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ABSTRACT 

This research work is on time-delayed models of infectious diseases dynamics. The dynamics of 
infectious diseases are studied in the presence of time delays representing temporary immunity or 
latency. We have designed and analysed time-delayed models with various parameters to simulate 
disease dynamics, in a view to gaining insight into the behaviour of a population in the presence of 
infectious diseases, and the reaction of the population to changes in the management procedure 
of such infections. 
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Definitions and Notations

Rm m-dimensional vector-space

ρ Spectral radius

τ Time delay

∈ Belong to

∀ For all

R0 Basic reproduction number.

inf Infimum

sup Supremum

Susceptible Population at risk of contracting the disease.

Infective Population infected and capable of transmitting the disease.

Recovered Population recovered from the infection.

Latency period The period between exposure to a disease causing organism and

development of a consequent disease.

Incubation period The period between exposure to an infection and the appearance

of the first symptoms.

Temporary immunity Short term immunity to disease acquired after recovery from the

disease.

Cross immunity A form of immunity in which immunity to one disease is effective

in protecting the individual against similar but different disease.
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Chapter 1

Introduction

1.1 General Introduction

Time-delayed models of infectious diseases are used to understand the disease

dynamics with an aim of gaining insight into the behaviour of a population in

the presence of any such diseases. The reaction of the population to changes in

the management procedures of such infections are represented by corresponding

parameters in the model, and allow one to develop methods to control the disease

by, for example, introducing vaccinations, quarantine and so forth. Mathematical

models describing the development of infectious diseases in a population help to

understand and prevent a possible onset of an epidemic.

The modelling of infectious diseases based on the susceptible, infective and

recovered structure have witnessed an increasing interest in mathematical epi-

1



demiology since the pioneering work by Kermack and McKendrick in the 1930s

[1, 2, 3]. They used differential equations with time (t) as an independent variable

and the populations, as functions of time, subdivided into classes as follows:

S = S(t) — number of susceptible individuals;

I = I(t) — number of infected individuals;

R = R(t) — number of recovered individuals.

Numerous authors have made improvements and modifications of the classical SIR

model with the intent of better understanding of the disease dynamics by including

different other factors into consideration (See [6, 7, 9, 10, 14]).

While the models mentioned above help us to understand the dynamical be-

haviour of some infectious diseases, factors such as incubation periods of disease

causing pathogens, temporary immunity and latency periods of infections are often

neglected in the models. The introduction of time delays into models helps to ad-

dress these omissions and provides a more realistic scenario for modelling a wider

class of infections like malaria, HIV etc (See [11, 12, 14, 15, 16, 17, 19, 20, 21] and

references therein). The main aim of this thesis is mathematical modelling of the

disease dynamics using time delays to capture the incubation periods or temporary

immunity of disease causing pathogens and latency periods of infections.
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1.2 Thesis Structure

This thesis is composed of five chapters. Chapter 1 is devoted to the general

introduction into the field of time-delayed systems and literature review.

In Chapter 2, we have studied the effects of temporary immunity on the dynam-

ics of malaria. This analysis is focused on the existence and stability of the disease-

free and endemic equilibria of the model with time delay of the form I(t−τ)e−µhτ ,

where τ is the length of the period of latency of the malaria drug administered

and µh is the death rate for humans. Numerical analysis is used to verify and

confirm analytical findings. The time delay is used to investigate the effects of the

temporary immunity on the dynamics of malaria infection. This work has demon-

strated that even in the presence of temporary immunity, dynamics of a human

mosquito model for malaria is mostly affected by the basic reproduction number.

In particular, our results suggest that the treatment of malaria using long-lasting

malaria drugs could significantly reduce the population infected with malaria.

Chapter 3 deals with a two-disease epidemic model with time delay (without

the possibility of a co-infection). Analysis done has shown the rich dynamical

behaviour of the system and established stability criteria for the steady states

in terms of the threshold parameter R0. Numerical simulations are done using

TRACE-DDE suite in Matlab, a program for computing the characteristic roots

and stability boundaries for delay differential equations with discrete and dis-
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tributed delays.

Chapter 4 is devoted to the analysis of the dynamics of an SIR model with

latency based on the logistic growth of the population in the absence of disease,

with a saturated incidence rate. Here the time delay is used to represent latency.

We summarise the work in Chapter 5 with suggestions on future work on two-

disease epidemic model with time delay, including the possibility for co-infection.

1.3 Literature Review

In this chapter, we review some related literature and results obtained from

previous studies of similar models. Mathematical modelling of infections with

time-delayed models is a fast growing research area, and has been playing an im-

portant role in analysing the behaviour of a population in the presence of infectious

diseases, and the reaction of populations to changes in management protocols of

such infections. Models are developed based on some various assumptions, which

are made depending on the type of disease studied, the causative agent of the

disease and most importantly, the interaction of the disease with the population.

Here, we review some of these models that are related to the models we will derive

and analyse in this thesis.
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1.3.1 Malaria Models

Modelling the dynamical interaction of malaria in a population began with the

work of Ronald Ross [22]. He proposed a deterministic two-dimensional model

with one variable representing human and the other representing mosquito pop-

ulations, where it was shown that a reduction of mosquito population below a

certain threshold was sufficient to eradicate malaria. This pioneering work ig-

nited interest in the research area, making malaria models a useful tool in the

study of the dynamics of malaria infection in populations. In 1927, Kermack and

McKendrick [1] published their paper based on the Ross model and proposed a

threshold condition for the spread of a disease, and provided a way of predicting

the ultimate size of an epidemic. Numerous authors have made an extension to the

model by Ross. Macdonald [23], for instance, considered the latency period of the

parasite in mosquitos and introduced the exposed class in the mosquito compart-

ment thus modifying the original Ross model. The Macdonald model was more

realistic, since malaria parasite spends approximately 10 days inside a mosquito

during its life cycle [24]. Further work on the Ross and Macdonald models was

undertaken by Anderson and May [25] with the introduction of an exposed class

in the human compartment to account for the 21 day latency period of the par-

asite in humans. Most authors have used time delays in their models as a way

of effectively incorporating these latency periods, see for instance [26], and most
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others have extended the models to incorporate various aspects related to malaria

transmission dynamics and control, such as the use of preventative and therapeutic

strategies, climate change and repeated exposures to parasite bearing mosquitos

(see [27, 30, 31, 32, 33, 34] and references therein).

Although these classical models have, over the decades, been used to model

malaria infection, the nature of the interaction of mosquito parasites between the

human and mosquito hosts demanded more inputs to the models. Yang, Wei, and

Li [35] considered a 5-dimensional system of equations for the spread of malaria

in the human and mosquito populations with an SIR-type model for the human

population and an SI-type model for the mosquito population. The dynamics of

the human population in their model is governed by the following system

dS(t)

dt
= b1 − λ1S(t)V (t)− µ1S(t),

dI(t)

dt
= λ1S(t)V (t)− γI(t)− µ1I(t), (1.1)

dR(t)

dt
= γI(t)− µ1R(t),

and that of the vectors is represented by

dM(t)

dt
= b2 − λ2M(t)I(t)− µ2M(t),

dV (t)

dt
= λ2M(t)I(t)− µ2V (t), (1.2)

where b1 and b2 are the rates of recruitment in the human and mosquito popula-

tions, λ1 and λ2 are the rates of the transmission of the disease, µ1 and µ2 are the
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death rates, and γ is the recovery rate. The authors showed that the global dynam-

ics of the system is completely determined by the basic reproduction number R0.

If R0 ≤ 1, the disease-free equilibrium is globally stable, and the disease dies out.

When a disease-free steady state becomes unstable for R0 > 1, the model admits

a biologically relevant stable endemic equilibrium. They analysed how changes in

the rates of recruitment b1 and b2 in both host and the vector populations affect

the rates of transmission of the disease λ1 and λ2. They have shown that the basic

reproduction number R0 grows if parameters in the model are increased.

We have extended this model with modifications for the development of the

model studied in Chapter 2. In deriving our model, we have taken into account

the fact that individuals infected by the mosquito parasite recover to become

susceptible again after a period of temporary immunity (here representing the

period within which the malaria drugs administered are still active). This period

is captured by the introduction of the delay term I(t − τ)e−µhτ , based on the

idea from Kyrychko and Blyuss [11], where τ is the length of the period of the

temporary immunity.

1.3.2 Two-Infection Mathematical Model with Time Delay

Several theoretical studies have proposed two-infection models for the study

of the dynamics of two diseases and their interaction within a single host (see for
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example, [36, 37, 38, 39, 40, 41]). There are two cases considered in the literature,

namely, the co-infection models, where a patient infected by a chronic disease may

also be infected by other acute diseases and the cases without the possibility of a

co-infection. Here, we will concentrate on the dynamics of a two-infection disease

without the possibility of a co-infection.

A model which can allow one to describe the general features of a two-disease

epidemic in a population was proposed by Kyrychko and Blyuss [38]. The au-

thors consider a two-disease model on the assumption that each individual can

be infected with one or both diseases without immunity or cross-immunity. They

established the regions when the uninfected equilibrium is stable and when it is

unstable, and showed the existence of endemic equilibria including the co-infected

state. The interesting and motivational factor in the extension of this model to our

studies is the versatility of the model in the study of various two-strain diseases,

such as influenza, tuberculosis etc.

In chapter 3, a modified version of this system is presented with two time

delays, which represent a temporary immunity from one or both diseases. We

have assumed that there is no incidence of a co-infection, i.e. an individual can

either be infected with disease one or disease two but not both. The presence of

two time delays have highlighted the rich dynamical behaviour of the system.
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1.3.3 Latency Model with Saturated Incidence Rate

The incidence rate plays an important role in the study of infectious diseases.

The bilinear incidence rate frequently used by authors is based on the law of

mass action, βSI, where β is the infection rate, S and I are the susceptibles and

infected individuals respectively, (See [1, 42, 43, 44]). This may pose a challenge

of correctly capturing the disease incidence in a very large population, as could

be inferred from the definition that, if the number of susceptibles increases, the

number of individuals who become infected per unit of time increases, which is not

realistic. Several authors have over the years formulated different types of nonlinear

incidence rates to incorporate the effect of crowding of infectives or behavioral

changes of susceptible individuals [45, 46, 47, 48, 49]. In 1978, May and Anderson

in [50] suggested the saturated incidence rate βSI
1+βS

with β as the saturation factor.

Further modifications to the incidence rate have seen time delays being introduced

into the saturation (see [21] and references therein). For example, Yoichi et al [20]

studied the SIR model with a saturation incidence rate with time delay of the

form S(t)I(t−τ)
1+αI(t−τ) . Their model suggest that if the basic reproductive number R0 < 1,

the disease free equilibrium is globally asymptotically stable while the endemic

equilibrium of system is shown to be globally asymptotically stable if R0 > 1.

Motivated by those works, in chapter 4, we have extended the model by Xu

and Ma by including a delay term for the susceptible population, giving a delayed
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SIR epidemic model with saturated incidence rate of the form S(t−τ)I(t−τ)
1+αI(t−τ) , where

α is the saturation factor.

1.4 Introduction to Delay Differential Equations

1.4.1 Introduction

Time delays are ubiquitous in nature, and study of systems with time delays has

attracted a lot of attention. Arising from natural or technological control problems,

such systems play an important role in mathematical modelling of the various real-

life phenomena. These range from models in population biology, epidemiology,

economics, physiology and neural networks, as well as in control problems for

engineering systems (see [4]). In a delay differential equation, rate of change of the

state variable depends not only on the present values of state variables but also

on its history. There are different types of delay differential equations. Here, we

will focus on the delay differential equations with discrete time delays, which can

be written in the form

ẋ = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τn)), (1.3)

where the τi are positive constants. Other commonly encountered types are those

with state dependent delays, where the time delay is non-constant, i.e., τi = τi(x)

or distributed delay types - the right-hand side of the differential equation is a
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weighted integral over past states (see [5] for examples). The initial conditions for

delay differential equations, unlike the case for ordinary differential equations, are

history functions.

1.4.2 Definition and Examples of Delay Differential Equa-

tions

A general delay differential equation can be written in the following form

ẋ(t) = f(t, x(t− τ1), ..., x(t− τn);µ), t > 0,

where τi ≥ 0, i = 1, ..., n are the time delays, and µ ∈ Rm is a vector of parameters.

The initial condition depends on the history, and has the form

x(s) = φ(s), −τ ≤ s ≤ 0, τ = max{τ1, ..., τn}.

In the above example, the time delay appears in the the form x(t−τi) and is called

a discrete time delay. The simplest delay differential equation can be written as

ẋ(t) = −x(t− 1), x(s) = 1, −1 ≤ s ≤ 0. (1.4)

In order to solve this equation, we can use the method of steps, namely, look first

at the interval [0, 1]. On this interval, the DDE (1.4) is reduced to the following

ODE

ẋ(t) = −1, x(0) = 1,
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which has a solution

x(t) = 1− t, 0 ≤ t ≤ 1.

Now consider the next interval [1, 2]. the DDE (1.4) has the form

ẋ(t) = −1 + (t− 1), x(1) = 0,

which has the solution

x(t) = −(t− 1) +
1

2
(t− 1)2, 1 ≤ t ≤ 2.

This process can be continued and the full solution can be calculated as

x(t) = 1 +
k∑

m=1

(−1)m
(t− (m− 1))m

m!
, k − 1 ≤ t ≤ k, k ≥ 1.

If the time delay is non-constant and is taken from a certain distribution, then the

delayed term has the form ∫ ∞
0

g(s)x(t− s)ds,

where g(·) ≥ 0 is a distribution kernel and is usually normalised to unity, i.e.

∫ ∞
0

g(s)ds = 1.

If the distribution kernel is taken in the form of the Dirac delta function, that is

g(s) = δ(s), the DDE becomes an ODE, and if g(s) = δ(s − τ), then distributed

time delay becomes discrete. In this thesis we will concentrate on models involving

discrete time delays to describe various biological phenomena.
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Chapter 2

Effects of Temporary Immunity

on the Dynamics of Malaria

2.1 Introduction

Malaria caused by a vector borne protozoan parasite is an infectious disease

characterized by high fever, chills, flu-like symptoms and in many cases leads to

death. Approximately 3.2 billion people in 97 countries and territories are at risk

of malaria infection of which 1.2 billion are at high risk. According to the World

Health Organisation (WHO), approximately 584, 000 people died from malaria

in 2013 globally with a whopping 90% of that figure in the African region with

children under 5 years accounting for 78% of all deaths. There were an estimated

198 million cases of malaria infection in 2013 worldwide [51].
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The burden of malaria as reflected in the paragraph above indicates that in

spite of huge resources committed and the promising results in control policies,

malaria still remains one of the largest public health problems. This accounts

for the growing interest devoted to the understanding of malaria transmission

dynamics. Mathematical models give an important insight and useful information,

especially in terms of prediction, through simulations of disease dynamics in a

population. This makes it imperative for vigorous development of models targeted

at the understanding of the dynamics of the epidemic and possible elimination or

reduction in the infection rate among the affected population.

