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Abstract 

The research in this thesis has examined the use of texture and shape analysis to 

characterise Magnetic Resonance (MR) images of peripheral nerves in order to provide a 

potential quantitative tool for better diagnosis and treatments. 

Texture and shape can be considered as inherent properties of all surfaces and have the 

potential to provide sensitive information which cannot be quantitatively perceived by 

human vision. Texture analysis has been successfully used in image classification of 

aerial and satellite imagery and the diagnosis and prognosis of several types of cancer. 

However, to date, it has never been used in investigating peripheral nerve damage.  In 

this thesis, we study the application of texture and shape analysis to the peripheral nerves 

in the upper extremities of patients suffering from Whiplash Associated Disorders 

(WAD).  

Specifically, quantitative texture analysis was performed on MR images of the carpal 

tunnel which contains the median nerve. The median nerve was studied to identify 

differences in textural patterns. Texture methods such as: first order features; co-

occurrence matrices; run-length matrices and autocorrelation function were applied and 

their performance was assessed. Texture analysis was also performed to investigate nerve 

damage in the MR images of the brachial plexus, both in controls and patients. 

Further, spatial domain shape metrics were used to quantify and study the morphological 

differences of the median nerve in controls and patients. This highlighted that some 

significant differences exist between groups and thus could potentially be reliably used 

in combination with clinical scale metrics to identify possible nerve damage. 
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As MR images contain noise, locating the median nerve accurately to perform image 

analysis is very important. Therefore, we further investigated the application of an 

enhanced correlation filtering method that could be trained on images of the median nerve 

and then applied to detect the median nerve in test images. The Optimal Trade-off 

Maximum Average Correlation Height (OT-MACH) filter includes the expected 

distortions in the target in the construction of the filter reference function. The OT-MACH 

filter was tuned in a bandpass to maximize the correlation peak and thereby successfully 

locate the position of the median nerve in the carpal tunnel. 

 This study has successfully demonstrated that texture and shape analysis can be used to 

investigate possible peripheral nerve damage. Further research is required using larger 

datasets to establish a quantitative image analysis tool to support clinical decision making 

and thereby improve patient care and treatment outcome. 

 
 

 

 

 

 

 

 

 

 



vi 
 

Publication 

Evidence for increased MRI signal intensity and morphological changes in 

the brachial plexus and median nerves of patients with chronic arm and neck 

pain following whiplash injury. 

Jane Greening, Kamakshi Anantharaman, Rupert Young, Andrew Dilley 

Submitted to the Journal of Orthopaedic and Sports Physical Therapy 

(Accepted for Publication) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 
 

List of Figures .............................................................................................................. xi 

List of Tables .............................................................................................................. xiii 

List of Symbols .......................................................................................................... xiv 

List of Abbreviations ................................................................................................... xv 

Chapter 1 ........................................................................................................................... 1 

1.1 Introduction ........................................................................................................ 1 

1.2 Problem Outline ................................................................................................. 3 

1.3 Problem Rationale .............................................................................................. 4 

1.4 Whiplash Injury .................................................................................................. 5 

1.5 Diagnosis and Treatment .................................................................................. 10 

1.6 Anatomy of the Carpal Tunnel ......................................................................... 11 

1.7 Anatomy of the Brachial Plexus ....................................................................... 12 

1.8 Imaging in Peripheral Neuropathies ................................................................. 13 

1.8.1 Ultrasound Imaging ................................................................................... 13 

1.8.2 Magnetic Resonance Imaging ................................................................... 14 

1.9 Description of Data .......................................................................................... 17 

1.10 MRI Protocol .................................................................................................... 17 

1.11 Image Analysis Software .................................................................................. 18 

1.12 Thesis Organisation and Summary of Achievements ...................................... 19 

Chapter 2 ......................................................................................................................... 22 

2.1 Overview .......................................................................................................... 22 

2.2 Introduction to Texture Analysis ...................................................................... 22 

2.3 Applications of Texture Analysis ..................................................................... 26 

2.4 Application of first order features to MR images of the Brachial Plexus ........ 28 

2.4.1 Experimentation Method ........................................................................... 28 

2.4.2 Results ....................................................................................................... 31 

2.4.3 Statistical analysis ..................................................................................... 32 

2.4.4 Normalisation of mean grey-level (MGL) values in the brachial plexus .. 32 

2.4.5 Statistical analysis of signal intensity ratio in the brachial plexus ............ 33 

2.5 Application of first order features to median nerve in MR images of the carpal 

tunnel 35 

2.5.1 Results ....................................................................................................... 37 

2.5.2 Statistical analysis of signal intensity ratio of the median nerve .............. 38 



viii 
 

2.6 Application of GLCM to the median nerve in the carpal tunnel ...................... 39 

2.6.1 Results ....................................................................................................... 39 

2.6.2 Statistical Analysis .................................................................................... 39 

2.7 Conclusion ........................................................................................................ 42 

Chapter 3 ......................................................................................................................... 43 

3.1 Run Length Matrices ........................................................................................ 43 

3.1.1 Applications .............................................................................................. 44 

3.1.2 Experimentation Method ........................................................................... 46 

3.1.3 Analysis of the Median Nerve in Carpal Tunnel ...................................... 48 

3.1.4 Statistical Analysis .................................................................................... 52 

3.1.5 Results in the Brachial Plexus ................................................................... 53 

3.1.6 Analysis of the Brachial Plexus results ..................................................... 53 

3.1.7 Statistical Analysis .................................................................................... 58 

3.1.8 Conclusion ................................................................................................ 58 

3.2 The Autocorrelation Function .......................................................................... 59 

3.2.1 Experimentation Method ........................................................................... 59 

3.2.2 Analysis of results ..................................................................................... 60 

3.3 Conclusion ........................................................................................................ 64 

Chapter 4 ......................................................................................................................... 65 

4.1 Overview .......................................................................................................... 65 

4.2 Introduction ...................................................................................................... 66 

4.3 Shape descriptors .............................................................................................. 71 

4.4 Summary of results ........................................................................................... 72 

4.5 Analysis of shape quantification results ........................................................... 74 

4.5.1 Circularity ................................................................................................. 74 

4.5.2 Eccentricity ............................................................................................... 75 

4.5.3 Median Nerve Area ................................................................................... 76 

4.5.4 Median Nerve Perimeter ........................................................................... 78 

4.5.5 Aspect Ratio .............................................................................................. 79 

4.6 Statistical Analysis ........................................................................................... 80 

4.7 Conclusion ........................................................................................................ 81 

Chapter 5 ......................................................................................................................... 82 

5.1 Introduction ...................................................................................................... 82 

5.2 The MACH Filter ............................................................................................. 83 

5.3 The OT-MACH filter ....................................................................................... 84 



ix 
 

5.4 Performance Metrics for correlation filters ...................................................... 85 

5.5 Applications ...................................................................................................... 87 

5.6 Experimentation ............................................................................................... 89 

5.6.1 Case I ......................................................................................................... 90 

5.6.2 Case II ....................................................................................................... 91 

5.6.3 Case III ...................................................................................................... 92 

5.6.4 Case IV ...................................................................................................... 93 

5.6.5 Case V ....................................................................................................... 94 

5.6.6 Case VI ...................................................................................................... 95 

5.6.7 Case VII .................................................................................................... 96 

5.6.8 Case VIII ................................................................................................... 97 

5.6.9 Case IX ...................................................................................................... 98 

5.6.10 Case X ....................................................................................................... 99 

5.6.11 Case XI .................................................................................................... 100 

5.6.12 Case XII .................................................................................................. 101 

5.7 Conclusion ...................................................................................................... 103 

Chapter 6 ....................................................................................................................... 104 

6.1 Introduction .................................................................................................... 104 

6.2 Methods of Binary Classification ................................................................... 104 

6.2.1 Decision Trees ......................................................................................... 104 

6.2.2 Random Forests ....................................................................................... 105 

6.2.3 Bayesian networks .................................................................................. 105 

6.2.4 Support Vector Machines ........................................................................ 105 

6.2.5 Artificial Neural Networks ...................................................................... 106 

6.3 Classification using Small Datasets ............................................................... 107 

6.3.1 Diffusion Neural Network....................................................................... 107 

6.3.2 Mega Trend Diffusion Function.............................................................. 108 

6.3.3 Bootstrap Resampling Method ................................................................ 108 

6.4 Experimentation Method ................................................................................ 109 

6.5 Performance Measures ................................................................................... 110 

6.6 Applications .................................................................................................... 110 

6.7 Analysis of Classification Models .................................................................. 112 

6.7.1 SVM using Shape Metrics ...................................................................... 112 

6.7.2 Principal Component Analysis of Texture Measures.............................. 113 

6.8 Conclusion ...................................................................................................... 115 



x 
 

Chapter 7 ....................................................................................................................... 116 

7.1 Overview ........................................................................................................ 116 

7.2 Proving the hypothesis ................................................................................... 117 

7.3 Future Research .............................................................................................. 119 

References ................................................................................................................. 121 

Appendices .............................................................................................................. 1299 

Appendix A: Results of First Order Features ......................................................... 13030 

Appendix B: Results of Run Length Matrices .......................................................... 137 

Appendix C: Plots of the Autocorrelation Function .................................................. 145 

Appendix D: Results of Shape Metrics ..................................................................... 151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

List of Figures 
 

Figure 1.1: Phases of trauma caused during rear-end collision[8] .................................... 6 
Figure 1.2: Anatomy of the carpal tunnel [12] ................................................................ 11 
Figure 1.3: Anatomy of the Brachial Plexus [13] ........................................................... 12 

Figure 2.1: Step-wise Process for Texture Analysis [29] ............................................... 25 
Figure 2.2: T2- weighted STIR image of the roots and trunks of brachial plexus .......... 29 
Figure 2.3: Brachial nerve roots on right side of the subject (Coronal view) ................. 30 
Figure 2.4: Brachial nerve roots on the left side of the subject (Coronal view) ............. 30 
Figure 2.5: Signal intensity ratio for the brachial nerve roots......................................... 33 

Figure 2.6: Signal intensity ratio for the individual cervical nerve roots........................ 34 
Figure 2.7: Median nerve in the carpal tunnel of a normal subject................................. 35 
Figure 2.8: Median nerve in the carpal tunnel of a whiplash patient .............................. 36 

Figure 2.9: Mean signal intensity ratio of the median nerve ........................................... 37 
Figure 3.1: The figure shows the SRE values for the controls and the patients at the 

three distinct locations inside the carpal tunnel namely: the proximal, middle and distal 

positions. ......................................................................................................................... 48 

Figure 3.2: The figure shows the LRE values for the controls and the patients at the 

three distinct locations inside the carpal tunnel, namely: proximal carpal row, radioulnar 

joint and distal carpal row. .............................................................................................. 49 
Figure 3.3: The figure shows the RP values for the controls and the patients at the three 

distinct locations inside the carpal tunnel, namely: proximal, middle and distal 

positions. ......................................................................................................................... 50 
Figure 3.4: The figure shows the RLN values for the controls and the patients at the 

three distinct locations inside the carpal tunnel, namely: proximal, middle and distal 

positions. ......................................................................................................................... 51 
Figure 3.5: The figure shows the HGRE values for the controls and the patients at the 

three distinct locations inside the carpal tunnel, namely: proximal, middle and distal 

position. ........................................................................................................................... 52 

Figure 3.6: Mean Short Run Emphasis (SRE) values for nerve segments of the brachial 

plexus on the left side, right side and both sides combined, for controls and patients. .. 54 

Figure 3.7: Mean Long Run Emphasis (LRE) values for nerve segments of the brachial 

plexus on the left side, right side and both sides combined, for controls and patients. .. 54 
Figure 3.8: Mean Run Percentage (RP) values for nerve segments of the brachial plexus 

on the left side, right side and both sides combined, for controls and patients. .............. 55 

Figure 3.9: Mean low gray level values (LGRE) values for nerve segments of the 

brachial plexus on the left side, right side and both sides combined, for controls and 

patients. ........................................................................................................................... 56 
Figure 3.10: Mean high gray level values (HGRE) values for nerve segments of the 

brachial plexus on the left side, right side and both sides combined, for controls and 

patients. ........................................................................................................................... 57 
Figure 3.11: Autocorrelation function of a patient nerve ................................................ 60 

Figure 3.12: Texture Signature of the median nerve in the x-direction (patient) ........... 61 
Figure 3.13: Texture Signature of the median nerve in the y-direction (patient) ........... 61 
Figure 3.14: Autocorrelation function of a control nerve ............................................... 62 
Figure 3.15: Texture Signature of the median nerve in the x-direction (control) ........... 62 
Figure 3.16: Texture Signature of the median nerve in the y-direction (control) ........... 63 
Figure 4.1: Shape representation and description techniques [50] ................................. 67 



xii 
 

Figure 4.2(a) The median nerve is displayed in this figure with (b) the binary mask and 

(c) the masked image of the nerve .................................................................................. 72 

Figure 4.3: Circularity in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel........................................................................................... 74 
Figure 4.4: Eccentricity in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel........................................................................................... 75 
Figure 4.5: Area (in pixels) in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel........................................................................................... 76 

Figure 4.6: Area (in 𝒎𝒎𝟐 ) in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel........................................................................................... 77 
Figure 4.7: Aspect ratio in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel........................................................................................... 79 

Figure 5.1: A MR image of the carpal tunnel used for testing the OT-MACH filter ..... 89 
Figure 5.2: Correlation output of OT-MACH using a single image and the same test 

image. .............................................................................................................................. 90 
Figure 5.3: Correlation output of OT-MACH in Case II ................................................ 91 
Figure 5.4: Correlation output of OT-MACH in case III ................................................ 92 
Figure 5.5: Correlation output of OT-MACH in Case IV ............................................... 93 

Figure 5.6: Correlation output of OT-MACH in Case V ................................................ 94 
Figure 5.7: Correlation output of OT-MACH in case VI................................................ 95 

Figure 5.8: Correlation output of OT-MACH in Case VII ............................................. 96 
Figure 5.9: Correlation output of OT-MACH in Case VIII ............................................ 97 
Figure 5.10: Correlation output of OT-MACH in Case IX ............................................. 98 

Figure 5.11: Correlation output of OT-MACH in Case X .............................................. 99 
Figure 5.12: Correlation output of OT-MACH in Case XI ........................................... 100 

Figure 5.13: Correlation output of OT-MACH in Case XII ......................................... 101 
Figure 6.1 PCA plot using texture features ................................................................... 114 
 

 

 

 

 

 

 



xiii 
 

List of Tables 
 

Table 1.1: Quebec Task Force Whiplash Associated Disorders Classification Scheme 

[6] [7] ................................................................................................................................ 8 
Table 2.1: Results presented as an average of the first order features for controls and 

patients of the four brachial nerve roots .......................................................................... 31 
Table 2.2: Signal intensity ratio of the brachial nerve roots ........................................... 32 
Table 2.3: Mean signal intensity ratio of the median nerve in carpal tunnel .................. 37 
Table 2.4: Texture features extracted from GLCM at the proximal carpal row ............. 40 
Table 2.5: Mean values for texture features extracted from GLCM at the distal location

 ......................................................................................................................................... 41 
Table 2.6: Mean values for texture features extracted from GLCM at the RU Joint ...... 41 
Table 3.1: Autocorrelation peak features of median nerve in controls and patients ....... 63 

Table 4.1: Mean Shape Measures at proximal, radioulnar and distal carpal row location 

in the carpal tunnel of controls and patients.................................................................... 73 
Table 4.2: Perimeter measures between controls and patient at radioulnar, proximal and 

distal carpal rows in the carpal tunnel. ............................................................................ 78 

Table 5.1: Summary of filter parameters and performance metrics.............................. 102 
Table 6.1: SVM Results using shape measures ............................................................ 112 

 
 

 

 

 

 

 

 

 

 

 

 



xiv 
 

List of Symbols 
 

       Mean 

2     Variance 

3     Skewness 

4     Kurtosis 

E     Energy 

H     Entropy 

     Angle  

     Non-negative parameter 

     Non-negative parameter 

     Non-negative parameter 

     Standard Deviation 

 

 

 

 

 

 

 



xv 
 

List of Abbreviations 
 

ANN Artificial Neural Networks 

ASM  Average Similarity Measure 

ATR  Automatic Target Recognition 

BP Brachial Plexus 

COPI Correlation Output Peak Intensity 

CT     Carpal Tunnel 

CT     Computed Tomography 

CTS      Carpal Tunnel Syndrome 

CUReT                                     Columbia- Utrecht Reflectance and Texture database 

DCE-MRI                         Dynamic Contrast Enhance Magnetic Resonance    

Imaging 

DCIS  Ductal Carcinoma In Situ 

DICOM  Digital Imaging and Communications in Medicine 

DNN  Diffusion Neural Network 

GLCM  Gray Level Co-occurrence Matrix 

GLN  Gray Level Non-uniformity 

HGRE High Gray Level Run Emphasis 

IDC Invasive Ductal Carcinoma 

LGRE Low Gray level Run Emphasis 

LRE Long Run Emphasis 

LRHGE Long Run High Gray level Run Emphasis 

LRLGE  Long Run Low Gray level Run Emphasis 

MACE  Minimum Average Correlation Energy filter 

MACH  Maximum Average Correlation Height filter 

MGL      Mean Grey Level 

MRI      Magnetic Resonance Imaging 

MRN      Magnetic Resonance Neurography 

MTD  Mega-Trend-Diffusion 

MVSDF  Minimum Variance Synthetic Discriminant Function 



xvi 
 

NPV      Negative Predictive Value 

NSAIDs    Non-Steroidal Anti- Inflammatory Drugs 

NSCLC  Non-Small Cell Lung Cancer 

ONV  Output Noise Variance 

OT-MACH Optimal Trade-Off Maximum Average Correlation 

Height    Filter 

PCA  Principal Component Analysis 

PCE  Peak Correlation Energy 

PET      Positron Emission Tomography 

PPV      Positive Predictive Value 

PSR  Peak -to- Sidelobe Ratio 

PTSD      Post Traumatic Stress Disorder 

RBF      Radial Basis Function 

RLM  Run Length Matrix 

RLN  Run Length Non- uniformity 

RP  Run Percentage 

RU Joint Radioulnar Joint 

SDF  Synthetic Discriminant Function 

SEM      Standard Error of the Mean 

SF-36     Short Form survey No-36 

SI      Systems International 

SPECT    Single Photon Emission Computed Tomography 

SRE  Short Run Emphasis 

SRHGE  Short Run High Gray level run Emphasis 

STIR     Single Tau Inversion Recovery 

SVM  Support Vector Machines 

TA      Total Accuracy 

TENS      Transcutaneous Electric Nerve Stimulation  

TNR      True Negative Rate 

TPR  True Positive Rate 

VANET  Vehicular Ad-hoc Networks 



xvii 
 

VGL  Variance in Grey Level  

WAD      Whiplash Associated Disorders 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  



1 
 

 

Chapter 1  
 

 

Introduction 
 

 

1.1 Introduction 

Medical image processing was born because of advancements in medical imaging that 

took place in the last century. From x-rays to computed tomography, the past decades 

have seen incremental progress in the science and technology of imaging. Computed 

tomography enabled three-dimensional reconstruction of the human body. Hence, the 

need for accurate image reconstruction and visualization became of interest to scientists. 

Computers became more powerful and the necessity to analyse the improving images to 

find what the human eye could not perceive became a highly-researched area. A major 

proportion of the interpretation was possible using mathematical models and translating 

them into programming with specific techniques. This field came to be known as medical 

image analysis. Over the past two decades, computer algorithms became more complex 

and artificial intelligence models were also developed to interpret medical image data 

with the same flexibility as a human observer [1]. 

Medical Imaging can be described as a technique or process of creating a visual 

representation of the interior of a human body for clinical analysis and medical 

intervention. It helps build a database of information about normal anatomy and 

physiology and therefore helps identify abnormalities. Medical imaging is a combination 

of the fields of biomedical engineering, physics and computer science. As a crucial field 
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of scientific investigation in medicine, imaging modalities designate techniques that non-

invasively produce images of the internal aspects of the body [2]. 

In a report by the European Science Foundation, it is described how medical imaging has 

changed the face of patient care. Medical imaging plays a central most crucial role in the 

healthcare system as it contributes to efficient diagnosis of diseases. It is important that 

diseases are diagnosed at the earliest stages, so treatment can be accurate for best patient 

outcome. Medical Imaging technology is growing at a rapid pace not only in the clinical 

setting in hospitals but also in research and development. Research in imaging is on two 

levels, namely: the biological study of the interior of the human body done by the medical 

specialist; secondly, research is done on the images derived from the imaging modalities 

by processing these images. Image processing of this medical data is proving to be very 

important in a supportive role to medical specialists [3]. This report states that medical 

imaging has a key role in the care of all organ systems and disease entities, and better and 

increased medical imaging research may benefit the entire process of health and disease 

management, including:  

• prevention  

• screening targeted sub-populations with increased risk of specific disease entities  

• early detection of subclinical disease  

• optimal choice of treatment based on personalised medicine   

• prognosis 

• non-invasive monitoring of treatment effects for response-adjusted treatment in 

case of poor response  

• patient follow-up to adjust multi-drug therapy in chronic disease  

• early detection of recurrence  

• decision making tool for early-onset disease treatment and monitoring 
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• improved patient care 

• early detection of life threatening diseases and recurrences of certain diseases 

• individually tailored treatments  

• lesser complications during and after surgeries 

• more evidence-based decision making within healthcare  

• better understanding and monitoring of how well the treatment is working for the 

patient 

1.2 Problem Outline 

In this thesis, quantitative image analysis is performed to investigate and analyse 

peripheral nerves in subjects who had suffered from whiplash injury in the past. These 

subjects had made full recovery after the motor accident; however, they slowly developed 

chronic pain in arms, shoulders and wrist which had no accompanying clinical 

manifestation. This study is a preliminary attempt to identify if medical image analysis 

can be used to characterise the peripheral nerves in the upper extremities of these subjects 

to investigate the cause of the chronic pain in whiplash injuries. This study used 

quantitative texture and shape techniques to analyse the peripheral nerves in the brachial 

plexus and the carpal tunnels of all the subjects that participated in this study. Texture 

analysis was done using first order features, co-occurrence matrices and run length 

matrices. Quantitative shape analysis was also performed using spatial domain shape 

metrics such as circularity, aspect ratio and other morphological features of the median 

nerve in the carpal tunnel. 
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1.3 Problem Rationale 

Whiplash injury is one of the most common causes of neck injury and it occurs during 

rear-end collisions in motor vehicle accidents. The collision is believed to cause immense 

trauma when the head suddenly moves forward and then is pushed backwards due to the 

impact of the collision.   

The most crucial problem is the diagnosis of whiplash. Although there are set guidelines 

to investigate the trauma caused by whiplash, it relies heavily on the doctor’s judgement 

and the patient’s description of how and where they feel pain which in some cases can be 

vague and irrelevant. There is a pressing need for development of a supportive tool that 

would help improve the diagnosis of whiplash and thereby improve patient care and 

treatment outcome.  

The second most crucial issue regarding whiplash injuries is the economic burden it 

carries. In 2012, a report written by the Ministry of Justice investigated a consultation 

report concerning whiplash injuries in England and Wales. The report indicated that 

between 2006 and 2010, almost seventy percent of the road traffic accident personal 

insurance claims were for whiplash injuries. This rate was significantly higher than any 

other country in the then European Union. According to the Association of British 

Insurers, approximately ninety pounds of the cost of an average motor insurance premium 

stems from the cost of whiplash injuries. Whiplash injuries account for nearly two billion 

pounds of compensation payments per year [4]. The report also summarised the points 

based on which the government accepted that whiplash injury was a complex issue that 

needed attention. They decided to work on four areas of focus in order to make progress. 

These areas are listed below [5]: 

• Improving the diagnosis of a whiplash injury 
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• Developing standards for diagnosis 

• Challenging questionable claims 

• Tackling the perception that exaggerated claims are acceptable. 

