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Abstract

Learned associations between rewarding stimuli and environmental cues which predict 

their availability play an important role in guiding behaviour. These learned 

associations are thought to be encoded by neuroadaptations in disperse sets of 

strongly activated neurons, termed neuronal ensembles, located throughout 

motivationally-relevant brain areas. However to date, the nature of the adaptations 

which occur selectively on neuronal ensembles encoding appetitive associative 

memories remain largely unknown. Using the Fos-GFP mouse, which expresses green 

fluorescent protein (GFP) in recently activated neurons, we investigated the intrinsic 

and synaptic excitability of neurons activated following exposure to stimuli associated 

with food (sucrose) or drug (cocaine) exposure. 

We observed that in the nucleus accumbens (NAc) shell, but not orbitofrontal cortex, 

neurons activated following exposure to a food-associated stimulus were more 

intrinsically excitable than surrounding, non-activated neurons. These neurons also 

demonstrated increased spontaneous excitatory transmission suggestive of potentiated 

synaptic strength. Following extinction of the food-cue association, NAc shell neurons 

activated following cue exposure were no longer more excitable than surrounding 

neurons. This suggests that the intrinsic excitability of striatal neurons activated by a 

food-associated cue is dynamically modulated by changes in associative strength. 

We also examined the intrinsic excitability of striatal neurons (including neurons in the 

NAc shell, core and dorsal striatum) activated by cocaine-associated stimuli. 

Interestingly, NAc shell neurons activated by cocaine-associated stimuli were not more 

excitable compared to the surrounding neurons regardless of extinction learning 

experience, possibly indicating differences between drug and food conditioning. Similar 

results were obtained for dorsal striatal neurons. However, NAc core neurons activated 

by cocaine-associated stimuli displayed an enhanced excitability which persisted 

following extinction, indicating that core and shell neuronal ensembles differentially 

encode the cocaine associative memories.   

Overall, by selectively recording from stimuli-activated neurons, this work reveals novel 

adaptations at the intrinsic and synaptic levels on neuronal ensembles following 

appetitive learning with both food and drug rewards. 
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OFC: orbitofrontal cortex 
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1.1. Behavioural Analysis of Associative 
Learning 

 

1.1.1 History of the behavioural analysis of associative learning  

Pavlov and the conditioned reflex 

The theoretical outlook of early researchers of associative learning was strongly 

influenced by prior studies of simple motor reflexes. René Descartes first sought to 

characterise complex behaviour as a collection of coordinated reflex arcs (Descartes, 

1975), and this set the tone of later experimental investigations into motor reflexes by 

pioneering physiologists such as Charles Sherrington and Rudolf Magnus (Magnus, 

1924; Sherrington, 1906). In the mid 1880’s, Ivan Pavlov, working at the University of 

St Petersburg in Russia, began his work on learnt, or conditioned reflexes. Pavlov’s 

primary work focused on the gastric system of the dogs (for which he would later win a 

Nobel prize (1904)). He had noticed that the salivary response of the dog could be 

evoked merely by the visual appearance of food (an unconditioned stimulus, US), 

presented at a distance (Pavlov, 1927; Windholz, 1986).  Pavlov investigated this 

observation experimentally and found that a neutral stimulus (or conditioned stimulus, 

CS) could elicit responses such as salivation if paired with delivery of the food US. 

Thus Pavlov, who spent almost 40 years conducting experiments detailing the nature 

of CS-US associations, had demonstrated for the first time that simple motor reflexes 

could be conditioned to environmental stimuli (Pavlov, 1927). 

 

Behaviourism and modern learning theory 

Shortly after Pavlov observed the conditioned reflex, the American researcher Edward 

Thorndike formulated the “Law of Effect”, which postulated that positively reinforced 

behaviours would be repeated, based on his observations that cats would quickly learn 
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to press a lever to escape a box for a food reward (Thorndike, 1905). This instrumental 

type of learning, in which a contingency between a certain response and outcome is 

learnt, is in contrast to Pavlovian learning in which a contingency between a stimulus 

and an outcome is learnt (Mackintosh, 1974).  Soon after, John Watson formalised the 

study of behaviour into the Psychological discipline of “Behaviourism”, while also 

demonstrating that classical conditioning occurs in humans (Skinner, 1938). The field 

of Behaviourism became strongly associated with the researcher B.F. Skinner, who 

contributed significantly to behavioural theory and radically improved experimental data 

collection through the automatic measurement of behaviour using the “Skinner box” (an 

automated experimental chamber allowing presentation of environmental cues, operant 

stimuli for instrumental conditioning and reward delivery which is still widely used 

today) (Skinner, 1969). 

Other researchers such as Clark Hull, Robert Bush and Frederick Mosteller began to 

formalise learning theory, creating mathematical models which attempted to predict the 

associative strength between a CS and US (Bush and Mosteller, 1951; Hull, 1940). The 

most influential model of reinforcement learning is the Rescorla-Wanger model, which 

built upon the work of Bush and Mosteller (Rescorla and Wagner, 1972). This model 

was found to have great predictive utility, and was, many years later, supported by the 

direct observations of the neuronal populations which encode reinforcement learning 

(Glimcher, 2011; Schultz et al, 1997). The detailed mechanisms of many associative 

learning processes have been elucidated by a multitude of influential behavioural 

researchers over the 20th century. In the modern era, many behavioural studies into 

associative learning are usually also focused on understanding the underlying 

biological mechanisms.  
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1.1.2. Major concepts in associative learning, with focus on Pavlovian 
conditioning 

1.1.2.1. Features of the conditioned stimulus (CS), unconditioned stimulus 
(US) and unconditioned and conditioned response (CR) 

The US 

The unconditioned stimulus is an external stimulus which elicits an innate reflexive 

motor response (the unconditioned response, UR) (Pavlov, 1927). Additionally, a US 

usually induces a positive or negative affective response and so can be directly 

reinforcing. For example, and appetitive US such as food may elicit both a reflexive 

salivary response alongside behavioural excitation and approach behaviours. 

Conditioned responses such as these are thought to play an evolutionary role, allowing 

animals to successfully navigate their environment requiring a minimal amount of 

learning (Pavlov, 1927). Common appetitive USs used in laboratory investigations 

include rewarding food with high sugar or fat content, water following water deprivation, 

and access to a mate, while aversive CSs typically involve application of caustic 

chemical such as a mild acid, electrical shocks or puffs of air to sensitive areas of the 

body (Mackintosh, 1974). 

 

The CS  

The conditioned stimulus (originally a mistranslation of Pavlov’s “conditionable 

stimulus” (Pavlov, 1927)) is a stimulus which, following repeated CS-US pairings, may 

elicit a conditioned response similar to the unconditioned response elicited by the US. 

An experimental CS may be discrete (located at a distinct point in the environment) or 

contextual (consisting of the entire environment) and be visual, auditory, olfactory or 

somatosensory (Antonov et al, 2003; Pavlov, 1927). The CS may predict the delivery of 

reward (a CS+) or alternatively have no relationship to delivery of the reward or predict 

the omission of reward (a CS-). 
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CSs used in behavioural experiments are typically neutral prior to conditioning, as 

previous exposure to the CS can influence the rate of conditioning. For example, pre-

habituation to a stimulus can retard the rate of acquisition when it is used as a CS 

(called “latent inhibition” (Lubow, 1973)) while re-conditioning a CS to a US of opposing 

valence may also slow conditioning; for example, an appetitive CS+ for food is 

conditioned much more slowly to an aversive shock than does a CS- for food (Konorski 

and Scwejkowska, 1956). This suggests that following conditioning, a CS may not 

remain a neutral predictor of the availability of the US but comes to acquire 

motivational properties of its own. In support of this are experiments demonstrating that 

presentation of a CS can elicit CS-directed behaviours and be directly rewarding. 

Brown and Jenkins (1968) observed approach behaviours to a CS in pigeons, who 

would peck repeatedly at an illuminated “key” which was conditioned to the delivery of 

a food reward; pigeons would continue to peck at this food-associated CS even if this 

behaviour blocked food delivery (Williams and Williams, 1969). Interestingly, some 

individual animals appear predisposed to find the CS appealing (“sign trackers”) while 

others are more likely to interact with the US or site of reward delivery (“goal trackers”) 

(Boakes, 1977; Robinson and Flagel, 2009).  

A discrete CS can be associated with a US in isolation, or presented as a compound 

CS consisting of two separate discrete stimuli, such as a light and a tone. Similarly, 

conditioning with a discrete CS can, at least initially, be considered as conditioning to a 

compound CS formed by the CS and the environmental context (Bouton, 2004). 

However, the role of context in Pavlovian conditioning may become less important as 

training progresses. For example, Sheffield (1965) observed that during Pavlovian 

salivary conditioning in dogs, salivation initially increases both during presentation of 

the CS and during the inter-trial interval (in which the environment is presented in the 

absence of the CS). However, salivation in the inter-trial interval decreases over 

multiple conditioning trials, as repeated exposure to the conditioning environment 
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remains unreinforced (Sheffield, 1965 in Mackintosh, 1974). In support of this, a 

context switch does not disrupt the expression of conditioned head-jerking to the 

presentation of a discrete CS conditioned with food (Bouton and Peck, 1989). Thus, 

following extended conditioning of discrete CS to an appetitive US, the role that 

environmental context plays may be minimal.  

The UR and CR 

Conditioned responses are the reflexes elicited by the CS following conditioning, and 

are usually smaller in magnitude than the response elicited directly by the US (the 

unconditioned response). Observation of a conditioned response is used as an indirect 

behavioural measure of the strength of the CS-US association; for example, early in 

conditioning of the salivary reflex in the dog an unreinforced CS may elicit only minimal 

salivation, but salivation to the CS increases following multiple conditioning trials 

(Pavlov, 1927). The magnitude of the CR may also be influenced by the intensity of 

both the CS and US (Mackintosh, 1974) and number of distinct CS which are 

presented - the magnitude of conditioned responding  summates when two distinct CS 

conditioned to the same US are presented together (Levitan, 1975). Thus, the CR is 

not a binary response indicating the successful recall of a CS-US association but is 

adaptive and varies depending on conditioning procedures used.  

While most behavioural experiments typically measure only a single CR, a CS may 

elicit multiple CRs which may compete for expression. Konorski (1967) proposed a 

distinction between generalised “preparatory” responses which elicit motivation system 

activation prior to US delivery (e.g. behavioural excitation, increased heart rate) and 

“consummatory” responses which are directly related to the specific US (e.g. salivation, 

freezing behaviour). The behavioural excitation elicited by presentation of a CS may be 

of such magnitude to interfere with the expression of a CR, especially in goal-directed 

behaviours such as conditioned approach responses. As such, it is important to 
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consider a CR of interest as one of many possible, potentially competing, behavioural 

responses to the presentation of a CS.  

Factors governing the formation and strength of CS-US associations 

The strength of a CS-US association is determined by the parameters of conditioning, 

including the order of CS/US presentation and delay between their presentation. 

Effective conditioning is typically observed using a delayed conditioning procedure, in 

which presentation of the CS is both a predictor of the US and overlaps with its 

delivery. Conditioning in which presentation of the CS and US overlaps exactly 

(simultaneous conditioning) or when the US precedes the CS (backwards conditioning) 

is generally ineffective (Pavlov, 1927). Furthermore, trace conditioning, in which the CS 

predicts the US but the CS and US do not overlap, is also less effective than delay 

conditioning (Balsam, 1984). The optimum delay between CS onset and US delivery 

differs between conditioning procedures; for example, conditioning of the nictitating 

membrane in the rabbit is best conditioned following a delay of only ~500 ms, while the 

optimum delay for Pavlovian conditioning in the dog is approximately 5-10 seconds 

(Mazur, 2012; Pavlov, 1927; Solomon and Groccia-Ellison, 1996).   

1.1.2.2. Experimental methods of weakening the CS-US association 

Extinction  

Repeated presentation of the CS in the absence of the US leads to a loss of the 

conditioned response, in a process known as extinction. Pavlov observed that repeated 

unreinforced presentations of the CS across a single day resulted in extinction of 

conditioned salivation. However, following an overnight break, upon testing the next 

morning the CS slightly regained the ability to elicit a CR (Pavlov, 1927). This 

“spontaneous recovery” was suggested by Pavlov to indicate that the original CS-US 
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association is not forgotten during extinction learning, but becomes inhibited. An 

extinction memory appears to be more unstable than the original CS-US association, 

with conditioned responses recoverable even after prolonged extinction training 

(Bouton and Swartzentruber, 1991).  Additionally, conditioned responses can be 

recovered following extinction by presentation of novel stimuli, a phenomenon Pavlov 

termed “disinhibition” (Pavlov, 1927), as well as being reinstated by presentation of the 

US in isolation (Cifani et al, 2012).  

In Pavlovian conditioning, an extinction memory is context-dependent, in contrast to the 

CS-US association (Sheffield, 1965 in Mackintosh, 1974; Bouton et al, 1989). If 

extinction learning occurs in a distinct environment to training, conditioned responding 

may be recovered by exposure to the CS in the original conditioning environment, a 

phenomenon termed “renewal” (Bouton and Bolles, 1979). Thus extinction likely 

represents a reduction of the CS-US association with reference to a specific 

environment, and is susceptible to disruption through a range of experimental 

interventions. 

 

Devaluation and stimulus-stimulus/stimulus-response behaviour 

The ability of a CS to elicit a CR can also be reduced by devaluation of the US. Holland 

and Rescorla (1975) observed that increased locomotor activity during presentation of 

a food-associated CS could be reduced following devaluation of the food, either with 

satiation or pairing of the food with illness (through rotation). Devaluation is an effective 

tool in distinguishing between two putative types of classically conditioned association, 

stimulus-stimulus (S-S) and stimulus-response (S-R) associations. It has been 

suggested either that an association between a representation of the CS and US is 

formed during conditioning (S-S), or that conditioning between the CS and the 

unconditioned response occurs (S-R) (Mackintosh, 1974). These are similar to goal 
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driven action-outcome (A-O) learning and habituation stimulus-response behaviours in 

instrumental conditioning.  

Devaluation of the US in the absence of the CS should disrupt S-S, but not S-R 

learning. The early stages of acquisition appear to be dependent on the formation of S-

S associations, as they may be disrupted by US devaluation (Dickinson, 1985). 

However, extended training or training on a second order schedule of reinforcement (in 

which a CS is associated directly to second CS following conditioning) are not affected 

by devaluation (Dickinson, 1985; Holland et al, 1975), suggesting they are driven by S-

R behaviours. Thus different types of conditioning paradigms result in the formation of 

distinct types of associations.  

1.1.3. Drugs of Abuse as unconditioned stimuli 

Drugs of abuse as reinforcers     

Drugs of abuse are powerful reinforcers which may be used to condition both Pavlovian 

and instrumental behaviours (Di Chiara, 1999; Everitt and Robbins, 2013; Grimm et al, 

2001; Koob and Volkow, 2010). Drugs of abuse function as a typical US, eliciting a 

range of unconditioned responses (such as changes to heart rate) and are positively 

reinforcing - drugs of abuse will be reliably self-administered while contexts associated 

with drug administration are readily approached (Koob et al, 2010). The URs elicited by 

psychoactive drugs vary as a function of their underlying pharmacology (Badiani et al, 

2011), though most drugs of abuse increase locomotor activity in rodents (Leri et al, 

2003). Interestingly, animals show a general preference for food rewards over drug 

rewards however drug associated cues are more powerful motivators (Caprioli et al, 

2017; Lenoir et al, 2007; Tunstall and Kearns, 2016). 
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Experimental procedures using drug US: similarities and differences to food US 

Exposure to a drug-associated CS can induce behavioural excitation and approach 

behaviours (Hotsenpiller et al, 2002), similar to a food associated CS (Holland et al, 

1975). One example of this is drug conditioned hyperlocomotor activity or ‘conditioned 

locomotion’ in which animals show an increase in locomotor activity when exposure to 

a drug-associated context (Tilson and Rech, 1973). 

A number of novel behavioural phenomena were first discovered when using drugs as 

reinforcers. Behavioural sensitisation is a phenomenon in which locomotor activation in 

response to drug administration is augmented following repeated administration (Tilson 

et al, 1973). This effect is context-specific, as testing in a distinct environment to 

conditioning does not yield behavioural sensitisation (Anagnostaras et al, 2002; 

Whitaker et al, 2016). Behavioural sensitisation to food rewards, in which mice will 

consume more food in a context associated with prior food administration, has also 

been observed (Le Merrer and Stephens, 2006). Another phenomenon which was first 

observed using psychostimulant drugs was the “incubation” effect. Following cessation 

of cocaine self-administration, cocaine craving, as defined by instrumental responding 

on a lever formerly associated with drug delivery, is potentiated or ‘incubates’ at a 

magnitude related to the duration of drug withdrawal (Grimm et al, 2001). This 

phenomenon was later demonstrated to also occur for other drugs of abuse and food 

reinforcers, albeit less robustly compared to drugs of abuse (Grimm et al, 2005; 

Pickens et al, 2011).  

Thus while there are similarities in the way in which food and drugs may be 

conditioned, the magnitude of conditioned responses are usually larger when drug 

reinforcers are used (Tunstall et al, 2016; Zombeck et al, 2008).  
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1.2. The Motivational System of the Brain: 
Anatomy, Physiology and Function 

Pavlov originally hypothesised that the afferent activity caused by presentation of the 

CS travels through the auditory nerve, to the brain where it elicits activation of the 

secretory nerves, stimulating the salivary gland (Pavlov, 1927). While the basic 

assumptions of Pavlov appear correct, for many years the precise brain areas involved 

in behavioural conditioning were largely unknown. Since then, a complex network of 

brain regions involved in the encoding of conditioned behaviours has been elucidated. 

These include the basal ganglia network (BG), including its input nucleus, the striatum, 

as well as other forebrain regions such as the prefrontal cortex (PFC), hippocampus 

(HP) and amygdala alongside midbrain neuromodulatory regions such as the ventral 

tegmental area (VTA) and substantia nigra pars compacta (SNc) (Groenewegen et al, 

1993; Haber, 2011; Voorn et al, 2004). Below, the anatomy, physiology, biochemistry 

and function of these areas will be explored, with special reference to the striatum, a 

brain region thought to have a particularly important role in encoding conditioned 

responses (Everitt et al, 2013). 

 

1.2.1. Anatomy of the striatum  

The striatum is an evolutionarily ancient subcortical forebrain area present in birds, 

reptiles, and is particularly developed in mammals (Reiner et al, 1998) (Figure 1). The 

molecular, physiological and anatomically characteristics of the striatum are 

comparable across mammal species (Calipari et al, 2012; Reiner et al, 1998), in which 

it is involved in the encoding of appetitive associations. The striatum is considered to 

be the primary input of the basal ganglia, a set of forebrain nuclei important for both 

limbic and motor processing (Haber, 2011) (Figure 2). As such, the striatum receives 
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input from multiple brain areas including the prefrontal cortex, hippocampus, amygdala, 

thalamus and midbrain  

 

 

 

 

 

 

 

 

 

 

 

 

input from multiple brain areas including the prefrontal cortex, hippocampus, amygdala, 

thalamus and midbrain dopaminergic areas while in contrast its outputs are primarily 

limited to a select group of basal ganglia nuclei. Thus, the striatum functions to 

converge a broad set of inputs from across the brain to its downstream basal ganglia 

targets. 

 

1.2.1.1. Anatomy of the ventral striatum 

The striatum can be broadly divided into ventral and dorsal subdivisions (Heimer et al, 

1985). The ventral striatum (VS) consists of elements of the olfactory tubercle, the 

Figure 1. Anatomy of the striatum and its afferent projections from the prefrontal cortex (PFC). Adapted from Voorn et al 

(2004). The striatum consists of the nucleus accumbens (NAc) shell (SHELL), NAc core (CORE) and dorsal striatum 

(broadly defined as the region dorsal to the NAc core). The NAc shell is innervated by the infralimbic (IL) prefrontal 

cortex (PFC) and parts of the ventral prelimbic cortex (PLv), while the NAc core receives input from the ventral 

prelimbic, dorsal prelimbic  (PLd) and the anterior cingulate cortex (ACg). The dorsal striatum receives projections 

largely from the PLd, ACg and somatosensory cortex (SMC). These projections are not strictly segregated to specific 

striatal sub-regions but form a continuum along the ventral-dorsal axis of the striatum. AC: anterior commissure. 

                        24



 

 

ventral section of the caudate/putamen and the nucleus accumbens (NAc), which can 

be further subdivided into core and shell regions (Basar et al, 2010; Heimer et al, 1991; 

Voorn et al, 2004).  The core/shell distinction becomes less clear at the rostral end of 

the striatum, in which both regions are combined  into the “rostral pole” (Salgado and 

Kaplitt, 2015). The NAc shell and core are related yet distinct areas distinguishable by 

structure, connectivity, physiology and function (Ghitza et al, 2004; Haber, 2011; 

Heimer et al, 1991; Kourrich and Thomas, 2009; Voorn et al, 2004) and have received 

particular attention as important structures of the motivational system (Day and Carelli, 

2007).  

The dorsal striatum (DS) consists of the caudate/putamen subdivisions; in humans 

these are separated into the distinct caudate and putamen while in the rodent they form 

a continuous structure (Hagan et al, 2011).  The dorsal striatum can be subdivided into 

dorsolateral and dorsomedial subdivisions, based on structure, connectivity and 

function (Murray et al, 2012; Parent and Hazrati, 1995; Voorn et al, 2004). The dorsal 

striatum has received less attention for its role in associative learning than the ventral 

striatum, though it appears to play a crucial role in certain types of conditioned 

responses (Everitt et al, 2013). 

 

1.2.1.1.1. Afferent connections of the ventral striatum 

The afferent connections of the striatum are organised across its ventromedial-

dorsolateral axis and do not strictly adhere to the boundaries of striatal subregions; 

thus neighbouring striatal regions typically display some overlap in afferent 

connectivity, with remote regions of the striatum sharing very few afferents (Haber, 

2011; Voorn et al, 2004). In general, the ventral striatum receives input from limbic 

brain areas while the dorsal striatum receives significant input from areas involved in 

sensorimotor processing.  
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Glutamatergic afferents 

Projections of the prefrontal cortex to the ventral striatum are organised along the 

ventral to dorsal axis of the PFC. The NAc shell receives projections which originate 

from the ventral orbitofrontal, ventral agranular insula and infralimbic cortex, while the 

core receives distinct projections from the dorsal prelimbic, anterior cingulate and 

dorsal agranular insula regions (Brog et al, 1993; Haber, 2011; Salgado et al, 2015; 

Voorn et al, 2004). The projections of the PFC to the striatum primarily consist of dense 

focal connections, however the PFC also projects diffusely, extending widely and 

targeting striatal subregions in a less defined manner (Haber, 2011).   

The basolateral amygdala (BLA) and hippocampus both project to the NAc shell and 

core, sending convergent afferents with overlapping terminal fields. The shell receives 

input preferentially from the ventral subiculum, while parahippocampal gyrus projects 

preferentially to the core (Haber, 2011; Ito and Hayen, 2011). The hippocampal 

projection to the NAc shell is significant, accounting for approximately 30% of the 

asymmetric spines of the shell (Britt et al, 2012; Sesack and Pickel, 1990). The ventral 

striatum additionally receives significant glutamatergic input from the thalamus, with 

thalamic subnuclei differentially projecting to the shell and core (Brog et al, 1993; 

Haber, 2011; Voorn et al, 2004). Furthermore, the paraventricular thalamus projects to 

both the NAc shell and core, and in addition to glutamate may release neuromodulators 

such as enkephalin and substance P (Kirouac, 2015). 

 

GABAergic afferents 

Inhibitory gamma-aminobutyric acid (GABA) projections to the striatum are less 

numerous than glutamatergic projections, however basal ganglia nuclei, which are 

predominantly GABAergic, send significant projections to the ventral striatum. The 

globus pallidus/ventral pallidum forms distinct reciprocal connections to the NAc shell 

and core, with the shell preferentially receiving from medial ventral pallidum and the 
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core from the dorsolateral ventral pallidum and globus pallidus (Brog et al, 1993). This 

is of note, as the more ventral pallidal areas are associated with limbic processing, 

while its more dorsal regions are involved preferentially in motor processing.  

The prefrontal cortex and hippocampus also send a small number of inhibitory 

projections to the ventral striatum (Lee et al, 2014; Sesack et al, 1990), while the VTA 

(which provides a significant dopaminergic input to the ventral striatum) has been 

demonstrated to co-release GABA (Van Bockstaele and Pickel, 1995). 

 

Additional afferents 

Dopamine is a neurotransmitter known to play a crucial role in reward learning and 

motivated behaviour (Di Chiara and Imperato, 1988). Dopaminergic projections to the 

ventral striatum originate in the midbrain ventral tegmental area and substantia nigra 

pars compacta. The VTA primarily innervates the NAc shell and the NAc core (Haber et 

al, 2000; Ikemoto, 2007), although some sparse projections to the core from the SNc 

have been reported (Salgado et al, 2015; Ikemoto, 2007).  While noradrenergic (NA) 

projections to the NAc core are extremely sparse, the caudal NAc shell receives NA 

projections originating primarily in the A2 region of the nucleus tract solitaries (Delfs et 

al, 1998). 

The caudal most region of the NAc shell, named the “septal pole” and adjacent medial-

shell areas receive a somewhat unique pattern of innervation compared to other areas 

of the ventral striatum, receiving afferents from the bed nucleus of stria terminalis, 

medial amygdala, lateral habenula and neuromodulatory inputs from the hypothalamus 

(Brog et al, 1993).  
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1.2.1.1.2. Efferent connections of the ventral striatum 

The ventral striatum converges its many inputs to downstream basal ganglia areas. 

Both the NAc shell and core innervate the ventral pallidum, the entopeduncular nucleus 

(analogous to the globus pallidus internus in the human), globus pallidus (globus 

pallidus externus in the human) and the substantia nigra pars reticular (SNr) (Heimer et 

al, 1991; Kelley, 2004; Voorn et al, 2004). Ventral striatal outputs mirror the topography 

of their inputs, with the NAc shell projecting preferentially to the medial ventral pallidum 

and the NAc core projecting to dorsolateral VP (Heimer et al, 1991). The outputs of 

NAc core are similar to those of the dorsal striatum, projecting primarily to BG areas, 

while the NAc shell has unique projections to subcortical limbic regions (Heimer et al, 

1991; Voorn et al, 2004). The NAc shell projects to the lateral hypothalamus, extended 

amygdala (EA; sublenticular extended amygdala, central amygdala and stria terminalis) 

(Heimer et al, 1991; Usuda et al, 1998) and basal forebrain cholinergic projections 

(BFCP). The BFCP is an aggregate of cholinergic neurons located throughout the 

basal forebrain, including in the extended amygdala and ventral pallidum, which 

provides direct cholinergic innervation to the amygdala and PFC. Thus the NAc shell 

may be able to directly influence cholinergic projections to the cortex in a manner 

independent of the basal ganglia system (Zaborszky and Cullinan, 1992).  

Similar to their input, both the NAc shell and core shell project to the VTA (Heimer et al, 

1991; Watabe-Uchida et al, 2012) however Heimer et al (1991) also observed 

projections from the core to the SNc. Optogenetic stimulation of the NAc to VTA 

pathway demonstrates that NAc efferents preferentially target non-dopaminergic GABA 

interneurons in the VTA. Thus the NAc has the ability to regulate its own dopamine 

input, with increased firing to the VTA potentiating accumbens dopamine release (Xia 

et al, 2011). 
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1.2.1.2. Anatomy of the Dorsal Striatum 

Afferent Connections of the dorsal striatum 

The afferents of the dorsal striatum, which are less widespread than the ventral 

striatum, originate primarily in the sensorimotor cortices and the thalamus. The cortical 

projections to the dorsal striatum are organised in a ventromedial-dorsolateral 

topography, with the anterior cingulate projecting to the more ventral regions of the 

dorsal striatum and sensorimotor cortex areas projecting at the most dorsolateral 

region (Dube et al, 1988; Kemp and Powell, 1971a; Somogyi et al, 1981). The cortical 

projections to the dorsal striatum are significant, with ~30-40% of asymmetrical 

synapses in the dorsal striatum formed by cortical afferents (Kemp et al, 1971a). 

Projections from the sensorimotor cortex are glutamatergic and convey cutaneous 

receptive fields for the body, including trunk, limbs and head (Kemp et al, 1971a; Voorn 

et al, 2004) which project in diffuse manner, rather than in focal point-to-point body 

maps (Brown et al, 1998).  

The dorsal striatum also receives glutamatergic input from the thalamus, which 

contribute an additional ~20-25% of the asymmetrical synapses. The intralaminar 

nucleus of the thalamus (consisting of the parafascicular nucleus, paracentral thalamic 

nucleus and central lateral thalamic nucleus) strongly innervates the dorsal striatum 

(Kemp et al, 1971a); these thalamic areas play an important role in motor function 

(Dube et al, 1988; Van der Werf et al, 2002; Voorn et al, 2004). Thus the dorsal 

striatum primarily receives input from brain areas involved in sensorimotor processing, 

in contrast to the ventral striatum which preferentially receives afferent connections 

from limbic brain areas. 

Dopaminergic input to the dorsal striatum is exclusively provided by the SNc 

(Beckstead et al, 1979). Additionally, dorsal raphe nuclei also send serotoninergic 

projections to the caudate/putamen (van der Kooy and Kuypers, 1979). In contrast, NA 
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projections to the dorsal striatum are extremely sparse and are in many cases 

undetectable (Delfs et al, 1998; Schwarz and Lou, 2015). 

 

Efferent connections of the dorsal striatum 

The dorsal striatum, similar to the nucleus accumbens core, projects almost exclusively 

to downstream basal ganglia regions associated with motor output (Groenewegen, 

2003). The dorsal striatum sends dense projections to the substantia nigra (Maurin et 

al, 1999) and the dorsal pallidum, including both the entopeduncular nucleus and 

globus pallidus (Maurin et al, 1999; Nagy et al, 1978). Mirroring its afferent connectivity 

from dopaminergic regions, the dorsal striatum innervates the dopaminergic SNc, but 

not the VTA (Maurin et al, 1999).  

 

1.2.1.3. Striatal anatomy: functional considerations 

Thus the striatum receives both limbic and motor input organised topographically along 

its ventromedial to dorsolateral axis (Voorn et al, 2004), with the ventral striatum 

receiving projections from predominantly limbic areas, and the dorsal striatum from 

motor-processing areas. The NAc shell receives significant afferents from the 

infralimbic PFC and ventral agranular insula, the lateral hypothalamus, ventral 

subiculum, basolateral amygdala and ventral portion of the ventral pallidum (Haber, 

2011; Ito et al, 2011; Sesack et al, 1990), all regions associated with limbic processing. 

The afferent connections of the NAc shell from the most ventral portions of the PFC, 

lateral hypothalamus and ventral pallidum, are entirely distinct from the core, along with 

its unique efferent connections outside of the basal ganglia (Brog et al, 1993; Heimer et 

al, 1991).  

The NAc core receives inputs from the amygdala, hippocampus, prelimbic prefrontal 

cortex and ventral anterior cingulate cortex (Haber, 2011; Ito et al, 2011; Sesack et al,  
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1990); and makes reciprocal connections to the dorsomedial ventral pallidum (Brog et 

al, 1993; Maurin et al, 1999; Nagy et al, 1978). Thus while the core receives similar 

inputs to the NAc shell, these more commonly from adjacent portions of afferent 

regions which play a more pronounced role in motor processing. At its most dorsal 

regions the striatum receives inputs which are almost exclusively related to 

Figure 2.  Afferent and efferent connections of the striatum. Glutamatergic, GABAergic and dopaminergic are shown with 

pointed, round and diamond arrowheads, respectively. With the exception of the nucleus accumbens (NAc) shell, the striatum 

projects primarily to basal ganglia nuclei. The primarily output of the basal ganglia is the thalamus, which in turn projects back 

to the brain areas providing innervation to the striatum, forming the classical loops of the basal ganglia (Alexander et al, 1986) 

(Projections of basal ganglia nuclei downstream of the striatum are shown double-lined, black). The afferent connections to 

the NAc shell (red, solid), core (blue, solid) and dorsal striatum (green, solid) originating from the amygdala, hippocampus, 

prefrontal cortex (PFC), thalamus, ventral pallidum are shown. The striatum also receives dopaminergic projections from the 

ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (in yellow). The efferent connections of the striatum 

are distinct between the NAc shell, core and dorsal striatum (double-lined, red, blue and green respectively). Abbreviations: 
Amygdala - BLA: basolateral nucleus of the amygdala, Hippocampus – VS: ventral subiculum, PHG: parahippocampal gyrus, 

CA1/3: Cornu  Ammonis 1/3, PFC – OFC: orbitofrontal cortex, IL: infralimbic, PL: prelimbic, ACg: anterior cingulate cortex, 

SMC: sensorimotor cortex, Insula – VAI: ventral agranular insula, DAI: dorsal agranular insula, Ventral pallidum – MV: 

medioventral, DL: dorsolateral, Unique NAc Shell Projections – LH: lateral hypothalamus, EA: extended amygdala, BFCP: 

basal forebrain cholinergic projections. Other- GP/SNR: globus pallidus (globus pallidus externus in humans)/ substantia nigra 

pars reticula, EP(GPi): entopeduncular nucleus (globus pallidus internus in humans), STN: subthalamic nucleus. D1R – 

dopamine 1 receptor, D2R – dopamine 2 receptor.  
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sensorimotor processing. For example, the dorsal striatum does not receive afferents 

from the hippocampus or amygdala, instead receiving input from frontal sensorimotor 

cortices and thalamic nuclei associated with motor processing. Thus the striatum can 

be characterised as a unique input area to the basal ganglia which processes limbic 

and motor information in a gradated manner along its ventromedial to dorsolateral axis. 

 

1.2.2. Evidence for the role of the striatum in motivated behaviour 

1.2.2.1. Evidence for the role of the ventral striatum in motivated 

behaviour 

Early studies into the functional role of the ventral striatum 

Early studies characterising the function of discrete brain regions were typically 

exploratory in nature, observing the effect of simple electrical or chemical stimulation of 

cortical and subcortical brain regions, guided by a rich understanding of the underlying 

anatomy (Mogenson et al, 1980). Amongst the first demonstrations that the midbrain 

dopamine system and ventral striatum was involved in appetitive responses was the 

observation that electrical stimulation to the medial forebrain bundle (containing 

midbrain-to-forebrain dopaminergic axons) elicits ingestive behaviours in rats; the 

relevant dopaminergic projections were later found to originate in the VTA (Huang and 

Mogenson, 1972). At the time, the functional dopaminergic connections from the VTA 

to the NAc were well known (Mogenson et al, 1980), and increasing dopamine or 

opioid transmission in the NAc itself were shown to facilitate feeding behaviour (Colle 

and Wise, 1988; Mucha and Iversen, 1986). Thus attention was drawn to the 

dopaminergic projections to the NAc and the ventral striatum as a possible system 

involved in the expression of appetitive behaviours. 

Direct evidence for the NAc’s role in reinforcement came from observations that 

rodents would self-administer electrical stimulation to the NAc, in a manner regulated 

by dopamine (Phillips and Fibiger, 1978). While animals will self-stimulate many areas 
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of the brain (such as the PFC) (Phillips et al, 1978), the VTA and NAc appear 

particularly important to the expression of dopamine-mediated motivated responses. 

For example, lesions of the NAc and VTA, but not medial prefrontal cortex (mPFC), 

disrupt cocaine self-administration (Martin-Iverson et al, 1986; Roberts and Koob, 

1982; Roberts et al, 1980), while intra-accumbens, but not dorsal striatum, infusions of 

amphetamine in a particular environmental context lead  to conditioned place 

preference (Carr and White, 1983).  