After the development of the mathematical model by Ross [22], we have wit-

nessed the development of several mathematical models incorporating more real-

istic epidemiological features [28, 29, 30]. Recently, there have been advancements

in understanding of the different scenarios for disease transmission and gener-

ally the dynamics of epidemics. Several authors have made contributions to the

development of models that include a human population demographic dynamics

and age-structure. Mpolya et al (2014) [52] developed a star-network of connec-

tions between a central city and peripheral villages to analyse the dynamics of a

vector-borne disease as influenced by daily commuters. They concluded that un-

derstanding the demographic dynamics of villages in terms of its hosts and vectors

is important for planning disease control. A deterministic model for assessing the

14



role of age-structure on the transmission dynamics of malaria in a community was

studied in [54]. They showed that equivalent model with no age structure exhibits

the same qualitative dynamics as the age-structured model.

The vector transmission process involves time delay both in human and in

mosquitoes due to incubation periods of parasites [18]. This has led to the in-

clusion of time delays into the mathematical models as a way of capturing this

incubation periods as well as the disease latency or immunity in the population

[11, 12, 14, 15, 19]. In [15], a two delay system was formulated to capture tem-

perature dependent incubation periods in human and mosquito populations, and

it was shown that with increasing temperatures, the incubation period becomes

shorter, showing that global warming will exacerbate the transmission of malaria.

The model analysed in this paper includes a time delay to capture the period of

latency of the therapeutics administered to infected individuals in the population.

A similar model was extensively analysed by Kyrychko & Blyuss [11], where the

delay term Ih(t − τ)e−µhτ was used to reflect the fact that an individual has sur-

vived from natural death in a recovery pool before becoming susceptible again

[11].

In this chapter, we have shown that if R0 < 1, then the disease free equilibrium

is locally and globally asymptotically stable, and when R0 > 1, then the endemic

equilibrium is locally asymptotically stable for τ = 0 and that there is no stability

15



switches as τ varies. Numerical simulations support our analytical calculations and

also show that we have global asymptotic stability of the endemic equilibrium for

R0 > 1. The chapter is organised as follows: the model is derived in Section 2.2.

Section 2.3 deals with the positivity of solutions, and the results on the asymptotic

stabilities of the disease free and endemic equilibria are given in Sections 2.4, 2.6,

2.7 and 2.8. We present our numerical simulations in 2.9, and conclude the work

in section 2.10.

2.2 Derivation of the model

The aim of this study is to derive a mathematical model describing the spread

of malaria in the human and mosquito populations. We consider the SIR-type

modelling approach, and divide the human and mosquito populations into a com-

partment (S) for the susceptible and (I) for the infected individuals, and a com-

partment (R) for the recovered human population only, since mosquitos do not

recover from the parasite during its short life span. In developing this model, we

have considered the fact that individuals infected by the mosquito parasite re-

cover to become susceptible again after the period within which the malaria drugs

administered are still active. This period is captured by the introduction of the

delayed term I(t− τ)e−µhτ , where τ is the length of the period. The flow chart of

the model is shown in the diagrammatic sketch Fig.2.1.
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Figure 2.1: Flow chart of the model.

As seen in the flow chart Fig. 2.1, the total human population is divided into

three classes based on epidemiological status and are classified as either susceptible,

infected or recovered. These groups are represented by Sh, Ih and Rh respectively.

All recruitment is into the susceptible class, and occurs at a constant rate β. A

susceptible individual has an average ϕhIv contacts that would be sufficient to

transmit the disease. Thus, the rate at which susceptibles in the population are

infected is ϕhShIv. Thus,

17



dSh
dt

= βh − µhSh − ϕhShIv + γhIh(t− τ)e−µhτ .

While in the infective class, we assume that a number of infectives will die

at the rate of µh and that the initiation of therapeutics immediately removes

individuals from the active status of the infective class Ih, and places them into

the recovered class Rh at the rate of γh. We have the following to complete the

system of equations for the human population dynamics:

dIh
dt

= ϕhShIv − (µh + γh)Ih,

dRh

dt
= γhIh − γhIh(t− τ)e−µhτ − µhRh.

The mosquito population dynamics follows a simple system of equations as follows:

dSv
dt

= βv − µvSv − ϕvSvIh,

dIv
dt

= ϕvSvIh − µvIv.

This gives us the following system of equations.

dSh
dt

= βh − µhSh − ϕhShIv + γhIh(t− τ)e−µhτ ,

dIh
dt

= ϕhShIv − (µh + γh)Ih,

dRh

dt
= γhIh − γhIh(t− τ)e−µhτ − µhRh, (2.1)

dSv
dt

= βv − µvSv − ϕvSvIh,

dIv
dt

= ϕvSvIh − µvIv.
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The variables and parameters used in the model are given in Tables 2.1 and 2.2.

Table 2.1: State variables of the model.

Variable Description

Sh Population of susceptible humans, [biomass]

Ih Population of infected humans, [biomass]

Rh Population of recovered humans, [biomass]

Sv Population of susceptible mosquitoes, [biomass]

Iv Population of infected mosquitoes, [biomass]

Table 2.2: Parameters used in the model.

Parameter Description

βh Birth rate for humans, [biomass/time]

µh Death rate for humans, [1/time]

ϕh Rate of infection (humans), [1/(time · time)]

γh Recovery rate (humans), [1/time]

βv Birth rate for mosquito, [biomass/time]

µv Death rate for mosquito,[ 1/time]

ϕv Rate of infection (mosquito), [1/(time · time)]

In developing the model, we have taken into consideration the period of drug

latency represented by the term Ih(t− τ)e−µhτ , where τ is the period within which
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anti-malaria drugs administered to an infected human are still active.

The total human and mosquito populations are given by

Nh = Sh + Ih +Rh (2.2)

and

Nv = Sv + Iv, (2.3)

and are governed respectively by

dNh

dt
= βh − µhNh, (2.4)

dNv

dt
= βv − µvNv. (2.5)

We can easily see from (2.4) that for the human population

Nh →
βh
µh

as t→∞, (2.6)

and, similarly, for the mosquito population, we have that

Nv →
βv
µv

as t→∞. (2.7)

In order to analyse the system (2.1), we reduce it to a four dimensional system.

The first and second equations in the system (2.1) do not depend on the third

equation, and hence we omit the third equation and rewrite system (2.1) as follows,
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dSh
dt

= βh − µhSh − ϕhShIv + γhIh(t− τ)e−µhτ ,

dIh
dt

= ϕhShIv − (µh + γh)Ih, (2.8)

dSv
dt

= βv − µvSv − ϕvSvIh,

dIv
dt

= ϕvSvIh − µvIv.

System (2.8) has the following initial conditions: Sh(0) = Sh0 > 0, Ih(s) = Ih0(s) ≥

0 for all s ∈ [−τ ; 0) with Ih0(0) > 0, Sv(0) = Sv0 > 0, and Iv(0) = Iv0 ≥ 0. Since

the model (2.8) is for human and mosquito populations, it is assumed that all

parameters are positive.

2.3 Positivity of Solutions

Since the system (2.8) models the dynamics of human and mosquito popu-

lations, it is important to prove that all quantities (Sh, Ih, Sv and Iv) will stay

positive for all times and given initial conditions.

Theorem 2.3.1. Let the initial data be Sh(0) = Sh0 > 0, Ih(s) = Ih0(s) ≥ 0 for

all s ∈ [−τ ; 0) with Ih0(0) > 0, Sv(0) = Sv0 > 0, and Iv(0) = Iv0 ≥ 0. Then

solutions Sh(t), Ih(t), Sv(t) and Iv(t) of the system (2.8) are positive for all t > 0.

Proof. We prove non-negativity of solutions of (2.8) by contradiction. Assume

that t = t1 is the first moment of time when Sh(t1)Sv(t1)Ih(t1)Iv(t1) = 0. Suppose
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Sh = 0 at t = t1 and Sv(t1)Ih(t1)Iv(t1) ≥ 0. In order for Sh(t) to become negative,

we require that dSh
dt

∣∣
t=t1

< 0. However, from the first equation of system (2.8), we

have

dSh
dt

∣∣∣
t=t1

=

>0︷︸︸︷
βh −

=0︷ ︸︸ ︷
µhSh(t1)−

=0︷ ︸︸ ︷
ϕhSh(t1)Iv(t1) +

≥0︷ ︸︸ ︷
γhIh(t1 − τ)e−µhτ > 0

⇒ dSh
dt

∣∣∣
t=t1

> 0

which is a contradiction. Hence Sh(t) is positive.

Similarly, let us assume that t2 > 0 is the first moment of time when Ih = 0 and

SvIv ≥ 0. Assume that Ih(t2) = 0. For Ih(t) to be negative, one has to have that

dIh
dt

∣∣
t=t2

< 0, but according to the second equation of the system (2.8), at this time

we have

dIh
dt

∣∣∣
t=t2

=

≥0︷ ︸︸ ︷
ϕhSh(t2)Iv(t2)−

=0︷ ︸︸ ︷
(µh + γh)Ih(t2) ≥ 0

⇒ dIh
dt

∣∣∣
t=t2
≥ 0.

Hence Ih(t) can never become negative.

We now show the positivity of Sv(t). Suppose that t = t3 is the first time when

Sv = 0 and Iv ≥ 0. From the third equation of the system (2.8), we have

dSv
dt

> 0,

which means that Sv > 0 for all t. Lastly we consider t4 > 0 as the first moment

of time when Iv(t) = 0 and also proceed as before to prove by contradiction the
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positivity of Iv(t). For Iv(t) to be negative, we would have that dIv
dt

∣∣
t=t4

< 0 but

according to the last equation of system (2.8), we have

dIv
dt

∣∣∣
t=t4

=

≥0︷ ︸︸ ︷
ϕvSv(t4)Ih(t4)−

=0︷ ︸︸ ︷
µvIv(t4) ≥ 0

⇒ dIv
dt

∣∣∣
t=t4
≥ 0

Hence Iv(t) can never be negative, which implies Iv(t) remains positive for all

times.

2.4 Disease Free Equilibrium

The stability of the disease-free equilibrium state can be obtained from studying

the eigenvalues of the Jacobian matrix evaluated at the equilibrium point. If all

the eigenvalues have negative real parts, then the equilibrium point is stable. In

order to find all equilibria of the system (2.8), we have to solve the following system

of equations

βh − µhSh − ϕhShIv + γhIhe
−µhτ = 0,

ϕhShIv − (µh + γh)Ih = 0, (2.9)

βv − µvSv − ϕvSvIh = 0,

ϕvSvIh − µvIv = 0.
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For the disease free equilibrium, we have Ih = Iv = 0, and

βh − µhSh = 0 =⇒ Sh =
βh
µh
, (2.10)

βv − µvSv = 0 =⇒ Sv =
βv
µv
. (2.11)

Hence a disease free equilibrium given by

E0 = (S0
h, I

0
h, S

0
v , I

0
v )

=

(
βh
µh
, 0,

βv
µv
, 0

)
. (2.12)

2.5 Basic Reproduction Number

The basic reproduction number (R0) is the average number of secondary in-

fections created when a single infected host is placed in an entirely susceptible

population. This intuitively suggests that if R0 < 1, then the infection will not

be able to grow in the population, and if R0 > 1, then we expect an epidemic.

We will show that our intuition is correct by studying the local stability of the

equilibria of the system (2.8). The aim is to show that whenever R0 < 1, the

system will approach a disease-free equilibrium, and whenever R0 > 1, there exists

an endemic equilibrium, which, if stable, implies that the disease remains in the

population. We now use the next generation matrix approach, that was intro-

duced by Diekmann et al. [53] for autonomous models, and further developed for

ordinary differential equations models with compartmental structure by Van den
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Driessche and Watmough [56] in order to define R0.

The next generation matrix comprises of two parts F and V−1, where

F =
[∂Fi(E0)

∂xj

]
and V =

[∂Vi(E0)

∂xj

]
.

The Fi are the new infections, while the Vi are transfers from one compartment

to another. E0 is the disease-free equilibrium point. We have from System (2.8),

F =



0

ϕhShIv

0

ϕvSvIh


and V =



µhSh − βh − γhIh(t− τ)e−µhτ

(µh + γh)Ih

µvSv − βv

µvIv


.

Evaluating the derivatives of F and V at the disease-free equilibrium point E0

gives F and V as follows,

F =



0 0 0 0

0 0 0 ϕhβh
µh

0 0 0 0

0 ϕvβv
µv

0 0


and V =



µh −γhe−µhτ 0 0

0 µh + γh 0 0

0 0 µv 0

0 0 0 µv


.

Now,

V−1 =



(µh)
−1 γhe

−µhτ

µh(µh+γhe
−µhτ 0 0

0 (µh + γh)
−1 0 0

0 0 (µv)
−1 0

0 0 0 (µv)
−1


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and

FV−1 =



0 0 0 0

0 0 0 ϕhβh
µhµv

0 0 0 0

0 ϕvβv
µv(µh+γh)

0 0


.

The basic reproduction number is the spectral radius of the product FV−1, and

can be found as R0 = ρ(FV−1). Hence we have

R0 =

√
ϕhβhϕvβv

µhµ2
v(µh + γh)

. (2.13)

2.6 Local Stability of the Disease Free Equilib-

rium

We now linearise the system (2.8) about the equilibrium points, and obtain

˙̃Sh = −µhS̃h − ϕhS̃hI∗v + γhĨh(t− τ)e−µhτ − ϕhS∗hĨv,

˙̃Ih = ϕhS̃hI
∗
v − (µh + γh)Ĩh + ϕhS

∗
hĨv, (2.14)

˙̃Sv = −ϕvS∗v Ĩh − µvS̃v − ϕvS̃vI∗h,

˙̃Iv = ϕvS
∗
v Ĩh + ϕvS̃vI

∗
h − µv Ĩv.
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At the disease free equilibrium E0, we have

˙̃Sh = −µhS̃h + γhĨh(t− τ)e−µhτ − ϕhβh
µh

Ĩv,

˙̃Ih = −(µh + γh)Ĩh +
ϕhβh
µh

Ĩv, (2.15)

˙̃Sv = −ϕvβv
µv

Ĩh − µvS̃v,

˙̃Iv =
ϕvβv
µv

Ĩh − µv Ĩv.

Looking for solutions of the system (2.15) in the form

S̃h = C1e
λt, Ĩh = C2e

λt, S̃v = C3e
λt and Ĩv = C4e

λt

yields

(−µh − λ)C1 + γhC2e
−(λ+µh)τ − ϕhβh

µh
C4 = 0,

(−µh − γh − λ)C2 +
ϕhβh
µh

C4 = 0, (2.16)

−ϕvβv
µv

C2 − (µv + λ)C3 = 0,

ϕvβv
µv

C2 − (µv + λ)C4 = 0.

