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It was the best of times
It was the worst of times

It was the age of wisdom
It was the age of foolishness

It was the epoch of belief
It was the epoch of incredulity

It was the season of light
It was the season of darkness

It was the spring of hope
It was the winter of despair

– Charles Dickens, A Tale of Two Cities
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A B S T R A C T

Anchored Packed Trees (Apts) are a novel approach to distributional
semantics that takes distributional composition to be a process of lex-
eme contextualisation. A lexeme’s meaning, characterised as know-
ledge concerning co-occurrences involving that lexeme, is represen-
ted with a higher-order dependency-typed structure (the Apt) where
paths associated with higher-order dependencies connect vertices as-
sociated with weighted lexeme multisets. The central innovation in
the compositional theory is that the Apt’s type structure enables the
precise alignment of the semantic representation of each of the lex-
emes being composed.

Like other count-based distributional spaces, however, Anchored
Packed Trees are prone to considerable data sparsity, caused by not
observing all plausible co-occurrences in the given data. This prob-
lem is amplified for models like Apts, that take the grammatical type
of a co-occurrence into account. This results in a very sparse distribu-
tional space, requiring a mechanism for inferring missing knowledge.
Most methods face this challenge in ways that render the resulting
word representations uninterpretable, with the consequence that dis-
tributional composition becomes difficult to model and reason about.

In this thesis, I will present a practical evaluation of the Apt theory,
including a large-scale hyperparameter sensitivity study and a char-
acterisation of the distributional space that Apts give rise to. Based
on the empirical analysis, the impact of the problem of data sparsity
is investigated. In order to address the data sparsity challenge and
retain the interpretability of the model, I explore an alternative al-
gorithm — distributional inference — for improving elementary rep-
resentations. The algorithm involves explicitly inferring unobserved
co-occurrence events by leveraging the distributional neighbourhood
of the semantic space. I then leverage the rich type structure in Apts
and propose a generalisation of the distributional inference algorithm.
I empirically show that distributional inference improves element-
ary word representations and is especially beneficial when combined
with an intersective composition function, which is due to the comple-
mentary nature of inference and composition. Lastly, I qualitatively
analyse the proposed algorithms in order to characterise the know-
ledge that they are able to infer, as well as their impact on the distri-
butional Apt space.
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T E R M I N O L O G Y & N O TAT I O N

Notation Explanation

α, β Scalar variables

x, y Vectors

A, B Matrices

X ,Y Tensors (of order 3 or higher)

V Set

xi ith element of the vector x

Mi,j element in the ith row and jth column of

the matrix M

|V|, |x| size of the set V and the vector x,

respectively

x + y, A + B elementwise addition between the vectors x

and y, and the matrices A and B, respectively

x� y, A� B elementwise (a.k.a. Hadamard) product

between vectors x and y, and matrices A

and B, respectively

x⊗ y, A⊗ B outer (a.k.a. Kronecker) product

between vectors x and y, and matrices A

and B, respectively

x⊕ y, A⊕ B concatenation of vectors x and y, and

matrices A and B, respectively

x · y, A · x, B y dot product between vectors x and y,

and matrix vector product between A

and x, and B and y, respectively

x ~ y arbitrary function to combine vectors x and y

f , g functions, precise semantics will be c

explained in the text

〈w, r, w′〉, 〈w, c〉 co-occurrence event between the

word-type-word triple w, r, w′, and the
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contents 2

word-context tuple w, c, respectively. The

semantics of w′ and c are such that w′ always

refers to a single lexeme whereas c can refer to

any kind of context such as single lexemes,

phrases, sentences, paragraphs or documents.

The two will be used interchangably unless

a distinction is important for the under-

standing of a statement.

〈w, r, w′〉, 〈w, τ, w′〉 co-occurrence between words w and w′ with

type r or τ, respectively. r is used to refer

to any kind of relation that can be modelled

between the two lexemes, whereas τ specifically

refers to a grammatical relation between w and

w′. Both will be used interchangably unless

the context requires a distinction.

#〈w, r, w′〉 frequency of the co-occurrence event

between words w and w′, and relation r

dobj, nsubj dependency relations (denoted by their

universal dependency label)

amod, nsubjpass inverse dependency relations

amod.nsubj higher-order dependency relation

(separated by a dot)

〈amod, seagull〉, amod:seagull typed distributional features in tuple

form (former) and key form (latter)

A elementary Apt representation (same

notation as for matrices, it will be made

clear in the text whether an Apt or a matrix

is being referred to)

whiteamod offset Apt, represents the noun offset view of

the adjective white

~A vectorised Apt

lexeme A word type (e.g. in opposition to a word

occurrence or token) and that uniquely

identifies an entry in the Apt lexicon or any
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other distributional space

higher-order feature Referring to the case where the dependency

path in a co-occurrence between two words

includes two or more dependency relations.

higher-order Apt Apt lexicon that includes higher-order features.

type Unless stated otherwise in the text, this refers to

the label of a dependency relation.

path of order n n refers to the length of a dependency path in a

co-occurrence event between two words.

packing Process that merges words with identical paths

into the same Apt node.



1
I N T R O D U C T I O N

Representing Natural Language Meaning

Representing natural language meaning has been a long standing
open research problem in natural language processing (NLP) as it
requires an answer to two central questions from philosophy and ar-
tificial intelligence: what is meaning? and how can it be represented?

One answer to these questions is based on formal semantics the-
ory, which operates on the sentence level, and defines meaning as
the truth value of a given sentence. This notion of meaning arguably
dates back to the work of Frege (1892) and treats the derivation of the
denotation of a sentence as a logical inference problem. A logic form-
alism is used to describe and represent the meaning of a sentence.
The focus of formal semantics has predominantly been on model-
ling the role of closed class words such as determiners. Content —
or open class — words such as adjectives, nouns and verbs, on the
other hand, have received comparatively less attention and are still
frequently treated as “unanaly[s]ed primitives" (Partee, 2016).

A contrasting answer to the question of meaning and its repres-
entation is based on lexical semantics research, which unlike formal
semantics approaches, focuses on the meaning of content words. One
popular approach to represent the meaning of individual lexemes
is based on the distributional hypothesis, attributed to Harris (1954)
and Firth (1957). The distributional hypothesis states that “difference
of meaning correlates with difference of distribution" (Harris, 1954),
which means that two lexemes have similar meaning if their associ-
ated co-occurrence patterns are similar.

Distributional Semantics

This hypothesis has been adopted by distributional semantics re-
search, where meaning representations are derived from the co-
occurrence statistics of words in a large corpus of text. Individual
lexemes are typically represented by a high-dimensional vector that
records the co-occurrences with the contexts in which the lexemes oc-
cur. The vector representation of any lexeme in isolation is of limited
utility in determining the meaning of a word. However, the distribu-
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tional similarity to all other lexemes in the same space gives rise to a
continuous model of meaning. This enables the precise quantification of
the representation for the lexeme dog being more similar to the rep-
resentations for cat and pet, than to the vector representations for the
lexemes car and mug.

While the technique of representing lexical items on the basis of
their co-occurrence statistics has been very successful for individual
lexemes, the same method quickly becomes infeasible for longer n-
grams due to data sparsity. For example, in a cleaned1 October 2013
Wikipedia dump, the lexeme cat occurs almost 25k times, whereas the
bigram black cat has only 680 occurrences, and the trigram big black
cat occurs only once. Collecting co-occurrence statistics therefore is
already problematic for less frequent two-word combinations, and
becomes infeasible beyond the bigram level. Furthermore, it is prac-
tically impossible to observe all plausible word combinations of any
length in any text corpus2.

