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Summary

This thesis investigates two thematic lines of research, both underpinned by non-
Markovian system-reservoir interactions in quantum optics. The overarching focus
is on modelling the open system dynamics in a non-perturbative fashion, broadly
on—though not restricted to—instances when the environment is structured.

A theory is developed by means of enlarging the open system over environmental
degrees of freedom to include memory effects in its dynamics. This is achieved using
an established technique that involves mapping a bosonic environment onto a 1D
chain of harmonic oscillators. Within this setting, we apply a Heisenberg equation-
of-motion approach to derive an exact set coupled differential equations for the open
system and a single auxiliary oscillator of the chain. The combined equations are
shown to have their interpretation rooted in a quantum Markov stochastic process.
Including the auxiliary chain oscillator as part of the original system then enables us
to obtain an exact master equation for the enlarged system, avoiding any need for
the Born-Markov approximations. Our method is valid for a dissipative two-state
system, with cases of multiple excitations and added driving discussed.

Separately, we apply the framework of quantum Darwinism to an atom-cavity
system, and, subsequently, to a more general multiple-environment model. In both
cases, the time-dependent spread of correlations between the open system and frac-
tions of the environment is analysed during the course of the decoherence process.
The degree to which information is redundant across different fractions is checked
to infer the emergence of classicality. In the second case, we go further and present
a decomposition of information in terms of its quantum and classical correlations.
A quantitative measure of redundancy is also studied with regard to its ability to
witness non-Markovian behaviour.

Besides fundamental interest, our results have application to quantum informa-
tion processing and quantum technologies, keeping in mind the potential beneficial
use of non-Markovian effects in reservoir engineering.
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Chapter 1

Introduction

Almost all quantum mechanical systems observed in the laboratory have been found

to experience noise effects as a result of fluctuations in their local environment

[1–6]. On one hand, this is unavoidable due to the fact that a system is never

truly isolated from its surroundings. Indeed, for any microscopic system governed

by the rules of either quantum or classical physics, the presence of noise is to be

expected in a situation where fluctuations are freely left to influence the system’s

dynamics. What distinguishes a quantum system from a classical one—given the

system is isolated from the environment—is that its statistics is formulated in terms

of a state vector whose interpretation is based on the principle of superposition:

inherently, the system can occupy one or many states with a certain (quantum)

probability. According to the Schrödinger equation, the system exhibits a coherent

dynamics in the sense that its superpositions are maintained over time. However,

in an open and uncontrolled setting, quantum states are fragile, and environmental

fluctuations tend to limit the coherent evolution to occur over a short timescale.

Loss of such superpositions—known as decoherence—leads to an observable change

from quantum to classical-like behaviour [7–11].

While most realisations of quantum systems have to be engineered to some degree

(e.g. an atom in an optical cavity), there has been ongoing interest in implementing

experiments where external fluctuations can be more reasonably controlled from

the system being open by design—i.e. reservoir engineering [12, 13], rather than

being an unintended consequence of random noise. Mitigating effects of dissipation

and decoherence in this way, which are recognised as being detrimental to quantum
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information processing [14, 15], is often necessary for quantum computation [16].

Therefore, understanding the types of decay processes that result from a quantum

system coupling to its environment is critical to the development workable quantum

technological devices.

One core part of this thesis is devoted to developing a novel framework that allows

for the treatment of non-Markovian effects in open quantum optical systems [17].

The standard theoretical description of an open quantum system typically assumes

that the reservoir is memoryless so that certain approximations can be made to its

dynamics. Within a master equation approach, memory effects can be neglected by

way of the Born-Markov approximations, which, provided the system-reservoir coup-

ling is sufficiently weak, ensure that the final master equation describes a quantum

Markov process whose generator is of a special Lindblad form1 [18, 19]. Although

their use tends to create an idealised picture of the actual dynamics, in many cases

they serve as an excellent and valuable approximation since the resulting descrip-

tion is often much less challenging to deal with, and too they contextually provide a

framework that is consistent with macroscopic (classical) thermodynamic laws. The

subject of chapter 2 of the thesis is primarily devoted to the derivation of such a

master equation. In the counter sense to this approach, the difficulty in modelling

non-Markovian systems using a microscopic master equation arises due to non-trivial

memory effects rendering the description based on the Born-Markov criteria obsol-

ete. This happens in situations where, for example, the system-reservoir coupling

is strong. Developing non-perturbative techniques to treat the dynamics of open

systems is not only appealing out of theoretical curiosity, but also has a plethora of

application to many relevant scenarios, such as the implementation of quantum heat

engines [20, 21], understanding of energy excitation transfer in quantum biological

systems [22], and photosynthetic complexes [23]; all where memory effects can play

a significant role in the description. As well, it is thought non-Markovianity can

be exploited as a resource in quantum information processing [24–26]—mainly to

combat the exponential decay of coherences arising from occurrences of (Markovian)

spontaneous emission into the environment.

1For conciseness, on some occasions we shall abbreviate the “Gorini-Kossakowski-Sudarshan-

Lindblad form” to simply “Lindblad form”.
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Despite recent progress [27, 28], no general framework under which a non-

Markovian system can be treated currently exists. An important class of methods

used to extend the validity of certain master equations beyond the Born-Markov res-

ult are embedding methods, which we make the main focus our discussion. Broadly

speaking, a non-Markovian system may be enlarged to a Markovian one by incor-

porating a number of auxiliary harmonic oscillator modes into its dynamics. This

generally accounts for the non-Lindblad type evolution at the level of the original

open system. Such approaches come under various guises—notable examples in-

clude the fictitious mode technique of Imamoglu [29, 30], the reaction-coordinate

mapping [31–33], and a related effective mode representation, based on iteratively

enlarging the open system over a set of collective degrees of freedom in the reservoir

[34–36]. Embedding methods are appealing in their own right as generally the mas-

ter equation of the enlarged system retains useful properties of its weak coupling

counterpart. Indeed, since the ensuing equation is usually of Lindblad form, the

master equation permits an unravelling of the combined dynamics of the original

system and auxiliary degrees of freedom into pure quantum state trajectories [37].

Importantly, this avoids confronting issues surrounding the measurement-scheme

interpretation of quantum trajectories for non-Markovian systems [38–40].

In the present work, we consider the specific techniques related to the pseudo-

mode method [41, 42]. This method relies on making a connection between the

shape of the reservoir spectral density (i.e. its frequency dependence), and the re-

sponse the open system has by coupling to a number of damped pseudomodes to

facilitate the derivation of exact non-perturbative master equation. The aim here is

to extend the pseudomode treatment to a wider range of cases, for the reason that

the approach offers a mathematically simple and intuitive account of how memory

effects emerge in the open system dynamics. Indeed, it is precisely the link the

pseudomodes have to the spectral density which gives better physical insight into

the problem compared to other approaches used in the same structured reservoir

setting, such as the resolvent operator method [17, 43]. In principle, the theory

outlined in Ref. [41] can be extended to include cases of multiple excitation by ap-

plying a separate Fano diagonalisation procedure in which the open system is shown

to couple to an analogous set of quasimodes [44–46]. However, because the original
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pseudomode method employs an approach based on expanding the state vector of

the total system in the one excitation sector, attempting to derive the theory for two,

three e.t.c, excitations presents intractable difficulties. Its application is hence only

straightforwardly demonstrated for the example of a singly excited two-level atom

coupling to a structured reservoir. In our work, we generalise the pseudomode prob-

lem per se using a Heisenberg equation-of-motion approach to enable a description

of multiple photon processes. By this, we expand the quantum Langevin equation

of the system [2] over an auxiliary mode of the reservoir to find a closed Markovian

dynamics for the enlarged system. In chapter 4 we develop the theoretical formalism

that deals with the construction of the master equation starting in the Heisenberg

picture. Initially, to gain a conceptual understanding for such techniques, we ex-

amine the weak coupling (Markov) limit of the dynamics for a bosonic system in

chapter 3.

Working within the model of a two-level atom coupling to a large bosonic reser-

voir, in the second part of the thesis we focus on studying information flows between

the atom and separate parts of the reservoir. This is done by quantitively analysing

system-environment correlations produced during decoherence under the framework

of quantum Darwinism [7, 47–56]. Based on the pioneering work of Zurek and

collaborators, quantum Darwinism is concerned with using the idea of information

redundancy to address the quantum-to-classical transition and in parallel the issue

of a preferred basis in quantum theory: that is, to explain how objective behaviour

in a quantum setting is feasible when states of parts of the environment correlate

with the most “classical states” of an open system in a specific way. In this regard,

classical behaviour is thought to emerge over time when many of the same copies of

information about the classical states of the system are spread into many small parts

of its environment, and so appear objective to an external observer (in other words,

correlations between different parts are redundant [57]). Tracking the emergence of

redundant information at the level of both system and environment has been shown

to have importance in understanding how an open system can come to appear ob-

jective in prototypical models of decoherence, and even for generic models beyond

the usual system-environment partitioning [58]. Recent studies have also sparked

interest in applications beyond standard Markovian regimes [59, 60]. Here, it has
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been found that memory effects tend to work against the spreading of redundant

information, and thus prevent features of quantum Darwinism from emerging.

In chapter 5 we apply the quantum Darwinism framework to as of yet unex-

plored regime—that is, we study the aforementioned atom plus reservoir model,

specifically framed in the setting of an atom coupled to a lossy cavity field (i.e.

the damped Jaynes-Cummings model [1]). It turns out that redundant information

proliferation occurs but only under the condition that the coupling strength of the

atom to the reservoir is not too strong. Equivalently, non-Markovian effects prevent

correlations between the atom and different collections of modes, on average, being

uniformly spread across the reservoir. In chapter 6, we more or less generalise the

contribution made from the previous chapter by considering a multiple-environment

version of the model. Again we find similar redundancy features when the coupling

is sufficiently weak. However, our most important result is that, by partitioning

the correlations into their quantum and classical components, the classical part of

the information is discovered to be non-redundant—despite prevalent redundancy of

total information. Furthermore, in light of the pre-established connection between

poor information redundancy and presence of non-Markovianity in the dynamics,

we introduce a quantitative measure of redundancy and investigate its ability to act

as a witness to non-Markovian behaviour.

Overall, the original contributions of this thesis make up two different but broadly

related bodies of work, tied together by the theory of non-Markovian dynamics in

quantum optics. Basic fundamentals in the theory of open quantum systems are

presented in chapters 2-3. The first original part of the thesis, provided by chapter

4, deals with the derivation of a set of equations which allow the original non-

Markovian dynamics of the system to be incorporated into a larger Markovian one

by way of the pseudomode technique. The second part considers a more applied

approach, motivated by gaining a deeper understanding of decoherence and the

quantum-to-classical transition by using the tools of quantum Darwinism. This

forms the body of work presented in chapters 5-62. Finally, appendices A, B, C are

provided at the end of the thesis.

2See the paper submitted for publication at the beginning of the thesis.
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Background
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Chapter 2

Theory of open quantum systems

This chapter introduces background material and is intended to serve as a found-

ation for much of the thesis. The analysis encountered here mostly relies on the

treatment of open quantum systems given in the textbook of Breuer and Petruc-

cione [1], with particular attention paid to the Markovian dynamics of open quantum

systems. Bear in mind that this work is not meant to provide be complete review of

the field—or to contain original content—but will selectively include material that

will aid with conceptual understanding throughout. This goes for both chapters 2

and 3.

Section 2.1 gives a general overview of quantum theory applied to both closed

and open physical systems, with attention paid closely to pure and mixed quantum

states, measurement, and composite quantum systems. Section 2.2 presents a mi-

croscopic derivation of the Markovian quantum master equation, and, in section 2.3,

culminates in a stricter formulation of Markovianity in terms of dynamical semig-

roups. This conveys a more general notion of dynamical maps in open quantum

systems which we also discuss in relation to non-Markovian quantum processes.

2.1 Preliminaries

2.1.1 Closed quantum systems

Before we embark on formulating of the dynamics of open quantum systems, it is

appropriate for us to present an overview of the standard theory of closed quantum

systems. By this we consider time-dependent properties of states formed within a
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Hilbert space H, and as of yet introduce no partitioning of this space into subsys-

tems (e.g. system and environment).

The time evolution of the state vector |ψ(t)〉 associated with the system is

provided by the Schrödinger equation (~ = 1),

d

dt
|ψ(t)〉 = −iH(t) |ψ(t)〉 . (2.1)

Loosely, this describes how the probability densities of each of the basis states in

|ψ(t)〉, which may be complex, evolve according to the Hamiltonian H(t). Note the

operator is assumed to have explicit time-dependence to include possible non-energy

conserving effects in the dynamics, i.e. ∂tH(t) > 0. The solution to (2.1) can be

written as

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (2.2)

where U(t, t0) is a time evolution operator of the system. This maps the initial

state |ψ(t0)〉 at time t0 onto the future state |ψ(t)〉 at t > t0, and, since U(t, t0)

is unitary, U †(t, t0) = U−1(t, t0), application of the operator conserves the inner

product 〈ψ(t)|ψ(t)〉 = 1. By inserting (2.2) into the Schrödinger equation, we find

the time evolution operator satisfies the differential equation

d

dt
U(t, t0) = −iH(t)U(t, t0), (2.3)

which, from (2.2), is subject to the boundary condition

U(t0, t0) = 1 at t = t0. (2.4)

Equation (2.3) can be formally integrated to obtain the expression

U(t, t0) = T←exp

[
−i
∫ t

t0

dt′H(t′)

]
, (2.5)

with T← the chronological time ordering operator that orders products of time-

dependent operators so their time-arguments increase from right to left, as indicated

by the direction of the arrow. If the time evolution governed by (2.2) occurs in an

isolated setting, such that ∂tH(t) = 0, the integral in (2.5) yields a simpler result:

U(t, t0) = exp [−iH(t− t0)] . (2.6)

Consequently, the time evolution of any closed quantum is reversible: that is, by

evolving the state from t0 → t and subsequently evolving it from t → t′ via a
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|ψ(t0)〉
H

|ψ(t)〉
t
 t0

|ψ(t0)〉
−H

|ψ(t)〉
U(t, t0)U(t0, t) = U(t, t0)U

−1(t, t0) = 1

Figure 2.1: Pictorial representation of a time reversed quantum process. The

evolution up to a time t > t0 can be reversed by applying a unitary operator

U(t0, t) = U−1(t, t0), the generator of which is given by −H.

different but equally timed process Ur(t
′, t) with Hamiltonian H ′, we have

|ψ(t0)〉 −→ |ψ(t)〉

−→ |ψ(t′)〉 = Ur(t
′, t) |ψ(t)〉 = |ψ(t0)〉 , t ≥ t0. (2.7)

As (2.7) suggests, in order for the second time evolution to reverse the state back

to |ψ(t0)〉, the operator Ur(t
′, t) must take the form Ur(t

′, t) = Ur(t0, t). Hence,

Ur(t0, t) = U−1(t, t0) = exp [−i(−H)(t− t0)] , t ≥ t0, (2.8)

such that (2.8) is associated with a real physical time evolution provided by the

Hamiltonian H ′ = −H. This type of evolution is depicted schematically in Fig.

2.1. An important and contrasting feature of open quantum systems is that they

are universally described by non-unitary processes. Indeed, while a time-dependent

Hamiltonian H(t) can account for external interactions, the system in question is

still closed and has a unitary dynamics (i.e. the external system has no quantum

dynamics of its own).

The above can be generalised to include states that cannot be represented by a

single state vector. Usually this applies to cases when there is classical uncertainty

in the preparation of |ψ(t)〉. To reflect such a case, a quantum state can instead be

constructed out of many individual ensembles whose statistics are each described

by a pure state |ψj〉. First we consider the most basic case where the states are

time independent. According to classical probability theory, the statistics of the full

ensemble can be realised by mixing together the given set of quantum states {|ψj〉}
weighted by the probabilities pj:

ρ =
∑
j

pj |ψj〉 〈ψj| = E [|ψj〉 〈ψj|] , (2.9)
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where ρ is the density matrix or statistical operator, and E [·] denotes the expectation

value of some random variable r associated with the j = j(r) index. Essentially, a

mixed state forms part of the statistical mean that sums over each distinct subset

of pure states. This is better illustrated by taking the average of an observable

R =
∑

j r(j) |rj〉 〈rj|,

〈R〉 =
∑
j

pj〈ψj|R|ψj〉 =
∑
j

pj〈ψj|rj〉〈rj|R|ψj〉 = tr [Rρ] , (2.10)

where we have used the completeness relation
∑

j |rj〉 〈rj| = 1. As it should, Eq.

(2.10) can be interpreted by the rules of classical (and quantum) probability. The

trace of ρ taken using an arbitrary basis (the eigenbasis |rj〉, for example) is thereby

constrained to

tr [ρ] = 1 from
∑
j

pj = 1, (2.11)

along with hermiticity ρ = ρ† and positivity ρ > 0. In a case where the states |ψj〉
gain time-dependence, clearly the density matrix ρ must coincide with that at the

initial time t = t0,

ρ(t0) =
∑
j

pj |ψj(t0)〉 〈ψj(t0)| . (2.12)

Using (2.2), it is straightforward to derive the form corresponding to the time evolved

density matrix ρ(t),

ρ(t) =
∑
j

pjU(t, t0) |ψj(t0)〉 〈ψj(t0)|U †(t, t0) = U(t, t0)ρ(t0)U †(t, t0). (2.13)

Taking its time-derivative and then applying (2.3) yields

d

dt
ρ(t) = −i [H(t), ρ(t)] , (2.14)

The resulting dynamical equation is commonly known as the von Neumann or

Liouville-von Neumann equation, which, in accordance with the classical Liouville

equation can be written conveniently as

d

dt
ρ(t) = L(t)ρ(t), (2.15)

where L(t) is the Liouvillian super-operator. Formally, a super-operator maps an

operator onto another operator vector space, rather than a scalar. Equation (2.15)

admits the general solution

ρ(t) = T←exp

[∫ t

t0

dt′ L(t′)

]
ρ(t0), (2.16)
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which again for a time independent process (2.6) reduces to ρ(t) = exp[Lt]ρ(t0).

Note from here on it shall be assumed—without loss of generality—that t0 = 0.

In turn, U(t, t0) will have its notation replaced by U(t).

Quantum measurements

While the time evolution of a closed system happens unitarily, to have a complete

theory of quantum processes Eq. (2.1) has to be supplemented with a mathematical

framework that describes instances when the system state is affected by measure-

ment [14]. Under the collapse postulate, quantum measurements fundamentally

account for a non-unitary type of process, since ρ(t) is restricted to be observed in

only one possible eigenstate of the measured observable.

Measurements themselves are described by a set of operators {Mm}, where the

m index associates each operator (formed in H) to a unique measurement outcome.

For a pure state |ψ〉, a result m is recorded by an external observer with probability

p(m) = 〈ψ|M †
mMm|ψ〉, (2.17)

with the corresponding state after the measurement being given by

|ψ′m〉 =
Mm |ψ〉√
〈ψ|M †

mMm|ψ〉
. (2.18)

The denominator is included to re-normalise |ψ′〉, so 〈ψ′|ψ′〉 = 1. Note too that the

operators satisfy the completeness relation∑
m

M †
mMm = 1,

−→
∑
m

〈ψ|M †
mMm|ψ〉 =

∑
m

p(m) = 1, (2.19)

as clearly probabilities must sum to unity. This can also be generalised to cases when

measurements are performed on mixed states: again, the probability the result m is

realised from the density matrix ρ is

p(m) = tr
[
M †

mMmρ
]
. (2.20)

Out of the full ensemble, if the initial state is |ψj〉, the corresponding state after

measurement will be |ψmj 〉 = Mm |ψj〉 /
√
p(m|j), having in the future sense been
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obtained with a conditional probability p(m|j) = 〈ψj|M †
mMm|ψj〉. Therefore, in

summing all possible results arising from a measurement on (2.9) and using p(j|m) =

p(m|j)pj/p(m) [61], the final density matrix reads

ρm =
∑
j

p(j|m)
Mm |ψj〉 〈ψj|M †

m

p(m|j) =
∑
j

pjMm |ψj〉 〈ψj|M †
m

tr
[
M †

mMmρ
] =

MmρM
†
m

tr
[
M †

mMmρ
] ,
(2.21)

which leaves only the sub-ensemble ρm corresponding to a particular event m, out

of that previously given by ρ.

Notice up to this point we have been describing selective measurements. These

characterise situations when the post-measurement state is conditioned on an known

outcome (i.e. the measurement record is “looked” at). For a non-selective measure-

ment, the sub-ensembles of the density matrix are typically remixed according to

the probabilities of each of their occurrence, where

ρ′ =
∑
m

p(m)ρm =
∑
m

MmρM
†
m. (2.22)

It is also worth emphasising that specific formulations of generalised measurement

exist. Relevant examples include projective measurements and positive operator

valued measures, which are encountered in chapter 6. These constitute a particular

realisation of the current framework.

2.1.2 Composite Hilbert spaces

Here we briefly focus our attention on composite quantum systems. The idea that

Hilbert space is an aggregate of its subsystems—or equally that it can partitioned

into smaller constitute parts—is of special importance to the theory of open quantum

systems, since the resulting formalism makes up a key part of the master equation

derivation.

A core quantum postulate is that the Hilbert space of a composite quantum

system is the tensor product space of the individual Hilbert spaces associated to its

(distinguishable) subsystems. To illustrate this, let us specifically consider bipartite

systems. If we have two quantum systems A and B with Hilbert spaces HA and

HB, using our previous notation, the composite state space is obtained through

H → HAB = HA ⊗HB. (2.23)
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With the fixed orthonormal bases {|ψAj 〉} and {|ψBj 〉} for HA and HB, respectively,

a given state in H may be expressed as

|ψ〉AB =
∑
i,j

ci,j |ψAi 〉 ⊗ |ψBj 〉 , (2.24)

where |ψAi 〉 ⊗ |ψBj 〉 forms as basis for HAB, and ci,j are complex scalar coefficients.

Introducing (2.24) naturally leads to the idea of entanglement in bipartite systems,

since the above admits a general form which cannot factorised as |ψ〉A ⊗ |φ〉B.

Moreover, if RA is an operator acting in HA and RB an operator in HB, their

tensor product is defined through the relation

(RA ⊗RB)(|ψAi 〉 ⊗ |ψBj 〉) = (RA |ψAi 〉)⊗ (RB |ψBj 〉), (2.25)

which naturally extends to (2.24). In turn any operator R acting on HAB can be

written as a linear combination of operator products

R =
∑
k

RA
k ⊗RB

k . (2.26)

Because operators of HA or HB can be constructed unconditionally using the for-

mula (2.26), observables of system A take a generic form RA ⊗ 1B, while those of

system B are represented by 1A⊗RB. Immediately we notice operators of different

subsystems commute from the property (2.25).

Reduced density operator

Suppose, in a composite space, we only have direct access to the observables of

one particular subsystem—say, system A. Under such circumstances, the expecta-

tion value of RA⊗ IB can be correctly calculated using the reduced density operator

ρA of the A subsystem: specifically,

〈RA ⊗ 1B〉 = tr [RA ⊗ 1B ρAB]

= trA [RAρA] , (2.27)

with ρA defined through

ρA = trB ρAB, (2.28)

and where tr[·] denotes the partial trace over the relevant subspace. The last line of

(2.27) indicates that, by tracing out the marginal state ρB from ρAB, we recover a
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density matrix entirely equivalent to the one in (2.9): or, in other words, ρA provides

full knowledge of given subsystem when ignoring ρB. A proof of this is given in Ref.

[4].

2.1.3 Open quantum systems

We now build on the concepts of section 2.1 to present a rigorous description of open

quantum systems. In a quantum mechanical context, an open system S (called the

“reduced system”, or just “the system”) is defined as a particular quantum system

of interest which is assumed distinguishable from its surrounding environment E.

The environment is assumed to contain a very large number of degrees of freedom

compared to S, and, often since we have have limited knowledge of its microscopic

properties, its influence on the system is modelled phenomenologically.

From their shared proximity the system and environment couple to each other,

with their combined (closed) dynamics expressed in the von Neumann equation.

However, from the intrinsic difficulty of tracking all components of E, one is not

usually concerned about the impact the coupling has on the environment and so

we look to ignore its state in (2.14). Not only is this practical, but in most cases

a complete treatment of the full system-environment evolution is near impossible

anyway due to complexity issues1: specifically, because each degree of freedom the

system couples to generates its own equation of motion, if we were to solve (2.14)

directly we foresee ourselves having the monumental task of solving a large (infinite)

hierarchy of coupled differential equations. It is necessary then to restrict our interest

only to the open system S.

To reflect us ignoring ρE, the time evolution of the open system is formulated in

a reduced state space ρS = trE ρ, where ρ is the density matrix of the closed S +E

system. Note the presence of noise in the open system dynamics introduces classical

uncertainty and thus precludes a pure state description, i.e. (2.2). From (2.13) and

(2.28), the time evolution of the reduced density matrix of the system is dictated

via

ρS(t) = trE
[
U(t)ρ(0)U †(t)

]
. (2.29)

1While this is generally true, special cases exist where it is possible to have an analytical

description of the full dynamics, as we shall see in chapters 5 and 6.
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By taking partial trace of the von Neumann equation we also obtain

d

dt
ρS(t) = −itrE [H(t), ρ(t)] . (2.30)

The idea is to use (2.29) to evaluate the observables of interest (2.27) pertaining to

the reduced system. This is achieved through solving a closed form version of (2.30).

Interaction picture

Before we pursue a derivation of the Markovian density matrix equation for ρS(t), at

this point it is worthwhile introducing the transformation which maps states to the

interaction picture. The transformation has immense practical use in the current

open system setting while also being applicable to closed systems [62]. For this, we

consider a generic Hamiltonian of the form H = H0 + ĤI(t), where it is assumed the

eigenstates of H0 are known, or equally, the free evolution is trivial in the absence

of ĤI(t). By defining U0(t) = exp[−iH0t], along with

UI(t) = U †0(t)U(t), (2.31)

with U(t) the familiar time evolution operator (2.6), it can be shown that the time-

dependence gained in the density matrix (2.9)—through evolving a closed system—is

split between operators and states according to

R0(t) = U †0(t)R(t)U0(t) and ρI(t) = U †I (t)ρ(0)UI(t). (2.32)

The density matrix ρI(t) is referred to as the interaction picture density matrix.

Note that its time evolution is only generated through HI , and, since the expect-

ation value (2.10) is unchanged by the mapping, Eq. (2.32) tends to provides an

alternative—and usually simpler—framework to analyse. The time-derivative of

(2.31) shows UI(t) to follow a differential equation similar to that in (2.3),

d

dt
UI(t) = −iHI(t)UI(t), (2.33)

where we have adopted the following definition for the interaction Hamiltonian in

the interaction picture:

HI(t) = U †0(t)ĤI(t)U0(t). (2.34)
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Differentiating ρI(t) in (2.32) then results in an interaction picture version of the

von Neumann equation (2.14),

d

dt
ρI(t) = −i [HI(t), ρI(t)] , (2.35)

which shall be used as our starting point for the derivation of the Markovian master

equation.

2.2 Microscopic derivation of the Lindblad mas-

ter equation

Returning to the joint S+E system with Hilbert spaceH = HS⊗HE, from (2.26), we

can expand the total Hamiltonian governing a generic time independent interaction

as

H = HS ⊗ 1E + 1S ⊗HE +HI , (2.36)

where HS and HE are the respective bare Hamiltonians of the open system and

environment. The remaining term HI is the interaction Hamiltonian, which induces

the exchange of energy between the two subsystems. From now on we shall omit

the identities 1S and 1E, e.g. in (2.36), since these have no effect beyond ensuring

correct dimensionality.

Our aim is to use the density matrix ρI(t) in (2.35) to find a closed dynamical

equation for the open system. With this in mind, Eq. (2.35) is formally integrated

to obtain

ρI(t) = ρ(0)− i
∫ t

0

dt′ [HI(t
′), ρI(t

′)] , (2.37)

which is then inserted back into the von Neumann equation to yield an integro-

differential equation for ρI(t). This is our main quantity of interest. Considering

that (2.37) describes the evolution of the closed S + E system, we trace over the

environment —as we did in (2.30)—to solely determine how ρS(t) evolves in time.

In doing so, we get

d

dt
ρS(t) = −itrE [HI(t), ρI(0)]−

∫ t

0

dt′ trE
{

[HI(t), [HI(t
′), ρI(t

′)]]
}
. (2.38)

Here we drop the I-label on ρI(t) and assume the derivation continues exclusively

within the interaction picture.
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2.2.1 Born-Markov approximations

At this point two key assumptions are made regarding (2.38):

(i) Born approximation: firstly, we assume that the total density matrix ρ(t) of

the closed system factorises as

ρ(t) ≈ ρS(t)⊗ ρE, (2.39)

at all times. Equation (2.38) then reduces to

d

dt
ρS(t) = −itrE [HI(t), ρ(0)]−

∫ t

0

dt′ trE
{

[HI(t), [HI(t
′), ρS(t′)⊗ ρE]]

}
. (2.40)

Note that (2.39) does not exclude the possibility of interaction between the two

subsystems. More precisely, it assumes any correlations established between the

open system and environment negligibly affect the time-dependent behaviour of

the reduced system density matrix. This most likely reflects a situation where

the environment is perturbed only slightly from its initial state by coupling to the

system. Therefore, (2.39) ostensibly amounts to an assumption of weak system-

environment coupling: that is, the “strength” of the Hamiltonian HI has to be

sufficiently weak for (2.40) to be valid in time-dependent perturbation theory.

(ii) Markov approximation: we now replace (2.40) with the following:

d

dt
ρS(t) = −itrE [HI(t), ρ(0)]−

∫ t

0

dt′ trE
{

[HI(t), [HI(t
′), ρS(t)⊗ ρE]]

}
. (2.41)

where ρS(t′)→ ρS(t) in the integrand. Here we are prohibiting the evolution of ρS(t)

to depend only on its current state, rather than past states ρS(t′). This is justified

provided that the reduced system evolves slowly over times during which the bath

responds to the coupling. If we define τR as the relaxation time of the open system,

and τB a typical variation time for the averaged terms inside the integral of (2.41),

we are assuming

τR � τB, (2.42)

For quantum optical systems—being our primary interest of the thesis—the times-

cales in question relate to the relevant frequency scales of the problem: for example,

with a prototypical two-level system, the inverse of τR characterises its effective

coupling strength to the bath, while the inverse of τB is provided by the optical

transition frequency [63]. Given (2.42) holds, we can also push the upper limit of
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integration to infinity since the integral terms evolving on the timescale τB will fall

off quickly at long times. With a change of variable t′ → t− t′, Eq. (2.41) becomes

d

dt
ρS(t) = −itrE [HI(t), ρ(0)]−

∫ ∞
0

dt′ trE
{

[HI(t), [HI(t− t′), ρS(t)⊗ ρE]]
}
.

(2.43)

When used together with (2.39), the picture we have under the Markov approxim-

ation is that the environment tends to relax quickly back to its original equilibrium

state. This suggests the present bath dynamics cannot modify the future time

evolution of the open system. With both approximations in place we then expect

excitations to propagate away from the system (but not back), so as to induce wholly

irreversible decay.

We finalise the previous steps by also assuming that

trE [HI(t), ρ(0)] = 0. (2.44)

which is used to remove dependence of (2.43) on the initial conditions and thus

guarantees a state independent master equation. It is emphasised (2.44) can always

be fulfilled by appropriate renormalisation of the system Hamiltonian HS (c.f. Ref.

[64]). This leaves us to now systematically evaluate the correlation functions of

d

dt
ρS(t) = −

∫ ∞
0

dt′ trE
{

[HI(t), [HI(t− t′), ρS(t)⊗ ρE]]
}
. (2.45)

2.2.2 Decomposition of the interaction Hamiltonian

In what is to come, it will prove useful for us to write the interaction Hamiltonian HI

in terms of the eigenoperators of the open system Hamiltonian HS, since, within the

interaction picture, these will have simple exponential time-dependence in (2.43).

The interaction Hamiltonian admits a general form

HI =
∑
α

Aα ⊗Bα, (2.46)

where Aα and Bα are operators of the system and environment, respectively. Note

this form is non-unique and as such we additionally impose that Aα = A†α and

Bα = B†α. With ε denoting the eigenvalues of HS, the decomposition we seek is

obtained by projecting Aα onto the discrete eigenspace belonging to each ε:

Aα(ω) =
∑

ε′−ε=ω
|ε〉 〈ε|Aα |ε′〉 〈ε′| , (2.47)
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where |ε〉 and |ε′〉 are the eigenstates of the same system Hamiltonian. The sum

in this expression passes over all eigenvalues with a fixed difference given by ω. A

desirable feature of (2.47) is that the operators satisfy

{LSAα(ω) = i [HS, Aα(ω)] = −iωAα(ω),

LSA†α(ω) = i [HS, Aα(ω)] = iωA†α(ω).

(2.48)

(2.49)

Notice Aα(ω) is an eigenoperator of LS = i[HS, ·] with eigenvalue −iω, while A†α(ω)

has eigenvalue iω from the relation Aα(−ω) = A†α(ω). As we’ve predicted, mapping

(2.47) to interaction picture shows

e
iHStAα(ω)e−iHSt = e−iωtAα(ω),

eiHStA†α(ω)e−iHSt = eiωtA†α(ω),

(2.50)

(2.51)

meaning that, together with the completeness relation
∑

ω Aα(ω) = Aα, the inter-

action Hamiltonian HI (2.46) in the interaction picture [see (2.34)] can be written

as

HI(t) =
∑
α,ω

e−iωtAα(ω)⊗Bα(t) =
∑
α,ω

eiωtA†α(ω)⊗B†α(t). (2.52)

Here we have also defined the interaction picture operators of the environment,

Bα(t) = eiHEtBαe
−iHEt. (2.53)

From our previous assumption (2.44), we find it necessary that

〈Bα(t)〉 = trE [Bα(t)ρE] = 0, (2.54)

which simply means the environment operators have to yield a zero expectation

value.

By substituting (2.52) into the dynamical equation we had for the reduced dens-

ity operator of the system (2.45), we obtain

d

dt
ρS(t) =

∑
ω,ω′

∑
α,α′

ei(ω
′−ω)tΓα,α′(ω)

[
Aα′(ω)ρS(t)A†α(ω′)− A†α(ω′)Aα′(ω)ρS(t)

]
+ h.c.

(2.55)

where

Γα,α′(ω) =

∫ ∞
0

dt′ eiωt
′〈
B†α(t)Bα′(t− t′)

〉
, (2.56)
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are the one sided Fourier transforms of the following reservoir correlation functions:〈
B†α(t)Bα′(t− t′)

〉
= trE

[
B†α(t)Bα′(t− t′)ρE

]
. (2.57)

If we suppose the environment state ρE is stationary with respect to its own (self)

Hamiltonian, i.e. [HE, ρE] = 0, then using the cyclic property of the trace operation

and (2.53) we can recast the above into a time homogenous form,

trE
[
B†α(t)Bα′(t− t′)ρE

]
= trE

[
eiHEtB†αe

−iHEteiHE(t−t′)Bαe
−iHE(t−t′)ρE

]
= trE

[
eiHEt

′
B†αe

−iHEt′BαρE

]
=
〈
B†α(t′)Bα′(0)

〉
. (2.58)

Consequently, the function Γα,α′(ω) in (2.56) is time independent since the correla-

tion functions only depend on the time difference between the operators Bα(t).

A precondition we originally attached to the use of the Markov approximation

was that the terms in (2.55) do not “blow up” over a long time interval, partly to

ensure the open system dynamics is irreversible and/or for any initial excitations to

eventually decay from the system. In retrospect, extending the limit of integration

to infinity is then justified if the characteristic time τB over which the correlation

functions decay is fast compared to τR: or, equally, that there are no prolonged

coherence effects within the bath. Supposing the environment comprises of a set

of harmonic oscillators with a discrete frequency spectrum, it turns out correlation

functions of the type (2.57) are quasi-periodic functions of t′—an artefact of the

quantum recurrence theorem [65]. Therefore, the reservoir correlations functions

generally inscribe coherent effects into the dynamics. To negate this, we require the

spectrum to form a continuum of frequencies, which can be provided if the limit on

the number of oscillators in the environment is taken to infinity. Under such cir-

cumstances we then have an infinitely long recurrence time so as to make the decay

process irreversible. This case aside, if the environment is assumed to have infinitely

many degrees of freedom, we shall refer to it as a reservoir for the remainder of the

thesis.

2.2.3 Secular approximation

Currently we are in a position to make an additional step in the derivation of the

Markovian master equation by way of the secular approximation. To proceed, let τS
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denote a typical time scale by which the internal dynamics of the open system occurs.

This timescale is typically quantified by 1/|ω−ω′| for ω 6= ω′, i.e. the reciprocal of the

difference in the eigenoperator frequencies (2.48) and (2.49). Given the relaxation of

the system happens much more slowly than its free time evolution set by HS—that

is, τS � τR—then the terms which stem from the ω 6= ω′ contributions to Eq. (2.55)

oscillate rapidly and average to zero over times t ≈ τR. Ideally, removing these terms

will incur no further changes to the dynamics of the open system. This leaves us

with

d

dt
ρS(t) =

∑
ω

∑
α,α′

Γα,α′(ω)
[
Aα′(ω)ρS(t)A†α(ω)− A†α(ω)Aα′(ω)ρS(t)

]
+ h.c. (2.59)

For convenience, the Fourier transform of the reservoir correlation functions (2.56)

can now be written into its real and imaginary parts:

Γα,α′(ω) =
1

2
γα,α′(ω) + iSα,α′(ω). (2.60)

Standard matrix manipulation then reveals

Sα,α′(ω) =
1

2i

[
Γα,α′(ω)− Γ∗α′,α(ω)

]
, (2.61)

while

γα,α′(ω) = Γα,α′(ω) + Γ∗α′,α(ω). (2.62)

Notice the positioning of the indices α and α′ in the above. The definitions of (2.61)

and (2.62) suggest Sα,α′(ω) is hermitian and (2.62) is a positive matrix. We can

then employ (2.58) to show that

γα,α′(ω) =

∫ ∞
−∞

dt′ eiωt
′〈
B†α(t′)Bα′(0)

〉
, (2.63)

and

Sα,α′(ω) =
1

2i

[∫ ∞
0

dt′ eiωt
′〈
B†α(t′)Bα′(0)

〉
−
∫ ∞

0

dt′ e−iωt
′〈
B†α(−t′)Bα′(0)

〉]
,

(2.64)

where we’ve used

Γ∗α′,α(ω) =

∫ ∞
0

dt′ e−iωt
′
(

trE

[
B†α′(t

′)Bα(0)
])∗

=

∫ ∞
0

dt′ e−iωt
′
trE
[
B†α(0)Bα′(t

′)
]

=

∫ ∞
0

dt′ e−iωt
′〈
B†α(−t′)Bα′(0)

〉
. (2.65)
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Bear in mind that the last line uses (2.53) along with the cyclic property of the

trace. Setting t′ → −t′ and switching the integration limits (∞, 0)→ (0,−∞) also

gets (2.63) from (2.62).