The NAc is not only involved in the processing of directly reinforcing unconditioned 

stimuli, it also plays an important role in the encoding of reward-associated CSs. For 

example, amphetamine infusion to the NAc facilitates conditioned responding for a 

water-associated CS in water-deprived rats, an effect blocked by 6-OHDA lesions of 

the NAc (which selectively target dopaminergic projections) (Taylor and Robbins, 1984, 

1986). Furthermore, dopamine depletion in the NAc inhibits both the acquisition and 

expression of Pavlovian approach behaviours (Parkinson et al, 2002). These findings 

suggest that the ventral striatum plays a particularly important role in appetitive 

conditioning and the encoding of reward-associated CS, in a manner regulated by 

dopamine. 

 

Functional distinction between the NAc shell and core, and distinct NAc afferents 

A functional distinction between the NAc shell and core subregions has been revealed 

through selective manipulations of these areas. Such studies typically implicate the 

NAc shell in encoding the motivating properties of reinforcers, while the NAc core 

appears to be important for the processing of classically conditioned CSs. For example, 

lesions of the NAc core, but not shell, disrupt the acquisition of Pavlovian approach 

responses (Parkinson et al, 2000b), suggesting the core is crucial for the formation of 

Pavlovian conditioned reflexes between a CS and US. However, expression of 

Pavlovian approach is reduced following infusion of GABA agonists muscimol and 

                        33



 

 

baclofen to either the core or shell (Blaiss and Janak, 2009). Thus, the core appears 

important for the acquisition and retention of a CS-US relationship while the NAc shell 

may be important to the expression of classically conditioned behaviours  - 

interestingly, Blaiss et al (2009) observed that shell inactivation increased responding 

to a CS-, suggesting the shell may play a role in inhibiting inappropriate responses 

during the expression of conditioned behaviours. Similar findings have been reported 

using drug reinforcers, Ito et al (2004) made NAc core and shell lesions to rats 

responding on a second-order reinforcement schedule for cocaine. In this paradigm, 

animals are taught to self-administer cocaine on a fixed-ratio schedule, before a 

second-order training schedule is used, in which animals must press the lever multiple 

times only for the presentation of a light CS; after a certain number of CS presentations 

have occurred, animals received an infusion of cocaine. Lesions to the NAc core did 

not affect cocaine self-administration, but disrupted the formation and expression of 

self-administration under the second-order schedule of reinforcement. NAc shell 

lesions, however, had no effect on the acquisition or expression of second-order 

responding but significantly affected cocaine-potentiated responding. Together these 

studies suggest that the core is important for the encoding of CS-US associations while 

the NAc shell may mediate directly reinforcing effects of a US and inhibition of 

behaviour unrelated to the acquisition of reward. 

Researchers have also sought to characterise the function of the distinct afferent 

connections of the NAc. Serial disconnection studies permit functional dissection of the 

connectivity between two brain areas; in this paradigm, a pair of target brain area are 

each unilaterally lesioned on opposing hemispheres, leaving functioning in the 

remaining regions spared but all connectivity between both target regions lost. Ito et al 

(2008) observed the effect of disconnecting the hippocampus and NAc shell on an 

appetitive contextual discrimination task and conditioned place preference to food. 

They found that destruction of the hippocampus-NAc connection significantly perturbed 
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context-dependent CS-US conditioning (in which the CS only predicted the US in a 

specific context) as well as conditioned place preference to a food reward. However, 

the lesions had no effect on conditioning to a discrete CS. Lesions to the amygdala-

NAc pathway, however cause disruption of discrete CS encoding as assayed through 

Pavlovian to instrumental transfer (Shiflett and Balleine, 2010), as well as conditioned 

place preference for a food reinforcer (Everitt et al, 1991). Hence, serial disconnection 

studies suggest that while some pathways may show a selectivity for processing 

particular information (such as the hippocampus-NAcs role in contextual learning) other 

afferent pathways may encode multiple distinct processes involved in Pavlovian 

conditioning. 

More recently, technologies permitting the selective expression of light-gated ion 

channels (channelrhodopsins) in mammalian brain tissue allow precise control over 

specific neuronal circuits in real time (Boyden et al, 2005). Over 40 years since the 

VTA-NAc pathway was first implicated in motivated responding, Steinberg et al (2014) 

demonstrated that rats will self-stimulate optogenetic activation of the VTA-NAc 

pathway in a manner antagonised by blockage of NAc D1/D2 receptors, conclusively 

demonstrating that dopamine release through the VTA-NAc pathway is intrinsically 

motivating. Selective modulation of NAc afferent pathways using optogenetics has also 

demonstrated a role for specific glutamatergic projections in appetitive conditioning; for 

example, Stuber et al (2011) demonstrated that transient optogenetic inhibition of the 

BLA-NAc pathway reduces CS-induced sucrose-seeking . Similarly, inhibition of this 

pathway also reduces cue-induced reinstatement of cocaine (Stefanik and Kalivas, 

2013). Thus optogenetic dissection supports experimental evidence gained using the 

disconnection method, demonstrating the role of the amygdala-NAc pathway in the 

encoding of discrete CSs.  
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1.2.2.1. Evidence for the role of the dorsal striatum in motivated 
behaviours 

Early observations into the function of the dorsal striatum suggested the region played 

a role in inhibiting appetitive responses. For example, stimulation of the caudate 

putamen, in contrast to the NAc, reduces feeding behaviour (Gravante et al, 1985) 

while other studies demonstrated that lesions to the caudate/putamen disrupts 

differential reinforcement of lower rates (DRL; in which animals are rewarded for 

withholding responses) (Hansing et al, 1968). Furthermore, manipulations which in the 

NAc blocked appetitive conditioning, appeared to have no effect when undertaken the 

DS. For example, lesions to the dorsal striatum did not reliably block amphetamine 

facilitated conditioned responding (Taylor et al, 1986), while intra NAc, but not DS 

amphetamine injections were observed to elicit conditioned place reference (Carr et al, 

1983).  These studies suggested that the DS likely plays a less significant role in 

appetitive conditioning that the ventral striatum. 

However, a selective role of the dorsolateral striatum has been observed in the 

encoding of stimulus-response behaviours following appetitive conditioning. Yin et al 

(2004) lesioned the dorsolateral striatum of rats prior to instrumental training for a 

sucrose reward on an interval schedule (which rapidly leads to S-R responding, due to 

the weak relationship between response and reinforcement (Dickinson, 2010). They 

next tested the effect of devaluation on responding in lesioned and sham-lesioned 

animals, and observed that although all rats learnt to respond for food, only lesioned 

rats were affected following US devaluation. As reinforcer devaluation selectively 

disrupts action-outcome but not stimulus response behaviours, this suggests that 

dorsolateral striatum encodes S-R responding, while A-O behaviours are encoded 

elsewhere. Later studies suggest that the transition from A-O to S-R responding is 

underpinned by encoding along the ventromedial-dorsolateral axis of the stratum. In an 

elegant serial disconnection study, Belin and Everitt (2008) unilaterally lesioned the 
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NAc core (thus blocking serial ventral-dorsal striatum connectivity in the lesioned 

hemisphere), then trained animals under a second-order schedule of reinforcement, 

which is known to lead to S-R responding (Holland et al, 1975). At test, they infused the 

dopamine antagonist α-flupenthixol into the DS contralateral to the NAc core lesion, 

and observed deficits in instrumental responding on the second order schedule of 

reinforcement. This suggests the intact DS, despite functioning normally, was not able 

to encode stimulus-response responding due to its functional disconnection from the 

ventral striatum. Thus, these studies suggest an important role not only for the DS in 

motivated behaviour, but suggest how both the ventral and dorsal striatum may interact 

during conditioning. 

 

1.2.2. Physiology and molecular characteristics of the striatum 

The function of the striatum and the expression of learning-induced changes is 

dependent on complex array of neuronal cell types with distinct physiological and 

molecular profiles.  In order to understand how the striatum encodes learned 

associations, its structure must be explored. As such, the physiology and molecular 

biochemistry of the striatum will be discussed below.  

 

1.2.2.1. Striatal cell types and intrastriatal connectivity  

Striatal cell types 

The primary output neurons of the striatum are GABAergic medium spiny neurons 

(MSNs). MSNs make up ~90-95% of striatal neurons, and are characterised by their 

medium size, branching dendrites with a significant number of dendritic spines, and 

collaterals to surrounding MSNs (Kemp and Powell, 1971b; Lobo, 2009; Tepper et al, 

2010). The wide branching dendritic arborisations with many spines function to 

converge the significant number of inputs the striatum receives from across the brain. 
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In additional to MSNs, the striatum contains giant aspiny cholinergic interneurons 

(Durieux et al, 2011) and an array of GABAergic interneurons, which may be identified 

using a number of exclusively expressed molecular markers. These include 

parvalbumin (fast spiking interneurons), neuropeptide Y and nitric oxide (prolonged 

plateau, low threshold (PTLS) class interneurons), or calretinin expressing interneurons 

(of which the physiology is yet unknown) (Kawaguchi, 1993; Tepper et al, 2010). A 

class of striatal interneuron co-expressing TH and GABA has been identified and were 

once thought to release dopamine, however recent optogenetic studies suggest they 

release only GABA (Xenias et al, 2015). 

 

Intrastriatal connectivity of MSNs 

Early visualisation of horseradish peroxidase-filled MSNs suggested their axons made 

significant collateral connections contacting surrounding neurons. However, early 

physiological investigations using paired recordings between MSNs failed to observe 

direct MSN-MSN connectivity (Jaeger et al, 1994; Tepper and Plenz, 2006). However, 

more recent studies have demonstrated physiological evidence for a widespread but 

weak network of MSN collateral connections (Czubayko and Plenz, 2002; Tepper et al, 

2006). Inhibitory tone onto MSNs is also provided by GABAergic interneurons. A single 

fast-spiking GABAergic interneuron synapses onto approximately 300-500 neuron 

striatal MSNs, which are approximately 4-5 times stronger than MSN-MSN synapses, 

demonstrating low vesicle release failure rates (Koos and Tepper, 1999, 2002; Tepper 

et al, 2006). Recent investigations utilising optogenetic stimulation of MSNs, rather 

than paired recordings, demonstrate that though individual MSN-MSN synapses are 

weak, convergent inputs of multiple MSNs onto single neurons may parallel the 

inhibitory influence of GABAergic interneurons, which are divergently connected to 

multiple MSNs (Chuhma et al, 2011). MSNs make direct connections also to 
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cholinergic interneurons but not to fast-spiking GABAergic interneurons (Chuhma et al, 

2011). 

The neuroanatomy of the striatum can thus be characterised by the convergence of 

glutamatergic input through a single-neuron layer of MSNs, which inhibit each other 

through lateral connections (Tepper et al, 2006). These experimental observations 

support theoretical models of striatal function in which competing sets of medium spiny 

neurons function to filter afferent information and bias striatal output to basal ganglia 

targets  (Wickens et al, 1991). 

 

1.2.3.2. Intrinsic Physiology of MSNs 

MSNs are distinguishable based on their hyperpolarised resting potential (~-80mV), 

pronounced inward rectification and slow depolarising ramp at near-threshold 

potentials (Mermelstein et al, 1998).  MSNs exhibit pronounced up-state/down-state 

fluctuations in vivo, determined by synaptic drive and stabilised by potassium channel 

function (Wilson and Kawaguchi, 1996); however these state transitions are not 

observed in slice preparations due to removal of glutamatergic afferent cell bodies. 

 

Ionic membrane currents in MSNs 
At hyperpolarised potentials, MSNs display pronounced inward rectification determined 

by a number of rectifying potassium ion channels, with the Kv1.2 channel playing a 

major role (Hibino et al, 2010; Nisenbaum and Wilson, 1995; Shen et al, 2004). 

Inwardly rectifying potassium channels (KIR) preferentially pass inward currents due to 

polyamine-dependent block of outward currents at potentials above the potassium 

equilibrium potential (EK, approximately -90 mV) (Hibino et al, 2010; Lopatin et al, 

1995). KIR channels in MSNs are open at rest and play a primary role in setting the 

hyperpolarised resting membrane potential of MSNs close to the potassium equilibrium 

potential (John and Manchanda, 2011; Nisenbaum et al, 1995). KIR currents stabilise  
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Figure 3. Intrinsic and synaptic physiology of the neuron. A. Glutamatergic synaptic transmission. Glutamate is 

packaged in vesicles and released from the presynaptic bouton into the synaptic cleft. The binding of glutamate to 

AMPA receptors (AMPARs) on the postsynaptic membrane results in positive sodium (Na+) current (Glur2-lacking 

AMPARs may also carry a calcium current). At resting membrane potentials (e.g. -80mV in the nucleus accumbens), 

NMDA receptors (NMDARs) are blocked by positively charged extracellular magnesium. This block is removed following 

depolarisation of the membrane permitting a sodium and calcium current to flow though the NMDARs. Thus concurrent 

stimulation of AMPAR receptors (which depolarise the membrane) and NMDAR receptors (which are highly permeable 

to calcium) permit activation of calcium-dependent signalling pathways involved in regulation of neuronal plasticity.  

B. Intrinsic excitability in the dendrite. Positive sodium or calcium currents flow from the synapse through the dendrite, 

towards the cell soma and axon hillock. In the dendrite and soma, potassium (K+) channels permit the flow of potassium 

along its electrostatic gradient (outwards, due to the high intracellular concentration of potassium). Following excitatory 

synaptic input, currents activated by voltage-gated and leak K+ channels carry an outward K+ current, reducing the 

membrane voltage. This reduces the length constant of the dendrite and so limits the distance synaptic input can travel 

(low input resistance (Ri), right). If K+ channels are closed or internalised, the resistance (and so length constant) of the 

membrane is increased (high input resistance, left).   

C. Action potential (AP) kinetics are regulated by axonal ion channel function and expression. An action potential is 

generated when the activation threshold of voltage-gated sodium channels is reached at the axon hillock. Activation of 

voltage-gated sodium channels (red) lead the depolarisation phase of the AP (red arrow) and propagate the AP along 

the axon. Delayed voltage-dependent K+ channels result in K+
 efflux and cause the repolarisation phase (purple arrow). 

Calcium -dependent K+ channels underlie the hyperpolarisation phase in which K+ efflux transiently brings the resting 

membrane potential close to the K+ reversal potential (slightly more hyperpolarised than the resting membrane 

potential). Thus, the kinetics of all phases of the AP may be regulated by ion channel function and expression.  
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the resting membrane potential to the MSN downstate; following hyperpolarising 

current injection they pass an inward positive current, drawing the membrane potential 

towards EK and producing the MSNs characteristic inward rectification (John et al, 

2011; Nisenbaum et al, 1995). Following depolarising current injections from rest 

(which is close to Ek), KIR channels do still pass outward current, stabilising the resting 

membrane potential (John et al, 2011; Nisenbaum et al, 1995; Shen et al, 2007) as 

such, inhibiting KIR has the effect of increasing MSN excitability (Luscher and 

Slesinger, 2010) (Figure 3B). 

 

At depolarised potentials, KIR channels become effectively inactivated and potassium 

currents mediated through alternate channels dominate (Hibino et al, 2010). Outwardly-

rectifying potassium currents are primarily carried by two types of channel, the family of 

A-type potassium currents and a relatively non-inactivating outward current (IKDR) 

(Hammond, 2014; Nisenbaum et al, 1995). At depolarised potentials these channels 

hyperpolarise the membrane in opposition of depolarising synaptic inputs and 

activation of voltage-gated Na+ and Ca2+ currents (ENa: +40 mV, ECa, +134 mV) (Bean, 

2007; Nisenbaum et al, 1995). The opposition between these currents is the cause of 

the slow depolarizing ramp which is characteristic of MSNs (Nisenbaum et al, 1995). 

Additionally, the non-inactivating IKDR and fast-inactivating A-type currents contribute 

to the firing properties of MSNs and may play a role in their rhythmic, non-bursting 

firing pattern (Hammond, 2014).  

The threshold of MSNs is regulated primarily by expression of voltage sensitive 

Na+ currents at the axon initial segment (Cantrell, 2001, Zhang et al, 1998) while Na+ 

and K+ channels at the axonal nodes of Ranvier underlie spike firing kinetics. The 

afterhyperpolarisation (AHP) (both fast AHP (fAHP) and medium AHP (mAHP)) is 

regulated by a class of voltage-dependent calcium-activated K+ currents (Volchis et al, 

1999; Ishikawa et al, 2009) (Figure 3C). 
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1.2.3.3. Synaptic physiology of the striatum 
1.2.3.3.1. Ionotropic receptors 

Glutamate receptors 

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-

aspartate receptor (NMDA) receptors are tetrameric transmembrane proteins which 

mediate glutamate transmission across the brain (Figure 3A). The subunit families of 

AMPA (GluR 1-4) and NMDA receptors (GluN1-2) form heteromeric configurations and 

are subject to alternative splicing, conferring a high level of receptor diversity; as such 

excitatory transmission in the striatum is underlied by an complex array of receptor 

isoforms (Gotz et al, 1997; Kessels and Malinow, 2009; Nakanishi, 1992; Paoletti and 

Neyton, 2007). While both AMPA and NMDA receptors are predominately located 

postsynaptically, presynaptic and extrasynaptic receptors of each variant have been 

observed in the striatum (Bouvier et al, 2015; Ferrario et al, 2011; Fujiyama et al, 2004; 

Garcia-Munoz et al, 2015). Both AMPA and NMDA receptors are non-selective cation 

channels which pass Na+ and K+ with similar efficiency, reversing at approximately 0 

mV, however the NMDA receptor is additionally permeable to Ca2+ and also requires 

co-activation with glycine (Brog et al, 1993; Maki and Popescu, 2014). The most 

common AMPA receptor isoform contains the GluR2 subunit and are permeable only 

K+ and Na+, however GluR2-lacking AMPA receptors additionally pass Ca2+ ( Voglis 

and Tavernarakis, 2006;  Man, 2011). Thus alterations in AMPA receptor subunit 

isoform expression and NMDA receptor function can confer significant changes in 

neuronal function and susceptibility to long-term plasticity through increased Ca2+ 

permeability. 

AMPA receptors mediate fast synaptic transmission, demonstrating rapid activation 

and desensitisation kinetics. AMPA receptor kinetics are dependent on subunit 

configuration, which varies widely across neuron types and subregions of the basal 

ganglia (for example, GluR2-lacking AMPA receptors posses increased single chancel 
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conductance (Man, 2011)), though deactivation kinetics are typically in the range of 1-

10 ms (Gotz et al, 1997; Kleppe and Robinson, 1999). NMDA receptors exhibit a 

comparatively prolonged desensitisation, with time constants of >100 ms commonly 

observed (Kleppe et al, 1999). Additionally, NMDA receptors demonstrate a voltage-

dependent activation due to block by extracellular Mg2+ ions at hyperpolarised 

potentials; this ionic block dissociates with a time constant long enough to require 

prolonged depolarisation to activate the NMDA receptor (Blanke and VanDongen, 

2009; Zhu and Auerbach, 2001). Thus, NMDARs are thought to be important co-

incident detectors gating calcium entry events (Blanke et al, 2009). 

Excitatory glutamate transmission is also carried by the tetrameric Kainate receptor, 

which is located both pre- and postsynaptically, though primarily mediates presynaptic 

transmission (Contractor et al, 2011). Kainate receptors demonstrate slower activation 

and deactivation kinetics than AMPA receptors, and are widely expressed in the 

striatum (Chergui et al, 2000). Kainate receptors regulate presynaptic transmission at 

both excitatory and inhibitory synapses, and are through to play an important role in 

stabilizing network function and in the facilitation of short and long-term potentiation 

(Contractor et al, 2011).   

 

GABA receptors 

GABA ionotropic receptors (GABAA class) are transmembrane heteromeric pentamers, 

in their most common configuration consisting of 2 α, 2 β and a single γ or ϵ /δ subunit. 

Similar to glutamate receptors, GABAA receptors are also subject to alternative slicing 

and RNA editing, permitting a large variation of receptor configurations; indeed, single 

neurons containing up to 8 isoforms of GABAA receptor have been observed (Sigel and 

Steinmann, 2012). GABA receptors are selectively permeable to Cl- anions, reversing 

close to the Cl- reversal potential (ECl =  ~ -60mV) (Czubayko et al, 2002). In contrast to 

glutamatergic receptors, the reversal potential of GABAA receptors is highly dynamic 
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and can be modulated following learning, profoundly altering receptor function (Staley 

and Smith, 2001). 

Synaptic GABAergic transmission is mediated by γ -containing receptors; in the 

striatum, the primary configuration of synaptic GABA receptor is α2, β, and γ2 (Pirker et 

al, 2000). In contrast, δ subunit containing receptors are located peri- or 

extrasynaptically and mediate tonic inhibition. Synaptic GABAA receptors show faster 

intrinsic kinetics than extrasynaptic receptors, desensitizing rapidly following GABA 

application (Mtchedlishvili and Kapur, 2006). Extrasynaptic receptors desensitize slowly 

and are sensitive to low GABA concentrations (Liang et al, 2008). Thus extrasynaptic 

GABAA receptors are sensitive to ambient GABA in the extracellular space (Brickley 

and Mody, 2012). Both synaptic and extrasynaptic GABAA receptors are present in the 

striatum, thus providing both tonic inhibitory tone alongside fast synaptic inhibition.  

Glycine receptors are pentameric receptors which also mediate fast synaptic chloride 

transmission and are sensitive to the amino acid neurotransmitter glycine (Cascio, 

2004). They are present in striatal MSNs and cholinergic interneurons (Sergeeva et al, 

2002) and have been shown to mediate synaptic depression (Chen et al, 2011). This 

means that the amino acid glycine is important for both the regulation of long-term 

potentiation (LTP) through action at the NMDA receptor, as well as synaptic depression 

through its activation of endogenous glycine receptors. 

 

Integration of ionic synaptic transmission in MSNs 

In addition to intrinsic factors and synaptic receptor physiology and expression, 

synaptic integration in MSN dendrites is regulated by dendritic neurotransmitter 

receptor dynamics and shunting inhibition from tonically active GABAergic currents. 

Tonically active extrasynaptic GABA α4 receptors function to shunt positive current at 

the dendritic level, modulating synaptic gain (Prescott and De Koninck, 2003) and 

providing compartmentalisation of calcium signals between dendritic spines, which 
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reduces the summation of asynchronous excitatory postsynaptic currents (EPSCs) 

(Carter et al, 2007; Higley, 2014). Thus the physiology of MSN dendrites is such that 

synchronous excitatory activity is potentiated, with synchronous activity at multiple 

MSN spines summating supralinearly due to activation of NMDA receptors and L-type 

calcium channels. In contrast, repetitive activity at a single spine, or asynchronous 

activity across multiple spines, summate sublinearly or linearly respectively, due to 

AMPA receptor desensitisation and dendritic compartmentalisation of calcium signals 

(Carter et al, 2007). Thus transmission through striatal MSNs may bias concurrent 

inputs and filter out non-synchronous activity. 

 

1.2.3.3.2. Metabotropic receptors  

Metabotropic glutamate and GABA receptors 

Metabotropic receptors are a class of receptor impermeable to ions but which modulate 

neuronal responses through intracellular second messenger systems (Pin and 

Duvoisin, 1995). G-coupled protein receptors (GPCRs) are the largest class of 

metabotropic receptor, characterised by a 7 transmembrane domain structure and 

functional coupling to guanine nucleotide-binding effector proteins (G proteins) 

(Kobilka, 2007). G-proteins form heteromeric complexes of α, β and γ subunits with 

function dictated by the binding profile of the α isoform; Gαs leads to phosphorylation of 

cyclic adenosine monophosphate (cAMP) through activation of adenylyl cyclase (AC), 

Gαi reduces phosphorylation of cAMP through AC, and activation of a Gq isoform leads 

to activation of the phosphatidylinositol 4,5-bisphosphate (PIP2) pathway (Kobilka, 

2007; Ralevic and Burnstock, 1998). Through these pathways, GPCRs can regulate 

function and expression of ionic channels through phosphorylation and 

endo/exocytosis, including of both potassium and sodium channels and ionic receptors 

(Pin et al, 1995) .  
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Metabotropic glutamate receptors (groups mGluR1-3) are pre-, post- and 

extrasynaptically located and mediate excitatory Gαs signalling in medium spiny 

neurons. Similar to ionic receptors, metabotropic glutamate receptors exist in many 

genetically encoded and alternatively sliced isoforms and as such confer significant 

heterogeneity to the mechanisms of excitatory transmission. mGluR activation is 

usually associated with decreases in synaptic excitability; for example mGluR1 

activation may result in the replacement of GluR2-lacking AMPA receptors with GluR2-

containing receptors, decreasing synaptic strength (Bellone and Luscher, 2005).  

Interestingly, GABAergic metabotropic receptors (GABAB) do not display such variation 

in receptor subtypes and consist of only three isoforms (GABAB1(a)/(b) and GABAB2) 

which form functional GABAB1/GABAB2 heteromers; GABAB1a-contaning receptors are 

expressed significantly in the striatum. GABAB receptors are Gαi coupled and as such 

function to reduce excitation by inhibiting the adenylyl cyclase/cAMP pathway (Ulrich 

and Bettler, 2007).  

In addition to these primary neurotransmitter systems of the striatum, neuromodulators 

such as dopamine, 5-hydroxytryptamine (5-HT) and acetylcholine also act on distinct 

GPCR, their function determined by subunit isoform (Barnes and Sharp, 1999; Levey et 

al, 1991; Ward and Dorsa, 1996). 

 

Dopamine Metabotropic Receptors  

Dopamine acts exclusively upon metabotropic receptors. A primary distinction is made 

between dopamine D1 and D2 receptor isoforms (D1R and D2R, respectively). While 

D1 are Gαs
-coupled and located postsynaptically, D2 receptors are Gαi coupled and 

may be pre- or postsynaptically located (Beaulieu and Gainetdinov, 2011). Both D1 and 

D2 receptors are expressed in the striatum, however their expression is generally 

exclusive to two different subtypes of MSNs, which show additional differences in 

physiology and efferent projection patterns (Gertler et al, 2008; Smith et al, 2013). 
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D1R-expressing neurons stain positive for dynorphin and substance P, while D2 

neurons stain positive for enkephalin and neurotensin. Physiologically, D2 neurons are 

intrinsically more excitable than D1 neurons in both the ventral and dorsal striatum 

(Francis et al, 2015; Gertler et al, 2008; Smith et al, 2013). As dynorphin and 

enkephalin both act upon opioid receptors, these two neuron subtypes can differentially 

mediate intra-accumbens opiate transmission. In the dorsal striatum, but not ventral 

striatum, these two neuronal populations also differ in their basal ganglia connections 

(Smith et al, 2013). 

 

1.2.3.3.3. Receptor transduction pathways 

Activation of G-protein coupled receptors (GPCRs), or calcium influx through ionotropic 

receptors and ion channels, can modulate neuronal physiology through interactions 

with complex intracellular signalling cascades. These include the cAMP pathway 

(activated by Gαs and Gαi transduction pathways), the calmodulin/ Ca2+ -dependent 

protein kinase II (CaMKII) pathway (activated by increases in intracellular calcium), and 

the PIP2 pathway (activated by Gα subunits) (Kandel, 2012; Nestler, 2001; Wong et al, 

2005). While these molecular pathways are usually presented as distinct, there is 

significant cross-talk between them with important functional consequences (Impey et 

al, 1998).   

 

cAMP pathway 

GPCRs mediate neuronal physiology by regulation of the protein adenylyl cyclase 

through Gαs/Gαi proteins, which activate and inhibit AC respectively (Pin et al, 1995). 

AC functions to phosphorylate the second messenger cAMP, which is an effector of 

many signalling proteins, including protein kinase A (PKA). While PKA may 

phosphorylate voltage and ligand-gated ion channels directly affecting their function, it 
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is also a kinase of the transcription factor cAMP response element-binding protein 

(CREB), which once phosphorylated, binds specific cAMP response elements (CRE) of 

target genes leading to their expression (Esteban et al, 2003; Kandel, 2012; Nestler, 

2001; Pin et al, 1995; Sassone-Corsi, 2012). CRE binding sites lay upstream of an 

array of genes involved in the regulation of cell physiology, including expression of 

membrane channels and proteins involved in the formation of new synaptic 

connections. Thus through direct phosphorylation of membrane receptors and ion 

channels as well as phosphorylation of CREB, the cAMP pathway is well placed to play 

an important role in learning and memory (Dong et al, 2006; Kandel, 2012; Nestler, 

2001). 

 

Calcium-activated transduction pathways 

Transient increases in intracellular calcium can be achieved through activation of 

NMDA receptors, GluR2 lacking AMPA receptors,  release of buffered calcium from 

intracellular stores and through voltage-gated calcium channels (Voglis et al, 2006; 

Warren et al, 2010; Wong et al, 2005). Increases in intracellular calcium levels are 

detected by the calmodulin protein, which gates the autophosphorylation of CaMKII. 

When sufficient Ca2+/calmodulin levels are reached, CaMKII phosphorylates itself in a 

manner which allows it to remain active even when intracellular calcium levels are 

decreased to baseline (Giese and Mizuno, 2013). CaMKII is a protein kinase with 

diverse functional roles, and is able to both regulate voltage and neurotransmitter-

gated ion channels directly, and additionally activate CREB through calcium-dependent 

ribosomal s6 kinase (RSK), which phosphorylates CREB at a separate site to PKA 

(Cruz et al, 2013; Kandel, 2012). Additionally, calmodulin can also activate the 

extracellular signal–regulated kinase (ERK)/ mitogen-activated protein kinases 

(MAPKs) pathway, which can also regulate CREB activity (Giese et al, 2013). Thus 

activation of NMDA receptors or calcium permeable AMPA receptors may influence 
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learning and memory-dependent processes through permitting increases in intracellular 

calcium levels (Giese et al, 2013; Voglis et al, 2006).  

 

PIP2 pathway 

Many GPCRs are coupled to Gq receptors, which do not mediate their effects through 

adenylyl cyclase but rather affect the phospholipid signalling molecule PIP2 (Simonyi et 

al, 2005; Wong et al, 2005). PIP2 hydrolysis is mediated by Gq through phospholipase 

C, and leads to the production of diacylglycerol (DAG) and triphosphoinositol (IP3). 

DAG is a signalling molecule which can activate protein kinase C (PKC), which has 

important roles in learning and memory, while IP3 can lead to transient increases in 

calcium level by binding the IP3 receptor releasing intracellular calcium stores (Wong et 

al, 2005). Additionally, PIP2 may directly influence cell excitability through modulation 

of voltage-gated potassium channels (Loussouarn et al, 2003). Thus Gq receptors are 

able to regulate cell physiology though the PIP2 pathway (Simonyi et al, 2005).  

 

1.2.4. Anatomy, physiology and function of additional motivational system 
areas 
1.2.4.1. The basal ganglia   

The basal ganglia are an interconnected set of subcortical nuclei consisting of the 

striatum, the ventral pallidum (VP), globus pallidus (GPi (entopeduncular nucleus in 

rodents), globus pallidus externus (GPe) (globus pallidus in rodents), substantia nigra 

pars reticula and the subthalamic nucleus (Alexander et al, 1986; Smith et al, 2009). 

The thalamus, though not a BG structure, is the primary output relay of the network. 

The BG receives significant inputs from a number of limbic and motor regions, which 

are converged through parallel looping circuits maintained throughout the entire basal 

ganglia and its efferent connections (Voorn et al, 2004).  
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Connectivity of the basal ganglia 

The striatum is considered the input nucleus of the basal ganglia (Alexander et al, 

1986; Lanciego et al, 2012) and projects in a subregion-specifc manner to downstream 

BG areas. A primary BG target of the ventral striatum is the ventral pallidum. The VP 

also receives direct projections from many limbic brain areas, including the medial 

prefrontal cortex, amygdala, lateral hypothalamus and ventral tegmental area, to which 

it forms reciprocal connections (Perry and McNally, 2013; Smith et al, 2009). In turn, 

the VP projects to the thalamus, the primary output of the basal ganglia, which projects 

back to the areas providing the original striatal afferents, thus maintaining the classic 

BG loops (Alexander et al, 1986; Groenewegen et al, 1993; Lazarus et al, 2012).  

GABAergic neurons in the BG may be distinguished based on their expression of D1- 

or D2-receptors. In the dorsal striatum, D1R neurons project to the globus pallidus 

internus and SNr, while D2R MSNs project first to the globus pallidus externus, which 

in turn targets the GPi/SNR through the STN. The GPi/SNR sends GABAergic 

efferents to the thalamus (which relays BG output through glutamatergic projections 

directed across the brain). As such, activation of the D1 pathway leads to disinhibition 

of the thalamus from the GPi/SNr, while activation of the D2 pathway leads to inhibition 

of the thalamus through the “indirect” GPe-STN-GPi/SNR pathway (Alexander et al, 

1986; Smith et al, 2013; Smith et al, 1998). Thus, D1R activation leads to an increase 

in the excitatory output of the BG, while D2R activation leads to a decrease. In 

contrast, D1R and D2R-expressing MSNs of the ventral striatum do not differentially 

project to downstream BG targets (Kupchik et al, 2015; Smith et al, 2013).  

 

Physiology and function of the basal ganglia 

Basal ganglia projection neurons are primarily GABAergic, with the exception of the 

glutamatergic projections of the thalamus and subthalamic nuclei. The physiology of 

GABAergic projection neurons and ratio of primary to interneuron cell type is highly 
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variable through the basal ganglia. For example, the VP consists of approximately 20% 

cholinergic interneurons (compared to ~5% in the striatum) with GABAergic projection 

neurons that are characterised by high-frequency firing compared to striatal MSNs 

(Bengtson and Osborne, 2000; Smith et al, 2009). The SNr however, functions to 

constitutively inhibit the thalamus, as such its GABAergic neurons are tonically active 

(MacLeod et al, 1980; Zhou and Lee, 2011). 

Similar to the striatum, basal ganglia nuclei are involved in encoding both motor and 

limbic processes. Everitt et al (1987) demonstrated that lesions to both the VP and 

globus pallidus disrupt acquisition and expression of a conditioned discrimination task, 

in which a specific cue signalled the position of an active lever. The globus pallidus 

also sends projections to the lateral habenula which fire in a manner based on the 

expectation of reward size gained from presentations of reward-predicting or reward-

omission predicting cues (Hong and Hikosaka, 2008).  

The SNr appears also to play a role in appetitive learning; infusion of dopamine 

antagonists to the SNr disrupt psychostimulant sensitisation, while neurons of the SNr 

selectively alter firing rates during reward delivery and response execution during 

instrumental responding for food rewards (Gulley et al, 2002; Stewart and Vezina, 

1989). BG nuclei which receive preferential inputs from the ventral striatum appear to 

play a particularly important role in motivated behaviours and reward learning. The 

ventral pallidum for example, is particularly unique as a BG nucleus in that is has been 

shown to contain “hotspots” which differentially encode either the hedonically or 

incentivising properties of reinforcing stimuli (Smith et al, 2009).  
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1.2.4.2. Prefrontal cortex (PFC) 

Connectivity of the PFC 

The prefrontal cortex can be broadly divided into the medial anterior cingulate (ACg) 

and ventral prelimbic and infralimbic cortices, the lateral insular regions (dorsal and 

ventral agranular), and the ventrolateral and ventromedial medial orbital cortices (OFC) 

(Dalley et al, 2004; Ongur and Price, 2000). The prefrontal cortex makes significant 

projections across the brain, including to the premotor cortices, sensory cortices 

(including somatosensory, auditory, visual and olfactory areas) as well as subcortical 

areas such as the hippocampus, amygdala, striatum, and the neuromodulatory VTA, 

basal forebrain cholinergic projection, raphe nucleus and locus coeruleus. The PFC 

projections to the striatum are of note as they are not reciprocal, but instead the PFC 

receives input from the BG though its thalamic output, forming cortico-striatal-thalamic 

loops, as discussed above (Carr and Sesack, 2000; Conde et al, 1995; Dalley et al, 

2004; Kolb, 1984; Sesack et al, 1989).  