Distributional Composition

One approach that has been proposed, and has attracted a substantial
amount of interest in the NLP research community in recent years, is
to leverage distributional representations of individual lexemes, and
compose them to create representations for longer phrases. This idea
has frequently been motivated by the Fregean principle of composition-
ality (Frege, 1884), which states that the meaning of the whole is a
function of the meaning of its parts and the way in which these are
combined.

For distributional word representations, which are most commonly
modelled as vectors, this means that some arithmetic function is ap-
plied to two or more vectors to derive a meaning representation for a
phrase. In one of its simplest instantiations, this means retrieving the
respective vectors for white and clothes from the vector space, and com-
posing them by pointwise addition in order to create a representation
for the phrase white clothes. However it is unclear what the vector for
the phrase white clothes actually represents. Pointwise addition of the
two constituent representations suggests that white clothes are as sim-
ilar to something white as they are to clothes, which arguably is not
the case. The adjective white is only modifying the noun clothes, hence

1 Articles with fewer than 20 pageviews on a given day have been removed, see Wilson
(2015).

2 The bigram angry cat, for example, never occurs in the Wikipedia corpus mentioned
above, however would represent a perfectly plausible phrase.
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the representation for the composed phrase white clothes should still
predominantly be governed by clothes. It therefore remains an open
research question of how exactly the constituents in the phrase inter-
act, what distributional features are being shared among them in the
given context, and how such a phrase should be represented.

An early approach that addresses the problem of modelling the
meaning of a phrase with distributional word representations has
been put forward by Erk and Padó (2008). They propose that the key
component to expressing the denotation of a phrase is a contextualisa-
tion mechanism that extracts the meaning of each individual lexeme
given the context of the phrase it occurs in. This means that only
features of white that are relevant to clothes, and features of clothes
that are relevant to white, contribute to the meaning of the phrase
white clothes. In Weir et al. (2016) we expanded on that idea by form-
alising distributional composition, which is interpreted as a process
of lexeme contextualisation, into two steps. These involve the correct
alignment and subsequent integration of the distributional knowledge
of every lexeme in a phrase. The result of that process is that every
lexeme’s meaning reflects its bespoke use in the phrase it occurs in.

Distributional composition therefore acts as a mechanism of extract-
ing the appropriate meaning of the lexemes involved in a phrase from
each others contexts, and integrating them into a representation that
models the semantics of the whole by leveraging the correct meaning
of its parts. For the lexemes in a phrase “aligning" means “agreeing"
on a set of distributional features that will be shared in the composed
representation.

For example when considering the phrase white clothes once again,
the meaning of white in the context of clothes and the meaning of
clothes in the context of white should be reflected in the resulting com-
posed representation. The contextualisation mechanism expresses the
fact that the meaning of white in the phrase white clothes is different
from the meaning of white in white noise. The alignment step achieves
that the two representations agree on features that take white things
as their direct object, as well as other verbs that white clothes are the
subject of. While the alignment is driven by syntax as white is used
as a modifier but needs to be expressed in terms of a noun — i.e. a
white thing — the consequences of the alignment are semantic. This
is because the representation of the adjective white changes from an
uncontextualised modifier to a noun that expresses the semantics of
a “thing that can be white". The subsequent composition operation in-
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tegrates the agreed set of features into a single shared representation
that constitutes the phrase white clothes.

Interpreting distributional composition as a two-step process of
alignment and integration is crucial to appropriately modelling the
dynamics between the various meaning potentials of distributional
word representations, that are activated in a context-dependent
manner. This interpretation of composition parallels the argument
of Hanks (2000), who asserted that a lexeme only has a concrete
meaning within a context. Outside of any context, a lexeme expresses
a number of different meaning potentials, which are activated when
put into context.

Limitations of Vector-Based Representations for Distributional Composition

Representing lexemes as vectors in a metric space is not suitable for
modelling distributional composition as the process of alignment and
integration outlined above. This is because a vector-based representa-
tion is static, and implicitly assumes that all word representations are
correctly aligned a priori, outside of any context. Consequently, distri-
butional composition is modelled as a post-hoc operation on top of a
static vector space that results in a limited capacity to contextualise a
lexeme.

Another problem of using a vector space as the basic data structure
is that standard composition functions, such as pointwise addition
or multiplication, are commutative. Remedying this shortcoming
has frequently involved the use of some form of weighted ad-
dition (Mitchell and Lapata, 2008; Baroni and Zamparelli, 2010;
Mitchell and Lapata, 2010; Zanzotto et al., 2010; Grefenstette et al.,
2011; Grefenstette and Sadrzadeh, 2011a,b), with the weights fre-
quently modelled by a neural network (Socher et al., 2011; Tsubaki
et al., 2013; Kalchbrenner et al., 2014; Kim, 2014; Bowman et al.,
2016; Hill et al., 2016). The process of agreeing on a set of shared
features between two lexemes is “outsourced" to a set of learnable
parameters that are determined in a task-specific manner. However,
this in turn introduces the reliance on the availability of a sufficiently
large amount of training data in order to learn the parameters of the
composition function3.

3 As Mou et al. (2016) have shown, transferring a neural network based composition
function from one task to another is difficult, often brittle, and frequently results in
relatively poor performance on the task the neural network has been transferred to.
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Anchored Packed Trees for Distributional Composition

These above mentioned limitations for modelling the meaning of a
phrase in an unsupervised and task-independent manner motivate
the need for a novel way of representing distributional knowledge.
This data structure should be able to encode the distributional se-
mantics of a given lexeme out of context, as well as supporting a
mechanism for appropriate alignment when used in context. The
form of representation furthermore needs to support a way of integ-
rating the aligned representations into a single unified structure that
is capable of modelling longer phrases and sentences in the same
space as individual lexemes4.

One such proposal is Anchored Packed Trees (Weir et al., 2016)
(Apts), which represent the distributional semantic space as a graph,
where edges associated with dependency relations connect vertices
associated with weighted lexeme multisets. By modelling the gram-
matical relation of a lexeme, Apts support a mechanism for aligning
the semantics of the lexemes involved in a phrase. This precise align-
ment of the semantic representation of each of the lexemes being com-
posed represents the central innovation underlying the compositional
theory.

In Anchored Packed Trees, distributional composition is the core
concept and the structure of the elementary distributional word rep-
resentations is a direct consequence of the way that composition has
been defined. By focusing on an effective mechanism for aligning the
semantics of the lexemes in a phrase, the problem of commutativity
in distributional composition can be avoided, while retaining the be-
nefit of being an unsupervised model that does not require a labelled
dataset to learn a task-specific composition function.

Apts leverage the syntactic structure of the text to model compos-
ition as the contextualisation of all the lexemes involved in a phrase.
This results in composed phrasal representations that are distinct to
the given context. The composition function acts as a mechanism to
integrate the aligned meanings of the lexemes involved in the phrase
into a single unified representation.

One central contribution of this thesis is a practical evaluation of
the Apt theory that analyses the performance of elementary and com-
posed Apt representations. The thesis also contributes a large-scale
hyperparameter sensitivity analysis, and provides recommendations

4 While this thesis is only concerned with individual lexemes and short phrases, the
theory of Apts goes well beyond that as outlined in Weir et al. (2016).
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for deriving a set of robust parameters when using Apts in practice.
In the following, the thesis presents a characterisation of the distribu-
tional space that the novel Apt data structure gives rise to.

The Problem of Data Sparsity in Distributional Representations

The empirical evaluation of the Apt theory, however, highlights a cent-
ral practical difficulty when working with Apts. The typed nature
of elementary representations, and the syntactically driven defini-
tion of distributional composition comes at the cost of increasing
the negative effect of data sparsity — the problem of not observing
all plausible co-occurrences between any two lexemes. The reason
for the amplified negative effect of sparsity is the way the element-
ary Apt representations are structured. Co-occurrences are not only
collected between two lexemes, but between word-type-word triples,
where the type is the grammatical relation holding between the two
words.