By substituting Eq. (2.60) into the current interaction picture master equation

(2.59), we obtain the final result

d

dt
ρS(t) = −i [HLS, ρS(t)]

+
∑
ω

∑
α,α′

γα,α′(ω)

[
Aα′(ω)ρS(t)A†α(ω)− 1

2

{
A†α(ω)Aα′(ω), ρS(t)

}]
,

(2.66)

with {·, ·} indicating the anti-commutator, and HLS defining the so-called Lamb

shift Hamiltonian,

HLS =
∑
ω

∑
α,α′

Sα,α′(ω)A†α(ω)Aα′(ω). (2.67)

From (2.48) and (2.49), this term can quite easily been shown to commute with the

unperturbed system Hamiltonian, [HS, HLS] = 0. The “Lamb shift” refers to the

fact that HLS acts to shift the energy levels of the system relative to those originally

expressed in HS as a direct result of the system-environment coupling.

In the interest of examining the Markovian properties (2.66), we note the above

can be mapped back from the interaction picture: using (2.13), (2.31) and (2.32),

while reintroducing the I-label to denote terms defined within the interaction pic-

ture, we have ρS(t) = exp[−iHSt]ρ
I
S(t)exp[iHSt]. Differentiating both sides of this

gives

d

dt
ρS(t) = −i [HS, ρS(t)] + e−iHSt

(
d

dt
ρIS(t)

)
eiHSt. (2.68)

As we shall see, the master equation pertaining to ρS(t) can be identified with a

particularly special Lindblad form. We now go on to sketch the formal mathematics

underlying (2.66) which connects this form to that of a generic quantum Markov

process.
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2.3 Quantum dynamical maps and dynamical semig-

roups

Consider an initially uncorrelated product state ρ(0) = ρS(0) ⊗ ρE of the system

and environment. After some time t > 0, the reduced density operator ρS(t) from

(2.29) reads

ρS(t) = trE
[
U(t)(ρS(0)⊗ ρE)U †(t)

]
. (2.69)

In general we can introduce a superoperator Φ(t, 0) acting in the state space S(HS)

of the reduced system density matrices. Mathematically, it is defined as a linear

map which maps S(HS) to itself—that is,

Φ(t, 0) : S(HS) −→ S(HS). (2.70)

If the state ρE of the environment remains fixed, then the transformation of ρS(0)

to ρS(t) (2.69) can be characterised by the linear map Φ(t, 0):

ρS(0) 7→ ρS(t) = Φ(t, 0)ρS(0). (2.71)

This is the quantum dynamical map evolving the open system state to a time t [66].

A requirement of (2.71) is that not only are the maps Φ(t, 0) positive (i.e. they map

positive operators to positive operators), but also completely positive [67]. Formally,

a linear map (2.70) is completely positive if an only if it has a Kraus representation

[68]: that is, for an operator A,

Φ(t, 0)A =
∑
j

Ej(t)AE
†
j (t), (2.72)

where the dynamical map is trace preserving provided
∑

j E
†
j (t)Ej(t) = 1S. Note all

physically valid processes must admit a representation provided by the above—see,

for example, the operator-sum representation in Ref. [14]. According to (2.72),

the form of Φ(t, 0) also coincides with that of an operation describing a generalised

quantum measurement (2.22). Intuitively this reflects a stochastic change in the

operator ρS(t) as it evolves through a noisy quantum channel.

An important and special example of a completely positive map is one fulfilling

the semigroup property,

Φ(t1, 0)Φ(t2, 0) = Φ(t1 + t2, 0), ∀t1, t2 ≥ 0. (2.73)
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The family of dynamical maps {Φ(t, 0)|t ≥ 0} describing the process in (2.71),

together with the identity map Φ(0, 0) = 1, is referred to as a quantum dynamical

semigroup [1]. Since under general mathematical conditions the semigroup can be

written in an exponential form Φ(t, 0) = exp[Lt], having L as the infinitesimal

generator of the semigroup, the quantum master equation associated with (2.73) is

d

dt
ρS(t) = LρS(t), (2.74)

which is identified as being intrinsically Markovian. Notice L is a super-operator

and can be thought of as a generalisation of Liouvillian introduced in (2.15).

From the Gorini-Kossakowski-Sudarshan-Lindblad theorem [18, 19], it is well

known that L is the generator of a semigroup of completely positive dynamical

maps only if it admits the following generalised structure:

LρS(t) = −i [HS, ρS(t)] +
∑
k

γk

[
AkρS(t)A†k −

1

2

{
A†kAk, ρS(t)

}]
. (2.75)

Master equations of this structure are said to be of Lindblad form. The Lindblad

operators Ak represent the possible decay events governing the open system dy-

namics while γk are the associated decay rates. Notably, the master equation in

(2.66) can be brought into the above form by diagonalising the matrices made from

γα,α′(ω). As such the underlying dynamics of (2.66) is Markovian. We emphasise

that it is precisely: (i) the assumption of weak coupling (2.39), and (ii) the removal

of memory effects via the condition τR � τB (2.42) which leads to an appropriate

quantum mechanical description of a time-homogenous Markov process. Broadly

speaking, the idea of (2.74) purporting to being Markovian is based on the (his-

torical) assumption that the coefficients (2.75) are necessarily time independent to

guarantee the absence of memory effects.

2.3.1 Time-local master equations

Of course, in situations where perturbation theory breaks down, e.g. when the

coupling of the system to the environment is strong, we cannot expect the Lindblad

equation (2.74) to give a reasonable description of the dynamics. In some cases,

however, it possible to generalise (2.75) to

d

dt
ρS(t) = K(t)ρS(t), (2.76)
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with K(t) a time-dependent generator of the dynamics. Note this representation

assumes the existence of the inverse map Φ−1(t, 0). Interestingly, there are known

examples, such as the damped Jaynes-Cummings mode (see section 4.2.1), where

the inverse of (2.70) cannot necessarily be obtained. Hall et al. have shown that

any time-local master equation of the form (2.76) can expressed as [66, 69]

K(t)ρS(t) =− i [HS(t), ρS(t)]

+
∑
k

γk(t)

[
Ak(t)ρS(t)A†k(t)−

1

2

{
A†k(t)Ak(t), ρS(t)

}]
. (2.77)

We notice this result naturally extends the previous Lindblad structure (2.75) to

time-local generators, where the system Hamiltonian HS(t), decay operators Ak(t),

and each of the decay rates γk(t), now have the possibility of being time-dependent.

These “new” properties reflect on the inclusion of memory effects in the system

dynamics, and thus on the potential of linear map—defined by

Φ(t, 0) = T←exp

[∫ t

0

dt′K(t′)

]
, ∀t ≥ 0, (2.78)

to describe a non-Markovian process. However, it should be stated that the operator

K(t) can be a generator of a Markovian dynamics if and only if it has the form (2.77)

and γj(t) ≥ 0 ∀j, t [70, 71]. We shall encounter a particular microscopic realisation

of a time-local master equation during chapter 6.

Aside from the mathematical description given above, there exists other general

means to study the dynamics of open quantum systems—a notable example being

the Nakajima-Zwanzig projection operator technique [72, 73]. The importance of

this technique stems from the fact that it provides an exact microscopic master

equation for the reduced system density operator ρS(t) of integro-differential form.

Since this equation explicitly takes into account the influence of the past-time dy-

namics of the system on its current state, it is then suggested that the formulation

of non-Markovian processes must rely on deriving a differential equation that is non-

time local. However, contrary to this belief, there exists a way to specifically cast

the exact master equation into the form (2.76), known as the time-convolutionless

projection operator technique [74, 75].

While both approaches play a ubiquitous role in formulating a general theory of

open quantum systems, our main line of investigation instead concerns embedding
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methods, which tend to produce a master equation of Lindblad form as a result of

redrawing the boundaries of the reduced system to include some “cut” of the envir-

onment. This system will be commonly referred to as the enlarged system. Despite

the dynamics of the enlarged system always being Markovian, the dynamics of the

original reduced system typically exhibits non-Lindbladian evolution as a result of

its modification, and thus the form (2.75) is still appropriate.
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Chapter 3

The Heisenberg formalism

It was shown in section 2.3 that the Gorini-Kossakowski-Sudarshan-Lindblad form

(2.75) of the master equation necessitates a Markovian process. But to arrive at such

an equation, some restrictive assumptions had to be imposed. The Born-Markov ap-

proximation, in particular, underpins much of the validity of the master equation by

assuming weak system-environment coupling. To go beyond a Markovian descrip-

tion therefore requires us to depart from the methods of section 2.2.

To first motivate this, here we focus our attention on treating the theory of

open quantum systems within the Heisenberg picture. We approach the problem by

deriving the two key ingredients of the formalism: firstly, the so-called Heisenberg-

Langevin equation, and secondly, the quantum Langevin equations. The Heisenberg-

Langevin equation exists in parallel to the master equation in that it describes the

same fundamental behaviours (e.g. dissipation, decoherence) but in terms of an

observable A(t) rather than the density matrix ρS(t). The connection between the

dynamics in the state and operator based pictures is rudimentary. By taking the

time-derivative of the time-dependent form of (2.10), it is readily shown that

d

dt
〈A〉t = tr

[
d

dt
A(t)ρ

]
= trS

[
A
d

dt
ρS(t)

]
. (3.1)

In the spirit of the pseudomode method [41], it will turn out to be advantageous

to formulate the dynamics using the Heisenberg-Langevin equation, and then relate

this to the Schrödinger picture using the above.

In the first part of the chapter we study the Heisenberg-Langevin equation under

a generic Hamiltonian. We shall see a direct mapping via Eq. (3.1) is only possible

if the time-derivative of A(t) can be written solely in terms of a time-local set of
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dynamical equations for the open system operators—namely, the quantum Langevin

equations. Our intention is to demonstrate the feasibility of this approach to actually

obtaining a valid master equation. The final parts of the chapter are then devoted

to the derivation of the Markovian master equation as an initial proof of concept.

The techniques developed here will eventually be put to original use during chapter

4, where applications to systems exhibiting strong coupling effects are considered.

The current chapter consists of three sections. The first section serves as an

introduction to the generic model, which will later be tailored towards specific cases

of interest. In section 3.1 we construct the exact Heisenberg-Langevin equations

and quantum Langevin equations. In section 3.2 we focus on their application to

the weak coupling limit, and subsequently provide a step-by-step derivation of the

quantum optical master equation within the Heisenberg formalism. We summarise

the chapter in section 3.4. It is pointed out that the techniques we employ in most

parts are well known, and in particular are outlined in Refs. [2, 5, 76].

3.1 Outline

Since the Schrödinger and Heisenberg pictures are physically equivalent, the time

evolution of any observable within the Heisenberg picture is generated through the

global Hamiltonian of the open system, S, and the environment, E. As before, the

Hamiltonian has the defining form

H = HS +HE +HI , (3.2)

It is usually considered that the system and environment are brought into contact

at a time t = 0 when the Schrödinger and Heisenberg pictures coincide. To formally

reflect this in Eq. (3.2), the interaction Hamiltonian can be amended to an explicitly

time-dependent formHI(t) = θ(t)HI , where the Heaviside distribution θ(t) is defined

through

θ(t) =

1 if t ≥ 0

0 otherwise.

(3.3)

This mathematically ensures that any interaction occurs over the time interval [0, t].

Although not explicitly written, the presence of θ(t) in the interaction HI will be
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implied based on the justification that the open system has been uncoupled from

the environment since the distant past (−∞ < t < 0). On a similar level, we will

assume initially uncorrelated subsystems in that the global state ρ = ρ(0) is given

by the direct product

ρ = ρS ⊗ ρE, (3.4)

which applies at all times the Heisenberg picture.

At this point we do not wish to specify the exact form of HS. The environment,

in the general case, is elected to comprise of a large collection of harmonic oscillators

with frequencies ωλ:

HE =
∑
λ

ωλa
†
λaλ. (3.5)

The canonically conjugate operators aλ and a†λ are the annihilation and creation op-

erators of the λ mode of E, and satisfy the standard bosonic commutation relations

[aλ, a
†
λ′ ] = δλ,λ′ , (3.6)

with [aλ, aλ′ ] = 0. On certain occasions we will endow the environment with an

inner structure, such that HE is made up from an ensemble of sub-environments

with self energies HEk , where k = 1, 2, . . .#E indicates each sub-environment Ek.

In this case the Hamiltonian of the environment is written as

HE =
∑
k,λ

ωλa
†
k,λak,λ, (3.7)

where HE =
∑

kHEk . Obviously, the above reduces to Eq. (3.5) for k = 1. The

independency of the sub-environments ensures the bosonic operators ak,λ and a†k,λ

still satisfy the canonical relations

[ak,λ, a
†
k,λ] = δk,k′δλ,λ′ , (3.8)

with all other commutators vanishing.

We are now in the position to write down the Hamiltonian of the system and

environment including an explicit interaction. By combining equations (3.2) and

(3.7), we have

H = HS +
∑
k,λ

ωλa
†
k,λak,λ +

∑
k,λ

(
L+ L†

)(
g∗k,λak,λ + gk,λa

†
k,λ

)
. (3.9)
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It is noted that the Hamiltonian coincides with generic one given by (2.46). The

parameter gk,λ = |gk,λ|e−iϕk,λ represents the coupling strength between the system

and λ-mode of the k sub-environment, and, without loss of generality, are taken

always to be real valued, i.e. ϕk,λ = 0. The interaction Hamiltonian is more con-

veniently expressed as

HI =
∑
k,λ

(
L+ L†

) (
Bk +B†k

)
, (3.10)

with Bk =
∑

λ gk,λak,λ. In the following, the operators L and L† are assumed to

satisfy the eigenoperator relation

{
[HS, L] = −εL,

[HS, L
†] = εL†,

(3.11)

(3.12)

meaning that L lowers the energy of the open system by an amount −ε, while L†

raises the energy by an amount +ε. This is observed from the fact that HS has the

spectral decomposition

HS =
∑
j

εj |εj〉 〈εj| , (3.13)

where |εj〉 are the energy eigenstates of the open system Hamiltonian. By virtue

of the above eigenoperator relations, it is straightforward to check using (2.48) and

(2.49) that L |εj〉 and L† |εj〉 are again eigenstates of HS with the corresponding

eigenvalues εj − ε and εj + ε, respectively [1].

3.1.1 Rotating frame

Let us write the Hamiltonian (3.2) as

H = H0 +HI , (3.14)

where clearly H0 = HS + HE. Using the density matrix ρ of the entire system, the

expectation value of an open system observable A can be manipulated as follows:

〈A〉t = tr [Aρ(t)] = tr [A(t)ρ]

= tr
[
U †I (t)

(
U †0(t)AU0(t)

)
UI(t) ρ

]
= tr

[
U †I (t)A0(t)UI(t) ρ

]
. (3.15)
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The first line of (3.15) simply expresses the physical equivalence of the Schrödinger

and Heisenberg pictures. In the proceeding steps, we have made use of the unitary

time-evolving operators UI(t) and U0(t) = exp[−iH0t] from Eq. (2.31), where

A0(t) = U †0(t)A(0)U0(t), (3.16)

and

A(t) = U †(t)A(0)U(t) = U †I (t)
[
U †0(t)A(0)U0(t)

]
UI(t). (3.17)

In the interaction picture, A0(t) corresponds to a term whose time-dependence is

gained from the transformation to a frame of reference rotating1 with respect to the

bare interaction, while the time evolution of ρ is generated via ρI(t) = UI(t)ρ(0)U †I (t)

from an initial state ρI(0) = ρ(0)—see (2.32). Using (3.17), the Heisenberg equation

of motion dtA(t) = −i[A(t), H] can alternatively be written as

d

dt
A(t) = −i[A(t), HH(t)] +

∂A	(t)

∂t
, (3.18)

where
∂A	(t)

∂t
= U †I (t)

∂A0(t)

∂t
UI(t). (3.19)

In addition, we have defined the following quantity:

HH(t) = U †I (t)HI(t)UI(t), (3.20)

with HI(t) taken from Eq. (2.34). The operator HH(t) is then the interaction

Hamiltonian from (3.2) transformed to the Heisenberg picture. It is stressed that

the rotating frame equation of motion is equivalent to the standard Heisenberg

equation: all we have done is single out a term on the righthand side of Eq. (3.18)

whose time-dependence has been provided by U †0(t)A(0)U0(t). In turn, by making

the identification
d

dt
Â(t) =

d

dt
A(t)− ∂A	(t)

∂t
, (3.21)

the Heisenberg equation is subsequently written in the compact form

d

dt
Â(t) = −i [A(t), HH(t)] . (3.22)

1Eq. (3.16) is said to move the full system to a “rotating frame” in analogy to classical mech-

anics—a stationary position vector looks as though it is moving in a rotating reference frame.
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Here, the dynamics of the observable is evaluated within a rotating frame picture,

looking markedly similar to that of the standard interaction picture—that is, where

the part (3.19) associated with the free evolution of the system is removed from the

equation of motion. Note that, while Eq. (3.22) is not strictly of closed form, it will

not be solved directly but used instead to obtain the associated master equation [c.f.

(3.1)].

For an archetypal quantum optical system the timescale on which the open sys-

tem freely evolves—typically characterised by the inverse of ε [see (3.11)]—is largely

separated (in magnitude) from its relaxation time, such that A	(t) oscillates quickly.

In many cases it is beneficial to remove fast-evolving term to look at the slowly

evolving contribution. Indeed, we will find that this has great utility in the deriva-

tion of the microscopic (Markovian) master equation, as was similarly done via the

interaction picture transformation in section 2.1.3.

To transform a given operator O—either of the open system or environment—to

the rotating frame picture, we expand Eq. (3.16) using the Baker-Hausdorff the-

orem [62]. This states that for non-commuting operators O and H0, the following

transformation property holds:

eiH0tOe−iH0t = O + it [H0, O] +
(it)2

2!
[H0, [H0, O]] + . . . . (3.23)

Armed with the commutation relations from equations (3.8) and (3.11)-(3.12), the

Hamiltonian within the rotating frame (interaction) picture reads

HI(t) =
∑
k

(
B

(+)
k (t)L+ L†B(−)

k (t) + L†B(+)†
k (t) +B

(−)†
k (t)L

)
, (3.24)

where

B
(−)
k (t) =

∑
λ

gk,λak,λe
−i(ωλ−ε)t, (3.25)

B
(+)
k (t) =

∑
λ

gk,λak,λe
−i(ωλ+ε)t, (3.26)

have been defined from using that the operators of the open system transform to the

new picture according to eiHStLe−iHSt = Le−iεt and eiHStL†e−iHSt = L†eiεt. Notice

that the time-dependence of the operators is explicit, in contrast to the Heisenberg

picture evolution (3.22).
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3.1.2 Quantum optical Hamiltonian

From now on we shall focus on the application of our methods to quantum optical

systems. This allows to simplify the Hamiltonian (3.24) by use of the rotating

wave approximation. For systems we are interested in, the counter-rotating terms

oscillating at frequencies ±(ωλ + ε), such as B
(+)
k (t), are assumed to evolve quickly

in comparison to terms with exponents ±(ωλ− ε). Over any relevant timescale, e.g.

a typical relaxation period of the system, the fast oscillating terms make a negligible

contribution to the interaction, and therefore only the slowly evolving terms with

exponents ±(ωλ − ε) are needed to be kept. In this ideal limit, the Hamiltonian

reads

HI(t) =
∑
k

(
L†Bk(t) +B†k(t)L

)
, (3.27)

where B
(−)
k (t) has been replaced by Bk(t), and B

(+)
k (t) → 0. Equation (3.27) now

acts as the generator of the dynamics in (3.22). Accordingly, it will be used to

compute the operator equations of motion during the next section.

Because we interested entirely in the open system dynamics, it is sufficient to

rely on a course grained representation of the environment by which we smooth over

microscopic detail to solely account for the collective influence of the modes. With

a very large number of bosons, the mode spacing on the frequency line ωλ should

be very dense, meaning the that following replacement can be made:

∑
λ

−→
∫ ∞

0

dω ρω, (3.28)

where

ρω = tr [δ(ω −HE)] =
∑
λ

δ(ω − ωλ), (3.29)

is the density of states of the environment, i.e. ρωdωλ is defined to give the number

of modes in the interval ωλ to ωλ + dωλ. The conversion in Eq. (3.28) amounts to

replacing every individual oscillator of the environment, centred on the frequency

ωλ, by a continuous band of oscillators spread across a width dωλ. An outcome of

the rotating wave approximation is that it allows us to extend the lower limit of

integration to −∞, ∫ ∞
0

dω ≈
∫ ∞
−∞

dω. (3.30)
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Although this is really a tentative procedure, it is entirely reasonable because the

counter-rotating terms, which we previously ignored, are highly non-resonant at

negative frequencies. Thus the only significant contribution to the integral will be

in the vicinity of ω ≈ ε (ε � 0), meaning that no unphysical effects are added to

the Hamiltonian by extending the frequency range to (−∞,∞). The usefulness of

(3.30) comes about in the weak coupling limit, where the open system dynamics can

be show to follow that of a quantum Markov process [2].

While, on the face of it, the rotating wave approximation seems equivalent the

secular approximation made in section 2.2.3, these are distinguished through the

fact that each can lead to different forms of the master equation—see Ref. [3].

3.1.3 Spectral density and memory effects

By taking the continuum limit (3.28) together with rotating wave approximation

(3.30), we are lead to define the memory kernel of the environment,

f(t− t′) =
∑
k,k′

[
Bk(t), B

†
k′(t
′)
]

=

∫ ∞
−∞

dωJ(ω)e−i(ω−ε)(t−t
′), (3.31)

where we have also introduced the widely recognised spectral density function,

J(ω) =
∑
k,λ

(gk,λ)
2δ(ω − ωλ). (3.32)

Given that the spectral density fully characterises the statistical properties of the

environment [77], the functional form of Eq. (3.32), to a large extent, influences

the dynamics of the open system. In many physical examples of quantum optical

systems, the spectral density is a slowly varying function in frequency. In these

cases the frequency dependence of the parameters gk(ωλ) may be neglected if the

function is reasonably flat over the bandwidth of the coupling. How are these prop-

erties reflected in the memory kernel? Since Eq. (3.31) is the Fourier transform of

J(ω), its inverse width gives an estimate of the correlation time of the environment,

i.e. the timescale by which the memory kernel decays. The original flatness of the

spectral density then provides a time-domain function that is effectively delta cor-

related. This is an important feature seeing as the resulting open system dynamics

is characteristic of white noise process, being inherently Markovian. Hence, we will

tacitly assume a one-to-one correspondence between a “flat spectral density” and a
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Markovian environment.

Conversely, there are instances when the system-environment coupling depends

strongly on the frequency. The previous assumptions inevitably break down, and

memory effects contained within the kernel become highly relevant over the times-

cale by which the open system evolves. Such behaviour is characteristic of a non-

Markovian environment. Clearly, the boundary between Markovian and non-Markov-

ian open quantum system dynamics can be gauged by the amount the spectral dens-

ity depends on frequency. We will refer to an environment as being structured when

the spectral density function does generally depend on frequency to a significant

effect, in the opposite sense to a flat spectral density. Most of the thesis will focus

on instances of non-Markovain behaviour arising from structured environments.

Note the concept of “non-Markovianity” here does not hinge on a strict defini-

tion, and is only used to refer examples where memory effects play a clear role in the

dynamics of the open system, i.e. when the approximations used to derive the per-

turbative master equation are no longer valid. It is, however, worthwhile keeping in

mind that mathematical definitions and quantifiers of non-Markovian processes do

exist based on the notion divisibility of the dynamical map (2.78): see, for example

Refs. [78–80].

3.2 Exact Heisenberg picture dynamics

In this section we review the quantum dynamics arising from the Hamiltonian

(3.9). The most prevalent use of Heisenberg equations of motion as a way to treat

Markovian dynamics is under the input-output formalism [2, 81], which for non-

Markovian systems has been extended in Ref. [82]: other uses in this category

include Refs. [83, 84].

We start by formulating the Heisenberg equation of motion for Â(t) (3.22) using

both open system and environment operators. This is is given by

d

dt
Â(t) = −i

∑
k

([
A(t), L†(t)

]
Bk(t) +B†k(t) [A(t), L(t)]

)
. (3.33)
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Note it is emphasised that  L(t) = U †I (t)L(0)UI(t),

L†(t) = U †I (t)L†(0)UI(t), (3.34)

while A(t) adopts its previous definition from Eq. (3.17). Importantly, this conven-

tion for applying time-dependence to the operators A and L (L†) will be adopted

for the current chapter and chapter 4. The operator Bk(t) reads

Bk(t) =
∑
λ

gk,λak,λ(t)e
−i(ωλ−ε)t, (3.35)

where time-argument on the operator now denotes a Heisenberg picture evolution

with respect to the transformation in Eq. (3.20). A closed form version of (3.33)

is obtained by eliminating the dependence on the environment operators, whose

equations of motion is given by

d

dt
ak,λ(t) = −igk,λei(ωλ−ε)tL(t). (3.36)

Formally integrating the above simply provides

ak,λ(t) = ak,λ(0)− igk,λ
∫ t

0

dt′ei(ωλ−ε)t
′
L(t′), (3.37)

where the result is now substituted into (3.35) to obtain the Heisenberg-Langevin

equation,

d

dt
Â(t) =

[
A(t), L†(t)

](
ξ(t)−

∫ t

0

dt′f(t− t′)L(t′)

)
+

(
ξ†(t)−

∫ t

0

dt′f ∗(t− t′)L†(t′)
)

[L(t), A(t)] , (3.38)

with ξ(t) defined as

ξ(t) = −i
∑
k,λ

gk,λak,λ(0)e−i(ωλ−ε)t. (3.39)

It can be seen that the original equation of motion for A(t) now only depends the

operators of the environment at the initial time t = 0. Additionally, the memory

kernel appears in the form

f(t− t′) =
∑
k,λ

(gk,λ)
2e−i(ωλ−ε)(t−t

′). (3.40)

In Eq. (3.38), the integration over the past times makes it apparent that the memory

kernel relates the current dynamics to the delayed back-action that the system
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receives from coupling to the environment modes. This suggests an equation of

integro-differential must be what describes a non-Markovian process. However, as

discussed in section 2.3.1, in certain situations the master equation associated with

(3.38) can be expressed in an approximate or even exact form which is local in time

and captures the non-Markovian response of the system [85].

It is instructive to also derive an additional set of equations for the open system

in terms of the operator L(t). This is done by substituting A for each of these oper-

ators in Eq. (3.38): however, it is apt to have a consistent definition of the system

operators in the rotating frame on both sides of the equation. For example, take

A = L:

A(t) = U †I (t)
[
U †0(t)L(0)U0(t)

]
UI(t) = L(t)e−iεt, A = L. (3.41)

Assuming a rotating frame of reference, the lefthand side of the equation for dtA(t)

can be computed using (3.21),

d

dt
Â(t) =

d

dt

(
e−iεtL(t)

)
+ iε e−iεtL(t)

= e−iεt
d

dt
L(t). (3.42)

Plugging this into Eq. (3.38) then yields the aforementioned quantum Langevin

equation for L(t):
d

dt
L(t) =

[
L(t), L†(t)

]
B(t), (3.43)

with B(t) conveniently defined from

B(t) =
∑
k

Bk(t) = ξ(t)−
∫ t

0

dt′f(t− t′)L(t′). (3.44)

The Heisenberg-Langevin equation can now be expressed as

d

dt
Â(t) =

[
A(t), L†(t)

]( d

dt
L(t)

)
+

(
d

dt
L†(t)

)
[L(t), A(t)] , (3.45)

where the dependence on the time convolved terms has been implicitly removed.

By writing (3.33) solely in terms of the system operators and their time derivatives,

it is clear that in order for the Heisenberg-Langevin equation to hold a time-local

form, then so must the quantum Langevin equations.

So far, we have made no approximations in the derivation of the Heisenberg-

Langevin equation and therefore it is exact, along with the dynamical equations for

the coupling operators. We shall return to (3.43) and (3.45) during chapter 4 to

formulate the non-Markovian dynamics of the relevant model.
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3.3 The weak-coupling limit

The procedure detailed in Refs. [86, 87] makes use of the linear property of the

Langevin equations to obtain their exact solutions, which are then used to rewrite

the original differential equations for L(t) [and L†(t)] in time-local form. The precise

steps do not make explicit use of spectral density, and so the equations generally

admit a kernel that can lead to non-Markovian behaviour. At the moment it is

enough for us to resort to the Born-Markov approximations to evaluate the memory

kernel explicitly, and as a result, place (3.43) in its destined form. We will go on to

use the quantum Langevin equation to reproduce the Markovian master equation

for an open bosonic system.

3.3.1 The Born-Markov approximations

Here, the spectral density function is taken to vary negligibly with respect to changes

in frequency, and for all purposes is flat. The quantum Langevin equations can then

be amended by use of the Markov approximation. Prior to this, we first make a

change of variable to τ = t− t′ in Eq. (3.44), such that

B(t) = ξ(t)−
∫ t

0

dτf(τ)L(t− τ). (3.46)

The arguments of section 3.1.3 suggest the kernel is sharply peaked at the origin

τ = 0, but will eventually decline at a rate much faster than any timescale over

which the system evolves. If γ sets the frequency scale at which the open system

decays, i.e. in (2.66), then memory effects contained within f(τ) may be neglected

under the assumption
1

ε
� t� 1

γ
, (3.47)

given this defines the weak coupling limit of the interaction. Equation (3.47) then

provides the same level of approximation we previously encountered when assuming

a large separation of timescales (2.42) in time-dependent perturbation theory. Again,

the environment can be assumed to evolve negligibly from its initial state. Since the

component freely evolving at the frequency ε has been extracted from the system

operators, the term L(t − τ) evolves on a timescale characterised solely by 1/γ.

From Eq. (3.47), this occurs slowly with respect to changes in the memory kernel
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(dictated by τ) and so the operator essentially remains static under the integral.

We can then write [3], ∫ t

0

dτf(τ)L(t− τ) ≈ L(t)

∫ t

0

dτf(τ). (3.48)

From the reasoning outlined above, the righthand side of the equation will vary

slowly with respect to changes in τ . The region of integration can then be safely

extended by taking the limit t→∞, see Eq. (2.43). This leaves us to evaluate the

integral over exp [±i(ω − ε)τ ] as the dominant contribution towards the memory

kernel. To do so, we make use of the formula

lim
t→∞

1

π

∫ t

0

dτ e−i(ω−ε)τ = δ(ω − ε) +
i

π
P.V.

1

ε− ω , (3.49)

where P.V. indicates the principal value of a function y(x) across an interval −a ≤
y(x) ≤ a, using the following definition (|b| < |a|) [4]:

P.V. y(x) = lim
δ→0+

[∫ b−δ

−a
dx′y(x′) +

∫ a

b+δ

dx′y(x′)

]
. (3.50)

Now, by substituting the above into Eq. (3.48) we can read off the real and imaginary

parts of the memory kernel:

Re [f(t− t′)] =

∫ ∞
−∞

dωJ(ω) cos[(ω − ε)t] = πJ(ε), (3.51)

Im [f(t− t′)] =

∫ ∞
−∞

dωJ(ω) sin[(ω − ε)t] = P.V.

∫ ∞
−∞

dω
J(ω)

ε− ω . (3.52)

Based on the frequency independence of the coupling constants gk,λ, it is convenient

for us to make the following replacement,

gk,λ −→ gk,ε =

√
γk∆ωε

2π
, (3.53)

typically known under the first Markov approximation [2, 63]). This in turn provides

J(ε) =
∑
k

(gk,ε)
2 ρε =

γ

2π
, (3.54)

having identified the collective decay rate γ =
∑

k γk. Finally, inserting the real and

imaginary components of f(t− t′) into Eq. (3.44), we find

B(t) = ξ(t) +
(
−i∆− γ

2

)
L(t), (3.55)
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where

∆ = P.V.

∫ ∞
−∞

dω
J(ω)

ε− ω . (3.56)

The quantum Langevin equation now becomes

d

dt
L(t) =

[
L(t), L†(t)

] {(
−i∆− γ

2

)
L(t) + ξ(t)

}
, (3.57)

One notices that (3.57) is local in time, which indicates the system dynamics retains

no memory of its previous state. This results from direct use of the weak coupling

approximations.

The physical effect of each the terms in the curly brackets is briefly considered.

Firstly, the term with an imaginary coefficient (3.52) indicates a renormalisation in

the energy levels of the open system by an amount ∆. The Lamb shift generally only

has quantitive importance to the dynamics and can in fact be removed altogether

via an additional transformation into a new rotating frame. Secondly, the real

term (3.51) accounts for losses via the damping effect of the environment. The full

dissipative effect of the environment is connected to the individual rates

γk = 2π(gk,ε)
2ρε, (3.58)

which are consistent with the emission rates obtained from applying Fermi’s Golden

rule. The last term ξ(t), and its adjoint, act as a random noise that provide instant-

aneous “kicks” to the system during the course of its evolution.

3.3.2 Markovian master equation

Before substituting (3.57) into the Heisenberg-Langevin equation, we impose a bo-

sonic relation on the open system,

[L,L†] = 1, (3.59)

where the equal-time commutator is stationary, i.e. [L(t), L†(t)] = 1. It may appear

that, by imposing Eq. (3.59), the Heisenberg-Langevin equation will have restricted

use with (3.9). While this is certainly true, we will discover that the relation is a ne-

cessary condition to derive the quantum optical master equation and unfortunately

constitutes a drawback of the current approach. From (3.57) and (3.38), we now
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obtain

d

dt
Â(t) =

(
−i∆− γ

2

) [
A(t), L†(t)

]
L(t) +

(
i∆− γ

2

)
L†(t)[L(t), A(t)]

+
[
A(t), L†(t)

]
ξ(t) + ξ†(t) [L(t), A(t)] . (3.60)

Expanding the commutators in the first line of Eq. (3.60) provides the alternative

form

d

dt
Â(t) = −i∆

[
A(t), L†(t)L(t)

]
+ γ

(
L†(t)A(t)L(t)− 1

2

{
A(t), L†(t)L(t)

})
+ ξ†(t) [L(t), A(t)] +

[
A(t), L†(t)

]
ξ(t), (3.61)

where, by taking the expectation value of Eq. (3.61), it is finally left to consider

d

dt
〈Â〉t = −i∆

〈 [
A(t), L†(t)L(t)

] 〉
+ γ

(〈
L†(t)A(t)L(t)

〉
− 1

2

〈{
A(t), L†(t)L(t)

}〉)
+
〈
ξ†(t) [L(t), A(t)]

〉
+
〈 [
A(t), L†(t)

]
ξ(t)

〉
. (3.62)

Our task is to extract out moments from the last line of the equation in a way that

is consistent with the Gorini-Kossakowski-Sudarshan-Lindblad theorem (2.75). Let

us first inspect: 〈
ξ†(t) [L(t), A(t)]

+
[
A(t), L†(t)

]
ξ(t)

〉
 =

〈
ξ†(t)L(t)A(t)

〉
+
〈
A(t)L†(t)ξ(t)

〉
−
〈
L†(t)A(t)ξ(t)

〉
−
〈
ξ†(t)A(t)L(t)

〉
. (3.63)

By writing the Hamiltonian as HI(t) → gHI(t) [1], the equation is read as a per-

turbative expansion in powers of the coupling constant g, given the strength of the

system-environment coupling is assumed to be weak (i.e. the Born approximation).

Equally, we can go on to consider the plausibility of de-correlating system and en-

vironment operators, so as to place (3.62) in a simpler form. In more precise terms,

we examine under what conditions is it sufficient to write

〈O1
S(t)O2

S(t) . . . O1
E(t)O2

E(t) . . . 〉 ≈ 〈O1
S(t)O2

S(t) . . . 〉〈O1
E(t)O2

E(t) . . . 〉, (3.64)

for a collection of arbitrary system and environment operators. The above ignores

modifications to the system dynamics that arise—let’s say, on a characteristic times-

cale τB, when the system and environment are assumed to be in a correlated state.
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Assuming this time is much smaller than any interval dt by which A(t) appreciably

changes, i.e. A(t + dt) ≈ A(t) + dA
dt
dt, the validity of (3.64) falls at the same level

as the Born approximation. However, bear in mind this will only yield the correct

dynamical result subject to taking the correct order of approximation [88].

Immediately factorising (3.63) provides first-order terms proportional to the av-

erage of the noise operator. In what follows the environment is assumed to be in

thermal equilibrium with the system, such that ρE is given by

ρE =
1

ZE
exp

[
−
∑
k,λ

βk (ωλ − µk) a†k,λak,λ
]
, (3.65)

with

ZE = ZE1ZE2 . . . = tr

{∏
k,λ

exp
[
−βk (ωλ − µk) a†k,λak,λ

]}
(3.66)

the partition function of the grand canonical ensemble. The parameters βk = T−1
k

and µk are the inverse temperature (Tk) and chemical potential of the k sub-

environment, respectively (kB = 1). From the Gaussian property of ρE, we have

〈ξ(t)〉E = tr [ξ(t)ρE] = 0, (3.67)

meaning the first order contributions vanish for a thermal environment. This can

be shown by taking the above trace using the Fock states of HE. Notice as well that

(3.67) can always be satisfied under the assumption trE [HI(t), ρ(0)] = 0 (2.44),

and is subsequently vital to ensuring a master equation independent of the density

matrix ρ(0) [see Eq. (2.66)].

To continue to the next order of iteration, we return to the quantum Langevin

equations and solve for L(t) and its adjoint directly, which are then placed back into

Eq. (3.63). We note that because the commutator of these operators is a scalar,

the Langevin equation is guaranteed to be a first-order differential equation. The

pertinence of this feature is that Eq. (3.57) admits the general solution

L(t) = G(t)L(0) + F (t), with G(0) = 1 and F (0) = 0. (3.68)

If Eq. (3.59) does not hold, the equations will typically be non-linear in system

operators and will thus be impossible to solve analytically. The precise form of L(t)

is found by differentiating the above and substituting the result into the quantum
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Langevin equation:

Ġ(t)/G(t) =
(
i∆− γ

2

)
, Ḟ (t) =

(
i∆− γ

2

)
F (t) + ξ(t). (3.69)

These are readily solved to give

L(t) = ei∆t−γt/2L(0) + (G ∗ ξ)(t), (3.70)

where the convolution F (t) = (G ∗ ξ)(t) is defined from

(G ∗ ξ)(t) =

∫ t

0

dt′G(t− t′)ξ(t′) =

∫ t

0

dt′G(t′)ξ(t− t′). (3.71)

Since Eq. (3.70) is linear in the coupling strength, by substituting the solution to

L(t) into Eq. (3.63), we obtain

g
〈
ξ†(t)L(t)A(t)

〉
= g ei∆t−γt/2

〈
ξ†(t)L(0)A(t)

〉
+ g2

〈
ξ†(t)F (t)A(t)

〉
, (3.72)

which is similarly performed with the other averages, e.g.
〈
A(t)L†(t)ξ(t)

〉
. The first-

order terms will vanish when factorising out either 〈ξ(t)〉 or 〈ξ†(t)〉, which suitably

removes the influence of the noise operator at time t on the system operator at t = 0.

Then, it is clear that we are only left to deal with second order contributions. Since

the Markovian master equation in (2.66) is also evaluated to second order, it now

makes sense at this stage to proceed with de-correlating each of the terms in (3.63).

