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SUMMARY 

Nrf2 project 

The protein nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that 

provides protection against oxidative stress and the dysfunction of this pathway has been 

suggested to be implicated in many neurodegenerative diseases. The aim of this thesis was to 

identify novel Nrf2 activators that disrupt the protein-protein interaction between Nrf2 and 

Keap1 and thereby induce increased expression of antioxidant enzymes and protective genes. 

The crystal structure of the Keap1-Nrf2 interface was used to perform a virtual screen and 

compounds from the screen were assayed using a cellular nuclear complementation assay that 

measures the nuclear translocation of Nrf2 from the cytosol. Although two novel compounds 

were found to increase the Nrf2 nuclear translocation, they had low activity and further 

characterisation did not provide sufficient evidence of a Nrf2-Keap1 robust interaction.  

iGluRs project 

AMPA and kainate receptors are ionotropic glutamate receptors (iGluRs) that are important for 

excitatory transmission and synaptic plasticity and are linked to several neurological disorders 

such as epilepsy, schizophrenia and autism. This project aimed to find novel allosteric 

modulators binding in the ligand-binding domain (LBD) of the GluA2 and GluK1 and GluK2 

subtypes of AMPA and kainate receptors, respectively, using protein purification and X-ray 

crystallography methodologies. Fragment screening for GluA2 identified eight novel fragments, 

five of which were located at the dimer interface and three located in a novel site near the 

glycine-threonine dipeptide linker. As regards kainate receptors, structural information on the 

Gluk1 and GluK2 LBD was obtained, both proteins were soaked with in-house fragments with 

one compound displaying 20% occupancy in the GluK2 dimer interface. These data form the 

basis of future studies in the search for novel drugs for the treatment of epilepsy and 

schizophrenia.  
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TLE Temporal lobe epilepsy 

U2OS Human bone osteosarcoma epithelial cell line 

UGT UDP-glucuronosyltransferase 

UniProt Universal Protein Resource 

UOS University of Sussex  

WB Western blot 

XChem Diamond fragment screening 

β-gal Beta galactosidase 
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CHAPTER 1 
GENERAL INTRODUCTION TO DRUG DISCOVERY 

 

1.1 OVERVIEW OF THE DRUG DISCOVERY PROCESS  

Developing a new drug from initial research to a commercial  final product is a long and complex 

process that can take around 12 to 15 years or more and costs around $2.6 billion (Hughes et al. 

2011; Mullin 2014). Usually a target is a protein and/or pathway involved in pathology, so the 

modification of the target will result in a beneficial therapeutic effect. The idea for a target 

identification can originate from academic or industrial research, usually both work in 

collaboration to build enough supporting evidence for a desired target (target validation). Once 

a target is chosen, academia and/or industry design a variety of early processes to identify 

molecules that are able to satisfy the characteristics of a suitable drug. Some of those early 

stages are target validation, assay development, high throughput screening, hit identification 

and lead optimisation, which conclude in preclinical and clinical stages (Fig. 1.1).  

 

 

Figure 1.1. Drug Discovery process. Drug discovery comprises the initial stages of target 

identification and validation to clinical trials for regulatory approval (Adapted from Gopinathan 

et al. 2015). 
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Target identification and validation 

The first step of a drug discovery process is the target identification, which means identifying a 

molecular target for a drug molecule. A molecular target is usually a molecule involved in 

biological processes, usually a protein in isolation or in complex, is associated with a disease. A 

drug molecule or a small compound binding to the molecular target (i.e. protein) can have 

therapeutic effects in the disease related to the molecular target. This stage itself is focused on 

identifying the correct drug targets for a specific disease, which usually does not have treatment 

or is in some way insufficient. Some methods used for target identification are 

chemoproteomics, phenotypic screening and gene association studies (Hughes et al. 2011). The 

most common molecular drugs are small molecules which bind in specific proteins, however, 

other approaches for new drugs have been investigated. For example, the development of lipid 

drugs such as Vascepa, approved by the FDA in 2012. This drug targets the modulation of 

cholesterol levels and prevents cardiovascular disease and pancreatitis (Hiatt & Smith 2014).  

Another example is the development of small molecule drugs (glycomimetics) that mimic the 

function of carbohydrates involved in disease-protein interactions  (Ernst & Magnani 2009). 

More recently mRNA-based drugs have been developed by Moderna Therapeutics and 

AstraZeneca, the most recent is AZD8601 which has possible regenerative and healing 

properties in heart failure, diabetic wound and ischaemic vascular diseases. AZD8601 is a mRNA 

modified drug that is currently under phase I clinical trial in patients with type II diabetes mellitus 

(Mullard, 2016 & NCT02935712, clinicaltrials.gov).  

A potential target must undergo a validation process, which is focused on demonstrating the 

effect of a target disruption on disease-related relevant pathology. Transgenic animals and gene 

knockout experiments allow the observation of phenotypic changes as a result of gene 

manipulation. These techniques are established approaches for target validation in vivo in 

animal models (Hughes et al. 2011). However, some animal models are difficult to compare to 

human processes. Proteomics is a technique for the study of proteins expressed in cells, this 

technique is also used for target validation by identifying novel proteins required for biological 

processes. These proteins might act as a potential drug target in a specific-related disease (Kopec 

et al., 2005). Other well-established techniques includes antisense technology and RNA 

interference (RNAi) that help disrupting the expression of a particular gene (Hughes et al. 2011). 

If a drug target fails in the target identification and validation steps it suggests that the drug will 

not work for a molecular target involved in disease or might not be safe to use in humans 

(Hughes et al. 2011). 
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Lead identification 

When a drug target is identified and validated, research will focus on lead discovery (hit 

identification and screening assays).  In this stage high-throughput screening is commonly used 

to identify potential candidates for a lead generation (hit-to-lead). Hit-to-lead phase is focused 

in refining each hit to produce a more potent and selective compound to be studied in in-vivo 

models (Hughes et al. 2011). 

 

Lead Optimisation 

This stage is focused on the search for optimal efficacy, in which compounds are modified to 

improve potency, selectivity, pharmacodynamics and pharmacokinetics properties. 

Toxicological properties are tested in this stage, such as in vitro genotoxicity measured by the 

Ames test and in vivo toxicity model using the Irwin observation test that measures physiological 

and behavioural functions for new substances (Hughes et al. 2011). After lead optimisation 

compounds are ready for final characterisation before preclinical studies (Hughes et al. 2011).  

 

Preclinical testing and clinical trials 

Preclinical studies are required before the initiation of clinical studies to establish if a drug is safe 

in humans; studies are focused on finding out potential toxicity. According to the U.S. Food & 

Drug Administration (FDA) guidelines, preclinical research must provide detailed information on 

dosing and toxicity levels using good laboratory practices (GLP).  

The aim of clinical studies is to test if the candidate drug is safe and well-tolerated and has 

efficacy in human volunteers. FDA has human guidelines for drug testing that include 

characterisation of absorption, metabolism, excretion, toxicity and undesired side effects. 

Clinical trials are defined by three to four phases according to the FDA.   

Phase 0, a reduced dose of the drug is given to a small group of volunteers to observe the 

expected drug behaviour in humans. This dose is too small to observe a full therapeutic effect 

but gives important preliminary information. The main objective of this phase is to accelerate 

the development and approval of new drugs.  
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Phase I, studies to evaluate safety, side effects and dosage range in terminally ill volunteers.  

Phase II, testing drug in patients with a disease or condition and comparison of the drug to a 

placebo. Safety and short-term adverse events are also monitored. 

Phase III, similar to phase II studies safety and adverse events in a larger patient population, 

different dosages and in combination with other available treatments (drugs).  

Phase IV, studies after FDA has approved market release of a drug. Final studies to obtain any 

additional information about safety, efficacy and optimal use.  

(clinicaltrials.gov and FDA guidelines) 
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1.2 HIT IDENTIFICATION  

Hit identification is the process of identifying a small molecule “compound” with activity against 

the desired target (i.e., protein). The obtained compounds will be identified by a screening 

approach such as high-throughput screening or structure-based drug design. There are 

additional different screening approaches used for compound identification (Fig. 1.2). For 

example, fragment screening, in which compound solutions are soaked and incubated with 

protein crystals to obtain structural information of the binding mode by fragments. Virtual 

screen is another method use for screening virtual compounds in the well-known structure 

binding sites. Other screening approaches are; focused screen, physiological screen and NMR 

screen.  

 

Figure 1.2. Different screening strategies used in the hit identification process (Hughes et al. 

2011). 
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1.2.1 HIGH-THROUGHPUT SCREENING (HTS)  

High-throughput screening (HTS) is currently a standard method for drug discovery research. 

HTS is a method of screening and assaying a large amount of compound libraries against the 

specific drug target (Szymański et al. 2012). The main purpose of this large screening is to identify 

novel lead compounds active against a molecular drug target by using robotic technologies such 

as liquid handling and robotic automation, multi-platform plate readers, high content imaging 

tools, sensitive detectors and data processing software (Target discovery institute-Nuffield 

department of Medicine; 2017). The main advantage of HTS compared to other screening 

approaches is the ability to screen large-scale libraries in a quick and low cost process. 

Commonly, HTS assays are performed in microtiter plates ranging from 96-, 384- or 1536-well 

formats. A number of active hits will be obtained after screening compound libraries, these hits 

will be further interrogated through hit validation studies. The ability to screen a large range of 

compounds can give important information on the interaction of compounds into biological 

processes in a quick automated manner. For that reason, HTS is an important currently used 

method in drug discovery research; it is estimated that HTS has provided economic savings of 

130 million dollars over the development of a new drug (Szymański et al. 2012).   

 

1.2.2 STRUCTURE-BASED DRUG DISCOVERY 

Structure-based drug discovery is the design and development of a compound as a drug 

candidate and is based on the determination of the three-dimensional structure of the protein 

by X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Homology models 

and virtual screening can be used when the structure of the target is not available, using well-

known structures of a related protein. The use of structure-based methods are increasing rapidly 

and playing an important role in the research of drug discovery and frequently can be used as a 

complementary method with HTS.  

 

1.2.2.1 X-RAY CRYSTALLOGRAPHY  

X-ray crystallography is the technique used in structure-based drug discovery to obtain 3D-

structural molecular information from a crystallize protein. The recombinant gene of the target 

is cloned into a vector to express into a host (usually bacteria strains) and produce the protein 

target. The protein obtained needs to be as pure as possible, homogenous and correctly folded 

in solution. The pure protein sample is prepared at high concentration in controlled dehydration 
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experiments (crystallisation) to force the protein to form crystals. Crystallisation occurs when 

the concentration of the protein reaches the precipitation (supersaturation or metastable) zone. 

Crystallisation experiments usually examine and test a wide range of variables, such as pH, 

temperature, protein, buffer, salt and precipitant concentrations, plate format (hanging drop, 

sitting drop and under oil), solution volumes and drop ratio (Merz et al. 2010).  

When crystallisation experiments result in adequate quality crystalline solid form (larger size 

and singular form), these are exposed to an X-ray beam to obtain diffraction patterns. The 

processing of the diffraction data is mathematically complex, however, there are many software 

packages such as MOSFLM, HKL-3000R and XDS and computational programs such as CCP4 with 

established algorithms to facilitate the data processing (Otwinowski & Minor 1997; Smyth & 

Martin 2000). The collected X-ray diffraction data records the measurement of the intensity of 

the electromagnetic waves. Each reflection of the diffraction pattern correlates to a wave 

containing an amplitude and a phase value. The amplitude is obtained by using the intensity 

data, however the phase information is lost during the data collection, this is known as the 

“phase problem” (Taylor 2010). The diffraction data will be transformed into structural 

information by solving the phase problem. 

There are different approaches to solve the phase problem, the most popular method is 

molecular replacement (MR) which utilizes the existence of a previously known structure of a 

similar protein homologous to the structure to be solved (Büttner et al. 2015). Other methods 

less commonly used for solving the phase problem are; single-wavelength anomalous diffraction 

(SAD), multi-wavelength anomalous diffraction (MAD), single-isomorphous replacement (SIR) 

and multiple isomorphous replacement (MIR; Hendrickson & Ogata 1997; Smyth & Martin 2000; 

Taylor 2010). Isomorphous replacement and anomalous replacement methods require previous 

information of the heavy atoms and anomalous scattering atoms of the substructure 

respectively (Table 1.1).  

Once the phase problem is solved an electron density map is generated for structural refinement 

to obtain the final molecular structure model. Optimised crystals are usually soaked with 

fragments to collect information about a protein structure in complex with ligands, these ligands 

will need further chemistry optimisation to improve drug-like properties. Ligands that are able 

to bind in the protein structure will be further tested in an in vitro assay to study the relationship 

between binding and function.  
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Table 1.1. Phasing methods used in structural solution (Adated from Taylor, 2010). 

Method Previous knowledge  Comments 

Molecular 
replacement (MR) 

Homology model 
available  

Homology model sharing at least 30% of 
sequence identity 

Isomorphous 
replacement (SIR/MIR) 

Heavy-atom 
substructure 

Soak crystals with heavy atoms solution  

Anomalous 
replacement 
(SAD/MAD) 

Anomalous-atom 
substructure 

SAD reduces potential radiation damage 
compared to MAD when collecting 

 

 

Figure 1.3. X-ray crystallography procedure. Target protein is expressed and purified to obtain 

diffracting crystals, diffraction data is used for phase determination and calculation of electron 

density map. The electron density map obtained is used for molecular model building and 

structural refinement where phases and electro density maps are improved (Büttner et al. 2015). 
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 1.2.2.2 NMR STRUCTURE DETERMINATION  

Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique used for the 

determination of physical and chemical properties of atoms in molecules using the magnetic 

properties of atomic nuclei (Berg et al. 2002). This technique is an indirect method that uses 

computer calculations parametrized empirically for characterizing the 3D-conformation of 

proteins. Similar to X-ray crystallography the protein sample has to be in solution for protein 

expression and purification experiments. For structure determination, the collection of different 

2D and 3D NMR spectra is necessary for the generation of a resonance spectrum measurement. 

Advantages of this technique are; the information of molecular parameters (chemical shifts, 

angles and distances), coupling constants and chemical kinetics, and the potential to study the 

solvent influence in the protein sample (Rzepa 1996). Some disadvantages of this technique for 

structure determination are the difficulty in identifying which NMR peak corresponds to which 

nuclei in the spectrum, the re-assignment of the spectrum for each ligand in complex with the 

protein and most analysis are limited to protein below 30 kDa (Hubbard 2011).  

 

 Figure 1.4. Structure determination by NMR spectroscopy. Example of the different 3D spectra 

using multiple-isotopes 13C, 15N and 1H  for generation of protein structure (Adapted from 

Hubbard 2011). 
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1.2.2.3 VIRTUAL SCREENING  

Virtual screening (Fig. 1.5) is a technique used for structure-based drug discovery in which large 

libraries of small molecules are computationally screened against a target structure (i.e. a 

protein-protein binding pocket). In order to perform a virtual screen it is necessary to have 

deposited known structures of the target in the protein data bank (PDB; Lionta et al. 2014). The 

libraries are drug-like compounds that have been previously synthesised as commercial 

compounds. The general process starts with identifying the binding site of the target and 

selecting a specific compound database (library). The database used usually corresponds to a 

collection of physically available compounds; each drug discovery research group has a 

preferred database according to the target of study. The next step is performing molecular 

docking of each compound into the binding site of the target. Docking studies predict the 

orientation of the compound into the target site to form a stable complex by sampling the 

coordinate space of the binding site and ranking each possible compound pose.  There is a wide 

range of docking software such as; molecular operating environment (MOE), mutually 

orthogonal latin squares (MOLS), SwissDock, GOLD and DOCK. These software packages use 

sampling algorithms to generate a score system which measures different parameters of the 

predicted binding mode, for example, the free energy of the binding, surface of the dynamics, 

ligand flexibility and the clashing or impact of the pocket (Lyne 2002; Lionta et al. 2014). MOE is 

a fully integrated drug discovery software package with a wide range of applications such as 

structure- and fragment-based design, pharmacophore discovery, medicinal chemistry and 

biologics applications, protein and antibody modelling, molecular simulations, cheminformatics 

and quantitative structure-activity relationships (QSAR) models. MOLS is a software program 

specialised for peptide modelling and protein-ligand docking (Paul & Gautham 2016). An 

advantage of SwissDock is that it uses a web server to predict the possible interactions between 

a target protein and a small molecule, it is accessible through a web browser and results can be 

viewed online (Grosdidier et al. 2011). GOLD is software used for binding mode predictions that 

utilizes the Chemscore scoring function for predicting ligand binding (Verdonk et al. 2003). 

Finally, the DOCK software uses a geometric matching algorithm to superimpose the ligand into 

the binding pocket to obtain receptor flexibility and force-field based scoring analysis.  

The compounds filtered by molecular docking and scoring go through several post-analysis tools 

to filter the compounds that are suitable for further analysis. Some common post-analysis filter 

steps include medicinal chemistry studies, toxicity, chemical reactivity and drug-like similarity. 

After the compounds are selected, they will be tested in a biological in vitro or in vivo assay 

format. Some advantages of virtual screening are the rapid and low cost of screening a large 
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amount of compound libraries, large amount of virtual screen and docking computational 

programs and the ability to predict binding mode of a specific target. Some disadvantages are 

the requirement to know the three-dimensional information deposited in the PDB, the need for 

further filtered parameters and it cannot substitute a biological assay screen such as high-

throughput screening (HTS). However, both methods can complement each other for the 

selection of novel compounds. Usually virtual screening is performed first and then compounds 

hits are tested with HTS.  

 

Figure 1.5. Structure-based virtual screening approach. The starting point is identifying the 

binding site of the target in previously known structures and the selection of an adequate 

compound database. Molecular docking and scoring will then be performed using 

computational software to further post-analyse to selected compounds using filtering tools such 

as, pan-assay interference compounds (PAINS) and absorption, distribution, metabolism and 

excretion (ADME) properties filters and finally test selected compounds in vitro assays (Lionta et 

al. 2014). 



20 
 

CHAPTER 2 

NUCLEAR FACTOR ERYTHROID 2-RELATED FACTOR 2 (NRF2) 

 

2.1 ABSTRACT 

The normal function of the antioxidant defence pathways are essential for cell survival. 

Dysfunction and up-regulation of the oxidative stress pathways are implicated with the 

pathogenesis of many neurodegenerative diseases, including Alzheimer disease, Parkinson’s 

disease and Amyotrophic lateral sclerosis. The protein nuclear factor erythroid 2-related factor 

2 (Nrf2) is an important transcription factor that functions to regulate the redox balance against 

oxidative and electrophilic stresses. The Nrf2-Kelch-like ECH-associated protein 1 (Keap1) 

pathway acts as a sensor in response to oxidative/electrophilic stress. The Nrf2-Keap1 

dissociates in response to oxidative stress and Nrf2 translocates to the nucleus to increase the 

expression of protective genes and antioxidant enzymes such as the phase II detoxifying 

enzymes glutathione S-transferase (GST), quinone reductase (QR), heme oxygenase-1 (HO-1) 

and NAD(P)H quinone oxidoreductase 1 (NQO1). Accordingly, Nrf2 is an attractive cellular 

pathway for drug discovery. In order to identify a novel Nrf2 activator that disrupts the Nrf2-

Keap1 protein-protein interaction, a virtual screen was performed based upon the known 

structure of the protein-protein interface between Nrf2-Keap1 and evaluated compounds in a 

DiscoveRx nuclear complementation assay that measures the translocation of Nrf2 from the 

cytoplasm to the nucleus. In this assay, sulforaphane was used as a positive control and had an 

EC50 of 400 ± 55 nM. In silico screening of a library of over 3 million compounds identified a 

number of virtual screening “hits” of which 122 were purchased and evaluated further. Of these 

compounds, five produced an activation ranging from 15-100% relative to the sulforaphane 

control (which was defined as 100% activity).  However, the use of a ROS-Glo assay showed that 

three of these five compounds were activating the pathway non-specifically by themselves 

producing free radicals rather than disrupting the protein-protein interaction. Two novel 

compounds appeared to increase Nrf2 nuclear translocation in a Keap1-Nrf2 cell-based assay. 

However, both compounds displayed relative low activity and there was insufficient evidence of 

Nrf2-Keap1 robust interaction and so a no-go decision of the project was made.  
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2.2 INTRODUCTION   

2.2.1 THE NRF2-ARE SYSTEM  

The NFE2L2 gene encodes for a 68 kDa protein, the nuclear factor erythroid 2-related factor 2 

(Nrf2), which belongs to a family of proteins characterised by their cap ‘n’ collar (CNC) protein 

structure. These CNC proteins are basic leucine zipper (bZIP) transcription factors that are 

characterised by the presence of a conserved 43 amino acid CNC domain in the C-terminal region 

which acts as a DNA binding domain, CNC domain is located in Neh1 region of Nrf2 (Fig. 2.1). In 

the nucleus, bZIP proteins heterodimerize with other proteins (musculoaponeurotic 

fibrosarcoma oncogene homolog, small MAF or c-JUN) which are then be able to bind to specific 

DNA sites called anti-oxidant response elements (ARE; Nguyen et al. 2009). Nrf2 is the major 

transcription factor that binds with members of the small musculoaponeurotic fibrosarcoma 

(MAF) family and consequently it binds to ARE sites which are able to regulate the transcription 

of hundreds of cytoprotective genes (including antioxidants) and thereby protect cells from 

environmental stresses and enhance cell survival (Katsuoka et al. 2005; Blank 2008). Accordingly 

Nrf2 is essential for the cellular response pathways against different types of stress  (Kensler et 

al. 2007; Kumagai et al. 2013; Sandberg et al. 2014). 

 

Figure 2.1. Summary of Nrf2 structure. Nrf2 protein contains 605 amino acids and six Nrf2-

embedded contact homology (Neh) domains (Neh1-6). The CNC-bZIP located in the Neh1 region, 

CNC shown with a red asterisk. Within the C-terminal region, the Neh1, Neh3 and Neh6 domains 

are responsible for DNA binding, transcriptional activity and degradation signal respectively. 

Cromodomain-helicase-DNA-binding protein 6 (CHD6) in Neh3 is a chromatin-remodelling 

protein that plays an important role in transcription regulation.  The N-terminal region contains 
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the Neh2, Neh4 and Neh5 domains which are important for binding with Keap1, regulation of 

Nrf2 target gene expression and interaction with  CREB-binding protein (CBP) and p300 proteins 

respectively (Boutten et al. 2011). The linear sequence of the protein Q16236-1 UniProtKB is 

also shown, displaying the different domains of the protein.   

 

Nrf2 contains six Nrf2-Erythroid-derived CNC homology (Neh) domains (Neh1-6; Fig. 2.1). The 

Neh2 domain is important for binding with the cytosolic repressor protein Kelch-like erythroid 

cell embedded contact homology (ECH)-associated protein (Keap1). Under normal conditions 

Nrf2 binds to Keap1 under which conditions Nrf2 is inactive and the Nrf2-Keap1 complex is 

directed towards Nrf2 ubiquitination and subsequent proteasomal degradation using the CUL-3 

E3 ubiquitin ligase complex (Fig. 2.3; Motohashi & Yamamoto 2004; Kensler et al. 2007). Keap1 

has been demonstrated to regulate Nrf2 protein levels either by enhancing its rate of 

degradation or altering its cellular localisation. The process of Nrf2 degradation is relatively rapid, 

with the normal half-life of Nrf2 being 18.5 minutes, suggesting that turnover of Nrf2 is an 

important process in normal cells (Itoh et al. 2003).  

Keap1 (Fig. 2.2 & 2.3) is a 69-kDa rich in cysteine residues protein, which act as a sensor of stress 

signals. Modification of these cysteine residues (i.e. oxidation to form disulphide bonds) results 

in conformational changes in Keap1 which then releases Nrf2. One proposed model of Nrf2 

dissociation is the “hinge and latch” mechanism, in which Keap1 homodimer binds with two 

sites of the Neh2 domain of Nrf2 (29-DLG and 79-ETGE). Conformational changes of Keap1 by 

cysteine modifications cause disruption of the low affinity site with Nrf2 DLG (the latch) causing 

Nrf2 accumulation,  dissociation and prevention of the proteasome ubiquitination process (Fig. 

2.4; Suzuki et al. 2013). 

Once released from Keap1, Nrf2 is phosphorylated by cytosolic kinases which activate Nrf2 

resulting in the protein translocating into the nucleus where it can heterodimerize with sMAF or 

c-JUN proteins. These complexes then bind to antioxidant response elements (ARE) and induce 

the expression of several ARE-responsive genes, including phase II detoxifying enzymes and 

antioxidants (Fig. 2.3). This adaptive response will enhance cell survival to several types of stress 

mediated by electrophiles and free radicals (Kensler et al. 2007). 
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Figure 2.2. Keap1 protein structure and sequence. Protein is formed by five domains; the N-

terminal region (NTR), the bric-a-brac, tram-track, broad complex domain (BTB), the intervening 

region (IVR) and the C-terminal region (CTR; Coople 2012; Baird et al. 2014).  Sequence Q14145-

1, UniProtKB; the colours correspond to the different domains of the protein structure. (Adapted 

from Baird et al. 2014).  

 

2.2.2 Nrf2 phosphorylation 

The Nrf2-Keap1 interaction is not the only factor regulating stability and cellular localisation of 

Nrf2. A number of kinases are reported to directly phosphorylate Nrf2. For example, p38 

mitogen-activated protein kinases (MAPKs) can phosphorylate multiple serine residues (Ser-

215,408 and 577) of Nrf2 promoting its association with Keap1 and blocking its nuclear 

translocation (Keum et al. 2006; Sun et al. 2009; Bryan et al. 2013). p38 MAPKS are the only 

kinases that have been shown to reduce the Nrf2 nuclear translocation, however the exact 

interaction has not been confirmed. In contrast, protein kinase C (PKC) has an important role in 

promoting nuclear translocation of Nrf2 and facilitating the release from Keap1 by directly 

phosphorylating Nrf2 at serine 40 (Huang et al., 2002). Similarly the phosphatidylinositol 3-

kinase (PI3K) is important in regulating the Nrf2 pathway, however the specific mechanism is yet 

not clear (Wang et al. 2008) . The c-Jun N-terminal kinase (JNK), and the extracellular signal-

regulated kinase (ERK) have an important part in activation of Nrf2, since both kinases have been 

shown to accelerate the release from Keap1 and stimulate the nuclear translocation of Nrf2 (Xu 

et al. 2006). In addition, the tyrosine kinase Fyn phosphorylates the Nrf2 tyrosine 568 to induce 

the nuclear export and proteasome degradation, regulating the Nrf2-ARE system (Sandberg et 

al. 2014). In recent studies the protein kinase RNA-like endoplasmic reticulum kinase (PERK) also 

showed some interaction with Nrf2, however the site of phosphorylation is still unclear (Nakaso 

et al., 2003, Cullinan et al., 2003,  Xu et al., 2006 &  Bryan et al. 2013).  
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Figure 2.3. Summary of the Nrf2-ARE cellular protection pathway. Under basal conditions, Nrf2 

is targeted to ubiquitin degradation by the Keap1/Cul3 E3 ubiquitin ligase complex. Under 

conditions of oxidative stress, cysteine-rich Keap1 is oxidised and the resulting conformational 

change releases Nrf2 which is then phosphorylated and undergoes translocation into the 

nucleus where it associates with small MAF and then promotes the expression of ARE-driven 

genes (Adapted from Lee et al. 2005).  GSTs, Glutathione S-transferases; NQO1, 

NAD(P)H:quinone oxidoreductase 1; GCLs, Glutamate cysteine ligase subunit; HO-1, Heme 

oxygenase 1; UGT, UDP-glucuronosyltransferase and TXNRD1, thioredoxin reductase 1. 
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Figure 2.4. Diagram of the “Hinge and Latch” model of Nrf2 releases from Keap1. The protein 

Keap1 is present in the cytosol as a homodimer in a cherry-bob conformation, in which the 

homodimer binds to the Nrf2 protein sequence in two sites inside the Neh2 domain located at 

the N-terminal of the protein, one in high affinity ETGE the “hinge” and the lower affinity DLG 

the “latch”. DLG corresponding to aspartic acid, leucine and glycine and ETGE to glutamic acid, 

threonine, glycine and glutamic acid according to the one letter amino acid code. Both binding 

sites of Keap1 with DLG and ETGE facilitate the proteasomal degradation of Nrf2 by allowing the 

ubiquitination in the seven lysine (K) residues in the protein sequence. However, cysteine 

modification of Keap1 leads to a conformational change of Keap1, destabilizing the DLG binding 

(latch) and results in the accumulation and stabilisation of Nrf2, several kinases might also 

activate Nrf2 for complete dissociation from Keap1 (Suzuki et al. 2013). 
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2.2.3 NRF2 FUNCTIONS  

Nrf2 is considered the key controller of the redox homeostatic gene regulatory network and is 

therefore one of the important systems protecting against oxidant and electrophile-induced 

damage in the cells (Ishii 2000; Sandberg et al. 2014). Other systems involved in protection 

against oxidative stress are the pentose phosphate pathway (Kuehne et al. 2015), mitochondrial 

antioxidant pathways such as peroxiredoxin (Prx) and cAMP response element-binding 

protein/cAMP response element (CREB/CRE) transcriptional pathway (Lee et al. 2009; Perkins 

et al. 2015). Over the last few years it has been demonstrated that Nrf2 regulates the expression 

of a wide range of detoxification, antioxidant and conjugating enzymes, as well as proteins that 

enhance the export of xenobiotics and enzymes important in protection of inflammation 

induced damage. These protective enzymes and proteins include, for example, glutathione S-

transferases (GSTs; Chanas et al. 2002), NAD(P)H:quinone oxidoreductase 1 (NQO1; Hong et al. 

2010), brain derived neurotrophic factor (BDNF; Sakata et al. 2012), anti-apoptotic B-cell 

lymphoma 2 (BCL-2; Niture & Jaiswal 2012), anti-inflammatory interleukin IL-10 (Boyle et al. 

2011), the mitochondrial transcription co-factor NRF-1 (Piantadosi et al. 2011) and heme 

oxygenase 1 (HO-1; Hong et al. 2010).   

The importance of this protective system is demonstrated by the fact that Nrf2 knockout mice 

demonstrate a deficiency in the production of phase II detoxification antioxidant enzymes that 

are that are indispensable against oxidative and xenobiotic stress (Sandberg et al. 2014). Phase 

II detoxification enzymes are responsible for the conjugation reactions of xenobiotics in the 

biotransformation metabolism, usually these enzymes are transferases that transfer a functional 

group from one molecule to another to facilitate the elimination of drugs in the metabolism 

(Jancova et al. 2010).  These mice with deficiency of phase II detoxification enzymes are also 

more sensitive to toxic electrophiles, leading to elevated neurotoxicity and resulting in acute 

and severe pathological effects in brain (more severe damage in stroke and traumatic brain 

injury), liver (cancer and liver toxicity) , lungs (hyperoxic lung injury) and intestine (intestinal 

ischemia reperfusion; Ishii 2000; Motohashi & Yamamoto 2004; Sandberg et al. 2014). 
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2.2.4 NRF2 AS A MULTI-ORGAN PROTECTOR AGAINST DISEASE 

A relationship between the activation of Nrf2-ARE pathway with anti-inflammatory effects has 

been suggested, one hypothesis is an interaction with the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-кB), a protein complex important for the transcription control 

of DNA, cytokines and cell survival. This relationship is not yet understood but NF-кB binding 

sites in the Nrf2 gene have been identified suggesting a similar role for inflammatory processes 

(Nair et al. 2008; Sandberg et al. 2014). Antioxidant response studies in animal models 

demonstrate that genetic disruption (gene silencing or gene deletion) of Nrf2 increased brain, 

liver, and pulmonary injury due to the decreased levels of ARE-driven cellular protection systems 

and overexpression of Nrf2 can protect these organs from induced toxicity response (Fig.2.5; 

Lee et al. 2005). Below are some examples of diseases related to Nrf2 dysfunction in different 

organs. 

 

Figure 2.5. Nrf2 has a protective effect in a variety of different tissues and organs. Nrf2 increases 

the expression of ARE-driven detoxification and antioxidants genes (Lee et al. 2005). 
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2.2.4.1 LUNGS  

Nrf2 is  highly expressed in lungs and it is associated with protection against inflammatory agents 

and oxidants (Chan & Kan 1999). Nrf2 knockout (KO) mice displayed acute respiratory distress 

syndrome with the administration of toxic butylated hydroxytoluene (BHT) compare with wild 

type, suggesting an important role of Nrf2 in the defence against oxidants in the lungs (Chan & 

Kan 1999). Oral administration of BHT is used for the induction of lung damage and alveolar 

epithelial cells destruction (Chan & Kan 1999). Nrf2 protects lungs against hyperoxic injury in 

mice, macrophage inflammation and epithelial injury were increased by 47% and 43% in Nrf2 

deficient compared to wild type mice after 72 hours of hyperoxia exposure (Cho et al. 2002). 

Also, in a Nrf2 KO experiment showed that wild type Nrf2 mice displayed protection from lung 

injury and fibrosis induced by bleomycin administration in a pulmonary fibrosis animal model 

(Cho et al. 2004).  

Chronic obstructive pulmonary disease (COPD), a progressive condition characterised by lung 

damage, emphysema and breathing disorders, is associated with cigarette smoking. Cigarette 

smoke-induced emphysema studies showed greater bronchoalveolar inflammation and 

apoptotic alveolar cells in Nrf2 KO compared with the wild type mice (Rangasamy et al. 2004; 

Iizuka et al. 2005; Ishii et al. 2005). The Nrf2-ARE driven genes have an important role in 

protection in pulmonary emphysema by regulating the oxidant/anti-oxidant balance, 

inflammation and protease/anti-protease balance in alveolar macrophages (Ishii et al. 2005; 

Boutten et al. 2011).  

 

2.2.4.2 LIVER AND GASTROINTESTINAL TRACT 

The liver plays an important role in metabolizing xenobiotics, such as, chemicals, drugs and 

toxins. It performs the break down and elimination of chemical compounds with the help of 

phase I (oxidation, reduction and hydrolysis reactions) and phase II (conjugation reactions) 

metabolism. Hence, the liver is vulnerable to oxidative stress and liver diseases related with 

oxidants are hepatitis, fibrosis, cirrhosis and hepatocellular carcinoma (Fig. 2.6). Nrf2 is known 

to activate the phase II antioxidant enzymes that help balance the redox homeostasis and 

therefore Nrf2 has an important role in preventing liver  and gastrointestinal tract disease (Shin 

et al. 2013).  Studies in mice have showed that Nrf2 gene deletion increases the sensitivity to 

xenobiotics. For example, it has been shown that Nrf2 knockout mice have an increased 

sensitivity to acetaminophen toxicity relative to wild type animals (Enomoto et al. 2001). 

Similarly, treatment of carcinogen benzo(a)pyrene showed more severe damage (gastric 
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neoplasia and liver toxicity) in mice with Nrf2-deficient compared to wild type animals (Ramos-

Gomez et al. 2001). These studies indicate that Nrf2 is important in regulating drug metabolizing 

enzymes and antioxidant genes in the liver and gastrointestinal tract (Aleksunes et al., 2007 & 

Klaassen & Reisman 2010).  

 

Figure 2.6. The protective role of Nrf2 expression in liver disease. The schematic representation 

of the Nrf2 activation to help prevent liver diseases by controlling the reactive oxygen species 

levels in cells (Shin et al. 2013). GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, 

glutamate-cysteine ligase modifier subunit; GST, glutathione s-transferase; UGT, uridine 5’-

diphospho-glucuronosyltransferase; HO-1, heme oxygenase; MRPs, multidrug resistance 

proteins and NQO-1, NAD(P)H quinone dehydrogenase 1.  

 

2.2.4.3 SKIN 

Studies in mice have also shown that Nrf2 has an important role in the protection of skin against 

UV rays. Hence, compared to wild type mice, UVB-irradiated Nrf2 knockout animals showed 

increased skin ageing, deeper coarse wrinkle formation, skin flexibility diminution, epidermal 

thickening and higher skin reactivity; the same mice demonstrated lower levels of glutathione 

levels in the skin (Hirota et al. 2011; Saw et al. 2011). In a fibroblast study, primary human skin 

fibroblasts displayed better resistance to ionizing radiation when treated with antioxidant and 

Nrf2-activator sulforaphane, however this resistance was dependent on Nrf2 activation, nuclear 

translocation and induction of antioxidant enzymes (Mathew et al. 2014).  
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2.2.4.4 HEART 

Recent studies suggest that Nrf2 deficiency increases the earlier onset of cardiac dysfunction 

and the development of heart failure (Wang et al. 2014a; Sandberg et al. 2014). In Nrf2 knockout 

mice treated with the anticancer drug doxorubicin (Dox), the absence of Nrf2 amplified the 

adverse effects associated with Dox, such as cardiomyocyte necrosis, protein aggregation and 

cardiac dysfunction relative to wild type animals. In the same study the overexpression of Nrf2 

in cultured rat neonatal wild type cardiomyocytes suppressed Dox cytotoxicity, suggesting that 

Nrf2 ameliorates Dox-induced damage by triggering expression of antioxidants (Li et al. 2014a).  

 

2.2.4.5 BRAIN AND NERVOUS SYSTEM  

Subarachnoid haemorrhage (SAH) is caused by the rupture of a cerebral aneurysm and is 

characterised by bleeding in the space between the brain and the tissues that cover the brain 

(pia mater). In animal models, Nrf2 over-expression has been shown to reduce the secondary 

complications of SAH, such as vasospasm and neuronal injury. A SAH mouse model has been 

developed by injecting blood into the prechiasmatic cistern in the brain, this model has shown 

to cause cerebral vasospasm in the mouse. Deletion of Nrf2 in knockout mice resulted in more 

severe brain injury with increased brain edema, blood-brain barrier disruption and neural 

apoptosis after injection of blood into the prechiasmatic cistern (Li et al. 2014b). Induced 

activation and over-expression of Nrf2 protects neurons against stressors and insults and 

consequently the Nrf2-ARE pathway is an important potential target for neurodegenerative 

diseases and CNS disorders (Calkins et al. 2009).  

 

2.2.5 NRF2 IN NEURODEGENERATIVE DISEASES 

The pathogenesis of various neurodegenerative diseases such as Parkinson´s disease, 

amyotrophic lateral sclerosis, and Alzheimer´s disease have all been linked with oxidative stress 

and mitochondrial dysfunction (Perry et al. 2002; Jenner 2003; Barber et al. 2006).  

It has been shown, for example, that free radicals and reactive oxygen species (ROS) 

accumulation from redox imbalance leads to neuronal death and possible neurodegeneration 

(Dawson & Dawson 1996; Abramov et al. 2007). Astrocytes have several functions for the correct 

maintenance of neurons, it have been suggested that astrocytes can perform nervous system 

repair due to their relative high amount of key proteins and antioxidants (such as glutathione) 
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involved in neutralizing damaging free radicals (Aschner 2000; Kimelberg & Nedergaard 2010).  

Data from studies in animal models suggests that Nrf2 can rescue neurons and astrocytes from 

glutamate toxicity, ischemic insults and mitochondrial complex II inhibition (Kraft et al. 2004; 

Lee et al. 2005; Ramsey et al. 2008). Furthermore, overexpression of Nrf2 in astrocytes reduces 

chemical-mediated neurotoxicity in Parkinson´s and Huntington´s diseases and increases motor 

neuron survival in mouse models (Chen et al. 2009; Calkins et al. 2010; Gan et al. 2012). 

Malonate is used in animal models to induce neuron degeneration simulating Huntington’s 

disease. For example, a genetic model of astrocyte-specific Nrf2 overexpression showed greater 

neuroprotection against malonate toxicity in mice in comparison to wild type mice (Calkins et al. 

2010). Similarly, a study in mice in which 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

was used to produce neurotoxicity of neurons in the substantia nigra, and consequently 

Parkinson’s disease-like symptoms, showed that Nrf2 overexpression eliminates MPTP toxicity 

and help prevent neuronal death (Chen et al. 2009). In an amyotrophic lateral sclerosis (ALS) 

animal model using transgenic mice with mutation in Cu/Zn-superoxide dismutase (SOD1), 

overexpressing Nrf2 resulted in delayed disease development, increased overall survival and 

lower glial reactivity (Vargas et al. 2008). If the Nrf2-ARE pathway is able to rescue cells against 

these insults and oxidative stressors, then the Nrf2 pathway might have an important role in 

neuroprotection as many studies have shown (Kraft et al. 2004; Vargas et al. 2008; Calkins et al. 

2009; Chen et al. 2009; Gan et al. 2012).  

 

2.2.6 MODULATORS OF THE NRF2/ARE PATHWAY 

There are several compounds or substances such as; sulforaphane, quercetin, tert-

butylhydroquinone (tBHQ) and 5,6-dihydrocyclopenta-1,2dithiole-3-thione (CPDT) that can 

induce and activate the Nrf2-ARE pathway (Gharavi et al. 2007; Kimura et al. 2009; Li et al. 2012). 

This activation has been measured by different approaches, including measurement of Nrf2 

nuclear translocation and induction of downstream antioxidant genes (i.e. NAD(P)H, GST and         

HO-1).   

As discussed previously, Keap1 is a cysteine rich protein, the cysteine residues are highly reactive 

and have the potential to sense modulators of Nrf2 forming disulphide adducts with them. These 

modulators activate the Nrf2/ARE pathway indirectly by directly modifying the sulfhydryl groups 

of Keap1 cysteines by oxidation, reduction, or alkylation, thereby avoiding the further 

ubiquitination of Nrf2 and releasing it from Keap1. Cysteine residues of Keap1 involved in Keap1-

Nrf2 degradation are Cys-151, Cys-273 and Cys-288 and small molecules that mimic ROS 
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(electrophiles) interact with these cysteine residues to change the conformation of Keap1, 

resulting in dissociation of Nrf2 from Keap1 and thereby inhibits Nrf2 ubiquitination and 

degradation (Fig. 2.7; Hong et al. 2005; Kobayashi et al. 2006; 2009). 

 

 

Figure 2.7. Keap1 cysteine residues involved in chemical inducers. Some electrophiles and heavy 

metals are able to modify the cysteine residues of Keap1, consequently this redox cysteine 

modifications induce conformational changes in Keap1 resulting in dissociation from Cul3, 

thereby inhibiting Nrf2 degradation. tBHQ, tert-butylhydroquinone; SFN, sulforaphane; DEM, 

diethyl maleate; DMF, dimethylformamide; 15d-PJ2, 5-deoxy-Delta(12,14)-prostaglandin J2; 

PGA2, prostaglandin A2; 4HN3, 4-hydroxynonenal; OA-NO2, nitro-oleic acid and 8-nitro-cGMP,  

8-nitroguanosine 30,50- cyclic monophosphate (Suzuki et al. 2013).  

 

One of the most studied Nrf2/ARE modulators is tert-butylhydroquinone (tBHQ), a 

hydroquinone derivative that protects neuroblastoma cells from glutamate toxicity and 

hydrogen peroxide (H2O2)-induced apoptosis (Lee et al. 2005) by binding with the cysteine 

residue Cys-151 of Keap1, followed by Keap1 change conformation to Nrf2 release, escaping 

ubiquitination and degradation (Zhang 2006).  tBHQ induces the Nrf2-ARE pathway by indirectly 

stimulating the dissociation of Nrf2 from Keap1 and Nrf2 then can be translocate to the nucleus 

and activate ARE gene expression. Additional studies used tBHQ and sulforaphane to induce 
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Nrf2-ARE pathway cellular protection by translating antioxidants proteins against oxidative 

insults such as dopamine, hydrogen peroxide and glutamate (Murphy et al. 1991; Li & Johnson 

2002; Houghton et al. 2016). In a mouse primary cortical neuronal culture study, overexpression 

of Nrf2 via adenovirus infection in Nrf2-deficient neurons restored ARE genes expression and 

conferred neuroprotection from H2O2 and glutamate (Kraft et al. 2004). Further, in astrocytes, 

the overexpression of Nrf2-sMAF made neurons more resistant to glutamate toxicity (Lee et al. 

2005). A microarray analysis showed the increase in expression of 97 genes and decrease of 37 

genes in astrocytes by tBHQ treatment, many of which included detoxifying genes involved in 

the Nrf2/ARE pathway (Calkins et al. 2009). However, there are concerns about the safety and 

toxicity of long-term administration of tBHQ with studies suggesting that long-term exposure 

might induce carcinogenicity in mice. For example, administration of tBHQ for several days to 

rodents was shown to induce more neoplastic lesions in the stomach, kidney and urinary bladder. 

However the specific mechanism, whether or not these effects are specifically related to the 

Nrf2 mechanism of this toxicity is not well understood, some alternatives are the indirect 

formation of reactive GSH-conjugates, activation of caspase and apoptosis, and the formation 

of reactive species (Li et al. 2002; Gharavi et al. 2007).  

Sulforaphane, a compound extracted from broccoli, has been shown to activate Nrf2 by 

modifying the Cys-151 of Keap1 protein (Kobayashi et al. 2009).  This compound has been shown 

to induce the activation of the Nrf2/ARE pathway in animal models of intracerebral 

haemorrhage and traumatic brain injury (Fig. 2.8). Accordingly, Nrf2 pathway activation after 

oxidative stress could help to restore or protect cells against toxicity, moreover Nrf2-deficient 

animals showed more severe damage against oxidative insults (Zhao et al. 2007a;  Zhao et al. 

2007b). For example, primary neurons  from Nrf2-decifient embryos and in vivo Nrf2-knockout 

mice increased toxicity after exposure to a mycotoxin 3-nitroproprionic acid (3-NP); a neurotoxin 

which induces brain mitochondrial dysfunction (selective loss of striatal neurons), simulating 

Huntington’s disease pathology (Fig. 2.9; Calkins et al. 2009). Similarly, experiments in animals 

of traumatic brain injury using the controlled impact surgery model showed that Nrf2 knockout 

mice displayed higher levels of oxidative markers such as, 4-hydroxynonenal (4-HNE) and the 8-

Oxo-2'-deoxyguanosine (8-OHdG) in brain after injury compared with the wild type mice, 

suggesting Nrf2 as a key role in oxidative stress response against brain injury (Hong et al. 2010).  

