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APOLIPOPROTEIN Ε4 AND ATTENTIONAL CONTROL: UNDERSTANDING THE 
TRAJECTORY OF COGNITIVE AGEING FROM MID-LIFE. 

  
The greatest genetic factor in how well we age cognitively is Apolipoprotein E (APOE), a single 
nucleotide polymorphism with three allelic variants: epsilon-2, epsilon-3 and epsilon-4 
(hereafter ε2, ε3, ε4). The ε4 allele is associated with an increased risk of cognitive 
disadvantage in later life, however, the effects of this variant are not isolated to old-age, with 
some studies reporting cognitive advantages in youth. This thesis investigates the influence of 
APOE ε4 on cognition from mid-adulthood, a point in the lifespan when the detrimental effects 
of this allele may be emerging.   
  
This thesis begins with a systematic review and meta-analysis of the literature to-date, and 
suggests attention may be sensitive to ε4 differences in mid-adulthood, however, effects of the 
allele are not consistently shown, perhaps due to methodological limitations including the use of 
insensitive neuropsychological batteries (Chapter 1). Next, behavioural paradigms providing a 
sensitive index of both selective (Chapter 2) and executive attention (Chapter 3), suggest many 
attentional processes are intact in mid-age (45-55 years) ε4 carriers. Subtle deficits, however, 
are apparent on prospective memory (PM) and Stroop-switch paradigms, indicating a goal 
maintenance disadvantage. In addition, a proxy of cognitive reserve was found to moderate the 
effects of ε4 on executive attention in mid-adulthood (Chapter 4).  Follow-up research used 
paradigms that target the distinct processes supporting focal and non-focal PM to interrogate the 
profile of change observed in mid-age ε4 carriers, identifying a profile of disadvantage 
consistent with that observed in pathological ageing (Chapter 5). PM, however, was not found 
to differentiate ε4 carriers in older individuals at heightened risk of converting to dementia 
(Chapter 6). Collectively, this research provides evidence for a profile of accelerated ageing in 
ε4 carriers, with subtle disadvantages apparent in executive attention by the end of the 5th 
decade.   
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1. General Introduction 
 

Ageing is inevitably associated with some degree of cognitive decline; however, there are 

considerable individual differences, both in the extent and rate of cognitive ageing. The 

consequences of cognitive ageing, including reduced occupational performance and 

impairment in the ability to live independently, motivate investigation into factors influencing 

the trajectory of age-related change (Salthouse, 2012).  Furthermore, with a rising proportion 

of elderly in the population (Office for National Statistics, 2012), the societal impact of 

cognitive ageing is increasing. This thesis focuses on understanding the role of the 

Apolipoprotein-E (APOE) epsilon-4 genetic variant, an established risk factor for poor 

cognitive ageing, on cognitive performance in mid-adulthood.   

 

This general introduction first provides a brief overview of the profile of cognitive change 

characteristic of both healthy and pathological ageing, before introducing the APOE gene and 

the domain-specific effects associated with the ε4 variant in older-adulthood. Specifically, 

attentional control differences are reported in APOE ε4 carriers on sensitive, nuanced 

measures of cognition; therefore how differences within individual attentional processes 

integrate with existing theoretical models of controlled cognition is discussed. The 

introduction then reviews evidence for APOE ε4 genotype effects in youth, and the impact 

these have on theoretical accounts of the association between ε4 and cognitive decline. A 

rationale for studying the emergence of ε4 effects from mid-adulthood is provided, followed 

by the key research aims and article outlines. 

 

1.1 Cognitive ageing: adopting a lifespan approach 

 

Age-related decline is not consistent across cognitive domains; however, the profile of change 

characteristic of ‘healthy’ ageing is well established in the literature. Whilst ‘crystallised’ or 

accumulated cognition (e.g. semantic memory, vocabulary) is relatively resistant to age-

related decline, more ‘fluid’ abilities (e.g. executive function (EF), memory, attention, speed 

of processing) are vulnerable to decline (Kievit et al., 2014; Salthouse, 2009; Salthouse, 

Atkinson, & Berish, 2003; Schaie, 2005). Corresponding changes within the brain, both 

structural (atrophy, loss of white matter integrity) (e.g. Bartzokis, 2004; Lockhart & DeCarli, 

2014; Raz & Rodrigue, 2006) and functional (e.g. Davis, Dennis, Daselaar, Fleck, & Cabeza, 

2007; Motes, Biswal, & Rypma, 2011), offer a biological basis for observed cognitive 

decline. Importantly, the region of these brain changes associate with the differential profile 

of decline across cognitive domains; medial temporal and frontal lobe structures are sensitive 
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to change early in the ageing trajectory, in accordance with the vulnerability of memory and 

EF to age-related decline (Fjell, McEvoy, Holland, Dale, & Walhovd, 2014; Raz et al., 2005).  

 

There is some overlap between healthy cognitive ageing and the profile of change associated 

with late-onset sporadic Alzheimer’s disease (LOAD), the most prevalent form of dementia 

(Kalaria et al., 2008; Rizzi, Rosset, & Roriz-cruz, 2014). While impairment in learning and 

memory is the most salient feature of this disease, EF, attention, language, and perceptual-

motor skills all demonstrate significant decline as the disease progresses (American 

Psychiatric Association, 2013). In addition to neurodegeneration, LOAD is associated with 

the accumulation of Braak pathology in the neocortex (amyloidosis, phosphorylated tau), with 

substantial build up in frontal and medial temporal lobe regions (Braak & Braak, 1991; 

Okamura et al., 2014; Thal, Attems, & Ewers, 2014). The accumulation of amyloid and 

phosphorylated tau however, is not limited to individuals diagnosed with AD, but also present 

in healthy older adults (e.g. Bennett et al., 2006; Fornicola et al., 2014; Jack et al., 2010). 

Furthermore, the greatest risk factor for AD is age (Kawas, Gray, Brookmeyer, Fozard, & 

Zonderman, 2000), supporting the need to consider both healthy and pathological ageing 

along a continuum to further understanding of individual differences in cognitive decline 

(Walhovd, Fjell, & Espeseth, 2014).  

 

Adopting a lifespan approach is necessary for establishing factors influencing how well we 

age cognitively (Walhovd et al., 2014). Although there is some inconsistency in the trajectory 

suggested by longitudinal and cross-sectional research, a continuous process of age-related 

cognitive decline is reported from early adulthood (Salthouse, 2009; Singh-Manoux et al., 

2012; Zimprich & Mascherek, 2010). Brain changes associated with cognitive ageing also 

emerge in early adulthood (Bartzokis et al., 2007; Raz et al., 2005). Hence, interventions 

targeting the initial trajectory of age-associated decline may be the most effective in slowing 

ageing (Salthouse, 2009), as opposed to trying to reverse the symptoms once decline is 

evident.  

 

1.2 Apolipoprotein Ε4  

Apolipoprotein E (APOE), a single nucleotide polymorphism found on chromosome 19, is the 

strongest genetic factor influencing LOAD, and also impacts age-associated cognitive decline 

in the absence of neurodegenerative disease (Corder et al., 1993; Farrer et al., 1997). Of the 

three allelic variants coded by APOE, epsilon-2, epsilon-3, epsilon-4 (henceforth ε2, ε3, ε4), 

the ε4 allele is focused on here due to its disadvantageous effects on later-life cognition. In 

contrast, the less frequently studied ε2 allele is premised to exert protective effects on 
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cognition and neurological function in later life (Corder, Saunders, Risch, Strittmatterl, & 

Schmechel, 1994; Suri, Heise, Trachtenberg, & Mackay, 2013). 

Carrying a copy of the APOE ε4 variant increases risk of AD in a gene dose dependent 

manner; risk of diagnosis increases 2-3 fold in heterogeneous ε4 carriers and 12-fold in 

homozygous ε4 carriers (Corder et al., 1993). Additionally, possession of ε4 allele is 

associated with an earlier age of symptom onset (Corder et al, 1993; Sweet et al., 2012), and a 

more rapid rate of cognitive decline in clinical groups (e.g. Cosentino et al., 2008; Craft et al., 

1998; Hirono, Hashimoto, Yasuda, Kazui, & Mori, 2003). Crucially, disadvantageous effects 

of the ε4 allele are also observed in healthy cognitive ageing (for reviews see Rusted & 

Carare, 2015; Small, Rosnick, Fratiglioni, & Bäckman, 2004; Wisdom, Callahan, & Hawkins, 

2011), hence the relationship between APOE and age more generally should be explored. 

APOE is implicated in multiple physiological functions, including in the metabolism and 

transport of cholesterol, and neuronal repair (Bu, 2009; Mahley, Weisgraber, & Huang, 

2006). Both pathological and non-pathological mechanisms underpin the association between 

APOE ε4 and cognitive ageing, further supporting the need to consider age-related change 

across a continuum. ApoE ε4 is associated with increased accumulation and reduced 

clearance of amyloid in the brain (Mahley et al., 2006)), a key determinant in the cascade of 

change associated with AD. In addition, the ε4 variant is associated with a general loss of 

neurological function, including reduced neuronal repair, reduced synaptic plasticity, 

mitochondrial dysfunction, neuroinflammation and altered neurovascular functions (Liu, 

Kanekiyo, Xu, & Bu, 2013).  

 

1.3 APOE ε4 and Late-life Cognition: Neuropsychological Assessment Measures  

 

The bulk of existing research has utilised neuropsychological assessment tools, designed for 

use in clinical settings, to explore APOE ε4 effects on late-life cognition. These measures 

provide a quick-to-administer assessment of performance on select domains, making them 

suitable for profiling cognition in larger groups. Next, we present an overview of the 

differential profile of APOE ε4 effects across cognitive domains, assessed using 

neuropsychological measures, for LOAD and healthy cognitive ageing.    

 

1.3.1 Pathological Ageing 

 

In LOAD, detrimental effects of APOE ε4 are predominantly reported for episodic memory, 

although not consistently (for a review see Haj et al, 2016). Small sample sizes, and hence 
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low statistical power, are suggested to account for variation in the reporting of ε4 effects in 

episodic memory (Haj et al., 2016). In addition, carrying an ε4 allele is associated with 

longitudinal increases in episodic memory decline (Hirono et al., 2003; Wilson, Bienias, 

Berry-Kravis, Evans, & Bennett, 2002; Wolk & Dickerson, 2010). The same trajectory of 

accelerated decline was not reported for working memory (WM), semantic memory, 

language, processing speed or visuospatial ability (Wilson et al., 2002). Interestingly, EF 

measures do not appear sensitive to APOE ε4 effects in LOAD (van der Vlies et al., 2007; 

Wolk & Dickerson, 2010). Furthermore, increased atrophy of medial temporal lobe regions in 

ε4 carriers is associated with episodic memory disadvantages in this group. A differential 

profile of LOAD-related degradation is reported in non-ε4 carriers, predominantly affecting 

frontal-parietal networks, consistent with the behavioural profile observed (Geroldi et al., 

1999; Wolk & Dickerson, 2010).  

 

Mild cognitive impairment (MCI) represents the transitional stage between healthy cognitive 

ageing and dementia, characterised by objective impairment in at least one cognitive domain 

alongside normal day-to-day functioning (Albert et al., 2011a; Mariani, Monastero, & 

Mecocci, 2007b; R. C. Petersen, 2004). On neuropsychological assessment measures, ε4 

status in individuals diagnosed with MCI is associated with increased impairment in episodic 

memory, fluency and processing speed, and EF measures (Risacher et al., 2013; Whitehair et 

al., 2010). Furthermore, ε4 status is associated with an accelerated trajectory of decline on 

measures of global cognition, WM, memory, fluency and language (Whitehair et al., 2010). 

APOE differences on neuropsychological measures in MCI patients has been linked to 

structural changes in the brain (Farlow et al., 2004), and differences in the deposition of 

amyloid (Risacher et al., 2013).  

 

1.3.2 Healthy ageing  

 

Systematic reviews of APOE ε4 genotype effects in healthy older adulthood report an 

association between ε4 status and cognitive disadvantages (Small et al., 2004; Wisdom et al., 

2011), however, detrimental effects of the variant are not consistently found in the literature 

(Bunce et al., 2014; Bunce, Kivipelto, & Wahlin, 2004; Caselli et al., 2014). Importantly, 

meta-analytic reviews confirm the profile of ε4 effects is not uniform across cognitive 

domains, with the greatest disadvantages seen for episodic memory, global cognition, EF and 

processing speed, while effects appear non-significant for attention, verbal abilities and 

visuospatial abilities (Wisdom et al., 2011). Several studies report effects of ε4 on episodic 

memory (e.g. Caselli et al., 1999; O’Hara et al., 1998; Packard et al., 2007; Staehelin, Perrig-

Chiello, Mitrache, Miserez, & Perrig, 1999). Effects outside of this domain are also reported 
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including on spatial processing (Berteau-Pavy, Park, & Raber, 2007) and WM (Reinvang, 

Winjevoll, Rootwelt, & Espeseth, 2010). Age appears an important determinant in the 

emergence of APOE ε4 effects (Wisdom et al., 2011), with the detrimental effect of ε4 on 

memory (Jochemsen, Muller, van der Graaf, & Geerlings, 2012; Laukka et al., 2013; 

Schiepers et al., 2012), as well as processing speed and global cognition measures increasing 

with age (Laukka et al., 2013). 

1.4 APOE ε4 and Late-life Cognition: Behavioural paradigms 

1.4.1 Sensitivity of cognitive assessment 

One issue with the reliance on neuropsychological assessment measures for detecting 

genotype differences in healthy cognitive ageing is the sensitivity of these tools for detecting 

differences within the bounds of normal cognitive performance. These tools also provide 

assessment at the level of a cognitive domain. Hence, to detect APOE ε4 differences in 

healthy ageing, paradigms capable of sensitively isolating individual cognitive processes may 

be needed to provide a more nuanced understanding. Several studies have used process-

specific paradigms to explore APOE differences in attentional control. These will now be 

reviewed, prefaced by a brief outline of attentional control and associated theoretical models.  

1.4.2 Attentional control 

 

‘Attentional control’ or the ‘executive control of attention’ describes goal directed attention, 

for which ‘top-down’ control mechanisms must be exerted (Petersen & Posner, 2012; 

Treisman & Gelade, 1980). This cognitive ability, importantly, incorporates several distinct 

but interactive sub-processes, for example selective attention, attentional updating, set 

shifting, and response inhibition. Of note, selective attention, WM capacity and goal 

maintenance are viewed as interdependent constructs, involving heightened processing of 

task-relevant information (Kane, Bleckley, Conway & Engle, 2001; Awh, Vogel, & Oh, 

2006; Chun, 2011; Cowan, 1999; Gazzaley & Nobre, 2012). The neural basis of these 

attentional control mechanisms includes prefrontal, cingulate and parietal regions (e.g. Fan, 

McCandliss, Fossella, Flombaum, & Posner, 2005; Hampshire & Owen, 2006; Hopfinger, 

Buonocore, & Mangun, 2000; Osaka et al., 2004; for review see Kane, 2002; Yuan & Raz, 

2014). These regions are vulnerable to age-related change in neural structure and functional 

activity (George Bartzokis et al., 2007; Grady, Springer, Hongwanishkul, McIntosh, & 

Winocur, 2006; Raz, 2000; Rowe et al., 2007; Villemagne et al., 2011).   
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In understanding how attentional control is impacted by age, whilst some theories suggest 

decline is observed as a result of a general slowing of processing ability (Salthouse, 1996), 

others emphasise an additional need to consider age-related change within individual sub-

processes (Verhaeghen & Cerella, 2002). There are several theoretical models of the 

interdependence of attentional control processes. Kane and Engle’s model of executive 

attention comprises two hierarchical processes.  The first actively maintains information as 

short-term memory representations (Simple WM span). The second process combines the 

concepts of executive processing with complex WM span, entailing the controlled processing 

of information in an active state, often in the context of additional task demands.  It includes 

inhibition and attentional set-shifting (Engle & Kane, 2002; Kane, 2002). Similarly, Faust & 

Balota (2007) propose an attentional control framework driven by central attentional set 

maintenance, upon which attentional control acts to enhance or inhibit response pathways. 

The widely cited ‘Unity/Diversity framework’ (Friedman & Miyake, 2015) suggests that 

there is a common executive ability relating to the active maintenance of information within 

attention, which supports additional elements of executive attention including response 

inhibition, updating and attentional-set shifting. A hierarchical account of executive attention 

has recently been proposed (Tiego, Testa, Bellgrove, Pantelis, & Whittle, 2017). This model 

suggests selective attention and inhibition are independent processes dependent on a higher-

order WM construct, with functions analogous to the central executive (reduced interference, 

divided attention, set-shifting and links to long-term memory) (Baddeley, 2012). 

 

1.4.3 Selective attention 

 

Selective or focused attention is often analogized to a ‘spotlight’ mechanism, with a gradient 

of heightened attentional processing surrounding a point of fixation (Posner, 1980). This 

‘spotlight’ of focused attention is needed to maximize the processing of goal relevant 

information whilst minimising interference from the processing of irrelevant information. 

Previous research has found LOAD and healthy cognitive ageing to be associated with 

declines in this attentional process (Cansino, Guzzon, Martinelli, Barollo, & Casco, 2011; 

Gazzaley, Cooney, Rissman, & D’Esposito, 2005; Hasher & Zacks, 1988; S. Kim, Hasher, & 

Zacks, 2007; Perry & Hodges, 1999). In healthy ageing, this manifests as a deficit in 

exclusively processing goal-relevant information in the presence of distractors.  

 

In older adulthood, carriers of an APOE ε4 variant demonstrate performance differences on 

visual search and spatial WM tasks consistent with accelerated or premature age-related 

impairment. During visual search, the use of spatial cues to actively adjust the breadth of 

selective attention, and hence minimise the processing of irrelevant information, is referred to 
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as attentional scaling (Greenwood & Parasuraman, 2004). Independent of genotype, ageing is 

associated first with an increase in dependence on top-down information to guide attentional 

scaling, followed by a decrease in the ability to use top-down information to more efficiently 

search (Parasuraman, Greenwood, & Alexander, 2000). APOE ε4 carriers in late-mid 

adulthood (aged 50 years and older) demonstrate reduced utilisation of attentional scaling 

consistent with a profile of premature ageing (Greenwood, P M, Sunderland, T., Friz, J., & 

Parasuraman, 2000). In addition, homozygous ε4 carriers showed a longitudinal reduction in 

attentional scaling across three years, which was absent in heterozygous ε4 carriers and non-

ε4 carriers (Greenwood, Sunderland, Putnam, Levy, & Parasuraman, 2005).  

 

On a simple spatial WM task requiring no active manipulation of stored information, older ε4 

carriers demonstrate poorer retrieval accuracy on trials with the highest discrimination 

difficulty (Greenwood, Espeseth, Lin, Reinvang, & Parasuraman, 2014). A smaller sample 

was followed longitudinally over 3 years; ε4 carriers demonstrated significant decline in 

performance, relative to non-ε4 carriers, consistent with a profile of accelerated ageing 

(Greenwood et al., 2014). Furthermore, Espeseth and colleagues (2008) report APOE 

genotype differences in older adults on a visual discrimination task (Parasuraman, 

Greenwood, Haxby, & Grady, 1992). The task required participants to search for a target 

stimulus amid an array of distractors, with a neutral, valid, invalid or no cue presented to aid 

performance. APOE ε4 status was associated with longer RTs for invalid cues, associated 

with reduced white matter volume. Follow-up research using a selective attention ‘odd-ball’ 

task reported lower accuracy in ε4 carriers (Thomas Espeseth et al., 2012).  

 

1.4.4. Attentional maintenance, shifting and inhibition 

 

The behavioural phenotype of LOAD is characterised by deficits in more complex attentional 

processes including the division of attention between multiple task goals and set shifting 

(Baddeley, Baddeley, Bucks, & Wilcock, 2001; Perry & Hodges, 1999; Sebastian, Menor, & 

Elosua, 2006). In addition, these processes are vulnerable to age-related change (e.g. Milham 

et al., 2002; Rodríguez-Aranda & Sundet, 2006; Wasylyshyn & Sliwinski, 2011). 

Performance on a Stroop-switch paradigm targeting goal maintenance, shifting and inhibition 

was found to be a reliable marker of LOAD diagnosis (Hutchison, Balota, & Ducheck, 2010), 

and had predictive utility for the subsequent development of the disease (Balota et al., 2010).  

 

Wetter et al., (2005) reported an effect of APOE ε4 on Stroop-switch performance in older 

adulthood.  Participants completed a computerised Stroop paradigm including distinct 

inhibition (incongruent trials) and inhibition plus switching (incongruent trials plus rule 



	21	

switch) conditions. Relative to their ε3 peers, ε4 carriers selectively demonstrated greater 

errors for the condition with combined inhibition and switching demands, indicative of 

deficits in attentional set shifting. Furthermore, on a speeded category decision task assumed 

to load on attentional control processes, amyloid deposition was reported to mediate the 

relationship between APOE ε4 and errors (Aschenbrenner et al., 2015). Ε4 carriers (aged 50-

79 years) demonstrate poorer performance on an Operation Span task (Turner & Engle, 

1989), a measure of WM requiring divided attention, and hence executive control.  

 

1.4.4.1 Prospective memory 

 

Prospective memory (PM), pervasive in day-to-day life, is the timely retrieval of an earlier-

formed intention whilst engaged in ongoing cognitive activity. Non-focal PM, when retrieval 

of the intention involves processing distinct from ongoing cognitive activity, is a 

demonstration of attentional control in an everyday context. Executive processes are required 

to maintain multiple goals at the forefront of attention and actively monitor for the PM cue 

(Einstein et al., 2005; McDaniel, Umanath, Einstein, & Waldum, 2015; Scullin, McDaniel, 

Shelton, & Lee, 2010). Non-focal retrieval is mediated by the available executive resource, 

and supported by frontal, parietal and cingulate regions of the brain (Cona, Bisiacchi, Sartori, 

& Scarpazza, 2016; Cona, Scarpazza, Sartori, Moscovitch, & Bisiacchi, 2015; McDaniel, 

LaMontagne, Beck, Scullin, & Braver, 2013). Focal PM, or retrieval of a PM intention 

processed as an integral part of the ongoing cognitive activity, relies on ‘bottom-up’ attention 

and associative memory processes, mediated by mediated by occipital, parietal (Cona et al., 

2016) and temporal lobe regions (McDaniel et al., 2013).  

 

Healthy ageing is associated with select impairment in non-focal PM (for reviews see Henry, 

MacLeod, Phillips, & Crawford, 2004; Kliegel, Jäger, & Phillips, 2008), whereas individuals 

with MCI or in the early stages of LOAD demonstrate an additional impairment in focal PM 

(Blanco-Campal, Coen, Lawlor, Walsh, & Burke, 2009; Costa, Caltagirone, & Carlesimo, 

2011; Duchek, Balota, & Cortese, 2006; McDaniel, Shelton, & Breneiser, 2012). Thus far, 

research exploring APOE genotype effects on PM across the lifespan are mixed. In mild 

LOAD ε4 carriers demonstrate significant impairment on a focal PM task consistent with this 

variant exaggerating the impairment seen in LOAD (Duchek et al., 2006), however null 

effects of genotype were reported in a sample of healthy older adults (McDaniel et al., 2012).  

 

1.5 APOE ε4 earlier in the lifespan 
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The effects of APOE on cognition are not restricted to later life. Indeed, there is some support 

for ε4 carriers showing cognitive advantages in youth, supported by naturalistic studies 

reporting higher IQ and greater educational achievement in this group (Hubacek et al., 2001; 

Yu, Lin, Chen, Hong, & Tsai, 2000). Reports of beneficial effects in youth are inconsistent 

with the negative effects of APOE ε4 in later life, suggesting a change in the expression of 

this gene across the lifespan. This emphasizes the need to consider the cumulative impact of 

the ε4 allele across the lifespan (Rusted & Carare, 2015).  

 

Reviewing laboratory studies of APOE genotype effects on cognition in youth provides mixed 

evidence in favor of ε4 advantages. Several studies report equivalent performance across 

APOE genotype groups in children on measures of IQ and academic ability (Acevedo, Piper, 

Craytor, Benice, & Raber, 2010; Bloss, Delis, Salmon, & Bondi, 2010; Ruiz et al., 2010; 

Turic, Fisher, Plomin, & Owen, 2001). An Age x APOE interaction, however, was reported 

on a neuropsychological test battery; specifically homozygous ε4 carriers aged 8 years and 

younger were disadvantaged on EF and WM measures, whilst performance was equivalent or 

better in this group over the age of 8 years (Chang et al., 2016). This highlights the need for 

longitudinal assessment of how APOE effects change developmentally.  

 

In young adults, ε4 advantages are consistently reported on verbal fluency measures 

(Alexander et al., 2007; Han et al., 2007; Marchant, King, Tabet, & Rusted, 2010a; Puttonen, 

Elovainio, Kivimäki, Lehtimäki, & Keltikangas-Järvinen, 2003). Several other studies report 

null effects of the variant across a wider range of measures (Bunce et al., 2014; Dennis et al., 

2010; Jorm et al., 2007; Reiman et al., 2004; Taylor et al., 2011). Indeed, an earlier meta-

analytic review of the literature reported limited evidence for ε4 advantages prior to 35 years 

of age (Ihle, Bunce, & Kliegel, 2012), with the null effect size consistent across tasks 

categorized as both low and high executive demand.  

 

One issue consistently arising across the APOE literature is the validity of using 

neuropsychological assessment tools to detect subtle differences in healthy individuals. 

Behavioural paradigms designed to provide a nuanced measure of individual cognitive 

processes, as opposed to domains, in healthy adults are sensitive to ε4 advantages in youth. 

For example, ε4 carriers (mean age 23 years) demonstrate subtle advantages on a delayed 

episodic memory task probing face-profession associations, however, no differences were 

seen on a measure of WM (Mondadori et al., 2007). Further research, however, provides no 

support for APOE ε4 differences on episodic memory paradigms in youth (Filippini et al., 

2009; Suri et al., 2015). Support for ε4 advantages in spatial processing, reliant on 

hippocampal functioning, is also mixed. While no ε4 differences were recorded on word-list 
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learning (an index of episodic memory), ε4 carriers demonstrated spatial memory advantages 

on tasks including a virtual water maze, mental rotation task and object location task in adults 

aged 19-35 years (Stening et al., 2016). On an object location virtual arena memory task, 

young ε4 carriers demonstrated altered navigational strategies in association with disrupted 

functioning of grid-cell representations in the entorhinal cortex (Kunz et al., 2015). 

 

1.5.1 Young ε4 carriers and attentional control 

 

Focusing on attentional control, there has been some evidence for ε4 advantages in youth 

when probed with more nuanced behavioural measures. A rapid visual information processing 

task (RVIP), loading on attentional updating, demonstrated an ε4 advantage in target 

detection (Rusted et al., 2013). In addition, young ε4 carriers showed reduced cost of invalid 

spatial cues on a measure of covert attention (Rusted et al., 2013). Hence, it seems ε4 

advantages are present when using more nuanced measures of cognitive performance, with 

differences demonstrated in both memory and attention (executive and perceptual). In a 

slightly older sample (aged 20-40 years), ε4 status was associated with select disadvantages in 

episodic memory and attentional shifting (indexed using a More-Odd shifting task) (Nao et 

al., 2017). Genotype differences in WM and inhibition were non-significant.  

 

APOE ε4 genotype differences in PM in youth have been explored in association with the 

cholinergic agonist nicotine; a neurotransmitter system affected by the gene (Poirier et al., 

1995).  On a card-sort measure of non-focal PM, demanding of attentional control, ε4 carriers 

demonstrated greater retrieval accuracy following nicotine administration (Marchant et al., 

2010a). Follow up research, again probing the effect of nicotine on PM performance, did not 

find overall ε4 advantages on the task. Selectively for PM retrieval trials, however, nicotine 

advantaged ε4 response times (RTs), associated with increased extrastriate blood-oxygen-

level-dependent (BOLD) activations suggestive of increased bottom-up processing (Evans et 

al., 2013). Performance on a focal measure of PM, distinguished by a reliance on automatic, 

associative memory processes, was insensitive to genotype difference in youth (Duchek et al., 

2006).  

 

1.6 Theoretical accounts for the role of APOE ε4 in cognitive ageing  

 

Multiple theories have been proposed to account for the influence of APOE on cognition in 

the absence of LOAD. One option is that APOE ε4 represents a LOAD prodrome, with this 

genetic factor predisposing carriers to develop the disease (Smith et al., 1998). Hence, 

individuals with preclinical LOAD pathology and neurodegeneration may skew the effects of 



	24	

APOE ε4 observed in older adulthood. The prodrome of LOAD typically begins 6-7 years 

prior to clinical symptoms, with the mean age of LOAD diagnosis currently 77.4 years old 

(Wilson et al., 2011), and so this explanation struggles to deal with cognitive differences in ε4 

carriers earlier in the lifespan, as well as effects reported in the absence of LOAD pathology. 

Furthermore, although evidence for ε4 advantages in youth is inconsistent, these do not align 

with the prodrome account.  

 

An alternative explanation is that APOE ε4 is linked to a cognitive phenotype (Greenwood, 

Lambert, Sunderland, Parasuraman, 2005; Negash et al., 2009), defined by a profile of 

behavioural symptoms independent of LOAD pathology. A general mechanism for APOE 

effects across the lifespan is required, hypothesised to stem from the physiological role of 

apoE in cholesterol and neuronal repair (Mahley et al., 2006). Carrying an ε4 variant is 

associated with an accelerated trajectory of de-myelination from the 5th decade (Bartzokis, 

2007), leaving individuals vulnerable to cognitive insult, and hence this would explain effects 

of ε4 from mid-adulthood. Advantages in youth may be explained by some form of early 

compensatory strategy that cannot be maintained across the lifespan (Greenwood et al., 

2014). Furthermore, not necessarily exclusive of the cognitive phenotype account, APOE ε4 

carriers may undergo premature or accelerated ageing. In support, BOLD activations reported 

in youth and mid-adulthood are consistent with an early compensatory shift similar to those 

seen in older-adulthood (Evans et al., 2014; Rusted et al., 2013). In addition, the differential 

effects of ε4 status on selective attention in mid-adulthood are comparable to those seen in 

older adults (Greenwood, Sunderland, Putnam, Levy, & Parasuraman, 2005). Whilst ε4 

carriers are reported to show greater decline in structural and cognitive measures (e.g. Cohen, 

Small, Lalonde, Friz, & Sunderland, 2001; Espeseth et al., 2008; Moffat, Szekely, 

Zonderman, Kabani, & Resnick, 2000), longitudinal research is needed to establish a profile 

of accelerated ageing across the lifespan.   

 

The changes associated with advantaged performance in youth may also be important for 

establishing a mechanism for emergent disadvantageous effects. For example, although 

Mondadori et al. (2007) reported decreased hippocampal activation across learning runs in ε4 

carriers, consistent with increased neural efficiency, several studies have reported greater 

activations in the absence of behavioural effects (Dennis et al., 2010; Filippini et al., 2009; 

Rusted et al. 2013). Although difficult to interpret in the absence of a cognitive difference, it 

may be that ε4 carriers are over-activating from youth. In addition, ε4 carriers have 

demonstrated medial temporal lobe recruitment, unrelated to task demands, indicative of 

unspecialized compensatory recruitment (Rusted et al., 2013). Hence, the functional 
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activation differences reported in young ε4 carriers are not inconsistent with carriers 

demonstrating premature ageing.  

 

An additional account of APOE ε4 in cognitive ageing is that this gene represents an example 

of antagonistic pleiotropy, according to which the effects of ε4 transition from advantageous 

to disadvantageous across the lifespan (Han & Bondi, 2008). Longitudinal lifespan research is 

needed to firmly establish this theory. In addition, cognitive advantages in youth are not yet 

well established.  

 

1.7 Mid-adulthood: a critical window for APOE effects? 

 

Mid-adulthood is a critical window for understanding cognitive ageing, as individual 

differences in early cognitive decline may first be detectable at this point.  In the adult 

lifespan, vulnerability triggered by the influence of genetic factors, the environment and 

vascular ageing may alter the pathway of both neurological and cognitive decline (Finch, 

2009; Herrup, 2010).To date, the influence of APOE at this stage of the lifespan is not clearly 

established. This thesis investigates how APOE genotype influences early cognitive ageing, to 

establish if cognition is sensitive to APOE ε4 genotype in mid-adulthood. In relation to the 

cognitive advantages reported in attention and memory in youth, ε4 differences may manifest 

as advantages in select cognitive processes only. By mid-adulthood, however, subtle 

disadvantages in ε4 carriers may emerge, supporting a profile of premature and/or accelerated 

cognitive ageing. Additional risk factors for cognitive decline, including vascular ageing, 

begin to impact cognitive from the 5th decade (Waldstein et al. 2008; Pace et al, 2010; Debette 

et al, 2011; Mitchell et al, 2011), which may further moderate the presence of ε4 effects in 

mid-adulthood.  

 

1.8 Research questions and article outline 

 

The present thesis explores two key questions: 1) Does APOE genotype differentially impact 

cognitive ageing from mid-adulthood? Included articles predominantly focus on the ε4 

differences apparent by mid-adulthood, a crucial window of the lifespan when impairment 

may first be detectable. In addition, there will be some consideration of the protective ε2 

allele to further understanding of how APOE variants independently contribute to behavioural 

change. 2) Does the APOE ε4 variant selectively impact specific cognitive processes? Focus 

will be on attentional control processes, and to the impact of change on everyday functioning 

in individuals experiencing mild cognitive deficits. The thesis also explores how additional 

factors mitigating cognitive ageing might moderate APOE effects early in the lifespan.  
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Article 1 provides a systematic and meta-analytic review of the literature to date, 

investigating the effects of APOE ε4 on cognition in mid-adulthood. The review collectively 

considers ε4 performance differences on both established neuropsychological assessment 

measures and computerised cognitive paradigms, as well as the influence of this variant on 

longitudinal cognitive change. The principle aims of this review are to establish: a) Is 

cognition sensitive to APOE ε4 effects in mid-life, b) Is there a differential profile of 

sensitivity across cognitive domains? In addition, this article highlights methodological 

shortcomings in the existing literature, important in shaping the subsequent empirical work of 

this thesis. 

 

Previous research using sensitive behavioural paradigms identified attentional control as 

sensitive to APOE ε4 effects in youth and middle age. Articles 2 and 3 report the use of six 

behavioural paradigms exploring APOE genotype differences in selective attention and more 

executive attention respectively. In light of the methodological limitations identified in 

Article 1, these articles independently compare all three variants of the APOE gene (ε2, ε3, 

and ε4) in volunteers, aged 45-55 years. Importantly, whilst ε2 genotype differences were 

reported in measures of visual search and sustained attention, performance of ε4 carriers was 

equivalent aside from on two tasks: a non-focal PM task and a Stroop-switch task. Together, 

this was interpreted as ε4 carriers showing a subtle disadvantage on the ability to maintain 

multiple goals at the forefront of attention. Following this, the thesis directly pursues APOE 

differences in tasks loading on this element of executive attention. 

 

One of the challenging issues in ageing research is the complexity of additional factors 

impacting cognitive decline. Article 4 presents an exploratory analysis of how lifestyle factors 

such as occupational complexity and leisure activities, physical activity and vascular health 

moderate the emergence of APOE genotype effects on executive attention in mid-adulthood. 

In line with predictions, cognitive reserve proxies are reported to benefit ε4 carriers goal 

maintenance abilities to a greater extent than their ε3 peers in mid-adulthood, demonstrating 

the importance of this factor in individual differences from early in the ageing trajectory. 

Non-significant effects of physical activity and physiological health are reported.  

 

Article 5 uses the distinction between non-focal and focal PM to explore age-related cognitive 

change in APOE ε4 carriers. PM paradigms provide an interesting framework for exploring 

genotype effects in mid-adulthood due to the distinct profile of impairment associated with 

healthy and pathological ageing. Specifically, Article 5 asks is ε4 associated with a cognitive 

phenotype of premature ageing or vulnerability consistent with the preclinical stages of 
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LOAD. The study includes a cross-sectional comparison of young and mid-age adults to infer 

the extent of age-related change. In addition, the study includes a manipulation of WM load 

to examine if increasing the burden on attentional control exaggerates ε4 differences in mid-

adulthood. Results indicate equivalent performance on PM retrieval accuracy between groups, 

however, the interference costs of carrying both a focal and non-focal PM intention were 

greater in mid-age ε4 carriers, consistent with the profile seen in pathological cognitive 

ageing. This suggests early vulnerability in ε4 carriers to change in processes that are also 

vulnerable to LOAD.  

 

Through several studies in this thesis, non-focal PM consistently demonstrated sensitivity to 

the effects of APOE ε4 in mid-adulthood. The final article (Article 6) explores whether 

performance differences on a non-focal PM paradigm are also seen in an ‘at-risk’ group of 

individuals, defined as those visiting a memory assessment clinician to report symptoms of 

mild cognitive decline, and the impact of APOE genotype differences in this group. There are 

numerous examples of PM in everyday functioning, and so as an additional goal, this research 

explores how non-focal performance correlates with subjective reports of cognitive failings in 

daily activity. There were no significant performance differences on a non-focal PM measure 

in this ‘at-risk’ group, however, in line with predictions, PM retrieval accuracy correlated 

with reports of attentional control in daily life.  APOE genotype did not moderate 

performance differences at this later stage of the lifespan. 
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2. Article 1  

 

The elusive nature of APOE ε4 in mid-adulthood: 

understanding the cognitive profile 
 

Article 1 is published in the Journal of the International Neuropsychological Society as: 
 
Lancaster, C., Tabet, N., & Rusted, J. (2017). The elusive nature of APOE ε4 in mid-
adulthood: understanding the cognitive profile. Journal of the International 
Neuropsychological Society, 23(3), 239-253. 

.  
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2. 1 Abstract 

 

Objective: The APOE ε4 allele is an established risk factor for dementia, yet this genetic 

variant is associated with a mixed cognitive profile across the lifespan. This paper undertakes 

both a systematic and meta-analytic review of research investigating APOE-related differences 

in cognition in mid-adulthood, when detrimental effects of the allele may first be detectable. 

Method: 36 papers investigating the behavioural effects of APOE ε4 at mid-age (defined as a 

mean sample age between 35-60 years) were reviewed. In addition, the effect of carrying an ε4 

allele on individual cognitive domains was assessed in separate meta-analyses.  

Results: The average effect size of APOE ε4 status was non-significant across cognitive 

domains. Further consideration of genotype effects indicates preclinical effects of APOE ε4 may 

be observable in memory and executive functioning. 

Conclusions: The cognitive profile of APOE ε4 carriers at mid-age remains elusive. Whilst 

there is support for maintained ε4 performance until the 5th decade, studies administering 

sensitive cognitive paradigms indicate a more nuanced profile of cognitive differences. 

Methodological issues in this field preclude strong conclusions, which future research must 

address, as well as considering the influence of further vulnerability factors on genotype effects.  

 

Keywords: Cognitive Ageing, Middle-aged, Neuroimageing, Alzheimer Disease, Memory, 

Executive Function 
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2.2 Introduction 

Pathological cognitive ageing is an increasing problem worldwide, with 850,000 cases 

of Alzheimer’s disease (AD) at present in the UK alone. With prevalence expected to double 

within the next 20 years (Alzheimer’s society, 2016), understanding the risk factors associated 

with dementia is crucial. The Apolipoprotein E (APOE) epsilon 4 (ε4) allele is the leading 

genetic risk factor for late-onset Alzheimer’s disease (Corder et al., 1993; Farrer et al., 1997). 

This variant of the APOE gene constitutes one of the three APOE alleles (ε2, ε3 and ε4), present 

in approximately 25% of the population (Mahley, 1988).  

 

Systematic reviews of studies including healthy older adults support an association 

between possession of an ε4 allele and cognitive impairment in ageing more generally (Small et 

al., 2004; Wisdom et al., 2011), although not all studies are consistent in reporting this effect 

(Bunce et al., 2014; Bunce, Kivipelto, & Wahlin, 2004; Caselli et al., 2014).  The association 

between ε4 and healthy cognitive ageing suggests the effects of this variant are not solely linked 

to neuropathology, and so a dimensional approach is needed to consider the overlap between 

healthy and pathological ageing (Walhovd et al., 2014). Potentially accounting for inconsistency 

within the older-adult literature, meta-analyses of study effect sizes suggest APOE-related 

differences are small and limited to certain classes of cognitive task, including global cognition, 

episodic memory, perceptual speed and executive function (EF) (Small et al., 2004; Wisdom et 

al., 2011). Age and gene-dose are also implicated as important moderators of ε4 effects (Small 

et al., 2004). These factors are important for how we approach understanding APOE genotype 

differences.  