It is implied through Eq. (3.1) that each A(t) translates into a factor of ρS(t) in

the master equation. We foresee that the resulting master equation is therefore not of

Lindblad form and so violates the positivity of the system density matrix. Indeed,

making the decorrelation
〈
ξ†(t)F (t)A(t)

〉
≈
〈
ξ†(t)F (t)

〉
〈A(t)〉 leaves a factor of

〈A(t)〉, which includes none of the necessary coupling operators L,L†. To work

around this issue we can attempt to rewrite Eq. (3.63) into a similar structure to

the top line of (3.62). As an expedient method, the commutator [L(t), L†(t)] = 1 is

inserted into each of the averages in a way that permits us to systematically factor

out the environment operators from the righthand side of (3.72), and the like, to

obtain the desired result. A working solution is found to yield the following: 〈
ξ†(t) [L(t), A(t)]

〉
+
〈[
A(t), L†(t)

]
ξ(t)

〉
 = g2C(t)

( 〈
L†(t)A(t)L(t)

〉
+
〈
L(t)A(t)L†(t)

〉 )
− g2

〈
ξ†F

〉
t

( 〈
A(t)L†(t)L(t)

〉
+
〈
L(t)L†(t)A(t)

〉 )
− g2

〈
F †ξ

〉
t

( 〈
L†(t)L(t)A(t)

〉
+
〈
A(t)L(t)L†(t)

〉 )
+O(g3), (3.73)
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where the real quantity C(t) is defined as

C(t) = 〈ξ†F 〉t + 〈F †ξ〉t. (3.74)

We now go about evaluating the moments using the Gibbs state (3.65). Firstly, by

substituting ξ(t) and F (t) from (3.39) and (3.71) into the above, we obtain

〈ξ†F 〉t =

∫ t

0

dt′G(t− t′)

×
∑

k′,k,λ′,λ

gk′,λ′gk,λ〈a†k′,λ′ak,λ〉∗exp [i(ωλ − ε)t− i(ωλ′ − ε)t′] , (3.75)

and

〈F †ξ〉t =

∫ t

0

dt′G∗(t− t′)

×
∑

k′,k,λ′,λ

gk′,λ′gk,λ〈a†k′,λ′ak,λ〉exp [−i(ωλ − ε)t+ i(ωλ′ − ε)t′] , (3.76)

which is consistent with 〈ξ†F 〉t = 〈F †ξ〉∗t and C(t) = 2 Re
[
〈ξ†F 〉t

]
. By using the

identity

〈a†k′,λ′ak,λ〉 = δk,k′δλ,λ′n̄(ωλ), (3.77)

Eqs. (3.76) and (3.75) can be expressed in terms of the correlation function:

αβ(t− t′) =
∑
k,k′

〈
B†k(t)Bk′(t

′)
〉

=

∫ ∞
−∞

dωJ(ω)n̄(ω)e−i(ω−ε)(t−t
′), (3.78)

where again the quantity n̄(ω) is the Bose-Einstein distribution of the environment.

Since each of the sub-environments are held at the same (inverse) temperature β

and chemical potential µ, then

n̄(ω) =
1

eβ(ω−µ) − 1
. (3.79)

In turn the function C(t) is given by

C(t) =

∫ t

0

dt′ [G∗(t− t′)αβ(t− t′) + c.c] . (3.80)

It is tempting to re-use the argument of the last section which justified taking

the limit t → ∞. However, this would cancel the integral due to the presence of

G(t − t′). To simplify Eq. (3.80) in line with the Born-Markov criteria we look

at the correlation function instead. Again, because Eq. (3.79) varies slowly with

respect to the oscillatory term, only its value at ω ≈ ε is relevant as the integral



46

will average to zero quickly at any reasonable distance from this point. Thus the

correlation function reduces to

αβ(t− t′) ≈ γn̄ε
2π

∫ ∞
−∞

dω e−i(ω−ε)(t−t
′), (3.81)

where n̄ε = (exp [β(ε− µ)]− 1)−1. Now using the definition of the delta function

δ(t− t′) =

∫ ∞
−∞

dx

2π
e−ix(t−t′), (3.82)

and with a change of variable x = ω − ε, Eq. (3.81) becomes

αβ(t− t′) = γn̄ε δ(t− t′), (3.83)

which produces the delta correlated noise source characteristic of a Markovian en-

vironment [2]. In turn,
〈
ξ†F

〉
t

=
〈
F †ξ

〉
t

= γn̄ε/2, where the factor of a half arises

because the delta function is on the boundary of the integration region. The full

second-order contributions to Eq. (3.62) are given by 〈ξ†(t) [L(t), A(t)]〉
+〈
[
A(t), L†(t)

]
ξ(t)〉

 = γn̄ε

( 〈
L†(t)A(t)L(t)

〉
+
〈
L(t)A(t)L†(t)

〉 )
− γ

2
n̄ε

( 〈
A(t)L†(t)L(t)

〉
+
〈
L(t)L†(t)A(t)

〉
+
〈
L†(t)L(t)A(t)

〉
+
〈
A(t)L(t)L†(t)

〉 )
.

(3.84)

Putting all of this together provides

d

dt
〈Â〉t = −i∆

〈 [
A(t), L†(t)L(t)

] 〉
+ γ(n̄ε + 1)

(〈
L†(t)A(t)L(t)

〉
− 1

2

〈{
A(t), L†(t)L(t)

}〉)
+ γn̄ε

(〈
L(t)A(t)L†(t)

〉
− 1

2

〈{
A(t), L(t)L†(t)

}〉)
. (3.85)

The Heisenberg-Langevin equation has now been simplified to a time-local form,

expressed only in terms of system operators. This fulfils the precondition attached

to the use of Eq. (3.1), and therefore we may to transform Eq. (3.85) to the

equivalent master equation.

First, we shift the time dependence from A(t) onto the density matrix ρS, and

use the cyclic property of the trace to move A so that it’s positioned on the left

most side of the trace. By then inserting the identity U †0U0 = U0U
†
0 = 1 between

operators we obtain terms like trS[ALρS(t)L†]. Before we can consistently read of

the master equation from Eq. (3.85), the same must also be done with the rotating
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frame term (3.19) contained in dtÂ(t). How this will modify the resulting master

equation can be worked out by taking its expectation value:〈
∂A	
∂t

〉
t

= tr

[
U †I (t)

∂A0(t)

∂t
UI(t)ρ

]
= trS

[
∂A0(t)

∂t
ρIS(t)

]
. (3.86)

For a generic system operator A0(t) = eiHStAe−iHSt, we find

trS

[
∂A0(t)

∂t
ρIS(t)

]
= −i trS

{
A [HS, ρS(t)]

}
, (3.87)

which simply generates the fast unitary evolution associated with the system Hamilto-

nian HS. Note that this term can easily be removed from the original von Neumann

equation (2.30) via the transformation to the interaction picture (c.f. section 2.1.3).

With this in mind, if we write each of the averages in Eq. (3.85) into the form

〈A(t)(. . . )〉t = trS[A0(t)(. . . )] and define ρIS(t) = U †0(t)ρS(t)U0(t) (2.32), such that

d

dt
〈A〉t =

d

dt
trS
[
A0(t)ρIS(t)

]
= trS

[
A0(t)

d

dt
ρIS(t)

]
− i trS

{
A [HS, ρS(t)]

}
, (3.88)

then the last term in the above cancels with (3.87) in the Heisenberg-Langevin

equation. Since the resulting equation is of closed form (achieved through inserting

the identity where necessary), we can now read off the interaction picture master

equation

d

dt
ρIS(t) = −i∆

[
L†L, ρIS(t)

]
+ γ(n̄ε + 1)

(
LρIS(t)L† − 1

2

{
L†L, ρIS(t)

})
+ γn̄ε

(
L†ρIS(t)L− 1

2

{
LL†, ρIS(t)

})
. (3.89)

It is easy enough to derive the Schrödinger picture master equation by taking the

time derivative of ρIS(t) [c.f. (2.68)]:

d

dt
ρIS(t) = i [HS, ρS(t)] + U †0(t)

(
d

dt
ρS(t)

)
U0(t). (3.90)

Clearly, if we substitute this into (3.89) and rewrite the right side of the equation

to only be in terms of the density operator ρS(t) (again by inserting the identity),

we finally retrieve the Schrödinger picture master equation

d

dt
ρS(t) = −i∆′

[
L†L, ρS(t)

]
+ γ(n̄ε + 1)

(
LρS(t)L† − 1

2

{
L†L, ρS(t)

})
+ γn̄ε

(
L†ρS(t)L− 1

2

{
LL†, ρS(t)

})
, (3.91)
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where

∆′ = ε+ ∆. (3.92)

Note the system Hamiltonian is diagonal in the operators L and L†, i.e. HS = εL†L,

since L and L† fulfil the eigenoperator relations (3.11) and (3.12). Our result is con-

sistent with the Markovian master equation obtained for a single harmonic oscillator.

We emphasise this as a direct consequence of the bosonic relation imposed in Eq.

(3.59) and reflects a particular realisation of microscopic equation (2.66).

It’s conclusive to say the method used to derive (3.85) has the potential to

produce a valid phenomenological master equation, assuming a weak harmonic in-

teraction HI between the open system and the environment. We shall go on to

examine how ideas of this chapter can be applied to more complicated examples

which cannot be treated under the same perturbative assumptions.

3.4 Summary

In this chapter, we have worked through a derivation of the Heisenberg and quantum

Langevin equations, starting with a generic form of the Hamiltonian in Eq. (3.9)

for a quantum optical system in the non-Markovian regime. The utility of the

Heisenberg-Langevin equation is that it acts as a gateway to an equivalent master

equation description, as was established via the connection between the two pictures

in Eq. (3.1). Importantly, it was found that the quantum Langevin equations must

hold a time-local form, in any case, for a direct mapping to be possible.

In the forthcoming chapter we will consider specific examples of systems which

generally exhibit non-Markovian behaviour. Since the Born-Markov approximations

are no longer applicable, we shall rely of a class of methods that allows us include

memory effects into the system dynamics by enlarging the open system of modes

of the environment. The practicality of these methods lies in the fact the enlarged

system is Markovian, and so techniques of this chapter can still be used to construct

a master equation of Lindblad form, similar to (3.91), but valid in the case of strong

system-environment interactions.
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Part III

Non-Markovian quantum

dynamics of structured

environments
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Chapter 4

Non-Markovian decay into a

one-dimensional chain

As part of the last chapter we derived the exact quantum Langevin equations, which

generally incorporate non-Markovian effects into the evolution of the open system

operators. Beyond treating the dynamics under the Markov approximation the

equations are mostly unwieldy to handle because of their time-convolved form. To

circumvent this issue, in the current chapter we present a transformation that maps

the original modes of the environment to a one-dimensional chain of harmonic os-

cillators with nearest neighbour interactions, following the techniques outlined in

Refs. [89–92]. The motivation for using this transformation stems from the free-

dom it provides to partition the original environment into two parts: one part being

given by an truncated chain—a small number of auxiliary modes—whose end in-

teracts directly with the open system, and the other remaining part being a large

Markovian bath.

The chain representation produces an intuitive physical picture where the coup-

ling with the auxiliary modes introduces memory effects into the open system dy-

namics. This is important, as it suggests a natural compatibility with embedding

methods. These methods involve systematically adding some auxiliary degrees of

freedom into the system, i.e. the chain modes, as a way to make the enlarged system

dynamics Markovian. Here, we shall focus on applying the techniques of the pseudo-

mode method within the setting of the chain model. With the original method, the

pseudomodes adopt the role of auxiliary variables based on the identification of an
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auxiliary equation of motion, which can subsequently be used to derive a Markovian

master equation for the enlarged system. In short, their conception is different to

the (auxiliary) chain modes, in that they are connected directly to the poles of the

spectral density when analytically continued to the complex plane. It is then of

interest to see if such a “hybrid” method can be developed by combining the two

paradigms.

Our overall aim is to exploit the chain representation, using the Heisenberg form-

alism, as a way to derive an auxiliary equation of motion—like that obtained using

the pseudomode method—but with the advantage of being more general than the

single excitation case of Ref. [41]. To achieve this, we formally expand the original

set of dynamical equations of the open system to include those of an auxiliary set

of harmonic oscillator(s) of the chain environment. We shall see that the auxiliary

equation adopts the same role as quantum Langevin equation(s), and, as such, can

be used with the Heisenberg-Langevin equation to derive an exact non-perturbative

master equation for the enlarged system (the open system plus chain oscillators).

First, we introduce the details of the transformation and illustrate how it leads to

a chain representation of the environment. This is, in part, to establish conventions

with the reader. Next we formulate the Heisenberg and quantum Langevin equations

for a two-level system, which are used to identify the auxiliary (pseudomode) equa-

tion. We go onto interpret our results within the framework of a bipartite system

being damped by a homogenous tight-binding chain. This culminates in the deriv-

ation of the Markovian master equation for the enlarged system using the method

set out in section 3.3.2. Finally, we discuss applications to systems of interest:

specifically, the multiple excitation case and the driven qubit.

4.1 Chain transformation

We begin by considering a transformation to a new collective set of operators bn

(b†n), defined in terms of the bosonic operators aλ (a†λ):

bn =
∑
λ

Uλ,naλ, (4.1)

b†n =
∑
λ

Uλ,na
†
λ, (4.2)
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where Uλ,n comprise the elements of some transformation matrix U . The above can

be more conveniently written using the compact notation,

~b = U~a (4.3)

(~b)∗ = U(~a)∗, (4.4)

where ~a = (a0, a1, . . . )
T and ~b = (b0, b1, . . . )

T are column vectors of the annihila-

tion operators. These similarly define the vectors containing the creation operators

(~a)∗ = (a†0, a
†
1, . . . )

T and (~b)∗ = (b†0, b
†
1, . . . )

T .

To ensure the canonical bosonic commutation relation of Eq. (3.8) is preserved,

the transformation matrix has to satisfy the dual orthogonality property

U †U = UU † = 1, (4.5)

which, at this point, is the only constraint imposed upon (4.3). Here, we adopt

the transformation initially proposed in Ref. [89], which parameterises the matrix

elements Uλ,n as follows:

Uλ,n = δλ,λ′
g̃λ′πn(kλ′)

ρn
=
g̃λπn(kλ)

ρn
. (4.6)

Here, πn(kλ) are discrete monic orthogonal polynomials [93], g̃λ = g̃(kλ) is a dimen-

sionless coupling strength, and ρn a normalisation constant. Both πn(kλ) and g̃λ are

functions of a dimensionless variable kλ ∈ (−1, 1), which we will detail shortly. The

polynomials hold the generic form

πn(kλ) =
n∑

m=0

cm(kλ)
m = (kλ)

n + cn−1(kλ)
n−1 + . . . n = 0, 1, 2 . . . , (4.7)

where n indicates the order of the polynomial and cm ≥ 0 are real expansion coeffi-

cients. The fact that the coefficient of the leading order term is cn = 1 defines the

monic property of the polynomial, although this is a matter of choice and not of

direct importance.

Since the transformation matrix has been fixed, it is instructive to first develop

its use from the commutator [bn, b
†
n′ ], where[

bn, b
†
n′

]
=
∑
λ,λ′

Uλ,nUλ′,n′
[
aλ, a

†
λ′

]
=
∑
λ

UT
n,λUλ,n′

=
1

(ρn)2

∑
λ

(g̃λ)
2πn(kλ)πn′(kλ). (4.8)
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By construction, the bottom line of Eq. (4.8) assumes the orthogonality property:∫ 1

−1

dk J̃(k)πn(k)πn′(k) = (ρn)2δn,n′ , (4.9)

which subsequently yields the correct commutation relation [bn, b
†
n′ ] = δn,n′ . Note

that we have provided the continuous polynomials πn(k) and spectral density

J̃(k) =
∑
λ

(g̃λ)
2δ(k − kλ), (4.10)

by taking the appropriate continuum limit [Eq. (3.28)]: we shall generally impose

a continuum of modes as a way to remove finite size effects of the environment

and introduce irreversible open syetem dynamics. In turn, the dual orthogonality

property of the real matrix U is guaranteed through an equivalent formulation of

(4.9) [93], ∑
n

1

(ρn)2
πn(kλ)πn(kλ′) =

1

(g̃λ)2
δλ,λ′ , (4.11)

which we can then use to immediately define the inverse transformation,

aλ =
∑
n

Uλ,nbn,

a†λ =
∑
n

Uλ,nb
†
n,

(4.12)

where ~a = UT~b and (~a)∗ = UT (~b)∗. It is a straightforward procedure to show that

[aλ, a
†
λ′ ] = δλ,λ′ by making direct use of Eq. (4.11).

To now tie things together one has to specify the relation between the variable

kλ to the mode frequencies ωλ, i.e. a one-to-one mapping ωλ = ω(kλ), so that the

transformation is consistent with the original Hamiltonian and spectral density. The

Hamiltonian from Eq. (3.27)—in a non-rotating frame of reference—should hold the

form [94]

H = HS +
∑
λ

ω(kλ)a
†(kλ)a(kλ) +

∑
λ

g(ω(kλ))
(
L†a(kλ) + a†(kλ)L

)
, (4.13)

where it is left to find explicit expressions for ω̃λ = ω̃(kλ) (i.e. a scaled kλ-space

frequency) and g̃λ = g̃(kλ). For simplicity, we set a linear relation ω̃λ = kλ =

ωλ/ωc, where ωc is a maximum cut-off frequency that restricts the spectrum of the

environment modes to the interval (−ωc, ωc). Essentially, this follows by making the

replacement

J(ω) −→ J(ω) [θ(ω − ωc)− θ(ω + ωc)] , (4.14)
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where a finite support is necessary in most cases to guarantee convergence of the

integral in Eq. (4.9). Notice we are also still assuming a symmetric range over

negative frequencies through working in the quantum optical regime. We can figure

out how the spectral density J̃(k) relates to the original function J(ω) by looking

the definition in Eq. (3.32). Using the identity,

δ(ω − ωλ) =
1

ωc
δ(k − kλ), (4.15)

the coupling parameters are

g(ω(kλ)) =
√
ωcJ(ω(kλ))dk, (4.16)

where dk is the spacing between individual modes on the k-axis. Here we have

extracted the ω-dependence of the spectral density J(ωλ) = (gλ)
2ρλ onto the coup-

lings—that is, basically, assuming a constant density of states. Since there are many

possible factorisations of gλ and ρλ which give the same spectral density, we have

the freedom to adopt a convenient definition of gλ (ρλ) to help in mapping the

Hamiltonian in Eq. (4.13) to the original1. This freedom is also extended to how

ωλ is parameterised. Indeed, by choosing ωλ = ωckλ and extracting the form of

the spectral density onto g(ω(kλ)), we have shown via (4.15)-(4.16) that the mode

structure of the environment is invariant under a uniform scaling of the frequencies;∫
dωρω =

∫
dkρk, (4.17)

where the integral is taken over the same interval. To then re-produce a definition

of g̃(kλ) that is consistent with (4.10), i.e. from (g̃(kλ))
2 = J̃(kλ)dk, one chooses

J(ω(k)) = ωc J̃(k), (4.18)

such that the coupling variables are related through g̃(kλ) = g(ω(kλ))/ωc.

We now go on to detail some of the features of Eq. (4.6) that have later relevance

in transforming the Hamiltonian (3.9) onto a chain structure.

1Formally, for an environment that is initially in Gaussian state, the dynamics of the open

system is entirely encoded in spectral density [76]. Therefore changing the spectral parameters in

a way that leaves J(ω) fixed does not alter the underlying physics of the problem.
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4.1.1 Properties of orthogonal polynomials

A defining feature of the polynomials in Eq. (4.7) is that they satisfy a three-term

recurrence property:

πn+1(k) = (k − αn)πn(k)− βnπn−1(k), n = 0, 1, 2, . . . , (4.19)

with the universal boundary conditions π−1(k) = 0 and π0(k) = 1. We also introduce

what are known as the recurrence coefficients of the polynomials,

αn =
1

(ρn)2

∫ 1

−1

dk J̃(k)k πn(k)πn(k), n = 0, 1, 2, . . . , (4.20)

βn =
1

(ρn−1)2

∫ 1

−1

dk J̃(k)πn(k)πn(k), n = 1, 2, . . . , (4.21)

with

ρ2
n =

∫ 1

−1

dk J̃(k)πn(k)πn(k). (4.22)

The coefficients αn and βn are obtained in a similar recursive fashion to the polyno-

mials πn(k), which are constructed via application of the Gram-Schmidt orthogon-

alisation procedure. Since π0(k) is defined arbitrarily in Eq. (4.19), we are able to

freely choose the definition of β0. It is typically convenient to employ

β0 =

∫ 1

−1

dk J̃(k). (4.23)

Moreover, the spectral density J̃(k) is said to belong to the Szegö class of measures

if the following holds: ∫ 1

−1

dk
ln J̃(k)√

1− k2
> −∞. (4.24)

An important aspect of this class lies in the asymptotic properties of the recurrence

coefficients. In the limit n→∞, the coefficients αn and βn converge to [93]

lim
n→∞

αn = 0, lim
n→∞

βn =
1

4
. (4.25)

While (4.24) will not be systematically checked against examples we go onto con-

sider, the condition is known to be fulfilled for a wide range of spectral functions—in

particular, those positive in the interval k ∈ (−1, 1). This only places a mild con-

straint on the use of the mapping, and as such, J̃(k) is assumed to comply with

(4.24) in the future case we consider.
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4.1.2 System-environment representation

Here we recapitulate steps taken in Refs. [89, 92] to derive the new form of the

Hamiltonian (4.13) in a representation provided by Eqs. (4.3), making use of the

properties outlined in the last subsections. We start by applying the transformation

(4.12) to the interaction term HI :

HI =
∑
λ

gλ

(
L†aλ + a†λL

)
=
∑
n

∑
λ

gλg̃λ
ρn

(
πn(kλ)L

†bn + h.c.
)

= ωc
∑
n

∑
λ

(g̃λ)
2

ρn

(
πn(kλ)π0(kλ)L

†bn + h.c.
)
,

(4.26)

where taking the continuum limit through
∑

λ →
∫
dkρk gives

HI = ωc
∑
n

1

ρn

∫ 1

−1

dk J̃(k)
(
πn(k)π0(k)L†bn + h.c.

)
. (4.27)

Employing the orthogonality criterion (i) then results in

HI = ωc
∑
n

(ρ0)2

ρn
δ0,n

(
L†bn + b†nL

)
= ωcρ0

(
L†b0 + b†0L

)
. (4.28)

Clearly from (4.23), ρ0 =
√
β0. For the bare Hamiltonian of the environment we

apply a similar procedure:

HE =
∑
λ

ωλa
†
λaλ

= ωc
∑
λ

∑
n,n′

kλUλ,nUλ,n′b
†
nbn′ = ωc

∑
n,n′

1

ρnρn′

∫ 1

−1

dk J̃(k)k πn′(k)πn(k)b†nbn′ ,

(4.29)

at which point we use the three-term recurrence relation (ii) to substitute in for

kπn(k),

HE = ωc
∑
n,n′

1

ρnρn′

∫ 1

−1

dk J̃(k)
[
πn+1(k) + αnπn(k) + βnπn−1(k)

]
πn′(k)b†nbn′

= ωc
∑
n,n′

1

ρnρn′

∫ 1

−1

dk J̃(k)
[
πn+1(k)πn′(k) + αnπn(k)πn′(k) + βnπn−1(k)πn′(k)

]
b†nbn′ .

(4.30)

Again, by orthogonality (4.9), the above reduces to the final form

HE = ωc
∑
n

(√
βn+1b

†
nbn+1 + αnb

†
nbn +

√
βn+1b

†
n+1bn

)
, (4.31)
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Figure 4.1: Schematic picture of the system-environment model before after apply-

ing the transformation U . (a) Shows a quantum system interacting with a bosonic

environment with couplings gλ and oscillator frequencies ωλ. (b) Depicts an equival-

ent representation, where the quantum system couples to a 1D chain of oscillators

with frequencies εn and inter-site couplings λn. The coupling to first mode is denoted

g.

where we have used that
√
βn+1 = ρn+1/ρn from Eq. (4.21). The labels in the

last summation are also shifted by n → n + 1 as the first term in the sum is zero

(π−1(k) = 0). The global post-transform Hamiltonian then reads

H = HS + g
(
L†b0 + b†0L

)
+
∑
n

(
λnb

†
nbn+1 + εnb

†
nbn + λnb

†
n+1bn

)
, (4.32)

where we have introduced the parameters

εn = ωcαn, λn = ωc
√
βn+1, n = 0, 1, 2, . . . , (4.33)

corresponding to the site energies and couplings between modes, respectively. Over-

all, based on the resulting structure of Eq. (4.32), we have shown the original

bosonic environment (in a so-called “star” configuration) to be unitarily equivalent

to that of a tight-binding model, i.e. a one-dimensional chain of oscillators with

nearest neighbour interactions. Figure 4.1 displays the system-environment model

before and after applying the transformation. Notice the system in unaffected by

the mapping. In addition—and a feature we would like to emphasise—is that the

coupling of the open system to the full environment of bosons has been incorporated

into a collective interaction with just a single chain mode. The coupling strength of

this interaction is

g = ωc
√
β0. (4.34)
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We shall go on to show how such a mode plays an important role in dynamics, and

for this reason will specially refer to it as the principal mode of the chain.

The main idea behind a similar class methods, which also involve mapping the

environment to a linear one-dimensional chain, is to discretise the bath in such a

way that appropriate numerical procedures can be used to solve for the dynamics

of the full system [95]. The original mapping of a discretised bath onto a semi-

infinite chain was first developed as part of the numerical renormalisation group

(NRG) method by Wilson [96] to solve the quantum impurity (Kondo) problem,

i.e. the coupling of a small system (magnetic impurity) to a continuous bath of

fermions (bosons). Essentially the NRG method discretises the original spectral

density of the model in such a way that the bath operators of the Hamiltonian can

be transformed to form a new (discrete) set of modes in a 1D tight binding chain.

Owing to the 1D structure of (4.32), Chin et al [89] have generalised this procedure

(c.f. section 4.1) for the purpose simulating the exact dynamics of open systems

using the t-DMRG (time-evolved density matrix renormalisation group) technique,

having seen recent application to the spin-boson model [6, 77] within the context of

photonic crystals [97] and pigment-protein complexes [90]. Instead, our treatment

makes use of the Heisenberg formalism to investigate the dynamics arising out of

this chain representation, in line with the techniques employed with the pseudomode

method.

4.2 Spontaneous emission from a two-level sys-

tem

Now that we have all technical requirements in place, we proceed by introducing

some details of the model under study. The Hamiltonian of the full system is given

by

H = ω0σ+σ− +
∑
λ

ωλa
†
λaλ +

∑
λ

gλ (σ+aλ + h.c.) , (4.35)

which describes the interaction between a two-level system, having ground and ex-

cited states denoted by |g〉 and |e〉, with a single bosonic environment. The system

Hamiltonian is HS = ω0σ+σ−, where the operators σ+ = σ†− raise and lower the

energy of the system by an amount ω0. Mathematically, these operators are defined
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as follows:

σ− |e〉 = |g〉 , σ+ |g〉 = |e〉 and σ−σ+ |g〉 = |g〉 . (4.36)

Notably, because the open system coupling operators in HI satisfy the eigenoperator

relations from (3.11) and (3.12), that is

[HS, σ−] = −ω0σ−, (4.37)

[HS, σ+] = ω0σ+, (4.38)

the Hamiltonian in Eq. (4.35) is valid within the rotating wave approximation, with

non-energy conserving terms removed from the interaction.

To first derive the relevant dynamical equations in the Heisenberg picture, we

map the Hamiltonian of the current model to the interaction picture using the bare

Hamiltonian H0 = ω0σ+σ− +
∑

λ ωλa
†
λaλ [see Eq. (3.14)]. Doing so yields

HI(t) = σ+B1(t) + h.c., (4.39)

where the environment operator

B1(t) =
∑
λ

gλaλe
−i(ωλ−ω0)t (4.40)

has the same definition as (3.25) but for a single environment. The Heisenberg-

Langevin equation (3.38) in the rotating frame of reference is then

d

dt
Â(t) = −

∫ t

0

dt′
(
f(t− t′) [A(t), σ+(t)]σ−(t′) + f ∗(t− t′)σ+(t′) [σ−(t), A(t)]

)
+ [A(t), σ+(t)] ξ(t) + ξ†(t) [σ−(t), A(t)] , (4.41)

with

B1(t) = iξ(t). (4.42)

To retrieve the quantum Langevin equation for σ−(t), let us recall the definitions of

the Heisenberg picture operators A(t), σ−(t) and σ+(t) from Eqs. (3.17) and (3.34).

If, at t = 0, we set A = σ−, then at a later time t > 0 the operators match as

A(t) = e−iω0tσ−(t), A = σ−. (4.43)

From (3.42), the time-derivative of A(t) within the rotating frame is

d

dt
Â(t) = e−iω0t

d

dt
σ−(t), (4.44)
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and, since HI(t) has precisely the same form as Eq. (3.27), we can make direct use

of (3.43) to obtain

d

dt
σ−(t) = −σz(t)

{
ξ(t)−

∫ t

0

dt′f(t− t′)σ−(t′)

}
. (4.45)

where we have also used the commutation relation [σ+, σ−] = σz [5]. Note the above

defines the equation of motion for its adjoint counterpart, σ+(t). Our next task is

to evaluate the memory kernel

f(t− t′) =
[
B1(t), B†1(t′)

]
=

∫ ∞
−∞

dωJ(ω)e−i(ω−ω0)(t−t′), (4.46)

which will be left until an explicit form of the spectral density is adopted.

4.2.1 Damped Jaynes-Cummings model

From here on, we focus on a particular realisation of the Hamiltonian (4.35) to the

damped Jaynes-Cummings model. Our specific choice model involves a two-level

atom, which undergoes spontaneous emission induced by the quantised modes of an

electromagnetic field, i.e. an environment of photons. The atom-field interaction

stems from the coupling of the atomic electric dipole to the modes of an electromag-

netic field, which here is taken under the dipole approximation. Incoherent losses

from the atom occur as a result of uncontrolled fluctuations in the surrounding en-

vironment.

The spectral density typically associated with this model is phenomenologically

characterised by a Lorentzian

J(ω) =
Ω2

0

π

Γ/2

(ω0 − δ − ω)2 + (Γ/2)2
, (4.47)

where Γ defines the linewidth of the spectrum, δ is the detuning of the centre of the

distribution from the atomic transition frequency, and Ω0 is a measure of the total

coupling strength of the atom-bath interaction. This is duly noted by applying the

definition in Eq. (3.32),

Ω2
0 =

∑
λ

(gλ)
2. (4.48)

In conjunction with the results obtained via the pseudomode method, when the

environment is initially in the vacuum state the full system-environment dynamics

are exactly solvable using Laplace transforms [88]. One of the reasons why the model
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is of fundamental interest is that, for certain parameters of the spectral density, the

solutions show distinct non-Markovian behaviour [1]. This is the regime we are

intending to explore in the current chapter. At the moment, we shall impose no

restrictions on the bath, apart from assuming it is initially in thermal equilibrium

with the atom and at a finite temperature.

Considering we are working with a Lorentzian spectral density, the memory

kernel (4.46) can be computed analytically by extending the domain integration to

the complex ω-plane and employing Cauchy’s residue theorem. Where the poles of

Eq. (4.47) lie in the complex plane will determine the decay rate of the open system.

The spectral density contains two simple poles in the upper and lower half planes,

positioned at

z± = ω0 − δ ± i
Γ

2
. (4.49)

As t ≥ t′, we are obliged to choose a semicircle contour in either the upper or lower

half plane, depending on the sign of the exponent. For the memory kernel f(t− t′)

Imω

Reω

C+

C−

CR

z−

z+ = z∗−×

×

Figure 4.2: Contours used to evaluate the memory kernel function in equations

(4.50) and (4.51). The ends points of CR on the real line are taken to infinity, while

Jordan’s lemma ensures the integrals taken over the arcs C± vanish. Crosses show

the locations of the poles.

appearing in Eq. (4.45), the full path of integration is given by a concatenation of the

real line CR and arc C− joining the two ends at infinity—whereas, for f ∗(t− t′) [i.e.

in the conjugate equation dtσ+(t)], the integration contour is closed by a different

arc C+ to avoid divergence of the integral. Each of these two schemes are displayed
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in Fig. 4.2. Since the exponential term is an entire function, it follows that

f(t− t′) = −2πiRes [J(ω), z−] e−i(z−−ω0)(t−t′), ω ∈ C

= θ(t− t′)Ω2
0 exp

[(
iδ − Γ

2

)
(t− t′)

]
, (4.50)

and

f ∗(t− t′) = 2πiRes [J(ω), z+] ei(z+−ω0)(t−t′), ω ∈ C

= θ(t− t′)Ω2
0 exp

[(
−iδ − Γ

2

)
(t− t′)

]
, (4.51)

where the Heaviside function θ(t) (3.3) is included to satisfy causality of the memory

kernel. The quantum Langevin equation is then given by

d

dt
σ−(t) = −σz(t)

{
ξ(t)− Ω2

0

∫ t

0

dt′e(iδ−Γ/2)(t−t′)σ−(t′)

}
. (4.52)

We shall use this equation at a later point to derive an exact set of dynamical

equations for the open system plus environment in the chain configuration.

4.2.2 Parameters of the Hamiltonian

The purpose of introducing the chain transformation (section 4.1) has been to fa-

cilitate the derivation of an auxiliary equation which, along with the equation of

motion for σ−(t) (4.52), fully describe the coupling of the atomic transition to a

non-Markovian environment. Before we tackle this, we first compute the n = 0

recurrence coefficients of the Hamiltonian using the provided spectral density. The

Hamiltonian in the new operator basis {bn, b†n}∞n=0 reads

H = ω0σ+σ− + Ω0

(
σ+b0 + b†0σ−

)
+
∑
n

(
λnb

†
n+1bn + εnb

†
nbn + h.c.

)
, (4.53)

where we have used that g = ωc
√
β0 = Ω0. This is easily seen from equations (4.23)

and (4.48),

(g)2 =

∫ ωc

−ωc
dωJ(ω) ≈

∫ ∞
−∞

dωJ(ω) = Ω2
0. (4.54)

The last line holds based on assuming the following relationship between parameters,

ωc � ω0 � Γ, δ,Ω0. (4.55)

Note that such a hierarchy implies the atomic transition frequency is well above

zero, ω0 � 0, and again justifies the rotating wave approximation. It turns out
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the integral can be made exact by altering the original transformation matrix (4.6)

so that only terms for n > 0 have their support bounded by the Heaviside step

functions in (4.14). We also find that the parameter ε0 can be related to the spectral

parameters of the model. This is checked from its definition (4.33),

ε0 = ωcα0 =
1

(ωcρ0)2

∫ ωc

−ωc
dω ωJ(ω), (4.56)

which, from (4.47), leads to the expression

ε0 = ωc
1

π

∫ 1

−1

dk
k (Γ/2ωc)

[(ω0 − δ)/ωc − k]2 + (Γ/2ωc)2
, (4.57)

where we have used (ρ0)2 = β0 = (Ω0/ωc)
2 and π0(k) = 1. Because the width

Γ/ωc will be very small for any reasonable selection of parameters, the above can be

approximated by taking the “effective limit”

ε0 ≈
ωc
π

lim
Γ/ωc→0

∫ 1

−1

dk
k (Γ/2ωc)

[(ω0 − δ)/ωc − k]2 + (Γ/2ωc)2
. (4.58)

Now, since the Lorentzian is narrow compared to k, we can use the following defin-

ition of the delta function,

lim
Γ/ωc→0

1

π

[
(Γ/2ωc)

k2 + (Γ/2ωc)2

]
= δ(k) (4.59)

to obtain

ε0 ≈ ωc

∫ 1

−1

dk k δ

(
k − (ω0 − δ)

ωc

)
= ω0 − δ. (4.60)

The general argument to be made here is that the integrand falls off fast enough

as |k| → ∞, so as to be zero everywhere apart from at k ≈ (ω0 − δ)/ωc. Although

(4.60) clearly results from an approximation, it should be attainable to arbitrary

degree of accuracy seeing as ωc can be taken to be as large as required—as long as

all inner products (4.9) and moments, e.g. (4.20) and (4.21), converge.

The Hamiltonian of a Lorentzian environment coupled to a two-level system is

then determined as

H = ω0σ+σ− + (ω0 − δ)b†0b0 + Ω0

(
σ+b0 + b†0σ−

)
+ λ1

(
b†1b0 + h.c.

)
+
∑
n>0

(
λnb

†
n+1bn + εnb

†
nbn + h.c.

)
. (4.61)
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For now, it will be convenient to partition (4.61) according to H = H̃S + H̃I +HR,

where

H̃S = ω0σ+σ− + (ω0 − δ)b†0b0,

H̃I = Ω0

(
σ+b0 + b†0σ−

)
,

HR = λ1

(
b†1b0 + h.c.

)
+
∑
n>0

(
λnb

†
n+1bn + εnb

†
nbn + h.c.

)
. (4.62)

Recurrence coefficients beyond n = 0 have to be computed numerically, though, as

we will discover, this is not explicitly required for the application of our method.

4.2.3 Derivation of the dynamical equations for the atom

and principal mode

To proceed, we go onto generate the Heisenberg equations of motion of the atom

using the chain Hamiltonian (4.61). Bearing in mind that we’re seeking a formulation

of the dynamics consistent with (4.52), it is first necessary to transform Eq. (4.35)

into a frame of reference which yields an equivalent dynamics for σ−(t) (σ+). In the

chain setting, our original choice of H0 from H = H0 +HI , which included the bare

energy terms of the atomic system plus environment of harmonic oscillators, is now

defined as

H0 = ω0σ+σ− +
∑
n

(
λnb

†
n+1bn + εnb

†
nbn + h.c.

)
. (4.63)

For us it will actually be advantageous to adopt a different form, H ′0 = H̃S + HR,

using H̃S and HR from (4.62):

H ′0 = ω0σ+σ− + (ω0 − δ)b†0b0 +
∑
n>0

(
λnb

†
n+1bn + h.c.

)
. (4.64)

This can be shown—when combined with the Heisenberg equation—to provide a

dynamics equivalent to that of (4.52). We illustrate this by the following. Suppose

we have the Heisenberg picture operator σ−(t)—from (3.18), its equation of motion

is given by

d

dt

(
U †I (t)U †0(t)σ−U0(t)UI(t)

)
= − i

[
U †I (t)U †0(t)σ−U0(t)UI(t), HH(t)

]
+ U †I (t)

∂

∂t

(
U †0(t)σ−U0(t)

)
UI(t), (4.65)
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where

U0(t) = e−iH0t or U0(t) = e−iH
′
0t. (4.66)

Despite the lefthand side of (4.65) being fixed for any decomposition of H, each of

the terms on the righthand side will be expected vary through the choice of either

H0 or H ′0. However, we notice U †0(t)σ−U0(t) = e−iω0tσ− for whatever choice is made.

By writing the above in a way that is consistent with (3.22) and (4.44): that is, in

a rotating frame where −iω0σ−(t) is removed, we have

d

dt
σ−(t) = −i [σ−(t), HH(t)] , A(t) = e−iω0tσ−(t), (4.67)

for both cases, thereby proving that the Heisenberg equation from (4.64) is equal

to the quantum Langevin equation (4.45). This, as we shall see shortly, can be

exploited to find our auxiliary equation.

We are now in a position to derive the Heisenberg equation of motion for σ−(t)

by way of the chain Hamiltonian (4.53) and compare result to (4.52). Within the

preferred frame of reference, rewriting (4.61) into the form of HH(t) and substituting

this into (4.67) provides

d

dt
σ−(t) = iΩ0e

iδtσz(t)b0(t). (4.68)

For the sake of completeness we can also derive the inversion rate of the atom,

d

dt
σz(t) = i 2Ω0

(
e−iδtb†0(t)σ−(t)− h.c.