The work in this thesis is an attempt to improve the diagnosis of whiplash injury by using 

advanced medical image analysis. To the best of our knowledge, no supportive tools or 

methods exist that are approved to be used by medical experts in diagnosis of whiplash 

injuries using medical imaging analysis. In this thesis, we investigated the hypothesis that 

application of quantitative image analysis could improve the diagnosis and treatment of 

whiplash associated disorders and symptoms and that it will provide a supportive tool to 

medical practitioners.  

The next section explains what whiplash injury is and presents the relevant literature that 

will help understand the current procedures and techniques used in its diagnosis. 

1.4 Whiplash Injury 

The term “whiplash” was coined by an American orthopaedist Dr. H. E. Crowe in 1928. 

He described it as trauma caused to the soft tissues in the cervical spine from a sudden 

acceleration-deceleration force mechanism such as that which occurs in rear-end 

collisions in motor accidents [6]. As can be seen in the figure 1.1 below, there are phases 

of events that occur in cases of rear end collision. When the vehicle is hit from the rear 

end, the normal resting human body is forced back into the seat. This immediately affects 

the normal lordosis of the neck and it is forced to lose curvature and straighten. After the 

impact, the head and neck both move backwards until the acceleration has reached its 

peak and if the motor vehicle driver then has hit the brakes, deceleration occurs 

instantaneously throwing the head and neck into hyperflexion, as shown below. This 

throws the body and head forward. In this case, the body is held in position by the seat 
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belt; however, the neck and head decelerate forward. The impact of this collision can 

produce symptoms and injury at various levels of emergency [7] 

 

Figure 1.1: Phases of trauma caused during rear-end collision[8] 

 

The history of whiplash is said to have its roots dating back to 1866, when the British 

physician Erichsen described the term “railway spine”. He explained in his lectures that 

although railway accidents sometimes had no evident blow or injury to the head or spine 

of the patients at the time of impact, it seemed to have caused trauma to the entire human 

nervous system therefore causing an array of clinical manifestations as all the patients 

presented similar symptoms of anxiety and depression which completely disrupted their 

normal way of life [6]. 

There is striking analogy in how the theories around railway spine evolved and similarly 

how the theories about whiplash injuries have evolved in the past four decades. The term 

‘whiplash’ however has had many definitions over the years.  The simple aspect of driving 

and using a motor vehicle has many socio-legal aspects to it such as insurance claims, 

insurance premium costs and legal compensations which have a tremendous impact on 

the economy of a nation. As these motor accidents not only caused direct injuries on 
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impact and led to many associated injuries that range from very minor sprains to severe 

damage leading to disability or impairment of a permanent nature, it was crucial that there 

was consistency in how whiplash injury was looked at. To tackle these clinical, socio-

economic and legal concerns, a Canadian car insurance company set up a task force of 

experts from all the relevant fields to investigate whiplash injuries and set up a 

classification system which would make diagnosis, prognosis and treatments consistent. 

The result was the document called “Quebec Task Force Guidelines for Whiplash 

Associated Disorders”. Whiplash associated disorders (WAD) encompass many clinical 

manifestations that follow whiplash injury such as neck pain, arm pain, memory 

impairment, poor concentration, anxiety and depression and the obvious physical trauma 

such as neck fractures or dislocation [6].   The following table lists the Quebec Task Force 

Whiplash Associated Disorders (WAD Classification) Scheme. 

 

 

 

 

 

 

 

 

 

 



8 
 

Grade Injury and Symptoms Signs 

Grade 0 or WAD0 No complaints of neck pain 

or any possible physical 

injury  

No physical sign or 

manifestation observed of 

any injury by medical 

practitioner. 

Grade 1 or WAD1 Muscle sprain, neck 

stiffness, neck pain or 

tenderness in the cervical 

area 

Normal motor range, 

normal reflexes and muscle 

strength in the limbs. X-ray 

is not necessary in this case. 

Grade2 or WAD2 Possible muscle and/or 

ligament sprain. Neck and/ 

or back pain. 

Tenderness in paraspinal 

muscles and restricted range 

of motion in spine. Normal 

reflexes and muscle strength 

in the limbs. X-ray shows no 

fracture/dislocation. 

Grade3 or WAD3 Possible disc protrusion 

with nerve root 

impingement or spinal cord 

contusion without bony 

fracture/dislocation. Neck 

pain; back pain, arm pain;  

leg pain and numbness. 

Reduction or absence of 

reflexes; muscle weakness; 

sensory changes; or all, 

suggestive of a nerve root 

injury or compression in the 

spinal cord. X-ray shows no 

fracture or dislocation.  

Grade4 or WAD4 Cervical Fracture and/or 

dislocation. Neck pain, or 

neurological symptoms in 

limbs, urinary incontinence 

due to the involvement of 

the spinal cord.  

Motor weakness and 

sensory changes if spinal 

cord is injured. X-ray shows 

fracture, dislocation or both 

if present. CT or MRI may 

show spinal injury. 

Table 1.1: Quebec Task Force Whiplash Associated Disorders Classification 

Scheme [6] [7] 

 

Thus, from the above classification, we can infer that adequate medical intervention is 

not advised at Grade 1 and Grade 2. However, the chronic pain resulting from whiplash 

often falls in the Grade 2 category shown in Table 1.1 and therefore patients suffer from 

endless pain without prescriptions to treat it fairly. In a paper by Sterling et al. [9] it is 

discussed that whiplash is a very significant public health problem with immense social 

and financial burden arising from patients who are involved in motor vehicle accidents 

and therefore suffer chronic pain and associated disability. According to a study on 
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Australian data in this paper, 60 % of people are said to report pain 6 months to 2 years 

post the motor vehicle accident. Therefore, whiplash is said to cause psychological and 

physical distress in patients very like post-traumatic stress disorder (PTSD). 

It is important to understand the impact of neck and arm pain on the overall health status 

of an individual. The findings of a study by Daffner et al. [10] are discussed below. This 

study primarily focused on the effects that cervical spine conditions causing neck and or 

arm pain have on individuals’ overall wellbeing. The study was conducted on SF-36 

(Medical Outcomes Study) health survey data which is a multipurpose survey with 36 

questions used to assess eight subscales and two summary scales which are scored from 

0 to 100. The subscales record physical functions, bodily pain, general health, vitality, 

emotional and mental health and social functioning. The summary scales segregate the 

finding into a physical component scale and a mental component scale. Higher scores 

suggest better function. The three main findings of the study were: (i) patients with both 

neck and arm pain had significantly lower scores than those with either or isolated neck 

and arm pain; (ii) patients of working age i.e. <60 were adversely impacted by their 

symptoms as compared to older patients across all subscales; and (iii) longer symptom 

duration was associated with negative impact on mental health status. Although this study 

was not directly conducted on whiplash patients, the findings are relevant as whiplash 

associated injuries also arise from cervical spine trauma [10]. Identifying and 

investigating chronic pain beyond primary clinical care assessment is crucial and calls for 

a strong supportive framework for clinicians to implement evidence-based methods to 

treatment of chronic pain.  
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1.5 Diagnosis and Treatment 

Peripheral neuropathies in most cases are evaluated by clinical examinations, 

electroneurography and electromyography. These techniques look at the structure of the 

nerves, the electrophysiological characteristics such as nerve conduction slowing, or 

complete block of conduction. Earlier, magnetic resonance imaging has been used for 

imaging peripheral nervous tissue for detection of focal intrinsic and extrinsic nerve 

lesions and it has been found to reveal alterations that were un-detected in 

electrophysiological examinations. The term magnetic resonance neurography was 

coined in the 1990s. It denoted the application of specific MR pulse sequences to visualize 

peripheral nerves and to differentiate them from the surrounding soft tissues [11]. This 

study summarised how both ultrasound and magnetic resonance imaging could provide 

information of the site and extent of the nerve injury. Although, ultrasound is more 

extensively used in such investigations, magnetic resonance provides superior soft-tissue 

contrast and better image quality of the nerve structures. In this study, MR images of the 

brachial plexus and carpal tunnel are used in the investigation; the MRI protocol is 

discussed in the following chapter. 

The generic treatment prescribed for neck trauma in whiplash is the use of a Philadelphia 

collar for not less than two weeks. To address asymptomatic and symptomatic pain, 

administration of analgesics such as nonsteroidal anti- inflammatory drugs (NSAIDs) and 

myorelaxants is prescribed, respectively. To restore muscle tone and strength, physical 

training exercises and stretching are advised to correct posture and kinematics of the 

cervical spine. These are in some cases combined with physio-kinetic therapies, massage 

therapy, transcutaneous electric nerve stimulation (TENS) and ultrasound which all have 

pain supressing action. Surgical treatments are recommended only for permanent instable 
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forms such as articular and pillar fractures with protrusions, unilateral dislocations, severe 

sprains and discal hernias with medullar radicular lesions [7]. 

As this study involves application of texture and shape analysis to the MR images of the 

brachial plexus and carpal tunnel, the following section provides a brief overview of the 

anatomy of BP and CT and discusses the areas of interest in this study. 

1.6 Anatomy of the Carpal Tunnel 
 

The carpal tunnel (CT) is a canal located at the volar wrist. It is surrounded by the carpal 

bones and flexor retinaculum also known as the transverse carpal ligament. The carpal 

tunnel contains the median nerve and nine tendons. A detailed description of the carpal 

anatomy can be found in [7]. 

 

Figure 1.2: Anatomy of the carpal tunnel [12] 
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1.7 Anatomy of the Brachial Plexus 
 

The brachial plexus is formed by articulation among the roots of four cervical nerves C5 

to C8 and the first thoracic nerve T1. The brachial plexus oversees motor innervation of 

all muscles in the upper extremity. The median nerve is derived from the brachial plexus 

and runs through the upper arm into the forearm and then into the carpal tunnel as shown 

in the figure1.2 above.  The detailed analysis of the brachial plexus anatomy can be found 

in [13]. Figure 1.3 below shows the anatomical structure of the brachial plexus. 

 

Figure 1.3: Anatomy of the Brachial Plexus [13] 
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1.8 Imaging in Peripheral Neuropathies 
 

Medical image processing has become possible due to the enormous advancements in the 

medical imaging modalities used for capturing digital image data. Some of the widely 

used imaging modalities are X-rays, computed tomography (CT), magnetic resonance 

imaging (MRI), ultrasound, single photon emission computed tomography (SPECT) and 

positron emission tomography (PET) [1].  According to a study by Stoll et al. [11] the 

imaging of the peripheral nervous system using MRI and ultrasound has become a 

prominent choice in investigating nerve disorders and these are now being used in parallel 

with clinical examinations to investigate neuropathies [10]. However, clinical evaluations 

remain an integral part of nerve disorder investigations together with electromyography 

and nerve conduction studies [10]. A brief description of the ultrasound and MRI 

techniques is presented below. 

1.8.1 Ultrasound Imaging  
 

As the name suggests, this imaging technique uses the physics of sound propagation to 

create a two-dimensional real-time representation of the interior of the body. It consists 

of a transducer sensor that propagates sound waves and the reflection is picked up by athe 

receiver. The time taken for the waves to travel and then return to the receiver as an echo 

is translated into the depth of the echo source depending on the surface they hit such as 

different soft tissues and organs. Most of the ultrasound scanners used today use digital 

signal and image processing techniques [1]. 
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1.8.2 Magnetic Resonance Imaging 
 

In Magnetic Resonance Imaging (MRI), the patient is placed within an MRI scanner 

which forms a strong magnetic field around the area to be imaged. Then radiofrequency 

pulses producing an electromagnetic field are transmitted in a plane perpendicular to the 

magnet, resulting in protons becoming excited and moving out of their original position. 

When the protons return to their baseline state i.e. relax, energy is produced which can be 

transduced and in turn be translated into images. MRI scanning can discriminate between 

body substances based on their physical properties such as water and fat content in tissues. 

In MR images, some parts appear darker or brighter depending on the density of protons 

in that area, an increased density being associated with the darker area [1].  

MRI requires a magnetic field that is both strong and uniform. The field strength of the 

magnet is measured in the SI unit of Tesla – and while the majority of systems operate at 

1.5T, commercial systems are available between 0.2T–7T. Relaxation times for protons 

can vary and two times are commonly measured known as T1 and T2. T1 weighted 

images are useful for assessing cerebral cortex, identifying fatty tissues, characterizing 

focal liver lesions and in general for obtaining morphological information. T2 weighted 

images are used in detecting oedema and inflammation, revealing white matter lesions 

and assessing zonal anatomy in the prostrate and uterus. 

It is an established fact that MRI is very good at soft tissue differentiation and it is widely 

used in investigating nerve lesions. Standard evaluation of peripheral nerves using MRI 

is done by using fluid sensitive fat suppressed heavily weighted T2 pulse sequences such 

as short tau inversion recovery (STIR) [14]. During an injury, the water content in the 

soft tissue increases causing a hyper-intense signal on MRI. [14]. The term magnetic 

resonance neurography was coined by Filler et al. [15]. In this study, they attempted to 

http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Homogeneity_(physics)
http://en.wikipedia.org/wiki/Tesla_(unit)
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use heavy weighted T2 pulse sequences to suppress surrounding tissue and render nerve 

as the brightest structure in an image. It shows how MRI helps in imaging the nerve but 

altering the pulse sequences gives better visibility by fat suppression using STIR as 

initially explained in [14]. 

In a study by Middleton et al. [16], MR imaging was used to investigate the carpal tunnel 

syndrome (CTS) in 10 patients suffering from CTS. CTS is a peripheral neuropathy 

caused by compression of the median nerve in the carpal tunnel. This can be caused by 

numerous causes such as diabetes, hypothyroidism and rheumatoid arthritis. This study 

identified MRI as the best method to image the carpal tunnel anatomy as the T2- weighted 

images helped identify the contents of the carpal tunnel accurately. The tendons, median 

nerve thickness and the carpal ligament were clearly visible for morphological analysis 

[16]. 

In another similar study by Pierre-Jerome et al. [17], MR imaging was used to quantify 

the morphological changes of the carpal tunnel after operative intervention in CTS. The 

study investigated 28 patients who underwent a total of 31 surgical interventions to relieve 

the compression in the carpal tunnel. MR imaging was performed before and after the 

operation. The morphological analysis was performed by assessing the area and volume 

of the carpal tunnel and the signal intensity emitted by the T2-weighted images of the 

median nerve. The results showed a decrease in signal intensity of the median nerve 

suggesting the successful decompression of the nerve after the surgery [17].  

MRI has also been extensively used for investigating brachial plexus injury. A study by 

Yoshikawa et al. [18]investigates the different clinical manifestations of a brachial plexus 

injury and studies the imaging techniques used in evaluating the brachial plexus. It shows 
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how signal intensity changes in the spinal cord, nerve roots and paraspinal muscles 

indicate the presence of brachial pathology [18].  

In a study by Andrew et al. [19] magnetic resonance neurography was used to study the 

nerve degeneration and regeneration in a 29-year-old patient who had a traumatic 

laceration of the right sciatic nerve in the lower thigh. T2 magnetic resonance 

neurography showed increased signal in the peroneal nerve distal to the site of traumatic 

injury at 4 months and 6 months after the emergency surgery. This indicated the 

degeneration of the nerve. A second surgery was performed to remove the degenerated 

nerve segment and grafting was done to bridge the gap. Eight months after this surgery, 

MRN started showing regeneration of the nerve with reduced signal intensity which was 

attributed to recovery and normalisation of the injury. This study specifically illustrated 

the ability of MRN to detect increased signal on T2 sequences in a traumatically injured 

degenerating human peripheral nerve. It provided evidence that chronically degenerated 

peripheral nerve could show increased signal for at least 3 years following trauma without 

recovery [19]. This study directly correlates to the kind of investigation being undertaken 

in this thesis and hence it can be inferred that the increase in signal intensity of the 

peripheral nerve in the brachial plexus and carpal tunnel could signal a pathology and 

quantifying this is of the utmost importance. 

MR Neurography is therefore increasingly being used for evaluation of peripheral nerves. 

An interesting review of MR neurography is presented by Chhabra et al. [20]. It discusses 

how fat-suppressed T2-weighted images can be evaluated accurately using MR 

neurography. MR neurography allows accurate assessment of nerve intensity, fascicular 

pattern, size and perineural fibrosis or mass of nerve lesions. With further improvement 

in MR contrast agents and diffusion-based nerve and muscular imaging, MRN is likely 

to play a strong role in diagnosis and treatment of peripheral disorders [20]. 
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1.9 Description of Data 
 

Twenty-three subjects were recruited for the study, which included ten patients diagnosed 

with whiplash associated disorder and thirteen healthy control subjects. One patient 

withdrew from the study prior to imaging. The patients were recruited through 

physiotherapy clinics following a diagnosis of whiplash associated disorder. Patients 

were included if they met the Quebec Task Force Classification of whiplash grade II (neck 

complaints and musculoskeletal signs, including decreased range of motion and point 

tenderness in the neck) only and symptoms had been present for more than three months. 

All patients had painful symptoms in the upper limb. Patients were excluded if they were 

diagnosed with whiplash grade III (obvious neurological signs) or IV (fracture or 

dislocation), or if they had experienced concussion, loss of consciousness or head injury 

because of the accident, or they have reported a history of whiplash, neck pain or 

headaches that required treatment. Patients were also excluded if they reported any 

systemic illness, such as an endocrine, cardiovascular or metabolic disorder. 

1.10 MRI Protocol 
 

Magnetic resonance imaging (MRI) of the brachial plexus and wrist was performed using 

a Siemens 1.5 Tesla MRI.  During imaging of the brachial plexus, all subjects were fitted 

with a head and neck transmit-receive radiofrequency coil. Coronal images of the 

proximal brachial plexus (roots and trunks) were obtained using a T1-weighted (TE = 

17ms, TR = 518ms) and a T2-weighted short tau inversion recovery (STIR) sequence 

with flow suppression (TE = 78ms, TR = 5340ms and TI = 160ms; slice thickness = 

3mm). In a short tau inversion recovery sequence, the spin echo is completed by a 

previous 180-degree inversion pulse. Fat has a short T1. Hence, by using a short T1, fat -

suppressed images can be acquired with faster acquisition timings. As fat appears as a 
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hyper-intense signal, fat suppression is key to imaging the hyper- intense peripheral 

nerves [21]. T1-weighted images were used for anatomical reference. During imaging of 

the wrist, the most symptomatic side was imaged in patients, or dominant side in control 

subjects. An arm coil was positioned at the level of the carpal tunnel. Transverse images 

of the median nerve were obtained through the carpal tunnel, from the distal radio-ulnar 

joint to the base of the metacarpals, using a T1-weighted sequence (TE = 12ms, TR = 

540) and a T2-weighted STIR sequence with flow suppression (TE = 76ms, TR = 3940ms 

and TI = 160ms; slice thickness = 3mm). MRI sequences were aligned perpendicular to 

the nerve axis. The slice thickness was 3mm. 

1.11 Image Analysis Software 
 

The image analysis done as a part of this thesis work was done using MATLAB R2017a. 

MATLAB is a multi-paradigm numerical computing environment and fourth generation 

programming language [22]. It allows matrix manipulations, plotting of functions and 

data, implementation of algorithms, creation of user interfaces and interfacing with 

programs written in other languages, including C, C++, Java, Fortran and Python. It 

comes with an Image Processing toolbox which provides a comprehensive set of 

reference-standard algorithms, functions and applications for image processing 

(Mathworks Inc. Natick, MA, USA).  

 

 

 

 

 

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Python_(programming_language)
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1.12 Thesis Organisation and Summary of Achievements 
 

An effort has been made in this thesis to study the application of quantitative texture and 

shape analysis methods to characterise the peripheral nerves in the brachial plexus and 

the carpal tunnel of patients suffering from whiplash associated disorders.  

Chapter 1- Introduction 

In this chapter, an overview of the work in the thesis is presented. The problem 

outline and problem rationale are discussed. A brief clinical background of 

whiplash injuries is provided followed by distinct aspects of medical image 

analysis such as imaging modalities and image analysis techniques. The chapter 

is concluded with an overview of the data that has been used in this thesis. A 

summary of the content of each chapter of the thesis and the achievements of 

research conducted is given below. 

 

Chapter 2- Application of texture analysis using first order features and co-

occurrence matrices 

In this chapter, a detailed description of texture analysis methods is presented 

together with their applications in medical and non-medical fields. The 

application of first order features and gray level co-occurrence matrices to study 

the texture of the median nerve in the carpal tunnel is discussed with results and 

analysis.  

 

Chapter 3- Application of texture analysis using Run Length Matrix and 

Autocorrelation 

In this chapter, the application of gray level run lengths is investigated. The gray 

level run lengths are calculated for the median nerve in the carpal tunnel and the 
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nerve segments in the brachial plexus of the subjects involved in the study. 

Features are then extracted from these matrices to help characterise the texture of 

the nerves. The results are presented followed by statistical analysis to identify 

the features that demonstrate statistical significance in quantifying the nerves. 

The two-dimensional autocorrelation function is computed for the nerve images. 

The texture signature is derived from the autocorrelation function for both x and 

y directions of the image. Features such as peak intensity values, peak widths and 

peak prominence are investigated to differentiate the patient nerves from the 

control nerves. 

 

Chapter 4- Application of spatial domain shape metrics to study the 

deformation of the median nerve in the carpal tunnel 

In this chapter, shape analysis is performed to investigate the deformation of the 

median nerve in the control group and patient group. Spatial domain shape metrics 

such as circularity, aspect ratio, nerve area and perimeter are used to distinguish 

the median nerve in patients from that in controls. The results are presented 

followed by a statistical analysis to identify statistically significant shape metrics. 

 

Chapter 5- Application of the Optimal Tradeoff Maximum Average 

Correlation Height Filter (OT-MACH) to detect the median nerve in the 

carpal tunnel 

In this chapter, an advanced correlation filter, the OT-MACH filter, is 

implemented to detect the location of the median nerve in the carpal tunnel. The 

application of this unconstrained correlation filter is investigated as it offers robust 

tolerance to intra-class variation in the median nerve whilst maintaining inter-
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class discrimination. The results are presented for different experimental 

scenarios. 

 

Chapter 6- Classification using features extracted from image data  

In this chapter, a Support Vector Machine (SVM) classifier is used to classify 

median nerves as belonging to the patient or control group. The performance of 

SVM in binary classification of the small dataset is tested and the results are 

discussed. Principal component analysis (PCA) is used for dimensionality 

reduction of texture features to identify the principal components that effectively 

differentiate the patterns in the data. The results expressed in terms of accuracy, 

sensitivity and specificity of the classification methods are presented. 

 

Chapter 7- Conclusions and future work 

In this chapter, a synopsis of the thesis results is presented. The results are 

analysed and the feasibility of implementing the work in this thesis for clinical 

support is discussed. The opportunities for future work in this area are considered. 

The limitations of the experimental work undertaken in this thesis are also 

discussed. 
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Chapter 2  
 

 

Texture Analysis Using First Order 

Features and Co-Occurrence 

Matrices 
 

 

2.1 Overview 

In the previous chapter, we discussed the various aspects of medical image processing 

and studied the nature of a whiplash injury. As described in the problem outline, in this 

thesis, we investigate application of texture and shape analysis to characterise the nerve 

damage due to whiplash injuries. In this chapter, we study the application of first order 

features to the median nerve in the carpal tunnel and the brachial plexus. We also 

investigate the application of grey-level co-occurrence matrices to the median nerve in 

the carpal tunnel.  

2.2 Introduction to Texture Analysis 
 

Texture can be described as an inherent property of every surface. It contains information 

about the surface and can be classified as fine, coarse, smooth irregular or periodic [23]. 

The subject area of texture analysis is about three decades old and has seen significant 

advances over this time. An exhaustive review on the different texture methods can be 

found in [24]. The use of texture analysis is purely application dependent and varies from 

being used for segmentation, classification or for reconstructing three-dimensional 

surface geometry [24]. In this study, we implement a statistical approach to understanding 
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the texture of the peripheral nerves and attempt to discriminate between normal subjects 

and patients suffering from WAD. 

