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Summary

This thesis consists of three stand-alone papers. It examines the economic

and political e↵ects of natural resources in Africa. In the first paper, we investi-

gate the e↵ect of mining activity on subnational economic development by using

satellite data on night lights as a measure of economic development. We find that

mineral production and discovery improves local economy. However, we do not

observe (strong) general equilibrium e↵ect beyond the confines of a district.

In the second paper, we test the link between natural resources and multi-

ethnic power sharing coalitions in Africa. We find that resource discoveries and

rising commodity prices increase the probability of representation at the execu-

tive branches of government. Our finding supports the idea that resource discov-

eries and rising commodity prices provide rulers with more revenues to expand

the state cabinet sizes; hence they build broader multi-ethnic coalitions.

In the third paper, we investigate the association between natural resources

and intra-state local armed conflict in Africa. We find that natural resource dis-

coveries do not trigger armed conflict in Africa at the local level. Consistent with

the finding in the first paper (positive economic e↵ect) and second paper (posi-

tive political e↵ect), resource discovery appears to reduce the likelihood of armed

conflict by increasing the opportunity cost of joining armed rebellion.
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CHAPTER 1

Introduction

Resource rich African economies have played a significant role in supplying raw

materials to the global market (Humphreys, 2009). These supplies have gener-

ated large fiscal revenues and export earnings in spite of resource wealth man-

agement challenges (van der Ploeg and Venables, 2011; Venables, 2016). During

a period of rising commodity prices since 2000s, natural resource sector con-

tributed to the general economic rent about 28 percent of GDP, total export earn-

ings over 77 percent and governments revenues over 42 percent in Africa (World

Bank, 2014). Economic importance of the sector, through the revenues they gen-

erate, is still expanding. Many discoveries were made and the extraction of these

new resources are yet to take place in the future (Collier, 2010a). Since the turn of

the century, the share of Africa’s resource discoveries in the world has more than

doubled compared to the trend before 2000 (MinEx Consulting, 2014).

Should resource rich African countries that discover new natural resources

rejoice or mourn? Existing evidence suggests that natural resource abundance

is likely to hinder economic performance. Consistent with the resource curse

notion, Africa has experienced mixed moments with its natural resource sec-

tor since independence. Resource abundance in post-independence period were

largely attributed to corruption and political violences. The main challenges of

using natural resources for development in resource rich African economies is

that they have weak governance that are further undermined by the political

forces (Venables, 2016). For this reason, political causal mechanisms is widely

recognised as the foundations of the resource curse (Robinson et al., 2006).
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In this thesis, we study the economics and politics of natural resources in

Africa. We contribute to the resource curse debate by examining the e↵ects of

large scale natural resource discoveries and productions on local economic de-

velopment, political power distributions and intra-state (local) armed conflict.

This thesis consists of three stand-alone papers.

We start by exploring the e↵ect of mineral production and discovery on

local economic development in sub-Saharan Africa. We measure economic activ-

ity at di↵erent levels of spatial stratification using satellite data on night lights

(Henderson et al., 2012). The standard GDP measures on any consistent basis

are widely unavailable at the subnational level in Africa. As a consequence, most

recent subnational studies make e↵ective use of night lights data (Michalopou-

los and Papaioannou, 2013a; Hodler and Raschky, 2014). We combine the night

lights data with a mine level geo-referenced data on discovery and production.

We find mineral production and discovery improves economic development at

the district level in 42 sub-Saharan African countries over the period 1992 to

2012. We observe that the mineral production e↵ect is largely driven by the

startup of new mining activity. Moreover, we observe strong positive e↵ect of

the discovery. Comparing to districts without any discoveries, the average e↵ect

of mineral discovery shocks on night lights density turns positive and significant

6 years post discovery. The discovery e↵ect is associated with 19-44 percent in-

crease of a district’s night lights density between 6-10 years post discovery.

In the second paper, we investigate the role of natural resources in political

power sharing arrangements in Africa. We find that multi-ethnic cabinet posi-

tions sharing in Africa is significantly associated with natural resources. Leaders

appoint more elites from ethnicities with abundant natural resources. Within

2-8 years of resource discovery, ethnicity with resource discovery could receive

between 0.7-2 more ministerial appointments compared to ethnicity with no dis-

covery. We also observe significant association between ethnic specific commod-

ity prices and ethnic cabinet shares. Within 3-10 years, increased ethnic specific

commodity prices is associatedwith 1.17-2.2moreministerial appointments.

Our finding in the second paper rejects clearly the hypothesis of political

power being allocated exclusively based on population sizes and other political
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variables. We test three potential mechanisms explaining the role of natural re-

sources in cabinet positions sharing. First, risk of political violence by excluded

ethnicities is not a significant mechanism linking natural resources to cabinet po-

sitions sharing. Second, we findmixed evidence on the association between natu-

ral resources and social actors collective contentious action (e.g., demonstrations

and riots) as a potential explanation of cabinet positions sharing. Third, our find-

ing supports the idea that resource abundance provide rulers with more revenues

to expand cabinet sizes; hence they build broader multi-ethnic coalitions.

In the final paper, we investigate the association between natural resource

discoveries and intra-state armed conflict in Africa at spatial resolution of 0.5

x 0.5 degrees latitude and longitude (approximately 55km x 55km) covering all

African countries. We combine the onset, intensity, and incidence of intra-state

armed conflict with a oilfield and mine level geo-referenced data on discovery.

Contrary to the conventional resource-conflict association, we find that oilfield

and mineral discoveries reduce the likelihood of armed conflict onset at the local

level. Within 10 years post discovery, the cross-section comparison (using the

standard pooled OLS regressions) shows natural resource discovery reduces the

probability of conflict by 0.01 percent. This probability increases to about 0.03

percent when identifying the association using grid fixed e↵ect estimates.

Consistent with the finding in the first and second papers, we argue that

positive economic and political e↵ect of resource discoveries plausibly explain

the association between resources and localised armed conflict in Africa. We find

that resource discovery improves luminosity at the grid level which in turn re-

duces armed conflict, which we interpret as purely economic mechanism. Based

on the finding in the second paper, we argue that multi-ethnic distribution of

ministerial appointments by the ruler reduces the probability of armed conflict.

Our work contributes to the resource curse literature. In the following sec-

tions, we review the related literature and relate our contribution to the emerging

within-country econometric analysis of the e↵ect of natural resources.
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1.1 The Resource Curse: What Have We Learned?

Our main contribution is to the broader literature on the natural resources and

economic development. A large body of macro literature note that resource rich

countries on average grow slower than resource poor countries (Auty, 2001; Gyl-

fason, 2001; Sachs and Warner, 2001).1 The cross-country findings have been

contested. For instance, Brunnschweiler and Bulte (2008) argue that cross-country

studies have used an explanatory variable that su↵ers from endogeneity issues

and omitted variable bias. There are a multitude of variables at the country level

that might confound the association between resources and macro outcomes. To

minimise the risk, an emerging literature has shifted the focus towards exploiting

within-country variation using subnational evidences.2

The finding at the subnational level is (still) mixed. One of the key contribu-

tion to the literature was made by Michaels (2011), Allcott and Keniston (2014)

and Haas and Poelhekke (2016) who investigate the association between natural

resource abundance and the manufacturing (business) sector. Michaels (2011)

finds positive long-run e↵ect of oil-based specialisation on the overall manufac-

turing employment density in the United States. Similarly, Allcott and Kenis-

ton (2014) find that oil and gas booms in the United States have positive e↵ect

on manufacturing employment and output. Local manufacturing sector in re-

source endowed counties supply inputs to the natural resource sector, and other

manufacturing sectors also benefit from increases in local demand by supplying

locally-traded goods and services. However, Haas and Poelhekke (2016) docu-

ment that subnational natural resource extraction could hinder local business

environment through "congestion e↵ects" on the availability of local inputs and

infrastructure. Their evidence come from eight resource rich countries: Brazil,

Chile, China, Kazakhstan, Mexico, Mongolia, Russia and Ukraine.

The emerging literature has also investigated how the extractive industries

have an e↵ect on the agricultural sector, and the findings are mixed. Lippert

(2014) exploits variation in copper production in Zambia and find that copper

1See van der Ploeg (2011) for a survey of this literature.
2See Aragón et al. (2015) and Cust and Poelhekke (2015) for surveys of the literature on local

and regional studies of natural resources. Similarly, van der Ploeg and Poelhekke (2017) provide
a survey of recent quantitative evidence.
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boom improved the demand for locally produced agricultural goods and services.

However, Fafchamps et al. (2016) used gold production dataset in Ghana and

document locations near gold mining have more sophisticated non-agricultural

forms of economic activity. In contrast, Aragón and Rud (2015) find that farm-

ers in the vicinity of mining industries in Ghana face a significant reduction in

agricultural output and total factor productivity.

Other sub-national evidences focused on conventional mechanisms. For in-

stance, Aragón and Rud (2013) analyses the e↵ect of a large Peruvian gold mine

on the real income of households and find positive e↵ects. Their study o↵ers

support for the local backward linkages hypothesis, implying that extractive in-

dustries can increase the real return to local factors of production via local pro-

curement of goods and services. The study by Loayza and Rigolini (2016) uses

mining dataset in Peru and their results are consistent with the results of Aragón

and Rud (2013). They find that mining boom leads to larger average consump-

tion per capita and lower poverty rates in mining districts. However, Kotsadam

and Tolonen (2016) document the existence of gender inequality in economic op-

portunities that may arise due to mining booms in Africa. They find a mixed

blessing for women. They document that mine opening causes women shift to

the service sector, yet overall female employment shrinks.

Recent advances in within-country econometric analysis are also exploit-

ing the wide array of hitherto unavailable data to estimate persistent (long-run)

e↵ects of mining activities. A pioneering contribution was made by Dell (2010)

who investigates the long-run impacts of an extensive forcedmining labor system

known as mita in Peru and Bolivia. Districts exposed to the mita between 1573

and 1812 have lower household consumption and prevalence of stunted growth

in children today. The paper documented that the e↵ect persisted through its

impacts on land tenure system and public goods provisions. Another persistent

e↵ects of mining activity is through its impact on infrastructure development.

Bonfatti and Poelhekke (2017) estimate the e↵ect of mining-related transport in-

frastructure on the pattern of bilateral trade flows in Africa. They find that such

infrastructure - which connects mines to the coast - reduces intra-African trade

by favouring overseas trade. Mining activity has favoured connecting the mines
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with the coast than with the neighbouring countries, hence it lowers trading cost

with overseas countries compared to the neighbours.

1.2 Natural Resources and Political Power

Our bigger contribution is to the literature on the political economics of nat-

ural resources. Several studies have argued that natural resources may lower

the economic performance because they strengthen powerful groups, weaken le-

gal frameworks, and foster rent-seeking activities (Ross, 1999; Tornell and Lane,

1999; Auty, 2001; Torvik, 2002; Collier, 2010b). There is an empirical regular-

ity indicating the perverse incentive of rulers as a plausible political mechanism

that lead to country level resource curse (Caselli and Cunningham, 2009). More

crucially, natural resources can create perverse incentives and enable politicians

to survive in o�ce for undefined period. The core finding that more natural

resources is associated with rulers’ survival in o�ce is unambiguous (Omgba,

2009; Cuaresma et al., 2010; de Mesquita and Smith, 2010; Andersen and Aslak-

sen, 2013). To stay longer in o�ce, rulers use windfall revenues to increase public

goods provisions to buy o↵ the opposition, or influence the outcome of election

(Robinson et al., 2006). Furthermore, rulers could strengthen military or secu-

rity technology in the shadow of resource booms (Cotet and Tsui, 2013; Bazzi

and Blattman, 2014). The hypothesis is that military technology enhance gov-

ernment’s repressive, or counter-insurgency capacity to tighten grip on power by

e↵ectively repressing any latent opposition (Besley and Persson, 2009).

Natural resources can also heighten the autocratic nature of political sys-

tems, where incumbents choose the degree of political contestability by decid-

ing how much to spend on political forces (Caselli and Tesei, 2016). Jensen and

Wantchekon (2004) also pointed out that the executive discretion by the incum-

bent over the distribution of resource rents has a significant impact on political

regimes. Other studies demonstrate how natural resources can feed corruption

(Bhattacharyya and Hodler, 2010; Brollo et al., 2013; Knutsen et al., 2016).
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1.3 Natural Resources and Internal Armed Conflict

We also contribute to the literature on the association between resources and con-

flict (Cotet and Tsui, 2013; Dube and Vargas, 2013; Lei and Michaels, 2014). The

e↵ect of resources on the risk and intensity of conflict could be ambiguous (Besley

and Persson, 2011). There is a wide range of plausible rival mechanisms of the

resource-conflict association (Humphreys, 2005). We highlight a set of mecha-

nisms that could underlie a potential (positive or negative) association between

natural resources and intra-state armed conflict. This will help us to understand

the net e↵ect of natural resources on armed conflict.

The opportunity cost mechanism treats conflict as an economic activity.3

The hypothesis states that if the returns from conventional economic activities

such as farming or wage labour are high then the likelihood of armed conflict

reduces (Collier and Hoe✏er, 1998, 2004; Miguel et al., 2004). In the event of

resource booms the returns from non-fighting activity could potentially increase

thereby reducing the likelihood of armed conflict.4

The empirical literature on resource shocks and conflict however produced

mixed results. Dube and Vargas (2013) find support for the labour vis-à-vis cap-

ital intensity argument in case of Colombia where price shocks tend to increase

conflict. However, they qualify their argument by stating that the results are very

much dependent on the type of primary commodities. Bazzi and Blattman (2014)

show that the revenue from capital-intensive minerals and oil accrue mainly to

the state and therefore do not a↵ect individual incomes directly. This in fact

reduces the likelihood of conflict by strengthening state institutions.

Another causal mechanism is the "State as a Prize". Natural resources may

increase the prize value of state capture and in turn increase the incentive for

armed conflict (Fearon, 2005). There are two prominent variants of this argu-

ment. The first focuses on the local rebels engaging in direct armed conflict

against the state to benefit from natural resources (Collier and Hoe✏er, 2004).

3The logic originates from the economic analysis of crime by Becker (1968). A risk-neutral
individual will commit a crime if his private benefit exceeds the expected costs for doing so.

4A labour market mechanism operates via factor intensity. Dal Bó and Dal Bó (2011) demon-
strate that resource extraction could a↵ect wages of low skilled low income households as the
former activity is predominantly capital intensive.
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The second focuses more on the role of geography as oppositions in resource rich

regions fight to secede from the state (Humphreys, 2005; Morelli and Rohner,

2015). Africa has experienced several episodes of secessionist movements and

some studies observe that natural resources play a significant role (Fearon, 2005).

The political patronage mechanism stipulates that resources generate po-

litical incentives for incumbents to distribute political patronage more widely to

survive longer in power (Robinson et al., 2006; Cuaresma et al., 2010; Andersen

and Aslaksen, 2013). Distribution of patronage to the elites and citizens ensures

that the incumbent dissuades a militant subset of the society from attempting

armed rebellion (Francois et al., 2015). Patronage distribution may take the form

of public sector employment o↵ers, ethnic brokerage, or personal networks that

connect the co-opted elites in the centre to local citizens (Roessler, 2011). Pa-

tronage distribution also influences the voting behaviour of citizens (Robinson

et al., 2006). In summary, the political patronage mechanism predicts an inverse

association between resource discovery and conflict.

Furthermore, the state capacitymechanism stipulates that natural resources

increase state’s counter insurgency capacity through enabling it with additional

revenue which could then be used to strengthen the military and other security

infrastructure (Besley and Persson, 2009; Bell and Wolford, 2014). For example,

Cotet and Tsui (2013) find that increased defence burden and enhanced military

technology increases the government’s counterinsurgency capacity and thereby

reducing the likelihood of armed conflict. Note that the state capacitymechanism

is somewhat similar to the political patronage mechanism and they often comple-

ment each other within a political system (Bazzi and Blattman, 2014).

The rest of the thesis is organised as follows: Chapter 2 examines the asso-

ciation between mining and local economic development in sub-Saharan African

countries. Chapter 3 examines the e↵ects that changes in natural resource dis-

coveries and global commodity prices have on the allocation of cabinet positions

across diverse ethnicities in Africa. Chapter 4 investigates the empirical associa-

tion between resource discoveries and intra-state armed conflict at the grid level

corresponding to a spatial resolution of 0.5 x 0.5 degrees covering all African

countries. Chapter 5 concludes the thesis.
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1.4 Measurement Challenges and Discovery Data

Most of the econometric analysis of the impact of natural resources is hindered

by several challenges, but a main limitation is the challenges in the measurement

of natural resources. Some studies have questioned the robustness of the resource

curse findings largely based on endogeneity issues (i.e., using endogenous vari-

able as an explanatory variable). For instance, Brunnschweiler and Bulte (2008)

stated that the negative impact of natural resources on growth and development

at the cross-country level arises due to the use of an endogenous resource de-

pendence as an explanatory variable (i.e., the ratio of natural resource exports

to GDP). Yet their proposed natural resource measurement (i.e., resource abun-

dance) itself is not free from measurement challenges. Because the measurement

of the total amount of resource wealth (or, abundance) is an endogenous variable

by construction. The resource abundance measures are constructed by the World

Bank and still depend on the prevalent price of resources and cost of extraction

to assign dollar values (van der Ploeg and Poelhekke, 2010).

Few emerging literature on the impact of natural resources, however, has

shifted the focus towards exploiting hitherto unutilised measurement of natural

resources (i.e., natural resource discovery data) (Cotet and Tsui, 2013; Lei and

Michaels, 2014; Arezki et al., 2017; Mamo et al., 2017). In this context, this the-

sis essentially relies on the assumption that discovery dates of natural resources

(oilfield and mineral deposit) are exogenous at the sub-national level. This is a

departure from the existing cross-country and most sub-national level literature,

which are of course fraught with endogeneity issues. The dates of natural re-

source discoveries are random due to the uncertain nature of exploration invest-

ment in Africa. The exploration intensity and strategy are strongly influenced by

external conditions such as global business cycles and market. The critics may

still argue that global business cycles and market have link with the discovery

announcement. Nevertheless, these external conditions themselves are still ex-

ogenous to African political economy and development.

Even though it is possible to identify the area where oilfield or mineral de-

posits are likely to be found using geological as well as historical information,
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it is not possible to accurately predict the timing of discoveries. Therefore, the

discovery dates of oilfield and mineral deposits are exogenous. Again one might

argue that political elites and government could manipulate the announcement

of the precise timing of discovery. Our data is immune to such possibility as

the discovery dates are independently verified and documented using multiple

sources. Therefore, exploiting such random variation in the timing of discoveries

allows us to conduct a quasi-natural experiment, and our approach is less subject

to potential reverse causality challenges. More discussion on the details of data

sources and measurement is available under data sections in each chapter.

In most cases, we restrict discovery variable to first discovery where there

were no mining or oil drilling activity before. Restricting the discovery variable

to first discovery address some main identification concerns. There is no concern

that natural resource discoveries are serially correlated over time during the sam-

ple period. Moreover, the timing of the discovery represents to economic agents,

and this element of surprise is particularly likely where there no any mining or

drilling history. Therefore, our finding in this thesis is not undermined by en-

dogenous issues of natural resource measurement.
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CHAPTER 2

Mining and Local Economic Development

2.1 Introduction

The industrial age of eighteenth and nineteenth century witnessed a coming to-

gether of coal, iron and steel, and steam power which propelled mass production

and living standards to a level unprecedented in human history. Britain and

other continental European countries were able to successfully utilise natural re-

sources to industrialise and improve living standards. The post-independence

development experience of resource rich developing nations especially in Africa

however has been dismal giving rise to the view that natural resources are a curse

rather than a blessing for development.

Indeed, a large body of predominantly macro literature document a neg-

ative correlation between growth rates of GDP per capita and resource reliance

by exploiting variation in cross-national data. This literature broadly identifies

three potential channels through which natural resources could hinder devel-

opment. First, natural resource exports could appreciate the real exchange rate

thereby disadvantaging the tradable non-resource sector (or the modern sector)

of an economy (Corden and Neary, 1982). Adverse development outcomes may

be permanent, if competitiveness cannot be regained.1 Second, over-reliance on

natural resources for government revenue could give rise to corruption and weak

institutions as the state would no longer require relying on the non-resource sec-

1We wonder whether this argument is relevant in the context of Sub-Saharan Africa. The
manufacturing sector is tiny - even in non-mining countries. Besides, the exchange rate is not
seen as a key constraint for manufacturing firms in Africa (Bigsten and Söderbom, 2006).
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tor as a major source of revenue (Robinson et al., 2006). Third, the high volatilty

of global commodity prices could disadvantage resource rich developing coun-

tries as they become more exposed to global shocks and macroeconomic instabil-

ity (Deaton, 1999; Ramey and Ramey, 1995).

A significant intellectual e↵orts went into documenting the adverse conse-

quences of natural resources in resource rich developing countries. Yet estab-

lishing causality has remained somewhat illusive in the cross-country studies. In

this chapter we aim to explore whether natural resources improve development

at the subnational level. We contribute to the resource curse debate by examining

the local impacts of large scale mineral discovery and extractions in the context

of sub-Saharan African countries. We show that mining has a positive impact on

the local economy, as reflected in the satellite data on night lights at the second

level subnational administrative unit (district level). However, we do not observe

(strong) general equilibrium e↵ect beyond the confines of a district.

A quick snapshot in Figure 2.1 reveal that mineral production and mining

discovery leads to significant improvements in economic activity measured by

night lights. The upper panel in Figure 2.1 zooms into Zabre District in the Boul-

gou Region of Burkina Faso. Zabre has produced her first mineral commodity,

gold, in 2008. The change in the economic fortunes of Zabre is visually appar-

ent here via the satellite images of night lights before and after gold production.

In 2007 before gold production, the mean pixel value of night lights in Zabre is

0.006. But in 2008 the mean pixel value increased to 0.31. The following year

2009, Zabre again experienced an increase in night lights. So much for night

lights, what about population? In 2007, the Socioeconomic Data and Applica-

tions Centre estimates Zabre’s population to be 135,582 and the population five

years later in 2012 is estimated to be 160,150. Again an 18 percent increase. The

lower panel reveals a similar story before and after the discovery of a Sapphire

mine in 1998 in the town of Ilakaka in the Ihosy district of Madagascar. The town

Ilakaka did not exist before 1998.

We find that mineral production and discovery improves economic devel-

opment at the district level in 42 sub-Saharan African countries over the period

1992 to 2012. We distinguish between the e↵ects of mineral production volume
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expansion in the existing mines (intensive margin) and new mineral production

(extensive margin). We observe that night lights increase due to mining expan-

sion at the intensive margin. However, large e↵ects are observed at the extensive

margin following new production.

Figure 2.1: Mineral Production, Discovery and Night Lights

(a)

(b)

Notes: The upper panel shows Zabre District in Burkina Faso starting gold production in 2008. The lower panel shows

Ihosy District in Madagascar. After the discovery of Sapphire deposits at Ilakaka-a village with about 40 households-

in 1998, the place saw an influx of migrants and turned into a major trading centre for sapphires and a town with an

estimated population of now larger than 30,000. Until 1998 there were no night lights visible in Ilakaka. After the

discovery, the number of pixels with visible lights increased. Ihosy town, in contrast, has not experienced such growth;

lights got smaller. Overall, however, the aggregate lit pixels have increased in Ihosy District. The lower panel is a

replication of Figure 5 in Henderson et al. (2012).

We also notice that the positive impact of mineral production kicking in
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approximately two years prior to the actual start of mineral production. This

is consistent with the fact that installation of mining infrastructure and worker

arrival typically predates production.

In order to precisely identify the e↵ect of mining on development we ex-

ploit the exogenous variation in the discovery dates of giant and major deposits

of 21 minerals. We find that the positive e↵ect of discovery kicks in on night

lights approximately six years after the first discovery. For giant and major dis-

coveries, this time frame is eight years. These results are consistent with the view

that it takes approximately six to eight years for production to start following a

discovery. The magnitude of the e↵ect of first discovery is 19 percent on the sixth

year and continues to rise to 44 percent on the tenth year. The e↵ect is robust to

the inclusion of population density, average annual rainfall, district fixed e↵ects,

and year fixed e↵ects as controls.

A skeptic’s view of the positive e↵ect of mining on night lights is that it is

driven entirely by lights emanating from the mines, particularly if the location

of lights coincides with the mining location. Even though plausible, this view is

not supported by mining industry facts on the ground in Africa (Banerjee et al.,

2015).2 Furthermore, using GIS we exclude all lights around 2 kilometre radius

of a mine from our sample our results remain qualitatively unchanged.

Economic development is a general equilibrium phenomenon. Looking at

the subnational district level data might mask the fact that mining districts gain

at the expense of non-mining districts and the net e↵ect of mining for a country

is still negative. In order to unmask such patterns in the data we redefine the unit

of interest. We test our model at the regional and country level using both pro-

duction and discovery data. We find that there is very little evidence for positive

e↵ect of mineral production and discovery at the region and country level.

Why mineral discovery and extractions might a↵ect local economic devel-

opment? Our finding is consistent with the emerging sub-national literature

that are largely motivated by theories of demand side linkage of extractive in-
2Governments and mining corporations often try to keep workers near the mining site for

lengthy periods of time by o↵ering fixed contracts and prearranged wages to miners. This creates
mass migration and hence growth of mining towns and cities nearby that o↵er services. The
mineral revolution in South Africa from the 1870s onwards is a good example, which had an
impact on urbanisation, agriculture, infrastructure and local politics. The migration prompted
changes in rural areas, as farms lost workers to the mines and demand for food increased.
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dustries and development. The theories predict that development opportunities

are likely to emerge from mineral discoveries and extractions via the potential

backward linkages implying increases in return to local factors of production in

post-resource discoveries and extractions (Aragón and Rud, 2013). Similarly,our

finding can be explained by the e↵ect of local demand shocks on agricultural

sector. Mining boom can improve the demand for locally produced agricultural

commodities (Lippert, 2014). Moreover, the theories also predict that the pos-

itive economic consequences of mining activity might likely to emerge via the

labour market opportunities (Kotsadam and Tolonen, 2016). The other impor-

tant economic reason explaining the positive relationship between mining activ-

ity and local development is likely to be sophistication in non-agricultural forms

of economic activity and agglomeration economies (Fafchamps et al., 2016). The

argument for agglomeration economies links natural resource abundance to the

manufacturing (business) sector, where local non-agricultural business sectors

benefit from local demand demand shocks due to natural resource abundance

(Michaels, 2011; Allcott and Keniston, 2014).

Our work is related to the literature on natural resources and economic de-

velopment. Auty (2001), Gylfason (2001) and Sachs and Warner (2001) note

that resource rich countries on average grow much slower than resource poor

countries. Subsequent studies have argued that natural resources may lower the

economic performance because they weaken legal frameworks and foster rent-

seeking activities (Ross, 1999; Tornell and Lane, 1999; Auty, 2001; Collier, 2000;

Torvik, 2002). Others have argued whether natural resources are a curse or a

blessing depends on country-specific circumstances especially institutional qual-

ity and governance (Mehlum et al., 2006; Robinson et al., 2006; Bhattacharyya

andHodler, 2010, 2014a; Bhattacharyya and Collier, 2014; Venables, 2016), natu-

ral resource type (Isham et al., 2005a) and ethnic fractionalisation (Hodler, 2006).

While these and related studies not imply that resource rents inevitably reduce

living standards, they show that it is entirely possible. Even though these stud-

ies are relevant for sub-Saharan Africa they mainly explore the cross-national

dimension. They do not investigate the role of natural resources and especially

mining at the local, regional and national levels which we undertake here. These
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studies are focused not exclusively on sub-Saharan Africa and casual interpreta-

tions of their results are often problematic.3 We do well on both counts here as

we utilise a new mine level dataset on mineral production and discovery in sub-

Saharan Africa and relate it to night lights. The satellite data on night lights have

been used by others recently as a credible measure of economic development at

the local, regional and country levels (Henderson et al., 2012).

Resource curse thesis suggests that resource curse is a general equilibrium

phenomenon. Therefore, the cross-national focus of the early empirical litera-

ture is understandable. However, there has been a shift in the focus more re-

cently with several studies focusing on the local e↵ects of resource extraction.

For example, Aragón and Rud (2013) analyse the e↵ect of a Peruvian gold mine

on the real income of local households using household survey data and find

positive e↵ects. Caselli and Michaels (2013) and Allcott and Keniston (2014) fo-

cus on the local e↵ects of oil boom in Brazil and shale oil and gas boom in the

United States respectively. In spite of the growing interest on the local e↵ects of

resource boom, most of the studies remain country or mine specific calling into

question the external validity of their findings. Furthermore, studies on sub-

Saharan African countries remain a rarity barring a few exceptions.4 In contrast,

we study the entire sub-Saharan Africa which appears to be unmatched in this

literature. We utilise discovery dates of giant and major mining deposits to set

up a quasi-natural experiment which none of the other studies do.

Our work is also related to a more recent literature on the determinants of

development at the subnational level. This literature makes use of satellite data

on night lights and city growth to measure development at the regional and sub-

national levels. Michalopoulos and Papaioannou (2013a, 2014) and Hodler and

Raschky (2014) are examples of studies that use night lights whereas Jedwab et al.

(2016) and Jedwab and Moradi (2016) use city growth. The factors identified as

3Recent cross-country studies relating mainly oil and conflict have used information on giant
oil discovery to mitigate the causality challenge. Cotet and Tsui (2013) and Lei and Michaels
(2014) study the e↵ect of oil on conflict. Arezki et al. (2017) analyse the impact of oil discovery
on macro variables.

4Aragón and Rud (2015), Kotsadam and Tolonen (2016), and Fafchamps et al. (2016) are ex-
amples of such exceptions. Aragón and Rud (2015) study the pollution e↵ect of gold mining on
agricultural prodictivity. Kotsadam and Tolonen (2016) study the e↵ect of natural resources on
local employment in Africa, and Fafchamps et al. (2016) investigate whether gold mining is a
catalyst for early stages of urbanisation (proto-urbanisation).
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key determinants of African subnational development by this literature are pre-

colonial ethnic institutions (Michalopoulos and Papaioannou, 2013a, 2014), birth

region of rulers (Hodler and Raschky, 2014), and colonial railroads (Jedwab et al.,

2016; Jedwab and Moradi, 2016). Michalopoulos and Papaioannou (2014) also

show that national institutions do not explain subnational variation in develop-

ment in Africa. Note that Michalopoulos and Papaioannou (2013a, 2014) exploit

cross-sectional variation while Hodler and Raschky (2014) use panel data.

The remainder of the chapter is structured as follows: Section 2.2 presents

the data sources and descriptions. Section 2.3 discusses the empirical strategy to

identify the local e↵ects of mining activity. Section 2.4 presents the results and

discussion. Section 2.5 deal with robustness. Section 2.6 concludes.

2.2 Data Sources and Measurement

We construct a panel of 3,635 districts from 42 Sub-Saharan African countries

over the period 1992 to 2012.5 Districts are the main units of observation in our

study. They correspond to the second level subnational administrative classifica-

tion of sub-Saharan Africa in 2000 obtained from (FAO GeoNetwork, 2013). The

average size of a district in our sample is 6,585 square kilometres. Table A.1 in

the Appendix reports basic summary statistics.

Figure 2.2: District Level Map of Sub-Saharan Africa

Notes: This map shows the second level administrative units that we use in our analysis. We exclude small island countries

(Saint Helena, Seychelles, Sao Tome and Principe, Reunion, Mayotte, Mauritius, Cape Verde and Comoros) and Djibouti.

5In the Appendix we present a list of countries included in the sample.
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2.2.1 Local Economy: Satellite Data on Night Lights

As our main measure of local economic development we use satellite data on

night lights provided by the US National Oceanic and Atmospheric Administra-

tion (NOAA). Note that the data we use here is cleaned luminosity, after filtering

for cloud coverage, other ephemeral lights, and background noise. The mea-

sure comes on a scale from 0 to 63 (digital number), where higher values imply

greater luminosity. The data are available at pixels of 30 arc-second dimension

(equivalent to one square kilometre). The very high resolution helps us calculate

economic activity at the local level. We calculate light density by dividing the

sum of all night lights pixel values within a district by the area. As an alternative

measure, we also construct luminosity per capita.

The distribution of night lights across districts is not normal. A substantial

number of observations (about 31.5 percent of the sample) take the value zero.

There are also a few extreme observations on the right tail of the distribution. To

account for this, we follow Michalopoulos and Papaioannou (2013a) and Hodler

and Raschky (2014) and define the dependent variable as the natural log of night

lights density plus 0.01. Such transformation ensures that all available obser-

vations are used and the problem of outliers minimised. Note that the absence

of reported night lights typically does not imply darkness, and certainly not ab-

sence of economic activity (Hodler and Raschky, 2014). There are also issues with

the di↵erence between true lights emanating into space and what is recorded by

a satellite (Henderson et al., 2012). In particular, there is variation in recorded

lights data across satellites. Measurement error of this nature is unlikely to be

a concern here as it is orthogonal to our model in section 3.1. Furthermore,

because all districts in a particular year are covered by the same satellite, any

cross-satellite variation in night lights is accounted by the year fixed e↵ects.

2.2.2 Natural Resources: Mineral Discovery and Production

Information on mining comes from two sources. The first source is IntierraRMG

(2014). It provides data on production, start-up year andmining status for indus-

trial sizemines for the period 1992-2012. Our dataset contains 548 industrial size
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mining industries producing 21 di↵erent mineral commodities. All the mines are

matched to district administrative units. Where IntierraRMG did not provide a

start-up date, we consulted other sources (including the website of each mining

company) and added the information. Moreover, the mineral value is calculated

using price data from the U.S. Geological Survey (Kelly and Matos, 2013).

Figure 2.3: Geographical Locations of Mine Producing Industries

Notes: The map shows the location of active mines in sub-Saharan Africa. These mines are owned or operated by either

large multinationals or state owned companies. We exclude small-scale mines and informal or illegal mines.

The second source is MinEx Consulting (2014). It reports discovery and

production start-up dates of 259 giant and major mineral deposits from 1950 to

2012. MinEx codes a mineral deposit as giant if it has the capacity to generate

at least USD 500 million of annual revenue for 20 years or more accounting for

fluctuations in commodity price. A major mineral deposit is defined as one that

could generate an annual revenue stream of at least USD 50 million but may not

last as long as a giant deposit.
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Figure 2.4: Geographical Locations of Mineral Deposit Discoveries

Notes: The map shows the location of major and giant mine discoveries in Sub-Saharan Africa over the period 1950-2012.

2.2.3 Other District Specific Variables

Population density is an important control variable, as it exhibits strong positive

correlation with light density (Cogneau and Dupraz, 2014).6 Population data is

obtained from the Socioeconomic Data and Applications Centre-Centre for Inter-

national Earth Science Information Network (SEDAC-CIESIN). Population esti-

mates are available for 1990, 1995, and 2000, and projections for 2005, 2010, and

2015. We follow Hodler and Raschky (2014) and aggregate the gridded popula-

tion dataset to second level administrative units. We then construct annual dis-

trict population 1992-2012 replacing missing years by linear interpolation.

We use a set of geography, climate, political economy and infrastructure

variables as observable characteristics between treated and control districts.7 The

geography variables are altitude, ruggedness, soil fertility, distance to the coast,

and land surface area. From the 90m Digital Elevation Database of the NASA

Shuttle Radar Topographic Mission (SRTM), we construct mean and standard de-

viation of elevation. Soil fertility is expressed as the percentage of a district’s land

area with fertile soils for agricultural crops and is constructed from the index in

FAO/UNESCO Digital Soil Map of the World. The climate variables are annual

6Despite its consistency and spatially explicit population distribution, gridded population
estimates may not match the actual population at the district level. This could be seen as a
standard measurement error because population projections are not based on night lights.