 

Curiously, the detrimental effects of APOE ε4 are not consistent across the lifespan, 

muddying attempts to explain the causality of this risk factor for decline. In naturalistic 

research, ε4 carriers (henceforth ε4+) were reported to have higher IQ and greater educational 

achievement than ε4 non-carriers (henceforth ε4-) (Hubacek et al., 2001; Yu, Lin, Chen, Hong, 

& Tsai, 2000). This led to the hypothesis that ε4+ may show cognitive advantages earlier in life, 

with performance advantages similarly being demonstrated in some (Alexander et al., 2007; 

Han et al., 2007; Schultz et al., 2008), although not all (Bunce et al., 2014a; Bunce, Anstey, 

Burns, Christensen, & Easteal, 2011; Jorm et al., 2007) studies assessing genotype differences 

with neuropsychological batteries. Importantly, no steps have been taken to explore the 

potential moderating effects of early-life IQ and education on the trajectory of cognitive ageing 

in ε4+ through longitudinal research.   

 

A meta-analytic review found no conclusive support for an ε4 advantage in younger 

years (Ihle, Bunce, & Kliegel, 2012); however, the authors acknowledge conclusions may stem 
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from the predominant inclusion of studies using quick to administer behavioural assessments. 

Such assessments are typically used for detecting clinically relevant cognitive differences rather 

than the subtle changes expected in young healthy adults. When considering evidence from 

research paradigms designed to sensitively index select cognitive processes, ε4+ advantages 

have been reported. Young ε4+ showed behavioural advantages compared to ε4- on a delayed 

episodic memory measure (Mondadori et al., 2007). Furthermore, Marchant, King, Tabet, & 

Rusted (2010) demonstrated an ε4 advantage in 18-30 year olds across a number of domains 

including prospective memory, decision-making and sustained attention. Advantages in 

sustained attention were replicated in a further study (Rusted et al., 2013), which also reported 

ε4 advantages in covert attention (Rusted et al., 2013). In addition, ε4+ show EF advantages up 

until age 50 (Taylor et al., 2016). While carrying an ε4 allele might promote cognitive 

advantages in youth, it is important to understand how early differences cumulatively impact on 

the ageing trajectory of ε4+.   

 

This review attempts to unravel the development of APOE ε4 cognitive effects by 

considering studies recruiting healthy mid-age volunteers. Mid-adulthood, as well as being 

influenced by the cumulative impact of APOE ε4 in younger years, may represent a stage when 

the detrimental effects of carrying this gene are first appearing. Additionally, mid-adulthood 

represents a period of emergence for further risk factors for dementia (e.g. vascular health), 

which may modulate the trajectory of cognitive ageing. By studying the impact of risk factors 

for cognitive decline during mid-adulthood, there is the potential to facilitate the early 

identification and prevention of cognitive decline. In combination, these motivations emphasise 

the theoretical interest of studying the effects of APOE ε4 at mid-age.  

 

Here, we present a systematic review of research investigating APOE differences in 

mid-adulthood, including studies administering neuropsychological assessment measures, 

process-specific paradigms, and those assessing change in cognition over time. In addition, ε4 

differences in individual cognitive domains are subject to a meta-analytic review. 

 

2.3 Methods 

 

2.3.1 Selection of studies 

 

This review was conducted in accordance with the Helsinki declaration.  A literature 

search of 3 databases (PsychInfo, Web of Science and Scopus) was conducted, using search 



	32	

terms including ‘APOE’, ‘Apolipoprotein’, ‘cognitive’, ‘cognition’, and ‘performance’ 1.  The 

search was limited to articles published post-1993 as this was when the link between APOE and 

detrimental cognitive ageing was first identified (Corder et al., 1993). Articles referenced by 

included papers were also considered if they aligned with the search criteria of this review. The 

last update for the search was conducted in July 2016.  An overview of the search procedure is 

given in Figure 2.1. 

 

 

2.3.2 Eligibility criteria 

 

Studies were included in the review if they met the following criteria: (1) The study 

included volunteers grouped by APOE genotype, enabling the comparison of ε4+ to an ε4- 

group. (2) The mean age of volunteers in the study falls between 35-60 years. If no mean was 

available, the entire age range included must fall within 35-60 years. (3) The study included 

cognitively healthy adult volunteers. Studies including clinical groups, for example diagnosed 

with dementia, neural trauma or a psychiatric condition were excluded. (4) At least one 

objective measure of cognition must be included. (5) The study was published in English. In 

some cases, studies overlapped in reporting cognitive performance of the same sample, and so 

some papers were omitted from the review (e.g. Caselli, Chen, Lee, Alexander, & Reiman, 

2008; Zuelsdorff et al., 2013).  

 

Papers were included in the meta-analytic review if sufficient statistical data was 

provided for calculating the standardised effect size of carrying an ε4 allele on cognitive 

performance (mean, standard deviation (sd)) compared to an ε4- group. Study outcomes were 

included if task performance could be summarised by a measure of accuracy. Authors were 

contacted where insufficient data was provided.  

 

																																																								
1 The exact search terms were as follows: (Apolipoprotein E OR apoe OR Apoliopoprotein-E) AND 
(Cognition OR Behaviour OR Memory OR Performance OR Executive OR Attention OR Mid-age OR 
Adult OR Mid-adulthood). These key words must be found in the title or abstract of identified papers. 
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Figure 2.1. Flow chart of study selection process for review of APOE effects in mid-adulthood.  

 

2.3.3 Organisation of studies 

 

36 studies met criteria for being included in this review, 23 of which were included in 

the meta-analysis. Separate meta-analyses were completed for performance in 7 cognitive 

domains (global cognition, memory, executive abilities, verbal fluency, language, visuospatial 

processing and processing speed). For the narrative review, studies were considered more 

broadly as those using neuropsychological assessment measures, those that administered more 

detailed research paradigms and longitudinal assessments. 

 

2.3.4 Statistical analysis 

For the outcome of each task included in the meta-analytic review, Hedge’s g was 

calculated as the difference in mean performance between ε4+ and ε4-, divided by the pooled 

sd. The unbiased estimate (Hedge’s d) was used in the analysis, with a positive effect size 

indicating stronger performance by the ε4+ group. In studies reporting multiple performance 

outcomes per cognitive domain, effect sizes were averaged across tasks (Borenstein, Hedges, 

Higgins, & Rothstein, 2009; De Costa, 2009) to prevent the average effect size being over-

biased by one sample. Multiple effect sizes were included when studies included more than one 
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sample of ε4 + and non-ε4 + grouped by another variable such as ethnicity or age (e.g (Blair et 

al., 2005; Shin et al., 2014). For each domain, a random-effects meta-analysis was completed. 

Tests of homogeneity were completed for each domain (QT, and I2) to check the validity of the 

model. A significant Q statistic indicates a non-homogenous distribution of effect sizes. The I2 

was used to further validate this statistic, as it is not dependent on the number of studies 

included. Where heterogeneity was detected, data was screened for outliers based on the 

standardised weight of residuals and the difference excluding a study made to heterogeneity.  

 

Results 

 

Table 2.1 presents a summary of cross-sectional studies included in this review, 

including details of the sample demographics and cognitive tasks administered. A further 

summary of the studies included in each meta-analysis and the associated effect sizes are shown 

in Table 2.2  

 

2.4.1 Meta-analyses 

 

A summary of the results from each meta-analytic model is provided in Table 2.3.  

Forest plots demonstrating the distribution of effect sizes per domain are shown in Figure 2.2. 

 

2.4.1.1 Global 

 

A meta-analysis of effect sizes from 9 studies assessing global cognition found carrying 

an ε4 allele had a non-significant effect on performance, d=.03, p>.05. Tests for homogeneity 

indicated moderate heterogeneity in the individual studies’ effect sizes, Q(8)=15.88, p=.044, 

I2=48.36%. Data was screened for outliers, with a sample aged 55-64 years (Shin et al., 2014) 

identified as substantially increasing heterogeneity. With this effect size removed, carrying an 

ε4 allele had a positive effect on global cognitive performance in mid-adulthood, with the effect 

size approaching significance, d=.09, p=.066 (Q(7)=5.20, p>.05, I2=0%). 

 

2.4.1.2 Memory 

 

Effect sizes from 20 studies were included in a meta-analysis of APOE ε4 effects on 

memory; ε4 status had a non-significant effect on performance (d=-.01, p>.05). Again, there 

was moderate heterogeneity in the sample of effect sizes, Q(19)=48.38, p<.001, I2=10%. After 

screening for outliers the effect size from Levy et al., (2004) was removed, but the average 

effect size remained non-significant (d=-.01, p>.05)(Q(18)=17.40, p>.05, I2=0%).  
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2.4.1.3 Executive abilities 

 

Effect sizes from 12 studies were included in a meta-analysis of APOE ε4 effects on 

executive skills. ε4 status did not significantly influence performance (d=-.03, p>.05). There 

was no significant heterogeneity in this collection of effect sizes, Q(11)=8.60, p>.05, I2=0%. 

 

2.4.1.4 Verbal fluency 

 

10 studies contributed effect sizes to a meta-analysis of ε4 effects on fluency 

performance. The average effect of APOE genotype was non-significant (d=.02, p>.05). There 

was no significant heterogeneity in this sample of effect sizes, Q(9)=8.17, p>.05, I2=21.25%. 

 

2.4.1.5 Language 

 

Effect sizes from 8 studies were included in a meta-analysis which found no significant 

effect of carrying an ε4 allele on language performance (d=.00, p>.05). There was no significant 

heterogeneity in this sample of effect sizes, Q(7)=6.81, p>.05, I2=26.65%. 

 

2.4.1.6 Visuospatial 

 

Effect sizes from 5 studies were included in the meta-analysis. There was no significant 

effect of carrying an ε4 allele on visuospatial performance (d=-.01, p>.05), with non-significant 

heterogeneity reported in the sample of effect sizes, Q(4)=2.78, p>.05, I2=11.96%. 
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Table 2.1. Overview of cross-sectional studies investigating APOE genotype differences in mid-adulthood.  

 
First Author 

(year) 
n 

Age: 
mean 

(range) 

Gender 
(% M) Ethnicity Cognitive 

domains Neuropsychological tasks Zygosity 

Bender (2012) 72 50  
(19-77) - 74% Caucasion, 

26% other. 
G, EM, EA, 

PS 

MMSE, Word recognition task (individual, 
paired association), Size judgement span, 

Spatial recall, Listening span, n-back; Letter 
same-different (PS), Pattern same-different 

(PS) 

ε4- vs. ε4+ (ε3/ε3, vs. ε3/ε4, ε4/ε4) 

Blair (2005) 6810 56  
(45-64) 

51 6202 Caucasian EM, EA, 
VF DWR, DSS, VF 

1.  ε2+ vs. ε3 vs. ε4 He vs. ε4 Ho 
(ε2/ε2; ε2/ε3 vs. ε3/ε3 vs. ε2/ε4, 
ε3/ε4 vs. ε4/ε4) 2. ε4- vs. ε4+ 38 1693 African-

American 

Caselli (1999) 100 56  
(49-69) 28 - EM, EA, 

VF, L, VS 

AVLT, WAIS DS, WAIS Mental arithmetic, 
COWAT, WAIS Similarities, BNT, CFT, 

WAIS Block design 
ε4- vs. ε4+ (ε3/ε3, vs. ε3/ε4, ε4/ε4) 

Caselli (2011) 621 59 (21+) 30 - EM, EA, 
VF, PS AVLT, COWAT, DSS, PASAT, WCST ε4- vs. ε4+ (ε3/ε3, vs. ε3/ε4, ε4/ε4) 

Chen (2013) 18 42 (-) 44 - G, EA MMSE, n-back ε4- vs. ε4 He (ε2/ε2, ε2/ε3, ε3/ε3 
vs. ε3/ε4) 

Deeny (2008) 54 60  
(50-70) 56 - EA Sternberg WM task ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 

ε3/ε4, ε4/ε4) 

Donix (2010) 28 55.3  
(38-63) ~23 - 

G, EM, 
EA,VF, L, 

VS 

MMSE, WMS (logical memory-delayed, verbal 
paired associates), Buschke selective reminding 

test, DS (forward, backward), Stroop 
interference, WCST, TMT-B, VF, BNT, CFT  

ε4- vs. ε4+ (ε2/ε3, ε3/ε3, vs. ε3/ε4, 
ε4/ε4) 

Evans (2013; 
2014) 40 50  

(43-58) 42 - EM, EA Immediate recall, PM hits, Covert attention 
task, RVIP ε3 vs. ε4 (ε3/ε3 vs. ε3/ε4, ε4/ε4) 

Flory  (2000) 220 47  
(24-60) 51 - EM, EA 

Verbal learning, Verbal delayed recall, Figure 
delayed recall, DS (forward, backward), 

Recurring word test 

ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 
ε2/ε4, ε3/ε4, ε4/ε4) 
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Goveas  
(2013) 46 54  

(44-65) 33 - EM, EA, PS AVLT, TMT-A & B, DS ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 
ε2/ε4, ε3/ε4, ε4/ε4) 

Greenwood 
(2000) 97 59 (50+) 39 - EM, EA 

WMS General, WMS Delayed, Buschke 
selective reminding test, Cued letter 

discrimination task, Vigilance task, Dynamic 
scaling 

ε2+ vs. ε3 vs. ε4+ (ε2/ε2; ε2/ε3 vs. 
ε3/ε3 vs. ε2/ε4, ε3/ε4, ε4/ε4) 

Greenwood 
(2005a) 177 59  

(41-85) 41 - EA Cued letter discrimination task, Spatial WM 
task, Attention/WM task 

ε4- vs. ε4 He vs. ε4 Ho (ε2/ε2, 
ε2/ε3, ε3/ε3 vs. ε2/ε4, ε3/ε4 vs. 

ε4/ε4 

Greenwood 
(2014) 591 50  

(40-59) - 92% Caucasian EA 
MMSE, WAIS logical memory, WAIS letter-
number sequencing, Delayed match-sample 

task 

ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 
ε2/ε4, ε3/ε4, ε4/ε4) 

Jorm (2007) 2176 - (40-44) 47 - EM, EA, L, 
PS CVLT, DS (backward), Spot-the-word, DSS 

ε4- vs. ε4 He vs. ε4 Ho (ε2/ε2, 
ε2/ε3, ε3/ε3 vs. ε2/ε4, ε3/ε4 vs. 

ε4/ε4 
Langbaum 

(2010) 27 55  
(47-68) 19 Latino G, EM, EA, 

VF, L, VS MMSE, WAIS, AVLT, COWAT, BNT, CFT ε4- vs. ε4+ (ε2/ε3, ε3/ε3, vs. ε2/ε4, 
ε3/ε4, ε4/ε4) 

Levy (2004) 176 59  
(42-86) 36 - EM, VF, 

VS, L, PS 

WMS Logical Memory I & II, Buschke 
Selective Reminding Test, WMS Verbal Paired 
Associations I & II, WMS Visual Reproduction 
I & II, Verbal fluency (letter, category), BNT, 

CFT, Block design, DSS 

ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 
ε2/ε4, ε3/ε4, ε4/ε4) 

Marioni (2016) 12 
472 

42  
(19-59) 41 - EM, VF, L, 

PS 
WAIS Logical memory, VF, Mill Hill 

Vocabulary scale, DSS 
ε2/ε2 vs. ε2/ε3 vs. ε2/ε4 vs. ε3/ε3 

vs. ε3/ε4 vs. ε4/ε4 

Nichols (2012) 133 36  
(19-77) 44 Caucasian G, EM WAIS, Recognition memory task ε2/ε3 vs. ε3/ε3 vs. ε3/ε4 

Oberlin (2015) 975 45  
(30-54) 49 Caucasian EM, EA WMS Logical memory, WMS Visual 

reproduction, TMT-A & B 
ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 

ε2/ε4, ε3/ε4, ε4/ε4) 
Panizzon 

(2014) 717 56  
(51-60) 100 89.7% Caucasian EM CVLT, WMS Story recall, WMS Figure recall ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 

ε2/ε4, ε3/ε4, ε4/ε4) 

Patel (2013) 36 45  (-) 42 

72% Caucasian, 
19% Afro-

American, 9% 
Other 

G, EM, EA, 
VF, PS 

IQ, WRAT, BVMT (delayed recall, 
recognition), DS, VF, Groove-pegboard task, 
Letter-number sequencing, Symbol search, 

TMT A & B 

ε4- vs. ε4+ (ε2/ε3, ε3/ε3, vs. ε3/ε4, 
ε4/ε4) 
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Protas (2013) 149 56  
(47-68) 36 - G, EM, VF, 

VS, L MMSE, WAIS, AVLT, CFT, COWAT, BNT 
ε4- vs. ε4 He vs. ε4 Ho (ε2/ε2, 
ε2/ε3, ε3/ε3 vs. ε2/ε4, ε3/ε4 vs. 

ε4/ε4 

Ready (2011) 23 56  
(46-66) 39 - EM, EA, 

VF 

Memory composite (WMS Logical, CVLT, 
WMS Visual Reproduction), Trail-making 

composite, Colour-word composite, VF 
composite (letter, category) 

ε4- vs. ε4+ (ε2/ε3, ε3/ε3 vs. ε3/ε4) 

Sager (2005) 452 53  
(40-65) 29 - EM, EA, 

VF, L, VS 

AVLT, Faces I and II, Stroop-colour, TMT-B, 
WCST, WAIS WM index, VF, WAIS 

Vocabulary, Similarities, Word-reading, BNT, 
WAIS Block design, Matrix reasoning, Line 

orientation judgment 

ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 
ε2/ε4, ε3/ε4, ε4/ε4) 

Schultz  
(2008) 626 55  

(50-59) 100 - EM WMS Logical Memory, WMS Visual 
Reproduction 

ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3 vs. 
ε2/ε4, ε3/ε4, ε4/ε4) 

Shin (2014) 
2401 45-54 36 - 

G Korean MMSE 
ε4- vs. ε4 He vs. ε4 Ho (ε2/ε2, 
ε2/ε3, ε3/ε3 vs. ε2/ε4, ε3/ε4 vs. 

ε4/ε4) 3919 55-64 39 - 
Sunderland 

(2004) 142 59 (-) 37 - G MMSE, BNT ε4- vs. ε4+ ( ε2/ε3, ε3/ε3 vs. ε2/ε4, 
ε3/ε4, ε4/ε4) 

Trachtenberg  
(2012) 72 46  

(30-55) 48 - EM, EA Episodic retrieval-pictures; Counting Stroop 
task 

ε2 vs. ε3. ε4 He vs. ε4Ho (ε2/ε3 vs. 
ε3/ε3 vs. ε3/ε4 vs. ε4/ε4) 

Velichkovsky  
(2015) 35 50 (-) 26 - EM, EA 

AVLT, WMS Visual reproduction, Anti-
saccade task, Switching task, n-back task, 

Operation span 
ε3 Ho vs.  ε4 Hz (ε3/ε3 vs. ε3/ε4) 

Xu  (2009) 
74 59  

(50-65) 27 - EM Recognition memory task ε4- vs. ε4+ (ε2/ε2, ε2/ε3, ε3/ε3, vs. 
ε2/ε4, ε3/ε4, ε4/ε4) 43 58  

(50-65) 30 - EM, EA, L, 
VF AVLT, TMT-A & B, COWAT, BNT 

 

Abbreviations: Domains: Global (G), Memory (M), Executive abilities (EA), Verbal Fluency (VF), Language (L), Visuospatial processing (VS), Processing Speed (PS). 
Tasks:  Mini-mental State Examination (MMSE), Wide Range Achievement Test (WRAT), Delayed Word Recall (DWR), Brief Visuospatial Memory test (BVMT), Rey's 
Auditory verbal learning task (AVLT), Californian verbal learning test (CVLT), Digit span (DS), Paced Auditory Serial Attention task (PASAT), Prospective memory (PM), 
Rapid Visual Information Processing task (RVIP), Trails-making test (TMT), Wisconsin Card Sort task (WCST), Complex figure test (CFT), Controlled oral association task 
(COWAT), Boston Naming Task (BNT), Digit-symbol Substitution (DSS). Zygosity: Heterozyous (He), Homozygous (Ho)	
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Table 2.2. Average effect size per study organised by cognitive domain, where a positive effect size 
represents better performance by the ε4+ group 

Domain Authors (year)  Group n  
Age (M) ε4+ ε4- Hedge's d 

Global Bender (2012) 50 20 52 0.45 

 Donix (2010) 55 12 16 -0.02 

 Langbaum (2010) 55 11 16 0.00 

 Nichols (2012) 36 35 81 -0.21 

 Patel (2013) 45 14 22 0.21 

 Protas (2013) 56 73 76 0.00 

 Shin (2014) (45-54) - 380 1967 0.09 

 Shin (2014) (55-64) - 679 3240 -0.12 

 Sunderland (2004) 59 57 85 0.22 

Memory Blair (2005) (C) 56 1720 3648 0.00 

 Blair (2005) (A) 56 698 744 0.00 

 Caselli (2011) 59 265 356 -0.03 

 Caselli (1999) 56 50 50 -0.13 

 Donix (2010) 59 12 16 0.03 

 Evans (2013; 2014) 50 19 21 -0.45 

 Flory (2000) 47 61 159 -0.27 

 Greenwood (2000) 59 38 48 -0.26 

 Goveas (2013) 54 20 26 -0.48 

 Jorm (2007) - 611 1571 0.01 

 Langbaum (2010) 55 11 16 0.08 

 Levy (2004) 59 61 115 -1.94 

 Marioni (2016) 42 3807 8665 -0.01 

 Nichols (2012) 36 35 81 -0.18 

 Patel (2013) 45 14 22 -0.28 

 Protas (2013) 56 73 76 0.09 

 Sager (2005) 53 204 248 0.05 

 Trachtenberg (2012) 46 33 20 -0.16 

 Velichkovsky (2015) 50 13 22 -0.23 

 Xu (2009) 58 18 25 0.35 

Executive abilities Caselli (1999) 56 50 50 0.06 

 Caselli (2011) 59 265 356 0.05 

 Chen (2013) 42 9 9 0.20 

 Donix (2010) 59 12 16 -0.01 

 Evans (2013; 2014) 50 19 21 0.36 

 Flory (2000) 47 61 159 -0.09 

 Goveas (2013) 54 20 26 -0.54 

 Jorm (2010) - 611 1571 -0.06 

 Langbaum (2010) 55 11 16 0.26 

 Sager (2005) 53 204 248 -0.06 
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 Trachtenberg (2012) 46 33 20 -0.17 

 Velichkovsky (2015) 50 13 22 -0.15 

Verbal Fluency Blair (2005) (C) 56 1720 3648 0.00 

 Blair (2005) (A) 56 698 744 -0.06 

 Caselli (2011) 59 265 356 0.01 

 Donix (2010) 55 12 16 -0.02 

 Langbaum (2010) 55 11 16 0.34 

 Levy (2004) 59 61 115 0.05 

 Marioni (2016) 42 3807 8665 0.06 

 Protas (2013) 56 73 76 0.18 

 Sager (200) 53 204 248 0.05 

 Xu (2009) 58 18 25 -0.24 

Language Donix (2010) 59 12 16 0.07 

 Jorm (2007) - 611 1571 -0.02 

 Langbaum (2010) 55 11 16 -0.29 

 Levy (2004) 59 61 115 0.10 

 Marioni (2016) 42 3807 8665 0.05 

 Protas (2013) 56 73 76 -0.14 

 Sager (2005) 53 204 248 -0.12 

 Xu (2009) 58 18 25 -0.18 

Visuospatial Casell (2011) 59 50 50 0.12 

 Langbaum (2010) 55 11 16 -0.04 

 Levy (2004) 59 61 115 0.04 

 Protas (2013) 56 73 76 0.12 

 Sager (2005) 53 204 248 -0.10 

Processing speed Blair (2005) 56 1720 3648 0.01 

 Blair (2005) 56 698 744 -0.13 

 Goveas (2013) 54 20 26 0.08 

 Jorm (2007) - 611 1571 0.01 

 Levy (2004) 59 61 115 -0.11 

 Marioni (2016) 42 3807 8665 -0.01 

 Patel (2013) 45 14 22 0.33 

Notes: Caucasians (C), Afro-Americans (A) 
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2.4.1.7 Processing speed 

 

7 studies contributed effect sizes to a meta-analysis of genotype differences in 

processing speed. The average effect of carrying an ε4 allele was non-significant (d=-.01, 

p>.05). There was no significant heterogeneity in this sample of effect sizes, Q(6)=7.15, p>.05, 

I2=0%. 

 

Table 2.3. A summary of findings for the meta-analysis within each cognitive domain.  

Domain Studies (k) ε4+  (n) ε4- (n) d 95% CI Q 

Global 8 602 2315 0.09 -.01, .18 5.20 
Memory 19 7702 15814 -0.01 -.04, .02 17.40 

EA 12 2045 3615 -0.03 -.10, .03 8.60 
VF 10 6869 13909 0.02 -.02, .06 8.17 

Language 8 4797 10732 0 -.07, .07 6.81 
Visuospatial 5 399 505 -0.01 -.14, .12 2.78 

PS 7 6931 14791 -0.01 -.04, .02 7.15 
Notes: * p<.01, **p<.05 
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Figure 2.2 Forest plots of weighted effect sizes by cognitive domain. For each study, effect size 
is reported as Hedge’s d [95% CI], where a positive effect size represents greater performance 
by the ε4+ group. 

2.4.2 Systematic review 

 

2.4.2.1 Neuropsychological Assessment  

 

The majority of studies examining the effect of APOE ε4 in mid-adulthood have chosen 

to administer a compilation of neuropsychological assessment measures. These studies report 
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limited effects of APOE ε4 in mid-adulthood (e.g. Jorm et al., 2007; Marioni et al., 2016; Sager, 

Hermann, & La Rue, 2005; Shin et al., 2014; Zhao et al., 2005). Indeed, in a large community-

based sample, the effect of APOE status was non-significant in both mid-adulthood (40-44 

years), as well as groups aged 20-24 years and 60-64 years (Jorm et al., 2007), leading authors 

to conclude there are no preclinical effects of APOE genotype on cognition. Of interest, 

however, other studies suggest sample age is a key determinant in the expression of preclinical 

APOE ε4 effects. Age x APOE interactions were found both for scores on the Korean MMSE 

(Shin et al., 2014), and performance on measures of declarative memory and processing speed 

(Marioni et al., 2015). In both studies, detrimental effects of ε4 status emerged when analyses 

isolated volunteers aged in the latter half of the 5th decade (55+ years and 60+ years 

respectively).  

 

Mid-age studies investigating APOE differences across a broad range of 

neuropsychological measures typically observe ε4 effects, when present, within a select domain. 

For example, in the research of Sager et al. (2005) ε4+ selectively show worse performance on 

visuospatial processing tasks, driven by decrements on block design performance. In contrast, 

detrimental effects of ε4 status were limited to female participants on tasks probing memory and 

semantic fluency (Zhao et al., 2005), whereas ε4 advantages were reported in verbal fluency and 

language across the adult lifespan by Marioni et al., (2016). While the selectivity of effects 

agrees with reports of genotype effects in older adulthood (Small et al., 2004; Wisdom et al., 

2011), failure to identify a consistent pattern of ε4 effects within a cognitive domain in mid-

adulthood makes interpretation difficult.  

 

Results within the domain of memory offer the clearest profile of cognitive differences 

in ε4+, with several studies associating possession of an ε4 allele with poorer memory 

performance (Caselli et al., 1999; Flory, Manuck, Ferrell, Ryan, & Muldoon, 2000; Goveas et 

al., 2013; Levy et al., 2004; Schultz et al., 2008). Attempts have been made to link differential 

memory performance with neural differences. In adults aged 44-65, ε4+ showed a trend of 

worse performance on the Rey Auditory Verbal Learning Test (AVLT) (Goveas et al., 2013). 

Performance on this task correlated with observed reductions in the functional connectivity of 

medial temporal lobe (MTL) circuits, as well as differential connectivity of the default mode 

network (Li et al., 2014; Goveas et al., 2013), offering a possible neurobiological basis of 

genotype differences. In addition, two studies report an altered BOLD response in ε4+ during 

episodic memory tasks, despite no detectable genotype difference in behavioural performance 

(Trachtenberg, Filippini, Cheeseman, et al., 2012; Xu et al., 2009). Although this raises the 

question of how neural activations relate to cognition, identifying the neural basis of APOE 

differences will further mechanistic explanations of how APOE ε4 influences cognitive ageing.  
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Research has started to explore how carrying an APOE ε4 allele interacts with 

environmental factors in influencing performance on neuropsychological measures. Education 

was found to interact with APOE status in a cohort of adults aged 45-54 years, in that only ε4+ 

with no formal education showed cognitive advantages on a measure of global cognition 

compared to their ε4- peers (Shin et al., 2014). In contrast, APOE, education and socio-

economic status were reported to independently affect cognition (Zhao et al., 2005).  

 

Considering cardiovascular health factors, an APOE x Blood Pressure interaction has 

been reported for cognition in mid-adulthood. Although there was no main effect of APOE 

status or systolic blood pressure on performance across 3 cognitive domains; episodic memory, 

visual memory or EF, in ε4+ only, high blood pressure was associated with worse episodic 

memory performance (Oberlin et al., 2015). High blood pressure was also found to enhance the 

negative association of APOE ε4 with processing speed and working memory (WM), as well as 

reduced white matter integrity in frontal regions (Bender & Raz, 2012). In both studies, the 

relationship between APOE, blood pressure and cognition was absent in the ε4- group, 

suggesting cardiovascular health factors may exaggerate cognitive effects in ε4+.   

 

 

2.4.2.2 Behavioural paradigms 

 

Paradigms designed to detect subtle differences in cognition have predominantly been 

used to explore the sensitivity of executive abilities, including WM and attention, to APOE 

effects in mid-adulthood.  

 

On a measure of covert attention, there was a non-significant effect of APOE genotype 

on overall performance, and on the ability to benefit from valid cues in mid-adulthood 

(Greenwood, Sunderland, Friz, & Parasuraman, 2000). ε4+, however, showed increased 

response time costs following an invalid cue, relative to ε4- peers, interpreted as a deficit in 

attentional disengagement. In contrast, a more recent study reported equivalent performance 

between genotype groups on this task (Evans et al., 2013; Evans, Dowell, Tabet, Tofts, King & 

Rusted, 2014). Control of visual attention was explored in an attentional scaling task 

(Greenwood et al., 2000; Greenwood, Lambert, Sunderland & Parasuraman, 2005a). The 

dynamic scaling task measures the ability to constrict one’s attentional spotlight in response to 

top-down information cueing the spatial location of a target stimulus. ε4+ did not show the 

same benefit as their ε4- peers in response times following more precise cues. 
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Executive attention was explored in a cross-sectional comparison of mid-age (aged 43-

58) and young adults (aged 18-30) (Evans et al., 2013; 2014). On a measure of sustained 

attention, a trend of higher accuracy, coupled with slower reaction times, was found in mid-age 

ε4+ relative to their ε4- peers. When compared to the data from the young group, the mid-age 

ε4+ group showed exaggerated age-related slowing. In comparison, a second study found no 

effect of APOE genotype on a similar task in adults aged 50+ (M=59 years) (Greenwood et al., 

2000). A comparable pattern of results was seen on a prospective memory task, probing 

attentional monitoring and switching between goals. ε4+ demonstrated greater accuracy but 

slower response times on the prospective memory paradigm, suggestive of a speed-accuracy 

trade-off (Evans et al., 2013; 2014). Corresponding functional activations during this task 

indicated greater recruitment of frontal regions, but reduced recruitment of parietal and 

extrastriate visual regions in ε4+ relative to their ε4- peers. Specifically, left inferior frontal 

gyrus activity correlated with prospective memory accuracy in ε4+ only, consistent with an 

early compensatory shift towards reliance on more frontal systems. 

 

Genotype effects were explored using a selection of cognitive paradigms designed to 

probe the 3 components of executive function identified by Miyake et al. (2000): inhibition, 

switching and updating in WM (Velichkovsky, Roschina, & Selezneva, 2015). No genotype 

differences were recorded on either an anti-saccade inhibition measure, or two WM paradigms 

(n-back test, the operation span task).  A non-significant effect of APOE ε4 status on n-back 

performance has previously been reported in middle-aged adults (Chen et al., 2013; Yan, Wu, 

Chao, Chen, & Tseng, 2015). Both studies reported a differential pattern of neural change in 

ε4+, with this group showing an absence of neural activation increases in correspondence to 

greater WM load (Chen et al., 2013; Yan et al., 2015). This was interpreted as ε4+ maximally 

recruiting processing resources at a lower level of load, which cannot be further increased under 

greater demands. Hence, it may be that on more demanding tasks, significant effects of carrying 

an ε4 allele may be observable. On the switching paradigm administered by Velichovsky et al., 

(2015), ε4+ showed significantly larger switching costs than their ε4- counterparts.  

 

Greenwood et al., (2005a) assessed spatial WM in adults, aged 41-85. Relative to ε4-, 

only homozygous ε4+ displayed a disadvantage on spatial WM tasks, driven by performance on 

trials placing the greatest load on spatial WM. In a further study of spatial WM, no genotype 

difference was seen in mid-age adults (Greenwood, Espeseth, Lin, Reinvang, & Parasuraman, 

2014) 
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2.4.2.3 Longitudinal assessments 

 

Several studies have explored how cognition changes longitudinally as a function of 

APOE genotype (Table 2.4). Schultz et al. (2008) compared the cognitive test performance of 

army cadets in the 6th decade of life, to their scores on the same measure at age 20, and found 

ε4+ showed greater decline. Across a period of 6 years, relatively limited effects of APOE 

genotype were reported across a selection of cognitive domains (Zhao et al., 2005), with only 

semantic fluency being negatively associated with ε4 status in females aged 40-49; this study 

reported no genotype differences in a slightly older sample (aged 50-59). 

 

The dominant focus of  longitudinal research has been establishing if ε4+ show a 

differential rate of memory change over time. Several studies suggest that ε4+ show 

significantly greater memory decline from mid-adulthood (Caselli et al., 2009; Kozauer, 

Mielke, Chan, Rebok, & Lyketsos, 2008), with this effect isolated to delayed memory in two 

studies (Greenwood, Sunderland, Putnam, Levy, & Parasuraman, 2005b; Greenwood et al., 

2014). Performance change across an average of 3.8 years was investigated for measures of 

memory (Jochemsen et al., 2012), with participants stratified by age. Of interest, it was found 

ε4+ aged 47-57 years showed improvements in recall performance, whilst ε4+ aged 58-67 years 

showed significant decline by the follow-up assessment. How change in memory is influenced 

by the interaction between APOE genotype, ethnicity and cardiovascular health has also been 

explored over a 6 year interval (Blair et al., 2005). Negative associations between ε4+ and 

memory change were small and limited to Caucasian adults. There was no interaction between 

cardiovascular health factors (diabetes, hypercholesterolemia, hypertension), APOE genotype 

and memory change. 

 

Two papers found a non-significant effect of APOE genotype on change in executive 

abilities over time (Greenwood et al., 2014; Jochemsen et al., 2012). There is support, however, 

for the ε4 allele being associated with greater decline in processing speed (Blair et al., 2005; 

Caselli et al., 2011). In a group of Caucasian adults, ε4+ also diagnosed with 

hypercholesterolemia or diabetes showed increased decline on the digit-symbol substitution 

measure of processing speed (Blair et al., 2005). No APOE x Hypertension interaction was 

found for change in processing speed. Verbal fluency scores were maintained in both the 

Caucasian and Afro-American groups included in Blair et al. (2005). 
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Table 2.4. A summary of longitudinal studies investigating APOE differences in mid-adulthood 

First Author 
(year) n Age: M 

(range) 
Gender                 
(% M) Ethnicity Cognitive 

domain 
Neuropsychological 

tasks Follow-up Attrition Genotype comparison 

Blair (2005) 6810 56  
(45-64) 

51 6202 Caucasian 
M, EA, VF DWR, DSS, VF 6 yrs (2-yr 

intervals) 24% 

1.  ε2+ vs. ε3 vs. ε4 He 
vs. ε4 Ho (ε2/ε2; ε2/ε3 

vs. ε3/ε3 vs. ε2/ε4, ε3/ε4 
vs. ε4/ε4) 2. ε4- vs. ε4+ 38 1693 African-

American 

Caselli (2009) 815 60  
(21-97) 31 

85% Caucasian, 
12 % Latino, 3% 

Other, 

G, M, VF, 
VS 

MMSE, AVLT, 
COWAT, JLO 

5 yrs (1-2 yr 
intervals - ε4- vs. ε4+ (ε3/ε3, vs. 

ε3/ε4, ε4/ε4) 

Caselli (2011) 621 57 
(21-97) 30 - M, EA, VF 

AVLT, COWAT, 
PASAT, DSS, WCST, 
Iowa Gambling task 

6.3 yrs (2-yr 
intervals) 23% ε4- vs. ε4+ (ε3/ε3, vs. 

ε3/ε4, ε4/ε4) 

Greenwood et al 
(2005b) 139 60 

(33-85) 31 - M, EA WMS-G, WMS-D, 
Cued Visual Search task 

3 yrs (1-yr 
intervals)  

ε4- vs. ε4 He vs. ε4 Ho 
(ε2/ε2, ε2/ε3, ε3/ε3 vs. 
ε2/ε4, ε3/ε4 vs. ε4/ε4) 

Greenwood 
(2014) 249 - 

(40-59) - 97% White G, M EA 

MMSE, WAIS logical 
memory,WAIS letter-
number sequencing, 

Delayed match-sample 
task 

3 yrs (1-yr 
intervals) - 

ε4- vs. ε4+ (ε2/ε2, ε2/ε3, 
ε3/ε3 vs. ε2/ε4, ε3/ε4, 

ε4/ε4) 

Jochemsen 
(2012) 188 57  

(27-79) 80 - G, M, EA, 
VF 

RAVLT, ROCF, 
Elevator task, Brixton 

spatial task, MMSE, VF 
3.8 yrs 44% ε4- vs. ε4+ (ε2/ε2, ε2/ε3, 

ε3/ε3 vs. ε3/ε4, ε4/ε4) 

Kozauer (2008) 492 53 
(18-65) - - G, M 

MMSE, Immediate 
recall, Delayed recall, 

Recognition 

22 yrs (3 
follow-ups_ - 

ε4- vs. ε4+ (ε2/ε2, ε2/ε3, 
ε3/ε3 vs. ε2/ε4, ε3/ε4, 

ε4/ε4) 

Schultz (2008) 626 55  
(50-59) 100 

95.5% Caucasian, 
3.8% African-

American, 0.3% 
Hispanic, 0.3% 

“other.” 

G AFQT 35 yrs - 
ε4- vs. ε4+ (ε2/ε2, ε2/ε3, 
ε3/ε3 vs. ε2/ε4, ε3/ε4, 

ε4/ε4) 

Zhao   (2005) 1128 - 
(40-49) 77 European descent G, M, VF, L Verbal memory, AH4-1, 

MHV, VF (letter, 6 yrs - ε4- vs. ε4+ (ε2/ε2, ε2/ε3, 
ε3/ε3 vs. ε2/ε4, ε3/ε4, 
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2601 - 
(50-59) 74 European descent category) 6 yrs - ε4/ε4) 

Abbreviations: Domain- Global (G), Memory (M), Executive ability (EA), Verbal Fluency (VF), Language (L) Visuospatial (VS). Tasks-Mini-Mental State Examination 
(MMSE), Weschler Adult Intelligence Scale (WAIS), Weschler Memory Scale (WMS), Delayed Word Recall (DWR), Rey's Auditory Verbal Learning Task (AVLT), 
Controlled Oral Association Task (COWAT), Digit-symbol Substitution (DSS), Paced auditory serial attention task (PASAT), Wisconsin Card-sort task (WCST), Armed 
Forces Qualification task (AFQT), Rey-Osterrich Complex figure (ROCF), Judgement of Line Orientation (JLO), Mill Hill Vocabulary test (MHV). Zygosity: Heterozygous 
(He), Homozygous (Ho). 
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Longitudinal measures (Greenwood et al., 2014) revealed no genotype difference across 

trials with relatively low WM demand. On trials incorporating a mismatch between encoded and 

target stimuli, and hence placing greater demand on WM resources, however, performance of 

ε4+ improved over 3 years, whilst performance of the ε4- group remained stable. The observed 

practice effects in ε4+ were interpreted by the authors to represent compensatory mechanisms 

during mid-adulthood, and as a result of the increased cognitive effort in this group, some ε4 

benefits were still observed. 

