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Summary  
 
Red wood ants (Formica rufa) are visual navigators whose colonies contain workers that 

differ substantially in size. By investigating the allometry of the ants’ compound eyes, and 

the regions within them, I showed that facets in particular regions scaled differently: both 

grade and slope shifts occurred. Facets in some eye regions were absolutely larger than 

others, while other facet regions scaled at different rates with body size. 

I next compared eye scaling between nests from the same population. 

Nevertheless, the method by which ants increased their eye size differed between nests. 

I found that ants from some nests primarily increased eye size through facet number and 

others through facet diameter. This showed that scaling rules at the cellular levels can 

differ even within a single population. 

Comparisons among Formica species revealed that differential eye scaling was not 

restricted to just F. rufa. Differential scaling was found in F. sanguinea but not F. lugubris 

or F. fusca. Surprisingly, scaling between facet diameter and number was conserved 

across all four species, demonstrating that whole-organ scaling among species can be 

conservative whilst differing vastly between organ-regions. 

Moving beyond morphology, I next investigated whether physiological scaling was 

equally as variable among nests. Metabolic rate scaling was negatively allometric and the 

same among four nests. Respiratory water loss was found to be determined solely by 

metabolic rate. Metabolic rate co-varies with different ventilation types, however, 

switches in ventilation type are driven by movement. This demonstrates that increases 

in metabolic rate are not sufficient to explain changes in ventilation type but are sufficient 

to explain respiratory water loss. 
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Chapter 1: General introduction 

1.1 Morphological scaling 

It is a truth universally acknowledged, that a species exhibiting some variation in body 

size must be in want of organs that modulate their dimensions appropriately. The relative 

change in organ size in response to a change in body size is known as allometric scaling 

or allometry. Organs can maintain a fixed size relative to body size, a condition called 

isometry. The term scaling will refer to all instances of changes in organ size with body 

size, given that the term allometry is often employed in the strict sense of positive 

allometry. Positive allometry occurs when an organ becomes proportionally larger as 

body size increases. An example of this can be found in stag beetles, where larger adult 

males have disproportionately large mandibles compared with smaller males (Kawano, 

2000). Though widely documented (Bonduriansky, 2007; Gould, 1973; McCullough et 

al., 2015) and truly eye-catching, positive allometry is unrepresentative of most organ 

scaling. The vast majority of organs (Voje, 2016) become relatively smaller with 

increasing body size – negative allometry (Eberhard, 2009; Eberhard et al., 1998). This 

means that smaller individuals have relatively larger organs than their larger conspecifics. 

Quantitative investigations into relative organ size have existed since at least 1897 

(reported in Gayon, 2000) and the early 20th century yielded further significant 

contributions, most notably from D’arcy Thompson, who expounding the important role 

of physical laws on biological growth (Thompson, 1992). However, Julian Huxley and 

Georges Teissier are credited with providing a standardised nomenclature and the 

power function most typically used to quantify allometric changes:  

𝑌𝑌 = 𝑏𝑏𝑥𝑥𝛼𝛼 

where x is body size, Y is organ size, α is the scaling exponent and b is the initial growth 

index (Huxley and Teissier, 1936). This power function shows that modifications to two 
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parameters will influence how an organ responds to changes in body size; these are slope 

(α) and grade (b) shifts. A grade shift occurs when the mean size of an organ changes 

but the rate with which organ size increases with each unit of body size remains the 

same (Fig. 1.1). Thus, the intercept of the regression line changes and is modelled as an 

increase or decrease in b. Alternatively, there can be a change in the slope of the line, 

reflecting a change in the magnitude of the response by an organ to changing body size. 

This is modelled as changes in the value of α. If α > 1, the organ scales with positive 

allometry, if α < 1, the organ scales with negative allometry and if α = 1, the organ scales 

isometrically.  

 

1.2 Types of allometry 

There are three ways in which an organism can experience organ scaling (Cock, 1966; 

Gould, 1966). The first is called static allometry, which captures how the size of an organ 

relates to body size among conspecifics at a given developmental stage (McCullough et 

al., 2015), most frequently the adult stage. Static allometry has been investigated 

extensively across many vertebrate (Brooke et al., 1999; Campione and Evans, 2012; 

Christiansen, 1999; Nudds, 2007; Prange et al., 1979) and invertebrate taxa (Cariveau et 

al., 2016; Emlen and Nijhout, 2000; Huxley, 1924; Tokeshi et al., 2000), particularly in 

reference to exaggerated secondary sexual characters (Alatalo et al., 1988; Baker and 

Wilkinson, 2001; Bonduriansky, 2007; Bonduriansky and Day, 2003; Cuervo and Møller, 

2009; Emlen, 2008; Gould, 1973; Petrie, 1992).  

Animals also experience relative organ size changes throughout development, 

typically organs enlarge as animals mature. The scaling of organs during development is  
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called ontogenetic allometry (Pélabon et al., 2013). Relative organ size can change vastly 

over developmental time for both vertebrates (McLellan et al., 2002; Pélabon et al., 2013; 

Tavares et al., 2016) and invertebrates (Gould, 1966; Moreira et al., 2017; Whitman, 

2008). Within the insects, there are two distinct maturation processes; complete and 

incomplete metamorphosis, which are used in holometabolous and hemimetabolous 

orders, respectively (Gullan and Cranston, 2005). Within the hemimetabola, body size 

increases rapidly in a step-wise fashion through a series of moults. Immature stages 

(nymphs) are miniature wingless versions of the adults (imagoes) and most of their 

Figure 1.1 Types of allometric change. X-axis is body size or proxy thereof, y-axis is organ 
size.  A) Original ancestral state; B) Grade shift; C) Slope shift; D) Both grade and slope shift. Adapted 
from Pelabon et al., 2014. 
 

A) B) 

D) C) 
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organs get larger with each moult, increasing with body size (Gullan and Cranston, 2005). 

The exceptions are characters, such as wings, that grow at later nymphal stages, typically 

just before maturation. By contrast, the holometabola have strongly demarcated stages 

within their life history with an egg, larval, pupal and imago stage; each with different 

ecological and morphological adaptations (Gullan and Cranston, 2005). As such, 

ontogenetic allometry is far less obvious in these insects compared with incompletely 

metamorphosing insects. However, holometabolous insects often have several larval 

instars, where ontogenetic allometry may be apparent (Tammaru and Esperk, 2007).   

The final framework through which animals can express organ scaling is 

evolutionary allometry (Voje et al., 2014). This captures how homologous organs among 

species (Rosenberg, 2002) or between different populations of the same species (Toju 

and Sota, 2006) change in relation to body size. There has been significant disagreement 

surrounding the exact role of evolutionary allometry (Egset et al., 2012; Mirth et al., 2016); 

how evolvable scaling relationships are or whether they are constrained developmentally 

or physiologically (Pélabon et al., 2014; Voje et al., 2014). This topic is assessed in section 

1.6. Allometry at all three organisational levels (static, ontogenetic, evolutionary) can be 

compared both intra- and interspecifically.  

 

1.3 Ecological implications in insects 

Scaling is ubiquitous throughout animal species because growth is unavoidable 

(ontogenetic allometry) and individuals rarely have equal access to food and are genetically 

variable (static allometry). When static and ontogenetic allometries are expressed 

differentially between populations and species, evolutionary allometry is the natural 

consequence (Cheverud, 1982; Pélabon et al., 2013). Body size and scaling impact upon 

many life history traits (Chown and Gaston, 2010; Dial et al., 2008) making them a crucial 



5 
 

part of our understanding of animal ecology and behaviour (Kalinkat et al., 2015). Body 

size (and the relative scaling of organs) inherently affects interactions with both the biotic 

(predation, parasitism, intra-specific competition) and abiotic (temperature regulation, 

environmental rugosity) environment, and therefore it can be broadly posited that organ 

scaling is a crucial determinant of fitness.  

One of the clearest examples of the importance of scaling is in the direct fitness 

benefits yielded by sexually selected, positively allometric traits. This has been well 

characterised in Onthophagus dung beetles, in which the males’ horns show positive 

allometry. Larger males have horns that are disproportionately big and are referred to 

as majors, the smaller males have small or non-existent horns (Emlen, 1997). There is a 

threshold body size, above which males are majors and below which they are minors 

(Moczek and Nijhout, 2002). Different morphs have different methods of sexual 

competition, majors guard females and partake in gladiatorial combat (Moczek and 

Emlen, 2000) whereas minors “sneak” access by digging directly into female tunnels 

(Emlen, 1997). Major males achieve a higher level of fitness than minors (Hunt and 

Simmons, 2001), albeit only moderately (Simmons et al., 2004). Body size and correct 

organ scaling determine fitness in conjunction with behaviour. The change in behaviour 

coincides with the size at which horns grow (Hunt and Simmons, 2000). Mismatches in 

size, organ and behaviour (e.g. a minor male guarding a burrow) would have disastrous 

fitness consequences. In contrast to positively allometric sexually selected traits, male 

insect genitals are negatively allometric (Eberhard, 2009; Eberhard et al., 1998). This is 

likely due to stabilising selection; males do not attract or compete with females directly 

through large genitals and it is more beneficial to have an aedeagus that is compatible 

with the majority of females (Eberhard, 2009). Hence, stabilising selection occurs, 

producing low scaling slopes.  
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As well as influencing intraspecific competition, scaling is vital for modulating 

interspecific interactions. The scaling of proboscis length in camellia weevils is essential 

for laying eggs on seeds of their host plant (Toju and Sota, 2006). Proboscis length is 

matched to the relative thickness of the seed pericarp. Moreover, there are significant 

differences in the scaling of proboscis length between different weevil populations, 

indicating that allometric shifts have been selected for and have a critical role in 

determining fitness (Toju and Sota, 2006).  

Scaling is also important for mutualistic interactions; pollinator proboscis length 

is important for determining degree of floral specialisation (Cariveau et al., 2016). Across 

taxa, proboscis length matches the corolla length of the flowers that pollinators visit 

(Stang et al., 2009), and therefore, it is essential for pollinators to scale their proboscis’ 

accurately. Furthermore, scaling of proboscis length is key to interpreting plant-

pollinator networks, body size and relative proboscis length being important mediators 

of floral association. Allometric measurements can be used to make predictions about 

species where direct morphometrics are difficult to acquire. Using only taxonomy to 

make these predictions explains 61% of the variation in proboscis length among five 

families of bees, however, including allometric measures raises this to 91% (Cariveau et 

al., 2016). 

Sensory organs are vitally important for fitness because these structures enable 

accurate perception and interaction with the world, permitting food and mate location 

as well as navigation (Graham and Collett, 2002; Srinivasan, 2010; Zeil, 1983), thus the 

scaling of these structures is also critical. Olfactory sensitivity in bumblebees and 

honeybees scales with body size; larger foragers are more sensitive than smaller 

nestmates (Riveros and Gronenberg, 2010; Spaethe et al., 2007) and the same is true of 

vision (Jander and Jander, 2002; Kapustjanskij et al., 2007; Kelber et al., 2006; Streinzer 
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et al., 2016; Warrant, 2008). Higher visual sensitivity enables the detection of signal, and 

therefore vision, with fewer available photons, such as at dawn and dusk. This puts 

smaller-bodied species at a disadvantage; being active in lower ambient light allows access 

to floral resources earlier in the day, before they are depleted by successive visitors 

(Kapustjanskij et al., 2007; Kelber et al., 2006). Smaller body sizes in bees can be 

advantageous though, providing a greater range of potential nesting sites (Michener, 

2001) and an increased resilience to periods of scarcity (Streinzer et al., 2016). To 

compensate for their small body sizes, the eyes of stingless bees scale with positive 

allometry. This maintains the advantages of small body sizes, relatively to larger bees, but 

compensates somewhat for the lower sensitivity induced by smaller eye sizes (Streinzer 

et al., 2016).    

Having organs correctly matched to body size, behaviour and environment is 

essential for maintaining fitness. Therefore, it is not surprising that the coordination of 

organ and body size scaling is carefully regulated. 

 

1.4 Developmental scaling mechanisms in insects  

Adult organ growth in hemimetabolous insects occurs in step-wise increases through a 

series of larval moults, each moult typically having larger organs than the previous 

(Nijhout and Callier, 2015). In holometabolous insects, adult organ growth occurs via 

the development of larval imaginal discs; undifferentiated ectodermally-derived cellular 

monolayers (Currie et al., 1988; Morata and Lawrence, 1979). Imaginal discs grow larger 

throughout larval development and differentiate into adult tissue during pupation 

(Andersen et al., 2013). Though genetics (Shingleton et al., 2009; Stevenson et al., 1995) 

and temperature (Nijhout and Callier, 2015; Shingleton et al., 2009) can affect imaginal 
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disc growth, changes in nutritional status are probably the most important determinants 

of adult organ size.    

Both somatic and imaginal disc growth is mediated by insulin-like peptides (ILPs)  

and their receptors (Shingleton et al., 2005; Wu and Brown, 2006). Secretion of ILPs is 

proportional to nutritional status (Nijhout et al., 2014; Wu and Brown, 2006) and along 

with ecdysone, stimulate somatic growth during the larval stage (Nijhout and Callier, 

2015). Release of ILPs is stimulated by the fat body on ingestion of amino acids (Andersen 

et al., 2013). The fat body accumulates resources during larval development and then 

acts as a sentinel organ, modulating global growth in response to nutrition (Nijhout and 

Callier, 2015). Because ILPs stimulate growth in the larval soma and imaginal discs (Emlen 

et al., 2012; Nijhout and Callier, 2015), the fat body is ultimately responsible for co-

ordinating adult organ scaling.   

The exact mechanism that scales organs with adult body size is unknown 

(Andersen et al., 2013; Nijhout and Callier, 2015). However, ILPs are likely important; 

both pre-pupation larval body size and imaginal disc growth respond to insulin receptor 

activity (Shingleton et al., 2005). Furthermore, larval body size determines adult body 

size and the larval stage sequesters resources used to grow imaginal discs (Andersen et 

al., 2013). Therefore, it has been speculated that there must be a link between pre-

pupation body size and adult organ size (Andersen et al., 2013). In Manduca sexta, 

ecdysone is responsible for scaling wing size with adult body size and in insects in general, 

ecdysone determines final adult weight (Nijhout and Callier, 2015). Thus, scaling of adult 

organ size is likely mediated by both ILPs and ecdysone.  

Organs can differentially respond to changes in nutrition, and hence the same 

global levels of ILPs, by expressing different amounts of insulin receptors on the surface 

of the imaginal disc cells (Emlen et al., 2012). A greater number of insulin receptors 
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increases sensitivity to ILPs. Hence, two different organs can respond differently to the 

same amount of ILP, providing a mechanism for differential growth and organ scaling 

(Emlen et al., 2012; Nijhout et al., 2014).  

 

1.5 Insect compound eyes and scaling 

Insect compound eyes are no less susceptible to scaling than other organs, though due 

to their unique structure, body size imposes strict limits on visual acuity. Compound 

eyes can be classified as either apposition, superposition or neural superposition (Fig. 

1.2). Though they share much in the way of morphology and anatomy (Kunze, 1979; 

Land, 1997), superposition eyes pool photon capture over several ommatidia to increase 

sensitivity and are typically found in nocturnal or crepuscular species (Land, 1997). 

Though much of what is discussed applies equally to superposition and apposition eyes, 

we will focus primarily on apposition eyes, the type found in ants.  

Insect compound eyes are composed of repeating visual subunits, known as 

ommatidia (Land, 1997). Each ommatidium is effectively a tube, with a hexagonal lens (or 

facet) at one end and photoreceptors at the other (Fig. 1.2). The photoreceptors are 

aligned to form a light-collecting structure along the centre of the ommatidium called a 

rhabdom (Land, 1997). Each ommatidium samples a single point in space, contributing a 

single pixel to the complete image. Fewer ommatidia translate to fewer pixels, creating 

a lower resolution (Land, 1997). The angle between two rhabdoms of adjacent 

ommatidia (the interommatidial angle) also determines resolution. A small 

interommatidial angle means that neighbouring ommatidia sample from points close 

together. The larger the interommatidial angle, the greater the region that two adjacent 

ommatidia are sampling. This creates a blurrier (less resolved) image. Facet diameter 

also affects resolution. Whenever a wave front passes through an aperture, diffraction 
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takes place, creating an interference pattern. Interference becomes worse with smaller 

apertures, with maximum interference when the aperture is equal to the wavelength of 

the wave passing through. Hence, the smaller the facet diameter, the worse the 

interference pattern on the rhabdom and the poorer the image formed (Land, 1997). 

Facet diameter also affects sensitivity; larger facets enable more photons to be captured 

per second, allowing vision at lower ambient light levels (Fischer et al., 2011). 

Insect eyes function best when they are as large as possible, allowing for large 

facet diameters and small interommatidial angles, which provide high resolution and 

sensitivity (Land, 1997; Land and Nilsson, 2002; Warrant and McIntyre, 1993). However, 

eye size is restricted by the availability of space and resources (Nilsson, 1990; Spaethe 

and Chittka, 2003), both of which are governed by body size (Jander and Jander, 2002; 

Kapustjanskij et al., 2007; Rutowski, 2001; Spaethe and Chittka, 2003; Streinzer et al., 

2013). Increasing body size provides more space for greater numbers of ommatidia and 

for larger facets (Fischer et al., 2011). However, body size is limited by physiological and 

evolutionary constraints, as well as resource availability. Many adult insects fly, and a 

compound eye with human equivalent acuity would be too large to facilitate flight (Land, 

A) B) 

Figure 1.2 Cross section of different types of insect compound eye showing individual 
ommatidia. A) Apposition compound eye. Commonly found in diurnal insects. Each ommatidium 
collects light independently, with a single lens focussing light on a single set of photoreceptors 
(rhambdom). B) Superposition compound eye. Light collected by multiple ommatidia are focussed onto 
a single rhambdom to increase sensitivity. cz: clear zone. Modified from Warrant, 2004. 
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1997). Furthermore, body sizes in insects are thought to be limited due to relatively low 

ambient oxygen partial pressures combined with their tracheal system (see 1.8) 

(Harrison et al., 2010; Klok and Harrison, 2009).  To combat the limitations imposed by 

the nature of compound eyes and a small body size, compound eyes are typically 

heterogeneous (Collett and Land, 1975; Homberg and Paech, 2002; Land, 1997). This 

heterogeneity extends to morphology (facet diameter), anatomy (photoreceptor width) 

and physiology (photoreceptor response) (Burton et al., 2001). Thus, some sections of 

an eye have greater sensitivity and/or resolution. Highly acute regions often have specific 

functions, such as mate detection (Burton and Laughlin, 2003) or polarisation sensitivity 

(Labhart and Meyer, 1999). 

Given the limits imposed on vision by body size, it is unsurprising that the 

response of compound eyes to increases in body size has been investigated in many 

insect taxa, including; damselflies (Scales and Butler, 2016), crickets (Zagorski and Merry, 

2014), Hemiptera (Dander and Jander, 1994; Döring and Spaethe, 2009), flies (Stevenson 

et al., 1995), butterflies (Merry et al., 2006; Merry et al., 2011; Rutowski, 2001; Rutowski 

et al., 2009; Ziemba and Rutowski, 2000), bees (Jander and Jander, 2002; Kapustjanskij 

et al., 2007; Spaethe and Chittka, 2003; Streinzer et al., 2013, 2016) and ants (Baker and 

Ma, 2006; Bernstein and Finn, 1971; Klotz et al., 1992; Moser et al., 2004; Schwarz et al., 

2011; Zollikofer et al., 1995).  

In the investigations listed above eye size is estimated in a variety of ways; height, 

length, area, diameter and ommatidia number. Regardless of the estimation method, 

compound eyes increase in size with increasing body size, both intra- (Bernstein and 

Finn, 1971; Stevenson et al., 1995) and interspecifically (Jander and Jander, 2002; Scales 

and Butler, 2016). Many studies that report results of eye scaling are only reporting 

monotonic increases in size, rather than actual scaling relationships (Döring and Spaethe, 
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2009; Kapustjanskij et al., 2007; Moser et al., 2004; Streinzer et al., 2013; Zagorski and 

Merry, 2014; Ziemba and Rutowski, 2000). Of those that do report scaling relationships, 

the overwhelming majority show eye scaling with negative allometry, the exceptions 

being stingless bee eyes scaling with positive allometry (Streinzer et al., 2016) and 

nymphalid butterfly eyes scaling at near isometry (Rutowski et al., 2009). Increases in 

eye size can be mediated through increases in facet number (Schwarz et al., 2011; 

Zollikofer et al., 1995) or by increasing both facet number and facet diameter 

(Kapustjanskij et al., 2007; Schwarz et al., 2011; Spaethe and Chittka, 2003). The way in 

which compound eyes get bigger will be selected for by species specific visual ecology 

(Bauer and Kredler, 1993; Jander and Jander, 2002), which determines the necessity for 

increases in sensitivity or resolution. Furthermore, changes in eye size may also respond 

to mechanisms of body size increase, reflecting relative increases in cell size or number 

(Chown et al., 2007; Stevenson et al., 1995).  

 

1.6 Evolvability of scaling 

Though scaling is essential to morphological evolution (Shingleton et al., 2009), there is 

debate surrounding the ultimate ability of allometry to be the subject of selection. Low 

evolvability of allometry implies that there is an evolutionary constraint: “…processes 

that preclude a trait from reaching a phenotypic optimum or slow down its evolution 

toward this optimum” (Pélabon et al., 2014).  

Two processes may constrain the evolution of allometry; development and 

function (Bolstad et al., 2015; Pélabon et al., 2014; Tobler and Nijhout, 2010). 

Developmental constraints are hypothesised to influence evolutionary allometry because 

the three distinct levels of scaling (evolutionary, static and ontogenetic) are interlinked 

(Bolstad et al., 2015; Cheverud, 1982; Gould, 1966; Pélabon et al., 2013). Allometric 
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variation subject to selection is limited by the scope of variation provided by ontogenetic 

and static allometric parameters (Frankino et al., 2005; Voje et al., 2014). However, these 

allometries may be constrained in their variation because organs must function as part 

of a whole and, therefore, do not have an infinite morphospace in which to move. This 

potentially explains the evolutionary stability of allometric scaling, especially between 

closely related lineages (Gould, 1966; Pélabon et al., 2014). Functional constraints reflect 

the consequences of stabilising selection. The static allometry of an organ may be 

constrained because to deviate from certain boundaries would result in severe fitness 

deficits (Frankino et al., 2005; Mirth et al., 2016). Therefore, within a species, allometries 

do not vary much because to do so is heavily selected against (Weber, 1990). Further 

constraints may be caused by pleiotropy, where changes in scaling parameters have a 

negative effect upon another system (Bolstad et al., 2015). 