7With the exception of rainfall and population, our observable characteristics are time-
invariant at the district level. The summary statistics on all variables can be found in Appendix.
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rainfall from Tropical Applications of Meteorology using Satellite data (TAM-

SAT), and the district’s land area classified as tropical climate, arid climate and

temperate climate (Kottek et al., 2006). The infrastructure variables are paved

road density (i.e. paved road length per square kilometre), railway density (i.e.

railway length per square kilometre) and electric grid density (i.e. electric trans-

mission cable length per square kilometre). They are derived from the African

Development Bank and DIVA-GIS for the year 2000. Finally, the political econ-

omy variables are a "capital" dummy variable equal to one if the district contains

the capital city of the country, or if the district itself is the capital city, distance to

the capital city and ethnic fractionalisation constructed from the Ethnographic

Atlas by Murdock (1959). The implicit assumption here is that proximity to the

capital city is associated with better quality institutions whereas high levels of

ethnic fractionalisation is associated with poor institutional quality.

2.3 Empirical Strategy

2.3.1 Local E↵ects of Mineral Production

We start with exploring the e↵ect of mining activity and our main specification

uses annual data for the period 1992-2012:

Luminosityd,t = ↵d + ⌘t +Xd,t� +�Mining Productiond,t + ✏d,t (2.1)

where Luminosityd,t is the natural log of night lights density plus 0.01 in district

d in year t, Mining Productiond,t is the natural log of mineral production value,

↵d are district fixed e↵ects, ⌘t are year fixed e↵ects, and Xd,t is a vector of time-

variant control variables that includes the natural log of population density and

rainfall. The coe�cient of interest is � , the elasticity of mineral production.

Identification comes from temporal variation within mineral producing dis-

tricts. The validity of this strategy rests on the assumption that fluctuations in

mineral production are driven by factors external to the district. This may not

be true. For example, shocks - such as power cuts or violent conflicts - may af-

fect both mining and economic activity during a certain district-year and are not
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absorbed by the district fixed e↵ect. The same reasoning applies to the exten-

sive margin. The opening of a mine can be delayed or coincide with conditions

(such as a road). Keeping these caveats in mind, the results nevertheless help to

establish stylised facts that we probe more thoroughly later.

2.3.2 Local E↵ects of Mineral Discovery

Similarly, we identify the e↵ect of mine discovery shocks on local economic de-

velopment by estimating the following model:

Luminosityd,t = ↵̃d + ⌘̃t +Xd,t�̃ +
10X

j=0

�̃jDiscoveryd,t�j + ✏̃d,t (2.2)

where Discoveryd,t�j is a dummy variable equal to 1 if a mineral discovery has

been made in year t � j , 0 if no discovery has been made and missing for every

year post-discovery other than t � 10.
We restrictDiscoveryd,t�j to first discoveries, that is to discoveries in districts

that never had any mining activity before, and the comparison group to districts

without any discoveries. This restriction serves two purposes. First, existing min-

ing activities may a↵ect local development and it is di�cult to disentangle this

e↵ect from the e↵ect of a new discovery. Second, economic agents may arguably

anticipate repeated discoveries due to the knowledge of past discoveries and ge-

ology. In contrast, a discovery and its exact timing is much harder to predict

for "virgin" non-mining districts.8 Thus, setting Discoveryd,t�j = 1 for first dis-

coveries is the cleanest treatment group. In fact, the coe�cient �̃0 tests whether

there is a significant level di↵erence between non-mining districts and districts

in which a discovery has just been made. Overall, the coe�cients �̃j measure the

di↵erence in night lights j years after a discovery.

Analysing mineral discoveries enables us to explore and mitigate potential

endogeneity challenges associated with mineral production. First, one potential

concern is that districts with better unobservable fundamentals may be more

likely to enter production. Discoveries are likely to follow a di↵erent, less se-

8Mineral discoveries in virgin districts are not heavily clustered in administrative regions with
pre-existing mining activities either. For the 1992-2012 period, 36 out of the 73 first discoveries
occurred in districts, where the corresponding region had no recorded mining activity as well.
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lective model, because they require less capital, and returns are largely driven by

the size of the deposit which is unknown exante. Certain discoveries may not en-

ter production at all. Discoveries can be interpreted as intention-to-treat. Second,

the timing of the discovery can be considered exogenous, if discovery represents

’news’ to economic agents. We believe that this element of surprise is particularly

likely in districts without any mining history. Third, there may be a significant

delay between discovery and start of production.

Figure 2.5: Estimates of Discoveries Entering Production

Notes: The graph shows Kaplan-Meier failure estimates, whereby mineral deposits become “at risk” when discovered

and “fail” when entering production. Analysis at mineral discovery level 1950-2013. Discoveries that have not started

production are those which current status is coded as “Undeveloped” or “Feasibility”. We excluded mineral discoveries

(N=12), for which the start-up year was missing but current status was coded as “unknown”, “operating” and “closed”.

N(major discoveries/giant discoveries at risk)=(156/88). Data is from MinEx Consulting (2014).

Our data indicates that 10 years after a discovery, only 27.2% of the sites

entered production. After 20 years, the figure rises to 48.3% (Figure 2.5). Setting

up mining infrastructure and attracting the labour force to work in the mines

constitute economic activity caused by mining but it typically predates produc-

tion. This e↵ect could be wrongly attributed to the pre-mining era comparison

group. In contrast, mining discovery constitutes a clean start of the experiment.

Overall, we can treat the discovery date as an exogenous news shock, much more

in line with the start of the experiment, enabling us to mitigate potential reverse

causality challenges associated with mineral production.
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2.4 Results and Discussion

2.4.1 Mineral Production and Local Economic Development

In this section, we report the main results following the empirical strategy dis-

cussed in the previous section. Table 2.1 presents evidence on the e↵ect of min-

eral production on night lights density. All the specification include time varying

population density and average rainfall, and district and year fixed e↵ects.

We distinguish between value and quantity by expressing mineral produc-

tion in 1992 constant USD and 1992 constant commodity prices respectively. We

expect quantity to be more important. Commodity prices are determined at the

world market and can fluctuate widely (Deaton, 1999). However, mining com-

panies may have little incentive to adjust production to price fluctuations in the

short-term. Therefore, prices and demand for local inputs may be less a↵ected.

Windfall gains and losses may then largely accrue to capital owners.

We start with exploring the e↵ect of production at the intensivemargin. Our

main specification is based on Equation 2.1 by using annual data for the period

1992-2012, and results are reported in columns (1)-(3) in Table 2.1. Column

(1) points to a positive association between production values and night lights.

The association, however, is stronger when using production volumes instead

(column (2)), and in a horserace it is the latter that wins (column (3)).

To study the extensive margin, we replace Mining Productiond,t with a

dummy equal to one if the district has - or ever had - a producing mine. Un-

der this specification the sample includes all districts. The estimated coe�cient

identifies the change in night lights associated with a change in a district’s status

from non-mining to mining, or in other words the start of mineral production.

This because we use district fixed e↵ects which absorb night lights di↵erences in

districts that do not change status. In column (4) we examine the e↵ect of mining

at the extensive margin on night lights and find that a switch from a non-mining

district to a mining district is associated with an increase in night lights by 55.4

percent. This is approximately more than 13 times the e↵ect of mining expansion

at the intensive margin and hence a large e↵ect.
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Table 2.1: Intensive and Extensive Margins of Mineral Production

Intensive Margin Extensive Margin
(1) (2) (3) (4)

Ln(Mineral Production) 0.024* -0.061
(0.014) (0.047)

Ln(Mineral Production in 0.038** 0.102*
1992 Commodity Prices) (0.018) (0.057)

Mineral Production (1=yes) 0.554***
(0.117)

Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 1,802 1,802 1,802 76,335

Notes: This table shows the association between night lights and various measures of mining activity in a panel of district-

year observations for the period 1992-2012. Dependent variable is Ln(0.01+Nighttime Lights Density per sq. km). column

(1) expresses the mineral production value in 1992 constant USD. column 2 expresses the mineral production value in

1992 constant commodity prices. column 3 includes both those indicators. column 4 uses a dummy variable equal to

one if the district had a producing mine thereby using the full sample. Robust standard errors clustered by region are in

parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

How big are the economic significance of these e↵ects. A simple test would

be tally them with district level real GDP data. Henderson et al. (2012) find that

for low and middle income countries, the structural elasticity of growth of night

lights with respect to GDP growth in the long-term is close to one. Michalopoulos

and Papaioannou (2013a) use the Demographic and Health Survey (DHS) data at

the subnational level and estimate the elasticity between luminosity and com-

posite wealth index to be 0.7. Based on such estimates we could speculate that a

switch from non-mining to mining would increase a district’s GDP by 38.78 per-

cent (this number is the estimate in Table 2.1 column (4) multiplied by 0.7).

2.4.2 Mineral Production Onset and Local Economy

So much for mineral production, how about the e↵ect of the onset of production?

For this analysis the most important concern is the violation of the unconfound-

edness assumption: districts that enter mineral production may do so because

of certain unobservable characteristics that are associated both with the start of

mineral production (the ‘assignment’) and with the potential outcomes. For ex-

ample, the geology of mineral resources may be correlated with soil quality and
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water availability (riverbeds); profitability of mineral extraction may depend on

the presence of infrastructure (railroads, roads, ports, electricity) and labour; and

certain underlying factors may facilitate local opposition to mining. Overall, dis-

tricts with better unobservable characteristics may start production earlier, and

it could be the former-not the latter-that would cause development.

We divide the data into a control and treatment group. The aim is to iden-

tify a suitable control group that matches the treatment group in every respect

except the treatment. We define two control groups. Firstly, we take districts

that never have had any mining activity as of 2012 (control 1). While one would

not expect this to be a valid control group, the comparison is interesting in its

own right. Secondly, we take districts yet to be mined but with mineral deposits

(control 2). The potential of these districts are examined in a feasibility study

as of 2012. Mining companies assess profitability of a site going through several

stages (grassroots, exploration, advanced exploration, pre-feasibility, feasibility,

construction) of filtering. Feasibility studies are the final stage before construc-

tion. Thus, most of the selection has taken place by this stage.9 Still, only a subset

of districts may pass from the feasibility stage to construction and finally produc-

tion. We therefore rely on the same pre-treatment trends to lend confidence to

the parallel trend assumption. In order to facilitate pre-treatment comparison,

we define the treatment group as those districts that started production for the

first time between 2003 and 2012, hence we a have a symmetric pre- and post-

treatment period of 1992-2002 and 2003-2012 respectively.

We first examine whether there is any systematic di↵erence in observable

characteristics between treated and control districts. Table 2.2, Panel A, column

(1) presents the mean values for each observable characteristic and columns (2)

and (3) present the normalized mean di↵erence between treatment and the two

control groups.10 All observables are time-invariant (referring to the year 2000).

Column (2) indicates that treated districts are at a relatively higher altitude and

are more rugged than never mined districts. They also have a larger land surface

9We do not use the construction stage as control group, because construction by itself already
constitutes economic activity caused by mining. We aim to present an even cleaner strategy when
investigating mineral discoveries, see subsection 2.4.4.

10The normalised di↵erence between treatment t and control group c is defined as �X = (X̄t �
X̄c)/

q
(S2

t + S2
c )/2 where X̄ and S2 refer to sample means and variances respectively.



27

area, less rainfall, a more temperate climate, an ethnically more fractionalised,

and a higher railway density. In contrast, column (3) suggests that the treated

districts are fairly similar to feasible districts.

Table 2.2: Comparison of Treated and Control Districts

Normalized Di↵erence
Treated Treated-Control 1 Treated-Control 2

Never mined Feasibility
(1) (2) (3)

Number of Districts 53 3284 156
Panel A: Time-Invariant Cross-Sectional Variables

Ln(Altitude in m) 6.18 0.14* -0.00
Ln(Ruggedness) 4.31 0.14* -0.04
Share of district with fertile soil 16.09 -0.04 -0.09
Ln(Distance to the Coast in km) 5.76 0.09 0.05
Ln(Land surface area in sq. km) 8.40 0.36*** -0.03
Ln(Average annual rainfall in mm) 4.73 -0.15** 0.03
Share of district with tropical climate 50.88 -0.11* -0.09
Share of district with dry/arid climate 27.17 0.03 0.00
Share of district with temperate climate 21.94 0.12** 0.11
Capital city (1=yes) 0 -0.11 -0.08
Ln (Distance to the capital city in km) 5.56 0.05 -0.03
Ethnic FractionalizatioObservations 0.31 0.24*** 0.02
Ln(Paved road density per sq. km in 2000) 0.02 -0.05 0.10
Ln(Railway density per sq. km in 2000) 1.66 0.21*** 0.03
Ln(Electric-grid density per sq. km in 2000) 0.06 -0.05 0.16**

Panel B: Trend Comparison
Ln (0.01+night lights Density)
Pre-treatment growth 1992-2002 0.60 -0.00 0.00
Post-treatment growth 2003-2012 1.33 0.41*** 0.53***
Ln (0.01+night lights Per Capita)
Pre-treatment growth 1992-2002 0.40 0.01 0.02
Post-treatment growth 2003-2012 1.17 0.44*** 0.55***

Notes: This table shows the di↵erence in observables and outcomes between treated and control districts. Treated districts

started mineral production for the first time between 2003 and 2012. The control groups are defined as i) districts that

never had any mining activity (control group 1) and ii) districts yet without mining but with mineral deposits, which

potential is examined in a feasibility study (control group 2). In column (1), coe�cients represent the mean value of

each variable for the treatment group. In columns (2) and (3), we present the normalised mean di↵erence relative to the

control group as in Imbens and Wooldridge (2009). Panel A presents the comparison of time invariant variables. Panel

B presents decadal growth rates before treatment (1992-2002) and after treatment (2003-2012). ***, ** and * indicate

statistical significance at the 1%, 5%, and 10% level.

In Table 2.2, Panel B we report decadal growth rates in the outcome vari-

ables for the 1992-2002 and 2003-2012 period by treatment status. We do not

find any pre-existing divergent trend in night lights across treated and control

districts prior to the production treatment. In contrast, during the treatment

period trends significantly diverge. After a decade night lights in the treated dis-

tricts have grown by about 50 percentage points more. Figure 2.6 shows the de-

velopment in night lights of treated and control groups on an annual basis.
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Figure 2.6: Evolution of Lights in Three Categories of Districts

Notes: The graph shows the evolution of night lights for three categories of districts: i) districts that started mineral

production after 2002 (treatment), ii) districts that never had any mining activity (control group 1) and iii) districts that

are yet to be mined but with mineral deposits identified in feasibility studies (control group 2). Data is from IntierraRMG.

Figure 2.7: Evolution of Lights in Mining Districts

Notes: The graph shows the evolution of night lights in mining districts in the run-up to production and the years

thereafter. Production starts at time t=0. Data is from IntierraRMG.

Figure 2.7 shows the evolution of night lights in mining districts the 10

years before and after the start of production. We observe that night lights start

improving two years prior to the actual production start date. This is consistent

with the view that infrastructure moves closer to the site one or two years prior to

the actual start of production. We also observe steady increase in lights even ten

years after the actual start of production. In sum, the evidence suggests that, con-

trary to the conventional wisdom of resource curse, mineral production improves

living standards at the local level in sub-Saharan Africa.
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2.4.3 Mineral Discovery and Local Economic Development

In this section we relate the news shock of mineral discoveries to development.

Table 2.3 displays the e↵ect of discovery shocks on night lights density. In col-

umn (1), the coe�cients reflect the change in night lights j ={0, 1, ..., 10} years

after a discovery relative to the pre-discovery era and trends in night lights of

non-mining districts in the same year. The coe�cient �̃0 is indeed very close to

zero and remains small and insignificant up to four years. After year 6, however,

point estimates become significantly positive and they increase with j . It is im-

portant to stress that this is an average treatment e↵ect which may be explained

by both, number of districts entering production and night lights still expanding

in districts that started mining.

The coe�cients in column (1) do not necessarily measure the e↵ect of a sin-

gle discovery, as more discoveries may follow after the first discovery. There are

districts that had more than one discovery. In column (2), we limit the sample

to the time when there was no subsequent discovery. Coe�cients remain un-

changed. Having an additional discovery after the first discovery does not seem

to matter much, possibly pointing to a decreasing marginal product.

We would expect heterogeneous e↵ects with respect to the size of mineral

deposits. In particular, giant deposits should have a larger e↵ect because of their

higher economic value and because they tend to enter production more quickly

than major deposits (Figure 2.5). We test this idea using the same specification as

in equation 2.2, but with dummy variablesMDdrt�j indicating the first discovery

of giant (major) deposits exclusively.

Columns (3) and (4) in Table 2.3 shows the estimates for giant deposits and

major deposits respectively. While standard errors are large indicating that there

are no statistically significant di↵erences between giant andmajor deposits, point

estimates indeed confirm a pattern by which night lights take o↵ slightly earlier

(at about year 5) and at a steeper rate after a discovery of giant mineral deposits.11

At year 10 after the discovery, the increase in night lights corresponds to 54 per-

centage points for giant deposits compared to a 37 percentage points for major

deposits. These are indeed large e↵ects.
11There are an average of 25 giant and 48major deposits in our 10 year time horizon on average.
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Table 2.3: Mine Discovery and Night Lights Density

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 -0.029 -0.028 -0.032 -0.024

(0.061) (0.063) (0.098) (0.081)
j = 1 0.023 0.024 0.100 -0.005

(0.073) (0.075) (0.111) (0.091)
j = 2 -0.011 -0.008 0.075 -0.043

(0.079) (0.081) (0.106) (0.098)
j = 3 0.019 0.006 -0.015 0.039

(0.086) (0.087) (0.131) (0.094)
j = 4 0.071 0.068 0.085 0.070

(0.100) (0.104) (0.167) (0.111)
j = 5 0.126 0.114 0.146 0.122

(0.104) (0.109) (0.174) (0.114)
j = 6 0.194* 0.190* 0.314 0.134

(0.112) (0.118) (0.220) (0.118)
j = 7 0.242** 0.218* 0.342 0.190

(0.121) (0.126) (0.235) (0.123)
j = 8 0.387*** 0.391*** 0.484** 0.331**

(0.137) (0.147) (0.235) (0.161)
j = 9 0.401*** 0.402*** 0.477** 0.355**

(0.149) (0.155) (0.247) (0.171)
j = 10 0.438*** 0.431*** 0.538** 0.373**

(0.149) (0.156) (0.253) (0.166)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 74,234 74,178 73,150 73,828

Notes: This table reports the e↵ect of mineral resource discoveries on night lights in a panel of district-year observations.

Districts with pre-existing mining activities were dropped from the regression. In column (1), the variable of interest

Discoveryd,t�j is a dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if no dis-

covery has been made and missing for every post-discovery year j > 10. In column (2), the dummies are set to missing the

year a second discovery was made in the same district. In column (3) and (4), the dummy refers to giant and major deposit

discoveries respectively. Because of the 10-year lag, the discoveries and numbers referred to by each dummy variable may

vary. Robust standard errors in parentheses are clustered by region. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.

2.4.4 Why Mining Matters for Local Economic Development?

We find that mineral discovery and production have a positive e↵ect on night

lights density at the district level in 42 sub-Saharan African countries over the

period 1992 to 2012. In particular, a startup of new mining activity is associ-

ated with a 55.4 percent increase in night lights density. Similarly, a mineral
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discovery e↵ect is associated with 19-44 percent increase in district’s night lights

density between 6-10 years post discovery. We subsequently present a set of eco-

nomic factors that explain the patterns shown between mining activity and local

economic development in Africa.

There is an emerging literature exploiting within country variation to anal-

yse the e↵ect of natural resource booms. Within this literature, our finding is

closely related to the finding of Aragón and Rud (2013), Lippert (2014), Loayza

and Rigolini (2016) and Fafchamps et al. (2016). Our finding can be explained

by the e↵ect of local demand shocks on agricultural sector. Mining boom can im-

prove the demand for locally produced agricultural commodities (Lippert, 2014).

In turn, this translates into better living standards for local communities. The

patterns shown in our study can also be explained by the fact that local mining

activity promote local procurement (or demand for local inputs) and employ-

ment. For example, Aragón and Rud (2013) o↵ers support for the local backward

linkages hypothesis, implying that extractive industries can increase the real re-

turn to local factors of production via local procurement of goods and services.

Such demand shocks due tomining boom are likely to improve average consump-

tion per capita and lower poverty rates in mining districts (Loayza and Rigolini,

2016). Moreover, our finding can be explained by agglomeration economies. The

study by Fafchamps et al. (2016) used gold production dataset in Ghana and

document locations near gold mining have more sophisticated non-agricultural

forms of economic activity. The argument for agglomeration economies links

natural resource abundance to the manufacturing (business) sector, where local

non-agricultural business sectors benefit from local demand demand shocks due

to natural resource abundance (Michaels, 2011; Allcott and Keniston, 2014).

2.4.5 General Equilibrium: Regional and Country Level E↵ects

In this section, we explore the general equilibrium e↵ects of mining activity by

redefining the units of interest. An alternative solution to explore general equi-

librium e↵ects is to redefine the unit of interest. Districts are likely to make

interactions, which makes the no-interaction assumption less plausible to iden-

tify the e↵ect of mining. There is well-defined economic and political interaction
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between districts within the same region as well as within the same country. We,

therefore, study the next higher aggregates than districts using the 1st level ad-

ministrative unit (region level) and countries as unit of observation.

Interactions decline with geographical distance; hence the e↵ect at the dis-

trict level is large, and the e↵ect at the regional level may be smaller or even zero.

This is consistent with the finding of other studies. In their study of gold mining

in Peru, Aragón and Rud (2013) found income e↵ects declining with distance and

being insignificant at 100 km from the mine. Similarly Kotsadam and Tolonen

(2016) found e↵ects on female employment up to a distance of 75 km.

We study both mineral production and discovery data. Table 2.4 starts with

administrative regions, and the specification include region and year fixed ef-

fects. We have two variables of interests measuring the mineral production value

and the number of mineral producing districts in the region. We test the e↵ect

of mineral production on night lights density by using two alternative outcome

variable. We observe statistically significant e↵ect of mineral production at the

region level when using the sum of night lights in all the districts in the region.

However, when we exclude the night lights from the mineral producing districts,

the statistical significance disappears but remains positive. This implies that the

significant e↵ect of mineral production on night lights density is largely coming

from the mining districts in the regional.

Table 2.4: Mineral Production and Night Lights Density at the Region Level

(1) (2) (3) (4)
Ln(Mineral Production Value) 0.018*** 0.007

(0.005) (0.014)
Ln(Number of Mining Districts) 0.298*** 0.055

(0.104) (0.287)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
Region Fixed E↵ects Yes Yes Yes Yes
Observations 10,228 10,898 10,141 10,709

Notes: This table reports the e↵ects of mineral production at the regional level. We have two main variables of interest:

the value of mineral production and the number of mining districts. In columns (1)-(2), the outcome variable include the

sum of night lights from all the districts in the region. In columns (3)-(4), the outcome variable exclude night lights from

the mineral producing districts from which we know that there is a positive e↵ect. Robust standard errors clustered by

region are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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The mineral discovery data displays similar phenomenon, where we find

weak evidence for a positive e↵ect of discovery at the region level. The OLS

estimates are reported in Table 2.5. We use the same model as in Equation 2.2

with year and region fixed e↵ects. We observe no heterogeneity between giant

and major discovery e↵ects.

Table 2.5: Mine Discovery and Night Lights Density at the Region Level

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 0.023 -0.012 -0.042 -0.007

(0.079) (0.056) (0.103) (0.063)
j = 1 0.133 0.040 0.105 0.005

(0.089) (0.072) (0.117) (0.084)
j = 2 0.111 -0.006 -0.013 -0.010

(0.110) (0.083) (0.112) (0.100)
j = 3 0.100 -0.007 -0.117 0.040

(0.110) (0.085) (0.101) (0.100)
j = 4 0.110 0.018 -0.067 0.062

(0.115) (0.091) (0.111) (0.111)
j = 5 0.138 0.036 -0.099 0.097

(0.120) (0.091) (0.108) (0.109)
j = 6 0.190 0.067 0.014 0.087

(0.116) (0.090) (0.104) (0.111)
j = 7 0.183 0.068 0.032 0.091

(0.112) (0.097) (0.091) (0.124)
j = 8 0.201* 0.117 0.136 0.095

(0.116) (0.106) (0.098) (0.137)
j = 9 0.202* 0.076 0.102 0.061

(0.122) (0.113) (0.099) (0.144)
j = 10 0.213* 0.148 0.159 0.115

(0.114) (0.104) (0.098) (0.135)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
Region Fixed E↵ects Yes Yes Yes Yes
Observations 9,155 9,541 8,960 9,370

Notes: This table reports the e↵ect of mineral resource discoveries on night lights in a panel of region-year observations.

In column (1), the variable of interest Discoveryd,t�j is a dummy variable equal to 1 if a giant or major mineral deposit

was discovered j years ago, 0 if no discovery has been made and missing for every post-discovery year j > 10. In column

(2), the dummy is set missing the year a second discovery was made in the same district. In column (3) and (4), the dummy

is for giant and major deposit discoveries respectively. Robust standard errors in parentheses are clustered by region. ***,

**, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

In Table 2.6, we repeat the exercise with country level data using year and

country fixed e↵ects. Likewise, we use two alternative measurement of an out-
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come variable: the sum of night lights in all the districts in a country, and the

sum of night lights in the non-mining districts by excluding night lights from

the mining districts. The OLS estimates shows very similar e↵ect with the region

level analysis, and we conclude that there is very little evidence for significant

e↵ect of mining activity at the higher administrative units.

Table 2.6: Mineral Production and Discovery at the Country Level

Ln(0.01 + Night Lights Density per sq. km)
Mineral Production Mineral Discovery

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

Ln(Mineral Production -0.0001 -0.001
Value) (0.003) (0.003)
Ln(Number of Mining 0.072 0.072
Districts) (0.094) (0.094)
Discovery in the past 0.022 0.021
5 years (0.019) (0.022)
Discovery in the past 0.027 0.025
6-10 years (0.020) (0.020)
Discovery more than 0.015 0.006
10 years ago (0.015) (0.015)
Pop Density & Rainfall Yes Yes Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Country Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 882 882 882 882 882 882

Notes: This table reports the e↵ects of mining activity on night lights at the country level. For mineral production

analysis in columns (1)-(4), we have twomain variables of interest measuring the natural logarithm of the value of mineral

production and the natural logarithm of the number of mining districts. For mineral discovery analysis in columns (5)

and (6), we have three explanatory variables indicating a dummy variable equal to 1 if a giant or major mine deposit

was discovered in the past 5 years, in the past 6-10 years and more than 10 years ago, 0 if no discovery has been made.

In columns (1), (3) and (5), the outcome variable include the sum of night lights from all the districts in a country. In

columns (2), (4) and (6), we exclude night lights from mineral discovery or producing districts from which we know that

there is a positive e↵ect. Robust standard errors clustered by country are in parentheses. ***, **, and * indicate statistical

significance at the 1%, 5%, and 10% level, respectively.

2.5 Robustness and Sensitivity Analysis

Recent studies raised valid concerns regarding night lights data and districts as

units of observation. Robustness results are shown in the Appendix. Min (2008)

and Cogneau and Dupraz (2014) argue that in sparsely populated areas light in-

tensity is dominated by noise. Min (2008) pointed to a minimum population

threshold above which one can reliably assume that the lack of visible night
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lights indicate lack of electrification and outdoor lights. We followed Min (2008)

and excluded sparsely populated places with less than 4 people per square kilo-

metre from the sample. The results for excluding sparsely populated districts

are reported in Tables A.2 and A.9 in the Appendix. Furthermore, we followed

Cogneau and Dupraz (2014) and dropped zero luminosity districts from the sam-

ple. The main estimates reported in Tables 2.1 and 2.3 remain unchanged. The

results for dropping districts with zero luminosity from the sample are reported

in Tables A.3 and A.10 in the Appendix.

In the main regressions we use night lights density as the main outcome

variable. However, lights density may not be a better predictor of local economic

development. Cogneau and Dupraz (2014) make a case for using log luminos-

ity per capita (i.e. log light density minus log population density). They argue

that economic development in Africa should be judged in light of today’s African

population and not surface area. We re-estimate Tables 2.1 and 2.3 by reweighing

the lights intensity measure by population. The results are reported in tables A.4

and A.11 in the Appendix and our results remain unaltered.

Countries with a larger population and number of districts could be dis-

proportionately represented in our sample. To correct for this potential bias we

weight districts by the inverse of the total number of districts in the country. This

mimics the process of assigning equal weights to each country in the sample. We

re-estimate Tables 2.1 and 2.3 and the results in fact become stronger. The results

are reported in Tables A.5 and A.12 in the Appendix

We also address concerns that subnational administrative boundaries are

endogenous by construction. Administrative demarcations in a country are typ-

ically determined by geographic and demographic characteristics of the area,

which could be the determinants of local economic development. To mitigate

this concern, we use 0.5 x 0.5 degree grid cells as units of observation (i.e. around

55 x 55 kilometres at the equator). In the panel of cell-year observations we in-

vestigate how mineral discoveries and production a↵ect the cell level economic

development measured by night lights density in a given cell-year. Several re-

cent studies have implemented similar grid-cell level approach (Michalopoulos

and Papaioannou (2013a) and Berman et al. (2014)). Our results in Tables 2.1



36

and 2.3 remain una↵ected by this change in the unit of analysis. The results are

reported in Tables A.6 and A.13 in the Appendix

Moreover, the positive e↵ect of mining might be driven by night lights ema-

nating from the mining industries. We address this concern by ignoring all lights

around a 2 kilometre radius of a mine and re-estimate the regressions reported

in Tables 2.1 and 2.3.12. The results are reported in Tables A.7 and A.13 in the

Appendix and our results remain qualitatively unchanged.

In Table 2.1 we replaced missing values in production quantities by linear

interpolation. This may a↵ect estimates of the intensive margin. To check we

drop district-year observations from the dataset and rerun Table 2.1. The results

are reported in Tables A.8 in the Appendix and our results remain qualitatively

unchanged.

2.6 Conclusion

We investigate how mining a↵ects local economic development in the context of

sub-Saharan African countries. Economic development is measured using satel-

lite data on night lights. We find that both mineral extraction and discovery ex-

pands economic activity in a panel of 3,635 districts from 42 Sub-Saharan African

countries observed over the period 1992 to 2012. The study finds positive e↵ects

of mining at the intensive margin, however large e↵ects are associated with min-

ing at the extensive margin.

Our finding is consistent with the emerging sub-national literature that are

largely motivated by theories of demand side linkage of extractive industries and

development. The theories predict that mineral discoveries and extraction are

likely to impact local economic development in sub-Saharan Africa, as reflected

in the night lights intensity, via the potential backward linkages implying in-

creases in return to local factors of production. Moreover, positive economic

consequences of mining activity are also likely to emerge via the labour mar-

ket opportunities. The other important economic reason explaining the positive

relationship between mining activity and local development is likely to be im-

12The choice of 2 kilometre is somewhat arbitrary. Note however that increasing the radius
increasingly excludes lights not directly produced by the mine.
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provement in the sophisticated non-agricultural forms of economic activity and

agglomeration economies.

Our findings imply that resource depletion in sub-Saharan African coun-

tries provide an opportunity to improve local economic development. Limited

access to the international credit market is a defining feature of governments and

private sectors in sub-Saharan Africa because they are insu�ciently credit wor-

thy. However, the conjunction of relatively high global commodity prices and

new natural resource discoveries can provide a major new source of develop-

ment finance for sub-Saharan Africa. It can also trigger agglomeration e↵ects via

new cities and new infrastructure especially at the extensive margin. This is an

opportunity not to be missed by sub-Saharan Africa.
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CHAPTER 3

Natural Resources and Multi-Ethnic Coalitions

3.1 Introduction

How is cabinet positions allocated across diverse ethnicities in Africa? The most

widely stated attributes of power sharing in Africa is the manner in which rulers

use state resources to expand state cabinet o�ces and allocate ministerial posi-

tions across elites. It could very well be that natural resources play a decisive

role in the power sharing dynamic within the African political system. In other

words, ethnicities from resource rich regions empowered by their enhanced eco-

nomic and political power could demand additional representation in the cen-

tral government in the form of cabinet posts. The incumbent leader or the ruling

elite could respond by ignoring these demands and resorting to coercion. Alter-

natively, the incumbent elite could also co-opt these resource rich ethnic groups

using political patronage.

We examine the e↵ects that changes in natural resource discoveries and

global commodity prices have on the allocation of cabinet positions across di-

verse ethnicities in Africa. The study employs ethnic ministerial appointments to

the cabinet, or ethnic representation in the cabinet o�ces as a measure of multi-

ethnic power sharing coalitions. The results show that ethnic ministerial appoint-

ment in Africa is systematically related to changes in natural resource discover-

ies and ethnic specific commodity price indices. The e↵ect of natural resource

discoveries on ethnic ministerial appointment is positive and statistically signif-

icant within 2-8 years of resource discovery. Similarly, the e↵ect of commodity
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prices is also positive and statistically significant. The significant and positive

relation between natural resources and ethnic ministerial appointment implies

that rulers appoint more elites from ethnicities with abundant natural resources,

as reflected in natural resource discoveries and ethnic specific commodity price

indices. This reject the commonly held view that state cabinet positions being

allocated exclusively based on population sizes.

Why do natural resources matter for multi-ethnic power sharing coalitions

in Africa? We test three potential mechanisms linking natural resources to ethnic

power sharing coalitions. First, risk of political violence by excluded ethnicities

is not a significant mechanism linking natural resources to power sharing coali-

tions. Second, we find mixed evidence on the association between natural re-

sources and social actors collective contentious action (e.g., demonstrations and

riots) as a potential explanation for power sharing coalitions. Third, our finding

supports the idea that rising resource discoveries and commodity prices provide

rulers with more revenues to expand the cabinet sizes; hence they build broader

multi-ethnic coalitions.

Do ministerial appointments come with real power to impact meaningful

distributive politics? We find that the e↵ect of natural resources on both top and

low cabinet positions sharing is statistically significant and positive.1 We argue

this complements the assertion that appointment to top inner circle of the cabi-

net o�ces do not imply that elites are just assigned for symbolic representation.

These positions come with real distributive power politics. We find evidence that

ethnicities that share the ethnicity of the head of cabinet positions receive larger

economic benefit, as reflected in night lights intensity. In contrast, excluded eth-

nicities do not enjoy higher intensity of night lights, i.e., excluded ethnicities

receive less public or economic opportunities.

We contribute to the literature by adopting an innovative approach towards

geocoding the ethnic share of cabinet posts dataset and relating it to Murdock

(1967) Ethnographic Atlas. Furthermore we marry this data with our georefer-

enced data of resource discovery and commodity prices to estimate the e↵ect of
1Based on Francois et al. (2015) , we experiment di↵erent categorisations of cabinet positions

into top and low. For example, we categorise the Defence, Finance, Economy, Foreign A↵airs,
Trade, Education, etc. as top ministerial appointments. The low ministerial appointments may
include Environment, Civil Service, Cultural A↵airs, Social Service, Youth and Sport, etc.
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natural resource discovery and price shocks on ethnicity level power politics in

Africa. The ethnicity level political consequences of natural resources in Africa

is not widely studied. To the best of our knowledge, our study is the first attempt

to systematically analyse these e↵ects using rigorous empirical methods.

