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The use of multiple channels in graded index fibre to increase 

bandwidth capacity in optical fibre communications 

 

ABSTRACT 

Nowadays we are living in a well-developed technological world, supporting 

new services and networks with vast amounts of data streams that are being 

pushed through fibre optic communications systems. Thus the use of optical 

fibres as a transmission medium is being progressively increased for 

deployment in ever-wider fields. A significant increasing demand of global 

social information in modern communication is leading to an exponentially 

increasing demand for high transmission carrying capacity via fibre optical 

network systems. This drives towards a higher information carrying capacity 

than the standard systems can handle. To meet the higher bandwidth 

requirements with a higher capacity per cross sectional area of the fibre for 

future communications, maximising the density of the channels is seen as an 

effective solution, accomplished by simultaneously propagating the 

individual channels within the same fibre. A new multiplexing technique, 

spatial division multiplexing (SDM) based on a multi-core fibre (MCF) and a 

multi-mode fibre (MMF), has proved it is possible to overcome the current 

limitation of the carrying capacity.  
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 Our greatest concern in this research is to overcome the limited 

transmission capacity of current existing optical fibre systems and to 

progressively increase the bandwidth capacity with a simple and cost effective 

approach. This can be accomplished by transmitting a multiplicity of 

channels down a single graded-index fibre (GI-MMF) with a large core 

diameter. This would allow a significant increase communication bandwidths 

for a range of short haul communications. The proposed method exploits the 

phenomenon of self-imaging in the GI fibre due to the interference between 

the excited modes which leads to the reproduction of the original beam profile 

periodically along the distance of propagation. This allows the maintainance 

of crosstalk levels between the plurality of communication channels lower 

than -25 dB, and also ensures a reduction of optical losses in the perturbed-

tolerance fibre for short-reach networks. We observe that crosstalk levels of 

nearly -30 dB can be achieved for eight spatially independent transmission 

channels in a GI fibre of 200 μm diameter with a well separated angle of a 

45° spacing distance between adjacent channels, and with an optimum 

distance of 60 μm from the centre of the structure. 

 In addition, the key studies in this work have emphasised the 

theoretical studies in the perspective of the fractional Fourier transform 

(FRT), a generalisation of the Fourier transform, and the formation of 

reproductions of the incident arbitrary beam profiles, defined in term of 

Gaussian beams with an equivalent beam diameter of 10 μm at their 

corresponding self-imaging distance. It was found that the launched beams 

simultaneously propagate and re-arranging themselves periodically at the 

self-imaging planes along the length of the simulated commercially available 

fibres and the proposed large core GI-MMF, structured with 200/400 μm 

(core/cladding) diameters with a numerical aperture of 0.132. The results of 

self-imaging length intervals were in a good agreement with the analytical 

predication in both of a single channel transmission and a high-density 

transmission.  
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 Fibre bending and harsh environmental variations are of particular 

importance to most optical links since they affect the transmission 

capabilities of the fibre system. We have demonstrated the behaviour of light 

propagation in both a perfectly straight graded index fibre and as the fibre 

undergoes perturbations due to bending and temperature changes. A low 

propagation loss of 0.75 dB/5° bend was found for a single channel 

transmission, whilst the less sensitive to bending effects of approximately 

6.27 dB/5° bend were realised from four spatial channels in our proposed large 

core-small NA GI-MMF with the curvature radius of 400 mm. More 

interestingly, bending does introduce a critical issue for the realisation of the 

re-imaging of the spatial channels at the self-imaging planes. 

 On the other hand, the self-imaging effect of the graded index 

multimode fibre induced by temperature variations has no significant 

modification on the transmitted beam due to an extremely small change in 

refractive index and insignificantly modified transmission distance of the 

perturbed fibre. Overall, it must be concluded that a high quality self-imaging 

is restricted by the fibre perturbation to periodically reproduce the spatial 

input channels as well as the consistency in the formation of the self-imaging 

distances.  
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Chapter 1   

Introduction  

1.1 Motivation 

The internet is dominating modern communication, with long-haul transmission 

being implemented via fibre optic network technology. There is wide demand for 

internet use, high power consumption and the need for ever increasing 

bandwidth requirements. One of the main goals is expanding capacity to allow 

enormous communication bandwidths for a range of successful commercial 

applications such as high definition video-on-demand, file sharing and the 

increasing move to cloud computing [1]. In order to provide the transmission of 

huge amounts of information and the needs for different types of communication 

such as images and speech, substantial bandwidth capacity will be required, 

which clearly effects the demand for the large communication capacity, i.e. up to 

100 Gigabit per second nowadays and a growth into the range of 100 Tbit/s per 

fibre with the possibility of achieving up to 1 Pbit/s and further in the near future 

[2,3].  

 

Figure 1.1: The evolution of optical fibre technology in the next step change 

of transmission capacity [5]. 
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 Due to the exponentially increasing demand of global social information 

and the demand of worldwide communications, we are rapidly moving and 

driving toward higher network capacity than the standard systems can handle 

and creating many new challenges and limiting factors for the required network 

infrastructure. The development of new optical transmission technologies has 

been occurring rapidly through three main innovations, namely, time division 

multiplexing (TDM) based on electrical multiplexing; wavelength division 

multiplexing (WDM) with optical amplification technology; and digital coherent 

techniques, as illustrated in Figure 1.1. These optical transmission technologies 

are currently developed and searching for a way to increase the transmission 

capacity that has been continuously invented over the last several decades to 

achieve a bandwidth capability per fibre [3].  

1.2 Limit of current single mode fibre transmission 

Currently, the traffic growing capacity demand rate is around 30% to 40% 

increase per year [4, 5, 6]. Indeed, the trend of progressively increasing the 

communication capacity, has achieved more than 100 Tbit/s in a system using 

the existing multiplexing technologies over standard fibre systems employing 

single mode fibres. However, these transmission technologies are facing their 

limits; they are close to the theoretical limits of the Shannon theorem and near 

limits due to the degradation of the signal from the Kerr fibre nonlinearity. Much 

work has indicated that single mode fibre may not support the future demand of 

high data rate and high speed demand as it is approaching full capacity in the 

existing infrastructures. Transmitting information in an optical fibre at higher 

bit rate is physically difficult because the optical signal is attenuated by several 

factors, for example, waveform distortion, caused by the high instantaneous 

power of the optical signal. However, the need for increased capacity of the 

network is still the major challenge and is difficult to achieve using standard 

single mode fibre. A newly proposed technique, exploiting a multimode fibre to 

increase the capacity is one of the existing solutions. Recent work has indicated 
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that the use of multimode fibres has become attractive in networks as they can 

propagate simultaneously up to 100 modes, realising optical fibres with an 

increased capacity [7].  

 In order to deal with the huge amount of signal transmission over 

thousands of kilometres, one of the most significant solutions is thus based on 

optical fibre communications. To cope with an increasing bandwidth problems, 

the use of wavelength multiplexing techniques, with first wavelength division 

multiplexing and then dense wavelength division multiplexing (DWDM), being 

implemented. Hence many relevant techniques have been developed to obtain 

such higher bandwidths. It is evident that these techniques have been developed 

over the last thirty years to progressively increase the network capacity [2, 6, 7, 

and 10]. However, DWDM implementations, which are suitable for long haul 

fibre connection, tend to be too costly for data centre applications and so 

alternative methods for more cost effectively increasing short haul bandwidths 

are actively being sought.  

1.3 Current technologies 

Several technologies have been used to increase capacity in the last three 

decades and have been evolved through the use of division multiplexing of 

different types of degrees of freedom as shown in Figure 1.2 [8-11]. Many studies 

have intensively focused on the four degrees of freedom that have been used in 

long haul transmission to maximise capacity. Therefore, we need new 

multiplexing technologies as a new path for utilising and increasing the 

transmission capacity by making use of a last option (i.e. space) which is known 

as space/spatial division multiplexing (SDM) in the new optical fibres [12]. 

 This is accomplished by multiplexing optical signals using unique spatial 

modes or several fibre cores beyond the limitation of a standard fibre system. A 

number of modulated signals may be combined into multichannel signals by 

being multiplexed on to the same fibre for communication transmission using a 

new multiplexing technique. This multiplexing technology, employed in SDM 
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systems, can obviously support the multiple numbers of mode channels, and 

optical amplifiers operating with optical connectors and space-(de)multiplexers 

(S-MUX, S-DEMUX) used with multimode fibres. The SDM approach aims to 

increase the capacity by the number of modes (i.e. a mode division multiplexing 

(MDM) [68]) or the number of spatial input channels in which there are great 

advantages over the existing approaches, i.e. time or wavelength, promising the 

potential for a reduction in cost and providing more energy efficiency per bit 

transmitted [13].  

Dimension of 
freedom

(Transmission technology)

Time

Wavelength

Polarization

Space

Quadrature 

 Multi-mode fibre
 Multi-core fibre
 Few-mode fibre

 Symbol rate

 Quadrature modulation
 Bits per symbol

 Number of carriers

 Number of carriers
 X-Y Polarization

 

Figure 1.2: The five physical dimensions for increasing data transmission capacity. 

 Through using SDM, including mode-division multiplexing (MDM) as a 

subset of SDM using a new optical fibre that has high power tolerance and 

suppresses undesired optical non-linear effects, a multimode fibre (MMF) can be 

used to map signal channels onto different transmission modes of a single fibre. 

This is now being thought of as a new way of increasing the capacity by using 

the multiple numbers of modes, channels, and cores (i.e. MCF). It is available to 
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be implemented in either free space (by multiple beams) [14] or guided media 

[15, 16]. However, there is the need to overcome the major limitation of 

bandwidth that is brought about by modal dispersion in a MMF and the critical 

issue of modal crosstalk that has required digital signal processing (DSP) 

techniques to compensate for unwanted linear distortion and multiple-input-

multiple-output (MIMO) techniques, as employed in wireless communication, at 

the receiver to equalise the signal [17]. At the receiver end, the different group 

dispersion (DGD) affects the original signal so that it cannot maintain its shape 

which will eventually result in more difficulties for the DSP-MIMO equaliser. 

Therefore, it is necessary to minimise the distortion by measuring each mode 

coherently across the beam and sending these modes to the DSP-MIMO that can 

unscramble the signal and equalise the group delay and hence be able to 

reconstruct the input field. These are the reasons why today researches have 

been intensively investigating SDM along with the new transmission fibre types 

to maximise the capacity and degrade nonlinear optical effects. 

1.4 Statement of research topic 

This project will extend the use of wavelength multiplexing techniques that was 

implemented to increase the capacity of communications using an existing 

single-mode fibre optic system. The study of the spatial multiplexing scheme as 

an additional transmission path for fibre optic communications has been 

reviewed in parallel with the current technologies based on this scheme. The 

reason for this is because the number of multiple modes or cores are now seen as 

a way of increasing the communication-carrying bandwidth capacity of a MMF 

through a new multiplexing technique (i.e. SDM). The idea of multi-channel 

transmission can be adapted from the space division multiplexing, i.e. a number 

of independent channels are sent into the same fibre in which each of these 

channels carries unique information. We, therefore, propose an alternative 

method to allow multi-channel transmission down a single fibre to progressively 

increase the bandwidth capacity.  
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 Our greatest concern is to overcome the limited transmission capacity of 

current existing optical fibre systems and can be achieved by transmitting a 

multiplicity of channels down a single fibre to progressively increase the 

bandwidth capacity whilst achieving a reduction of cost. The specific method will 

require the use of graded index fibre (GI-MMF) with a large core diameter to 

multiplex more than one channel, defined as an input Gaussian beam from a 

number of sources that carries independent information. Thus a single fibre core 

is used, rather than increasing the modulation rate of the optical source to allow 

enormous communication bandwidths for a range of short haul communications. 

In this way, a number of channels can be simultaneously propagated through 

the fibre, providing the potential to increase the capacity beyond that of current 

existing optical fibre systems based on a single mode fibre, so achieving a 

reduction of cost. In addition, this fibre type is already commonly used in local 

area networks (LANs) [1, 2, 18, 19 and 20]. As data centres expand, there should 

be no impediment to replacing multimode fibre with GI profile fibre since the 

cost increases would not be prohibitive. 

 In order to make a model of the propagation through sections of a 

quadratic graded index multimode fibre (GI-MMF), the properties of the 

fractional Fourier transform (FRT) [21-28] is investigated to study the 

propagation of a single channel and multi-channel transmission by providing an 

analytical model in addition to a numerical simulation to model the greater 

information-carrying bandwidth capability. This generalisation of the Fourier 

transform (FT), i.e. the FRT, can be used to model the propagation of wave fronts 

in an optical system having a graded index profile since a quadratic graded index 

medium has a direct relationship with the FRT.  

 One of the main tasks is to optimise and adjust the fibre parameters, such 

as mode diameter, the number of beams from the laser sources, the influence of 

core/cladding diameters, and the appropriate length of fibre, which will allow an 

effective periodic reconstruction of the original multi-channel source along the 

length of propagation. Thus the research has modelled the propagation 
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characteristics of a multimode fibre. The major obstacles during the 

transmission of multiple channels, such as channel variations, modal crosstalk 

from adjacent spatial channels, and environmental effects is investigated in 

detail to realise a higher communication bandwidth capacity. Once the relevant 

design parameters are determined, the experimental investigations of the 

proposed method will be made. This can be done at modest cost using a single 

modulator and detector at relatively low bandwidth together with spatial 

relocation in the fibre coupling zone.  

 Our proposed method has a particular requirement to allow multiple 

channel transmission down a single graded index fibre for high communication 

bandwidth over several meters. Thus this research focuses on the carrying 

capacity of short haul fibre connections for short distances as required in data 

centres. 

1.5 The basic physical configuration 

The physical configuration is that a number of N-channel signals (e.g. from an 

array of individual modulators) can be individually modulated, resulting in a two 

dimensional (2-D) spatial domain intensity distribution. An individual channel 

transmits each of the signals separately which is then mapped to a specific mode. 

The spatially multiplexed signals are coupled into a graded index fibre (GI-

MMF) which can then be recovered from the end of the fibre over any number of 

specified intervals of distance. This is because the GI-MMF has the effect of 

forming a continuous 2-D fractional Fourier transform of the input intensity 

distribution so that the field is progressively transformed to a Fourier transform 

plane, i.e. a 2-D spatial frequency spectrum, and back again to the original 2-D 

spatial domain intensity distribution.  

 After an arbitrary number of transformations between spatial frequency 

and spatial domains, the signal emerging from the end of the GI fibre will be a 

preserved 2-D spatial intensity distribution, with each pixel temporally 

modulated. The modulated light distributions may then be imaged to a 2-D 
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photodiode detector array, so allowing the (periodic) reconstruction of the 

individually modulated N-channel signals.  According to the studies reported in 

references [21-35], the graded index medium can be used to implement a 

cascading fractional Fourier transform (FRT) to produce a perfect optical 

imaging system. It has been shown that a piece of GI fibre of the proper length 

can generate a Fourier transform and cutting the piece of GI fibre into fractional 

pieces will correspond to an implementation of the FRT. To further extend the 

concept of transmission by using a GI-MMF system, it can be shown to perform 

a fractional Fourier transform (FRT) to a full Fourier transform (FT) over a 

certain length of the fibre.  

 Thus the investigation will be focused on the profile of graded index fibres 

to determine the optimal profile to create propagation conditions where the 

image can go between the Fourier plane and reconstruction plane. Additionally, 

the modal dispersion will be investigated at various points to see where the 

signal is dispersed or undispersed. This can be done by developing a Fourier 

based analytical model and modifying the refractive index profile of the fibre in 

order to manipulate and improve the propagation effects. We need to see how 

pulses of light with, for instance, a simple Gaussian shape, spread out as they 

propagate down a fibre when there is a continuous graded index. It has been 

shown that by employing the graded index profile to transmitted pulses, pulse 

spreading and diffraction is minimised. Therefore, we need to observe these 

effects by modelling to support the theoretical explanation that the light pulses 

are re-imaged at the planes where z = 2L where L is known as the Fourier 

distance. 
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1.6 Achievements of the research 

The aim of the thesis research was to investigate and design a multiplicity of 

channels for transmission down a large graded index core multimode fibre which 

could increase the carrying capacity of existing short haul communications. A 

high density transmission was simulated for spatial input channels in a 200/400 

µm core/cladding graded index fibre with a numerical aperture of 0.132. Eight 

independent channels positioned 45º from the neighbouring channels with a 60 

µm separation from the centre of the fibre, and launched with an equivalent 10 

µm beam diameter, were used to achieve a crosstalk tolerance on a level of 

approximately -30 dB at the working wavelength of 1.55 µm. The coupling from 

each channel into adjacent channels gave approximately equal radiation at the 

self-imaging length intervals. As a group of beams simultaneously propagate 

into the proposed large graded GI-MMF along the transmission length, the 

formation of replicas of the launched beams were realised and were shown to 

occur at the theoretical predicted self-imaging planes.  

 Perturbations of the fibre induced by bending and temperature 

fluctuation was used to study the behaviour of light propagation by transmitting 

a single channel and multi channels. The study was completed successfully and 

the proposed 5º bend fibre gave a typical bending loss of around 6.27 dB at 

wavelength of 1.55 µm for the four excited spatial beams and a typical sensitivity 

to bending was 0.75 dB for a single channel transmission under the same 

curvature radius of 400 mm. The reproduction pattern of multiple initial beams 

has been investigated as the fibre undergoes perturbations. It was found that a 

good quality reconstruction of the input beams is restricted by the fibre 

perturbation which thus affects the periodic reproduction at the self-imaging 

planes.  
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1.7 Organisation of this dissertation 

Chapter 2 introduces a brief literature review on the characteristics of pulse 

propagation and the physical transmission impairments in optical fibres. A full 

explanation of an implementation of a fractional Fourier transform in graded 

index media to produce a perfect optical imaging system is presented at the end 

of the Chapter.  

 Chapter 3 covers the design concepts and analysis of an optical pulse in 

graded index multimode fibres with different fibre parameters and physical 

configurations. Various electromagnetic field distributions in different 

commercial fibres having a parabolic index profile are compared for analysis of 

the reconstruction performance of a specific excitation Gaussian beam. Lastly, 

the self-imaging effect was demonstrated for different fibres with various 

specifications to determine the longest reproduction length interval of an initial 

beam. Chapter 4 continues with a theoretical background of SDM transmission 

systems followed by the principles of coupling and the design of spatial channels 

in a single core fibre with different design arrangements at the centre of the fibre 

core. The analysis of channel crosstalk for each of the independent channels is 

investigated at different self-imaging planes for an 8-spatial channel.  

 Next, the bending and temperature effects are presented in Chapter 5 and 

Chapter 6, respectively. Chapter 5 starts with an introduction to the propagation 

characteristics in the bent fibre, the design considerations of various bending 

conditions, and then the discussion of the bending losses in a GI200 fibre with a 

single channel transmission and four spatial channel transmission with a single 

bend section between perfectly straight fibres at both ends, and then with two 

consecutive bend sections (i.e. a downward bend and an upward bend) under 

various bending angles.  

 Chapter 6 focuses on the temperature effects on a commercial GI62.5 

multimode fibre. A change in optical path length of the fibre and its refractive 

index profile are demonstrated in addition to the self-imaging phenomenon in 
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the perturbed fibre at various surrounding temperature conditions. Finally, a 

discussion of several issues of the current research together with concluding 

remarks and future work are provided in Chapter 7. The future section work 

includes the design of an ultra-small rib silicon photonics waveguide and the 

study of the light propagation through the waveguide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

Chapter 2  

General Background  

2.1 Fundamentals of optical fibres  

2.1.1 Optical transmission systems 

There are a number of methods for developing an optical communication system, 

starting from a simple propagation of the light beam through free-space (for 

instance, by a light beam carrying encoded information as orbital angular 

momentum states [14]) or an optical fibre. These types of transmission can 

propagate the laser source over great distances; however, when sending the 

signals through the atmosphere unexpected weather conditions can be 

encountered. Thus long haul communication is unlikely to be suited to this 

simple method but for short range of communication within few tens of meters 

it is more feasible. For these reasons, an alternative transmission line method 

via optical fibres is the chosen method. There are several advantages in the use 

of fibre for optical communication over other waveguide systems. Clearly, the 

fibre is much more robust and flexible. It has low loss over various ranges of 

wavelength and also a huge bandwidth is possible [1, 36, 37, and 38].  

 Fundamentally, communication via an optical fibre is a communication 

system that transmits via light waves, signals or information a user would like 

to send from one point to another point. Basically, there are three major 

components representing part of the communication system: transmitter, 

communication channel or guiding medium and receiver.  The channel is 

normally the fibre optic that acts as a guiding medium for light waves to travel 

from the transmitter to the receiver. The electrical signal is converted into an 

optical signal by the transmitter which is addressed by a drive signal, which 

varies the irradiance of the source as a function of time so producing a modulated 
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signal, which is either analogue or digital. In general, the transmission of 

information is made as a series of pulses using digital pulse-code modulation 

(PCM). The signal is coupled into a fibre and can propagate along the total length 

of the fibre. After arriving at the fibre end, the light is detected by an optical 

intensity detector which can be either a semiconductor PIN diode or an 

avalanche photodiode (APD) which can achieve high bandwidth detection [36, 

37].  

 A number of information channels can be encoded in an optical fibre 

communication system employing intensity modulation/direct detection (IM-

DD). In this case, each of these signal channels is modulated onto different 

carriers in order to be transmitted through the optical source as an electrical 

signal that has been multiplexed onto a single fibre link. However, it is necessary 

to modulate an incoming information signal and, at present, the use of intensity 

modulation (IM), as shown in Figure 2.1, is widely implemented with the 

available sources (i.e. LED and lasers), to then be used with a direct detection 

(DD) system at the receiver. This system is essentially based on the number of 

photons counted which is eventually transformed into a number of electron-hole 

pairs in the PIN photodetector. The phase and polarisation of the signal are not 

employed in a direct detection receiver. However, receiver sensitivity is poor and 

no improvement in signal to noise ratio (SNR) is possible. In contrast, coherent 

detection techniques employing both homodyne and heterodyne detection 

provide a higher detection sensitivity.  Similar modulation techniques to those 

employed in intensity modulation can be easily applied to a coherent optical 

signal detection system but binary phase, rather than amplitude modulation is 

employed. The transmitted optical signals are converted into an electrical signal 

by a photodetector which does introduce signal distortion. Hence, to compensate 

for the distortion and to recover the original transmitted signal, an equaliser and 

filter are included as the final stage of the receiver terminal [38]. 
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         Figure 2.1: The coherent optical system [38]. 

 From the transmission point of view, the pulses are modulated to generate 

a binary modulation which could be amplitude modulation (AM) with a simple 

square shape (or sometimes slightly rounded at the edge due to a limited 

bandwidth switching in ON-OFF keying). Also, there is a possibility of doing just 

phase modulation, flipping the phase between 00 and 1800 whilst maintaining a 

continuous amplitude wave. However, there are other possible modulation 

techniques which are mainly binary keying, i.e. on-off small modulation depth 

pulses. At the receiver side, it is possible to have a coherent detection system 

which can detect the amplitude and phase of the wave front rather than a simple 

intensity detector such as a photodiode.  

 In IM/DD the intensity of the optical signal is directly detected and the 

phase and wavelength cannot be detected or measured by this technique. 

However, this limitation is overcome by a coherent system which is shown 

schematically in Figure 2.1, where the low level of an incoming signal is mixed 

with a larger electromagnetic reference field coming from the laser local 

oscillator. The output between these two mixed signals is only then forwarded to 

the detector. This is known as a homodyne receiver if the wavelength from the 

two signals is equal. The phase of signal is then estimated by using a phase-

locking technique between the local oscillator and incoming signal before the 

detected signal is recovered into the original baseband signal [38]. On the other 

hand, in heterodyne detection, the local oscillator frequency is not identical to 

the incoming signal frequency, and therefore the difference signal, normally 
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referred to an intermediate frequency (IF), which is derived from the output of 

the photodetector can be forwarded to the demodulation process. Further, the 

demodulation process can be realised by either synchronous (coherent) or 

nonsynchronous (non-coherent) schemes.  

2.1.2 Modulation formats 

Modulation techniques, which can be utilised with either digital or analog 

subcarrier signals employ different modulation schemes such as: amplitude shift 

keying (ASK); frequency shift keying (FSK); phase shift keying (PSK); or 

polarisation shift keying (PolSK). Each of these signals is transmitted on its own 

fibre within a fibre bundle. Furthermore, by increasing the number of bits per 

symbol one can increase the transmission rate. The traditional scheme is the 

ON-OFF-keying (OOK) format, sometimes referred to ASK where the amplitude 

of the waveform is switched on and off between a binary bit 1 and 0. Then direct 

detection can be used to detect the amplitude of information. The information is 

coded in the amplitude and there is no phase modulation. In binary phase-shift 

keying (BPSK), there are two phase shifts separated between 0° and 180°. The 

amplitude in this format is constant while the phase modulation carries the 

information. The downside of BPSK over OOK is that it requires the more 

complicated coherent detection method to determine the phase of the signal. 

However, it is more immune against noise and distortion than OOK. The several 

extensions of the PSK format, e.g. differential phase shift keying (DPSK), 

quadrature phase shift keying (QPSK) and differential quadrature phase shift 

keying (DQPSK) have been utilised as modulation formats. The need for 

coherent detection can be avoided in a DPSK and DQPSK based system since 

the signal can be detected with just a photodetector as in direct detection. 

Nevertheless, these formats are uncommon in optical fibre networks because 

they are less dispersion tolerant.  A data rate of 400Gbps and above is possible 

with amplitude and phase shift keying schemes known as quadrature amplitude 

modulation (QAM). The M-QAM format, where M is a number of bits per symbol 
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such as 16-QAM (4 bit/symbol), 64-QAM or 256-QAM is preferable in fibre optics 

with high data rate demands due to its tolerance to dispersion and the ease of 

implementation [1,38]. 

2.2 Pulse propagation in optical fibres 

2.2.1 Light guiding in optical fibres 

The phenomenon of total internal reflection (TIR) describes the propagation of 

light when it is injected into an optical fibre. The basic structure of an optical 

fibre consists of the core, located in the central region, having a higher refractive 

index, 1n . It is surrounded by the cladding, that is made of material of lower 

refractive index, 2n  to permit the total internal reflection at the core and cladding 

boundary, as illustrated in Figure 2.2.  

 

Figure 2.2: Basic structure of an optical fibre. 

 Let us first consider the case when the ray partly goes into the region 

having a lower refractive index, 2n  and reflection at the interface takes place. 

Some rays partially internal reflect back into the higher index region, 1n and are 

eventually lost by radiation and so leak out of the fibre. Thus the total internal 

reflection will no longer take place along the direction of propagation. The 

incident ray at an angle 
1  illustrates this situation in Figure 2.3 when 

2 is 

greater than max  (where max  is defined as the maximum acceptable angle to the 
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axis which is usually the half angle of an acceptance cone), it is reflected into 

cladding region [1, 38].  

 

 

Figure 2.3: Light propagation in an optical fibre (adapted from [38]). 

 As soon as the light ray is injected into an optical fibre, it enters the denser 

medium, corresponding to the inner core of the fibre. When the light ray travels 

from the higher to lower refractive index, it arrives at the boundary between the 

core and cladding at an angle of incidence 
1  (incident within max ). As 

1  

becomes greater than the critical angle c  (i.e. the largest incidence angle 
1 for 

which the reflection can take place), all rays bounces back and forth displaying 

the phenomenon known as total internal reflection (TIR)[1, 38]. This takes place 

for the condition: 
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where ∆ is the relative refractive index difference between the core and cladding 

which is sometimes is referred to as the fractional relative refractive index 

difference and is given by [38]: 
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The angle of incidence is always equal to the reflection angle. There is no 

refracted ray and so no energy is lost by refraction and the ray is totally reflected 

back into the core and continues bouncing along the length of the fibre. It should 

be noted that at every position, the light ray travels from the denser medium to 

the lower refractive index medium so that the values of the total internal 

reflection angles remain the same.  

2.2.2 Numerical Aperture 

The refractive index difference between the fibre core and cladding will cause 

any arriving ray to be reflected. The numerical aperture (NA) is a parameter 

used to describe the light gathering capacity at the input to the fibre (see 

equation (2.5) for the definition of NA). However, there is an acceptance critical 

cone angle which is used to indicate the maximum amount of light entering into 

a fibre core and the light must be within max , a half of an acceptance cone angle. 

When the light is injected at an angle greater than half the acceptance angle 

then some fraction of the light travels into the cladding region and will be guided 

for a short distance only and be lost, as illustrated in Figure 2.3. On the other 

hand, the incident light at the fibre core within the local numerical aperture NA 

of the fibre will propagate as a guided mode (i.e. the modes propagate around the 

fibre axis) along the length of the fibre.  

From Snell’s law at the air-core boundary, airθ  is an angle in the air and core  is 

an acceptance angle in a core region: 
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 NAsinsin 12

2

2

1

1   nnθair
   (2.4) 

where: 

  2NA 1

2

2

2

1 nnn     (2.5)   

where 1n is the refractive index of the core, 2n is the refractive index of the 

cladding and ∆ is defined in the equation (2.2) 

 It is clear that the NA can be thought of as an indicator of an angle 

contained within the acceptance cone. However, the higher the value of NA the 

higher the number of modes can be propagated and the less critical is the fibre 

alignment as compared with the smaller NA for a single mode fibre. Moreover, 

the efficiency of an optical fibre is directly proportional to the amount of light 

entering the core since the more light reaches the receiver end and so a lower 

the bit error rate (BER) can be achieved. Conversely, the NA is indirectly 

proportional to the attenuation of the light ray propagating in the fibre. A larger 

number of modes propagating in a multimode fibre leads to higher dispersion 

and greater attenuation which results in a lower data rate and so speed of the 

signal transmission. The typical value of the NA for a single-mode fibre is 0.1, 

whereas for a multimode fibre it is about 0.2 and up to 0.3 for a very large core 

diameter. Usually, the typical value of the fractional refractive index difference 

between core and cladding should be much less than unity (∆≪1), and is denoted 

as the weak guiding approximation (i.e. 1n  ≈ 2n ). Accordingly, the linearly 

polarised group of modes (LP modes) can be generated for which each of the same 

group of modes has an identical value of the propagation constant β [1, 38, and 

49]. 
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2.2.3 Normalised frequency number  

By solving Maxwell’s equations, the propagation characteristics of an optical 

fibre can be obtained by treating it as a cylindrical waveguide and so can be 

solved for the guided modes propagating in the fibre. In order to characterise the 

guided modes that propagate in a cylindrical waveguide structure, the V-number 

is an important parameter for each distinct normalised frequency of each of the 

modes and gives an indication of an allowance number for the modes, which is 

given by: 

NA
2

0




a
V      (2.6) 

where 
0

2




 is the free-space wave number ( 0  is the free space wavelength of 

light), and a is a core radius. The value at which V < 2.405 allows only one single 

mode (LP01 or HE11) to propagate in the fibre.  

2.2.4 Cut-off wavelength 

The cut-off wavelength is defined as the wavelength at which a certain single 

mode only occurs and propagates through the fibre above the cut-off wavelength 

c ; therefore that mode is said to be a single longitudinal mode. However, below 

this theoretical wavelength, the fibre becomes multimode, with propagation in 

higher order modes, i.e. LP11, LP21 etc. The cut-off wavelength c is given by:  

NA
2


c

c
V

a
     (2.7) 
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2.2.5 Types of fibre  

There are basically three classes of optical fibre, characterised by the way the 

light wave propagates along the fibre, as shown in Figure 2.4. These are: 

 Single mode fibres (SMF)  

 Step index multimode fibres (SI-MMF)  

 Graded index multimode fibres (GI-MMF) 

 

Figure 2.4: Propagation modes in different fibre types  [1]. 
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2.2.5.1 Single mode fibre  

SMF has many advantages such as a very large transmission bandwidth, no 

exhibition of intermodal dispersion and no delay difference in mode propagation. 

Since all energy is confined to a single ray and no energy is lost into the cladding, 

the fibre has low attenuation and dispersion rate.  Thus, due to the small 

difference in refractive index between the core and cladding, this type of fibre 

has a lower attenuation and not any reflection from the core-cladding boundary. 

Therefore, this fibre is suitable for long distance communication due to its 

advantages over multimode fibre. Thus it can be used in many modern 

communication systems. However, it does not have superior performance in all 

respects because the small core diameter creates physical problems when 

coupling and splicing.    

2.2.5.2 Step index fibre 

SI-MMF has a uniform profile inside the core area. One of the disadvantages of 

step-index multimode fibre is its small transmission bandwidth. This is because 

various numbers of bouncing rays propagate into the core region at different 

angles and so take different path lengths and so reach the end of the fibre at 

different times resulting in light pulse broadening, known as dispersion, when 

the output pulse is reconstructed. This major obstacle restricts the propagation 

distance that a pulse can be sent over the fibre and also limits the speed at which 

the fibre can operate.  