These same authors also treated mice with sulforaphane and it reduced contusion, neurological 

dysfunction and neuronal death after traumatic brain injury (Hong et al. 2010).  
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Sulforaphane is under clinical evaluation for schizophrenia, autism disorders and cancer; there 

are 52 different clinical studies for sulforaphane, which 28 are terminated or completed, 9 

recruiting, 2 enrolling, 8 not yet recruiting and 5 suspended or unknown (www.clinicaltrials.gov). 

An open study in ten patients with schizophrenia suggests sulforaphane as a potential 

therapeutic drug in improving cognitive functions in schizophrenia; trial number NCT01716858 

(Shiina et al. 2015). Two other clinical trials in phase II and III are currently enrolling to investigate 

if sulforaphane can improve clinical symptoms and cognitive functions in schizophrenia patients; 

trials NCT02880462 and NCT02810964.   

A randomised, double-blind, placebo-controlled phase II single-site trial of sulforaphane-rich 

broccoli sprout extract in autism patients showed that sulforaphane significantly improved 

social interaction, abnormal behaviour and verbal communication; however more further 

studies need to be perform to investigate the specific mechanism of action in autism disorder; 

trial number NCT01474993 (Singh et al. 2014). However, the toxicity and reactivity of the 

molecule might cause the termination of clinical trials and research investigations. Consequently, 

Evgen Pharma developed Sulforadex (SFX-01), an orally stable powder composed by 

sulforaphane encapsulated within α-cyclodextrin. Sulforaphane is normally an unstable oily 

liquid but in complex with α-cyclodextrin can be stabilized by encapsulating it in the hydrophobic 

interior of the core structure and making it available for pharmaceutical delivery for possible 

therapeutic effects. Two clinical trials to investigate the safety and tolerability of single and 

multiple doses of SFX-01 in healthy males have concluded but results have not been released 

(NCT01948362 & NCT02055716). Currently, another two clinical trials are recruiting for the 

study of safety, tolerability and efficacy of SFX-01 in breast neoplasm and spontaneous 

subarachnoid haemorrhage (NCT02970682 & NCT02614742, respectively).  

 

http://www.clinicaltrials.gov/
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Figure 2.8. Sulforaphane-induced activation of the Nrf2 pathway. A, Detection of Nrf2 protein 

by Western blot in nuclear fractions of hematoma-affected striata 24 hours after induction of 

intracerebral haemorrhage. Sulforaphane treatment increased Nrf2 in the nuclear fraction, 

consistent with a hematoma-induced translocation of Nrf2 from the cytoplasm to the nucleus. 

B, Study of the Nrf2 DNA binding activity to the antioxidant response elements (ARE). For the 

electrophoresis mobility shift assay (EMSA) experiments Nrf2 nuclear protein was incubated 

with 32P-labeled, double stranded oligonucleotides. Intraperitoneal injection of sulforaphane (5 

and 10 mg/kg) increased Nrf2 ARE DNA binding activity. 10 mg of nuclear protein extracts were 

run from 0, 5 and 10 mg/kg of sulforaphane treatment in animals. C, The expression of Nrf2 

antioxidant genes (measured by RT-PCR) in rodent brain following intracerebral haemorrhage 

and the administration of either vehicle or sulforaphane (5 mg/kg). Data clearly shows a SF-

induced increase in the expression of catalase, superoxide dismutase (SOD), glutathione S-

transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1). D, Image of the data 

quantified in panel C showing the RT-PCR products of the downstream genes (catalase, SOD, 

GST, NQO1) of Nrf2/ARE pathway with GAPDH used as a loading control. Figure and legend 

adapted from Zhao et al. 2007b. 
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Figure 2.9. Nrf2 plays a role in 3-NP-mediated neurotoxicity. A, There was an increase in the 

toxicity of 3-NP in primary neurons (2 days of culture in 0.5, 1.0 and 2.0 mM 3-NP) from Nrf2 

knockout compared to wild type mice as measured using lactate dehydrogenase (LDH) activity 

in the media as an index of neurotoxicity. B, Striatum lesion volume was quantified in coronal 

sections of the brain and stained with cresyl violet and with fluorojade-B for detection of 

degeneration in neurons (Figure and legend adapted from Calkins et al. 2009). 

 

 

In mice the administration of the Nrf2 activator 3H-1,2,-dithiole-3-thione (D3T) prior to the 

injection of MPTP protected glial cells from neurotoxicity whereas this protective effect of D3T 

was lacking in Nrf2 knockout mice (Burton et al. 2006), consistent with D3T have a 

neuroprotective effect that is mediated via the Nrf2 pathway, possibly as a consequence of D3T 

binding with the cysteine reactive residues of the Keap1 protein and thereby producing Nrf2 

activation (Kwak et al. 2003).  

Other small molecules that are claimed to be Nrf2 activators include; curcumin, spirulina, some 

planar aromatic compounds, β-napthoflavone, 3-methylcholanthrene, triterpenoids, some 

flavonoids, isothiocyanates, organosulfur, indoles and diterpernes (Boutten et al. 2011; 

Sandberg et al., 2014). Moreover, small molecules that have a predisposition to react with 

sulfhydryl groups can interact with the keap1 protein and activate Nrf2-ARE pathway. For 

example, curcumin induces oxidation or alkylation of the cysteine residues in Keap1 and releases 

Nrf2 which translocates to the nucleus and produces a consequent increase in the expression of 

antioxidant enzymes (González-Reyes et al. 2013). However, the mechanism of action by which 

these molecules activates the Nrf2 pathway is not yet clear but most of them are hypothesised 

to modify cysteine reactive residues of Keap1.  
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Bardoxolone methyl (CDDO-Me) is a synthetic triterpenoid antioxidant inflammation modulator 

that activates the Keap1-Nrf2 pathway by binding with Keap1 cysteine residues (Wang et al. 

2014b). In a kidney injury model, the administration of CDDO-Me increases renal Nrf2 and heme 

oxygenase-1 (HO-1) mRNA expression and protein levels (Wu et al. 2011). Additionally, knockout 

mice demonstrated acute kidney defects caused by increased inflammation and oxidative stress 

(Pergola et al. 2011). For example, a study shown that CDDO-Me treatment in wild type mice 

prevents the increased concentration of urea nitrogen in blood characteristic in acute kidney 

injury (Wu et al. 2011). 

In a phase 2, double blind, randomized trial with chronic kidney disease associated with type 2 

diabetes patients, the administration of CDDO-Me significantly improved kidney functions 

relative to placebo-treated patients (Pergola et al. 2011). However, the phase III clinical trial in 

the late state of disease, patients developed severe renal dysfunction or cardiovascular failure 

in a higher rate with CDDO-Me treatment than with placebo; therefore the trial was terminated 

due to safety concerns (Pergola et al. 2011; de Zeeuw et al. 2013; Sandberg et al. 2014).  

Cardiovascular adverse events related with CDDO-Me were investigated and were suggested to 

have off-target effects in modulating the endothelin pathway by promoting acute sodium and 

volume retention and increasing blood pressure in patients with severe chronic kidney disease 

(Chin et al. 2014).  

There are some clinically used drugs that appear to activate the Nrf2 pathway, such as melatonin 

and valproate. Melatonin, which is used in sleep disorders in children, suppresses the 

degradation of Nrf2 by inhibiting the proteasome activity (Vriend & Reiter 2015). Valproate, 

which is used clinically as an anticonvulsant in epilepsy, as well as in anxiety disorders, migraine 

and bipolar disorders, has been demonstrated to increase cellular levels of reactive oxygen 

species (ROS) and activate the Nrf2/ARE pathway indirectly. In cellular and animal experiments  

the treatment of valproate increased the association of transcription factors, such as Nrf2 and 

nuclear factor-кB (NF-кB), as well as the levels of heme oxygenase-1 and human 

NAD(P)H:quinone oxidoreductase 1 genes (Kawai & Arinze 2006; Sandberg et al. 2014; Liao et 

al. 2016). However, the full mechanism of action is not well understood. 
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Table 2.1 Summary of Nrf2 activators and their therapeutic utility.  

Activator Pre-clinical/Clinical 
significance 

Comments Reference 

Sulforaphane  

Antioxidant, 
schizophrenia, autism, 
aging, asthma, cystic 
fibrosis and cancer  

Toxic, reactive and unstable.  
48 clinical trials to investigate 
specific mechanism of actions.  

 
www.clinicaltrials.gov 
(Singh et al. 2014; 
Alumkal et al. 2015; 
Shiina et al. 2015; 
Singh & Zimmerman 
2016) 
 

CDDO-Me 
Chronic kidney 
disease & type 2 
diabetes 

Serious adverse effects (heart 
failure, muscle spasms, etc)  

(Pergola et al. 2011; 
de Zeeuw et al. 2013) 

tBHQ Late-life Depression  
Dietary supplement (fish oil) 
High doses or chronic exposure 
link to carcinogenesis  

(Gharavi & El-Kadi 
2005) 

Quercetin  
Antioxidant and anti-
inflammatory 
properties. 

Obtained from plants 
(flavonols), used as a dietary 
supplement  and additive in 
food products  

(Harwood et al. 2007; 
Boots et al. 2008; Jin 
et al. 2010) 
 

D3T 
Chemopreventive and 
anti-inflammatory 
properties  

Cytotoxicity is not well 
understood 

(Kuo et al. 2016; Li et 
al. 2016) 

Curcumin 

Antioxidant and anti-
inflammatory 
properties 
 

Dietary supplement. Current 
clinical trials to study the effect 
and safety in the treatment of 
neurological diseases such as 
schizophrenia, Alzheimer’s 
disease, epilepsy and 
depression. 

(Kulkarni & Dhir 
2010) 
www.clinicaltrials.gov 
 

Spirulina  

Source of vitamins, 
minerals and 
phytonutrients 
Glucose metabolism 
in Diabetes.  

Dietary supplement (green 
algae).  
If contaminated can be unsafe 
for use (toxins and heavy 
metals). 
More research is needed for 
establish therapeutics benefits.  

(Gilroy et al. 2000; 
Gershwin & Belay 
2008; Marcel et al. 
2011) 
 

DMF 

Psoriasis, necrobiosis 
lipoidica, granuloma 
annulare, sarcoidosis 
and  
multiple sclerosis  

Drugs containing DMF have 
adverse side effects, such as 
gastrointestinal disorders and 
progressive multifocal 
leukoencephalopathy.   

(Nowack et al. 2002; 
Kreuter et al. 2005; 
Roll et al. 2007; 
Weber et al. 2009; 
Bovenschen et al. 
2010; Fox et al. 2012; 
Gold et al. 2012) 

Bardoxolone methyl (CDDO-ME), tert-butyhydroquinone (tBHQ), 3H-1,2,-dithiole-3-thione (D3T) 

and Dimethyl fumarate (DMF)  

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
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2.3 AIMS 

As described in the preceding sections, Nrf2 is an important transcription factor for redox 

homeostasis in cells and has a therapeutic potential in disorders associated with oxidative stress 

such as cancer and neurodegenerative disorders. Recently, several groups have reported a 

variety of small molecule Nrf2 activators that can enhance the function of the Nrf2/ARE pathway. 

However, these molecules, for example sulforaphane, valproate and others, are relatively 

unselective, which not only makes the interpretation of their effects within the central nervous 

system difficult but also can result in off-target side effects (i.e., non-Nrf2-related). 

The aim of this work is to identify novel and specific small activators of this pathway which will 

be expected to have an improved selectivity and safety profile relative to existing activators. The 

approach is to exploit X-ray crystallographic structural information regarding the Nrf2-Keap1 

protein-protein interaction to conduct a virtual screen of molecules that might interrupt the 

protein-protein interface and thereby cause Nrf2 to dissociate from or prevent the association 

with Keap1, resulting in an increase in free cytosolic protein that is then available to translocate 

to the nucleus. Compounds selected from the virtual screen will then be purchased and 

evaluated in a DiscoverX PathHunter enzyme fragment complementation cellular assay 

designed to measure the translocation of Nrf2 from the cytoplasm into the nucleus.  
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2.4 MATERIALS AND METHODS  

2.4.1 MATERIALS 

Description Use for 
Supplier and Catalogue 

Number 

Select U2OS cell culture kit Cell culture DiscoveRx  (92-0018GL3) 

Cell plating 0 reagent Cell plating DiscoveRx (93-0563R0A) 

Revive U2OS medium Cell thawing DiscoveRx (92-0016RM5S) 

Preserve U2OS freezing reagent Cell freezing DiscoveRx (92-0017FR3S) 

Cell detachment reagent Cell detachment DiscoveRx (92-0009) 

Hydrogen peroxide solution Cell oxidant reagent  Fluka  (Sigma Aldrich, 88597) 

DL-Sulforaphane  Cell oxidant reagent Sigma Aldrich (S4441) 

PBS Assay buffer Sigma Aldrich (79382) 

DMSO Assay buffer Fisher chemical (10080110) 

Corning® 384 Well flat clear 

bottom white polystyrene TC-

treated microplates 

Cell seeding for assay  Corning (3707) 

96-V well microplate translucent 

polypropylene 
Source dilution plate 

MIC9050, Scientific 

Laboratory Supplies 

 

 

2.4.2 METHODS  

 2.4.2.1 VIRTUAL SCREENING STRATEGY 

In the protein data bank (PDB) there are eighteen crystal structures relating to Keap1-Nrf2 

binding interface, some structures display the apo state of the protein (with no ligand) and 

others are in the holo state (with ligand). The SDDC’s computational chemist, Dr. Ben Wahab, 

performed the structural superpose and alignment of sixteen crystal structures from the PDB 

(Table 2.2) resulting in a root-mean-square deviation (RMSD) of 0.451 Å over 285 residues 

(alignment results shown in Appendix I). The RMSD value was used to study the similarity 

between structures, the low RMSD obtained demonstrated a similar conformation between the 

PDB structures of Keap1 (given that the structures were both holo and apo, it indicates a 

reasonably rigid protein). The alignment and super-positioning results were used for the 

investigation of interactions between the sixteen structures and the ones displaying the Keap1-

Nrf2 interactions were used as a guide for pocket analysis and pharmacophore design.  
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PDB 1X2R displays Keap1 as a forked-stem dimer structure in a large globular conformation 

(known as a multiple tryptophan-aspartic acid (WD)-40 β-propeller structure) in which the Neh2 

ETGE sequence region of Nrf2 binds with high affinity in the homodimer. The structures of Keap1 

with Nrf2 or similar peptides were used as a reference for the modelling and virtual screening 

experiments (Fig.2.10).  

 

Figure 2.10. Nrf2-Keap1 protein-protein interface. A. Nrf2 peptide LDEETGEFL from the Neh2 

region in green and Keap1 protein in pink from 1X2R structure. B. Keap1-Nrf2 binding pocket 

with surface with Nrf2 like-loop of known structures Cpd15 (yellow and cyan) and Cpd16 (red) 

from PBD 4IN4 and 4IQK. Surface in green is hydrophobic, purple is hydrophilic and white/grey 

is neither. Structures generated by Maestro Schrödinger 11.1 (Maestro, Schrödinger, LLC, New 

York, NY, 2017).  
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Table 2.2. Keap1/Nrf2 crystal structures used for modelling.  

PDB 
ID 

Resolution 
(Å) 

Comments Reference 

 
1U6D 
 
1ZGK 
 
1X2J 
 
1X2R 
 
2DYH 
 
2Z32 
 
 
3ADE 
 
3VNG 
 
 
3VNH 
 
 
3ZGD 
 
4IN4 
 
4IQK 
 
3WDZ 
 
4IFL 
 
4IFN 
 
3WN7 

 
1.85 

 
1.35 

 
1.60 

 
1.70 

 
1.90 

 
2.00 

 
 

2.80 
 

2.10 
 
 

2.10 
 
 

1.98 
 

2.59 
 

1.97 
 

2.60 
 

1.80 
 

2.40 
 

1.57 

 
Apo of human Keap1   
 
Apo of human Keap1 
 
Apo of mouse Keap1  
 
Mouse Keap1 with Neh2-ETGE peptide  
 
Mouse Keap1 with Neh2-DLG peptide 
 
Mouse Keap1 in complex with 
ProTalpha 
 
Mouse Keap1 with Sequestosome-1 
 
Human holo Keap1 with small 
molecule 
 
Human holo Keap1 with small 
molecule 
 
Apo of human Keap1 
 
Human Keap1 in complex with Cpd 15 
 
Human Keap1 in complex with Cpd 16 
 
Mouse Keap1 in complex with p62 
 
Apo of human Keap1 
 
Human holo Keap1 with peptide  
 
Mouse Keap1 with Nrf2-DLG region 
 

 
(Li X. et al. 2004)  
 
(Beamer et al. 2005) 
 
(Padmanabhan et al. 2006) 
 
(Padmanabhan et al. 2006) 
 
(Tong et al. 2007) 
 
(Padmanabhan et al., 2008) 
 
 
(Komatsu et al. 2010) 
 
(Satoh et al. 2015) 
 
 
(Satoh et al. 2015) 
 
 
(Hörer et al. 2013) 
 
(Marcotte et al., 2013) 
 
(Marcotte et al., 2013) 
 
(Ichimura et al. 2013) 
 
(Pan et al. 2012) 
 
(Pan et al. 2012) 
 
(Fukutomi et al. 2014) 

Sixteen structures were used for modelling. 3ZGC (Hörer et al. 2013) structure was not used due 

to mutations with the crystal contacts with Nrf2 for blocking binding interactions. 2FLU (Lo et al. 

2006) structure was not used because there were already enough crystals structures for virtual 

screening.  
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Pocket analysis and pharmacophore design 

The Keap1-Nrf2 interactions to disrupt by ligands are between Glu-79 of Nrf2 with Arg-415, Arg-

486 and Ser-508 of Keap1; and also Glu-82 from Nrf2 with Arg-380, Asn-382 and Ser-363. The 

pocket analysis was based on five holo structures (with Nrf2 or similar peptide): 1X2R, 3VNG, 

3VNH, 4IN4 and 4IFN.  Dr. Ben Wahab investigated the key interactions between Keap1 and Nrf2 

binding interface which resulted in the following interactions. It is important to note that 

sequence numbering is based on the Keap1 1X2R structure, corresponding to sequence Q9Z2X8 

from the UniProt Knowledgebase (UniProtKB). Structure 4IN4 has multiple conformations; three 

biological assemblies generated by protein interfaces, surface and assemblies (PISA) software 

(Marcotte et al., 2013). 

 

1X2R: Keap1 in complex with Nrf2 peptide from Leu-76 to Leu-84 (LDEETGEFL) from sequence 

Q60795 of UniProtKB (Padmanabhan et al. 2006). 

 

Key interactions 
Water 35, 27, 90 
Asn 382 
Arg 380 
Ser 363 
Ser 602 
Arg 415 
Arg 483 
Ser 508 
Glu 530 

 

3VNG & 3VNH: Keap1 in complex with small molecule that mimics the ETGE Nrf2 motif (Satoh 

et al. 2015). 

 

Key interactions 
3VNG: Asn382 , Arg 380 
3VNH:  Arg 483, Arg 415, 
Water 723 

     

4IN4: Keap1 in complex with a benzenesulfonyl-pyrimidone compound (Cpd15) (Marcotte et 

al., 2013).  

 

Key interactions 
1: Ser 363, Gly 603, Arg 
380,  Arg 415  
2: Arg 483, Ser 555  
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       4IFN: Keap1 in complex with compound (Pan et al. 2012). 

 

Key interactions 
 
Ser 602 
Arg 415 
Asn 414 

Diagram and results generated by Dr. Ben Wahab and modified for the purposes this thesis.  

 

 

Part of the pocket analysis was to study the conserved water molecules involved in the binding 

pocket, with a total of fifteen conserved molecules around the binding space and four under the 

pocket (Appendix I). Conserved water molecules are believed to be important for binding 

interactions between both proteins. A set of 22 pharmacophores were designed around the 

known interactions from the documented binders with each pharmacophore having at least 

three features of the binding pocket (pharmacophore list in detail generated by Dr. Ben Wahab 

in Appendix I).  

1.8 million compounds from the SUNScreen internal database were pre-screened with the 

designed pharmacophores using the Molecular Operating Environment (MOE) software. This 

pre-screening identified 1901 unique hits, from which 1,000 were docked into the 1X2R 

structure using MOE. The compounds were filtered by structural and physicochemical criteria 

and 250 compounds were analysed for medicinal chemistry appraisal. A total of 122 compounds 

were purchased from preferred suppliers for testing (Fig. 2.11). 
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Figure 2.11. Summary of the virtual screening strategy. SUNScreen is the Sussex University NICEr 

database of materials from reliable preferred suppliers, filtered by structural and 

physicochemical criteria. 1.8 million compounds were subjected to pharmacophore screening, 

resulting in 1901 unique hits that were subjected to docking analysis based on a score system 

that measured the energy of the binding, surface dynamic, impact of the pocket, etc. Next steps 

included assessment and analysis to filter compounds by structural and physicochemical criteria. 

The medicinal chemistry appraisal was used to select the compounds with best features for 

design and synthesis of compounds. Finally 122 compounds were purchased for screening assay 

(35 compounds were not available).  
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2.4.2.2 NRF2 ENZYME FRAGMENT COMPLEMENTATION ASSAY  

The assay is based on enzyme fragment complementation technology (from DiscoveRx, 

PathHunter). In this approach, the complementing fragments of β-galactosidase are expressed 

in different compartments of stably transfected U2OS cells (Fig. 2.12). Upon nuclear 

translocation of the Nrf2 from the cytosol within the cells, the two β-gal fragments complement 

forming a functional enzyme that hydrolyses substrate and generate a chemiluminescent signal.  

 

 

 

 

 

 

 

 

 

 

Figure 2.12. PathHunter Nrf2 nuclear translocation assay mechanism.  A small inactive fragment 

of β-gal (enzyme donor, ED) was fused into the Nrf2 protein in U2OS cells. Another inactive 

fragment termed enzyme acceptor (EA) is located in the nucleus. Nrf2 dissociation from Keap1 

results in Nrf2 nuclear translocation and complementation of both β-gal fragments (ED+EA), 

forming a functional enzyme. Enzyme activity is then quantitatively detected as 

chemiluminescent signal (active substrate).  

 

 

Figure 2.13. Summary strategy followed for compound characterisation methodology. Single 

point assay compound hits were followed up by measuring EC50 in a biological assay, then 

verification of cellular viability and ROS generation to finally characterise the Nrf2 nuclear 

expression by western blotting.   
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2.4.2.2.1   ASSAY DEVELOPMENT  

U2OS cells were harvested from a T75 flask and seeded into a 384-well microplate (final 

concentration of 5,000 cells per well) and incubated overnight at 37°C in 5% CO2. Next day a 

series of ten 3-fold serial dilutions of sulforaphane in dimethyl sulfoxide (DMSO) were prepared, 

final top concentration of 5 μM in a 96-well plate. The concentration of each dilution was 

prepared at 5X the final screening concentration (5 μl compound + 20 μl of cells). The same 

procedure was followed for control wells PBS/DMSO. 5 μl of sulforaphane (5X) was transferred 

into the 384-well microplate (cells) and incubated for 90 minutes at 37°C in 5% CO2, following 

the addition of detection reagent (12 μl) to each well, for a final well volume of 37µl. Plates were 

then incubated at room temperature in the dark for 1 hour after which luminescence was read 

using the plate reader Pherastar FS from BMG Labtech (Optic module LUM plus, Gain 3600 and 

optic used measurements from top).  

 

 

Figure 2.14. General procedure of the PathHunter kit for assay development and screening 

compound.  
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DMSO Tolerance 

Dimethyl sulfoxide (DMSO) is used as a solvent to solubilise and dilute compounds that are 

difficult to dissolve in water of other assay buffers. Solvents can affect the assay performance, 

thus a DMSO tolerance curve was performed to ensure cell tolerance to DMSO. The cellular 

assay was tested at different concentrations of DMSO: 0.03%, 0.1%, 0.3%, 0.7%, 1.0% and 2.0%.  

Incubation Conditions  

To validate the assay different incubation conditions were tested. The incubation of cells 

exposed with compounds was tested at two different temperatures: room temperature and 

37°C. In order to observe the optimal incubation time the luminescence signal was read every 

hour up to 6 hours. A control of DMSO/PBS was performed to observe the basal values.   

 

2.4.2.2.2 ASSAY VALIDATION (LITERATURE COMPOUNDS) 

U2OS cells were harvested from a T75 flask and seeded into a 384-well microplate (final 

concentration of 5,000 cells per well) and incubated overnight at 37°C in 5% CO2. The next day 

a 96-well plate with compounds and controls was prepared, the compounds were tested in a 

final maximal concentration of 30 µM (for single point experiments) and 88 µM (for assay 

experiments, EC50 determination, compound concentration was determined by the maximum of 

DMSO allowed in the assay) diluted in DMSO, final DMSO concentration 0.3% and 1% 

respectively. Sulforaphane was included in each plate as a positive control. 5μl of testing 

compound (5X) was transferred into the 384-well microplate (cells) and incubated for 90 

minutes at 37°C in 5% CO2, following which detection reagent (12 μl) was added to each well. 

Plates were then incubated at room temperature in the dark for 1 hour after which 

luminescence was read using a BMG Pherastar FS reader.  
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2.4.2.2.3 COMPOUND SCREENING  

A library of 122 compounds were screened for activity on Nrf2 nuclear translocation, using the 

PathHunter Keap1-Nrf2 assay (DiscoverX). The compounds were prepared in stocks of 10 mM 

with DMSO. From the compound library, the compounds were screened for single point 

detection at 30 μM final concentration (0.3% DMSO). Sulforaphane at 5 μM and DMSO/PBS at 

0.3% were used as positive and negative controls respectively.  

After the detection of hit compounds from single point assay, an EC50 assay was performed using 

a FluidX Xpp-721 robot for compound addition. The compounds were tested with a series of ten 

1:3 serial dilutions in DMSO, top concentration of 88μM this maintained the DMSO percentage 

in 1%, as recommended by the assay supplier. 

384-well assay plate map format for FluidX Xpp-721 robot:  

 

Numbers indicate each different compound, for example all wells in number 1 corresponding to 
the same compound in different serial dilutions.   
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2.4.2.3 VIABILITY ASSAY  

Compounds that were active in the EC50 assay were assayed to ensure they were not toxic in 

cells. To confirm the toxicity of the compounds, an ATP viability assay (CellTiter-Glo® 

Luminescent cell viability assay, Promega) was performed. The assay measures the viable cells 

in culture based on the quantitation of the ATP in the cells by adding a single reagent that causes 

the formation of oxyluciferin and a luminescent signal (luciferase reaction) in the presence of 

ATP from viable cells (Fig. 2.15).  

U2OS Nrf2 cells were seeded into a 384-well plate, compounds at 88 µM were added and 

incubated for 2 hours at 37°C, 5% CO2. The cells were then equilibrated at room temperature 

for 30 min. CellTiter-Glo reagent was added (25 μl) and incubated for 10 minutes at room 

temperature. The ATP concentration was detected as relative light units (RLU) using a 

luminometer reader.  

 

 

Figure 2.15. CellTiter-Glo® luminescent cell viability assay principle. Viable cells generated ATP, 

upon lysis of cells, mono-oxygenation reaction of luciferin is catalysed by luciferase recombinant 

reagent with the help of ATP, Mg2+ and O2.  (Figure adapted from https://www.promega.co.uk/-

/media/images/resources/figures/9100-9199/9155ma-mod.jpg). 

https://www.promega.co.uk/-/media/images/resources/figures/9100-9199/9155ma-mod.jpg
https://www.promega.co.uk/-/media/images/resources/figures/9100-9199/9155ma-mod.jpg
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2.4.2.4 DETECTION OF REACTIVE OXYGEN SPECIES (ROS)  

In order to confirm if the compounds were non-specifically disrupting the protein-protein 

interaction the production of free radicals was measured. If compounds are highly reactive and 

react with the cysteine residues of Keap1 it will produce a large amount of free radicals, 

suggesting that the activation of Nrf2 pathway is non-specific. Consequently, the ROS-Glo™ H2O2 

Assay from Promega was used to measure the levels of H2O2 directly in U2OS cell culture.  

5,000 U2OS Nrf2 cells in 20 µl were seeded into 384-well plates. The compounds, sulforaphane 

and Menadione (a free radical generator that induced cell death was recommended by supplier 

Cat. No. M5625, Sigma Aldrich) controls in combination with the H2O2 substrate solution (20 µl) 

were added and incubated for 2 hours at 37°C, 5% CO2. A volume of 40 µl of ROS-Glo detection 

solution was then added and left at room temperature for 20 minutes to equilibrate the plate. 

The luminescence signal was then detected using a BMG Pherastar FS reader.  

 

 

Figure 2.16. Ros-Glo H2O2 assay reaction. Luciferin H2O2 substrate incubated with sample reacts 

directly with H2O2 to generate a luciferin precursor. After the addition of a second reagent with 

recombinant luciferase, ATP and D-cysteine, the precursor is converted to luciferin to produce a 

light signal. The signal is proportional to the levels of H2O2 in the sample.  
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2.4.2.5 COMPOUND CHARACTERISATION  

 

2.4.2.5.1 CELL CULTURE 

U2OS-Nrf2, U2OS WT and HEK293 cells were cultured as a monolayer using Dulbecco`s modified 

eagle medium Life Technologies, Gibco™) supplemented with 10% fetal bovine serum (Life 

Technologies, Gibco™)  and 5% penicillin-streptomycin (Life Technologies, Gibco™) at 37oC and 

5% CO2. 

 

2.4.2.5.2 CELL FRACTIONATION 

The cells were cultured for 3 days in T75 flasks, then washed with PBS and harvested with trypsin. 

Cells were pelleted by centrifugation (500g for 3 min) and the pellet was washed 3x with PBS, 

and then resuspended in 300µl of lysis buffer (20 mM Tris-HCl, 101 mM NaCl, 1 mM EDTA, 0.5% 

Triton X-100, protease and phosphatase inhibitor cocktail, Roche). After incubation on ice for 15 

min, with vortexing every five minutes, cells were centrifuged at 1,000g for 10 min. Supernatants 

(cytosolic extract) were collected and nuclear pellet was washed 3x with PBS and resuspended 

in 50µl of lysis buffer. The nuclear fraction was sonicated for 30s (Sonics, Vibra cell sonicator). 

The protein levels in both fractions were quantified using the Bicinchoninic acid protein (BCA) 

assay kit from Sigma-Aldrich.  Both the supernatant (cytosol) and pellet (membrane and nuclei) 

fractions were used for Western blot analysis to measure the levels of Nrf2 protein expression.  
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2.4.2.5.3 WESTERN BLOTTING  

The cellular fractions were diluted with 10 μl of SDS sample buffer.  30-60 µg of protein content 

were separated using SDS-PAGE gel (NUPAGE 4-12%, 140V for 1 hour) and transferred onto a 

PVDF membrane (Amersham Hybond™-P 0.45, Cat. No.10600023, GE). The membrane was 

blocked overnight with 5% non-fat dry milk in PBST at 4oC. The membrane was then probed with 

primary antibodies* overnight at 4oC. The next day the membrane was washed 1x15 minutes 

and 3x5 minutes with PBST and then incubated with HRP secondary antibody for 45 minutes at 

room temperature. Blots were washed 1x15 minutes and 3x5 minutes with PBST, and then 

developed using a Pierce ECL detection reagent and exposed to X-ray film (CL-Xposure film, Cat. 

No. 34089 Thermo Scientific).  

The Nrf2 protein has a predicted molecular weight of 68 KDa; the Nrf2 antibody was validated 

from supplier Abcam to detect a band of approximately 110 kDa in western blot experiments 

(http://www.abcam.com/nrf2-antibody-ab137550.html). The antibody had been used for 

detecting Nrf2 protein in western blot experiments in published literature (Yamashita et al. 2014; 

Grootaert et al. 2015; Yamada et al. 2016 & Sun et al. 2017).  

*The following antibodies were used: 

Primary antibodies  

Antibody Type Dilution Supplier Cat. No. 

Nrf2 Rabbit polyclonal 1:1000 Abcam ab137550 

GAPDH Mouse monoclonal  0.5µg/ml Novus biological NB600-502SS 

H2B Rabbit polyclonal 1:10,000 Abcam ab1790 

 

Secondary antibodies  

Antibody Type Dilution Supplier Cat. No. 

HRP-Ab Anti-rabbit IgG 1:30,000 GE Healthcare Life Sciences NA934 

HRP-Ab Anti-mouse IgG 1:10,000 Dako P0260 

 

 

 

 

http://www.abcam.com/nrf2-antibody-ab137550.html
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2.5 RESULTS  

2.5.1 NRF2 ENZYME FRAGMENT COMPLEMENTATION ASSAY 

2.5.1.1 ASSAY DEVELOPMENT  

In the Nrf2 cellular assay sulforaphane was used as a control because it is well known that 

sulforaphane induces the nuclear translocation of Nrf2 by reacting with the cysteine residues of 

Keap1. The general methodology recommended by the supplier was performed. Hence, 

sulforaphane was added into cells at 5 µM (3-fold serial concentrations) with 0.3% of DMSO. As 

shown in Fig. 2.17, increase of sulforaphane concentration results in a proportional increase of 

chemiluminescent signal, indicating the nuclear translocation of Nrf2 by this compound. EC50 of 

400 nM was obtained, similar to the manufacturer’s value of 506 nM (from supplier validation 

results, DiscoveRx). Control wells with PBS/DMSO gave a baseline in the graph.  
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Figure 2.17. Effect of DL-Sulforaphane on Nrf2 nuclear translocation in the U2OS Nrf2 assay. 

Sulforaphane tested at a maximal concentration of 5 μM gave an EC50 of 400 nM. Error bars 

represent the mean ± SD of n=3 individual experiments performed within one week. Signal-to-

noise ratio S/N = 3.28, in which S is the average of the higher values and N is the average of the 

control values (PBS/DMSO). Experiments performed at 37°C for 90 minutes and DMSO final 

concentration of 0.3%. Y-axis in relative luminescence units (RLU) and X-axis is the concentration 

of compound in molar units.  
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DMSO Tolerance  

Different percentages of DMSO in the assay were tested, the results are the following: 

DMSO % 
Average 

EC50  (nM) 
S/N 

0.03 % 570.5 4.0 

0.1 % 385.6 4.4 

0.3 % 450.6 3.9 

0.7 % 415.5 3.8 

1.0 % 376.6 4.0 

2.0 % 596.8 4.3 

  

The EC50 values and signal-to-noise ratios were similar at different DMSO percentages. The assay 

demonstrated good tolerance up to 2.0 % of DMSO, indicating that compounds can be dispensed 

at 2% DMSO with a final assay concentration of 200 µM. Percentage of DMSO is the final 

concentration in the assay. The potency of sulforaphane was slightly higher with 1.0% this could 

be for the better solubility of the compound in the solvent.  
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Figure 2.18. DMSO tolerance curve. Sulforaphane tested at different concentrations of DMSO. 

Error bars (SD) represent the mean ± SD of n=3 individual experiments. S/N was calculated with 

the average of the higher and lower values. Experiments performed at 37°C for 2 hours to test 

the maximal incubation time of 90 minutes.  Y-axis in relative luminescence units (RLU) and X-

axis is the concentration of compound in molar units. 
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 Incubation Conditions 

In order to obtain the optimal incubation time and temperature conditions for the test 

compounds, the signal and S/N from the control compound sulforaphane were compared at 

room temperature (RT) and 37°C. The plate was read every hour for 6 hours (Fig. 2.19). The 

optimal incubation time was 2 hours at 37°C, reaching the highest intensity with sulforaphane 

control and highest S/N value of 3.9. To summarize, the optimal conditions for the assay test 

with sulforaphane was to incubate plates at 37°C for 2 hours, followed by further incubation 

with the detection reagent for 1 hour at room temperature in the dark. With a range of final 

DMSO concentrating in the assay from 0.03% to 2.0%. These conditions will be used for the 

compound screening single point and EC50. 
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Figure 2.19. Comparison of incubation times at 37°C vs RT at 6 hours with sulforaphane 

compound. Sulforaphane optimal EC50 value at room temperature was at 6 hours with 204.1 nM. 

The EC50 values at 37°C incubation for 6, 2 and 1 hour were 314.7 nM, 341.7 nM and 216.7 nM 

respectively. The S/N values are displayed in the table below the graphs. Y-axis in relative 

luminescence units (RLU) and X-axis is the concentration of compound in molar units, n = 1 

experiment.  
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2.5.1.2 ASSAY VALIDATION (LITERATURE COMPOUNDS) 

Previous studies (Kanno et al., 2012; Marcotte et al., 2013) using virtual screening and confirmed 

with luciferase cell assay, suggest that these novel small molecules disturb the protein-protein 

interaction between Keap1-Nrf2. Three such compounds were synthesised in-house and tested 

with the Nrf2 assay: N-(4-(2-pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethylphenoxy) acetamide 

(CPN-9) (Kanno et al., 2012), and two benzene-disulfonamide compounds (Marcotte et al., 2013) 

named in-house as compound 13545 and 13546.  

 

Figure 2.20. Chemical structure of literature compounds. Novel Nrf2 activators CPN-9 (Kanno et 

al. 2012), compounds 13545 and 13546 (Marcotte et al. 2013). These compounds have been 

shown to protect cells against oxidative stress and cell death in vitro experiments.  
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Figure 2.21. Activity of testing compounds by Nrf2 cellular assay. Cells U2OS were tested with 

each compound at maximum concentration of 70 μM and sulforaphane at 8 μM. Y-axis in 

relative luminescence units (RLU) and X-axis the concentration of compound in molar units,          

n = 1 experiment.  
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It was expected that the three compounds would give a high signal of Nrf2 induction. Only the 

compound 13546 produced Nrf2 translocation into the nucleus with an EC50 of 9.4 µM (literature 

EC50 of 2.7 µM) and the sulforaphane control of EC50 0.87 µM (Fig. 2.21).  

 

2.5.1.3 COMPOUND SCREENING  

122 compounds were screened in a single point assay of which 11 hit compounds were detected 

with at least 15% activity normalized relative to the sulforaphane control. EC50 values were 

obtained to confirm the Nrf2 activity. From the 11 compounds only 5 compounds showed 

activity in the Nrf2 assay (Table 2.3, Fig. 2.23).   

Table 2.3. Compounds with Nrf2 activity. Compounds that showed activity in the Nrf2 

translocation assay, % normalised with sulforaphane control at 5 µM.  

 

Compound % activity 
UOS-00014231-001 25 % 
UOS-00014239-001 20 % 
UOS-00014262-001 ˃100 % 
UOS-00014265-001 15 % 
UOS-00014266-001 40 % 
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Figure 2.22. Compounds with a possible Keap1-Nrf2 activity. The compounds were tested with 

a final concentration of 88 μM, using a sulforaphane control of 5 μM. Data and graphs analysed 

with the Domatics Studies Notebook analysis package. Red dots are automatically excluded data 

points that are distant from the mean (error points, away from the standard deviation) 

generated by Domatics Studies.  Y-axis is % of response normalized with control and X-axis is the 

concentration of compound in nanomolar, n = 2 experiments.  
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Figure 2.23. Chemical structure of the hit compounds for Nrf2 activity. 
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2.5.2 VIABILITY ASSAY 

The five novel compounds, plus the literature compound 13546 were not toxic to U2OS cells 

during a 2 hour exposure time. After 2 hours the cell viability decreases by only ~5% in all 

compounds and the control sulforaphane. This shows that the compounds are not toxic and do 

not cause cell death when incubated for 2 hours. Hydrogen peroxide (H2O2) is well known to 

induce cell death (Whittemore et al. 1995), for that reason it was used as a control in the viability 

assay. It was observed that higher concentration of H2O2 decrease significantly the 

concentration of ATP (Fig. 2.24) in cells indicating cell death and toxicity, the levels of ATP are 

directly proportional to the number of viable cells present in the well. The low concentrations 

of H2O2 displayed higher levels of RLU, the possible reason for this is that the dose-curve of H2O2 

was performed in a different plate from the compounds, the number of cells might vary from 

plate to plate increasing the RLU detection.  
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Figure 2.24. U2OS viability assay with test compounds. Compounds and control hydrogen 

peroxide were tested at 88 µM, 1:3 serial dilutions, n = 1 experiments. Plate incubated at 37°C 

for 2 hours. RLU is proportional to the concentration of ATP from cells, only hydrogen peroxide 

displayed a significant decrease of ATP in cells suggesting cell death.  
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2.5.3 DETECTION OF REACTIVE OXYGEN SPECIES (ROS)  

As previously discussed, compounds with Nrf2 assay activity can either interact by specifically 

disrupting the protein-protein interaction or non-specifically by causing ROS, which results in a 

change in Keap1 conformation as a result of interacting with cysteine residues of Keap1 protein. 

The purpose of this experiment was to measure the generation of ROS by test compounds. If 

compounds increase ROS levels it suggests interaction with Keap1 cysteine residues.  

The ROS-Glo H2O2 assay was used to measure the increase of ROS generated in cells, after 2 

hours exposure of test compounds. Menadione was used as a control, since it is well known to 

induce reactive oxygen species and sulforaphane is well known to interact with Keap1 cysteine 

residues.  

As can be seen in Fig. 2.25, the majority of the compounds induced reactive oxidant reagents as 

indicated by an increase in the luminescence signal. These results suggested that the compounds 

affect the Keap1-Nrf2 protein interaction by indirectly causing stress or reacting with the 

cysteine residues of Keap1, but not interacting at the protein-protein interface pocket. The 

compounds UOS-00014231 and UOS-00014239 showed a decrease in ROS, suggesting a possible 

Nrf2-Keap1 direct interaction. The decreasing level of ROS can be due to the production of 

antioxidants by the nuclear translocation of Nrf2. The next step was to observe the translocation 

activity of the compounds by western blot analysis.  
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Figure 2.25. ROS induction in U2OS-Nrf2 cultured cells. The cells were treated with increasing 

concentrations of compounds with a maximum concentration of 88 μM. Controls: Menadione 

and Sulforaphane. The response values in the Y-axis correspond to the relative luminescence 

units (RLU) and X-axis correspond to the concentration of compound in nanomolar, n=1 

experiments, red dots in the graph are being excluded automatically by the program. Data and 

graphs analysed with the Domatics Studies Notebook analysis package. The compounds 

displayed an increase in ROS generation, except compounds 14231 and 14239 that showed a 

reduction in ROS generation suggesting a regulated balance induced by Nrf2-ARE pathway 

activation.  
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2.5.3 WESTERN BLOT 

2.5.3.1 NRF2 DETECTION IN WILD TYPE U2OS CELL LINE  

In order to observe nuclear translocation of Nrf2, the effects of oxidative stress were studied in 

wild type (WT) U2OS cells. Sulforaphane has been shown to activate the Nrf2-Keap1 pathway 

and induce the phase II antioxidant genes (i.e. GSTs, NQO1, HO-1 and TXNRD1) by reacting with 

the cysteine residues of Keap1 protein (Bryan et al. 2013; Baird et al. 2014). Accordingly, 

sulforaphane was chosen as a positive control in U2OS for inducing the nuclear translocation of 

Nrf2. Sulforaphane has been tested in the literature at different concentration from 5-50 µM in 

different cell lines such as, HEK-293, HeLA, COS1, MDA-MB-231 and CaCO2 (Traka et al. 2005; 

Juge et al. 2007; Kanematsu et al. 2010; Lau et al. 2013; Kemmerer et al. 2015; Ullah 2015). From 

the different concentrations tested in the literature it was decided to exposed U2OS cells with a 

high concentration of sulforaphane (40 µM) to be able to observe an Nrf2 nuclear translocation 

induction. Nrf2 is predicted to display a band of ~65 kDa, however the antibody supplier (Abcam) 

and the literature had found evidence that the biologal relevant species of Nrf2 migrates at ~110 

kDa in a denaturing gel (SDS-PAGE) (Lau et al. 2013 & Grootaert et al. 2015). It had been 

suggested that in the nucleus Nrf2 is bound to ubiquitin so the molecular weight would be higher 

than cytoplasm, other suggested reasons are; post-translational modifications, splice variants 

and the relative charge of the composition of amino acids. Additionally, different commercially 

available antibodies were able to only detect a band of Nrf2 ~100 kDa, such as; NovusBio (NBP1-

32822), Cell signaling technology (12721), Abcam (ab62352) and R&D systems (AF3925 & 

MAB3925). A comparison of commercially available Nrf2 antibodies in a 7.5% SDS-PAGE with 

sulforaphane treatment displays a band at ~100 and 72 kDa (Lau et al. 2013). In these 

experiments the Nrf2 protein band was also detected at ~100 kDa in the nuclear fractions.  
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Figure 2.26. Wild type U2OS cells vs U2OS with sulforaphane treatment. U2OS cells were 

incubated with 40 µM of sulforaphane (SFN) or 0.4% DMSO in PBS for 2 hours. Cell fractions 

were subjected to western blot analysis.  The controls for the cytosolic and nuclear fractions 

were GAPDH and H2B respectively and were used to verify the differential centrifugation 

experiments. GAPDH is an enzyme that catalyses several steps of glycolysis in the cytosol of cells 

and is highly expressed in all cells; H2B is a histone involved in the chromatin production and is 

localised only in nuclear cells.  

 

The differential centrifugation fractionation protocol worked since GAPDH and H2B were 

preferentially enriched in the correct cellular fractions (cytosolic and nuclear respectively). 

