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Abstract

We develop an automated variational inference method for Bayesian structured prediction

problems with Gaussian process (gp) priors and linear-chain likelihoods. Our approach does

not need to know the details of the structured likelihood model and can scale up to a large

number of observations. Furthermore, we show that the required expected likelihood term

and its gradients in the variational objective (ELBO) can be estimated efficiently by using

expectations over very low-dimensional Gaussian distributions. Optimization of the ELBO

is fully parallelizable over sequences and amenable to stochastic optimization, which we use

along with control variate techniques to make our framework useful in practice. Results on

a set of natural language processing tasks show that our method can be as good as (and

sometimes better than, in particular with respect to expected log-likelihood) hard-coded

approaches including svm-struct and crfs, and overcomes the scalability limitations of

previous inference algorithms based on sampling. Overall, this is a fundamental step to

developing automated inference methods for Bayesian structured prediction.

1 Introduction

1.1 Structured prediction

Structured prediction problems are prediction problems in which the available data is best

understood as consisting of structured objects (that is, objects with a non-trivial internal
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Figure 1: An example of image segmentation: pixels of the imagine are labeled as belonging to
bikes (green overlay), people (red overlay), or neither (no overlay). Segmentation based on the
CRF-as-RNN algorithm of (Zheng et al., 2015). Image taken from http://www.robots.ox.ac.
uk/~szheng/crfasrnndemo.

relational structure), rather than as consisting of scalar values or as values in some fixed-

dimensionality vector (Bakir, 2007). Alternatively, structured prediction problems may be seen

as problems in which there exist relations between different elements of the dataset.

The duality between these two views can be seen easily in two typical instances of structured

prediction problems, namely image segmentation (Luccheseyz and Mitray, 2001) and Part-of-

Speech tagging (Voutilainen, 2003).

The problem of image segmentation, in brief, consists in partitioning the pixels of a digital

image in sets belonging to different categories (e.g. to the foreground/to the background, or

to different physical objects), as shown for instance in Figure 1. Under the first view, each

component of our data is an entire image, with the features ascribed to each pixel as well as a

specification of the relative positions of these pixels; and the result of the prediction consists

itself of a complex object which fixes a label for each pixel of the image.

The second view, on the other hand, allows us to regard each individual pixel as a distinct

element of our data. This lets us ignore the problem of producing a complex output, as every

pixel must be matched to one single label; but the cost of this is that under this view there exist

relations between components of our data – i.e., spatial relationships between pixels of the same

image – which carry information which is relevant to the prediction task. In particular, under

this view it is not possible to assume, as it is often done in prediction tasks, that observations

and labels are independently and identically distributed: the features and the labeling of a pixel,

indeed, are not by any means independent from those of its neighbours.

Part-of-Speech tagging, instead, can be described as the problem of identifying, given a
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Figure 2: A simple example of Part-of-Speech tagging: in the sentence “Nobody leaves the
room”, the word “leaves” is identified as a verb (rather than a noun or some other category). It
would be impossible to make such a prediction on the basis of the features of the word “leaves”
alone: in order to identify the category to which a word belongs, it is also necessary to consider
its position with respect to the other words of its sentence.

natural language sentence, the category to which each word belongs. Again, there are two

equivalent ways of understanding this problem: we can say that whole sentences (or even entire

paragraphs or texts) are distinct elements of our data, and require that the outputs of our

algorithm to be same-length sequences of word labelings, or we can say that the elements of our

data are single words and the required outputs are the corresponding labelings. This view, again,

allows us to eschew the difficulty of our algorithm returning complex structures as output, but

at the cost – once more – of having relations between objects of our data (e.g. neighbourhood

relations between words) which are relevant to their correct labeling, as well as at the cost

of losing the assumption that the elements of our datasets are identically and independently

distributed (i.i.d).

1.2 Related work

As already mentioned, structured prediction refers to the problem where there are interdepen-

dencies between samples and it is necessary to model these dependencies explicitly. Common

examples are found in natural language processing (nlp) tasks, computer vision and bioinfor-

matics. By definition, observation models in these problems are not i.i.d and standard learning

frameworks have been extended to consider the constraints imposed by structured prediction

tasks. Popular structured prediction frameworks are conditional random fields (crfs; Lafferty

et al., 2001), maximum margin Markov networks (Taskar et al., 2004) and structured support

vector machines (svm-struct, Tsochantaridis et al., 2005):

• Conditional random fields will be discussed in some detail in Section 2.1. In brief, they are

discriminative, undirected probabilistic graphical models in which the weights associated

to factors between variables are (generally linear) functions of the features of the individual

variables (e.g. pixels or words) involved. The probability distribution over the (structured)

outputs is then derived from those weights by means of the softmax function, as shown in

Equation (2).

• Maximum margin Markov networks make use of margin-based optimization to learn the

parameters of (generative) probabilistic graphical models, namely Markov networks. The
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optimization algorithm makes use of the kernel trick (Aizerman, 1964) in order to operate

over high-dimensional feature spaces without representing them esplicitly, and seeks the

choice of parameter which maximizes the separation between classes. This problem is then

reparametrized in a way that allows for an efficient solution, as long as the loss function

can be decomposed in the same way as the feature map.

• Similarly to maximum margin Markov networks, the svm-struct framework also extends

to the structured classification case the maximum margin approach of support vector

machines (svm); but, differently from the cases of conditional random fields and maximum

margin Markov networks, it is not a type of probabilistic graphical model and it does not

return a probability distribution over the possible labelings, but just predictions for the

correct labelings. svm-struct makes use of a cutting plane algorithm in to solve certain

quadratic optimization problems with exponentially many constraints in polynomial time.

Recurrent neural networks have also been used for certain structured prediction tasks (see e.g.

Graves et al., 2012). Here we mention a novel and exciting approach is the exploration of the

connection between conditional random fields and recurrent neural networks (Zheng et al., 2015),

which allows for the possibility of treating conditional random fields as layers of a neural network

architecture. The chief insight of (Zheng et al., 2015) is that one of the inference methods for

conditional random fields, namely mean-field inference (Krähenbühl and Koltun, 2011), can be

reformulated within the formalism of recurrent neural networks and then added as a layer to

more complex neural networks. This approach promises to combine the advantages of neural

networks and probabilistic graphical models for structured prediction.

Gaussian Processes (gp) are probability distributions over functions that may be thought

of as infinite-dimensional generalisations of multivariate normal distributions. Formally, they

may be defined (Rasmussen and Williams, 2006), as a collection of random variables, any finite

number of which have a joint Gaussian distribution specified by a mean (often assumed to be

constantly zero) and a covariance defined in terms of a kernel function κ(x,x′). Their application

to (non-structured) regression and classification is largely due to the fact that conditioning

multivariate normal distributions with respect to observed values yields another multivariate

normal distribution having a straightforward and elegant form: if

 f(x)

f(x′)

 ∼ N
0,

 κ(x,x) κ(x,x′)

κ(x′,x) κ(x′,x′)
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then the probability distribution of f(x′) conditioned over an observed value of f(x) is given by

f(x′) | f(x) ∼ N (κ(x′,x)κ(x,x)−1f(x), κ(x′,x′)− κ(x′,x)κ(x,x)−1κ(x,x′)). (1)

A similar, only slightly more complicated expression applies in the case that the observations

f(x) are subject to (additive and i.i.d.) Gaussian noise ε ∼ N (0, σ2).

Gaussian Processes can be used as the key component of powerful and elegant nonparametric

probabilistic machine learning models. However, their asymptotic computational performance

often does not compare favourably to that of other approaches to regression or classification,

due largely to the fact that computing (1) requires inverting the matrix κ(x,x), which is of size

N ×N where N = |x| is the number of observed samples. As inverting such a matrix carries

O(N3) time complexity if this is done via Gaussian elimination1, such an approach to regression

or classification is not feasible even for comparatively small datasets.

Two techniques, however, have been recently used with good success to improve the compu-

tational performance of Gaussian Process-based regression and classification models:

• Sparse Gaussian Processes (Snelson and Ghahramani, 2006) differ from Gaussian Processes

in that the conditioning of Equation (1) is not performed directly with respect to the

training data (x, f(x)) but rather with respect to a smaller set of M � N pseudoinputs z,

whose locations and corresponding values f(z) can be chosen in a way that attempts to

maximize the likelihood of the training data (x, f(x)). The cost of the matrix inversion

is then O(M3), which for suitable choices of M may lead to a computationally feasible

model which anyway has good performance.

• Variational approximation techniques approximate the gp posterior (1) with a function

g of known form. The task is then to learn the parameters of g in order to minimize

a distance (espressed in terms of Kullback-Leiber divergence) between g and the true

posterior.

Recent advances in sparse gp models for regression (Titsias, 2009; Hensman et al., 2013), which

combine the two approaches mentioned above by drawing g from Gaussian Processes conditioned

over the pseudoinputs z (whose positions and values are then the parameters with respect to

which the KL divergence is minimized) have allowed the applicability of such models to very

large datasets, opening opportunities for the extension of these ideas to classification and to

non-structured problems with generic likelihoods (Hensman et al., 2015a; Nguyen and Bonilla,
1This is not asymptotically optimal – for instance, the Coppersmith–Winograd algorithm for matrix inversion

(Coppersmith and Winograd, 1987) carries a time complexity of ∼ O(N2.376) – but it is often done in practice
anyway due to numerical stability concerns and to the constant factors hidden by the asymptotic notation
(Robinson, 2005).
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2014; Dezfouli and Bonilla, 2015; Hensman et al., 2015b). However, none of these approaches is

actually applicable to structured prediction problems, which inherently deal with likelihoods

that do not factorize over individual samples.

