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Abstract

The main focus of this PhD thesis is the study of microstructures and geometric

patterns in materials, in the framework of the Calculus of Variations. My PhD

research, carried out in collaboration with my supervisor Mariapia Palombaro and

Marcello Ponsiglione, led to the production of three papers [21, 22, 23]. Papers [21,

22] have already been published, while [23] is currently in preparation.

This thesis is divided into two main parts. In the first part we present the results

obtained in [22, 23]. In these two works geometric patterns have to be understood

as patterns of dislocations in crystals. The second part is devoted to [21], where

suitable microgeometries are needed as a mean to produce gradients that display

critical integrability properties.
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Chapter 1

Introduction

The main focus of this PhD thesis is the study of microstructures and geometric

patterns in materials, in the framework of the Calculus of Variations. My PhD

research, carried out in collaboration with my supervisor M. Palombaro and M.

Ponsiglione, led to the production of three papers [21, 22, 23]. Papers [21, 22] have

already been published, while [23] is currently in preparation.

This thesis is divided into two main parts. In Part I we present the results

obtained in [22, 23]. In these two works geometric patterns have to be understood

as patterns of dislocations in crystals. Part II is devoted to [21], where suitable

microgeometries are needed as a means to produce gradients that display critical

integrability properties.

We will now give a brief overview of Part I. A wide class of materials, such

as metals, are crystalline, that is, their atoms are arranged in patterns repeated

periodically. Ideal crystals consist of superposed layers of crystallographic planes,

resulting into a periodic structure replicated throughout the whole material (see

Figure 1.1 Left). However, real materials rarely exhibit this long range periodicity.

In fact, their periodic atomic structure is disturbed by the presence of defects, that

are usually classified according to their dimension. One dimensional defects are

called dislocations, which can be visualised as the boundary lines of crystallographic

planes that end within the crystal (see Figure 1.1 Right). Phase boundaries and grain

boundaries are instead two dimensional defects. In certain situations their structure

is composed by a network of so-called edge dislocations. This is for example the

case, respectively, of semi-coherent interfaces in two-phase materials and of small
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Figure 1.1: Left: cross section of an ideal crystal. Circles are atoms. Lines are

atomic bonds. Right: an edge dislocation. The green line of atoms represents

a crystallographic plane ending within the crystal. The red atom is an edge

dislocation.

angle tilt gran boundaries in single phase materials.

A semi-coherent interface forms when two crystalline materials with different

phases, that is different underlying atomic structures, are joined together at a flat

interface. The different atomic structures induce a mismatch at the interface. It

is well known that when the mismatch is small, it is accommodated by two non

parallel arrays of edge dislocations, opportunely spaced (see e.g. [53, Ch 3.4]).

In [22] we analyse a semi-discrete model for dislocations at semi-coherent inter-

faces. We consider the case of a flat two dimensional interface between two crystalline

materials with different underlying lattice structures ⇤+ and ⇤�. We assume that

the lattice ⇤+, lying on top of ⇤�, is a dilation with factor ↵ > 1 of a cubic lattice

⇤� of spacing b. The semi-coherent behaviour corresponds to small misfits ↵ ⇡ 1.

Since in the reference configuration (where both crystals are in equilibrium) the

density of the atoms of ⇤+ is lower than that of ⇤�, in the vicinity of the interface

there are many atoms having the “wrong” coordination number, that is, the wrong

number of nearest neighbours. Such atoms form line singularities that correspond

to edge dislocations. In particular we prove that a periodic square network of edge

dislocations at the interface is optimal in scaling, and we compute the optimal dis-

location spacing, which coincides with � = b/(↵ � 1) (see Figure 1.2). Moreover,

based on the above analysis, we propose and study a simpler continuum variational

model to describe this phenomena. The energy functional we consider describes the
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3, 1 nm

NiSi

Si

interface

dislocation

Figure 1.2: Top Left: a schematic picture of the 3D crystal. The red lines at

the interface are edge dislocations. The blue square is a 2D slice. Top Right:

schematic atomic picture of the 2D slice. Orange and green atoms belong to

⇤� and ⇤+ respectively. The red atoms are edge dislocations (denoted by ?).

Bottom: HRTEM picture of a phase boundary between Si (silicon) and NiSi

(nickel-silicon). The interface is semi-coherent (light region in the picture),

and a periodic network of edge dislocations is observed: the yellow ? symbols

lie vertically above the dislocations, which are located at the interface (image

from [26, Section 8.2.1], with permission of the author H. Foell).

competition between two terms: a surface energy induced by dislocations and a bulk

elastic energy, spent to decrease the amount of dislocations needed to compensate

the lattice misfit. By means of �-convergence, we are able to prove that the former

scales like the surface area of the interface and the latter like its diameter. There-

fore, for large interfaces, nucleation of dislocations is energetically favourable. Even

if we deal with finite elasticity, linearised elasticity naturally emerges in our analysis

since the far field strain vanishes as the interface size increases.
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Figure 1.3: Left: section of an iron-carbon alloy. The darker regions are single

crystal grains, separated by grain boundaries that are represented by lighter

lines (source [59], licensed under CC BY-NC-SA 2.0 UK). Right: schematic

picture of a SATGB. The two grains are joined together and the lattice misfit

at the interface is accommodated by an array of edge dislocations. The green

lines represent lines of atoms ending within the crystal. Their end points inside

the crystal are edge dislocations (denoted with ?). The blue lines show the

mutual rotation ✓ between the grains (picture after [54]).

Grain boundaries are two dimensional defects in single-phase crystalline materi-

als. A wide class of materials, such as metals, display a polycrystalline behaviour.

A polycrystal is formed by many individual crystal grains, all having the same un-

derlying atomic structure, rotated with respect to each other. The interface that

separates two grains with different orientation is called grain boundary (see Figure

1.3 Left). Since the grains are mutually rotated, the periodic crystalline structure is

disrupted at the interface. As a consequence, grain boundaries are regions of high

energy concentration, since the ground state of the energy is given by a single grain.

Let us consider the case of small angle tilt grain boundaries (SATGB) in dimen-

sion two. In SATBGs, the lattice mismatch between two grains mutually tilted by

a small angle ✓, is accommodated by a single array of edge dislocations at the grain

boundary, evenly spaced at distance � ⇡ "/✓, where " is the atomic distance (see

[31, Ch 3.4]). In this way, the number of dislocations at a SATGB is of order ✓/"
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(see Figure 1.3 Right).

The aim of our paper [23] is to derive by �-convergence, as the lattice spac-

ing " ! 0 and the number of dislocations N" ! 1, a limit energy functional F ,

whose minimisers display a polycrystalline behaviour. We work in the hypothesis of

linearised planar elasticity for the material in exam, so that the corresponding vari-

ational problem is two dimensional. Dislocations are modelled as point topological

defects of the strain fields. The elastic energy is then computed outside the so-called

core region of radius ". The energy contribution of a single dislocation core is of

order | log "|, therefore for a system of N" dislocations, the relevant energy regime is

E" ⇡ N"| log "| .

This scaling was studied in [30] in the critical regime N" ⇡ | log "|. For our analysis

we will consider a higher energy regime corresponding to a number of dislocations

N" such that

N" � | log "| .

We will see that this energy regime will account for polycrystals containing grains

that are mutually rotated by an infinitesimal angle ✓ ⇡ 0. To be more specific, we

show that the energy functional E", rescaled by N"| log "|, �-converges as " ! 0 to

a certain functional F , whose dependence on the elastic and plastic parts of the

strain is decoupled. Imposing piecewise constant Dirichlet boundary conditions on

the plastic part of the limit strain, we then show that F is minimised by strains

that are locally constant and take values into the set of antisymmetric matrices. We

call these strains linearised polycrystals. This definition is motivated by the fact

that antisymmetric matrices can be considered as infinitesimal rotations, being the

linearisation around the identity of the space of rotations.

Part II of this thesis concerns composites. Composites are materials constituted

by two or more materials, referred to as phases, having different properties. The

properties of the resulting composite will depend both on its constituents and on

their arrangement. The main difference with the structures considered in Part I, is

that composites are non-homogeneous on length scales larger than the atomic scale,

but they are homogenous at macroscopic scales.
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�1

�2

Figure 1.4: A schematic picture of a laminate material. The white portions

represent the phase �1 while the grey ones represent �2.

We focus on the case of composites consisting of two phases having different

electrical conductivities. The interesting physical question here is to determine how

much the electric field can concentrate. Mathematically such composites can be

modelled by a bounded domain ⌦ ⇢ R2. The electric field ru : ⌦ ! R2 then

satisfies the equation

div(�ru) = 0 , (1.1)

where � is a two-phase conductivity of the form

� = �
E1�1 + �

E2�2 .

Here �1, �2 are 2⇥ 2 constant elliptical matrices and {E1, E2} is a non trivial mea-

surable partition of ⌦. The latter represents the arrangement of the two phases

within the composite. Concentration phenomena of the electric field are for exam-

ple observed when the composite is obtained by layering the phases �1 and �2 in

slices that become thinner and thinner, as displayed in Figure 1.4. These types of

structures are called (higher-order) laminates ([41, Ch 9]). The corresponding parti-

tion {E1, E2} defines then a microgeometry on ⌦, which determines the integrability

properties of ru.

The study of the integrability properties of ru relies on the following fundamen-

tal result by Astala [4]: there exist exponents q and p, with 1 < q < 2 < p, such

that if u 2 W 1,q(⌦) is a distributional solution to (1.1), then ru 2 Lp

weak(⌦). In
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[48] the exponents p and q have been characterised for every pair of elliptic matrices

�1 and �2. More precisely, denoting by p�1,�2 2 (2,+1) and q�1,�2 2 (1, 2) such

exponents, the authors prove that, if u 2 W 1,q�1,�2 (⌦) is a solution to (1.1), then

ru 2 L
p�1,�2
weak (⌦;R2). They also show that the upper exponent p�1,�2 is optimal, in

the sense that there exists a conductivity �̄ 2 L1(⌦; {�1, �2}) and a weak solution

u 2 W 1,2(⌦) to (1.1) with � = �̄, satisfying affine boundary conditions and such

that ru /2 Lp�1,�2 (⌦;R2).

In [21] we complement the above result by proving the optimality of the lower

exponent q�1,�2 . Precisely, we show that for every arbitrarily small �, one can find

a particular conductivity �̄ 2 L1(⌦; {�1, �2}) for which there exists a solution u to

(1.1) with � = �̄, such that u is affine on @⌦ and ru 2 Lq�1,�2��(⌦;R2), but ru /2

Lq�1,�2 (⌦;R2). The existence of such optimal microgeometries is achieved by convex

integration methods, adapting to the present setting the geometric constructions

provided in [5] for isotropic conductivities.

This thesis is organised as follows. In Part I we will discuss about geometric

patterns of dislocations, presenting our papers [22, 23]. In Chapter 2 we will give

a brief review of elasticity theory, introducing rigorously the concept of dislocation

(Section 2.1). In Section 2.2 we introduce the variational approach to elasticity,

showing how dislocations can be modelled from the mathematical point of view. In

Section 2.3 we discuss some important rigidity results. Chapter 3 is dedicated to

the presentation of [22], where we introduce and analyse a model for dislocations

at semi-coherent interfaces. In Chapter 4 we discuss [23], in which we study a

variational model for linearised polycrystals.

Part II is dedicated to the study of microgeometries in composite materials. In

Chapter 5 we will present the results obtained in our paper [21]. A fundamental

tool to prove such results is convex integration, that we introduce in Section 5.3.1.

The Appendix is dedicated to Calculus of Variations and Geometric Measure

Theory, where we collect definitions and results that are useful throughout our

analysis. In Section A.1 we introduce the direct method and �-convergence. In

Section A.2 we define measures and we discuss their main properties, focusing in

particular on finite Radon measures. Finally, in Section A.3, we review functions

with bounded variation and sets of finite perimeter.

12



Part I

Geometric Patterns of Dislocations
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Chapter 2

Variational approach to Elasticity

Theory

Before proceeding with the presentation of the contents of our papers [22, 23], we

want to establish the variational formulation of elasticity theory, adopted throughout

Part I.

This chapter is structured as follows. In Section 2.1 we will introduce, with a ge-

ometrical construction, the concept of dislocation. We will see how two basic types

of straight line dislocations, called edge and screw, are sufficient to understand all

the possible line defects in a crystal. In Section 2.2 we will lay the mathematical

foundations to the variational approach to elasticity theory used in the following

chapters. In particular we will define dislocations as line defects of the deformation

strain. Finally, in Section 2.3 we will rigorously introduce the concept of microstruc-

ture, and recall some well-known rigidity results that will be used in the following

analysis.

2.1 Dislocations

In this section we want to rigorously define dislocations. As already mentioned in

the Introduction, a wide class of materials are crystalline, that is, their atoms are ar-

ranged in patterns repeated periodically. Ideal crystals consist of superposed layers

of crystallographic planes, resulting into a periodic structure replicated throughout

the whole material (Figure 2.1c). However, in general, real materials do not exhibit
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long range periodicity. In fact, their periodic atomic structure is disturbed by the

presence of defects. One dimensional defects (line defects) are called dislocations

(see, e.g., [31, 47, 53, 54]). Dislocations are of fundamental importance in crystals.

In fact, dislocations motion represents the microscopic mechanism of plastic defor-

mation ([31, Ch 7]). Another important role of dislocations is decreasing the energy

induced by lattice misfits. In this case, dislocations arranged in periodic networks

form two dimensional defects, such as semi-coherent interfaces (see Chapter 3) and

small angle grain boundaries (Chapter 4)

Dislocations can be generated through a theoretical procedure of cut and dis-

placement within the ideal crystal. Let � be the boundary, within the crystal, of

such cut. When � is straight, we talk about straight line dislocations. If the dis-

placement is orthogonal to �, this generates an edge dislocation, while if it is parallel,

it generates a screw dislocation. A generic dislocation can be decomposed into edge

and screw components, as we will see later in this section.

2.1.1 Edge dislocations

We will now illustrate the theoretical procedure of cut and displacement in the case

of edge dislocations. First, cut the ideal crystal along the plane ABCD and then

apply a shear in both directions orthogonal to � := BC (see Figure 2.1a). The

plane ABCD is called slip plane. In this way we displace the top surface of the cut

one lattice spacing over the bottom surface, in the direction �. This displacement

results in an extra half plane of atoms BCEF above � (Figure 2.1b). We define the

dislocation line as the boundary within the crystal of the slip plane, that is, �. Every

point in the slip plane has been displaced by a vector ⇠ 2 R3. We say that ⇠ is the

Burgers vector of the dislocation. A dislocation can be uniquely identified by the

pair (�, ⇠) of dislocation line and Burgers vector. Notice that, for edge dislocations,

the Burgers vector is always orthogonal to the dislocation line. In Section 2.2 we

will see that, if � is the strain that induces that displacement in Figure 2.1b, then

the Burgers vector coincides with the circulation of � along any closed path around

� (blue path in Figure 2.1b). If the path does not enclose �, then the circulation is

zero (Figure 2.1a).

Let us analyse the above procedure from the microscopic point of view. Consider

15
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⇠

x1

x2

x3 A B

CD
F

E

⇠shear

shear

A B

C

D

(a) (b)

(c) (d)

�

Figure 2.1: (a): ideal crystal cut along ABCD. A shear parallel to AB is

applied. (b): the top part of ABCD is displaced by ⇠, the Burgers vector. The

boundary of ABCD is the dislocation line �. An extra half-plane of atoms

BCEF lies on top of �. (c): atomic cross section of the ideal crystal in (a).

Circles are atoms and black lines are atomic bonds. The blue path is the

Burgers circuit. (d): cross section of the displaced crystal in (b). The red

atom belongs to �. The green line of atoms belongs to BCEF . The closing

failure of the Burgers circuit coincides with ⇠.

any cross section of the crystal orthogonal to the x2-axis. The cross sections of

Figures 2.1a and 2.1b are represented in Figures 2.1c and 2.1d respectively. The

circles represent atoms and the black lines represent atomic bonds (we are assuming

that the underlying atomic lattice is cubic). We can obtain the edge dislocation in

2.1b by either repeating the above procedure or by inserting a vertical half-plane of

16



�

⇠

slip plane

shear shear

Figure 2.2: The ideal crystal in Figure 2.1a is cut along the plane ABCD. A

shear parallel to � is applied, generating a screw dislocation along �. The blue

paths are Burgers circuits. The closing failure of the Burgers circuit around �

defines the Burgers vector ⇠, which is parallel to �.

atoms in the reference configuration in Figure 2.1c. Both procedures yield a line of

atoms � having the “wrong” number of first neighbours (red atom in Figure 2.1d).

The Burgers vector can be defined by means of a “discrete” circulation, as follows.

Consider a closed path, called Burgers circuit, in the reference configuration starting

from S and ending at F (as illustrated in Figure 2.1c). This circuit is the discrete

analogous of the continuous path displayed in 2.1a. If we follow the same atom to

atom path in the deformed configuration (as shown in Figure 2.1d), the circuit fails

to close. We define the vector necessary to close the path, i.e. the vector from F to

S, as the Burgers vector of the dislocation. Notice that this definition is independent

of the path chosen (as long as it includes the dislocation line). The discrete and

continuum definitions of dislocation line and Burgers vector coincide.

2.1.2 Screw dislocations

We can generate another type of dislocation by cutting the ideal crystal in Figure

2.1a along the plane ABCD and applying a shear parallel to �. In this way if one

moves along a loop around �, one never returns to the starting point, but rather

one “climbs” by one atomic lattice spacing, as displayed in Figure 2.2. For this

17
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⇠
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S
E

slip plane

(a) (b)

⇠

A B

CD

Figure 2.3: (a): curved dislocation line �, changing from screw dislocation at

S to edge dislocation at E. (b): dislocation loop � ⇢ ⌦. Dislocations are of

edge type along BC and DA, and of screw type along AB and CD.

reason, this dislocation is called of screw type. Formally, by considering a Burgers

circuit around �, the closing failure is given by the vector ⇠, which is parallel to the

dislocation line �.

2.1.3 Mixed type dislocations

Through the same procedure of cut and displacement, we can generate other types

of line defects. In fact, the boundary � of the cut can be a generic curve. However,

the displacement happens only in one direction, namely the direction of the Burgers

vector ⇠. For this reason, while the Burgers vector remains constant, the nature of

the dislocation can change along �, and it will depend on the angle formed by the

Burgers vector ⇠ and �̇(x), where �̇(x) is the unit tangent vector to the curve � at

x 2 R3. For example, in Figure 2.3a the dislocation changes from screw type at the

point S, to edge type at E and it is a composition of the two in the other points

along �.

By definition of slip plane, its boundary � cannot end within the crystal. However

it is possible to have a dislocation loop, as shown in Figure 2.3b. In this case the

dislocation is of screw type along the sides AB and CD, since ⇠ is parallel to these

sides, and of edge type along BC and DA, since ⇠ is orthogonal to these sides.
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2.2 Variational approach

2.2.1 Nonlinear elasticity

The main idea behind the variational approach to elasticity is to model an ideal

crystal as a nonlinearly elastic continuum. The stress-free reference configuration

of the crystal is identified with a bounded domain ⌦ ⇢ R3. In classical elasticity

(see, e.g, [10]) a deformation of the crystal is a regular map v : ⌦ ! R3. We call

� := rv : ⌦ ! M3⇥3 the deformation strain associated to v. The nonlinear elastic

energy associated to the strain � is defined by

E(�) :=

Z

⌦

W (�) dx , (2.1)

where W : M3⇥3
! [0,+1) is a continuous map, called stored energy density. The

basic assumption of the variational approach is that any equilibrium configuration

will be a minimiser of (2.1).

The underlying crystalline structure enters this approach as properties of W .

The assumption that the reference configuration is an equilibrium reads as

W (I) = 0 , (2.2)

where I is the identity matrix. Further, we assume that W is frame indifferent, i.e.,

W (F ) = W (RF ) , for every F 2 M3⇥3, R 2 SO(3) ,

where SO(3) := {R 2 M3⇥3 : RTR = I, detR = 1} is the set of three dimensional

rotations. Finally we will make growth assumptions on W . To be more specific,

consider the scalar product

A : B :=
3X

i,j=1

aijbij

on M3⇥3, which induces the norm |F | :=
p
F : F =

p

TrF TF , where TrF denotes

the trace of F . Define the distance

dist(F, SO(3)) := min{|F �R| : R 2 SO(3)} .

We will assume that there exists a positive constant C such that

C�1 dist2(F, SO(3))  W (F )  C dist2(F, SO(3)) , (2.3)

for every F 2 M3⇥3.
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2.2.2 Linear elasticity

When the deformation v : ⌦ ! R3 is small, we can replace the energy in (2.1) with

a linear energy. To make this statement precise, consider the decomposition

v = x+ "u .

The map u : ⌦ ! R3 is called displacement and " > 0 is a small parameter. Here we

will assume u 2 W 1,1(⌦;R3), so that ru is uniformly bounded. The linear elastic

energy associated to v = x+ "u is computed directly on ru and it is defined by

E(ru) :=

Z

⌦

Crusym : rusym dx , (2.4)

where rusym := (ru +ruT )/2 is the symmetric part of the displacement gradient

and C is a fourth order tensor.

The linear energy (2.4) can be deduced, as " ! 0, from the nonlinear energy

defined in (2.1). Indeed, the idea is that rv = I + "ru ! I uniformly as " ! 0,

therefore we have

lim
"!0

Z

⌦

W (rv) dx = lim
"!0

Z

⌦

W (I + "ru) dx = 0 ,

since W (I) = 0. Hence we can linearise W about the equilibrium I. In order to do

that, in addition to the hypothesis in Section 2.2.1, assume also that W is C2 in a

neighbourhood of the identity matrix and that the equilibrium is stress-free, namely

@FW (I) = 0 . (2.5)

Notice that, by frame indifference, there exists a map V : M3⇥3
sym ! [0,+1) defined

by the identity

W (F ) = V

✓
F TF � I

2

◆
for every F 2 M3⇥3 . (2.6)

Here M3⇥3
sym denotes the set of 3 ⇥ 3 symmetric matrices. The assumptions on W

imply that V is C2 in a neighbourhood of E = 0 and that

V (0) = 0 and @EV (0) = 0 . (2.7)

Therefore, by Taylor expansion we get

V (E) =
1

2
CE : E + o(|E|

2) , (2.8)
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for every E 2 M3⇥3
sym, where C is the fourth order stress-tensor obtained by writing

the bilinear form @2
E
V (0) : M3⇥3

sym ⇥ M3⇥3
sym ! R in euclidean coordinates. We note

that growth assumptions (2.3) imply that

C�1
|E|

2
 CE : E  C|E|

2 for every E 2 M3⇥3
sym , (2.9)

for some constant C > 0 (see, e.g., [15]).

From (2.6) we obtain

W (rv) = V

✓
"rusym +

"2

2
C(u)

◆
, (2.10)

where C(u) := ruT
ru is the (right) Cauchy-Green strain tensor. Since ru is

bounded, we can apply (2.8) to (2.10) and obtain

W (rv) = W (I + "ru) =
"2

2
Crusym : rusym + o("2) ,

uniformly in x 2 ⌦. Therefore

lim
"!0

1

"2

Z

⌦

W (I + "ru) dx =

Z

⌦

Crusym : rusym dx , (2.11)

which justifies, at least pointwise, the use of (2.4) for small deformations. It is

possible to prove that the limit in (2.11) holds true also for minimisers, by means

of �-convergence. This result was obtained in [15] and we will present it in more

detail in Section 3.4.2, since it will be needed for our analysis.

2.2.3 Line defect model

We now want to introduce dislocations in the nonlinear model described in Section

2.2.1. In this thesis (Chapters 3 and 4) dislocations are defined as line defects of

the strain field � (see, e.g., [8, 18, 22, 23, 30, 43]). Indeed this approach is a hybrid

between microscopic and continuous description, and it is referred to as semi-discrete

model. The underlying crystalline structure enters the analysis as a small parameter

" > 0, referred to as core radius, which is proportional to the atomic distance. We

will assume that dislocation lines are at a distance of 2" at least. The set of slip

directions for the crystal is

S := {⇠1, . . . , ⇠s}

where ⇠j are the Burgers vectors, depending on the crystalline lattice. For example,

in the case of a cubic lattice, we set S := {e1, e2, e3}, the standard basis of R3.
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�

⇠

⌦

C

D

�̇

Figure 2.4: Dislocation (�, ⇠) in the reference configuration ⌦. D is the flat

region enclosed by � and it represents the slip plane. A strain � generating

(�, ⇠) is locally a gradient and it has constant jump equal to ⇠ through D. C

represents a Burgers circuit around �.

Let � ⇢ ⌦ be a relatively closed Lipschitz curve (that is, ⌦ \� is not simply con-

nected), representing a dislocation line. Let ⇠ 2 S be the Burgers vector associated

to �. A strain � : ⌦ ! M3⇥3 generates the dislocation (�, ⇠) if

Curl � = �⇠ ⌦ �̇H1 � , (2.12)

in D
0(⌦;M3⇥3). Here the operator Curl is applied to every row of the matrix �, the

tensor product of two vectors a, b 2 R3 is defined as the 3 ⇥ 3 matrix with entries

(a⌦ b)ij := aibj, and H
1 � is the one dimensional Hausdorff measure restricted to

�. From (2.12), it follows that the circulation of � over any simply connected closed

path C around � is equal to ⇠, namely
Z

C

� · t dH1 = ⇠ . (2.13)

To understand the geometrical meaning of (2.12), consider the flat region D enclosed

by � and denote with n the normal unit vector to D (see Figure 2.4). Then there

exists a deformation v 2 SBV (⌦;R3) such that � = rv a.e. in ⌦ and

Dv = rv dx+ ⇠ ⌦ nH
2 D (2.14)
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in the sense of distributions. Here SBV (⌦;R3) is the set of special functions of

bounded variation (see Section A.3 for details), dx is the Lebesgue measure on R3

and H
2 D is the two dimensional Hausdorff measure restricted to D. Therefore,

from (2.14), � can be seen as the elastic part of a deformation which has constant

jump equal to ⇠ across the slip plane D (see [50]).

We remark that, for a strain � satisfying (2.12), the elastic energy defined in

(2.1) is not finite, i.e.,

E(�) = +1 . (2.15)

To see this, consider an "-neighbourhood of �, that is,

I"(�) := {x 2 R3 : dist(x, �) < "} .

Fix � > " such that I�(�) ⇢ ⌦. Let �(s) be a parametrisation of �, and B⇢(�(s))

be the two dimensional disk of radius ⇢, centred at �(s), and intersecting D orthog-

onally. Then, by integrating along � and using Jensen’s inequality and (2.13), we

get Z

I�(�)\I"(�)
|�|2 dx =

Z
l

0

Z
�

"

Z

@B⇢(�(s))

|�|2 dH1 d⇢ ds

�

Z
l

0

Z
�

"

1

2⇡⇢

�����

Z

@B⇢(�(s))

� · t dH1

�����

2

d⇢ ds

= length(�)
|⇠|2

2⇡
log

�

"
.

(2.16)

This shows that the energy of a single dislocation diverges logarithmically as the

core radius " ! 0. In particular, we deduce that � /2 L2(⌦;M3⇥3), and also (2.15),

which follows from the energy bounds (2.3) and (2.16).

To overcome this problem there are different approaches. One possibility is to

truncate the energy at infinity and considering strains in Lp for some 1 < p < 2. This

method is used in Chapter 3, for example. Another option is the so-called core radius

approach, employed in Chapter 4, which consists in removing an "-neighbourhood

of the dislocation � from ⌦. We will present them in detail below.

Energy truncation

Let 1 < p < 2. We replace growth condition (2.3) on W with a condition that

truncates the energy at infinity, namely we assume that there exists a constant
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C > 0 such that

C�1
�
dist2(F, SO(3)) ^ (|F |

p + 1)
�
 W (F )  C

�
dist2(F, SO(3)) ^ (|F |

p + 1)
�

(2.17)

for every F 2 M3⇥3. The admissible strains inducing the dislocation (�, ⇠) are maps

� 2 Lp(⌦;M3⇥3) such that (2.12) is satisfied. For such strains E(�) is finite, and

we can introduce the minimal energy induced by the dislocation (�, ⇠) as

E(�, ⇠) := inf
�
E(�) : � 2 Lp(⌦;M3⇥3), Curl � = �⇠ ⌦ �̇H1 �

 
.

Core radius approach

Let W satisfy the hypothesis in Section 2.2.1. Given a dislocation (�, ⇠), consider

the drilled domain

⌦"(�) := ⌦ \ I"(�) .

A strain inducing (�, ⇠) will be a map � 2 L2(⌦"(�);M3⇥3) such that

Curl � ⌦"(�) = 0 and
Z

C

� · t dH1 = ⇠ , (2.18)

for every simply connected path C around � (the trace is well defined thanks to

Theorem 4.1). Notice that we replaced condition (2.12) with (2.18). For such

strains we define the elastic energy as

E"(�) :=

Z

⌦"(�)

W (�) dx

and the minimal energy induced by (�, ⇠) as

E"(�, ⇠) := inf
�
E"(�) : � 2 L2(⌦"(�);M3⇥3) such that (2.18) holds

 
.

2.3 Differential inclusions and Rigidity

Let ⌦ ⇢ R3 be a bounded domain. Consider the following problem: find, and

possibly characterise, Lipschitz functions v : ⌦ ! R3 such that

rv(x) 2 K for a.e. x in ⌦ (2.19)

where K ⇢ M3⇥3 is a given set of matrices. Condition (2.19) is called a differential

inclusion and a map v satisfying (2.19) is said to be an exact solution.
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Differential inclusions of this type arise naturally in applications to Materials

Science (see, e.g., [6, 34, 42, 51]). In elasticity theory differential inclusions are useful

to model microstructures. Physically a microstructure is any structure that can be

observed on a mesoscale. In this case ⌦ will represent the reference configuration

of our material and v : ⌦ ! R3 a deformation. As discussed in Section 2.2.1, the

energy associated to v is Z

⌦

W (rv) dx , (2.20)

where W : M3⇥3
! R is the stored energy density. We can normalise W so that

minW = 0. Experimentally it is observed that microstructures do not only minimise

(2.20), but they minimise the stored energy W pointwise. We are thus led to problem

(2.19) where we set K := W�1(0), i.e., K is the set of zero energy affine deformations

of the underlying atomic structure of the crystal. The set K will depend on the

properties of the material. In the next section we will discuss two significant cases,

useful in the following analysis, namely K = {A,B} and K = SO(3).

Another application for differential inclusions is to construct gradients that have

certain integrability properties. This will be done in Section 5.3.1.

2.3.1 The two-gradient problem

Let K = {A,B} for A,B 2 M3⇥3 and consider the problem of finding Lipschitz

maps v : ⌦ ! R3 satisfying

rv 2 {A,B} a.e. in ⌦ . (2.21)

A trivial solution to (2.21) is given by the constant map v(x) ⌘ Fx with F 2 {A,B}.

When only constant solutions exist, we say that the problem is rigid. However, in

some cases it is possible to construct nontrivial solutions (i.e. not constant) to

(2.21), by considering simple laminates. A simple laminate is a map v for which rv

is constant on alternating regions delimited by hyperplanes

{x 2 R3 : x · n = c} ,

for some fixed direction n 2 R3 with |n| = 1. The vector n represents the lamina-

tion direction (Figure 2.5a). Simple laminates can be used to model microstructures
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⌦

A B BB A

(a) (b)

Figure 2.5: (a): a simple laminate v in direction n, such that rv 2 {A,B}

a.e. in ⌦. (b): atomic resolution micrograph of twinning in Ni-Al alloy (source

[42]). This laminate can be modelled by the map v displayed in (a).

observed in real materials, where two phases are mixed in alternating bands (Fig-

ure 2.5b). It is possible to model more complicated microstructures as well, by

introducing the concept of higher order laminate (see Section 5.3.1).

Since we are requiring that v is Lipschitz, the tangential continuity at the hy-

perplanes where there is a phase transition from A to B implies that Ax = Bx

for every vector x 2 R3 such that x · n = 0. Therefore rank(B � A) = 1, with

ker(B � A) = {x 2 R3 : x · n = 0} =: n?. This implies that

B � A = a⌦ n , (2.22)

with a := (B � A)n, since (a ⌦ n)x = (x · n)a for x 2 R3. Two matrices A,B 2

M3⇥3 such that rank(B � A) = 1 are said to be rank-one connected. It turns out

that condition (2.22) is both necessary and sufficient for the existence of nontrivial

solutions to (2.21), as stated in the following proposition.

Proposition 2.1 ([6], Proposition 1). Let ⌦ ⇢ R3 be open, connected and Lipschitz.

Let v : ⌦ ! R3 be a Lipschitz map that satisfies (2.21).

(i) Let rank(B �A) = 1, so that B �A = a⌦ n for some a, n 2 R3 with |n| = 1.

Then the only solutions to (2.21) are locally simple laminates, i.e., v is locally

of the form

v(x) = Ax+ a h(x · n) + c , (2.23)

where h : R ! R is a Lipschitz map such that h0
2 {0, 1} a.e. in R, and c 2 R3

is a constant. If in addition ⌦ is convex, then v is globally of the form (2.23).
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(ii) Let rank(B � A) � 2. Then (2.21) is rigid, that is, rv = F a.e. in ⌦, with

F 2 {A,B}.

Moreover, if v satisfies the affine boundary condition v = Fx on @⌦, then v = Fx

for every x 2 ⌦ and F 2 {A,B}.

Before proving the proposition, we want to remark that indeed condition (2.23)

describes a simple laminate. In fact, if v is of the form (2.23), then

rv = A+ h0(x · n) a⌦ n ,

so that rv 2 {A,B} a.e. in ⌦, since h0
2 {0, 1} a.e. in R.

Proof. Up to considering v�Ax instead of v, we can assume that A = 0. Therefore,

if v satisfies (2.21), then rv = B�E, for some measurable set E ⇢ ⌦.

Step 1. Let us start with (i). Since rank(B) = 1, after an affine change of variables,

we can assume a = n = e1, so that B = e1 ⌦ e1, where ei is the i-th vector of the

standard basis of R3. Therefore, if we write v = (v1, v2, v3), condition rv = e1⌦e1�E

reads as

rv1 = e1�E , rv2 = 0 , rv3 = 0 .

Hence v2 and v3 are constant, and v1 is locally a function of x1, so that

v(x) = e1h(x1) + c , (2.24)

which is exactly (2.23). If ⌦ is convex, then (2.24) holds globally, as v1 is constant

on the hyperplanes {x 2 R3 : x1 = const}.

Step 2. We will now prove (ii). Since rank(B) � 2, up to an affine change of

variables, we can assume that

B =

0

BBB@

1 0 0

0 1 0

b1 b2 b3

1

CCCA
,

for some vector b 2 R3. Since rv = B�E,

Curl(B�E) = Curl(rv) = 0 .
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By direct calculation, the first two rows of the above equation read as

curl(e1�E) = (0, @x3
�
E,�@x2

�
E) = 0 ,

curl(e2�E) = (�@x3
�
E, 0, @x1

�
E) = 0 ,

so that r�E = 0 a.e. in ⌦. Since ⌦ is connected, this implies �E ⌘ 0 a.e. or �E ⌘ 1

a.e., and the thesis follows.

Step 3. Assume that v satisfies (2.21) and v = Fx on @⌦. Integration by parts

yields

|E|B =

Z

⌦

rv dx =

Z

@⌦

v ⌦ ⌫ dH2 =

Z

@⌦

Fx⌦ ⌫ dH2 =

Z

⌦

F dx = |⌦|F ,

where ⌫ is the outer normal to @⌦. Therefore

F =
|E|

|⌦|
B = (1� �)B , (2.25)

for � := 1� |E|/|⌦| 2 [0, 1].

Assume that rank(B) = 1 and fix y 2 @⌦. Then, by (i), we have that

v(x) = a h(x · n) + c a.e. in Br(y) \ ⌦ ,

for some r > 0. Since v = Fx on @⌦, we can extend v to R3 by setting v(x) = Fx

for every x 2 R3
\ ⌦. Therefore we have

v(x) = a h̃(x · n) + c a.e. in Br(y) , (2.26)

for some function h̃ such that h̃0
2 {0, 1, 1 � �}. Notice that on the intersection

{x · n = const} \ (Br(y) \ @⌦) we have v = Fx. Therefore, from (2.26), we deduce

that v = Fx on Br(y). Since rv 2 {0, B} in Br(y)\⌦, we deduce that F 2 {0, B}.

Therefore, from (2.25), we have that either |E| = 0 or |E| = |⌦|, and the thesis

follows.

If rank(B) � 2 then, by (ii), we have rv = 0 a.e. or rv = B a.e., which

correspond to |E| = 0 or |E| = |⌦| respectively. Hence, by (2.25), F = 0 or F = B

and the thesis follows.

2.3.2 The single-well problem

Let ⌦ ⇢ R3 be open and connected and consider the differential inclusion

rv 2 SO(3) a.e. in ⌦ (2.27)

for some Lipschitz map v : ⌦ ! R3. We have the following rigidity theorem.
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Proposition 2.2 (Liouville). Assume that the Lipschitz map v : ⌦ ! R3 satisfies

(2.27). Then rv is constant and v(x) = Qx+ b, for some Q 2 SO(3) and b 2 R3.

Proof. This proof can be found in [42]. It is well known (see [39]) that for a Lipschitz

map we have

div(cofrv) = 0 , (2.28)

where cof F denotes the cofactor matrix of F 2 M3⇥3. Recall that F�1 = cof F/ detF

whenever detF 6= 0. Hence, for R 2 SO(3) we have cof R = R. Since rv 2 SO(3)

a.e., (2.28) implies that v is harmonic in ⌦ and, in particular, v is smooth. Then we

have
1

2
�|rv|2 = rv ·�rv + |r

2v|2 = |r
2v|2 , (2.29)

since v is harmonic. For R 2 SO(3) we have |R|
2 = TrRTR = 3. Hence |rv|2 = 3

in ⌦ and from (2.29) we deduce |r
2v| = 0, which implies rv ⌘ Q for some Q 2

SO(3).

In [29] the authors proved a quantitative version of Proposition 2.2, that will be

fundamental in the analysis carried out in Chapter 3.

Theorem 2.3 (Geometric Rigidity, [29]). Let ⌦ ⇢ R3 be a bounded Lipschitz do-

main. There exists a constant C > 0 depending only on ⌦, such that the following

holds: for every map v 2 H1(⌦;R3), there exists an associated constant rotation

R 2 SO(3), such that
Z

⌦

|rv �R|
2 dx  C

Z

⌦

dist2(rv, SO(3)) dx . (2.30)

Remark 2.4 (See [29]). We remark that the constant C in Theorem 2.3 is invariant

under uniform scaling and translation, that is,

C(⌦) = C(�⌦+ c) ,

for every � > 0, c 2 R3. The rescaled function �v((x � c)/�) is associated to the

same rotation R for v.

Estimate (2.30) is obtained, in [29], by combining Proposition 2.2 and the classic

Korn’s inequality, stated in the following theorem.
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Theorem 2.5 (Korn’s inequality, [10]). Let ⌦ ⇢ R3 be a bounded Lipschitz do-

main. There exists a constant C > 0 depending only on ⌦, such that for every map

u 2 H1(⌦;R3) we have
Z

⌦

|ru� A|2 dx  C

Z

⌦

|rusym
|
2 dx , (2.31)

where A is the constant antisymmetric matrix defined by

A :=
1

|⌦|

Z

⌦

ruskew dx ,

with rusym := (ru+ruT )/2 and ruskew := (ru�ruT )/2.

We can see how the rigidity estimate (2.30) is the nonlinear version of Korn’s

inequality (2.31) by computing the distance from SO(3) for a deformation of the

form v = x + "u, with " > 0 small. Notice that the tangent space of SO(3) about

the identity is given by the space of antisymmetric matrices M3⇥3
skew, hence we have

dist(F, SO(3)) = |F sym
� I|+O(|F � I|2) .