Similar to Mamo et al. (2017), our cleanest identification strategy relies on

the exclusivity and randomness of the single first discovery of natural resources

in a particular ethnic homeland. This refers to the virgin ethnic homelands which

receives their one and only resource discovery during the sample period. We use

multiple layers of clustering starting from ethnic homeland to country levels to

account for cross-sectional and intertemporal dependence. In addition we also

use a strategy similar to Cotet and Tsui (2013), Bhattacharyya et al. (2017), and

Arezki et al. (2017) which relies on the stochastic nature of the discovery dates of

giant and supergiant mineral and oil discoveries. A mineral deposit is coded as

giant if it has the capacity to generate at least USD 0.5 billion of annual revenue

for 20 years or more accounting for fluctuations in commodity price. A giant oil

or/and gas (including condensate) field is a deposit that contains at least a total

of 500 million barrels of ultimate recoverable oil or gas equivalent. This would

be able to generate an annual revenue stream of approximately USD 0.4 billion

under the assumptions that over the sample period the average gestation lag be-

tween production and discovery is 5 years, the average price of a barrel is USD

25, and the average discount rate including the country specific risk premium

is 10 percent.2 Therefore, it is reasonable to assume that both the giant oil and

mineral discovery shocks are approximately of the same size on average. How-

ever, it is important to note that these value calculations are based on parametric

assumptions which could be revised in subsequent years.

Exploration e↵ort could drive resource discovery in a country. This may

not be an issue in the specifications with the first discovery variable but it could

be a source of bias in the specifications based on giant or major discoveries. We

do not have ethnic homeland level measures of exploration e↵ort. However, we

could be reasonably confident that the country specific time varying e↵ects in our

2Some studies claim that the risk premium augmented discount rate should be as high as 14-15
percent. Arezki et al. (2017) presents a more sophisticated analysis of net present value of giant
oil discoveries and find that the median size of a giant discovery is approximately 5-6 percent of
GDP.
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specifications are controlling for exploration e↵ort.

A recent literature study the nature of cabinet post allocations in Africa

and its consequences. For example, Arriola (2009) and Roessler (2011) study

how cabinet appointments prolong the tenure of an incumbent and influence the

risk of political violence. Burgess et al. (2015) and Kramon and Posner (2016a)

study the motivations behind cabinet post allocations and find ethnic favoritism

to be playing a significant part. In contrast, Francois et al. (2015) find ethnic

population share to be the prime driver of cabinet post allocation in Africa. None

of these studies look into the role of natural resources and especially point source

resources which we actively pursue here.

Our work is related to the literature on political resource curse (Robinson

et al., 2006; Caselli and Cunningham, 2009). Understanding the impact of natu-

ral resources on political outcomes is central to this predominantly cross-country

macro literature. However, this literature do not engage with the ethnicity level

patronage mechanism following a natural resource shock so common in resource

rich African countries. We explicitly study this phenomenon using detailed mi-

cro data which undoubtedly moves this literature forward.

A large and predominantly macro literature document the harmful role

of ethnic politics in African economic development (Easterly and Levine, 1997;

Gennaioli and Rainer, 2007; Michalopoulos and Papaioannou, 2013b). These

studies by design do not focus on themicro ethnicity level political dynamics.

Finally, our paper is also related to the resource curse literature. Auty

(2001), Gylfason (2001) and Sachs and Warner (2001, 2005) note that resource

rich countries on average growmuch slower than resource poor countries. Subse-

quent studies have argued that natural resources may lower the economic perfor-

mance because they strengthen powerful groups, weaken legal frameworks, and

foster rent-seeking activities (e.g., Tornell and Lane (1999), and Besley (2007)).

Others have argued whether natural resources are a curse or a blessing depends

on country-specific circumstances especially institutional quality (eg., Mehlum

et al. (2006), Robinson et al. (2006), Bhattacharyya and Hodler (2010, 2014a), and

Bhattacharyya and Collier (2014)), natural resource type (Isham et al., 2005b)

and ethnic fractionalisation (Hodler, 2006).
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The remainder of the chapter is structured as follows: Section 3.2 describes

the types of dataset, sources and measurement of the main variables of interest.

Section 3.3 discusses our empirical strategy to investigate the e↵ect of natural re-

sources on power sharing coalitions. Section 3.4 presents the main results on the

e↵ects of natural resources and discusses the mechanisms. Section 3.5 presents

the battery of robustness checks. Section 3.6 concludes.

3.2 Data Sources and Measurement

Ethnicity is our main unit of interest, as it is the organising principle and the

basis of political institutions in Africa (Posner, 2005). We focus on ethnic compo-

sition of executive branch of government, where the ministers are responsible for

implementing government policy (Rainer and Trebbi, 2012). It is also regarded

as an instrument for managing elite relations (Arriola, 2009).

3.2.1 Multi-Ethnic Power Sharing Dataset

The study uses two datasets on multi-ethnic power sharing coalitions in Africa.

First, the paper utilises the novel dataset constructed by Francois et al. (2015) on

ethnic composition of government coalitions in post-colonial African countries,

hereinafter called FRT15 dataset. The dataset emphasise the executive branch of

the government, as it plays a central role in all national political systems. The

ethnicity of national ministries have been identified since independence (until

2004) in 15 equatorial African countries, and they constitute 45% of African pop-

ulation. Second, the paper utilises Ethnic Power Relations (EPR) dataset to esti-

mate the e↵ect natural resources have on ethnic access to executive state power

(Wucherpfennig et al., 2011). EPR provides information on ethnic group’ access

to national level executive power in 39 African countries from 1946 to 2010.

FRT15 dataset reports ethnic share of cabinet positions, population sizes,

ruler’s ethnicity indicator, largest ethnicity indicator and coalition member in-

dicator. We generate geo-coordinates of each ethnicity, by utilising ethnicity

database from Joshua Project (U.S. Centre forWorldMission), and di↵erent bound-

ary maps of ethnicities including University of Texas Libraries. We match about
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60% of ethnicities from Francois et al. (2015) to Murdock (1967) map of ethnic

homeland. We have a panel of 161 ethnicities in 15 African countries (see Figure

3.1 Map (a)). We argue that this does not give rise to the issue of selection bias.

Table B.1 in the Appendix reports basic summary statistics for the matched eth-

nicities. The cross-sectional sample size is not significantly reduced and themean

values are comparable. The mean value of group’s share of cabinet positions is

0.059 in our sample, and 0.054 in the sample of Francois et al. (2015). In addi-

tion, the number of ethnicities represented in the national politics varies across

countries (see Tables B.2 and B.3 in the Appendix). Tanzania and Democratic

Republic of Congo’s share of ethnicities is the largest over the sample period,

18.01% and 13.66% respectively. In contrast, Benin (with 0.62%) and Republic

of Congo (with 1.24%) share is the lowest over the sample period.

Figure 3.1: Geographical Boundary of Ethnic Groups in Africa

(a) (b)

Notes: The map shows the geographical boundary of our sample countries and ethnic group polygons. Map (a) constitute

15 equatorial African countries: Benin, Cameroon, Cote d’Ivoire, Democratic Republic of Congo, Gabon, Ghana, Guinea,

Liberia, Nigeria, Republic of Congo, Sierra Leone, Tanzania, Togo, Kenya, and Uganda. The ethnic polygons portray the

spatial distribution of ethnicities based on Murdock map of ethnic boundaries. Map (b) is a geocoded version of the

Ethnic Power Relations (GeoEPR) dataset that charts politically relevant ethnicities across 39 African countries.

The main advantage of FRT15 is that power sharing is measured at indi-

vidual minister level and each single position is identified. It allows to calculate

share of cabinet positions hold by each ethnicity in the country. Moreover, FRT15

use a fine classification of ethnicities, and it is much closer to the standard eth-

nicity classifications (Alesina et al., 2003; Fearon and Laitin, 2003).
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EPR dataset provides annual data on politically relevant ethnicities, and

their access to executive state power in 39 African countries where ethnicity has

been politicised. Political power in this dataset also refers to executives only, dis-

regarding access to legislative and judicial institutions. Unlike FRT15, EPR codes

access to power as a categorical variable.3 The EPR dataset present a higher cov-

erage of 39 African countries, and covers the time period between 1950 and 2010

in our sample. The summary statistics of the number of ethnicities represented

in the national politics is reported in Table B.2 in the Appendix.

We use four of EPR’s access to power coding as a categorical variable: in-

cluded denotes ethnicity represented in the central government, excluded denotes

ethnicity not represented in central government, autonomy denotes ethnicity elites

dominate provincial government, and separatist denotes ethnicity elites dominate

a breakaway region. The included category further divided into sub-categories:

monopoly denotes elite members hold monopoly power in the executive to the

exclusion of elites of all other ethnicities, and dominance denotes elite members

of the group hold dominant power in the executive but there is some limited

inclusion of other groups who however do not have real influence.

3.2.2 Natural Resources: Production and Discovery Dataset

We use two datasets on natural resources in Africa. First, we use ethnic specific

mineral and agricultural commodity production that are sourced from Intier-

raRMG (2014) and the Spatial Production Allocation Model (SPAM) (You et al.,

2012), respectively. Second, we use ethnic specific natural resource discoveries

that are sourced from MinEx Consulting (2014) database for mine deposits, and

Horn (2011) for oilfield discoveries.

3The inclusion or exclusion criterion is based on the standard definition of PREG (Politically
Relevant Ethnic Group). An ethnicity is politically relevant if either at least one significant po-
litical actor claims to represent the interests of that group in the national political arena or if
group members are systematically and intentionally discriminated against in the domain of pub-
lic politics. EPR dataset is flexible and dynamic, as list of PREG may change over time in order
to account for possible shifts of the most relevant ethnic cleavages within a country, or to account
for a change of the power status of any groups. All ethnicities are categorised according to the
degree of access to central state power by those who claimed to represent them. The executive
power, whether political power is e↵ectively exercised or not, can be the presidency, the cabinet,
and senior or top positions including army command. The regimes type could be democratic,
military dictatorships, one-party or dominant-party states.
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The IntierraRMG (2014) dataset, currently known as SNL Metals and Min-

ing, contains information on 548 industrial size mines in Africa in our sample,

geocoded with point coordinates and annual information on production levels.

All the mines are matched to ethnic boundaries, and ethnic specific mineral pro-

duction is constructed using industry specific mineral production.

The Spatial Production Allocation Model (SPAM) contains time invariant

data on agricultural production in the year 2000. It provides 10x10 km grid-

level crop production for a range of major agricultural crops across the world. We

exploit the time invariant production data of SPAM to construct ethnic specific

commodity price indices. The time invariant production patterns capture overall

subnational or regional patterns of agricultural commodity in Africa. We focus

on major agricultural commodities where price statistics are available.

Our discovery datasets cover di↵erent geo-politics in Africa to analyse the

e↵ect of natural resources on power sharing. Figure 3.2 shows the geographical

distribution of discoveries. MinEx Consulting (2014) dataset covers a time period

between 1950 and 2012 for 32 African countries, whereas Horn (2011) dataset

covers discoveries of oilfield between 1955 and 2010 for 9 African countries.

MinEx reports 263 discoveries of mine deposits, and gold represents about

48% of the discoveries (see Table B.4 in the Appendix). Horn (2011) reports 59

onshore giant oilfield discoveries in Africa over the 1955-2010 period. To min-

imise the risk associated with the potential measurement error arising from the

estimated size of discoveries, we simply construct an indicator whether an eth-

nicity has discovered at least one mine deposit or oilfield in each given year.

The summary statistics about the discoveries and list of primary commodi-

ties appear in the appendix. Countries are heterogenous in terms of the number

of discoveries, and the geographical distribution of discoveries within a country

(see Tables B.5 and B.6 in the Appendix). The following countries experience

more than 4% share of mineral discoveries individually in the continent over the

sample: Botswana, Burkina Faso, Democratic Republic of Congo, Ghana, Mali,

Namibia, South Africa, Tanzania and Zimbabwe. In the Mike Horn’s oilfield

discovery dataset, Libya and Nigeria display 45.8% and 23.7% share of oilfield

discovery, respectively.
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Figure 3.2: Geographical Location of Resource Production and Discoveries

Notes: The map shows the geographical location of mineral production, mineral deposit and oilfield discoveries.

3.2.3 Other Ethnic Specific Variables

Information on de facto political power of ethnicities come from Ethnic Armed

Conflict Dataset (EACD), which is based on UCDP/PRIO (Wimmer et al., 2009).

We exploit two main variations: year in which a new ethnic violence starts, and

year in which high intensity ethnic violence starts. Information on collective con-

tentious action come from Social Conflict Analysis Database (SCAD). This dataset

contains information on protests, riots, strikes, and other social movements in

Africa (Salehyan and Hendrix, 2016). We rely on the reported motivation behind

the collective action, and we are only interested in peaceful social movement di-

rected toward government authorities. We also use satellite data on night lights

as proxy measure of rent re-distribution, as there are no widely available data

on rent re-distribution at the subnational level (Hodler and Raschky, 2014). We

adjust night lights by ethnic land surface area. The night lights data come from

Defence Meteorological Satellite Program’s Operational Linescan System.

3.3 Empirical Strategy

Our paper studies how ethnic share of cabinet positions changes with natural

resources. The empirical strategy exploits (1) resource discoveries in an ethnic
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homeland that has no history of discovery as an exogenous source of variation,

and (2) fluctuations in commodity prices that are exogenous to the ethnic groups.

3.3.1 E↵ects of Natural Resource Discovery

We use the following econometric model to identify the e↵ect of resource discov-

eries on ethnic power share:

Powerj,c,t = ↵j +�t +⌘c,t +
10X

i=0

�iResource Discoveryj,t�i +�Leaderj,c,t + ✏j,c,t (3.1)

with Leaderj,c,t an indicator function for country c ruler belonging to ethnicity

j at year t, capturing rulership co-ethnicity e↵ect on ethnic power sharing. The

coe�cient on Leaderj,c,t implies whether rulers favour their own ethnicity, and

� is expected to be positive and statistically significant. The rationale to control

for Leaderj,c,t come from the fact that emphasis has been conventionally placed

on the ruler’s strong co-ethnic preference in ministerial appointments. The e↵ect

of Leaderj,c,t on power sharing is significantly positive supporting the idea that

rulers do indeed favour their co-ethnicity.

We also control for ethnicity fixed e↵ects ↵j , year fixed e↵ects �t and country

x year fixed e↵ects ⌘c,t . Ethnic fixed e↵ects ↵j capture ethnic specific time invari-

ant characteristics that may a↵ect ethnic share of cabinet positions (e.g., cultural

and historical characteristics a↵ecting ethnic political norms and participation).

It could also capture potential systematic di↵erences across ethnicities a↵ecting

data recording and reporting. Year fixed e↵ects �t allows to control for time vary-

ing common shocks a↵ecting any general association between ethnic share of cab-

inet positions and natural resources in a given year (e.g., global shocks a↵ecting

the demand for natural resources). Finally, country x year fixed e↵ects ⌘c,t control

for countrywide time varying characteristics a↵ecting both ethnic ministerial ap-

pointment and resource discoveries (e.g., change in power sharing arrangement,

and change in exploration investments).

Our main variable of interest Resource Discoveryj,t�i is a dummy variable

equal to 1 if natural resource discovery has been made in year t � i in a par-

ticular ethnic group-year and 0 if no discovery has been made and missing for
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every year post-discovery years. We exploit random variation in the timing of

natural resource discoveries to minimise the potential reverse causality chal-

lenges. Our approach is similar with the one adopted by Smith (2015). Smith

uses the first natural resource discoveries in countries that were not previously

resource rich as a plausibly exogenous source of variation. We therefore restrict

Resource Discoveryj,t�i to first discoveries, that is to discoveries in ethnic bound-

aries that never had any natural resource discovery before. It is coded to take the

value i 2 {1(1)10} for a particular ethnic group-year if that group had discovery

in i year over the past 10 years window.

As explained in chapter 2, restricting Resource Discoveryj,t�i to first dis-

coveries serves two purposes. First, existing natural resource extracting activi-

ties may a↵ect power sharing arrangement and it is di�cult to disentangle this

e↵ect from the e↵ect of a new discovery. Second, economic agents including

rulers may arguably anticipate repeated discoveries due to the knowledge of

past discoveries and geology. In contrast, a discovery and its exact timing is

much harder to predict for "virgin" non-mining ethnic homeland. Thus, setting

Resource Discoveryj,t�i = 1 for first discoveries is the cleanest treatment group. In

fact, the coe�cient � estimate at t=0 tests whether there is a significant level dif-

ference between ethnicities with no resources discovery and ethnicities in which

a discovery has just been made. Overall, the coe�cients � measure the di↵erence

in share of cabinet positions i years after a discovery.

The proportion dependent variable Powerj,c,t indicates ethnic j share of cab-

inet positions, in country c in year t based on FRT15. This is our main dependent

variable. Alternatively, we have dependent variable as a binary response, which

is an indicator whether ethnicity j, in country c, access cabinet positions in year

t. We convert the FRT15 proportion variable into a 0/1 variable. We also use the

categorical variable of power access in EPR dataset. The EPR dataset provides

information on ethnic access to the executive state power. It is a dummy vari-

able equal to 1 if an ethnicity is represented by at least one elite and 0 if no elite

represents an ethnicity. We, therefore, use both proportion variable and dummy

variable as the measure of political power.
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3.3.2 E↵ects of Commodity Prices

Similarly, we identify the e↵ect of ethnic specific commodity price indices on

ethnic share of cabinet positions by estimating the following model:

Powerj,c,t = ↵j + �t + ⌘c,t +�Commodity Pricej,t +�Leaderj,c,t + ✏j,c,t (3.2)

Our main variable of interest Commodity Pricej,t represents lagged ethnic spe-

cific commodity price indices.4 We combine time invariant production of various

agricultural andmineral commodities with time varying data on global commod-

ity prices. We construct price index for every ethnicities in our sample as follows:

Ethnic Commodity Price Indexj,t =
34X

i=1

!i,jPi,t (3.3)

where !i,j is ethnic j’s share of agricultural or mineral commodity i in the ethnic

group’s total production of commodity in 2000 (or in the year closest to 2000) and

Pi,t is the annual price series for commodity i, which we extract from IMF Com-

modity Prices, Unites States Geological Survey historical commodity prices, and

Bazzi and Blattman (2014). All prices are normalised to initial sample period as

the base year. The mineral production come from IntierraRMG (SNL Metals and

Mining), and the agricultural production come from Spatial Production Alloca-

tionModel (SPAM). All themineral and agricultural production data arematched

to the ethnic homeland using their location coordinates from IntierraRMG and

SPAM. Our sample covers 21 mineral commodities and 13 agricultural crops.

Details and summary statistics are provided in the Appendix.

4Ethnic specific commodity price index is a simple moving average which are lagging (as op-
posed to predictive indicators). It is based on historical global commodity prices and its past
impact on the economy have already occurred. In practice, its past impact helps agents including
rulers to form an opinion on future potential. This is an example of adaptive expectations where
agents form their future expectations based on what has happened in the past.
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3.4 Results and Discussion

3.4.1 Main Results

Table 3.1 presents the estimates of the e↵ect of resource discoveries on the distri-

bution of cabinet positions across diverse ethnicities in Africa. In column (1), we

link ethnic share of cabinet positions in year t to resource discoveries over the 10

previous years. In column (4), we change the proportional outcome variable into

an indicator of ministerial appointment using the FRT15 dataset.

The estimate of � in column (1) is significantly positive within 2-6 years

of resource discoveries. Two years post discovery, ethnicity that discovered re-

sources receive 0.7 = 25 x 0.028 more ministerial appointments compared to eth-

nicity with no resource discovery. We calculate the number bymultiplying the av-

erage cabinet sizes by the coe�cient in column (1). Six years post discovery, eth-

nicity with discovery significantly receive 2 more ministerial appointments.

The negative � estimate at t=0 implies that there is a significant pre-existing

level di↵erence between ethnicity which has discovered no natural resources and

ethnicity in which a discovery has just been made. At the time of discovery, on

average, ethnicities that just discovered resources have a significant lower cabi-

net shares. Consistent with our argument, positive e↵ect is observed two years

after a discovery (indicating increasing ethnic cabinet position shares, or increas-

ing likelihood of representation). This positive e↵ect could indeed reflect both

the initial di↵erences and the e↵ects of resource discovery. Previously unrep-

resented ethnicities have now higher cabinet shares, or political representation

after discovering natural resources. Hence, we argue that the positive e↵ect due

to the natural resource discovery is larger.

We also present the e↵ect of ethnic share of resource discoveries in the coun-

try and cumulative resource discoveries in ethnic homeland. This is based on the

notion that rulers allocate cabinet appointments based on historical level of dis-

coveries. We find that cabinet allocations appear to be closely associated with the

ethnic share of discoveries and cumulative discoveries. In column (2), the coe�-

cient on the ethnic share of discovery within a country is positive and statistically
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significant, indicating that higher share of discoveries in the country is associated

with more ministerial appointments. In column (3), ethnic group cumulative dis-

coveries has also significant e↵ect on ethnic share of cabinet positions.

Table 3.1: Natural Resource Discoveries and Distribution of Cabinet Positions

Dependent Variable: Share of Ministerial Appointments Indicator of Ministerial Appointments
(1) (2) (3) (4) (5) (6)

Resource Discovery, t -0.033*** -0.613***
(0.007) (0.080)

Resource Discovery, t-2 0.029** 0.289***
(0.012) (0.075)

Resource Discovery, t-4 0.066* 0.270***
(0.040) (0.062)

Resource Discovery, t-6 0.087*** 0.286***
(0.017) (0.054)

Resource Discovery, t-8 -0.012 0.179***
(0.010) (0.055)

Resource Discovery, t-10 -0.064 -0.263
(0.040) (0.392)

Share of Resource Discoveries 0.041*** 0.060*
(0.006) (0.031)

Cumulative Resource Discoveries 0.021*** 0.058***
(0.002) (0.006)

Leader Group 0.080*** 0.158*** 0.156*** 0.266*** 0.426*** 0.421***
(0.004) (0.005) (0.005) (0.020) (0.009) (0.009)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 6,303 6,732 6,732 6,303 6,732 6,732

Notes: This table reports the e↵ect of natural resource discoveries on the distribution of ministerial cabinet positions.

For convenience, we report coe�cients every second year. Dependent variable in columns (1)-(3) denote the share of

all cabinet positions held by ethnicity, and in columns (4)-(6) it denotes an indicator of whether any ministerial level

positions held by ethnicity. We control for ruler’s co-ethnicity e↵ect by including Leader Group, indicating whether

the ruler come from the same ethnicity. Standard errors are adjusted to reflect two-dimensional spatial dependence as

modelled in Conley (1999). The spatial correlation is assumed to linearly decrease in distance up to a cuto↵ of 500km, and

ethnic group distances are computed from centroids of the ethnic group polygons. The result remains robust to several

distance cuto↵s. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

In column (4) in Table 3.1, the outcome variable denotes an indicator of

whether any ministerial level positions held by ethnicity. The estimate of � is

positive and statistically significant within 2-8 years of resource discoveries. This

imply that an ethnicity in which a discovery has been made is significantly more

likely to be appointed as cabinet minister than ethnicity with no resource discov-

eries. On average, 2 years post discovery, an ethnicity which discovered natural

resource is 28.9% more likely to be appointed as cabinet minister than ethnicity

with no resource discovery. The coe�cients on the ethnic discovery shares and

cumulative discoveries are also positive and statistically significant.

Our empirical result is qualitatively in line with a forward looking behaviour,

implying the e↵ects of an anticipated resource revenue on the allocation of cab-
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inet appointments. We argue that the announced resource discoveries plausibly

change the windfall revenue expectations of the rulers, and hence a↵ects the way

the power sharing operate, provided that the resource discovery is credible in

generating revenue. It is understandable that patronage distribution is a func-

tion of actual revenue, yet we observe rulers allocate cabinet positions across the

elites of the various ethnicities before resource production starts. The e↵ect is

observed 2 years post discovery, whereas the delay between a discovery and pro-

duction is on average 4 to 6 years (Arezki et al., 2017). For rulers, the future is in

mind and they are indeed a forward looking agent.

Table 3.2 reports result on the e↵ect of ethnic specific commodity price in-

dices on the distribution of cabinet positions. In columns (1)-(4), we link ethnic

share of cabinet positions in year t to the contemporaneous commodity price in-

dices and average commodity prices over the 10 previous years, controlling for

year fixed e↵ects, ethnic fixed e↵ects and countrywide fixed e↵ects (we present

the coe�cient at the preceding 3, 5 and 10 years).

Table 3.2: Commodity Prices and Distribution of Cabinet Positions

Dependent Variable: Share of Ministerial Appointments Indicator of Ministerial Appointments
(1) (2) (3) (4) (5) (6) (7) (8)

Commodity Price, t 0.003** 0.015*
(0.001) (0.008)

Average Price, 3 Years 0.005*** 0.022**
(0.002) (0.009)

Average Price, 5 Years 0.006*** 0.028***
(0.002) (0.010)

Average Price, 10 Years 0.009*** 0.031**
(0.001) (0.012)

Leader Group 0.087*** 0.087*** 0.089*** 0.089*** 0.254*** 0.235*** 0.225*** 0.218***
(0.004) (0.004) (0.005) (0.004) (0.019) (0.019) (0.020) (0.022)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes
Country x Year Fixed
E↵ects

Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6,536 6,251 6,001 5,238 6,536 6,251 6,001 5,238

Notes: This table reports the e↵ect of ethnic specific commodity price indices on the distribution of cabinet positions.

Standard errors are adjusted to reflect two-dimensional spatial dependence as modelled in Conley (1999). The spatial

correlation is assumed to linearly decrease in distance up to a cuto↵ of 500km, and ethnic group distances are computed

from centroids of the ethnic group polygons. The result remains robust to several distance cuto↵s. ***, **, and * indicate

statistical significance at the 1%, 5%, and 10% level, respectively.

The estimates show that ethnic share of cabinet positions is higher when

the ethnic price indices increases. The significant e↵ect at t imply that a 10% in-

crease in ethnic specific commodity price index is associated with an increase in

0.77 ministerial appointments (this number is the estimate in Table 3.2 column
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(1) multiplied by 10 and again multiplied by the average cabinet size). The sig-

nificant e↵ects of average ethnic commodity prices over the preceding 3, 5 and

10 years imply that a 10% increase in ethnic group’s commodity price indices is

associated with an increase in 1.17, 1.57 and 2.2 ministerial appointments, re-

spectively. The e↵ect of commodity prices remains strong when we change the

proportional cabinet shares into a dummy variable. The result is reported in

columns (5)-(8) in Table 3.2.

In Table B.7 in the appendix, we look at the link between ethnic power

sharing and ethnic commodity prices using the EPR dataset. The political power

is measured as dummy variable, which is similar with the dependent variable in

columns (4)-(6) in Table 3.1. It captures ethnic group’s access to the executive

state power (dummy variable equal to 1 if an ethnicity is represented and 0 if not

represented). The e↵ect of commodity price on power sharing is consistent with

the main results reported using FRT15 dataset in Table 3.1.

In summary, the allocation of cabinet appointments based on resource dis-

coveries and commodity prices rejects clearly the claim that cabinet positions be-

ing allocated exclusively based on population sizes. Besides to ethnic population

sizes (Francois et al., 2015), rulers could also appoint elites from di↵erent ethnic-

ities based on natural resource discoveries and commodity price indices.

In the following section we investigate the potential mechanisms explaining

the association between natural resources and ethnic share of cabinet positions.

3.4.2 Why Do Natural Resources Matter for Power Sharing?

In the following sections, we discuss the economic and political factors that plau-

sibly explain the patterns shown in the data. More specifically, we test three po-

tential mechanisms linking natural resources to ethnic power sharing coalitions.

First, we emphasise on the rulers’ pursuit of stability or co-optation by expanding

state cabinet sizes in the shadow of resource discoveries and rising commodity

prices. Second, we emphasise on the potential enhancement of de facto politi-

cal power of excluded ethnicities. Finally, we emphasise on the ways in which

natural resources promote social actors’ contentious collective action to demand

inclusive power sharing coalitions. Our finding supports the idea that rising re-
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source discoveries and commodity prices provide rulers with more revenues to

expand the cabinet sizes; hence they build broader multi-ethnic coalitions.

3.4.2.3 Natural Resources and Cabinet Expansion

Several empirical evidence link natural resources with the behaviour of rulers in

power (Caselli and Cunningham, 2009; Robinson et al., 2006). Given the slow

economic growth in the region, Africa’s rulers typically use state resources to ex-

pand cabinet sizes and co-opt powerful elites from diverse ethnicities that control

ethnic or regional support bases that are distinct from the ruler’s birth region.

And, elites are allocated enough patronage by the ruler in exchange for their loy-

alty and that of their followers (Francois et al., 2015). The political patronage is

just more than the ministerial wage.5 This ensures that the ruler dissuades revo-

lution attempts by outsiders (excluded ethnicities), or coup attempts by insiders

(Francois et al., 2015). Moreover, Arriola (2009) documents that cabinet expan-

sion as a political patronage increases rulers’ survival and stability in Africa.

To examine the evidence in favour of this mechanism, we rely on FRT15

dataset to construct the size of cabinet (the number of cabinet o�ces), and then

combine the information with natural resources at the country level. We also

utilise information on cabinet sizes by Arriola (2009). We undertake simple lin-

ear regression and non-parametric analysis at the country level.

Figure 3.3 visualises the association of state cabinet sizes with resource dis-

coveries and natural resources rents as a percent of GDP at the country level.

There is positive association between cabinet sizes and natural resources condi-

tional on country fixed e↵ects. The other important observation is the increasing

number of ethnicities involved in the central executives in Africa. On average,

the number of ethnicities involved in the centre politics almost doubled during

our sample period. The cabinet o�ces were about 10 in 1960s and increased to

about 19 cabinets in 2000s.
5This is based on the practice of Prebendalism which states that appointed o�cials in non-

democracies use state revenues to enrich themselves, and benefit their supporters and members
of their ethnic group. This guarantees electoral support or general popular support for the ruler.
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Figure 3.3: Natural Resources and Cabinet Sizes

(a) (b)

Notes: The graph shows the twoway linear prediction plots of the association between natural resources and cabinet sizes.

Number of cabinet sizes (residuals) stands for residual variation in cabinet sizes after subtracting country-specific means.

Resource discovery (residuals) stands for residual variation in natural resource discovery after subtracting country-

specific means. Natural resources rents (residuals) stands for residual variation on total natural resources rents (% of

GDP) after subtracting country-specific means.

The regressions reported in Table 3.3 also show the positive association be-

tween cabinet sizes and natural resources. Columns (1)-(4) show that cabinet

size across African countries can be significantly attributed to natural resources,

as measured by discoveries and rents as the share of GDP. Inclusion of other key

variables, such as rulers years in o�ce, civil war, GDP growth, aid, population

and ethnic fractionalisation, do not a↵ect the significance of resource discoveries.

Higher natural resource is significantly related to a larger cabinet. The result im-

ply that rulers of countries with abundant natural resources are able to mobilise

greater resources to expand their patronage coalitions.

Therefore, our finding supports the idea that natural resources lead to larger

multi-ethnic coalitions in Africa. Natural resource discoveries and rising com-

modity prices provide a new financing opportunity that helps to expand invest-

ment in cabinet sizes. The cabinet o�ce are then allocated to political elites rep-

resenting di↵erent ethnicities. The result is consistent with the finding of Robin-

son et al. (2006) that rulers distribute resource windfall as patronage to influence

political systems. This is a windfall revenue imperative that imply multi-ethnic

coalition as a top-down process driven by revenue-hungry leaders.
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Table 3.3: Natural Resources, Cabinet Sizes and Military Expenditure

Dep Var: State Cabinet Sizes Military Expenditure (% of GDP)
(1) (2) (3) (4) (5) (6) (7) (8)

Resource 0.4013*** 0.5323*** -0.0334*** -0.0538**
Discovery (0.060) (0.066) (0.011) (0.025)
Ruler Years 0.0586** -0.0042 0.0090 0.0124
in Power (0.025) (0.024) (0.015) (0.011)
Ongoing Civil 0.8447* 0.5072 0.9179*** 0.6884***
War (0.503) (0.415) (0.321) (0.263)
Lagged GDP 0.0377 0.0546** -0.0207 -0.0132
Growth (0.023) (0.022) (0.028) (0.020)
Lagged 0.6236*** 0.7746*** -0.0320 0.0975
Population (0.200) (0.160) (0.146) (0.074)
Lagged Aid 0.0230*** 0.0266*** -0.0052 -0.0006
Per Capita (0.006) (0.004) (0.004) (0.002)
Fractionalisation 0.7602 0.3059 -0.2639 -0.8913**

(0.892) (0.665) (0.490) (0.365)
Resource Rent 0.0645*** 0.0296 0.0057 0.0011

(0.024) (0.024) (0.008) (0.014)
Observations 813 667 982 823 603 276 849 378

Notes: This table reports the association between natural resources, cabinet sizes and military expenditure at the country

level. Two main explanatory variables: resource discovery and resources rents (% of GDP). Standard errors are clustered

at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Our finding do not support the idea that winner-take-all form of politics by

excluding other ethnicities. The literature supports that idea that rising windfall

revenue improve counter-insurgency, or military capacity of rulers in power. And

hence, such militarily strong rulers share power and spoils with their loyal co-

ethnics through the politics of ethnic exclusion. However, our result clearly con-

tradicts the finding that natural resources (discoveries and commodity prices) in-

crease military spending in non-democracies (including African countries) (Cotet

and Tsui, 2013; Bazzi and Blattman, 2014). We do not observe a significant pos-

itive association between natural resources and military expenditure in Africa.

The results are reported in columns (4)-(8) in Table 3.3.

In the following sections we provide evidence that natural resources do

not incentivise excluded ethnicities to engage in armed violence to capture the

state and reform power sharing arrangement. Moreover, we find mixed evidence

whether natural resources incentivise social actors to engage in non-violence

movement to secure inclusive power sharing coalitions. Our evidence indicate

that power sharing arrangement across diverse ethnicities in Africa is all about

the behaviour of rulers and the associated windfall revenue imperative.
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3.4.2.1 Natural Resources and de facto Political Power

Does natural resource abundance enhance the de facto political power of outsider

ethnicities to challenge the incumbent for power sharing? We investigate the

association between natural resources and de facto political power of ethnicities.

The concept of de facto political power imply the potential violence threat by

excluded ethnicities that may lead to major reforms of the way existing power

sharing function (Acemoglu et al., 2005). If the political power is exclusively at

the hands of a single autocratic ruler, or a small group (ethnically determined),

the excluded ethnicities challenge the incumbent. The literature documents that

the likelihood of such violence depends on resource windfalls.6

The e↵ect of natural resources on de facto political power is easy to compre-

hend: the association focuses on ethnic violence, arguing if resources are concen-

trated in a particular region of a country, it may incentivises excluded ethnicities

to engage in violence (Humphreys, 2005; Morelli and Rohner, 2015). In Africa,

ethnic violence are more likely to challenge states that exclude large portions

of the population on the basis of ethnicity (Wimmer et al., 2009). Such armed

violence can potentially alter the existing power sharing arrangement.

To examine the evidence in favour of this argument, we rely on Ethnic

ArmedConflict Dataset (EACD) linked to the EPR dataset. As we show in columns

(2) and (3) in Table 3.4, there is no significant association between resource dis-

coveries and de facto political power, as reflected in the outbreak and intensity of

ethnic violence. All coe�cient remain negative.