)
. (4.69)

Notice the definition of the time-evolved operator b0(t) (b†0(t)) is consistent with

(3.34) and carries no “hidden” time-dependence. By this we mean U †0(t)b0U0(t) =

b0e
−i(ω0−δ)t clearly has an explicit and separable time-dependent factor, in turn help-

ing to simplify the above. Unsurprisingly, this is what motivated original choice in

defining the rotating frame using H ′0.

Now that we have two equivalent sets of differential equations for the open system

operators, we can find an expression for b0(t) by equating (4.68) and (4.52),

b0(t) =
i

Ω0

ξ(t)e−iδt − iΩ0e
−Γt/2

∫ t

0

dt′e−(iδ−Γ/2)t′σ−(t′). (4.70)

Here, our attention is focussed on how the system dynamics can be represented

via the use of such a solution. A representation we explored in the last chapter was
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based on using the quantum Langevin equation(s) to obtain a master equation for the

density matrix of the open system. Though a solution for b0(t) is at hand, we require

its dynamical equation to be local in time if we are to pursue a master equation

formulation of the dynamics. With this in mind, we take the time-derivative of

b0(t),

d

dt
b0(t) =

i

Ω0

d

dt

(
ξ(t)e−iδt

)
− iΩ0

d

dt

(
e−Γt/2

∫ t

0

dt′e−(iδ−Γ/2)t′σ−(t′)

)
, (4.71)

where it is left to find a closed form expression of (4.71). To do this, we first inspect

the noise operator ξ(t). This was defined previously in chapter 3:

ξ(t) = −i
∑
λ

gλaλe
−i(ωλ−ω0)t. (4.72)

After applying the transformation (4.12) to the operators aλ, the noise operator is

given by

ξ(t) = −i
∑
n

∑
λ

gλg̃λ
ρn

πn(kλ)bne
−i(ωλ−ω0)t, (4.73)

which, in the continuum limit leads to

ξ(t) = −i
∑
n

1

ωcρn
bn

∫ ωc

−ωc
dωJ(ω)πn(ω/ωc)e

−i(ω−ω0)t. (4.74)

The above can be written in a more practical form by partitioning the sum into two

parts:

ξ(t) = ξ0(t) + ξc(t), (4.75)

where we have defined

ξ0(t) = − i

Ω0

b0

∫ ωc

−ωc
dωJ(ω)e−i(ω−ω0)t, (4.76)

and

ξc(t) = −i
∑
n

1

ωcρn+1

bn+1

∫ ωc

−ωc
dωJ(ω)πn+1(ω/ωc)e

−i(ω−ω0)t, (4.77)

by making use of the identities π0(k) = 1 and ρ0 = Ω0/ωc. Note that the justification

behind the cut-off frequency is made more concrete with (4.77): specifically, it is

required to negate an otherwise infinitely rising noise spectrum contained in ξc(t),

which diverges as ωc →∞ [2].

Our task now is to place ξ0(t) and ξc(t) into suitable forms. Remembering that

ωc can be taken to infinity for the n = 0 term in (4.74), we see (4.76) satisfies

lim
ωc→∞

ξ0(t) = −if(t)

Ω0

b0, (4.78)
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which can be evaluated in precisely the same way as Eq. (4.50)—that is, by analytic

continuation of (4.47) to the complex plane and evaluating its poles using the residue

theorem. In doing so, we find

ξ0(t) = −2π

Ω0

Res [J(ω), z−] e−i(z−−ω0)tb0 = −iθ(t)Ω0 exp

[(
iδ − Γ

2

)
t

]
b0, ω ∈ C.

(4.79)

The noise component ξc(t) is a little trickier to manage seeing as it contains a product

of the spectral density and orthogonal polynomials. It is appreciated that in order

to produce a closed form expression for (4.71), ξc(t) should be manipulated in such

as way as to contain a real exponential term of the type in Eq. (4.79). Fortunately

this can be achieved by use of the convolution theorem. By employing the previ-

ous definition of the convolution (3.71) from section 3.3.2, it is found—through its

associative property—that

ξc(t) = −i
∑
n=0

1

ωcρn+1

bn+1

∫ ∞
−∞

dt′
(∫ ∞

−∞
dω′J(ω′)e−i(ω

′−ω0)(t−t′)

× 1

2π

∫ ωc

−ωc
dω πn+1(ω/ωc)e

−i(ω−ω0)t′
)
, (4.80)

where the Heaviside functions in (4.14) have been attached to the Fourier transform

of the polynomials. Immediately we see the appearance of the memory kernel f(t−t′)
whose explicit form is already known. We can then write

ξc(t) = −i
∑
n=0

Ω2
0

ωcρn+1

bn+1

∫ t

0

dt′
(
e(iδ−Γ/2)(t−t′)

× 1

2π

∫ ωc

−ωc
dω πn+1(ω/ωc)e

−i(ω−ω0)t′
)
. (4.81)

Overall, we have the two noise contributions

i

Ω0

(
ξ0(t)e−iδt

)
= θ(t)b0e

−Γt/2 (4.82)

and

i

Ω0

(
ξc(t)e

−iδt) =
∑
n>0

Ω0

ωcρn
bne
−Γt/2

∫ t

0

dt′
(
e−(iδ−Γ/2)t′

× 1

2π

∫ ωc

−ωc
dω πn(ω/ωc)e

−i(ω−ω0)t′
)
. (4.83)
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Plugging Eqs. (4.82)-(4.83) into (4.71) then determines our auxiliary equation of

motion through the relation

i

Ω0

d

dt

(
ξ(t)e−iδt

)
= −Γ

2

(
i

Ω0

ξ(t)e−iδt
)

+
Ω0

2π
e−iδt

∑
n

1

ωcρn+1

bn+1

∫ ωc

−ωc
dω πn+1(ω/ωc)e

−i(ω−ω0)t.

(4.84)

Note that the evaluation of (4.70) proceeds in exactly the same way to obtain the

adjoint equation for b†0(t).

Together with the atomic inversion rate (4.69), the dynamics of the system is

completely described by the following coupled ordinary differential equations,
d

dt
σ−(t) = iΩ0e

iδtσz(t)b0(t),

d

dt
b0(t) = −Γ

2
b0(t)− iΩ0e

−iδtσ−(t)− i
√

Γ

2
bin(t),

(4.85)

(4.86)

where we have defined

bin(t) = i
1

2π

∑
n

2Ω0

ωcρn+1

√
Γ
bn+1

∫ ωc

−ωc
dω πn+1(ω/ωc)e

−i(ω−ω0+δ)t. (4.87)

The reason for including a factor of 2/
√

Γ in (4.87) will become clearer later. All

in all, the equations of motion are exact and have been derived while making no

particular assumptions on the properties of the chain [see Eq. (4.25)]. This has

been made possible by exploiting analytical properties of the Lorentzian spectral

density. In such a way, the dynamical equation for b0(t) has a direct one-to-one

correspondence with the simple pole of (4.47). The fact there is a single lower-half

plane pole in Eq. (4.47), combined with a single principal mode of the chain, has

been crucial in being able to identify the expression in Eq. (4.70) leading to the

auxiliary equation of motion.

As is already quite noticable, but worth emphasising, is that because Eq. (4.86)

contains the effect of both damping and noise on the principal mode, it holds exactly

the same form as the previously encountered quantum Langevin equations from

section 3.3 (chapter 3), and indeed for Eq. (4.52) too. We can then attach similar

physical meaning to each of the terms in (4.86).

For sake of clarity let us restate their interpretation. The first term describes
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the effect of incoherent damping on the principal mode. The second accounts for

a unitary time evolution—which, along with Eq. (4.85), is attributed to the direct

coupling of the principal mode to the atomic transition. The last term on the

righthand side, containing both real and imaginary components, can be interpreted

as noise arising from random fluctuations along the part of the chain without the

principal mode. This comes with the caveat of assuming initially factorising states

of the system and bath, as we recall from Eq. (3.4). If this is the case then it seems

reasonable to examine the statistics of the noise bin(t) as a way of characterising the

properties of the chain environment; which, in turn, helps us to gain better insight

into the system-environment dynamics contained in the equations of the atom (4.85)

and principal mode (4.86).

4.2.4 Noise term properties and interpretation

Before we do this, it first proves instructive to formally establish idea of the operator

bin(t) as a noise input to the dynamics. We look at the equal-time commutator of

the conjugate pair of states b0(t) and b†0(t) using the solution in Eqs. (4.70):[
b0(t), b†0(t)

]
=

1

Ω2
0

[
ξ(t), ξ†(t)

]
− 1

Ω2
0

{
[ξ(t),

∫ t

0

dt′f ∗(t− t′)σ+(t′)]− [ξ†(t),

∫ t

0

dt′f(t− t′)σ−(t′)]

}
+ Ω2

0e
−Γt

∫ t

0

dt′
∫ t

0

dt′′e−(Γ/2)(t′−t′′) [σ+(t′), σ−(t′′)] . (4.88)

Since the time evolution of the operators is unitary, the above reduces to much

simpler form [
b0(t), b†0(t)

]
=

1

Ω2
0

{
U †(t)

[
ξ(0), ξ†(0)

]
U(t)

}
. (4.89)

The relation [
ξ(t), ξ†(t′)

]
= f(t− t′) (4.90)

can be substituted into (4.89) to show[
b0(t), b†0(t)

]
=
[
b0, b

†
0

]
= 1 from f(0) = Ω2

0, (4.91)

as we would expect. By comparing the two equivalent expressions in (4.88) and

(4.89), it is also revealed that[
b0(t), b†0(t)

]
=

1

Ω2
0

[
ξ(t), ξ†(t)

]
= 1. (4.92)
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This indicates the bottom two lines of Eq. (4.88) make no contribution to the

commutator [see Eq. (3.39)]. Therefore, the time-invariance of the canonical com-

mutation relation is solely maintained by the noise operator ξ(t). To gain a more

precise understanding, we can convert (4.92) into a more suggestive form by writing

ξ(t) = ξ0(t) + ξc(t) (4.75),

1

Ω2
0

[
ξ(t), ξ†(t)

]
=

1

Ω2
0

{[
ξ0(t), ξ†0(t)

]
+
[
ξc(t), ξ

†
c(t)
]}
, (4.93)

where we have used that [ξ0(t), ξ†c(t)] = [ξc(t), ξ
†
0(t)] = 0. From its definition in Eq.

(4.76), it is easy to show the first term decays exponentially at a rate provided by

Γ. As a result the equal-time commutator in Eq. (4.92) comprises the two following

components, 
[
ξ0(t), ξ†0(t)

]
= Ω2

0e
−Γt,[

ξc(t), ξ
†
c(t)
]

= Ω2
0(1− e−Γt).

(4.94)

(4.95)

Notice the commutator (4.95) is consistent with that obtained from (4.77) at t = 0

by the property

ξc(0) = −i
∑
n

ωc
ρn+1

bn+1

{∫ ωc

−ωc
dk J̃(k)πn+1(k)π0(k)

}
= 0. (4.96)

Suppose we ignore ξc(t) and have it set to zero. Without the presence of the second

term, it is clear that (4.92) would only be satisfied at times which are short com-

pared to the correlation time of the environment, i.e. t � τB, where τB ∼ 1/Γ

[1]. Since the noise term bin(t) originates from the time-derivative of ξc(t), as we

recall from (4.84), the dynamical equations for the atom and principal mode are

therefore unphysical for times t > τB. It is this aspect which is used to justify its

interpretation as a noise—in that it preserves the commutation relation (4.92).

Two-point commutator [bin(t), b†in(t′)]

Now we move onto investigate at the statistical properties of Eq. (4.87). A possible

way to understand the stochastic effects encoded in bin(t) is to compare its statist-

ics to that of ξ(t). Since our original motivation was to embed the non-Markovian

dynamics of the atom into that of an enlarged Markovian system, it is of interest

to see if the chain noise operator holds properties that would suggest it can be ap-

proximated as Markovian white noise (see section 3.1.3).
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Because the environment containing the full λ-modes is assumed not to be

memoryless, ξ(t) typically displays signatures of non-Markovian behaviour. Indeed,

given the spectral density is a Lorentzian, the memory kernel behaves much differ-

ently to what is expected in the Markovian case: that is, a locally peaked function

around t = t′. Only in the flat Lorentzian limit Γ → ∞ does Eq. (4.90) give delta

correlated statistics, which in turn can be associated to a quantum Markov process

(see section 3.1.3). We now check to see if these properties are carried over to the

noise operator bin(t).

To obtain an explicit expression for the two-point commutator of bin(t), we start

by writing Eq. (4.87) as

bin(t) =
∑
n

vn+1(t)bn+1. (4.97)

with

vn+1(t) = i
1

2π

∑
n

2Ω0

ωcρn+1

√
Γ

∫ ωc

−ωc
dω πn+1(ω/ωc)e

−i(ω−ω0+δ)t (4.98)

The relevant non-zero commutator is given by

[
bin(t), b†in(t′)

]
=

∑
(n,n′)>0

vn(t)v∗n′(t
′)
[
bn, b

†
n′

]
=
∑
n

vn+1(t)v∗n+1(t′), (4.99)

which explicitly reads

[
bin(t), b†in(t′)

]
=

4Ω2
0

Γ (2πωc)
2

∑
n

∫ ωc

−ωc
dω

∫ ωc

−ωc
dω′

πn+1(ω/ωc)πn+1(ω′/ωc)

(ρn+1)2

× e−i(ω−ω0+δ)tei(ω
′−ω0+δ)t′ . (4.100)

This can be put into a more intelligible form by defining the kernel K(ω, ω′),

K(ω, ω′) =
∑
n

πn+1(ω/ωc)πn+1(ω′/ωc)

(ρn+1)2
, (4.101)

where

[
bin(t), b†in(t′)

]
=

4Ω2
0

Γ (2πωc)
2

∫ ωc

−ωc
dω

∫ ωc

−ωc
dω′K(ω, ω′)e−i(ω−ω0+δ)tei(ω

′−ω0+δ)t′ .

(4.102)

Under the first Markov approximation the spectral density is replaced with J(ω) =

γ0/2π [see Eq. (3.54)], where γ0 = 4Ω2
0/Γ is the Markovian decay rate of the atom.

Now, since the weight function J̃(k) is independent of frequency, the polynomials
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πn(k) coincide exactly with the Legendre polynomials Pn(k) [93]: these are defined

with respect to the orthogonality relation∫ 1

−1

dk Pn(k)Pn′(k) = (ρn)2δn,n′ , where (ρn)2 =
2

2n+ 1
. (4.103)

In this particular case the kernel (4.101) K(ω, ω′)→ KM(ω, ω′) reads

KM(ω, ω′) =
1

2

∑
n

(2n+ 1)Pn(ω′/ωc)Pn(ω/ωc)−
1

2
. (4.104)

having used P0(k) = 1. We note the factor of 1/2 on the righthand side of the

above makes zero contribution to the double integral (4.101). This can be shown by

evaluating the integral
∫ ωc
−ωc dω exp[−iωt], which yields a factor of ∼ sin(ωct)/t for

ωc � ω0. Since we are also assuming t � 1/ωc, the last term of (4.104) is zero for

t > 0. Writing the above in the form

KM(ω, ω′) =
1

2

∑
n

(2n+ 1)Pn(ω′/ωc)Pn(ω/ωc), (4.105)

then shows the kernel satisfies KM(ω, ω′) ∝ δ(ω − ω′) from the known identity [98]

δ(k − k′) =
1

2

∑
n

(2n+ 1)Pn(k′)Pn(k). (4.106)

Plugging (4.105) into (4.101) provides us with[
bin(t), b†in(t′)

]
∼ δc(t− t′), (4.107)

where we have defined

1

2π

∫ ωc

−ωc
dω e−i(ω−ω0+δ)(t−t′) = δc(t− t′). (4.108)

This is a slowly varying function provided the timescales we are interested in fulfil

|t − t′| � 1/ωc. Seeing as we are working in the regime set by Eq. (4.55), clearly,

the inverse of the cut-off frequency defines fastest timescale of the problem, and so

δc(t− t′) ≈ δ(t− t′). Taking the hard Markov limit Γ→∞ simply recovers the usual

time-local features that we would envisage for a weakly perturbed atomic system.

We now examine the case of a more general Lorentzian coupling profile. Figure

4.3 shows the kernel K(ω, ω′) plotted as a function of ω (i.e. fixed ω′) where it is

taken up to the first N terms in its series. The plots have been obtained using a

routine stieltjes.m from Ref. [99] which has been implemented with Mathworks
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Figure 4.3: Frequency kernel (4.101) plotted as a function of ω for a varying number

of terms N in its series, with ω′ ≈ −ωc/3 and δ = 0. The lefthand column (a,c,e) is

shown for parameters Γ = 0.1Ω0, ω0 = 10−2ωc, Ω0 = 10−4ωc. The righthand column

(b,d,e) shows the Markovian kernel KM(ω, ω′) for comparison. Notice the different

scaling between axes.

software, Matlab, for a fixed number of chain oscillators nc = 104. For compar-

ison, examples of the Markovian kernel KM(ω, ω′) are displayed alongside those of
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K(ω, ω′)2. Let us first comment on the features of the Markovian kernel with refer-

ence to Eqs. (4.105) and (4.106). We immediately notice that the function is highly

oscillatory, with a sharp peak centred on ω = ω′. It also has fringes which become

more closely spaced together towards the edges of the plot. These features reinforce

the idea that in limit nc, N → ∞, the kernel characterises a delta function, which,

subsequently, leads to the two-point commutator in (4.107). Interestingly, for strong

system-environment coupling, we a see striking qualitative resemblance between the

kernel K(ω, ω′) and the Markovian one—the most important feature being a sharp

localised peak at ω = ω′. We then expect (4.101) to converge to a delta function as

N →∞. In fact, from Eq. (4.11), the continuum relation∑
n

πn(ω/ωc)πn(ω′/ωc)

(ρn)2
=

1

J̃(k)
δ(k − k′) (4.109)

proves that the frequency kernel can be replaced by the following:

K(ω, ω′) =
1

ω2
c

∑
n

πn+1(ω/ωc)πn+1(ω′/ωc)

(ρn+1)2
−→ 1

J(ω)
δ(ω − ω′), (4.110)

which indeed adopts the properties of a weighted delta function. Note the above

is valid as the n = 0 term in (4.109) makes no contribution under the integral.

Therefore, without introducing any assumption on the commutator so far, the double

integral in Eq. (4.102) reduces to[
bin(t), b†in(t′)

]
=

γ0

(2π)2

∫ ωc

−ωc
dω

1

J(ω)
e−i(ω−ω0+δ)(t−t′). (4.111)

Here it is realised bin(t) generally exhibits non-time local behaviour. In order to

simplify the analysis, we look to impose a white noise approximation as a way to

produce a time-local commutator. With a change of variable, (4.111) reads (ωc �
ω0) [

bin(t), b†in(t′)
]
≈ γ0

(2π)2

∫ ωc

−ωc
dω

1

J ′(ω)
e−iω(t−t′), (4.112)

where J ′(ω) = J(ω + ω0 − δ). For the timescales we are interested in [see (4.55)], if

it’s assumed the function 1/J ′(ω) is slowly-varying enough such that it can approx-

imately be replaced by its value at ω ≈ 0 under the the integral (J(0) = γ0/2π),

then we in fact discover[
bin(t), b†in(t′)

]
≈ δc(t− t′), ∀t, t′ ≥ 0, (4.113)

2From here on we assume K(ω, ω′) is amended to include the extra term 1/ρ20, which cancels

in (4.102).
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with δc(t− t′) defined in Eq. (4.108). Notice the scaling adopted in (4.87) was made

to ensure there are no extra factors in front of the delta function.

The above implies that it is adequate to approximate the two-point commutator

as white noise in the current model. This is, of course, an idealisation of the actual

effect the residual environment has on the principal mode of the the chain. How-

ever, the benefit of such a simplification—loss of exactness aside—is that it forms a

dynamical picture which is much more intuitive and easier to understand than its

alternative, as we shall go onto examine shortly. Indeed, in any case it is known

that no noise is ever truly Markovian [100], but in many circumstances serves as a

very good approximation. Note also that (4.111) is consistent with the result in the

limit Γ→∞ (i.e. J(ω) = γ0/2π), where we expect [bin(t), b†in(t′)] = δc(t− t′).

Input-output representation

How do these results affect our current picture of the system-environment dynam-

ics? Recall how bin(t) encodes properties of the residual chain (n > 0). In view

of the delta-commutator property (4.113), we can then deduce that the residual

part of the chain has a Markovian dissipative effect on the dynamics. This would

imply we can attach an input-output interpretation to the dynamical model, where

bin(t) acts in the same way as an “input field” in the Gardiner-Collet description

of a conventional Markov stochastic process [2, 81]. To give weight to this idea,

we replace HI(t) defined in (4.39) with the phenomenological (interaction picture)

input-output Hamiltonian

Heff,I(t) = Ω0

(
eiδtσ+b0 + h.c.

)
+
√

Γ
(
b†in(t)b0 + h.c.

)
, (4.114)

and attempt to show it can be used to reproduce Eqs. (4.85)-(4.86) using the

Heisenberg equations. Because the atom only couples directly to the principal mode,

it is easy verify that (4.85) results from placing the above into Eq. (4.67). The

dynamical equations for the chain oscillators read

d

dt
b0(t) = −iΩ0e

−iδtσ−(t)− i
√

Γbin,H(t), (4.115)

d

dt
bn+1(t) = −i

√
Γv∗n+1(t)b0(t), n = 0, 1, . . . , (4.116)
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where

bin,H(t) =
∑
n

vn+1(t)bn+1(t). (4.117)

By directly integrating (4.116) and substituting the result into (4.115), we obtain

d

dt
b0(t) = −iΩ0e

−iδtσ−(t)− i
√

Γbin(t)

− Γ

∫ t

0

dt′
∑
n

vn+1(t)v∗n+1(t′)b0(t′). (4.118)

Notice the last line contains the commutator (4.99). Applying the identities[
bin(t), b†in(t′)

]
=
∑
n

vn+1(t)v∗n+1(t′) ≈ δ(t− t′) (4.119)

and

Γ

∫ t

0

dt′δ(t− t′)b0(t′) =
Γ

2
b0(t) (4.120)

thereby provides us with

d

dt
b0(t) = −Γ

2
b0(t)− iΩ0e

−iδtσ−(t)− i
√

Γbin(t). (4.121)

Interestingly, the equation has the same form as (4.86) but with a different prefactor

on the term bin(t). While this may be problematic, as part of the following section

we shall prove—using the Heisenberg-Langevin equation—that in certain situations

the phenomenological Hamiltonian (4.114) describing a quantum Markov stochastic

dynamics is consistent with the dynamical equations (4.85)-(4.86) originating out of

the chain Hamiltonian. Such consistency is important as it shows that the original

setup, where the atom-reservoir interaction is characterised by a Lorentzian spectral

density (4.47), is described equally in terms of an enlarged system in our chain

model with Markovian damping. This is also reflected in the Lindbladian form of

the master equation for the enlarged system, as we will now show.

4.3 The master equation

Since we have identified a time-local quantum Langevin equation, in this section we

employ the techniques demonstrated in chapter 3 to derive the corresponding master

equation. We reiterate that the main idea is to treat the dynamics of principal

mode and the atom collectively in the Hilbert space of an enlarged system. In view
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of (4.86), this system couples to a residual part of the environment through the

principal mode, which acts to mediate the effect of dissipation on the atom.

To derive such a master equation, it is first acknowledged that the dynamical

equations for σ−(t) and b0(t) should be consistent with the form of the Heisenberg-

Langevin equation associated with the Hamiltonian (4.53). Let us recall parts of

the formalism of section 3.2. Here, the operator equation of motion for L (L†), i.e

the operator coupling the open system to the reservoir, is seen to determine the

effect of dissipation and noise entering in from the term B(t) [see Eq. (3.44)]. We

then anticipate the same will be provided by the quantum Langevin equations for

b0(t) and b†0(t). Obtaining the Heisenberg-Langevin equation will require treating

the modes in the chain beyond n = 0 as an environment, acting on the enlarged

system. This is necessary to ensure that the equation dtA(t) will result in a closed

form expression with all environment (and noise) operators formally eliminated from

the dynamics.

We notice this is made possible by virtue of the Szegö class property (4.25).

Suppose we have an asymptotic region of the chain where the parameters εn and λn

are independent of n. We can then show that the Hamiltonian of such a region can

be expressed as a single quadratic term—like that in Eq. (3.5)—by a straightforward

diagonalisation procedure. This is first illustrated by rewriting Eq. (4.53) into a

more suitable form,

H = ω0σ+σ− + Ω0 (σ+b0 + h.c.) +
m−1∑
n=0

(
λnb

†
n+1bn + εnb

†
nbn + h.c.

)
+ εmb

†
mbm +

∑
n>m

(
λb†n+1bn + εb†nbn + h.c.

)
. (4.122)

The “flat” part of the chain, with Hamiltonian

HR =
∑
n>m

(
λb†n+1bn + εb†nbn + h.c.

)
, (4.123)

comprises a tridiagonal matrix, and is diagonalized by means of the following:

cj =
∑
n

Vn,jbn+m, (4.124)

c†j =
∑
n

Vn,jb
†
n+m, n, j = 1, 2, . . . , (4.125)

with HR = V HRV
T and HR = diag[ω̃1, ω̃2, . . . ]. The label m denotes the terminal

mode of the chain, while the components of the matrix V are given in terms of a
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Fourier sine transform on the n-modes,

Vn,j =

√
2

π
sin(nj), 0 ≤ j ≤ π. (4.126)

The orthogonality property of the sine terms, which explicitly reads∫ π

0

dj sin(nj) sin(n′j) =
π

2
δn,n′ , (4.127)

guarantees that the bosonic commutation relations of the principle mode are upheld.

Furthermore, having the closure relation
∑∞

n=1 sin(nj) sin(nj′) = π
2
δj,j′ also provides[

cj, c
†
j′

]
= δj,j′ , (4.128)

with all other commutators vanishing.

In order for the resulting Heisenberg-Langevin equation to match with the de-

scription provided by the quantum Langevin (4.86) it is necessary to assume m = 0,

meaning the diagonalisation is taken over the full chain except for the principal

mode. While the decomposition of the reservoir into a single damped oscillator and

Markovian bath fits exactly with pseudomode description we duly recognise, how-

ever, there is no reason to make this choice without first checking for the convergence

of the recurrence coefficients (4.33). In an effort to avoid having to rely on specific

numerical traits of εn and λn to derive the master equation, currently we shall only

pursue the fundamental case where a single harmonic oscillator is embedded into

the open system, and as such take the residual chain (i.e. beyond n = 0) to be

flat. The fact that the dynamics of the joint atom and principal mode conform to

a quantum Markov process [cf. (4.114)] implies this is a reasonable approximation.

We defer further discussion on this point to the final section of the chapter, section

4.4.

Single oscillator embedding: m = 0

In a setting where m = 0 the principal mode is locally coupled to a continuum of

bosonic modes cj (c†j) which in turn interacts directly with the atom. This is clearly

understood from the hierarchical structure of the Hamiltonian H = H ′S +H ′I +HR,

which has explicit components
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Figure 4.4: Schematic of the atom and environment. (a) Shows the full system

representation prior to diagonalising (4.123) using V . Here, the principal mode (PM)

is included into part of an enlarged system with the atom, assuming m = 0. (b)

Depicts the enlarged system interacting locally with a continuum of normal modes.

H ′S = ω0σ+σ− + (ω0 − δ)b†0b0 + Ω0 (σ+b0 + h.c.) ,

H ′I =
∑
j

κj

(
b†0cj + h.c.

)
,

HR =
∑
j

ω̃jc
†
jcj.

(4.129)

Figure 4.4 shows a schematic representation of the model. The normal mode fre-

quencies ω̃j and couplings κj of the reservoir R are defined as

ω̃j = −2
√
λ cos(j), (4.130)

κj =

√
2λ

π
sin(j), (4.131)

where

λ = ωc lim
n→∞

βn =
(ωc

2

)2

. (4.132)

The reservoir has a plane wave excitation spectrum supported across (−ωc, ωc) from

the additional property limn→∞ εn = 0. Note we have made the additional trans-

formation bk → (−1)kbk [92], so conveniently the lowest value of j = j(ω̃) corres-

ponds to ground state energy of the normal modes.

We can now apply the techniques of section 3.3.2 used in the derivation of the

master equation (3.85), which here is to be performed in a rotating frame defined

by the free Hamiltonian H ′0 (4.64). As was discussed at the beginning of the current

section, this first requires us to obtain the Heisenberg-Langevin equation in the form
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of (3.45). For brevity we will not work through the full steps of the derivation since

the equation follows directly from the methods of the previous chapter. Instead, we

just provide the result:

d

dt
Â(t) = −i

[
A(t), H ′S,H(t)

]
+
[
A(t), b†0(t)

]( d

dt
b0(t) + iΩ0e

−iδtσ−(t)

)
+

(
d

dt
b†0(t)− iΩ0e

iδtσ+(t)

)
[b0(t), A(t)] , (4.133)

This has been derived considering an observable of the enlarged system, i.e. A(t)→
ASP (t)⊗ 1R, and where H ′S(t) is defined by

H ′S,H(t) = Ω0

(
eiδtσ+(t)b0(t) + h.c.

)
. (4.134)

Notice the “H” label has been temporarily re-introduced to make clear that the

time-dependence of H ′S,H(t) originates from the (rotating frame) Heisenberg picture.

Since (4.86) is time-local, it can be directly substituted into (4.133) along with its

adjoint to provide us with

d

dt
Â(t) = −i

[
A(t), H ′S,H(t)

]
− Γ

2

([
A(t), b†0(t)

]
b0(t) + b†0(t) [b0(t), A(t)]

)
+

√
Γ

2

(
e−iδt

[
A(t), b†0(t)

]
bin(t) + eiδtb†in(t) [b0(t), A(t)]

)
. (4.135)

Furthermore, taking the mean and expanding out of the commutators in the top

line of (4.135) leads to

d

dt
〈Â〉t = −i

〈[
A(t), H ′S,H(t)

]〉
− Γ

2

(〈
A(t)b†0(t)b0(t)

〉
+
〈
b†0(t)b0(t)A(t)

〉
− 2

〈
b†0(t)A(t)b0(t)

〉)
+

√
Γ

2

(
e−iδt

〈[
A(t), b†0(t)

]
bin(t)

〉
+ eiδt

〈
b†in(t) [b0(t), A(t)]

〉)
, (4.136)

where it is now left to evaluate the bottom row of (4.136).

Zero temperature environment

At this point we shall focus our attention on the zero temperature limit—that is,

where the residual environment is initially in the vacuum state |{0}〉R = |0〉R. Be-

cause the reservoir is empty at t = 0 the average of A(t) is taken with respect to
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ρ = ρSP ⊗ (|0〉 〈0|)R. The contribution from the last line of terms in Eq. (4.136)

then vanishes since

bin(t) |0〉R = 0 =R 〈0| b†in(t), from cj |0〉R = 0. (4.137)

As a result, we obtain the equation

d

dt
〈Â〉t = −i

〈[
A(t), H ′S,H(t)

]〉
− Γ

2

(〈
A(t)b†0(t)b0(t)

〉
+
〈
b†0(t)b0(t)A(t)

〉
− 2

〈
b†0(t)A(t)b0(t)

〉)
. (4.138)

We can readily identify the interaction picture master equation for our damped

atom-oscillator system by following the same steps previously outlined in Eqs.

(3.85)-(3.89). Through doing so, we get

d

dt
ρSP (t) = LSP [ρSP (t)] = −i [H ′S(t), ρSP (t)] + ΓLb0 [ρSP (t)] (4.139)

with

H ′S(t) = Ω0

(
eiδtσ+b0 + h.c.

)
, (4.140)

and

Lb0 [·] = b0 · b†0 −
1

2

{
b†0b0, ·

}
. (4.141)

Equation (4.139) is equivalent to the master equation obtained in Ref. [38] using

the pseudomode method. Therefore, in the same way a Lorentzian spectral density

associates with a single pseudomode, here the principal mode of the chain adopts

the role of the pseudomode. In turn, the model can be directly mapped to the

atom-cavity system, where the auxiliary mode is identified as the real leaky cavity

mode with decay rate Γ.

Because the generator LSP [·] is of standard Liouvillian form the Lindblad the-

orem [cf. Eq. (2.75)] guarantees Eq. (4.139) to be Markovian. In view of this

aspect, we notice the exact same averaged Heisenberg-Langevin equation (4.138)

can be derived using the phenomenological Hamiltonian (4.114) and its associated

quantum Langevin equation (4.121). Our current treatment is thus consistent with

previous Markovian interpretation of the noise input bin(t) for a vacuum reservoir.

Note we can also use (4.124) to compute ensemble properties of the input noise.

Starting with the correlation function〈
bin(t)b†in(t′)

〉
=

∑
(n,n′)>0

vn(t)v∗n′(t
′)
〈
bnb
†
n′

〉
, (4.142)
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it can be shown that the bosonic expectation value 〈bnb†n′〉 satisfies

〈
bnb
†
n′

〉
=
∑
j,j′

Vn,jVn′,j
〈
cjc
†
j′

〉
= δn,n′ . (4.143)

Hence, we have

〈
bin(t)b†in(t′)

〉
=
∑
n

vn+1(t)v∗n′+1(t′) ≈ δ(t− t′), (4.144)

with all other averages vanishing. Again, this demonstrates the applicability of Eqs.

(4.85), (4.86) and (4.138) to collectively describing a Markovian stochastic process.

The resulting dynamical picture we then have is straightforward to interpret: here,

the atom-principal system experiences a bipartite Markovian dynamics from inter-

acting with a residual (chain) reservoir. Non-Markovian effects in the atom are

solely accounted for via its coupling to the auxiliary (prinicpal) mode.

4.3.1 Decay of a single excitation

To further illustrate the connection with the pseudomode method we consider a

single initial excitation in the atom, with all other parts of the environment in

vacuum. In such a case the dynamics can be formulated within the single excitation

manifold, since the total excitation number N = σ+σ−+b†0b0+
∑

j c
†
jcj is a conserved

quantity under the action of H: that is,

[H,N ] = [H ′S(t) +H ′I(t), N ] = 0, (4.145)

with H ′I(t) defined in the interaction picture with respect to H ′0.

Suppose now that the atom prepared in the state |ψ〉S = cg |g〉 + ce(0) |e〉.
After a time t, the atom can at most randomly emit one photon into the reservoir

through the principal mode, while its ground state—along with that of the envir-

onment—does not jointly evolve since H |0〉 = 0. Here, |0〉 = |g〉 ⊗ |00〉 indicates

the ground state of the atom, principal mode and reservoir, respectively. The global

solution can therefore be written as a pure state truncated in the one-excitation

sector:

|ψ(t)〉 = cg |0〉+ ce(t)σ+ |0〉+ b(t)b†0 |0〉+
∑
j

rj(t)c
†
j |0〉 , (4.146)
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where the state coefficients satisfy

|cg|2 + |ce(t)|2 + |b(t)|2 +
∑
j

|rj(t)|2 = 1. (4.147)

By sandwiching each of the terms in (4.85)-(4.86) between 〈0| and |ψ(0)〉, we can

derive an equivalent set of equations describing the evolution of the coefficients

(4.146) within the interaction picture. For example, with the relation

〈0|σ−(t) |ψ(0)〉 = 〈0|σ− |ψ(t)〉 = ce(t) (4.148)

and similarly 〈0| b0 |ψ(t)〉 = b(t), 〈0|σz(t) |0〉 = −1 and 〈0| cj |ψ(0)〉 = 0, we obtain

the following:

d

dt
ce(t) = −iΩ0e

iδtb(t), (4.149)

d

dt
b(t) = −Γ

2
b(t)− iΩ0e

−iδtce(t). (4.150)

For a Lorentzian spectral density (4.47) the exact same equations are generated by

introducing an unnormalised state of the atom and principal mode,

|ψ̃(t)〉 = cg |g, 0〉+ ce(t)σ+ |g, 0〉+ b(t)b†0 |g, 0〉 , (4.151)

where |g, 0〉 explicitly denotes the ground state of the atom and principal mode

(pseudomode). The state itself obeys the effective Schrödinger equation,

d

dt
|ψ̃(t)〉 = −i

(
H ′S(t)− iΓ

2
b†0b0

)
|ψ̃(t)〉 . (4.152)

with effect of dissipation (and decoherence) accounted for through the non-hermitian

Hamiltonian

Heff(t) = H ′S(t)− iΓ
2
b†0b0. (4.153)

The physical interpretation attached to (4.152) is rooted in a stochastic description

of the system dynamics. In this approach, the wavefunction |ψ̃(t)〉 provides the

evolution of the populations and coherences of the atom and cavity field under

damping. This is noticed by initially writing master equation in form

d

dt
ρSP (t) = −i

[
Heff(t)ρSP (t)− ρSP (t)H†eff(t)

]
+ Γ b0ρSP (t)b†0. (4.154)

Now, by decomposing the density matrix into the mixture

ρSP (t) = ρJSP (t) + ρNJSP (t), (4.155)
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we can associate the unconditioned dynamics of the atom and principal mode in Eq.

(4.152) with the pure state ρNJSP (t) = |ψ̃(t)〉 〈ψ̃(t)|. Taking its time-derivative yields

d

dt
ρNJSP (t) = −i

[
H ′S(t), ρNJSP (t)

]
− Γ

2

{
b†0b0, ρ

NJ
SP (t)

}
, (4.156)

whose form agrees closely with the bracketed term on the righthand side of Eq.

(4.154). We can then go onto derive an exact expression for the other term ρJSP (t)

by considering the normalisation properties of ρSP (t)—that is, using the fact that

the trace should fulfil tr [ρSP (t)] = 1. Clearly this is made up from ρJSP (t), since

tr ρNJSP (t) = 〈ψ̃(t)|ψ̃(t)〉 ≤ 1, t ≥ 0. (4.157)

Over a typical stochastic trajectory, the continuous dynamics of the atom and cavity

mode will be interrupted by a jump process, which occurs at random time with

given probability. Let us consider this in relation to ρJSP (t). Because the excitation

is in the atom at t = 0, the additional term should account for the increase in

the probability of the atom being left in the ground state after an emission of a

photon. Equation (4.157) provides us with an expression for this probability, where

trρJSP (t) ≡ Πg(t) = 1− 〈ψ̃(t)|ψ̃(t)〉. Taking the time-derivative of this yields

d

dt
Πg(t) = − d

dt
〈ψ̃(t)|ψ̃(t)〉 = Γ|b(t)|2. (4.158)

We can interpret dtΠg(t) as probability density of flux: in this sense, the probability

p(t) that the excitation decays between times t and t+ dt is given by

p(t) = Γ|b(t)|2dt. (4.159)

Simply integrating Eq. (4.158) up to a time t then determines the probability of the

atom and principal mode being in their ground state as function of time,

Πg(t) = Γ

∫ t

0

dt′|b(t′)|2, (4.160)

which is also understood as vacuum population of S+P . Note that, by construction,

|ce(t)|2 + |b(t)|2 + Πg(t) = 1. The complete density matrix is therefore given as

ρSP (t) = Πg(t) |g〉 〈g| ⊗ (|0〉 〈0|)P + |ψ̃(t)〉 〈ψ̃(t)|SP , (4.161)

with it being straightforward to show that ρSP (t) satisfies the master equation

(4.139). To finalise our result in the single excitation limit, our solution in Eq.
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(4.146) shows agreement with the stochastic approach. Indeed, by tracing out

the environment state in the density matrix of the pure state (4.146) to obtain

ρSP (t) = trR |ψ(t)〉 〈ψ(t)|, we find

ρSP (t) =
∑
j

|rj(t)|2 |g〉 〈g| ⊗ (|0〉 〈0|)P + |ψ̃(t)〉 〈ψ̃(t)|SP , (4.162)

where we identify

Πg(t) =
∑
j,j′

〈0| cjHRc
†
j′ |0〉 =

∑
j

|rj(t)|2, (4.163)

granted cjc
†
j′ |0〉R = δj,j′ |0〉R. Equivalency of the populations Πg(t) and

∑
j |rj(t)|2

entirely makes sense from conservation of probability, seeing as the latter provides

the vacuum population of the combined atom-pseudomode system. In light of the

consistency between (4.146) and the mixed state solution (4.161) obtained via the

pseudomode method, we proceed to now extend the formalism beyond the single

excitation case.