A related, exciting area of research in machine learning which plays a major role in the

above described research direction consists in the development of automated inference methods

for complex probabilistic models, with notable examples in the probabilistic programming

community given by stan (Hoffman and Gelman, 2014) and church (Goodman et al., 2008).

The principal thrust of this enterprise consists in the development of models and algorithms

that may be deployed over a wide range of models and cost functions with a minimal amount

of human intervention and fine-tuning. One of the main challenges for these approaches is to

formulate expressive probabilistic models and develop generic yet efficient inference methods

for them. From a variational inference perspective, one particular approach that has addressed

such a challenge is the black-box variational inference framework of Ranganath et al. (2014).

In brief, Ranganath et al. (2014) presents a variational optimization method for probabilistic

models with latent variables in which the divergence between the variational approximation

and the true posterior is minimized via a stochastic optimization algorithm, and the needed

gradients are estimated via sampling. Crucially, the algorithm is largely agnostic with respect

to the choice of model and likelihood, allowing the user to try out a vast range of models and

likelihoods without need for time-consuming derivations.

While the works of Hoffman and Gelman (2014) and Ranganath et al. (2014) have been

successful with a wide range of priors and likelihoods, their direct application to models with

Gaussian process (gp) priors is cumbersome, mainly due to the large number of highly coupled

latent variables in such models. In this regard, very recent work has investigated automated

inference methods for general likelihood models when the prior is given by a sparse Gaussian

process (Hensman et al., 2015b; Dezfouli and Bonilla, 2015). The framework of (Dezfouli and

Bonilla, 2015), in particular, is at the basis of the one discussed in this work, and can be seen as

the limit case (for sequences of length one) of the variational approximation approach described

in detail in §3 and §4. However, while these advances have opened up opportunities for applying

gp-based models well beyond regression and classification settings, they have focused on models

with i.i.d observations and, therefore, are unsuitable for addressing the more challenging task of

structured prediction.

From a non-parametric Bayesian modeling perspective, in general, and from a gp modeling

perspective, in particular, structured prediction problems present very hard inference challenges

because of the rapid explosion of the number of latent variables with the size of the problem.

Furthermore, structured likelihood functions are usually very expensive to compute.
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Twin Gaussian processes (Bo and Sminchisescu, 2010) address structured continuous-output

problems by forcing input kernels to be similar to output kernels. In contrast, here we deal

with the harder problem of structured discrete-output problems, where one usually requires

computing expensive likelihoods during training. The structured continuous-output problem

is somewhat related to the area of multi-output regression with gps for which, unlike discrete

structured prediction with gps, the literature is relatively mature (Álvarez et al., 2010; Álvarez

and Lawrence, 2011, 2009; Bonilla et al., 2008).

In an attempt to build non-parametric Bayesian approaches to (non-continuous) structured

prediction, Bratières et al. (2015) have proposed gpstruct, a framework based on a crf-type

modeling approach with gps which uses elliptical slice sampling (ess; Murray et al., 2010) as

part of its inference method. Unfortunately, although their method can be applied to linear

chain structures in a generic way without considering the details of the likelihood model, it is

not scalable as it involves sampling from the full gp prior. We refer to §2.1 and §2.2 for a more

detailed discussion (sans elliptical slice sampling) of the approach of Bratières et al. (2015), on

which the approach discussed in this work is directly based.

Bratières et al. (2014) have explored a distributed version of gpstruct based on the pseudo-

likelihood approximation (Besag, 1975) where several weak learners are trained on subsets of

gpstruct’s latent variables and bootstrap data, testing the resulting model with respect to

image segmentation tasks. However, within each weak learner, inference is still done via mcmc.

A variational alternative for gpstruct inference (Srijith et al., 2014, 2016) is also available.

However, it relies on pseudo-likelihood approximations, which in the (non-sparse) approach

discussed in the paper are essential for the tractability of the algorithm, and was only evaluated

on small-scale problems.

1.3 This work

In this work we present an approach for automated inference in structured gp models with linear

chain likelihoods that builds upon the structured gp model of Bratières et al. (2015) and the

sparse variational framework of Dezfouli and Bonilla (2015) (which, in turn, is a sparse variant

of the variational framework of Nguyen and Bonilla (2014)). In particular, we show that the

model of Bratières et al. (2015) can be mapped onto a generalization of the automated inference

framework of Dezfouli and Bonilla (2015). Unlike the work of Bratières et al. (2015) our approach

is scalable to a large number of observations, as it makes use of sparse gp priors; and unlike

the work of (Srijith et al., 2014, 2016), our approach can deal with both pseudo-likelihoods and

generic (linear-chain) structured likelihoods, and we rely on our sparse approximation procedure

and our automated variational inference technique – rather than on bootstrap aggregation – to
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achieve good performance on larger datasets.

More importantly, this approach is also generic in that it does not need to know the details of

the likelihood model in order to carry out posterior inference. Finally, we show that our inference

method is computationally efficient in that it only requires expectations over low-dimensional

Gaussian distributions in order to carry out posterior approximation.

Our experiments on a set of nlp tasks, including noun phrase identification, chunking,

segmentation, and named entity recognition, show that our method can be as good as (and

sometimes better than, in particular with respect to expected log-likelihood) hard-coded ap-

proaches including svm-struct and crfs, and overcomes the scalability limitations of previous

inference algorithms based on sampling.

We refer to our approach as “gray-box” inference since, in principle, changing the structure

of the underlying graphical model (for instance, moving from a linear chain model to a skip-

chain model, or extending a grid model for image processing by introducing factors between

non-neighbouring pixels) cannot be done automatically. Nevertheless, when applied to fixed

structures, our proposed inference method is entirely “black box”. For example, as we will see,

we can replace the exact likelihood with a pseudo-likelihood without needing to make any other

modifications to our code.

2 Gaussian Process Models for Structured Prediction

2.1 Conditional Random Fields and Gaussian Processes

We are interested in structured prediction problems in which we observe input-output pairs

D = {Xn,yn}
Nseq
n=1 , where

• Nseq is the total number of observations;

• Xn ∈ X is a descriptor of observation n;

• yn ∈ Y is the output corresponding to observation n;

• Xn and/or yn are structured objects such as a sequence, a tree or a grid, that reflect the

interdependences between its individual constituents.

Given a new input descriptor X?, our goal is to predict its corresponding structured label y?

and, more generally, a distribution over these labels.

Conditional Random Fields crf (Lafferty et al., 2001; Sutton et al., 2012) are discrimi-

native undirected probabilistic graphical models which constitute a state-of-the-art approach

to structured prediction. In CRFs, relationships between variables (e.g. between the labels
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of neighbouring pixels or words, or between the labels of pixels/words and the corresponding

features) are represented as factors whose values are (generally linear) functions of the features

of the variables involved.

Being discriminative probabilistic models, CRFs specify the conditional distribution p(y|X)

of the labels y given the inputs X. Generative probabilistic models for structural learning such

as, for instance, Hidden Markov Models (Rabiner and Juang, 1986) would instead specify the

joint distribution p(X,y).

Since CRFs are also undirected, their factors cannot in general be understood as conditional

distributions specifying the probabilities of the values of a variable given those of the other

variables. Instead, the probability distribution of a conditional random field can be expressed

in terms of the values that factors take over cliques of variables pairwise connected by factors.

More precisely, we can write

p(y|X, f) =
exp (

∑
c f(c,Xc,yc))∑

y′∈Y exp (
∑
c f(c,Xc,y′c))

, (2)

where

• Xc and yc are tuples of nodes belonging to clique c;

• Every f(c,Xc,yc) is a (linear) function of the values of the features of the nodes in the

clique c;

• The learning algorithm must seek good choices of weights for these linear combinations.

Calculating directly the value of Equation 2 is rarely computationally feasible. The difficulty,

in brief, is in computing the expression at the denominator, which involves a sum over all

possible labelings of the structure (whose number of increases exponentially with the size of the

structure).

Various techniques, such as for instance sampling-based approaches or loopy belief propaga-

tion, are used to approximate efficiently the value of the above expression. When the graph

associated to the structure does not contain cycles, however, there exist message propagation

algorithms which can be used to efficiently and exactly compute the value of (2). Among the

simplest of these algorithms is the forward-backward algorithm, which is applicable to linear

chain structures (discussed in the next section) and whose complexity is only linear with respect

to chain length and quadratic with respect to the number of (individual) labels. We refer to Guo

and Hsu (2002) for a more in-depth discussion of inference in probabilistic graphical models.