For example, due to modelling the grammatical relation of a co-
occurrence, Apts model the distinction between a noun being used
as the object or subject in a phrase, or even more fine-grained dis-
tinctions such as the use of a subject in an active or passive voice
construction. These distinctions would not be present in a distribu-
tional semantic model that neglects the type information and only
models the co-occurrence of word-word tuples.

The problem of data sparsity extends to distributional composi-
tion, where a representation for a phrase needs to be built from two
incomplete elementary structures. This subsequently results in very
poor composed representations that do not adequately capture the
semantics of a phrase. Therefore data sparsity is a central challenge
for extending the continuous model of meaning from the lexical to
the phrasal level.

The issue of data sparsity has been a long standing research prob-
lem in distributional semantics research, and has motivated the use
of various techniques for dimensionality reduction such as Singular-
Value Decomposition or Non-negative Matrix Factorisation, as well
as the use of low-dimensional neural word embeddings, which aim
to improve the generalisation capabilities of a model.

When analysing the sparsity problem in a distributional semantic
space, however, it can be useful to distinguish between two differ-
ent kinds of sparsity: model sparsity and data sparsity. A model can
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be sparse by design as the consequence of explicitly representing the
co-occurrence space in a distributional semantic model. This has the
advantage of deriving very expressive and discriminative5 represent-
ations, and has the effect of being straightforwardly interpretable. A
disadvantage of model sparsity is that such representations tend to
be unwieldy to use in downstream tasks due to their high dimen-
sionality. This is one of the reasons why low-dimensional and dense
neural word embeddings have become such a popular resource for a
large range of different NLP tasks (Turian et al., 2010; Collobert et al.,
2011).

Data sparsity on the other hand is a consequence of not observing
all plausible co-occurrence events in any given text corpus. This is
an effect of the richness and variety of natural language itself. There
is almost always more than one way to express an idea or thought,
hence the distributional features of a concept can be scattered across
many different lexemes when collecting the co-occurrence informa-
tion from a text collection. However, they might have occurred for
only one lexeme without changing the meaning of the thought.

For example, the lexemes bike and bicycle are equally plausible in
numerous and possibly disjoint contexts. This has the consequence
of not observing all plausible co-occurrences for either lexeme when
building distributional word representations, resulting in incomplete
representations for both terms. Concretely, this can result in a situ-
ation where only bicycles are observed as being old, and only bikes
are observed as being stolen, according to the representations of bi-
cycle and bike in a given Apt space derived from the British National
Corpus (Burnard, 2007).

The following two concrete examples illustrate how the problem
of data sparsity manifests itself differently in dense and sparse dis-
tributional semantic models. In a dense model, such as neural word
embeddings, sparse data frequently leads to increasingly high similar-
ity scores for completely unrelated lexemes, or low similarity scores
for related ones. For example in a 100-dimensional word2vec space
derived from the British National Corpus, the nearest neighbours of
the lexeme dongle6 include misspelled terms such as workflo, or com-
pletely unrelated terms such as pizza. Data sparsity therefore causes
semantic inconsistency in the distributional neighbourhood, that fails

5 Discriminative in the sense of discriminating between many different contexts.
6 A dongle is a small device that can be connected to a computer, such as a wireless

broadband stick. See https://en.oxforddictionaries.com/definition/dongle for
a definition. The lexeme dongle occurs only 10 times in the British National Corpus,
so is relatively infrequent.

https://en.oxforddictionaries.com/definition/dongle
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to capture interesting linguistic patterns, such as clusters of topic-
ally related words, that have been observed for neural word embed-
dings (Levy and Goldberg, 2014a; Pennington et al., 2014).

In a sparse model, on the other hand, less data increases the sparsity
of already sparse representations, i.e. there are hardly any observed
co-occurrences for a given word. This leads to very little contextual
overlap and therefore very low similarity scores between any two lex-
emes. For example in an example Apt space derived from the British
National Corpus, the lexeme dongle has only 2 non-zero co-occurrence
features (out of ≈800k dimensions), leading to essentially no feature
overlap with any other lexeme. The low number of non-zero features
is a consequence of applying a lexical association function such as
PPMI (Church and Hanks, 1989). This results in effectively treating
most other lexemes with which dongle co-occurs as “chance encoun-
ters" which are assigned negative PMI scores that are subsequently
filtered by the PPMI threshold.

Sparse models typically suffer more from data sparsity because of
explicitly representing all observed contextual dimensions instead of
embedding the contexts into a latent space as in dense models. This
is a direct consequence of the “curse of dimensionality" as there are
fewer observations for each dimension in the available data.

Data sparsity also represents a major challenge for composing dis-
tributional word representations as it is difficult to accurately capture
the meaning of a phrase when it has to be built from impoverished
elementary representations. For Apts specifically, data sparsity im-
pacts the alignment process during which a set of shared features is
negotiated between the lexemes in a phrase. The problem stems from
the “uncertainty of the 0" — the issue whether a co-occurrence event
has not been observed because it is actually implausible, or because
it just has not been seen in the given source corpus, while being per-
fectly plausible.

In Apts the contextualisation process is responsible for narrow-
ing down the meaning of the lexemes in the current phrasal context,
which means filtering out distributional features that do not fit in the
given context. However, by not observing all plausible co-occurrences
on the lexical level, the process of contextualisation will inevitably fil-
ter out too many features. Therefore, distributional composition in
Anchored Packed Trees requires a supporting mechanism that is able
to expand the current state of knowledge in order to better model the
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semantics of a composed phrase.

Sparse and dense distributional semantic models are at somewhat
opposite ends of the representation spectrum. Sparse models are
highly transparent in terms of the knowledge they encode, however
they tend to discriminate too many contexts, thereby reinforcing the
data sparsity problem. Dense models, conversely, rely on an opaque
optimisation process to merge contextual dimensions without much
chance of encoding prior knowledge as to what should and should
not be merged.

The second central contribution of this thesis is the proposal
of an unsupervised algorithm that infers plausible knowledge by
leveraging the distributional neighbourhood. The algorithm strikes a
middle ground between the two extremes by offering the possibility
to control what contextual dimensions can be combined, while
retaining the discriminative and transparent nature of sparse count-
based distributional semantic models. The proposed distributional
inference algorithm can furthermore be seen as a first step towards
overcoming the “uncertainty of the 0" problem, as any contextual
dimension that remains unobserved (i.e. is still 0) after inference
is much more likely to be actually implausible than before. This is
because a particular context might not have been observed with any
of the distributional neighbours of a lexeme either. Therefore, it can
be disregarded with a much higher level of confidence than before.
While the thesis is focused on enriching representations within
the Anchored Packed Trees framework, the proposed algorithm is
applicable to other count-based sparse distributional models as we
have successfully demonstrated in Kober et al. (2016). An analysis of
the impact of distributional inference on other count-based models is
out of scope of this thesis.

Mitigating the Sparsity Problem

The necessity of an alternative approach to mitigating the data
sparsity problem in Apts stems from the fact that typical approaches,
such as reducing the dimensionality of the elementary representa-
tions, are not feasible for Apts. The reason is that the composition
mechanism in the Apt framework relies on explicit knowledge con-
cerning the structure of the representations. This means that indi-
vidual context dimensions need to be interpretable. However, while
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applying dimensionality reduction techniques smoothes the element-
ary word representations and thereby — arguably7 — improves its
generalisation capabilities, it furthermore renders the individual con-
textual dimensions opaque due to embedding them into a latent
space. This is not compatible with composition in Anchored Packed
Trees.