The refractive index in a step-index profile remains constant in the fibre core 

region [38] and thus: 

2

1

2 )( nrn  … for r ≤ a         (2.8) 

2

2

2 )( nrn  … for r > a        (2.9) 

where a is a fibre core radius  
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2.2.5.3 Graded index fibre 

Multimode graded index fibre has a refractive index in the core that changes 

gradually as it extends from the axis outward. The light traveling further from 

the optical axis propagates faster than that travelling along the optical axis. Due 

to the refractive index profile the rays propagating along the fibre axis in the 

core region have a shorter distance but are traveling at a lower speed since the 

refractive index is highest in the centre of the core. In another way of visualising 

the propagation, light rays travel away from the core axis where they travel 

faster due to the lower refractive index of the core near the cladding boundary, 

as shown in Figure 2.5. Even though all the travelling light waves take different 

paths, they reach the detector approximately at about the same time. As a 

consequence, pulse broadening and differences in the group velocities are 

minimised.  

 

Figure 2.5: Schematic diagram showing light propagation in multimode graded index fibre.  A 

parabolic refractive index profile ( 2 ) with a maximum at the fibre core axis is shown at the 

left of a figure and ray paths having different speeds and travelling along the fibre core, having 

radius a, which follow sinusoidal trajectories are shown at the right of the figure (adapted from 

[1]).  
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2.2.5.4 Refractive index profile of GI-profile 

When a graded index (GI) fibre is used, there is the possibility of an increased 

bandwidth. The refractive index of the core follows a graded profile and 

continuously decreases away from the fibre axis to the cladding.  The light rays 

traveling in a GI-MMF do not propagate in straight lines like in an SI-MMF but 

are constantly changing direction as they propagate.  The refractive index profile 

n(r) can be expressed as: 
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2 )( nrn  ………………..… for r > a        (2.11) 

where   is an index profile parameter which determines the steepness of the 

profile. We can characterise the refractive index profile exponent, as illustrated 

in Figure 2.6, into distinct cases.  

 

Figure 2.6: Refractive index profiles of GI-MMF fibres. 

 It is desirable to minimise the intermodal dispersion in a GI-MMF by 

careful design of the refractive index profile to create an optimum value of the 

graded profile parameter. This is because the GI-MMF can have a profile close 

to a parabolic shape which can be used to compensate the differences in path 

length so that each group velocity of each mode is nearly the same and so has 

the same propagation constant. This is the case, for example, when the graded 
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profile exponent is close to 2, resulting in the best profile for the reduction of 

modal dispersion [39]. 

2.2.6 The number of guided modes 

The total number of bounded modes supported in a graded index fibre structure 

is expressed as [39]:  





2

1

22

2
nkM g 




    (2.12) 
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





     (2.13) 

where  , as above, is the parameter that defines a characteristic refractive 

index profile.  

Suppose 2 , the number of modes then becomes: 

4

2V
M g        (2.14) 

which is half the number of modes supported by a step-index fibre.  In the case 

where  = ∞ the number of modes in a step-index fibre is 0.5 times greater 

than that in a graded index fibre and so is related to the V-number by: 

2

2V
M s         (2.15) 
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2.3 Physical transmission impairments in optical fibres 

2.3.1 Types of dispersion 

The bandwidth and dispersion are two main parameters that are strongly 

related due to the fact that the modal dispersion and attenuation have great 

impact on the achievable bandwidth as well as the distance the pulse can be 

transmitted. Dispersion, as a limiting factor in light-carrying capacity, can be 

categorised, as shown in Figure 2.7, into intermodal and intramodal dispersion. 

The intermodal dispersion, as its name suggests, is the difference in propagation 

between different modes having different group velocities and, due to their 

reaching the detector at different times, causing the pulse to broaden. The 

dispersion occurring within a single mode fibre is known as intramodal 

dispersion. It occurs due to the different colours of light travellings at different 

speeds in the material regions of the fibre [38, 40].  

Profile dispersion 

MMFs

Modal dispersion

DISPERSION

SMFs/MMFs

Chromatic dispersion

Material dispersion 

Polarisation mode dispersion 

Waveguide dispersion 

 

Figure 2.7: Summary the different types of dispersion in an optical fibre  

         communication system. 
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 The degradation of an optical signal in a fibre optic system is 

characterised by factors which include: signal optical attenuation; interference; 

and modal dispersion. The attenuation (a limiting factor in the transmission 

distance of light pulses) can be separated into two main categories which are 

intrinsic and extrinsic attenuation. Intrinsic attenuation is caused by impurities 

in the material of the fibre that are hard to eliminate during the manufacturing 

process. There are two main effects resulting from intrinsic attenuation which 

are: material absorption, resulting in absorption of photons as a result of 

imperfections and impurities in the fibre; and there is also Rayleigh scattering 

which is the dominant attenuation in optical fibres, accounting for 96% of the 

attenuation.  Extrinsic attenuation can be caused by bending of the optical fibre 

and causes a reduction in optical power transmitted. The effects of bending have 

an influence on the light travelling within a fibre core and can cause ray paths 

to refract out of the fibre during their propagation. Thus the light moves from 

low-order modes to high-order modes, and is eventually radiated out of the fibre.  

 Modal dispersion is caused by various transverse modes with different 

group velocities arriving at the receiver at different times in a multimode fibre. 

The direct effects of this phenomenon are limitation of bandwidth and 

information-carrying capacity, whereas transmission length per bit rate is 

limited by the attenuation. Thus modal dispersion leads to an inter-symbol 

interference (ISI) and modal crosstalk and so must be minimised. The purpose 

of using GI-MMF is to overcome modal dispersion by equalising the transmission 

times for numerous modes. Thus the value of the refractive index profile of the 

fibre core must be carefully designed to produce the correct graded index profile 

and so the total transmission bandwidth can be increased over given 

transmission lengths. By working with a longer wavelength, around 1550 nm, it 

is possible to reduce the attenuation from 2.5 dB/km, that occurs in the 850 nm 

wavelength band, to 0.25 dB/km [38].  
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2.3.2 Key design features of fibres in order to compensate modal 

 coupling  

The independent signals are transmitted over various paths or modes and can 

be considered as independent channels. There is a chance of mode coupling 

among each mode; however, the major obstacles for MDM are differential modal 

group delay (DMGD) and modal coupling which are both proportional to the fibre 

length. Therefore, a proper design of the fibre must be addressed to overcome 

these unwanted effects. The optical fibres must be designed with special features 

in order to obtain a reduction in modal coupling and to simultaneously increase 

the fibre bandwidth as much as possible.  

 By using an appropriate spatial index profile for the fibre, particularly a 

parabolic shape, the DMGD can be significantly minimised for the greater 

number of modes being supported. It was demonstrated in experiments [15, 75] 

that a GI profile can reduce DMGD between the fastest and slowest modes by 

two orders of magnitude as compared to step-index fibres. Another approach to 

design an appropriate fibre is to have a strong MMF coupling between each mode 

to significantly reduce group delay spread. All independent data paths have an 

approximately equal amount of delay by travelling on the fastest and slowest 

modes.   

 To summarise, in the strong coupling regime, the DMGDs have a temporal 

spread scaled by the square root of the propagation distance because of a strong 

coupling between all propagating modes [76]. Therefore, the strong mode 

coupling offers several advantages in comparison with weak mode coupling in 

the reduction of modal group delay (MGD) spread and mode-dependent loss 

(MDL). By implementing the fibre with a graded index profile, and so minimising 

the modal dispersion effect, can thereby increase the bandwidth capacity of a 

multimode fibre because of a small difference in the arrival times for each of the 

modes. In conclusion, a GI profile of a fibre can be used to reduce DMGD between 

the fastest and slowest modes by two orders of magnitude as compared to step-

index fibres [76, 77]. 
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2.4 Fractional Fourier transforms 

2.4.1 General background to the Fourier transform   

One of the most important mathematical operators is the Fourier transform, 

which is used in many areas of study such as in optical physics, optical 

information processing and linear systems theory. In the study of linear systems, 

the Fourier transform is widely used for modelling optical information systems 

and also in image processing.  In so-called Fourier optics, the optical system is 

analysed by Fourier methods to model geometrical optics, Fresnel diffraction, 

propagation by plane wave expansion, Hermite-Gaussian beams, and the 

fractional Fourier transform [25, 26]. The fractional Fourier transform, and its 

inverse transform, as a function of a continuous-time aperiodic signal can be 

expressed as: 





 dtftjtxfX )2exp()()(     (2.16) 





 dftftjfXtx )2exp()()(      (2.17) 

 The major significance is that the Fourier transform based on this 

definition can be developed to fractional orders. This extension of the Fourier 

transform allows application to quadratic phase systems, i.e. a quadratic graded 

index (GRIN) medium. Generally speaking, by using fundamental properties of 

the Fourier transform, we can derive a function for the case when the orth order 

is equivalent to an integer order.  

 The zero order Fourier transform, denoted as 0 , corresponds to the 

original function or so a null transformation in the ordinary space domain. In 

addition to this, the first Fourier transform 1  is what we call the conventional 

Fourier transform, in other words, the self-Fourier function in the spatial 

frequency domain. The second Fourier transform 2 arises from the Fourier 

transform of the first Fourier transform,  and is the same as the original function 

but with reversed coordinates in the space/time domain. However, in contrast, 
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the third Fourier transform 3 corresponds to the same function but with 

reversed frequency coordinates. A self-transformation or self-reciprocal property 

that is equivalent to four applications of the Fourier transform operator, 

corresponding to its initial function, is represented as 4  [26]. 

Let 𝑓 (𝑥, 𝑦) be an initial function. Then we can summarise the orth Fourier 

transform if the orth order is limited in an interval [-2, 2) by the following:  

  ),(),(0 yxfyxf         (2.18) 

   ),(),(1 yxfyxf   (Common FT)    (2.19) 

        ),(),(),(2 yxfyxfyxf          (2.20) 

      ),(),(),(),( 2224 yxfyxfyxfyxf    (2.21) 

2.4.2 Introduction to the fractional Fourier transform (FRT)   

The basic theory of the FRT has been presented by Namias [28]. The FRT can be 

understood from a physical and optical viewpoint [21, 22 and 28]. It is well 

known as a generalisation of the classical or conventional Fourier transform with 

a degree of order, denoted by the orth fractional transform [34, 35] where the 

small order orth fraction is continuously increasing from zero at intermediate 

planes. The Fourier transform has major significance in spatial domain signal 

processing, and thus has a relationship with the fractional Fourier transform 

[28].  

 The conceptual ideas of the FRT have been discussed in many areas 

related to optical signal processing [30-35]. This is because of the fundamental 

Fourier transform of an object plane to a spatial frequency plane. The FRT of 

some fractional distance can be considered as a linear transformation in the 

same manner, whose angle is rotated by a degree of freedom
2

th

gor
where 

th

gor  

represents any arbitrary angle between a frequency and space domain [21]. The 

signal in the space domain is rotated by an angle of 90° degree into the frequency 
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domain where the first full Fourier transform is performed to a conventional 2f 

Fourier transform plane. A comparison between the FRT and imaging systems 

is described at the end of this Chapter and is illustrated in Figure 2.8.  

 A class of quadratic-phase systems usually has a relationship with various 

optical systems. The extension of an ordinary Fourier transform can be optically 

realised in many different configurations such as the system involving the 

combination of an arbitrary number of lenses separated by a sequence of free-

space propagation distances or a quadratic graded index medium of a certain 

length [23, 35]. Moreover, it is possible to use the concept of Fresnel diffraction 

in order to obtain the amplitude field distribution during wave propagation 

through a sequence of free-space propagations between the input spatial domain 

and the Fourier domain; however, this approach is difficult when the medium 

has a variable refractive index.  

 The propagation of a light distribution through sections of a quadratic 

graded index (GRIN) medium, having a refractive index profile of the medium in 

a parabolic form [23, 24], must thus be treated in a different way.  The amplitude 

field distribution at different planes can be observed through the use of the 

fractional Fourier transform of different fractional orders as the wavefront 

propagates throughout the GRIN medium. This implies that the field 

distributions of an input object can be investigated at many short distances 

during the propagation inside a quadratic GRIN medium by applying the FRT 

operation of an increasing order as a function of the propagation in the z-

direction (from zero) at the input plane. 

2.4.3 Notations used in the fractional Fourier transform   

Generally, a FRT can be defined in mathematical terms with the GRIN medium 

as a physical interpretation of its use to visualise the propagation of a wavefront 

in an optical system. The mathematical definition also has a direct relationship 

to its physical meaning, in which each of the self-modes of a quadratic GRIN 
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medium are members of a set of the 2-D Hermite-Gaussian (HG) functions as a 

mode of propagation in a quadratic medium [21].  

 The fractional Fourier transform (FRT), a generalisation of the 

conventional Fourier transform, is a linear transformation that has recently 

been applied to optical systems. The fractional Fourier transform with an order 

of orth = 1 is defined as the common Fourier transform. The orth order fractional 

Fourier transform of a function f(x,y) is denoted as  ),( yxf
thor  or f

thor  in short, 

where the order of the transformation increases linearly with the distance of 

propagation. By performing a set of fractional Fourier transforms in cascade a 

perfect imaging system can be obtained if the initial amplitude distribution has 

no phase term present [21]. 

The FRT of an orth order can be written in mathematical expression as: 

 
m

mmm

or zixAxf
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where 
mA  is the amplitude coefficient, 

m  is the propagation constant for each 

of the modes, z is the propagation distance (defined in the equation 2.28 below), 

and )(xm is the eigenmode of GI medium, and is given by: 
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where 
mH  is a Hermite polynomial of order m and w is a constant parameters 

associated with the quadratic GI medium, described as: 
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It is interesting to discuss some boundary properties and characteristics of the 

fractional Fourier transform of any arbitrary order [26, 27]:  

 

a) The fractional Fourier transform is a linear transformation operator, the 

same as the Fourier transform. 

 

b) The Fourier property: the FRT is considered to be the first Fourier 

transform at an ordinary frequency domain if its order is equivalent to one 

( f
thor  where the orth order = 1), and is defined as: 
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where all variables have the dimension of length and 𝑠2 = 𝜆𝑓. The 𝜆 is the 

wavelength of the illuminating wavefront and f is the focal length of the 

lens in a 2f optical system. In addition to this, the ),(0 yxf  corresponds 

to the zero order of a given function or the original function at an ordinary 

space domain plane. 

c) The index additive property (the semigroup property) is: 

)()()( 122121 xfxfxf aaaaaa       (2.26) 

For example, a 0.3rd FRT of a 0.5th FRT is equal to a 0.8th FRT or, as 

another example, a 2.1st of a 1.6th of a 0.4th FRT is equal to a 4.1st FRT 

that is equivalent to 0.1st FRT, where the 4th FRT or   )()(4 xfxf  . 

 

d) The negative order (-orth ) is a conjugate of the kernel of its positive order  

(+orth ) transform such that: 

 ),(),( xxBxxB oror  
     (2.27) 
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2.4.4 The fractional Fourier transform in optics   

Due to the properties of the GRIN medium, combining self-focusing and 

propagation, the input signal is repeated over an arbitrary distance that is 

identical to the repeated application of a Fourier transform four times to 

reproduce a real image [26] and one quarter of this propagation distance one 

observe the Fourier plane [30]. In addition to this, a 2-D Fourier transform of an 

input field corresponds to the field amplitude observed at multiple distances of 

a desired Fourier length of the propagation. The propagation of a parallel bundle 

rays in a quadratic graded index media usually exhibit circular trajectories in 

the phase space domain.  

 Mendlovic and Ozaktas [21, 22] defined a FRT as a new mathematical tool 

in optics by its use as a means of calculating propagation in a quadratic GRIN 

medium, in which a continuous fractional Fourier transform can be implemented 

in an optical system. A physical interpretation of the FRT can be obtained and 

developed to explain the propagation of a wave in such a medium. A non-integer 

order of FRT at each small distance within a graded (GRIN) medium, where its 

refractive index varies from point to point, can be found in the plane between the 

spatial domain and the ordinary Fourier transform plane so allowing one to 

observe what happens between these planes. When the light propagates inside 

a quadratic GRIN medium, an input field distribution will perform a common 

Fourier transform at a specific length of graded index fibre. This thus results in 

the same distribution as in the far-field free-space diffraction.  

 A continuous monotonically evolving FRT can be thought of as the 

solution of the wave propagation problem. The evolution of the light as it 

propagates through an optical system can in general be realised by the 

generalisation of the Fourier transform of a fractional order, which increases 

linearly with the propagation distance. As the light propagates, one can observe 

the field pattern at closer distances in the form of a FRT of a diffracting object 

while in the far-field of the diffraction pattern one can observe the Fourier 

transform of the diffracting object (where the orth order is 1). In general, the FRT 
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can be achieved by means of the wave propagation through a graded (GRIN) 

medium with variation of index of refraction. Moreover, the ordinary Fourier 

transform is accomplished at a certain distance as the light evolves and the 

amplitude field distributions at any particular plans are effectively obtained 

from the FRT method between the input plane and Fourier plane along the GRIN 

medium at different transform orders.  

 To fully exploit the FRT of fractional order orth, the length of the fibre is 

sectioned into small pieces of length L. Throughout the system, one observes first 

an ordinary Fourier transform at the length L of the medium since the medium 

is uniform in the direction of propagation. Then one observes an inverted image 

at length 2L, then an inverted Fourier transform at 3L and finally an erect image 

will be observed at a length of 4L from an input plane. This concept is similar to 

the operation of the Fourier transform as discussed in Section 2.4.1. Such 

amplitude field distributions appear in between these planes, where the 

numbers 2, 3 and 4 correspond to a fractional order a, at different points along 

the optical axis throughout the system at multiple lengths of L. It is concluded 

that the diffraction pattern of an orth order FRT from 0 to 1 is observed within a 

distance L from the diffracting aperture at a reference plane where the distance 

of propagation increases from zero to infinity (i.e. the length of the medium).  

2.4.5 Self-imaging length intervals 

An inhomogeneous medium has a refractive index which is constantly changing 

which results in propagating beam delays all the way along the fibre. Conversely, 

for a propagation through a section of free-space, the calculations do not have to 

take account of refractive index changing since it is constant. For all these 

reasons, we assume that the refractive index profile is constant for a short 

distance and continuously modify the refractive index after each step to calculate 

an approximation to the FRT. The index profile of the fibre is applied on the 

wavefront which is then propagated in a small step, and therefore an 

approximation can be made at each point as the beam propagates. The process 
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is repeated again by taking a new step forward and applying the refractive index 

profile again. 

 The properties of the wave front propagation in the GRIN medium can be 

examined by means of its fractional transforming property. Self-focusing, 

propagation and re-focusing are properties that can be investigated within the 

medium. The self-imaging of the system can be understood through a series of 

applications of the FRT. This is because a quadratic graded index fibre is 

optically aligned along the propagation direction of the guided wavefront that 

gives a physical interpretation of the FRT in optical communication systems [21-

24]. As the light propagates, it is simply fractionally Fourier transformed 

resulting in a fractional transform of order orth, increasing with the direction of 

propagation. The amplitude field distributions can be observed in any fractional 

plane, described as: 

     z = (orth)L          (2.28) 

where L is the physical length of a quadratic GRIN medium that results in a 

Fourier transformation, and is given by: 
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where n1 and n2 are the refractive indices of the fibre core.  

 

This implies that the propagation inside a GRIN fibre performs a fractional 

transform until a parallel bundle of light can be observed at the ordinary Fourier 

transform plane where orth is equivalent to one. A full Fourier transform of an 

input object, i.e. a distance of z = L from the input plane, corresponds to a rotation 

of an input object by
2


, in which the field is uniformly distributed throughout 

the system [21, 22].  

 The physical interpretation of light propagation is that an input object is 

coupled into a GI-MMF at certain distances. During the propagation inside a 

quadratic GRIN medium, the FRT operation is applied, and the field distribution 
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of an input object is coupled out again at the end of the fibre. As presented in 

Figure 2.8 (a), the input image will go through a frequency plane at some point 

over a distance, z = orthL where L can be determined from (2.26), and over 

another distance, z = orthL, be returned to the spatial domain, i.e. an image plane 

(but with reversed axes); thus the image reconstruction should be recovered 

again at twice the Fourier length of propagation, i.e. z = 2L and the process 

repeats again for the total length of 2Ln of the fibre, where n is a number of 

transformations where the light rays will be focused to reproduce the input 

signal. The field incident upon the Fourier plane is basically a Fourier transform 

of the incident electromagnetic field from the source. The field incident upon the 

imaging plane can be thought of as a Fourier transform of the spatially 

modulation of field distribution in the Fourier plane. In order to obtain a 

reconstruction of an image (a reciprocal image), it is therefore necessary to 

arrange the fibre to be multiple of the length 2L. 

Length of the fibre 

Rays at distance 

z = orthL

  z = 2L  
 z = 2Ln 

Input Output

L1

 4f imaging system  

(a)

(b) Fourier Plane Image Plane Fourier Plane Image Plane

L2

F
ib

r
e
 

co
r
e

Fourier Plane Image Plane Fourier Plane Image Plane

(inverted image) (real image)(where orth = 1)

 

 Figure 2.8: Physical configurations of light propagation for: (a) the 

 transformation of the spatially multiplexed signal inside a quadratic 

 graded  index medium; and (b) the operation of wave evolution in a 4f-

 imaging system. L1 and L2 represent the first and second lens, 

 respectively. 
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 To compare the behaviour of light propagation with a conventional 

imaging system, as shown in Figure 2.8 (b), the FRT of fractional distances can 

be considered as a linear transformation in the same manner, whose angle is 

rotated by a degree of freedom 
2

)( πor th

g , where th

gor  represents any arbitrary 

number or fractional order between a frequency and space domain and increases 

with the propagation distance [14].  

 

Table 2.1 

 Summary of the self-imaging length intervals for wave propagation in a 

 quadratic graded index medium and in conventional imaging systems.  

Propagation 

distance 

Periods over axial 

distance 

 

The region represented in  

a 4f Fourier-transforming 

system  

z = L 
2


 z = 2f 

z = 2L  z = 4f 

z = 4L 

 

  

(a full wave period) 

z = 8f 

The self-imaging length intervals that appear in a traditional imaging system 

and in a quadratic graded index medium are summarised in Table 2.1. For a 

propagation distance to a 2f distance, at which the light rays are focused by the 

lens, corresponds to a distance where the field inside a GI medium has 

undergone the first full Fourier transform (i.e. where z = L) with a uniform 

distribution throughout the system. Thus the reconstruction of the original 

object inside a GI medium (i.e. at the imaging plane where z = 2L) is equivalent 

to a 4f-Fourier transforming distance with passage through the two Fourier 

lenses. 
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Chapter 3  

Model analysis and excitation 

with different fibre parameters 

3.1 Introduction  

In this section, we describe the design concepts and analysis of graded index 

fibre. One of the most effective index profiles, to realise the reconstruction of an 

initial input beam distribution and light guiding along the optical axis, is a 

quadratic refractive index profile (lens-like structure). A reproduction of the 

beam arrives in a natural way periodically at the optimum distance through a 

parabolic graded index profile structure. The self-imaging distance will be 

explored in more detail later in the chapter whilst discussing the fractional 

Fourier transform.      

 We modelled commercial available optical fibres using the FIMMWAVE 

mode solver by PhotonDesignTM to evaluate the modes of a multimode fibre from 

the calculated effective refractive index and normalised propagation constant of 

the particular modes. Then the analysis of an optical pulse was performed using 

the FIMMPROP program to visualise the excited modes inside the MMFs. In our 

simulations, we assign different types of fibres according to their specifications. 

Table 3.1 shows the key multimode fibres with a quadratic index profile and a 

step index profile at a 1.55 µm operating wavelength. These fibres are excited 

with the same launching condition where the initial beam widths are calculated 

analytically to support different fibre interfaces. 
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Table 3.1 

The specific parameters of multimode fibres used in the simulations at λ = 1.55 µm 

 

3.2 Basic electromagnetic wave  

Light is referred to as an electromagnetic spectrum due to the fact that it 

propagates in the form of two vector fields, namely the electric E and magnetic 

H field. An electromagnetic wave mode theory is considered as a model for light 

propagation in an optical fibre. Maxwell’s equations allow solution of the 

electromagnetic wave propagation problem in optics. The relationship between 

four vector fields as curl equations is given by Maxwell’s equations in vector form 

[38]: 

t

B
E




       (3.1) 

t

D
H




        (3.2) 

        ED          (3.3) 

     HB               (3.4) 

where D is the electric flux density, B is the magnetic flux density, ε is the 

dielectric permittivity and 𝜇 is the magnetic permeability. 

Geometrical    Specification 

Fiber Name GIF50C GIF625 F-MLD FG050LGA 

Manufaturer Thorlabs Thorlabs Newport Thorlabs 

Index Profile Graded Graded Graded Stepped 

Fibre Type MMF MMF MMF MMF 

Core diameter 50 ± 2.5 µm 62.5 ± 2.5µm 100 ± 4 µm 50 ± 2% 

Cladding diamter 125 ± 1 µm 125 ± 1 µm 140 ± 3 µm 125 ± 1 µm 

Numerical Aperture 0.2 0.275 0.29 0.22 
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Substituting from the vector identity: EEE 2)()(   we have: 

2

2
)(

t

E
E




     (3.5) 

2

2

)(
t

H
H




     (3.6) 

then Eq. 3.5 and 3.6 can be written as a non-dispersive wave equation: 

2

2
2

t

E
E




      (3.7)  

2

2
2

t

H
H




      (3.8)  

The scalar wave equation is given by: 

2

2

2

2 1

tv p






      (3.9) 

where  is a component of the electric and magnetic fields and the phase velocity 

is: 



1
pv      (3.10) 

00

1


c      (3.11) 

Rearranging: 

0),(
1

2

2
2 












 tr

tc
     (3.12) 

where  )exp()(Re),( jwtrtr     and substituting 2

0

22 kcw  , where w  is an 

angular frequency of the field and 0k  is defined as the propagation vector or the 

rate of change of the phase with distance r at a point where the field is observed. 
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It is also referred to as the free-space wave number or propagation constant for 

light in a vacuum and is defined by: 

c

w
ko 

0

2




      (3.13) 

Then the time invariant Helmholtz equation can be derived which depends on 

the position of r: 

0)()( 22  rk       (3.14) 

For a planar waveguide, which can be described by both rectangular and 

cylindrical polar coordinates, the Laplacian operator 2  takes the following 

forms. 

For rectangular Cartesian coordinates ),,( zyx :  

2

2

2

2

2

2
2

zyx 















      (3.15) 

For cylindrical polar coordinates ),,( zr  : 

2

2

2

2

22

2
2 11

zrrrr 
























   (3.16) 

The plane wave is guided along the direction of propagation in the z-direction. 

As the mode propagates along the z-direction, it has a periodic form of 

)exp( zj z  where 
z is the phase propagation constant in the z-direction, and is 

the time dependence for the electromagnetic field of the form )exp( jwt . The mode 

can then be described by ))(exp( zwtj z .  

Referring to a cylindrical polar coordinate waveguide, the scalar wave equation 

can be written in the form of [1, 38, 49]: 

0)(
11 222

12

2

22

2




















kn

rrrr
   (3.17) 



43 
 

where 
1n  is the refractive index of the core. A number of guided modes can be 

viewed as a ray of light, dependent on both the physical parameters (variation 

of refractive indices, core radius etc.) and wavelength to be guided through the 

core region over the entire fibre length. 

3.3 Mathematical model for guided modes in optical  fibres 

The linearly polarised (LP) modes are transverse modes in both polarisations 

and are two complete independent set of modes in the x and y directions. An 

Eigenvalue equation for the characteristic equation of a weakly guiding fibre (i.e. 

∆<<1) can be written in the form [50]:  

       (3.18) 

where     and         (3.19) 

         (3.20) 

The parameter V is defined in equation (2.6) as a normalised frequency. The 

)(UJm

 

describes the propagating field within a core of the fibre as a Bessel 

function of the first kind, of order m and )(WKm
 is the modified second kind of 

Bessel function of order m, describing the field distribution within the cladding 

which monotonically decreases as the radial distance increases further away 

from the axis with faster velocity [1, 38, 50]. 
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Substituting equation (2.6) in (3.19) and (3.20) and rearranging equation (3.18) 

to derive the solution of various modes: 

 
 

 
 

0..................
)(

)(

)1(

)1(
)1(

0

1

0

1 




















 m

bVK

bVK
bV

bVJ

bVJ
bV   (3.21) 

for a fundamental mode, and:    

 
 

 
 

1................
)(

)(

)1(

)1(
)1( 11 





























  m

bVK

bVK
bV

bVJ

bVJ
bV

m

m

m

m  (3.22) 

for higher-order modes.  

 Since the relative refractive index difference between the media is 

relatively small (∆<<1) in a weakly guiding approximation of an optical fibre, the 

modes are expected to travel along the core and this guiding condition is said to 

be totally internally reflected. The value of ∆ is typically less than 0.03 (3%) for 

communications in optical fibre systems. Assuming that multiple guided modes 

undergo total internal reflection, any set of conventional modes (HE, EH, TE and 

TM) that have an identical propagation constant and effective refractive index 

can be grouped together as a single mode. Thus, the degeneracy between modes 

exists in which these groups of modes travel with the same speed. It is, therefore, 

convenient to represent these degenerate modes of electromagnetic fields in the 

form of the linearly polarised (LPmn) modes. The subscripts m and n are regarded 

as the electric field around the core circumference and in the radial direction, 

respectively. In Table 3.2 below is shown a comparison between the traditional 

designation modes and the linearly polarised modes, together with the number 

of degenerate modes for the first ten lower-order modes [1, 38, 49]. 
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The rules for grouping these conventional modes to LP modes are as follows [50, 

51]: 

LP0n  (m = 0) =  HEm+1,n                      (3.23) 

  LPmn (m = 1) =  HEm+1,n , TE0,n   and TM0,n           (3.24)                 

LPmn (m >1)  =  HEm+1,n , EHm-1,n      (3.25) 

Table 3.2 

A comparison between the traditional designation modes and the linearly polarised modes 

Designation of LPlm modes  Designation of conventional mode Degenerate modes 

LP01 HE11 2 

LP11 HE21 , TE01 , TM01 4 

LP21 HE31 , EH11 4 

LP02 HE12 2 

LP31 HE41 , EH21 4 

LP12 HE22 , TE02 , TM02 4 

LP41 HE51 , EH31 4 

LP22 HE32 , EH12 4 

LP03 HE13 2 

LP51 HE61 , EH41 4 

 

Based on the fact that 
1n  approaches

2n , each of the degenerate modes is 

formed into one single linearly polarised mode.  The LPmn modes can also be 

considered an alternative way for naming the group of modes, propagating into 

an optical fibre where the fields are polarised linearly with the same polarisation 

orientations. The solutions of a propagation constant   can be determined 

analytically from the effective refractive index 
effn   by: 

2

22

NA

nn cladeff 
       (3.26) 
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For the requirement of the propagation modes guided in the core and minimising 

the radiation modes, the normalised propagation constant should satisfy the 

following boundary condition: 

00 knkn coreclad    

coreeffclad nnn             (3.27) 

 Figure 3.1: Modal effective index 
effn   as a function of the wavelength for the 

fundamental mode LP01 in various fibres at different core diameters and index 

types in a range from 800 nm to 2000 nm. 

  

The graph in Figure 3.1 shows the results of the simulations that are in 

agreement with the theoretical studies in that the value of relative refractive 

index 
effn of the mode is inversely proportional to wavelength. We see that the 

effn  values tend to decrease at the higher wavelengths. However, as indicated in 

equation (3.27), the lowest value of 
effn  should be kept in the range of the index 

of the lowest medium in order to avoid the unguided modes.  
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Thus light is guided by the total internal reflection (TIR) inside a fibre core with 

a higher index. The guided modes are totally internally reflected at the core-

cladding boundary with a different propagation constant   that is defined as the 

product of the index of refraction and the light propagation constant in vacuum 

0k  01kn  and is used to determine the variation of light in both amplitude 

and phase in the z-direction of propagation. The spatial modes are considered as 

the number of M modes in a fibre corresponding to 
2

M
linearly polarised modes 

(LP) in the weakly guiding approximation. As mentioned, the larger number of 

modes can be accommodated with an increasing cross-sectional area which will 

support the fundamental mode, LP01, and other degenerate modes.  