Prefrontal subregions are distinguishable based on their efferent and afferent 

connections, with more dorsomedial prefrontal areas (including the anterior cingulate 

and dorsal prelimbic areas) projecting preferentially to sensory and motor cortices, with 

ventral areas (orbital, infralimbic, ventral prelimbic cortices) projecting to limbic areas, 

including the hippocampus, amygdala and ventral striatum. Additionally, more dorsal 

and ventral areas are more significantly interconnected to their neighbouring areas 

than they are to more distal PFC areas (Heidbreder and Groenewegen, 2003; Uylings 

et al, 2003).  

 

Physiology and function of the PFC 

The primary output neurons of the PFC are glutamatergic pyramidal cells, which are 

characterised by their depolarised resting membrane potential (~ -60 mV) and 
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reception of significant axon collaterals from surrounding pyramidal neurons. These 

characteristics make cortical pyramidal neurons more excitable than other neuron 

types, such as striatal MSNs. PFC pyramidal neurons are organised in a laminar 

fashion with different connectivity patterns across layers. Layer I does not contain 

many cell bodies but consists mainly of the dendritic projections of deeper cortical 

layers. Layers II and III project mainly to other cortical areas while layer V projects 

primarily to the striatum and VI to the thalamus (Gabbott et al, 2005; Kawaguchi and 

Kubota, 1997). Unlike medium spiny neurons, pyramidal neurons demonstrate a 

significant heterogeneity in morphology and firing patterns (van Aerde and Feldmeyer, 

2015). Additionally, a wide variety of GABAergic interneurons are present in the PFC, 

making significant axonal arborisations to many surrounding pyramidal neurons 

permitting tight regulation of network function (Kawaguchi et al, 1997).  

Lesions to the prefrontal cortex cause dysfunction in behavioural planning and 

sequencing, response inhibition, learning and memory and social behaviours (Kolb, 

1984; Uylings et al, 2003). Thus, the PFC is well positioned to play an important role in 

the regulation of motivated behaviours and reward learning. The OFC is a prefrontal 

brain area particularly important in the encoding of food and drug rewards and 

associated cues. Specifically, the OFC appears to play a particularly important role in 

outcome representation and updating reward expectancy. As such, lesions of the OFC 

retard acquisition of Pavlovian approach behaviours (in which the reward outcome 

associated with cue presentation is increased) but has no effect on the expression of 

approach behaviours to cue presentations (when outcome values are unchanged) 

(Chudasama and Robbins, 2003). Studies from reversal learning paradigms, in which 

CS+ and CS- contingencies are reversed (so that CS- comes to predict reward 

delivery), suggest OFC neurons responding to the CS track associated outcomes 

(Stalnaker et al, 2015). In line with these observations, lesions of the OFC inhibit both 

reversal learning and the effects of outcome devaluation (Chudasama et al, 2003; 
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Pickens et al, 2005; Schoenbaum et al, 2003). Thus the PFC including the OFC 

subregion appears to play an important role in appetitive associative learning.  

 

1.2.4.3. The hippocampus 

The anatomy of the hippocampus is highly specialised, forming a characteristic looping 

cytoarchitecture in which the entorhinal cortex region functions as both the primary 

input and output. The entorhinal cortex (EC) sends axons through the mossy fibre tract 

to the dentate gyrus, which projects to the CA3 region of Ammon’s horn (or CA: Cornu 

Ammonis). CA3 in turn sends axons through the Schaffer collateral pathway to the CA1 

region, which itself projects back out to the entorhinal cortex via the subiculum (Amaral 

and Witter, 1989). However, the hippocampus is not a closed loop system and its 

subregions project individually across the brain. The hippocampus is connected to a 

number of limbic and sensory brain regions, including the striatum, prefrontal cortex, 

amygdala, hypothalamus as well as from sensory, especially visual, cortices (Fanselow 

and Dong, 2010; Lavenex and Amaral, 2000) and is modulated by serotonin, 

dopamine, acetylcholine and noradrenaline (Freund and Buzsaki, 1996). The 

hippocampus can be anatomically and functionally divided along it’s posterior/anterior 

axis (or homologous dorsal/ventral axis in rodents) (Fanselow et al, 2010).   

The primary cell types of the hippocampus are glutamatergic and include: the stellate 

cells of the EC, granule cells in the dentate gyrus and pyramidal neurons of the CA1 

and CA3. These primary neurons are characterised by high degree recurrent 

connectivity (Amaral, 1978)  and are regulated by GABAergic interneurons such as the 

chandelier and basket-type cells (Freund et al, 1996). Functionally, the hippocampus is 

known to pay an important role in associative conditioning for both food and drug 

rewards. Lesion studies suggest that while Pavlovian conditioning to a discrete cue is 

independent of the hippocampus, the hippocampus mediates contextual associative 

learning processes underlying Pavlovian and instrumental behaviours  (Honey and 
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Good, 1993; Ito et al, 2006; Ito et al, 2008). The hippocampus sends significant 

glutamatergic projections to the nucleus accumbens (Britt et al, 2012) and may gate 

the up-state/down-state of medium spiny neurons (Wilson et al, 1996). Thus 

hippocampal gating of inputs to MSNs from other brain areas may act as an “occasion 

setter” during associative and conditioned behaviours (Holland, 1992). The 

hippocampus is also necessary for drug-context dependent conditioned behaviours 

such as context-dependent reinstatement and drug-place preference (Atkins et al, 

2008; Raybuck and Lattal, 2014). 

 

1.2.4.4. The amygdala  

The amygdala is comprised of six separate nuclei, two of which are thought to be 

particularly important in learning processes: the central amygdala (CeA) and the BLA 

(Cardinal et al, 2003). The BLA is highly interconnected with other limbic brain areas, 

sending efferent connections to the nucleus accumbens and CeA while being 

reciprocally connected to the medial PFC, anterior cingulate cortex and hippocampus 

(Janak and Tye, 2015; Ottersen, 1982; Sripanidkulchai et al, 1984). The BLA consists 

of primary glutamatergic pyramidal neurons while the CeA projection neurons are 

GABAergic (Janak et al, 2015). The CeA projects to mid-brain regions including the 

central medial nucleus of the thalamus, the hypothalamus and locus coeruleus and 

raphe nuclei, and the dopaminergic SNc and VTA (Ito et al, 2008; Janak et al, 2015; 

Lee et al, 2010; Ottersen, 1982).  

While the BLA is widely involved in a number of important appetitive behaviours, lesion 

studies suggest the CeA appears to be specifically involved in Pavlovian approach 

conditioning. BLA lesions however appear to have no effect on approach conditioning, 

and may be more important in instrumental appetitive procedures (Everitt et al, 2000; 

Ito et al, 2008; Parkinson et al, 2000a). The functioning of the BLA is also important in 

the expression of drug-reinforced behaviours; lesions to the basolateral amygdala 
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impair second-order schedule of cocaine reinforcement and reduce cue-induced 

reinstatement (Meil and See, 1997; Whitelaw et al, 1996). 

 

VTA/SNc 

Dopaminergic transmission throughout the entire brain originates primarily from two 

midbrain nuclei, the ventral tegmental area and substantia nigra pars compacta. 

Dopaminergic projections to the cortex and limbic structures originate in the VTA; the 

mesolimbic pathway projects from the VTA to the NAc shell/core, amygdala and 

hippocampus while the mesocortical pathway projects from the VTA to the prefrontal 

cortex. The nigrostriatal pathway however originates in the SNc and projects sparsely 

to the NAc core (Ikemoto, 2007) and more significantly to the dorsal striatum (Arias-

Carrion et al, 2010). The dopamine system contains only a small number of neurons, 

but these neurons make extensive projections with extensive axonal arborisations, with 

some DA neurons observed to contain up to 500,000 release sites (Andén et al, 1966). 

Interestingly, some DA projections to the striatum have been observed to co-release 

glutamate or GABA (Stuber et al, 2010; Tritsch et al, 2012). 

Dopamine neurons fire tonically, however phasic firing is induced by synaptic drive in 

response to presentation of appetitive US, while tonic rates of firing may decrease 

following exposure to an aversive reinforcer (Tsai et al, 2009; Ungless et al, 2004). 

Thus dopaminergic neurons may directly encode the valence of a US (McCutcheon et 

al, 2012). Similarly, dopamine is thought to encode an error prediction signal – in vivo 

electrophysiological recordings have demonstrated that while DA neurons initially 

increase their firing rate to a reward, following conditioning this increase in firing shifts 

to the CS (Schultz et al, 1997). If a CS conditioned to predict a reward is followed by 

omission of the reward, a decrease in basal firing is observed. As such, the VTA and 

SNc have been implicated in a wide range of conditioned behaviours to both drugs of 
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abuse and natural rewards (Arias-Carrion et al, 2010; Berridge and Robinson, 1998; 

Oliva and Wanat, 2016; Stuber et al, 2010). 

 

1.3. Neuroadaptations involved in the 

encoding of associative memory: selectivity 

for behaviourally relevant ensembles 

 

1.3.1. Neuroadaptations associated with the encoding of associative 
memory  

1.3.1.1. Early theories of learning-induced neuroadaptations and their 
experimental support 

The idea that experience-induced alterations to the structure of the brain could occur 

during adulthood was not well accepted for most of the 20th century, despite its current 

ubiquity (Kolb et al, 2003). However, an early proponent of this notion was Karl 

Lashley, who lesioned the cortex of rats and noted the effect on reinforced maze 

learning. Lashley observed that the size (but not location) of the lesion was crucial to 

the extent of any behavioural deficits and the ability to retain future learning. His 

assertion that memories were not located in distinct brain regions but were distributed 

across the cortex, and could be regained following injury, was in contrast to the 

prevailing “reflex theory” of the period. This posited that cerebral functioning was 

similar to that of spinal reflexes, making use of pre-existing neuronal connections 

(Lashley, 1930). Other theorists such as the Polish psychologist Jerzy Konorski, who 

trained under Ivan Pavlov and coined the term “neuronal plasticity”, suggested that 

discrete changes in connectivity between specific neurons may underlie conditioned 

                        57



 

 

responses (Konorski, 1948). Similarly, Donald Hebb (Hebb, 1949) posited that learning 

experiences may be accompanied by changes in the weighting between specific sets 

of relevant neurons. However, despite the foresight of these early theorists, conclusive 

experimental support would not be available for the next few decades. 

The first explicit evidence that associative learning could strengthen the connections 

between behaviourally relevant neurons came from invertebrate preparations. The 

accessible nature and limited anatomical complexity of many invertebrates permits 

identification and measurement of neuronal circuits directly underlying conditioned 

behaviours (Krasne and Glanzman, 1995). For example, in the sea slug Aplysia, a light 

physical tap to the siphon (CS) elicits slow withdrawal of the siphon and gill, whereas 

an electric shock to the tail (US) evokes rapid gill withdrawal. Pairing the CS with the 

US leads to the CS later eliciting a conditioned rapid gill withdrawal which may be 

retained for days, while unpaired CS-US presentations have no such effect (Carew et 

al, 1972). This conditioned response is encoded by a relatively simple neuronal circuit 

in which activation of sensory neurons in the tail (US) is able to facilitate presynaptic 

transmission from the siphon-sensory neuron (CS) onto the motor neurons underlying 

the gill withdrawal reflex (CR) (Hawkins et al, 1983).  

The facilitation of presynaptic transmission from the CS pathway onto the gill 

withdrawal motorneurons requires concurrent neural activity through the CS and US 

pathways. Adenylyl cyclase appears crucial for co-incidence detection in the 

presynaptic bouton of the CS pathway. AC is activated by Ca2+ entry during CS-

activated spiking, as well as Gαs-pathway activation by a neuromodulatory neuron 

along the US-activated pathway. When CS-US signalling occurs concurrently, AC is 

activated sufficiently to elicit cAMP production to levels permitting long-term 

presynaptic adaptations. These lead to increased neurotransmitter release, through 

mechanisms such as the phosphorylation of proteins involved in vesicle exocytosis 

(Kandel, 2012).  Furthermore, activation of NMDA receptors in the postsynaptic 
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membrane, dependent on presynaptic stimulation alongside postsynaptic 

depolarisation, leads to signalling through the CaMKII pathway. This results in the 

insertion of functional AMPA receptors into the postsynaptic membrane, facilitating CS 

transmission onto CR motorneurons (Hawkins and Byrne, 2015; Kandel, 2012).  

These studies give a detailed insight into the complex neurobiological processes 

underlying associative conditioning. Invertebrate preparations have also been used to 

investigate the neuroadaptations which occur following appetitive learning. For 

example, single-trial appetitive conditioning in the freshwater snail Lymnaea stagnalis 

can be used to associate a neutral chemical (CS) with sucrose (US), eliciting fictive 

feeding (CR) following CS presentation. Persistent depolarisation in the resting 

membrane potential of modulatory 5-HT neurons which facilitate the CR result in 

axonal depolarisation and increased presynaptic calcium levels, facilitating action-

potential dependent release of serotonin. These intrinsic changes are delayed following 

conditioning and appear over a time course suitable to the encoding of long-term 

memory (Kemenes et al, 2006). This suggests that the intrinsic excitability of neurons 

can be persistently regulated by appetitive conditioning in a manner which facilitates 

the expression of conditioned responses.  

Thus, over 80 years since Pavlov discovered appetitive conditioned reflexes in the dog, 

direct observation of neuron to neuron facilitation in circuits directly underlying 

conditioned responses have been observed in invertebrate preparations. 

 

1.3.1.2. Synaptic adaptations following associative learning in mammals 

Activity-dependent potentiation of neuron to neuron transmission in mammals was first 

observed at hippocampal synapses by Bliss and Lomo (1973). Using ex vivo 

extracellular recording in the hippocampus of the rabbit, they stimulated the perforant 

pathway of the hippocampus while recording the target neuronal population in the 

                        59



 

 

dentate gyrus. They observed that a high-frequency stimulation of the perforant 

pathway potentiated dentate gyrus EPSCs above baseline levels, for up to 10-12 

hours. Since this observation, LTP at the perforant pathway has been extensively 

characterised, and is thought to be dependent on Ca2+ entry through NMDA receptors 

and the downstream activation of CaMKII (Malenka and Nicoll, 1999). Activation of 

CaMKII leads to AMPA receptor insertion into the postsynaptic membrane, potentiating 

synaptic transmission. LTP has also been demonstrated in many other brain areas, 

including the striatum (Schotanus and Chergui, 2008b; Xu et al, 2010). These alternate 

forms of LTP may also be dependent upon activation of metabotropic receptors; in the 

nucleus accumbens, induction of LTP is also sensitive to dopamine receptor activity 

(Schotanus and Chergui, 2008a). While the LTP induction protocol is a useful model for 

studying in vitro neuronal plasticity, it is difficult to observe directly as a consequence of 

learning in living animals. As such, investigations into LTP following in associative 

learning in mammals have typically searched for specific alterations associated with the 

expression of LTP following learning, rather than measuring it directly. 

 

A role for NMDARs and GPCRs in conditioned responding 

Activation of both NMDA and G-coupled protein receptors has been shown to be 

important for the acquisition and expression of conditioned responses. Parker et al 

(2011) observed perturbed acquisition of Pavlovian approach behaviours in transgenic 

mice exhibiting NMDAR knockout selective for D1R-expressing MSNs (Parker et al, 

2011). Dalley et al (2005) demonstrated that infusion of NMDAR and D1R antagonists 

in the NAc immediately following acquisition of Pavlovian approach behaviours 

disrupted consolidation of the memory, retarding learning. While both the acquisition 

and consolidation of these Pavlovian responses appear dependent on D1R/NMDAR 

transmission in the NAc, consolidation of instrumental responding appears unaffected 

by antagonist application (Hernandez et al, 2005), suggesting that different learning 
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processes may be modulated distinctly by intracellular signalling cascades. NMDA and 

metabotropic receptors are also important for the expression of conditioned responses 

to drug reinforcers, such as cue-induced reinstatement of drug seeking (Backstrom and 

Hyytia, 2007; Kumaresan et al, 2009) and conditioned place reference (Huang et al, 

2016; Ma et al, 2006). 

Supporting a role for NMDAR/GPCRs in associative learning, their downstream targets 

also play a functional role in the encoding of associative memories. The signalling 

cascades ERK (NMDA/calcium-pathway mediated) and PKA (GPCR/ cAMP-pathway 

mediated) are both necessary for the expression of conditioned responses to both 

natural and drug rewards (Baldwin et al, 2002; Shiflett and Balleine, 2011; Sutton et al, 

2000; Tropea et al, 2008). These pathways are known to modulate synaptic function 

through the expression of new proteins; in line with this, protein synthesis in the NAc is 

necessary for both consolidation of appetitive instrumental learning (Hernandez et al, 

2002) and reconsolidation of a cocaine-context association (Bernardi et al, 2007). 

These studies suggest that both NMDA and metabotropic receptor activation following 

learning elicits downstream target activation and protein synthesis necessary for the 

expression of conditioned behaviours.  

 

Synaptic neuroadaptations observed following conditioned responding.  

A functional consequence of NMDAR/GPCR activation associated with LTP is 

increased synaptic transmission.  Synaptic strength may be increased through 

postsynaptic modifications (e.g. endocytosis of AMPA receptors) as well as presynaptic 

modifications (increased probability of neurotransmitter release). 

Synaptic strength can be assayed at excitatory synapses by measuring the AMPA 

receptor (AMPAR) to NMDA receptor (NMDAR) ratio within a given neuron (Ungless et 

al, 2001); an increase in the AMPAR/NMDAR ratio is taken to suggests an increase in 

                        61



 

 

synaptic strength. Changes in AMPAR/NMDAR ratios have been observed in 

dopamine neurons following appetitive Pavlovian conditioning with food reinforcers 

(Stuber et al, 2008) and in the NAc following drug sensitisation regimes (Thomas et al, 

2001). Interestingly, AMPAR/NMDAR ratios in the VTA and NAc are differentially 

regulated by drug exposure. A single cocaine injection transiently increases the 

AMPAR/NMDAR ratio of VTA dopamine neurons for approximately 1 week, while in the 

NAc a decrease in AMPAR/NMDAR ratio of MSNs is observed further into the 

withdrawal period (approximately 10-14 days). Prolonged drug administration may 

cause long-lasting increases and decreases in the synaptic strength of VTA and NAc 

neurons, respectively (Thomas, 2001; Ungless et al, 2001; Kourrich, 2007; Luscher 

and Malenka, 2011).  Brown et al (2010) observed that optogenetic stimulation of 

dopamine neurons alone can lead to increased AMPA receptor expression in the VTA 

through a D1R-dependent mechanism (Brown et al, 2010). Similarly, D1R receptor 

stimulation leads to an increase in membrane-bound AMPA receptors in NAc neurons 

through a PKA-dependent mechanism (Mangiavacchi and Wolf, 2004). These findings 

suggest that appetitive conditioning may lead to complex regulation of synaptic 

strength due to changes in functional AMPA receptor expression in the postsynaptic 

membrane, possibly through a dopamine-dependent mechanism.  

In addition to insertion of AMPA receptors from the synaptic membrane, synaptic 

strength can also be regulated by direct phosphorylation of AMPA receptors. Crombag 

et al (2008b) generated a transgenic mouse line in which CaMKII (ser831) and/or PKA 

(ser845) phosphorylation sites on GluR1 subunits were disrupted. While phosphorylation 

at these sites was not necessary for the acquisition of Pavlovian approach behaviours, 

CaMKII but not PKA phosphorylation of GluR1 was necessary for the expression of 

instrumental responding for presentation of the sucrose-associated CS (conditioned 

reinforcement). Phosphorylation of GluR1 at ser831 selectively increases the 

conductance of GluR2-lacking, GluR1 homomeric AMPA receptors (Guire et al, 2008), 

                        62



 

 

suggesting precise modulation of excitatory synapses in a manner which potentiates 

Ca2+ entry may be required for the expression of some conditioned behaviours.   

The formation of new synapses has been observed following drug administration and 

sensitisation, food ingestion and appetitive conditioning (Crombag et al, 2008a; 

Geinisman et al, 2001; Li et al, 2004; Liu et al, 2016). Increasing the number of 

synaptic connections between specific sets of neurons is a potential mechanism by 

which synaptic transmission may be facilitated. Johnson et al (2016) visualised 

synaptic bouton turnover in the axons of OFC neurons projecting to the medial 

prefrontal cortex using in vivo 2-photon (2P) microscopy (using viral expression of 

enhanced green fluorescent protein (EGFP) in the orbitofrontal cortex (OFC) while 

imaging in the mPFC through a cranial window). They observed that the turnover rate 

of synaptic boutons in this projection was increased following training in an odour 

discrimination instrumental task, but not by reward ingestion alone, suggesting learning 

transiently increases synaptic remodelling in motivationally relevant brain areas.  

Together, these studies suggest that associative learning is accompanied by 

alterations of synaptic strength between neuronal populations in brain areas involved in 

encoding conditioned responses. 

 

1.3.1.3. Intrinsic adaptations following associative learning  

One of the first demonstrations of changes to intrinsic excitability following associative 

learning in mammals was observed in sensorimotor cortex of the cat. Brons and 

Woody (1980) conditioned an auditory CS with a tap to the forehead (which evoked an 

unconditioned eye blink response). In vivo recordings in awake cats demonstrated a 

significant decrease in the required current injection to elicit spiking in the sensorimotor 

cortex, persisting for at least 28 days, and even following extinction learning (Brons et 

al, 1980; Zhang and Linden, 2003). Since this early observation, changes to the 
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intrinsic excitability of both principal neurons and interneurons has been widely 

demonstrated following associative learning using aversive reinforcers (McKay et al, 

2009; McKay et al, 2013; Moyer et al, 1996; Oh and Disterhoft, 2015; Song et al, 

2015), however fewer studies have focused on such changes following appetitive 

learning.   

A number of studies suggest that intrinsic excitability may be important for associative 

learning and responses to appetitive reinforcers. Obesity prone-rats, which show 

dopamine system hypersensitivity, also demonstrate a significant increase in NAc core 

MSN excitability, compared to non-obesity prone controls (Oginsky et al, 2016). Hayton 

et al (2011) observed that appetitive learning can actively regulate intrinsic excitability 

in the prefrontal cortex of rats. Following training in which instrumental responses for 

food were required to be withheld before responding was cued by presentation of a CS, 

the excitability of prelimbic cortex pyramidal neurons was significantly depressed. 

Interestingly, following a similar task in which inhibition of responding was not required, 

but exposure to the CS and ability to instrumentally respond for food was immediate, 

neurons of the infralimbic cortex became more excitable. This suggests that distinct 

types of appetitive learning necessitating different behavioural responses can 

dynamically modulate the excitability of PFC subregions.  

While the regulation of NAc intrinsic excitability following conditioning with drug 

reinforcers has not been extensively explored, it has been widely shown that drug 

administration may dynamically regulate NAc excitability. Long-term depression of 

accumbens neurons has been frequently observed following repeated drug 

administration (Kourrich et al, 2015; Kourrich et al, 2009; Zhang et al, 1998) while re-

exposure to cocaine following withdrawal transiently increases excitability back to 

baseline (Mu et al, 2010). Dong et al (2006) decreased the excitability of NAc shell 

neurons by overexpression of the inwardly rectifying Kir2.1 channel and observed that 

this potentiated psychostimulant induced increases in locomotor activity. Thus 
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excitability changes appear to play a functional role in the response of the motivational 

system to appetitive reinforcers.  

 

1.3.2. The role of neuronal ensembles in memory encoding and 
associative learning 

Thus it is clear that appetitive learning induces a number of neuroadaptations in 

motivation system brain areas which may function to facilitate transmission between 

neurons, and appear dependent on the activation of NMDAR and/or GPCRs. The 

majority of studies which investigate these learning-induced neuroadaptations select 

from the target neuronal populations randomly, largely due to technical limitations. 

However, neuronal populations in select brain areas do not respond uniformly to 

environmental stimuli, and different sets of neurons may encode different features of 

the learning experience (Day et al, 2006). Amongst the early experimental observations 

that distinct sets of neurons could respond selectively to environmental stimuli came 

from Hubel and Wiesel’s single-unit recording in the visual cortex of the cat. They 

demonstrated that individual neurons responded preferentially, and reliability, to slits of 

light when presented in specific orientations (Hubel and Wiesel, 1959). Later work in 

the motor cortex of monkeys demonstrated that the direction of limb movement could 

be predicted based on the sum of single-unit responses (Georgopoulos et al, 1986), 

suggesting the population vector of neuronal activity may be used to encode certain 

behaviours. These studies demonstrate that distinct populations of neurons responding 

preferentially to environmental stimuli exist in the brain and are sufficient to encode 

behaviour. 
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1.3.2. Early demonstrations of neuronal ensembles activated during 
appetitive learning 

In vivo electrophysiological recording in behaving animals demonstrated that the 

neurons of limbic brain areas do not respond uniformly during the presentation of 

reward-associated cues or during Pavlovian and instrumental responding. For 

example, early single-unit recordings in behaving primates demonstrated that ventral 

PFC neurons encode many distinct features of a conditioning task. Rosenkilde et al 

(1981) trained their subjects in a colour discrimination task, in which pressing a button 

matching the colour of a presented cue (red vs. green) was rewarded with sucrose. 

They observed that a large percentage of neurons (85%) fired to presentation of the 

coloured cues, and the firing of approximately half of these neurons discriminated 

between the red and green cue. Additionally, subsets of neurons fired depending on 

whether the trial was completed successfully and reinforced, or completed 

unsuccessfully and not reinforced. Thus subsets, or ensembles, of neurons in 

motivational system brain areas appear to encode in a reliable fashion multiple features 

of the conditioning experience.  

Similar observations have been made in the ventral striatum, where neurons selectively 

encoding the valence of a reinforcer have been identified (Williams, 1989, Apicella et 

al, 1991 in Pennartz et al, 1994). Lavoie and Mizumori (1994) found that approximately 

31% of NAc neurons fire when a reward is encountered along a radial arm maze, and 

that these activated neurons increased their firing rates for larger rewards. Thus, MSN 

may adapt their firing rates based on reward value (such as the amount or intensity of 

the US). Similarly, if the valuation of a US is reduced using a devaluation procedure, 

the number of NAc shell neurons which are selectively activated following exposure to 

the food-associated CS is significantly reduced (West and Carelli, 2016). Thus ventral 

striatal neurons appear to encode the nature and value of both CS and US.  

                        66



 

 

Ensemble encoding of behaviours reinforced with drug US has also been observed. 

Sets of neurons active in the ventral striatum during learning with drug reinforcers may 

selectively respond during drug delivery, CS presentation, and the conditioned 

response (Carelli and Wightman, 2004; Janak et al, 1999). Carelli and Deadwyler 

(1994) identified sets of accumbens neurons which responded to incredibly precise 

features of instrumental responding during drug self-administration, with some neurons 

increasing firing rate selectively before the response, some after the response, with 

other neurons decreasing their firing rate following the response. This suggests that not 

only do ventral striatum neurons encode conditioned responding with incredible 

specificity, but they may do so by increasing or decreasing their firing rate.  

 

1.3.2.2. Neuronal ensembles: dawn of the neuronal activity marker  

Immediate early genes (IEGs) 

In vivo electrophysiology is a valuable tool for the identification and measurement of 

neuronal subsets activated during specific behavioural epochs of appetitive 

conditioning. However, it does not permit the large-scale visualisation of activated 

neurons in multiple brain areas. Immediate early genes (IEGs) are rapidly regulated by 

neuronal activity and their mRNA transcripts and protein products can be utilised as a 

marker for neuronal activity. Thus, as a complement to in vivo electrophysiology tools, 

many researchers since the early 1990’s have visualised activated neurons using 

histological methods such as in situ hybridisation and immunohistochemistry. More 

recently, researchers have taken advantage of the promotor regions of IEGs such the 

Fos to express proteins allowing identification and manipulation of IEG-expressing 

neurons following associative learning (Kawashima et al, 2014). Below, the most 

commonly used IEG activity markers and their mechanism of induction, and transgenic 

tools that allow activated neurons to be identified and manipulated are reviewed. 
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Fos 

The immediate early gene c-fos was the first activity marker successfully used to 

identify discretely activated neuronal populations (Hunt et al, 1987; Campeau et al, 

1991; Kawashima et al, 2014). The protein product Fos is a transcription factor 

involved in diverse cellular functions and expressed only in the cell nucleus. The c-fos 

promoter regions contains cAMP response elements (CRE) and serum response 

elements (SRE) which are activated by CREB and serum response factor (SRF) 

respectively (Chaudhuri, 1997; Cruz et al, 2013) (Figure 4).  

Activation of either response element through CREB or SRF activity may be sufficient 

to induce Fos expression (Wang and Prywes, 2000). Induction of Fos is dependent on 

ERK/MAPK mediated-phosphorylation of SRF or RSK-mediated phosphorylation of 

CREB (Cruz et al, 2013). Interestingly, Fos expression does not appear to be induced 

by activation of the cAMP pathway, despite its promotor region containing CRE sites; 

infusion of PKA inhibitors does not affect induction of striatal Fos following cocaine 

administration (Mattson et al, 2005) and cAMP cannot induce Fos in the absence of 

Ca2+ entry (Zhang et al, 2012). Application of NMDAR antagonists prior to Fos 

induction suggest that inhibiting NMDAR transmission alone is sufficient to attenuate 

striatal Fos induced by amphetamine administration (Konradi et al, 1996). Thus Fos 

expression requires the sustained increases in intracellular calcium level associated 

with following prolonged synaptic activity (Cruz et al, 2013,) but is not a correlate of 

spiking activity (Luckman et al, 1994).  

Fos messenger RNA (mRNA) expression following CRE or SRE activation peaks at 

approximately 30 minutes, while levels return to baseline at 120 minutes. Protein 

expression peaks at approximately 120 minutes and returns to baseline within 4-6 

hours (Gao and Ji, 2009; Zangenehpour and Chaudhuri, 2002). The activation time 

course of Fos, its low basal expression and comparatively high activation threshold 

(Hughes et al, 1992; Kawashima et al, 2014), make it an effective reporter of neural  
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activity during short to medium length behavioural tests. Fos is a relatively simple and 

reliable protein to visualise using immunohistochemistry (Chatterjee et al, 2015; Perrin-

Terrin et al, 2016). Additionally, insertion of transgenes downstream of the Fos 

promotor sequence permits activity-dependent expression of these transgenes such as 

green fluorescent protein (GFP) (discussed in detail in the following section). For these 

reasons, Fos and/or transgene products that are coupled to the Fos promotor are 

widely used as a marker of neuron activation.  

 

Zif268 & Arc 

Zif268 (also known as early growth response protein 1 (EGR-1) and nerve growth 

factor-induced protein A (NGFI-A) is an immediate early gene and transcription factor 

Figure 4. Mechanisms of Fos expression in 

the striatum. Adapted from Cruz et al (2013). 

Fos expression may be induced following 

calcium (Ca2+) entry through NMDA 

receptors (NMDARs), which requires 

concurrent AMPA receptor (AMPAR) 

stimulation (see Figure 3). Ca2+ entry leads 

to the phosphorylation of the extracellular 

signal-regulated kinase (ERK)/ mitogen-

activated protein kinase (MAPK) pathway. 

This in turn leads to ELK-1 dependent 

phosphorylation of serum response factor 

(SRF), or ribosomal S6 kinase (RSK)-

dependent phosphorylation of cAMP 

response element-binding protein (CREB).  

Activation of the transcription factors SRF or 

CREB results in their binding to sites in the 

Fos promotor region (serum response 

element (SRE) and cAMP response element 

(CRE), respectively). Activation of either 

SRE or CRE is sufficient to lead to Fos 

expression and translation. cDNA: 

chromosomal deoxyribonucleic acid.  
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also used as a marker of neuronal activation. The zif268 promoter region also contains 

CRE and SRE binding elements, however in different number compared to Fos, which 

conferring a lower threshold and higher basal levels in protein expression (Chaudhuri, 

1997). In some brain areas, such as the striatum, use of zif268 as an activity marker 

may be problematic due to high levels of basal expression (Nguyen et al, 1992). While 

induction times of mRNA and protein levels are similar to Fos (zif268 mRNA is 

expressed within 30 minutes of activation while zif268 protein is expressed at 120 

minutes), they remain expressed for over 6 hours (Zangenehpour et al, 2002). 

Arc is another immediately early gene widely used as a neuronal activity marker. Unlike 

Fos and zif268, Arc is not a transcription factor but is a protein directly involved in 

cellular function; Arc mRNA is trafficked out of the nucleus to the soma and dendritic 

spines, where it is translated in an ad-hoc manner following neuronal activity and is 

involved in regulation of a number of experience-induced neuroadaptations (Korb and 

Finkbeiner, 2011; Mikkelsen and Larsen, 2006). Arc may be activated by either the 

ERK/MAPK pathway or the cAMP-PKA pathway (Bloomer et al, 2008; Waltereit et al, 

2001). Arc mRNA peaks after 15 minutes and returns to baseline by 90 minutes while 

protein expression peaks at 60 minutes and returns to baseline by 5 hours. In the 

striatum, basal Arc expression is higher than Fos, while basal Fos expression is higher 

in the thalamus (Kawashima et al, 2014). Thus choice of activity markers varies across 

studies and may be tailored to the specific requirements of an experiment.  

 

1.3.2.2.2. Activity marker expression following appetitive conditioning  

Fos immunostaining 

Quantification of Fos-expressing neurons in the rodent brain following appetitive 

conditioning permits visualisation of actived neuronal ensembles with single-cell 

resolution. Such studies typically measure the number of Fos-expressing (Fos+) 

“activated” neurons following a conditioning procedure in “Paired mice”, as compared 
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to an “Unpaired” group in which presentation of the CS and US is unpaired. However, 

this approach can lead to issues in interpretation of Fos data. For example, Igelstrom et 

al (2010) assayed the number of Fos-expressing neurons across the brain following a 

single trial of Pavlovian conditioning between a discrete auditory CS and water (US). 

They observed activation of paraventricular thalamus and superior colliculus, but not 

areas such as the striatum or anterior cingulate PFC known to be involved in appetitive 

conditioning. Similarly, Nordquist et al (2003) measured Fos expression following 1 or 4 

Pavlovian approach conditioning trials in which sucrose delivery was paired with a 

discrete CS, but did not observe significant activation of neurons in any measured PFC 

subregion. These findings are surprising, considering the role of the ventral striatum 

and PFC in motivated behaviours, and highlight a limitation of the Fos procedure. While 

in vivo electrophysiology is able to identify subsets of activated neurons which fire 

during specific behaviour epochs, due to its slow time course (e.g. 90 min since 

behavioural test onset to detect Fos expression), IEG expression only measures the 

cumulative number of activated neurons over an entire behavioural test session. 

Hence, its expression cannot ascertain when a particular neuron was activated by what 

stimuli and/or behaviour (e.g. activation from the cues, stress, locomotor activity). 

Exposure to novel stimuli or appetitive reinforcers such as sucrose have been shown to 

robustly activate regions such as the NAc and PFC (Hajnal et al, 2009; Struthers et al, 

2005). Thus non-specific activation in the Unpaired group can make detection of 

learning-related changes difficult in Paired mice. Suto et al (2016) have demonstrated 

that while two distinct CS signalling presentation or omission of a reward activate a 

similar number of neurons in the infralimbic cortex, selective knockout of these 

populations has opposing effects on behaviour. Thus it appears that it may not be the 

number of activated neurons which is important for the expression of conditioned 

behaviours, but rather than nature of the neurons activated. 
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Nonetheless, activation of neuronal ensembles in a number of motivation system brain 

areas has been observed following exposure to food-associated cues. Flagel et al 

(2011) conditioned a discrete compound CS (light illumination and lever insertion) to 

sucrose delivery in Paired rats over a 7 day training procedure, while Unpaired rats 

received random CS and US presentations; at test, all animals were exposed to the CS 

under extinction conditions. This procedure has the benefit of reducing baseline Fos 

expression in both groups due to habituation to the testing apparatus and absence of 

sucrose ingestion at test. They observed increased Fos expression in rats across 

several motivation-relevant brain areas, including the NAc, DS, orbitofrontal cortex and 

paraventricular thalamus. Interestingly, these findings were observed only in rats which 

sign-tracked (interacting with the CS) rather than goal-tracking animals. Furthermore, 

Schroeder et al (2001) observed increases in the medial prefrontal cortex and 

orbitofrontal cortex following exposure to a chocolate-associated environment. 