In Bratières et al. (2015), a generalization of crf-type models was proposed in which the

f(c,Xc,yc) are are drawn from a distribution with a zero-mean Gaussian Process (gp) prior
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with a given covariance function κ(·, ·;θ), with θ being the hyperparameters. It is clear that

such a model is a generalization of vanilla crfs where the potentials are draws from a gp instead

of being (linear) functions of the features; and, as shown in Bratières et al. (2015), this approach

leads to performances which are comparable or superior to those of conditional random fields

and structured support vector machines (Tsochantaridis et al., 2005), another class commonly

used structured prediction models. However, the use of gp priors leads to computational costs

that severely hamper the scalability of this type approach: indeed, the time complexity of this

approach grows as O(N3), where N is the number of individual samples (e.g. individual words

or pixels) in the dataset.2

The present work is an attempt to improve the scalability of (Bratières et al., 2015) by means

of two main techniques:

1. Probabilities are computed not via sampling from the (computationally expensive) posterior

distribution, but rather through a variational approximation which generalizes to structured

model the variational approach to Gaussian Processes of (Nguyen and Bonilla, 2014);

2. The Gaussian Process itself is replaced with a sparse gp approximation after the way of

(Quiñonero-Candela and Rasmussen, 2005) and (Titsias, 2009).

These two techniques were already combined in (Dezfouli and Bonilla, 2015), yielding an

efficient sparse variational framework for (non-structured) Gaussian process models with black-

box3 likelihoods. The present work, thus, is an attempt to use the insights of (Dezfouli and

Bonilla, 2015) to derive a more scalable version of the gp-based approach to structured prediction

of (Bratières et al., 2015).

2.2 Linear chain structures

In this work we focus on linear chain structures where the output corresponding to datapoint n

is a linear chain of length Tn, whose corresponding constituents stem from a common set.

In other words, there are two types of cliques in linear chain structures, both of which involve

only two nodes:

1. Unary cliques, which describe the relationship between the features xt at a given point of

the chain and the corresponding label yt;

2. Binary cliques, which describe the relationship between a label yt of a non-terminal node

of a chain and the label tn+1 of its successor.
2In brief, this is due to the necessity of inverting the N ×N covariance matrices of the Gaussian Processes.
3In the sense that different choices of likelihood could be used without deriving new expressions for the

gradients or changing the rest of the algorithm.



14

Figure 3: A linear chain model. Unary cliques are in red, binary cliques are in blue. The values
f(F̃i, xi, yi) are the factors corresponding to unary cliques for Equation (2), while the values
f( ˜̃Fi, yi, yi+1) are the factors for the binary cliques.

Linear chain structures are well-suited for applications, for instance, in natural language

processing; and they have the significant advantage that the corresponding softmax likelihoods,

as defined in Equation (2), can be computed in an efficient way via the forward-backward

algorithm, whose complexity is of the order of |V|2T where T is the length of the sequence and

|V| is the number of labels. This is a significant improvement over a brute-force application of

Equation (2), which would require us to sum over all |V|T possible state assignments for a total

complexity of O(T |V|T ). Figure 3 shows a typical instance of linear chain structure, together

with the factors f(F̃i, xi, yi) and f( ˜̃Fi, yi, yi+1) corresponding to unary and binary factors in

Equation (2).

In this setting, the input Xn for observation n is a Tn × D matrix


x1

. . .

xTn

 of feature

descriptors and yn is a the corresponding output sequence (y1 . . . yTn
) of Tn labels drawn from

the same vocabulary V.

In order to completely define the prior over the clique-dependent latent functions in Equation

(2), it is now necessary to specify covariance functions over the cliques. To this end, Bratières

et al. (2015) propose a kernel that is non-zero only when two cliques are of the same type,

i.e. both are unary cliques (t,xt, yt) or both are pairwise cliques (yt, yt+1). These kernels are

defined as

κun((t,xt, yt), (t
′,x′t′ , yt′)) = I[yt = yt′ ]κ(xt,x

′
t′),

κbin((yt, yt+1), (yt′ , yt′+1)) = I[yt = yt′ ∧ yt+1 = yt′+1],

where κun is the covariance on unary functions and κbin is the covariance on pairwise functions.

In other words, according to the prior distribution of (Bratières et al., 2015)

• If the features xt and x′t′ corresponding to two positions t and t′ in two chains X and
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X′ are similar (that is, if κ(xt,x
′
t′) is high) then, for all possible labels y, the factors

f(F̃t,xt, y) and f(F̃t′ ,x
′
t′ , y) that correspond to the assignment of the label y for the two

positions (and which affect the likelihood of the labeling as per Equation 2) are also close.

The relative positions t and t′ of the nodes in the corresponding chains are not relevant to

this, and the distribution of these weights is independent from the distributions of the

f(F̃t′′ ,xt′′ , y
′′) for other labels y′′ 6= y.

• The probability distribution of the weights f( ˜̃F, yt, yt+1) to be assigned to a pair (yt, yt+1)

of labels appearing at positions (t, t+ 1) is uniform and independent from the distributions

of factors to unary cliques or to other binary cliques (corresponding to other positions or

to other choices of labels).

This choice of gp kernel describes – with a suitable ordering of the latent functions – a distribution

with a block-diagonal covariance matrix. Its first |V| blocks, each of which describes (for the

corresponding label y) the covariances between the values of the unary factors f(F̃t,xt, y), are

of size
∑
n Tn each. The last block, corresponding to covariances between pairwise factors

f( ˜̃F, yt, yt+1), is a diagonal (identity) matrix of size |V|2, where |V| denotes the vocabulary size.

To carry out inference in this model, Bratières et al. (2015) propose a sampling scheme

based on elliptical slice sampling (ess; Murray et al., 2010). In the following section, we show

an equivalent formulation of this model that leverages the general class of (non-structured)

models presented by Nguyen and Bonilla (2014). Understanding structured gp models from

such a perspective will allow us to generalize the results of Nguyen and Bonilla (2014); Dezfouli

and Bonilla (2015) in order to develop an automated variational inference framework. The

advantages of such a framework are that of (i) dealing with generic likelihood models; and (ii)

enabling stochastic optimization techniques for scalability to large datasets.

Different choices of prior are of course possible: for instance, it might be useful to deal

separately with the distributions of the prior weights to the first or last nodes of the chains.

However, in what follows we will using essentially the same prior described above and used

in Bratières et al. (2015).4 This will allow us to make a more straightforward evaluation of

the effect of the variational approximation (based on the work of Nguyen and Bonilla (2014);

Dezfouli and Bonilla (2015)) on the performance of the resulting system.
4The main differences are that the kernel functions corresponding to different labels will not necessarily be

the same and that the pairwise component of the covariance matrix will not be necessarily required to be the
identity.
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3 Automated Inference

3.1 Generalising the Nugyen-Bonilla class of models

Nguyen and Bonilla (2014), building upon the work of Opper and Archambeau (2009), developed

an automated variational inference framework for a family of class models with Gaussian process

priors. Although such an approach is an important step towards black-box inference with gp

priors, since it assumes i.i.d observations it is, by definition, unsuitable for structured models.

One way to generalize such an approach to structured models such as the ones described in

§2.2 is to differentiate between gp priors over latent functions on unary nodes and gp priors

over latent functions over pairwise nodes. More importantly, rather than considering likelihoods

that factorize over the individual samples of our dataset, we assume likelihoods that factorize

over sequences while allowing for statistical dependences within a sequence.

As in the case of the choice of kernel used in (Bratières et al., 2015) and discussed in the

previous section, the prior probability distributions of the factors of unary cliques corresponding

to different labels will be made to be independent, as will the prior probability distributions of

different binary cliques. Furthermore, all prior distributions over the factors for unary cliques

will be independent from the prior distributions over the factors for binary cliques.

Therefore, our prior model p(f) = p(fun)p(fbin) for linear chain structures will decompose as

p(f) =

 |V|∏
j=1

N (fun
j ; 0,Kj)

N (fbin; 0,Kbin), (3)

where f is the vector of all latent function values of unary nodes fun and pairwise nodes fbin.

Accordingly, fun
j is the vector (of size equal to the total number of observations N =

∑Nseq
n=1 Tn)

of the unary functions of latent process j, corresponding to the jth label in the vocabulary.

This vector is drawn from a zero-mean gp with covariance function κj(·, ·;θj). This covariance

function, when evaluated at all the input pairs in {Xn}, induces the N ×N covariance matrix

Kj . Similarly, fbin is a zero-mean |V|2-dimensional Gaussian random variable with covariance

matrix given by Kbin. We note here that, again as per the kernel choice of (Bratières et al.,

2015) discussed in the previous section, while the unary functions are draws from a gp indexed

by X the distribution over pairwise functions is a finite Gaussian (not indexed by X).

Given the latent function values, our conditional likelihood is defined by

p(y|f) =

Nseq∏
n=1

p(yn|fn), (4)

where, omitting the dependency on the input X for simplicity, each individual conditional
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likelihood term is computed using a likelihood function for sequential data such as that defined

by the structured softmax function in Equation (2). Here, yn denotes the labels of sequence n

and fn is the corresponding vector of latent (unaries and pairwise) function values; and, since

we are working with linear chain models, each likelihood p(yn|fn) can be computed efficiently

via the forwards-backwards algorithm.

Theorem 1. Every model in the class proposed by Bratières et al. (2015) is also in the model

class defined by the prior in Equation (3) and the likelihood in Equation (4).