Similarly, we do not observe significant association between ethnic specific

commodity price indices and the outbreak of ethnic violence. The results are

reported in Table 3.5. These results suggest that resource discoveries and com-

modity prices do not enhance de facto political power of excluded ethnicities.

6Note that there are several dissimilarities in the identification of the association between
natural resources and violence, hence the findings are mixed. Cotet and Tsui (2013) and Lei and
Michaels (2014) present contradicting cross-country evidence on the e↵ect of natural resources on
political violence. Lei and Michaels (2014) attribute the contradiction to dissimilarity in the im-
plementation of their paper including methodological and measurement issues. Similarly, Arezki
et al. (2015a) and Berman et al. (2014) present contradicting subnational evidence on the e↵ect
of natural resources on armed violence. Arezki et al. (2015a) use natural resource discoveries as
plausibly exogenous source of variation, whereas Berman et al. (2014) rely on production data
and commodity prices.
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And hence, de facto political power is not a significant mechanism explaining the

association between natural resources and ethnic share of cabinet positions .

Table 3.4: Resource Discoveries, Political Violence and Collective Action

Dependent Variable: Collective Action Ethnic Violence
(1) (2) (3)

Resource Discovery, t 0.241 -0.009 -0.006
(0.177) (0.010) (0.007)

Resource Discovery, t-2 -0.097** -0.011 -0.002
(0.042) (0.010) (0.006)

Resource Discovery, t-4 -0.098** -0.019 -0.012
(0.041) (0.014) (0.011)

Resource Discovery, t-6 -0.117*** -0.014 -0.009
(0.043) (0.011) (0.008)

Resource Discovery, t-8 -0.121*** 0.134 0.139
(0.043) (0.133) (0.133)

Resource Discovery, t-10 -0.141*** -0.007 -0.002
(0.041) (0.008) (0.005)

Year Fixed E↵ects Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes
Observations 7,670 7,670 7,670

Notes: This table reports the e↵ect of natural resource discoveries on the outbreak of ethnic political violence and collec-

tive contentious action. In column (1), the outcome variable represents an indicator of protest events and various other

collective contentious political events, including riots and strikes. In column (2), the outcome variable represents the year

in which a new ethnic armed violence starts. In column (3), the outcome variable represents an indicator of the year in

which high intensity ethnic armed violence starts. Standard errors are adjusted to reflect two-dimensional spatial depen-

dence as modelled in Conley (1999). The spatial correlation is assumed to linearly decrease in distance up to a cuto↵ of

500km, and ethnic group distances are computed from centroids of the ethnic group polygons. The result remains robust

to several distance cuto↵s. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

3.4.2.2 Natural Resources and Collective Contentious Action

The literature also emphasise the importance of the link between natural re-

sources and social actors collective action. This is a bottom-up ethnic coalition

project that is not readily explained by rulers’ pursuit of windfall revenue nor

opposition groups’ de facto political power. We test the hypothesis that natu-

ral resources can impel social actors to press for inclusive ethnic coalitions. The

argument is simple: natural resources can transmit clear incentives for social ac-

tors by improving capacities for organising popular collective action to secure

distributional political advantage (Saylor, 2014). Such collective actions can be
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manifested as protest events and various other social movements, including riots

and strikes. This may create circumstances under which rulers are inclined to

fulfil inclusive coalition requests.

To examine the evidence in favour of this mechanism, we use the Social

Conflict Analysis Database (SCAD) that contains information on protests, riots,

strikes, and other social movements in Africa. We find mixed evidence. In Ta-

ble 3.4, we report that ethnicities with natural resource discoveries are associated

with less likelihood of the outbreak of collective contentious action. On the other

hand, however, we find significant positive association between ethnic commod-

ity prices and the outbreak of collective contentious action. The regression coef-

ficients of ethnic commodity prices is reported in Table 3.5.

Table 3.5: Commodity Prices, Political Violence and Collective Action

Dependent Variable: Collective Action Ethnic Violence
(1) (2) (3) (4) (5) (6) (7) (8)

Commodity Price, t 0.036*** 0.004
(0.011) (0.003)

Average Price, 3 Years 0.001** 0.0002
(0.000) (0.000)

Average Price, 5 Years 0.038*** 0.006
(0.012) (0.004)

Average Price, 10 Years 0.043*** -0.001
(0.014) (0.001)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 8,016 7,515 7,181 6,346 6,902 6,589 6,334 5,640

Notes: This table reports the e↵ect of ethnic specific commodity price indices on the outbreak of ethnic political violence

and collective contentious action. In columns (1)-(4), the outcome variable represents protest events and various other

collective contentious political actions, including riots and strikes. In columns (5)-(8), the outcome variable represents

the year in which a new ethnic violence starts. Standard errors are adjusted to reflect two-dimensional spatial dependence

as modelled in Conley (1999). The spatial correlation is assumed to linearly decrease in distance up to a cuto↵ of 500km,

and ethnic group distances are computed from centroids of the ethnic group polygons. The result remains robust to

several distance cuto↵s. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Our result for ethnic specific commodity prices echoes the finding of Berman

et al. (2014). Exploiting variations in the global mineral prices, Berman et al.

(2014) find a positive impact of mining on the probability of low-level violence

(riots, protests) in African countries at grid level. Our results with large-scale re-

source discoveries, however, provide no evidence that general findings of Berman

et al. (2014) hold in Africa at ethnicity level. The mixed result is not a new phe-

nomenon, as studies have often reported mixed results. It would perhaps cast

a doubt on the association between natural resources and organised collective
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action to secure distributional political advantage.

Not all natural resources impact social actors equally, and its potential for

patronage is di↵erent. Revenues from resource discoveries (usually capital-intensive)

accrue mainly to the state, hence do not directly a↵ect social actors collective ca-

pacity (Bazzi and Blattman, 2014). In contrast, commodity booms do a↵ect social

actors’ capacity directly as taxation is typically limited on agricultural and some

mineral commodities. Thus, both resource discoveries and commodity booms

potentially play di↵erent roles to a↵ect political patronage. However, we cannot

make firm conclusion given the mixed statistical evidence.

3.4.3 Other Related Results

3.4.3.1 Heterogeneous E↵ects of Commodity Prices

Is there a great deal of heterogeneity in the political potential of agricultural com-

modities and mineral commodities? As a traditional sector, agriculture was often

seen to contribute passively to political economy. However, mineral sector is at

the centre of political foundations of resource curse inmost developing countries.

Thus, one may expect the two types of commodities may have di↵erent impacts

on the distribution of cabinet positions across diverse ethnicities in Africa.

In Tables 3.6, we find that the significant e↵ect of commodity prices on cab-

inet appointment is not a↵ected by the type of commodities. Therefore, given

the widespread popular support for rulers in rural Africa, our statistical evi-

dence supports a significant role for agricultural booms in African power shar-

ing coalitions. Increase in agricultural prices can have the scale and growth-

linkages potential to influence aggregate growth and thus the political patronage

allocation.
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Table 3.6: Heterogeneous E↵ects of Commodity Prices

Dependent Variable: Share of Ministerial Appointments
(1) (2) (3) (4)

Panel A: E↵ects of Mineral Commodity Prices
Mineral Price, t 0.0029

(0.002)
Average Mineral Price, 3 Years 0.0042**

(0.002)
Average Mineral Price, 5 Years 0.0053**

(0.002)
Average Mineral Price, 10
Years

0.0072***

(0.002)
Leader Group 0.0966*** 0.1040*** 0.1083*** 0.1202***

(0.010) (0.011) (0.012) (0.015)
Observations 1,145 1,088 1,041 906

Panel B: E↵ects of Agricultural Commodity Prices
Agricultural Price, t 0.0062

(0.004)
Average Agri Price, 3 Years 0.0137***

(0.004)
Average Agri Price, 5 Years 0.0165***

(0.005)
Average Agri Price, 10 Years 0.0243***

(0.006)
Leader Group 0.0866*** 0.0869*** 0.0877*** 0.0880***

(0.004) (0.004) (0.005) (0.004)
Observations 6,536 6,251 6,001 5,238
Year Fixed E↵ects Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes

Notes: This table reports the e↵ect of ethnic specific mineral and agricultural price indices on the distribution of cabinet

positions. Standard errors are adjusted to reflect two-dimensional spatial dependence as modelled in Conley (1999). The

spatial correlation is assumed to linearly decrease in distance up to a cuto↵ of 500km, and ethnic group distances are

computed from centroids of the ethnic group polygons. The result remains robust to several distance cuto↵s. ***, **, and

* indicate statistical significance at the 1%, 5%, and 10% level, respectively.

3.4.3.2 Natural Resources and Prominence of Single Ethnicity

How about the e↵ect of natural resources on the prominence of single ethnic-

ity? Some scholars characterise African states as monopolisation or dominance

of political power by few elites, with political arrangements ranging from author-

itarian systems to quasi-democracies. In the EPR dataset, power monopolisation
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denotes elites of an ethnicity who monopolise the executive branch of govern-

ment by excluding elites of all other ethnicities. Similarly, power dominance de-

notes elites hold key position in the executives, and also include limited elites

from all other ethnicities.

We find significant negative association between natural resource discover-

ies and ethnic power monopolisation. Likewise, we observe statistically insignif-

icant negative relation between resource discoveries and dominance power in the

national level executives. This contradicts clearly the conventional wisdom that

political power in Africa is monopolised, or dominated by few elites.

We also estimate the e↵ect of ethnic specific commodity price indices on

power monopoly and dominance, and find mixed result. The mixed coe�cients

do not harm the interpretation of our finding. We observe negative relation

with power monopoly, whereas significant positive relationship with power dom-

inance. This is not surprising given that indicator of dominance of the national

level executive power also include other politically relevant ethnicities, for which

we observe increased representation in the shadow of resource discoveries and

commodity price rises. Regression table is reported in Table B.8 in the Appendix.

3.4.3.3Natural Resources andOther Ethnic PowerConfigurations

Leaders in Africa conventionally face opposition from ethnicities that pose dif-

ferent threats to their control over the country. These may include centre-seeking,

autonomy-seeking and independence-seeking threats. For this reason, people may

expect that natural resources lead to di↵erent risk of ethnic violence conditional

on ethnic political agenda (threats to the ruler). We present evidence regard-

ing the anticipated heterogeneous e↵ects of natural resources on di↵erent ethnic

political power configurations.

EPR dataset allows us to estimate the e↵ect of natural resources on ethnic

exclusion from central government, ethnic domination of regional government,

and ethnic domination of a breakaway region (separatism movement). We find

that resource discoveries and ethnic commodity prices have no significant rela-

tionship with ethnic exclusion, regional autonomy, and domination of a break-

away region. All regression tables are reported in Tables B.9 and B.10 in the
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Appendix. This finding supports the idea that power sharing coalitions (ethni-

cally determined) have been widely used in Africa as a strategy to avoid violence

(LeVan, 2011). This may be purported as power shift in the favour of rulers

in power, as the conventional wisdom holds that conflict over natural resources

shifts relative power in the ruler’s favour (Bell and Wolford, 2014).

3.4.3.4 Natural Resources and Window-Dressing Power Sharing

Is power distribution in Africa a window-dressing appointments? We check the

types of cabinet positions distributed across ethnicities and investigate whether

ethnicities are allocated low (symbolic) cabinet positions. We distinguish be-

tween top and low cabinet positions, and test their relation with natural re-

sources. Based on Francois et al. (2015), we experiment di↵erent categorisations

of cabinet positions into top and low. For example, we categorise the Defence,

Finance, Economy, Foreign A↵airs, Trade, Education, etc. as top ministerial ap-

pointments. The low ministerial appointments may include Environment, Civil

Service, Cultural A↵airs, Social Service, Youth and Sport, etc. We believe that

Economic and Finance ministerial positions, and expansive cabinet positions,

such as Transportation and Education, are associated with rent distribution to

ethnicities represented by elites at the executives.

We estimate the e↵ect of resource discoveries and commodity prices on the

distribution of top and low cabinet positions. The e↵ect is significantly positive,

which imply that the allocation of cabinet positions is not a window-dressing

politics. Leaders bring in elites into top political positions, which are real power

to impact rent distribution. The result is reported in Table B.11 in the Appendix.

3.4.4 Multi-Ethnic Coalitions and Distributive Politics

Do ministerial appointments come with real power to impact distributive poli-

tics? We test the e↵ect of ministerial appointments on rent distribution. We rely

on satellite data on night lights intensity as a measure of rent distribution, be-

cause no rent distribution data are widely available at the ethnicity level. The

results are reported in Table 3.7. We find that ethnicities that share the ethnicity

of the head of cabinet positions receive larger economic benefit, as reflected in
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intense night lights. In contrast, excluded ethnicities do not enjoy higher inten-

sity of night lights. On average, ethnicities that have no access to state cabinet

positions are associated with about 42% less night lights distribution.

Table 3.7: Power Sharing and Distributive Politics

Dependent Variable: Natural Logarithm of Night Lights Density
(1) (2) (3) (4)

Ministerial Appointment 7.7066*** 1.5453*** 1.2461***
(0.092) (0.202) (0.197)

Exclusion from Power -0.4170***
(0.144)

Year Fixed E↵ects No Yes Yes Yes
Ethnic Fixed E↵ects No Yes Yes Yes
Country x Year Fixed E↵ects No No Yes Yes
Observations 3,220 3,220 3,220 3,220

Notes: This table reports the e↵ect of ministerial appointments on rent distribution. The dependent variable, which

measure rent redistribution to ethnic groups, is based on satellite data on night lights. Standard errors are adjusted to

reflect two-dimensional spatial dependence as modelled in Conley (1999). The spatial correlation is assumed to linearly

decrease in distance up to a cuto↵ of 500km, and ethnic group distances are computed from centroids of the ethnic group

polygons. The result remains robust to several distance cuto↵s. ***, **, and * indicate statistical significance at the 1%,

5%, and 10% level, respectively.

Our evidence is consistent with other studies that document ethnic power

sharing coalitions in Africa signals significant rent re-distribution. The rent dis-

tribution is often reflected in the form of public goods expenditure in school,

transport and other public goods provision. For example, Hodler and Raschky

(2014) show that regional favouritism is most prevalent in countries such as in

Africa, where they document the birth region of the current political ruler is asso-

ciated with intense luminosity distribution. Kramon and Posner (2016b) find co-

ethnics of the president, or co-ethnics of the minister of education is associated

with more schooling than children from other ethnicities in Kenya. Similarly,

Burgess et al. (2015) find that districts that share the ethnicity of the president

receive higher expenditure for paved roads.7

7Note that the result of Burgess et al. (2015) indicate ethnic ministerial appointments does
not translate into enhanced road investment in the districts that share the ethnicity of these co-
ethnic ministers. They observe increased road investment only in the districts that share the
ethnicity of president, which they interpret as the president retains the power to distribute road
investment in Kenya. Night lights potentially represent a range of public investment including
public constructions other than paved roads.
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3.5 Robustness and Sensitivity Analysis

We now check the robustness of our results to common econometric issues. The

main coe�cient estimates reported in this paper are based on linear regressions.

However, linear regression may not be appropriate due to limited frequency in

which power sharing happens in relation to natural resource discoveries and ris-

ing ethnic specific commodity price indices. Hence, analysing rare events like

cabinet reshu✏ing requires specialised statistical techniques, or di↵erent ap-

proach to the data frequency. We, therefore, use a poisson regression method,

and the main results remain unchanged. The results are reported in Table B.12

in the Appendix. The outcome variable for the poisson regression is a nonnega-

tive count variable, which indicates the number of times the cabinet reshu✏ing

incidence have happened.

Ourmain dependent variable is proportional variable, reflecting ethnic share

of cabinet positions. And in practice, the distribution of proportion variable is

bounded between 0 and 1; hence one may expect that the relationship may not

be linear, and the variance tends to decrease when the mean gets closer to one

of the boundaries (Papke and Wooldridge, 1996; Baum, 2008). The percentiles

distribution of our sample indicate that the smallest cabinet share value is 0 and

the largest is 0.57. The frequency distribution shows a marked spike at the zero,

which is about 39% of country-year observations. The observed zeros here are

structural zeros, which means ethnic groups receive no cabinet positions because

of many reasons. Consequently, linear OLS estimator may tend to be less desir-

able. Fortunately, the predicted values from the OLS model fall within the range

of 0 to 1 without outcome variable transformation. However, we still model the

distribution of the dependent variable using generalised linear model (fractional

logit option). The results remain una↵ected and reported in Table B.13 in the

Appendix.

In addition to the exogenous variations in natural resource discoveries and

global commodity prices, the identification strategy in this paper rests on the

fixed e↵ects regression analysis. We control for ethnic specific characteristics,

year dummies and countrywide time varying characteristics. This would help
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to better account for change in natural resource discoveries and ethnic specific

commodity price indices a↵ecting ethnic cabinet share. An alternative way to

probe the robustness of our identification strategy is to include linear ethnic spe-

cific parametric time trends among the regressors. The rationale of controlling

for ethnic specific time trends is that ethnic groups may influence the set of po-

litical procedures that determines power sharing at di↵erent times, giving rise to

a di↵erences-in-di↵erences type of identification. This approach works very well

as we have su�cient sample periods. The main regression coe�cient estimates

remain unaltered. The results are reported in Table B.14 in the Appendix.

Furthermore, this paper may not capture all the mechanisms depicting how

ethnicities, or perhaps powerful elites use natural resources as a political leverage

to get to power. There are several potential outcomes, such as building new op-

position parties, new electoral coalitions, and breakaway from the ruling party in

the shadow of resource discoveries and rising commodity prices. Unfortunately,

we have no ethnic level dataset to test further.

3.6 Conclusion

This paper has empirically examined the association between resource resources

and power sharing coalitions in Africa. The paper employs ethnic ministerial

appointments to the cabinet as a measure of power sharing coalitions. Within

2-8 years of resource discoveries, ethnicities that discovered resources are sig-

nificantly more likely to be appointed as cabinet minister than ethnicities with

no resource discoveries. Similarly, increase in ethnic specific commodity price

index is associated with an increase in ministerial appointments. We find that

ethnic groups that discovered natural resources receive about 2 more ministerial

appointments compared ethnicity with natural resource discovery.

We also explored the economic factors whichmay explain the patterns shown

in the data. Our evidence contradicts the theory that resource discoveries and

rising commodity prices incentivise state capture via political violence, but sup-

ports the idea that natural resources raise the value of being in power, and pro-

vide rulers with more finance which they can use to expand cabinet sizes and
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distribute across politically relevant ethnicities. We also show that resource dis-

coveries and commodity price indices are not significantly associated with ethnic

exclusion from central government, ethnic domination of regional government,

nor ethnic engagement in separatist movement.

The welfare implication of our finding in this chapter is as follows: we find

evidence that ethnicities that share the same ethnicity with head of cabinet po-

sitions receive larger rent distribution, as reflected in night lights intensity. On

average, ethnicities that have no access to state cabinet positions are associated

with about 42% less night lights distribution. The story is di↵erent for excluded

ethnicities, as they receive less economic opportunity. Our result is consistent

with other studies that document ethnic power sharing in Africa signals signif-

icant rent distribution. The rent distribution is often reflected in the form of

public goods expenditure in school, transport and other public goods provision.
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CHAPTER 4

Resource Discovery and Local Armed Conflict

4.1 Introduction

Armed conflict has been part of human history since time immemorial. Eigh-

teenth century political economist ThomasMalthus in his paper entitledAn Essay

on the Principle of Population noted that faced with resource scarcity, armed con-

flict is a key strategy for humans in their struggle for existence. Charles Darwin

was also inspired by Malthus’ work when he professed that conflict and compe-

tition over scarce resources are germane to the evolutionary strategies of species

in their quest for survival in the natural world. Even though armed conflict is

integral to the process of allocation of scarce resources, the interrelationship be-

tween the two is not very well understood. Provocative theories on the relative

power of greed and grievances abound, the true causes of conflict in the resource

rich regions of Africa remains largely unknown.

Until recently, research on the interrelationship between natural resources

and intrastate civil conflict stood on the periphery of the economics discipline.1

The past decade however witnessed a surge in research on conflict. Indeed, a

large body of macro cross-country literature documents positive association be-

tween natural resources and conflict.2 The emphasis is on the role of economic

motives as opposed to social motives in triggering conflict. For example, access

to an oil rig or a mine could provide lucrative financial opportunities to rebel

1Note that conflict here implies intra-state conflict. We do not analyse the link between re-
sources and interstate wars. For a recent study on oil and interstate wars see Caselli et al. (2015).

2See Blattman and Miguel (2010) and Nillesen and Bulte (2014) for a survey of this literature.
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rulers to build and sustain rebel organisations which would encourage armed

conflict. This could override atypical social motives such as inequality, political

repression, and ethno-religious divisions.

Establishing causality has been the key motivation in this literature. Chill-

ing examples of conflict in Angola, Congo, Rwanda, Sudan and other resource

rich regions of Africa often tempt scholars to argue that resources cause conflict.

Yet establishing causality has remained illusory largely due to the obvious lim-

itations associated with cross-country studies. Furthermore, lack of useful data

for Africa limits the scope for adequately examining the causal link.

In this chapter we aim to systematically explore the e↵ect of oil and mineral

discoveries on intra-state armed conflict onset, intensity, and incidence in Africa

at the grid level corresponding to a spatial resolution of 0.5 x 0.5 degrees latitude

and longitude. Using detailed geocoded data on resource (oil and mineral) dis-

coveries and armed conflict, we are able to construct a quasi-natural experiment

to establish causality. In other words, we are able to test whether resource dis-

covery as an exogenous news shock has any bearing over conflict onset, intensity,

and incidence at the local level in Africa. We also discuss the plausibility of chan-

nels through which natural resource discovery shocks a↵ect the intra-state armed

conflict. We use three di↵erent datasets containing the geographical location of

conflict events in Africa: the PRIO-GRID conflict dataset, the Armed Conflict

Location and Event Dataset (ACLED) and the Uppsala Conflict Data Program

Georeferenced Event Dataset (UCDP GED). These datasets cover di↵erent time

periods and countries. The three datasets allow us to use alternative definitions

of armed conflict: onset, incidence and intensity.

This work has some distinctive characteristics in the resource-conflict liter-

ature. First, the study uses a novel geocoded dataset of resource discovery at the

grid level. In particular, the new dataset is able to distinguish between minerals

and oil discoveries.3 Note that two existing cross-country studies Cotet and Tsui

(2013) and Lei and Michaels (2014) use national level oilfield discovery data only

and not minerals. Second, the study presents results on the e↵ect of resource dis-
3The dataset includes the commodities copper, diamond, fluorite, gold, graphite, lead, man-

ganese, mineral sands, nickel, niobium, PGE, phosphate, platinum, potash, rare earths, silver,
uranium, zinc, zircon, oil and gas. The Appendix for Chapter 2 (Tables B.4 and B.5) presents
additional descriptive statistics on primary commodities in the dataset.
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covery on conflict using grid level data. This is a departure from the existing grid

level studies of natural resources and conflict which tend to exclusively focus on

the use of global commodity prices as a source of exogenous variation to address

potential endogeneity issues (Berman et al., 2014). Third, we use 3 di↵erent grid

level datasets on conflict in Africa and find consistent new results. Fourth, we

investigate the potential heterogenous e↵ects of natural resource discovery on

armed conflict by the size of discovery, type of discovery, and time-varying prox-

imity to the discovery. Therefore, we are able to present new results. Finally,

our study is able to cover all African countries (including both North Africa and

sub-Saharan African (SSA) countries) at the grid level. Hence we are able to sig-

nificantly improve the external validity of the findings.

The popular discourse both within the academy and the press is that com-

petition over resource wealth in Africa is the root cause of armed conflict. Sev-

eral cross-national studies support this view (Collier and Hoe✏er, 1998, 2004;

Humphreys, 2005). Fearon (2005) and Brunnschweiler and Bulte (2009) however

challenge this view. The positive association between natural resources and con-

flict is not borne out in our grid level geocoded data. Contrary to some of the

cross-country results, we find that oilfield and mineral discoveries significantly

reduce the likelihood of intra-state armed conflict onset post resource discovery

in a simple pooled cross-section set up with a sample of 48 African countries

observed over the period 1950 to 2008. The e↵ect remains negative but statisti-

cally insignificant or weakly significant in most specifications when we control

for high dimension fixed e↵ects (time-varying common shocks, grid fixed e↵ects,

grid-specific time trends, and country x year fixed e↵ects). We observe little or no

heterogeneity in the relationship across resource types (minerals or oil), size of

discovery (giant or major), proximity to discovery locations and national borders,

pre and post end of the cold war, and quality of national political institutions

measured by Polity2 score.

We also analyse the e↵ect of resource discovery on conflict incidence and

intensity using the same panel of all African countries covering the period 1989

to 2012. The smaller sample size here is due to the truncated temporal coverage

of conflict data from ACLED (1997-2012) and UCDP GED (1989-2010). Even
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though the negative e↵ect of resource discovery on conflict incidence and in-

tensity remains in a pooled cross-section set up, the trajectory of the coe�cient

appears to be somewhat di↵erent once we control for grid fixed e↵ects.

Resource discovery in one grid could trigger conflict elsewhere in the neigh-

bouring grid, region or country. Therefore, a grid level analysis may not be fully

informative here. Hence, we estimate the model using higher grid resolution,

region-year and country-year as units of analysis. Although determining the op-

timal level of aggregation is not straightforward, our aggregation procedure is

twofold: systematic grouping (region and country level) and random grouping

(higher level grid demarcation). It is worthwhile noting that a key limitation

with higher level aggregation is the phenomenon known as ecological fallacy

(Maystadt et al., 2013). The association between resource discoveries and armed

conflict may di↵er in magnitude and signs across di↵erent levels of aggregation.

We undertake the following three steps. First, we aggregate the conflict

events and resource discoveries at higher grids-cells (1x1 degrees latitude and

longitude, which is equivalent to 111x111 square kilometres at the equator) and

estimate the main model. The e↵ect of discovery on conflict onset remains statis-

tically insignificant and negative in most cases. Second, we estimate the relation-

ship at the region level. We find resource discovery significantly reduces conflict

onset after controlling for year fixed e↵ects, region fixed e↵ects, region-specific

time trend and country x year fixed e↵ects. Third, we report the country level

results and our result is comparable to recent cross-country studies by Cotet and

Tsui (2013) and Lei and Michaels (2014). Unlike these studies which solely focus

on the e↵ects of oilfield discovery, we are able to consider both oil and miner-

als. We find that oil and mineral discoveries have no discernible e↵ect on conflict

onset at the national level after controlling for fixed e↵ects and country specific

trends. Estimating the model separately for oil and minerals do not alter our re-

sults. The country level results confirm the findings of Cotet and Tsui (2013). It

is worthwhile noting that we do not find any evidence of the ecological inference

fallacy here.

We also perform numerous robustness tests and sensitivity analysis using

di↵erent alternatives and samples to carefully validate our results. First, in order
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to address the potential temporal correlation of oilfield and mineral discoveries,

we control for past discoveries in all specifications and exclude grid-year obser-

vations within a decade of past oilfield or mineral discoveries. Second, we restrict

our sample to observations where at least one oilfield or mineral discovery was

made during the sample period in order to address the concern that observa-

tions with oilfield and mineral discoveries are di↵erent from others in ways that

we cannot measure and control for directly (Lei and Michaels, 2014). Third, we

restrict our sample to grids in which at least one conflict event occurred over

the sample period. Berman and Couttenier (2015) refer to such grids as high-

conflict-risk grids. Finally, we also apply bu↵er zone analysis in order to address

the potential concern that oilfield and mineral discoveries could take up large

geographies and hence influence the surrounding geographies of armed conflict.

The results remain unchanged and even gets stronger in some cases.

An important aspect here is to explain the plausible economic factors which

may explain the impact of natural resource discoveries on the intra-state armed

conflict. Most empirical studies of natural resources and armed conflict are mo-

tivated by various rival mechanisms, which makes the impact of natural resource

on armed conflict somewhat ambiguous (Besley and Persson, 2011). The most

widely reported economic factor linking resources to conflict is the opportunity

cost phenomenon. According to the opportunity cost mechanism, the returns

from non-fighting activity could potentially increase in the event of resource

booms, thereby reducing the likelihood of armed conflict. Another mechanism is

the ’State Prize’ phenomenon, which implies that natural resources may increase

the prize value of state capture and in turn increase the incentive for armed con-

flict. The ’State Prize’ mechanism asserts that natural resource discoveries matter

because local rebels may engage in direct armed conflict against the state to ben-

efit from natural resources, and/or to secede from the state.

Furthermore, natural resource discoveries might increase state’s counter in-

surgency capacity, which could then be used to strengthen the military and other

security infrastructure and thereby reducing the likelihood of armed conflict.

More recently, studies indicate that ’political patronage’ might serves as an im-

portant mechanism explaining the association between resources and armed con-
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flict. Resource discoveries may generate political incentives for incumbents to

distribute political patronage more widely to survive longer in power, and the

distribution of patronage to the elites and citizens ensures that the incumbent

dissuades a militant subset of the society from attempting armed rebellion. Pa-

tronage distributionmay take the form of public sector employment o↵ers, ethnic

brokerage, or personal networks that connect the co-opted elites in the centre to

local citizens.

Using the novel satellite data on night lights (Henderson et al., 2012), our

evidence appears to be favouring the theories of opportunity cost and political

patronage. Resource discovery could impact on the local living standards and in-

fluence the opportunity cost of conflict. We use natural logarithm of night lights

density as a measure of local living standards. We find that resource discovery

improves luminosity at the grid level which in turn reduces armed conflict on-

set. This is purely economic mechanism. Another plausible mechanism would

be the distribution of political patronage by the state. We also find support for

this mechanism.4 This is based on the finding in Chapter 3, and we also report

graphical illustration in Figure C.5 in the Appendix. We argue that multi-ethnic

distribution of ministerial appointments by the ruler reduces the probability of

armed conflict.

Our identification strategy relies on the exogenous variation in the discov-

ery dates of oilfield and mineral deposits. Our dataset allows us to distinguish

between giant and major discoveries. Even though it is possible to identify the

area where minerals or oil are likely to be found using geological data, it is not

possible to accurately predict the timing of discoveries. Therefore, the discovery

dates of giant and major reserves are exogenous. One might argue that politi-

cians and government could manipulate the announcement of the precise timing

of discovery. Our data is immune to such possibility as the discovery dates are

independently verified and documented using multiple sources. More discussion

on this follows in Section 4.2.
4Note that Bazzi and Blattman (2014) also find support in favour of the income theory of

conflict. Cotet and Tsui (2013) find resource discoveries increase military spending (in nondemo-
cratic countries) using cross-country data. Both cross-national evidences supports the idea that
rising windfalls improve counter-insurgency capacity and reduce individual incentives to fight in
armed conflicts.
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How random is resource discovery? Resource discovery could be a product

of exploration e↵ort and the latter could be influenced by pre-existing conflict.

This could potentially contaminate the identification strategy if the dependent

variable is either conflict incidence or conflict intensity both of which are mea-

sures of pre-existing conflict. However, this would not be a challenge if the de-

pendent variable is conflict onset (our main measure) which records the start of

a new conflict in areas which did not have conflict before. Therefore it is unlikely

that current conflict onset would predict past exploration e↵orts in a grid that

did not have any history of conflict. Furthermore, the timing of natural resource

discovery appears to be largely uncorrelated with the grid’s average economic

and political performance in the past years after controlling for grid fixed ef-

fects. This is suggestive that resource discovery is largely orthogonal and the

conditional estimates that we present for conflict incidence and intensity are not

contaminated. Nevertheless, we also present IV estimates with commodity price

as an instrument for resource discovery.

Administrative boundary demarcation could be a potential source of endo-

geneity. For instance, administrative demarcations in a country could be deter-

mined by political, geographic and demographic characteristics of the area. This

could in turn be correlated with both local conflict dynamics and resource ex-

traction contaminating the coe�cient estimate. This is unlikely to be a concern

here as our main unit of analysis is a grid cell. The grid level data by construction

is independent of political and geographic characteristics and therefore is exoge-

nous to conflict and resource discovery. Nevertheless, we also check the e↵ect of

resource discovery on conflict at the region and country levels.

Another source of bias could be the fact that mines and oil rigs are often

military targets in a conflict giving rise to a positive association between the two

variables without any causal link. Again, this is unlikely to be a concern here as

we are finding negative or no association between discovery and conflict.

Our paper is broadly related to the resource curse literature. Auty (2001),

Gylfason (2001) and Sachs andWarner (2001) note that resource rich countries on

average growmuch slower than resource poor countries. Subsequent studies have

argued that natural resources may lower the economic performance because they
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strengthen powerful groups, weaken legal frameworks, and foster rent-seeking

activities (Tornell and Lane, 1999; Besley, 2007). Others have argued whether

natural resources are a curse or a blessing depends on country-specific circum-

stances: institutional quality (Mehlum et al., 2006; Robinson et al., 2006; Bhat-

tacharyya and Hodler, 2010, 2014b; Bhattacharyya and Collier, 2014), natural re-

source type (Isham et al., 2005a) and ethnic fractionalisation (Hodler, 2006).

More specifically, our paper is also related to the literature documenting

the e↵ect of natural resources and income on conflict. Recent theoretical studies

argue that the likelihood of conflict is related to three key variables (Besley and

Persson, 2009, 2011). The prize for the winner in a conflict is increasing in natural

resources rents. Therefore resources increase the likelihood of conflict. Higher

wages in contrast increases the opportunity cost of fighting and hence reduces

the likelihood of conflict. Weak institutions and lack of state capacity to raise

revenue compromises inclusivity of political institutions and hence increases the

likelihood of conflict. In a nuanced general equilibriummodel, Dal Bó andDal Bó

(2011) show that resource boom in the form of a favourable price or technology

shock diminish wages and reduce the opportunity cost of conflict.

In spite of the apparent theoretical clarity, estimating the causal relation-

ship between natural resources and conflict has been challenging. Several macro

cross-national studies Collier and Hoe✏er (1998, 2004); Humphreys (2005) and

Brückner and Ciccone (2010) report robust positive association between resource

dependence and conflict.5 However, Fearon (2005) point out that these results

cannot be interpreted as causal as they could be driven by omitted variables and

endogeneity. Furthermore, Fearon and Laitin (2003) identify weak institutions as

the main cause of conflict rather than natural resources.

Contemporary cross-national studies have used instrumental variables and

exogenous news shocks to address endogeneity concerns and identify the e↵ect.

Miguel et al. (2004) use rainfall shocks as an instrument for economic shocks and

find that negative economic shocks trigger conflict. Cotet and Tsui (2013) and Lei

andMichaels (2014), both use oilfield discovery as an exogenous shock to identify

5Hegre and Sambanis (2006) and Sambanis (2004) find that the e↵ect of resource dependence
on conflict onset is not robust. More recently, Bazzi and Blattman (2014) revisit the question and
find no robust association between commodity price shocks and civil war.
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the e↵ect of oil on conflict. The former reports no e↵ect while the latter reports

positive e↵ect. Brunnschweiler and Bulte (2009) examine the e↵ect of resource

wealth and find that the same in fact reduce the risk of conflict. The overall

direction of the cross-country evidence could be summed up as conflicting.

Conflict is often localised and cross-national studies by construction fail to

capture local e↵ects. Yet disaggregated local level studies of natural resources

and conflict are rare with the exception of the following few studies. Angrist and

Kugler (2008) study the e↵ects of upsurge in coca prices and cultivation on civil

conflict in Colombia. Maystadt et al. (2013) study the Democratic Republic of the

Congo and find that mineral concessions have no e↵ect on conflict at the lowest

administrative unit, but significant e↵ect at the higher administrative units. More

recently, Berman and Couttenier (2015) study how external income shocks a↵ect

the probability of conflict events in SSA by working with a full grid of 0.5 x 0.5

degrees latitude and longitude.