System (2.16) can be rewritten in a matrix form as follows

−µh − λ γhe
−(λ+µh)τ 0 −ϕhβh

µh

0 (−µh − γh − λ) 0 ϕhβh
µh

0 −ϕvβv
µv

−µv − λ 0

0 ϕvβv
µv

0 −µv − λ





C1

C2

C3

C4


=



0

0

0

0


.
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Since we are looking for a non-zero solution of the linearised system, we assume

that C1, C2, C3 and C4 are all not equal to zero, which means that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µh − λ γhe
−(λ+µh)τ 0 −ϕhβh

µh

0 (−µh − γh − λ) 0 ϕhβh
µh

0 −ϕvβv
µv

−µv − λ 0

0 ϕvβv
µv

0 −µv − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

and the characteristic equation, obtained from computing the above determinant

in Maple, has the form

(−µh − λ){(µv + λ)[(λ+ µv)(λ+ µh + γh)−
ϕhϕvβhβv
µhµv

]} = 0. (2.17)

From the characteristic equation it immediately follows that there are two negative

eigenvalues, namely, λ1 = −µh, λ2 = −µv, and all others satisfy the quadratic

equation

λ2 + (µh + µv + γh)λ+ (µhµv + γhµv)−
ϕhϕvβhβv
µhµv

= 0. (2.18)

The roots of this equation will have negative real parts whenever the following

condition holds

(µhµv + γhµv) >
ϕhϕvβhβv
µhµv

. (2.19)

Let

R̃0 =
ϕhϕvβhβv

µhµv(µhµv + γhµv)
,

where R̃0 = R2
0.
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Theorem 2.6.1. The disease-free equilibrium is locally asymptotically stable when

R̃0 < 1, and unstable otherwise.

Proof. We can see from (2.18) that for R̃0 < 1, all eigenvalues of the linearised

system have negative real parts, and this implies that the disease free equilibrium

is stable whenever the condition R̃0 < 1 is satisfied.

2.7 Global Stability of the Disease Free Equilib-

rium

From the last section, we have seen that the disease free equilibrium point

E0 = (βh
µh
, 0, βv

µv
, 0) is locally asymptotically stable when R̃0 < 1, and unstable

when R̃0 > 1. In this section, we will prove global stability of the disease-free

equilibrium.

Theorem 2.7.1. If R̃0 < 1, then the disease-free equilibrium point E0 is globally

asymptotically stable.

Proof. Shifting the equilibrium point of (2.8), with the following transformation

Ŝh =
βh
µh
− Sh, Îh = Ih, Ŝv =

βv
µv
− Sv, and Îv = Iv

gives

dŜh
dt

= −µhŜh +ϕh

(
βh
µh
− Ŝh

)
Îv−γhÎh(t− τ)e−µhτ , (2.20)
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dÎh
dt

= ϕh

(
βh
µh
− Ŝh

)
Îv−(µh+γh)Îh, (2.21)

dŜv
dt

= −βv +µv

(
βv
µv
− Ŝv

)
+ϕv

(
βv
µv
− Ŝv

)
Îh, (2.22)

dÎv
dt

= ϕv

(
βv
µv
− Ŝv

)
Îh−µv Îv. (2.23)

Now, from equation (2.21), we have

dÎh
dt

= ϕh

(
βh
µh
− Ŝh

)
Îv − (µh + γh)Îh

=⇒ dÎh
dt
≤ ϕhβh

µh
Îv−(µh+γh)Îh, (2.24)

and from equation (2.23), it follows that

dÎv
dt

= ϕv

(
βv
µv
− Ŝv

)
Îh − µv Îv

=⇒ dÎv
dt
≤ ϕvβv

µv
Îh− µv Îv. (2.25)

Furthermore, equations (2.24) and (2.25) can be written in the form

d

dt

 Îh

Îv

 ≤ A

 Îh

Îv

 , (2.26)

where

A =

 −(µh + γh)
ϕhβh
µh

ϕvβv
µv

−µv

 .

If the trace of A is negative and the determinant is positive, then the eigenvalues

will be negative.

Trace(A) = −(µh + γh)− µv < 0
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Determinant(A) = (µh + γh)µv −
ϕhϕvβhβv
µhµv

This determinant will be positive if

(µh + γh)µv >
ϕhϕvβhβv
µhµv

,

or if R̃0 < 1.

The solution to (2.26) is of the form

Î ≤ Ceλt,

where

Î =

 Îh(t)

Îv(t)

 and C =

 C1

C2

 .

If R̃0 < 1, the eigenvalues of A are negative as shown above, hence, as t→∞, Î→

0, which implies that Îh → 0 and Îv → 0.

We now show that

Ŝh →
βh
µh

and Ŝv →
βv
µv

as t→∞.

In the system (2.1), let Rh = R̂h, giving

dR̂h

dt
= γhÎh − γhÎh(t− τ)e−µhτ − µhR̂h.

From our earlier results, Îh → 0, which means

dR̂h

dt
= −µhR̂h,
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and, hence, R̂h = Ke−µht (where K is an arbitrary constant). Therefore, as

t→∞, R̂h → 0.

From (2.2), we have

Nh = Ŝh + Îh + R̂h

It was earlier established that Nh → βh
µh

, and that Îh → 0, and R̂h → 0 as t→∞,

which yields that

Ŝh →
βh
µh

as t→∞.

Similarly, since

Nv = Ŝv + Îv,

and we have showed earlier that Nv → βv
µv

and Îv → 0 as t→∞, therefore,

Ŝv →
βv
µv

as t→∞.

This concludes the proof, and shows that whenever the disease free equilibrium is

locally asymptotically stable, it is also globally asymptotically stable.
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2.8 Local Stability of the Endemic Equilibrium

We now analyse the local stability of the endemic equilibrium point (E∗) of

system (2.1). From Maple, E∗ = (S∗h, I
∗
h, S

∗
v , I
∗
v , R

∗
h), where

S∗h =
µv(µh + γh)(γhµve

µhτ + µhµve
µhτ − γhµv + βhϕve

µhτ )

ϕv(ϕhβvµheµhτ + ϕhβvγheµhτ − ϕhβvγh + µ2
hµve

µhτ + µhµvγheµhτ )
,

I∗h = − {R̃0 − 1}(µ2
hµ

2
v + µhµ

2
vγh)

(−µhϕhβv − ϕhβvγh + ϕhβvγhe−µhτ − µ2
hµv − µhµvγh)ϕv

,

S∗v =
ϕhβvµhe

µhτ + ϕhβvγhe
µhτ − ϕhβvγh + µ2

hµve
µhτ + µhµvγhe

µhτ

ϕh(γhµveµhτ + µhµveµhτ − γhµv + βhϕveµhτ )
,

I∗v = − {R̃0 − 1}(µ2
hµ

2
v + µhµ

2
vγh)

ϕhµv(−µvγh − µhµv + γhµve−µhτ − βhϕv)

R∗h = − γh(βhβvϕhϕv − γhµhµ2
v − µ2

hµ
2
v)(1− e−µhτ )

(−µhϕhβv − ϕhβvγh + ϕhβvγhe−µhτ − µ2
hµv − µhµvγh)ϕvµh

.

This equilibrium is positive, and hence, biologically relevant when R0 > 1. The

Jacobian matrix at the endemic equilibrium point Je has the form

Je =



(−µh − ϕhI∗v − λ) γhe
−(λ+µh)τ 0 −ϕhS∗h

ϕhI
∗
v (−µh − γh − λ) 0 ϕhS

∗
h

0 −ϕvS∗v (−µv − ϕvI∗h − λ) 0

0 ϕvS
∗
v ϕvI

∗
h (−µv − λ)


,
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which gives the characteristic equation for the eigenvalues λ as

(λ+ µv)[λ
3 + (µv + γh + ϕhI

∗
v + 2µh + ϕvI

∗
h)λ2 + (ϕhµvI

∗
v + ϕhγhI

∗
v + 2µhµv + γhϕvI

∗
h

+ γhµv + µ2
h + 2µhϕvI

∗
h + ϕhϕvS

∗
hS
∗
v + ϕhµhI

∗
v + µhγh + ϕhϕvI

∗
hI
∗
v − ϕhγhI∗ve−(λ+µh)τ )λ

+ ϕhµhµvI
∗
v + µ2

hµv + 2ϕ2
hϕvS

∗
hS
∗
vI
∗
v + ϕhϕvµhI

∗
hI
∗
v + µhµvγhe

−(λ+µh)τ + ϕhϕvµhS
∗
hS
∗
v

+ µ2
hϕvI

∗
h + µhϕvγhI

∗
h + ϕhγhµvI

∗
v − ϕhϕvγhI∗hI∗ve−(λ+µh)τ + ϕhϕvγhI

∗
hI
∗
v

− ϕhµvγhI∗ve−(λ+µh)τ ] = 0.

The eigenvalues of the Jacobian matrix are λ = −µv, and all others satisfy the

following transcendental equation

λ3 + A1(τ)λ2 + A2(τ)λ+ A3(τ) = 0, (2.27)

where

A1(τ) = µv + γh + ϕhI
∗
v + 2µh + ϕvI

∗
h,

A2(τ) = ϕhµvI
∗
v + ϕhγhI

∗
v + 2µhµv + γhϕvI

∗
h + γhµv + µ2

h + 2µhϕvI
∗
h + ϕhϕvS

∗
hS
∗
v + ϕhµhI

∗
v

+ µhγh + ϕhϕvI
∗
hI
∗
v − ϕhγhI∗ve−(λ+µh)τ ,

and

A3(τ) = ϕhµhµvI
∗
v + µ2

hµv + 2ϕ2
hϕvS

∗
hS
∗
vI
∗
v + ϕhϕvµhI

∗
hI
∗
v + µhµvγhe

−(λ+µh)τ + ϕhϕvµhS
∗
hS
∗
v

+ µ2
hϕvI

∗
h + µhϕvγhI

∗
h + ϕhγhµvI

∗
v − ϕhϕvγhI∗hI∗ve−(λ+µh)τ + ϕhϕvγhI

∗
hI
∗
v

− ϕhµvγhI∗ve−(λ+µh)τ .
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First, we consider the case when τ = 0. Let A1(τ)|τ=0 = A1, A2(τ)|τ=0 = A2 and

A3(τ)|τ=0 = A3. Hence,

A1 = µv + γh + ϕhĨ
∗
v + 2µh + ϕv Ĩ

∗
h,

A2 = ϕhµv Ĩ
∗
v + 2µhµv + γhϕv Ĩ

∗
h + γhµv + µ2

h + 2µhϕv Ĩ
∗
h + ϕhϕvS̃

∗
hS̃
∗
v + ϕhµhĨ

∗
v

+ µhγh + ϕhϕv Ĩ
∗
h Ĩ
∗
v ,

A3 = ϕhµhµv Ĩ
∗
v + µ2

hµv + 2ϕ2
hϕvS̃

∗
hS̃
∗
v Ĩ
∗
v + ϕhϕvµhĨ

∗
h Ĩ
∗
v + µhµvγh + ϕhϕvµhS̃

∗
hS̃
∗
v

+ µ2
hϕv Ĩ

∗
h + µhϕvγhĨ

∗
h,

where

S̃∗h =
µv(µh + γh)(µhµv + βhϕv)

ϕv(ϕhβvµh + µ2
hµv + µhµvγh)

,

Ĩ∗h =
{R̃0 − 1}(µ2

hµ
2
v + µhµ

2
vγh)

(µhϕhβv + µ2
hµv + µhµvγh)ϕv

,

S̃∗v =
ϕhβvµh + µ2

hµv + µhµvγh
ϕh(µhµv + βhϕv)

,

Ĩ∗v =
{R̃0 − 1}(µ2

hµ
2
v + µhµ

2
vγh)

ϕhµv(µhµv + βhϕv)
.

By the Routh Hurwitz criterion, all roots of the characteristic equation (2.27)

have negative real parts whenever A1 > 0, A2 > 0, A3 > 0, and the condition

A1A2 > A3 is satisfied. Hence whenever A1A2 > A3, the endemic equilibrium

point E∗ of system (2.8) is locally asymptotically stable when it exists, i.e. for

R̃0 > 1. This gives rise to the following theorem.
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Theorem 2.8.1. Suppose that the condition A1A2 > A3 holds for τ = 0. The

endemic equilibrium point E∗ of system (2.8) is locally asymptotically stable for

R̃0 > 1.

We now consider the case when τ > 0. To be able to analyse the characteristic

equation in this case, we make use of the following lemma [55].

Lemma 2.8.2. [55] Consider the characteristic equation of the form P (λ) +

Q(λ)e−λτ = 0, and define F (ω) = |P (iω)|2−|Q(iω)|2. Suppose P (λ) and Q(λ) have

no common imaginary zeros, P (0)+Q(0) 6= 0, P (−iω) = P (iω), Q(−iω) = Q(iω)

for real ω and F (ω) has at most a finite number of real zeros. Then if F (ω) has no

positive real root then there are no stability switches as τ increases, while stability

switches are possible if F (ω) has at least one positive roots.

From the characteristic equation (2.27), we have

P (λ) +Q(λ)e−(λ+µh)τ = 0, (2.28)

where

P (λ) = λ3 + Â1λ
2 + Â2λ+ Â3,

Q(λ) = −(κ1λ+ κ2),

with

Â1 = µv + γh + ϕhI
∗
v + 2µh + ϕvI

∗
h,
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Â2 = ϕhµvI
∗
v + ϕhγhI

∗
v + 2µhµv + γhϕvI

∗
h + γhµv + µ2

h + 2µhϕvI
∗
h + ϕhϕvS

∗
hS
∗
v + ϕhµhI

∗
v

+ µhγh + ϕhϕvI
∗
hI
∗
v ,

Â3 = ϕhµhµvI
∗
v + µ2

hµv + 2ϕ2
hϕvS

∗
hS
∗
vI
∗
v + ϕhϕvµhI

∗
hI
∗
v + ϕhϕvµhS

∗
hS
∗
v + µ2

hϕvI
∗
h + µhϕvγhI

∗
h

+ ϕhγhµvI
∗
v + ϕhϕvγhI

∗
hI
∗
v ,

κ1 = ϕhγhI
∗
v ,

κ2 = ϕhϕvγhI
∗
hI
∗
v +ϕhµvγhI

∗
v−µhµvγh.

Let λ = iω with ω > 0 be the root of the characteristic equation (2.28), hence,

(iω)3 + Â1(iω)2 + Â2(iω) + Â3 = e−[(iω)+µh]τ (κ1(iω) + κ2).

Furthermore,

−Â1ω
2+Â3−(ω3−Â2ω)i = e−µhτ [(κ1ω cos(ωτ)−κ2 sin(ωτ))i+κ2 cos(ωτ)+κ1ω sin(ωτ)].

Separating into the real and imaginary parts, we obtain

−Â1ω
2 + Â3 = e−µhτ [κ2 cos(ωτ) + κ1ω sin(ωτ)],

−(ω3 − Â2ω) = e−µhτ [κ1ω cos(ωτ)− κ2 sin(ωτ)].

Squaring and adding the last two equations yields,

ω6 +B1ω
4 +B2ω

2 +B3 = 0, (2.29)
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where

B1 = Â2
1 − 2Â2,

B2 = Â2
2 − 2Â1Â3,

B3 = Â2
3 − e−2µhτ [κ22 + κ21ω

2].