 In order to generate higher order modes, the fibre diameter is increased 

up to a point above the single-mode condition with the normalised frequency V 

of 2.405. The MMF can support three spatial modes, namely LP01, LP11a and 

LP11b if the light is guided with no more than the triple-mode condition below 

the normalised frequency of 3.8. The LPmn modes in principle each have two-fold 

degeneracy of polarisation mode in x and y. The number of maxima of the field 

corresponds to the subscript 2m around the circumference of the fibre core 

whereas the subscript n (n≠0) is used to label the number of field maxima around 

the fibre radius [38]. For LPmn (m>1), there are four degenerate modes, namely 

LPmn,a and LPmn,b in both parallel and perpendicular polarisation, respectively 

[41].  
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More fundamentally, the main issues of using multimode fibres in a system is 

that various modes have their own propagation constant and result in a 

transmission delay. However, there is an exception for a special characteristic of 

fibres with a graded index profile )2(  . In such a fibre system a desired LPmn 

modes can be grouped into the same principle mode groups (MG), sharing almost 

identical degenerate phase constants and propagation delays. The mode group 

of order MG fulfils the following order [41]: 

MG = m+2n+1    (3.28) 

Table 3.3 

Principle of spatial groups of modes MG having two polarisations 

Mode Group (MG) Modes 

3 LP01 

4 LP11a , LP11b 

5 LP02 , LP21a , LP21b 

6 LP12a , LP12b , LP31a , LP31b 

7 LP03 , LP22a , LP22b , LP41a , LP41b 

8 LP13a , LP13b , LP32a , LP32b, LP51a , LP51b 

9 LP04 , LP23a , LP23b , LP42a, LP42b , LP61a, LP61b 

 

Table 3.3 shows the list of degenerate modes, which can be grouped together for 

the first seven groups of modes MG = 3 to MG = 9 of a preferably parabolic graded 

index multimode fibre. Because each of the modes has the same propagation 

constant value, then they can be grouped together within the same mode group 

MG, experiencing approximately the same propagation delay for realising high 

communication bandwidth performance. 
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Figure 3.2: The propagation constant of the first seven LPmn modes and their 

correspondence mode group number, simulated using a standard commercial 

GI50μm fibre at a wavelength of 1550 nm.   

 

The simulation graph shown in Figure 3.2, obtained from the transmission of a 

GI50μm operating at a 1.55 μm wavelength, clearly shows the theoretical 

prediction (as shown in Table 3.3) of the first seven LPmn modes. It can be seen 

that all the degenerate modes having an identical phase constant can be 

combined together into the same principal mode groups (MG), corresponding to 

an MG of 3, 5, 7 and 9. For instance, the MG = 5 contains 3 spatial orthogonal 

modes, which comprise all degeneracies and both polarisations (parallel and 

perpendicular) in the modes of LP02, LP21a, and LP21b. This corresponds to a total 

of six data streams, which could provide a relatively high transmission 

bandwidth if employed together [41].  

 The modes within the same MG are strongly coupled to each other due to 

the identical propagation constant (small ∆β), while the modes in different MGs 

are weakly coupled since the propagation constant spacing between each MG is 

relatively large (large ∆β). As a result of strong coupling of the modes in the same 

MG, the maximum power can be achieved after propagating for a short distance. 

This is because if we selectively launched any particular mode, more power will 

be coupled to other modes within the same group of the modes [17]. Moreover, 
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there also exists the solution to enhance the capacity of the optical fibre by 

selectively exciting groups of modes as spatially separated transmission 

channels. It is expected that by increasing a number of spatial modes in a few-

mode fibre, the channel capacity can be potentially maximised by a factor 

proportional to the number of modes [42-45].  

3.4 Modal excitation condition  

There are a number of ways to couple the light in multimode fibre systems, for 

example, based on multimode interference MMI devices (see the detail in section 

3.7.1) or by directly launching onto the front face of a device. The former case is 

effective for use in self-imaging by using a coherent light source [46, 47] in which 

the device has N input guides and M output guides for launch and recovery onto 

a central multimode waveguide. However, in our case, we will examine the latter 

case, assuming that the beam is well aligned with the fibre axis. The variation 

of the electric field in a Gaussian beam is given by [38]: 











2

2

0 exp
w

r
EE      (3.29) 

where r is a distance from the centre of the beam to the propagation axis. The 

parameter w is defined as the beam radius at which the field amplitude drops to 

the 1/e point from its maximum peak on-axis amplitude. This parameter is also 

known as the beam waist or radius of the beam, measuring from the waist of the 

beam at which the phase of the wavefront is plane. 

The beam width or radius at any z-position is given by: 

        (3.30) 

where n is the refractive index in the medium the beam is propagating through 

and 0z  is a point where the beam starts to diffract from the plane phase 

wavefront which is defined as: 
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

 2

0

nw
z       (3.31) 

Close to the beam waist the beam does not spread out greatly. The distance from 

the waist to the Rayleigh length, 
Rz , the width of the beam along the propagation 

direction increases by a factor of , i.e. . 

From equations (3.28-3.30), we can determine the radius of curvature as: 

        (3.32) 

Now we wish to find the amount light that propagates along an optical axis, by 

defining a Gaussian intensity distribution of the source as shown in Figure 3.3, 

and expressed by the following equation: 

        (3.33) 

where P is the total power in the beam and w in this expression is defined as the 

beam radius at which the intensity has dropped to the 1/e2 point of its peak value 

or approximately to 13.5% of the peak power on the propagation axis.  
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Figure 3.3:  Gaussian beam intensity profile 

The radius of the beam waist is sometimes measured at different levels, and is 

represented as: 

    w(1/2) = 0.588 × w(1/e2)      

  w(1/e) = 0.707 × w(1/e2)       (3.34) 

The parameter w(1/e) is referred to a radius at which the intensity has decreased 

to 0.707 at the 1/e point, and w(1/2) is known as the intensity at the half width at 

half maximum point.  The beam diameter at the 1/e2 intensity point is 10 µm for 

all the simulations conducted in this thesis.  

3.5 The transmission analysis in MMF structures 

The analysis of electromagnetic fields in MMF structures of all modes will be 

exploited, by assuming that only the guided modes will be excited in the 

structure. Each mode is a pattern of the electric and magnetic field distributions, 

which are repeated periodically along the direction of propagation at equal 

intervals, corresponding to a self-imaging of the intensity pattern of light. The 

repetition of the field in graded index fibres is defined as a self-imaging 

characteristic of an input intensity pattern, which propagates along the length 

of the fibre. In fact, each mode has its own propagation constant and it 

FWHM (50% of peak) 

1/e2 point (13.5% of peak) 

Intensity 

+  

 

-  
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propagates at different velocities. However, because of an oscillatory behaviour 

between different modes each of which propagate with different propagation 

constants, they interfere with each other as a result of multimode interference 

inside the fibre [47]. 

 We use the modal field derived in references [48, 49, 50, and 51] for a two-

dimensional Eigenmode that propagates in the z-direction with its corresponding 

propagation constant for each propagation mode: 





N

v

vvvmn ziyxczyx
1

)exp(),(),,(     (3.35) 

where  is the amplitude coefficient of each Eigenmode and N is the number of 

Eigenmodes. Equation (3.35) shows the solution of Maxwell’s equation in the 

form of a modal cross-section describing the guided and radiation modes within 

a waveguide. The modal profile ),( yxv  is said to be the Eigenfunction while the 

Eigenvalue describes the propagation constant in the modal field. 

The initial field profile )0,(x at distance z = 0 is decomposed into a sum of 

individual modal field distributions )(xv of all guided modes: 





max

1

)()0,(
V

v

vv xcx       (3.36) 

where vc  is the coefficient of the field excitation with thv  number of guided modes 

with max,....,1 Vv  . We assume that the input field )0,(x is decomposed only for 

the guided modes which can be written as: 
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The field distribution profile at some particular distance z can be written as: 
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From the explanation in references 47 and 52, the propagation constant spacing 

between the different modes can be written as: 


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where the propagation constant of mode v is in the form:  
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where the beat length L  is defined as:  
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The initial field at z = 0 will be reimaged at some distance z = 2L and then the 

field becomes:  
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It is clearly seen from the field distribution at z = L that the input field will be 

regenerated if the condition obeys: 

   1exp 0  Lj v      (3.43) 

The input field is reproduced at a specific length inside a multimode fibre as long 

as the condition between the two excited modes is satisfied by: 

   20 vimgv mL      (3.44) 

where vm is an integer.  

Thus the initial amplitude and phase between guided modes will be retrieved at 

the fibre locations at which the self-imaging peaks are observed, and then self-

imaging appears at the position [52]: 



55 
 

22

cladcore

core

img

nn

an
L


      (3.45) 

where a is the core radius of the fibre. The term in (3.45) satisfies the self-

imaging condition for the excitations of modal fields in a parabolic index fibre. A 

periodic reimaging thus occurs, in which an input field is duplicated at specific 

positions repeating along the length of propagation in the multimode fibre. 

Based on the study of self-imaging in the transverse plane, our proposed 

configurations, with different numbers of optical sources, are thus investigated 

with the emphasis being on graded index optical fibres where the image 

reconstruction is dependent upon the refractive index profile of the guiding 

medium. 

3.5.1 Variation of the intensity distributions in multimode fibres 

The beam can be described in terms of the propagating field inside the fibre. In 

order to simulate the propagation beam inside a single core multimode fibre, we 

assume that an initial beam is launched onto the face of the fibre on the optical 

axis and we observe several LPmn modes transmitted in a section of the 

multimode fibre.  

Table 3.4 

The comparison of a number of modes in different commercial fibres 

 

 

 

 

 

 

  

Index Type  Graded Graded Graded Step 

Core Diameter  50µm 62.5µm 100µm 50µm 

NA  0.2 0.275 0.29 0.22 

Normalised frequency, V  20.26 34.82 58.75 22.28 

Number of modes, M   103 303 863 248 
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The maximum number of allowed modes, M, that can be propagated with 

different fibre core diameters, is calculated numerically in Table 3.4 using 

equations (2.14) for graded index (GI) fibre and (2.15) for step-index (SI) fibres. 

There are more than twice the number of modes in a SI fibre as compared to a 

GI type, with similar core size. Moreover, it is evidently shown that the 

dependence of the number of propagation modes on the normalised frequency (V-

number) is linearly proportional to the core diameter size. The larger the size of 

a core, the greater the number of modes that can be transmitted through a fibre. 

The study by Fertman and Yelin [53] shows the effects of increasing the number 

of modes in a multimode fibre. It shows that fine details of a transmitted image 

and its quality would be possible with a larger diameter fibre because the high 

spatial frequencies are found in the higher order modes. 

 

Figure 3.4:  A comparison of the propagation constants for the scalar mode 

groups in four different commercial fibres with a variety index types and core 

dimensions at a 1.55 µm wavelength. 

 

Due to the similarity of the propagation constant between some of the modes, 

the degeneracy modes can be formed as a single transverse mode (LP mode). The 

simulated propagation constants of the first LP0n modes where n is 1, 2,…,5 are 

plotted in Figure 3.4 for three different graded index fibres, with different core 

diameters and in comparison with a step index fibre with a 50 µm core diameter.  
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 Notice that the propagation constants of fibres with the same index 

characterisation (i.e. graded index) are equally separated and do follow similar 

linear trend lines, whereas in a step index type the curve is arched as the beam 

propagates further. As shown in the graph, the propagation constants of the 

lower order modes of the first vector mode group are slightly distinguished 

between these fibres. However, as the light propagates further, the difference of 

the between these fibres are clearly apparent. 

3.5.2 The differences in the fundamental modes in commercially 

 available fibres 

The number of various fibre modes that are excited depends upon the geometry 

of a fibre to give certain field distributions. The simulated fibres are analysed 

with a fixed wavelength of 1.55 µm. The intensity field profiles of the 

fundamental (lowest-order) linearly polarised LP01 mode in the transverse plane 

are shown in Figure 3.5 (a) - (d) for three different core diameters and two 

different index types, labelled as GI50µm, GI62.5µm, GI100µm and SI50µm 

respectively, which were investigated. 

 

Figure 3.5: A comparison of various multimode fibres showing the cross-section of the intensity 

field profile for the fundamental (lowest-order) LP01 mode in a transverse plane. The generated 

transverse intensity distributions are compatible for graded index fibres with a 50µm, 62.5µm 

and 100µm core diameter as shown in (a) - (c), respectively. The right of the Figure shows the 

beam profile of a step-index fibre over the region of a fibre core. Note that the inner and outer 

white circles indicate the edge of the core and cladding, respectively.  

 

 

 

 

 

 

 

The fundamental LP01 mode field diameters 

 GI 50 µm             (b) GI 62.5 µm               (c) GI 100 µm               (d) SI 50µm 
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 It is clearly seen that the intensity field distributions are centred in the 

middle of the fibres (assuming a straight fibre). They are indistinguishable in 

the fibre with a curved index profile, and the mode field areas are not much 

different in size. The cross-sectional intensity distributions in the GI-MMFs 

remain almost unaltered, as the physical characteristics of the fibres have 

changed. However, for a uniform refractive index in a SI50µm fibre whose index 

profile is constant in the middle, the transverse field of the LP01 mode noticeably 

fills the whole fibre core. This is because the light rays take different paths to 

travel down the fibre. As a result, the beam profile is larger than that in a 

parabolic index profile.  

 One can see the effect of an increasing number of modes in multimode step 

index fibres, which induces a modal dispersion as different modes take different 

paths to travel through the fibre axis with different angles and velocities. This 

has led to the development of graded index fibres to compensate for this effect. 

Therefore, this is one of major reasons an optical fibre with a graded index profile 

is chosen in our further simulation work.   

Table 3.5 

The comparison of measured sizes of the MFD for the lowest-order LP01 mode 

 

GI50µm GI62.5µm GI100µm SI50µm 

15.72 µm 15 µm 18.46 µm 38.05 µm 

 

It should be noted that the MFD is a function of index difference and the 

multimode fibre structure, i.e. a core radius. Thus, the mode field diameters of 

the LP01 mode are dissimilar for different tested fibres as one can see from the 

comparison shown in table 3.5 above. 
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3.5.3 The transverse intensity distributions of higher-order modes  

We show the difference in the intensity patterns of higher-order modes in a 

multimode fibre in Figure 3.6 with a parabolic index profile ( 2 ), having a 

62.5µm core diameter. The fibre under test has a numerical aperture of 0.275 

operating with a 1.48 core refractive index. According to the field profiles of the 

fibre modes, we can see that the mode size is dependent upon the characteristic 

of the index profile of the medium and its fibre core size which the beam 

propagates through. As the core size is increased, the number of transverse 

modes becomes multimode and, eventually, several higher-order modes 

propagate in the fibre.   

 

Figure 3.6: The schematic intensity distributions of some LPmn modes obtained from 

the GI62.5µm, simulated with the FIMMPROP software. Figure 2(a)-2(f) shows the 

transverse field distributions of higher-order modes for LP02, LP21, LP22, LP23, LP41 and 

the LP42 mode, respectively. The uniform input beam was injected into a fibre with 

62.5µm graded-index profile and an NA of 0.275 where 
1n is 1.48. The cross-sectional 

beams profiles are obtained with a fixed wavelength at 1.55µm. 

 

 

 

Schematic intensity distributions of some higher-order LPmn modes 

        (a) LP02                                        (b) LP21                                  (c) LP22   

        (d) LP23                                       (e) LP41                                        (f) LP42   
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 From the observations, it is confirmed that the propagating beam (excited 

into the fibre axis) is effectively confined along the optical axis, and the core 

region is fully filled with all guided modes. However, in principle the intensity of 

higher-order modes can significantly distribute into the cladding (but with a 

weak intensity field far from the core) and this leads to the radiation of higher-

order modes at the interface between the core and cladding. This is very 

important when imperfections of the fibre are considered, such as bending and 

temperature variations. These radiation modes will be eventually lost during the 

propagation into the cladding region. We shall see later that the modal power 

distributions will be coupled into different modes, especially in a step-index fibre; 

some of them are guided inside the core and some of them are radiation modes.  

3.6 The contribution of modal power through a section of   

 multimode fibre 

3.6.1  Concept and analysis  

The importance of the relative modal power contributions in different core sizes 

of fibre makes it beneficial to study the number of guided modes and radiation 

loss to the cladding modes at a given operating wavelength. Additionally, there 

are a number of studies on the power distribution in various fibre types with 

different dimensions of core and cladding used for medical imaging purposes. 

Using derivations from equations (3.19) and (3.20), the amount of power 

propagating in the core and cladding is given by Gloge [49]: 

   

 

      (3.46) 

where V is the cutoff frequency of the vth mode and P is equal to Pcore +Pclad which 

is the total power.  
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Writing equation (3.46) in terms of the overall M modes:  

     (3.47) 

where the number of total M modes is defined differently in step-index and 

graded index fibres from equations (2.14) and (2.15). The dependence of the 

average power propagating in the cladding on the transmitted modes, derived 

from equation (3.47), can be rearranged: 

      (3.48) 

This is of great importance in considerations of novel methods to maximise 

coupling of the transmission power to a particular mode or group of modes, 

especially for fibres with different physical characterisations. In our simulations, 

launching of the light can be achieved through using a Gaussian beam 

approximation interfacing to the fibre end as an initial transmitting beam. A 

Gaussian beam was simulated with a 10 µm-beam diameter at the 1/e2 intensity 

point. The beam was injected into the fibre axis (assuming no tilt). It follows that 

the effective index 
effn  for different modes is different, i.e. these modes have 

different   values.   
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3.6.2 The distribution of power in different modes in multimode 

 fibres 

 

Figure 3.7: The comparison of modal power distributions contained in each 

scalar linearly polarised LP0n mode and the total percentage of power 

transmission in GI-MMF and SI-MMF. 

 

We simulate, as shown in Figure 3.7, the modal power distribution of the LP0n 

modes in various fibres (where n varies from 1-5), i.e. the LP01, LP02, LP03, LP04 

and LP05 modes. The sum of the mode powers is almost 99% (only 1% of the 

power is missing) for all cases. It can thus be considered that almost all of the 

total power is effectively coupled and transmitted to the multimode fibre. The 

distributions of the modal fields are coupled to the lower-order modes, i.e. the 

modes propagate slower near the centre core of the fibre, and the largest 

contributions of the power are mainly contained in the fundamental modes. It is 

worth noting that there will be some level of power transfer losses that make the 

total power coupling less than a 100% from the beam to the fibre during 

launching (such as Fresnel reflections at the fibre interface). 
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Nevertheless, as the beam evolves along the length of the fibre, the light is 

coupled to some higher-order modes. It can be seen from Figure 3.7 that the 

highest percentage of power is transferred to the LP01 mode, with approximately 

85% of the total power being in this mode for GI62.5µm, the remaining power 

being distributed into the higher-order mode region where the light is 

exponentially decaying to the cladding. In comparison, in the largest core 

diameter fibre GI100µm, the percentage of power contributing to the LP01 mode 

drops by almost 15% compared to fibres having similar index profiles, but with 

smaller core radii, operating at the same wavelengths. As the number of modes 

and the cut-off frequency increase, these amounts of power are distributed to 

several higher-order modes. 

 According to the bar chart presented above, the percentage of 

transmission power with the same core dimension was significantly greater in 

the GI50µm over the SI50µm fibre. This can be explained by the fact that only 

about 25% of the transmitted power is in the fundamental mode of the SI50 µm 

fibre, compared with the power transmitted in the GI50µm fibre which is 

approximately 82% of the transmission power. Likewise, we can see the modal 

power of the higher-order mode in the SI50µm fibre is barely retrieved.  

Table 3.6 

The percentage of power contributions in the cladding for different fibres 

 

 Using the average percentage of power flow in the cladding derived from 

equation (3.48), the results in Table 3.6 imply that some of the power 

contributions are due to those present in the cladding region, leading to roughly 

13% of the beam power being distributed into the cladding of the GI50µm fibre 

GI50µm GI62.5µm GI100µm SI50µm 

13.13% 7.66% 4.53% 8.47% 
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while 7.66% is distributed into the cladding in a GI62.5µm fibre. From this, we 

see that the power flow in the cladding is inversely proportional to the size of the 

fibre core diameter, a higher number of modes being present in the core for the 

larger diameter fibres. Likewise, the normalised power distribution also depends 

on the design structure of the multimode fibres. Thus increasing the core 

diameter is beneficial to raising the modal power contributions in the core area 

and lowering the amount of power contributing to the cladding region. This 

property is thus useful for applications involving high power laser transmission.    

3.7 The reconstruction performance in unperturbed  fibres  

3.7.1 Principle of reconstruction in optical fibres 

In the following section, we will demonstrate the evolution of light propagating 

in optical fibres by assuming that there are no fibre impairments, such as 

bending, during the transmission. An initial Gaussian beam with a 1/e2 diameter 

of 10 µm with a wavelength of 1.55 µm was directly coupled into the centre core 

of the fibres. The effects of multimode interference in the fibres has been 

examined with several fibres tested in this study. The propagation of the light 

depends on the excitation conditions of the input beam profile, which also relies 

on the characteristics of the fibre. The physical properties of fibres and the fibre 

impairment conditions such as microbending and temperature variation of the 

fibres have significant effects on the output beam profile.  

 In the graded index fibres, the phenomenon of self-reproduction of the 

input field occurs at a periodic interval as a result of the interference between 

propagating guided modes in an optical waveguide. The concept of self-imaging 

was first investigated extensively by Allison et al. [54] to demonstrate the 

propagation effects in optical fibres transmitting a coherent light source. The 

applications based on multimode interference (MMI) effects can be found in 

optical communication systems [55-57] and several implementations in optical 

sensing, utilising bending and temperature effects [58-61].  
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 We have previously mentioned in Section 3.5 that the propagation 

constant values are distinct in different modes, in such a way that the changes 

of β strongly induce the interference patterns at the re-imaging distances over 

the transmission length of the fibres. A reproduction of an input image in the 

multimode fibre appears by means of significant changes in β between guided 

modes and the oscillatory nature of the independent phases of the propagating 

fields.  

 

Figure 3.8: Schematic of a cascaded fibre structure (not to scale) showing: (a) a 

single-mode-multimode-single-mode MMI device; (b) a single-mode-multimode-

multimode device; and (c) a single section of a multimode configuration device as 

used in our design structure for a graded-index profile. 

 

 The original design for an MMI device is realised by the cascading of a 

number of inputs N and a number of outputs M (N × M devices) where the 

multimode waveguide is located in the middle section for the design 

demonstration. The configuration of the MMI devices (as shown in Figure 3.8) is 

usually in the form of a single-mode-multimode-single-mode (S-M-S) structure, 

or the form of single-mode-multimode-multimode (S-M-M) which has also 

received much attention in the design literature [62]. However, our approach is 

to employ the simplest method of coupling by using a section of single multimode 

fibre with an appropriate length of transmission in the structure.  

 As has been emphasised previously, a periodic reimaging can be generated 

in which an input field is duplicated at specific positions occurring along the 

length of propagation in multimode fibre. Based on the study of self-imaging in 

the transverse plane, our proposed designs are investigated with most of the 

emphasis being on graded index optical fibres where the image reconstruction is 

(a) S-M-S 

(b) S-M-M 

(c) MMF 
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dependent upon the refractive index profile of the guided medium. A self-

imaging property in a quadratic graded index medium occurs perfectly in a 

natural way at a periodic interval, leading to the repetition of the original image 

along the optical fibre axis [54, 62-65].   

3.8 Simulation results of the variation of the self-imaging 

 effects with different fibre specifications 

3.8.1  Introduction 

A set of Eigenmodes is excited when an input field is coupled into the single front 

face of multimode fibres. The self-imaging of a transmitted input field profile is 

obtained due to the interference between the excited modes and thus the change 

of the intensity profile inside the fibre [54]. It is worth noting that the occurrence 

of reconstructions of an input field profile can happen when the phase difference 

between two guided modes is an integer multiple of 2π, i.e. the excited modes are 

in-phase. The Eigenmode expansion is used to calculate the results of modal 

analysis where Maxwell’s equations are numerically solved on a cross-sectional 

mesh of the fibres.  

 Thus an investigation has been made of the variation of an 

electromagnetic field inside the MMFs along the propagation distance. To 

investigate the results of propagating all the first 30 guided modes, we calculate 

and then visualise the evolution of the intensity field for each of the commercial 

fibres tested. By measuring the intensity profile across the beam, the 

reconstruction of the electromagnetic field can be retrieved at the desired 

propagation length. Thus the input modal distribution is guided along the fibre 

axis within the region of higher refractive index of the graded index fibre. 

Generally speaking, the original beam is expected to reproduce (an inverted 

image) of itself at twice the focal distance when propagating within a quadratic 

index profile of graded fibre. The interference and self-imaging effects are 

different for each fibre and depend strongly on their characteristics. In this 

section, the phenomenon of light propagation inside the fibres is investigated. 
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The light is confined to a medium which has a graded index refractive index 

profile, leading to the phenomenon of light interference in that medium and 

hence the propagation results in a self-imaging effect. However, it is also found 

that decreasing the index difference )( n  between the core and cladding results 

in increases of the self-imaging length which shall be demonstrated in Section 

3.8.4.   

 

3.8.2  Influence of fibre specifications 

We investigated the influence of fibre specifications such as core diameter and 

the index profile of the fibre. Figure 3.9 shows the intensity patterns of a 

transmitted Gaussian beam inside the fibres. The simulation is for the beam 

being guided a short distance along a 2 mm length of propagation from the 

original input field, for the three examples of the GI-MMFs examined. The 

results obtained show that a replica of an initial beam profile occurs due to the 

oscillatory nature of the guided modes in all the GI-MMFs. The different modes 

interfere, leading to an interference pattern of several modes that periodically 

regenerates the initial beam distribution.  
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Figure 3.9: The evolution of the intensity profile inside the tested graded index multimode fibres 

at a fixed 1.55 µm wavelength is shown for: (a) GI50µm; (b) GI62.5µm; and (c) GI100µm fibres 

for a distance of 2 mm. The light transmission varies according to the specifications of fibres and 

only a small amount of light is lost to the cladding. The interference pattern between guided 

modes results in self-imaging at certain lengths down the fibres (where the FIMMPROP software 

was used to simulate the evolution of the intensity for the different fibres).       

 

 All the guided modes in the graded index fibres propagate with different 

velocities at specific values of propagation constant. The characteristics of 

multimode interference between these guided modes correspond to the 

phenomenon of self-imaging occurring during the light propagation. It is this 

phenomenon that allows the original phase and field distribution to be retrieved. 

In Figure 3.9, the light evolution in different commercial GI-MMFs is 

demonstrated to compare the self-imaging properties. The initial phase is 

recovered in the fibres with a parabolic index profile; however, the positions at 

which the original input beam is reconstructed are different. According to Figure 

3.9, the self-imaging length depends strongly on the fibre parameters such as 

(a) GI50 µm 

(b) GI62.5 µm 

(c) GI100 µm 

800 µm 

528 µm 

581 µm 
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the core diameter and the NA of the fibre. The self-imaging lengths with smaller 

core diameters shown in Figures 3.9 (a) and 3.9 (b) appear within a few µm 

length after propagating through GI50µm and GI62.5µm, respectively, whereas, 

as shown in Figure 3.9 (c), several higher order modes are excited in GI100µm 

leading to the self-imaging distance being almost doubled.    

 

Figure 3.10: The intensity distribution of the reconstructed beam as it 

propagates along the length of three GI-MMFs with different core diameters and 

NA. The highest transmission peaks correspond to the reproduction of an initial 

phase and intensity distribution and occur at various propagation lengths along 

the fibre.  

 

 The graphs in Figure 3.10 show that the intensity of the original beam 

profile comes back nicely at the highest transmission peak positions with almost 

unchanged beam profile (e.g. a MFD). By considering the multimode interference 

pattern in GI50µm, as shown in Figure 3.9 (a), the first highest transmission 

peak is at a position 581 µm away from the source. The reconstruction of an 

initial transverse field is repeated at every 581µm interval. For the transmission 

of a Gaussian beam in GI50µm at z = 0 µm, we see that the second and third 

peaks are at lengths of 1162 µm and 1743 µm, respectively, and we were able to 

achieve approximately the same size of the beam diameters at these planes. 
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 In addition, the periodic interference pattern of the excited beam for 

GI62.5µm, shown in Figure 3.9 (b) and the orange coloured curve in Figure 3.10, 

occurs after transmission of the fields to a propagation length of 528 µm for the 

first reconstruction position. At the propagation distances of z = 1056 µm and 

1584 µm, the second and third self-imaging peaks are generated, respectively. It 

can be seen that the transmission peaks in GI50µm are formed farther apart 

than in GI62.5µm, by approximately 60 µm. In GI100µm the difference in the 

guided modes leads to a much further distance at which the transmission peak 

is recovered; for this fibre diameter a propagation distance of 800 µm is required 

for the first duplication of the incident field. Thus we conclude that the self-

imaging length of GI-MMFs is an increasing function of core diameter and the 

NA of the fibre, for a specific wavelength.  

 A Gaussian beam propagation with  in a SI50µm fibre is shown in 

Figure 3.11 (a). The field distribution is unevenly spaced and evolves in a 

complex way from the input transverse plane along the length of the fibre. It is 

hard to specify the position of any reconstruction of the originally excited input 

field where the guided modes interfere in phase along the step-index fibre. The 

fields along the z-axis at z = 2420 µm and 5672 µm in Figure 3.11 (b) do not imply 

self-reproductions of the initial field distribution, although they are the locations 

at which the maxima of the intensity distributions are present across the plane.  
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Figure 3.11:  The evolution of the propagation through a step-index multimode 

fibre from z = 0 to z = 8 mm: (a) beam intensity in the fibre; and (b) the normalised 

intensity of the propagated beam profile showing the locations where the 

intensity distribution peaks. However, the effect of self-imaging is not evident 

due to numerous number of modes that are excited.  

 

 There is a large variation of the intensity pattern in a multimode step-

index fibre as compared to when the light propagates within a graded index 

profiled fibre. In principle, the formation of an interference pattern arises from 

the fact that light enters into the fibre with different paths. They follow different 

ray trajectories with different phase constants and they interfere with each 

other. These rays converge at a desired position with similar phases, and thus 

generate the observed reconstruction of an initial field distribution. 

 To conclude, we have found that the propagating modes in GI-MMFs tend 

to concentrate near the optical axis. The reproductions of the initial excitation 

field are regenerated along the core of the fibre. Excellent results have been 

obtained for the re-imaging lengths at which the excited beam is repeated 

periodically within optical fibres structured with graded index profiles. When 

employing a constant wavelength of 1.55 µm the distance between the generated 
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intensity peaks varies for the four different fibres tested. The results show the 

longest reconstruction distance of an initial excitation field can be obtained in 

the case of GI100µm with the largest NA and core size. Regarding the location 

of the reconstructed beam, one can determine this by looking at the transmission 

peak associated with a specific mode in any transverse plane. The highest peaks 

(i.e. the maxima along the propagation length) indicate the positions where the 

light is most highly concentrated. However, in some cases, especially for the 

SI50µm fibre, these positions do not indicate the exact position of a duplicated 

input field but only show in general the locations of the highest intensity 

concentrations of the beam profile.  

3.8.3 Influence of the operating wavelength 

We have examined the dependence of the self-imaging length in GI fibres with 

different specification parameters such as the core diameter and numerical 

aperture; however, in this section, we will demonstrate the effect of variations of 

the wavelength on the reconstruction and modal propagation in the GI fibre.  To 

examine this effect, the core diameter of the multimode fibre was fixed to be 

equal to 62.5 µm, and a refractive index difference (delta value) of 0.0176 was 

used at a fixed 0.275 numerical aperture. The light propagation in GI62.5µm 

with the lower dispersion ranges at wavelengths of 850 nm, 1300 nm and 1550 

nm (i.e. the three lowest attenuation wavelength regions) has been explored.  

 In Figure 3.12 (a) – (c) we present the results of the evolution of the 

electromagnetic fields inside GI62.5µm, performed for fibres with three different 

operating wavelengths at 0.85 µm, 1.3 µm and 1.55 µm, respectively. We 

compare the mode field diameters of three directly launched 10 µm Gaussian 

beams for a GI62.5µm fibre and examine the three intensity peaks after equal 

lengths of propagation of 2 mm. The mode field diameters (MFD), measured at 

the 1/e2 points from the intensity peak, are the same when the operating 

wavelength is changed from 1.55 µm to 1.3 µm and 0.85 µm. 

 



73 
 

 

 

Figure 3.12: The dependence of field distributions upon the wavelength 

for the propagation of an incident Gaussian beam with a beam diameter 

of 10 µm in a GI62.5 fibre: (1a) 1.55µm; (1b) 1.3µm; and (1c) 0.85µm. 

 

 It can be seen from Figure 3.12 that the beam diffracts to a greater extent 

over the fibre core beyond its minimum waist position when the system is 

operated with a longer wavelength. Conversely, a smaller diffraction of the beam 

is observed in the fibre when operating with the shorter wavelength. This can be 

explained from the Huygens-Fresnel principle [64, 65]. It is well known that the 

amount of a light wave’s diffraction depends on the wavelength of light. 

Accordingly, a strongly diffracted beam is more observable with longer 

wavelength radiation as compared to that in a shorter wavelength region.  

(1b) λ = 1.3 µm 

(1a) λ = 1.55 µm 

(1c) λ = 0.85 µm 
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Figure 3.13: The normalised intensity profiles of the propagating fields from 

the planes at z = 0 to z = 2000 µm for a GI62.5µm as a function of the various 

wavelengths employed. The red lines represent the self-imaging peaks. 

 

 The normalised distributions of the intensity for various wavelengths at 

a wavelength of 1.55 µm, 1.3 µm, and 0.85 µm are plotted in Figure 3.13. At the 

wavelengths of 1.3 µm and 1.55 µm, the intensity distribution obtained exhibits 

almost the same pattern. We see that the interference between the higher-order 

modes is excited strongly, as indicated by the bottom peak (nearly zero) of the 

graph shown in Figure 3.13, particularly for the wavelength of 1.55 µm. In 

contrast, as the signal wavelength changes to 0.85 µm, we observe that the 

fundamental mode carries the most significant power. At this wavelength, the 

fundamental mode is predominantly excited, among higher-order modes, as 

shown in Figure 3.12(c). 