Using a similar approach, Berman et al. (2014) study Africa at the grid level

corresponding to a spatial resolution of 0.5 x 0.5 degrees latitude and longitude

and covering the period 1997 to 2010. Using data from the ACLED, they find

evidence that mineral price shifts trigger low-level as well as organised conflict

incidents in Africa. Note that ACLED o↵ers data since 1997 which truncates the

sample. In contrast we are able to use a much larger sample of georeferenced

data covering the period 1950 to 2008. Nevertheless, we also use the ACLED

dataset to check robustness of our results. We are able to exploit giant and major

resource (oilfield and minerals) discovery as exogenous news shock to identify

the e↵ects of natural resources on conflict which is not covered in the Berman

et al. (2014) study. The di↵erent results reported by us and Berman et al. (2014)

could be explained by the heterogeneous e↵ects of discovery and production on

conflict as the prospect of future production a↵ects conflict onset and incidence

less than actual production (Humphreys, 2005).

The remainder of the chapter is structured as follows: Section 4.2 describes

the data and descriptive statistics. Section 4.3 discusses the empirical strategy

to identify the e↵ects of natural resource discovery shocks. Section 4.4 presents

evidence and discusses the causal mechanism.This section examines the e↵ect of
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discovery on conflict onset, conflict incidence, and conflict intensity separately.

It also reports any potential heterogeneous e↵ect across resource types (oilfield

and minerals), proximity to discovery and national border, pre- and post-cold

war conclusion, size of discovery (giant and major), and quality of political insti-

tutions. Section 4.5 deals with robustness. Section 4.6 concludes.

4.2 Data Sources and Measurement

Our main objective is to study the e↵ect of resource discovery shocks on the risk

and intensity of intra-state armed conflict in Africa at the grid level. Therefore,

we divide the whole continent of Africa into a spatial resolution of 0.5 x 0.5 de-

grees latitude and longitude, which approximately amounts to 55 x 55 square

kilometres at the equator.6 In order to check robustness of our results, we also

analyse the relationship at higher levels of aggregation. These results are re-

ported in the appendix. We have data on the specific geographic location of

armed conflict events, mineral and oilfield discoveries, and local economic ac-

tivities measured by night lights. Our grid is matched with the standardized

PRIO-GRID project (Tollefsen et al., 2012), which allows us to merge our re-

source discovery dataset with the conflict dataset. Table C.1 in the Appendix

reports summary statistics.7 Figure 4.1 presents the grid level map of Africa.

4.2.1 Natural Resource Discovery Dataset

We use two datasets containing the geographical location of natural resource dis-

coveries in Africa: mineral deposits (MinEx Consulting, 2014) and giant oilfield

discovery Horn (2011).8 MinEx reports 263 discoveries of 19 minerals over the

period 1950 to 2012. They also report the size of the discoveries: major and giant.

MinEx codes a mineral deposit as giant if it has the capacity to generate at least

6This structure has been used by several recent studies. See for example Alesina et al. (ming),
Michalopoulos and Papaioannou (2013a), Berman et al. (2014), Besley and Reynal-Querol (2014)
and Berman and Couttenier (2015).

7We also check for stationarity of the variables used in the model using Levin-Lin-Chu and
Harris-Tzavalis variety of unit root tests. Both tests account for bias emanating from cross-
sectional association. We find all variables to be stationary.

8Mike Horn identifies whether the field contains oil and/or gas, but in the rest of our paper we
refer to them as oilfield discoveries. Mike Horn’s dataset contains information on the estimated
ultimate recoverable reserves (URR) (Arezki et al., 2015b).
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Figure 4.1: Grid Level Boundary Map of Africa

Notes: This boundary map is the grid level subnational division of Africa. The grid has a spatial resolution of 0.5 x 0.5

degrees latitude and longitudes latitude and longitude (i.e. around 55 x 55 square kilometres at the equator), dividing

the whole continent into equally sized cells.

USD 0.5 billion of annual revenue for 20 years or more accounting for fluctua-

tions in commodity prices. A major mineral deposit is defined as one that could

generate an annual revenue stream of at least USD 50 million but not as long

life as a giant reserve. Horn (2011) reports 59 onshore giant oilfield (including

condensate) discoveries in Africa over the period 1955 to 2010. Mike Horn codes

oilfield as giant if it has ultimate recoverable reserves (URR) of at least 500 mil-

lion barrels of oil equivalent. Based on this information from both datasets, we

construct an indicator whether a grid has discovered at least one giant or major

natural resource (oil and/or minerals) deposit in a given year. Figure 4.2 presents

a map of oilfield and mineral discovery locations.

We observe that countries are heterogeneous in terms of the number of dis-

coveries (see Figures C.1 and C.2 in the Appendix for the distributions of natural

resource discoveries within countries). For example, Botswana, Burkina Faso,

DRC, Ghana, Mali, Namibia, South Africa, Tanzania and Zimbabwe individually

represent more than 4% of the total mineral discoveries in the continent while

other countries feature a lot less on the mineral discovery league table. In the

oilfield discovery dataset, Libya and Nigeria accounts for 45.8% and 23.7% of the

total African oilfield discoveries respectively. We also observe that 47.9% of the
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Figure 4.2: Oilfield and Mineral Discovery Locations

Notes: The map shows the location of mineral deposit and oilfield discoveries in Africa over the period 1950-2012.

mineral discoveries are gold whereas 78% of the hydrocarbon discoveries are oil.

4.2.2 Intra-State Armed Conflict Dataset

We use three geocoded datasets of conflict events in Africa: PRIO-GRID conflict

dataset, Armed Conflict Location and Event Dataset (ACLED) and Uppsala Con-

flict Data Program Georeferenced Event Dataset (UCDP GED). These datasets

cover di↵erent time periods. The PRIO-GRID (Version 1.01) presents a long time

series, 1946-2008 while the ACLED and the UCDP GED (Version 1.5) covers the

time period 1997-2012 and 1989-2010 respectively. The conflict events recorded

in these datasets are obtained from various sources including press reports, case

studies, historical archives, and country-expert statements.

The temporal PRIO-GRID is a vector grid network with 0.5 x 0.5 degrees.

It contains cell-specific information on the onset and incidence of conflict, rep-

resented by a conflict ID variable that corresponds to the standard UCDP/PRIO

datasets (Tollefsen et al., 2012). Note that UCDP/PRIO is the most widely used

conflict datasets in the cross-country literature, including recent studies by Cotet

and Tsui (2013), Bazzi and Blattman (2014) and Lei and Michaels (2014).

Studies show that historical conflict systematically predicts contemporary
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Figure 4.3: PRIO-GRID Armed Conflict Onset Locations

Notes: The map shows the location of PRIO-GRID armed conflict onset locations in Africa over the period 1946-2008.

conflict in post-colonial Africa (Besley and Reynal-Querol, 2014). Hence, histor-

ical legacy of conflict within a grid could contaminate the potential causal rela-

tionship between resource discovery and conflict. Indeed causality could run in

the opposite direction as mining companies could avoid exploration in locations

with a history of conflict. For this reason, we are only interested in the onset vari-

able from the conflict attribute table in PRIO-GRID. The PRIO-GRID onset is a

dummy variable identifying the grid hosting the initial battle location for each

new intrastate armed conflict (Tollefsen et al., 2012). Note that by definition

these grids host the start of a new conflict and therefore they never had a conflict

before. It takes the value 1 for the first year of an outbreak with minimum 25

fatalities and 0 for all other years. According to UCDP/PRIO, an armed conflict

is defined as ’a contested incompatibility between a government and oppositions

that result in at least 25 battle deaths in a year’ (Gleditsch et al., 2002).

We also use alternative definitions of conflict onset using ACLED andUCDP

GED. ACLED codes violent political activity within all African states, including

dyadic interactions between rebels and governments, riots and protests within

and outside a civil conflict, and violence perpetrated against civilians. However,

it does not specify a battle related fatalities threshold and conflict events may not

adhere to the standard UCDP/PRIO definitions. Hence we focus on the ACLED’s
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Figure 4.4: ACLED Armed Conflict Locations

Notes: The map shows the location of ACLED battle related armed conflict locations in Africa over the period 1997-2012.

battle related conflict definition which was also used by others in the literature.9

Note that ACLED defines a battle as ‘a violent interaction between two politically

organised armed groups at a particular time and location within the context of a

armed conflict or civil conflict’ (Raleigh et al., 2010).

The UCDP GED dataset contains armed conflict events for all actors that

surpass the 25 deaths threshold per year (Sundberg and Melander, 2013). This

makes it comparable to the country-level data commonly used in the cross-country

literature. We construct our additional armed conflict onset variable from the

UCDP GED dataset based on the widely accepted definition of 25 battle-related

fatalities threshold per year.

We use the Bazzi and Blattman (2014) conflict onset definition to code onset

using the ACLED and UCDP GED datasets. Note that this definition of onset is

the most widely used in the cross-country literature. It codes onset as 1 for the

first year of outbreak with 25 or more fatalities. All peace years are coded as 0

and the years of ongoing conflict are coded as missing.

All three conflict datasets report the precise geographical location of con-

flict. Hence we are able to merge the PRIO-GRID’s armed conflict onset to our

9In some studies ACLED’s battle related armed conflict is referred to as organised violence.
See for example Berman et al. (2014).
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Figure 4.5: UCDP GED Armed Conflict Locations

Notes: The map shows the location of UCDP GED armed conflict locations in Africa over the period 1989-2010.

spatial-temporal grid structure. For ACLED and UCDP GED, we aggregate the

conflict event data by year and grid. Our unit of analysis therefore is a grid-year.

Figures 4.3-4.5 presents maps of armed conflict onset locations from the PRIO-

GRID, ACLED, and UCDP GED datasets respectively.

The literature acknowledges that conflict datasets could over-represent cer-

tain subnational regions or conflict types (Berman and Couttenier, 2015). In par-

ticular, we observe the following three broad trends. First, the number of grids

with intra-state armed conflict varies across the three datasets. Second, conflict

across countries within African continent is heterogeneously distributed and this

distribution varies across datasets. Third, the distribution of conflict a↵ected

grids within a country also varies across datasets. We document these trends in

the Appendix (see Figures C.3 and C.4 and Tables C.2, C.3 and C.4 in the Ap-

pendix for details). In spite of these di↵erences, it is important to appreciate

that these datasets have been constructed under di↵erent rules. Therefore, any

definitional or otherwise traits in them are likely to be idiosyncratic. Since we

are finding consistent results across three di↵erent datasets, it is unlikely that

these results are driven by measurement error. Furthermore, our very demand-

ing high dimensional fixed e↵ects approach also make it unlikely that the results

are driven by measurement error and data quality issues.
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4.2.3 Night Lights Data: Proxy for Local Economic Performance

Note that we do not have measures of income for Africa at the grid level. We

use satellite data on night lights or luminosity density observed over the period

1992 to 2012 as our proxy for income. We calculate luminosity density by divid-

ing the sum of all night lights pixel values within a grid by the grid area. We

source the night lights data from the Defense Meteorological Satellite Program’s

Operational Linescan System (DMSP-OLS). The satellite images of the earth are

captured between 20:30 to 22:00 local time, and the satellites circle the earth

14 times per day. The data we use here is the cleaned luminosity after filtering

for cloud coverage, other ephemeral lights, and background noise. The measure

comes on a scale from 0 to 63 (digital number) calculated for every 1 square kilo-

metre, where a higher value imply greater night lights intensity.

The distribution of night lights across grids is not normal. We have a sig-

nificant volume of observations that takes the value zero. To account for this, we

follow Michalopoulos and Papaioannou (2013a) and Hodler and Raschky (2014)

and define the dependent variable as the natural log of night lights density plus

0.01. It is widely acknowledged that such transformation ensures that all avail-

able observations are used and the problem of outliers minimised.

The other challenge with night lights data is measurement error. In particu-

lar, issues relating to the di↵erence between true lights emanating into space and

what is recorded by a satellite (Henderson et al., 2012). There is also variation

in recorded lights data across satellites. Measurement error of this nature is un-

likely to be a concern here as it is orthogonal to our models presented in section

4.2. Furthermore, any cross-satellite variation in night lights is already accounted

for by the year dummy variable capturing time-varying common shocks.

4.2.4 Other Grid Specific Variables

Resource discovery dates are exogenous and serves as a credible identifier. How-

ever, there is no consensus on this issue. Therefore, we also adopt an instrumen-

tal variables (IV) approach to check robustness. We construct global commodity

price index for each of the grids in our sample following (Brückner and Ciccone,
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2010). We source the exogenous price in international commodity markets from

the International Monetary Fund (IMF) and UN Conference on Trade and Devel-

opment (UNCTAD). This data runs back to 1960 and covers all commodities.

The robustness section includes measures of the distance between grid’s

centroid and the closest national border. We source this data from PRIO-GRID at-

tribute table. We also use regional GDP per capita, ethnic size or total population,

and ethnic political representation and exclusion from executive state power. All

of these variables are sourced from PRIO-GRID. Note that the PRIO-GRID itself

relies on other datasets such as the geographically based economic data (G-Econ)

for regional GDP (Nordhaus et al., 2006) and the Ethnic Power Relations (EPR)

dataset for ethnic political variables (Wucherpfennig et al., 2011).

Our democracy variable is the Polity2 score. It is based on parameters such

as executive constraints, competitiveness of political participation, and openness

and competitiveness of executive recruitment (Marshall et al., 2014).

4.3 Empirical Strategy

4.3.1 Resource Discovery and Local Armed Conflict

We use a panel dataset covering more than 10000 grids from 48 African coun-

tries.10 The grids are constructed using ArcGIS. To analyse the local e↵ects of

resource discovery on conflict, we estimate the following model:

Conf lictg,t+j = ↵g+�t+µg,t+⌘i,t+�1Discoveryg,t+�2Past Discoveryg,t+✏g,t (4.1)

where Conf lictg,t+j is the outcome variable that captures conflict onset, conflict

incidence, and conflict intensity in grid g at year t. The variableDiscoveryg,t is an

indicator of resource discovery in grid g at year t. Past Discoveryg,t is the number

of years with resource discoveries in the last ten years (from t-10 to t-1). Note that

Past Discoveryg,t accounts for the history of discovery news shock in that grid. It

10Due to data limitations, our sample period varies from specification to specification depend-
ing on the conflict dataset: PRIO-GRID (1950-2008), ACLED (1997-2012) and UCDP GED (1989-
2010). In most specifications, the panel is unbalanced. Appendix C presents a list of countries
included in the sample.
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is coded to take the value N 2 {1(1)10} for a particular grid-year if that grid had

N discovery years over the past 10 years. The 10 year window is based on Lei

and Michaels (2014). Our results are not sensitive to the inclusion or exclusion

of past discoveries and or alternative definitions of past discoveries. We estimate

this model for di↵erent leads j, where in most cases j 2 {0,2,4,6,8,10}.
As discussed earlier, our main outcome variable is conflict onset from PRIO-

GRID. It is a rare event with 84 instances of battle events. This definition of onset

could be viewed as overly restrictive even though it does very well in addressing

endogeneity issues. Therefore we also use the Bazzi and Blattman (2014) defini-

tion of onset using ACLED and UCDP GED datasets. There are 3473 onset events

for ACLED, and 3272 onset events for UCDP GED.

We also estimate the e↵ect of resource discovery on conflict incidence and

intensity. The results are reported in the Appendix. Conflict incidence is a

dummy variable which takes the value 1 for grid-year when there is an internal

conflict with more than 25 fatalities. Conflict intensity is measured by the num-

ber of conflict events observed in a grid-year. Even though widely used in some

circles, both of these measures are criticised because of the lack of uniformity

in their definitions (Sambanis, 2004). Fearon (2011) and Ciccone (2011) argue

that both conflict incidence and intensity are aggregate measures of onset and

persistence. Conflict onset and its continuation are disparate outcome variables

potentially driven by widely di↵erent factors. Hence, there is very little logic in

combining the two and assuming that discovery would a↵ect them in the same

way. Following some notable recent studies (Ciccone, 2011; Cotet and Tsui, 2013)

we use the terms armed conflict and civil conflict interchangeably.

Our main coe�cient of interest here is �1 which presents the e↵ect of re-

source discovery on conflict. If African conflicts are natural resource driven then

we would expect �1 to be significantly positive. Any indication otherwise would

serve as a refutation of the view that resource triggers conflict in Africa.

In all specifications, we control for high dimensional fixed e↵ects: grid fixed

e↵ects ↵g , year dummies �t , grid-specific time trend µg,t and countrywide time-

varying characteristics ⌘i,t . Grid fixed e↵ects account for geological characteris-

tics, altitude and ruggedness, proximity to the ports and cities, and ethnic char-
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acteristics. It also captures potential time invariant systematic di↵erences across

grids a↵ecting conflict data recording and reporting. Year fixed e↵ects account

for global shocks such as a spike in minerals or oil price. Grid-specific time trend

accounts for external shocks such as a grid-specific weather event. The country

x year fixed e↵ects account for factors such as defense burden or military expen-

diture as a share of GDP, national political dynamics including elections, and

national regulations regarding resource exploration and property rights.

Our identification strategy is a treatment-control procedure that uses the

discovery shock as the treatment and compares it to grids with no discoveries. It

relies on the assumptions that the e↵ect of discovery news shock di↵ers with dis-

covery status, and the evolution of conflict is otherwise common in all grids.

In all estimations, we use robust standard errors clustered at the country

level. We also use the Driscoll-Kraay standard errors (Driscoll and Kraay, 1998)

which is derived from a non-parametric heteroscedasticity and autocorrelation

consistent estimator of the variance-covariance matrix.11 In the robustness sec-

tion we check that our results are robust to default standard errors, standard

errors clustered at di↵erent spatial levels including regions, and standard errors

that allow for both cross-sectional spatial correlation and serial correlation (or

Conley standard errors) (Conley, 1999; Conley and Molinari, 2007).

Is the use of discovery news shock as an identifier appropriate here? First,

major and giant resource discoveries signal significant increases in future eco-

nomic rent and therefore suitably captures the economic motive of a conflict.

Second, in all likelihood the timing of giant and major natural resource discov-

ery is exogenous because of its unexpected nature. However, natural resource

discoveries in the recent past could raise the likelihood of additional discoveries

in the immediate future. This does not appear to be the case within a grid. In

Table C.5 in the Appendix we find a positive correlation between past and future

discoveries in pooled OLS models (see columns (1), (3), and (5)), but the corre-

lation reverses within a grid when we control for high dimensional fixed e↵ects

(see columns (2), (4), and (6)). This is not surprising given that a grid is much

11The Driscoll-Kraay standard errors are an extension of the common non-parametric variance-
covariance matrix estimation techniques robust to the very general forms of spatial and temporal
dependence (Hoechle, 2007; Cameron and Miller, 2015).
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smaller than a region or a country. Region and country level results are reported

in the long appendix (Tables C.6 and C.7 in the Appendix). The country level re-

sult is consistent with Lei and Michaels (2014). In Table C.8 in the Appendix we

further check exogeneity of resource discovery by correlating it with economic

and political factors (Lei and Michaels, 2014). We observe that a grid’s average

economic and political performance over the preceding years is not a robust pre-

dictor of resource discovery. They also appear to be jointly insignificant with a

p-value = 0.4. This is suggestive that resource discoveries are indeed orthogonal.

Figure C.5 in the Appendix also supports the exogeneity view as we notice that

the timing of discovery is only imperfectly tracked by commodity price but not

by African GDP per capita. Third, discovery date is a superior exogenous iden-

tifier to production start date as the period between discovery and production

start is characterised by significant economic activity which would contaminate

the direction of causality.

Exploration e↵ort which leads to successful discoveries could be influenced

by pre-existing conflict. This is not an issue when we use PRIO-GRID conflict

onset as our dependent variable. However, we also implement the instrumental

variable (IV) approach with commodity price as an instrument and we control for

high dimension fixed e↵ects. In the absence of grid level exploration expenditure

or e↵ort data, we control for past discoveries as a proxy for exploration e↵ort.

4.3.2 Causal Mechanisms

What is the mechanism through which resource discovery a↵ects conflict? The

literature o↵ers several competing explanations some of which we reviewed in

Chapter 1. Our data allows us to test the income e↵ect thesis which postulates

that resource discovery and extraction increases income and therefore increases

the opportunity cost of fighting. Higher income also improves state patronage

capacity to buy o↵ elites or citizens which reduces the likelihood of conflict.

First, we estimate the following specification to test the link between re-

source discovery and local income measured by night lights. If discovery im-
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proves local income then we would expect ✓1 to be positive and significant.

Lightsg,t+j = ↵g +�t +µg,t + ⌘i,t +✓1Discoveryg,t +✓2Past Discoveryg,t + ⌘g,t (4.2)

Second, using the following model we test the link between improved income

and conflict onset. If resource discovery a↵ects conflict exclusively via the income

channel then we would expect �2 to be significant and �1 to be insignificant.

Conf lictg,t+j = ↵g + �t +µg,t + ⌘i,t +�1Discoveryg,t +�2
ÅLightsg,t+j + ⇠g,t (4.3)

Luminosity data has been proven to be a convincing proxy for local economic

development in subnational units (Henderson et al., 2012; Michalopoulos and

Papaioannou, 2013a; Hodler and Raschky, 2014).12

4.4 Results and Discussion

4.4.1 Main Results

We report the main empirical results in Tables 4.1 and 4.2 using the PRIO-GRID

conflict onset variable as an outcome variable. Note that the PRIO-GRID onset

variable only records the start of a new conflict in areas which did not have a con-

flict before and therefore it is free of ’exploration e↵ort’ induced reverse causality

challenge. Table 4.1 reports the standard pooled OLS regressions. Contrary to ex-

pectation, the estimate of �1 is negative and significant indicating that resource

discovery reduces the probability of conflict onset in a between-grid time-series

setting. The size of the e↵ect is small: a point estimate shows natural resource

discovery reduces the probability of conflict by 0.01 percent within 10 years post

discovery. This probability increases to about 0.03 percent when identifying the

association using grid fixed e↵ect estimates. The negative e↵ect appears to be

stable across resource type (see Panels B and C). It is also persistent over time as

it survives 10 years after discovery.

12Note that a potential challenge with night lights data is that it could be reflecting changing
population density. We therefore control for population density and our result remains robust.
We also find no evidence of population surge following a resource discovery at the grid level.
This result is independent of grid size, or higher levels of aggregation (region level).
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Table 4.1: Resource Discovery and Conflict Onset: Between-Grid E↵ects

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.00011*** -0.00012*** -0.00012*** -0.00013*** -0.00013*** -0.00014***
(0.000021) (0.000021) (0.000023) (0.000024) (0.000025) (0.000026)

Past Discovery -0.00011*** -0.00011*** -0.00011*** -0.00012*** -0.00012*** -0.00012***
(0.000021) (0.000021) (0.000022) (0.000023) (0.000023) (0.000024)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.00011*** -0.00012*** -0.00012*** -0.00013*** -0.00013*** -0.00014***

(0.000021) (0.000022) (0.000023) (0.000023) (0.000024) (0.000025)
Past Discovery -0.00011*** -0.00011*** -0.00011*** -0.00011*** -0.00012*** -0.00012***

(0.000020) (0.000020) (0.000020) (0.000020) (0.000022) (0.000022)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.00011*** -0.00012*** -0.00012*** -0.00013*** -0.00013*** -0.00014***
(0.000022) (0.000023) (0.000024) (0.000024) (0.000025) (0.000026)

Past Discovery -0.00011*** -0.00011*** -0.00011*** -0.00013*** -0.00012*** -0.00012***
(0.000021) (0.000022) (0.000023) (0.000024) (0.000024) (0.000025)

Country x Year FE Yes Yes Yes Yes Yes Yes
Observations 605163 579411 553659 527907 502155 476403

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. Num-

bers in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance

at the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

In Table 4.2 we focus on within grid e↵ects by controlling for high dimen-

sion fixed e↵ects. The estimate of �1 is negative and insignificant. The individual

e↵ects of oilfield and mineral discoveries within a grid remain negative but in-

significant (see Panels B and C). The size of the e↵ect is increases (compared to the

standard pooled OLS regressions): a point estimate shows natural resource dis-

covery reduces the probability of conflict by 0.03 percent when identifying the as-

sociation using grid fixed e↵ect estimates. Figure C.6 in the Appendix displays a

non-parametric local polynomial regression of resource discovery on conflict on-

set conditioned on the high dimension fixed e↵ects. Even though not always sig-

nificant, the figure demonstrate a decline in the likelihood of conflict onset post

discovery. Oilfield and mineral discoveries follow a very similar trajectory.

Is the negative and insignificant e↵ect of resource discovery on conflict on-

set noisy due to the imprecise nature of conflict data? The challenge of attenua-

tion is partially mitigated by the introduction of high dimension fixed e↵ects and

in particular country specific characteristics. It is expected that the confounding

covariates potentially influencing the estimate of �1 is primarily country specific.

Nevertheless, in Table 4.3 we also use an instrumental variable (IV) strategy with

global commodity price as an instrument. Global commodity price is an exoge-

nous instrument used widely in the conflict literature (Brückner and Ciccone,
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2010). The negative and insignificant result remains unchanged.

Table 4.2: Resource Discovery and Conflict Onset: Within-Grid E↵ects

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.00032* -0.00028 -0.00031 -0.00034 -0.00037 -0.00039
(0.00018) (0.00018) (0.0019) (0.00021) (0.00023) (0.00025)

Past Discovery -0.00028* -0.00031 -0.00033 -0.00036 -0.00039 -0.00041
(0.00015) (0.00019) (0.00021) (0.00023) (0.00025) (0.00027)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.00063 -0.00066 -0.00069 -0.00074 0.00078 -0.00083

(0.00065) (0.00068) (0.00071) (0.00075) (0.00079) (0.00083)
Past Discovery -0.00060 -0.00063 -0.00066 -0.00071 0.00076 -0.00082

(0.00059) (0.00062) (0.00065) (0.00069) (0.00074) (0.00079)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.00025 -0.00019 -0.00022 -0.00023 -0.00025 -0.00027
(0.00017) (0.00013) (0.00014) (0.00016) (0.00018) (0.00019)

Past Discovery -0.00020 -0.00022 -0.00023 -0.00025 -0.00027 -0.00027
(0.00014) (0.00015) (0.00016) (0.00018) (0.00020) (0.00021)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 605163 579411 553659 527907 502155 476403

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. The

dependent variable is armed conflict onset from the PRIO-GRID conflict event dataset. Numbers in parentheses are

robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%

level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table 4.3: Resource Discovery and Conflict Onset: 2SLS Estimates

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.016 -0.021 -0.015 -0.019 -0.012 -0.013
(0.039) (0.041) (0.044) (0.046) (0.046) (0.050)

Past Discovery 0.00012 0.00015 0.00006 0.00012 0.00003 0.00005
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

First-Stage Regression of Discovering Natural Resource (Oilfield + Minerals)
Grid Commodity Price Index 0.0003***

(0.00007)
F test of excluded instruments 18.33
(Prob > F) (0.0001)
Underidentification of LM statistic 7.04
(P-val) (0.008)
Weak identification F statistic 129.23
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 343294 329282 315270 301258 287246 273234

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. The

dependent variable is armed conflict onset from the PRIO-GRID conflict event dataset. Numbers in parentheses are

robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%

level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

In Tables 4.4 and 4.5 we use conflict onset from the UCDP GED and ACLED
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datasets respectively and find that the negative and insignificant result is not

unique to PRIO-GRID. This is reassuring and we can be reasonably confident

that our result of ’no conflict resource curse’ in Africa is not noisy.

Table 4.4: Resource Discovery and Conflict Onset: UCDP-GED Conflict

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.007 0.001 -0.022*** -0.008 -0.009 0.010
(0.009) (0.012) (0.007) (0.013) (0.011) (0.014)

Past Discovery -0.0005 -0.0002 0.0022 -0.0009 0.0006 -0.0011
(0.004) (0.005) (0.005) (0.004) (0.004) (0.0044)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.005 -0.028 -0.028 -0.029 -0.016 0.010

(0.007) (0.030) (0.030) (0.030) (0.016) (0.011)
Past Discovery 0.018 0.022 0.022 0.022 0.020 0.009

(0.020) (0.023) (0.023) (0.023) (0.021) (0.009)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.007 0.003 -0.022*** 0.011 -0.008 0.002
(0.010) (0.013) (0.007) (0.014) (0.013) (0.012)

Past Discovery -0.002 -0.002 -0.0005 -0.003 -0.001 -0.002
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 235246 225236 215226 205216 195206 185196

Notes: The dependent variable is armed conflict onset based on the UCDP GED conflict event dataset. Numbers in

parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%,

and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table 4.5: Resource Discovery and Conflict Onset: ACLED Conflict

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0055 -0.0061 -0.0155* -0.0197* -0.0006 0.0194
(0.0161) (0.0149) (0.0094) (0.0117) (0.0199) (0.0227)

Past Discovery -0.0019 -0.0008 0.0002 0.0002 -0.0015 -0.0032
(0.0077) (0.0077) (0.0082) (0.0079) (0.0079) (0.0067)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.1415** -0.1085*** -0.0269 -0.0224 0.1433 -0.0015

(0.0664) (0.0389) (0.0311) (0.0257) (0.1671) (0.0205)
Past Discovery -0.0217 -0.0028 -0.0113 -0.0113 -0.0299 -0.0137

(0.0289) (0.0175) (0.0256) (0.0259) (0.0377) (0.0267)
Panel C: E↵ect of Discovering Mineral Resources

Discovery 0.0021 03.04e-06 -0.0148 -0.0193 -0.0130 0.0214
(0.0148) (0.0154) (0.0098) (0.0126) (0.0161) (0.0244)

Past Discovery -0.0005 -0.0006 0.0011 0.0011 0.0004 -0.0024
(0.0078) (0.0081) (0.0085) (0.0081) (0.0079) (0.0067)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 171088 163808 156528 149248 141968 134688

Notes: The dependent variable is armed conflict onset based on the ACLED conflict event dataset. Numbers in parentheses

are clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%

level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Factors triggering a conflict could be di↵erent from factors motivating the

continuation of a conflict. Therefore, we also analyse the e↵ect of discovery on

conflict incidence and intensity using data from UCDP GED and ACLED. How-

ever, incidence and intensity are not as clean measure of conflict as onset. This

is because onset flags the start of a conflict whereas incidence and intensity are

aggregate measures of both start and persistence. This confounds causality issues

as pre-existing conflict could influence the unobservable exploration e↵ort prior

to the actual resource discovery. Nevertheless, we estimate these models and find

that the negative and insignificant result remains unaltered. The results of con-

flict incidence and intensity based on UCDP GED and ACLED data are reported

in the appendix Tables C.9, C.10, C.11 and C.12).

The results presented so far suggest that natural resource discovery shocks

do not (positively) a↵ect the onset, incidence and intensity of intra-state armed

conflict at the grid level. Some may argue that the negative sign of the coe�cient

estimates within a grid may not be surprising as resource discovery only fuels

conflict systematically elsewhere. Resource discovery in one grid could trigger

conflict elsewhere in the neighbouring grid, at the region or country level. To test

whether this is indeed the case, we estimate the model using higher level grid-

year, region-year and country-year as units of analysis. Although determining the

optimal level of aggregation is not straightforward, our aggregation procedure is

twofold: systematic grouping (region and country level) and random grouping

(higher level grid demarcation). A related limitation with higher level aggrega-

tion is the phenomenon known as ecological fallacy (Maystadt et al., 2013). The

association between resource discoveries and armed conflict may di↵er in mag-

nitude and may even have a di↵erent sign across di↵erent levels of analysis.

Here we aggregate the conflict events and resource discoveries at higher

grids-cell (1x1 degrees latitude and longitude, which approximately amounts to

111x111 square kilometres at the equator), region level and country level. For

the higher level grid, we follow the same approach as the previous main units

of interest by aggregating our geocoded conflict data and construct time-varying

grid-specific measures of armed conflict in a grid a given year. For region and

country level analysis, our main dependent variable is the number of grid-cells
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covered by conflict events in a given year. We have also try di↵erent alternative

definitions of conflict at the region and country level. We use the PRIO-GRID,

ACLED and UCDP GED datasets. For brevity, we report the results of higher

level grid demarcation, region and country level in the Appendix.

We start by considering enlarging our grid units of observation to 1x1 de-

grees latitude and longitude. Tables C.13, C14 and C.15 in the Appendix report

results of higher levels of aggregation, where there is no systematic evidence for

an ecological inference fallacy. The e↵ect of discovery on conflict onset remains

statistically insignificant and negative in most cases. We control for year fixed ef-

fects, grid fixed e↵ects, grid-specific time trends and country x year fixed e↵ects.

There is no di↵erence between individual discoveries: oilfield and minerals.

Table C.16 in the Appendix report the region level results. We find resource

discovery significantly reduces conflict onset after controlling for year fixed ef-

fects, region fixed e↵ects, region-specific time trend and country x year fixed

e↵ects. Table C.17 estimates the relationship at the country level. This result is

comparable to recent cross-country studies on this issue by Cotet and Tsui (2013)

and Lei andMichaels (2014). Unlike these studies which solely focus on the e↵ect

of oilfield discovery, our dataset permits us to consider not only oil but also min-

eral discovery. We find that oil and mineral discovery has no discernible e↵ect on

conflict onset at the country level after controlling for year fixed e↵ects, country

fixed e↵ects and country x year fixed e↵ects. Estimating the models separately

for oilfield and mineral discoveries do not change our results. The country level

results confirm the findings of Cotet and Tsui (2013), i.e., natural resource dis-

coveries do not increase the likelihood of conflict. It is worthwhile noting that we

do not find any evidence of the ecological inference fallacy here.

4.4.2 Testing the Income E↵ect Mechanism

In the this section, we discuss the economic and political factors that plausibly

explain the patterns shown between resource discovery and armed conflict at the

local level in Africa. Theory predicts that natural resources could a↵ect conflict

through multiple facors. It is however di�cult to establish these causal channels

empirically. It is even more di�cult for Africa due to the lack of data. Using the



94

novel satellite data on night lights (Henderson et al., 2012), we are at least able to

test the income e↵ect mechanism. Resource discovery could impact on the local

living standards and influence the opportunity cost of conflict. We use natural

logarithm of night lights density as a measure of local living standards. This

however restricts our sample to 1992 to 2012. In table 4.6, we find that discovery

improves night lights density in a grid after controlling for past discoveries and

the high dimension fixed e↵ects. This result is consistent with the findings of

(Mamo et al., 2017).13

Table 4.6: Resource Discovery and Local Economic Development

Dependent Variable: Natural Logarithm of Night Lights (Luminosity)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Discovery 0.114* 0.172* 0.104* 0.144** 0.191** 0.184**

(0.063) (0.088) (0.054) (0.065) (0.079) (0.083)
Past Discovery 0.078 0.107 0.096 0.088 0.070 0.071

(0.082) (0.092) (0.084) (0.080) (0.080) (0.083)
Population Density 0.172 0.172 0.172 0.172 0.172 0.172

(0.126) (0.126) (0.126) (0.126) (0.126) (0.126)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 215439 206271 197103 187935 178767 169599

Notes: This table reports the e↵ect of discovering at least one natural resource on local economic development in a panel

of grid-year observations. The dependent variable is the natural logarithm of luminosity density. Numbers in parentheses

are clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%

level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

In Table 4.7 we explore whether the resource discovery driven improve-

ment in living standards has any impact on conflict onset.14 In columns (1)-(6)

we find that indeed higher local living standards (measured by night lights) re-

duce conflict onset after controlling for population density and high dimensional

fixed e↵ects. We test whether the e↵ect of resource discovery works exclusively

through improvements in local living standards. The coe�cient on discovery is

consistently negative and significant in few cases which suggests that there is a

direct e↵ect of discovery on conflict over and above the indirect e↵ect via the

income channel. The direct e↵ect could be reflective of the changes in expecta-

13The e↵ect of resource discoveries on night lights could be driven by the lights emanating
from the extractive industries themselves. Therefore, we ignore all lights around an arbitrary 2-5
kilometre radius of an oilfield or mining industry.