Let ζ = ω2, then (2.29) becomes

ζ3 +B1ζ
2 +B2ζ +B3 = 0. (2.30)

Clearly, if B1 ≥ 0, B2 ≥ 0 and B3 ≥ 0, then (2.30) has no positive real roots, and

if B3 < 0, then the characteristic equation (2.30) has at least one positive root

ω > 0, i.e. F (ω) = 0.

Lemma 2.8.3. If B3 < 0 in (2.30), then the function F (ω) given by F (ω) =

ω6 +B1ω
4 +B2ω

2 +B3 has at least one positive root.

Proof. Since we assume that for some parameter values B3 < 0, this implies that

F (0) = B3 < 0. As the function F (ω) is continuous, and limω→∞ F (ω) =∞, this

means that there exists a positive root ω of the equation F (ω) = 0.

2.9 Numerical Simulations

In this section, we use DDE23 solver in MATLAB to solve the System (2.8)

numerically. We show numerical simulations, which confirm theoretical results
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obtained in previous sections on the stability of the disease free and endemic

equilibria. The parameters used in this section are listed in Table 2.3, and taken

from [57], [58] and [59], and some parameters are varied. In all simulations, the

time delay is taken as τ = 1, except otherwise stated in the figure.

Table 2.3: Model parameters are taken from [57], [58] and [59].

Parameter Symbol Value Source

Birth rate for humans βh 0.55 [57]

Death rate for humans µh 0.00041→ 0.02 [58]

Rate of infection (Humans) ϕh 0.8 [57]

Recovery rate γh 0.02 [59]

Birth rate for mosquito βv 3.2 [57]

Death rate for mosquito µv 0.0010→0.10 [58]

Rate of infection (Mosquitos) ϕv 0.8 [57]
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(a) R0 = 0.5563 < 1, βh = 0.0215, µh =

0.548, βv = 0.07, µv = 0.1

(b) R0 = 7.6554 > 1, µh = 0.08, µv =

1.55

Figure 2.2: Solutions of the system (2.8) converging to disease-free equilibrium for

R0 = 0.5563 < 1 in Figure 2.2(a), and diverging from the disease-free equilibrium

to the endemic equilibrium for R0 = 7.6554 > 1 in Figure 2.2(b).

Figure 2.2 shows that when the parameter values satisfy R0 = 0.5563 < 1, the

disease free equilibrium is stable, and the solutions of the system (2.8) tend to it,

and whenever R0 = 7.6554 > 1, the endemic equilibrium exists and is stable. This

supports our analytical findings in Section 2.7 that the disease-free equilibrium

point is globally asymptoticaly stable for R0 < 1 and unstable for R0 > 1.
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(a) R0 = 15.8212 > 1, µh = 0.08, µv =

0.75

(b) R0 = 0.6325 < 1, βh = 0.025, µh =

0.5, βv = 0.065, µv = 0.1

Figure 2.3: Solutions of the system (2.8) converging to endemic equilibrium for

R0 = 15.8212 > 1, and diverging for R0 = 0.6325 < 1.

Figure 2.3 shows that when the parameters of the system (2.8) are chosen in

such a way as to satisfy the condition R0 = 15.8212 > 1, the solutions of the system

(2.8) tend to an endemic equilibrium, and for R0 = 0.6325 < 1, the solutions go

to a stable disease free equilibrium.
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(a) τ = 1 (b) τ = 5

(c) τ = 10 (d) τ = 20

Figure 2.4: Solutions of (2.8) for different values of the time delay. Other param-

eters are βh = 0.025, µh = 0.5, ϕh = 0.8, γh = 0.02, βv = 0.065, µv = 0.1, ϕv = 0.8.

Figure 2.4 shows a stable disease free equilibrium point for all time delay (τ).
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(a) τ = 1 (b) τ = 5

(c) τ = 10 (d) τ = 20

Figure 2.5: Solutions of (2.8) for different values of the time delay. Other param-

eters are βh = 0.55, µh = 0.08, ϕh = 0.8, γh = 0.02, βv = 3.2, µv = 0.75, ϕv = 0.8.

Figure 2.5 shows the solutions of the system (2.8) as the time delay is varied,
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and the endemic equilibrium is stable for any of the chosen values of the time delay

τ .

(a) Number of infected humans in the pop-

ulation for different values of time delay τ .

(b) Number of infected mosquitoes in the

population for different values of time delay

τ .

Figure 2.6: Solution trajectories of the number of infected humans (Ih) in Figure

2.6(a) and number of infected mosquitos (Iv) in Figure 2.6(b) as time delay τ was

varied. µh = 0.1, γh = 0.1, µv = 3.2.

We can see from Figure 2.6 that there is a significant reduction in the number

of infected humans in the population as we increase the time delay (τ) from 1

through 16. Moreover, we observe a reduction in the number of infected mosquito

population, as shown in Figure 2.6 as the time delay (τ) is increased.
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2.10 Conclusions

In this chapter, we have developed an SIR-type mathematical model to de-

scribe the spread of Malaria. We have incorporated into the model a time delay

to account for the effect of malaria drugs even after they have been stopped to be

administered. We have proved the positivity of solutions of the model in section

2.3, and calculated the basic reproduction number R0. We have also analysed the

existence of the disease-free and endemic equilibria, and found that if R0 < 1,

then the disease-free equilibrium exists and is both locally and globally asymptot-

ically stable. If R0 > 1, then the endemic equilibrium exists and is asymptotically

stable. It is worth mentioning that in Chapter 2.8, it was impossible to prove an-

alytically the global stability of the endemic equilibrium. However, our numerical

simulations (see Fig 2.5) suggest that the endemic equilibrium of the system 2.8

is globally asymptotically stable for all chosen values of the time delay as long as

the basic reproduction number R0 is greater than one, and unstable otherwise.

This study has shown that the treatment of malaria using long-lasting malaria

drugs could significantly reduce the population infected with malaria (see Fig

2.6), and this in turn reduces the number of infected mosquito vectors due to the

reduction in the population of the infected human host (Fig 2.6). This suggest a

potential way to effectively address the problem of the spread of malaria in the

population.
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Chapter 3

Two-Infection Mathematical

Model with Time Delay

3.1 The model

In this chapter we consider a model, where the total population N = N(t)

is subdivided into the following classes: susceptible S = S(t), those infected with

disease one ID(t), population infected with disease two Id(t), recovered from disease

one RD(t) and the population that have recovered from disease two Rd(t). This

gives the total population as N = S + ID + Id + RD + Rd. Recruitment is at a

constant rate β and apart from the natural death rate µ, we have death rate as a

result of the disease one µD, and a death rate as a result of disease two µd. The

flow chart of the model is shown in Fig. 3.1.
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Figure 3.1: Flow chart of the model.

This model does not include the possibility of a co-infection, hence, the absence

of the compartment for disease one and two. The model includes two temporary

immunities: a temporary immunity from diseases one (τD) and a temporary im-

munity from disease two (τd). This means that each individual after recovery from

disease one or two goes into a disease one or two recovery pool respectively. The

temporary immunity becomes active once in the recovery compartment against

the disease the individual recovered from, but the individual could still be infected

with another disease type. This gives us the following system of equations
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dS

dt
= β − µS − αDIDS − αdIdS + γDID(t− τD)e−µτD + γdId(t− τd)e−µτd ,

dID
dt

= αDIDS − (µ+ µD)ID + αDRdID − γDID,

dId
dt

= αdIdS − (µ+ µd)Id + αdRDId − γdId, (3.1)

dRD

dt
= γDID − γDID(t− τD)e−µτD − αdRDId − µRD,

dRd

dt
= γdId − γdId(t− τd)e−µτd − αDRdID − µRd.

The variables and parameters used in the model (3.1) are summarised in Ta-

bles 3.1 and 3.2 respectively.

Table 3.1: State variables of the model

Variable Description

S Population of susceptibles, [biomass]

ID Infected with disease one, [biomass]

Id Infected with disease two, [biomass]

RD Recovered from disease one, [biomass]

Rd Recovered from disease two, [biomass]
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Table 3.2: Parameters used in the model

Parameter Description

β Natural birth rate, [biomass/time]

µ Natural death rate, [1/time]

µD Disease one induced death rate, [1/time]

µd Disease two induced death rate, [1/time]

αD Disease one transmission rate, [1/(time · time)]

αd Disease two transmission rate, [1/(time · time)]

τD Temporary immunity from disease one, [time]

τd Temporary immunity from disease two, [time]

γD Disease one recovery rate, [1/time]

γd Disease two recovery rate, [1/time]

System (3.1) has the following initial conditions

S(0) > 0, ID(s) = ID0(s) ≥ 0, Id(s) = Id0(s) ≥ 0, RD(0) ≥ 0, Rd(0) ≥ 0, (3.2)

s ∈ [−τ, 0], where τ = max{τD, τd}.

Adding all equations in system (3.1), the total variable population size is gov-

erned by the differential equation

N ′(t) = β − µS − (µ+ µD + γD)ID − (µ+ µd + γd)Id + γDID − µRD + γdId− µRd,

49



which gives

N ′(t) = β − µS − (µ+ µD)ID − (µ+ µd)Id − µRD − µRd.

We have that

N ′(t) ≤ β − hN(t),

where h = min{µ, µD, µd}.

This gives

lim
t→∞

supN(t) ≤ β

h
. (3.3)

It follows that, evolution of the total population N(t) is bounded above by β/h.

3.2 Positivity of Solutions

Since system (3.1) models the dynamics of the human population, it is impor-

tant to prove that all quantities S, ID, Id, RD and Rd will remain positive for all

time.

Theorem 3.2.1. Let the initial data be S(0) = S0 > 0, ID(s) = ID0(s) ≥ 0,

Id(s) = Id0(s) ≥ 0, RD(0) = RD0 ≥ 0 and Rd(0) = Rd0 ≥ 0, ∀ s ∈ [−τ ; 0) with

τ = max{τD, τd}. Then solutions S(t), ID(t), Id(t), RD(t) and Rd(t) of the system

(3.1) are positive for all t > 0.

Proof. We prove non-negativity of solutions of the system (3.1) by contradiction.

Assume that t1 > 0 is the first moment of time when S(t)IDIdRDRd = 0. Assume
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that S(t) = 0 and IDIdRDRd ≥ 0. In order for S(t) to become negative, we would

need to have that dS
dt

∣∣
t=t1

< 0. However, from the first equation of system (3.1),

we have

dS

dt

∣∣∣
t=t1

=

>0︷︸︸︷
β −

=0︷ ︸︸ ︷
µS(t1)−

=0︷ ︸︸ ︷
αDID(t1)S(t1)−

=0︷ ︸︸ ︷
αdId(t1)S(t1)

+

≥0︷ ︸︸ ︷
γDID(t1 − τD)e−µτD +

≥0︷ ︸︸ ︷
γdId(t1 − τd)e−µτd

This implies that dS
dt

∣∣
t=t1
≥ 0, which is a contradiction. Hence S(t) is positive.

Similarly, let us assume that t2 > 0 is the first instant of time when ID(t2) = 0

and S(t) ≥ 0. For ID(t) to be negative, one has to have that dID
dt

∣∣
t=t2

< 0. Let us

define

B = min
0≤t≤t2

{αDS − (µ+ µD) + αDRd − γD}.

Therefore, for t ∈ [0, t2], dID/dt ≥ BID(t), and hence, ID(t2) ≥ ID0(0)eBt2 > 0,

which implies contradiction. Thus, ID(t) can never become negative. A similar

argument holds for proving positivity of Id(t).

We now show the positivity of RD(t). From the fourth equation of system (3.1), we

have that {γDID − γDID(t− τD)e−µτD} ≥ 0 since ID(t) was proved to be positive.

Let us define

A = min
t≥0
{αdId(t) + µ}.

Then, for t > 0,

dRD(t)

dt
≥ −ARD(t),
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and, therefore, RD(t) ≥ RD(0)e−At ≥ 0. Thus RD(t) ≥ 0, ∀ t > 0. The same can

be used to show positivity of Rd(t). This concludes the proof.

3.3 Steady States

The steady states of the system (3.1) can be found as solutions of the following

system of algebraic equations

β − µS − αDIDS − αdIdS + γDIDe
−µτD + γdIde

−µτd = 0,

αDIDS − (µ+ µD)ID + αDRdID − γDID = 0,

αdIdS − (µ+ µd)Id + αdRDId − γdId = 0, (3.4)

γDID − γDIDe−µτD − αdRDId − µRD = 0,

γdId − γdIde−µτd − αDRdID − µRd = 0.

This gives four real steady states. Disease free steady state (ID = Id = 0)

E0 = (S0, I0D, I
0
d , R

0
D, R

0
d)

=

(
β

µ
, 0, 0, 0, 0

)
. (3.5)

Disease two only (Disease one free) steady state (ID = 0)

E∗d = (S∗d , 0, I
∗
d , 0, R

∗
d),
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where

S∗d =
µd + µ+ γd

αd
,

I∗d =
βαd − µ2 − µµd − µγd

αd(µ+ µd + γd − e−µτdγd)
,

R∗d =
γd(1− e−µτd)[βαd − µ2 − µµd − µγd]

µαd(µ+ µd + γd − e−µτdγd)
.

This steady state is biologically relevant when βαd > µ2 + µµd + µγd.

Disease one only (Disease two free) steady state (Id = 0):

E∗D = (S∗D, I
∗
D, 0, R

∗
D, 0),

where

S∗D =
µD + µ+ γD

αD
,

I∗D =
βαD − µ2 − µµD − µγD

αD(µ+ µD + γD − e−µτDγD)
,

R∗D =
γD(1− e−µτD)[βαD − µ2 − µµD − µγD]

µαD(µ+ µD + γD − e−µτDγD)
,

and it is biologically relevant when βαD > µ2 + µµD + µγD.