4.3.2 Decay of multiple excitations

Because our treatment of the dynamics prior to arriving at the Heisenberg-Langevin

equation (4.138) relies exclusively on Heisenberg picture operators, the only restrict-

ive assumption we’ve made is to assume that the reservoir R is initialised in the va-

cuum state. Therefore, the master equation—which, interestingly, adopts the same

form to usual single excitation pseudomode derivation—has been proven to be valid

for any choice of state ρSP (t) at t = 0. This allows us to go beyond usual applic-

ations of the method since we are not restricted to single excitation manifold. To

this end, we can attempt to setup a generic solution to Eq. (4.139) by deriving a

closed set of equations of motion for, e.g. 〈σ+σ−〉t and 〈b†0b0〉t. As it happens these

observables have an exact dynamics provided by the previous operator equations

(4.85) and (4.86):

d

dt
〈σ+σ−〉t = −2Ω0 Im

[
e−iδt〈b†0σ−〉t

]
, (4.164)

d

dt
〈b†0b0〉t = −Γ〈b†0b0〉t + 2Ω0 Im

[
e−iδt〈b†0σ−〉t

]
, (4.165)

where we also have

d

dt
〈b†0σ−〉t = −Γ

2
〈b†0σ−〉t + iΩ0e

iδt
(
〈σ+σ−〉t + 〈b†0σzb0〉t

)
. (4.166)
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Note it is sufficient to only assume the reservoir starts in the state ρR = |0〉 〈0|R
to obtain these expressions, so that any term containing bin(t) is zero. Other as-

sumptions, e.g. the Born approximation, are unnecessary—as was implied during

the derivation of the master equation (4.139).

The above equal-time differential equations make up part of a moment hierarchy

[86, 101], which, in principle, can be used to compute any observable or state-based

quantity of interest for the open system—with the disadvantage of not being prac-

tical to solve as generally the equations are not a closed set. While (4.164) and

(4.165) are of closed form, Eq. (4.166) contains a surplus term depending on the

inversion operator σz(t) of the atom multiplying the creation/annihilation operators

of the principal mode, adding a non-linear type effect on the dynamics. Such a term

needs to be treated under approximation if the moment hierarchy is to be solvable

analytically.

To explore this idea, it is worth examining the limit of weak excitation of the

atom, that is 〈σ+σ−〉t � 1. Under these circumstances we can make the replace-

ment σz(t) → −1 [87]. The plausibility of this approximation within the context

of the moment hierarchy can be examined by looking back to the Heisenberg op-

erator equations of the atom and principal mode, i.e. (4.85) and (4.86). Here, the

equations are linear in the system operators and can be easily solved in the same

way as the quantum Langevin equation (3.57) from section 3.3: in doing so, we

also obtain solutions to (4.164)-(4.166). One finds that the observables of the atom-

pseudomode system undergo damped Rabi oscillations. We notice this behaviour

agrees with time evolution of the state coefficients when there is a single initial

excitation in the system and for a Lorentzian spectral density. Indeed, by writing

〈b†0σzb0〉t = 〈b†0b0σz〉t, it follows that

〈b†0b0σz〉t = 2〈b†0b0σ+σ−〉t − 〈b†0b0〉t. (4.167)

Now taking the average with respect to the ket |ψ(t)〉 from Eq. (4.146), the term

〈b†0b0σz〉t reduces to

〈b†0b0σz〉t = −〈b†0b0〉t, for 〈N〉t = 1. (4.168)

The important point to realise is the dynamics remains exact even when σz(t)→ −1,

so that, in this case, the moment equations (4.164)-(4.166) alone give a complete
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description of the evolution of the system.

For multiple excitations, Eq. (4.168) can only be assumed to hold under ap-

proximation where σz(t) ≈ −1. In an effort to avoid this we can take advantage of

the fact that the total excitation number is conserved property of the Hamiltonian

(4.35). With the number of initial excitations given by n, the commutator relation

[H,N ] = 0 (4.145) ensures n is a constant of motion and thus is fixed at all times.

It is this feature which permits closure of the moment hierarchy with exact results.

To illustrate this point, we revisit the above example where n = 1 to show how the

equations can be numerically solved in the more general case where 1 < n <∞. As

was shown, the moment hierarchy is restricted to a set of equations containing only

first-order correlation functions of the atom and principal mode: here, it is simple

to verify that next level terms—for example, 〈b†0b†0b0b0〉t or 〈b†0b0σ+σ−〉t—vanish,

whereas for n = 2 these terms will be non-zero. In the two-excitation case, by ex-

trapolation, correlation functions beyond second order (e.g. n = 3) should make no

contribution to the dynamics. It is then clear to see how these arguments extend to

the general n-excitation case, which can be used to truncate the moment hierarchy

to a finite set of equations.

For completeness, we compute the moment hierarchy to second order assuming

a maximum of two excitations in the system,

d

dt
〈b†0b0σ+σ−〉t = −Γ〈b†0b0σ+σ−〉t − Ω0Im

[
e−iδt〈σ−b†0b†0b0〉t

]
, (4.169)

d

dt
〈σ−b†0b†0b0〉t = −Γ〈σ−b†0b†0b0〉t + iΩ0e

iδt
(
〈b†0σzb0〉t − 〈b†0b†0b0b0〉t − 〈b†0b0〉t

)
(4.170)

d

dt
〈b†0b†0b0b0〉t = −2Γ〈b†0b†0b0b0〉t − Γ〈b†0b0〉t + 4Ω0Im

[
e−iδt〈σ−b†0b†0b0〉t

]
, (4.171)

where each of the correlations functions are normal ordered. Higher order terms

containing more than two consecutive factors of annihilation (lowering) operators,

such as 〈b†0b†0b0b0σ+σ−〉t, are, of course, zero. The above equations, when used in

conjunction with those in (4.164)-(4.166), in principal provide a complete solution

to the problem.

4.3.3 A driven two-level system

The method we used to derive the master equation in Eq. (4.139) should also apply

to the case when the atomic transition |g〉 ↔ |e〉 is driven by an external field. Again,
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in dealing with multiple excitations, this example is intractable to solve by simply

expanding the state (4.146) in a truncated one-photon basis. A non-perturbative

master equation for the enlarged system can be found as long as previous methods

that went into proving (4.139) still apply.

To capture the effect of a monochromatic field driving the atom, the system

Hamiltonian HS from (4.35) is modified accordingly:

HS(t) = ω0σ+σ− +
ΩL

2

(
e−iωLtσ+ + h.c.

)
, (4.172)

where ΩL is the Rabi frequency of the field and ωL its frequency. Note this form

assumes the rotating wave approximation, which is valid in the case |ω0−ωL| � ω0

of a nearly resonant driving field. The dynamics of the atom and principal mode

are then formulated in a frame of reference moving with the driving field. In this

way, we replace the open system term in H ′0 (4.64) with ωLσ+σ−. By following the

exact procedure which lead to (4.68), we obtain

d

dt
σ−(t) = σz(t)

{
i∆σ−(t) + i

ΩL

2
+ iΩ0e

i(δ−∆)tb0(t)

}
, (4.173)

having defined ∆ = ω0−ωL. We can also derive the quantum Langevin equation of

the atom:

d

dt
σ−(t) = −σz(t)

{
−i∆σ−(t)− iΩL

2
+ ξ(t)−

∫ t

0

dt′f(t− t′)σ−(t′)

}
, (4.174)

where the memory kernel is replaced with

f(t− t′) = θ(t− t′)Ω2
0 exp [(−i∆ + iδ − Γ/2)(t− t′)] . (4.175)

Through equating (4.173) and (4.174), we retrieve almost the exact same solution

for b0(t) given in Eq. (4.70):

b0(t) =
i

Ω0

ξ(t)e−i(δ−∆)t − iΩ0e
−Γt/2

∫ t

0

dt′e−(−i∆+iδ−Γ/2)t′σ−(t′). (4.176)

It is quite straightforward to show the above leads to,

d

dt
b0(t) = −Γ

2
b0(t)− iΩ0e

−i(δ−∆)tσ−(t)− i
√

Γ

2
e−iωLtbin(t), (4.177)

while the noise term is given by

bin(t) = i
1

2π

∑
n

2Ω0

ωcρn+1

√
Γ
bn+1

∫ ωc

−ωc
dω πn+1(ω/ωc)e

−i(ω+∆−δ)t. (4.178)
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In this case, the quantum Langevin equation of the principal mode (4.177) has same

form compared to when no driving field is present, i.e. by taking ∆→ 0. Therefore,

we can expect the method of substituting (4.174) and (4.177) into the Heisenberg-

Langevin equation should follow in the same way as it did before, starting from Eq.

(4.133). In fact, by applying this procedure, it can be shown that the exact master

equation of the damped-driven qubit is given by

d

dt
ρSP (t) = −i [H ′S(t), ρSP (t)] + ΓLb0 [ρSP (t)], (4.179)

where

H ′S(t) = ∆σ+σ− +
ΩL

2
(σ+ + σ−) + Ω0

(
ei(δ−∆)tσ+b0 + h.c.

)
. (4.180)

The same master equation has been introduced by Whalen et al. [87] for the purpose

of solving the dynamics of a driven qubit embedded in zero temperature bosonic

environment [102]. In that paper, it appears no reference is given to the origin of

the master equation—however, it possible to acquire their result by first modifying

the Hamiltonian (4.35) in such a way as to separate the environment into a single

damped oscillator and Markovian residual bath (see Fig. 4.4).

Though this is somewhat related to the transformation we initially used in section

4.1, our approach differs markedly in that it exploits the chain representation to

derive all relevant dynamical equations with the Heisenberg picture—while they

derive the master equation for the system and damped oscillator by way of the

usual procedure [cf. section 2.2]. This follows the approach of Refs. [29, 30] and

related methods [44]. Consequently, by arriving at the same exact result (4.179), our

method is shown to be equally capable in describing the non-Markovian response of

the qubit in the case of multi-photon excitation of the reservoir—both with driving

and without. It is important to emphasise that the essence of our method comes

from the pseudomode technique, which bases the formulation of the dynamics in

terms of a set (operator) equations connected to the pole(s) of the spectral density,

rather than by expanding the Liouville equation (2.38) for the enlarged system

density matrix ρSP (t) up to second order in the coupling strength of H ′I (4.129) and

evaluating the result via the Born-Markov approximations.
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4.4 Summary & discussion

In summary, we have provided an exact derivation of a master equation describing

the non-Markovian damping of a two-level atom embedded in a environment (e.g.

a quantum electromagnetic field) with a Lorentzian spectral density. Besides repro-

ducing known results—specifically, in the instance where there is one excitation in

the total system [1, 41], our method reveals a generalisation of the master equation

(4.139) to cases involving multiple excitation of the reservoir. A prominent example

we touched on being a driven-damped qubit system, having relevance in quantum

information processing and applications of cavity QED.

We began the chapter by presenting a transformation that maps the original

oscillator modes of the environment onto a one-dimensional chain. This new repres-

entation of the environment is generic, since the transformation itself leaves the open

system unaffected and only requires knowledge of the form of the spectral density.

As such, we have utilised this particular representation as a means to investigate

the non-Markovian dynamics of a two-level atom interacting with a structured bo-

sonic reservoir. By equating the Heisenberg (4.68) and quantum Langevin equations

(4.52) of the atom, the original Heisenberg picture equations for the reduced system

were expanded to include that of the principal mode, which together fully capture

the system-environment dynamics in a non-perturbative fashion. The closure of the

set dynamical equations for the atom plus oscillator system has been made possible

on the basis that the spectral density only contains a single pole in the lower half

complex plane.

We went on to derive an analytical expression for the two-point commutator of

the noise operator bin(t) (with its adjoint), given in (4.102), and compare the generic

result against the one obtained in the Markov limit. For a Lorentzian coupling pro-

file, i.e when the system-environment coupling is typically strong, the noise input is

seen to mimic the properties of a delta-correlated white noise—suggesting the model

maps onto a Markovian stochastic process. Consequently, the combined dynamics of

the atom and principal mode were shown to follow an interpretation along the same

lines as the well known input-output formalism. Subsequent development of our

framework then hinged on being able to partition the environment into a bipartite

arrangement. This aspect was used to derive a time-local master equation for an em-
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Figure 4.5: Recurrence coefficients shown according to the site index n of the chain

oscillators, plotted for parameters ω0 = 10−2ωc, Ω0 = 10−4ωc, Γ = 0.1Ω0 (δ = 0)

pertaining to the spectral density (4.47). The coefficient βn quickly converges to the

asymptotic value limn→∞ βn = β = 1/4 (4.25) around n ≈ 2, while αn approaches

α ∼ 10−5 � ω0/ωc. The previously used stieltjes routine was implemented to obtain

the coefficients via (4.20) and (4.21). Note small numerical discrepancies appear as

artefact of the choice of routine (i.e. ωc
√
β0 . Ω0).

bedded system by way of the Heisenberg-Langevin and quantum Langevin equations

(for the principal mode). The fact that the same master equation can equally be

derived from the Hamiltonians (4.53), and (4.114), for a zero-temperature reservoir,

demonstrates that the non-Markovian dynamics of the atom can be consistently

mapped onto a bipartite Markovian dynamics.

Our method has appeal in keeping with the already established idea of Markovian

embeddings from other works (cf. chapter 1). However, it is beneficial to the analysis

to be somewhat critical with regards to the assumptions we’ve had to make. We

take a brief opportunity to comment on these assumptions.

Firstly, let us address a point made in section 4.3 regarding flatness of the chain,

where it was assumed the recurrence coefficients (4.20)-(4.21) were homogeneous

beyond the principal mode, i.e m = 0. This case was originally implemented due to

its inherent simplicity, while also providing a dynamical framework which appears

to agree with the pseudomode method for a Lorentzian structured reservoir. The

salient problem, however, is that such an assumption may idealise the true properties

of the chain to a significant effect, and hence may compromise the validity of our
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results. To highlight this, in Fig. 4.5 we plot numerical results obtained for the

recurrence coefficients αn and βn across different n in the limit of strong system-

environment coupling. We see βn tends to come close to its asymptotic value (4.132)

quickly, however, there is no immediate convergence past n = 0: indeed, we find a

significant jump in value from n = 2→ n = 3, with αn having much less variation.

This would imply having to embed two oscillators in the reduced system for the

residual environment to fulfil its intended flatness. Furthermore, contrary to what

one would expect, even when taking the Markov limit Γ → ∞ the chain is found

not to be perfectly flat. All in all, this could tend to suggest a lack of consistency

between the assumptions we’ve made to derive (4.139) and properties of the chain

coefficients. We make the case, however, that the numerics presented in Fig. 4.5

do not impact the validity of our method since the Lindblad form master equation

(4.139) can be derived independently of the assumption m = 0. This is possible

using the phenomenological Hamiltonian (4.114). Importantly, because Heff,I(t) was

introduced through the dynamical equation (4.86), which is in turn only connected

to the pole contained with the complex spectral density (4.47), our statement is

then justified on the basis that the properties of αn and βn are not invoked3 prior to

(4.129). While Eq. (4.139) should therefore be consistent with the representation

where the chain is perfectly flat past n = 0, its validity is by no means restricted by

such an assumption.

One might be tempted to suggest why the recurrence coefficients in Fig 4.5 do not

appear to reflect the m = 0 result, i.e., a setting where a single auxiliary oscillator

is damped by flat reservoir. My personal suspicion as to why the chain doesn’t

appear sufficiently flat around n = 1 is that it is a consequence of having to impose

a finite cut-off frequency ωc in the original chain transformation. We witness similar

occasions where expected Markov features are not fully realised in the absence of

ωc → ∞. e.g. Eq. (4.108). In light of this, I believe the assumption of a perfect

homogenous chain amounts to an idealisation of the true dynamics in the very same

way as the white noise approximation. Hence, while not technically accounting for

full effects, our model is assumed to replicate the exact dynamics of the atom to a

3Note the kernel (4.101) has implicit dependence on the recurrence coefficients: however, this

was already shown to yield properties of a white noise process in (4.113).
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high degree of accuracy. This is judged by the fact our results are consistent with

pseudomode method.

Secondly an odd, if not problematic feature, is that the residual environment

couples strongly to the principal mode due to ωc/Ω0 � 1. This has similarly been

pointed out for the reaction coordinate mapping, which resembles the orthogonal

polynomial chain mapping to a large extent. The issue here is that the implied

assumption of there being only weak interactions between the enlarged system and

residual environment are possibly unjustified within the chain representation: reviv-

ing the remark of Strasberg et al. [33],

“It is not guaranteed that the resulting final SD (spectral density) is also

weak in the sense that it is justified to consider only second order per-

turbation theory in the coupling to the residual baths [. . . ] the resulting

final SD in general depends on the shape of the initial SD and might be

still large compared to parameters of the system.”

One assurance to this concern is that Markov approximation is based on the flatness

of the spectral density (see section 3.1.3). For an approximately homogenous chain,

a microscopic theory can be used show the spectrum of the residual bath is given

by a Wigner semicircle distribution [91], which, equivalently, is the spectral density

of the Rubin model in an x-p coordinate representation [6, 103, 104]. For large ωc

the distribution provides a flat, memoryless bath, as necessary. Moreover, since we

don’t use second-order perturbation theory in our derivation, we avoid the need to

assume the enlarged system and residual environment are weakly coupled.

Finally, let us reflect on a previously point made regarding already existing ex-

tensions of the standard pseudomode method, which have been demonstrated in

Refs. [44–46]. Here, by use the Fano diagonalisation technique, an atom—or any

open system for that matter—which couples to a structured bosonic reservoir is

found to be equivalently described by its coupling to a set of damped quasimodes.

In a way that is similar to what has been described in the current chapter (cf. sec-

tion 4.3), the original environment is replaced by a bipartite structure comprising of

an enlarged atom plus quasimode system, which in turn couples to a continuum of

residual environment of harmonic oscillators. The interaction between the enlarged

system and residual modes is treated assuming the relevant coupling constants αj



94

are slowly varying functions in frequency across the range of interest, i.e. αj → α.

Given this coupling is small, the resulting picture facilitates a standard derivation

of a Born-Markov master equation for the enlarged system, where the time deriv-

ative of its density matrix is evaluated to second order in α. The important aspect

is that the Lindblad form of the master equation in the extended Hilbert space of

the atomic system is preserved. However, unlike the pseudomode method, since the

transformation to the quasimode picture is based on rewriting the original Hamilto-

nian in terms an equivalent set of operators, the formalism incorporates the multiple

excitation case into its approach. The quasimodes, in turn, are identified as pseudo-

modes through their connection to the poles of the spectral density—this is what

justifies the extension of the pseudomode method to being able to treat the case of

multi-photon processes.

A drawback of the quasimode method is that it forgoes the original simplicity

of the pseudomode technique used to solve the single excitation case, and as a

result can be complicated to apply practically in certain situations. Our treatment

differs in that the master equation is explicitly derived from the Heisenberg operator

equations within the chain setting. Under only weakly restrictive assumptions has

this allowed us to extend the validity of the master equations to the case of multiple

excitations in the atom and principal mode system. Comparatively, the benefit of

our approach is that it’s self-contained as well as being established within a more

physically intuitive framework. The results of the current chapter may therefore

offer a better foundation to work from for future applications. Indeed, since the

master equation in Eq. (4.139) should be valid for any quantum optical system

whose time evolution is mainly governed by [HS, x
±
j (t)] ≈ ±ωjx±j (t) [63], where x±j

are operators of the open system (e.g. σ±j → σ± for a two-level system), then the

methods of this chapter could be applied to model a variety of more complex non-

Markovian systems, including the multi-level atom case described in Refs. [45, 46].
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Part IV

Quantum Darwinism
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Chapter 5

Emergence of classicality in a

damped atom-cavity system

Quantum Darwinism seeks to provide an answer to the fundamental question of

classicality in open quantum systems [47–52, 58, 105]. When a system interacts with

its environment, superpositions of the reduced system tend to decay into mixtures

of a certain stable macroscopic set of pure states, known as pointer states [106–108].

This description, referred to as decoherence [7, 9, 10], goes some way to explain

the emergence of classical-like behaviour at the level of the reduced system. While

decoherence can account for the removal of quantum interference phenomena, the

description must be considered incomplete since it does not consider how the pointer

states can be “found out” by an external observer, i.e. how information about

these states becomes distributed into the environment. The relevant situation to

understand is then one where many observers measure the environment, and in

the process, gain certain information about the properties of the system through

correlations shared with its measurement records. In the context of classicality,

the state inferred by each observer should be unanimously agreed upon, and thus

have objective properties [55, 109]. With this is mind, the basic question posed by

quantum Darwinism—and the one we wish to address here—is the following: over

the course of time, does the environment typically manage to acquire and maintain

many of the same copies of information about the system’s state as a result of the

decoherence process?

The current chapter is devoted to investigating how such information is spread
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within the environment of a paradigmatic model of quantum optics: specifically,

the model of a two-level atom interacting a structured electromagnetic (bosonic)

reservoir. The key idea is that of redundancy [7, 49–52]; or equally, how many

copies of information regarding the atom are imprinted into the reservoir. In this

way, the time-dependent nature of the correlations between the atom and different

fractions of the reservoir is considered. These correlations are measured through

the quantum mutual information [14, 110], which shall be our main point of focus

in this chapter. An advantage of the model we shall go on to examine is that its

dynamics is exactly solvable for a zero temperature reservoir [111], and as such, we

can investigate full effects. While the atom-reservoir we consider is generic, we will

envisage its particular application to a two-level atom coupled to a damped cavity

field.

In the overall scheme of things, the ensuing work is intended to be studied as a toy

model to recognise initial features of quantum Darwinism and develop a conceptual

understanding of the problem. Later we shall propose a setup more relevant to

actual experiments.

This chapter is organised as follows. In section 5.1 we provide an overview of the

core aspects of decoherence theory and discuss their connection with the quantum

Darwinism framework. Section 5.2 reintroduces the Jaynes-Cummings model for the

single excitation case, where its solution is obtained and exploited to pursue an exact

calculation of the quantum mutual information. Then, in section 5.4, we present

numerical results for the partial information—the averaged amount of quantum

information shared between the atom and parts of its environment—paying close

attention to the formation of a “classical plateau” feature. Lastly, as a corollary to

our main findings, in section 5.5 we study the properties of the local information in

relation to the spontaneous emission spectra of the system.

5.1 A basic example of quantum Darwinism

We begin by illustrating the concepts of quantum Darwinism using a simple dy-

namical model, comprising a two-level system in contact with a number of identical

quasi-spin systems. The current section closely follows the approach in Refs. [1, 48].
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In the standard decoherence setting, it is necessary to presuppose that the system

of interest—e.g. the two-level system—is initially uncorrelated and distinguishable

from its environment, with the latter assumed to be macroscopic. While there is

no a priori reason to believe such a partitioning agrees with any natural choice of

system [112], we assume, at least in the setting where we intend to apply these

concepts [cf. section 5.2.1], that no severe restrictions are placed on our work.

5.1.1 Decoherence and pointer states

Let us first consider the following initial state of the global system,

|ψ(0)〉SE = (α |0〉+ β |1〉)⊗ |φ0(0)〉E , (5.1)

where the environment has a fixed inner structure E = ⊗#E
λ=1Eλ made of mutu-

ally non-interacting sub-environments, Ek [51]. The environment is prepared in its

ground state,

|φ0(0)〉 = |ε(1)
0 , ε

(2)
0 , . . . , ε

(#E)
0 〉 . (5.2)

while the system starts in a superposition of |0〉 and |1〉 provided α and β satisfy

α, β > 0, with |α|2 + |β|2 = 1. Here we study the time-dependence of the coherences

and total correlations between the two subsystems. The interaction Hamiltonian

HI , from Eq. (2.46),

HI =
∑
n

Sn ⊗Bn =
∑
n

|n〉 〈n| ⊗Bn, n = 0, 1, (5.3)

is assumed to fulfil the property

[HS, HI ] = 0 from
[
|n〉 〈n| , HI

]
= 0. (5.4)

Consequently, because |ψ〉S = α |0〉 + β |1〉 is made from an arbitrary combination

of the eigenstates of (5.3), its basis states are stationary in time. That’s not to

say ρS(t) is time-independent: the open system is affected by dephasing, where

randomisation of relative phases between the basis states tends to result in a loss of

coherence. Because the system energy remains unchanged during this process, i.e.

dt 〈HS(t)〉 = 0, it suffices to ignore the contribution of HS to the dynamics, meaning

only the environment states evolve as |φn(0)〉 → |φn(t)〉. Thus the only timescales
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of importance are those associated with the bath units. For a Hamiltonian given by

H = H0 +HI [cf. (3.14)], the propagator U(t) within the interaction picture reads

U(t) = T←exp

[
−i
∫ t

0

dt′
∑
n

|n〉 〈n| ⊗Bn(t′)

]
, (5.5)

where Bn(t) = eiH0tBne
−iH0t, and T← is the familiar time-ordering operator from

(2.5). Note the propagator can also be expressed in terms of a Dyson series expansion

[62]:

U(t) = 1 +
∞∑
j=1

(−i)j
∫ t

0

dtnHI(tj)

∫ tj

0

dtj−1HI(tj−1) . . .

∫ t2

0

dt1HI(t1). (5.6)

Under a unitary time evolution, |ψ(t)〉SE = U(t) |ψ(0)〉SE, the linearity of the

Schrödinger equation, together with the commuting nature of the system and bath

operators in Eq. (5.6), then ensures |ψ(t)〉SE has a unique form provided by

|ψ(t)〉SE = α |0〉 |φ0(t)〉E + β |1〉 |φ1(t)〉E , (5.7)

where

|φ1(0)〉 = |ε(1)
1 , ε

(2)
1 , . . . , ε

(#E)
1 〉 , (5.8)

and the time-evolved bath states are

|φn(t)〉 = T←exp

[
−i
∫ t

0

dt′Bn(t′)

]
|φn(0)〉 . (5.9)

To inspect the density matrix of the open system, the environment degrees of free-

dom are traced out from the global state,

ρS(t) = trE
[
(|ψ(t)〉 〈ψ(t)|)SE

]
= |α|2 |0〉 〈0|+ αβ∗ |0〉 〈1| 〈φ1(t)|φ0(t)〉

+ |β|2 |1〉 〈1|+ h.c. (5.10)

Here we notice the time-dependence of the coherences in ρS(t) (the off-diagonal

terms) are determined by the overlap of the two environmental parts of the state

[108], that is 〈φn(t)|φn′(t)〉, whereas populations contained in the diagonal elements

remain static over time from 〈φn(t)|φn(t)〉 = 1. Intuition would tell us to eventually

expect

〈φn(t)|φn′(t)〉 −→ δn,n′ (5.11)
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on some timescale provided by microscopic details of the model, provided the ther-

modynamic limit #E � 1 is fulfilled. This is certainly the case within a course-

grained perspective, where the environment is assumed to contain a very large num-

ber of degrees of freedom.

Ultimately, the off-diagonal terms are found to decay either exponentially or with

some exponential functional dependence, leading to a situation where the system

density matrix approaches a completely diagonal representation as a result of the

environment states (5.11) being mutually orthogonal. In the limit t/τD →∞, with

τD a typical decoherence time for the system, Eq. (5.10) has the following form:

ρS(∞) = |α|2 |0〉 〈0|+ |β|2 |1〉 〈1| . (5.12)

The interaction therefore singles out a preferred set of classical basis states—the

pointer states—which are unique due to their stability with respect to coupling

to the external reservoir. Since, in the asymptotic limit, ρS(t) is given by an

incoherent mixture of the eigenstates Sn (5.3) pertaining to the operator OS =∑
n,n′

(
〈n|OS |n′〉

)
|n〉 〈n′|, the density matrix of the reduced system mimics a clas-

sical ensemble. By this we mean interference terms are no longer present in the

expectation value 〈OS〉∞ = trS [OSρS(∞)], i.e.

lim
t→∞
〈OS〉t = |α|2〈0|OS|0〉+ |β|2〈1|OS|1〉, (5.13)

and thus the pointer observable behaves like a classical stochastic variable. Because

(5.12) contains all accessible information about S and its probabilities, the lack of

any coherent phase relation between states leads us to believe—under an ignorance

(ensemble) interpretation1—that the system can be allocated to either one of the

1 This regards the state as being in a proper mixture (i) rather than a improper mixture (ii)

[10, 113]. The key difference between these two is stated as follows. A proper mixture, ρ =∑
n pn |ψn〉 〈ψn|, is constructed as an ensemble in the sense it has a given probability distribution

pn = tr
[
|ψn〉 〈ψn| ρ

]
of measuring the system in a preconceived state |ψn〉, if 〈ψn|ψn′〉 = δn,n′ .

Whereas, an improper mixture, like that found in Eq. (5.12), arises in a situation where the

density matrix of a product space H1 ⊗ H2 ⊗ . . . is traced over to obtain the density operator

of one of the subsystems. Hence an improper mixture is conceived from an understanding that

the universe can be partitioned into fixed subsystems, such as system plus environment, with each

having their own designated state, probabilities, and associated set of measurement outcomes; i.e.

the same as (i). However, (i) and (ii) must be interpreted differently because (ii) cannot be assumed
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pointers:

|ψ〉S −→ |0〉 , or

|ψ〉S −→ |1〉 , (5.14)

but clearly not both, in contrast to Eq. (5.1). After taking the trace, we find there

is a reduction of the original superposition of system states to an apparent mixture

of definite outcomes.

Nonetheless, while the original superposition |ψ〉S = α |0〉+β |1〉 becomes locally

unobservable, it should be emphasised that coherences still exist in the global state

vector |ψ(t)〉SE. Again this is attributed to the linear nature of the Schrödinger

equation. Yet, the steps leading to (5.12) end in a “different” evolution for the re-

duced system. As we’ve seen in (5.7), the first step involves the same linear (unitary)

type of interaction, which brings the global state vector into a non-separable state

|ψ(t)〉SE 6= |ψ〉S ⊗ |ψ(t)〉E. The “difference” then comes about from applying the

nonlinear trace operation to get ρS(t). However, because of the non-separability of

the global state vector, the system |ψ〉S can neither be expressed as individual pure

state or proper mixed state, and its properties (i.e. being in some fixed basis) are

therefore ill-defined prior to measurement [9]. Since |α|2 and |β|2 are interpreted

as probabilities of actualising the system in either |0〉 or |1〉 after measurement, the

trace must assume a collapse process occurs at some point in time for (5.12) to be

understood as a true classical ensemble (cf. footnote 1). We generally regard the

state to objectively exist when the environment modes are measured by a classical

device, e.g. a photodetector.

Einselection and predictability

A defining feature of pointer states is that each can be perfectively distinguished

under measurement, and as such they collectively form an independent set of meas-

urement outcomes, 〈n|n′〉 = δn,n′ , from the eigenstates of the system density matrix.

This is an ensured consequence of environment-induced superselection [7, 108, 114]

otherwise known as einselection, of the particular set of system states satisfying

to objectively exist under the standard orthodox interpretation if the reduced system is entangled

with the bath—essentially, it’s state is fundamentally indeterminate before measurement.
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these properties. Any other state formed out of linear combination of |n〉 will un-

dergo decoherence and the final density matrix cannot end up in a diagonal mixture

of its original elements. Indeed, if we consider the example of a system prepared in

an arbitrary pure state |ψ〉PS with coefficients cn, we notice the evolution

ρS(0) =
(
|ψ〉 〈ψ|S

)P t−→
∑
n,n′

c∗ncn′ |n〉 〈n′| −→

t�τD−−−→
∑
n

|cn|2 |n〉 〈n| = ρS(∞), (5.15)

is formally equivalently to S being acting upon by a non-selective measurement

where a certain mixture of stable (pointer) states are picked from the full ensemble

of possible results. The criteria used to identify the existence of these states in the

final stage of (5.15) originates from the einselection identity:

ρS(∞) =
∑
n

SnρS(∞)Sn, (5.16)

where Sn, as we recall from (5.3), satisfies Sn = S†n. We see in (5.16) that repeated

measurement of the same observable (5.13) after einselection (t� τD) always yields

a complete record of the state |ψ〉S in one of its pointer outcomes—or, in opposite

sense, the projection does not re-prepare the state in a new mixture of sub-ensembles

comprising a different basis set. The density matrix ρS(∞) is therefore insensitive

to (non-selective) measurements within the pointer state sector {Sn} [114].

With regard to a classical description, the result in (5.16) is important as it nat-

urally lends itself to the idea of predictability. By predictable, we mean the state

|ψ〉S can be monitored continuously and that the observed result correlates exactly

with what was previously found. Following (5.15), the irreversible nature of the

system measurement going from ρS(0) → ρS(∞) will grant unchanging and totally

predictable outcomes: hence, to an external observer, it is as if S was originally

classical. Decoherence then leads us to think of ρS(∞) as existing objectively, and

whose state can be found through many independent observers without being per-

turbed.

Information flows

The einselection process is typically accompanied with a loss of (quantum) informa-
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tion from the reduced system into its surroundings due to the off-diagonal terms of

ρS(t) decaying over time [7, 9]. Since information is in principle a conserved quantity,

it seems pertinent to ask where or how this information is stored. As Zurek suggests

[7, 47, 48], a natural extension to the decoherence program is to then include the

whole environment—or fractions thereof—within the description rather than tracing

out and excluding the role of the environment as we did previously in Eq. (5.10).

This framework is summarised under a “environment as a witness” paradigm, de-

picted in Fig. 5.1. The key here is to know how decoherence spreads copies of

information of the system’s state to the observer during an evolution described by

(5.7).

E3

E4E5

?

Ef ∈ E1 ⊗ E2

E1

E2

S

Figure 5.1: Diagrammatic representation of an observer monitoring a fragment

Ef . The environment E is recognised to be made up of a fixed number of sub-

environments. The question to be answered is: How much information does an

observer gain about the system S from intercepting copies of its state in E?

5.1.2 Quantum Darwinism

Looking back at the example in Eq. (5.7), let us consider the effect decoherence has

on shared correlations between the system and environment. Notably, pointer states

preserve correlations with environment fragments as a result of the fixed structure

of the global state |ψ(t)〉SE = α |0〉 |ε(1)
0 , ε

(2)
0 , . . .〉 + β |1〉 |ε(1)

1 , ε
(2)
1 , . . .〉. These cor-

relations hold certain information on the possible (pointer) states of the two-level

system. The quantum mutual information (QMI) is the measure used to ascertain
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what is known about the system by a fragment of the environment,

I(ρSEf ) = S(ρS) + S(ρEf )− S(ρSEf ), (5.17)

where Ef makes up a subdivision (in size) of E, see Fig. 5.1. The quantity S(·) is

the von Neumann entropy, which, for an arbitrary density matrix ρ, is defined as

[14, 110]

S(ρ) = −tr[ρ ln(ρ)] = −
∑
i

λi lnλi, (5.18)

with λi its corresponding eigenvalues. Separately from the global state (5.7), lesser

arrangements of composite system-fragment states ρSEf—obtained by tracing out

the remaining environment E/Ef—decohere over time, assuming E/Ef is of suffi-

cient size to do so. If, in the limit t/τD →∞, the overlap of the environment states

satisfy 〈φn(t)|φn′(t)〉E/Ef ≈ δn,n′ , we end up with

ρSEf (∞) = trE/Ef
[
(|ψ(t)〉 〈ψ(t)|)SE

]
= |α|2 |0〉 〈0| ⊗ (|φ0(∞)〉 〈φ0(∞)|)Ef

+ |β|2 |1〉 〈1| ⊗ (|φ1(∞)〉 〈φ1(∞)|)Ef . (5.19)

Notice the original superposition of outcomes is reduced to a mixture containing

the products of classical outcomes, e.g. |0〉 ⊗ |φ1(∞)〉Ef , similar to what we saw in

(5.12). Substituting the above into Eq. (5.17) yields

I(ρSEf ) = S(ρS) from S(ρS) = S(ρEf ) = S(ρSEf ). (5.20)

Therefore, the fragment retains a perfect record of the system pointer states. Be-

cause this condition is independent of the choice of Ef , many fragments contain cop-

ies of the same information on S. In the absence of entanglement this is restricted

to the classical limit I(ρSEf ) ≤ min
[
S(ρS), S(ρEf )

]
, where S(ρS) = −|α|2 ln |α|2 −

|β|2 ln |β|2 coincides with the classical Shannon entropy [14, 110]. While correlations

form between the environment and other possible states of the system, it should be

noted that only the pointer states have the ability proliferate classical information

throughout the environment, which can reliably be accessed via measurement [50].

By token of (5.20), classical information is redundant since in principle an un-

constrained number of observers can discover the state of the system through Ef .

The redundancy of such information in itself—that is, roughly how many copies are

imprinted across different fragments—can then be treated as a measure of classic-

ality. Bear in mind, however, that here we’ve considered an illustrative example
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only: in practice, copies will not store exactly this amount of information, which we

waive, but I(ρSEf ) = (1−δ)S(ρS), with δ a small information deficit2 (δ � 1). This

is now what we shall go on to test with our dynamical model by computing (5.17)

for many choices of fragment state. Note that it is necessary by no means to have

the condition (5.4) of an ideal measurement, and in the following, we also examine

both effects of decoherence and dissipation on redundancy.

5.2 Dynamical model

As previously mentioned, the model system comprises a qubit interacting with a

continuum of bosonic modes. Here we restrict our interest to the damped Jaynes-

Cummings model: that is, a two-level atom coupled to a single-mode cavity, which

in turns leaks into a vacuum reservoir. The reader is reminded this framework has

already been outlined in section 4.2. Here, the coupling between atom and environ-

ment oscillators is characterised by a single Lorentzian spectral density. Throughout

we will consider only resonant interactions, and so the distribution J(ω) is given by

J(ω) =
Ω2

0

π

Γ/2

(ω − ω0)2 + (Γ/2)2
, (5.21)

with the parameters being defined in the same way as they were in chapter 4. Note

we also assume the environment to have an inner structure E = ⊗#E
λ=1Eλ made up

of sub-environments Eλ.