The proof of this is trivial and can be done by (i) setting all the covariance functions of

the unary latent processes to be the same; (ii) making Kbin = I; and (iii) using the structured

softmax function in Equation (2) as each of the individual terms p(yn|fn) in Equation (4). This

yields exactly the same model as specified by Bratières et al. (2015), with prior covariance

matrix with block-diagonal structure described in §2.2 above. �

The above theorem shows that our approach may be meaningfully compared to that of

Bratières et al. (2015) and may, in fact, be considered a slight generalisation of it insofar as

the model class is concerned. Moreover, the class of models which we are considering contains

also, as a limit case for chains of length one, that of Nguyen and Bonilla (2014). Thus, it makes

sense to inquire whether the variational inference approach of Nguyen and Bonilla (2014), which

achieves good computational efficiency by approximating the posterior as a Gaussian mixture

and computing gradients by means of expectations over one-dimensional Gaussian distributions,

can be adapted to our case.

As we shall see in the next section, this is indeed true; and in order to deal with the

intractable nonlinear expectations inherent to variational inference (vi), the proposed method

will require expectations over low-dimensional Gaussian distributions (but not one-dimensional

as in Nguyen and Bonilla (2014) itself).

3.2 Automated variational inference

In this section we develop a method for estimating the posterior over the latent functions

given the prior and likelihood models defined in Equations (3) and (4). Since the posterior is

analytically intractable and the prior involves a large number of coupled latent variables, we

resort to approximations given by variational inference (vi; Jordan et al., 1998). To this end, we
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start by defining our variational approximate posterior distribution:

q(f) = q(fun)q(fbin), for (5)

q(fun) =

K∑
k=1

πkqk(fun|bk,Σk)

=

K∑
k=1

πk

|V|∏
j=1

N (fun
j ; bkj ,Σkj) , (6)

q(fbin) = N (fbin; mbin,Sbin), (7)

where q(fun) and q(fbin) are the approximate posteriors over the unary and pairwise nodes

respectively; each qk(fun
j ) = N (fun

j ; bkj ,Σkj) is a N -dimensional full Gaussian distribution; and

q(fbin) is a |V|2-dimensional Gaussian.

The choice of Gaussian mixture models for our variational approximations is due to two

related reasons:

1. This was the same choice of variational approximation used, with good success, in Nguyen

and Bonilla (2014), and this work constitutes an attempt to generalize their approach to

structured prediction problems;

2. Gaussian mixture models have a mathematical form that is well-suited for the efficient

computation of our gradients (see the Appendix for the details). Using a different family

of functions for our variational approximations would require substantial changes to the

present work, and could be rather more computationally expensive.

In our experiments, we will actually consider only single (multivariate) Gaussians as our

variational approximation: in other words, we will always set K = 1 and π1 = 1 in the above

expressions, and then (obviously) we will no concern ourselves with computing gradients with

respect to π1. This will be done in order to reduce the computational cost of our experiments, as

well as because preliminary experiments did not show significant improvement in our performance

when using K > 1 for our datasets. We leave a more detailed analysis of our approach when

K > 1 to future work.

In order to estimate the parameters of the above distribution, variational inference entails

the optimization of the so-called evidence lower bound (Lelbo), which can be shown to be a

lower bound of the true marginal likelihood, and is composed of a KL-divergence term (Lkl),

between the approximate posterior and the prior, and an expected log likelihood term (Lell):

Lelbo = −KL(q(f)‖p(f)) + 〈log p(y|f)〉q(f) , (8)
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where the angular bracket notation 〈·〉q indicates an expectation over the distribution q. Although

the approximate posterior is an N -dimensional distribution, the expected log likelihood term

can be estimated efficiently using expectations over much lower-dimensional Gaussians:

Theorem 2. For the structured gp model defined in Equations (3) and (4), the expected log

likelihood over the variational distribution defined in Equations (5) to (7) and its gradients can

be estimated using expectations over Tn-dimensional Gaussians and |V|2-dimensional Gaussians,

where Tn is the length of each sequence and |V| is the vocabulary size.

The proof is constructive and can be found in the supplementary material. Let L(k,n)
ell

def
=

〈log p(yn|fn)〉 be the individual expected log-likelihood terms, and let λun and λbin be the

variational parameters corresponding to unary and binary factors. Lell and its gradients are

then given by

Lell =

Nseq∑
n=1

K∑
k=1

πkL(k,n)
ell , (9)

∇λun
k
L(k,n)

ell =
〈
log p(yn|fn)∇λun

k
log qkn(fun

n )
〉
, (10)

∇λbinL(k,n)
ell =

〈
log p(yn|fn)∇λbin log q(fbin)

〉
, (11)

where the expectations are computed wrt the approximate marginal posterior qkn = qkn(fun
n )q(fbin);

and qkn(fun
n ) is a (Tn × |V|)-dimensional Gaussian with block-diagonal covariance Σk(n), each

block being of size Tn × Tn since by Equation (6) the components of our variational approxi-

mate posterior corresponding to different labels are independent from each other. Therefore,

we can estimate the above terms by sampling from Tn-dimensional Gaussians independently.

Furthermore, q(fbin) is a |V|2-dimensional Gaussian, which can also be sampled independently.

In practice, we can assume that the covariance of q(fbin) is diagonal and only sample from

univariate Gaussians for the pairwise functions.

It is important to emphasize the practical consequences of Theorem 2. Although we have a

fully correlated prior and a fully correlated approximate posterior over N =
∑Nseq
n=1 Tn unary

function values, yielding full N -dimensional covariances, we have shown that for these classes

of models we can estimate Lell by only using expectations over Tn-dimensional Gaussians. We

refer to this result as the computational efficiency of the inference algorithm.

Nevertheless, even when having only one latent function and using a single Gaussian

approximation (K = 1), optimization of the Lelbo in Equation (8) is completely impractical for

any realistic dataset concerned with structured prediction problems, due to its high memory

requirements O(N2) and time complexity O(N3): indeed, computing the term KL(q(f)‖p(f)) of

Equation (8) would require storing and inverting the N ×N -dimensional covariance matrices
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Σkj .

In the next section we will use a sparse gp approach within our variational framework in

order to develop a practical algorithm for structured prediction.

4 Sparse Approximation

In this section we describe a scalable approach to inference in the structured gp model defined in

§3 by introducing the so-called sparse gp approximations (Quiñonero-Candela and Rasmussen,

2005) into our variational framework. Variational approaches to sparse (but not structured) gp

models were developed by Titsias (2009) for Gaussian likelihoods, then made scalable to large

datasets and generalized to non-Gaussian likelihoods by Hensman et al. (2015a,b); Dezfouli and

Bonilla (2015). The main idea of such approaches is to introduce a set of M inducing variables

{um}Mm=1 for each latent process, which lie in the same space as {fm} and are drawn from the

same gp prior. These inducing variables are the latent function values of their corresponding

set of inducing inputs {Zm}. Subsequently, we redefine our prior in terms of these inducing

inputs/variables.

In our structured gp model, only the unary latent functions are drawn from gps indexed

by X. Hence we assume a gp prior over the inducing variables and a conditional prior over

the unary latent functions, which both factorize over the latent processes. This yields the joint

distribution over unary functions, pairwise functions and inducing variables given by:

p(f ,u) = p(u)p(fun|u)p(fbin), (12)

where

• The marginal prior over the inducing variables is p(u) =
∏|V|
j=1 p(uj);

• The conditional prior is given by p(fun|u) =
∏|V|
j=1N (fun

j ; µ̃j , K̃j);

• The prior over the pairwise functions is defined as before, i.e. p(fbin) = N (fbin; 0,Kbin).

The means and covariances of the individual conditional distributions over the unary functions

are given by: µ̃j = Ajuj and K̃j = κj(X,X)−Ajκ(Zj ,X) with Aj = κ(X,Zj)κ(Zj ,Zj)
−1.

By keeping an explicit representation of the inducing variables, our goal is to estimate the

joint posterior over the unary functions, pairwise functions and inducing variables given the

observed data. To this end, we assume that our variational approximate posterior is given by:

q(f ,u|λ) = q(u|λun)p(fun|u)q(fbin|λbin), (13)
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where

• λ = {λun,λbin} are the variational parameters;

• p(fun|u) is defined as above;

• q(fbin|λbin) is defined as in Equation (7), i.e. a Gaussian with parameters λbin =

{mbin,Sbin};

• It holds that

q(u|λun) =

K∑
k=1

πkqk(u|mk,Sk), (14)

with qk(u|mk,Sk) =
∏|V|
j=1N (uj ; mkj ,Skj);

• λun = {πk,mk,Sk};

• mkj and Skj denote the posterior mean and covariance of the inducing variables for

mixture component k and latent function j, and have dimensionality M and M ×M

respectively.

As mentioned berfore, in our experiments we will use single Gaussians rather than Gaussian

mixtures; thus, in Equation (14) we will always have K = 1, π1 = 1.