The most evident statistical information contained in an image can be found in an image 

histogram. The histogram contains the first order features of texture which are calculated 

using single pixels. The parameters that can be extracted from the image histogram are 

summarised below. A detailed explanation of these first order texture features can be 

found in [25] [26] [27]. 
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Statistical approaches represent texture using the distribution and relationships of grey 

level values in the image. The most important of the statistical approaches that have found 

numerous applications across medical image analysis is co-occurrence matrices. Co-

occurrence matrices are derived by extracting statistical information from the distribution 

of pixel-pairs in the image. A co-occurrence matrix can be effectively computed in two 

ways: directional or rotationally invariant [28]. To construct a rotationally invariant co-

occurrence matrix, only pairs of pixels that are at a fixed distance from each other are 
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considered. Such matrices use only distance as a factor irrespective of the orientation of 

the line that joins the pixels. This can be expressed in the following equation [28]: 
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where 𝐶(𝑘, 𝑙; 𝑑) is the total number of pairs of pixels at distance 𝑑 from each other such 

that the first one grey value 𝑘 and the second has grey value 𝑙, 𝑛̂ is the unit vector in a 

chosen direction, 𝑔(𝑖, 𝑗) is the grey value of a pixel (𝑖, 𝑗), and 𝑔((𝑖, 𝑗) + 𝑑𝑛̂) is the grey 

value of another pixel at distance 𝑑 from the pixel (𝑖, 𝑗) [28]. 

To capture the directional information in a co-occurrence matrix, in addition to 

considering the distance between two pairs of pixels, a reference direction can also be 

used such that the line that connects the pixel pairs then forms an angle with this reference 

direction [28]. These co-occurrence matrices have two main parameters of distance, 𝑑, 

and angle, 𝜙, with respect to the reference direction. This co-occurrence matrix can be 

expressed in the equation below [28] 
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A recent review on the role of texture analysis in neurologic imaging applications defines 

texture as a multistep process [29]. It attempts to validate a hypothesis that by examining 

the nature of grey levels in medical images, texture features can be extracted which may 

help characterise the pathology and help discriminate between normal and diseased 

tissues [29]. An overview of the steps involved in texture analysis as described in [29] is 

presented in the figure 2.1 below. 
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Figure 2.1: Step-wise Process for Texture Analysis [29] 
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2.3 Applications of Texture Analysis 

The applications of texture analysis are numerous and span across non-medical and 

medical fields. This section discusses some of the significant applications of texture 

analysis in the study of medical imagery. 

In a study by Radulescu et al. [30] texture analysis was used to study the prediction that 

neuro-developmental abnormalities had an impact on the textural homogeneity of the 

brain tissue [30]. Textural features such as mean grey- level intensity (MGL), entropy and 

uniformity were extracted from filtered and non- filtered MR images of the brain. Spatial 

filtering was used to derive fine, medium and coarse textural integrity to study the brain 

tissue between controls and patients with Asperger syndrome. Results showed higher 

entropy and lower uniformity in the textures of the patient group [30].  

In a similar study by Ganeshan et al. [31]  texture analysis was applied on non-contrast 

enhanced computed tomography images of the liver to study the impact of malignancy in 

tumours on the apparently disease-free areas of the liver. It was observed in this study 

that texture was not altered on unfiltered images, whereas relative texture analysis 

following image filtration identified differences in fine to medium texture ratios in 

apparently disease-free areas of the liver in patients with hepatic metastases as compared 

to patients with no tumour and patients with extra-hepatic disease [31].  

In a study by Orphanidou-Vlachou et al. [32] texture analysis was implemented to 

discriminate between brain tumours in children using T1- and T2- weighted MR images. 

Textural features were extracted from the image histogram, co-occurrence matrices 

produced for four directions and five inter-pixel distances, run length matrices, an 

autoregressive model and Haar wavelets. Feature reduction was done using principal 

component analysis and classification was performed using probabilistic neural networks 

and linear discriminant analysis. The results from this study showed that the features that 
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had the highest discriminating potential were all derived from the co-occurrence matrices 

and that texture analysis could be reliably used to differentiate brain tumours in children 

[32]. First order and second order features were also used for classification of Alzheimer’s 

disease based on T2- weighted MR images of the brain in [33]. This study showed that 

first and second order based statistical features performed significantly better for all 

classifiers as compared to existing methods based on wavelet transforms [33]. 

In a study by Li et al. [34] age- related differences in the quantitative echo texture of the 

median nerve were studied using texture analysis. In this paper, the texture of a 

normalised median nerve was analysed to identify differences in texture between 10 

healthy young volunteers and 10 elderly patients undergoing lower limb surgery. The aim 

of this study was to quantify the texture of the median nerve in a sonogram and to 

demonstrate the changes in echo intensity of the median nerve which possibly correlate 

to age related degeneration. Echo intensity and echo texture can be explained as a global 

measure of brightness of pixels in greyscale and variation in the greyscale values of the 

pixels in a sonographic image, respectively [34]. The images were normalised and a 

region of interest was manually segmented. Thresholding was then performed to convert 

the image to a binary image, during which each pixel above the greyscale value of 128 

was marked as white and each below 128 was marked as black. The black area index was 

defined as the ratio of the black area to the total cross-sectional area of the median nerve. 

The white area index was defined as the ratio of the white area to the total cross-sectional 

area of the median nerve. Significant differences were found in the measures of cross 

sectional area of the nerve, echo intensity, white area index and black area index in elderly 

subjects as compared to the young subjects [34].  

In the next section, we examine the application of texture analysis to MR images of the 

brachial plexus and the median nerve in the MR images of the carpal tunnel.  
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2.4 Application of first order features to MR images of the Brachial 

Plexus 
 

A brief description of the anatomy of the brachial plexus has been given earlier in Section 

1.7 of Chapter 1. In this section, we study the application of first order textural features 

on the MR images of the brachial plexus. The description of the image data used in this 

work and the MRI protocol used for acquisition has been summarised in Section 1.10 and 

Section 1.11 of Chapter 1. 

2.4.1 Experimentation Method 
 

The first order features derived from the histogram of the image were extracted by an 

algorithm developed in MATLAB [35]. The features extracted from the image histogram 

were mean grey-level (MGL), variance, skewness, kurtosis, energy and entropy.  

For each subject, the MRI slices with the best visibility of brachial nerves were chosen 

by the medical expert. Among those slices, multiple images were chosen per subject and 

brachial nerves were segmented from the slice with the best visibility of that nerve. 

Segmentation was done manually under the supervision of the clinical expert. 
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Figure 2.2: T2- weighted STIR image of the roots and trunks of brachial plexus 

 

In Figure 2.2 above, MR images of the brachial plexus for different subjects are presented 

with the brachial nerves marked with red arrows. It is observed in the Figure 2.2 above 

that the brachial nerve roots appear brighter in the patients as compared to those in 

controls. The features were extracted from the brachial nerve roots C5, C6, C7 and C8 on 

both sides of the subject, the namely right and left side. These are clearly shown in the 

images below. 
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Figure 2.3: Brachial nerve roots on right side of the subject (Coronal view) 

 

The brachial nerves are clearly labelled in figure 2.3 above. In the work described in this 

thesis, the right-hand side brachial nerves are presented in the results as RC5, RC6, RC7 

and RC8 for better comprehension.  

 

Figure 2.4: Brachial nerve roots on the left side of the subject (Coronal view) 

 

The brachial nerves labelled in figure 2.4 above are the brachial nerve roots on the left 

side in the subject and are presented in the results as LC5, LC6, LC7 and LC8 for better 

comprehension.  
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2.4.2 Results 
 

Table 2.1 below presents the results of the first order features extracted from the brachial 

nerve roots. The resultant values are the average of each group for the respective brachial 

nerve roots. The averages for the left and right brachial plexus roots are also calculated 

for the two groups. The last column in the table displays the average of the left and right 

side combined for each of the features. The detailed results for each control and each 

patient are provided in Appendix A [Part 1: Table A.1 to Table A.6]. 

 

Table 2.1: Results presented as an average of the first order features for controls 

and patients of the four brachial nerve roots 

 

It can be observed in Table 2.1 above, that the average MGL values for the nerve roots 

on the left side are higher in patients than the same in the controls. Similarly, the average 

MGL values for the brachial nerve roots on the right side in patients are higher than the 

same in controls. This can be attributed to the increase in intensity of the brachial plexus 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

Controls 3.8120 4.5085 4.6341 2.9465 3.9753 3.3451 3.7795 4.1953 4.1271 3.8618 7.8371

Patients 3.2340 4.1229 4.5861 4.3852 4.0821 3.5727 4.1473 4.4659 4.0942 4.0700 8.1521

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Kurt L+R

Controls 3.5270 3.9123 3.5125 2.6496 3.4003 2.7812 3.1528 3.4021 3.7518 3.2720 6.6723

Patients 3.1558 3.5656 3.1973 3.5525 3.3678 3.1431 3.9739 3.3125 3.5014 3.4828 6.8505

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Skew L+R

Controls 0.6188 0.4203 0.4415 0.4547 0.4838 0.2828 0.5530 0.6231 0.3687 0.4569 0.9407

Patients 0.4193 0.4241 0.2712 0.3669 0.3704 0.6160 0.5477 0.5328 0.5554 0.5630 0.9334

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Kurt L+R

Controls 2.6187 2.2964 2.4906 1.9948 2.3501 1.9613 2.8162 2.8901 2.1805 2.4620 4.8121

Patients 1.9125 2.4889 2.4526 2.4902 2.3360 2.7169 2.4499 2.5939 2.6293 2.5975 4.9335

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Energy L+R

Controls 0.1746 0.1603 0.1670 0.1103 0.1531 0.2936 0.5017 0.5461 0.4680 0.4524 0.6054

Patients 0.1243 0.1636 0.1675 0.1683 0.1559 0.1582 0.1636 0.1674 0.1813 0.1676 0.3235

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Entropy L+R

Controls 1.9732 1.9644 1.9545 1.1751 1.7668 1.5636 1.7699 1.8984 1.8412 1.7683 3.5350

Patients 1.5353 1.9396 1.9145 1.9200 1.8274 1.5313 1.9639 1.9248 1.9203 1.8351 3.6624

Energy

Entropy

Variance in Gray Level (VGL)

Skewness

Kurtosis

Mean Gray Level (MGL)
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in patients which could be presenting a possible underlying neuropathy. As seen in Figure 

2.2 earlier in this chapter, the brachial nerves appeared brighter in patients as compared 

to those in controls. The MGL values can be used to describe the intensity of the magnetic 

resonance signal emitted by the nerves.   

2.4.3 Statistical analysis  
 

To test if the first order features were statistically significant, unpaired t-tests were used 

to compare the mean values between groups. It was found that only MGL was statistically 

significant (P<0.05). The other features demonstrated differences in controls and patients; 

however, they were not statistically significant. Hence, only the MGL value was chosen 

as a feature of interest for further study of the nerves. 

2.4.4 Normalisation of mean grey-level (MGL) values in the brachial plexus 
 

Due to inherent variations in the receiver gain and variation in the position of the subject 

between sessions, which may affect overall signal intensity, the MGL values obtained 

from first order statistics were normalised to the signal intensity emitted by the spinal 

cord. This normalisation was crucial in removing any bias in results due to the subjects 

being scanned at separate times and to nullify any changes in intensity due to the interim 

maintenance of the MRI machine between scans. Therefore, instead of using the raw 

mean gray level (MGL) values, the signal intensity of the brachial nerves was expressed 

as a ratio and the results are presented in Table 2.2 below. 

 

Table 2.2: Signal intensity ratio of the brachial nerve roots 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

Controls 0.4208 0.4806 0.5130 0.4764 0.4708 0.4325 0.4492 0.4660 0.4294 0.4454 0.4590

Patients 0.5377 0.5734 0.5301 0.4699 0.5233 0.5089 0.5436 0.5251 0.4888 0.5137 0.5179
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2.4.5 Statistical analysis of signal intensity ratio in the brachial plexus 
 

There was no significant difference in signal intensity ratio between the left (mean = 0.47 

(0.02 SEM)) and right side (mean = 0.45 (0.01 SEM)) in the healthy control group or the 

least (mean = 0.53 (0.02 SEM)) and most symptomatic side (mean = 0.52 (0.02 SEM)) in 

the patient group (P>0.64, paired t-test), and therefore data from each side was combined. 

The detailed results are provided in Appendix A. The mean combined signal intensity 

ratio was 13.6% greater in the patient group (mean = 0.52 (0.01 SEM)) compared to the 

healthy control group (mean = 0.46 (0.01 SEM)), a difference that was significant 

(P<0.05, unpaired t-test, see Figure 2.5 below). An examination of the individual cervical 

roots of the brachial plexus revealed a 22.6% and 20.0% increase in the signal intensity 

ratio in the C5 and C6 roots in patients compared to healthy controls (P<0.05, unpaired t-

test, see Figure 2.6 below). The data from both the left and right side was combined to 

demonstrate the intensity ratio in the individual cervical roots and is presented in Figure 

2.6 below. The signal intensity ratio of the C7 and C8 cervical roots was not significantly 

different between groups (P>0.20, unpaired t-test). 

 

Figure 2.5: Signal intensity ratio for the brachial nerve roots 
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Figure 2.6: Signal intensity ratio for the individual cervical nerve roots 
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2.5 Application of first order features to median nerve in MR images 

of the carpal tunnel 

A summary anatomy of the carpal tunnel has been given earlier in Section 1.6 of Chapter 

1. In this section, we study the application of first order textural features on the MR 

images of the carpal tunnel with an aim to quantify the signal intensity emitted by the 

median nerve in the T2- weighted MR images. The description of the image data used in 

this work and the MRI protocol used for acquisition has been summarised in Section 1.10 

and Section 1.11 of Chapter 1. 

The first order features were extracted for the median nerve in the carpal tunnel at three 

locations, namely: the proximal carpal row, the radioulnar joint (RU Joint) and the distal 

carpal row. These positions in the carpal tunnel were selected based on the clinical 

assessments done by the clinician prior to image analysis. The figures of the carpal tunnel 

at these distinct locations are presented below. 

 

Figure 2.7: Median nerve in the carpal tunnel of a normal subject 
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Figure 2.8: Median nerve in the carpal tunnel of a whiplash patient 

 

The features extracted were mean grey level (MGL), variance in grey level (VGL), 

skewness, kurtosis, energy and entropy. As seen in the case of the brachial plexus in the 

earlier section, the mean grey level (MGL) was chosen as a significant feature as it 

correlated to the brightness of the median nerves in the patients. However, in order to 

avoid variations in signal that are encountered with surface coils and also to remove any 

biases created due to different acquisition times between subjects, the MGL value was 

expressed as a signal intensity ratio, which was calculated with respect to the signal 

intensity of the underlying bone at each location in the carpal row (head of radius, lunate 

or trapezoid for radioulnar joint location, proximal carpal row and distal carpal row 

location, respectively).  The results for the mean signal intensity ratio calculations are 

presented in the next section. The detailed account of results for each subject at each 

location can be found in Appendix A [Part 2: Table A.7 and Table A.8]. 
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2.5.1 Results 
 

  Proximal  RU Joint Distal P+R+D 

Controls 1.1026  1.3772 0.8126 1.0975 

Patients 1.5895  2.0895 1.8734 1.8508 

 

Table 2.3: Mean signal intensity ratio of the median nerve in carpal tunnel 

 

The results presented in Table 2.3 above clearly show the increased signal intensity ratio 

in patients as compared to that in controls. Also, it can be observed that the signal intensity 

ratio increases in patients at all the three locations in the carpal tunnel and therefore the 

combined ratio is also high. This can be seen in Figure 2.9 presented below. 

 

Figure 2.9: Mean signal intensity ratio of the median nerve 
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2.5.2 Statistical analysis of signal intensity ratio of the median nerve 
 

The median nerve signal intensity data is summarised in Figure 2.3. In the healthy control 

group, the mean signal intensity ratio was 1.13 (0.06 SEM), 1.38 (0.09 SEM) and 0.81 

(0.03 SEM) at the radioulnar joint, proximal and distal carpal row, respectively (P<0.05, 

one-way ANOVA; P<0.05 radioulnar joint vs proximal carpal row, proximal vs distal 

carpal row, radioulnar joint vs distal carpal row, Bonferroni post-hoc t-tests).  In the 

patient group, the signal intensity ratio increased by 44.2% (mean ratio = 1.59 (0.05 

SEM)), 51.7% (mean ratio = 2.09 (0.12 SEM)) and 130.5% (mean ratio = 1.87 (0.15 

SEM)) at the radioulnar joint, proximal and distal carpal row, respectively, with 

differences that were significant (P<0.05 at each location, unpaired t-tests, Figure 2.9). 
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2.6 Application of GLCM to the median nerve in the carpal tunnel 
 

The grey-level co-occurrence matrices were used to extract textural features of the median 

nerve in the carpal tunnel. As seen in the earlier section, for each subject three locations 

in the carpal tunnel were chosen to segment the median nerve, namely: proximal carpal 

row, radioulnar joint (RU Joint) and the distal carpal row.  

The median nerve was manually segmented under the supervision of the clinician. For 

each median nerve, co-occurrence matrices were calculated for four directions 

)135,90,45,0(  and four inter-pixel distances 4,3,2,1  dddd . Sixteen 

such matrices were created and each co-occurrence matrix was normalised and the results 

were extracted from the average of the multiple matrices. An algorithm was developed in 

MATLAB to extract the textural features as proposed by Haralick et al. [23] [35]. 

2.6.1 Results 
 

The fourteen textures extracted from the co-occurrence matrices for each location in the 

carpal tunnel presented distinct results that could be used to differentiate between the 

control and the patient group. The results for the features at the respective three locations 

are presented in Table 2.4, 2.5 and 2.6 below. 

2.6.2 Statistical Analysis 
 

Paired and un-paired t-tests were used to validate the statistical significance of the 

extracted features. t-tests are used in the work in this study owing to the small sample 

size. 

An unpaired t-test with a two tailed-distribution was done on features extracted from the 

median nerve at each of the carpal locations. At the proximal carpal row, only the sum 

entropy measure was statistically significant with a value (P<0.05, Table 2.4). The other 
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features although different in the two groups were not significant enough (P>0.1, Table 

2.4). At the distal carpal row, information measures of correlation values were significant 

(P<0.05, Table 2.5). At the radioulnar joint, none of the features extracted were 

statistically significant with (P>0.19, Table 2.6). 

Paired t-tests were used to study the differences between the various locations in the 

patient group. The contrast values were higher and statistically significant at the proximal 

location when compared to the distal and RU joint with a value (P<0.04). The angular 

second moment was also significant with a p value of (P<0.03).  

  
Proximal Carpal Row 

Controls Patients t-Test 

Angular Second Moment 2.6024 2.5800 0.97 

Contrast 1.3613 1.2429 0.39 

Correlation  0.0154 0.0121 0.24 

Energy 0.0009 0.0010 0.84 

Entropy 0.2835 0.2827 0.89 

Maximum Probability 0.0027 0.0026 0.80 

Sum of Squares:Variance 3.2825 3.1984 0.88 

Sum Average 0.7676 0.7585 0.91 

Sum Variance 7.7974 7.7250 0.97 

Sum Entropy 0.1841 0.1795 0.03 

Difference Variance 1.3632 1.2429 0.38 

Difference Entropy 0.1372 0.1353 0.45 

Information measures of 

Correlation -0.0114 -0.0094 0.10 

Maximum Correlation Coefficient 0.0476 0.0442 0.10 

 

Table 2.4: Texture features extracted from GLCM at the proximal carpal row 
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Distal Carpal Row 

Controls Patients t-test 

Angular Second Moment 2.9388 2.6605 0.70 

Contrast 0.9294 0.9485 0.89 

Correlation  0.0095 0.0106 0.74 

Energy 0.0016 0.0010 0.17 

Entropy 0.2557 0.2767 0.15 

Maximum Probability 0.0039 0.0027 0.27 

Sum of Squares:Variance 3.4101 3.1317 0.72 

Sum Average 0.8087 0.7887 0.85 

Sum Variance 8.7972 7.6680 0.63 

Sum Entropy 0.1652 0.1746 0.28 

Difference Variance 0.9294 0.9485 0.89 

Difference Entropy 0.1234 0.1293 0.37 

Information measures of 

Correlation -0.0127 -0.0095 0.04 

Maximum Correlation 

Coefficient 0.0470 0.0442 0.25 

 

Table 2.5: Mean values for texture features extracted from GLCM at the distal 

location 

  

Radioulnar Joint  

Controls Patients t-test 

Angular Second Moment 2.4260 1.7705 0.60 

Contrast 1.0858 0.9396 0.49 

Correlation  0.0120 0.0128 0.70 

Energy 0.0013 0.2706 0.25 

Entropy 0.2238 0.2564 0.47 

Maximum Probability 3.5382 0.0043 0.32 

Sum of Squares:Variance 1.5573 2.2379 0.57 

Sum Average 0.4879 0.6183 0.52 

Sum Variance 3.4110 5.0896 0.60 

Sum Entropy 0.0870 0.1662 0.49 

Difference Variance 0.6050 0.9396 0.49 

Difference Entropy 0.1459 0.1216 0.36 

Information measures of 

Correlation 1.3129 -0.0088 0.19 

Maximum Correlation 

Coefficient 0.3432 0.0413 0.29 

 

Table 2.6: Mean values for texture features extracted from GLCM at the RU Joint 
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2.7 Conclusion 
 

In this chapter, we investigated the application of texture analysis to quantify the nerve 

roots in the brachial plexus and the median nerve in the carpal tunnel. Texture analysis 

was performed using first and second order features. The results from first order features 

were analysed and the nerve signal intensity ratio was found to be statistically significant 

among the two groups. Although co-occurrence matrices are effective instruments for 

texture analysis, in this case, the results obtained could differentiate between patients and 

controls but their statistical significance could not be proved. In the following chapters, 

we test the implementation of run length matrices and autocorrelation functions on 

characterising the nerves in controls and whiplash patients. 
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Chapter 3  
 

 

 

Texture Analysis using Gray Level  

Run Length Matrices (RLM) and 

Autocorrelation 

 

 
3.1 Run Length Matrices 
 

A gray level run can be described as a set of collinear pixel points that have the same gray 

level values in an image. The run length matrix consists of the number of times a gray 

level appeared in runs having any given direction. The texture measures obtained from 

this run length matrix are computed similarly to functions obtained from co-occurrence 

matrices used by Haralick [23]. The different run length features were first proposed by 

Galloway [36]. The traditional RLM features are summarised in Appendix B[Part-1] [37]. 
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3.1.1 Applications 
 

In a paper by Yu et al. [38] run length matrices (RLM) have been used in combination 

with gray level co-occurrence matrices for texture analysis of parametric T1 and T2 maps 

for the detection of hepatic fibrosis. The RLM features extracted (see Appendix B for 

definition of these terms) were short run emphasis (SRE), long run emphasis (LRE), gray-

level non-uniformity (GLN), run-length non-uniformity (RLN), run percentage (RP), low 

gray level run emphasis (LGRE), high gray-level run emphasis (HGRE), short run high 

gray-level emphasis (SRHGE), long run low gray-level emphasis (LRLGE), and long run 

high gray-level emphasis ( LRHGE). The rows contained the gray-levels and the columns 

represented the run lengths or the consecutive number of pixels with a particular gray 

level value. In this study, the results showed that the best discriminating texture features 

were SRHGE, LRLGE and LRHGE in T1 maps. High gray-level run emphasis (HGRE) 

was the best discriminating feature for T2 maps [38]. 

In another study by Rezatofighi et al. [39], run length features were extracted from polar 

transformed haematological images for automatic detection of red blood cells. The run 

length was defined in four directions. Features such as short run emphasis, long run 

emphasis, gray-level nonuniformity, run nonuniformity and run percentage were 

extracted to represent different textural properties. These five features were significant in 

determining intensity variations in the haematological images. Further, a two-layer 

perceptron with 40 neurons in the hidden layer was used for classification of the feature 

vectors. The study inferred that run length features used in combination with polar 

transformed images were successful in classifying different shapes of almost similar sizes 

even when some objects were overlapping [39]. 
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In a breast tumour study by Afshin and Akbar [40], sonographic texture analysis was done 

using a run length matrix. The study results demonstrated that RLM texture features could 

differentiate between benign and malignant breast tumours with high accuracy. RLM 

features presented good classification accuracy of 98 percent with 96.8 percent sensitivity 

and 100 percent specificity. The study highlighted that RLM features performed better on 

ultrasound images and had a stronger potential to characterise benign and malignant 

tumours than other texture methods such as a GLCM, wavelet, shearlet and curvelet, and 

auto-covariance matrix [40]. 