 Moreover, it is interesting to note the effect of wavelength on the self-

imaging phenomenon in that the re-imaging length interval of the incident beam 

operated at different wavelengths comes to focus at the same plane. The maxima 

of the transmission peaks (self-imaging peaks) occur at approximately the same 

positions inside the GI62.5µm multimode fibre. We, therefore, observe that the 

re-imaging length is wavelength independent since the self-imaging length will 
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be generated at very nearly the same position for different wavelengths of light 

in the fibres [66]. 

3.8.4 Influence of the relative refractive index differences  

In the previous section, we have determined the excitation of an input field by 

directly coupling a beam along the optical axis of a single strand multimode fibre. 

It has been shown that by suitably choosing the length and the index profile of 

the fibre in the design, multimode fibres (especially GI-MMFs) can be used to 

image the original intensity beam profile at certain distances. To investigate this 

further, we have performed an examination of the effects of propagation along 

the total length of the fibre. It was determined that the fibre specifications, i.e. 

the fibre core dimensions and the operating wavelengths, influence strongly on 

the evolution of an initial beam profile as it propagates through the fibre to 

replicate an optical source. We found that the initial intensity and phase of the 

original beam are then regenerated, resulting in maxima in intensity at periodic 

locations down the fibre length, each produced by the interference pattern 

generated inside the optical fibre.   

 In this section, the influence of the relative refractive index differences 

between the core and surrounding medium has been investigated. Launching 

conditions such as, for example, the NA and the delta fractional index difference 

(%∆) of the fibre also depend strongly on the imaging position of the original 

beam. We maintain the initial beam size of 10 µm, a wavelength of 1.55 µm and 

an index of the core,
1n , of 1.48 and examine a GI62.5µm commercially available 

fibre of 3 mm length. However, the index of the cladding is adjusted to obtain a 

smaller value of the fractional index differences. 
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 %∆ Intensity distribution (3 mm length)  %∆ Intensity distribution (3 mm length) 

0.5 % 

 

0.25 % 

 

0.45 % 

 

0.2 % 

 

0.4 % 

 

0.15 % 

 

0.35 % 

 

1.76% 

 

0.3 % 

 

0.8% 

 

 

Figure 3.14:  The simulated light propagation in a graded index profile multimode optical fibre 

with a 62.5 μm core diameter and 3000 μm length. The modal propagating fields are at 1.55 μm 

wavelength with various fractional relative refractive index differences (%∆) shown between core 

and cladding, ranging from 0.5% to 0.15% with increments of 0.05. Also shown are the best 

reimaging quality fibres with ∆ of 1.76% and 0.8%.   
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 The reimaging of an initial beam profile after propagation along the fibre 

length occurs when there is a fractional index difference between the fibre core 

and cladding that is greater than or equal to 0.8%, which is suitable for a high 

quality of self-imaging since the beam spot size is very similar to the commercial 

GI62.5 fibre and the MFDs remain the same at different peak positions along 

the propagation distance. However, we cannot achieve a perfect self-imaging 

quality when the ∆ < 0.8%, as shown in Figure 3.14. This is because of the 

dissimilarity of the mode field diameters at the maxima, which means that a 

perfect input profile can never be reproduced at the duplicate imaging locations. 

For the propagation characteristics shown in the above figures, light interference 

is clearly seen in the fibres but we see that as the ∆ is made smaller, the 

reduction in the number of propagating modes results in a deterioration in the 

quality of the input image replicas produced by the self-imaging effect in the 

fibre. When the ∆ is less than 0.3%, more light propagates through the cladding 

region, resulting in the loss of clear reproduction of the initial fields. 

 

Figure 3.15: The bar chart shows the mode field diameters as a function of 

percentage of the relative refractive index difference (%∆), measured at the 1/e2 

intensity point, that alter with fractional index differences for particular 

transmission peaks. 
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 The bar chart in Figure 3.15 shows the difference of the MFDs, measured 

at the 1/e2 intensity point, at the indicated self-imaging positions for different 

relative refractive indices. For a fibre length of 3000 μm, there are five replicas 

of the initial beam (i.e. the peak intensity position) for a ∆ of 1.76% and three 

duplicated beams for a ∆ of 0.8%, while the remaining fractional index 

differences do not show the same MFD at different maxima points. However, this 

is in contrast with ∆ of 1.76% (the value in a commercial GI-MMF and a ∆ of 

0.8%, which are able to achieve perfectly high quality re-imaging. However, 

when we reduce the value of the fractional index difference from these values, 

the imperfect beam re-imaging results in their MFDs not being identical with 

the original at z = 0 μm.  

 Even though the MFDs are dissimilar to that of the input modal excitation 

at the fibre face, we can consider the highest transmission peaks as the locations 

where the reconstruction of the input optical field occurs (whose normalised 

intensity values are relatively larger than their surrounding fields). Clearly, the 

power is distributed over the entire cross-sectional core area of the multimode 

fibre. We have explored the effects of duplicating the original beam profile with 

particular fractional index differences (less than 1%) in the multimode fibres. 

Although the self-imaging length increases with the relatively smaller fractional 

index differences, we notice that it was difficult to achieve 100% replicas of the 

initial image in these fibres. About 0.3% relative refractive index difference 

between the fibre edge and core is required to achieve a longer re-imaging 

distance in a GI62.5μm, neglecting the image quality.   
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3.8.5 Influence of the lower the refractive index in the core  

In Section 3.8.4 we have explored the effect of lower fractional index differences 

by keeping the same refractive index in the cores. It showed that self-imaging 

positions were different for different relative refractive indices. However, in this 

section the results of the reconstruction lengths of lowering the refractive index 

of the fibre in the cores with a fixed cladding index (at 2n  = 1.454 as used for a 

GI62.5μm in our previous simulation tests). By lowering the index 1n  in the core, 

the index differences  n between 
1n  and 

2n  are clearly decreased as depicted in 

Figure 3.16 below.  

 

 Figure 3.16: Design of a graded index fibre for different refractive index of the cores. 

 

Figure 3.17: The normalised intensity profiles of the propagating fields with 

various smaller refractive of the core 
1n  (with its corresponding colour of graph) 

inside a GI62.5µm, operating at a 1.55 µm wavelength with a beam diameter of 

10 µm when the fibre length is 3000 µm. 
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 The corresponding normalised peak intensity for each profile varying 

along the propagation direction is shown in Figure 3.17, for the transverse 

intensity distributions for each GI62.5μm fibre with various values of the core’s 

refractive index (lower than that of the previous simulations with 
1n  = 1.48). The 

intensity profiles of the duplicated input beam reduces when the core’s refractive 

index is decreased.  Most specially, the dispersion has significant effects on the 

self-imaging length. Clearly, the reduction in the peak intensity is especially 

significant as the light pulses propagate further away from the fibre facet. 

Although the light does propagate further away from an input beam with the 

various desired intensity pattern along the length of the fibre, it tends to 

continuously disperse with the lower index n1 of the core (such as the intensity 

profile shown in yellow in Figure 3.17). From this interesting phenomenon, we 

can draw a conclusion that the dispersion effects are strongly related to the self-

imaging location and the corresponding reduction of the intensity distributions. 

It is obvious that the power intensity is spread out more over the wider depth of 

focus (DOF) with the decreasing core index; therefore, the peak intensity has 

reduced significantly with the longer focusing distance (i.e. self-imaging 

position). On the contrary, the DOF is narrower for the higher intensity peak 

because the spreading of the power is much lower. For this reason, the repetition 

in imaging of the input beam can be found at shorter distances (with a definite 

DOF) after propagating from the fibre front facet.    
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Figure 3.18: The simulated light propagation in a graded index profile multimode optical fibre 

with a 62.5 μm core diameter and 3000 μm length. The modal propagating fields are at 1.55 μm 

wavelength with various refractive indices, 1n  , of the cores, reducing from 1.48 with decrements 

of 0.005 to almost 1.454 of the cladding index.  The mode field diameter of an initial input 

Gaussian beam was 10 μm at the 1/e2 point (measured at z = 0 μm). 
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 It can be seen that by minimising the 1n , the self-reproduction lengths of 

the input Gaussian beam appear at longer distances in a GI62.5 μm fibre (with 

a larger DOF). By decreasing the index of the core to 1.46, as shown in Figure 

3.18, the input beam is reconstructed at the plane z = 1088 μm which is more 

than double that which occurs in the commercial fibre with 1n  = 1.48 (shown in 

Figure 3.9b). Additionally, there is a trade-off between the beam size and the 

position of the redistribution of an incident field. The MFD of the incident beam 

at position z = 0 is closer to that of the reference Gaussian beam (before coupling 

to the fibre) for a fibre with significantly larger values of NA and index difference 

in comparison with a fibre with a smaller value of 1n in the core (i.e. only a slight 

difference of refractive indices between the core and cladding). Even though the 

reconstruction distances of the input field are shorter than in a fibre with a low 

index differences, the power is spread out less than in a fibre with a lower 1n  

value in which the beam is not as strongly focused.  

 The reason why the MFD at the plane z = 0 is larger than that for a lower 

core diameter, is because most of the power tends to spread out towards the sides 

of the fibre and thus the initial beam is focused further away with a broadened 

intensity peak. 

 

Figure 3.19: The difference of focal distance between a weak lens and a strong lens: (a) the 

incoming rays pass through the thin lens (weak lens) and the light rays are focused at a longer 

distance away from the lens, while in (b) the focal length is much shorter after the beams pass 

through the stronger lens (thick lens).  

(a) Weak lens 

(b) Strong lens 
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 As depicted in Figure 3.18 above for different values of 1n , the concept of 

the stronger or weaker lens (as shown in Figure 3.19) can be applied to this 

effect. Thus the higher 1n  can be thought of as the stronger lens which has a 

shorter focal length. This is opposed to the lower n1 in which the formation of the 

reconstructed beam can be thought of as resulting from a weaker lens-like 

structure, where the image reconstructed lengths appear at longer distances 

[67]. Thus the repetition of an input beam occurs at further distances away from 

an input plane in a fibre with a lower n1. On the other hand, for those fibres with 

higher 1n  values, the self-imaging length appears at shorter distances. For 

example, the first duplication of the original beam was at a distance of 1088 μm 

for the value 1n  of 1.46, whereas the first intensity peak was found at the position 

z = 580 μm with a fibre with an 1n  of 1.475. 

 It is, therefore, shown that in order to achieve a longer reimaging distance, 

the recommended fibre should have a much lower refractive index of the core 

since we have found that the self-imaging length interval is inversely 

proportional to index difference between 1n  and 2n . Based on our investigations, 

we conclude that the core refractive index and ∆ both have a significant influence 

on the self-reproduction length interval of the original input beam. 
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3.8.6 Influence of fibre geometry with a fixed NA of the fibre 

 

Figure 3.20: The characteristics of an incident Gaussian beam (MFD of 10 μm) within 

a 5 mm long section of GI-MMFs with a variety of core/cladding diameters of: (a) a 

62.5/125 μm, (b) a 120/200 μm, and (c) a 200/400 μm. The fibre is operated at a 1.55 

μm wavelength and the refractive indices of the core and cladding are 1n  = 1.48 and 

2n  = 1.454, respectively.The NA is 0.275 for all three fibres. 
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 A visualisation of the propagated 10 μm beam with different core/cladding 

diameters of the GI-MMFs, i.e. 62.5/125 μm, 120/200 μm, and 200/400 μm, 

together with their first self-imaging locations are depicted in Figure 3.20 (a) – 

3.20 (c), respectively. The fields are propagated in GI-MMFs for a distance of 5 

mm, with core and cladding refractive indices of 1n  = 1.48 and 2n  = 1.454, 

respectively. Considering the length of the duplicated incident beam inside the 

fibre, our results show that the target location of a transmitted Gaussian beam 

with a 10 μm diameter seems to increase with larger core sizes. It is found that 

the most effective way of increasing the focal distance seems to be to increase 

the fibre diameter. Comparison of the focal distances in these fibres, showed the 

effects of increasing the fibre dimensions on increasing the length at which the 

input field is redistributed. After propagating about 0.528 mm distance away 

from the input plane, the Gaussian beam distribution is displayed inside a 

62.5/125 μm dimension fibre in Figure 3.20 (a). The excited modes interfere with 

each other at a longer distance (by more than three times of the re-imaged length 

occurring in a 62.5/125 μm fibre) from a front facet of the fibre when the 

generated Gaussian beam is directly launched to a larger core size, i.e. in a 

200/400 μm fibre. As discussed above, when a larger core size is used the beam 

experiences more dispersion; however, the collimated input Gaussian beam can 

be reproduced further from the plane of the incident beam. 
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3.8.7 Influence of fibre geometry with lower index of the fibre core 

Our simulation results reveal that we have coupled about 96% of the total 

transmitted power into the modes in the guided fibre section and the significant 

power was transmitted to the fundamental mode of the fibre, whereas the 

remaining power is distributed into a large number of higher output modes.  

 

 

Figure 3.21: (a) The numerical simulation results of the light propagation along a transmission 

distance in a GI-MMF of 10 mm length with the core and cladding refractive indices of 1n  = 1.46 

and 2n  = 1.454, respectively. An incident Gaussian beam, with a 10 μm beam diameter, is 

introduced into a fibre with the core/cladding diameter of a 200/400 μm, with a wavelength of 

1.55 μm and (b) the corresponding normalised intensity profile of the propagation beam.  
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According to our previous investigations of the characteristic propagation of an 

optical field along the GI-MMFs with an optimum parabolic index profile, we 

obtained a number of useful and interesting results to achieve a longer 

reimaging distance of an input field profile. Furthermore, it is of interest to 

propose a new technique by taking advantage of our previous numerical 

simulation results to exploit the optimum distance for which we can obtain a 

high quality of reproduction the original input field profile. However, an 

additional concern is the effect on the beam propagation of having a fibre with 

greater diameter with less index difference. 

 The optical field distribution in x-z cross-sections along a GI-MMF with a 

larger core and cladding of 200/400 μm are presented in Figure 3.21 (a) along 

with the corresponding normalised intensity profile in Figure 3.21 (b) of the 

propagated beam with an MFD of 10 μm at the 1/e2 value of maximum on the 

beam axis. The fibre is operated at a 1.55 μm wavelength and the refractive 

indices of the core and cladding are 
1n = 1.46 and 

2n  = 1.454, respectively. 

Although the refractive index of the core is made smaller, the light is mostly 

maintained in the core region and propagates with the total internal reflection 

(TIR) phenomenon through the fibre.  

 The simulation results in Figure 3.21 (a) show the results of increasing 

the inner and outer geometry of the fibre for a 10 mm length of transmission.  

We found that after propagating the original input image through nearly z = 3.48 

mm in the proposed fibre, the transmitted incident Gaussian beam were 

completely retrieved (an inverted image based on the fractional Fourier 

transform). This reproduction length interval is twice the first self-imaging 

distance of a fibre with similar geometry (as shown in Figure 3.20 (c) of section 

3.8.6), but slightly higher index of the core (
1n  = 1.48). By lowering the index 

differences between the core and cladding to its minimum point, an input beam 

is reconstructed (i.e. an actual image) at almost 7 mm, which is where z = 4L 

(with the Fourier length L being 1.75 mm).  
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 It is clearly evident that using the fibre with a lower index difference for 

a given refractive index, the power is distributed to the side of the structure over 

a large area of the cross-section but experience longer self-imaging distances at 

the re-imaging planes. Thus one way to extend the formation of an imaging to 

longer lengths is to use the GI-MMFs with less index differences and large fibre 

geometries. Thus this fibre design can effectively expand the self-imaging 

lengths, with a real image being formed at a distance of 7 mm away from an 

input plane. 

3.9 Conclusion 

Throughout the simulation presented in this section, we have investigated a 

beam of light transmitting in MMFs with different fibre specifications, 

dimensions and index profiles (but at the same operating wavelength). It has 

been shown that is possible to periodically fully recover the input beam, and 

hence the data or information carried by modulation of this beam. We also show 

their relationship to length of the image reconstruction at the desired plane.  

 Thus the initial phase pattern and the beam amplitude profile at the 

source are reconstructed at some particular planes along the length of the fibre. 

These positions are the so-called the self-imaging planes where the interference 

of the excited modes has converged. It is possible to observe the interference 

patterns over the cross section of the fibre and the characteristics of the light 

propagation in different locations because of the distribution of the excited 

modes, i.e. each of the modes travel with different speeds and phase constants. 

We have designed a new optical fibre architecture to couple one spatial channel 

of the beam passing through a single strand GI-MMF. In the simulation results, 

our approach allows the input beam to be reconstructed periodically at longer 

distances, such that one can easily optimise the distance of the image 

reconstruction for an input image by carefully designing the fibre parameters.    
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Chapter 4  

High-density multi-channel 

transmission in graded index fibre 

4.1 Introduction 

A plurality of spatially independent channels is seen as a way to increase the 

capacity of a fibre by transmitting a number of input Gaussian profile beams [68, 

87, 95], operating in the same wavelength region within a single multimode 

fibre. Multiplexing a number of communication channels is our greatest concern 

in this chapter to overcome the limited transmission capacity and maximise the 

data rate. Another important factor that needs to be investigated is the 

degradation of the optical signal due to perturbation effects within the fibre. This 

is because this affects the maximum number of channels that can be transmitted 

in the system. Our primary objective in this chapter is to demonstrate the 

number of multiplexed optical sources in the system by illuminating multiple 

numbers of Gaussian beams onto the centre fibre, which has been proposed in 

Chapter 3. In this work, we define the channel as an input Gaussian beam, 

propagating from a number of sources that is carrying independent information 

down to a single multimode fibre core. We show the potential to increase the 

capacity of a fibre employing a SDM technique, which is multi-channel 

transmission down a single core of a GI-MMF. However, there are several 

challenges that need to be considered with the design of such a system, for 

example, the arrangement of the optical sources and the packing of the number 

of optical channels that can be simultaneously accommodated in the GI-MMF. 

Later in this chapter, we investigate the influence of the excitation conditions, 

i.e. the separation distance and the physical arrangement of the optical 
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channels, on the strength of coupling between adjacent channels (beams), and 

then estimate the channel crosstalk. 

4.2 General background of SDM 

The crosstalk between channels is an obvious drawback in SDM and is the main 

challenge when using multimode or few-mode fibres. This is because the spatial 

channels in either the modes or cores are packed tightly inside the optical fibre. 

Hence there is the need for electronic post processing, namely multiple-input-

multiple-output (MIMO) at the receiver to subtract out and equalise the mode 

crosstalk. However, the management of differential modal group delay and 

strong coupling effects have created difficulties for MIMO in equalising the 

channel crosstalk. Over the last two decades, using wavelength division 

multiplexing (WDM) as a multiplexing technology has increased the 

transmission capacity by two orders of magnitude which has met the growth in 

capacity demand [68]. Most recently, increasing the capacity of optical fibres 

using coherent detection methods rather than direct detection has been used to 

achieve higher spectral efficiency (SE) with the maximisation of SNR [11]. 

Clearly, high SNR values mean that more power of the signal must be employed 

and as such requires more energy per bit transmitted and so can limit the traffic 

demand.  

 As a more recent technology, SDM has been heavily investigated as a new 

way to further increase the transmission per bit and has promising potential to 

provide a reduction of cost per transmission bit and be more energy efficient with 

the use of in-line amplifiers. The systems using SDM are categorised into two 

fibre types (see Figure 4.1) as candidates to transmit signals having the same 

wavelength, i.e. multi-core fibre (MCF) and multimode fibre (MMF) or few-mode 

fibre (FMF). In principle these fibres can support more than one transverse 

mode. The MCF has the potential to transmit data with a high spatial density of 

cores in a single cladding. However, the multiple independent cores have to be 

sufficiently well separated with the properly sized distances to minimise 
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crosstalk. Another fibre type utilises MMF or FMF transmission using mode-

division multiplexing (MDM) to spatially multiplex multiple distinguishable 

modes with sufficiently different propagation constants between each spatial 

mode guided. By doing so, the reduction of crosstalk between each mode and the 

suppression of linear coupling are possible. As has been described in the 

literature, an SDM fibre that supports a large number of spatial modes, N, can 

be used to increase the transmission capacity by a factor of N times over that of 

a single mode fibre [68].  However, the number of modes transmitted is restricted 

by the dimension of the core and the maximum number of an acceptance angles 

and/or the numerical aperture.  

 

 

Figure 4.1: Summary the different types of optical fibre used in 

communication systems (adapted from [68]). 

 

 The current challenge in designing a fibre is to have the maximum 

number of spatial modes whilst making sure that the linear mode coupling and 

modal dispersion are suppressed since these are the main obstacles to achieving 

a higher transmission bandwidth [68]. Therefore, there are possibilities that the 

different modes will exhibit fibre impairments, i.e. there will be detrimental 

effects due to the differential modal group delay (DMGD), modal differential loss 

(MDL) and gain (MDG), mode-coupling, crosstalk from one mode to an adjacent 

mode and inter-symbol interference (ISI) in modes that have different group 

velocities.  
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 To achieve more transmission capacity per bit, it is essential to 

compensate these impairments by introducing electronic or optical 

compensating techniques. To date it can be clearly seen that utilising traditional 

MMFs can support more numbers of modes with different core and cladding 

diameter designs (core/cladding size), e.g. 50/125 µm and 62.5/125 µm. However, 

these experience high DMGDs and it is difficult to specify them individually. 

Nevertheless, the recent fibre technologies of FMF, supporting only a small 

number of modes, have led to significant developments due to their low DMGD 

and so can largely reduce the system level complexities required in previous 

multi-core designs [15, 69, 70].  

4.2.1 SDM transmission system architecture 

Ch 1

Ch 2

Ch N

Spatial Mode MUX

S-MUX

Spatial Mode 
DEMUX

S-DEMUX

Co-RX 1

Co-RX 2

Co-RX N

N×N
DSP-MIMOSDM fibre SDM fibre

SDM 
amplifier

Ch 1

Ch 2

Ch N

N Recovered signals

Figure 4.2: Architecture of an N × N SDM transmission system utilising coherent MIMO digital 

signal processing. MUX/DEMUX: multiplexer/demultiplexer, Co-Rx: coherent receiver (adapted 

from [43]). 

The major key elements for the full realisation of the SDM architecture (see 

Figure 4.2) for an N × N channel system comprise: 

 N transmitters  

 space-multiplexer (S-MUX) 

 SDM fibres 

 SDM optical amplifiers 

 space-(de) multiplexer (S-DEMUX) 

 Mode generators  

 N coherent receivers 
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By using MDM, the multiple channels are used as multiple independent modes 

to further increase the capacity. The S-MUX is used to couple the light carried 

from different spatial modes into SDM fibres, i.e. MCF, MMF/FMF. It is noted 

that all the modes propagate with the same wavelength. The SDM signals are 

amplified, added and dropped at the same time. The received signals are 

demultiplexed at the end of the SDM fibre and N channels are ready to be 

detected by coherent receivers to convert from an optical domain to an electrical 

domain, and electrical signals are processed with a DSP-MIMO algorithm to 

minimise the channel impairments such as mode coupling and crosstalk between 

each mode [12, 71, and 72].   

 The first proposed method using the refractive index profile of a graded 

index fibre core design to realise the MDM concept was reported in 1982 by 

Berdague and Facq [69] to launch and recover the two independent modes using 

spatial filtering techniques for short-haul transmission up to a ten kilometres. 

Gruner-Nielsen et al. [70] have also recently experimentally demonstrated a 

reduction of DMGD, a low insertion loss as well as lower coupling between each 

mode for transmission supporting LP01 and LP11 guided modes.   

4.2.2 Impact on MDM in optical fibres 

Modes in fibres are said to be orthogonal to each other as long as their spatial 

amplitude and phase stay the same during their propagation in the fibre. 

However, the orthogonality of modes is destroyed if a coupling level exists in the 

fibre and also due to crosstalk among each mode caused by imperfections of the 

fibre such as bending. Thus this main challenge has placed a limitation to 

achieving higher capacity and long transmission distances of communications.  

 Since the degenerate modes have the same propagation constant, they will 

couple with each other and so mode coupling and crosstalk are introduced 

between the degenerate modes. The input independent data stream will be 

dispersed at the receiver; in other words the signal is spread and it is not easy 

to characterise the channels individually due to the modal dispersion which 
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causes the signal to arrive at the receiver with different modal group delays. 

According to [13, 15], mode coupling can be compensated in order to achieve 

greater modulation bandwidth within the available optical power budget. This 

effect, however, seems to be contradictory if the loss is suffered by transferring 

the optical power into radiating modes.  

 The coupling between degenerate modes of different paths must be 

undone to fully recover the original transmitted data stream. The method used 

in wireless communication, namely, the MIMO transmission system, can be 

exploited to equalise the mode crosstalk in a SDM system. In general, there are 

two main equalisation techniques: time-domain equalization (TDE), reported in 

[71-73], and adaptive frequency-domain equalization (FDE) [74, 75]. It is 

observed in [15] that the BER performance in an adaptive FDE reduces the 

complexity more for each spatial mode than that in adaptive TDE.  

4.2.3 SDM components 

The components in SDM systems are classified into passive and active devices, 

which will be covered in this sub-section.  

4.2.3.1 Passive fibre components  

These offer an option to be highly integrated with the SDM system and be able 

to convert a multiple single mode signal into a multimode light signal and vice 

versa. The mode-division multiplexer has to map one single mode input signal 

to one mode of the multimode output signal at the other end face of the fibre. 

With inputs to the fibre having different propagation constants, the mode 

selectivity can be performed, meaning that each input mode is mapped into one 

particular output mode.  The passive components for mode MUX and DEMUX 

comprise of the following:  

 Mode conversion methods are based on the use of phase plates, a bulk 

phase mask device, or tuneable spatial light modulators (SLM) such as liquid 

crystal on silicon panels (LCOS).  Phase plates are capable of matching the 

fundamental mode profile LP01 into higher order modes and to excite mode 



95 
 

guides in MMF. However, the drawback of this multiplexer is the high insertion 

loss (IL) and the number of modes is limited since the insertion losses are mode 

dependent and scale with the number of modes. 

 Spot-based multiplexers are seen as a way to improve an increasing IL 

with multiplexing a high number of modes that are imaged onto the MMF/FMF 

facet [15, 68]. These spot multiplexers can excite a linear combination of modes 

and match each spot profile to a near group of SMFs. The addition of an adiabatic 

transition region in a so-called photonic lantern (PL), is an extension of the spot-

based multiplexer; the input signals have a potential to transmit with a large 

number of modes over MMF/FMF within the transition region (see Figure 4.3). 

The input signals are coupled to more than one mode group making the mode 

selectivity feature possible and the ability to excite only one mode group per 

fibre.  

 

SMFs

Low index tube

Taper section

SDM fibre 
MMFs/FMFs

 

Figure 4.3: Passive component in SDM systems (adapted from [68]) 
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4.2.3.2   Active fibre components 

Multimode amplifiers are essential in long distance SDM transmission to boost 

the power and compensate for losses. The key recent technologies in 

amplification for SDM systems are multimode erbium-doped fibre amplifiers 

(MM-EDFA) and multimode Raman amplifiers. Currently, multicore EDFA 

(MC-EDFA) has been demonstrated that has the potential to amplify multiple 

spatially separated channels with a low core-to-core crosstalk for achieving long 

distance communication in a weakly coupled transmission [78]. 

 For a MM-EDFA, the main concept is that each mode needs to manage its 

power loss and the associated signals within each mode must have enough gain 

to amplify the signals. It is essential to minimise mode-dependent gain (MDG) 

and to control distribution of power in a signal mode [15]. From the theory of 

MM-EDFA, there are basically two main approaches to equalise MDG: pump-

mode control and doping-profile control. In the pump-mode control approach the 

power distribution depends upon the desired pump intensity profile in which it 

is generated from the pump source and is controlled by attenuators. Then the 

pump source, generated by a laser diode, is first separated into a number of 

different paths and the mode converter is used to convert from low-order modes 

to high-order modes and vice versa. Each mode generated from a pump source is 

then combined with the field distributions of signals guided by the MMF via a 

dichroic mirror (Figure 4.4). 
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Figure 4.4: Pump signal combiner concept for single multimode core fibres [12]. 

 

The dichroic mirror is used to reflect the pump radiation and also can be used to 

transmit the signal from the MMF. The combined signals are fed into a MMF 

and focused into a MMF EDFA module [15, 68]. Another MM-EDFA approach is 

doping-profile control in which all signal modes receive the same gain level and 

use a refractive index profile to control the modal gain by having a ring profile 

shape. The latter method can amplify significantly four nondegenerate mode 

groups and has been experimentally demonstrated elsewhere [79].  

 Another frequently used MMF amplifier is the distributed Raman 

amplifier. A flat Raman gain derives from the transfer power from multiple 

pump radiations of different modes to multiple signal radiations along the 

transmission path. In comparison with MMF-EDFA, the Raman amplifier 

requires more pump power density at longer lengths of the fibre. It is shown in 

[12] that the total power pump level in the case of MMF-EDFA is less than that 

for the distributed Raman amplification and has the possibility to gain better 

power efficiency. 
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4.2.4 The progress in SDM transmission system experiments 

The long transmission distance in a graded index FMF-MDM system consisting 

of 6 spatial modes has been reported in [80] over a 1200 km length with 30 km 

spans. The crosstalk was suppressed by using coherent 12×12 DSP-MIMO 

processing using the work of Ryf et al. [81], where a record was achieved for the 

highest number of 6 spatial modes (LP01, LP11a, LP11b, LP21a, LP21b, and LP02), 

considered as multiple separated data channels. 

 To date, the developments of SDM transmission have shown a net total 

capacity of more than 1.01 Pb/s by utilising a 12-single mode MCF and a MCF 

which has been demonstrated by Takara et al. [82] over a distance of 52 km in a 

single span. In the experiment by Igarashi and co-workers [83], a transmission 

distance over 7326 km with a 45.5 km span length achieved a record 1030.8 Pb/s 

× km of capacity-distance product with a 7-core fibre. In order to gain further 

significant increases in the capacity it is possible to utilise a hybrid of the MCF 

and FMF concept. Recent developments by Qian, et al. [84], have achieved the 

highest record capacity so far which is now approaching 1.05 Pb/s with a hybrid 

of 12 single-mode cores and 2 few-mode cores supporting 3 spatial modes but at 

only 3 km distance. However, the net spectral efficiency is by far the highest, 

leading to 109 bit/s/Hz as the initial achievement. The current transmission 

systems are moving forward into a region that provides high spatial multiplicity 

of more than 30 spatial channels [155] and dense space division multiplexing 

(DSDM) by utilising multi-core and multimode fibre as the transmission medium 

to triple the current capacity per fibre of 1 Pb/s in SDM systems [156, 157].  

 In our proposed system, the light exiting from the same laser source with 

the same wavelength was launched as spatially modulated channels into a single 

fibre. An output in the form of circular rings is obtained at the end of the fibre 

corresponding to the modulated channels. The channels are then directed to a 

number of detectors. The output intensity profiles of the beam are visualised to 

determine the interference pattern and crosstalk during propagation between 

channels. The SDM channels use a laser source to transmit different channels 



99 
 

of the same wavelength with each channel being specified by its own spatial 

location. The channels are transmitted on separate spatial modes/routes and 

then routed together into a standard graded index multimode fibre with a well-

defined core/cladding diameter. The ring shape output pattern can be used to 

determine the density of SDM channels supported inside the fibre core from its 

total thickness [85]. Most importantly, this will allow the bandwidth of existing 

systems using one fibre core to be improved by more than 10 times in the near 

future [86]. 

4.3 Principles of coupling between spatial channels in the 

 fibre 

When two or more input channels are multiplexed in the same fibre, there is a 

possibility that an undesired optical power from one channel will transfer into 

another channel and an amount of signal power is coupled from one channel into 

other channels. That signal then becomes the noise of another channel such that 

this fraction of unwanted signal is known as crosstalk [87-89]. The main sources 

of contribution to the crosstalk between channels are from the effects of 

scattering (i.e. from one beam into the neighbouring beams) and the diffraction 

of light during propagation.  

 It is important to minimise the exchange of unwanted signal between 

adjacent channels and reduce the chance of interference with an inflow of 

unwanted signal; therefore, arranging the channels with sufficiently spaced 

distance is key to providing a solution to guarantee acceptable crosstalk levels of 

the signal from one channel into another channel. If, however, the channels were 

physically placed close to each other below the optimum separation distance, this 

in turn would give rise to increased channel crosstalk. To meet the higher 

bandwidth requirements for future communications by employing multi-channel 

propagation, it would be useful to increase the density of the packed channels 

and simultaneously propagate them within the same fibre. However, there is a 

trade-off between the crosstalk levels, and achieving the maximum number of 
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input channels over a length of transmission because the higher the channel 

density, the larger the crosstalk between multiple channels. Thus, maximising 

the distance between these channels is seen as a way to overcome the power 

coupling present between the neighbouring channels, although the number of 

multiplexed channels is limited in such a way.  