The proposed algorithm leverages the distributional neighbour-
hood for enriching the representations with additional information.
Explicitly inferring co-occurrence features from a set of nearest neigh-
bours creates the potential for effectively transferring and sharing
knowledge between distributionally similar lexemes. For example if
the lexeme bicycle is among the nearest neighbours of the lexeme bike8,
it is possible to inject some of the knowledge of bicycle into the rep-
resentation for bike, and vice versa, which originally might not have
been observed in the corpus. This enriches the representation of both
lexemes with additional information that has already been obtained
elsewhere, and provides an effective intrinsic mechanism for address-
ing the data sparsity issue. Hence, the proposed algorithm provides
an effective solution to the problem described earlier, where bikes have
not been observed as old, and bicycles have never been stolen, due to
inferring the corresponding missing distributional features for bike
and bicycle, respectively.

The rich type structure in Apts allows the distributional inference
process to go beyond the surface lexeme level and leverage the neigh-
bourhood of so-called “offset" Apt representations. Offsetting is a
fundamental part of the composition process in Apts and is respons-
ible for aligning the semantic representations of two lexemes accord-
ingly. An offset Apt representation therefore reflects the contextual-
ised view of a given lexeme in a phrase. For example, offsetting is the
process that expresses the semantics of the adjective white in terms of
a noun — a “thing that can be white" — when used in the context of
white clothes. This structure might well be similar to representations
for “things that can be blue" or “things that can be dark", thus enabling
higher-order inferences of knowledge for any given Apt representa-
tion. This form of knowledge expansion goes beyond what has been
observed at the “surface-form" co-occurrence level and provides a

7 See Caron (2001); Bullinaria and Levy (2012); Lapesa and Evert (2014); Levy et al.
(2015); Sahlgren and Lenci (2016); Lapesa and Evert (2017) for a detailed discussion.

8 Indeed in a tested Apt space derived from the BNC, bicycle is the nearest neighbour
of bike.
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mechanism for inferring knowledge from a more abstract conceptual
level.

The inference process based on offset representations effectively
leverages the rich type structure and exploits the higher-order se-
mantics of a given lexeme that is encoded by an Apt. This leads to
a generalisation of the distributional inference procedure where ele-
mentary Apt representations can be enriched with additional know-
ledge outside of any context, as well as in a contextualised man-
ner. Offset views and offset inference will be discussed in detail in
Chapters 4 and 5, respectively.

Furthermore, by generalising the inference process to offset repres-
entations, an important connection between distributional inference
and distributional composition is uncovered as both are realised by
the same operation. Their complementary use results in an effective
mechanism for co-occurrence embellishment through distributional in-
ference, and co-occurrence filtering through distributional composition,
when composing a phrase as we have shown in Kober et al. (2017a)
and as will also be outlined in Chapter 5.

1.1 contributions of this thesis

The contributions of this thesis are a combination of practical analyses
based on empirical data, together with advancements on Apt theory.
On the practical side, this thesis presents an empirical evaluation of
the Apt proposal together with recommendations for a set of favour-
able hyperparameter settings on the basis of an extensive hyperpara-
meter sensitivity analysis. Furthermore, the thesis provides a char-
acterisation of the distributional semantics of elementary, offset and
composed Apt representations. This includes an analysis of their re-
spective distributional neighbourhoods, as well as an assessment of
the performance of Apts on a number of widely used word similarity
datasets and a short phrase composition benchmark.

On the theoretical side, the thesis adapts the algorithm introduced
by Essen and Steinbiss (1992) and Dagan et al. (1993) for smoothing
language models, to the use with a distributional semantic model
such as Apts. Subsequently, the algorithm is generalised to distribu-
tional offset inference by leveraging the rich type structure inherent
in Apt representations in order to address the data sparsity issue
more effectively. The thesis shows that distributional inference and
offset inference significantly improve the performance of well-tuned
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Apt models on a range of popular word similarity tasks as well as a
short phrase composition benchmark dataset. Alongside the quantit-
ative improvements, the proposed algorithm is studied qualitatively
by analysing what kind of knowledge it is able to infer, and in how
far the additionally inferred knowledge changes the characteristics of
the distributional representations.

Lastly, the thesis highlights that the generalisation of the distribu-
tional inference algorithm to offset inference uncovers a latent rela-
tion between distributional composition and distributional inference.
The thesis shows that both operations are concerned with inferring
plausible co-occurrence counts between a given set of representations,
and are realised by the same operation. This thesis furthermore pro-
poses the use of distributional inference in a complementary way to
distributional composition. The inference operation can be used as a
process of co-occurrence embellishment to expand the current state of
knowledge, and composition can be used as a process of co-occurrence
filtering for filtering implausible co-occurrences.

1.2 structure of this thesis

The thesis is structured as follows: Chapter 2 reviews related work
on distributional semantics (§ 2.1), compositional distributional se-
mantics (§ 2.2), modelling word meaning in context (§ 2.3), and infer-
ring unobserved events (§ 2.4). Chapter 3 introduces the theory be-
hind Anchored Packed Trees, and explains how elementary Apt rep-
resentations are created (§ 3.1) and how distributional composition is
modelled (§ 3.2), as well as contributing a discussion on how Apts
compare to previously proposed models (§ 3.3).

Chapter 4 introduces the preprocessing pipeline, datasets and eval-
uation methodology (§ 4.1) used throughout this thesis and contrib-
utes a practical evaluation of the Apt theory (§ 4.2), on the basis of
a large-scale hyperparameter sensitivity study that derives a set of
parameter recommendations for using Apts in practice. In addition,
Chapter 4 characterises the distributional semantics of Apt represent-
ations (§ 4.3). Chapter 5 analyses the problem of data sparsity (§ 5.1),
followed by the proposal of the distributional inference algorithm
alongside a quantitative study to measure its performance as well
as a qualitative analysis of its impact on the distributional semantic
Apt space (§ 5.2). The standard distributional inference algorithm is
generalised to offset inference (§ 5.3) and its qualitative and quant-
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itative impact on elementary and composed Apt representations is
measured. Lastly, the thesis explores the inherent relation between
distributional inference and distributional composition (§ 5.4) and re-
commends the combined use of an inference mechanism alongside
an intersective composition function. Finally, Chapter 6 highlights the
main contributions (§ 6.1), summarises the thesis (§ 6.2) and outlines
potential directions for future work (§ 6.3).



2
R E L AT E D W O R K

The following chapter reviews 4 different NLP research branches,
each with their own associated body of work. Section 2.1 discusses
distributional representations of individual lexemes and distinguishes
“bag-of-words" approaches (§ 2.1.1) from syntactically aware word
representations (§ 2.1.2). This distinction is particularly important for
Section 2.2, Compositional Distributional Semantics, and Section 2.3,
Contextualisation —- Modelling Word Meaning in Context, as syn-
tactically aware distributional word representations generally lead to
more expressive composition functions and more flexibility to model
the meaning of a word in context.

Section 2.2 is concerned with the different ways to compose in-
dividual distributional semantic word representations into longer
phrases. One major difference between different approaches is
whether the complexity of the model is encoded in the composition
function or in the word representations. Approaches based on formal
semantics principles, on the other hand, typically encode the major-
ity of the complexity in tensor-based word representations and sub-
sequently apply comparatively simple composition functions. Distri-
butional composition with vector-based word representations is dis-
cussed in Section 2.2.1, and semantic composition on the basis of
formal semantics theory is discussed in Section 2.2.2.

Section 2.3 reviews approaches to determining the meaning of a
word in context. While being closely related to distributional com-
position, it has usually been treated as a task in its own right. Dif-
ferent approaches for contextualisation include multi-prototype and
exemplar-based models (§ 2.3.1), contextualisation based on model-
ling selectional preferences (§ 2.3.2), and expressing the meaning of a
word in context via latent sense modelling approaches (§ 2.3.3).