Together, these findings suggest that Fos can be used to identify neuronal populations 

activated following appetitive conditioning. 

Fos expression has also been used to identify brain areas activated following the 

expression of drug-conditioned behaviours. Fos expression following drug 

administration is typically more robust than when using a food US (Kelley et al, 2005; 

Zombeck et al, 2008). However, there are significant discrepancies in studies of Fos 

expression following even simple conditioned behaviours using drug reinforcers, such 

as locomotor conditioning to a drug-associated environment (conditioned locomotion). 

Exposure to a psychostimulant-associated context has been shown to lead to 

activation of the NAc core but not the NAc shell (Hotsenpiller et al, 2002), the NAc shell 

but not NAc core (Chauvet et al, 2011; Rhodes et al, 2005) as well as both the NAc 

shell and NAc core (Brown et al, 1992; Franklin and Druhan, 2000). These data 

suggest that striatal ensemble recruitment is highly sensitive to experimental procedure 
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and may be influenced by the number and spacing of cocaine injections, habituation to 

novelty and drug dose (Ryabinin et al, 1997; Uslaner et al, 2003). 

 

1.3.2.2.3. Creation of transgenic animals with transgene expression 
controlled via the Fos promotor 

Although Fos expression can be used to visualise neurons activated following 

appetitive conditioning, this method has some limitations for further characterising the 

biochemistry and electrophysiology of these neurons. Also, Fos expression alone does 

not indicate whether these neurons play a causal role in learned behaviours. In order to 

overcome these limitations, in the last 20 years, researchers have generated innovative 

genetic technologies that permit the expression of transgenes in Fos-expressing, 

recently activated neurons. These can be used to identify recently activated neurons in 

vivo and ex vivo, allowing investigation into their physiological and molecular 

properties, as well as more direct manipulations.    

 

Fos-LacZ 

The Fos-LacZ mouse was originally created to permit reliable identification of Fos 

expressing neurons, due to issues with high-variability and poor replication in Fos-

expression studies using antibody staining methods (Kawashima et al, 2014; Smeyne 

et al, 1992). Nearly 20 years following the creation of the Fos-LacZ mouse, a novel use 

was developed permitting the selective lesioning of Fos-expressing neurons. In Fos-

LacZ transgenic animals, Daun02 infused into target brain regions may be converted to 

the toxic daunomycin only in recently activated, Fos-expressing neurons. Koya et al 

(2009) first used the Daun02 technique to selectively lesion neurons in the NAc 

activated during a cocaine sensitisation regime. Ablation of neurons activated on the 

final pairing of cocaine with a locomotor chamber attenuated the expression of 

locomotor sensitisation at a later test. Crucially, cocaine sensitisation did not occur if 
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neurons activated following cocaine administration in a separate, novel context were 

lesioned. This highlights the specificity of ensemble encoding, as the destruction of 

neurons activated only by the relevant CS-US association were involved in the 

expression of sensitisation.  Thus, the Daun02 method is a valuable tool permitting 

selective lesioning of Fos-expressing neurons.  

 

Fos-GFP 

The Fos-GFP mouse, which expresses a Fos-GFP fusion protein, was engineered by 

Alison Barth working at the Carnegie Mellon Institute, USA (Barth et al, 2004). The 

Fos-GFP mouse expresses a Fos-GFP fusion protein in recently activated neurons, 

permitting visualisation of neuronal ensembles both in vivo or in ex-vivo slice 

preparations. This allows investigation into the physiological and molecular profiles of 

neurons activated following associative learning. 

Koya et al (2012) utilized the Fos-GFP mouse to investigate the synaptic physiology of 

neurons activated in the NAc shell following the expression of cocaine sensitisation. 

They observed that neurons activated following cocaine sensitisation, but not acute 

cocaine administration, demonstrated a decrease in AMPAR/NMDAR ratio in recently 

activated, GFP+ neurons. This apparent decease in synaptic strength was due to an 

increase in the number of silent synapses, which contain only functional NMDA 

receptors. Later studies demonstrated that this finding was context specific; when 

animals are tested with a cocaine administration in a different context to which the 

sensitisation regime took place, no locomotor sensitisation occurs and the neurons 

activated do not show increases in silent synapses (Whitaker et al, 2016). These 

studies extend previous findings observing changes in synaptic physiology following 

associative learning but demonstrate that such changes may occur selectively in 

behaviourally relevant neurons. This draws experimental evidence even closer to the 
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theories of Konorski and Hebb, who hypothesised such changes may occur specifically 

in the neurons playing a functional role in learning (Hebb, 1949; Konorski, 1948). 

The Fos-GFP mouse has also been used to permit electrophysiological examination of 

the neurons activated during conditioning with a food US. Cifani et al (2012) trained 

Fos-GFP rats to lever press for a food reward, then following extinction reinstated food-

seeking behaviour using the pharmacological stressor yohimbine. Similarly, to Koya et 

al (2012), they observed a reduction in AMPAR/NMDAR ratios selectively in GFP+ 

neurons. This suggests that the neurons activated following the expression of drug or 

food-associated behaviours may undergo similar synaptic adaptations.  

 

1.4. Aims and Hypotheses 

The encoding of Pavlovian associations appears to be dependent on the regulation the 

intrinsic and synaptic properties of neurons in motivationally-relevant brain areas. 

However due to technical limitations, previous studies investigating such adaptations 

have largely sampled neuronal populations without distinguishing their activation 

history. However, in vivo electrophysiology and immediate-early gene studies suggest 

that associative memories are encoded in sparsely activated neuronal ensembles. As 

such, identifying the nature of neuroadaptations occurring selectively on neuronal 

ensembles activated by reward-associated cues may provide novel insight into the 

mechanisms of associative memory encoding. Thus, we aim to identify neuronal 

populations activated following exposure to reward-associative stimuli and investigate 

potential changes in their intrinsic and synaptic excitability.  

The activity marker Fos may be used to identify neuronal ensembles activated 

following exposure to reward-associated stimuli. Fos can be visualised in histochemical 

preparations or in the Fos-GFP mouse, which permits electrophysiological 

investigation. Using a simple Pavlovian approach paradigm, in with a CS is paired with 
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a sucrose reward, we aim use such techniques to identify the brain areas activated 

following exposure to the appetitive CS and assay their electrophysiological properties. 

Furthermore, a deeper understanding of the functional relevance of such potential 

adaptations may be gained by observing their regulation following changes in 

associative strength. As such, we will investigate how ensemble-selective adaptations 

may be regulated following extinction learning.  

Finally, if adaptations in the neurons activated by food-associated cues are observed, it 

would be of interest to investigate whether such adaptations are also observed 

following learning with drugs such as cocaine. Such comparisons may yield insight into 

general mechanisms of associative memory regulation or demonstrate unique features 

of conditioning to drugs of abuse.  

Overall, we hypothesise that changes in intrinsic and synaptic excitability may be 

selectively observed on neuronal ensembles activated following exposure to reward-

associated stimuli. 
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2.1. Animals 

Male Fos-GFP mice (https://www.jax.org/strain/014135) previously bred onto a 

C57BL/6 background were bred with wild-type C57BL/6 females obtained from Charles 

River Laboratories at the University of Sussex (Figure 1A). Heterozygous Fos-GFP 

male mice continued to be bred at the University of Sussex ancillary unit with wild-type 

C57BL/6 females obtained from Charles River Laboratories UK. Fos-GFP male mice 

were used for electrophysiology and immunofluorescence experiments and C57BL/6 

wild-type males were used for in situ hybridisation and 

immunofluorescence/immunohistochemical studies.  

All mice were housed under a 12 h light/dark cycle (lights on at 7:00 A.M.) at the 

maintained temperature of 21±1°C and 50±5% relative humidity. Animals were aged 

10-12 weeks at the beginning of behavioural testing. In Pavlovian approach studies 

(Chapter 3 and 4) mice were food restricted to 90% ad libitum body weight 1 week 

before behavioural testing until the completion of the behavioural experiments. All 

experiments were conducted in accordance with the UK 1986 Animal Scientific 

Procedures Act and received approval from the University of Sussex Ethics Committee. 

 

2.2. Behavioural Experiments 

2.2.1. Pavlovian Approach Experiments (Chapter 3 and 4) 

Apparatus 

All behavioural experiments were performed in standard mouse operant chambers 

(15.9 x 14 x 12.7 cm; Med Associates; Figure 1B), each housed within a sound-

attenuating and light-resistant cubicle. The conditioning chamber front and rear access 

panels and ceiling were constructed from clear Plexiglas and the side walls were made 

from removable aluminium panels atop a stainless steel grid floor. Each chamber was 
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Figure 1. Behavioural experimentation with Mus musculus (C57BL/6).  A) The C57BL/6 strain of mouse 

(cartoon). B) Skinner box used for Pavlovian approach experiments. House light (left), sucrose-delivery 

magazine (bottom right) and mechanical click generator (top) are shown. C) Experimental chambers for 

cocaine conditioned locomotion experiments. Video recordings of experimental chambers (clear acrylic) 

were captured from cameras (top, arrow). Animals were run in the dark, with light for recording provided 

by an infrared light source.  

 

fitted with a recessed magazine situated in the centre of one side wall that dispensed a 

10% sucrose solution serving as the unconditioned stimulus (US). An infrared beam 

detected head entries into the food magazine. The house light was situated in the side 

panel and was on for the duration of the behavioural experiments. A mechanical click 

generator provided a broad-frequency (0-15 kHz) sound, which served as a 

conditioned stimulus (CS) (Med Associates). Initiation and running of behavioural 

protocols, including the recording of head entries into the food magazine, was 

performed using Med-PC IV (Med Associates). 
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Procedures 

Magazine training and Pavlovian conditioning: Mice were randomly assigned to the 

Paired or Unpaired groups that underwent identical procedures except that Unpaired 

mice only received sucrose in the home cage 1-4 h at random times before or after 

each conditioning session (Chapter 5 includes Paired mice only). One day after 

magazine training (in which Paired mice were pre-trained to the sucrose-delivery 

magazine with a 10% sucrose solution under a random interval-30 (RI-30) schedule) 

mice underwent 12 acquisition sessions over a 7 d period in the morning (8:00 A.M. to 

12:00 P.M.) and/or afternoon (12:00 P.M. to 5:00 P.M.) for 1-2 sessions per day. Each 

acquisition session lasted approximately 24 min and consisted of six 120 s CS 

presentations separated by 120 s RI intertrial interval (ITI) periods. During each 120 s 

CS period, 13.3 µl of 10% sucrose solution was delivered into the magazine on an RI-

30 s schedule (Paired mice) or was unrewarded (Unpaired mice). Twelve acquisition 

sessions produced selective responding to the CS. 

 

Behavioural testing for Pavlovian approach conditioning: At 7-9 d (histology 

experiments) or 7-13 d (electrophysiology experiments) after the last acquisition 

session, both Paired and Unpaired mice were tested for Pavlovian approach. The 

testing schedule was identical to that used in conditioning, however under extinction 

conditions. 

 

Behavioural testing for extinction learning: After magazine training and acquisition, 

mice in the extinction (EXT) experiments (Paired EXT and Unpaired EXT) underwent 

either 8 (histology) or 7-13 (electrophysiology) once-daily extinction sessions until test 

day (the final extinction session). During each extinction session, only the CS was 

presented in the absence of sucrose delivery. In the histology experiments, a third 
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group (Paired No EXT) was included and the experiment was conducted identically to 

the Paired mice in the previous Pavlovian approach experiments  

 

Spontaneous recovery (SR) of Pavlovian approach: An additional group of Paired wild-

type mice underwent conditioning and extinction sessions similar to the Paired EXT 

mice described above. After the last extinction session (EXT final), they remained in 

the colony room for an additional 6-7 d and were subsequently tested for SR of 

Pavlovian approach responding. 

 

2.2.2. Cocaine Conditioned Locomotion Experiments (Chapter 5) 

Apparatus 

The behavioural experiments were performed in square clear acrylic locomotor 

chambers (20 x 20 x 20 cm) (Figure 1C). A CCTV camera with EthovisionTm software 

(Noldus) was used for automated behavioural tracking. Light for image recording was 

provided by an infrared light source (Kemo, UK).  

 

Procedures 

Cocaine Locomotor Conditioning: Mice were randomly assigned to conditioned 

locomotion (CL) groups “Paired CL” or “Unpaired CL” in which cocaine injections (20 

mg/kg, i.p.; MacFarlan Smith, UK) were paired with a novel context (locomotor 

chamber) or with the home cage, respectively. Mice received 2 injection sessions per 

day; on one session, the Paired and Unpaired CL mice received a cocaine and saline 

injection, respectively, before being placed in the locomotor chambers for 30 min. In an 

alternate session, Paired and Unpaired CL mice received saline and cocaine injections, 

respectively, in the home cage. Conditioning proceeded for five sessions with cocaine 
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injections counterbalanced between morning (8 A.M. – 12 P.M.) and afternoon (3 P.M. 

– 6 P.M.) sessions. 

Conditioned Locomotion Test: Locomotor tests were conducted 7-13 

(electrophysiology) or 7-11 (immunohistochemistry) days following the final 

conditioning session. Mice received a single saline injection and were placed in the 

locomotor chamber for 90 min after which their brains were extracted for 

electrophysiological and immunohistochemical analyses. 

Extinction (EXT) learning and behavioural testing: Paired and Unpaired EXT mice 

received cocaine locomotor conditioning as described above (similar to Paired and 

Unpaired CL, respectively). However, one day following the final conditioning session, 

both groups of mice underwent 1-2 x daily extinction sessions, consisting of a saline 

injection preceding a 30 min locomotor chamber exposure. Saline injections were 

administered before Paired and Unpaired EXT mice were placed in the locomotor 

chamber to ensure stress due to injection was comparable across groups. Following 7-

13 (10-16 sessions; electrophysiology) or 7-11 (10-14 sessions; 

immunohistochemistry) days of extinction, a 90 min extinction test session was 

conducted.  

 

2.3. Histological Experiments  

2.3.1. GFP immunofluorescence histochemistry (Chapter 3) 

Ninety minutes after initiating the final test session, Fos-GFP mice were anesthetised 

with 200 mg/kg sodium pentobarbital and transcardially perfused with 4% 

paraformaldehyde. GFP immunofluorescence was performed as described (Koya et al, 

2009) and, unless specified otherwise, all steps were performed at room temperature. 

To assess GFP expression, free-floating sections were washed in Tris-buffered saline 

(TBS; 0.025 M Tris-HCl, 0.5 M NaCl, pH 7.5) and blocked in 10% normal goat serum 
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(catalog #S-1000, Vector Laboratories) in TBST (TBS, 0.2% Triton X-100). Slices were 

then incubated at 4°C overnight in anti-GFP primary antibody (catalog #ab13970, 

Abcam) diluted 1/16000 in 3% normal goat serum TBST. The following day, slices were 

incubated for 2 h in anti-chicken 568 (catalog #SAB4600039, Sigma-Aldrich) at 1/200 

in TBST. Slices were mounted on Superfrost Plus slides (catalog #UY-48512-00; Cole 

Parmer) air-dried, and coverslipped with PermaFluor (catalog #TA-030-FM, Thermo 

Scientific). Fluorescence images of GFP staining from left and right hemispheres of the 

NAc shell and OFC of 1-2 coronal sections per animal, corresponding to approximately 

bregma 1.18 and 2.46 (Paxinos and Franklin, 2001) respectively, were captured using 

a QI click camera (Qimaging) attached to an Olympus Bx53 microscope. GFP nuclei 

were quantified using iVision software (version 4.0.15, Biovision Technologies). The 

shell portion of the NAc was selected for this study because pilot experiments revealed 

sucrose-cue-induced GFP in this area. 

 

2.3.2. In situ hybridisation (Chapter 3) 

Forty-five minutes after the final test session, mice were killed and their brains were 

removed and rapidly frozen in isopentane at -50°C. Then, 10 μm sections containing 

the NAc shell (bregma 1.18) and OFC (bregma 2.46) were prepared using a Leica 

CM1900 cryostat. RNA-scope in situ hybridisation was performed as described 

previously (Rubio et al, 2015). All target probes were designed by Advanced Cell 

Diagnostics and targeted the mRNA of Fos (GenBank accession number 

NM_010234.2: target region, 443-1447), Slc17a7 (glutamate transporter; GenBank 

accession number NM_ 182993.2: target region, 464-1415), Slc32a1 (GABA 

transporter; GenBank accession number NM_009508.2: target region, 894-2037), 

Drd1a (dopamine receptor1; GenBank accession number NM_010076.3: target region, 

444-1358), and Drd2 (dopamine receptor 2; GenBank accession number 

NM_010077.2: target region, 69-1175). Probes were incubated with sections for 2 h at 
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40°C. Fos, Drd1a, and Drd2 mRNA were used as a marker for activated D1R- or D2R-

expressing cells in the NAc shell, which form the direct and indirect pathways, 

respectively, that target overlapping but also distinct basal ganglia structures (Smith et 

al, 2013). OFC-containing sections were hybridised with probes against Fos, Slc17a7a 

(vesicular glutamate transporter; VGLUT1) and Slc32a1 (vesicular GABA transporter; 

VGAT) to visualise Fos+ pyramidal neurons or GABAergic interneurons, respectively. 

Sections were then incubated with three-step preamplifier and amplifier probes before 

being incubated with fluorescently labelled probes (Alexa Fluor 488, Atto 568, and Atto 

647). Finally, a DAPI solution was briefly applied (for visualisation of nuclei) and the 

slides were coverslipped with Vectashield Hard Set Anti-fade mounting medium 

(catalog #H-1400, Vector Laboratories). Images of the NAc shell and OFC were taken 

using a Leica TCS SP8 confocal system attached to a DMI 6000 AFC Inverted 

Motorised Research Microscope at 20x magnification (HC PL APO 20 /0.70 CS), zoom 

factor 0.75. The images were collected using Leica Application Suite X Confocal 

Software and analysed in Fiji (Schindelin et al, 2012). 

 

2.3.3. Fos immunohistochemistry (Chapter 5) 

Ninety min following conditioned locomotion or extinction test sessions, mice were 

deeply anaesthetised with 200 mg/kg sodium pentobarbital and transcardially perfused 

with ice cold phosphate-buffered saline (PBS; in mM NaCl 137, KCl 2.7, Na2HPO4 10, 

KH2PO4 1.8, pH 7.5) for 5 min, then 4% paraformaldehyde (PFA) in PBS for 20 min. 

Brains were removed and post-fixated in 4% PFA for 20 h, cryoprotected in 30% 

sucrose-PBS solution and frozen in crushed dry ice. 30 µm thick sections of the 

striatum were prepared on a Leica CM1900 cryostat. Free-floating striatal sections 

were incubated in 0.3% hydrogen peroxide in PBS, blocked in 3% normal goat serum 

in 0.2% Triton X-100 PBS (PBS-Tx) and stained overnight at 4oC in rabbit anti-Fos 

primary antibody (1/7000 in PBS-Tx; SC-52, Santa Cruz). Secondary labelling with  
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1/600 goat anti-rabbit antibody in PBS-Tx (BA-1000, Vector Labs) was amplified with a 

commercial avidin-biotin kit (PK-4000, Vectorlabs) and developed in DAB nickel for ~15 

min. Sections were mounted onto Superfrost slides (WZ-48512-00, Cole-Parmer), dried 

overnight, hydrated in de-ionised H20 then dehydrated in graded ethanol baths (2 min 

in 30%, 60%, 90%, 95%, 100%, 100%) and cleared in Histoclear III (HS-204, National 

Diagnostics) then coverslipped in Histomount mounting medium (HS-103, National 

Diagnostics).  

Figure 2. Patch-clamp electrophysiology recording in current clamp (CC) mode. Figure adapted from Barbour 

(2014). The cell is modelled as the membrane capacitance (Cm), membrane resistance (Rm) and the membrane 

voltage (Vm). The ground is provided by an electrode placed in the bath solution (blue) and connected to the 

amplifier ground. The recording pipette, patched onto the neuron in whole-cell mode, has a resistance at its pore 

(Rp) and capacitance across its glass (Cp). The voltage at the pipette (Vp) will follow Vm but with an additional 

error caused by the voltage drop over Rp. CC Operation: The operational amplifier (op-amp) adjusts its output to 

balance the voltage at its inputs (1. and 2., through which close to zero current flows). The output of the op amp 

(“Output”) will match the Vp
 
(which is the potential at input 1.), as the output is driving input 2. to match input 1. 

through the feedback connection. In this configuration the setup is a voltage follower and the output will reflex Vm. 

Current may be injected into the cell through the current source. Series Resistance: It is important to note the 

series resistance of Rp and Rm. When current is injected to the cell from the current source, it creates a voltage-

drop across Rp, causing an error in the measured voltage. As such, to measure precise voltages from the cell the 

series resistance can be compensated, through a “bridge balance” circuit. This cosmetic modification may be 

applied to reduce the error and bring Vp closer to the physiological Vm. Note: While this schematic is used to 

illustrate the fundamental theory underlying current-clamp, the Axopatch 200B amplifier used in the present 

experiments utilises a current-follower (rather than a voltage-follower) recording device, with an additional 

feedback circuit used to simulate current clamp (Axon Instruments Inc., 1999; Magistretti et al, 1996). Right: The 

electrophysiological setup on which the present experiments were conducted. 
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2.4. Electrophysiological Experiments 

2.4.1. Slice preparation and recording solutions 

Chapter 3 

Ninety minutes after the final behavioural test, mice were anesthetised with a ketamine 

(100 mg/kg) xylazine (16 mg/kg) mix and brains were removed and placed in ice-cold 

cutting aCSF containing the following (in mM): 75 sucrose, 87 NaCl, 2.5 KCl, 0.5 

CaCl2, 7.0 MgCl2, 1.25 NaH2PO4, 25 NaHCO3, and 10 D-glucose (bubbled with 95% 

O2/5% CO2, pH 7.4) for 2 min. Then, 250-mm-thick coronal slices that corresponded to 

approximately bregma 1.18-1.10 for the NAc shell and 3.08-2.68 for the OFC were 

sectioned on a Leica VT1200S vibratome. After slicing, sections were briefly held in 

cutting aCSF for 5 min at 32°C before resting in recovery aCSF containing the following 

(in mM): 125 NaCl, 3 KCl, 0.5 CaCl2, 3.5 MgCl2, 1.25 NaH2PO4, 25 NaHCO3, and 10 

D-glucose (bubbled with 95% O2/5% CO2, pH 7.4) at room temperature. Sections 

were recorded in aCSF containing the following (in mM): 125 NaCl, 3 KCl, 2 CaCl2, 2 

MgCl2, 1.25 NaH2PO4, 25 NaHCO3, and 10 D-glucose (bubbled with 95% O2/5% 

CO2, pH 7.4) at room temperature. The liquid junction potential was -11.1 mV and was 

not corrected. 

 

Chapter 4 and 5 

Ninety minutes following Pavlovian approach test, mice were deeply anaesthetised with 

200 mg/kg sodium pentobarbital (Chapter 4) or 150 mg/kg ketamine and 20 mg/kg 

xylazine (Chapter 5) and transcardially perfused with ice cold NMDG-HEPES recovery 

aCSF (in mM, 93 NMDG, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 

2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl2·4H2O and 10 MgSO4·7H2O, 

bubbled with 95% O2/ 5% CO2, pH 7.4) (Ting et al, 2014). The brain was quickly 

removed and sliced in NMDG-HEPES aCSF on a Leica VT1200S vibratome. Striatal 

                        103



sections were incubated in 34oC NMDG-HEPES aCSF for 5 min and transferred to 

recording aCSF (in mM, 126 NaCl, 4.5 KCl, 1 MgCl2, 2.5 CaCl2, 1.2 NaH2PO4 11 D-

(+)-Glucose, 26 NaHCO3 bubbled with 95% O2/5% CO2, pH 7.4) at room temperature 

for the remainder of the recording day. The liquid junction potential was -13.7 mV and 

was not corrected. 

 

2.4.2. Slice imaging (All Chapters) 

Slices were transferred to a recording chamber perfused with 30-32oC recording aCSF. 

Whole-cell recordings on NAc medium spiny neurons (MSNs) or OFC pyramidal 

neurons were performed using borosilicate capillary glass-pipettes (1.5 mm outer 

diameter, 0.86 mm inner diameter) filled with a potassium gluconate solution (current 

clamp recording) (in mM): 135 K-gluconate, 3 MgCl2, 4 NaCl, 5 HEPES, 5 EGTA, 2 

Mg-ATP, 0.3 Na3-GTP (pH 7.25) and 100 µM Alexa 568 dye (A10437, ThermoFisher 

Scientific) or cesium based intracellular solution (voltage clamp recording) (in mM): 0.1 

Spermine tetrahydrochloride, 120 CsCH3SO3, 5 NaCl, 10 TEA-Cl, 10 HEPES, 4 Mg-

ATP, 0.3 Na-GTP, 0.001 QX314 (Lidocaine; L7757 Sigma-Aldrich) and 100 µM Alexa 

568 dye (A10437, ThermoFisher Scientific). Pipette resistances ranged from 4-7 mΩ. 

Neurons were visualised using an Olympus BX51WI microscope attached to a 

Revolution XD spinning disk confocal system (Andor 252 Technology Ltd) to permit 

fluorescence microscopy. GFP+ neurons were identified with a 488 nm excitation 

wavelength; neurons which did not express visible GFP were considered to be GFP 

negative (GFP–). Pyramidal neurons were identified based on their morphology under 

DIC microscopy (e.g., a prominent apical dendrite) and by their distinct firing patterns in 

response to current injections in current-clamp mode (e.g., action potential (AP) 

frequency accommodation (Cifani et al, 2012). MSNs were identified based on their 

morphology, and additionally resting membrane potential, AP waveform and response 
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to a 100 pA hyperpolarising during current clamp experiments (Kourrich and Thomas, 

2009).   

 

2.4.3. Current clamp recordings (Chapter 3 and 5) 

Theory of current clamp electrophysiology is described in Figure 2. MSNs were held at 

-75 mV and pyramidal neurons were held at -70 mV for the duration of recordings. Data 

were collected with a Multiclamp 200B amplifier (Molecular Devices) combined with 

Digidata BNC-20190 A (Molecular Devices) and WinWCP Software (courtesy of Dr. 

John Dempster, University of Strathclyde, Glasgow, UK; 

http://spider.science.strath.ac.uk/sipbs/software_ses.htm. Signals were digitised at 10 

kHz and filtered at 5 kHz (PCI6024E; National Instruments) and 50 kHz noise was 

filtered out using a HumBug (Quest Scientific) module. Spike kinetics were calculated 

using Mini Analysis Software (version 6.0; Synaptosoft) or manually (fast 

afterhyperpolarisation (fAHP) and medium afterhyperpolarisation (mAHP)). The 

current-clamp protocol consisted of 1 s positive current injections beginning at 30 pA 

and incrementing in 2 pA and 5 pA steps for MSNs and pyramidal neurons, 

respectively in Chapter 3. In Chapter 5, the current clamp protocol consisted of one-

second positive current injections beginning at -30 pA and incrementing in 10 pA steps.  

 

2.4.4. Voltage Clamp Recordings (Chapter 4) 

 

Experiment 1 - AMPA receptor (AMPAR) and GABA receptor (GABAR) –mediated 

currents following Pavlovian approach responding 

Theory of voltage clamp electrophysiology is described in Figure 3. Whole-cell 

recordings of AMPAR currents (excitatory postsynaptic currents; EPSC) were 

undertaken in the presence of the GABAA channel blocker picrotoxin (100 μM; P1675,  
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Figure 3. Patch-clamp electrophysiology recording in voltage-clamp (VC) mode. Figure adapted from Harrison 

et al (2015) and Barbour (2014). The cell membrane is modelled as the membrane capacitance (Cm), 

membrane resistance (Rm) and the membrane voltage (Vm) The ground is provided by an electrode placed in 

the bath solution (in blue) and connected to amplifier ground. VC Operation. The recording pipette, patched 

onto the neuron in whole-cell mode, has a resistance at it’s pore (Rp) and capacitance across its glass (Cp). An 

operational amplifier (op-amp) is used to measure cell responses and clamp the membrane voltage to a 

command voltage (Vcmd). An op-amp will adjust its output to balance the voltage at its inputs (1. and 2.). In 

voltage clamp mode, the pipette potential can be set by Vcmd. This permits the measurement of membrane 

currents (Icell, not pictured), as these cause a voltage drop across the reference resistor (Rf) proportional to Icell. 

The op-amp will adjust its output to oppose this voltage change and as such the change its output (“Output”) is 

equal, but opposite, to Icell. Series Resistance. It is important to note the series resistors Rp and Rm. When 

current flows through the series resistor, the voltage of the cell begins to deviate from Vcmd in proportion to the 

magnitude of the current, as Rm and Rp act a voltage divider (Sontheimer and Olsen, 2007). To ensure the 

effective clamping of Vm, it is important that the access resistance during recording is >10x smaller than the 

membrane resistance. Furthermore, Cm in conjunction with this voltage divider acts as a low-past filter, limiting 

the measurement of high-frequency currents such as fast ionic membrane currents. Thus if Rp increases during 

recording, due to cellular debris blocking the pipette tip, measured synaptic currents are reduced. As such, 

when drugs are applied during recording, it is imperative to measure series resistance and exclude cells in 

which the series resistance (Rs) changes following drug application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sigma) at -70 mV. GABAR currents were detected at the reversal potential for 

excitatory synapses (0 mV) in the presence of NMDA receptor blocker APV (50 μM; 

A5282, Sigma). Paired-pulse and spontaneous transmission recordings were taken 
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from excitatory and GABAR synapses (spontaneous EPSCs and spontaneous 

inhibitory postsynaptic currents (IPSCs) respectively); paired-pulse ratios were 

calculated by dividing the first and second evoked peaks, across inter-spike intervals of 

20, 40, 60, 80, 100, 150, 200 and 250 milliseconds. Evoked responses were elicited by 

stimulating directly in the NAc shell with single pulses (0.1 ms) at 0.033 Hz, from a 

bipolar Tungsten microelectrode (Matrix, FHC). Stimulation amplitude was adjusted to 

elicit approximately half the maximum evoked current. 

 

Experiment 2 - Cyclothiazide (CTZ) effects on AMPAR transmission following 

Pavlovian approach responding 

We measured AMPAR currents during application of the positive AMPAR allosteric 

modulator cyclothiazide (100 μM) (Sigma, C9847). Evoked EPSC (eEPSC) and sEPSC 

recordings were completed in standard recording aCSF (control) or in CTZ-aCSF. 

Following eEPSC and sEPSC recordings, CTZ-aCSF was perfused through the slice 

chamber for 20 min before eEPSC and sPESC recordings were repeated. CTZ action 

was confirmed by visual observation of markedly increased AMPAR current decay 

times.  

Series resistance was monitored using –10 mV voltage steps (200 ms); cells exhibiting 

>15% change in access resistance during recording were discarded. Spontaneous 

EPSCs were acquired using WinEDR (courtesy of J. Dempster, University of 

Strathclyde) and analysed using Mini Analysis (Synaptosoft). 
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2.5 Data Analysis 

2.5.1. Data presentation and outlier exclusion 

All data were analysed using GraphPad Prism (Graphpad Software) and SPSS (IBM). 

Group data are presented as mean±SEM. Where possible, graphs displaying individual 

data points of representative behavioural, histological and electrophysiological  findings 

are displayed in Appendix A. Post-hoc tests were conducted using Fisher’s LSD. For all 

experiments, histological/physiological experiments contain lower animal numbers than 

in behavioural experiments; this is due to the loss of samples during perfusion/slice 

preparation, poor staining or failure to obtain electrophysiological recordings due to cell 

death.  In addition, for these experiments, cell counts that exhibited frequencies that 

were 2 SDs from the mean were excluded from analysis; outliers were additionally 

confirmed using a 1% GRUBBS test. The details on number of animals run and cases 

of differences between 2SD and GRUBBS test outlier detection can be found in 

Appendix B.  

 

2.5.2. Normality testing 

The Kolmogorov-Smirnoff (KS) test was used to assess the distribution of independent 

samples alongside visual inspection of histograms to identify deviation in skew and 

kurtosis. For repeat measure samples, the standardised residuals were subject to KS 

testing. If the KS test indicated non-Gaussian distribution for independent samples or 

the majority of standardised residuals were non-normally distributed, results were 

confirmed using a non-parametric test and listed in the corresponding results section. 

However, in figures data was presented using parametric test analyses, due to the 

inherent issues with normality testing and non-parametric analyses in small samples 

(Ghasemi and Zahediasl, 2012; Potvin and Roff, 1993) as well as to correspond with 

published versions of the data.   
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2.5.3. Power testing 

Power analyses were conducted on behavioural pilot experiments for both Pavlovian 

approach and conditioned locomotion experiments. These indicated that a sample size 

of n=10 (alpha=0.05, beta=0.95, power=0.8, effect size=1.17) and n=6 (alpha=0.05, 

beta=0.95, power=0.8, effect size=1.75), respectively, was required to resolve the 

behavioural differences. Due to the novel nature of the immunohistochemical and 

electrophysiological studies, power analyses were not conducted for these 

experiments.  

 

2.5.4. Data Analysis 

Chapter 3 

Behaviour: Total head entries into the sucrose-delivery magazine during CS and ITI 

presentation during acquisition and extinction were analysed using a three-way mixed 

ANOVA including the factors of Condition (Paired, Unpaired), CS Presentation (CS, ITI) 

and a repeated-measures factor of session (1-12 for acquisition, 1-7 for extinction). 

Pavlovian approach test data were analysed using a two-way ANOVA using CS 

Presentation (CS, ITI) and Training Condition (Paired, Unpaired). Spontaneous 

recovery test data were analysed using a two-way ANOVA using CS Presentation (CS, 

ITI) and Test (EXT Final, SR Test) as factors. Pavlovian approach test data following 

extinction learning were analysed using a two-way ANOVA using CS Presentation (CS, 

ITI), and Group (Paired No EXT, Unpaired EXT, Paired EXT) as factors. 

GFP and Fos mRNA expression: In Experiments 1 and 2, t-tests on the number 

GFP/Fos neurons per square millimetre were conducted independently in the NAc shell 

and OFC using Condition (Paired, Unpaired) as a factor. In Experiment 3, a one-way 
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ANOVA between Groups (Paired No EXT, Paired EXT, Unpaired EXT) was conducted 

on the number of Fos neurons per square millimetre. 

Electrophysiology: Resting membrane potential, input resistance, rheobase, and spike 

kinetics data were analysed using two-way ANOVAs for Experiments 1 and 2 using 

Condition (Paired, Unpaired) and GFP (GFP+, GFP–) as factors. Spike counts for 

Experiments 1 and 2 were analysed using a three-way mixed ANOVA including the 

factors of Condition (Paired, Unpaired), GFP (GFP+, GFP–), and a repeated measures 

factor of Current Injections.  

Chapter 4 

Behaviour: Head entries into the magazine during the CS and inter-trial interval (ITI) 

across acquisition sessions were analysed using a two-way mixed ANOVA with factors 

CS (CS, ITI) and Session (Acquisition sessions 1-12). Test data was analysed using a 

paired t test comparing CS and ITI head entries in Paired mice.  

Electrophysiology - Spontaneous and Evoked Currents: In experiment 1, sEPSC and 

spontaneous inhibitory postsynaptic current (sIPSC) parameters (frequency, amplitude, 

decay, rise time, half-width) were analysed using t tests. As the number of tests 

undertaken was small and some parameters were not independent (e.g. decay 

time/rise-times and half-width), no correction for multiple comparisons was used. 

Cumulative probability plots were analysed using the Mann-Whitney test directly on 

cumulative probability frequencies. In experiment 2, sEPSC and eEPSC parameters 

were analysed using a two-way ANOVA with GFP (GFP+, GFP–) and Cyclothiazide 

(CTZ-free aCSF, CTZ-aCSF) as factors. 