4.1 Evidence lower bound

The KL term in the evidence lower bound now considers a KL divergence between the joint

approximate posterior in Equation (13) and the joint prior in Equation (12). Because of the

structure of the approximate posterior, it is easy to show that the term p(fun|u) vanishes from

the KL (see e.g. Titsias, 2009), yielding an objective function that is composed of a KL between

the distributions over the inducing variables, a KL between the distributions over the pairwise

functions, and the expected log likelihood over the joint approximate posterior:

Lelbo(λ) =−KL(q(u)‖p(u))−KL(q(fbin)‖p(fbin))

+

〈
Nseq∑
n=1

log p(yn|fn)

〉
q(f ,u|λ)

, (15)

where KL(q(fbin)‖p(fbin)) is a straightforward KL divergence between two Gaussians and

KL(q(u)‖p(u)) is a KL divergence between a mixture of Gaussians and a Gaussian, which we

bound using Jensen’s inequality. The expressions for these terms are given in the supplementary

material.

Let us now consider the expected log-likelihood term in Equation (15), which is an expectation

of the conditional likelihood over the joint posterior q(f ,u|λ). The following result tells us that,
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as in the non-sparse case, this term can still be estimated efficiently using expectations over

low-dimensional Gaussians.

Theorem 3. The expected log likelihood term in Equation (15), with a generic structured

conditional likelihood p(yn|fn) and variational distribution q(f ,u|λ) defined in Equation (13),

and its gradients can be estimated using expectations over Tn-dimensional Gaussians and |V|2-

dimensional Gaussians, where Tn is the length of each sequence and |V| is the vocabulary

size.

As in the full (non-sparse) case, the proof is constructive and can be found in the supple-

mentary material. This means that, in the sparse case, the expected log likelihood and its

gradients can also be computed using Equations (9) to (11), where the mean and covariances of

each qkn(fun
n ) are determined by the means and covariances of the variational posterior over

the inducing variables. As before, the unary components corresponding to different labels

are independent and qkn(fun
n ) is thus a (Tn × |V|)-dimensional Gaussian with block-diagonal

structure, where each of the j = 1, . . . , |V| blocks has mean and covariance given by

bkjn = Ajnmkj , (16)

Σkjn = K̃n
j + AjnSkjA

T
jn (17)

where

Ajn
def
= κ(Xn,Zj)κ(Zj ,Zj)

−1 , (18)

K̃n
j

def
= κj(Xn,Xn)−Ajnκ(Zj ,Xn) (19)

and as mentioned in §2.2, Xn is the Tn × D matrix of feature descriptors corresponding to

sequence n.

4.2 Expectation estimates

In order to estimate the expectations in Equations (9) to (11), we use a simple Monte Carlo

approach where we draw samples from our approximate distributions and compute the empirical

expectations. For example, for the Lell we have:

L̂ell =
1

S

Nseq∑
n=1

K∑
k=1

πk

S∑
i=1

log p(yn|fun
nki, f

bin
i ), (20)

with fun
nki ∼ N (bk(n),Σk(n)) and fbin

i ∼ N (mbin,Sbin), for i = 1, . . . , S. Here S is the number

of samples, and each of the individual blocks of bk(n) and Σk(n) are obtained from Equations
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(16) and (17), respectively, collecting the entries for all labels j.5 As mentioned before, the πk

in this case are the weights assigned to the individual Gaussian component of our variational

posterior, which is a mixture of Gaussians; and in our experiments, we will have K = 1 and

π1 = 1.

We use a similar approach for estimating the gradients of the Lell and they are given in the

supplementary material.

5 Learning

We learn the parameters of our model, i.e., the parameters of our approximate variational poste-

rior and the hyperparameters ({λ,θ}) through gradient-based optimization of the variational

objective (Lelbo). One of the main advantages of our method is the decomposition of Lell in

Equation (20) and its gradients as a sum of expectations of the individual likelihood terms for

each sequence. This result enables us to use parallel computation and stochastic optimization in

order to make our algorithms useful in practice.

In our experiments, we use 500 inducing inputs {Zj} and select them via K-means clustering.

This number was chosen to provide reasonable cross-experiment balance between performance

and computational cost; the corresponding statistic for the non-sparse case would be the total

number of training words N̄ , which as shown in Table 1 is consistently greater than 500 but

varies considerably between experiments. We leave a detailed analysis of the effect of changing

the number of inducing inputs to future work.

As discussed in the supplementary material, the step sizes for stochastic gradient descent

were chosen automatically and adaptively by our code.

5.1 Computational complexity

The time-complexity of our stochastic optimization is dominated by the computation of the

posterior’s entropy, Gaussian sampling, and running the forward-backward algorithm, which

yields an overall cost of O(M3 + T 3
n + STn|V|2) for each sequence n. Indeed:

• The forward-backward algorithm allows us to compute the likelihood (for each one of the

S samples) at cost O(Tn|V|2);

• Inverting sums of the M ×M matrices Skj , as well as the (also M ×M) matrix κ(Zj ,Zj),

in order to compute the entropy terms and gradients6 costs O(M3);
5Hence, bk(n) is of dimension Tn|V| and Σk(n) is of dimension Tn|V| × Tn|V|, as required for the mean and

covariance of the Tn × |V|-dimensional distribution fun
nki.

6See Appendices B and D.1.1 for details.
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• The inverse of κ(Zj ,Zj) is also necessary to compute bkjn and Σkjn according to Equations

(16)–(19);

• Once the bkjn and Σkjn are obtained, inverting the Tn × Tn matrices Σkjn in order to

draw the samples fun
nki ∼ N (bk(n),Σk(n)) required to compute L̂ell according to Equation

(20) carries a computational cost of O(T 3
n).

The space complexity is dominated by storing inducing-point covariances, which is O(M2).

To put this in the perspective of other available methods, the existing Bayesian structured

model with ess sampling (Bratières et al., 2015) has time and memory complexity of O(N3)

and O(N2) respectively, where N is the total number of observations (e.g. words). crf’s time

and space complexity with stochastic optimization depends on the feature dimensionality, i.e., it

is O(D). The actual running time of crf also depends on the cost of model selection via a

cross-validation procedure. ess sampling makes the method of Bratières et al. (2015) completely

unfeasible for large datasets and crf has high running times for problems with high dimensions

and many hyperparameters. Our work aims to make Bayesian structured prediction practical for

large datasets, while being able to use infinite-dimensional feature spaces as well as sidestepping

a costly cross-validation procedure.

5.2 Variance reduction

Our goal is to approximate an expectation of a function g(f) over the random variable f

that follows a distribution q(f), i.e., Eq[g(f)] via Monte Carlo samples. The simplest way to

reduce the variance of the empirical estimator ḡ is to subtract from g(f) another function h(f)

that is highly correlated with g(f). We note that, in the case of variational inference, this

technique was introduced in Blei et al. (2012). In more detail, for any value of â, the function

g̃(f) := g(f)− âh(f) will have the same expectation as g(f), i.e., Eq[g̃] = Eq[g], provided that

Eq[h] = 0. In general, to ensure unbiasedness, Eq[h], if easily and efficiently computable, can be

subtracted from h to form an estimator g̃ := g− h+Eq[h]. More importantly, as the variance of

the new function is Var[g̃] = Var[g] + â2Var[h]− 2âCov[g, h], our problem boils down to finding

suitable â and h so as to minimize Var[g̃].

In our case, q(f) is the variational distribution and g(f) = log p(yn|fn)∇λ log q(f) (see

supplementary material). Previous work (Ranganath et al., 2014; Dezfouli and Bonilla, 2015)

has found that a suitable correction term is given by h(f) = ∇λ log q(f), which has expectation

zero. Given this, the optimal â can be computed as â = Cov[g, h]/Var[h]. The use of control

variates is essential to achieve good performance in our framework.
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Figure 4: Decomposing a linear model via pseudolikelihood: only local interactions inside unary
(red) or binary (blue) factors are considered. Compare with the original model (Figure 3).

5.3 Piecewise pseudo-likelihood

In order to demonstrate the flexibility of our approach, we also tested the performance of our

framework when the true likelihood is approximated by a piecewise pseudo-likelihood (Sutton

and McCallum, 2007) that only takes in consideration the local interactions within a single

factor between the variables in our model.

In the context of this work, as illustrated in Figure 4, this is the same as replacing the

likelihood p(yn|fun
nki, f

bin
i ) of sequence n given the latent functions fun

nki and fbin
i with the product,7

for every single factor and every variable occurring in it, of the conditional probability of the

variable given its neighbours with respect to that factor.

In our linear model, this yields the following expression for the log pseudolikelihood

p̃(yn|fun
nki, f

bin
i ):

log p̃(yn|fun
nki, f

bin
i ) =

Wn∑
w=1

log p((yn)w|fun
nki) +

∑
|w1−w2|=1

log p((yn)w1
|(yn)w2

, fbin
i )

where Wn is the number of words in sentence n and

p((yn)w|fun
nki) ∝ exp(fun

nkiyn
(w)); (21)

p((yn)w|(yn)w+1, f
bin
i ) ∝ exp(fbin

i ((yn)w, (yn)w+1)); (22)

p((yn)w+1|(yn)w, f
bin
i ) ∝ exp(fbin

i ((yn)w, (yn)w+1)). (23)

We emphasize that this change did not require any modification to our inference engine and

we simply used this pseudo-likelihood as a drop-in replacement for the exact likelihood.
7Here i represents the index of the specific samples fun

nki and fbin
i taken from our distributions qkn(f

un
n ) and

q(fbin).
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5.4 Making and evaluating predictions

For a given choice of parameters and hyperparameters, we make predictions and evaluate them

as follows.