 

2.5 Discussion  

 

This review highlights the inconsistencies reported for APOE ε4 effects on cognition in 

mid-adulthood. Synthesising the results through meta-analyses, the effect of carrying an ε4 

allele was non-significant across the 7 cognitive domains examined (global cognition, memory, 

executive ability, verbal fluency, language, visuospatial processing, and processing speed). 

Closer inspection of individual studies, however, indicates ε4 effects may emerge under certain 

conditions, and when probed with measures designed to maximise sensitivity.  

 

The results of the meta-analyses offer limited support for ε4+ showing cognitive 

differences in mid-adulthood; ε4+ show relatively sustained performance until the end of the 5th 

decade. This is not inconsistent with the antagonistic pleiotropy position whereby the ε4 allele 

has opposing effects on fitness across the lifespan (Han & Bondi, 2008), with mid-adulthood as 

a transition point between ε4 behavioural advantages in youth switching to disadvantages in 

older adulthood. 

 

When considering individual studies in more detail, the age range of participants is a 

likely factor in the inconsistency between study outcomes. Critically, existing research lacks a 

precise and consistent definition of mid-adulthood, reflected in the diverse and often broad age 

ranges of volunteers participating in the research reviewed here (see Table 1). For example, 

mid-adulthood was defined as 24-69 years in one study (Flory et al., 2000) and 41-85 years in 

another (Greenwood et al., 2005a). To draw conclusions of genotype effects at any precise 

window of the lifespan is difficult with such large age inclusion criteria, and the disparity in age 

groups may relate to the inconsistency of results presented. In cases where samples were 

stratified by age, Age x APOE interactions were reported, indicating emergence of the 

detrimental effects of APOE ε4 in the latter half of the 5th decade (Jochemsen et al., 2012; 

Marioni et al., 2016; Shin et al., 2014).  This highlights the importance of controlling for age. 
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Age was not included as a moderator in the current meta-analyses due to the small number of 

studies in each domain, but this is certainly an important avenue for future research.  

 

A key question for this review was whether process-specific cognitive measures show 

increased sensitivity to APOE genotype effects in mid-adulthood. Although the results of the 

meta-analyses failed to report a robust effect of ε4 status on memory, looking across studies 

there is a relatively consistent pattern of emerging detriments in ε4+ performance (11/20 

studies). Detrimental effects of ε4 status on memory were also supported by longitudinal 

studies, suggesting this genotype group shows an accelerated trajectory of memory decline 

(Caselli et al., 2009; Greenwood et al., 2005; Greenwood et al., 2014; Kozauer et al., 2008). The 

sensitivity of memory to the effects of APOE ε4 from mid-adulthood is further supported by 

imageing evidence of genotype differences in MTL regions, implicating this region as a neural 

basis for behavioural changes (Goveas et al., 2013; Li et al., 2014). Memory is over-represented 

in studies probing the effects of APOE, and with more careful consideration of other cognitive 

domains, effects may emerge. 

 

It is important to consider that many of the study outcomes included in the meta-

analyses were based on neuropsychological assessment performance. It may be that the 

preclinical effects of APOE ε4 are too subtle for detection with neuropsychological measures, 

more commonly used for clinical assessment. In support of this, studies using computerized 

paradigms designed to target specific cognitive processes, report APOE ε4 differences in mid-

adulthood within the domains of EF, attention and WM (Evans et al., 2013, 2014; Greenwood et 

al.,, 2000; 2005; 2014; Velichkovsky et al., 2015). These domains have also been linked to 

cognitive advantages in early adulthood (Marchant et al., 2010b; Rusted et al., 2013; Taylor et 

al., 2016), and so may show early sensitivity to genotype effects. Future research should focus 

on specific cognitive processes in order to establish the pattern of age-related change more 

clearly. Identifying replicable cognitive markers of those at heightened risk of poor cognitive 

ageing would make a substantial contribution to the development of early intervention 

strategies, independently and in association with the study of biomarkers and additional risk 

factors for dementia. 

 

An additional methodological issue is the role of individual differences in moderating 

the effects of APOE. Several studies attempt to control for differences in ethnicity, education, 

socio-economic status (SES), and health factors; however, these factors are not uniformly 

included. Investigation of how these factors interact with APOE ε4 to alter the initial stages of 

ageing is limited to date. Although methodological shortcomings contribute to the inconsistency 

of findings, it is important to recognise that mid-age itself will play an important role.  Mid-age 
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brings with it other risk factors for poor cognitive ageing (e.g. hypertension, cholesterol and 

diabetes (Atzmon et al., 2002; Köhler et al., 2014; van Exel et al., 2002; Whitmer, Sidney, 

Selby, Johnston, & Yaffe, 2005), and interactions between vascular health, APOE and cognition 

are reported (de Frias, Schaie, & Willis, 2014; Peila et al., 2001; Puttonen, Elovainio, Kivimäki, 

Lehtimäki, & Keltikangas-Järvinen, 2003; Zade et al., 2010). Current behavioural research is 

neither considering the potential modifying effects of wider risk factors nor adequately 

controlling for them, though they undoubtedly contribute to the cognitive ageing trajectory 

(Herrup, 2010). One account for the role of APOE ε4 in cognitive ageing is that this allele 

represents a genetic susceptibility, increasing vulnerability to both detrimental and protective 

factors in cognitive ageing (Wirth, Villeneuve, La Joie, Marks, & Jagust, 2014). Mid-adulthood 

represents a period of the lifespan where ε4+ are particularly susceptible to cognitive insults and 

benefits, and this underlines the need to consider the cognitive profile of ε4+ in relation to other 

potential modulators for cognitive health when establishing the preclinical effects of this gene. 

 

2.6 Conclusions 

 

It remains difficult to untangle the effects of APOE ε4 on cognition in mid-adulthood; 

methodological issues including imprecise criteria for age of volunteers and differential 

sensitivity of the measures used make it hard to form concrete conclusions. Results reviewed 

here, however, suggest ε4+ show relatively sustained performance in mid-adulthood, with 

subtle differences apparent in memory and executive abilities. Future research should focus on 

administering cognitive paradigms specifically chosen for their ability to sensitively measure 

the more nuanced processes of a particular domain, rather than relying on assessment measures 

more traditional of clinical settings. Since mid-age is a time when the trajectory of cognitive 

ageing will be influenced by multiple factors, these must also be incorporated into any lifespan 

model of the effects of this gene. Through the consideration of these factors in future study 

design; reliable cognitive markers of those showing accelerated cognitive ageing may be 

developed in mid-adulthood.  
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3. Article 2  

 

Putting attention in the spotlight: The influence of 

APOE genotype on visual search in mid adulthood 
 
Article 2 is published in Behavioural Brain Research as: 

Lancaster, C., Forster, S., Tabet, N., & Rusted, J. (2017). Putting attention in the 
spotlight: The influence of APOE genotype on visual search in mid adulthood. 
Behavioural Brain Research, 334. http://doi.org/10.1016/j.bbr.2017.07.015 
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3.1 Abstract 
 
The Apolipoprotein E ε4 allele is associated with greater cognitive decline with age, yet effects 

of this gene are also observed earlier in the lifespan. This research explores genotype 

differences (ε2, ε3, ε4) in the allocation of visuospatial attention in mid-adulthood. Sixty-six 

volunteers, aged 45-55 years, completed two paradigms probing the active selection of 

information at the focus of attention (a dynamic scaling task) and perceptual capacity 

differences. Two methods of statistical comparison (parametric statistics, Bayesian inference) 

found no significant difference between ε4 carriers and the homozygous ε3 group on either the 

dynamic scaling or perceptual load task. Ε2 carriers, however, demonstrated less efficient visual 

search performance on the dynamic scaling task. The lack of an ε4 difference in visuospatial 

attention, despite previous suggestion in the literature of genotype effects, indicates that select 

attentional processes are intact in ε4 carriers in mid-adulthood. The association of ε2 genotype 

with slower visual search performance complicates the premised protective effects of this allele 

in cognitive ageing.  

 

Keywords: APOE, Cognitive Ageing, Alzheimer’s disease, Attention, Visuospatial, Mid-

adulthood 
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3.2 Introduction 

 

The Apolipoprotein E (APOE)2 gene is associated with individual differences in cognitive 

ageing. The three allelic variants (ε2, ε3, and ε4) differ in prevalence, estimated at 12%, 60% 

and 23% of Caucasian populations respectively (Raber, Huang, & Ashford, 2004). While 

homozygous ε3 carriers are considered the population norm, possession of an ε4 allele increases 

risk of Alzheimer’s disease (AD) (Corder et al., 1993; Farrer et al., 1997). In addition, negative 

effects of carrying an ε4 allele are reported in a number of domains in healthy ageing (65 years 

and older), including global cognition, episodic memory, attention, and executive function 

(Berteau-Pavy, Park, & Raber, 2007; Espeseth et al., 2006; Marioni et al., 2015; Packard et al., 

2007; Reinvang, Winjevoll, Rootwelt, & Espeseth, 2010; Staehelin, Perrig-Chiello, Mitrache, 

Miserez, & Perrig, 1999; for reviews see: Small, Rosnick, Fratiglioni, & Bäckman, 2004, 

Wisdom, Callahan, & Hawkins, 2011). Of interest, the ε2 variant is suggested to offer some 

protection against pathological ageing (Farrer et al., 1997; Lippa et al., 1997; Wilson, Bienias, 

Barry-Kravis, Evans & Bennett, 2002), but fewer studies have considered the effects of this 

allele in healthy cognitive ageing, with reported effects limited to tasks engageing memory 

(Helkala et al., 1996; McFall et al., 2015; Wilson et al., 2002).  

  

Carriers of the ε4 allele demonstrate subtle cognitive differences earlier in the lifespan, but at 

present genotype differences observed prior to 65 years of age lack consistency (for reviews 

see: Ihle, Bunce, & Kliegel, 2012; Lancaster, Tabet, & Rusted, 2017; Rusted & Carare, 2015; 

Salvato, 2015). A likely factor in this inconsistency is the cognitive process under study, with 

the strength of genotype effects premised to vary by cognitive domain. To date, many studies 

have explored the association between APOE and episodic memory, in line with the prevalence 

of memory loss in dementia. A meta-analysis, however, found attention differences to be a more 

reliable marker of preclinical dementia than measures of delayed recall (Twamley, Ropacki, & 

Bondi, 2006). Hence, we predict attention may be a more sensitive marker than episodic 

memory of cognitive decline from mid-adulthood, facilitating the early identification of those 

shifting to a disadvantageous trajectory of cognitive ageing.  

 

Here we explore APOE genotype differences in visual search, defined as the efficient 

deployment of selective attention to a relevant target within the visual scene (Awh et al., 2006). 

Selective attention is often analogised to a ‘spotlight’, conceptualised as a gradient of 

																																																								
2	Abbreviations: Analysis of variance (ANOVA), Apolipoprotein E (APOE), Alzheimer’s 
Diseases (AD), Bayes factor (B), Blood pressure (BP), Body mass index (BMI), Independent 
variables (IV), Irrelevant distractor (ID), National Adult Reading Test (NART), No distractor 
(ND), Response time (RT), Simple response time (SRT), Standard deviation (SD). 
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heightened processing surrounding a central fixation; with individuals able to shift this spotlight 

across the visual scene (Posner, 1980). Greenwood & Parasuraman (2004) argue selective 

attention is characterised by an additional ability to scale the breadth of this attentional 

‘spotlight’ on the basis of top-down information. Selective attention and working memory are 

sometimes viewed as overlapping constructs, with working memory acting as an interface for 

the active maintenance and manipulation of information at the forefront of attention (Awh et al., 

2006; Chun, 2011b; Cowan, 1999; Gazzaley & Nobre, 2012). Hence, early genotype differences 

should be considered in the context of the expected pattern of age-related decline in both of 

these processes.  

 

The dynamic scaling paradigm (Greenwood & Parasuraman, 1999) probes individual 

differences in the ability to adjust the breadth of attentional ‘spotlight’ during visual search. 

Participants’ attention is guided to a region of the visual scene by a spatial cue presented before 

the search array. This cue facilitates visual search by indicating where the target stimulus will 

appear, if present, hence promoting greater perceptual processing at this location (Hawkins, 

Goyal, & Sergio, 2015). The size of the cue varies across trials, with smaller cues 

(encompassing fewer stimuli from the visual array) providing more localised target information. 

Decreasing cue size is associated with shorter search response times (RTs), indexing the benefit 

of dynamically restricting attentional focus on the basis of this top-down information. The 

greatest benefit of spatial cueing is observed on conjunction search trials, characterised by a 

target letter being distinct in a combination of features, as opposed to feature or ‘pop-out’ trials 

where the target is identifiable by one feature (i.e. colour) (Parasuraman, Greenwood, & 

Alexander, 2000). 

 

Performance on the dynamic scaling paradigm shows sensitivity to both age-related change, and 

pathological change associated with AD (Parasuraman et al., 2000). In adults aged 65-74 years, 

more localised spatial cues clearly benefit the efficiency of visual search, however, this effect is 

reduced in a sample of healthy older adults, aged 75-85 years, and is present only following the 

most localised spatial cue for a group with AD (Parasuraman et al., 2000). Hence it is 

interpreted that the spatial flexibility of attentional focus is sensitive to age-related decline.  

 

The dynamic scaling task has also been used to explore APOE genotype effects in late-mid 

adulthood. In comparison to both a homozygous ε3 group and an ε2 group, ε4 carriers aged 50 

years and older demonstrated reduced benefit of smaller, more localised spatial cues 

(Greenwood, Sunderland, Friz & Parasuraman, 2000). Additionally, in a population of healthy 

adults (mean age 60 years), homozygous ε4 carriers showed significant declines in the use of 

spatial cueing across three years (Greenwood et al., 2005). This pattern was not seen in 
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heterozygous ε4 carriers, or non-carriers. These results suggest that ε4 carriers demonstrate a 

profile of accelerated ageing, with comparable reductions in the spatial flexibility of attentional 

focus seen in this group and adults aged 75 years and older. Therefore, reduced visuospatial 

attentional scaling may be a sensitive marker for those in the initial stages of cognitive decline. 

 

APOE genotype differences have also been reported using variants of the Posner spatial cueing 

task (Posner, 1980). While visual search paradigms probe the selection of information within 

attentional focus, this task provides an index of both the efficiency of attentional shifts across 

the visual field and the ability to process information at the periphery of the attentional 

‘spotlight’. On trials of the Posner spatial cueing task, a directional spatial cue is presented prior 

to target onset, which guides attention to one half of the visual scene. The majority of cues are 

valid, leading to more efficient perceptual processing of the visual target. Some trials however, 

contain invalid cues; these trials are associated with a cost to the speed of target identification as 

following target onset in the periphery, attentional focus must be disengaged from the incorrect 

location and shifted across the visual scene (Pesce & Bösel, 2001; Posner & Petersen, 1989).  

 

In agreement with ε4 carriers demonstrating a profile of accelerated ageing in visuospatial 

attention, ε4 carriers aged 41-85 years, and 50 years and older respectively, showed greater cost 

of invalid cueing to target item location (Greenwood et al., 2000; Greenwood et al., 2005). This 

was interpreted by the authors as representing deficits in the reorientation of attentional focus 

across the visual scene, similar to the behavioural profile shown by those in the early stages of 

AD on this task (Parasuraman, Greenwood, Haxby & Grady, 1992). In a group of middle-aged 

adults, aged 43-58 years, however, no genotype differences in attentional shifting were 

observed (Evans et al., 2014), questioning at what point in the lifespan ε4 detriments in 

visuospatial attention emerge. Indeed, in a sample of young adults, aged 18-30 years, ε4 carriers 

showed reduced cost of invalid cueing compared to homozygous ε3 carriers, suggesting this 

group are less disadvantaged by directing their attention to an incorrect region of the visual 

scene (Rusted et al., 2013). This may represent ε4 carriers approaching the task with a larger 

‘spotlight’ of perceptual attention, allowing for greater processing of targets in the periphery. Of 

note, reports of differential APOE genotype effects across age-groups may reflect changing 

gene expression over the lifespan, rather than contradictions across research reports (Han & 

Bondi, 2008). 

 

The overarching aim of this research is to establish if there are APOE genotype differences in 

the allocation of selective attention during visual search in mid-adulthood. The study 

administers two complementary tasks; the dynamic scaling paradigm (Greenwood & 

Parasuraman, 1999) (used previously), and a perceptual load task (Forster & Lavie, 2007). 
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Whilst the dynamic scaling task probes the active selection of information at the locus of 

attention, the perceptual load task explores another important determinant of selective attention: 

perceptual capacity. Together these tasks provide a broad investigation of differences in 

attentional ‘spotlight’ processes during visual search.   

 

Over the past two decades a large body of evidence supporting Load Theory has highlighted 

that the involuntary allocation of attention to irrelevant information depends on the availability 

of perceptual capacity (Lavie, Hirst, de Fockert, & Viding, 2004; Lavie, 1995; for review see: 

Lavie, 2005; 2010). Load Theory accommodates both early and late selection accounts of 

attention, with selection at the stage of perception defined as early and post-perceptual selection 

as late (Benoni & Tsal, 2013; Lavie et al., 2004). Load theory suggests that information will be 

attentionally processed until our fixed perceptual capacity limit is reached, after which point 

task-irrelevant information will be passively filtered out (early selection). When the limit of 

perceptual capacity has not been reached, attentional control mechanisms are applied to bias 

processing of goal-relevant stimuli in cases where the distractor has reached attentional 

awareness (late selection). This theory has been supported by measures of distractor processing 

in healthy adults (Forster & Lavie, 2007, 2008). A consistent cost of peripheral distractor 

presence has been found in visual search trials of low perceptual load. This cost is eliminated in 

trials of high perceptual load, as there is no capacity left to process the distractor. The level of 

load in which the cost disappears is indicative of the perceptual attentional capacity.  

 

Recruiting individuals from a narrow age-range (45-55 years) we sought to avoid any potential 

influence of preclinical pathological change. The study explores two possibilities: whether 

visuospatial attention is sensitive to accelerated ageing in ε4 carriers, indicated by either a 

reduction in perceptual capacity or in the spatial flexibility of ‘spotlight’ mechanisms; or 

alternatively, whether, as in early adulthood, ε4 carriers differentially approach visual search 

with a broader ‘spotlight’ of perceptual attention that persists into mid-adulthood.  

 

In line with previous research using the same dynamic scaling paradigm (Greenwood et al., 

2000; Greenwood et al., 2005), ε4 carriers are expected to show less efficient attentional scaling 

on this task, consistent with reduced spatial flexibility of attentional ‘spotlight’ mechanisms. 

Carriers of the ε3 and ε2 alleles are expected to show equal benefit of increasingly localised 

spatial cues on the dynamic scaling paradigm, indicative of an efficient use of attentional 

scaling. Detrimental effects of ε4 status may be absent, however, due to the younger group 

included here compared with previous research (Greenwood et al., 2000, 2005). 
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Like dynamic scaling, the perceptual load task has demonstrated sensitivity to cognitive ageing. 

In healthy older adults (aged 65-79 years), distractor compatibility effects were significantly 

reduced between low (set size: one stimulus) and mid (set size: four stimuli) levels of perceptual 

load. By contrast, distractor effects were still present on trials of mid perceptual load in young 

adults, although both age groups showed an elimination of distractor effects on trials with high 

perceptual load (set size: six stimuli) (Maylor & Lavie, 1998). The elimination of distractor 

processing at a lower level of perceptual load is consistent with an age-related reduction in 

perceptual capacity. If ε4 carriers were demonstrating a profile of accelerated ageing on this 

task, by mid-adulthood this group may show no distractor effects on mid-perceptual load trials 

(i.e. showing the reduced capacity found in older adults in Maylor & Lavie’s (1998) study). If, 

however, the widened attentional ‘spotlight’ suggested by performance on the Posner spatial 

cueing task in younger adults (Rusted et al., 2013) persists into mid-adulthood, distractor cost 

may persist on trials of higher perceptual load in ε4 carriers. As the effect of ε2 status is less 

commonly studied, no predictions are made for this genotype group.  

 

3.3. Method 

 

3.3.1 Participants. 

 

One hundred and sixty-five healthy adult volunteers (aged 45-55 years), recruited through 

advertisement at local universities, clubs and community centres, completed the initial screening 

phase of the study. Volunteers were required to be non-smokers and fluent in English. 

Furthermore, volunteers were screened for a history of vascular health problems, untreated high 

blood pressure (BP), psychoactive medication use, or recorded neurological/psychiatric 

condition within the past 5 years.  

 

The initial screening allowed for prior collection of a genotype sample from each volunteer. 

Screening procedures followed Human Tissue Authority (HTA) procedures, and the full study 

followed a protocol approved by the research ethics committee of the school of Psychology and 

Life Sciences, University of Sussex. All procedures were in accordance with the Helsinki 

declaration. Volunteers first provided written informed consent, including acknowledgment that 

the results of the genotype analysis would not be made available to them, before DNA was 

collected by buccal swab. Genotyping followed triangulated anonymization procedures, with 

two anonymized codes used per sample. Samples were analysed to determine APOE gene 

variant by LGC Genomics (Hertfordshire, www.lgcgroup.com/genomics). A fluorescence-based 

competitive allele-specific polymerase chain reaction determined the combination of three 
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major APOE alleles (ε2, ε3, and ε4) based on two APOE single nucleotide polymorphisms 

(rs429358, rs7412).  

 

Sixty-six volunteers completed the experimental phase of the research. Post-screening, 

invitation to participate was pseudo-random to ensure a suitable sample size in each genotype 

group, rather than selection being representative of the expected frequencies of each allele 

within the population. The distribution of genotypes within the sample was as follows: 16 ε2 

carriers (1 ε2/ε2; 15 ε2/ε3), 26 homozygote ε3 carriers, and 25 ε4 carriers (17 ε3/ε4; 7 ε4/ε4). 

Throughout the study both the participant and the experimenter were kept blind to genotype 

information. Characteristics of the final sample are shown in Table 3.1. 

 

3.3.2 Materials. 

  

3.3.2.1 Demographics and baseline cognitive measures. 

 

 

Medical history, medication use and general state of health were assessed using a shortened 

version of the Nuffield Medical History Questionnaire. Additionally, baseline measures of IQ 

(National Adult Reading Test (NART)(Nelson & Willison, 1991)), working memory 

(backwards digit-span), and simple response time (SRT) were obtained. To index response time 

(RT), participants were required to make a keyboard response as soon as possible following 

presentation of a stimulus on screen. Response time was averaged over 48 trials, excluding RTs 

more than 3 standard deviation (SD) away from the mean. 

 

3.3.2.2 The dynamic scaling task. 

 

The dynamic scaling task (Greenwood & Parasuraman, 2004) required participants to search for 

a pink T within a 15 letter array (5 across x 3 down), and make a speeded response as to 

whether the target letter is present (‘2’ keyboard response) or absent (‘6’ keyboard response). 

Before each array is presented, a black box cues where the target may or may not appear.  

 

In total, the task consisted of 240 trials split randomly into 3 blocks. In each trial, a central 

fixation cross was presented for 1000ms, followed by a cue for 500ms prior to the onset of the 

letter array. The letter array and the cue were then presented simultaneously until a response 

was detected. The array could appear on either the right (120 trials) or left (120 trials) of the 

fixation cross, and consisted of the characters T, G, and N presented in either pink, blue or 
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green. Letter-colour combinations of non-target items in the array were generated randomly, 

following constraints of the search type (conjunction, feature) for that trial.  

 

The task had 3 IVs integrated into its design: search type, cue size and cue validity. Search trials 

were split into feature search (120 trials), where the target letter in the only pink letter in the 

display, and conjunction search (120 trials), where the participant searched for the pink ‘T’ 

among an array of letters of the same type (‘T’) and colour (pink). Physical cue size varied 

across trials, encompassing either 1, 3, 9, or 15 letters from the search array, with 60 trials at 

each size of cue.  Cues were classed as valid (200 trials) or invalid (40 trials) depending on 

whether the target letter was enclosed within. An example trial of the dynamic scaling task is 

presented in Figure 3.1.  

 

 

Figure 3.1. A representation of experimental tasks: A) The dynamic scaling task showing two 
conjunction search trials with spatial cues encompassing 1 and 9 search array stimuli 
respectively, B) The perceptual load task with example low and high load distractor trials. Note- 
the distractor is an example rather than the actual cartoon stimuli used in task. 
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3.3.2.3 The perceptual load task. 

 

The perceptual load task (Forster & Lavie, 2007; 2008) is a visual search paradigm including 

two independent variables (IVs): perceptual load (low, high and medium) and distractor 

presence (blank, capture).  

 

Participants were required to indicate the presence of either an ‘X’ or an ‘N’ target letter in each 

trial, by making a ‘0’ key press response for X and ‘2’ key press response for N. Each trial 

initiated with the presentation of a central fixation cross for 500ms, followed by the presentation 

of a stimuli display for 200ms. Each stimuli display consisted of 6 white letters, one of which 

was always a target letter, arranged circularly on a black background. Identity of target letter 

and position of target within circle was counterbalanced across trials. Participants were 

requested to respond as quickly and accurately as possible. An auditory tone was used to 

provide feedback for incorrect responses or if no response was made within 2000ms.  

 

Perceptual load was manipulated across trials. In trials of low perceptual load (set size 1), non-

target letters in the stimulus display consisted of small ‘O’s. In trials of medium perceptual load 

(set size 4) there was 1 target letter, 3 non-target letters and 2 small ‘O’s in the stimulus display. 

In trials of high perceptual load (set size 6), in addition to the target, there were 5 non-target 

letters in the display. Non-target letters consisted of  ‘H’, ‘K’, ‘Z’, ‘M’, ‘W’; chosen to be 

similar to target letters in angular shape. 720 trials were presented in 12 blocks of 60, with each 

block containing trials of a single level of perceptual load. Each participant completed 4 

repetitions of a counterbalanced perceptual load sequence. In addition, participants completed a 

practice block for each level of perceptual load, with feedback on performance accuracy 

provided. An accuracy level of 65% was required for participants to proceed to experimental 

trials to ensure each participant was able to perform the task above chance level (50%). 

 

Trials were classified according to whether a task-irrelevant distractor image (Spongebob, 

Spiderman, Superman, “Pokemon”, Donald duck and Mickey) was presented in the periphery of 

the screen. 10% of trials featured a distractor image and were hence considered ‘capture’ trials, 

whilst 90% of trials had no distractor, and so were considered ‘blank’. An example of distractor 

trial can be seen in Figure 1. Participants were instructed to ignore the distractors, as these 

would impede their performance. 

 

3.3.3 Procedure 
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Volunteers selected from the screening phase took part in a single study session. First, 

demographic and health measures including age, family history of dementia, height, weight, and 

BP were collected. A measure of systolic and diastolic blood pressure was collected whilst 

seated, using an automatic arm-cuff machine on the right arm. Participants then completed a 

selection of experimental tasks and questionnaires in a fixed order. 

 

3.3.4 Analysis 

 

Differences in demographics and baseline cognitive performance were analysed between 

genotype groups (ε2, ε3 and ε4) using a series of one-way analysis of variances (ANOVAs) for 

continuous variables, and chi-squared tests for categorical measures (gender, family history).  

 

For each experimental task data was first analysed using parametric statistics, then using 

Bayesian statistics. All three genotype groups were compared using parametric statistics; 

following this, if there was suggestion of a genotype difference, separate analyses were run 

comparing ε4 carriers and ε2 carriers individually to the ε3 group. Bayesian statistics 

independently compared ε2 and ε4 genotype groups to homozygote ε3 carriers.  

 

Bayesian statistics were included to establish the strength of evidence for either the null (H0) or 

alternative hypothesis (H1). A Bayes factor (B) of  > 3 indicates substantial evidence for H1, 

whereas a B of < 1/3 indicates substantial evidence for H0. A B in the range 1/3 – 3 indicates 

the data may be insensitive for distinguishing between the two hypothesis (Dienes, 2014). Bs 

were modelled from 3 distributions in the current analysis. Directional predictions were 

modelled from a half-normal distribution (BH(0, x)), with x representing the prior estimate of 

effect size. Non-directional predictions were modelled from a normal distribution (BN(0, x)), with 

x representing half the prior effect size. In addition, when all effects in a specified range were 

equally likely Bs were modelled as a uniform distribution (BU(0, x)), with x representing the 

maximum expected effect.  

 

3.3.4.1 The dynamic scaling task. 

 

3.3.4.1.1 Overall task performance. 

 

Accuracy and median RTs for each search type (feature, conjunction) and cue size (1, 3, 9, 15 

letter stimuli) were analysed for valid trials. Across all volunteers, a repeated measures 

ANOVA (search type x cue size) was completed for search RTs.  The slope of attentional 

scaling (an index of RT change with decreasing cue size) was used to probe this interaction 
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further using Bayesian inference, with a greater scaling slope predicted for conjunction trials 

compared to feature search trials. The prior effect size was based on the feature and conjunction 

scaling slopes reported in a late-mid age homozygous ε3 group (Greenwood et al., 2000).  

 

3.3.4.1.2 Genotype effects. 

 

To explore genotype differences in RT a mixed ANOVA with cue size (1, 3, 9, and 15 letter 

stimuli) as the within-subject factor and genotype (ε2, ε3, ε4) as the between-subject factor was 

conducted for both feature and conjunction search trials. Individual Bonferroni-adjusted t-tests 

were used to probe significant effects of genotype where present, comparing ε4 and ε2 carriers 

to the ε3 group. A B for the Genotype x Cue Size interaction was modelled from the current 

data for both feature and conjunction search trials (see Dienes (2014) for further explanation of 

using Bayesian statistics to explore interactions). The population interaction effect (effect of cue 

size in group 1- effect of cue size in group 2) was modelled as a uniform distribution for each 

search type, varying from 0 (i.e. when both groups show an equivalent effect of cue size) and 

the maximum effect of cue size reported for the two groups (i.e. when one group demonstrates 

an effect of cue size, and one group demonstrates no effect). In addition, following a significant 

Genotype x Cue Size interaction (indicated by parametric statistics), Bs were computed for each 

post-hoc comparison. Prior effect sizes were based on previously reported genotype differences 

(Greenwood et al., 2000). It was predicted that ε4 and ε2 carriers would demonstrate greater 

search RTs at cue size 3 and 1. All other predictions were non-directional.  

 

The scaling slope for conjunction search trials was compared between genotype groups using a 

one-way ANOVA. Again, individual Bonferroni adjusted t-tests were used to probe significant 

effects of genotype where present, comparing ε4 and ε2 carriers to the ε3 group. For the 

Bayesian analysis of scaling slope on conjunction search trials, no directional prediction was 

made for an ε2 difference, however, ε4 carriers were predicted to show a reduced slope 

compared to the ε3 group. Prior effect sizes were estimated from the genotype differences in 

slope reported in Greenwood et al., (2000). 

 

A one-way ANOVA was used to test genotype differences in accuracy. There was no 

directional prediction for a genotype difference in accuracy, hence Bs were modelled from a 

normal distribution. The prior effect size was based on the maximum difference in accuracy 

previously reported (Greenwood et al., 2000). 

 

3.3.4.1 The perceptual load task. 
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RTs less than 100ms or more than 3000ms were removed prior to analysis. Mean RT for correct 

trials and accuracy were considered separately. Mixed 3 x 3 x 2 ANOVAs were performed on 

both RTs and accuracy, with genotype (ε2, ε3, ε4) as the between-subjects factor, and 

perceptual load (low, mid, high) and distractor (blank, capture) as the within-subjects factors. 

Interactions were probed using Bonferroni-adjusted t-tests.  

 

3.3.4.1.2 Bayesian analysis 

 

Bayesian analysis of the main effect of perceptual load followed the same approach for RTs and 

accuracy. For blank trials, a B for each pairwise comparison of perceptual load was modelled 

from a half normal distribution, based on the prediction that RTs would increase and accuracy 

decrease with increasing perceptual load. The neutral distractor condition in young adults3 (set 

size 1, 4 and 6) was used for prior effect sizes (Maylor & Lavie, 1998).   

 

The Load x Distractor interaction was analysed by calculating a B for the difference in distractor 

cost, defined as the difference between blank and capture trials, for all pairwise comparisons of 

perceptual load. For RTs, the prior effect size was based on the difference in irrelevant 

distractor cost between trials of low (set size 1) and high (set size 6) perceptual load 

(Experiment 2b: Forster & Lavie, 2008). In addition, the presence of RT distractor costs at each 

level of perceptual load was probed, modelled as a half normal distribution with a prior effect 

size based on the maximum distractor cost reported in Experiment 2b; Forster & Lavie (2008). 

Perceptual load differences in distractor cost for task accuracy were modelled from a full-

normal distribution, as load was not predicted to modulate distractor effects.  

 

Multiple Bs for the Load x Distractor x Genotype interaction were computed to assess the 

strength of evidence for distractor costs at each level of perceptual load in each genotype group. 

For both RTs and accuracy, prior effect sizes were again based on Experiment 2b, Forster & 

Lavie (2008).  

 

 

 

 

 

																																																								
3	The effect of perceptual load in our dataset, both for RT and accuracy, more closely resembled 
the effect reported in young adults than the older group included in Maylor and Lavie (1998). 
Hence this group was used for the prior. Recalculating the Bs with prior effect sizes based on 
the older population did not change the results.  
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3.4 Results 

 

3.4.1 Demographics & baseline cognitive measures. 

 

No genotype difference was found across demographic measures (p>.05). Furthermore, no 

group differences were found in WM span, or SRT (p>.05). The demographic and baseline 

characteristics of each genotype group are shown in Table 3.1. 

 
Table 3.1. Demographics and performance on baseline cognitive measures  

 Genotype Group 
Measure ε2 ε3 ε4 

n 16 26 24 
Age 50.44 (3.58) 49.04 (2.68) 49.17 (3.07) 

Gender (% female) 75 73 63 
Family History (%Yes) 25 35 54 

Education 17.22 (3.24) 17.23 (3.13) 17.85 (4.32) 
NART 119.06 (2.84) 118.56 (2.93) 116.87 (4.62) 

    
BMI 24.02 (3.44) 26.24 (4.37) 25.15 (3.78) 

Systolic BP 115.63 (7.55) 118.23 (8.47) 115.00 (8.76) 
Diastolic BP 77.31 (9.99) 81.77 (10.63) 79.13 (7.77) 

    
SRT (ms) 272.24 (44.15) 265.24 (32.39) 266.90 (27.84) 
Digit-span 4.31 (1.30) 4.19 (1.50) 4.00 (1.65)  

Notes: Mean (SD). Body mass index (BMI) 
 

3.4.2 Dynamic scaling task. 

 

3.4.2.1 Overall task performance. 

 

Accuracy on task was consistently high, with scores ranging from 84% to 100% (Mean=97%) 

correct across valid trials. Accuracy of one volunteer was below chance (43%) on this task, and 

so their data was removed prior to analysis.  

 

Across participants, median RTs were significantly longer for conjunction search trials than 

feature search trials, F(1,63)=458.19, p<.001, η2
ρ =.879. A significant effect of cue size, F (1.99, 

125.65)=202.53, p<.001, η2
ρ =.763, was also found, with RTs decreasing as a function of 

smaller cue. There was a Search type x Cue size interaction, F(1.99, 125.65)=115.73, p<.001, 

η2
ρ =.648, shown in Figure 3.2. This was driven by a greater slope of RT decrease with reducing 

cue size for conjunction search trials (b=15.44) than feature search trials (b=3.98), t(64)=-14.83, 

p<.001, BH (0, 7.5) = 8.09374E+46.  
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3.4.2.2 Genotype differences. 

 

No significant genotype difference was found for accuracy across valid trials, F(2, 61)=.979, 

p=.381. Both the ε2 to ε3 comparison (BN (0, 2.35)=.97) and the ε4 to ε3 comparison (BN (0, 

2.35)=.95) are insensitive for determining a genotype difference in accuracy.  

 

For feature search trials, there was a significant main effect of cue size on RT, F(2.26, 

137.82)=50.81, p<.001, η2
ρ=.454, but the main effect of genotype (p=.243) and the interaction 

between genotype and cue size (p=.290) were both non-significant. Bayesian analysis of the 

Genotype (ε2, ε3) x Cue Size (1, 3, 9, 15 letters) interaction provides anecdotal support for H0: 

F(3, 117)=.56, p=.646, η2
ρ =.014, BU(0, 56.80)=.57. Data was insensitive for determining a 

Genotype (ε4, ε3) x Cue size (1, 3, 9, 15 letters) interaction, F(3, 141)1.98, p=.120, η2
ρ =.040, 

BU(0, 74.13)=.1.58. 

 

 
Figure 3.2.  Median response time for each cue size presented by search type. 
 
Search RTs and the slope of attentional scaling on conjunction search trials are shown in Table 

3.2. There was a significant main effect of both cue size, F(2.04 , 124.50)=213.26, p<.001, 

η2
ρ=.778, and genotype, F(2, 61)=3.69, p=.031, η2

ρ=.108, on conjunction search RTs. The effect 

of genotype was driven by ε2 carriers responding significantly slower than the ε3 group 

(p=.042). In addition, there was a significant Genotype x Cue Size interaction, F(4.08, 

124.50)=2.53, p=.043, η2
ρ=.077. The comparison of ε2 and ε3 genotype groups provide 

sensitive support for a Genotype x Cue Size interaction, F(3, 117)=4.53, p=.005, η2
ρ =.104, 
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BU(0, 279.67)=4.33. The comparison of ε4 and ε3 genotype groups provide sensitive support for 

no Genotype x Cue Size interaction, F(3, 141)=.239, p=.869, η2
ρ =.005, BU(0, 221.70)=.26.  

 

Results of the post-hoc analysis of genotype differences at each cue size on conjunction search 

trials are shown in Table 3.3 (Bonferroni corrected α=.006). Ε2 carriers demonstrated 

significantly longer RTs than the ε3 group at cue size 15 (p=.004, BN (0, 30)=4.32). There was 

also support for this group showing significantly longer RTs at cue size 1 (p=.068, BH (0, 

60)=.3.47). Ε4 carriers did not significantly differ in search RTs from the ε3 group at any cue 

size (p>.006) however; data appears insensitive for supporting either the null or alternative 

hypothesis.  

 

To further probe the interaction between genotype group and cue size on conjunction trials, the 

slope of change in RT with reducing cue size was considered. At trend level there was an effect 

of genotype, F(2, 63)=2.66, p=0.78, driven by the difference between the ε3 and ε2 groups 

(p=.035; BN (0, .1)=1). The genotype difference between ε3 and ε4 carriers was non-significant, 

(p=.525; BN (0, 1.75)=1.07). Genotype differences in slope are also shown in Figure 3.3 

 

 
Figure 3.3 Benefit of reducing cue size on RT for conjunction search trials by genotype group. 
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Table 3.2. For each genotype group, RT (ms)(SD) to detect target presence and the slope of 
attentional scaling is shown.  

Genotype 
Cue size Slope 

1  3  9  15  B 
ε2 537 (73) 612 (74) 696 (80) 817 (85) 18.80 
ε3 484 (73) 565 (75) 646 (80) 691 (85) 13.83 
ε4 481 (73) 563 (75) 654 (80) 703 (85) 14.93 

Note: Cue size represents the number of letter stimuli encompassed within each spatial cue 
	
Table 3.3. p values and Bs for the post hoc comparisons of the Genotype x Cue Size interaction 
for conjunction search trials 

Genotype group 
comparison 

 
Cue Size 

 1 3 9 15 

ε2 and ε3 p .068 .114 .156 .004 

 
B B H (0, 60)=.3.47 B H (0, 65)=2.27 BN (0, 22.5)=1.14 BN (0, 30)=4.32 

ε3 and ε4 p .899 .932 .748 .687 
  B B H (0, 45)=.39 B H (0, 35)=.53 BN (0, 2)=1 BN (0, 2.5)=1 

Note: Bonferonni corrected alpha=.006. B's <1/3 or >3 or sensitive.  
 