In a study by Gupta et al. [41] used run length features to successfully classify gliomas 

from MR images of the brain using naive Bayes classifiers. The study not only identified 

brain tumours but also aided in grading the tumours based on their severity. The features 

used in the study were SRE, LRE, GLN, RLN, RP, LGRE, HGRE, Short run low gray 

level run emphasis (SRLGE), Short run high gray level emphasis (SRHGE), Long run 

low gray level emphasis (LRLGE) and Long run high gray level emphasis (LRHGE) [41]. 

In another such oncology research study, quantitative image features were extracted from 

tumours in non-small cell lung cancer (NSCLC) by Hunter et al. [42], to predict tumour 

volume shrinkage from pre-treatment CT images. The features extracted to build the 

quantitative feature model used were texture analysis such as intensity histograms, 

absolute gradient image, co-occurrence matrix and run length matrix. The feature model 

was used successfully to predict tumour shrinkage which is an indicator of treatment 

efficacy and future survival [42]. 

A study by Cai et al. [43], a novel method for identification of osteoporosis using a co-

occurrence matrix and a run length matrix was investigated. Twenty female rates aged 3 

months were used as experimental subjects in this study. They were divided into two 
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groups SHAM and OVX. The SHAM rats are the group of female rats that have faked 

(placebo) surgical intervention performed whereas OVX rats are the female rats in which 

ovariectomy (removal of ovaries) was performed. Texture analysis was performed on the 

photographed image of the thick bone tissue magnified under a microscope. The results 

showed significant differences in the run length features used for classification. The 

extracted texture features highlighted the microscopic pathological changes in the bone 

density that were invisible to the naked eye [43]. 

3.1.2 Experimentation Method 
 

In this chapter, run length matrices was used to extract textural features of the median 

nerve in the carpal tunnel of patients who had a history of a whiplash injury and had pain 

symptoms in the hand and shoulder with no clinical representation. 

The median nerve was manually segmented from the MR images of each subject. The 

region of interest that consisted of the median nerve was then used to extract the RLM 

features using an algorithm written in MATLAB [44] . 

For each subject, the median nerve was segmented at three positions within the carpal 

tunnel, namely: proximal, radioulnar joint and distal. The RLM features were extracted 

for each subject at the above three locations. The run length matrix was defined by 

specifying four directions: 0º, 45º, 90º and 135º and then counting the occurrence of runs 

for each gray level and length of each run in each direction. The results obtained from all 

directions were added to form the resultant run length matrix and the features were 

extracted from them. 

The run length features were also extracted from the nerve roots in the brachial plexus in 

the control and patient group. The nerve segments of the brachial plexus were manually 

segmented using labelled images provided by the medical expert. For each subject, eight 
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nerve segments were segmented from the brachial plexus on both the right and the left 

side. The nerve segments extracted belonged to C5, C6, C7 and C8 nerve roots for both 

right side and left side. The nerve roots were labelled as LC5, LC6, LC7 and LC8 for the 

left side and RC5, RC6, RC7 and RC8 for the right side. The RLM features extracted 

were SRE, LRE, GLN, RP, RLN, LGRE and HGRE like those extracted for the median 

nerve in the carpal tunnel. The detailed overview of the results is placed in the Appendix 

B [Part-2: Table B.1 to Table B.6].  
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3.1.3 Analysis of the Median Nerve in Carpal Tunnel 
 

 

Figure 3.1: The figure shows the SRE values for the controls and the patients at the 

three distinct locations inside the carpal tunnel namely: the proximal, middle and 

distal positions. 

 

As can be observed in the above figure, the SRE values for patients is similar but slightly 

higher than controls in the proximal location. The SRE value is much higher in patients 

at the distal location in the carpal tunnel. In the middle location, however, the SRE value 

is lower than the controls. The values plotted above are the average values across the 

control and patient group, respectively. Therefore, it can be determined that the 

distribution of short runs is higher in patients at distal locations, suggesting a finer texture 

of the median nerve owing to the flattening or compression of the nerve. 
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Figure 3.2: The figure shows the LRE values for the controls and the patients at the 

three distinct locations inside the carpal tunnel, namely: proximal carpal row, 

radioulnar joint and distal carpal row. 

 

As can be observed in the above figure, the LRE values for patients is considerably higher 

in patients at the proximal location. This suggests that the texture of median nerve is 

coarse at this location owing to the enlargement of the median nerve in the proximal 

location that has been observed in the shape analysis chapter. The LRE value is slightly 

higher in patients at the middle location as compared to controls and therefore indicates 

that texture of the nerve is similar in coarseness at this location. However, we observed 

that the LRE value at the distal location is less than controls, therefore suggesting that the 

coarseness is reduced due to nerve flattening and supports the higher SRE value seen in 

the figure 3.2. 
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Figure 3.3: The figure shows the RP values for the controls and the patients at the 

three distinct locations inside the carpal tunnel, namely: proximal, middle and 

distal positions. 

 

The results of the run percentage (RP) measure the homogeneity in all the runs across the 

image are shown in the figure above. We observe that at both mid and distal positions, 

the run percentage in patients is slightly higher than in controls, signifying a not very 

distinct change in the number of runs between the two groups.  This does suggest that the 

RP value in patients is higher because there is higher variation in the gray values across 

the median nerve.  However, when we look at the RP values of the median nerve in the 

proximal location inside the carpal tunnel, controls have a significantly higher number of 

runs than patients at the same location.  This may be suggestive of the fact that the length 

of runs is almost the same for all gray levels in the image. 
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Figure 3.4: The figure shows the RLN values for the controls and the patients at the 

three distinct locations inside the carpal tunnel, namely: proximal, middle and 

distal positions. 

 

Run length non-uniformity (RLN) results show that at all the three locations in the carpal 

tunnel, patients have higher RLN values than controls (P < 0.05). This suggests that the 

number of run lengths in the patient nerves are not alike and differs due to varying gray 

levels in the image. 

In controls, on the contrary, the number of the run lengths are lower, suggesting that there 

is similarity in the length of runs throughout the image due to less intensity variation and 

a more constant number of gray levels. 
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Figure 3.5: The figure shows the HGRE values for the controls and the patients at 

the three distinct locations inside the carpal tunnel, namely: proximal, middle and 

distal position. 

 

The results for high gray-level run emphasis measure the distribution of high gray level values. It 

can be observed that the median nerves of the patients at all three locations have a higher HGRE 

value than their corresponding controls in that location. The median nerves of the patients are 

visibly brighter suggesting a possible inflammation, and this is clearly indicated by high HGRE 

values. HGRE values are like GLN values which measure the non-uniformity between gray levels 

across the median nerve in patients and controls. GLN values are lower if the gray level values 

are alike through the image. GLN values for patients were significantly higher than controls in all 

the three locations, therefore indicating the higher intensity variations in patient nerves as 

observed on MRI and helping to quantify this. 

3.1.4 Statistical Analysis 
 

Statistical analysis was performed on all features extracted from the RLM matrix. Un-paired t-

tests were used to compare the mean RLM features between controls and patients. The statistically 

noteworthy features with P < 0.05 were the GLN values at proximal location (P = 0.008537), 

RLN values at proximal (P = 0.0000), radioulnar joint (P = 000912) and distal (P=0.0317) 

locations and HGRE values at the proximal (P = 0.007601) location.  
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3.1.5 Results in the Brachial Plexus 
 

In the case of the brachial plexus, the RLM features were investigated for each of the 

nerve roots in the brachial plexus on both sides of the subject. A total of ten values were 

extracted for the five roots on each side of the brachial plexus. In addition to this, the 

mean values across all the nerve roots were calculated for each left and right side, 

respectively, for each feature. The detailed results are provided in Appendix B [Part 3-

Table B.7]. 

3.1.6 Analysis of the Brachial Plexus results 
 

The RLM features extracted from the brachial nerve segments are presented by averaging 

the values of the nerve roots for the left side and the right side and both combined. As it 

could not be ascertained whether only the dominant side of the subject was affected by 

whiplash, the results below are presented as an average of the sets of nerves on the left-

hand side of the subject, the right hand side of the subject and the left and right side values 

combined.  This is done for both the control and the patient group. The mean values are 

presented for each of the extracted features and discussed below. 
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Figure 3.6: Mean Short Run Emphasis (SRE) values for nerve segments of the 

brachial plexus on the left side, right side and both sides combined, for controls 

and patients. 

 

As can be observed in figure 3.6, the SRE values on both the left and right side of both 

the groups are similar. The values are plotted above are the average values of C5, C6, C7 

and C8 on both sides. Therefore, it can be seen that the distribution of short runs is slightly 

less in patients as compared to that in controls but is not a significant feature.  

 

Figure 3.7: Mean Long Run Emphasis (LRE) values for nerve segments of the 

brachial plexus on the left side, right side and both sides combined, for controls 

and patients. 

 

As can be observed in figure 3.7, the mean LRE values for the left side and the right side 

are higher in patients than that in the controls. The mean LRE values for both sides 

combined are also significantly higher in the patient group than that in the control group. 

The statistical analysis of this result is presented in the next section in this chapter.  
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Figure 3.8: Mean Run Percentage (RP) values for nerve segments of the brachial 

plexus on the left side, right side and both sides combined, for controls and 

patients. 

 

The mean RP values of the brachial plexus are lower than those of the control group on 

both left and right sides of the patient group and for the left and right side combined, as 

shown in figure 3.8 above. Run percentage is simply the ratio of the number of runs to 

the number of pixels in the region of interest and does not consider the changes in the 

gray level values. These values may be attributed to the overall size of the nerves in both 

the control and patient groups. 
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Figure 3.9: Mean low gray level values (LGRE) values for nerve segments of the 

brachial plexus on the left side, right side and both sides combined, for controls 

and patients. 

 

 This measure is attributed to the number of gray level runs for the low gray level values 

in the image. In this case, [Refer Appendix, Table A.20], shows that the runs of low gray 

level values are higher in controls than those in patients. This can be explained as the 

nerve segments in controls having lower gray level values than those in patients which 

are brighter i.e. have higher gray level values. This is verified by the HGRE values 

between the two groups shown in figure 3.10 below. 
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Figure 3.10: Mean high gray level values (HGRE) values for nerve segments of the 

brachial plexus on the left side, right side and both sides combined, for controls 

and patients. 

 

Unlike the LGRE values discussed above, mean HGRE values demonstrate that the 

number of runs of high gray level values are significantly higher in patients than those in 

controls. This can correlate to the brightness of the nerve segments in patients. It is 

observed in the MR images of the brachial plexus that the nerve segments in the patients 

showed higher intensity and so appeared brighter than the nerve segments in controls. As 

these patients were suffering from whiplash associated disorder (WAD) but had no 

clinical manifestation in nerve conduction studies, these measures could possibly be used 

to help improve the diagnosis of WAD in patients. 
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3.1.7 Statistical Analysis 
 

Unpaired t-tests were performed on all the RLM features extracted and discussed in the 

previous sections. Although the features differentiated between the nerve segments in 

patients from those in controls, only a few measures were statistically significant, which 

are reported below.  The LRE measure was considered as statistically significant in all 

three groups, namely: left average, right average and L+R combined (P<0.04, P<004, 

P<0.0015), respectively. The GLN measures were the most significant in L+R combined 

(P<0.0004) and in left and right side (P<0.0011, P<0.0032), respectively. The HGRE 

measure was the most statistically significant in all three groups, namely: left, right and 

L+R combined (P<0.0058, P<0.0005 and P<0.0165), respectively.  

3.1.8 Conclusion 
 

Texture analysis has been extensively used in both medical and non-medical fields for 

characterising objects based on their surface texture. In this chapter, we used second order 

features extracted using gray level run length matrices. The features such as SRE, LRE, 

GLN, RP, RLN, LGRE and HGRE were extracted from the median nerve in the carpal 

tunnel and the nerve segments in the brachial plexus to characterise the textural 

differences between the control group and the patient group. The results demonstrated 

that some of the RLM measures could differentiate between controls and patients with a 

statistically significant value of P<0.05. Hence, it can be inferred that these measures 

could be used to study the texture of the nerves in patients suffering from WAD. These 

preliminary findings need to be established on a larger dataset. However, this study 

provided an opportunity to use image texture analysis and investigate their possible 

application to improve diagnosis and thereby improve patient care in the treatment of 

whiplash injuries. 



59 
 

3.2 The Autocorrelation Function 
 

In the previous section 3.1, texture measures were extracted from run lengths by scanning 

the image line by line. The length of each gray level run was noted and features were 

extracted from them. An extension of the above process to two dimensions can be used 

to study the spatial frequency of the gray values using the autocorrelation function of the 

image [45].  

The autocorrelation function is calculated by correlating an image with itself. As 

correlation in the spatial domain can be expressed as multiplication in the spatial 

frequency domain, the autocorrelation function of an image can be determined by the 

multiplication of the Fourier transform of the image with its complex conjugate. In this 

section, the autocorrelation function was obtained using an m-file in MATLAB [44]. 

A paper by Van Gool et al.[46] explained autocorrelation as method to study 

directionality in patterns. It pointed out that the autocorrelation function and the power 

spectrum are the transforms of each other [46]. Also, another study by Unser et al. [47] 

investigated the use of autocorrelation features for automated inspection of textured 

materials. A study by Wood [48] used autocorrelation of sub-images of textile fabrics to 

identify defects in the texture of textiles. 

3.2.1 Experimentation Method 
 

In this section, the autocorrelation function for each image was computed using the m-

file in MATLAB [44]. The texture signatures in the x and y direction of the image were 

plotted and features were extracted from the valleys and peaks plotted in the texture 

signatures. The full width at half maximum height of the peak was calculated for each 

texture signature in both dimensions of the image. The local maxima of each peak were 

calculated using the ‘findpeaks’ function in MATLAB. The prominence of the peak was 
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calculated. The prominence of a peak measures how much the peak stands out due to its 

intrinsic height and its location relative to the other peaks [44].  

The autocorrelation function of the median nerve in the distal carpal row in the carpal 

tunnel was computed for each control and patient. The autocorrelation plots for all the 

subjects are provided in the Appendix. 

3.2.2 Analysis of results 
 

The figure 3.11 below shows the surface view of the autocorrelation function. It can be 

observed that the patient nerve has a more prominent peak as compared to a flatter peak 

of the control nerve shown in figure 3.14 below. The patient nerve was observed to be 

more compressed and flatter and this can be attributed to the higher peak height. The 

brightness of the median nerve in patients was also higher than controls and this can be 

seen in the higher results of peak intensity values and prominence. 

 

Figure 3.11: Autocorrelation function of a patient nerve 
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Figure 3.12: Texture Signature of the median nerve in the x-direction (patient) 

 

 

Figure 3.13: Texture Signature of the median nerve in the y-direction (patient) 
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Figure 3.14: Autocorrelation function of a control nerve 

 

 

Figure 3.15: Texture Signature of the median nerve in the x-direction (control) 
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Figure 3.16: Texture Signature of the median nerve in the y-direction (control) 

 

 The results for three controls and patients are presented below. For detailed 

autocorrelation plots for each control and patient, please refer to Appendix C.  

Subject 

x-direction y-direction 

Peaks Widths Prominence Peaks Widths Prominence 

Patient 
 

10411 
 

1.5535 
 

450.4334 
 

10764 
 

2.4928 
 

1140.2 
 

Patient 
 

11356 
 

3.4016 
 

1509.5 
 

11399 
 

3.4363 
 

1373.3 
 

Patient 
 

18829 
 

2.6182 
 

981.551 
 

19687 
 

1.6088 
 

1421.4 
 

Control 
 

5270.9 
 

5.6641 
 

868.2338 
 

5390.3 
 

5.5244 
 

1035.8 
 

Control 
 

6055.9 
 

5.1275 
 

655.4615 
 

6226.4 
 

4.7205 
 

899.2 
 

Control 
 

4199.1 
 

6.3409 
 

752.875 
 

4227.7 
 

6.1188 
 

781.4 
 

Table 3.1: Autocorrelation peak features of median nerve in controls and patients 
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It can be seen in Table 3.1 above; the average peak values are higher in patients than 

controls and this can be attributed to the increased brightness that is observed on the MRI 

signal. Also, the peak widths are higher in controls as the peaks are flatter in controls as 

compared to those in patients. The prominence values which show the distinctness of the 

peak also are higher in patients as compared to those in controls as the flatter and 

compressed nerves have higher peak heights and therefore higher prominence values.  

3.3 Conclusion 
 

This chapter investigated the application of run length matrices and autocorrelation for 

characterisation of nerves in patients and controls. Run length features were successful in 

differentiating between normal and patient nerves using unpaired t-tests with features 

such as LRE, GLN and HGRE having values P<0.05. The application of the 

autocorrelation function was useful in characterising the increased intensity of pixel 

values in patient nerves and could be used in a larger study as a measure of brightness. 
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Chapter 4  
 

 

Application of spatial domain shape 

metrics to quantify median nerve 

deformation 

 
4.1 Overview 
 

In the previous chapter, we investigated how texture measures can be used to characterise 

the median nerve in normal subjects and patients suffering from whiplash associated 

disorders. Although texture measures show consistent differences between controls and 

patients, only a few of the measures were statistically significant in characterising the 

nerve. While doing texture analysis, we observed the morphological changes of the 

median nerve. Therefore, shape analysis was used to investigate these changes in the 

shape of the median nerve in the carpal tunnel of the patients. In this chapter, we attempt 

to quantify the morphology of the median nerve using spatial domain shape metrics.  
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4.2 Introduction 
 

Texture analysis and shape analysis are interrelated. However, shape analysis is primarily 

done on a binary image where pixels are either 0’s or 1’s such that all the pixels that 

belong to the feature being measured are 1’s and the background consists of 0’s [49]. 

Innumerable shape representation and description techniques exist. The choice of the 

technique would be application dependent. In a review by Zhang et al. [50] they 

summarise the widely-used shape analysis methods. In this review, a shape representation 

technique can be considered good if it is tolerant of noise, distortion, scale changes, affine 

transformations, rotations and translational changes. These changes are tolerated by 

human visual perception almost instantly as we observe shapes. For example, sometimes 

we can assume shapes in cloud formations although there may be no clear context to do 

so. Such a tolerant recognition determines the robustness of the shape descriptor [50]. 

Shape analysis in terms of representing or describing an image can be broadly classified 

into two categories, namely: contour based methods and region based methods. Contour 

based methods extract the shape features from the boundary information alone. Contour 

shape techniques can be further classified as a global approach or structural approach. 

Continuous approaches or global approaches generally derive all the features from the 

integral boundary used to describe the shape [50]. Structural approaches or discrete 

approaches generally divide the boundary of the shape into segments using a set criterion; 

in this case the shape is represented as a string or a graph. The following chart describes 

the different shape analysis techniques [50]. 
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Figure 4.1: Shape representation and description techniques [50] 
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The median nerve in the carpal tunnel has been extensively studied for the investigation 

of carpal tunnel syndrome (CTS). Carpal tunnel syndrome is a compression neuropathy 

of the median nerve at the wrist. The diagnostic procedure for CTS is almost always 

clinical and is confirmed by nerve conduction studies. A study by Yoshii et al. [51] in 

2013 investigated the correlation between deformation and displacement of the median 

nerve and the surrounding tendons during finger motion using images acquired by 

ultrasound. In this study, the median nerve deformation was studied using deformation 

indices such as area, perimeter, aspect ratio and circularity. The average of the five 

parameters was calculated for healthy subjects and patients suffering from carpal tunnel 

syndrome. The median nerve displacement was defined as the distance of the centroid 

coordinates between the finger extension and flexion positions. The displacements in the 

ulnar and radial directions were defined as positive and negative, respectively and in the 

palmar and dorsal directions were defined as positive and negative, respectively. The 

study found statistically significant differences in the deformation indices of perimeter, 

aspect ratio and circularity. The perimeter and circularity deformation indices showed 

positive correlations with the palmar-dorsal displacement. The deformation indices of 

area and aspect ratio showed negative correlations with the palmar-dorsal displacements 

and this was potentially due to nerve enlargement which restricted movement of the nerve 

in the palmar direction due to non-availability of space within the tunnel [51]. The study 

described in this chapter implemented the above deformation indices to quantify the 

median nerve in patients suffering from whiplash associated disorders. 

A similar study was done by Wang et al. [52] in 2014 which investigated the median 

nerve deformation and transverse displacement during six different hand and wrist 

movements in patients with carpal tunnel syndrome. Dynamic ultrasound images were 

obtained in six positions and image analysis was performed to analyse deformation and 
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displacement of the nerve. The results showed there were significant differences between 

the deformation ratios of area, perimeter and circularity of the median nerve. The 

deformation ratio of the median nerve perimeter was significantly high in CTS patients 

as compared to that in normal subjects (P<0.009). The deformation ratio of circularity in 

CTS patients was significantly less than that in normal subjects for wrist flexion with 

fingers extended, wrist flexion with fingers flexed and wrist ulnar deviation with fingers 

extended (P=0.009, P=0.004 and P<0.001, respectively) [52]. 

A study by Filius et al. [53] in 2015 investigated the changes in shape and displacement 

of the median nerve and tendons in carpal tunnel syndrome using multidimensional 

ultrasound imaging of the wrist. The parameters used to study the deformation of the 

nerve were area, perimeter, circularity, area deformation ratio, perimeter deformation 

ratio, circularity deformation ratio and centre of mass. The deformation ratio was defined 

as the value in the final position divided by the value of the initial position. Transverse 

endpoint displacement of the nerve and tendons were based on centre of mass 

calculations. The main findings of this study were increased area of the median nerve in 

patients with carpal tunnel syndrome and these changes increased with an increase in the 

severity of CTS in patients. Altered cross sectional area of the median nerve was the best 

discriminator between controls and CTS patients. This study demonstrated that other 

parameters such as circularity ratio change in CTS patients could help increase the 

accuracy of ultrasound imaging [53]. 

In 2010, a study by Bhooshan et al. [54] investigated computerised characterisation of 

image based prognostic markers to differentiate between invasive and non-invasive breast 

lesions and metastatic versus non-metastatic breast lesions in dynamic contrast enhanced 

MR images. The study demonstrated that computer extracted kinetic and morphologic 

features of lesions had the potential to facilitate characterisation and differentiation of 



70 
 

lesions. The shape features used were size of the lesion, circularity, irregularity of the 

lesion surface, margin sharpness, variance in margin sharpness and variance in radial 

gradient histogram. The results showed that circularity could be used as an effective 

feature for classifying ductal carcinoma in situ (DCIS) and invasive ductal carcinoma 

(IDC) [54].  

A study by Agner et al. [55] in 2011 defined a novel DCE-MRI descriptor called textural 

kinetics that attempted to capture spatiotemporal changes in breast lesion texture in order 

to distinguish malignant from benign lesions. The study qualitatively and quantitatively 

demonstrated that textural kinetic features outperformed signal intensity kinetics and 

lesion morphology features in distinguishing benign from malignant lesions. It 

demonstrated that when texture features were used in combination with shape features, 

the pairing resulted in an improved diagnostic of breast cancer lesions on DCE-MRI [55]. 
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4.3 Shape descriptors 
 

To study the shape of the median nerve, three locations in the carpal tunnel were selected 

for study by the clinician. For each subject, the median nerve was manually segmented 

from the MR image of the carpal tunnel using an image clearly labelled by the medical 

expert. The three locations used within the carpal tunnel were the proximal carpal row, 

the radioulnar joint and the distal carpal row. The algorithm to analyse the 16-bit DICOM 

images was written in MATLAB [56]. The shape metrics calculated were the area of the 

nerve region, the perimeter, the length of the major axis and the length of the minor axis. 