If allometry were constrained to the extent that evolvability was null, we might 

predict that closely related species would not differ in their slopes and intercepts, nor 

would we expect slopes and intercepts to respond to selection. However, this is not so. 

Comparisons of allometry between closely related species have revealed differences in 

scaling relationships (Baker and Wilkinson, 2001; Simmons and Tomkins, 1996). There 

is evidence that scaling does differ between populations (Emlen and Nijhout, 2000; Toju 

and Sota, 2006) and artificial selection experiments have manipulated both slopes 

(Bolstad et al., 2015; Stillwell et al., 2016; Voje et al., 2014) and intercepts (Bolstad et al., 

2015; Egset et al., 2012; Frankino et al., 2005; Frankino et al., 2007; Stillwell et al., 2016). 

Nevertheless, some experiments have been criticised on methodological grounds (Mirth 

et al., 2016; Stillwell et al., 2016). Principally, that scaling cannot be investigated as simply 

a monotonic increase in organ size with body size, but must be analysed specifically in 

the sense of a power relationship (Huxley and Teissier, 1936; Pélabon et al., 2014).  
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The current consensus is that both slopes and intercepts are evolvable between 

lineages, however, changes in intercept (grade shifts) are much easier to select for than 

slope shifts (Egset et al., 2012; Pélabon et al., 2014; Tobler and Nijhout, 2010; Toju and 

Sota, 2006; Voje et al., 2014). Thus, changes in the mean value of a character are easier 

to select for than changes in the rate at which that character scales with increasing body 

size. However, simply because something is possible under strong artificial selection, 

does not necessarily mean that such conditions exist in nature. If the evolvability of 

allometry is limited due to stabilising selection and functional constraints, the capacity to 

artificially induce changes in allometry is irrelevant because the outcome is the same – 

allometries may not be as free to evolve as theoretically possible.  

 

1.7 Physiological scaling  

Analogous to morphological scaling, physiological traits also scale with body size. These 

physiological traits can be analysed using the same linear allometric equation used to 

establish how morphological traits respond to increasing body size, both intra- or 

interspecifically.  

Locomotion is one such size-dependent physiological feature. The speed at which 

an animal travels is linked with body size and has been examined across many taxa, 

including mammals (Heglund and Taylor, 1988; Winter, 1999), birds (Alerstam et al., 

2007), amphibians (Wilson et al., 2000) and insects (Berrigan and Pepin, 1995; Dudley 

and Srygley, 1994; Hurlbert et al., 2008). Speed mostly scales with a negative allometry 

(Alerstam et al., 2007; Bejan et al., 2006; Dudley and Srygley, 1994; Heglund and Taylor, 

1988; Hurlbert et al., 2008), independent of the mode of locomotion (Bejan et al., 2006). 

However, some species of lizard (Garland, 1984) and amphibians during some 

developmental stages (Wilson et al., 2000) have mass-independent speeds. Across 
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terrestrial animals, walking is a combination of physiology and morphology, with longer 

legs reducing locomotive costs (Pontzer, 2007). For ants specifically, running speed is 

determined not just by body size, but also leg length (Hurlbert et al., 2008) and life 

history traits, such as being thermophilic (Sommera and Wehner, 2012).  

Closely associated with speed is wing beat or stride frequency, which also scales 

with mass. Stride frequency across mammals declines with increasing mass (Heglund and 

Taylor, 1988; Heglund et al., 1974), a pattern reflected in crabs (Whittemore et al., 2015) 

and lizards (Huey, 1982b; Whittemore et al., 2015). Wing beat frequencies in birds and 

bats scale with negative interspecific allometry (Norberg and Norberg, 2012) but with 

positive allometry across insects species (Byrne et al., 1998).  

Alongside locomotion, there are many other physiological traits that scale with 

body size across many species. Egg size in insects and reptiles scales with body size (Ford 

and Seigel, 1989; García-Barros, 2000; King, 2000; Sturm, 2016) as does clutch size in 

reptiles (Ford and Seigel, 1989; King, 2000). Even urination speed (Yang et al., 2014) and 

more holistic life history traits, such as lifespan (Atanasov, 2007; Holm et al., 2016) scale 

with body size across taxa separated by vast swathes of time and huge differences in 

body size. Overall, physiological processes are intimately correlated with body size, and 

metabolic rate is no exception.  

 

1.8 Metabolic rate  

Metabolism is the sum of all the catabolic and anabolic processes within an animal, the 

net energy of which is usable for all cellular and physiological processes (Alexander, 

1999; Chown and Nicolson, 2004). Metabolic rate is important because it is viewed as a 

modulator of other physiological processes; often referred to as a “pacemaker” (Glazier, 

2015; Hoppeler and Weibel, 2005). Metabolic rate has wide ranging impacts over 
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behaviour and ecology (Biro and Stamps, 2010; Burton et al., 2011; Gillooly et al., 2001; 

Glazier, 2015; West et al., 1997) as well as life history traits such as; reproductive 

capacity (Blueweiss et al., 1978; Hammond and Diamond, 1997; McNab, 1980), life span 

(Hulbert et al., 2007; Speakman, 2005) and growth (Brown et al., 2004; Sears et al., 

2012). However, the exact direction of causality is not as obvious as might be assumed. 

Increases in these life history traits might drive increases in metabolic rate rather than 

the converse. There are instances where metabolic rate and reproductive capacity do 

not correlate (Earle and Lavigne, 1990; Schimpf et al., 2012) or even have a negative 

relationship (Blackmer et al., 2005). Likewise, though there is evidence of growth being 

driven by metabolic rate (Derting, 1989; Glazier, 2015; Sears et al., 2012), changes in 

ontogenentic metabolic rate scaling in cockroaches implies the opposite (Woodland et 

al., 1968). It is likely that increases in growth instigate higher metabolic rates; growth 

incurs a metabolic cost, through the production of new tissue, and therefore we should 

expect metabolic rate to compensate accordingly (Glazier, 2015). Locomotion is another 

trait that is linked with metabolic rate (Niven and Scharlemann, 2005; Snelling et al., 

2011; Weibel and Hoppeler, 2005). Movement probably drives metabolic rates because 

animals choose when and how to move; there is no a priori reason to suppose that 

spontaneous increases in metabolic rate would cause increases in locomotion (Glazier, 

2015). Furthermore, a higher maximum speed requires a greater capacity to generate 

energy, and therefore may promote a higher metabolic rate (Biro and Stamps, 2010; 

Glazier, 2015; Reinhold, 1999; Speakman, 2005). Relationships between life history traits 

and metabolic rate are further confounded because many physiological traits (see above), 

including metabolic rate, co-vary with body size (Griebeler and Werner, 2016).  

Not all determinants of metabolic rate are ambiguous, many environmental 

factors have definitive effects on metabolism (Burton et al., 2011; Glazier, 2005). Factors 
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such as low oxygen availability cause metabolic rate depression in vertebrates (Bickler 

and Buck, 2007; Mortola, 1993) and invertebrates (Gorr et al., 2010; Hoback and Stanley, 

2001). The two most prominent determinants of metabolic rate across animals are 

temperature and body size (Chown and Nicolson, 2004; Clarke and Fraser, 2004; 

Gillooly et al., 2001; Kleiber, 1934; Rubner, 1883; White et al., 2006). External 

temperatures largely determine ectotherm body temperature and are consequently 

important for determining ectotherm metabolic rate (Clarke and Johnston, 1999; Huey, 

1982a; Killen et al., 2010; Whitford, 1973). Contrary to expectations, endotherm 

metabolic rate is also affected by environmental temperature (Clarke et al., 2010; White 

et al., 2007b). Furthermore, birds and mammals have a significantly elevated metabolic 

rate independent of body mass and temperature in comparison to ectotherms of 

equivalent size (White et al., 2006). Among insects, the effect of temperature was already 

“the most over-confirmed fact in insect physiology” over 50 years ago (Keister and Buck, 

1964). It is well established that insect metabolic rates increase with increasing ambient 

temperatures (Basson and Terblanche, 2010; Chown and Nicolson, 2004; Käfer et al., 

2015; Lighton and Bartholomew, 1988; Tribe and Bowler, 1968; Vogt and Appel, 1999). 

Size is also an important determinant of metabolic rate (Clarke and Johnston, 

1999; White et al., 2005). This is because larger animals have a greater mass of active 

tissue and this translates into higher metabolic rates. However, metabolic rate most 

commonly scales with negative allometry, therefore larger animals are relatively less 

metabolically active than smaller ones. This observation has created considerable debate, 

firstly about what causes this and secondly, whether there is a general rule that can 

explain metabolic rate scaling (Brown et al., 2004; Chown et al., 2007; Glazier, 2005; 

Glazier, 2010; Griebeler and Werner, 2016; West et al., 1997; West et al., 1999).  
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There has been substantial investigation into whether there is a universal 

metabolic scaling exponent (Agutter and Wheatley, 2004), beginning with Kleiber’s  

report on metabolic scaling across mammals (Kleiber, 1932). The most recent 

permutation of this idea is the metabolic theory of ecology (MTE). The MTE claims to 

explain the ¾ power metabolic scaling law observed across all of life, proposing that this 

is caused by the fractal nature of nutrient supply and uptake networks (Brown et al., 

2004; West et al., 1997; West et al., 1999). However, not all authors agree that 

interspecific metabolic rate allometry scales to the power of ¾ (Chown et al., 2007; 

Glazier, 2005; Glazier et al., 2015; Griebeler and Werner, 2016; White et al., 2006). 

Some investigators propose an exponent of ⅔ (Dodds et al., 2001; Heusner, 1982; 

White et al., 2006), purportedly caused by relative increases in surface area to volume 

ratios with body size (Agutter and Wheatley, 2004). Other authors propose no universal 

exponent; that it likely varies depending on taxonomy, physiology and environment 

(Clarke et al., 2010; Glazier, 2005; Glazier, 2009; Griebeler and Werner, 2016; Hayssen 

and Lacy, 1985; Terblanche et al., 2007; White et al., 2006). The values ⅔ and one have 

been proposed to provide boundaries within which the value of the exponent fluctuates. 

The extremes of ⅔ and one depend respectively on whether surface-related processes 

(e.g. nutrient uptake, heat loss) (Glazier et al., 2015; Hirst et al., 2014) or mass-related 

energy usage dominates (Glazier, 2005; Glazier, 2008).  The shape of an organism 

influences surface area related processes and therefore the metabolic rate scaling 

exponent. Surface area related processes dominate in some taxa, especially marine 

invertebrates. This is demonstrated in marine invertebrates, which frequently change 

shape during ontogeny. Elongation or flattening result in isometric metabolic rate scaling, 

rather than an exponent <1 as predicted by resource transport theory (Glazier et al., 

2015; Hirst et al., 2014). Both surface area and resource transport processes are 
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frequently present in an organism, hence the prevalence of intermediate values (Glazier, 

2005).  

There has been no definitive conclusion concerning the universality of the 

quarter-power scaling law. However, mounting evidence suggests that even if the MTE 

provides an adequate theoretical fit, there are enough empirical instances where it does 

not apply (Chown et al., 2007; Hirst et al., 2014; White et al., 2006). Thus, it becomes 

difficult to justify the application of a single all-encompassing scaling law (Agutter and 

Wheatley, 2004; Dodds et al., 2001). 

 

1.9 Gas exchange in insects  

Alongside the general environmental and physiological determinants of metabolic rate, 

arthropods (Chown and Nicolson, 2004) have an additional factor that is linked with 

variation in metabolism, namely ventilation patterns (Contreras and Bradley, 2009, 2010; 

Gibbs and Johnson, 2004). Insects breathe through a series of pores aligned laterally 

along the abdomen and thorax called spiracles. Each of these spiracles can be opened or 

closed via a muscular valve. When an insect is placed inside a respirometer, the pattern 

of spiracle opening and closing translates into different patterns of breathing, 

represented as volume of carbon dioxide excreted. There are three principle types of 

gas exchange; continuous, cyclic and discontinuous (Chown and Nicolson, 2004). These 

ventilation patterns are well documented in insects (Basson and Terblanche, 2011; 

Contreras and Bradley, 2010; Contreras and Bradley, 2011; Duncan et al., 2002; Marais 

et al., 2005), and especially ants (Gibbs and Johnson, 2004; Lighton and Berrigan, 1995; 

Lighton and Garrigan, 1995; Quinlan and Lighton, 1999; Schilman et al., 2005). 

Discontinuous gas exchange cycles (DGC) piqued the interest of biologists when they 

were hypothesised to have a role in water regulation in Agapema galbina (Lepidoptera) 
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pupae (Buck and Kesiter, 1955). There are many hypotheses explaining the evolution 

and proximate causes of DGC, though currently no consensus (Chown and Holter, 

2000; Chown et al., 2006; Hetz and Bradley, 2005; Lighton, 1998; Lighton and Berrigan, 

1995; Matthews and White, 2010). In comparison, functional explanations for the other 

forms of gas exchange, cyclic and continuous, are lacking.  

Discontinuous gas exchange cycles are typified by short bursts of carbon dioxide 

release followed by a longer period of no gas exchange at all and are commonly 

associated with quiescent animals (Lighton, 1998). The DGC has been demarcated into 

three distinct portions (Chown and Nicolson, 2004; Lighton, 1994): (1) The closed phase 

in which spiracles are entirely shut and there is no gas exchange; (2) The flutter phase 

in which spiracles open and close rapidly, allowing some gas exchange to occur; and (3) 

The open phase in which the spiracles are fully open and carbon dioxide leaves the 

trachea and oxygen enters.  

There are at least six hypotheses seeking to explain DGC. The oldest explanation 

for DGC is the hygric hypothesis, which posits that the adaptive function is to preserve 

water (Buck and Kesiter, 1955; Lighton, 1996; Quinlan and Gibbs, 2006). The hygric 

hypothesis states that the opening of spiracles to allow gas exchange also allows the loss 

of large amounts of water vapour (Schimpf et al., 2009). By using DGC, insects keep 

their spiracles mostly closed and therefore reduce water stress. This hypothesis has 

been treated with scepticism for several reasons. There is evidence that insects under 

water stress do not use DGC, precisely when DGC would be most advantageous 

(Quinlan and Hadley, 1993). Similarly, there are xeric species that might benefit from a 

ventilation pattern that reduces water loss and do not use DGC (Lighton and Garrigan, 

1995). Furthermore, there is evidence that respiratory water loss is minimal compared 
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with cuticular water loss and therefore preventing water loss via closing spiracles would 

have minimal adaptive value (Hadley, 1994; Quinlan and Hadley, 1993).   

The hygric hypothesis has been displaced by a series of other adaptive 

hypotheses. The chthonic hypothesis argues that DGC are an adaptive function to living 

in hypercapnic or hypoxic environments, principally in subterranean habitats (Gibbs and 

Johnson, 2004; Lighton, 1996; Lighton, 1998; Lighton and Berrigan, 1995). In claustral 

habitats, there is minimal diffusion of carbon dioxide away from a ventilating insect due 

to severely reduced movement of air. By ventilating discontinuously, an insect allows the 

maximum amount of time for excreted carbon dioxide to diffuse away before excreting 

more into the local environment. If carbon dioxide were continuously excreted, the 

build-up would create a hypercapnic environment, potentially leading to lethal exclusion 

of oxygen. The DGC prevents the build-up of dangerous levels of carbon dioxide and 

maintains preferential gas concentrations (Lighton, 1996; Lighton, 1998; Lighton and 

Berrigan, 1995). This hypothesis has been directly tested in the ant, Pogonomyrmex 

barbatus, the queens of which are subterranean post-mating. It was found that the ratio 

of water to carbon dioxide excretion did not differ among ventilation types (Gibbs and 

Johnson, 2004) indicating that the chthonic hypothesis cannot explain all instances of 

DGC.  

The oxidative damage hypothesis states that DGC prevent over-exposure to 

oxygen (Hetz and Bradley, 2005). Over exposure to oxygen causes cellular oxidative 

damage, which has been shown to increase mortality (Boardman et al., 2012; Orr and 

Sohal, 1994). Keeping spiracles closed is hypothesised to exclude oxygen from the 

tracheae and prevent excessive exposure. When insects are quiescent, metabolic 

demand is too low to use the amount of oxygen being delivered, hence the extended 

periods of spiracular closure (Hetz and Bradley, 2005). The oxidative damage hypothesis 
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specifically rejects the chthonic and hygric hypotheses; both would predict high oxygen 

concentrations within tracheae under hyperoxic conditions. Instead, there is modulation 

of tracheal oxygen partial pressures irrespective of external oxygen concentrations 

(Hetz and Bradley, 2005). Experimental support for the oxidative damage hypothesis is 

mixed; direct observations indicated no link between hyperoxia and increases in reactive 

oxygen species within Samia cynthia pupae (Lepidoptera) (Boardman et al., 2012). 

However, it has been shown that in response to decreasing environmental oxygen, ants 

(Lighton and Garrigan, 1995) and dung beetles (Chown and Holter, 2000) will decrease 

the length of their closed phase.  

Other investigators maintain that different ventilation patterns allow the 

exchange of greater or lesser amounts of oxygen and carbon dioxide relative to 

metabolic demand (Contreras and Bradley, 2010), but DGC may not be an adaptive trait 

at all.  Discontinuous ventilation could be the result of spiracles responding to setpoints 

of carbon dioxide and oxygen concentration (Chown and Holter, 2000; Förster and 

Hetz, 2010). There is also a non-adaptive neural hypothesis that reconciles contradictory 

experimental findings and numerous adaptive hypotheses. It has been suggested that 

DGC are the result of reductions in brain activity (Matthews and White, 2010). In 

quiescent states, there is devolution of spiracular control to decentralised ganglia (Niven 

et al., 2008), where the default ventilatory control is DGC (Matthews and White, 2010). 

Decapitated cockroaches (Edwards and Miller, 1986) and ants (Lighton and Garrigan, 

1995) engage in DGC, implying that DGC are mediated by ganglia rather than the brain.  

Cockroaches have also been shown to switch to DGC when their brains were 

sufficiently cooled, a way of inducing reduced brain activity (Matthews and White, 2013). 

Furthermore,  DGC are prevalent in ant queens, which frequently have atrophied brains 

after mating, living the rest of their lives underground (Julian and Gronenberg, 2002). 
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Neural tissue is expensive (Niven and Laughlin, 2008) and therefore when inactive, 

reducing brain activity would be energetically beneficial.  

The benefit of the neural control hypothesis is that it is compatible with other 

DGC hypotheses. For instance, if inactive with a minimally active brain, metabolic rates 

will be lower and therefore, it follows that DGC could be the default state because there 

is less requirement for gas exchange (Contreras and Bradley, 2010). The neural 

hypothesis is also compatible with the setpoint hypothesis; the proximate mechanism by 

which the ganglia regulate gas exchange could be spiracular responses to local gas 

concentrations (Chown and Holter, 2000; Förster and Hetz, 2010). Recent opinion has 

moved towards the idea of multiple adaptive explanations of DGC (Chown, 2002; 

Chown and Holter, 2000; Matthews and White, 2010). This paradigm is built on the 

conflicting multiple adaptive hypotheses (White et al., 2007a) and several independent 

evolutions of DGC within the insects (Marais et al., 2005).  

The amount of attention given to DGC over the past 60 years is disproportionate 

to the prevalence of DGC among insects; it has been observed in only five orders: 

Coleoptera, Hymenoptera, Blattodea, Lepidoptera and Orthoptera (Marais et al., 2005). 

Thus, it is imperative to establish the adaptive value, or lack thereof, of the other forms 

of gas exchange which are prevalent throughout the other insect orders (Marais et al., 

2005). Compared with DGC, cyclic and continuous ventilation patterns are largely 

unexplored. The term cyclic can also be applied to DGC, in that it is a ventilation pattern 

that releases carbon dioxide in short bursts at regular periods. Here it shall be used in 

the strict sense of pronounced, regular peaks and troughs of carbon dioxide release, 

where carbon dioxide release never quite reaches zero, unlike in DGC. Continuous 

ventilation has no obvious regularity regarding carbon dioxide release, spiracles are kept 

open and gas exchange occurs constantly (Gray and Bradley, 2006; Lighton, 1994). Cyclic 
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gas exchange is normally associated with a higher metabolic rate than DGC, and 

continuous gas exchange occurs at the highest metabolic rates (Chown and Nicolson, 

2004; Gibbs and Johnson, 2004). We are unaware of any adaptive hypotheses about 

cyclic gas exchange, however it has been shown that some instances of cyclic gas 

exchange are in fact DGC. Under low flow rates in a respirometer, the closed and flutter 

phases can be lost due to temporal averaging of carbon dioxide release (Gray and 

Bradley, 2006). Continuous gas exchange is used by insects at high temperatures or 

during activity (Basson and Terblanche, 2011; Contreras and Bradley, 2010; Klok and 

Chown, 2005). The stimulus to change between different ventilation patterns is currently 

thought to be induced by higher metabolic rates creating increasingly higher demand for 

gas exchange, resulting in longer spiracular opening times (Contreras and Bradley, 2010; 

Gibbs and Johnson, 2004). 

 

1.10 Ants  

The southern red wood ant, Formica rufa, is a locally abundant ant found in conifer and 

mixed forests of southern England. Its distribution extends across central Europe into 

Fennoscandinavia (Collingwood, 1979). The ants form nests composed of large mounds 

of twigs, pine needles and leaves rather than the subterranean nests of other ants. In the 

UK, and certainly in Sussex (pers. obvs.), these nests are polygynous. In other 

populations across Europe, nests are known to by monogynous (Collingwood, 1979). 

Virgin queens mate on the nest surface, shed their wings and return to the same nest 

from which they hatched. New nests are formed from budding, where a mated queen 

will depart her home nest with a contingent of workers to found a new nest nearby 

(Collingwood, 1979; Keller, 1991)  
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The workers actively forage from early spring, their diet is honeydew; the sugar-

laden excretions of arboreal aphids (Skinner, 1980). Larvae are fed on invertebrates 

encountered by the foragers (Collingwood, 1979; Skinner, 1980). Foraging occurs along 

well-demarcated paths (Rosengren, 1977), with foragers following the pheromone trails 

left by homeward bound nestmates that have successfully found food. Trail fidelity is 

very high, workers return to the same trails after over-wintering (Rosengren and 

Fortelius, 1986).  

Formica rufa have a variety of navigation tools that allow them to reach food 

sources and return to the nest (Knaden and Graham, 2016). One such tool is path 

integration. On an outward journey, an ant merges information about total distance and 

direction travelled into a single vector. This vector allows the ant to know it’s position 

relative to the nest and to directly return to the nest having followed a tortuous route. 