For any new sequence with features X?, we first compute the corresponding bkj? and Σkj?

from the learned parameters mkj and Skj according to Equations (16) and (17) for n = ?; then,

once more, we sample a latent function fun
?ki ∼ N (bk(?),Σk(?)) (as well as a latent function

fbin
i ∼ N (mbin,Sbin) for the binary factors). Then, we use the forward-backward algorithm to

compute the posterior marginals of all labels at all positions of the sequence. This is done for

multiple samples i = 1 . . . S, averaging the resulting marginals.

In this way, for each position t of the sequence and each label y we obtain a probability

P (yt = y) =
1

S

K∑
k=1

πk

S∑
i=1

log p(yt = y|fun
?ki, f

bin
i )

where S is the number of samples used, fun
?ki and fbin

i are sampled as just discussed, and – as

mentioned before – for our experiments it is always the case that K = 1, π1 = 1.

Then our prediction for position t of the sequence n is simply the label y which maximizes

this probability, that is, argmaxy P (yt = y), and the mean error rates of our method with respect

to our testing datasets are computed on the basis of these predictions. We also compute the

negative log likelihoods by summing, for all sequences in the testing and for all positions of these

sequences, the negative logarithms of the probabilities, of the true labels.

Regardless of our choice of using the true likelihood or the piecewise pseudo-likelihood when

training, we always use the true likelihood – computed via the forward-backward algorithm –

when making the predictions. Indeed, the chief advantage of the piecewise pseudo-likelihood

over the true likelihood lies in its smaller computational cost, which is mainly a concern during

training (since we need to compute it, for each sampling of our latent functions, at every

optimization step), while the main advantage of the true likelihood lies in its higher accuracy

(which is a greater concern during the prediction phase).

6 Experiments

6.1 Datasets and experimental baselines

In this section we describe how we evaluated our approach on the benchmarks used by Bratières

et al. (2015), which target several standard nlp problems and are summarized in Table 1.

These include noun phrase identification (base np); chunking, i.e. shallow parsing labels

sentence constituents (chunking); identification of word segments in sequences of Chinese
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ideograms (segmentation); and Japanese named entity recognition (japanese ne). We also

consider larger-scale experiments on base np and chunking, which have significantly more

training data available.8

We tested the performance of our method, both when using the true likelihood (gp-var-

t) and when using the piecewise pseudolikelihood (gp-var-p), against that of three other

approaches:

• svm: Structured Support Vector Machines (Tsochantaridis et al., 2005), making use

of Joachims’ implementation found at http://www.cs.cornell.edu/people/tj/svm_

light/svm_struct.html;

• crf: Conditional Random Fields, using Schmidt and Swersky’s Matlab implementation

for linear models, which can found at https://www.cs.ubc.ca/~schmidtm/Software/

crfChain.html;

• gp-ess: The elliptical slice sampling-based gpstruct, as described in (Bratières et al.,

2015), using an implementation provided by the authors.

We refer to the Introduction for a brief description of Structured Support Vector Machines.

Conditional random fields and gp-ess have been discussed in §2.

The hyperparameters of these methods were chosen automatically through cross-validation,

as per the given implementations. When comparing the negative log likelihoods we did not

make use of the results of svm, because this method does not produce probability estimates.

For large-scale experiments, we only compared our method (with pseudolikelihood) with

crf, as it was the best baseline in our previous experiments.

6.2 Small-scale experiments

When comparing the error rates on Table 2 we see that our approach is on par with competitive

benchmarks which, unlike our method, exploit the structure of the likelihood (in the sense that

these implementations are custom-made and optimized for that choice of likelihood, which could

not be modified without extensive reworkings of the implementations).

More importantly, when analyzing the test likelihoods on Table 3 we see that our method

with true likelihood (gp-var-t) is significantly better than crf for all benchmarks except

segmentation, where it has a similar performance. Finally, the log-likelihood results of gp-

ess (Bratières et al., 2015) are also consistently worse than ours, owing largely to the higher

computational cost of sampling.
8base np and chunking are in fact the same dataset, with different choices of features and labels.
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Table 1: Datasets used in our experiments. For each dataset we see the number of categories
(or vocabulary |V|), the number of features (D), the number of training sequences in small
(Nseq-small) and large (Nseq-big) scale experiments, and the average (across folds) number of
training words (N̄ -small and N̄ -big). Large-scale experiments were only performed for the base
np and chunking datasets.

Dataset |V| D Nseq-small N̄ -small Nseq-big N̄ -big
base np 3 6,438 150 3,739.8 500 11,611

chunking 14 29,764 50 1,155.8 500 11,611
segmentation 2 1,386 20 942 - -
japanese ne 17 102,799 50 1,315.4 - -

Table 2: Mean error rates and standard deviations in brackets on small-scale experiments using
5-fold cross-validation. The average number of observed words (N̄) on these problems range
from 942 to 3740. svm corresponds to structured support vector machines; crf to conditional
random fields; gp-ess corresponds to gpstruct with ess for inference (Bratières et al., 2015);
gp-var-t corresponds to our method with true likelihood; and gp-var-p corresponds to our
our method with piecewise pseudo-likelihood.

Dataset Method

svm crf gp-ess gp-var-t gp-var-p

base np 5.9 (0.4) 5.3 (0.5) 5.1 (0.4) 5.6 (0.5) 5.2 (0.3)
chunking 9.8 (1.0) 8.5 (1.0) 8.5 (1.0) 9.4 (1.6) 9.0 (1.0)
segmentation 16.2 (2.2) 15.4 (1.1) 14.9 (1.8) 14.5 (1.5) 15.3 (2.2)
japanese ne 5.6 (0.8) 5.2 (0.7) 5.6 (0.7) 5.4 (0.6) 5.6 (0.6)

Table 3: Negative expected log-likelihoods and standard deviations in brackets on small-scale
experiments using 5-fold cross-validation. As before, crf refers to conditional random fields;
gp-ess to gpstruct with ess for inference (Bratières et al., 2015); gp-var-t to our method
with true likelihood; and gp-var-p to our method with piecewise pseudo-likelihood.

Dataset Method

crf gp-ess gp-var-t gp-var-p

base np 944 (835) 887 (57) 622 (34) 603 (21)
chunking 517 (113) 704 (116) 407 (43) 587 (100)
segmentation 253 (41) 316 (52) 255 (45) 298 (53)
japanese ne 592 (131) 806 (135) 339 (38) 411 (94)
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6.3 Larger-scale experiments

Here we evaluate our approach on base np and chunking using Nseq = 500 training sequences

and the remaining 323 sequences for testing, with a five-fold cross-validation setting. This

amounts to roughly 11, 611 training words on average. We compare with crf, as this was the

best baseline in our previous experiments. We also note that that the original gp-ess method is

completely impractical in this setting.

On base np, our method has a lower average test negative log-likelihood (1265.52 vs. 1355.63)

but a higher error rate (5.15% vs 4.50%) than crf. However, our results on chunking, 2511.48

vs 1862.96 for test log-likelihoods and 8.60% vs 7.20% for error rates, indicate that our method

lags behind crf on this dataset. We attribute this result to chunking having a much higher

dimensionality than base np, which is a more critical issue with large datasets, and to the fact

that our implementation is not particularly optimized.

6.4 Discussion

As the previous results show, the performance of our variational approach is roughly on par with

state-of-the-art methods (and, in particular, consistently better than structured support vector

machines svm) for structured inference over chain models, at least with respect to comparatively

small datasets, while being more scalable to the sampling-based implementation gp-ess (which

could not be feasibly used for our large-scale experiments).

We cannot claim that our approach is consistently better than custom-made implementations

of crf for linear chain models; but it is important to remark here that our approach is more

flexible than crf in that different choices of likelihood function (e.g. pseudolikelihood rather

than true likelihood) can be used without changing anything in the code except the likelihood

function itself. This is not the case for crf: indeed, the likelihood function (computed via the

forward-backward algorithm) and its gradients are hard-coded in the used implementation of

crf, and changing it would require a substantial reworking of its code.

This is an advantage that our approach shares with the sampling-based approach gp-ess; and,

in fact, the present work is in essence an attempt to make said approach more scalable by means

of variational and sparse approximation techniques. Overall, the results of our experiments can

be considered successful on this note: even though our performance on large-scale experiments

was not consistently superior to that of crf, as already mentioned our approach is inherently

more flexible than it in that it allows to try out different likelihood functions without the need

of changing the rest of the implementation.
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7 Conclusion

7.1 Future Work

The work discussed in this thesis could be extended in various ways.

First of all, in our experiments we considered only single Gaussians for our variational

approximations, even though our approach may be easily extended to Gaussian mixtures. This

was because preliminary experiments suggested that increasing the number K of Gaussians in

our variational approximations did not result in improvements for the datasets that we chose

to consider; but it would be worthwhile to investigate whether this remains the case when

considering other datasets.

The techniques described in this work could also be applied to the problem of image

segmentation, extending the work of (Bratières et al., 2014).