Applying the above identity to rv = I + "ru yields

dist(rv, SO(3)) = "|rusym
|+ o("2) .
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Chapter 3

A variational model for dislocations

at semi-coherent interfaces

3.1 Introduction

In this chapter we present the results obtained in our paper [22], in which we propose

and analyse a variational model describing dislocations at semi-coherent interfaces.

We focus on flat two dimensional interfaces between two crystalline materials with

different underlying lattice structures ⇤+ and ⇤�. Specifically, we assume that the

lattice ⇤+ (lying on top of ⇤�) is a dilation with factor ↵ > 1 of ⇤�. We are

interested in semi-coherent interfaces, corresponding to small misfits ↵ ⇡ 1.

Since in the reference configuration (where both crystals are in equilibrium)

the density of the atoms of ⇤+ is lower than that of ⇤�, in the vicinity of the

interface there are many atoms having the “wrong” coordination number, namely,

the wrong number of nearest neighbours (see Figure 3.1 Left). Such atoms form line

singularities (relatively closed paths lying on the interface), which correspond to

edge dislocations (see Section 2.1 for more details on dislocations). The crystal can

reduce the number of such dislocations through a compression strain acting on ⇤+

near the interface, at the price of storing some far field elastic energy. A deformation

that coincides with x 7! ↵�1x near the interface would provide a defect-free perfect

match between the crystal lattices (Figure 3.1 Right). In fact, the true deformed

configuration is the result of a balance (Figure 3.1 Centre) between the elastic energy

spent to match the crystal structures and the dislocation energy spent to release the
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Figure 3.1: Left: a bulk stress-free configuration. Right: a defect-free configu-

ration. Centre: a schematic picture of a true energy minimiser; the density of

atoms on the top and on the bottom of the interface is almost the same, giving

rise to a semi-coherent interface.

far field elastic energy, with the former scaling (for defect free configurations) like

the volume of the body and the latter like the surface area of the interface.

This is why the common perspective of the scientific community working on this

problem has been to understand which configurations of dislocations minimise the

elastic stored energy, and much effort has been devoted to describe those configu-

rations for which the dislocation energy contribution is predominant, and the far

field elastic energy is negligible ([55], [32]). As a matter of fact, for large crystals,

periodic patterns of edge dislocations are observed at interfaces, as displayed, for

example, in Figure 3.2 (see [19, 53]).

In [22], we propose a simple variational model to analyse the competition between

surface and elastic energy. We show that, for large interfaces, the dislocation energy

of minimisers scales like the area of the interface, while the elastic far field energy

like its diameter.

The proposed model is not purely discrete; indeed it is a continuum model that

stems from some heuristic considerations and some rigorous computations done in

the framework of the so called semi-discrete theory of dislocations.

In single crystals, the energy induced by straight edge dislocations has a loga-

rithmic tail (see (2.16)), which diverges as the ratio between the crystal size and

the atomic distance tends to +1. The �-convergence analysis for these systems as

the atomic distance tends to zero has been recently done in [17], [13] showing that

dipoles as well as isolated dislocations do not contribute to decrease the elastic en-
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3, 1 nm

NiSi

Si

interface

dislocation

Figure 3.2: HRTEM picture of the interface between Si (silicon) and NiSi

(nickel-silicon). The interface is semi-coherent (light region in the picture),

and a periodic network of edge dislocations is observed: the yellow ? symbols

lie vertically above the dislocations, which are located at the interface (image

from [26, Section 8.2.1], with permission of the author H. Foell).

ergy, so that in single crystals only the so called geometrically necessary dislocations

are good competitors in the energy minimisation (see Section A.1.2 for details on

�-convergence).

Quite different is the case of polycrystals treated in our paper [22], where dis-

locations contribute to decrease the elastic energy. The first rigorous variational

justification of dislocation nucleation in heterostructured nanowires was obtained

by Müller and Palombaro [43] in the context of nonlinear elasticity. The model pro-

posed in [43] was later generalised to a discrete to continuum setting in [36, 37] (see

also [2] for recent advancements in the microscopic setting). A variational model

for misfit dislocations in elastic thin films, in connection with epitaxial growth, has

been recently proposed in [28] (we refer the readers interested in the mathematical

theory of epitaxy to the lecture notes [38]). Finally, a rigorous derivation of a small

angle grain boundary has been obtained in the recent paper [35].

In Section 3.2 we set and analyse the problem in the semi-discrete framework,

which provides the theoretical background for the proposed continuum model. In

the semi-discrete model, the reference configuration of the hyper-elastic body is the

cylindrical region ⌦r := Sr ⇥ (�hr, hr), where r, h > 0 and Sr := [�r/2, r/2]2. The

interface Sr ⇥ {0} separates the two regions of the body, ⌦�
r
:= Sr ⇥ (�hr, 0) and

⌦+
r
:= Sr ⇥ (0, hr), with underlying crystal structures ⇤� and ⇤+ respectively. We

will refer to ⌦�
r

and ⌦+
r

as the underlayer and overlayer, respectively. We assume

that the material equilibrium is the identity I in ⌦�
r

(implying that the underlayer
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is already in equilibrium) and ↵I in ⌦+
r
, where ↵ > 1 measures the misfit between

the two lattice parameters. Notice that the identical deformation of ⌦r, which

corresponds to a dislocation-free configuration, is not stress-free, since the overlayer

is not in equilibrium. Furthermore, in order to simplify the analysis, we assume that

⌦�
r

is rigid, so that only ⌦+
r

is subjected to deformations.

We assume that deformations try to minimise a stored elastic energy (in ⌦+
r
),

whose density is described by a nonlinear frame indifferent function W : M3⇥3
!

[0,+1). In classical finite elasticity (see Section 2.2.1), W acts on deformation

gradients � := rv. In this framework dislocations are introduced as line defects of

the strain: more precisely, we allow the strain field � to have a non vanishing curl,

concentrated on dislocation lines at the interface Sr (see Section 2.2.3). Therefore,

the admissible strains are maps � 2 Lp(⌦r;M3⇥3) (where 1 < p < 2 is fixed,

according to the growth assumptions on W , see (3.7)) that satisfy

Curl � =
X

i

�⇠i ⌦ �̇i H
1 �i (3.1)

in the sense of measures and such that � = I in ⌦�
r
. Here {�i} is a finite collection

of closed curves, and ⇠i 2 R3 denotes the Burgers vector, which is constant on each

�i. The Burgers vector belongs to the set of slip directions, which is a given material

property of the crystal. We assume that the Burgers vectors are given by

S := {be1, be2} (3.2)

where b > 0 represents the lattice spacing of ⇤�. We then define the set of slip

directions

S := SpanZ S , (3.3)

which coincides with the set of Burgers vectors for multiple dislocations. We also

suppose that the dislocation curves �i have support on the grid

G :=
⇥�
(bZ⇥ R) [ (R⇥ bZ)

�
\ Sr

⇤
⇥ {0} . (3.4)

Notice that this choice is consistent with the cubic crystal structure, and that b is

independent of r, i.e., independent of the size of the body.

In Section 3.2 we study the asymptotic behaviour of minimisers of the elastic

energy functional with respect to all possible pairs of compatible (i.e., satisfying
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↵b

� = b

↵�1
b

⇤+

⇤�

Figure 3.3: Left: schematic picture of the 3D crystal. The red lines at the

interface are edge dislocations. The blue square is a 2D slice. Right: schematic

atomic picture of the 2D slice. Orange and green atoms belong to ⇤� and ⇤+

respectively. The red atoms are edge dislocations (denoted by ?).

(3.1)) strains and dislocations, refining the analysis first done in [43]. In Proposition

3.2 we show that, as r ! +1, the elastic energy of minimisers per unit area of the

interface tends to a given surface energy density E↵. As a consequence, we show

that there exists a critical r⇤ such that, for larger size of the interface, dislocations

are energetically favourable (see Theorem 3.5). The proof of these results is based on

an explicit construction of an array of dislocations (see Figure 3.3) and of admissible

fields, which is optimal in the energy scaling (see Proposition 3.6). While we could

guess that the dislocation configuration is somehow optimal, the strains that we

consider as energy competitors are surely not, so that our construction does not

provide the sharp formula for the surface energy density E↵, which depends on the

specific form of the elastic energy density W . Indeed, the main problem raised in

our paper [22] concerns the identification of the sharp energy density E↵ and of

the corresponding optimal geometries for the dislocations net. Less ambitious is

the question about the optimal spacing between the dislocation lines. As already

explained, by scaling arguments the optimal geometry of dislocations should release

the far field elastic energy as much as possible. This consideration leads us to

construct and analyse a net of dislocations with spacing b

↵�1 . One of the main

goals of this paper is to show that, for large interfaces, such density of dislocations

is optimal in energy. In order to prove this fact, in Section 3.4, we propose and
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analyse a simplified continuous model for dislocations at semi-coherent interfaces,

describing in particular heterogeneous nanowires.

Although we deal with a continuum model, our approach is built on the analysis

developed in the first part of [22], and it is consistent with the discrete analysis

developed in [36, 37]. In this model we work with actual gradient fields far from the

interface, where the curl of the strain is now a diffuse measure, in contrast with (3.1).

Dislocations nucleation is taken into account by introducing a free parameter into

the total energy and eventually optimising over it. Specifically, we assume that the

underlayer occupies the cylindrical region ⌦�
R

(which is fixed), while the reference

configuration of the overlayer is ⌦+
r
, where r = ✓R and ✓ 2 (0, 1) is a free parameter

in the total energy functional. The class of admissible deformation maps is defined

by

ADM✓,R :=

⇢
v 2 W 1,2(⌦+

r
;R3) : v(x) =

1

✓
x on Sr

�
. (3.5)

In this way v(Sr) = SR for all v 2 ADM✓,R, so that there is a perfect match between

the two layers at the interface. In view of the analysis performed in the semi-discrete

setting, the area of SR r Sr divided by b can be interpreted as the total dislocation

length. This suggests to introduce the plastic energy defined by

Epl

R
(✓) := �r2(✓�2

� 1) = �R2(1� ✓2).

Here � > 0 is a given material constant of the crystal, which multiplied by b rep-

resents the energy cost of dislocations per unit length. In principle, � could be

derived starting from the surface energy density E↵ introduced in Proposition 3.2,

yielding in the limit of vanishing misfit � = lim
↵!1

E↵

↵2 � 1
(see (4.124)). Alternatively,

assuming isotropy, � can be expressed in terms of the Lamé moduli of the linearised

elastic tensor corresponding to W and of the (unknown) chemical core energy den-

sity �ch induced by dislocations (see (3.26) in Section 3.3). The latter contribution is

implicitly taken into account by the nonlinear energy density W in finite elasticity.

Based on the previous considerations, our goal is to study the total energy func-

tional defined by

Etot

↵,R
(✓, v) := Eel

↵,R
(✓, v) + Epl

R
(✓) =

Z

⌦+
r

W (rv(x)) dx+ �R2(1� ✓2),

for v 2 ADM✓,R. Set

Eel

↵,R
(✓) := inf

�
Eel

↵,R
(✓, v) : v 2 ADM✓,R

 
, Etot

↵,R
(✓) := Eel

↵,R
(✓) + Epl

R
(✓).
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Notice that if ✓ = 1, then no dislocation energy is present, i.e., Etot

↵,R
(1) = Eel

↵,R
(1).

Instead, if ✓ = ↵�1 no elastic energy is stored (since v(x) := ↵x is admissible and

W (↵I) = 0).

The remaining and main part of [22] is devoted to the analysis of minimisers of

Etot

↵,R
, as R ! +1. In Theorem 3.13 we show that the optimal ✓R tends to ↵�1 from

below, corresponding to the average spacing b

↵�1 between the dislocation lines. In

particular, the dislocation energy spent to release the bulk energy is predominant,

but still ✓R 6= ↵�1, so that also a far field bulk energy is present (see Figure 3.1).

In order to compute the optimal ✓R, we perform a Taylor expansion (through

a �-convergence analysis) of the plastic and elastic part of the energy, proving in

particular that the first scales like R2, while the second like R. Prefactors in such

energy expansions are computed, depending only on ↵, � and on the fourth-order

tensor obtained by linearising W .

In conclusion, the proposed energy functional provides a simple prototypical

variational model to describe the competition between the dislocation energy con-

centrated in the vicinity of the interface between materials with different crystal

structures, and the far field elastic energy. This model fits into the class of free

boundary problems, since the overlayer is a variable in the minimisation problem,

though only through a scalar parameter representing its size. Our formulation is

quite specific, dealing with two lattices where one is a small dilation of the other.

Therefore, it is meant to model semi-coherent interfaces between two different lat-

tices, for example in heterostructured nanowires. Nevertheless, our approach seems

flexible enough to be adapted to more general situations, to model epitaxial crystal

growth (where the surface energy of the free external boundary in contact with air

should be added to the energy functional), and to more general interfaces, such as

grain boundaries, where the misfit in the crystal structures is due to mutual rotations

between the grains instead of dilations of the lattice parameters.
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3.2 A line defect model

3.2.1 Description of the model

We introduce a semi-discrete model for dislocations, which are described as line

defects of the strain.

Let ⌦1 = S1⇥(�h, h) be the reference configuration of a cylindrical hyper-elastic

body. Here h > 0 is a fixed height and S1 = {(x1, x2, 0) 2 R3 : |x1| , |x2| < 1/2} is a

square of side one centred at the origin, separating parts of the body with underlying

crystal structures ⇤� and ⇤+ := ↵⇤�, with ↵ > 1. For any given r > 0, we will

consider scaled versions of the body ⌦r := r⌦1 and Sr := rS1.

Set ⌦�
r
:= Sr ⇥ (�hr, 0) and ⌦+

r
:= Sr ⇥ (0, hr). We assume that the material

equilibrium is the identity I in ⌦�
r

(which means that the material is already in

equilibrium in ⌦�
r
) and ↵I in ⌦+

r
. We are interested in small misfits, which generate

so called semi-coherent interfaces; therefore, we will deal with ↵ ⇡ 1. More specifi-

cally, we assume that the lattice distances of ⇤� and ⇤+ are commensurable, and in

particular that ↵ := 1 + 1/n for some given n 2 N. Moreover, in order to simplify

the analysis, we assume that ⌦�
r

is rigid, namely, that the admissible deformations

coincide with the identical deformation in ⌦�
r
.

According to the hypothesis of hyper-elasticity, we assume that the crystal tries

to minimise a stored elastic energy (in ⌦+
r
), whose density is described by a function

W : M3⇥3
! [0,+1). As discussed in Section 2.2.1, we require that W is continuous

and frame indifferent, i.e.,

W (F ) = W (RF ) for every F 2 M3⇥3, R 2 SO(3) . (3.6)

Moreover, we suppose that there exist p 2 (1, 2) and constants C1, C2 > 0, such that

W satisfies the following growth conditions:

C1

�
dist2(F,↵SO(3)) ^ (|F |

p + 1)
�
 W (F )  C2

�
dist2(F,↵SO(3)) ^ (|F |

p + 1)
�

(3.7)

for every F 2 M3⇥3. Here the condition p > 1 prevents the formation of cracks

in the body, while p < 2 guarantees that dislocations induce finite core energy, as

explained below.
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In absence of dislocations, the deformed configuration of the body can be de-

scribed by a sufficiently smooth deformation v : ⌦+
r

! R3. The corresponding

elastic energy is given by

Eel(v) :=

Z

⌦+
r

W (rv) dx. (3.8)

The field rv is referred to as the deformation strain.

We now explain how to introduce dislocations in the present model. As in

[43], dislocations are described by deformation strains whose curl is not free, but

concentrated on lines lying on the interface Sr between ⌦�
r

and ⌦+
r
.

Assume for the time being that the dislocation line � ⇢ Sr is a Lipschitz, rel-

atively closed curve in Sr. The latter condition implies that ⌦r r � is not simply

connected. Therefore, the strain is a map � 2 Lp(⌦r;M3⇥3) that satisfies

Curl � = �⇠� ⌦ �̇H1 � (3.9)

in the sense of distributions and � = I in ⌦�
r
. The vector ⇠� 2 R3 denotes the

Burgers vector, which is constant on �, and together with the dislocation line �,

uniquely characterises the dislocation (see Figure 3.4 Left). From (3.9) one can

deduce that in the vicinity of �

|�(x)| ⇠
1

dist(x, �)
, (3.10)

which implies that the L2 norm of � in a cylindrical neighbourhood of � diverges

logarithmically (see (2.16)). This is exactly why we consider energy densities W

which grow slower than quadratic at infinity.

The Burgers vector belongs to the class of slip directions, which is a given ma-

terial property of the crystal. As a further simplification, we assume that the slip

directions are given by S := SpanZ{be1, be2}, where b > 0 represents the lattice

spacing of the lower crystal ⌦�
r
.

If ! ⇢ ⌦r r � is a simply connected region, then (3.9) implies that Curl � = 0 in

D
0(!,M3⇥3) and therefore there exists v 2 W 1,p(!;R3) such that � = rv a.e. in !.

Thus, any vector field � satisfying (3.9) is locally the gradient of a Sobolev map. In

particular, if ⌃ is a sufficiently smooth surface having � as its boundary, then one

can find v 2 SBV loc(⌦r;R3) (see A.3 for more details on BV functions) such that
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⌦�
r

⌦+
r

Sr

G

b

⌦�
r

⌦+
r

Sr

�

⇠�

⌃

Figure 3.4: Reference configuration ⌦r := ⌦�
r [ Sr [ ⌦+

r . Left: dislocation

(�, ⇠�) at the interface Sr. Note that @⌃ = �. Right: admissible dislocation

curves lie on the grid G ⇢ Sr.

� = rv, v = x in ⌦�
r

and its distributional gradient satisfies

Dv = rv dx+ ⇠� ⌦ ⌫H2 ⌃ ,

where ⌫ is the unit normal to ⌃. That is, � = rv is the absolutely continuous part

of the distributional gradient of v. As customary (see [50]), we interpret � as the

elastic part of the deformation v, so that the elastic energy induced by v is given by

Eel(v) :=

Z

⌦+
r

W (�) dx.

From now on we will assume that the dislocation curves have support in the grid

G := (bZ ⇥ R) [ (R ⇥ bZ) ⇢ Sr (see Figure 3.4 Right). Moreover, we will consider

multiple dislocation curves. More precisely, we denote by

AD := {(�, B) : � = {�i}, �i 2 G, B = {⇠i}, ⇠i 2 S, finite collections} (3.11)

the class of all admissible dislocations. Notice that each dislocation curve can be

decomposed into “minimal components”, i.e., we can always assume that �i = @Qi,

where Qi is a square of size b with sides contained in the grid (bZ⇥ R) [ (R⇥ bZ).

Given an admissible pair (�, B), we denote by ⇠⌦ �̇(x) the field that coincides with
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⇠i ⌦ �̇i(x) if x belongs to a single curve �i, and with ⇠i ⌦ �̇i(x) + ⇠j ⌦ �̇j(x) if x

belongs to two different curves �i and �j. The set of admissible deformation strains

AS(�, B) associated with a given admissible dislocation (�, B) is then defined by

AS(�, B) :=
�
� 2 Lp

loc(⌦r;M3⇥3) : � = I in ⌦�
r
, Curl � = �⇠ ⌦ �̇H1 �

 
, (3.12)

where, abusing notation, we identify � with the union of the supports of �i. We

define the minimal energy induced by the pair (�, B) as

E↵,r(�, B) := inf

⇢Z

⌦+
r

W (�) dx : � 2 AS(�, B)

�
, (3.13)

and the minimal energy induced by the lattice misfit as

E↵,r := min {E↵,r(�, B) : (�, B) 2 AD} . (3.14)

Notice that, by the growth assumptions (3.7) on W and by (3.10), the minimum

problem in (3.14) involves only dislocations with Burgers vectors in a bounded set

(and thus in a finite set), so that the existence of a minimiser is trivial. We denote

by E↵,r(;) the minimal elastic energy induced by curl free strains. Notice that

E↵,r(�, B) = E↵,r(;) whenever � \ Sr = ;.

For the sake of computational simplicity, whenever it is convenient we will assume

r(↵� 1)

2b
2 N. (3.15)

Recalling that ↵ = 1 +
1

n
, assumption (3.15) implies that

r

2b
2 N.

3.2.2 Scaling properties of the energies

The next proposition, proved in [43, Proposition 3.2], states that the quantities

defined by (3.13) and (3.14) are strictly positive.

Proposition 3.1. For all r > 0 one has E↵,r > 0. Moreover, E↵,r(;) = r3 E↵,1(;),

with E↵,1(;) > 0.

Proposition 3.1 asserts that E↵,r(;) grows cubically in r. We will show that

the energy (3.13) grows quadratically in r, by suitably introducing dislocations on

Sr. In fact we will introduce dislocations on the boundary of many (of the order of

(r(↵� 1)/b)2) squares.
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Proposition 3.2. There exists 0 < E↵ < +1 such that

lim
r!+1

E↵,r

r2
= E↵. (3.16)

Proof. For the sake of computational simplicity, we assume that (3.15) holds, so

that r/2 2 bN (see Remark 3.3 to deal with the general case). We first show that

the limit exists. Let m, n 2 N with n > m, and let j be the integer part of n

m
,

R := nb, r := mb. Then, there are j2 disjoint squares of size r in SR, so there are j2

disjoint sets equivalent to ⌦r (up to horizontal translations) in ⌦R. By minimality,

E↵,r is smaller than the energy stored in each of such domains, so that

E↵,r

r2


E↵,R

r2j2
=

E↵,R

R2 + q(r)
, (3.17)

where q(r) := �
⇥
(R
r
� j)2 + 2j(R

r
� j)

⇤
r2 = o(R2). Since this inequality holds true

for all r, R 2 bN with r  R, we deduce that

lim inf
n!+1

E↵,bn

(bn)2
= lim sup

n!+1

E↵,bn

(bn)2
= lim

n!+1

E↵,bn

(bn)2
=: E↵.

In order to establish that E↵ > 0, it suffices to plug r = 1 in (3.17), and to recall

that E↵,1 > 0, by Proposition 3.2.

Next we show that E↵ < +1. For this purpose, we will exhibit a sequence

of deformations and associated dislocations for which the energy grows at most

quadratically in r. The construction uses some ideas introduced in [44] and [43].

Let � := b

(↵�1) = nb and recall that by (3.15) we have r/� 2 N. Denote by Qi,

i = 1, . . . , q, the squares of side � with vertices in the lattice Sr \ �Z2, and let xi be

the centre of each Qi. Since the side of Sr is r, we have that q = (r/�)2.

We will define a deformation v : ⌦r ! R3 such that v = x in ⌦�
r
, v = ↵x if

x3 > � and the transition from x to ↵x is distributed into constant jumps across the

squares Qi’s. In this way the energy will be concentrated in a �-neighbourhood of the

interface Sr and the contribution to the energy will come mostly from dislocations.

To this end, let C1
i

and C2
i

be the pyramids of base Qi and vertices xi + �/2 e3

and xi + �e3 respectively (see Figure 3.5 Left). Define a displacement u : ⌦r ! R3

such that

u(x) =

8
><

>:

(↵� 1)x if x 2 ⌦+
r
r [

q

i=1C
2
i
,

0 if x 2 ⌦�
r
.
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We complete the above definition by setting u := ui in C2
i
, where ui is the unique

solution of the minimum problem

m�,p,(↵�1)I := min

(Z

C
2
i

|rw|p : w 2 W 1,p
loc

(R3
+;R3), w ⌘ (↵� 1)xi in C1

i
,

w(x) = (↵� 1)x in R3
+ \ C2

i

)
,

(3.18)

where R3
+ := R3

\ {x3 > 0}. Notice that m�,p,(↵�1)I is independent of i and that u

is well defined; indeed if Qi and Qj are adjacent squares, i.e.,

Qj = Qi ⌥ �es for some s 2 {1, 2},

then

uj(x) = ui(x± �es)⌥ (↵� 1)�es for every x 2 Qj ⇥ [0,+1].

Moreover, in Proposition 3.6 we will show that 0 < m�,p,(↵�1)I < +1 and

m�,p,(↵�1)I = �3(↵� 1)p m1,p,I . (3.19)

Set v(x) := x+ u(x). Notice that the deformation v has constant jump equal to

(↵� 1)xi across Qi. Therefore, if Qi and Qj are adjacent and we set �ij := Qi \Qj,

we have that �ij is a dislocation line with Burgers vector ⇠ij = (↵ � 1)(xj � xi)

(see Figure 3.5 Right). By construction �i,j lies in the grid (bZ ⇥ R) [ (R ⇥ bZ).

Moreover, since � = b/(↵ � 1) and xj � xi = ±�es, with s 2 {0, 1}, we have

that ⇠ij 2 ±b{e1, e2}. Therefore, setting � := {�ij} and B := {⇠ij}, we have that

(�, B) 2 AD and rv 2 AS(�, B).

We are left to estimate from above the elastic energy of v. Recalling that

W (↵I) = 0, the growth condition (3.7) and (3.19), we get
Z

⌦+
r

W (rv) dx =
qX

i=1

Z

C
2
i

W (rv) dx  C
qX

i=1

Z

C
2
i

(|rv|p + 1) dx

 Cq
��C2

i

��+ q�3(↵� 1)p m1,p,I = q�3 (C + (↵� 1)p m1,p,I) .

Writing q = r2/�2 and � = b/(↵� 1) yields

Z

⌦+
r

W (rv)  r2b
⇥
(↵� 1)p�1 m1,p,I + (↵� 1)�1C

⇤
. (3.20)
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v = x

v = ↵x

�

C2
j

C2
i

⌦+
R

⌦�
R

SR

Qi Qj⇠ij

xi xj

�ij

C1
j

C1
i

Figure 3.5: The double pyramid construction. Left: the jump from x to ↵x is

divided into constant jumps across the pyramids lying on top of the squares

Qi at the interface. Right: detail of two adjacent double pyramids. The

deformation v induces the dislocation line �ij , with Burgers vector ⇠ij = �e2

(in this particular example).

Remark 3.3. In the case when (3.15) does not hold, it suffices to observe that

E↵,[ r
2� ]2�

 E↵,r  E↵,[ r
2� ]2�+2� and lim

r!1

([ r

2� ]2�)
2

r2
= lim

r!1

([ r

2� ]2� + 2�)2

r2
= 1,

where [a] denotes the integer part of a. The above inequalities follow from the fact

that if r1 < r2, then the restriction to ⌦r1 of any test function for E↵,r2 provides a

test function for E↵,r1 .

Remark 3.4. The proof of the asymptotic behaviour of the energy described by

Proposition 3.2 strongly relies on the assumption made on the admissible disloca-

tion lines. In fact, local lower bounds of the energy can be easily obtained in a

neighbourhood of the dislocation lines, as long as these are sufficiently regular and

well separated.

As a corollary of Propositions 3.1 and 3.2 we obtain the following theorem,

asserting that nucleation of dislocations is energetically convenient for sufficiently

large values of r.

Theorem 3.5. There exists a threshold r⇤ such that, for every r > r⇤,

E↵,r < E↵,r(;).
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Figure 3.6: Section ' = 0 of the double pyramid.

3.2.3 Double pyramid construction

Fix � > 0 and let C1 and C2 be the pyramids with common base the square

(��/2, �/2)2 ⇥ {0} and heights �/2 and � respectively. Note that C1
⇢ C2. Set

S := C2
\ {�/2 < x3 < �} and T := (C2 rC1)\ {0 < x3 < �/2}. See Figure 3.6 for

a cross section of this construction in cylindrical coordinates.

Let A 2 M3⇥3 with A 6= 0, and consider the following minimisation problem

m�,p,A := inf
nZ

C2

|rw|p dx : w 2 W 1,p
loc

(R3
+;R3), w ⌘ 0 in C1,

w ⌘ Ax in R3
+ \ C2

o
,

(3.21)

where R3
+ := R3

\ {x3 > 0}.

Proposition 3.6. The following facts hold true:

(i) For every 1 < p < 2, there exists a minimiser of problem (3.21) and the

minimal value m1,p,A is strictly positive;

(ii) m1,2,A = +1;

(iii) for all positive � and � we have m�,p,�A = �3�pm1,p,A.
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Proof. Property (iii) holds because if w is a competitor for m�,p,�A, then w̃(x) :=

w(�x)/�� is a competitor for m1,p,A.

As far as (i) is concerned, first remark that m1,p,A > 0. Indeed, arguing by

contradiction, assume that m1,p,A = 0. Then, by the direct method of the calculus

of variations (see Section A.1.1), we would have a minimiser w satisfying rw ⌘ 0

in C2 and rw ⌘ A in R3
+ \ C2, which provides a contradiction since this is only

possible when A = 0. In fact, since w is regular, we have tangential continuity of

rw at @C2
\ R3

+. This implies Ax = 0 for every vector x tangent to @C2
\ R3

+.

Therefore A = 0.

Now, we will prove that m1,p,A < +1 by exhibiting an admissible deformation w

with finite energy. In order to simplify the computations, we will show it in the case

when C1 and C2 are the cones with base the disk of diameter 1 and centre the origin,

and heights 1/2 and 1 respectively. The estimate in the case of two pyramids can be

proved in the same way, with minor changes. Introduce the cylindrical coordinates

x1 = ⇢ cos', x2 = ⇢ sin' and x3 = z, with ⇢ > 0 and ' 2 [0, 2⇡). Set w := 0 in C1

and w(x) := Ax in R3
+ \ C2. First we extend w to S (Figure 3.6). To this end, for

all '̄ 2 [0, 2⇡) we define w in the triangle S'̄ := S \ {' = '̄} by linear interpolation

of the values of w at the three vertices of S'̄. Notice that w is Lipschitz continuous

in S. Next, we extend w to T := C2
\ (S [C1). For this purpose, for all '̄ 2 [0, 2⇡)

and z̄ 2 (0, 12) consider the segment L'̄,z̄ := T \ {' = '̄} \ {z = z̄}, and define w

on L'̄,z̄ by linear interpolation of the values of w on the two extreme points of L'̄,z̄.

We will now estimate the Lp norm of rw in C2. Since w is piecewise Lipschitz

in C2
\ T , we only have to compute the energy in T . By construction we have that

|rw(x, y, z)| 
c

z
for all (x, y, z) 2 T, (3.22)

where c is a suitable positive constant depending only on A. A straightforward

computation yields m1,p,A  C(p, A) with the constant C depending only on A and

p, and diverging as p ! 2�.

Finally, let us prove (ii), i.e., that m1,2,A = +1. For every admissible function

w and all 0 < " < 1/2, by Jensen’s inequality we have
Z

T\{"<z<
1
2}
|rw|2 dx �

Z

T\{"<z<
1
2}

����
@w

@⇢

����
2

dx � c

Z 1
2

"

1

s

✓Z

T\{z=s}

@w

@⇢
d⇢

◆2

ds � c log
1

"
.

Taking the limit as "! 0 in the above inequality yields
R
C2 |rw|2 = +1.
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�
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↵b

� = b

↵�1
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⇤�

Figure 3.7: Left: a discrete vertical section of the crystal, deformed through

the map v constructed in the proof of Proposition 3.2. The red atoms are edge

dislocations. Right: view from above of the interface, deformed through the

map v. The green squares represent the deformed overlayer. Dislocation lines

lie in the gaps between the green squares. The orange square represents the

underlayer.

3.3 Some considerations on the proposed model

In this section we discuss some features and limits of the semi-discrete model pre-

sented in Section 3.2, in connection with modelling epitaxial growth, heterostruc-

tured nanowires and grain boundaries. Such limits of the theory will be overcome

in the continuous model discussed and analysed in detail in the next section. In this

respect, the semi-discrete model is somehow meant as a theoretical background to

derive material constants, and in particular the energy per unit dislocation length

and interface area, that will be involved in the continuous model discussed in Section

3.4.

In the construction illustrated in the proof of Proposition 3.2, v(Sr) is the union

of disjoint squares of size �, separated by strips of width b; dislocation lines lie

in the middle of such strips (see Figure 3.7). Note that some lines of atoms (in

the deformed configuration) fall outside of Sr, suggesting that the chosen reference

configuration is not convenient to describe heterostructured nanowires, or epitaxial

growth.

In fact, this is not the physical configuration we are interested in modelling and

analysing. In order to prevent unphysical configurations like in Figure 3.7, where

some lines of atoms fall outside of Sr, in the next section we will rather modify our
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b

R = ✓�1r

�

⌦�
R

⌦+
r

SR

Sr

Figure 3.8: Left: the new reference configuration ⌦R,r := ⌦�
R
[ Sr [ ⌦+

r . The

orange square is SR, the green Sr. The area of SR\Sr represents the dislocation

energy. Right: view from above of the interface between Sr and SR. Here Sr

is deformed through the map v obtained by adapting the proof of Proposition

3.2, with � = b

✓�1�1 , to the new reference configuration. The total dislocation

length is given, in first approximation, by the area of the orange region, divided

by b.

point of view: we will deal with a reference configuration ⌦R,r := ⌦�
R
[ Sr [ ⌦+

r

with r := ✓R for some 0 < ✓ < 1 (see Figure 3.8 Left), enforcing that v(Sr) = SR,

thus describing a perfect match between the two parts of the crystal, as in Figure

3.3. The new parameter ✓ represents the ratio between the size of Sr and that of

its deformed counterpart v(Sr). Optimisation over ✓ corresponds to “getting rid” of

unnecessary atoms at the interface and will yield (see (3.68)) ✓ ⇡ ↵�1 in the limit

R ! 1.

In this context it is quite natural to measure the dislocation length in the de-

formed configuration v(⌦+
r
). In the construction made in the proof of Proposition

3.2, the number of dislocation straight-lines is of the order 2r
�
, where � = b

↵�1 . Mim-

icking the same construction in the new reference configuration ⌦R,r, in order to

enforce v(Sr) = SR, now we have to choose � = b

✓�1�1 . The total length L of dislo-

cations (in the deformed configuration) is then of the order L = 2r2

b
(✓�2

� ✓�1). The

above formula can be obtained alternatively as follows. Let L̃ be the total length of

dislocations in the reference configuration. Then, bL̃ coincides with the total varia-
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tion of µ, the curl of the deformation strain, which is a measure concentrated on Sr

(see Section A.2 for more details on measure theory). By a direct computation the

total variation |µ|(Sr) is given by r22 (✓�1
� 1). Therefore,

L = ✓�1L̃ =
✓�1

b
r22
�
✓�1

� 1
�
=

2r2

b
(✓�2

� ✓�1).

We are interested in small misfits ✓�1
⇡ 1. Therefore, (✓�2

� ✓�1) ⇡ 1
2(✓

�2
� 1), so

that the total length of dislocations is of the order

L =
1

b
r2(✓�2

� 1) =
1

b
Area Gap,

where Area Gap, in a continuous modelling of the crystal, represents the difference

between the area of the base of the deformed configuration v(Sr) of ⌦+
r
, and the

area of the base of the reference configuration, namely the area of Sr (see Figure

3.8).

We do not claim that our constructions are optimal in energy. Nevertheless, we

believe that, as r, R ! 1, the optimal configuration of dislocations exhibits some

periodicity. As a matter of fact, in Proposition 3.2 we have proved that

E↵,r ⇡ r2E↵ = �↵,✓ Area Gap as r ! +1, (3.23)

for

�↵,✓ :=
E↵

✓�2 � 1
.

In view of the considerations above, this reflects that the energy is proportional to

the total dislocation length. In particular, as r ! 1 and ↵ ! 1+, we expect that

E↵,r be minimised by a periodic configuration of more and more dilute and well

separated dislocations. Taking this into account, we expect that

lim
↵!1+

E↵

↵2 � 1
= lim

↵!1+
�↵,↵�1 =: �, (3.24)

for some 0 < � < 1, where b� represents the self energy of a single dislocation line

per unit length.

Let us compare the nonlinear energy induced by dislocations with the solid frame-

work of linearised elasticity. It is well known that the energy per unit (edge disloca-

tion) length in a single crystal of size r is given by b2 µ

4⇡(1�⌫) ln(
r

b
) (see, e.g., [33, 47]),

where µ is the shear modulus and ⌫ is Poisson’s ratio. Based on the heuristic obser-

vation that the periodicity of the lattice is restored on lines at the interface which are
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equidistant from two consecutive edge dislocations, one could exploit this formula,

with r replaced by the average distance � = b

↵�1 between dislocations. Moreover,

due to the fact that ⌦�
R

is rigid, the stress and the corresponding energy are con-

centrated on half disks around each dislocation (in fact, half cylinders around the

dislocation lines). A purely dimensional argument yields that the resulting strain

is twice the one induced by the dislocations in a purely elastic single crystal; the

corresponding elastic energy density, being quadratic, should be multiplied by 4,

but it is concentrated on half domain (the half cylinders). The resulting energy is

then twice the energy induced by the dislocations in a purely elastic crystal. These

heuristic arguments lead us to consider the following energy per unit dislocation

length:

�lin := b2
µ

2⇡(1� ⌫)
ln

✓
1

↵� 1

◆
. (3.25)

To such energy, a chemical core energy �ch per unit dislocation length should be

added. Notice that this contribution is already present in our nonlinear formulation,

and it is stored in the region where |rv| is large, and the energy density W (rv)

behaves like |rv|p. We deduce that, for small misfits,

(�lin + �ch)
1

b
Area Gap ⇡ E↵,r ⇡ � Area Gap,

which yields the following expression for �:

� = b
µ

2⇡(1� ⌫)
ln

✓
1

↵� 1

◆
+

1

b
�ch. (3.26)

Finally, we notice that �(↵2
� 1) is nothing but the energy per unit surface area, so

that the total energy is given by

E↵,r ⇡ r2(↵2
� 1)

✓
b

µ

2⇡(1� ⌫)
ln

✓
1

↵� 1

◆
+

1

b
�ch
◆
.

3.4 A simplified continuous model for dislocations

Based on the analysis and the considerations on the semi-discrete model discussed

in Section 3.3, here we want to propose a simplified and more realistic model for

dislocations at interfaces. Instead of working with SBV functions with piece-wise

constant jumps at the interface, we allow only for regular jumps but we introduce a

penalisation to the elastic energy, which represents the dislocation energy.
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3.4.1 The simplified energy functional

Fix ↵ > 1, R > 0, ✓ 2 [↵�1, 1] and set r := ✓R. Let ⌦�
R
:= SR ⇥ (�hR, 0), where

SR ⇢ R2 is the square of side length R centred at the origin and h > 0 a fixed

height. Define now the reference configuration (see Figure 3.9),

⌦R,r := ⌦�
R
[ Sr [ ⌦+

r
.

⌦�
R

⌦+
r

SR

Sr

Figure 3.9: The reference configuration ⌦R,r := ⌦�
R
[ Sr [ ⌦+

r . The red area

SR \ Sr is proportional to the dislocation energy.

As in Section 3.2 we will suppose that ⌦�
R

is rigid and that ⌦+
r

is in equilibrium

with ↵I. We assume that there exists an energy density W : M3⇥3
! [0,+1) that

is continuous, C2 in a neighbourhood of ↵SO(3) and frame indifferent (see (3.6)).

Furthermore we suppose that

W (↵I) = 0 (3.27)

and that for every F 2 M3⇥3

C dist2(F,↵SO(3))  W (F ) (3.28)

for some constant C > 0. Here we assume that W grows more than quadratically,

since the energy density describes now only the bulk elastic energy stored in the

crystal, i.e., the strain is actually curl-free, while the core dislocation energy is taken

into account by an additional plastic term, defined in (3.30) below. In fact one could

also consider weaker growth conditions away from the well (see [1]); however we will
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stick to (3.28) for simplicity. The class of admissible deformation maps is defined

by

ADM✓,R :=

⇢
v 2 W 1,2(⌦+

r
;R3) : v(x) =

1

✓
x on Sr

�
. (3.29)

In this way v(Sr) = SR for all v 2 ADM✓,R. A deformation v 2 ADM✓,R stores an

elastic energy

Eel

↵,R
(✓, v) :=

Z

⌦+
r

W (rv) dx .