We also have an endemic steady state E∗e = (S∗e , I
∗
De, I

∗
d e, R

∗
De, R

∗
de), where S∗e is

the root of the following cubic equation

a1S
∗
e
3 + a2S

∗
e
2 + a3S

∗
e + a4 = 0 (3.6)
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with

a1 =α2
Dα

2
dµ,

a2 =α2
Dα

2
dβ − αDµDα2

dµ− µ2α2
Dαd − 2αDα

2
dγDµ− 2α2

Dγdµαd − µdα2
Dµαd − αDµ2α2

d,

a3 =− α2
Dγdβαd + αDµ

2µdαd + µµDγDα
2
d + αDµ

2γDαd + αDµ
2µDαd − αDµDα2

dβ

+ αDµ
2γdαd − α2

Dµdβαd − αDµα2
dβ − µα2

Dβαd − αDα2
dγDβ + µdα

2
Dµγd + µγ2Dα

2
d

+ α2
Dµγ

2
d + µ2γDα

2
d + αDµ

3αd + µ2α2
Dγd + αDµDµdµαd − αDγde−µ(τd+τD)γDµαd

+ αDµDµαdγde
−µτd + αDµαde

−µτDγDµd + αDµ
2αde

−µτDγD + αDγde
−µτdγDµαd

+ αDµ
2αdγde

−µτd + αDγDµdµαd + αDµDγdµαd + αDe
−µτDγDγdµαd + 2µγDαdαDγd,

a4 =αDµ
2βαd − µ2γ2Dαde

−µτD − µ3γDαde
−µτD − αDγ2dµ2e−µτd − αDµ3γde

−µτd

+ µµDγDαdγde
−µ(τd+τD) − αDγDµγ2de−µτD + αDµDγdβαd − αDγDµµdγde−µτd

+ αDµγdβαd + αDγ
2
de
−µ(τd+τD)γDµ+ αDµDµdβαd + αDµµdβαd − αDµDµγ2de−µτd

− αDγDµ2γde
−µτd − µ2γDαde

−µτDγd + αDµµDβαd − µγ2Dαdγde−µτd + αDγde
−µ(τd+τD)γDµ

2

+ αDγDµdβαd − αDµDµµdγde−µτd − µµDγDαdγde−µτd + αDµγDβαd

− αDγde−µ(τd+τD)γDβαd + αDγde
−µ(τd+τD)γDµµd − αDγDµγ2de−µτd − µ2γDαdγde

−µτd

+ µ2γDαde
−µ(τd+τD)γd + µγ2Dαdγde

−µ(τd+τD) − αDµ2µdγde
−µτd + αDγde

−µτdγDβαd

− αDµDµ2γde
−µτd − µ2γDαde

−µτDµd + αDe
−µτDγDγdβαd − αDγDµde−µτDµγd

− αDµ2γDe
−µτDγd − µ2µDγDαde

−µτD − µµDγDαde−µτDµd − µµDγDαde−µτDγd

− µγ2Dαde−µτDµd − µγ2Dαde−µτDγd,
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and I∗De, I
∗
d e, R

∗
De and R∗de are given bellow in terms of S∗e as follows

I∗De =
µR∗Deκ1
αDψ

,

I∗d e =
µR∗deκ2
αdψ

,

R∗De =
−αdS∗e + (µ+ µd + γd)

αd
,

R∗de =
−αDS∗e + (µ+ µD + γD)

αD
,

where

κ1 = eµ(τD+τd)αdS
∗
eαD − eµ(τD+τd)γDαd − eµ(τD+τd)αdµ− eµ(τD+τd)αdµD,

+ eµτDαDγd − eµ(τD+τd)γdαD

κ2 = eµ(τD+τd)αdS
∗
eαD − eµ(τD+τd)µαD − eµ(τD+τd)αDµd − eµ(τD+τd)γdαD

+ eµτdγDαd − eµ(τD+τd)γDαd,

ψ = µµDe
µ(τD+τd) − µDαdS∗eeµ(τD+τd) + αDS

∗
e
2αde

µ(τD+τd) + µ2eµ(τD+τd)

+ γDγde
µτd − γDγd − µαDS∗eeµ(τD+τd) − αDS∗eµdeµ(τD+τd) − αDS∗eγdeµ(τD+τd)

− µαdS∗eeµ(τD+τd) + µµde
µ(τD+τd) + γdµe

µ(τD+τd) + µdµDe
µ(τD+τd)

+ µDγde
µ(τD+τd) − γDαdS∗eeµ(τD+τd) + γDµe

µ(τD+τd) + γDµde
µ(τD+τd) + γDγde

µτD .
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3.4 Basic Reproduction Number

The basic reproduction number (R0) is the average number of secondary in-

fections created when a single infected host is placed in an entirely susceptible

population. We now use the next generation matrix approach introduced by Diek-

mann et al [53] and analysed in [60]. We have the new infection terms as

F =



0

αDIDS

αdIdS

0

0


,

and all other terms are

V =



µS − β − γDID(t− τD)e−µτD − γdId(t− τd)e−µτd

(µ+ µD + γD)ID − αDRdID

(µ+ µd + γd)Id − αdRDId

αdRDId + µRD − γDID + γDID(t− τD)e−µτD

αDRdID + µRd − γdId + γdId(t− τd)e−µτd


.
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The derivatives of F and V at the disease-free equilibrium point E0 gives F and

V respectively, where

F =



0 0 0 0 0

0 αDβ
µ

0 0 0

0 0 αdβ
µ

0 0

0 0 0 0 0

0 0 0 0 0


and V =



µ −γDe−µτD −γde−µτd 0 0

0 (µ+ µD + γD) 0 0 0

0 0 (µ+ µd + γd) 0 0

0 −γD + γDe
−µτD 0 µ 0

0 0 −γd + γde
−µτd 0 µ



V−1 =



(µ)−1 γDe
−µτD

µ(µ+µD+γD)
γde

−µτd

µ(µ+µd+γd)
0 0

0 (µ+ µD + γD)−1 0 0 0

0 0 (µ+ µd + γd)
−1 0 0

0 − (e−µτD−1)γD
µ(µ+µD+γD)

0 (µ)−1 0

0 0 − (e−µτd−1)γd
µ(µ+µd+γd)

0 (µ)−1



FV−1 =



0 0 0 0 0

0 αDβ
µ(µ+µD+γD)

0 0 0

0 0 αdβ
µ(µ+µd+γd)

0 0

0 0 0 0 0

0 0 0 0 0


with eigenvalues

λ1,2,3 = 0, λ4 =
αDβ

µ(µ+ µD + γD)
and λ5 =

αdβ

µ(µ+ µd + γd)
.
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Consequently, the basic reproduction number associated with the disease one and

two are given respectively as

R1 =
αDβ

µ(µ+ µD + γD)
(3.7)

and

R2 =
αdβ

µ(µ+ µd + γd)
. (3.8)

This gives the basic reproduction number of the system (3.1) as

R0 = max{R1, R2}. (3.9)

Both disease one and two will die out if R0 < 1, while either or both diseases may

become endemic if R0 > 1.

3.5 Local Stability of Disease Free Equilibrium

In this section, we analyse the disease-free equilibrium of the system (3.1) and

its stability. The disease-free steady state occur when both disease one and two

are absent from the population, i.e. E0 =
(
β
µ
, 0, 0, 0, 0

)
.

Theorem 3.5.1. The disease-free equilibrium E0 is locally asymptotically stable

if Ri < 1, i = 1, 2 and unstable if either of Ri > 1.
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Proof. Linearising the system (3.1) about the steady states gives

˙̃S = −µS̃ − αDI∗DS̃ − αDĨDS∗ − αdI∗d S̃ − αdĨdS∗ + γDĨD(t− τD)e−µτD

+ γdĨd(t− τd)e−µτd ,

˙̃ID = αDĨDS
∗ + αDI

∗
DS̃ − (µ+ µD)ĨD + αDR̃dI

∗
D + αDR

∗
dĨD − γDĨD,

˙̃Id = αdĨdS
∗ + αdI

∗
d S̃ − (µ+ µd)Ĩd + αdR̃DI

∗
d + αdR

∗
DĨd − γdĨd,

˙̃RD = γDĨD − γDĨD(t− τD)e−µτD − αdR̃DI
∗
d − αdR∗DĨd − µR̃D,

˙̃Rd = γdĨd − γdĨd(t− τd)e−µτd − αDR̃dI
∗
D − αDR∗dĨD − µR̃d.

(3.10)

At the equilibrium E0, we have

˙̃S = −µS̃ − αDβ

µ
ĨD −

αDβ

µ
Ĩd + γDĨD(t− τD)e−µτD + γdĨd(t− τd)e−µτd ,

˙̃ID =
αDβ

µ
ĨD − (µ+ µD)ĨD − γDĨD,

˙̃Id =
αdβ

µ
Ĩd − (µ+ µd)Ĩd − γdĨd, (3.11)

˙̃RD = γDĨD − γDĨD(t− τD)e−µτD − µR̃D,

˙̃Rd = γdĨd − γdĨd(t− τd)e−µτd − µR̃d.

Looking for solutions of the linearised system in the form

S̃ = C1e
λt, ĨD = C2e

λt, Ĩd = C3e
λt, R̃D = C4e

λt and R̃d = C5e
λt
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gives

(λ+ µ)C1 + (
αDβ

µ
− γDe−(λ+µ)τD)C2 + (

αdβ

µ
− γde−(λ+µ)τd)C3 = 0,

(λ− αDβ

µ
+ µ+ µD + γD)C2 = 0,

(λ− αdβ

µ
+ µ+ µd + γd)C3 = 0,

(λ+ µ)C4 + (γDe
−(λ+µ)τD − γD)C2 = 0,

(λ+ µ)C5 + (γde
−(λ+µ)τd − γd)C3 = 0.

Since C1, C2, C3, C4 and C5 are not all zero, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(λ+ µ) (αDβ
µ
− γDe−(λ+µ)τD) (αdβ

µ
− γde−(λ+µ)τd) 0 0

0 (λ− αDβ
µ

+ µ+ µD + γD) 0 0 0

0 0 (λ− αdβ
µ

+ µ+ µd + γd) 0 0

0 (γDe
−(λ+µ)τD − γD) 0 (λ+ µ) 0

0 0 (γde
−(λ+µ)τd − γd) 0 (λ+ µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

This yields the characteristic equation in the form

(λ+ µ)[(λ+ µ){(λ+ µ)(λ− αDβ

µ
+ µ+ µD + γD)(λ− αdβ

µ
+ µ+ µd + γd)}] = 0,

and, hence, we have

λi = −µ (i = 1, 2, 3),

λ4 =
αDβ

µ
− (µ+ µD + γD) = {µ+ µD + γD}(R1 − 1),

λ5 =
αdβ

µ
− (µ+ µd + γd) = {µ+ µd + γd}(R2 − 1).

60



We obtain that E0 is locally asymptotically stable if Ri < 1, i = 1, 2 and unstable

otherwise. This completes the proof.

3.6 Local Stability of the Endemic Equilibrium

We analyse the local stability of the endemic equilibrium of the system (3.1) in

this section. Here we consider three endemic scenarios: Disease one, disease two

and when both diseases are endemic.

The Jacobian matrix of the system (Je) =

(λ+µ+αDI
∗
D+αdI

∗
d ) (αDS

∗−γDe−(λ+µ)τD ) (αdS
∗−γde−(λ+µ)τd) 0 0

−αDI∗D (λ+κD−αDR∗
d−αDS∗) 0 0 −αDI∗D

−αdI∗d 0 (λ−αdS∗+κd−αdR∗
D) −αdI∗d 0

0 (γDe
−(λ+µ)τD−γD) αdR

∗
D (λ+µ+αdI

∗
d ) 0

0 αDR
∗
d (γde

−(λ+µ)τd−γd) 0 (λ+µ+αDI
∗
D)


,

with the constants κd = µ+µd +γd and κD = µ+µD +γD used for typographical

convenience.

We first consider the case when disease one only is endemic. From Je above,

we have the Jacobian matrix (JD), when disease one only is endemic as

JD =



(λ+µ+αDI
∗
D) (αDS

∗−γDe−(λ+µ)τD ) (αdS
∗−γde−(λ+µ)τd) 0 0

−αDI∗D (λ+κD−αDR∗
d−αDS∗) 0 0 −αDI∗D

0 0 (λ−αdS∗+κd−αdR∗
D) 0 0

0 (γDe
−(λ+µ)τD−γD) αdR

∗
D (λ+µ) 0

0 αDR
∗
d (γde

−(λ+µ)τd−γd) 0 (λ+µ+αDI
∗
D)


.
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This gives the following characteristic equation

(λ+ µ)(λ+ µ+ αDI
∗
D)(−λ− κd + αdR

∗
D + αdS

∗)(S∗αDµ+ αDS
∗λ+ µαDR

∗
d − µκD

− λµ+ αDI
∗
DγDe

−(λ+µ)τD + αDR
∗
dλ− κDλ− κDαDI∗D − λ2 − λαDI∗D) = 0.

(3.12)

The eigenvalues from (3.12) are

λ1 = −µ,

λ2 = −µ− αDI∗D,

λ3 = −µ− µd − γd + αdR
∗
D + αdS

∗,

(3.13)

and the solution to the following transcendental equation

−λ2 + (αDS
∗ − αDI∗D + αDR

∗
d − 2µ− µD − γD)λ+ µαDS

∗ + µαDR
∗
d

− µ(µ+ µD + γD)− αDI∗D(µ+ µD + γD) + αDI
∗
DγDe

−(λ+µ)τD = 0. (3.14)

After simplification, we have

λ2 + (µ+ αDI
∗
D)λ+ αDI

∗
D(µ+ µD + γD)− αDI∗DγDe−(λ+µ)τD = 0. (3.15)

Consider the case τD = 0. When τD = 0, we have that

λ1 = −µ,

λ2 = −µ−

{
µ(µ+ µD + γD)[R1 − 1]

(µ+ µD)

}
,

λ3 =
αd
αD

[µ+ µD + γD]− [µ+ µd + γd],
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and the solution to the following equation

λ2 + (µ+ αDI
∗
D)λ+ αDI

∗
D(µ+ µD) = 0. (3.16)

We have that λ1 is negative, λ2 is negative provided that R1 > 1. λ3 is negative

whenever

αd
αD

[µ+ µD + γD] < [µ+ µd + γd],

or

αd[µ+ µD + γD]

αD[µ+ µd + γd]
< 1,

i.e when R2 < R1. And from (3.16), it is easily seen from (I∗D) that the coefficients

and constant term are positive if R1 > 1. This implies that (3.1) is stable. We can

formulate this result as the following theorem.

Theorem 3.6.1. The endemic equilibrium point, when disease one only is endemic

of the system (3.1) at τD = 0 is locally asymptotically stable for R1 > 1 whenever

R2 < R1.

Consider now the case where τD > 0. From (3.13), λ2 will be negative if R1 > 1.

λ3 is negative provided that the following condition holds

fD(τD) =
αd(γD − e−µτDγD){µ(µ+ µD + γD)}[R1 − 1]

αDµ(µ+ µd + γd)[µ+ µD + γD − e−µτDγD]
+
R2

R1

< 1. (3.17)

We know that fD(τD) is a monotonically increasing function, so that

fD(τD) ≤ fD(∞), ∀τD ≥ 0.
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Hence,

fD(∞) < 1⇒ fD(τD) ≤ fD(∞) < 1.

This implies that (3.17) holds for all τD ≥ 0.

From (3.15)

P1(λ) +Q1e
(λ+µ)τD = 0, (3.18)

where

P1(λ) = λ2 + (µ+ αDI
∗
D)λ+ αDI

∗
D(µ+ µD + γD),

Q1 = −αDI∗DγD.

Let λ = iω with ω > 0 be the root of (3.18). This yields,

−ω2+(µ+αDI
∗
D)(iω)+αDI

∗
D(µ+µD+γD) = e−µτDαDI

∗
DγD{cos(ωτD)−i sin(ωτD)}.

Separating the last equation into the real and imaginary parts gives

−ω2 + αDI
∗
D(µ+ µD + γD) = e−µτDαDI

∗
DγD cos(ωτD), (3.19)

−(µ+ αDI
∗
D)ω = e−µτDαDI

∗
DγD sin(ωτD). (3.20)

Squaring (3.19) and (3.20) and adding them gives

ω4+{(µ+αDI
∗
D)2−2αDI

∗
D(µ+µD+γD)}ω2+α2

DI
∗
D
2(µ+µD+γD)2−α2

DI
∗
D
2γ2De

−2µτD = 0.