Electrophysiology - Paired-pulse Ratio: Paired-pulse ratios across stimulation intervals 

were analysed using a two-way mixed ANOVA with factors GFP (GFP+, GFP–) and 

Inter-Spike Interval (20, 40, 60, 80, 100, 150, 200, 250 seconds 
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Chapter 5 

Behaviour and Immunohistochemistry: Distance travelled in the locomotor chamber 

and Fos+ neurons per mm2 (analysed independently for the NAc shell, NAc core and 

DS) were analysed using a two-way ANOVA including the factors Group (Paired vs. 

Unpaired) and Extinction (EXT vs. no EXT). Three mice were excluded from the 

immunohistochemical analysis due to poor perfusion and/or section quality. 

Electrophysiology: Spike counts were analysed using a three-way mixed ANOVA 

including the factors of Group (Paired, Unpaired), GFP (GFP+, GFP–) and a repeated 

measures factor of Current (30 pA increments). Active and passive membrane 

properties (Tables 1-3) were analysed using a two-way ANOVA with Group (Paired, 

Unpaired) and GFP (GFP+, GFP–) as factors. Electrophysiological parameters were 

analysed separately for conditioned locomotion and extinction experiments.  
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Abstract 

Cues that predict the availability of food rewards influence motivational states and elicit 

food-seeking behaviours. If a cue no longer predicts food availability, then animals may 

adapt accordingly by inhibiting food-seeking responses. Sparsely activated sets of 

neurons, coined “neuronal ensembles,” have been shown to encode the strength of 

reward-cue associations. Although alterations in intrinsic excitability have been shown 

to underlie many learning and memory processes, little is known about these properties 

specifically on cue-activated neuronal ensembles. We examined the activation patterns 

of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell 

ensembles using wild-type and Fos-GFP mice, which express green fluorescent protein 

(GFP) in activated neurons, after appetitive conditioning with sucrose and extinction 

learning. We also investigated the neuronal excitability of recently activated, GFP+ 

neurons in these brain areas using whole-cell electrophysiology in brain slices. 

Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and 

OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more 

excitable than surrounding GFP– neurons. After extinction, the number of neurons 

activated in both areas was reduced and activated ensembles in neither area exhibited 

altered excitability. These data suggest that learning-induced alterations in the intrinsic 

excitability of neuronal ensembles is regulated dynamically across different brain areas. 

Furthermore, we show that changes in associative strength modulate the excitability 

profile of activated ensembles in the NAc shell. 
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Introduction 

Animals use cues that predict the availability of food rewards to guide their behaviour 

and maximize food-seeking strategies (Petrovich, 2011). In humans and nonhuman 

animals, stimuli that are associated with palatable foods powerfully shape behaviour 

and increase motivation to consume food (Anschutz et al, 2011; Petrovich and 

Gallagher, 2007; van Strien et al, 2012). Conversely, animals rapidly inhibit such 

learned appetitive responses when previously food-associated cues no longer predict 

food availability (Mackintosh, 1983; Pavlov, 1927). Identifying how these learned 

associations are encoded neuronally is crucial to illuminating the mechanisms 

underlying disorders characterized by excessive food intake, such as obesity.               

Exposure to food-associated cues activates brain areas that subserve motivational 

processes, such as the nucleus accumbens (NAc) and prefrontal cortex, which also 

play a pivotal role in encoding food-predictive cues and changes in cue-reinforcer 

contingencies (Annett et al, 1989; Burger and Berner, 2014; Day et al, 2006; Flagel et 

al, 2011; Petrovich, 2011; Schoenbaum et al, 2007; Schoenbaum et al, 2003; Singh et 

al, 2010; Warren et al, 2016). Moreover, there is now evidence indicating that, within 

both of these regions, associative memories may be encoded in sparsely activated 

subsets of neurons called neuronal ensembles (Cruz et al, 2013; Fanous et al, 2012; 

Koya et al, 2009; Pennartz et al, 1994; Warren et al, 2016; Whitaker et al, 2016). These 

ensembles exhibit synaptic adaptations that are not observed in surrounding 

nonactivated neurons after learning (Gouty-Colomer et al, 2016; Koya et al, 2012; 

Whitaker et al, 2016). Therefore, appetitive associations may be encoded through 

adaptations occurring in multiple neuronal ensembles existing across multiple brain 

areas. 

During experience-dependent plasticity, neurons may fine-tune information transfer by 

modifying their connectivity to surrounding neurons at the synapse, but also by 

adapting their intrinsic excitability (Dong et al, 2006; Kourrich et al, 2015). Alterations in 

neuronal excitability modulate neuronal firing properties and thus the ability of neurons 
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to influence the activity of local and distal postsynaptic neurons (Daoudal and 

Debanne, 2003; Nisenbaum and Wilson, 1995; Santini et al, 2008). These excitability 

changes have been widely observed after aversive conditioning in brain areas that 

encode emotionally salient stimuli, such as the amygdala and prefrontal cortex (Quirk 

and Mueller, 2008; Santini et al, 2008; Sehgal et al, 2014). However, in these studies, 

neuronal excitability was measured from a randomly sampled neuronal population 

within a given brain area without taking neuronal activation history into account. 

Therefore, little is known about changes in the intrinsic excitability of neurons that occur 

in behaviourally relevant ensembles activated by appetitive cues. 

The aim of this study was to characterize intrinsic excitability changes of cue-activated 

neuronal ensembles in the shell portion of the NAc and orbitofrontal cortex (OFC) after 

appetitive conditioning with sucrose reward and extinction learning using Fos-GFP 

mice, which express green fluorescent protein (GFP) in strongly activated neurons 

(Barth et al, 2004; Koya et al, 2012; Whitaker et al, 2016). Both the NAc shell and OFC 

are activated by food-associated cues and are implicated in appetitive behaviours that 

are guided by learned associations and updating changes in learned contingencies 

(e.g., extinction) (Day et al, 2006; Fanous et al, 2012; Moorman and Aston-Jones, 

2014; Schoenbaum et al, 2007; Schoenbaum et al, 2003; Singh et al, 2010). We 

hypothesized that changes in associative strength may modulate the excitability 

properties of the cue-activated neuronal ensembles in these areas. 

 

Results 

Pavlovian approach and neuronal activation in the NAc and OFC 

In order for mice to acquire the relationship between the sucrose reward and a cue that 

predicts its availability, we utilized an appetitive Pavlovian conditioning procedure 

(Figure 1A). To this end, we trained two groups of Fos-GFP mice, in which mice in the 

Paired group received auditory cue (CS) presentations paired with 10% sucrose  
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Figure 1. Timeline for Pavlovian approach and extinction experiments. (A) In Pavlovian approach 

experiments, two groups of mice underwent 12 acquisition (Pavlovian conditioning) sessions. In 

each session, Paired mice received sucrose during CS presentations in the conditioning chamber, 

whereas Unpaired mice received only CS presentations and instead were given sucrose in their 

home cage at random times before or after each session. At 7-9 d (histology experiments) or 7-13 

d (electrophysiology experiments) after the last acquisition session, on test day, all mice were 

tested under extinction conditions and their brains were removed at 45 (Fos analysis) or 90 min 

(GFP immunohistochemistry and electrophysiology) after initiating testing. (B) In Extinction 

experiments, Paired and Unpaired mice underwent similar acquisition sessions as during Pavlovian 

approach experiments. One day after the last acquisition session a group of Paired and a group of 

Unpaired mice (EXT) underwent an extinction phase in which only the cue was presented. Another 

group of Paired mice did not undergo extinction learning (No EXT). One extinction session was 

conducted per day and this phase lasted 8 d (histology experiments) or 7–13 d (electrophysiology 

experiments). Mice were killed on the final extinction session and their brains were removed at 45 

min (Fos analysis) or 90 min (electrophysiology) after initiating testing. 
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solution (US) during each acquisition session for a total of 12 sessions. In contrast, the 

Unpaired group received only cue presentations during each session, and received 

similar amounts of sucrose in their home cages at random times before or after each 

session. Thus, the CS in these mice remained neutral. As the training progressed, mice 

in the Paired group made significantly more CS-entries compared to ITI-entries (Figure 

2A). In contrast, CS- and ITI-entries remained low throughout the 12 acquisition 

sessions in mice in the Unpaired group. A three-way ANOVA revealed a significant 

effect of Condition X CS Presentation X Session interaction (F11,836=3.34, p<0.001) 

indicating that mice in the Paired group had reliably acquired the CS-US association.  

When Paired and Unpaired mice were tested one week following acquisition, Paired 

mice demonstrated a significant increase in number of head entries during presentation 

of the CS, a two-way ANOVA revealed a significant interaction of Condition X CS 

presentation (F1,76=10.65, p<0.01; Figure 2B). Post-hoc analysis revealed significantly 

higher CS (cue presentation) compared to ITI (no cues) responses in the Paired group 

(p<0.001), but not in the Unpaired group (p=0.73).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Basic membrane properties from the NAc shell (MSNs) and OFC (pyramidal neurons) after Pavlovian 

approach test. Data are expressed as mean±SEM (*p<0.05, †p<0.05, #p 0.05). #Significant interaction of Condition 

GFP; *significant differences between Paired GFP+ compared with Paired GFP–; †main effect of Condition. Liquid 

junction potential was -11.1 mV and was not adjusted for. Spike characteristics were determined from the first action 

potential (AP) of spike runs consisting of 6-8 spikes. Input resistance was calculated from slope of the I/V curve 

measured in response to 2 pA (NAc shell) or 5 pA (OFC) current steps. The AP threshold was calculated by the 

third-order derivative method (Cotel et al, 2013) using Mini Analysis software. (In this method, the maximum value 

of the third derivative of the AP trace (d3Vm/dt3) was utilized to determine onset time of the AP and then the critical 

membrane voltage that was required to elicit an AP (AP threshold) was determined). The AP peak was calculated 

as the difference between the AP peak and the AP threshold. Half-width was measured as the AP width at half-

maximal spike. Postspike fAHPs and mAHPs were measured 3 and 30 ms after the AP threshold, respectively, 

similar to Ishikawa et al (2009). 
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Figure 2. Sucrose cues evoke Pavlovian approach responses and enhance GFP expression in the NAc 

shell and OFC. (A) Head entries into the magazine in Unpaired and Paired mice during the CS and ITI 

periods (n=20/group) during acquisition. (B) Head entries at test; CS head entries are significantly 

higher than ITI entries in the Paired, but not Unpaired group (***p<0.001). Asterisk indicates Paired CS 

compared with Paired ITI. (C) GFP expression in the NAc shell and OFC; GFP expression is 

significantly higher in the Paired group compared with the Unpaired group for both brain areas 

(**p<0.01, *p<0.05; NAc shell n=16-17/group, OFC n=16/group). (D) Representative images of GFP– 

immunohistochemistry in the NAc shell and OFC in Unpaired and Paired mice; white arrows indicate 

GFP+ neurons. Data are expressed as mean±SEM.  
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Next, we examined neuronal activation in the NAc and the OFC in the same mice by 

counting GFP expressing (GFP+) neurons in these brain areas. The number of GFP+ 

neurons in the Paired mice was significantly higher compared to Unpaired mice in both 

the  NAc (144% increase) (t31=2.75, p<0.05) and the OFC (193% increase) (t30=3.23, 

p<0.01) (Figure 2C). Thus, mice in the Paired, but not Unpaired group exhibited 

Pavlovian approach responses, and significant activation of NAc and OFC neurons, 

suggesting that these areas are activated by sucrose memories. 

 

Phenotype of Fos-expressing neurons in the NAc and OFC 

We next examined the phenotype of activated neurons in the NAc and OFC using 

RNAscope-based in situ hybridization. In line with the immunohistochemical findings, 

we found that Fos mRNA expression levels were significantly increased in the NAc 

(156% increase) (t14=2.57, p<0.05) and OFC (208% increase) (t20=2.31, p<0.05) of 

Paired compared to Unpaired mice (Figure 3A).  

In the NAc, we delineated Fos+ MSNs by their expression of either the Dopamine D1 

receptor (Drd1), or Dopamine D2 receptor (Drd2) mRNAs (Figure 3D). In the OFC, 

Pyramidal neurons and interneurons were distinguished by their expression of their 

respective vesicular transporter mRNAs, VGLUT1 and VGAT (Figure 3D). In these 

brain areas, these neurons play important yet distinct roles in information processing 

(Dilgen et al, 2013; Smith et al, 2013). 

The phenotype distribution of D1R- or D2R-expressing Fos+ neurons in NAc was 

similar between Paired and Unpaired mice (Drd1 48.7% vs 48.7%; Drd2 43.8% vs 

34.5%; Paired vs Unpaired; Figure 3B). A small proportion of Fos+ neurons expressed 

both Drd1 and Drd2 (3.2% vs 11.5%) or could not be identified as Drd1 or Drd2-

expressing (3.8% vs 5.3%; Paired vs Unpaired; data not shown). This suggests a 

similar proportion of D1R- and D2R-expressing neurons were activated following the 

Pavlovian approach test. 
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The OFC Fos+ ensemble consisted largely of VGLUT1+ neurons (97.5% vs. 94.4%; 

Paired vs. Unpaired) and a small minority of VGAT1+ neurons in (2.3% and 4.9%; 

Paired vs. Unpaired) (Figure 3C). This suggests that primarily pyramidal neurons were 

activated in the OFC following Pavlovian approach test. 

 

Experiment 2: Electrophysiological properties of GFP+ and GFP– neurons in the 

NAc and OFC following Pavlovian approach 

NAc 

We measured the firing capacity of MSNs following depolarizing current injections 

across a 0-100 pA range. A three-way ANOVA revealed a significant interaction of 

Condition X GFP X Current Injection (F9,486=2.76, p<0.01) and GFP X Current Injection 

(F9,486=4.23, p<0.001) and main effect for GFP (F1,54=4.92, p<0.05) with no other 

effects (Figure 4A). Thus, following sucrose memory retrieval, GFP+ neurons were 

more excitable compared to the surrounding GFP– neurons.  

We assessed the possible source of this enhanced firing capacity by examining other 

active and passive membrane properties. No significant interactions for Condition X 

GFP were observed for the resting membrane potential, rheobase or spike kinetics of 

GFP+ and GFP– neurons in either group (Table 1). However, a two-way ANOVA 

revealed a significant interaction of Condition X GFP (F1,54=5.63, p<0.05; Table 1) for 

the input resistance. Post-hoc analysis indicated a significant increase in the input 

resistance of GFP+ neurons compared to GFP– neurons in Paired (p<0.001) but not 

Unpaired mice (p=0.97). Furthermore, the increase in the input resistance in the Paired 

group was associated with a shift in the I/V curve at both positive and negative 

potentials; Condition X GFP X Current (F25,1175=4.96, p<0.001; Figure 4A). 

 

OFC  

In the OFC, spike counts of pyramidal neurons were measured across a 20-300 pA 

range. A three-way ANOVA did not reveal a significant interaction of Condition X GFP  
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Figure 3. Characterization of activated neurons in the NAc shell and OFC after Pavlovian approach responding. (A) 
Fos expression in the NAc shell and OFC after Pavlovian approach test expressed as percentage of Unpaired 

group; Fos expression is significantly higher in the Paired compared with the Unpaired group for both areas 

(*p<0.05; n=7-11/group). (B) Proportion of Fos neurons coexpressing either Drd1 (Fos Drd1) or Drd2 (Fos Drd2) in 

the NAc shell. (C) Proportion of Fos neurons coexpressing either VGLUT1 (Fos VGLUT1) or VGAT (Fos VGAT ). 

The vast majority of the Fos neurons are pyramidal neurons and only a small minority are interneurons. For A–D, 

data are expressed as mean±SEM. (D) Representative images of  Fos, Drd1, and Drd2 labelling from the NAc shell 

(top) and Fos, VGLUT1, and VGAT labelling from the OFC (bottom). DAPI (blue) was used to visualize cell nuclei. 

White arrows indicate colabeled Fos cells. 
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X Current Injection (F14,700=0.53, p=0.92; Figure 4B), and thus Pavlovian conditioning 

did not modulate the excitability of GFP+ neurons. However, there was a significant 

interaction of Condition X Current (F14,700=2.28, p<0.01). We then compared only the 

GFP– neurons in the Paired and Unpaired mice to investigate generalized changes to 

the majority of neurons, but we found no significant difference in spike counts of GFP– 

neurons between Paired and Unpaired mice in the OFC (F14,294=1.26, p=0.23).  

There was no significant interaction for Condition X GFP and there were no main 

effects for Condition or GFP for the resting membrane potential or spike kinetics of 

GFP+ and GFP– neurons in the OFC (Table 1). However, there was a main effect of 

Condition for the input resistance (F1,51=5.69, p<0.05) and fAHP (F1,51=6.09, p<0.05). 

Comparison of GFP– neurons from both groups revealed that the input resistance 

(F1,22=4.89, p<0.05), but not the fAHP (F1,22=3.84, p=0.06) was larger in Paired 

compared to Unpaired mice. Furthermore, there was a significant shift in the I/V curve 

between Paired and Unpaired GFP– neurons (F12,264=4.77, p<0.001; Figure 4C). Thus, 

conditioning produced generalized changes to passive membrane properties that were 

reflective of ion channel opening at rest. 

Pyramidal neurons can be categorised based on their firing patterns as ‘regular spiking’ 

or ‘intrinsic bursting’ cells (Hedrick and Waters, 2012). These differential firing patterns 

are thought to influence the information content that is sent to postsynaptic neurons 

(Reinagel et al, 1999). Next we characterised the composition of the OFC pyramidal 

neuronal ensemble. In GFP+ neurons in Paired mice, 78% were regular spiking (14/18 

neurons) and 22% were weak bursting (4/18 neurons), and for GFP– neurons, 82% 

were regular spiking (9/11 neurons) and 18% (2/11 neurons) were weak bursting. In 

GFP+ neurons in Unpaired mice 88% (15/17 neurons) were regular spiking and 12% 

(2/17) were weak bursting, and for GFP– neurons 93% (14/15 neurons) were regular  

 

 

 

                        123



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. GFP+ neurons activated by sucrose cues are more excitable compared with their surrounding GFP– 
neurons in theNAc shell but not the OFC. (A) In the NAc shell, the spike counts of Paired group GFP+ neurons 

were significantly increased compared with the GFP– neurons after current injections (GFP–, n=19/9; GFP+, 

n=16/9). *p<0.01. In contrast, in the Unpaired groups, the spike counts of GFP+ and GFP– neurons were similar 

(GFP–, n=14/7; GFP+, n=9/5). The I/V curve (inset) indicated that there was a large increase in the input 

resistance of GFP+ neurons in Paired mice, but no difference in the Unpaired mice. *p<0.05. Example traces of 

GFP+ and GFP– neurons at 70 pA from the NAc shell of Paired and Unpaired mice. Scale bar, 25 mV, 250 ms. 

(B) In the OFC, no difference in spike counts was observed between GFP+ and GFP– neurons in the Unpaired 

mice (GFP–, n=12/5; GFP+, n=14/5) and in Paired mice (GFP–, n=11/5; GFP+, n=17/5). The I/V curves of GFP+ 

and GFP– neurons in Paired and Unpaired mice are shown in the inset. Example traces of GFP+ and GFP– 

neurons in the OFC of Paired and Unpaired mice at 140 pA are shown. Scale bar, 25 mV, 250 ms. C, I/V curves 

of GFP+ neurons from Paired and Unpaired mice from the OFC. *p<0.05. Data are expressed as mean±SEM; 

values to the right of GFP+ and GFP– denote number of cells recorded/number of mice used.   
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spiking and 7% (1/15 neurons) were weak bursting. These data, together with the 

increased levels of Fos+VGLUT1 expressing cells in Paired mice suggests that 

sucrose memory retrieval in the OFC is encoded by an increased recruitment of 

pyramidal neurons which are composed primarily of regular spiking neurons.  

 

Experiment 3: Extinction of Pavlovian approach and NAc and OFC Fos 

expression  

We examined the effect of extinction learning (EXT; Figure 1B) on the size and 

phenotype distribution of NAc and OFC ensembles in Paired no EXT, Paired EXT and 

Unpaired EXT mice. On test day, a two-way ANOVA revealed a significant interaction 

of Group X CS (F2,29=11.38, p<0.001; Figure 5A). Post-hoc analysis revealed no 

differences between CS and ITI responses in the Paired EXT group (p=0.61) or in the 

Unpaired EXT group (p=0.06), but Paired no EXT mice made significantly more head 

entries into the magazine during the CS compared to ITI period (p<0.001).  

Extinction is thought to be a process in which the original CS-US association is actively 

supressed or ‘masked’, rather than passively forgotten (Bouton, 2004; Quirk et al, 

2008). We investigated whether the Pavlovian approach response could spontaneously 

recover following extinction, which would suggest that the original CS-US association 

was supressed rather than masked. A separate group of wild-type mice underwent 

acquisition and extinction similar to the Paired EXT mice described above, and were 

then tested for spontaneous recovery 6-7 days following the final extinction session 

(Figure 5B). A repeated two-way ANOVA revealed a significant interaction of CS 

Presentation X Test (F1,44=5.30, p<0.05) and main effects for CS Presentation 

(F1,44=6.48, p<0.05) and Test (F1,44=28.83, p<0.001). Post-hoc analysis revealed a 

significant difference between CS and ITI entries at the spontaneous recovery test 

(p<0.001) but not following the final extinction session (p=0.73). As the distribution of 

independent samples was non-normal, results were confirmed using a 
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Figure 5. Characterization of activated neurons in the NAc shell and OFC after extinction of Pavlovian approach 

responding. (A) Head entries of mice used in in situ hybridization extinction experiments at test (n=8-12/group; 

***p<0.001 comparing CS entries and ITI entries). After extinction, head entries made during the CS 

presentation are reduced in Paired mice. (B) Extinction of Pavlovian approach responding can recover 

spontaneously (SR test) after exposure to the CS 6-7 d after the final extinction session (EXT final; n=24; 

***p<0.001 comparing CS entries and ITI entries). (C) Fos expression in the NAc shell and OFC of Paired No 

EXT, Paired EXT, and Unpaired EXT mice at testing expressed as a percentage of the Paired EXT group. Fos 

expression is significantly reduced after extinction in both areas (**p<0.01; *p<0.05; n=5-11/group). (D) 
Percentage of NAc shell Fos+ neurons that coexpress Drd1 or Drd2; the proportion of Fos+ Drd1 and 

Fos+ Drd2 neurons was similar between groups. (E) Proportion of Fos+ neurons in the OFC coexpressing 

VGLUT1 or VGAT. Fos+ neurons were primarily VGLUT1 expressing in all groups. All data are expressed as 

mean±SEM. 
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Bonferroni -corrected Wilcoxon-signed ranks test (Spontaneous Recovery Z = -3.81, 

p<0.005, Extinction Z = -0.5, p = 0.62). This data suggests that the suppression of 

Pavlovian approach we observed here represents an active masking of the CS-US 

memory.  

We next investigated the size of the NAc ensemble following extinction by quantifying 

Fos+ neurons in Paired no EXT, Paired EXT and Unpaired EXT mice. A one-way 

ANOVA revealed a significant effect of group on Fos expression in the NAc (Percent of 

Paired no EXT: Paired EXT = 73.2%; Unpaired EXT = 51.2%) (F2,21=8.68, p<0.01) and 

OFC (Percent of Paired no EXT: Paired EXT = 39.1%; Unpaired EXT = 35.5%) 

(F2,22=4.06, p<0.05) (Figure 5C). Post-Hoc analyses revealed that Fos levels were 

significantly lower in the Paired EXT group compared to the Paired no EXT group for 

both brain areas (NAc & OFC, p<0.05). Thus following extinction, the number of CS-

activated neurons was reduced.  

 

Phenotype of NAc and OFC neurons following extinction 

In the NAc, the number of Fos+ neurons which co-expressed either Drd1 or Drd2 was 

similar across all groups (Drd1 38.2% vs 43.9% vs 42.9%; Drd2 48.9% vs 43.06% vs 

49.28%; Paired No EXT vs Unpaired EXT vs Paired EXT) (Figure 5D). A small 

proportion of Fos+ neurons expressed both Drd1 and Drd2 (6.8% vs 5.3% vs 3.3%) or 

could not be identified as Drd1 or Drd2-expressing (6.1% vs 7.7% vs 4.1%; Paired No 

EXT vs Unpaired EXT vs Paired EXT data not shown). 

In the OFC, the Fos+ neuronal ensemble consisted of almost entirely VGLUT1 neurons 

(97% vs. 100% vs. 96.9%) in all conditions and only an extremely small proportion 

were VGAT neurons (1.9% vs 0% vs 3.1%; Paired No EXT vs Unpaired EXT vs Paired 

EXT; Figure 5E).  
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Experiment 4: Electrophysiological properties of GFP+ and GFP– neurons in the 

NAc and OFC following extinction of Pavlovian approach 

We examined the excitability properties of Paired EXT and Unpaired EXT mice in the 

NAc and OFC. Following extinction, we found no difference in the firing capacity of 

either NAc or OFC neurons. In the NAc, a three-way ANOVA did not reveal a 

significant interaction of Condition X GFP X Current Injection (F9,414=0.87, p=0.55); 

Figure 6A) and no significant main effects (Current Injection nor Condition) or further 

interactions. In the OFC, no main interaction (F14,1008=0.45, p=0.96; Figure 6B) or 

further effects were observed. 

No significant interactions in any other measured electrophysiological parameters were 

observed (Table 2). However, there was a main effect of GFP for the fAHP (F1,73=4.46, 

p<0.05) in the OFC. Post-hoc analysis demonstrated that there was no GFP effect 

between the Paired or Unpaired groups but between Paired GFP– and Unpaired GFP+ 

(p<0.05). Overall, following extinction of Pavlovian responding, no increases in the 

excitability of GFP+ neurons were observed in either the NAc or the OFC of Paired 

EXT mice. 

As previously, we also characterised the composition of the OFC pyramidal neuronal 

ensemble. In GFP+ neurons in Paired mice 87.0% were regular spiking (20/23 

neurons) and 13.0% were weak bursting (3/23 neurons), and for GFP– neurons, 81.0% 

were regular spiking (17/21 neurons) and 19.0% (4/17 neurons) were weak bursting. In 

GFP+ neurons in Unpaired mice 66.7% (12/18 neurons) were regular spiking and 

33.3% (6/18) were weak bursting, and for GFP– neurons 88.0% (22/25 neurons) were 

regular spiking and 12.0% (3/25 neurons) were weak bursting. These data, together 

with the decreased levels of Fos+VGLUT1 expressing cells in Paired EXT mice 

suggests that extinction memory retrieval in the OFC is encoded by a smaller 

pyramidal neuronal ensemble compared to sucrose memory retrieval, but that this 

ensemble is still composed primarily of regular spiking neurons. 
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Figure 6. GFP+ neurons activated after extinction are of similar excitability to surrounding GFP– 

neurons in both the NAc shell and OFC. A) There was no significant difference between spike 

counts of  GFP+ and GFP– neurons in the NAc shell of Paired EXT mice (GFP–, n=18/6; GFP+, 

n=12/6). In the Unpaired EXT group, spike counts of GFP+ and GFP– neurons were also similar 

(GFP–, n=13/7; GFP+, n=12/6). Example traces of GFP+ and GFP– neurons at 70 pA from NAc 

shell Paired EXT mice are shown. Scale bar, 25 mV, 250 ms. (B) In the OFC, there was no 

difference between spike counts of GFP+ and GFP– neurons in the Paired EXT group (GFP–, 

n=19/7; GFP+, n=18/6) or the Unpaired EXT group (GFP–, n=24/7; GFP+, n=16/8). Example 

traces of GFP+ and GFP– neurons at 140 pA from OFC Paired EXT mice. Scale bar, 25 mV, 

250 ms. Data are expressed as mean±SEM; values to the right of GFP+ and GFP– denote 

number of cells recorded/number of mice used. 
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Discussion  

We examined the size, phenotype, and excitability of NAc shell and OFC ensembles 

after changes in reward-cue association strength; that is, after sucrose conditioning 

and after extinction learning. We found that exposure to a sucrose-predictive cue 

activated neurons in both the NAc shell and OFC, whereas cue-induced activation was 

reduced after extinction learning. In the NAc shell, similar levels of D1R- and D2R-

expressing neurons were activated across conditions, whereas in the OFC, the majority 

of activated neurons were pyramidal cells. 

We observed dynamic adaptations in the excitability of neuronal ensembles involved in 

encoding associative memories, which did not generalize across brain areas. In the 

NAc shell, but not the OFC, neurons activated after sucrose cue exposure were more 

excitable than surrounding neurons. Furthermore, after extinction learning, the 

behaviourally activated ensemble in the NAc shell was no longer more excitable. Our 

findings provide novel insight into how NAc shell ensembles encode changes in 

associative strength by recruiting neurons with a different excitability phenotype 

compared with their surrounding neurons. 

 

Investigating neuronal excitability in the Fos-GFP mouse: methodological 

considerations 

We have characterized recently behaviourally activated neurons that express GFP 

(which is highly correlated with Fos expression) from Fos-GFP mice (Koya et al, 2012). 

It has been shown previously that Fos labels ensembles that are causally involved in 

the expression of conditioned behaviours (Cruz et al, 2013; Fanous et al, 2012; Koya et 

al, 2009; Warren et al, 2016). In addition, Fos expression requires sustained calcium 

signalling and ERK/MAPK  
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phosphorylation (Cruz et al, 2013) but it is not necessarily a direct correlate of spike 

activity (Luckman et al, 1994). Therefore, similar to other Fos-GFP mice studies (Koya 

et al, 2012; Whitaker et al, 2016), we suggest that we are mainly recording from 

neurons with robust, prolonged activation after cue exposure. It should also be noted 

that certain NAc neurons decrease their firing rate in response to appetitive Pavlovian 

cues and this decrease is thought to play an important role in appetitive behaviours 

(Day et al, 2006; Pennartz et al, 1994; Wan and Peoples, 2006). Therefore, intrinsic 

excitability changes on inhibitory neuronal ensembles may also underlie sucrose and 

extinction memory recall. However, methods to characterize inhibited neurons 

electrophysiologically are currently unavailable. 

 

Potential implications and mechanisms for increased excitability of NAc shell ensemble 

after sucrose memory retrieval 

GFP neurons in the NAc shell were more excitable than surrounding GFP neurons 

after sucrose cue exposure. This excitability change was associated with an increase in 

the input resistance, which was underpinned by a shift in the I/V curve at both 

depolarized and hyperpolarized potentials. MSNs express a pronounced inwardly 

rectifying potassium current, IKIR, as well as voltage-gated currents such as A-type 

currents, which regulate the voltage response at hyperpolarized and depolarized 

potentials, respectively (Hibino et al, 2010; Nisenbaum et al, 1995; Perez et al, 2006). 

Table 2. Basic membrane properties from the NAc shell (MSNs) and OFC (pyramidal neurons) following extinction of 

Pavlovian approach. Data are expressed as mean±SEM (*p<0.05). Asterisk indicates main effect of GFP. Liquid junction 

potential was -11.1 mV and was not adjusted for. Spike kinetics were calculated as detailed in Table 1. Vm, Resting 

membrane potential; Ri, input resistance; fAHP, fast AHP; mAHP, medium AHP. 
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At depolarized potentials, shifts in the I/V curve may also be influenced by voltage-

gated Ca2+ and Na+ currents (Nisenbaum et al, 1995). Therefore, it is possible that the 

change in input resistance was primarily due to a modulation of intrinsic K+ or Na+/Ca+2 

currents at the dendritic/somatic level. Interestingly, similar adaptations have been 

observed in the NAc of obesity-prone rats that consume more food (Oginsky et al, 

2016). It is tempting to speculate that the increase in the relative excitability of GFP 

neurons represents a potential mechanism to promote “normal” adaptive and “out-of-

control” appetitive and consummatory behaviours by increasing the sensitivity to 

reward-associated cues. Further electrophysiological investigation is necessary to 

identify the precise intrinsic factors underlying these excitability changes in GFP 

neurons after Pavlovian conditioning. 

It is possible that the changes that we observed are short-term homeostatic 

mechanisms that are elicited after acute activation. Homeostatic adaptations in 

response to high-frequency stimulation or prolonged excitation are, however, typically 

hyperpolarizing (Barth et al, 2004; Turrigiano, 1999), whereas increased excitability 

usually occurs after decreased excitatory input (Ishikawa et al, 2009). Furthermore, we 

did not observe such changes in strongly activated neurons in the OFC and NAc shell 

after exposure to a cocaine-associated context (Ziminski et al, 2017). Therefore, we 

favour the argument that the enhanced excitability that we observed occurred before 

testing is related to associative memory encoding. 

Similar levels of Fos and Drd1- and Drd2-expressing neurons were observed in the 

NAc shell after Pavlovian approach. This finding indicates recruitment of ensembles 

from both direct (Drd1) and indirect (Drd2) pathways that target overlapping, but also 

distinct structures (Smith et al., 2013), and is consistent with studies that have 

examined Fos expression during motivated behaviours (Caprioli et al, 2017; Li et al, 

2015; Rubio et al, 2015; Soares-Cunha et al, 2016). However, the functional roles of 

accumbens D1R- and D2R-expressing neurons are complex. Previous studies that 

used global manipulations of D1R- or D2R-expressing accumbens neurons indicated 
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opposing (Chandra et al, 2015; Lobo et al, 2010; Robinson and Berridge, 2001) and 

similar (Soares-Cunha et al, 2016) roles for motivated behaviours mediated by drug 

and natural rewards, respectively. Such discrepancies may arise from globally 

manipulating neurons regardless of their behavioural relevance, which may have 

different effects from neuronal ensemble specific manipulations. For example, neuronal 

ensemble, but not global, lesioning of the infralimbic cortex altered cue-elicited reward-

seeking behaviour (Pfarr et al, 2015). To elucidate precisely the functions of D1- and 

D2R-expressing neurons in appetitive behaviours, future studies should use methods 

that manipulate Fos-expressing neurons from these populations selectively. 

 

Potential implications and mechanisms for the lack of excitability changes in NAc shell 

ensemble after extinction  

After extinction, it is possible that we recorded from a small portion of the original 

ensemble activated during the initial Pavlovian approach responding. This is consistent 

with the idea that extinction learning represents a suppression of the original memory 

(Bouton, 2004; Mackintosh, 1983; Pavlov, 1927; Quirk et al, 2008). Supporting this, we 

observed SR of responding after extinction. Therefore, it is possible that the excitability 

of the original NAc shell ensemble activated during appetitive memory recall is reduced 

after extinction. Extinction learning induces neural adaptations that have been shown to 

suppress reward seeking (Knackstedt et al, 2010; Sutton et al, 2003), whereas 

manipulating the excitability of the NAc shell is sufficient to modulate shell-dependent 

behaviours such as drug-induced locomotor activity (Dong et al, 2006). This suggests 

that decreasing the excitability in a CS-US coding ensemble in the NAc shell may be 

sufficient to modify conditioned approach behaviours. 

However, recent studies have also suggested that extinction learning may result in the 

creation of a new neuronal ensemble that mediates the new CS-US contingency 

(Orsini et al, 2013; Warren et al, 2016). Warren et al (2016) performed 

pharmacogenetic lesioning of ventromedial prefrontal cortex Fos-expressing neurons in 
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an operant food self-administration procedure and demonstrated that ablation of Fos-

expressing neurons after extinction and food self-administration disinhibited and 

attenuated nonreinforced food-seeking, respectively. This suggests that, in this area, 

extinction learning results in the recruitment of a new ensemble distinct from the 

ensemble activated during initial memory recall. Therefore, in our extinction 

experiments, GFP neurons after extinction may represent a new “extinction” ensemble 

rather than the same ensemble that encoded the original CS-US association. 