To this energy we add a dislocation energy Epl

R
(✓) proportional to the area of SRrSr,

representing the total dislocation length,

Epl

R
(✓) := �r2(✓�2

� 1) = �R2(1� ✓2). (3.30)

Here � > 0 is a given constant, which in our model is a material property of the

crystal, representing (multiplied by b) the energy cost of dislocations per unit length.

In principle, � could be derived starting from the semi-discrete model discussed in

Section 3.2 (see Section 3.3). Assuming isotropic linearised elasticity, a possible

choice is to set � according to (4.124) (where the Lamé coefficients are obtained

from W by linearisation), so that b� represents the energy induced by a single

dislocation line per unit length. We are thus led to study the energy functional

Etot

↵,R
(✓, v) := Eel

↵,R
(✓, v) + Epl

R
(✓) =

Z

⌦+
r

W (rv) dx+ �R2(1� ✓2).

We further define

Eel

↵,R
(✓) := inf

�
Eel

↵,R
(✓, v) : v 2 ADM✓,R

 
, Etot

↵,R
(✓) := Eel

↵,R
(✓) + Epl

R
(✓).

(3.31)

As explained in the Introduction (Section 3.1), the case ✓ = 1 corresponds to a

dislocation free configuration, i.e., Etot

↵,R
(1) = Eel

↵,R
(1). Instead, if ✓ = ↵�1 no elastic

energy is stored, since v(x) := ↵x is admissible and W (↵I) = 0. In order to simplify

notation we set Eel

↵
(✓) := Eel

↵,
1
✓
(✓), which corresponds to the minimum energy in the

unit cylinder, i.e., with r = 1.

Proposition 3.7. The elastic energy Eel

↵,R
(✓) satisfies:

(i) Eel

↵,R
(✓) = R3✓3Eel

↵
(✓);

(ii) Eel

↵
(✓) > 0 if and only if ✓ > ↵�1.

52



Proof. Property (i) follows by noticing that if v is in ADM✓,R, then ṽ(x) :=

v(R✓x)/R✓ is in ADM
✓,

1
✓
. For the second property, we have to prove that Eel

↵
(✓) = 0

if and only if ✓ = ↵�1. We already pointed out that Eel

↵
(↵�1) = 0. Suppose that

Eel

↵
(✓) = 0. Then there exists a sequence vn 2 H1(⌦+

1 ;R3) such that vn = ✓�1 x on

S1, and Z

⌦+
1

W (rvn) dx ! 0 as n ! 1 . (3.32)

The Rigidity Theorem 3.9, the growth assumption (3.28) and the compactness of

SO(3) in combination with (3.32) imply that there exists a fixed rotation R 2 SO(3)

such that (up to subsequences)
Z

⌦+
1

|rvn � ↵R|
2 dx ! 0 as n ! 1 .

Setting ⇣n := (1/
��⌦+

1

��)
R
⌦+

1
(vn(x) � ↵Rx) dx, from the Poincaré inequality and the

trace theorem we deduce that
Z

S1

|vn � ↵Rx� ⇣n|
2 dH2(x) ! 0 as n ! 1 . (3.33)

Since vn = ✓�1x on S1, (3.48) yields

(✓�1I � ↵R)x� ⇣n ! 0 in L2(S1) . (3.34)

By plugging x = 0 in (3.34) we get ⇣n ! 0, so that

(✓�1I � ↵R)x = 0 for every x 2 S1 .

Therefore

rank(✓�1I � ↵R)  1 , (3.35)

(see Section 2.3), which is possible if and only if R = I and ✓ = ↵�1.

In analogy with Theorem 3.5, we find that for R sufficiently large, configurations

with dislocations are energetically preferred.

Theorem 3.8. There exists a threshold R⇤ such that, for every R > R⇤

inf
✓2[↵�1,1)

Etot

↵,R
(✓) < Etot

↵,R
(1) = Eel

↵,R
(1) . (3.36)

Proof. The left hand side of (3.36) can grow at most quadratically in R, indeed

inf
✓2[↵�1,1)

Etot

↵,R
(✓)  Etot

↵,R
(↵�1) = �R2

✓
1�

1

↵2

◆
.

In contrast, by Proposition 3.7, the right hand side Etot

↵,R
(1) grows cubically in R.
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The minimal energy induced by the lattice misfit is given by

Etot

↵,R
:= inf

✓2[↵�1,1]
Etot

↵,R
(✓) . (3.37)

One can show that Etot

↵,R
(·) is continuous, so that the infimum is in fact a minimum.

Our goal is to study the asymptotic behaviour of Etot

↵,R
as R ! 1. In Theorem 3.13

we will write Etot

↵,R
as an expansion in powers of R.

3.4.2 An overview of the Rigidity Estimate and Linearisation

First, we recall the Rigidity Estimate from [29] (see also Section 2.3.2). In this

section, U ⇢ R3 will be a Lipschitz bounded domain.

Theorem 3.9 (Rigidity Estimate, [29]). There exists a constant C > 0 depending

only on the domain U such that the following holds: for every v 2 H1(U ;R3) there

exists a constant rotation R 2 SO(3) such that
Z

U

|rv(x)� ↵R|
2 dx  C

Z

U

dist2(rv(x);↵SO(3)) dx . (3.38)

In order to compute the Taylor expansion of Etot

↵,R
defined in (3.37), we will

linearise the elastic energy as in [15] (see also Section 2.11). Therefore, following

[15], we will make further assumptions on W . First, assume that the equilibrium

↵I is stress free, i.e.,

@FW (↵I) = 0 . (3.39)

By frame indifference there exists a function V : M3⇥3
sym ! [0,+1], such that

W (F ) = V

✓
1

2

�
F TF � ↵2I

�◆
for every F 2 M3⇥3. (3.40)

Here M3⇥3
sym is the set of 3⇥3 symmetric matrices and F T is the transpose of F . The

regularity assumptions on W (see Section 3.4.1) imply that V (E) is of class C2 in

a neighbourhood of E = 0. From (3.27), (3.39) and (3.40) it follows that V (0) = 0

and @EV (0) = 0. Moreover, by (3.28), there exist �, � > 0 such that

@2
E
V (E)[T, T ] � � |T |2 if |E| < � and T 2 M3⇥3

sym , (3.41)

as shown, for example, in [15]. By Taylor expansion we find

V (E) =
1

2
@2
E
V (0)[E,E] + o(|E|

2) . (3.42)
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Let v 2 W 1,1(U ;R3) and write v = ↵x+ "u. Then from (3.40),

W (rv) = V

✓
↵"rusym +

"2

2
C(u)

◆
,

where rusym := (ru+ruT )/2 and C(u) := ruT
ru. By (3.42) we get

W (rv) =
"2

2
Crusym : rusym + o("2) , (3.43)

where C is the fourth order stress tensor obtained by writing the bilinear form

↵2@2
E
V (0) : M3⇥3

sym ⇥M3⇥3
sym ! R

in euclidean coordinates. Notice that, by (3.41), the tensor C satisfies the growth

condition

C|E|
2
 CE : E for every E 2 M3⇥3

sym , (3.44)

for some positive constant C. Equation (3.43) is uniform in x, since rv is bounded.

Hence

lim
"!0

1

"2

Z

U

W (↵I + "ru) dx =
1

2

Z

U

Crusym : rusym dx .

In [15] it is proved that the above convergence holds also for minimisers, by means

of �-convergence (see Section A.2 for details on �-convergence). Specifically, let

⌃ ⇢ @U be closed and such that H
2(⌃) > 0. Introduce the space

H1
x,⌃(U ;R3) :=

�
u 2 H1(U ;R3) : u(x) = x on ⌃

 

and, for u 2 H1
x,⌃(U ;R3), define the functionals

G"(u) :=
1

"2

Z

U

W (↵I + "ru) dx and G(u) :=
1

2

Z

U

Crusym : rusym dx.

We can now recall [15, Theorem 2.1]:

Theorem 3.10 (Linearization). We have that G"

�
! G with respect to the weak

topology on H1(U ;R3). In particular, if {u"} ⇢ H1
x,⌃(U ;R3) is a minimising se-

quence, i.e.,

inf
H

1
x,⌃(U ;R3)

G" = G"(u") + o(1) ,

then u" converges weakly to the unique solution u0 of

min
H

1
x,⌃(U ;R3)

G .

Moreover we have

inf
H

1
x,⌃(U ;R3)

G" ! min
H

1
x,⌃(U ;R3)

G as "! 0 . (3.45)
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3.4.3 Taylor expansion of the energy

We can now carry on our analysis. We say that ✓R 2 [↵�1, 1] is a minimising sequence

for the energy Etot

↵,R
defined in (3.37) if

Etot

↵,R
= Etot

↵,R
(✓R) + o(1) ,

where o(1) ! 0 as R ! +1.

Proposition 3.11. Let ✓R be a minimising sequence for Etot

↵,R
. Then

(i) Eel

↵
(✓R) ! 0 as R ! +1;

(ii) ✓R ! ↵�1 as R ! +1.

Proof. By Proposition 3.7 we have (for R large enough)

R3✓3
R
Eel

↵
(✓R) = Eel

↵,R
(✓R)  Etot

↵,R
(✓R)  Etot

↵,R
(↵�1) + 1 = �R2

✓
1�

1

↵2

◆
+ 1 ,

which proves (i), since ✓R � ↵�1 > 0.

Let us now prove (ii). From (i), we know that there exists a sequence {vR} in

H1(⌦+
1 ;R3) such that vR = ✓�1

R
x on S1 and

Z

⌦+
1

W (rvR) dx ! 0 as R ! +1 . (3.46)

We will show that ✓R ! ↵�1, and also that we have full rigidity, namely vR ! ↵x

in H1(⌦+
1 ;R3).

Indeed, as in the proof of Proposition 3.7, by combining the Rigidity Theorem

3.9, the growth assumption (3.28), the compactness of SO(3) and (3.46), we have

that there exists a fixed rotation R 2 SO(3) such that, up to subsequences,
Z

⌦+
1

|rvR � ↵R|
2 dx ! 0 as R ! 1 . (3.47)

Set ⇣R := 1/
��⌦+

1

�� R
⌦+

1
(vR � ↵Rx) dx. From the Poincaré and trace inequalities we

then deduce
Z

⌦+
1

|vR � ↵Rx� ⇣R|
2 dx ! 0 , (3.48)

Z

S1

|vR � ↵Rx� ⇣R|
2 dH2(x) ! 0 , (3.49)
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as R ! 1. Since vR = ✓�1
R
x on S1, from (3.49) we have that, up to subsequences,

�
✓�1
R
I � ↵R

�
x� ⇣R ! 0 on S1 . (3.50)

In particular, choosing x = 0 in (3.50), yields ⇣R ! 0. Since ✓R is bounded we can

then assume ✓R ! ✓ to get

�
✓�1I � ↵R

�
x = 0 on S1 .

As in the proof of Proposition 3.7, we conclude that R = I and ✓ = ↵�1. Since the

limit of ✓R does not depend on the subsequence selected, the thesis holds.

Moreover, notice that if we use ⇣R ! 0 and R = I in (3.47)-(3.48) we get that

vR ! ↵x in H1(⌦+
1 ;R3).

For v 2 H1(⌦+
1 ;R3) such that v = ✓�1 x on S1, we can write

v = ↵x+

✓
1

✓
� ↵

◆
u

where u 2 H1(⌦+
1 ;R3) is such that u = x on S1. If we set ⌃ = S1 we can apply

Theorem 3.10 to the functional Eel

↵
(✓) to obtain the following Corollary.

Corollary 3.12. If ✓ ! ↵�1 then

1

(✓�1 � ↵)2
Eel

↵
(✓) �! Cel, (3.51)

where

Cel := min

(
1

2

Z

⌦+
1

Crusym : rusym dx : u 2 H1(⌦+
1 ;R3), u = x on S1

)
. (3.52)

Moreover Cel > 0.

Proof. We only need to prove that Cel > 0, since the rest of the statement follows

from Theorem 3.10. Let u be the unique (regular) solution to (3.52). Assume by

contradiction that Cel = 0, that is,
Z

⌦+
1

Crusym : rusym dx = 0 . (3.53)

Then, by Korn’s inequality (see Theorem 2.31), growth condition (3.44), and (3.53),

there exists a constant antisymmetric matrix A 2 M3⇥3
skew such that

Z

⌦+
1

|ru� A|2 dx = 0 ,
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which implies ru = A a.e. in ⌦+
1 . Since u = x on S1, we can extend u to ⌦�

1 , so

that

ru = A in ⌦+
1 , ru = I in ⌦�

1 . (3.54)

As seen in Section 2.3.1, condition (3.54) implies that rank(A � I) = 1. However

this is a contradiction, since one can readily check that A� I is invertible for every

A 2 M3⇥3
skew. Therefore Cel > 0.

From Proposition 3.11 we know that, if {✓R} is a minimising sequence, then

✓R ! ↵�1. We can then linearise the elastic energy along the sequence ✓R:

Eel

↵,R
(✓R) = R3✓3

R
Eel

↵
(✓R) = R3✓3

R
(✓�1

R
� ↵)

2 1

(✓�1
R

� ↵)
2 E

el

↵
(✓R)

(3.51)
= R3✓3

R
(✓�1

R
� ↵)

2
(Cel + "R) = kel

R
R3✓R (↵✓R � 1)2,

where "R ! 0 as R ! +1 and kel

R
:= Cel + "R. Since Cel > 0, kel

R
> 0 for R

sufficiently large (and in fact for all R). We are thus led to define the family of

polynomials

P tot

k,R
(✓) := P el

k,R
(✓) + Epl

R
(✓), (3.55)

where k,R > 0 are positive parameters and P el

k,R
(✓) := kR3✓(↵✓ � 1)2. In this way

we can write

Etot

↵,R
(✓R) = P tot

k
el
R ,R

(✓R) . (3.56)

By optimising P tot

k,R
with respect to ✓, we deduce the asymptotic behavior of Etot

↵,R
.

Set

E
el(R) :=

�2

↵3Cel
R and E

pl(R) := �R2

✓
1�

1

↵2

◆
� 2

�2

↵3Cel
R .

Theorem 3.13. Let ✓R be a minimising sequence for Etot

↵,R
. We have

✓R =
1

↵

⇣
1 +

�

↵Cel

1

R
+ o
⇣ 1

R

⌘⌘
, (3.57)

where o(t)
t

! 0 as t ! 0. Moreover,

Eel

↵,R
(✓R) = E

el(R) + o(R), Epl

R
(✓R) = E

pl(R) + o(R), (3.58)

where o(R)
R

! 0 as R ! +1. In particular, we have

Etot

↵,R
= E

el(R) + E
pl(R) + o(R).
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Proof. First we show that for every k > 0 and R large enough there exists a unique

minimizer ✓k,R of P tot

k,R
in [↵�1, 1], with ✓k,R ! ↵�1 as R ! +1. To this purpose,

we compute the derivative of P tot

k,R
with respect to ✓

(P tot

k,R
)0(✓) = R2

�
(3↵2kR)✓2 � 2(2↵kR + �)✓ + kR

 
.

One can check that it vanishes at

✓±(R) =
1

3↵

n
2 +

c

R
± f(R)

o
, (3.59)

where

f(R) :=

r
1 +

4c

R
+

c2

R2
and c :=

�

↵k
. (3.60)

Since f(R) > 1 we have ✓+(R) > ↵�1. Moreover, f(R) ! 1, and thus ✓+(R) ! ↵�1,

as R ! +1. Hence ✓+(R) 2 [↵�1, 1] for R large enough. Also note that ✓�(R) <

↵�1 for R sufficiently large. The second derivative is given by

(P tot

k,R
)00(✓) = R2

�
(6↵2kR)✓ � 2(2↵kR + �)

 
,

which can be checked to be nonnegative at ✓+(R)

(P tot

k,R
)00(✓+(R)) = 2↵kR3f(R) � 0 .

This proves that ✓k,R := ✓+(R) is the unique minimizer of P tot

k,R
in [↵�1, 1], for R

sufficiently large. Moreover from (3.59) we conclude that ✓k,R ! ↵�1 as R ! +1.

Evaluating P el

k,R
and Epl

R
at ✓ = ✓k,R we find

P el

k,R
(✓k,R) =

2

27↵4k2
{2�3 + 2↵k�2(3 + f(R))R+

�
2↵2k2�f

�
R2 + ↵3k3(1� f(R))R3

}, (3.61)

Epl

R
(✓k,R) = �R2(1� ✓2

k,R
). (3.62)

In order to show (3.57) and (3.58) we perform a Taylor expansion in (3.60) and

(3.59). Using
p
1 + x = 1 + x/2� x2/8 + x3/16 + o(x3) we compute

f(R) = 1 + 2
⇣ �
↵k

⌘ 1

R
�

3

2

✓
�2

↵2k2

◆
1

R2
+ 3

✓
�3

↵3k3

◆
1

R3
+ o

✓
1

R3

◆
. (3.63)

Plugging (3.63) into (3.59) and recalling that kel

R
! Cel as R ! +1, we deduce

(3.57).
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Using (3.63) we can expand the terms in (3.61) to get

2↵k�2(3 + f(R))R = (8↵k�2)R + 4�3 + o (R) , (3.64)
�
2↵2k2�f

�
R2 = (2↵2k2�)R2 + (4↵k�2)R� 3�3 + o (R) , (3.65)

↵3k3(1� f(R))R3 = �(2↵2k2�)R2 +
3

2
(↵k�2)R� 3�3 + o (R) . (3.66)

Recalling that kel

R
! Cel as R ! +1, plugging (3.64)-(3.66) into (3.61) yields the

first equation in (3.58). Next we compute

✓2
k,R

=
1

9↵2

⇢
5 + 4f(R) + 2c(4 + f(R))

1

R
+

2c

R2

�
. (3.67)

Plugging (3.63) into (3.67) gives

✓2
k,R

=
1

↵2

⇢
1 +

2c

R
+ o

✓
1

R3

◆�
. (3.68)

The second relation in (3.58) follows by inserting (3.68) into (3.62), using again

kel

R
! Cel as R ! +1.

Remark 3.14. The analysis developed in this section can be applied to different

crystal configurations. For instance, consider two concentric wires Nint and Next.

Specifically, the external wire can be represented by (S2R \ SR) ⇥ (0, hR) and the

internal by S✓R⇥(0, hR) with ✓ 2 [↵�1, 1]. Here h > 0 is a fixed height and ↵I is the

equilibrium of Nint, with ↵ > 1. The external wire is already in equilibrium. The

admissible deformations of Nint are maps v : Nint ! R3 such that v = ✓�1x on the

lateral boundary of Nint, so that it matches the internal lateral boundary of Next.

The total energy is given by the sum of an elastic term and a plastic term, the latter

proportional to the reference surface mismatch between the lateral boundaries of

the nanowires:

Etot(v, ✓) =

Z
W (rv) dx+ �hR2(1� ✓) . (3.69)

If ✓ = 1 the two wires coincide and the energy is entirely elastic. If ✓ = ↵�1

then the elastic energy has minimum zero and Etot is purely dislocation energy. If

✓ 2 (↵�1, 1) then none of the two contributions is zero and we are in a mixed case.

For such physical system we can carry on the same analysis as before, up to very

minor changes.
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3.5 Conclusions and perspectives

In [22] we have proposed a simple continuous model for dislocations at semi-coherent

interfaces. Our analysis seems flexible enough to describe different interfaces and

crystalline configurations. Here we discuss the main achievements of our paper,

possible extensions to other physical systems, and future perspectives.

In Section 3.2 we have analysed a line tension model for dislocations at semi-

coherent interfaces, in the context of nonlinear elasticity. Within this model, we

have shown that there exists a critical size of the crystal such that dislocations

become energetically more favorable than purely elastic deformations (see Theorem

3.5). More precisely, we have shown that the energy induced by dislocations scales

like the surface area of the interface, while the purely elastic energy scales like the

volume of the crystal. This is compatible with the experimental observation that

dislocations form periodic networks at the interface. In fact, the proof of Proposition

3.2 is based on the fact that, if a net of dislocations is optimal on an interface Sr

of size r, then cutting and pasting such a geometry on S4r one constructs a good

periodic energy competitor for a larger interface. A more challenging question is

whether the optimal geometry of dislocations is periodic in the microscopic scale

b. Although we have not given a rigorous proof of this fact, we have shown an

explicit construction of a periodic array of dislocations spaced at distance b

↵�1 , that

is optimal in the scaling of the energy.

Then, in Section 3.4, we have proposed a simpler and more specific continuous

model for dislocations, describing, to some extent, dislocations at phase boundaries,

in heterostructured wires and in epitaxial crystal growth. In such a model the area of

the reference configuration of the overlayer is a free parameter, while in the deformed

configuration there is a perfect match between the underlayer and the overlayer.

The variational formulation is very basic, depending only on three parameters:

the diameter of the underlayer, the misfit between the lattice parameters, and the

free boundary, described by a single parameter: the area gap between the reference

underlayer and overlayer, tuning the amount of dislocations at the interface.

The proposed variational model is rich enough to describe the size effects already

discussed, and allows us to refine the analysis of the energy minimisers. Indeed, we

have shown that, in the limit R ! +1, the surface energy induced by dislocations is
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predominant (scaling like R2), while the volume elastic energy represents a lower or-

der term (scaling like R). Since the elastic energy is vanishing (Proposition 3.11), we

can perform a linearization: the asymptotic behaviour of the total energy functional

is explicit, depending only on the material parameters in the energy functional, and

on the linearised elastic tensor (see Theorem 3.13). The only unknown parameter in

our formulation is �, which roughly speaking (multiplied by b) represents the energy

per unit dislocation length (while �(↵2
� 1) represents the energy per unit area of

the interface). We have proposed some explicit formula for �, depending only on

the elastic tensor and on a core energy parameter �ch, describing the core (chemical)

energy per unit dislocation length (see (3.26)).

Summarising, [22] proposes a basic variational model describing the competition

between the plastic energy spent at interfaces, and the corresponding release of bulk

energy. In this variational formulation, the size of the interface of the overlayer

is a free parameter. In this respect, our model fits into the class of so called free

boundary problems.

The proposed energy is built upon some heuristic arguments, supported by for-

mal mathematical derivations based on the semi-discrete theory of dislocations.

While the paper focuses on a specific configuration, the method seems flexible

to be extended to several crystalline structures and to different physical contexts,

such as grain boundaries, where the misfit between the crystal lattices are described

by rotations rather than dilations (see [35]), and epitaxial growth, where the total

energy should be completed by adding the surface energy induced by the exterior

boundary of the overlayer (see [38]).
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Chapter 4

Linearised polycrystals from a 2D

system of edge dislocations

4.1 Introduction

In this chapter we present the results obtained in [23], where we derive polycrystalline

structures starting from a two-dimensional system of edge dislocations (see Section

2.1 for more information on dislocations).

Many solids in nature exhibit a polycrystalline structure. A single phase poly-

crystal is formed by many individual crystal grains, having the same underlying

periodic atomic structure, but rotated with respect to each other. The region that

separates two grains with different orientation is called grain boundary. Since the

grains are mutually rotated, the periodic crystalline structure is disrupted at grain

boundaries. As a consequence, grain boundaries are regions of high energy concen-

tration.

Polycrystalline structures, which a priori may seem energetically not convenient,

arise from the crystallisation of a melt. As the temperature decreases, crystallisation

starts from a number of points within the melt. These single grains grow until they

meet. Since their orientation is generally different, the grains are not able to arrange

in a single crystal and grain boundaries appear as local minimisers of the energy, in

fact as metastable configurations. After crystallisation there is a grain growth phase,

when the solid tries to minimise the energy by reducing boundary area. This process

happens by atomic diffusion within the material, and it is thermally activated (see
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Figure 4.1: Section of an iron-carbon alloy. The darker regions are single

crystal grains, separated by grain boundaries that are represented by lighter

lines (source [59], licensed under CC BY-NC-SA 2.0 UK).

[31, Ch 5.7], [9]). On a mesoscopic scale a polycrystal resembles the structure in

Figure 4.1.

The purpose of [23] is to describe, and to some extent to predict, polycrys-

talline structures by variational principles. To this purpose, we first derive by

�-convergence, as the lattice spacing of the crystal tends to zero, a total energy

functional depending on the strain and on the dislocation density. Then, we focus

on the ground states of this energy, neglecting the fundamental mechanisms driving

the formation and evolution of grain boundaries. The main feature of [23] is that

grain boundaries and the corresponding grain orientations are not introduced as

internal variables of the energy; actually, they spontaneously arise only as a result

of energy minimisation under suitable boundary conditions.

Let us start our discussion by considering the case of two dimensional small angle

tilt grain boundaries (abbreviated in SATGB from now on). The atomic structure

for SATGBs is well understood (see [31, Ch 3.4], [55]). In fact, the lattice mismatch

between two grains mutually tilted by a small angle ✓ is accommodated by a single

array of edge dislocations at the grain boundary, evenly spaced at distance � ⇡ "/✓,

where " represents the atomic lattice spacing. Therefore the number of dislocations

at a SATGB is of order ✓/" (see Figure 4.2). The elastic energy for SATGBs is given
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✓

"

� ⇡
"

✓

Figure 4.2: Left: schematic picture of two grains mutually rotated by an angle

✓. Centre: schematic picture of a SATGB. The two grains are joined together

and the lattice misfit is accommodated by an array of edge dislocations spaced

with � and denoted with red dots (pictures after [54]). Right: HRTEM of a

SATGB in silicon. The green lines represent lines of atoms ending within the

crystal. Their end points inside the crystal are edge dislocations, which corre-

spond to the red atoms in the central picture. The blue lines show the mutual

rotation between the grains (image from [26, Section 7.2.2] with permission of

the author H. Foell).

by the celebrated Read-Shockley formula introduced in [55]

Elastic Energy = E0✓(A + | log ✓|) , (4.1)

where E0 and A are positive constants depending only on the material. Recently

Lauteri and Luckhaus in [35] derived the Read-Shockley formula by scaling argu-

ments starting from a nonlinear elastic energy.

In [23] we will deal with lower energy regimes, deriving by �-convergence, as

the lattice spacing " ! 0 and the number of dislocations N" ! 1, some limit

energy functional F that could be seen as a linearised version of the Read-Shockley

formula. We will work in the setting of linearised planar elasticity of [30] and

in particular we will require good separation of the dislocation cores. Such good

separation hypothesis will in turn imply that the number of dislocations at grain
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boundaries is of order

N" ⌧
✓

"
. (4.2)

This low density of dislocations is compatible with the low energy regime we deal

with. More precisely, as a consequence of our energy bounds, there are not enough

dislocations to accommodate small rotations ✓ between grains, but rather we can

have rotations of an infinitesimal angle ✓ ⇡ 0, that is, antisymmetric matrices.

It is in this respect that our analysis represents the linearised counterpart of the

celebrated Read-Shockley formula: grains are micro-rotated by infinitesimal angles

and the corresponding ground states can be seen as linearised polycrystals, whose

energy is linear with respect to the number of dislocations at grain boundaries.

We will now briefly introduce the setting of our problem, following [30]. In lin-

earised planar elasticity, the reference configuration is a bounded domain ⌦ ⇢ R2,

representing a horizontal section of an infinite cylindrical crystal ⌦⇥R. A displace-

ment is a regular map u : ⌦ ! R2 and the stored energy density W : M2⇥2
! [0,+1)

is defined by

W (F ) :=
1

2
CF : F ,

where C is the fourth order stress tensor, that satisfies

c�1
|F sym

|
2
 CF : F  c|F sym

|
2 for every F 2 M2⇥2 .

Here F sym := (F + F T )/2 and c is some positive constant (see Section 2.2.2 for

details on linear elasticity). The energy density W acts on gradient strain fields

� := ru and the elastic energy induced by � is defined as
Z

⌦

W (�) dx .

Following the discrete dislocation model, dislocations are introduced as point

defects of the strain � (see [8, 18, 30] and Section 2.2.3). More specifically, a

straight dislocation line � orthogonal to the cross section ⌦ is identified with the

point x0 = � \ ⌦. We then require

Curl � = ⇠ �x0 , (4.3)

in the sense of distributions. Here ⇠ := (⇠1, ⇠2, 0) is the Burgers vector, orthogonal

to �, so that (�, ⇠) defines an edge dislocation. Therefore, also (x0, ⇠) represents an
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⌦

⇠

�

x0

⇠⌦⇥ R

Figure 4.3: Left: cylindrical domain ⌦ ⇥ R. The dislocation (�, ⇠) is of edge

type. The green plane represents the extra half-plane of atoms corresponding

to �. Right: section ⌦ of the cylindrical domain in the left picture. The red

point x0 = � \ ⌦ represents the section of the dislocation line, so that (x0, ⇠)

is an edge dislocation. The green line is the intersection of the extra half-plane

of atoms in the left picture with ⌦.

edge dislocation (see Figure 4.3). By proceeding as in the proof of Proposition 4.9,

it is immediate to check that (4.3) implies
Z

B�(x0)\B"(x0)

W (�) dx � c log
�

"
, for every � > " > 0 .

From the above inequality we deduce that, as "! 0, the energy diverges logarithmi-

cally in neighbourhoods of x0. To overcome this problem we adopt the so-called core

radius approach (see also Section 2.2.3). Namely, we remove from ⌦ the ball B"(x),

called the core region, where " is proportional to the underlying lattice spacing, and

we replace (4.3) with the circulation condition
Z

@B"(x0)

� · t ds = ⇠ .

In the above formula t is the unit tangent vector to @B"(x0) and ds in the 1 - dimen-

sional Hausdorff measure. A generic distribution of N dislocations will therefore be

identified with the points {xi}
N

i=1. To each xi we associate a corresponding Burgers

vector ⇠i, belonging to a finite set S ⇢ R2 of admissible Burgers vectors, which

depends on the underlying crystalline structure. Clearly the Burgers vector scales

like "; for example for a square lattice we have S = "{±e1,±e2}. From now on we
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⌦ ⌦"(µ)

⇠i

⇢"
B⇢"(xi)

⇢"

B"(xi)

Figure 4.4: Left: clusters of dislocations (blue points) inside balls B⇢"(xi) are

identified with a single dislocation ⇠i �xi centred at xi (red point). The size of

the point denoting xi in the picture is proportional to the magnitude of the

total Burgers vector in the cluster. Right: the drilled domain ⌦"(µ). Balls of

radius ", centred at the dislocation points xi, are removed from ⌦. A circulation

condition on the strain is assigned on each @B"(xi).

will always renormalise the Burgers vectors, scaling them by "�1, so that S becomes

a fixed set independent of the lattice spacing. Since the energy is quadratic with

respect to the Burgers vector, our energy is in turn scaled by "�2. Following [30],

we make a technical hypothesis of good separation for the dislocation cores, by in-

troducing a small scale ⇢" � ", called hard core radius. Any cluster of dislocations

contained in a ball B⇢"(x0) ⇢ ⌦ will be identified with a multiple dislocation ⇠ �x0 ,

where ⇠ is the sum of the Burgers vectors corresponding to the dislocations in the

cluster (see Figure 4.4 Left). Therefore ⇠ 2 S := SpanZ S, where S represents the

set of multiple Burgers vectors. Under this assumption, a generic distribution of

dislocations is identified with a measure

µ =
NX

i=1

⇠i �xi , ⇠i 2 S ,

with |xi � xj| � 2⇢" and dist(xk, @⌦) > ⇢". Denote with ⌦"(µ) := ⌦ \
S

i
B"(xi) the

drilled domain (see Figure 4.4 Right). The admissible strains associated to µ are

matrix fields � 2 L2(⌦"(µ);M2⇥2) such that Curl � ⌦"(µ) = 0 and
Z

@B"(xi)

� · t ds = ⇠i , for every i = 1, . . . , N . (4.4)

The elastic energy corresponding to (µ, �) is defined as

E"(µ, �) :=

Z

⌦"(µ)

W (�) dx . (4.5)
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The energy induced by the dislocation µ is given by minimising (4.5) over the set of

strains satisfying (4.4). This energy is always positive if µ 6= 0, due to (4.4).

The energy contribution of a single dislocation core is of order | log "| (see Propo-

sition 4.10). Therefore for a system of N" dislocations, with N" ! 1 as "! 0, the

relevant energy regime is

E" ⇡ N"| log "| .

This scaling was already studied in [30] in the critical regime N" ⇡ | log "|, where

the authors characterise the �-limit of E", rescaled by | log "|2. We will later discuss

how this compares to our �-convergence result.

For our analysis we will consider a higher energy regime corresponding to

N" � | log "| .

We will see that this energy regime will account for grain boundaries that are mu-

tually rotated by an infinitesimal angle ✓ ⇡ 0. To be more specific, one can split

the contribution of E" into

E"(µ, �) = E inter
"

(µ, �) + Eself
"

(µ, �) ,

where Eself
"

is the self-energy computed in the hard core region [iB⇢"(xi) while E inter
"

is the interaction energy calculated outside the hard core region. In Theorem 4.17

we will prove that the �-limit as " ! 0 of the rescaled functionals E", with respect

to the strains and the dislocation measures, is of the form

F(µ, S,A) =

Z

⌦

W (S) dx+

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ| . (4.6)

The first term of F comes from the interaction energy. It represents the elastic

energy of the symmetric field S, which is the weak limit of the symmetric part of

the strains rescaled by
p
N"| log "|. Instead, the antisymmetric part of the strain,

rescaled by N", weakly converges to an antisymmetric field A. Therefore, since

N" � | log "|, the symmetric part of the strain is of lower order with respect to the

antisymmetric part.

The second term of F is the plastic energy. The density function ' is positively

1-homogeneous and it can be defined as the relaxation of a cell-problem formula. To

be more specific, we can define (see Proposition 4.12) the self-energy  : R2
! [0,1)
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induced by a single dislocation ⇠ �0 centred at the origin as

 (⇠) := lim
"!0

min

(
1

| log "|

Z

C"

W (�) dx : � 2 L2(C";M2⇥2) ,

Curl � C" = 0 ,

Z

@B"(0)

� · t ds = ⇠

)
,

where C" := B1(0) \ B"(0). Then the density ' is defined as the relaxation of  on

the set of Burgers vectors S

'(⇠) := min

(
MX

i=1

�i (⇠i) :
MX

i=1

�i⇠i = ⇠ , M 2 N, �i � 0 , ⇠i 2 S
)

.

The measure µ in (4.4) is the weak-⇤ limit of the dislocation measures rescaled by

N", and dµ/d|µ| represents the Radon-Nikodym derivative of µ with respect to |µ|

(see Section A.2.4). Notice that the antisymmetric part of the strain is of the same

order N", whereas the symmetric part is of lower order. As a consequence, the

compatibility condition (4.4) reads as CurlA = µ in the limit. This implies that

the elastic and plastic terms in F are decoupled. Indeed this is the main difference

with the critical regime N" ⇡ | log "| studied in [30], where the contribution of the

symmetric and antisymmetric part of the strain, as well as the dislocation measure,

have the same order | log "|. This results into the coupling in [30] of the two terms

of the energy, through the condition curl � = µ where � = S + A.

Next we focus on the study of the �-limit F . Precisely, we impose piecewise

constant Dirichlet boundary conditions on A, and we show that F is minimised by

strains that are locally constant and take values into the set of antisymmetric matri-

ces. More precisely, there is a Caccioppoli partition of ⌦ with sets of finite perimeter

where the antisymmetric strain is constant. Such sets are nothing but the grains

of the polycrystal, while the corresponding constant antisymmetric matrices repre-

sents their orientation. We call these configurations linearised polycrystals. This

definition is motivated by the fact that antisymmetric matrices can be considered

as infinitesimal rotations, being the linearisation about the identity of the space

of rotations. The proof of this result is based on the simple observation that the

variational problem is equivalent to minimise some anisotropic total variation of a

scalar function, which is locally constant on @⌦. By coarea formula, it is easy to

show that there always exists a piece-wise constant minimiser.
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This chapter is organised as follows. In Section 4.2 we introduce the rigorous

mathematical setting of the problem. In Section 4.3 we recall some results from

[30] that will be useful for the �-convergence analysis of the rescaled energy E".

The main �-convergence result will be proved in Section 4.4. In Section 4.5 we will

add Dirichlet type boundary conditions to the �-convergence analysis done in the

previous section. Finally, in Section 4.6 we will show that the plastic part of F is

minimised by linearised polycrystals, by prescribing piecewise constant boundary

conditions on the antisymmetric part of the limit strain.

4.2 Setting of the problem

Let ⌦ ⇢ R2 be a bounded open domain with Lipschitz boundary. The set ⌦

represents a horizontal section of an infinite cylindrical crystal ⌦ ⇥ R. Define as

S := {b1, . . . , bs} the class of Burgers vectors. We will assume that S contains at

least two linearly independent vectors so that SpanR S = R2. We then define the

set of slip directions

S := SpanZ S ,

that coincides with the set of Burgers vectors for multiple dislocations. A dislocation,

of edge type, can be identified with a point xi 2 ⌦ and a vector ⇠i 2 S.

Let " > 0 be the interatomic distance for the crystal and N" be the number of

dislocations present in the crystal at a scale ". As in [30], we introduce a hard core

radius ⇢" such that

(i) lim"!0 ⇢"/"s = 1 for every fixed 0 < s < 1 ,

(ii) lim"!0 N"⇢2" = 0.

The first condition implies that the hard core region contains almost all the-self

energy (see Proposition 4.13), while the second one guarantees that the area of the

hard core region tends to zero. The above conditions are compatible if

N""
s
! 0 , for every fixed s > 0 . (4.7)
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The class of admissible dislocations is defined by

AD"(⌦) :=
n
µ 2M(⌦;R2) : µ =

MX

i=1

⇠i�xi , M 2 N, ⇠i 2 S ,

B⇢"(xi) ⇢ ⌦ , |xj � xk| � 2⇢" , for every i and j 6= k
o
.

(4.8)

Here M(⌦;R2) denotes the space of R2 valued Radon measures on ⌦ and Br(x) is

the ball of radius r centred at x 2 R2 (see Section A.2 for more details on measures).

For a given µ 2 AD"(⌦) and r > 0 define

⌦r(µ) := ⌦ \

[

xi2supp(µ)

Br(xi) . (4.9)

The class of admissible strains associated with µ =
P

M

i=1 ⇠i�xi 2 AD"(⌦) is given

by the maps � 2 L2(⌦"(µ);R2) such that

Curl � ⌦"(µ) = 0 ,

Z

@B"(xi)

� · t ds = ⇠i for every i = 1, . . . ,M .

The identity Curl � = 0 is intended in the sense of distributions, where

Curl � := (@1�12 � @2�11, @1�22 � @2�21) .

The integrand � · t is intended in the sense of traces (see Remark 4.2 in Section

4.3.1), and t is the unit tangent vector to @B"(xi), obtained by a clock-wise rotation

of ⇡/2 of the inner normal ⌫ to B"(x), that is t := J⌫ with

J :=

0

@ 0 1

�1 0

1

A . (4.10)

In the following it will be useful to extend the admissible strains to the whole ⌦.

Therefore, for a dislocation measure µ =
P

M

i=1 ⇠i�xi 2 AD"(⌦), we introduce the

class AS"(µ) of admissible strains as

AS"(µ) :=
n
� 2 L2(⌦;M2⇥2) : � ⌘ 0 in ⌦ \ ⌦"(µ) , Curl � = 0 in ⌦"(µ) ,
Z

@B"(xi)

� · t ds = ⇠i ,

Z

⌦"(µ)

�skew dx = 0 , for every i = 1, . . . ,M
o
.

(4.11)

Here F skew := (F � F T )/2. The last condition in (4.11) is not restrictive and will

guarantee the existence of the minimising strain.
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The energy associated to an admissible pair (µ, �) with µ 2 AD"(⌦) and � 2 AS"(µ)

is defined by

E"(µ, �) :=

Z

⌦"(µ)

W (�) dx =

Z

⌦

W (�) dx ,

where

W (F ) :=
1

2
CF : F

is the strain energy density. The elasticity tensor C satisfies

c�1
|F sym

|
2
 W (F )  c|F sym

|
2 for every F 2 M2⇥2 , (4.12)

where c > 0 is a given constant.