14Note that we are using UCDP GED conflict events here as the sample period matches more
with night lights data. Results are similar with PRIO-GRID and ACLED conflict dataset.
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tions. The local population could expect higher future income after a discovery

and this could reduce conflict. Our evidence is qualitatively consistent with Bazzi

and Blattman (2014) and Berman and Couttenier (2015) who find support for the

income shock using cross-country and subnational data respectively.

To what extent the negative and insignificant e↵ect of resource discovery

on conflict works via the political patronage and or the military expenditure

mechanisms in Africa? It is worthwhile noting that military expenditure rep-

resents state capacity towards repression and counterinsurgency. Figure C.7 (a)

in the Appendix plots the nonparametric association between resource discov-

ery and the number of cabinet posts. There is a positive relationship indicating

increase in patronage and hence a decline in conflict via the patronage mecha-

nism.15 However, our data do not support the state capacity mechanism as in

Figure C.7 (b) in the Appendix we observe military expenditure as a share of

GDP to moderately decline with discoveries. This is contrary to the cross-country

results of Cotet and Tsui (2013) where they report oil wealth increases defence

burden as the state faces more violent challenges.

Table 4.7: Discoveries, Economic Development and Conflict

Dependent Variable: Intrastate Civil Conflict Onset (UCDP-GED Conflict Dataset)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Local Income -0.0032* -0.003* -0.0026* -0.001 -0.004* -0.003*

(0.0017) (0.0016) (0.0014) (0.002) (0.002) (0.0017)
Discovery -0.011 -0.004 -0.020*** 0.004 -0.013* -0.003

(0.011) (0.013) (0.007) (0.015) (0.007) (0.014)
Past Discovery 0.004 -0.005 -0.007 -0.006 -0.003 -0.004

(0.005) (0.005) (0.006) (0.006) (0.007) (0.006)
Population Density 0.001 0.018 0.048*** 0.073*** 0.074*** 0.061***

(0.018) (0.018) (0.015) (0.023) (0.021) (0.020)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 194921 186627 178333 170039 161745 153451

Notes: This table reports the e↵ect of resource discovery and local economic development on civil conflict in a panel of

grid-year observations. The local economic development is natural logarithm of luminosity adjusted for grid surface area.

The dependent variable is the onset of civil conflict based on the UCDP GED dataset simple because the sample period

matches more with the night lights data. Numbers in parentheses are clustered standard errors at the country level. ***,

**, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. Past discovery is the number of years

with discoveries from t-10 to t-1.

15This is consistent with the theoretical predictions of Robinson et al. (2006) and empirical
evidence of Roessler (2011). Our fining in Chapter 3 also supports such argument.
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4.4.3 Further Results

4.4.3.1 Heterogeneous E↵ects of Discovery Size and Distance

Giant discoveries are significantly larger than major discoveries. Therefore they

should have a bigger e↵ect on conflict due to their superior economic value. Fur-

thermore, they also enter production more quickly.16 Note that 64 percent of all

mineral discoveries in our dataset are major while all the oil discoveries are giant.

In Table 4.8 we find that our result is not a↵ected by the size of discovery.

Table 4.8: Size of Resource Discovery and Armed Conflict Onset

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Giant Discovery of Natural Resource (Oilfield + Minerals)

Discovery -0.00025 -0.00026 -0.00029 -0.00030 -0.00033 -0.00035
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.00025 -0.00027 -0.00029 -0.00031 -0.00034 -0.00036
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: E↵ect of Giant Discovery of Mineral Resources
Discovery -0.00002 -0.00002 -0.00002 -0.00002 -0.00001 -0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Past Discovery -0.00003* -0.00002* -0.00002 -0.00002 -0.00002 -0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Panel C: E↵ect of Major Mineral Discovery

Discovery -0.00038 -0.00032 -0.00036 -0.00039 -0.00042 -0.00045
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.00034 -0.00037 -0.00040 -0.00044 -0.00048 -0.00049
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 605163 579411 553659 527907 502155 476403

Notes: The table reports the e↵ect of giant and major discoveries in a panel of grid-year observations. Note that all oil

discoveries in the dataset are giant whereas mineral discoveries are giant and major. Numbers in parentheses are robust

standard errors clustered at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Another potential heterogeneity could arise from the proximity of a con-

flict to a discovered oilfield or mine, and proximity to the border. One would

expect armed conflicts to occur in far away locations rather than in close proxim-

ity to a discovery. We calculate the time-varying distance to the nearest oilfield

or mine discoveries from the centroid of each grid in kilometres, and regress it

on conflict onset. Distance does not seem to influence the negative and insignif-

icant association between discovery and conflict onset irrespective of the dataset
16Figure 2.5 in chapter two presents Kaplan Meier probability estimates for mine deposits en-

tering production which attests to this point.
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(PRIO-GRID, UCDP GED, or ACLED) used to define onset.

Similarly, we calculate the distance to national borders and divide the sam-

ple of grids into 4 groups according to their distance to the border: less than

25km, between 25-50km, between 50-100km, and greater than 100km. We esti-

mate equation 4.1 for each of these samples and three di↵erent datasets and the

negative and insignificant result survives suggesting that proximity to the border

(or conflict propensity) is not a factor here. These results are reported in Tables

C.18, C.19, C.20, C.21, C.22 and C.23 in the Appendix.

4.4.3.2 The E↵ects of the Cold War and Institutions

The Cold War had a significant impact on the African political landscape. The

Angolan civil war starting in 1975 had major outside involvement in the form of

the Soviet Union and Cuba backing the People’s Movement for the Liberation of

Angola (MPLA) while the United States and the CIA backing the National Union

for the Total Independence of Angola (UNITA). The deposition and subsequent

execution of Congolese independence ruler and elected Prime Minister Patrice

Lumumba in 1961 also shares a similar Cold War history which led to conflict.

One could argue that the nature of the association between resource discovery

and conflict before and after the end of the cold war in 1989 with the fall of the

Berlin Wall could be di↵erent.

In Tables C.24 and C.25 in the Appendix, we test whether this is indeed the

case by dividing the sample between pre- and post- Cold War. For the ’before

end of cold war’ sample, the individual e↵ects of oilfield and mineral discoveries

display di↵erent trends. The coe�cient estimates remain negative and insignifi-

cant for the minerals but for oil it is positive and significant. However, the e↵ect

of discovery on conflict appears to be largely insignificant after end of the cold

war.

To what extent institutional quality influence the association between nat-

ural resources and conflict (Arezki and Gylfason, 2013)? Representative political

institutions could increase legitimacy of the incumbent government and di↵use

tensions. Therefore, one would expect democratic institutions to reduce negative

consequences of natural resources on conflict. We test this hypothesis in Table
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C.26 in the Appendix using Polity2 as a measure of institutional quality. We do

not find any e↵ect of institutions on the association between mineral discovery

and onset (Panel C). However, we find that oilfield discoveries lead to less onset

and that the negative e↵ect is magnified in countries with good institutions.

4.5 Robustness and Sensitivity Analysis

In this section, we present a battery of additional robustness checks to support

our findings described above are not sensitive to the use of alternative measure-

ment of variables and samples. First, in order to address the potential temporal

correlation of oilfield and mineral discoveries, we control for past discoveries in

most of our specifications. To further check the robustness of the results, we have

excluded grid-year observations within a decade of past oilfield or mineral dis-

coveries and the e↵ect of resource discovery shocks remain negative. The results

for excluding grid-year observations of past discoveries are reported in Tables

C.27, C.28 and C.29 in the Appendix.

Second, we restrict our sample to observations where at least one oilfield or

mineral discovery was made during the sample period. This would potentially

tackle the concern that observations with oilfield and mineral discoveries are dif-

ferent from others in ways that we cannot measure and control for directly (Lei

and Michaels, 2014). This were not severe threats to our identification strategy

as we mainly exploit high dimensional fixed e↵ects in all the specifications. The

results are reported in C.30, C.31 and C.32 in the Appendix.

Third, similarly we restrict our sample to grids in which at least one conflict

event occurs over the sample period, where Berman and Couttenier (2015) refer

to such grids as high-conflict-risk grids. As we explain in the data section, we

observe that the number of conflict events by grid is small, and the vast majority

of grids experience no conflict over the entire period. The significance and quan-

titative e↵ects of resource discovery shocks are much stronger in this case. The

results are reported in Tables C.33 and C.34, in the Appendix.

Fourth, we also apply bu↵er zone analysis because some oilfield or min-

eral discoveries may cross grid boundaries. We arbitrarily create a bigger zone
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(with varying Euclidean distance) around the oilfield and mineral discovery geo-

coordinates. This will address the potential concern that oilfield and mineral

discoveries could take up a large geographies and hence influence the surround-

ing geographies of conflict. The results are reported in Tables C.35, C.36 and

C.37 in the Appendix.

4.6 Conclusions

Africa is often viewed as a prime location for natural resource driven conflict. The

volume of research on this topic is sizeable. Yet establishing causality remains a

challenge. In this paper we are able to set up a natural experiment to study

the e↵ect of natural resources on conflict at the grid level covering the period

1950 to 2008. Note that grids here correspond to a spatial resolution of 0.5 x 0.5

degrees latitude and longitudes (approximately 55 x 55 square kilometres). Using

giant and major resource discovery dates as an exogenous news shock we find no

evidence that natural resources trigger conflict in Africa. In particular, discovery

significantly reduce the likelihood of conflict onset within 10 years post resource

discovery in a pooled cross-section model. The e↵ect becomes insignificant once

we control for high dimension fixed e↵ects. This broad pattern in the data holds

with both conflict incidence and intensity as dependent variables.

We also explored the economic factors whichmay explain the patterns shown

in the data. Resource discovery appears to influence conflict indirectly via im-

proved local living standards and directly via improved expectations of high fu-

ture income. We observe that natural resource discovery improves living stan-

dards, as proxied satellite data on night lights. The improved living standards in

turn is associated with a decline in the likelihood of armed conflict onset within

the grids experienced discovery shocks. This is purely economic mechanism, i.e.,

individuals are not engaging in rebel movement because of resource discoveries

a↵ecting their income or overall living standards. Our finding in Chapter 3 also

support for another conflict reducing mechanism through the distribution of po-

litical patronage by the state. In particular resource discovery appears to increase

the number of cabinet ministerial positions.
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A common argument is that the association between natural resources and

conflict is national rather than local. Therefore, grid level analysis is not the ap-

propriate level of aggregation. Hence, we also test the relationship at higher grid

resolution, and regional and national levels. Our main result remains una↵ected

when we estimate the model at higher levels of aggregation. There is little or no

heterogeneity in the association between resource discovery and conflict across

resource type, size of discovery, distance to discovery, distance to the national

border, pre and post conclusion of cold war, and institutional quality.

Our finding has some important welfare and political implications for re-

source rich African countries. In spite of her colonial and post-colonial history

as a supplier of raw materials, a vast majority of African natural wealth remains

untapped (Collier, 2010b). These resources are expected to be exploited over

the coming two to three decades amid increasing global demand for raw materi-

als (Humphreys, 2009). The expected steady depletion of natural resources and

the favourable commodity prices presents Africa with an opportunity to harness

this wealth for improving state capacity (inclusive political power allocations)

and living standards for the local communities. Our research suggests that both

of these factors could significantly contribute towards the reduction of internal

armed conflict in Africa.
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CHAPTER 5

Conclusion

In this thesis, we investigated the political economy of natural resources in the

context of resource rich developing economies, with a special interest in Africa.

The thesis consists of three stand-alone studies and they have distinctive charac-

teristics, and provide di↵erent findings about the economic and political e↵ects

of natural resources at the subnational level. We use di↵erent datasets and ex-

ploit subnational variation to uncover the e↵ects of resource abundance.

Our finding in the first study is consistent with most of the findings in the

newly emerging literature that has shifted the focus towards exploiting within-

country variation. We find that both mineral production and discovery expands

economic activity in a panel of 3,635 districts from 42 Sub-Saharan African coun-

tries observed over the period 1992 to 2012. The study finds positive e↵ects of

mining at the intensive margin, however large e↵ects are associated with min-

ing at the extensive margin. This positive general economic opportunity could

be aligned with the di↵erent hypothesis linking natural resources to develop-

ment: backward-linkage (Aragón and Rud, 2013), labour market opportunity

(Kotsadam and Tolonen, 2016), public good provision and infrastructure (Caselli

and Michaels, 2013; Brollo et al., 2013), and sophisticated (non-farm) forms of

economic activity (Fafchamps et al., 2016).

In the second study, we find that resource discoveries and increase in com-

modity prices are associated with an increase in ethnic ministerial appointments.

We show that natural resources raise the value of being in power, and provide

rulers with more finance which they can use to expand state cabinet sizes and
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distribute across politically relevant ethnicities. We do not find evidence of eth-

nic group exclusion from central government in the shadow of resource discov-

eries and rising commodity prices. Moreover, we find supporting evidence that

ministerial appointment come with real power to influence economic rent distri-

butions. Ethnicities that share the same ethnicity with head of cabinet positions

receive larger economic rent, as reflected in the luminosity data. The story is

di↵erent for unrepresented ethnicities, as they receive less opportunity.

There were little known about the extent to which the natural resources af-

fect the politics of multi-ethnic political patronage system. Our evidence is con-

sistent with the cross-country evidence that African rulers extend their tenure in

o�ce and stabilise their regime by expanding their patronage coalition through

cabinet appointments (Arriola, 2009). Our finding confirms that rulers do indeed

use state resources, which are largely dependent on natural resources, to co-opt

di↵erent elites (ethnically determined) to maintain political stability.

Our finding in the second study may have di↵erent economic and politi-

cal implications. The first implication of our finding is about the consequence

of political power arrangement based on natural resources. It can potentially

deepen the challenges of creating and consolidating democracy in Africa through

its influence on autocratic nature of political systems or regimes (Jensen and

Wantchekon, 2004; Caselli and Tesei, 2016). This can happen by creating per-

verse political incentives and leading to highly dysfunctional state behaviour

(Robinson et al., 2006). Studies document that there is clear association between

natural resources and political corruption (Bhattacharyya andHodler, 2010; Arezki

and Gylfason, 2013; Brollo et al., 2013; Ross, 2015; Knutsen et al., 2016). Another

implication of our finding is about the link between ethnic favouritism and de-

velopment. Political power arrangement based on natural resources may breed

unfavourable ethnic favouritism, which might not be favourable to sustainable

development. It may undermine development by generating mistrust, corrup-

tion, and political instability.

In the final study, we find no statistical evidence that resource discover-

ies trigger intra-state (localised) armed conflict in Africa. Resource discovery

appears to influence conflict indirectly via improved local living standards and
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directly via improved expectations of high future income. We observe statisti-

cally significant positive e↵ect of the discovery on living standards, as reflected

in luminosity intensity. Consistent with the finding in the first study, the im-

proved living standards in turn is associated with a decline in the likelihood

of armed conflict onset within the grids experienced discovery shocks. This

is purely economic mechanism whereby individuals are not engaging in rebel

movement because of resource discoveries a↵ecting their income. Similarly, as a

typical political mechanism, we find support for another conflict reducing mech-

anism through the distribution of political patronage by the state. In particular

resource discovery appears to increase the number of cabinet ministerial posi-

tions. This might dissuade amilitant subset of the society from attempting armed

rebellion against the state.
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APPENDIX A

Paper One Appendix

List of Countries in the Sample

Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African Re-

public, Chad, Democratic Republic of Congo, Cote d’Ivoire, Equatorial Guinea,

Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea Bissau, Kenya, Lesotho,

Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger,

Nigeria, Republic of Congo, Rwanda, Senegal, Sierra Leone, Somalia, South Africa,

Sudan, Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe.
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Table A.1: Summary Statistics

Variable Obs MeaObservations Std. Dev. MiObservations Max
Main Variables

Ln(0.01+Lights density per sq. km) 76335 -2.36 2.38 -4.61 4.51
Ln(Mineral production) 1802 16.86 3.47 -0.23 27.63
Ln(Min. prod. 1992 commodity prices) 1802 16.96 3.06 1.66 27.57
Mineral production (1=yes) 76335 0.04 0.20 0 1
Mineral discovery 76335 0.00 0.03 0 1
Mineral discovery (permanent switch) 76335 0.01 0.10 0 1

Controls: Population and Geography Variables
Ln(Population density per sq. km) 76335 3.98 1.61 0.02 10.04
Ln(Altitude in m) 76335 5.88 1.38 0.62 7.91
Ln(Ruggedness) 76335 4.05 1.14 0 6.93
Share of district with fertile soil 76335 18.60 29.45 0 100
Ln(Distance to the coast in km) 76335 5.55 1.39 -4.23 7.45
Ln(Land surface area in sq. km) 76335 7.41 1.72 -0.73 12.79

Controls: Climate Variables
Ln(Annual average rainfall in mm) 76335 5.12 0.76 0.13 6.38
Share of district with tropical climate 76335 60.19 47.12 0 100
Share of district with temperate climate 76335 14.32 32.64 0 100
Share of district with dry/arid climate 76335 25.28 42.14 0 100

Controls: Urbanization and Political Economy Variables
Capital city (1=yes) 76335 0.01 0.11 0 1
Ln (Distance to the capital city in km) 76335 5.47 0.97 0.66 7.54
Ethnic FractionalizatioObservations 76335 0.21 0.24 0 0.93

Controls: Infrastructure Variables
Ln(Paved road density per sq. km (2000)) 76335 0.02 0.04 0 0.52
Ln(Railway density per sq. km (2000)) 76335 1.01 1.72 0 6.79
Ln(Electric-grid density per sq. km (2000) 76335 0.07 0.17 0 2.25

Notes: This table reports descriptive statistics. All variables are measured at the district level. Discovery is a dummy

variable which takes the value 1 for a district year if there is a giant or major discovery for that year and 0 otherwise. The

variable discovery (permanent switch) = 1 for the discovery year and every year thereafter. Summary statistics for mineral

production is limited to districts with mineral production, hence the smaller number of observations. Log transformation

for variable x is conducted using the formula ln(1 + x) if x could potentially be equal to 0.

Table A.2: Re-estimation of Table 2.1: Excluding Sparsely Populated Districts

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.032* -0.011
(0.016) (0.039)

Ln(Mineral Production in 0.039* 0.050
1992 commodity prices) (0.020) (0.049)
Mineral production (1=yes) 0.567***

(0.131)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 1,579 1,579 1,579 70,615

Notes: This table is a re-estimation of Table 2.3 in the main text. It shows associations between mining activities and

night lights in a panel of district-year observations for the period 1992-2012. In this table, district-year observations are

dropped if the population density is less than 4 (i.e. sparsely populated districts are excluded). Dependent variable is

Ln(0.01+Nighttime Lights Density per sq. km). column (1) expresses the mineral production value in 1992 constant

USD. column 2 expresses the mineral production value in 1992 constant commodity prices. column 3 includes both those

indicators. column 4 uses a dummy variable equal to one if the district had a producing mine thereby using the full

sample. Robust standard errors clustered by region are in parentheses. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.
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Table A.3: Re-estimation of Table 2.1: Observation With Zero Lights Intensity

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.021* -0.065
(0.011) (0.045)

Ln(Mineral production in 0.035** 0.102*
1992 commodity prices) (0.016) (0.056)
Mineral production (1=yes) 0.343***

(0.087)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 1,772 1,772 1,772 51,609

Notes: This table is a re-estimation of Table 2.3 in the main text. It shows associations between mining activities and

night lights in a panel of district-year observations for the period 1992-2012. In this table, district-year observations are

dropped if the sum of light intensity values for the district is zero. Dependent variable is Ln(0.01+Nighttime Lights

Density per sq. km). column (1) expresses the mineral production value in 1992 constant USD. column 2 expresses the

mineral production value in 1992 constant commodity prices. column 3 includes both those indicators. column 4 uses

a dummy variable equal to one if the district had a producing mine thereby using the full sample. Robust standard

errors clustered by region are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.

Table A.4: Re-estimation of Table 2.1: Nights Lights and Population Density

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.024* -0.061
(0.014) (0.047)

Ln(Mineral Production in 0.038** 0.102*
1992 commodity prices) (0.018) (0.057)
Mineral production (1=yes) 0.554***

(0.117)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 1,802 1,802 1,802 76,335

Notes: This table is a re-estimation of Table 2.3 in the main text. It shows associations between mining activities and

night lights in a panel of district-year observations for the period 1992-2012. In this table, the dependent variable is

light density minus log population density (i.e. log luminosity per capita) based on Cogneau and Dupraz (2014). column

(1) expresses the mineral production value in 1992 constant USD. column 2 expresses the mineral production value in

1992 constant commodity prices. column 3 includes both those indicators. column 4 uses a dummy variable equal to

one if the district had a producing mine thereby using the full sample. Robust standard errors clustered by region are in

parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A.5: Re-estimation of Table 2.1: Night Lights and Number of Districts

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.019 -0.089
(0.017) (0.070)

Ln(Mineral Production in 0.036* 0.128*
1992 commodity prices) (0.019) (0.077)
Mineral production (1=yes) 0.898***

(0.204)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 1,802 1,802 1,802 76,335

Notes: This table is a re-estimation of Table 2.3 in the main text. It shows associations between mining activities and night

lights in a panel of district-year observations for the period 1992-2012. In this table, the dependent variable (i.e. sum of

nighttime lights density) is weighted by the inverse total number of the districts within a country. column (1) expresses

the mineral production value in 1992 constant USD. column 2 expresses the mineral production value in 1992 constant

commodity prices. column 3 includes both those indicators. column 4 uses a dummy variable equal to one if the district

had a producing mine thereby using the full sample. Robust standard errors clustered by region are in parentheses. ***,

**, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Table A.6: Re-estimation of Table 2.1: Grid Level Analysis

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.106*** 0.086
(0.034) (0.086)

Ln(Mineral Production in 0.116*** 0.025
1992 commodity prices) (0.038) (0.094)
Mineral production (1=yes) 0.701***

(0.096)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
N 1,200 1,200 1,200 171,633

Notes: In the main analysis we used district level administrative boundaries as units of interest. Administrative bound-

aries are endogenous by construction, as it is likely to be determined by local geographic and demographic character-

istics.This table is a re-estimation of Table 2 in the main text using grid level boundaries corresponding to a spatial

resolution of 0.5 x 0.5 degrees latitude and longitude. It shows associations between mining activities and night lights in

a panel of district-year observations for the period 1992-2012. Dependent variable is Ln(0.01+Nighttime Lights Density

per sq. km). column (1) expresses the mineral production value in 1992 constant USD. column 2 expresses the min-

eral production value in 1992 constant commodity prices. column 3 includes both those indicators. Robust standard

errors clustered by region are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.
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Table A.7: Re-estimation of Table 2.1: Excluding Lights from Mining Industries

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.022 -0.075
(0.014) (0.048)

Ln(Mineral Production in 0.037** 0.115*
1992 commodity prices) (0.018) (0.058)
Mineral production (1=yes) 0.466***

(0.106)
Pop Density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 1,802 1,802 1,802 76,335

Notes: This table is a re-estimation of Table 2.3 in the main text. It shows associations between mining activities and

night lights in a panel of district-year observations for the period 1992-2012. In this table, the dependent variable (i.e.

sum of nighttime lights density) excludes lights emanating from the mining industries (i.e deleting pixel values of the

light data around 2km radius of mining industries). column (1) expresses the mineral production value in 1992 constant

USD. column 2 expresses the mineral production value in 1992 constant commodity prices. column 3 includes both those

indicators. column 4 uses a dummy variable equal to one if the district had a producing mine thereby using the full

sample. Robust standard errors clustered by region are in parentheses. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.

Table A.8: Re-estimation of Table 2.1: Missing Values in Production Quantities

Intensive margin
(1) (2) (3)

Ln(Mineral production value in 1992 USD) 0.040** -0.083
(0.018) (0.065)

Ln(Mineral prod. value in 1992 commodity prices) 0.079** 0.163*
(0.032) (0.088)

Pop Density & Rainfall Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes
District Fixed E↵ects Yes Yes Yes
Observations 776 776 776

Notes: In the main analysis we replaced missing values in production quantities by linear interpolation. This may a↵ect

estimates of the intensive margin. This table is a re-estimation of Table 2.3 in the main text. It shows associations between

mining activities and night lights in a panel of district-year observations for the period 1992-2012. In this table, district-

year observations are dropped if production quantity is missing for at least one commodity for one mine in that district.

This results in an unbalanced panel and fewer observations. Coe�cients in this table are larger and more significant,

which can be attributed to selection and measurement error. Dependent variable is Ln(0.01+Nighttime Lights Density

per sq. km). column (1) expresses the mineral production value in 1992 constant USD. column 2 expresses the mineral

production value in 1992 constant commodity prices. column 3 includes both those indicators. Robust standard errors

clustered by region are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.
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Table A.9: Re-estimation of Table 2.3: Excluding Sparsely Populated Districts

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 -0.019 -0.029 -0.040 -0.029

(0.115) (0.068) (0.098) (0.081)
j = 1 0.075 0.030 0.088 -0.011

(0.127) (0.082) (0.111) (0.091)
j = 2 0.061 0.000 0.063 -0.052

(0.118) (0.088) (0.107) (0.098)
j = 3 0.065 0.019 -0.032 0.030

(0.142) (0.096) (0.131) (0.094)
j = 4 0.202 0.078 0.070 0.059

(0.151) (0.114) (0.167) (0.112)
j = 5 0.244 0.140 0.128 0.110

(0.161) (0.119) (0.174) (0.115)
j = 6 0.298* 0.214* 0.296 0.123

(0.166) (0.128) (0.221) (0.118)
j = 7 0.318* 0.245* 0.324 0.180

(0.179) (0.139) (0.235) (0.123)
j = 8 0.415** 0.433*** 0.465* 0.319*

(0.175) (0.158) (0.236) (0.162)
j = 9 0.480** 0.447*** 0.456* 0.343**

(0.197) (0.168) (0.248) (0.172)
j = 10 0.468** 0.460*** 0.514** 0.359**

(0.198) (0.168) (0.253) (0.167)
Pop density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 68,140 68,830 67,914 68,592

Notes: This table is a re-estimation of Table 2.4 in the main text. It reports the e↵ect of mineral resource discoveries on

night lights in a panel of district-year observations. In this table, district-year observations are dropped if the population

density is less than 4 (i.e. sparsely populated districts are excluded). Dependent variable is Ln(0.01+Nighttime Lights

Density per sq. km). In column (1), the variable of interest Discoveryd,t�j is a dummy variable equal to 1 if a giant or

major mineral deposit was discovered j years ago, 0 if no discovery has been made and missing for every post-discovery

year j > 10. In column (2), the dummies are set to missing the year a second discovery was made in the same district.

In column (3) and (4), the dummy refers to giant and major deposit discoveries respectively. Because of the 10-year lag,

the discoveries and numbers referred to by each dummy variable may vary. Robust standard errors in parentheses are

clustered by region. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A.10: Re-estimation of Table 2.3: Observation With Zero Lights Intensity

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 -0.015 -0.003 -0.007 -0.029

(0.075) (0.062) (0.100) (0.081)
j = 1 0.014 0.011 0.104 -0.012

(0.101) (0.075) (0.112) (0.093)
j = 2 -0.090 -0.054 0.085 -0.062

(0.109) (0.083) (0.107) (0.101)
j = 3 -0.086 -0.059 0.006 0.017

(0.126) (0.086) (0.133) (0.097)
j = 4 0.047 0.058 0.111 0.044

(0.108) (0.088) (0.170) (0.114)
j = 5 0.073 0.024 0.159 0.090

(0.124) (0.093) (0.175) (0.118)
j = 6 0.049 0.073 0.342 0.108

(0.120) (0.090) (0.222) (0.121)
j = 7 0.075 0.078 0.372 0.164

(0.123) (0.100) (0.238) (0.127)
j = 8 0.104 0.150 0.502** 0.310*

(0.118) (0.102) (0.237) (0.162)
j = 9 0.213 0.275** 0.496** 0.340*

(0.131) (0.115) (0.251) (0.175)
j = 10 0.170 0.244* 0.551** 0.342**

(0.138) (0.126) (0.260) (0.171)
Pop density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 49,063 49,620 48,919 49,597

Notes: This table is a re-estimation of Table 2.4 in the main text. It reports the e↵ect of mineral resource discoveries

on night lights in a panel of district-year observations. In this table, district-year observations are dropped if the sum

of light intensity values for the district is zero. Dependent variable is Ln(0.01+Nighttime Lights Density per sq. km).

In column (1), the variable of interest Discoveryd,t�j is a dummy variable equal to 1 if a giant or major mineral deposit

was discovered j years ago, 0 if no discovery has been made and missing for every post-discovery year j > 10. In column

(2), the dummies are set to missing the year a second discovery was made in the same district. In column (3) and (4), the

dummy refers to giant and major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers

referred to by each dummy variable may vary. Robust standard errors in parentheses are clustered by region. ***, **, and

* indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A.11: Re-estimation of Table 2.3: Nights Lights and Population Density

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 -0.024 -0.028 -0.032 -0.024

(0.106) (0.063) (0.098) (0.081)
j = 1 0.060 0.024 0.100 -0.005

(0.118) (0.075) (0.111) (0.091)
j = 2 0.046 -0.008 0.075 -0.043

(0.111) (0.081) (0.106) (0.098)
j = 3 0.048 0.006 -0.015 0.039

(0.132) (0.087) (0.131) (0.094)
j = 4 0.174 0.068 0.085 0.070

(0.141) (0.104) (0.167) (0.111)
j = 5 0.212 0.114 0.146 0.122

(0.151) (0.109) (0.174) (0.114)
j = 6 0.257 0.190 0.314 0.134

(0.157) (0.118) (0.220) (0.118)
j = 7 0.277 0.218* 0.342 0.190

(0.169) (0.126) (0.235) (0.123)
j = 8 0.363** 0.391*** 0.484** 0.331**

(0.167) (0.147) (0.235) (0.161)
j = 9 0.427** 0.402*** 0.477* 0.355**

(0.187) (0.155) (0.247) (0.171)
j = 10 0.430** 0.431*** 0.538** 0.373**

(0.187) (0.156) (0.253) (0.166)
Pop density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 73,428 74,178 73,150 73,828

Notes: This table is a re-estimation of Table 2.4 in the main text. It reports the e↵ect of mineral resource discoveries

on night lights in a panel of district-year observations. In this table, the dependent variable is light density minus log

population density (i.e. log luminosity per capita) based on Cogneau and Dupraz (2014). In column (1), the variable of

interest Discoveryd,t�j is a dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0

if no discovery has been made and missing for every post-discovery year j > 10. In column (2), the dummies are set to

missing the year a second discovery was made in the same district. In column (3) and (4), the dummy refers to giant

and major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers referred to by each

dummy variable may vary. Robust standard errors in parentheses are clustered by region. ***, **, and * indicate statistical

significance at the 1%, 5%, and 10% level, respectively.



125

Table A.12: Re-estimation of Table 2.3: Night Lights and Number of Districts

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 -0.039 -0.051 0.126 -0.095

(0.235) (0.135) (0.306) (0.167)
j = 1 0.131 0.043 0.487 -0.107

(0.279) (0.191) (0.309) (0.218)
j = 2 0.240 -0.023 0.500 -0.205

(0.289) (0.195) (0.330) (0.214)
j = 3 0.042 0.083 0.179 0.155

(0.315) (0.192) (0.328) (0.199)
j = 4 0.249 0.008 0.273 -0.006

(0.318) (0.226) (0.404) (0.223)
j = 5 0.296 0.173 0.554 0.108

(0.339) (0.220) (0.392) (0.223)
j = 6 0.464 0.348 0.692 0.218

(0.298) (0.214) (0.421) (0.190)
j = 7 0.445 0.420* 0.747* 0.321

(0.322) (0.241) (0.428) (0.231)
j = 8 0.709** 0.677** 0.939** 0.540*

(0.331) (0.264) (0.442) (0.277)
j = 9 0.672* 0.529 0.801* 0.417

(0.380) (0.326) (0.485) (0.366)
j = 10 0.706* 0.658** 0.950* 0.520

(0.384) (0.316) (0.484) (0.344)
Pop density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 73,428 74,178 73,150 73,828

Notes: This table is a re-estimation of Table 2.4 in the main text. It reports the e↵ect of mineral resource discoveries

on night lights in a panel of district-year observations. In this table, the dependent variable (i.e. sum of nighttime

lights density) is weighted by the inverse total number of the districts within a country. In column (1), the variable of

interest Discoveryd,t�j is a dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0

if no discovery has been made and missing for every post-discovery year j > 10. In column (2), the dummies are set to

missing the year a second discovery was made in the same district. In column (3) and (4), the dummy refers to giant

and major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers referred to by each

dummy variable may vary. Robust standard errors in parentheses are clustered by region. ***, **, and * indicate statistical

significance at the 1%, 5%, and 10% level, respectively.
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Table A.13: Re-estimation of Table 2.3: Grid Level Analysis

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 0.160* 0.078 0.088 0.071

(0.090) (0.055) (0.111) (0.061)
j = 1 0.234*** 0.153** 0.078 0.152**

(0.088) (0.065) (0.097) (0.074)
j = 2 0.289*** 0.144* -0.050 0.162**

(0.108) (0.075) (0.129) (0.082)
j = 3 0.271** 0.187** -0.113 0.240***

(0.109) (0.079) (0.123) (0.092)
j = 4 0.335*** 0.181** -0.124 0.246**

(0.126) (0.091) (0.131) (0.101)
j = 5 0.409*** 0.308*** 0.157 0.385***

(0.144) (0.100) (0.106) (0.118)
j = 6 0.457*** 0.323*** 0.259* 0.389***

(0.138) (0.099) (0.134) (0.121)
j = 7 0.435*** 0.385*** 0.415*** 0.416***

(0.148) (0.114) (0.151) (0.145)
j = 8 0.667*** 0.654*** 0.695*** 0.656***

(0.147) (0.119) (0.180) (0.152)
j = 9 0.647*** 0.681*** 0.777*** 0.657***

(0.173) (0.137) (0.219) (0.176)
j = 10 0.695*** 0.742*** 0.907*** 0.681***

(0.158) (0.130) (0.221) (0.163)
Pop density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes
Observations 168,244 169,203 167,949 168,861

Notes: In the main analysis we used district level administrative boundaries as units of interest. Administrative bound-

aries are endogenous by construction, as it is likely to be determined by local geographic and demographic characteristics.