5.2.1 Solutions to the model

Consider the state vector in Eq. (4.146). In the current situation—when one ex-

citation is present in the total system—a tractable way to study the dynamics is

attainable by expanding state in the single excitation manifold, thanks to the prop-

erty [H,N ] = [H0 +HI , N ] = 0 of the Hamiltonian (4.35). At t = 0, the initial state

of the total system is

|ψ(0)〉 = cg |g, 0〉+ ce(0)σ+ |g, 0〉 , (5.22)

2This is not to be mistaken for the detuning δ, which previously used the same symbol in

chapter 4.
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which after a time t > 0 evolves into

|ψ(t)〉 = cg |g, 0〉+ ce(t)σ+ |g, 0〉+
∑
λ

cλ(t)a
†
λ |g, 0〉 . (5.23)

Recall that the annihilation and creation operators aλ, a
†
λ fulfil aλa

†
λ′ |0〉 = δλ,λ′ |0〉,

while the atomic lowering and raising operators σ− and σ+ satisfy an algebra defined

in Eq. (4.36). By substituting (5.23) into the Schrödinger equation dt |ψ(t)〉 =

−iH |ψ(t)〉, within the interaction picture we obtain a set of coupled differential

equations for the state coefficients ce(t) and cλ(t):

d

dt
ce(t) = −i

∑
λ

gλ exp[−i(ωλ − ω0)t]cλ(t), (5.24)

d

dt
cλ(t) = −igλ exp[i(ωλ − ω0)t]ce(t). (5.25)

Following the approach of Wigner-Weisskopf [115], we formally integrate (5.25) to

get

cλ(t) = −igλ
∫ t

0

dt′ exp[i(ωλ − ω0)t′] ce(t
′). (5.26)

By then placing the result into (5.24) to arrive at an integro-differential equation

d

dt
ce(t) = −

∫ t

0

dt′f(t− t′)ce(t′), (5.27)

with the memory kernel f(t − t′) given in (4.46). Since this equation is linear, its

solution has the generic form ce(t) = G(t)ce(0), with G(t) the Green’s function of

the atom. Therefore, through taking the partial trace of ρ(t) = |ψ(t)〉 〈ψ(t)| using

the basis states |0〉E and a†λ |0〉E, the reduced density matrix of the atomic system

can be written as [116]

ρS(t) = trE
[
|ψ(t)〉 〈ψ(t)|

]
=
(
ρgg + (1− |G(t)|2)ρee

)
|g〉 〈g|

+G∗(t)ρge |g〉 〈e|+ |G(t)|2ρee |e〉 〈e|+ h.c. (5.28)

The time evolution of population and coherences in (5.28) is then fixed according

to the matrix elements

ρee(t) = |G(t)|2ρee = |ce(t)|2,

ρeg(t) = G(t)ρeg = c∗gce(t),

ρge(t) = G∗(t)ρge = c∗e(t)cg,

ρgg(t) =
(
ρgg + (1− |G(t)|2)ρee

)
= 1− |ce(t)|2, (5.29)
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with ρi,j = 〈i| ρS |j〉 (i, j ∈ [g, e]). It remains to determine G(t) to have a full handle

on the open system dynamics.

Because ρS(t) only depends on couplings gλ and parameters encoded in (5.21),

the complete evolution of the system is solely determined by the form of the spectral

density. For a Lorentzian, an analytical treatment of the full system-environment

dynamics is possible by mapping ρS(t) onto a enlarged system containing the original

atom plus an extra pseudomode degree of freedom [41] (see section 4.3.1). As we

know, the density matrix ρSP (t) obeys the master equation (4.139),

d

dt
ρSP (t) = −i [H ′S, ρSP (t)] +

Γ

2

([
aρSP (t), a†

]
+
[
a, ρSP (t)a†

])
, (5.30)

having

H ′S = Ω0

(
σ+a+ h.c.

)
, (5.31)

and where the pseudomode adopts the role of the leaky cavity mode. Solving the

0 5 10 15 20
0

0.2

0.4
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0.8

1

Γ/Ω0 = 0.1Γ/Ω0 = 10

Ω0t

|G
(t

)|2

Figure 5.2: The function |G(t)|2 [see Eq. (5.32)] plotted over time for Γ = 0.1Ω0

(blue solid curve) and Γ = 10Ω0 (red dotted curve). The solution obtained from

the weak-coupling Markovian master equation is also shown (black points) for the

latter choice of parameters.

master equation—either by numerically integrating or applying the Laplace trans-

form method to the state coefficients in Eqs. (4.149)-(4.150)—and subsequently
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tracing out the auxiliary variable from ρSP (t) (4.161), then leads to an exact solu-

tion for the system density matrix, i.e. ρS(t) = tr[ρSP (t)]. In doing so, we obtain

the following expression for the Green’s function:

G(t) = e−Γt/4

[
cos

(
Ωt

2

)
+

Γ

2Ω
sin

(
Ωt

2

)]
, (5.32)

where

Ω =
√

4Ω2
0 − (Γ/2)2. (5.33)

Figure 5.2 displays the behaviour of (5.32) for an initially excited atom, ce(0) = 1.

The atomic population shows qualitatively distinct behaviour depending on the val-

ues of the decay rate Γ and coupling strength Ω0. The relaxation rate of the atom

is provided by the Markovian decay rate γ0 = 4Ω2
0/Γ. Within the strong coupling

regime, 4Ω0 > Γ, the population undergoes oscillatory dynamics and shows revivals

at certain times. This is acknowledged to follow as a result of non-Markovian effects.

By further increasing the coupling strength to 4Ω0 � Γ, the atom dissipates more

slowly and has more pronounced Rabi oscillations.

Alternatively, for weak coupling, 4Ω0 < Γ, the population exponentially de-

creases in time. Likewise, it tends to approach its ground state faster than for

strong system-environment coupling. However by taking the Markov limit Γ→∞:

that is, when 4Ω0 � Γ, the atom is perturbed weakly from its initial state and thus

decays very slowly. In this instance, |ce(t)|2 conforms with the modified dynamics

of the Lindblad master equation [1, 5], where

|G(t)|2 ≈ e−γ0t for
4Ω0

Γ
� 1. (5.34)

A complete solution to the problem is obtained by directly plugging ce(t) into Eq.

(5.25) and integrating the result to obtain the reservoir coefficients cλ(t). The

quantum mutual information can thus be calculated exactly from (5.17), allowing

the time-dependent properties of the total system-fragment correlations to be stud-

ied fully within the scope of the current model. This we shall now go onto examine

in detail.
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5.2.2 Calculation of the quantum mutual information

The remaining states used to calculate (5.17), i.e. ρSEf (t) and ρEf (t), can straight-

forwardly be obtained by partitioning |ψ(t)〉 as follows:

|ψ(t)〉 = cg |g, 0〉SEf |0〉E/Ef + ce(t) |e, 0〉SF |0〉Ef +
∑
α,λ

cµα(t)a†µα |g, 0〉SEf |0〉Ef ,

(5.35)

where as always the coefficients must satisfy

|cg|2 + |ce(t)|2 +
∑
α

∑
µ

|cµα(t)|2 = 1. (5.36)

Again [cf. (5.2) and (5.8)] the environment is formed out of a fixed composition

of sub-environments E =
∑

α⊗#E
µα=1Eµα , each assigned to a mode labelled by µ.

Though the index µ has a one-to-one association with each of the original λ-modes,

its subscript α indicates the reservoir has been artificially partitioned into different

Hilbert spaces. For a bipartite partition, we have α = {1, 2}, and the operator a†µα

(aµα) belongs to the Hilbert space of the fragment or non-fragment depending on

the assignment of α: for example, if α = 1 is chosen to denote the state space of

E/Ef , then aµ1a
†
µ1
|0〉E/Ef = |0〉E/Ef . Importantly, the fragment Ef is independent

of its complimentary part E/Ef , in the sense that

aµαa
†
µ′
α′
|0〉 = δµ,µ′δα,α′ , and [aµα , a

†
µ′
α′

] = δµ,µ′δα,α′ . (5.37)

To set notation we shall assign α = 1 to E/Ef and α = 2 to Ef . Hence, the

fragment is arranged as Ef = ⊗mµ=1Eµ2 , where m indicates the number of quanta

(modes) included within Ef . It should also be mentioned that different combinations

of bath units (e.g. Ek, for k = 1, 2 . . . ,#E) with fixed number #E will typically

yield a different and unique choice of fragment, since each of the λ-modes have

different frequencies and coupling strengths to the atom.

Using (5.35), we can now take the partial trace of ρ(t) = |ψ(t)〉 〈ψ(t)| over the

part of its Hilbert space containing either the complementary fragment E1−f (i.e.

not in Ef ), or the complementary fragment plus the atom. That is we look to
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compute

ρSEf (t) = trE/Ef [ρ(t)]

=
∑
µ

E/Ef 〈0|aµ1
(
|ψ(t)〉〈ψ(t)|

)
a†µ1|0〉E/Ef + E/Ef 〈0|ψ(t)〉〈ψ(t)|0〉E/Ef ,

(5.38)

ρEf (t) = trS
[
ρSEf (t)

]
= 〈g| ρSEf (t) |g〉+ 〈e| ρSEf (t) |e〉 , (5.39)

which subsequently leads to

ρEf (t) =


1−∑µ2

|cµ2(t)|2 cgc
∗
1(2)

(t) cgc
∗
2(2)

(t) . . .

c∗gc1(2)(t) |c1(2)(t)|2 c1(2)(t)c
∗
2(2)

(t) . . .

c∗gc2(2)(t) c2(2)(t)c
∗
1(2)

(t) |c2(2)(t)|2
...

...
. . .

 , (5.40)

and

ρSEf (t) =

1− |ce(t)|2 −
∑

µ |cµ2(t)|2 cgc
∗
{µ2}(t) cgc

∗
e(t) 0

|c1(2)(t)|2 c1(2)(t)c
∗
2(2)

(t) . . . c1(2)(t)c
∗
e(t)

c∗gc{µ2}(t) c2(2)(t)c
∗
1(2)

(t) |c2(2)(t)|2
...

...
...

. . .

c∗gce(t) c∗1(2)(t)ce(t) . . . |ce(t)|2

0 . . . 0


,

(5.41)

where the respective basis states, starting from the top left and moving to bottom

right of (5.40) and (5.41), are

|0〉Ef , a†{µ2} |0〉Ef (5.42)

|g, 0〉SEf , a†{µ2} |g, 0〉SEf , |e, 0〉SEf a†{µ2} |e, 0〉SEf . (5.43)

5.3 Application of the quantum Darwinism frame-

work

As was touched upon in section 5.1, the successful emergence of quantum Darwinism

is characterised by the presence of redundant classical information, needing the full
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mutually induced decoherence of many different system-fragment combinations to

emerge. Our objective is to use the QMI to gauge the extend to which correlations

produced under the time evolution of (5.41) are shared universally between frag-

ments: in other words, how many Ef communicate the same information about S.

To this end, the size of a fragment is quantified by a fraction parameter f ,

f =
m

#E
, m = 1, 2, . . . ,#E, (5.44)

where 0 ≤ f ≤ 1 and m = dimEf . Notice that fractions are not just an aggregate of

contiguous modes along the frequency line (i.e. λ = 1, 2, . . . ): the modes are always

assumed to be chosen at complete random.

The partial information [49, 52], denoted by 〈I(f)〉, is defined as the average of

the QMI over random choices of fractions of size f . We are interested, of course, in

identifying fragments which supply the classical information,

〈I(fδ)〉 = (1− δ)S(ρS). (5.45)

from which the redundancy measure Rδ is defined as [7, 50]

Rδ =
1

fδ
. (5.46)

Since the quantity fδ indicates the threshold fragment size yielding (1 − δ)S(ρS)

information, (5.46) is the number of independent fragments that on average con-

tain (5.45) information on the pointer states. Whilst, here, we shall not explicitly

compute the redundancy Rδ, which we leave until chapter 6, it is straightforward

to judge its time-dependent behaviour by observing how fδ changes in the partial

information plots.

5.4 Total information and partial information plots

5.4.1 Dynamics of the total information

First we study the dynamics of the QMI shared between the atom and full reservoir.

Because the total state is initially pure, the joint entropy S(ρSE) vanishes due to the

global entanglement of the atom and reservoir modes, so that the mutual information

is given by [110]

I(ρSE) = 2 min [S(ρS), S(ρE)] = 2S(ρS). (5.47)
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If the two-level atom is prepared in the excited state then its entropy can be ex-

pressed analytically in terms of the binary entropy, S(ρS) = h(|ce(t)|2), where

h(|ce(t)|2) = −|ce(t)|2ln |ce(t)|2 − (1− |ce(t)|2) ln (1− |ce(t)|2), ρS(0) = |e〉 〈e| .
(5.48)

Notice here that |g〉 and |e〉 adopt the role of pointer states, since with no initial

coherences in the system, the density matrix ρS(t) remains in a the diagonal form

given by (5.12) at times t > 0.

In Fig. 5.3, we plot Eq. (5.48) against time and for different values of the

coupling strength Ω0. As one would expect, at short times, the atom quickly develops
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Figure 5.3: Quantum mutual information (5.47) as a function of time, plotted

for various parameter values of Ω0 and Γ. (a) QMI shown for strong (moderate)

system-environment coupling, with Γ = 0.1Ω0 (orange dotted curve) and Γ = Ω0

(blue solid curve). (b) The weak coupling case where Γ = 10Ω0.

correlations with the reservoir, being accompanied with an increase in the marginal

(atomic) entropy until ρS(t) becomes maximally mixed. From this point onwards

S(ρS) tends to decrease as the atom relaxes to its ground state: whether the entropy

also oscillates in time or not depends on the ratio of the parameters Ω0/Γ (see Fig.

5.2). While it is tempting to think of the oscillations in the QMI has being a

characteristic of memory effects, it is worth noting that sometimes total correlations

increase as a result of the purity p(t) = tr[ρ2
S(t)] decreasing in time, even when the

coupling is weak. This can be shown by taking the time-derivative of (5.47):

d

dt
I(ρSE) = −4

(
d

dt
|ce(t)|

)
|ce(t)| ln

(
1− |ce(t)|2
|ce(t)|2

)
. (5.49)
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With strong system-reservoir interactions there are clear time-dependent gains dtI(ρSE) >

0 following times where p(t) passes through a stationary point, i.e. when dt|G(t)| =
0. Solving for dtI(ρSE) = 0, the stationary points are noted to occur when |ce(t)| =√

1/2. Apart from this, other increases in the total QMI happen in parallel with

dt|G(t)| > 0. It is precisely these events which indicate re-correlation as a result of

true non-Markovian effects in the open system dynamics [79, 80, 117] as we shall go

on to discuss shortly with regard to the partial information.

Considering that the global system S + E is bipartite, the entropy of entangle-

ment E(ρS) = −trS[ρS ln ρS] [14] exactly coincides with the von Neumann entropy

S(ρS) of the marginal system. The system-reservoir entanglement thus follows a

similar pattern of behaviour as the excited state population of the atom, in the

sense E(ρS) has revivals starting at times

tj =
2

Ω

(
arctan

(
2Ω

Γ

)
+ jπ

)
, j = 1, 2, . . . , (5.50)

where the full state is momentarily separable (i.e. G(tj) = 0)—as seen in Fig. 5.3.

Intuitively, in the long time limit entanglement steadily dies off when the atomic

population approaches zero.

5.4.2 Partial information plots

In order to examine the redundant recording of information in the environment,

we employ a Monte Carlo procedure to randomly sample fractions f for every

m = 1, 2, . . .#E. Further details on the Monte Carlo simulation are given in ap-

pendix A. The partial information is then computed by averaging over the ensemble

of different I(ρSEf ). Numerical results are obtained for both strong and weak system-

environment coupling for an initial density matrix ρ(0) = |e〉 〈e| ⊗ |0〉 〈0|.
Firstly, because the state in Eq. (5.23) remains pure throughout its time evol-

ution, the partial information plots are antisymmetric about f = 1/2. This can be

formally demonstrated by first partitioning S+E into a bipartite Hilbert space con-

taining a system-fragment arrangement SEf and its complimentary fraction E1−f .

The Schmidt decomposition of ρSE(t) reveals the entropies of the two constituent

parts to fulfil S(ρSEf ) = S(ρE1−f ) and S(ρSE1−f ) = S(ρEf ). If we then use

I(ρSEf ) = S(ρS)− S(ρSEf ) + S(ρSE1−f ), (5.51)
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to sum the partial information of the two complementary fractions Ef and E1−f , it

turns out that [47, 49, 50]

2S(ρS) = I(ρSE1−f ) + I(ρSEf ), (5.52)

which proves antisymmetry from the identity (5.47). Intuitively, as f → 1, we obtain

I(ρSE1−f )→ 0 and so (5.52) recovers the full QMI of S + E.

Let us now focus on the case when the coupling between the atom and modes

of the environment is weak; that is, for parameters Γ = 10Ω0. Figure 5.4 shows

a complete time evolution of the partial information across many sizes of reservoir

mode fractions. Initially after the system and reservoir are brought into contact,

partial information grows rapidly as the interaction records information about the

atom in the reservoir—coincidentally at the same rate at which the total information

increases [cf. Fig. 5.3] . As decoherence sets in further the partial information

increases more steeply to its maximum value around f ≈ 1. From the antisymmetry

property (5.52), the rise is matched by a gradually steeper gradient close to the

origin. This in turn channels the middle region of the plot into a flat plateau shape,

where its length indicates the availability of information (1− δ)S(ρS) from separate

fractions of the environment. The level to which information is redundant is then

qualitatively indicated by the length of this plateau. As the plateau grows in length

and levels out over time, we eventually find that many fractions gain access to

the same information about the two-level atom. In this way, redundancy clearly

manifests since the difference between correlations in randomly selected fragments

is only weakly dependent on f .

At short times, our numerical results show that for typical fragments of small

or moderate size, the entropy S(ρEf ) is almost zero (less so in fragments centred

close to the atomic frequency ω0), whereas S(ρS) and S(ρSEf ) are much larger and

approximately equal as a consequence of fragile bipartite entanglement between the

system-fragment and its complementary part: that is, tracing out E1−f significantly

diminishes correlations in the full system. If we also track the entropy of the same

fragment towards the long time limit, we see S(ρEf ) tends to increase relative to

S(ρSEf ) quickly from its initial value, but eventually equilibrates at

S(ρEf ) ' S(ρSEf ), for t→∞, f < 1, (5.53)



115

0
5

10
15

20 0 0.2 0.4 0.6 0.8
1

0

0.5

1

1.5

2 (a)

Ω0t
f

〈I
(f

)〉
/
S

(ρ
S

)

Γ = 10Ω0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

δ

(b)

f

〈I
(f

)〉
/
S

(ρ
S

)

Γ = 10Ω0

Ω0t = 5
Ω0t = 10
Ω0t = 20
Ω0t = 30
Ω0t = 40

Figure 5.4: Partial information 〈I(f)〉/S(ρS) shown for weak system-environment

coupling, with Γ = 10Ω0. (a) The average of Eq. (5.17) taken from random frag-

ments is plotted against time and fraction size f . (b) Representative snapshots

of (a) for equal parameters. The intercept between the black dashed line (shown

for δ = 0.15) and each curve indicates the threshold fraction fδ (5.45). Large re-

dundancy, or small fδ, reveals that spreading of correlations over time leads to the

emergence of redundant information, indicated by the presence of the flat classical

plateau.

once the fragment has recorded all possible information it can about the state of

the atom. This type of evolution characterises successful quantum Darwinism, ana-

logously fulfilling the redundancy condition in Eq. (5.19). Since this holds for most

fractions, I(ρSEf ) declines to zero in line with the system entropy S(ρS) [c.f. Fig.

(5.3)]. Hence, while nearly all information on the atom is accessible from small

fractions of E when S(ρEf ) grows to its maximum value, over time multipartite

correlations also eventually decay as a result of the atom losing population. In the

steady-state the system decouples from the environment—the global state converges

to ρSE(∞) = |g〉 〈g| ⊗ ρE(∞), and, at this point, no information can be obtained

from measurements on the environment.

In the case of strong system-environment coupling—shown in Fig. 5.5 for Γ =

0.1Ω0—rather than seeing a increasingly flat plateau form over time, we instead

notice pronounced oscillations in the partial information. The process is clearly

periodic: decay is followed partial recoherence of the state ρSEf , which in turn is

accompanied with a suppression in the plateau. While decoherence is not fully
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reversible, the oscillations last over many relaxation periods and as a result the re-

dundancy remains qualitatively small, see Fig. 5.5(b). This, of course, lies in direct

contrast to the behaviour witnessed in the weak coupling limit.

Looking back at Fig. 5.2, we see that the time evolution of the partial informa-

tion exactly matches the peaks and troughs in |G(t)|2 at times (5.50). As we have

noted from (5.49), at certain times revivals in the atomic population go hand in

hand with recorrelation of the full state, which overall suggests memory effects im-

pede the emergence of redundancy. Indeed, what we typically see for a fraction of a
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Figure 5.5: Partial information 〈I(f)〉/S(ρS) shown for strong system-environment

coupling. Details of the plots in (a) and (b) are provided in Fig. 5.4, except here

with parameters Γ = 0.1Ω0. It can clearly be seen that a classical plateau does not

form in the same way as in the Markovian case.

small (or moderate) size is that the entropy S(ρEf ) continuously oscillates in time.

This is why the partial information develops “cusps” and does not exhibit a stable

classical plateau. While such behaviour is prevalent in the early-time dynamics, it

should be noted that a plateau does emerge for Ω0t� 1 since the entropy converges

to its fixed maximum value S(ρEf )/S(ρSEf ) ' 1 [c.f. Eq. (5.53)], at which point

oscillations are no longer present (not shown). Though information redundancy can

still be observed, clearly its rate of emergence is much slower than in the previously

considered example.

To add to this, we also examine the intermediate regime in Fig. 5.6 for paramet-

ers Γ = Ω0. Again we find signatures of non-Markovianity in the partial information

plots based on the oscillatory behaviour of the atomic population. However, at longer
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Figure 5.6: Partial information 〈I(f)〉/S(ρS) shown for strong (moderate) system-

environment coupling for parameters Γ = Ω0. Other details of the plots in (a) and

(b) are given in Figs. 5.4 and 5.5. Notice oscillations occur in line with those in

the atomic population, which tend to fade out at times when a classical plateau

develops.

times we notice that a classical plateau very similar to the one in Fig. 5.4 develops.

By considering this behaviour together with our last result (c.f. Fig. 5.5), we can see

that memory effects tend to disrupt the emergence of redundancy—although, since

revivals of the (average) system-environment correlations only affects the formation

of the plateau at short times, the environment retains the capacity to record many

local copies of the same information on the atom at long times even if the dynamics

is strongly non-Markovian, i.e., Γ� Ω0.

5.5 Local information

While redundancy and entanglement emerge as a result of the global system-reservoir

interaction, local correlations are also formed between the atom and small bands of

oscillators. Our intention here is to then examine how information is dynamically

distributed among individual modes, as opposed to that contained within larger

fractions. The quantity of interest is

I(ρSEλ) = S(ρS) + S(ρEλ)− S(ρSEλ), (5.54)

which specifies the information shared about the atom with a bandwidth of modes

spanning ωλ and ωλ +dωλ about the atom: that is, a single sub-environment Eλ. In
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the single excitation case this forms a measure of correlations for an effective two-

qubit state, in the sense that one excitation at most can be in the atom or λ-mode

of the reservoir.

To compute (5.54), we need to diagonalise each of the density matrices ρEλ and

ρSEλ : with no initial coherences in S, it turns out that ρEλ = diag (1− |cλ(t)|2, |cλ(t)|2).

Diagonalising ρSEλ yields its four eigenvalues λj (j = 1, 2, 3, 4), which are given by

λ1 = λ3 = 0, and λ4 = |ce(t)|2 + |cλ(t)|2, λ1 = 1− λ4, (5.55)

for each of the two qubits. The local QMI is thus

I(ρSEλ) = h(|ce(t)|2) +
(
1− |cλ(t)|2

)
ln
(
1− |cλ(t)|2

)
− |cλ(t)|2 ln |cλ(t)|2 −

(
|ce(t)|2

+ |cλ(t)|2
)
ln
(
|ce(t)|2 + |cλ(t)|2

)
−
(
1− |cλ(t)|2 − |ce(t)|2

)
ln
(
1− |cλ(t)|2 − |ce(t)|2

)
.

(5.56)

It proves useful at this point to introduce the following definition of the spontaneous

emission spectrum [118, 119]:

Sa(ωλ, t) = ρλ
〈
a†λaλ

〉
t
, (5.57)

remembering ρλ as the density of states from (3.29). This expresses the conditional

probability of finding a photon of frequency ωλ in the reservoir at a time t. For our

initial pure state of S + E, the above reads

Sa(ωλ, t) = ρλ 〈ψ(t)|
(
1S ⊗ a†λaλ

)
|ψ(t)〉 = |cλ(t)|2ρλ, (5.58)

where cλ(t) are state coefficients of each of the reservoir modes in Eq. (5.23). Note

the connection between the presence of local correlations and excitation of the reser-

voir modes. Thus, it is appreciated that the measure I(ρSEλ) can be studied with

regard to the time-dependent properties of the spectrum, as we will go onto establish

shortly.

With this in mind, an important quantity to obtain is the steady state form of

the emission spectrum, being calculated from Sa(ωλ,∞) = limt→∞ ρλ
〈
a†λaλ

〉
t
. We

discover that

Sa(ωλ,∞) =
16J(ωλ) [(δλ)

2 + (Γ/2)2]∣∣(2iδλ − Γ/2)2 + Ω2
∣∣2 =

8Ω2
0Γ

π
∣∣(2iδλ − Γ/2)2 + Ω2

∣∣2 , (5.59)
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with δλ = ωλ − ω0. By substituting |ce(∞)|2 = 0 into Eq. (5.56), the asymptotic

value of I(ρSEλ) is found to given by

I(ρSEλ) = 0, for t→∞. (5.60)

This is, of course, intuitive from the fact that the global state is separable at times

t� 1/γ0 when the atom has almost certainly emitted its photon into the reservoir.

The final state of the bipartite system must then have the form

|ψ(∞)〉 = |g〉 ⊗
∑
λ

cλ(∞)a†(ωλ) |0〉 . (5.61)

It is noted the global entanglement (entropy) measure E(ρS) (cf. section 5.4.1)

also predicts the above, since E(ρS) → 0 only occurs in the infinite time limit if

|ψ(∞)〉 = |g〉 ⊗ |ψ(∞)〉E.

Based on having an analytic expression for the long-time reservoir population

density (5.59) and the local information (5.56), it seems reasonable for us to now

answer how correlations are distributed across the environment up until the point

where the reservoir excitation probability Sa(ωλ, t) approaches its stationary value

(i.e. when I(ρSEλ) = 0). In figures 5.7(a-b), the local information—plotted as a

function of detuning from the atomic frequency ω0—is shown alongside snapshots

of itself in the long time limit, in addition to the excitation spectrum for t → ∞.

Notably, in Figs 5.7(c-d), there is an obvious resemblance between the atom-mode

correlations and individual mode populations in both the strong and weak coupling

regimes—more so with decreasing values of Γ. In view of this aspect, let us consider

some particular features (5.54), starting with the case where the coupling Ω0 is much

larger than the linewidth; shown in Fig. 5.7(a).

Early exchange of population between the atom and reservoir results in time-

dependent oscillations in I(ρSEλ), as we could plausibly expect from the non-Markovian

behaviour of |G(t)|2 [cf. Fig. 5.2]. Furthermore, while at short times the atom-mode

correlations are primarily spaced within a small band of modes centred on δλ ≈ 0,

towards longer times these become increasingly concentrated in sidebands placed

at ω± − ω0. This evolution in fact foreshadows the steady state behaviour of the

population (5.59) shown by the inset in Fig. 5.7(c), which itself exhibits a doublet

feature comprising of two sharp peaks separated by a distance |ω± − ω∓| = 2Ω0.

The effect we see in the local information is therefore a consequence of the vacuum
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Figure 5.7: The local information I(ρSEλ) plotted as a function of time, for para-

meters (a) Γ = 0.1Ω0 and (b) Γ = 10Ω0. The bottom row of plots compare (5.56)

(black solid curve) against the excitation spectrum (5.58), shown at a times (c)

Ω0t = 50 and (d) Ω0t = 20: respective parameters are the same as those in each of

the above panels. Insets show the steady state spectra.

Rabi splitting [120].

On the other hand when the system-environment interactions are weak the spec-

trum shows no such response, see Fig. 5.7(b). Instead, at short times the atom-

mode correlations spread across most of the reservoir due to non-resonant modes

briefly participating in the dissipation process. At slightly longer times correla-

tions are distributed over a Lorentzian-type shape with a width given by ∼ γ0, akin

to what is observed in the Markov limit Γ → ∞. Again we see that features of

the spectrum Sa(ωλ, t) are reflected in the local information during this point in

the evolution. Further on, information decays significantly in line with the atomic
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population—approaching zero as t increases further since no correlations can exist

without excitation of the atom. Typically speaking, we also notice (5.56) decays

more rapidly for weaker couplings relative to the case where Ω0 � Γ, which hap-

pens on time scale set by the rate of decay of the entropy S(ρS).

Relation of local correlations to redundancy

On a final note, let us briefly return to the partial information plots of section

5.4.2 to consider how the local information relates to the growth of redundancy.

In the weak coupling limit, if we inspect fδ from the numerical data presented in

Fig. 5.4, it is quite clearly found that redundancy proceeds on a timescale largely

separated from that of decoherence τD, which sets the rate at which correlations

between the atom and reservoir initially form (seen from the rate of increase of the

partial information and total information I(ρSE) around t ≈ 0). Looking at Fig.

5.7, it is interesting to note that the local information tends to fall off at these longer

times when redundancy begins to emerge. Yet, for strong coupling in Fig. 5.5, local

correlations persist well into this regime with there simultaneously being little re-

dundancy. This indicates a possible connection between the successful storage of

information at a local level (i.e. bands of oscillators), and suppression of redundant

classical information on a larger “fraction scale”.

To give more weight to this idea, in Fig. 5.8, we plot the local information

within an intermediate coupling regime. Although peaks develop around the fre-

quencies ω± − ω0 as they do in the strong coupling limit, the correlations decay

much faster relative to the case Ω0 � Γ. As suggested, the correlations fall off on

a timescale similar to one which equally sets the rate of decrease of fδ (see Fig.

5.6). From this evidence we conjecture that local correlations in the reservoir are

detrimental to the larger scale acquisition of information within fractions, that is,

typically where f � 1/#E. As we can imagine these two effects are not one and

the same thing—redundancy stems from the information gained by a fraction of the

reservoir as its modes decohere collectively along with the system (under the action

of the remaining environment), while local information reflects on the information

that is recorded by each individual oscillator [50].
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Figure 5.8: Local information (5.56) plotted as a function of time for parameters

Γ = Ω0.

5.6 Summary & discussion

In this chapter we have studied emergent features of quantum Darwinism within

the setting of a two-level atom coupled to a leaky cavity field. Our main line of

inquiry has been to examine the underlying correlation structures of states associated

jointly with the atom and different combinations of reservoir modes. To achieve

this, we have computed the quantum mutual information (5.17) for such states,

whose average across randomly chosen fractions of the environment provides an

understanding on the information transfer happening as a result of decoherence.

The QMI measure is practical and intuitive to interpret: if the partial information

is found to be approximately independent of fraction size, then many fragments are

known to gain access to the same information on the system pointer states. This

is evidenced by the appearance of a flat plateau shape in the plots of 〈I(f)〉 at

the classical boundary f = fδ (5.45) (e.g. see Fig. 5.4), which is used to identify

redundancy.

Since the solution to Eq. (5.23) is fully amendable for all possible coupling

strengths—including the case when the environment is structured—we have also

partly explored the effect non-Markovian behaviour has on the open system’s ability

to record classical copies of its own data in the environment. Indeed, our original

motivation for applying the quantum Darwinism framework was that the model is



123

exactly solvable, and thus serves as an ideal testbed for future purposes.

Our goal was to numerically assess the partial information plots for various

choices of spectral parameters Ω0 and Γ. For weak system-environment coupling,

not only was a classical plateau shown to form, but also that its length continuously

increases over time, accompanied with a monotonic decrease in fδ. Meanwhile,

when the environment is structured, the long term storage of redundant informa-

tion is strongly inhibited by the presence of memory effects. We recall that revivals

in the atomic population lead to partial recorrelation of a typical system-fragment

state, which subsequently contributes to the rollback of the decoherence process.

Remarkably, in an intermediate regime Ω0 ≈ Γ, despite memory effects still be-

ing influential to the dynamics, we have shown that significant redundancy does

emerge at long times. Taking this into account, our preliminary conclusion is that

quantum Darwinism (or redundancy) does emerge—taken with the caveat that for

stronger couplings Ω0 � Γ, the non-Markovian response from the atom pushes back

the formation of redundant information until very long times. In a regime where

the atomic population oscillates in time, dissipation and decoherence can then be

viewed as competing mechanisms with regard to the emergence of classicality: de-

coherence acts to proliferate copies of the system’s state into the reservoir, while

memory effects tend to disrupt this process until oscillations gradually fade out at

longer times.

The last task was to study the information carrying capacity of individual reser-

voir modes as a means to acknowledge where information is locally recorded in the

environment. This is quantified through the QMI shared between the atom and

sub-environment of frequency ωλ (5.54), which has been shown to follow a similar

pattern of behaviour to the emission spectrum prior to the long time limit (see Fig.

5.7). For strong system-environment coupling, we established that local information

develops Rabi sidebands symmetrically about the atomic frequency. Decreasing the

coupling strength enough causes the doublet to be replaced by a Lorentzian pro-

file with resonant modes containing most information. By comparing the different

timescales on which local correlations disappear and 1/fδ increases, we also suggest

a possible adverse influence local correlations have on the information capacity of

“whole” fragments—those of moderate f -size that contain many modes and par-
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ticipate in the decoherence process. This could be explored with greater detail in

future work, and/or furthered to examine how multipartite correlations between

mode fractions affect redundancy.

Finally, it should be emphasised that the general method of obtaining the par-

tial information relies on sampling a bandwidth made up of a random selection of

individual modes. This way of sampling, however, can be difficult to relate to how

physical measurements could be made on the environment in the current model.

To illustrate this point, consider a quantum Brownian particle oscillating under the

dissipative action of a quantum field [1, 7, 52]. Usually in this setting excitations

are scattered unpredictably from the particle into regions of the surrounding space:

therefore, it seems reasonable that an observer could intercept information from a

random bandwidth (in frequency space) when measuring a part of the particle’s

environment. Yet, for the atom-cavity model used in the chapter, it is not a priori

obvious how to measure the environment in this way—indeed, measurements here

are typically done in controlled manner over the full cavity bandwidth. The lack of

a firm connection between our results and actual experiment is somewhat unsatis-

factory for this reason. Part of our motivation for the next chapter is to then refine

the current model to one that is grounded in a more realistic scheme.
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Chapter 6

A further application of quantum

Darwinism to a structured

environment

At this point we have established the dynamical regimes for which quantum Dar-

winism emerges in the example of a dissipative two-level atom. In particular we

found the transfer of redundant information into the environment to be most suc-

cessful in the absence of memory effects. To build upon this foundation, we proceed

down a similar path to one we previously explored, which involved us looking at

how a system imprints copies of its own information into sub-environments. The

exception here is that we promote the previous single bosonic reservoir to a multiple-

environment model: more precisely, we deal with a setup where a two-level atom

interacts with a large number of independent reservoirs of oscillators (see Fig. 6.1).

As we shall see, since the spectral density of total environment may under certain

conditions be expressed in terms of a single Lorentzian, like that in Eq. (5.21), the

dynamical solution found in (5.32) for single reservoir coupling is also relevent to

this case. The results we obtain here therefore encompass those of chapter 5, and,

as such, stem from a generalisation of the previous model.

According to Ref. [41], each reservoir (sub-environment) may be replaced by a

single pseudomode, meaning atom’s dynamics is equally described by its coupling to

many unconnected and damped oscillators. These are known to store information

from which the atom can receive back at a later time [121]. In view of this, our
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approach focuses on a partitioning of the environment into its memory part—the

pseudomodes—and non-memory part, into which pseudomodes decay (see Fig. 4.4

for a single pseudomode illustration). We consider information storage in both of

two separate cases: (i) in the full reservoirs, and (ii) in the memory part only. The

main quantity of interest is still of course the QMI, provided as

I(ρSXf ) = S(ρS) + S(ρXf )− S(ρSXf ). (6.1)

However, we assign Xf (X) to fragments either made up of reservoirs Ef , or pseudo-

modes Pf , corresponding to cases (i) and (ii), respectively. By examining correla-

tions selectively, our intent is to study where information is stored redundantly, and

also how this process is affected by the mixing of the state ρSPf = trP/P1−fρSP as it

evolves under a noisy quantum channel in line with Refs. [53, 54]. We too establish

how classical and quantum correlations are encoded between the system and envir-

onment fractions, the latter of which measured by the quantum discord [122, 123],

to look more deeply at the degree to which classical information is redundant out

of the total correlations.

Rather than keep a loose interpretation of memory effects, here we check the

criteria that lead to poor Darwinism in chapter 5 with an actual witness of non-

Markovianity [78–80]. This enables us to gain a consistent understanding on the

role information back-flow from environment to the system [66, 124, 125] has on

suppressing redundancy along with recorrelation effects. Additionally, it creates a

formal link between the time-dependent behaviour of the partial information in the

new and previous model to the non-Markovian dynamics of the atom.

First, we introduce the dynamical model in section 6.1 and proceed to obtain

an exact solution for the state coefficients of the atom and pseudomode degrees of

freedom. We identify a dynamical regime of interest where the atom shares signi-

ficant correlations with the pseudomode part of the environment. Then, in sections

6.2, we study the partial information plots of cases (i) and (ii) and address the de-

composition of the QMI (6.1) into its classical and quantum components. In section

6.3 we identify conditions which maximise classical atom-pseudomode correlations.

Finally, we compute the redundancy from Rδ = 1/fδ (5.46) and relate its dynamical

behaviour to that of the non-Markovian witness. A possible configuration the model

applies to is a two-level atom coupled to a large cavity array, where each cavity field
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leads into an external vacuum of modes.

6.1 Dynamical model

We start by considering a two-level atom (TLA) S interacting with an environment

E of bosons. Our plan is to adopt the multiple-environment model from section 3.1:

though for clarity we will briefly reiterate some ideas that were made in previous

chapters, being relevant to the current model—see sections 4.3.1 and 5.2. Like

before the environment is arranged as E = ⊗#E
k=1Ek and is prepared in the vacuum

state, where the index k = 1, 2, . . . ,#E labels individual fixed sub-environments

Ek. An important difference here, however, is that the sub-environments now make

up entire reservoirs, and not individual modes. In turn, each reservoir is comprised

of harmonic oscillators with frequencies ωλ. The Hamiltonian of the atom and

environment are given by HS = ω0σ+σ− and HE =
∑

k,λ ωλa
†
k,λak,λ, respectively.