Notice that for any µ 2 AD"(⌦) the minimum problem

min

⇢Z

⌦"(µ)

W (�) dx : � 2 AS"(µ)

�
(4.13)

has a unique solution. This can be seen by removing a finite number of cuts L from

⌦"(µ) so that ⌦"(µ) \ L becomes simply connected and there exists a displacement

gradient such that ru = � in ⌦"(µ) \ L. Then we can apply the classic Korn

inequality (Theorem 4.4) to ru, and conclude by using the direct method of calculus

of variations (Theorem A.1). Details for this argument can be found in the proof of

Proposition 4.11, in the case when µ = ⇠�0.

In the following we will assume that we are in the supercritical regime

N" � | log "| . (4.14)

As already discussed, the relevant scaling for the asymptotic study of E" is given by

N"| log "|. Therefore we introduce the scaled energy functional defined on M(⌦;R2)⇥

L2(⌦;M2⇥2) as

F"(µ, �) :=

8
>><

>>:

1

N"| log "|
E"(µ, �) if µ 2 AD"(⌦) , � 2 AS"(µ) ,

+1 otherwise.
(4.15)

4.3 Preliminaries

In this section we will recall some useful results, mainly from [30], that will be needed

in the following �-convergence analysis.
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4.3.1 Remarks on the distributional Curl

Let ⌦ ⇢ R2 be a Lipschitz bounded domain. For � 2 L2(⌦;M2⇥2) we define the

distribution Curl � 2 D
0(⌦;R2) as

Curl � := (@1�12 � @2�11, @1�22 � @2�21) . (4.16)

Introduce the space of L2 strains with L2 Curl as

H(Curl,⌦) :=
�
� 2 L2(⌦;M2⇥2) : Curl � 2 L2(⌦;R2)

 
,

which is a Hilbert space with the norm (k�k
L2 + kCurl �k

L2)
1
2 . We denote by

H0(Curl,⌦) the closure of C1
c
(⌦;M2⇥2) in H(Curl,⌦). Also set

C1(⌦;M2⇥2) :=
�
'�⌦ : ' 2 C1(R2;M2⇥2)

 
.

Recall that H�1/2(@⌦;R2) is defined as the dual of the space

H1/2(@⌦;R2) :=
�
v 2 L2(@⌦;R2) : kvk

H1/2 < 1
 
,

where k·k
H1/2 is the norm

kvk
H1/2 :=

Z

@⌦

|v(x)|2 dx+

ZZ

@⌦⇥@⌦

|v(x)� v(y)|2

|x� y|2
dx dy .

For the space H(Curl,⌦) we have the following trace theorem (see [16, Theorem 2,

p. 204]).

Theorem 4.1 (Trace theorem for H(Curl,⌦)). Let ⌦ ⇢ R2 be a Lipschitz bounded

domain. Then C1(⌦;M2⇥2) is dense in H(Curl,⌦). Moreover, there exists a con-

tinuous linear map

T : H(Curl,⌦) ! H�1/2(@⌦;R2) ,

called trace map, such that

T (') = (' · t)|@⌦ for every ' 2 C1(⌦;M2⇥2) ,

where t is the unit tangent vector to @⌦. Furthermore, the kernel of T is such that

kerT = H0(Curl,⌦). For � 2 H(Curl,⌦) we will denote T (�) = (� · t)|@⌦.

Remark 4.2 (Trace of admissible strains). Let µ 2 AD"(⌦) and � 2 L2(⌦"(µ);M2⇥2)

such that Curl � ⌦"(µ) = 0. This implies that � 2 H(Curl,⌦"(µ)) and therefore

the trace � · t on each @B"(xi) is well defined by Theorem 4.1.
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Remark 4.3 (Curl of admissible strains). Let µ 2 AD"(⌦) and � 2 AS"(µ).

We want to make some considerations on Curl � (see [30, Remark 1]). Recalling

definition (4.16), we can define the scalar distribution

curl �(i) :=
@

@x1
�i2 �

@

@x2
�i1 ,

where �(i) denotes the i-th row of �. This means that for any test function ' in

C1
c
(⌦), we can write

hcurl �(i),'i =

Z

⌦

�(i) · Jr' dx , (4.17)

where J is the clock-wise rotation of ⇡/2, as defined in (4.10). Notice that, if

�(i) 2 L2(⌦;R2), then (4.17) implies that curl �(i) is well defined also for ' 2 H1
0 (⌦)

and acts continuously on it. Therefore

Curl � 2 H�1(⌦;R2) for every � 2 AS"(µ) ,

where H�1(⌦;R2) denotes the dual of the space H1
0 (⌦;R2).

Further, if µ =
P

M

i=1 ⇠i �xi 2 AD"(⌦), then the circulation condition
Z

@B"(xi)

� · t ds = ⇠i , for every i = 1, . . . ,M ,

can be written as

hCurl �,'i =
MX

i=1

⇠i ci ,

for every ' 2 H1
0 (⌦) such that ' ⌘ ci in B"(xi). If in addition ' 2 C0(⌦) \H1

0 (⌦),

then

hCurl �,'i =

Z

⌦

' dµ .

4.3.2 Korn type inequalities

In this section we will recall some Korn type inequalities useful in the following

analysis. Let us start by stating the classic Korn inequality in two-dimensions.

Theorem 4.4 (Korn’s inequality, [10]). Let ⌦ ⇢ R2 be a bounded Lipschitz do-

main. There exists a constant C > 0 depending only on ⌦, such that for every map

u 2 H1(⌦;R2) we have
Z

⌦

|ru� A|2 dx  C

Z

⌦

|rusym
|
2 dx , (4.18)
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where A is the constant 2⇥ 2 antisymmetric matrix defined by

A :=
1

|⌦|

Z

⌦

ruskew dx ,

with rusym := (ru+ruT )/2 and ruskew := (ru�ruT )/2.

Remark 4.5 (Korn’s constant). As stated in the above theorem, the constant in

(4.18) depends only on the domain ⌦. Moreover C is invariant under uniform scaling

and translation, that is,

C(⌦) = C(�⌦+ c)

for every � > 0, c 2 R2. The rescaled function �u((x� c)/�) is obviously associated

to the same antisymmetric matrix A, since

A =
1

|⌦|

Z

⌦

ruskew dx =
1

|�⌦+ c|

Z

�⌦+c

ruskew dy .

Remark 4.6 (Annular domains with a cut). Let µ 2 AD"(⌦) and � 2 AS"(µ).

We want to estimate from below the energy of � in annuli Br2(xi) \ Br1(xi) for

0 < r1 < r2 sufficiently small, and xi 2 suppµ. Notice that � is not a gradient in

Br2(xi)\Br1(xi), so we cannot use the classic Korn inequality (4.18) to estimate the

energy. However, by removing a cut Lr1,r2 := {xi}⇥ (r1, r2) from Br2(xi) \ Br1(xi),

we can find a displacement u such that ru = � in (Br2(xi) \ Br1(xi)) \ Lr1,r2 . To

such gradient we can apply (4.18). The question is to understand the behaviour of

the constant C in (4.18) in terms of r1 and r2.

In the case of an annular domain Br2(xi) \ Br1(xi), the constant C can be com-

puted explicitly and it can be shown that C = C(r1/r2), that is, C depends only on

the ratio of the radii (see [14]). Moreover we have that C(r1/r2) ! 1 if r1/r2 ! 1,

that is, Korn’s constant explodes on thin annuli.

It turns out that this is true also for annular domains with a cut, as proved

in [57, Proposition 3.3]. Let us now consider a domain (B1(0) \ B"(0)) \ L", with

L" := {0} ⇥ (", 1) and 0 < " < 1. From the above discussion, a priori, Korn’s

constant is a function of ", and C(") ! 1 as " ! 1. However if " is such that

0 < " < �, for some fixed � < 1, then it can be shown ([57, Proposition 3.3]) that C

is uniform in ". We will summarise these results in the following theorem.
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Br2

Br1

Lr1,r2

Figure 4.5: Annular domain with a cut (Br2 \Br1) \ Lr1,r2 .

Theorem 4.7. Consider the annulus Br2 \ Br1, with 0 < r1 < r2, where Br is the

ball of radius r centred at the origin. Set Lr1,r2 := {0} ⇥ (r1, r2). There exists a

constant C > 0, depending only on the ratio r1/r2, with the following property: for

every u 2 H1((Br2 \Br1) \ Lr1,r2 ;R2), we have
Z

(Br2\Br1 )\Lr1,r2

|ru� A|2 dx  C

Z

(Br2\Br1 )\Lr1,r2

|rusym
|
2 dx , (4.19)

where A := 1/|Br2 \Br1 |
R
(Br2\Br1 )\Lr1,r2

ruskew dx.

Moreover, let 0 < " < 1/2 and r1 = ", r2 = 1. Then the constant in (4.19) is

uniform in ".

Theorem 4.7 holds true also for strains � 2 AS"(µ") in the case when the number

of dislocations is uniformly bounded, that is, if sup
"
|µ"|(⌦) < 1. On the other hand,

when the number of dislocations N" ! 1 as " ! 0, the contribution from |µ"|(⌦)

has to be taken into account in the right hand side of (4.19), in order to obtain a

uniform estimate. This leads us to the following generalised Korn inequality, first

proved in [30, Theorem 11].

Theorem 4.8 (Generalised Korn inequality). There exists a constant C > 0, de-

pending only on ⌦, with the following property: for every � 2 L1(⌦;M2⇥2) with

Curl � = µ 2 M(⌦;R2) ,

we have Z

⌦

|� � A|2 dx  C

✓Z

⌦

|�sym
|
2 dx+ |µ|(⌦)2

◆
, (4.20)

where A is the constant 2⇥ 2 antisymmetric matrix defined by

A :=

Z

⌦

�skew dx .
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4.3.3 Cell formula for the self-energy

In this section we want to rigorously define the density function ' appearing in

the �-limit F defined in (4.6). In order to do so, following [30, Section 4], we will

introduce the self-energy  (⇠) stored in the core region of a single dislocation ⇠ �0

centred at the origin.

Let us start by defining, for every ⇠ 2 R2 and 0 < r1 < r2, the space

ASr1,r2(⇠) :=

(
� 2 L2(Br2 \Br1 ;M2⇥2) : Curl � = 0,

Z

@Br1

� · t ds = ⇠

)
, (4.21)

where Br is the ball of radius r centred at the origin. For strains belonging to such

class, we have the following bound from below of the energy (see [30, Remark 3]).

Proposition 4.9. Let 0 < r1 < r2 and ⇠ 2 R. There exists a constant c > 0

depending only on the ratio r1/r2, such that, for every � 2 ASr1,r2(⇠),
Z

Br2\Br1

|�sym
|
2 dx � c|⇠|2 log

r2
r1

. (4.22)

Moreover, let 0 < " < 1/2 and r1 := ", r2 := 1. Then the constant in (4.22) is

uniform in ".

Proof. Let � 2 ASr1,r2(⇠). By introducing a cut Lr1,r2 := {0}⇥(r1, r2) and consider-

ing (Br2 \Br1)\Lr1,r2 , the domain becomes simply connected (see Figure 4.5). Since

Curl � = 0, there exists a displacement u 2 H1((Br2 \ Br1) \ Lr1,r2 ;R2) such that

ru = �. Therefore we can apply Theorem 4.7 to obtain an antisymmetric matrix

A 2 M2⇥2
skew such that

Z

Br2\Br1

|� � A|2 dx  C

Z

Br2\Br1

|�sym
|
2 dx .

Notice that the constant C > 0 comes from (4.19) and it depends only on the ratio

r1/r2. By Jensen’s inequality and by recalling that � 2 ASr1,r2(⇠), we have
Z

Br2\Br1

|� � A|2 dx �

Z
r2

r1

Z

@B⇢

|(� � A) · t|2 ds d⇢

�

Z
r2

r1

1

2⇡⇢

�����

Z

@B⇢

(� � A) · t ds

�����

2

d⇢

=

Z
r2

r1

1

2⇡⇢

�����

Z

@B⇢

� · t ds

�����

2

d⇢ =
|⇠|2

2⇡

Z
r2

r1

1

⇢
d⇢ =

|⇠|2

2⇡
log

r2
r1

,

where
R
@B⇢

A·t ds = 0, since A is constant. The rest of the statement follows directly

from the second part of Theorem 4.7.
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Let C" := B1 \ B", with 0 < " < 1, and introduce  " : R2
! R through the cell

problem

 "(⇠) :=
1

| log "|
min

⇢Z

C"

W (�) dx : � 2 AS",1(⇠)

�
. (4.23)

Remark 4.10 (Heuristic for the scaling). There exists a constant c > 0, such that,

for every 0 < " < 1/2 and ⇠ 2 R2, we have

c�1
|⇠|2   "(⇠)  c|⇠|2 . (4.24)

Indeed  " � c�1
|⇠|2 follows directly from Proposition 4.9, with c uniform in ". For

the upper bound, consider the strain

K⇠(x) :=
1

2⇡
⇠ ⌦ J

x

|x|2
,

where J is the clock-wise rotation of ⇡/2. It is immediate to check that CurlK⇠ =

⇠ �0 in D
0(R2;R2). Therefore K⇠ 2 AS",1(⇠). Moreover the energy is such that

Z

C"

|K⇠|
2 dx  c|⇠|2

Z

C"

1

|x|2
dx = c|⇠|2| log "| ,

where C does not depend on ". Therefore the upper bound in (4.24) follows directly

from the energy bounds (4.12).

Indeed it is possible to prove that the scaling in (4.24) is optimal. In order to do

so, let us first prove that (4.23) admits a minimiser for each fixed 0 < " < 1.

Proposition 4.11. For every fixed 0 < " < 1 and ⇠ 2 R2, there exists a unique

solution �" = �"(⇠) to (4.23), such that
R
⌦ �

skew
"

= 0.

Proof. This is a simple application of the direct method of the calculus of variations

(see Theorem A.1) in combination with Korn’s inequality (Theorem 4.4). Fix 0 <

" < 1 and let �n be a minimising sequence, that is, �n 2 AS",1(⇠) and

lim
n!1

Z

C"

W (�n) dx = I" := inf
�2AS",1(⇠)

Z

C"

W (�) dx . (4.25)

By Remark 4.10 we have I" < 1. Up to a translation by an antisymmetric matrix,

we can assume that �n is such that
R
C"
�skew
n

dx = 0, without changing the energy,

since W depends only on the symmetric part of the strain. Let L" := {0} ⇥ (", 1).

Since Curl � = 0 and C" \ L" is simply connected, there exists un 2 H1(C" \ L";R2)

such that run = �n. Therefore, by applying the classic Korn inequality, we have
Z

C"

|�n|
2 dx  C

Z

C"

|�sym
n

|
2 dx ,
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for some C > 0. By the energy bounds (4.12) and by (4.25) we conclude that

the sequence �n is uniformly bounded in L2(C";M2⇥2). Therefore �n * �, up

to subsequences (not relabelled). Notice that � 2 AS",1(⇠) and
R
C"
�skew dx = 0.

Furthermore, our energy is weakly lower semicontinuous, that is,
Z

C"

W (�) dx  lim inf
n!1

Z

C"

W (�n) dx , (4.26)

whenever �n * �. Indeed, by the energy bounds (4.12), we have
Z

C"

W (�n) dx+

Z

C"

W (�) dx� 2

Z

C"

C�n : � dx =

Z

C"

W (�n � �) dx � 0

so that (4.26) follows. Since our minimising sequence is such that �n * �, from

(4.25)-(4.26) we conclude that � is a minimiser. Moreover
R
C"
�skew dx = 0. To prove

the uniqueness, assume that �1 and �2 are two minimisers such that
R
C"
�skew
1 dx =

R
C"
�skew
1 dx = 0. Consider � := (�1 + �2)/2. Notice that � 2 AS",1(⇠) and

R
C"
�skew dx = 0. By minimality we have

Z

C"

W (�1) dx+

Z

C"

W (�2) dx  2

Z

C"

W (�) dx .

By rearranging the above inequality, we obtain
Z

C"

W (�1 � �2) dx  0 .

Note that
R
C"

(�1 � �2)
skew dx = 0, therefore, by Korn’s inequality and the energy

bounds (4.12), we get
Z

C"

|�1 � �2|
2 dx  c

Z

C"

|�sym
1 � �sym

2 |
2 dx  c

Z

C"

W (�1 � �2) dx  0

so that �1 = �2 a.e. in C".

It is easy to check that the minimiser �"(⇠) of Proposition 4.11 satisfies the

boundary value problem
8
><

>:

DivC�"(⇠) = 0 in C",

C�"(⇠) · ⌫ = 0 on @C",

where ⌫ is the inner normal to @C". Also, consider the strain �0(⇠) : R2
! M2⇥2

that solves in the sense of distributions
8
><

>:

DivC�0(⇠) = 0 in R2,

Curl �0(⇠) = ⇠ �0 in R2.

The following results holds true (see [30, Corollary 6]).
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Proposition 4.12 (Self-energy). There exists a constant C > 0 such that for every

⇠ 2 R2,

 "(⇠) 
1

| log "|

Z

C"

W (�0(⇠)) dx   "(⇠) +
C|⇠|2

| log "|
. (4.27)

In particular, for every ⇠ 2 R2, we have that

lim
"!0

 "(⇠) =  (⇠) ,

pointwise, where the map  : R2
! R is the self-energy defined by

 (⇠) := lim
"!0

1

| log "|

Z

C"

W (�0(⇠)) dx . (4.28)

Moreover,

| "(⇠)�  (⇠)| 
C|⇠|2

| log "|
.

Also, by definition of  and (4.24), (4.27), there exists a constant c > 0 such that

c�1
|⇠|2   (⇠)  c|⇠|2 , (4.29)

for every ⇠ 2 R2.

We now want to show that the self-energy  (⇠) is indeed concentrated in the

hardcore region B⇢" \B" of the dislocation ⇠ �0, whenever | log ⇢"| ⌧ | log "|. To this

end, define the map  ̄" : R2
! R as

 ̄"(⇠) :=
1

| log "|
min

(Z

B⇢"\B"

W (�) dx : � 2 AS",⇢"(⇠)

)
, (4.30)

for ⇠ 2 R2. It will also be useful to introduce  ̃" : R2
! R as

 ̃"(⇠) :=
1

| log "|
min

(Z

B⇢"\B"

W (�) dx : � 2 AS",⇢"(⇠), � · t = �̂ · t on @B" [ @B⇢"

)
,

(4.31)

where �̂ 2 AS",⇢"(⇠), is such that

|�̂(x)|  K
|⇠|

|x|
, (4.32)

for some positive constant K. By (4.12), and proceeding as in the proof of Propo-

sition 4.11, it is immediate to see that problems (4.30)-(4.31) are well posed. The

following results holds (see [30, Remark 7, Proposition 8]).
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Proposition 4.13. Assume that ⇢" > 0 is such that log ⇢"/ log " ! 0 as " ! 0.

Then  ̄"(⇠) =  "(⇠)(1 + o(")) and  ̃"(⇠) =  "(⇠)(1 + o(")), with o(") ! 0 as " ! 0

uniformly with respect to ⇠ 2 R2. In particular

lim
"!0

 ̄"(⇠) = lim
"!0

 ̃"(⇠) =  (⇠)

pointwise, where  is the self-energy defined in (4.28).

We can now define the density ' : R2
! [0,+1) as a relaxation of the self-energy

map  ,

'(⇠) := inf

(
NX

k=1

�k (⇠k) :
NX

k=1

�k⇠k = ⇠, N 2 N, �k � 0, ⇠k 2 S
)

. (4.33)

Proposition 4.14. The function ' defined in (4.33) is convex and positively 1-

homogeneous, that is

'(�⇠) = �'(⇠), for every ⇠ 2 R2, � > 0 .

Moreover there exists a constant c > 0 such that

c�1
|⇠|  '(⇠)  c|⇠| , (4.34)

for every ⇠ 2 R2. In particular, the infimum in (4.33) is actually a minimum.

Proof. Convexity and homogeneity are immediate to check. As for (4.34), note

that ' is continuous (' being convex). Therefore by homogeneity, for every ⇠ 6= 0,

we have '(⇠) = |⇠|'(⇠/|⇠|). Hence (4.34) follows, since ' admits minimum and

maximum on {⇠ 2 R2 : |⇠| = 1}. Finally, the fact that the minimum is attained

follows from the direct method of the calculus of variations, by using (4.34) and the

fact that ' is continuous.

4.4 �-convergence analysis for the regime N" � | log "|

In this section we will study, by means of �-convergence, the behaviour as "! 0 of

the functionals F" : M(⌦;R2) ⇥ L2(⌦;M2⇥2) ! R defined in (4.15), in the energy

regime N" � | log "|. In Theorem 4.17 we will prove that the �-limit for the sequence

82



F" is given by the functional F : M(⌦;R2)⇥L2(⌦;M2⇥2
sym)⇥L2(⌦;M2⇥2

skew) ! R defined

as

F(µ, S,A) :=

8
>><

>>:

Z

⌦

W (S) dx+

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ| if µ 2 H�1(⌦;R2), CurlA = µ,

+1 otherwise ,
(4.35)

where ' is the energy density introduced in (4.33). The topology under which the

�-convergence result holds is given by the following definition.

Definition 4.15. We say that the sequence (µ", �") 2 M(⌦;R2) ⇥ L2(⌦;M2⇥2) is

converging to a triplet (µ, S,A) 2 M(⌦;R2)⇥ L2(⌦;M2⇥2
sym)⇥ L2(⌦;M2⇥2

skew) if

µ"

N"

⇤
* µ in M(⌦;R2) , (4.36)

�sym
"p

N"| log "|
* S and

�skew
"

N"

* A weakly in L2(⌦;M2⇥2) . (4.37)

Remark 4.16. The topology introduced in Definition 4.15 is metrisable, hence we

will can apply the fundamental theorem of �-convergence given in Appendix A.2.

Theorem 4.17. The following �-convergence result holds with respect to the topology

of Definition 4.15.

(i) (Compactness) Let "n ! 0 and assume that (µn, �n) 2 M(⌦;R2)⇥L2(⌦;M2⇥2)

is such that sup
n
F"n(µn, �n)  E, for some positive constant E. Then there

exists (µ, S,A) 2 M(⌦;R2) ⇥ L2(⌦;M2⇥2
sym) ⇥ L2(⌦;M2⇥2

skew) such that, up to

subsequences (not relabelled), (µn, �n) converges to (µ, S,A) in the sense of

Definition 4.15. Moreover µ 2 H�1(⌦;R2) and CurlA = µ.

(i) (�-convergence) The functionals F" defined in (4.15) �-converge to the func-

tional F defined in (4.35), with respect to the convergence of Definition 4.15.

Specifically, for every

(µ, S,A) 2 (H�1(⌦;R2) \ M(⌦;R2))⇥ L2(⌦;M2⇥2
sym)⇥ L2(⌦;M2⇥2

skew)

such that Curlµ = A we have:

• (�-liminf inequality) for all sequences (µ", �") 2 M(⌦;R2)⇥L2(⌦;M2⇥2)

converging to (µ, S,A) in the sense of Definition 4.15,

F(µ, S,A)  lim inf
"!0

F"(µ", �") .
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• (�-limsup inequality) there exists a recovery sequence (µ", �") belonging

to M(⌦;R2) ⇥ L2(⌦;M2⇥2), such that (µ", �") converges to (µ, S,A) in

the sense of Definition 4.15, and

lim sup
"!0

F"(µ", �")  F(µ, S,A) .

4.4.1 Compactness

We will prove the compactness statement in Theorem 4.17. Assume that (µn, �n) is

a sequence in M(⌦;R2)⇥ L2(⌦;M2⇥2) such that

sup
n

F"n(µn, �n)  E . (4.38)

The proof is divided into four parts.

Part 1. Compactness of the rescaled measures.

Let µn :=
P

Mn

i=1 ⇠n,i�xn,i 2 AD"n(⌦). We show that the total variation of µn/N"n is

uniformly bounded, i.e., there exists C > 0 such that

1

N"n

|µn|(⌦) =
1

N"n

MnX

i=1

|⇠n,i|  C , (4.39)

for every n 2 N. Since the function y 7! �n(xn,i + y) belongs to AS"n,⇢"n
(⇠n,i), we

have

E � F"n(µn, �n) �
1

N"n | log "n|

MnX

i=1

Z

B⇢"n (xn,i)\B"n(xn,i)

W (�n) dx

=
1

N"n | log "n|

MnX

i=1

Z

B⇢"n (0)\B"n (0)

W (�n(xn,i + y)) dy �
1

N"n

MnX

i=1

 ̄"n(⇠n,i) ,

where  ̄" is defined in (4.30). Let  be the self-energy defined in (4.28) and set

c := 1
2 min|⇠|=1  (⇠). Notice that c > 0, by (4.29). By Proposition 4.13,  ̄" !  

pointwise as " ! 0, therefore for sufficiently large n, we have  ̄"n(⇠) � c for every

⇠ 2 R2 with |⇠| = 1. Hence,

1

N"n

MnX

i=1

 ̄"n(⇠n,i) =
1

N"n

MnX

i=1

|⇠n,i|
2  ̄"n

✓
⇠n,i
|⇠n,i|

◆
�

c

N"n

MnX

i=1

|⇠n,i|
2

�
c

N"n

MnX

i=1

|⇠n,i| = c
|µn|(⌦)

N"n

.
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The last inequality follows from the fact that the vectors ⇠n,i are bounded away from

zero. By putting together the above estimates, we conclude (4.36).

Part 2. Compactness of the rescaled �sym
n

.

This follows immediately by the bounds on the energy (4.12). Indeed by (4.38),

CN"n | log "n| � CE"n(µn, �n) � C

Z

⌦

|�sym
n

|
2 dx , (4.40)

and the weak compactness of �sym
n

/
p

N"n | log "n| in L2(⌦;M2⇥2) follows.

Part 3. Compactness of the rescaled �skew
n

.

Now that the bounds (4.39)-(4.40) are established, the idea is to apply the gener-

alised Korn inequality of Theorem 4.8, in order to obtain a uniform upper bound

for �skew
n

/N"n in L2(⌦;M2⇥2). To do that, we need a control over |Curl �n|(⌦). In

fact, even if �n is related to µn by circulation compatibility conditions, the relation-

ship between |Curl �n|(⌦) and |µn|(⌦) is not clear. In order to obtain a bound for

|Curl �n|(⌦) in terms of |µn|(⌦), we will define new strains �̃n that have the same

order of energy of �n and that satisfy |Curl �̃n|(⌦) = |µn|(⌦).

Recall that µn =
P

Mn

i=1 ⇠i,n�xi,n . Define the annuli Ci,n := B2"n(xi,n) \ B"n(xi,n)

and the functions Ki,n : Ci,n ! M2⇥2 by

Ki,n(x) :=
1

2⇡
⇠i,n ⌦ J

x� xi,n

|x� xi,n|
2
,

where J is the clock-wise rotation of ⇡/2. It is immediate to check that
Z

Ci,n

|Ki,n|
2 dx = C|⇠i,n|

2 ,

where the constant C > 0 does not depend on "n. By Proposition 4.9 we also have
Z

Ci,n

|�sym
n

|
2 dx � C|⇠i,n|

2 ,

where, again, the constant C > 0 does not depend on "n. Therefore
Z

Ci,n

|Ki,n|
2 dx  C

Z

Ci,n

|�sym
n

|
2 dx . (4.41)

Note that CurlKi,n = ⇠i,n�xi,n in D
0(R2;R2), hence Curl(�n � Ki,n) = 0 in Ci,n.

Moreover
R
@B"n (xi,n)

(�n � Ki,n) · t ds = 0, therefore there exists vi,n 2 H1(Ci,n;R2)

such that rvi,n = �n �Ki,n in Ci,n. By (4.41),
Z

Ci,n

|rvsym
i,n

|
2 dx  C

Z

Ci,n

|�sym
n

|
2 dx .
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By applying the classic Korn inequality (Theorem 4.4) we get
Z

Ci,n

|rvi,n � Ai,n|
2 dx  C

Z

Ci,n

|rvsym
i,n

|
2 dx  C

Z

Ci,n

|�sym
n

|
2 dx ,

for some constant matrix Ai,n 2 M2⇥2
skew and some uniform constant C > 0. By

standard extension methods, there exists ui,n 2 H1(B2"n(xi,n);R2) such that rui,n =

rvi,n � Ai,n in Ci,n and
Z

B2"n (xi,n)

|rui,n|
2 dx  C

Z

Ci,n

|rvi,n � Ai,n|
2 dx  C

Z

Ci,n

|�sym
n

|
2 dx . (4.42)

Define �̃n : ⌦ ! M2⇥2 by setting

�̃n(x) :=

8
><

>:

�n(x) if x 2 ⌦"n(µn) ,

rui,n(x) + Ai,n if x 2 B"n(xi,n) .

From (4.40) and (4.42), we have

Z

⌦

|�̃sym
n

|
2 dx =

Z

⌦"n (µn)

|�sym
n

|
2 dx+

MnX

i=1

Z

B"n (xi,n)

|rusym
i,n

|
2 dx

 C

Z

⌦

|�sym
n

|
2 dx  CN"n | log "n| .

Moreover by construction Curl �̃n is concentrated on @B"n(xi,n) and we have |Curl �̃n|(⌦) =

|µn|(⌦). Therefore we can apply the generalised Korn inequality of Theorem 4.8 to

get Z

⌦

|�̃n � Ãn|
2 dx  C

✓Z

⌦

|�̃sym
n

|
2 dx+ (|µn|(⌦))

2

◆

 C
�
N"n | log "n|+N2

"n

�
 CN2

"n
,

where Ãn := 1
|⌦|
R
⌦ �̃

skew
n

2 M2⇥2
skew. The last inequality follows from the assumption

| log "n| ⌧ N"n . Now recall that by hypothesis the average of �n is a symmetric

matrix and �n ⌘ 0 in ⌦ \ ⌦"n(µn). Therefore, since symmetric and skew matrices

are orthogonal, we have
Z

⌦"n (µn)

�n : Ãn dx =

Z

⌦

�n dx : Ãn = 0 .

Hence |�n � Ãn|
2 = |�n|2 + |Ãn|

2, so that
Z

⌦"n (µn)

|�n|
2 dx 

Z

⌦"n (µn)

|�n � Ãn|
2 dx 

Z

⌦

|�̃n � Ãn|
2 dx  CN2

"n
,

which yields the desired compactness for �skew
n

/N"n in L2(⌦;M2⇥2).
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Part 4. µ 2 H�1(⌦;R2) and CurlA = µ.

Recall that µn =
P

Mn

i=1 ⇠n,i�xn,i 2 AD"n(⌦) and �n 2 AS"n(µn). Let ' 2 C1
0(⌦) and

'n 2 H1
0 (⌦) be a sequence converging to ' uniformly and strongly in H1

0 (⌦), and

such that

'n ⌘ '(xn,i) in B"n(xn,i) .

By Remark 4.3, we then have
Z

⌦

'n dµn = hCurl �n,'ni =

Z

⌦

�nJr'n dx .

Hence, by invoking (4.14), (4.36) and (4.37), we have
Z

⌦

' dµ = lim
n!1

1

N"n

Z

⌦

'n dµn = lim
n!1

1

N"n

hCurl �n,'ni

= lim
n!1

1

N"n

Z

⌦

�nJr'n dx =

Z

⌦

AJr' dx = hCurlA,'i .

From this we conclude that CurlA = µ. Moreover, since A 2 L2(⌦;M2⇥2), then by

definition CurlA 2 H�1(⌦;R2). Hence also µ 2 H�1(⌦;R2).

4.4.2 �-liminf inequality

We now want to prove the �-liminf inequality of Theorem 4.17. Let µ" 2 AD"(⌦),

�" 2 AS"(µ") and

(µ, S,A) 2 (H�1(⌦;R2) \ M(⌦;R2))⇥ L2(⌦;M2⇥2
sym)⇥ L2(⌦;M2⇥2

skew) ,

such that CurlA = µ. Assume that (µ", �") converges to (µ, S,A) in the sense of

Definition 4.15. We need to show that

lim inf
"!0

F"(µ", �") � F(µ, S,A) . (4.43)

In order to do so, we decompose the energy in

1

N"| log "|

Z

⌦

W (�") dx =
1

N"| log "|

Z

⌦⇢" (µ")

W (�") dx+
1

N"| log "|

Z

⌦\⌦⇢" (µ")

W (�") dx

(4.44)

and study the two contributions separately.

Recall that µ" =
P

M"

i=1 ⇠",i�x",i . Since we are assuming that µ"/N"

⇤
* µ, this

implies that |µ"|(⌦)/N" is uniformly bounded, hence M"  CN" for some uniform

constant C > 0. Moreover N"⇢2" ! 0 by hypothesis, therefore �⌦⇢"
! 1 in L1(⌦), as

Z

⌦

|�⌦⇢"
� 1| dx =

M"X

i=1

|B⇢"(x",i)| = ⇡⇢2
"
M"  C⇢2

"
N" .
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Since �sym
"

/
p

N"| log "|* S, we deduce that

�sym
"

�⌦⇢"p
N"| log "|

* S weakly in L2(⌦;M2⇥2) .

Hence, by weak lower semicontinuity,

lim inf
"!0

1

N"| log "|

Z

⌦⇢" (µ")

W (�") dx = lim inf
"!0

Z

⌦

W

 
�sym
"

�⌦⇢"p
N"| log "|

!
dx

�

Z

⌦

W (S) dx .

Let us consider the second integral in (4.44). By Proposition 4.13 and definition

(4.33), we have

1

| log "|

Z

⌦\⌦⇢" (µ")

W (�") dx =
M"X

i=1

1

| log "|

Z

B⇢" (x",i)

W (�") dx �

M"X

i=1

 ̄"(⇠",i)

= (1 + o("))
M"X

i=1

 (⇠",i) � (1 + o("))
M"X

i=1

'(⇠",i)

= (1 + o("))

Z

⌦

'

✓
dµ"

d|µ"|

◆
d|µ"|,

where o(") ! 0 as " ! 0, and last equality follows from the properties of '. Since

' is convex and 1-homogeneous, by Reshetnyak’s Theorem (see (A.5) in Theorem

A.17), we have

lim inf
"!0

1

N"| log "|

Z

⌦\⌦⇢" (µ")

W (�") dx � lim inf
"!0

1

N"

Z

⌦

'

✓
dµ"

d|µ"|

◆
d|µ"|

�

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ| ,

and (4.43) follows.

4.4.3 �-limsup inequality

In this section we prove the �-limsup inequality of Theorem 4.17. Before proceeding,

we need the following technical Lemma to construct the recovery sequence for the

measure µ. Let us first introduce some notation. For a sequence of atomic measures

of the form ⌫" :=
P

M"

i=1 ↵",i�x",i and a sequence r" ! 0, we define the corresponding

diffused measures

⌫̃r"
"

:=
1

⇡r2
"

M"X

i=1

↵i," H
2 Br"(xi,") , ⌫̂r"

"
:=

1

2⇡r"

M"X

i=1

↵i," H
1 @Br"(xi,") . (4.45)

88



For x",i 2 supp ⌫", define the functions K̃
↵",i

",i
, K̂

↵",i

",i
: Br"(x",i) ! M2⇥2 as

K̃
↵",i

",i
(x) :=

1

2⇡r2
"

↵",i ⌦ J(x� x",i) , K̂
↵",i

",i
(x) :=

1

2⇡
↵",i ⌦ J

x� x",i

|x� x",i|
2
, (4.46)

where J is the clock-wise rotation of ⇡/2. Finally define K̃⌫"
"
, K̂⌫"

"
: ⌦ ! M2⇥2 as

K̃⌫"
"

:=
M"X

i=1

K̃
↵",i

",i
�
Br" (x",i) , K̂⌫"

"
:=

M"X

i=1

K̂
↵",i

",i
�
Br" (x",i) . (4.47)

It is easy to show that

Curl K̃⌫"
"

= ⌫̃r"
"
� ⌫̂r"

"
, Curl K̂⌫"

"
= ⌫" � ⌫̂r"

"
. (4.48)

Lemma 4.18. Let N" ! 1 be such that (4.7) holds. Let ⇠ :=
P

M

k=1 �k⇠k with

⇠k 2 S, �k � 0, ⇤ :=
P

M

k=1 �k, µ := ⇠ dx. Let g : ⌦ ! R2 be a continuous function

and set � := g(x) dx. Define r" := C/
p
N", for C := max{⇤, kgk

L1}.

Then there exist sequences �" =
P

M"

i=1 g",i�x",i and µ" =
P

M

k=1 ⇠kµ
k

"
, with µk

"
=

P
M

k
"

l=1 �x",l
, such that µ" 2 AD"(⌦), |g",i|  C, Br"(x",i) ⇢ ⌦, |x",j � x",k| � 2r" for

every j 6= k. Moreover

|µk

"
|

N"

⇤
* �k dx in M(⌦;R) , µ"

N"

⇤
* µ in M(⌦;R2) , (4.49)

µ̃r"
"

N"

! µ in H�1(⌦;R2) , (4.50)

�"
N"

⇤
* � in M(⌦;R2) ,

�̃r"
"

N"

! � in H�1(⌦;R2) , (4.51)

where the measures µ̃r"
"
, �̃r"

"
are defined according to (4.45).

Proof. This proof is similar to the one of [30, Lemma 14].

Step 1. The case M = 1 and µ = ⇠ dx with ⇠ 2 S.

We cover R2 with squares of side length 2r", and plug a mass ⇠ �x",i at the centre

of each square contained in ⌦ (see Figure 4.6). We can then define the measure

µ" :=
P

M"

i=1 ⇠ �x",i where M" ⇡ N". In this way µ" 2 AD"(⌦). Notice that the

density of µ �
µ̃"

N"
converges to zero weakly in L2(⌦;R2), so that (4.49) is verified.

Since the embedding of L2 in H�1 is compact, also (4.50) follows.

Step 2. The general case M > 1.

We can approximate µ = ⇠ dx with periodic locally constant measures coinciding

with ⇠k dx on portions of ⌦ having volume fraction �k/⇤. In every region where the
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⌦

2r"

⇠ �x",i

Figure 4.6: Approximating µ = ⇠ dx with Dirac masses ⇠ �x",i , represented by

red dots, on a square lattice of size 2r".

approximating measure is constant, we apply the above construction. In this way

we obtain a measure µ" supported at points x",i and such that (4.49)-(4.50) hold.

Now set g",i := g(x",i) and define the measure �" :=
P

M"

i=1 g",i �x",i , which trivially

satisfies (4.51).

We are now ready to prove the �-limsup inequality of Theorem 4.17.

Proof of �-limsup inequality of Theorem 4.17. Let

(µ, S,A) 2 (H�1(⌦;R2) \ M(⌦;R2))⇥ L2(⌦;M2⇥2
sym)⇥ L2(⌦;M2⇥2

skew) ,

with CurlA = µ. We will construct a recovery sequence in three steps.

Step 1. The case µ = ⇠ dx and S 2 C1(⌦;M2⇥2
sym).

Assume that ⇠ 2 R2 and set µ := ⇠ dx. Let S 2 C1(⌦;M2⇥2
sym) and A 2 L2(⌦;M2⇥2

skew),

with CurlA = µ. We will construct a recovery sequence µ" 2 AD"(⌦), �" 2 AS"(µ"),

such that (µ", �") converges to (µ, S,A) in the sense of Definition 4.15 and

lim sup
"!0

1

N"| log "|

Z

⌦

W (�") dx 

Z

⌦

(W (S) + '(⇠)) dx . (4.52)

By Proposition 4.14, there exist �k � 0, ⇠k 2 S, M 2 N, such that ⇠ =
P

M

k=1 �k⇠k

and

'(⇠) =
MX

k=1

�k (⇠k) , (4.53)

where ' is the self-energy defined in (4.33). Set � := CurlS. Since S 2 C1(⌦;M2⇥2
sym),

then � = g(x) dx for some continuous function g : ⌦ ! R2. Let µ" :=
P

M"

i=1 ⇠",i�x",i ,

�" :=
P

M"

i=1 g",i�x",i and r" := C/
p
N" be the sequences given by Lemma 4.18. Since
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by assumption N"⇢2" ! 0, we have r" � ⇢". Hence µ" 2 AD"(⌦). By (4.49), µ" is a

recovery sequence for µ.