3.4.3 The perceptual load task. 

 

Performance on this task is shown according to genotype group in Table 3.4. 

 

3.4.3.1 RT. 

 

Assumptions of sphericity were violated so a Greenhouse-Geisser correction was applied for the 

main effect of perceptual load. With increasing perceptual load, RTs significantly increased, 

F(1.27, 78.62)=352.16, p<.001, η2
ρ=.850. The Bayes analysis supports a sensitive increase in 

RT with increasing perceptual load (low to mid : B H (0, 118)= 9.80017E+90; low to high: B H (0, 

230)= 1.54409E+92; mid-high: B H (0, 52)= 2.93020E+22). 

 

The main effect of distractor was significant, F(1, 62)=17.81, p<.001, η2
ρ=.223, with RTs longer 

for capture trials than blank trials. Sphericity was again violated for the interaction between 

perceptual load and distractor presence, so degrees of freedom were corrected using a Huynh-

Feldt correction (ε=.92). A significant interaction between perceptual load and distractor 

presence was found, F(1.84, 113.98)=8.55, η2
ρ=.223. This interaction is shown in Figure 3.4., 

and was driven by there only being a main effect of distractor presence at low-load, Bonferroni 

corrected α = .017, t(64)=-8.87, p<.001, BH (0, 61)= 1.03191E+16. At mid and high perceptual 

load the effect of the distractor was eliminated (p>.017; mid: BH (0, 61)= .29; high: BH (0, 61)= 
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.16). Distractor cost was reduced at both mid (BH (0, 50)= 573.01), and high levels of perceptual 

load (BH (0, 50)= 292.22) compared to low perceptual load. There was no difference between 

the distractor cost at mid and high perceptual load (BH (0, 50)= .23).  

 

The main effect of genotype was non-significant (p=.262) as were all interactions between 

genotype, perceptual load and distractor (p>.05). All 3 genotype groups show a sensitive 

distractor cost on trials of low perceptual load (ε2: BH (0, 61)= 86169, ε3: BH (0, 61)= 356206, 

ε4: BH (0, 61)= 43112), however, there suggestion of no distractor cost at mid (ε2: BH (0, 61)= 

.74, ε3: BH (0, 61)= .50, ε4: BH (0, 61)=.14) and high levels (ε2: BH (0, 61)=.97, ε3: BH (0, 

61)=.39, ε4: BH (0, 61)=.17) of perceptual load, with sensitive nulls reported in the ε4 group.  

 

 
Figure 3.4. The interaction between perceptual load and distractor presence on RTs. 
	
 

3.4.3.1 Accuracy. 

 

Perceptual load again violated assumptions of sphericity, so a Greenhouse-Geisser correction 

was applied. Accuracy significantly decreased as perceptual load increased, F(1.46, 

91.08)=71.62, p<.001, η2
ρ=.536. The Bayes analysis supports a sensitive decrease in accuracy 

with increasing perceptual load (low to mid: B H (0, .05)=157.06; low to high: B H (0, 

.01)=1.86562E+22; mid-high: BH (0, .07)=1.60033E+21).  

 

The main effects of distractor and genotype on task accuracy were both non-significant, as were 

all interaction terms (p>.05). Bayesian analysis indicated data was insensitive for detecting a 
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change in distractor cost on accuracy with increasing perceptual load (BN (0, .03) < 1/3 and > 3). 

The perceptual load x distractor x genotype interaction approached significance, F(4, 

124)=2.11, p=.084, η2
ρ=.064, but further examination using pairwise comparisons revealed no 

significant differences (p>.05). Data was insensitive for detecting a distractor cost in task 

accuracy at each level of load when separately considered between genotype groups (BN (0, .03) 

< 1/3 and > 3) 

 

Table 3.4.  Mean RT (ms) and accuracy (proportion of trials correct) on the perceptual load 
task, presented by genotype group, with SD shown in brackets. 

Genotype Load   ND ID Cost 

ε2 Low RT 552 (48) 579 (63) 27 (21) 

  
Accuracy .93 (.04) .94 (.05) 

 
 

Mid RT 770 (69) 780 (69) 10 (40) 

  
Accuracy .89 (.07) .89 (.07) 

 
 

High  RT 827 (81) 829 (81) 2 (48) 

  
Accuracy .82 (.09) .79 (.12) 

 ε3 Low RT 524 (42) 542 (42) 19 (18) 

  
Accuracy .93 (.05) .92 (.07) 

 
 

Mid RT 716 (100) 724 (101) 8 (27) 

  
Accuracy .90 (.07) .91 (.07) 

 
 

High  RT 780 (132) 788 (134) 8 (34) 

  
Accuracy .83 (.11) .82 (.11) 

 ε4 Low RT 549 (85) 573 (90) 24 (23) 

  
Accuracy .94 (.04) .94 (.05) 

 
 

Mid RT 750 (121) 749 (126) -1 (38) 

  
Accuracy .90 (.07) .88 (.12) 

 
 

High  RT 825 (156) 826 (160) 1 (28) 
    Accuracy .83 (.10) .82 (.13)   

Notes: ND= no distractor, ID= irrelevant distractor, Cost = ID-ND 
 
3.5. Discussion 

 

This study sought to explore how APOE genotype influences performance on visuospatial 

search paradigms in mid-adulthood. Both of the experimental tasks administered here 

sensitively demonstrated the variation in cognitive performance appropriate to within-task 

manipulations, supporting the theoretical underpinnings of these paradigms. Of interest, 

distractor effects were eliminated at both mid and high levels of perceptual load, supporting a 

reduction in perceptual capacity in a mid-age cohort, an age-range that has not previously been 

tested (Maylor & Lavie, 1998).  
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The two tasks included here were selected to investigate if ε4 carriers show attentional 

‘spotlight’ differences during visual search in mid-adulthood. Ε4 carriers, however, 

demonstrated comparable performance to the homozygous ε3 group on both the dynamic 

scaling task and the perceptual load task. This provides no support for the risk factor being 

associated with either a less responsive ‘spotlight’ mechanism in mid-adulthood, or a widened 

perceptual window of attention. Carriers of the less commonly studied ε2 allele, however, did 

show performance disadvantages. This group were slower overall to detect the target on 

conjunction search trials in the dynamic scaling task, with sensitive differences confirmed on 

trials including both the maximum and minimum size of spatial cue. These results are not 

consistent with the simple view that ε2 status is protective against cognitive ageing, whilst ε4 

status is disadvantageous.  

 

In contrast to Greenwood and colleagues’ (2000, 2005) findings, our mid-age ε4 carriers 

showed no difference in the ability to modify attentional ‘spotlight’ in light of top-down 

information. This does not support a trajectory of accelerated ageing being present by mid-

adulthood. Failure to replicate this earlier finding may in part be accounted for by differences in 

sample selection, highlighting a methodological concern in the existing mid-age APOE 

literature (Lancaster et al., 2017). The age-range of participants’ included in Greenwood et al.’s 

(2000) study was wider, and as a consequence of including older individuals, later-life ε4 

disadvantages may have impacted overall group differences. The narrow age range included 

here (aged 45-55 years) importantly, precludes the potential confound of preclinical 

pathological change. Furthermore, while Greenwood et al. (2000) selected individuals on the 

basis of an immediate family history of AD, family history of AD was not a selection criterion 

of the current study meaning the sample may be more representative of a healthy ageing 

population. In addition, the tightly controlled age-range included here acknowledges the 

expectation that expression of APOE genotype effects is not constant across the lifespan. 

 

Performance on the perceptual load task was equivalent between APOE genotype groups, 

supporting intact perceptual attention in mid-age ε4 carriers. Distractor effects were absent in all 

three genotype groups on trials of both mid and high perceptual load, suggesting reductions in 

perceptual capacity, comparable to those seen in an older group (aged 65-79 years) (Maylor & 

Lavie, 1998), occur by mid-adulthood regardless of genotype. Future research could apply the 

present perceptual load paradigm to test whether young ε4 carriers might show this reduction at 

an earlier point. Previous research reported ε4 genotype differences on the Posner spatial cueing 

task in both young (Rusted et al., 2013) and older adults (Greenwood et al., 2000; Greenwood et 

al., 2005), perhaps indicating a difference in the breadth of attentional ‘spotlight’. No genotype 

differences on this task, however, were found in a group of similar age (43-58 years) to the 
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current participant sample (Evans et al., 2014). This may suggest that in mid-adulthood at least, 

there is little effect of APOE genotype on breadth of perceptual attention. One explanation for 

why no genotype differences in perceptual threshold were seen could be that task sensitivity 

was poor - load increased in jumps of one item, four items, and six items; a more gradual 

increase in load may have improved sensitivity to any subtle genotype differences. 

 

Overall, the present results suggest that relative to the ε3 population ‘norm’, ε4 carriers show 

equivalent attentional scaling and perceptual capacity in mid-adulthood, countering the 

argument that the ε4 genotype represents a detrimental cognitive phenotype right across the 

lifespan. There is some support in the literature for an age x APOE interaction, with several 

studies identifying the end of the 5th decade as a point when detrimental performance effects of 

APOE ε4 emerge (Caselli et al., 2009; Jochemsen, Muller, van der Graaf, & Geerlings, 2012; 

Marioni et al., 2015; Shin et al., 2014). It would seem behavioural performance is preserved in 

ε4 carriers up until 5th decade despite evidence for structural and functional changes prior to this 

(e.g Dowell et al. 2016; Trachtenberg et al., 2012a; 2012b). Given the reported attentional 

detriments in a late-mid age sample (Greenwood et al., 2000; 2005a; 2005b), research probing 

additional factors that may mediate the emergence of decline in this genotype, is important. In 

respect of the antagonistic pleiotropy position (Han & Bondi, 2008), if the effects of this gene 

are transitioning from advantages in young adulthood, to disadvantages in later life, the absence 

of genotype differences recorded here are consistent with a transitioning stage in which the 

allele is exerting neither a positive nor a negative effect of cognition. Stronger evidence of 

dissociative effects with longitudinal data across the age span is needed, however, to 

substantiate this model.  

 

Contrary to expectations, the current study reported performance disadvantages in carriers of the 

premised ‘protective’ ε2 allele. Although cognitive effects of ε2 in mid-adulthood have not been 

well characterised to date, Greenwood and colleagues (2000; 2005) included an ε2 group, and 

found no performance differences on the dynamic scaling task. Again, our results may differ 

due to discrepancy in population selection. Our results suggest that ε2 carriers are approaching 

the visual search paradigms differently, showing less efficient visual search strategies.  

 

In line with the differential performance of ε2 carriers seen in this task, neural data has 

suggested both ε2 and ε4 carriers show corresponding differences in function BOLD response 

compared homozygous ε3 carriers (Trachtenberg et al., 2012a; 2012b). Despite equivalent 

performance on both an episodic memory and Stroop task, both ε2 and ε4 groups showed 

overlapping profiles of over-activation in a mid-age group (Trachtenberg et al., 2012a), and 

similar profiles in a resting-state connectivity analysis (Trachtenberg et al., 2012b).  These 
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results, again, confuse the clear dichotomy between cognitive risk and variants of the APOE 

gene, and support the need for further profiling that directly compares all three variants across a 

wider age span.  

 

There are limitations in the current study. The sample size of each genotype group, in particular 

the number of ε2 carriers, completing the behavioural paradigms was relatively small. However, 

Bayesian analysis was used to confirm the sensitivity of both ε4 equivalence and ε2 differences 

in cognitive performance. Further, although overall group performance on the perceptual load 

task replicated those suggested by perceptual load theory, standard deviations were large, and 

this may have reduced sensitivity of the task for detecting genotype differences. 

 

3.6. Conclusions 

 

The results suggest that in healthy mid-age individuals, carrying the ε4 variant of APOE is not 

associated with disadvantaged performance on dynamic scaling and perceptual load measures of 

visuospatial attention, despite the established detrimental effects of this gene in older adults. 

Attentional ‘spotlight’ differences did not emerge as a potential marker of cognitive decline in 

this ‘at-risk’ group. Carriers of the ε2 allele showed performance disadvantages on the measures 

tested here, stressing the need to consider all three variants of APOE individually when 

assessing its impact on cognition. The distinction between ‘protective’ ε2 and ‘detrimental' ε4 

status is not as clear-cut as supposed, and longitudinal studies of how both of these variants 

impact the trajectory of cognitive ageing is a vital next step.  
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4. Article 3 

 
The APOE paradox: how do attentional control 

differences in mid-adulthood reflect risk of late-life 

cognitive decline.  
 
Article 3 is published in Neurobiology of Ageing as: 

Lancaster, C., Tabet, N., & Rusted, J. (2016). Neurobiology of Ageing The APOE 
paradox : do attentional control differences in mid-adulthood reflect risk of late-life 
cognitive decline. Neurobiology of Ageing, 48, 114–121. 
http://doi.org/10.1016/j.neurobiolageing.2016.08.015 
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4.1. Abstract 
 

Possession of an APOE ε4 allele is an established risk factor for Alzheimer’s disease, while the 

less commonly studied ε2 variant is premised to offer some protection. This research explores 

the purported deleterious-protective dichotomy of APOE variants on attentional control in mid-

adulthood. 66 volunteers, aged 45-55 years, completed three tasks that provided complementary 

measures of attentional control: prospective memory, sustained attention and inhibition.  

Performance was compared between ε2 carriers, ε4 carriers and ε3 homozygotes (the population 

norm). Carriers of the ε4 allele showed subtle disadvantages, compared to the ε3 group, in 

accuracy of Stroop task and prospective memory performance. Contrary to expectations, ε2 

carriers showed performance disadvantages in sustained attention. The finding of detrimental 

effects in attentional control for both ε4 and ε2 complicates the current model that proposes 

opposing effects of these variants on later-life cognition. Future research is needed to 

understand how cognitive differences develop with increasing age, and the physiological 

mechanisms that underpin these changes.  

 

Keywords: APOE, Cognitive Ageing, Alzheimer’s disease, Attention, Executive Function, 

Mid-adulthood 
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4.2. Introduction 

 

Cognitive ageing is differentially associated with the three variants (ε2, ε3, and ε4) of the 

Apolipoprotein E (APOE) gene, a single nucleotide polymorphism. The ε4 allele, present in 

approximately 25% of the population, is associated with increased risk of Alzheimer’s disease 

(AD) (Corder et al., 1993). While the ε3 allele is positioned as the population norm, possession 

of an ε2 allele, prevalent in ~15% of the population (Raber et al., 2004) is hypothesised to be 

protective against AD risk (e.g. Farrer et al., 1997; Lippa et al., 1997; Wilson et al., 2002).   

 

In addition, carrying at least one copy of the APOE ε4 allele has been associated with poorer 

cognition in healthy older adults, with effects most commonly reported in episodic memory 

(e.g. Caselli et al., 1999; O’Hara et al., 1998; Staehelin et al., 1999; Packard et al., 2007), but 

not isolated to this domain (e.g. Berteau-Pavy et al., 2007; Reinvang et al., 2010; Small et al., 

2004; Wisdom et al., 2011). Not all studies have been consistent in reporting an effect of APOE 

ε4 in older adulthood, however (e.g. Bunce et al., 2014; Bunce et al., 2004; Juva et al., 2000; 

Kim et al., 2002; Salo et al., 2001). 

 

Significantly, effects of carrying an APOE ε4 allele are not isolated to ageing populations, with 

reports of subtle cognitive differences in ε4 carriers from childhood (Acevedo et al., 2010; 

Bloss et al., 2008).  Evidence for cognitive advantages in young ε4 carriers has been reported 

within the domains of episodic memory, executive function (EF) and attention (Marchant et al., 

2010; Mondadori et al., 2007; Rusted et al., 2013; Taylor et al., 2016), contrasting with the 

detrimental associations of APOE ε4 in later adulthood. As effects of ε4 are detectable in youth, 

however, this highlights the need to consider APOE genotype earlier in the ageing trajectory.  

 

The cognitive effects of APOE in mid-adulthood are of crucial interest as this may be when the 

ε4 allele is first exerting detrimental effects on the ageing trajectory. To date, reported effects of 

APOE ε4 in mid-adulthood are inconsistent (for review; Lancaster et al., 2017; Rusted & 

Carare, 2015; Salvato, 2015), with many studies reporting null effects. The exceptions are 

studies within the domain of memory, where detrimental effects are reported from the end of the 

fifth decade (Caselli et al., 2004; Jochemsen et al., 2012; Schultz et al., 2008). The 

inconsistency of reported findings is likely to stem from several methodological issues, 

including variation in age group included, control of potential moderators and sensitivity of 

cognitive tasks used. Moreover, as the effect of APOE ε4 is non-uniform across cognition, the 

domain under study represents another factor in the inconsistency. 
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Aside from memory, attentional control, necessary to complete any goal-driven behaviour, may 

show sensitivity to APOE status in mid-adulthood. Both attentional control mechanisms and EF 

deficits have been associated with the preclinical stages of dementia (Carlson et al., 2009; 

Harrington et al., 2013; Twamley et al., 2006). Frontal regions, the predominant neural focus of 

executive attention, are vulnerable early in the ageing trajectory to both a loss of neural integrity 

and the deposition of amyloid, with this pattern reported in both healthy and pathological ageing 

(Bartzokis et al., 2003; Raz, 2000; Rowe et al., 2007; Villemagne et al., 2011). Further 

supporting the sensitivity of attentional control to ageing processes, amongst a battery of 

neuropsychological measures, the profile of errors and response time (RT) on a computerized 

Stroop-switch paradigm, an established measure of attentional selection and distractor 

inhibition, was found to best distinguish the cognitive profile of mild AD (Hutchison et al., 

2010). In addition, performance on this task predicted the subsequent development of AD in a 

sample of older adults (Balota et al., 2010). 

 

Neuropsychological assessments have not consistently found an effect of APOE ε4 on attention 

or EF in mid-adulthood (Flory et al., 2000; Jochemsen et al., 2012; Sager et al., 2005), although 

genotype differences have been found using computerized research paradigms developed for 

maximum sensitivity. On a measure of sustained attention, ε4 carriers (aged 45-55 years) 

demonstrated greater accuracy for detecting target strings, but slower RTs relative to a 

homozygous ε3 group (Evans et al, 2014). This pattern of performance was replicated on a 

prospective memory (PM) measure in the same cohort, with ε4 carriers demonstrating more 

accurate retrieval of PM intentions, but slower RTs on the ongoing task. Imaging data collected 

during the PM task found that in ε4 carriers only, left inferior frontal gyrus activity correlated 

with retrieval accuracy. This was interpreted as evidence of a compensatory response within 

top-down attentional control mechanisms.  

 

Failure to account for the effect of APOE ε2 is likely a key factor in the reported inconsistency 

of APOE-related cognitive change in the literature to date. Predominantly, research either 

excludes ε2 carriers, or considers ε2 and ε3 variants collectively as a non-ε4 group, despite 

purported protective effects. In light of the opposing effects of APOE variants on dementia risk, 

intuitively differences are expected in the cognitive profile of ε4 and ε2 carriers. Recent 

research, however, has found overlapping patterns of task-related functional activity in mid-age 

ε2 and ε4 carriers, compared to an ε3 group, during both a Stroop task, and an episodic memory 

task (Trachtenberg et al., 2012a). Both genotype groups also showed differences in resting-state 

activity compared to an ε3 group (Trachtenberg et al., 2012b). This calls into question how the 

assumed dichotomy in APOE associated cognitive ageing manifests, and highlights APOE ε2 as 

a crucial area for future research.  
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The current study provided a detailed investigation into the association between APOE and 

attentional control in mid-adulthood. The study aimed to extend previous findings of genotype 

differences within this domain (Evans at al., 2014) by administering a broader range of 

attentional tasks, allowing for a more in-depth exploration of the specific cognitive processes 

showing genotype sensitivity. The research also provided novel investigation into the 

hypothesised ‘protective’ ε2 allele.  

 

The behavioural session administered a rapid visual information processing task (RVIP; Wesnes 

& Warburton, 1983) and a PM measure (Rusted & Trawley, 2006), to establish if a speed-

accuracy trade-off in ε4 carriers is reliably observed. Specifically, the research expected to 

replicate the ε4 advantage in PM retrieval, and target detection on the RVIP, in comparison to 

the population norm (ε3 homozygotes), at the cost of response latency in this group. The 

processes targeted by these tasks include goal maintenance, switching, monitoring and updating, 

all of which burden executive attention and load on frontal lobes (Cona et al., 2015; Coull et al., 

1996). In addition, a computerized Stroop-switch task (Hutchison et al., 2010) was used to 

explore if errors on this task differentiate carriers of a genetic risk for AD as early as mid-

adulthood. As this task has previously been shown to distinguish older adults at heightened risk 

of developing Alzheimer’s disease (Balota et al., 2010), by mid-age ε4 carriers may show 

similar costs of incongruency on the proportion of errors made. Differences in task accuracy are 

linked to the ability to hold relevant information at the forefront of attention, and resist 

interference. 

 

Despite reported protective effects of carrying an APOE ε2 allele on longevity (Blanché et al., 

2001; Frisoni et al., 2001) and cognition in older adulthood (Helkala et al., 1996; Wilson et al., 

2002), understanding of how this variant affects cognition is limited at present. In light of recent 

research (Trachtenberg et al., 2012a; Trachtenberg et al., 2012b), it is unclear whether ε2 

carriers will show equal or advantaged performance compared to homozygous ε3 carriers. This 

study took an exploratory look at the ε2 effects on attentional control mechanisms, to provide 

the foundation for future work establishing the profile of this genotype in mid-adulthood.  

 

Furthermore, the study addresses many of the methodological shortcomings within existing 

mid-age literature. The tasks record trial-by-trial response time data, as well as accuracy, to 

allow detailed analysis of performance on task. Additionally, the study recruits individuals from 

a narrow range of the lifespan (aged 45-55 years), and measures participant variables including 

education and cardiovascular health, which may moderate the influence of APOE on cognition.  
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4.3. Methods 

 

4.3.1. Participants 

 

165 healthy volunteers were recruited for the initial screening phase of this study, through 

advertisement at local universities, clubs, and community centers. For inclusion, volunteers 

were required to be aged 45-55 years, a non-smoker and using English as their daily-language. 

Exclusion criteria consisted of: a history of vascular health problems, untreated high blood 

pressure, psychoactive medication use, or a history of neurological trauma or psychiatric 

condition within the past 5 years.  

 

The initial screening phase followed Human Tissue Authority (HTA) procedures, and the 

research ethics committee of the school of Psychology and Life Sciences, University of Sussex 

approved the full study. In line with ethical guidelines, volunteers first provided written 

informed consent, including acknowledgment that the results of the genotype analysis would 

not be made available to them. DNA was collected with a buccal swab, using an Isohelix SK1 

kit. Genotyping followed triangulated anonymisation procedures, with two anonymised codes 

used per sample. Samples were analysed to determine APOE gene variant by LGC Genomics 

(Hertfordshire, www.lgcgroup.com/genomics). A fluorescence-based competitive allele-specific 

polymerase chain reaction determined the presence of three major APOE alleles (ε2, ε3, and ε4) 

based on two APOE single nucleotide polymorphisms (SNPs) (rs429358, rd7412).  

 

 

66 volunteers were invited to complete the behavioural session. Selection was made pseudo-

randomly, in that efforts were made to ensure an approximately even numbers of participants in 

each genotype group (ε2, ε3, ε4). Double-blind procedures were followed in that both the 

experimenter and participants remained blind to genotype. Distribution within genotype groups 

was as follows: 16 ε2 carriers (2 ε2/ε2, 14 ε2/ε3), 26 ε3 homozygotes, and 24 ε4 carriers (17 

ε3/ε4, 7 ε4/ε4). Volunteer characteristics are shown in Table 4.1. 

 

4.3.2. Materials 

 

4.3.2.1. Demographics and Baseline Cognitive Measures 

 

A shortened version of the Nuffield Medical History Questionnaire assessed general state of 

health, recent medical history, medication use, and alcohol consumption.  Additionally, the 
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National Adult Reading Test (NART) (Nelson & Willison, 1991), a backward digit-span task 

and a visual simple response time task (SRT) were administered to provide baseline cognitive 

characteristics. For the SRT, participants were required to make a keyboard response (‘space 

bar’) as quickly as possible when presented with a visual target stimulus. The task consisted of 

48 trials, with a mask of varying length (300ms-1000ms) present between each target stimulus. 

RTs greater or less than 3 standard deviation (SD) from a participant’s mean RT were removed 

prior to analysis.  

 

4.3.2.2. RVIP task 

 

The RVIP task (Wesnes & Warburton, 1983) was administered for 4 minutes. A continuous 

stream of digits was presented to participants at a rate of 80 per minute, centrally on a computer 

monitor. Participants were required to monitor the digits, and respond when either 3 odd or 3 

even digits appeared consecutively. Per each minute of the task, there were 8 target strings. 

Correct detections were recorded up to 1500ms after presentation of the third digit in the target 

string. Measures of response accuracy, response latency and number of false alarms (FA) 

(pressing when no target occurred) were recorded. Responses greater or less than 3 SD from 

each participant’s mean RT were removed prior to analysis. 

 

4.3.2.3. Card-sort PM task 

 

The card-sort task (Rusted, Sawyer, Jones, Trawley, & Marchant, 2009)required participants to 

respond to a succession of playing card stimuli, displayed in a pseudo-random order on screen. 

In each trial, a card back was displayed for a variable duration (100-1000ms), followed by a 

card face, which was displayed for 1000ms. The on-going component of the task required 

participants to sort cards according to suit, pressing ‘1’ for a spade and ‘3’ for a hearts, as 

quickly and accurately as possible. Participants were asked to give no response if presented with 

a diamond or a club. Participants initially sorted one deck of 52 cards (26 sort trials, 26 non-sort 

trials) to provide a baseline measure of decision-making performance. Participants then received 

the PM instruction to press ‘space’ in response to the presentation of a specific target card, 

which was any card with the number ‘7’. Participants were asked to repeat this instruction back 

to the experimenter in their own words to check understanding. They then completed 2 further 

decks of the on-going task with the additional PM instruction, containing 48 sort trials, 48 non-

sort trials, and 8 PM trials.  

 

Sort accuracy and RT was recorded for the baseline deck, and the 2 decks following the 

introduction of the PM instruction. For each volunteer, RTs more than 3 SD from their own 
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mean were removed. Comparison of performance between these 2 conditions provides a 

measure of the cost of carrying a PM intention on ongoing sort performance. Accuracy of PM 

retrieval was also recorded.  

 

4.3.2.4. Stroop-switch task 

 

A computerised version of the Stroop-switch task was administered (Hutchison et al., 2010). 

Stimuli were presented on a black background and consisted of 4 colour words (blue, green, red 

and yellow) and 4 neutral words (bad, deep, legal, and poor) written in either blue, green, red or 

yellow font. Participants were required either to name the font colour or to read the word aloud. 

The naming rule (colour, word) switched throughout the task after every 2 trials. Trials were 

classified as either neutral (40 trials), when a neutral word appeared in any of the 4 font colours 

or incongruent (48 trials), when a colour word appeared in a non-matching font colour.  

 

Participants completed 24 practice trials and 88 experimental trials. For each trial, a precue of 

‘word’ or ‘colour’ in white font was presented for 1500ms, followed by a wait of 200ms, 

followed by the stimuli. Participants made a verbal response, with latency recorded using a 

microphone-connected serial response box. Stimuli remained on screen until a response was 

detected or 8000ms had elapsed. Accuracy of response was coded by the experimenter for each 

trial as correct, self-corrected error (e.g. ‘bl..green’) or intrusion error (i.e. if the participant says 

incongruent response). For each volunteer, only RTs for correct trials, and within 3 SD of their 

personal mean were considered for analysis.  

 

4.3.3. Procedure 

 

Volunteers selected from the screening phase took part in a single study session lasting 90 

minutes. First, demographic and health measures including age, family history of dementia, 

height, weight, and blood pressure were collected. A measure of systolic and diastolic blood 

pressure was collected whilst seated, using an automatic arm-cuff machine on the right arm. 

Participants then completed a selection of experimental tasks and questionnaires in a fixed order 

(see Figure 4.1).   
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Figure 4.1. A timeline of the experimental tasks included in the behavioural session. The results 
of several experimental tasks administered in the session fell outside the scope of this paper and 
will be reported separately. 
 
4.3.4. Design 
 
Differences in the demographic and health characteristics of the genotype groups (ε2, ε3, ε4) 

were analysed using a series of one-way analysis of variances (ANOVAs) for continuous 

variables, and chi-squared tests for categorical measures (gender, family history).  

 

Across experimental tasks, analyses were first run to compare performance across all 3 

genotype groups. All analyses were two-tailed. Gender was also included in parametric analyses 

to explore possible APOE X Gender interactions: as no interactions were found the effect of 

gender is not reported in the main body of results (main effects of gender are included as 

footnotes). For non-parametric analyses, data was screened for any differences by gender.    

 

Secondary analyses were run selectively comparing ε2 carriers and ε4 carriers independently to 

the population norm (homozygous ε3 carriers) where a main effect of genotype or genotype 

interaction term were significant or at trend level, or where specific predictions were made 

based on previous findings. The decision to run these secondary analyses were based on recent 

suggestions of similarity in the profile of ε2 and ε4 carriers, so separately comparing both 

groups to the population norm is needed for more detailed exploration.  

 

4.3.4.1 Card-sort task 

 

All volunteers retrieved at least 1 PM intention, taken as an indication that they had encoded 

and retained the PM intention, and so no volunteers were excluded from the analysis. Sort 

accuracy and RTs for correct sort responses were analysed, as well as accuracy of PM retrieval. 

A one-way ANOVA was used to assess group differences in baseline sort RT and accuracy, 

followed up by Bonferroni corrected independent t-tests to assess pair-wise genotype 

differences. A mixed ANOVA was conducted with deck (baseline, PM) as the within-subjects 

factor, and genotype group as the between-subjects factor, for both sort RT and accuracy, to 
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assess performance change following introduction of the PM intention. Non-parametric tests 

were used to assess genotype differences in PM retrieval as the data violated assumptions of 

normality. A Kruskal-Wallis analysis was used to assess differences between all 3 genotype 

groups, followed by two separate Mann-Whitney U tests to compare both ε4 and ε2 variants to 

the ε3 group, with a conservative alpha (α=. 025) applied. 

 

4.3.4.2 RVIP 

 

Number of target hits, hit latency, and number of FAs were analysed using separate ANOVAs, 

with time on task as the within-groups factor (time bins: minute 1-4) and genotype group (ε2, 

ε3, ε4) as the between-groups factor. Separate analyses for both ε2 and ε4 were then completed 

to explore any suggested genotype effects.  

 

4.3.4.3. Stroop-switch task 

 

The distribution of RTs for Stroop-switch trials deviated from normality and hence a log 

transformation was applied to this variable prior to analysis. Initially, data was checked to 

search for an effect of rule switching (switch prior to trial, no switch prior to trial) on RTs and 

errors. There was no significant effect of switching, and switching did not interact with stimuli 

type, congruency or genotype (p>.05), and so these trials were considered collectively. For both 

RTs (correct trials) and proportion of errors, a mixed ANOVA was run with rule (colour, word) 

and congruency (incongruent, neutral) as the within-subjects factors, and genotype (ε2, ε3, ε4) 

as the between-subject factor. Where present, interactions were probed with Bonferroni 

corrected t-tests. Separate analyses were then run comparing ε2 and ε4 variants to the ε3 

population norm to further explore suggested genotype effects.  

 

4.4. Results 

 

4.4.1. Demographics & Baseline Cognitive Measures 

 

There were no significant genotype differences across the demographic measures (p>.05). 

Furthermore, no group differences were found in working memory (WM) span, or SRT (p>.05). 
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Table 4.1. Demographics and baseline cognitive performance presented by genotype group. 
 Genotype Group 

Measure ε2 ε3 ε4 
n 16 26 24 

Age 50.44 (3.58) 49.04 (2.68) 49.17 (3.07) 
Gender (% female) 75 73 63 

Family History (%Yes) 25 35 54 
Education 17.22 (3.24) 17.23 (3.13) 17.85 (4.32) 

NART 119.06 (2.84) 118.56 (2.93) 116.87 (4.62) 
    

BMI 24.02 (3.44) 26.24 (4.37) 25.15 (3.78) 
Systolic BP 115.63 (7.55) 118.23 (8.47) 115.00 (8.76) 
Diastolic BP 77.31 (9.99) 81.77 (10.63) 79.13 (7.77) 

    
SRT (ms) 272 (44) 265 (32) 266 (27) 
Digit-span 4.31 (1.30) 4.19 (1.50) 4.00 (1.65)  

Note: Mean (sd) 
 
4.4.2. Card-sort task 

For a summary of performance on this task by each genotype group see Table 4.2. 

 

4.4.2.1. Baseline decision-making  

 

Across participants, accuracy on the control ‘decision-making’ deck was at ceiling, with scores 

ranging from 50-52 correct (M=51.65) out of a maximum score of 52, with no significant 

difference between groups (p>.05). The genotype difference in decision-making RT approached 

significance, F(2, 62)=2.92, p=.061, n2
p=.086. The ε2 group trended towards being slower than 

the ε3 comparison group (p=.072), whereas the ε4 and ε3 groups did not differ in RT (p>.05). 

 

4.4.2.2. PM performance 

Introducing the PM intention was associated with a significant slowing of RTs on card-sort 

trials, F(1, 62)=107.77, p<.001, n2
p=.635. The main effect of genotype and the interaction 

between deck and genotype group were non-significant, (p>.05). For sort accuracy, again 

introducing the PM intention was associated with a significant drop in accuracy, F(1,62)=37.94, 

p<.001, n2
p=.380. The effect of genotype and the interaction between genotype and deck were 

both non-significant, (p>.05).   

Across the 3 genotype groups there was no significant difference in retrieval of the PM targets 

(p>.05), although secondary analyses indicated ε4 carriers (M=6.75, mean rank=21.46) retrieved 

fewer PM intentions than the ε3 group (M=7.31; mean rank=29.23), and this difference 

approached significance, U=215, p=.040. There was no significant difference in the PM 
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retrieval accuracy of ε2 carriers (M=7.13, mean rank=20.62) compared to the ε3 group (mean 

rank=22.04), U=222, p>.05. 

 
Table 4.2. Performance on the Card-sort task displayed by genotype group. 
 
Genotype Control deck PM decks 

RT (ms) ±sd Accuracy/52 RT (ms)±sd Accuracy/96 PM retrieval/8 

ε2 606 ± 67 51.8 736 ± 64 93.00  7.13 

ε3 560 ± 77 51.5  710 ± 85 92.35  7.31 

ε4 590 ± 38 51.7  710 ± 69 93.13  6.75 

4.4.3 RVIP 

The data of 4 volunteers was removed prior to analysis due to comparable levels of hits and 

FAs, or a FA rate greater than 2 sd above the norm. For a summary of performance on this task 

by genotype group see Table 4.3.  

Table 4.3. Overall performance on RVIP task by genotype, sd shown in brackets. 
Genotype Mean hit detection/ 32 Mean hit latency (ms) Mean false alarms 
ε2 19.29 (6.28) 558 (69) 1.14 (1.41) 
ε3 23.52 (4.88) 510 (72) 2.09 (0.42) 
ε4 21.18 (7.20) 514 (77) 1.65 (0.35) 

4.4.3.1. Hits 

 

Accuracy decreased with time on task, F(3, 171)=5.09, p=.002, n2
p=.082. Both the main effect 

of genotype, F(2, 57)=2.72, p=.087, n2
p=.087, and the Time on task x Genotype interaction 

approached significance for number of hits, F(6, 171)=5.09, p=.074, n2
p=.064.4 The interaction 

between time on task and genotype is shown in Figure 4.2. 

 

Secondary analysis found the effect of genotype was driven by ε2 carriers making significantly 

less hits than the ε3 group, F(1, 36)=5.51, p=.024, n2
p=.133. There was no significant difference 

between ε4 carriers and ε3 carriers (p>.05).  

 

Further probing of the Time x Genotype interaction found ε2 carriers made fewer hits than the 

ε3 group only in minute 1, and this difference approached significance, t (17.7)=-2.72, p=.014. 

Ε4 carriers did not significantly differ from ε3 carriers at any minute of the task.  

																																																								
4	The effect of gender on RVIP hit performance approached significance, F(1, 57)=3.71, p=.059,  
n2

p=.061: males (mean=23.68) made more correct hits than females (mean=20.81).	
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Figure 4.2. The Genotype x Time on task interaction for RVIP hit performance. 
 

4.4.3.2. Hit Latency 

 

With all 3 genotype groups included in the model, the effect of time on task on hit latency was 

non-significant (p>.05). The main effect of genotype and the Genotype x Time interaction were 

both non-significant (p>.05). 

4.4.3.3. False Alarms 

Both the main effects of time on task and genotype, and the interaction between Time x 

Genotype were non-significant (p>.05).  

4.4.4. Stroop 

4.4.4.1 Overall task performance 

4.4.4.1.1. RTs 

RTs were significantly slower for colour naming than word naming, F(1, 60)=11.10, p=.001, 

n2
p=.156. Incongruency also led to significantly slower naming, F(1, 60)=34.65, p<.001, 
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n2
p=.366, and this effect was larger for colour naming than word naming, F(1, 60)=7.78, 

p=.007, n2
p=.115.5 

4.4.4.1.2 Errors 

There was no significant difference in the number of errors made for colour vs. word stimuli 

(p>.05). At trend level, more errors were made for incongruent stimuli than neutral stimuli, F(1, 

60)=3.10, p=.089, n2
p=.049. Again, there was a significant Rule x Congruency interaction, F(1, 

60)=12.17, p=.001, n2
p=.169. More errors were made for incongruent colour naming trials 

(M=.067) than neutral colour naming (M=.018), t(63)=5.13, p<.001. For word naming, more 

errors were made for neutral trials (M=.038) than incongruent trials (M=.017), t(63)=-2.98, 

p=.004 (Bonferroni corrected α=.013). 6 

4.4.4.2. Genotype effects 

Performance on the Stroop-switch task is summarised by genotype group in Table 4.4. 

4.4.4.2.1. RTs 

There were no genotype differences in RT (p>.05), and genotype status did not interact with 

either rule or congruency in affecting RT (p>.05).  

4.4.4.2.2. Errors 

The effect of genotype was non-significant (p >.05), as was the Congruency x Genotype 

interaction, F(2, 60)=2.32, p=.107, n2
p=.072. The Genotype x Rule interaction, and the 3-way 

Genotype x Rule x Congruency interaction were both non-significant (p>.05).  

The Congruency x Genotype interaction, displayed in Figure 4.3., was probed in secondary 

analysis comparing ε2 and ε4 groups to the homozygous ε3 group in separate models due to an 

a priori hypotheses of a genotype difference. There was no significant difference in the overall 

number of errors between the ε3 group and ε4 carriers  (p>.05), but there was a significant 

Genotype x Congruency interaction, F(1, 46)=4.27, p=.044, n2
p=.085, further explored with 

Bonferroni corrected t-tests (α=.013). There was no significant difference between errors on 

incongruent stimuli (M=.038) and neutral stimuli (M=.037) for ε3 carriers (p>.0125), but ε4 

carriers made significantly more errors for incongruent (M=.052) than neutral stimuli (M=.022), 

																																																								
5	A main effect of gender on Stroop RTs was found with males slower in all trials, F(1, 60)=5.90, p=.029, 
n2

p=.077. The effect of gender was more pronounced for trials with the rule ‘word’, than trials with the 
rule ‘colour’, F(1, 60)=5.79, p=.019, n2

p=.088.	
6	There was a significant effect of gender on the proportion of errors made on the Stroop task, F(1, 
60)=9.64, p=.003, n2

p=.138, with males consistently making more errors.	
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t(22)=2.73, p=.012. There was no significant difference between ε4 carriers and the ε3 group in 

the proportion of errors made for neutral trials, or incongruent trials (p>.0125).  

ε2 carriers did not significantly differ from the ε3 groups in the number of errors made (p>.05), 

and the Genotype x Congruency interaction was non-significant (p>.05). Additionally, ε2 

carriers did not show a significant cost of congruency on number of errors made (p>.05). 

Table 4.4. Mean naming RT and the proportion of errors recorded, shown by condition and 
genotype for performance on the computerized Stroop task. 