 Many SDM transmission systems based on multi-core (MCF) and 

multimode (MMF) or few-mode (FMF) fibre usually employ a DSP-MIMO to 

equalise the crosstalk level and to spatially de-multiplex the transmitted data at 

the receiving end.  Nonetheless, the complexity of DSP-MIMO can be neglected 

if the crosstalk between adjacent data streams that arises from the extraneous 

optical power from the other channels during propagation can be reduced with a 

proper channel design arrangement in which each of these channels are spaced 

equally with an optimum distance. According to the studies in [90, 91], a 

tolerable inter-channel crosstalk levels of -10 dB for a power penalty of 0.5 dB is 

required for a digital signal over a short reach communication system. However, 

for a power penalty of about 1 dB, a typical crosstalk of less than -25 dB is 

appropriate for the in-band channel crosstalk for long haul transmission greater 

than about 100 km [92-94].  
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4.4  Design of multiple spatial channel transmission 

4.4.1  Optical channel arrangement 

To realise such a plurality of transmission channels, the combination of multiple 

Gaussian beams can be utilised as input optical light sources in the fibre. In the 

simulation model, we set the launched beams with an equivalent spot size wn of 

5 μm (the beam diameter 2wn = 10 μm). The model that is being investigated 

comprises of four, seven and eight independent beams, which are arranged over 

the cross section of the fibre as displayed in Figure 4.5(a) – 4.5(c), respectively. 

We decompose the input Gaussian beams in the GI-MMF, which supports a 

multi-channel transmission as has been proposed in the previous chapter.  The 

optical beams are injected onto the centre of a GI-MMF structured with 200/400 

μm (core/cladding) diameters with a low index difference (∆ 1n  = 0.6%), with a 

refractive index in the core axis 1n  of 1.46 and surrounded by a lower cladding 

refractive index 2n  of 1.454. The transmitted beams are coupled through the 

optical transmission system at the wavelength λ of 1.55 μm. To make a fair 

comparison, these input beams have the same physical parameters, i.e. the same 

beam spot sizes.  Here, the Gaussian beams used in our model are defined by the 

following equation: 
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where the subscript n denotes the beam number.  
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Figure 4.5: A schematic view of the multiple beam arrangement in a GI-MMF for: (a) 4-channel; 

(b) 7-channel; and (c) 8-channel configurations. 

 

4.4.2 Design structure of multi-channel transmission in optical fibre 

The study of independent transmission channel arrangements with a high 

number of transmitting channels per fibre core has been investigated from the 

viewpoint of crosstalk analysis between the channels in order to progressively 

increase the channel capacity in the SDM transmission. In this work, we have 

demonstrated the coupling of different channels with a 4-channel, 6-channel, 7-

channel and 8-channel arrangement. It is worth noting that we should get the 

same coupling phenomenon between the neighbouring channels since each beam 

has the same properties and they are equally separated from each other. For 

simplicity and ease of the launching condition, it is reasonable to assume that 

the separation distances between the beams are equal and by a sufficient 

distance from the centre of one beam to adjacent beams. To further explain the 

design, the centre of the fibre is located at the (0,0) coordinate and each channel 

is assigned at different positions in nx  and ny  coordinates, which depend on the 

design configuration. To begin with, we have characterised the impact of inter-

channel crosstalk between a 4 beam spatial channel at a close spacing distance 

between the beams of 45 μm, and consequently a high density of beams has been 

packed in the proposed fibre. Then, we further increase the spacing distance 

between the channels and find that the best optimum distance where the beams 

can be positioned is around 60 μm from the centre of the structure. It is 

(a) 4-channel arrangement (b) 7-channel arrangement (c) 8-channel arrangement 
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demonstrated that increasing the spacing distance further away from the 

optimum range, the beams tend to lose their power to the lower refractive index 

region and it is impossible to maintain good quality Gaussian beams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: A schematic view of different beam arrangements and the associated 

optical parameters of: (a) 4-channel transmission with a 45 µm spacing distance, 

(b) 4-channel transmission with a 60 µm spacing distance, (c) 6-channel 

transmission with 60° spacing distance between adjacent channels; and (d) 7-

channel transmission. 

 

 Later we will show that arranging the beam in a circular ring-like 

structure can ensure a tolerable crosstalk level and make use of the total 

available capacity in the fibre. In other words, the power coupling of each 

channel in this design, as shown in Figure 4.6 (a) - (c), receives approximately 

the same amount of additional power from the two adjacent channels, while the 

hexagonal structure in Figure 4.6 (d) is not quite an optimum arrangement. The 

(a) 

(c) (d) 

(b) 
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reason is that the central beam is surrounded by six outer channels and so 

suffers significant scattered signal from all the neighbouring channels. 
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Figure 4.7: The structure of eight independent spatial channels is well 

separated by the angle θ = 45° between adjacent channels. 

 

 Let us consider the beam arrangement in Fig. 4.7 for an 8-channel 

configuration where each beam is spaced by the angle θ = 45°. Obviously, the 

total number of spatial channels that can be packed in the fibre core increases 

with a decreasing angle between adjacent beams, but the overlapping area 

occupied by the detector at the central location of each beam will receive a 

significant portion of the transferred power from the near channels and hence 

introduce large amounts of beam coupling. Furthermore, it is seen that the 

number of channels that can be simultaneously multiplexed in a large fibre core 

diameter increases with a decreasing angle θ between the channels. 

Nevertheless, the maximum number of communication channels and the 

minimum separation distance are limited since it depends upon the tolerable 

crosstalk levels between nearby channels as mentioned in Section 4.3. 
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4.5 Measurement method for channel crosstalk 

4.5.1 Metrics for measuring the crosstalk 

The crosstalk in fibre optics is a measure of the amount of an undesired 

transmitted signal from one channel that is picked up by another channel. A 

relation of the optical power at the transmitting end and the power at the 

receiving end usually defines the crosstalk. However, in our crosstalk evaluation, 

the channel crosstalk XT in channel number n is estimated from the ratio of the 

signal and crosstalk optical power that has fallen into the detector space and is 

determined by using the relation: 
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where Psingle,n is the optical power of the transmission signal in a single beam 

and Pmultiple,n is the optical power collected from the multiple channel 

transmissions that occur at the same time, as shown in Fig. 4.8 (a) and (b), 

respectively, as an example of a 6-channel transmission for the beam located in 

the top right of the structure. Generally, Psingle,n is always less than Pmultiple,n 

because there is the leakage of signal crosstalk from adjacent channels. 

 

 

Figure 4.8: The XTn evaluation of the top right beam for: (a) Psingle,top 

right the optical signal of the beam; and (b) Pmultiple,top right the optical signal 

of the top right beam with associated crosstalk. The small circular 

region located in the middle of the beam denotes the area of the detector 

and the bigger circle represents the boundary of the fibre core size.     
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 To analyse the beam crosstalk in a multi-channel transmission 

configuration, initially we run a simulation for a single channel transmission 

with each simulation being launched with a Gaussian input beam positioned 

exactly at the same coordinates as the beam would be in a given multi-channel 

arrangement, in which the detector size and its position are kept the same for 

both the single and multiple beam transmission, i.e. centered on the beam re-

imaging position. A reasonable circular size of the detector can be made to cover 

most of the propagated field of a single beam. Overlaps of the multiple beams 

onto that detector are determined by measuring the optical power within a 

surrounding circular area of a single channel transmission, and then comparing 

the occupied optical power in multi-channel transmission so allowing the power 

coupling to be analysed. Thus to assist in crosstalk reduction, we would prefer 

to have a detector size as small as possible in order to prevent the undesired 

signal being coupled from the neighbouring beams [95]. However, it is not the 

best option to keep the crosstalk below the tolerance levels simply by reducing 

the detector size. The reason is because the optical fields during the transmission 

will be lost in the surrounding area. Rather than decreasing the detector size, 

there exist other solutions to further reduction of the crosstalk by optimising the 

channel spacing and arranging the multiple beams to be accommodated in the 

core area.   
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4.5.2  Algorithm for evaluating the multi-channel crosstalk  

As the beams propagate in the fibre, they overlap with the neighbouring beams 

in a certain circular area. In order to take account of the amount of additional 

signals coming from other beams, it is essential to set the boundary regions of 

interest (ROIs) for each channel. The occupied circular area of the ROI can be 

thought of as the detector size, i.e. the photodiode. Moreover, there is no 

particular rule for the size of the detector (indicated as a circular shape), but it 

should be large enough to collect most of the optical power in one channel and a 

minimum amount of light from the other beams. To optimise the influence of 

crosstalk on the multiple beam transmission, it has been suggested by Gloge [95] 

that at least 75% of total distribution power should be received within the 

detector region. Consequently, the unwanted signal crosstalk received from 

other channels can be suppressed. Also, it is stated in the same source that any 

beams that are equivalent in size and spacing between nearby channels should 

have a similar amount of scattering. 

 In the following, we explain in detail the measurement methods to 

evaluate the channel crosstalk from each of the transmitted Gaussian beams. 

The data extraction process for each of the beam profiles is given in the flow 

chart shown in Figure 4.9, which comprise three main steps as follows: 

1) Obtain the image response at the image plane for the transmission of 

 one channel; 

2) Address the location for the centre of the detector array where the spot 

 intensity level is maximised as the region of interest; 

3) Determine the optical power falling into each of the circular regions.  

We perform these steps again for the different coordinates of the beam profiles.  
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Figure 4.9: The flow chart diagram displays a process for the measurement of 

the associated signal of the beam ROI and ratio of overlapping power. 

 

This process is repeated again with the reproduction of the input beam profile 

that is taken in the imaging plane of the multi-channel transmission. The 

increments of the overlapping area were measured by the difference of the 

associated optical signal between the individual beams and the multiple beam 

transmissions at the segmented ROI.  Our proposed algorithm can be adapted to 

any number of beams with no restriction on the pattern of the launching beams 

at the fibre cross section.  

 Subsequently, the study of linear effects is determined when multiple 

channels are multiplexed and propagated in the same fibre. However, it becomes 

incredibly challenging to extract the light that propagates at the same 

wavelength from one of the several Gaussian beams. Therefore, we run a 
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simulation for a single channel transmission, and each simulation was launched 

with a Gaussian input beam positioned exactly at the same coordinates as the 

beam would be in multi-channel transmission. After running the numerical 

simulation for a single channel transmission, the next step is to multiplex 

several input channels with the same spacing between adjacent beams at the 

same time through the optical fibre.  

 Let us assume that we have chosen the size (in diameter) and the position 

(in the middle of the beam) of the detector and know the associated signal falling 

on the detector and then that amount will be squared to obtain the collected 

optical power for each of the beams. It is now a simple calculation to get the 

portion of scattered beam power outside of the detector area in order to 

determine the percentage of power collected by the detector. This was calculated 

in a single channel transmission by subtracting from the full amount of the 

optical power that is collected by the large detector region (i.e. within the total 

fibre cross sectional area) and the optical power that enters onto the defined 

detector region, as shown in in Figure 4.10 (a) – (d). This is done for the position 

of the masked circular detector for each beam for a 4-channel transmission 

located at the top, bottom, left and right, respectively. 
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Figure 4.10: The numerical simulation of amplitude Gaussian beam profiles 

with their circular masks located at the centre of the beam coordinates for the 

beams arranged at the top, bottom, left and right positions.  

 

The first step in performing a crosstalk analysis is to gather the amplitude field 

distribution from both the single and multi-channel propagation at the 

reconstructed plane z = 2L, i.e. twice the Fourier length in the fibre. 

 

Figure 4.11: The amplitude beam profiles of 

the four-beam transmission with their circular 

detectors located at the centre of each beam at 

their different coordinates.  

 

 

Mask inside Bottom beam Mask inside Top beam 

Mask inside Left beam Mask inside Right beam 
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To determine the area overlapping from the nearby channel, we repeat the same 

boundary addressing process as described in Figure 4.9. We can see from Figure 

4.11 that the detector is located in the middle of the beam to estimate the 

undesired signals from the other beams. Note that the size of the detector is 

identical between the different channels. Lastly, the coupling level, i.e. the 

unwanted signals of a channel, can be characterised by comparing the overall 

optical power with the power falling on the detector between the single channel 

and multi-channel simulation runs at the same input coordinates. 
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4.6 Simulation results  

4.6.1 Results and Discussion  

As the beams propagates along a 10 mm length of the fibre, it is clearly seen in 

Figure 4.12 that the first reproduction position of the multiple input beams was 

found at a distance z = 3488 μm. In addition, one can see that when multiple 

channels are simultaneously propagated in a GI-MMF, a significant amount of 

power is still coupled into the centre of the fibre. There is not much of the power 

that has been transferred into a lower refractive index region. In addition, a 

group of beams come to focus at the same position and arrange themselves 

periodically along the fibre in a multi-channel transmission. 

 

 

 

 

 

 

 

Figure 4.12: Side view of the propagation of the Gaussian beams multiplexed in the GI200/400 

μm fibre operated with λ =1.55 μm for a propagation distance of 10 mm with: (a) the four 

Gaussian multiplexed beams; (b) the six Gaussian multiplexed beams; (c) an eight Gaussian 

multiplexed beams; and (d) the seven Gaussian multiplexed beams. 

 

  

z = 3488 µm 

z = 3488 µm z = 3488 µm 

(a) 4-channel transmission 
(60 µm separation distance) 

(b) 6-channel transmission (c)  8-channel transmission 

400 µm 200 µm 

(d)  7-channel transmission z = 3488 µm 
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Figure 4.13: The amplitude field distribution of each of the physical channel arrangements and 

the detector’s position with the marked channel number on the circular detectors (measured in 

diameter) for different types of SDM transmission system: (a) 4-channel (a 45 µm separation 

distance); (b) 4-channel (a 60 µm separation distance); (c) 6-channel with 60° spacing distance 

between adjacent channels; (d) 8-channel with 45° spacing distance between adjacent channels; 

and (e) 7-channel configurations with a 60µm spacing distance. 

 

 

 

Detector size = 76.92 µm 

(e) 



114 
 

We measure that about 90% of the power is coupled into a GI200/400 μm fibre 

when the channels are distributed in a single ring structure for 4, 6, and 8 

transmission channels, as depicted in Figure 4.13 (a) - (d), respectively. On the 

other hand, nearly 88.50% of the power is fully transmitted into the fibre when 

7 optical channels are packed together in a hexagonal shape as shown in Figure 

4.13 (e). Consequently, we can conclude that a ring-like channel arrangement is 

an optimum design configuration since the total available channels at a cross-

section of the fibre receive approximately equivalent amounts of coupling and a 

high percentage of the power can be coupled in the fibre. 

 

Figure 4.14: The percentage of the power coupled into the detector area (in diameter) for each 

beam position when a single beam is transmitted in the fibre.  
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 Using the measurement metric for channel crosstalk given in Section 

4.5.2, the graph in Figure 4.14 shows us that the detected optical power in a 

detector is greater than 75% of the total optical power transmitted from each 

beam [95]. Notice that the percentages of optical power collected in each detector 

are different between the several designs because the detector sizes are modified, 

which depend on the position, the number of channels and arrangement of the 

beams. We have therefore shown that the greater the spacing between the 

beams, the bigger can be the detector size. The reason for this is that the detector 

should collect the beam signal as much as possible in order not to lose the optical 

signal to the surrounding area outside the ROI. However, as the number of 

channels expand, the detector area should be kept as small as possible such that 

the percentage of extra power from the surrounding channels is diminished. 

Approximately 100% of the total power is received within the detector for all of 

the beams for 4 channel transmission, whereas in the 7 and 8 spatial channel 

transmission, we can achieve roughly 97% of the total power detected onto the 

face of a circular detector. The reason for this decrease in percentage of received 

beam signal is the reduction in size of the detectors due to a high number of 

multiplexed channels being transmitted.  

4.6.2 Channel crosstalk measurement 

The total crosstalk calculated for multiple channels in each channel structure 

was evaluated using the equation (4.2) and the results are represented in Figure 

4.15. The graph shows the outcome of the channel crosstalk calculations that 

results from undesirable signal overlaps from neighbouring channels, for 

different numbers of spatial channels. It is clearly seen that a minimum channel 

crosstalk of approximately -30 dB is achieved when a 200 μm fibre core diameter 

is used as a medium to support 8 separated channels with an optimal channel 

spacing of 60 μm from the fibre axis. It can be confirmed from the work of Gloge 

and Weiner [87] that the fraction of coupled optical signal from channel No. 1 to 

channel No. 2 should be identical to the power coupled from channel No. 2 to 
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channel No. 1, and it will be approximately of the same amount with other 

channels. Generally speaking, the maximum level of crosstalk arises with 

increasing the number of packed optical channels in a fibre, and hence 

diminishes the ability to achieve an acceptable multi-channel fibre performance. 

 

Figure 4.15: Calculated results for channel crosstalk with multiplexed 4, 6, 7 

and 8 optical channels with distinct channel separations for a 200 μm fibre 

core diameter at the first reproduction plane where z = 2L.  

 

 In a single ring geometric structure of the 4-spatial channel arrangement, 

we observe that a channel crosstalk of approximately -10 dB is possible from 

each channel when the spacing distance was reduced to be as close as 45 μm 

from the centre of the fibre. On the other hand, we notice that by increasing the 

channel spacing in the design to a separation distance of 60 μm between each of 

the four channels and the fibre centre, the effective crosstalk decreases to -20 dB 

even with the larger detector size. 

 Moreover, the maximum crosstalk in the six channel configuration, at the 

level of -25 dB, occurs for all channels since these suffer undesired beam power 
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crosstalk from the two neighbouring channels. The overlapping area occupied by 

the detectors will receive a lower proportion of the transferred power from the 

nearby channels because of the smaller detector sizes and hence introduce 

relatively low amounts of beam coupling. Furthermore, when the channel 

spacing and detector size appears optimum, we observe that the tolerable 

crosstalk levels reach a maximum of nearly -30 dB, for a 1 dB power penalty, by 

increasing the number of transmission channels to 8 spatially independent 

channels. Hence, these calculated results show that a separation distance with 

an angle θ of 45° between beams and an optimum detector size can still maintain 

good crosstalk levels even with a dense multiplexing of transmission channels. 

 However, in the seven channel case, because some channels are spaced 

with an optimum separation distance, we can achieve the lowest crosstalk value 

of roughly -15 dB from the six outer channels of the seven channels. Moreover, 

the maximum crosstalk in this configuration, at the level of -1.3 dB, occurs for 

channel No. 7 since this suffers undesired crosstalk from all the six surrounding 

channels and as such we have seen that the hexagonal channel arrangement is 

not the optimum design for multi-channel transmission. It can be seen that by 

using well separated spacing distances between the channels in the design, the 

crosstalk is suppressed significantly even with the larger number of channels. 

The reason for this is because the overlapping area occupied by the detector will 

receive less portion of the transferred power from the near channels due to the 

smaller detector size, and hence introduce relatively low amounts of beam 

coupling. Clearly, the fibre of 200 μm diameter can well support the larger 

number of multiplexed channels by reducing the angle θ between two adjacent 

channels in a ring-like channel arrangement. As the crosstalk is a function of 

channel separation, the tolerable crosstalk could be increased with a narrower 

spacing distance and hence further increase the density of optical channels. 
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4.6.3 Channel crosstalk measurement of 8 independent channels at 

 different planes 

The graphs in Figure 4.16 show the measured sensitivity of the crosstalk channel 

for a group of the beams located at different planes, slightly before and after the 

imaging plane, for z = 1.9L, z = 1.95 L, z = 2.05L and z = 2.1L μm in a fibre with 

a 200 μm core diameter, operated at a wavelength of 1.55 μm.  

 

Figure 4.16: Comparison of the calculated results for channel crosstalk with 

8 multiplexed optical channels with the same detector size of 56.92 μm, 

measured at different planes for z = 1.9L, z = 1.95 L, z = 2.05L and z = 2.1L 

μm for a 200 μm fibre core diameter.  

 

 It is clear from the graph that at the positions further from the image 

plane, the beam crosstalk sensitivity increased to approximately -8 dB and -7 

dB, measured from the worst channel crosstalk in the plane z = 1.9L μm and z = 

2.1L μm, respectively. On the other hand, the sensitivity to crosstalk is improved 

when the position of these channels is close to the focal distance. Indeed, a 

channel crosstalk of about -15 dB to -18 dB can be achieved from the 

transmission of 8 independent channels when the detectors’ positions are located 

on the plane z = 1.95L μm and z = 2.05L μm, respectively. Besides, it is 

interesting to mention that the planes just after the focal distance (i.e. z = 2.05L 
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μm and z = 2.1L μm) have better insensitivity to the multi-channel crosstalk 

than that of the planes located before the imaging plane.   

4.7 12-channel transmission with different design  

 arrangements  

In this section the analysis is further extended from that in the previous section 

in which a few numbers of channels were investigated. In this section, we 

progressively implement the transmission up to 12 channels through the GI-

MMF. This has a large core diameter of 200 μm with low index differences. The 

channels are distributed over a cross section of the fibre in two dissimilar 

channel arrangements, namely a single ring structure (SRS) and a double ring 

structure (DRS), as presented in Figure 4.17 (a) and (b), respectively.  
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Figure 4.17: Schematic cross sectional view of a 12-beam multimode fibre in (a1) for the SRS 

design and (b1) for the DRS design. The field amplitude distribution of 12 input beams is shown 

in (a2) and (b2) for the SRS and DRS design structure, respectively with a 41.54 µm detector 

diameter for each beam. 

 

 

 

 

 

 

 

(a1) Single ring structure (SRS) (b1) Double ring structure (DRS) 

(a2) The amplitude field distribution of 12 input 

channels in SRS design with a circular detector 

size of 41.54 µm for each of the beam 

(b2) The amplitude field distribution of 12 input 

channels in DRS design with a circular detector 

size of 41.54 µm for each of the beam 
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 A 12-channel configuration was multiplexed onto the GI-MMF, with a 

SRS design, in which these channels are assigned with an equal distance from 

adjacent channels by using a 30° angular separation with a circular detector size 

of 41.54 µm for each of the beams. It is to be noted that an equal strength input 

signal was launched into the different channels. The graphs in Figure 4.18 show 

the results of the aggregated channel crosstalk of the two different channel 

structures. We see that we can easily obtain a tolerable channel crosstalk of 

approximately -9 dB from a 12-beam configuration based on the SRS structure. 

The reason for a relatively high crosstalk is because of an increase in the number 

of optical channels with a minimum channel separation between them. 

Therefore, it is unexpected that the effective crosstalk remains low as the 

number of channel increases.  

 

Figure 4.18: Measured channel crosstalk of twelve multiplexed channels with a single ring 

structure (in closed purple triangle) and double ring structure (in closed orange circle). 

 

 For the purpose of crosstalk reduction, a choice of channel arrangement is 

considered in the design of a multiple number of channels that are packed in a 

fibre. Another view point of the SDM approach based on a multi-core 

transmission, it has been reported by Sano et al. [96] which has a heterogeneous 
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design can overcome the problem of excessive crosstalk, as a result of enlarged 

core-to-core separation, compared to that of a SRS with the same number of cores 

and similar conditions as proposed by Matsuo et al. [97]. The simulation work 

reported in this section has adapted the core arrangement in a DRS 

configuration displayed in Figure 4.17 (b1, b2) with the transmission of 12 beams 

per fibre core. The results are depicted on the same graph, and show a channel 

crosstalk of less than -12 dB can be achieved for an SDM system with this 

structure. Also from this analysis, it is shown that a further improvement in 

channel crosstalk can be obtained for the channels positioned in the outer ring 

of the structure because of a larger channel spacing. 

 However, the drawback of this geometric design is an excessive crosstalk 

for the channels located in the inner ring of the structure. We observe a 

significant increase of the crosstalk channel of beam No.7 and beam No.8 at a 

value of -9 dB, and beam No.9 to beam No.12, at roughly -5 dB. The reason 

behind this is because the inner channels experience overlap from of the 

undesired signals from neighbouring channels. The conclusion to be drawn from 

these results is that even if we use a different design structure with extremely 

large spatial channels (e.g. a DRS), then only the channels with fewer numbers 

of nearby neighbours can achieve a slight improvement in crosstalk, while the 

others are affected by an increase in the quantity of input channels. From 

comparison of the channel crosstalk performance between a hexagonal beam 

transmission and twelve channel transmission based on DRS, we can see that 

the estimation of channel crosstalk for the inner beams in the 12 channel 

configuration exhibits similar performance due to the design of the channel 

arrangement. We can draw the conclusion that crosstalk between the channels 

is one of the key limiting factors in substantially reducing the per-fibre capacity 

and limits the transmission over greater distances in the multiple channel 

transmission. Therefore, it would be of great interest to apply an effective 

crosstalk management technique in the design. Additionally, it is necessary to 

have a relatively large separation distance between the multiplexed channels 
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even though the number of channels would be limited. In summary, the number 

of neighbouring channels and the geometric arrangements have to be taken into 

account since the channel crosstalk is related to the surrounding number of 

channels. 

4.8  Conclusion  

We have designed and simulated an SDM transmission system by spatially 

multiplexing a plurality of optical channels in a proposed large core graded index 

fibre by employing different geometries of the physical channel arrangement to 

exploit a greater information-carrying capacity. It was found in this work that 

the beam arrangements over the fibre cross-section, the spacing distance from 

the centre-to-centre of adjacent channels and the number of multiplexed 

channels have an enormous influence on the performance of crosstalk between 

closely spaced channels. The simulation results indicated that there was a trade-

off between getting the maximum number of independent channels on the one 

hand, and reducing the crosstalk levels on the other. However, it was proved that 

the larger the channel positioning, the better the improvement in the channel 

coupling, but loss in the ability to realise a greater channel capacity in spatial 

division multiplexing employing multi-channel transmission. In addition this, 

the periodic re-imaging property of the graded index fibre has been exploited to 

recover the independent channels. 

 To achieve a coupling lower than -25 dB for a short haul communications 

system, the minimum separation distance between the channels that can be used 

to pack at least four spatially independent channels should be, approximately, 

at most 60 μm away from the fibre centre.  Nonetheless, it could be more 

beneficial to reduce the channel separation within the optimum ranges for better 

crosstalk performance among the channels. It can be concluded that channel 

coupling in a spatially multiplexed system, which is a key restrictive issue to an 

increases in the density of accommodated channels with a ring-like 
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arrangement, must therefore be suppressed to as low a value as possible to 

transmit the multiple data information efficiently at greater capacities. 

 From our study of the independent parallel transmission channels in a 

single fibre to achieve a greater per-fibre capacity, we have seen that effective 

solutions exist, such as increasing the optical bandwidth of the fibre, maximising 

the spectral efficiency and exploiting a multiplicity in SDM transmission paths.  

These are the important optical properties in need of concern for the optical 

design in order to realise a higher capacity per cross sectional area of the fibre. 

The development of multiple distinct spatial information channels was 

successfully accomplished by optimising the signal degradation challenges.  

 Indeed, it is possible to increase the fibre capacity beyond the current 

scaling of 1Pbit/s through the use of low loss and low crosstalk levels between 

spatial channels of multimode fibre with the highly packed communication 

channels contained in the SDM transmission configuration. Since the 

transmission with a multimode fibre introduces a time delay difference, which 

can corrupt and spread the optical signals into the nearby channels during the 

propagation, this results in modal dispersion and the overlapping between the 

spatial channels, and eventually becomes a significant problem. These effects 

can be compensated through the use of a graded index profile. In addition, one 

way to mitigate the linear impairments is to detect the received signal coherently 

and employ an electronic DSP-MIMO mechanism to effectively distinguish the 

coupled information channel at the transmission end. This is, however, not an 

ideal solution since the crosstalk rises as the amount of multiplexed channels 

increase in the design and thus the complexity of the DSP-MIMO would also be 

increased.  
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Chapter 5  

The effects of light propagation 

in a curved graded index fibre 

5.1  Introduction 

In the previous chapter, we discussed the required conditions to further increase 

the total carrying capacity of the fibre systems considered. To achieve this in 

optical fibre communications, it is beneficial to equalise the differential modal 

group delay and thereby minimise modal coupling between adjacent modes 

through the use of a low loss graded index multimode fibre. However, in this 

chapter, we discuss another key challenge in the design of the fibre optics, which 

are bending losses from a single and multiple bends of the fibre. An overview of 

the evolution of light propagating in curved graded index multimode fibre is 

presented. In addition to the capacity enhancement, the efficiency and system 

performance of the optical fibre in multi-channel transmission are examined for 

the bend-optimised fibre. The first part of this chapter reviews the transmission 

along the fibre with the bending condition, and then we briefly introduce the 

background theory of the bent fibre. The characteristics of the bend-insensitive 

fibre were examined in detail under various fibre conditions, which should be 

carefully designed to ensure a reduction of bending losses.  A low bending loss 

bend-optimised fibre should meet all the criteria required to produce a high-

capacity bend-tolerant fibre using a parabolic index profile. Finally, the 

capability of the bent fibre to fully reproduce a single and multi-channel 

transmission are discussed in the last part of the Chapter.  
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5.2 Propagation characteristics in the bent fibre 

The propagation of optical light in the waveguide is expected to encounter some 

perturbations; for example, bending the fibre, heating and pressure variations 

along the transmission path. Bending is one of the common effects of an optical 

fibre since it degrades the system performance due to a leakage of the guided 

light through the bend. When the fibre is bent, the propagating fields from a 

straight fibre through to a curved fibre region are stripped out of the fibre core 

in the bent section and subsequently transfer their energy to the cladding modes, 

which eventually leak out of the fibre in the form of radiation losses. Thus, 

because of bending in an optical fibre, the guiding of light from the input straight 

fibre, through the bend, to the fibre output is reduced, especially for the modes 

travelling with a faster speed near the core-cladding boundary (i.e. the higher-

order modes) which are thus the most sensitive to the bend.  

 Furthermore, there are many factors contributing to bending losses, such 

as a tighter bend, a deformation of the fibre, disruptions during the cabling 

design and errors from the manufacturing processes [98-101]. These factors 

contribute to the bending losses of the transmitted light in optical fibres. 

However, the bending effects can be minimised by designing the bent fibre with 

the appropriate fibre and bending properties. Thus, the transmitted light in the 

fibre core can be maintained with an increasing radius of curvature, such that 

the transmission capacity of multimode GI fibres is improved with superior 

bandwidth performance, thereby enhancing the probability of receiving the 

correct transmission signals at the channel end, without leaving any additional 

losses in the fibre. Figure 5.1 illustrates wave propagation in the cylindrical 

coordinates ),,( zr  and local coordinate  system for the bent fibre.   )',,'( zr 
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Figure 5.1: Schematic of the bent fibre with a curvature radius R and 

bending angle (adapted from [109]).  

 

Let us recall the electromagnetic wave E for propagation in a fibre in a 

cylindrical coordinate system: 
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The equation of light propagation in the local coordinate system  of a 

bent fibre can be expressed as the following [101]: 
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where β is the propagation constant and k is the wave number. 

 The radius of curvature R in a bent fibre is defined as a distance of the 

bend origin measured to the centre point of the fibre. The principle of light 

propagation in the bent fibre can be explained in a similar manner as that in a 

straight fibre, but from equation (5.2) the propagation characteristics of an 

electromagnetic wave in the bends is changed in accordance with the effective 

refractive index distribution 
effn , depending on the radius of curvature R:  
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 When the fibre is bent, the refractive index of a straight fibre is modified 

and, therefore, the total internal reflection (TIR) of the light wave inside the core 

is disrupted since the incident angle of the input light rays is less than the 

critical angle. Part of the section length in a bent fibre is stretched out, leading 

to an increase in the speed of the light of the guided modes at local coordinates 

outside of the curve, i.e. in the cladding region. Subsequently, the transmitted 

light is stripped out of the core and output power is lost during the transmission 

[102,109]. The propagation constant at the local coordinates r´ in Figure 5.1 can 

be described by: 

 

)(R
r

R
r 


       (5.4) 

where, as before, R is the radius of curvature, measured from the centre of the 

curve. 

 The propagation constant of the guided modes is gradually decreased 

when their speed of propagation is increased proportionally to the transmission 

distance from the optical axis. As depicted in Figure 5.2, the light located at a 

radial position  rRRc
  inside the cladding part diverges into two different 

directions. Some of the rays bounce back into the core whereas the others are 

shifted out of the core to form a so-called radiation wave which results in light 

escaping from the fibre.  
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 Figure 5.2: A graphical explanation of the effects in a curved fibre. 

The modified propagation constant of the modes located at the radial position, 

rc, can be written as: 
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The propagation constant in equation (5.5) can be written in the form of an 

effective refractive index of the mode as: 
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From equations (5.4 - 5.6), the propagation constant of a modal wavefront at the 

outside of the bend is directly proportional to the radius of curvature. This means 

that the bent fibre can be optimised by increasing the curvature radius R due to 

a reduction of modal coupling among the propagating modes because of the 

increasing separation of their propagation constants. On the other hand, 

increasing the radial distance toward the bend decreases the phase constant of 

the guided modes; as a consequence, several higher order guided modes are 

excited because of a modification of the index profile and so the intensity 

distribution is altered as compared to the straight fibre. It is worth mentioning 

that the phenomenon of total internal reflection of the guided modes in which 

the light bounces inside the higher refractive index medium no longer exists if 

the modes travel with a speed greater than or equal to that of the cladding 

modes, especially those propagating near the boundaries. Then most of the 

energy leaks out of the transmission direction.  