Lastly, Section 2.4 discusses ways to infer missing information in
a model by leveraging its distributional neighbourhood. It addresses
the problem of not observing all possible co-occurrences in a given
corpus of text, which applies to all distributional semantic approaches
that obtain distributional representations from data. Approaches that
specifically aim to leverage an inference mechanism for distributional
composition are discussed in Section 2.4.1.

17
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2.1 distributional semantics

Distributional semantics is an approach to lexical semantics, con-
cerned with the study of the meaning of words on the basis of their
co-occurrence statistics in language. It is based on the distributional
hypothesis (Harris, 1954; Firth, 1957), stating that words appearing
in similar contexts tend to have similar meaning. The idea can fur-
ther be traced back to Saussurean structural linguistics (de Saussure,
1916), via the work of Firth (1935), with a clear distinction between a
signifier (the string of characters making up the word seagull) and the
signified (the distribution of co-occurrences for the concept denoted
by the string seagull), which together represent the Saussurean “sign".

Early approaches to apply the distributional hypothesis in a
computational semantic space model include Dale and Dale (1965)
for clustering1 of key words in information retrieval, Harper
(1961, 1965) for determining the distributional similarity of Russian
nouns, Spärck-Jones (1964) for thesaurus construction, and Ruben-
stein and Goodenough (1965) for empirically analysing the corres-
pondence between similarity in meaning and similarity of contextual
distributions.

Representing words as distributions of the contexts in which they
occur started gaining more popularity through the works of Church
and Hanks (1989) for lexicography, Deerwester et al. (1990) for in-
formation retrieval, and Hindle (1990) for classifying nouns into dis-
tributionally similar sets. A formalisation of a semantic space model,
or vector space model, was proposed by Lowe (2001), defining it as a
quadruple 〈A, B, S, M〉. In this definition B is the set of basis context
elements that forms the dimensionality of the space. These are typic-
ally word types, word lemmas or whole documents, but can also be
〈r, w′〉 relation-word tuples. A is a lexical association function, con-
verting raw co-occurrence frequencies of the elements in B to weights
or scores, in order to make the word representations more robust to
frequency effects. S denotes the similarity measure for the semantic
space, expressing the similarity between the two context distributions
of two lexemes as a real-valued number. Typical measures include
metrics such as cosine or information theoretic measures such as pro-
posed by Lin (1998); Lee (1999); Weeds and Weir (2003). Lastly, M is
a transformation function, mapping the semantic space onto another
one, for example by applying a dimensionality reduction function.

1 Though the authors refer to their technique as “clumping" the methodology would
be referred to as “clustering" in more modern terminology.
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A substantial amount of research in the distributional semantics lit-
erature is concerned with improving and analysing any of the items
in the quadruple 〈A, B, S, M〉, that has been defined by Lowe (2001).
For example, one choice of the basis context elements B, together
with their precise parameterisation such as the size of the associated
context window, might be better at uncovering certain linguistic reg-
ularities than another choice. For example it is well established that
very narrow context windows promote a semantic space governed
by hypernymy and co-hyponymy, whereas wide context windows
uncover more topical relations such as meronymy and semantic re-
latedness (Peirsman, 2008; Baroni and Lenci, 2011; Levy and Gold-
berg, 2014a). A large body of research is concerned with exploring
and evaluating the vast hyperparameter space of distributional mod-
els (Bullinaria and Levy, 2007, 2012; Lapesa and Evert, 2014, 2017;
Kiela and Clark, 2014; Sahlgren, 2006; Sahlgren and Lenci, 2016). Fur-
thermore two recent surveys by Turney and Pantel (2010) and Erk
(2012) provide a broad overview of current research topics.

Two major axes along which distributional models can be cat-
egorised are whether the word representations are typed or untyped,
and whether contexts are counted or predicted. In the typed case, the
grammatical relation holding between a co-occurrence is recorded,
whereas untyped models follow the bag-of-words paradigm. The
second categorisation is whether co-occurrences are explicitly coun-
ted, or whether they are predicted (Baroni et al., 2014) as in neural
network models. In the following I will make a primary distinction
along the typed-untyped axis and distinguish count-based and predict-
based models for typed and untyped approaches individually.

2.1.1 Untyped Distributional Semantic Models

In an untyped count-based distributional semantic model (DSM), each
lexeme is represented as a distribution over contextual items as ob-
served in a large body of text. The definition of what exactly forms
a context is a hyperparameter, however the most frequently adop-
ted notion is that of a symmetric spatial window, with typical sizes
between 1-10, around a given target word. Alternative interpretations
of context involve full sentences, paragraphs or whole documents.

The basic methodology of creating an untyped distributional vec-
tor space model is very simple. In a count-based model, the co-
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occurrences of each target word w with every context item c in a
given corpus is counted and stored in a co-occurrence matrix.

More formally, a co-occurrence matrix M ∈ R|V|×|V|, with rows
indexed by i, representing target words w, and columns, indexed by
j denoting context items c, where |V| is the size of the vocabulary V,
is populated with scores denoting the association between wi and cj

as defined in Equation 2.1

Mi,j = f (wi, cj) (2.1)

where Mi,j denotes the co-occurrence matrix cell in the ith row and
jth column, and f is a lexical association function such as PMI and
PPMI (Church and Hanks, 1989; Dagan et al., 1993), t-test (Curran,
2004), tf-idf (Spärck-Jones, 1972), or a function returning the raw
co-occurrence frequency between wi and cj (Deerwester et al., 1990;
Lund and Burgess, 1996), among many others proposed in the distri-
butional semantics literature.

Figure 2.1 shows an example sentence with a symmetric context
window of size 1, where the co-occurrences of big and landed for
the current target word seagull are recorded. The increment α can be
either a constant such as 1, or, for example, depend on the distance
d from the target word such as 1

d , which would damp the contribu-
tion of words further away from the target lexeme (Sahlgren, 2006;
Levy et al., 2015). The context window slides over the whole cor-

Figure 2.1: Sliding window of a DSM.

pus, resulting in a large and sparse co-occurrence matrix. In order
to decrease the high dimensionality of the semantic space, a num-
ber of techniques have been proposed to embed the words into a
latent, low-dimensional and dense feature space. These include meth-
ods such as Singular-Value Decomposition (Deerwester et al., 1990),
Non-negative Matrix Factorisation (Lee and Seung, 2001), random in-
dexing (Sahlgren and Karlgren, 2002), or the use of a neural network
for matrix factorisation (Pennington et al., 2014), among others.

More recently, a class of models based on predicting co-occurrences
rather than explicitly counting them, has gained a considerable
amount of momentum in the NLP research community. Instead of
modelling the context dimensions as word types, these methods dir-
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ectly yield low-dimensional and dense representations, embedding
words in a latent and distributed feature space (Bengio et al., 2003;
Morin and Bengio, 2005; Collobert and Weston, 2008; Mnih and Hin-
ton, 2009; Collobert et al., 2011; Mnih and Kavukcuoglu, 2013).

The perhaps most popular2 method for creating low-dimensional
word embeddings is word2vec by Mikolov et al. (2013). The proposed
method comes in two variants, Continuous Bag-of-Words (CBOW),
which aims to predict the target word from its surrounding context,
and Skip-Gram (SG), which aims to predict the surrounding context
from a given target word. Figure 2.2 illustrates the difference between
the two algorithm variants. Where the objective of CBOW is to predict
seagull from observing the surrounding context words big and landed,
SG works the other way round, by aiming to predict big and landed,
from its observation of seagull.

Figure 2.2: word2vec — Skip-Gram and Continuous Bag-of-Words models.

On the technical side, training proceeds in an online fashion, pre-
dicting a word either via a hierarchical softmax formulation (Morin
and Bengio, 2005; Mnih and Hinton, 2009), or by a variant of noise
contrastive estimation (Gutmann and Hyvärinen, 2012), called negat-
ive sampling3, which aims to maximise the dot product of two similar
words and minimise the dot product of two dissimilar words. A dis-
similar word is drawn from a noise distribution (Mikolov et al., 2013).