   
Genotype 

Stimuli Congruency 
 

ε2 ε3 ε4 
Colour 

     
 

Neutral RT (ms) 729 (126) 669 (123) 708 (107) 

  
Errors .01 .02 .02 

 
Incongruent RT (ms) 815 (131) 800 (177) 818 (128) 

  
Errors .06 .06 .08 

Word 
     

 
Neutral RT (ms) 683 (130) 623 (144) 662 (135) 

  
Errors .03 .05 .03 

 
Incongruent RT (ms) 715 (144) 662 (246) 674 (167) 

  
Errors .01 .02 .02 

Note: RTs shown as mean (sd) 

 

 

Figure 4.3. The proportion of errors made for congruent and incongruent stimuli shown by 
genotype group. 
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4.5. Discussion 

 

The aim of current study was to establish whether APOE genotype is associated with 

differences in attentional control in mid-adulthood. By including all three genotype groups, 

results provide a novel exploration into the opposing effects of APOE status on cognitive 

ageing.  

 

The current findings suggest deficits in attentional control are detectable by mid-adulthood in ε4 

carriers, however, effects were not uniform across cognitive measures. Carriers of this allele 

demonstrated a larger effect of incongruency on errors during a computerized Stroop-switch 

task. Similarly, there was a trend for ε4 carriers to show reduced accuracy of PM retrieval in 

comparison to the population norm (ε3 homozygotes). Despite the expectation that ε2 carriers 

would show cognitive advantages in mid-adulthood, in line with the suggested protective effects 

of this allele, results did not consistently support performance advantages. On the RVIP 

measure of sustained attention, compared to both homozygous ε3 carriers and the ε4 group, ε2 

carriers detected fewer target strings. On the control deck of the PM task ε2 carriers trended to 

sort cards with slower RTs. These differences were found despite there being no genotype 

differences in simple RTs, suggesting differences specifically relate to decision-making RT.  

 

The study administered versions of the RVIP and card-sort PM tasks comparable to those 

previously reported to show a speed-accuracy trade-off in mid-age ε4 carriers (Evans et al, 

2014).  Our results did not replicate this pattern, and this is unlikely to be a factor of the subtle 

differences in paradigms used. Although the Evans study used a 6-minute version of the task, 

the reported genotype differences were observed in the first 3 minutes, so this should have been 

replicable in the 4-minute version. Across these tasks, with the exception of PM retrieval, ε4 

carriers showed equivalent performance to the ε3 group. This could be interpreted as ε4 carriers 

having relatively sustained cognitive performance in mid-adulthood. This over-arching pattern 

is not inconsistent with the antagonistic pleiotropy hypothesis (Han & Bondi, 2008), that the  ε4 

variant transitions from having advantageous to disadvantageous consequences in mid-

adulthood. 

 

Importantly, ε4 carriers did show subtle deficits within select processes, prominently a marked 

congruency effect in the number of errors made on the Stroop task. Similarly, a marked increase 

in errors for incongruent trials was found to both predict and characterize AD (Balota et al., 

2010; Hutchison et al., 2010). These parallel results indicate that performance on this task is an 

important early identifier of cognitive decline, with the task showing sensitivity by mid-

adulthood. Although previous research has reported no effect of APOE ε4 on Stroop-task 
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performance in mid-age (Sager et al., 2005; Trachtenberg, Filippini, Cheeseman, et al., 2012), 

the paradigm used here collected data on a trial-by-trial basis, providing a more sensitive 

measure.  

 

In terms of specific cognitive processes, the computerized Stroop task requires both goal 

maintenance and response inhibition. Previous research suggests that RT distributions on this 

task are linked to detriments in inhibitory control, whereas errors represent failures to maintain 

task goals (Kane & Engle, 2003). Accordingly, ε4 carriers showed decrements in the executive 

attention required for active goal maintenance. Notably, they also showed deficits in PM 

retrieval, in which both active maintenance of the PM intention, and monitoring of the 

environment for the opportunity to act are required, consistent with detriments in sustaining 

information at the forefront of attention.  

 

Attentional control, as indexed by Stroop errors and PM performance, has been linked to WM 

span (Kane & Engle, 2003). Likewise, active updating and monitoring, the component of EF 

most closely assessed by the three paradigms administered in the current study, is described as 

being closely associated with WM (Miyake et al., 2000). In this study however, no genotype 

difference was found on a backward digit-span measure. It may be that future study, including a 

more detailed exploration of WM ability, would demonstrate sensitivity to APOE effects in 

mid-adulthood, for example the Operation Span task (Turner & Engle, 1989). In a slightly older 

sample (50-79 years), ε4 carriers showed deficits on this task (Rosen et al., 2002). An important 

avenue for future research is establishing a reproducible effect of APOE ε4 genotype on the 

active processing of information in attention, and the neural basis of this difference.   

 

Results from previous fMRI research suggest reported correlations between advantaged PM 

retrieval in ε4 carriers and heightened inferior frontal gyrus activity might represent an early 

compensatory frontal shift (Evans et al., 2014). As activity of the inferior frontal gyrus has 

previously been associated with detection of salient stimuli (Hampshire et al., 2010), increased 

activity in this area fits with heightened PM accuracy. No evidence was provided in this study 

for ε4 carriers showing any advantages in performance measures, however.  

 

An important avenue for future research is to establish the mechanisms behind the APOE ε4 

effects on attentional control. APOE ε4 is known to influence the profile of amyloid deposition 

in the brain (Morris et al., 2010; Villemagne et al., 2011). The detrimental effect of APOE ε4 on 

executive attention in older adulthood and the very early stages of AD is likely mediated in part 

by amyloid deposition in regions including the prefrontal cortex (Aschenbrenner et al., 2014). 

Research probing the relationship between APOE ε4 and amyloid across the lifespan found that 
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despite no episodic memory performance difference, ε4 carriers showed accelerated deposition 

of amyloid, with 10% of the population defined as amyloid positive by halfway through the fifth 

decade (Jack et al., 2015).  This may also be the route by which APOE ε4 impacts functional 

connectivity (Sheline et al., 2010), demonstrated in the earlier research of Trachtenberg et al 

(2012a; 2012b). These changes may be particularly relevant for executive attention, which 

requires communication between multiple processing regions. Imaging techniques should be 

used to explore which neural mechanisms are most relevant for the initial stages of cognitive 

ageing in ε4 carriers.  

 

At present, there is insufficient research on the cognitive profile of healthy ε2 carriers. The 

current results, however, contrast with past research suggesting ε2 is protective (Chiang et al., 

2010; Farrer et al., 1997; Helkala et al., 1996; Lippa et al., 1997; Wilson et al., 2002). The 

results reported here are based on a small sample of ε2 carriers, but contribute to the small 

number of studies that have explored ε2 effects on cognition prior to older-adulthood 

(Alexander et al., 2007; Alexopoulos et al., 2011).  Recent papers have reported differential 

spatial navigation strategies in ε2 carriers in youth (Konishi et al., 2016), as well as altered 

memory function in individuals diagnosed with post-traumatic stress disorder (Freeman et al., 

2005; Johnson et al., 2015; Kim et al., 2013). Therefore, although it may be possible to detect ε2 

differences earlier in the lifespan, the link between APOE ε2 and executive attention is also 

relatively unexplored.  

 

Recent research, however, reported overlap in the functional activation patterns of ε2 and ε4 

carriers compared to ε3 carriers, despite no behavioural differences (Trachtenberg et al., 2012a; 

Trachtenberg et al., 2012b). Whereas, the behavioural profile of ε2 carriers and ε4 in the current 

study did not overlap, both groups showed some disadvantage in attentional control. This 

encourages a closer examination of the hypothesised polarity in APOE effects. Our behavioural 

results suggest late-life dementia risk might not equate with cognitive performance in mid-

adulthood, with both ε2 and ε4 carriers showing process-specific detriments. It may be that ε4 

carriers show increased vulnerability to cognitive insult (Wirth et al., 2014), whereas ε2 carriers 

are better able to employ protective mechanisms. In support of a compensatory mechanism in ε2 

carriers, in adults aged 90+ years, carriers of this variant were significantly less likely to meet 

clinical criteria for AD diagnoses, despite similar levels of AD neuropathology between ε2 and 

ε4 genotypes at autopsy (Berlau et al, 2009). Reports have also been made, however, that ε2 is 

protective against amyloid deposition in later life (Morris et al., 2010), and in AD (Nagy et al., 

1995). 
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Several limitations of the current study must be acknowledged. First, the number of participants 

within each genotype group was relatively small, meaning analysis may have lacked statistical 

power. This also limited exploration of gene dose effects. Effects of ε4 gene dose (i.e. increased 

impact with 0, 1, and 2 ε4 alleles) have been reported (Farrer et al., 1997; Raber et al., 2004; 

Wilson et al, 2011), however, the effects of ε2 zygosity are less clearly demonstrated (Farrer et 

al., 1997).  An additional analysis to the results reported here found no differences by APOE 

haplotype, but this would need to be further determined in future research. In addition, 

performance on the PM task was close to ceiling, and so the task may have lacked sensitivity for 

discriminating between genotype groups. Future research would benefit from increasing the 

demands placed on the attentional control system, for example by increasing the resource needs 

of the ongoing task.  

 

4.6 Conclusions 

 

In this study, both those carrying detrimental and protective variants of APOE showed 

decrements in executive attention by mid-adulthood. In ε4 carriers, subtle disadvantages on a 

Stroop task and in PM retrieval were apparent, suggestive of deficits in goal-maintenance in the 

face of irrelevant information processing. This indicates that through the application of sensitive 

research paradigms, it is possible to identify those at genetic risk of cognitive decline from mid-

adulthood. Surprisingly, behavioural disadvantages were identified in ε2 carriers, despite the 

premised benefits of carrying this allele for cognitive health in older adulthood. Of critical 

importance, results illustrate the importance of including ε2 carriers as an independent group, 

and the need to establish both how this variant influences cognition and neural function across 

the lifespan, and how it interacts with environmental factors to promote protection against age-

related cognitive decline.  
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5.1 Abstract 
 
Objective: To investigate how environmental factors impact age-related cognitive deficits by 

mid-adulthood, both independently and in interaction with APOE genotype. 

Method: Cognitive data from 66 adults (aged 45-55 years), representing executive attentional 

processes (goal maintenance, updating, and inhibition) and subjective reports of cognitive 

failures, were included in multiple regression analyses. Genotype (ε2, ε3, ε4), cognitive reserve 

(education, occupation and leisure activities, estimated IQ), self-reported physical activity, and 

metabolic and cardiovascular health (body mass index, mean arterial blood pressure) were 

included as predictors. 

Results: In ε4 carriers, protective effects of cognitive reserve were selectively observed for goal 

maintenance abilities. In ε2 carriers, counter-intuitively, increased cognitive reserve was 

associated with greater self-report of cognitive errors. 

Conclusions: Cognitive reserve appears to protect against the emergence of early goal 

maintenance impairments in ε4 carriers. Across objective cognitive measures, ε2 carriers appear 

less sensitive to the protective effects of cognitive reserve. We conclude that ε4 carriers may 

show greater plasticity to factors modifying age-related cognitive deficits in mid-adulthood, 

highlighting the importance of taking preventative steps against cognitive decline earlier in the 

lifespan.  

 

Key words: APOE, Cognitive Ageing, Executive function, Cognitive Reserve, Mid-adulthood 

 
 
 
 
 
 
 
 
 
 
 
5.2 Public Significance Statement 

The study revealed a protective effect of cognitive reserve in mid-age adults carrying a genetic 

risk for dementia, indicating this group may show increased plasticity to the modifying effects 

of environmental factors that mitigate against age-associated deficits. Environmental factors 

with the potential to modify genetic susceptibility to age-related cognitive decline advance our 

understanding of protective strategies. In addition, by demonstrating effects in mid-adulthood, 

the results emphasize the importance of implementing potential interventions early. 
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5.3 Introduction 

 

Apolipoprotein E (APOE) is a single nucleotide polymorphism with six possible genotypes 

determined by the combination of three alleles: ε2, ε3 and ε4. Possession of the ε4 allele is a 

well-established risk factor for late onset Alzheimer’s disease (LOAD) (Corder et al., 1993; 

Farrer et al., 1997). The prevalence of the ε4 allele, carried by ~ 23% of Caucasian individuals 

(Raber et al., 2004), makes this variant an important target for interventions that help prevent 

cognitive decline. By contrast, the ε2 allele is held to offer protection against LOAD (Farrer et 

al., 1997; Lippa et al., 1997; Wilson et al., 2002). 

 

Opposing influences of the ε4 and ε2 variants are also reported in healthy cognitive ageing. The 

ε4 allele is associated with cognitive deficits across various domains in older adulthood, 

including global cognition, episodic memory, attention, and executive function (e.g. Berteau-

Pavy, Park, & Raber, 2007; Espeseth et al., 2006; Marioni et al., 2015; Packard et al., 2007; 

Reinvang, Winjevoll, Rootwelt, & Espeseth, 2010; Staehelin, Perrig-Chiello, Mitrache, 

Miserez, & Perrig, 1999; for reviews see: Small, Rosnick, Fratiglioni, & Bäckman, 2004, 

Wisdom, Callahan, & Hawkins, 2011). Although less frequently studied, possession of an ε2 

allele is associated with benefits to memory and executive function in older adulthood (Bonner-

Jackson, Okonkwo, & Tremont, 2012; Deary et al., 2004; Helkala et al., 1996), coupled with 

reduced longitudinal cognitive decline (Blair et al., 2005).  

 

The opposing effects of APOE variants in later life highlight the possibility that the ε2 and ε4 

alleles differ in their behavioural and neural effects across the lifespan, and in their respective 

trajectories of cognitive ageing. To date, the bulk of research focuses on isolating the effects of 

the ε4 allele, whilst collectively considering carriers of the ε2 and ε3 alleles as a low risk group, 

or excluding ε2 carriers from the sample. Previous research comparing all APOE variants, 

surprisingly reports similar patterns of brain activation in ε2 and ε4 carriers from mid-

adulthood. In adults aged 32-55 years, both genotype groups displayed increased task-unrelated 

neural activity during executive attention and episodic memory tasks, compared to an ε3 group, 

despite no performance differences (Trachtenberg et al., 2012a). Likewise, comparable 

differences in resting-state activity are reported in mid-age ε2 and ε4 carriers (Trachtenberg et 

al., 2012b). In an older sample (aged 54-80 years), groups of ε2 and ε4 carriers both show 

diminished functional connectivity in the default mode network, that correlated with measures 

of processing speed (Shu et al., 2016). Importantly, cross-sectional comparisons across the age-

range suggest the genotype groups are associated with opposing trajectories of change in 

functional connectivity, with increasing connectivity in ε2 carriers and decreasing connectivity 

in ε4 carriers observed with age. These results call into question the assumption made by many 
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studies, that the ε2 and ε4 alleles have differential effects across the lifespan, and hence a key 

question for future research is how these opposing late-life effects develop.  

 

Although ε4 and ε2 alleles may independently confer a differential vulnerability for cognitive 

decline, interactions between APOE genotype and additional mitigating factors are important to 

consider. Variants of the APOE gene may differ in their susceptibility to the influence of factors 

associated with age-related cognitive decline.  In addition, the strength of genotype effects on 

cognition may be influenced by an individual’s brain reserve (e.g., Bunce, Kivipelto, & Wahlin, 

2004; Lindenberger, 2008), and hence factors that modify brain reserve may modulate the 

influence of APOE variants on the early ageing trajectory. In the present study we present an 

exploratory analysis of the effects of cognitive engagement, physical activity, and indices of 

cardiovascular and metabolic health (arterial pressure and body mass index (BMI)) on APOE 

genotype differences in mid-adulthood.  

 

5.3.1 APOE and Cognitive Reserve 

 

Cognitive reserve suggests that the threshold at which cognitive deficits emerge as a function of 

age-related neural decline is actively modified through lifetime cognitive engagement (for 

review see Barulli & Stern, 2013; Scarmeas & Stern, 2003; Stern, 2002). Education and IQ, as 

well as occupation and ongoing leisure activities, have been used as proxies of cognitive reserve 

(Barnes & Yaffe, 2011; Cheng, 2016). APOE ε4 carriers are reported to show increased benefit 

of high cognitive reserve on later-life cognition (Brewster et al., 2014; Bunce, Kivipelto, et al., 

2004; Carlsson, Gleason, Hess, & Moreland, 2008; Forstmeier et al., 2012; Vemuri et al., 2014; 

Wirth et al., 2014). Furthermore, young and mid-life cognitive activity has been associated with 

biomarkers of Alzheimer’s disease pathology (amyloidosis, brain metabolism) in APOE ε4 

carriers (Vemuri et al., 2016; Wirth et al., 2014). Research exploring how cognitive reserve 

impacts APOE ε4 behavioural differences earlier in the lifespan, however, is limited. 

 

To date, there has been minimal research exploring the interaction between APOE ε2 and 

cognitive reserve. One longitudinal study (mean follow-up 9.2 years) found enhanced benefits 

of cognitive reserve, indexed through years of education, vocabulary and reading level, on the 

emergence of pathological cognitive change in ε2 carriers (Soldan et al., 2013). This research 

found independent associations of ε4 status and cognitive reserve on later-life risk, but contrary 

to previous research, found no interaction between the two factors. Variation in the method of 

assessing cognitive reserve and which epoch of the lifespan is targeted could account for 

inconsistency in the reported relationship between cognitive reserve and APOE ε4.  The 
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question of whether ε4 and ε2 carriers show similar benefits of cognitive reserve, and the age at 

which these effects emerge, however, remains unclear.  

 

5.3.2. APOE and Physical Activity 

 

Ε4 carriers demonstrate greater vulnerability to the adverse effects of low physical activity, here 

collectively referring to both purposeful exercise and active leisure time (e.g., gardening, 

housework). Several studies report greater benefits of physical activity on the cognitive 

performance of older ε4 carriers compared to their non-ε4 peers (Etnier et al., 2007; Woodard et 

al., 2012; Niti, Yap, Kua, Tan, & Ng, 2008; Schuit, Feskens, Launer, & Kromhout, 2001). 

Inactivity in ε4 carriers is associated with longitudinal declines in hippocampal volume, (Smith 

et al., 2014). Importantly, from mid-adulthood a sedentary lifestyle has been linked to increased 

amyloid deposition in ε4 carriers (Smith, Nielson, Woodard, Seidenberg, & Rao, 2013; Head et 

al, 2012), providing a potential mechanism for the relationship between APOE ε4, physical 

activity and cognitive decline. Physical activity in mid-adulthood exerted the greatest protective 

effect in ε4 carriers on cognitive ageing 21 years later (Rovio et al., 2005), highlighting the 

importance of physical fitness earlier in the lifespan. As yet, the link between APOE ε2 and 

physical activity is not well established.   

 

5.3.3. APOE, cardiovascular health and metabolic function  

 

Cardiovascular factors, including hypertension, hypercholesterolemia, and obesity, are risk 

factors for cognitive decline (Anstey, Cherbuin, Budge, & Young, 2011; Atzmon et al., 2002; 

Köhler et al., 2014; van Exel et al., 2002; Whitmer, Sidney, Selby, Johnston, & Yaffe, 2005). 

Ε4 carriers are predisposed to poorer cardiovascular health (Bennet et al., 2007; de Frias et al., 

2007; Haan & Mayeda, 2010). In turn, the relationship between vascular heath and cognitive 

decline appears more marked in older ε4 carriers (e.g. de Frias et al., 2007; Zade et al., 2010).  

 

Importantly, blood pressure differentially impacts the relationship between APOE genotype and 

cognition from mid-life. Systolic blood pressure moderates the association between ε4 and 

cognitive performance in mid-adulthood (Bender & Raz, 2012; Oberlin et al., 2015). High pulse 

pressure negatively impacted longitudinal change in episodic memory in ε4 carriers and 

homozygous ε3 carriers aged 53 years and older, but not in ε2s (McFall et al., 2015). This 

supports greater vulnerability in ε4 carriers to cognitive insult from mid-adulthood, whilst ε2 

carriers appear to show reduced sensitivity.  
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Body mass index (BMI) is a marker of health status, with high BMI associated with increased 

risk of vascular-related disease (Kivipelto & Solomon, 2008; Qiu, Kivipelto, & Von Strauss, 

2009). In a cross-sectional study, high BMI was associated with lower cognitive performance 

(Corley, Gow, Starr, & Deary, 2010; Nilsson & Nilsson, 2009), as well as greater decline in 

cognition from 40 years of age (Dahl et al., 2013; Dahl, Hassing, Fransson, & Pedersen, 2010). 

How BMI interacts with APOE status is less well established; in older adults (aged 65 plus), the 

negative effects of ε4 status increase with lower BMI (Rajan, Skarupski, Rasmussen, & Evans, 

2014; Sachs-Ericsson, Sawyer, Corsentino, Collins, & Blazer, 2010). Low BMI in later life, 

however, is associated with increased illness (Newman et al., 2005), which may contribute to 

exaggerated ε4 effects in older-adulthood. In a mid-age sample, however, the relationship 

between BMI, APOE ε4 and cognition may be reversed.  

 

5.3.4. Current aims and hypotheses 

 

The present research explores the potential impact of APOE allelic variation on cognition in 

mid-adulthood, addressing previous shortcomings in considering how cognitive reserve, 

physical activity, cardiovascular and metabolic health moderate the effects of both ε4 and ε2 

alleles. By focusing on mid-adulthood, the research aims to capture how key modifiers of 

cognitive ageing influence the emergence of early cognitive differences between APOE 

genotypes, progressing our understanding of what might protect or promote cognitive health in 

mid-age.  

 

A series of hierarchical regression analyses explore the independent and interactive effects of 

these factors on components of executive attention, as well as subjective ratings of cognitive 

errors. Executive attention is a cognitive domain sensitive to APOE genotype effects in mid-

adulthood (Chen et al., 2013; Evans et al 2013, 2014; Velichkovsky, Roschina, & Selezneva, 

2015; Yan, Wu, Chao, Chen, & Tseng, 2015). It is also sensitive to both the effects of physical 

activity and cognitive reserve (Smith et al., 2011). Here we derive a composite index of 

executive attention from performance across three tasks (a prospective memory task, rapid 

visual information processing task (RVIP) and a Stroop-switch task). Following Miyake & 

Friedman (2012), these tasks combine online maintenance of goals, updating, shifting and 

inhibition, and have been shown to load on frontal lobe function (Cona, Bisiacchi, Sartori, & 

Scarpazza, 2016; Evans et al., 2014; Kane & Engle, 2003; Neale, Johnston, Hughes, & Scholey, 

2015). 

 

We predicted that carrying an ε4 allele would increase vulnerability to the impact of risk factors 

for cognitive decline, namely low physical activity, increased BMI and high blood pressure. In 
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addition, we expected that ε4 carriers would show enhanced protective effects of lifetime 

cognitive engagement. At present, there is little to guide our predictions of how these factors 

may modify cognition in ε2 carriers, but we anticipated differences in the sensitivity of the two 

groups, in line with the reported divergence of cognitive ageing trajectories between APOE 

genotypes. 

 

5.4. Methods 

 

5.4.1. Participants 

 

165 volunteers were recruited for a mid-age APOE genotype database via advertisement at local 

universities, community centers and clubs. For participation, volunteers were required to be 45-

55 years of age, non-smokers, fluent in English, and with no diagnosed history of vascular, 

psychiatric or neurological illness within the past 5 years. In addition, volunteers were screened 

for current medication use. 

 

From this database, a smaller number of volunteers (n=66) participated in the cognitive test 

session. As the distribution of allelic variants in the APOE-screened database was heavily 

biased towards ε3 homozygotes (consistent with population norms (Raber et al., 2004)), a third 

party randomly selected approximately equal numbers of each genotype group, ε2 carrier 

(ε2/ε2, ε2/ε3), homozygous ε3, and ε4 carrier (ε3/ε4, ε4/ε4), for recall; ε2/ε4 carriers were 

excluded from participation as understanding of these variants in combination is limited. The 

study followed double-blind procedures in that both the participant and experimenter were blind 

to genotype information. Demographic information, including National Adult Reading Test 

(NART) (Nelson & Willison, 1991), is displayed in Table 5.1. The University of Sussex, School 

of Psychology and Life Sciences Research Ethics Committee approved the study, with 

procedures adhering to the Code of Ethics of the World Medical Association (Declaration of 

Helsinki). 

 

5.4.2. Materials  

 

Physical measures were recorded for each volunteer including height and weight measurements, 

and seated systolic and diastolic blood pressure (using an upper-arm automatic monitor). In 

addition, physical activity was assessed using a scale taken from the Nurses Health Study 

(Colditz & Hankinson, 2005; Colditz, Manson, & Hankinson, 1997). Average frequency of 10 

listed activities, over the past 6 months, was scored on a 10-point scale ranging from 0 minutes 

per week, to 11+ hours per week. A single score was derived for each participant by summing 



	

	

102	

responses for each ordinal scale with higher values representing greater engagement with 

physical activities.   

 

The Cognitive Reserve Index quotient (CRIq) (Nucci, 2012), a 20-item questionnaire assessing 

education, occupational background and adult leisure activities, was administered. A score for 

each of these components, as well as an overall cognitive reserve score was produced. The 

education sub-score was based on the number of years in education and/or vocational training. 

Occupational background was measured as the number of years working (part-time, full-time) 

across 5 levels of employment, split as a function of presumed intellectual demand and personal 

responsibility (unskilled manual work, skilled manual work, skilled non-manual work, 

professional occupation or highly intellectual occupation). Examples of each were included. 16 

items measuring leisure time activity were included, divided by frequency (weekly, monthly, 

annual). Frequency of each item was rated: never/rarely or often/always. If the activity was 

carried out ‘often/always’, participants were asked to provide an estimate of the number of years 

of activity since reaching adulthood. Number of children was also included in the leisure 

activity domain. Higher scores represented greater engagement with cognitively stimulating 

activities. 

 

Table 5.1. Sample characteristics shown grouped by APOE status 

 
Genotype  

ε2 ε3 ε4 p 
n 16 26 24  

Age 50.4 (3.6) 49.0 (2.7) 49.2 (3.1) .319 
Gender (% f) 75 73 63 .624 

Family History (%) 25 35 58 .077 
NART 119.1 (2.8) 118.6 (2.9) 116.9 (4.6) .258 

Education (years) 17.2 (3.2) 17.2 (3.1) 17.9 (4.3) .804 
CRIq (total) 128.4 (8.6) 119.5 (9.7) 122 (12.0) .030 
BMI (kg/m2) 24.0 (3.4) 26.2 (4.4) 25.2 (3.8) .341 

Systolic BP (mmHg) 115.6 (7.6) 118.2 (8.5) 115.0 (8.8) .365 
Diastolic BP (mmHG) 77.3 (10.0.) 81.8 (10.6) 79.1 (7.8) .320 
Physical activity (/90) 19.3 (6.4) 17.8 (9.0) 17.3 (10.6) .785 

 Notes: Family history is coded as the number of volunteers with a first-degree relative 
diagnosed with dementia. Values represent mean (sd) unless otherwise stated. Abbreviations: 
National adult reading test (NART), Cognitive reserve quotient index (CRIq), body mass index 
(BMI), blood pressure (BP).   
 

5.4.2.1. Composite predictors 

 

The following variables were considered as moderators of the relationship between APOE 

genotype and cognition: estimated IQ (taken from NART), total CRIq, BMI, mean arterial 

pressure (MAP), and physical activity score. Note, arterial pressure was calculated using the 
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formula: diastolic pressure + ⅓ (systolic pressure – diastolic pressure) (e.g. Salvi, 2012; Tian et 

al., 2013; Zheng et al., 2008), and represents the steady component of blood pressure (Sesso et 

al., 2000).  

 

Data for each potential moderator was screened for normality prior to analysis. Two scores on 

individual measures were identified as outliers (3 standard deviations (SD) or more away from 

the group mean). These scores were removed but the remaining data for these two participants 

were included in the analysis.  

 

To assess the independent effects of physical activity this variable was treated as an individual 

predictor. The remaining moderator variables were submitted to principle components analysis 

(PCA) with varimax rotation; extraction was based on Eigenvalues greater than 1 (component 

loadings are shown in brackets). Estimated IQ (.71) and CRIq score (.85) significantly 

correlated (r(63)=.26, p=.022) and loaded on a single component, henceforth named ‘Cognitive 

reserve’. MAP (.80) and BMI (.79) loaded onto the same component, henceforth called 

‘metabolic and vascular health’, and were again, significantly correlated, r(63)=.30, p=.010.  

 

All predictors were converted into standardized Z-scores, and the average of these standardized 

scores were used to form composites of ‘cognitive reserve’ and ‘metabolic and vascular health’. 

For participants with incomplete data (N=2) (i.e. those identified as having an outlier), scores 

were created based on the remaining standardized variable. 

 

5.4.2.2. Cognitive outcomes 

 

The executive attention tasks used in the current analyses have previously been described in 

Lancaster, Tabet and Rusted (2016). Performance on a prospective memory task (PM) (with 

ongoing speeded decision-making component) (Rusted & Trawley, 2006), rapid visual-

information processing (RVIP) task (Wesnes & Warburton, 1983), and Stroop-switch paradigm 

(Hutchison et al., 2010) were included.  

 

In addition, volunteers were asked to complete 2 subjective measures of everyday cognition. 

The Cognitive Failures Questionnaire (CFq) (Broadbent, Cooper, FitzGerald, & Parkes, 1982) 

asks volunteers to rate how often they make 25 common ‘cognitive failures’, on a scale from 

‘Never’ (0) to ‘Very often’ (5). Cognitive failures are premised to represent 4 subscales: 

memory, attention, perception and motor ability. A total score for each volunteer was produced, 

with higher scores representing greater reported failures. The Attentional Control scale 

(Derryberry & Reed, 2002) was also used, consisting of 20 items targeting 3 processes; mind 
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wandering, susceptibility to boredom and distractibility. Scores for each question were based on 

a 4-point Likert Scale from ‘Almost never’ (1) to ‘Always’ (4). Responses were scored so 

higher values represented worse attentional control. Internal consistency for both the CFq and 

Attentional Control scale in this group was high (CFq: Cronbach’s α = .906; Attentional Control 

scale: Cronbach’s α = .833). 

 

5.4.2.3. Cognitive composites 

 

Objective indices of executive attention (decision-making RT, PM retrieval, RVIP performance, 

Stroop effect (RT, errors)) were subject to a PCA with varimax rotation. Note, data for both 

target hits and latency on the RVIP task was combined into a single inverse efficiency score 

(Bruyer & Brysbaert, 2011; Townsend & Ashby, 1978). Performance on these measures was 

screened for outliers (M ± 3SD) prior to inclusion in the analysis. 

Components were extracted on the basis of Eigenvalues > 1 and the scree plot. The PCA of 

objective indices suggested 3 components accounting for 60.56% of the variance. Component 1 

accounted for 21.36% of the variance with the following loadings: decision-making RT (.82), 

RVIP inverse efficiency score (.83). Component 2 comprised the Stroop effect (RT) for both 

colour naming trials (.86) and word naming trials (.81), and accounted for 20.83% of the 

variance. Component 3 accounted for 18.34% of the variance, with PM retrieval (.56) and 

Stroop errors for both colour (.46) and word rule trials (-.85) loading on this factor. 

Theoretically these components were interpreted as representing 1) updating, 2) inhibition and 

3) mental-set or goal maintenance, overlapping with the factors identified by (Miyake & 

Friedman, 2012). Performance on the components measures was standardized and averaged for 

variables loading on the same factor to form composite measures. All 3 composites were created 

so that a greater value represented worse performance.  

 

Subjective cognitive indices (CFq, ACs) were considered separately. Scores on these measures 

were highly correlated, r(65)=.470, p <.001, and a PCA confirmed both scales loaded onto one 

factor accounting for 73.5% of the variance. A composite of standardized scores on these scales 

was created, with higher values representing worse ratings of cognition.  

 

5.4.2.4. APOE genotyping 

 

DNA samples, collected by a buccal swab of the inner-cheek, were used to screen for APOE 

genotype, in line with HTA procedures. Samples were analysed by LGC Genomics 
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(Hertfordshire, www.lgcgroup.com/genomics), using a fluorescence-based competitive allele-

specific polymerase chain reaction. The presence of three major APOE alleles (ε2, ε3, and ε4) 

was determined using two APOE single nucleotide polymorphisms (SNPs) (rs429358, rd7412).  

 

5.4.3. Statistical analyses 

 

A series of 12 multiple regression models were used to explore the relationship between APOE 

status, each additional predictor of cognitive decline (cognitive reserve, physical activity, and 

cardiovascular and metabolic health), and cognitive performance. Separate regressions were 

used to explore performance on each of the 4 cognitive composites: (1) updating (2) goal 

maintenance (3) inhibition and, (4) subjective cognition.  

 

APOE genotype was entered into the analysis as two dummy coded variables. The first variable 

coded ε4 carriers against ε4 non-carriers, while the second variable coded ε2 carriers against ε2 

non-carriers, positioning homozygous ε3 carriers as the reference variable. For each cognitive 

outcome, each potential moderator was included in separate models, as well as their interaction 

terms with the two APOE dummy variables.  

 

5.5 Results 

 

Demographics are presented by genotype in Table 5.1. One-way Analyses of Variances 

(ANOVAs) or chi-squared (Χ2) tests were used to check for genotype differences in 

demographic measures. The only significant genotype difference was in total CRIq score, F(2, 

62)=3.70, p=.030, driven by ε2 carriers scoring higher on this measure than the ε3 group 

(Bonferroni corrected p=.026). In addition, the genotype difference in family history of 

dementia approached significance, Χ2 (66)=5.11, p=.077. Genotype differences in the 

standardized predictor and cognitive composites are shown in Table 5.2. The genotype 

difference in cognitive reserve composite approached significance, F(2, 61)=2.47, p=.093. 

 

For each potential moderator (cognitive reserve, physical activity, cardiovascular and metabolic 

health), step 1 of the hierarchical regression included the primary effects of ε4 status, ε2 status 

and the moderator. Interaction terms were added in Step 2. At each step of the regression model, 

the significance of the change in explained variance (R2 ) was tested using a F-ratio statistic. A 

significant change at step 2 indicated that the model including the interaction terms provided a 

better fit for the data. In addition, the significance of individual regression coefficients was 

considered. Changes in R2 (ΔR2) and the β values for each regression model are presented in 

Tables 5.3, 5.4, and 5.5. A conservative α of .01 was applied to correct for Type 1 error.  
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Table 5.2. Scores on standardized composite measures of cognition and lifestyle shown by 
genotype group. 

  
Composite 

  
  

Genotype  

ε2 ε3 ε4 p 

Cognitive GM -.05 (.59) -.20 (.48) .26 (.67) .027 

 
Updating .43 (.79) -.31 (.83) .07 (.80) .022 

 
Inhibition -.13 (.43) .16 (1.19) -.08 (.59) .482 

 
Subjective  -.34 (.86) -.02 (.72) .26 (.94) .095 

Lifestyle CR .38 (.46) -.10 (.56) -.06 (.58) .093 

  PA .15 (.71) -.02 (1.00) -.08 (1.18) .785 

 CMH -.26 (.89) .25 (.82) -.04 (.77) .149 

Notes: Mean (sd). Abbreviations: Goal Maintenance (GM), Cognitive reserve (CR), Physical 
activity (PA), Cardiovascular and metabolic health (CMH). 
 

5.5.1 Cognitive Reserve 

In step 1, ε4 status significantly predicted lower performance on the goal maintenance 

composite (β=.39, p=.003). Possession of an ε2 allele was predictive of lower performance on 

the updating composite (β=.38, p=.010). In addition, primary effects of cognitive reserve were 

found on both the goal maintenance (β=-.36, p=.008) and subjective composites (β=-.39, 

p=.002), in that higher reserve was predictive of better performance.  

 

At step 2, adding the APOE x Cognitive reserve interaction terms accounted for marginally 

more variance in predicting subjective ratings  (p=.017). An ε2 x Cognitive reserve interaction 

suggested that subjective report of cognitive failures by ε2 carriers was predicted by higher 

cognitive reserve according to their subjective ratings of cognition (β=.44, p=.006).   

 

There was a trend towards significantly greater variance in goal maintenance scores being 

accounted for in Step 2 of the model (p=.055), driven by a marginal ε4 x Cognitive reserve 

interaction (β=-.43, p=.019); high cognitive reserve was more positively associated with better 

goal maintenance in ε4 carriers relative to the ε3 reference group. This relationship is shown in 

Figure 5.1. 

 

5.5.2. Physical activity  

 

In step 1, ε4 status was marginally predictive of lower performance on the goal maintenance 

composite (β=.34, p=.014). Possession of an ε2 allele was predictive of lower performance on 

the updating composite (β=.36, p=.010). The primary effect of physical activity was non-
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significant across the 4 domains of cognition (p>.01). Adding the interaction terms in step 2 of 

the models did not account for significantly more variance (p>.01). 

 

5.5.3. Cardiovascular and Metabolic Health 

 

Across cognitive outcomes, regression models including APOE genotype and the composite of 

cardiovascular and metabolic health did not account for significant variance (R2) in performance 

(p>.01). Adding the interaction terms in step 2 of the models did not add significantly to the 

variance accounted for (p>.01).  

 

 
Figure 5.1. The interaction between APOE genotype and cognitive reserve in predicting goal 
maintenance performance 
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Table 5.3. Hierarchical Regression Analyses: Cognitive Performance regressed on APOE status, cognitive reserve and the interaction  

 
Goal Maintenance Updating Inhibition Subjective Cognition 

Predictor β ΔR2  β ΔR2  β ΔR2  β ΔR2  
Step 1 

 
.23* 

 
.12 

 
.03 

 
.20* 

ε4 .39* 
 

.21 
 

-.15 
 

.13 . 
ε2 .22 

 
.38* 

 
-.13 

 
-.06 

 Cognitive Reserve  -.36* 
 

-.01 
 

-.07 
 

-.39* 
 Step 2 

 
.06 

 
.04 

 
.01 

 
.11 

ε4 x Cognitive Reserve -.43 
 

.25 
 

.02 
 

-.02 
 ε2 x Cognitive Reserve -.08 

 
-.05 

 
.17 

 
.44* 

 Notes: *p<.01. Step 1- df ( 3, 60), Step 2- df (2, 58) 
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 Table 5.4. Hierarchical Regression Analyses: Cognitive Performance regressed on APOE status, physical activity (PA), and the interaction

 
Goal Maintenance Updating Inhibition Subjective Cognition 

Predictor β ΔR2  β ΔR2 β ΔR2 β ΔR2 
Step 1 

 
.13 

 
.16 

 
.03 

 
.12 

ε4 .37* 
 

.22 
 

-.14 
 

.15 
 ε2 .10 

 
.36* 

 
-.16 

 
-.14 

 PA .12 
 

.19 
 

.10 
 

-.22 
 Step 2 

 
.09 

 
.03 

 
.02 

 
.05 

ε4 x PA .37 
 

-.27 
 

.15 
 

.08 
 ε2 x PA -.09 

 
.-.11 

 
-.05 

 
-.22 

 Notes: * p<.01. Step 1- df(3, 57), Step 2- df (2, 55) 
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Table 5.5. Hierarchical Regression Analyses: Cognitive Performance regressed on APOE status, cardiovascular and metabolic health, and the interaction 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
	
	
	
	
	
	
	
	
	

 
Goal Maintenance Updating Inhibition Subjective Cognition 

Predictor β ΔR2  β ΔR2 β ΔR2 β ΔR2 
Step 1 

 
.12 

 
.11 

 
.03 

 
.07 

ε4 .34 
 

.18 
 

-.15 
 

.16 
 ε2 .06 

 
.34 

 
-.16 

 
-.16 

 CMH -.14 
 

-.08 
 

-.05 
 

-.03 
 Step 2 

 
.01 

 
.00 

 
.00 

 
.03 

ε4+ x CMH -.02 
 

.03 
 

.02 
 

.25 
 ε2+ x CMH -.14 

 
.08 

 
.02 

 
.10 

 Notes: * p<.01. Step 1- df(3, 57), Step 2- df (2, 55) 
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5.6 Discussion 

 

The ε4 and ε2 variants of APOE have differential effects on cognitive fitness in later life 

(Corder, et al., 1994; Farrer et al., 1997), yet in this mid-aged sample, both ε4 and ε2 

participants demonstrated subtle impairments on executive attention measures. The present 

research provides a preliminary exploration of how key factors implicated in cognitive ageing 

moderate the presence of APOE genotype effects in mid-adulthood.  