Memories of the vector when feeding allow an ant to return directly to that food source 

(Cheng et al., 2006; Collett et al., 1999; Fernandes et al., 2015).  

Unlike many ants, F. rufa also exhibits visually driven navigation behaviours. 

Though foragers will mark trails with scent, visual landmarks are crucial for navigating 

back to the nest after foraging for food (Graham and Collett, 2002; Graham et al., 2003; 

Nicholson et al., 1999). Conspicuous objects and landmark recognition are important 

for creating robust navigational memories and learning new routes (Graham et al., 2003). 

Memories of landmarks are stored from particular vantage points (Harris et al., 2007) 

and therefore to return to a familiar location the insect moves until the current view 

matches the view from the stored memory (Harris et al., 2007; Judd and Collett, 1998).  

There are three other species of Formcia studied in this thesis: F. fusca, F. lugubris 

and F.sanguinea. The most closely related species to F. rufa is F. lugubris, which is found 

across Europe, but is restricted to northern England (Collingwood, 1979). Just like F. 
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rufa, they feed mostly on honeydew and will hunt other invertebrates with which to feed 

larvae. Unlike F. rufa, F. lugubris are polydomous, a condition where workers will move 

between nests, providing food and resources to multiple nests. This creates a vast 

network of densely-packed, interconnected nests (Ellis and Robinson, 2014; Ellis et al., 

2014).  

Formica sanguinea is a facultatively dulotic Eurasian species; they will raid nests of 

Raptiformica subgroup (D’Ettorre and Heinze, 2001; Goropashnaya et al., 2012; Mori et 

al., 2000) stealing pupae and larvae which are then raised in the F. sanguinea nests (Mori 

et al., 2000). On maturation, these stolen juveniles then perform brood and nest care in 

place of F. sanguinea workers (Hölldobler and Wilson, 1990). Formica fusca differ from 

the previous three species in that their nests are rather small, approximately 500 freely 

foraging workers (Collingwood, 1979; Wallis, 1964); significantly smaller than the several 

thousand in F. rufa and F. lugubris colonies. Formica fusca have single or multi-gyne 

subterranean nests and forage for honeydew and invertebrate prey (Collingwood, 1979).  

 

1.11 Summary of contributions  

This thesis makes several novel contributions to the field of allometry. In terms of 

morphological scaling, we show that different regions of the Formica rufa compound eye 

scale differentially. We assessed this by measuring how facet diameters in different 

regions of the eye vary with increasing body size. Different regions of the eye respond 

to increases in size with different magnitudes. To our knowledge, this is the first 

demonstration of differential scaling within a single organ. This demonstrates that 

homologous cells within an organ can respond with high resolution to their 

developmental environment. This process of internal differential scaling provides a 

hitherto unconsidered mechanism by which to evolve novel organ morphology.  
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We next considered other levels of underexplored morphological scaling, and 

this led us to comparisons of eye scaling among F. rufa nests within a population. We 

show that though eye area scaling was similar among nests, the increase in eye size 

with body size was mediated differently between some nests. Workers from some 

nests increase their eye size primarily through increases in facet number, while other 

workers from different nests increase eye size by increasing facet diameter. This 

shows that whole-organ scaling rules can vary within a population level.  

We were also curious about how widespread differential scaling within an organ 

was across the genus, and, if it were restricted to certain species if this could shed some 

light on either a phylogenetic or ecological component to the phenomenon. Differential 

slope shifts were only present in two of four species. There was no obvious ecological, 

life history or phylogenetic correlate. However, the scaling between facet diameter and 

number was conserved across all four species, indicating that whole-organ scaling rules 

are conservative across the genus. This contrasts with the differences in facet diameter 

scaling between homologous regions among species. This shows that individual species 

can have specific sensory adaptations whilst still conforming to genus-wide scaling rules.  

Having established that substantial differences existed in the morphological 

scaling between F. rufa nests from a population, we investigated if a similar phenomenon 

existed at a physiological level. Metabolic rate scaling proved invariant between nests, 

indicating that physiological scaling is likely not as developmentally susceptible to 

environmental changes as morphological scaling. We determined that in F. rufa changes 

in ventilation pattern are caused by changes in relative activity independent of metabolic 

rate. Previous studies concluded that metabolic rate drives ventilation patterns, 

however, our data indicates that increases in metabolic rate and changes in ventilation 

pattern are likely co-occurring with the onset of movement. We also show that 
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estimates of intraspecific metabolic scaling exponents in insects are dependent on model 

structure and the inclusion of ventilation type. This has important implications for 

exponent estimates across the fields of respiratory metabolism and physiological 

ecology.  
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Chapter 2: Differential scaling within an insect compound eye 
 

2.1 Abstract 

Environmental and genetic influences cause individuals of a species to differ in size. As 

they do so, organ size and shape are scaled to available resources whilst maintaining 

function. The scaling of entire organs has been investigated extensively but scaling within 

organs remains poorly understood. By making use of the structure of the insect 

compound eye, we show that different regions of an organ can respond differentially to 

changes in body size. Wood ant (Formica rufa) compound eyes contain facets of different 

diameters in different regions. When the animal body size changes, lens diameters from 

different regions can absolutely increase or decrease in size either at the same rate (a 

‘grade’ shift) or at different rates (a ‘slope’ shift). These options are not mutually 

exclusive, and we demonstrate that both types of scaling apply to different regions of 

the same eye. This demonstrates that different regions within a single organ can use 

different rules to govern their scaling, responding differently to their developmental 

environment. Thus, the control of scaling is more nuanced than previously appreciated, 

diverse responses occurring even among homologous cells within a single organ. Such 

fine control provides a rich substrate for the diversification of organ morphology. 

 

2.2 Introduction 

In natural environments, adults from a single species can vary enormously in body size 

owing to a combination of genetic and environmental factors. Organ size changes to 

accompany changes in body size, a process known as allometric scaling (Huxley and 

Teissier, 1936; Shingleton et al., 2009). Theories of organ scaling (Emlen et al., 2012; 

Shingleton et al., 2009) have focused on entire organs and how their relative proportions 
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change with whole body size, largely ignoring changes in the size and number of cells 

within organs (Stevenson et al., 1995). Here, we investigate scaling within an organ, the 

compound eye of an insect. 

Organ scaling has been studied in numerous taxa but particularly in 

holometabolous insects (Berrigan, 1991; Emlen, 2008; Miyatake, 1993; Nijhout and 

Grunert, 2010; Tomkins, 1999) because the organs of adults of these insects develop 

during pupation from cellular monolayers, called imaginal discs (Currie et al., 1988; 

Morata and Lawrence, 1979). Insect compound eyes provide an opportunity to explore 

scaling within an organ because the facet array provides a read-out at cellular-level 

resolution of relative investment in individual facets (Shingleton et al., 2005; Stevenson 

et al., 1995). During development individual retinal cells arise from an ommatidial 

progenitor (Egelhaaf et al., 1988; Friedrich et al., 1996) and do not contribute to adjacent 

ommatidia as they differentiate (Wolff and Ready, 1991). Therefore, facet scaling 

provides some information about resource allocation at the cellular level within an 

imaginal disc during development. 

We studied the scaling of wood ant (Formica rufa L.) worker compound eyes. 

The area of their compound eyes as well as the numbers of facets and their diameters 

increase with body size, though they do so with negative allometry. We found substantial 

heterogeneity in scaling of facet diameter between different regions of the compound 

eye, demonstrating hitherto unknown control of scaling of structures within organs. 
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2.3 Materials and methods 

2.3.1 Animals 

Formica rufa (Hymenoptera: Formicidae) colonies were collected from Broadstone 

Warren, Sussex, UK (51°04'40.8"N, 0°01'48.0"E) between June 2013 and August 2014, 

and maintained indoors at 21°C under a 12 L : 12 D cycle. 

 

2.3.2 Specimen preparation 

Individual ants were restrained and transparent nail varnish (Rimmel London, UK) was 

applied to both compound eyes to create a cast. Once dried, the casts were removed, 

flattened and mounted onto 12.5 mm specimen stubs (Agar Scientific, UK). The rear left 

femur of each ant was used as a proxy for the size of the ant (Espadaler and Gómez, 

A) B) 

Figure 2.1 Regional differences exist in the diameters of facets from compound eyes of 
wood ant workers. A) A heat-map of the diameter of each facet from a single wood ant worker 
compound eye, 382 facets in total. B) As in A) but for an eye from a larger worker. A – anterior, D – 
dorsal, P – posterior, V – ventral.  
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2001). Specimens were imaged using a scanning electron microscope (S420 Stereoscan, 

LEO Electron Microscopy Ltd., Germany). 

 

2.3.3 Measurements 

Nine facet diameters from four separate eye regions were selected at random and 

measured from 66 ants (2376 facets in total) from three colonies. The diameters of 

every facet from a representative small and large ant were measured to produce eye 

‘heatmaps’. Diameters were measured from scanning electron micrographs using ImageJ 

v. 1.48 (Schneider et al., 2012). Facets were sampled from near the margins of the eye 

Figure 2.2 The diameters of facets from different eye regions scale differentially. The 
graphs show the scaling of facets from the anterior, posterior, dorsal or ventral regions of the compound 
eye for workers from three wood ant nests. 
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in each of the regions respectively. This prevented facets from being sampled from the 

centre of the eye or from ambiguous regions. Facets were not sampled from the outer 

two rows because these were often deformed to accommodate the eye meeting the 

cuticle of the head.  

 

2.3.4 Statistics 

Statistics were calculated using R v. 3.1.2. (R Core Team, 2016). Facet diameter scaling 

was investigated with linear mixed effect models by using the lme function from the 

‘nlme’ package (Pinheiro et al., 2016). Custom contrast matrices were used to make post 

hoc multiple pair-wise comparisons (t-tests) of linear mixed effect models with the 

estimable function from the ‘gmodels’ package (Warnes et al., 2015).  

 

2.4 Results 

We measured the facet diameters of the eyes of small and large workers (Fig. 2.1), 

creating maps of facet diameters (Schwarz et al., 2011). These maps revealed differences 

in facet diameters between the large and the small workers, as well as regions of the eye 

in which facets differed systematically in diameter. In the eye of the larger worker, the 

largest facets are found mainly in the anterior–dorsal region, whereas in the smaller 

worker eye, the largest facets are restricted to the anterior–dorsal and ventral–

posterior regions (Fig. 2.1). To quantify differences in facet diameter between regions 

and across a range of worker body sizes, we measured facet diameters from four regions 

(anterior, posterior, ventral and dorsal) of the compound eye.  

Comparisons among eye regions showed that, for a given body size, facets 

differed in absolute diameter between regions within an individual ant. Facet diameters 

were, however, larger across all regions of the larger worker eyes than in those of 
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smaller workers. The intercept of the posterior region was significantly higher than that 

of the anterior region (t65,188 = 2.69, p = 0.008). The dorsal region had a significantly 

lower intercept than either the posterior (t65,188 = 3.28, p = 0.001) or ventral eye regions 

(t65,188 = 2.05, p = 0.04). There were no differences among the comparisons of the 

remaining regions (t65,188 < 1.47, p > 0.1). 

Thus, as workers increase in size, facets in some regions are absolutely larger 

than others but increase in diameter proportionally producing grade shifts (Fig. 2.2). 

Comparison among eye regions also revealed significant differences in the slope of the 

scaling relationship, indicating that facet diameters in some regions became relatively 

larger than others with increasing body size. The facet diameters in the anterior (t65,188 

= 3.36, p = 0.001) and dorsal regions of the eye (t65,188 = 2.65, p = 0.009) increased with 

body size with a greater amount than those from the ventral eye region. There were no 

differences among the comparisons of the remaining regions (t65,188 < 1.81, p > 0.07). 

Thus, as workers increase in size, facets in the anterior–dorsal region increase in 

diameter at a greater rate than the rest of the eye. 

 

Table 2.1 Linear model co-efficients corresponding to data presented in Fig. 2.2. 

Eye region Slope ± s.e. Intercept ± s.e. p-value r2 
Anterior 3.27 ± 0.47 11.65 ± 0.93 >0.0001 0.44 
Dorsal 2.90 ± 0.52 10.92 ± 1.04 >0.0001 0.32 

Posterior 2.27 ± 0.65 14.72 ± 1.32 0.001 0.15 
Ventral 1.37 ± 0.42 13.31 ± 0.85 0.002 0.13 

 

2.5 Discussion 

Comparison of facet diameters among different regions of the wood ant compound eye 

shows that they scale heterogeneously. In some regions, large facets increase in diameter 

proportionally with absolutely smaller facets in other regions, indicative of grade shifts. 

This implies that facets in these regions are of equal importance, and that additional 
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resources associated with increased body size are allocated proportionately. Some 

regions differ in slope of their scaling relationships, showing that available resources are 

disproportionately allocated within the developing eye imaginal disc, larger individuals 

investing more in the anterior and dorsal regions of the compound eye than the ventral 

region. 

 

2.5.1 Proximate mechanisms 

We propose that individual cells within an imaginal disc use nutrients to different extents. 

Growth and nutrition are linked by insulin production (Nijhout et al., 2014; Wu and 

Brown, 2006). Cells may show regional differences in their expression of insulin 

receptors, so that when exposed to the same increased levels of insulin-like peptides 

those that express more insulin receptors will grow at a faster rate. This mechanism is 

analogous to that proposed to account for the differential growth of imaginal discs 

underlying exaggerated traits and could provide the basis for the evolution of organ 

shape changes (Emlen et al., 2012). One putative mechanism is that adjusting the number 

of insulin and ecdysone receptors in different parts of an imaginal disc could alter the 

shape of an entire organ. Such changes could, for example, contribute to the evolution 

of the horns of adult males from different species of Onthophagus, which differ in the 

number of prongs and their shape (Emlen et al., 2005). 

 

2.5.2 Functional implications 

Increases in facet diameter improve sensitivity by improving photon capture (Land, 

1997). Thus, differences in facet diameter within the wood ant compound eye are 

presumably a consequence of needing regions of high sensitivity and resolution with 

limited resources and space available. Such specialized regions are common in compound 
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eyes and are typically associated with specific aspects of behaviour where high 

performance is required, such as mate or prey detection (Land, 1997). However, 

previous studies have not considered that particular regions of the compound eye may 

differ from one another in terms of their scaling (Everett et al., 2012).  

Slope shifts indicate differential investment in particular regions depending on 

body size. Such differential investment may be related to task differentiation; despite 

lacking distinct morphological castes, larger ants forage further from the nest than 

smaller ants (Wright et al., 2000), which may necessitate greater investment in vision. 

However, rhabdom structure and interommatidial angles are needed to determine the 

impact of these differences in scaling upon wood ant vision.  

More generally, increased investment in specific regions of the compound eye or 

other sensory structures may confer an advantage on larger individuals of a particular 

species in specific tasks, especially when such regions are linked to the detection of 

mates or prey. This raises the possibility that eye regions such as the love spot of male 

houseflies (Burton and Laughlin, 2003) may also show scaling indicative of greater 

investment in larger individuals. This would produce exaggerated sensory structures 

analogous to the exaggerated morphological traits more typically associated with sexual 

selection, such as Onthophagus beetle horns (Emlen et al., 2005). However, the lattice 

structure of the compound eye may constrain investment in such regions, preventing 

them from showing the extreme positive allometry of beetle horns. 
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Chapter 3: Colony-level differences in wood ant eye scaling   

3.1 Abstract  

Differential organ growth during development is essential for adults to maintain the 

correct proportions and achieve their characteristic shape. Organs scale with body size, 

a process known as allometry that has been studied extensively in a range of organisms. 

Such scaling rules, typically studied from a limited sample, are assumed to apply to all 

members of a population and/or species. Here we study scaling in the compound eyes 

of workers of the wood ant, Formica rufa, from different colonies within a single 

population. Workers’ eye area increased with body size in all the colonies showing a 

negative allometry. However, both the slope and intercept of some allometric scaling 

relationships differed significantly among colonies. Moreover, though mean facet 

diameter and facet number increased with body size, some colonies primarily increased 

facet number whereas others increased facet diameter, showing that the cellular level 

processes underlying organ scaling differed among colonies. Thus, the rules that govern 

scaling at the organ and cellular levels can differ even within a single population. 

  

3.2 Introduction   

Understanding how organ size and shape is controlled during development is a major 

challenge in biology. The control of organ morphology is particularly problematic for 

organisms that need to develop organs to meet specific requirements under fluctuating 

conditions and resources. In natural environments, adults from a single species can vary 

enormously in body size due to a combination of genetic and environmental factors. The 

changes in organ size that accompany changes in body size can be characterised by 

allometric scaling relationships. The scaling of any feature with size can be described by:  
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𝑌𝑌 = 𝑏𝑏𝑥𝑥𝛼𝛼 

Where x is a measure of body size, Y is the size of the organ in question, 𝛼𝛼 is the scaling 

exponent and b is the initial growth index (Huxley and Teissier, 1936).    

 When no change occurs in the relative size of an organ with body size (𝛼𝛼 = 1) 

the relationship is described as isometric (Lease and Wolf, 2010). More typically, 

however, organs show negative allometries (𝛼𝛼 < 1) becoming smaller relative to larger 

body sizes (Eberhard, 2009; Eberhard et al., 1998). Even with negative allometries organs 

can be absolutely larger in animals with a greater body size, proportionally smaller when 

compared to the same organ in smaller conspecifics (Gayon, 2000; Huxley and Teissier, 

1936; Klotz et al., 1992). In rare cases, organ size may show positive allometry increasing 

in size greater than body size (𝛼𝛼 > 1) (Emlen, 1997; Gould, 1973). Such positive 

allometry is often associated with organs under sexual selection (Emlen, 1997; Gould, 

1973).  

 The scaling of different organs within a body is the product of differential growth; 

as an organism grows larger, certain organs grow at a faster rate than others (Eberhard 

et al., 1998; Emlen et al., 2012). This is thought to occur through differential resource 

allocation (Bonduriansky and Day, 2003; Emlen et al., 2012; Kodric-Brown et al., 2006), 

whereby resources are distributed to different organs at different rates. Scaling has been 

studied in many taxa including mammals and birds (Burton, 2006; Emlen, 2008; Gatesy, 

1991; Prange et al., 1979) and especially insects (Berrigan, 1991; Emlen, 2008; Miyatake, 

1993; Nijhout and Grunert, 2010; Tomkins, 1999). In part, this is due to the power of 

genetic tools available in the fruit fly Drosophila melanogaster (Shingleton et al., 2009) but 

also because of the mode of development of holometabolous insects: the organs of these 

adult insects develop at the end of a period of larval growth from ectodermally-derived 
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cellular monolayers called imaginal discs (Currie et al., 1988; Morata and Lawrence, 

1979).  

Differential resource allocation to imaginal discs during pupation is mediated 

through insulin-like peptides (ILPs) and their receptors (Shingleton et al., 2005). During 

the larval (or feeding) stage ILPs are produced in response to changes in nutrition 

(Nijhout et al., 2014; Wu and Brown, 2006) and, along with ecdysone, are responsible 

for inducing somatic growth (Nijhout and Callier, 2015). During the pupal (or non-

feeding) stage imaginal disc cell growth is also mediated by ILPs, but ILP release is 

controlled via ecdysone levels instead of responding to nutrition (Nijhout and Callier, 

2015). Insulin receptors are expressed by imaginal disc cells (Shingleton et al., 2008) the 

greater the number of receptors, the more sensitive the disc is to increases in ILPs 

(Emlen et al., 2012). Hence, greater nutrition leads to increases in organ size, but the 

scaling of different organs varies depending on the relative sensitivities to ILPs (Emlen 

and Allen, 2003; Lavine et al., 2015; Shingleton et al., 2007). Additional factors, including 

genetics (Bargum et al., 2004; Shingleton et al., 2009; Stevenson et al., 1995) and 

temperature (Nijhout et al., 2014; Shingleton et al., 2009), will also have an impact upon 

scaling and size changes in response to feeding. 

  Organs such as the compound eyes and wings of insects provide an opportunity 

to explore scaling at the cellular level because external structures visible in adult organs 

provide a read-out at a cellular-level resolution (Bonduriansky and Day, 2003; Emlen et 

al., 2012). In compound eyes this means that the size of the facets are representative of 

the level of cellular growth and division that occurs during development (Oliver and 

Gruss, 1997). The scaling of compound eyes with body size has been investigated in 

numerous insect species (Baker and Ma, 2006; Bernstein and Finn, 1971; Jander and 

Jander, 2002; Kapustjanskij et al., 2007; Klotz et al., 1992; Schwarz et al., 2011; Spaethe 
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and Chittka, 2003; Streinzer et al., 2013; Zollikofer et al., 1995). In all these investigations 

insect compound eyes increase in size (measured as either eye length or area) with 

increasing body size but show negative allometry. Some species, such as Cataglyphis 

albicans, C. bicolor, C. fortis (Zollikofer et al., 1995), Camponotus pennsylvanicus (Klotz et 

al., 1992) and Melophorus bagoti (Schwarz et al., 2011), primarily increase facet number 

as they get larger whereas others, such as the bee Bombus terrestris (Kapustjanskij et al., 

2007; Spaethe and Chittka, 2003) and the ants Solenopsis sp. (Baker and Ma, 2006), and 

Formica integroides (Bernstein and Finn, 1971) increase facet diameter and facet number.  

Wood ants, Formica rufa (L.), form nest mounds (Fig. 3.1a) containing up to 100 

queens and 100,000-400,000 workers without distinct castes (Collingwood, 1979). 

Workers form large trails within woodlands (Fig. 3.1b) and use visually-guided navigation 

whilst foraging (Graham and Collett, 2002), ensuring that resource allocation to the 

compound eye is important for their ecology, and suggesting that scaling relationships 

within the visual system have a functional consequence. We studied the scaling of wood 

ant compound eyes, exploring organ-level morphological changes in eye area, facet 

number and size and how this differed between nests. We found substantial 

heterogeneity in eye scaling between different nests within the same population. This 

heterogeneity calls into question many inherent assumptions made by studies examining 

differential organ scaling. 
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3.3 Methods  

3.3.1 Animals  

Whole colonies of Formica rufa (L.) (Hymenoptera: Formicidae) were collected from 

Ashdown Forest, Sussex (N 51 4.680, E 0 1.800) between June 2013 and August 2014, 

and maintained under a 12:12 hour light:dark cycle indoors at 21°C. Foraging workers 

from nest #1 and #2 were sampled simultaneously during the end of 2013, ants from 

nest #3 were sampled from August 2014.   