Note too that variables between sub-environments commute as

[ak,λ, a
†
k′,λ′ ] = δk,k′δλ,λ′ , (6.2)

which satisfy the familiar relation ak,λa
†
k′,λ′ |0〉 = δk,k′δλ,λ′ |0〉. Within the rotating

wave approximation and interaction picture, the total Hamiltonian reads

HI(t) =
∑
k

(σ+Bk(t) + h.c.), (6.3)

where

Bk(t) =
∑
λ

gk,λak,λexp[−i(ωλ − ω0)t], (6.4)

and gk,λ is the coupling of the λ-mode in the kth reservoir to the atom. In the

following we consider spectral densities of the form

J(ω) =
Ω2

0

2π

∑
k

wk Γ

(ξk − ω)2 + (Γ/2)2
, (6.5)

where Γ is the width and ξk the peak frequency of an individual Lorentzian, weighted

by real positive constants wk, satisfying
∑

k wk = 1. For simplicity, we have im-

posed that each of the Lorentzian widths—associated with the coupling to each

sub-environment—are the same.
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Figure 6.1: Schematic showing two dynamical representation of the model. (i)

The qubit system S couples to many sub-environments E1, E2, . . . with strengths

Ω1,Ω2, . . . . (ii) An equivalent setup in terms of pseudomodes, labelled P1, P2, . . . ,

which are each damped by independent Markovian reservoirs R at an equal rate

Γ. The environment is sampled by constructing fragments out of the bare sub-

environments Ef , or the pseudomodes, Pf , respectively.

6.1.1 Solutions to the model

Suppose the atom is initially prepared in the state |ψ〉S = cg |g〉 + ce(0) |e〉. As the

number of excitations are conserved in this model [see Eq. (4.145)], the total state is

restricted to the single excitation manifold, which at a time t > 0 admits the closed

form

|ψ(t)〉 = cg |g, 0〉+ ce(t)σ+ |g, 0〉+
∑
k,λ

ck,λ(t)a
†
k,λ |g, 0〉 . (6.6)

The memory kernel is obtained by taking the continuum limit over all sub-environments

as follows:

f(t− t′) =
∑
k,k′

[
Bk(t), B

†
k′(t
′)
]

=

∫ ∞
−∞

dωJ(ω)e−i(ω−ω0)(t−t′). (6.7)
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By substituting (6.6) into the Schrödinger equation and eliminating the variables

ck,λ(t), we get

d

dt
ce(t) = −

∫ t

0

dt′
∑
k

Ω2
k exp[(−i(ξk − ω0)− Γ/2)(t− t′)]ce(t′), (6.8)

where Ωk =
√
wkΩ0 is defined as the coupling strength of the atom to the kth

reservoir. Because Eq. (6.5) is meromorphic and contains simple poles in the lower-

half complex plane, we can then rewrite (6.8) into the following set of coupled

differential equations:

d

dt
ce(t) = −i

∑
k

Ωke
−i∆ktbk(t), (6.9)

d

dt
bk(t) = −Γ

2
bk(t)− iΩke

i∆ktce(t), (6.10)

having been defined in a new frame rotating frame with respect to the term
∑

k ∆ka
†
kak

[see (3.16)], where ∆k = ξk − ω0. The coefficients

bk(t) = −iΩke
−Γt/2

∫ t

0

dt′ e(i∆k−Γ/2)t′ce(t
′) (6.11)

are interpreted as those of pseudomodes. The dynamics of the combined atom-

pseudomode degrees of freedom are formulated in terms of an exact Markovian

master equation

d

dt
ρSP (t) = −i[H ′S(t), ρSP (t)] + Γ

∑
k

Lak [ρSP (t)], (6.12)

where ak (a†k) is the annihilation (creation) operator of the k-pseudomode, and

H ′S(t) =
∑
k

Ωk

(
e−i∆ktσ+ak + h.c.

)
. (6.13)

The master equation, as we would expect, has same structure as the one derived in

Eq. (4.139) but this time with many possible independent decay channels. Therefore

(6.12) has the solution

ρSP (t) = Πg(t) |g〉 〈g| ⊗ (|0〉 〈0|)P + |ψ̃(t)〉 〈ψ̃(t)|SP , (6.14)

with the unnormalised state vector |ψ̃(t)〉SP provided by

|ψ̃(t)〉SP = cg |g, 0〉P + ce(t)σ+ |g, 0〉P +
∑
k

bk(t)a
†
k |g, 0〉P . (6.15)
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In this context |0〉P denotes the pseudomode vacuum and Πg(t) its population,

Πg(t) = Γ

∫ t

0

dt′
∑
k

|bk(t′)|2, (6.16)

with the corresponding probability density of photon emission from the atom given

by
d

dt
Πg(t) = Γ

∑
k

|bk(t)|2. (6.17)

Overall, the original environment is equally represented in terms of one with a bi-

partite inner structure, comprised of a set of uncoupled pseudomodes P = ⊗#E
k=1Pk

and Markovian reservoirs R. This picture is analogous to the structured atom-chain

representation of the single environment model we saw in chapter 4. Indeed, the

atom here interacts directly with the pseudomodes, which each in turn leak into R

at a rate Γ (see Fig. 6.1).

Large environment limit #E →∞

Since (6.9) and (6.10) are linear, exact solutions to the atom and pseudomode

state coefficients in (6.15) may be found directly through numerical inversion of

the equations. However, we consider the continuum limit of pseudomodes, and,

more generally, of the sub-environments by taking #E →∞. This allows analytical

solutions to be obtained provided a suitable distribution for the weights wk = w(ξk)

is assumed in the conversion ∑
k

−→
∫
dξkρk, (6.18)

done in a way analogous to (3.28), with ρk taken as the density of pseudomode states

on the frequency line ξk. By replacing the weights in (6.5) with the quadrature

wk = W (ξk)dξk, an equivalent form of the spectral density (6.5) is determined by

the convolution J(ω) = (W ∗ L)(ω), where

(W ∗ L)(ω) =

∫ ∞
−∞

dξ W (ξ)L(ω − ξ), (6.19)

and L(ω) = Γ/[ω2 + (Γ/2)2]. Apart from the distribution W (ξ) having to fulfil the

normalisation condition, ∫ ∞
−∞

dξ W (ξ) = 1, (6.20)
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its functional form is otherwise arbitrary. Based on the stipulation that (6.9) and

(6.10) yield analytical solutions, a key result is that by choosing a single Lorentzian

distribution,

W (ξ) =
1

π

ΓW/2

(ω0 −∆− ξ)2 + (ΓW/2)2
, (6.21)

with a width provided by ΓW , Eq. (6.5) can be equivalently written as

J(ω) =
Ω2

0

π

Γp/2

(ω0 −∆− ω)2 + (Γp/2)2
. (6.22)

The parameter Γp = Γ + ΓW accounts for a broadening caused by the background

pseudomode continuum. In addition, ∆ is the detuning of the centre of this dis-

tribution from the atomic frequency: note this has a different symbol compared to

what was used in chapter 4, in order to distinguish it from the information deficit δ.

Considering the formula (6.19) simply recovers a Lorentzian spectral density,

the state coefficients in (6.6) and (6.15) have analytical solutions which are read-

ily obtainable via the Laplace transform method. This aspect will conveniently be

exploited to compute the QMI (6.1) exactly, in the same way as we did in section

5.2.2.

6.1.2 Atom-pseudomode dynamics

The master equation (6.12) provides fully amendable solutions for strong system-

environment interactions, which are shown in Fig. 6.2 to illustrate their behaviour.

We initially check the response of the atom by tracing out the pseudomodes from the

density matrix ρSP (t) (6.14). To construct a master equation for the atomic degrees

of freedom, we note that ρS(t) can be represented as a convex-linear combination

ρS(t) = (1− p) trP |g, 0〉 〈g, 0|P + p trP
[
Πg(t) |g, 0〉 〈g, 0|P + |ψ̃(t)〉 〈ψ̃(t)|SP

]
, (6.23)

where 0 ≤ p ≤ 1 to ensure tr ρS(t) = 1 for any initial pure or mixed state of the

open system. By virtue of aka
†
k′ |0〉 = δk,k′ |0〉, the trace in the above gives

ρS(t) =

{
(1− p) + p

(
|cg|2 + Πg(t) +

∑
k

|bk(t)|2
)}
|g〉 〈g|+ p|ce(t)|2 |e〉 〈e|

+ pcgc
∗
e(t) |g〉 〈e|+ h.c. (6.24)

Since the reduced system is spanned by two possible states, Eq. (6.24) also has the

same form as the density matrix ρS(t) in (5.28), similarly with ce(t) = G(t)ce(0).
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Figure 6.2: Time evolution of the populations |ce(t)|2 = |G(t)|2|ce(0)|2 (black

long-dashed) and
∑

k |bk(t)|2 for ce(0) = 1. Parameters are Γ = {0.5, 0.1, 10−2}Γp
(blue solid, red dotted, violet dashed lines) and ∆ = 0. (a) The weak coupling

case Γp = 10Ω0. (b) The case of strong (moderate) system-environment coupling,

Γp = Ω0.

From Ref. [111], it is known that the dynamics of this system is governed by the

time-convolutionless master equation

d

dt
ρS(t) = Γ(t)[σ−ρS(t), σ+] + Γ∗(t)[σ−, ρS(t)σ+], (6.25)

where Γ(t) = −dtG(t)/G(t). By means of Laplace transforms, the exact solution to

G(t) taken from (5.27) and (6.7) is

G(t) = e(i∆/2−Γp/4)t

[
cos

(
Ωt

2

)
− (i∆− Γp/2)

Ω
sin

(
Ωt

2

)]
, (6.26)

with Ω =
√

4Ω2
0 − (i∆− Γp/2)2. Now, with the help of the Eq. (6.9), if we define

the real coefficients

γ(t) = Γ(t) + Γ∗(t) =
∑
k

2Ωk

Im
[
ei∆ktce(t)b

∗
k(t)
]

|ce(t)|2
, (6.27)

s(t) = i [Γ∗(t)− Γ(t)] =
∑
k

2Ωk

Re
[
ei∆ktce(t)b

∗
k(t)
]

|ce(t)|2
, (6.28)

and subsequently use Γ(t) = [γ(t) + is(t)]/2 and Γ∗(t) = [γ(t)− is(t)]/2, the master

equation for the two-level atom can be expressed in the canonical form [1, 69],

d

dt
ρS(t) = −is(t)

2
[σ+σ−, ρS(t)] + γ(t)Lσ− [ρS(t)], (6.29)



133

where γ(t) is the decay rate and s(t) the Lamb shift.

Importantly, the dynamics associated with (6.29) are known to be nondivisible

and non-Markovian if γ(t) takes negative values. It is instructive to consider this

aspect with regard to the behaviour of (6.12). If we first differentiate |ce(t)|2 and

apply (6.9) to the result, we obtain

d

dt
|ce(t)|2 = i

∑
k

(
Ωke

i∆ktb∗k(t)ce(t)− c.c.
)
, (6.30)

which simply expresses the probability flux between the atom and pseudomodes. By

then taking the time derivative of (6.24) and equating its ground state population

with that from (6.29), i.e. the coefficient of |g〉 〈g|, we find, using Eqs. (6.30), (6.27)

and (6.17), that the combined dynamics of the atom and pseudomodes is subject to

the following relation:

∑
k

(
∂

∂t
+ Γ

)
|bk(t)|2 = γ(t)|ce(t)|2. (6.31)

The lefthand side of the above shows the rate of change the pseudomode population

compensated against irreversible losses, occurring at a rate Γ. Notice the behaviour

of ce(t) here follows exactly that of (5.32), except with a modified decay rate Γp.

Given we want to compare |ce(t)|2 with the joint response of the pseudomode states

using (6.31), we set ∆ = 0: this being the case we shall focus on from now on. In the

strong coupling regime 4Ω0 > Γp, the excited state population of the atom increases

in time during intervals when γ(t) < 0, which, from (6.31), gives a simultaneous

and equal decrease in the pseudomode population. Hence time-dependent revivals

in the atomic population are exclusively linked to pseudomode depletion, neglecting

the constant leakage of the pseudomode excitation to the external reservoirs. Also,

with weak system-environment coupling, 4Ω0 < Γp, the decay rate γ(t) is positive

at all times and the atom-pseudomode populations show no oscillations. Note too

that when Γp →∞, we have γ(t)→ γ0, where

γ0 = 4Ω2
0/Γp. (6.32)

Here the atom follows a time-independent Markov process. We therefore interpret

the non-Markovian behaviour as being entirely causal to the back-flow of popula-

tion and energy between the two. As discussed in Ref. [121], this indicates that the



134

pseudomode region P in Fig. 6.1 acts as a memory for the atom in the presence of

strong interactions.

Separation of timescales

At this point it is worth further elaborating on the pseudomode population dy-

namics, which we examine via the density matrix ρP (t) = trS ρSP (t). Before we

go into this, we first highlight the fact that the time evolution of |G(t)|2 in (6.26)

depends only on the memory kernel (6.7). In turn, this means the rate at which the

atom decays is solely determined by the width Γp of the spectral density (6.22). One

might intuitively expect something similar for the dynamics of the pseudomode coef-

ficients bk(t). However, we actually discover two damping timescales that determine

its evolution. Its solution, given by

bk(t) = − 4Ωk ce(0)(
i(2∆k + ∆) + Γ−ΓW

2

)2
+ Ω2

{(
∆k + ∆ + i

ΓW
2

)
e−Γt/2

− ei∆kte(i∆/2−Γp/4)t

[(
∆k + ∆ + i

ΓW
2

)
cos

(
Ωt

2

)

−
((

i∆− Γp/2

Ω

)(
∆k + ∆/2− iΓ− ΓW

4

)
+ i

Ω

2

)
sin

(
Ωt

2

)]}
,

(6.33)

clearly separates into two parts, each with different and real exponential prefactors.

This causes one part containing the sinusoidal terms to decay at a rate Γp/4, and the

other static part to decay at a rate Γ/2. Because of “mixing” between terms in the

population
∑

k |bk(t)|2, it is difficult to single out their individual effect in a typical

time evolution, which generally shows complex behaviour. It becomes apparent,

though, when we introduce a large separation of timescales through

1

Γp
� t� 1

Γ
. (6.34)

In Fig. 6.2, the effect of the fast and slow terms becomes increasingly noticeable

towards the regime Γ� Γp. We see the fast terms decay quickly and predominantly

influence the short time evolution, while the slow terms decline exponentially and

thus survive into the long time limit.

In view of this, let us comment further on the dynamics in such a case where
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Eq. (6.34) is valid. Within the strong coupling regime, there is a distinct cross-

over owing to the fact that the fast oscillatory terms decay on the fixed timescale

t ∼ O(1/Γp). The dynamics are then categorised into two phases. As we have

seen, the short time evolution is characterised by memory effects where the qubit

and pseudomode populations oscillate in time. When t � 1/Γp, the pseudomode

population instead decays monotonically as (ce(0) = 1)∑
k

|bk(t)|2 ≈ e−Γt
∑
k

16Ω2
k [∆2

k + (ΓW/2)2]∣∣∣(2i∆k + 1
2
(Γ− ΓW )

)2
+ Ω2

∣∣∣2 . (6.35)

At this point the atom has essentially relaxed and thus decoupled from the memory,

i.e. |G(∞)|2 ≈ 0. As a matter of interest, by evaluating the trace of ρSP (t) over the

system states we obtain

ρP (t) =
∑
k,k′

b∗k′(t)bk(t) a
†
k |0〉 〈0|P ak + Πg(t) |0〉 〈0|P , t� 1/Γp. (6.36)

By then using (6.10) it is shown that ρP (t) obeys the quantum master equation

d

dt
ρP (t) = Γ

∑
k

Lak [ρP (t)], t� 1/Γp. (6.37)

Similar phases also exist when the dynamics are Markovian given the solution (6.33)

still comprises of fast and slow terms, where, at long times, the pseudomode pop-

ulation fulfils (6.35). Notice however that the cross-over isn’t so distinct here since

the fast terms do not decay on the same fixed timescale as before—with, of course,

there being no oscillations. Nonetheless, there is still a transition to slow exponen-

tial decay close to when the atom has fully dissipated its energy.

When t� 1/Γ, Eq. (6.35) predicts that the pseudomodes tend to form a quasi-

bound state at long times Ω0t � 1 as a result of the cross-over, i.e. Γ � Γp.

Although this occurs generally with respect to the coupling Ω0, the excitation is

most efficiently “trapped” by the pseudomodes in the strong coupling limit since

increasing Γp (with the ratio Γ/Γp fixed) also increases the rate at which popula-

tion leaks to the Markovian reservoir. Overall, we find the validity of Eq. (6.35)

in describing the long time dynamics to only really be affected by the degree of

separation between Γ and Γp. The trapping effect then appears to be a feature of

the narrow-Lorentzian structure of J(ω). Indeed, taking the broad Lorentzian limit

Γ ≈ Γp recovers the usual single pseudomode dynamics from Refs [41, 42], which
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Figure 6.3: Partial information 〈I(f)〉/S(ρS) shared between the atom and sub-

environments (X = E), shown as a function of fraction size f at various times and

for ∆ = 0, with parameters (a) Γp = Ω0 and (b) Γp = 10Ω0. The classical plateau

appears for both the strong (moderate) and weak coupling—its length increases and

becomes flatter as system-fragment states decohere over time.

does not display any of the trapping features seen here.

The presence of a large pseudomode population well into the long time limit sug-

gests that a significant proportion of the total correlations of S+E develop between

the atom and memory region of the environment. Since we are working within the

context of quantum Darwinism, it seems justified to ask if such correlations trans-

late into redundant information. This is part of what we go onto consider in the

following section.

6.2 Partial information plots

As we did in chapter 5, we again run a Monte Carlo simulation to compute the

partial information 〈I(f)〉 by randomly sampling the QMI for different fraction

sizes f . Numerical results are obtained assuming an initially excited atom. We now

proceed by discussing each of the cases (i) and (ii) in turn.

6.2.1 Case (i): atom and sub-environments

Since the solution for the atomic state coefficient (6.26) is a generalised version of

that given in (5.32)—likewise for the reservoir state coefficients (6.6) (see appendix
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A), here we focus on dynamical regimes where redundancy is expected to emerge

based on the results of section 5.4.2. Figure 6.3 shows the partial information plotted

as a function of f for such cases. At short times, the atom’s entropy S(ρS) increases

very quickly from zero in line with the entropy S(ρSEf ) of the atom plus an aver-

agely chosen small (moderate) fraction of the environment. This effect—equivalent

to what we saw in section 5.4.2—is based on the fast emergence of bipartite entan-

glement between the states of SEf and E1−f . As time progresses the entropy of the

fragment Ef gradually increases relative to those of the other subsystems until it

matches that of S(ρSEf ) at long times. Indeed, the total gain in S(ρEf ) over the

course of the full time evolution measures the information fragments (on average)

acquires about state of S. This steady increase in the system-fragment correlations

is witnessed in the case of weak system-environment coupling, Fig. 6.3(a), which

results in the substantial growth of a flat plateau shape in the partial information.

Similar behaviour occurs for strong (moderate) coupling, the main difference being

that there are times when fδ (5.45) momentarily decreases due to oscillations of the

plateau about f = 1/2. Overall, the dynamical features seen in the plots here are

congruent with those in Figs. 5.4 and 5.6: the most important aspect being the

emergence of redundancy at long times.

Before moving onto the next case we first examine a reduction of (6.1) to a much

simpler analytical form, which we can use to check our numerical results. This is

achieved by mapping the density matrix of a fragment state onto a single qubit

[119]. Note the mapping is not specific to either case (i) or (ii), and, accordingly,

we shall use it to approximate the QMI in both such cases. The ground state of the

collective qubit is universally defined as |0̃〉Xf = |{0}〉Xf , while here (Xf = Ef ) the

excited state is formed using

|1̃〉Ef =
1

ηEf (t)

∑
k∈Ef ,λ

ck,λ(t) |1k,λ〉 , (6.38)

where k ∈ Xf denotes summation over objects in the fragment, and

ηEf (t) =

√ ∑
k∈Ef ,λ

|ck,λ(t)|2. (6.39)

By approximating

η2
Ef

(t) ≈ fη2
E(t) = f

∑
k,λ

|ck,λ(t)|2 , (6.40)
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Figure 6.4: Analytical approximations of the partial information plotted at various

times for ∆ = 0. In each panel, the coloured marks shows the corresponding nu-

merical results. (a), (b) Average of I(ρSEf ) [Eq. (6.42)]. (c), (d) Average of I(ρSPf )

[Eq. (6.50)] for Γ = 10−3Γp (X = P ). It can be seen that the approximate results

fit the numerics accurately within the plateau region at longer times.

for all fraction sizes, the joint system-fragment state can be written as

ρSEf =


(1− f)η2

E 0 0 0

0 fη2
E

√
fc∗eηE 0

0
√
fceηE |ce|2 0

0 0 0 0

 , (6.41)

being taken in the basis {|g, 0̃Ef 〉 , |g, 1̃Ef 〉 , |e, 0̃Ef 〉 , |e, 1̃Ef 〉}. The eigenvalues of

ρSEf (t) provide the following expression for the partial information of the “two-

qubit” state,

I(ρSEf ) = h
(
|ce(t)|2

)
+ h
(
χE(f)

)
− h
(
χE(1− f)

)
, (6.42)

where h(x) = −x lnx− (1− x)ln(1− x) is taken from (5.48) and

χE(f) = fη2
E(t) (6.43)
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In Figs. 6.4(a-b) we see Eq. (6.42) reproduces the numerical results remarkably

well, with only small discrepancies appearing at limiting values of the fraction size

for Γp = Ω0, close to the boundaries of the plots at f = 0 and f = 1. Thus, our simple

analytical model manages to predict the key features of the partial information plots

to a good degree of accuracy.
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Figure 6.5: Partial information 〈I(f)〉/S(ρS) of the atom and pseudomodes (X =

P ) shown at various times as a function of fraction size f . The lefthand column

is for strong (moderate) coupling Γp = Ω0 while the righthand column is for weak

coupling Γp = 10Ω0 (all ∆ = 0). Unlike case (i), correlations between the atom and

pseudomodes are erased by evolving the state through noisy quantum channel, i.e.

I(ρSP ) ≤ 2S(ρS). (a), (b) Γ = 0.4Γp: The partial information dissipates quickly

and no classical plateau forms, though for (a) qualitative information redundancy is

noticeable. (c), (d) Γ = 10−3Γp: A classical plateau is present within the long time

limit. The arrows in figure (c) indicate that the partial information approximately

retains its antisymmetry about f = 1/2, except at the boundary.
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6.2.2 Case (ii): atom and pseudomodes

The global state becomes mixed beyond t = 0 and so the partial information plots

do not acquire the same form. The QMI instead satisfies the inequality

I(ρSPf ) ≤ I(ρSEf ), t ≥ 0,∀f, (6.44)

where the upper bound is set by the strong sub-additivity of the von Neumann en-

tropy [14]. As the equality only strictly holds at t = 0, Eq. (6.44) is understood

from the idea that the state ρSP (t) evolves under a noisy quantum channel where

information irreversibly leaks out to the Markovian reservoir. The rate at which the

vacuum state population increases signifies the noisiness of the channel. In view of

this aspect, the top row of Fig. 6.5 shows the partial information plots of the qubit

and pseudomodes within the lossy regime Γp ≈ Γ, where the vacuum population

Πg(t) increases significantly at short times. Here, correlations between the atom

and pseudomodes typically decay quickly, though with strong system-environment

interactions the QMI dissipates more slowly and redundant correlations have time

to develop. In this instance we notice the appearance of a similar plateau feature

from before.

Beyond simple inspection of the plots, however, it generally proves troublesome

to compute values of fδ using a fixed fraction size because of lack of antisymmetry in

the partial information: that is, the plateau drops below the threshold (1− δ)S(ρS)

for δ � 1. This issue raises the question: are there circumstances where a quant-

itive analysis the redundancy using fδ is possible? To answer this, we briefly look

at how the time-dependent behaviour of the purity p(t) = tr ρ2
SP (t) changes with

respect to the parameters Γ, Γp and Ω0. Figure 6.6 depicts this quantity for different

values of the spectral widths and coupling strength. First, when Γ� Ω0, we notice

the purity decays to it minimum value on the timescale t ∼ O(1/Γ) from the fact

that the gradient of p(t) is approximately ten times larger between Γp = Ω0 and

Γp = 10Ω0 when Γ = 10−3Γp. For Γ � Γp, we can then expect the information

content of ρSP (t) to stay closer to the equality of (6.44) than the examples seen in

Figs. 6.5(a)-(b). This is because the purity declines more slowly when there is a

large separation of timescales (assuming the same values of the coupling Ω0 are used

from before). As such, the partial information plots is expected to retain some of
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dashed curves).

the antisymmetry features as those found previously in case (i).

Figures 6.5(c)-(d) show the development of a flat classical plateau over the time

for parameters Γ� Γp. Small differences in the partial information plots are appar-

ent between the strong and weak coupling limits as the rate at which purity decays

slightly increases with higher values of Γp [see Fig. 6.6]. While Fig. 6.5(c) tends to

deviate from a complete antisymmetric form at longer times, from the plot we see

that, in relation to (5.52), the sum of the information for complimentary fragments

satisfies

I(ρSPf ) + I(ρSP1−f ) ≈ 2S(ρS), Γ� Γp,Ω0, (6.45)

provided f < 1. Crucially then, since the redundant information saturates to the

limit (1 − δ)S(ρS) (δ � 1) once there is sufficient decoherence of fragment states,

the measure Rδ can be used even without the atom-pseudomode state being pure.

This is also clear from comparing these plots between the two cases (i) and (ii) at

equal times, where both exhibit a fairly similar plateau.

We can map the state of a fragment Pf to that of a collective qubit, whose

excited state is defined by

|1̃〉Pf =
1

ηPf (t)

∑
k∈Pf

bk(t) |1k〉 , (6.46)
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with normalization

ηPf (t) =

√∑
k∈Pf
|bk(t)|2. (6.47)

Here, we look to follow a similar method that lead to a simple analytical expression

for the partial information [see (6.40) and (6.41)], provided in (6.42), with the pur-

pose of reproducing the results shown in Fig. 6.5. If we again assume on average

that

η2
Pf

(t) ≈ fηP (t) = f
∑
k

|bk(t)|2 , (6.48)

then the density matrix ρSPf is given by

ρSPf =


Πp + (1− f)η2

P 0 0 0

0 fη2
P

√
fc∗eηP 0

0
√
fceηP |ce|2 0

0 0 0 0

 , (6.49)

using the basis states {|g, 0̃Pf 〉 , |g, 1̃Pf 〉 , |e, 0̃Pf 〉 , |e, 1̃Pf 〉}. It turns out the partial

information is given by

I(ρSPf ) = h
(
|ce(t)|2

)
+ h
(
χ1
P (f)

)
− h
(
χ2
P (f)

)
, (6.50)

where the coefficients areχ
1
P (f) = fη2

P (t),

χ2
P (f) = (1− f)η2

P (t) + Πg(t). (6.51)

In Figs. 6.4(c-d), results obtained from the approximate form of the partial in-

formation (6.50) are presented against the previously discussed numerical results at

various times, with Γ� Γp and Γp = Ω0. Our analytical formula shows remarkable

agreement with the numerics, though small differences are noticeable: in particular,

the partial information is slightly overestimated for small values of f . Regardless,

the main features of these plots are captured, the most important being the in-

creasing flattening of the plateau over time and subsequent emergence of redundant

information.

Just as in case (i), a large redundancy here indicates widely accessible information

on the system. However, because this information is located in the pseudomodes

it reveals more about the interaction: specifically, that many classical records of
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pointer states of the atom are held within the memory region of the environment.

This differs with lossy interactions (Γ ≈ Γp) where damping noise, reflected in be-

haviour of Πg(t), severely restricts the time window in which correlations can form

before being decaying completely (see Fig. 6.5).

On the same point, it is noteworthy that the QMI of the full fraction of pseudo-

modes decays on a much faster timescale than the redundant information (in the

plateau region). For a small damping rate Γ, it is reasonable to question if this

corresponds to a loss of quantum information from S + P , since the plateau sits

approximately at the classical limit with most information lost from global correl-

ations. Far from this case—particularly within the lossy regime—it is unclear if

redundancy stems from the spreading of redundant classical copies of information

into fragments, since the plateau falls well below this bound.

6.2.3 Accessible information and quantum discord

We shed light on the above discussion by considering the following definition of the

QMI [122, 123]:

I(ρSXf ) = C(ρSXf ) + δ̄(ρSXf ), (6.52)

where

C(ρSXf ) = max
{MXf

j }

[
S(ρS)− S(ρS|{MXf

j })
]
, (6.53)

δ̄(ρSXf ) = min
{MXf

j }

[
S(ρXf )− S(ρSXf ) + S(ρS|{MXf

j })
]
. (6.54)

The quantity C(ρSXf ) defines the upper limit of the Holevo bound [14, 126, 127]—the

accessible information—which gives the maximum classical data provided by a quantum

channel. Accordingly, the conditional entropy S(ρS|{MXf
j }) of the bipartite system

is written as

S(ρS|{MXf
j }) =

∑
j

pjS
(
ρ
S|MXf

j

)
, (6.55)

which expresses the lack of knowledge in determining ρS when ρXf is known. A

measurement on the subsystem Xf is formulated in terms of the projectors M
Xf
j ,

where the post-measurement state of the qubit is

ρ
S|MXf

j

=
1

pj
trXf

[
M

Xf
j ρSXfM

Xf
j

]
, (6.56)
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with an outcome j obtained with probability

pj = trS,Xf

[
M

Xf
j ρSXf

]
. (6.57)

The second quantity δ̄(ρSXf ) defines a general measure of quantum correlations

between the two subsystems, known as the quantum discord. Note the bar in (6.54)

is used to distinguish the discord from the information deficit δ.

It is emphasised that the accessible information and discord are optimised through

a choice of positive operator-valued measure (POVM) {MXf
j }. Our motivation for

minimising the discord stems from wanting to examine the correlations least dis-

turbed by measurement: that is, the correlations formed between fragments and the

pointer states of the atom. Here, the measurement is formulated by mapping the

relevant system-fragment to an effective two-qubit state, as was done with (6.38)

and (6.47). The POVM {MXf
j } (j = 1, 2) then makes up a set of orthogonal pro-

jectors in the state space spanned by Xf—see details in appendix C.

Initially we compute (6.53) and (6.54) for the full system-environment (f = 1)

of case (i) and find that the QMI is always shared equally between classical and

quantum correlations when I(ρSE) > 0. This intuitively follows since the informa-

tion encoded by classical data is limited to S(ρS). The remaining information out

of S + E then has to make up the discord in equal amount assuming the state is

pure, based on the global entanglement of the system and bath. Alternatively, for

fractional states (f < 1) we find a more interesting, albeit complicated interplay

between classical and quantum correlations. The quantities of interest here are the

(averaged) partial accessible information 〈C(ρSXf )〉 and partial quantum discord

〈δ̄(ρSXf )〉, which from (6.52), fulfil the relation

〈I(f)〉 = 〈C(ρSXf )〉+ 〈δ̄(ρSXf )〉. (6.58)

In Fig. 6.7 we show plots of the average correlations for case (i). The most strik-

ing feature is the sharp rise in partial quantum discord around small fraction sizes.

As quantum correlations generally decline in value for larger fractions, the access-

ible information grows linearly and as such is characteristic of non-redundant clas-

sical information—i.e. its partial information plot does not have to a flat plateau

shape. Note also that the distribution of classical correlations between different ar-

rangements of fragments is essentially static over time and independent of system-
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Figure 6.7: The partial accessible information (blue solid curve) and partial discord

(red dotted curve) of the qubit and sub-environments, shown against the partial

information (violet solid curve) with ∆ = 0. Snapshots of the average correlations

at time Ω0t = 50 for (a) Γp = Ω0 and (b) Γp = 10Ω0. The sum of the classical and

quantum correlations (violet open points) are shown, too, indicating the validity of

Eq. (6.58).

environment coupling strength. The discord, which takes large values in the majority

of fractions, therefore indicates a clear disturbance to the overall state from perform-

ing local measurements on the pseudomode (memory) part of the environment. This

behaviour reveals the evolution does not produce class of states exhibiting complete

Darwinism.

Now turning our attention to case (ii), we address the dynamical behaviour of

the correlations with respect to the full fraction of pseudomodes, displayed in Fig.

6.8. Let us start by considering the regime Γ � Γp. Remarkably, when the dy-

namics are non-Markovian, Eq. (6.53) stays close to its maximum value over the

course of the interaction, and hence the classical correlations are robust to the noise

influence of the Markovian environment. This is also true but to a lesser extent in
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Figure 6.8: Accessible information (blue solid line) and quantum discord (red dotted

line) between the atom and pseudomodes (X = P ), taken from Eqs. (6.53) and

(6.54), plotted as functions of time, with ∆ = 0. Panels in each column are shown

for the same values of Γp = Ω0 (left) and Γp = 10Ω0 (right). (a), (b) Γ = 0.4Γp:

classical correlations decay on a fast timescale and quickly approach zero. (c), (d)

Γ = 10−3Γp: quantum correlations mostly decay while remaining correlations stay

close to the classical limit (indicated by the grey dashed line).

the case of Markovian dynamics—we recall that the effect of noise is more substan-

tial with a higher rate of increase in vacuum population, which here increases the

damping rate of the classical information by a factor proportional to Γp/Ω0 (e.g.

roughly ten times larger gradient between Γp = Ω0 and Γp = 10Ω0). In contrast,

the quantum discord begins to decay at a faster rate. At longer times it can be seen

that the quantum correlations become better protected against decoherence when

the discord decreases more slowly. We examine the limiting case of this behaviour in

section 6.3. Our current observation is that the dynamical behaviour of the classical

correlations is qualitatively similar for both weak and strong (moderate) coupling.

In the regime Γ ≈ Γp [cf. Fig. 6.8(a)-(b)], a somewhat opposite effect occurs
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Figure 6.9: Partial information (violet solid curve), accessible information (blue

solid curve) and quantum discord (red dotted curve) displayed at time Ω0t = 50 for

the atom and pseudomodes, where Γ = 10−3Γp. Details of (a) and (b) are provided

in Fig. 6.7. Open points show the sum of the averaged classical correlations and

quantum discord, as in Eq. (6.58).

with respect to the full qubit-pseudomode information. In this instance, classical

correlations disappear asymptotically in time so that eventually the quantum discord

makes up all of the QMI. As almost no classical information is present even within

the full memory region of the environment, from the partial information plot in Fig.

6.5 we find a case where quantum information is redundant since 〈δ̄(ρSPf )〉 ≈ 〈I(f)〉
and 〈C(ρSPf )〉 ≈ 0 must hold, regardless of fraction size. Moreover, Figs. 6.9(a)-(b)

show these quantities plotted against f for a large separation of timescales Γ� Γp

in the strong and weak coupling limit, respectively. We see that the quantum and

classical correlations mimic those in Fig. 6.7 for case (i), though clearly without a

sudden increase in the discord at large f since the maximum available information

is limited below I(ρSE) for a mixed state, even when a measurement of P is taken

in the Schmidt basis of ρP .
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Overall, we conclude that the emergence of a classical plateau—in the partial

information plots of either case (i) or (ii)—does not guarantee that classical informa-

tion is redundant. This reveals significant underlying differences between the partial

information plots presented in Figs. 6.3 and 6.5 and those found in Refs. [57, 105].

For example, with an Ohmic environment interacting with a quantum Brownian os-

cillator, the quantum correlations (entanglement) are found to be suppressed for all

but very large fraction sizes [57], meaning that the partial information plots alone

reveal the presence of redundant classical correlations in the system. Here, we find

that the same is not a sufficient condition for the redundancy of classical informa-

tion, against what we originally interpreted as “successful” Darwinism in sections

5.4.2, 6.2.1 and 6.2.2. A similar point regarding the non-unique association of the

classical plateau to purely classically correlated states has been made in Ref. [109].

6.3 Maximisation of classical correlations

So far, in studying case (ii) we have found that for a Lorentzian (6.22) with a highly

peaked internal structure, Γ� Γp, the accessible information is non-redundant and

significantly delocalized across the environment. As a corollary to the results of

section 6.2, we examine the condtions under which the classical correlations are

maximised against the quantum discord for the total state ρSP (t).

Whether classical or quantum correlations are predominant has been shown not

depend on the presence of memory effects in the dynamics. This suggests it depends

only on the degree of separation of the timescales. In fact, numerical evidence shown

in Fig. 6.10 reveals that decreasing the ratio Γ/Γp further slows down the decay of

classical correlations compared to the plots shown in the bottom row of Fig. 6.8. If

we observe the behaviour C(ρSP ) at a fixed time, we see it grows larger by decreasing

the value of Γ. This behaviour lies in contrast to the quantum correlations which

tend to fall off more quickly, but can still make up a larger proportion of the total

correlations given the QMI also dissipates more slowly. We postulate that in the

idealised limit of Eq. (6.34), i.e. with a large separation of timescales:

Γt −→ 0, Γpt� 1, Ω0/Γp = fixed, (6.59)



149

the accessible information converges towards its maximum, thereby revealing that

the full memory region of the environment acquires (almost all) classical data on

the qubit state. Notice the limit Γpt→∞ (6.32) is avoided, as here the atom would

approach the ground state with zero entropy, resulting in all correlations being lost.

Let us now assume Eq. (6.59) holds. As t increases further, what we expect is for

the discord to make up an increasingly smaller proportion of the QMI. Once we have

C(ρSP ) � δ̄(ρSP ) in the very long time limit Γpt � 1, the state ρSP (t) then shows

robustness under non-selective measurements {MP
j } on the marginal subsystem P

(f = 1). Writing this in terms of a local operation on P , (ΛP ⊗1S)ρSP (t), we should

have

(ΛP ⊗ 1S) ρSP (t) =
∑
j

(
1S ⊗MPf

j

)
ρSP (t)

(
M

Pf
j ⊗ 1S

)
≈ ρSP (t). (6.60)

Of course, the finite nature of the quantum correlations means our results do not

provide an example of complete einselection [123], yet it can be appreciated that

the state attains its most classical-like form when the dynamics fulfil (6.59). It is
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Figure 6.10: The accessible information (6.53) and quantum discord (6.54) for case

(ii), plotted as a function of the decay rate Γ at time Ω0t = 50 for ∆ = 0. Solid

curves are obtained for Γp = Ω0 and dashed curves for Γp = 10Ω0.

also interesting to note how the slow loss of classical correlations occurs in line with

the slow decay in the pseudomode population, which as we recall from section 6.1.2,

occurs past the cross-over in dynamics at times t ∼ O(1/Γp).
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6.4 Non-Markovianity

Here, we consider the relation between the non-Markovianity of the atomic dynamics

and the redundancy. By this we formally expand on the findings of chapter 5 where

memory effects were revealed to inhibit the emergence of a plateau in the partial

information plots. Our current model provides a good foundation to investigate this

connection as there is clear delineation of memory effects in terms of information

back-flow to the open system, which, by construction, relates precisely to the two-

level dynamics we studied in section 5.2.1. Note that this section draws heavily on

concepts outlined in chapter 2—in particular, from section 2.3.

6.4.1 Nondivisible maps

We first illustrate the concepts surrounding non-Markovianity in this model by start-

ing with the following definition. Let us state that if a dynamical map Φ(t, 0) gov-

erning the point-to-point evolution

ρS(t1) −→ ρS(t2) = Φ(t2, t1)ρS(t1), t2 ≥ t1 ≥ 0, (6.61)

is divisible into two completely positive and trace preserving maps (CPTP),

Φ(t3, t1) = Φ(t3, t2)Φ(t2, t1), t3 ≥ t2 ≥ t1, (6.62)

then ρS(t) undergoes a Markovian process. Here the notion of divisibility is enough

to distinguish between what is considered Markovian and non-Markovian behaviour.