From these simple global descriptors, measures of eccentricity, circularity, aspect ratio, 

area and perimeter were calculated. 

Circularity referred to how much the shape resembled a circle and therefore a value of 1 

would signify a perfect circle. It can be calculated using the formula [51]: 

𝑪𝒊𝒓𝒄𝒖𝒍𝒂𝒓𝒊𝒕𝒚 =
𝑷𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓𝟐

𝟒𝝅 𝑨𝒓𝒆𝒂
     Equation 4.1 

 

Aspect Ratio can be expressed as the ratio of the major axis to the minor axis of the shape 

[51]: 

𝑨𝒔𝒑𝒆𝒄𝒕 𝑹𝒂𝒕𝒊𝒐 =
𝑴𝒊𝒏𝒐𝒓 𝑨𝒙𝒊𝒔 𝑳𝒆𝒏𝒈𝒕𝒉

𝑴𝒂𝒋𝒐𝒓 𝑨𝒙𝒊𝒔 𝑳𝒆𝒏𝒈𝒕𝒉
              Equation 4.2 

 

Eccentricity can be expressed as a flattening ratio and is said to be 1 for a line segment 

and 0 for a circle. It is expressed as ratio of the distance between the foci of the ellipse 

and its major axis length. 
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Figure 4.2(a) The median nerve is displayed in this figure with (b) the binary mask 

and (c) the masked image of the nerve 

 

4.4 Summary of results 
 

The results for the shape measures are summarised in the Table 4.1 below. The area 

measure for controls and patients is expressed in pixels and then in 𝑚𝑚2 . The conversion 

from pixels to 𝑚𝑚2 was done using the acquisition parameters set for the MRI scanner: 

Acquisition matrix: 320x288 / Field of view: 120x120 / Resolution: 0.375x0.4167 

(interpolated to 0.375x0.375) mm per pixel and slice thickness: 3 mm (with 0.3 mm gap 

between adjacent slices). For detailed results, please refer to Appendix D [ Table D.1, 

Table D.2 and Table D.3]. 
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Shape 

Measures 

 

Radioulnar 

 

 

Proximal 

 

 

Distal 

 
 

Controls 

 

Patients 

 

Controls 

 

Patients 

 

Controls 

 

Patients 

 

Eccentricity 

 

0.6781 

 

0.8695 

 

0.7533 

 

0.8905 

 

0.8007 

 

0.9280 

 

Circularity 

 

1.0693 

 

0.7476 

 

0.9433 

 

0.6776 

 

0.8856 

 

0.6582 

 

Area 

 

191.7131 

 

354.0516 

 

309.9184 

 

470.7465 

 

327.4983 

 

365.2587 

 

Area(mm2) 

 

5.1569 

 

6.9415 

 

6.5191 

 

8.0462 

 

6.7373 

 

7.1258 

 

Aspect Ratio 

 

1.4072 

 

2.2074 

 

1.6169 

 

2.4633 

 

1.8587 

 

2.8688 

 

Table 4.1: Mean Shape Measures at proximal, radioulnar and distal carpal row 

location in the carpal tunnel of controls and patients. 
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4.5 Analysis of shape quantification results 
 

In this study, it was observed that all the spatial domain shape metrics used to characterise the 

shape of the median nerve were successful in quantifying the median nerve shape in the control 

and patient group. The differences in the shape at each location in the carpal tunnel, namely: 

radioulnar joint, proximal carpal row and distal carpal row are demonstrated using the bar charts 

shown below for each shape metric.  

4.5.1 Circularity  
 

As can be observed in Figure 4.3 below, circularity in controls is higher than the patient 

group. Also, this holds true at each of the nerve locations in the carpal tunnel. This means 

that the regular shape of the median nerve is rounder and this has been compromised in 

the patient group due to an underlying neuropathy that must be investigated clinically. 

 

Figure 4.3: Circularity in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel. 
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4.5.2 Eccentricity 
 

As seen above, the normal round shape of the median nerve was altered in patients and 

this can be further emphasised by the Eccentricity measure. This measure was 

significantly higher in the patient group as seen in Figure 4.4 below. The shape of the 

median nerve in patients seemed to be elongated due to a possible pathology. Eccentricity 

was observed to be higher at all the three locations in the carpal tunnel.  

 

Figure 4.4: Eccentricity in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel. 
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4.5.3 Median Nerve Area  
 

The median nerve showed possible enlargement of shape due to inflammation or an 

underlying pathology that was not clearly evident in the clinical findings. Increased area 

of the median nerve could be signifying a neuropathy that needs to be further investigated 

by the medical experts. As can be observed in Figure 4.5 and Figure 4.6 below, the area 

of the median nerve was higher in patients at all the three locations within the carpal 

tunnel. 

 

Figure 4.5: Area (in pixels) in controls and patients at radioulnar, proximal and 

distal locations in the carpal tunnel. 
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Figure 4.6: Area (in 𝒎𝒎𝟐 ) in controls and patients at radioulnar, proximal and 

distal locations in the carpal tunnel. 
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4.5.4 Median Nerve Perimeter 
 

The median nerve perimeter measure was examined between the control group and the 

patient group. The perimeter values were investigated at the three locations namely: the 

radioulnar joint; proximal carpal row; and distal carpal row in the carpal tunnel and are 

shown in Table 4.2 below. Differences were observed between controls and patients at all 

the three locations. The mean perimeter measure was higher in patients than that in 

controls. The higher perimeter of the median nerve boundary (in pixels) could be 

correlated to its enlargement in patients. 

 

(in pixels) Controls Patients T-test 

Radioulnar 32.1296 37.7286 0.1212 

Proximal 30.9076 36.3333 0.0665 

Distal 25.8030 34.8919 0.0734 

P+R+D 29.6134 36.3179 0.0088 

 

Table 4.2: Perimeter measures between controls and patient at radioulnar, 

proximal and distal carpal rows in the carpal tunnel. 
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4.5.5 Aspect Ratio 
 

The aspect ratio of the median nerve was higher in the patient group demonstrating the 

flattened shape of the nerve. This nerve flattening was observed by the medical experts 

in the MRI of the carpal tunnel. Aspect ratio has been a useful measure in quantifying this 

observed flattening of the nerve in patients. It was also observed to be consistent across 

the three locations within the carpal tunnel as can be seen from the Figure 4.7 below. 

 

 

Figure 4.7: Aspect ratio in controls and patients at radioulnar, proximal and distal 

locations in the carpal tunnel. 
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4.6 Statistical Analysis 
 

The median nerve area data is summarised in Table 4.1 above. In the healthy control 

group, the mean area was 5.16 (0.18 SEM), 6.52 (0.30 SEM) and 6.47 (0.24 SEM) mm2 

at the radioulnar joint, proximal and distal carpal row respectively, differences that were 

significant (P<0.05, one-way ANOVA; P<0.05, radioulnar joint vs proximal and distal 

carpal row, Bonferroni post-hoc t-test).  In the patient group, the nerve area increased by 

34.6% at the radioulnar joint (mean = 6.94 (0.48 SEM) mm2) and 23.4% at the proximal 

carpal row (mean = 8.05 (0.46 SEM) mm2) compared to the control group (p<0.05, 

unpaired t-tests). The nerve area at the distal carpal row (mean = 7.13 (0.29 SEM) mm2) 

was comparable to the control group (p = 0.31, unpaired t-tests).  

In the healthy control group, the aspect ratios were 1.41 (0.05 SEM), 1.62 (0.08 SEM) 

and 1.86 (0.17 SEM) at the radioulnar joint, proximal and distal carpal row respectively 

(P<0.05, one-way ANOVA; P<0.05 radioulnar joint vs distal carpal row, Bonferroni post-

hoc t-test).  In the patient group, the nerve was significantly flatter at each location 

compared to the control group (mean = 2.21 (0.17 SEM), 2.46 (0.19 SEM) and 2.87 (0.22 

SEM) at the radioulnar joint, proximal and distal carpal row respectively; p<0.05, 

unpaired t-tests) (as shown in Figure 4.7). Correspondingly, the circularity was also 

decreased at each location in the patient group as compared to that in the control group 

(as shown in Figure 4.3). 

The perimeter measure, as shown in Table 4.2, was significantly higher as an average of 

all the three locations within the carpal tunnel in patients than that in controls. The 

statistical significance of this measure is demonstrated using an unpaired t-test (P<0.008).  
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4.7 Conclusion 
 

In this chapter, we described the implementation of spatial domain shape metrics such as 

eccentricity, circularity, aspect ratio and the nerve area to quantify the shape of the median 

nerve. It was observed that all the shape metrics could characterise the shape differences 

between the control group and the patient group. Statistical analysis proved the statistical 

significance of these measures. Therefore, it can be concluded that these measures could 

be reliably used in characterising potential damage to a patient’s nerve 

The morphological changes demonstrated by shape analysis need further investigation by 

medical experts to identify the underlying pathology that could be causing them. Also, 

the shape analysis study needs to be undertaken on a larger dataset to establish the 

findings of this preliminary study. 
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Chapter 5  
 

 

Detection of the median nerve in the 

carpal tunnel using the OT- MACH 

filter 

 
5.1 Introduction 
 

In this chapter, the Optimal Trade-Off Maximum Average Correlation Height (OT-

MACH) filter was applied to the MR images of the carpal tunnel for detection and 

localisation of the median nerve [57] . As seen in the earlier chapters, the quantification 

of the median nerve structure was very effective in classifying the median nerves between 

controls and patients. It is crucial that the location of the median nerve be accurately 

identified before implementing segmentation and quantification due to the presence of 

noise and clutter in the form of the tendons that surround the median nerve. 

Traditionally, Synthetic Discriminant Filters (SDF) are applied for such a task of object 

detection by imposing hard constraints on the output of the filter. However, in this case, 

due to presence of variable background clutter, the SDF is not a viable option. The MACH 

filter on the other hand, employs unconstrained correlation criteria. It was introduced as 

a distortion invariant correlation filter and has diverse applications in the field of 

surveillance and security for automatic target detection. To the best of our knowledge, it 

has never been implemented in a medical image analysis problem to detect and locate 

objects of interest.  
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The MACH filter avoids the problem of selecting constraints such as in SDF filters by 

acquiring a large average peak without assigning constraints to individual training images 

by employing unconstrained correlation criteria. The OT-MACH filter has improved 

performance as compared to the traditional MACH filter and the results of 

experimentation using the OT-MACH filter are presented in this chapter. 

5.2 The MACH Filter 
 

The traditional MACH filter can be expressed in its simplest form using a filter transfer 

function as given below:  

              1( )h S I m                                                                      Equation 5.1 

 

The MACH filter transfer function, in equation 5.1 above, has the capability to adjust the 

correlation planes to a suitable value for optimizing the performance. The MACH filter’s 

ability to handle distortions depends largely on the expected distortion within the training 

sets which are used in the design of the filter.  The detailed design of the MACH filter is 

described in the following papers [57] [58] [59] [60].The robustness of the MACH filter 

is due to the inclusion of Average Similarity Measure ( ASM ) criterion in the denominator 

of the transfer function along with the Output Noise Variance ( ONV ) which reduces the 

sensitivity to distortions and contributes to the removal of the hard constraints on the 

correlation peak. The MACH filter’s ability to handle distortions depends largely on the 

expected distortion within the training set which are used in the design of the filter.  

The MACH filter discussed above utilizes the unconstrained correlation criteria to detect 

target objects from cluttered backgrounds. Although robust in nature the classical MACH 

has room for improvements and hence over the years a lot of advancements have been 
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proposed. One such advancement is the OT-MACH and this is discussed in the following 

section. 

5.3 The OT-MACH filter 

In this section, an OT-MACH filter has been designed to test the effectiveness at detecting 

the location of the median nerve in the carpal tunnel. The major aim of the OT-MACH 

filter is to find the optimal compromise between good discrimination ability and distortion 

tolerance in the presence of noise. The MACH filter, as seen earlier, maximizes the height 

of the correlation peak with respect to the distortions in the training images. As the peak 

height of the MACH filter is unconstrained, it makes it difficult to interpret the results 

demonstrated by the correlation.  

 The OT-MACH filter can be described by the filter transfer function given below [57]: 

xx

x

SDC

m
h

 




                                        Equation 5.2 

In the OT-MACH filter transfer function ,  and   are the non-negative parameters, 
xm  

is the average of the training image vector 
Nxxx ,...,, 21

 (in the frequency domain), and C 

is the diagonal power spectral density matrix of additive input noise.  It is usually set as 

the white noise covariance matrix, IC 2 .  Also 
xD  is the diagonal average power 

spectral density of the training images and Sx denotes the similarity matrix of the training 

images [57]. 

In the case of the OT-MACH filter the different values of ,  and  control the filter’s 

behaviour to match different application requirements.  If ==0, the resulting filter 

behaves much like a MVSDF filter with relatively good noise tolerance but broad peaks.  

If ==0 then the filter behaves more like a MACE filter which generally exhibits sharp 
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peaks and good clutter suppression but is very sensitive to distortion of the target object 

[59]. If ==0, the filter gives high tolerance for distortion but is less discriminating  

5.4 Performance Metrics for correlation filters 
 

To define the criteria of detection it is necessary to calculate some basic measures to 

represent the quality of the output correlation plane. 

The most basic measure of the correlation plane is the correlation output peak intensity 

(COPI) which is defined as [61] : 

                      2),( yxCCOPI             Equation 5.3 

 

where the value of C (x, y) is the amplitude of the output correlation plane at position 

 (x, y). 

To provide the best detection capability and performance it is necessary for a filter to 

yield a sharp correlation peak as well as a high COPI value, while keeping side lobes to 

a minimum. The filter’s ability to do this can be measured using the peak-to-correlation 

energy (PCE) measure.  

The basis of the PCE measure is that the correlation peak intensity should be as high as 

possible while the overall correlation energy in the plane should be as low as possible. A 

high PCE value therefore implies that the filter performs well. The PCE ratio is generally 

defined as [61]: 

           
 
 

Energy

COPI
PCE                        Equation 5.4  

where Energy is the total correlation plane energy and is defined as: 

           
2

),( yxCEnergy       Equation 5.5 
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Also, another parameter in defining the performance of a correlation filter is Peak to Side 

Lobe Ratio (PSR) which forms an important criterion especially in the case when multiple 

objects are present in the input scene. In most cases considering just the COPI values 

would not be enough to analyse the performance of the filter. The PSR is calculated by 

subtracting the mean of the correlation plane from the COPI and then dividing it by the 

standard deviation of the correlation plane [62]: 

               


)( MEANCOPI
PSR


                                            Equation 5.6  

                      

where 𝜎 denotes the standard deviation of the correlation plane intensity values. The PSR 

of the target object should be greater than background clutter. It can be used in the case 

when the difference between the two COPI values of the target and reference objects is 

negligible. 

PSR is a metric that has been widely used to measure the sharpness of the correlation 

peaks. When the target belongs to a true class, the PSR values should be high and in the 

case of false class objects the PSR value should be low. Now in order to effectively 

compute PSR the test image is cross-correlated with the reference image and the output 

correlation plane is scanned for the largest value. When computing the detection criteria 

many projections should be used instead of a single projection of inner products as this 

enables the correlation filter to produce a specific response facilitating an accurate 

detection. It has also been observed that the PSR metric is invariant to changes in 

illumination of the training images [63] [64]. 
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5.5 Applications 
 

The MACH filter has been used for automatic pedestrian detection and tracking by Han 

and Yao [65]. It is known that automatic pedestrian tracking and detection can be 

challenging as the appearance of pedestrians changes with alterations such as clothes, 

pose and size. Also, the weather and illumination conditions vary and the tracking and 

detection must be processed in dynamic scenes.  The MACH filter has been combined 

with a particle filter to locate the targets in real time. This study has proven the 

effectiveness of the filters when there is a block or occlusion in tracking. The study 

applied the MACH filter to synthesize a composite filter using the frequency 

characteristics of pedestrians’ different views, mainly for the detection of the pedestrians. 

Once the position was given by the correlation filter, a particle filter was used to track the 

people. The MACH filter is known to be distortion tolerant and gives a reliable estimation 

to relocate them. Fast Fourier transforms were performed on different views of the 

pedestrians in the training dataset and then were combined into a MACH detection filter. 

If the output was a peak, it was assumed that there was a pedestrian. The results suggested 

that the combination of MACH based correlation to detect, and the particle filter to track, 

pedestrians was robust even when there were occlusions [65].  

Also in a study by Rodriguez et al. [66] a spatio-temporal Maximum Average Correlation 

Height filter was used for action recognition and is termed as the Action-MACH. In this 

study, the MACH filter is trained on video templates which include various human actions 

such as jumping jacks. These actions are then tested with a data set [66].  

Having diverse applications in the field of surveillance and security, the MACH filter has 

also been used in automatic target recognition (ATR) of Forward Looking Infrared 

images [67]. In the security and defence industry infrared cameras are used for target 
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recognition as it is impossible to camouflage the heat generated from targets which may 

be humans, animals or vehicles. These thermal images are obtained by sensing the 

radiation in the infrared spectrum, which is either emitted or reflected by the objects in 

the scene as mentioned earlier. The application of the OT-MACH has been tested in one 

such study by Alkandri [68]. 

In another study by Nagachetan et al. [69] the OT-MACH filter has been implemented as 

a robust tracker for motor vehicles from aerial video imagery. The algorithm designed in 

this paper allowed the operator to manually select the object of interest. The filter 

exhibited good tolerance to changes in lighting, scale and orientation [69]. 

In a recent study by Gardezi et al. [70] the spatial domain OT-MACH was implemented 

for vehicle monitoring. In this paper, VANET parameters were combined with the OT -

MACH filter to reduce the processing overhead when working with large video datasets 

[70]. 
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5.6 Experimentation 
 

All implementations of the OT-MACH filter are realised via the frequency domain in 

order to increase the speed of calculation and to allow ease of tuning of the filter transfer 

function [57-59]. The most crucial step in tuning the OT-MACH filter is the choice of the 

values for the  ,   and   parameters. In this experiment, three training sets were created. 

The first training set comprised of median nerve images in the distal location in the carpal 

tunnel of a patient. The median nerve of a single patient was rotated and resized using 

bilinear interpolation to create a set of the same sized training images. This training set 

was used to test the performance of the OT-MACH filter to rotational invariance. The 

second set consisted of the median nerves of all the patients from the dataset at the distal 

location. This training set was used to test how intra-class variation among patients 

affected the performance of the OT-MACH filter. The third set was used to test the 

performance of the filter for out of class images of the median nerve. 

The image containing the median nerve at the distal location in the carpal tunnel was used 

as the target image and used to test the filter. It is shown in Figure 5.1 below. 

 

Figure 5.1: A MR image of the carpal tunnel used for testing the OT-MACH filter 
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5.6.1 Case I 
 

In this step, a single image of the median nerve was used to train the filter. The same 

image was given as input for correlation much like an autocorrelation function. 

The performance parameters used in the OT-MACH filter function were set to  = 0.1, 

 = 0.1 and  = 0.001. The   value was set as low as possible for a sharper correlation 

peak. The high   value resulted in poor distortion tolerance but gave a sharp correlation 

peak. The gamma values were set to low to maximize the ability of the filter to 

discriminate between in-class and out of class nerve images. 

As expected, the results produced a sharp correlation peak and no out of class peaks. The 

average peak to correlation energy (PCE) value of the resultant correlation plane was 

0.076. This is an ideal case scenario as there was no background clutter and no orientation 

changes. The result of the correlation can be seen in figure 5.2 below. 

 

Figure 5.2: Correlation output of OT-MACH using a single image and the same test 

image. 
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5.6.2 Case II 
 

The performance parameters used in the OT-MACH filter function were set to  = 0.01, 

 = 0.01 and  = 0.001. In this case, we used the same parameter values as in Case I. 

However, instead of using a single nerve image to train the filter, a set of training images 

was used to train the filter. As can be seen in the figure 5.3 below, the location of the 

nerve was not detected due to background noise and multiple peaks. The correlation filter 

was unable to detect the location of the median nerve with the parameter values given 

above. The resultant values for PCE, COPI and PSR of the peak were: 0.0009, 0.005, 

7.6376, respectively. However, the maximum peak was not at the location of the nerve. 

 

 

Figure 5.3: Correlation output of OT-MACH in Case II 
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5.6.3 Case III 
 

The performance parameters used in the OT-MACH filter function were set to  = 0.001, 

 = 0.01 and  = 0.001. In this case, we used the same parameter values as in Case I. 

However, instead of using the same nerve image as a test image, the composite image of 

nine in-class training images was used. As it can be seen in the figure 5.4 below, the 

location of the nerve was not detected due to background noise and multiple peaks. The 

correlation filter was unable to detect the location of the median nerve with the parameter 

values given above. The resultant values for PCE, COPI and PSR of the peak were: 

0.0009, 0.005, 7.6376, respectively. However, the maximum peak was not at nerve 

location. 

 

 

Figure 5.4: Correlation output of OT-MACH in case III 
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5.6.4 Case IV 
 

The performance parameters used in the OT-MACH filter function were set to                       

 = 0.0001,  = 0.01 and  = 0.001. When filter was correlated with the test image, a 

peak was observed at the location of the nerve in the carpal tunnel. Although the peak 

was distinct, it was surrounded by noise peaks. As it can be seen in the figure 5.5 below, 

the location of the nerve is detected but is not significant enough due to background noise 

and multiple peaks. Therefore, further experimentation is needed to find a balance in the 

parameter values that suppress the noise peaks. The resultant values for PCE, COPI and 

PSR of the peak were: 0.0012, 11.6863, 9.7094, respectively. It can be observed that the 

COPI value improved significantly as compared to Case III. Also, the maximum peak 

height was higher than in the previous case.  

 

Figure 5.5: Correlation output of OT-MACH in Case IV 
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5.6.5 Case V 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.00001,  = 0.01 and  = 0.001. It can be observed in figure 5.6 below that the filter was 

successful in suppressing noise and giving a distinct correlation peak output at the 

location of the median nerve inside the carpal tunnel. The resultant values for PCE, COPI 

and PSR of the peak were: 0.0015, 59.9154 and 19.7662, respectively. The PCE and PSR 

values improved considerably as compared to those in Case IV. Therefore, it can be 

inferred that the parameter values used in this case have found a near optimum output. To 

see if any further change would improve the correlation output further, a few more 

parameter values are tested in the following cases. 

 

 

Figure 5.6: Correlation output of OT-MACH in Case V 
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5.6.6 Case VI 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.000001,  = 0.01 and  = 0.001.  The resultant values for PCE, COPI and PSR of the 

peak were: 0.0027, 382.1690 and 65.2435, respectively. As seen in the figure 5.7, a 

prominent peak is observed at the location with a good suppression of the noise peaks. 

Also, the PSR value is significantly improved from the previous Case V.  

 

 

Figure 5.7: Correlation output of OT-MACH in case VI 
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5.6.7 Case VII 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.0000001,  = 0.01 and  = 0.001. The output of the correlation peak was further 

improved by reducing the  value. As seen in figure 5.8 below, noise suppression has 

improved significantly owing to the low  value. The resultant values for PCE, COPI and 

PSR of the peak were: 0.0029, 1863.8 and 85.2645, respectively. It was found that any 

further change in the  value did not improve the performance metrics of the correlation 

output. Hence, further experimentation was done by changing the   value in the 

following cases. 

 

Figure 5.8: Correlation output of OT-MACH in Case VII 
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5.6.8 Case VIII 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.0000001,  = 0.001 and  = 0.001.  The   value was reduced to 0.001 and the 

correlation output was examined. The correlation output can be seen below in figure 5.9. 

The resultant values for PCE, COPI and PSR of the peak were: 0.0027, 38217.0 and 

65.2435, respectively. It was observed that although the COPI value increased drastically, 

the PCE and PSR values decreased as compared to those in Case VII.  