  

Figure 3.1 Size variation in wood ant (Formica rufa) workers. A) A wood ant nest, and 
B) workers on a foraging trail. C) Workers from a single nest are morphologically undifferentiated 
but span a wide range of body sizes. 
 

A) B) 

C) 
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3.3.2 Specimen preparation  

Individual ants were selected from a colony at random and restrained with Plasticine 

(Early Learning Centre, UK). Transparent nail varnish (Rimmel London, UK) was applied 

to both compound eyes using a cocktail stick to create a cast. Ants were then stored at 

4°C for a minimum of 48 hours to ensure the casts completely dried. The nail varnish 

casts were removed, flattened with incisions and mounted on to 12.5 mm specimen 

stubs (Agar Scientific, UK). Casts were made as in Ribi et al. (1989). The rear left femur 

of each ant was mounted along with the eye cast as a proxy for the size of the ant. Nail-

varnish eye casts and femurs were gold-coated and imaged using a scanning electron 

microscope (S420 Stereoscan, LEO Electron Microscopy Ltd., Germany).   

  

3.3.3 Measurements  

Sixty six ants from three separate colonies were measured; 17 from nest #1, 30 from 

nest #2 and 19 from nest #3.  Femur length, facet diameters, facet counts, eye areas and 

eye dimensions were measured from scanning electron micrographs using ImageJ v.1.48 

(Schneider et al., 2012). Facet diameters are known to be non-uniform across compound 

eyes of insects. To account for this variation we split the eye into four regions (anterior, 

posterior, dorsal and ventral). Facet diameters were measured from three sets of three 

facets from these eye regions (i.e. 3 measurements from each region, 12 measurements 

from each cast). In two ants, the diameters of all the facets were measured. Eye area 

was calculated by approximating the shape of the eye as an oval. To validate this 

approximation we measured the real eye area from 15 ants (five ants per nest) and 

compared the real measurements with the approximations using a linear regression. The 

results of this analysis (Fig. 3.8) indicated that approximating eyes as ovals provided an 

accurate measure of eye area (intercept = 4.39 ± 5.62, p = 0.448; slope = 0.96 ± 0.03, p 
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< 0.0001; r2 = 0.98).  Facets were counted by hand from one of the eyes of each ant 

from scanning electron micrographs. Right eye was primarily used but the left eye was 

employed on occasions where the right eye was rendered unusable. Left eyes were 

employed too infrequently to establish if a statistical difference existed between them. 

Femur length was selected as a proxy for mass, though it scales positively with mass in 

Formicines (Espadaler and Gómez, 2001).  

  

3.3.4 Statistics  

Eye area, mean facet diameter and facet number were analysed using analysis of 

covariance (ANCOVA) constructed with R base-package (R Core Team, 2016). Non-

significant ANCOVA terms were eliminated step-wise until only significant terms 

remained in the model. For cases in which data violated the assumptions of ANCOVA, 

we compared the output to robust linear models constructed using the lmRob function 

from the ‘robust’ package (Wang et al., 2017). There were no differences between 

analyses performed with robust linear models and ANCOVAs.  

Principle component analysis (PCA) was conducted using R base-package (R core 

team, 2014) and cluster analysis was conducted using the Mclust function from the 

“mclust” library (Fraley et al., 2012), which uses Baysian Information Criterion (BIC) 

scores from model-based inferences to calculate the optimum number of clusters. Data 

were normalised prior to PCA to ensure equal variance amongst groups.  

Custom contrast matrices were used to make post-hoc multiple pair-wise 

comparisons of ANCOVAs with the estimable function from the ‘gmodels’ package 

(Warnes et al., 2015). All statistics were calculated using R v.3.1.2. 
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3.4 Results  

3.4.1 Size variation in wood ants  

 

Wood ant workers lack distinct morphological castes but they span a wide range of body 

sizes (Fig. 3.1c). Even with a single colony, the smallest workers can be less than half the 

size of the largest (Fig. 3.1c: 3.4). Irrespective of size, workers possess small, flat 

compound eyes located laterally on their head (Fig. 3.2) but larger workers possess 

larger eyes than their smaller counterparts (Fig. 3.5).  

 

3.4.2 Eye morphology  

We quantified the differences in the area of compound eyes of small and large workers 

from three separate nests, using the square-root of eye area to preserve dimensionality 

(Fig. 3.3). As expected, in all three nests the compound eye area increased with 

increasing ant size (F63,59 = 297.16, p < 0.001; subscript denotes sample size, degrees of 

freedom). The compound eyes of smaller workers were absolutely smaller but larger 

relative to their mass than those of their larger counterparts (Fig. 3.3a). Consequently, 

B) A) 

Figure 3.2 A) A frontal view of the head of a large worker viewed under a scanning electron 
microscope. B) Close-up of surface of worker eye showing details of the facet array.   
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for each of the three nests eye area had a negative allometric scaling relationship scaling 

relationship with hind femur length (Espadaler and Gómez, 2001), which we used as a 

proxy for body size (Table 3.1). Comparisons among the three nests showed significant 

differences in mean eye area (F63,59 = 12.25, p < 0.001) but failed to reveal a significant 

interaction between eye area and body size (F63,57 = 1.54, p = 0.22), indicating that the 

rate of increase in eye area with body size is the same between nests. Pairwise 

comparisons between nests revealed that the mean eye area of ants from nest #1 

Figure 3.3 Differential scaling of compound eyes and facets among colonies. Allometric 
scaling of A) eye √area (mm) (r2 values: Nest #1: 0.66; Nest #2: 0.86; Nest #3: 0.87), B) mean facet 
diameter (μm) (r2 values: Nest #1: 0.66; Nest #2: 0.46; Nest #3:  0.28) and C) facet number with a 
proxy of body size (femur length) (r2 values: Nest #1: 0.97; Nest #2: 0.21; Nest #3: 0.93). D) Scaling 
of facet number with mean facet diameter (r2 values: Nest #1: 0.63; Nest #2: −0.04; Nest #3: 0.32). 
Sample sizes: Nest #1: 17; Nest #2: 29; Nest #3: 19. 

 

B) A) 

D) C) 
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differed from that of nest #2 (t63,59 = 2.95, p < 0.01) and #3 (t63,59 = 4.91, p < 0.001). The 

mean eye area of ants from nest #2 also differed from that of nest #3 (t63,59 = 2.74, p < 

0.01).  

We assessed the differences in eye area scaling between nests using principle 

component analysis (PCA) followed by cluster analysis. PCA was used to reduce the 

three variables of interest (femur length, eye area and nest) to two principle 

components. The first two principle components explained 97% of the variation in the 

data. Principle component 1 (PC1) was negatively correlated with all three variables, 

though primarily femur length and eye area, whereas PC2 was strongly positively 

correlated with nest affiliation (Table 3.1, Fig. 3.6). Subsequent cluster analysis revealed 

that there were four clusters; one corresponding to nest #1, another for nest #2, and a 

further two clusters for points belonging to nest #3 (Table 3.1, Fig. 3.6).  

 Changes in both the diameter and number of facets could account for the scaling 

of eye area with body size, and for the differential scaling of eye area among nests. We 

measured the diameter of facets from the compound eyes of small and large workers 

from all three nests. The diameter of every facet from a representative and small and 

large ant were measured, yielding facet ranges of 12.45-21.51 µm and 15.33-23.22 µm, 

respectively. Our measurements showed that mean facet diameters scale with negative 

allometry (F63,59 = 50.91, p < 0.001) (Fig. 3.3b). However, mean facet diameter was 

relatively larger in small ants compared with their larger counterparts. Consequently, 

for each of the three nests facet diameter had a negative allometric scaling relationship 

(Table 3.1). Comparison among the three nests showed significant differences in their 

mean facet diameter (F63,59 = 15.89, p < 0.001). Ants from nest #1 had significantly smaller 

mean facet diameters than those from nest #2 (t63,59 = 5.57, p < 0.001) or nest #3 (t63,59 

= 3.40, p < 0.01). Ants from nest #3 had significantly larger facet diameters than those 
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from nest #2 (t63,59 = 2.31, p = 0.02). Yet despite the differences in mean facet diameter, 

the rate of increase in facet diameter with body size did not differ between nests (F63,57 

= 3.13, p = 0.05).  

We also counted all the facets from the compound eyes of each worker from 

which we had previously measured the area and facet diameters. As expected, the 

number of facets per eye increased with body size (F63,57 = 206.27, p < 0.001) (Fig. 3.3c). 

Our counts revealed that smaller ants had relatively more facets than their larger 

counterparts and, akin to area and facet diameter, facet number had a negative allometric 

scaling relationship for each of the three nests (Table 3.1). Comparisons between nests 

revealed differences in the mean number of facets between nests (F63,57 = 20.58, p < 

0.001). Ants from nest #2 had fewer facets per eye than those from nests #1 (t63,57 = 

2.73, p < 0.01) or #3 (t63,57 = 2.40, p = 0.02). Ants from nest #1 and nest #3 did not differ 

in their mean number of facets per eye (t63,57 = 0.16, p = 0.87). Comparisons among all 

three nests also revealed a significant interaction between the rate of increase in facet 

number and body size (F63,57 = 6.56, p > 0.01), indicating that it differs for ants from 

different nests. Pairwise comparisons revealed that the rate of increase in facet number 

did not differ in ants from nests #1 and #3 (t63,57 = 0.73, p = 0.46). However, ants from 

nest #2 scaled facet number less steeply than either nest #1 (t63,57 = 2.99, p < 0.01) or 

#3 (t63,57 = 3.23, p < 0.01).  

 To establish how facet diameter and facet number contributed to eye area for 

each nest, we examined how facet number increased as a function of mean facet 

diameter (Fig. 3.3d). Across all three nests combined, there was a significant increase in 

facet number with larger mean facet diameters (F63,57, = 12.19, p > 0.001). A significant 

interaction term between mean facet diameter and nest (F63,57 = 22.25, p < 0.001) 

indicated that the rate of facet number increase with increasing facet diameter is different 
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for ants from different nests. Pairwise comparisons revealed that the rate of facet 

number increase differed between nests #1 and #2 (t63,57 = 4.35, p < 0.001) and nests #2 

and #3 (t63,57 = 2.67, p < 0.01), though not between nests #1 and #3 (t63,57 = 1.40, p > 

0.1).  

Visual examination of the data indicated a subset of putative outliers (Fig. 3.3d). 

We used PCA combined with cluster analysis to investigate whether these ants formed 

a distinct group of individuals following different scaling rules from the remainder of nest 

#2. Again, PCA was used to reduce the three variables of interest (facet number, mean 

facet diameter and nest affiliation) to two principle components. The first two principle 

components explained 82.7% of the variance in the data. PC1 was negatively correlated 

with all three variables to largely equal extents, whereas PC2 was strongly negatively 

correlated with mean facet diameter (Table 3.2). The cluster analysis revealed three 

clusters (Fig. 3.7). One cluster was formed from representatives of all three nests and 

another from ants exclusively from nest #2. There was also a third cluster composed of 

ants exclusively from nest #3, though there were no obvious outliers (Fig. 3.7). This 

independent nest #3 cluster is formed from ants that have a facet count higher than 

predicted from the regression line. The independent nest #2 cluster is formed from the 

individuals that we identified as putative outliers from nest #2.      

  

3.5 Discussion  

By making use of the unique structure of the insect compound eye, we were able 

to analyse scaling rules that govern organ size. These rules differ among nests from the 

same population, as well as differing between ants from the same nest. Below we discuss 

the causes and consequences of these differences in scaling, and the implications for 

scaling studies more generally. 
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As wood ant workers’ body size increases, so too does the area of their 

compound eyes, as well as the numbers of facets and their diameters, though they do so 

with negative allometry. Consequently, smaller ants have compound eyes with relatively 

larger areas and facet diameters, and relatively more facets than their larger 

counterparts. These scaling relationships occur in all the nests we studied and, in this 

respect, they resemble relationships observed in other insect species such as Formica 

integroides (Bernstein and Finn, 1971), Cataglyphis sp. (Zollikofer et al., 1995), Melophorus 

bagoti (Schwarz et al., 2011), Bombus terrestris (Kapustjanskij et al., 2007) and Solenopsis 

sp. (Baker and Ma, 2006). However, comparison among nests reveals significant 

differences in their scaling relationships, more typical of those reported among species. 

Both grade shifts and slope shifts occur depending upon the specific parameter 

measured. The scaling of eye area primarily differs in intercept among nests, 

characteristic of grade shifts. Indeed, ants from all three nests differing from each other 

in terms of eye area. Differences also occurred at the cellular level: mean facet diameters 

show grade shifts among all three nests; both slope and grade shifts occur in facet 

number among nests; and both grade and slope shifts occur when facet number scales 

against mean facet diameter.  

Consequently, formulating definitive rules about the allometric scaling of wood 

ant compound eyes is difficult because no two nests followed similar patterns. Rather 

than increases in eye area being mediated through either increased facet numbers or 

diameters, both contribute in a nest-dependent manner. Patterns of eye growth are 

further complicated by subsets of ants from a given nest using different scaling rules as 

their eyes develop; ants from nest #2 and #3 contained individuals with a different 

relationship between facet diameter and number compared with the majority of the 
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sampled population. Thus, there is considerable plasticity in scaling rules across wood 

ant populations to which both genetic and environmental factors may contribute.  

 The nests we compared were all from the same polygynous population, 

and are likely to have been closely related because polygynous Formica sp. alates do not 

disperse far (Sundström et al., 2005). Nevertheless, there may be substantial genetic 

variability within the nests because workers may be the progeny of up to 100 queens, 

and may not be true sisters at all due to polyandry (Sundström, 1993; Sundström et al., 

2005). Thus, genetic factors, which are known to affect scaling relationships (Bargum et 

al., 2004; Shingleton et al., 2009; Sundström, 1993; Sundström et al., 2005), may 

contribute to scaling differences. Despite being derived from the same locale, the nests 

may have been subject to different environmental conditions, including nutrition and 

temperature, which could contribute to differences in scaling relationships. Larval 

nutrition influences adult body size in insects, with greater access to nutrition giving rise 

to larger adults (Merry et al., 2011; Thomas, 1993). Temperature likewise affects the 

growth of insect larvae because they are ectothermic, faster growth in warmer 

conditions typically resulting in relatively smaller adults (Atkinson, 1994; Mirth and 

Riddiford, 2007). Both temperature and nutrition influence organ scaling in fruit flies 

(Shingleton et al., 2009), which like ants are holometabolous, suggesting that these 

factors may affect scaling.  

 Nutritional differences among wood ant nests may arise because, 

following territorial skirmishes at the beginning of the season (Elton, 1932; Skinner, 

1980), the trees that they have access to vary in the numbers of aphids from which 

honeydew can be obtained and other invertebrates (for protein) that they host. This will 

produce differences in larval nutrition, influencing their growth and, consequently, 
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resource allocation to developing organs (Emlen, 1997). Differences in nutrition could, 

therefore, partially explain differences in scaling relationships among wood ant nests.  

Temperature differences and fluctuations are also common in natural 

environments, though F. rufa group ants attempt to maintain constant nest temperatures 

through various mechanisms including site selection to ensure direct access to solar 

radiation, metabolic heat generation by workers, and from decomposing plant material 

in larger nests (Jones and Oldroyd, 2006; Kadochová and Frouz, 2013; Rosengren et al., 

1987). Wood ant workers also move larvae in the nest, placing them in different thermal 

environments during development (Rosengren et al., 1987). This suggests that, to some 

extent, wood ants can compensate for temperature differences and fluctuations within 

the local environment, though the effectiveness of this buffering is unknown.  

Wood ant nests differ not only in the scaling of relative organ size but also in the 

cellular level rules from which the organs are constructed, so that in some nests larger 

eyes are primarily composed of more facets whereas in others they are primarily 

composed of larger facets. In nests #1 and #3 there are increases in both facet number 

and diameter, implying organ scaling through increases in cell size and number, a 

phenomenon also described in Drosophila melanogaster (Stevenson et al., 1995). Current 

models of organ growth offer a proximate explanation for such differences. During the 

non-feeding stage of holometabolous larvae, levels of insulin-like peptides (ILPs) and 

ecdysone control cell proliferation and growth, respectively, in imaginal discs (Nijhout 

and Callier, 2015; Nijhout et al., 2014; Wu and Brown, 2006). The release of these 

hormones is linked with nutrition during the larval feeding stage (Nijhout and Callier, 

2015; Nijhout et al., 2014). Thus, increases in facet number may be due to relatively 

greater levels of ecdysone and increases in facet diameter due to relatively greater levels 

of ILPs. Genetic background may interact with environmental factors (Sundström et al., 
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2005), which can themselves interact, to influence the extent of cellular proliferation or 

growth resulting in more or larger facets.  

 Both the number of facets within the compound eye and their diameters 

affect vision. Increases in facet number provide greater spatial resolution by increasing 

sampling of the visual field whilst increases in facet diameter improve sensitivity by 

improving photon capture (Land, 1997). The putative trade-off between increasing facet 

number and increasing facet diameter implies that nests are engaging in different 

developmental processes, investing in different aspects of vision.  

The rules that govern the scaling of organs are often assumed to be a fundamental 

characteristic of a particular class of organism (e.g. species, sex). Typically, small numbers 

of organisms from single populations are used to determine the scaling of a particular 

trait with the assumption that the entire class conforms to the same relationship (Feener 

et al., 1988; Goldsmith; Wcislo and Eberhard, 1989). Our study suggests that this 

assumption does not always hold true. For F. rufa, there was considerable variation in 

allometric scaling relationships even among nests within the same population. 

Furthermore, allometric scaling studies often focus on the organ level (Eberhard et al., 

1998; Emlen, 1997; Gould, 1973), ignoring the cellular level. Our study shows that the 

structure of organs may vary considerably at the cellular level, changes in organ size 

being produced by a combination of cell size and number. Our results provide a strong 

impetus for further investigations examining the interplay of cellular division and growth 

on the allometry of whole organs, and how these are affected by changes in nutrition 

and other environmental conditions. Together, our findings emphasise that allometric 

scaling relationships are highly malleable, at the organ and cellular levels, such malleability 

presumably allowing organisms to adapt their form to prevailing environmental 

conditions. 
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Figure 3.4 The size range and distribution of workers from three nests used in the 
investigation assessed by femur length. A) Nest #1 (number of ants, n = 17), B) Nest #2 
(n = 29), C) Nest #3 (n = 19), and D) Range of femur length distributions from all three nests.  
 

  
 
  
  
  
  
 

B) A) 

D) C) 
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B) A) 

D) C) 

Figure 3.5 Differences in the head size of large and 

small workers. Lateral A) and frontal B) view of large ant 

worker head. C), D) as in A) and B) but for the head of a 

smaller worker.  
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Figure 3.6 Cluster analysis of femur length, eye area and nest after dimension reduction 
using Principle Component Analysis (PCA). 
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Figure 3.7 Cluster analysis of facet count, mean facet diameter and nest after dimension 
reduction using PCA. 
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Figure 3.8 Eye area is well approximated by an oval. The area of 15 ant eyes (5 from 
each nest) estimated by approximating the eye as an oval as a function of area of the same eyes 
measured with ImageJ. (Intercept = 4.39 ± 5.62, p = 0.448; slope = 0.96 ± 0.03, p < 0.0001; r2 
= 0.98).  
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 Table 3.1 Scaling co-efficients from gross morphological eye measurements. Co-efficients 
were calculated by fitting a linear model to loge transformed data.  

 

 

 

Table 3.2 Loadings from principle component analysis used as a precursor to the cluster analysis 
examining effects of nest, eye area and femur length and loadings from principle component analysis 
used as a precursor to the cluster analysis examining effects of nest, mean facet diameter and facet 
number.   

 

 

 

Nest N 

Parameter 

(vs. femur 

length) 

Slope 

(α) 

±standard 

error 

Intercept 

loge(b) 

±standard 

error 
Figure 

#1 14 Eye area 0.56 0.12 2.01 0.08 3.3A 

#2 30 Eye area 0.68 0.05 2.03 0.03 3.3A 

#3 19 Eye area 0.72 0.06 2.04 0.06 3.3A 

#1 14 
Facet 

diameter 
0.19 0.03 2.66 0.05 3.3B 

#2 30 
Facet 

diameter 
0.36 0.07 2.63 0.05 3.3B 

#3 19 
Facet 

diameter 
0.19 0.06 2.72 0.05 3.3B 

#1 14 
Facet 

number 
0.91 0.04 5.80 0.03 3.3C 

#2 30 
Facet 

number 
0.52 0.17 6.02 0.11 3.3C 

#3 19 
Facet 

number 
0.96 0.06 5.86 0.05 3.3C 

Variable Component 1 Component 2 Component 3 

Femur Length -0.611 -0.461 0.644 

Eye Area -0.660 -0.152 -0.736 

Nest  -0.437 0.874 0.211 

Facet Count -0.579 0.568 0.585 

Mean Facet Diameter  -0.534  -0.806  0.254 

Nest  -0.616 0.165 -0.770 
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Chapter 4: Whole-organ and intra-eye scaling among Formica 
species 
 

4.1 Abstract 

Static allometries determine how organ size scales in relation to body mass. The extent 

to which these allometric relationships are free to evolve, and how they differ among 

closely-related species has been debated extensively and remains unclear; changes in 

intercept appear common but changes in slope are far rarer. Here we compare the 

scaling relationships that govern the structure of compound eyes of four closely-related 

ant species from the genus Formica. Comparison among these species revealed changes 

in intercept but not slope in the allometric scaling relationships governing eye area, facet 

number and mean facet diameter. Moreover, the scaling between facet diameter and 

number was conserved across all four species. In contrast, facet diameters from distinct 

regions of the compound eye differed in both intercept and slope both within a single 

species and when comparing homologous regions among species. Thus, even when 

species are conservative in the scaling of whole organs they can differ substantially in 

regional scaling within organs. This, at least partly, explains how species can produce 

organs that adhere to genus-wide scaling relationships whilst still being able to 

differentially invest in particular regions of organs to produce specific features that match 

their ecology.  

 

4.2 Introduction 

Allometric scaling characterizes how organ size changes as organisms themselves 

increase in size (Huxley and Teissier, 1936). Typically, allometric scaling relationships are 

power functions defined by two parameters; the intercept (b) and the power (α). 