Increased translocation of Nrf2 from the cytoplasm to the nucleus was not observed in cells 

treated with sulforaphane, cytoplasmic Nrf2 was observed in relative low levels in the control 

conditions, indicating none or low levels of Nrf2 to translocate.  This could be due to U2OS cells 

being a cancer cell line (osteosarcoma) and as a consequence alternative defence pathways 

against oxidative stress are highly upregulated. For example including those using oxidation 

resistance 1 protein (Oxr1; Oliver et al., 2011), heat shock proteins (Hsps; Jolly et al. 2000) or 

activating transcription factor 4 (ATF4; Lange et al., 2008)  instead of activation of the Nrf2 

pathway as evidenced by the similar Nrf2 nuclear protein levels in the treated and untreated 

cells (Fig. 2.26 & 2.27). The cytosolic fraction of Nrf2 was detectable but not in a higher intensity, 

therefore it was not possible to make a cytosolic quantification. These results indicate that 

untreated cells have slightly higher Nrf2 protein in the nucleus measured by densitometry 

relative to H2B control, however this is not significant compared to cells treated with 

sulforaphane (Fig. 2.27). Due to the cytosolic fraction not being completely detectable it was not 

possible to establish a measurement of the nuclear translocation of Nrf2.  
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Figure 2.27. Densitometry analysis of Western Blot from U2OS cells with and without 

sulforaphane treatment. Cells were treated with sulforaphane or with control PBS/DMSO for 

two hours. Nrf2 levels were normalised against histone H2B antibody and quantified by 

densitometry with ImageJ. Three different gels were used for western blot and for densitometry 

analysis, the relative density was calculated using the H2B band relative to each sample to 

eliminate the effects of the different exposure times. Values are the mean ±SD of three 

independent experiments.   
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2.5.3.2 NRF2 DETECTION IN U2OS-NRF2 CELL LINE (DISCOVERX)  

The commercial kit PathHunter® U2OS Keap1-Nrf2 was used to analyse the Nrf2 nuclear 

translocation with 122 compounds from virtual screening (as described in compound screening 

section 2.4.2.2.3). The commercial cell line U2OS-Nrf2 was used to test selective compounds for 

western blot analysis.  This cell line is engineered to co-express two enzyme fragments of β-

galactosidase that in the presence of Nrf2 nuclear translocation will produce a detectable 

chemiluminescent signal.  Therefore, it was important to examine Nrf2 protein in nuclear and 

cytosolic fractions when it is incubated with test compounds by western blotting.  

The compounds tested for Nrf2 nuclear translocation for western blot, chemical structures in 

shown in Fig. 2.20 & 2.23: 

 UOS-00014239-001 

 UOS-00014231-001 

 UOS-00013634-001 (CPN-9) 

 UOS-00013546-001 

 Sulforaphane (positive control)  

 DMSO/PBS (control negative) 

 

In this experiment it was decided to increase the concentration of sulforaphane from 40 µM to 

90 µM to observe a more significant induction of Nrf2 expression as a control and exposure time 

in cells from 2 to 4 hours, incubation times similar to the literature (Sakao & Singh 2012; Zhuang 

et al. 2014). The purpose was to find compounds that disrupt Keap1-Nrf2 protein interaction 

and induce the nuclear translocation of Nrf2. Compounds 14239 and 14231 were selected based 

upon their respective EC50 values of ~0.469 M and ~3.491e-5 M, viability assays and ROS-GLO 

assay. Compound 13634 is a novel small molecule (CPN-9) which has been reported to 

upregulate the Nrf2 pathway and increase the expression of antioxidants and phase II 

detoxification enzymes by inducing Nrf2 nuclear translocation (Kanno et al. 2012). Compound 

13546 is a small compound closely related to a tested compound  N,N’-1,4-naphthalenediylbis 

4-methoxybenzenesulfonamide (named as compound Cpd16 in the literature), which was 

shown to interact with the cysteine residues in Keap1 and stimulates Nrf2 nuclear translocation 

(Marcotte et al. 2013). Sulforaphane was used as a positive control for Nrf2 nuclear translocation.  
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Figure 2.28. Nrf2 nuclear accumulation in U2OS-Nrf2 cells. Cells were treated with 90 μM of test 

compounds for 4 hours.  Nuclear and cytosolic fractions were subjected to western blot analysis. 

GAPDH and H2B antibodies were used as loading control and to verify the differential 

centrifugation experiments.  

 

These results indicate that some compounds increase the levels of Nrf2 in the nuclear fraction 

compared to the control (Fig. 2.28), however Nrf2 protein was not observed in any of the 

cytosolic fractions. Nrf2 protein levels were enhanced with compounds 14239, CPN-9, 13546 

and sulforaphane. It appears from these results that compound CPN-9 has a more pronounced 

effect on Nrf2 expression in the nuclear fraction. However, CPN-9 compound did not show 

nuclear translocation in the PathHunter Keap1-Nrf2 assay (Fig. 2.21), suggesting that CPN-9 

might indirectly activate Nrf2 pathway, instead of interacting with Nrf2 and Keap1. For example, 

CPN-9 might induce the activation of Nrf2 by increasing kinases activity, however the mechanism 

of action between CPN-9 and Keap1-Nrf2 pathway is not known.  

Nrf2 expression in cytosolic fraction could not be detected by this method. This might be due to 

a reduced level of protein expression in cytosolic fraction, making it more difficult to detect by 

western blot analysis. Similarly, studies in gastric cancer cell lines have showed only detectable 

levels of Nrf2 in the nucleus, suggesting that some cell lines express higher levels of Nrf2 in the 

nucleus depending on their antioxidant rate activity as part of a cancer cell line behaviour 

(Kawasaki et al. 2015).  
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Figure 2.29.  Nrf2 densitometry analysis of Western Blots from U2OS-Nrf2 cell line with test 

compounds. Nrf2 levels were normalised against histone H2B antibody and quantified by 

densitometry with ImageJ. For densitometry the relative density was calculated using the H2B 

band relative to each sample to eliminate the effects of the different exposure times. Values are 

the mean of two different cellular samples treated in separate individual experiments*.  

*This cell line is part of a commercial kit assay, the use of which was limited to a specific period of time, 

there was not enough cells for a third repeat due to license expiration.   

 

The densitometry analysis (Fig. 2.29) showed that CPN-9 compound has the most effect on 

nuclear expression of Nrf2, followed by 14239 and sulforaphane, however these results are not 

significant due to only having two replicas of the experiments. Therefore, these results suggest 

a higher Nrf2 expression on the nuclear fraction by compound CPN-9. Compound 14239 

increased the expression of Nrf2 in the nuclear fraction compared to compound 14231, 

consequently, the next experiments were decided to be focused on the study of compound 

14239 as a potential target for Nrf2 signalling. 
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2.5.3.3 NRF2 DETECTION IN HEK-293 CELL LINE  

Since the results displayed no significant effect in the U2OS cells, it was sought to examine 

whether the compounds had an effect on Nrf2 nuclear translocation in an alternative cell line, 

HEK-293 again using sulforaphane, CPN-9, compound 14239, hydrogen peroxide and PBS/DMSO 

as control with western blot analysis. Human embryonic kidney (HEK)-293 cells were chosen 

because they are easy to grow and widely used for biology research. A study in this cell line using 

immunohistochemistry demonstrated Nrf2 expression and nuclear translocation with 5μM of 

sulforaphane treatment (Wen. et al. 2014). It was decided to verify the nuclear translocation of 

Nrf2 protein triggered by compound 14239. These results showed that test compounds failed to 

demonstrate an increased induction of Nrf2 nuclear translocation (Fig. 2.30). One possibility is 

the high viscosity of nuclear fractions for HEK-293 cells, this was reduced with sonication but it 

was still difficult to maintain equal protein content into the gel, H2B control was used as a 

loading control for this matter. The results using this cell line are more variable than U2OS cell 

lines. Therefore, the possibility of compound 14239 as a potential inducer of Nrf2 nuclear 

translocation cannot be dismissed. Cytosolic Nrf2 expression was not detectable in HEK-293 cells, 

consistent with previous experiments with the wild type U2OS and U2OS-Nrf2 (DiscoveRx) cell 

lines.   

 

Figure 2.30. Effect of compounds on Nrf2 levels in HEK-293. Cells were treated with 90 µM of 

compounds for 4 hours. Nuclear and cytosolic fractions were subjected to western blot analysis. 

GAPDH and H2B were used as loading and differential centrifugation controls.  
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Figure 2.31. Densitometry analysis of Western Blot HEK-293 cell line with compounds. Nrf2 

levels were normalised against histone H2B antibody and quantified by densitometry with 

ImageJ. Three different gels were used for western blot and for densitometry analysis the 

relative density was calculated using the H2B band relative to each sample to eliminate the 

effects of the different exposure times. Values are the mean ±SD of 3 independent experiments.  

 

Densitometry analysis of the western blot experiments (Fig.2.31) showed that sulforaphane 

slightly increased the Nrf2 in the nuclear fraction, however the control of PBS/DMSO showed 

similar levels of expression to H2O2 treatment. In conclusion, HEK-293 cell line western blot 

experiments failed to demonstrate an effect on Nrf2 by test compounds.   
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2.6 DISCUSSION 

Structure-based virtual screening was used to identify compounds that disrupt the interaction 

of Keap1-Nrf2. The strategy was to use 16 of the 18 crystal structures of the protein data bank 

(PDB) that show the Keap-Nrf2 interaction interface, resolution of crystal structures from        

1.35 Å to 2.80 Å. The other two structures 3ZGC (Hörer et al. 2013) and 2FLU (Lo et al. 2006) 

were not used due to having mutations in the binding pocket and already having enough crystals 

structures for the virtual screening. From the crystal structures selected a pocket analysis was 

performed of Keap1 in complex with the N-terminal region of Nrf2 and other ligands (i.e., Cpd15, 

ProTalpha and p62; Table 2.2).  Pharmacophore design was used with at least three features of 

the binding pocket for further docking analysis based on score system using MOE and medical 

chemical appraisal selection. The interface between the two proteins is relatively small, which 

is a challenge for compounds that can bind and disrupt the protein-protein interaction. The 

virtual screen (VS) approach was similar to other literature studies for identifying novel small 

inhibitors of the Keap1-Nrf2 protein-protein interaction (Kanno et al. 2012; Marcotte et al. 2013; 

Zhuang et al. 2014). Three compounds (CPN-9, Cpd16 and analogue) were tested in the Nrf2 

translocation assay in which only compound Cpd16 (internally named 13546) displayed activity 

for Nrf2 nuclear translocation. One of the VS approaches found in the literature was a 

structured-based virtual screening followed by docking studies using 1X2R as a reference of the 

protein-protein interaction, similar to the virtual screen approach performed in this thesis 

(Marcotte et al. 2013). A second approach by Zhuang et al. used the same structure-based VS 

integrated with hit-based substructure search for finding compounds with similar structure for 

clustering analysis (Zhuang et al. 2014). In contrast, a ligand-based VS using a quantitative 

structure-activity relationship (QSAR) technique for predicting the biological activity of 

compounds was published (Kanno et al. 2012).  

In order to study the activation of Nrf2, the in vitro cell-based Keap1-Nrf2 pathHunter® assay 

from DiscoveRx was used. The advantage of an in vitro assay is that it can be automatized for 

high-throughput screening in a simpler and more convenient way than in vivo experiments. The 

majority of publications have utilized in vitro cellular assays to study the activation of the Nrf2-

Keap1 pathway followed by further studies using in vivo models. Another way to study Nrf2 

activation in neurons is by using neuronal models derived from induced pluripotent stem cells 

(iPSCs), this in vitro method has been used in Nrf2 signalling activation in drug discovery and cell 

therapy research (Pistollato et al. 2016). Neurons derived from iPSCs can generate specific 

disease models, patient specific cells can be used for the generation of an in vitro assay.  This 

technology has been used with various models of neurodegeneration such as Parkinson’s 
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disease (PS), Alzheimer’s disease (AZ) and Amyotrophic lateral sclerosis (ALS). The main 

advantage of this method is that the cells generated can be used for cell-based assay and drug 

screens (Borger et al. 2017).  

In these studies sulforaphane was demonstrated to induce the nuclear translocation of Nrf2 

according to literature, our EC50 values ranging from 0.37 µM to 0.87 µM are similar to supplier 

value of 0.50 µM (DiscoveRx); another literature value of sulforaphane EC50 is 33 µM obtained 

from a ARE luciferase reported assay measured with Steady-Glo (Promega) incubated in AREc32 

cells for 24 hours (Wu et al. 2014). The significant differences between EC50 values can be due 

to the difference of both methods, they used a cell line with copies of the GST ARE promoter 

linked to a luciferase gene to quantify the ARE induction by luciferase activity. In contrast, this 

research used a commercial assay method based on β-galactosidase enzyme fragment-

complementation to measure the Nrf2 nuclear translocation in U2OS-Nrf2 cells. The same Nrf2 

nuclear translocation assay was used to identify (3S)-1-[4-[(2,3,5,6-tetramethylphenyl) sulfo-

nylamino]-1-naphthyl]pyrrolidine-3-carboxylic acid (RA839), a small compound that shown to 

bound to the Keap1 protein and disrupted the interaction with Nrf2 (Winkel et al. 2015).  

Reference compounds recommended by manufacturer for Nrf2 nuclear translocation assay 

were sulforaphane (EC50 0.50 µM), bardoxolone methyl (CDDO-Methyl; EC50 0.16 µM), quercetin 

(EC50 4.3 µM), iodoacetamide (EC50 2.3 µM) and tert-butylhdroquinone (tBHQ; EC50 71.1 µM), 

values obtained from DiscoveRx assay validation experiments. The preferred reference 

compounds were sulforaphane and CDDO-Methyl based on the EC50 values, hence sulforaphane 

was chosen due to price and availability from supplier (Sigma Aldrich). In the cellular assay 

sulforaphane increased Nrf2 nuclear translocation in a concentration-dependent manner, it was 

also used as a control in the cellular assay and western blot experiments.   

Literature Nrf2 activators such as sulforaphane (Ullah 2015), CPN-9 (Kanno et al. 2012) and 

Cpd16 (Marcotte et al. 2013) were tested in the Nrf2 pathHunter nuclear translocation assay. 

Compound CPN-9 and compound 13545 (analogue to Cpd16) did not display Nrf2 activity in the 

assay, in contrast with sulforaphane and Cpd16 (compound 13546) that displayed an EC50 of 0.37 

to 0.87 µM and Cpd16 EC50 of 9.4 µM (literature value of 2.7 µM). Published data of CPN-9 

measured the Nrf2 activation by the upregulation of ARE downstream genes but there is no 

evidence of the direct interaction with the protein-protein interface. Interestingly, ARE-driven 

luciferase reporter assays were performed in the literature to confirm the activity on Nrf2 

activation and results showed that only Cpd16 displayed  dose-response activity in Nrf2-ARE 

genes (Marcotte et al. 2013).  
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According to the virtual screening and cellular screening results, there are compounds that 

appeared to induce the Nrf2-ARE pathway, however further studies showed that most 

compounds induce the Nrf2 translocation by inducing high ROS levels and reacting with the 

Keap1 cysteine residues. Only two compounds were not interacting by inducing this oxidative 

stress mechanism. After testing the compounds 14239 and 14231 with western blotting the 

results suggest that compound 14239 increases Nrf2 levels in the nucleus in U2OS-Nrf2 cell line, 

the suggested mechanism of action is by disrupting the protein-protein interaction of Nrf2-

Keap1, however this was not confirmed in the western blot experiments or any other technique. 

One way to study this theory is by fluorescent polarisation binding assay (Hancock et al. 2012), 

the purified fluorescein-labelled peptides display a fluorescence polarization response when 

bound to Keap1 protein.  

Nonetheless, these results are not conclusive; the sulforaphane treatment in U2OS wild type 

cells did not show an increase of Nrf2 levels in the nuclear fraction. It was decided to test 

sulforaphane, compounds 14239, 14231, CPN-9 and compound 13546 in the U2OS-Nrf2 cell line 

and interestingly the results suggest some overexpression of Nrf2 in the nucleus by CPN-9, 

compound 14239 and sulforaphane against the PBS/DMSO control treatment. This result 

suggests that the lack of Nrf2 expression in the cytosolic might be due to a higher rate of 

oxidative response in the nucleus for a cancer cell line or the rapid degradation of cytosolic 

protein by Keap1 protease complex. The results obtained with HEK-293 indicate a similar 

mechanism to the U2OS cell line (altered pathways). HEK-293 cells are immortalized by sheared 

human adenovirus type 5 DNA and these resulted in an altered and dysregulated p53 and 

retinoblastoma protein (pRB) that are important for stress response, DNA replication, tumour 

suppression, cell division and cell cycle control (Harris & Levine 2005; Giacinti & Giordano 2006; 

Kavsan et al. 2011).  

Importantly Nrf2 protein needs other proteins to bind the DNA, suggesting that even when the 

Nrf2 is overexpressed other proteins stayed at basal levels. This could prevent Nrf2 to induce 

any response in the nucleus and possibly the free protein could be exported naturally to the 

cytosol to trigger the Keap1-ubiquitination and degradation processes. For example, the normal 

basal levels of sMAF proteins might not be enough for the over induced levels of Nrf2 in the 

nucleus, nevertheless there is no evidence and this is just a hypothesis. However, further 

experiments need to be performed to confirm this data. Compounds were then tested with a 

general cell line HEK-293 in which a slight increase of nuclear Nrf2 levels with sulforaphane and 

CPN-9 was observed, however the controls were  invalid, being  the same  levels as hydrogen 
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peroxide, making the results inconclusive and invalid. In addition, the nuclear samples were not 

completely soluble and this could make the data difficult to interpret.   

In contrast to the Keap1-Nrf2 strategy, sMAF proteins play a critical role in the inducible 

expression of ARE-driven genes becoming a potential modulator of Nrf2-ARE pathway. Nuclear 

levels of MAF proteins are essential for the heterodimerization with Nrf2 protein, however this 

approach requires Nrf2 being localized in the nucleus and previously dissociated from Keap1 

protein. There is no current research publications using MAF proteins to modulate Nrf2-ARE 

pathway, but future work can be a potential mechanism of study.  

Both compounds found to activate Nrf2 activity in the nuclear translocation assay displayed 

relatively low activity and there was insufficient evidence of Nrf2-Keap1 robust interaction, it 

was therefore decided not to continue further experiments. The necessity to find other methods 

to confirm the Nrf2 nuclear translocation by test compounds is essential, such as, 

immunofluorescence, mRNA expression of downstream genes, etc. It has been decided to 

conclude this project, due to unclear and inconclusive results.  In research discovery groups it is 

important to be able to distinguish when to terminate research when results are not significant 

to continue. However, Nrf2 protein is still relevant for future research in neurodegenerative 

diseases and in oxidative stress injury.   
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CHAPTER 3 

INTRODUCTION OF GLUTAMATE RECEPTORS 

3.1 GLUTAMATE NEUROTRANSMISSION  

L-Glutamate is the principal excitatory neurotransmitter in all vertebrate mammalian central 

nervous systems (CNS). Glutamate is synthesised in the brain and plays an important role in 

information processing, memory and neuronal plasticity (McEntee & Crook 1993; Huber et al. 

1998; Riedel et al. 2003).  

The glutamate neurotransmission is an excitatory synapse process that involves a range of 

different glutamate receptors in neurons. Glutamate is able to bind to different ionotropic 

(Kainate, AMPA and NMDA) or metabotropic receptors. In glial cells, glutamate is broken down 

to glutamine by glutamine synthetase and is exported extracellularly (Niciu et al. 2012); the 

extracellular concentration of glutamate is normally low ~1 µM (Anderson & Swanson 2000; 

Platt 2007). The sodium-coupled neutral amino acid transporter 7 (SNAT7) takes the 

extracellular glutamine into neurons (presynaptic axon; Fig.3.1). Inside the presynaptic neuron 

glutamine is converted into Glutamate by glutaminase enzyme, another source of glutamate 

inside neurons comes from glucose in the Krebs cycle that converted α-ketoglutarate to 

glutamate by glutamate dehydrogenase (GLDH; Newsholme et al. 2003). The vesicular 

glutamate transporter (VGluT) proteins encapsulate glutamate into synaptic vesicles from the 

cytoplasm. An action potential in the presynaptic axon activates calcium channels in a voltage-

dependent manner, glutamate is then released into the synaptic cleft (Niciu et al. 2012). The 

soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) are proteins that 

help the fusion of the vesicle into the membrane for glutamate release. Glutamate then binds 

to different transmembrane receptors, such as G-protein coupled metabotropic receptors 

(mGluRs) or ionotropic glutamate receptors (iGluRs) to induce the depolarization of the neuron. 

Glutamate receptors can be found on glial cells, presynaptic and postsynaptic neurons. The 

released glutamate can be recycled from the synaptic cleft into glial cells and neurons by 

excitatory amino acid transporters (EAAT; Niciu et al. 2012). In addition, the cystine-glutamate 

antiporter called system Xc ̶  exchanges extracellular cysteine for intracellular glutamate in a 1:1 

ratio to regulate the extracellular levels of glutamate. This antiporter is critical in the formation 

of the antioxidant glutathione for oxidative protection (Bridges et al. 2012; Niciu et al. 2012).  
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Figure 3.1. Excitatory glutamate synapse. The release of glutamate from the presynaptic neuron 

into the synaptic cleft activates several glutamate receptors mGluRs and iGluRs. The glutamate 

from the synaptic cleft is transported into glial cells by glutamate transporters (EAAT), glutamine 

synthetase converts glutamate into glutamine inside glial cells. Glutamine is further released 

into the extracellular space to be transported into the presynaptic neuron by SNAT7. 

Glutaminase converts glutamine into glutamate and VGluT package glutamate into synaptic 

vesicles. Vesicles are further fused into the membrane by SNARE proteins to release 

neurotransmitter into the synaptic cleft to initiate synapsis. The antiporter Xc ̶ regulates the 

levels of extracellular glutamate by exchanging extracellular cystine for intracellular glutamate. 

Ionotropic glutamate receptors Kainate, AMPA and NMDA in brown, pink and blue respectively. 

Metabotropic glutamate receptor in blue with red.  EAAT- Excitatory amino acid transporter; 

SNAT7 – Sodium-coupled  neutral amino acid transporter 7; VGluT – Vesicular Glutamate 

transporter; SNARE – Soluble N-ethylmaleimide-sensitive factor activating protein receptor; 

GPCR – G-protein-couple receptors (Adapted from Tulane University, Medical Pharmacology 

TMedWeb. 

http://tmedweb.tulane.edu/pharmwiki/doku.php/overview_of_cns_neurotransmitters). 
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3.2 GLUTAMATE NEUROTRANSMISSION IN DISEASE  

Glutamate is the principal excitatory neurotransmitter however high concentrations of 

glutamate could be toxic for neurons and cause cell death (Lau & Tymianski 2010). Glutamate 

activates two types of receptors; the ligand gated ion channels (ionotropic) and G-protein 

coupled (metabotropic) receptors (Traynelis et al. 2010). These receptors are distributed in 

several areas of the brain and CNS and therefore important for normal development and correct 

function of the nervous system. In general dysregulation and dysfunction of glutamate receptors 

is linked to several neurological disorders and degenerative diseases such as Parkinson’s 

(mGluRs such as mGluR5), Schizophrenia (NMDA receptors), Alzheimer’s disease (Kainate, 

AMPA and NMDA receptors), epilepsy (kainate receptors), stroke, brain damage and many more 

(Serafimoska & Johansen 2011; Matute 2011; Fritsch et al. 2014; Anggono et al. 2016).  

Intellectual disability (ID) is a neurodevelopmental disorder characterised by limitations in the 

intellectual functioning and adaptive behaviour such as, learning, reasoning, problem solving, 

social and practical skills. The symptoms originate before the age of 18 and ID patients often 

have additional abnormalities such as epilepsy, autism and dysmorphic features (Volk et al. 

2015). The ID affects 1% to 3% of the general population in North America (Volk et al. 2015; The 

Arc 2016). More than 450 genes that are linked to ID and autism have been identified (van 

Bokhoven 2011), a large number of these genes had association with the glutamate 

neurotransmission (van Bokhoven 2011; Soto et al. 2014; Bonnet-Brilhault et al. 2016). Gene 

mutations in iGluRs AMPA (GRIA2 and GRIA3) and NMDA (GRIN1 and GRIN2A) have been linked 

to ID, epilepsy and neurodevelopmental phenotypes (van Bokhoven 2011; Soto et al. 2014).  

Down syndrome (DS), is a genetic condition characterised for having three copies of the 

chromosome 21 instead of the normal two and displays symptoms of ID, weak muscle tone 

(hypotonia) and dysmorphic facial features in infancy. Post-mortem brain tissues of DS patients 

showed endosome abnormalities suggesting an altered endocytic pathway in DS pathology 

affecting glutamate receptors endocytosis (Cataldo et al. 2000). More specifically, the synaptic 

endosomal protein sorting nexin 27 (SNX27) involved in endocytosis, trafficking and degradation 

of membrane receptors such as AMPA and NMDA was significantly reduced in DS patients (Wang 

et al. 2013). Deletion of SNX27 gene (mice knockout) showed reduction in glutamate synaptic 

transmission, increasing the degradation of AMPA and NMDA receptors and avoiding the 

recruitment of glutamate receptors in long-term potentiation (LTP) and synaptic plasticity 

suggesting a deficiency in learning and memory processes (Wang et al. 2013; Hussain et al. 2014; 

Volk et al. 2015). Restoring SNX27 gene in Ts65Dn mice completely rescued synaptic dysfunction 



80 
 

and cognitive deficits, suggesting an important role in glutamate synapsis in DS (Wang et al. 

2013). 

22q11 deletion syndrome (22q11DS) is a genetic disorder caused by the deletion of a small piece 

of chromosome 22, this syndrome has a wide range of symptoms including heart abnormalities, 

cleft palate, immune system deficiency and higher risk of developing psychiatric disorders and 

schizophrenia (Evers et al. 2015). 22q11DS displays abnormalities in glutamate metabolism, it is 

suggested that patients with this syndrome lack or have reduced levels of proline 

dehydrogenase (PRODH), the enzyme that converts proline to glutamate. Patients with 22q11DS 

display high levels of proline and reduced levels of PRODH, however more studies need to be 

conducted in order to understand the specific mechanism with glutamate neurotransmission 

(Goodman et al. 2000; Evers et al. 2015).  

The fragile X syndrome (FXS) is a genetic condition characterised by the mutation of FMR1 gene, 

the loss of FMR1 causes a lack of expression of the fragile X mental retardation protein (FMRP). 

FXS affects more males than females, the symptoms include; learning disabilities, cognitive 

impairment, anxiety and hyperactive behaviour. One in three patients with the syndrome 

develop autism spectrum disorders (ASD) defined as a neurodevelopmental set of disorders 

characterised by impairment in social interactions, communication, interests and behaviours 

(Volk et al. 2015) . FMRP is a RNA-binding protein that regulates protein production in cells, it 

has an important role in development of synapses in neurons and is required for normal 

glutamate synapse control. More specifically FMRP have shown to bind and interact with 

glutamate receptors mGluR5 and NMDA (subunits NR1, 2A, 2B and 3A); currently there is no 

cure for this syndrome however new approaches for targeting mGluR5 are promising for a novel 

treatment  (Darnell & Klann 2013; Pop et al. 2014; Scharf et al. 2015).  

Previous research has suggested glutamate neurotransmission involved in the pathophysiology 

of ASD. A group of sixty patients with ASD were studied to confirm significant elevated levels of 

glutamate in blood plasma, a smaller study of fourteen autistic children was reproduced using 

high-performance liquid chromatography (HPLC) to confirm the same results, glutamic acid 

levels were higher compared to control subjects (Moreno et al. 1992; Moreno-Fuenmayor et al. 

1996). Similarly, elevated glutamate levels in plasma have been found in patients with 

Asperger’s syndrome a disorder included in ASD and their families (Aldred et al. 2003; Cai et al. 

2016). A study with adults, eighteen male patients with autism and nineteen healthy male 

subjects found higher glutamate serum levels in autism patients 82.2 µM versus 61.1 µM in 

healthy controls using HPLC (Shinohe et al. 2006).  
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Hassan et al. studied glutamate levels in blood plasma and four regions of the brain in ten 

children with autism versus ten healthy patients using HPLC and proton magnetic resonance 

spectroscopy (1HMRS) respectively. The results were similar to others, levels of glutamate were 

significantly higher than control subjects in blood serum and the four brain regions tested: 

bilateral anterior cingulate, left striatum, left cerebellar hemisphere and left frontal lobe (Hassan 

et al. 2013). In a similar way, a small pilot study using magnetic resonance spectroscopy found 

that seven adolescent males with autistic disorders displayed a significantly higher level of 

glutamate in the anterior cingulate cortex, a part of the brain located in the medial surface of 

the cerebral cortex and important for learning, processing, emotion formation and memory 

compared to the control group (Joshi et al. 2013). Similarly, patients with ASD displayed 

significantly higher concentration of glutamate and glutamine in the brain region amygdala-

hippocampal involved in processing, behaviour, learning and memory using in vivo 1HMRS (Page 

et al. 2006).  

Higher levels of glutamate/glutamine were found in obsessive-compulsive disorder (OCD) 

patients using proton magnetic resonance spectroscopy (1HMRS) in the orbitofrontal cortex 

(OFC) which is part of cognitive processing in decision-making (Whiteside et al. 2006). Ten 

patients diagnosed with social anxiety displayed higher glutamate levels relative to creatinine in 

the anterior cingulate complex, these glutamate levels are positively correlated with the 

intensity of social anxiety symptoms (Phan et al. 2005).  Whereas, a NMR brain scanning in major 

depressive disorder (MDD) patients showed that depressed patients had reduced levels of 

glutamate/glutamine and γ-aminobutyric acid (GABA) in prefrontal brain regions (Hasler et al. 

2007). There is strong evidence demonstrating that glutamate neurotransmission plays an 

important role in autism, OCD, depression, anxiety disorders and decision making, however, the 

exact mechanism of dysregulation of glutamate levels in serum and brain are not yet established. 

In schizophrenia, the “glutamate hypothesis” correlates glutamate receptors with mental 

conditions by detecting reduced levels of glutamate, glutamine and n-acetylaspartate in the 

dorsolateral prefrontal cortex suggesting a dysfunction in the glutamate neurotransmission in 

the brain (Ohrmann et al. 2005; Stone 2011). More specifically, it is believed that schizophrenia 

is caused by hypofunctional glutamate NMDA receptors in view of the fact that antagonists 

ketamine and phencyclidine (PCP or angel dust) are used for pharmacological models of 

schizophrenia. Both antagonists gave conditions that mimic the positive (hallucinations and 

delusions), cognitive (memory problems), negative (apathy and lack of emotion) and affective 

(anxiety and depression) symptoms of schizophrenia (Lahti et al. 2001; Konradi & Heckers 2003; 

Morris et al. 2005; Morrissette & Stahl 2011).  
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There are a few studies suggesting an important role of kainate receptors in psychiatric disorders. 

For example, GluK1 and GluK2 expression were reduced in limbic cortices of post-mortem brains 

from bipolar and schizophrenia patients using in-situ hybridization histochemistry (Beneyto et 

al. 2007). More interestingly, PCP chronic treatment was found to decrease GluK1 and Gluk2 

expression in rat prefrontal cortex (Barbon et al. 2007; Woo et al. 2007). In Schizophrenia 

patients, a GRIK3 polymorphism study found an association between GluK3 receptor 

polymorphism (T928G) and the mental disorder (Begni et al. 2002).  A chromosomal analysis 

study found a link between polymorphism on the GRIK4 gene (KA-1) in Schizophrenia and bipolar 

disorder (Pickard et al. 2006). In contrast, a study in Japanese population found that GRIK1 single 

nucleotide polymorphisms do not play a role in schizophrenia pathology (Shibata et al. 2001). 

The research suggests a link between glutamate receptors NMDA and kainate with 

Schizophrenia and bipolar disorder, more research needs to be conducted to elucidate the exact 

mechanism of these receptors with the pathology.  

Alzheimer’s disease (AD), the most common cause of dementia, is a chronic neurodegenerative 

disease that is estimated to affect 850,000 people in the UK (NHS). In past years, various 

autoradiography studies have shown that AMPA, kainate and NMDA receptors are reduced in 

severe Alzheimer disease (AD) in areas of neuronal cell loss suggesting a dysregulation of 

glutamate receptors in AD (Jansen et al. 1989; Chalmers et al. 1990; Penney et al. 1990; Dewar 

et al. 1991; Carlson et al. 1993).  

Excitatory glutamate neurotransmission plays a role in the initiation and spread of seizure 

activity. In epilepsy the seizure episodes are caused by the sudden and disorderly discharges of 

neurons in the brain, these neurons are activated at the same time causing major excitatory 

signals. The long lasting activation of glutamate receptors such as NMDA and kainate are 

associated with epilepsy. For example, brain tissues from patients with temporal lobe epilepsy 

(TLE) showed high levels of expression of GluK1 receptors (Sperk et al. 1983; Olney et al. 1986; 

Matute 2011). Also, a tetranucleotide repeat polymorphism of the GluK1 gene (chromosome 

21q22.1) have been linked to juvenile absence epilepsy (JAE; Sander et al. 1997). There is strong 

evidence linking kainate and NMDA receptors with epilepsy and seizure pathology, targeting 

these receptors can provide a new potential for novel antiepileptic treatments.  

Finally, kainate receptors have also been linked to pain processing in the brain and some 

selective GluK1 antagonists have been shown to reduce chronic pain (Li et al. 1999; Guo et al. 

2002; Palecek et al. 2004; Zhuo 2017b). For example GluK1 antagonist LY-382884 reduces pain 

responses measured by electrophysiology in spinothalamic tract (STT) neurons in response to 
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mechanical and thermal stimuli in a peripheral neuropathy model in primates (Palecek et al. 

2004). In addition, a mouse model showed that responses to capsaicin or inflammatory pain 

were notably reduced in GluK1-deficient mice compared to GluK2 receptors (Ko et al. 2005).  All 

these findings can provide important information for the study of pain therapy. Glutamate 

neurotransmission is important for correct excitatory synapses, any dysregulation can cause a 

wide range of neurological disorders, their study and understanding is a promising target for 

novel treatments.  

 

3.3 GLUTAMATE RECEPTORS GENE FAMILIES  

3.3.1 METABOTROPIC GLUTAMATE RECEPTORS (mGluRs)  

mGluRs are members of the family of the G-protein coupled receptors (GPCRs). GCPRs are 

membrane-bound proteins that are activated by extracellular molecules such as 

neurotransmitters and peptides. Several metabolic steps involving G-protein signal transduction 

regulate the flow of ions across the membrane. mGluRs are members of the class C GPCRs which 

also include the calcium-sensing receptors, γ-amino-butyric acid (GABA) type B receptors, taste 

T1R receptors and vomeronasal type-2 receptors (Bräuner-Osborne et al. 2007; Chun et al. 2012). 

GPCRs can be classified into six families, A to F depending on the homology sequence of the 

conserved heptahelical transmembrane domain (7TM). Class A are the rhodopsin-like family, 

class B the secretin receptor family, class C metabotropic glutamate/pheromone family, class D 

fungal mating pheromone receptors, class E cyclic AMP receptors and Class F 

frizzled/smoothened family (Alexander et al. 2015; IUPHAR/BPS Guide to Pharmacology). The 

class C family is characterised as presenting two unique structural features, the large 

extracellular domain with the orthosteric site situated away from the 7TM and the ability to 

form dimers with unique activation modes compared to other GPCRs families (Chun et al. 2012).   

The structure of mGluRs (Fig.3.2) is formed by an extracellular bi-lobed N-terminal domain 

(glutamate binding site), followed by a cysteine-rich domain, seven spanning transmembrane 

alpha helices domains and an intracellular C-terminal domain (Kew & Kemp 2005; Niswender & 

Conn 2010). 
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Figure 3.2. Representation of a typical mGluR structure (Kew & Kemp 2005). 

 

The extracellular domain of mGluRs contains a ligand binding site and the intracellular domain 

binds to G-proteins subunits (α, β and γ). The α subunit binds to guanine nucleotides guanosine 

triphosphate (GTP) or guanosine diphosphate (GDP). In the inactive state, α subunit binds to 

GDP to form an inactive heterotrimer with β and γ subunits. The activation of the receptor by 

an extracellular signal causes the exchange of GDP with GTP. When GTP binds the α subunit the 

G-protein becomes activated and induces the dissociation of α subunit from the βγ complex, the 

dissociated subunits (α-GTP and βγ) can bind to effector proteins such as ion channels or 

enzymes to mediate a variety of responses in the target cell. This type of activation can induce 

the opening and closing of an ion channel (Fig. 3.3; Purves et al. 2004).  
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Figure 3.3. Metabotropic Glutamate Receptor. mGluRs activate G-protein  subunits (α,β and γ) 

which trigger several steps to induce the modulation of ion channels (Purves et al. 2004). 

 

mGluRs are classified into three main classes based on their sequence homologies, 

pharmacology and preferred agonist (Fig. 3.4). Group I (mGluR1 and mGluR5), Group II (mGluR2 

and mGluR3) and Group III (mGluR4, mGluR6, mGluR7 and mGluR8). Group I typically couple via 

Gq/G11 to induce the activity of phospholipase C (PLC), resulting in the hydrolysis of 

phosphotinositides and the formation of inositol triphosphate (IP3) and diacylglycerol. This 

pathway results in the binding of IP3 to calcium channels to induce intracellular calcium 

mobilization and further activation of protein kinase C (PKC; Niswender & Conn 2010). Group II 

and III couple via Gi/Go and both inhibit the activity of adenylyl cyclase (AC), avoiding the 

conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) follow 

by reducing the activity of cAMP-dependent protein kinase  and turning off the cAMP pathway 

(Kew & Kemp 2005; Niswender & Conn 2010). 

mGluRs main functions are regulation of neuronal excitability, synaptic transmission and 

plasticity. Due to the extensive expression of mGluRs in the brain, it has potential therapeutic 

targets for drug discovery, however the purposes of this project are focused on ionotropic 

glutamate receptors exclusively.  
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Figure 3.4. Classification of mGluRs families. Group I, activates Phospholipase C (PLC), which 

results in the formation of inositol triphosphate (IP3) and the further activation of protein kinase 

C (PKC). Group II and III inhibit Adenylate cyclase (AC) activity thereby reducing the levels of 

cyclic adenoside monophosphate (cAMP) turning off the cAMP pathway and reducing cAMP-

dependent protein kinase levels (Adapted from Kew & Kemp 2005).  
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3.3.2 IONOTROPIC GLUTAMATE RECEPTORS (iGluRs)  

Ionotropic glutamate receptors (iGluRs) are ligand gated ion channels, meaning that binding of 

a ligand (usually a neurotransmitter) triggers the opening of the channel allowing the transport 

of ions such as Na+, K+ and  Ca2+ through the membrane (Purves et al. 2004). In humans iGluRs 

are encoded by 18 genes (Fig. 3.5) and they are classified by their selective agonists: α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), Kainate, N-methyl-D-aspartatic acid 

(NMDA) and delta (δ) receptors, the latter is not well characterised yet and no endogenous 

ligands have been identified. More recently it has been found that D-serine and glycine can bind 

and activate the delta receptor GluD2 (Khan 2016). AMPA receptors family is formed by four 

receptors GluA1 to GluA4, Kainate formed by five receptors GluK1 to Gluk5, NMDA comprises 

seven sub-types GluN1, GluN2A to D and GluN3A to D (Mayer 2016).  

 

 

Figure 3.5. The ionotropic receptor gene family. Protein names are shown according to the 

current nomenclature (with previous nomenclature in parenthesis) and gene names being 

shown in blue.  Genes nomenclature were obtained from UniProt.  
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3.4 iGluRs STRUCTURE  

3.4.1 GENERAL FEATURES  

Structural information on iGluRs from high-resolution X-ray crystallography has enabled 

researchers to explore and gather information of the structure-function relationship. In 1998, 

the X-ray crystal structure of the soluble LBD of rat GluA2  in complex with kainate provided at 

1.9 Å was the first atomic information of the binding site structure of iGluRs (Armstrong et al. 

1998). There are currently over one-hundred crystal structures of the LBD of GluA2 in complex 

with different ligands including kainate, glutamate, L-aspartate, fluoro-willardiine and more 

(Armstrong et al. 1998; Armstrong & Gouaux 2000; Ahmed et al. 2011; Krintel et al. 2014; 

Meyerson et al. 2014; Salazar et al. 2017).  

In 2009, Sobolevsky obtained the first crystal structure of the full-length rat GluA2 at 3.6 Å 

providing important information about the global structure and domain organisation of an iGluR 

(Sobolevsky et al. 2009). Also obtained in the same year was the soluble ATD GluA2 crystal 

structure at 2.33 Å (Jin et al. 2009). For kainate receptors, in 2005 the first LBD structure of GluK1 

and Gluk2 was published (Nanao et al. 2005; Naur et al. 2005), currently there are 84 high-

resolution crystals of kainate receptors LBD and ATD with agonist, antagonist and ions (Møllerud 

et al. 2017). In 2014, the full-length of GluK2 was determined at low resolution 7.6 Å using cryo 

electron microscopy (Meyerson et al. 2014). For NMDA receptors the first ATD of GluN2B 

subunit at 3.21 Å was reported in 2009 (Karakas et al. 2009) and in 2011 the same research 

group published the ATD of GluN1 subunit at 2.0 Å (Karakas et al. 2011). Finally, in 2014 two full-

length structures of NMDA GluN1/GluN2B were published (Lee et al. 2014; Karakas & Furukawa 

2014). All these high- and low-resolution structures have given important information in the 

structure and topology of iGluRs, several crystal structures will be described in more detail in 

the following sections.  

iGluRs form tetramers assembled as dimer-dimer conformation. Each subunit is formed of four 

main domains (Fig. 3.6), an extracellular amino terminal domain (ATD), an extracellular ligand-

binding domain (LBD), a transmembrane domain (TMD), and an intracellular carboxyl-terminal 

domain (CTD; Traynelis et al. 2010).  
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Figure 3.6. Ionotropic glutamate receptor domains. A. Subunit of a monomer structure, amino 

terminal domain (ATD) in green, ligand binding domain (LBD) formed of segment S1 and S2 

ligand binding core (also called D1 and D2) in orange and blue, the transmembrane domain (TMD) 

formed of three membrane spanning segments (M1, M3 and M4) and a re-entry pore loop (M2) 

in grey and the C-terminal domain (CTD) in black. B. Representation of the dimer conformation 

of the ATD, LBD, TM and CTD. ATD and LBD show the clamshell-like structure (Adapted from 

Mayer 2006b). C. For the CTD of iGluRs there are no structural details in the PDB, the sequence 

of the CTD of GluA2 is shown, P42262-1 UniProt (Traynelis et al. 2010; Henley & Wilkinson 2016).  

 

The Amino terminal domain (ATD) of iGluRs are allocated in the extracellular region away from 

the membrane and have a bi-lobed clamshell like structure composed of two lobes (lower and 

upper). The structural form of the ATD allows a binding site for allosteric modulators. ATD has 

the most divergent sequence identity of 20-25% comparing other subunits (Furukawa 2012).  

ATD have an important role in subtype-specific receptor,  receptor assembly and trafficking 

(Garcia 2004; Traynelis et al. 2010; Yelshanskaya et al. 2014; Díaz-alonso et al. 2017).  
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Figure 3.7. Gluk1 LBD S1S2 clamshell-like structure. GluK1 LBD (2F36, PDB accession code; Mayer 

2006a) in complex with glutamate in orange, LBD forms clamshell-like structure formed of S1 

and S2, in light cyan and dark cyan, respectively (Møllerud et al. 2017). 

 

The extracellular ligand binding domain (LBD) is formed of two extended amino acid segments 

usually named as S1 and S2 (Fig.3.7), both segments form a ligand-binding cavity core where the 

ligand/neurotransmitter binds (Yelshanskaya et al. 2014; Mayer 2006b). The LBD structure 

forms a clamshell-like conformation, in which segments S1 (N-terminal of M1 transmembrane 

spanning domain) and S2 (between M3 and M4 regions) form the two-domain clamshell-like 

structures for ligand binding, the opening and closing of the clamshell will depend on gating 

binding and unbinding  activities (Traynelis et al. 2010; Hammond 2015). As Fig. 3.6 shows, the 

ATD also has a clamshell-like structure formed by two lobes (upper and lower lobe). The LBD of 

glutamate receptors is attached to the TMD with three small linkers, these linkers connect S1-

M1, S2-M3 and S2-M4. The TMD forms an ion channel pore by three transmembrane helices 

M1, M3 and M4 and a re-entrant loop M2 and contributes to receptor tetrameric stability 

(Balannik et al. 2005; Yelshanskaya et al. 2014; Traynelis et al. 2010). Sequence homology is 

found in the ATD, LBD and TM, with higher homology in the ligand binding core (up to 80-90% 

within similar groups), in contrast the CTD has not shown any sequence homology between 

glutamate receptors (Traynelis et al. 2010; Furukawa 2012). However, the CTD contains several 

different phosphorylation sites and binding sites for intracellular binding proteins giving it an 

important role in receptor regulation, synaptic localisation, trafficking, targeting for degradation 

and post-translational modifications (Traynelis et al. 2010). 
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Tetramer conformation 

iGluRs assemble as four subunits to form tetramers either by different subunits 

(heterotetramers) or identical subunits (homotetramers). There are two proposed pathways for 

tetramer assembly “preferential” and “obligatory” (Herguedas et al. 2013). The formation of 

heterotetramers is obligatory for function of some receptors but preferential for other receptor 

families. The subunits ATD, LBD and TMD form dimers between them to initiate the assembly of 

further tetramers. In the preferential route, the subunits (ATD, LBD and TMD) will form 

homodimers to then form tetramers, a reequilibration step will induce the formation of 

heterodimers between subunits to obtain a functional heterotetramer (Fig.3.8). For example, 

AMPA and kainate (GluK1-GluK3) usually forms functional homotetramers, but also has the 

ability to form native functional heterotetramers. In obligatory assembly the subunits do not 

form homodimers and directly form functional heterotetramers, NMDA and kainate (GluK4 and 

GluK5) are examples of this pathway (Sobolevsky et al. 2009; Herguedas et al. 2013).  

 

Figure 3.8. iGluR tetramer assembly representation. A. Phylogenetic tree of the main iGluRs (δ 

has not been fully characterised) divided into preferential and obligatory assembly pathways.    