Moreover, it could be interesting to explore the benefits of using neural networks to learn

the kernels of our Gaussian processes, along the lines of (Hinton and Salakhutdinov, 2008), or

even of using variationally approximated structured Gaussian process-based predictors as the

last layer of a neural network: in regard to this, the ideas of (Zheng et al., 2015) about the

interpretability of Conditional Random Fields in terms of recurrent neural networks could be an

intriguing starting point.

Finally, one could study ways of incorporating domain knowledge (in particular, domain

knowledge regarding spatial relationships between objects) in our framework. This is a fairly

open-ended problem, in general; but for instance, (Hu et al., 2016), in which an expectation

maximization-like framework is explored in which a “teacher” network adjusts a “student”

network’s prediction by taking into account domain knowledge while the “student” negotiates

between the two objectives of fitting the training data and imitating the “teacher” network,

could well constitute a very suitable initial point for our exploration.

7.2 Concluding Remarks

We studied a Bayesian structured prediction model with gp priors and linear-chain likelihoods.

We developed an automated variational inference algorithm that only requires expectations over

low-dimensional Gaussians in order to estimate the expected likelihood term in the variational

objective. We exploited these types of theoretical insights as well as practical statistical and

optimization tricks to make our inference framework scalable and effective. Our model generalizes

recent advances in crfs (Koltun, 2011) by allowing general positive definite kernels defining

their energy functions and opens new directions for combining deep learning with structure

models (Zheng et al., 2015).
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As mentioned in the introduction, when adapting our approach to new structured prediction

problems one may need to set up a new configuration of the latent functions (e.g. the unary and

pairwise functions of our linear-chain case), which would require substantial modifications to the

code. Thus, the process of developing an inference procedure, using our approach, for a different

structure (e.g. when considering higher-order interactions) requires some human intervention.

Nevertheless, when applied to fixed structures our approach is “black box” with respect to the

choice of likelihood, inasmuch as different likelihoods can be used without any change to the

inference engine.

We have already seen a possible way to extend our method to more general structured

likelihoods, where the exact likelihood is replaced by a piecewise pseudo-likelihood. Such an

approach might be especially valuable when adapting our framework to models such as grids or

skip-chains, for which the evaluation of the true structured likelihood would be intractable.

Overall, we believe our approach is a fundamental step to developing automated inference

methods for general structured prediction problems.
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Appendices

A Proof of Theorem 2

Here we proof the result that we can estimate the expected log likelihood and its gradients using

expectations over low-dimensional Gaussians, that is that
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Theorem. For the structured gp model defined in this work the expected log likelihood over

the given variational distribution and its gradients can be estimated using expectations over

Tn-dimensional Gaussians and |V|2-dimensional Gaussians, where Tn is the length of each

sequence and |V| is the vocabulary size.

A.1 Estimation of Lell in the full (non-sparse) model

For the Lell we have that:

Lell =

〈
Nseq∑
n=1

log p(yn|fn)

〉
q(fun)q(fbin)

(24)

=

Nseq∑
n=1

∫
fbin

∫
fun

q(fun)q(fbin) log p(yn|fn) dfundfbin (25)

=

Nseq∑
n=1

∫
fbin

∫
fun
n

∫
fun
\n

q(fun
\n |f

un
n )q(fun

n )q(fbin) log p(yn|fn) dfun
\ndf

un
n dfbin (26)

=

Nseq∑
n=1

〈log p(yn|fn)〉q(fun
n )q(fbin) (27)

=

Nseq∑
n=1

K∑
k=1

πk 〈log p(yn|fn)〉qkn(fun
n )q(fbin) , (28)

where qkn(fun
n ) is a (Tn × |V|)-dimensional Gaussian with block-diagonal covariance Σk(n),

each block of size Tn × Tn. Therefore, we can estimate the above term by sampling from

Tn-dimensional Gaussians independently. Furthermore, q(fbin) is a |V|2-dimensional Gaussian,

which can also be sampled independently. In practice, we can assume that the covariance of

q(fbin) is diagonal and we only sample from unary Gaussians for the pairwise functions. �

A.2 Gradients

Taking the gradients of the kth term for the nth sequence in the Lell:

L(k,n)
ell = 〈log p(yn|fn)〉qkn(fun

n )q(fbin) (29)

=

∫
fbin

∫
fun
n

qkn(fun
n )q(fbin) log p(yn|fn) dfun

n dfbin (30)

∇λun
k
L(k,n)

ell =

∫
fbin

∫
fun
n

qkn(fun
n )q(fbin) log p(yn|fn)∇λun

k
log qkn(fun

n ) dfun
n dfbin (31)

=
〈
log p(yn|fn)∇λun

k
log qkn(fun

n )
〉
qkn(fun

n )q(fbin)
, (32)

where we have used the fact that ∇xf(x) = f(x)∇x log f(x) for any nonnegative function f(x)

Similarly. the gradients of the parameters of the distribution over binary functions can be
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estimated using:

∇λbinL(k,n)
ell =

〈
log p(yn|fn)∇λbin log q(fbin)

〉
qkn(fun

n )q(fbin)
. (33)

�

B KL terms in the sparse model

The KL term (Lkl) in the variational objective (Lelbo) is composed of a KL divergence between

the approximate posteriors and the priors over the inducing variables and pairwise functions:

Lkl = −KL(q(u)‖p(u))︸ ︷︷ ︸
Lun

kl

−KL(q(fbin)‖p(fbin))︸ ︷︷ ︸
Lbin

kl

, (34)

where, as the approximate posterior and the prior over the pairwise functions are Gaussian, the

KL over pairwise functions can be computed analytically:

Lbin
kl = −KL(q(fbin)‖p(fbin)) = −KL(N (fbin; mbin,Sbin)‖N (fbin; 0,Kbin)) (35)

= −1

2

(
log
∣∣Kbin∣∣− log

∣∣Sbin∣∣+ (mbin)T (Kbin)−1mbin + tr (Kbin)−1Sbin − |V|
)
. (36)

For the distributions over the unary functions we need to compute a KL divergence between

a mixture of Gaussians and a Gaussian. For this we consider the decomposition of the KL

divergence as follows:

Lun
kl = −KL(q(u)‖p(u)) = Eq[− log q(u)]︸ ︷︷ ︸

Lent

+Eq[log p(u)]︸ ︷︷ ︸
Lcross

, (37)

where the entropy term (Lent) can be lower bounded using Jensen’s inequality:

Lent ≥ −
K∑
k=1

πk log

K∑
`=1

π`N (mk; m`,Sk + S`)
def
= L̂ent. (38)

and the negative cross-entropy term (Lcross) can be computed exactly:

Lcross = −1

2

K∑
k=1

πk

|V|∑
j=1

[M log 2π + log |κ(Zj ,Zj)|+ mT
kjκ(Zj ,Zj)

−1mkj + tr κ(Zj ,Zj)
−1Skj ].

(39)
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C Proof of Theorem 3

To prove Theorem 3 we will express the expected log likelihood term in the same form as that given

in Equation (28), showing that the resulting qkn(fun
n ) is also a (Tn × |V|)-dimensional Gaussian

with block-diagonal covariance, having |V| blocks each of dimensions Tn×Tn. We start by taking

the given Lell, where the expectations are over the joint posterior q(f ,u|λ) = p(fun|u)q(u)q(fbin):

Lell =

〈
Nseq∑
n=1

log p(yn|fn)

〉
p(fun|u)q(u)q(fbin)

(40)

=

∫
f

log p(y|f)

∫
u

q(u)p(fun|u)du︸ ︷︷ ︸
q(fun)

q(fbin)df , (41)

where our our approximating distribution is:

q(f) = q(fun)q(fbin) (42)

q(fun) =

∫
u

q(u)p(fun|u)du, (43)

which can be computed analytically:

q(fun) =

K∑
k=1

πkqk(fun) =

K∑
k=1

πk

|V|∏
j=1

N (fun
j ; bkj ,Σkj) (44)

bkj = Ajmkj (45)

Σkj = K̃j + AjSkjA
T
j . (46)

We note in Equation (44) that qk(fun) has a block diagonal structure, which implies that we

have the same expression for the Lell as in Equation (28). Therefore, we obtain analogous

estimates:

Lell =

Nseq∑
n=1

K∑
k=1

πk 〈log p(yn|fn)〉qkn(fun
n )q(fbin) , (47)

Here, as before, qkn(fun
n ) is a (Tn × |V|)–dimensional Gaussian with block-diagonal covariance

Σk(n), each block of size Tn × Tn. The main difference in this (sparse) case is that bk(n) and

Σk(n) are constrained by the expressions in Equations (45) and (46). Hence, the proof for the

gradients follows the same derivation as in §A.2 above. �
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D Gradients of Lelbo for sparse model

Here we give the gradients of the variational objective wrt the parameters for the variational

distributions over the inducing variables, pairwise functions and hyper-parameters.