It will be useful to introduce the perturbed measure ⌘", where

⌘" := µ" �

s
| log "|

N"

�" =
M"X

i=1

⇣",i�x",i , ⇣",i := ⇠",i �

s
| log "|

N"

g",i . (4.54)

Moreover let ⌘̃r"
"
, ⌘̂r"

"
, �̃r"

"
, �̂r"

"
be defined according to (4.45). Remark that

⌘"
N"

⇤
* µ in M(⌦;R2) ,

⌘̃r"
"

N"

! µ in H�1(⌦;R2) , (4.55)

by Lemma 4.18 and the hypothesis N" � | log "|.

Notice that K̂⇣",i

",i
2 AS",⇢"(⇣",i) and it satisfies (4.32). Therefore, by Proposition

4.13, there exist strains Â",i such that

(i) Â",i 2 AS",⇢"(⇣",i),

(ii) Â",i · t = K̂
⇣",i

",i
· t on @B"(x",i) [ @B⇢"(x",i),

and
1

| log "|

Z

B⇢" (x",i)\B"(x",i)

W (Â",i) dx =  (⇠",i)(1 + o(")) (4.56)

since N" � | log "| by (4.14). Now extend Â",i to be K̂
⇣",i

",i
in Br"(x",i) \B⇢"(x",i) and

zero in ⌦ \ (Br"(x",i) \B"(x",i)). Set

Ŝ" :=
M"X

i=1

K̂g",i
"

�
Br" (x",i)\B"(x",i) , Â" :=

M"X

i=1

Â",i . (4.57)

Hence

Curl Ŝ" = ��̂r"
"
+ �̂"

"
, Curl Â" = �⌘̂r"

"
+ ⌘̂"

"
, (4.58)

recalling definition (4.45). Define Q" := ru" J , where u" is solution of
8
>><

>>:

��u" =
p

N"| log "| � �

s
| log "|

N"

�̃r"
"

in ⌦ ,

u" 2 H1
0 (⌦;R2) .

(4.59)

In this way,

CurlQ" = �

p
N"| log "| � +

s
| log "|

N"

�̃r"
"
. (4.60)

By (4.51) and standard elliptic estimates, we have

Q"p
N"| log "|

! 0 in L2(⌦;M2⇥2) . (4.61)
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Consider the measure F" := �N"µ + ⌘̃r"
"

. There exists a positive constant C

depending only on ⇤ and kgk
L1(⌦;R2), such that

kDivF"kH�1(⌦)  C
p

N" . (4.62)

In fact, if ' 2 H1
0 (⌦) is a test function,

< DivF",' > = �
1

⇡r2
"

M"X

i=1

Z

Br" (x",i)

⇣",i ·r' dx 
C

r2
"

M"X

i=1

Z

Br" (x",i)

|r'| dx


C

r2
"

M"X

i=1

kr'k
L2(Br" (x",i))

|Br"(x",i)|
1/2


C

r"
k'k

H
1
0 (⌦) ,

by Hölder’s inequality. Denote with t the unit tangent vector to @⌦, defined by

t := J⌫, where ⌫ is the inner normal to ⌦. By Helmholtz decomposition (see, e.g.

[58, Theorem 4.2, Part 1]), there exist sequences f", h" in H1(⌦), with h" · t = 0 on

@⌦, and such that

rf" + Jrh" = F" in H�1(⌦) , (4.63)

kf"kH1(⌦)  C kDivF"kH�1(⌦) , kh"kH1(⌦)  C kF"kH�1(⌦;R2) . (4.64)

Define

R" :=

0

@ f" h"

�h" f"

1

A , (4.65)

so that, by (4.63), (4.55), (4.62),

CurlR" = �N"µ+ ⌘̃r"
"
, (4.66)

Rsym
"p

N"| log "|
,
Rskew

"

N"

! 0 in L2(⌦;M2⇥2) . (4.67)

Note that by construction one has

(Q" +R") · tp
N"| log "|

! 0 strongly in H�1/2(@⌦) . (4.68)

Indeed, the trace of Q" + R" is well defined in H�1/2(@⌦) by Theorem 4.1, since

Curl(Q" + R") is absolutely continuous with respect to the Lebsegue measure, by

(4.60) and (4.66).

We can now define the candidate recovery sequence as

�" := (S" + A")�⌦"(µ") ,
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where

S" :=
p

N" |log "|S +

s
|log "|

N"

Ŝ" �

s
|log "|

N"

K̃�"
"

+Q" , (4.69)

A" := N"A+ Â" � K̃⌘"
"

+R" . (4.70)

By definition and (4.58), (4.48), (4.60), (4.66), it is immediate to check that

CurlS" =

s
| log "|

N"

�̂"

"
, CurlA" = ⌘̂"

"
in ⌦ .

From this, and the definition of ⌘" in (4.54), we deduce

Curl �" = µ̂"

"
in ⌦ ,

so that

Curl �" ⌦"(µ") = 0 ,

and the circulation condition
R
@B"(x",i)

�" · t ds = ⇠",i is satisfied for every point

x",i 2 suppµ". Hence �" 2 AS"(µ").

In order for (µ", �") to be the desired recovery sequence, we need to prove that

�sym
"p

N"| log "|
* S weakly in L2(⌦;M2⇥2) , (4.71)

�skew
"

N"

* A weakly in L2(⌦;M2⇥2) , (4.72)

lim
"!0

1

N"| log "|

Z

⌦

W (�") dx =

Z

⌦

(W (S) + '(⇠)) dx . (4.73)

Notice that

Ŝ"p
N" |log "|

,
Â"p

N" |log "|
* 0 weakly in L2(⌦;M2⇥2) , (4.74)

K̃�"
"p

N" |log "|
,

K̃⌘"
"p

N" |log "|
! 0 strongly in L2(⌦;M2⇥2) . (4.75)

Indeed by definition one has

Z

⌦⇢" (µ")

|Â"|
2

N"| log "|
dx =

1

N"| log "|

M"X

i=1

Z

Br" (x",i)\B⇢" (x",i)

|K̂
⇣",i

",i
|
2 dx


C

N"| log "|

M"X

i=1

Z

Br" (x",i)\B⇢" (x",i)

|x� x",i|
�2 dx

 C
M"(log r" � log ⇢")

N"| log "|
! 0 ,

(4.76)

93



as "! 0. By (4.76), (4.49), (4.56), (4.53), we have

lim
"!0

1

N"| log "|

Z

⌦

W (Â") dx = lim
"!0

1

N"| log "|

Z

⌦\⌦⇢" (µ")

W (Â") dx

= lim
"!0

1

N"

M"X

i=1

 (⇠",i)(1 + o(")) = lim
"!0

1

N"

MX

k=1

|µk

"
|(⌦) (⇠k)(1 + o("))

= |⌦|
MX

k=1

�k (⇠k) =

Z

⌦

'(⇠) dx .

(4.77)

From (4.12), (4.76), (4.77) we conclude (4.74), since Â"/
p
N"| log "| is bounded in

L2(⌦;M2⇥2) and its energy is concentrated in the hard core region. Similarly, we

have that Z

⌦

|Ŝ"|
2

N"| log "|
dx  C

M"(log r" � log ")

N"| log "|
 C ,

Z

⌦⇢" (µ")

|Ŝ"|
2

N"| log "|
dx  C

M"(log r" � log ⇢")

N"| log "|
! 0 ,

as "! 0 and (4.74) follows. As for (4.75), one can readily see that

Z

⌦

|K̃�"
"
|
2

N"| log "|
dx 

C

N"| log "|

M"X

i=1

1

r4
"

Z

Br" (x",i)

|x� x",i|
2 dx = C

M"

N"| log "|
! 0

as " ! 0. The statement for K̃⌘"
"

can be proved in a similar way. Therefore (4.71),

(4.72) follow from the hypothesis N" � | log "| and (5.55), (4.67), (4.74), (4.75).

Moreover,

lim
"!0

1

N"| log "|

Z

⌦

W (�") dx = lim
"!0

1

N"| log "|

Z

⌦

W (
p
N"| log "|S + Â") dx .

Since Â"/
p

N"| log "|* 0 in L2(⌦;M2⇥2), by (4.77) we conclude (4.73).

Step 2. The case µ =
P

L

l=1
�⌦l

⇠l dx and S 2 C1(⌦;M2⇥2
sym).

Assume that µ is locally constant, i.e., µ =
P

L

l=1
�⌦l

⇠l dx, with ⇠l 2 R2 and ⌦l ⇢ ⌦

are Lipschitz pairwise disjoint domains such that |⌦\[
L

l=1⌦l| = 0. We will construct

the recovery sequence by combining the previous step with classical localisation

arguments of �-convergence.

Let Sl := S ⌦l, Al := A ⌦l, µl := µ ⌦l = ⇠l dx. Denote by (µl,", �l,") the

recovery sequence for (µl, Sl, Al) given by Step 1. We can now define µ" 2 M(⌦;R2)

and �̄" : ⌦ ! M2⇥2 as

�̄" :=
LX

l=1

�⌦l
�l," , µ" :=

LX

l=1

µl," .
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By construction µ" 2 AD"(⌦) and �̄" satisfies the circulation condition on every

@B"(x"), with x" 2 suppµ". Also notice that on each set ⌦l belonging to the

partition of ⌦, we have

Curl �̄" ⌦l(µ") = 0 .

However Curl �̄" could concentrate on the intersection region between two elements

of the partition {⌦l}
L

l=1. To overcome this problem, it is sufficient to notice that by

construction
�����
Curl �̄" ⌦"(µ")p

N"| log "|

�����
H�1(⌦;R2)



LX

l=1

�����
Ql," +Rl,"p
N"| log "|

�����
H�1/2(@⌦l)

,

so that
Curl �̄" ⌦"(µ")p

N"| log "|
! 0 strongly in H�1(⌦;R2) ,

by (4.68). Hence we can add a vanishing perturbation to �̄" (on the scale
p
N"| log "|),

in order to obtain the desired recovery sequence �" 2 AS"(µ").

Step 3. The general case.

Let (µ, S,A) be in the domain of the �-limit F . We can easily adapt the proof

given in [30, Theorem 12, Step 3] to our case. By standard density arguments of

�-convergence, it is sufficient to find sequences (µn, Sn, An) such that

µn is locally constant as in Step 2 ,

Sn 2 C1(⌦;M2⇥2
sym) , An 2 L2(⌦;M2⇥2

skew) , with CurlAn = µn,
(4.78)

and that

�n ! � in L2(⌦;M2⇥2) , µn

⇤
* µ in M(⌦;R2) , |µn|(⌦) ! |µ|(⌦) , (4.79)

where �n := Sn +An. In this way (µn, Sn, An) is admissible for F and the topology

defined by (4.79) is stronger than the one given in Definition 4.15. Moreover, under

(4.79) we have

lim
n!1

F(µn, �n) = F(µ, S,A) . (4.80)

Indeed, since �n ! � strongly in L2(⌦;M2⇥2), then

lim
n!1

Z

⌦

W (Sn) dx =

Z

⌦

W (S) dx .
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Also, |µn|(⌦) ! |µ|(⌦) implies

lim
n!1

Z

⌦

'

✓
dµn

d|µn|

◆
d|µn| =

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ| ,

by Reshetnyak Theorem (see (A.6) in Theorem A.17), so that (4.80) is proved.

Therefore the thesis will follow from (4.79)-(4.80), since by Step 2 there exists a

recovery sequence for (Sn, An, µn).

Let us then proceed to the construction of the sequence (�n, µn) satisfying prop-

erties (4.78)-(4.79). By standard reflection arguments we can extend A to an anti-

symmetric field AU defined in a neighbourhood U of ⌦, such that CurlAU = µU is

a measure on U , with |µU |(@⌦) = 0. Let ⇢h be a sequence of mollifiers (see Section

A.2.3) and set

fh := AU ⇤ ⇢h ⌦ gh := µU ⇤ ⇢h ⌦ .

For sufficiently large h one has Curl fh = gh. Furthermore

fh ! A in L2(⌦;M2⇥2) , gh dx
⇤
* µ in M(⌦;R2) , |gh| dx(⌦) ! |µ|(⌦) .

(4.81)

Now consider locally constant functions gh,k, such that

kgh,k � ghkL1(⌦;R2) ! 0 as k ! 1 , and
Z

⌦

(gh,k � gh) dx = 0 . (4.82)

Let rh,k be a solution to
8
>>>>><

>>>>>:

Curl rh,k = gh,k � gh in ⌦ ,

Div rh,k = 0 in ⌦ ,

rh,k · t = 0 on @⌦ .

(4.83)

By standard elliptic estimates

krh,kkL2(⌦;M2⇥2)  C kgh,k � ghkL2(⌦;R2) . (4.84)

Now set fh,k := fh + rh,k so that by (4.82)-(4.84) one has

fh,k ! fh in L2(⌦;M2⇥2) as k ! 1 , and Curl fh,k = gh,k . (4.85)

By means of a diagonal argument, we can define sequences µn and An such that

CurlAn = µn and

An ! A in L2(⌦;M2⇥2) , µn

⇤
* µ in M(⌦;R2) , and |µn|(⌦) ! |µ|(⌦) .

(4.86)
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Next, we can approximate S in L2(⌦;M2⇥2
sym) with a sequence Sn 2 C1(⌦;M2⇥2

sym) and

set �n := Sn + An. In this way (4.79) follows from (4.86).

4.5 �-convergence analysis with Dirichlet-type bound-

ary conditions

The aim of this section is to add a Dirichlet type boundary condition to the �-

convergence statement of Theorem 4.17. Fix a boundary condition

(�, gS, gA) 2 (H�1(⌦;R2) \M(⌦;R2))⇥ L2(⌦;M2⇥2
sym)⇥ L2(⌦;M2⇥2

skew) , (4.87)

such that

� = Curl gA . (4.88)

Also fix �" 2 AD"(⌦) and g" 2 AS"(�") such that (�", g") converges to (�, gS, gA)

in the sense of Definition 4.15. Such a sequence exists thanks to Theorem 4.17, for

example.

The set of dislocations compatible with the boundary data is defined as

AD
g"
"
(⌦) :=

⇢
µ 2 AD"(⌦) : µ(⌦) =

Z

@⌦

g" · t ds

�
, (4.89)

where t is the unit tangent to @⌦, defined as t := J⌫ with ⌫ the inner unit normal to

⌦. For a dislocation measure µ 2 AD
g"
"
(⌦), the set of admissible strains are defined

as

AS
g"
"
(µ) := {� 2 AS"(µ) : � · t = g" · t on @⌦} .

The rescaled energy functional Fg"
"
: M(⌦;R2)⇥ L2(⌦;M2⇥2) ! R is defined by

F
g"
"
(µ, �) :=

8
>><

>>:

1

N"| log "|
E"(µ, �) if µ 2 AD

g"
"
(⌦) , � 2 AS

g"
"
(µ) ,

+1 otherwise.
(4.90)

The candidate �-limit is the functional

F
g : (H�1(⌦;R2) \M(⌦;R2))⇥ L2(⌦;M2⇥2

sym)⇥ L2(⌦;M2⇥2
skew) ! R ,

defined by

F
g(µ, S,A) :=

Z

⌦

W (S) dx+

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ|+

Z

@⌦

'((gA � A) · t) ds , (4.91)

97



if CurlA = µ and F
g(µ, S,A) := 1 otherwise. Here ds coincides with H

1 @⌦. The

boundary term appearing in the definition of Fg is intended in the sense of traces

of BV functions (see Theorem A.56). Indeed, since A and gA are antisymmetric,

there exist u, a 2 L2(⌦) such that

A =

0

@ 0 u

�u 0

1

A , gA =

0

@ 0 a

�a 0

1

A ,

a.e. in ⌦. Notice that CurlA = Du and Curl gA = Da in the sense of distributions.

Therefore, conditions CurlA,Curl gA 2 M(⌦;R2) imply that a, u 2 BV (⌦). Hence

a and u admit traces on @⌦ that belong to L1(@⌦;R2). By noting that
Z

@⌦

'((gA � A) · t) ds =

Z

@⌦

'((u� a)⌫) ds ,

where ⌫ is the inner normal to ⌦, we conclude that the definition of Fg is well-posed.

We are now ready to state the �-convergence result with boundary condition.

Theorem 4.19. The following �-convergence statement holds with respect to the

convergence of Definition 4.15.

(i) (Compactness) Let "n ! 0 and assume that (µn, �n) 2 M(⌦;R2)⇥L2(⌦;M2⇥2)

is such that sup
n
F

g"n
"n (µn, �n)  E, for some positive constant E. Then there

exists (µ, S,A) 2 (H�1(⌦;R2)\M(⌦;R2))⇥L2(⌦;M2⇥2
sym)⇥L2(⌦;M2⇥2

skew) such

that (µn, �n) converges to (µ, S,A) in the sense of Definition 4.15. Moreover

µ 2 H�1(⌦;R2) and CurlA = µ.

(ii) (�-convergence) The energy functionals F
g"
"

defined in (4.90) �-converge with

respect to the convergence of Definition 4.15 to the functional Fg defined in

(4.91). To be more precise, for every

(µ, S,A) 2 (H�1(⌦;R2) \ M(⌦;R2))⇥ L2(⌦;M2⇥2
sym)⇥ L2(⌦;M2⇥2

skew)

such that Curlµ = A, then:

• (�-liminf inequality) for every sequence (µ", �") 2 M(⌦;R2)⇥L2(⌦;M2⇥2)

converging to (µ, S,A) in the sense of Definition 4.15, we have

F
g(µ, S,A)  lim inf

"!0
F

g"
"
(µ", �") .
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• (�-limsup inequality) there exists a recovery sequence (µ", �") belonging

to M(⌦;R2) ⇥ L2(⌦;M2⇥2) such that (µ", �") converges to (µ, S,A) in

the sense of Definition 4.15, and

lim sup
"!0

F
g"
"
(µ", �")  F

g(µ, S,A) .

The compactness statement follows immediately from the compactness of The-

orem 4.17, since F
g"
"
(µ, �) = F"(µ, �) for µ 2 AD

g"
"
(⌦) and � 2 AS

g"
"
(µ). Let us

proceed with the proof of the �-convergence result.

Proof of �-lim sup inequality of Theorem 4.19. Let (µ, S,A) be given in the domain

of the �-limit F
g. We will construct a recovery sequence in two steps, relying on

Theorem 4.17.

Step 1. Approximation of the boundary values.

For � > 0 fixed, set !� := {x 2 ⌦ : dist(x, @⌦) > �}, so that !� ⇢⇢ ⌦. Define

S� 2 L2(⌦;M2⇥2
sym) and A� 2 L2(⌦;M2⇥2

skew) as

A� :=

8
><

>:

A in !� ,

gA in ⌦ \ !� ,
S� :=

8
><

>:

S in !� ,

gS in ⌦ \ !� .
(4.92)

Further, let µ� 2 M(⌦;R2) be such that

µ� := µ !� + � (⌦ \ !�) + (gA � A) · t H1 @!� . (4.93)

Notice that

CurlA� = µ� and µ� 2 H�1(⌦;R2) , (4.94)

therefore (µ�, S�, A�) belongs to the domain of the functional F . Indeed, by using

cutoff functions, it is immediate to check that for every  2 H1
0 (⌦) and i = 1, 2,

hCurlA(i)
�
, i =

Z

!�

A(i)
· Jr dx+

Z

⌦\!�

g(i)
A

· Jr dx+

Z

@!�

(g(i)
A

� A(i)) · t  ds .

Recalling that CurlA = µ and Curl gA = �, we obtain (4.94). Also note that

S� ! S , A� ! A in L2(⌦;M2⇥2) , µ�

⇤
* µ in M(⌦;R2) , |µ�|(⌦) ! |µ|(⌦) ,

(4.95)
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as � ! 0. Therefore, by Reshetnyak’s Theorem (see (A.6) in Theorem A.17), we

have

lim
�!0

F(µ�, S�, A�) = F
g(µ, S,A) . (4.96)

It will now be sufficient to construct dislocation measures µg"

�,"
2 AD

g"
"
(⌦) and

strains �g"

�,"
2 AS

g"
"
(µg"

�,"
), such that (µg"

�,"
, �g"

�,"
) converges to (µ�, S�, A�) in the sense

of Definition 4.15 and that

lim
"!0

F
g"
"
(µg"

�,"
, �g"

�,"
) = F(µ�, S�, A�) . (4.97)

Indeed, by taking a diagonal sequence (µg"

�","
, �g"

�","
) and using (4.95), (4.96), the thesis

will follow.

Step 2. Recovery sequence for strains satisfying the boundary condition.

Let us now proceed to construct the sequence (µg"

�,"
, �g"

�,"
) as stated in the previous

step. From Theorem 4.17, there exist sequences µ�," =
P

M"

i=1 ⇠",i �x",i 2 AD"(⌦)

and ��," 2 AS"(µ�,") such that (µ�,", ��,") converges to (µ�, S�, A�) in the sense of

Definition 4.15 and

lim
"!0

F"(µ�,", ��,") = F(µ�, S�, A�) . (4.98)

The idea is to modify (µ�,", ��,") so that it becomes admissible for the boundary

condition g. Introduce the vector

⇠" :=

Z

@⌦

(g" � ��,") · t ds .

By construction one has ⇠" 2 S and

⇠"
N"

! 0 as "! 0 . (4.99)

Since ⇠" 2 S, we have

⇠" =
sX

j=1

�",jbj , with �",j 2 Z+, bj 2 S± ,

where for convenience we define S± := {±b1, . . . ,±bs} for bi 2 S. It will be also

convenient to write ⇠" =
P⇤"

i=1 b",i with b",i 2 S± and ⇤" :=
P

s

j=1 �",j. Notice that

(4.99) implies that
⇤"

N"

! 0 as "! 0 . (4.100)
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Since the number of masses in µ�," is such that M"  CN" and ⇤" ⌧ N", it is

possible to choose a collection of distinct points {y",i}
⇤"
i=1 ⇢ ⌦, possibly intersecting

suppµ�,", such that

|y",i � y",j| > r" , dist(y",k, @⌦) > r" , (4.101)

where r" := C/
p
N" for some constant C > 0. Define the measures

⌫" :=
⇤"X

i=1

b",i �y",i , µg"

�,"
:= µ�," + ⌫" ,

and notice that by construction we have µg"

�,"
2 AS

g"
"
(⌦) and

µg"

�,"

N"

⇤
* µ� in M(⌦;R2) . (4.102)

Introduce

K̃⌫"
"

:=
⇤"X

i=1

K̃
b",i

",i
�
Br" (x",i) , K̂⌫"

"
:=

⇤"X

i=1

K̂
b",i

",i
�
Br" (x",i)\B"(x",i) , (4.103)

so that

Curl K̃⌫"
"

= ⌫̃r"
"
� ⌫̂r"

"
, Curl K̂⌫"

"
= ⌫̂"

"
� ⌫̂r"

"
, (4.104)

recalling notations (4.45), (4.46). Notice that

K̂⌫"
"p

N" |log "|
,

K̃⌫"
"p

N" |log "|
! 0 strongly in L2(⌦;M2⇥2) . (4.105)

Indeed, by definition (4.103), it is straightforward to check that
Z

⌦

|K̂⌫"
"
|
2

N"| log "|
dx  C

⇤"(log r" � log ")

N"| log "|
! 0 ,

Z

⌦

|K̃⌫"
"
|
2

N"| log "|
dx  C

⇤"

N"| log "|
! 0 ,

as "! 0, by (4.100). Here C > 0 is a constant depending only on the set of Burgers

vectors S. From (4.100), it is immediate to show that

⌫̃r"
"

N"

! 0 in H�1(⌦;R2) . (4.106)

Moreover, by proceeding as in (4.62), we have that

kDiv ⌫̃r"
"
k
H�1(⌦) 

C

r"
= C

p
N" . (4.107)

101



By Helmholtz decomposition, there exist sequences f", h" 2 H1(⌦), with h" · t = 0

on @⌦ and such that

rf" + Jrh" = ⌫̃r"
"

in H�1(⌦) , (4.108)

kf"kH1(⌦)  C kDiv ⌫̃r"
"
k
H�1(⌦) , kh"kH1(⌦)  C k⌫̃r"

"
k
H�1(⌦;R2) . (4.109)

Define

R" :=

0

@ f" h"

�h" f"

1

A (4.110)

so that

CurlR" = ⌫̃r"
"
. (4.111)

Moreover, by (4.106),(4.107) and (4.109),

Rsym
"p

N"| log "|
,
Rskew

"

N"

! 0 in L2(⌦;M2⇥2) . (4.112)

We can now define

�
�,"

:=
⇣
��," + K̂⌫"

"
� K̃⌫"

"
+R"

⌘
�
⌦"(µ

g"
�,")

.

Recalling that Curl ��," ⌦"(µ�,") = 0 and from (4.104), (4.111) we have

Curl �
�,"

⌦"(µ
g"

�,"
) = 0 .

Moreover, by construction, �
�,"

satisfies the circulation condition on [
N"
i=1@B"(x",i)[

[
⇤"
i=1@B"(y",i) and Z

@⌦

�
�,"

· t ds =

Z

@⌦

g" · t ds . (4.113)

Let u�," be the solution to

min

(Z

⌦\!⇢"

W (�) dx : � 2 L2(⌦ \ !⇢" ;R2) , Curl � = 0 ,

� · t = �
�,"

· t on @!⇢" , � · t = g" · t on @⌦

)
,

which exists by (4.113), and define

�g"

�,"
:= �

�,"
�
!⇢"

+ru�,"
�⌦\!⇢"

. (4.114)

By construction, we have �g"

�,"
2 AS

g"
"
(µg"

�,"
). From (4.102), (4.105) and (4.112),

we have that (µg"

�,"
, �g"

�,"
) converges to (µ�, S�, A�) in the sense of Definition 4.15.

Moreover (4.105) and (4.112) imply that

F
g"
"
(µg"

�,"
, �g"

�,"
) = F"(µ�,", ��,") + o(1) ,
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therefore (4.97) follows from (4.98).

Proof of �-lim inf inequality of Theorem 4.19. Let (µ", �") with µ" 2 AD
g"
"
(⌦) and

�" 2 AS
g"
"
(µ") be convergent, in the sense of Definition 4.15, to (µ, S,A) in the

domain of the �-limit. By combining an extension argument with the �-lim inf

inequality in Theorem 4.17 we will show that

F
g(µ, S,A)  lim inf

"!0
F

g"
"
(µ", �") . (4.115)

Fix � > 0 and define U� := {x 2 R2 : dist(x,⌦) < �}. By standard reflexion

arguments one can extend gS and gA to g̃S 2 L2(U�;M2⇥2
sym), g̃A 2 L2(U�;M2⇥2

skew)

respectively, in such a way that Curl g̃S and �̃ := Curl g̃A are measures on U� satis-

fying |Curl g̃S|(@⌦) = |�̃|(@⌦) = 0. By proceeding as in the previous proof, we can

construct a recovery sequence (�̃", g̃") such that

• �̃" 2 AD"(U� \ ⌦) and g̃" 2 AS"(�̃"),

• g̃" · t = g" · t a.e. on @⌦,

• (�̃", g̃") converges to (�̃, g̃S, g̃A) in the sense of Definition 4.15 in U�,

and that

lim
"!0

1

N"| log "|

Z

U�\⌦
W (g̃") dx =

Z

U�\⌦
W (g̃S) dx+

Z

U�\⌦
'

✓
d�̃

d|�̃|

◆
d|�̃| . (4.116)

Notice that in (4.116) there is no contribution from the boundary, since g̃" · t = g" · t

a.e. on @⌦.

Define strains on U�

�̃" =

8
><

>:

�" in ⌦ ,

g̃" in U� \ ⌦ ,
S̃ :=

8
><

>:

S in ⌦ ,

g̃S in U� \ ⌦ ,
Ã :=

8
><

>:

A in ⌦ ,

g̃A in U� \ ⌦ ,

and also measures

µ̃" := µ" ⌦+ �̃" (U� \ ⌦) ,

µ̃ := µ ⌦+ �̃ (U� \ ⌦) + (gA � A) · t H1 @⌦ .

Notice that by definition µ̃" 2 AD"(U�) and �̃" 2 AS"(µ̃"). Moreover, by using

cutoff functions, one can check that µ̃"/N"

⇤
* µ̃ in M(U�;R2), Curl Ã = µ̃ and
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µ̃ 2 H�1(U�;R2). Therefore (µ̃", �̃") converges to (µ̃, S̃, Ã) in U� in the sense of

Definition 4.15. By the �-liminf inequality of Theorem 4.17 we have

lim inf
"!0

1

N"| log "|

Z

U�

W (�̃") dx �

Z

U�

W (S̃) dx+

Z

U�

'

✓
dµ̃

d|µ̃|

◆
d|µ̃| . (4.117)

By definition and by (4.116) we have

lim inf
"!0

1

N"| log "|

Z

U�

W (�̃") dx = lim inf
"!0

F
g"
"
(µ", �")+

+

Z

U�\⌦
W (g̃S) dx+

Z

U�\⌦
'

✓
d�̃

d|�̃|

◆
d|�̃| .

(4.118)

Also note that, by computing the Radon-Nikodym derivative of µ̃, we have
Z

U�

W (S̃) dx+

Z

U�

'

✓
dµ̃

d|µ̃|

◆
d|µ̃| = F

g(µ, S,A)+

+

Z

U�\⌦
W (g̃S) dx+

Z

U�\⌦
'

✓
d�̃

d|�̃|

◆
d|�̃| .

(4.119)

By putting together (4.117)-(4.119), we obtain (4.115).

4.6 Linearised polycrystals as minimisers of the �-

limit

Let ⌦ ⇢ R2 be a bounded domain with Lipschitz boundary. Let k 2 N be fixed

and let {Ui}
k

i=1 be a Caccioppoli partition of ⌦ (see Definition A.41). Moreover

fix m1, . . . ,mk 2 R+ with mi < mi+1, and define the piecewise constant function

a 2 BV (⌦) as

a :=
kX

i=1

mi
�
Ui , (4.120)

(Definition A.42). In particular, (4.120) implies that a 2 L1(⌦) and Da 2 M(⌦;R2).

We can now define the piecewise constant boundary condition gA 2 L1(⌦;M2⇥2
skew)

as

gA :=

0

@ 0 a

�a 0

1

A . (4.121)

Notice that gA 2 L2(⌦;M2⇥2
skew) and Curl gA = Da, therefore Curl gA 2 H�1(⌦;R2)\

M(⌦;R2). In this way gA is an admissible boundary condition for F
g, as required

in (4.87)-(4.88).

104



We want to minimise the �-limit (4.91) with boundary condition gA prescribed

by (4.120)-(4.121). Since the elastic energy and plastic energy are decoupled in F
g,

and there is no boundary condition fixed on the elastic part of the strain S, we have

inf Fg(CurlA, S,A) = inf Fg(CurlA, 0, A) .

Therefore it is sufficient to study

inf

(Z

⌦

'(CurlA) +

Z

@⌦

'((gA � A) · t) ds : A 2 L2(⌦;M2⇥2
skew),

CurlA 2 H�1(⌦;R2) \M(⌦;R2)

)
,

(4.122)

where t is the unit tangent to @⌦ defined as the ⇡/2 clock-wise rotation of the inner

normal ⌫ to ⌦, ' : R2
! [0,1) is the density defined in (4.33), and

Z

⌦

'(µ) :=

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ|

is the anisotropic '-total variation for a measure µ 2 M(⌦;R2) (see Section A.3.6

for details), which is well defined, since ' satisfies the properties given in Proposition

4.14.

For A 2 L2(⌦;M2⇥2
skew), we have that

A =

0

@ 0 u

�u 0

1

A , (4.123)

for some u 2 L2(⌦). Moreover CurlA = Du, therefore condition CurlA 2 M(⌦;R2)

implies u 2 BV (⌦). Also notice that
Z

@⌦

'((gA � A) · t) ds =

Z

@⌦

'((u� a)⌫) ds ,

where a is the piecewise constant function (4.120). We claim that (4.122) is equiv-

alent to the following minimisation problem

inf

⇢Z

⌦

'(Du) +

Z

@⌦

'((u� a)⌫) ds : u 2 BV (⌦)

�
. (4.124)

Indeed, we already showed that if A is a competitor for (4.122), then the function u,

given by (4.123), belongs to BV (⌦), and it is a competitor for (4.124). Conversely,

assume that u 2 BV (⌦) and define A through (4.123). Since u 2 BV (⌦), then

CurlA = Du 2 M(⌦;R2). Moreover, recall that the immersion BV (⌦) ,! L2(⌦) is
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continuous (see Remark A.31), therefore u 2 L2(⌦), which implies A 2 L2(⌦;M2⇥2),

so that CurlA 2 H�1(⌦;R2). This shows that (4.122) and (4.124) are equivalent.

The main result of this section is that, given the piecewise constant boundary

condition a defined in (4.120), there exists a piecewise constant minimiser ũ to

(4.124). In our model the function ũ corresponds to a linearised polycrystal.

Theorem 4.20. There exists a locally constant minimiser ũ 2 BV (⌦) to (4.124),

i.e.,

ũ =
kX

i=1

mi
�⌦i

where {⌦i}
k

i=1 is a Caccioppoli partition of ⌦, and the values mi are the ones of

(4.120).

The proof of this theorem relies on the anisotropic coarea formula. For the

readers convenience we briefly recall it here (more details can be found in Section

A.3.6). For E ⇢ ⌦ of finite perimeter, the anisotropic '-perimeter of E in ⌦ is

defined as

Per'(E,⌦) :=

Z

⌦

'(D�E) .

Since ' is convex and positively 1-homogenous, the anisotropic coarea formula holds

true for every u 2 BV (⌦):
Z

⌦

'(Du) =

Z 1

�1
Per'(Et,⌦) dt , (4.125)

where Et is the level set Et := {x 2 ⌦ : u(x) > t}, defined for every t 2 R.

Proof of Theorem 4.20.

Step 1. Equivalent minimisation problem.

We start by rewriting (4.124) as a boundary value problem in BV . Let ⌦0 := {x 2

R2 : dist(x, @⌦) < 1}, so that ⌦ ⇢⇢ ⌦0. Consider a piecewise constant extension

ã 2 BV (⌦0) of the function a 2 BV (⌦) defined in (4.120), that is,

ã =
kX

i=1

mi
�
U

0
i
,

where {U 0
i
}
k

i=1 is a Caccioppoli partition of ⌦0, agreeing with {Ui}
k

i=1 on ⌦. This

is possible thanks to Theorem A.53, since the extension can be chosen such that
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|Dã|(@⌦) = 0, that is, we are not creating any jump on @⌦. Consider the new

minimisation problem

I := inf

⇢Z

⌦0
'(Du) : u 2 BV (⌦0), u = ã a.e. in ⌦0

\ ⌦

�
. (4.126)

Finding a solution to (4.126) is equivalent to finding a solution to (4.124). Indeed,

if u 2 BV (⌦0) is such that u = ã in ⌦0
\ ⌦ then by Corollary A.58 we have

Du = Du ⌦+ (u⌦
� a⌦) ⌫H1 @⌦+Dã (⌦0

\ ⌦) , (4.127)

where u⌦, a⌦ 2 L1(@⌦) are the traces of u and a on @⌦, given by Theorem A.56.

Notice that we can use a⌦ in (4.127) because the extension ã is such that |Dã|(@⌦) =

0, hence by Theorem A.54 we have ã+
@⌦ = ã�

@⌦ = a⌦ H
n�1-a.e. in @⌦.

Step 2. Existence of a minimiser for (4.126).

Let uj 2 BV (⌦0) be a minimising sequence for (4.126), that is uj = ã a.e. on ⌦0
\⌦

and

lim
j!1

Z

⌦0
'(Duj) = I . (4.128)

By the Poincaré inequality given in Theorem A.29, and the bound (4.34), there

exists a constant C > 0 such that
Z

⌦0
|uj| dx  C |Duj|(⌦

0)  C

Z

⌦0
'(Duj) .

In particular, from (4.128), we deduce that sup
j
kujkBV (⌦0) < 1. By compactness

Theorem A.27, there exists ũ 2 BV (⌦0) such that, up to subsequences, uj ! ũ in

L1(⌦0) and Duj

⇤
* Dũ weakly in M(⌦0;R2). Since uj = ã a.e. on ⌦0

\⌦, the strong

convergence in L1 implies that (up to subsequences) uj ! ũ a.e. in ⌦0, so that

ũ = ã a.e. in ⌦0
\ ⌦. From Reshetnyak’s Theorem (see (A.5) in Theorem A.17) we

conclude that Z

⌦0
'(Dũ)  lim inf

j!1

Z

⌦0
'(Duj) = I ,

so that ũ is a minimiser for (4.126).

Step 3. Existence of a piecewise constant minimiser for (4.124).

Let u be a minimiser for (4.126). By a standard truncation argument we can assume

that m1  u  mk a.e. on ⌦0. Formula (4.125) then reads
Z

⌦0
'(Du) =

k�1X

i=1

Z
mi+1

mi

Per'(Et,⌦
0) dt , (4.129)
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where Et := {x 2 ⌦0 : u(x) > t} for t 2 R. By the mean value theorem, for every

i = 1, . . . , k � 1, there exists a Lebesgue value ti 2 (mi,mi+1) such that
Z

mi+1

mi

Per'(Et,⌦
0) dt � (mi+1 �mi) Per'(Eti ,⌦

0) . (4.130)

We define the piecewise constant function

ũ(x) :=

8
>>>>>>>><

>>>>>>>>:

m1 if x 2 ⌦0 r Et1 ,

m2 if x 2 Et1 r Em2 ,

mi if x 2 Emi r Eti ,

mi+1 if x 2 Eti r Emi+1 ,

where i = 2, . . . , k�1 and recalling that Emk
= ; set theoretically. Since the sets Et

have finite perimeter in ⌦0, by Theorem A.55 we have that ũ 2 BV (⌦0). Moreover,

by construction, ũ = ã on ⌦0
\ ⌦, so that ũ is a piecewise constant competitor for

(4.126). It is immediate to compute that

Dũ =
k�1X

i=1

(mi+1 �mi) ⌫Eti
H

1 @⇤Eti ,

so that Z

⌦0
'(Dũ) =

k�1X

i=1

(mi+1 �mi)

Z

@⇤Eti

'(⌫Eti
) dH1

=
k�1X

i=1

(mi+1 �mi) Per'(Eti ,⌦
0) .

(4.131)

By minimality of u and (4.129)-(4.131) we conclude that ũ is a locally constant

minimiser for (4.126). Hence ũ|⌦ is a locally constant minimiser for (4.124).

4.7 Conclusions and perspectives

In this chapter we presented our paper [23]. The aim of [23] is to describe poly-

crystalline structures from the variational point of view. Grain boundaries and the

corresponding grain orientations are not introduced as internal variables of the en-

ergy, but they spontaneously arise as a result of energy minimisation, under suitable

boundary conditions.

We work under the hypothesis of linear planar elasticity of [30], with the reference

configuration ⌦ ⇢ R2 representing a section of an infinite cylindrical crystal. The
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elastic energy functional depends on the lattice spacing " of the crystal and we allow

N" edge dislocations in the reference configuration, with N" ! 1 as " ! 0. Each

dislocation contributes by a factor | log "| to the elastic energy, so that the natural

rescaling for the energy functional is N"| log "|. We work in the energy regime

N" � | log "| ,

which accounts for grain boundaries that are mutually rotated by an infinitesimal

angle ✓ ⇡ 0. Further, we assume good separation of the dislocation cores, which

will imply the bound N" ⌧ 1/" on the number of dislocations. However this bound

is compatible with our energy regime.

After rescaling the elastic energy of such system of dislocations and sending the

lattice spacing " to zero, in Theorem 4.17 we obtain a macroscopic energy functional

of the form

F(µ, S,A) =

Z

⌦

CS : S dx+

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ| ,

where C is the linear elasticity tensor and ' is a positively 1-homogeneous density

function, defined through a suitable cell-problem. The elastic energy is computed

on S, that represents the elastic part of the macroscopic strain. The plastic energy

depends only on the dislocation measure µ, which is coupled to the plastic part A of

the macroscopic strain through the relation µ = CurlA. The contributions of elastic

energy and plastic energy are decoupled in the �-limit F , due to the fact that S and

A live on different scales:
p
N"| log "| and N", respectively.