 

 

Figure 5.9: Correlation output of OT-MACH in Case VIII 
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5.6.9 Case IX 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.0000001,  = 0.1 and  = 0.001.  In this case, the   value was increased to observe 

how this would affect the correlation output. It can be observed in the figure 5.10 below, 

that although the correlation output showed a distinct peak and improved noise 

suppression like previous Case VIII, the performance metrics were adversely affected. 

The values of PCE, COPI and PSR were: 0.0021, 43.8479 and 59.0208, respectively. The 

PCE and PSR values decreased as compared to those in the previous cases.  

 

 

 

Figure 5.10: Correlation output of OT-MACH in Case IX 
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5.6.10 Case X 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.0000001,  = 0.2 and  = 0.001. In this case, we increased the   parameter value to 

0.2 and there was no meaningful change in the correlation output.  The resultant values 

for PCE, COPI and PSR of the peak were: 0.0018, 12.4183 and 49.1168, respectively. 

The correlation output can be seen in figure 5.11 below. 

 

 

Figure 5.11: Correlation output of OT-MACH in Case X 
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5.6.11 Case XI 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.0000001,  = 0.5 and  = 0.001. In this case, we increased the   parameter value to 

0.5 and the values of the performance metrics were affected.  The resultant values for 

PCE, COPI and PSR of the peak were 0.0015, 2.2038 and 38.9475 respectively. The 

correlation output can be seen in figure 5.12 below. 

  

Figure 5.12: Correlation output of OT-MACH in Case XI 
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5.6.12 Case XII 
 

The performance parameters used in the OT-MACH filter function were set to  = 

0.0000001,  = 0.5 and  = 0.001. In this case, we increased the   parameter value to 

0.9 and the values of the performance metrics were affected.  The resultant values for 

PCE, COPI and PSR of the peak were: 0.0013, 0.7134 and 34.4294, respectively. The 

correlation output can be seen in figure 5.13 below. 

 

Figure 5.13: Correlation output of OT-MACH in Case XII 
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The following table 5.1 summarizes the performance metrics and the parameter values 

used in the experimentation in this chapter. 

  α  β   PCE COPI PSR 

Case I 0.1 0.1 0.001 0.0274 0.2387 15.8304 

Case II 0.01 0.01 0.001 0.0009 0.0055 7.6376 

Case III 0.001 0.01 0.001 0.0009 0.4339 8.0223 

Case IV 0.0001 0.01 0.001 0.0012 11.6863 9.7094 

Case V 0.00001 0.01 0.001 0.0015 59.9154 19.7662 

Case VI 0.000001 0.01 0.001 0.0027 382.1690 65.2435 

Case VII 0.0000001 0.01 0.001 0.0029 1863.8000 85.2645 

Case VIII 0.0000001 0.001 0.001 0.0027 38217.0000 65.2435 

Case IX 0.0000001 0.1 0.001 0.0021 43.8479 59.0208 

Case X 0.0000001 0.2 0.001 0.0018 12.4183 49.1168 

Case XI 0.0000001 0.5 0.001 0.0015 2.2038 38.9475 

Case XII 0.0000001 0.9 0.001 0.0013 0.7134 34.4294 

Table 5.1: Summary of filter parameters and performance metrics 
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5.7 Conclusion 
 

In this chapter, the filter design of the MACH filter, and its enhancement the OT-MACH, 

were discussed. The filter function of the OT-MACH filter was tested using different 

values of the  ,  , and   parameters to detect the location of the median nerve in the 

carpal tunnel images. It was observed that the OT-MACH filter could detect the location 

when the training set consists of reference images rotated at different angles to produce 

rotational invariance. However, when the filter was trained using nerve images of 

different subjects to accommodate intra-class variation, a sharp peak was detected at the 

location of the nerve but also with numerous out of class peaks. This could be due to the 

overall quality of the MR image and the various aspects of the anatomy of the carpal 

tunnel that caused a high amount of noise and false detections.  

When the  was decreased and the  and   values were kept constant, the correlation 

output improved and there was a distinct correlation peak with very good noise 

suppression that was robust against intra-class variation. When an optimum value of 

was found, increases in the   value was investigated. It was observed that increasing the 

  value did not improve the correlation output. Although the correlation peak remained 

distinct, the performance metrics were adversely affected. When we changed the   

values, no change in the performance of the correlation output was observed. 
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Chapter 6  
 

 

Classification Using Features 

Extracted from Image Data 
 

 

6.1 Introduction 
 

In the previous chapters, features were extracted using texture analysis methods such as 

co-occurrence matrices, run length matrices, autocorrelation and spatial domain shape 

metrics. We attempted to study the patterns of texture and shape that may help classify 

the nerves as belonging to the control or patient group. In any pattern recognition 

problem, the most important and the last step is classification. Classification enables 

identification of classes that a pattern belongs to. In machine learning and statistics, the 

classification process involves developing a classifier that is trained on a set of training 

data. This classification model is then used on test data to validate the robustness of the 

model. As the work in this thesis involves classifying nerves into two categories namely 

normal or patient nerve, this is a binary classification problem.  

6.2 Methods of Binary Classification 
 

A brief overview of the different methods of binary classification is presented. 

6.2.1 Decision Trees 
 

A decision tree algorithm can be designed for classification and regression. In 

classification, it can be described as binary classification tree [71]. A decision tree has a 
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multistage decision process. Decision trees mainly consist of nodes that are labelled as 

features, edges labelled as values and the leaves can be expressed as class labels. These 

class labels enable the classifier decision. Decision trees are efficient classifiers that can 

model complex non-linear decision boundaries by breaking up a complex decision into a 

number of simpler decisions at the nodes in the tree structure [72].  

6.2.2 Random Forests 
 

Random forests also called random decision forests can be defined as an ensemble 

learning classification method. Ensemble learning combines different learning algorithms 

to improve the predictive performance of classifiers as compared to them being used 

individually. It combines the decisions made by multiple decision trees using a majority 

vote decision rule [73]. These decision trees are created by constructing bootstrap samples 

of the data. The first random forest algorithm was created using the random subspace 

method [74] [75].  

6.2.3 Bayesian networks 
 

Bayesian networks provide a probabilistic graphical model of variables and the 

relationships between them. This representation can be provided a priori or can be learned 

from the available data. The structure allows multivariate density functions to be specified 

using a chain rule. Bayesian networks are used to model many complex problems in spite 

of its oversimplified assumptions and performs well even when small amounts of data are 

available [71]. 

6.2.4 Support Vector Machines 
 

Support Vector Machines (SVMs) is a supervised classification approach that has been 

widely researched and used in classification problems [71]. SVMs work on the basic 



106 
 

principle of creating the best separating hyperplane between pattern vectors in the training 

data to distinguish between the members of the two classes. It can either be applied 

directly to variables or in a transformed feature space [76]. For data that is linearly 

separable, SVMs can used a linear classification function to create a hyperplane that 

passes between the two classes. In this case, the new test data can be classified simply by 

testing the sign of this linear function. As many such hyperplanes exist, SVMs provide 

robustness by using the hyperplane that maximizes the margin between the two classes 

ensuring optimal classification. SVMs are mainly used in binary classification but 

multiclass SVMs also exist which work based on a one against all binary classifier or 

multiple one against one situations [76]. 

6.2.5 Artificial Neural Networks 
 

Artificial neural networks are an effective method of classification. They have been 

widely used in research and for industrial applications. Artificial neural networks have 

many variations that depend on the number of neurons used, number of layers and the 

different weights used while training a neural network for a classification problem [71] 

[77]. The design of the neural network is application dependent and has found diverse 

applications in the fields of biometrics, object recognition, medical diagnosis and 

complex machine vision problems. The most promising and widely researched field of 

ANNs is Deep Learning. Deep Learning solves complex machine vision problems by 

representing a complex problem as numerous simpler representations. The best example 

of a deep learning model is a multilayer perceptron (MLP) that can be simply described 

as a function mapping input values to output values [78]. Deep Learning models have 

multiple hidden neural network layers that create simpler representations of data, the 

depth creation improving performance [79]. Deep learning research has also gained 
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momentum due to the increases in computing power available with parallel processing 

units. 

  

6.3 Classification using Small Datasets 
 

As seen in the previous section, classification is a crucial step in any machine vision or 

pattern recognition problems. As supervised classification methods used for binary 

classification are trained on a training dataset and a predictive model is created, the size 

of the dataset is very important. In cases such as in this thesis, the amount of data available 

for training was very small as this was a preliminary study conducted to analyse the nerves 

in whiplash patients. Nonetheless, classification models need to be built and implemented 

for given small data problems. In this section, we review some of the techniques used for 

effectively learning from smaller datasets. 

6.3.1 Diffusion Neural Network 
 

Diffusion neural networks (DNNs) are designed by a combination of back-propagation 

neural networks with information diffusion methods [71]. The information diffusion 

techniques were suggested to combat the small data sample problem by using fuzzy set 

theory and are used to derive more patterns for training from the original small dataset 

[80] [81]. DNNs reduce the error of conventional back-propagation networks by about 48 

percent [80]. However, as the symmetric diffusion techniques oversimplify the generation 

of new samples, it can cause under-estimation or over estimation of the data range and 

lead to a reduction in accuracy. This led to the development of the mega-trend-diffusion 

technique that combined data trend estimation and mega diffusion to avoid over 

estimation [80]. However, this increases the complexity of the computations involved in 

DNNs as compared to those in ANNs. 
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6.3.2 Mega Trend Diffusion Function 
 

As discussed earlier, the mega-trend diffusion technique is a combination of data trend 

estimates and information diffusion. It has been found to greatly improve learning 

accuracy as compared to a traditional back-propagation neural network. A detailed 

overview of mega-trend-diffusion (MTD) can be found in [80] [82] [83]. 

6.3.3 Bootstrap Resampling Method 
 

The Bootstrap resampling method involves choosing random samples with replacement 

from a data set and analysing each sample the same way [44]. It is often used in 

preliminary studies where initial available data is small. Using bootstrap methods, 

predictive models can be built faster as the random resampling increases the amount of 

training data by creating virtual samples [71]. Having insufficient data to train a 

classification model might make the model fragile and reduce the robustness of the 

classifier. As in most pilot runs and preliminary investigations data samples are small, 

bootstrap methods are used. A detailed overview of the bootstrap methods can be found 

in [84] [85]. The error rate can be decreased by executing the bootstrap procedure once 

for every input factor. 
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6.4 Experimentation Method 
 

In this section, the method used to approach the Whiplash classification problem is 

addressed. Classification is approached in two ways, namely SVM classification using 

shape features and SVM classification using texture features. This is done to analyse 

which of the two feature sets are more robust at classifying the nerves into two classes, 

namely control and patient. The shape features used in the SVM classifier were analysed 

for statistical significance using the t-test as described in Chapter 4. Although the metrics 

were statistically different between controls and patients, the data set is small and might 

make the classification model fragile and reduce the robustness. Therefore, first SVM is 

used on the original data and the accuracy is noted. Then, bootstrapping is used to 

resample the input data and this resampled data is used for classification using SVM. This 

is done to analyse to determine if, by using bootstrapping resampling, the accuracy can 

be improved further. 

The texture features used in the second SVM classifier were extracted from co-occurrence 

matrices and run length matrices. These features demonstrated differences between the 

control and patient group; however, the statistical significance could not be proved. Also, 

for each subject, 23 texture features were extracted in three locations of the median nerve 

in the carpal tunnel. Identifying a separating hyperplane using SVM in the original data 

is tested. In addition to this, principal component analysis (PCA) is used to identify the 

principal components that describe the largest possible variance in the data. PCA is a 

statistical procedure used for dimensionality reduction [86]. It uses an orthogonal 

transformation to convert a set of possibly correlated variables into a set of linearly 
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uncorrelated variables called principal components. The classification models are built 

and tested using MATLAB [56].  

6.5 Performance Measures  

Performance of the classification model is tested for diagnostic accuracy. Diagnostic 

accuracy relates to the ability of the model to discriminate between normal nerves and the 

target condition in this case the inflammation of nerves caused by whiplash injuries [87]. 

The performance measures used to evaluate the classifier accuracy are: sensitivity or True 

Positive Rate (TPR); specificity or True Negative Rate (TNR); total accuracy (TA); 

positive predictive value (PPV); and negative predictive value (NPV). A full explanation 

of these measures can be found in [88]. 

6.6 Applications 
 

In a study by Al Samarraie et al. [89] texture classification was performed on two 

databases namely, the Outex and Columbia-Utrecht Reflectance and Texture database 

(CUReT) databases, using random forests and support vector machines. Texture features 

were extracted using bi- orthogonal wavelet transforms, first order features and co-

occurrence matrices. Classification was performed primarily using individual feature sets 

and then all features combined. The results demonstrated that the SVM classifier gave a 

higher precision rate in classification of textures and required much less time for training 

the model [89]. 

In a study by Yu-Len et al. [90] SVM was used to classify benign and malignant breast 

tumours on ultrasound images. The proposed computer assisted diagnostic system (CAD) 

using SVM performed with high specificity and sensitivity in differentiating tumours 

using ultrasound images.  
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In another study by Pulido et al. [91] an SVM classifier is used for classifying weeds and 

vegetable crop images. The SVM classifier used a Radial Basis Function (RBF) kernel. 

The features used for classification were extracted from co-occurrence matrices and 

principal component analysis (PCA) was performed to create principal components with 

the largest variance in data. The classification performance was over 90 percent [91]. This 

study showed the effectiveness of using dimensionality reduction to enrich the feature 

space before using the SVM classifier. A similar approach is taken in the work in this 

section to classify peripheral nerves. 

Another study by Kumari et al. [92] used similar methods as above to classify brain 

anomalies from MRI images. In this study, T2-weighted MRI brain images were used for 

feature extraction. PCA was used to select the most valuable features followed by SVM 

classification. An SVM classifier was trained using both linear and nonlinear kernels and 

the performance was assessed [92]. 

In a study by Soumya et al. [93]texture analysis was performed and SVM classification 

using non-linear kernels was effectively implemented for classification of tissue for 

staging cervical cancer in MRI images. This was performed using both T1- weighted and 

T2-weighted MRI images. The SVM classifier was successful in staging the cervical 

cancer with high accuracy [93]. 
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6.7 Analysis of Classification Models 
 

6.7.1 SVM using Shape Metrics 
 

SVM classification was performed on the shape measures that demonstrated the morphological 

changes in the nerves in patients as compared to that in controls. SVM classification was first 

performed using the linear kernel and the accuracy was analysed. Then. SVM using a radial basis 

function (RBF) kernel and polynomial kernel function was performed. It was observed that using 

the RBF kernel reduced the measures of sensitivity and specificity. The outcome using the 

polynomial kernel was similar to that using the linear kernel and the accuracy remained 

unchanged. Also, the results below were derived only from a single iteration of the classification 

model. Multiple iterations of the algorithm and testing with cross validation methods might 

improve the performance which can be tested in further work with a larger dataset. The results of 

the SVM classification are summarised in Table 6.1 below. 

SVM Classification without Bootstrapping 
 

Classification Kernel 

 

Sensitivity 

TPR 

Specificity 

TNR 

PPV 

 

NPV 

 

Total 

Accuracy 

 

SVM 

(Linear Kernel 

Function) 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

 

SVM 

(Gaussian or RBF 

Kernel) 

 

85% 

 

100% 

 

100% 

 

88.80% 

 

93.75% 

 

 

SVM 

(Polynomial Kernel 

Function 

 

100% 

 

100% 

 

100% 

 

100% 

 

100% 

 

Table 6.1: SVM Results using shape measures 
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As the overall dataset is very small, bootstrapping resampling was used to create 1000 samples. 

Of these, 500 samples were used for training using an SVM classifier and 500 samples were used 

for testing. This was done to analyse the robustness of the classifier on a larger dataset. 

Bootstrapping was done by calculating the correlation co-efficient between shape measures and 

resampling was done using these correlation measures. When SVM classification was performed 

using the resampled data the overall accuracy of the classification reduced to 78 percent. The 

sensitivity and specificity scores were also affected. This could be attributed to the correlation 

scores between the metrics as although correlation is an effective measure to assess the linearity 

between variables, it was unclear if the variables correlated positively or negatively with each 

other and this would have affected the training set. Bootstrapping is an effective way of 

resampling, but it did not improve the accuracy with our dataset as the number of subjects in the 

dataset was too small to be resampled.  

6.7.2 Principal Component Analysis of Texture Measures 
 

As seen earlier, texture features were extracted from co-occurrence matrices and run length 

matrices for each subject. As 23 features were extracted per subjects, the dimensionality of the 

data was increased. When SVM was used directly on the high dimensionality data to classify the 

nerves, the overall accuracy was 70 percent. The specificity value was 100 percent, so all the 

normal nerves were classified as normal. However, the sensitivity was very low at 33 percent, so 

the classifier was unable to classify patient nerves accurately. Hence, to reduce the dimensionality 

and extract the features that preserved maximum variance in the data, principal component 

analysis was performed. The principal components were extracted from the data using an 

algorithm provided in MATLAB [44]. 

The first three principal components demonstrated the maximum variance in data and therefore 

were used. The scatter plot showing the result of PCA is shown below in Figure 6.1. 
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Figure 6.1 PCA plot using texture features 

 

As can be observed from Figure 6.1, the first principal component extracted the features 

with maximum variance of 71 percent. The second principal component accounted for 27 

percent of the variance in the internal structure of the data and the third component was 

1.194 percent. Therefore, it can be deduced that the first component acquired from PCA 

was the most accurate at classifying data with only one outlier. As seen in the figure, the 

first component alone was able to classify all but one patient accurately. 
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6.8 Conclusion 

Support Vector Machine and Principal Component Analysis are effective ways of 

classifying data. In this section, we used SVM to classify the nerves as normal or 

belonging to patients suffering from whiplash associated disorders. This classification 

was performed using the morphological features of the nerve extracted as described in 

earlier chapters. The accuracy rates and the sensitivity and specificity measures of the 

classification demonstrate that SVM can be reliably used to classify peripheral nerves as 

normal or as damaged in this study. However, bootstrapping resampling used to increase 

the dataset reduced the overall accuracy of the results due to the initial small size of 

dataset. 

PCA was used to find the maximum variance in the high dimensional texture features 

extracted from the MRI image data. It can be seen from the analysis in the Section 6.7.2, 

that PCA can be used to reduce the dimensionality and thereby create a feature space of 

principal components which segregate the data more effectively. 
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Chapter 7  
 

 

Conclusions and Future Work 
 

7.1 Overview 
 

Whiplash injuries are the most common occurring injury in a rear end motor vehicle 

collision. When the accident happens, the impact of the collision can cause severe trauma 

to the cervical spine of the people involved. These injuries are regarded as whiplash due 

to the stretch they cause in the neck when the collision occurs, like a whiplash. Also 

important, are the economic burden that whiplash injuries have on society and the overall 

effects of whiplash on the wellbeing of the patient. 

As the diagnosis of whiplash associated disorders lies solely on the judgment of a 

clinician and the patients’ description of the pain, there is an inherent aspect of human 

error or misconception involved which could lead to poor treatment, slow recovery or 

both.  

This brings us to the problem that is addressed in this thesis. Seeing the nature of the 

injury and the differences in judgment of different clinicians in judging and treating pain 

in Whiplash Associated Disorder patients, there is a pressing need for a supportive tool 

that would help in characterising nerves without having any a priori knowledge, purely 

based on the medical images.  

Thus, the work in this thesis attempted to use quantitative measures to characterise the 

peripheral nerves involved in a whiplash injury.  
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7.2 Proving the hypothesis 
 

The hypothesis stated in this thesis is that quantitative image analysis of the peripheral 

nerves involved in whiplash injuries might help identify imaging biomarkers that could 

be used to assess the injury in cases where no clinical manifestation of injury exists. 

Therefore, in order to prove the hypothesis, an attempt was made to characterise the 

nerves in a case-controlled study of 22 subjects where 15 were normal subjects and 7 

were patients who had suffered from a whiplash injury. To study the nerve segments on 

MRI images, clinicians selected the area of the brachial plexus and the median nerve in 

the carpal tunnel of the subjects. As seen in Chapter 2, for each subject, three locations in 

the carpal tunnel were chosen, namely: proximal carpal row; distal carpal row; and 

radioulnar joint.  

In this thesis, we used texture and shape analysis to find cues to the underlying pathology 

of the nerves in patients with whiplash. Texture analysis was used to extract features that 

described the surface pattern of the nerves as seen on T2- weighted MRI images. The 

texture analysis methods used were: first order features; co-occurrence matrices; run 

length matrices; and the autocorrelation function. The results of texture analysis 

demonstrated that the texture measures could be reliably used to build classification 

models that would enable effective differentiation and detection of the patient nerves.  

In addition to texture analysis, shape analysis was performed in the fourth chapter to study 

the morphology of the median nerve in the carpal tunnel of the subjects. Shape measures 

such as eccentricity, circularity and aspect ratio were used to extract quantitative values 

that demonstrated the differences between controls and patient nerves. The statistical 

significance of the shape measures was P<0.05 which proved that differences in shape 
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existed in the nerves of patients and this quantitative assessment could help classify the 

median nerve as belonging to a normal subject or patient. 

One of the major limitations on the work reported in this thesis was the size of the dataset 

available. The data was small, comprising of 22 subjects of which 15 were normal and 7 

were patients. It was thus a preliminary study to quantitatively analyse nerves in controls 

and patients. Although from a pilot study point of view, the data can be considered as 

sufficient, from the supportive tool design aspect, it cannot be considered entirely 

conclusive. This was a case-controlled study used to compare patients who had WAD 

symptoms to those who did not have any symptoms and were considered as normal 

subjects.    

It was seen that SVM and PCA demonstrated good accuracy in differentiating the patient 

nerves from control subjects despite the small sample size. The Bootstrapping method did 

not work as expected in creating resampled data. Overall, the classification model 

designed was successful at classifying the nerves. However, the robustness of the models 

need to be tested on a larger dataset.  

The second most important limitation of the study was the quality of the images. As the 

images were acquired from a 1.5 Tesla MRI, the 16- bit DICOM images obtained were 

noisy. To accurately locate the median nerve in the carpal tunnel, an advanced correlation 

filter known as the OT-MACH was implemented. The results of using this filter are 

presented in Chapter 5. The filter was trained to handle most of the in-class variation 

present in the image data. It was observed that with a suitable combination of non-

negative parameters, the filter could be adequately trained and was successful at 

generating a correlation peak at the location of the nerve inside the carpal tunnel.  

 



119 
 

7.3 Future Research  
 

In the future, the imaging peripheral nerves will exploit Magnetic Resonance 

Neurography. As seen briefly in section 1.8 of the first chapter, magnetic resonance 

neurography could greatly improve the acquisition process of the images and thereby 

improve the quality of the images acquired for medical image analysis.  

The work reported in this thesis has demonstrated the utility of medical image analysis 

for the quantitative study of peripheral nerves specific to a whiplash injury. To the best 

of our knowledge, this has not been previously. A computer-assisted diagnostic tool to 

automatically perform the texture and shape analysis can be developed. The tool 

developed can be specifically used to detect and quantify nerve segments presented in the 

medical imagery. This would not only improve the diagnosis and treatment of patients 

suffering from whiplash, but also could be extended to analysing peripheral neuropathies 

in the lower extremities such as from diabetes and sciatica nerve disorders.  

Also, with the ongoing research and development of deep learning algorithms, specific 

models could be trained to automatically extract the images of the proximal, distal and 

radioulnar carpal row in the wrist of subjects. In recent years, medical image analysis has 

seen vast improvement in the ability to detect and classify patterns in medical imagery. 

The advances in the parallel processing capabilities of computers and the implementation 

of complex machine learning algorithms, which are called deep learning algorithms, has 

completely changed the face of object recognition and classification. The framework of 

deep convolution layers that extract features dynamically, instead of using handcrafted 

features, has alllowedmore information extraction at each layer. This advance will reduce 

time taken by clinicians to go through multiple MRI slices to select the appropriate 

locations. 
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Appendices 
 

The Appendices for this thesis are divided into four parts. 