(3.21)

Let ζ = ω2, then (3.21) becomes

ζ2+{(µ+αDI
∗
D)2−2αDI

∗
D(µ+µD+γD)}ζ+α2

DI
∗
D
2(µ+µD+γD)2−α2

DI
∗
D
2γ2De

−2µτD = 0.

(3.22)
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Clearly (3.22) has no positive real roots if

(µ+ αDI
∗
D)2 > 2αDI

∗
D(µ+ µD + γD),

i.e if the following condition holds:

gD(τD) = µ2+
[µ(µ+ µD + γD)(R1 − 1)

µ+ µD + γD − e−µτDγD

]2
−2
[(R1 − 1)µ(µ+ µD + γD)(µD + γD)

µ+ µD + γD − e−µτDγD

]
> 0.

(3.23)

We have from (3.23) that

gD(τD) ≥ gD(0), ∀τD ≥ 0.

This implies that

gD(τD) ≥ gD(0) > 0, ∀τD ≥ 0.

Hence (3.23) always holds for all τD ≥ 0. Therefore, (3.18) does not have any purely

imaginary roots for all τD > 0, so that all roots of the characteristics equation

(3.12) have negative real parts if R1 > 1. It is clear from (3.17) that if R2 ≥ R1,

fD becomes greater than 1 and the condition fails, hence the condition (3.17) holds

only if R2 < R1. With these conditions fulfilled, the endemic equilibrium of (3.1)

is asymptotically stable. We summarise these findings in the theorem below.

Theorem 3.6.2. The endemic equilibrium point of the system (3.1), when disease

one only is endemic, is locally asymptotically stable for all τD > 0 whenever R2 <

R1 and conditions (3.17) and (3.23) hold with R1 > 1.
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We now consider the case when disease two only is endemic. The Jacobian

matrix (Jd) when disease two only is endemic has the form

Jd =



(λ+µ+αdI
∗
d ) (αDS

∗−γDe−(λ+µ)τD ) (αdS
∗−γde−(λ+µ)τd) 0 0

0 (λ+κD−αDR∗
d−αDS∗) 0 0 0

−αdI∗d 0 (λ−αdS∗+κd−αdR∗
D) −αdI∗d 0

0 (γDe
−(λ+µ)τD−γD) αdR

∗
D (λ+µ+αdI

∗
d ) 0

0 αDR
∗
d (γde

−(λ+µ)τd−γd) 0 (λ+µ)


.

The characteristic equation is thus

(λ+ µ)(λ+ µ+ αdI
∗
d)(αDS

∗ − λ− κD + αDR
∗
d)(αdS

∗µ+ αdS
∗λ+ αdR

∗
Dµ− λµ− κdµ

+ αdI
∗
dγde

−(λ+µ)τd + αdR
∗
Dλ− λ2 − κdλ− λαdI∗d − κdαdI∗d) = 0. (3.24)

The eigenvalues of the Jacobian matrix (Jd) are: λ1 = −µ, λ2 = −µ − αdI
∗
d ,

λ3 = −µ−µD−γD+αDS
∗+αDR

∗
d, and the solution to the following transcendental

equation

−λ2 + (αdS
∗ − αdI∗d + αdR

∗
D − 2µ− µd − γd)λ+ µαdS

∗ + µαdR
∗
D

− µ(µ+ µd + γd)− αdI∗d(µ+ µd + γd) + αdI
∗
dγde

−(λ+µ)τd = 0. (3.25)

This simplifies to

λ2 + (µ+ αdI
∗
d)λ+ αdI

∗
d(µ+ µd + γd)− αdI∗dγde−(λ+µ)τd = 0. (3.26)

First, consider the case when τd = 0. At τd = 0, we have that λ1 = −µ, λ2 =

−µ− µ(µ+µd+γd)[R2−1]
(µ+µd)

, λ3 = −µ− µD − γD + αD
αd

(µ + µd + γd) and the solution to
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the following equation

λ2 + (µ+ αdI
∗
d)λ+ αdI

∗
d(µ+ µd) = 0. (3.27)

We have that λ1 is negative, λ2 is negative if R2 > 1 and λ3 is negative if

αD
αd

[µ+ µd + γd]− [µ+ µD + γD] < 0

i.e if R1 < R2. This proves the following theorem.

Theorem 3.6.3. The endemic equilibrium point, when disease two only is en-

demic, of the system (3.1) at τd = 0 is locally asymptotically stable for R2 > 1

whenever R1 < R2.

We now take the case where τd > 0. From the eigenvalues of (3.24), λ2 will be

negative if R2 > 1. λ3 is negative provided that the following condition holds

fd(τd) =
αD(γd − e−µτdγd){µ(µ+ µd + γd)}[R2 − 1]

αdµ(µ+ µD + γD)[µ+ µd + γd − e−µτdγd]
+
R1

R2

< 1. (3.28)

We know that fd(τd) is a monotonically increasing function, so that

fd(τd) ≤ fd(∞), ∀τd ≥ 0.

Hence

fd(∞) < 1⇒ fd(τd) ≤ fd(∞) < 1.

This implies that (3.28) holds for all τd ≥ 0.
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From (3.26)

P2(λ) +Q2e
(λ+µ)τd = 0, (3.29)

where

P2(λ) = λ2 + (µ+ αdI
∗
d)λ+ αdI

∗
d(µ+ µd + γd)

Q2 = −αdI∗dγd.

Let λ = iψ with ψ > 0 be the root of (3.29). We have

−ψ2 + (µ+ αdI
∗
d)(iψ) + αdI

∗
d(µ+ µd + γd) = e−µτdαdI

∗
dγd{cos(ψτd)− i sin(ψτd)}.

Separating the real and imaginary parts yields,

−ψ2 + αdI
∗
d(µ+ µd + γd) = e−µτdαdI

∗
dγd cos(ψτd), (3.30)

−(µ+ αdI
∗
d)ψ = e−µτdαdI

∗
dγd sin(ψτd). (3.31)

We now square and add both sides of (3.30) and (3.31) to have an equation for

the Hopf frequency ψ as

ψ4+{(µ+αdI
∗
d)2−2αdI

∗
d(µ+µd+γd)}ψ2+α2

dI
∗
d
2(µ+µd+γd)

2−α2
dI
∗
d
2γ2de

−2µτd = 0.

(3.32)

Let ν = ψ2, then (3.32) becomes

ν2 +{(µ+αdI
∗
d)2−2αdI

∗
d(µ+µd+γd)}ν+α2

dI
∗
d
2(µ+µd+γd)

2−α2
dI
∗
d
2γ2de

−2µτd = 0.

(3.33)
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Clearly (3.33) has no positive real roots if (µ+ αdI
∗
d)2 > 2αdI

∗
d(µ+ µd + γd) i.e if

the following condition holds

gd(τd) = µ2+
[µ(µ+ µd + γd)(R2 − 1)

µ+ µd + γd − e−µτdγd

]2
−2
[(R2 − 1)µ(µ+ µd + γd)(µd + γd)

µ+ µd + γd − e−µτdγd

]
> 0.

(3.34)

We have from (3.34) that

gd(τd) ≥ gd(0), ∀τd ≥ 0.

This implies that

gd(τd) ≥ gd(0) > 0, ∀τd ≥ 0.

Hence (3.34) always holds for all τd ≥ 0. Therefore, (3.29) does not have any purely

imaginary roots for all τd > 0, so that all roots of the characteristics equation

(3.26) have negative real parts if R2 > 1. It is clear from (3.28) that if R1 ≥ R2,

fd becomes greater than 1 and the condition fails, hence the condition (3.28) holds

only if R1 < R2. With these conditions fulfilled, the endemic equilibrium of the

system (3.1) is asymptotically stable. We summarise these findings in the theorem

below.

Theorem 3.6.4. The endemic equilibrium point of the system (3.1), when disease

two only is endemic, is locally asymptotically stable for all τd > 0 whenever R1 <

R2 and the conditions (3.28) and (3.34) hold with R2 > 1.
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3.7 Numerical Simulations

In this section, we carry out numerical simulations to illustrate the theoretical

results obtained in the previous sections. We start by investigating the dynamical

behaviour of the system (3.1) by computing solutions using the DDE23 suite in

Matlab. Parameters used in the simulations are chosen for illustration purposes,

and do not reflect actual data. In all simulations, the time delays τD = τd = 10,

except otherwise stated in the figure.

(a) R1 = 0.941 < 1, R2 = 0.742 < 1,

µ = 0.38

(b) R1 = 11.482 > 1, R2 = 9.176 > 1,

µ = 0.058

Figure 3.2: Solutions of the system (3.1) for R1 = 0.941 < 1 and R2 = 0.742 < 1

in figure 3.2(a) and for R1 = 11.482 > 1 and R2 = 9.176 > 1 in figure 3.2(b).

Parameters are: β = 0.69; µD = 0.065; µd = 0.075; αD = 0.36; αd = 0.28;

γD = 0.25; γd = 0.23.
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Figures 3.2(a) and 3.2(b) show the the solutions of the system (3.1) converging

to disease-free steady states for R1 = 0.941 < 1, R2 = 0.742 < 1, and diverging

for R1 = 11.482 > 1, R2 = 9.176 > 1 respectively, supporting the analytical

calculations in Section 3.5.

(a) R2 = 9.176 < R1 = 11.482, R1 > 1,

αD = 0.36

(b) R1 = 5.103 < R2 = 9.176, R2 > 1,

αD = 0.16

Figure 3.3: Solutions of the system (3.1) when disease one is endemic in figure

3.3(a) and when disease two is endemic figure 3.3(b). Other parameters are: β =

0.69; µ = 0.058; µD = 0.065; µd = 0.075; αd = 0.28; γD = 0.25; γd = 0.23

Straightforward calculations show that in Figure 3.3(a), R2 = 9.176 < R1 =

11.482, fD = 0.7569 < 1 and gD = 101.1056 > 0, which is in agreement with

Theorem 3.6.2 in Section 3.6. Also, in Figure 3.3(b), R1 = 5.103 < R2 = 9.176,

fd = 0.5872 < 1 and gd = 11.2752 > 0 supporting Theorem 3.6.4.
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Next, we investigate the stability properties of the system (3.1) varying different

parameters of the model. The numerical simulations are done with TRACE-DDE

toolbox in Matlab, which is used for computing the characteristic roots for delay

differential equations with discrete and distributed delays. Note that the colour

in the figures corresponds to the real part of the leading eigenvalues of the char-

acteristic polynomial (Je) in Section 3.6. Areas shaded grey are the areas, where

the steady states are negative and, hence, are not biologically feasible.

We start by investigating how the stability of the endemic steady state changes

in the τD, αD parameter plane as disease one recovery rate γD varies. We observe

from the stability chart that for sufficiently small values of αD, the steady state is

stable for any time delay, but for αD which exceeds some critical value correspond-

ing to R1, it is stable for small time delay then it looses stability for larger time

delay. We also observe from Figure 3.4(a) that for sufficiently small γD, there is

initially a range of values where even with no time delay the system may be stable

for small αD, and unstable for large αD. But actually, here, it is interesting that

as τD increases, the system can gain stability, but this region itself also becomes

smaller and smaller with increasing γD.
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Figure 3.4: Stability boundary in τD−αD plane: (a) γD = 0.0045, (b) γD = 0.0095,

(c) γD = 0.068, (d) γD = 0.15, other parameters are: β = 0.95, µ = 0.058,

µD = 0.065, µd = 0.085, αd = 0.95, γd = 0.075 and τd = 1. Areas shaded grey are

biologically not feasible.
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Figure 3.5: Stability boundary in the τD − τd plane: (a) αd = 0.22, (b) αd = 0.25,

(c) αd = 0.28, (d) αd = 0.30. Other parameters are: β = 0.69, µ = 0.058,

µD = 0.065, µd = 0.075, αD = 0.36, γD = 0.28, γd = 0.25.

We now investigate how the stability of the endemic steady state changes in

the τD, τd parameter plane as the disease two infection rate αd varies.
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Figure 3.6: Stability boundary in the τD − τd plane: (a) γD = 0.36, (b) γD = 0.42,

(c) γD = 0.55, (d) γD = 0.68. Other parameters are: β = 0.82, µ = 0.088,

µD = 0.065, µd = 0.085, αD = 0.36, αd = 0.25, γd = 0.15.

Here, we fixed all other parameters and varied αd as it is one of the most

biologically relevant parameters, representing the rate at which new disease two
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infections occur through contacts between infected and susceptible individuals.

From Figure 3.5, we can see that the disease two infection rate (αd) plays an

important role in the dynamics of the system (3.1). As we increase αd, the region

of stability of the endemic steady state spread over a larger area of the (τD, τd)

parameter plane. Biologically, the severity of an epidemic depends on the basic

reproduction numberR0, and this is reflected in the figures. The basic reproduction

number R2 associated with the disease two transmission rate αd increased from

6.834 in Figure 3.5(a) to 9.318 in Figure 3.5(d). In (a) R2 = 6.834, (b) R2 = 7.765,

(c) R2 = 8.697 and in (d) R2 = 9.318. R1 = 10.627 in the four figures.

We observe in Fig 3.6(a) that for some values of τd, the endemic steady state

of the system is always stable for all τD > 0. However for higher values of τd,

stability switches are observed as regions of instability are formed for lower values

of γD which gradually fades away as γD increases (see Fig. 3.6(d)).

3.8 Conclusions

In this chapter, we have modelled and analysed a two-disease system with two

time delays but without the possibility of a co-infection. We have computed in-

dependent basic reproduction numbers for disease one (R1) and disease two (R2).

Conditions for local stability for the disease free and endemic equilibria are ob-

tained. It is proved that the disease free equilibrium (E0) is locally asymptotically
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stable if Ri < 1, i = 1, 2, and unstable otherwise.

We have established that system (3.1) has three different endemic equilibria.

Namely, the case when disease one only is endemic; when disease two only is

endemic, and when both diseases are endemic. Apart from the case when both

diseases are endemic, conditions for the existence and stability of these equilibria

are established in Section 3.6. Theoretical calculations and numerical simulations

support that the endemic equilibrium when disease one only is endemic in the

absence of time delay is locally asymptotically stable when R2 < R1 for R1 > 1

with two conditions as stated in Theorem 3.6.2. Similar results were also ob-

tained for the case when disease two only is endemic and corresponding results are

summarised in Theorem 3.6.4.

We were unable to analyse theoretically the endemic steady state when the

two diseases are endemic. However, we numerically calculated the real part of the

leading eigenvalues of the characteristic polynomial (Je) in Section 3.6 to obtain

the stability charts in the τD, αD and τD, τd parameter planes. These charts are

presented in Figs. 3.4-3.6. Observation from Figure 3.5 shows the importance the

disease two infection rate (αd) plays in the dynamics of the system (3.1). As we

increased αd, the region of stability of the endemic steady state spread over a larger

area of the (τD, τd) parameter plane. This shows that as the disease two infection

rate increases, more individuals in the population are infected with the disease two,
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hence the larger region of stability of the endemic steady state. Similar results are

expected from the disease one infection rate (αD) since the system is symmetrical.