B. Schematic representation of the assembly pathway for obligatory or preferential tetramers 

formation, tetramer structure represents GluA2 (3KG2 PBD code; Herguedas et al. 2013).  
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3.4.2 AMPA RECEPTORS 

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) is the specific agonist that 

activates AMPA receptors (Fig. 3.10). As previously described the AMPA receptors are composed 

of four subunits GluA1 to GluA4. AMPA receptors mediate the fast excitatory synaptic 

transmission in the central nervous system (CNS). Earlier published high-resolution data of the 

LBD of  rat GluA2  (Armstrong et al. 1998) described a bilobed structure formed by two domains 

S1 and S2, the domain closure was induced by kainate binding and interdomain contacts were 

found between the two domains including the formation of a disulphide bond to stabilize the 

formation of dimers.  

X-ray crystallography experiments have confirmed the agonist binding site in the clamshell-like 

structure in the LBD.  As previously discussed the LBD is formed of two segments S1 and S2 that 

are connected to the TMD; Armstrong and Gouaux were able to design a soluble construct of 

the LBD (S1 and S2) that was easily expressed in E. coli bacteria for protein purification and 

crystallography experiments. This construct contains the ligand binding domain from N392 to 

S775 and a GT linker between S1 and S2 (Fig.3.9), sequence numbered according to M36419 

flop GluA2 (GenBank-EMBL; Keinänen et al. 1990; Armstrong & Gouaux 2000). This new 

construct was able to offer better understanding of the binding interactions of various ligands 

in the LBD pocket. They successfully crystallised and obtained X-ray data for the rat GluA2 LBD 

in complex with glutamate, DNQX, AMPA and kainate; PDB accession codes 1FTJ, 1FTL, 1FTM 

and 1FW0 respectively (Armstrong & Gouaux 2000).  

In 2009 homotetrameric rat GluA2 subunit was the first full-length crystal structure 

characterised at 3.6 Å resolution in complex with competitive antagonist ZK200775  (Sobolevsky 

et al. 2009). The full-length structure of homotetrameric rat GluA2 (Sobolevsky et al. 2009) 

agrees with the previously described data, however, it provided more detailed information 

about the full membrane symmetry and tetrameric conformation in glutamate receptors.   
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Figure 3.9. Construct of the LBD (S1S2) design. Domain configuration of GluA2 LBD, S1 in blue 

and S2 in pink, the construct was isolated by cutting above the ATD and before the TMD M4, a 

Glycine-Threonine was used for linking S1 and S2 between M1 and M2 (Adapted from Armstrong 

& Gouaux 2000). 

 

The full-length GluA2 rat receptor (PDB accession code, 3KG2) appears as a “Y” shape type 

structure, with the ATD at the top, the LBD at the middle and the TMD at the bottom to form 

the ion channel (Fig. 3.11; Sobolevsky 2015). In the paper they used the full-length rat GluA2i 

(flip variant, from two alternative splicing variants in the LBD) sequence (NP_058957), 36 

residues were removed from C-terminus, 6 residues were eliminated from the ATD and the LBD 

segment, as well as four residues substituted by alanine to stabilize the tetrameric conformation 

and facilitate crystallography experiments (Sobolevsky et al. 2009). The full-length rGluA2 

receptor displayed a 2-fold axis symmetry for the full tetrameric structure, and 4-fold symmetry 

in the ion channel pore (Sobolevsky et al. 2009).  

In addition, they found that the GluA2 tetrameric receptor can form two different subunit 

conformations, amino acid sequences of each subunit are identical however they fold into A/C 

(proximal) and B/D (distal) type subunits (Fig. 3.12A). The type A subunit formed a dimer with 

the B subunit in the ATD, however the A type subunit formed a dimer with D subunit in the LBD, 

this interaction is called subunit “crossover” or domain “swapping” (Fig.3.12B; Sobolevsky et al. 

2009; Hansen et al. 2010; Traynelis et al. 2010).  
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Structural conformational changes due to the domain swapping might have an important role 

for tetramer assembly. Domain swapping allows conversion of 2-fold symmetry from LBD to 4-

fold symmetry formation in the pore channel. The property of domain swapping results in strong 

interactions between dimers (disulphide cross-linking) which maintains the stability and 

flexibility of the tetramer formed by the four subunits (Herguedas et al. 2013; Gan et al. 2015; 

Sobolevsky 2015).   

Crystal structure of rGluA2 (PDB accession code, 3KG2; Sobolevsky et al. 2009) in complex with 

the competitive antagonist ZK200775 (Fanapanel or MPQX), the antagonist was previously 

defined by Turski and co-workers (Turski et al. 1998). Fanapanel is a quinoxalinedione drug (Fig. 

3.10) which was in phase II clinical trials (Bayer) for the treatment of acute ischemic stroke, 

however the study was terminated due to intolerable side effects (high levels of sedation, drop 

of consciousness and transient neurological deterioration) and glial cell toxicity (Elting et al. 

2002). Consequently, this first crystal structure of a full-length AMPA GluA2 provided important 

information about the structure, symmetry, architecture of the ion channel and tetrameric 

assembly in other families of the ionotropic glutamate receptors. 

 

Figure 3.10. AMPA agonists and antagonist. Top, (RS)-AMPA agonist chemical structure, a 

synthetic analogue of glutamate (Kew & Kemp 2005) and other established agonist of GluA2, 2-

methyl-tetrazolyl-[2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propanoic acid (2-Me-Tet-

AMPA), (S)-2-amino-3-(3-Carboxy-5-methylisoxazol-4-yl)propionic acid (ACPA) and (S)-2-amino-

3-(4-bromo-3-hydroxy-isoxazol-5-yl)propionic acid (Br-HIBO) (Serafimoska & Johansen 2011). 

Bottom, AMPA competitive antagonist ZK200775, also known as Fanapanel and MPQX, a highly 

selective AMPA/kainate antagonist. Figure obtained from MedChemExpress (Source 

https://www.medchemexpress.com/ZK200775.html).  

https://www.medchemexpress.com/ZK200775.html
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Figure 3.11. Structural architecture and symmetry of rGluA2. Homotetrameric receptor, each 

subunit is defined in different colours, rGluA2 in complex with antagonist ZK200775. Antagonist 

inside the LBD clamshell pocket in grey space-filling representation.  Open and narrow view of 

the receptor A and B, respectively. N-acetyl-D-glucosamine (NAG) and beta-D-mannose (BMA) 

binding the ATD, shown in green (Sobolevsky et al. 2009). 

 

 

Figure 3.12. Tetrameric distinct conformations. A. Two different structural conformations form 

A/C type and B/D type subunits. B. Dimer-dimer conformation of the ATD and LBD form 2-fold 

symmetry and TMD 4-fold symmetry (Hansen et al. 2010). 
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3.4.2.1 Alternative splicing (Flip/Flop) and RNA editing site (Q/R) 

The four AMPA subunits (GluA1-4) can exist in two different alternative splicing versions, 

commonly named as a “flip/flop”. Exon 14 (flip) and 15 (flop) are RNA segments of ~38 amino 

acids before the transmembrane domain M4, only nine amino acids are different between them 

(Fig. 3.13). These two different variants result in different pharmacological and kinetic 

properties such as channel gating, desensitization and activation (Dingledine et al. 1999; 

Sommer et al. 1990; Penn & Greger 2009). For example, the flip/flop variants alter the channel 

opening kinetics of AMPA receptors. They found that the flop variant of GluA2 desensitize faster 

than the flip variant, this finding suggests an important structural role of the flip/flop sequence 

in stabilizing the open channel conformation and could be due to the location of the sequence 

near the transmembrane domain M4 (Pei et al. 2009).  The flip/flop segment is located inside 

the ligand binding domain (S2) and before M4 (TMD), this location might give a structural role 

to the flip/flop variants for opening/closing the ion channel (Fig. 3.13). In GluA2, GluA3 and 

GluA4 a selective nuclear RNA editing-site determines the codon change from Arginine to 

Glycine (conserved site R/G) to regulate receptor assembly and control the speed of recovery 

from desensitization (Dingledine et al. 1999; Gan et al. 2015). 

The regulation of calcium (Ca2+) permeability of the GluA2 subunit is determined by a RNA 

editing site Q/R located in the transmembrane M2 region of the protein (Fig. 3.13). This post-

transcriptional modification changes the amino acid 607 glutamine (Q) to arginine (R) only in the 

GluA2 mRNA subtype. The GluA2 subtype that contains the R edited residue will be impermeable 

to Ca2+. In contrast, the other AMPA subtype receptors GluA1, GluA3 and GluA4 maintain the 

glutamine (Q) residue and therefore they will be permeable to Ca2+ (Carlson et al. 2000; Greger 

et al. 2002; Wright & Vissel 2012). In addition, there are a number of polyamine derivatives and 

toxins, such as; spermine, spermidine, argiotoxin, Joro spider toxin and philanthotoxin that act 

as channel blockers in AMPA receptors lacking GluA2 subtype. These spider toxins and 

polyamines are attracted by the negative charges on the glutamine (Q) residue in GluA1, GluA3 

and GluA4 and modify the calcium permeability and voltage-dependent of the receptor. The 

GluA2 subtype modified by RNA editing has a positive charged residue arginine (R) instead of 

glutamine (Q) resulting in the repulsion of positive charged polyamides and toxins (Pellegrini-

Giampietro 2003 & Isaac et al. 2007).  
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Figure 3.13. Schematic representation of the location and sequence comparison of the Flip/Flop 

AMPA subunit variations. Top, AMPA receptor structure, ATD in grey, LBD in green (S1 and S2 in 

blue and pink), TMD in yellow, NTD in light blue. Glutamate in orange, Q/R RNA editing site in 

TM2 re-entrant loop in dark blue circle and Flip/Flop region in red. Bottom, Flip/Flop sequence 

alignment in pink and purple, respectively. R/G editing site is indicated in bold for GluA2 receptor 

(Adapted from Zhang et al. 2008; Pei et al. 2009). 
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3.4.2.2 Activation and Inactivation of Ion Channel (Gating)  

The term gating refers to the opening and closing of ion channels caused by conformational 

changes upon ligand binding/unbinding. This activation and inactivation can be measured 

electrophysiologically. The three steps involved in gating changes are; 1) activation (agonist 

binding and channel opening), 2) desensitization (clamshell closure to avoid agonist dissociation) 

and 3) inactivation (conformational change to induce ion channel closure) (Sobolevsky 2015). 

Gating might be disturbed at different sites along the receptor by small molecule inhibitors.  

 

 

 

Figure 3.14. Gating steps in glutamate receptors. Top, electrophysiological measurement of the 

whole-cell current in HEK-293 rGluA2 at holding potential of -60 mV, displaying activation, 

desensitization and deactivation; 500 ms application of glutamate 3 mM, miliseconds (ms) and 

picopascal (pA). Bottom, representation of conformational changes involved in gating process; 

rest, open and desensitized in the LBD formed by domains 1 and 2 (D1 and D2) (Adapted from 

Perrais et al. 2010; Sobolevsky 2015). 
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3.4.2.3 AMPAR Auxiliary Proteins 

 AMPA receptors are able to form complexes with auxiliary proteins that are able to regulate 

receptor trafficking, channel activity, gating, synaptic transmission and pharmacology (Coombs 

& Cull-Candy 2009; Henley & Wilkinson 2016).  Some of these auxiliary proteins are the AMPA 

receptor regulatory proteins (TARPs), cornichon homologues (CNIHs), germ cell-specific gene 1-

like protein (GSG1L) and cysteine-knot AMPAR modulating proteins (CKAMPs) (Schwenk et al. 

2009; Schwenk et al. 2012; Shanks et al. 2012 & Klaassen et al. 2016). These proteins are able to 

regulate the function of the receptor with both positive and negative gating modulation, in 

addition to controlling permeation and blockade of the channel (Riva et al. 2017). The most 

studied and characterized of these AMPAR auxiliary proteins are the TARPs family. There are 

seven types of TARPs; γ2 (stargazin) and γ3-8 (Henley & Wilkinson 2016). TARPs control the 

expression of receptors (postsynaptic membrane) and modulate the gating and pharmacology 

of AMPA receptors (Carbone & Plested 2016). For example, the TARP stargazin (γ2) functions as 

a chaperone for AMPA receptors and has an essential role in receptor expression in cell surface. 

A study using in-vitro experiments showed that the absence of stargazin results in retention of 

the AMPA receptors in the endoplasmic reticulum and the lack of expression in cell surface of 

cerebellar granule cells (Chen et al. 2000). Recently, a forebrain-selective AMPA receptor 

antagonist was found to target GluA2-γ8 complexes exclusively and might have potential for 

antiepileptic properties (Kato et al. 2016).  This antagonist (LY3130481) prevented seizure types 

in rodents without presenting motor side effects, hence AMPA receptors auxiliary proteins could 

be used as potential drug targets (Kato et al. 2016).  
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3.4.2.4 Agonist Binding  

Glutamate, kainate and AMPA shared similar interactions in the binding pocket of the LBD of 

GluA2.  The three agonists showed conserved interaction with LBD residues in Arg-485 and Thr-

480, however weak interactions between residues Glu-705, Ser-654 and Pro-478 are similar 

between agonists  (Fig. 3.16; Armstrong & Gouaux 2000).   

GluA2 LBD in complex with glutamate displayed specific interactions with Pro-478, Thr-480 and 

Arg-485 from the S1 domain and Ser-654, Thr-655 and Glu-705 from the S2 domain of the 

protein (Fig.3.16A). The α-carboxylate and α-amino group of glutamate have a key role in ligand 

recognition, the carboxylates and amino groups bind to the protein because they become 

desolvated. In addition, a mutation of the residue Arg-485 led to complete loss of the channel 

function suggesting the key role of this residue in ligand binding (Speranskiy & Kurnikova 2005; 

Serafimoska & Johansen 2011).  

Kainate in complex with GluA2 displays hydrogen bond interactions with Pro-478, Thr-480, Arg-

485, Ser-654 and Thr-655. Glu-705 was not observed to interact with kainate however it might 

form inter protein interactions with other residues inside the binding pocket (Fig. 3.16B).  AMPA 

displayed similar interactions in the binding pocket with Thr-480, Arg-485 and Glu-705 (Fig. 

3.16C).  For all three agonist residues Arg-485 and Thr-480 bind to the structure forming strong 

hydrogen bonds with the α-carboxyl group of agonists (Armstrong & Gouaux 2000; Serafimoska 

& Johansen 2011). 

 

Figure 3.15. GluA2-LBD in complex with glutamate. Glutamate in green ball and stick 

representation, S1 and S2 in blue and brown respectively. A disulphide bond was observed 

between S1 domain and S2 domain, 1FTJ PBD accession code (Armstrong & Gouaux 2000; Naur 

et al. 2005). 
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Figure 3.16. Glutamate, kainate and AMPA binding interactions. A) Left, chemical structure of 

glutamate with carboxyl group designated by α, β, γ and δ. Right, interaction binding pocket of 

GluA2 with glutamate, 1FTJ accession code. B) Left, chemical structure of kainate with carboxyl 

group designated by α, β, γ and δ. Right, interaction binding pocket of GluA2 with kainate, 1FW0 

accession code. C) Left, chemical structure of AMPA with carboxyl group designated by α, β, γ 

and δ. Right, interaction binding pocket of GluA2 with AMPA, 1FTM accession code (Armstrong 

& Gouaux 2000). Diagrams were generated using Maestro Schrödinger. 
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3.4.2.5 AMPA Antagonist  

There are two main classes of antagonists, competitive and non-competitive (Fig. 3.17). Both 

block and reduce the activation of the channel upon binding. Competitive antagonists compete 

with the agonist (orthosteric) binding site and the non-competitive antagonists bind to an 

allosteric site which is different from the agonist, both reduce or interfere with the activation of 

the channel (Gill & Pulido 2005).   

AMPA antagonists will be described in detail in section 3.5.1.2 Antagonist and pharmacology.  

 

Figure 3.17. Competitive and non-competitive antagonist. Schematic representation of the 

mechanism of action of antagonist effect in membrane receptors. Image obtained from 

Biochemistry Online (http://employees.csbsju.edu/hjakubowski/classes/ch331/transkinetics/ 

TK_6C6_Agonist_Anta_Lig_Bind_Recept.html).  
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3.4.3 KAINATE RECEPTORS 

Kainic acid (Kainate) is a natural amino acid derived from the Japanese seaweed Digenea simplex 

(Coyle 1987) and is the preferred agonist for kainate receptors, it has also been shown to 

activate AMPA receptors. Kainate receptors assemble in five different subunits: GluK1, GluK2, 

GluK3, GluK4 and GluK5, they assemble as tetramers to form ion channels.  GluK1-GluK3 can 

form functional homomeric and heteromeric receptors, however GluK4 and GluK5 can only form 

heteromeric receptors with other GluK1-GluK3 subunits to form the ion channel (Fig. 3.8; Lerma 

& Marques 2013).  Compared to AMPA and NMDA receptors kainate receptor physiology is less 

understood. Kainate receptors are classified into low-affinity (GluK1-3) and high affinity (GluK4-

5) receptors based on their affinity for kainate (Kristensen et al. 2016).  

 

3.4.3.1 Kainate Receptor Structure 

There are no crystal structures available for a kainate full-length receptor, however in 2014 a 

cryo-electron microscopy (EM) full-length GluK2 in complex with 2S,4R-4-methylglutamate at 

7.6 Å resolution was published, PDB accession code 4UQQ (Meyerson et al. 2014). This full-

length structure of a desensitized kainate receptor displays the formation of a tetramer formed 

by ATD, LBD, TMD and CTD subunits (Fig. 3.18). This full-length GluK2 EM structure displayed 

drastic conformational changes in the LBD and ion channel assemblies in the TMD (Fig. 3.19); 

these LBD symmetry changes complement the 4-fold symmetry of the ion channel in the TMD, 

inducing the closure of the channel (Meyerson et al. 2014; Møllerud et al. 2017). The general 

conformation of the characterised EM full-length GluK2 displays similarities with AMPA and 

NMDA general structure subunits, however the low-resolution of the structure makes it difficult 

to study the specific similarities or differences between both receptor families. 
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Figure 3.18. Electron microscopy structure of full-length GluK2. A. Full GluK2 structure in surface 

representation, different subunits are shown in blue, fuchsia, green and turquoise, PDB 

accession code 4UQQ with 7.6 Å resolution. B. Comparison of the amino terminal domain (NTD) 

dimer from EM with the soluble dimer construct, PDB accession code 3QLT. C.  Comparison of 

the EM LBD dimer and a soluble construct, PDB accession code 2XXR (Møllerud et al. 2017). 
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Figure 3.19. Conformational changes in the GluK2 gating process. Structural changes of the 

receptor in the transition from resting to activated to desensitized state. Circles representing 

the two-fold and four-fold symmetry of the ATD and the LBD (Adapted from Meyerson et al. 

2016).  
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3.4.3.2 Ligand Binding Domain  

There is a vast amount known about the specific structural differences of the ligand binding 

properties of AMPA, kainate and NMDA receptors, however X-ray crystallography has played an 

important role in defining the mechanism of binding between different ligands and receptors.  

Table 3.1. Crystal structures of the LBD in complex with different ligands  

PDB code Ligand Resolution Å Origin Reference 

Gluk1     

1TXF Glutamate 2.1 Rat (Mayer 2005) 

1YCJ Glutamate 1.95 Rat (Naur et al. 2005) 

2F36 Glutamate 2.11 Rat (Mayer 2006a) 

2PBW Domoate 2.5 Rat (Hald et al. 2007) 

3C31 Kainate 1.49 Rat (Plested et al. 2008) 

2ZNS Glutamate 2.0 Human (Unno et al. 2011) 

3FUZ Glutamate 1.65 Human (Unno et al. 2011) 

GluK2     

1S50 Glutamate 1.65 Rat (Mayer 2005) 

1S7Y Glutamate 1.75 Rat (Mayer 2005) 

1SD3 * 1.80 Rat (Mayer 2005) 

1TT1 Kainate 1.93 Rat (Mayer 2005) 

1S9T Quisqualate 1.80 Rat (Mayer 2005) 

1YAE Domoate 3.11 Rat (Nanao et al. 2005) 

3G3F Glutamate 1.38 Rat (Chaudhry et al. 2009) 

2XXR Glutamate 1.6 Rat (Nayeem et al. 2011) 

GluK3     

3S9E Glutamate 1.6 Rat (Venskutonytė et al. 2011) 

3U93 Glutamate 1.88 Rat (Veran et al. 2012) 

3U94 Glutamate 1.96 Rat (Veran et al. 2012) 

4MH5 Glutamate 1.65 Rat (Venskutonytė et al. 2011) 

3U92 Kainate 1.90 Rat (Veran et al. 2012) 

GluK4   No crystal structures available 

GluK5   No crystal structures available 

*2S,4R-4-methylglutamate 

 

In 2005 the LBD of the GluK1 in complex with glutamate was crystallised for the first time (Naur 

et al. 2005) see Table 3.1 for list of PDB accession codes. Shortly after, the crystal structures of 

the LBD of GluK2 in complex with glutamate, 2S,4R-4-methylglutamate, kainate and quisqualate 

were solved (Mayer 2005). In the same paper they also reproduced the crystal structure of the 

GluK1 LBD in complex with glutamate (Mayer 2005). These X-ray structures revealed similarities 

in the binding core between kainate and AMPA receptors, with glutamate binding in the cavity 

interface between domain one and two (S1 and S2) having the same clamshell-like structure in 

the LBD (Fig.3.7 & 3.20A). 
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Figure 3.20. LBD binding pocket Gluk1 and GluK2 in complex with glutamate. A) LBD formed by 

S1 and S2 in blue and mustard, loop 1 and 2 in green, helices are numbered alphabetically. 

Glutamate and conserved amino acids arginine (R), threonine (T) and glutamic acid (E) are 

displayed in ball and stick representation. B) 3-dimensional view of the binding core with 

glutamate, conserved amino acids GluK2 (GluK1); R492 (R508), T659 (T675), and E707 (E723). 

Solvent accessible surface area of the binding cavity with glutamate is displayed as a transparent 

surface. Black dashes represent hydrogen bonds and ion interactions and green dashes are 

trapped water molecule interactions (Adapted from Mayer 2005). 
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Glutamate binding in both GluK1 and GluK2 was conserved between amino acids arginine, 

glutamate and threonine similar to GluA2 AMPA (Fig. 3.20; Armstrong & Gouaux 2000; Mayer 

2005). In one crystal structure of GluK2 Mayer found a conserved disulphide bond between Cys-

773 in the extending end of helix K and Cys-719 in the loop linking C terminal of helix I (Fig. 3.20) 

similar to observed in GluA2 AMPA LBD (Armstrong et al. 1998; Mayer 2005). However the 

presence or absence of disulphide bond did not modify the structure in both crystal forms 

(orthorhombic and hexagonal) (Mayer 2005). The importance or function of this conserved 

disulphide bond formed in the hexagonal crystal form of GluK2 is still not understood. Altogether 

it was demonstrated that the mechanism of binding between glutamate α-carboxyl and α-amino 

groups is almost the same between GluK1, GluK2 and GluA2 forming interactions with conserved 

residues arginine and glutamic acid (Mayer 2005).  

The binding mechanism of GluK2 LBD in complex with kainate displays the same binding mode 

to  glutamate with the exception of kainate pyrrolidine ring replacing the water W1 atom and 

separating the solvent hydrogen bond network, linking the side chain of Thr-710 to the α-amino 

group of kainate (Fig. 3.21; Mayer 2005).  

GluK1 to GluK3 receptors shared several structural similarities in the LBD ligand pocket. A LBD 

alignment of the three receptors in complex with glutamate reveals the same clamshell-like 

structure and same binding core for glutamate in the interface between domain 1 and domain 

2 (Fig. 3.22; Møllerud et al. 2017).  Currently there are five crystal structures of the LBD of GluK1, 

four structures of GluK2 and four of GluK3 all in complex with glutamate (Table 3.1). All these 

structures shared similar binding mechanism with glutamate agonist, more specifically the α-

carboxylate group of glutamate forms a salt bridge interaction with residue Arg-523 from 

domain 1 and then will form hydrogen bonds with residues Thr-518 from domain 1 and Ser-689 

from domain 2. The α-ammonium group interacts with Glu-738 forming a salt bridge, as well as 

hydrogen bonds with Pro-516, Thr-518 and a water molecule W1. The γ-carboxylate of 

glutamate will form hydrogen bonds with Ser-689, Thr-690 and three water molecules W2, W3 

and W4 (Fig. 3.21A; Møllerud et al. 2017).   

Interestingly glutamate binding pocket shared the same residues in GluK1 rat and human within 

4 Å of glutamate. From the ten residues found within 4 Å of glutamate in Gluk1, only Thr-518 

and Ser-689 are different between GluK1-GluK3 structures (Fig. 3.22).  Thr-518 of GluK1 is 

conserved in GluK3 but changed to alanine for GluK2. Additionally Ser-689 of GluK1 changes to 

alanine in GluK2 and GluK3. These few differences create a larger binding pocket for glutamate 

in GluK2 compared to GluK1 (Møllerud et al. 2017).   
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In summary, the agonist ligand binding pocket of kainate GluK1-GluK3 receptors displayed 

similarities, suggesting a similar binding mode of action. Ligand binding can induce some small 

changes in the secondary structure, these differences might be key for understanding selectivity 

between glutamate receptors and aid in drug design research for therapeutic purposes.  

 

Figure 3.21. GluK2 structure in complex with glutamate and kainate. A) Glutamate binding 

interactions, previously described in Fig. 3.20. B) 3-dimensional view of the GluK2 in complex 

with kainate, domain one and two are in blue and mustard. Kainate molecule in yellow ball stick 

representation, kainate interactions in black dashes, water molecules in green, water atoms 

forming hydrogen bond are in red (Adapted from Mayer 2005). 
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Figure 3.22. Glutamate binding site pocket for kainate receptors GluK1, GluK2 and GluK3. A) 

Glutamate in orange, GluK1 residues that interact with agonist in cyan, hydrogen bonds in black 

dashes and water molecules in red spheres. B) Binding sites differences for glutamate binding in 

GluK1, GluK2 and GluK3 in cyan, purple and green respectively, accession codes 2F36, 2XXR and 

4MH5. Amino acids numbering correspond to GluK1 sequence (Møllerud et al. 2017). 

 

3.4.3.3 Kainate Agonists  

As previously discussed kainic acid is the natural agonist for kainate receptors, however other 

molecules such as domoic acid and 5-iodowillardiine can also activate kainate receptors. Domoic 

acid (domoate) was identified for the first time in a sample of Japanese red algae Chrondria 

armata (Daigo  1959) in a study focused on identifying novel anthelmintic compounds. In 1982, 

domoic acid was synthesised for the first time (Ohfune & Tomita 1982) but it was not discovered 

until 1987 that domoic acid was toxic for humans when in Canada hundreds of people 

experienced poisoning symptoms after eating contaminated mussels (Hynie et al. 1990). 

Domoate is an analogue of glutamate and shares structural similarity with kainic acid, this toxin 

is  responsible for causing amnesic shellfish poisoning (ASP; Pulido 2008).  Domoate activates 

AMPA and kainate receptors by binding in the orthosteric site and causes an uncontrolled influx 

of calcium in neurons inducing apoptotic and necrotic neuronal cell death; domoate prevents 

the channel from rapid desensitization in both AMPA and kainate receptors, in addition to 

synergistic effect with NMDA receptors that results in excitotoxicity (Pulido 2008; Hogberg & 

Bal-Price 2011). Crystal structure of GluK2 LBD in complex with domoate was solved in 2005 and 

two years later the GluK1 LBD in complex with domoate was characterised (PDB accession codes 

2PBW and 1YAE).   
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Both crystal structures show similar residue interactions to kainate (Nanao et al. 2005; Hald et 

al. 2007). Similar to domoate, kainate in high concentrations can cause neuronal cell death and 

neurotoxic effects (Zhang & Zhu 2011).  

A derivative of AMPA agonist results in (S)-2-amino-3-(3-hydroxy-5-ter-butylisoxazol-4-yl) 

propionic acid (ATPA) a potent and highly selective agonist for GluK1 kainate receptors, with low 

affinity in AMPA receptors (Goot 2002; Nielsen et al. 2003). Crystal structure of the LBD of GluK1 

in complex with ATPA has not been crystallised yet.  

(S)-5-Iodowillardiine a willardiine analogue with agonist properties for glutamate receptors, has 

shown strong selectivity for kainate receptors over AMPA receptors and no interaction with 

NMDA receptors (Jane et al. 1997; Swanson et al. 1998).  

Another selective agonist at kainate receptors is the (2S,4R) 4-methyl glutamic acid (SYM2081), 

this glutamate analogue displayed preferential selectivity for kainate receptors over AMPA 

receptors, and displayed similar potencies for GluK1 and GluK2 subtypes, this agonist also 

induced pronounced desensitization (Zhou et al. 1997; Jane et al. 2009; Traynelis et al. 2010).  

 

Table 3.2. Agonist affinities to AMPA, kainate and NMDA receptors 

Agonist 
iGluRs 

AMPA Kainate NMDA 

Glutamate  ++ ++ ++ 

Kainate + ++ + 

Domoate ++ ++ ++ 

(S)-5-Iodowillardiine + ++ - 

ATPA + ++ - 

SYM2081 + ++ + 

++ Strong affinity and + low affinity, – no affinity 

 

 

 

 

 



113 
 

 

 

Figure 3.23. Structures of kainate receptor agonists (Adapted from Jane et al. 2009). 

 

Kainate antagonists will be described in detail in iGluRs section 3.5.2.2, antagonist and 

pharmacology.  
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 3.4.4 NMDA RECEPTORS  

NMDA receptors have three different subunits GluN1-GluN3. Post-transcriptional RNA 

processing of GluN1 results in eight different variants (alternative splicing) of the gene GRIN1 

located in two sites of the structure (Fig. 3.24), the N-terminus of the ATD and the C-terminus 

of the CTD (Vance et al. 2012; Vyklicky et al. 2014; University of Bristol 2017).  GluN2 subunits 

are encoded by four subtypes GluN2A-D and GluN3 by two subtypes GluN3A and GluN3B 

(Vyklicky et al. 2014).  

 

 

Figure 3.24. RNA alternative splicing in NMDA receptor subunit. Structure of the NMDA 

receptors, in red boxes show the regions of splice variation (University of Bristol, NMDA 

receptors; Adapted from http://www.bristol.ac.uk/synaptic/receptors/nmdar/). 

 

 

NMDA receptors form functional heterotetramers containing two obligatory GluN1 subunits in 

association with two GluN2 and/or GluN3 subunits. This combination of different subunits 

results in a large number of different NMDA receptors with different pharmacological and 

biological processes.  

 

 

 

http://www.bristol.ac.uk/synaptic/receptors/nmdar/
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The structure of NMDA receptors is similar to AMPA and kainate receptors, an extracellular 

amino-terminal domain (ATD) linked to a ligand binding domain (LBD) connected to a 

transmembrane domain (TMD) and an intracellular carboxyl-terminal domain (CTD) (Fig. 3.24 & 

3.25). The full heterotetrameric GluN1-GluN2B solved at 3.96 Å (accession code PBD 4PE5) 

displayed a similarity in the dimer-dimer conformation for tetramer arrangement compared to 

other iGluRs. One significant structural difference is the more compact structure in the ATD and 

LBD, compared to the “Y” shape observed with AMPA and kainate receptors  (Fig. 3.25; Karakas 

& Furukawa 2014).  

This full-length structure of GluN1-GluN2B was crystallised in complex with glutamate, glycine 

and an allosteric inhibitor ifenprodil, a highly selective inhibitor for NMDA GluN2B subunit 

binding in the ATD. The structure represents the allosterically inhibited state of the receptor 

(Karakas & Furukawa 2014). Interestingly, a recent study using single particle cryo-electron 

microscopy (cryo-EM) combined with double electron-electron resonance investigated the 

structures of heterotetramer GluN1-GluN2B in complex with agonists (glutamate and glycine), 

agonists and allosteric inhibitor (Ro25-6991) and antagonists 5,7-dichlorokynurenic acid (DCKA) 

and D-(-)-2-amino-5-phosphonopentanoic acid (D-APV) (PDB accession codes in Table 3.3;  Zhu 

et al. 2016). This study proposed a mechanism of NMDA receptor inhibition and activation; firstly 

the binding of agonist glutamate in combination with glycine helps stabilize the LBD 

heterodimers and retain the gating ring formed by a dimer-dimer configuration from the LBD. 

Binding of the allosteric inhibitor Ro25-6981 in the ATD then induces the strength of LBD dimer 

interactions and stabilizes the LBD layer with ATD. Finally, the binding of competitive antagonist 

induces the separation and turns over of the LBD disrupting the LBD interactions with ATD and 

disrupting LBD gating ring (Fig. 3.26). A brief summary of the structural information of NMDA 

receptors is provided, however the purpose of this research is to focus on AMPA and Kainate 

receptors in more detail.  
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Figure 3.25. Comparison of the heterotetrameric GluN1-GluN2B receptor and the 

homotetrameric GluA2 receptor. NMDA GluN1a and GluN2B subunits labelled as GluN1a (α), 

GluN1a (β), GluN2B (α) and GluN2B (β) in orange, yellow, blue and purple respectively. Ifenprodil 

(IF) situated at the ATD interfaces, glutamate (L-Glu) and glycine (Gly) in the LBD are in green. 

NT, N-terminal and CT, C-terminal (Karakas & Furukawa 2014).  
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Figure 3.26. Schematic representation of the proposed mechanism of NMDA receptor inhibition 

and activation. Top, conformational changes of the extracellular domains ATD and LBD with 

agonist glutamate + glycine, allosteric inhibitor Ro25-6891 and competitive antagonist 5, 7-

dichlorokynurenic acid (DCKA) and D-(-)-2-amino-5-phosphonopentanoic acid (D-APV). Bottom, 

top-down representation of LBD conformations. The Apo-state is shown in grey due to no 

currently publish structure being available (Zhu et al. 2016).   

 

Table 3.3. Cryo-EM structures of GluN1/GluN2B NMDA receptor 

 

 

 

 

 

 

5,7-dichlorokynurenic acid (DCKA); D-(-)-2-amino-5-phosphonopentanoic acid (D-APV). Six 

different classes (conformations) of the DCKA/D-APV antagonist using double electron-electron 

resonance (DEER; Zhu et al. 2016). 

 

 

 

Accession code In complex with 
Resolution  

Å 

5IOU Glutamate + glycine 7.0 
5IOV Glutamate + glycine + Ro25-6981 7.5 
5IPQ DCKA/D-APV (Class 1) 13.5 
5IPR DCKA/D-APV (Class 2) 14.1 
5IPS DCKA/D-APV (Class 3) 13.5 
5IPT DCKA/D-APV (Class 4) 14.1 
5IPU DCKA/D-APV (Class 5) 15.4 
5IPV DCKA/D-APV (Class 6) 9.25 
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 3.5 iGluRs FUNCTION AND PHARMACOLOGY 

3.5.1 AMPA RECEPTORS  

 

3.5.1.1 FUNCTION AND DISTRIBUTION  

AMPA receptor subtypes GluA1-GluA4 have been found in the CNS, specifically with high levels 

of expression in the brain cerebral cortex, basal ganglia, thalamus, hypothalamus, hippocampus, 

cerebellum and spinal cord measured using [3H] AMPA binding studies and in-situ hybridization 

histochemistry (Olsen et al. 1987; Insel et al. 1990; Keinänen et al. 1990; Sommer et al. 1990; 

Stone 1995; Ozawa et al. 1998; Catarzi et al. 2007). Futhermore, AMPA autoradiography studies 

have found high density of AMPA anatomical distribution in the hippocampus (CA1 stratum 

radiatum and dentate gyrus), neurocortex (outer layers) and molecular layers of the cerebellum 

(Davis 2002). The hippocampus is responsible for short and long-term memory while the 

neurocortex plays a role in memory, language, cognition, attention and perception. The 

cerebellum plays an important role in balance and motor control but is also involved in cognitive 

functions (such as language and attention) and processing of procedural memory (unconscious 

memory) (Kryukov 2008; Kumaran 2008; Mochizuki-Kawai 2008; Rakic 2009).  

AMPA receptors mediate the majority of fast excitatory synaptic transmissions in the CNS and 

have an important role in long-term potentiation (Joshi et al. 2012).  Long-term potentiation 

(LTP) is the outcome of the increased activity between two neurons and is important for learning 

and memory processes.  

Frequently AMPA and NMDA receptors are located closer to each other in the presynaptic 

neurons, the traveling of an action potential in neurons results in the release of 

neurotransmitter glutamate. Glutamate then binds to both AMPA and NMDA receptors, if a 

small amount of glutamate is released, only AMPA receptors will allow the influx of Na+ ions into 

the postsynaptic neuron to cause a depolarization event; NMDA receptors usually have Mg2+ or 

Zn2+ ion that block the transport of ions through the channel. For LTP to occur a high-frequency 

action potential is necessary to release a larger amount of neurotransmitter from presynaptic 

neurons. When glutamate binds to AMPA receptors a greater depolarization event causes the 

AMPA receptors to remain open for longer and increases the influx of Na+ into the neuron. The 

large amount of Na+ influx will cause a larger depolarization in the neuron and will cause the 

release of Mg2+ or Zn2+ from the NMDA channel pore by a process called electrostatic repulsion, 

allowing the entering of ions such as Ca2+ through the pore  (Offermanns & Rosenthal 2008).  
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The Ca2+ influx in the postsynaptic neuron causes the phosphorylation and activation of 

Ca2+/calmodulin-dependent kinase II (CAMKII), this protein kinase promotes the trafficking and 

membrane exocytosis processes of AMPA receptors (Fig. 3.27; Lisman et al. 2002; Herring & 

Nicoll 2016). Protein kinase A (PKA) is also activated by the Ca2+ influx and both kinases 

phosphorylate AMPA receptors to enhance the conductance of the receptor (Kim et al. 2010). 

The upregulation of AMPA receptors is necessary for the induction of LTP (Cull-Candy et al. 2006; 

Chater & Goda 2014).  

 

Figure 3.27. Mechanism of long-term potentiation (LTP). (Adapted from The Human Brain: 

From neuron to nervous system, 

http://neurones.co.uk/Neurosciences/Tutorials/M1/M.1.B.4%20Ionotropic.html). 

 

 

 

http://neurones.co.uk/Neurosciences/Tutorials/M1/M.1.B.4%20Ionotropic.html
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3.5.1.2 Antagonists and Pharmacology 

AMPA receptors have been found to play an important role in epilepsy; prolonged activation of 

AMPA receptors results in high levels of excitability, also upregulated activation of AMPA can 

generate proliferation of seizures. Antagonists of AMPA receptors have been shown to protect 

against seizures in vitro and in vivo in animal models (Rogawski 2013; Hanada et al. 2014; Twele 

et al. 2015).  AMPA antagonists have shown remarkable reductions in epileptiform, as well as 

reducing epileptic discharges in human seizures and epilepsy models  (Kasteleijn-Nolst Trenité 

et al. 2015; Twele et al. 2015; Chen et al. 2016).  AMPA antagonists such as 2,3-dihydroxy-6-

nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), Selurampanel (BGG492) and 

Perampanel are a promising new target for epilepsy therapy.  
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Table 3.4. Summary of AMPA antagonist drugs. 

Drug Clinical 
stage  

Use/Treatment  Comments  Reference  

Competitive Antagonist 

Fanapanel  
 

Phase II  Acute ischemic 
stroke  

Halted for intolerable side 
effects: high levels of 
sedation, drop of 
consciousness and transient 
neurological deterioration 

(Elting et al. 
2002) 

Becampanel 
 

Phase II Epilepsy, 
anticonvulsant  

Discontinued, no more 
information published  

(Suter et al. 
2002) 

NS1209 Phase II Refractory 
status 
epilepticus  

Inconclusive and incomplete 
results 

(Sabers et al. 
2013) 
(Keppel 
2017) 

Tezampanel Phase II  Acute migraine FDA approved phase III but 
study has not started due to 
financial constraints  

(www.clinica
ltrials.gov) 

Negative allosteric modulators (NAMs)  

Talampanel Phase I & 
II  

Anticonvulsant Halted due to finding various 
drug interactions 

(Bialer et al. 
2007; 
Rogawski 
2013) 

Perampanel  Marketed Epilepsy  Commercial name Fycompa 
by Eisai Co. Adverse side 
effects: somnolence, 
dizziness, fatigue, irritability 
and nauseas.  

(Besag & 
Patsalos 
2016) 

Positive allosteric modulators (PAMs)  

Aniracetam Marketed  Dementia, 
supplement for 
cognitive 
function 

Nootropic drug not 
approved by the FDA, 
however it is a prescription 
drug in Europe 

(Nakamura 
2006; Koliaki 
et al. 2012) 

Piracetam  Marketed Myoclonus and 
supplement for 
cognitive 
function 

Nootropic drug not 
approved by FDA but sold in 
Europe, Asia and South 
America  

(Einstein & 
McDaniel 
2004) 

Cyclothiazide Marketed Diuretic and 
antihypertensive 

Currently discontinued for 
marketing by the FDA 
registry 

(Antlitz & 
Valle 1967; 
Fucile et al. 
2006) 
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AMPA Competitive Antagonists 

The group of quinoxaline compounds were the first selective and potent AMPA receptor 

antagonist that have been found to display neuroprotection and reduce seizures in epilepsy 

models (Joshi et al. 2012).  The discovery of 2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7nitroquinoxaline-2,3-dione (CNQX)  as 

potent and selective antagonists of the AMPA receptor in 1988 (Honoré et al. 1988; Sheardown 

et al. 1990) has initiated the synthesis and study of several quinoxaline type compounds. NBQX  

and CNQX were found to have anticonvulsant activity in mouse seizure models (Chapman et al. 

1991; Namba et al. 1994; Maj et al. 1995; Szczurowska & Mareš 2013).  Other quinoxaline 

derivatives found with anticonvulsant activity are; DNQX, YM-872, YM-90K, ZK-200775 

(Fanapanel) and AMP397 (Becampanel)(Shimizu-Sasamata et al. 1996; Turski et al. 1998; 

Takahashi et al. 2002; Catarzi et al. 2007; Joshi et al. 2012; Rogawski 2013). Fanapanel was in 

phase II clinical trials in patients with acute ischemic stroke, however it was terminated due to 

intolerable side effects such as glial cell toxicity and neurological deterioration (Elting et al. 2002).  

Another selective AMPA antagonist pyrazine derivative 9-carboxymethyl-imidazo-[1-

2a]indenol[1-2e]pyrazin-4-one-2-carboxylic acid (RPR117824) has been discovered to be a 

potent compound with anticonvulsant activity in mouse models (Mignani et al. 2002).  

Isatin oxime compounds such as  NS1209 (SPD502), have also been shown to inhibit GluK1 

kainate receptors (Nielsen et al. 1999; Pitkänen et al. 2007). NS1209 was tested in humans in a 

phase II clinical trial for Refractory Status Epilepticus (RSE). The compound displayed good 

tolerability in humans, however the results were inconclusive (Sabers et al. 2013).  Tezampanel 

(LY293-558 or NGX-242) a drug developed by Eli Lilly is a competitive antagonist of AMPA 

receptors and also presents great antagonist potency against GluK1 kainate receptors (Rogawski 

2013). This drug has been approved by FDA to initiate phase III clinical trials for acute migraine 

(NCT00567086, www.clinicaltrial.gov).  

 

 

 

 

 

 

http://www.clinicaltrial.gov/
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AMPA Non-Competitive Antagonists 

The non-competitive (negative allosteric) antagonists of AMPA receptors are the most potent 

and have less toxic side effects compared to other antagonists (Tarnawa & Vize 1998; Donevan 

& Rogawski 1993). The first non-competitive AMPA receptor antagonist identified was 1-(4-

aminophenyl)-4-methyl-7,8-mehtyllenedioxy-5H-2,3-benzodiazepine (GYKI 52466) and was 

used as a model for the development of novel, more potent, less toxic and more selective 2,3 

benzodiazepines. Derivatives of GYKI 52466 include GYKI 53405, GYKI 53655 and GYKI 53773 

and have displayed a wide range of anticonvulsant activity in several animal models (Chapman 

et al. 1991; Szabados et al. 2001; Rogawski 2013; Dhir & Chavda 2016). GYKI 53773, also known 

as talampanel, displayed great efficacy in reducing seizure frequency in a clinical trial, however 

various drug interactions were found, specifically with carbamazepine (Bialer et al. 2007; 

Rogawski 2013).  

Other unrelated non-competitive AMPA antagonists include the phthalazine YM928, the 

imidazole GYKI 47264, the quinazolin-4-one CP-465,022 and the bipyridine benzonitrile 

Perampanel (Abrahám et al. 2000; Menniti et al. 2000; Ohno et al. 2003). The latter, 2-(2-oxo-1-

phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl) benzonitrile (perampanel)  is a selective non-

competitive AMPA receptor antagonist drug with the commercial name Fycompa (Eisa Co.). It 

was approved by the FDA in 2012 for the treatment of primary generalized tonic-clinic seizures 

(PGTCS) in patients with epilepsy; adverse effects include dizziness, somnolence, fatigue, 

irritability and nauseas (Besag & Patsalos 2016).  

Balannik and co-workers found using mutagenesis experiments that non-competitive 

antagonists (GYKI-53655 and CP-465,022) bind in an interface between S1 and S2 of the LBD and 

the transmembrane spanning regions, more specifically between S1-M1 and S2-M4 linkers (Fig. 