Indeed this is the main difference with the energy regime N" ⇡ | log "| studied in

[30], where S and A live on the same scale | log "|. In their work the authors deduce a

macroscopic energy that has the same structure of F , but in which the contributions

of elastic energy and plastic energy are coupled by the relation µ = Curl �, where

� = S + A represents the whole macroscopic strain.

Once the �-limit F is obtained, we impose a piecewise constant Dirichlet bound-

ary condition on A, and minimise F under such constraint. In Theorem 4.20 we

prove that F admits piecewise constant minimisers, of the form

Â =
kX

i=1

Ai
�⌦i ,

where the Ais are antisymmetric matrices and {⌦i} is a Caccioppoli partition of

⌦. We interpret Â as a linearised polycrystal, with ⌦i representing a single grain
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having orientation Ai. This interpretation is motivated by the fact that antisym-

metric matrices can be considered as infinitesimal rotations. The (linear) energy

corresponding to Â can be seen as a linearised version of the Read-Shockley formula

for small angle tilt grain boundaries, i.e.,

E = E0 ✓(1 + | log ✓|) , (4.132)

where E0 > 0 is a constant depending only on the material and ✓ is the angle formed

by two grains. Indeed, the Read-Shockley formula is obtained in [55] by comput-

ing the elastic energy for an evenly spaced array of 1/" dislocations at the grain

boundaries. Our energy regime accounts only for N" ⌧ 1/" dislocations, therefore

we do not have enough dislocations to cause rotations between grains. Nevertheless

we still observe polycrystalline structures, but the rotation angle between grains is

infinitesimal.

Recently Lauteri and Luckhaus [35] obtained, by scaling arguments, the Read-

Shockley formula (4.132) starting from a non-linear energy. It would be interesting

to understand if our �-limit can be deduced from their model as the angle ✓ between

grains tends to zero.

Another natural question is whether the minimiser Â is unique, or at least if all

the minimisers are piece-wise constant. We suspect that in general, by enforcing

piece-wise constant boundary conditions, all minimisers are piece-wise constant.

However it is not clear how to obtain this rigidity result.

One more question is deducing our �-limit F by starting from a nonlinear energy

computed on small deformations v = x + "u, in the energy regime N" � | log "|.

A similar analysis was already performed in [45], where the authors derive the � -

limit obtained in [30] starting from a nonlinear energy, under the assumption that

N" ⇡ | log "|. It seems possible to adapt the techniques used in [45] to our case. This

research direction is currently under investigation by the authors.

A further step forward in our analysis should be the following: in this paper the

formation of polycrystalline structure is driven by boundary conditions; it would be

interesting to replace them by forcing terms. For instance, bulk forces in competition

with the surface energy at grain boundaries should result in polycrystals exhibiting

some intrinsic length scale. This is the case of semi-coherent interfaces, separated

by periodic nets of dislocations (see [22]).
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Chapter 5

Critical lower integrability for

solutions to elliptic equations

5.1 Introduction

In this chapter we will present the results obtained in [21]. Let ⌦ ⇢ R2 be a bounded

open domain and let � 2 L1(⌦;M2⇥2) be uniformly elliptic, i.e.,

�⇠ · ⇠ � �|⇠|2 for every ⇠ 2 R2 and for a.e. x 2 ⌦,

for some � > 0. We study the gradient integrability of distributional solutions

u 2 W 1,1(⌦) to

div(�ru) = 0 in ⌦, (5.1)

in the case when � 2 L1(⌦; {�1, �2}), that is,

� = �
E1�1 + �

E2�2 , (5.2)

where �1, �2 are 2 ⇥ 2 constant elliptic matrices, and {E1, E2} is a measurable

partition of ⌦.

As already discussed in the Introduction, ⌦ represents a two-dimensional section

of a composite material obtained by mixing two materials with different electric

conductivities �1 and �2. The function � defined by (5.2) is called a two-phase

conductivity. The partition {E1, E2} represents the arrangement of the two phases

within the composite. Under these assumptions, the electric field ru will then solve

(5.1). We are interested in studying the integrability properties of ru, that are

determined by the geometry induced by {E1, E2} on ⌦.

112



The study of the integrability properties of ru relies on this fundamental result

by Astala [4]: there exist exponents q and p, with 1 < q < 2 < p, such that

if u 2 W 1,q(⌦) is solution to (5.1), then ru 2 Lp

weak(⌦;R2) (see Section 5.3.3

for more details on weak Lp spaces). In [48] the optimal exponents p and q have

been characterised for every pair of elliptic matrices �1 and �2. Denoting by p�1,�2

and q�1,�2 such exponents, whose precise formulas are recalled in Section 5.2, we

summarise the result of [48] in the following theorem.

Theorem 5.1. [48, Theorem 1.4 and Proposition 4.2] Let �1, �2 2 M2⇥2 be elliptic.

(i) If � 2 L1(⌦; {�1, �2}) and u 2 W 1,q�1,�2 (⌦) solves (5.1), then ru 2 L
p�1,�2
weak (⌦;R2).

(ii) There exists �̄ 2 L1(⌦; {�1, �2}) and a weak solution ū 2 W 1,2(⌦) to (5.1) with

� = �̄, satisfying affine boundary conditions and such that rū /2 Lp�1,�2 (⌦;R2).

Theorem 5.1 proves the optimality of the upper exponent p�1,�2 . The objective

of our paper [21] is to complement this result by proving the optimality of the lower

exponent q�1,�2 . As shown in [48] (and recalled in Section 5.2), there is no loss of

generality in assuming that

�1 = diag(1/K, 1/S1), �2 = diag(K,S2), (5.3)

with

K > 1 and
1

K
 Sj  K , j = 1, 2 . (5.4)

Thus it suffices to show optimality for this class of coefficients, for which the expo-

nents p�1,�2 and q�1,�2 read as

q�1,�2 =
2K

K + 1
, p�1,�2 =

2K

K � 1
. (5.5)

Our main result is the following.

Theorem 5.2. Let �1, �2 be defined by (5.3) for some K > 1 and S1, S2 2 [1/K,K].

There exist coefficients �n 2 L1(⌦; {�1; �2}), exponents pn 2
⇥
1, 2K

K+1

⇤
, functions

un 2 W 1,1(⌦) such that
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8
><

>:

div(�nrun) = 0 in ⌦ ,

un(x) = x1 on @⌦ ,
(5.6)

run 2 Lpn

weak(⌦;R2), pn !
2K

K + 1
, (5.7)

run /2 L
2K
K+1 (⌦;R2). (5.8)

In particular un 2 W 1,q(⌦) for every q < pn, but
R
⌦ |run|

2K
K+1 dx = 1.

Theorem 5.2 was proved in [5] in the case of isotropic coefficients, namely for

�1 =
1
K
I and �2 = KI. More precisely, in [5] the authors obtain a slightly stronger

result by constructing a single coefficient � 2 {KI, 1
K
I} and a single function u that

satisfies the associated elliptic equation and is such that ru 2 L
2K
K+1

weak(⌦;R2), but

ru /2 L
2K
K+1 (⌦;R2). We follow the method developed in [5], which relies on convex

integration as used in [46], and provides an explicit construction of the sequence un.

The adaptation of such method to the present context turns out to be non-trivial

due to the anisotropy of the coefficients (see Remark 5.14). It is not clear how to

modify the construction in order to get a stronger result as in [5].

Convex integration is a method to solve differential inclusions of the form

rf(x) 2 T a.e. in ⌦ , (5.9)

where f : ⌦ ! R2 and T ⇢ M2⇥2 is a fixed closed set of matrices. In order to prove

Theorem 5.2 we first rewrite (5.1) as a differential inclusion, defining an appropriate

set T (see Lemma 5.6), and then proceed by convex integration. The functions u

and f will be integrable with the same exponent. Adapting the constructions of

[5], in Lemma 5.12 we construct a sequence of laminates (see Definition 5.4) with

the desired integrability properties. These are called staircase laminates, and will

be supported in an appropriate set. The next step is to construct, for every small

� > 0, a piecewise affine function f that solves the differential inclusion (5.9) up to

an arbitrarily small L1 error, and such that

rf 2 Lp

weak(⌦;M2⇥2) , p 2

✓
2K

K + 1
� �,

2K

K + 1

�
, rf /2 L

2K
K+1 (⌦;M2⇥2) .

This is done in Proposition 5.15, by repeatedly applying Lemma 5.12 and Proposi-

tion 5.5. Loosely speaking, the idea of the proof is that, thanks to Proposition 5.5,
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we are able to construct f in a way that rf is close to the points of the support of

the laminate given by Lemma 5.12. Therefore rf behaves asymptotically like the

staircase laminate. Finally, in Theorem 5.16, we remove the L1 error introduced in

Proposition 5.15, by means of a standard argument, obtaining the sequence un of

Theorem 5.2.

5.2 Connection with the Beltrami equation and ex-

plicit formulas for the optimal exponents

For the reader’s convenience we recall in this section how to reduce to the case (5.3)

starting from any pair of matrices �1, �2. We will also give the explicit formulas for

p�1,�2 and q�1,�2 .

It is well-known that a solution u 2 W 1,q
loc

(⌦), q � 1, to the elliptic equation (5.1)

can be regarded as the real part of a complex map f : ⌦ ! C which is a W 1,q
loc

(⌦;C)

solution to a Beltrami equation. Precisely, if v is such that

RT
⇡
2
rv = �ru, R⇡

2
:=

0

@ 0 �1

1 0

1

A , (5.10)

then f := u+ iv solves the equation

fz̄ = µ fz + ⌫ fz a.e. in ⌦ , (5.11)

where the so called complex dilatations µ and ⌫, both belonging to L1(⌦;C), are

given by

µ =
�22 � �11 � i(�12 + �21)

1 + Tr � + det �
, ⌫ =

1� det � + i(�12 � �21)

1 + Tr � + det �
, (5.12)

and satisfy the ellipticity condition

k|µ|+ |⌫|kL1 < 1 . (5.13)

The ellipticity (5.13) is often expressed in a different form. Indeed, it implies that

there exists 0  k < 1 such that k|µ|+ |⌫|kL1  k < 1 or equivalently that

k|µ|+ |⌫|kL1 
K � 1

K + 1
, (5.14)
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for some K > 1. Let us recall that weak solutions to (5.11), (5.14) are called K-

quasiregular mappings. Furthermore, we can express � as a function of µ, ⌫ by

inverting the algebraic system (5.12),

� =

0

BBB@

|1�µ|2�|⌫|2
|1+⌫|2�|µ|2

2=(⌫�µ)
|1+⌫|2�|µ|2

�2=(⌫+µ)
|1+⌫|2�|µ|2

|1+µ|2�|⌫|2
|1+⌫|2�|µ|2

1

CCCA
. (5.15)

Conversely, if f solves (5.11) with µ, ⌫ 2 L1(⌦,C) satisfying (5.13), then its real

part is a solution to the elliptic equation (5.1) with � defined by (5.15). Notice that

rf and ru enjoy the same integrability properties. Assume now that � : ⌦ !

{�1, �2} is a two-phase elliptic coefficient and f is solution to (5.11)-(5.12). Abusing

notation, we identify ⌦ with a subset of R2 and f = u + iv with the real mapping

f = (u, v) : ⌦ ! R2. Then, as shown in [48], one can find matrices A,B 2 SL(2)

(with SL(2) denoting the set of invertible matrices with determinant equal to one)

depending only on �1 and �2, such that, setting

f̃(x) := A�1f(Bx), (5.16)

one has that the function f̃ solves the new Beltrami equation

f̃z̄ = µ̃ fz + ⌫̃ f̃z a.e. in B�1(⌦),

and the corresponding �̃ : B(⌦) ! {�̃1, �̃2} defined by (5.15) is of the form (5.3):

�̃1 = diag(1/K, 1/S1), �̃2 = diag(K,S2), K > 1, S1, S2 2 [1/K,K] .

The results in [4] and [52] imply that if f̃ 2 W 1,q, with q �
2K
K+1 , then rf̃ 2 L

2K
K�1

weak;

in particular, f̃ 2 W 1,p for each p < 2K
K�1 . Clearly rf̃ enjoys the same integrability

properties as rf and ru.

Finally, we recall the formula for K which will yield the optimal exponents. De-

note by D1 and D2 the determinant of the symmetric part of �1 and �2 respectively,

Di := det
⇣�i + �T

i

2

⌘
, i = 1, 2 ,

and by (�i)jk the jk-entry of �i. Set

m : =
1

p
D1D2


(�2)11(�1)22 + (�1)11(�2)22 �

1

2

⇣
(�2)12 + (�2)21

⌘⇣
(�1)12 + (�1)21

⌘�
,

n : =
1

p
D1D2


det �1 + det �2 �

1

2

⇣
(�1)21 � (�1)12

⌘⇣
(�2)21 � (�2)12

⌘�
.
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Then

K =

✓
m+

p
m2 � 4

2

◆ 1
2
✓

n+
p
n2 � 4

2

◆ 1
2

. (5.17)

Thus, for any pair of elliptic matrices �1, �2 2 M2⇥2, the explicit formula for the

optimal exponents p�1,�2 and q�1,�2 are obtained by plugging (5.17) into (5.5).

5.3 Preliminaries

5.3.1 Convex integration

We denote by M(M2⇥2) the set of signed Radon measures on M2⇥2 having finite

mass. We refer to Section A.2 for more details. By Riesz’s representation theorem

(see Theorem A.8) we can identify M(M2⇥2) with the dual of the space C0(Mm⇥n),

i.e, the space of continuous functions f : Mm⇥n
! R that vanish at infinity. Given

⌫ 2 M(M2⇥2) we define its barycenter as

⌫ :=

Z

M2⇥2

Ad⌫(A) .

We say that a map f 2 C(⌦;R2) is piecewise affine if there exists a countable family

of pairwise disjoint open subsets ⌦i ⇢ ⌦ with |@⌦i| = 0 and
�����⌦r

1[

i=1

⌦i

����� = 0 ,

such that f is affine on each ⌦i. Let A,B 2 M2⇥2 and consider the following

problem: find a piecewise affine Lipschitz map f : ⌦ ! R2 such that
8
><

>:

rf 2 {A,B} a.e. in ⌦ ,

f(x) = Cx on @⌦ ,
(5.18)

where C := �A + (1 � �)B, for some � 2 [0, 1]. We have already discussed this

problem in Section 2.3 and saw that the boundary condition f(x) = Cx on @⌦

always forces rigidity, that is f ⌘ Cx on ⌦ (see Proposition 2.1). In this section

we want to discuss the problem of approximate solutions to (5.18), that is, find a

sequence of piecewise affine Lipschitz maps fn : ⌦ ! R2 such that
8
><

>:

dist(rfn, {A,B}) ! 0 a.e. in ⌦ ,

fn(x) = Cx on @⌦ .
(5.19)
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We recall that the matrices A and B are said to be rank-one connected if

rank(B � A) = 1 .

In this case it is possible to construct non-trivial solutions to (5.19) by means of

convex integration, as stated in the following proposition (see [42, Lemma 5.1]).

Proposition 5.3. Let A,B 2 M2⇥2 be such that rank(B �A) = 1 and assume that

C = �A + (1 � �)B for some � 2 (0, 1). Let ⌦ ⇢ R2 be a bounded open set and

0 < � < |A � B|/2. There exists a piecewise affine Lipschitz map f : ⌦ ! R2 such

that

(i) f(x) = Cx on @⌦,

(ii) [f � Cx]
C0(⌦) < �,

(iii) |{x 2 ⌦ : |rf(x)� A| < �}| = �|⌦|,

(iv) |{x 2 ⌦ : |rf(x)� B| < �}| = (1� �)|⌦|,

(v) dist(rf, {A,B}) < � a.e. in ⌦.

In particular, there exists a sequence of piecewise affine Lipschitz maps fn : ⌦ ! R2

satisfying (5.19).

We remark that this result holds for matrices in Mm⇥n with C↵ approximation,

for a fixed ↵ 2 (0, 1) (see [5, Lemma 2.1]). However we choose to present the case

of M2⇥2 with C0 approximation, as the proof is simpler and gives all the geometric

ideas necessary to build such functions.

Proof. The proof is divided into two steps. First we build a function f̃ that satisfies

(i)-(v) in a particular domain W . Then, by means of the Vitali covering theorem,

we scale and replicate f̃ throughout the whole ⌦.

Note that, by an affine change of variables, we can assume that C = 0 and

B � A = a⌦ e2 for some a 2 R2 with |a| = 1. Therefore

�A+ (1� �)B = 0, A = �(1� �)a⌦ e2, B = �a⌦ e2 .
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x2

x1

"�

"�(1� �)

1�1

rv = A

rv = B

x2

x1

"�

"�(1� �)

1�1

rf̃ = Ã

rf̃ = B̃

V V

W

Figure 5.1: Left: the blue square represents V . The map v satisfies (ii)-(v) in

V , but v does not vanish on the vertical sides of V . Right: the red polytope

represents W . The map f̃ satisfies (i)-(v) in W .

Step 1. Let " > 0 be such that "�(1� �) < � and define

V := (�1, 1)⇥ ("(�� 1), "�) ,

and the scalar function

s(t) := "�(1� �) +

8
><

>:

�(1� �)t if t � 0 ,

�t if t < 0 .

Also define the piecewise affine Lipschitz map v : V ! R2 as v(x) := as(x2), so that,

explicitly,

v(x) := "�(1� �)a+

8
><

>:

�(1� �)ax2 if x2 � 0 ,

�ax2 if x2 < 0 .

Therefore rv 2 {A,B}, since rv = A if x2 � 0 and rv = B if x2 < 0. Also note

that

|{x 2 V : rv = A}| = �|V | , |{x 2 V : rv = B}| = (1� �)|V | ,

because |V | = 2". Moreover |v|  "�(1 � �) < �. Hence, v satisfies (ii)-(v) with

⌦ = V . However v does not satisfy (i), since v = 0 for x2 = "(� � 1) and x2 = "�,

(see left picture in Figure 5.1), but v does not vanish on the whole @V . Therefore,

the idea is to suitably perturb v so that also (i) holds.
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To this end, define the piecewise affine map h : R2
! R as h(x) := "�(1� �)|x1|

and w : V ! R as w(x) := s(x2)� h(x). Finally, define f̃ : V ! R2 as

f̃(x) := aw(x) = v(x)� ah(x) . (5.20)

It is clear that f̃ is piecewise affine Lipschitz. Set

W := {x 2 V : w(x) > 0} , (5.21)

so that by continuity f̃ = 0 on @W . Notice that W is a polytope contained in

V , as displayed in the right picture in Figure 5.1. Therefore f̃ satisfies (i) in W .

Also notice that |f̃ | < � so that (ii) holds as well. Define W+ := W \ {x � 0},

W� := W \ {x < 0} and remark that

|W+
| = �|W | and |W�

| = (1� �)|W |. (5.22)

By direct calculation,

rf̃(x) = �
W+Ã+ �

W�B̃ ,

where

Ã := A� sign(x1) "�(1� �)a⌦ e1 , B̃ := B � sign(x1) "�(1� �)a⌦ e1 ,

so that Ã and B̃ lie in a �-neighbourhood of A and B respectively. Hence

{x 2 ⌦ : |rf̃(x)� A| < �} = W+ , {x 2 ⌦ : |rf̃(x)� A| < �} = W+

and (iii)-(iv) follow by (5.22). Notice that, since � < |B � A|/2 = 1/2, also (v)

follows.

Step 2. Let W be as in (5.21). By the Vitali covering theorem, there exist points

bi 2 R2 and 0 < ri < 1, i 2 N, such that the sets

⌦i := bi + riW

are pairwise disjoint and satisfy
���⌦ \

[

i

⌦i

��� = 0 .

Define the function f : ⌦ ! R2 as

f(x) := rif̃

✓
x� bi
ri

◆
for x 2 ⌦i ,
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where f̃ is as in (5.20). Clearly f is piecewise affine Lipschitz and f = 0 on @⌦,

since f̃ = 0 on @W . Moreover |f | < � because ri < 1 and |f̃ | < �. Finally,

rf(x) = rf̃

✓
x� bi
ri

◆
for x 2 ⌦i ,

therefore we have

rf = �
⌦+Ã+ �

⌦�B̃ ,

where ⌦+ := [i⌦
+
i
, ⌦� := [i⌦

�
i
, with ⌦+

i
:= bi + riW+,⌦�

i
:= bi + riW�. Hence

{x 2 ⌦ : |rf � A| < �} = ⌦+ , {x 2 ⌦ : |rf � B| < �} = ⌦� ,

and (iii)-(v) follow from (5.22).

It is convenient to interpret Proposition 5.3 from the point of view of the gradient

distribution of the map f . In order to do that, denote with L
2
⌦ the two dimensional

normalised Lebesgue measure restricted to ⌦, so that L2
⌦(U) = |U \⌦|/|⌦| for every

Borel set U ⇢ R2. For a Lipschitz map f : ⌦ ! R2 we can define the push-forward

measure rf#(L2
⌦) on M2⇥2 as

rf#(L
2
⌦)(V ) := L

2
⌦((rf)�1(V )) for every Borel set V ⇢ M2⇥2 .

The measure rf#(L2
⌦) is called the gradient distribution of f (see e.g. [24]). Now let

fn be the sequence given by Proposition 5.3, where we set �n := 1/n. As a corollary

of the proof, it is immediate to see that

⌫n := (rfn)#(L
2
⌦) = ��

Ãn
+ (1� �)�

B̃n

with rank(B̃n � Ãn) = 1 and Ãn ! A, B̃n ! B. The measures ⌫n encode all

the relevant properties of fn, including the boundary condition fn = Cx, as ⌫̄n =

�Ãn + (1� �)B̃n = C, and the oscillating behaviour of rfn, since

⌫n
⇤
* ⌫ := ��A + (1� �)�B weakly in M(M2⇥2) . (5.23)

Moreover we have
1

|⌦|

Z

⌦

|rfn|
p dx =

Z

M2⇥2

|�|p d⌫n(�) , (5.24)

so also the integrability properties of rfn can be described through ⌫n. A probability

measure ⌫ of the form (5.23), with rank(B�A) = 1 and � 2 [0, 1], is called a laminate

of first order (see also [42, 46, 51, 34]).
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Since Proposition 5.3 yields piecewise affine maps, we can iterate the construction

by modifying f in the sets where it is affine. For example we could decompose B as

B = �0C1 + (1� �0)C2 ,

with �0 2 (0, 1) and rank(C2 � C1) = 1. Then in the open set

{x 2 ⌦ : |rf(x)� B| < �} ,

we can replace f with a piecewise affine map (by applying Proposition 5.3) whose

gradient oscillates on a much smaller scale, say �2, between neighbourhoods of C1

and C2. Therefore we will have

|{x 2 ⌦ : |rf(x)� C1| < �}| = (1� �)�0|⌦| ,

|{x 2 ⌦ : |rf(x)� C2| < �}| = (1� �)(1� �0)|⌦| .

The gradient distribution of the new map f is therefore given by replacing �B in

(5.23) with the new laminate of first order �0�C1 + (1� �0)�C2 , obtaining

⌫ 0 := ��A + (1� �)(�0�C1 + (1� �0)�C2) .

Notice that ⌫ 0 is still a probability measure and ⌫̄ 0 = ⌫̄ = C. This iterative procedure

motivates the following definition.

Definition 5.4. The family of laminates of finite order L(M2⇥2) is the smallest

family of probability measures in M(M2⇥2) satisfying the following conditions:

(i) �A 2 L(M2⇥2) for every A 2 M2⇥2 ;

(ii) assume that
P

N

i=1 �i�Ai 2 L(M2⇥2) and A1 = �B + (1 � �)C with � 2 [0, 1]

and rank(B � C) = 1. Then the probability measure

�1(��B + (1� �)�C) +
NX

i=2

�i�Ai

is also contained in L(M2⇥2).

The process of obtaining new measures via (ii) is called splitting.

By repeatedly applying the iterative argument stated above, we can obtain, given

a laminate of finite order ⌫, a piecewise affine function f satisfying the piecewise

affine boundary condition f(x) = ⌫̄x on @⌦, and whose gradient distribution is

given by ⌫. More precisely, we can prove the following result (that we state with C↵

approximation. See [5, Proposition 2.3] for a proof).
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Proposition 5.5. Let ⌫ =
P

N

i=1 ↵i�Ai 2 L(M2⇥2) be a laminate of finite order with

barycenter ⌫ = A, that is A =
P

N

i=1 ↵iAi with
P

N

i=1 ↵i = 1. Let ⌦ ⇢ R2 be a

bounded open set, ↵ 2 (0, 1) and 0 < � < min |Ai � Aj| /2. Then there exists a

piecewise affine Lipschitz map f : ⌦ ! R2 such that

(i) f(x) = Ax on @⌦,

(ii) [f � A]
C↵(⌦) < � ,

(iii) |{x 2 ⌦ : |rf(x)� Ai| < �}| = ↵i |⌦|,

(iv) dist(rf, supp ⌫) < � a.e. in ⌦.

5.3.2 Conformal coordinates

For every real matrix A 2 M2⇥2,

A =

0

@a11 a12

a21 a22

1

A ,

we write A = (a+, a�), where a+, a� 2 C denote its conformal coordinates. By

identifying any vector v = (x, y) 2 R2 with the complex number v = x + iy,

conformal coordinates are defined by the identity

Av = a+v + a�v . (5.25)

Here v denotes the complex conjugation. From (5.25) we have the relations

a+ =
a11 + a22

2
+ i

a21 � a12
2

, a� =
a11 � a22

2
+ i

a21 + a12
2

, (5.26)

and, conversely,

a11 = <a+ + <a� , a12 = �=a+ + =a� ,

a21 = =a+ + =a� , a22 = <a+ �<a� .
(5.27)

Here <z and =z denote the real and imaginary part of z 2 C respectively. We recall

that

AB = (a+b+ + a�b�, a+b� + a�b+) , (5.28)
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and TrA = 2<a+. Moreover

det(A) = |a+|
2
� |a�|

2 ,

|A|2 = 2 |a+|
2 + 2 |a�|

2 ,

kAk = |a+|+ |a�| ,

(5.29)

where |A| and kAk denote the Hilbert-Schmidt and the operator norm, respectively.

We also define the second complex dilatation of the map A as

µA :=
a�
a+

, (5.30)

and the distortion

K(A) :=

����
1 + |µA|

1� |µA|

���� =
kAk2

|det(A)|
. (5.31)

The last two quantities measure how far A is from being conformal. Following the

notation introduced in [5], we define

E� := {A = (a, µ a) : a 2 C, µ 2 �} (5.32)

for a set � ⇢ C [ {1}; namely, E� is the set of matrices with the second complex

dilatation belonging to �. In particular E0 and E1 denote the set of conformal

and anti-conformal matrices respectively. From (5.28) we have that E� is invariant

under precomposition by conformal matrices, that is

E� = E�A for every A 2 E0 r {0} . (5.33)

5.3.3 Weak Lp spaces

We recall the definition of weak Lp spaces. Let f : ⌦ ! R2 be a Lebesgue measurable

function. Define the distribution function of f as

�f : (0,1) ! [0,1] with �f (t) := |{x 2 ⌦ : |f(x)| > t}| .

Let 1  p < 1, then the following formula holds (see e.g. [27, Ch 6.4])
Z

⌦

|f(x)|p dx = p

Z 1

0

tp�1�f (t) dt . (5.34)

Define the quantity

[f ]p :=

✓
sup
t>0

tp�f (t)

◆1/p
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and the weak Lp space as

Lp

weak(⌦;R2) :=
�
f : ⌦ ! R2 : f measurable, [f ]p < 1

 
.

Lp

weak is a topological vector space and by Chebyshev’s inequality we have [f ]p 

kfk
Lp . In particular this implies Lp

⇢ Lp

weak. Moreover Lp

weak ⇢ Lq for every q < p.

5.4 Proof of Theorem 5.2

For the rest of this chapter, �1 and �2 are as in (5.3)-(5.4) and ⌦ ⇢ R2 is a bounded

domain. We start by rewriting (5.1) as a differential inclusion. To this end, define

the sets

T1 :=

8
<

:

0

@ x �y

S�1
1 y K�1 x

1

A : x, y 2 R

9
=

; , T2 :=

8
<

:

0

@ x �y

S2 y K x

1

A : x, y 2 R

9
=

; .

(5.35)

Lemma 5.6. Let � 2 L1(⌦; {�1, �2}). A function u 2 W 1,1(⌦) is a distributional

solution to (5.1) if and only if there exists a stream function v 2 W 1,1(⌦) such that

f := (u, v) : ⌦ ! R2 satisfies

rf 2 T1 [ T2 a.e. in ⌦ . (5.36)

Proof. Since ⌦ is simply connected, the field �ru is divergence free if and only if

�ru = R⇡
2
rv a.e. in ⌦ , (5.37)

for some v 2 W 1,1(⌦). If we set f := (u, v), it is immediate to check that (5.36)

holds. Conversely, if f = (f 1, f 2) is such that rf 2 T1 [ T2, define

E1 := {x 2 ⌦ : rf(x) 2 T1} , E2 := {x 2 ⌦ : rf(x) 2 T2} ,

and set u := f 1, v := f 2, � := �1 �E1 + �2 �E2 . With these definitions (5.37) holds,

and u satisfies (5.1).

In order to solve the differential inclusion (5.36), it is convenient to use (5.26)

and write our target sets in conformal coordinates:

T1 = {(a, d1(a)) : a 2 C} , T2 = {(a,�d2(a)) : a 2 C} , (5.38)
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where the operators dj : C ! C are defined as

dj(a) := k<a+ i sj =a , with k :=
K � 1

K + 1
and sj :=

Sj � 1

Sj + 1
. (5.39)

Conditions (5.4) imply

0 < k < 1 and � k  sj  k for j = 1, 2 . (5.40)

Introduce the quantities

s :=
s1 + s2

2
=

S1S2 � 1

(1 + S1)(1 + S2)
(5.41)

S :=
1 + s

1� s
=

S1 + S2 + 2S1S2

2 + S1 + S2
. (5.42)

By (5.40) we have

� k  s  k and
1

K
 S  K . (5.43)

We distinguish three cases.

1. Case s > 0 (corresponding to S > 1). We study this case in Section

5.5, where we generalise the methods used in [5, Section 3.2]. Observe that this case

includes the one studied in [5]. Indeed, for s = k one has that s1 = s2 = k and the

target sets (5.38) become

T1 = Ek = {(a, ka) : a 2 C} , T2 = E�k = {(a,�ka) : a 2 C} ,

where E±k are defined in (5.32). We remark that, in this particular case, the con-

struction provided in Section 5 coincides with the one given in [5, Section 3.2].

2. Case s < 0 (corresponding to S < 1). This case can be reduced to

the previous one. Indeed, if we introduce ŝj := �sj, ŝ := (ŝ1 + ŝ2)/2 > 0 and the

operators d̂j(a) := k<a+ i ŝj =a then the target sets (5.38) read as

T1 = {(a, d̂1(a)) : a 2 C}, T2 = {(a,�d̂2(a)) : a 2 C}.

This is the same as the previous case, since the absence of the conjugation does not

affect the geometric properties relevant to the constructions of Section 5.5.

We notice that this case includes s = �k for which the target sets become

T1 = {(a, ka) : a 2 C} , T2 = {(a,�ka) : a 2 C} .

We remark that in this case, (5.36) coincides with the classical Beltrami equation

(see also [5, Remark 3.21]).
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3. Case s = 0 (corresponding to s1 = �s2, S1 = 1/S2) This is a degenerate

case, in the sense that the constructions provided in Section 5 for s > 0 are not well

defined. Nonetheless, Theorem 5.2 still holds true. In fact, as already pointed out in

[48, Section A.3], by an affine change of variables, the existence of a solution can be

deduced by [5, Lemma 4.1,Theorem 4.14], where the authors prove the optimality

of the lower critical exponent 2K
K+1 for the solution of a system in non-divergence

form. We remark that in this case Theorem 5.2 actually holds in the stronger sense

of exact solutions, namely, there exists u 2 W 1,1(⌦) solution to (5.6) and such that

ru 2 L
2K
K+1

weak(⌦;R2) , ru /2 L
2K
K+1 (⌦;R2) .

5.5 The case s > 0

In the present section we prove Theorem 5.2 under the hypothesis that the average

s is positive, namely that

0 < k < 1 and � s2 < s1  s2 , with 0 < s2  k , or

0 < k < 1 and � s1 < s2  s1 , with 0 < s1  k .
(5.44)

From (5.44), recalling definitions (5.39), (5.41), (5.42), we have

0 < s  k , 1 < S  K , (5.45)

1/S2 < S1  S2 , 1 < S2  K , or 1/S1 < S2  S1 , 1 < S1  K . (5.46)

In order to prove Theorem 5.2, we will solve the differential inclusion (5.36) by

adapting the convex integration program developed in [5, Section 3.2] to the present

context. As already pointed out in Section 5.1, the anisotropy of the coefficients

�1, �2 poses some technical difficulties in the construction of the so-called staircase

laminate, needed to obtain the desired approximate solutions. In fact, the anisotropy

of �1, �2 translates into the lack of conformal invariance (in the sense of (5.33))

of the target sets (5.38), while the constructions provided in [5] heavily rely on

the conformal invariance of the target set E{�k,k}. We point out that the lack of

conformal invariance was a source of difficulty in [48] as well, for the proof of the

optimality of the upper exponent.

This section is divided as follows. In Section 5.5.1 we establish some geometric

properties of rank-one lines in M2⇥2, that will be used in Section 5.5.2 for the
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construction of the staircase laminate. For every sufficiently small � > 0, such

laminate allows us to define (in Proposition 5.15) a piecewise affine map f that

solves the differential inclusion (5.36) up to an arbitrarily small L1 error. Moreover

f will have the desired integrability properties (see (5.103)), that is,

rf 2 Lp

weak(⌦;M2⇥2) , p 2

✓
2K

K + 1
� �,

2K

K + 1

�
, rf /2 L

2K
K+1 (⌦;M2⇥2) .

Finally, in Theorem 5.16, we remove the L1 error introduced in Proposition 5.15,

by means of a standard argument (see, e.g., [48, Theorem A.2]).

Throughout this section cK > 1 will denote various constants depending on

K,S1 and S2, whose precise value may change from place to place. The complex

conjugation is denoted by J := (0, 1) in conformal coordinates, i.e., Jz = z for

z 2 C. Moreover, R✓ := (ei✓, 0) 2 SO(2) denotes the counter clockwise rotation of

angle ✓ 2 (�⇡, ⇡]. Define the argument function

arg z := ✓ , where z = |z|ei✓ , with ✓ 2 (�⇡, ⇡] .

Abusing notation we write argR✓ = ✓. For A = (a, b) 2 M2⇥2
\ {0} we set

✓A := � arg(b� d1(a)) . (5.47)

5.5.1 Properties of rank-one lines

In this section we will establish some geometric properties of rank-one lines in M2⇥2.

Lemmas 5.8, 5.9 are generalisations of [5, Lemmas 3.14, 3.15] to our target sets

(5.38). In Lemmas 5.10, 5.11 we will study certain rank-one lines connecting T to

E1, that will be used in Section 5.5.2 to construct the staircase laminate.

Lemma 5.7. Let Q 2 Tj with j 2 {1, 2} and Tj as in (5.38). Then

detQ > 0 for Q 6= 0 , (5.48)

|sj|  |µQ|  k , (5.49)

max{Sj, 1/Sj}  K(Q)  K , (5.50)

where µQ and K(Q) are defined in (5.30) and (5.31) respectively.

Proof. Let Q = (q, d1(q)) 2 T1. By (5.40) we have |s1||q|  |d1(q)|  k|q| which

readily implies (5.49) and

(1� k2) |q|2  det(Q)  (1� s21) |q|
2 .
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The last inequality implies (5.48). Finally K(Q) is increasing with respect to |µQ| 2

(0, 1), therefore (5.50) follows from (5.49). The proof is analogous if Q 2 T2.

Lemma 5.8. Let A,B 2 M2⇥2 with detB 6= 0 and det(B � A) = 0, then

|B| 

p

2K(B) |A| . (5.51)

In particular, if A 2 M2⇥2 and Q 2 Tj, j 2 {1, 2}, are such that det(A � Q) = 0,

then

dist(A, Tj)  |A�Q|  (1 +
p

2K) dist(A, Tj) .

Proof. The first part of the statement is exactly like in [5, Lemma 3.14]. For the

second part, one can easily adapt the proof of [5, Lemma 3.14] to the present context

taking into account (5.48) and (5.50). For the reader’s convenience we recall the

argument. Let A 2 M2⇥2, Q 2 T1 and Q0 2 T1 such that dist(A, T1) = |A�Q0|. By

(5.48), we can apply the first part of the lemma to A�Q0 and Q�Q0 to get

|Q�Q0| 
p

2K(Q�Q0)|A�Q0| 
p

2K|A�Q0| ,

where the last inequality follows from (5.50), since Q�Q0 2 T1. Therefore

|A�Q|  |A�Q0|+ |Q�Q0|  (1 +
p

2K)|A�Q0| = (1 +
p

2K) dist(A, T1) .

The proof for T2 is analogous.

Lemma 5.9. Every A = (a, b) 2 M2⇥2r {0} lies on a rank-one segment connecting

T1 and E1. Precisely, there exist matrices Q 2 T1 r {0} and P 2 E1 r {0}, with

det(P �Q) = 0, such that A 2 [Q,P ]. We have P = tJR✓A for some t > 0 and ✓A

as in (5.47). Moreover, there exists a constant cK > 1, depending only on K,S1, S2,

such that
1

cK
|A|  |P �Q| , |P | , |Q|  cK |A| . (5.52)

Proof. The proof can be deduced straightforwardly from the one of [5, Lemma 3.15].

We decompose any A = (a, b) as

A = (a, d1(a)) +
1

t
(0, tb� td1(a)) = Q+

1

t
Pt ,

with Q 2 T1 and Pt 2 E1. The matrices Q and Pt are rank-one connected if and

only if |a| = |d1(a) + t(b� d1(a))|. Since detQ > 0 for Q 6= 0, it is easy to see that
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there exists only one t0 > 0 such that the last identity is satisfied. We then set

⇢ := 1 + 1/t0 so that

A =
1

⇢
(⇢Q) +

1

t0⇢
(⇢Pt0) .

The latter is the desired decomposition, since ⇢Q 2 T1, ⇢Pt0 2 E1 are rank-one

connected, ⇢ > 0 and ⇢�1 + (t0⇢)�1 = 1. Also notice that ⇢Pt0 = ⇢t0|b� d1(a)|JR✓A

as stated.

Finally let us prove (5.52). Note that

dist(A, T1) + dist(A,E1)  |A� P |+ |A�Q| = |P �Q| .

By the linear independence of T1 and E1, we get

1

cK
|A|  |P �Q| .

Using Lemma 5.8, (5.48) and (5.50) we obtain

|P |  cK |A|, |Q|  cK |A|, |Q|  cK |P |, |P |  cK |Q|.

By the triangle inequality,

|P �Q|  |P |+ |Q|  (1 + cK)min(|P |, |Q|),

and (5.52) follows.

We now turn our attention to the study of rank-one connections between the

target set T and E1.

Lemma 5.10. Let R = (r, 0) with |r| = 1 and a 2 Cr {0}. For j 2 {1, 2} define

Q1(a) := �1(a, d1(a)) 2 T1 , Q2(a) := �2(�a, d2(a)) 2 T2 ,

�j(a) :=
1q

B2
j
(a) + Aj(a) + Bj(a)

, (5.53)

8
><

>:

Aj(a) := det(a, dj(a)) = |a|2 � |dj(a)|
2 ,

Bj(a) := < (r dj(a)) .
(5.54)

Then �j > 0, Aj > 0 and det(Qj � JR) = 0. Moreover there exists a constant

cK > 1 depending only on K,S1, S2 such that

1

cK
 |Qj(a)|  cK , (5.55)

for every a 2 Cr {0} and R 2 SO(2).
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Proof. Condition det(Qj � JR) = 0 is equivalent to |�ja| = |�jdj(a)� r|, that is

Aj(a)�
2
j
+ 2Bj(a)�j � 1 = 0 (5.56)

with Aj, Bj defined by (5.54). Notice that Aj > 0 by (5.48). Therefore �j defined

in (5.53) solves (5.56) and satisfies �j > 0.