The model developed in this chapter can be used to study any two-disease epi-

demics without the possibility of a co-infection like yaws and syphilis, respiratory

syncytial virus and human para influenza virus.
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Chapter 4

Latency Model with Saturated

Incidence Rate

4.1 Introduction

The Susceptible-Infected-Recovered (SIR) model has given us a veritable tool

to gaining an insight into the dynamics of infectious diseases. A lot of develop-

ments have been made since the introduction of the famous model by Kermack-

McKendrick [1], especially in the introduction of models with time delay to account

for the effects of latency and temporary immunity (see, for example, [11]-[19] and

the references cited therein).

In most of the literature, it is frequently assumed that the incident rate is of the

bilinear form βSI, which is based on the law of mass action. However, for some
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diseases, such as cholera, where in times of epidemic, the number of infections

tends to a saturation point, a saturated incidence rate is better suited to be used

in the model. Capasso and Serio [61] introduced a saturated incidence rate g(I)S

into their model, where g(I) is given as βI
1+αI

. Here g(I) tends to a saturation level

when I gets large. The dynamics of such models have been found to be very rich

and exciting (see [12], [13], [20] and [21]).

In this chapter, we develop an SIR type model with latency and nonlinear inci-

dence rate similar to the model in [20] but with a delayed susceptible population

in the nonlinear incidence rate. The equilibria of the model are found, and the

relationship of the basic reproduction number with stability investigated.

4.2 Derivation of the Model

Yoichi et al [20] have considered the following model

dS(t)

dt
= r(1− S(t))S(t)− S(t)

{ I(t− τ)

1 + αI(t− τ)

}
,

dI(t)

dt
= S(t)

{ I(t− τ)

1 + αI(t− τ)

}
− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t),

where r > 0 is the birthrate and α ≥ 0 determines the level at which the force

of infection saturates. The model considered a population growth subject to the

logistic growth in absence of disease, with a nonlinear incidence rate that had
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Table 4.1: State variables of the model (4.1)

Variable Description

S Population of susceptible individuals, [biomass]

I Population of infected individuals, [biomass]

R Population of recovered individuals, [biomass]

instantaneous susceptibles but delayed infectives pool to the infectives class. In

the derivation of our model, we consider the inclusion of a delay term for the

susceptible also in the nonlinear incidence rate as follows

dS(t)

dt
= β(1− S(t))S(t)− S(t− τ)

{ I(t− τ)

1 + αI(t− τ)

}
,

dI(t)

dt
= S(t− τ)

{ I(t− τ)

1 + αI(t− τ)

}
− (µ1 + γ)I(t), (4.1)

dR(t)

dt
= γI(t)− µ2R(t).

The initial conditions for system (4.1) are

S(s) = φ1(s), I(s) = φ2(s), R(0) ≥ 0,

φi(s) ≥ 0, φi(0) > 0, i = {1, 2}, s ∈ [−τ, 0].

The variables and parameters used in the model (4.1) are summarised in Ta-

bles 4.1 and 4.2 respectively.
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Table 4.2: Parameters used in the model (4.1)

Parameter Description

β Birth rate, [biomass/time]

µ1 Death rate (Infected), [1/time]

µ2 Death rate (Recovered), [1/time]

α Saturation parameter

γ Disease recovery rate, [1/time]

4.3 Steady States

To obtain the steady states, we have, from (4.1),

β(1− S)S − S
{ I

1 + αI

}
=0,

S
{ I

1 + αI

}
− (µ1 + γ)I =0, (4.2)

γI − µ2R =0.

Solutions of the system (4.2) show that the model (4.1) always has a trivial equi-

librium Et = (0, 0, 0), a disease free equilibrium given by E0 = (1, 0, 0), and the

endemic equilibrium given as E∗ = (S∗, I∗, R∗), where I∗ is the root of the follow-

ing quadratic equation

a1I
∗2 + a2I

∗ + a3 = 0, (4.3)
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with

a1 =βα2µ1 + βα2γ,

a2 =− βα + 2βµ1α + 2βγα + 1,

a3 =− β + βµ1 + βγ,

and S∗ and R∗ are given bellow in terms of I∗ as

S∗ =µ1 + µ1αI
∗,

R∗ =
γI∗

µ2

.

4.4 Basic Reproduction Number

We find the basic reproduction number which is defined as the average number

of secondary cases generated by a typical infectious host. Using the next generation

matrix approach, from (4.1), we have

F =


0

S(t−τ)I(t−τ)
1+αI(t−τ)

0

 and V =


−βS(1− S)

(µ1 + γ)I

µ2R− γI

 .
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Finding the derivatives of F and V at the disease-free equilibrium point E0 gives

F and V, where

F =


0 0 0

0 1 0

0 0 0

 and V =


β 0 0

0 µ1 + γ 0

0 −γ µ2

 ,

V−1 =


1
β

0 0

0 1
µ1+γ

0

0 γ
µ2(µ1+γ)

1
µ2

 ,

FV−1 =


0 0 0

0 1
µ1+γ

0

0 0 0

 .

The basic reproduction number (R0) is the spectral radius of the product FV−1,

R0 = ρ(FV−1). This gives

R0 =
1

µ1 + γ
. (4.4)

4.5 Stability analysis of the Equilibria

In this section, we analyse the local stability of the trivial, disease free and en-

demic equilibria of (4.1). We now linearise the system (4.1) about the equilibrium
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points as follows

˙̃S = βS̃ − 2βS̃S∗ −
{I∗S̃(t− τ)

(1 + αI∗)
+
S∗Ĩ(t− τ)

(1 + αI∗)2

}
,

˙̃I =
{I∗S̃(t− τ)

(1 + αI∗)
+
S∗Ĩ(t− τ)

(1 + αI∗)2

}
− (µ1 + γ)Ĩ , (4.5)

˙̃R = γĨ − µ2R̃.

Looking for solutions of the linearised system in the form

S̃ = C1e
λt, Ĩ = C2e

λt, and R̃ = C3e
λt

we obtain

[(
β − 2βS∗ − I∗e−λτ

(1 + αI∗)

)
− λ
]
C1 −

S∗e−λτ

(1 + αI∗)2
C2 = 0,

I∗e−λτ

(1 + αI∗)
C1 +

[( S∗e−λτ

(1 + αI∗)2
− µ1 − γ

)
− λ
]
C2 = 0,

γC2 − µ2C3 − λC3 = 0.

Since we are interested in non-trivial solutions, we assume that Ci 6= 0, i = 1, 2, 3.

The Jacobian matrix in this case has the form

J =



(
β − 2βS∗ − I∗e−λτ

(1+αI∗)

)
− λ − S∗e−λτ

(1+αI∗)2
0

I∗e−λτ

(1+αI∗)

(
S∗e−λτ

(1+αI∗)2
− µ1 − γ

)
− λ 0

0 γ −µ2 − λ


The characteristic matrix at the trivial equilibrium point Et = (0, 0, 0) is given
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by ∣∣∣∣∣∣∣∣∣∣∣∣

β − λ 0 0

0 −(µ1 + γ)− λ 0

0 γ −µ2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which gives the characteristic equation for the eigenvalues λ as

(β − λ)(µ1 + γ + λ)(µ2 + λ) = 0. (4.6)

The eigenvalues are

λ1 =β,

λ2 =− (µ1 + γ),

λ3 =− µ2.

Obviously, since one of the eigenvalues λ1 is always positive, this shows that the

trivial equilibrium (Et) of the system (4.1) is always unstable.

We now consider the disease free equilibrium. The characteristic matrix corre-

sponding to the disease free equilibrium point E0 = (1, 0, 0) is given by∣∣∣∣∣∣∣∣∣∣∣∣

−β − λ −e−λτ 0

0 e−λτ − (µ1 + γ)− λ 0

0 γ −µ2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

or

(λ+ µ2)[λ
2 + (β + µ1 + γ − e−λτ )λ+ βµ1 + βγ − βe−λτ ] = 0. (4.7)
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The eigenvalues are −µ2 and the solution to the following transcendental equation

λ2 + (β + µ1 + γ − e−λτ )λ+ βµ1 + βγ − βe−λτ = 0. (4.8)

When τ = 0, equation (4.8) becomes

λ2 + (β + µ1 + γ)λ+ β(µ1 + γ)[1−R0] = 0 (4.9)

We can infer from (4.9) that if R0 < 1, the disease free equilibrium of the system

(4.1) is asymptotically stable, marginally stable for R0 = 1, and unstable for

R0 > 1. We can summarise these conclusions as the following theorem.

Theorem 4.5.1. The disease free equilibrium E0 of the system (4.1) for τ = 0 is

(i) locally asymptotically stable if R0 < 1;

(ii) marginally stable if R0 = 1;

(iii) unstable if R0 > 1.

We now consider the case τ > 0. From (4.8), we have

λ2 + (β + µ1 + γ)λ+ βµ1 + βγ − (β + λ)e−λτ = 0. (4.10)

Let λ = iω with ω > 0 be the root of (4.10), hence,

βµ1+βγ−ω2+(βω+µ1ω+γω)i = β cos(ωτ)+ω sin(ωτ)+(ω cos(ωτ)−β sin(ωτ))i.

Separating the real and imaginary parts yields,

βµ1 + βγ − ω2 = β cos(ωτ) + ω sin(ωτ),

βω + µ1ω + γω = ω cos(ωτ)− β sin(ωτ).
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After squaring and adding the two equations above, it follows that

ω4 + pω2 + q = 0, (4.11)

where

p = β2 + µ2
1 + 2µ1γ + γ2 − 1,

q = β2µ2
1 + 2β2µ1γ + β2γ2 − β2.

Let ζ = ω2, then (4.11) becomes

ζ2 + pζ + q = 0. (4.12)

Clearly if p > 0 and q > 0 then the equation (4.11) has no positive real roots.

Consequently, from the expressions for p and q, we have

p = β2 + 2µ1γ + (µ2
1 + γ2)[1−R2

0] > 0

and

q = β2(2µ1γ + (µ2
1 + γ2)[1−R2

0]) > 0,

whenever 0 ≤ R0 ≤ 1.

It is clear from the definition of R0 that R0 � 0. Hence if R0 ≤ 1, the equation

(4.12) has no positive root. Accordingly, if R0 ≤ 1, the disease free equilibrium

E0 of the system (4.1) is locally stable for all τ > 0. This gives us the following

theorem.

Theorem 4.5.2. The disease free equilibrium point E0 of the system (4.1) for

τ > 0 is locally stable whenever R0 ≤ 1.
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Next, we will study the stability of the system (4.1) at the endemic equilibrium

point E∗. From (4.3), I∗ is given by

I∗ =
−a2 ±

√
a22 − 4a1a3

2a1
(4.13)

where

a2 = −βα + 2βµ1α + 2βγα + 1

= βα[2(µ1 + γ)− 1] + 1

= βα(µ1 + γ)[2−R0] + 1

= −(µ1 + γ){βα(R0 − 2)−R0}

and

4a1a3 = 4β2α2(µ1 + γ)(µ1 + γ − 1)

= 4β2α2(µ1 + γ)2(1−R0).

Therefore, we can simplify the expression for I∗ as follows

I∗ =
{βα(R0 − 2)−R0} ±

√
[βα(R0 − 2)−R0]2 + 4β2α2(R0 − 1)

2βα2
.

The only biologically relevant solution for R0 > 1 is

I∗ =
{βα(R0 − 2)−R0}+

√
[βα(R0 − 2)−R0]2 + 4β2α2(R0 − 1)

2βα2
.
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From the Jacobian matrix above, the characteristic equation for the endemic steady

state has the form

((µ2 + λ)(−2βµ1αI
∗ + 2βS∗γα2I∗2 + 4βS∗γαI∗ + 2βS∗λ+ 2βS∗λα2I∗2

+ λ2α2I∗2 − βγα2I∗2 + I∗2e(−λτ)µ1α + I∗2e(−λτ)γα + I∗2e(−λτ)λα + 2λγαI∗ + λγα2I∗2

− 2βγαI∗ − βλ+ λµ1 + λ2 − βλα2I∗2 + 2βS∗µ1 + λγ − βγ + 2λ2αI∗ + I∗e(−λτ)γ

+ I∗e(−λτ)λ+ 2βS∗γ − λS∗e(−λτ) − 2βS∗2e(−λτ) + βS∗e(−λτ) + I∗e(−λτ)µ1 + 4βS∗µ1αI
∗

+ 2βS∗µ1α
2I∗2 + 4βS∗λαI∗ + 2λµ1αI

∗ + λµ1α
2I∗2 − βµ1α

2I∗2 − 2βλαI∗ − βµ1)) = 0.

The eigenvalues are −µ2 and the solution to the following transcendental equation

p2λ
2 + p1λ+ p0 = −(q1λ+ q0)e

−λτ , (4.14)

where

p2 =α2I∗2 + 2αI∗ + 1,

p1 =2γαI∗ + 4βS∗αI∗ + γα2I∗2 + µ1 + γ − β − 2βαI∗ − βα2I∗2 + 2µ1αI
∗ + µ1α

2I∗2

+ 2βS∗ + 2βS∗α2I∗2,

p0 =− βγα2I∗2 + 4βS∗µ1αI
∗ − 2βγαI∗ − βµ1 − βγ + 4βS∗γαI∗ + 2βS∗µ1 + 2βS∗γ

− 2βµ1αI
∗ + 2βS∗µ1α

2I∗2 + 2βS∗γα2I∗2 − βµ1α
2I∗2,

q1 =I∗ − S∗ + I∗2α,

q0 =I∗2µ1α + I∗2γα− 2S∗2β + I∗γ + βS∗ + I∗µ1.

When τ = 0, the equation (4.14) simplifies and becomes a quadratic equation in
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the form

p2λ
2 + (p1 + q1)λ+ p0 + q0 = 0. (4.15)

Therefore, the endemic equilibrium of the system (4.1) is locally asymptotically

stable for τ = 0 if the following conditions are satisfied.

p1 + q1 > 0 and p0 + q0 > 0. (4.16)

Next, we consider the case when τ > 0. Suppose λ = iω, ω > 0 is a root of (4.14).

Substituting λ = iω into the characteristic equation (4.14) yields an equation,

which when split into its real and imaginary parts becomes

−p2ω2 + p0 = −q1ω sin(ωτ)− q0 cos(ωτ),

p1ω = −q1ω cos(ωτ) + q0 sin(ωτ).

(4.17)

Squaring and adding both sides of the equations gives

p22ω
4 + (−q21 + p21 − 2p2p0)ω

2 − q20 + p20 = 0. (4.18)

Letting ξ = ω2, we obtain

p22ξ
2 + (−q21 + p21 − 2p2p0)ξ − q20 + p20 = 0. (4.19)

The equation (4.19) does not have real roots whenever the following conditions

hold

p21 − q21 − 2p2p0 > 0 and p20 − q20 > 0. (4.20)

Hence, if there is no positive ξ satisfying (4.19), accordingly, the equation (4.18)

has no real solutions. We summarise these results in the following theorem.
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Theorem 4.5.3. If the conditions (4.16) and (4.20) hold, then all roots of the

equation (4.14) have negative real parts for all τ ≥ 0. Furthermore, the endemic

steady state E∗ of the system (4.1) is locally asymptotically stable for R0 > 1, and

all τ ≥ 0.