Changes can occur in both intercept, referred to as grade shifts, and/or power, referred 
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to as slope shifts. Scaling relationships can be classified in one of three principle ways 

(Cock, 1966; Gould, 1966): (1) ontogenetic allometry, which characterises how an organ 

changes size as an organism develops (e.g. McLellan et al. 2002); (2) static allometry, 

which compares organ scaling among conspecifics at a given stage of development 

(typically adulthood) (McCullough et al., 2015); and (3) phylogenetic or evolutionary 

allometry, which compares the scaling of homologous/analogous structures between 

related species at a given taxonomic level (e.g. Voje et al. 2014). 

The extent to which the intercept and/or the slope of an allometric relationship 

are evolvable traits has been heavily debated (Egset et al., 2012; Emlen and Nijhout, 2000; 

Mirth et al., 2016; Pélabon et al., 2014). Functional, developmental or genetic constraints 

that restrict the morphospace in which organs have the potential to grow have been 

suggested to limit the extent to which allometries evolve (Bolstad et al., 2015; Pélabon 

et al., 2014). Pleiotropic effects have also been proposed to contribute to this limitation; 

changes in the mechanisms that generate allometry causing detrimental changes in other 

systems, thereby reducing overall fitness (Bolstad et al., 2015). Ontogenetic allometry 

has also been proposed to act as a developmental constraint limiting evolvability because 

evolutionary and static allometries are necessarily dependent on variability generated 

during development (Pélabon et al., 2014).  

Despite these proposed limitations, however, there is substantial evidence 

showing that allometric scaling relationships can evolve (Emlen and Nijhout, 2000; Voje 

et al., 2014). This is supported by comparisons of static allometries that show they can 

differ within populations (Perl and Niven, 2016a), and among populations and species 

(Emlen and Nijhout, 2000; McGuigan et al., 2010; Simmons and Tomkins, 1996; Toju and 

Sota, 2006; Weber, 1990). Indeed, the idea that allometries can evolve is far from new: 
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“…allometric trends are as subject to evolutionary alteration as are morphological 

features” (Gould, 1966). 

Grade shifts have been induced by artificial selection demonstrating that some 

aspects of allometric scaling can evolve rapidly (Bolstad et al., 2015; Frankino et al., 2005; 

Frankino et al., 2007). In contrast to the wealth of evidence demonstrating that 

intercepts can evolve, allometric slopes appear more constrained in their evolution, 

many organs showing remarkably little variation in scaling exponents between species 

separated by millions of years (Voje et al., 2014). Those experiments that have attempted 

to artificially select for slope shifts (Bolstad et al., 2015; Egset et al., 2012; Frankino et 

al., 2007; Stillwell et al., 2016; Tobler and Nijhout, 2010) have been criticized because of 

the methodology they employ (Mirth et al., 2016; Stillwell et al., 2016). Slope shifts 

induced by these experiments were often lost rapidly in subsequent generations once 

selection was eased (Bolstad et al., 2015), or were very minor changes (Stillwell et al., 

2016; Voje et al., 2014).    

Here we investigate the evolutionary allometry of an organ by comparing the 

scaling of compound eyes in four species of ant from the genus Formica. We examine 

scaling of the entire compound eye through facet number, facet diameter and eye area. 

Differences in scaling of facet diameter and facet number are indicative of relative 

changes in cell size and number, respectively (Chown et al., 2007; Montagne et al., 1999; 

Perl and Niven, 2016b). Both cell size and number contribute to changes in organ size, 

the differential contributions of facet number and facet diameter providing information 

about the mechanistic basis of changes in the size of a compound eye with increasing 

body size.  

We also investigate regional differences within eyes through facet diameter 

scaling providing insight into how organs change size at a sub-organ (cellular) level (Perl 
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and Niven, 2016b; Stevenson et al., 1995). By measuring facet diameter scaling in 

different regions of the compound eye, we can also determine whether an overall change 

in eye size is produced by uniform changes across the whole eye, or through changes at 

different rates in different regions. Facet diameter scaling in Formica rufa differs among 

different regions of the compound eye (Perl and Niven, 2016a). By investigating these 

principles in related ant species, we examine not just the prevalence of evolutionary 

allometry among the genus but also the extent to which any differences in eye scaling 

between species can be explained through changes in intra-eye scaling.  

We selected ants based on their disparate phylogenetic positions (Fig. 4.1, 

Goropashnaya et al. 2012), and ecologies. The most derived ants in our study are F. rufa 

and F. lugubris, representing the clade Formica sensu strictu; both species build large, 

mound shaped nests in forested regions where they forage along trails for honeydew 

and invertebrate prey (Collingwood, 1979). In Britain F. lugubris is polydomous, unlike 

the monodomous F. rufa (Collingwood, 1979). Formica sanguinea represent the 

Raptiformica; they are facultatively dulotic, raiding for slaves and freely foraging (Mori et 

al., 2000). Formica fusca are the most basal of the ant species we investigated, living in 

single or double-gyne nests of ~200 freely foraging workers (Collingwood, 1979; Wallis, 

1964). Both Formica sanguinea and F. fusca live in more open field or meadow habitats 

compared with the Formica s. s.  

 

4.3 Materials and Methods 

4.3.1 Animals 

Formica rufa workers were collected from Ashdown Forest, UK (51.073, 0.043) between 

June 2013 and August 2014, whereas those of F. fusca were collected from University of 

Sussex campus, UK (50.864, -0.0800) in May 2014. Workers of F. lugubris were collected 
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from forests on North Yorkshire Moors, UK (54.347, -0.883) in September 2014. 

Formica sanguinea workers were collected from north of Cluj-Napoca, Romania (46.862, 

23.536) in August 2015. Table 4.1 shows the numbers of animals sampled.  

 

Figure 4.1 Phylogeny of Formica sp. Species used in this study are highlighted with a box. 
Scale bar indicates nucleotide substitutions per site, numbers on branches are bootstrap values. 
Modified from Goropashnaya et al. (2012). 
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4.3.2 Specimen preparation 

Individual worker ants were selected from a colony at random and restrained with 

Plasticine (Early Learning Centre, UK). Transparent nail varnish (Rimmel London, UK) 

was applied to both compound eyes using a cocktail stick to create a cast (Ribi et al., 

1989). Ants were then stored at 4°C for a minimum of 48 hours to ensure the casts 

dried completely. These casts were removed, flattened and mounted on to 12.5 mm 

specimen stubs (Agar Scientific, UK) (Fig. 4.6). The eye casts and the left hind femur (as 

a proxy for body size) from F. fusca, F. lugubris, F. rufa and F. sanguinea were mounted for 

subsequent measurement. Nail-varnish eye casts and femurs were gold-coated and 

imaged using a scanning electron microscope (S420 Stereoscan, LEO Electron 

Microscopy Ltd., Germany) or mounted on a microscope slide (Fig. 4.6) and imaged 

using a Zeiss Axiskop compound microscope (Carl Zeiss AG, Germany) and 

photographed using a micropublisher 5.0 RTV (Q-imaging, Canada). Left hind femurs 

were imaged using a Leica MZ12.5 dissecting microscope (Leica, Germany) and 

photographed using a Canon EOS 7D SLR camera (Canon, Japan). 

Sample sizes can be found in Table 4.1. The mean facet diameter per eye was 

obtained by measuring 36 facets per individual. Three facets were sampled from three 

different rows per eye region. The mean facet diameter for each eye region was then 

ascertained using the mean value of facet diameter from the facets in each specific region. 

The facet number was measured by counting every facet within an eye. The facet 

diameter was measured as the diameter of the facet along its longest axis. The eye area 

was measured by approximating the eye as an oval, which correlates almost exactly with 

the eye area measured directly (Perl & Niven, 2016a). Facet diameters, femur lengths 

and facet numbers were all measured and counted from their respective micrographs or 
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photos using Image J (Schneider et al., 2012). 

 

4.3.3 Statistics  

4.3.3.1 Line fitting 

There is significant debate in the literature concerning the most appropriate line fitting 

method for allometric data. Some authors (Stillwell et al., 2016), advocate using major 

axis or standardised (reduced) major axis regression (MA/SMA) on the basis that this 

accounts best for error in the method of fitting lines to allometric data. Other authors 

advocate using MA/SMA on the basis that this method accounts for error in the X as 

well as the Y axis (Warton et al., 2006). Additionally, MA/SMA remove assumptions 

concerning biological phenomenon being directly related (Stillwell et al., 2016). Major 

axis or standardised major axis regression lines should only be fitted when both X and 

Y variables are sampled randomly (Warton et al., 2006), however, we sampled a broad 

size range of ants to ensure appropriate coverage. The measurement error in our data 

is likely to be small compared with the (unavoidable) amount of equation error (i.e. data 

points not lying exactly on the regression line). It has been noted that estimating 

allometric slopes is inaccurate when there is substantial equation error (Egset et al., 

2012). Therefore, we have selected ordinary least square regression (OLS) to analyse 

our data, rather than MA/SMA.  
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Table 4.1 Number of ants and number of nests used per species for whole-eye scaling and for 

intra-eye scaling.    

 

 

4.3.3.2 Statistical test  

Eye area, mean facet diameter and facet number were analysed using linear mixed effect 

models from the ‘nlme’ package (Pinheiro et al., 2016). Using the estimable function from 

the ‘gmodels' package (Warnes et al., 2015) and by constructing custom contrast 

matrices, we made post hoc multiple pair-wise comparisons (t-tests) of these linear 

mixed effect models to determine whether changes in slope and/or intercept had 

occurred. Non-significant model terms were eliminated step-wise until only significant 

terms remained in the model. All analyses were conducted with log transformed data to 

allow for valid interpretation of the allometric coefficients. Principle component analysis 

(PCA) and cluster analysis was conducted using the PCA and HCPC functions from the 

‘FactoMineR’ package, which uses agglomerative hierarchical clustering (Husson et al., 

2010; Lê et al., 2008).  

In addition to gross morphological scaling, we investigated scaling in facet 

diameters from different regions of the compound eye. These data were also analysed 

using linear mixed effect models with post-hoc pairwise comparisons. All statistics were 

 
Number of 

nests 

Number of workers for 

whole eye scaling 

analysis 

Number of workers for 

intra-eye scaling 

analysis 

F. fusca 2 34 34 

F. lugubris 3 52 23 

F. sanguinea 3 62 21 

F. rufa 3 63 65 
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calculated using R v.3.1.2 (R Core Team, 2016) and all model structures can be found in 

Table 4.2. 

Table 4.2 Structure of linear mixed effect models for all analyses. Individual ants were included as a 
random effect when they contributed more than one data point to a given model. 

Response Fixed effect(s) Random effect(s) 

Mean facet diameter Femur length Nest 

Facet number Femur length + species Nest 

Eye area Femur length + species Nest 

Facet number Mean diameter Nest 

F. fusca facet diameter Femur length + eye region Individual nested in nest 

F. lugubris  facet diameter Femur length + eye region Individual nested in nest 

F. sanguinea facet diameter Femur length x eye region Individual nested in nest 

F. rufa facet diameter Femur length x eye region Individual nested in nest 

Mean anterior facet diameter Femur length x species Nest 

Mean dorsal  facet  diameter Femur length + species Nest 

Mean posterior facet diameter Femur length x species Nest 

Mean ventral facet diameter Femur length x eye region Nest 

 

4.4 Results 

4.4.1 Allometric scaling of compound eyes and facets of Formica species  

We examined three aspects of the allometric scaling of the compound eyes of workers 

from four Formica ant species: (1) scaling of facet number; (2) scaling of mean facet 

diameter; and (3) scaling of eye area. 

Across the genus facet number increased significantly with increasing hind femur 

length (F141,128 = 236.94,  p < 0.001). The absence of a significant interaction between 

hind femur length and species (F141,125 = 0.31, p = 0.82) indicated that the slope (i.e. the 

rate of facet number increase with increasing femur length) did not differ across all four 

species (Fig. 4.2A, 4.7A; Table 4.5). There was, however, a significant difference in the 

facet number among species (F141,8 = 4.85, p = 0.03), indicative of a grade shift (or a 
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change in elevation). Pairwise comparisons revealed that facet number differed between 

F. fusca and the three other species: F. lugubris (t141,8 = 2.91, p = 0.02); F. rufa (t141,8 = 3.67, 

p < 0.01); and F. sanguinea (t141,8 = 2.88 p = 0.02). There were no differences between 

the other species pairs (t141,8 < 0.60, p > 0.57). Therefore, for a given body size, F. fusca 

workers have more facets than do workers of the other three species. Despite this 

difference, the rate of increase in facet number with body size was the same across all 

four species. Facet number scaled with a negative allometry for all four species, α < 1 

(Table 4.3), indicating that larger ants had relatively fewer facets than smaller ants.    

Mean facet diameter also increased significantly with increasing hind femur length 

across the genus (F141,128 = 73.86, p < 0.001). There was no significant interaction term 

between hind femur length and species (F141,125 = 0.21, p = 0.89) and, therefore, the slope 

did not differ across all four species (Fig. 4.2B, 4.7B; Table 4.5). There was also no 

significant difference in mean facet diameter between species (F141,8 = 0.21, p = 0.89).  

Thus, there were no slope or grade shifts between any of the species. The rate of facet 

diameter increase is the same across workers of all species as is the mean facet diameter 

for a given size of worker. Mean facet diameter scaled with a negative allometry across 

all four species, α < 1 (Table 4.3), indicating that larger ants had relatively smaller facets 

than their smaller counterparts.  

As expected from the previous analyses, the square root of eye area (used to 

preserve dimensionality among different response variables) increased significantly with 

increasing hind femur length across the genus (F141,128 = 646.08, p < 0.001). Again, there 

was no significant interaction term in the model (F141,128 = 0.66, p = 0.58), indicating that 

the slope did not differ across all four species (Fig. 4.2C, 4.7C; Table 4.5). There was a 

significant difference in mean eye area (F141,8 = 8.74, p < 0.01) indicative of a grade shift: 

F. fusca differed from both F. lugubris (t141,8 = 3.67, p < 0.01) and F. rufa (t141,8  = 4.50, p < 
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0.01); F. sanguinea also differed from both F. lugubris (t141,8= 2.37, p < 0.05) and F. rufa 

(t141,8  = 3.18, p = 0.01).  There were no further differences between the species (t141,8  < 

1.47, p > 0.18). Thus, F. rufa and F. lugubris have a similar eye area for a given body size, 

as do F. sanguinea and F. fusca. However, though the rate of increase in eye area with 

increasing body size is similar across all species sampled, F. fusca and F. sanguinea having 

a larger area compound eye for a given body size compared with members of Formica s. 

s. Eye area scaled with a negative allometry across all four species, α < 1 (Table 4.3), 

indicating that larger ants have a relatively smaller area eyes than their smaller 

counterparts. 

 

4.4.2 Scaling of facet number with diameter 

By assessing the scaling of facet diameter with facet number, we were able to assess 

their relative contributions to the overall structure of the compound eye. Facet number 

increased significantly with increasing mean facet diameter across the genus (F141,128 = 

17.61, p < 0.001). There was no significant interaction term in the model, indicating that 

the slope did not differ across all four species (F141,125 = 0.61,  p = 0.61) (Fig. 4.2D, 4.6D; 

Table 4.5). There were also no significant differences among all four species (F141,8 = 0.12, 

p = 0.95), indicating that there were no shifts in intercept. Thus, the rate of facet 

diameter increase with increasing facet number is similar across all the species sampled. 

Likewise, the mean facet diameter for a given number of facets is the same across all 

species sampled.  

 We assessed the differences in facet number and facet diameter with the overall 

area of the compound eye among the four species using principle component analysis 

(PCA) followed by cluster analysis (see Materials and Methods; Fig. 4.3; Table 4.4). We 

used the PCA to reduce the three variables of interest (facet number, mean facet 
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diameter and eye area) to two principle components. The first two principle 

components explained 97.4% of the variation in the data: Dimension 1 was strongly 

positively correlated with eye area, whilst dimension 2 was moderately positively 

correlated with facet count and moderately negatively correlated with facet diameter. 

Subsequent agglomerative hierarchical cluster analysis revealed that there were five 

clusters (Fig. 4.3). Only one cluster consisted of a single species, F. rufa. Indeed, F. rufa 

appeared in all five clusters, more than any of the other species (Fig. 4.3). The remaining 

clusters were all formed from at least two species, with two clusters having 

representatives from all four species.  

 

4.4.3 Intra-eye scaling 

4.4.3.1 Within species  

We next examined the scaling of facet diameter in different regions (Fig. 4.6) of the 

compound eye in each of the four species. For each species we determined the 

allometric scaling of facet diameter in the anterior, dorsal, posterior and ventral regions 

of the compound eye.  

There were differences in the scaling shifts that occurred within the eyes of 

different species. Within the F. fusca compound eye, there were no slope shifts (F34,96 = 

0.11, p = 0.95) indicating that the rate of mean facet diameter increase with increasing 

body size is the same in each region of the eye. The facet diameters in different regions 

showed grade shifts relative to one another F34,99 = 39.52, p < 0.0001) (Fig. 4.4A, 4.8A; 

Table 4.6). Aside from anterior and dorsal regions (t34,99 = 0.45, p = 0.65) all other regions 

were grade shifted relative to each other (t34,99 > 5.15, p < 0.0001). Thus, for a given 

body size, the anterior and dorsal regions have similar mean facet diameters, with the 

posterior facets being the larger and ventral facets being the smallest.  
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Facet diameters in different regions of the F. lugubris compound eye also did not 

exhibit any slope shifts (F52,150 = 0.02, p > 0.99), only showing grade shifts (F52,153 = 65.41, 

p < 0.0001). Unlike F. fusca, all regions were significantly different from each other (t52,153 

> 3.07, p < 0.01) (Fig. 4.4B, 4.8B; Table 4.6). Again, the rate of mean facet diameter 

increase with increasing body size is similar across all regions of the eye. The posterior 

Figure 4.2 Scaling relationships in the four species of Formica as derived from 
linear mixed effect models. A single black regression line indicates no significant 
difference between species and they are therefore analysed with a common slope. Coloured 
regression lines are indicative of at least grade shifts between species, hence are analysed 
with individual regression lines. Data were transformed using loge to allow comparison with 
other allometric analysis. (A) Allometry of facet number per eye as a function of rear left 
femur length (a proxy of body size). (B) Allometry of mean facet diameter as a function of 
rear femur length. (C) Allometry of eye area as a function of rear femur length. (D) Scaling 
of mean facet diameter as a function of number of facets per eye among the four species 
of Formica. 

 

B) A) 

D) C) 
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region facets are the largest for a given body size, followed by anterior and dorsal with 

ventral facets being the smallest.  

Table 4.3 Scaling exponents ± standard error for each species for each scaling 
relationship. Slope = α, intercept = β. Scaling exponents were extracting from linear models (see 
supplement), to maintain consistency with other allometric investigations. Supplemental graphs (Fig. 4.6-
4.9) show slope and intercept estimates from linear models. 

 

Comparisons among the facet diameters from the four regions in F. rufa showed 

both slope (F65,188 = 4.00, p < 0.01) and grade shifts within the eye (F65,188 = 116.743, p < 

0.0001). There were grade shifts between the posterior and all other eye regions; 

anterior (t65,188 = 2.88, p = 0.004, ventral (t65,188 = 2.98, p < 0.01) and dorsal (t65,188 = 

 F. lugubris F. sanguinea F. rufa F. fusca 

 α logβ r2 α logβ r2 α logβ r2 α logβ r2 

Facet 

count 

vs. 

femur 

length 

0.85 

± 

0.19 

5.88 

± 

0.13 

0.47 

0.87 

± 

0.13 

5.88 

± 

0.10 

0.68 

0.90 

± 

0.08 

5.82 

± 

0.06 

0.66 

0.66 

± 

0.09 

6.13 

± 

0.05 

0.63 

Mean 

facet 

diame

-ter 

vs. 

femur 

length 

0.24 

± 

0.15 

2.67 

± 

0.10 

0.06 

0.16 

± 

0.08 

2.76 

± 

0.06 

0.12 

0.26 

± 

0.04 

2.67 

± 

0.03 

0.39 

0.09 

± 

0.08 

2.77 

± 

0.04 

0.01 

Eye 

area 

vs. 

femur 

length 

0.78 

± 

0.16 

1.97 

± 

0.11 

0.50 

0.69 

± 

0.08 

2.09 

± 

0.06 

0.78 

0.69 

± 

0.03 

2.02 

± 

0.02 

0.87 

0.45 

± 

0.07 

2.25 

± 

0.03 

0.58 
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4.92, p < 0.0001). (Fig. 4.4C, 4.8C; Table 4.7). There were no differences between the 

intercepts of the other pairs (t65,188 < 1.47, p > 0.1). The facet diameters in the anterior 

(t65,188 = 2.90, p < 0.01) were slope shifted relative to the ventral region. There were no 

further slope shifts (t65,188 < 1.94, p > 0.05). Thus, the mean diameter of facets in the 

posterior region is larger than those in the anterior, ventral and dorsal regions. The rate 

of facet diameter increase with increasing body size is greater in the anterior regions of 

the eye than in the ventral region.  
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Though there was no significant interaction term for the model (F62,180 = 2.30, p = 

0.08), pairwise comparisons between the different regions of the F. sanguinea compound 

eye showed a significant slope shift between facet diameters in the anterior and posterior 

regions of the eye (t62,180 = 2.38, p < 0.02) (Fig. 4.4D, 4.8D; Table 4.6). There were no 

further slope shifts between regions (t62,180 < 1.85, p > 0.07) nor were there any grade  

Figure 4.3 Hierarchical cluster analysis of facet number, mean facet diameter 
and species after dimension reduction using principle component analysis 
(PCA). Clusters are defined with different colours, whilst different species are represented 
by using different shapes. 
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Principle 
component 1 

Principle 
component 2 

Principle 
component 3 

Correlat
-ion 

Contri-
bution 

Correlat
-ion 

Contri-
bution 

Correlat
-ion 

Contri-
bution 

Count 0.84 32.45 -0.52 36.14 0.16 31.41 

Diameter 0.72 23.86 0.69 63.37 0.10 12.78 

Area 0.98 43.70 -0.06 0.49 -0.21 55.81 

Eigenvalues    

Variance 2.181 0.741 0.077 

% of variation 72.72 24.71 2.58 

 

shifts (t62,180 < 1.93, p > 0.05). Facet diameter scaling is, therefore, similar among all 

regions of the eye, except between the anterior and posterior regions: The mean facet 

diameters in the posterior region increase at a greater rate with body size compared 

with those in the anterior region.  

 

4.4.3.2 Among homologous regions from the compound eyes of different species  

Homologous eye regions (Fig. 4.2) scaled differently among the four species. In the 

anterior region of the eye, there was a significant slope shift among different species (Fig. 