However, it should be stressed that a CPTP map associated with a time-dependent

Markov process, as in (6.62), is categorically different from that which forms a

dynamical semigroup [1]—note the definition of the semigroup property from Eq.

(2.73). Equation (6.29) adopts the time-local form,

d

dt
ρS(t) =

(
d

dt
Φ(t, 0)

)
Φ−1(t, 0)ρS(t) = K(t)ρS(t), (6.63)

where time-dependent generator K(t) (2.76) of the relevant dynamical map is given

by

K(t)ρS(t) = −is(t)
2

[σ+σ−, ρS(t)] + γ(t)

[
σ−ρS(t)σ+ −

1

2
{σ+σ−, ρS(t)}

]
. (6.64)
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The time-local property of (6.64) is important as it allows one to categorise a

quantum process in terms of the direction of information flow over the course of

an evolution described by Φ(t, 0). Indeed, the situation where a given amount of

information leaks back to the open system has been shown to be intimately related

to the non-Markovian properties of the quantum channel. The Breuer, Laine, Piilo

(BLP) measure of non-Markovianity [79], as an example, is rooted in the particu-

lar interpretation of shared information as the distinguishability of a pair of input

states {ρ1
S, ρ

2
S} to the channel. Their distinguishability is characterised by the trace

distance D(ρ1
S, ρ

2
S), defined as

D(ρ1
S, ρ

2
S) =

1

2
tr
∣∣ρ1
S(t)− ρ2

S(t)
∣∣ , (6.65)

where |A| =
√
A†A. If the pair evolve under a divisible CPTP map, the rate of

change in the trace distance over any given time interval is negative. One can then

show that the distinguishability of the pair of states is a monotonically decreasing

function in time—overall, corresponding to a continual loss of information from S

to E [67]. Variation from this behaviour indicates that the process in nondivisible

through reverse flow of information back to the open system. In terms of

σ(ρ1,2
S (0), t) =

d

dt
D(ρ1

S, ρ
2
S), (6.66)

the quantum process is non-Markovian if and only if σ(t) > 0 at some point during

the time evolution of the states ρ1,2
S (t).

Concerning our model, the trace distance between any two states ρ1
S(t) and ρ2

S(t)

whose general form pertain to (5.29) can be expressed analytically as

D(ρ1
S, ρ

2
S) = |G(t)|

√
|G(t)|2a2 + |b|2, (6.67)

where a = 〈e| ρ1
S(0) |e〉−〈e| ρ2

S(0) |e〉 = ρ1
ee−ρ2

ee and b = 〈e| ρ1
S(0) |g〉−〈e| ρ2

S(0) |g〉 =

ρ1
eg − ρ2

eg. By then taking the time-derivative of (6.67) [128], we obtain

σ(t, ρ1,2
S (0)) =

2|G(t)|2a2 + |b|2√
|G(t)|2a2 + |b|2

d

dt
|G(t)|, (6.68)

from which we see σ(t) is only positive if dt|G(t)| > 0 at any time t. This sets the

condition for nondivisibility and thus non-Markovianity from the BLP measure [66].

Likewise, the equivalency

σ(t, ρ1,2
S (0)) > 0←→ γ(t) < 0, (6.69)
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means that information flows back to the system at times when there are revivals

in the population. From this point of view, it is reasonable to suspect that memory

effects will show up in the partial information plots at such times when the dynamics

are non-Markovian. How the redundancy measure—defined in (5.46)—behaves with

respect to changes in (6.67) is precisely the connection we aim to make with our

results.

6.4.2 Redundancy

In Fig. 6.11, we show various values of the redundancy computed in both the strong

and weak coupling limits. For Γp = Ω0, the detuning is taken to be non-zero for

the practical reason that the map Φ(t, 0) is noninvertible when ∆ = 0, and so no

strict definition of divisibility exists in this case [67]. Though the timescale by which

redundancy increases is largely separate from that which sets the decoherence rate

of system-fragment states—in line with what was suggested in section —here we

are not necessarily interested by the exact numerical value Rδ(t). Rather, we are

concerned with its dynamical behaviour with respect to the time-dependent decay

rate. Since the population dynamics of the pseudomodes is also influenced by the

decay rate γ(t) [cf. (6.31)], it is plausible to think that memory effects will also

influence correlations between S and P . Therefore we have additionally computed

the redundancy from the partial information plots of (ii)—using a large separation

of timescales—to compare with the those of case (i).

First, in the strong coupling regime; Fig. 6.11(a), the key indication from our

results is that the redundancy peaks and troughs almost exactly in line with the

decay rate. Let us first consider case (ii) at time intervals during which γ(t) > 0.

Here, the redundancy is seen to increase up until the point at which the decay rate

suddenly becomes negative. It is noticed the plateau grows in length as the open

system monotonously loses information into the environment. Then, as γ(t) begins

to grow from negative values—that is, when information flows back to atom, the re-

dundancy plateau is suppressed considerably before increasing again at times when

the decay rate becomes positive. Memory effects can also be seen to manifest in

the redundancy calculated for case (i) at the same times. To further illustrate the

connection between Rδ(t) and the trace distance measure, in Fig. 6.11(b) we plot
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Figure 6.11: Redundancy (5.46) computed as a function of time for cases (i)

(red triangles) and (ii) (blue marked line) with δ = 0.15 (lefthand column), shown

alongside the trace distance (righthand column). The insets display the decay rate

γ(t) from (6.27) for each set of parameters. (a), (b) Γp = Ω0 and ∆ = 0.05Γp:

the dashed lines in (a) indicate times at which the redundancy peaks. (c), (d)

Γp = 10Ω0 and ∆ = 0: in the weak coupling limit the redundancy (trace distance)

monotonically increases (decreases) in time. Initial conditions used to compute Eq.

(6.65) are shown.

(6.67) against time for the same set of parameters used in Fig. 6.11(a). If we take

the input pair of states to be ρ1
S = |e〉 〈e| and ρ2

S = |g〉 〈g| for the simple reason that

the trace distance is D(ρ1
S, ρ

2
S) = |ce(t)|2, then oscillations in D(ρ1

S, ρ
2
S) evidently

follow those in the redundancy and γ(t), as we would justifiably expect.

Alternatively, in the weak coupling regime the plateau only continuously grows

in length while the system undergoes a Markovian evolution [in both cases (i) and

(ii)]. This firmly suggests the non-monotonicity of the redundancy captures the
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non-Markovian dynamics of the atom—which, in this context, is clearly based on

the same effective behaviour in the trace distance (6.67). We again point out the

connection between quantum Darwinism and non-Markovianity has also been stud-

ied recently in Refs. [59, 60]. The authors find a similar effect, where information

back-flow to the open system translates into poor Darwinism, i.e. a worsening of the

plateau at these times. Equally, the trace distance shown in Fig. 6.11(d), which is

plotted for the same reference pair of states from before, only decays exponentially

over time.

Furthermore, the fact that the redundancy of cases (i) and (ii) shows similar

dynamical behaviour suggests that the rollback of the plateau occurs specifically

because of information back-flow from the pseudomodes (memory) to the atom. In-

deed, consider the example of an initially excited atom for the same parameter as

Fig. 6.11(a). What we find is that at times when |G(t)|2 starts to increase, there is

an accompanied increase in QMI of the atom and environment from its minimum

zero value. This suggests correlations previously removed by dissipation redevelop

because of information flow back at times when the redundancy decreases (cf. dis-

cussion in 5.4.2). Now, in the regime Γ� Γp, we notice the dynamics of total QMI

between the atom and memory I(ρSP ) faithfully coincides with that of I(ρSE). Thus

we can associate the same recorrelation effect with revivals in the atomic population,

which, from (6.31), occurs simultaneously with loss of population from the pseudo-

modes. Indeed, we find that the compensated rate of change of the pseudomode

population (6.31) is negative during times when the trace distance is increasing. In

this sense the energy/information received back by the atom from the pseudomodes

can provide the physical mechanism for the drop in the classical plateau.

6.5 Summary and discussion

In this chapter, we have provided a detailed investigation into emergent features of

quantum Darwinism by applying the framework to a two-level atom interacting with

many sub-environments of bosons. The basis of our work derives from the idea that

the original environment maps to a bipartite structure containing a memory and

non-memory part. From this we have examined how information is encoded into
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fractions of the environment in two separate cases: one where we constructed random

fragments out of sub-environments [case (i)], and the other out of independent parts

of the full memory [case (ii)]. Our main effort has been to recognise whether the

emergence of redundant information occurs, and, if so, where into the environment

such information is proliferated. By considering different dynamical regimes we

identify instances in cases (i) and (ii) where redundant information forms close to

the classical bound, implying “successful” Darwinism from the spreading of classical

copies of information into the environment. This directly follows from the work of

chapter 5 where we also saw the partial information develop (in certain regimes) an

increasingly flat plateau over time.

Despite these signatures, which are usually is considered as a hallmark of suc-

cessful quantum Darwinism, our results demonstrate a scenario where classical in-

formation (6.53) is precisely non-redundant. Consequently, we found the quantum

discord (6.54) —taken from the partial information—to obtain relatively large val-

ues in small fractions of pseudomodes and/or sub-environments, realising the highly

non-classical nature of a typical system-fragment state based on the fact it is dis-

turbed significantly under local (projective) measurements.

In parallel we have analysed the dynamics of the classical and quantum correl-

ations between the atom and memory region. In both cases—either when consid-

ering the partial correlations from fractions of the environment or full collection of

pseudomodes—we have found qualitatively similar behaviour in the results across

both the strong and weak coupling regimes. Substantial differences are only intro-

duced through relatively varying the decay rates of the pseudomode population. For

example, in the lossy regime; that is, where correlations and population are signi-

ficantly damped in time, the QMI of the atom-pseudomode system shows asymp-

totically decaying classical correlations with prevalent discord. A regime where the

pseudomodes maximise their classical correlations over the course of the dynamics

has also been identified.

Finally, we have sought to cement the connection between the emergence of

redundancy in the quantum Darwinism framework and non-Markovianity. Memory

effects are characterised by the back-flow of information (and population) from the

system to the environment, which in turn reflects the nondivisibility of the dynamical
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map. We have shown that the redundancy plateau in the partial information plots,

where it can be computed, is suppressed at times when information flows from the

pseudomodes to the atom (see Fig. 6.11). Remarkably, the redundancy acts as a

witness to non-Markovian behaviour in directly the same way as the trace distance

does in the BLP measure.

Since the redundancy measure (5.46) is borne from the idea of information flow-

ing out from the system to the environment, it seems intuitive to think that its

ability to detect quantum memory effects should coincide with other information

based witnesses to non-Markovianity [80, 117]. Looking ahead, this property could

be possibly exploited to develop a novel quantifier of non-Markovianity based on

information redundancy. Indeed this has been partly explored in Ref. [60] within

the setting of a quantum Brownian motion model. Here they define the measure

Nfδ =

∫
dtfδ(t)>0

d

dt
fδ(t)dt. (6.70)

As we known from Fig. 6.11, the redundancy Rδ(t) temporally decreases when

the threshold fraction fδ increases at equal times. Evidence in the current setting

suggests (6.70) only increases from a non-zero value for a non-divisible process.

To further test the above as universal quantifier of non-Markovianity, it is then

of interest to compare Nfδ against the BLP measure for the dissipative two-level

system. This is defined from trace distance quantity in (6.68):

N (Φ) = max
ρ1,2(0)

∫
σ(t)<0

dt σ(t, ρ1,2
S (0)). (6.71)

The measures in Eqs. (6.71) and (6.70) could too be analysed jointly for cases

beyond our considered model.
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Part V

Conclusions
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Chapter 7

Summary and outlook

In this thesis we have studied several examples of non-Markovian behaviour in open

quantum systems, with particular attention paid to the paradigmatic model of a two

level-atom interacting with a zero-temperature bosonic reservoir. Firstly, we set out

to investigate fundamental descriptions for the non-Markovian decay of the atom,

and secondly, we sought to quantitatively measure how correlations are formed—in

a multipartite sense—between the atom and reservoir. In each setting, memory

effects are introduced into the open system dynamics by modifying the structure

of the environment’s spectral density so that it is non-flat for frequency scales of

interest. When the spectral density is highly structured is this way, standard weak-

coupling assumptions breakdown, and parts of the approach reviewed in chapters 2

and 3 are no longer applicable. As a result, our work has primarily been enabled by

the use of non-perturbative pseudomode technique.

We began chapter 4 by addressing the application of the chain transformation

[89–92] to the model in question. The reason for employing the transformation is

because it naturally singles out an auxiliary part of the reservoir—the principal

oscillator—which is responsible for an indirectly couples the atom to a residual

continuum of modes. Choosing a Lorentzian spectral density, we exploited the chain

representation to extend the original quantum Langevin equation of the atom (4.52)

over that of the principal mode, resulting in a closed set of equations of motions

for an enlarged system. The principal mode quantum Langevin equation (4.86) was

identified through evaluating the residue of the single pole contained in the spectral

density when extended to the complex frequency plane. Since this equation was



159

found to be reminiscent of the type used in the standard Markovian input-output

formalism [2, 81], where bin(t) (4.87) adopts the role of an input field, we checked

the two-point commutator of bin(t) (and its adjoint) against the result obtained in

the flat spectrum limit: that is, in a regime where it was proven to represent a

stochastic white noise. Under very reasonable assumptions, its statistics were found

to replicate the usual properties of a Markovian noise even when the dynamics at the

level of the reduced system (atom) was non-Markovian. Interestingly, the enlarged

atom plus principal mode system can then be thought of as being acted upon by a

noise which correlates with the dynamics on an infinitesimally short timescale.

To further understand this feature we proceeded to derive the master equation

corresponding to the bipartite system. From truncating the chain at the first mode,

we arrived at an equation of standard Lindblad form—exactly the result obtained

by way of the pseudomode methods. In this regard, our main conclusion is that

the non-Markovian process may be successfully mapped onto a bipartite Markovian

dynamics when embedded into a one-dimensional bosonic chain. Our approach offers

an immediate advantage over the pseudomode method since the derivation requires

no initial assumptions on the combined state of the enlarged system. Importantly,

the use of the Heisenberg formalism has shown the dynamics can—in principle—be

solved for any number of initial excitations in the enlarged system (see section

4.3). Though it should be stated that the method is limited in practice due to Eqs.

(4.169)-(4.171) becoming intractable to solve for a sufficiently large number of initial

photon excitations in the system.

Next we analysed total correlations—as measured through the quantum mutual

information—between the atom and different random fractions of its environment

under the framework of quantum Darwinism, see chapter 5. This was considered

in the setting of a two-level atom coupled to a single leaky cavity mode. Because

the Jaynes-Cummings Hamiltonian (4.35) conserves excitation number, the first

step—of course—for there only being a single total excitation, was to expand the

full system-reservoir state in the one-excitation basis. The solutions we obtained

were exploited to yield an exact calculation of the partial information. For weak

and moderate system-reservoir coupling, it was noticed, in terms of the appearance

of a classical plateau, that information becomes redundant on a timescale separate
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from that at which initial correlations form between the system and reservoir. On

the other hand, for strong interactions, temporal instances of recorrelation between

the atom and the full reservoir was found to cause the plateau to oscillate well

into the long time limit γ0t � 1. In the same dynamical regime, local correlations

were seen to mostly be created in sidebands positioned around the atomic transition

frequency. Since these correlations mimic the properties of the reservoir emission

spectrum it then follows that the local information shows strong time-dependent

oscillations. As with the QMI, this indicates the presence of recorrelation in the

system, which as we found with the partial information, leads to poor redundancy.

For weaker coupling, the local information grows initially but then tends to decay

monotonically across all reservoir modes in line with the behaviour of the atomic

population. Because the atom forms a non-Markovian system in the strong coupling

limit, we concluded that the classical plateau (in the partial information plots) is

negatively impacted by the presence of memory effects in the dynamics. This agrees

with the analysis Refs. [59, 60] found for other models of dissipation.

We used chapter 6 to develop our model further for the purpose of investigating

quantum Darwinism in a setting where a full part of the system (i.e. atom and

pseudomodes) evolves under a noisy quantum channel. Here, the original environ-

ment was amended to comprise of many independent reservoir sub-environments.

Because the Lorentzian form of the spectral density was shown to be maintained

under certain conditions, the atomic dynamics is simply a generalisation of that

from the previous case (i.e. section 5.2). Thus, we proceeded to compute the par-

tial information exactly like before taking a singly-excited system, given the total

Hamiltonian continues to conserve excitation number. The same classical features of

redundancy emerge in the weak and strong-moderate coupling regimes. Yet, using

definitions of accessible information (6.53) and quantum discord (6.54), total correl-

ations were also partitioned into their respective classical and quantum counterparts.

We subsequently exposed classical correlations to be non-redundant, regardless of

the chosen coupling strength. This result has strong implications for future studies

of quantum Darwinism and opens up broader questions into the relation between

redundant information and multipartite quantum correlations [57], as well as the

physical mechanisms that trigger their emergence. The same findings also support
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the concern of Horodecki et. al. [109], which states that the criteria leading to (5.20)

should be fundamentally checked at the level of states, rather than inferring the ob-

jective properties of the system using only the partial information and associated

measures.

Furthermore, we have highlighted that instances of poor Darwinism tend to co-

incide with information back-flow from the open system to the environment. From

this connection we found the redundancy measure Rδ to act as a witness to non-

Markovian processes in the same way as the trace distance (6.65) does for nondivis-

ible dynamical maps. Our future hope is that the results presented here, along with

those of Refs. [59, 60], can be used to develop a novel quantifier of non-Markovianity.

Finally I conclude by considering some points that potentially merit further in-

vestigation. An immediate and natural extension to the work presented in chapter 4

is to apply our method to a case which involves multiple excitation of the reservoir.

Although the formalism is generic, it could be relevant to describing, for example,

the dynamics of a combined two-level atom and damped cavity field initialised in

an entangled Bell-like state. Another possible direction is to apply the method to

reservoirs whose spectral density is elected to take on a more complicated structure.

Following Ref. [29] one could try modelling such a spectral density using a linear

combination of Lorentzian functions. On the face of it, this type of approach looks

to fit comfortably with our framework since the chain embedding can be straight-

forwardly extended to handle many Lorentzians: this would involve having to add

extra modes of the chain (i.e. beyond m = 0) to the reduced system until the chain

parameters converge. However, because identifying the quantum Langevin equation

relies on the spectral density containing a single pole per principal mode, we anticip-

ate having to first map the environment onto many independent sub-environments

before applying our method. This would require a priori knowledge of what “struc-

ture” the environment needs in order for us to obtain the correct definition of b0(t)

in (4.70), so as to produce to (4.86). Embedding certain problems can also quickly

become impractical when having to incorporate a large number of oscillators into

the system.

In summary, though the work of chapter 4 is far from being all encompassing,

it still marks a significant step towards the development of a framework that, while
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being based on the same intuitive principles of the pseudomode method, can too

deal with processes involving multiphoton excitation of the reservoir (e.g. a dressed

atomic system) by way of a Markovian master equation for the enlarged system.

On top of this the results of chapter 5 and 6 offer new perspectives on quantum

Darwinism within the scope of a singly excited atom emitting into a structured

reservoir. This may perhaps drive a greater want of understanding on how quantum

correlations between a system and parts of its environment evolve over the course

of decoherence, which, as we can predict, will only build in relevance as we move

closer towards the large scale fabrication of quantum technological devices.
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Appendix A

Notes on the Monte Carlo

simulation

Here we detail the procedure used to find a Monte Carlo estimate of the averaged

quantum mutual information 〈I(f)〉 in sections 5.4 and 6.2. The content of this

appendix is outlined as follows: First, the method used to sample fragments is

proposed. I later explore the problems faced with this method for #E � 1 and

briefly discuss the use of sampling from a test distribution rather than the true

underlying distribution of fragment combinations to remedy this. I find good results

are obtained by giving importance to sub-environments located towards the edges

of the distribution.

The environment E1 has a fixed inner structure E = ⊗#E
k=1Ek, where each sub-

environment Ek is uniquely identified by the label k = 1, 2, . . . ,#E. A fragment

is constructed out of an aggregate of m sub-environments, whose size f—defined

in (5.44)—depends only on the number of sub-environments included within the

fragment. We calculate the partial information by first generating a random number

of sub-environments m, and averaging the QMI (5.17) or (6.1) over the total number

of samples taken for each particular fraction size. This is then carried out for every

possible f value to fully construct 〈I(f)〉.
To illustrate how the procedure works, suppose we have random variable X that

1Note the methods of this appendix generally apply within the multiple-environment set-

ting—that is, the partial information is sampled from the pseudomodes P in the same way as

it is done for E.
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generates the number of sub-environments m in a sample fragment by way of a given

probability distribution. For a random sample of length n, we take our samples from

a sequence of i.i.d. random variables {X1, X2, . . . , Xns} (j = 1, 2, . . . ns), which are

used to compute expectation value of X:

〈X〉 =
1

ns

ns∑
j=1

Xj. (A.1)

Ideally, the average number of samples obtained for each m should be distributed

according to the number of ways m sub-environments can be combined to produce

a fragment of size fm. It is then necessary for us to choose a probability distribution

that generates an appropriate “spread” of X across the sample space. For current

purposes we adopt the the binomial distribution pX(m), where

pX(m) =
#E!

m!(#E −m)!
pm(1− p)#E−m, (A.2)

and p is probability of “success” of a Bernoulli trial—in analogy, a sample X is

drawn by the tossing a fair coin sequentially for m = 1, 2, . . . ,#E, with the number

of successes (e.g. heads) generating the number of sub-environments. Since the

number of possibilities for arranging m within a fixed total number #E goes as the

coefficient
(

#E
m

)
, we symmetrise the distribution by setting p = 1/2 in the above,

yielding

pX(m) =
#E!

m!(#E −m)!

(
1

2

)#E

, p =
1

2
. (A.3)

We can make the connection between the expected number of drawn samples for

each m and the probability distribution (A.2) using the (weak) law of large numbers

[61]. This states that, in the limit ns → ∞, the sample average (A.1) converges to

the average of the binomial distribution µ:

µ = lim
ns→∞

〈X〉 =
∑
m

pX(X = m)m. (A.4)

Therefore, the expected number of samples for eachm, given by E[no. m] = nspX(m),

converges proportionally to the binomial coefficient (A.3) as we intended.

For a large total number of sub-environments #E � 1, the binomial distribution

(A.2) tends to a Gaussian N(µ, σ2) with mean µ = #E/2 and variance σ2 = #E/4

[61]. In our case this is very well satisfied since the total number of sub-environments
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taken is approximately of the order #E ∼ 100. Equation (A.3) may then be written

as

pX(m) ≈ N(µ, σ2) =
1

σ
√

2π
exp

[
−(m− µ)2

2σ2

]
, m = 1, 2, . . .#E. (A.5)

Once a sample number of sub-environments is generated, we must subsequently

generate a specific combination out of X = m indicated by {m} = {k1, k2, . . . , km}.
The value of the k-index refers to the ordering of sub-environments on the frequency

line, i.e. Ek → E(ωk), where ωk = ω0 −∆ + xk, and

xk = −Λ + (k − 1)∆x,

∆x =
2Λ

#E − 1
, k = 1, 2, . . . ,#E. (A.6)

Note xk = [−Λ, . . . ,Λ] are frequencies renormalised to be centred on zero, with

Λ an arbitrary cut-off frequency (other parameters are defined in the main text).

Another random variable Y is then used to successively draw m samples of k1, k2, . . .

of frequency xk from the uniform distribution

UY (k) =

1/#E if 1 ≤ k ≤ #E

0 otherwise,

(A.7)

where each are generated with equal probability Pr(Y = k) = 1/#E. This is

done on the grounds that no particular arrangement of sub-environments should be

biased for. In addition, when a sub-environment Y is taken, it is eliminated from

the set such that no sub-environment can be picked more than once. Therefore, the

probability of picking a combination {m} is

Pr({m}) =
m!(#E −m)!

#E!
. (A.8)

Partial information estimate

Repeatedly taking samples of X to (1): choose m, and Y to (2): choose a com-

bination of sub-environments {m}, eventually allows us to compute an estimate for

the partial information. This is found using

〈Ĩ(fm)〉 =
1

n(m)

n(m)∑
k=1

Ik(fm), (A.9)
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where Ik(fm) is the quantum mutual information of an arrangement {m} and 〈Ĩ(fm)〉
the Monte Carlo estimate of the partial information. From (A.5), the expected

number of samples generated for each m is

n(m) ≈ E[no. m] = nspX(m), ns � 1. (A.10)

The actual partial information 〈I(fm)〉 is defined as the average of I(fm) across

every possible combination of sub-environments {m}, that is

〈I(fm)〉 =
∑
{m}

Pr({m})I(fm). (A.11)

In the same way as Eq. (A.4), the estimate of the partial information 〈Ĩ(fm)〉 con-

verges to 〈I(fm)〉 probability wise through the weak law of large numbers (PandRP):

(plot histogram to show)

lim
ns→∞

Pr(|〈I(fm)〉 − 〈Ĩ(fm)〉| ≥ ε) = 0, (A.12)

where ε arbitrarily small. While the above determines how the mean of the sample

estimate converges in the limit ns →∞—i.e, that (A.9) coincides with the expect-

ation value 〈I(fm)〉 in (A.11)—what it does not describe is the behaviour of the

fluctuations in 〈Ĩ(fm)〉 or the rate at which convergence occurs. Since sampling a

large part of the sample space is necessary for (A.12) to even approximately hold,

knowing how the estimate behaves with respect to the sample size ns is important

as it affects the accuracy of the Monte Carlo simulation. The central limit theorem

describes such a phenomena—formally, it states that, for a sequence of i.i.d. vari-

ables {I1(fm), I2(fm), . . . } with mean 〈I(fm)〉 and variance σI,m, the distribution

associated to the variable
√
n(m)(〈Ĩ(fm)〉 − 〈I(fm)〉)/σI,m converges to [61]

lim
n→∞

(〈Ĩ(fm)〉 − 〈I(fm)〉)
σI,m/

√
n(m)

= lim
n→∞

Zn → N(0, 1), (A.13)

that is, a standard normal (Gaussian) distribution N(0, 1). What the central limit

theorem reveals is that fluctuations (reflected in the variance) of the random variable

Zn remain constant as n(m) grows in size. However, as Zn is scaled by a factor√
n(m), the fluctuations in 〈Ĩ(fm)〉 must scale by an equal inverse factor to keep

the spread in Zn constant. This scaling can in turn be used to characterise how the
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variance of the Monte Carlo estimate 〈Ĩ(fm)〉 changes with n(m):

var(〈Ĩ(fm)〉) = var

 1

n(m)

n(m)∑
k=1

Ik(fm)

 ,

=
1

n(m)
var(I(fm)),

=
σ2
m

n(m)
, (A.14)

where again the variables Ik(fm) are assumed independent. Note the final line ex-

presses the fact that the variance in the Monte Carlo estimate decreases proportion-

ally with n(m). Therefore, increasing the sample number shrinks the error incurred

in the estimate 〈Ĩ(fm)〉 by a factor of 1/
√
n(m), which, according to (A.13), is dis-

tributed as a Gaussian for n(m)� 1.

A summary of the complete sampling procedure is then stated as follows:

1. Use the test distribution in Eq. (A.5) to generate a sample of X. The value

of X = m is realised with probability Pr(X = m) = pX(m)∆m.

2. Generate a combination of sub-environments {m} using the random variable

Y , where m samples are drawn from the uniform distribution (A.7).

3. Compute Ik(fm) and store its value. Repeat from the first step, such that

1.—3. are performed ns times.

4. When all samples of X are taken, find the partial information using Eq. (A.9).

Use the results to construct 〈I(f)〉.

Importance sampling

Unfortunately, a critical issue with Eq. (A.3) being a very good fit to a Gaus-

sian is that the tails of the distribution (A.5) are sampled with incredibly small

probability, even for a very large ns. Not only then is n(m) much smaller than the

number of fragment combinations for each m in the marginals of the Gaussian, so

the error in (A.14) is large, but in a typical simulation these regions are found to

not be sampled at all. This is problematic as we need to draw a sufficient num-

ber of m values (i.e. n(m) � 1) from all parts of this distribution to accurately

construct the partial information, while too having to keep ns small enough as to
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prevent severe computational inefficiency. With the current procedure this seems

difficult to achieve. To tackle this problem we instead make use of a method akin

to importance sampling [129]. Here, the random variable X used to draw a random

number of sub-environments in a fragment is chosen to be picked from a different

“test” distribution rather than the Gaussian. The idea is that this new distribution

reduces the error in 〈Ĩ(fm)〉 enough to give reasonable results but is also efficient

from a Monte Carlo standpoint.

If we denote the test distribution hX(m), a new Monte Carlo estimate for the

partial information [i.e. (A.9)] is provided by

〈Ih(fm)〉 =
1

nh(m)

nh(m)∑
k=1

Ik(fm), (A.15)

with nh(m) = nshX(m) giving the expected number of samples for X = m. The er-

ror in the estimate of the partial information associated with this distribution is thus

proportional to 1/
√
h(m). We can gauge the relative error in the test distribution

in comparison to the previous Gaussian—or target—distribution via

σ̃h,m
σ̃P,m

=

√
pX(m)

hX(m)
, (A.16)

where σ̃p,m = σm/
√
n(m) and σ̃h,m = σm/

√
nh(m) are the standard deviations of

the sample estimate. The value of the ratio (A.16) clearly depends on our choice

for the test distribution. It turns out the error can be minimised across all m if we

take [129]

|hX(m)| ∼ α pX(m), (A.17)

where α � 1, so that Eq. (A.16) goes like 1/
√
α. Of course, if this holds for

all m then the test distribution will have to be arbitrarily close to the the target

(Gaussian) distribution, and we revert back to the same problem.

For simplicity, let us take hX(m) to be the uniform distribution. In the marginal

regions of the binomial distribution, our choice of distribution in (A.17) turns out to

be advantageous to sample from since we are “over-sampling” relative to the target

distribution pX(m) due to α � 1. Consequently the error on the Monte Carlo

estimate tends to be very small. Nonetheless, as we approach values closer to the

centre of the distribution, pX(m) will quickly rise above hX(m) and we will have the

opposite effect from α � 1. Within this region we will thus be “under-sampling”
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against the target distribution—the ratio in (A.16) will be very large, and sampling

from the test distribution is disadvantageous compared to (A.5).

Despite this apparent drawback, what the above doesn’t consider is intrinsic un-

certainty in the partial information 〈I(fm)〉: that is, the magnitude of the standard

deviation σI,m defined in (A.14). If this value is sufficiently small in regions where

the error is predicted to be large then it is still possible to get good numerical res-

ults for 〈Ĩ(fm)〉 despite the aforementioned under sampling. This informs us that

lots of samples in this region are “irrelevant” to computing the partial information,

and thus we can afford to massively under sample from the target distribution and

still get a reasonably accurate estimate of the partial information. In Fig. 6.4 we

compare our Monte Carlo results against analytical approximations of 〈I(f)〉 [cf.

(6.42)-(6.50)], and generally find a high level of agreement between the two.

In light of the above, our Monte Carlo procedure is amended to sample frag-

ments by first drawing a value for m from the uniform distribution hX(m). Note

however, that for ease of implementation the results presented in chapters 5 and 6

are actually realised by first taking ñs predetermined samples #E times for each

m = 1, 2, . . .#E. A sub-environment combination is then drawn randomly for

each realisation of X = m using (A.7). Within the limit ñs � 1, this coincides

with the previously considered method of randomly generating the number of sub-

environments in a fragment, since from ñs = nshX(m), where hX(m) = 1/#E, the

eventual bin count (E(no. m)) between the two methods is the same.
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Appendix B

Laplace transform solution of the

state coefficients

For the multiple-environment model considered in section 6.1, if we impose the limit

#E →∞ we can then replace the spectral density (6.5) in such a way as to produce

the following integro-differential equation:

d

dt
ce(t) = −Ω2

0

∫ t

0

dt′ exp [(i∆− (Γ + ΓW )/2)(t− t′)] ce(t′), (B.1)

where

f(t− t′) = Ω2
0 exp

[
i∆(t− t′)−

(
Γ + ΓW

2

)
(t− t′)

]
, (B.2)

is obtained from (6.7) and (6.22), with the above parameters defined in section 6.1.1.

One way of solving (B.1) is by means of the Laplace transform method. We define

the Laplace transform a time domain function y(t) as follows:

ỹ(s) = L[y](s) =

∫ ∞
0

dt e−sty(t), s ∈ C, (B.3)

where the tilde hat is used to indicate the function is defined in Laplace space. By

now applying the above to both sides of (B.1) and making use of the convolution

property L[x ∗ y](s) = x̃(s)ỹ(s), we find

sc̃e(s)− ce(0) = −f̃(s)ce(s), (B.4)

which can subsequently be re-arranged into the form

c̃e(s) =
ce(0)

s+ f̃(s)
. (B.5)
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Having

f̃(s) = L[f ](s) =
Ω2

0

s−
(
i∆− Γ+ΓW

2

) for Re(s) > 0, (B.6)

the Laplace coefficient in Eq. (B.5) can be inverted to to obtain ce(t) = L−1[c̃e(s)](t),

where

ce(t) = G(t)ce(0),

= ce(0)e(i∆/2−Γp/4)t

[
cos

(
Ωt

2

)
− (i∆− Γp/2)

Ω
sin

(
Ωt

2

)]
. (B.7)

Here, G(t) is the same atomic Green’s function we defined in (6.26), while Γp =

Γ + ΓW is an additive decay rate. This result can be used in conjunction with

(6.11) to determine an analytical expression for the pseudomode coefficients bk(t).

Employing the integration formulae


∫
dt eαt cos βt =

eαt

α2 + β2
(α cos βt+ β sin βt) ,∫

dt eαt sin βt =
eαt

α2 + β2
(α sin βt− β cos βt) ,

(B.8)

(B.9)

one can then show we arrive at the analytical result quoted in Eq. (6.33).

Something I would also like to emphasise is that the state coefficients of the

multiple-environment model (B.7) are considered a generalisation of those associ-

ated to the state vector (5.23) in the original single-environment (damped Jaynes-

Cummings) model. Evidently, if we take the limit ΓW → 0 and solve for ce(t) in

the above using the same Laplace transform method, we recover the Green’s func-

tion solution (5.32) found in the case of a single Lorentzian reservoir. This follows

from the fact that the spectral densities of the multiple-environment model and the

damped Jaynes-Cummings model in this limit are both given by

J(ωλ) =
1

2π

Ω2
0Γ

(ω0 −∆− ωλ)2 + (Γ/2)2
. (B.10)

For the sake of completeness, we can further demonstrate correspondence between

the two models by finding the state coefficients of the reservoir modes ck,λ(t) ap-

pearing in (6.6). Integrating its equation of motion and applying the above formulae
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yields

ck,λ(t) = − 4gk,λce(0)

(i(2δλ + ∆)− Γp/2)2 + Ω2

{(
δλ + ∆ + i

Γp
2

)

− eiδλte(i∆/2−Γp/4)t

[(
δλ + ∆ + i

Γp
2

)
cos

(
Ωt

2

)

−
((

i∆− Γp/2

Ω

)
(δλ + ∆/2 + iΓp/4) + i

Ω

2

)
sin

(
Ωt

2

)]}
, (B.11)

where δλ = ωλ − ω0 and Ω =
√

4Ω2
0 − (i∆− Γp/2)2. We notice the timescale

associated with the decay the coefficient ck,λ(t) depends exclusively on the width

of the Lorentzian spectral density in Eq. (6.22) in the same way as ce(t). Taking

ΓW → 0 and restricting the description to a single environment (k = 1) then provides

the exact reservoir state coefficients cλ,1(t) = cλ(t) for the atom-cavity model in

section 5.2, again as a result of the equivalence between the two spectral densities.
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Appendix C

Accessible information and

quantum discord

To gain a clear understanding on the distinction between classical and quantum

information, we use the Holevo quantity (6.53) introduced in 6.2.3 to gauge the

information accessible via measurements on Xf . This information is limited by

the type of measurement used. Because the QMI is invariant to how C(ρSXf ) and

δ̄(ρSXf ) are assigned, the quantum discord, in turn, is required to be minimised over

all measurement bases {MX
j } to avoid erroneous results. The POVM that fulfils

this condition has been shown by Datta to be formulated using rank one projectors

[130].

In order to realise the measurement in terms such projectors, we make use of the

fact that both the sub-environments and pseudomodes—or fractions thereof—can

collectively be mapped to a single qubit. As stated in the main text, the ground

state of the qubit is defined from the vacuum of Xf : |0̃〉Xf = |{0}〉Xf , while the

excited state |1̃〉Xf is formed through (6.38) and (6.47). Let us write the complete

set of local orthogonal projectors in terms of the qubit states,

M
Xf
1 =

1

2

(
1Xf + ~r · ~σ

)
, (C.1)

M
Xf
2 =

1

2

(
1Xf − ~r · ~σ

)
, (C.2)

where ~r = (sin θ cosφ, sin θ sinφ, cos θ)T is the Bloch vector, and ~σ = (σx, σy, σz)
T

contains the Pauli operators constructed from the basis {|0̃〉Xf , |1̃〉Xf}, along with

the identity 1Xf . The accessible information and discord are then extremized with
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respect to the free choice of angles θ ∈ [0, π) and φ ∈ [0, 2π).

Remembering from (6.56) that the conditional state is

ρ
S|MXf

j

=
1

pj
trXf

[
(1S ⊗MXf

j )ρSXf (M
Xf
j ⊗ 1S)

]
, j = 1, 2, (C.3)

for each measurement one obtains

ρ
S|MXf

j

=
1

pj

(
Aj(θ) |g〉 〈g|+ Cj(θ) |e〉 〈e|+Bj(θ, φ) |e〉 〈g|+ h.c.

)
. (C.4)

After much algebra it is possible to show that

Aj(θ) =
1

2

{
Πf (t) + η2

f (t) + (−1)j−1 cos θ
[
η2
f (t)− Πf (t)

]}
,

Bj(θ, φ) =
1

2
(−1)j−1 sin θ e−iφηf (t)ce(t),

Cj(θ) =
1

2
|ce(t)|2

(
1 + (−1)j cos θ

)
, (C.5)

where, for σSz = |e〉 〈e| − |g〉 〈g|, the probabilities of each outcome are

pj =
1

2

{
1 + (−1)j cos θ

[
〈σSz 〉+ 2Πf (t)

]}
. (C.6)

The coefficients ηf (t) and Πf (t) are also given by

ηf (t) =


∑

k∈Ef ,λ |ck,λ(t)|2, if X = E,∑
k3Pf |bk(t)|2, if X = P,

(C.7)

and

Πf (t) =

|cg|
2 +

∑
k3Ef ,λ |ck,λ(t)|2, if X = E,

|cg|2 +
∑

k3Pf |bk(t)|2 + Πg(t), if X = P,

(C.8)

where k 3 Xf denotes summation over objects not in the fragment.

Finally, by diagonalizing (C.4) its eigenvalues are obtained and substituted into

(6.55) to evaluate the conditional entropy. We get

S(ρ
S|{MXf

j }) = −
∑
i,j=1,2

pjλi,j lnλi,j, (C.9)

where

λi,j =
Aj(θ) + Cj(θ) + (−1)i

√
[Aj(θ)− Cj(θ)]2 + 4|Bj(θ, φ)|2

2pj
. (C.10)

From this expression it is easy to see that the conditional entropy is invariant with

respect to φ.
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