While predict-based models do not operate on an explicit co-
occurrence matrix, Levy and Goldberg (2014b) showed that SG with
negative sampling implicitly factorises a word-context co-occurrence
matrix, where the entries approximate their PPMI value, shifted by a
global constant which is related to the number of negative samples
drawn from the noise distribution.

Untyped DSMs — both count-based and predict-based models —
make the simplifying assumption that word meaning can be represen-

2 Judging from the number of citations, which is approaching 4000 at the time of this
writing.

3 The major difference is that noise contrastive estimation results in a probability dis-
tribution, whereas negative sampling does not. Negative sampling utilises unnorm-
alised scores and is therefore computationally more efficient due to not normalising
the distribution of scores to form a probability distribution.
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ted on the basis of the spatial proximity between lexemes, effectively
ignoring the grammatical structure of the given text.

2.1.2 Typed Distributional Semantic Models

In a typed distributional semantic model the lexical association
between a target word and its context is extended to include the
relation between the two co-occurring items. Furthermore, a contex-
tual item is generally assumed to be another word. The predominant
approach for modelling the relation is to use the grammatical struc-
ture of the text, such as from a dependency grammar (Tesniére, 1959;
Hays, 1964). However, more complex definitions of a relation are pos-
sible (Baroni and Lenci, 2010). A typed co-occurrence between a given
target word and a context is therefore a triple of the form 〈w, r, w′〉
and is defined as

Mi,j = f (wi, r, w′j) (2.2)

where Mi,j, wi, w′j, and f are defined as in Equation 2.1, and r is the
relation between the co-occurring word and its context. Typically, r
is mapped onto the context dimension which is thereby forming a
〈r, w〉 tuple, to keep the semantic space as a matrix.

Early work on typed DSMs focused on modelling nouns in simple
predicate-argument structures in noun phrases such as adjective-noun
and noun-noun compounds, and verb phrases such as subject-verb
and verb-object constructs for noun classification (Hindle, 1990) and
query expanson (Grefenstette, 1992). Due to the availability of im-
proved broad coverage syntactic parsers, Lin (1998) was able to build
a robust typed distributional space beyond just nouns, also modelling
content words with other parts of speech such as adjectives, adverbs
and verbs. The benefit of a more fine-grained typed distributional
space has also been shown by Lin and Pantel (2001) for automatic-
ally acquiring inference rules from text, Curran and Moens (2002) for
automatic thesaurus extraction, Rothenhäusler and Schütze (2009) for
concept clustering, and Weeds et al. (2014a) and Roller and Erk (2016)
for hypernymy detection.

A framework for creating typed distributional semantic spaces was
introduced by Padó and Lapata (2007) who interpreted and formal-
ised the type of a co-occurrence as the dependency relation between a
target word w and a context word w′. Padó and Lapata (2007) extend
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prior work to include inverse and higher-order co-occurrences in a
dependency tree.

The big seagull landed elegantly

anchor big anchor elegantly

nsubjamod

det

advmod

Figure 2.3: Anchored dependency-typed DSM.

An example of an inverse relation in the dependency tree in Fig-
ure 2.3 would be the reverse dependency arc nsubj from the noun
seagull to the verb landed. A higher-order feature would be recording
the co-occurrence between the noun seagull and the adverbial mod-
ifier elegantly, which is essentially expressing that “seagulls can do
something elegantly".

Padó and Lapata (2007) also introduce the notion of an anchor,
which marks the relative starting point for all paths anchored at a
given lexeme. Figure 2.3 shows two possible anchor positions for
the given dependency parsed sentence4. For example, placing the
anchor at the adjective big gives rise to the typed co-occurrence,
〈big, amod.nsubj, landed〉, between big and landed by following the in-
verse amod and inverse nsubj relations. However, if the anchor is
placed at elegantly, then its co-occurrence with landed would be via
the inverse advmod relation, giving rise to the co-occurrence event
〈elegantly, advmod, landed〉.

Instead of recording the co-occurrences of spatially adjacent words,
a typed distributional semantic space stores the co-occurrences of syn-
tactically related5 lexemes. Figure 2.4 shows the co-occurring contexts
for the lexeme seagull when taking first-order direct and inverse de-
pendency relations into account. The number of co-occurring contexts
is governed by the syntactic structure of a given sentence instead of
a fixed (or sampled as in the case of word2vec) context window. For
example, the lexeme big only co-occurs with the noun it modifies
(seagull) in the typed model, whereas it would also co-occur with the
article The in an untyped model.

Padó and Lapata (2007) note that their dependency-typed distribu-
tional semantic space is very sparse, and therefore notably remove
the path information from the context definition, effectively turning

4 The anchor can be placed at any lexeme in the sentence.
5 Referring to a syntactic relation between two or more lexemes in a parse tree. For

example a transitive verb is syntactically related to its subject and object.
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Figure 2.4: Co-occurrences in a count-based dependency-typed DSM.

the co-occurrence triple 〈w, r, w′〉 into a 〈w, w′〉 tuple. However, while
the type information has been removed from the word representa-
tions, the co-occurrence information is still based on the syntactic
structure of the text. Therefore the model remains distinct from an
untyped model. In their experiments, Padó and Lapata (2007) have
shown that their typed vector space model achieves strong perform-
ance on a range of tasks such as synonymy detection or word-sense
disambiguation.

Baroni and Lenci (2010) generalised typed distributional semantic
models beyond modelling a relation on the basis of the dependency
path between two lexemes to include more complex lexico-syntactic
links such as encoding past participles and auxiliaries as part of the re-
lation r in a 〈w, r, w′〉 triple. Their model, called Distributional Memory,
is represented as a 3rd order tensor and is explicitly modelling the
type information r, of a given co-occurrence of the form 〈w, r, w′〉, in
its own dimension. This formulation enables Baroni and Lenci (2010)
to instantiate a number of different 2-dimensional semantic spaces
through matricisation6 of the 3rd tensor along a given dimension.

For example, by encoding the relation in the contextual dimen-
sion, Baroni and Lenci (2010) derive a semantic space defined by
〈w, r c〉, which represents the most commonly used way of model-
ling the 〈r, c〉 tuple in a typed distributional semantic space. Other
spaces include 〈w r, c〉, 〈w c, r〉 and 〈r, w c〉. Baroni and Lenci (2010)
have shown the flexibility and utility of the different semantic spaces
that their model gives rise to for a range of tasks, including word sim-
ilarity, relation classification and modelling selectional preferences of
verbs, among others.

All of the typed DSMs discussed above follow a count-based
paradigm that models the underlying co-occurrence space expli-
citly. Levy and Goldberg (2014a) on the other hand, take a con-

6 Matricisation refers to the process of converting a tensor into a matrix along a spe-
cified dimension (Kolda and Bader, 2009).
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text predict-based approach, and introduced a generalisation of the
word2vec Skip-Gram model. Their proposed method takes a parsed
corpus as input and, for a given target word, predicts its surround-
ing context words together with the dependency relations connect-
ing them to the target word. Figure 2.5 illustrates how the model
would predict the typed co-occurrences 〈det, The〉, 〈amod, big〉, and
〈nsubj, landed〉, for the target word seagull.

Figure 2.5: Co-occurrences in a predict-based dependency-typed DSM. The
model’s predicted dependency arcs are shown below the text.