4.5A, 4.9A; Table 4.7). Though there was no significant interaction term for the model 

(F213,197 = 2.57, p = 0.055), pairwise comparisons revealed a significant grade shift between 

the mean anterior facet diameters of F. rufa and F. sanguinea (t213,198 = 2.47, p < 0.01). 

There were no significant differences between the slopes of other species (t213,7 < 2.05, 

p > 0.07). Likewise, there were no grade shifts between the facets of the anterior region 

between any of the species (F213,7 = 3.63, p = 0.07). As body size increases, facet 

Table 4.4 Correlations, eigenvalues and relative contributions of all three factors for all 
three principle components. 
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diameters in the anterior of the F. rufa compound eye increase faster than those of F. 

sanguinea.  

There was no significant slope shift in facet diameters from the dorsal region of 

the compound eye across different species (F213,198 = 0.41, p = 0.75) but there were 

significant grade shifts (F213,7 = 5.84, p = 0.03; Fig. 4.5B, 4.9B; Table 4.7). The mean dorsal 

facet diameters were grade shifted between F. rufa and F. fusca (t213,7 = 3.34, p = 0.01) as 

well as between F. rufa and F. sanguinea (t213,7 = 2.76, p < 0.03). There were further grade 

shifts between F. lugubris and both F. fusca (t213,7 = 3.12, p = 0.02) and F. sanguinea (t213,7 = 

B) A) 

D) C) 

Figure 4.4 Intra-eye facet diameter scaling within species as derived from linear mixed 
effect models. Data were transformed using loge to allow comparison with other allometric analysis. 
Comparison of the scaling of mean facet diameters in different regions of the compound eyes from: A) 
Formica fusca; B) F. lugubris; C); F. rufa D) F. sanguinea. 
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2.40 p < 0.05). There were no further grade shifts between the dorsal regions of any of 

the other species (t213,7 < 1.06, p > 0.32). Formica fusca have a larger mean facet diameter 

in the dorsal region of the compound eye than F. rufa for a given body size. The diameters 

of the dorsal facets of F. sanguinea are also larger than those of F. rufa for a given body 

size. Formica lugubris have smaller dorsal fact diameters than either F. fusca or F. sanguinea.  

There was no significant slope shift in the posterior region of the eye across 

different species (F213,198 = 0.48, p = 0.69) nor were there any significant grade shifts (F213,7 

= 0.95, p > 0.47) (Fig. 4.5C, 4.9C; Table 4.7). Consequently, there were no differences 

between species in terms of either mean facet diameter for a given body size nor in the 

rate of facet diameter increase with body size in the posterior regions of the eye.  

As with the dorsal and posterior regions of the compound eye, there was no 

significant slope shift in the ventral region of the eye across different species (F213,198 = 

0.38, p = 0.77) but there were significant grade shifts (F213,201 = 15.23 p < 0.0001) (Fig. 

4.5D, 4.9D; Table 4.7). The mean ventral facet diameters were grade shifted between F. 

sanguinea and F. lugubris (t213,7 = 3.16, p = 0.02). There were no further grade shifts in 

ventral facet diameters between any of the other species (t213,7 < 1.89, p > 0.10).  The 

mean diameter of facets in the ventral region eye region of F. sanguinea are larger for a 

given body size than those from F. lugubris.  

 

4.5 Discussion 

By comparing the static allometric scaling relationships governing compound eye size, 

facet number and diameter across closely related species, our findings demonstrate that 

evolutionary shifts exist in the allometric scaling of organs. At the whole-eye level 

changes in static allometric scaling relationships are restricted to grade shifts, with slope 
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shifts entirely absent. This supports previous claims based upon comparisons among 

species that allometric relationships can evolve but that grade shifts are easier to achieve 

than slope shifts (Bolstad et al., 2015; Emlen and Nijhout, 2000; Frankino et al., 2005; 

B) A) 

D) C) 

Figure 4.5 Intra-eye facet diameter scaling among species as derived from linear mixed 
effect models. Comparison of the scaling of mean facet diameters from homologous regions of the 
compound eyes of the four Formica species. Data were transformed using loge to allow comparison 
with other allometric analysis. A single black regression line indicates no significant difference between 
species and they are therefore analysed with a common slope. Coloured regression lines are indicative 
of at least grade shifts between species, hence are analysed with individual regression lines. Mean 
facet diameter scaling of: A) the anterior region; B) the dorsal region; C) the posterior region; D) the 
ventral region.  
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Frankino et al., 2007; Pélabon et al., 2014; Tobler and Nijhout, 2010; Toju and Sota, 

2006; Voje et al., 2014).  

Despite grade shifts in the allometric scaling of the compound eye among the 

four Formica species in terms of eye scaling, the scaling of mean facet diameter with facet 

number is remarkably consistent; no grade or slope shifts occurred among the species. 

This is supported by the PCA/cluster analysis in which workers do not cluster based 

entirely upon their species. The high degree of conservation of the relationship between 

mean facet diameter and facet count may indicate that developmentally or functionally 

related traits are not necessarily as free to vary as those same traits are with body size. 

Under artificial selection, Frankino et al. (2005, 2007) demonstrated that a genetically 

and functionally linked trait (hind-wing size of a butterfly) can be forced into alternative 

scaling regimes, indicating that the restrictions on functionally-linked morphological 

traits are not necessarily developmental/genetic (Mirth et al., 2016). Pélabon et al. (2013) 

also concluded that constraints on evolutionary allometry are the consequence of 

selection, rather than due to a developmental limitation. If this is the case for the 

relationship between facet diameter and facet number in the present study, it implies 

that the relationship is maintained through selection across the genus and that deviating 

from this reduces fitness. 

Changes in scaling across the entire organ are not the only way in which changes 

can occur in static allometric scaling relationships, they can also occur at the sub-organ 

level (Perl and Niven, 2016a). In contrast to the relatively conservative changes in the 

allometric scaling relationships of the whole compound eye among the four Formica 

species, we found substantial variability in the allometric scaling relationships of facets in 

specific regions of the compound eye. Both grade shifts and slope shifts occur among 

regions. The patterns of facet diameter scaling between eye regions appear unique to 
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each species, as well as to any particular region among species. As such, these differences 

could explain species-specific adaptations whilst adhering to genus-wide relationships at 

the level of the entire eye. 

The intra-eye differences are mediated primarily through grade shifts so that for 

a given body size facet diameter depends upon the eye region in which that facet resides, 

but the rate at which facet diameter increases is the same across the different eye 

regions. However, slope shifts occur between one or more regions in two species; F. 

rufa and F. sanguinea. This demonstrates that the way in which evolutionary changes 

occur in static allometries is far more nuanced than implied by mean measurements 

sampled from across the entire organ.  

To expand on this further; the scaling of eye area is consistent between different 

species of the genus. However, the means through which they all arrive at the same 

scaling rules does differ. From the analysis of mean facet diameter, there is no difference 

in mean facet diameter scaling between species. However, intra-eye facet diameter 

scaling differs vastly depending on the region the facets are in and the species to which 

they belong. Grade shifts in facet number scaling also occur between some species. 

Therefore, consistency in eye area scaling is maintained through differential scaling of 

facet diameters and relative investment in facet number. A fixed eye area can be obtained 

through either changes in facet number or diameter. Two eyes may have the same area, 

one with large numbers of small facets and the other with fewer, larger facets. Among 

our four species, some may change the scaling in the anterior portion of their eye relative 

to the other regions, whereas another may scale the posterior region instead. This is 

combined with grade shifts in facet number. Through this mechanism, the scaling of eye 

area is the same across the genus, whilst individual species display differential facet 

diameter scaling in different regions of the eye. 
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The differences in intra-eye scaling between species are further emphasised when 

examining scaling shifts between homologous regions of different species. In two of the 

four regions investigated (ventral and dorsal) at least one species pair demonstrated 

grade shifts, though the patterns of grade shifts were different between regions. Between 

the dorsal region of different species, there were ample grade shifts with only F. fusca 

and F. sanguinea being similar along with F. lugubris and F. rufa. In contrast, anterior facet 

diameters show only slope shifts, but only between a single pair of species; F. rufa and F. 

sanguinea. This implies that allometric shifts across evolutionary timescales are not 

simple changes that affect entire organs or even parts of organs in the same way. Thus, 

even though slope shifts did not occur between species when looking at scaling at a 

whole organ level, slope shifts do occur between homologous regions within the 

compound eyes of different species. Furthermore, grade shifts that are not apparent 

when examining whole organ allometry become obvious when examining within-organ 

scaling.  

Slope shifts are purportedly less common than grade shifts in evolutionary 

allometry (Egset et al., 2012) and difficult to maintain across generations even when 

induced through strong artificial selection (Bolstad et al., 2015; Stillwell et al., 2016). 

However, our analysis demonstrates that slope shifts do occur, even between closely 

related species, though not at a whole organ level. Thus, species with different life 

histories and foraging habits have similar investment in mean facet diameter as a function 

of facet number but differ in facet diameter scaling relationships between the 

homologous eye regions. This implies that the internal proportions of an organ are far 

freer to vary than the rate of organ size increase with body size, explaining how 

compound eyes can be specifically adapted to particular visual ecologies whilst 

conforming to specific scaling relations at a genus wide level.  
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Though our findings demonstrate changes in the static allometric scaling among 

and within the compound eyes of closely-related species, there is a lack of phylogenetic 

consistency in these scaling relationships. Moreover, allometric shifts do not appear to 

be related to life history or ecology irrespective of whether they are at the whole-eye 

or intra-eye level. This may be a consequence of the relatively sparse sampling of species 

or a lack of sufficiently detailed descriptions of the visual ecologies of the species we 

studied. Detailed studies of the behaviour, physiology and morphology of single species 

have shown that eye regionalisation of this sort is very common in insects (Land, 1997), 

and that it is often associated with specific behavioural requirements that provide a 

strong selective incentive, such as mate (Collett and Land, 1975; Kirschfeld and Wenk, 

1976) or prey detection (Labhart and Nilsson, 1995). Even though we cannot attribute 

regional changes in facet diameter to specific behavioural and ecological requirements, 

our results show that not only do regions scale differentially within a species (Perl and 

Niven, 2016a) but that closely related species can evolve substantial differences in 

homologous regions. 

 

4.6  Supplementary materials 
 
This supplement details the eye casts used in the study and demonstrates the homology 

between eye regions (Fig. 4.6).  It also contains Fig. 4.7-4.9, which show the same data 

as in the main text but with the regression lines plotted using the estimates from linear 

models rather than the linear mixed effect models. These figures indicate the allometric 

relationships without accounting for nest affiliation. The estimates of these slopes and 

intercepts (allometric exponents) can be found in Table 4.3 of the main text.  
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Figure 4.6 Eye casts from the four species used in this study. A) A representative electron 
micrograph of an eye cast from Formica fusca. B) A representative photo an eye case from F. 
lugubris. C) A representative electron micrograph of an eye cast from F. rufa. D) A representative 
photo an eye cast from F. sanguinea. Scale bars = 100µm. A,D,V,P refer to anterior, dorsal, 
ventral and posterior, respectively. Visible smudges on the casts of Formica lugubris B) and F. rufa 
D) are artefacts caused by casts having been removed from SEM stubs and re-mounted to 
microscope slides. Where present, the artefacts did not hinder data collection.   

B) A) 

D) C) 
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Figure 4.7 Allometric scaling relationships in the four species of Formica as derived from 
linear models. Data were transformed using loge to allow comparison with other allometric analysis. 
A) Allometry of facet number per eye as a function of rear left femur length (a proxy of body size). B) 
Allometry of mean facet diameter as a function of rear femur length. C) Allometry of eye area as a 
function of rear femur length. D) Scaling of mean facet diameter as a function of number of facets per 
eye among the four species of Formica. 

B) A) 

D) C) 
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B) A) 

D) C) 

B) A) 

D) C) 

Figure 4.8 Intra-eye facet diameter allometric scaling within species as derived from linear 
models. Data were transformed using loge to allow comparison with other allometric analysis. 
Comparison of the allometric scaling of mean facet diameters in different regions of the compound eyes 
from: A) Formica fusca; B) F. lugubris; C) F. sanguinea; D) F. rufa. 
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B) A) 

D) C) 

Figure 4.9 Intra-eye facet diameter allometric scaling among species as derived from 
linear models. Data were transformed using loge to allow comparison with other allometric analysis. 
Comparison of the allometric scaling of mean facet diameters from homologous regions of the compound 
eyes of the four Formica species. Mean facet diameter scaling of: A) the anterior region; B) the dorsal 
region; C) the posterior region; D) the ventral region.    

B) A) 

D) C) 
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Table 4.5 Slope and intercept estimates derived from linear mixed effect models analysing differences 
between Formica species. in terms of whole organ eye scaling. 

 

  

 Estimate ± SE 
Facet count vs femur length 
Slope 0.80 0.05 
F. fusca intercept 6.06 0.04 
F. lugubris intercept  5.92 0.05 
F. rufa intercept 5.90 0.04 
F. sanguinea intercept 5.92 0.05 
   
Mean facet diameter vs femur length 
Slope 0.24 0.03 
F. fusca intercept 2.69 0.02 
F. lugubris intercept  2.66 0.03 
F. rufa intercept 2.68 0.02 
F. sanguinea intercept 2.71 0.03 
   
Eye area vs femur length 
Slope 0.65 0.03 
F. fusca intercept 2.16 0.02 
F. lugubris intercept  2.06 0.02 
F. rufa intercept 2.05 0.02 
F. sanguinea intercept 2.12 0.03 
   
Facet number vs mean facet diameter 
Slope 1.09 0.20 
Intercept 3.41 0.56 
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Table 4.6 Slope and intercept estimates derived from linear mixed effect models analysing differences 
in facet diameter scaling between different regions of the eye within different Formica species. 

 Estimate ± SE 
F. fusca   
Slope  0.17 0.08 
Anterior intercept 2.73 0.04 
Dorsal intercept 2.74 0.04 
Posterior intercept 2.83 0.04 
Ventral intercept 2.65 0.04 
   
F. lugubris                     
Slope 0.24 0.14 
Anterior intercept 2.68 0.09 
Dorsal intercept 2.65 0.09 
Posterior intercept 2.72 0.09 
Ventral intercept 2.57 0.09 
   
F. sanguinea   
Anterior intercept       2.68 0.09 
Dorsal intercept       2.65 0.09 
Posterior intercept       2.72 0.09 
Ventral intercept 2.57 0.09 
Anterior slope       0.24 0.14 
Dorsal slope       0.23 0.18 
Posterior slope       0.27 0.18 
Ventral slope 0.25 0.18 

   
F. rufa   
Anterior intercept       2.66 0.04 
Dorsal intercept       2.58 0.04 
Posterior intercept       2.79 0.04 
Ventral intercept 2.66 0.04 
Anterior slope       0.33 0.05 
Dorsal slope       0.33 0.06 
Posterior slope       0.23 0.06 
Ventral slope 0.15 0.06 
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Table 4.7 Slope and intercept estimates derived from linear mixed effect models analysing differences 
in facet diameter scaling within homologous regions of the eye between different Formica species. 

 

  

 
Estimate ± SE 

Ventral  region   
Slope 0.15 0.04 
F. fusca intercept 2.65 0.03 
F. lugubris intercept 2.63 0.03 
F. rufa intercept 2.66 0.03 
F. sanguinea intercept 2.71 0.03  

  
 

  

Posterior region   

Slope 0.25 0.04 
Intercept 2.77 0.03  

  

Anterior region   

F. fusca intercept 2.76 0.07 
F. lugubris intercept 2.68 0.10 
F. rufa intercept 2.66 0.03 
F. sanguinea intercept 2.82 0.07 
F. fusca slope 0.11 0.13 
F. lugubris slope 0.24 0.20 
F. rufa slope 0.35 0.14 
F. sanguinea slope 0.09 0.16  

  

Dorsal region   

Slope 0.32 0.04 
F. fusca intercept 2.67 0.03 
F. lugubris intercept 2.59 0.03 
F. rufa intercept 2.59 0.03 
F. sanguinea intercept 2.64 0.03 
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Chapter 5: Metabolic rate scaling, ventilation patterns and 
respiratory water loss in red wood ants 
 
5.1 Abstract 

Metabolic rate and its relationship with body size is a fundamental determinant of 

organismal fitness. Alongside various environmental and physiological factors, the 

metabolic rate of insects is linked to distinct ventilation patterns. Despite significant 

attention, however, the precise role of these ventilation patterns remains uncertain. 

Here we determine the allometric scaling of metabolic rate and respiratory water loss 

in the red wood ant, as well as assessing the effect of movement upon metabolic rate 

and ventilation pattern. Metabolic rate and respiratory water loss are both negatively 

allometric. We observed both continuous and cyclic ventilation associated with relatively 

higher and lower metabolic rates, respectively. In wood ants, however, movement not 

metabolic rate is the primary determinant of which ventilation pattern is performed. 

Conversely, metabolic rate not ventilation pattern is the primary determinant of 

respiratory water loss. Our statistical models produced a range of relatively shallow 

intraspecific scaling exponents between 0.47 and 0.60, emphasising the dependency upon 

model structure. Moreover, metabolic rate scaling is invariant among wood ant nests 

unlike some aspects of morphological scaling, suggesting that these two forms of scaling 

respond to environmental factors in different ways.  

 

5.2 Introduction 

Metabolism is the sum of anabolic and catabolic processes that enable the formation of 

biological material and fuel cellular and physiological work (Alexander, 1999; Chown and 

Nicolson, 2004). As such, the rate at which metabolism occurs is intrinsically linked to 

how much energy and how many resources are available for movement, growth and 
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reproduction (Brown et al., 2004; Glazier, 2015). These fundamental properties affect 

other life history traits, such as senescence, and more holistic traits, such as survivability 

(Burton et al., 2011; Speakman, 2005). Thus, metabolic rate is a key determinate of 

organismal fitness. 

Movement, growth and reproduction increase metabolic rates in most animals 

(though see Glazier, 2015), including insects (Basson and Terblanche, 2010; Chown and 

Nicolson, 2004; Clusella-Trullas et al., 2010; Glazier, 2009; Hammond and Diamond, 

1997; Heglund and Taylor, 1988; Lighton, 1990; Niven and Scharlemann, 2005; Weibel 

and Hoppeler, 2005). Larger body masses also generate higher metabolic rates, though 

smaller individuals have a higher mass-specific metabolic rate, a pattern reflected for 

both intra- and interspecific relationships (Bartholomew et al., 1988; Brown et al., 2004; 

Chown et al., 2007; Gillooly et al., 2001; Glazier, 2005). The ultimate cause of this 

negative allometry is undetermined despite intensive scrutiny, which has left interspecific 

metabolic rate relatively under-examined (Brown et al., 2004; Burton et al., 2011; 

Chown et al., 2007; Glazier, 2005; Terblanche et al., 2007; West et al., 1997; 1999). Yet 

any population with significant variation in adult body size will experience intraspecific 

metabolic rate scaling (Glazier, 2005). Therefore, any differences in intraspecific 

metabolic rate scaling form an important part of explaining behavioural and fitness 

differences between individuals (Burton et al., 2011).  

The metabolic rate of insects is linked to the pattern of ventilation (Contreras 

and Bradley, 2009; 2010; Gibbs and Johnson, 2004). There are three principle ventilation 

patterns observed in insects; continuous, discontinuous and cyclic (Chown and Nicolson, 

2004), though the adaptive value of these patterns remains unclear (Chown et al., 2006; 

Marais et al., 2005). To date, most studies have focussed on discontinuous gas exchange 

cycles (DGC) (Buck and Kesiter, 1955; Chown et al., 2006; Lighton, 1994; Quinlan and 
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Gibbs, 2006), though the majority of insects do not use DGC (Marais et al., 2005). 

Therefore, it is important to understand the causes and consequences of the other more 

prevalent ventilation patterns: cyclic and continuous (Contreras and Bradley, 2009). 

Increases in metabolic rate induce changes in ventilation pattern; from DGC at the 

lowest metabolic rates, switching to cyclic ventilation as metabolic rate increases and 

continuous ventilation at the highest (Basson and Terblanche, 2010; Contreras and 

Bradley, 2010; Klok and Chown, 2005).  

Increases in temperature and activity increase metabolic rate, which has been 

shown to drive changes in ventilation pattern (Contreras and Bradley, 2010). However, 

another popular hypothesis links ventilation types to respiratory water loss (Chown et 

al., 2006; Lighton, 1994). Discontinuous gas exchange cycles were originally proposed to 

be an adaptation to reduce respiratory water loss (Buck and Kesiter, 1955), though 

contemporary studies have questioned this (Chown and Holter, 2000; Hetz and Bradley, 

2005; Lighton and Berrigan, 1995; Matthews and White, 2010). Surprisingly, there is 

relatively little information addressing the effects of other ventilatory patterns on 

respiratory water loss, though there is a consensus that spiracular opening is major route 

of water loss (Chown, 2002). 

Ants are often ecologically influential (Hölldobler and Wilson, 1990), so their 

metabolic rate and water loss, along with the factors that affect them, are of broad 

significance. Metabolic rates in ants scale with negative allometry, both intra- and 

interspecifically (Bartholomew et al., 1988; Chown et al., 2007; Lighton, 1989; Lighton 

and Wehner, 1993). Investigations of the ventilation patterns performed by ants have 

shown DGC, cyclic and continuous ventilation patterns (Gibbs and Johnson, 2004; 

Lighton, 1989; Lighton and Berrigan, 1995; Lighton and Garrigan, 1995; Quinlan and 

Lighton, 1999). Respiratory water loss in ants has been positively correlated with 
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metabolic rate (Chown, 2002; Schilman et al., 2005), and shown to change with differing 

ventilation types (Gibbs and Johnson, 2004).  

Wood ants, in particular, are keystone species that exert effects upon aphid, 

invertebrate and plant populations (Domisch et al., 2009; Hawes et al., 2002; Skinner 

and Whittaker, 1981), as well as having a role in nutrient cycling (Finér et al., 2013). This 

impact manifests primarily through workers foraging for honeydew and scavenging other 

invertebrates (Skinner, 1980). Consequently, the metabolic rate of wood ant workers, 

among whom body size varies considerably, has a direct impact on their environment. 

Here we study the metabolic rates, respiratory water loss and ventilation patterns of 

wood ant foragers covering a broad range of naturally occurring body sizes. We show 

that metabolic rate and respiratory water loss both scale with negative allometry. 

Foragers’ respiratory water loss can be explained solely through increases in metabolic 

rate. The ventilation pattern performed by ants is strongly associated with metabolic 

rate, independent of any changes induced by increasing mass. However, changes in 

metabolic rate are not necessary to cause changes in ventilation type, instead activity is 

the trigger that induces changes in ventilation pattern in wood ants.  