3.28; Balannik et al. 2005). In 2016 the full-length GluA2 in complex with the antagonist GYKI 

53655, CP 465,022 and Perampanel was successfully crystallised, PDB accession codes 5L1H, 

5L1E and 5L1F respectively (Yelshanskaya et al. 2016).  These findings confirmed the binding 

sites of the non-competitive antagonist between the S1-M1 and S2-M4 linkers (Yelshanskaya et 

al. 2016).  A possible model of action of the non-competitive antagonist is that it acts like a 

wedge between the transmembrane segments, immobilizing the movement towards each other 

and stabilizing the closure of the channel (Fig. 3.29; Yelshanskaya et al. 2016). These new 

findings of the antagonist binding pocket can give a new target for the designing of new drugs 

with improved efficacy and safety. 
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Figure 3.28. AMPA non-competitive antagonist binding site. Schematic representation of the 

AMPA receptor dimer and binding site of the non-competitive GluA2 inhibitors Perampanel 

(PMP), GYKI53655 (GYKI) and CP 465,022 (CP) in red squares with structures (Yelshanskaya et al. 

2016). Linker segments between S1-M1 and S2-M4 are binding sites for non-competitive AMPA 

antagonist (Adapted from Rogawski 2013). 
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Figure 3.29. Putative model of the mechanism of the non-competitive inhibitor in AMPA 

receptors. In absence of an inhibitor the glutamate binding domain closes the clamshell-like 

structure and induces the opening of the pore (red arrow). Inhibitor acts like a wedge (yellow) 

avoiding the opening of the channel (Yelshanskaya et al. 2016). 
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3.5.2 KAINATE RECEPTORS 

3.5.2.1 FUNCTION AND DISTRIBUTION  

Kainate receptors are expressed in postsynaptic and presynaptic neurons, with postsynaptic 

receptors being involved in excitatory neurotransmission and presynaptic receptors in inhibitory 

neurotransmission (Kristensen et al. 2016). In situ hybridization studies in the brain have found 

the expression of mRNA GluK1 subunit in dorsal root ganglion neurons and in the Purkinje cells 

of the cerebellum. GluK2 mRNA was highly expressed in the cerebellar granule cells, in the 

dentate gyrus, the striatum and the CA3 region of the hippocampus (Lerma et al. 2001). GluK3 

mRNA was detected at low levels of expression in the cerebral cortex, the striatum and in the 

inhibitory neurons of the molecular layer of the cerebellum (Lerma et al. 2001). In contrast, 

GluK4 was found almost exclusively in the CA3 region of the hippocampus, with relatively low 

levels of expression in amygdala and entorhinal cortex (Lerma et al. 2001; Darstein et al. 2003). 

The GluK5 mRNA was found in the striatum, the inner/outer layers of the cortex  and amygdala  

(Gallyas et al. 2003; Braga et al. 2004).  

Kainate receptors have been demonstrated to play an important role in synaptic transmission, 

presynaptic release of glutamate and γ-aminobutyric acid (GABA) and in the development of 

epileptogenesis. The function of kainate receptors depends on their cellular distribution. In 1999, 

kainate receptors (GluK1 subunit) were found to be involved in long-term potentiation in 

synaptic transmission in mossy fibre of CA1 region of the hippocampus by ligand binding studies 

and electrophysiology (Bortolotto et al. 1999). Similar to AMPA, kainate receptors function in 

synaptic plasticity in the postsynaptic cell, however their role is minor compared to AMPA 

receptors but aid in the influx of Na+ to induce LTP (Fig. 3.30a). Recently, kainate receptors have 

been implicated in regulating presynaptic LTP in hippocampus and amygdala.  More specifically 

GluK1 receptors have been associated with pre-LTP mechanisms in anterior cingulate cortex 

(ACC), pre-LTP in ACC have shown an important role in chronic pain, fear and anxiety  (Koga et 

al. 2015; Yamanaka et al. 2016).  In presynaptic neurons active GluK1 receptors allow the influx 

of Ca2+ that leads to the activation of type I adenylyl cyclase (AC1)/protein kinase A (PKA) 

pathway and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that result in 

the regulation of vesicular glutamate transport and in the long lasting increase of glutamate 

release (Fig. 3.30b; Huang & Trussell 2014; Yamanaka et al. 2016; Zhuo 2017a).  
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In addition, kainate GluK1 receptors play an important role in modulating the release of GABA 

neurotransmitter in the pre-synaptic neuron by action potential-dependent GABA release and 

the activation of voltage-dependent Ca2+ channel influx. However, the exact mechanism of 

kainate in GABA signalling it is not yet fully understood (Fig. 3.30c; Wu et al. 2007; Zhuo 2017a).   

 

Figure 3.30. Synaptic transmission and pre-synaptic LTP regulation by kainate receptors in the 

cingulate cortex.  a) Postsynaptic GluK1 and GluK2 is involved in mediating synaptic response in 

addition to AMPA receptors. b) Activation of GluK1 receptor in presynaptic neuron allows the 

influx of Ca2+ ions into the neuron and activates the type I adenylyl cyclase (AC1)/protein kinase 

A (PKA) pathway and the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels to 

induce the increase of glutamate release. c) In presynaptic neurons  activation of GluK1 

receptors triggers action potential-dependent GABA release (Zhuo 2017a).  
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Seizure generation and epileptogenesis  

The first evidence of a link between kainate receptors and epilepsy was in 1998 when it was 

found that GluK2 receptors in the CNS of mice are important in synaptic transmission and in 

epileptogenesis induced by kainate (Mulle et al. 1998). In the study, GluK2-deficient mutant 

mice showed less susceptibility to develop seizures by kainate administration, suggesting the 

importance of the GluK2 kainate subtype in seizure onset induced by kainate administration 

(Mulle et al. 1998).  

Previous research has demonstrated that selective antagonists for AMPA and kainate can reduce 

seizure symptoms in animal models. For example, in a GluK1 study  antagonists LY-377770 and 

LY-382884 prevented and interfered with limbic seizures induced by pilocarpine in a rat model 

(Smolders et al. 2002). Also, the Gluk1 and AMPA antagonist NS1209 (discussed in AMPA 

antagonist section 3.5.1.2) alleviated refractory status epilepticus (RSE) in a small phase II study 

however no further research followed due to inconclusive results (Pitkänen et al. 2007; Sabers 

et al. 2013). 

Topiramate (Topamax), a current anticonvulsant drug approved by the FDA in 2012 for the 

treatment of epilepsy, has been shown to interact (antagonize) with AMPA and kainate 

receptors (Andreou & Goadsby 2011). For example, one study showed that Topiramate inhibits 

kainate-induced activation in cultured cerebellar granule neurons expressing AMPA and kainate 

receptors (Skradski & White 2000; Gryder & Rogawski 2003; Braga et al. 2009). In another study, 

Topiramate selectively inhibited GluK1 kainate receptor-mediated excitatory postsynaptic 

responses and protected against seizures induced by ATPA in rat neurons (Braga et al. 2009).   

In a chemoconvulsive status epilepticus (SE) model in rats, the administration of kainate 

increased the expression of Gluk1, GluK2/GluK3, GluK4 and GluK5 in the CA1 region of the 

hippocampus measured by immunohistochemistry and colocalization (fluorescence microscopy) 

studies (Vargas et al. 2013).  Higher expression of GluK1 was observed in astrocytes followed by 

GluK4, GluK2/3 and GluK5; these results demonstrate that after seizure onset astrocytes initiate 

the overexpression of kainate receptors, indicating a role in epilepsy (Vargas et al. 2013).  

There is strong evidence linking kainate receptors in seizure generation and epileptogenesis, for 

that reason novel antagonists of kainate receptors might be an alternative for the treatment of 

epilepsy. This thesis research was focused on structure-based studies of kainate receptors GluK1 

and GluK2 for the target of epilepsy treatment.  
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3.5.2.2 Antagonists and Pharmacology 

 Competitive Antagonists  

Quinoxalinedione derivative compounds such as CNQX and NBQX are relatively non selective 

competitive antagonists for kainate and AMPA receptors  (Kew & Kemp 2005; Jane et al. 2009).  

A number of tetrazole-substituted decahydroisoquinolines, including LY-293558 (Tezampanel), 

LY-294486, LY-37770 and LY-382884 have been shown to possess antagonist activity for AMPA 

and kainate receptors, more specifically with GluK1 receptors compared to AMPA subtypes 

(Bleakman et al. 1997; Dingledine et al. 1999; Jane et al. 2009; Rogawski 2013) . A willardiine 

analogue UBP302 selectively inhibits GluK1 receptors with low activity versus other kainate 

subtypes or AMPA receptors (More et al. 2004). Crystal structures of the LBD of Gluk1 in complex 

with UBP302 and UBP310 (PDB accession codes, 2F35 and 2F34) were characterised, both 

compounds were shown to bind in the orthosteric site using a new mechanism of binding and 

did not form direct contacts with Glu-723 residue resulting in 22 Å extension of the ligand 

binding core compared with other crystal structures (Mayer 2006a).  These crystal structures in 

complex with UBP compounds were important for the design of a new antagonist UBP316 

(ACET). ACET was found to be a highly potent antagonist for GluK1, and not for GluK2 and GluK3 

receptors by adding substituents to the thiophene ring and increasing the hydrophobic 

interactions with GluK1 receptor in Val-670 and Asn-705 (Dolman et al. 2007). ACET also displays 

antagonist activity with NMDA receptors, ACET reversibly blocked induction of NMDA receptor-

independent long term potentiation (LTP) in vitro experiments (Dolman et al. 2007; Dargan et 

al. 2009). There is a need for more detailed information on how exactly new antagonists interact 

with glutamate receptors and their possible effects in therapeutics.  Competitive antagonists 

that bind to the orthosteric site exhibit more side effects because they can also bind to 

homologous receptors with similar binding sites such as AMPA and NMDA. For that reason, non-

competitive antagonists are advantageous; however, a few of non-competitive antagonists have 

been reported. 
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 Non-Competitive Antagonists  

Although several AMPAR non-competitive antagonists have been described, relatively few non-

competitive antagonists have been discovered for kainate receptors. In recent years, efforts 

have been focused on studying kainate antagonists that bind to the orthosteric site (glutamate 

site). However, recent evidence shows new allosteric binding sites for AMPA and kainate 

receptors antagonists, these novel binding sites can have important clinical relevance 

(Yelshanskaya et al. 2016; Probst Larsen et al. 2017).  

5-carboxyl-2,4-di-benzamido-benzoic acid (NS3763), the first non-competitive antagonist for 

kainate receptors was characterised in 2004 (J. K. Christensen et al. 2004). NS3763 was shown 

to inhibit domoate-induced responses in homomeric GluK1 receptors expressed in HEK-293 cells 

but no inhibition was observed in heteromeric GluK1/GluK2 or GluK1/GluK5, AMPA or NMDA 

receptors (J. K. Christensen et al. 2004; Matute 2011).  

Two 2-arylureidobenzoic acids (AUBAs) identified as 1 and 2a (Fig. 3.31; named accordingly to 

original paper Valgeirsson et al. 2004) demonstrate to have non-competitive activity against 

kainate receptors, more specifically, compound 1 displayed higher affinity to GluK1 than GluK2, 

whereas compound 2a had the same potency for GluK1 and GluK2. Both compounds had no 

antagonist activity against AMPA subunits expressed in HEK-293 cells (Valgeirsson et al. 2003; 

Valgeirsson et al. 2004), thereby demonstrating high selectivity for kainate versus AMPA 

receptors, no studies have been done in NMDA receptors. A more recent study using homology 

modelling and molecular docking suggests a new non-competitive binding site for kainate 

receptors GluK1 and GluK2 for indol-derived antagonists. This allosteric site is suggested to occur 

between S1-M2 and S2-M4 in the transduction domain. However these results not have any X-

ray data to prove the exact binding site, they based this experiment on previously discussed 

AMPA allosteric site (Rogawski 2013; Kaczor et al. 2014). 

 

 

Figure 3.31. Chemical structure of kainate receptors allosteric antagonists (Adapted from 

Valgeirsson et al. 2004; Jane et al. 2009) 
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Kainate Allosteric Modulators  

Concanavalin A (Con-A) is a member of the sugar lectin family that has shown to block 

desensitization in kainate receptors by binding to a series of N-glycosylated residues on 

glutamate receptors extracellular domain. Con-A is a non-selective positive allosteric modulator 

(PAM) which can increase receptor agonist affinity in kainate, AMPA and NMDA receptors 

(Partin et al. 1993; Lerma et al. 2001; Bleakman et al. 2002; Mott et al. 2010).  

More recently, a new study was able to crystallize GluK1 LBD in complex with three positive 

allosteric modulators (PAMs) BPAM344, BPAM121 and BPAM521 (PDB accession codes 5MFQ, 

5MFW and 5MFV respectively). These kainate modulators (Fig. 3.32) are benzothiadiazine 

compounds that bind to a novel allosteric binding site in the lower area of the GluK1 LBD dimer 

interface, near the D1-D2 hinge area (Fig. 3.33; Probst Larsen et al. 2017). BPAM344 and 

BPAM521 display a potent positive modulatory effect on currents evoked by glutamate in 

homomeric GluK1b, GluK2a and GluK3a isoform receptors expressed in HEK-293. More 

specifically, BPAM344 showed a stronger potentiation effect of glutamate-evoked currents in 

GluK2a and GluK3a compared to AMPA GluA2 receptors. In addition, the allosteric effect showed 

no differences between GluK1b and GluA2. The three compounds displayed allosteric activity 

for GluA2 AMPA receptors, in which only BPAM121 significantly potentiates the peak current 

amplitude of AMPA receptors (Probst Larsen et al. 2017). In previous studies BPAM344 was 

identified as a strong positive allosteric modulator for AMPA receptors and more interestingly it 

displayed a specific binding site between the dimer interface of the LBD for all types of 

benzothiadiazine modulators. It is believed that allosteric modulators of AMPA receptors 

stabilize the dimer and agonist-bound opening channel conformation, thereby reducing rapid 

desensitization and deactivation (Nørholm et al. 2013; Krintel et al. 2016).  Positive allosteric 

modulators of iGluRs are promising targets for helping improve cognitive disorders like 

Alzheimer’s disease and schizophrenia in which glutamate transmission is deficient.  These new 

allosteric sites could give an opportunity to find new drugs with improved pharmacological 

properties and higher target specificity (Menniti et al. 2013; Krintel et al. 2016).  
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Figure 3.32. Chemical structures of BPAM344, BPAM521 and BPAM121 (Adapted from Probst 

Larsen et al. 2017). 

 

Figure 3.33. Binding interactions of BPAM344, BPAM521 and BPAM121 with LBD-GluK1. 

Antagonists BPAM344, BPAM521 and BPAM121 in green, cyan and orange respectively. 

Residues involved in antagonist interaction within 3.5 Å in domains one and two in beige and 

grey. Water molecules in red spheres and hydrogen bonds in black dashed lines (Probst Larsen 

et al. 2017). 
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Figure 3.34. GluK1-LBD in complex with BPAM344 and kainate. A) LBD of GluK1 dimer, domains 

one and two in beige and grey respectively. Kainate and BPAM344 are shown as black and green 

stick representations, chloride ion used for crystallography in green. B) Rotated view of the LBD 

in which the antagonist BPAM binds inside the lower part of the dimer interface (Probst Larsen 

et al. 2017).  

 

The PAM BPAM344 binds between the dimer interface of the GluK1 dimer, more specifically two 

BPAM344 molecules bind in a lower region of the interface. In addition, kainate agonist binds in 

the orthosteric site of the LBD between domains one and two (Fig. 3.34). The three PAMs bind 

with similar interactions, the main differences are residues Thr-535, Ser-761 and Gln-786 that 

adopt different binding conformations for each PAM (Fig. 3.33) and more specifically Thr-535 

side chain turned aside from modulator site in the presence of BPAM121 (Probst Larsen et al. 

2017).  This binding interface shares a similar binding mode to that previously observed with 

AMPA GluA2 in complex with other PAMs, such as cyclothiazide, piracetam, aniracetam, 

LY451646 and 3,4-dihydro-2H-1,2,4-benzothiadizine dioxide (Menniti et al. 2013; Nørholm et al. 

2013). To conclude, the kainate and AMPA receptors display a similar allosteric binding site at 

the LBD interface; these similarities allow the design of novel PAMs that can be selective for 

kainate receptors. 
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3.5.3 NMDA RECEPTORS  

3.5.3.1 FUNCTION AND DISTRIBUTION  

The N-methyl-D-aspartate (NMDA) receptor is a iGluR important for synaptic plasticity and 

memory function (Li & Tsien 2009). NMDA receptors are located in the cerebral cortex, the 

largest region of the brain responsible for information processing, memory, attention, 

perception, cognition, language, sensation and association (Vidyasagar 1996; Boundless 

Cerebral Cortex 2016). Immunocytochemistry studies found cortical NMDA receptors in 

dendritic spines, astrocytes and axon terminals (excitatory and inhibitory) suggesting a large 

distribution of NMDA receptors in neurons of the cerebral cortex (Conti 1997).  

NMDA agonist selectively and exclusively activates NMDA receptors and no other glutamate 

receptors. The property that differentiates NMDA receptors from other receptors is the 

requirement of the binding of an agonist (glutamate) and a co-agonist (Glycine or D-serine) for 

activation of the channel (Fig. 3.35). Extracellular ions such as Mg2+ and Zn2+ are able to bind 

inside the pore and block the channel, membrane depolarization results in the release of Mg2+ 

and Zn2+ from the pore channel allowing the voltage-dependent flow of ions Na+ and Ca2+ inside 

the cell and K+ outside the cell (Hashimoto 2017). The opening of the channel results in an influx 

of Ca2+ ions that triggers signal transduction cascades such as protein kinases, calcium-

dependent enzymes, second messengers and phosphatases that are important for 

neuroplasticity (Blanke & VanDongen 2009; Karakas & Furukawa 2014).  
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Figure 3.35. Diagram of the topology of activated NMDA receptors. The activation of the NMDA 

channel requires the binding of neurotransmitter glutamate and co-agonist Glycine or D-serine 

to allow the influx of Ca2+ and Na+ and the efflux of K+, membrane depolarization is necessary 

for the release of Mg2+ from the pore (Adapted from Tulane University, Medical Pharmacology 

TMedWeb. 

http://tmedweb.tulane.edu/pharmwiki/doku.php/overview_of_cns_neurotransmitters).  

 

NMDA receptors are important for a large amount of post-synaptic functions; more specifically, 

long-term potentiation (LTP), a mechanism of synaptic plasticity important for learning and 

memory, is controlled by NMDA receptors. As previously described in AMPA function section 

3.5.1.1; the activation of NMDA receptors in the postsynaptic neuron allows the influx of Ca2+ 

and results in the activation of Ca2+/calmodulin-dependent kinase II (CAMKII) and protein 

kinases (A and C). Both induce the synaptic insertion of AMPA receptors (Fig. 3.27 & 3.36) to 

ensure synaptic potentiation by LTP (Newcomer et al. 2000; Lisman et al. 2002; Kim et al. 2010; 

Herring & Nicoll 2016). In addition, NMDA receptors are also implicated with long-term 

depression (LTD), a mechanism that is characterised by the longer reduction of synaptic 

transmission. Once more, the influx of Ca2+ by NMDA receptors by low-frequency stimulation 

activates hippocalcin, a Ca2+ binding protein important for synaptic plasticity and learning 

(Dovgan et al. 2010). Hippocalcin forms a complex with adaptor protein 2 (AP2) to activate the 

receptor-mediated endocytosis (RME) to initiate the AMPA receptor internalization and as a 

result the neuron is less responsive to glutamate neurotransmitter (Palmer et al. 2005; Derkach 

et al. 2007; Dovgan et al. 2010). 

http://tmedweb.tulane.edu/pharmwiki/doku.php/overview_of_cns_neurotransmitters
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Figure 3.36. NMDA dependent long-term potentiation (LTP) and long-term depression (LTD).  In 

long-term synaptic plasticity the activation of NMDA allows the influx of Ca2+ either by increasing 

the expression of AMPA receptors (high-frequency stimulation) or reducing the expression of 

AMPA receptors (low-frequency stimulation). (Boundless, Synaptic plasticity; 

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-nervous-

system-35/how-neurons-communicate-200/synaptic-plasticity-765-11998/). 

 

 

 

 

 

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-nervous-system-35/how-neurons-communicate-200/synaptic-plasticity-765-11998/
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-nervous-system-35/how-neurons-communicate-200/synaptic-plasticity-765-11998/
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3.5.3.2 ANTAGONIST AND PHARMACOLOGY  

 

 Competitive antagonists  

These compounds will compete for the glutamate binding site in the LBD of the receptor. The 

2R-amino-5-phosphonopentanoate (AP5) is a selective competitive NMDA receptor antagonist 

first described in 1981  by Watkins and Evans (Watkins & Evans 1981). AP5 is able to block the 

induction of LTP and impairs spatial learning (Davis et al. 1992; Morris et al. 2013). One 

disadvantage of AP5 antagonist is the low selectivity (<10-fold) for other AMPA subunits 

(Vyklicky et al. 2014). Two phenanthrene compounds (2R*,3S*)-1-(phenanthrene-3-carbonyyl) 

piperazine-2-3-dicarboxylic acid (UBP141) and its 9-brominated homolog (2R*,3S*)-1-(9-

bromophenan- threne-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP145) have shown high 

selectivity for GluN2D subunits over GluN2B and GluN2A (Morley et al. 2005; Costa et al. 2009).  

 

 Channel blockers (Non-competitive antagonists) 

Some compounds have the ability to block the channel by binding at the Mg2+ site inside the 

channel pore acting as a non-competitive antagonist (Fig. 3.37). However, the blocking of the 

channel will require previous receptor activation, otherwise the drug will not be able to enter 

the open channel  (Vyklicky et al. 2014). The most potent NMDA blocker is a dizocilpine maleate, 

frequently named dizocilpine or MK-801; dizocilpine was discovered and patented by Merck and 

functions as an anticonvulsant and anaesthetic drug. Unfortunately drug administration in rats 

demonstrated the development of brain lesions (Olney’s lesions), it has also been associated 

with neurotoxicity and learning impairment (Olney et al. 1986; Kovacic & Somanathan 2010). 

Two other channel blockers with lower affinity antagonist effect are phencyclidine (PCP) and 

ketamine (previously discussed in section 3.2, glutamate neurotransmission in disease) both 

drugs are mainly used as anaesthetics however, both drugs display dissociative effects 

(hallucinogens) such as memory loss, sedation and delusions (Kapur & Seeman 2002; Sleigh et 

al. 2014; Vyklicky et al. 2014).  Medical use of PCP in humans was discontinued for the 

dissociative side effects; ketamine is used to treat chronic pain and as anaesthetic but only as a 

prescription and controlled drug. Memantine is another channel blocker, a drug approved by 

FDA and European medicines agency (EMA) for the treatment of Alzheimer’s disease (AD), it is 

a low-affinity voltage-dependent channel blocker of NMDA receptors and it has been shown to 

have better clinical tolerability.  
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The reduction of side effects of memantine is due to their low affinity for NMDA receptors, this 

drug rapidly binds to the Mg2+ binding site and quickly dissociates from the receptor (Kalia et al. 

2008; Vyklicky et al. 2014). The major challenge of these channel blockers is that they have low 

or no subtype selectivity causing large side effects (Dravid et al. 2007). 

 

 Polyamine site antagonists 

In the amino terminal domain (ATD) of NMDA receptors there is a region that shares homology 

to the leucine-isoleucine-valine binding protein (LIVBP), this region is an allosteric modulator 

domain that binds to zinc in GluN2A and polyamines in GluN2B (O’Hara et al. 1993; Masuko et 

al. 1999; Fayyazuddin et al. 2000; Monaghan & Jane 2009). Ifenprodil, a phenylethanolamine 

drug, is a selective antagonist of NMDA receptors containing NR2B subunit (Williams 2001). It is 

currently in clinical trial phase II for the treatment of post-traumatic stress disorder (PTSD) in 

adolescents, results to be completed in 2020 (NCT01896388, www.clinicaltrials.gov). The 

highest affinity antagonist for this site is Ro25-6981 which has binding affinity for NMDA 

receptors containing GluN2B subunit (Fischer et al. 1997).  Ro25-6981 has been reported to have 

antidepressant properties and studies are currently being conducted to determine the clinical 

actions of this drug in depression (Duman 2014).  Traxoprodil (CP-101,606) a drug characterised 

by Pfizer, displayed a selective antagonist for NMDA receptors containing the GluN2B subunit 

(Di et al. 1997). Traxoprodil has shown neuroprotective and analgesic properties, and phase II 

clinical trials were performed in Parkinson disease (PD) and major depressive disorder (MDD) 

patients (NCT00163085 & NCT00163059, www.clinicaltrials.gov).  Unfortunately, the studies 

were halted due to electrocardiographic abnormalities (QT prolongation) associated with 

potassium channel blockade (Wolfgang & Rogawski 2002).  In addition, traxoprodil was also 

associated with abnormal thinking and amnesia as undesirable side effects (Nutt et al. 2008).  

Subunit selectivity for competitive antagonist is necessary in the new antagonist of NMDA, to 

avoid adverse side effects; this research was not focused on NMDA receptors.  

 

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
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Figure 3.37. Chemical structures of several NMDA antagonists. 
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CHAPTER 4 

AMPA PROJECT 

 

4.1 ABSTRACT 

Epilepsy is a chronic neurological disorder and is characterised by recurrent unprovoked seizures. 

It is one of the most common neurological disorders worldwide; with the overall incidence of 

epilepsy in Europe and North America being 24 and 53 cases per 100,000 persons per year 

respectively, affecting 50 million people worldwide according to the World Health Organization 

(WHO). Epilepsy has a wide variety of phenotypes having more than 15 different seizure types 

and more than 30 epilepsy syndromes. Several anti-epileptic drugs (AEDs) such as, 

carbamazepine, perampanel, piracetam and diazepam are available currently, however 25% to 

30% of epilepsy patients do not respond to drug treatment (refractory patients; French 2006; 

Laxer et al. 2014). Additionally, the significant side effects of current AEDs such as fatigue, 

vertigo, headaches, sedation, drowsiness and nausea may result in treatment discontinuation in 

approximately 25% of patients (Perucca & Gilliam 2012). 

AMPA receptors are a type of ionotropic glutamate receptors (iGluRs), involved in excitatory 

neurotransmission and are a recent target for AEDs. Currently several anticonvulsant drugs such 

as Becampanel and Fanapanel can diminish the excitatory neurotransmission of glutamate by 

antagonising the binding site; however these antagonist drugs can cause significant side effects 

due to action in other iGluRs in the brain. Perampanel, an antiepileptic drug approved in 2012 

for the treatment of partial seizures and generalized tonic-clonic seizures in adults, was found 

to bind in a new allosteric site in AMPA receptors. This new binding site located in the 

transduction domain (between the ligand-binding domain and the transmembrane domain) 

gives great selectivity to negative allosteric modulators (NAMs) including perampanel. 

Unfortunately, this drug can cause a large number of adverse side effects including behavioural 

and psychiatric changes, irritability, nauseas, somnolence, fatigue and dizziness, for that reason 

its clinical use is limited (Besag & Patsalos 2016). Hence, we are interested in a different allosteric 

site than the transduction domain due to a large amount of side effects, as well as the difficulty 

of obtaining the isolated transmembrane domain with the LBD for purification and 

crystallography experiments.  

AMPA receptors play an important function in the process of synaptic plasticity and are known 

to be involved with the long-term potentiation mechanism. A group of positive allosteric 

modulators (PAMs) of AMPA receptors frequently known as AMPAkines have been shown to 
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improve cognitive function in a variety of pre-clinical assays (Lynch & Gall 2006; Beneyto et al. 

2007; Ward et al. 2011). In addition, a novel binding site for positive allosteric modulators (PAMs) 

located between the dimer interface of the ligand-binding domain of AMPA receptors has been 

targeted for drug discovery research focused on cognitive processes (learning and memory). 

Previous research has shown that AMPA PAMs can improve cognitive performance and be a 

potential target for Schizophrenia, a  chronic mental disorder that affects behaviour, thoughts 

and perception (Ward et al. 2011).  

This project was focused on finding novel negative allosteric modulators (NAMs) and positive 

allosteric modulators (PAMs) compounds in the LBD of AMPA receptors using fragment-based 

screening experiments. The experiments resulted in a successful protein production, purification 

and crystallography for the LBD of AMPA. More than 700 fragment compounds were screened 

with LBD AMPA crystals using the Diamond fragment screening (XChem) library. Eight fragments 

were identified, situated in three different sites in the LBD of AMPA, two sites within the dimer 

interface and one site near the Gly-Thr linker of S1 and S2 of the LBD. These fragment hits found 

in the dimer interface similar to the literature PAM site are promising for the novel AMPA PAMs 

characterisation with improved therapeutic properties. Similarly, fragments found near the Gly-

Thr linker situated near to the novel NAMs site found in published literature could be a potential 

target for improved antiepileptic form. These results give important information for the early 

development of drug discovery in epilepsy and Schizophrenia treatment.   
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4.2 AIMS  

 

The overall aim of the project was to obtain X-ray structural information about the AMPA 

receptors GluA2 LBD in complex with small compounds to aid future drug development in the 

treatment of disorders associated with a dysfunction of AMPA receptors, such as the cognitive 

deficit associated with schizophrenia as well as epilepsy. The initial aim was to express the LBD 

construct in E. coli bacteria and then purify the protein at a scale large enough to support 

crystallography method development and then X-ray crystallography to determine the structure 

of dimeric GluA2 in association with orthosteric ligand (glutamate) as well as small molecule 

binders. A construct with a sequence encoding a 6xHis-SUMO tag was chosen due to its ability 

to enhance protein folding (the SUMO sequence) and to purify the protein (the six-residue 

polyhistidine sequence). The main objective of the fragment screen (XChem, Diamond Light 

Source) was to identify novel binders of the AMPA protein binding in the dimer of the LBD of the 

protein.  

 

 

Figure 4.1. AMPA overall project plan. The large blue box with a dashed border represents the 

experiments covered in this thesis project research. The functional characterisation of hits and 

potential subsequent iterative medicinal chemistry is planned for future studies.  
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4.3 MATERIALS AND METHODS 

 

4.3.1 CLONING AND PLASMID VECTOR 

The plasmid used for protein expression and purification was the ligand-binding domain (LBD) 

of rat GluA2, kindly supplied by Dr. Antony W. Oliver from the Genome Damage and Stability 

Centre (GDSC; University of Sussex).  In the GDSC, they used their own pHis-SUMO-3C vector in 

which they cloned the proteins for purification purposes. Polyhistidine in combination with small 

ubiquitin-like modifier (SUMO) tags are frequently used due to the ability of increase the 

expression of recombinant proteins and enhance protein solubility (Costa et al. 2014).  

The LBD construct was designed according to previous published experiments (Armstrong & 

Gouaux 2000) using the segments S1 and S2 from the LBD (Fig. 4.2). The S1S2 construct was 

produced by deleting the ATD at the beginning of S1 and then link the end of S1 with proximal 

S2 using a Gly-Thr linker and finally cutting the ending of S2 before the transmembrane segment 

M4. This dipeptide Gly-Thr was sufficient to covalently join S1 and S2 without modifying the 

conformation and properties of the LBD of the protein (Reddy et al. 2013).  

 

Figure 4.2. Cartoon showing the strategy for the GluA2 ligand-binding domain construct design. 

The S1S2 construct is based on previous published experiments in which the amino terminal 

domain (ATD) was deleted at the beginning of S1; a Gly-Thr linker was used to join S2 and S1 and 

deleting the last segment of S2 closer to M4 (Adapted from Armstrong & Gouaux 2000).  
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In this case, the LBD of rat GluA2 was cloned into pHis-SUMO-3C vector and consequently sub 

cloned into pBR322 plasmid using a commercially available pET T7 expression system by 

Invitrogen (Thermo Fisher Scientific). Similar to previously published studies (Armstrong & 

Gouaux 2000) the LBD sequence was based on the Flop-splice variant UniProt P19491-1 (Fig. 

4.3), with three mutations in the N-terminus of S1 in G410R, L411G and E412A  with the purpose 

of facilitating crystallography experiments. Additionally, one mutation in S2 of N775 to serine 

corresponding to the flip isoform was designed because compounds such as cyclothiazide have 

preference to the flip isoform in this specific residue (Partin et al. 1996; Sun et al. 2002; Nørholm 

et al. 2013). The recombinant protein contains a 6xHis-SUMO tag to improve the solubility and 

purification experiments. The plasmid was provided by Invitrogen and contained an ampicillin 

resistance gene to control the production of recombinant protein (Fig. 4.4). Protein expression 

was induced by β-D-1thiogalactoryranoside (IPTG) under a T7 RNA polymerase/promoter 

system. In this system the T7 promoter site is located upstream of the recombinant gene and 

the expression of the gene is controlled by the addition of IPTG. This expression system is highly 

effective in producing large amounts of target protein.  

 

Figure 4.3. rGluA2 LBD sequence construct for protein expression and purification. rGluA2 

construct contains an N-terminal 6xHis-SUMO tag, a recognition SUMO cleavage site and the 

protein sequence consisted of S1 [406-NDTSRGAN….SIMIKK-527] and S2 [653-

PIESAEDL….YDKGECG-795], separated by a Gly-Thr linker. Sequence based on rGluA2 P19491-1 

Flop Isoform (Uniprot). Positive allosteric modulators (PAMs).  
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Rat GluA2 protein expression and purification was used because crystals of rat protein are, for 

whatever reason easier to express and purify and more readily forms crystals (Ward et al. 2011). 

In addition, there are more published structures of the LBD of GluA2 rat than human. 

 

Figure 4.4. Plasmid map of the inserted rat GluA2 LBD gene, of which 5µg of lyophilised plasmid 

was obtained by Invitrogen. The plasmid PBR322 commonly used as a cloning vector encoding 

an Ampicillin resistant gene, origin of replication, T7 promote site (control the levels of protein 

expression by IPTG), 6xHiS-SUMO tag, rGluA2 LBD and different restriction enzyme sites. Plasmid 

used for cloning by Invitrogen (Thermo Fisher Scientific).  

  

4.3.2 COMPETENT CELLS  

The competent cells used for transformation experiments were E. coli Origami™ B (DE3) by 

Novagen (Cat. No. 70837-3). Origami B strains have mutations in the thioredoxin reductase (trxB) 

and glutathione reductase (gor) genes, these modifications enhance the formation of disulphide 

bonds in the cytoplasm.  Origami bacteria was used for the characteristic of forming disulphide 

bonds to obtain the correct folding of the protein and subunit assembly. Origami B strains are 

compatible with ampicillin and carbenicillin resistance plasmids and are adequate for use with 

pET vectors. Selective antibiotics for Origami strains are kanamycin and tetracycline.  
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4.3.3 BACTERIA TRANSFORMATION 

The vector containing the LBD_rGluA2 (15ADDVVC_pHis-SUMO-rGluA2_SUMO-GG-3C-

TONY_R545) was dissolved with 30 µl of purified sterile water. A volume of 1 µl of vector was 

added into 50 µl of E. coli Origami B (DE3) cells and incubated on ice for 30 minutes. Heat shock 

was performed at 42°C for 40 seconds, and then the vial was transferred on ice for 2 minutes. 

To finalize with the addition of 200 µl of super optimal broth with catabolite repression medium 

(SOC) (Invitrogen, Cat. No. 1544-034) and further incubation at 37°C for 1 hour in the shaking 

incubator. The cell suspension was plated into LB-agar plates (Cat. No. L2897, Sigma-Aldrich) 

containing 15 µg/ml kanamycin and 50 µg/ml carbenicillin. The use of carbenicillin instead of 

ampicillin is due to higher stability and selectivity in bacteria containing the selective plasmid. 

The plates were incubated for 24 hours at 37°C, 5% CO2.   

Antibiotics used: Kanamycin sulphate from Streptomyces Kanamyceticus Cat. No. K4000-25G 

(Sigma-Aldrich) and Carbenicillin disodium salt Cat. No. C1389-5G (Sigma-Aldrich). 

 

4.3.4 PROTEIN EXPRESSION  

The colonies which grew in the presence of antibiotic were the ones carrying the plasmid in the 

competent cells. One single colony was scraped and added into 60 ml of turbo broth (Cat. No. 

MD12-104-1, Molecular Dimensions) containing 15µg/ml kanamycin and 50µg/ml carbenicillin 

in a 200 ml flask. Cells were incubated in the shaker incubator at 37°C until the OD600 reached 

~1.2 and then stored overnight at 4°C. On the next day 10 ml of the 60 ml cell suspension were 

added into each 1L x 6 flasks of turbo broth containing 15µg/ml kanamycin and 50µg/ml 

carbenicillin in a 2L glass flask. Cells were grown in a shaker incubator at 30°C at 200 rpm until 

the OD600 was ~1.2, at which point the temperature was reduced to 18°C until the OD600 reached 

~1.5. Then IPTG (Cat. No. 15529019, Thermo Fisher Scientific) was added to a final concentration 

of 50µM to each flask and cells were grown over night at 18°C on a shaker incubator. The next 

day the cells were centrifuged at 6,000 rpm (Rotor JLA 9.1000, Beckman Coulter, Avanti J-26S 

XP centrifuge) for 20 minutes and pellets were frozen for subsequent purification experiments. 

For protein expression tests, a sample of cells were taken before and after IPTG induction and 

then protein expression was analysed using SDS-PAGE gel electrophoresis at 160 V for one hour 

(SERVAGel™ TG PRIME 4-20%, Cat. No. 43276.01, SERVA).  
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4.3.5 PROTEIN PURIFICATION  

4.3.5.1 IMMOBILIZED METAL AFFINITY CHROMATOGRAPHY (IMAC)  

The purpose of IMAC is to purify a large amount of protein with high selectivity using the method 

of a chelating agent in a beaded agarose to immobilize the specific desired metal ion followed 

by binding and purification of the protein of interest. Talon resin has a nitrilotriacetic acid (NTA) 

group loaded with cobalt divalent metal which produce high selectivity for his-tagged proteins. 

Protein with a poly-his tag binds in a specific manner to IMAC resins in neutral buffer conditions. 

Imidazole is also used in the buffer conditions in low concentration (10 mM) as a wash step to 

remove any nonspecific binding of endogenous proteins that might contain histidine groups. 

However, a high concentration of imidazole (≥300 mM) is used in elution steps for removing the 

binding of the protein in NTA-Co2+ resin owing to the similarity of the side chain to histidine 

groups (Fig.4.5). 

 

Figure 4.5. Talon resin loaded with NTA-Co2+ for protein purification. The bead agarose contains 

covalently linked NTA which binds to a divalent cobalt.  The Co2+ then selectively binds to his-

tagged protein. Imidazole is used for the elution of the protein of interest because of the similar 

structure of the histidine side-chain. (Adapted from Takara Clontech supplier website 

http://www.clontech.com/US/Support/Applications/Tagged_Protein_Purification/Ni-

NTA_Resin_vs._Talon) 

 

 

http://www.clontech.com/US/Support/Applications/Tagged_Protein_Purification/Ni-NTA_Resin_vs._Talon
http://www.clontech.com/US/Support/Applications/Tagged_Protein_Purification/Ni-NTA_Resin_vs._Talon
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Experimental procedure 

Buffers for protein purification experiment; each buffer was filtered at 0.45 µm (Cellulose nitrate 

membrane filters, Whatman™ Cat. No. 514-8073, VWR).  

Lysis Buffer  Elution Buffer  Cat. No.  

20 mM HEPES pH 7.5 20 mM HEPES pH 7.5 BP310-1, Fisher BioReagents  

500 mM NaCl 500 mM NaCl S/3120/63, Fisher Chemical 

10 mM Imidazole 300 mM Imidazole 122025000, Acros Organics  

0.5 mM TCEP 0.5 mM TCEP 646547-10x1ml, Sigma-Aldrich 

Distilled H2O up to 500 ml  Distilled H2O up to 250 ml N/A 

 

Pellets of cells were defrosted and resuspended in 50 ml of Lysis buffer with one tablet of 

protease inhibitor cocktail (11055700, Roche) and 250µM of glutamic acid in 20 mM HEPES-

NaOH pH 7.5(L-glutamic acid monosodium salt hydrate Cat. No. G1626, Sigma-Aldrich). Cells 

were lysed by sonication with a large sonicator probe, 5 sec on, 5 sec off, 40% amplitude for 5 

minutes. Cell debris and insoluble fractions were removed by centrifugation at 40,000g for 30 

minutes at 4°C. Supernatant (soluble fraction) was filtered through a 0.45 µm syringe filter 

(Sterile PES syringe filter Cat. No. 15216869, Fisher Scientific).  The filtered supernatant was 

applied to a gravity column containing 7.5 ml of talon metal affinity resin (Clontech Takara Cat. 

No. 635503) and incubated for 1 hour at 4°C. The column was washed with several applications 

of lysis buffer (approximately 200 ml). The retained protein was eluted with several applications 

of elution buffer (~7.5 ml each). Eluted fractions were finally incubated with PreScission 

protease (27-0843-01, GE Healthcare Life Sciences) at 1 unit per ml at 4°C overnight for the 

removal of the 6xHis-SUMO tag.  
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4.3.5.2 SIZE EXCLUSION CHROMATOGRAPHY (SEC)  

SEC is a method used for purifying proteins of interest by separating molecules based on the 

differences in size (Fig. 4.6) and uses a column packed with a resin medium and connected to a 

FPLC system. In these experiments the HiLoad Superdex 75pg column was used, which is 

prepacked with a prep grade media Superdex. Superdex is a high resolution resin composed of 

cross-linked agarose and dextran beads with a molecular weight range of 3,000 to 70,000 Da.  

 

Figure 4.6. SEC principle. A) Electron microscopy image of a Superdex bead illustrating the 

different pore sizes. B) Sample representation of the column beads passing through and entering 

the various pores. C) Schematic representation of the separation, i) the top line represents the 

sample injected into the column, ii) samples passing through the column in which the smallest 

molecules in yellow diffuse into the pores delaying the flow through, iii) while large molecules 

pass through the column first. D) Typical chromatogram representing the elution of molecules 

by size. (Image taken from Size Exclusion Chromatography handbook from GE Healthcare Life 

Sciences, 

https://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files/14661588415

39/litdoc18102218_20161012165335.pdf)  

https://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files/1466158841539/litdoc18102218_20161012165335.pdf
https://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files/1466158841539/litdoc18102218_20161012165335.pdf
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Experimental procedure 

The protein solution from IMAC fractions totalling ~45 to 60 ml was concentrated to 10 ml using 

a centrifugal filter unit (Vivaspin 20 Molecular weight cut-off (MWCO) 10,000 Cat. No. 28932360, 

GE Healthcare Life Sciences) at 4,000g for approximately 30 minutes. The ÄKTA purifier system 

(GE Healthcare Life Sciences) was used for SEC purification with the HiLoad 26/600 Superdex 75 

pg column (Cat. No. 28-9893-34, GE Healthcare Life Sciences).  

The FPLC buffer used for purification was 20mM HEPES pH 7.5, 500 mM NaCl and 0.5 mM TCEP 

pH 7.0, filtered and degassed first and the column was equilibrated with FPLC buffer overnight. 

The next day, 2ml fractions were collected in a 2.4 ml 96-deep block plate (Greiner Master Block 

M1061-50EA, Sigma-Aldrich); samples of which were analysed using SDS-PAGE gel 

electrophoresis at 160 V for one hour (SERVAGel™ TG PRIME 4-20%, Cat. No. 43276.01, SERVA) 

and Coomasie stain for one hour (Cat. No. GEN-QC-STAIN-1L, Generon). Destain was performed 

by incubating the gel with water for 2 to 3 hours in the shaker. Fractions with most abundant 

protein were collected (~20ml) and concentrated with a centrifugal filter unit to a final volume 

of approximately 1 ml. To remove remains of the 6xHis-SUMO tag that remained after 

Prescission proteolytic digestion and SEC experiments, protein solution was further incubated 

with 1ml of talon metal affinity resin using a 10 ml centrifuge column for 30 minutes (Pierce™ 

Centrifuge column 10ml Cat. No. 89898, Thermo Fisher Scientific). After incubation was 

completed, the eluted solution was concentrated up to 500 µl, the protein concentration was 

quantified with a nanoDrop at absorbance A280 nm and purity of the protein was verified by SDS-

PAGE gel electrophoresis. Several batches of protein were obtained and the final yield of purified 

protein was calculated using the concentration mg/ml adjusted with the final volume obtained. 
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4.3.6 CRYSTALLOGRAPHY  

Crystallography is used to study protein crystallisation, and thereby properties and structures to 

help determine the arrangement of atoms and their function in biological and biochemical 

processes. X-ray crystallography is an important technique for the determination of the 

structure of a protein and plays an important role in structure-based drug discovery. X-ray 

crystallography can be found in detail in chapter 1, section 1.2.2.1.  

The principle of protein crystallisation experiments is based on the solubility properties of a 

protein. Factors such as thermodynamics, pH and physical chemistry will control the process of 

crystallisation of the protein. A solubility curve is a schematic representation of the solubility of 

a protein in relationship with the concentration of precipitant (Fig. 4.7). Crystals will be formed 

in the supersaturated zone, when the protein concentration surpasses the solubility; the 

supersaturated zone comprises the metastable, nucleation and precipitation zones (Asherie 

2004). The diagram illustrates the different levels of supersaturation; precipitation zone, 

nucleation zone and metastable zone. The precipitation zone occurs when the supersaturation 

is extremely high and the protein will form aggregates or precipitates and these conditions will 

not be favourable for crystal formation. The nucleation zone is when supersaturation is large 

enough so the nucleation and formation of crystals can occur and metastable zone is when 

supersaturation is lower and only supports crystal growth (Russo Krauss et al. 2013).  