Levy and Goldberg (2014a) conducted a qualitative analysis of the
distributional neighbourhood of their model and found that their
dependency-based word embeddings give rise to a functionally gov-
erned neighbourhood, dominated by co-hyponymy. This contrasts
the neighbourhood of a standard window-based Skip-Gram model
where the neighbourhood is governed by topical relatedness. This
effect was confirmed in a ranking experiment where word pairs ex-
hibiting a functional similarity are consistently ranked higher than
word pairs being topically connected, in comparison to two stand-
ard word2vec Skip-Gram models with varying window sizes. These
findings agree with the results of earlier studies by Peirsman (2008)
and Baroni and Lenci (2011), who reached the same conclusion when
investigating typed and untyped count-based VSMs.

2.1.3 Untyped vs. Typed Distributional Semantic Models

It is not possible to assert superiority to one kind of model over the
other, a priori in the absence of a task. Untyped distributional se-
mantic models generally give rise to a neighbourhood governed by
meronymy and topical relatedness, making them a better fit for tasks
such as topic classification (Kiela et al., 2015). In contrast, the distri-
butional neighbourhood in typed models is governed by hypernymy
and co-hyponymy, which was found to work better for thesaurus
construction (Grefenstette, 1992; Lin, 1998; Curran, 2004; Kiela et al.,
2015).
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One advantage of untyped distributional models is their independ-
ence from the availability of broad-coverage syntactic parsers, mak-
ing them more easily applicable to low-resource languages. On the
other hand, the modelling of typed co-occurrences results in more
expressivity for tasks involving distributional composition, and gen-
erally more flexibility for tasks requiring a fine-grained understand-
ing of the semantics of a phrase or sentence (Padó and Lapata, 2007;
Lewis and Steedman, 2013).

2.2 compositional distributional semantics

The major goal of compositional distributional semantics research is
to create meaningful representation of longer phrases from lexical
distributional representations by means of a composition function.
Distributional word representations are well known for effectively
encoding a large amount of linguistic knowledge, and providing a
continuous model of meaning represented in a distributional space.
Composition is therefore a way to extend the continuous model of
meaning from the lexical to the phrasal level. Furthermore, distribu-
tional word representations are scalable to very large corpora, are
language-agnostic, and can be obtained by unsupervised algorithms
in an offline manner. Leveraging such existing resources to model
longer units of text has therefore vast practical potential.

The idea of distributional composition is frequently motivated by
the principle of compositionality of Frege (1884), which states that the
meaning of a complex expression is a function of its parts together
with the way in which they are combined. Frege’s principle has been a
hotly debated subject in the linguistics community (Pelletier, 1994a,b),
and has furthermore given rise to a large body of research in the NLP
community, resulting in many practical advancements.

An early theoretical framework for modelling composition in a dis-
tributional semantic space has been proposed by Mitchell and Lapata
(2008)7 who translated the Fregean principle of compositionality to
distributional semantics:

z = f (x, y, R, K) (2.3)

7 However their approach is pre-dated by the predication algorithm of Kintsch (2001)
and the work of Widdows (2008), but neither introduces a general framework for
modelling distributional composition. Furthermore both works are only based on
small-scale and qualitative evaluations.
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where z is the representation of a composed phrase, consisting of two
constituents, x and y, connected by a syntactic relation R, subject to
additional knowledge K, and composed by some function f .

A number of other theories of compositional distributional se-
mantics have been proposed such as the Compositional Matrix-Space
Model of Rudolph and Giesbrecht (2010), which models distribu-
tional composition on the basis of matrix multiplication. Rudolph and
Giesbrecht (2010) show that the framework of Mitchell and Lapata
(2008), as well as other models such as Holographic Reduced Repres-
entations (Plate, 1995) and symbolic approaches (Clark and Pulman,
2007), can be encoded by their framework. While Rudolph and Gies-
brecht (2010) do not provide an implementation themselves, Yessen-
alina and Cardie (2011) show that the model can be used to estimate
the sentiment of short phrases, but note that the model is difficult to
train.

Another alternative theory for compositional distributional se-
mantics has been proposed by Clarke (2012), who mathematically
formalises the “meaning as context" hypothesis. Clarke (2012) primar-
ily investigates the abstract properties of his framework, focus-
ing on recognising textual entailment as a potential target applica-
tion. Clarke (2012) shows that his mathematical formulation encodes
several other theories of composition, including the categorical frame-
work of Coecke et al. (2011), the Compositional Matrix-Space Model
of Rudolph and Giesbrecht (2010), and the framework of Mitchell
and Lapata (2008). However, a detailed discussion of the theories pro-
posed by Rudolph and Giesbrecht (2010) and Clarke (2012) is out of
scope of this work.

In the following, I will make a high-level distinction between dis-
tributional composition as a function between elementary word rep-
resentations as vectors (§ 2.2.1), and composition based on formal
semantic principles in a more general tensor space (§ 2.2.2).

Section 2.2.1 includes the discussion of simple pointwise algebraic
composition models, and shows how these represent a special and
simplified case of using a neural network as composition function.
Section 2.2.2 reviews the body of research which can be embedded
within, or derived from, the categorical framework of Coecke et al.
(2011). Furthermore it is yet to be determined whether a general un-
supervised composition function, suitable across a variety of tasks,
can be defined, or whether composition is a task specific concept.
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2.2.1 Distributional Composition Based on Word Representations as Vec-
tors

The perhaps most widely adopted method for composing longer
units of text is to represent individual words as vectors in a high-
dimensional space and model distributional composition as simple
pointwise algebraic operations between elements of this space.
One major advantage of this approach — alongside its simplicity
— is that words, phrases and sentences, independently of length
and structure, are represented in the same semantic space. This
has the effect that distributional similarity estimates between any
constituents — elementary or composed — are as straightforward as
in a distributional space solely consisting of individual words.

Two of the simplest algebraic composition functions are pointwise
vector addition and multiplication (see Equation 2.4), which despite
their simplicity, have been shown to work remarkably well in numer-
ous studies (Mitchell and Lapata, 2008, 2010; Blacoe and Lapata, 2012;
Hill et al., 2016; Kober et al., 2017b).

z = x + y

z = x� y
(2.4)

Equation 2.4 above notably neglects the syntactic relation R between x
and y, as well as any form of additional knowledge K as defined in the
general composition function defined by Mitchell and Lapata (2008)
(see Equation 2.3). Pointwise addition, or averaging of word vectors8,
has furthermore been shown to be an effective composition function
for creating vector representations of sentences and documents, used
as input to neural network models for downstream processing tasks.
For example, Iyyer et al. (2015) and Wieting et al. (2016) show that av-
eraging word vectors is competitive, and can even outperform more
complex neural network models such as LSTMs, for recognising tex-
tual entailment, judging textual similarity and sentiment analysis.

An important note is that composition by pointwise addition exhib-
its contrasting behaviour when used in an explicit high-dimensional
co-occurrence space as in a count-based model, as opposed to a
low-dimensional space in a predict-based model. Composition by
pointwise addition corresponds to a union of the feature spaces of

8 Vector average refers to pointwise addition, followed by a normalisation step.
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two constituent word vector representations in a count-based model9.
However, it (approximately) corresponds to feature intersection in a
predict-based model (Tian et al., 2017). Feature intersection in an ex-
plicit count-based model would be realised by pointwise multiplica-
tion10.

A major weakness of the above approaches is that composition is a
commutative operation, resulting in identical representations for the
two phrases author sues publisher and publisher sues author, which is
undesirable for a fine-grained understanding of the semantics of nat-
ural language. Especially complex tasks such as question answering
or recognising textual entailment require a detailed notion of “what
is being done to whom, how, where and when", where capturing the
semantics of a predicate and its subject and object in the composi-
tion process is a crucial aspect. A further problem with pointwise
algebraic composition functions is that all constituents in a phrase
are assigned equal weight. This results in ignoring the role of modifi-
ers in adjective-noun phrases present in the text, such as in the phrase
big seagull, which is still more of a seagull than something big, and the
composed phrasal representation should ideally reflect that.