The contents of each appendices are listed below 

Appendix A: Results of First Order Features 

Appendix B: Results of Run Length Matrices 

Appendix C: Plots of the Autocorrelation Function 

Appendix D: Results of Shape Metrics 

 

Key Notes 

The subjects are listed as patient or control using their unique ID. 

Controls:  

CISC816; CISC 10195; CISC10414; CISC10709; CISC10886; CISC11329; CISC11345; 

CISC11414; CISC14779; CISC14801; CISC14817; CISC14850; CISC14898 

Patients: 

CISC8577; CISC9424; CISC10283; CISC10405; CISC10903; CISC10927; CISC13565 
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      Appendix A: Results of First Order Features  

 

Part 1: Results of First Order Features of the Brachial Plexus 
 

Table A.1: Mean Grey Level values in Brachial Plexus 
 

+  

 

 

 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

816 3.9167 5.3519 5.8958 3.942 4.7766 4.3583 4.7282 4.1797 4.7762 4.5106 9.2872

10195 0 4.9286 4.0769 4.1818 3.296825 0 3.5231 4.9514 4.5385 3.25325 6.550075

10414 4.4467 4.1389 5.0341 0 3.404925 0 0 3.7857 4.8111 2.1492 5.554125

10709 4.3071 4.3485 4.7473 4.2611 4.416 4.4603 4.6434 3.683 4.05 4.209175 8.625175

10886 3.4242 4.4537 4.98 0 3.214475 3.7692 4.5133 3.8667 4.1375 4.071675 7.28615

11329 4.9074 4.7692 4.2208 3.9152 4.45315 4.7733 4.7963 3.9286 4.0556 4.38845 8.8416

11345 4.6667 4.2875 4.9929 0 3.486775 4.103 3.8636 3.6543 0 2.905225 6.392

11417 4.6068 3.8977 4.3 3.746 4.137625 4.3651 3.1616 3.9545 3.6591 3.785075 7.9227

14779 3.3712 4.3308 4.6084 0 3.0776 4.5152 4.7813 4.02 5.1481 4.61615 7.69375

14801 4.2182 5.0833 5.1875 4.0417 4.632675 4.6771 3.8125 4.8929 4.7818 4.541075 9.17375

14817 3.5556 4.0256 4.2479 3.7385 3.8919 0 3.8571 4.5364 4.6061 3.2499 7.1418

14850 4 4.287 3.9583 4.6154 4.215175 4.3333 3.1714 3.6133 4.6204 3.9346 8.149775

14898 4.1354 4.7077 3.9931 5.8632 4.67485 4.1319 4.2821 5.4727 4.4685 4.5888 9.26365

Mean 3.812 4.508492 4.634077 2.946531 3.975275 3.345131 3.779531 4.195323 4.127146 3.8617827 7.837058

Std Dev 1.191888 0.413875 0.5498 2.031848 0.587434 1.84834 1.227601 0.56406 1.252136 0.7351599 1.157713

SEM 0.344068 0.119475 0.158714 0.586544 0.169578 0.53357 0.354378 0.16283 0.361461 0.2122224 0.334203

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

8577 4.1368 3.8042 3.9056 4.3889 4.058875 4.4394 4.5337 4.4722 4.4429 4.47205 8.530925

9424 4.1339 3.719 4.6256 4.2136 4.173025 4.3359 3.6923 4.3462 4.2153 4.147425 8.32045

10283 0 3.9141 4.7366 4.0338 3.171125 0 3.7193 4.6013 3.6863 3.001725 6.17285

10405 3.9091 3.8563 4.1278 3.9286 3.95545 4.2074 3.9911 4.5989 4.8256 4.40575 8.3612

10452 3.9333 4.25 4.2105 5.2941 4.421975 3.6429 4.5641 4.78 3.8392 4.20655 8.628525

10903 0 4.8035 5.5667 4.8854 3.8139 3.1026 4.4978 4.4808 3.381 3.86555 7.67945

10904 3.62 3.7867 4.6061 4.2244 4.0593 4.303 4.6044 5.4611 4.1834 4.637975 8.697275

10927 4.7083 4.3212 4.8083 4.2444 4.52055 4.4071 3.9295 3.6667 3.7976 3.950225 8.470775

13565 4.6643 4.6513 4.6875 4.254 4.564275 3.716 3.7933 3.7863 4.4762 3.94295 8.507225

mean 3.233967 4.122922 4.586078 4.385244 4.082053 3.5727 4.147278 4.465944 4.094167 4.0700222 8.152075

sdev 1.759276 0.378639 0.45461 0.408333 0.40379 1.332362 0.37151 0.498918 0.428579 0.4515538 0.753382

SEM 0.621998 0.133869 0.160729 0.144367 0.142761 0.471061 0.131349 0.176394 0.151525 0.1596484 0.266361

T-test 0.430925 0.045385 0.833973 0.03265 0.635254 0.752509 0.345868 0.274028 0.933994 0.4422082 0.469615

CODE
Mean
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Table A.2: Variance in Grey Level values in Brachial Plexus 
 

 

 

 

 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Kurt L+R

816 3.6042 3.4503 3.135 3.51 3.424875 3.2466 4.1261 4.6161 4.3166 4.07635 7.501225

10195 0 3.3235 3.6949 3.4215 2.609975 0 3.311 3.9212 4.1716 2.85095 5.460925

10414 3.9138 4.4529 2.4193 0 2.6965 0 0 4.0096 4.4865 2.124025 4.820525

10709 3.6699 4.4543 4.079 3.9818 4.04625 5.3754 2.9148 2.1629 4.3586 3.702925 7.749175

10886 2.1635 4.9701 3.7596 0 2.7233 2.2391 3.9432 2.8489 3.7186 3.18745 5.91075

11329 4.1951 3.7801 4.6396 3.3625 3.994325 4.2686 4.1067 3.3806 3.608 3.840975 7.8353

11345 3.4815 3.3048 3.4928 0 2.569775 2.6985 2.8147 4.6706 0 2.54595 5.115725

11417 5.0249 4.6145 4.5373 5.1101 4.8217 3.0572 2.6203 3.8616 3.0732 3.153075 7.974775

14779 2.3849 3.9906 2.9935 0 2.34225 3.4417 5.5042 2.0729 3.7855 3.701075 6.043325

14801 4.0615 3.5264 3.9023 4.9149 4.101275 2.9895 2.2982 2.4766 5.2433 3.2519 7.353175

14817 4.1102 3.8028 3.4096 4.547 3.9674 0 1.8163 3.176 4.7084 2.425175 6.392575

14850 5.2292 3.8898 3.4399 3.6323 4.0478 4.5926 2.0468 3.2905 2.6059 3.13395 7.18175

14898 4.0129 3.2992 2.1597 1.9642 2.859 4.2463 5.4845 3.7402 4.6966 4.5419 7.4009

Mean 3.527046 3.912254 3.5125 2.649562 3.40034 2.781192 3.152831 3.402131 3.751754 3.271977 6.672317

Std Dev 1.307693 0.532638 0.698407 1.919973 0.769808 1.724223 1.457273 0.812208 1.280265 0.664096 1.056956

SEM 0.377498 0.153759 0.201613 0.554249 0.222224 0.49774 0.420678 0.234464 0.369581 0.191708 0.305117

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Kurt L+R

8577 5.1437 5.3043 4.3633 4.7469 4.88955 4.2463 4.4027 3.9492 4.0182 4.1541 9.04365

9424 4.5446 3.8715 3.0445 4.668 4.03215 4.6137 3.4822 2.7359 4.4884 3.83005 7.8622

10283 0 3.2426 2.2208 3.5214 2.2462 0 2.8545 2.9391 3.2741 2.266925 4.513125

10405 3.2705 3.1856 3.3337 5.1735 3.740825 3.7199 4.1155 4.0094 4.7901 4.158725 7.89955

10452 3.0289 3.3413 1.9482 1.9723 2.572675 3.6724 4.951 3.6183 2.1741 3.60395 6.176625

10903 0 2.8386 4.0456 4.789 2.9183 1.4986 4.1522 4.1727 3.1088 3.233075 6.151375

10904 3.9023 2.8878 3.7691 2.674 3.3083 3.0698 3.5138 2.7707 2.565 2.979825 6.288125

10927 4.8066 2.9453 3.6049 2.2569 3.403425 4.2271 4.1425 2.8 3.5781 3.686925 7.09035

13565 3.7055 4.4733 2.4456 2.1704 3.1987 3.2404 4.1506 2.8176 3.5161 3.431175 6.629875

mean 3.155789 3.565589 3.1973 3.552489 3.367792 3.143133 3.973889 3.312544 3.501433 3.48275 6.850542

sdev 1.807776 0.789678 0.795339 1.233155 0.746986 1.404988 0.573159 0.577113 0.799477 0.565765 1.2366

SEM 0.639145 0.279193 0.281195 0.435986 0.2641 0.496738 0.202642 0.20404 0.282658 0.200028 0.437204

T-test 0.62505 0.296808 0.376177 0.215066 0.925941 0.61263 0.096827 0.776148 0.596537 0.456223 0.742708

Variance
CODE
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Table A.3: Skewness values in Brachial Plexus 
 

 

 

 

 

 

 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Skew L+R

816 0.6737 0.30351 0.4051 0.6829 0.516303 0.0594 0.1621 0.4141 0.1593 0.198725 0.715028

10195 0 0.1488 0.5405 0.4655 0.2887 0 0.6868 0.1533 0.1139 0.2385 0.5272

10414 0.4175 0.5159 0.5278 0 0.3653 0 0 0.6129 0.2413 0.21355 0.57885

10709 0.5644 0.4365 0.4988 0.6407 0.5351 0.3199 0.3871 1.4327 0.6516 0.697825 1.232925

10886 0.9391 0.6354 0.013 0 0.396875 0.7143 0.274 0.7005 0.537 0.55645 0.953325

11329 0.1919 0.3316 0.6219 0.6736 0.45475 0.0644 0.1513 0.7739 0.2559 0.311375 0.766125

11345 0.5816 0.2311 0.1811 0 0.24845 0.5403 0.562 0.9707 0 0.51825 0.7667

11417 0.3601 1.0062 0.4241 0.7617 0.638025 0.6978 1.295 0.8336 1.2615 1.021975 1.66

14779 1.6366 0.2987 1.4044 0 0.834925 0.2609 0.0119 0.4609 0.3947 0.2821 1.117025

14801 0.6069 0.2641 0.032 0.5096 0.35315 0.3834 1.1712 0.0579 0.2595 0.468 0.82115

14817 1.058 0.5656 0.0595 0.7284 0.602875 0 0.711 0.1476 0.1695 0.257025 0.8599

14850 0.4861 0.334 0.5076 0.519 0.461675 0.143 1.1999 1.0334 0.549 0.731325 1.193

14898 0.529 0.392 0.524 0.9296 0.59365 0.4934 0.5772 0.5091 0.1994 0.444775 1.038425

Mean 0.618838 0.420262 0.441523 0.454692 0.483829 0.282831 0.553038 0.623123 0.368662 0.456913 0.940743

Std Dev 0.395861 0.214568 0.346198 0.323865 0.154537 0.253912 0.43082 0.378968 0.315322 0.23727 0.296345

SEM 0.114275 0.06194 0.099939 0.093492 0.044611 0.073298 0.124367 0.109399 0.091026 0.068494 0.085547

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Skew L+R

8577 0.7098 0.4766 0.5569 0.4633 0.55165 0.3878 0.4337 0.4976 0.4491 0.44205 0.9937

9424 0.6545 1.0194 0.3572 0.6781 0.6773 0.54 0.9445 0.351 0.4529 0.5721 1.2494

10283 0 0.55 0.2457 0.4153 0.30275 0 0.6369 0.4871 0.5965 0.430125 0.732875

10405 0.6766 0.5598 0.3802 0.5616 0.54455 0.3617 0.7423 0.3167 0.1264 0.386775 0.931325

10452 0.6145 0.2704 0.0777 0.1143 0.269225 1.0203 0.1158 0.2817 1.6802 0.7745 1.043725

10903 0 0.0462 0.3309 0.2712 0.162075 1.4332 0.3987 0.4609 0.6275 0.730075 0.89215

10904 0.8566 0.3759 0.2278 0.2264 0.421675 0.3211 0.167 0.0427 0.4173 0.237025 0.6587

10927 0.2314 0.3228 0.1005 0.3121 0.2417 0.5693 0.9304 1.6395 0.3451 0.871075 1.112775

13565 0.0304 0.1956 0.1637 0.2601 0.16245 0.911 0.56 0.7183 0.3037 0.62325 0.7857

mean 0.419311 0.424078 0.271178 0.366933 0.370375 0.616044 0.5477 0.532833 0.555411 0.562997 0.933372

sdev 0.328874 0.263024 0.143425 0.167831 0.175757 0.409528 0.282165 0.428264 0.422237 0.194613 0.178584

SEM 0.116274 0.092993 0.050708 0.059337 0.06214 0.14479 0.09976 0.151414 0.149283 0.068806 0.063139

T-test 0.235913 0.973217 0.146613 0.437838 0.157944 0.062329 0.973621 0.635527 0.303834 0.288081 0.945431

Skewness
CODE
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Table A.4: Kurtosis values in Brachial Plexus 
 

 

 

 

 

 

 

 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Kurt L+R

816 2.7263 2.1523 2.8579 2.7686 2.626275 2.4202 1.921 2.0878 2.0733 2.125575 4.75185

10195 0 2.3485 2.3535 2.7099 1.852975 0 2.8405 1.8708 2.0947 1.7015 3.554475

10414 2.2308 2.0978 3.4857 0 1.953575 0 0 2.451 2.0647 1.128925 3.0825

10709 2.341 1.9956 2.1243 2.4366 2.224375 1.8634 2.8575 5.6063 2.2412 3.1421 5.366475

10886 4.4272 2.3299 2.1581 0 2.2288 4.1241 2.072 2.9323 2.3646 2.87325 5.10205

11329 2.0544 2.4028 2.2128 2.6419 2.327975 1.9448 2.0183 2.695 2.173 2.207775 4.53575

11345 2.6951 2.4716 1.9752 0 1.785475 2.8096 3.4611 3.1517 0 2.3556 4.141075

11417 2.0351 2.707 2.002 2.5653 2.32735 3.0208 4.2041 2.8099 3.9495 3.496075 5.823425

14779 5.9041 2.2999 2.7484 0 2.7381 2.3687 1.7446 3.267 2.4182 2.449625 5.187725

14801 2.3098 2.032 2.0388 1.8707 2.062825 2.4922 4.5148 2.6645 1.8875 2.88975 4.952575

14817 3.1141 2.4096 2.2567 2.6823 2.615675 0 4.0569 2.3179 1.9356 2.0776 4.693275

14850 2.1066 2.1128 2.7081 2.7141 2.4104 1.9901 4.9654 3.3402 3.2045 3.37505 5.78545

14898 2.098 2.4934 3.4565 5.5436 3.397875 2.4624 1.9541 2.3765 1.9401 2.183275 5.58115

Mean 2.618654 2.2964 2.490615 1.994846 2.350129 1.961254 2.816177 2.890069 2.180531 2.462008 4.812137

Std Dev 1.321431 0.200074 0.501978 1.55825 0.414732 1.20831 1.335966 0.892475 0.844099 0.649721 0.795728

SEM 0.381464 0.057756 0.144909 0.449828 0.119723 0.348809 0.38566 0.257635 0.24367 0.187558 0.229707

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Kurt L+R

8577 2.3668 1.946 2.097 1.9676 2.09435 1.9631 2.1763 2.4789 1.9083 2.13165 4.226

9424 2.388 3.2639 2.3835 2.6153 2.662675 2.2429 3.3185 2.6207 2.1796 2.590425 5.2531

10283 0 2.6518 2.7959 2.3768 1.956125 0 2.8388 2.6135 2.5828 2.008775 3.9649

10405 2.7936 2.5563 2.5411 2.1236 2.50365 2.2437 2.5889 2.137 1.9849 2.238625 4.742275

10452 2.5088 2.4007 3.277 3.096 2.820625 3.3177 1.826 2.0409 5.5171 3.175425 5.99605

10903 0 2.6105 2.0461 2.1419 1.699625 6.5298 2.2416 2.1543 2.3304 3.314025 5.01365

10904 2.929 2.5657 2.1194 2.5424 2.539125 2.4155 2.0862 2.5223 2.6747 2.424675 4.9638

10927 1.8732 2.4386 2.2603 2.8603 2.3581 2.3883 2.8693 3.6555 2.225 2.784525 5.142625

13565 2.3531 1.9662 2.5528 2.6876 2.389925 3.3515 2.1037 3.1223 2.2608 2.709575 5.0995

mean 1.9125 2.488856 2.452567 2.490167 2.336022 2.716944 2.449922 2.593933 2.629289 2.597522 4.933544

sdev 1.059804 0.369783 0.374141 0.350077 0.336982 1.629555 0.454674 0.48688 1.047193 0.423906 0.556287

SEM 0.374697 0.130738 0.132279 0.123771 0.119141 0.576135 0.160752 0.172138 0.370239 0.149873 0.196677

T-test 0.202045 0.20488 0.848216 0.306652 0.934302 0.281111 0.393834 0.351007 0.327792 0.578729 0.692335

Kurtosis
CODE
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Table A.5: Energy values in Brachial Plexus 
 

 

 
 

 

 

 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Energy L+R

816 0.1644 0.1562 0.1637 0.1718 0.164025 0.1518 0.1469 0.1402 0.1314 0.142575 0.3066

10195 0.1608 0.165 0.1722 0 0.1245 0 2.8405 1.8708 2.0947 1.7015 1.826

10414 0.1486 0.1603 0.2379 0 0.1367 0 0 0.1553 0.1389 0.07355 0.21025

10709 0.1699 0.1498 0.1654 0.1761 0.1653 0.1321 0.1771 0.2421 0.1736 0.181225 0.346525

10886 0.2109 0.1559 0.142 0 0.1272 0.2031 0.1572 0.1897 0.1575 0.176875 0.304075

11329 0.1351 0.1515 0.1577 0.1899 0.15855 0.134 0.1382 0.1859 0.146 0.151025 0.309575

11345 0.1678 0.1566 0.1585 0 0.120725 0.1815 0.1746 0.1742 0 0.132575 0.2533

11417 0.1349 0.2082 0.1453 0.159 0.16185 0.1822 0.2856 0.1741 0.2259 0.21695 0.3788

14779 0.261 0.1451 0.1645 0 0.14265 2.3687 1.7446 3.267 2.4182 2.449625 2.592275

14801 0.174 0.1574 0.1488 0.1701 0.162575 0.1847 0.2352 0.1882 0.1307 0.1847 0.347275

14817 0.2283 0.165 0.1583 0.1524 0.176 0 0.2189 0.156 0.1375 0.1281 0.3041

14850 0.1437 0.1559 0.1553 0.1627 0.1544 0.1361 0.2381 0.2051 0.1987 0.1945 0.3489

14898 0.1704 0.1575 0.2011 0.252 0.19525 0.1429 0.1647 0.1512 0.1311 0.147475 0.342725

Mean 0.1746 0.160338 0.166977 0.110308 0.153056 0.293623 0.501662 0.546138 0.468015 0.45236 0.605415

Std Dev 0.035964 0.014788 0.024861 0.090223 0.020906 0.603123 0.795966 0.905283 0.766835 0.708357 0.701417

SEM 0.010382 0.004269 0.007177 0.026045 0.006035 0.174107 0.229775 0.261333 0.221366 0.204485 0.202482

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Energy L+R

8577 0.1533 0.1497 0.1657 0.1535 0.15555 0.1527 0.14 0.1495 0.1706 0.1532 0.30875

9424 0.1563 0.189 0.165 0.1522 0.165625 0.1522 0.1837 0.1681 0.1444 0.1621 0.327725

10283 0 0.1618 0.1892 0.1579 0.127225 0 0.1797 0.1745 0.1668 0.13025 0.257475

10405 0.169 0.1757 0.1573 0.1478 0.16245 0.1471 0.1686 0.1421 0.1302 0.147 0.30945

10452 0.1835 0.1543 0.2087 0.2053 0.18795 0.1926 0.1326 0.1495 0.3303 0.20125 0.3892

10903 0 0.1726 0.1499 0.1428 0.116325 0.2767 0.1411 0.1551 0.1965 0.19235 0.308675

10904 0.1801 0.1692 0.1452 0.1741 0.16715 0.1598 0.1499 0.1716 0.1807 0.1655 0.33265

10927 0.1333 0.1643 0.1446 0.1913 0.158375 0.1598 0.2 0.208 0.1484 0.17905 0.337425

13565 0.1432 0.1355 0.1815 0.1894 0.1624 0.1826 0.1764 0.188 0.1641 0.177775 0.340175

mean 0.1243 0.163567 0.167456 0.168256 0.155894 0.158167 0.163556 0.167378 0.181333 0.167608 0.323503

sdev 0.068167 0.014821 0.020573 0.021171 0.020353 0.06753 0.022083 0.019926 0.055885 0.021189 0.03314

SEM 0.024101 0.00524 0.007274 0.007485 0.007196 0.023875 0.007807 0.007045 0.019758 0.007492 0.011717

T-test 0.081614 0.638953 0.963126 0.050709 0.76603 0.455209 0.167067 0.172976 0.221008 0.189237 0.189622

Energy
CODE
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Table A.6: Entropy values in Brachial Plexus 
 

 

 

 

 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Entropy L+R

816 1.9434 1.9541 1.9482 1.9303 1.944 1.9795 2.0132 2.0498 2.0882 2.032675 3.976675

10195 1.9604 1.9392 1.9403 0 1.459975 0 1.9232 1.9596 2.0749 1.489425 2.9494

10414 1.9962 1.9812 1.9762 0 1.4884 0 0 1.9901 2.0691 1.0148 2.5032

10709 1.9138 2.007 1.9579 1.9307 1.95235 2.102 1.8868 1.6133 1.932 1.883525 3.835875

10886 2.02 2.0216 2.0332 0 1.5187 1.8999 1.9564 1.8303 1.9635 1.912525 3.431225

11329 2.0603 2.0119 1.99 1.8826 1.9862 2.6608 2.0491 1.8691 1.9961 2.143775 4.129975

11345 1.9494 1.9597 1.941 0 1.462525 1.8387 1.8824 1.8993 0 1.4051 2.867625

11417 2.0908 1.7894 2.0193 1.9788 1.969575 1.8743 1.5907 1.915 1.7266 1.77665 3.746225

14779 2.0013 2.0374 1.9349 0 1.4934 1.9912 2.1228 1.9893 1.9917 2.02375 3.51715

14801 1.9368 1.9438 2.0008 1.9385 1.954975 1.8611 1.6952 1.8285 2.1076 1.8731 3.828075

14817 1.7952 1.9525 1.9548 2.0182 1.930175 0 2.0012 1.9325 2.069 1.500675 3.43085

14850 2.0648 1.9716 1.9698 1.971 1.9943 2.0676 1.9123 1.8151 1.8322 1.9068 3.9011

14898 1.919 1.9672 1.7419 1.6262 1.813575 2.0516 1.9753 1.9867 2.0844 2.0245 3.838075

Mean 1.973185 1.964354 1.954485 1.1751 1.766781 1.563592 1.769892 1.898354 1.841177 1.768254 3.535035

Std Dev 0.075656 0.058814 0.06823 0.933257 0.227302 0.87925 0.528605 0.107838 0.542264 0.310725 0.469931

SEM 0.02184 0.016978 0.019696 0.269408 0.065616 0.253818 0.152595 0.03113 0.156538 0.089699 0.135657

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg Entropy L+R

8577 2.0129 2.0146 1.9525 2.002 1.9955 1.9933 2.0553 2.0249 1.9085 1.9955 3.991

9424 2.0032 1.8759 1.9103 2.0281 1.954375 0.0268 1.8907 1.8924 2.0355 1.46135 3.415725

10283 0 1.9415 1.8031 1.9606 1.4263 0 1.8562 1.8976 1.9188 1.41815 2.84445

10405 1.9195 1.8814 1.9694 2.0267 1.94925 2.0073 1.9565 2.038 2.0925 2.023575 3.972825