 

Potential reasons for lack of differences in OFC ensemble excitability after sucrose 

memory retrieval 

Unlike the NAc shell, OFC GFP neurons did not differ in their excitability compared with 

GFP neurons after sucrose memory retrieval despite associated increases in the 

number of GFP neurons. This lack of excitability may be due to the fact that these 

neurons may have undergone transient changes in neuronal excitability during 

conditioning to confer a permissive learning state (Mozzachiodi and Byrne, 2010; Saar 

et al, 1998). In support, previous studies have demonstrated that excitability changes in 

cortical areas may be transient and uncorrelated to the expression of learned 

behaviours (Moyer et al, 1996). Alternatively, OFC GFP neurons may encode a sudden 

unexpected change in cue-reward associations rather than the retrieval of sucrose 

memories. However, in vivo electrophysiology studies suggest that the activity of OFC 

neurons is most robust during presentation of a reward-associated stimulus and reward 

seeking (Moorman et al, 2014) . In addition, pharmacogenetic lesioning of Fos-

expressing OFC neurons activated by drug-associated cues attenuate subsequent cue-

induced drug seeking (Fanous et al, 2012). Therefore, we favour the explanation that 

the recruitment of GFP neurons in the OFC represents the retrieval of sucrose memory 

into an ensemble that does not differ in its excitability compared with surrounding 

neurons rather than recruitment of neurons into an “extinction” ensemble. 
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Concluding remarks 

By recording selectively from behaviourally activated neurons, here, we illuminate a 

potentially novel ensemble coding mechanism that reflects changes in appetitive 

strength associations in the NAc shell. One issue that needs to be resolved here is 

whether these changes in ensemble excitability in the NAc play a causal role in 

encoding sucrose and extinction memories. Therefore, future studies may use 

transgenic tools to manipulate the excitability of these NAc neuronal ensembles 

directly, for example, by altering Kv channel expression (Dong et al, 2006) in Fos-

expressing neurons using the Fos-tTA mouse (Kandel et al, 2014) and testing their 

effects on appetitive and extinction memory recall. 
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Chapter 4. 

Excitatory and Inhibitory synaptic 
properties of neuronal ensembles activated 

following Pavlovian approach. 
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Abstract 

Associative memories are thought to be encoded by neuroadaptations on selectively 

activated neuronal ensembles. These neuroadaptations may increase the intrinsic 

excitability of individual neurons, or alternatively strengthen the connectivity between 

neurons through alterations at the synapse. We have previously demonstrated 

modulation of intrinsic excitability on ensembles activated following exposure to 

sucrose-associated stimuli. However, possible adaptations occurring at the synapse 

remain unknown. As such, we assayed the strength of glutamatergic and GABAergic 

synapses on ensembles activated following the expression of Pavlovian approach 

behaviors in the Fos-GFP mouse. We observed that the frequency of spontaneous 

excitatory postsynaptic currents (sEPSC) was increased onto GFP+, but not 

surrounding non-activated GFP– neurons. This increase in synaptic strength occurred 

in the absence of changes to presynaptic release probability (pr) or sEPSC amplitude, 

suggesting an increased number of functional synapses. We also observed no 

selective effect of the AMPAR-allosteric modulator cyclothiazide, which preferentially 

binds the AMPAR “flip” splice variant, suggesting AMPAR splice variants are not 

selectively regulated in GFP+ neurons. Finally, spontaneous transmission at inhibitory 

synapses was similar across activated and non-activated neurons. These data suggest 

that excitatory synaptic transmission is potentiated in neurons selectively activated 

following the expression of Pavlovian approach behaviours.  
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Introduction 

Stimuli associated with the presentation of high-calorie foods exert a powerful influence 

over motivated behaviors, increasing food consumption in humans (Harris et al, 2009) 

and inducing approach behaviors in rodents (Holland, 1980; Mackintosh, 1983). The 

ability for food-associated cues to elicit psychological and behavioral responses is 

dependent on complex biophysical adaptations in the motivational system of the brain 

(Day and Carelli, 2007; Shiflett et al, 2008). Understanding these neuroadaptations is 

crucial in the design of therapeutic interventions against disorders characterized by 

hypersensitive responses to food-associated cues, such as obesity (Boswell and 

Kober, 2016).We have previously shown that exposure to a sucrose-associated cue 

elicits activation of a more excitable neuronal ensemble in the nucleus accumbens 

(NAc) shell (Ziminski et al, 2017). Previous studies have shown that such ensembles 

are necessary for the expression of conditioned responses (Cruz et al, 2014) and are 

the site of selective learning-induced neuroadaptations (Cifani et al, 2012; Gouty-

Colomer et al, 2016; Koya et al, 2012; Whitaker et al, 2016). Thus adaptations which 

occur selectively on neuronal ensembles may be particularly important to the encoding 

of appetitive associations. 

Learning-induced neuroadaptations may occur at the synapse, or involve functional 

alterations in ion channels which modulate the intrinsic excitability of the neuron 

(Hayton et al, 2011; Hyman et al, 2006; Kourrich et al, 2015; Wolf, 2010). While 

synaptic and intrinsic changes have been demonstrated following associative learning 

with appetitive reinforcers (Hutter and Chapman, 2013; Stuber et al, 2008; Ziminski et 

al, 2017), they are not usually measured in the same experiment. As such, little is 

known about how these distinct set of neuroadaptations interact at the neuronal level 

following the encoding of food-associated cues. 

The aim of this study was to further characterize the neuroadaptations on NAc shell 

ensembles activated by sucrose-associated stimuli by examining the properties of their 
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glutamatergic and GABAergic synapses. The NAc shell is a subcortical brain area 

important for the expression of motivated behavior and is involved in encoding 

Pavlovian responding to food-associated cues (Blaiss and Janak, 2009).  As 

previously, we utilized the Fos-GFP mouse to visualize neurons activated following 

sucrose-cue elicited Pavlovian approach behaviors. We hypothesize that neurons 

activated by exposure to a sucrose-associated cue may undergo both synaptic 

alternations alongside changes in intrinsic excitability. 

 

Results 

Pavlovian approach behavior 

To examine approach behaviors following exposure to a sucrose-associated cue, we 

trained Paired mice in the Pavlovian approach procedure (Figure 1A).  During the 

conditioning phase, presentation of the CS predicted delivery of a 10% sucrose 

solution; Paired mice readily acquired selective approach behaviors, making more 

head entries to the food-delivery magazine during presentation of the CS than the ITI 

(CS X Session F11,198=2.14, p<0.05;  Session F11,198=9.69, p<0.001; CS F18,198=49.44, 

p<0.001) (Figure 1B). At test, mice made  significantly more head entries during 

presentation of the CS than the inter-trial interval  (t8=3.71, p<0.01) (Figure 1C). Thus 

mice robustly demonstrated Pavlovian approach responding at test, suggesting 

successful recall of the sucrose-cue association. 

 

Experiment 1: Inhibitory and excitatory synaptic transmission following 

Pavlovian approach responding 

We next examined excitatory (AMPAR) and inhibitory (GABAR) transmission at GFP+ 

and GFP– synapses in the NAc shell following Pavlovian approach responding. Small 
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Figure 1. Experimental schedule and Pavlovian approach responding. (A) Paired mice underwent Pavlovian 

conditioning during which presentation of the CS was accompanied by delivery of a 10% sucrose solution. 

Following 12 acquisition sessions, no experimental procedures were undertaken for  7 d before mice were 

tested for Pavlovian approach responding under extinction conditions. 90 min following the start of the 

behavioural test, mice were killed for further experiments. Electrophysiological recordings of AMPA currents 

were undertaken at      -70 mV in the presence of the GABAA channel-blocker picrotoxin. GABAergic currents 

were recorded at 0 mV (the EPSC reversal potential). During cyclothiazide (CTZ) recordings, evoked and 

spontaneous EPSCs were recorded in CTZ-free aCSF before CTZ-aCSF was perfused for 20-minutes and 

further recordings taken. (B) Head entries into the magazine during acquisition of Paired mice (n=12). Mice 

rapidly acquire CS-induced magazine approach behaviours (C) At test mice show robust Pavlovian approach 

responding, making significantly more head entries into the magazine during CS presentation than the ITI 

(n=12). **p<0.01. Data are expressed as mean±SEM.  
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postsynaptic currents elicited by spontaneous presynaptic vesicle release can be 

detected using patch-clamp electrophysiology. Differences in the amplitudes and time 

courses of these spontaneous postsynaptic currents (sPSC) may indicate functional 

changes in the efficacy of both pre- and postsynaptic transmission; as such, we 

measured the frequency, amplitude, decay, rise times, and half-widths of these 

spontaneous responses. Additionally, we examined the probability of presynaptic 

release (pr) at glutamatergic and GABAergic synapses using the paired-pulse ratio 

method.  

 

AMPAR transmission: spontaneous excitatory postsynaptic currents (sEPSC)  

Following Pavlovian approach responding in Fos-GFP mice, sEPSC frequencies were 

significantly increased in GFP+ neurons t12=2.36, p<0.05 (Figure 2A). Cumulative 

frequency distributions demonstrate that sEPSC frequencies were uniformly shifted 

across the range of inter-spike intervals (Mann-Whitney; U=2327, p<0.001). No 

significant change in sEPSC amplitudes were observed between GFP+ and GFP– 

neurons (t11=0.70, p=0.49, U=811, p=0.06) (Figure 2B) nor were differences found in 

any other measured sEPSC parameter (Table 1). Thus sEPSC frequencies, but not 

other sEPSC waveform kinetics, were significantly increased on GFP+ neurons 

following Pavlovian approach. 

 

Paired-pulse ratios (AMPA) 

There were no significant differences between paired-pulse ratios from GFP+ and 

GFP– neurons following Pavlovian approach responding (GFP X ISI F6,54=1.04, 

p=0.41, GFP F1,9=0.97, p=.20, ISI F6,54=2.81, p<0.05) (Figure 2D). This suggests that 

the increased sEPSC frequencies we observed were not due to an increase in 

vesicular pr at excitatory synapses. 
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Table 1. Spontaneous postsynaptic currents (sPSC) from GFP+ and GFP– neurons following Pavlovian approach.* 

indicates t-test between GFP+ and GFP- neurons, # indicates main effect of cyclothiazide (CTZ) application. *p<0.05, 

##p<0.01. sPSCs were detected using Mini Analysis software. Frequency was calculated as number of detected 

spontaneous currents divided by duration of recording (s). All sPSC waveform kinetics were calculated using Mini 
Analysis software. Peak was calculated as difference between sPSC threshold (as calculated using the 2nd differential) 

and sPSC peak. Half-width was measured as the sPSC width at half of the maximal amplitude. Rise time indicates the 

time between sPSC threshold and peak. Decay was calculated as the time between sPSC peak and sPSC decay. 

Data are expressed as mean±SEM. 

 

 

 

 

 

 

 

 

 

GABAAR transmission: spontaneous inhibitory postsynaptic currents (sIPSC) 

We observed no changes in sIPSC parameters between GFP+ and GFP– neurons 

following Pavlovian approach responding. We observed no changes in sIPSC 

frequencies (F10=0.03, p=0.97, U=4018, p=0.86) (Figure 3A), amplitudes (F10=0.03, 

p=0.97, U=3114, p=0.57) (Figure 3B), nor any other sIPSC parameter measured 

(Table 1). Thus, the expression of Pavlovian approach did not selectively alter synaptic 

GABAergic transmission between GFP+ and GFP– neurons. 

 

Paired-pulse ratios (GABA) 

There was no significant difference between paired-pulse ratios from GFP+ and GFP– 

neurons following Pavlovian approach responding (GFP X ISI F6,36=1.01, p=0.44, GFP 

F1,6=0.49, p=.51, ISI F6,36=1.79, p=1.27) (Figure 3D). This suggest that vesicular pr at 

inhibitory synapses was not selectively altered following exposure to sucrose-cues. 
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Figure 2. AMPA transmission is increased in GFP+ neurons following exposure to sucrose cues (A) sEPSC 

frequencies were increased in GFP+ neurons following Pavlovian approach responding (GFP+, n=8/4; GFP–, 

n=6/4). (B) There were no significant differences in sEPSC amplitudes between GFP+ and GFP– neurons of 

Paired mice (GFP+, n=9/4; GFP–, n=8/4). (C) Representative 5 s traces from GFP+ and GFP– neurons of 

Paired mice. Scale bar 25 pA, 500 ms (D) There were no significant differences in the paired-pulse (PP) ratios 

of GFP+ and GFP–neurons of Paired mice, suggesting sEPSC changes were not due to pre-synaptic 

adaptations (GFP+, n=5/3; GFP–, n=6/3). Right: Representative images of paired-pulse recordings from GFP+ 

and GFP– neurons of Paired mice. Scale bar 500 pA, 25 ms. Images were edited to remove stimulus 

artefacts.  Data are expressed as mean±SEM. *p<0.05. Values to the right of GFP+ and GFP– denote number 

of cells recorded/number of mice used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        146



Experiment 2: The effects of cyclothiazide application at glutamatergic synapses 

following Pavlovian approach responding 

Alternative splicing of AMPAR subunits (GluR1-4) generates heterogeneous “flip” and 

“flop” variants characterized by an extracellular region change of 9-11 amino acids. In 

some subunits (GluR2-3) these changes alter the deactivation kinetics of the “flop” 

isoform, whereas in GluR1 the change is silent (Pei et al, 2009). We used 

cyclothiazide, an allosteric modulator of the AMPA receptor with a pronounced 

preference for the flip variant (Kessler et al, 2000), to probe potential differences in 

AMPAR subunit isoform expression between GFP+ and GFP- neurons. This permits 

detection of subtle changes in splice variant expression; furthermore, this may provide 

putative pharmacological targets for therapeutic drug interventions against diseases 

characterized by hypersensitive responses to food-cues, such as obesity. 

 

Modulation of evoked EPSCs by cyclothiazide 

Following cyclothiazide application, there was a significant increase in the decay of 

evoked EPSCs following cyclothiazide application, however the magnitude of this 

increase was similar between GFP+ and GFP– neurons (GFP X Cyclothiazide 

F1,8=0.59, p=0.46; Cyclothiazide F1,8=52.42, p<0.0001; GFP F1,8=1.53, p=0.25) (Figure 

4A). We observed no general nor GFP selective change in the amplitude of evoked 

EPSCs (GFP X Cyclothiazide F1,8=0.17, p=0.69; Cyclothiazide F1,8=1.49, p=0.26; GFP 

F1,8=0.30, p=0.59) (Figure 4A). Thus cyclothiazide non-selectively increased the decay 

times of evoked EPSCs in NAc shell neurons.  
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Figure 3. GABAergic transmission in GFP+ neurons is not altered following exposure to sucrose 

cues. (A) sIPSC frequencies were similar between GFP+ and GFP– neurons following Pavlovian 

approach responding (GFP+, n=4/2; GFP–, n=8/3). (B) sIPSC amplitudes were similar between 

GFP+ and GFP– neurons following Pavlovian approach responding (GFP+, n=4/2; GFP–, n=8/3). 

(C) Representative 5-s traces from GFP+ and GFP– neurons. Scale bar 25 pA, 500 ms (D) There 

were no significant differences in the paired-pulse ratios of GABAergic currents between GFP+ 

and GFP– neurons of Paired mice (GFP+, n=3/3; GFP–, n=5/2). Right: Representative images of 

GABAergic paired-pulse recordings from GFP+ and GFP– neurons of Paired mice. Images were 

edited to remove stimulus artefacts.  Scale bar 500 pA, 25 ms. Data are expressed as mean±SEM. 

Values to the right of GFP+ and GFP– denote number of cells recorded/number of mice used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        148



Modulation of spontaneous EPSCs by cyclothiazide 

We next examined the effects of cyclothiazide application on sEPSCs in GFP+ and 

GFP– neurons. Due to a low number of recorded cells in this experiment, a qualitative 

analysis of spontaneous properties was conducted (Figure 4). Cyclothiazide application 

increased the decay times (Figure 4B) and half-width of sEPSCs (Table 1), however 

this effect did not appear to be selective between GFP+ and GFP– neurons. 

Furthermore, there appeared to be no effect of cyclothiazide on MSN amplitudes 

(Figure 4C) or frequencies (Figure 4D).  Thus cyclothiazide non-selectively increased 

the decay times of spontaneous sEPSCs in NAc shell neurons. 

 

Discussion 

We examined excitatory and inhibitory transmission in GFP+ and GFP– neurons of the 

NAc shell following Pavlovian approach responding. Spontaneous EPSC frequencies 

on GFP+ neurons were significantly increased following exposure to a sucrose-

associated cue, in the absence of adaptations in other sEPSC kinetic adaptations or 

changes in presynaptic release probability (pr). We observed no changes in 

spontaneous currents or presynaptic pr at GABAergic synapses, nor selective 

responses to the AMPAR allosteric modulator cyclothiazide in GFP+ neurons. These 

data suggest that adaptations at glutamatergic synapses occur selectively in neurons 

activated by sucrose cues and function to potentiate excitatory transmission.  

 

Methodological considerations of the Fos-GFP mouse 

We utilized the Fos-GFP mouse to visualize neurons activated following Pavlovian 

approach responding. As discussed in several previous studies using the Fos-GFP 

mouse, we suggest we were recording from only the most strongly activated neurons  
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Figure 4. Cyclothiazide does not selectively alter AMPA transmission in GFP+ neurons following exposure to 

sucrose cues. (A) Cyclothiazide modulation of evoked EPSCs following exposure to sucrose cues. CTZ generally 

increased the decay times of evoked EPSCs but this was not selective between GFP+ and GFP– neurons (GFP+, 

n=3/2; GFP–, n=3/3). Right: Representative traces of evoked EPSCs under CTZ and CTZ-free conditions (B) 
There was a general increase in the decay time of following cyclothiazide application but this was not selective 

between GFP+ and GFP– neurons. (C) There was no general nor selective changes in sEPSC amplitudes 

following cyclothiazide application (D) Cyclothiazide did not generally nor selectively modulate sEPSC frequencies 

in NAc shell neurons following Pavlovian approach responding. Right: Representative 2 s traces of GFP+ and 

GFP– neurons during CTZ-free or CTZ application. Scale bar 25 pA, 250 ms. Group sizes were equal for all 

sEPSC (GFP+: CTZ-free n=2/2, CTZ n=3/3; GFP–: CTZ-free n=2/2, CTZ n=3,3). Scale bar 100 pA, 100 ms. Data 

are expressed as mean±SEM. Values to the right of GFP+ and GFP– denote number of cells recorded/number of 

mice used. 
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(Koya et al, 2012; Whitaker et al, 2016; Ziminski et al, 2017); it should be noted that 

this technology does not permit identification of neurons which may decrease their 

firing following exposure to food-associated cues. See Ziminski et al (2017) for further 

discussion. 

 

Adaptations at excitatory synapses following appetitive learning 

We observed a significant increase in the sEPSC frequencies on GFP+ neurons in the 

NAc shell following Pavlovian approach responding. Synaptic adaptations on neuronal 

ensembles following associative learning have previously been demonstrated (Cifani et 

al, 2012; Gouty-Colomer et al, 2016; Whitaker et al, 2016); thus associative learning 

may selectively induce synaptic adaptations in behaviorally relevant neurons.  

We observed increased sEPSC frequencies on GFP+ neurons without concurrent 

changes in presynaptic vesicle probability (pr), indicative of a selective increase in 

functional neurotransmitter release sites (Turrigiano and Nelson, 2004). This increase 

in synaptic release sites may represent the growth of new functional presynaptic 

boutons, or alternatively, the activation of postsynaptic silent synapses. Previous 

studies observing increased sEPSC frequencies following food exposure have 

demonstrated a presynaptic mechanism. Similar to our findings, Liu et al (2016) 

detected increased sEPSC frequencies, but not amplitudes nor changes to the vesicle 

pr, in the ventral tegmental area (VTA) following palatable-food priming of food-

approach behaviors. Increased sEPSC frequencies appeared necessary for the 

expression of food-primed approach behaviors, and occurred during 24 h of free 

access to the palatable food. Using immunoelectron microscopy, they observed growth 

of new presynaptic release sites onto dopaminergic VTA neurons simultaneously with 

the increases in sEPSC frequencies. Thus suggests that new presynaptic release sites 

may form onto neurons following exposure to high-calorie foods and are important for 
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the expression of approach behaviors; use of synapse-visualization techniques could 

be used to further explore the increases in sEPSC frequencies we observed. 

Distinct adaptations in GFP+ sEPSC frequencies may occur as a function of 

conditioning procedure or, alternatively, following an acute learning experience. For 

example, repeated cocaine injections in a non-home cage environment, which induce 

in behavioral sensitization, result in decreased sEPSC frequencies on GFP+ neurons, 

while acute cocaine administration in cocaine-naïve mice lead to increased sEPSC 

frequencies on GFP+ neurons (Koya et al, 2012; Whitaker et al, 2016). Thus the type 

of learning experience may differentially modulate glutamatergic release onto GFP+ 

neurons. Growth of new functional presynaptic release sites as well as rapid activation 

of postsynaptic silent synapses can occur within the time-scale of our behavioral test 

(Liao et al, 2001; Lucido et al, 2009; Ma et al, 1999; Nesler et al, 2016). As such, the 

increases in sEPSC frequencies on GFP+ neurons we observed may be an acute 

adaptation following the behavioral test, or may have occurred during the conditioning 

procedure as a function of CS-US conditioning or by sucrose exposure alone (Liu et al, 

2016). Further experimentation utilizing the Fos-tTA x TRE-H2B-GFP mouse (Tayler et 

al, 2013), in which GFP is expressed for weeks rather than hours, will aid in 

distinguishing the nature of these synaptic adaptations. 

 

Further investigation of glutamatergic synapses following Pavlovian approach 

responding 

While sEPSC and paired-pulse ratios are valuable measures of synaptic efficacy, 

additional experimental techniques can further aid characterization of glutamatergic 

synapses. The ratio of functional AMPA/NMDA receptors expressed in the neuronal 

membrane is a widely used measure of synaptic strength (Hyman et al, 2006). 

Changes in AMPAR/NMDAR current ratios have previously been observed following 
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high-calorie food conditioning (Counotte et al, 2014) as well as selectively on GFP+ 

neurons following stress-primed reinstatement of food-seeking (Cifani et al, 2012). 

Indeed, measurement of AMPAR/NMDAR ratios responding may elucidate the 

mechanism underlying the increase in sEPSC frequencies we observed. Activation of 

silent synapses increases AMPAR/NMDAR ratios (Beique et al, 2006; Lu et al, 2001) 

whereas generation of new presynaptic boutons will not necessarily modulate 

AMPAR/NMDAR ratios (see Yang & Calakos, 2013 for full discussion). Thus, increased 

sEPSC frequencies in the absence of changes to the AMPAR/NMDAR ratio would 

strongly suggest a presynaptic mechanism.  Hence, more detailed characterization of 

synaptic transmission should be included in future studies of sucrose-cue activated 

ensembles 

 

Relationship between synaptic and intrinsic excitability adaptations in sucrose-

cue activated neurons 

We have previously observed increased membrane excitability in GFP+ neurons 

following Pavlovian approach responding (Ziminski et al, 2017). These combined data 

suggest that sucrose-cue activated neurons demonstrate both increased intrinsic 

excitability and glutamatergic synaptic strength compared to their surrounding, non -

activated neurons.  

 

Effects of increased synaptic transmission on measures of intrinsic excitability 

It is plausible that increased glutamatergic tone onto GFP+ neurons may have led 

directly to the potentiated firing rate and input resistance we previously measured. 

While neuronal gain (the current input- spike output relationship) is modulated in vivo 

by synaptic input (Cardin et al, 2008), the effect of spontaneous neurotransmitter 

release on measures of membrane excitability in vitro are less clear. Previous 
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observations suggest changes in sEPSC frequencies are not usually accompanied by 

alterations in intrinsic measures of excitability. Application of the AMPAR blocker 

CNQX-eliminates spontaneous EPSC frequencies but has no effect on the input 

resistance of both mammalian and invertebrate neurons (Hanganu et al, 2001; Li and 

Burrell, 2008b), while in the hypothalamus of hypertensive rats, increased sEPSC 

frequencies lead to potentiated neuronal firing rates in the absence of changes in the 

input resistance (Li et al, 2008a). Furthermore, we observed decreased inward 

rectification in response to hyperpolarizing stimuli, an effect primarily mediated by 

inwardly rectifying potassium current Kir (Nisenbaum and Wilson, 1995) and not 

consistent with the excitatory effect of increasing sEPSC frequency. Additionally, 

neuronal gain is not thought to be affected by shunting inhibition provided by 

extrasynaptic GABAA α4 receptors (Pavlov et al, 2009), excluding this possible 

influence on the input resistance. This suggests that the membrane adaptations we 

observed in GFP+ neurons following exposure to sucrose cues are independent from 

the detected increases in basal glutamatergic tone. 

 

The function of concurrent increases in synaptic and intrinsic excitability in neurons 

activated by sucrose-cues 

We observed concurrent increases in the synaptic and intrinsic excitability of neurons 

strongly activated by sucrose cues (Ziminski et al, 2017). This is in contrast to previous 

descriptions of homeostatic adaptations to synaptic and intrinsic excitability, whereby 

intrinsic excitability is increased in response to decreased synaptic drive, and vice-

versa (Ishikawa et al, 2009; Schulz, 2006), a regulatory process thought to be crucial in 

maintaining network stability (Turrigiano, 2011). The number of strongly activated 

neurons observed after expression of conditioned and sensitized behaviors is 

commonly in the range of 3-5% (Koya et al, 2009; Warren et al, 2016). As such, it is 

possible homeostatic processes may govern in the majority of weakly activated 
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neurons following learning-induced network perturbations (Turrigiano, 2011), while 

behaviorally relevant cue-activated ensembles are selectively potentiated. 

Concurrent increases in intrinsic excitability and synaptic transmission have previously 

been observed in vitro following use of the long-term potentiation (LTP) induction 

procedure (Zhang and Linden, 2003). Theta burst stimulation (stimulation in the 

frequency range of the endogenous hippocampal theta rhythm (Larson and Munkacsy, 

2015)) in cerebellar mossy fiber-granule cell synapses resulted in increased excitability 

of the postsynaptic neuron concurrent with potentiated synaptic transmission (Armano 

et al, 2000). While such observations following associative conditioning are rare, 

Antonov et al (2001) observed, at the sensory-motor neuron synapse of Aplysia 

following conditioning of the siphon withdrawal reflex, increases in presynaptic input 

resistance and firing frequency alongside both pre- and postsynaptic facilitation of 

glutamatergic transmission (Roberts and Glanzman, 2003). Thus high-frequency 

stimulation can simultaneously potentiate synaptic and intrinsic excitability at the level 

of a single neuron. It is thus tempting to speculate that during associative learning in 

Fos-GFP mice, strongly activated GFP+ neurons undergo LTP-like processes caused 

by high-frequency stimulation. NMDAR-mediated transmission may be of particular 

importance as NMDAR activation is necessary for both LTP-induced simultaneous 

increases in synaptic and intrinsic excitability (Armano et al, 2000), as well as GFP 

induction in the Fos-GFP mice (Cruz et al, 2013).  

The function of the neuroadaptations we observed in GFP+ neurons following 

Pavlovian responding is presently unclear. While strengthening of excitatory synaptic 

transmission permits selective increases in connectivity between specific neurons 

(Bliss and Collingridge, 1993), potentiation of intrinsic excitability is thought to 

maximize downstream information transfer and/or facilitate synapse-driven plasticity 

(Daoudal and Debanne, 2003; Kourrich et al, 2015; Stemmler and Koch, 1999). 

Electrophysiological studies following associative conditioning have demonstrated 

                        155



transient, learning induced increases in excitability that are dissociable from expression 

of conditioned behavior (Moyer et al, 1996); alternatively, persisting (1 month) 

increases in conditioning-induced intrinsic excitability have also been detected 

(Schreurs et al, 1998). Thus we may have recorded during a short-term transitionary 

phase in which brief changes in intrinsic excitability, which functioned to transiently 

facilitate synaptic-plasticity, overlap with the long-term potentiation of glutamatergic 

synapses. Alternatively, persistent increases in both synaptic and intrinsic excitability 

may function to potentiate the output of interconnected, behaviorally relevant 

ensembles. Further work examining the time scale of ensemble adaptations would aid 

in determining the nature of the adaptations we have observed. 

 

Confirming concurrent synaptic and intrinsic changes in GFP+ neurons 

Sucrose-cue activated neurons did not uniformly show increased synaptic or intrinsic 

excitability above the baseline (averaged response) of surrounding, non-activated 

GFP– neurons (Appendix B). Thus it is possible that individual GFP+ neurons 

regulated their synaptic and intrinsic excitability in a mutually exclusive manner i.e. no 

single GFP+ neuron displayed both the synaptic and intrinsic adaptations we observed. 

However, while there is a significant overlap in the intracellular signaling cascades 

regulating synaptic and intrinsic adaptations (Kotaleski and Blackwell, 2010), 

suggesting this possibility is unlikely, further experiments recording both current and 

voltage responses in the same neuron (Zuo et al, 2016) would be necessary to confirm 

our observations. 
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Exposure to a sucrose-associated cue did not result in selective regulation of 
inhibitory synapses or AMPAR splice-variant expression 

Inhibitory synapses 

We observed no alterations in spontaneous inhibitory postsynaptic currents (sIPSC) or 

in presynaptic release probabilities at GABAergic synapses, suggesting that the net 

effect of increased sEPSC frequencies onto GFP+ neurons was excitatory (Froemke, 

2015). 

Transient reductions in GABAergic transmission (coined “transient disinhibition) is an 

important mechanism of synaptic potentiation observed sensory networks which 

facilitates synaptic plasticity (Froemke, 2015). This is an energy efficient way of 

increasing excitatory transmission, as decreasing inhibition requires less metabolic 

activity than increasing excitation (Waldvogel et al, 2000).  Thus it is interesting that we 

did not see any adaptations in GABAergic synaptic strength in the NAc shell following 

Pavlovian approach responding. Limbic system projections to the NAc are primarily 

glutamatergic, with GABA afferents sparse and GABAergic tone provided by local 

interneurons; furthermore, glutamate-dopamine interactions are crucial for the 

expression of many motivated behaviors (Lee et al, 2014; Russo and Nestler, 2013; 

Salgado and Kaplitt, 2015; Sesack and Pickel, 1990; Totterdell and Smith, 1989; Wu et 

al, 1993). Thus in NAc circuitry, modulation of the glutamatergic system may provide a 

higher degree of neuronal specificity than the GABAergic system.   

Additional measures of inhibitory transmission will permit further characterization of 

GABAergic synapses on GFP+ neurons. For example, coincident pre- and 

postsynaptic activity can cause adaptations in the chloride transporter, altering the Cl- 

reversal potential and thus GABA current magnitude (Woodin et al, 2003). 

Furthermore, probability of neurotransmitter release following evoked IPSCs can be 

assayed using the coefficient of variation of IPSC amplitudes (Hefft et al, 2002; 

Kerchner and Nicoll, 2008; Kullmann and Lamsa, 2007). It is possible that interneurons 
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may differentially regulate the probability of GABA release onto GFP+ and GFP- 

neurons; dual-recording experiments between GABAergic interneurons and GFP+ 

MSNs can be used to explore this possibility. 

 

Cyclothiazide application 

We observed no selective adaptations in the responses of sucrose-cue activated 

neurons to the AMPA receptor allosteric modulator cyclothiazide. We report 

pronounced generalized increased in AMPAR-mediated EPSC decay times and 

modest increase in EPSC amplitudes following cyclothiazide application, in accordance 

with other studies of cyclothiazide action (Liu and Cull-Candy, 2002; Rammes et al, 

1994). 

AMPA receptor subunits exist in flip/flop splice isoforms which heterogeneously 

combine into functional receptors; as such flip and flop variants may exist in the same 

receptor (Liu et al, 2002). Cyclothiazide has a pronounced binding preference for the 

flip splice variant of AMPA receptor subunits (Kessler et al, 2000). Our data suggest 

that there are no selective changes in flip vs. flop AMPAR subunit expression in 

neurons activated by sucrose-associated cues. Thus, cyclothiazide or related drugs 

with flip/flop binding preferences may be of limited utility in the design of 

pharmacological interventions aiming to reduce the behavioral influence of food-

associated cues (Boswell et al, 2016).  It should be noted that cyclothiazide affinity for 

flip-containing AMPAR receptors may non-linearly scale dependent on the proportion of 

flip vs. flop subunits present in the receptor (Liu et al, 2002); thus large increases in the 

proportion of flip-subunits expressed in the AMPAR population may be masked by 

subtle changes in homogenous flip-subunit containing AMPA receptors. Molecular 

identification of AMPAR subunit composition in GFP+ vs. GFP- neurons could be 
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further elucidated using single-cell RNA quantification following electrophysiological 

experiments (Lu et al, 2009). 

 

Concluding Remarks 

We report that exposure to sucrose-associated cues elicits activation of a NAc shell 

ensemble with increased synaptic and intrinsic excitability compared to surrounding, 

non-activated neurons. These concurrent adaptations may function to increase both 

the activity and connectivity of the sucrose-cue activated ensemble. It is necessary to 

further identify the time-scale of the neuroadaptations we observed, as to whether 

these changes are transient adaptations or, alternatively, persistent network alterations 

which occur following Pavlovian approach conditioning. At the present time, the 

behavioral relevance of the neurons recently activated following the Pavlovian 

approach test is unclear. Further investigations utilizing the Daun02 ensemble-

inactivation method (Koya et al, 2012) would elucidate the contribution of the sucrose-

cue activated ensembles we are presently measuring to conditioned behavior. 
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Abstract 

Learned associations between drugs of abuse and the drug administration environment 

play an important role in addiction. In rodents, exposure to a drug-associated 

environment elicits conditioned psychomotor activation, which may be weakened 

following extinction learning. While widespread drug-induced changes in neuronal 

excitability have been observed, little is known about specific changes within neuronal 

ensembles activated during the recall of drug-environment associations. Using a 

cocaine conditioned locomotion procedure, the present study assessed the excitability 

of neuronal ensembles in the nucleus accumbens (NAc) core and shell, and dorsal 

striatum (DS) following cocaine conditioning and extinction in Fos-GFP mice that 

express green fluorescent protein (GFP) in activated, GFP+, neurons. During 

conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a 

locomotor activity chamber (Paired) or home cage (Unpaired). 7-13 days later both 

groups were re-exposed to the activity chamber under drug-free conditions, and 

Paired, but not Unpaired, mice exhibited conditioned locomotion. In a separate group of 

mice, conditioned locomotion was extinguished by repeatedly exposing mice to the 

activity chamber under drug-free conditions. Following the expression and extinction of 

conditioned locomotion, GFP+ neurons in the NAc core (but not NAc shell and DS) 

displayed greater firing capacity compared to surrounding GFP– neurons. This 

difference in excitability was due to a generalised decrease in GFP– excitability 

following conditioned locomotion, and a selective increase in GFP+ excitability 

following its extinction. These results suggest a role for both widespread and 

ensemble-specific changes in neuronal excitability following recall of drug-environment 

associations.   
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Introduction 

Exposure to drug-associated environmental cues or contexts elicits anticipatory 

responses including conditioned locomotor hyperactivity in rodents (Post et al, 1981) 

and conditioned emotional, behavioural, and physiological responses in humans 

(O'Brien et al, 1998). These learned associations between drug effects and the drug 

administration environment play an important role in addiction and may be weakened 

through extinction learning (Michel et al, 2003), and methods such as cue-exposure 

therapy utilise such inhibitory learning to reduce the impact of drug-associated stimuli 

(Conklin and Tiffany, 2002). Thus, understanding the neurobiological mechanisms of 

how the strength of these associations are modulated is crucial to better understanding 

drug addiction. 

We and others have reported that drug-environment associations are encoded in 

sparsely activated populations of neurons, called neuronal ensembles (Carelli, 2002; 

Koya et al, 2009). Recent studies utilising Fos-GFP mice that express the green 

fluorescent protein (GFP) in behaviourally activated neurons, suggest that the 

ensembles which encode these associations exhibit unique adaptations at 

glutamatergic synapses compared to their surrounding neurons (Koya et al, 2012; 

Whitaker et al, 2016). These data indicate that ensemble-specific modifications may be 

implicated in the storage of drug-associative memories.   