This table is a re-estimation of Table 2.4 in the main text using grid level boundaries corresponding to a spatial resolution

of 0.5 x 0.5 degrees latitude and longitude. It reports the e↵ect of mineral resource discoveries on night lights in a panel

of district-year observations. Dependent variable is Ln(0.01+Nighttime Lights Density per sq. km). In column (1), the

variable of interest Discoveryd,t�j is a dummy variable equal to 1 if a giant or major mineral deposit was discovered j

years ago, 0 if no discovery has been made and missing for every post-discovery year j > 10. In column (2), the dummies

are set to missing the year a second discovery was made in the same district. In column (3) and (4), the dummy refers

to giant and major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers referred to

by each dummy variable may vary. Robust standard errors in parentheses are clustered by region. ***, **, and * indicate

statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A.14: Re-estimation of Table 2.3: Excluding Lights from Mining Industries

First Single, First Giant Major
Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t � j (1) (2) (3) (4)
j = 0 0.031 -0.003 0.032 -0.008

(0.109) (0.067) (0.111) (0.084)
j = 1 0.102 0.041 0.133 0.013

(0.121) (0.078) (0.119) (0.095)
j = 2 0.081 0.007 0.114 -0.030

(0.117) (0.082) (0.105) (0.102)
j = 3 0.111 0.022 0.088 0.022

(0.131) (0.091) (0.132) (0.099)
j = 4 0.206 0.079 0.146 0.042

(0.138) (0.105) (0.170) (0.106)
j = 5 0.249 0.108 0.197 0.102

(0.160) (0.112) (0.193) (0.116)
j = 6 0.318* 0.222* 0.384 0.145

(0.164) (0.121) (0.240) (0.118)
j = 7 0.288* 0.223* 0.418 0.136

(0.173) (0.132) (0.262) (0.117)
j = 8 0.384** 0.386*** 0.519** 0.323**

(0.170) (0.143) (0.253) (0.153)
j = 9 0.434** 0.396*** 0.529* 0.337**

(0.188) (0.153) (0.269) (0.159)
j = 10 0.418** 0.409*** 0.556** 0.337**

(0.191) (0.155) (0.272) (0.159)
Pop density & Rainfall Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes
District Fixed E↵ects Yes Yes Yes Yes
Observations 73,428 74,178 73,150 73,828

Notes: This table is a re-estimation of Table 2.4 in the main text. It reports the e↵ect of mineral resource discoveries on

night lights in a panel of district-year observations. In this table, the dependent variable (i.e. sum of nighttime lights

density) excludes lights emanating from the mining industries (i.e deleting pixel values of the light data around 2km

radius of mining industries). In column (1), the variable of interestDiscoveryd,t�j is a dummy variable equal to 1 if a giant

or major mineral deposit was discovered j years ago, 0 if no discovery has been made and missing for every post-discovery

year j > 10. In column (2), the dummies are set to missing the year a second discovery was made in the same district.

In column (3) and (4), the dummy refers to giant and major deposit discoveries respectively. Because of the 10-year lag,

the discoveries and numbers referred to by each dummy variable may vary. Robust standard errors in parentheses are

clustered by region. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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APPENDIX B

Paper Two Appendix

List of Countries in the FRT15 Sample

Benin, Cameroon, Cote d’Ivoire, DRC, Gabon, Ghana, Guinea, Liberia, Nigeria,

Republic of Congo, Sierra Leone, Tanzania, Togo, Kenya, and Uganda.

List of Countries in the EPR Sample

Algeria, Angola, Benin, Botswana, Burundi, Cameroon, Central African Repub-

lic, Chad, DRC, Republic of Congo, Cote d’Ivoire, Egypt, Eritrea, Ethiopia, Gabon,

Gambia, Ghana, Guinea, Guinea Bissau, Kenya, Liberia, Madagascar, Malawi,

Mali, Mauritania, Morocco, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sene-

gal, Sierra Leone, South Africa, Sudan, Togo, Uganda, Zambia, Zimbabwe.
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Table B.1: Summary Statistics

Variable Obs Mean Std. Dev. Min Max First Year of Data Last Year of Data
FRT15 Dataset

Share of Cabinet Positions 6732 0.059 0.079 0 0.567 1960 2004
Share of Top Cabinet Posi-
tions

6732 0.058 0.110 0 0.800 1960 2004

Share of Low Cabinet Posi-
tions

6732 0.058 0.082 0 0.619 1960 2004

Leader’s Ethnic Indicator 6732 0.063 0.244 0 1 1960 2004
EPR Dataset

Power Representation 8787 0.533 0.499 0 1 1950 2010
Power Monopolisation 8891 0.015 0.123 0 1 1950 2010
Power Dominance 8891 0.057 0.231 0 1 1950 2010
Exclusion from the Power 8787 0.397 0.489 0 1 1950 2010
Regional Autonomy 8891 0.026 0.160 0 1 1950 2010
Separatist Movement 8891 0.001 0.034 0 1 1950 2010

Natural Resource Discovery and Ethnic Price Indices
Resource Discovery, t 6827 0.003 0.058 0 1 1960 2004
Resource Discovery, t-2 6826 0.003 0.058 0 1 1960 2004
Resource Discovery, t-4 6826 0.003 0.058 0 1 1960 2004
Resource Discovery, t-6 6822 0.003 0.053 0 1 1960 2004
Resource Discovery, t-8 6822 0.003 0.053 0 1 1961 2004
Resource Discovery, t-10 6819 0.002 0.048 0 1 1962 2004
Share of Discoveries 7245 0.046 0.184 0 1 1960 2004
Cumulative Discoveries 7245 0.145 0.710 0 11 1960 2004
Ln(Average Price, t) 7020 5.601 3.243 2.703 16.782 1960 2004
Ln(Average Price, 3 Years) 6552 5.616 3.253 2.714 16.680 1960 2004
Ln(Average Price, 5 Years) 6240 5.635 3.255 2.730 16.653 1960 2004
Ln(Average Price, 10 Years) 5460 5.686 3.260 2.761 16.565 1960 2004

Ethnic Armed Violence and Collective Action
Collective Action 8891 0.134 0.341 0 1 1950 2010
New Armed Conflict 8891 0.007 0.085 0 1 1950 2010
High Intensity Conflict 8891 0.004 0.060 0 1 1950 2010

Notes: This table reports summary statistics. All the variables are measured at ethnic level.

Table B.2: List of Countries

Country Share Country Share Country Share
FRT15 Dataset

Benin 0.62 Gabon 3.11 Nigeria 8.70
Cameroon 8.70 Ghana 8.07 Sierra Leone 4.35
Congo, Dem Rep of 13.66 Guinea 1.86 Tanzania 18.01
Congo, Republic of 1.24 Kenya 7.45 Togo 4.97
Cote d’Ivoire 8.07 Liberia 3.73 Uganda 7.45

Ethnic Power Relations (EPR) Dataset
Algeria 1.10 Ethiopia 6.41 Mozambique 1.21
Angola 2.02 Gabon 2.46 Namibia 2.13
Benin 2.29 Gambia 2.07 Niger 3.44
Botswana 0.51 Ghana 3.64 Nigeria 3.44
Burundi 1.10 Guinea 1.79 Rwanda 1.10
Cameroon 3.44 Guinea Bissau 1.66 Senegal 2.87
Central African Republic 1.66 Kenya 4.32 Sierra Leone 1.65
Chad 2.88 Liberia 2.51 South Africa 2.06
Congo, Dem Republic of 7.46 Madagascar 1.15 Sudan 8.04
Congo, Republic of 3.77 Malawi 3.70 Togo 1.15
Cote d’Ivoire 2.87 Mali 1.15 Uganda 4.09
Egypt 1.37 Mauritania 1.72 Zambia 3.70
Eritrea 0.40 Morocco 0.62 Zimbabwe 1.02

Notes: Share: country’s share of ethnicities over the sample period.
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Table B.3: Ethnic Coalition in Africa

Country Mean Coalition Size Min Coalition Size Max Coalition Size Ethnic Groups Mean Proportion
Benin 7.72 4 10 15 51.47
Cameroon 11.93 8 16 21 56.81
Congo, Dem Rep of 15.36 8 21 30 51.19
Congo, Republic of 7.65 5 9 10 76.51
Cote d’Ivoire 10.36 6 13 17 60.96
Gabon 7.02 5 9 10 70.23
Ghana 10.11 6 14 22 45.97
Guinea 6.02 5 8 9 66.92
Kenya 11.23 9 13 16 70.16
Liberia 7.75 2 13 15 51.67
Nigeria 11.60 7 15 17 68.26
Sierra Leone 7.93 5 10 14 56.64
Tanzania 17.53 12 22 37 47.37
Togo 9.07 5 13 20 45.34
Uganda 12.43 9 18 26 47.79

Notes: Mean Coalition Size: mean size of politically relevant ethnicities represented at the centre over the sample period.

Min Coalition Size: minimum number of politically relevant ethnicities represented at the centre over the sample period.

Max Coalition Size: maximum number of politically relevant ethnicities represented at the centre over the sample period.

Ethnic Groups: politically relevant ethnicities. Mean Proportion: mean percentage of politically relevant ethnicities

represented at the centre or share ministerial level cabinet positions.

Table B.4: Descriptive Statistics of Primary Commodity

MinEx Mineral Resource Discovery
Primary Metal Share Largest Country Country Share
Copper 0.103 DRC 0.482
Diamonds 0.053 Angola and Botswana 0.286
Fluorite 0.004 South Africa 1
Gold 0.479 South Africa 0.222
Graphite 0.004 Tanzania 1
Lead 0.004 South Africa 1
Manganese 0.030 South Africa 0.625
Mineral Sands 0.030 Madagascar, Mozambique, Sierra Leone and South Africa 0.250
Nickel 0.095 South Africa, Tanzania and Zimbabwe 0.160
Niobium 0.008 Gabon and Tanzania 0.500
PGE 0.068 South Africa 0.944
Phosphate 0.004 Rep of Congo 1
Platinum 0.015 South Africa 0.750
Potash 0.008 Rep of Congo 1
Rare Earths 0.011 South Africa 0.667
Silver 0.004 South Africa 1
Uranium 0.053 Namibia 0.500
Zinc 0.019 Namibia and South Africa 0.400
Zircon 0.008 Madagascar and Senegal 0.500

Mike Horn Oilfield Discovery
Field Type Share Largest Country Country Share
Oil 0.780 Libya 0.522
Gas 0.220 Algeria 0.538

Notes: Sample Period: 1950-2012. Primary Metal: primary mine deposit discovered. Field Type: the type of deposits-

oilfields or natural gas fields. Share: share of primary commodity in the total sample of the discovery. Largest Country:

country with the largest share of the primary mine discovered. Country Share: share of the country in the total sample.
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Table B.5: Descriptive Statistics of MinEx Mineral Discovery

Country Discovery Max Disc Share Country Discovery Max Disc Share
Algeria 1 1 0.004 Liberia 3 1 0.012
Angola 5 1 0.019 Madagascar 4 1 0.016
Botswana 11 2 0.043 Mali 13 3 0.050
Burkina Faso 17 3 0.066 Mauritania 2 1 0.008
Burundi 1 1 0.004 Mozambique 3 2 0.012
Cameroon 1 1 0.004 Namibia 12 2 0.047
CAR 2 1 0.008 Niger 4 1 0.016
DRC 19 3 0.074 Rep of Congo 3 1 0.012
Cote d’Ivoire 7 1 0.027 Senegal 6 2 0.023
Egypt 3 1 0.012 Sierra Leone 2 1 0.008
Eritrea 1 1 0.004 South Africa 67 4 0.260
Ethiopia 3 1 0.012 Sudan 1 1 0.004
Gabon 4 1 0.016 Tanzania 21 3 0.081
Ghana 13 2 0.050 Togo 1 1 0.004
Guinea 9 3 0.035 Zambia 7 2 0.027
Lesotho 1 1 0.004 Zimbabwe 10 2 0.039

Notes: Sample Period: 1950-2012. Country: country which discovered mine deposit. Discovery: total number of dis-

covery in the country over the sample period. Max Disc: maximum number of yearly discovery in the country over the

sample period. Share: country’s share of mineral discovery in the African continent over the sample period.

Table B.6: Descriptive Statistics of Mike Horn Oilfield Discovery

Country Discovery Max Disc Share
Algeria 11 2 0.186
Egypt 1 1 0.017
Ethiopia 1 1 0.017
Gabon 1 1 0.017
Libya 27 5 0.458
Morocco 1 1 0.017
Nigeria 14 4 0.237
Rep of Congo 1 1 0.017
Sudan 2 1 0.034

Notes: Sample Period: 1950-2012. Country: country which discovered oilfield deposit. Discovery: total number of

discovery in the country over the sample period. Max Disc: maximum number of yearly discovery in the country over the

sample period. Share: country’s share of mineral discovery in the African continent over the sample period.
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Table B.7: Natural Resources and Chances of Winning the Leadership

Dependent Variable: Indicator of Winning Leadership Seats
(1) (2) (3) (4) (5)

Resource Discovery, t -0.005
(0.005)

Resource Discovery, t-2 -0.014
(0.017)

Resource Discovery, t-4 -0.009
(0.018)

Resource Discovery, t-6 -0.011
(0.017)

Resource Discovery, t-8 -0.029
(0.025)

Resource Discovery, t-10 -0.016
(0.019)

Commodity Price, t -0.015***
(0.005)

Average Price, 3 Years -0.021***
(0.006)

Average Price, 5 Years -0.024***
(0.006)

Average Price, 10 Years -0.032***
(0.008)

Year Fixed E↵ects Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes
Observations 6,303 6,536 6,251 6,001 5,238

Notes: This table reports the e↵ect of natural resource discoveries and commodity price indices on the chances of winning

a rulership seat. Dependent variable denote an indicator of ruler coming from an ethnic group. Standard errors are

adjusted to reflect two-dimensional spatial dependence as modelled in Conley (1999). The spatial correlation is assumed

to linearly decrease in distance up to a cuto↵ of 500km, and ethnic group distances are computed from centroids of the

ethnic group polygons. The result remains robust to several distance cuto↵s. ***, **, and * indicate statistical significance

at the 1%, 5%, and 10% level, respectively.

Table B.8: Natural Resources and Power Monopolisation and Dominance

Dependent Variable: Indicator of Power Monopolisation Indicator of Power Dominance
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Resource Discovery, t 0.004 0.010
(0.008) (0.008)

Resource Discovery, t-2 -0.006** -0.005
(0.003) (0.006)

Resource Discovery, t-4 -0.007** -0.0003
(0.003) (0.007)

Resource Discovery, t-6 -0.007*** -0.004
(0.002) (0.006)

Resource Discovery, t-8 -0.006*** -0.008
(0.002) (0.005)

Resource Discovery, t-10 -0.007*** -0.003
(0.002) (0.004)

Commodity Price, t -0.002 0.030**
(0.003) (0.012)

Average Price, 3 Years -0.0003*** 0.0001
(0.000) (0.000)

Average Price, 5 Years -0.004* 0.034**
(0.002) (0.013)

Average Price, 10 Years -0.003 0.032**
(0.002) (0.014)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 7,670 6,902 6,589 6,334 5,640 7,670 6,902 6,589 6,334 5,640

Notes: This table reports the e↵ect of natural resource discoveries and ethnic specific commodity price indices on the mo-

nopolisation and dominance of political power in the executive. Standard errors are adjusted to reflect two-dimensional

spatial dependence as modelled in Conley (1999). The spatial correlation is assumed to linearly decrease in distance up

to a cuto↵ of 500km, and ethnic group distances are computed from centroids of the ethnic group polygons. The result

remains robust to several distance cuto↵s. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively..
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Table B.9: Resource Discoveries and Exclusion, Autonomy and Separatism

Dependent Variable: Indicator of Exclusion Indicator of Autonomy Indicator of Separatism
(1) (2) (3)

Resource Discovery, t -0.108 0.140 0.001
(0.145) (0.180) (0.001)

Resource Discovery, t-2 -0.101 0.127 -0.004
(0.160) (0.150) (0.004)

Resource Discovery, t-4 -0.077 -0.065 -0.004
(0.155) (0.045) (0.004)

Resource Discovery, t-6 0.099 0.095 -0.004
(0.120) (0.144) (0.003)

Resource Discovery, t-8 0.045 -0.048 -0.001
(0.112) (0.038) (0.002)

Resource Discovery, t-10 0.023 -0.046 0.001
(0.115) (0.041) (0.001)

Year Fixed E↵ects Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes
Observations 7,584 7,670 7,670

Notes: This table reports the e↵ect of natural resource discoveries on regional autonomy, exclusion from executive power

and separatist movement. In column (1), the outcome variable is an indicator of ethnic group’s exclusion from central

state power. In column (2), the outcome variable is an indicator of regional autonomy-active regional executive organ that

operates below the state level but above the local administrative level. In column (3), the outcome variable is an indicator

of ethnic group’s separatist autonomy. Standard errors are adjusted to reflect two-dimensional spatial dependence as

modelled in Conley (1999). The spatial correlation is assumed to linearly decrease in distance up to a cuto↵ of 500km,

and ethnic group distances are computed from centroids of the ethnic group polygons. The result remains robust to

several distance cuto↵s. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Table B.10: Commodity Prices and Exclusion, Autonomy and Separatism

Dependent
Variable:

Indicator of Exclusion Indicator of Autonomy Indicator of Separatism

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Average Price, t 0.031* -0.004 0.002

(0.018) (0.004) (0.002)
Average Price,
3 Years

0.017 -0.003 0.002

(0.021) (0.004) (0.002)
Average Price,
5 Years

0.027 -0.002 0.002

(0.021) (0.003) (0.002)
Average Price,
10 Years

0.041** -0.004 -0.00003

(0.019) (0.003) (0.0006)
Year Fixed Ef-
fects

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Ethnic Fixed
E↵ects

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Country x Year
FE

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6,816 6,503 6,248 5,554 6,902 6,589 6,334 5,640 6,902 6,589 6,334 5,640

Notes: This table reports the e↵ect of ethnic specific commodity price indices on the exclusion of ethnicities, regional

autonomy and the separatist autonomy. Standard errors are adjusted to reflect two-dimensional spatial dependence as

modelled in Conley (1999). The spatial correlation is assumed to linearly decrease in distance up to a cuto↵ of 500km, and

ethnic group distances are computed from centroids of the ethnic group polygons. The result remains robust to several

distance cuto↵s. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table B.11: Commodity Prices and Allocation of Top and Low Cabinets

Dependent Variable: Share of Top Ministerial Appointments Share of Low Ministerial Appointments
(1) (2) (3) (4) (5) (6) (7) (8)

Average Price, t 0.007*** 0.005**
(0.002) (0.002)

Average Price, 3 Years 0.008*** 0.006***
(0.003) (0.002)

Average Price, 5 Years 0.010*** 0.007***
(0.003) (0.002)

Average Price, 10 Years 0.016*** 0.009***
(0.003) (0.002)

Leader Group 0.175*** 0.176*** 0.178*** 0.169*** 0.039*** 0.039*** 0.042*** 0.051***
(0.009) (0.009) (0.009) (0.010) (0.006) (0.006) (0.006) (0.006)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes Yes Yes Yes
Country x Year Fixed
E↵ects

Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6,536 6,251 6,001 5,238 6,536 6,251 6,001 5,238

Notes: This table reports the e↵ect of ethnic specific commodity price indices on the distribution of cabinet positions. In

columns (1)-(4), the dependent variable denote share of top cabinet positions held by an ethnic group. In columns (5)-(8),

the dependent variable is low cabinet positions held by an ethnic group. We control for ruler’s co-ethnicity e↵ect by

including Leader Group, indicating whether the ruler come from the same ethnic group. Standard errors are adjusted to

reflect two-dimensional spatial dependence as modelled in Conley (1999). The spatial correlation is assumed to linearly

decrease in distance up to a cuto↵ of 500km, and ethnic group distances are computed from centroids of the ethnic group

polygons. The result remains robust to several distance cuto↵s. ***, **, and * indicate statistical significance at the 1%,

5%, and 10% level, respectively.

Table B.12: Poisson Regression: Resource Discoveries and Commodity Prices

Dependent Variable: Counting the Number of Ethnic Cabinet Reshu✏ing
(1) (2) (3) (4) (5)

Resource Discovery, t -14.259***
(1.071)

Resource Discovery, t-2 0.769***
(0.156)

Resource Discovery, t-4 1.093***
(0.156)

Resource Discovery, t-6 1.215***
(0.155)

Resource Discovery, t-8 0.758***
(0.158)

Resource Discovery, t-10 -1.411***
(0.155)

Leader Group 1.429*** 1.477*** 1.478*** 1.476*** 1.453***
(0.116) (0.118) (0.119) (0.120) (0.121)

Average Price, t 0.055***
(0.018)

Average Price, 3 Years 0.056***
(0.018)

Average Price, 5 Years 0.058***
(0.019)

Average Price, 10 Years 0.059***
(0.020)

Year Fixed E↵ects Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes
Observations 6,303 6,536 6,251 6,001 5,238

Notes: This table reports the e↵ect of natural resource discoveries and ethnic specific commodity price indices on the dis-

tribution of ministerial cabinet positions using poisson regression. We control for ruler’s co-ethnicity e↵ect by including

Leader Group, indicating whether the ruler come from the same ethnic group. Standard errors are clustered by country.

***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table B.13: GLM Regression: Resource Discoveries and Commodity Prices

Dependent Variable: Share of Ministerial Appointments
(1) (2) (3) (4) (5)

Resource Discovery, t -9.858***
(1.074)

Resource Discovery, t-2 0.829***
(0.166)

Resource Discovery, t-4 1.199***
(0.165)

Resource Discovery, t-6 1.342***
(0.165)

Resource Discovery, t-8 0.817***
(0.167)

Resource Discovery, t-10 -1.457***
(0.163)

Leader Group 1.603*** 1.672*** 1.671*** 1.667*** 1.638***
(0.129) (0.132) (0.133) (0.134) (0.136)

Average Price, t 0.061***
(0.021)

Average Price, 3 Years 0.062***
(0.021)

Average Price, 5 Years 0.065***
(0.022)

Average Price, 10 Years 0.066***
(0.023)

Year Fixed E↵ects Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes
Observations 6,303 6,536 6,251 6,001 5,238

Notes: This table reports the e↵ect of natural resource discoveries and ethnic specific commodity price indices on the

distribution of ministerial cabinet positions using fractional logit generalized linear models (GLM). We control for ruler’s

co-ethnicity e↵ect by including Leader Group, indicating whether the ruler come from the same ethnic group. Standard

errors are clustered by country. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table B.14: Ethnic Specific Time Trend: Discoveries and Commodity Prices

Dependent Variable: Share of Ministerial Appointments
(1) (2) (3) (4) (5)

Resource Discovery, t -0.033***
(0.001)

Resource Discovery, t-2 0.074*
(0.041)

Resource Discovery, t-4 0.112
(0.071)

Resource Discovery, t-6 0.128***
(0.016)

Resource Discovery, t-8 0.071***
(0.001)

Resource Discovery, t-10 -0.026***
(0.006)

Leader Group 0.155*** 0.162*** 0.161*** 0.159*** 0.155***
(0.005) (0.005) (0.005) (0.005) (0.005)

Average Price, t 0.004***
(0.000)

Average Price, 3 Years 0.004***
(0.000)

Average Price, 5 Years 0.004***
(0.000)

Average Price, 10 Years 0.004***
(0.000)

Year Fixed E↵ects Yes Yes Yes Yes Yes
Ethnic Fixed E↵ects Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes
Ethnic Specific Time Trend Yes Yes Yes Yes Yes
Observations 6,303 6,536 6,251 6,001 5,238

Notes: This table reports the e↵ect of natural resource discoveries and ethnic specific commodity price indices on the

distribution of ministerial cabinet positions using high order fixed e↵ects including ethnic group specific time trend. We

control for ruler’s co-ethnicity e↵ect by including Leader Group, indicating whether the ruler come from the same ethnic

group. Standard errors are adjusted to reflect two-dimensional spatial dependence as modelled in Conley (1999). The

spatial correlation is assumed to linearly decrease in distance up to a cuto↵ of 500km, and ethnic group distances are

computed from centroids of the ethnic group polygons. The result remains robust to several distance cuto↵s. ***, **, and

* indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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APPENDIX C

Paper Three Appendix

List of Countries in the Sample

Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cen-

tral African Republic, Chad, Comoros, Democratic Republic of Congo, Cote d’Ivorie,

Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea,

Guinea Bissau, Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauri-

tania, Morocco, Mozambique, Namibia, Niger, Nigeria, Republic of Congo, Rwanda,

Senegal, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo,

Tunisia, Uganda, Zambia, Zimbabwe.
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Figure C.1: Percentage of Grids with Discovery

(a)Mineral Discovery (b) Oilfield Discovery

Notes: The figures show the percentage of grids discovered minerals or oilfield.

Figure C.2: Distribution of Grids with Discovery

(a)Mineral Discovery (b) Oilfield Discovery

Notes: The figures show the distribution of grids discovered minerals or oilfield when the country has discovered.
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Figure C.3: Comparison of Conflict Datasets-Percentage of Grids in Conflict

(a) PRIO-GRID Onset Conflict (b) ACLED Battle related conflict

(c) ACLED All conflict (d) UCDP GED conflict

Notes: The figures show the comparison PRIO-GRID, ACLED and UCDP GED conflict datasets. It represents the percent-

age of grids in conflict. Note that for ACLED, we show both battle related conflict and all types of conflict.
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Figure C.4: Comparison of Conflict Datasets-Distribution of Grids in Conflict

(a) PRIO-GRID Onset Conflict (b) ACLED All conflict

(c) ACLED Battle related conflict (d) UCDP GED conflict

Notes: The figures show the comparison PRIO-GRID, ACLED and UCDP GED conflict datasets. It represents the dis-

tribution of grids in conflict when the country is in armed conflict. Note that for ACLED, we show both battle related

conflict and all types of conflict.
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Figure C.5: Discoveries and Other Observables in Africa: Is There Comovement?

A: Natural Resource Discovery

B: Commodity Price Index C: GDP Per Capita

Notes: The figure shows the evolution of the annual number of discoveries, average GDP per capita and global commodity

price index in Africa.



142

Figure C.6: Resource Discovery and Predicted Value of Conflict Onset

A: Natural Resource: Oilfield and Minerals

B: Oilfield Discovery C: Mineral Discovery

Notes: The figure is plotted using a nonparametric local polynomial regression method with an Epanechnikov kernel,

and the bar displays a graph of the smoothed values with 95% confidence intervals. The nonparametric regression is

conditional on past discovery, year fixed e↵ects, grid fixed e↵ects, grid-specific time trends and country x year fixed

e↵ects. We predict the value of civil conflict onset for a given discovery of natural resource in a panel of grid-year

observations. The sample period is 1950-2008.



143

Figure C.7: Discovery, Cabinet Patronage and Military Expenditure

(a) Discovery and Cabinet Sizes
(b) Discovery and Military Expendi-
tures

Notes: The graph shows the association between government cabinet size (the number of cabinet positions), military ex-

penditure and natural resource discovery. It is a non-parametric plot of the residuals with twoway linear prediction plots

of government cabinet size and military expenditure as a function of resource discoveries, pooled across all countries.

This is country level analysis. We first subtract the country-specific mean from each observation. Number of cabinet

sizes (residuals) stands for residual variation in cabinet sizes after subtracting country-specific means. Natural resource

discovery (residuals) stands for residual variation in natural resource discovery after subtracting country-specific means.

Military expenditure stands for residual variation on military expenditure after subtracting country- specific means.
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Table C.1: Summary Statistics

Variable Obs Mean Std. Dev. First Year Last Year
Discovery of Oilfield and Mineral Resources

Resource discovery indicator 646191 0.0004 0.0211 1950 2012
Years with res. disc. (t-10 to t-1) 646191 0.0038 0.0679 1950 2012
Oilfield discovery indicator 646191 0.0001 0.0089 1950 2012
Years with oil disc. (t-10 to t-1) 646191 0.0008 0.0311 1950 2012
Mineral discovery indicator 646191 0.0003 0.0192 1950 2012
Years with min. disc. (t-10 to t-1) 646191 0.0030 0.0604 1950 2012

PRIO-GRID Conflict Dataset
Conflict onset indicator 646191 0.0001 0.0114 1946 2008

UCDP GED Conflict Dataset
Conflict onset indicator 232208 0.014 0.118 1989 2010
Conflict incidence indicator 235246 0.027 0.161 1989 2010
Conflict intensity 235246 0.032 0.222 1989 2010

ACLED Conflict Dataset
Conflict onset indicator 168499 0.021 0.142 1997 2012
Conflict incidence indicator 171088 0.035 0.185 1997 2012
Conflict intensity 171088 0.043 0.262 1997 2012

Democracy Variables
Polity2 640395 -3.336 3.476 1950 2008
Resource discovery * Polity2 640395 -0.0005 0.105 1950 2008
Oilfield discovery * Polity2 640395 -0.0004 0.053 1950 2008
Mineral discovery * Polity2 640395 -0.0001 0.091 1950 2008

Additional Covariates: Grid Level Characteristics
Area of the grid cell (sq. km) 646191 7.921 0.436 1946 2008
Distance to the border (km) 632646 4.679 1.137 1946 2008
Distance to national capital (km) 646191 6.242 0.773 1946 2008
Travel time to urban centre (km) 646191 6.210 0.837 1946 2008
Mountainous terrain (% cover) 624771 0.111 0.194 1946 2008
Forest areas (% cover) 433377 2.881 1.478 1946 2008
Average precipitation (mm) 615814 5.976 1.050 1946 2008
Mean temperature (°C) 615814 3.197 0.167 1946 2008

Additional Covariates: Ethnic Level Characteristics
Ethnic size (share in total pop) 287550 2.908 0.971 1946 2008
Ethnic total population 282165 9.392 1.080 1946 2008
Exclusion from state power 284494 0.477 0.499 1946 2008
Per Capita GDP 281727 1.852 1.894 1946 2008
Political Representation 284494 0.503 0.499 1946 2008
Political Exclusion 284494 0.472 0.499 1946 2008

Notes: This table reports summary statistics for main variables of interest and other grid level additional covariates . See

data appendix for variable descriptions and data sources.
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Table C.2: Descriptive Statistics at the Country Level-PRIO-GRID

Country Events Max Events Share1 Share2 Country Events Max Events Share1 Share2
Algeria 1 1 0.0001 0.012 Liberia 1 1 0.0001 0.012
Angola 3 1 0.0003 0.036 Madagascar 1 1 0.0003 0.012
Burkina Faso 1 1 0.0001 0.012 Mali 2 1 0.0001 0.024
Cameroon 3 1 0.0003 0.036 Morocco 2 1 0.0003 0.024
CAR 1 1 0.0001 0.012 Namibia 1 1 0.0001 0.012
Chad 3 1 0.0003 0.036 Niger 6 1 0.0003 0.071
Cote d’Ivoire 2 1 0.0002 0.024 Rwanda 2 1 0.0002 0.024
DRC 12 1 0.001 0.143 Nigeria 3 1 0.001 0.036
Equatorial Guinea 3 3 0.0003 0.036 Senegal 1 1 0.0003 0.012
Eritrea 2 1 0.0002 0.024 Somalia 6 1 0.0002 0.071
Ethiopia 5 2 0.0005 0.060 Sudan 5 1 0.0005 0.060
Ghana 3 1 0.0003 0.036 Tanzania 1 1 0.0003 0.012
Guinea 2 1 0.0002 0.024 Tunisia 1 1 0.0002 0.012
Guinea Bissau 5 2 0.0005 0.060 Uganda 1 1 0.0005 0.012
Kenya 1 1 0.0001 0.012 Zambia 1 1 0.0001 0.012
Lesotho 1 1 0.0001 0.012 Zimbabwe 2 1 0.0001 0.024

Notes: Sample Period: 1946-2008. Country: country in which the conflict event took place. Events: total number of

events in the country over the sample period. Max Events: maximum number of yearly events in the country over the

sample period. Share1: share of grids in the country a↵ected by at least one conflict over the sample period. Share2:

country’s share of conflict events in the African continent over the sample period.

Table C.3: Descriptive Statistics at the Country Level-ACLED

Country Events Max Events Share1 Share2 Country Events Max Events Share1 Share2
Algeria 1366 274 0.108 0.045 Madagascar 54 23 0.088 0.002
Angola 2178 1215 0.368 0.071 Malawi 5 2 0.143 0.0002
Benin 2 1 0.056 0.0001 Mali 321 165 0.098 0.011
Botswana 3 1 0.015 0.0001 Mauritania 16 5 0.024 0.001
Burkina Faso 23 6 0.207 0.001 Morocco 12 5 0.025 0.0004
Burundi 1479 363 1.000 0.049 Mozambique 46 23 0.032 0.002
Cameroon 77 14 0.157 0.003 Namibia 80 50 0.060 0.003
CAR 481 122 0.284 0.016 Niger 148 34 0.091 0.005
Chad 309 73 0.128 0.010 Nigeria 1785 318 0.534 0.059
Cote d’Ivoire 478 111 0.343 0.016 Rep of Congo 190 70 0.239 0.006
DRC 3847 407 0.361 0.126 Rwanda 144 77 0.750 0.005
Djibouti 18 5 0.500 0.001 Senegal 232 31 0.247 0.008
Egypt 513 343 0.083 0.017 Sierra Leone 838 286 1.000 0.028
Equatorial Guinea 7 4 0.053 0.0002 Somalia 6927 1928 0.612 0.227
Eritrea 234 142 0.357 0.008 South Africa 88 26 0.067 0.003
Ethiopia 1261 179 0.496 0.041 Sudan 1529 336 0.305 0.050
Gabon 3 1 0.033 0.0001 Swaziland 1 1 0.375 0.00003
Ghana 64 11 0.222 0.002 Tanzania 46 11 0.083 0.002
Guinea 171 61 0.233 0.006 Togo 11 4 0.750 0.0004
Guinea-Bissau 110 63 0.471 0.004 Tunisia 110 54 0.352 0.004
Kenya 1023 122 0.556 0.034 Uganda 1734 297 0.813 0.057
Lesotho 26 17 0.250 0.001 Zambia 20 4 0.044 0.001
Liberia 586 194 0.738 0.019 Zimbabwe 59 10 0.103 0.002
Libya 816 505 0.070 0.027

Notes: Sample Period: 1997-2012. Country: country in which the conflict event took place. Events: total number of

events in the country over the sample period. Max Events: maximum number of yearly events in the country over the

sample period. Share1: share of grids in the country a↵ected by at least one conflict over the sample period. Share2:

country’s share of conflict events in the African continent over the sample period.
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Table C.4: Descriptive Statistics at the Country Level-UCDP GED

Country Events Max Events Share1 Share2 Country Events Max Events Share1 Share2
Algeria 3591 383 0.128 0.148 Mali 104 41 0.084 0.004
Angola 1912 316 0.438 0.079 Mauritania 20 12 0.021 0.001
Botswana 1 1 0.011 0.0000004 Morocco 10 6 0.019 0.0004
Burundi 1387 193 1.000 0.057 Mozambique 263 131 0.276 0.011
Cameroon 45 8 0.092 0.002 Namibia 24 17 0.050 0.001
CAR 195 52 0.160 0.008 Niger 90 22 0.096 0.004
Chad 298 62 0.133 0.012 Nigeria 428 78 0.296 0.018
Comoros 6 3 0.152 0.0002 Rep of Congo 214 55 1.000 0.009
Cote d’Ivoire 162 47 0.264 0.007 Senegal 282 39 0.233 0.012
DRC 2001 547 0.211 0.083 Rwanda 467 161 1.000 0.019
Djibouti 44 10 0.625 0.002 Sierra Leone 1468 347 0.372 0.061
Egypt 373 117 0.075 0.015 Somalia 1943 316 0.261 0.080
Eritrea 43 13 0.429 0.002 South Africa 2781 576 0.250 0.115
Ethiopia 1351 144 0.499 0.056 Sudan 1766 223 0.750 0.073
Ghana 38 10 0.173 0.002 Swaziland 2 2 0.027 0.0001
Guinea 68 26 0.186 0.003 Tanzania 7 3 0.500 0.0003
Guinea-Bissau 12 9 0.412 0.001 Togo 96 83 0.019 0.004
Kenya 423 119 0.317 0.018 Tunisia 1 1 0.813 0.0000004
Lesotho 5 5 0.438 0.0002 Uganda 1655 251 0.054 0.068
Liberia 545 137 0.905 0.023 Zambia 12 6 0.032 0.001
Madagascar 39 32 0.037 0.002 Zimbabwe 53 40 0.184 0.002

Notes: Sample Period: 1989-2010. Country: country in which the conflict event took place. Events: total number of

events in the country over the sample period. Max Events: maximum number of yearly events in the country over the

sample period. Share1: share of grids in the country a↵ected by at least one conflict over the sample period. Share2:

country’s share of conflict events in the African continent over the sample period.