10452 1.8428 1.9668 1.7181 1.7436 1.817825 1.8654 2.0817 1.976 1.4593 1.8456 3.663425

10903 0 1.9107 2.0067 2.0639 1.495325 2.0814 2.0494 2.0041 2.0916 2.056625 3.55195

10904 1.9218 1.8806 2.018 1.8639 1.921075 1.9247 1.9817 1.8864 1.847 1.90995 3.831025

10927 2.083 1.9187 2.0209 1.8039 1.956625 2.0022 1.8811 1.7812 1.9744 1.909725 3.86635

13565 2.0346 2.0664 1.8311 1.7875 1.9299 1.8809 1.9227 1.8225 1.955 1.895275 3.825175

mean 1.535311 1.939622 1.914456 1.920022 1.827353 1.531333 1.963922 1.924789 1.920289 1.835083 3.662436

sdev 0.823418 0.062044 0.101625 0.114236 0.201785 0.813865 0.078474 0.085696 0.180873 0.220797 0.340418

SEM 0.291122 0.021936 0.03593 0.040389 0.071342 0.287745 0.027745 0.030298 0.063948 0.078064 0.120356

T-test 0.17162 0.385423 0.346759 0.017512 0.539678 0.933924 0.233334 0.549893 0.646326 0.580376 0.490512

Entropy
CODE
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Part 2: Results of First Order Features of the Median Nerve 
 

Table A.7: First order Features of the Median Nerve in Controls 
  

 
 

 

Table A.8: First order Features of the Median Nerve in Patients 
 

            

 

 

 

Controls Mean Variance Skewness Kurtosis Energy Entropy

816 4.2532 3.9683 0.7132 2.587 0.1739 1.9397

10195 3.7615 4.1508 0.6465 0.4415 0.1575 0.9838

10414 4.05 3.4475 0.591 2.4435 0.1653 1.9245

10709 3.75 5.5833 0.8302 2.2977 0.2072 1.8813

10886 3.5852 3.5041 0.8047 3.1311 0.1672 1.9286

11329 3.254 2.526 1.117 3.8489 0.2248 1.7089

11345 3.0694 3.3887 1.1715 3.5935 0.2379 1.7469

11417 3.8769 3.2772 0.4947 2.4417 0.1654 1.917

14779 2.6148 1.1405 1.6155 8.2642 0.3352 1.6783

14801 3.8034 2.6024 0.8947 3.493 0.1984 1.7948

14817 3.4266 2.4824 0.1663 1.8995 0.1411 2.043

14850 3.6333 2.5846 0.8141 3.4525 0.1922 1.8048

14898 2.4887 1.9115 1.453 5.942 0.2696 1.5263

mean 3.505154 3.120562 0.870185 3.372008 0.202746 1.759838

sd 0.505136 1.070389 0.376786 1.863582 0.051609 0.259735

SEM 0.14582 0.308995 0.108769 0.53797 0.014898 0.074979

Patients Mean Variance Skewness Kurtosis Energy Entropy

8577 3.0031 4.0464 1.3285 3.774 0.2372 1.7416

9424 3.8333 4.0648 0.8451 2.5909 0.1961 1.858

10283 4.0625 3.1697 0.4226 2.4886 0.1613 1.9331

10405 4.0089 2.6517 0.3826 2.9894 0.1735 1.879

10903 4.4063 4.3037 0.0315 2.1379 0.1363 2.0663

10904 4.32 2.9976 0.3217 2.9326 0.1692 1.9258

10927 4 2.7085 0.5815 3.2377 0.1752 1.8793

13565 4.2605 4.2935 0.1602 2.1506 0.1351 2.0676

mean 3.986825 3.529488 0.509213 2.787713 0.172988 1.918838

sd 0.41224 0.670239 0.386974 0.523605 0.030812 0.101484

SEM 0.155812 0.253326 0.146262 0.197904 0.011646 0.038357
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Appendix B: Results of Run Length Matrices  

 

Part 1: Theoretical Explanation of Run Length Matrices 
 

 

For an image, the run length matrix ),( jip is explained as the number of runs with pixels 

having gray value i  and run length j . 

Short Run Emphasis 

The short run emphasis feature measures the distribution of short runs and is expected to 

be large for fine textures. SRE is given by the equation below: 
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Where: 

rn  is the total number of runs in the image 

M is the number of gray levels in the image 

N is the number of run lengths  

Long Run Emphasis 

The LRE is dependent on the occurrence of long runs and is expected to be large for 

coarse textures. LRE is given by the equation below  
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Gray- Level Non-uniformity (GLN) 

GLN measures the similarity in the gray level values across the image. If the GLN value 

is low, it means the gray-level values are similar through the image. GLN is given by the 

equation below  
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Run length Non-uniformity (RLN) 

RLN measures the similarity of the length of runs across the image. A low RLN value 

signifies that the run lengths are similar across the image. RLN is given by the equation 

below: 
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Run Percentage (RP) 

RP is the measure of homogeneity and the distribution of runs in any given direction in 

the image. The equation of RP is given below: 

p

r

n

n
RP                                                                                                          

Low Gray -Level Run Emphasis (LGRE) 

LGRE measures the distribution of low gray level values in the image and is given by the 

equation below: 
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High Gray Level Run Emphasis (HGRE) 

HGRE measures the distribution of high gray level values in the image and is given by 

the equation below: 
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Part 2: Results of Run Length Matrices in the Median Nerve 
 

Table B.1: Short Run Emphasis (SRE) & Long Run Emphasis (LRE) 

Values of the Median Nerve 
 

           

 

 

 

 

 

 

 

Prox RU Distal P+M+D Prox RU Distal P+M+D

816 0.8467 0.8162 0.8879 2.5508 1.9371 2.1716 1.5225 5.6312

10195 0.8264 0.8719 0.8632 2.5615 1.8231 1.7513 1.755 5.3294

10414 0.8509 0.8859 0.8806 2.6174 1.7565 1.6342 1.5908 4.9815

10709 0.8594 0.8581 0.8208 2.5383 1.6442 1.814 2.0033 5.4615

10886 0.8622 0.8784 0.859 2.5996 1.6689 1.5423 1.7548 4.966

11329 0.886 0.8077 0.854 2.5477 1.6347 2.3092 1.8956 5.8395

11345 0.8985 0.85 0.8356 2.5841 1.5573 1.9561 2.0749 5.5883

11417 0.865 0.8179 0.8444 2.5273 1.6474 2.1429 1.7477 5.538

14779 0.8839 0.8758 0.799 2.5587 1.5912 1.6619 2.2337 5.4868

14801 0.7946 0.8556 0.882 2.5322 2.2878 1.7935 1.5522 5.6335

14817 0.8677 0.8456 0.8713 2.5846 1.729 1.8831 1.6451 5.2572

14850 0.8558 0.8606 0.8342 2.5506 1.7868 1.7855 1.9504 5.5227

14898 0.8112 0.8378 0.7528 2.4018 2.0131 1.9974 2.9101 6.9206

mean 0.854485 0.850885 0.844985 2.550354 1.775162 1.880231 1.895085 5.550477

sdev 0.028404 0.024131 0.036358 0.050006 0.195399 0.21791 0.357826 0.463162

SEM 0.007878 0.006693 0.010084 0.013869 0.054194 0.060437 0.099243 0.128458

Prox RU Distal P+M+D Prox RU Distal P+M+D

8577 0.876 0.814 0.7744 0.821467 1.6514 2.4676 2.9791 2.366033

9424 0.8924 0.8859 0.8484 0.875567 1.4963 1.5643 1.7928 1.6178

10283 0.8763 0.8783 0.8729 0.875833 1.6076 1.623 1.5789 1.603167

10405 0.8671 0.7614 0.8447 0.8244 1.6416 2.63787 1.8767 2.052057

10903 0.853 0.8525 0.8454 0.8503 1.9252 1.856 1.5717 1.7843

10904 0.8668 0.8635 0.8714 0.867233 1.6835 1.6858 1.5996 1.6563

10927 0.7296 0.8796 0.9086 0.839267 3.8929 1.5152 1.4214 2.2765

13565 0.887 0.8367 0.9667 0.8968 1.5429 2.0488 2.1333 1.908333

mean 0.856025 0.846488 0.866563 0.856358 1.930175 1.924821 1.869188 1.908061

sdev 0.049148 0.039336 0.051971 0.025173 0.751369 0.398301 0.468176 0.278867

SEM 0.017376 0.013907 0.018375 0.0089 0.265649 0.140821 0.165525 0.098594

TTest 0.941059 0.79422 0.353356 0.0000 0.607777 0.79048 0.901553 0.0000

CODE
SRE LRE

CODE
SRE LRE
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Table B.2: Run Percentage(RP) & Run Length Non-Uniformity(RLN) 

Values of the Median Nerve 
 

            

 

 

 

 

 

 

 

 

Prox RU Distal P+M+D Prox RU Distal P+M+D

816 3.2407 3.0727 3.3182 3.210533 235.0971 209.6923 381.1292 275.3062

10195 3.25 3.3056 3.4538 3.336467 166.2923 426.2807 314.461 302.3447

10414 3.3583 3.2662 3.4417 3.3554 273.4864 373.6759 304.799 317.3204

10709 3.2929 3.3077 3.1302 3.2436 226.0982 356.7171 377.6356 320.1503

10886 3.4846 3.5444 3.2443 3.424433 316.3113 232.1285 395.6375 314.6924

11329 3.3182 2.9008 3.1619 3.126967 325.5388 444.1464 481.6516 417.1123

11345 3.4909 3.162 3.0926 3.2485 294.8542 462.6867 435.8982 397.813

11417 3.4667 3.15 3.4154 3.344033 219.4744 236.127 293.527 249.7095

14779 3.5333 3.3681 2.9481 3.283167 234.8553 350.7773 472.7462 352.7929

14801 2.9852 3.2517 3.4359 3.224267 236.7469 319.3527 390.6294 315.5763

14817 3.3545 3.1825 3.3497 3.295567 261.5149 307.1521 342.4781 303.715

14850 3.2222 3.3021 3.0714 3.198567 219.163 441.1041 419.3597 359.8756

14898 2.974 3.0437 2.6767 2.898133 281.0044 303.444 374.6348 319.6944

mean 3.3055 3.219808 3.210762 3.245356 253.1106 343.3296 383.4298 326.6233

sdev 0.17019 0.156009 0.220735 0.125455 42.71822 81.89959 57.30147 43.98518

SEM 0.047202 0.043269 0.061221 0.034795 11.8479 22.71486 15.89257 12.1993

Prox RU Distal P+M+D Prox RU Distal P+M+D

8577 3.3642 2.9583 2.1814 2.834633 394.5046 438.3127 505.5919 446.1364

9424 3.3471 3.4427 3.2176 3.3358 305.5333 490.649 468.5281 421.5701

10283 3.3997 3.3561 3.5 3.4186 457.6962 637.3047 477.2707 524.0905

10405 3.3227 2.8669 3.2431 3.144233 517.0109 523.7307 703.8653 581.5356

10903 3.1031 3.2436 3.2265 3.191067 420.0276 517.2187 504.9868 480.7444

10904 3.4941 3.3813 3.3646 3.413333 419.9259 758.2187 692.6821 623.6089

10927 2.4 3.6667 3.2449 3.103867 382.8452 396.3788 125.1132 301.4457

13565 3.40228 2.9286 3.75 3.360293 482.3143 407.3537 582.1111 490.593

mean 3.229148 3.230525 3.216013 3.225228 422.4823 521.1459 507.5187 483.7156

sdev 0.330443 0.267261 0.427196 0.186502 61.03178 115.1224 168.4788 93.08713

SEM 0.116829 0.094491 0.151037 0.065939 21.57799 40.70192 59.56624 32.91127

TTest 0.583037 0.924751 0.976512 0.804304 0.0000 0.004135 0.096211 0.002392

RP RLN

RP RLN

CODE

CODE
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Table B.3: High Gray Level Run Emphasis (HGRE) values of the 

Median Nerve 
 

                   

 

 

 

 

 

Prox RU Distal

816 40.4743 46.2071 44.9687 43.88337

10195 35.5769 56.7882 37.9176 43.42757

10414 46.1861 42.0775 68.9952 52.4196

10709 35.9448 44.2558 59.6689 46.62317

10886 34.9382 26.5611 50.9405 37.47993

11329 39.7169 90.2093 108.0783 79.33483

11345 29.6327 64.7247 79.0299 57.79577

11417 30.641 39.2963 39.4775 36.4716

14779 29.9434 51.3876 130.9472 70.7594

14801 74.4094 44.4667 80.8731 66.58307

14817 34.1003 73.2646 35.5511 47.63867

14850 36.1223 67.7571 63.6233 55.83423

14898 41.2576 85.9596 104.0927 77.1033

mean 39.14953 56.3812 69.55108 55.02727

sdev 11.17153 18.20105 28.83619 13.89671

SEM 3.098424 5.048064 7.997721 3.854255

Prox RU Distal P+M+D

8577 44.6257 83.8113 103.473 77.30333

9424 41.0642 58.1952 67.6446 55.63467

10283 56.2816 81.07 59.9865 65.77937

10405 56.409 163.5779 119.0797 113.0222

10903 67.3545 68.0856 77.6887 71.04293

10904 49.7003 97.6063 91.4107 79.57243

10927 49.1667 12.6667 14.9874 25.60693

13565 64.6327 23.2073 78.4 55.41333

mean 53.65434 73.52754 76.58383 67.9219

sdev 8.649499 43.80691 29.37427 23.37229

SEM 3.05806 15.48808 10.38537 8.263352

TTest 0.005564 0.351091 0.619948 0.213534

CODE

CODE

HGRE

HGRE

P+M+D



143 
 

Table B.4: Mean values of the extracted RLM features of the median 

nerve (Proximal Location) 
 

 SRE LRE RP RLN LGRE HGRE 

Controls 0.8544 

 

1.7751 

 

3.3055 

 

253.1105 

 

60.6177 

 

39.3033 

 

Patients 0.8560 

 

1.9301 

 

3.2291 

 

422.4822 

 

68.9045 

 

53.6543 

 

 

Table B.5: Mean values of the extracted RLM features of the median 

nerve (RU Joint) 
 

 SRE LRE RP RLN LGRE HGRE 

Controls 0.8508 

 

1.8802 

 

3.2198 

 

343.3296 

 

48.2365 

 

56.3812 

 

Patients 0.8464 

 

1.9248 

 

3.2305 

 

521.1458 

 

48.2365 

 

73.5275 

 

 

Table B.6: Mean values of the extracted RLM features of the median 

nerve (Distal Location) 
 

 SRE LRE RP RLN LGRE HGRE 

Controls 0.8449 

 

1.8950 

 

3.2107 

 

383.4297 52.5496 

 

69.5510 

 

Patients 0.8665 

 

1.8691 

 

3.2160 

 

507.5186 

 

56.8736 

 

76.5838 
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Part 3: Results of Run Length Matrices in the Brachial Plexus 
 

Table B.7: Mean RLM values of the Brachial Plexus 
 

 

 

 

 

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

Controls 0.7896 0.7983 0.8081 0.7988 0.7990 0.7993 0.7939 0.7336 0.7837 0.7778 1.5767

Patients 0.7776 0.7863 0.7857 0.7646 0.7787 0.7756 0.7693 0.7722 0.7462 0.7648 1.5435

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

Controls 2.4665 2.3415 2.2827 2.5285 2.3830 2.2660 2.4566 2.5428 2.2849 2.3906 4.7737

Patients 2.4192 2.6096 2.5029 2.7872 2.5921 2.6835 2.7472 2.6009 3.3517 2.8603 5.4525

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

Controls 2.9311 2.9915 3.0004 2.9279 2.9711 2.9856 2.9171 2.8928 2.8768 2.9172 5.8884

Patients 2.9283 2.8818 2.8984 2.7538 2.8598 2.8537 2.8297 2.8675 2.6403 2.7924 5.6522

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

Controls 198.05 207.80 234.28 228.02 214.99 218.38 222.09 259.81 227.51 236.73 451.72

Patients 219.79 300.22 314.81 331.76 299.25 267.49 308.14 332.18 289.66 302.00 601.25

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R
Controls 22.19 25.41 26.07 23.93 24.42 23.54 21.35 22.22 24.83 22.89 47.32

Patients 22.02 19.75 25.07 23.72 22.89 20.88 22.33 24.27 21.80 22.30 45.20

LC5 LC6 LC7 LC8 L-Avg RC5 RC6 RC7 RC8 R-Avg L+R

Controls 49.97 48.21 54.45 57.09 51.83 51.75 58.19 70.22 53.74 59.58 111.41

Patients 54.98 73.05 82.33 91.98 77.53 73.09 79.09 83.79 84.88 80.64 158.17

SRE

LRE

HGRE

RP

RLN

LGRE
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Appendix C: Plots of the Autocorrelation Function 
 

Figure C.1: The Autocorrelation Function of a patient nerve 
 

 

 

Figure C.2 The Autocorrelation signature of the x-axis in a patient nerve 
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Figure C.3: The Autocorrelation signature of the y-axis in a patient nerve 
 

 

 

Figure C.4: The Autocorrelation Function of a patient nerve 
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Figure C.5 The Autocorrelation signature of the x-axis in a patient nerve 
 

 

 

Figure C.6: The Autocorrelation signature of the y-axis in a patient nerve 
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Figure C.7: The Autocorrelation Function of a control nerve 
 

 

 

Figure C.8: The Autocorrelation signature of the x-axis in a control nerve 
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Figure C.9 The Autocorrelation signature of the y-axis in a control nerve 
 

 

 

Figure C.10: The Autocorrelation Function of a control nerve 
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Figure C.11: The Autocorrelation signature of the x-axis in a control nerve 
 

 

 

Figure C.12: The Autocorrelation signature of the y-axis in a control nerve 
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Appendix D: Results of Shape Metrics  
 

Table D.1: Shape Metrics of the Median Nerve at the Proximal 

Location 
 

         

 

 

 

Eccentricity Circularity Area Area (mm2) Aspect Ratio

8577 0.9047 0.722279389 310.602 6.609 2.347571499

9424 0.6884 1.109762813 219.405 5.555 1.378649507

10283 0.9211 0.757164036 250.926 5.940 2.568456917

10405 0.863 0.485845779 476.666 8.187 1.979076965

10452

10903 0.9415 0.670735328 307.212 6.573 2.967078333

10904 0.9009 0.851579108 266.850 6.126 2.304382916

10927 0.8991 0.544162658 664.922 9.670 2.284743579

13565 0.8373 0.839662902 335.828 6.872 1.828899179

816 0.7513 1.011630418 222.178 5.590 1.515237566

10195 0.5782 1.176658225 124.612 4.186 1.225614794

10414 0.7066 1.021118024 234.834 5.747 1.413177687

10709 0.494 1.15600171 204.465 5.362 1.150094382

10886 0.6238 1.126706855 176.407 4.981 1.279400444

11329 0.7447 1.015179249 178.871 5.015 1.498385867

11345 0.7159 1.14242856 147.665 4.557 1.432184751

11417 0.7158 1.140179774 136.573 4.382 1.432100334

14779 0.5443 1.100249783 201.218 5.319 1.192027503

14801 0.8183 0.994551019 239.778 5.807 1.739631928

14817 0.7537 1.068764359 176.502 4.982 1.521624646

14850 0.5647 1.023516637 157.905 4.712 1.211654013

14898 0.8043 0.924178734 291.262 6.400 1.682987295

Patient MEAN 0.870 0.748 354.052 6.941 2.207

SD 0.080 0.195 147.579 1.354 0.482

SEM 0.028 0.069 52.177 0.479 0.170

Control MEAN 0.678 1.069 191.713 5.157 1.407

SD 0.105 0.077 47.009 0.629 0.187

SEM 0.029 0.021 13.038 0.175 0.052

T TEST 0.000 0.000 0.001 0.001 0.000

Code
PROXIMAL
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Table D.2: Shape Metrics of the Median Nerve at the Distal Location 
 

       

 

 

 

 

Eccentricity Circularity Area Area (mm2) Aspect Ratio

8577 0.9692 0.546205304 350.893 7.025 4.063016155

9424 0.9134 0.726314933 332.347 6.836 2.456947789

10283 0.9473 0.672795643 291.0412 6.397 3.122753227

10405 0.9452 0.538894806 427.2283 7.751 3.062062963

10452

10903 0.946 0.658919005 236.2191 5.764 3.083760303

10904 0.8582 0.76161904 406.3962 7.560 1.948296598

10927 0.9336 0.615253931 501.4049 8.397 2.790371418

13565 0.9109 0.74568085 376.5399 7.277 2.423148016

816 0.7425 1.035009724 257.1826 6.014 1.492937205

10195 0.8315 0.855645575 229.974 5.687 1.80015368

10414 0.7796 0.993277771 383.6822 7.345 1.596697844

10709 0.858 0.871548835 336.6738 6.881 1.946854825

10886 0.8088 0.842594393 354.4331 7.060 1.700308138

11329 0.9634 0.520547676 406.6723 7.562 3.730194028

11345 0.8876 0.792357351 298.3612 6.477 2.170889904

11417 0.7178 1.080288176 255.8692 5.998 1.436180384

14779 0.5198 0.981006335 372.8161 7.241 1.170525082

14801 0.8305 0.861844484 442.6302 7.890 1.795439408

14817 0.8561 0.904300524 199.4515 5.296 1.934934795

14850 0.8015 0.878393379 277.7559 6.250 1.672342181

14898 0.8125 0.896492707 441.9761 7.884 1.715366268

Patient MEAN 0.93 0.66 365.26 7.13 2.87

SD 0.03 0.09 82.50 0.82 0.63

SEM 0.01 0.03 29.17 0.29 0.22

11.5% 5.8%

Control MEAN 0.80 0.89 327.50 6.74 1.86

SD 0.10 0.14 80.60 0.85 0.62

SEM 0.03 0.04 22.35 0.24 0.17

T TEST 0.00 0.00 0.31 0.31 0.00

DISTAL
Code
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Table D.2: Shape Metrics of the Median Nerve at the RU Joint Location 
 

 

 

Eccentricity Circularity Area Area (mm2) Aspect Ratio

8577 0.9434 0.677237478 333.7331 6.851 3.016142349

9424 0.6746 0.962292202 359.6167 7.111 1.354724658

10283 0.918 0.661554308 551.3556 8.805 2.521918941

10405 0.9385 0.444193331 553.8155 8.825 2.896328958

10452

10903 0.896 0.605014616 271.198 6.176 2.25158675

10904 0.9252 0.643570783 599.71 9.183 2.63554861

10927 0.9337 0.613903321 686.7024 9.827 2.793788792

13565 0.8945 0.813060834 409.8407 7.592 2.23664432

816 0.7138 1.003203673 231.2487 5.703 1.427922783

10195 0.8157 0.886762063 363.3914 7.149 1.728567412

10414 0.7911 0.950567493 271.0021 6.173 1.634779257

10709 0.8543 0.878393379 271.9263 6.184 1.92377417

10886 0.6206 1.011630418 223.8098 5.610 1.27529736

11329 0.8768 0.705994935 331.5007 6.828 2.079913516

11345 0.8665 0.892797015 327.1172 6.782 2.003509453

11417 0.7945 1.027060674 199.2738 5.294 1.646618116

14779 0.6624 0.992567014 281.7632 6.295 1.3348583

14801 0.7679 1.027494828 247.8899 5.904 1.5611444

14817 0.5247 1.082516381 395.1765 7.455 1.174658395

14850 0.8517 0.863101751 248.9906 5.917 1.908097876

14898 0.6531 0.940586067 635.8486 9.456 1.320573506

Patient MEAN 0.89 0.68 470.75 8.05 2.46

SD 0.09 0.15 147.03 1.29 0.53

SEM 0.03 0.05 51.98 0.46 0.19

51.9% 23.4%

Control MEAN 0.75 0.94 309.92 6.52 1.62

SD 0.11 0.10 113.39 1.08 0.30

SEM 0.03 0.03 31.45 0.30 0.08

T TEST 0.01 0.00 0.01 0.01 0.00

RU Joint
Code
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