Neurons may alter their signal processing through synaptic adjustments or intrinsic 

excitability modulation (Wolf, 2010), such as changes in the firing capacity of neurons 

and/or in ion channel function. Widespread intrinsic excitability changes in the striatum, 

a brain area which subserves various cocaine-induced behaviours (Everitt and 

Robbins, 2013), have been observed following repeated cocaine exposure (Kourrich 

and Thomas, 2009; Ma et al, 2013; Mu et al, 2010; Zhang et al, 1998). These studies 

have enhanced our understanding of the long-term effects of repeated cocaine on 
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intrinsic excitability.  However, to further understand how cocaine-environment 

associations are encoded in the brain, in addition to the widespread drug-induced 

changes, the neuronal excitability properties from neurons that are specifically 

activated by cocaine-associated memory recall must be characterised. 

The aim of this study was to investigate neuronal excitability changes in striatal 

ensembles following cocaine and extinction memory retrieval utilising a cocaine 

conditioned locomotion procedure in Fos-GFP mice. We focused our investigation on 

the nucleus accumbens shell (NAc shell), core (NAc core) and dorsal striatum (DS), as 

these three striatal areas have been shown to have related yet distinct involvement in 

encoding drug-environment associations (Caprioli et al, 2017; Chaudhri et al, 2010; 

Everitt et al, 2013). We hypothesised that changes in the strength of a drug-

environment association may be accompanied by alterations in neuronal excitability on 

striatal neuronal ensembles.  

 

Results 

Locomotor activity and striatal Fos expression following cocaine and extinction 

memory retrieval  

We trained four groups of mice to assess the expression (CL: Paired CL, Unpaired CL) 

(Figure 1A) and extinction (EXT: Paired EXT, Unpaired EXT) (Figure 1B) of conditioned 

locomotor activity. A two-way ANOVA on the locomotor activity (indicated by distance 

travelled) during the test session revealed a significant interaction of Group X 

Extinction (F1,40=4.17, p<0.05) and a significant main effect of Group (F1,40=5.41, 

p<0.05) (A). Post-hoc tests indicated that Paired CL mice displayed significantly higher 

locomotor activity compared to Unpaired CL mice (p<0.01). Also, Paired EXT mice 

displayed significantly lower locomotor activity compared to Paired CL mice (p<0.05), 

at levels similar to Unpaired EXT mice. These data indicate that Paired CL and Paired 
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Figure 1. Timeline for conditioned locomotion and extinction experiments. (A) In conditioned locomotion (cocaine memory retrieval) 

experiments, two groups of mice were exposed to the locomotor chamber for once daily 30 minute sessions over a 5-day period; Paired CL 

mice received 20 mg/kg i.p. cocaine injections prior to these sessions while Unpaired CL mice received saline. Across the 5 acquisition days, 

Unpaired CL and Paired CL mice were given cocaine and saline injections in the home-cage, respectively. Home cage and locomotor chamber 

injections were counterbalanced across morning (8 A.M. - 12 A.M.) and afternoon (3 P.M. – 6 P.M.) sessions. This regime ensured that the 

psychostimulant effects of cocaine were paired with the locomotor chamber in the Paired CL group only. Following an abstinence period of 7-11 

days (IHC; immunohistochemistry) or 7-13 days (E-phys; electrophysiology), free of experimental intervention, both Paired CL and Unpaired CL 

mice were given a single saline injection and placed in the locomotor chambers for 90 minutes, before being killed for further 

immunohistochemistry or electrophysiology experiments. (B) In extinction experiments (extinction memory retrieval), Paired EXT and Unpaired 

EXT mice underwent an identical cocaine injection procedure as during the conditioned locomotion experiments. One day following the final 

cocaine injection, Paired EXT and Unpaired EXT mice began an extinction phase consisting of 30 min, 1-2 x daily exposures to the locomotor 

chamber, each started immediately following a saline injection. Following 7-13 days (10-16 sessions; electrophysiology) or 7-11 days (10-14 

sessions, immunohistochemistry) of extinction, mice were given a final 90 min extinction session before being killed for further experiments.  
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Figure 2. Behavioral response and neuronal activation following conditioned locomotion and 

extinction. (A) Distance travelled by Paired and Unpaired mice during the first 30 minutes of the 

conditioned locomotion and extinction test sessions in the immunohistochemistry study (n=10-

12/group). Paired CL group mice show increased locomotion compared to Unpaired CL mice 

following cocaine memory retrieval. Following extinction memory retrieval, no increase in locomotion 

was observed (Paired EXT group). (B) Quantification of Fos+ neurons/mm2 in the NAc shell, NAc 

core and DS following cocaine and extinction memory retrieval (n=10-12/group). (C) Representative 

images of Fos immunostaining in the NAc shell, NAc core and DS. Arrows indicate Fos+ neurons. 

Scale bar 125 µm. Right: Identification of sampling area for the NAc shell, NAc core and DS in both 

immunohistochemistry and electrophysiology experiments; coronal slice represents bregma 1.34 

mm. All data are expressed as Mean±SEM. *p<0.05. 
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mice retrieved a cocaine and extinction memory, respectively.  

We next examined neuronal ensemble activation in the NAc shell, NAc core and DS by 

quantifying the number of Fos+ neurons/mm2. 

NAc shell 

In the NAc shell, a two-way ANOVA revealed a significant Group X Extinction 

interaction (F1,41=8.31, p<0.01) and significant main effects of Group (F1,41=8.20, 

p<0.01) and Extinction (F1,41=58.24, p<0.001) (Figure 2B & 2C). Post-hoc tests 

indicated that Fos expression in Paired CL mice was significantly higher compared to 

Unpaired CL mice (p<0.001). Paired EXT mice displayed significantly lower Fos 

compared to Paired CL mice (p<0.001), at levels similar to Unpaired EXT mice.  

 

NAc core 

In the NAc core, a two-way ANOVA revealed no significant interaction between Group 

X Extinction (F1,40=1.54, p=0.22), but a significant main effect of Extinction (F1,40=8.03, 

p<0.01) (Figure 2B & 2C). Post-hoc tests indicated no differences in Fos expression 

between Paired CL and Unpaired CL mice (p=0.37). 

 

DS 

In the DS, there was a significant Group X Extinction interaction (F1,39=6.09, p<0.05) 

and main effect of Group (F1,39=4.43, p<0.05) and Extinction (F1,39=69.66, p<0.001) 

(Figure 2B & 2C). Post-hoc tests revealed a significant difference between Paired CL 

and Unpaired CL mice (p<0.01). Paired EXT mice displayed significantly lower Fos 

compared to Paired CL mice (p<0.001), at levels similar to Unpaired EXT mice.  
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Striatal medium spiny neuron (MSN) excitability following cocaine memory 

retrieval  

We next examined the excitability of ‘activated’, GFP-expressing (GFP+) and ‘non-

activated’, non-expressing (GFP–) MSNs in the Fos-GFP mouse following cocaine 

memory retrieval. To that end, we examined the number of action potentials (firing 

capacity) across a range of positive current injection steps (30-210 pA), as a broad 

measure of excitability. We then examined active and passive membrane properties to 

investigate underlying adaptations to MSNs which may modulate firing capacity 

changes (indicated in Figure 5 and Tables 1-3). 

 

NAc shell 

We observed no selective firing capacity alterations between GFP+ and GFP– 

neurons, nor any generalised changes between Paired CL and Unpaired CL mice 

(Group X GFP X Current F6,144=2.38, p<0.05, Group X Current F6,144=0.27, p=0.95, 

GFP X Current F6,144=0.68, p=0.67). While there was a main interaction effect, a Two-

Way Mixed ANOVA in Paired and Unpaired mice separately revealed no GFP X 

Current interaction in either groups (Paired: F6,66=2.03, p=0.07, Unpaired: F6,78=0.83, 

p=0.57) (Figure 3A). Furthermore, we found no significant interaction effects in any of 

the passive or active membrane properties measured. 

 

NAc core 

In Paired CL mice, the firing capacity of GFP+ neurons was significantly increased 

compared to GFP– neurons (Group X GFP X Current F6,174=5.76, p<0.001; Group X 

Current F6,174=3.30, p<0.01, GFP X Current F6,174=4.33, p<0.001) (Figure 3B). 

Comparison of the firing capacity of GFP+ and GFP– neurons across groups  
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Figure 3. Excitability of GFP+ and GFP– neurons of the striatum following cocaine memory retrieval. (A) In the NAc shell, the 

spike counts of Paired CL mice were not significantly different between GFP+ neurons (n=5) and GFP– neurons (n=8); this was 

similar to the Unpaired CL group (GFP+ n=7; GFP– n=8). Right: Example traces of Paired CL and Unpaired CL GFP+ and GFP– 

neurons at 150 pA stimulation from the NAc shell following cocaine memory retrieval. (B) In the NAc core, GFP+ neurons were 

significantly more excitable than GFP– neurons in Paired CL mice (GFP+ n=9; GFP– n=9) but not Unpaired CL mice (GFP+ 

n=7; GFP– n=7) Right: Example traces of Paired CL and Unpaired CL GFP+ and GFP– neurons at 150 pA stimulation from the 

NAc core following cocaine memory retrieval. (C) Excitability of GFP+ and GFP–  MSNs in the DS (GFP+; Paired CL n=7, 

Unpaired CL n=8), (GFP–; Paired CL n=6, Unpaired CL n=8). Right: Example traces of Paired CL and Unpaired CL GFP+ and 

GFP– neurons at 180 pA stimulation from the DS following cocaine memory retrieval. All data are expressed as Mean±SEM; n= 

number of animals (cells averaged for each animal). Scale bars 20 mV, 200 ms.  
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suggested that while Paired CL group GFP+ neurons were not significantly more 

excitable than Unpaired CL GFP+ neurons (Group (GFP+ neurons only) X Current 

F6,84=0.53, p=0.78), the excitability of Paired CL GFP– neurons was significantly 

decreased compared to Unpaired CL GFP– neurons (Group (GFP–  neurons only) X 

Current F6,90=18.50, p<0.001). This suggests that in Paired CL mice following cocaine 

memory retrieval, GFP+ neurons of the NAc core were relatively more excitable than 

surrounding GFP– neurons due to a generalised decrease in the excitability of GFP– 

neurons.    

We next examined changes in active and passive membrane properties which may 

indicate the potential mechanism by which the excitability of GFP– neurons was 

decreased. A two-way ANOVA indicated a significant interaction of Group X GFP for 

the rheobase (the minimum current required to elicit an action potential (AP)) 

(F1,29=13.02, p<0.01), input resistance (indicator of the density of open ion channels) 

(F1,29=10.65 p<0.01) (Figure 5A) and the fast and medium afterhyperpolarisation (fAHP 

and mAHP; components of the afterhyperpolarisation potential that dampens firing) 

(fAHP: F1,29=8.54, p<0.01; mAHP: F1,27=26.83, p<0.001) (Figure 5B). Post-hoc tests 

demonstrated that the input resistance of Paired CL GFP+ neurons was significantly 

increased compared to Paired CL GFP– neurons (p<0.01) while the rheobase, fAHP 

and mAHP were all significantly decreased (p<0.001, p<0.05, p<0.001 respectively). 

Furthermore, the input resistance of Paired CL GFP– compared to Unpaired CL GFP– 

was significantly decreased (p<0.05) while the rheobase, fAHP and mAHP were 

significantly increased (p<0.01, p<0.01, p<0.001 respectively). We also observed a 

significant increase in the mAHP of Unpaired CL GFP+ neurons compared to Unpaired 

CL GFP– neurons (p<0.05). 
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Figure 4. Excitability of GFP+ and GFP– neurons of the striatum following extinction memory retrieval. (A) The spike 

counts of NAc shell MSNs were not significantly different between Paired EXT GFP+ neurons (n=8) and Paired EXT 

GFP– neurons (n=10); this is similar to the Unpaired EXT group (GFP+ n=10, GFP– n=10). Right: Example traces of 

Paired EXT and Unpaired EXT GFP+ and GFP– neurons at 150 pA stimulation from the NAc shell following extinction 

memory retrieval. (B) In the NAc core, Paired EXT GFP+ neurons (n=10) were more excitable than Paired EXT GFP– 

neurons (n=10). In contrast, Unpaired EXT GFP+ neurons (n=10) were not more excitable than Unpaired EXT GFP– 

neurons (n=9). Right: Example traces of Paired EXT and Unpaired EXT GFP+ and GFP– neurons at 150 pA stimulation 

from the NAc core following extinction memory retrieval. (C) GFP+ and GFP– neurons in Paired EXT mice (GFP+ n=12, 

GFP– n=12) and Unpaired EXT mice (GFP+ n=6; GFP– n=9) following extinction memory retrieval. Right: Example 

traces of Paired EXT and Unpaired EXT GFP+ and GFP– neurons at 180 pA stimulation from the DS following extinction 

memory retrieval. All data are expressed as Mean±SEM; n= number of animals (cells averaged for each animal). Scale 

bars are 20 mV, 200 ms. 
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DS 

We observed no selective firing capacity alterations between GFP+ and GFP– neurons 

(Group X GFP X Current F6,150=0.36, p=0.91, Group X Current F6,150=0.12, p=0.99, 

GFP X Current F6,150=0.43, p=0.85) (Figure 3C). Also, there were no significant 

interaction effects for any of the aforementioned passive or active membrane 

properties. 

 

Striatal MSN excitability following extinction memory retrieval 

We next examined the excitability properties of striatal MSNs following the final 

extinction test (i.e. extinction memory retrieval) in Paired and Unpaired EXT mice.  

 

NAc shell 

We observed no selective firing capacity alterations between GFP+ and GFP– neurons 

(Group X GFP X Current F6,204=0.36, p=0.84; Group X Current F6,204=0.79, p=0.58; 

GFP X Current F6,204=0.32, p=0.92) (Figure 4A). Furthermore, we found no significant 

interaction effects for any of the passive or active membrane properties that were 

measured. 

 

NAc core 

There was a significant increase in the firing capacity of Paired EXT GFP+ neurons 

compared to Paired EXT GFP– neurons (Group X GFP X Current F6,168=4.22, p<0.001; 

Group X Current F6,168=2.52, p<0.05, GFP X Current F6,168=6.11, p<0.001) (Figure 4B). 

As the majority of standardised residuals were not normally distributed, a Mann-

Whitney test applied to spike counts averaged across current injections also indicated 
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a significant increase in the excitability of GFP+ compared to GFP– neurons (U=22, 

p<0.05). The firing capacity of Paired EXT GFP+ neurons was significantly increased 

compared to the Unpaired EXT GFP+ baseline (Group (GFP+ neurons only) X Current 

F6,108=6.99, p<0.001), but there were no significant differences in firing capacity 

between Paired EXT and Unpaired EXT GFP– neurons baseline (Group (GFP– 

neurons only) X Current F6,102=0.250, p=0.12).  

We next examined the membrane properties (Figure 5C & 5D), and a two-way ANOVA 

indicated a significant effect in the rheobase (Group X GFP F1,35=9.12, p<0.01) and 

input resistance (Group X GFP F1,35=11.29, p<0.01). Post-hoc tests comparing Paired 

EXT GFP+ and Paired EXT GFP– neurons indicated a decrease in the rheobase 

(p<0.01) and an increase in the input resistance (p<0.01) of Paired EXT GFP+ neurons 

(Figure 5C). This difference appeared to be due to changes in Paired EXT GFP+ 

neurons since no differences were observed in these properties from GFP– neurons of 

Paired EXT and Unpaired EXT mice 

 

DS 

We observed no selective firing capacity alterations between GFP+ and GFP– neurons 

(Group X GFP X Current F6,210=0.13, p=0.99, Group X Current F6,210=0.83, p=0.55, 

GFP X Current F6,210=1.61, p=0.15) (Figure 4C). Also, there were no significant 

interaction effects for the passive or active membrane properties that were measured.  
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Figure 5. Modulation of input resistance and AHP underlies excitability changes following cocaine and extinction memory retrieval in the 

NAC core. (A) The input resistance of GFP+ neurons in Paired CL mice was increased compared to Paired CL GFP– neurons. In Unpaired 

CL mice, the input resistance of GFP+ and GFP– neurons was similar. Below: I/V curves of Paired CL and Unpaired CL GFP+ and GFP– 

neurons from which input resistance was calculated. In the Paired CL group, there was a significant shift in the I/V curve of GFP+ compared 

to GFP– neurons; in contrast, I/V curves of Unpaired CL GFP+ and GFP– neurons were similar. (B) Following cocaine memory retrieval, the 

mAHP of Paired CL GFP– neurons was significantly increased compared to Paired CL GFP+ and Unpaired CL GFP– neurons. Below: 
Example traces of Paired CL GFP+ and GFP– neurons following cocaine memory retrieval, identifying the position of fAHP and mAHP 

peaks. Dashed line indicates the threshold of the first spike labelled with group means. The fAHP and mAHP of Paired CL GFP– neurons is 

increased following cocaine memory retrieval. Scale bar 10 mV, 100 ms (C) Following extinction memory retrieval, the input resistance of 

Paired EXT GFP+ neurons was increased compared to Paired EXT GFP– neurons. In the Unpaired EXT mice, the input resistance of GFP+ 

and GFP– neurons was similar. Below: I/V curves of Paired EXT and Unpaired EXT GFP+ and GFP– neurons from which input resistance 

was calculated. In the Paired EXT group, the I/V curve of GFP+ neurons was significantly shifted compared to GFP– neurons; in contrast, 

the I/V curves of Unpaired EXT GFP+ and GFP– neurons were similar. (D) The mAHP of GFP+ and GFP– neurons was not significantly 

different in either Paired EXT or Unpaired EXT mice. Below: Example traces of Paired EXT GFP+ and GFP– neurons. The fAHP, mAHP 

and of Paired EXT GFP+ and Paired EXT GFP– neurons were similar following extinction memory retrieval.  Dashed line indicates the 

threshold of the first spike labeled with group means. Scale bar 10 mV, 100 ms. All data are expressed as Mean±SEM. *p<0.05. 
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Discussion 

We examined the size and excitability of NAc shell, NAc core and DS neuronal 

ensembles following cocaine and extinction memory retrieval using a cocaine 

conditioned locomotion procedure. In the NAc core we observed a relative increase in 

GFP+ neuron excitability following cocaine memory retrieval, which was attributable to 

a general decrease in the excitability of surrounding GFP– neurons. In contrast, 

following extinction memory retrieval, the excitability of GFP+ neurons was increased 

compared to GFP– neurons without a general decrease in GFP– neuron excitability. In 

the NAc shell and DS, we observed no changes in ensemble excitability following 

cocaine and extinction memory retrieval, despite the fact that conditioning and 

extinction processes regulated the size of the neuronal ensemble. These adaptations 

were likely related to drug-environment exposure, as other factors such as stress were 

controlled for in the Unpaired group that underwent similar levels of repeated handling, 

injections, and activity chamber and cocaine exposure. Collectively, these data provide 

novel insight into how distinct adaptations may serve to increase the sensitivity of 

neurons activated by exposure to a drug-associated environment and following 

extinction.  

 

Implications of changes in NAc core ensemble excitability following cocaine 

memory retrieval 

We found adaptations in the rheobase, input resistance, I/V curve, fAHP and mAHP of 

NAc core GFP– MSNs in mice that underwent cocaine conditioning in a novel context 

outside of its home cage (i.e. Paired mice). Many of these factors have been previously 

shown to be regulated following repeated cocaine administration (Ma et al, 2013; Mu et 

al, 2010; Zhang et al, 1998). 
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Table 1. Table of basic membrane properties from NAcshell MSNs of Paired and Unpaired mice following cocaine and 

extinction memory retrieval. Data are expressed as Mean±SEM. Liquid junction potential was -13.7 mV and was not 

adjusted for. Spike characteristics were determined from the first action potential (AP) of spike runs consisting of 6-8 spikes. 

Input resistance was calculated from the slope of the I/V curve measured in response to 10 pA current steps ranging from -

30 pA to 70 pA. Spike threshold was measured using the third differential method (Cotel et al, 2013) with Mini Analysis 

software. The action potential peak was calculated as the difference between the AP peak and AP threshold. Half-width was 

measured as the AP width at half-maximal spike. Post-spike fAHPs and mAHPs were measured 3 and 30 ms following the 

AP threshold respectively, similar to (Ishikawa et al, 2009). 

 

Table 2. Table of basic membrane properties from NAccore MSNs of Paired and Unpaired mice following cocaine and 

extinction memory retrieval. Data are expressed as Mean±SEM. Asterisks indicates a significant interaction effect (*p<0.05, # 

indicates differences between Paired GFP– vs. Unpaired GFP–). Spike kinetics were calculated as detailed in Table 

Table 3. Table of basic membrane properties from DS MSNs of Paired and Unpaired mice following cocaine and 

extinction memory retrieval. Data are expressed as Mean±SEM. Spike kinetics were calculated as detailed in Table 1.  
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The input resistance and I/V curve dynamics are primarily regulated by K+ currents, 

including the inward-rectifying K+ (Kir) and A-type potassium currents (Nisenbaum and 

Wilson, 1995), though Na+ and Ca2+ currents also modulate near-threshold voltage 

responses (Bean, 2007; Nisenbaum et al, 1995). The regulation of the firing threshold, 

however, is dominated by voltage sensitive Na+ currents (Cantrell and Catterall, 2001; 

Zhang et al, 1998), while the AHP (both fAHP and mAHP) is regulated by a class of 

voltage-dependent calcium-activated K+ currents (Ishikawa et al, 2009; Vilchis et al, 

2000). These membrane currents are carried by a complex and diverse host of ion 

channels (Bean, 2007), regulated by striatal monoamine neurotransmitters such as 

dopamine, and thus are a potential target for learning-induced plasticity (Cantrell et al, 

2001; Nicola et al, 2000). 

We observed a generalised decrease in the excitability of NAc core GFP– neurons, 

which resulted in a relative increase in the excitability of the activated GFP+ ensemble. 

The NAc core is necessary for the expression of conditioned locomotion following 

exposure to psychostimulant-associated environments (Sellings and Clarke, 2006) and 

for encoding cues that indicate the availability of cocaine (Suto et al, 2013). The 

alteration in global excitability we observed following the expression of conditioned 

locomotion may function to enhance the signal-to-noise ratio of glutamatergic input by 

depressing the activity of neurons encoding stimuli unrelated to the drug-associated 

environment. This increased signal-to-noise ratio may increase the information transfer 

from the activated ensemble to downstream targets, such as the ventral tegmental 

area, substantia nigra, and ventral pallidum (Heimer et al, 1991). This in turn, may 

facilitate attentional bias and increased salience of drug-associated stimuli (O'Donnell, 

2003; Wanat et al, 2009), a phenomena often observed in drug addicts (Robinson and 

Berridge, 2008). 

It remains to be determined here whether the excitability changes that we observed 

occurred prior to or immediately following the behavioural test. Psychostimulant 
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injections in a novel environment outside of the animal’s home cage (Paired mice) 

produces more robust behavioural sensitisation, Fos expression and glutamatergic 

transmission than injections in the home cage (Unpaired mice) (Badiani et al, 1998; 

Hope et al, 2006; Hotsenpiller et al, 2001; Mattson et al, 2007). This suggests that our 

observed changes may have been due to baseline differences in excitability between 

Paired and Unpaired mice that occurred prior to test day. Alternatively, exposure to the 

cocaine-associated environment may have acutely altered the excitability of NAc 

core neurons through release of dopamine (Di Ciano et al, 1998); but see (Brown and 

Fibiger, 1992), which modulates MSN excitability (Nicola et al, 2000; O'Donnell, 2003).  

An interesting point to raise here is that the GFP+ neurons exhibited relatively 

increased excitability, despite the lack of Fos expression increases in this area. 

However, this lack of increase does not necessarily imply the lack of neuronal 

ensemble recruitment following exposure to the cocaine-paired context, as distinct 

stimuli may recruit different neuronal ensembles without concomitant increases in the 

number of activated neurons. For example, Suto et al (2016) recently demonstrated 

that cues predictive of reward availability and omission both elicit activation of a similar 

number of Fos-expressing neurons in the infralimbic cortex, despite these two 

populations of cue-activated neurons mediating opposing behavioural responses. 

 

Implications for the increased excitability of GFP+ NAc core neurons following 

extinction memory retrieval 

Following extinction, we observed a relative increase in the excitability of Paired EXT 

GFP+ neurons in the NAc core, which was determined by an increase in GFP+ 

neuronal excitability, while GFP– neurons were comparable with baseline controls. 

Hence, the generalised adaptations observed following cocaine conditioning were no 

longer observed following extinction learning. Previous studies have demonstrated that 
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extinction of cocaine self-administration normalised drug-induced plasticity seen during 

withdrawal (Self et al, 2004), suggesting that extinction learning alone is enough to 

cause marked adaptations in the NAc following cocaine conditioning. 

In this study, we did not examine whether the ensemble activated following conditioned 

locomotion includes the same neurons that were activated following extinction. 

Memories of cocaine-environment associations are robust and long-lasting (Hope et al, 

2006; Robinson et al, 2008). Although extinction learning might suppress these drug-

environment associations, exposure to certain stimuli (e.g. drugs) can re-activate this 

memory and thus reinstate drug conditioned behaviours that may contribute to 

relapse (Crombag et al, 2008; Mueller and Stewart, 2000). Interestingly, persistent 

increases in neuronal excitability have been observed following successful extinction 

learning (Brons and Woody, 1980). This increase may contribute to the ‘memory 

savings effect’, which facilitates re-acquisition of previously learned tasks (Ebbinghaus, 

1913; Zhang and Linden, 2003). It is possible that the same NAc core neurons were 

activated both following cocaine and extinction memory retrieval, with relatively higher 

levels of excitability persisting after extinction. This persistently enhanced excitability 

may ‘save’ the cocaine associative memories. Such savings may explain the enduring, 

robust nature of drug memories and why addicts relapse even while undergoing cue 

exposure therapy that involves extinction learning (Conklin et al, 2002). However, one 

possible explanation for this persistent enhancement of excitability may be due to how 

we defined successful extinction learning by measuring the inhibition of conditioned 

general locomotor activity. Since cocaine produces changes on many behavioural 

dimensions (e.g. velocity of each movement bout, head movements) (Robinson et al, 

2008), it is possible that we may not have observed a full extinction of conditioned 

responses if other parameters were measured. Thus we may be observing an 

enhanced excitability of the activated ensemble due to an incomplete, partial 

weakening of the CS-US association, and it remains to be seen whether a more robust 
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weakening would have resulted in the loss of the enhanced excitability. In future 

studies, we may examine multiple behavioural parameters when studying the extinction 

of conditioned locomotion, in order to better assess extinction learning effects. 

Alternatively, it is possible that following extinction, we were recording from a distinct, 

neuronal ensemble that participates in suppression of the conditioned response. In 

support, recent studies have demonstrated that the suppressive effects of extinction 

training and omission cue exposure on food-seeking behaviours are relieved by 

pharmacogenetic lesioning of medial prefrontal cortex ensembles activated during 

extinction training and omission cue exposure, respectively (Suto et al, 2016; Warren et 

al, 2016). As such, it is possible that the relatively higher excitability we observed in 

GFP+ neurons may represent a functional adaptation in a newly recruited “extinction” 

ensemble whose recruitment is not associated with a net increase in the number of 

activated neurons following extinction. This newly recruited ensemble may, in turn, 

inhibit the retrieval of the cocaine-environment association (Quirk and Mueller, 2008). 

 

Lack of changes in the NAc shell and DS following cocaine and extinction 

memory retrieval  

We observed no selective changes in the excitability of NAc shell ensembles following 

cocaine and extinction memory retrieval, despite an increase and decrease in the size 

of the activated ensemble, respectively. A similar phenomenon has been observed 

previously (Jakkamsetti et al, 2013; Ziminski et al, 2017) in which exposure to novel or 

sucrose-conditioned stimuli increased the number of activated neurons in the 

hippocampus and orbitfrontal cortex respectively, in the absence of changes to the 

excitability of these activated neurons. Collectively, these findings add to a body of 

evidence indicating that intrinsic excitability alterations on neuronal ensembles and 

cue-evoked ensemble recruitment can be independently regulated. 
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However, in that same study we observed selective increases in NAc 

shell ensemble excitability following exposure to sucrose-associated cues (Ziminski et 

al, 2017), which were attenuated following extinction. These differences in ensemble 

excitability adaptations may be due to changes in conditioning parameters; drugs of 

abuse produce significantly more robust and longer lasting conditioned behaviours and 

neuroadaptations than food rewards (Lu et al, 2003; Zombeck et al, 2008), while 

conditioning to discrete cues and contextual stimuli is subserved by different 

anatomical substrates (Chaudhri et al, 2010). Thus, it is likely that striatal brain areas 

respond with a diverse set of adaptations following distinct types of learning.  

We did not observe any changes in ensemble-selective excitability in the DS. This area 

consists of two related yet distinct subdivisions, the dorsomedial striatum (DMS) and 

the dorsolateral striatum (DLS), which have different roles in cocaine-related 

behaviours (Murray et al, 2012). Thus, by including both areas in our analysis, subtle 

ensemble excitability changes may not have been detected due to subregion-selective 

changes in ensemble or background neuronal excitability. In future studies these two 

subregions may be analyzed separately to better elucidate possible ensemble-specific 

adaptations following cocaine-conditioning. Also, striatal MSNs can be further 

distinguished based on their dopamine 1 and 2 receptor expression and these two 

neuronal subpopulations, which project to different brain areas, have distinct roles in 

cocaine-associated behaviours (Smith et al, 2013). In future studies, it would be crucial 

to identify whether GFP+ and GFP- cells are D1R- or D2R-expressing neurons using 

single-cell PCR, in order to determine whether associative learning induces pathway-

specific neuronal ensemble changes in excitability.  

 

Concluding remarks 

These data provide novel insight into the regulation of striatal ensemble size and 

excitability in encoding cocaine-associative memories. Examining the complex 

                        184



interaction of these factors which underlie memory encoding will be key to further 

understanding the contribution of drug-associated environments in addiction-related 

behaviours. Although the behavioural procedure used here is highly useful for studying 

cocaine-environment associations, it may not model certain features of drug addiction 

(e.g. drug-seeking). In future investigations, we may perform similar 

electrophysiological studies by using procedures that better model drug relapse, such 

as the contextual renewal of drug-seeking (Crombag et al 2008).  
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6.1. Summary of Results 

6.1.1. Differences in NAc shell ensemble neuroadaptations between 
Pavlovian Approach and conditioned locomotion experiments 
 

We aimed to identify adaptations occurring selectively on neurons activated following 

exposure to food (sucrose) or drug (cocaine) associated stimuli, and their regulation 

following changes in associative strength. These studies demonstrate dynamic 

adaptations in the intrinsic and synaptic excitability of neurons activated following 

exposure to appetitive cues. These observations have important implications for our 

understanding of how the brain might encode highly detailed learned associations 

between rewards and environmental cues which predict their availability. 

 

Excitability differences in neurons activated following exposure to a sucrose-

associated cue, and extinction 

In chapter 2, following exposure to a sucrose-associated CS, the number of Fos-

expressing neurons in the NAc shell and OFC was increased. In the NAc shell, the 

number of activated D1R- or D2R-containing medium spiny neurons was similar, while 

in the OFC the majority of activated neurons were pyramidal cells. We observed that in 

the NAc shell of Fos-GFP mice, activated (GFP+) neurons were more excitable than 

surrounding, non-activated (GFP–) neurons, due to an increase in the input resistance 

of GFP+ cells.  In chapter 3, we also observed that the synaptic strength of these 

GFP+ neurons was increased, as the frequency of spontaneous EPSCs was 

potentiated in the absence of facilitated presynaptic release probability, suggesting an 

increase in the number of functional synapses. In the OFC, we observed no selective 

increase in the intrinsic excitability of neurons activated following exposure to the food-

associated CS.  
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Following extinction of the sucrose-cue association, exposure to the CS no longer 

increased the number of activated neurons NAc shell or OFC compared to control 

animals. Furthermore, in the NAc shell, the excitability of GFP+ neurons was no longer 

enhanced compared to surrounding GFP– neurons. 

Hence, following exposure to a sucrose-associated CS the excitability of activated NAc 

shell was potentiated, while this potentiation was attenuated following weakening of the 

CS-US association through extinction learning. 

 

Excitability differences in neurons activated following exposure to a cocaine-

associated context, and extinction 

In chapter 4, We next investigated the nature of neuronal ensembles activated in the 

striatum (NAc shell, NAc core and dorsal striatum) following exposure to drug (cocaine) 

associated stimuli. Following exposure to a cocaine-associated environment, the 

number of activated neurons was increased in the NAc shell. However, the intrinsic 

excitability of GFP+ neurons in the NAc shell was not increased compared to the 

surrounding, GFP– neurons. Similar findings were observed in DS. Interestingly, while 

there was no increase in the number of activated neurons in the NAc core, the GFP+ 

neurons were significantly more excitable than GFP– neurons. This was due to a 

decrease in the excitability of the GFP– neurons determined by a decrease in the input 

resistance and increase in the afterhyperpolarisation.  

Following extinction of the cocaine-environment association, the number of neurons 

activated in the NAc shell and DS was no longer increased compared to baseline 

controls. Similarly, there was no difference in the excitability of GFP+ and GFP– 

neurons in these brain areas. In the NAc core however, while there still no increase in 

the number of activated neurons in the NAc core the increase in the excitability of 

GFP+ neurons persisted. Interestingly, following extinction, this relative increase in the 
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excitability of GFP+ neurons was determined by an increase in the input resistance of 

GFP+ neurons.  

 

Impact Summary 

Appetitive associations are thought to be encoded by neuronal ensembles activated 

across motivationally-relevant brain areas (Cruz et al, 2013; Josselyn et al, 2015; 

Warren et al, 2017). Through selective sampling of the neurons activated by reward-

associated cues, we were able to reveal unique neuroadaptations on these ensembles. 

We demonstrate that following exposure to both food and drug-associated cues, the 

intrinsic and synaptic excitability of ensembles activated in the ventral striatum is 

increased. Interestingly, this increase was not universally observed across 

motivationally relevant brain areas, and was differentially regulated between food and 

drug rewards following extinction. These novel data suggest that neuroadaptations on 

neuronal ensembles are dynamically regulated following appetitive conditioning as a 

function of brain area and conditioning paradigm. Further investigations into the precise 

function of these selective neuroadaptations may elucidate their potential role in 

memory encoding. 

 

5.2. Methodological considerations 

5.2.1. Differences between Pavlovian approach and conditioned locomotion 

experiments 

NAc Shell GFP+ neuron excitability is differentially regulated following 

Pavlovian approach and conditioned locomotion 

We observed an increase in the excitability of NAc shell neurons activated following 

exposure to sucrose, but not cocaine-associated stimuli. This dissimilarity in NAc shell 
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ensemble excitability between experiments may be due to differences in the reinforcer 

and/or conditioning paradigm used. The NAc shell appears to play distinct functional 

roles in the expression of Pavlovian approach behaviours to a food reward and 

conditioned locomotion to a drug-associated context. Blaiss and Janak (2009) 

successfully disrupted Pavlovian approach behaviours using GABA agonist inactivation 

of the NAc shell. However, 6-OHDA lesions of the NAc shell do not attenuate 

expression of condition locomotion (Sellings and Clarke, 2006). As such, we may not 

have observed similar changes in the excitability of NAc shell GFP+ neurons due to 

differences in functional engagement of the NAc shell between conditioning paradigms. 

Differences in the rate of learning between food or drug reinforcers may also determine 

the striatal areas recruited to processes associative cues. Pavlovian conditioned 

stimulus-response behaviours encoded by more dorsal striatal regions are more rapidly 

acquired using drug reinforcers than food (Belin and Everitt, 2008; Miles et al, 2003). 

Thus it is possible that the NAc core became more rapidly engaged in processing 

cocaine-associated stimuli while the influence of the NAc shell was reduced. It would 

be of interest to assay ensemble excitability at various time-points during cocaine-

environment conditioning to determine whether a ventral-dorsal striatum transition in 

ensemble excitability may be observed. 