 

5.3 Materials and methods 

5.3.1 Animals  

Formica rufa L. (Hymenoptera: Formicidae) foragers were collected from Ashdown 

Forest, Sussex, UK (51.0780, 0.0300) on five separate dates from the 25th August to the 

19th September 2016. Four nests were visited and approximately 30 ants were collected 

from each nest on each collection date. Nest locations were as follows: Nest #1: 

51.07555, 0.02962; Nest #2: 51.07531, 0.03524; Nest #3: 51.07552, 0.03475; Nest #4: 

51.07549, 0.03019. Not all the ants collected were analysed, ants were kept for a 
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maximum of 10 days. Upon collection, workers from each nest were housed separately 

and provided with a diet of water and sugar water ad libitum. Subsequently, the whole of 

Nest #3 was collected and moved to the laboratory on 25th May 2017. The nest was 

kept under 12h:12h light:dark regime and fed sugar water and frozen crickets ad libitum. 

 

5.3.2 Metabolic rate and water loss measurement 

5.3.2.1 Experiment 1  

The metabolic rate and water loss of individual ants were measured using a LI-7000 flow 

through respirometer (LI-COR, USA). Air at room temperature (22-24°C) was pumped 

through two pairs of scrubbing columns; the first pair contained soda lime to remove 

carbon dioxide and the second pair contained Drierite (W.A. Hammond Drierite, USA) 

to remove water vapour. The scrubbed air was pumped at 100 ml min-1
 into two 

chambers of approximately 0.03 L connected in parallel. One chamber served as the 

reference chamber, the other the test chamber. The reference chamber remained empty 

and the test chamber contained a single ant. The metabolic rate of the ant was measured 

as the difference in the volume of carbon dioxide between the two chambers. Individual 

ants remained in the test chamber for between 30 minutes and one hour.  

A total of 107 ants were used for the analysis of Experiment 1, 29 ants from Nest 

#1, 25 ants from Nest #2, 26 ants from Nest #3 and 27 ants from Nest #4.  

 

5.3.2.2 Experiment 2 

Ants from Nest #3 were placed in the test chamber (see above) twice; once restrained 

with modelling clay (Plasticine®) and once unrestrained. The order of the treatments 

was randomised. During the restrained treatment only, an equal mass of modelling clay 
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was placed in the reference chamber to ensure that the volume of both chambers was 

equal. A total of 24 ants were used for Experiment 2.   

 

5.3.3 Ventilation type classification and exclusions  

Ventilation type was classified from the metabolic rate traces. Ants showed one of two 

ventilation types; continuous or cyclic (Fig. 5.1). Ventilation patterns were classified 

following Gray and Bradley, 2006; Lighton, 1994: cyclic ventilation was characterised by 

pronounced, regular peaks and troughs (Fig. 5.1), whereas continuous ventilation had no 

obvious regularity and carbon dioxide was continuously excreted (Fig. 5.1). Some ants 

demonstrated both ventilation types whilst in the chamber. In such cases, the metabolic 

rate of the ant was calculated from the most prevalent ventilation type.   

Four ants had intermediate ventilation types that could not be confidently 

assigned to one category and, consequently, were excluded from Experiments 1 and 2. 

Four recordings that showed baseline drift were also excluded from Experiment 1. In 

Figure 5.1 Formica rufa workers used two different ventilation types for gas exchange. 
Traces of carbon dioxide excretion during: A) Continuous gas exchange; B) Cyclic gas exchange.  

 

B) A) 
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two cases, ants died during or shortly after the end of a recording. These too were 

excluded from our analysis.   

 

5.3.4 Dry mass 

Ants were dried in a Gallenkamp Hotbox Oven Size 1 (Weiss Technik UK, UK) for 

seven days at 50°C. Individual ants were then weighed to the nearest 0.1 mg using an 

AV264C Adventurer Pro Analytical Balance (OHAUS, Switzerland).  

 

5.3.5 Analysis  

The total rate of carbon dioxide production and water loss for each ant was calculated 

using Origin 2016 (OriginLab Corporation, USA) and a mean rate calculated. All 

statistical analyses were conducted using R v. 3.3.3. (R Core Team).  

 

5.3.5.1 Experiment 1 

The allometric scaling of metabolic rate and water loss on nest and ventilation type was 

assessed with linear mixed effects models using the lme function from the ‘nlme’ package 

(Pinheiro et al., 2016). A maximal model (Table 5.1) incorporating all biologically relevant 

interactions was fitted initially. Model simplification occurred through stepwise removal 

of non-significant factors until the minimal adequate model remained (Table 5.1). Data 

were log transformed to ensure comparability with previous studies into the allometric 

scaling of metabolic rate (e.g. Lighton and Bartholomew, 1988; Nicholls et al., 2017; Vogt 

and Appel, 1999) and to normalise the data. Collection date was included as a random 

factor to account for any temporal effects on metabolic rate (Table 5.1). 

To determine how scaling exponents might depend upon the structure of the 

statistical model, we compared the scaling exponent derived from the linear mixed  
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 Table 5.1 Structure of linear mixed effects models used for assessing metabolic and water loss rate 
scaling of Formica rufa. Data were transformed using loge to allow comparison with other allometric 
analysis. 

Model Response Fixed effects Random effects 

Maximal 

model 

Log (Metabolic 

rate) 

(Nest + log (dry weight) + 

ventilation type)^2 
Collection date 

Minimal 

adequate 

model 

Log (Metabolic 

rate) 

Log (dry weight) + ventilation 

type 
Collection date 

Maximal 

model 

Log (Water 

loss) 

(Nest + log (dry weight) + 

ventilation type)^2 
Collection date 

Minimal 

adequate 

model 

Log (Water 

loss) 

Log (dry weight) + ventilation 

type 
Collection date 

Maximal 

model 

Log (Water 

loss) 

(Nest + log (dry weight) + 

ventilation type + log(metabolic 

rate))^2 

Collection date 

Minimal 

adequate 

model 

Log (Water 

loss) 
Log (metabolic rate) Collection date 

 

effects model (Table 5.1) with linear models in which the size of workers was the only 

independent variable, and metabolic rate the dependent variable. One contained all the 

ants regardless of ventilation type, another with ants only using continuous ventilation, 

and yet another with ants using only cyclic ventilation (Table 5.2).  
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Table 5.2 Different models used to assess variability of metabolic rate scaling exponents. 

Model type Dependent variable(s) 
Scaling 

exponent 

Standard 

error 

Linear mixed effects 

model 
Continuous and cyclic 

ventilation + dry weight 
0.48 0.12 

Linear model Continuous and cyclic 
ventilation + dry weight 

0.60 0.17 

Linear model Continuous ventilation 0.52 0.17 

Linear model Cyclic ventilation 0.56 0.23 

 

5.3.5.2 Experiment 2 

The likelihood of restraint affecting ventilation type was assessed using a contingent 

logistic regression, modelled using the ‘survival’ package (Therneau, 2015). Cyclic and 

continuous ventilation were scored as 0 and 1, respectively. Changes in metabolic rate 

were analysed using t-tests and Wilcoxon signed-rank tests from the R base package.  

 

5.4 Results 

5.4.1 Experiment 1 

5.4.1.1 Metabolic rate scaling  

We assessed the metabolic rates of wood ant workers selected from four nests within 

the same population (see Materials and Methods). The dry mass of workers ranged from 

1.2 to 8.0 mg and, despite being sampled from four distinct nests, the range of worker 

sizes did not differ significantly (ANOVA, F3,107 = 1.49, p > 0.20; Fig. 5.9). To determine 

their metabolic rates, we placed individual ants in a respirometry chamber and recorded 
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continuously the amount of carbon dioxide that they excreted (see Materials and 

Methods). Whilst in the respirometry chamber ants displayed two distinct ventilation 

patterns: cyclic and continuous (Fig. 5.1).  

 Metabolic rate increased with increasing ant body mass (t100,107 = 3.84, p < 0.001). 

Overall, ant metabolic rate was negatively allometric, scaling with an exponent of 0.48 ± 

0.12 (standard error), indicating that larger ants have relatively lower metabolic rates 
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than their smaller counterparts. Continuously ventilating ants had a higher metabolic 

rate than those using cyclic ventilation (Fig. 5.2A, t100,107 = 8.21, p < 0.001) but metabolic 

rate increased with size in a similar way irrespective of the type of ventilation being 

conducted (F6,111 = 0.24, p = 0.63). Mean metabolic rate did not differ between nests 

(Fig. 5.3, F3,107 = 0.64, p = 0.59), nor was there any difference in the response of metabolic 

Figure 5.2 Formica rufa worker metabolic rate is higher when ventilating continuously 
than cyclically and scales with negative allometry. Metabolic rates during different ventilation 
patterns do not differ in their response to body size increases. A) Parameters estimated from a linear 
mixed effects model using data from all ants. B) Parameters estimated from a linear model using data 
from all ants. C) Parameters estimated from a linear model using data from ants using only continuous 
gas exchange. D) Parameters estimated from a linear model using data from ants using only continuous 
gas exchange. 

 

B) A) 

D) C) 
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rate to size among all four nests (F3,107 = 0.43, p = 0.73). Mean metabolic rate of the 

different ventilation types was also similar among nests (F3,107 = 0.49, p = 0.69).  

 

5.4.1.2 Effect of different models on metabolic scaling exponent  

Several different methods are available for estimating allometric scaling exponents. To 

determine the extent to which different methods and statistical models influenced scaling 

exponents, we constructed several different biologically relevant models. We found a 

difference in the allometric scaling exponents estimated by different statistical models  

Figure 5.3 Formica rufa metabolic rate does not differ between nests. Mean metabolic rate 
(± standard error). 
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(Fig. 5.2, Table 5.2).  The linear mixed effects model, which included ventilation type as 

a factor, predicted slopes of 0.48 (± 0.12 standard error) (Fig. 5.2A), whereas, a linear 

model, in which ventilation type was ignored, predicted a slope of 0.60 (± 0.17) (Fig. 

5.2B). Two additional linear models that analysed continuously and cyclically ventilating 

ants independently also produced different scaling exponents. The linear model with 

only continuously ventilating ants predicted a slope of 0.52 (± 0.17) (Fig. 5.2C) and the 

linear model with only cyclically ventilating ants predicted a slope of 0.56 (± 0.23) (Fig. 

5.2D). Consequently, the structure of the statistical model strongly affects the estimated 

scaling exponents.  

 

5.4.1.3 Water loss scaling 

We simultaneously monitored water loss for each ant (Fig. 5.4) in addition to the carbon 

dioxide excreted.  Water loss increased with increasing ant mass (Fig. 5.5; t3,107 = 2.13, p 

B) A) 

Figure 5.4 Formica rufa workers used two different ventilation types for gas exchange, 
which is reflected in the patterns of respiratory water loss. Respiratory water loss during: A) 
Continuous gas exchange and B) Cyclic gas exchange.  
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= 0.04). Overall, water loss was negatively allometric, scaling with an exponent of 0.55 

± 0.26 (standard error) indicating that larger ants lose relatively less water that their  

smaller conspecifics. Mean water loss was higher when ants were ventilating 

continuously than when they were ventilating cyclically (Fig. 5.5, t3,107 = 4.99, p < 0.001), 

though the scaling of water loss with increasing mass did not differ between the two 

ventilation types (F1,107 = 0.24, p = 0.62). Mean water loss (F3,107 = 1.39, p = 0.25) and the 

scaling of water loss (F3,107 = 0.37, p = 0.77) was non-significantly different among all four 

nests. Mean water loss also did not differ among nests when performing the two different 

ventilation types (F3,107 = 1.37, p = 0.26). 

Figure 5.5 Respiratory water loss of Formica rufa workers scales with negative allometry 
and is higher when ventilating continuously compared with cyclically. Water loss rates during 
different ventilation patterns not differ in response to body size increases.  
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5.4.1.4 Response of water loss to metabolic rate 

Having determined that water loss and metabolic rate responded similarly to body size, 

nest affiliation and ventilation type, we assessed the response of water loss to metabolic 

rate. Given that ventilation type and size proved important in the previous models, we 

fitted a maximal model that included dry weight, nest affiliation and ventilation type to 

ascertain the response of water loss in the context of all potentially relevant variables 

Figure 5.6 Respiratory water loss is driven entirely by increases in metabolic rate. Formica 
rufa worker water lost through ventilation as a function of metabolic rate.  
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(Table 5.1). Metabolic rate was, however, the only significant predictor of water loss 

(Fig. 5.6, F1,107 = 51.04, p < 0.001).  

Water loss increased with increasing metabolic rate (Fig. 5.6, t101,107 = 7.14, p > 

0.001) with an almost isometric relationship (slope = 0.88 ± 0.15 (s.e.)) showing that 

respiratory water loss is driven primarily by metabolic rate. Mean water loss did not 

differ significantly between nests (F3,107 = 0.95, p = 0.42) or ventilation types (F3,107 = 1.22, 

p = 0.31). The scaling of water loss with metabolic rate (F1,107 = 0.55, p = 0.65) and mass 

(F3,107 = 0.44, p = 0.72) also did not differ among nests. Mean water loss was non-

significantly different between ants using cyclic and continuous ventilation (F1,107 = 2.41, 

p = 0.12). Water loss scaling with both metabolic rate (F1,107 = 0.55, p = 0.65) and mass 

(F1,107 = 0.10, p = 0.75) was non-significantly different among ventilation types. Increases 

in mass did not cause an increase in water loss (F1,107 = 0.51, p = 0.48). Further, increases 

in water loss in response to mass were unaffected by simultaneous increases in metabolic 

rate (F1,107 = 0.17, p = 0.69).  

 

5.4.2 Experiment 2  

The differences in metabolic rate and water loss between ants performing continuous 

and cyclical ventilation may have been due to activity within the respiratory chamber. 

To test whether movement was indeed linked to changes in ventilation type, we 

examined the effects of restraining ants within the chamber. Unrestrained ants were 11 

(± 1.04 s.e.) times more likely to engage in continuous gas exchange than cyclical gas 

exchange (contingent logistic regression; z1,48 = 2.30, p < 0.02), suggesting that 

continuous gas exchange is linked to activity whereas cyclic gas exchange occurs when 

ants are stationary. Surprisingly, there was no difference in the mean metabolic rate of 

restrained and unrestrained ants (Fig. 5.7, paired t-test, t23,48 = 0.17, p = 0.86) and 
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individual ants did not increase their metabolic rate when restrained compared with 

when they were unrestrained (Fig. 5.7, Wilcoxon signed-rank test, V = 181, p = 0.39). 

Moreover, water loss was also not significantly different when ants where restrained or 

Figure 5.7 Formica rufa workers do not change their metabolic rate when restrained 
or unrestrained. Large dot and bar show mean metabolic rate (± standard error) and paired dots 
show individual ant metabolic rate. 
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unrestrained (paired t-test, t23,48 = 0.001, p > 0.99). Consequently, changes in ventilation 

type are driven by activity but are independent of increases in metabolic rate. 

 

 To explain the absence of a significant difference in metabolic rate in the 

restrained versus the unrestrained ants, we compared the mean metabolic rate of the 

restrained ants performing cyclic ventilation (N = 16) from Experiment 2 with an equal 

number of size-matched unrestrained cyclically ventilating ants from Experiment 1. 

There was a significant difference in the mean metabolic rate between the two groups 

of ants (Fig. 5.8, t-test, t29,32 = 3.50, p = 0.002); restrained ants from Experiment 2 had a 

Figure 5.8 Formica rufa metabolic rate differed between restrained or unrestrained 
cyclically ventilating ants. Mean metabolic rate (± standard error) of unrestrained F. rufa workers 
from Experiment 1 compared with restrained F. rufa workers from Experiment 2.  
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higher mean metabolic rate than unrestrained ants from Experiment 1 (Fig. 5.8). This 

suggests that restraining ants elevated their metabolic rate compared with stationary but 

unrestrained ants, emphasizing that activity not elevated metabolic rate causes the 

change in ventilation type.  

 

5.5 Discussion 

The relationships between metabolic rate, water loss, ventilation pattern, activity and 

size in insects remain uncertain with numerous, sometimes conflicting, interpretations 

(Chown, 2002; Chown et al., 2006; Gibbs and Johnson, 2004). We explored the 

interactions between these factors in foragers of the red wood ant, Formica rufa. 

Although large foragers had higher metabolic rates than their smaller counterparts, 

metabolic rate was negatively allometric so that larger ants had relatively lower 

metabolic rates than small ants. Foragers performed either cyclic or continuous 

ventilation patterns. Ants performing cyclic ventilation had lower metabolic rates than 

equivalently sized ants performing continuous ventilation but an increase in metabolic 

rate did not drive the switch between these two ventilation patterns. Rather, the switch 

from cyclic to continuous ventilation is driven by activity; foragers perform cyclic 

ventilation whilst stationary at the same mean metabolic rate as they perform continuous 

ventilation whilst active.  

Respiratory water loss, like metabolic rate, was negatively allometric so that 

larger ants lost absolutely more, but relatively less water than their smaller counterparts. 

Ants performing cyclic ventilation lost less water than equivalently sized ants performing 

continuous ventilation. However, metabolic rate was the primary driver for respiratory 

water loss, higher metabolic rates causing greater water loss. The independence of water 

loss from the ventilation pattern was confirmed by comparing restrained and 
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unrestrained ants; similar rates of water loss occurred at similar metabolic rates despite 

differences in ventilation pattern. This emphasises that within wood ant foragers both 

metabolic rate and respiratory water loss are independent of ventilation pattern, which 

is itself driven by activity.  

 

5.5.1 Ventilation pattern is independent of metabolic rate 

Higher metabolic rates in insects have been associated with distinct ventilation patterns 

(Contreras and Bradley, 2010; Gibbs and Johnson, 2004), continuous ventilation being 

used during periods of high metabolic demand to ensure adequate gas exchange for 

cellular respiration (Chown, 2002; Gibbs and Johnson, 2004). In wood ant foragers too, 

continuous ventilation is associated with higher metabolic rates than is cyclical 

ventilation. However, increasing metabolic demand in wood ants occurs simultaneously 

with switching from cyclic to continuous ventilation because both are induced by the 

onset of movement, an interpretation supported by comparisons of restrained and 

unrestrained ventilation patterns. Unrestrained workers are far more likely to perform 

continuous gas exchange than restrained workers despite having similar metabolic rates, 

implying that ventilation pattern is independent of metabolic rate, and is driven by 

activity. Thus, stationary workers perform cyclic ventilation, movement triggering 

continuous ventilation rather than an increase in metabolic rate.  

Previous investigations that explicitly examined the switching from cyclic to 

continuous ventilation concluded that it is driven primarily by increasing metabolic rate 

(Basson and Terblanche, 2010; Gibbs and Johnson, 2004; Käfer et al., 2015; Moerbitz 

and Hetz, 2010; Nicholls et al., 2017). The activity-induced switching we observed in 

wood ant foragers cannot explain all these observations. For example, experimenters 

studying tsetse flies removed periods of activity from their analysis but still observed 
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switching from cyclic to continuous ventilation (Basson and Terblanche, 2010). 

Consequently, metabolic rate in these flies appears to be the primary cause of switching 

ventilation patterns (Basson and Terblanche, 2010). Studies of other taxa are more 

equivocal. Harvester ant queens have higher metabolic rates when ventilating 

continuously than cyclically (Gibbs and Johnson, 2004). However, their activity was not 

recorded raising the possibility that differences in activity drive changes in ventilation 

pattern.  

Although we show a discrete switch between cyclic and continuous ventilation, 

the role of activity in directly driving ventilatory patterns could be subtler. There is 

evidence to suggest that ventilation patterns vary along a continuum rather than being 

discrete entities (Contreras and Bradley, 2010), and therefore differential activity could 

drive changes in cycle frequency, which would also account for our observations of 

discrete ventilation pattern switching. European paper wasps also change their 

ventilation pattern with increasing metabolic rate (Käfer et al., 2015). The increase in 

the frequency of ventilatory cycles with increasing metabolic rate coincided with an 

increase in activity (Käfer et al., 2015). This raises the possibility that movement could 

be responsible for the changes in ventilation pattern of paper wasps, just as in wood 

ants. Similar observations were made of weevils (Klok and Chown, 2005) where changes 

in cycle frequency, caused by increasing temperatures, were accompanied by concurrent 

changes in activity (Klok and Chown, 2005). Activity drives metabolic rate, rather than 

the reverse (Glazier, 2015). Consequently, increased activity should trigger changes in 

ventilation pattern simultaneously, to ensure that adequate gas exchange can occur.   
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5.5.2 The absence of discontinuous gas exchange  

Formica rufa workers did not perform discontinuous gas exchange cycles (DGC) despite 

it being found in the workers (Lighton and Wehner, 1993; Quinlan and Lighton, 1999) 

and queens (Gibbs and Johnson, 2004; Lighton and Berrigan, 1995) of other ant species. 

This may seem surprising given that F. rufa workers’ mean mass-specific metabolic rate 

is 0.20 ml CO2 g-1 h-1 (± 0.10), similar to the workers of other ant species that perform 

DGC (Table 5.3). However, several aspects of wood ant ecology suggest DGC may be 

unnecessary. For example, wood ant workers are not at risk from dehydration because 

their mesic habitats have relatively high rainfall and their diet consists of honeydew 

(Collingwood, 1979) allowing lost water to be swiftly replaced. Formica rufa nests are 

formed of large mounds of twigs, leaves and needles, very little of the nest is 

subterranean, unlike many other ants (Hölldobler and Wilson, 1990). Workers spend 

time on the surface of the nest or foraging, thus, workers are unlikely to suffer from 

poor respiratory gas diffusion due to claustral living (Chown et al., 2006; Lighton and 

Berrigan, 1995; White et al., 2007a).  

Table 5.3 Dry mass specific metabolic rate of different ant workers under different ventilation regimes. 

Species 
Metabolic rate 
(ml CO2 g-1 h-

1) 
Standard deviation Gas exchange Reference 

Pogonomyrmex 
californicus 0.29 0.07 

Discontinuous 

Quinlan 
and 

Lighton, 
1999 

P. rugosus 0.33 0.13 
P. occidentalis 0.28 0.14 

Messor pergandei 0.27 0.20 Continuous Lighton 
and 

Berrigan, 
1995 

M. julianus 0.19 0.07 Discontinuous 

Camponotus 
vicinus 0.19 0.03 Discontinuous 

Lighton 
and 

Garrigan, 
1995 

Formica rufa 0.20 0.10 Cyclic This study 
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It is feasible that there are no adaptive functions of DGC (or cyclic gas exchange) 

(Contreras and Bradley, 2010) and that all ventilation patterns are a continuum, 

responding to fixed gaseous set-points (Chown and Holter, 2000). The set-point 

hypothesis posits that the opening and closing of spiracles respond to local 

concentrations of carbon dioxide and oxygen independently producing the observed 

ventilation patterns. However, this hypothesis cannot explain changes in ventilation 

pattern without an increase in metabolic rate. If spiracles were only responding to set-

points, increased metabolism would be required to change the partial pressures of 

carbon dioxide and oxygen within the tracheae and induce changes in ventilation type. 