D.1 Inducing variables

D.1.1 KL term

As the structured likelihood does not affect the KL divergence term, the gradients corresponding

to this term are similar to those in the non-structured case (Dezfouli and Bonilla, 2015). Let

Kzz be the block-diagonal covariance with |V| blocks κ(Zj ,Zj), j = 1, . . . Q. Additionally, lets

assume the following definitions:

Ckl
def
= Sk + S`, (48)

Nk`
def
= N (mk; m`,Ckl), (49)

zk
def
=

K∑
`=1

π`Nk`. (50)

The gradients of Lkl wrt the posterior mean and posterior covariance for component k are:

∇mk
Lcross = −πkK−1zz mk, (51)

∇Sk
Lcross = −1

2
πkK

−1
zz (52)

∇πk
Lcross = −1

2

|V|∑
j=1

[M log 2π + log |κ(Zj ,Zj)|+ mT
kjκ(Zj ,Zj)

−1mkj + tr κ(Zj ,Zj)
−1Skj ],

(53)

where we note that we compute K−1zz by inverting the corresponding blocks κ(Zj ,Zj) indepen-

dently. The gradients of the entropy term wrt the variational parameters are:

∇mk
L̂ent = πk

K∑
`=1

π`

(
Nk`
zk

+
Nk`
z`

)
C−1kl (mk −m`), (54)

∇Sk
L̂ent =

1

2
πk

K∑
`=1

π`

(
Nk`
zk

+
Nk`
z`

)[
C−1kl −C−1kl (mk −m`)(mk −m`)

TC−1kl
]
, (55)

∇πk
L̂ent = − log zk −

K∑
`=1

π`
Nk`
z`

.
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D.1.2 Expected log likelihood term

Retaking the gradients in the full model in Equation (32), we have that:

∇λun
k
L(k,n)

ell =
〈
log p(yn|fn)∇λun

k
log qkn(fun

n )
〉
qkn(fun

n )q(fbin)
, (56)

where the variational parameters λun
k are the posterior means and covariances ({mkj} and

{Skj}) of the inducing variables. As given in Equation (44), qk(fun) factorizes over the latent

process (j = 1, . . . , |V|), so do the marginals qkn(fun
n ), hence:

∇λun
k

log qkn(fun
n ) = ∇λun

k

|V|∑
j=1

logN (fun
nj ; bkjn,Σkjn), (57)

where each of the distributions in Equation (57) is a Tn–dimensional Gaussian. Let us assume

the following definitions:

Xn : all feature vectors corresponding to sequence n (58)

Ajn
def
= κ(Xn,Zj)κ(Zj ,Zj)

−1 (59)

K̃n
j

def
= κj(Xn,Xn)−Ajnκ(Zj ,Xn), therefore: (60)

bkjn = Ajnmkj , (61)

Σkjn = K̃n
j + AjnSkjA

T
jn. (62)

Hence, the gradients of log qk(fun) wrt the the variational parameters of the unary posterior

distributions over the inducing points are:

∇mkj
log qkn(fun

n ) = AT
jnΣ−1kjn

(
fun
nj − bkjn

)
, (63)

∇Skj
log qkn(fun

n ) =
1

2
AT
jn

[
Σ−1kjn(fun

nj − bkjn)(fun
nj − bkjn)TΣ−1kjn −Σ−1kjn

]
Ajn (64)

Therefore, the gradients of Lell wrt the parameters of the distributions over unary functions are:

∇mkj
Lell =

πk
S
κ(Zj ,Zj)

−1
Nseq∑
n=1

κ(Zj ,Xn)(Σkjn)−1
S∑
i=1

(fun
nkij − bkjn) log p(yn|fun

nki, f
bin
i ), (65)

∇Skj
Lell =

πk
2S

Nseq∑
n=1

AT
jn

{ S∑
i=1

[
(Σkjn)−1(fun

nkij − bkjn)((fun
nj )(k,i) − bkjn)T (Σkjn)−1 (66)

− (Σkjn)−1
]

log p(yn|fun
nki, f

bin
i )

}
Ajn
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D.1.3 Pairwise functions

The gradients of the Lbin
kl wrt the parameters of the posterior over pairwise functions are given

by:

∇mbinLbin
kl = −(Kbin)−1mbin (67)

∇SbinLbin
kl =

1

2

(
(Sbin)−1 − (Kbin)−1

)
(68)

The gradients of the Lell wrt the parameters of the posterior over pairwise functions are given

by:

∇mbinLell =
1

S

Nseq∑
n=1

K∑
k=1

πk

S∑
i=1

(Sbin)−1(fbin
i −mbin) log p(yn|fun

nki, f
bin
i )

∇SbinLell =
1

2S

Nseq∑
n=1

K∑
k=1

πk

S∑
i=1

[(Sbin)−1(fbin
i −mbin)(fbin

i −mbin)T (Sbin)−1 − (Sbin)−1]·

log p(yn|fun
nki, f

bin
i )

E Experiments

E.1 Experimental set-up

Before starting all experiments, our program selects the positions of the 500 inducing points

by performing K-means clustering on the training data. The initial values of the means (one

mean value for every inducing point p and for every possible label l) are set as the fraction of

the points of the training set in the cluster whose centroid is p that belong to label l.

As described in Algorithm 1, we adaptively choose the correct learning rates for all parameters

by searching (beginning from an initial guess, and doubling or dividing it by two as needed) for

the biggest step size that causes the objective to decrease over twenty stochastic optimization

steps. The step size to use for the given parameter is taken as one fourth of this value, to avoid

instability. The initial step sizes are 0.5 for unary mean parameters, 0.0005 for binary mean

parameters, 0.005 for unary covariance parameters, 0.0005 for binary covariance parameters and

1.0 for (linear) kernel hyperparameters (these values were selected only to speed up, insofar as

possible, the process of parameter search); and the optimal step sizes are found in the order

unary mean → unary covariance → binary mean → binary covariance → kernel hyperparameter.

Of course this is not an exhaustive grid search, but it is less computationally expensive and

works well in practice.
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Algorithm 1 Method for computing the step size
1: function check_stepsize(parameters, step_size, num_to_check=20)
2: to_check ← num_to_check sentences at random from the training set;
3: old_obj ← current value of the objective function;
4: for i← 0 . . . num_to_check do
5: grad ← gradient of objective wrt parameters;
6: parameters ← parameters - step_size · grad;
7: if parameters are out of bounds then
8: return False;
9: new_obj ← current value of the objective function;

10: if new_obj < old_obj then
11: return True;
12: else
13: return False;
14: function search_stepsize_up(parameters, initial_step_size)
15: step_size ← initial_step_size;
16: old_params ← current parameter values of the model;
17: while True do
18: is_good ← check_stepsize(parameters, step_size);
19: if is_good = False then
20: parameters ← old_params;
21: return step_size

factor2 ;
22: step_size ← step_size · factor;
23: function search_stepsize_down(parameters, initial_step_size)
24: step_size ← initial_step_size;
25: old_params ← current parameter values of the model;
26: while True do
27: is_good ← check_stepsize(parameters, step_size);
28: if is_good = True then
29: parameters ← old_params;
30: return step_size

factor ;
31: step_size ← step_size/factor;
32: function choose_stepsize(parameters, initial_step_size, factor = 2)
33: step_size ← search_stepsize_up(parameters, initial_step_size, factor);
34: if step_size == initial_step_size

factor2 then
35: step_size ← search_stepsize_down(parameters, initial_step_size,

factor);
36: return step_size/factor;
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E.2 Optimization

We optimize the three sets of parameters (unaries, binaries, hyperparameters) in a global loop,

in the same order as mentioned earlier, through standard Stochastic Gradient Descent, until

the time limit is reached. We use 4000 new random samples each step for the estimation of the

relevant gradients and averages.9

For the small-scale experiments, the variational parameters for unary nodes are optimized

for 500 iterations, variational parameters for pairwise nodes are optimized for 100 iterations,

and hyper-parameters are updated for 20 iterations.

We keep a tight bound (10 in the unary case, 20 in the binary one) on the maximum possible

absolute values that covariance parameters can take. If an update would bring their value

beyond it, we recompute the gradients with new samples: oftentimes, this resolves the issue

(in brief, because the faulty update was due to a bad estimation of the gradients). If the

problem persists, we disregard the current sentence and move on to the next one; and if after

ten attempts the problem still persists, we move back to the latest “safe” position that did not

cause out-of-bound errors. In this way, we can use a relatively small number of samples and

maintain rather aggressive step sizes while recovering neatly from out-of-bounds errors.

The setting for the large-scale experiments was similar, except that the optimization schedule

was (12500, 2500, 500) (that is 12500 unary optimization steps, 2500 binary ones and 500

hyperparameter ones) for the big base np and chunking experiments. All the experiments

were run for four hours, not counting initial clustering or final prediction (but counting step size

selection). For comparison, the (small-scale) gp-ess experiments, which were run for 250,000

elliptical slice sampling steps, took on average 11.34 hours for chunking, 21.19 hours for base

np, 2.07 hours for segmentation and 15.75 for japanese ne.

E.3 Performance profiles

Figure 5 shows the performance of our algorithm as a function of time. We see that the test

likelihood decreases very regularly in all the folds and so does overall the error rate, albeit with

more variability. The bulk of the optimization, both with respect to the test likelihood and

with respect to the error rate, occurs during the first 120 minutes. This suggests that the kind

of approach described in this paper might be particularly suited for cases in which expected

loglikelihood of the prediction and speed of convergence are priorities.

9When computing the gradient of the kernel hyperparameter, 8000 samples were used instead to insure greater
stability.
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Figure 5: The test performance of gp-var-t on chunking for the large scale experiment as a
function of time.
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