 

Figure 4.7. Crystallisation phase diagram. The solubility of a protein will depend on the 

concentration of the precipitant. The more supersaturated the protein becomes in solution the 

greater the probability of forming nucleation and crystal formation. The supersaturation phase 

includes the metastable, nucleation and precipitation zones (University of Cambridge, 

Biochemistry department; http://www.xray.bioc.cam.ac.uk/xray_resources/whitepapers/xtal-

in-action/node3.html). 

http://www.xray.bioc.cam.ac.uk/xray_resources/whitepapers/xtal-in-action/node3.html
http://www.xray.bioc.cam.ac.uk/xray_resources/whitepapers/xtal-in-action/node3.html
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Experimental procedure 

Preliminary crystallography screening experiments were performed in 2-drop, 96-MRC 

polystyrene crystallisation plate (MD11-00-100, Molecular Dimensions). Sitting drop 

experiments were set up using different commercial matrix screen solutions. A protein solution 

of 8 mg/ml diluted in FPLC buffer (20mM HEPES pH 7.5, 500 mM NaCl and 0.5 mM TCEP) with 

the addition of 5 mM zinc acetate and sodium cacodylate final concentration. A drop ratio of 1:1 

was prepared using the Art Robbins Crystal Phoenix dispenser (AlphaBiotech). Crystallography 

plates were incubated at 14°C for 3-5 days. Further optimisation was performed of the crystal 

hits from screening experiments. Crystals were flash-cooled in liquid nitrogen for short-term 

storage. The best quality crystals (size and form) were exposed to X-ray beam to obtain 

diffraction data using the i04-1 beamline at Diamond Light Source synchrotron (Didcot, 

Oxfordshire).  

Crystallography salt additives; zinc acetate (Cat. No. 1724703, Sigma-Aldrich) and Sodium 

cacodylate (Cat. No. C0250, Sigma-Aldrigh).  

 

Table 4.1. Commercial crystallisation screens used for primary crystallography experiments.  

Matrix crystallisation 
screen 

Catalogue number and supplier 

Morpheus® HT-96 MD1-47, Molecular Dimensions 

JCSG-plus™ HT-96 MD1-40, Molecular Dimensions 

PACT premier™ HT-96 MD1-36, Molecular Dimensions 

MIDASplus™ HT-96 MD1-107, Molecular Dimensions 

Crystal Screen HT HR2-130, Hampton Reserch 

SaltRx HT™ HR2-136, Hampton Research 
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4.3.7 FRAGMENT SCREENING-XCHEM 

The purpose of this technique is to identify small fragments binding in the LBD of rat AMPA 

protein and thereby identify novel or established binding sites for allosteric modulators. The 

fragment hits will provide the starting points for further chemical optimisation to improve the 

biological activity and physicochemical properties. The Diamond Fragment Screening (XChem) 

was performed at Diamond Light Source facilities. At these facilities, they have implemented a 

highly streamlined process for the screen of compounds in a shorter period of time (less than a 

week). The full methodology includes crystal targeting, crystal soaking, crystal harvesting, 

automatic data collection and data analysis. XChem has several fragment libraries, over 2000 

compounds available at 100-500 mM in DMSO (Fragment Screening - XChem, Diamond Light 

Source website).  A total of 700 fragments were screened from three different libraries; DSPL-

Diamond Poised, Oxxchem and Leeds 3D.  

 

 Crystals preparation  

The best diffracting crystals grew in the well condition B1 of Morpheus® screen, solutions 

present in that condition are listed in Table 4.2.  

Table 4.2. Conditions of well B1 of commercial Morpheus® screen. (Appendix II) 

Well screen condition Solution mix 

0.09 M Halogens Halogens: Sodium fluoride; sodium 

bromide and sodium iodide 

0.1 M Buffer system 1 pH 6.5 Imidazole; MES monohydrate (acid) 

50 % v/v Precipitant Mix 1 PEG 500 MME and PEG 20,000 

MES - 2-(N-morpholino) ethanesulfonic acid; PEG – Polyethylene glycol 

and MME – Mono methyl ether  

 

Solutions were set up in a 96-well SwissCi 3 drop plate (Cat. No. 3W96TPS, SWISSCI Scientific 

Innovation), using the sitting drop method along with 30 µl of the reservoir solution from the 

Morpheus screen (Cat. No. MDSR-47-B1, Molecular Dimensions). Experiments were performed 

using the Oryx8 protein crystallisation robot (Douglas instrument) with 5 mg/ml of protein 

solution with a final drop ratio of 1:1 of protein and reservoir solution (total volume per drop of 

0.30 µl); they were dispensed at least 2 drops in each well of the plate. Plates were stored at 

14°C for 1-2 days until crystals appeared and then stored for fragment screening. 
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 Crystal targeting  

Crystal plates were transported to the Diamond Light Source facilities where they were given a 

barcode number. Plates were then imaged to identify the crystals in each drop and with the 

software TexRank the crystals were targeted for compound injection by selecting an area 

opposite the crystal.  

 

 Crystal Soaking  

Compounds were transferred to the crystals using an ECHO® 550 acoustic liquid handler 

(Labcyte). The dispense coordinates were selected by TexRank software. Plates were inverted 

and ultrasonic pulses were used for dispensing the compound in nanoliter volume. Compounds 

were injected at final concentration of 25 mM (5% DMSO) and 50 mM (10% DMSO). After 

compound injection, the plates were incubated for 1 hour at 14°C.  

 

  

 

 

 

 

 

 

Figure 4.8. ECHO acoustic droplet ejection. Sound waves eject precise drops of compound from 

a microplate and deposit into inverted crystallisation plate (Adapted Acta Crystallographica 

Section, http://journals.iucr.org/d/issues/2017/03/00/ba5268/ba5268fig1.html). Compounds 

were injected to have a final concentration of 25 and 50 mM.  

 

 

 

 

http://journals.iucr.org/d/issues/2017/03/00/ba5268/ba5268fig1.html
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 Crystal Harvesting  

Following a one hour incubation with compound at 14°C, crystals were harvested manually using 

the OLT Crystal Shifter (Oxford lab technologies). This equipment is automated to speed up the 

process of crystal harvesting by using a microscope x-y stage, which maintains unsealed plates 

under a thick plastic cover to avoid quick evaporation of drops and allows the harvesting of one 

crystal at a time. Usually around 100 crystals can be harvested per hour.  

 

 X-ray data collection and analysis  

Crystals were exposed to X-rays on beamline i04-1 (Diamond Light Source) with the automated 

robot BART system, a new sample-changing robot with improved sample exchange times. Data 

was collected and analysed using XChemExplorer and pan-dataset density analysis (PanDDA 

software). The process is automated and it gave compound hits as “events” to analyse in the 

Crystallography object-oriented toolkit (COOT) software package, to then perform model 

building and space refinement.  
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4.4 RESULTS 

4.4.1 IMMOBILIZED-METAL AFFINITY CHROMATOGRAPHY (IMAC) 

Protein IMAC purification experiments resulted in six elution fractions of approximately 7.5 ml 

each (E1-6; Fig. 4.9) containing rGluA2 LBD protein. The elution fractions, flow though and wash 

fractions were collected and characterised in a SDS-PAGE gel electrophoresis. In the gel (Fig. 4.9), 

the flow though fraction showed the proteins that were not retained by the talon beads. More 

importantly, the band of 45 kDa present in the elution fractions correspond to the purified 

protein rGluA2 LBD. The rGluA2 was present in high abundance in fraction E2 displaying a strong 

band of 45 kDa. In addition, the gel displayed a concentrated band in the talon beads sample 

(B1) before elution, which means the retention of the protein by the talon beads and comparison 

with the talon beads sample (B2) after elution, indicated that most of the protein bound to the 

talon beads was eluted with 300 mM Imidazole.  

Wash fractions W1 and W2 displayed a number of unspecific proteins of 27 kDa, 70 up to 100 

kDa, these observed bands were almost fully removed with the wash buffer with low 

concentration of imidazole.  The remaining bands not corresponding to rGluA2 from elution 

fractions 1-6 were removed using size exclusion chromatography (SEC).  

In order to observe if the protein eluted correspond to rGluA2, samples of elution fractions were 

collected and incubated with 3C protease enzyme. Samples before and after incubation with 3C 

protease were run on a SDS-PAGE gel to verify the cleavage of rGluA2-6xHis-SUMO protein by 

protease 3C. The gel displayed a band of 45 kDa in the sample without 3C protease (Fig.  4.10). 

Whereas, the sample following 3C protease incubation displayed two bands of 30 kDa and 15 

kDa, corresponding to rGluA2 protein and 6xHis-SUMO tag respectively (Fig. 4.10). These results 

demonstrated the correct purification of rGluA2 protein, to further purify the sample size 

exclusion chromatography was performed.  
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Figure 4.9. SDS-PAGE gel of IMAC purification of the rGluA2 LBD protein. Bands of 45 kDa 

corresponding to the LBD protein rGluA2. Approximately 50 ml of supernatant was added to 7.5 

ml of talon beads, the flow thought was ~50 ml, washes 1 and 2 were ~ 100ml each and samples 

of 25 µl were taken for the SDS-PAGE gel. 10 µg of protein loaded per well, gel stained with Blue 

Coomassie, protein ladder Precission Plus Protein™ All Blue (Cat. No. 1610373, Bio-Rad).  

 

Figure 4.10. SDS-PAGE gel of 3C protease activity. Elution mix samples correspond to the pooled 

E1-6 fractions (shown in Fig. 4.9) before the addition of 3C protease and displayed a 

concentrated band of rGluA2 at 45 kDa.  Elution mix + Protease correspond to elution fractions 

after incubation with 3C protease with the production of two bands of 30 kDa and 15 kDa, 

corresponding to rGluA2 LBD and 6xHis-SUMO tag respectively.  
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4.4.2 SIZE EXCLUSION CHROMATOGRAPHY (SEC) 

Protein SEC purification experiments resulted in a chromatogram displaying the separation of 

components of the protein sample, measured by ultraviolet (UV) light absorption at A280. The 

chromatogram displayed two main peaks, first peak around 60 ml and second peak at 80-85 ml 

(Fig. 4.11A). Fractions from both peaks were collected and run on a SDS-PAGE gel (Fig. 4.11B) 

which showed that the major peak contained a range of proteins varying from 15 to 120 kDa 

corresponding to fraction 1E11 and as a result this major peak was not suitable for further 

purification experiments. More importantly, the second minor peak correspond to the LBD 

rGluA2 protein with bands of 30 kDa in fractions 1G8 to 1H5. A smear band bellow the protein 

band suggest a partial degradation of the protein. A band of 15 kDa was also shown in the gel, 

this band correspond to 6xHis-SUMO tag remain in the sample. Finally, to remove remain 6xHis-

SUMO tag the protein fractions were further purified with IMAC. The final protein solution was 

highly pure (Fig. 4.12), with a concentration of 9.12 mg/ml in ~1.2 ml, with total yield of 10.9 mg 

of protein from starting 8 litres of cell culture. Concentration was measured by nanoDrop using 

the molecular weight of 30.211 kDa and extinction coefficient of 41,370 M-1 cm-1 at 280 nm. 

Finally, the band just below the protein observed previously was not present in the final purified 

protein, suggesting a degraded protein over time (during incubation with further talon beads) 

or some remain tag present in the sample and further removed with talon beads.  

Five batches of purified protein were prepared for crystallography experiments listed in Table 

4.3, different starting cell culture were prepared from 2 to 8 litres. It was observed that the 

larger amount of starting cell culture, the more unspecific proteins were produced.  

Table 4.3. Different batches of purified protein obtained after purification experiments 

Batch 

No. 

Starting cell 

culture (L) 

Concentration 

(mg/m) 

Final volume 

obtained (µl) 

Yield of purified 

protein (mg) 

1 2 8.0 500 4.0 

2 4 12.27 1000 12.3 

3 8 9.12 1200 10.9 

4 6 8.1 800 6.5 

5 2 8.0 500 4.0 
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Figure 4.11. Size exclusion chromatography of the rGluA2 LBD after 3C proteolytic removal of 

the 6xHis-SUMO tag. A) Chromatogram obtained from SEC purification of the LBD rGluA2 protein 

with the second peak marked with an asterisk corresponding to the protein of interest. B) SDS-

PAGE gel of the fractions obtained by SEC, numbering correspond to chromatogram fractions. 

The protein band at 30 kDa correspond to the LBD of rGluA2. 10 µg of protein loaded per well, 

protein ladder use was PageRuler™ prestained ladder (Cat. No. 26616, Thermo Fisher Scientific).  
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Figure 4.12. Final purity of the protein rGluA2. SDS-PAGE gel verification of the pure protein. 

One single band of 30 kDa correspond to the LBD of rGluA2 protein. The gel displayed the protein 

in high purity, with no other bands in the gel. An amount of 2.0, 4.5 and 11.0 µg of protein was 

loaded in the gel.  
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4.4.3 CRYSTALLOGRAPHY  

In crystallisation screen experiments, the only crystal hits with adequate quality were obtained 

with the Morpheus® HT-96 plate (Table 4.4). The best crystal in terms of quality, size and 

diffraction was with the well B1 condition. The rest of the crystals grown were not singular or 

were too small for the X-ray beam.  

Table 4.4. Morpheus® HT-96 crystal hits conditions 

Well Conditions 

A1 
0.06 divalents, 0.1 M buffer system 1 pH 6.5 and 50 % 
v/v precipitant Mix 1 

B1 
0.09 M halogens, 0.1 M buffer system 1 pH 6.5 and 
50 % v/v precipitant Mix 1 

C4 
0.09 M NPS, 0.1 M buffer system 1 pH 6.5 and       
50 % v/v precipitant Mix 4 

C5 
0.09 M NPS, 0.1 M buffer system 2 pH 7.5 and        
50 % v/v precipitant Mix 1 

 

Nitrate Phosphate Sulfate (NPS). Full mixes of additives, buffers 

and precipitants of Morpheus® HT-96 in appendix II. 

 

 

The condition B1 gave consistently long rectangular single type crystals, in orthorhombic space 

group (three unequal axes at right angles). Crystals were prepared with 5.0 mg/ml of protein 

diluted with FPLC buffer, using the hanging drop method with the reservoir solution 

corresponding to the condition B1 from Morpheus commercial screen.  

Crystals grew after 24 -48 hours at 14°C and drops displayed a high amount of precipitation and 

skin formation. In addition, the crystals presented at least one irregular edge (Fig. 4.13) and size 

varied from 0.1 to 0.2 mm. The main advantage of the Morpheus® screen is that the solutions 

already contain cryoprotectant, which makes it suitable for quick storage in liquid nitrogen. The 

Morpheus solution of B1 contains 40 % v/v of polyethylene glycol (PEG) and monomethyl ether 

(MME) 500 which both function as a precipitant and cryoprotectant (appendix II) to protect 

crystals from free radicals from ionising X-rays when collecting diffraction data.  

Crystal diffracted at 1.84 Å resolution in the X-ray beamline i04-1 at Diamond Light Source 

(Didcot). Molecular replacement was carried using a previously described rat GluA2 structure 

(Armstrong & Gouaux 2000), accession code 1FTJ from the protein data bank (PDB). Final models 
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were refined using Collaborative Computational Project No.4 (CCP4) and Python-based 

Hierarchical Environment for Integrated Xtallography (PHENIX) software by Dr. Mark Roe. 

Crystallographic Object-Oriented Tookit (COOT) was used for manual model building. The LBD 

of rGluA2 was in complex with glutamate, from the 250 µM of glutamate added in the lysis buffer 

in purification experiments. The final data collection and refinement statistics are presented in 

Table 4.5.  

 

 

Figure 4.13. Rectangular orthorhombic crystals of the LBD of rGluA2. Crystals were obtained at 

5.0 mg/ml using the hanging drop crystallography method. The formation of skin and 

precipitation was present in all drops. All crystals presented one irregular ending on one side. 
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Table 4.5. Crystallographic statistics for the rGluA2 LBD in complex with glutamate. Crystal shot 

at the i04-1 beamline at Diamond Light Source.  

Data Set 
(Highest shell in 
parentheses) 

rGluA2 

a (Å) 54.47 

b (Å) 113.42 

c (Å) 47.41 

 () 90 

 () 90 

 () 90 

Space Group P 21 21 2 

Wavelength (Å) 0.9281 

Resolution Limit (Å) 113.42 – 1.84  
(1.87-1.84) 

Number of Obs. 26305 
(1297) 

Completeness (%) 100 
(100) 

Multiplicity 6.5 (6.8) 

Rmerge % 0.081 (0.940) 

Rpim(I) % 0.046 (0.515) 

CC1/2 0.999 (0.783) 

I/I 15.2 (2.1) 

Refinement  

Resolution Range 
(Å) 

56.71-1.84 

Rcryst 0.224 

Rfree 0.269 

Number of protein 
atoms 

1,924 

Number of ligand 
atoms 

10 

Number of solvent 
atoms 

81 

Mean B 33.718 

Rmsd bond lengths 
(Å) 

0.019 

Rmsd bond angles 
(°) 

1.980 
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A monomer of the rGluA2 LBD structure was solved in complex with glutamate. The structure 

showed that glutamate binds in the cavity space between the interface of S1 and S2 (Fig. 4.14). 

Zinc ions and acetate are present in the structure, zinc acetate and sodium cacodylate were 

added in the crystallography experiments as additives to facilitate the nucleation and formation 

of crystals. It is noteworthy that crystallography experiments without both additives failed to 

grow crystal suggesting the need of both additives for successful AMPA crystal formation.  

More interestingly, the interactions of glutamate with the LBD of rGluA2 are the same as the 

literature 1FTJ accession code from PDB (Armstrong & Gouaux 2000). The crystal structure 

showed that glutamate α-carboxyl interacts with Ser-142, Arg-96 and Thr-91 of the protein; the 

α-amino group of agonist forms interactions with Tyr-61, Glu-193 and Pro-89 and the δ-carboxyl 

with Thr-143 (Fig. 4.15). The interaction between Arg-96 and the α-carboxyl of glutamate is 

conserved in all glutamate receptors (Kawamoto et al. 1997; Lampinen et al. 1998; Armstrong & 

Gouaux 2000). Arg-96 and Glu-193 residues formed strong salt bridge interactions, suggesting 

their importance for agonist recognition and binding.  

 

Figure 4.14. Monomer of the LBD of rGluA2 in complex with glutamate. The construct consisted 

of S1 and S2 domains, dark blue and light blue respectively. Glutamate in green, Gly-Thr linker 

is displayed in red. 
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Figure 4.15. Glutamate binding interactions with LBD rGluA2. Arg-96 and Glu-193 are important 

for agonist binding. Hydrogen bonds are shown in arrows in fuchsia and salt bridges in blue/red 

line.  Interaction diagram generated from Maestro Schrödinger.  

 

 

 

 

 

 

 



166 
 

4.4.4 FRAGMENT SCREENING-XCHEM 

From the 700 compounds soaked into rGluA2 crystals, a number of events were found by 

PanDDA software, which was further analysed closely to confirm the hits. The hits were analysed 

using COOT to observe the location of the binding sites. Refinement was carried out using the 

internal Diamond software XChemExplorer (XCE)-COOT and exported as a PDB file for further 

refinement performed by Dr. Mark Roe. Crystallography data statistics from crystals with 

fragments are shown in Table 4.7. 

Eight fragments were found to be present in the rGluA2 LBD (Table 4.6). However, these 

fragments were present at low-occupancy in the structure which means a low-electron density 

map of the structure making it difficult to distinguish from different structural conformations 

(amino acid residues). The low-occupancy of the fragment hits could be due to the low 

concentration of the fragment, suggesting that fragments at higher concentration might 

improve the percentage of occupancy in the crystal structure.  

These results suggest the binding sites of allosteric modulators in the dimer interface and in a 

site near the Gly-Thr linker. As previously reported (Ward et al. 2011), a binding site in the dimer 

interface of the LBD was observed. Three different binding sites (at low-occupancy) were 

observed in the LBD of rat GluA2, two binding sites in the dimer interface (1a and 1b) across the 

two-fold symmetry axis of the dimer, one binding site (2) near the Gly-Thr linker located in one 

of the outside loops of the monomer of the structure and one cysteine free site (3) at Cys-58 

(Fig. 4.16). The cysteine free site was not explored further due to lack of functionality of these 

site for drug research.   

 

Figure 4.16. Identified sites in the LBD of rGluA2. For clarity of the binding site only one monomer 

is displayed in this figure.  Site 1a and 1b is located inside the dimer interface of the LBD, site 2 

near the Gly-Thr linker in one of the external loops of the structure chain, and site 3 

corresponding to the free Cys-58, figure generated using Maestro Schrödinger.  
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Table 4.6. Compound hits found in XChem fragment screening library  

Compound Structure Identified sites Residues in identified sites 

Compound 1 

 

Dimer interface 
Site 1a 

Chain A: Lys-104,  Pro-105,  
Phe-106, Met-107 and      

Ser-108 
 

Chain B: Ile-103, Pro116,   
Ser-228, Lys-229 and Gly-230 

Compound 2 

 

Site 2 
Chain B: Lys-217, Gly-129, 
Thr-130, Pro-131,  Lys-196 

and  Gly-197 

Compound 3 

 

Dimer interface 
Site 1a 

Chain A: Lys-104,  Pro-105,  
Phe-106, Met-107 and      

Ser-108 
 

Chain B: Ile-103, Pro116,   
Ser-228, Lys-229 and Gly-230 

Compound 4 

 

Site 2 
Chain B: Lys-217, Gly-129, 
Thr-130, Pro-131,  Lys-196 

and  Gly-197 

Compound 5 

 

Site 2 
Chain B: Lys-217, Gly-129, 
Thr-130, Pro-131,  Lys-196 

and  Gly-197 

Compound 6 

 

Dimer interface 
Site 1b 

Chain A: Ile-92, Pro-105, 
Met-107, Ser-108, Ser-217, 

Lys-218 and Gly-219 
 

Chain B: Lys-115, Pro-116, 
Phe-117, Met-118, Ser-119, 

Leu-250 and Ser-253 

Compound 7 

 

Dimer interface 
Site 1b 

Chain A: Ser-92, Pro-105, 
Ser-108, Ser-217, Lys-218 

and Gly-219 
 

Chain B: Lys-115, Pro-116, 
Phe-117, Met-118, Ser-119 

Compound 8 

 

Dimer interface 
Site 1b 

Chain A: Pro-105, Ser-108, 
Ser-217, Lys-218 and Gly-219 

 
Chain B: Lys-115, Pro-116, 

Phe-117, Met-118, Ser-119, 
Lys-229, Gly-230 and Tyr-231 
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Table 4.7. Crystallographic statistics for the rGluA2 LBD crystals in complex with compound 

fragments. Crystals shot at the i04-1 beamline at Diamond Light Source. 

 

 

 

 

Data Set 
(Highest shell in 
parentheses) 

Compound 1 Compound 2 Compound 3 Compound 4 

a (Å) 54.07 54.34 54.40 54.69 

b (Å) 113.59 133.13 114.73 113.05 

c (Å) 47.17 47.44 47.52 47.53 

 () 90 90 90 90 

 () 90 90 90 90 

 () 90 90 90 90 

Space Group P 21 21 2 P 21 21 2 P 21 21 2 P 21 21 2 

Wavelength (Å) 0.9281 0.9281 0.9281 0.9281 

Resolution Limit 
(Å) 

56.80 – 2.28  
(2.32-2.28) 

56.56 – 1.87   
(1.90-1.87) 

57.36 – 1.88 
(1.91-1.88) 

56.52 – 1.80 
(1.83-1.80) 

Number of Obs. 13219 
(572) 

24891  
(1229) 

24508  
(1196) 

27969 
(1384) 

Completeness (%) 95.2  
 (82.8) 

100  
(98.8) 

98.8  
(98.9) 

99.5  
(98.3) 

Multiplicity 5.9 (5.1)  6.5 (6.8) 6.5 (6.9) 6.3 (6.6) 

Rmerge % 0.069 (0.719) 0.054 (0.787) 0.112 (1.385) 0.093 (0.859) 

Rpim(I) % 0.041 (0.443) 0.031 (0.445) 0.065 (0.790) 0.055 (0.492) 

CC1/2 0.999 (0.709) 0.999 (0.795) 0.997 (0.792) 0.999 (0.757) 

I/I 17.0 (2.1) 18.3 (2.1) 12.1 (2.4) 14.6 (2.3)  

Refinement  
   

Resolution Range 
(Å) 

56.90 – 2.19 56.62 –1.88 57.44 – 1.76 56.60 – 1.74 

Rcryst 0.199 0.216 0.241 0.231 

Rfree 0.261 0.268 0.279 0.271 

Number of 
protein atoms 

1,999 1,999 1,999 1,999 

Number of ligand 
atoms 

22 34 24 34 

Number of 
solvent atoms 

159 147 160 148 

Mean B 47.036 36.944 37.033 29.402 

Rmsd bond 
lengths (Å) 

0.015 0.020 0.019 0.020 

Rmsd bond 
angles (°) 

1.685 2.071 1.962 2.109 
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Data Set 
(Highest shell in 
parentheses) 

Compound 5 Compound 6 Compound 7 Compound 8 

a (Å) 53.87 54.56 54.28 54.59 

b (Å) 113.32 113.60 113.23 114.19 

c (Å) 47.24 47.45 47.30 47.27 

 () 90 90 90 90 

 () 90 90 90 90 

 () 90 90 90 90 

Space Group P 21 21 2 P 21 21 2 P 21 21 2 P 21 21 2 

Wavelength (Å) 0.9281 0.9281 0.9281 0.9281 

Resolution Limit 
(Å) 

113.32 – 2.12 
(2.15-2.12) 

56.80 – 1.81 
(1.84-1.81) 

56.61 – 1.96 
(1.99-1.96) 

114.19 – 1.75 
(1.78-1.75) 

Number of Obs. 17094 
(847) 

27115 
(1328) 

21630 
(1070) 

30250 
(1456) 

Completeness (%) 100 
(99.8) 

99.1  
(98.8) 

100 
(99.5) 

100 
(99.3) 

Multiplicity 6.5 (6.7) 6.6 (6.8) 6.5 (6.3) 6.6 (6.8) 

Rmerge % 0.089 (0.725) 0.055 (0.744) 0.071 (0.786) 0.062 (0.803) 

Rpim(I) % 0.053 (0.405) 0.032 (0.412) 0.041 (0.450) 0.036 (0.440) 

CC1/2 0.999 (0.816) 0.999 (0.772) 0.999 (0.770) 0.999 (0.792) 

I/I 13.4 (2.3) 19.0 (2.3) 15.0 (2.1) 15.6 (2.1) 

Refinement 
    

Resolution Range 
(Å) 

56.70 – 2.16 56.86 – 1.81 56.69 – 1.96 57.17 – 1.79 

Rcryst 0.200 0.219 0.215 0.238 

Rfree 0.268 0.263 0.275 0.277 

Number of 
protein atoms 

1,999 1,999 1,999 1,999 

Number of ligand 
atoms 

28 25 38 28 

Number of 
solvent atoms 

164 162 147 167 

Mean B 42.750 33.131 39.771 34.748 

Rmsd bond 
lengths (Å) 

0.015 0.020 0.017 0.020 

Rmsd bond 
angles (°) 

1.699 2.078 1.951 2.121 
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The crystals obtained resulted in the monomer of the LBD, then the dimers were generated by 

using the symmetry crystal mate function in COOT and Maestro Schrodinger computational 

program. Then structure alignment was performed to verify the correct position of the dimer 

compared to another structure in the PDB (2XX8). Structures and binding sites are listed in Table 

4.6. 

 

Figure 4.17. Summary of LBD of rGluA2 in complex with fragment hits obtained after XChem 

fragment screen. Chain A and B forming the LBD of the protein dimer in light and dark blue 

respectively, glutamate is represented by the red spheres. Positions of the compounds present 

in the structure; compounds 1 and 3 situated in the dimer interface site 1a in purple and green 

respectively. Compounds 6, 7 and 8 also in the dimer interface but in site 1b in black, orange 

and yellow respectively. Compounds 2, 4 and 5 in site 2 of chain B in cyan, mint and pink 

respectively. All compound structures are shown in a stick representation and generated using 

Maestro Schrödinger version 11.1.  
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Figure 4.18. Compounds 1, 2 and 6 in the LBD of rGluA2. Glutamate in red spheres 

representation, chain A and B in light and dark blue respectively. Compound 1 in site 1a in purple 

and compound 6 in site 1b in black within the dimer interface, both located in the site across 

the 2-fold symmetry axis. Compound 2 in site 2 in cyan. Structures of dimer and compound with 

surfaces generated using Maestro Schrödinger version 11.1.  
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Figure 4.19. Compounds 3, 4 and 7 in the LBD of rGluA2. Glutamate in red spheres 

representation, chain A and B in light and dark blue respectively. Compound 3 in site 1a in green 

and compound 7 in site 1b in orange within the dimer interface, both located in the site across 

the 2-fold symmetry axis. Compound 4 in site 2 in mint. Structures of dimer and compound with 

surfaces generated using Maestro Schrödinger version 11.1.  
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Figure 4.20. Compounds 5 and 8 in the LBD of rGluA2. Glutamate in red spheres representation, 

chain A and B in light and dark blue respectively. Compound 8 in site 1b in yellow within the 

dimer interface, located in the site across the 2-fold symmetry axis. Compound 5 in site 2 in pink. 

Structures of dimer and compound with surfaces generated using Maestro Schrödinger version 

11.1.  

 

Compounds found in the binding site 1a are between residues Lys-104, Pro-105, Met-107 and 

Ser-108 of chain A and Ile-103, Pro-116, Ser-228 and Gly-230 of chain B (Fig. 4.21). This binding 

site is situated in the dimer interface between the 2-fold symmetry axis similar to other allosteric 

positive modulators (PAMs) found in the literature to bind close to the “hinge” of clamshell-type 

structure of the LBD (Sun et al. 2002; Jin et al. 2005; Ward et al. 2011). Similarly, compounds 

located in site 1b (Fig.4.22) also in the dimer interface of the LBD with residues Pro-105, Ser-108, 

Ser-217 and Lys-218 from chain A and Pro-116, Met-118 and Ser-119 from chain B. The full list 

of residues found in these sites are summarised in Table 4.6. Binding site 1a and 1b are close to 

each other, both sites have residues Pro-105 and Ser-108 (chain A) and Pro-116 from (chain B) 

near the compounds.  
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More interestingly, the binding sites of 1a and 1b are similar to previously published LBD GluA2 

protein structures  in complex with allosteric modulators such as aniracetam and CX614 (Jin et 

al. 2005). These compounds were shown to bind between two prolines and two serines in a cleft 

type space formed in the dimer interface of the LBD of rGluA2. Sites 1a and 1b also are located 

between proline and serine residues. Furthermore, compounds found in site 1a and 1b fit 

between a cleft formed by prolines and serines (Fig. 4.21 and 4.22); for site 1a these are Pro-105 

and Pro-116 and Ser-108 and Ser-228 from chain A and B. For site 1b these are Pro-105 and Pro-

116 and Ser-217 and Ser-119. In addition, site 1a is shown to be located in a higher position than 

1b, in which the two prolines from chain A and B are situated closer to the base of the cleft, 

compared to site 1b in which the prolines are situated at the top of the cleft and the serines in 

the lower part of the cleft in the dimer interface. To summarize, binding sites identified 1a and 

1b are located in the dimer interface of the LBD of GluA2, this site is a previously found site for 

positive allosteric modulators of AMPA receptors and has potential for the improvement of 

cognitive functions.  

The binding site 2 located near the GT linker which connects S1 with S2 near the transmembrane 

linkers M1 and M3 is located near to a negative allosteric modulator (NAM) site found in 2016 

(Yelshanskaya et al. 2016). This published novel NAM site for GluA2 AMPA receptor located in 

the transduction domain was studied using X-ray crystallography experiments and displayed 

antagonists Perampanel, GYKI53655 and CP 465,022 binding at the interface between the LBD 

and the TMD, more specifically between S1-M1 and M3 (Fig. 3.28 & 4.24). Similarly, XChem 

fragment screening showed compounds 2, 4 and 5 located near the Gly-Thr linker of S1 and S2 

segments of the LBD of rGluA2 (Fig. 4.23). In order to observe the position of site 2 it was 

necessary to superimpose the crystal structure of the LBD of rGluA2 in complex with compound 

2 with the literature full length rGluA2 in complex with antagonist CP 465,022 (accession code 

5L1E). We found that site 2 is located above the transduction domain site, closer to the position 

of the Gly-Thr linker joining residues Lys-697 from S1 and Pro-507 from S2 (residues numbering 

according to full length structure). CP 465,022 a quinazoline-4-one antagonist binds further 

down in the transduction domain between S1-M1 and M3 (Fig. 4.24). In conclusion, site 2 is 

located in a higher position than the previous NAM site found in the literature (Yelshanskaya et 

al. 2016), suggesting a possible novel NAM site for AMPA receptor. Also it could be that the Gly-

Thr linker is causing an interaction with the fragments (artefact binding).  However, these results 

need further studies to confirm and verify the exact binding mode of compounds in this site.  
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Figure 4.21. Comparison of the possible binding mode of compounds 1 and 3 in the binding site 

1a. Compound 1 and 3 in purple and green respectively situated near residues Lys-104, Pro-105, 

Met-107 and Ser-108 from chain A; and residues of chain B are Ile-103, Pro-116, Ser-228 and 

Gly-230. No binding interactions were observed due to the low-occupancy of data obtained. 

Chain A and B in light and dark blue, compounds in stick-model representation, diagram 

generated using Maestro Schrödinger version 11.1. 
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Figure 4.22. Comparison of the possible binding mode of compounds 6, 7 and 8 in the binding 

site 1b. Compound 6, 7 and 8 in black, orange and yellow respectively, situated near residues 

Ser-119, Met-118, Pro-116 and Lys-115 from chain B and Ser-108, Lys-218, Pro-105 and Ile-92 

from chain A. No binding interactions were observed due to the low-occupancy of data obtained. 

Chain A in dark blue and chain B in light blue, compounds in stick-model representation, diagram 

generated using Maestro Schrödinger version 11.1. 
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Figure 4.23. Comparison of the possible binding mode of compounds binding site 2. Compounds 

2, 4 and 5 in cyan, mint and pink respectively, situated near residues Gly-129, Thr-130, Pro-131 

and Gly-197 of chain B in dark blue. No binding interactions were observed due to the low-

occupancy of data obtained. Compounds in stick-model representation, diagram generated 

using Maestro Schrödinger version 11.1. 
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Figure 4.24.  Transduction domain of rGluA2 in complex with antagonist CP 465,022 and 

Compound 2. The full length structure of rGluA2 accesion code 5L1E (Yelshanskaya et al. 2016)  

was superimpose with the structure with compound 2 to observe the different binding sites near 

the transduciton domain. The NAM antagonist CP 465,022 in green and compound 2 in pink. 

Compounds in stick-model representation, diagram generated using Maestro Schrödinger 

version 11.1. 
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Figure 4.25. Hypothetical ligand “X” formed by two fragment hits. A) Compounds 3 and 7 were 

joined using a carbon linker shown in gray. B) Ligand X interaction diagram displaying the 

residues around the ligand in the dimer interface of rGluA2. Diagrams generated using Maestro 

Schrödinger version 11.1. 
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Figure 4.26. Ligand X in the dimer interface of rGluA2. The ligand formed by compounds 3 and 7 

are located in the dimer interface of the structure, with a possible higher binding affinity than 

the fragments alone. Glutamate in red spheres representation, chain A and B in light and dark 

blue respectively. Structures of dimer and ligand X generated using Maestro Schrödinger version 

11.1.  

 

Using computational methods (Maestro Schrödinger) a virtual ligand “X” formed by two 

fragment hits (compound 3 and 7) was generated to observe the possible binding affinity in the 

PAM site of rGluA2 (Fig. 4.25 & 4.26).  
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4.5 DISSCUSSION 

The purification approach was a multi-step methodology, which successfully gave a 

homogenous and highly pure protein with an average yield of 7.54 mg of protein. Immobilized 

metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) were used for 

purification of the LBD of rGluA2 consistent with previous publications (Chen & Gouaux 1997; 

Chen et al. 1998). IMAC purification provided an excellent purification step due to the use of a 

His-SUMO tag on the rGluA2 LBD; the SUMO tag increased the solubility and correct folding of 

the protein and the six histidines provided metal stable binding sites to permit purification using 

talon resin which contains cobalt (Block et al. 2009). A resin charged with cobalt instead of nickel 

was used because cobalt charged resins bind to his-tag recombinant proteins with greater 

specificity to obtain higher purity of proteins (Clontech, Takara). The rGluA2 LBD recombinant 

protein was successfully expressed and purified in a large scale format for further structure-

based drug discovery research. The cleavage of the protein from the 6xHis-SUMO was 

performed with high efficiency by the PreScission protease, also helping to identify the correct 

purification of the recombinant protein.  

Preliminary crystallography experiments gave a reproducible hit condition that resulted in 

crystals with resolution that ranged from 1.87 to 2.5 Å that were further optimised using 

microseeding experiments for fragment screening. The utilisation of additives in crystallography 

experiments are essential for crystal formation and the addition of certain salts such as zinc 

acetate and sodium cacodylate promotes crystallisation as observed in rGluA2 crystals. More 

specifically, the zinc cause the protein to strongly precipitate and facilitate the nucleation event. 

Importantly, it was observed that rGluA2 protein without the addition salts did not form crystals 

or precipitation suggesting an essential role of both salts in controlling the ionic strength 

interactions for crystal formation. This is similar to the previously published structure of the LBD 

GluA2 in which zinc acetate and cacodylate were used for crystallisation experiments 

(Armstrong & Gouaux 2000). Other structures of the GluA2 LBD in complex with the antagonist 

2-Me-Tet-AMPA (Hogner et al. 2002) and  the amino acid L-Aspartate (Krintel et al. 2014) used 

zinc acetate and/or sodium cacodylate in crystallisation experiments (1M5B and 4O3A, PDB 

accession codes). Another reason for the use of zinc acetate in crystallography of AMPA rGluA2 

is the evidence of zinc ions located in the crystal packing interfaces (crystal contacts) important 

for the formation of crystals (Armstrong & Gouaux 2000).  
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 X-ray crystallography data was solved and the final LBD structure in complex with glutamate 

displayed similar amino acid interactions previously described in the literature. Hence, it was 

observed that glutamate α-carboxyl, α-amino and δ-carboxyl groups formed interactions with 

arginine, serine, proline and threonine of the LBD of rGluA2, similar to previously solved 

structures of rat GluA2 in complex with glutamate (1FTJ, accession code from PDB; Armstrong 

& Gouaux 2000).   

The purpose of the XChem fragment screening was to find small molecules that with further 

characterisation can act as PAMs or NAMs for AMPA receptors. The results suggest three 

possible binding sites of AMPA receptors. A total of 8 fragments were found in the LBD crystal 

structure, in which 5 compounds were found in the dimer interface of the LBD and three 

compounds found near the Gly-Thr linker. Sites 1a and 1b found in the dimer interface are 

similar to literature structures binding between two prolines and two serines in the cleft formed 

in the 2-fold symmetry axis of the LBD of rGluA2 (Sun et al. 2002; Jin et al. 2005; Ward et al. 

2011; Nørholm et al. 2013). These possible binding sites found in the dimer interface might allow 

the further identification and development of new PAMs of AMPA receptors with the potential 

to improve cognitive performance in Schizophrenia patients. The compounds found need to be 

confirmed to characterise the binding modes and residues that interact in the binding site, also 

these compound fragments need to be further optimised using medicinal chemistry properties 

to identify and confirm any functional effect in vitro and in vivo.  

Other fragments found near the Gly-Thr linker in the S1-S2 of the LBD suggest a possible novel 

binding site of NAMs of AMPA receptor for epilepsy treatment similar to previously published 

structures in which an antagonist binding site was found in the interface between S1-S2 and 

transmembrane M1 and M3 of GluA2 (Yelshanskaya et al. 2016). However, the binding of 

fragments found in this site has to be confirmed and further characterisation experiments need 

to be done in order to identify the specific binding mode in this site and the possible therapeutic 

use in patients with epilepsy. The main disadvantage of this site is the need of the transduction 

domain in the structure, however the transduction domain has never been identified isolated 

or with the LBD in X-ray crystallography (only in full-length structure) due to the hydrophilic cell 

membrane properties. One alternative considered in this project was to identify the full length 

of rGluA2 AMPA receptors, however the capabilities of our research group are limited, and an 

external collaboration with other research groups can be a potential for the expression of the 

full-length protein.   
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CHAPTER 5 

KAINATE PROJECT 

5.1 ABSTRACT   

The finding of new anti-epileptic drugs (AEDs) is important for avoiding undesirable side effects 

and for the treatment of refractory (intractable) patients. Kainate is established to induce 

seizures by binding on iGluRs kainate receptors. Competitive antagonists have been discovered 

to reduce seizures however the development of these antagonists has been challenging due to 

the focus on targeting the agonist glutamate binding site (orthosteric site) in kainate and AMPA 

receptors. High levels of homology in the orthosteric site between iGluRs leads to non-selective 

drugs that can cause high levels of adverse effects. Novel AEDs targeting new allosteric 

modulator sites might provide an effective treatment for refractory patients and reduce side 

effects. This project was focused on obtaining X-ray structural information for GluK1 and GluK2 

kainate receptors, more specifically in the LBD for the further finding of negative-allosteric 

modulators (NAMs) and positive-allosteric modulators (PAMs). NAMs and PAMs can give 

important structural information for early development of new drugs in the treatment of 

epilepsy. The experiments resulted in a successful protein production, purification and 

crystallography for the LBD of GluK1 and GluK2. Both proteins were soaked with fragments 

synthesised in-house by the SDDC group, however only one compound with 20% occupancy in 

GluK2 was identified, these results are not suitable for medical chemistry optimisation, 

nevertheless both crystal structures can potentially be used for further fragment screening 

experiments. The resulting structural information can help in the identification of new fragments 

that can be further optimised for the development of new kainate allosteric antagonists.  

Additionally, the biological functional assay for human GluK1 and GluK2 receptors expressed in 

HEK-293 cell line was successfully tested with standard agonists and antagonists.   
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5.2 AIMS 

The overall aim of the kainate project was to find novel molecules that bound to the LBD of the 

GluK1 and the GluK2 proteins with the potential to be negative allosteric modulators that could 

be suitable for development into a new, more effective and tolerable drug for treating epilepsy. 

The initial stage of the project was to use kainate antagonist compounds from the literature to 

perform medicinal chemistry and calcium assay experiments to confirm the activity of 

compounds (Fig. 5.1, stage 1). The next stage was to characterise these compounds by structure-

based X-ray crystallography experiments (Fig. 5.1, stage 2). In parallel, it was planned to conduct 

a large fragment screen (XChem) to find novel compounds that bind to the LBD of GluK1 and, 

potentially, GluK2 protein. The work in this chapter of the thesis covers the experiments in stage 

2, which serve not only to characterise the compounds originating from stage 1 (work being 

conducted by Dr. Iain Barret) but also enable a fragment screen to be conducted to identify 

novel chemotypes (stage 3, planned for 2018). The structural component of the GluK1 project is 

the critical identification and characterisation of novel compounds that can be further optimised 

for the development of new kainate allosteric antagonists. In addition, small molecule 

modulators of GluK2 will be useful in identifying the therapeutic potential of this subtype of 

glutamate receptor.  

 

Figure 5.1. Scheme of overall strategy and screening cascade. Stage 1 for the identification and 

characterisation of compounds for Stage 2, the dash arrow represents this process; however, 

this order was not followed. Stage 2 started without the completion of stage 1, with a selection 

of in-house compounds with potential antagonist activity from the literature.  
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5.3 MATERIALS AND METHODS 

5.3.1 CLONING AND PLASMID VECTOR  

The plasmid used for over-expression and purification of the LBD_rGluk1 (ligand binding domain) 

was kindly supplied by Dr. Antony W. Oliver from the Genome damage and stability centre 

(GDSC, University of Sussex). In the GDSC, they used their own pHis-SUMO-3C vector in which 

they cloned a protein of interest for purification purposes, in this case the S1 and S2 domains 

forming the ligand-binding core. S1 and S2 are separated by three membrane spanning regions, 

in order to generate a LBD, S1 and S2 were covalently linked using a Gly-Thr peptide. Similar to 

AMPA experiments this short linker peptide maintains the structural conformation of the ligand 

binding domain without causing domains separation or structural changes. Additionally, a 6xHis-

SUMO tag was used to enhance expression and solubility of the recombinant protein. Fig. 5.2 

shows the protein sequence of fragment S1 and S2 of the LBD, the Gly-Thr linker, the 6xHis-

SUMO tag followed by a HRV3C linker protein sequence based on P. Naur and co-workers 

experiments (Naur et al. 2005). This plasmid was consequently sub cloned into pBR322 plasmid 

using a pET T7 expression system (Invitrogen) following the manufacturer’s commercially 

available instructions.  

 

Figure 5.2. LBD rGluK1 sequence design for protein expression and purification. The expressed 

protein contains an N-terminal 6xHis-SUMO tag, a recognition SUMO cleavage site and the LBD 

rGluK1 sequence consisting of [430-ANRTLI....SILYRK-544], [667-PIDSAD…WRGNGCP-805] 

separated by a Gly-Thr linker. Sequence based on rGluk1 isoform 2 (Glur5-2, P22756-2 UniProt). 



187 
 

The pBR322 plasmid with a pET T7 expression system (Fig. 5.3) frequently used for the cloning 

and expression of recombinant proteins in an E. coli strain has the advantage of controlling the 

level of expression by using a T7 RNA polymerase promoter site controlled by isopropyl β-D-1-

thiogalactopyranoside (IPTG) induction. The gene cloning and plasmid DNA purification was 

performed commercially by Invitrogen. The gene of the LBD was from rat GluK1, previously 

published experiments in GluA2 LBD used rat protein due to the  facilitation of crystallisation 

(Ward et al. 2011). In addition, experiments performed with the plasmid of human GluK1 protein 

showed that the human protein is difficult to solubilise and express in purification experiments 

(section 5.4.1).  

 

 

  

Figure 5.3. Plasmid map of the inserted synthetic rat gene GluK1 LBD, of which 5µg of lyophilised 

plasmid was obtained by Invitrogen. The T7_promoter site controls the levels of protein 

expression by IPTG induction.  