We will now prove (5.55). Since a 6= 0, we can write a = t! for some t > 0

and ! 2 C, with |!| = 1. We have Aj(a) = t2Aj(!) and Bj(a) = tBj(!) so that

�j(a) = �j(!)/t. Hence

Q1(a) = �1(!)(!, d1(!)) , Q2(a) = �2(!)(�!, d2(!)) . (5.57)

Since �j is continuous and positive in (Cr {0})⇥SO(2), (5.55) follows from (5.57).

Notation. Let ✓ 2 (�⇡, ⇡]. For R✓ = (ei✓, 0) 2 SO(2), define x := cos ✓, y :=

sin ✓ and

a(R✓) :=
x

k
+ i

y

s
, (5.58)

where s is defined in (5.41). Identifying SO(2) with the interval (�⇡, ⇡], for j = 1, 2,

we introduce the function

�j : (�⇡, ⇡] ! (0,+1) defined by �j(R✓) := �j(a(R✓)) (5.59)

with �j(a(R✓)) as in (5.53). Furthermore, for n 2 N set

Mj(R✓) :=
�j

�1 + �2
2

� �1�2

, l(R✓) :=
M1 +M2

2
� 1 , m := min

✓2(�⇡,⇡]

M2

2�M2

L(R✓) :=
1 + l

1� l
, �n(R✓) := 1�

1 + l

n
, p(R✓) :=

2L

L+ 1
.

(5.60)

Lemma 5.11. For j = 1, 2, the functions

�j : (�⇡, ⇡] !


s

1 + sj
,

k

1 + k

�
, l : (�⇡, ⇡] ! [s, k] ,

L : (�⇡, ⇡] ! [S,K] , p : (�⇡, ⇡] !


2S

S + 1
,

2K

K + 1

�
,

are even, surjective and their periodic extension is C1. Furthermore, they are strictly

decreasing in (0, ⇡/2) and strictly increasing in (⇡/2, ⇡), with maximum at ✓ = 0, ⇡
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and minimum at ✓ = ⇡/2. Finally

0 < Mj < 2 , m > 0 , (5.61)
nY

j=1

�j(R✓) =
1

np(R✓)
+O

✓
1

n

◆
, (5.62)

where O(1/n) ! 0 as n ! 1 uniformly for ✓ 2 (�⇡, ⇡].

Proof. Let us consider �j first. By definitions (5.54), (5.58) and by recalling that

x2 + y2 = 1, we may regard Aj, Bj and �j as functions of x 2 [�1, 1]. In particular,

Aj(x) =

✓
1� k2

k2
�

1� s2
j

s2

◆
x2 +

1� s2
j

s2
, Bj(x) =

⇣
1�

sj
s

⌘
x2 +

sj
s
. (5.63)

By symmetry we can restrict to x 2 [0, 1]. We have three cases:

1. Case s1 = s2. Since s1 = s2 = s, from (5.63) we compute

�1(x) = �2(x) =

 
1 +

s✓
1

k2
�

1

s2

◆
x2 +

1

s2

!�1

.

By (5.44),(5.45) this is a strictly increasing function in [0, 1], and the rest of the

thesis for �j readily follows.

2. Case s1 < s2. By (5.44) we have

� s2 < s1 < s and 0 < s < s2 . (5.64)

Relations (5.63) and (5.64) imply that

A0
j
(0) = 0 , A0

j
(x) < 0 , for x 2 (0, 1] , (5.65)

B0
1(0) = 0 , B0

1(x) > 0 , for x 2 (0, 1] , (5.66)

B0
2(0) = 0 , B0

2(x) < 0 , for x 2 (0, 1] . (5.67)

We claim that

�0
j
(0) = 0 , �0

j
(x) > 0 , for x 2 (0, 1] . (5.68)

Before proving (5.68), notice that �j(0) =
s

1 + sj
and �j(1) =

k

1 + k
, therefore

the surjectivity of �j will follow from (5.68). Let us now prove (5.68). For j = 2

condition (5.68) is an immediate consequence of the definition of �2 and (5.65),

(5.67). For j = 1 we have

�01(x) = �
1

�21

 
A0

1 + 2B1B0
1

2
p
B2

1 + A1

+B0
1

!
(5.69)
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and we immediately see that �01(0) = 0 by (5.65) and (5.66). Assume now that

x 2 (0, 1]. By (5.66) and (5.69), the claim (5.68) is equivalent to

A0
1
2 + 4A0

1B1B
0
1 � 4A1B

0
1
2 > 0 , for x 2 (0, 1] .

After simplifications, the above inequality is equivalent to

4f(s1, s2)

k4(s1 + s2)
4 x

2 > 0 , for x 2 (0, 1] , (5.70)

where f(s1, s2) = abcd, with

a = �2k + (1 + k)s1 + (1� k)s2 , b = 2k + (1 + k)s1 + (1� k)s2 ,

c = �2k � (1� k)s1 � (1 + k)s2 , d = 2k � (1� k)s1 � (1 + k)s2 .

We have that a, c < 0 since s1 < s2 and b, d > 0 since s1 > �s2. Hence (5.70)

follows.

3. Case s2 < s1. In particular we have

� s1 < s2 < s and 0 < s < s1 . (5.71)

This is similar to the previous case. Indeed (5.65) is still true, but for Bj we have

B0
1(0) = 0 , B0

1(x) < 0 , for x 2 (0, 1] , (5.72)

B0
2(0) = 0 , B0

2(x) > 0 , for x 2 (0, 1] . (5.73)

This implies (5.68) with j = 1. Similarly to the previous case, we can see that (5.68)

for j = 2 is equivalent to

4f(s2, s1)

k4(s1 + s2)
4 x

2 > 0 , for x 2 (0, 1] . (5.74)

Notice that f is symmetric, therefore (5.74) is a consequence of (5.70).

We will now turn our attention to the function l. Notice that

l =
1

1�H
� 1 , where H :=

2�1�2
�1 + �2

= 2

✓
1

�1
+

1

�2

◆�1

(5.75)

is the harmonic mean of �1 and �2. Therefore H is differentiable and even. By

direct computation we have

H 0 = 2
�01�

2
2 + �21�

0
2

(�1 + �2)
2 .
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Since �j > 0, by (5.68) we have

H 0(0) = 0 , H 0(x) > 0 , for x 2 (0, 1] . (5.76)

Moreover H(0) =
s

1 + s
and H(1) =

k

1 + k
. Then from (5.75) we deduce l(0) =

s, l(1) = k and the rest of the statement for l.

The statements for L and p follow directly from the properties of l and from the

fact that t !
1 + t

1� t
, t !

2t

t+ 1
are C1 and strictly increasing for 0 < t < 1 and

t > 1, respectively.

Next we prove (5.61). By (5.44) and the properties of �j, we have in particular

0 < �j <
1

2
, 0 < H <

1

2
, (5.77)

where H is defined in (5.75). Since �j > 0, the inequality Mj > 0 is equivalent

to H < 1, which holds by (5.77). The inequality M2 < 2 is instead equivalent to

�1(1� 2�2) > 0, which is again true by (5.77). The case M1 < 2 is similar. Finally

m > 0 follows from 0 < M2 < 2 and the continuity of �j.

Lastly we prove (5.62). By definition we have 1 + l =
2L

L+ 1
= p. By taking the

logarithm of
Q

n

j=1 �j(R✓), we see that there exists a constant c > 0, depending only

on K,S1, S2, such that
�����log

 
nY

j=1

�j(R✓)

!
+ p(R✓) log n

����� < c , for every ✓ 2 (�⇡, ⇡] . (5.78)

Estimate (5.78) is uniform because �j and p are ⇡-periodic and uniformly continuous.

5.5.2 Weak staircase laminate

We are now ready to construct a staircase laminate in the same fashion as [5, Lemma

3.17]. We remark that the construction of this type of laminates, first introduced

in [24], has also been used in [11] and [12] in connection with the problem of reg-

ularity for rank-one convex functions and in [25] and [49] for constructing Sobolev

homeomorphisms with gradients of law rank.

The steps of our staircase will be the sets

Sn := nJSO(2) =
�
(0, nei✓) : ✓ 2 (�⇡, ⇡]

 
, n � 1 .
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E1

E0

T1

T2

A

Q

tJR✓A

Q1

Q2

P̃

(n+ 1)JR✓A

Figure 5.2: Weak staircase laminate. The horizontal axis represents conformal

maps E0, while the vertical axis represents anticonformal maps E1. The lines

T1 and T2 are the target sets. The blue dot is the barycentre of the staircase

laminate ⌫A, while the red dots are the points of its support. Finally, the

orange lines are rank-one connections.

For 0 < � < ⇡/2 we introduce the set

E�

1 := {(0, z) 2 E1 : | arg z| < �} , S
�

n
:= Sn \ E�

1 .

Lemma 5.12. Let 0 < � < ⇡/4 and 0 < ⇢ < min{m, 12}, with m > 0 defined in

(5.60). There exists a constant cK > 1 depending only on K,S1, S2, such that for

every A = (a, b) 2 M2⇥2 satisfying

dist(A,Sn) < ⇢ , (5.79)

there exists a laminate of third order ⌫A, such that:

(i) ⌫A = A,

(ii) supp ⌫A ⇢ T [ Sn+1 ,
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(iii) supp ⌫A ⇢ {⇠ 2 M2⇥2 : c�1
K
n < |⇠| < cK n} ,

(iv) supp ⌫A \ Sn+1 = {(n+ 1)JR}, with R = R✓A as in (5.47).

Moreover
⇣
1� cK

⇢

n

⌘
�n(R)  ⌫A(Sn+1) 

⇣
1 + cK

⇢

n

⌘
�n+2(R) , (5.80)

where �n is defined in (5.60). If in addition n � 2 and

dist(A,S�

n
) < ⇢ , (5.81)

then

| argR| = |✓A| < � + ⇢ . (5.82)

In particular supp ⌫A ⇢ T [ S
�+⇢

n+1.

Proof. Let us start by defining ⌫A. From Lemma 5.9 there exist cK > 1 and non

zero matrices Q 2 T1, P 2 E1, such that det(P �Q) = 0,

A = µ1Q+ (1� µ1)P , for some µ1 2 [0, 1] , (5.83)
1

cK
|A|  |P �Q| , |P | , |Q|  cK |A| . (5.84)

Moreover P = tJR with R = R✓A = (r, 0) as in (5.47) and t > 0. We will estimate

t. By (5.79), there exists R̃ 2 SO(2) such that |A � nJR̃| < ⇢. Applying Lemma

5.8 to A� nJR̃ and P � nJR̃ yields

|P � nJR̃| <
p

2⇢ , (5.85)

since P � nJR̃ 2 E1. Hence from (5.85) we get

|t� n| < ⇢ , (5.86)

since |JR| = |JR̃| =
p
2. We also have

µ1 =
|A�Q|

|P �Q|
� 1�

|P � A|

|P �Q|
� 1� cK

⇢

n
, (5.87)

since |P � A| < 3⇢ and |P �Q| > n/cK , by (5.81), (5.84), (5.85).

Next we split P in order to “climb” one step of the staircase (see Figure 5.2).

Define x := cos ✓A, y := sin ✓A and

a :=
x

k
+ i

y

s
,

136



as in (5.58). Moreover set

Q1 := �1(a, d1(a)) , Q2 := �2(�a, d2(a)) .

Here �1,�2 are chosen as in (5.53), so that Qj 2 Tj and, by Lemma 5.10, det(Qj �

JR) = 0. Furthermore, set
8
>><

>>:

µ2 :=
M2 � (t� n)M2

2n+M2 + (t� n)(2�M2)
,

µ3 :=
M1 � (t� n)M1

2(n+ 1)
,

(5.88)

with Mj as in (5.60). With the above choices we have
8
<

:
tJR = µ2tQ1 + (1� µ2)P̃ ,

P̃ = µ3(n+ 1)Q2 + (1� µ3)(n+ 1)JR ,
(5.89)

and µ2, µ3 2 [0, 1] by (5.61). In order to check (5.89), we solve the first equation in

P̃ to get

�2tJR + (1� �2)tQ1 = �3(n+ 1)Q2 + (1� �3)(n+ 1)JR , (5.90)

with µ2 = 1 � 1/�2 and µ3 = �3. Equating the first conformal coordinate of both

sides of (5.90) yields

�2 = 1 + �3
n+ 1

t

�2
�1

. (5.91)

Substituting (5.91) in the second component of (5.90) gives us

�3
�
�1 + �2 � �1�2 (d1(a) + d2(a)) r

�1
�
=

1� (t� n)

n+ 1
�1 . (5.92)

By (5.58), d1(a) + d2(a) = 2r and equation (5.92) yields

�3 =
1� (t� n)

n+ 1

�1
�1 + �2 � 2�1�2

=
1� (t� n)

2(n+ 1)
M1 . (5.93)

Equations (5.91) and (5.93) give us (5.88). Therefore, by (5.83) and (5.89), the

measure

⌫A := µ1�Q + (1� µ1)
�
µ2�tQ1 + (1� µ2)

�
µ3�(n+1)Q2 + (1� µ3)�(n+1)JR

��

defines a laminate of third order with barycenter A, supported in T1[T2[Sn+1 and

such that supp ⌫A \ Sn+1 = {(n+ 1)JR} with R = R✓A . Moreover

supp ⌫A ⇢ {⇠ 2 M2⇥2 : c�1
K
n < |⇠| < cK n} ,
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since c�1
K
n < |Q| < cKn by (5.79),(5.84) and

c�1
K
n < |tQ1|, |(n+ 1)Q2| < cKn

by (5.86), (5.55). Next we prove (5.80) by estimating

⌫A(Sn+1) = µ1(1� µ2)(1� µ3) . (5.94)

Notice that ⌫A(Sn+1) depends on R. For small ⇢, we have

µ2 =
M2

2n
+ ⇢O

✓
1

n

◆
, µ3 =

M1

2n
+ ⇢O

✓
1

n

◆
,

so that

(1� µ2)(1� µ3) = 1�
M1 +M2

2n
+ ⇢O

✓
1

n2

◆
= 1�

1 + l

n
+ ⇢O

✓
1

n2

◆
,

with l as in (5.60). Although this gives the right asymptotic, we will need to estimate

(5.94) for every n 2 N. By direct calculation

(1� µ2)(1� µ3) =
n+ (t� n)

n+ 1

2n+ 2�M1 + (t� n)M1

2n+M2 + (t� n)(2�M2)
,

so that

(1� µ2)(1� µ3) =

✓
1 +

t� n

n

◆✓
1�

1

n+ 1

◆✓
1�

2l (1� (t� n))

2n+M2 + (t� n)(2�M2)

◆
.

(5.95)

Let us bound (5.95) from above. Recall that t � n < ⇢ < 1 and 2 � M2 > 0, by

(5.61), so the denominator of the third factor in (5.95) is bounded from above by

2(n+ 1) and

(1� µ2)(1� µ3) 
⇣
1 +

⇢

n

⌘✓
1�

1

n+ 1

◆✓
1�

l

n+ 1
+ l

⇢

n+ 1

◆



⇣
1 + cK

⇢

n

⌘✓
1�

1

n+ 1

◆✓
1�

l

n+ 1

◆
,

(5.96)

where cK > 1 is such that

l
⇢

n+ 1

⇣
1 +

⇢

n

⌘
 (cK � 1)

⇢

n

✓
1�

l

n+ 1

◆
.

Moreover
✓
1�

1

n+ 1

◆✓
1�

l

n+ 1

◆
= 1�

1 + l

n+ 1
+

l

(n+ 1)2
 1�

1 + l

n+ 2
= �n+2(R) . (5.97)
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The upper bound in (5.80) follows from (5.96) and (5.97).

Let us now bound (5.95) from below. We can estimate from below the denom-

inator in the third factor of (5.95) with 2n, since t � n > �⇢ by (5.86) and the

assumption that ⇢ < m with m as in (5.60). Therefore

(1� µ2)(1� µ3) �
⇣
1�

⇢

n

⌘✓
1�

1

n+ 1

◆✓
1�

l

n
� l

⇢

n

◆

�

⇣
1� cK

⇢

n

⌘✓
1�

1

n+ 1

◆✓
1�

l

n

◆
,

(5.98)

if we choose cK > 1 such that

⇣
1�

⇢

n

⌘
l  (cK � 1)

✓
1�

l

n

◆
.

Finally ✓
1�

1

n+ 1

◆✓
1�

l

n

◆
� 1�

1 + l

n
= �n(R) . (5.99)

The lower bound in (5.80) follows from (5.98) and (5.99).

Finally, the last part of the statement follows from a simple geometrical argu-

ment, recalling that argR = ✓A = � arg(b� d1(a)) and using hypothesis (5.81).

Remark 5.13. By iteratively applying Lemma 5.12, one can obtain, for every R✓ 2

SO(2), a sequence of laminates of finite order ⌫n 2 L(M2⇥2) that satisfies ⌫n = JR✓,

supp ⌫n ⇢ T1 [ T2 [ Sn+1, and

lim
n!1

Z

M2⇥2

|�|p(R✓) d⌫n(�) = 1 , (5.100)

where p(R✓) 2
⇥

2S
S+1 ,

2K
K+1

⇤
is the function defined in (5.60). Indeed, setting A = JR✓

and iterating the construction of Lemma 5.12, yields ⌫n 2 L(M2⇥2) such that ⌫n =

JR✓ and supp ⌫n ⇢ T1 [ T2 [ Sn+1. Notice that ⌫n contains the term

nY

j=1

(1� µj

2)(1� µj

3)�(n+1)JR✓
,

with µj

2, µ
j

3 as defined in (5.88). Therefore, using (5.62) and (5.80) (with ⇢ = 0), we

obtain
nY

j=1

(1� µj

2)(1� µj

3) ⇡
nY

j=1

�j(R✓) ⇡
1

np(R✓)
(5.101)

which implies (5.100).
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In particular, by applying Proposition 5.5 to ⌫n, and by a diagonal argument,

we can obtain a sequence fn : ⌦ ! R2 of piecewise affine Lipschitz functions such

that fn(x) = JR✓x on @⌦ and

lim
n!1

Z

⌦

|rfn|
p(R✓) dx = 1 (5.102)

by (5.24) and (5.100).

Remark 5.14. In the isotropic case S = K, the laminate ⌫A provided by Lemma

5.12 coincides with the one in [5, Lemma 3.16]. In particular, the growth condition

(5.80) is independent of the initial point A, and it reads as

⇣
1� cK

⇢

n

⌘
�n(I)  ⌫A(Sn+1) 

⇣
1 + cK

⇢

n

⌘
�n+2(I) , �n(I) = 1�

1 + k

n
.

Moreover, by Remark 5.13, for every R✓ 2 SO(2), JR✓ is the centre of mass of

a sequence of laminates of finite order such that (5.100) holds with p(R✓) ⌘
2K
K+1 ,

which gives the desired growth rate.

In contrast, in the anisotropic case 1 < S < K, the growth rate of the laminates

explicitly depends on the argument of the barycenter JR✓. The desired growth rate

corresponds to ✓ = 0, that is, the centre of mass has to be J .

In constructing approximate solutions with the desired integrability properties,

it is then crucial to be able to select rotations whose angle lies in an arbitrarily small

neighbourhood of ✓ = 0.

We now proceed to show the existence of a piecewise affine map f that solves

the differential inclusion (5.36) up to an arbitrarily small L1 error. Such map will

have the integrability properties given by (5.103).

Proposition 5.15. Let ⌦ ⇢ R2 be an open bounded domain. Let K > 1, ↵ 2 (0, 1),

" > 0, 0 < �0 <
2K
K+1 �

2S
S+1 , � > 0. There exist a constant cK,�0 > 1, depending only

on K,S1, S2, �0, and a piecewise affine map f 2 W 1,1(⌦;R2) \ C↵(⌦;R2), such that

(i) f(x) = Jx on @⌦,

(ii) [f � Jx]
C↵(⌦) < ",

(iii) dist(rf(x), T ) < � a.e. in ⌦.
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Moreover
1

cK,�0

t�
2K
K+1 <

|{x 2 ⌦ : |rf(x)| > t}|

|⌦|
< cK,�0 t

�p , (5.103)

where p 2
�

2K
K+1 � �0,

2K
K+1

⇤
. That is, rf 2 Lp

weak(⌦;M2⇥2) and rf /2 L
2K
K+1 (⌦;M2⇥2).

In particular f 2 W 1,q(⌦;R2) for every q < p, but
R
⌦ |rf(x)|

2K
K+1 dx = 1.

Proof. By Lemma 5.11 the function p : (�⇡, ⇡] !
⇥

2S
S+1 ,

2K
K+1

⇤
is uniformly contin-

uous. Let ↵ : [0,1] ! [0,1] be its modulus of continuity. Fix 0 < � < ⇡/4 such

that

↵(�) < �0 . (5.104)

Let {⇢n} be a strictly decreasing positive sequence satisfying

⇢1 <
1

4
min{m, c�1

K
, dist(S1, T ), �} , ⇢n <

�

4
2�n , (5.105)

where m > 0 and cK > 1 are the constants from Lemma 5.12. Define {�n} as

�1 := 0 and �n :=
n�1X

j=1

⇢n for n � 2 . (5.106)

In particular from (5.105),(5.106) it follows that

�n <
�

2
, for every n 2 N . (5.107)

Step 1. Similarly to the proof of [5, Proposition 3.17], by repeatedly combining

Lemma 5.12 and Proposition 5.5, we will prove the following statement:

Claim. There exist sequences of piecewise constant functions ⌧n : ⌦ ! (0,1) and

piecewise affine Lipschitz mappings fn : ⌦ ! R2, such that

(a) fn(x) = Jx on @⌦,

(b) [fn � Jx]
C↵(⌦) < (1� 2�n)",

(c) dist(rfn(x), T [ S
�n
n
) < ⌧n(x) a.e. in ⌦,

(d) ⌧n(x) = ⇢n in ⌦n,
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where

⌦n := {x 2 ⌦ : dist(rfn(x), T ) � ⇢n} .

Moreover
n�1Y

j=1

✓
1� cK

⇢j
j

◆
�j(R0) 

|⌦n|

|⌦|


n�1Y

j=1

✓
1 + cK

⇢j
j

◆
�j+2(R�) . (5.108)

Proof of claim. We proceed by induction. Set f1(x) := Jx and ⌧1(x) := ⇢1 for

every x 2 ⌦. Since J 2 S
0
1 , then f1 satisfies (a)-(c). Also, ⇢1 < dist(T,S1)/4 by

(5.105), so ⌦1 = ⌦ and (d), (5.108) follow.

Assume now that fn and ⌧n satisfy the inductive hypothesis. We will first de-

fine fn+1 by modifying fn on the set ⌦n. Since fn is piecewise affine we have a

decomposition of ⌦n into pairwise disjoint open subsets ⌦n,i such that
�����⌦n r

1[

i=1

⌦n,i

����� = 0 , (5.109)

with fn(x) = Aix+ bi in ⌦n,i, for some Ai 2 M2⇥2 and bi 2 R2. Moreover

dist(Ai,S
�n
n
) < ⇢n (5.110)

by (c) and (d). Since (5.110) and (5.105) hold, we can invoke Lemma 5.12 to obtain

a laminate ⌫Ai and a rotation Ri = R✓Ai
satisfying, in particular, ⌫Ai = Ai,

| argRi
| = |✓Ai | < �n+1 , (5.111)

supp ⌫Ai ⇢ T [ S
�n+1
n+1 , (5.112)

since �n+1 = �n + ⇢n by (5.106). By applying Proposition 5.5 to ⌫Ai and by taking

into account (5.112), we obtain a piecewise affine Lipschitz mapping gi : ⌦n,i ! R2,

such that

(e) gi(x) = Aix+ bi on @⌦n,i,

(f) [gi � fn]C↵(⌦n,i)
< 2�(n+1+i)",

(g) c�1
K
n < |rgi(x)| < cKn a.e. in ⌦n,i,

(h) dist(rgi(x), T [ S
�n+1
n+1 ) < ⇢n+1 a.e. in ⌦n,i.
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Moreover
⇣
1� cK

⇢n
n

⌘
�n(R

i) 
|!n,i|

|⌦n,i|


⇣
1 + cK

⇢n
n

⌘
�n+2(R

i) , (5.113)

with

!n,i :=
���
n
x 2 ⌦n,i : dist(rgi(x),S

�n+1
n+1 ) < ⇢n+1

o��� .

Set

fn+1(x) :=

8
><

>:

fn(x) if x 2 ⌦r ⌦n ,

gi(x) if x 2 ⌦n,i .

Since ⌦n+1 is well defined, we can also introduce

⌧n+1(x) :=

8
><

>:

⌧n(x) for x 2 ⌦r ⌦n+1 ,

⇢n+1 for x 2 ⌦n+1 ,

so that (d) holds. From (e) we have fn+1(x) = Jx on @⌦. From (f) we get [fn+1 �

fn]C↵(⌦) < 2�(n+1)" so that (b) follows. (c) is a direct consequence of (d), (h), and the

fact that ⇢n is strictly decreasing. Finally let us prove (5.108). First notice that the

sets !n,i are pairwise disjoint. By (5.105), in particular we have ⇢n+1 < dist(T,S1)/4,

so that �����⌦n+1 r
1[

i=1

!n,i

����� = 0 . (5.114)

By (5.111) and (5.107) we have | argRi
| < �. Then by the properties of �n (see

Lemma 5.11),

�n(R
i) � �n(R0) and �n+2(R

i)  �n+2(R�) . (5.115)

Using (5.115), (5.109), (5.114) in (5.108) yields

|⌦n|

⇣
1� cK

⇢n
n

⌘
�j(R0)  |⌦n+1|  |⌦n|

⇣
1 + cK

⇢n
n

⌘
�j+2(R�) ,

and (5.108) follows.

Step 2. Notice that on ⌦ r ⌦n we have that rfn+1 = rfn almost everywhere,

so ⌦n+1 ⇢ ⌦n. Therefore {fn} is obtained by modification on a nested sequence of

open sets, satisfying

n�1Y

j=1

✓
1� cK

⇢j
j

◆
�j(R0) 

|⌦n|

|⌦|


n�1Y

j=1

✓
1 + cK

⇢j
j

◆
�j+2(R�) .
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By (5.105) we have ⇢n < min{2�n �, c�1
K
}/4, so that

1Y

j=1

✓
1� cK

⇢j
j

◆
= c1 ,

1Y

j=1

✓
1 + cK

⇢j
j

◆
= c2 ,

with 0 < c1 < c2 < 1, depending only on K,S1, S2, � (and hence on �0, by (5.104)).

Moreover, from Lemma 5.11,

nY

j=1

�j(R✓) = n�p(R✓) +O

✓
1

n

◆
, uniformly in (�⇡, ⇡] .

Therefore, there exists a constant cK,�0 > 1 depending only on K,S1, S2, �0, such

that
1

cK,�0

n� 2K
K+1  |⌦n|  cK,�0 n

�p�0 , (5.116)

since p(R0) =
2K

K + 1
. Here p�0 := p(R�). Notice that, by (5.104), p�0 2

�
2K
K+1 � �0,

2K
K+1

⇤
,

since p is strictly decreasing in [0, ⇡/2].

From (5.116), in particular we deduce |⌦n| ! 0. Therefore fn ! f almost every-

where in ⌦, with f piecewise affine. Furthermore f satisfies (i)-(iii) by construction.

We are left to estimate the distribution function of rf . By (g) we have that

|rf(x)| >
n

cK,�0

in ⌦n and |rf(x)| < cK,�0 n in ⌦r ⌦n .

For a fixed t > cK,�0 , let n1 := [cK,�0t] and n2 := [c�1
K,�0

t], where [·] denotes the integer

part function. Therefore

⌦n1+1 ⇢ {x 2 ⌦ : |rf(x)| > t} ⇢ ⌦n2

and (5.103) follows from (5.116), with p = p�0 . Lastly, (5.103) implies that rfn is

uniformly bounded in L1, so that f 2 W 1,1(⌦;R2) by dominated convergence.

We remark that the constant cK,�0 in (5.103) is monotonically increasing as a

function of �0, that is cK,�1  cK,�2 if �1  �2.

We now proceed with the construction of exact solutions to (5.36). We will follow

a standard argument (see, e.g., [24, Remark 6.3], [48, Thoerem A.2]).

Theorem 5.16. Let �1, �2 be defined by (5.3) for some K,S1, S2 as in (5.46) and

S as in (5.42). There exist coefficients �n 2 L1(⌦; {�1, �2}), exponents pn 2
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⇥
2S
S+1 ,

2K
K+1

⇤
, functions un 2 W 1,1(⌦), such that

8
><

>:

div(�nrun) = 0 in ⌦ ,

un(x) = x1 on @⌦ ,
(5.117)

run 2 Lpn

weak(⌦;R2), pn !
2K

K + 1
, (5.118)

run /2 L
2K
K+1 (⌦;R2). (5.119)

In particular un 2 W 1,q(⌦) for every q < pn, but
R
⌦ |run|

2K
K+1 dx = 1.

Proof. By Proposition 5.15 there exist sequences fn 2 W 1,1(⌦;R2) \ C↵(⌦;R2),

�n & 0, pn 2
⇥

2S
S+1 ,

2K
K+1

⇤
, such that, fn(x) = Jx on @⌦,

dist(rfn, T1 [ T2) < �n a.e. in ⌦ , (5.120)

rfn 2 Lpn

weak(⌦;M2⇥2) , pn !
2K

K + 1
, rfn /2 L

2K
K+1 (⌦;M2⇥2) . (5.121)

In euclidean coordinates, condition (5.120) implies that
0

@rf 1
n

rf 2
n

1

A =

0

@ En

R⇡
2
�nEn

1

A+

0

@an

bn

1

A a.e. in ⌦ (5.122)

with fn = (f 1
n
, f 2

n
), �n := �1�{rf2T1} + �2�{rf2T2}, En : ⌦ ! R2, R⇡

2
=

0

@0 �1

1 0

1

A

and

an, bn ! 0 in L1(⌦;R2) . (5.123)

The boundary condition fn = Jx reads f 1
n
= x1 and f 2

n
= �x2. We set un := f 1

n
+vn,

where vn 2 H1
0 (⌦) is the unique solution to

div(�nrv) = � div(�nan �RT
⇡
2
bn) .

Notice that vn is uniformly bounded in H1 by (5.123). Since (5.122) holds, it is

immediate to check that div(�nrun) = div(RT
⇡
2
rf 2

n
) = 0, so that un is a solution of

(5.117). Finally, the regularity thesis (5.118), (5.119), follows from the definition of

un and the fact that vn 2 H1
0 (⌦) and f 1

n
satisfies (5.121) with 1 < pn < 2.
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5.6 Conclusions and perspectives

In this chapter we presented the results obtained in [21]. In that paper we addressed

the analysis of the critical integrability of distributional solutions to

div(�ru) = 0 in ⌦ ,

in dimension two, when � 2 {�1, �2} for two elliptic matrices �1, �2. In [48] the

authors characterise critical exponents q�1,�2 and p�1,�2 , and prove the optimality

of the upper critical exponent p�1,�2 , as stated in Theorem 5.1. In our paper [21]

we complemented the analysis in [48] by proving the optimality of the lower critical

exponent p�1,�2 in Theorem 5.2.

At present it is still not clear how to modify the proofs of our results in order to

obtain a stronger result as in [5], namely, to obtain a single map u 2 W 1,1(⌦) that

satisfies (5.6) and such that ru 2 L
2K
K+1

weak(⌦) but
Z

B

|ru|
2K
K+1 dx = +1

for every ball B ⇢ ⌦. A suitable modification of the staircase laminate we construct

in Lemma 5.12 might be required.

Another interesting open problem is the extension of these results to the case of

three (or more) phases, i.e., � 2 L1(⌦; {�1, �2, �3}). In this context a characterisa-

tion for the lower and upper critical exponents q�1,�2,�3 and p�1,�2,�3 is not known. A

first step in this direction would be to extend the results in [48] in order to compute

q�1,�2,�3 and p�1,�2,�3 as functions of the ellipticity constant of � and subsequently

prove the analog of Theorems 5.1, 5.2.

Finally, a more ambitious goal is to understand the problem in dimension d � 3,

even in the simple case of two isotropic phases, i.e., � 2 {KI,K�1I}, for K > 1.

A fundamental tool employed in the analysis of the two-dimensional case was the

celebrated Astala’s Theorem in [4]. An analog of such result is missing in higher

dimension.
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Appendix A

Calculus of Variations and

Geometric Measure Theory

A.1 Direct methods of the Calculus of Variations

A.1.1 Direct method

Let (X, k·k) be a reflexive and separable Banach space and S ✓ X be a closed and

convex subspace. Consider a functional F : X ! [�1,+1]. We are concerned

with the existence of solutions to the problem

inf {F(x), x 2 S} . (A.1)

We say that F is sequentially weakly lower semicontinuous (swls) if for any sequence

xn * x (with respect to the weak topology of X) we have F(x)  lim infn!1 F(xn).

We say that F is coercive on S if

lim
kxkX!+1

x2S

F(x) = +1 .

Theorem A.1 (Direct method). Assume that F is swls and coercive on S. Then

there exists a solution to (A.1). If in addition F is strictly convex on S, the solution

is unique.

An example of application of the direct method can be found in the proof of

Proposition 4.11.
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A.1.2 �-convergence

In this section (X, ⌧) will be a topological space. In some applications one is lead

to study a family of minimisation problems depending on a continuous parameter

" > 0

min {F"(x) : x 2 X} , (A.2)

where F" : X ! [�1,+1]. Sometimes it can be difficult to study (A.2) directly,

but it is possible to guess an asymptotic behaviour for the minimisers and get rid

of the parameter ", by defining a limiting problem

min {F(x) : x 2 X} , (A.3)

for some functional F : X ! [�1,+1]. The idea is to define a notion of conver-

gence of functionals, which is stable from the variational point of view. This means

that if x" are solutions to (A.2) such that x" ! x, then the following properties

should hold true:

• x is solution to (A.3),

• F"(x") ! F(x).

We will make this statement precise by introducing �-convergence in Definition A.2.

Such definition will satisfy the above properties, as stated in Theorem A.4.

An example of application of �-convergence is the author’s work [23] (discussed

in Chapter 4). In this paper the family (A.2) describes a mesoscopic theory for

defects in a crystal and the limiting problem (A.3) can be physically interpreted as

a macroscopic model for the defects.

�-convergence can be used also in the opposite direction. An example of this

procedure are dimension reduction problems, as in [43, 44, 29]. Another example of

application of �-convergence is the derivation of linearised elasticity starting from

nonlinear elasticity, as done in [15] (see Section 3.4.2 for more details).

Definition A.2 (�-convergence). We say that a sequence F" : X ! [�1,+1]

�-converge to F : X ! [�1,+1] in X (as "! 0) if for all x 2 X we have:

(i) (�-liminf inequality) for every sequence x" such that x" ! x,

F(x)  lim inf
"!0

F"(x") ,
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(ii) (�-limsup inequality) there exists a sequence x" (called recovery sequence)

such that x" ! x and

lim sup
"!0

F"(x")  F(x) .

F is called the �-limit of F" and we write F"

�
! F .

We remark that the above definition can also be stated pointwise, i.e., we say

that F" �-converge at x0 2 X to F(x0) if (i), (ii) hold for x0. Also notice that if (i)

holds for every x 2 X then (ii) is equivalent to

(iii) there exists a recovery sequence x" ! x such that

F(x) = lim
"!0

F"(x") .

Before proceeding to state the main theorem for �-convergence, we introduce a

compactness property that will guarantee convergence of minimising sequences.

Definition A.3 (Equi-coercivity). A family of functionals F" : X ! [�1,+1] is

equi-coercive if for every sequence x" 2 X such that

sup
"

F"(x")  C

for some C > 0, we have that x" ! x, up to subsequences.

Theorem A.4 (See Theorem 1.21 in [7]). Let F",F : X ! [�1,+1] and assume

(i) (Compactness): the functionals F" are equi-coercive,

(ii) (�-convergence): F" �-converge to F .

Then F admits minimum on X and

lim
"!0

inf
X

F" = min
X

F .

If x" is a sequence of almost minimisers for F", that is, lim"!0 F"(x") = lim"!0 infX F",

then x" is precompact and any accumulation point of x" is a minimiser for F on X.

In view of Theorem A.4, the prototypical �-convergence result will involve prov-

ing both compactness and �-convergence for the functionals F" with respect to the

same topology on the ambient space X. This implies that the choice of topology will

play a crucial role, since one needs to balance between having many open sets (for

the compactness) and few open sets (for the �-convergence). Moreover the topology

also influences the structure of the �-limit F .
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A.2 Measure theory

In this section we want to recall the main definitions and notation in measure theory

used throughout this thesis. We will also recall the main properties needed. We

will mainly follow the approach of [3], which the reader can refer to for further

clarification.

Throughout this section, X will coincide either with Rn, or with an open bounded

subset ⌦ ⇢ Rn. We will denote by ⌧ the topology induced by the euclidean norm

on X.

A.2.1 Radon measures

Let A be a collection of subsets of X. We say that A is a �-algebra on X if ; 2 A,

X \U 2 A and
S

i2N Ui 2 A for every set U 2 A and every sequence {Ui} ⇢ A. The

pair (X,A) is called a measure space. We denote by B(X) the �-algebra of Borel,

that is, the smallest �-algebra on X containing the open sets of the topology ⌧ . We

will now introduce the notion of positive measure.

Definition A.5 (Positive measures). Let (X,A) be a measure space and let µ : A !

[0,1]. We say that µ is a positive measure if µ(;) = 0 and µ is �-additive, that is,

µ

 1[

i=1

Ui

!
=

1X

i=1

µ(Ui) ,

for every sequence Ui of pairwise disjoint elements of A. We say that the positive

measure µ is finite if µ(X) < 1. We say that a set E ⇢ X is µ-negligible if there

exists U 2 A such that E ⇢ U and µ(U) = 0. We say that a property depending

on points of X holds µ-a.e. if the set where it fails is µ-negligible.

We now define vector valued measures.

Definition A.6 (Real and vector measures). Let (X,A) be a measure space and

let m 2 N, m � 1. We say that µ : A ! Rm is a measure if µ(;) = 0 and for every

sequence {Ui} of pairwise disjoint elements of A

µ

 1[

i=1

Ui

!
=

1X

i=1

µ(Ui) .

If m > 1 we say that µ is a vector measure. If m = 1 we say that µ is a real measure.
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Notice that positive measures are not a particular case of real measures, because

positive measures are allowed to be unbounded, while real measures must be finite.

For a measure µ : A ! Rm we define its total variation |µ| as the measure

|µ|(U) := sup

( 1X

i=1

|µ(Ui)| : Ui 2 A pairwise disjoint, U =
1[

i=1

Ui

)
,

for every U 2 A. Since µ is a measure, we have that |µ| is a positive finite measure

(see [3, Theorem 1.6]).

Definition A.7 (Regularity of measures). Consider the measure space (X,B(X)).

Then:

(i) a positive measure on (X,B(X)) is called a Borel measure. If a Borel measure

is finite on compact sets, it is said to be a positive Radon measure.

(ii) if µ : B(X) ! Rm is a measure, we say that it is a finite Radon measure. The

space of finite Rm-valued Radon measures is denoted by M(X;Rm).

For a positive measure µ on X we define its support as the set

suppµ := {x 2 X : µ(U) > 0 for every neighbourhood U of x}

If µ is a real or vector measure, then we define suppµ := supp |µ|.