 

The results support both independent and interactive effects of cognitive reserve on executive 

attention in mid-adulthood. Higher levels of cognitive reserve were associated with performance 

benefits in the ‘online’ maintenance of goals and fewer subjective reports of cognitive errors. 

After accounting for interactions with APOE genotype, cognitive reserve appears to exert a 

protective influence on goal maintenance abilities in ε4 carriers only. For subjective ratings of 

cognition, the positive effect of cognitive reserve for the ε3 control group remained significant, 

however the reverse was seen in ε2 carriers, in that higher levels of cognitive reserve were 

associated with more reported cognitive failings. In this sample of mid-age adults, neither 

physical activity nor indices of cardiovascular and metabolic health exerted independent or 

interactive effects on cognition.  

 

Previous research has demonstrated an effect of mid-life cognitive reserve on later-life 

cognition and biomarkers of ageing (Tolppanen et al., 2015; Vemuri et al., 2014; Wirth et al., 

2014). The present results, however, are important in suggesting cognitive reserve may 

influence the trajectory of cognitive ageing from at least the 5th decade. Support for a beneficial 

effect of cognitive reserve earlier in the lifespan indicates a potential neuroprotective role for 

factors, such as education, occupational complexity and cognitively engageing leisure activities, 

which increase reserve. This fits with recent evidence that cognitive reserve can both modulate 

the development of neuropathology across the lifespan and impede the behavioural 

manifestations of existing AD-related pathology (Arenaza-Urquijo, Wirth, & Chételat, 2015).  

 

Of interest, the protective effect of cognitive reserve was selectively enhanced in ε4 carriers for 

performance on measures of active goal maintenance, an important result given that goal 

maintenance was sensitive to impairment in mid-age ε4 carriers. The observed interaction 

between APOE ε4 and cognitive reserve is in line with past research suggesting the protective 

effects of cognitive reserve are enhanced in ε4 carriers later in life (e.g Carlsson et al, 2008; 

Vemuri et al., 2014; Wirth et al, 2014, Brewster et al., 2014). A recent meta-analysis of fMRI 

studies including healthy older adults found increased cognitive reserve was associated with 

activation differences within bilateral frontoparietal regions, including the anterior cingulate, 
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precuneus and dorsolateral prefrontal cortex (Colangeli et al., 2016).  These regions are 

implicated in executive control functions, and sensitive to ε4 differences in function prior to old 

age (Chen et al., 2016; Evans et al., 2014), aligning with the APOE ε4 x cognitive reserve 

interaction observed here in mid-adulthood. Importantly, this interaction at mid-adulthood 

suggests lifestyle cognitive enrichment may shift the emerging ageing trajectory of this group.  

 

Links to the deposition of amyloid provides a potential mechanism for the protective effects of 

cognitive reserve in mid-age ε4 carriers. Cognitive reserve is reported to impact amyloid 

neuropathology (Jagust & Mormino, 2011; Landau et al., 2012; Rentz et al., 2010), with the 

relationship exaggerated in healthy older ε4 carriers (Schreiber et al., 2016; Wirth et al., 2014). 

Relative to ε3 carriers, a higher percentage of ε4 carriers show significant amyloid build-up by 

the 5th decade (Jack et al., 2015; Morishima-Kawashima et al., 2000). In addition, frontal 

regions (which support goal maintenance) show loss of neural integrity and amyloid build up 

early in the ageing process (Bartzokis et al., 2003; Raz, 2000; Villemagne et al., 2011) . The 

directional nature of these relationships need to be established, however. 

 

In contrast to the findings of Soldan et al. (2013), the current study did not demonstrate 

cognitive benefits of higher cognitive reserve in ε2 carriers. The discrepant results may reflect 

the younger age group in the present study, or the particular measure of cognitive reserve 

(estimated from occupation and leisure activities). Alternatively, the results may simply indicate 

that ε2 carriers are less sensitive to modulation by both detrimental and protective factors 

associated with cognitive decline (McFall et al., 2015). The findings reported here should be 

interpreted with caution, due to the small number of ε2 carriers in the present analysis.  

Surprisingly, cognitive reserve was associated with greater reported cognitive failings in the ε2 

group, though they had a higher mean cognitive reserve score than the ε3 group. It may be that 

diminished gains are measurable in those with high baseline scores. Across the sample, 

cognitive reserve was generally high with all participants having a CRq score classed in the 

mid-band or above (mid: n=15, mid-high n=33, high: n=17), hence, the protective effects of 

cognitive reserve may be greater in a more diverse sample.   

 

The majority of research has demonstrated increased vulnerability in older ε4 carriers to the 

detrimental effects of risk factors associated with cognitive decline (e.g. physical inactivity, 

hypertension) (e.g. Woodard et al., 2012, Schuit et al., 2001; Etnier et al., 2007; Bunce et al, 

2004; de Frias et al., 2007; Zade et al., 2010). The current study explored those relationships in 

a mid-age cohort, anticipating that negative risk factors would exacerbate the detrimental effects 

of ε4 genotype on executive attention. It may be that the age-range included here was too 

young, and that the participants, being reasonably healthy and normotensive, did not generate 
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the spread of scores needed to see modulatory effects. In support, Oberlin et al (2015) only 

observed the negative association between ε4 status and cognition in prehypertensive or 

hypertensive mid-age adults (systolic blood pressure > 130mm hg).  

 

Several limitations of the current study must be addressed when considering the implications of 

these results. The number of participants in each genotype group was relatively small, and 

hence the analysis may be underpowered for detecting subtle effects, particularly relating to 

differences within the normal range of physiological functioning. In addition, the study used a 

self-report scale of exercise frequency. Previous studies have considered exercise as a function 

of average metabolic expenditure rather than weekly duration (Head et al., 2012), or objectively 

measured fitness (Etnier et al., 2007), which may provide a more indepth measure of physical 

activity. Also caution must be taken with attempting to infer the long term moderation of 

genotype effects by additional factors when the data is cross-sectional. The findings from this 

study, however, provide motivation for larger studies exploring the moderation of APOE 

genotype effects in mid-adulthood. 

 

5.7 Conclusions 

 

In this study, increased cognitive reserve, indexed through education, occupation and 

engagement in leisure activities, protected ε4 carriers against subtle impairments in goal 

maintenance abilities. Although reported physical activity did not interact with APOE ε4 status 

in this mid-age group, the results are consistent with the suggestion that APOE ε4 represents a 

plasticity gene, such that carriers from mid-adulthood show increased sensitivity both to 

protective and risk factors for cognitive ageing. This highlights the potential importance of 

taking steps to prevent cognitive decline earlier in the lifespan for those at increased risk. In 

contrast, the relative lack of ε2 interactions with cognitive reserve or current reported physical 

activity may suggest this variant shows reduced susceptibility to both positive and adverse 

influences.  
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6. Article 5 

 

Prospective Memory: Age related change is influenced 

by APOE genotype 
 
 
Article 5 is submitted to Neurobiology of Ageing as: 

Lancaster, C., McDaniel M., Tabet, N., & Rusted, J. (under review). Prospective 
Memory: Age related change is influenced by APOE genotype  
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6.1. Abstract 
 
Non-focal prospective memory (PM) is sensitive to age-related decline; an additional 

impairment in focal PM is characteristic of Alzheimer’s disease. This research explores if 

differences in the demands of focal and non-focal PM retrieval expose cognitive differences in 

carriers of an APOE ε4 allele, a genetic risk factor for Alzheimer’s disease, by mid-adulthood. 

33 young and 55 mid-age adults, differentiated by APOE genotype, completed a category-

decision task with a concurrent focal or non-focal PM task. In addition, ongoing WM load was 

manipulated to investigate whether genotype differences were more likely to be observed under 

high cognitive demand.  Only mid-age ε4 carriers show a cost of carrying a focal PM intention. 

All groups showed a significant cost of carrying a non-focal PM intention; however, mid-age ε4 

carriers showed greater cost than both the young ε4 group and mid-age ε3 group, consistent 

with compromised processing in this group by mid-adulthood. The profile of cost differences is 

consistent with that observed in pathological ageing, indicative of early vulnerability in the ε4 

group.   

 

Keywords: APOE, Prospective memory, Cognitive Ageing, Alzheimer’s disease, Mid-

adulthood 
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6.2. Introduction7 
 

Prospective memory (PM) refers to the timely recall of a previously formed intention whilst 

being engaged in ongoing cognitive activity. Importantly, what distinguishes PM from 

retrospective memory is that retrieval of the intention is self-initiated (McDaniel et al., 2015), 

and hence it relies on a somewhat different subset of cognitive processes. Each day includes 

numerous examples of PM, such as remembering to take medications on time or to pass on a 

message to a family member, and hence PM is important for maintaining independent living in 

older adulthood (Kliegel et al., 2016; McDaniel et al., 2008).  

 

6.2.1. Age-related change in prospective memory 

 

Healthy ageing is associated with decline in PM performance, with the greatest change seen in 

situations where carrying the PM intention burdens available cognitive processing resources 

(Henry et al., 2004; Kliegel et al., 2008). The cognitive demand of PM is, in part, dependent on 

how central the cue initiating PM retrieval is to the ongoing task (Scullin et al., 2010). The 

multi-process framework of PM (McDaniel & Einstein, 2000) argues that focal cues, defined as 

those that are processed directly as part of the ongoing task, activate spontaneous, relatively 

automatic retrieval processes. In contrast, features of non-focal PM cues are not processed as 

part of the ongoing task, and hence cognitive control is required to maintain the intention at the 

forefront of attention and actively monitor for its presence (Einstein et al., 2005; McDaniel et 

al., 2015; Scullin et al., 2010). As ageing is associated with reduced cognitive processing 

resources (Salthouse, 1991), non-focal PM is subject to substantially greater impairment than 

focal PM with increasing age. Aligned with this pattern, non-focal PM is supported by frontal 

regions of the brain (Cona et al., 2016; Cona et al., 2015; McDaniel et al., 2013), which show 

early sensitivity to age-related change (Bartzokis et al., 2003; Raz, 2000; Villemagne et al., 

2011). Pathological cognitive ageing is distinguished by an additional impairment in focal PM 

(Blanco-Campal et al., 2009; Costa et al., 2011; Duchek et al., 2006; McDaniel et al. 2011). 

This may be due to greater reliance of retrieval on ‘bottom-up’ attention and associative 

memory processes, mediated by occipital, parietal (Cona et al., 2016) and temporal lobe regions 

(McDaniel et al., 2013). 

 

 

 

 

																																																								
7	Abbreviations: Prospective Memory (PM), Apolipoprotein E (APOE), working memory 
(WM) 
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6.2.2. Does APOE influence age-related change in prospective memory?  

 

The distinct profiles of PM impairment associated with healthy and pathological cognitive 

ageing provide an interesting framework for exploring the effects of Apolipoprotein E (APOE) 

ε4 across the lifespan. APOE ε4, one of the three variants of the APOE single nucleotide 

polymorphism (ε2, ε3, ε4), is a well established risk factor for Alzheimer’s disease (AD) 

(Corder et al., 1993). In addition, carrying at least one copy of the ε4 allele is linked to poorer 

cognition in healthy older adults (e.g. Jack et al., 2015; Marioni et al., 2015; Reinvang et al., 

2010; for reviews see: Small et al., 2004; Wisdom et al., 2011), although this result has not 

consistently been found (e.g. Bunce et al., 2014; Bunce et al., 2004; Salo et al., 2001). One 

reason behind this inconsistency may be the non-uniformity of ε4 effects across cognitive 

domains (Lancaster et al., 2017; Small et al., 2004; Wisdom et al., 2011).  

 

Evidence for the sensitivity of PM to APOE genotype effects in later life is mixed. Whilst 

carrying an ε4 allele was associated with increased impairment on a focal PM task in adults 

with mild AD, healthy older ε4 carriers demonstrated performance advantages compared to 

their non-ε4 peers (Duchek et al., 2006). Other research however, reported a non-significant 

effect of APOE status in both focal and non-focal PM conditions in a group of healthy older 

adults (McDaniel et al., 2011).  

 

Reports of an association between APOE genotype and cognition are not restricted to later life 

(for reviews see: Ihle et al., 2012; Lancaster et al., 2017; Rusted & Carare, 2015; Salvato, 

2015). A cross-sectional comparison of mid-age (45-55 years) and young adults (18-30 years) 

suggested a speed-accuracy trade-off in mid-age ε4 carriers, with greater non-focal PM retrieval 

accuracy coupled with slower ongoing task response times (RTs) (Evans et al., 2014). In this 

study, task-related BOLD activity in the left inferior frontal gyrus correlated with PM accuracy 

in ε4 carriers, interpreted as a premature shift towards a reliance on frontal lobe activation to 

support cognitive performance. 

 

Lancaster et al. (2016) reported that mid-age ε4 carriers showed subtle impairments in non-focal 

PM retrieval accuracy. In addition, ε4 carriers demonstrated reduced accuracy selectively for 

incongruent trials of a Stroop-switch paradigm. The updating of goals within executive attention 

has consistently been linked to successful non-focal PM retrieval (Schnitzspahn et al., 2013; 

Zuber et al., 2016). In addition the profile of errors on the Stroop task supported impairments in 

the flexible control of multiple goals at the forefront of attention (Conway & Kane, 2001; Kane 

& Engle, 2003). Hence, ε4 carriers may be showing early differences in this component of 

executive attention by mid-adulthood. This is an important avenue for future exploration, as by 
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identifying which cognitive processes differentiate those at heightened risk of cognitive decline 

in mid-adulthood, steps can be made towards developing early intervention strategies.  

 

6.2.3. Aims and hypotheses 

 

The principle aim of this study is to explore age-related APOE genotype differences in focal and 

non-focal PM to help illuminate which cognitive processes are potentially more sensitive to 

premature age-related change in those at heightened genetic risk of cognitive decline. The PM 

task (McDaniel et al., 2011) was embedded within an ongoing category decision task, and  the 

type of PM cues (focal versus non-focal) were manipulated . Both PM retrieval accuracy and 

prospective interference (Marsh et al., 2003) or cost of carrying a PM intention on ongoing task 

performance, will be used in conjunction to index how well volunteers are completing the task. 

For both the ‘at-risk’ ε4 group and homozygous ε3 carriers (the population ‘norm’), cross-

sectional age-related differences in performance will be used to explore the prediction that ε4 

carriers show a profile of accelerated ageing. In addition, in mid-adulthood, performance of ε4 

carriers will be directly compared with their ε3 peers to address whether this group is 

demonstrating disadvantages by the 5th decade.  

 

Following Henry et al. (2004) and Kliegel et al. (2008), we anticipated that mid-age adults 

would find the non-focal PM condition more challenging than younger adults due to the demand 

this places on executive attention resources. This may be reflected in increased interference for 

ongoing task performance or reduced PM retrieval accuracy. The effect of age on focal PM 

performance was predicted to be substantially smaller, in agreement with the suggestion that 

focal PM intentions can be successfully retrieved using automatic ‘stimulus-driven’ processes 

(Harrison & Einstein, 2010; Scullin et al., 2010). 

 

Following Lancaster et al. (2016), we predicted that mid-age ε4 carriers’ premature decline in 

executive attention would increase their age-related deficit in non-focal PM, while focal PM 

performance would be equivalent. As an additional measure, subjective indices of task demand 

and motivation were included as an exploratory means of assessing if APOE genotype 

differences can be accounted for by different approaches to performing the task. 

 

A second goal of the study was to probe the effect of adding a working memory (WM) load 

within the ongoing task on PM performance. The WM load manipulation was designed to place 

an additional tax on executive functioning, and hence exaggerate any genotype differences 

present by mid-adulthood. WM and non-focal PM are hypothesized to draw on distinct yet 

overlapping frontal lobe systems (Basso et al., 2010, Reynolds et al., 2009) and hence tasks 
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loading on the central executive of WM disrupt PM performance (Marsh et al., 2002; West et 

al., 2006).  With age-effects reported previously for PM under WM load (Bisiacchi et al., 2013), 

it was predicted WM load would exacerbate emerging non-focal PM impairments in the mid-

age group. 

 

6.3. Methods 

 

6.3.1 Participants 

 

Participants were recruited from an existing database of young and mid-age volunteers who had 

previously provided swabs for APOE genotyping, or via advertisement in the local community. 

An independent third party pseudo-randomly selected the participants from the database, to 

maintain the population bias towards homozygous ε3, while recruiting a suitable sample size of 

ε4 carriers. No genotype information was provided directly to the researcher; genotype was 

added to the anonymised dataset provided by the researcher at the end of the study. For 

inclusion, participants had to be aged 18-30 years or 45-56 years and using English as their 

daily language.  Exclusion criteria were: a self-reported history of neurological or psychiatric 

illness within the past 5 years and self-reported psychoactive medication use.  

 

All genotyping procedures followed UK Human Tissue Authority (HTA) guidelines, with 

ethical approval for the study granted by the Research Ethics committee of the School of 

Psychology and Life Sciences, University of Sussex. Volunteers were first asked to provide 

written informed consent, including acknowledgment that the results of the genotype analysis 

would not be made available to them. DNA was then collected with a buccal swab, using an 

Isohelix SK1 kit. Genotyping followed triangulated anonymisation procedures, with two 

anonymised codes used per sample. Samples were analysed to determine APOE gene variant by 

LGC Genomics (Hertfordshire, www.lgcgroup.com/genomics). A fluorescence-based 

competitive allele-specific polymerase chain reaction determined the presence of three major 

APOE alleles (ε2, ε3, and ε4) based on two APOE single nucleotide polymorphisms (SNPs) 

(rs429358, rs7412).  

 

The final sample consisted of 37 young volunteers (2 ε2/ε3, 1 ε2/4, 16 ε3/ε3, 12 ε3/ε4, 5 ε4/ε4, 

1 unknown), and 58 mid-age volunteers (3 ε2/ε2, 1 ε2/ε4, 36 ε3/ε3, 14 ε3/ε4, 4 ε4/ε4). Prior to 

analysis individuals with ε2/ε2 or ε2/ε3 genotypes were excluded. Volunteers with ε3/ε3 

genotype, henceforth referred to as ε3 carriers, were treated as the control group, justified by 

this genotype being most prevalent in the population (Farrer et al., 1997). All volunteers 
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carrying an ε4 allele (ε2/ε4, ε3/ε4, ε4/ε4) were grouped together, henceforth referred to as ε4 

carriers8. Volunteer characteristics for the analysed dataset are shown in Table 6.1. 

 
Table 6.1. Demographic characteristics of participants 

 
Age Gender (% F) IQ 

Youngs 
   ε3 (n=16) 20.75 (1.81) 69 112.34 (6.07) 

ε4 (n=18) 21.33 (2.61) 83 109.88 (6.14) 
Mids  

   ε3 (n=36) 50.22 (2.74) 69 122.03 (2.76)* 
ε4 (n=19) 49.74 (3.53 68 119.44 (3.59) 

* Denotes a significant genotype group difference (p>.05). 
 
6.3.2 Materials 

 

6.3.2.1. Demographics and baseline measures 

 

A short demographic questionnaire was administered establishing age, gender, occupation and 

general health (smoking status, medication use, blood pressure). Blood pressure and pulse rate 

were measured using an automatic upper-arm cuff machine. The National Adult Reading test 

(Nelson & Willison, 1991) was administered to provide a baseline measure of IQ.  In addition, 

the 12-item Grit Scale (Duckworth et al., 2007) was used to measure individual differences in 

trait-level perseverance and adherence to long-term goals.  

 

6.3.2.2. Category decision PM task 

 

Ongoing category decision trials consisted of on-screen item and category pairings, with 

participants required to indicate if the lowercase word on the left (e.g. dentist) belonged to the 

same category as the uppercase word on the right (e.g. PROFESSION). Participants pressed a 

‘y’ button or ‘n’ button, representing ‘yes’ and ‘no’ respectively to make this judgment.  

 

The task was divided into 3 blocks (control, focal PM and non-focal PM), counterbalanced 

across participants. In each block (control, focal PM and non-focal PM) there were 106 category 

decision-pairings (53 congruent, 53 incongruent) taken from Einstein et al. (2005). Three lists of 

category pairings were used across the 3 task blocks, with the order of lists counterbalanced 

across participants, independent of the order of PM conditions.   

																																																								
8	Volunteers with ε2/ε4 genotype were retained in the present analysis, however, the effect of 
these two alleles in combination is not well established. The results of an additional analysis 
removing these two volunteers were not significantly different. 	
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In the focal PM block participants were given an additional instruction to make a ‘Q’ keyboard 

press if a target word was presented as part of a category decision trials. The focal PM target 

was either: tortoise, raspberry or aluminum, counterbalanced across participants. The focal PM 

target was always presented 3 times, embedded in the 31st, 72nd and 102nd category decision 

trials. In the non-focal PM condition, participants were instructed to make a ‘Q’ keyboard press 

at any point during the category decision trials if a target syllable was presented: tor, ras, min. 

Again, the non-focal PM target was counterbalanced across participants to ensure no individual 

received the same target for both conditions (e.g. tortoise, tor). The non-focal PM cue was 

presented three times (tor: tortoise, history, motorcycle; ras: raspberry, harassment, grasshopper; 

min: aluminum, peppermint, minister), embedded in category decision trials 31, 72 and 102. In 

both focal and non-focal PM blocks, the PM cue was always presented on the left of the 

category decision pairing in lower case font. The addition of 3 PM trials led to a total of 109 

trials in these two blocks. In the control condition participants were not given an additional PM 

instruction, and hence were only instructed to respond to the 106 category-decision pairings. 

 

At the start of the task, participants were instructed to make their category decision judgments 

as quickly and as accurately as possible. There were 12 practice trials, including 6 trials 

providing feedback on response time and accuracy. Before each PM block (focal, non-focal) 

participants were given the PM instructions, with an additional point being that if they were 

unable to press the ‘Q’ key on the PM trial, they could make this response as soon as possible 

after the trial concluded. Participants were then asked to repeat these instructions back to the 

experimenter in their own words to ensure they had understood the task before being allowed to 

proceed. Between summarizing the PM instruction and beginning the PM block there was a 1-

minute delay task to create a break between encoding and retrieval. Following this delay, 

participants were reminded of the ongoing category decision instructions but there was no 

mention of the PM instruction. Upon completion of each PM block, participants were told the 

PM cue would not appear again in the subsequent blocks.  

 

6.3.2.2.1 WM manipulation 

 

The full category decision task was administered a second time with an additional WM load. 

The task was presented in the format described previously, but each participant had a different 

counterbalanced order of blocks (control, focal and non-focal) and lists of category-decision 

pairings.  
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The WM task asked participants to monitor how many times the word ‘fish’ appeared as part of 

a category-decision pairings. ‘Fish’ could be presented as either the example (lowercase, left-

hand side) or the category (uppercase, right-hand side). Participants were not allowed to make a 

record of targets, but were instructed to keep a count mentally. The number of WM targets (3, 4, 

6) varied for each block, dependent on the counterbalanced order of category-decision lists 

presented. At the end of each block, participants were prompted to recall the number of targets.  

 

6.3.2.3 The NASA task load index 

 

Perceived workload was measured at the end of each version of the category decision task using 

a pen-and-paper version of the NASA task load index. This consists of 6 visual analogue scales 

measuring: mental demand, physical demand, temporal demand, performance, effort, and 

frustration. Participants were instructed to mark along the scale to indicate how they had 

experienced the category decision task (No load, WM load).  Only data from two subscales: 1) 

mental demand, 2) effort were relevant to the current research questions. 

 

6.3.4. Procedure  

 

Volunteers took part in a single study session lasting 60 minutes, outlined in Figure 6.1. Mood, 

blood pressure and pulse were measured both before and after completing each version of the 

category decision task (no WM load, WM load). During the category decision task, a one-

minute interval after receiving the instructions for each condition (control, focal and non-focal) 

was filled by a single verbal fluency trial in which volunteers were asked to generate as many 

words beginning with a select letter (F, A, S) as possible in 60 seconds (Strauss, Sherman, & 

Spreen, 2006). Participants were not reminded of the PM instruction before resuming the 

category-decision task. At the end of each version of the category decision task, participants 

were asked to complete a NASA task load index reflecting on all three conditions (control, focal 

and non-focal). Participants who were not recruited from the pre-genotyped APOE database 

provided a buccal swab at the end of the session.  

 

6.3.5. Statistical Analysis 

 

For each age group, genotype differences in demographic characteristics were screened using 

either an independent t-test (age, IQ) or a chi-squared test (gender). 

 

6.3.5.1. Category decision PM task 
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Prior to analysis, category decision performance in each age group was screened for outliers, 

and RTs more than 3 standard deviation (SD) away from each individual’s mean were removed. 

In the mid-age group, accuracy was above 85% and there were no consistent outliers across 

conditions for decision-making RT. In the young group one participant was removed, with their 

average accuracy falling below 80%, and their RTs classed as outliers in 5/6 conditions.  

 

The between-subjects factors considered in the following analysis were Age (young, mid) and 

APOE genotype (ε3, ε4). Condition (control, focal, non-focal) and Load (no load, WM load) 

were considered as within-subject factors. 

 

For PM retrieval accuracy, effects of Age and Genotype on focal and non-focal PM were 

analysed using a mixed 2 (Condition: focal, non-focal) x 2 (Age) x 2 (Genotype) ANOVA.  

 

A preliminary analysis comparing category decision accuracy across conditions was completed 

using separate one-way ANOVAs for the no load and WM load versions of the task. RTs in the 

control condition (no PM intention, no WM load) of the category decision task were analysed 

using a 2 (Age) x 2 (Genotype) ANOVA.  

 

The cost of carrying a PM intention for ongoing category decision performance was indexed by 

a significant difference between RT in the PM condition and the control condition, with 

separate analyses completed for focal and non-focal PM intentions. For category decision RTs, 

a 2 (Condition: control, PM condition) x 2 (Age) x 2 (Genotype) ANOVA was run to 

investigate group differences in the presence of PM interference costs. Following a significant 

Condition x Age x Genotype interaction, differences were probed using a single cost measure 

(PM condition–control condition), with a Bonferonni adjustment used to control for multiple 

comparisons. 

 

The impact of adding a WM load to PM retrieval was analysed using a 2 (Load) x 2 (Condition: 

focal, non-focal) x 2 (Age) x 2 (Genotype) mixed ANOVA. Prospective interference following 

the addition of a WM load was analysed separately for focal and non-focal conditions, using a 2 

(Condition: control, PM condition) x 2 (Age) x 2 (Genotype) ANOVA. Interactions were 

probed using a single cost measure, with a Bonferonni-adjusted alpha.  

 

6.3.5.2. Motivational factors and perceived difficulty 

 

Group differences in overall Grit score were analysed using a 2 (Age) x 2 (Genotype) between-

subjects ANOVA. For each scale of the NASA, a mixed 2 x 2 x 2 ANOVA was completed, 
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with Load (no load, WM load) as the repeated-measures factor, and Age and Genotype as the 

between-subjects factor. Interactions were probed using Bonferroni-adjusted t-tests. 

 

 
 
Figure 6.1. Timeline of experimental procedure 
 

 6.4. Results 

6.4.1. Volunteer Characteristics 

 

In the young group, there were no significant genotype differences in age, gender or IQ (p>.05). 

Mid-age adults did not significantly differ by genotype in age or gender (p>.05) however, mid-
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age ε4 carriers had significantly lower estimated IQ scores than mid-age ε3 carriers, t(53)=2.98, 

p=.004.9 

 

6.4.2. Category decision PM task 

 

6.4.2.1. PM accuracy 

 

Retrieval accuracy for focal PM was significantly higher than for non-focal PM, F(1, 

83)=28.48, p<.001, η2 
p=.244. The main effects of Age and Genotype, as well as all interaction 

terms, were non-significant (p>.05). The mean proportion of focal and non-focal PM cues 

correctly retrieved for each volunteer group can be seen in Table 6.4.  

 

6.4.2.2. Category decision performance  

 

Accuracy was consistently high across conditions, ranging from 81% to 100%. In addition, the 

inclusion of a PM intention (focal or non-focal) did not significantly impact category decision 

accuracy, either under no load and WM load (p>.05). Hence all further considerations of 

category decision performance will be restricted to RTs. Table 6.2 shows mean accuracy for 

each group for each condition.   

 

Young participants were significantly faster in the baseline category decision condition than the 

mid-age group, F(1, 83)=9.38, p=.003, η2 p=.102, but the main effect of genotype was non-

significant (p >.05). There was no significant Genotype x Age interaction (p >.05).  

 

Table 6.2. Mean accuracy on the category decision task shown by age and genotype group 

  
Young Mid-age  

    ε3 ε4 ε3 ε4 

Control No Load .93 (.03) .91 (.03) .96 (.03) .96 (.03) 

 
WM Load  .93 (.03) .94 (.03) .96 (.02) .96 (.03) 

Focal No Load .92 (.03) .92 (.03) .96 (.03)  .96 (.03)  

 
WM Load  .93 (.02) .93 (.03) .96 (.02)  .96 (.03) 

Non-focal No Load .92 (.03) .93 (.03) .96 (.03) .97 (.03)  
  WM Load  .94 (.03)  .93 (.03)  .96 (.03)  .95 (.03)  

Notes: Values represent mean (SD) 
 
 

																																																								
9	All main analyses were run including IQ estimate as a covariate. IQ did not significantly 
(p>.05) account for variance in category decision task performance and so is not commented on 
further. 	
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6.4.2.3. PM interference cost  

 

Mean RT on the category decision task across control, focal and non-focal conditions is 

summarised by group in Table 6.3. 

 

6.4.2.3.1. Focal condition. 

 

Category decision RTs were significantly longer in the focal PM condition (M=1166, SE=21) 

compared to the control condition (M=1097ms, SE=21ms)(standard error=SE), F(1,83)=30.91, 

p<.001, η2 p=.271. In addition, mid-age volunteers (M=1207, SE=26) were significantly slower 

than young volunteers (M=1097ms, SE=21ms), F(1,83)=13.73, p<.001, η2 p=.142. Importantly, 

there was a significant Condition x Age x Genotype interaction, F(1,83)=4.50, p=.039, η2 

p=.051, shown in Figure 6.2. 

 

Only mid-age ε4 carriers showed a significant cost of carrying a focal PM intention on category 

decision RTs (p=.001); the cost in all other groups was non-significant (p>.006). Moreover, the 

Age x Genotype interaction indicated that mid-age ε4 carriers demonstrated greater cost than 

both young ε4 carriers (p=.016) and mid-age ε3 carriers (p=.029), however, following 

adjustment for multiple comparisons (SME, Bonferroni-adjusted α = .006) these differences did 

not reach significance. There was no significant genotype difference in young volunteers 

(p=.361), and focal PM cost was equivalent between age-groups for ε3 carriers (p=.680). 

 

 
Figure 6.2. Mean category decision RT shown for the control and focal condition.  
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6.4.2.3.2. Non-focal condition 

 

Category decision RTs were significantly longer in the non-focal PM condition (M=1486ms, 

SE=43ms) than the control condition (M=1097ms, SE=21ms), F(1,83)=142.99, p<.001, η2 

p=.633. In addition, across conditions mid-age volunteers (M=1394ms, SE=38ms) were 

significantly slower than young volunteers (M=1189ms, SE=46ms), F(1,83)=13.73, p<.001, η2 

p=.142. There was a significant Condition x Age x Genotype interaction, F(1,83)=5.27, p=.024, 

η2 p=.060, shown in Figure 6.3. 

 

SME analysis (Bonferroni adjusted α of .006) of the Age x Genotype interaction for non-focal 

RT cost (entered as a single variable) revealed mid-age ε4 carriers demonstrated significantly 

greater cost than young ε4 carriers (p=.003), while there was a non-significant age-difference in 

the ε3 group (p=.984). In young volunteers, the genotype difference was non-significant 

(p=.177). At mid-age, there was a trend for ε4 carriers demonstrating greater cost than their ε3 

counterparts (p=.054).  

 
 

 
Figure 6.3. Mean category decision RT shown for the control and non-focal condition.  
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Table 6.3. Mean RT and PM cost shown for category decision performance under no load and 
WM load  
      Young Mid 

      ε3 ε4 ε3 ε4 
Control No Load RT 1055 (129) 1008(142) 1134 (206) 1191 (223) 

 WM Load  1048 (104) 1008 (147) 1117 (184) 1181 (202) 
Focal No Load RT 1122 (163) 1039 (109) 1187 (219) 1314 (199) 

  
Cost 67 (77) 32 (72) 53 (120) 123 (136) 

 
WM Load RT 1139 (117) 1078 (158) 1224 (203) 1306 (295) 

  
Cost 91 (73) 70 (79) 106 (77) 125 (152) 

Non-Focal No Load RT 1439 (269) 1254 (218) 1516 (381) 1735 (556) 

  
Cost 383 (255) 247 (209) 382 (263) 544 (404) 

 
WM Load RT 1327 (119) 1245 (212) 1458 (350) 1550 (418) 

    Cost 279 (120) 237 (140) 340 (223) 369 (249) 

Notes: Values represent Mean (SD) 
 

6.4.2.4. The addition of a WM load 

 

Group differences in WM retrieval accuracy are included in the Appendix.  

 

6.4.2.4.1. PM retrieval 

 

Across both focal and non-focal PM, WM did not significantly impact PM retrieval accuracy (p 

>.05), however, there was a significant Load x Age interaction, F(1, 83)=4.33, p=.040, η2 

p=.050. In the mid-age volunteers, PM retrieval was marginally less accurate under the WM 

load condition than in the no load condition (p=.028). Young volunteers did not show a 

significant difference in PM accuracy between no load and WM load (p>.05) (Bonferroni-

corrected α=.025). There were no genotype differences in PM accuracy under WM load, and no 

significant genotype interactions (p>.05). Accuracy of PM retrieval under WM load is shown in 

Table 6.4. 

 
Table 6.4. The mean proportion of correct PM responses across conditions (Focal/Non-focal; 
No Load, WM Load) 

  
No Load WM load 

  
Focal Non-focal Focal Non-focal 

Young ε3 .98 (.08) .67 (.35) .92 (.26) .71 (.30) 

 
ε4 .82 (.34) .65 (.36) .96 (.16) .67 (.37) 
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Mid ε3 .94 (.21) .70 (.35) .89 (.26) .68 (.34) 

 ε4 .98 (.08) .74 (.35) .86 (.32) .67 (.35) 
 

6.4.2.4.2 Prospective interference under WM load 

 

Mean RT on the category decision task under WM load is shown for control, focal and non-

focal conditions in Table 6.3, summarised by group. Under WM load, category decision RTs 

were significantly longer in the focal PM condition (M=1186ms, SE=23ms) than the control 

condition (M=1089ms, SE=19ms), F(1,83)=79.49, p<.001, η2 p=.486; however, there were no 

significant effects of age or genotype (p>.05). All interaction terms were non-significant.  

 

Under WM load, category decision RTs were significantly longer in the non-focal PM condition 

(M=1395ms, SE=35ms) compared to the control condition (M=1089ms, SE=19ms), 

F(1,84)=79.49, p<.001, η2 p=.687. Across conditions, there was a main effect of Age, 

F(1,84)=10.50, p=.002, η2 p=.111, and a significant Age x Condition interaction, F(1,84)=4.57, 

p=.035, η2 p=.052. This was driven by the mid-age group (M=350ms, SD=231ms) 

demonstrating greater cost than the young group (M=258ms, SD=231ms), t(85.78)=-2.41, 

p=.018. The effect of genotype was non-significant, as were all other interactions (p>.05).    

 

6.4.3. Motivational factors and perceived difficulty 

 

6.4.3.1. Grit Trait Score 

 

There was a significant effect of age, F(1, 84)=7.90, p=.006, η2 p=.086, with mid-age adults 

(M=3.72, SD=.42) scoring higher on this questionnaire than young adults (M=3.42, SD=.45). 

There was a no main effect of Genotype, or Genotype x Age interaction (p>.05). 

 

6.4.3.2. The NASA task-load index 

 

Load ratings of the no load and WM load category decision task are shown in Table 6.5. 

 

The no load category decision task (M=44.76, se=2.52) was associated with higher mental 

demand than the WM load category decision task, M=33.26, se=2.31), F (1, 84)=23.85, p<.001, 

η2 p=.221. Mid-age volunteers (M=43.44, se=2.73) reported significantly greater mental 

demand than young adults (M=34.89, se=3.29), F(1, 84)=4.38, p=.039, η2 p=.050.  The main 

effect of genotype was non-significant (p>.05), but there was a significant Genotype x Load 

interaction, F(1, 84)=6.77, p=.039, η2 p=.075. SME (Bonferroni-adjusted α=.013) revealed ε4 
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carriers, but not ε3 carriers (p=.092), showed a significant drop in perceived demand under WM 

compared to the no load condition (p<.001). In the no load and in the WM load condition, 

genotype groups did not significantly differ in their mental demand ratings (p>.013).   

 

Subjective estimates of effort were greater for the no load condition (M=47.94, SD=24.62) than 

the WM load condition (M=36.00, SD=20.44), F(1, 83)=3.29, p=.073, η2 p=.038. The main 

effects of both age and genotype were non-significant (p>.05), however, there was a significant 

Load x Age x Genotype interaction, F(1, 83)=10.69, p=.002, η2 p=.114. SME analysis found no 

significant age-difference in ε4s in the perceived effort completing the no load condition 

(p=.513), however, mid-age ε4s reported greater effort than young ε4s under WM load 

(p=.019). In the young group, but not the mid-age group, effort decreased from no load to WM 

load (p<.001) (Bonferroni corrected α=.013). The Load x Age interaction was non-significant in 

the ε3 group (p>.05).  

 
Table 6.5. NASA scores of mental demand and effort for the no load and WM load version of 
the category decision task 
    Young Mid 
    ε3 ε4 ε3 ε4 
No Load Demand 37 (17) 46 (21) 43 (26) 54 (22) 

 
Effort 43 (28) 54 (27) 46 (27) 49 (23) 

WM load Demand 31 (18) 26 (19) 38 (24) 40 (18) 
  Effort 36 (18) 29 (16) 34 (22) 45 (22) 

 
 

6.5. Discussion 

 

The present study addressed two research questions: 1) Do carriers of an APOE ε4 allele, a 

genetic risk factor for poor cognitive ageing, show a distinct profile of age-related change in 

focal versus non-focal PM retrieval accuracy or cost of carrying an intention? 2) Does adding a 

WM load to the ongoing task differentially impact PM performance according to age or 

genotype? In addition, the research included subjective indices of mental demand and effort to 

explore group differences in how the task was performed.  

 

Irrespective of cue focality, the current findings do not support early life APOE-genotype 

differences in PM retrieval accuracy. PM interference, or the cost of carrying a PM intention on 

ongoing task performance, however, was sensitive to the detrimental effects of APOE ε4 by 

mid-adulthood. Carrying a focal PM intention selectively disadvantaged ongoing task 

performance in mid-age ε4 volunteers. For both focal and non-focal PM intentions, evidence for 

an age-associated increase in PM interference was limited to carriers of the disadvantageous ε4 
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allele. Furthermore, there was a trend of the mid-age ε4 group demonstrating greater non-focal 

cost than their age-equivalent ε3 counterparts. Including a concurrent WM load alongside 

ongoing category demands negatively impacted PM retrieval in the mid-age group only; 

however, inclusion of a WM load did exaggerate genotype differences in PM by mid-age.  

 

Based on previous research (Lancaster et al., 2016), we anticipated that genotype differences 

would selectively be observed in non-focal PM retrieval, consistent with the enhanced 

vulnerability of frontal-based executive systems to APOE genotype effects from mid-adulthood. 

In this study, ε4 carriers, demonstrated equivalent PM retrieval accuracy for both focal and non-

focal cues, but registered a cost in maintaining the PM intention. Past research measuring 

BOLD activity during non-focal PM retrieval suggested the employment of early compensatory 

strategies in mid-age ε4 carriers (Evans et al., 2014). Hence, it may be that ε4 carriers are 

employing attentional resources differently to support PM retrieval.  

