 
Similar accounts were reported in [3, 28, 63], where 
subjects reported feelings of agency even when there was 
no cause preceding the effect, but just the effect itself. Yet 
in our studies participants always had an intention to act 
and thereby a motor movement preceding an outcome. This 
could have contributed to the intentional biding effect 
shown in our results. 

STUDY 2. TOUCHLESS VISUAL & HAPTICS  
This experiment aimed to investigate if haptic feedback can 
improve participants’ SoA in gesture-based touchless 
interaction. For this, we measured intentional binding both 
with and without haptic feedback. 

Procedure  
Participants in Study 2 used the same experimental 
procedure used in Study 1, with one exception. Whereas 
participants in Study 1 performed two kinds of actions 
(physical and touchless) and received two kinds of feedback 
(auditory and visual), in the second study participants 
performed only the touchless-based action and received 
visual, vibrotactile and mid-air haptic feedback (Figure 8). 
Both kinds of haptic feedback were provided on 
participants’ dominant hand (index finger). Participants 
wore noise-cancelling headphones to eliminate any audible 
noise from the devices. Participants performed 30 trials for 
each condition resulting in 360 trails per participant (30 
trials x 4 intentional binding blocks x 3 combinations of 

action + feedback). The experiment was completed in a 
maximum time of 90min; there was a short break between 
conditions. Figure 8 shows the procedure of a single trial. 

 
Figure 8. Experimental trial of Study 2 (*not done in baseline 

outcome blocks, ** not done in baseline action blocks). 

Participants 
Twelve right-handed participants (4 Female, mean 
age=30.33 years, SD=3.86), took part in the experiment. 
They had normal or correct-to-normal vision. The local 
ethics committee approved this study and participants were 
not paid for their participation. 

Results 
A One-way Repeated Measure ANOVA was conducted to 
compare the effect of the three type of feedback (visual vs 
vibrotactile vs mid-air haptic) on the action, outcome and 
total binding. Results show a significant effect on the total 
binding F(2,22)=4.96, p=0.02, ηp

2=0.31 depending on the 
type of feedback. Post-hoc comparisons using Bonferroni 
correction showed that there is a statistically significant 
difference in the total binding specifically in the mid-air 
haptic feedback (M=84.21ms, SD=111.35ms) compared to 
the visual (M=-6.41ms, SD=82.98ms), p=0.02; but no such 
difference was found compared to the vibrotactile condition 
(M=40.77ms, SD=89.84ms), p=0.69. The difference 
between the visual condition and vibrotactile was also not 
significant, p=0.23. Figure 10 shows the average total 
binding with different action and feedback modalities. 
 
We found that the action binding was not significantly 
affected by the type of feedback F(2,22)=0.27, p=0.76, 
ηp

2=0.02. However, crucially the outcome binding showed a 
significant difference F(2,22)=0.6.74, p=0.005, ηp

2=0.38. 
Post-hoc comparisons using Bonferroni correction showed 
that the outcome binding was significantly greater in the 
mid-air haptic condition (M=-64.79ms, SD=79.58ms) 
compared to the visual (M=12.68ms, SD=66.07ms) 
condition p=0.02, but there was not statistically significant 
difference between the mid-air haptic and the vibrotactile 
feedback (M=-29.13ms, SD=69.75ms), p=0.69ms. 
Additionally, we found no significant difference between 
the vibrotactile and the visual p=0.23.  

These findings suggest that mid-air haptic feedback 
produces a strongest effect in the intentional binding values 
and specifically in the outcome binding compared to the 
other modalities. A breakdown of means in relation to



 
Figure 9. Average of action binding and outcome binding in milliseconds for each feedback type (visual, vibrotactile, and mid-air). 

The sign of outcome binding effects on the chart bars has been inverted to allow for comparison with action binding. Error bars 
represent standard error of mean.

action and outcome binding is shown in Table 3. Figure 9 
shows action binding and outcome binding effects. 

 
Table 3. Average of action, outcome, and total binding (with 
standard deviation in brackets) grouped by feedback type. 

 
Figure 10. Average of total binding in milliseconds for each 
feedback type (visual, vibrotactile, and mid-air). Error bars 

represent standard error of mean. 

We additionally performed further analysis using 
independent sample t-test to compare the effect of the 
intentional binding with auditory feedback in touchless 
modality in the Study 1 with the mid-air haptic feedback in 
the Study 2. Results showed no significant difference on the 
total binding t(22)=0.99, p=0.33 between the auditory 
condition of the Study 1 (M=39.80ms, SD=106.02ms), and 
the mid-air haptic condition (M=84.21ms, SD=111.35ms) 
of the Study 2. These results were also not significant for 
the outcome binding t(22)=0.68, p=0.32, in the auditory 
condition (M=-32.02ms, SD=81.73ms) compared to the 
mid-air haptic condition (M=-64.79ms, SD=79.58ms). 

Discussion of Study 2 
Our results from the Study 2 revealed an intentional binding 
effect when the touchless input modality preceded a haptic 
feedback. However, this effect was not observed with visual 

feedback similar to Study 1. This suggests that the touchless 
system exhibited significant higher intentional binding 
when participants received a haptic confirmation rather than 
a visual confirmation. Crucially we found no statistically 
significant difference in action binding values across the 
outcome modalities. 

Both haptic feedback conditions (vibrotactile and mid-air) 
shifted towards the touchless action. Interestingly we found 
no statistically significant difference for outcome binding 
between these two haptic conditions. We set both outcome 
conditions with the same characteristics as much as 
possible. This is because vibrotactile feedback is higher in 
intensity compared with ultrasound. However, by creating 
five focal points of ultrasound overlapping each other to 
cover the same area as the vibrotactile stimuli, we could 
equalize between these two conditions. 