 

Let us recall the equation of the guided mode in a graded index fibre  2 ; the 

total propagating mode before the fibre is bent is written as: 

    (5.7) 

After bending, the number of propagating modes that can be simultaneously 

transmitted over the fibre length is decreased because of the change of the index 

profile of the fibre. The total mode volume in a bent fibre can be written as [102]: 

     (5.8) 

As we can see from the derivative equations in (5.7) and (5.8), the  is much 

less than  because the radius of curvature is involved in the modification 

of the index profile.  
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5.3 Characteristics of bending  

As mentioned previously, recently a number of research studies have 

investigated an enhancement of transmission capacity of fibres, in particular 

with low bending losses. The optical losses caused by the bends have great 

impacts from the communications point of view, e.g. the ability to achieve 

superior bandwidth performance. According to the transformation of the fibre 

structure after bending, the losses in the bent fibre can be classified as resulting 

from two major mechanisms contributing to bending losses, which are 

microbending and macrobending, which should be considered separately to allow 

flexibility in order to optimise the fibre with high bend tolerance. 

5.3.1  Microbending in a curved fibre  

The losses caused by microbending arise from the deformation of the fibre’s 

surface during the cabling process due to the application of stress onto the fibre. 

A small force or pressure can be applied at the interface or the boundaries 

between the core and cladding, leading to an imperfection of the perfectly 

straight fibre, e.g. a surface roughness, contributing to the coupling of energy 

from the guided lower order mode to higher order modes and, subsequently, 

strike out of the fibre as depicted in Figure 5.3.   

 

Figure 5.3: Schematic diagram of microbending of a multimode fibre. 

 

The launching condition is one of the key solutions needed to take into 

consideration when designing microbend resistive fibre to assure an acceptable 

level of microbending losses. This is because microbending loss is dependent on 

the separation distance between adjacent modes so that the propagation 
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constant of the modes must be well spaced with a sufficient distance between 

them [99,100, 101,102, and 103]. If the difference in the phase constant of 

neighbouring modes is too narrow, it is likely to produce significant 

microbending losses. However, the microbending loss will be insignificant when 

a small force is exerted on the surface of a straight fibre. 

 Gloge [104] has shown that fibre with a parabolic index profile is not to be 

preferred in a bent fibre, even though the modal distortion occurring from multi-

transmission paths can be minimised through the use of this index graded 

profile. The significant bending loss in the bent graded index fibre is typically 

greater than that of a step-index profile due to the limitation of the number of 

guided modes. However,  the bent graded index fibre will have the same bending 

behaviour as in the step index profile if the relative refractive index difference 

of the bent GI fibre is doubled, since then the number of the associated modes in 

the bent GI fibre is identical to that of a constant index fibre. 

5.3.2  Macrobending in a curved fibre  

The second bending mechanism, which can be easily seen with the naked eye, is 

so-called macrobending. When the fibre is physically bent, the geometrical 

specification of the fibre is changed, leading to an escape of light into the 

cladding. In addition, the fraction of refracted light depends strongly on the 

fibre’s parameters and bending radius. A schematic of a substantial bend is 

shown in Figure 5.4 to illustrate macrobending. A large portion of the guided 

modes are stripped off the fibre if the fibre is subjected to bending with a 

minimum radius of curvature. In general, the manufacturer usually 

recommends the minimum bend radius of the fibre. 
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Figure 5.4: An illustration of macrobending at a bend in multimode fibre. 

Part of the emitted light rays from a straight section are diverted into two 

transmission parts at the corner of a bend. On the one hand, the light radiates out 

of the core, the amount of light escaping depending on the size of the bend radius, 

whilst the remaining light is still guided along the propagation direction.  

 

 

5.3.3  Losses in macrobending 

Macrobending results in four losses, which comprise the transition loss, pure 

bend loss, scattering loss and material absorption loss [105]. The total losses of 

the fibre and the variation of the output intensity that occur from the physical 

bending can be largely accounted for from the first two sources. Thus, as 

illustrated in Figure 5.5, the transition loss and the pure bending loss are the 

main contributors to the bending losses of the optical fibre, originating from two 

different regions and should be taken into consideration individually. 
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Figure 5.5: Diagram illustrating the two bending losses in different regions 

of a bent fibre: transition loss and pure bend loss (adapted from [106]). 

 

(a) Transition loss 

To begin with, the first region to consider after the fibre’s geometry is suddenly 

changed is the transition region. It can be found at the junction between the 

straight fibre and the bend section. The attributed loss in this region is the so-

called transition loss or insertion loss, arising from the fact that only a portion 

of light from a straight fibre is coupled to a bent section. The remaining optical 

power excited to the guided modes (i.e. near the fibre axis) is progressively 

emanated to that of radiation modes as the field propagates to the curved section 

[106]. It should be emphasised here that the length of the transition section 

increases with the bending radius R, even though the field intensity produced in 

this region fluctuates, as a result of the exchange of the incident power between 

the guided modes and radiation modes [107, 108].   
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(b)  Pure bending loss 

On the other hand, the pure bending loss arises in the following region. In 

general, the light is totally internally reflected down the fibre core if the 

propagating modes keep their speed of travel below the velocity of the cladding 

modes. However, once the local phase velocity of the modes, located just outside 

the fibre core, becomes comparable to the velocity of light in the cladding modes 

the guiding light is radiated away from the fibre.  

 It is very challenging to preserve most of the propagating light inside the 

fibre core since its velocity is equal to that in the lower index region. This results 

in a drastically greater amount of escaping light rays and radiating of the light 

rays away throughout the bend. The lower the proportion of the transition loss 

and the pure bending loss, the lesser the fraction of the radiated wave will be 

transmitted out of the fibre but if, and only if, the fibre is flexible enough to bend 

at a larger radius.  
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5.4 Design considerations 

It is well known that the light propagating outside of the fibre core exponentially 

decays; however, some portion of the light rays might reflect back into the core 

once they hit the coating-air interface. This is because the coating has a slightly 

higher refractive index than the air outside of the jacket [114] and, accordingly, 

the refracted light rays are bounced back into the core owing to the TIR 

phenomenon.  

 Recently, a number of research studies have carried out research into the 

development of bend-insensitive fibre with low bending loss characteristics 

which are becoming increasingly important in many applications due to their 

superior performance in many application environments e.g. in medical 

applications [110, 111], fibre sensing [100, 102, 112, 113], under tighter bend 

conditions, and finally in optical communication transmission paths for either 

short haul or long haul communications. Therefore, many researchers and also 

fibre manufacturers are finding effective solutions in order to cope with the 

leakage of light from the propagation medium caused by bending. A well-known 

method for dealing with fibre bending is to add a lower-index trench having a 

refractive index smaller than the cladding medium in order to trap a weak 

signal, thereby ensuring the minimum leakage of light rays from the fibre [115] 

and raised velocity of the cladding modes [116]. Another successful improvement 

has been achieved by employing a translucent material within the fibre 

identification hardware having a refractive index approximately comparable to 

the coating layer. As a consequence, the escaped light rays are trapped within 

the translucent region before scattering into the air. Subsequently, a fraction of 

this weak signal will thus be reported as it arrives at the detector [117]. The 

advantages of the bent fibre identification hardware are the improvement of the 

quality of the service and also the ease of design and engineering 

maintainability. 
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 For all the above reasons, our initial reasoning for the design of bend-

insensitive fibre is that increased values of the bend radius will be beneficial to 

improving the bending losses allowing the possibility to further increase the 

transmission capacity. Therefore, it is meaningful to investigate the 

characteristics of light wave propagation in a bent graded index multimode fibre, 

experiencing a single bend or multiple bends with a uniform radius of curvature 

at different bending angles, to find effective ways of reducing the losses from the 

bend-sensitive fibre. Later on, we will show how the bending influences the 

oscillatory behaviour of the output intensity distribution. Similarly, the 

dependence of the bending losses on the angular bend and the geometric 

specifications of the fibre will be investigated as the GI-MMF is subjected to a 

tight bend radius.  

The effect of bending caused by the asymmetry configuration of the structure on 

the propagation down the bent fibre is modelled to determine the losses of power 

at the output after bending.  As soon as the light rays reach the bend section, the 

pattern of the propagating fields diverges into different directions, resulting in 

a radiation or leakage of the optical signals. Some of the light hits the boundaries 

and continues to propagate down the bent fibre; however, some of the rays might 

refract out of the fibre and be coupled back to the core. Therefore, it is important 

to compensate the refracted light coupled into the propagation direction by 

adding additional absorbing layers i.e. Perfectly Matched Layers (PMLs) at 

boundaries of the simulation windows with a thickness of 1 μm each side. The 

advantage of using the PMLs at the boundaries is to avoid the reflected light 

coupled back into the structure. From the simulation point of view, the PMLs 

are helpful tools to indicate the amount of radiated losses out of the fibre.     



138 
 

 

Figure 5.6: Schematic model structures of the macrobending of fibre for: (a) U-

bend (180°); (b) L-bend (90°); (c)  45°; and (d) 10° degree, angular bend.  

 

 We propose model structures of bent fibre with a specified radius of 

curvature with a variety of bending angles. The overall structure is of a singular 

bend comprised of 3 successive sections with the bend section in between the two 

straight sections at both ends. The straight fibres consist of a 2 mm length of 

transmission where the optical source is launched to the input end of the first 

straight section, and then the light is propagated through the bend section. Some 

of the propagating light will be coupled out of the propagation direction, and 

some will be continuously transmitted to the output end of the straight section. 

In Figure 5.6 (a) – (d) are displayed the schematic structures of a U-bend (180°), 

L-bend (90°), 45° bend and 10° degree bending angle, respectively.    

 

 

 

 

(a) (b) 

(c) (d) 

2 mm

2 mm

2 mm

2 mm

2 mm

2
 m

m

2 mm

2 m
m



139 
 

5.5    Simulation of the bending losses for a single bend of 

 fibre 

5.5.1 Influence of the radius of curvature and the angular bending 

5.5.1.1  Optical source and model structure 

This section aims to study the evolution of electromagnetic fields when GI62.5 

fibre is bent with distinct properties (i.e. radius of curvature and bend angle). 

The implementation of an appropriate design models the effect of bending losses 

of the propagating modes as an input beam is transmitted through a fibre 

undergoing a fixed bend radius and angular bend. The bending loss of a 

multimode graded fibre with a core diameter of 62.5 μm is measured with 

different model structures, as shown in Figure 5.6. The curved radius of the bent 

section is adjusted from a 5 mm to a 30 mm radius in which the length of the arc 

is varied, depending on the bend radius. 

 In the simulation, an input Gaussian beam having a beam radius of 5 μm 

is introduced through a 2 mm length of the first straight GI62.5 fibre from the 

input end. The simulated fibre has a core index of 1.48 and a NA of 0.275, 

transmitting with an operating wavelength of 1.55 μm. After passing through 

the fibre for a length of 2 mm, the optical signal is propagated through the bent 

fibre experiencing different bending conditions, and then the amount of power 

that is lost through the bend is measured as the radiation loss. As explained in 

detail in section 5.3.3 concerning the major sources of bending losses, an 

insertion loss is evaluated at the joints between the two different geometrical 

shapes of the fibre (i.e. at the junction between the straight and the bent 

sections).  

 For simplicity in the simulation, the non-guided modes are excluded in 

the transmission; only the first 30 guided modes are included in all simulations 

presented here. However, it has been shown by the simulations that these 30 

modes are sufficient to investigate the coupling to high order modes, ensuring 

the minimum of unwanted coupling between different modes. In addition, it has 
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also been confirmed by simulations that more than 99% of the power is 

predominantly allocated to the guided modes, especially in the fundamental 

mode of a GI62.5, even under a tight bend radius of 5 mm, from all the differently 

designed configurations. It is found that the total transmitted power from a 10 

μm diameter Gaussian beam to the first 30 propagating modes of a GI62.5 μm 

does not change much with variations of bend profiles when the beam is coupled 

into the guided modes. 

5.5.1.2  The electromagnetic field intensity distributions 

Comprehensive studies were carried out to investigate the distribution of the 

propagation field along the transmission distance. It has been observed from the 

simulations that the propagation of the optical fields is dramatically changed 

from the input section of the fibre as soon as the physical shape of the fibre is 

simultaneously transformed to various shapes, depending on the bend radius 

and a given bend angle.  

 Figures 5.7 (a) – (d) show the distribution of intensity between the modes 

with a uniform bend angle and radius in the direction of propagation in the x-z 

plane. It is quite clear that the propagation of light is coupled to the radiation 

and the characteristics of the propagation fields show an irregular fluctuation of 

the intensity field distribution along the length of the arc for the Gaussian input 

beam in the bent section. This can be explained by the fact that the higher guided 

modes interfere with the other modes due to the interference effects between the 

bend modes and the propagation constant of the guided modes which are not 

properly separated.  
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Figure 5.7: The propagating field evolution through a U-bend of GI62.5 multimode fibre for a 

transmission length of z = 19.70 mm and z = 98.25 mm with a fixed 5 mm and 30 mm bending 

radius in (a) and (b), respectively: (a1, b1) the x-z view of the beam intensity distribution of the 

reconstructed beam in the fibre; and (a2, b2) the normalised intensity of the propagated beam 

profile, showing the locations where mode coupling strongly affects the propagation. 

 

 

 

 

 

 

 

(a1) The XZ view of intensity distribution of 

U-bend with a 5 mm curved radius 
(b1) The XZ view of intensity distribution of 

U-bend with a 30 mm curved radius 

(a2) The normalised field intensity profile of 

U-bend with a 5 mm curved radius 

(b2) The normalised field intensity profile of 

U-bend with a 30 mm curved radius 
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Figure 5.8: The propagating field evolution through an L-bend of GI62.5 multimode fibre for a 

transmission length of z = 11.85 mm and z = 51.12 mm with a fixed 5 mm and 30 mm bending 

radius in (a) and (b), respectively: (a1, b1) the x-z view of the beam intensity distribution of the 

reconstructed beam in the fibre; and (a2, b2) the normalised intensity of the propagated beam 

profile, showing the locations where mode coupling strongly affects the propagation. 

 

 

 

 

 

(b1) The XZ view of intensity distribution 

of L-bend with a 30 mm curved radius 

(a2) The normalized field intensity profile 
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(b2) The normalized field intensity 
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Figure 5.9: The propagating field evolution through a 10° degree bending angle of GI62.5 

multimode fibre for a transmission length of z = 4.87 mm and z = 9.24 mm with a fixed 5 mm 

and 30 mm bending radius in (a) and (b), respectively: (a1, b1) the x-z view of the beam intensity 

distribution of the reconstructed beam in the fibre; and (a2, b2) the normalised intensity of the 

propagated beam profile, showing the locations where mode coupling strongly affects the 

propagation.  

 

 The amount of power coupled to the given modes varies greatly at the 

output of the straight section owing to the interference between the modes of 

that section and the bend modes, such that the power at the output drops 

significantly with a tighter bend radius. A very strong oscillation of the intensity 

distribution can be seen in a GI62.5 μm fibre when a drastic decrease of bending 

radius is applied to the structure, as shown in Figure 5.7 (a1, a2), Figure 5.8 (a1, 

a2) and Figure 5.9 (a1, a2) with respect to a U-bend, L-bend and 10° bend 

structure with a curvature radius of 5 mm. As explained, the optical power 

(a1) The XZ view of intensity distribution of 10 ° 
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(b1) The XZ view of intensity distribution of 10 ° 
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becomes more scattered and more oscillatory over the section length of a reduced 

bending radius of the fibre when the number of the radiative modes increases.  

 Moreover, it can be seen that the bend affects the output of the intensity 

field profile, which can produce coupling between the modes by changing the 

distribution of the input field profile [118, 119, 120, 121]. Multiple guided modes 

cause the interference patterns between these modes at the output of the 

straight fibre. This effect is as theoretically expected since the characteristics of 

a GI62.5 μm fibre are as a multimode structure that can simultaneously 

transmit several guided modes. It is, therefore, impossible to preserve a spatial 

periodicity of the input power throughout the direction of propagation since the 

intensity profile of the launched optical power is strongly modified within a tight 

bend condition. Nevertheless, these strong fluctuations of intensity for the 

guided modes at the output of a straight fibre, or even at the bend section, can 

be reduced if the curvature radius is large enough. This is demonstrated by the 

simulation results shown in Figure 5.7 (b1, b2), Figure 5.8 (b1, b2) and Figure 

5.9 (b1, b2) for the U-bend, L-bend and 10° bend fibre with a sufficiently large 

bend radius of 30 mm that minimises the amount of the mode/power coupling. 

Furthermore, it can be confirmed from the study of Gambling [107] that the 

conversion of the modes from the straight and the bent section, in particular at 

the transition region, becomes more steady until it reaches the radiation region 

(i.e. pure bend region), as clearly seen in Figure 5.8 (b2). 

 To conclude, it is clear that the length of oscillations (i.e. the beat length) 

in the bent section with different bend angles typically depends on the length of 

the arc, which changes linearly with the bending angle. After multiple successive 

internal reflections, we observe that the distribution of the rays inside the core 

does not follow the same propagation pattern as they do at the entrance of the 

straight section, as a consequence of the modification of the geometry of the fibre 

introduced by the bending. Therefore, the radius of curvature has a great impact 

on the intensity distribution and the output power. The larger the radius of 

curvature, the lesser variation of power density among the modes, so that the 
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fluctuations steadily decrease with the number of bend modes in the bent section 

with increasing bend radius. 

5.5.1.3 Loss analysis 

It is also interesting to examine the macrobending losses of the GI62.5 fibre 

under various bending conditions. The impacts of the bent fibre on the losses 

have been demonstrated by varying the radius of curvature and bend angle. It 

should be emphasised that the optical power that is left from the fundamental 

mode could be coupled to high order modes and be dissipated into the two major 

sources of loss in the bend region of the fibre, as explained in section 5.3.3. 

 To explore the bending losses of the fibres, we measure not only the 

radiation losses (RL) from the bend section but also the insertion losses at the 

first joint (IL1) and second joint (IL2) of the structure between the straight 

sections and bend section, which is caused by the mismatch between the modes 

when the geometry of the structure is dissimilar. Note that the results of bending 

losses are calculated by means of the coupling ratio of the output power to the 

launched power in dB, which can be expressed as: 













launched

output

P

P
10log10 = (dB) losses Bending     (5.9) 
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Figure 5.10: Simulation results of the bending losses as a function of bend radius 

for GI62.5 μm fibre with different angular bends. The optical source is a single 

Gaussian beam with a radius of 5 μm at a wavelength of a 1.55 μm.  

 

 The simulation results of the macrobending losses for GI62.5 fibre are 

shown in Figure 5.10 as a function of the curvature radius, ranging from 5 mm 

to 35 mm with an increment of 5 mm under various bending shapes. At the 

minimum bending radius of 5 mm, the GI62.5 fibre with an L-bend shape seems 

to be the most bend-sensitive structure, in which the response to the bending 

loss exhibits a value of more than 0.12 dB/90° bend angle, compared to 

approximately 0.04 dB from a U-bend and a 10° bend, and just under 0.05 dB/45° 

bend angle. The minimum bending losses below 0.02 dB can be realised when a 

GI62.5 fibre is bent with a radius of curvature of more than 20 mm at the bent 

section of the structure for all differently configured structures. 

 The simulations show that different types of bend structure experience 

characteristic bending losses with a similar trend. It can be observed from Figure 

5.10 that the bending losses are continuously reduced with an increasing 

bending radius of the waveguides. However, the behaviour of propagation in all 

the structures fluctuates after the fibre is bent with a significant radius of 

curvature, especially after the fibre is bent with a radius of curvature beyond 20 
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mm at the bend section and becomes too small to be precisely measured. More 

interestingly, investigation has shown that the insertion losses play a significant 

role in contributing to the bending losses, specifically at the first joint (IL1) of the 

structure.  This is because of the power coupling to high order radiation modes 

and the mismatch between the modes of dissimilar curvature (i.e. the mode 

orthogonality) between two structures [120, 121]. However, the radiation loss in 

the bent sections does not influence the total losses of the fibre. We assume that 

the radiation loss is almost negligible for the larger core size although the fibre 

is tightly bent. This is because the input end of the straight section is launched 

with a few guided modes and therefore the signal leakage due to the coupling 

into higher-order guided modes at the output section of the fibre does not produce 

a high bending loss. 

 To accomplish a minimum bending loss for the structure, the bending 

losses (i.e. insertion loss, radiation loss) of the structure is expected to decrease 

if a significant portion of the launched power is distributed into the first few 

lower order guided modes rather than the higher order modes. As a consequence, 

the unwanted modal coupling is diminished with the suppression of optical 

losses. Furthermore, we have seen that the characteristics of bending losses are 

strongly dependent on the curvature radius of the bend rather than the bend 

shape. For this reason, increasing the bending radius would be one of the 

solutions to effectively ensure minimal disruption to the beam propagation in 

the fibre. 
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5.5.2 Influence of the fibre dimensions 

To explore the sensitivity of the fibre to the bending losses due to its physical 

properties, the fibres we examine are based on the geometrical specifications of 

commercially available fibres as summarised in Table 5.1. The comparison is 

made with various commercial GI-MMFs as a function of various design 

parameters (e.g. the core diameters, cladding diameters and the NAs) under the 

same bend angles with an increment of radius of curvature, ranging from 5 mm 

to 35 mm. 

Table 5.1 

Properties of tested commercial fibres for various NA and ∆ values 

Fibre Name. ∆  NA 
Core index 

n1 

GI50 0.00913 0. 2 1.48 

GI62.5 0.0176 0.275 1.48 

GI100 0.01919 0.29 1.48 

 

 However, it has been shown from the previous section that bending losses 

are independent on the shape of the bend, except for some cases with numerical 

errors due to a very small loss. The circular arc of a 90° bend is assumed in this 

study due to its importance in many applications such as, for example, in the 

design of fibre to the home (FTTH) when the fibre is required to be bent in a 90° 

bend with a desired radius of curvature at the corner of a domestic room. 

Therefore, the L-bend configuration is considered in the study of bending loss 

behaviour with different fibre specifications. The bending losses for various 

commercially available fibres are compared as a function of the core sizes and 

radius of curvature with the same operating wavelength of 1.55 μm. The 

simulation results are given in Figure 5.11, comparing the impact of different 

fibre conditions on the bending loss performance. 
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Figure 5.11: The bending losses as a function of curvature radius of 

commercially available fibres with different specifications, obtained by 

applying a ¼ turn (90° bend) in the middle section of the fibres.  

  

 The highest optical losses induced by the macrobending can be seen to 

have a value of 2.6 dB/90° bend at the minimum recommended bend radius of a 

5 mm with the GI100 fibre, having a larger ∆ and NA than that of the GI50 and 

GI62.5 fibres. On the other hand, bending losses below 0.3 dB/90° can be 

achieved with GI50 and GI62.5μm core diameters at a circular bend radius 

larger than 10 mm. The maximum bend radius of the GI50 fibre is not specified 

in the technical data sheet from the Thorlabs manufacturer [122]. However, it 

has been determined from the simulations that the bending losses for this fibre 

cannot be measured accurately when the bend radius is beyond 15 mm because 

of an apparent increase of the output power after bending, which is clearly 

anomalous.  

 The results are a good indication that a bend-improved fibre can be 

designed by employing a smaller core diameter with larger bending radius [123]. 

Thus we have seen that it is important not only to consider the geometrical 

specifications but also other relevant parameters in order to ensure a fibre can 

withstand a tighter bend. As the core diameter becomes larger, the portion of 

power is steadily transferred from the lower order modes to higher order modes 
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owing to the generation of several excited modes along the propagation direction, 

caused by the modal coupling. It is well known that multiple higher order modes 

are more likely to leak out of the fibre than the lower order modes. Moreover, the 

modes propagating near the boundaries are easily radiated off the core, in 

particular with the bending conditions contributing additional losses. Our 

simulations are in good agreement with theoretical and experimental 

investigations. We have demonstrated that a relatively small size of core 

diameter is preferable in order to effectively optimise the bend sensitivity 

compared to a larger core diameter. The simulations show the profound effect of 

changing the fibre geometry in achieving an improvement of the transmission 

efficiency and the ability to withstand macrobending.  
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5.5.3 Influence of the index contrast and NA on GI62.5 fibre 

In this section another property of the fibre affecting the bending loss behaviour 

is investigated in detail by varying the relative refractive index contrast of the 

waveguide. For a fair comparison, it is assumed that the core diameter of the 

tested GI fibre is fixed with a diameter of 62.5 μm, operating at a wavelength of 

1.55 μm where an optical source of 10 μm Gaussian beam diameter is launched 

into the first straight section of the structure, and is propagated for a distance 

of 2 mm before the fibre is bent with a 90° bend. The simulated bending losses 

were performed for different bending radii, ranging from 5 mm to 30 mm, with 

an increment of 5 mm with 6 distinct ratios of relative index difference (∆%), as 

given in Table 5.2.  

 

Table 5.2 

Properties of GI62.5 fibre for various values of ∆ 

Fibre No. ∆ (%) 

 

Core index 

n1 

 

Cladding index 

n2 

Remark 

 

1 

 

2.08 % 

 

1.485 

 

1.454 

 

2 1.76 % 1.48 1.454 Commercial fibre 

3 1.42 % 1.475 1.454  

4 0.75 % 1.465 1.454  

5 0.41 % 1.46 1.454  

6 0.07 % 1.455 1.454  
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Figure 5.12: Bending losses as a function of curvature radius in 

dB/90° bend for GI62.5 fibres with different index contrast.  

 

 

Figure 5.13: The total optical losses (IL1, IL2 and the RL) in percentages 

as a function of bending radius of GI62.5 with an L-bend section with 

distinct ratios of relative refractive index differences. 
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 The optical bending losses induced by a ¼ turn macrobending on the 

GI62.5 fibre shown in Figure 5.12 are determined using the coupling ratio as the 

fraction of output power to the power at injection, whereas the percentages of 

optical losses, given in Figure 5.13, are analysed by adding three losses, i.e. the 

IL1, IL2 and the RL of the bent fibre from the different locations. It can be 

determined from the graphs that the modification of the index differences, ∆n1, 

have strongly influenced the behaviour of bending loss of the optical fibre. The 

total bending losses are apparently increased with a decrease of the index 

contrast between the core and cladding, in particular when the light propagates 

in a fibre with a tighter bend radius. The numerical simulation results show how 

the losses remained constant in the L-bend fibre having ∆ equal to 0.068%. The 

reason why the total loss remains the same as the bend radii increase is due to 

the very small relative refractive index difference in this case. In contrast, under 

the same bending conditions, significantly larger losses can be seen in fibres with 

a ∆ of 0.41% and 0.7508%. In particular, the former dissipates almost all its 

optical signal when it is bent excessively. 

 Nonetheless, it is noticeable that the losses suddenly drop to a minimum 

value as the radius of curvature is increased beyond its minimum recommended 

value. It should be emphasised that the bending losses of the GI62.5 fibre with 

a ∆ of 1.424% reaches its minimum losses at an enlarged bend radius of 17 mm, 

and this bend radius would be sufficient to drastically improve the bending 

losses of this fibre specification. It has been determined that the maximum 

bending radius of the fibre with a ∆ of 1.424% cannot be extended beyond a 17 

mm radius because of numerical errors in simulation of the fibre since it 

produces a greater output power after transmission without any optical 

repeaters which is clearly erroneous. The simulations results are as expected. A 

well-optimised bend-insensitive fibre can be realised by increasing the index 

contrast, in particular with sufficiently large circular bend radius. This study 

should be a good indication of the influence of varying ∆ on the characteristics of 
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bending losses. Therefore, it seems to be predicted that the effect of 

macrobending can be further suppressed by increasing the ∆ and NA of the fibre.  

 Accordingly, more propagating light would be confined in the core, less 

amount of modal power being stripped out of the propagation direction. Besides 

the properties of the fibre, a sufficiently large curvature radius should be assured 

in order to maximise the total power coupled to transmitted modes at the output 

throughout a bend in the fibre and thereby optimise bending loss behaviour. The 

reason of such a good enhancement could be explained by the fact that by 

increasing the index difference the separation distance of the propagation 

constant, ∆β, between neighbouring modes is increased [108, 120]. Subsequently, 

the number of excited modes and the mode coupling are decreased without 

creating any additional losses in the fibre [104, 124].  

5.5.4 Propagation inside the bend region of a graded index  

 multimode fibre with a small index contrast and large core 

From our previous studies, we demonstrated the sensitivity of the fibres to 

bending using the main parameters, such as the NA and core sizes to 

characterise the bending of multimode graded index fibre. Bending is of 

particular importance to most optical links since it affects the transmission 

capabilities of the systems. Likewise, the coupling efficiency of light is one of the 

most important factors contributing to the optical losses. Launching of light rays 

using a small NA and a larger core diameter would be beneficial for splicing and 

installation of the fibre. However, there is a trade-off between these fibre 

specifications and the transmission performance, with such fibres suffering from 

a high attenuation due to fibre perturbations. In order to enhance the 

transmission efficiency with superior bandwidth performance, only existing 

solutions can be considered which involve the mechanical properties of relatively 

large core GI-MMFs. In practice, bending normally occurs in the middle of a 

transmission link during fibre installation or maintenance.   
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 To illustrate the effects of bending, and in particular the sensitivity to 

macrobending, on a large core fibre with a small relative refractive index 

difference, an optical input Gaussian beam with a 10 μm beam diameter was 

launched into a GI200 graded index multimode fibre having a core diameter of 

200 µm with a small refractive index contrast between the materials, 

corresponding to an NA of 0.132. The light propagation was modelled for an 

operating wavelength of 1.55 μm. It is found that a small amount of the guiding 

light is lost during the launching into the GI200 fibre. Part of the launched power 

could indeed be lost at the interface due to Fresnel reflections. In general, the 

effects of reflections at the interface will be accounted for by approximately a 4% 

loss per interface, which typically depends on the refractive index difference of 

the medium [125, 126]. We thus observe approximately 96% of the maximum 

transmission is coupled to the entrance end of the GI200 fibre, propagating with 

a number of guided modes. Measurements of bending losses for a 10° and a 90° 

bend of the GI200 fibre are shown in Figure 5.14 as a function of bending radius 

from 40 mm to 400 mm.  

 As expected, a large core-low NA fibre exhibits much more bending loss as 

compared to the standard commercially available fibres with a relatively small 

core diameter and large index contrast. 

 

 

Figure 5.14: Losses of GI200 fibre for a 10° bend and 90° bend 
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The sensitivity to the bending losses of the proposed fibre drastically increases 

when the fibre is bent excessively with the minimum bend radius. This is due to 

the change of the fibre specifications, which has more influence on the bending 

losses. At the critical tight bend radius of 40 mm, the GI200 fibre exhibits a 5 dB 

loss for the 10° and 90° bends (with comparable NA in both cases). The GI200 

fibre with the 10° and 90° bends has similar high bending losses at a curvature 

radius below 80 mand experiences different bending performance with an 

increase of circular arc radius. Comparing the characteristics of bending for the 

different angular changes it is found that the bending losses of 4.6 dB/90° bend 

is larger compared to a smaller bend angle with the same radius of bending 

(where R = 9 cm) for which the losses suddenly drop to the minimum value of 1.3 

dB/10° bend, propagating for a distance of z = 145 mm and z = 180 mm, 

respectively. 

 More interestingly, the effect of bending losses in a 10° bend of GI200 fibre 

greatly improve with superior bend resistance with a tighter bend of the order 

of 80 mm. This can be explained using the investigation results to understand 

that the fundamental mode carries most of the fractional power compared with 

only 66.16% of the light being coupled to the first order mode in a 90° bend fibre. 

In addition, it can be seen from the numerical results that the losses appear to 

fluctuate after increasing the radius of curvature. The reasons for this bending 

characteristic is dependent on the amount of transmitted light to the first few 

guided modes. The higher the fractional power remaining in the low order 

modes, the less the sensitivity to bending. Nonetheless, it was assumed that 

working with the bend radius beyond 200 mm and 300 mm would be sufficient 

to improve the bending losses of GI200 fibre for a 10° bend and 90° bend angle, 

respectively.  
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The corresponding normalised intensity distributions for the GI200 fibre are 

compared for different stress properties as shown in Figure 5.15 for: (a) a 10° 

bend with R = 80 mm; (b) a 90° bend with R = 80 mm; and (c) a 10° bend with R 

= 400 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Normalised intensity distributions after propagating through the 

bent GI200 fibre under various mechanical conditions for: (a) a 10° bend with R = 

80 mm; (b) a 90° bend with R = 80 mm; and (c) a 10° bend with R = 400 mm. 
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(a) 10° bend, R = 80 mm 
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(b) 90° bend, R = 80 mm 
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It is apparent in Figure 5.15 (a) that the maximum transmission through a 

smaller 10° bend with a sharply bent fibre can be achieved at the fibre output 

after travelling for a distance of z = 18 mm, even though the propagation inside 

the bent section is relatively small. For this reason, the GI200 fibre having a 10° 

bend and R = 80 mm shows better macrobending performance with about 1 dB 

loss compared with the larger bend angle shown in Figure 5.15 (b) with the same 

a circular radius.  