 

The plasmid was designed to have an N-terminal 6xHis-SUMO tag to improve solubility and 

purification of the protein, an ampicillin resistance gene to selectively control the recombinant 

bacteria grown, as well as the inducible expression of T7 promoter by isopropyl β-D-1-

thiogalactopyranoside (IPTG).  
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5.3.2 COMPETENT CELLS 

The competent cells used for transformation of the plasmid vector to induce the overexpression 

of LBD_rGluk1 were E. coli Origami™ B (DE3) by Novagen (Cat. No. 70837-3). Origami bacteria 

was used for the characteristic of forming disulphide bonds to obtain the proper folding of the 

protein. Since they have mutations in the thioredoxin reductase (trxB) and glutathione reductase 

(gor) genes and these modifications enhance the formation of disulphide bonds in the cytoplasm.  

Bacteria strains with the designation DE3 are lysogenic for a λ prophage that carry an IPTG 

inducible T7 RNA polymerase. Origami B strains are compatible with ampicillin and carbenicillin 

resistance plasmids and are suitable for use with pET vectors. Selective antibiotics for Origami 

strains are kanamycin and tetracycline.  

 

5.3.3 BACTERIA TRANSFORMATION 

The vector containing the LBD_rGluk1 (15ACWOAP_Gluk1_revised_His6-SUMO-GC-3C_P947) 

was prepared by reconstituted lyophilised DNA with 30µl of sterile purified water. 1µl of the 

vector was added into 50 µL of E. coli Origami B (DE3) competent cells and incubated on ice for 

30 minutes. Heat shock was performed at 42°C for 40s in a heat block, then on ice for 2 minutes 

and finally at 37°C in the shaking incubator for 1 hour with the addition of 200µl of super optimal 

broth with catabolite repression (SOC) medium (Invitrogen, Cat. No. 1544-034). The cell 

suspension was plated into LB-agar (Cat. No. L2897, Sigma-Aldrich) containing 15µg/ml 

kanamycin and 50µg/ml carbenicillin. The use of carbenicillin instead of ampicillin is due to 

higher stability and selectivity in bacteria containing the selective plasmid. The plates were 

incubated for 24 hours at 37°C, 5% CO2.   

Antibiotics: Kanamycin sulphate from Streptomyces Kanamyceticus Cat. No. K4000-25G (Sigma-

Aldrich), Carbenicillin disodium salt Cat. No. C1389-5G (Sigma-Aldrich). 
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5.3.4 PROTEIN EXPRESSION  

The colonies which grew were ones carrying the plasmid in the competent cells. One single 

colony was scraped and added into 60 ml of turbo broth (Cat. No. MD12-104-1, Molecular 

Dimensions) containing 15µg/ml kanamycin and 50µg/ml carbenicillin in a 200 ml flask. Cells 

were incubated in the shaker incubator at 37°C until the OD600 reached approximately 1.2. After 

it reached the desired optical density it was inoculated with 10 ml of cells suspension into 1L x 

6 flasks of turbo broth (15µg/ml kanamycin and 50µg/ml carbenicillin) in a 2L glass flask. Cells 

were grown in a shaker incubator at 30°C at 200 rpm until the OD600 was approximately 1.2, 

temperature was reduced to 18°C until the OD600 reached ~1.5. Then IPTG (Cat. No. 15529019, 

Thermo Fisher Scientific) was added to a final concentration of 50µM to each flask, cells were 

grown over night at 18°C. The next day the cells were centrifuged at 6,000 rpm for 20 minutes 

and pellets were frozen for subsequent purification.  
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5.3.5 PROTEIN PURIFICATION  

5.3.5.1 IMMOBILIZED METAL AFFINITY CHROMATOGRAPHY (IMAC)  

Buffers for protein purification experiment, each buffer was filtered at 0.45 µm (Cellulose nitrate 

membrane filters, Whatman™ Cat. No. 514-8073, VWR).  

Lysis Buffer  Elution Buffer  Cat. No.  

50 mM HEPES pH 7.5 50 mM HEPES pH 7.5 BP310-1, Fisher BioReagents  

500 mM NaCl 500 mM NaCl S/3120/63, Fisher Chemical 

10 mM Imidazole 300 mM Imidazole 122025000, Acros Organics  

1 mM TCEP 1 mM TCEP 646547-10x1ml, Sigma-Aldrich 

Distilled H2O up to 500 ml  Distilled H2O up to 250 ml N/A 

 

Pellets of cells were defrosted and resuspended in 50 ml of Lysis buffer with one tablet of 

protease inhibitor cocktail (11055700, Roche) and 250µM of glutamic acid in 20 mM HEPES-

NaOH pH 7.5(L-glutamic acid monosodium salt hydrate Cat. No. G1626, Sigma-Aldrich). Cells 

were lysate with a large probe sonicator, 5 sec on, 5 sec off, 40% amplitude for 5 minutes. Cell 

debris and insoluble fractions were removed by centrifugation at 40,000g for 30 minutes at 4°C. 

Supernatant (soluble fraction) was filtered through a 0.45 µm syringe filter (Sterile PES syringe 

filter Cat. No. 15216869, Fisher Scientific). The filtered supernatant was applied to a gravity 

column containing 7.5 ml of talon metal affinity resin (Clontech Takara Cat. No. 635503) and 

incubated for 1 hour at 4°C. The column was washed with several applications of lysis buffer 

(approximately 200 ml). The retained protein was eluted with several applications of elution 

buffer (~7.5 ml). Eluted fractions were incubated with PreScission protease (27-0843-01, GE 

Healthcare Life Sciences) at 1 unit per ml at 4°C overnight for the removal of the 6xHis-SUMO 

tag.  
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5.3.5.2 SIZE EXCLUSION CHROMATOGRAPHY (SEC)  

The protein solution (~45 to 60 ml) was concentrated to 10 ml using a centrifugal filter unit 

(Vivaspin 20 Molecular weight cut-off (MWCO) 10,000 Cat. No. 28932360, GE Healthcare Life 

Sciences) at 4,000g for approximately 30 minutes. The ÄKTA purifier system (GE Healthcare Life 

Sciences) was used for SEC purification with the HiLoad 26/600 Superdex 75 pg column (Cat. No. 

28-9893-34, GE Healthcare Life Sciences).  

The FPLC buffer used for purification was 20mM HEPES pH 7.5, 500 mM NaCl and 1 mM TCEP 

pH 7.0, filtered and degassed first.  The column was equilibrated with the FPLC buffer overnight. 

The next day, 2 ml fractions were collected in a 2.4 ml 96-deep block plate (Greiner Master Block 

M1061-50EA, Sigma-Aldrich). Fractions collected were verified for separation by SDS-PAGE gel 

electrophoresis 160 V for one hour (SERVAGel™ TG PRIME 4-20%, Cat. No. 43276.01, SERVA) 

and Coomasie stain (Cat. No. GEN-QC-STAIN-1L, Generon), destain was for 2 hours with distilled 

water. Fractions with most abundant protein were collected (~20ml) and concentrated with a 

centrifugal filter unit until a final volume of 1 ml. To ensure the removal of 6xHis-SUMO tag the 

purified protein solution was further incubated with 1 ml of talon metal affinity resin using a     

10 ml centrifuge column for 30 minutes (Pierce™ Centrifuge column 10 ml Cat. No. 89898, 

Thermo Fisher Scientific). After incubation completed, the eluted solution was concentrated up 

to 500 µl, the protein concentration was quantified with a nanoDrop at absorbance A280 nm and 

purity of the protein was verified by SDS-PAGE gel electrophoresis. Several batches of protein 

were obtained and the final yield of purified protein was calculated using the concentration 

mg/ml adjusted with the final volume obtained.  
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5.3.6 CRYSTALLOGRAPHY  

Preliminary crystal experiments were performed using commercial crystallisation screens, 

protein solution was tested in different concentrations ranging from 5-10 mg/ml and at two 

different temperatures 4°C and 14°C. However, none of these conditions were favourable for 

suitable crystals. A list of commercial screens tested in Table 5.1.  

Table 5.1. Commercial crystallisation screens used for preliminary experiments  

Crystallisation 

screen 
Supplier Cat. No 

Proplex™ Molecular dimensions MD1-42 

Morpheus® Molecular dimensions MD1-47 

MIDASplus™ Molecular dimensions MD1-107 

JCSG-plus™ Molecular dimensions MD1-40 

Additive screen™ Molecular dimensions MD1-11 

PACT premier™ Molecular dimensions MD1-36 

Index HT Hampton Research  HR2-134 

PEG/Ion HT Hampton Research HR2-139 

SaltRx HT Hampton Research HR2-136 

Natrix HT Hampton Research HR2-131 

Crystal screen HT Hampton Research HR2-130 

 

Crystallography was performed as previously described (Venskutonyte et al. 2012). In brief, 

concentrated rGluk1 LBD protein was used for crystallography experiments, normally a 

concentration of ≥ 10 mg/ml was obtained. Protein solution was buffer replaced up to 5.7 mg/ml 

in crystallography buffer (14.3mM kainate, 20mM NaCl, 1mM EDTA and 10mM HEPES pH 7.0) 

using a 500µL centrifugal concentrator with a membrane of 5,000 MWCO (Cat. No. VS0111, 

Sartorius). Crystallography experiments were performed using the hanging drop vapour 

diffusion method at 6°C using a drop ratio of 1:1 (1µl of protein solution and 1µl of reservoir 

solution). Reservoir solution containing 21% PEG 4000, 0.45M of lithium sulphate and 0.1 M of 

cacodylate pH 6.5. Crystals were formed in 4 days incubated at 6°C and crystals were stored with 

cryoprotectants 30% PEG 400 or 30% ethylene glycol before being flash-cooled in liquid nitrogen. 

X-ray data was collected to 1.64 Å resolution at the beamline i03 (Diamond Light Source 

synchrotron, Oxfordshire).  
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5.3.7 FRAGMENT SCREENING (SOAKING) 

Ten fragments synthesised by the SDDC (Chemistry group) were used for soaking experiments 

(Table 5.2). These fragments were selected for antagonist activity from the literature for kainate 

receptors or for having binding properties in the dimer interface of AMPA LBD protein (Table 

5.3). Some compounds were also tested using the validated calcium assay and by 

electrophysiology experiments by Dr. Iain Barret. rGluK1 crystals were soaked with fragments at 

different concentrations 1 mM, 5 mM and 10 mM. A 10 µl drop was used containing 9 μl of 

reservoir solution (from previous crystallography experiments) and 1 μl of 10 mM, 50 mM or 

100 mM stock solution in 100% DMSO, crystals in drops were incubated for 1 hour at 4°C.  

 

Table 5.2. Fragments structures used for soaking experiments, compounds synthesize in-house. 

Compound Structure 
Molecular 

weight 
(g/mol) 

Compound Structure 
Molecular 

weight 
(g/mol) 

UOS-15592 

 

268.24 UOS-31059 

 

370.32 

UOS-14986 

 

190.17 UOS-30693 

 

393.63 

UOS-15326 

 

296.29 UOS-30696 

 

369.6 

UOS-12344 

 

379.42 UOS-21170 

 

495.88 

UOS-12230 

 

282.26 UOS-30695 

 

405.65 
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Table 5.3. Compound selection criteria for soaking experiments with protein crystals 

Compound Selection criteria 

UOS-15592 Compound from previous AMPA research performed by 
Dr. Simon Ward (Ward et al. 2011) 

UOS-14986 Binding in the dimer interface of AMPA, in-house 
rGluA2 LBD crystal structure 

UOS-15326 Binding in the dimer interface of AMPA, in-house 
rGluA2 LBD crystal structure 

UOS-12344 Binding in the dimer interface of AMPA, in-house 
rGluA2 LBD crystal structure 

UOS-12230 Binding in the dimer interface of AMPA, in-house 
rGluA2 LBD crystal structure 

UOS-31059 
Preliminary in-house electrophysiology assay 
experiments reported kainate activity (% of inhibition at 
30 µM, GluK1: 28.3 ± 1.14; GluK2: 10.78 ± 1.98 )  

UOS-30693 Synthesised in-house from literature compound 
(Valgeirsson et al. 2004) 

UOS-30696 Synthesised in-house from literature compound 
(Valgeirsson et al. 2004) 

UOS-21170 Synthesised in-house with structure  and chemical 
similarities from another in-house AMPA compound   

UOS-30695 Synthesised in-house from literature compound 
(Valgeirsson et al. 2004) 
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5.3.8 KAINATE CALCIUM ASSAY  

The calcium assay commercial kit Fluo-4 NW (no-wash) from Thermo Fisher Scientific (Cat. No. 

F36206) was used. This assay is based on detecting the increase of cytosolic Ca2+ with the use of 

calcium-sensitive dye indicators, such as Fluo-3 and Fluo-4. Fluo-4 is a dye analogue of Fluo-3 

(two chloride substituents replaced by fluorines) that increases fluorescence intensity upon 

binding with intracellular Ca2+, this detection can be measured with a FlexStation microplate 

reader (Gee et al. 2000). The Fluo-4 NW is a nonfluorescent dye that does not require a wash 

step or a quencher dye unlike the Fluo-4 and Fluo-3 assay kits. Hence, the opening and closure 

of the kainate receptors induced by agonists or antagonists can be measured using this calcium-

signalling assay.  

The validation of the assay was carried out by Dr. Iain Barret from the Sussex Drug Discovery 

Centre and the validated conditions of the assay were followed to confirm the effect of the 

reference agonists kainate and domoate, and antagonist CNQX with the Gluk1 and GluK2 cellular 

assay.   

Materials and Reagents  

Description Use for Supplier and Catalogue 

DMEM high glucose Cell culture media  D0819, Sigma-Aldrich 

Fetal bovine serum (FBS)  Media supplement  F7524, Sigma-Aldrich  

Penicillin-Streptomycin (PS) Media supplement (antibiotic) P4333, Sigma-Aldrich 

Trypsin-EDTA, phenol red Cell detachment  
25200056, Thermo Fisher 
Scientific 

PBS Assay buffer  79382, Sigma-Aldrich 

DMSO Assay buffer 10080110, Fisher chemical 

Fluo-4 NW Calcium assay 
kit 
Component A: dye mix 
Component B: assay buffer 

Assay kit  
F36206, Thermo Fisher 
Scientific 

Corning®96 well flat clear 
bottom black, sterile 
microplate 

Assay microplate  3904, Corning  

96-V well microplate 
translucent polypropylene 

Source dilution plate  
MIC9050, Scientific 
Laboratory Supplies 

Concanavalin A  
Buffer additive, inhibition of 
receptor desensitization  

J61221, Alfa Aesar  

Domoic acid (domoate) Agonist agent  0269, Tocris Bioscience  

Kainic acid (kainate)   Agonist agent  HB0355, Hellobio  

CNQX disodium salt 
hydrate 

Antagonist agent  C239, Sigma-Aldrich  
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Cell Culture 

The cell line used for these experiments was HEK-293 stably expressing human GluK1 receptors 

purchased from Sophion, Biolin Scientific. The GluK1 expression of the cell line was constitutive, 

meaning that the protein was produced continually at all times. Cells were grown in a T75 flask 

until they became ≥70 % confluent. Cell culture passaging was every 3-4 days.  

 

Calcium Assay procedure   

The commercial Fluo-4 NW Calcium assay kit was used for the calcium assay experiments. HEK-

293-hGluK1 cells were seeded in a Corning® 96-well black microplate, 40,000 cells per well and 

incubated at 37°C, 5 % CO2. Twenty four hours after incubation, media was removed and 50 µl 

of Fluo-4 NW dye solution was added per well (dye previously prepared by diluting 10 ml of 

assay buffer into lyophilised dye vial) and incubated for two and a half hours in the dark at room 

temperature.  

On completion of incubation time the dye had entered the cells and the excess was removed 

and washed with assay buffer 1x. The assay buffer was supplemented with 1 mg/ml of 

concanavalin A, added to cells and incubated for 30 minutes in the dark at room temperature. 

Kainate receptor agonists (kainate and domoate) and antagonist 6-cyano-7-nitroquinoxaline-2, 

3-dione (CNQX) were prepared in serial dilutions in a source plate in assay buffer. The source 

plate was prepared with a final maximal concentration of kainate 50 µM  prepared from a 25 

mM stock solution, domoate 5µM prepared from a 10mM stock solution and CNQX 300µM 

prepared from a 30 mM stock solution. 

Addition of source plate was performed using a FlexStation 3 Multi-mode microplate reader. 

Fluorescence was read at 495 nm excitation and 516 nm emission using the FlexStation. For the 

antagonist plate a dual addition protocol was used, in which the first step was the addition of 

CNQX and the second addition was kainate. Data was analysed using the max-min values with 

Softmax pro software and graphs were generated using GraphPad Prism 7 (SOP 

Glutamate/Kainate Ca2+ assay by Dr. Iain Barret).  
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5.4 RESULTS  

5.4.1 PROTEIN EXPRESSION AND PURIFICATION OF HUMAN GLUK1 LBD 

The construct of the hGluK1 LBD protein was provided by the GDSC. Expression test and small 

scale purification were performed. The expression test was performed with 500 ml of cultured 

cells, induction with IPTG (10 µM) was added when the OD600 reached ~1.2. The SDS-PAGE gel 

displayed that after IPTG induction there was no evident protein expression of the human GluK1 

LBD (Fig. 5.4A). A small scale purification was then tested using two litres of cells, the obtained 

protein fractions were incubated with 3C-protease enzyme and samples before and after 

incubation with protease enzyme were observed in a SDS-PAGE gel. The gel did not display a 

difference in bands with 3C-protease enzyme (Fig. 5.4B) suggesting that the faint band at 50 kDa 

does not correspond to the hGluK1 LBD protein. The protein could also be folded in a way so 

that the 6xHis-SUMO tag is placed inside the structure, making it challenging to purify using 

IMAC experiments. These results indicate that using the rat Gluk1 construct will increase the 

solubility and purification of the protein. The purification was then focused on the rGluK1 LBD 

construct. 

 

Figure 5.4 Expression test and purification of the hGluK1 LBD. A. Expression test of hGluK1 LBD 

protein, experiments performed using 250 ml of cultured cells, no evident band of the protein 

was observed. B. Small scale purification (2L) was performed and the resulted fractions were 

incubated with 3C-protease enzyme, the gel displayed no difference between bands with or 

without enzyme incubation. 10 µg of protein loaded per well, protein ladder used Precission Plus 

Protein™ All Blue (Cat. No. 1610373, Bio-Rad).  
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5.4.2 IMMOBILIZED-METAL AFFINITY CHROMATOGRAPHY (IMAC) PURIFICATION  

IMAC purification successfully purified the LBD of rGluK1 in 6 elution fractions (Fig. 5.5). The 

rGluk1 bands are approximately 45 kDa (protein 29.7 kDa + 6xHis-SUMO tag 15 kDa), the gel 

showed a highly concentrated band in the talon beads before elution which means the retention 

of the protein. Each elution fraction of 7.5 ml of buffer gives a protein band with higher 

concentration in elution two and three. The flow through fraction represents all the proteins 

that do not bind to the talon beads. A sample of beads before and after elution, B1 and B2 

respectively (Fig. 5.5), show that most of the protein was eluted providing a large amount of 

purified protein, although some small fraction of protein was still retained in B2. There were 

some nonspecific bands around 60-70 kDa and 25 kDa that were further removed by size 

exclusion chromatography (SEC) experiments as a further purification step.  

In order to verify if the concentrated bands are the protein of interest a SDS-PAGE gel of the 

eluted fractions was run before and after incubation with 3C protease. In Fig. 5.6 it can be 

observed that elution fractions before 3C protease exhibit a strong band around 45 kDa and 

after incubation with 3C protease the band of 45 kDa is not present any more. However, two 

bands are present at 29 kDa and 15 kDa demonstrating the removal of the 6xHis-SUMO tag in 

rGluk1 protein, this also indicates that the protein eluted and purified was rGluk1 and no other 

nonspecific protein.  

 

Figure 5.5. SDS-PAGE gel of IMAC purification. Gel stained with Blue Coomassie, strong bands of 

45 kDa corresponding to the LBD of rGluk1 protein. Approximately 50 ml of supernatant was 

added into 7.5 ml of talon beads, the flow through was ~50 ml, wash 1 and 2 was ~ 100ml each 

and a sample of 25 µl of talon beads was used for running the SDS-PAGE gel.  10 µg of protein 

loaded per well. Protein ladder PageRuler™ Cat. No. 11892124, Thermo Scientific. 



199 
 

 

Figure 5.6. SDS-PAGE gel of 3C protease activity.  Protein before 3C protease incubation exhibits 

a band of 45 kDa and after 3C protease incubation exhibits two bands of 29 kDa corresponding 

to rGluK1 and 15 kDa corresponding to the 6xHis-SUMO tag. Lane one and two loaded with 4 µg 

of protein and lane three and four with 7 µg of protein.  
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5.4.3 SIZE EXCLUSION CHROMATOGRAPHY (SEC) PURIFICATION  

SEC purification results in a graph (chromatogram) that displays the separation of components 

of a mixture after a size exclusion chromatograpy column. Ultraviolet (UV) light absorption at 

A280 was used to measure the fractions separation.  A chromatogram was obtained (Fig. 5.7A) 

with two main peaks, a larger first peak around 120 ml with higher molecular weight molecules 

that indicates a possible aggregation formation (fractions 1E6-1F2). Additionally, the presence 

of a 60 kDa band suggests a dimer formation, as this is double the size of the protein of interest. 

However, these nonspecific bands can be the product of bacteria metabolism products. This 

larger peak and its respective fractions were not adequate for further purification experiments.  

The second peak at 160-180 ml is consistent with the protein rGluk1 with less UV absorption 

(Fig. 5.7A). Selected fractions collected from FPLC SEC experiments were run in a SDS-PAGE gel 

electrophoresis (Fig. 5.7B). Fractions between 1G9 and 1H6 display the protein of interest in a 

higher purity. A degradation band just under 29 kDa was observed and a small amount of 6xHis-

SUMO tag around 15 kDa was also observed.  

To remove the 6xHis-SUMO tag which remained, the sample was further purified with IMAC, 

resulting in a flow through with protein rGluk1 with higher purity. This was confirmed by SDS-

PAGE gel analysis (Fig. 5.8). The degradation band was not observable in the final purified 

protein, suggesting a degraded protein over time or the presence of a protein with some tag 

remain. Final protein concentration was verified by nanoDrop using the molecular weight 29.740 

kDa and extinction coefficient of 42,860 M-1 cm-1 at 280 nm, obtaining a final protein yield of 3.0 

mg of protein from 6 litres of culture (8.7 mg/ml in ~350µl). Fifteen batches of purified protein 

were prepared for crystallography experiments listed in Table 5.4, different starting cell cultures 

were prepared from 2 to 8 litres.  

 



201 
 

 

Figure 5.7. Size exclusion chromatography for rGluk1. A) Chromatogram obtained with SEC 

purification of the rGluk1 protein with 200ml of FPLC buffer through the column. B) SDS-PAGE 

gel of the fractions obtained by SEC, bands of 29 kDa indicate the rGluk1 protein and a lower 

band just under 29 kDa suggests proteolytic degradation during the experiment. 10 µg of protein 

loaded per well, protein ladder used Precission Plus Protein™ All Blue (Cat. No. 1610373, Bio-

Rad).  

A) 

B) 

* 



202 
 

 

Figure 5.8. SDS-PAGE gel verification of pure rGluk1 protein. 0.5, 1.0, 1.5 and 2.0 µg of protein 

loaded to verify the purity of the protein, one single band of 29 kDa corresponding to rGluK1, 

no other proteins were detected in the gel.  

 

Table 5.4. Different batches of purified protein obtained after purification experiments 

Batch 

No.  

Starting cell 

culture (L) 

Concentration 

(mg/m) 

Final volume 

obtained (µl) 

Yield of purified 

protein (mg) 

1 2 12.75 60 0.8 

2 4 7.21 250 1.8 

3 4 7.8 300 2.3 

4 4 10 200 2.0 

5 6 8.7 350 3.0 

6 6 8.0 400 3.2 

7 6 9.5 250 2.4 

8 6 10.75 300 3.2 

9 6 8.81 350 3.1 

10 6 12.7 200 2.5 

11 6 10.75 300 3.2 

12 6 14.5 200 2.9 

13 8 8.0 350 2.8 

14 8 8.14 200 1.6 

15 8 12.6 200 2.5 
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5.4.4 CRYSTALLOGRAPHY 

A wide range of commercial crystallisation screens were tested including: Proplex™, Morpheus®, 

MIDASplus™, JCSG-plus™, additive screen, PACT premier™, Index, PEG/Ion, SaltRx, Crystal 

screen and Natrix. None of these gave any suitable crystals for X-ray crystallography.  

Crystals were prepared with 5.7 mg/ml protein diluted with crystallography buffer (14.3 mM 

kainate, 20 mM NaCl, 1 mM EDTA and 10 mM HEPES PH 7.0). Crystals appeared after 4 days of 

incubation using the hanging drop method at 6°C with a reservoir solution of 21% PEG 4000, 

0.45M lithium sulphate and 0.1 M cacodylate pH 6.5.  

Crystals had a tetragonal (based on a rectangular inner structure) crystal configuration ranging 

from 0.2 mm to 0.5 mm length size (Fig. 5.9). It was necessary to separate the cluster of crystals 

with a needle to obtain single individual crystals. Crystals grew in similar conditions to those 

described in the literature (PDB 4E0X; Venskutonyte et al. 2012). 

 The use of cryoprotectant before collecting X-ray diffraction data helps protect the crystal 

structure from free radicals originating in ionising x-rays that can frequently cause crystal 

damage. In the literature PEG 400 was used as a cryoprotectant in rGluK1 LBD crystals before 

collecting X-ray diffraction data (Venskutonyte et al. 2012). PEG 400 and ethylene glycol were 

compared as a cryoprotectant in rGluk1 crystals before being quick-frozen in liquid nitrogen.  

The rGluk1 structures were solved by molecular replacement using a well-known structure PDB 

4E0X, models were refined using Collaborative Computational Project No. 4 (CCP4) and Python-

based Hierarchical Environment for Integrated Xtallography (PHENIX) software. Crystallographic 

Object-Oriented Toolkit (COOT) was used for manual model building by Dr. Mark Roe. Diffraction 

data was collected for both crystals with a final resolution of 1.64 Å for 30% PEG 400 and 1.89 Å 

for 30% ethylene glycol.  
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Figure 5.9. rGluk1 tetragonal crystals. Crystals obtained at 5.7 mg/ml protein with a reservoir 

solution of 21% PEG 4000, 0.45M lithium sulphate and 0.1 M cacodylate pH 6.5. Crystals with a 

size ranging from 0.2 to 0.5 mm.  
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Table 5.5. Crystallographic Statistics of rGluK1 LBD. Crystals shot at the i03 beamline at Diamond 
Light Source. 
 

Data Set 
(Highest shell in 
parentheses) 

rGluk1 PEG  rGluk1 EG  

a (Å) 70.13 70.88 

b (Å) 70.13 70.88 

c (Å) 232.98 235.9 

 () 90 90 

 () 90 90 

 () 90 90 

Space Group P 41 21 2 P 41 21 2 

Wavelength (Å) 0.9762 0.9762 

Resolution Limit (Å) 48.50-1.64 
(1.67-1.64) 

50.1-1.89  
(1.92-1.89) 

Number of Unique  
Obs. 

70471 
(3435) 

49218  
(2376) 

Completeness (%) 97.2 
(95.8) 

99.8 
(97.9) 

Multiplicity 7.3 (7.7) 8.4 (7.2) 

Rmerge % 0.111 (1.545) 0.085 (1.532) 

Rpim(I) % 0.044 (0.590) 0.032 (0.608) 

CC1/2 0.997 (0.505) 0.997 (0.761) 

I/I 9.4 (1.3) 12.3 (1.1 

Refinement 0.9762 0.9762 

Resolution Range (Å) 232.98 – 1.64 235.97 – 1.89 

Rcryst 0.187 0.19555   

Rfree 0.225 0.246 

Number of protein 
atoms 

3,979 4,013 

Number of ligand 
atoms 

31 31 

Number of solvent 
atoms 

234 102 

Mean B 25.593 44.083 

Rmsd bond lengths 
(Å) 

0.020 0.020 

Rmsd bond angles (°) 2.037 1.968 
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Figure 5.10. LBD rGluK1 structures obtained with X-ray crystallography. Chain A and B, orange 

and blue respectively. Kainic acid (kainate) shown in fuchsia, SO4 in yellow and solvent ethylene 

glycol in green. The dimer interface of ethylene glycol (EG) structure displays solvent molecules 

but the dimer interface of PEG 400 does not.  
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Figure 5.11. Ligand binding domain of rGluk1 in complex with kainic acid. Kainic acid is shown in 

fuchsia stick representation. The construct consisted of S1 and S2, dark orange and light orange 

respectively, GT linker in dark blue and SO4 molecules in cyan. Structure generated using PyMOL 

2.0 

 

The solved structures show kainic acid binding in the cavity formed between the interface 

segment S1 and S2 (Fig. 5.10 & 5.11). Chain A and Chain B of the structure forms a dimer in the 

LBD of the protein (Fig. 5.10). Crystals with different cryoprotectant (PEG 400 and ethylene 

glycol) presented similar diffraction data (Table 5.5), however crystals with PEG 400 are better 

suited for fragment/inhibitor binding studies because there are not solvent molecules present 

in the dimer interface compared to the structure with ethylene glycol (Fig. 5.10).   

Sulphate (SO4) molecules were present in the structure because of the addition of lithium 

sulphate in crystals grown; this salt is used as an electrostatic stabilisation agent to stabilize the 

protein conformation. The monomers of LBD rGluk1 and GluA2 (both produced in-house) were 

compared and both shared similar conformation and structure. In order to determine 

ligand/inhibitor binding similarity with GluA2 LBD, the dimer of rGluK1 LBD with kainate 

obtained was aligned with an in-house LBD structure of GluA2 (Fig. 5.12).  Both proteins shared 

the same dimer conformation suggesting similar ligand binding sites for compounds in the LBD.  
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Figure 5.12. Structure alignment between rGluk1 LBD and GluA2 LBD. Left, alignment between 

rGluK1 LBD monomer with kainate (green) and GluA2 monomer (yellow, in-house structure). 

Right, LBD dimer alignment between rGluK1 (yellow and green) and GluA2 (yellow). Alignment 

processed with COOT and PyMOL software. 

 

5.13. Sequence alignment of the LBD of rGluA2 and rGluK1. The LBD sequence alignment was 

performed using Clustal Omega (European Molecular Biology Laboratory-European 

Bioinformatics Institute, EMBL-EBI). The level of identity between both proteins in the LBD is 53% 

(259 amino acids analysed) and 73% positives (positives refer to the amino acids which are 

similar in their physicochemical properties). The amino acid residues involved in the PAMS 

binding sites in AMPA are highlighted in yellow with their equivalent for rGluK1 (~80% identity 

between both proteins in the dimer interface pocket).  



209 
 

Kainate binding in the cavity of the LBD was found to form hydrogen bonds with residues of the 

protein. These interactions observed are: the α-carboxyl group of kainate formed interactions 

with Thr-90 and Arg-95 and the α-amino group of kainate formed interactions with Glu-190 (Fig. 

5.14), similar to a previously published LBD rGluK1 structure 4E0X (PDB, accession code; 

Venskutonyte et al. 2012).  In addition, the residues arginine and glutamic acid showed to be 

conserved in rGluA2, rGluK1 and rGluK2, forming interactions with the α-carboxyl group and the 

α-amino group of agonists glutamate and kainate respectively (Fig. 4.15, 5.14 and 5.30).   

 

Figure 5.14. Kainate binding interaction diagram for rGluK1 LBD. Kainate agonist forms hydrogen 

bonds with Residues Thr-90, Arg-95 and Glu-190. Hydrogen bonds are represented in fuchsia 

arrows. Ligand interaction diagram generated using Maestro Schrödinger version 11.1. 

  

5.4.5 FRAGMENT SCREENING (SOAKING)  

A.H Ahmed and co-worker found a new binding site in the LBD of GluA2 for a nootropic drug 

(Piracetam), binding in multiple positions along the dimer interface (Ahmed & Oswald 2010). 

This suggests a similar binding pocket for rGluK1 LBD. For that reason, rGluK1 crystals were 

soaked with ten different fragments synthesised in-house. Fragments were selected according 
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to the possibility of binding into the LBD (dimer interface or other novel biding site) or their 

antagonist activity from the literature.  

Unfortunately, none of the fragments displayed a binding interaction with rGluK1 protein. At 

high concentration of compounds, DMSO caused difficulties in handling the crystals and resulted 

in low-resolution diffractions from 3.5 Å to 6.5 Å resolution.   

 

5.4.6 KAINATE CALCIUM ASSAY  

In case compounds were found to bind in the LBD of the protein (after soaking experiments) it 

was planned to verify the hits using a previously optimised calcium assay, however no 

compounds were identified as binding in the LBD of rGluK1. In addition, the purpose of these 

results was to verify the biological calcium assay in determining IC50 values and dose-response 

curve. The assay development was performed by Dr. Iain Barret and summarised in Table 5.6.   

Table 5.6. Parameters tested for 96-well plate for human GluK1/GluK2 Ca2+ assay development.  

Parameters Conditions tested Best parameters 

Cell seeding 

densities  
Various densities varying from  
10,000 to 30,000 cells per well 

Cell density higher than 30,00 cells per 

well had better resistance to washing 

off steps and improved assay signal  

Poly-D-lysine 

(PDL) coating  
PDL used at 1mg/ml  

Increased signal without PDL, final 

assay without PDL for simplicity.  

Dye solution   Dilutions tested from 0.5 to 2x 1x dye improved results  

Dye incubation  

37°C for 2 hours  
37°C for 1 hour then at RT for 
1 hour 
Room temperature for 1-3 
hours  
 

Best incubation time was at room 

temperature for 2.5 hours, followed 

by at least 30 min in wash buffer (up 

to 2 hours)  

Concanavalin A 

(ConA) 

1.5 to 2.0 mg/ml in assay 
buffer 
0 to 60 minutes incubation 
time at RT  

Improved results with ConA 1mg/ml in 

assay buffer for 30 minutes at RT 

 

In order to measure the activity of standard agonists and antagonists for GluK1 and GluK2 

kainate receptors the commercial Fluo-4 NW calcium assay kit was used. Fluo-4 is a green 

fluorescent indicator used for the detection of intracellular calcium (Ca+2) in which high 



211 
 

fluorescence measurements are directly correlated with Ca2+ binding in AMPA and kainate 

calcium permeable receptors. Fluo-4 NW dye is widely used for identification of 

agonist/antagonist calcium signalling, having higher sensitivity compared to Fluo-3 and Fluo-4 

AM in an assay type format. HEK-293 expressing human protein GluK1 were used to measure 

the activity of kainate/domoate agonist and CNQX antagonist (Fig. 5.15). The kainate dose-

response curve gave an EC50 of 3.03 µM, 4-fold less than the literature value of 12 µM (Solly et 

al. 2015) and Domoate dose response curve gave an EC50 of 0.077 µM 20-fold less than literature 

value of 1.6µM (J. K. Christensen et al. 2004). It was observed that domoate had a lower EC50 

(higher Emax) compared with kainate agonist (Fig. 5.16). Similar EC50 values obtained from 

literature demonstrated that calcium assay using Fluo4 dye is suitable for compound screening 

characterisation. The signal-to-background ratio (S/B) was calculated for kainate, domoate and 

CNQX and resulted in 15.01, 37.97 and 30.64 respectively. The calculations were based on the 

mean of the maximal response divided by the mean of the background. For CNQX the calculation 

of S/B ratio used the maximal response obtained after addition of kainate. The S/B ratio was 

higher with domoate suggesting a higher response signal ratio compared to the background.  

 

 

Figure 5.15. Chemical structures of kainate, domoate and CNQX. 

 

CNQX antagonist dose response curve gave IC50 of 17.5µM when kainate was added to final 

concentration of 50 µM, CNQX was added to cells at 300 µM final top concentration in a double 

addition format experiment, in which the second addition was kainate at single final 

concentration of 50 µM (Fig. 5.17). The addition of kainate increases fluorescence in the lower 

concentrations of CNQX. The IC50 literature value is 1.5 µM for kainate receptors (value from 

Cayman chemical supplier).  
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Agonist EC50 

Kainate 3.03 µM 

Domoate 0.077 µM 

 

Figure 5.16. Gluk1 kainate/domoate agonist dose response curves. HEK-293 cells stably 

expressing GluK1, cells were incubated with 50µM kainate and 5µM domoate top concentration.  

RFU, relative fluorescence units in y-axis. Error bars (SD) are indicated representing n=3 

individual experiments.  
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Figure 5.17. Gluk1-CNQX antagonist dose response curve. HEK-293 cells expressing human 

GluK1 receptors were incubated with CNQX (first addition step) then kainate added at 50µM 

final concentration (second addition step), labelled as CNQX post addition. Error bars (SD) are 

indicated representing n=3 individual experiments.  

 

 

 

 

 

 

 

 

 

 

Antagonist IC50 

CNQX 17.5 µM 
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5.5 DISCUSSION  

The main objective of these experiments was to express and purify the LBD of the rat GluK1 

protein in a large-scale quantity to further continue with crystallography experiments with the 

aim of obtaining X-ray structure data for further drug discovery design.  

Full-length Gluk1 protein has not been purified or crystallised due to being an integral 

membrane protein. The transmembrane domain is embedded in the phospholipid bilayer and 

interacts strongly with hydrophobic groups (fatty acyl groups) in the membrane (Uzman et al. 

2000; Smith 2011).  This property makes the purification and crystallisation extremely difficult, 

in membrane proteins strong non-polar solvents are usually used to help solubilise the protein. 

For example, the purification of the full-length rat rGluA2 receptor was achieved using a large 

amount of detergents such as, n-Dodecyl-β-D-Maltoside and n-undecyl-b-D-thiomaltoside to 

improve protein solubilisation and purification. For NMDA rat GluN1-GluN2B protein an 

amphiphilic detergent, lauryl maltose neopentyl glycol (MNG-3), was used to improve the 

stabilisation and solubilisation of the membrane protein. In addition, in both proteins a 

baculovirus-insect cell system was used to maximise protein production of membrane proteins 

(Sobolevsky et al. 2009a; E. Karakas & Furukawa 2014). Furthermore, the recent use of cryo-

electron microscopy (EM) gives an advantage for determining structures without the crystal 

form of the protein, however the structures obtained are at low resolution ranging from 5 Å to 

10 Å (Zanotti 2016).  For this reason, not all iGluRs subtypes have been identified in a full-length 

structure because it is a long multi-step procedure with the use of different detergents and 

expression systems to take into consideration.  

For structure based drug design purposes, attention was focused in the ligand binding domain 

of rat GluK1 as an important drug target structure for the study in epilepsy treatment. Ahmed 

and Oswald successfully characterised the structure of the LBD of AMPA GluA2 and GluA3 

receptors with piracetam and aniracetam (Ahmed & Oswald 2010). Currently these nootropic 

drugs are marketed as a supplement for improving cognitive function and also used in dementia, 

however both drugs have not been approved by the FDA (Gouliaev & Senning 1994; Malykh & 

Sadaie 2010). In Ahmed’s review, they found a potential new binding site in the LBD of AMPA 

receptors, they demonstrated the binding of aniracetam at the centre of the dimer interface 

and piracetam binding to multiple sites along the dimer interface for GluA2 and GluA3. 

 Gluk1 protein has over 90% sequence identity in the LBD, it was assumed that Gluk1 may have 

the same binding site in the dimer interface of the LBD and for that reason it was decided to 

focus on expressing and purifying the LBD of the rat Gluk1 protein. The rat protein was used due 
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to the difficulty of expressing human rGluK1 protein and to have uniformity to the AMPA rat 

GluA2 expression and purification system.  

The expression construct was kindly provided by Dr. Antony W. Oliver (GDSC, University of 

Sussex). The plasmid construct was designed to express the S1 and S2 segments of the LBD 

following previous purification strategy from M. Mayer for AMPA receptors (Mayer 2005). This 

construct contains a 6xHis-SUMO tag to improve solubilisation and purification of the protein. 

The rGluk1 LBD protein was successfully purified on a large scale following a standard 

purification method used previously for AMPA LBD purification. Several batches of purified 

protein were produced, from different starting material (cell culture) a sufficient amount of 

purified protein was observed with six litres of cell culture ranging from 2.4 mg up to 3.2 mg 

final yield.  With eight litres of cell culture it was observed to yield a reduced amount of protein, 

with a larger amount of unspecific proteins, suggesting a larger amount of aggregate formation 

from bacteria metabolism. It was also observed that with higher amounts of protein to produce 

(from higher amounts of cells in the starting culture) it was more difficult to handle the 

purification experiments, such as sonication, volume of buffers, amount of talon beads, elution 

fractions and incubation time with beads.  

Preliminary crystallisation trials using commercial screening kits resulted in non-single crystals 

that gave low-resolution diffraction. Previously published crystallography for LBD rGluk1 (PDB 

4E0X) was reproducible and single crystals with resolution of 1.64 Å, higher resolution than 

published crystal structure (2.0 Å) was obtained (Venskutonyte et al. 2012) . Crystals obtained 

of rat Gluk1 were high resolution diffracting crystals, however these crystals could be improved 

in order to facilitate larger fragment screens. rGluK1 protein was crystallised in complex with 

kainate, because all the crystallography experiments with only glutamate in the purification and 

without kainate (crystallography buffer) resulted in poor quality crystals. The high affinity of 

kainate in kainate receptors might give the stability of the structure to crystallize, however this 

is just a theory due to the difficulty of obtaining crystals with glutamate in the orthosteric site in 

this recombinant protein.  

Finally, Dr. Iain Barret’s previously optimised calcium assay was reproduced using standard 

agonists (kainate and domoate) and antagonist (CNQX). An EC50 dose response curve was 

obtained with values of 3.03 µM for kainate, 0.077 µM for domoate and 17.5 µM for CNQX. The 

assay had a signal-to-background ratio (S/B) of 15.01, 37.97 and 30.64 respectively suggesting 

an adequate assay limit of detection. For future work, other fragments can be screened using 

this calcium assay optimized methodology.  
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The overall strategy was to obtain pure rat GluK1 LBD protein for X-ray crystallography 

experiments. Then using fragment soaking to observe the binding mode of these compounds 

into the structure to further confirm in a calcium assay format, as well as the possibility to 

perform in future a larger screen to optimise compounds binding in the structure. However, 

none of the ten fragments tested at different concentrations (1, 5 and 10 mM) displayed binding 

properties with the LBD structure of rat GluK1. At higher concentration of compounds more 

difficulties arose due to the higher % of DMSO affecting the quality and stability of the crystals 

resulting in poor diffraction values. Structural information obtained from X-ray crystallography 

and crystals obtained could be used for future work such as larger fragment screening and lead 

compound optimisation.  
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5.6 MATERIALS AND METHODS 

5.6.1 CLONING AND PLASMID VECTOR  

The plasmid of the rat ligand binding domain (LBD) of GluK2 was kindly supplied by Dr. Antony 

W. Oliver from the Genome Damage and Stability Centre (GDSC, University of Sussex). The GDSC 

frequently used its own pHis-SUMO-3C vector to facilitate protein production and purification. 

The construct of rat GluK2 containing the LBD is formed by S1 and S2 segments linked by a Gly-

Thr dipeptide to maintain the structure of the LBD and to form a stable structure without the 

amino terminal domain (ATD), transduction domain (TD) and transmembrane domain (TMD). 

This construct was designed according to previously published experiments (Mayer 2005) based 

on the design of AMPA receptor rGluA2 S1S2 construct  (Armstrong & Gouaux, 2000). Similar to 

rGluK1, a 6xHis-SUMO tag was used to increase expression and solubility of the recombinant 

protein. The protein sequence based on rGluK2 P42260-1 from UniProt is shown in Fig. 5.18.  

 

 

Figure 5.18. LBD rGluK2 sequence design for protein expression and purification. The sequence 

protein contains a N-terminal 6xHis-SUMO tag, a recognition SUMO cleavage site and the 

sequence of the LBD of the rGluK2 protein consisting of [429-SNRS…LYRK-544] and [667-

PIDS...GCPE-806] linked using a dipeptide Gly-Thr, sequence based on P42260-1 (GRIK6, UniProt).  
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The pHis-SUMO-3C plasmid containing the rGluK2 LBD protein was sub cloned externally by 

Invitrogen. The protein construct was subcloned into a pBR322 plasmid with a pET T7 expression 

system controlled by isopropyl β-D-1-thiogalactopyranoside (IPTG) using a T7 promoter site. The 

final plasmid contained an ampicillin resistance gene site to selectively control the bacteria 

grown carrying the recombinant protein and specific restriction enzymes such as NdeI, EcoRI, 

Notl, Xhol and Scal (Fig. 5.19). In addition, the plasmid was designed to have an N-terminal 6xHis-

SUMO tag to improve the solubility and purification of the protein. The gene cloning and plasmid 

DNA purification was performed commercially by Invitrogen. Consistent with rGluA2 and rGluK1 

experiments, the GluK2 protein was designed on rat protein gene sequence, to facilitate 

solubility, purification and crystallography experiments.  

 

 

 

Figure 5.19. Plasmid map of the inserted recombinant rat gene GluK2 LBD. Invitrogen provided 

5µg of lyophilised plasmid ready to reconstitute with 30µl of sterile water and use for 

transformation experiments.  
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5.6.2 COMPETENT CELLS 

The competent cells used for bacteria transformation were the E. coli Origami™ B (DE3) by 

Novagen (Cat. No. 70837-3). The origami bacteria strain was used due to its ability to form 

disulphide bonds required for the correct folding of the protein. This bacteria strain is 

compatible with ampicillin and carbenicillin resistance plasmids. Selective antibiotics for Origami 

strains are kanamycin and tetracycline.  

 

5.6.3 BACTERIA TRANSFORMATION 

The vector containing 5µg of lyophilised DNA was reconstituted with 30µl of sterile purified 

water. The methodology followed was the same as rGluk1 bacteria transformation section 5.3.3, 

with the difference of adding 1 µl of the vector 15ADDVNC_pHIS-SUMO-rGluK2_SUMO-GG-3C-

TONY_R545 corresponding to the rGluK2 LBD protein. The rest of the plasmid solution was 

stored at -20ᵒC.  