GENERAL DISCUSSION  
Our results revealed the existence of intentional binding 
effect in touchless gesture-based interactive applications. 
From our two studies, we found that gesture-based system 
exhibited significant higher intentional binding when the 
input action was accompanied by haptic or auditory 
outcomes compared with visual outcome. Our results from 
Study 1 showed action binding effect in both physical and 
touchless interactions with no statistically significant 
difference, possibly suggesting that that our click gesture 
input could be as responsive as the physical action in terms 
of intentional binding, even when no simultaneous action-
feedback occurred like in physical touch events. We 
attribute this result to ideomotor signals and the postdictive 
influence of agency in the intentional binding paradigm, 
where participants always received an action confirmation 
with a visual, auditory or haptic outcome (in contrast to 
Coyle’s work where only audio feedback was considered). 
Although we obtained different intentional binding values 
from the tasks involving gesture input and visual feedback 
in both studies, we found no statistically significant 
difference in this condition between Studies 1 and 2.  



Our results from both studies showed different outcome 
binding effects depending on the type of feedback, with 
audio and haptic feedback producing higher intentional 
binding effect than visual feedback. Visual feedback on-
screen produced the lowest intentional binding effect in 
both studies. This suggests that participants perceived 
higher perception of controlling the touchless interface 
when they received an auditory or haptic confirmation, 
rather than a visual confirmation. In cognitive neuroscience, 
a wide range of studies have employed audio feedback for 
studying agency, showing it to be a suitable technique to 
measure and produce SoA [1, 27, 43, 44]. However, in our 
Study 2, we also found an intentional binding effect with 
vibrotactile and mid-air haptic outcomes with no 
statistically significant difference between them. This 
suggests that if one cannot provide audio feedback it may 
be preferred from an intentional binding perspective to 
provide haptic feedback over visual-only feedback. 

It is worth mentioning that we are aware that the 
UltraHaptics device produces sound because of the 
ultrasound waves emission. In the frequency at which it 
works, audible sound is generated from its speakers. To 
address this, participants were asked to wear noise-
cancelling headphones, not only during this condition but 
also for the entire task (including all the conditions). 

Limitations 
For the present work, we only collected quantitative 
measures. We employed the intentional binding paradigm 
as an implicit measure of the SoA following evidence that 
suggests that the increased intentional binding is related to 
higher experience of agency [14, 45]. However, previous 
studies have suggested that self-reports of agency and 
intentional binding may operate differently [53], therefore 
further research is need to investigate the relation between 
explicit judgement of agency and intentional binding for 
touchless interfaces. Additionally, in this work we put more 
attention on the impact of output modalities on agency and 
further studies are needed to examine the effect of 
proprioceptive perception on the SoA in mid-air 
interactions, possibly by using the haptic devices to create 
more natural perception of touching real objects. We 
mainly compared visual feedback with the other modalities 
in our two studies, thereby more direct comparison between 
audio and haptic feedback will be explored in future work. 

Application scenarios  
In this work, we have shown types of interaction that 
significantly impact on users' SoA in order to provide 
solutions to improve touchless interfaces. Our results 
suggest that audio and haptic feedback are better to produce 
users’ SoA compared with visual feedback. Although these 
kinds of feedback have been frequently used in past work 
(as seen in the related work section) the role of SoA have 
been unexplored. Here, we have validated these feedback 
types by implicit and quantitative metrics supporting their 

use to provide a better and more responsive interaction. 
Here we explain some possible application scenarios. 

Interactions in Virtual Reality (VR) commonly rely on 
touchless actions; however, these systems often add haptic 
feedback, as they try to simulate real world settings in order 
to provide a realistic interaction. We have demonstrated 
that touch and touchless input modalities accompanied by 
mid-air haptic feedback improve users’ intentional binding, 
which enables application scenarios for VR and bare-hands 
interactions. For example, by considering the role of agency 
in designing VR training simulators (e.g. flight or surgery), 
the designer can approximate agency effects in users that 
are similar to those in a real-life situation. In this way, their 
commitment to the interaction (action inputs and system 
responses) might be stronger, enabling better training for 
the professional. 

It is known that audio and haptic feedback releases the 
visual channel to focus on additional tasks; this interplay is 
suitable for driving scenarios, for example. Our results 
showed that audio and mid-air haptic feedback improve 
users’ SoA. This suggests that these kinds of feedback not 
only will help to focus driving attention but also produce 
the user’s feeling of being in control during touchless 
interaction (e.g. controllers for car dashboards). 
Additionally, mid-air haptic feedback represents a good 
means for private communication in cases where audio 
cannot be played, allowing the user to still experience 
agency. By considering the SoA in interface design, we can 
explore a wide range of interaction paradigms that enable 
users’ feeling of control in order create interactions that are 
more realistic and thus develop more responsive systems. 

CONCLUSION 
Despite touchless systems being used in a wide range of 
applications, the role of agency in these systems had been 
unexplored to date. The lack of understanding this aspect, 
constrains the relevance of perceiving a responsive 
interface. In this paper, we have demonstrated by implicit 
and quantitative measures that touchless input could be 
perceived as responsive as a physical input action.  
Although our work focused only on a basic activation 
gesture (in-air button press), this creates an opportunity to 
offer possible solutions for designers in order to improve 
gesture-based touchless interfaces. Our work also suggests 
that audio and haptic feedback in gesture-based touchless 
interactions are a good candidate for increasing users’ sense 
of being in control and feeling of interacting with a more 
responsive system. These findings contribute to a new area 
for HCI researchers to explore agency consideration in HCI 
design. 
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