 

Genotype differences were reported in the cost of maintaining a PM intention on ongoing task 

performance, with mid-age ε4 carriers demonstrating increased cost of carrying both a focal and 

non-focal PM intention. The presence of both focal and non-focal disadvantages by mid-

adulthood in this ‘at-risk’ group, importantly, is consistent with the profile of impairment 

observed in the very early stages of pathological memory decline (Duchek et al., 2006; 

McDaniel et al.2011). Focal PM retrieval is hypothesised to rely on spontaneous, associative 

memory processes, supported by the medial temporal lobe (MTL) (Atienza et al., 2011; 

McDaniel et al., 2013). Structural differences in MTL volume are associated with focal PM 

accuracy in both healthy older adults and adults in the early stages of dementia (Gordon, 

Shelton, Bugg, McDaniel, & Head, 2011). Hence, the presence of focal costs in ε4 carriers by 

mid-adulthood indicates compromised associative memory processes in this group. In support, 

other research has indicated MTL regions are sensitive to ε4 differences by mid-adulthood (Den 

Heijer et al., 2002; Shaw et al., 2007; Wishart et al., 2006), and these differences have been 

interpreted as early vulnerability in neural systems sensitive to the pathological change 

associated with AD. 

 

 In addition, ε4 carriers demonstrated increased interference of carrying a non-focal PM 

intention by mid-adulthood. One account of non-focal prospective interference costs is that 

individuals adjust the distribution of executive resources to the ongoing task based on their 

ability to cope with the demands of the PM (Boywitt & Rummel, 2012; Marsh et al., 2005). In 

support, increased variability of ongoing task RTs following the introduction of a non-focal PM 

correlated with successful PM retrieval (Loft et al., 2014), reflecting the necessary monitoring 

processes implemented to support retrieval. Our results suggest that by mid-adulthood, ε4 
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carriers may be committing a greater proportion of cognitive resources to support equivalent 

levels of PM retrieval compared to the ε3 group, and reduced ability to maintain and co-ordinate 

multiple goals at the forefront of attention (Lancaster et al, 2016), consistent with the speed-

accuracy trade-off reported by Evans et al (2014). Sustained processing during non-focal PM is 

associated with BOLD activation in dorsal frontal-parietal regions and the precuneus (Cona et 

al., 2016). Sensitivity to APOE differences has previously been reported in these regions (Chen 

et al., 2016; Evans et al., 2014). 

 

Mid-age ε4 carriers showed a greater age-related increase in ongoing task cost (relative to 

young ε4 carriers) than did mid-age ε3 carriers (relative to young ε3 carriers) for both focal and 

non-focal PM intentions. More broadly, this implies the APOE ε4 genotype represents a 

trajectory of accelerated ageing, with subtle impairments present from mid-adulthood. However, 

a recent investigation into the APOE differences in age-related cognitive change prior to age 50 

reported smaller declines in a composite of executive functioning in ε4 carriers (Taylor et al., 

2016). This composite consisted of a different set of executive processes (fluency, switching 

and inhibition) than those targeted in the present study, perhaps indicating non-uniform effects 

of APOE genotype across executive functions. Of interest, our data were in the direction of a 

smaller PM cost in young ε4 carriers compared to their ε3 counterparts. This aligns with 

previous reports of an ε4 advantage in executive attention in youth ((Marchant et al., 2010; 

Rusted et al., 2013).  

 

An alternative account of the age-related increase in PM interference costs observed in ε4 

carriers is that greater costs are associated with increased ongoing response hesitancy, resulting 

from the need to make a more complicated decision (i.e. both a category-decision and a PM 

decision) (Heathcote et al., 2015; Horn et al., 2013; Strickland et al., 2017). It may be that mid-

age ε4 carriers are adopting a more conservative task strategy to support PM retrieval, driving 

the observed performance differences.   

 

To increase the tax placed on executive resources, a concurrent WM load task was included 

alongside ongoing category decision-making. Independent of focality, the additional of a WM 

load negatively impacted PM retrieval in the mid-age group. This supports previous reports of 

an age-related difference in sensitivity to the effects of a secondary WM demand, with older 

adults demonstrating greater PM failings than young adults under load (Bisiacchi et al., 2013; 

Logie et al., 2004). In addition, the mid-age group recalled a smaller proportion of WM targets 

(see appendix), suggesting increased difficulty maintaining multiple task goals by mid-

adulthood, or the ability to flexibly apply attention to these goals (Kane & Engle, 2003).  
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While we anticipated that adding a WM load to ongoing processing would further expose early 

PM decline in ε4 carriers, there was in fact, no APOE-genotype difference in PM retrieval 

accuracy, and counter intuitively, the Age x Genotype interaction for ongoing task cost 

disappeared under WM load, with mid-age ε4 carriers showing similar cost to their ε3 

counterparts. Following the inclusion of a WM load, a cost of carrying a focal PM intention was 

observed irrespective of age or genotype, hence, increasing the cognitive load of ongoing 

activities may promote a shift in the strategy necessary to maintain multiple demands. The 

reduction in non-focal prospective interference cost observed in mid-age ε4 carriers under WM 

load did not negatively impact PM retrieval in this group. The WM load condition, however, 

was always completed second to the no load condition, hence, the absence of mid-age ε4 effects 

may represent a practice effect.  

 

Subjective measures of task load were included in an attempt to interrogate group differences in 

perceived demand and motivation. Consistent with an age-related decline in executive attention, 

mid-age adults reported greater mental demand than young adults. In both age groups, however, 

ε4 carriers reported greater mental demand selectively for the no load condition. This may 

reflect greater focus on maintaining the PM intention, which may disappear when resources are 

stretched across two concurrent ongoing demands. Given the WM load task was always 

completed in the second half of the session, however, reduced ratings of mental demand may be 

a product of having plenty of experience completing the ongoing task. Mid-age ε4 carriers did 

not demonstrate the same reduction in task effort under WM load as the other groups, perhaps 

indicating they are working harder to maintain performance.  

 

Finally, the absence of age-effects on PM retrieval accuracy is consistent with a previous study 

reporting comparable levels of PM accuracy in older (M=66.3 years), and mid-age (M=42.5 

years) adults compared to young adults on an event-based PM task (Einstein et al., 1995, 

Experiment 3). The current study builds on these findings by including ongoing task 

interference as an additional metric, suggesting that early age-related change in PM 

performance manifests as cost. A second conclusion of the earlier paper (Einstein et al., 1995) is 

that age-associated change in PM retrieval accuracy depends on the degree of self-initiation 

required. Increasing the level of self-initiation required could be an interesting manipulation for 

future research exploring APOE genotype effects on PM.  

 

One limitation of the current study is that the WM load embedded in the ongoing task may not 

have placed great enough demand on the central executive component of WM (see e.g., WM 

load effects on PM in young adults with a demanding central executive task; McDaniel & 

Scullin, 2010). Bisiacchi and colleagues (2013) included an additional WM load or an 
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additional monitoring load in the ongoing component of a PM task and found age-related 

declines in PM were selectively increased by the WM load (1-back, listening span), not the 

monitoring component. It is possible the load task included here did not place enough demand 

on manipulating information within attention. Finally, the sample size in each genotype group 

was relatively small.  

 

6.6. Conclusions 

 

Mid-age individuals carrying at least one copy of the APOE ε4 genetic variant, and hence at 

heightened risk of poor cognitive ageing, showed greater costs of maintaining a concurrent PM 

intention relative to their young adult counterparts. They did not, however, show select 

impairment in PM retrieval accuracy by mid-adulthood. This mid-age deficit in cost of carrying 

a PM intention was observed for both focal and non-focal PM cues, and selectively 

disadvantaged ongoing performance of ε4 carriers. This profile of impairment is consistent with 

the pattern of performance observed in individuals diagnosed with mild AD, and hence may 

represent early compromise to both MTL and frontal-based neural systems in carriers of this ‘at-

risk’ allele. In conclusion, this research confirms subtle differences in the early ageing trajectory 

of ε4 carriers, perhaps indicative of a vulnerability consistent with the preclinical stages of AD. 

Further research is needed to interrogate the mechanisms of early change in ε4 carriers, focusing 

on the vulnerability of neural systems to change across the lifespan, and the effect of strategies 

on PM task performance.  
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7. Article 6- 
 
 

Non-Focal Prospective Memory and Everyday 

Cognition in the Early Stages of Cognitive Decline 
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7.1. Abstract 
 
Background: Non-focal prospective memory (PM) provides a proxy measure of attentional 

control in everyday life. Support for non-focal PM deficits in the early stages of cognitive 

impairment is mixed; in part this may stem from the heterogeneity of PM paradigms used. This 

study will explore if a card-sort measure of non-focal PM is sensitive to behavioural differences 

in individuals self-referring to a memory assessment service (MAS), and if performance 

correlates with cognitive errors in everyday life. Furthermore, the moderation of performance 

differences by genetic risk for late-life dementia is considered.  

Methods: Forty-eight volunteers, recruited within nine months of their initial MAS 

appointment (35 mild cognitive impairment (MCI), 13 subjective cognitive dysfunction (SCD): 

hereafter referred to collectively as the ‘MAS’ group), and 52 healthy older adults completed 

the card-sort PM task. In addition, subjective ratings of cognitive errors in daily life and APOE 

genotype were considered as potential factors in performance differences.  

Results: The MAS group showed poorer baseline card-sorting performance, as indexed by RT 

and accuracy; however, PM retrieval and PM cost did not distinguish individuals in the early 

stages of decline from their cognitively healthy peers. PM accuracy marginally correlated with 

ratings of attentional control in daily life, however, there was no association between PM cost 

and cognitive errors in everyday life. APOE ε4 genotype did not significantly impact PM 

performance or subjective complaints. 

Discussion: Individuals in the early stages of cognitive decline showed comparable non-focal 

PM to a healthy older group, with no additional impairment shown beyond the typical profile of 

age-related decline. PM accuracy correlated with attentional control problems in everyday life, 

and hence this ability may be a good target for everyday interventions.  
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7.2. Introduction 

 

With the proportion of adults aged 65 years and older in the population increasing, cases of 

Alzheimer’s disease (AD) are expected to rise 35% by 2025 (Office for National Statistics, 

2012; Prince, 2015). Age-associated cognitive decline significantly impacts everyday 

independence in older adulthood (Salthouse, 2012). Despite episodic memory loss being the 

hallmark of cognitive ageing (e.g. Caselli et al., 2014; Chen et al., 2001; for a review see 

Mortamais et al., 2016), reported errors in ‘self-initiated’ prospective memory (PM) are 

prevalent both in healthy older adults and individuals with AD (Smith, Del Sala, Logie, & 

Maylor, 2000). Defined as the retrieval of an earlier formed intention at the appropriate time 

whilst engaged in ongoing cognitive activity, there are numerous examples of PM in the context 

of everyday life. Examples include medication adherence and remembering to attend 

appointments, hence this ability is suggested to be particularly relevant for maintaining 

independence in later life (Kliegel et al., 2016; McDaniel et al., 2008).  

 

This study considers if PM is a sensitive marker of individuals at heightened risk of converting 

to AD, including individuals with mild cognitive impairment (MCI) or subjective cognitive 

dysfunction (SCD) (Buckley et al., 2016; Hu et al., 2017; Mendonça, Alves, & Bugalho, 2016). 

MCI is characterised by marked impairment in one or more cognitive domains, however, the 

profile of cognitive deficits varies between individuals (Chertkow et al., 2007; Mariani, 

Monastero, & Mecocci, 2007a). The behavioural phenotype of SCD is less well characterised, 

and here refers to individuals who self-referred for a memory assessment and were not 

classified by the clinician to have MCI. Understanding the profile of cognition in these 

‘preclinical’ stages is an important target for furthering both the timely identification of 

individuals at greater risk and early intervention strategies (Sperling et al., 2011).  

 

7.2.1. Prospective memory in MCI and SCD 

 

Existing reviews indicate PM performance is impaired in individuals with MCI compared to 

healthy age-matched peers (Costa et al., 2011; van den Berg, Kant, & Postma, 2012), however 

there are inconsistencies in reported effects, in part stemming from variation between PM 

paradigms. The presence of PM impairment in MCI is suggested to depend on the cognitive 

demand of the task. In existent literature, typically a distinction is made between two types of 

PM retrieval, with the attentional requirements varying according to the focality of the PM 

retrieval cue (McDaniel et al., 2015; Scullin, McDaniel, & Shelton, 2013).  Focality is defined 

by the relationship of the PM cue to the ongoing task.  Non-focal cues are not processed as part 

of the ongoing task and hence attentional control is required for the active maintenance and 
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monitoring of the PM intention (Einstein et al., 2005; McDaniel et al., 2015; Scullin, McDaniel, 

Shelton, et al., 2010). Focal cues, in contrast, are salient to the processing of the ongoing task, 

and hence facilitate PM retrieval through relatively automatic, associative memory processes 

(McDaniel et al., 2015). 

 

Individuals with MCI demonstrate worse accuracy of non-focal PM retrieval compared to age-

matched healthy peers, despite equivalent ratings of subjective effort (Tam & Schmitter-

Edgecombe, 2013). In the context of a verbal working memory (WM) ongoing task, participants 

were instructed to carry out the PM intention when a stimulus was presented on the target 

background, requiring a large monitoring component. PM retrieval accuracy correlated with 

subjective reports of everyday memory failings in healthy older adults but not in individuals 

diagnosed with MCI. A further study directly manipulated the attentional demand of PM 

retrieval by varying the salience and specificity of cues on a ‘Silly sentences’ paradigm, 

requiring participants to make speeded judgements on the coherence of sentences (Blanco-

Campal et al., 2009). Retrieval of non-specific, non-salient (i.e. non-focal) cues was a better 

discriminator of MCI than both retrospective memory measures and focal PM retrieval.  

 

Several studies, however, report intact non-focal PM retrieval in MCI and in the very earliest 

stages of AD (McDaniel, Shelton, Breneiser, Moynan, & Balota, 2011; Niedźwieńska, 

Kvavilshvili, Ashaye, & Neckar, 2017). Alongside the same ongoing tasks (a category decision, 

and face-profession matching task respectively), focal PM retrieval was impaired in clinical 

groups compared to healthy older peers. This led to the suggestion that whilst non-focal PM is 

sensitive to typical age-related decline (e.g. Henry, MacLeod, Phillips, & Crawford, 2004; 

Kliegel, Jäger, & Phillips, 2008; Uttl, 2008), additional impairment in focal PM is a sensitive 

marker of early pathological cognitive decline. Further supporting this, Chi et al., (2014) found 

significant impairment in focal PM in an MCI group, but not in individuals experiencing SCD 

using the same paradigm as McDaniel et al., (2011). Non-focal PM impairment was found in 

individuals with MCI without marked memory impairment (naMCI), but not in individuals with 

amnestic MCI (aMCI) or SCD. On a ‘Supermarket shop’ experimental paradigm, individuals 

with SCD have also been reported to show intact focal and non-focal PM (Lee, Ong, Pike, & 

Kinsella, 2017). This supports the use of PM as a discriminator of the profile of early cognitive 

decline.  

 

Methodological discrepancies may underpin inconsistent reports of differential non-focal PM 

performance in the early stages of cognitive decline. Firstly, several studies consider PM 

retrieval accuracy in isolation as a measure of how well individuals are able to maintain a 

prospective intention (e.g. Lee et al, 2017; Tam & Schmitter-Edgecombe, 2013). Prospective 
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interference or cost to ongoing performance is suggested to index the allocation of attention 

control for the active maintenance and monitoring of non-focal PM intentions (Marsh et al., 

2003). Limited studies have considered this as a marker of PM performance in preclinical 

populations (McDaniel et al., 2011; Chi et al, 2014); however, less efficient attentional control 

may manifest in increased cost in preclinical groups. Furthermore, as PM targets are rare, there 

may be reduced sensitivity to detect performance differences (Costa et al., 2011; Uttl, 2008). A 

further issue concerns the suitability of computerised experimental paradigms for use in elderly 

populations. Many paradigms employ ongoing tasks removed from everyday life, for example 

lexical decision tasks. On more naturalistic measures of PM (i.e. when given a PM instruction to 

pass on a message at the appropriate moment), deficits in MCI and SCD individuals have been 

reported (Lee et al., 2017; Rabin et al., 2014).  

 

7.2.2. Current aims and hypothesis 

 

The current study explores if non-focal PM, a proxy measure for the everday application of 

attentional control, is sensitive to performance deficits in the earliest stages of cognitive 

impairment using a simple computerised card-sort measure of PM (Rusted, Sawyer, Jones, 

Trawley, & Marchant, 2009). In this paradigm, individuals are first asked to complete a baseline 

measure of the ongoing task: a speeded measure of card sorting according to suit. Following this 

they are provided with a non-focal PM instruction, asking them to make an additional response 

when they see a specific target card.  

 

The decision to focus on non-focal PM in the present study is supported by reports that 

executive attention is consistently affected in the earliest preclinical stages of AD (Elias et al., 

2000; Rajan, Wilson, Weuve, Barnes, & Evans, 2015; Twamley et al., 2006). Furthermore, this 

paradigm has been developed and used previously with older adults with memory impairment 

(Farina, Young, Tabet, & Rusted, 2013) and addresses some of the existing methodological 

concerns that may contribute to inconsistency in the literature. As participants complete a 

baseline sort task, the task provides a measure of both PM retrieval accuracy (of which there are 

12 possible targets) and PM cost, maximising sensitivity. Furthermore, the use of playing card 

stimuli provides a computerized version of a real-life scenario, maximising the ease in which 

participants can process the rules of both the ongoing and PM instructions. This further supports 

the suitability of using this task with an older population.  

 

The study recruits volunteers within nine months of their initial referral visit to a memory 

assessment clinic (MAS), including individuals experiencing the early stages of cognitive 

decline (MCI or SCD), in addition to a healthy control group. The MAS group are expected to 
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show marked impairment on the card-sort task, which may manifest as either reduced PM 

retrieval accuracy or increased cost of carrying a PM intention on ongoing sort performance. 

This aligns with previous reports of disadvantages in this group (Blanco-Campal et al., 2009; 

Costa et al., 2011; Tam & Schmitter-Edgecombe, 2013).  

 

An additional aim of the current study is to explore whether Apolipoprotein E (APOE) genotype 

moderates non-focal PM performance on the card-sort task in this preclinical population. The 

APOE ε4 allele is the greatest risk factor for late-onset AD, as well as being associated with 

poorer cognition in healthy older adults (Corder et al., 1993; Farrer et al., 1997; Wisdom, 

Callahan, & Hawkins, 2011). Furthermore, carrying a copy of this allele is associated with 

greater impairment in MCI and increased risk of progression to AD (Albert et al., 2014; 

Whitehair et al., 2010). The card-sort paradigm demonstrates sensitivity to genetic risk from 

mid-adulthood (Evans et al., 2014; Lancaster, Tabet, & Rusted, 2016). Whilst disadvantages on 

the card-sort task have been seen as reduced PM retrieval accuracy (Lancaster et al., 2016), on a 

category decision PM task ε4 disadvantages manifest as increased PM cost (Lancaster, 

McDaniel, Tabet & Rusted, in prep). Given the pattern of performance in ε4 carriers on the 

card-sort task in mid-adulthood, the presence of the ε4 allele in the MAS group is expected to 

exaggerate performance disadvantages on the card-sort paradigm, indexed by either PM 

retrieval or cost.  

 

Attentional control is necessary for activities of daily living, both in healthy and pathological 

ageing (Marshall et al., 2011); hence this research explores how performance in non-focal PM 

relates to reports of everyday cognition. Previous research reports PM is directly associated with 

everyday cognition in MCI (Schmitter-Edgecombe, Woo, & Greeley, 2009; Woods, Weinborn, 

Velnoweth, Rooney, & Bucks, 2012). As part of a preliminary phase, the current study collects 

subjective ratings of general cognitive functioning (the Cognitive Failures Questionnaire (CFq) 

(Broadbent et al., 1982)), and attentional control more specifically (the Attentional Control scale 

(ACs) (Derryberry & Reed, 2002)). Intuitively, individuals visiting the MAS are expected to 

report greater subjective problems with cognition in everyday life. As non-focal PM is 

supported by frontally-based executive resources (Cona et al., 2016; McDaniel et al., 2013), 

attentional control is expected to correlate with card-sort performance. In addition, due to the 

relevance of PM to everyday contexts, PM may correlate with errors more generally. 

 

7.3. Methods 

 

 

7.3.1. Participants 
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7.3.1.1. Preliminary questionnaire phase 

 

87 MAS-users (59 MCI, 28 SCD) completed subjective ratings of cognition in everyday life. 

This ‘preclinical group’ was recruited following appointments with a memory clinician at the 

Sussex Partnership NHS Foundation Trust, or via advertisement on the Join Dementia Research 

database (restricted to Sussex-based volunteers). In addition, the partners or spouses of the 

MAS-users were asked to participate as healthy controls (n=55), given they reported no prior 

history of cognitive complaints.   

 

7.3.1.2. Behavioural phase 

 

All volunteers completing the questionnaire were invited to participate in the behavioural 

session. 48 MAS-users (35 MCI, 13 SCD) participated alongside 52 controls. Due to the smaller 

number of healthy older controls in the initial questionnaire sample, an additional subset of 

healthy older adults were recruited to participate via advertisement at local University of the 

Third Age groups (n=25), alongside 27 of the healthy partners/spouses from the questionnaire 

phase. 

 

7.3.1.3. Inclusion criteria 

 

All volunteers were required to be aged 55 years or older, and speaking English as their daily 

language. In addition, volunteers were asked to report if they had any history of head injury or 

trauma, treatment for depression or treatment for hypertension within the past 5 years, however, 

these were not used as criteria for exclusion. 

 

In addition, the preclinical group was required to complete the study within 9 months of their 

initial MAS appointment, in which they received a diagnosis of MCI or no diagnosis but 

reported SCD. The criteria for a diagnosis of MCI was based on recommendations from the 

National Institute on Ageing and Alzheimer’s Association (Albert et al., 2011) including: 

subjective concerns regarding change in cognition, impairment in one or more cognitive 

domains, preservation of independence, and not meeting the criteria for a dementia diagnosis. 

There was no threshold for those classed as SCD, however neuropsychological test results were 

available for 23/28 SCD volunteers. 10  

 
																																																								
10	The mini-mental state examination was the most common neuropsychological test 
administered, with scores in the range of 25-30. 	
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7.3.1.4. APOE genotyping  

 

Volunteers completing the behavioural phase were genotyped for APOE status following 

Human Tissue Authority guidelines, with all procedures approved by Health Research 

Authority NHS ethics and the Research Ethics Committee of the School of Psychology and Life 

Sciences, University of Sussex. Volunteers first provided written informed consent, including 

acknowledgement that the results of the genotype analysis would not be made available to them. 

DNA was collected with a buccal swab, using an Isohelix SK1 kit. A triangulated 

anonymisation procedure was used for each sample, with the researcher remaining blind to 

genotype throughout. Samples were analysed by LGC Genomics (Hertfordshire, 

www.lgcgroup.com/genomics). APOE genotype was determined using fluorescence-based 

competitive allele-specific polymerase chain reactions to determine the presence of ε2, ε3, and 

ε4 alleles based on two single nucleotide polymorphisms (rs429358, rs7412).  The distribution 

of genotypes for the MAS patient group was as follows: 4 ε2 carriers (ε2/ε3), 24 homozygote ε3 

carriers, 20 ε4 carriers (1 ε2/ε4, 15 ε3/ε4, 4 ε4/ε4).  In the control group there were 6 ε2 carriers 

(1 ε2/ε2, 5 ε2/ε3), 33 homozygotes ε3 carriers and 13 ε4’s (1 ε2/ε3, 11 ε3/ε4, 1 ε4/ε4). Ε2 

carriers were excluded prior to analysis.  

 

 7.3.2. Materials 

 

Demographic information, including age and years of education was collected using a short 

questionnaire. For individuals completing the behavioural session, the National Adult Level 

Reading test (NART) (Nelson & Willison, 1991) was used to provide an estimate of premorbid 

IQ. In addition, the Cognitive Reserve Index quotient (CRIq) (Nucci, Mapelli & Mondini, 

2011), a 20-item questionnaire assessing education, occupational background and adult leisure 

activities, was administered orally as an index of cognitive engagement across adulthood.   

 

7.3.2.1. Questionnaires: Everyday cognition 

 

The CFq (Broadbent et al., 1982) asks volunteers to rate how often they make 25 common 

‘cognitive failures’, on a scale from ‘Never’ (0) to ‘Very often’ (5). Cognitive failures are 

premised to represent 4 subscales: memory, distractibility, naming and blunders (Wallace, Kass, 

& Stanny, 2002). The ACs (Derryberry & Reed, 2002) consists of 20 items targeting 3 

processes; mind wandering, susceptibility to boredom and distractibility. Previous exploratory 

factor analysis suggests questions cluster into two components; attentional focusing and shifting 

(Judah, Grant, Mills, & Lechner, 2014). Scores for each question were based on a 4-point Likert 
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Scale from ‘Almost never’ (1) to ‘Always’ (4). For both the CFq and ACs responses were 

scored so that higher values represent worse subjective cognition.  

 

7.3.2.2. Card-sort PM task 

 

The card-sort task (Rusted et al., 2009) presents participants with a sequence of playing card 

stimuli, displayed in a pseudorandom order. Each trial consists of a card back, presented for a 

variable duration (100-150ms), followed by a card face displayed for 1000ms. The ongoing task 

requires participants to respond to each card according to suit, making a ‘1’ keyboard response 

for a ‘spade’ and a ‘3’ keyboard response for a ‘heart’, as quickly and as accurately as possible. 

For cards belonging to ‘spades’ or ‘diamonds’, participants are required to provide no response.  

 

Participants initially complete one deck (52 cards: 26 sort trials; 26 non-sort trials) of the 

ongoing task (the control deck) to provide a baseline measure of decision-making performance. 

Participants are then provided with an additional PM instruction to make an alternative 

keyboard response (‘space’) each time they see the target card, which is any card with the 

number ‘7’. To ensure the PM instruction has been correctly interpreted, volunteers are required 

to repeat the instructions back to the experimenter in their own words. Following this there is a 

2-minute interval, before participants sort a further 3 decks of cards, containing 72 sort trials, 72 

non-sort trials and 12 PM trials. At the end of the task participants are requested to summarise 

the task instructions, ensuring that they remembered the additional PM instruction.  

 

Sort accuracy and RT are recorded for the control deck and the 3 decks following the 

introduction of the PM intention. For each participant, individual sort RTs were screened for 

outliers, defined as those more than 3 standard deviation (SD) away from the participant’s 

mean. In addition, accuracy of PM retrieval is also recorded. 

 

7.3.2.3. NASA task load index  

 

Perceived workload is measured for the control and PM decks of the card-sort PM task using a 

pen-and-paper version of the NASA task load index. This consists of 6 visual analogue scales 

measuring: mental demand, physical demand, temporal demand, performance, effort, and 

frustration. Participants are instructed to mark along the scale to rate how they experienced each 

section (baseline deck, PM decks of the card-sort task). Greater values represent increased 

ratings.  
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7.3.3. Procedure 

 

For the initial questionnaire phase, volunteers were asked to complete a demographic 

questionnaire and the two questionnaires of cognition in everyday life (the CFq, the ACs) in 

their own time and return them to the experimenter by post.  

 

For volunteers accepting the invitation to complete the behavioural session, individuals were 

first asked to complete the NART before beginning the card-sort PM task. Following 

completing the control sort-deck and receiving the PM instruction, there was a two-minute 

interval where volunteers were orally asked questions from the CRIq, prior to resuming the task. 

Any remaining questions from the CRIq were asked following completion of the card-sort PM 

task. Measures of task load were completed following the initial control card-sort deck (time 

point 1), and again following the three PM decks (time point 2). Finally participants were asked 

to provide a buccal swab for APOE genotype analysis. The session lasted a maximum of 60 

minutes.  

	
7.3.4. Design 

 

Prior to analysis, data from nine individuals was excluded, as they were aged 54 years or 

younger (Questionnaire phase n=7; Behavioural phase n=2). Adults recruited from the MAS 

clinic, including both individuals diagnosed with MCI and experiencing SCD, were collectively 

analysed in comparison with a healthy older-adult group. For all genotype comparisons, ε4 

carriers (ε2/ε4, ε3/ε4, ε4/ε4) were compared to a homozygous ε3 group (the population norm). 

Group differences in demographic characteristics were screened prior to analysis using either a 

between-groups t-test for continuous variables, or a χ2 test for categorical variables.  

 

7.3.4.1. Card-sort PM task  

 

Prior to analysis, mean sort RTs and accuracy were screened for outliers based on the overall 

sample. Group differences in baseline card-sort performance (mean RT, accuracy) was analysed 

using a 2 (Group: MAS, healthy) x 2 (Genotype: ε3, ε4) ANOVA, with age and years of 

education included as covariates. 

 

For analysis of subsequent PM performance, data from individuals unable to recall the PM 

instruction were excluded (n=6). Accuracy of PM retrieval (/12) was analysed using a 2 (Group: 

MAS, healthy) x 2 (Genotype: ε3, ε4) ANOVA.  
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To establish if introducing a PM intention led to significant interference for ongoing sort 

performance, separate paired t-tests were used to compare card-sort RT and accuracy on the 

control deck and for each of the 3 subsequent PM decks (Bonferroni-corrected α=.017). 

Interference was probed further, where significant, using a single measure of cost for each deck 

(the difference between baseline sort performance and sort performance with the additional PM 

instruction). Separate ANOVAS with Deck as a within-subjects factor, Group and Genotype as 

between-subjects factors were completed for cost to sort RT and accuracy. Again, age and years 

of education were included as covariates.	11 

 

7.3.4.2. NASA task-load 

 

The impact of introducing a PM intention on the six indices of task load was analysed using 

repeated-measures t-tests comparing ratings of the baseline and PM condition (Bonferonni 

corrected α=.008). To screen for group differences in physical ability to complete the card-sort 

measure, 2 x 2 x 2 mixed ANOVA was completed with Group (MAS, healthy), Genotype (ε3, 

ε4) as the between-subjects factors and Condition (baseline, PM) as the repeated measures 

factor. In addition, group differences in perceived mental demand and effort were analysed 

(Group x Genotype x Condition mixed ANOVAs).  

 

7.3.4.3 Questionnaires: Cognitive errors in daily life 

 

Prior to analysis, responses to both the CFq and the ACs were screened for missing data. For 

participants with up to four blank responses per questionnaire, missing responses were 

estimated as the average score for that participant in order to ensure comparable scores. 

Questionnaire data for participants with over four missing responses were removed (CFq n=1; 

ACs n=1).   

 

																																																								
11	To assess the profile of age-related change in performance on the card-sort paradigm, PM 
retrieval accuracy (/8) and PM cost was compared for the first 2 PM decks in the current study, 
with existing data from a mid-age sample (45-55 years) (Lancaster et al., 2016). Both measures 
of performance were compared in separate one-way ANOVAs comparing mid-age, healthy 
older-adults and MAS-users. PM retrieval accuracy was significantly higher in mid-age adults 
(M=7.03, SE=.27) compared to healthy older adults (p<.001) (M=5.20, SE=.32) and MAS users 
(p<.001)(M=4.75, SE=..31), F(2, 126)=18.21, p<.001, n2p=.224. Healthy older adults and MAS 
users did not significantly differ (p=.312). There was no significant difference in PM cost 
(p>.05).   
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The total score on each questionnaire was compared between-groups (MAS, healthy) using a 

between-groups t-test. In addition, scores on the individual factors of each questionnaire were 

compared (CFq: Memory, Distractibility, Blunders, Naming (Wallace et al., 2002); ACs: 

Focusing, Shifting (Judah et al, 2013)), using Bonferonni-corrected t-tests (CFq α=.010, ACs 

α=.017).  Furthermore, for the preclinical group with known genotype, a 2 (Group: MAS, 

healthy) x 2 (Genotype: ε3, ε4) between-subjects ANOVA was run. Genotype differences in the 

control group were not analysed due to a small sample size (ε3 n=16, ε4 n=3).  

 

Pearson’s correlation coefficients were calculated between total scores on the CFq and ACs and 

measures of PM accuracy and interference.  

 

7.4. Results 

 

7.4.1. Demographics 

 

7.4.1.1. Preliminary questionnaire phase 

 

Demographic measures for the questionnaire phase are shown in Table 7.1. Between groups, the 

distribution of gender was not equivalent, with a higher proportion of males in the MAS group 

than the healthy group, χ2 (135)=7.21, p=.007. All other group differences were non-significant.  

 
Table 7.1. The demographic characteristics of volunteers completing the questionnaire phase 
shown according to group 
 
  Controls MAS 
  

  n 48 86 
Age 72.65 (7.67) 75.44 (8.89) 

Gender (% M) 33* 57* 
Education (years) 13.74 (3.30) 13.46 (3.60) 

Smokers (n) 0 4 
Hypertensive (%) 17 25 

* p <.05     
 

7.4.1.2. Behavioural phase 

 

Table 7.2 shows the demographic characteristics of volunteers completing the behavioural 

phase. The healthy group had significantly more years of education than the MAS group, F(1, 

85)=4.35, p=.040, n2p=.049, however, there was no significant difference in years of education 

between genotype groups (p>.05). No other group differences were significant (p>.05). 
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Table 7.2. Demographic characteristics of volunteers participating in the behavioural phase, 
shown according to group and APOE genotype 

 
Controls MAS 

  ε3 ε4 ε3 ε4 
n 33 12 24 20 

Age 71.49 (6.86) 71.15 (11.42) 73.88 (17.62) 71.25 (18.81) 
Gender (% M) 63 40 30 31 

IQ 117.97 (3.56) 117.37 (8.26) 118.96 (6.19) 118.84 (2.48) 
Education* 15.82 (4.60) 15.46 (5.19) 13.38 (4.30) 13.63 (4.37) 

CRq  135.30 (20.85) 129.39 (21.36) 130.58 (20.19) 129.40 (19.78) 
* p <.05 

 
7.4.2. Card-sort PM task 

 

For a summary of performance on this task by each group, see Table 7.3.  

 

7.4.2.1. Baseline decision-making 

 

MAS users (M=758.27ms, SD=177.20ms) were significantly slower to perform the card-sort in 

comparison to the healthy older adults, (M=625.63ms, SD=115.92ms), F(1, 82)=12.54, p=.001, 

n2p=.133. Age accounted for significant variance in sort RTs, F(1, 82)=5.92, p=.017, n2p=.067, 

with larger RTs recorded with increasing age (B=3.23).  The effects of genotype, year of 

education and all interaction terms were non-significant (p>.05).  

 

Across participants, accuracy on the baseline card-sort measure ranged from 56% to 100%.  

MAS users (M=90.83, SD=11.82) made significantly more errors than healthy older adults 

(M=96.51, SD=4.69), F(1, 79)=5.95, p=.017, n2p=.070. The effect of genotype, age, years of 

education and all interaction terms were non-significant (p>.05).  

 

7.4.2.2. PM retrieval accuracy 

 

There was no difference in PM retrieval accuracy (/12) between MAS users and healthy older 

adults (p>.05). The effect of genotype was also non-significant, as was the Group x Genotype 

interaction (p>.05). Age did not account for significant variation in PM retrieval accuracy, 

however, years of education was associated with increasing PM retrieval accuracy, F(1, 

78)=5.14, p=.026, n2p=.062, B=.181.  
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7.4.2.3. PM interference 

	
Compared to the baseline deck, introducing the PM intention was associated with a significant 

slowing of card-sort RTs on all 3 subsequent decks (p<.001). Cost to sort RTs did not 

significantly change across decks (p>.05). There was no significant difference according to 

Group or Genotype (p>.05). In addition, age and years of education did not account for 

significant variation, and there were no significant interactions (p>.05).  

 

Carrying the PM intention was only associated with a significant cost in sort accuracy for the 

first deck following the introduction of the additional PM intention, t(81)=3.15, p=.002. The 

cost for the subsequent 2 decks was non-significant (p>.05). Cost to sort accuracy for this initial 

PM deck did not differ by Group or Genotype, and the Group x Genotype interaction term was 

also non-significant (p>.05). In addition, age and years of education did not account for 

significant variation (p>.05). 

 
7.4.2.5. Task-load ratings 

 

Subjective ratings of task load are shown in Table 7.4. Across participants, introducing the PM 

intention increased subjective ratings across 5 measures of task load (Mental demand: F(1, 

80)=66.67, p<.001, n2p=.455, Temporal demand: F(1, 80)=56.93, p<.001, n2p=.416, Physical 

demand: F(1, 80)=40.60, p<.001, n2p=.342, Effort: F(1, 80)=67.88, p<.001, n2p=.459, 

Frustration: F(1, 80)=21.28, p<.001, n2p=.210). In addition, perceived performance was lower 

in the PM condition, F(1, 80)=41.611, p<.001, n2p=.342.  

 

The group difference in perceived physical demand of the card-sort task was non-significant 

(p>.05), as were differences in subjective mental demand (p>.05). There was a marginal Group 

x Genotype interaction for perceived effort, F(1, 80)=3.70, p=.058, n2p=.044. In the healthy 

older group, ε4s reported significantly greater effort than the ε3 group (p=.012), but there was 

no genotype difference in MAS-users (p=.815). Split by genotype, there was no difference 

between groups (MAS, healthy older adults in perceived effort (p>.013) (Bonferonni corrected 

α=.013).  
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Table 7.3. Group differences on the card-sort task shown for the baseline condition, and as an 
average across the 3 PM decks.  

Group 
 

Baseline Deck PM decks  

RT (ms)  Accuracy (%) RT (ms)  Accuracy (%) 

PM 
retrieval/

12 

RT cost 
(ms) 

Controls 
ε3 636 (115) 96.84 (5.04) 721 (112) 95.81 (4.40) 8.97 129 (58) 

ε4 600 (119) 95.69 (3.72)  670 (115) 94.33 (3.73) 7.69 109 (84) 

MAS 
ε3 784 (178) 93.77 (8.98) 859 (179) 90.27 (11.61) 7.14 113 (97) 

ε4 727 (175) 89.10 (12.52) 791 (167) 85.44 (14.96)  8.18 126 (65) 
 
 
Table 7.4. Subjective ratings of task-load following the control card-sort deck (Time point 1) 
and the PM decks (Time point 2), shown as mean (SD) 

  
Controls MAS 

  Time point  ε3 ε4 ε3 ε4 
Mental demand 1 3.12 (2.44) 4.96 (2.49) 4.84 (2.36) 4.14 (3.42) 

 
2 6.43 (2.64) 6.51 (2.54) 6.62 (2.77) 5.88 (2.65) 

Physical demand 1 1.78 (2.38) 3.62 (2.41) 2.83 (2.20) 2.36 (2.85) 

 
2 3.76 (3.03) 6.32 (2.10) 4.20 (2.76) 3.77 (2.66) 

Temporal demand 1 4.48 (2.82) 5.66 (2.20) 5.01 (2.86) 4.97 (3.06) 

 
2 5.99 (2.79) 7.26 (2.24) 7.01 (2.12) 6.47 (2.22) 

Effort 1 3.82 (2.54) 5.74 (2.45) 5.28 (2.59) 4.79 (2.64) 

 
2 6.04 (2.70) 7.69 (1.89) 6.94 (2.07) 7.09 (2.03) 

Performance  1 7.44 (2.36) 6.52 (2.46) 6.16 (2.81) 3.93 (3.61) 

 
2 4.86 (2.33) 4.94 (2.45) 3.66 (2.93) 3.55 (2.63) 

Frustration 1 2.86 (2.86) 4.57 (2.98) 3.10 (2.41) 4.01 (3.47) 
  2 4.65 (3.03) 6.08 (2.11) 5.04 (2.50) 5.94 (3.09) 
 
 
7.4.3. Questionnaires: Cognitive errors in daily life 

 

Average scores on both questionnaires of cognition in everyday life (the CFq, the ACs) are 

summarised by group in Table 7.5. The MAS group (M=50.27, SD=14.13) reported a 

significantly higher numbers of cognitive failures in daily life than healthy older adults 

(M=34.33, SD=11.85), F(1, 124)=36.55, p<.001, η2
ρ =.233.	Age and years of education did not 

account for significant variance in scores (p>.05). This difference was consistent across each of 

the four factors (memory, distractibility, blunders, naming) (p<.001). In the MAS group, ε4 

carriers (M=48.93, SD=15.88) did not significantly differ in total CFq compared to homozygous 

ε3 carriers (M=49.10, SD=12.50) (p>.010). In addition, the genotype difference was non-

significant across all four individual factors (p>.010).  