 Thus the conclusion must be drawn that after propagating a certain 

length along the bent fibre, the reconstruction of the incident beam is barely 

retrieved at the length intervals. In Figure 5.15 (c), the degree of random 

periodicities of light propagation can be seen along the z-direction for a distance 

of 74 mm after increasing the curvature radius R to the order of 400 mm. The 

reason can be explained by the fact that the propagation constants are unevenly 

spaced between the excited modes. For that reason, it is assumed that it is 

appropriate that the GI200 fibre be bent in a circular radius of R = 400 mm, 

which can then be used to further investigate the oscillatory behaviour of an 

incident light beam in the fibre under bending conditions in the next section.  
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5.5.5 Characteristics of the interference pattern of a single channel 

 in a single bend of a GI200 fibre 

The details presented in this section focus on the phenomenon of the multiple 

interference pattern between several guided modes along the length of the bent 

GI200 fibre.  Optical fibre has become increasingly used in many related fields 

of applications, e.g. for transferring images, diagnostic instruments in the 

biomedical industry and in communications fields, including signal delivery 

systems. A variety of applications could be based on the phenomenon of the self-

imaging properties in fibres but should be tolerant to the bending configurations. 

We have demonstrated the behaviour of light propagation in a perfectly straight 

graded-index fibre to reproduce the original beam periodically along the distance 

of propagation. The simulations in this section present the effect of the 

interference pattern generated between a number of excited modes as the fibre 

undergoes perturbation. 

 To quantify the superiority of the self-imaging at each periodic length 

interval along a large core and low NA curved fibre, the measurements were 

performed with a single Gaussian input beam with a diameter of 10 µm that is 

launched into a piece of 5 mm straight section of GI200 fibre at a wavelength of 

1.55 µm before coupling through approximately a 35 mm curved section with a 

fixed bend radius R of the order of 400 mm. The orange lines shown in Figure 

5.16 (b) indicate the boundaries between the two successive straight and bent 

sections. The corresponding bend angle of this fibre configuration is changed to 

a 5° bend, to ensure the optimum self-imaging distance and the minimum 

bending losses.    
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Figure 5.16: (a) The output intensity profile and the field propagation inside a 5° bent GI200 

fibre with R = 400 mm, transmitting with a single Gaussian beam diameter of 10 µm at the 

operating wavelength of 1.55 µm for a distance of z = 45 mm. The inset in (b) shows the beam 

profile at the first reproduction length of an input beam after propagating for z = 3.48 mm. 

 

 The simulated propagation of the electromagnetic field inside the bent 

GI200 fibre along the transmission length of the order of z = 45 mm is presented 

in Figure 5.16 (a). It can be noticeably seen that the first optimum distance, at 

which the initial field is regenerated, occurs after propagating for a distance of z 

= 3.48 mm through the first straight section of the fibre. In addition, a perfect 

duplication of the initial Gaussian beam was preserved at this self-

reconstruction position with an equivalent mode field diameter, as depicted in 

the inset of Figure 5.16 (b). Since more than 99% of the power was retained in 

the first order mode, the bending sensitivity of this fibre was greatly improved 

with minimum losses below 0.75 dB.   
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 The interesting numerical result shows perfect beam spots at different 

locations after propagation of the beam through the modified fibre geometry with 

a small 5° tilt, even though the mode field diameter at the peak transmission 

occurrence is larger than that of the launched input beam. It can be seen from 

the characteristics of the multimode interference patterns that the repetition of 

the single incident beam cannot be recovered periodically along the propagation 

z-direction for which, in principle, the image reconstruction should be recovered 

again at twofold the Fourier length in a general graded index fibre. Furthermore, 

the reproduction of an initial phase relation is hardly visible after the light is 

coupled to the bent section. Consequently, a spatially periodic length interval 

becomes impossible to create at the same locations where the initial beam should 

be recovered.  

 It should be emphasised that the self-imaging does not appear within the 

fibre length after bending, but only the blurred output beam where its maximum 

transmission occurs at a periodic length interval. The positions at which the 

peak power appears are slightly shifted to approximately 50-65 µm from where 

the reproduction of an image is supposed to be recovered.  This is because of the 

effects of the unequal distribution of the propagation constants among the 

excited modes, leading to a modification of the self-reconstruction length 

intervals and the deterioration of the quality of the image reconstruction. Due to 

the asymmetric interference pattern of the multiple excited modes, the 

reconstruction of a periodic object cannot be observed in multiple fractional 

Fourier planes and so no longer exists at a multiple of the Fourier distance [21, 

22, 127]. Therefore, in this special case, we might assume that the position where 

the focusing of the input fields takes place, with a maximum coupling efficiency 

(i.e. the planes in which the light field is most concentrated), can be considered 

as the fractional plane [128]. 
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5.5.6 Characteristics of single bend in a GI200 fibre with a four  

 channel spatial input 

In this section, we present comprehensive investigations into the multiple 

channel propagation inside a small NA, large core diameter GI200 fibre under 

different bending conditions. The optical sources are launched from the entrance 

of the first straight section and comprise four Gaussian beams with each of the 

beams having a diameter of 10 µm and an operating wavelength of 1.55µm. The 

fibre structures consisted of the bent section in the middle between straight 

pieces of input and output GI200 fibre, in which the bend angles are varied with 

a fixed curvature radius. The effects of bending on a small NA, large core fibre 

can be seen in Figure 5.17.  

 As expected, the efficiency of self-imaging is significantly degraded after 

bending because of a permanent change in the fibre configuration. In Figure 5.17 

(a) and (b) are shown the propagation characteristics and the corresponding 

normalised intensity distribution of a GI200 fibre in which the bent section 

undergoes a 5° curve angle with a radius R of 400 mm.  After propagating the 

four spatial beams through an 8 mm long section of the straight fibre, the output 

intensity profiles of the duplicated beams (i.e. an inverted image) are observed 

at the first reproduction plane at a distance of z = 2L = 3.48 mm where L denotes 

the Fourier length interval. As the beams are further propagated, the second 

reconstructed beams (i.e. uninverted image) can be recovered at the desired 

distance where z = 4L = 6.96 mm, inside the first straight section of the fibre. 

The output cross sectional views of the duplicated incident four channels are 

shown in Figure 5.17 (c) at their self-imaging positions. 
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 Furthermore, the multimode interference pattern has been thoroughly 

investigated in the bent fibre section. A good quality of the reconstructed input 

channels cannot be obtained in GI200 fibre under certain bending conditions. It 

can be seen in Figure 5.17 (d) that the self-imaging phenomenon is barely visible 

after the external perturbation is exerted for a short distance on the fibre. The 

modified shapes of the duplicated incident beams can be observed at the optimal 

positions where we believe that the best quality of the reproduced fields are 

visible even though they are surrounded by several unwanted field 

perturbations. However, a group of beams cannot come to sharp foci and arrange 

themselves periodically at the self-imaging length intervals along the fibre after 

propagating through the bent fibre.  

 Due to the bends, the characteristics of the propagation constants between 

the guided modes are changed and not evenly spaced due to modification of the 

refractive index of the fibre. This in turn affects the appearance of the 

reproduced initial beam profile, which is dependent on the difference in 

propagation constants [38], such that the formation of the images at the Fourier 

length intervals to the next self-imaging length location is changed. 

Nevertheless, the aberrated images can be reconstructed at certain imaging 

planes after propagating along the output straight fibre as shown on the right in 

Figure 5.17 (e).  
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Figure 5.17: (a) The propagation characteristics inside GI200 fibre having a 5° curve section 

with a circular radius R of 400 mm, propagating for a distance of 50 mm from the straight fibre 

facet; (b) the corresponding field intensity distribution and (c) – (e) the cross sectional views of 

the intensity profile for the four input Gaussian beams of the first straight section, 5° curve 

section and the output straight section at the indicated optimal self-imaging locations.  
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Figure 5.18: (a) The propagation characteristics inside GI200 fibre having a 1° curve section 

with a circular radius R of 400 mm, propagating for a distance of 23 mm from the straight fibre 

facet, and the cross sectional view of the intensity profile for the four input Gaussian beams at 

different locations and  (b) – (d) the cross sectional view of the intensity profile for the four input 

Gaussian beams from the first straight section, 1° curve section, and the output straight section 

at different optimal self-imaging locations. 

 

Figure 5.19: (a) The propagation characteristics inside GI200 fibre having a 0.5° curve section 

with a circular radius R of 400 mm, propagating for a distance of 19.50 mm from the entrance 

fibre, (b) the cross sectional view of the intensity profile for the reproduction of four input 

Gaussian beams from the first straight section and (c) the intensity profile at the optimal self-

imaging locations inside 0.5° curve section.   
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 According to the numerical simulations in the above figures, it can be seen 

that a strong concentration of the excited beams can be observed within the bend 

region in different observation planes. However, there are present the effects of 

aberrations on the self-imaging reconstructions in different fractional planes. It 

should be emphasised that even though the distribution of the incident light does 

not repeat at multiples of the Fourier distances away from the front surface of 

the fibre, the images are formed at regular distances in the fractional planes 

along the bend waveguide. This means that the separation distance of each of 

these planes occurs at every period of the fractional distance. 

 Indeed, as depicted in Figure 5.19 for the simulated results of a half degree 

bend of fibre, it is clearly seen in the bend section that there is an enhancement 

in the quality of the reconstructed images compared to those with larger bend 

angles. However, a group of imaged beams cannot be apparently identified in the 

fractional plane as the beams propagate further through the output straight 

fibre. Due to the mismatch between the fibre geometries, the fractional power 

drastically drops from 90% to approximately 25% after a group of incident beams 

are simultaneously propagated down a 5° degree and a 1o bend of the fibre. 

However, a significant amount of the power loss is leakage out of the direction 

of propagation with less than 12% of the power being coupled onto the output 

section as the fibre undergoes even half a degree of bending. For tighter bends, 

a much lower fraction of power is coupled to the output fibre due to a rapid 

change of the structure and the consequent very short period of the arc length in 

the bent section. For this reason, the light rays are hardly recombined in the 

fractional planes even for a small degree of bend in the fibre.  
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5.5.7 Characteristics of multiple bends in GI200 fibre with a four  

 channel spatial input   

After examining the propagation of multiple input channels in a single bend of 

GI200 fibre, we further investigate the sensitivity to bending on the reproduction 

of the excited fields with a multi-bend structure. To examine this effect, the four 

spatial beams, each with an equivalent beam diameter of 10 µm, are launched 

into an 8 mm piece of GI200 straight fibre that is spliced to two consecutive bends 

in opposite directions.  

 

The design of this bend structure is schematically shown in Figure 5.20. The 

radius of curvature is fixed at R equal to 400 mm for both of the two different 

bend angles. After passing the curved sections, multiple propagation modes are 

coupled to another piece of an 8 mm long section of straight fibre. The numerical 

results are illustrated in Figure 5.21 and 5.22 for a 5° bend and a 1o degree bend.  

 

Figure 5.20: Schematic diagram of two successive bends of the fibre 
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Figure 5.21: (a) The propagation characteristics inside GI200 fibre with two consecutive 5° 

bends with a circular radius R of 400 mm, propagating for a distance of 85.81 mm from the fibre 

facet and (b) – (e) the cross sectional views of the intensity profile for the four input Gaussian 

beams from the first straight section, 5° downward bend, 5° upward bend and the output straight 

section at different optimal self-imaging locations.   
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Figure 5.22: (a) The propagation characteristics inside GI200 fibre with two successive 1° bends 

with a circular radius R of 400 mm, propagating approximately a distance of 30 mm from the 

fibre facet and (b) – (e) the cross sectional views of the intensity profile for the four input 

Gaussian beams from the first straight section, 1° downward bend, 1° upward bend and the 

output straight section at different optimal self-imaging locations.   

 

 It is clearly seen that an enhanced self-imaging quality can be observed 

along the optimal fractional distances when two bend sections are adjacent and 

in precisely opposite directions. Correspondingly, the aberrations of the 

reconstructed beams in a 1° degree bend angle of the fibre are much better-

quality than for the 5° bends with the beam profiles at the fractional planes of 

the bend section being comparable to that of the output straight fibre, as depicted 

in Figure 5.21 and Figure 5.22. Also, it may have been expected that by 

increasing the arc length of the bends further, a higher quality of self-imaging 

might be observed by adjusting the curvature radius R maybe to the order of 

1000 mm. However, the effect of increasing R for a certain constant bend angle 

does not appear to be effective in improving the self-imaging quality but, rather, 
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leads to a greater bending sensitivity of the fibres since the beam has a much 

greater propagation distance through the curved region of the fibre. 

Table 5.3 

Summary of the propagation loss induced by bending for different fibre configurations and 

bending conditions. The results are for a spatial input of four channels with Gaussian beam 

diameters of 10 µm as the optical sources, transmitting at the wavelength of 1.55 µm inside a 

200 µm core diameter fibre with an NA of 0.132 at a fixed bend radius of 400 mm. 

 

Configurations 

of the fibre 

A single bend  2 consecutive bends 

R = 400 mm R = 400 mm R = 1000 mm 

5° bend 1° bend  0.5° bend  5° bend  1° bend 5° bend 1° bend 0.5° bend 

Propagation 

loss (dB) 
6.27 dB 6.25 dB 8.77 dB 6.44 dB 6.43 dB 7.60 dB 7.98 dB 8.50 dB 

 

As shown by the analysis conducted, the propagation loss will increase in 

comparison to the core diameter, but is less dependent on the number of bend 

sections in the structure as shown in the results given in Table 5.3. This 

summarises the impact of bending on the propagation for the different fibre 

configurations. The results reveal that the sensitivity to the bending for a single 

bend structure is very similar to the bending behaviour for that of the two 

consecutive bend configuration with only a slightly increased propagation loss in 

the latter. Also, the transmission within a single bend shape with half a degree 

of bend is the most sensitive to the bend as compared to the larger bending angle 

because less output power from the bend is coupled into the last section of the 

straight fibre. This is mainly because of the very short section length of the bend 

(for more detail the reader is referred to section 5.5.6). Thus, overall, it can be 

concluded that the transmission efficiency and capability of the fibre to 

periodically reproduce high quality self-imaging are restricted by fibre 

perturbations. 
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 Above all, this study has emphasised that the bends do not only affect the 

re-imaging of the excited beams in the bent fibres but also alter the self-

reproduction length intervals, which in a straight fibre will be repeated at 

intervals of twice the Fourier length. This is due to a rapid decrease of the 

transmitted power, so that the fibre exhibits much more loss, especially the 

transition losses at the interface where there is a sudden change of the fibre 

geometry, which is the most significant contribution to the total propagation 

losses. For this reason, the GI200 fibre loses much of its effectiveness in its 

unique property to fully recover the incident fields at periodic distance intervals 

along the direction of propagation.  

5.6 Conclusion 

The propagation characteristics of excited single channel and multiple channels 

have been studied in a large core-small numerical aperture multimode bent 

fibre.  The formation of reproductions of the incident field has been investigated 

and its corresponding self-imaging distance has been examined for different 

sections of the fibre. As a result of bending, the direction of light paths is modified 

and portions of light are lost during the propagation, generating additional 

losses in the optical fibre. The numerical simulations have shown that the 

increased optical losses are directly related to the core diameter and inversely to 

the index differences between the core and cladding. As a result of our 

simulations, our proposed multi-channel fibre with a small NA of 0.132 and 

200µm in core diameter has been shown to be less sensitive to bending effects 

for single channel transmission with a low propagation loss of 0.75 dB/5° bend. 

A typical sensitivity to bending of approximately 6.27 dB/5° bend was achieved 

when four spatial channels were transmitted in the same fibre under the same 

curvature radius of 400 mm.  
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 This study has emphasised the formation of reproductions of the incident 

field and its corresponding self-imaging distance for different sections of the 

fibre. As can be seen, the bends have a great influence not only on the 

transmission efficiency, but also affect the quality of the reconstructed beams as 

well as the consistency of the formation of the self-imaging distances. Thus, 

overall, it must be concluded that the transmission efficiency and capability of 

the fibre to periodically reproduce high quality self-imaging is restricted by the 

fibre perturbation since the fibre is compromised in much of its effectiveness in 

its unique property to fully recover the incident fields as well as the consistency 

in the formation of the self-imaging distances. However, the analyses can be used 

as a guideline to optimise a new bend resistant fibre having a large core-small 

index contrast without trade-off of optical performance to meet current demands 

of high bandwidths with improved transmission capacity. Nevertheless, any 

practical application based on such a fibre system will have to ensure minimum 

perturbations to the fibre path and possibly accommodate required changes of 

direction with out-of-fibre reflective optical components. 
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Chapter 6   

The effect of temperature on a 

multimode graded index fibre 

6.1  Introduction 

The use of optical fibres as a transmission medium is being progressively 

enhanced for deployment in ever-wider applications due to their excellent 

features. Thus in addition to losses and degradation of the transmitted optical 

signals caused predominantly from mechanical defects and deformations, maybe 

due to human errors during their installation or maintenance, another key factor 

that imposes a risk of effecting performance is the temperature dependence of 

the optical fibre. The sensitivity of a fibre to temperature can possibly pose a 

significant impact on the optical performance, causing damage to the fibre when 

the outer layer of the fibre absorbs a large amount of leakage light, specifically 

under tight bend conditions. For this reason, it is, therefore, meaningful to 

estimate the effect of temperature variations over a reasonable operating range 

of temperatures, and hence provide an indication for the fibre’s capability in a 

transmission system when designing temperature tolerant fibres. In the 

previous Chapter, we have demonstrated the bend sensitivity of optical fibres 

under different bending conditions, resulting in a degradation of the propagation 

signals to the fibre output. This Chapter gives an analysis of optical fibre 

performance under varying temperature conditions. We investigate how the 

temperature changes the transmission characteristics with which light 

propagates through the fibre by varying the range of temperature but without 

bending effects on the fibre. Additionally, we use this modelling to investigate 

the optical performance of the perturbed fibre under different temperature 
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conditions when employed to reproduce an input beam profile periodically along 

the length of the fibre. 

6.2 Temperature effect in a fibre 

Due to a rapid growth of network demands, additional optical amplification 

techniques, such as EDFA and Raman amplification, have been employed within 

optical communication systems to enable high carrying capacity. Accordingly, a 

large optical loss is expected to be produced with an increase of the power levels 

during propagation, leading to damage of the fibre. Moreover, key challenges 

exist in the design of high optical transmission systems that are capable of a 

large carrying capacity and operating in harsh environmental conditions, in 

particular at both high and low extremes of temperature. 

 Recently, a number of research studies have focused their interest on the 

ability of optical fibres to withstand additional transmission link losses. In 

addition, investigations of refractive index changes in combination with bending 

effects have been reported by many authors [129, 130, and 131]. It has been 

shown that a change in refractive index with temperature has a great impact on 

optical systems under bending conditions, causing more scattering of light in the 

fibre glass. Under tight bend conditions, high bending losses can possibly 

produce significant damage to optical cables when a large amount of leakage 

light is absorbed by the coating layer, eventually causing burning to the fibre. 

 The optical path length of a fibre is subjected to change in accordance with 

the surrounding’s temperature, and subsequently undergoes changes in the 

physical properties of the fibre. It is well known that a decrease in temperature 

will result in contraction of the actual fibre length, whereas the optical path 

length is expanded with a rise in temperature. In this section, the aim is to study 

the dependence of thermal properties of the fibre materials, such as the thermo-

optic coefficient and the effective thermal expansion coefficient, on the optical 

fibre path length. To study the dependency of temperature on the optical fibre 
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path length, the changes in both the refractive index, n, and the length of a fibre, 

z, need to be determined from these thermal properties.  

 As we have emphasised, the light propagation in an optical fibre is based 

on the phenomenon of total internal reflection, in which the light rays bounce 

between the boundaries of the core and cladding all the way throughout the 

transmission path. However, the direction of propagation is altered if the fibre 

undergoes some of unwanted perturbations during the transmission. 

Consequently, this leads to a significant increase in the transmission link losses, 

and hence changes in the output of light intensity since some of the optical signal 

leaks from the guided core and can be transferred to the surrounding layer. The 

scattered light rays are then converted into heat, leading to an increase in the 

coating temperature [132-134]. Also, with changes in the temperature 

surrounding the fibre, its physical properties will be changed, so affecting the 

transmission characteristics and obviously the optical path length of the fibre. 

Since the variation of refractive index is a typical function of both 

temperature and wavelength, the temperature-dependence optical fibre is of 

great importance in various areas of studies. A number of theoretical and 

experimental studies have investigated the temperature effect on propagation 

behaviour in optical fibre under various environmental conditions. Soares and 

Dantas [135] have demonstrated that the refractive index changes of the 

cladding material can lead to a modification of output power and, therefore, 

contribute significant losses. Recent advances in optical fibre temperature 

sensors are increasingly being made for biomedical applications based on several 

methods [136]. Scheggi et al. [137] have initiated a new area of study by 

investigating a fibre temperature sensor based on light intensity modulation, 

caused by the thermo-sensitivity of the materials employed. In fact, the 

modifications of the transmission path length and refractive index of optical fibre 

are generally dependent on the thermal properties of the fibre that in turn can 

be determined from its chemical compositions.  
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6.2.1 Change in optical transmission length and the refractive index 

 of a fibre 

The local refractive index is a function of the changes in the temperature of the 

optical medium, T , in which the light is propagating. This can be described 

using the temperature coefficient of refractive index or thermo-optic coefficient,

dT

dn
 and can be written as [102]:  

Tn

n

dT

dn




        (6.1) 

From equation (6.1), the refractive index changes with temperature of the 

environment, T, is thus given by: 

 00 )()( TT
dT

dn
TnTn       (6.2) 

where n(To) is the refractive index of the fibre at ambient temperature, To = 25°C. 

According to the study by Prod’homme [138], the thermo-optic coefficient 
dT

dn

of the fibre can be alternatively derived from two contributing factors: the 

thermal electronic polarizability coefficient (ζ); and the linear thermal-expansion 

coefficient  thermal  of the material observed at room temperature, and is 

expressed as: 

  
 thermal

n

nn

dT

dn
 3

6

21 22




     (6.3)
 

From the above equations, it can be seen that the temperature dependence of the 

optical fibre path length has a significant effect on the changes in refractive 

index and physical length of the light guided medium. In addition to the change 

in refractive index profile, the fractional change in the length of a fibre resulting 

from changes in temperature can be determined from the thermal expansion 

coefficient, thermal , which is given by [154]: 
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Tz

z
thermal




       (6.4) 

where Δz is the change in length z of the fibre with temperature. 

Thus, equations (6.1) and (6.4) can be combined to give the temperature 

coefficient of changes in optical path length ∆L: 
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






 




L

L

TdT

dn
thermal

1
      (6.6) 

where L is the original length of the fibre at room temperature To and:  

    











dT

dn
T

L

L
thermal      (6.7) 

Hence the entire transmission length of the fibre, or the final section length of 

the fibre,
fL , that is subjected to environmental temperature changes, is simply 

determined by adding the actual length interval, L, to the change in optical path 

length of the fibre, ∆L, for various temperature conditions.  
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6.3 Analysis of temperature effects on the refractive  index 

 of the fibre modes 

As a result of a change in refractive index of the optical fibre and scattering of 

light out of the transmission direction, the propagation characteristics of optical 

communication signals is expected to change along the transmission path. In 

this section, the temperature-dependence of refractive index for GI62.5 

multimode fibres has been investigated using various recommended ranges of 

temperature without considering an additional mechanical stress effect on the 

fibre. The fibre chosen for our simulations is a graded index fibre consisting of a 

fused silica Ge-doped core (GeO2-SiO2) and silica cladding (SiO2). The core and 

cladding diameters are: 62.5, and 125 µm respectively, with a core refractive 

index of 1.48 and a numerical aperture equal to 0.275 (abbreviated to GI62.5 

fibre). For this study, an input Gaussian beam with a 10 µm diameter was 

launched into a piece of 10 mm length of fibre at the operating wavelength of 

1.55 µm.  

It is noted that fused silica Ge-doped glass is often the most preferable 

dopant composition for optimising the functionality and performance of optical 

fibres in telecommunication systems or other related fields because of its 

excellent features, such as supporting high fibre temperature tolerance, and 

hence improved thermal stability, and low scattering losses [38, 139]. Thus for 

the higher refractive index of the fused silica fibre core, a germanium (Ge) 

compound is used as a core dopant with an acrylate composition for the coating 

material whose refractive index is set to approach that of the cladding giving a 

number of advantages for optical communication system usage [140]. For 

example, the leakage of energy can be trapped within the cladding region instead 

of entering the coating and reflecting back into the propagation direction. 

Another benefit is to overcome the effects of heating due to significantly reducing 

the absorption of light within the coating and so increasing the temperature of 

the coating layer, resulting in a degradation of the lifetime usage and reliability 
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of the fibre. This is of particular importance for a fibre operating with a tight 

bend condition.  

To begin with, the thermal properties of the optical fibre need to be 

determined in order to study a significant change in both the refractive index, n, 

and the length of a fibre, z, generated by the surrounding temperature 

variations. Using equation (6.2) with a thermo-optic coefficient
dT

dn
 of the GeO2-

SiO2 fibre core with a value of approximately 8.6 x10-6/°C and a value of 10 x10-

6/°C for the SiO2 cladding [141, 142], one can determine temperature dependence 

of the refractive index changes for different environmental temperatures, )(Tn , 

with respect to the index of refraction at a room temperature To of 25°C. The 

calculated refractive index changes of the fibre core and cladding as a function 

of the entire simulated range of temperature T from 0°C to 80°C with increments 

of 10°C are graphically presented in Figures 6.1 and 6.2, respectively.  
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Figure 6.1: The calculated refractive index of the Ge-doped silica fibre for a 

GI62.5 fibre determined with a reference to the thermo-optic coefficient
dT

dn with 

a value of 8.6 x10-6/°C as a function of various operating temperatures. 

 

Figure 6.2: The calculated refractive index of the fused silica cladding for a 

GI62.5 fibre determined with a reference to the thermo-optic coefficient
dT

dn with 

a value of 11 x10-6/°C as a function of various operating temperatures. 

 

Since the refractive index of the fibre is substantially dependent on the 

temperature around the transmission medium, it can be interpreted from the 

figure that the refractive index of a GI62.5 fibre core and cladding are found to 

increase linearly with temperature at a given incident wavelength of light. The 

result may come as a surprise since the change in index of refraction is inversely 

proportional to temperature. With a rise in temperature, the refractive index is 
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generally expected to decrease (and thus reduce the intensity of scattered light 

within the material) over the entire range of temperature [143, 144, 145, and 

146]. On the other hand, the results we have calculated are exactly in agreement 

with a theoretical interpretation presented by Yong et al. [147] and other 

investigations on temperature-dependence of refractive index of fused silica fibre 

[148, 149, 150, and 151]. 

More specifically, the analysis can be made by considering the importance of 

the thermo-optic coefficient because this value arises from contributions due to 

interactions of the material’s electrons with photons [152]. A decrease in 

refractive index with increases of the temperature can be found in glasses that 

have a negative value 







 0

dT

dn
of thermo-optic coefficient. Conversely, a change 

in index of refraction was found to be directly proportional to temperature for 

optical glasses that exhibit a positive sign 







 0

dT

dn
of thermo-optic coefficient.  

Based on the data reported by Ramachandran [153], the behaviour of optical 

glasses for different thermo-optic values is essentially dependent upon the 

chemical composition of the materials at specific ambient temperatures. It is 

important to note that as the temperature increases, the optical path length is 

expanded with an increase of the index of refraction for a positive thermal  

coefficient.  

  The response of the refractive index changes of the GI62.5 fibre with 

environmental conditions can be understood from its relatively low thermal 

expansion coefficient thermal
  

with a positive 
dT

dn

 
thermo-optic coefficient. Thus 

one can see the central role of the thermal properties of a material in the 

determination of temperature dependence of the change in refractive index of 

optical fibres.  
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6.4 Results and discussion 

6.4.1 Temperature effect on optical path length 

As illustrated above, we have explored the fact that the local refractive index of 

the fibre core is affected by temperature fluctuations, and its behaviour is 

significantly dependent on both of the dopants’ thermal coefficients. The desired 

performance of the optical fibre can be simply described based on the thermal 

properties of the dopant material. It is, therefore, important to determine 

changes in optical path length of the fibre to investigate how this may effect 

periodic imaging positions in the graded index fibre. The Ge-doped fused silica 

glass from which the GI62.5 is fabricated has a relatively small thermal 

expansion coefficient, thermal , of 0.55×10-6/°C [140] and a positive refractive index 

thermo-optic coefficient,
dT

dn
 of 8.6 x10-6/°C.  

Table 6.1 

The final propagation length, Lf, corresponding to the induced refractive index and length 

changes at various surrounding temperatures T from 0°C to 80°C for a fibre initially 10 mm in 

length at 25 °C. 

 

T (°C) 
Change in optical path 
length of a fibre (∆L) 

Fibre length at T, Lf (µm) 

0 -2.2875 9997.7125 

10 -1.3725 9998.6275 

20 -0.4575 9999.5425 

25 0 10000 

30 0.4575 10000.4575 

40 1.3725 10001.3725 

50 2.2875 10002.2875 

60 3.2025 10003.2025 

70 4.1175 10004.1175 

80 5.0325 10005.0325 
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Results of the simulation for the determination of the change in the optical 

transmission length of the GI62.5 fibre are shown in Table 6.1 as a function of 

temperature using a 10 mm length of fibre at 25°C as the zero reference 

condition. The results indicate that the fibre length is slightly changed with 

temperature (where this is assumed to be constant across the whole cross section 

of the fibre i.e. the conditions are steady state and the fibre is in thermal 

equilibrium). A decrease in temperature, below the level of that of room 

temperature (To = 25°C), results in a contraction of the actual fibre length, whilst 

the optical path length is slightly expanded with a gradual increase in the 

temperature level.  

6.4.2 Temperature effect on propagation characteristics  

In the previous section we have seen that the thermal properties of dopant 

materials, described in terms of the linear thermal expansion coefficient and the 

thermo-optic coefficient, are the major contributing factors in the determination 

of the optical path length in the fibre. This allows us to investigate the effect of 

these environmental changes on the important phenomenon of periodic imaging 

in graded index fibres which is based on the interference of multiple guided 

modes along the propagation direction.  

 The self-imaging of the original input beam profile in a graded index 

multimode fibre is produced in a natural way to periodically reconstruct at self-

imaging planes (i.e. at z = 2L where L is the focal distance in the fibre) along the 

transmission length of the fibre. Possible changes induced by temperature effects 

have been examined in this study for temperatures in a range of 0°C to 80°C.  
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Figure 6.3: Simulated multimode interference pattern within GI62.5 fibre with a 10 µm 

Gaussian input beam diameter at a wavelength of 1.55 µm for the indicated temperatures. 

 

 The location of the self-imaging planes occurring in the GI62.5 fibre at 

different temperatures of the fibre were determined by simulation. The results 

are depicted in Figure 6.3 for the indicated operating temperatures. An 

important conclusion that may be drawn from these results is that the 

propagation characteristics of the fibre experience a similar trend even though 

their total transmission lengths are varying, either expanded or compressed, 

albeit only a few micrometres from the original 10 mm length of the fibre. More 

interestingly, we found that the first self-imaging length interval of perturbed 

GI62.5 fibres can be found at almost a distance of 528 µm (i.e. where z = 2L after 

propagation of a 10 µm diameter input Gaussian beam through the length of the 

fibre at the room temperature), as can be seen in Figure 6.4. 
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Figure 6.4: The comparison of normalised intensity distributions as a function of propagation 

distance resulting from a 10 µm diameter Gaussian input beam with a wavelength of 1.55 µm 

propagating through the length of a GI62.5 fibre for the selected temperatures of 0°C, 20°C , 

25°C and 80°C.  The red lines shown in the figure indicate the first three peak intensity positions 

at z = 2L, 4L, and 6L, respectively. 
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Table 6.2 

The first four self-imaging length intervals of the corresponding fibres, operated at different 

surrounding temperatures, To, for a fibre initially 1 m in length at 25 °C. 

To (°C) 
z = 2L 
(µm) 

(%) difference 
between z at 

T=25°C and z at 
To°C 

z = 4L 

(µm) 

(%) difference 
between z at 

T=25°C and z at 
To°C 

z = 6L 

(µm) 

(%) difference 
between z at 

T=25°C and z at 
To°C 

0 527.463 0.0014 1055.159 0.0013 1582.560 0.0014 

20 527.468 0.0005 1055.170 0.0003 1582.576 0.0004 

25 527.470 0.0000 1055.173 0.0000 1582.582 0.0000 

30 527.472 0.0004 1055.177 0.0004 1582.587 0.0003 

80 527.486 0.0030 1055.204 0.0029 1582.627 0.0028 

 

Note that: To confirm the consistency and the percentage changes of self-imaging positions, we 

have investigated the propagation of along a 1 meter length of the fibre, and the results of 

simulations from a distance of z = 2L to z = 60L are given in Appendix 2. 