For a measure µ on (X,A) and a fixed set A 2 A we define the restriction of µ

to A as the measure µ A defined as

(µ A)(U) := µ(U \ A) for all U 2 A .

If µ is a Borel (respectively Radon) measure and A is a Borel set, then also µ A

is Borel (respectively Radon). Finally, if u : X ! R, we say that u is µ-measurable

if {x 2 X : u(x) > t} 2 A for every t 2 R. For 1  p  1 the spaces Lp(X,µ)

are defined as usual (see for example [3, Chapter 1]). Also we set Lp(X,µ;Rm) :=

[Lp(X,µ)]m, product of vector spaces.

A.2.2 Duality with continuous functions

Let Cc(X) be the vector space of real continuous functions on X with compact

support. We endow Cc(X) with the norm kuk1 := sup{|u(x)|, x 2 X}. Denote as
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C0(X) the completion of Cc(X) with respect to such norm, so that (C0(X), k·k1)

is a Banach space. Notice that C0(Rn) coincides with the space of real continuous

functions on Rn vanishing at infinity. We will also define Cc(X;Rm) := [Cc(X)]m

and C0(X;Rm) := [C0(X)]m, products of vector spaces, for m 2 N,m > 1.

Theorem A.8 (Riesz (Remark 1.57 in [3])). The dual of C0(X;Rm) is the space

M(X;Rm) of finite Rm-valued Radon measures on X, under the pairing

hµ, ui :=
mX

i=1

Z

X

ui dµi .

Moreover, |µ|(X) is the dual norm.

Definition A.9 (Weak-⇤ convergence.). For µ 2 M(X;Rm) and a sequence µj

belonging to M(X;Rm), we say that µj weakly-⇤ converges to µ, in symbols µj

⇤
* µ,

if

lim
j!1

Z

X

u dµj =

Z

X

u dµ ,

for every u 2 C0(X).

Example A.10 (Dirac masses). For a point x 2 ⌦ we define the Dirac measure

�x 2 M(⌦) as �x(U) = 1 if x 2 U and �x(U) = 0 if x /2 U . Label as xk the points of

(Z/j)⇥ (Z/j) lying in ⌦ and define the sequence of measures µj := M�1
j

PMj

k=1 �xk
,

where Mj ⇡ 1/j2 is the number of such points. We have that µj

⇤
* L

2 ⌦.

Thanks to the Riesz duality Theorem, we have the following compactness result.

Theorem A.11 (Weak-⇤ compactness (Theorem 1.59 in [3])). If {µj} ⇢ M(X;Rm)

is such that sup
j
|µj|(X) < 1, then (up to subsequences) µj

⇤
* µ for some µ belong-

ing to M(X;Rm). Moreover the norm map µ 7! |µ|(X) is lower semicontinuous

with respect to the weak-⇤ convergence.

A.2.3 Regularisation of Radon measures

Define Br(x) := {y 2 Rn : |y � x| < r}. We recall that a regularising kernel is a

function ⇢ 2 C1
c
(RN) such that ⇢(x) � 0, ⇢(x) = ⇢(�x) for any x, supp ⇢ ⇢ B1(0),

R
Rn ⇢ dx = 1. For " 2 (0, 1) we define the family of mollifiers as ⇢"(x) := "�n⇢(x/").

Let 1  p < 1 and f 2 Lp(⌦). The convolution of f with ⇢" is the map

(f ⇤ ⇢")(x) :=

Z

⌦

⇢"(x� y)f(y) dy
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for x 2 U" := {x 2 ⌦ : dist(x, @⌦) < "}. We have f ⇤ ⇢" 2 C1(U") and f ⇤ ⇢" ! f

in Lp(A) for every A ⇢⇢ ⌦.

If µ 2 M(⌦;Rm) we define the function µ ⇤ ⇢" : U" ! Rm as

(µ ⇤ ⇢")(x) :=

Z

⌦

⇢"(x� y) dµ(y) .

Theorem A.12 (see Theorem 2.2 in [3]). Let µ 2 M(⌦;Rm). Then µ ⇤ ⇢" belongs

to C1(U";Rm). Moreover the measures µ" := µ ⇤ ⇢" dx are such that

µ"

⇤
* µ in M(A;Rm) and |µ"|

⇤
* |µ| in M(A) ,

for any fixed A ⇢⇢ ⌦.

A.2.4 Differentiation of measures

We refer to [40, Section 5.2] for this section.

Definition A.13 (Absolute continuity and singlularity). Let µ, ⌫ 2 M(X) and

�, ⌘ 2 M(X;Rm). We say that:

(i) ⌫ is absolutely continuous with respect to µ, in symbols ⌫ ⌧ µ, if for every

U 2 B(X) such that µ(U) = 0 we have ⌫(U) = 0,

(ii) µ and ⌫ are mutually singular, in symbols µ ? ⌫, if there exists U 2 B(X)

such that µ(U) = ⌫(X \ U) = 0,

(iii) � is absolutely continuous with respect to µ if |�| ⌧ µ,

(iv) � and ⌘ are mutually singular if |�| ? |⌘|.

Theorem A.14 (Radon-Nikodym (see Corollary 5.11 in [40])). Let µ 2 M(X;Rm)

and ⌫ 2 M(X). Then there exists a unique pair of measures µa, µs
2 M(X;Rm)

such that

µ = µa + µs , with µa
⌧ ⌫, µs

? ⌫ .

Moreover there exists a unique function f 2 L1
loc(X,µ;Rm) such that

µa = f ⌫ .

The function f is denoted as dµ/d⌫ and it is such that

dµ

d⌫
(x) = lim

r!0+

µ(Br(x))

⌫(Br(x))
(A.4)

for ⌫-a.e. x 2 X.
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For µ 2 M(X;Rm) we clearly have |µ| ⌧ µ. Therefore, as a corollary of the

Radon-Nikodym Theorem we have the so called polar decomposition of µ.

Corollary A.15 (Polar decomposition (Corollary 1.29 in [3])). Let µ 2 M(X;Rm).

Then there exists a unique Sm�1-valued function dµ/d|µ| 2 L1
loc(X, |µ|;Rm) such

that µ = dµ/d|µ| |µ|. Furthermore dµ/d|µ| can be computed by using formula (A.4)

for |µ|-a.e. x 2 X.

Example A.16. As an example, for the measure µ := ⇠ �x0 with x0 2 X, ⇠ 2

Rm
\ {0} we have

dµ

d|µ|
(x) =

8
>><

>>:

⇠

|⇠|
for x = x0,

+1 otherwise,

since |µ| = |⇠| �x0 . If instead µ := f dx for some f 2 Lp

loc(X;Rm), then dµ/dx = f .

Consider a function ' : Rm
! [0,1] and define the functional H : M(X;Rm) !

[0,1] as

H(µ) :=

Z

⌦

'

✓
dµ

d|µ|

◆
d|µ| .

We are interested in the properties of such functional, first studied in [56].

First notice that if ' : Rm
! [0,1] is convex and positively 1-homogeneous, that

is, '(�⇠) = �'(⇠) for every � > 0, ⇠ 2 Rm, then also H is convex and positively

1-homogeneous. We have the following theorems (see [3, Theorems 2.38, 2.39]).

Theorem A.17 (Reshetnyak). Let ' : Rm
! [0,1] be convex and positively 1-

homogeneous and consider the sequence µj 2 M(X;Rm). The following statements

hold:

(i) (Reshetnyak lower semicontinuity) if µj

⇤
* µ, then

H(µ)  lim inf
j!1

H(µj) , (A.5)

(ii) (Reshetnyak continuity) if |µj|(⌦) ! |µ|(⌦), then

lim
j!1

H(µj) = H(µ) . (A.6)
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A.3 Functions with bounded variation

We refer to [3], [20], [40] for this appendix on BV functions. Throughout this section

n,m � 1 and ⌦ ⇢ Rn is a bounded domain with Lipschitz boundary. For a map u in

L1(⌦;Rm) we denote as Du 2 D
0(⌦;Mm⇥n) its distributional derivative. The entries

of Du are given by (Du)ij = @ui/@xj, which coincides with the j-th distributional

partial derivative of ui, where u = (u1, . . . , um).

Definition A.18 (BV functions). Let u 2 L1(⌦). We say that u has bounded

variation in ⌦ if its distributional gradient is a vector valued finite Radon measure

on ⌦, that is, if Du 2 M(⌦;Rn). This means
Z

⌦

u div' dx = �

Z

⌦

' · dDu ,

for all ' 2 C1
c
(⌦;Rn). The space of functions of bounded variation is denoted as

BV (⌦).

Analogously we can introduce vector valued functions with bounded variation.

If u 2 L1(⌦;Rm), we say that u 2 BV (⌦;Rm) if Du 2 M(⌦;Mm⇥n), that is, if
Z

⌦

u ·Div' dx = �

Z

⌦

' : dDu ,

for every ' 2 C1
c
(⌦;Mm⇥n). Here we denote Div' := (div f1, . . . , div fm) where

f = (f1, . . . , fm).

Example A.19 (Sobolev functions have bounded variation). The Sobolev space

W 1,1(⌦;Rm) is contained in BV (⌦;Rm), since for u 2 W 1,1(⌦;Rm) we have Du =

ruLn, where ru is the weak derivative of u. Notice that the inclusion is strict:

indeed if ⌦ := (�1, 1) ⇢ R and u := �(0,1), then Du = �0, so that u 2 BV (�1, 1),

but u /2 W 1,1(�1, 1).

Proposition A.20 (See Proposition 3.2 in [3]). Let u 2 BV (⌦;Rm) be such that

Du = 0. Then u = c a.e. in ⌦, where c 2 Rm is a constant.

It is useful to introduce the concept of variation for a BV function u in ⌦.

Definition A.21 (Variation). Let u 2 L1(⌦;Rm). The variation V (u,⌦) of u in ⌦

is defined as

V (u,⌦) := sup

⇢Z

⌦

u ·Div' dx : ' 2 C1
c
(⌦;Mm⇥n), k'k

L1(⌦)  1

�
.
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For BV functions the variation enjoys the following properties (see Proposition

[3, Proposition 3.6]).

Proposition A.22. Let u 2 L1(⌦;Rm). Then u 2 BV (⌦;Rm) if and only if

V (u,⌦) < 1. In addition V (u,⌦) = |Du|(⌦), where |Du|(⌦) denotes the to-

tal variation of the measure Du. Furthermore the map u 7! |Du|(⌦), defined for

u 2 BV (⌦;Rm), is lower semicontinuous with respect to the L1(⌦;Rm) topology,

that is

|Du|(⌦)  lim inf
j!1

|Duj|(⌦)

for every sequence uj belonging to BV (⌦;Rm) and such that uj ! u in L1(⌦;Rm).

In view of the above proposition, we will call |Du|(⌦) the variation of u in ⌦.

A.3.1 Topologies on BV

For u 2 BV (⌦;Rm) we define the norm

kuk
BV

:=

Z

⌦

|u| dx+ |Du|(⌦) .

Notice that BV (⌦;Rm) equipped with such norm is a Banach space. However the

BV norm is too strong for many applications, therefore we introduce two weaker

topologies on BV , induced by the so-called weak-⇤ convergence and strict conver-

gence.

Definition A.23 (Weak-⇤ convergence). Let uj, u 2 BV (⌦;Rm). We say that uj

weakly-⇤ converges to u in BV (⌦;Rm) if uj ! u in L1(⌦;Rm) and Duj

⇤
* Du in

M(⌦;Mm⇥n), that is

lim
j!1

Z

⌦

' dDuj =

Z

⌦

' dDu ,

for every ' 2 C0(⌦).

The following proposition characterises weak-⇤ convergence in BV (see [3, Propo-

sition 3.13]).

Proposition A.24 (Characterisation of weak-⇤ convergence). Let uj 2 BV (⌦;Rm).

Then uj weakly-⇤ converges to u in BV (⌦;Rm) if and only if sup
j
kujkBV

< 1 and

uj ! u in L1(⌦;Rm).
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Definition A.25 (Strict convergence). Let uj, u 2 BV (⌦;Rm). We say that uj

strictly converges to u in BV (⌦;Rm) if uj ! u in L1(⌦;Rm) and

lim
j!1

|Duj|(⌦) = |Du|(⌦) .

Notice that strict convergence implies weak-⇤ convergence by Proposition A.24.

However the converse is not true. For example uj(x) := sin(jx)/j weakly-⇤ converges

to 0 in BV (0, 2⇡), but |Duj|((0, 2⇡)) = 4.

Let us turn our attention to density of smooth functions in BV . Indeed, we have

the inclusions

C1(⌦;Rm) ⇢ W 1,1(⌦;Rm) ⇢ BV (⌦;Rm) .

For u 2 C1(⌦;Rm), we have

|Du|(⌦) =

Z

⌦

|ru| dx ,

therefore the closure of C1(⌦;Rm) in BV (⌦;Rm) with respect to the BV norm co-

incides with W 1,1(⌦;Rm). However, C1(⌦;Rm) is dense in BV (⌦;Rm) with respect

to the strict convergence, as stated in the following theorem (see [3, Theorem 3.9]).

Theorem A.26 (Density of smooth functions). Let u 2 L1(⌦;Rm). Then u belongs

to BV (⌦;Rm) if and only if there exists a sequence uj belonging to C1(⌦;Rm) and

such that uj ! u strictly in BV (⌦;Rm), that is, uj ! u in L1(⌦;Rm) and

lim
j!1

Z

⌦

|ruj| dx = |Du|(⌦) .

The following theorem provides us with a compactness criterion in BV (see [3,

Theorem 3.23]).

Theorem A.27 (Compactness in BV ). Let uj be a sequence in BV (⌦;Rm) and

assume that uj is uniformly bounded in BV norm, i.e.,

sup

⇢Z

⌦

|uj| dx+ |Duj|(⌦) : j 2 N
�

< 1 .

Then there exist a subsequence of uj (not relabelled) and a function u 2 BV (⌦;Rm),

such that uj ! u weakly-⇤ in BV , that is uj ! u in L1(⌦;Rm) and Duj

⇤
* Du in

M(⌦;Mm⇥n).
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A.3.2 Embedding theorems for BV

In this section we will be concerned with embedding theorems for the space BV (⌦).

We start by recalling the classic Poincaré inequality in BV (see [3, Theorem 3.44]).

Theorem A.28 (Poincaré inequality). Let ⌦ ⇢ Rn be a bounded Lipschitz domain.

Then there exists a positive constant C, depending only on ⌦, such that for every

u 2 BV (⌦), Z

⌦

|u� u⌦| dx  C |Du|(⌦) . (A.7)

Here the scalar u⌦ := 1/|⌦|
R
⌦ u dx is the average of u in ⌦.

For our applications in Chapter 4, we will need a version of (A.7) for BV func-

tions satisfying a Dirichlet type condition in a region of the domain ⌦ having positive

measure. The precise statement is given in the following theorem.

Theorem A.29 (Poincaré inequality with boundary data). Let ⌦ ⇢ Rn be a bounded

open domain and let ⌦0 := {x 2 Rn : dist(x,⌦) < 1}. Fix boundary data g 2

BV (⌦0). Then there exists a constant C > 0, depending only on ⌦0 and g, with the

following property: for every u 2 BV (⌦0) such that u = g a.e. in ⌦0
\ ⌦ we have

Z

⌦0
|u| dx  C |Du|(⌦0) . (A.8)

The proof of this Poincaré type inequality in BV can be easily obtained by

applying a standard argument (see for example the proof of Theorem 3.44 in [3]).

Proof. Step 1. We first prove inequality (A.8) in the case g ⌘ 0 in ⌦0, showing that

it holds for some constant C > 0 depending only on ⌦0. By contradiction, assume

that (A.8) is false. Then there exists a sequence uj 2 BV (⌦0) such that uj = 0 a.e.

on ⌦0
\ ⌦, and Z

⌦0
|uj| dx � j |Duj|(⌦

0) , for every j 2 N. (A.9)

Since the quantities appearing in (A.9) are 1-homogeneous and uj = 0 in ⌦0
\⌦, we

can rescale uj so that
Z

⌦0
|uj| dx = 1 , for every j 2 N. (A.10)

Hence (A.9) reads as

|Duj|(⌦
0) 

1

j
, for every j 2 N . (A.11)
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From (A.10)-(A.11) we deduce that kujkBV (⌦0) is uniformly bounded, so that (The-

orem A.27) there exists u 2 BV (⌦0) such that uj ! u in L1(⌦0). From (A.10), u

satisfies Z

⌦0
|u| dx = 1 . (A.12)

Moreover by the lower semicontinuity of the BV norm with respect to the L1 con-

vergence (Proposition A.22), from (A.11) we deduce |Du|(⌦0) = 0. Since ⌦0 is

connected, Proposition A.20 implies that u = c a.e. in ⌦0, for some constant c 2 R.

Since u = 0 in ⌦0
\ ⌦, this implies that u = c = 0 a.e. in ⌦0, which contradicts

(A.12).

Step 2. Let now u 2 BV (⌦0) be such that u = g on ⌦0
\ ⌦. We can conclude our

proof by appling the inequality obtained in Step 1 to the function u� g,
Z

⌦0
|u| dx 

Z

⌦0
|u� g| dx+

Z

⌦0
|g| dx

 C(⌦0) |D(u� g)|(⌦0) + C(g)  C(⌦0, g) |Du|(⌦0) .

We conclude this section with a Sobolev type inequality for BV (⌦). To this end,

let 1  p  n, where n is the dimension of the ambient space, and define the critical

exponent

p⇤ :=

8
><

>:

Np

N � p
, if p < n ,

1 , otherwise.

We have the following embedding theorem (see [3, Theorem 3.49]).

Theorem A.30. Let ⌦ ⇢ Rn be a bounded domain with Lipschitz boundary. Then

the embedding BV (⌦) ,! L1⇤(⌦) is continuous, that is, there exists a positive con-

stant C depending only on ⌦ and on the dimension n, such that

kuk
L1⇤ (⌦)  C kuk

BV (⌦) ,

for every u 2 BV (⌦).

Remark A.31 (Embedding in two-dimensions). Let ⌦ ⇢ R2 be a bounded Lipschitz

domain. Then Theorem A.30 asserts that the embedding

BV (⌦) ,! L2(⌦) ,

is continuous, since 1⇤ = 2 in this case.
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A.3.3 Sets of finite perimeter

In this section we will introduce the notion of set of finite perimeter, and investigate

the main properties. For E ⇢ Rn we denote as �E its characteristic function.

Definition A.32 (Sets of finite perimeter). Let E ⇢ Rn be an L
n-measurable set.

For any open set ⌦ ⇢ Rn, we define the perimeter of E in ⌦ as

Per(E,⌦) := sup

⇢Z

E

div' dx : ' 2 C1
c
(⌦;Rn) , k'k

L1(⌦)  1

�
. (A.13)

We say that E has finite perimeter in ⌦ if Per(E,⌦) < 1.

Example A.33 (Regular sets have finite perimeter). Let ⌦ ⇢ Rn be open , and let

E ⇢ Rn be a bounded set with C1 boundary. Hence H
n�1(@E \ ⌦) < 1. Then E

has finite perimeter in ⌦, and

Per(E,⌦) = H
n�1(@E \ ⌦) , (A.14)

that is, the notion of perimeter given in (A.13) coincides with the usual perimeter

of E in ⌦. To show this claim, it is sufficient to recall that by the Gauss-Green

theorem we have
Z

E

div' dx = �

Z

⌦\@E
' · ⌫E dHn�1 for every ' 2 C1

c
(⌦;Rn) ,

where ⌫E is the inner unit normal to E. By using this formula in definition (A.13)

it is immediate to show (A.14).

There is a connection between sets of finite perimeter and BV functions, which

we will highlight in the following theorem (see [3, Theorem 3.36]).

Theorem A.34. Let E ⇢ Rn be an L
n-measurable set, and let ⌦ ⇢ Rn be open.

We have that E has finite perimeter in ⌦ if and only if �E 2 BV (⌦). Moreover

Per(E,⌦) = |D�E|(⌦), and the following generalised Gauss-Green formula holds
Z

E

div' dx = �

Z

⌦

' · ⌫E d |D�E| for every ' 2 C1
c
(⌦;Rn) , (A.15)

where D�E = ⌫E |D�E| is the polar decomposition of D�E, that is, ⌫E is the Radon-

Nikodym derivative of D�E with respect to |D�E|, and it coincides with

⌫E(x) = lim
r!0+

D�E(Br(x))

|D�E|(Br(x))
, (A.16)

for |D�E|-a.e. point x 2 ⌦.
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Notice that, where it is defined, |⌫E(x)| = 1, so that it can be interpreted as a

measure theoretic inner normal to E. It is possible to make the Gauss-Green formula

(A.15) more precise, by introducing notions of measure theoretic boundary for sets

of finite perimeter. To be more precise, we will introduce the reduced boundary FE

and the essential boundary @⇤E. The main feature of these sets is that they are

manifolds of dimension n� 1, they agree H
n�1-a.e. (see Theorem A.39) and

Per(E,⌦) = H
n�1(FE \ ⌦) = H

n�1(@⇤E \ ⌦) .

Moreover, for regular sets E, we have that FE and @⇤E coincide with the topological

boundary @E. Let us start with the definition of reduced boundary.

Definition A.35 (Reduced boundary). Let E ⇢ Rn be an L
n-measurable set, and

let ⌦ ⇢ Rn be open. Assume that Per(E,⌦) < 1. The reduced boundary of E is

defined as the set of points

FE := {x 2 supp |D�E| \ ⌦ : ⌫E(x) exists} ,

where ⌫E is the derivative defined in (A.16). The function

⌫E : FE ! Sn�1

is called the generalised inner unit normal to E.

Let us introduce a notion of regularity for H
k-measurable sets.

Definition A.36 (Rectifiable set). Let E ⇢ Rn be an H
k-measurable set. We say

that E is countably k-rectifiable if it is locally the graph of Lipschitz functions, that

is, if there exists a sequence of Lipschitz functions fj : Rk
! Rn such that

E ⇢

1[

j=1

fj(Rk) .

The main properties of the reduced boundary for sets of finite perimeter are

summarised in the following statement (see [3, Theorem 3.59]).

Theorem A.37 (De Giorgi). Let E ⇢ Rn be an L
n-measurable set. Then FE is

countably (n� 1)-rectifiable and

D�E = ⌫E H
n�1

FE , |D�E| = H
n�1

FE .
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In particular if E has finite perimeter in ⌦, then

Per(E,⌦) = H
n�1(FE \ ⌦) .

Moreover the Gauss-Green formula (A.15) reads as
Z

E

div' dx = �

Z

FE\⌦
' · ⌫E dHn�1 for every ' 2 C1

c
(⌦;Rn) . (A.17)

Let us analyse the density properties of sets of finite perimeter. For an L
n-

measurable set E ⇢ Rn we denote by Et, for t 2 [0, 1], the set of points where E

has density t, that is,

Et :=

⇢
x 2 Rn : lim

r!0+

|E \Br(x)|

|Br(x)|
= t

�
.

The sets E1 and E0 can be considered, respectively, as the measure theoretic interior

and exterior of E. This interpretation motivates the following definition of essential

boundary.

Definition A.38 (Essential boundary). Let E ⇢ Rn be an L
n-measurable set. The

essential boundary of E is the set

@⇤E := Rn
\ (E0

[ E1) ,

that is, @⇤E is the set of points where the density of E is neither 1 nor 0.

The relation between the definitions of reduced boundary and essential boundary

are made clear in the following theorem (see [3, Theorem 3.61]).

Theorem A.39 (Federer). Let ⌦ ⇢ Rn be open and let E ⇢ ⌦ be such that E has

finite perimeter in ⌦. Then

FE ⇢ E1/2
⇢ @⇤E and H

n�1(@⇤E \ FE) = 0 ,

that is, the definitions of boundary FE,E1/2, @⇤E agree H
n�1-a.e. This implies that

FE can be replaced by E1/2 or @⇤E in the Gauss-Green formula (A.17), and the

perimeter of E in ⌦ can be computed as

Per(E,⌦) = H
n�1(FE \ ⌦) = H

n�1(E1/2
\ ⌦) = H

n�1(@⇤E \ ⌦) .

In particular E has density either 0 or 1/2 or 1 at Hn�1-a.e. point x 2 ⌦.
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Example A.40. If E ⇢ Rn is a bounded set with Lipschitz boundary, then E has

finite perimeter in Rn and |D�E| = H
n�1 @E, that is, the definitions of boundary

FE,E1/2, @⇤E agree with the topological boundary @E (see [3, Proposition 3.62]).

We now define partitions of a set ⌦ ⇢ Rn in sets of finite perimeter.

Definition A.41 (Caccioppoli partitions). Let ⌦ ⇢ Rn be an open set. Let I ⇢ N

and consider a partition {Ei}i2I of ⌦. We say that {Ei}i2I is a Caccioppoli partition

if
X

i2I

Per(Ei,⌦) < 1 .

As a consequence of Theorem A.39, if {Ei}i2I is a finite Caccioppoli partition of

⌦, then H
n�1-a.e. point of ⌦ belongs to exactly one element Ei of the partition, or

belongs to the intersection of two (and only two) sets FEi.

We can now define piecewise constant BV functions.

Definition A.42 (Piecewise constant BV functions). Let u 2 BV (⌦;Rm). We say

that u is piecewise constant in ⌦ if there exists a Caccioppoli partition {Ei}i2I of ⌦

and a function m : I ! Rm such that

u =
X

i2I

m(i)�Ei .

We conclude this section with the statement of the coarea formula. To be more

specific, let u 2 BV (⌦). The coarea formula gives a relation between |Du|(⌦) and

the perimeters of its level sets, defined for each t 2 R as

Et := {x 2 ⌦ : u(x) > t} .

The precise statement is given by the following theorem (see [3, Theorem 3.40]).

Theorem A.43 (Coarea formula in BV ). Let u 2 BV (⌦). Then the mapping

t 7! Per(Et,⌦) ,

for t 2 R, is L
1-measurable. Moreover the set Et has finite perimeter in ⌦ for a.e.

t 2 R, and

|Du|(⌦) =

Z 1

�1
Per(Et,⌦) dt . (A.18)
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A.3.4 Fine properties of BV functions and the space SBV

In this section ⌦ ⇢ Rn is an open bounded set, and n � 2. We want to analyse

local properties of BV functions, to arrive to the decomposition of the derivative

Du given in Corollary A.51. Let us start with the definition of approximate limit.

Definition A.44 (Approximate limit). Let ⌦ ⇢ Rn be open and bounded and let

u 2 L1(⌦;Rm). We say that u has an approximate limit at x 2 ⌦ if there exists a

point z 2 Rm such that

lim
r!0+

1

|Br(x)|

Z

Br(x)

|u(x)� z| dx = 0 . (A.19)

We define the set of approximate discontinuity of u as

Su := {x 2 ⌦ : (A.19) does not hold} .

For x 2 ⌦\Su the point z given by (A.19) is called approximate limit of u at x, and

it is denoted by ũ(x), while x is called a Lebesgue point.

For L1 functions we have that the set of approximate discontinuity has Lebesgue

measure zero (see [20, Theorem 1, Section 1.7]).

Theorem A.45 (Lebesgue-Besicovitch). Let ⌦ ⇢ Rn be open and bounded and let

u 2 L1(⌦;Rm). Then L
n(Su) = 0 and u = ũ a.e. in ⌦.

Let us introduce also the notion of approximate jump points, where the function

jumps from a value a to a value b along a direction ⌫. For r > 0, x 2 Rn and

⌫ 2 Sn�1, denote the two halves of Br(x) obtained by intersecting Br(x) with the

hyperplane {y 2 Rn : (y � x) · ⌫ = 0} as

B+
r
(x, ⌫) := {y 2 Br(x) : (y� x) · ⌫ > 0} , B�

r
(x, ⌫) := {y 2 Br(x) : (y� x) · ⌫ < 0} .

We are now ready to give the definition of approximate jump point.

Definition A.46 (Approximate jump points). Let ⌦ ⇢ Rn be open and bounded

and let u 2 L1(⌦;Rm). We say that a point x 2 ⌦ is an approximate jump point of

u if there exist values a, b 2 Rm with a 6= b, and a direction ⌫ 2 Sn�1, such that

lim
r!0+

1

|B+
r
(x, ⌫)|

Z

B
+
r (x,⌫)

|u(y)� a| dy = 0 ,

lim
r!0�

1

|B�
r
(x, ⌫)|

Z

B
�
r (x,⌫)

|u(y)� b| dy = 0 .
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The triplet (a, b, ⌫) is denoted as (u+(x), u�(x), ⌫u(x)). The set of approximate jump

point of u is denoted by Ju. Notice that by definition Ju ⇢ Su.

Example A.47 (Characteristic functions). Let ⌦ ⇢ Rn be open and bounded and

let E ⇢ ⌦ be a set of finite perimeter in ⌦. Set u := �
E. Then the sets Su

and Ju coincide H
n�1-a.e. with the essential boundary @⇤E. Moreover the triplet

(u+(x), u�(x), ⌫u(x)) coincides with (1, 0, ⌫E(x)) Hn�1-a.e. in Ju, where ⌫E(x) is the

inner normal of E at x 2 @⇤E.

Finally let us introduce the notion of approximate differentiability.

Definition A.48 (Approximate differentiability). Let ⌦ ⇢ Rn be open and bounded

and let u 2 L1(⌦;Rm). Let x 2 ⌦\Su. We say that u is approximately differentiable

at x if the exists a matrix L 2 Mm⇥n such that

lim
r!0+

1

|Br(x)|

Z

Br(x)

|u(y)� ũ(x)� L(y � x)|

r
dy = 0 .

The matrix L is called approximate differential of u at x and we denote it by ru(x).

The set of approximate differentiability points of u is denoted by Du.

For BV functions the sets of approximate discontinuity and approximate jump

points have the following properties. (see [3, Theorem 3.78]).

Theorem A.49 (Jump points of BV functions). Let ⌦ ⇢ Rn be open and bounded

and let u 2 BV (⌦;Rm). The discontinuity set Su is countably (n�1)-rectifiable and

H
n�1(Su \ Ju) = 0. Moreover

Du Ju = (u+
� u�)⌦ ⌫u H

n�1 Ju .

Let us introduce some notation. For u 2 BV (⌦;Rm) let

Du = Dau+Dsu

be the Radon-Nikodym decomposition of the measure Du in absolutely continuous

part Dau and singular part Dsu, with respect to L
n (see Theorem A.14). Recall that

the density of Dau with respect to L
n is given by the Radon-Nikodym derivative of

Du with respect to L
n. The following theorem states that such density coincides

L
n-a.e. with the approximate differential ru (see [3, Theorem 3.83]).
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Theorem A.50 (Approximate differentiability for BV functions). Let ⌦ ⇢ Rn be

open and bounded and let u 2 BV (⌦;Rm). Then u is approximately differentiable

at Ln-a.e. point of ⌦. Moreover,

Dau = ruLn .

We are now ready to give the decomposition result for the derivative of BV

functions. The measures

Dju := Dsu Ju , Dcu := Dsu (⌦ \ Su)

are called, respectively, the jump part of the derivative and the Cantor part of the

derivative. As a consequence of Theorems A.49, A.50, and the fact that Du is zero

on Su \ Ju, we have the following.

Corollary A.51 (Decomposition of derivative). Let ⌦ ⇢ Rn be open and bounded

and let u 2 BV (⌦;Rm). Then

Du = Dau+Dsu = Dau+Dju+Dcu ,

with

Dau = ruLn , Dju = (u+
� u�)⌦ ⌫u H

n�1 Ju .

Finally let us give the definition of special functions with bounded variation.

Definition A.52 (SBV ). Let ⌦ ⇢ Rn be open and bounded and let u 2 BV (⌦;Rm).

We say that u is a special function with bounded variation if the Cantor part of the

derivative is zero, that is, if

Du = Dau+Dju = ruLn + (u+
� u�)⌦ ⌫u H

n�1 Ju .

The space of special functions with bounded variation is denoted by SBV (⌦;Rm).

A.3.5 Extensions and traces of BV functions

Let us start by stating the extension theorem for BV functions (see [3, Proposition

3.21]).
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Theorem A.53 (Extension for BV ). Let ⌦ ⇢ Rn be a bounded open set with

Lipschitz boundary, and let A be an open set such that ⌦ ⇢ A. Then there exists a

linear continuous extension operator

E : BV (⌦;Rm) ! BV (Rn;Rm) ,

such that

(i) Eu = 0 a.e. in Rn
\ A for any BV (⌦;Rm),

(ii) |DEu|(@⌦) = 0 for any BV (⌦;Rm),

(iii) for any 1  p  1, the restriction of E to W 1,p(⌦;Rm) induces a linear

continuous map between W 1,p(⌦;Rm) and W 1,p(Rn;Rm).

We want to briefly comment on the properties of the extension operator E. As

stated in the theorem, E depends on the set A � ⌦ chosen. Indeed property (i)

means that the extension Eu belongs to BV (A;Rm). Property (ii) ensures that we

are not creating any jump at the boundary @⌦ (see Section A.3.4). Finally property

(iii) ensures that we can use the same extension operator for Sobolev functions

belonging to W 1,p(⌦;Rm) ⇢ BV (⌦;Rm).

Let us now discuss traces of BV functions, starting with the case of traces defined

on a countably (n� 1)-rectifiable set � ⇢ ⌦ (see [3, Theorem 3.77]).

Theorem A.54 (Traces on interior rectifiable sets). Let ⌦ ⇢ Rn be open and

bounded, and let u 2 BV (⌦;Rm). Assume that � ⇢ ⌦ is a countably (n � 1)-

rectifiable set oriented by ⌫. Then for Hn�1-a.e. x 2 �, there exist values u+
� (x), u

�
� (x) 2

Rm, such that

Du � = (u+
� � u�

� )⌦ ⌫Hn�1 � .

The previous theorem allows us to study functions obtained by cutting and

pasting BV functions. Indeed, if we consider u, v 2 BV (⌦;Rm), and we fix a set of

finite perimeter E ⇢ ⌦, then we can define

w := u�E + v �⌦\E .

By Theorem A.37, we know that @⇤E is (n� 1)-rectifiable and it is oriented by the

inner normal ⌫E, so that we can apply the above theorem to study the properties of

w (see [3, Theorem 3.84] for a proof).
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Theorem A.55 (Cut and paste). Let ⌦ ⇢ Rn be open and bounded, u, v 2 BV (⌦;Rm),

and E be a set of finite perimeter in ⌦, with @⇤E oriented by ⌫E. Set w :=

u�E + v �⌦\E. Let u+
@⇤E(x), v

�
@⇤E(x) 2 Rm be given by Theorem A.54, for H

n�1-

a.e. x 2 @⇤E. Then:

w 2 BV (⌦;Rm) if and only if
Z

@⇤E

|u+
@⇤E � v�

@⇤E| dH
n�1 < 1 .

If w 2 BV (⌦;Rm), its derivative is given by

Dw = Du E1 + (u+
@⇤E � v�

@⇤E)⌦ ⌫E H
n�1 @⇤E +Dv E0 .

Let us now turn our attention to boundary traces for BV functions. The main

theorem is the following (see [3, Theorems 3.87, 3.88]).

Theorem A.56 (Boundary traces). Let ⌦ ⇢ Rn be an open bounded set with Lips-

chitz boundary, and u 2 BV (⌦;Rm). For Hn�1-a.e. x 2 @⌦ there exists u⌦(x) 2 Rm

such that

lim
r!0+

1

|Br(x)|

Z

⌦\Br(x)

|u(y)� u⌦(x)| dy = 0 .

Moreover there exists a constant C > 0 depending only on ⌦ such that

��u⌦
��
L1(@⌦)

 C kuk
BV (⌦) ,

for every u 2 BV (⌦;Rm). In this way the trace operator

T : BV (⌦;Rm) ! L1(@⌦;Rm) ,

defined by Tu := u⌦, is linear and continuous. The trace operator is also continuous

with respect to the strict convergence on BV (⌦;Rm).

If we denote by ū the extension of u to 0 out of ⌦, that is ū := u�⌦, then

ū 2 BV (Rn;Rm) and

Dū = Du ⌦+ Tu⌦ ⌫⌦ H
n�1 @⌦ ,

where ⌫⌦ is the inner normal to ⌦.

Remark A.57 (Definition of traces by density). We remark that the restriction

to W 1,1(⌦;Rm) of trace operator T defined in Theorem A.56 coincides with the

usual trace operator for Sobolev functions (see, e.g., [39]). In particular T coin-

cides with the extension by density of the restriction to @⌦ of functions belonging
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to C1(⌦;Rm). Indeed, by Theorem A.26, given u 2 BV (⌦;Rm), there exists a

sequence uj 2 C1(⌦;Rm) such that uj ! u with respect to the strict convergence.

Since by Theorem A.56 the operator T is continuous with respect to the strict con-

vergence, we have that

Tu = lim
j!1

uj|@⌦

where the limit is in the sense of the strong convergence in L1(@⌦;Rm).

Finally, we give the following useful corollary (see [3, Corollary 3.89]).

Corollary A.58. Let ⌦ ⇢ Rn be an open bounded set with Lipschitz boundary, and

u 2 BV (⌦;Rm), v 2 (Rn
\ ⌦;Rm). Define the function

w := u�⌦ + v �Rn\⌦ .

Let Tu and Tv denote the traces of u and v with respect to ⌦ and Rn
\ ⌦. Then

w 2 BV (Rn;Rm) and

Dw = Du ⌦+ (Tu� Tv)⌦ ⌫⌦ H
n�1 @⌦+Dv (Rn

\ ⌦) .

A.3.6 Anisotropic coarea formula

In this section ' : Rn
! [0,1] is a convex, positively 1-homogeneous function sat-

isfying

c�1
|⇠|  '(⇠)  c|⇠| , for every ⇠ 2 Rn , (A.20)

for some positive constant c. For a function u 2 BV (⌦) its anisotropic '-variation

is defined as follows
Z

⌦

'(Du) :=

Z

⌦

'

✓
dDu

d |Du|

◆
d |Du| ,

which is well posed, since we are assuming (A.20). Note that when ' ⌘ 1, the

'-variation coincides with the usual variation |Du|(⌦). We now want to introduce

a notion of anisotropic '-perimeter. Let E ⇢ Rn be a set of finite perimeter in ⌦,

that is, �E 2 BV (⌦). We can define the anisotropic perimeter of E in ⌦ as

Per'(E,⌦) :=

Z

⌦

'(D�E) .

Recall that for every set of finite perimeter one has

Per'(E,⌦) =

Z

@⇤E\⌦
'(⌫E) dH

n�1
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where @⇤E is the essential boundary of E and ⌫E : @⇤E ! Sn�1 denotes the inner

unit normal to E, as defined in (A.16). Indeed for ' ⌘ 1 we have Per1(E,⌦) =

H
n�1(@⇤E \ ⌦) = Per(E,⌦).

The following density result holds.

Proposition A.59. Let u 2 BV (⌦). Then there exists a sequence uj belonging to

C1(⌦) such that uj ! u in L1(⌦) and
R
⌦ '(Duj) !

R
⌦ '(Du).

Proof. By the density Theorem A.26 there exists a sequence uj 2 C1(⌦) such

that uj ! u in L1(⌦) and |Duj|(⌦) ! |Du|(⌦). Then by Reshetnyak’s continuity

theorem (see (A.6) in Theorem A.17) we conclude that also
R
⌦ '(Duj) !

R
⌦ '(Du).

We now want to establish an anisotropic coarea formula that relates the '-

variation of a function u 2 BV (⌦) to the '-perimeter of its level sets Et defined as

Et := {x 2 ⌦ : f(x) > t} for t 2 R.

Theorem A.60 (Anisotropic coarea formula). Let u 2 BV (⌦). Then the mapping

t 7! Per'(Et,⌦) ,

for t 2 R, is L
1-measurable. Moreover Per'(Et,⌦) < 1 for a.e. t 2 R, and

Z

⌦

'(Df) =

Z 1

�1
Per'(Et,⌦) dt . (A.21)

Idea of the proof. It is easy to prove (A.21) for regular functions. Then the proof in

the general case follows by invoking the density result of Proposition A.59.
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