 

In addition, the MAS group reported significantly worse attentional control in daily life than the 

control group, F(1, 119)=29.26, p<.001, η2
ρ =.197, indexed using the ACs. Age did not account 
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for significant variance in scores (p>.05), however, there was a marginal effect of education 

(β=-.40, p=.055). The effect of group was consistent across questions targeting attentional focus 

(p<.001) and shifting (p=.006). Education did not account for significant variance when 

considering these individual factors (p>.05). In the MAS group, ε3 carriers (M=49.07, 

SD=5.75) reported significantly worse attentional control than ε4 carriers (M=42.93, SD=9.24), 

t(41)=7.04, p=.011, η2
ρ =.153. Following correction for multiple comparisons, when 

interrogating this difference for individual factors, the genotype difference in MAS users was 

marginal for both attentional focusing, t(41)=4.85, p=.034, η2
ρ =.111, and shifting, t(41)=3.32, 

p=.076, η2
ρ =.078. 

 

The correlation between ACs score and PM retrieval accuracy approached significance, r(73)=-

.211, p=.074, however, the relationship between CFq and PM retrieval was non-significant 

(p=.215). In addition, PM interference on ongoing task performance did not significantly 

correlate with subjective scores on either questionnaire (p>.05).  

 
Table 7.5. Subjective ratings of cognition in everyday life shown by group (control, preclinical) 
and genotype (ε3, ε4) 

 
Control MAS 

  
 

  ε3 ε4 
CFq 34.96 (11.96) 50.27 (14.13) 49.10 (12.50) 48.93 (15.88) 
Acs 39.79 (6.85) 47.87 (8.24) 49.07 (5.75) 42.93 (9.24) 

 
 

7.5. Discussion 

 

The present study addressed the following research questions: 1) is performance on a card-sort 

measure of non-focal PM impaired in individuals self-referring to memory assessment clinics 

with mild cognitive complaints? 2) Does non-focal PM correlate with subjective reports of 

everyday cognitive impairment? 3) Does carrying the APOE ε4 allele further moderate 

differences in executive control?  

 

The current findings suggest non-focal PM performance is intact in individuals in the early 

stages of cognitive decline; both PM retrieval and PM interference costs were equivalent 

compared to cognitively healthy older adults. The MAS group, however, demonstrated poorer 

performance (both accuracy and RTs) in the baseline card-sort condition, suggestive of some 

reduction of attentional resource in this group. As expected, reports of cognitive errors in daily 

life were greater in the MAS group, with PM retrieval accuracy correlating with reports of 

poorer attentional control, but not with cognitive failures more broadly. APOE ε4 genotype did 

not moderate PM performance in either the clinical group, or healthy older controls.  
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The card-sort paradigm indexes both the accuracy of PM retrieval and the cost of carrying a PM 

intention on ongoing performance, providing a sensitive measure of attentional control in 

prospective remembering. Equivalent performance on this paradigm in individuals experiencing 

the early stages of preclinical cognitive decline is inconsistent with reports of impaired non-

focal PM in MCI (Blanco-Campal et al., 2009; Tam & Schmitter-Edgecombe, 2013), and 

deficits in executive attention more broadly (Rajan et al., 2015; Twamley et al., 2006). As the 

behavioural profile of SCD is less defined (Stewart et al, 2012), an additional analysis 

confirmed intact non-focal PM performance in individuals diagnosed with MCI as an 

independent group. The current findings align with the theory that non-focal PM is generally 

sensitive to age-related decline (for reviews see Henry et al., 2004; Kliegel et al., 2008; Uttl, 

2008), but additional impairment in focal PM differentiates individuals in the preclinical stages 

of cognitive impairment (Chi et al., 2014; McDaniel et al., 2011; Niedźwieńska et al, 2017). 

Consistent with a profile of age-related decline, an informal comparison of performance levels 

in the current sample compared to existing mid-age data (Lancaster et al., 2016), suggested PM 

retrieval accuracy was poorer in both healthy older adults and the MAS group. This is in line 

with frontal regions being impacted early in the ageing trajectory (Bartzokis et al., 2003; Raz et 

al., 2005). AD-related pathology initially impacts medial temporal regions (Braak & Braak, 

1991). Hence focal PM, reliant on associative memory processes, may be a more sensitive 

marker of a divergent trajectory of cognitive ageing.  

 

Intact non-focal PM in the early stages of cognitive decline, as indicated in this study, 

contradicts reports of impaired attentional control in both MCI and SCD on neuropsychological 

assessment measures (Amariglio et al., 2012; Crowell, Luis, Vanderploeg, Schinka, & Mullan, 

2002; Traykov et al., 2007). Executive attention comprises multiple separable processes (e.g. 

Engle & Kane, 2002; Friedman & Miyake, 2015), which likely differ in their sensitivity to 

cognitive decline. The current results suggest that goal maintenance and monitoring abilities are 

preserved in the preclinical stages of AD. Differences may emerge in PM tasks placing greater 

demand on the active manipulation of information within WM, predictive of decline in MCI 

(Belleville, Chertkow, & Gauthier, 2007). In healthy older adults, increasing the monitoring 

load of a PM task did not impact performance, however, including a WM task requiring active 

updating significantly increased age-related PM deficits (Bisiacchi et al., 2013a). Hence, non-

focal PM deficits in the early stages of cognitive impairment may emerge in tasks with more 

attentionally demanding ongoing components.  

 

Non-focal PM may be sustained in the early stages of cognitive decline through compensatory 

mechanisms. In individuals reporting SCD, equivalent episodic memory performance is 



	

	

152	

associated with compensation-like increases in frontal activations (Erk, 2011). Although 

compensatory recruitment has not been demonstrated during non-focal PM performance, 

individuals in the early stages of cognitive decline may be recruiting additional neural resources 

to support performance. Cognitive strategies, both external (e.g. reminders in the physical 

environment) and internal (e.g. checking behaviours), can be used to support PM performance 

in naturalistic environments (Aronov et al., 2015). The use of internal cognitive strategies is 

linked to both executive function and general intelligence (Bouazzaoui et al., 2010); as the 

current study population is relatively well-educated, perhaps individuals in the MAS group are 

able to effectively employ strategies to sustain equivalent performance. Furthermore, 

individuals were recruited within nine months of their initial referral appointment; a slightly 

more progressed group may experience a breakdown of compensatory ability.  

 

PM was expected to correlate with reports of cognitive decline in everyday functioning; 

specifically due to the demand placed on executive attention by non-focal PM, a stronger 

relationship was predicted for indices of attentional control. The correlation between PM 

retrieval and attentional control in daily life was marginal, aligning with both measures being 

supported by frontal, executive abilities. Cognitive failures more generally did not correlate 

with measures of PM retrieval or cost, contradicting previous reports that PM is central to 

everyday functioning (Schmitter-Edgecombe et al., 2009; Woods et al., 2012). Recent research 

in individuals reporting SCD found that although there was a non-significant negative 

correlation between PM retrieval and functioning in daily life, the relationship between Stroop 

and memory for temporal order, and everyday cognition was significant (McAlister & 

Schmitter-Edgecombe, 2016). Everyday cognition is likely supported by a wider constellation 

of abilities, of which attentional control is an important factor. 

 

As a secondary aim of the study, the impact of APOE genotype on non-focal PM was explored. 

Despite evidence for differential performance on the card-sort task in APOE ε4 carriers by mid-

adulthood (Evans et al., 2014; Lancaster et al., 2016), carrying an ε4 allele did not negatively 

impact PM performance in the current study. In mild AD, APOE ε4 is associated with 

disadvantages on focal PM (Duchek et al., 2006), but not non-focal PM impairment (McDaniel 

et al., 2011). In MCI, APOE ε4 has been linked to impaired declarative memory performance 

but intact executive functions (van der Vlies et al., 2007; Wolk & Dickerson, 2010). 

Corresponding to these changes, ε4 carriers demonstrate greater atrophy of MTL regions, whilst 

frontal regions are more sensitive to deterioration in ε4 non-carriers (Wolk & Dickerson, 2010). 

Hence, in preclinical populations, ε4 may primarily impact on memory processes supported by 

MTL regions. Further research is needed to establish how, or whether, APOE ε4 effects 

differentiate between healthy and pathological ageing.  Subjective indices of task effort 
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indicated healthy ε4 carriers were working harder to maintain performance. Although based on 

a small sample, it may be that ε4 carriers are showing increased compensation to maintain 

performance (Filbey, Chen, Sunderland, & Cohen, 2010; Scheller et al., 2017; Wishart et al., 

2006).  

 

 

The initial cognitive complaints reported in the MAS group were not well defined. Due to the 

heterogeneity of cognitive deficits associated with MCI, two subtypes are proposed (amnestic 

MCI (aMCI), non-amnestic MCI (naMCI))(Petersen & Morris, 2005), and these have 

previously been linked to differential profiles of PM impairment. While individuals with both 

aMCI and naMCI demonstrate focal impairment, disadvantaged interference of carrying a non-

focal PM intention has previously been reported selectively in individuals with naMCI (Costa et 

al., 2010). This could be further explored in future studies. One limitation of the current study is 

the sample size of each APOE genotype group (ε3, ε4). The study employed an opportunistic 

sample, and while group sizes for ε4 carriers and ε3 homozygotes was relatively equal for the 

preclinical group, the healthy older adults group was biased towards homozygous ε3 carriers (as 

expected) 

 

7.6 Conclusions 

 

Performance was equivalent in adults experiencing the early stages of cognitive impairment on 

a card-sort measure of non-focal PM, selected for its sensitivity and suitability for 

administration in older populations, suggesting attentional control in an everyday context is not 

impacted in the preclinical stages of AD. These results indicate non-focal PM is not impaired 

beyond the trajectory of change expected in healthy ageing; however, there are inconsistencies 

across the literature and perhaps subtle effects emerge under more taxing executive conditions. 

Focal PM may be a more sensitive marker of preclinical change, and could be a useful addition 

to clinical assessments (Lee et al., 2016). Future research should interrogate the distinction 

between focal and non-focal PM using more ecologically relevant paradigms. PM is associated 

with attentional control in daily life, supporting the development of interventions to strategically 

improve this ability as a route to maintain functional independence in older adulthood.  
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8. General Discussion 
 

Carrying a copy of the APOE ε4 variant is associated with poorer cognitive ageing, however, 

the presence of behavioural differences in early adulthood highlights the importance of 

understanding the expression of APOE effects across the lifespan. The current thesis considered 

the following research questions: 1) Does APOE genotype impact cognition in mid-adulthood? 

2) Are individual attentional control processes differentially impacted by APOE variants? Focus 

was placed on the ε4 risk variant; however, effects of the protective ε2 variant were also 

considered to understand how allelic versions of APOE differentially contribute to cognitive 

ageing. Furthermore, the thesis began to explore if additional factors in age-related decline 

influence the presence of APOE effects in early cognitive ageing.   

 

This general discussion will collectively consider the empirical results included in this thesis 

and how the provided evidence speaks to those questions. In addition, as Articles 2 and 3 

investigated the independent effects of APOE ε2 on attentional control, the effects of this allele 

are considered as they relate to the reported late-life protective effects of this allele. Following 

this, theoretical accounts of APOE ε4 and individual differences in cognitive ageing will be 

discussed in relation to attentional control. Finally, the relevance of this research to clinical 

practice and our understanding of cognitive impairment in everyday life will be considered, 

followed by a short discussion of the present work’s limitations and future directions.  

 

8.1 APOE in mid-adulthood 

 

Article 1 systematically reviewed existing reports of APOE ε4 genotype differences in healthy 

middle-aged adults, and concluded that support for a differential profile of cognition in ε4 

carriers was limited before the end of the 5th decade. Closer interrogation of individual studies, 

however, suggested ε4 differences are present by mid-adulthood when administering 

behavioural paradigms sensitive to small effects. This highlighted a key methodological concern 

with the APOE literature to-date, motivating the careful selection of sensitive cognitive 

paradigms in subsequent experiments.  

 

Results from Articles 2, 3 and 5 are consistent with the conclusions of the mid-age review 

(Article 1): ε4 differences are not consistently present in adults aged 45-55 years, however, 

subtle disadvantages are detectable on select behavioural indices. Collectively, these results 

imply that performance of ε4 carriers is relatively intact until the end of the 5th decade within 

the domain of executive attention, with some evidence for deficits apparent on individual 
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cognitive processes. Whilst existing meta-analyses of ε4 effects in young and healthy older 

adulthood support a heterogeneous profile of effects across cognitive domains (Ihle et al., 2012; 

Wisdom et al., 2011), this research suggests effects may be nuanced at the level of individual 

cognitive processes.  

 

8.1.1 APOE ε4 and attentional control 

 

This thesis considered APOE genotype effects in ‘attentional control’ or ‘executive attention’ as 

this constellation of cognitive processes, in addition to showing marked age-related decline (e.g. 

Hasher & Zacks, 1988; Milham et al., 2002; Wasylyshyn & Sliwinski, 2011), is associated with 

ε4 differences in youth (e.g. Marchant, King, Tabet, & Rusted, 2010; Rusted et al., 2013; Taylor 

et al., 2016). Furthermore, behavioural paradigms targeting attentional control report ε4 

genotype effects in mid-adulthood, but not consistently so (e.g. Evans et al., 2014; Evans et al., 

2013; Greenwood, Lambert, Sunderland, Parasuraman, 2005; Greenwood, Sunderland, Friz, & 

Parasuraman, 2000; Velichkovsky, Roschina, & Selezneva, 2015) (see Article 1).   

 

The experiments completed in this thesis report equivalent visual search performance in mid-

age ε4 carriers on both the dynamic scaling task and the perceptual load task (Article 2). These 

tasks measure selective visual attention on trials requiring the heightened processing of a target 

location whilst preventing interference from distractor items. Selective attention, or simple WM 

capacity (Awh et al., 2006; Chun, 2011a), therefore, does not appear sensitive to the 

disadvantageous effects of ε4 until later in the lifespan, when carriers are suggested to show a 

profile of accelerated ageing (Espeseth et al., 2012; Greenwood et al., 2000; Greenwood, 

Espeseth, Lin, Reinvang, & Parasuraman, 2014).  

 

Higher-order, executive attention shows a differential profile of ε4 effects in mid-adulthood 

(Article 3). The rapid visual information processing (RVIP) task (Wesnes & Warburton, 1983) 

provides a measure of sustained attentional focus and the ability to continuously update ‘online’ 

information. Previous research reports mid-age ε4 carriers are slower, but more accurate in 

detecting target strings on this task (Evans et al., 2014), however, Article 3 suggested 

performance was comparable between mid-age ε4 carriers and ε3 homozygotes. On a Stroop-

switch task, however, mid-age ε4 carriers demonstrated a greater congruency effect for errors. 

In addition, ε4 disadvantages in non-focal PM manifested as either decreased PM retrieval 

accuracy on the card-sort paradigm (Article 3) or increased interference to ongoing task 

performance on the category decision task (Article 5). Previous studies of non-focal PM in mid-

age ε4 carriers, again, reported a speed-accuracy trade off on PM trials in association with 
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heightened frontal fMRI BOLD activations (Evans et al., 2014). This study, however, did not 

include an index of PM interference to provide a complete consideration of genotype effects.  

 

The profile of attentional control differences in mid-age ε4 carriers (Articles 2, 3 and 5) is 

suggestive of an early vulnerability in carriers of this variant in the ability to process multiple 

attentional sets, a central component of existing theoretical models of attentional control (Faust 

& Balota, 2007; Friedman & Miyake, 2015; Kane & Engle, 2003; Tiego et al., 2017). During 

non-focal PM individuals must process the ongoing task whilst maintaining and monitoring for 

the PM intention. Likewise, on the Stroop-switch paradigm, individuals must maintain multiple 

task rules (word naming, colour naming). Models of attentional control, importantly, indicate 

this complex goal maintenance ability is the overarching construct of executive attention, 

supporting additional processing such as inhibition and set shifting, and hence it may be this 

central ability that is most vulnerable to early ε4 deficits (Friedman & Miyake, 2015; Tiego et 

al., 2017). Article 5 explored how increasing the complexity of executive demand differentially 

impacted ε4 carriers in mid-adulthood by including a third WM component within a PM 

paradigm. The results were equivocal, however, and further interrogation of genotype 

differences in the ability to multi-task between several attentionally demanding tasks is needed. 

Furthermore, although the current study included a Stroop-switch paradigm, as the switches 

were regular and bi-trial (as opposed to random and unpredictable), the cost of attentional 

switching did not emerge as a sensitive index. To gain a more complete understanding of APOE 

genotype across individual processes of executive attention a more challenging switch task 

could be included in future research, with ε4 disadvantages predicted based on existing research 

(Velichkovsky et al., 2015). 

 

The presence of specific cognitive deficits in ε4 carriers by mid-adulthood can be used to infer 

which neural regions are vulnerable to early ε4 effects. Non-focal PM is supported by dorsal 

frontal-parietal regions, cingulate regions and the precuneus (Cona et al., 2016, 2015; McDaniel 

et al., 2013), aligning with reports of genotype differences within these regions prior to the 6th 

decade (e.g. Chen et al., 2016; Evans et al., 2014). As change in frontal regions are reported in 

the initial stages of cognitive ageing (Bartzokis et al., 2003; Raz, 2000; Villemagne et al., 

2011), perhaps ε4 are showing a premature decline in these regions. 

 

Aside from attentional control, Article 5 also reports ε4 differences in focal PM by mid-

adulthood, which were absent in youth. This suggests associative memory processes show early 

vulnerability to ε4 effects, reliant on medial temporal lobe function (Cona et al., 2016; Gordon 

et al., 2011; McDaniel et al., 2013). Ε4 differences in medial temporal lobe regions have 
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previously been reported in mid-adulthood (Den Heijer et al., 2002; Shaw et al., 2007; Wishart 

et al., 2006).  

 

8.1.2 APOE ε2 and attentional control 

 

The APOE ε2 variant is purported to have protective effects against LOAD (Corder, Saunders, 

Risch, Strittmatterl & Schmechel, 1994; Chiang et al, 2010) and the associated neuropathology 

(Grothe, Villeneuve, Dyrba, & Bartrés-faz, 2017; Nagy et al., 1995; Serrano-Pozo, Qian, 

Monsell, Betensky, & Hyman, 2015; Tiraboschi et al., 2004; for review see: Suri, Heise, 

Trachtenberg, & Mackay, 2013). Although infrequently studied, carrying an ε2 allele is linked 

to cognitive advantages in older adulthood (Bonner-Jackson et al., 2012; Deary et al., 2004; 

Helkala et al., 1996), as well as youth (Alexander et al., 2007; Alexopoulos et al., 2011; Konishi 

et al., 2016; Mondadori et al., 2007), although the data are less than consistent (Yasen, Raber, 

Miller, & Piper, 2015). Despite this, existing literature predominantly considers ε2 carriers 

collectively with homozygous ε3 carriers as a ‘non-ε4’ group, potentially biasing results, or 

excludes ε2 carriers from the sample altogether. This thesis independently considered the effects 

of this variant, as understanding the effects of all three alleles is essential for a complete 

understanding of how APOE genotype effects develop across the lifespan.  

 

Given the purported protective role of APOE ε2, carriers of this genotype were expected to 

show cognitive advantages in mid-adulthood. Articles 2 & 3, however, report ε2 disadvantages, 

relative to their ε3 peers, on measures of selective attention and sustained attentional updating 

(Articles 2 & 3). The presence of both ε4 and ε2 disadvantages in this thesis aligns with reports 

of comparable fMRI BOLD activations in task-unrelated regions in mid-age ε2 and ε4 carriers 

(Trachtenberg, Filippini, Cheeseman, et al., 2012), potentially representing similar levels of 

neural network dedifferentiation between these variants. Furthermore, mid-age ε4 and ε2 

carriers demonstrate similar profiles of resting-state BOLD activity (Trachtenberg, Filippini, 

Ebmeier, et al., 2012b). The presence of ε2 disadvantages earlier in the lifespan raises the 

question of how the opposing effects of ε4 and ε2 alleles develop in older adulthood. More 

recent research suggests that whilst ε2 and ε4 carriers both show diminished functional 

connectivity within the default mode network in older adulthood (aged 54-80 years), cross-

sectional comparisons indicate a differential trajectory of age-related change between these 

variants (Shu et al., 2016). Understanding the mechanisms for why the effects of these alleles 

diverge in cognitive ageing is an important future step.   

 

8.2 Theoretical accounts for the role of APOE ε4 in cognitive ageing  
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8.2.1 Mid-adulthood as a transitional stage in ε4 effects 

 

Overall, the results from the studies reported here suggest carriers of an ε4 genotype show 

relatively preserved attentional control until the end of the 5th decade, with subtle deficits 

detectable on individual behavioural parameters. Although only one cognitive domain was 

considered in the current thesis, broadly intact performance is not inconsistent with the 

antagonistic pleiotropy hypothesis (Han & Bondi, 2008). It may be that mid-adulthood 

represents a transitional stage, with the expression of ε4 effects shifting from being cognitively 

advantageous (e.g. Marchant et al., 2010; Mondadori et al., 2007; Rusted et al., 2013; Stening et 

al., 2016) to detrimental in later life (Wisdom et al., 2011). To allow for a cross-sectional 

comparison between young and mid-age ε4 carriers, adults aged 18-30 years were included in 

Article 5. Considering this age group independently, evidence for ε4 advantages on measures of 

focal and non-focal PM was non-significant in youth, out of line with the predictions of 

antagonistic pleiotropy. Longitudinal research, however, is needed to establish lifespan 

developmental effects of the ε4 allele. 

 

ε4 cognitive advantages in youth have been attributed to early compensatory strategies, 

supported by reports of increased fMRI BOLD activations, comparable to those seen in healthy 

ageing (e.g. Evans et al., 2014; Rusted et al., 2013). Continuation of compensatory strategies 

may in part be responsible for executive attention being largely intact in mid-age ε4 carriers; 

however, processes may be breaking down in line with small disadvantages appearing. In 

support, one study has reported that mid-age ε4 carriers show heightened fMRI BOLD 

activation at low levels of WM load, with no further increase in activation recorded under more 

challenging conditions as reported in their non-ε4 peers (Chen et al., 2013). This was interpreted 

as ε4 carriers utilising compensatory strategies to sustain performance under low demand, and 

hence being unable to further recruit additional support under more taxing conditions. Evidence 

for compensation is limited, however, in the absence of an association between neural 

activations and behaviour (Cabeza & Dennis, 2012).  

 

Developing the idea that ε4 carriers may be approaching cognitive tasks differently, this thesis 

explored subjective cognitive effort and task load. Across Articles 5 and 6, healthy ε4 carriers 

across a range of age groups (young, mid, older) report greater perceived effort in completion of 

a PM task. Furthermore, in Article 5, the presumed practice-related decrease in effort on the 

second session of the category-decision PM task (under WM load) was absent in mid-age ε4 

carriers only, suggestive of persistently high workload in this group. Hence ε4 carriers may 

consciously be exerting greater cognitive resource to maintain comparable levels of 

performance. These results are not inconsistent with the speed-accuracy trade-off reported in 
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Evans et al. (2014). Whilst using subjective reports to probe task load may not be the most 

accurate gauge of cognitive demand, further research exploring ε4 differences on physiological 

indices of response to task could be worthwhile. 

 

8.2.2 Premature Ageing in Mid-age APOE ε4 Carriers  

 

The presence of ε4 disadvantages on select processes implicated in attentional control supports 

early vulnerability in this group by mid-adulthood, with the uneven profile of impairment 

mirroring the non-uniform decline typical of healthy cognitive ageing. The pattern of 

impairment reported in ε4 carriers aged 45-55 years (Articles 3 and 5) is comparable with the 

profile of decline reported in older adulthood (Bélanger, Belleville, & Gauthier, 2010; Henry, 

MacLeod, Phillips, & Crawford, 2004; Kliegel, Jäger, & Phillips, 2008), suggestive that APOE 

ε4 is associated with an early loss of frontal-based cognitive resource. In addition, Article 5 

included a cross-sectional comparison between young (18-30 years) and mid-age ε4 carriers.  

Compared to the young group, ε4 carriers demonstrated a greater age-related increase in 

prospective interference compared to their ε3 counterparts, consistent with enhanced cognitive 

ageing in this group.  

 

Mid-age participants in this thesis were recruited from the age-range 45-55 years to minimise 

bias from individuals in the ‘preclinical’ stage of LOAD and the associated pathology 

(Sliwinski & Buschke, 1999; Sperling et al., 2011). Hence, the behavioural results consistent 

with premature ageing in mid-age ε4 carriers can be considered to result from a non-

pathological physiological mechanism, consistent with APOE ε4 representing a cognitive 

phenotype (Greenwood, Lambert, Sunderland, Parasuraman, 2005; Negash et al., 2009). 

Considering existing literature, one potential mechanism for differential ε4 impairment in mid-

adulthood may be altered cortical connectivity, linked to APOE ε4’s role in the synthesis and 

transport of cholesterol, and as a result, myelination and the efficiency of neuronal 

communication (Liu et al., 2013). In late mid-adulthood, APOE ε4 is associated with disrupted 

functional connectivity within the default mode, executive control and salience networks 

(Goveas et al., 2013b), including in individuals demonstrating no significant amyloid 

accumulation (Sheline et al., 2010). Importantly, demyelination accelerates in ε4 carriers from 

the 5th decade (Bartzokis, 2007) supporting this as a potential mechanism for decline from mid-

adulthood.  Higher-order cognitive processes requiring the integration of processing across 

multiple neural regions may be more significantly impacted by disrupted connectivity.  

 

Of interest, the attentional disadvantages reported in mid-age ε4 carriers overlap with the profile 

of cognitive impairment distinguishing individuals in the preclinical or early stages of LOAD 
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from age-matched healthy controls. Specifically, an effect of congruency on errors on the 

Stroop-switch task in mid-age ε4 carriers is comparable with behavioural deficits predictive of 

future LOAD onset in a group of healthy older adults (Balota et al., 2010)(Article 3). Whilst 

healthy cognitive ageing is associated with selective decline in non-focal PM, pathological 

ageing is distinguished by an additional impairment in focal PM (Chi et al., 2014; McDaniel, 

Shelton, Breneiser, Moynan, & Balota, 2011; Niedźwieńska, Kvailashvili, Ashaye, & Neckar, 

2017). By mid-adulthood ε4 carriers show significant impairment in both focal and non-focal 

PM, consistent with the profile characteristic of LOAD. Hence, a second possibility is that ε4 

carriers show early vulnerability to LOAD-related processes, driving increased age-related 

decline. 

 

Early vulnerability to pathological ageing may result from a differential trajectory of amyloid 

deposition in ε4 carriers. One influential model argues that the accumulation of β amyloid acts 

as the initial insult within the cascade of neurodegenerative processes (Selkoe & Hardy, 2016), 

and hence may be expected to influence individual differences in early cognitive ageing. Further 

supporting amyloid as a probable mechanism of LOAD-type vulnerability, carrying a copy of 

the ε4 variant directly impacts the accumulation and clearance of amyloid in the brain (Mahley 

et al., 2006). Although this thesis included adults aged 45-55 years, APOE ε4 is seen to 

accelerate the accumulation of amyloid earlier in the lifespan. For example, a higher proportion 

of ε4 carriers are reported to show build up of Aβ42 by their 40s (Morishima-Kawashima et al., 

2000). In addition, 10% of ε4 carriers show clinically significant levels of amyloid by the 5th 

decade (Jack et al., 2015). Below the threshold for clinically significant amyloid accumulation, 

the initial build up of this protein may impact early APOE genotype differences in cognitive 

ageing. Increased neural activation is hypothesised to accelerate amyloid deposition (Jagust & 

Mormino, 2011); hence increased frontal and medial temporal lobe BOLD activations in young 

ε4 carriers (e.g. Filippini et al., 2009; Rusted et al., 2013; Trachtenberg, Filippini, Cheeseman, 

et al., 2012) may indicate early vulnerability, stressing the need to consider the cumulative 

impact.  

 

In line with frontal regions being preferentially impacted by the neural deposition of amyloid 

(Rowe et al., 2007; Villemagne et al., 2011), several studies have investigated the relationship 

between APOE, executive attention, and amyloid in late-mid adulthood. The presence of 

amyloid is reported to accelerate decline in mid-age ε4 carriers (mean age 53.6 years) on 

neuropsychological assessment measures of inhibition, switching and processing speed (Clark 

et al., 2016). In further support, although no independent effect of ε4 was reported on cognition 

in adults aged 50-69 years, the presence of amyloid was associated with poorer executive 

attention in ε4 carriers (Mielke et al., 2015). On a behavioural paradigm of attentional control, a 
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speeded category-decision task, ε4 differences were mediated by the presence of Aβ42, 

specifically in regions including the prefrontal cortex, precuneus and temporal regions 

(Aschenbrenner et al., 2015). Therefore, there is support for both non-pathological and LOAD-

related mechanisms of premature ageing in ε4 carriers, supporting the need to take a 

dimensional approach to understanding cognitive ageing (Herrup, 2010; Sheline et al., 2010; 

Verghese, Castellano, & Holtzman, 2011). 

 

8.2.3 APOE ε4: a genetic vulnerability factor? 

 

Herrup (2010) suggested age-related processes are central to cognitive decline; however, the 

presence of neural insult is necessary to trigger an enhanced profile of deterioration. In addition 

to allowing for the role of APOE in the pathological accumulation of amyloid, this model 

suggests carrying an ε4 allele creates a general propensity for decline. Although APOE ε4 may 

reduce the reserve of the brain to cope with insult via multiple LOAD independent mechanisms, 

including neuroinflammation and mitochondrial dysfunction (Liu et al., 2013), a susceptibility 

to vascular damage is identified as the key factor in this model. In line with the methodological 

comments outlined in Article 1, this motivated an exploratory examination of the moderation of 

APOE effects by additional factors influencing cognitive ageing, including vascular health 

(Article 4).  

 

In line with previous research (Bender & Raz, 2012; Oberlin et al., 2015; McFall et al., 2015), 

APOE ε4 status was predicted to interact with poor vascular health to exaggerate cognitive 

deficits from mid-adulthood. Specifically, systolic blood pressure and ε4 in combination 

associate with decreased white matter volume and executive decline (Bender & Raz, 2012), 

supporting disruption in neural connectivity as a general mechanism for ε4 effects. This thesis 

did not find an association between vascular health and APOE genotype on measures of 

executive attention, however, this may stem from methodological limitations (detailed in the 

discussion of Article 4). The current studies report attentional disadvantages in both ε4 and ε2 

carriers in mid-adulthood (Articles 2, 3, 5), yet one possibility is that the opposing influence of 

these variants in later life stem from differential vulnerability to cognitive insult (McFall et al., 

2015). In youth, cerebrovascular reactivity and thus resistance to vascular insult increases in a 

stepwise manner across genotypes ε4, ε3, ε2 (Suri et al., 2015a). This fits with the suggestion 

that whilst the trajectory of ε4 carriers is more flexible, the ε2 allele may be more resistant to 

modification by external factors. Furthermore, beneficial effects of cognitive reserve were 

enhanced in ε4 carriers (Article 4), supporting the hypothesis that ε4 represents a plasticity gene 

(Belsky et al., 2015). 
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8.3 Limitations  

 

Each Article includes an independent discussion of potential shortcomings; here, common 

limitations across the studies are considered. A principle concern is the relatively small sample 

size of each genotype group across experimental studies. In particular, the study reported in 

Article 6 recruited participants opportunistically, either from the MAS clinics or local 

community groups, leading to an unequal distribution of APOE genotype groups. Small group 

sizes may result in underpowered statistical analysis, leading to under- or overestimated effect 

sizes (Button et al., 2013). In support, smaller effect sizes of APOE ε4 genotype are reported in 

studies with larger group sizes (e.g. Jorm et al., 2007; Marioni et al., 2015; Shin et al., 2014), as 

evidenced in the meta-analytic review of APOE ε4 effects in mid-adulthood (Article 1), and the 

meta-analysis of ε4 effects in youth (Ihle et al., 2012). Although effects of APOE ε4 on 

attentional control in mid-adulthood were consistent across studies in this thesis, research 

should focus on the reproducibility of APOE ε4 behavioural effects with larger sample sizes, to 

strengthen conclusions.  

 

The field of cognitive ageing is rapidly moving towards a reliance on large cohort studies, such 

as ‘Generation Scotland’ (Marioni et al., 2015a), the Arizona APOE cohort (Richard J Caselli et 

al., 2009) and the ‘Atherosclerosis Risk in Communities Study’ (Blair et al., 2005). Whilst these 

are invaluable for gathering cognitive data representative of the general population, cohort 

studies typically rely on quick-to-administer generic neuropsychological test batteries. The use 

of sensitive and process-specific cognitive paradigms is generally more time consuming, hence 

limiting study sample size. Future research could consider using remote computerised tasks to 

sensitively measure cognition in larger groups.  

 

Sample size further limited our consideration of APOE gene dose, with a small number of 

homozygotes in each study. The impact of ε4 reportedly increases with 0, 1 and 2 copies of the 

gene (Farrer et al., 1997; Raber et al., 2004; Wisdom et al., 2011).  The effects of APOE ε4 are 

reported to differ on measures of attention and general processing speed in mid-life according to 

zygosity (Blair et al., 2005; Greenwood, Lambert, Sunderland, Parasuraman, 2005), but not 

consistently (Trachtenberg, Filippini, Cheeseman, et al., 2012). The additive effects of carrying 

two copies of the ε4 allele could be explored in future research, with a necessity for large 

sample sizes due to the low frequency of homozygous ε4 carriers in the population (~2% (Raber 

et al., 2004)).   

 

A further limitation of the thesis is that the participating mid-age volunteers were generally high 

functioning, with many of them recruited from a university background and mean premorbid IQ 
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between 117- 119 for Articles 2, 3, 4 and 5. This makes it difficult to draw strong conclusions 

about how APOE ε4 effects generalise to a broader general population. Article 4 investigated 

the moderation of APOE genotype effects under varying environmental conditions, including 

past cognitive engagement, vascular and metabolic health, and physical activity. Again, low 

variability in participants along these variables limit exploration of APOE x Environment 

interactions.  

 

Finally one of the reasons for considering APOE genotype effects in mid-adulthood is that the 

presence of genotype effects at this stage of the lifespan will further understanding of how gene 

expression changes across the lifespan. It is difficult to draw conclusions of genetic differences 

in the trajectory of cognitive ageing, however, from taking snapshots of ε4 effects at any one 

window of the lifespan. Future longitudinal research is needed to validate lifespan models of 

APOE ε4 effects.  

 

8.4 Applications and Future Directions 

 

Clear evidence for subtle behavioural impairment in ε4 carriers by mid-adulthood has important 

applications for future research. The results of Articles 2-5 suggest individual processes within 

the framework of attentional control are differentially sensitive to the effects of the ε4 variant, 

however, this thesis did not administer paradigms sensitive to attentional set-shifting. 

Furthermore, although the profile of impairment reported in mid-age ε4 is consistent with 

deficits in the maintenance of multiple goals within attention, it may be differences emerge 

under conditions more taxing to the integration of multiple attentional processes. To explore 

APOE differences in a more ecologically valid context of attentional control, paradigms 

assessing multi-tasking may be explored in future research. This will allow more careful 

interrogation of APOE differences in frontally based processing. In addition, the focus of this 

thesis was investigating ε4 differences within the domain of attentional control. In line with the 

conclusions of Article 1, sensitive behavioural paradigms should be used to explore early 

genotype differences across a range of cognitive domains.   

 

An important next step for future research is to explore the biological basis of premature ageing 

in ε4 carriers, focusing on directly correlating changes in the behavioural phenotype with 

genotype differences in the brain. In addition to focusing on region-of-interest BOLD 

activations, studies considering the integration of cortical activity across brain regions are 

important. Further understanding the neural basis of ε4 effects has important applications for 

timely interventions against cognitive decline.   
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Reports of ε4 effects on attentional control by mid-adulthood (Articles 2-5) has wider relevance 

for understanding cognitive impairment in older adulthood. Whilst changes in episodic memory 

are considered the hallmark of cognitive ageing (e.g. Caselli et al., 2014; Chen et al., 2001; for 

review see Mortamais et al., 2016), changes in attentional control may be responsible for lapses 

in everyday function. The current thesis consistently demonstrated effects of APOE ε4 on PM in 

mid-adulthood (Articles 3 and 5), considered the archetypical form of ‘everyday’ memory. In 

light of this, the relationship between non-focal PM and cognitive errors in everyday life was 

explored in individuals self-referring to the MAS (Article 6). Although PM was not 

differentially impacted in this ‘at-risk’ group, the correlation between performance and 

subjective reports of lapses in attentional control encourages interventions targeting PM for the 

maintenance of independence in everyday life. 

 

The crucial conclusion of this thesis is that mid-adulthood represents a critical window when 

individual differences in the trajectory of cognitive decline may first be apparent. The 

demonstration of ε4 disadvantages at the end of the 5th decade presents the opportunity for early 

risk assessment and more timely intervention strategies. To build on the presence of existing ε4 

differences on measures of attentional control, future research should explore if the combination 

of APOE genotype with inter-individual differences in these parameters is predictive of a more 

detrimental trajectory of cognitive ageing. Furthermore, mid-adulthood is a key stage of the 

lifespan when additional factors in age-related decline, including vascular health and cognitive 

reserve may become more prominent in their effects (Ritchie, Ritchie, Yaffe, Skoog, & 

Scarmeas, 2015), and hence APOE ε4 should not be considered in isolation. Future research 

should explore environmental factors in depth to see if interventions can reverse early genotype 

differences in mid-adulthood. There is the potential to use APOE genotype in personalized 

medicine (Villeneuve, Brisson, Marchant, & Gaudet, 2014), referring to the tailoring of medical 

advice based on individual characteristics including genotype, family history and additional risk 

factors (Offit, 2011). If ε4 carriers show greater plasticity in their trajectory of cognitive decline, 

and increased vulnerability to cardiovascular risk mechanisms, APOE status could directly be 

used to implicate the most effective preventative steps. There are considerable ethical 

implications, however, for both the collection and disclosure of genotype information at the 

level of the individual.  

 

8.6 Conclusions 

 

Carrying a copy of the APOE ε4 risk variant is associated with disadvantages in executive 

attention by mid-adulthood. Importantly, an uneven profile of impairment was reported across 

attentional processes, with tasks requiring the maintenance of multiple goals within attention 
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most consistently affected. This suggests rather than ε4 being uniformly disadvantageous, 

distinct elements of attentional control are vulnerable to the negative effects of this allele. 

Overlap in the cognitive profile of ε4 carriers and the distinguishing behavioural impairments of 

LOAD is suggestive of APOE ε4 acting via both general ageing mechanisms and LOAD-related 

pathology, emphasising the need to adopt a dimensional approach to cognitive ageing. 

Cognitive reserve moderated ε4 effects in mid-adulthood, with differential sensitivity of this 

group positioning ε4 as a vulnerability gene. Furthermore, the mitigation of ε4 affects effects in 

mid-adulthood highlights the importance of focusing preventative steps earlier in the lifespan. 

Future research should focus on linking these early cognitive differences to their biological 

basis, and importantly on whether the influence of ε4 can be minimised at this formative stage 

through the interplay of this allele with additional factors.   
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Appendix: 
 
In addition, group differences (Age, Genotype) in the proportion of WM targets identified in 

each condition (control, focal, non-focal) was probed using a 3 (Condition) x 2 (Age) x 2 

(Genotype) mixed ANOVA.  

 

The proportion of WM targets recalled in each PM condition is shown in Table 5. At trend 

level, young adults (M=.91, SD=.18) recalled a higher proportion of WM targets than mid-age 

adults (M=.84, SD=.19), F(1, 84)=3.16, p=.079, n2p=.036. The main effect of focality was non-

significant (p>.05), however there was a significant Focality x Age x Genotype interaction, 

F(1.79, 150.13)=3.18, p=.050, n2p=.036. In ε3 carriers, there was a significant Age x Focality 

interaction, F(2, 100)=3.17, p=.046, n2p=.060. SME analysis identified a trend of mid-age 

volunteers retrieving a smaller proportion of WM targets than young volunteers selectively in 

the non-focal condition (p=.039) (Bonferroni-corrected α=.013). In ε4s the Age x Focality 

interaction was non-significant (p>.05). 

 
Table A. The proportion of WM targets reported in each focality condition. 
    Control Focal Non-focal 
Young ε3 .81 (.27) .87 (.30) .95 (.17) 

 
ε4 1.01 (.16) .94 (.23) .88 (.28) 

Mid ε3 .87 (.24) .87 (.25) .78 (.30) 
  ε4 .85 (.19) .80 (.31) .86 (.38) 
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