If the conditions are not satisfied, then there is a unique positive ξ satisfying

(4.19). That is, there is a single pair of purely imaginary roots ±iω0 to (4.14). We

now obtain the τk > 0 such that the characteristic equation (4.14) has a pair of

purely imaginary roots.

τk =
1

ω0

{
arccos

(−p1ω2q1 + q0p2ω
2 − q0p0

q21ω
2 + q20

)}
+

2kπ

ω0

, k = 1, 2, 3 . . . (4.21)

We now show that

d(Reλ)

dτ

∣∣∣
τ=τk

> 0. (4.22)

Differentiating the equation (4.14) with respect to τ , we obtain

2p2λ
dλ

dτ
+ q1e

−λτ dλ

dτ
+ (q0 + q1λ)e−λτ ×

(
− dλ

dτ
τ − λ

)
+ p1

dλ

dτ
= 0,

and, therefore (
dλ

dτ

)−1
=

2p2λ+ q1e
−λτ + p1 − (q0 + q1λ)τe−λτ

(q0 + q1λ)λe−λτ

=
p1 + 2p2λ

(q0 + q1λ)λe−λτ
+

q1
(q0 + q1λ)λ

− (q0 + q1λ)τ

(q0 + q1λ)λ

=
p1 + 2p2λ

(q0 + q1λ)λe−λτ
+

q1
(q0 + q1λ)λ

− τ

λ

=
p1 + 2p2λ

−λ(p2λ2 + p1λ+ p0)
+

q1
(q0 + q1λ)λ

− τ

λ
.
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We have that

sign

{
d(Reλ)

dτ

∣∣∣∣∣
τ=τk

}
= sign

{
Re

(
dλ

dτ

)−1∣∣∣∣∣
λ=iω0

}
.

This gives

sign

{
Re

[
p1 + 2p2λ

−λ(p2λ2 + p1λ+ p0)

]∣∣∣∣∣
λ=iω0

−Re

[
q1

(q0 + q1λ)λ

]∣∣∣∣∣
λ=iω0

}

= sign

{
Re

[
2p2ω

2
0 − p1iω0

ω2
0(p2ω2

0 − p1iω0 − p0)
+

q1iω0

ω2
0(q0 + q1iω0)

]}

−sign

{
2p2(p2ω

2
0 − p0) + p21

(p2ω2
0 − p0)2 + p21ω

2
0

+
q21

q21ω
2
0 + q20

}

= sign

{
3p22q

2
1ω

4
0 + (2p22q

2
0 + [2p21q

2
1 − 4p0p2q

2
1])ω2

0 + [p21q
2
0 − 2p0p2q

2
0] + p20q

2
1

(p21ω
2
0 + (p0 − p2ω2

0)2)(q21ω
2
0 + q20)

}
.

(4.23)

We now show that the expressions in square brackets in (4.23) are positive.

[2p21q
2
1−4p0p2q

2
1] = 2{β2(2S∗−1)2+µ2

1+2µ1γ+γ2}(αI∗+1)4(αI∗2+I∗−S∗)2 > 0,

and

[p21q
2
0 − 2p0p2q

2
0] = {β2(2S∗ − 1)2 + µ2

1 + 2µ1γ + γ2}(αI∗ + 1)4(µ1αI
∗2 + αγI∗2 − 2βS∗2

+ µ1I
∗ + γI∗ + βS∗)2 > 0.

Hence the expression in (4.23) is positive, and we have shown that d(Reλ)/dτ |τ=τk >

0. Therefore, the transversality condition holds and the conditions for Hopf bifur-

cation are satisfied at τ = τk for the system (4.1).
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4.6 Global Stability of the Disease Free Equilib-

rium Point

In this section, we analyse the global stability of the disease free equilibrium

E0 of the system (4.1). We follow the idea introduced in the proof in [21]. First,

we introduce the following Lemma, which will later be used in the proof. Consider

the following equation

u̇(t) =
au(t− τ)

1 + αu(t− τ)
− cu(t) (4.24)

u(θ) = φ(θ) ≥ 0,

θ ∈ [−τ, 0), φ(o) > 0

where a, c and α are positive constants with τ ≥ 0. Equation (4.24) has a trivial

equilibrium u = 0 if a < c and a unique positive equilibrium u∗ = (a−c)
αc

if a > c.

Lemma 4.6.1. [21] If a > c, then the positive equilibrium u∗ = (a−c)
αc

of (4.24) is

globally asymptotically stable; if a < c, then the trivial equilibrium u = 0 of (4.24)

is globally asymptotically stable.

Theorem 4.6.2. The disease free equilibrium point E0 of the system (4.1) is

globally asymptotically stable whenever R0 < 1.

Proof. Let S(t), I(t) and R(t) be any positive solution of (4.1) with its associated
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initial conditions. It follows from the first equation of the system (4.1) that

Ṡ(t) ≤ β(1− S(t))S(t).

By comparison, we have

lim
t→+∞

supS(t) ≤ 1. (4.25)

Hence for ε > 0, there is a T1 > 0 such that if t > T1, S(t) ≤ 1 + ε.

Now, for t > T1 + τ , we have from the second equation of (4.1) that

İ(t) ≤
{(1 + ε)I(t− τ)

1 + αI(t− τ)

}
− (µ1 + γ)I(t).

Consider the following auxiliary equation

u̇(t) =
{(1 + ε)u(t− τ)

1 + αu(t− τ)

}
− (µ1 + γ)u(t).

When (1 + ε) < (µ1 + γ), by Lemma (4.6.1), it follows that

lim
t→+∞

u(t) = 0.

By comparison we have that

lim
t→+∞

sup I(t) = 0. (4.26)

Hence for ε > 0, there is a T2 > T1 + τ such that if t > T2,

I(t) ≤ ε.

For ε > 0 and t > T2, we have from the third equation of (4.1)

Ṙ(t) ≤ γε− µ2R(t).
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By comparison, we have that

lim
t→+∞

supR(t) = 0. (4.27)

We have from the first equation of the system (4.1) that for t > T2 + τ

Ṡ(t) ≥ β(1− S(t))S(t)− ε

1 + αε
S(t). (4.28)

By comparison it follows that

lim
t→+∞

inf S(t) ≥ β + βαε− ε
β + βαε

. (4.29)

Letting ε→ 0, we obtain

lim
t→+∞

inf S(t) ≥ 1. (4.30)

From (4.25) and (4.30), we conclude that

lim
t→+∞

S(t) = 1.

Since the inequalities hold true for arbitrary ε > 0 sufficiently small, we conclude

that E0 = (S0, I0, R0) → (1, 0, 0) as t → ∞. We know that for R0 < 1 the

disease-free equilibrium point was found to be locally asymptotically stable, here

we conclude that E0 is globally asymptotically stable. This completes the proof.
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4.7 Numerical Simulations

In this section, we analyse numerically by solving the system (4.1) using MAT-

LAB. In particular, we show solution profiles illustrating the theoretical results

obtained in earlier sections concerning the existence and stability of the disease-

free and endemic equilibria.The parameters used in this section are as stated in

the figures.

(a) R0 = 0.7704 < 1, µ1 = 0.548, γ =

0.75

(b) R0 = 3.6630 > 1, µ1 = 0.148, γ =

0.125

Figure 4.1: Solutions of the system (4.1). R0 = 0.7704 < 1 in Figure 4.1(a) and

R0 = 3.6630 > 1 in Figure 4.1(b). τ = 1, β = 0.615, µ2 = 0.34, α = 1.0.

To illustrate the theoretical results obtained in the previous sections about

the existence and stability of the disease free and endemic equilibria, we first set
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the parameters as follows: τ = 1, β = 0.615, µ1 = 0.548, µ2 = 0.34, α = 1.0

and γ = 0.75. Straightforward calculation shows that R0 = 0.7704 < 1. Then,

by Theorem 4.5.2, the disease will die out of the population. For the endemic

equilibrium, which stability properties are outlined in Theorem 4.5.3, we change

µ1 to 0.148 and γ to 0.125 giving R0 = 3.6630 > 1. With these parameter values,

the endemic equilibrium becomes stable, meaning that the disease will remain in

the population. This is shown in Figures 4.1(a) and 4.1(b).

Figure 4.2: Time series plot for I(t) with τ = 2.9 and its corresponding phase

portrait. R0 = 3.6630, β = 0.615, µ1 = 0.148, µ2 = 0.34, α = 1.0, γ = 0.125.

Figure 4.2 shows the dynamics of I(t) and its corresponding phase portrait for

the system (4.1). As can be seen in the figure, for τ = 2.9, the system tends to

the endemic steady state. However, as the time delay is increased to τ = 2.9424,

the system undergoes a Hopf bifurcation and periodic solutions are observed in
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Figure 4.3(a). As the time delay is increased further still, the equilibrium point

E∗ becomes unstable at τ = 2.95 as shown in Figure 4.4(a).

Figure 4.3: Time series plot for I(t) with τ = 2.9424 and its corresponding phase

portrait. R0 = 3.6630, β = 0.615, µ1 = 0.148, µ2 = 0.34, α = 1.0, γ = 0.125.

Figure 4.4: Time series plot for I(t) with τ = 2.95 and its corresponding phase

portrait. R0 = 3.6630, β = 0.615, µ1 = 0.148, µ2 = 0.34, α = 1.0, γ = 0.125.

99



4.8 Conclusions

In this chapter, we have modelled and analysed an SIR-type model with latency

and nonlinear incidence rate. The basic reproduction number was found and its

relationship with the stability of the system investigated.

System (4.1) admits three types of equilibria, namely, the trivial, the disease-

free and the endemic equilibrium. The trivial equilibrium was found to always be

unstable while the stability of the disease-free and endemic equilibria depends on

the basic reproduction number R0. We found that for R0 < 1, the disease-free

equilibrium point is locally asymptotically stable, marginally stable for R0 = 1

and unstable for R0 > 1. Comparison argument was used to prove the global

asymptotic stability of the disease free steady state when R0 < 1. The endemic

equilibrium point was found to be stable whenever R0 > 1, for values of τ ≥ 0,

when the conditions summarised in Theorem (4.5.3) are fulfilled. By satisfying

the transversality condition, we have shown that when the conditions stated in

Theorem (4.5.3) are not fulfilled, the system (4.1) undergoes a Hopf bifurcation

and this gives rise to periodic oscillations. We have also performed numerical sim-

ulations of the full nonlinear system, and have illustrated the dynamical behaviour

suggested by the analytical findings, and the agreement is perfect.
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Chapter 5

Conclusions

In this thesis, we have derived and studied the dynamics of infectious diseases

using time-delayed mathematical models. Analytical results about the dynamical

behaviour of the models analysed have been obtained with the results supported

by the direct numerical simulations, and numerical analysis was employed to un-

derstand the behaviour of the systems, when analytical results were not possible

to derive.

The system modelled in Chapter 2 describes the model for understanding the

dynamics of human-mosquito interaction in a population. We developed an SIR

malaria model with time delay for the transmission dynamics of malaria. A delay

term was introduced to represent the length of the period of latency of malaria

therapeutics administered to infected humans. We have proved that if the ba-

sic reproduction number R0 < 1, then the disease-free equilibrium exists and is
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asymptotically stable. If R0 > 1, then the endemic equilibrium exists and is

asymptotically stable for all time delays. Numerical simulations supported our

analytical findings and further demonstrated that the endemic equilibrium of the

system (2.8) is globally asymptotically stable for all delay values as long as R0 > 1,

and unstable otherwise. This study has shown that the treatment of malaria using

long-lasting malaria drugs could significantly reduce the population infected with

malaria (see Fig 2.6(a)), and this in turn reduces the number of infected mosquito

vectors due to the reduction in the population of the infected human hosts (Fig

2.6(b)). This in the long run could offer an effective way for tackling malaria

infection in the most endemic areas.

In Chapter 3, we have derived and analysed an SIR model to describe the

dynamics of a two-disease epidemic in a population. The model was designed

to exclude the possibility of co-infection in order to be able to make analytical

progress. Three different endemic equilibria were calculated for this system. These

are the cases when disease one only is endemic, when disease two only is endemic

and when both diseases are endemic. Apart from the case when both diseases

are endemic, conditions for the existence and stability of these equilibria were

established. Theoretical calculations and numerical simulations support that the

endemic equilibrium when the disease one only is endemic in the absence of time

delay is locally asymptotically stable when R2 < R1 for R1 > 1 with two conditions
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as stated in Theorem 3.6.2. Similar results were also obtained for the case when the

disease two only is endemic and these are summarised in Theorem 3.6.4. We have

numerically calculated the real part of the leading eigenvalues of the characteristic

polynomial of the system to obtain stability charts in the τD, αD and τD, τd

parameter planes. These charts as presented in Figs. 3.4-3.6 show the importance

the disease two infection rate (αd) plays on the dynamics of the system. As we

increased αd, the region of stability of the endemic steady state spread over a larger

area of the (τD, τd) parameter plane. Similar results are expected from the disease

one infection rate (αD) since the system is symmetrical. This model is suitable for

analysing any two-disease epidemics without the possibility of a co-infection, such

as, for example, yaws and syphilis, respiratory syncytial virus and human para

influenza virus and so forth.

Finally, in Chapter 4, we have analysed an SIR model with latency based on the

logistic growth of the population in the absence of the disease, with a saturated

incidence rate. We found three types of equilibria for the system; the trivial,

disease-free and endemic equilibria. The trivial equilibrium was found to always

be unstable while the stability of the disease-free and endemic equilibria depends

on the basic reproduction number R0. We found that for R0 < 1, the disease-free

equilibrium point is locally asymptotically stable, marginally stable for R0 = 1

and unstable for R0 > 1. Comparison argument was used to prove the global
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asymptotic stability when R0 < 1. The endemic equilibrium was found to be

stable whenever R0 > 1, for values of τ ≥ 0, when the conditions summarised

in Theorem (4.5.3) are satisfied. Analysis has also shown that the local stability

of the endemic equilibrium point E∗ depends on the time delay τ . The system

(4.1) changes its behaviour from stable to unstable nature when τ crosses the

critical value τ0 through a Hopf bifurcation, and periodic solutions are observed.

The oscillatory behaviour exhibited by system (4.1) is called epidemic waves and

shows that there maybe periodic outbreaks of epidemic in the population when τ

crosses the critical value τ0.

The epidemiological relevance of this research work is evident in the models

derived and analysed. While the model in Chapter 2 is specifically targeted at

how to reduce malaria infection by using long lasting Malaria drugs, the model

in Chapter 3 has a stability chart that could save as a guide to the region of

epidemic safety and was developed to have a wider application to any two-disease

infection without the possibility of a co-infection. The knowledge of the existence

of a critical value to the latent period (τ) in Chapter 4, and the expectation of

periodic outbreak to an epidemic as τ gets larger than its critical value (τ0), is of

great importance to the design of intervention to the epidemic described by system

(4.1). Suggested future work will be on a two-disease infection with the possibility

of a co-infection.
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