 

5.6.4 PROTEIN EXPRESSION  

Protein expression experiment was the same as rGluK1 experiments, see section 5.3.4. Cells 

pellets from 6 L of culture broth were frozen at -20ᵒC for further IMAC and SEC purification 

experiments.  

 

5.6.5 PROTEIN PURIFICATION  

5.6.5.1 IMMOBILIZED METAL AFFINITY CHROMATOGRAPHY (IMAC) 

Buffers for protein purification experiments below, each buffer was filtered at 0.45 µm 

(Cellulose nitrate membrane filters, Whatman™ Cat. No. 514-8073, VWR).  

Lysis Buffer  Elution Buffer  Cat. No.  

20 mM HEPES pH 7.5 20 mM HEPES pH 7.5 BP310-1, Fisher BioReagents  

500 mM NaCl 500 mM NaCl S/3120/63, Fisher Chemical 

10 mM Imidazole 300 mM Imidazole 122025000, Acros Organics  

0.5 mM TCEP 0.5 mM TCEP 646547-10x1ml, Sigma-Aldrich 

Distilled H2O up to 500 ml  Distilled H2O up to 250 ml N/A 

 

The IMAC purification was the same as followed by rGluK1 experiments, section 5.3.5.1. 
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5.6.5.2 SIZE EXCLUSION CHROMATOGRAPHY (SEC) 

The SEC purification was the same as followed by rGluK1 experiments, section 5.3.5.2 

 

5.6.6 CRYSTALLOGRAPHY  

Preliminary crystal experiments were performed using commercial crystallisation screens (Table 

5.7). The pure rGluk2 protein was diluted with crystallography buffer (10mM HEPES pH 7.0, 30 

mM NaCl, 1 mM EDTA and 20 mM glutamate) to a final concentration of 5 mg/ml. For 

crystallography screening, the crystal Phoenix liquid handling system (Alpha Biotech) was used. 

Using the MRC 2-well 1 protein protocol a drop ratio of 1:1 of protein and reservoir solution was 

dispensed into a 96 MRC crystallography plate. Experiments were performed using the hanging 

drop vapour diffusion method at 14oC. From crystallography screening, the best crystals grown 

were under the following conditions:  0.06M Citric acid, 0.04M BIS-TRIS propane pH 4.1 and 16% 

w/v PEG 3350 corresponding to PEG/Ion HT screen condition H1.  

 

Table 5.7. Commercial crystallisation screens used for preliminary crystallography experiments. 

Crystallisation 

screen 
Supplier Cat. No 

JCSG-plus™ Molecular dimensions MD1-40 

Proplex™ Molecular dimensions MD1-42 

Morpheus® Molecular dimensions MD1-47 

Index HT Hampton Research  HR2-134 

PEG/Ion HT Hampton Research HR2-139 

SaltRx HT Hampton Research HR2-136 

Crystal screen HT Hampton Research HR2-130 
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Microseeding  

In order to optimise the size and quality of single crystals, a seed stock was prepared from 

previous crystal hits. Crystals were crushed with a probe and transferred into a seed bead tube 

(HR2-320, Hampton Research) with 50 µl of reservoir solution (0.06M Citric acid, 0.04M BIS-TRIS 

propane pH 4.1 and 16% w/v PEG 3350). The seed bead tube was vortexed for 2 minutes and 

this solution became the 100% seed stock. 1%, 5% and 10% seed stock dilutions were prepared 

using the reservoir solution.  

The 1%, 5% and 10% seed stocks were seeded (Fig. 5.20) in a 48-well MRC maxi plate (MD11-

004-10, Molecular Dimensions). The volumes added per drop were 0.6µl protein + 0.4µl 

reservoir solution + 0.2µl seed stock using the Oryx8 protein crystallisation robot from Douglas 

Instruments.  Plates were incubated for 5 days at 14ᵒC and crystals which grew after 24 hours 

were stored with cryoprotectant (30% ethylene glycol) before being flash-cooled in liquid 

nitrogen. X-ray data was collected to 1.95 Å resolution at the beamline i04 (Diamond Light 

Source synchrotron, Oxfordshire).  

 

Figure 5.20. Layout plate of the microseeding experiments performed for crystal optimisation. 

48-well MRC maxi optimisation plate used for microseeding experiments. This plate type has the 

characteristic of having wider wells for depositing larger drops to obtain larger crystals by using 

less reservoir solution.  
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5.6.7 FRAGMENT SCREENING (SOAKING)  

In the same way as rGluK1, ten internally-synthesised fragments (SDDC, Chemistry group) were 

used for soaked experiments (Table 5.2). Crystals of rGluK2 were soaked with different 

concentrations of fragments (1, 5 and 10 mM) and incubated for 1 hour at 4ᵒC.  Additional detail 

of the experimental procedure is provided in section 5.3.7.  

 

Table 5.2. Fragments structures used for soaking experiments, compounds synthesize in-house. 

Compound Structure 
Molecular 

weight 
(g/mol) 

Compound Structure 
Molecular 

weight 
(g/mol) 

UOS-15592 

 

268.24 UOS-31059 
 

370.32 

UOS-14986 

 

190.17 UOS-30693 

 

393.63 

UOS-15326 

 

296.29 UOS-30696 

 

369.6 

UOS-12344 

 

379.42 UOS-21170 

 

495.88 

UOS-12230 

 

282.26 UOS-30695 

 

405.65 
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5.6.8 KAINATE CALCIUM ASSAY 

The calcium assay commercial kit Fluo-4 NW (no-wash) from Thermo Fisher Scientific (Cat. No. 

F36206) was used for detecting the increase of cytosolic Ca2+ resulting from activation and 

pharmacological modulation of the rGluK2 receptor. For more information about the assay 

principle, see section 5.3.8. 

The validation of the assay was carried out by Dr. Iain Barret from the Sussex Drug Discovery 

Centre and the validated conditions of the assay were followed to confirm the effect of the 

reference agonist kainate and domoate, and internal antagonist UOS-30693 with the GluK2 

cellular assay.   

Description Use for Supplier and Catalogue 

DMEM/F-12 GlutaMAX Cell culture media  
10565018, Thermo Fisher 
Scientific 

Blasticidin S HCl  Media supplement (antibiotic) R21001, Invitrogen 

Hygromycin B  Media supplement (antibiotic) 10687010, Invitrogen  

Tetracycline hydrochloride 
Induction of receptor 
expression 

233105000, Acros Organics 

Fetal bovine serum (FBS)  Media supplement  F7524, Sigma-Aldrich  

Penicillin-Streptomycin (PS) Media supplement (antibiotic) P4333, Sigma-Aldrich 

Trypsin-EDTA, phenol red Cell detachment  
25200056, Thermo Fisher 
Scientific 

PBS Assay buffer  79382, Sigma-Aldrich 

DMSO Assay buffer 10080110, Fisher chemical 

Fluo-4 NW Calcium assay 
kit 
Component A: dye mix 
Component B: assay buffer 

Assay kit  
F36206, Thermo Fisher 
Scientific 

Corning®96 well flat clear 
bottom black, sterile 
microplate 

Assay microplate  3904, Corning  

96-V well microplate 
translucent polypropylene 

Source dilution plate  
MIC9050, Scientific 
Laboratory Supplies 

Concanavalin A  Buffer additive, clamping agent J61221, Alfa Aesar  

Domoic acid (domoate) Agonist agent  0269, Tocris Bioscience  

Kainic acid (kainate)   Agonist agent  HB0355, Hellobio  

UOS-30693 Antagonist agent In-house  
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Cell culture and assay methodology  

Methodology was followed as GluK1 experiments (section 5.3.8) with the following differences: 

I. HEK-293_hGluK2 cells stably expressing human GluK2 receptors purchased from 

Sophion, Biolin Scientific. The expression of GluK2 receptor was under a tetracycline-

inducible promoter. 

II. Cells were grown in DMEM/F12 GlutaMAX supplemented with 10% FBS, 1% PS,           

100 µg/ml hygromycin B and 15 µg/ml blasticidin.  

III. 24 hours before calcium assay, cells were incubated with tetracycline at 2.5µg/ml final 

concentration to induce the expression of the GluK2 receptor.  

IV. The source plate was prepared with a final maximal concentration of kainate of 8.3 µM 

prepared from a 25 mM stock solution and a final maximal concentration of domoate 

of 0.83 µM prepared from a 10 mM stock solution. The addition plate was prepared 

with both agonists at 1:6 serial dilutions format.  The antagonist was the compound 

UOS-30693 with a final maximal concentration of 300µM prepared from a 10 mM stock 

solution in a 1:3 serial dilutions format, with an extra addition of kainate at 50 µM (two 

addition format). CNQX antagonist was tested at 300 and 500 µM with GluK2 cells 

however, no antagonist activity was observed. The internal compound UOS-30693 was 

used for antagonist experiments due to being previously identified in the literature as 

a potent antagonist for GluK2 receptors (Valgeirsson et al. 2004).  
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5.7 RESULTS 

5.7.1 IMMOBILIZED-METAL AFFINITY CHROMATOGRAPHY (IMAC)  

The rat GluK2 LBD protein was purified using IMAC and talon affinity chromatography as a first 

step in a purification methodology. The purified protein was obtained in six high-imidazole 

concentrate elution fractions of approximately 7.5 ml each (Fig. 5.21) with a protein band of 44 

kDa (29 kDa of protein + 15 kDa of 6xHis-SUMO tag). The flow-through fraction shown in the gel 

displays all the proteins that do not bind to the talon beads (nonspecific bands). The wash 

fractions 1 and 2 represent all unspecific proteins left in the column or proteins that bind weakly 

to the talon beads. A strong band of protein in the beads sample before elution (B1) 

demonstrates the protein retained by the talon bead and the sample of beads after elution (B2) 

shows a small fraction of protein still bound to the beads. This demonstrates the effective 

retention of the protein of interest for the talon metal affinity resin and the successful first step 

purification procedure. Elution fractions 1-3 gave a strong band of protein of 44 kDa. Other 

nonspecific bands of ~15, 25-30 and 60-100 kDa were observed in the SDS-PAGE gel and were 

further removed by SEC purification experiments.  

 

Figure 5.21. SDS-PAGE gel of IMAC purification. Strong bands of 44 kDa corresponding to the 

LBD of the rat GluK2 protein. Gel stained with Blue Coomassie for 1 hour and destained for 2 

hours. Approximately 50 ml of supernatant was added into 7.5 ml of talon beads, the flow 

through was ~50 ml, washes 1 and 2 ~ 100ml each and a sample of 25 µl of talon beads was used 

for running the SDS-PAGE gel. 10 µg of protein loaded per well, protein ladder used Precision 

Plus Protein™ All Blue (Cat. No. 1610373, Bio-Rad). Wash buffer contains 10 mM Imidazole and 

elution buffer 300 mM Imidazole. 
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To examine if the eluted protein was rGluK2, samples of the elution fractions 1 to 6 (~7.5ml each) 

were collected and incubated with 3C protease enzyme which specifically cleaves the 6xHis-

SUMO recognition site sequence of the protein. One sample of 100µl was taken before adding 

the enzyme and then another sample of 100 µl was taken after incubation with the protease 

enzyme. Samples of elution mix with and without 3C protease incubation were run in a SDS-

PAGE gel and it was observed that elution fractions without 3C protease incubation exhibit a 

strong band of 45 kDa (Fig. 5.22). In contrast, samples of elution mix with 3C protease incubation 

showed two new bands of 29 kDa and 15 kDa corresponding to the protein and the 6xHis-SUMO 

tag respectively. These results demonstrate that the protein eluted in the previous IMAC 

experiments correspond to rGluK2 LBD protein containing 6xHis-SUMO tag. The enzyme 

displayed high protease activity in recognising and cleaving the human rhinovirus (HRV) 3C 

protease cleavage site of the 6xHis-SUMO tag protein. In the gel a faint band of 45 kDa was still 

present in the sample with 3C protease however this was a relatively small amount of protein.  

 

Figure 5.22. SDS-PAGE gel of 3C protease activity. Protein elution fractions before 3C protease 

incubation exhibit a band of 45 kDa corresponding to rGluk2 with 6xHis-SUMO tag. Protein 

elution fractions after 3C protease incubation exhibit two bands of 29 kDa and 15 kDa 

corresponding to the protein rGluK2 and 6xHis-SUMO tag respectively. 15 µg of protein loaded 

per well, protein ladder used Precision Plus Protein™ All Blue (Cat. No. 1610373, Bio-Rad). 
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5.7.2 SIZE EXCLUSION CHROMATOGRAPHY (SEC) PURIFICATION  

Ultraviolet (UV) light absorption at A280 was used to monitor the fractions separated during SEC. 

The elution profile showed two main peaks (Fig. 5.23A), an initial first peak around 120 ml             

(~200 mAU) and a second peak at 160-180 ml (~180 mAU). Fractions of both peaks were 

collected and run in a SDS-PAGE gel electrophoresis to observe the proteins corresponding to 

each UV absorbance peak. Fractions 1E11 and 1F1 of the first peak displayed two bands, 29 kDa 

corresponding to the pure rGluK2 protein and 45 kDa corresponding to the protein with 

remaining 6xHis-SUMO tag (Fig. 5.23B). Fractions 1G9 to 1H4, corresponding to the second peak, 

exhibit the protein rGluK2 with higher purity, fractions 1H5 and 1H6 displayed a 15 kDa band 

suggesting a small amount of cleaved 6xHis-SUMO tag remaining in the sample.  

Fractions with high purity (1G9-1H4) were collected (~16 ml), concentrated and further purified 

with IMAC. The concentrated sample was incubated with 1ml of talon beads to remove any 

amount of cleaved 6xHis-SUMO tag left in the sample because highly pure protein is more 

effective for crystallography experiments. Final pure protein was confirmed by SDS-PAGE gel 

analysis (Fig. 5.24), the gel displayed a single band of 29 kDa and no other nonspecific bands. 

Final protein concentration was verified by nanoDrop using the molecular weight of 29.86 kDa 

and extinction coefficient of 39,880 M-1 cm-1 at 280 nm. A final protein yield of 6.1 mg (12.2 

mg/ml in ~500 µl) was obtained from 4 litres of starting culture. Six batches of purified protein 

were prepared for crystallography experiments (listed in Table 5.8).   

 

Table 5.8. Different batches of pure protein obtained after purification experiments 

Batch 

No.  

Starting cell 

culture (L) 

Concentration 

(mg/m) 

Final volume 

obtained (µl) 

Yield of purified 

protein (mg) 

1 2 3.6 100 0.4 

2 4 9.5 500 4.8 

3 4 7.5 400 3.0 

4 4 12.62 400 5.0 

5 4 8.1 700 5.7 

6 4 12.28 500 6.1 
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Figure 5.23. Size exclusion chromatography for rGluK2 protein. A) Chromatogram displaying the 

elution profile of the rGluK2 with SEC purification. B) SDS-PAGE gel of the elution fractions 

obtained, fractions 1E11 and 1F1 corresponding to first peak; fractions from 1G9 to 1H6 

corresponding to second peak marked with an asterisk.  Bands of 29 kDa corresponding to 

rGluK2 LBD. 10µg of protein loaded per well and protein ladder used Precision Plus Protein™ All 

Blue (Cat. No. 1610373, Bio-Rad). 
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Figure 5.24. SDS-PAGE gel purity verification of rGluK2 protein. 0.5, 1.5 and 2.0 µg of protein 

loaded, one single band of 29 kDa was observed corresponding to rGluK2 LBD protein.  
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5.7.3 CRYSTALLOGRAPHY 

Preliminary crystallography experiments resulted in the formation of seven crystal hits from 

three different commercial screen kits (PEG/ION, Salt Rx and JCSG-PLUS) described in Table 5.9. 

The best single type crystal was condition H1 from PEG/ION HT screen (Fig. 5.25). It was decided 

not to use any hits containing phosphate salts or buffers to avoid the formation of salt crystals 

(false positives).  

 

Table 5.9. Conditions of the crystal hits obtained after crystallography screening. 

System Well Salt Buffer Precipitant 

PEG/Ion 
HT 

E10 8% v/v Tacsimate pH 4.0 None 20 % w/v PEG 3350 

G7 2% v/v Tacsimate pH 4.0 
0.1 M Sodium acetate 
trihydrate  
pH 4.6 

16% w/v PEG 3350 

H1 None  
0.06 M Citric acid, 0.04 M BIS-
TRIS propane / pH 4.1 

16% w/v PEG 3350 

Salt Rx HT 
E2 

1.8 M Ammonium 
phosphate monobasic 

0.1 M Sodium acetate 
trihydrate    pH 4.6 

None 

E8 

1.8 M Sodium phosphate 
monobasic 
monohydrate, Potassium 
phosphate dibasic / pH 
5.0 

None None 

JCSG-PLUS 
HT-96 

C1 0.2 M Sodium chloride 
0.1 M Phosphate/citrate pH 
4.2 

20 % w/v PEG 8000 

D4 0.2 M Lithium sulphate 0.1 M Sodium acetate pH 4.5 30 % w/v PEG 8000 
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Figure 5.25. Light microscopy images of crystal hits from crystallography commercial screening 

kits. Different crystal hits were observed after preliminary crystal screening experiments; the 

conditions of each well are listed in Table 5.9. Crystals obtained were thin plates, most with plate 

aggregation.  

 

Crystals grew after 24 to 48 hours using the sitting drop method at 14°C with a protein solution 

of 5 mg/ml diluted in crystallography buffer (10mM HEPES pH 7.0, 30 mM NaCl, 1 mM EDTA and 

20 mM glutamate). The drop ratio was 1:1 of protein solution and reservoir solution (0.06 M 

citric acid, 0.04 M BIS-TRIS propane pH 4.1 and 16% w/v PEG 3350). Single and larger crystals 

were obtained after microseeding experiments using 1%, 5% and 10% seed stock. The best 

quality crystals grew with 5% and 10% seed stock, with no significant differences between them. 

The final optimised crystals had a monoclinic space group (three unequal axes at right angles) 

ranging in size from 0.12 to 0.20 mm (Fig. 5.26). Crystals were stored with 30% ethylene glycol 

as a cryoprotectant to protect crystals from free radicals of ionising X-rays during diffraction 

collection. rGluk2 crystals diffracted at 1.95 Å resolution. Molecular replacement was performed 

using an rGluA2 structure obtained in house. Final models were refined using CCP4 and PHENIX 

software; COOT was used for manual model building and refinement. Molecular replacement 

and refinement was performed by Dr. Mark Roe. Crystallography statistics of crystal rGluK2 LBD 

are presented in Table 5.10. 
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Figure 5.26. Light microscopic images of rGluK2 monoclinic crystals. Crystals obtained at 5.0 

mg/ml protein concentration with a reservoir solution of 0.06 M citric acid, 0.04 M BIS-TRIS 

propane pH 4.1 and 16% w/v PEG 3350.  
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Table 5.10. Crystallographic statistics of rGluK2 LBD. Crystal shot at the i04 beamline at Diamond 
Light Source. 

 

Data Set 
(Highest shell in 
parentheses) 

rGluK2 

a (Å) 46.50 

b (Å) 105.21 

c (Å) 58.06 

 () 90 

 () 103.5 

 () 90 

Space Group P 1 21 1 

Wavelength (Å) 0.9795 

Resolution Limit (Å) 49.74-1.95 
(1.98-1.95) 

Number of Unique 
Obs. 

39197 
(1937) 

Completeness (%) 99.1 
(98.8) 

Multiplicity 2.6 (2.5) 

Rmerge % 0.106 (0.936) 

Rpim(I) % 0.078 (0.692) 

CC1/2 0.992 (0.643) 

I/I 5.1 (1.2) 

Refinement  

Resolution Range (Å) 49.743 – 1.950 

Rcryst 0.2390 

Rfree 0.2711 

Number of protein 
atoms 

3,950 

Number of ligand 
atoms 

30 

Number of solvent 
atoms 

515 

Mean B 27.4 

Rmsd bond lengths 
(Å) 

0.003 

Rmsd bond angles (°) 0.609 
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The solved structure of the LBD of rGluK2 displayed glutamic acid (glutamate; the orthosteric 

agonist) binding in the cavity formed between the interface of S1 and S2 domains (Fig. 5.27). 

This is the same as other iGluRs LBD receptors such as rGluA2 and rGluK1.  Dimers of the LBD of 

in-house structure rGluK2 in complex with glutamate and the published structure rGluK2 in 

complex with kainate (PBD accession code 1TT1) were aligned to confirm the same dimer 

conformation found in the literature (Mayer 2005). The alignment of both dimers confirms the 

same conformation and same binding core for agonists glutamate and kainate (Fig. 5.28). 

Interestingly, the dimer structure of rGluK2 has different structural conformation from the 

rGluK1 dimer. COOT software was used to compare the dimer conformations of rGluK2 and 

rGluK1 by fixing one monomer of both structures in green (Fig. 5.29), the results show that 

rGluK1 has a different arrangement of the second monomer in yellow with a wider space at one 

side of the dimer interface (Fig. 5.29). Previous alignment of  the LBD of AMPA rGluA2 and rGluK1 

have shown the same dimer conformation suggesting the same binding sites in the dimer 

interface, however these results now show that rGluK2 might have different residues involved 

in the binding sites of the dimer interface compared to rGluK1.  

 

Figure 5.27. LBD rGluK2 dimer structure obtained with X-ray crystallography. Chain A and B are 

coloured in blue and green respectively. Glutamate shown in pink stick representation. Diagram 

of structure generated using Maestro Schrödinger version 11.1. 
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Figure 5.28. Alignment of rGluK2 dimer structures. LBD dimers structures of the in-house rGluK2 

protein in complex with glutamate and published rGluK2 in complex with kainate (PDB accession 

code 1TT1; Mayer 2005) in green and yellow respectively. Glutamate and kainate are displayed 

in stick representation in pink and blue respectively.  

 

 

Figure 5.29. Dimer comparison between in-house crystal structures of rGluK1 and rGluK2. Green 

monomer of both structures were placed in the same position and white cross set in the middle 

of the dimer 2-symmetry axis to compare dimer conformations. Dimers structures processed 

with COOT software.  
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The bond interactions of the agonist-binding pocket showed that glutamate α-carboxyl group 

formed chemical interactions with residues Ala-102, Arg-107 and Ala-153. The α-amino group 

of glutamate formed salt bridge and hydrogen bonds with residue Glu-202 and the δ-carboxyl 

group formed hydrogen interaction with Thr-154 (Fig. 5.30 & 5.31). All these interactions are the 

same as observed in the published structure of the rat GluK2 LBD in complex with glutamate 

(PDB accession code1S50; Mayer 2005). Similarly, the structure of the in-house LBD of rGluA2 

has the same three conserved interactions as rGluK2, these residues are: arginine, glutamate 

and threonine binding to α-carboxyl, α-amino and δ-carboxyl groups of glutamate (Fig. 4.15 & 

5.30). In addition, the in-house crystal structure of the rGluK1 LBD in complex with kainate 

showed that arginine and glutamic acid residues form hydrogen bond interactions with the α-

carboxyl group and the α-amino group of kainate respectively (Fig. 5.30). From these results, it 

can be confirmed that residues arginine and glutamic acid are conserved and important for 

agonist binding in the cavity of the LBD of rGluA1, rGluK1 and rGluK2.  

 

 

Figure 5.30. Glutamic acid binding interaction diagram for rGluK2 LBD. Bound glutamate 

interacts with Ala-102, Arg-107, Ala-153, Thr-154, and Glu-202. Hydrogen bonds are represented 

in fuchsia arrows and salt bridges in blue/red line. Ligand interaction diagram generated using 

Maestro Schrödinger version 11.1. 
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Figure 5.31. Glutamate binding pocket in LBD of rGluK2. Glutamate in stick representation in 

cyan, salt bridges interactions and Hydrogen bonds are shown in fuchsia and blue dash lines 

respectively. Diagram generated using Maestro Schrödinger version 11.1. 
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5.7.4 FRAGMENT SCREEN (SOAKING)  

Ten compounds synthesised in-house (SDDC) were incubated with rGluK2 crystals at 1 and 5 

mM. In one structure, the electron density observed in the dimer interface does not correspond 

to water molecules suggesting the presence of the compound UOS-15592 (5 mM) in a low 

occupancy (~20% map density) and an overlay of AMPA structure displays the same binding site 

in the dimer interface that corresponds to positive allosteric modulators (PAM) of AMPA (Fig. 

5.32). rGluK2 crystals were then soaked with 10 mM compound, however, the compound 

binding in the structure was not observed. No other compounds displayed binding in the LBD of 

rGluK2 crystal. At high concentration of compounds, the DMSO caused difficulties in handling 

and dissolving the crystals which resulted in diffractions from 2.5 Å to 3.0 Å resolution.   

 

 

Figure 5.32. Compound UOS-15592 at 5 mM appeared to bind in the dimer interface of rGluK2 

structure. A. Compound UOS-15592. B. Example of the electron density corresponding to a 

molecule of H2O. C. Gluk2 in yellow displaying the dimer interface with electron density map, 

white arrows show the low-density corresponding to UOS-15592. D. Same dimer interface 

overlay with AMPA structure (green) with ligand sitting in the PAM site. Figures obtained from 

Crystallography Object-Oriented Toolkit (COOT) software.  
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5.7.5 KAINATE CALCIUM ASSAY  

The main purpose of performing the calcium assay in human GluK2 cells was to confirm 

compound hits from soak experiments, however no compounds were found to bind in the LBD 

of the protein.  Dr. Ian Barret previously optimised this calcium assay using the Fluo-4 NW 

commercial kit for human GluK1 and GluK2 receptors. The parameters of the tested and 

optimised conditions of the assay are listed in Table 5.6, section 5.4.6.  In addition, the purpose 

of these results was to confirm the activity of the calcium assay in determining IC50 values and 

dose-response curve of agonists and antagonist in cells stably expressing human GluK2 receptors.  

The standard agonists kainate and domoate were tested using the calcium assay Fluo-4 NW. The 

kainate dose response curve gave an EC50 of 0.095 µM, 6-fold less than literature value of 0.6 

µM (obtained from supplier, Hellobio). Domoate dose response curve gave an EC50 of 0.021 µM, 

19 fold less than literature value of 0.4 µM (Christensen et al., 2004; Fig. 5.33). This cell line 

displayed higher fluorescence signal compared to GluK1 cells in which the maximal signal 

response was ~200 RFU, it is possible that the induction with tetracycline considerably increased 

the levels of expression of receptors in the membrane. The level of background fluorescence 

(control buffer) was also increased for agonists kainate and domoate (~40 RFU) but remained 

low in the antagonist experiments (~9 RFU) compared to kainate of ~10 RFU. The signal-to-

background ratio (S/B) for kainate and domoate resulted in 8.0 and 10.1 respectively, calculation 

based on the mean of the maximal response divided by the mean of the background.   

CNQX did not display any antagonist activity in this assay, CNQX and CNQX disodium salt hydrate 

(improved solubility in water) were tested and both failed to display any activity. Compound 

UOS-30693 is used in literature as a selective antagonist for HEK-293 expressing GluK1 cells 

(Valgeirsson et al. 2004) and it was synthesised by the SDDC as a selective antagonist for kainate 

receptors (Fig. 5.34). Compound UOS-30693 displayed an antagonist activity up to 33.33 µM, at 

higher concentrations of compound it precipitated out causing high levels of calcium in the cell. 

This suggests a disruption of the membrane cell, causing cell death and releasing intracellular 

calcium, as shown in Fig. 5.35.  Kainate competitive binding added to UOS-30693 gave an IC50 of 

11.39 µM (Fig. 5.35). This compound has an IC50 in the literature of 1.5 and 2.0 µM for cells 

expressing GluK1 receptors, for cells expressing GluK2 receptors IC50 value has not been 

reported in the literature due to poor solubility to enable the accurate determination of the 

value (Valgeirsson et al. 2004). The S/B ratio for antagonist UOS-30693 in the assay was 38.31, 

this value was calculated using the maximal response obtained after the addition of kainate.  
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Agonist EC50 

Kainate 0.095 µM 

Domoate 0.021 µM 

 

Figure 5.33. GluK2 kainate/domoate agonist concentration response curves. HEK-293 cells stably 

expressing human GluK2 receptor. Cells were incubated with 8.3 µM kainate and 0.83 µM 

domoate. RFU, relative fluorescence units in y-axis. Error bars (SD) are indicated representing 

n=3 individual experiments. 

 

Figure 5.34. In-house compound UOS-30693. Compound used as an antagonist for calcium 

assays for GluK2 cells.  
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Figure 5.35. GluK2 antagonist concentration response curve. HEK-293 cells expressing GluK2 

protein were incubated with 33 µM UOS-30693 (first addition step) then kainate added at 50µM 

(second addition step), labelled as post addition. Error bars (SD) are indicated representing n=3 

individual experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antagonist IC50 

UOS-30693 11.39 µM 
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5.8 DISCUSSION  

The main objective of these experiments was the large-scale expression and purification of the 

rat GluK2 LBD protein to then perform crystallography experiments. Sequence alignment of the 

LBD between rGluK1 and rGluK2 demonstrated high homology identity (86.82%, Identity Matrix 

created by Clustal2.1) and for that reason, the expression and purification experiments were 

similar between both proteins. The expression construct was kindly provided by Dr. Antony W. 

Oliver (GDSC, University of Sussex). The construct contains a 6xHis-SUMO tag to improve 

solubility and purification of the protein. The small ubiquitin related modifier (SUMO) tag 

promotes the correct folding and solubility of the protein by having a similar effect as 

mammalian chaperone proteins; in addition,  SUMO tags have been shown to protect target 

proteins from degradation by promoting the translocation to the nucleus (Peroutka  et al. 2011; 

Costa et al. 2014). Furthermore, the polyhistidine (6xHis) tag was used for improving the 

purification since it binds to immobilized metal ion matrices in affinity chromatography 

(Bornhorst & Falke 2000; Costa et al. 2014).  

The ligand binding domain of the rat rGluK2 receptors was isolated using a Gly-Thr dipeptide to 

join S1 and S2 domains, the dipeptide was short but sufficient to covalently bind both domains 

without changing the rest of the conformation and functionality of the LBD (Reddy et al., 2013). 

Expression and purification of the LBD of the protein was successful in a large-scale format. 

Several batches of protein production and purification were performed, an average yield of 4.9 

mg of protein was obtained from four litres of starting cell culture. The yield of purified protein 

from four litres of cells resulted in sufficient protein for the preliminary crystallography and 

optimisation experiments with some protein left (~10 mg purified protein) stored for long-term 

at -80ᵒC.  

The primary crystallography screen using commercial matrix screen kits resulted in a positive hit 

that was further optimised and resulted in single crystals that were suitable for X-ray 

crystallography. The use of 5% and 10% seed stocks in microseeding experiments was necessary 

for obtaining larger crystals. The quality of rGluK2 protein crystals was reduced after periods of 

incubation at 14ᵒC longer than one month. Crystals stored at 4ᵒC maintained the quality 

properties for longer (approximately 3 months). Soaking experiments with ten compounds 

synthesised in-house resulted in compound UOS-15592 binding with 20% occupancy at 5 mM, 

higher concentration of compound (10 mM) was tested and no binding to the structure was 

observed possibley due to the effect of higher DMSO in the crystal. This compound has the 

potential to be used to generate a medicinal chemistry plan for analogues and test their activity 
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as potential for positive allosteric modulator drugs. Crystallography experiments were 

reproducible and optimised for potential future work with a large compound screening format 

(for example XChem screening) for drug screening studies.  

X-ray crystallography data was solved and resulted in a LBD dimer structure. The rGluK2 LBD 

crystal diffracted at 1.95 Å similar to the literature 1TT1 (1.93 Å). Crystals obtained had an 

monoclinic space group and space group P 1 21 1, the same as the previously published structure 

of the LBD of rat GluK2 (Mayer 2005). The X-ray structure showed that the interactions of the 

glutamate binding pocket of the LBD have similar residues interactions to those previously 

described in the literature (Mayer 2005). Residues arginine and glutamic acid showed to be 

conserved in rGluA2, rGluK1 and rGluK2, forming interactions with the α-carboxyl group and the 

α-amino group of agonists glutamate and kainate respectively. The dimer structural 

conformation was the same as previously published structure 1TT1 (Mayer 2005) although the 

dimer conformation of rGluK2 LBD displayed differences with other LBD receptors suggesting a 

narrowed dimer interface for rGluK2 LBD protein compared with rGluK1 and rGluA2.  

The Fluo-4 NW calcium assay was optimised by Dr. Iain Barret and following the optimised 

conditions of the assay the standard agonists and antagonist were tested to obtain a dose 

response curve and EC50 value. The calcium assay experiments demonstrated the suitability of 

the assay for further screening experiments.  The agonists kainate and domoate dose response 

curves displayed activity similar to literature with EC50 values of 0.095 µM and 0.021 µM 

respectively (Christensen et al. 2004 and Hellobio supplier).  

The antagonist CNQX failed to display antagonist activity, the reason for this might be due to cell 

behaviour, dye solution, buffer interaction, compound solubility, etc. In an electrophysiology, 

experiment published in the literature 100 µM of CNQX treatment with rGluK2 receptors did not 

show any change in the effect response of the receptor with the antagonist (Fisher & Housley 

2013). Compound UOS-30693  (named as 5d compound in the literature) was synthesised in-

house and selected from previous literature experiments as a potential antagonist for kainate 

receptors (Valgeirsson et al. 2004). This compound has been shown to be a potent non-

competitive antagonist for GluK1 cells, suggesting it could have similar antagonist activity for 

GluK2 cells. The compound UOS-30693 in GluK2 cells gave an antagonist response IC50 of 11.39 

µM tested with a maximal concentration of 33 µM because higher concentrations caused 

precipitation and disruption in cells, affecting the intracellular calcium level measurements. The 

signal-to-background ratio (S/B) for kainate, domoate and UOS-30693 was 8.0, 10.1 and 38.1 

respectively. The S/B ratio was higher with antagonist UOS-30693 because of a larger difference 
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between the maximal response and the background signal values. High levels of response (RFU) 

were observed with cells expressing GluK2 receptors, this might be the cause of the induction 

of receptors controlled by tetracycline antibiotic. Novel compounds with predicted antagonist 

activity for kainate receptors could be tested with this assay format. The LBD structure of the 

GluK2 receptor resulted in detailed structural information that can be used for the design of 

novel kainate receptor subtype-selective drugs for the treatment of epilepsy.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

 

6.1 NRF2 PROJECT 

The aim of this project was to utilise structure-based drug design to identify novel modulators 

of the Nrf2-Keap1 transcription pathway. The X-ray crystallographic information regarding the 

Nrf2-Keap1 interface interaction was used as the basis for a virtual screen. A commercial Nrf2 

pathway kit (DiscoverX) was then used to evaluate 122 compounds that were purchased from 

the output of this virtual screen which was useful in identifying potential modulators of the 

transcription pathway in a cell-based assay format. Two novel compounds were identified as 

potential modulators of the protein-protein interaction between Nrf2 and its repressor Keap1. 

The generation of reactive oxygen species (ROS) were monitored and results showed that only 

two compounds did not increase ROS levels, however Western blot analyses of Nrf2 were unable 

to demonstrate a translocation of the Nrf2 protein from the cytoplasm into the nucleus since no 

Nrf2 protein could be detected in the cytoplasm. As a result, it was not possible to confirm 

whether or not the two compounds of interest were having an effect on Nrf2 translocation and 

downstream genes expression. Accordingly, given the relatively weak effects of the two 

compounds and the lack of a reliable assay with which to detect downstream effects, the 

decision was made to terminate this project.  

The DiscoverX assay is a cell-based assay and requires compounds to have a good cell membrane 

permeability in order to demonstrate effects. An alternative approach would be to take a step 

backwards to use a biochemical assay to screen for molecules that disrupt the protein-protein 

interaction and thereafter build in the physicochemical properties required for cell permeability. 

In this regard, fluorescence polarization biochemical assays have been described using the 

Keap1 protein and an Nrf2-ETGE peptide as a fluorescein labelled probe (Hancock, Hélène C. 

Bertrand, et al. 2012; Jiang et al. 2014; Jnoff et al. 2014). Although the Western blot analyses 

were not successful, fluorescence microscopy could have been used in order to identify nuclear 

and cytosolic expression of Nr2 in cells (Theodore et al. 2008; Baird et al. 2013; Malloy et al. 

2013; Yu et al. 2014; Zhang et al. 2016). Alternatively, the quantification of the mRNA of Nrf2 

downstream genes can be performed using real time PCR (RT-PCR), and these methods were 

used to identify the effect of compounds in the expression of antioxidant and detoxifying 

enzymes (Buetler et al. 1995; Kanno et al. 2012b; Mathew et al. 2014; Zhuang et al. 2014). 
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However, although these alternative methodologies were considered, the low potency of the 

two compounds of interest did not justify the considerable investment in time and resource 

required to establish these techniques.  Nevertheless, despite the lack of success, the Nrf2 

transcription pathway still remains an attractive, albeit challenging, potential therapeutic target 

for the treatment of neurodegenerative diseases. 

 

6.2 AMPA PROJECT 

The aim of this project was to use a structure-based, X-ray crystallography screening approach 

to identify fragments that bind to, and allosterically modulate, the ligand-binding domain (LBD) 

of the GluA2 AMPA receptor and which might have the potential to become novel drugs with 

which to treat neurological disorders. Methods described in the literature have focused on the 

rat protein due to the increased solubility and crystallography properties in comparison to the 

human protein. A construct of the rat recombinant protein GluA2 LBD was designed according 

to previously published methods (Armstrong & Gouaux 2000; Ward et al. 2011) and was 

expressed and purified to produce a high purity protein suitable for X-ray crystallographic 

studies. The crystal structure of the rat GluA2 LBD was determined to a resolution of 1.84 Å and 

the homodimeric structure and agonist (glutamate) binding was consistent with previous data.  

In order to find novel compounds that bind to the GluA2 LBD, an XChem fragment screen was 

performed at the Diamond Light Source (Didcot, UK). The primary methodological challenge was 

to optimise the methods for crystal production such that they were suitable for large scale 

fragment screening. The optimised crystallography conditions were in a sitting drop format plate 

using 5 mg/ml protein with 5 mM zinc acetate and sodium cacodylate and a final drop ratio of 

1:1 with reservoir solution (0.09 M halogens, 0.1 M buffer system 1 pH 6.5 and 50% v/v 

precipitant mix 1, Morpheus® screen Appendix II). 

The methods involved in the fragment screen were the crystal targeting, soaking, harvesting, 

data collection and data analysis of which the crystal harvesting was the most challenging and 

time consuming due to the need for each crystal to be harvested manually. A total of 700 

fragment compounds were soaked with GluA2 LBD crystals (from 1.75 Å to 2.5 Å) in complex 

with glutamate and resulted in eight fragments located in the ligand binding domain of the 

protein. Two binding sites were identified, a site near the Gly-Thr dipeptide linker and a site in 

the dimer interface between domains S1 and S2 of the LBD. The latter had been previously 

identified as a site for positive allosteric modulators (PAMs) of AMPA receptor, PAMs binding in 

this interface have been suggested to enhance cognitive performance in animal models. The 
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binding site near the Gly-Thr linker has not been identified in the literature or any publication. 

From the eight compounds, five were located in the dimer interface and three near the Gly-Thr 

site.   

In future, functional studies (electrophysiology) will be used to characterise the functional 

effects of these compounds although it would not be surprising if no effects were observed. 

Accordingly, more detailed biophysical analyses need to be performed in order to characterise 

the affinity and other features of the ligand-protein interaction. In addition, close structural 

analogues of these compounds will need to be ordered or synthesised in the hope of identifying 

compounds with higher affinity than these presumably weak hits that have been identified in 

the XChem fragment screen.  

  

6.3 KAINATE PROJECT 

The purpose of the kainate receptor project was to provide the structural information that 

would form the basis of a structure-based drug discovery approach to identifying novel 

compounds that bound to the LBD of the rat GluK1 and GluK2 subtypes of ionotropic glutamate 

receptor, in a manner analogous to that used for the GluA2 subtype AMPA receptors. More 

specifically, the aim was to identify allosteric modulators that might be the starting point in the 

path to developing novel anti-epileptic drugs that might be more efficacious and/or better 

tolerated than existing drugs.  

The construct of the rat recombinant GluK1 and GluK2 LBD proteins was similar to those used 

previously (Naur et al. 2005). The crystals of both proteins were solved at 1.64 Å for GluK1 and 

1.95 Å for GluK2 and binding interactions with the agonist kainate were comparable to those 

published previously. In-house compounds based on literature were soaked with both protein 

crystals and one compound UOS-15592 displayed ῀20% occupancy suggesting some evidence of 

compound binding in the dimer interface of GluK2, more interestingly preliminary 

electrophysiological data suggests the same activity for GluK1 protein. This result supports the 

evidence of possible binding sites for positive allosteric modulators (PAMs) of kainate receptors, 

similar to GluA2 AMPA PAMs.  

Further work is required to establish the functional consequences of the binding of this 

compound in a cellular fluorescence or electrophysiological assay. Nevertheless, these results 

form the basis of an iterative medicinal chemistry programme based upon increasing the 

potency of compound UOS-15592.  In parallel, the LBDs of GluK1 and GluK2 could be used for 
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large-scale fragment screening using the XChem screening platform, with a particular focus on 

GluK1. Fragment hits would then be further analysed in either a biophysical assay or a functional 

assay, such as the established kainate calcium (Fluo-4 NW) or electrophysiology assays.  

Discussions are also underway with the Membrane Protein Laboratory (MPL, Diamond Light 

Source) in order to establish methodologies for the production and X-ray crystallographic 

examination of full-length human GluK1. The structural characterisation of the GluK1 and GluK2 

LBDs and potentially the full length GluK1 are important components of a structural approach 

to the development of novel allosteric modulators for the treatment of epilepsy that can reduce 

undesirable side effects and help in the treatment of refractory (intractable) epilepsy patients.  
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APPENDIX I 

Results generated by Dr. Ben Wahab 

 

1.0 Alignment Report 

 

 

Alignment and RMSD generated by MOE. 

 

The lower the RMSD value, the closer the super-position, which reflects close matching 3D 

positioning of protein residues across multiple structures. An RMSD of under 1.5 Å is said to be 

a good super-positioning. As some of the structures are apo, and some holo, the low RMSD 

represents pockets that are not highly flexible / inducible on contact with ligands.  
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2.0 Ligand interaction map (from 3VNH crystal structure) 

 

Example of the ligand interaction maps generated using MOE. Residues in green and purple are 

hydrophobic and hydrophilic respectively. Hydrogen bonding in green dash arrows, and pi-

stacking interactions in green dots lines. The grey dash surrounding the ligand represent the 

surface (edge) of Keap1 protein. Blue colour circles represent solvent contacts.  

 

3.0 Water analysis  

Within the pocket, careful analysis gave rise to a number of key waters that were present within 

at least 50% of the crystal structures OR 75 % of HOLO structures within a ≈1 Å cluster size (given 

below in reference to the 1X2R nomenclature). Waters within holo structures indicate possible 

interaction mediators. 

 

Conserved waters around the binding space: 

17, 47, 48, 713, 714, 723, 748, 772, 786, 819, 872, 874, 886, 899, 926 

Conserved waters in the bottle neck (under the pocket): 

734, 754, 822, 949 
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4.0 Pharmacophores 

ID Based 
on 

Feature 1 Feature 2 Feature 3 Feature 
4 

Exclusion 
volume 

Hits 

        
1X2R_1 1X2R SER363 ASN382 SER602 ASN382(a) 0 923 
1X2R_2 1X2R ARG483 

SER508 
SER508(a) 
ARG415 

SER602 GLN530 0 757 

1X2R_3 1X2R ARG483  
SER508 

SER508 
ARG415 

GLN 530  0 604 

1X2R_4 1X2R GLN530 SER602 GLN530(a)   0 326 
1X2R_5 1X2R SER363 ARG 380 ASN382   1 798 
3VNH_1 3VNH ARG483 

SER508 
ARG415 SER363  0 359 

3VNH_2 3VNH ARG483 
SER508 

ARG415 SER363  0 280 

3VNH_3 3VNH ARG483 
SER508 

ARG415 SER363  1 154 

3VNH_4 3VNH ARG483 
SER508 

ARG415 SER363 ARG380 1 184 

3VNH_5 3VNH ARG380 ARG415 SER363  1 28 
4IFN_1 4IFN ASN414 

ARG380  
ARG 415 

ASN414(a)  
ARG380(a) 

ARG415(a) SER602 0 1,366 

4IFN_2 4IFN ASN414 
ARG380  
ARG 415 

ASN414(a)  
ARG380(a) 

ARG415(a) SER602 1 1,364 

4IFN_3 4IFN ASN414 
ARG380  
ARG 415 

ARG415(a) SER602 TYR572 
(aro) 

0 500,000+* 

4IFN_4 4IFN ASN414 
ARG380  
ARG 415 

ASN414(a)  
ARG380(a) 

ARG415(a) TYR572 
(aro) 

0 1,314 

4IFN_5 4IFN ASN414 
ARG380  
ARG 415 

ARG415(a) SER602  0 540 

4IN4_1 4IN4 ARG483 ARG483(a) SER508 SER555 0 21,436* 
4IN4_2 4IN4 ARG483  SER508 SER555 1 500,000+* 
KEAP1 custom ARG414 SER363 SER508 

ARG483 
 0 27,138* 

KEAP2 custom SER555 ARG415 SER508 
ARG483 

  43,803* 

KEAP3 custom ARG380 
ASN387 

SER363 SER508 
 

  3 

KEAP4 custom SER363 SER602 SER555   176 
KEAP5 custom SER508 

ARG483 
GLN530 SER363  0 0 

* Considered too non-discriminatory to be of use in the docking phase 

(a) Denotes a second interaction feature with the same target as a previous feature in the 

pharmacophore 

(aro) Denotes an aromatic pi stack. The custom interactions are based on observed residues that can be 

interacting.  
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APPENDIX II 

MORPHEUS ® HT-96  
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