Table C.5: Past Discoveries and Near Future Discoveries: Grid Level

Dependent Variable: Natural Resource Discovery Oilfield Discovery Mineral Discovery
(1) (2) (3) (4) (5) (6)

Pooled OLS FE Pooled OLS FE Pooled OLS FE
Past Discovery 0.0144*** -0.0073*** 0.0111*** -0.0069*** 0.0154*** -0.0074***

(0.003) (0.0021) (0.005) (0.0014) (0.003) (0.0026)
Year Fixed E↵ects No Yes No Yes No Yes
Grid Fixed E↵ects No Yes No Yes No Yes
Grid-Specific Time Trend No Yes No Yes No Yes
Country x Year Fixed E↵ects No Yes No Yes No Yes
Observations 646191 646191 646191 646191 646191 646191

Notes: This table reports whether discoveries in a grid’s recent past raise the odds of additional discoveries in its near

future. The explanatory variable (past discovery) is the number of years with discoveries from t-10 to t-1. Numbers in

parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.
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Table C.6: Past Discoveries and Near Future Discoveries: Region Level

Dependent Variable: Natural Resource Discovery Oilfield Discovery Mineral Discovery
(1) (2) (3) (4) (5) (6)

Pooled OLS FE Pooled OLS FE Pooled OLS FE
Past Discovery 0.04381*** 0.01686** 0.04332*** 0.03022*** 0.04505*** 0.00838

(0.005) (0.007) (0.004) (0.006) (0.007) (0.006)
Year Fixed E↵ects No Yes No Yes No Yes
Region Fixed E↵ects No Yes No Yes No Yes
Region-Specific Time Trend No Yes No Yes No Yes
Country x Year Fixed Ef-
fects

No Yes No Yes No Yes

Observations 27090 27090 27090 27090 27090 27090
Sample Period 1950-2012 1950-2012 1950-2012 1950-2012 1950-2012 1950-2012

Notes: This table reports whether discoveries in a region’s recent past raise the odds of additional discoveries in its near

future. The explanatory variable (past discovery) is the number of years with discoveries from t-10 to t-1. Numbers in

parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.

Table C.7: Past Discoveries and Near Future Discoveries: Country Level

Dependent Variable: Natural Resource Discovery Oilfield Discovery Mineral Discovery
(1) (2) (3) (4) (5) (6)

Pooled OLS FE Pooled OLS FE Pooled OLS FE
Past Discovery 0.0538*** 0.0279*** 0.0454*** 0.0328*** 0.0596*** 0.0218*

(0.004) (0.007) (0.001) (0.002) (0.002) (0.012)
Year Fixed E↵ects No Yes No Yes No Yes
Country Fixed E↵ects No Yes No Yes No Yes
Country x Year Fixed E↵ects No Yes No Yes No Yes
Observations 2961 2961 2961 2961 2961 2961
Sample Period 1950-2012 1950-2012 1950-2012 1950-2012 1950-2012 1950-2012

Notes: This table reports whether discoveries in a country’s recent past raise the odds of additional discoveries in its near

future. The explanatory variable (past discovery) is the number of years with discoveries from t-10 to t-1. Numbers in

parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively.

Table C.8: Is Natural Resource Discovery Random?

Dependent Variable: Indicator of Natural Resource Discovery
(1) (2) (3) (4) (5) (6)

Per Capita GDP -0.0003 -0.0002
(0.0002) (0.0002)

Population Share 0.0014 0.0014
(0.0014) (0.0023)

Population Size 0.0015 0.0005
(0.0011) (0.0017)

Political Representation -0.00014 0.0015
(0.0005) (0.0010)

Political Exclusion 0.0005 0.0017
(0.0003) (0.0013)

Past Discovery -0.0121*** -0.0119*** -0.0121*** -0.0122*** -0.0122*** -0.0125***
(0.0031) (0.0030) (0.0031) (0.0031) (0.0031) (0.0032)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 249951 255754 250389 252889 252889 247086

Notes: This table reports whether the timing of natural resource discoveries is correlated with the mean of grid’s economic

and political variables in the past years. Past discovery is the number of years with discoveries from t-10 to t-1. Numbers

in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively.
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Table C.9: Resource Discovery and Conflict Incidence (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Incidence (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.012 -0.010 -0.018 0.007 -0.002 0.009
(0.015) (0.014) (0.013) (0.016) (0.016) (0.015)

Past Discovery -0.010 -0.008 -0.007 -0.010 -0.009 -0.010
(0.008) (0.009) (0.008) (0.008) (0.007) (0.008)

Panel B: E↵ect of Discovering Oilfield
Discovery 0.075 -0.024 -0.024 -0.024 -0.011 0.087

(0.080) (0.025) (0.025) (0.025) (0.011) (0.089)
Past Discovery 0.017 0.015 0.016 0.016 0.014 0.005

(0.014) (0.014) (0.017) (0.017) (0.015) (0.005)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.018 -0.009 -0.018 0.009 -0.001 0.002
(0.016) (0.015) (0.013) (0.017) (0.017) (0.014)

Past Discovery -0.012 -0.010 -0.009 -0.012 -0.011 -0.011
(0.008) (0.009) (0.009) (0.009) (0.008) (0.009)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 235246 225236 215226 205216 195206 185196

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year Observations.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.10: Resource Discovery and Civil Incidence (ACLED)

Dependent Variable: Intrastate Armed Conflict Incidence (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0197 -0.0137 -0.0015 -0.0272** 0.0054 0.0147
(0.0241) (0.0181) (0.0136) (0.0109) (0.0188) (0.0278)

Past Discovery -0.008 -0.005 -0.007 -0.005 -0.007 -0.008
(0.013) (0.012) (0.012) (0.012) (0.012) (0.012)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.1873** -0.1394** -0.0431 -0.0353 0.1301 0.0033

(0.0893) (0.0553) (0.0476) (0.0399) (0.1499) (0.0231)
Past Discovery -0.032 -0.008 -0.018 -0.018 -0.036 -0.022

(0.036) (0.020) (0.030) (0.031) (0.041) (0.032)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.0105 -0.0063 0.0009 -0.0264** -0.0049 0.0159
(0.0227) (0.0183) (0.0142) (0.0117) (0.0158) (0.0300)

Past Discovery -0.007 -0.005 -0.006 -0.003 -0.005 -0.007
(0.013) (0.013) (0.013) (0.013) (0.012) (0.012)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 171088 163808 156528 149248 141968 134688

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year Observations.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.11: Resource Discovery and Conflict Intensity (UCDP GED)

Dependent Variable: Intrastate Civil Conflict Intensity (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.035* -0.014 -0.006 0.005 -0.002 0.004
(0.018) (0.020) (0.025) (0.018) (0.016) (0.017)

Past Discovery -0.017 -0.014 -0.015 -0.16 -0.015 -0.016
(0.013) (0.014) (0.013) (0.13) (0.012) (0.014)

Panel B: E↵ect of Discovering Oilfield
Discovery 0.028 -0.013 -0.012 -0.012 -0.0004 0.043

(0.115) (0.013) (0.013) (0.013) (0.002) (0.045)
Past Discovery 0.002 0.002 0.002 0.002 0.001 -0.003

(0.006) (0.002) (0.002) (0.002) (0.001) (0.004)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.039* -0.014 -0.005 0.006 -0.002 0.001
(0.017) (0.021) (0.030) (0.019) (0.017) (0.018)

Past Discovery -0.019 -0.015 -0.016 -0.017 -0.017 -0.0017
(0.014) (0.015) (0.014) (0.014) (0.013) (0.015)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 235246 225236 215226 205216 195206 185196

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year Observationsz.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.12: Resource Discovery and Conflict Intensity (ACLED)

Dependent Variable: Intrastate Armed Conflict Intensity (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0142 -0.0479* 0.0259 -0.0024 0.0237 -0.0067
(0.0336) (0.0277) (0.0329) (0.0299) (0.0282) (0.0339)

Past Discovery -0.001 0.006 -0.003 0.000 -0.002 0.001
(0.018) (0.019) (0.017) (0.016) (0.017) (0.018)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.1774** -0.1416** -0.0535 -0.0453 0.1859 -0.0066

(0.0854) (0.0545) (0.0497) (0.0417) (0.2198) (0.0244)
Past Discovery -0.022 0.002 -0.007 -0.007 -0.033 -0.012

(0.033) (0.020) (0.029) (0.030) (0.044) (0.031)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.0052 -0.0425 0.0307 0.0010 0.0102 -0.0066
(0.0336) (0.0291) (0.0348) (0.0322) (0.0177) (0.0368)

Past Discovery 0.001 0.006 -0.002 0.001 0.000 0.002
(0.020) (0.021) (0.018) (0.017) (0.018) (0.019)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 171088 163808 156528 149248 141968 134688

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year Observations.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.13: Higher Grid Resolution: Discovery and Conflict Onset (PRIO-GRID)

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0009** 0.00003 -0.00004 0.00003 0.00005 -0.00000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.0008* -0.0008* -0.0008* -0.0008* -0.0009* -0.0009*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.0017 0.00006 0.00002 0.0002 0.0001 -0.0004

(0.002) (0.000) (0.000) (0.000) (0.000) (0.000)
Past Discovery -0.0016 -0.0016 -0.0016 -0.0017 -0.00173 -0.0018

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.0007** 0.000001 -0.00005 -0.00001 0.00005 0.00013
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.0006* -0.0006* -0.0006* -0.0006* -0.0006* -0.0006*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 155524 148906 142288 135670 129052 122434

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse at higher levels of aggregation to check whether there is evidence for an ecological inference fallacy. Numbers in

parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.14: Higher Grid Resolution: Discovery and Conflict Onset (ACLED)

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.006 0.002 0.014 0.002 -0.001 0.012
(0.016) (0.020) (0.014) (0.019) (0.017) (0.018)

Past Discovery -0.0009 -0.0009 -0.002 -0.0008 -0.0005 -0.0016
(0.008) (0.007) (0.007) (0.008) (0.008) (0.007)

Panel B: E↵ect of Discovering Oilfield
Discovery 0.09 -0.06** -0.018 -0.031 0.131 -0.033

(0.127) (0.029) (0.016) (0.022) (0.156) (0.022)
Past Discovery -0.017 -0.012 -0.019 -0.017 -0.033 -0.017

(0.024) (0.022) (0.025) (0.025) (0.039) (0.025)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.011 0.007 0.015 0.004 -0.01 0.016
(0.016) (0.021) (0.015) (0.019) (0.014) (0.020)

Past Discovery 0.0003 -0.00003 -0.001 0.0004 0.002 -0.0005
(0.008) (0.007) (0.008) (0.008) (0.008) (0.008)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 23724 22715 21706 20697 19688 18679

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse at higher levels of aggregation to check whether there is evidence for an ecological inference fallacy. Numbers in

parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%,

and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.15: Higher Grid Resolution: Discovery and Conflict Onset (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery 0.037* -0.013 -0.009 0.009 -0.007 0.008
(0.021) (0.014) (0.017) (0.015) (0.019) (0.015)

Past Discovery 0.00418 0.00401 0.00355 0.00154 0.00303 0.00176
(0.005) (0.005) (0.006) (0.004) (0.005) (0.005)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.07 -0.07* -0.015 -0.016 -0.003 0.12

(0.061) (0.044) (0.030) (0.032) (0.025) (0.108)
Past Discovery -0.004 0.008 0.0002 0.0003 -0.0009 -0.013

(0.023) (0.021) (0.024) (0.024) (0.024) (0.017)
Panel C: E↵ect of Discovering Mineral Resources

Discovery 0.04* -0.009 -0.009 0.011 -0.007 -0.0003
(0.023) (0.013) (0.018) (0.016) (0.020) (0.015)

Past Discovery 0.00478 0.00381 0.00384 0.00169 0.00334 0.00280
(0.005) (0.005) (0.006) (0.004) (0.005) (0.005)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 55820 53445 51070 48695 46320 43945

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse at higher levels of aggregation to check whether there is evidence for an ecological inference fallacy. Numbers in

parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%,

and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.16: Resource Discovery and Conflict Onset: Region Level Analysis

Dependent Variable: Number of Grids Experienced Civil Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0036** -0.0036** 0.0007 -0.0033** 0.0009 -0.0031**
(0.002) (0.002) (0.003) (0.001) (0.004) (0.001)

Past Discovery -0.0013* -0.0010 -0.0015** -0.0014* -0.0016** -0.0015**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.0028 -0.0029 -0.0023 -0.0024 -0.0026 -0.0027

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)
Past Discovery -0.0004 -0.0004 -0.0012 -0.0012 -0.0012 -0.0012

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.0039** -0.0039** 0.0012 -0.0036** 0.0015 -0.0032**
(0.002) (0.002) (0.004) (0.002) (0.005) (0.002)

Past Discovery -0.0019* -0.0013* -0.0017* -0.0015* -0.0018** -0.0017**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Region Fixed E↵ects Yes Yes Yes Yes Yes Yes
Region-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 25370 24508 23646 22784 21922 21060

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of region-year Observations.

Numbers in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical sig-

nificance at the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to

t-1.
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Table C.17: Resource Discovery and Conflict Onset: Country Level Analysis

Dependent Variable: Number of Grids Experienced Civil Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0107 -0.0042 0.0114 -0.0122 0.0032 -0.0060
(0.009) (0.015) (0.017) (0.008) (0.011) (0.010)

Past Discovery 0.0001 -0.0001 -0.0032 -0.0032 -0.0038 -0.0039*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Panel B: E↵ect of Discovering Oilfield

Discovery 0.0185 0.0173 0.0169 -0.0213* 0.0217 -0.0145*
(0.024) (0.034) (0.025) (0.012) (0.029) (0.008)

Past Discovery 0.0001 -0.0005 -0.0022 -0.0024 -0.0047 -0.0039
(0.001) (0.002) (0.002) (0.002) (0.004) (0.003)

Panel C: E↵ect of Discovering Mineral Resources
Discovery -0.0169* -0.0088 0.0099 -0.0106 -0.0004 -0.0048

(0.010) (0.013) (0.020) (0.010) (0.012) (0.011)
Past Discovery -0.0007 -0.0003 -0.0045 -0.0041 -0.0037 -0.0039

(0.004) (0.004) (0.003) (0.003) (0.004) (0.003)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Country Fixed E↵ects Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 2773 2677 2581 2485 2389 2293
Sample Period 1950-2008 1950-2008 1950-2008 1950-2008 1950-2008 1950-2008

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of country-year Observations.

Numbers in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical sig-

nificance at the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to

t-1.

Table C.18: Proximity to Discovery: Discovery and Conflict Onset (PRIO-GRID)

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Distance from Discovery (km) -0.00002 -0.00001 -0.00004 -0.00001 -0.00002 0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 605163 579411 553659 527907 502155 476403

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

We analyse a time-varying distance from discovery: do we expect armed conflict occurring far away from oilfield or

mines? Numbers in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical

significance at the 1%, 5%, and 10% level, respectively. Distance from discovery is time-varying distance of grid’s centroid

from the nearest discovery field each year.
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Table C.19: Proximity to Discovery: Discovery and Conflict Onset (ACLED)

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Distance from Discovery (km) 0.00052 0.00025 0.00164 0.00039 -0.00135 -0.00021

(0.002) (0.002) (0.001) (0.001) (0.001) (0.002)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 171088 163808 156528 149248 141968 134688

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse a time-varying distance from discovery: do we expect armed conflict occurring far away from oilfield or mines?

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance

at the 1%, 5%, and 10% level, respectively. Distance from discovery is time-varying distance of grid’s centroid from the

nearest discovery field each year.

Table C.20: Proximity to Discovery: Discovery and Conflict Onset (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Distance from Discovery (km) -0.0010 -0.0012 -0.0016 -0.0026* -0.00067 -0.00162

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 235246 225236 215226 205216 195206 185196
Sample Period 1989-2010 1989-2010 1989-2010 1989-2010 1989-2010 1989-2010

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse a time-varying distance from discovery: do we expect armed conflict occurring far away from oilfield or mines?

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance

at the 1%, 5%, and 10% level, respectively. Distance from discovery is time-varying distance of grid’s centroid from the

nearest discovery field each year.
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Table C.21: Proximity to Border: Discovery and Conflict Onset (PRIO-GRID)

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: Distance to the Border, <= 25km

Discovery -0.00048 0.00005* 0.00003* 0.00001 -0.00005 -0.00012
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 71449 68409 65369 62329 59289 56249
Panel B: Distance to the Border, <= 50km

Discovery -0.00084* 0.00006* 0.00002 0.00000 -0.00007 -0.00013**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 132986 127327 121668 116009 110350 104691
Panel C: Distance to the Border, <= 100km

Discovery -0.00055 0.00005 0.00002** -0.00000 -0.00004 -0.00008
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 237298 227201 217104 207007 196910 186813
Panel D: Distance to the Border, < 100km

Discovery -0.00046 0.00004 0.00002** 0.00001 -0.00003 -0.00010
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 392055 375372 358689 342006 325323 308640
Past Discovery Yes Yes Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse proximity to the borders, as proximity to borders is known to be an indicator for conflict propensity. Numbers in

parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance at the

1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.22: Proximity to Border: Discovery and Conflict Onset (ACLED)

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: Distance to the Border, <= 25km

Discovery -0.031** -0.011 0.027 0.027 -0.023* -0.0021
(0.015) (0.017) (0.043) (0.050) (0.012) (0.071)

Observations 18936 18130 17324 16518 15712 14906
Panel B: Distance to the Border, <= 50km

Discovery -0.030** -0.028 0.0015 0.0027 -0.024** -0.021
(0.012) (0.021) (0.028) (0.034) (0.011) (0.036)

Observations 35269 33768 32267 30766 29265 27764
Panel C: Distance to the Border, <= 100km

Discovery -0.007 -0.006 -0.008 -0.008 -0.019** -0.015
(0.024) (0.022) (0.019) (0.022) (0.009) (0.021)

Observations 63076 60392 57708 55024 52340 49656
Panel D: Distance to the Border, < 100km

Discovery -0.017 -0.002 -0.013 -0.012 0.011 0.019
(0.016) (0.017) (0.011) (0.013) (0.023) (0.024)

Past Discovery Yes Yes Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 104550 100101 95652 91203 86754 82305

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse proximity to the borders, as proximity to borders is known to be an indicator for conflict propensity. Numbers in

parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%,

and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.23: Proximity to Border: Discovery and Conflict Onset (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: Distance to the Border, <= 25km

Discovery -0.303* -0.186 -0.149 0.013 -0.043 -0.29*
(0.176) (0.152) (0.152) (0.213) (0.154) (0.151)

Observations 26642 25508 24374 23240 22106 20972
Panel B: Distance to the Border, <= 50km

Discovery -0.166 -0.02 -0.137 -0.022 -0.058 -0.207*
(0.120) (0.157) (0.104) (0.142) (0.097) (0.106)

Observations 49588 47478 45368 43258 41148 39038
Panel C: Distance to the Border, <= 100km

Discovery -0.135 0.0012 -0.086 -0.0187 -0.029 -0.119*
(0.091) (0.095) (0.062) (0.080) (0.062) (0.067)

Observations 88484 84719 80954 77189 73424 69659
Panel D: Distance to the Border, < 100km

Discovery -0.126* -0.045 0.083 -0.014 -0.032 -0.015
(0.065) (0.065) (0.169) (0.059) (0.043) (0.061)

Past Discovery Yes Yes Yes Yes Yes Yes
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 146190 139969 133748 127527 121306 115085

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

analyse proximity to the borders, as proximity to borders is known to be an indicator for conflict propensity. Numbers in

parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%,

and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.24: Resource Discovery and Conflict before the End of Cold War

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.00017 -0.00018 -0.00017 -0.00018 -0.00018 -0.00018
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.00018 -0.00019 -0.00018 -0.00019 -0.00019 -0.00019
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: E↵ect of Discovering Oilfield
Discovery 0.00001** 0.00002** 0.00002** 0.00002** 0.00002* 0.00002*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Past Discovery -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.00025 -0.00025 -0.00025 -0.00025 -0.00025 -0.00025
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.00026 -0.00026 -0.00026 -0.00026 -0.00027 -0.00026
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 451308 430794 410280 389766 369252 348738

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. Num-

bers in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance

at the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.25: Resource Discovery and Conflict after the End of Cold War

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery 0.00001 0.00001 0.00000 0.00001 0.00000 0.00001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery 0.00002 0.00001 0.00002 0.00002 0.00001 0.00001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.00002 -0.00000 0.00001 0.00001 0.00000 0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Past Discovery 0.00001 0.00001 0.00004 0.00003 0.00001 0.00002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Panel C: E↵ect of Discovering Mineral Resources

Discovery 0.00001 0.00001 0.00000 0.00001 0.00000 0.00001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery 0.00002 0.00001 0.00002 0.00002 0.00001 0.00001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 194883 174369 153855 133341 112827 92313

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. The

dependent variable is civil conflict onset. Numbers in parentheses are robust standard errors clustered at the country

level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. Past discovery is the

number of years with discoveries from t-10 to t-1.
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Table C.26: Resource Discovery, Democracy and Conflict

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0004*
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Discovery * Polity2 0.00002 0.00002 0.00002 0.00002 0.00002 0.00003
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.0003 -0.0003 -0.0003 -0.0004 -0.0004 -0.0004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Panel B: E↵ect of Discovering Oilfield

Discovery -0.0035*** -0.0037*** -0.0038*** -0.004*** -0.004*** -0.0044***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Discovery * Polity2 -0.0005*** -0.0005*** -0.0006*** -0.0006*** -0.0006*** -0.0006***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Past Discovery -0.0006 -0.0006 -0.0007 -0.0007 -0.0008 -0.0008
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Panel C: E↵ect of Discovering Mineral Resources
Discovery -0.0002 -0.0002* -0.0002 -0.0002 -0.0003 -0.0003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Discovery * Polity2 0.00004* 0.00004 0.00004 0.00004 0.00005 0.00005

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Past Discovery -0.0002 -0.0002 -0.0002 -0.0002 -0.0003 -0.0003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 605163 579411 553659 527907 502155 476403

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

The dependent variable is civil conflict onset based on the PRIO-GRID conflict. The Polity2 score ranges from -10 to

+10, with higher values indicating stronger country-level democratic institutions. Numbers in parentheses are robust

standard errors clustered at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively.

Table C.27: Excluding Grid-Year Observations of Past Discoveries (PRIO-GRID)

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.00033* -0.00028* -0.00030* -0.00033* -0.00036* -0.00038*
(0.00019) (0.00016) (0.00017) (0.00019) (0.00021) (0.00022)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.00039 -0.00042 -0.00044 -0.00048 -0.00052 -0.00055

(0.00043) (0.00045) (0.00047) (0.00051) (0.00054) (0.00056)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.00032 -0.00024 -0.00027 -0.00029 -0.00031 -0.00033
(0.00022) (0.00016) (0.00018) (0.00019) (0.00022) (0.00023)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 602927 582530 562128 541721 521311 500908

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. Num-

bers in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance

at the 1%, 5%, and 10% level, respectively.
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Table C.28: Excluding Grid-Year Observations of Past Discoveries (ACLED)

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.002 -0.018 -0.019** -0.017 0.002 0.018
(0.019) (0.013) (0.008) (0.012) (0.021) (0.026)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.150* -0.102* -0.019 -0.015 0.139 -0.012

(0.080) (0.057) (0.023) (0.016) (0.153) (0.009)
Panel C: E↵ect of Discovering Mineral Resources

Discovery 0.007 -0.013 -0.019** -0.017 -0.011 0.021
(0.017) (0.012) (0.008) (0.013) (0.018) (0.028)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 167617 161748 155879 150010 144141 138272

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively.

Table C.29: Excluding Grid-Year Observations of Past Discoveries (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.009 -0.002 -0.028*** 0.006 -0.013 0.010
(0.011) (0.012) (0.008) (0.016) (0.014) (0.015)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.012 -0.018 -0.017 -0.015 -0.001 0.127

(0.013) (0.019) (0.017) (0.016) (0.001) (0.128)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.008 -0.001 -0.029*** 0.007 -0.014 0.0001
(0.011) (0.013) (0.009) (0.017) (0.014) (0.013)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 231137 223044 214951 206858 198765 190672

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively.
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Table C.30: Restrict Sample to Grids With At Least One Discovery (PRIO-GRID)

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.00033 -0.00029 -0.00032 -0.00034 -0.00037 -0.00039
(0.00021) (0.00020) (0.00022) (0.00023) (0.00025) (0.00027)

Past Discovery -0.00029 -0.00032 -0.00034 -0.00037 -0.00039 -0.00041
(0.00021) (0.00022) (0.00024) (0.00026) (0.00028) (0.00029)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.00063 -0.00066 -0.00069 -0.00074 -0.00079 -0.00083

(0.00062) (0.00064) (0.00067) (0.00072) (0.00076) (0.00080)
Past Discovery -0.00059 -0.00063 -0.00066 -0.00071 -0.00076 -0.00082

(0.00058) (0.00061) (0.00064) (0.00068) (0.00073) (0.00078)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.00026 -0.00021 -0.00022 -0.00024 -0.00025 -0.00027
(0.00018) (0.00015) (0.00016) (0.00017) (0.00018) (0.00019)

Past Discovery -0.00022 -0.00023 -0.00024 -0.00026 -0.00028 -0.00027
(0.00016) (0.00017) (0.00018) (0.00019) (0.00021) (0.00021)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 14679 14213 13747 13281 12815 12349

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. Num-

bers in parentheses are robust standard errors clustered at the country level. ***, **, and * indicate statistical significance

at the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.31: Restrict Sample to Grids With At Least One Discovery (ACLED)

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.003 -0.008 -0.016 -0.029*** -0.004 0.043
(0.016) (0.017) (0.012) (0.007) (0.024) (0.035)

Past Discovery 0.004 0.006 0.007 0.007 0.005 0.003
(0.006) (0.006) (0.007) (0.006) (0.006) (0.005)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.160* -0.122*** -0.058* -0.058 0.312 -0.017

(0.080) (0.025) (0.034) (0.034) (0.345) (0.028)
Past Discovery -0.064 -0.016 -0.035 -0.035 -0.065 -0.039

(0.071) (0.049) (0.063) (0.063) (0.078) (0.063)
Panel C: E↵ect of Discovering Mineral Resources

Discovery 0.005 -0.002 -0.014 -0.027*** -0.026*** 0.046
(0.014) (0.018) (0.012) (0.006) (0.007) (0.036)

Past Discovery 0.007 0.007 0.009 0.009 0.008 0.005
(0.006) (0.006) (0.007) (0.006) (0.006) (0.005)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 1456 1408 1360 1312 1264 1216

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.32: Restrict Sample to Grids With At Least One Discovery (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.005 0.001 -0.023*** -0.001 -0.007 0.006
(0.010) (0.013) (0.007) (0.015) (0.014) (0.016)

Past Discovery 0.002 0.002 0.005 0.002 0.003 0.002
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.012 -0.025 -0.023 -0.021 -0.005 -0.002

(0.011) (0.024) (0.024) (0.024) (0.009) (0.007)
Past Discovery 0.009 0.013 0.013 0.012 0.011 0.010

(0.010) (0.014) (0.014) (0.014) (0.012) (0.011)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.005 0.003 -0.023*** 0.001 -0.007 0.007
(0.011) (0.014) (0.008) (0.016) (0.015) (0.017)

Past Discovery 0.001 0.001 0.004 0.001 0.002 0.001
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 2684 2596 2508 2420 2332 2244

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

Numbers in parentheses are clustered standard errors at the country level. ***, **, and * indicate statistical significance at

the 1%, 5%, and 10% level, respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.33: High-Conflict-Risk Grids (ACLED)

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0256 -0.0197 -0.0574 -0.0775* -0.0049 0.0836
(0.063) (0.057) (0.035) (0.044) (0.089) (0.106)

Past Discovery -0.01933 -0.0138 -0.0115 -0.0099 -0.0163 -0.0230
(0.037) (0.036) (0.036) (0.036) (0.036) (0.031)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.2241*** -0.1444*** -0.0829** -0.0944** 0.4480 -0.0711**

(0.073) (0.022) (0.035) (0.036) (0.397) (0.035)
Past Discovery -0.1261 -0.0608 -0.0889 -0.0881 -0.1290 -0.0927

(0.081) (0.065) (0.078) (0.078) (0.090) (0.078)
Panel C: E↵ect of Discovering Mineral Resources

Discovery 0.0092 0.0026 -0.0558 -0.0766 -0.0592 0.0908
(0.065) (0.063) (0.038) (0.047) (0.076) (0.112)

Past Discovery -0.0072 -0.0084 -0.0029 -0.0013 -0.0034 -0.0154
(0.037) (0.038) (0.037) (0.037) (0.036) (0.032)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 31096 30036 29012 28023 27068 26145

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

We use only the grids in which at least one conflict event occurs over the sample period. Numbers in parentheses are

clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.34: High-Conflict-Risk Grids (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0267 0.0025 -0.0896*** 0.0307 -0.0382 0.0479
(0.039) (0.047) (0.024) (0.052) (0.048) (0.061)

Past Discovery -0.0040 -0.0025 0.0075 -0.0049 0.0007 -0.0058
(0.018) (0.022) (0.020) (0.018) (0.018) (0.019)
Panel B: E↵ect of Discovering Oilfield

Discovery -0.0479*** -0.2261*** -0.2279*** -0.2298*** 0.8554***
(0.008) (0.004) (0.007) (0.011) (0.026)

Past Discovery -0.1509*** -0.1767*** -0.1769*** -0.1771*** -0.1532*** -0.0371***
(0.008) (0.007) (0.007) (0.007) (0.008) (0.011)

Panel C: E↵ect of Discovering Mineral Resources
Discovery -0.0267 0.0105 -0.0845*** 0.0402 -0.0344 0.0099

(0.040) (0.046) (0.023) (0.052) (0.049) (0.054)
Past Discovery -0.0107 -0.0102 0.0004 -0.0124 -0.0061 -0.00950

(0.019) (0.021) (0.020) (0.017) (0.018) (0.020)
Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 38228 36925 35666 34450 33276 32142

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations.

We use only the grids in which at least one conflict event occurs over the sample period. Numbers in parentheses are

clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.35: Bu↵er Zone Analysis: Discovery and Conflict Onset (PRIO-GRID)

Dependent Variable: Intrastate Armed Conflict Onset (PRIO-GRID Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0001** -0.00004 -0.0001 -0.0001 0.001 0.0001
(0.00005) (0.0001) (0.0001) (0.0001) (0.001) (0.0001)

Past Discovery -0.0001 -0.0001 -0.0001 -0.0001 -0.0001** -0.0001
(0.0001) (0.0001) (0.0001) (0.0001) (0.00006) (0.0001)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.0001 0.00001 -0.00001 0.00003 0.00002 -0.00004

(0.0002) (0.00002) (0.00003) (0.00003) (0.00002) (0.00004)
Past Discovery -0.0001 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002

(0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.0001** -0.00005 -0.0001 -0.0001 0.001 -0.0001
(0.00005) (0.0001) (0.0001) (0.0001) (0.001) (0.0001)

Past Discovery -0.00003 -0.00002 -0.00002 -0.00002 -0.0001** -0.000
(0.0001) (0.0001) (0.0001) (0.0001) (0.00005) (0.000)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 605163 579411 553659 527907 502155 476403

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We do

bu↵er zone analysis because some oilfield or mine discoveries cross grid boundaries. Numbers in parentheses are robust

standard errors clustered at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively. Past discovery is the number of years with discoveries from t-10 to t-1.
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Table C.36: Bu↵er Zone Analysis: Discovery and Conflict Onset (ACLED)

Dependent Variable: Intrastate Armed Conflict Onset (ACLED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0064 -0.0028 0.0053 -0.0043 0.0044 0.0005
(0.007) (0.007) (0.007) (0.005) (0.007) (0.006)

Past Discovery -0.0038 -0.0031 -0.0041 -0.0031 -0.0038 -0.0035
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.054* -0.045** -0.013 0.0097 0.029 0.00075

(0.028) (0.021) (0.012) (0.013) (0.034) (0.007)
Past Discovery -0.0082 -0.00085 -0.0037 -0.0062 -0.0085 -0.0051

(0.010) (0.007) (0.008) (0.010) (0.012) (0.009)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.0046 -0.0011 0.0066 -0.0054 0.0021 0.0005
(0.007) (0.007) (0.007) (0.006) (0.007) (0.006)

Past Discovery -0.0036 -0.0032 -0.0042 -0.0029 -0.0035 -0.0034
(0.003) (0.004) (0.003) (0.003) (0.003) (0.003)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 171088 163808 156528 149248 141968 134688

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

do bu↵er zone analysis because some oilfield or mine discoveries cross grid boundaries. Numbers in parentheses are

clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively. Past discovery is the number of years with discoveries from t-10 to t-1.

Table C.37: Bu↵er Zone Analysis: Discovery and Conflict Onset (UCDP GED)

Dependent Variable: Intrastate Armed Conflict Onset (UCDP-GED Conflict)
(1) (2) (3) (4) (5) (6)

Outcome at: t t + 2 t + 4 t + 6 t + 8 t + 10
Panel A: E↵ect of Discovering Natural Resource (Oilfield + Minerals)

Discovery -0.0012 -0.0013 -0.0094** 0.0083 -0.0068 0.0035
(0.006) (0.005) (0.004) (0.006) (0.004) (0.006)

Past Discovery 0.0001 0.0003 0.0012 -0.0006 0.0007 -0.0001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Panel B: E↵ect of Discovering Oilfield
Discovery -0.020 -0.011 -0.012 0.026 -0.0011 0.012

(0.015) (0.012) (0.012) (0.027) (0.003) (0.010)
Past Discovery 0.002 0.004 0.004 0.0002 0.0031 0.0019

(0.003) (0.004) (0.004) (0.001) (0.003) (0.002)
Panel C: E↵ect of Discovering Mineral Resources

Discovery -0.0005 -0.0006 -0.009** 0.007 -0.007 0.003
(0.006) (0.005) (0.004) (0.006) (0.005) (0.007)

Past Discovery -0.00009 0.00001 0.0009 -0.0007 0.0005 -0.0003
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid Fixed E↵ects Yes Yes Yes Yes Yes Yes
Grid-Specific Time Trend Yes Yes Yes Yes Yes Yes
Country x Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Observations 235246 225236 215226 205216 195206 185196

Notes: This table reports the e↵ect of discovering at least one natural resource in a panel of grid-year observations. We

do bu↵er zone analysis because some oilfield or mine discoveries cross grid boundaries. Numbers in parentheses are

clustered standard errors at the country level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,

respectively. Past discovery is the number of years with discoveries from t-10 to t-1.


	PhD Coversheet
	PhD Coversheet

	Mamo, Nemera Gebeyehu