 Furthermore, after propagating along a length slightly expanded from the 

original 1 m length of fibre, an initial Gaussian beam comes to reimage 

periodically at almost the same optimum self-imaging plane to that in fibres 

experiencing dissimilar temperature conditions. The first three locations of the 

reconstructed initial beam are given in Table 6.2 for the fibre operated in 

different harsh environmental conditions and the percentage changes in self-

imaging distance under each condition is given in comparison with that of room 

temperature. It is apparent that the characteristics of the multimode 

interference pattern seem to be little affected by the temperature perturbation 

applied to a GI62.5 fibre. In other words, changes in refractive index and the 

modified optical path length due to a change in temperature are extremely small, 

even with exposure to extremely high or low temperatures, so it is perhaps not 

surprising that there are no significant changes in self-imaging positions when 

operating under different temperature conditions.  
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Figure 6.5: The final imaging length, corresponding with the induced refractive index and 

length changes at various surrounding temperatures T from 0°C to 80°C, for a fibre initially 1 m 

in length at 25 °C. 

 The graph in Figure 6.5 compares the change in the final imaging 

positions of different fibres at various temperature conditions To from 0°C to 

80°C for a fibre initially 1 m in length at 25°C. One can see various positions (in 

mm) of the last image before propagating through the end of the fibre for 

different lengths of the fibre, depending on the temperature conditions. We 

observe that the final positions of the image are gradually increased with a rise 

in temperature by a few millimetres. After raising the temperature to a high 

extreme condition, where T is greater than 60°C, the last imaging positions 

suffered a dramatic change in their final imaging positions from that of a fibre 

operated at 25 °C, but still only relatively slightly shifted in position and this 

trend the tends to rise linearly again as the temperature increases further. The 

reason for this can be explained from the last three imaging positions, listed in 

Column A-C in Table 6.3, respectively. From this, it can be seen that the shift in 

distance between the previous and next imaging plane is approximately at twice 

the focal length interval, i.e. z = 2L.  Accordingly, one can determine the next 

expected self-imaging position of the beam. The estimated final imaging 
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positions of the beam in Column D can be compared with the optical path length 

of the fibre, after expansion or shortening, in Column E. 

 

Table 6.3 

The first four self-imaging length intervals of the fibre, operated at different surrounding 

temperatures, T, for a fibre initially 1 m in length at 25 °C. 

T (°C) 

A 
Last three 

final imaging 
positions  

(1st in mm) 

B 
Last three 

final imaging 
positions  

(2nd in mm) 

C 
Last three 

final imaging 
positions  

(3rd in mm) 

D 
Expected the 

last position of 
the image to 
emerge (mm)  

 
 

E 

Actual length after  
being expanded or 

compressed  
for a fibre initially  
a 1 m length at 

25°C (mm) 

0 998.695 999.224 999.751 1000.279 999.771 

10 998.700 999.228 999.756 1000.284 999.863 

15 998.704 999.232 999.760 1000.288 999.909 

20 998.706 999.233 999.761 1000.289 999.954 

25 998.710 999.237 999.765 1000.293 1000.000 

30 998.713 999.240 999.768 1000.296 1000.046 

35 998.714 999.242 999.769 1000.297 1000.092 

40 998.717 999.246 999.773 1000.301 1000.137 

45 998.719 999.247 999.775 1000.303 1000.183 

50 998.723 999.250 999.779 1000.307 1000.229 

55 998.725 999.252 999.780 1000.308 1000.275 

57 998.727 999.255 999.783 1000.311 1000.293 

60 998.728 999.255 999.783 1000.312 1000.320 

65 998.730 999.258 999.786 1000.314 1000.366 

70 998.732 999.261 999.788 1000.316 1000.412 

80 998.738 999.265 999.794 1000.322 1000.503 
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It can be seen from Table 6.3 in Column D that the expected position of the next 

imaging plane is beyond that of the actual transmission length of the fibre for 

temperatures from 0°C to 57°C whereas for the temperatures from 60°C is still 

within the optical path length. Consequently, the last image for these particular 

fibres can be observed at further distances because of the expanded initial length 

of the fibre and that is why we see a sudden rise in final positions at high 

temperatures. However, the re-imaging position where the beam comes to focus 

and complete one full period over the axial distance, i.e. down the same Columns, 

can be observed at only very slightly larger distances as the temperatures 

increase. 

Thus it can be seen that the input beam can be detected at various self-

imaging planes with extended or reduced optical path lengths and very slight 

changes, within a few micrometres, in the self-imaging locations of the original 

transmitted beam profile with changes of temperature. It is, therefore, 

reasonable to draw the conclusion that the self-imaging effect of the graded index 

multimode fibre induced by temperature variations has no significant 

modification on the field intensity profile of the duplicated input beam due to an 

extremely small change in refractive index and insignificantly modified 

transmission distance of the perturbed fibre. 
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6.5 Conclusion 

The dopant concentration of the materials employed in a fibre is the key element 

in the determination of fibre’s lifetime and reliability because their thermal 

properties are related to refractive index and optical transmission path length 

in the material. A variation of the refractive index that is induced by the thermo-

optic effect was taken into account in the investigation of temperature 

dependence on the propagation in an optical fibre. Also, a relatively low 

attenuation with a large decrease in optical losses of optical signal that can occur 

in the perturbed fibre must be ensured for high reliability of the transmission. 

It is of considerable importance for a fibre to be able to withstand environmental 

conditions and mechanical constraints in order to improve its transmission 

efficiency and reduce the amount of light scattered out of the direction of 

propagation and so minimise optical losses.  

 For the GI62.5 fibre examined, an insignificant modification of the 

refractive index profile and optical transmission path length of the fibre that 

results from the thermo-optic properties of the materials employed was found in 

the temperature dependence of the propagation in the fibre. Finally, we confirm, 

based on our simulation results, that the self-imaging phenomenon in GI62.5 

fibre, having a fused silica Ge-doped core and fused silica cladding, is nearly 

completely insensitive to temperature fluctuations and therefore this does not 

introduce any critical issue for the reimaging of the original input beam profile 

along the perturbed transmission length interval even under harsh 

environmental temperature conditions. 
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Chapter 7  

Conclusion and future work 

7.1 Conclusion 

As we are living in a well-developed technological world, the exponentially 

increasing demand of global social information in modern communication is 

expected to continuously increase with new services supported by modern 

communication systems. For that reason, we are rapidly moving towards a 

higher network capacity than today’s standard systems can handle. Current 

solutions such as higher symbol rate with multi-level modulation format, 

existing multiplexed technologies, or by simply adding additional numbers of 

fibres, come on top of numerous issues and tend to be too costly. Therefore, 

several research studies are finding multiple ways to handle a continuously 

increased capacity for the near future.   

 To begin with, a substantial bandwidth capacity is required in order to 

support the large amount of information carrying capacity for different types of 

enhanced communications. To date, the needs for high capacity per fibre scales 

up progressively each year in relation to the advance in innovations, specifically 

for storing and switching information between data centre servers. In view of 

that, high transmission capacity is required for use within short haul optical 

interconnections. Thus our research studies predominantly were concerned with 

an improvement of bandwidth capacity deployed for a communication network 

over only a few meters. 

 A new frontier of multiplexing, spatial division multiplexing (SDM) is well 

known as a means to deal with the fibre capacity limit of standard single mode 

fibre. A newly enhanced multiplexed technology is thus an alternative method 

and well adapted for an interconnection within data centres or short distance 

communication networks because there is no need to be concerned about 
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amplification issues and the problems of equalisation for modal dispersion 

during the transmission can be improved using a parabolic index profile of a 

fibre. Thus this short-haul communication can be accomplished by multiplexing 

a number of optical channels in a multimode fibre with either multi-core or a 

single core capable of high capacity per fibre.  

 In our proposed fibre system, we were interested in extending capacity of 

the SDM fibre through a multimode fibre, supporting a large multiplicity of 

transmission channels. To meet an enormous carrying capacity required for 

future optical communications, it would be useful to increase the density of the 

packed channels and simultaneously propagate them within the same fibre core 

in which each of the channels carries its own information through various 

parallel transmission paths. Nonetheless, it is still challenging to handle 

substantially increased network demands by adding more spatial channels in a 

single fibre core. The reasons for this are the channel impairments, a limitation 

of fibre cross sectional area and the fibre perturbations (i.e. bending and 

environmental conditions) during the propagation.  

 Nowadays, the use of a quadratic medium has become increasingly 

popular in several areas of applications. Our research studies have investigated 

the behaviour of electromagnetic field propagation inside a quadratic GRIN 

medium in which the distribution of light rays inside the guiding medium can be 

simplified by examining the interactions between the guided modes inside the 

proposed fibre configuration. In addition to the capacity enhancement, we have 

shown in this study how a variety of initial conditions (i.e. a single input 

Gaussian beam and multi-channel transmissions) propagate and rearrange 

towards the self-imaging planes in GI-MMFs with various specifications of fibre 

through the interference effect of the modes shown by our numerical simulation 

models. The occurrences of arbitrary beam profiles were compared analytically 

with the fractional Fourier transform approach as the beam propagated inside a 

quadratic graded index fibre.  
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 By suitably choosing the fibre parameters in the design, the results 

obtained indicated that the models were working and the re-imaging positions 

of the beam (i.e. where the strongest focus of the intensity distributions were 

found) were in a good agreement with the analytical predictions.  Thus 

multimode fibres with a quadratic graded index profile can be used to 

periodically reimage the original beam profile at every double length repetition 

of the Fourier length interval (i.e. at z = 2L where L is the Fourier length). 

Indeed, the transmitted input field profile (i.e. a real image) is reconstructed at 

every self-imaging length interval after propagating for a distance of z = 4L.  Due 

to this reproduction of the beam, it is reimaged in a natural way periodically 

when propagating through the parabolic graded index profile of the fibre 

structure. Importantly, it was demonstrated that the self-imaging positions and 

the evolution of the beam profile are subjected to change according to the fibre 

specifications (i.e. the fibre core dimensions, numerical aperture) at certain 

distances.  

 To cope with inadequate bandwidth capacity and to exploit the 

advantages from the SDM approach, several points should be taken into 

consideration when designing an ultra-high capacity fibre with a plurality of 

optical sources. This is because of the presence of optical channel crosstalk 

between neighbouring channels inherent in a multiplexing scheme. It is, 

therefore, essential to decrease the sensitivity to inter-channel crosstalk of the 

optical channels. In this work, the key requirement for high bandwidth capacity 

is the design of the optical channel geometrical arrangement so as to suppress 

any undesired channel crosstalk between the spatially multiplexed channels in 

a large fibre cross-sectional area. To address the challenges of SDM, there exists 

multiple ways to meet high capacity demands, including a proper channel 

geometrical arrangement with a reasonable channel-to-channel pitch and 

appropriate azimuth alignment between channels resulting in acceptable levels 

of channel cross-talk. 
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 According to our research studies, we found that the optimum channel-to-

channel separation should be approximately 60 µm from the axis of the 

simulated graded index fibre with a 200 µm core diameter and a relative 

refractive index difference (∆) of 0.41%. Moreover, it was demonstrated that 

arranging the optical channels in a ring-like structure is an effective physical 

channel arrangement to minimise the crosstalk from nearby channels (rather 

than a hexagonal structure). It is for this reason, i.e. the similarity of the number 

of nearby channels in the proposed channel arrangement, that each channel 

experiences almost an equivalent amount of crosstalk. We were able to achieve 

a worst case crosstalk, on average, of less than -30 dB after propagating eight 

spatially multiplexed channels for a 10 mm length of the fibre at a wavelength 

of a 1.55 µm. This was achieved by arranging the channels to be as close as 45° 

between two adjacent channels in a ring-like design arrangement. This group of 

beams come to arrange themselves periodically at the same re-imaging positions 

as would be the case for a single channel transmission.  

 Bending and temperature effects are of particular importance to most 

optical links when operating over greater transmission distances in order to 

substantially increase the carrying capabilities of long range systems. Thus we 

were interested to investigate the behaviour of light propagation in the newly 

designed fibre, when experiencing different disruption conditions in both the 

cases of a single and multi-channel transmission. From our simulation results, 

we can draw the conclusion that the bends do not only affect the self-

reproduction length intervals but also produce aberrated images in the bent fibre 

under certain bending conditions. On the other hand, operating the fibre under 

harsh environmental temperature conditions, a good quality beam profile can be 

detected at the different self-imaging planes. We have found that the re-imaging 

positions of the beam profiles is slightly shifted before or after the original 

imaging planes from where it would be expected to recover the best foci in a non-

perturbed fibre with alterations of temperature over quite an extreme range. 

Thus, overall, it must be concluded that the transmission efficiency and 
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capability of the fibre to periodically reproduce high quality self-imaging is 

restricted by the fibre perturbation since the fibre is compromised in much of its 

effectiveness in its unique property to fully recover the incident fields. Thus the 

technique might only be suitable over short-haul distances where, particularly, 

the bending of the fibre can be largely constrained, with any required significant 

deviations in direction accommodated by exiting the fibre locally to redirect the 

beam, and the temperature kept relatively constant within a few degrees.  

7.2 Future work 

Further activities would focus on embedding a greated number of spatial 

channels per given cross sectional area of the fibre core for space saving, offering 

the potential of increased information carrying capacity, and satisfying the 

growth of traffic volume inside data centres. The greatest concern would be 

focused on the degradations of optical signals and optical crosstalk impairments 

between the number of independent channels in a new multiplexing technology 

to allow enhancing transmission capacity along a reduction in costs of future 

communication systems per channel. Therefore, a highly efficient channel 

packing is crucial in the design of the SDM network in order to preserve the 

quality of transmitted information whilst providing large resilience to linear 

impairment along a realistic transmission link in relation to short reach 

applications. To ensure a reduction of bending losses and additional 

transmission link losses, it would be of great value to design a fibre that could 

withstand tighter bend conditions, to allow bending of the fibre beyond its critical 

bend radius, so as to improve the transmission efficiency. By doing so, the 

occurrences of the phenomenon of self-reproduction of the information source 

which can be reconstructed in a graded index transmission medium could be 

exploited in a general communication system.   
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 MMF is of particular importance in optical systems, specifically with a 

GRIN profile because of its remarkable features. This makes a GRIN fibre 

suitable for deployments in a variety of related areas of studies not only for the 

optical imaging perspective, but also for near future telecommunications 

networks with an increased communications carrying capacity. Furthermore, a 

detailed consideration of the properties of self-reproduction in large-core GI-

MMF is beneficial for the future design of robust and flexible fibre devices, 

working under harsh environmental conditions, e.g. fibre lasers and amplifiers 

and also for high-resolution medical imaging applications. The aim would be to 

achieve acceptable image quality of the re-imaged beam with robust thermal 

properties and flexibility of the fibre.  

 For the design of a GI-MMF imaging device, it is found that the accuracy 

of the length of the fibre is a key requirement in order to obtain a periodic 

duplication of the input field at certain self-imaging length intervals. Moreover, 

our research studies prove that the re-imaging distance can be practically 

controlled by selectively choosing the fibre’s geometrical parameters, e.g. core 

diameter, numerical aperture and refractive index of the core and cladding. We 

can conclude that the self-imaging length interval can be extended to greater 

distances as the core diameters increase to accommodate a greater number of 

the excited modes, particularly with lower index dynamic range and difference 

between the fibre core and cladding. 
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7.3 Future investigation and design on a silicon-based  

 photonics waveguide. 

With the rapid rise in data rates and the vast amount information that is being 

exchanged between data centres, researchers believe that the use of silicon 

waveguides could be employed in various fields of studies where optical fibres 

are presently deployed [158]. A new development technology based on silicon 

integrated photonics waveguides is capable of transmitting with a faster 

information transfer rate within/or between microchips, enabling high-speed 

optical links to/from the microprocessor. 

 An optoelectronic waveguide uses silicon as an optical medium to 

propagate the light, has been progressively investigated and developed for 

several application areas. Due to the flexibility to allow integration with 

electronics circuits and the benefits that allow integration with numerous 

electronic microcircuits on a single chip, silicon waveguide technology is also 

being extensively researched by famous electronics manufacturers, such as Intel, 

IBM, and through work by academics [159]. Silicon-based photonics waveguides 

are playing an important role due to them offering great advantages over the 

existing electrical or optical links. For example, utilising silicon photonics as the 

optical signal routing and light guiding for short-reach interconnect applications 

[160]. 

 The rib silicon-based photonic configuration was chosen for a brief 

investigation, since it exhibits low propagation losses and a reduced amount of 

scattering at the sidewall of the waveguide [158, 161]. In Figure 7.1 the cross-

section of the rib silicon photonic waveguide structure is detailed. The device has 

a high refractive index contrast between a silicon core and cladding which is 

made of silicon dioxide. The propagating light is tightly confined within the 

silicon core where the guided light travels in the plane of the silicon material. 

This is because of a large index contrast which does not allow light to propagate 

into the lower and upper cladding layers [162].   
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Figure 7.1: A schematic diagram showing the design of a rib silicon-based photonics waveguide 

with a silicon oxide layer at the bottom. The height H of the waveguide is 1.5 µm with an etching 

depth D of 0.85 µm, and a waveguide width W of 1.4 µm. The core and undercladding are made 

of silicon and silicon dioxide materials, respectively.   

 

The silicon-based photonics waveguide was modelled using silicon dioxide, 

functioning as a bottom oxide cladding layer, with a refractive index of 1.4443, 

at a fixed operating wavelength of 1.55 µm. Figure 7.1 depicts the schematic 

diagram of the rib silicon waveguide. The core material is made of silicon (with 

air on top of the silicon layer that acts as the upper cladding), having a refractive 

index of 3.478 at an operating wavelength of 1.55 µm in the telecommunication 

wavelength band and a thickness H of 1.5 µm. Moreover, a slight etching depth 

is required in order to solve the problem of sidewall roughness, resulting in a 

reduction of propagation losses. The etch depth D of this waveguide can be 

realised by removing part of the silicon core layer to about 0.85 µm. To get the 

best performance, the most important aspect to consider in the design is the 

ultra-compactness of the waveguide. The silicon core is made flat along the 
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substrate and the width W of the rib is typically made small, typically with a 

value of about 1.4 µm. 

 

 

 

Figure 7.2: The intensity distributions of the fundamental TE-like mode obtained from the 

silicon photonics waveguide with a 1.4µm width, simulated with the FIMMPROP software.  

 

 The transverse field distributions of the fundamental TE-like mode in a 

silicon-based photonic waveguide can be seen in Figure 7.2 with the refractive 

index of the mode with the value of 3.41. The simulated field intensity 

distribution is shown in Figure 7.3 (a), as simulated with FIMMPROP. The 

variation of intensity of the field distribution can be seen in Figure 7.3 (b) for a 

propagation distance of a 10 mm length, transmitting an input Gaussian beam 

with a 10 µm in beam diameter.  



200 
 

 It can be seen from the figure that the optical beam is tightly confined 

within the silicon core because of a relatively large index contrast and thus the 

majority of the light rays are not allowed to propagate into the cladding layers. 

Also, a rib silicon waveguide configuration exhibits less scattering light onto the 

sidewalls.  

 

 

 

Figure 7.3:  The evolution of the propagation through a silicon photonic waveguide from z = 0 

to z = 10 mm: (a) beam intensity in the fibre; and (b) the normalised intensity of the propagated 

beam profile showing the locations where the intensity distribution peaks. However, the effect 

of self-imaging is not evident due to the numerous number of modes that are excited.  
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 We can see that only a small portion of light is coupled to the silicon oxide 

and the air layers. The propagating fields seem to be bouncing between the 

interfaces of the silica core. Approximately 34.2% of the total power is coupled 

along a 10 mm transmission length. This is because the waveguide supports only 

the fundamental TE-like mode and thus the majority of the transmitted power, 

13.84% of the total power, is coupled to the first fundamental TE-like mode, and 

the remaining power is excited to other guided and non-guided modes in the 

silicon photonics waveguide.   

 To conclude the consideration of the self-imaging phenomenon, we have 

found a large variation of the intensity pattern in a silicon photonic waveguide 

as compared to when the light propagates within a graded index fibre with a 

multiple number of guided modes, although the propagating mode in the silicon-

based waveguide tends to concentrate near the optical axis. Moreover, the 

periodic reproductions of the initial excitation field at which the excited beam is 

repeated has not been found along the core of the silicon-based waveguide. The 

characteristic interference pattern occurring in a silica core exhibits structure 

like that of a multimode step-index fibre. We believe that the reason for this is 

because this particular waveguide satisfies a single mode condition in a few 

micron meters width, whereas a waveguide needs to support more than one 

guided mode in order to regenerate an excited beam. 

 In conclusion, a silicon-based photonic waveguide as an emerging 

technology for high speed digital signalling for optical communications cannot 

reproduce an initial beam because of its compact design which is the most 

important key aspect consideration for a future development of low propagation 

losses. 
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7.4 Consideration of the self-imaging effect through a 

 silicon-based graded index core waveguide 

 Figure 7.4: The cross-section of the silicon photonics waveguide, modelled with a 

 graded index silicon core layer.  

 

  

Figure 7.5:  The evolution of a single beam propagation through a silicon graded core photonic 

waveguide from z = 0 to z = 10 mm with beam diameter of (a) 2.5 µm and (b) 5 µm entering the 

waveguide at the operating wavelength of 1.55 µm. 

 

 

(b) 5µm beam diameter 

(a) 2.5µm beam diameter 
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The silicon-based photonics waveguide, as depicted in Figure 7.4, has a graded 

index profile core with the refractive index of 3.478. The design configuration is 

the same as that shown in Figure 7.1, but with a graded index core in the middle. 

It was placed on top of the silicon dioxide cladding layer. The simulated intensity 

distributions are shown in Figure 7.5(a) – 7.5(b) for single channel transmission 

with an initial Gaussian beam entering the waveguide, having beam diameters 

of 2.5 µm and 5 µm, respectively. As the beam diameter is made smaller to a 

value of 2.5 µm, the propagating light is more tightly confined and guided 

through the silicon core layer. Despite the fact the waveguide core has an index 

profile with a parabolic shape, it can be seen that the self-imaging effect is hardly 

retrieved for both cases along a 10 mm propagation length.  

 

Figure 7.6:  The evolution of two beam Gaussian propagation through a silicon graded core 

photonic waveguide from z = 0 to z = 10 mm with beam diameters of: (a) 2.5 µm and (b) 5 µm, 

located at the (-2,0) and (2,0) coordinates, entering the waveguide with an operating wavelength 

of 1.55 µm. 

 

(b) 5µm beam diameter 

(a) 2.5µm beam diameter 
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For multi-channel transmission, the model that is examined comprises of the 

two initial Gaussian beams with an equivalent beam diameter of 2.5 μm and 5 

μm, as shown in Figure 7.6(a) and 7.6(b), respectively. The transmitted 

independent beams are coupled through the simulation model at a wavelength 

λ of 1.55 μm along a 10 mm length of the fibre. These Gaussian beams are 

arranged over the cross-section of the waveguide at the (2,0) and (-2,0) coordinate 

positions.  

 When multiple beams are simultaneously propagated in a silicon 

waveguide, the majority of the light is still tightly confined into the centre of the 

waveguide. There is not much of the propagating light that escapes into the 

lower refractive index region. In addition, it is evidently seen from Figure 3 that 

the reproduction of the multiple input beams was not found as the beams 

propagate through a silicon waveguide since the self-imaging effect occurs due 

to the interference between a large number of the modes that are generated 

within the structure. Likewise, a group of transmitted beams do not come to 

focus and arrange themselves at the self-imaging position along the length of the 

silicon waveguide in a multi-channel transmission. The reason for this may be 

because the physical structure does not support enough numbers of guided 

modes in the waveguide. The silicon photonic waveguide is designed with an 

ultra-small width of the silicon core which is a key aspect to low propagation 

losses and allows it be integrated with other electronic circuits. 
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Appendix A: Software explanation 

A comprehensive study of wave propagation inside the proposed GI-MMF was 

performed using the commercially available FIMMWAVETM software by the 

company PhotonDesign. FIMMWAVE can be used to model a variety of 2-D and 

3-D waveguide structures with a variety of different mode solvers. Each of the 

mode solving methods has its own advantages, enabling the user to choose the 

most efficient and suitable solver for the design.  

 In this study, a numerical mode solver is implemented using a full-

vectorial finite difference method (FDM) is a suitable choice for modelling an 

optical fibre with a continuously varying index profile. We used the FDM solver 

which is included within FIMMWAVETM to analyse the excitation of various 

modes in the structure. After modelling the waveguide in FIMMWAVETM, the 

propagation characteristic of the electromagnetic fields (i.e. in terms of a sum of 

local Eigenmodes of the fibre) inside the fibre can be modelled using 

FIMMPROPTM, an integrated propagation module as part of the mode solver in 

FIMMWAVE. The FIMMPROPTM is a versatile tool for visualising what is 

occurring inside the fibre structure. Its implementation is based on the 

fundamental theory of the Eigenmode expansion (EME) method. This method is 

well known as a solution of Maxwell’s equations.   

 There are several advantages of the EME technique over other photonics 

algorithms such as Finite Difference Time Domain (FDTD), Finite Element 

Method (FEM), and Beam Propagation Method (BPM) [105]. The EME is a 

powerful method to study the wave propagation inside any design of photonic 

device with a level of accuracy, for which the BPM would be inaccurate. The EME 

is useful for fast design optimisation since its computational speed is much faster 

than FDTD and FEM in which the field profile needs to be stored at each time 

step. Therefore, the EME approach is well suited to fully analyse the the wave 
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propagation that help in understanding the physical mechanism occurring inside 

the optical fibre.  

 When calculating the modes of a waveguide in FIMMWAVETM, the two 

main categories of modes i.e. guided modes and radiation modes, can be found in 

waveguide sections. The optical field at a given z-position is calculated as a linear 

combination of the decomposition of the field in the corresponding x-y cross-

section. Any field present in the waveguide forms a complete basis set of 

Eigenmodes. We can express any mode in terms of a solution of Maxwell’s 

Equations as: 


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where the mode profile or the Eigenmode, i , with its corresponding 

propagation constant,  βi, can be automatically determined using the FDM mode 

solver in FIMMWAVETM. Once the Eigenmodes are known the complex 

amplitude coefficient of the mode, Ci, can be calculated, corresponding to the 

power and the phase of each particular mode.  

The mode coefficients Ci can be expressed as: 
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in which the power of the mode can be determined by: 
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We can inspect the mode amplitude at any z position along the structure and 

calculate the sum of the modes in order to see the total power that is coupled into 

the structure (i.e. where z = 0) or in any position where the power is lost in the 

transmission. The accuracy of the device can be improved by including a 

sufficiently large number of Eigenmodes as well as the spatial resolution. 

However, there is a trade-off between the computational time and the number of 

modes. It is therefore required to include all necessary modes (which propagate 

without loss) to accurately represent the optical field along the structure.  
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Appendix B: Results for the self-imaging length intervals 
The percentage changes of self-imaging positions we have investigated for the propagation along a 1 meter length of 

fibre, derived from the simulations for distances of z = 2L to z = 60L. 

T (°C) 
z = 2L 
(µm) 

(%) 
difference  

z = 4L 
(µm) 

(%) 
difference  

z = 6L 
(µm) 

(%) 
difference 

z = 8L 
(µm) 

(%) 
difference  

z = 10L 
(µm) 

(%) 
difference  

z = 12L 
(µm) 

(%) 
difference 

0 527.463 0.0014 1055.159 0.0013 1582.560 0.0014 2110.147 0.0015 2637.740 0.0014 3165.140 0.0014 

20 527.469 0.0004 1055.170 0.0003 1582.576 0.0004 2110.170 0.0004 2637.767 0.0003 3165.173 0.0003 

25 527.470 0.0000 1055.173 0.0000 1582.582 0.0000 2110.178 0.0000 2637.776 0.0000 3165.184 0.0000 

30 527.472 0.0004 1055.177 0.0004 1582.587 0.0003 2110.185 0.0003 2637.785 0.0003 3165.195 0.0003 

80 527.486 0.0030 1055.204 0.0029 1582.627 0.0028 2110.242 0.0030 2637.852 0.0029 3165.276 0.0029 

             

             

T (°C) 
z = 14L 

(µm) 
(%) 

difference  
z = 16L 

(µm) 
(%) 

difference  
z = 18L 

(µm) 
(%) 

difference 
z = 20L 

(µm) 
(%) 

difference  
z = 22L 

(µm) 
(%) 

difference  
z = 24L 

(µm) 
(%) 

difference 

0 3692.835 0.0014 4220.302 0.0014 4747.760 0.0014 5275.460 0.0014 5802.862 0.0014 6330.444 0.0015 

20 3692.873 0.0004 4220.344 0.0004 4747.809 0.0004 5275.514 0.0004 5802.921 0.0003 6330.513 0.0004 

25 3692.887 0.0000 4220.359 0.0000 4747.826 0.0000 5275.533 0.0000 5802.941 0.0000 6330.536 0.0000 

30 3692.900 0.0004 4220.373 0.0003 4747.843 0.0004 5275.551 0.0003 5802.961 0.0003 6330.559 0.0004 

80 3692.996 0.0030 4220.479 0.0028 4747.967 0.0030 5275.686 0.0029 5803.107 0.0029 6330.730 0.0031 
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T (°C) 
z = 26L 

(µm) 
(%) 

difference  
z = 28L 

(µm) 
(%) 

difference  
z = 30L 

(µm) 
(%) 

difference 
z = 32L 

(µm) 
(%) 

difference  
z = 34L 

(µm) 
(%) 

difference  
z = 36L 

(µm) 
(%) 

difference 

0 6858.044 0.0014 7385.441 0.0014 7913.137 0.0014 8440.606 0.0014 8968.059 0.0014 9495.766 0.0014 

20 6858.113 0.0003 7385.516 0.0004 7913.220 0.0004 8440.691 0.0004 8968.152 0.0004 9495.863 0.0004 

25 6858.137 0.0000 7385.542 0.0000 7913.248 0.0000 8440.721 0.0000 8968.184 0.0000 9495.897 0.0000 

30 6858.161 0.0003 7385.568 0.0004 7913.277 0.0004 8440.750 0.0003 8968.216 0.0004 9495.930 0.0003 

80 6858.334 0.0029 7385.757 0.0029 7913.483 0.0030 8440.962 0.0029 8968.451 0.0030 9496.173 0.0029 

             

             

T (°C) 
z = 38L 

(µm) 
(%) 

difference  
z = 40L 

(µm) 
(%) 

difference  
z = 42L 

(µm) 
(%) 

difference 
z = 44L 

(µm) 
(%) 

difference  
z = 46L 

(µm) 
(%) 

difference  
z = 48L 

(µm) 
(%) 

difference 

0 10023.170 0.0013 10550.750 0.0014 11078.350 0.0014 11605.750 0.0014 12133.450 0.0014 12660.920 0.0013 

20 10023.270 0.0003 10550.860 0.0004 11078.460 0.0004 11605.860 0.0004 12133.570 0.0004 12661.050 0.0003 

25 10023.300 0.0000 10550.900 0.0000 11078.500 0.0000 11605.910 0.0000 12133.620 0.0000 12661.090 0.0000 

30 10023.340 0.0004 10550.940 0.0004 11078.540 0.0004 11605.950 0.0003 12133.660 0.0003 12661.130 0.0003 

80 10023.590 0.0029 10551.220 0.0030 11078.820 0.0029 11606.240 0.0028 12133.980 0.0030 12661.450 0.0028 

             

             

T (°C) 
z = 50L 

(µm) 
(%) 

difference  
z = 52L 

(µm) 
(%) 

difference  
z = 54L 

(µm) 
(%) 

difference 
z = 56L 

(µm) 
(%) 

difference  
58L (µm) 

(%) 
difference  

z = 60L 
(µm) 

(%) 
difference 

0 13188.360 0.0014 13716.080 0.0014 14243.480 0.0013 14771.060 0.0015 15298.670 0.0014 15826.060 0.0014 

20 13188.500 0.0004 13716.220 0.0004 14243.620 0.0004 14771.220 0.0004 15298.830 0.0003 15826.220 0.0004 

25 13188.550 0.0000 13716.270 0.0000 14243.670 0.0000 14771.280 0.0000 15298.880 0.0000 15826.280 0.0000 

30 13188.600 0.0004 13716.320 0.0004 14243.720 0.0004 14771.330 0.0003 15298.930 0.0003 15826.330 0.0003 

80 13188.940 0.0030 13716.670 0.0029 14244.080 0.0029 14771.730 0.0030 15299.320 0.0029 15826.740 0.0029 
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Appendix C: List of Publications 

S. Jakborvornphan, R. Young, P. Birch, and C. Chatwin, “Bending effects in 

large core graded index fibre with multi-channel transmission,” Asian 

Journal of Physics, Vol. 26 (3), 2017. 

S. Jakborvornphan, R. Young, P. Birch, and C. Chatwin, “High density multi-

channel transmission in graded index fibre,” Journal of Optical Fibre 

Technology, Under review, 12th July 2017. 
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