Finally, conditioned sucrose availability to a discrete CS, but cocaine administration 

with a contextual cue. Encoding of contextual and discrete cues is subserved by 

different striatal brain areas (Chaudhri et al, 2010) and encoded through different NAc 

afferents such as the hippocampus and amygdala (Ito et al, 2006; Shiflett and Balleine, 

2010). Thus, differences in the excitability of NAc shell GFP+ neurons may be directly 

due to the conditioning procedure used. Thus, where possible, similar conditioning 

paradigms must be used when comparing food and drug rewards; this is discussed in 

more detail below.  
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Increased excitability of NAc ensembles is attenuated following extinction of 

Pavlovian approach but not conditioned locomotion 

We observed a persistent increase in the excitability of NAc ensembles following 

extinction of the cocaine-context association. However, following extinction of a 

sucrose-CS association the excitability increase in GFP+ MSNs was completely 

attenuated. Upon cessation of use, cocaine causes significant withdrawal-induced 

neuroadaptations which are not observed following food consumption (Loweth et al, 

2014; Self et al, 2004). For example, withdrawal from cocaine induces significantly 

depression of NAc MSN excitability while sucrose ingestion does not (Hopf et al, 2010). 

Furthermore, exposure to cocaine or cocaine-associated stimuli appear to reverse 

withdrawal induced adaptations following cessation of cocaine used (Hotsenpiller et al, 

2001; Mu et al, 2010). Thus exposure to the locomotor chamber may dynamically 

interact with withdrawal-induced neuroadaptations in a unique manner following 

cocaine extinction (Schmidt et al, 2001; Self et al, 2004) which may profoundly alter the 

intrinsic excitability of NAc neurons.  

 

Issues with assessing the affective state of animal models 

At test, the measurement of a behavioural response is typically used to infer that an 

association between the CS and US has been formed. However, it is impossible to 

directly measure any accompanying affective states or cognitive processes that CS 

exposure may elicit. In some animals the CS itself may be directly rewarding (i.e. sign 

trackers) while others may primarily direct their attention to the sucrose-delivery 

magazine (i.e. goal trackers) (Boakes, 1977). Alternatively, the CS may elicit recall of 

an explicit representation of the US (stimulus-stimulus relationship) or may elicit only 

the initiation of a habitual food-seeking response (stimulus-response relationship) 

(Mackintosh, 1974). Thus it is important to consider that the neurons we are recording 
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from following CS exposure may be underlying varied possible affective or cognitive 

processes which require extensive additional controls to investigate (Rescorla, 1967).   

This issue is also relevant to the interpretation of the condition locomotion studies. It 

may be considered that exposure to a cocaine-associated context elicits a positive 

affective state associated with drug administration, and which in some settings may 

potentiate cocaine seeking (Fuchs et al, 2008). However, while humans report a 

“appetitive” affective state following exposure to drug cues (e.g. increased heart rate, 

craving) (O’Brien, 1998; Volkow, 2006) this may not be the case in the rodent model. 

For example, increased locomotion may also be observed following exposure to an 

appetitive CS due to frustration at the lack of expected reward (Amsel, 1958).  

As such, it is important to consider that our measured behaviour can only inform us that 

an association has been formed between CS and US. The nature of this association 

however is less clear, as we cannot directly measure the animal’s affective state during 

the expression of these behaviours. However, additional control experiments can be 

used to inform with more detail the precise nature of the CS-US association. For 

example, recently Sieburg (2017) working in our lab, has shown that our Pavlovian 

approach paradigm is sensitive to reinforcer devaluation, suggesting that CS exposure 

is eliciting a representation of the US.  

 

Recommendations for future studies 

In future experiments, similar conditioning paradigms could be used to more effectively 

compare the neuroadaptations observed following learning with food and drug rewards. 

For example, sucrose and cocaine may be conditioned to contextual stimuli in a similar 

way, with conditioned locomotion also observed following exposure to a food-

associated context (Ito et al, 2005). However, conditioning cocaine to a discrete cue in 

a comparable way to food is challenging.  Discrete cues may be paired with 
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intravenous infusion of cocaine, however due to the half-life of cocaine, it is necessary 

to use longer CS presentations (Hotsenpiller et al, 2002) or space conditioning trials 

between very long inter-trial intervals (Kearns and Weiss, 2004; Uslaner et al, 2006). 

Furthermore when conditioning with intravenous drug administration, the conditioned 

response cannot be goal-directed due to the passive infusion of cocaine (Kearns et al, 

2004); conditioned responses measured following conditioning with cocaine to a 

discrete CS are usually increases in locomotor activity, or sign tracking behaviours 

(Hotsenpiller et al, 2002; Uslaner et al, 2006). These can in part be mediated by 

changes to procedure; for example, direct infusions of sucrose to the mouth of rodents, 

to reduce approach behaviours to a reward delivery site, can be made using intraoral 

cannula placement (Cone et al, 2016) while utilising a sucrose-cocaine liquid reward 

may permit approach behaviours when conditioning with cocaine (Miles et al, 2003). 

While a perfect comparison between food and drug learning may be problematic, the 

present studies highlight the importance of comparing drug-induced neuroadaptations 

to those observed under natural reward learning. Psychoactive drugs of abuse elicit 

many unique and complex changes to the neurocircuitry of motivationally relevant brain 

areas in a manner not observed using natural rewards (Lu et al, 2003; Zombeck et al, 

2008). Only by comparing the neuroadaptations observed following conditioning with 

drug reinforcers to natural rewards can we distinguish pathological drug-induced 

neuroadaptations from those which underlie normal learning processes. 

 

6.2.2. Further subdivision of striatal and PFC neurocircuitry 

We have utilised the activity marker ‘Fos’ to identify neuronal populations based upon 

their putative activation history following exposure to conditioning cues. However, 

neurons in the striatum and PFC may be further divided based on their molecular 

phenotype and connectivity. Failure to account for such differences may occlude 
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detection of subtype selective adaptations important in the encoding of associative 

memories.  

 

The Striatum 

D1R- and D2R-expressing MSNs not only display different molecular and anatomical 

properties, but also demonstrate differences in baseline intrinsic excitability (Gertler et 

al, 2008; Planert et al, 2013). We did not assay the population of D1R/D2R GFP+ 

neurons following conditioned locomotion experiments. Selective activation of D1-

containing MSNs is observed following psychostimulant administration (Bertran-

Gonzalez et al, 2008; Graybiel et al, 1990), suggesting it is possible the differences we 

observed in GFP+ neuron excitability following conditioned locomotion may be due to 

shifts in the activated neuronal populations.  

Furthermore, we did not distinguish between D1R- or D2R-containing MSNs during 

electrophysiological recording experiments. D1R activation typically leads to increases 

in intrinsic excitability, while D2R activation leads to decreased excitability (Planert et 

al, 2013). Thus it is possible that intrinsic excitability is differentially regulated in D1R 

and D2R MSNs following associative conditioning. In future studies it is crucial to 

identify the phenotype of GFP+ MSNs following electrophysiological recordings. Post-

hoc identification of genetic phenotype can be accomplished by aspirating cell contents 

into the recording electrode then identifying gene expression using single-cell PCR 

(Planert et al, 2013). Thus in future studies, it would be beneficial to undertake single-

cell PCR identification of striatal MSN phenotype following electrophysiological 

recording.  
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The PFC 

Pyramidal neurons in the prefrontal cortex, including the OFC, are highly 

heterogeneous and may be subdivided into numerous classes based on their firing 

pattern and expression of certain membrane currents (Cao et al, 2009; Degenetais et 

al, 2002; Hedrick and Waters, 2012; Lee et al, 2014). Pyramidal subtypes broadly 

include regular spiking neurons (characterised by a constant inter-spike interval and 

lack of spike frequency adaptation) and bursting neurons (characterised by an initial 

burst of 2-3 action potentials followed by a spike train demonstrating firing adaptation) 

(Hedrick et al, 2012). However, varied classification systems are used across studies 

(Cao et al, 2009; Degenetais et al, 2002). When recording from the OFC we observed 

many pyramidal neurons exhibiting distinct firing patterns, however we did not record 

from a sufficient number of neurons to permit detailed subdivision of these pyramidal 

populations. It is possible that we observed no change in the excitability of GFP+ 

neurons in the OFC as by analysing all pyramidal subtypes together we may have 

occluded subtype-selective changes in excitability. Thus in future studies it will be 

necessary to record from a sufficient number of neurons to permit subtype-specific 

analysis. 

 

6.2.3. We did not distinguish the cause of activation in GFP+ neurons 

visualised following Pavlovian approach and conditioned locomotion test 

We have recorded from GFP+ MSNs activated during the recall of an appeitive 

association or extinction memory. In vivo electrophysiology experiments demonstrate 

that NAc neurons may encode many faucets of the conditioned experience, including 

training context exposure, CS presentation, and execution of goal directed instrumental 

behaviours (West and Carelli, 2016). As such, it is not clear whether the 

neuroadaptations we observed occur on neuron populations activated by the 
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conditioning environment, CS presentation, CR expression, or combinations of these. 

Due to the tempral congruency between CS presentation and the expression of a 

conditioned response, visualsing neuronal populations activated specifically by CS, 

CR, or both may be difficult (Day et al, 2006). Recently, new technologies permit the 

tagging of neurons regulated by light and high intracellualr calcium levels, allowing the 

visualisation of neuronal populations activated during specific behavioural epochs. 

These include the FLARE system, in which light exposure concurrent with high 

intraceullar calcium levels induces translocation and activation of a transcription factor, 

permitting the expression of specific transgenes in neurons activated during 

experimenter-determined periods (Wang et al, 2017). Similarly, in the CAMPARI 

system, light exposure alongside high intraceullar calcium levels permits the 

photoconversion a green flourscent protein to red (Fosque et al, 2015). These new 

techniologies will allow precise identification of neuronal subpopulations activated 

during specific epochs of the conditioned response. 

 

6.3. Mechanisms and function of increased ensemble excitability 

6.3.1. Increased input resistance in GFP+ neurons 

We observed increases in the input resistance of GFP+ neurons following recall of a 

sucrose-cue association and cocaine extinction memory. Interestingly, increases in 

GFP+ input resistance have also been observed in the PFC following instrumental 

conditioning with sucrose (Whitaker et al, 2017; unpublished observations). This 

suggests that increases in GFP+ excitability observed following appetitive conditioning 

appears to preferentially accomplished by adaptations to the input resistance.  

Previously, changes in the input resistance has been observed in sensory neurons 

directly underlying the classical conditioning of the siphon withdrawal reflex in Aplysia 

(Antonov et al, 2001) and following LTP induction protocols in the hippocampus 

                        199



(Campanac et al, 2008; Xu et al, 2005). The possible mechanisms of input resistance 

changes in the present studies and functional implications for memory encoding are 

discussed below. 

 

I/V curve shifts at hyperpolarised potentials: inward rectifiers (KIR) and leak 

(KCNK) channels 

The input resistance of MSNs is primarily regulated by potassium channel function 

(Nisenbaum and Wilson, 1995). Inwardly rectifying potassium channels (KIR) and 

potassium leak channels (KCNK) regulate the voltage response of neurons at 

hyperpolarised (KIR and KCNK) and depolarised (KCNK only) potentials (Goldstein et 

al, 2001; Nisenbaum et al, 1995). We observed shifts in the I/V curve at hyperpolarised 

potentials, suggesting adaptations in both KIR and KCNK function. However, we did not 

observe concurrent changes in the resting membrane potential which is also regulated 

by these channels. How might KIR or KCNK adaptations result in adaptations to 

neuronal input resistance without simultaneous changes in the RMP? Campanac et al 

(2008) similarly observed increases in Rin in the absence of RMP alterations (following 

hippocampal LTP), caused by a decrease in Ih function, a potassium current which also 

regulates both membrane resistance and the RMP. They observed that the selective 

regulation of Ih channels in the dendrites, but not the cell soma, led to alterations in the 

input resistance in the absence of RMP changes. In the striatum, KIR and KNCK are 

expressed in dendrites and regulate dendritic excitability (Cazorla et al, 2012; Pruss et 

al, 2003). Thus, we may have observed selective adaptations in dendritic ion channel 

function in GFP+ neurons following associative conditioning. Unfortunately, the 

anatomy of the striatum makes dendritic recordings extremely difficult. While the 

function of MSN dendrites can be elucidated using glutamate uncaging studies in which 

the neurotransmitter can be selectively released from caging molecules using 

photostimulation targeted to specific neuronal compartments (Plotkin et al, 2011), the 
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technology required to assay the input resistance of these dendrites is not currently 

available.  

 

I/V curve shifts at depolarised potentials: Voltage-gated potassium channels 

Voltage-gated potassium currents also regulate voltage responses at depolarised 

potentials. These are primarily determined by A-type, delayed rectifier and KCNQ 

channels which are located on the cell soma, dendrites and axon (Fransen and 

Tigerholm, 2010; Manis, 2014). Voltage-gated potassium channels are highly diverse 

but typically activate at subthreshold voltages (A-type -10 mV observed in medium 

spiny neurons; Tkatch et al, 2000) (KCNQ -27 to -43 mV observed in the HEK cells; 

Kim et al, 2016). Thus while these channels may play a role in I/V curve shifts 

observed in GFP+ neurons at depolarised potentials, they cannot account for changes 

at more hyperpolarised potentials. As such, it is likely a combination of voltage-

activated and other channels, such as KIR and KNCK, that regulate the input-output 

resistance of GFP+ neurons at both hyperpolarised and depolarised potentials.  

 

Why might GFP+ neurons modify excitability through Rin? 

Modulation of intrinsic excitability following associative learning has been observed in 

randomly selected neurons to occur through many other mechanisms, including 

changes to the AHP (Moyer et al, 1996; Santini et al, 2008). Why might changes in 

GFP+ neuron excitability occurs primarily through changes in the input resistance? 

One unique consequence of altering input resistance is that it modulates transmission 

throughout the dendritic tree. Dendrites compute synaptic input in a non-linear fashion 

determined by input resistance and capacitance, regulated by ion channel expression 

and dendrite morphology (Stuart and Spruston, 2015). Voltage attenuation along 

dendrites is significant (Stuart and Spruston, 1998), thus synaptic transmission can be 
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robustly facilitated by improving the length-constant of dendrites through increasing the 

input resistance (Stuart et al, 2015). In GFP+ neurons following associative learning, 

changes to the input resistance may enhance transmission between nearby synapses 

along specific dendritic pathways and facilitate input-specific plasticity (Hyun et al, 

2013). This may be especially important in striatal MSNs, which integrate a large 

number of glutamatergic afferents. Future studies may utilise identification of Fos-

expressing neurons alongside high-resolution imaging of dendritic trees using 2-photon 

imaging and Ca2+ dyes (MacAskill et al, 2014). 

 

6.3.2. Generalised changes to the AHP and input resistance of GFP– neurons  

Decreases in intrinsic excitability and long-term depression (LTD) 

We also observed decreases in the excitability of surrounding, non-activated GFP– 

neurons following a cocaine extinction memory. This has similarly been observed this 

following acquisition of instrumental responding for sucrose (Whitaker et al, 2017; 

Unpublished observations). Thus it would appear in some instances, the excitability of 

surrounding, GFP– is decreased following associative learning, determined by changes 

in the AHP and input resistance (Ziminski et al 2017a; Ziminski et al 2017b; Whitaker, 

2017; Unpublished observations). This is in accordance with previous studies 

observing regulation of AHP in randomly selected neurons following associative 

learning (Moyer et al, 1996; Santini et al, 2008). 

Long-term depression of neuronal transmission is commonly associated with changes 

at the synapse, though long-term depression of intrinsic excitability has also been 

observed in Purkinje cells of the cerebellum (Shim et al, 2017). Shim et al (2017) 

utilised an LTD induction protocol in the cerebellum, in which concurrent stimulation of 

parallel fibre and climbing fibres (an error signal in the cerebellar motor circuit) results 

in LTD of the Parallel fibre to Purkinje cell synapses. They observed that the input 
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resistance of Purkinje neurons was significantly decreased following LTD induction, in 

a manner that was dependent on Ca2+ and PKC. Thus stimulation protocols which 

induce synaptic LTD may also induce intrinsic LTD, suggesting that a decrease in the 

excitability of GFP– neurons may be determined by LTD-like processes. 

 

In the striatum, LTD is triggered by mGluR1 and dopamine activation 

Many different forms of LTD have been observed in the brain. Hippocampal LTD at the 

Schaffer collateral pathway may be induced by low-frequency stimulation and is 

NMDAR dependent, whereas cerebellar LTD is dependent on mGluR1 receptors 

(Daniel et al, 1998; Luscher and Malenka, 2012). In the dorsal striatum, LTD can be 

induced by tetanic stimulation of cortical afferents (Calabresi et al, 1992) and requires 

concurrent  mGluR1, D1 and D2 receptor activation, but is NMDAR-independent. 

mGluR1 receptors are necessary for decreases in intrinsic excitability following some 

forms of LTD in the hippocampus through modulation of the Ih current (Brager and 

Johnston, 2007) and mGluR1 agonist application reduces excitability in the PFC 

through modification of sodium channels (Carlier et al, 2006). In both instances, PKC 

activation is critical (Daniel et al, 1998). Thus decreases in GFP– excitability following 

appetitive conditioning may be regulated in part by mGluR1 transmission. 

Dopamine receptor activation appears to be crucial for striatal LTD (Calabresi et al, 

1992), however the effect of dopamine on the excitability of MSNs is complex and 

multifaceted. D1-receptor antagonism has been observed to increase cell membrane 

excitability through depolarisation of the membrane voltage (Vm) through a cAMP-

dependent mechanism in vitro (Podda et al, 2010). O'Donnell and Grace (1996) 

applied apomorphine, a nonspecific D1/D2 agonist as well as selective D1 and D2 

agonists to NAc slices during whole cell recording of membrane voltages. They 

observed that apomorphine application led to a Vm depolarisation in a majority of 
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neurons, however crucially, apomorphine application lead to a significant decrease in 

MSN firing due to an increase in the firing threshold. Application of D1 or D2 receptor 

agonists alone had no effect on membrane voltage nor overall excitability. This 

suggests that generalised activation of dopamine receptors in the NAc leads to 

hyperpolarisation of MSNs. Interestingly, dopamine has been observed to result in 

additional hyperpolarisation of down-state neurons while simultaneously stabilising the 

up-state of active neurons (O'Donnell, 2002). Supporting this, in vitro application of 

dopamine to NAc MSNs hyperpolarises these neurons unless the cell membrane 

potential is artificially raised (Perez et al, 2006). This suggests that following exposure 

to appetitive cues, neurons which are not significantly activated during dopamine 

release may be stabilised to the down-state and undergo LTD-like plasticity (O'Donnell, 

2002). 

 

6.4. Under what conditions might  GFP+ neurons become more excitable? 

Due to the kinetics of Fos-GFP expression, we assayed the excitability of neurons 

activated by exposure to appetitive cues shortly following activation. This means that 

we cannot determine at what time point the relative increased excitability of GFP+ 

neurons was increased. The enhanced excitability of GFP+ neurons may be an 

inherent property, have been potentiated during training, or transiently occur following 

the test session. Below, these possibilities are each explored.  

GFP+ neurons may be recruited to ensembles due to enhanced baseline 

excitability 

Previous studies have suggested that neurons may be recruited to memory encoding 

ensembles based on pre-existing levels of intrinsic excitability. Han et al (2007) 

demonstrated that artificially increasing the excitability of  a subset of lateral amygdala 

neurons through elevation of CREB increases the likelihood of these neurons been 
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recruited to a fear-memory encoding ensemble. Inhibition of these excitable CREB 

expressing neurons following fear conditioning is sufficient to disrupt fear memory 

recall (Han et al, 2009). Later studies which manipulated intrinsic excitability directly 

(through modulation of potassium channels) demonstrated that it was the excitability-

modulating properties of CREB which were critical (Yiu et al, 2014). Furthermore, 

Gouty-Colomer et al (2016) observed that a population of Arc-expressing neurons in 

the lateral amygdala display increased baseline excitability and are preferentially 

recruited into a fear memory trace. This suggests that memory allocation based on 

relative levels of excitability may occur under physiological conditions. They also 

demonstrated, using an Unpaired group, that neurons with increased baseline 

excitability are more likely to be recruited into any activated ensemble, not necessarily 

a memory encoding ensemble (although it appeared they may be recruited to a 

memory encoding ensemble with higher likelihood). This suggests that the increase in 

GFP+ neuron excitability we observed following memory recall may be because these 

neurons are inherently excitable.  

However, a number of lines of evidence suggest that in our studies, neurons included 

in Fos-GFP ensembles do not display baseline increases in excitability: 

 1) We have demonstrated many instances in which GFP+ populations activated 

following memory recall are not more excitable than surrounding neurons (for example, 

in the OFC or NAc shell following sucrose or cocaine memory retrieval, respectively). 

This is observed even in brain areas which demonstrated increased Fos expression 

following the test session. 

2) NAc shell GFP+ neurons recording in behaviourally naïve mice are not more 

excitable than surrounding neurons (Ziminski et al 2016, unpublished observations), 

suggesting GFP+ neurons spontaneously activated under baseline conditions are not 

more excitable than surrounding neurons. 
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3) We have also observed in a recent study that, on day 1 of acquisition of a sucrose-

CS association, the GFP+ neurons of Paired, but not Unpaired, mice in the anterior 

cingulate cortex are more excitable than surrounding neurons (Ziminski et al 2016, 

unpublished observations). This suggests that excitable neurons are not recruited into 

activated ensembles based on prior baseline excitability, but rather that associative 

conditioning induces an excitable phenotype in ACg neurons.  

Together, these data suggest that in the striatum and PFC, GFP+ neurons may not be 

recruited to a memory encoding ensemble based on baseline differences in intrinsic 

excitability. It is clear from fear conditioning studies in the lateral amygdala that 

excitable neurons may be preferentially recruited into memory encoding ensembles 

due to baseline differences in excitability before training (Gouty-Colomer et al, 2016; 

Han et al, 2007; Han et al, 2009; Zhou et al, 2009). Nonetheless, while our data 

support the notion that increases in excitability may bias allocation of a neuron to a 

memory encoding ensemble, it does not appear that baseline levels of MSN excitability 

before training influences allocation to neuronal ensembles prior to appetitive 

conditioning.  

 

GFP+ neuron excitability may be transiently increased following the test session 

Alternatively, it is possible that the excitability of neurons activated by appetitive cues in 

the striatum was transiently increased following activation in the test session. This 

could be due to reconsolidation processes following memory recall (Dudai, 2006) or 

related to the change in CS-US contingency as tests were conducted under extinction 

conditions (Schultz et al, 1997).  

Why might certain sets of GFP+ neurons, but not others, demonstrate increased 

excitability following appetitive cue exposure? The striatum is a unique brain area 

which receives significant, convergent glutamatergic inputs from multiple cortical and 
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subcortical areas through a single-neuron layer (Tepper and Plenz, 2006). It appears 

that prolonged depolarisation of MSNs requires synchronous activity from afferents of 

different brain areas. Medium spiny neurons exhibit bistable membrane fluctuations 

between depolarised “up-states” and hyperpolarised “down-states”. Striatal up-states 

are dependent on synaptic drive, primarily from the hippocampus (O'Donnell and 

Grace, 1995) (though see Gruber and O'Donnell, 2009). Interestingly, PFC inputs are 

significantly influenced by MSN up-state/down-states and rarely induce firing during 

down-states, suggesting the influence of PFC input into NAc MSNs is gated by 

hippocampal drive. Furthermore, amygdala stimulation alone rarely induces firing in 

postsynaptic MSNs. These observations suggest that NAc MSNs may express Fos 

following synchronous activity from at least two glutamatergic projections areas, to 

permit sufficient membrane depolarisation inducing NMDAR-mediated transmission 

and extracellular-regulated kinase (ERK) pathway activation. 

While synchronous glutamatergic stimulation and ERK activation in MSNs may be 

required for Fos expression in NAc MSNs, this alone appears insufficient to induce 

changes in the intrinsic excitability of these neurons. Evidence suggests that dopamine 

release concurrent with glutamatergic transmission may be important in the regulation 

of neuronal excitability. Both D1-receptor and NMDAR antagonists block LTP induction 

the NAc (Floresco et al, 2001; Kung et al, 2007). Furthermore, co-administration of low 

doses D1 and NMDA receptor agonists to cortical neurons results in synergistic 

increases in intrinsic excitability which are larger than when even large doses are used 

in isolation (Wang and O'Donnell, 2001). This suggests that combined glutamatergic 

and dopaminergic transmission may be required to induce excitability changes in NAc 

MSNs (O'Donnell, 2002). Interestingly Yuan et al (2002) demonstrate that ERK 

regulates A-type potassium channel function, increasing the input resistance of distal 

dendrites, in a manner dependent on PKA or PKC phosphorylation of ERK. Thus ERK 

may be a point of convergence between DA-receptor linked PKA/PKC transduction 
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pathways regulating neuronal excitability and NMDAR/CAMKII pathways crucial to the 

expression of Fos (Cruz et al, 2013; Yuan et al, 2002).  

If synchronous glutamatergic and dopaminergic activity is required for excitability 

changes in Fos expressing neurons, this may explain why we did not observe universal 

changes in GFP+ neuron excitability. Subregion specific differences in Paired mice 

following conditioned locomotion may be due to differences in inherent afferent 

connectivity and dopamine release kinetics between areas (Brog et al, 1993; Haber, 

2011; Ito et al, 2000; Salgado and Kaplitt, 2015; Voorn et al, 2004). For example, we 

observed an increase in intrinsic excitability of NAc core neurons, but not NAc shell 

neurons, following exposure to cocaine associated stimuli. Interestingly, exposure to 

cocaine-associated CS has been observed to selectively increase DA transmission in 

the NAc core but not NAc shell (Ito et al, 2000). Future experiments should observe the 

effects if dopamine antagonism on the excitability of GFP+ neurons following exposure 

to appetitive cues. 

 

The enhanced excitability may result from repeated activation neurons during 

training 

Neurons activated during training are more likely to be activated during the test session 

than other less activated neurons; thus it is possible that we recorded from a population 

of neurons that had undergone long-term changes to intrinsic excitability during 

conditioning. Neurons repeatedly activated by cocaine administration in a locomotor 

chamber are more likely to be reactivated during a test session where either cocaine or 

saline is administered in the cocaine-paired environment (Mattson et al, 2008). 

Similarly, neurons activated during fear conditioning are more likely to be activated 

during the retrieval test session (Reijmers et al, 2007). Thus it is possible appetitive 
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conditioning induces persistence increase in excitability in a stable ensemble activated 

during training and test.  

Future studies may utilise the Fos-tTA x TRE-H2BGFP mouse to record from neurons 

activated during training under baseline conditions. The Fos-tTA mouse utilises the 

tetracycline transactivator (tTA) system to permit control over the timing of transgene 

expression in recently activated neurons. tTA is an engineered fusion protein which is 

inactivate in the presence of the antibiotic doxycycline, but when active binds TetO 

operator sequences (usually combined with a promotor into tetracycline response 

elements (TRE)) permitting downstream gene expression in experimentally defined 

time windows. Researchers have combined the Fos-tTA mouse with the TRE-H2BGFP 

mouse (H2BGFP is retained in neurons for weeks following expression) permitting 

visualisation of Fos-expressing neurons in vivo or ex vivo weeks after neuronal 

activation (Tayler et al, 2013).  

Future studies may utilise this mouse model to probe the excitability of GFP+ neurons 

activated after both conditioning and test sessions at rest. This would determine 

whether the excitability changes we observed are induced during training or at test and 

the time course of these adaptations.  

 

6.5. Conclusions and Future studies 

We have demonstrated that neuroadaptations to intrinsic and synaptic excitability occur 

selectively on neurons activated following exposure to reward-associated stimuli. Such 

changes which may serve to enhance neurotransmission between specific sets of 

neurons have long been hypothesised to underlie the encoding of memory (Daoudal 

and Debanne, 2003; Hebb, 1949; Malenka and Nicoll, 1999). To understand the role of 

the observed adaptations in memory encoding it is necessary to manipulate them 

selectively in activated neurons. Possible techniques which may be utilised to directly 
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interfere with the physiology and function of Fos-expressing neurons are explored 

below. 

 

Manipulations of relevant cell populations 

Insertion of transgenes downstream of the Fos promoter region has been used to 

permit targeted ablation of Fos expressing ensembles. Insertion of the reporter gene 

LacZ (which encodes the reporter enzyme β-galactosidase) downstream to the Fos 

promotor leads to β-galactosidase expression in recently activated neurons. The 

Daun02 method (Koya et al, 2009) utilises the prodrug Daun02, which is converted to 

daunomycin in the presence of β-galactosidase. Daunomycin inhibits calcium-

dependent action potentials and eventually kills neurons in which it is expressed 

(Farquhar et al, 2002; Santone et al, 1986), thus permitting selective destruction of 

Fos-expressing ensembles. 

Many studies have demonstrated that the selective lesioning of neuronal ensembles is 

sufficient to disrupt the expression of conditioned behaviours. For example, context 

induced renewal of cocaine- and heroin-seeking behaviour (Bossert et al, 2011; Cruz et 

al, 2014) is reduced when ensembles activated following exposure to the conditioning 

context are selectively lesioned following extinction. Similarly, incubation of heroin 

craving following withdrawal (Fanous et al, 2012) is attenuated after ablation of 

neurons activated in response to drug-associated cues. Thus it is next important for us 

to selectively destroy the neuronal ensembles activated following the expression of 

Pavlovian approach and conditioned locomotion to determine the functional role of 

ensembles located in distinct striatal subregions. 

Daun02 can be used to elucidate what is encoded by neurons activated during 

behavioural tests under extinction. Ensembles activated under these conditions could 

potentially encode recall of the associative memory, or rather consist of neurons 
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activated during extinction learning.  Warren et al (2016) selectively lesioned neurons 

activated following either instrumental responding for a food reward, or during 

extinction of the conditioned response. They observed that selectively ablating neurons 

activated following reinforced instrumental responding reduced later food-seeking 

behaviour, while targeting neurons activated following extinction increased food 

seeking-behaviour. This was later supported by Suto et al (2016), who using a 

CS+/CS- omission paradigm observed that ablating CS+ activated neurons decreased 

food seeking behaviours, while destruction of CS- activated neurons increased food 

seeking. Thus the Daun02 method can be used to permit further insight into the precise 

functional role of NAc ensembles activated during the behavioural tests. 

 

Targeted reversal of observed neuroadaptations 

Use of the Fos-tTA mouse permits virus-mediated expression of transgenes of interest 

directly to Fos-expressing ensembles. For example, Liu et al (2012) expressed 

channelrhodopsin-2 in neurons selectively activated following contextual fear 

conditioning, permitting optogenetic activation of this neuronal population. They 

observed freezing in mice when the neurons activated during fear conditioning were 

reactivated in the training context, however not in a different context distinct from that in 

which conditioning had taken place. Thus, optogenetic control of Fos-expressing 

neurons permits manipulation of ensembles with tight temporal control (allowing, for 

example, the inhibition of neurons only during CS presentation) (Tovote et al, 2015).  

Intrinsic excitability may also be selectively manipulated in GFP+ neurons by virus-

mediated expression of ion channels or regulatory proteins. For example, 

overexpression of potassium channels such as the KIR2.1 can be used to manipulate 

the excitability of target neurons (Dong et al, 2006). Additionally, interference with the 

precise molecular processes which lead to adaptations in excitability and synaptic 
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strength might be undertaken following identification of the precise ion channels 

regulated in GFP+ neurons utilising single-cell quantitative PCR (Fuzik et al, 2016). For 

example, expression of dominant-negative ion channels or kinases involved in synapse 

activation and proliferation selectively in specifically in activated ensembles may be 

used to reverse the excitability and synaptic changes observed in the present studies 

(Halterman and Federoff, 1997; Hayashi et al, 2004; Schiemann et al, 2012).  

 

Conclusion 

We have demonstrated adaptations to intrinsic and synaptic excitability selectively on 

neurons activated following appetitive memory recall. However, at present the 

functional relevance of these adaptations for memory encoding is unclear. To gain 

further insight into how NAc ensembles may encode associative memories, it would be 

advantageous to characterise a number of parameters surrounding Fos-ensemble 

formation and maintenance. Thus, it will be important to understand the time course of 

excitability changes in these activated ensembles, the precise chain of physiological 

and molecular events which lead to their formation, and their maintenance during 

memory recall. Due to the rapid growth in the sophistication of investigative 

experimental techniques, answering such questions is now possible. 
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Appendix A; Individual data  
Chapter 3.  
Behaviour (Figure 4):  
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Appendix B 
Animal numbers and outlier analysis 
Chapter 3. 

Histology (IHC): Behaviour – 20 animals per group; IHC – Paired, lost 2 brains to poor 
perfusion. Unpaired – lost 2 brains during slicing, 1 mice excluded as staining did not 
work (no visible Fos anywhere). Data Analysis – Paired: 1 2 standard deviation (SD) 
outlier excluded (not excluded by Grubbs test). Re-run t-test including the Paired SD 
outlier, significant p=0<0.05, OFC p<0.05. 

Electrophysiology – Pavlovian Approach, NAc: Behaviour - 23 mice run total – 
Initially 3 mice lost (1 house light broke so mouse was run in the dark for the entire 
experiment, 1 mis-genotype, 1 lost during slicing. Paired/Unpaired 12/8 remaining. 
Paired mice – 2 animals no cells retrieved due to cell death.  Unpaired mice – 1 animal 
no cells retrieved. OFC Behaviour – 12 mice (6 Paired, 6 Unpaired). Paired – 1 mouse 
no cells retrieved, Unpaired 1 mouse no cells retrieved. Data Analysis – Paired: 1 cell 
excluded in data analysis (did not spike across current injections, 2SD outlier). Grubbs 
did not identify this as an outlier, inclusion does not change significance (negative 
finding initially).  

Histology (ISH): Behaviour – (Paired no Extinction (EXT) /Paired EXT/ Unpaired EXT) 
= 12/12/8. Paired no EXT: 2 mice no staining observable, 2 mice sections lost in 
histological processing, Paired EXT: 1 mouse no staining observable, Unpaired EXT: 1 
mouse no staining, observable, 2 mice sections lost in processing. 

Electrophysiology – Extinction, NAc:  Behaviour Paired/Unpaired = 8/8. Paired: 2 
mice no cells retrieved, Unpaired: 1 mouse no cells retrieved. OFC Behaviour -  
Paired/Unpaired = 8/10. Paired: 1 brain lost in processing sections, Unpaired: 2 mice 
lost in processing sections.   

Chapter 4. 

Electrophysiology: Behaviour - 12 mice Paired: 2 mice no cells retrieved during 
recording. 3 cells excluded as 2SD outliers (2 GFP-, 1 GFP+) in AMPA sEPSC 
frequency analysis which were not excluded using GRUBBS test. Pooling data across 
AMPA recordings and CTZ recordings (prior to CTZ application) using Grubbs test to 
detect outliers (1 outlier total), maintains a significant difference at p<0.05. Additionally, 
these findings have been replicated with a larger dataset by M.Sieburg in our lab 
(below): 

Sieburg, M. C., Margetts-Smith, G., Ziminski, J., Crombag, H. S., & Koya, E. The 
identification of sucrose cue-evoked corticostriatal neuronal ensemble activity patterns 
underlying hunger states. Program No. 837.07. 2017 Neuroscience Meeting Planner. 
Washington, DC: Society for Neuroscience, 2017. Online. 
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Chapter 5. 

Immunohistochemistry: Behaviour (Paired conditioned locomotion/Unpaired 
conditioned locomotion/ Paired extinction/Unpaired extinction) = (12/12/11/11). No 
mice excluded. 

Electrophysiology: Total animals run: (Paired conditioned locomotion/Unpaired 
conditioned locomotion/ Paired extinction/Unpaired extinction) = (14/15/13/15). After 
mice lost due to slicing/ no cells retrieved total n = (12/13/12/14).  
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