Instead, we observe changes in ventilation type independent of metabolic rate.  

 

5.5.3 Metabolic rate drives respiratory water loss independent of ventilation pattern 

There has been considerable debate about the cause of respiratory water loss in insects, 

though there is a consensus that larger insects with higher metabolic rates incur greater 

losses than smaller insects, and that open spiracles are associated with higher amounts 

of water loss (Addo-Bediako et al., 2001; Chown, 2002). Respiratory water loss in wood 

ant foragers increased with body mass, scaling nearly isometrically. Continuous 

ventilation in these ants incurred greater water loss than cyclic ventilation but the 

primary driver is metabolic rate. The lower rates of water loss during cyclic ventilation 

are due to lower metabolic rates not to any reduction caused by the pattern itself (Gibbs 

and Johnson, 2004). This is consistent with the strong link between water loss and 

metabolic rate reported across insects (Chown, 2002).  
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5.5.4 Homogeneous physiological scaling among colonies  

The homogeneity of scaling in metabolic rate and respiratory water loss among workers 

from F. rufa nests contrasts with the heterogeneity in morphological scaling 

demonstrated by the implementation of different growth rules for compound eye 

growth (facet size versus facet number) in different nests (Perl and Niven, 2016b). An 

explanation for this difference is that environmental effects causing variation in 

morphological scaling do not affect metabolic scaling. Morphological variability of ant 

workers is likely a consequence of exposure to different environments (e.g. nutrition) 

during growth and development. However, in honey bees, larval starvation has no effect 

on imago metabolic rates under normal feeding conditions (Wang et al., 2016), raising 

the possibility that metabolic scaling is resilient to environmental factors that generate 

variability in morphological scaling. Furthermore, the homogeneity of metabolic rate 

scaling among colonies indicates that any differences in fitness between nests is unlikely 

to be mediated by forager metabolic rate.  

 Some studies have suggested that metabolic rate scaling is caused by differential 

increases in body sizes through cell number or cell size (Davison, 1955; Kozłowski et al., 

2003). Growth mediated by increased cell number produces isometric scaling whereas 

growth through increased cell size produces an exponent of 0.67 (Chown et al., 2007; 

Davison, 1955; Kozłowski et al., 2003). This idea has been tested within ants, predicated 

on the idea that relative cell number (facet number) and cell size (facet size) in compound 

eyes is an accurate proxy for the entire body (Chown et al., 2007). Were this true in F. 

rufa, heterogeneity in the scaling of worker eyes among nests (Perl and Niven, 2016b) 

would reflect scaling of their entire bodies producing different metabolic scaling 

exponents among nests. The absence of differences in metabolic scaling among nests 

despite differences in the contributions of facet number and size to compound eye 
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scaling (Perl and Niven, 2016b), suggest that this does not apply to wood ants. However, 

direct measurements of both metabolic and morphological scaling from the same nests 

are necessary to confirm this fully.   

 

5.5.5 Intraspecific metabolic scaling in wood ant foragers  

The metabolic rate of wood ant foragers is negatively allometric. However, depending 

on the statistical model fitted, the scaling exponent differed numerically. Fitting a linear 

mixed effect model incorporating ventilation pattern estimated a scaling exponent of 

0.47, lower than intraspecific metabolic rate scaling exponents of ant workers (Table 

5.4) and other invertebrate taxa, aside from ribbon worms (0.48) (Glazier, 2005). The 

exponents for individual linear models for each ventilation type (0.52 and 0.56 for 

continuously and cyclically ventilating ants, respectively; Table 5.2) were also lower than 

estimates from other invertebrates (Glazier, 2005) but were similar to estimates from 

Camponotus fulvopilotus. (Table 5.4; Chown et al., 2007; Lighton, 1989). However, a linear 

model estimated a scaling exponent of 0.60, which is consistent with metabolic rates 

previously reported for workers of F. rufa and other species (Table 5.4; Chown et al., 

2007). All the scaling exponents are also lower than interspecific scaling relationships 

among ants (Table 5.4; Chown et al., 2007; Lighton and Wehner, 1993) and other insects 

(Addo-Bediako et al., 2002; Chown et al., 2007; Lighton et al., 2001; Niven and 

Scharlemann, 2005), a common pattern when comparing inter- and intraspecific 

metabolic rate scaling (Glazier, 2005; Harrison, 2017). The probable cause of relatively 

lower intraspecific metabolic rate scaling exponents is the smaller range of body sizes 

available within a species, compared with the ranges available interspecifically. The 

numerical differences between exponent estimates are important if scaling relationships 

are to be used as a predictive tool (Glazier, 2005). One explanation for the differences 
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in scaling exponent is whether the statistical model incorporated the ventilation pattern. 

This demonstrates that estimates of scaling exponents that ignore ventilation pattern 

(Vogt and Appel, 1999) and do not control for activity (Lighton and Bartholomew, 1988) 

should be treated with caution.  

 

Table 5.4 Summary of scaling exponents derived from different ant workers. 
 

Species 
Scaling 

exponent 

Ventilation 

pattern 
Ant activity Reference 

Camponotus 

fulvopilosus 
0.55 Undefined Uncontrolled Lighton, 1989 

Eciton hamatum 0.84 Undefined Uncontrolled 
Bartholomew et al., 

1988 

Pogonomyrmex 

rugosus 
0.70 Undefined Controlled 

Lighton and 

Bartholomew, 

1988 

Anoplolepis 

steinergroeveri 

0·61 

Undefined Uncontrolled Chown et al., 2007 

Atta columbica 0.64 

Camponotus 

fulvopilosus 

0·56 

C. maculatus 0·60 

Eciton hamatum 0·84 
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Table 5.4 continued Summary of scaling exponents derived from different ant workers. 
 

 

 

 

 

 

 

 

Species 
Scaling 

exponent 

Ventilation 

pattern 
Ant activity Reference 

Formica rufa 0·69 

Undefined Uncontrolled Chown et al., 2007 Messor capensis 1·28 

M. pergandei 0·61 

Interspecific 

scaling (15 

species of ant) 

0.76 - - Mason et al., 2015 

Interspecific 

scaling (24 

species of ant) 

0.93 - - 
Lighton and 

Wehner, 1993 

Interspecific 

scaling (83 

species of 

insect) 

0.80 - - 
Vogt and Appel, 

1999 
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Figure 5.9 Formica rufa worker size did not differ among nests. Size distributions of workers 
from all four nests: A) Nest 1; B) Nest 2; C) Nest 3, D) Nest 4. 
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Chapter 6: General discussion  

6.1 The contributions of this thesis 

This thesis makes several novel contributions to the field of scaling in insects and has 

further implications for scaling in animals generally. In chapter two, I demonstrate that 

morphological scaling does not necessarily occur uniformly across an entire organ. 

Regional grade-shifts in facet diameters are an important mechanism for improving 

sensitivity and acuity in a compound eye, but this process of regionalisation is different 

from differential scaling. The slope shifts in facet diameter are truly novel, they indicate 

that distinct parts of an organ can differ in their response to increases in body size. These 

data can be extrapolated beyond implications for compound eyes, which were a useful 

system for investigation, and provide insight into regulation within a developmental 

compartment.  

 In chapter three, I show that scaling rules in Formica rufa also differ between nests 

in the same population. Formica rufa are a eusocial species and their colonial living made 

it possible to compare scaling relationships within a single population. Workers from 

some nests enlarge their compound eye primarily through increases in facet diameter, 

whereas workers from other nests increase compound eye size through increases in 

ommatidia number. Increasing the number of ommatidia will improve resolution, and 

larger facets will improve sensitivity. The differences between nests are surprising 

because it is a reasonable assumption that eye structure is determined by visual ecology 

(Land and Nilsson, 2002). If so, we would expect ants from the same environment to 

use the same scaling rules for constructing their eyes, to maintain the same visual 

adaptations. The difference between nests indicates that there are other factors involved 

in eye scaling. If increases in the relative size and number of cells in an organ are 

representative of how entire body growth (Chown et al., 2007; Stevenson et al., 1995), 
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the differences between nests may be mechanistic. Cell size increase is mediated by 

insulin-like peptides, however, cell number increase is mediated by ecdysone. These 

hormones are regulated by nutrition (Andersen et al., 2013; Callier and Nijhout, 2013; 

Nijhout and Callier, 2015) and, therefore, differential access to nutrition among nests 

could explain why eye scaling rules are not uniform throughout the population.  

 In chapter four, I explore differential intra-eye scaling among members of the 

Formica genus. Slope shifts similar to those observed in F. rufa are found within one other 

member of the genus, F. sanguinea, but not within two other species that were 

investigated (F. fusca,F. lugubris). All species demonstrate grade shifted facet diameters 

versus femur length. Given the close phylogenetic relationship between F. rufa and F. 

lugubris, it is unlikely that there is a phylogenentic component to intra-eye scaling. 

Likewise, due to the similarity of habitats between F. rufa and F. lugubris a strong 

ecological component is also unlikely to be the source of intra-eye scaling. Despite the 

dearth of slope shifts within species, homologous regions among species do show slope 

shifts. 

 Interestingly, the scaling of facet number against facet diameter revealed no 

difference between any of the species. This implies that across the genus, there is a fixed 

rule that determines the mean facet diameter to facet number ratio. However, the 

variability in regional scaling might provide a mechanism by which specific eye 

modifications can be made whilst still conforming to overall genus-wide scaling rules.  

 In chapter five, I examined continuous and cyclic gas exchange patterns, as well 

as metabolic rate scaling, of F. rufa workers from different nests. Unlike morphological 

scaling, there are no differences in the scaling of metabolic rate or water loss of workers 

from different nests. Water loss in F. rufa workers is driven by metabolic rate only, 

independent of body size. We also demonstrate that movement is the key factor that 
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initiates switching of ventilation patterns in F. rufa workers. Previous investigations state 

that increases in metabolic rate are responsible for causing changes in ventilation type 

(Gibbs and Johnson, 2004). Metabolic rate is probably indirectly responsible for causing 

changes in ventilation pattern, because both metabolic rate increase and ventilation 

pattern changes are induced by the onset of movement.  

 

6.2 Importance of differential scaling 

The capacity for slope shifts to exist within a single organ has important implications for 

our understanding of development and growth. Global resources are distributed 

unevenly among developing organs, allowing some organs to grow larger than others 

with increases in body size (Emlen et al., 2012). There is evidently an analogous process 

occurring within the compound eye – and by extension, developmental compartments 

of other organs. Some organ regions get access to more resources than others, hence 

cellular growth is differentially enhanced. The nature of ommatidial development made 

the compound eye a useful organ with which to test differential resource distribution. 

Once ommatidial development has initiated from a progenitor cell (Friedrich et al., 

1996), cells do not merge or cross into adjacent ommatidia (Wolff and Ready, 1991). 

Therefore, resources are restricted to each ommatidia, demonstrating that differential 

resource allocation does occur within an organ.  

Differential resource allocation within an organ may be mediated in the same 

way as it is for whole organs within a body; via expression of insulin receptors. Greater 

expression of insulin receptors in cells from one region will promote a larger response 

to increases in insulin-like peptides (ILPs), compared with another region in which cells 

express fewer receptors. Larval nutrition is responsible for the release of ILPs and adult 

body mass, hence, different regions of a single organ can respond differently to increases 
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in size. This mechanism allows organs to diversify and fulfil a specific ecological function. 

This is evident from the results of Chapter 3 in which it is shown that there is a fixed 

ratio of facet number to mean facet diameter across all four Formica species, indicative 

of a potential functional constraint. However, there is variability among species in terms 

of differential facet diameter scaling. The capacity to modify selective parts of the eye 

may allow species to adapt to their own specific visual ecologies, whilst still adhering to 

genus wide scaling constraints.  

Differential scaling may also provide a mechanism through which morphological 

diversity can be generated. Ant workers do not directly produce offspring, and therefore 

the negative consequences of deleterious morphological mutations may not have any 

fitness effects. Hence, worker ant organs may experience a greater degree of 

developmental flexibility. In other species, there are organs where diversification and 

modification are a critical component of species or subspecies reproductive isolation. 

Part of this isolation is generating morphological novelty. This is often the case with the 

a portion of male genitalia (aedeagus), where closely related species may only be 

distinguishable through aedeagus morphology (Franco et al., 2006; Hosken and Stockley, 

2004; Kulikov et al., 2004).  Another example can be found in Onthophagus beetles where 

horns are highly modified at a species specific level (Emlen et al., 2005; McCullough et 

al., 2015). The mechanism used to scale organs differentially across an entire body 

(relative insulin receptor expression) may also be responsible for within organ scaling. If 

so, it becomes a matter of merely changing the patterns of insulin expression within an 

organ to create differences in how many prongs, folds or wedges a horn or aedeagus 

expresses. Differential scaling could be a mechanism by which changes in organ 

morphology can be modified through simple developmental changes.  
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6.3 Variability in morphological and physiological scaling  

There is a striking contrast in the plasticity of morphological scaling and the conservation 

of physiological scaling between nests. Workers from different colonies scale their eyes 

differently, investing in facet number or diameter. However, there are no significant 

differences in the metabolic rate scaling of workers between nests.  There are several 

potential reasons for this. Firstly, metabolic rate is susceptible to environmental and 

physiological variability, increasing when insects are moving rapidly or ambient 

temperature increases (Chown and Nicolson, 2004). When placed in a homogenous 

laboratory environment, it is possible that environmental conditions that might affect 

workers from different nests no longer apply. Thus, the workers scale their metabolic 

rate similarly. Morphological scaling is also susceptible to environmental variation. 

During ontogeny, changes in temperature can affect adult organ scaling (Shingleton et 

al., 2009).  Even though resting metabolic rate is often viewed as an invariant property, 

metabolic rate is constantly in flux, whereas adult organs are a fixed size; they can no 

longer respond to environmental change. Hence, the fluctuations in environmental 

variables that affect metabolic rate can no longer affect adult organ scaling.  

It is possible that the lack of difference in metabolic rate scaling among nests is 

because physiological scaling is tightly restricted. There are many competing explanations 

for why and how metabolic rate scales with body size across different taxa (Brown et 

al., 2004; Chown and Nicolson, 2004; Glazier et al., 2015; Hirst et al., 2014; West et al., 

1997). Many interspecific metabolic rate scaling hypotheses posit that fundamental 

physical laws, such as; the fractal nature of nutrient supply networks (West et al., 1997; 

West et al., 1999), growth through cell number compared with cell size (Chown et al., 

2007) or resource flow and relative surface area (Glazier et al., 2015) are responsible 

for invariant metabolic rate scaling across taxa. We would expect intraspecific scaling to 
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have a different exponent compared with interspecific scaling (Glazier, 2005; Harrison, 

2017), principally because the range of body sizes is much smaller. However, fundamental 

physical laws should apply equally within as across species. Both instances depend upon 

increasing body sizes. If metabolic rate scaling is restricted, even moderately, by 

fundamental physical laws it is unsurprising that we do not observe differences in 

metabolic rate scaling among nests; all nests would be subject to the same underling 

constraints.   

 

6.4 Insect ventilation patterns and their causes  

The consensus on insect ventilation patterns is that switching is driven by increases in 

metabolic rate (Contreras and Bradley, 2010; Gibbs and Johnson, 2004). In many cases 

where metabolic rate increases are cited as causing changes in ventilation pattern, it is 

possible that movement is the actual trigger (Gibbs and Johnson, 2004; Käfer et al., 2015; 

Klok and Chown, 2005)). Changes in metabolic rate and ventilation pattern are 

concurrent rather than causal. Metabolic rate increases are the ultimate cause of changes 

in ventilation pattern, because of the increased requirement for gas exchange, but in 

wood ant workers the proximate mechanism by which the pattern changes is the onset 

of movement. This proximate mechanism may not be true for all insect species (Basson 

and Terblanche, 2010).  

Integrating movement as the proximate cause of ventilation pattern changes  with 

previous investigations is difficult because there has been a strong focus on  

discontinuous gas exchange cycles (DGC), which we did not observe in Formica rufa 

workers. Explanations from the chthonic and hygric hypotheses, which suggest that 

DGC preserve water and optimise gas concentrations respectively, do not apply here 

(Chown et al., 2006; Gibbs and Johnson, 2004; Lighton, 1998). However, movement 
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induced ventilation pattern changes is consistent with the hypothesis that DGC are used 

to avoid generating free radicals (Hetz and Bradley, 2005). The onset of movement 

indicates that more oxygen is going to be consumed, lowering the risk of oxygen over-

exposure, and so it follows that spiracles will spend less time closed. Changes in 

spiracular opening time manifest as changes in ventilation pattern. Furthermore, our 

paradigm is not mutually exclusive with another DGC hypothesis:  DGC being the 

default gas exchange pattern, controlled by ganglia (Matthews and White, 2010; 

Matthews and White, 2013). Worker ants are highly active and, therefore, may never 

lower brain activity enough to devolve spiracular control to local ganglia. Testing the 

ants before and after decapitation would provide a useful experiment with which to test 

this. Insect ventilation types may not be truly discrete entities, and may instead  exist on 

a continuous scale (Contreras and Bradley, 2010). If so movement could still be critical 

for increasing cycle rates (Klok and Chown, 2005). 

 

6.5 Ecological implications of homogenous metabolic rate among nests  

Metabolic rate is hypothesised to influence several aspects of animal ecology, many of 

which have a direct or indirect impact on fitness. Relative fitness among Formica rufa 

nests is unlikely to be mediated by worker metabolic rate because there is no difference 

in metabolic rate scaling between nests. This is surprising because in some animals, 

certain behavioural traits, like aggressiveness, are linked with metabolic rate (Careau et 

al., 2008). Territory is fought over in the spring (Elton, 1932) and therefore, workers 

with higher metabolic rates and more aggression might secure more territory, which 

could influence fitness through access to aphid resources. It is feasible that worker 

metabolic rate changes throughout the season. Ants were collected towards the end of 

the summer, and so it is possible that their metabolic rates were lowering in preparation 
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for overwintering. An interesting future experiment would first track worker metabolic 

rate across the season, to assess any early-season nest differences, and then correlate 

this with nest foraging territory.  

Worker metabolic rate is important because it forms part of the mechanism 

modulating how resources enter the nest. However, in the majority of species, individual 

caste scaling exponents are different from the metabolic rate scaling of whole colonies 

(Vogt and Appel, 1999). This is because the ecology of adult insects differs vastly from 

that of larvae and pupae and so they have different metabolic demands (e.g. movement 

versus growth). The metabolic costs of the entire nest may be more pertinent to 

determining colony fitness than the metabolic rates of individual workers. Colony fitness 

might be determined by number of workers instead. Differences in worker number 

could have a role in determining colony metabolic rate. Furthermore, workers may be 

selected to be as energetically efficient as possible (Bartholomew et al., 1988; Feener et 

al., 1988; Wright et al., 2000), to maximise resource collection.  All colonies within the 

population may be constrained in how efficient their workers are. Due to their size 

whole wood ant nests cannot be put into a respirometer, though it may be possible to 

estimate whole nest metabolic rate by estimating caste populations and their mass 

specific metabolic rates.  

 

6.6 Open questions  

This thesis has generated many questions that remain to be addressed. The function, if 

any, of differential intra-organ scaling is currently unknown. Though there is differential 

investment in distinct parts of the ant eye, the behavioural or ecological benefits of this 

remain to be discovered. It is possible that investment in some parts of an eye are more 

beneficial than others. This type of regionalisation is well documented in compound eyes 
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and allows locally high acuity without overly large compound eyes (Land, 1997). 

Differential scaling takes this hypothesis further and implies that some eye regions are 

increasingly beneficial with increasing size i.e. it is better for some regions to be bigger 

but only when the animal itself is large.  

Examination of the visual properties of the eye would first be needed to assess 

if intra-organ scaling was adaptive. Without a measure of visual acuity and sensitivity it 

is difficult to estimate whether the changes in facet diameter are functionally adaptive 

(Land, 1997). Ants are strongly driven by olfaction and so their vision is general poorer 

than other members of the Hymenoptera (Lunau et al., 2009; Macuda et al., 2001; 

Spaethe and Chittka, 2003; Zollikofer et al., 1995). Less reliance on poorer vision may 

mean that it is not important what the facet diameters are, within a certain range. If the 

facet diameter changes are so small as to not have an impact on vision, there may be 

developmental deregulation instead. Compound eye development, at least in Drosophila 

melanogaster, is tightly regulated to ensure that facets are hexagonal and pack together 

closely into a neat facet array (Kim et al., 2016; Ready et al., 1976). Comparing the facet 

array of an ant with that of a bee (Jander and Jander, 2002), a locust (Homberg and 

Paech, 2002) or a fruit fly (Kim et al., 2016) reveals that ant facets do not conform well 

to a stereotypical hexagonal shape (Baker and Ma, 2006). Ant facets are often misshapen, 

many have too many or too few sides, forming irregular pentagons or even octagons. 

This implies that developmental control of facet formation and packing has been 

deregulated.  If so, the rate of facet diameter increase with body size may be similarly 

deregulated and the distribution of resources within the developing eye may be uneven, 

not by design but by neglect. Though this may explain how differential intra-organ scaling 

arose, it is insufficient to explain why intra-organ scaling is found in some Formica species 

but not others.  
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It is unknown how pervasive the phenomenon of differential scaling is. Given that 

slope shifts do not occur in the compound eyes of all Formica species it is certainly 

restricted to some degree. It remains to be seen whether other groups of insects also 

have differential scaling in their eyes, especially those with better vision than ants. If this 

exists in a species that relies on highly acute vision, that would indicate an adaptive 

function rather than developmental deregulation.  

It is also unknown if differential scaling is present in other organs. It is difficult to 

test in organs that do not have distinctly differentiated functional subunits. One 

potentially suitable candidate organ is the insect ovary, which is composed of subunits 

called ovarioles. The size of an ovary could be changed by making ovarioles larger or 

more numerous, an analogy to increasing eye area with larger facets or more ommatidia. 

Thus, if differential scaling exists in other organs, ovaries are an ideal candidate.  
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