A simple fix to both problems would be to use two scalars, α and
β, where β = 1 − α, to re-weight the contributions of the two con-
stituents accordingly (Mitchell and Lapata, 2008, 2010) as shown in
Equation 2.5.

z = α x + β y

z = xα � yβ
(2.5)

With α = β = 1 the equivalent of the composition functions in Equa-
tion 2.4 would be recovered11. While the weighting problem can be
adequately addressed, the issue of commutativity still somewhat pre-
vails as only the magnitude of the contextual features in a composed
representation changes, but not the semantics of the vector represent-

9 In case where some form of PMI is used as lexical association function, pointwise
addition furthermore results in multiplying the probability distributions of two word
representations due to the use of the log in PPMI (Ganesalingam and Herbelot, 2013).

10 There is very little research into what category pointwise multiplication in predict-
based models falls. The lack of research on this composition function is presum-
ably a consequence of the relatively poor performance of this operation on several
tasks (Dinu et al., 2013; Hill et al., 2016; Kober et al., 2017b)

11 In case α = β = 0.5 the weight averaged equivalent would be recovered for the
pointwise additive composition function.
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ations per se.

A more flexible weighting scheme has therefore been introduced
by Guevara (2010, 2011) and Zanzotto et al. (2010), who generalise
additive composition to be the sum of two matrix multiplications,
where the word vector representations x and y are parameterised by
matrices A and B respectively, as Equation 2.6 below shows.

z = A x + B y (2.6)

Notably, the scalar model can be recovered if the weight matrices
A and B are the identity matrix, with the diagonal entries scaled
by α and β respectively12. Obtaining the weights for the matrices
A and B is more complex than for the simpler pointwise composi-
tion functions, and requires a supervised learning regime. To simplify
the training process, Guevara (2010) restricts himself to only model-
ling adjective-noun phrases and extends his approach to verb-noun
phrases in later work (Guevara, 2011).

Training the weight matrices A and B is a three step process.
The first step involves building a standard count-based distributional
space from a given corpus to obtain representations for individual lex-
emes. In the second step, a number of high-frequency adjective-noun
and verb-noun phrases are extracted from the corpus and encoded
as single tokens. For example a phrase like big seagull would become
the “pseudo-lexeme" big_seagull. Subsequently, a distributional space
with the encoded pseudo-lexemes is built. In the final step, the distri-
butional vector representations of the encoded phrases serve as the
targets in a partial least squares regression model which is trained
with the original word vectors obtained in step 1 as input. Guevara
(2011) uses a single weight matrix per phrase type, such that the
obtained matrix represents an estimation of how an adjective or a
noun modify their respective phrasal heads. By using a weight mat-
rix to parameterise distributional composition, some amount of syn-
tactic idiosyncrasy between the phrasal constituents can be captured,
thereby representing a way to include R from Equation 2.3 into the
composition process.

Similarly Zanzotto et al. (2010) also focus on particular phrase
types only, concentrating on adjective-noun, noun-noun and verb-
noun pairs. Furthermore, Zanzotto et al. (2010) do not distinguish
between adjective-nouns and noun-nouns, and learn a single weight

12 The standard additive model of Equation 2.4 can be recovered by setting A = B = 1.
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matrix for both types of noun phrases. Their training regime
resembles that of Guevara (2011), however instead of creating
“pseudo-lexemes", Zanzotto et al. (2010) rely on a dictionary to
extract a short equivalent expression for a given lexeme, such as
close interaction for contact. Training proceeds by learning a map-
ping between individual lexemes as targets (e.g. contact) and their
respective compositional representation of the equivalent description
(e.g. close interaction), using a partial least squares regression model.
Essentially, this formulation of training represents a paraphrase
objective.

Following this line of reasoning, a further generalisation of the
pointwise additive model can be formulated as a neural network. This
can be achieved by concatenating the two weight matrices, A and B,
from Equation 2.6 into a single weight matrix W = [A; B], resulting
in:

z = f
(

W

x

y

+ b
)

(2.7)

where f represents an elementwise non-linearity such as tanh, and
b represents a bias term. This equation is equivalent to the one used
by Socher et al. (2011) for defining their recursive neural network. If
f is the identify function and b = 0, the additive model of Guevara
(2010, 2011) and Zanzotto et al. (2010) would be recovered, complet-
ing the direct link from simple and unweighted pointwise addition
as in Equation 2.4 to a neural network formulation as in Equation 2.7
above.

One major difference between neural networks and general ad-
ditive models for distributional composition is that the weights in
a neural network model are optimised w.r.t. to a downstream task
such as recognising textual entailment or sentiment analysis. This has
the effect of learning a task specific composition function that is fre-
quently difficult to transfer to a another task (Mou et al., 2016). Mod-
elling distributional composition with neural networks as part of an
end-to-end learning strategy for a downstream task has seen a surge
of interest in recent years. Two of the main architectures used for mod-
elling distributional composition are convolutional neural networks
and recurrent/recursive neural networks13. Given their current pop-

13 The recursive neural network architecture represents a generalisation of recurrent
neural networks from sequence structures to tree structures (Goldberg, 2017).
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ularity I will briefly review these two model types, focusing on their
mechanism to perform distributional composition.

Distributional Composition with Convolutional Neural Networks

Convolutional neural networks have been pioneered in computer vis-
ion (LeCun et al., 1989) and have been shown to achieve impress-
ive performance on numerous image classification and object detec-
tion tasks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
Szegedy et al., 2014). Somewhat surprisingly, convolutional neural
network architectures have also been shown to achieve competit-
ive performance for computer vision tasks without any training at
all (Saxe et al., 2011).

In recent years, these models have been applied to a variety of NLP
tasks, ranging from named entity recognition and semantic role la-
belling (Collobert et al., 2011) to language modelling (Pham et al.,
2016) and machine translation (Kalchbrenner et al., 2016).

Their suitability as a model for performing distributional compos-
ition has predominantly been evaluated on sentence level text classi-
fication and sentiment analysis tasks (Kalchbrenner et al., 2014; Kim,
2014; Le and Zuidema, 2015; Mou et al., 2015).The models of Kalch-
brenner et al. (2014) and Kim (2014) perform distributional compos-
ition within a convolutional neural network in a sequential bag-of-
words fashion, whereas Le and Zuidema (2015) and Mou et al. (2015)
compose distributional word representations on the basis of a parse
tree input.

Figure 2.6: Composition operation in a Convolutional Neural Network.

Figure 2.6 shows how distributional composition is modelled in
a convolutional neural network, following the architecture of Kim
(2014). The input is formed of (usually low-dimensional and dense)
distributional word representations, which are composed with a con-
volution filter14 (second bracket in Figure 2.6), and which contain

14 Also referred to as “convolution kernel" or “convolution mask".
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learnable weights. The filter width is a hyperparameter, with typical
ranges spanning from bigrams to 5-grams, and most models use a
varying number of filters per width which is usually on the order of
≈100-300 (Kim, 2014; Pham et al., 2016). In Figure 2.6 a bigram fil-
ter (blue frame) and a trigram filter (green frame) are applied to the
given input sentence The big seagull landed elegantly.

Given a word vector space V of dimensionality R|V|×5 for all words
xi, . . . , x|V| ∈ R1×5 in the vocabulary, and a bigram convolution filter,
cbi ∈ R10×1, composing any two adjacent15 word representations wi

and wi+1 would work by horizontally concatenating xi and xi+1 in
the given input sentence to form a vector xbi ∈ R1×10, building the
dot product between xbi and cbi, adding a bias term and applying
a non-linearity. The resulting scalar, zi, is then placed in the feature
map corresponding to the convolution filter. More formally, given
the horizontal concatenation of the word vectors in an input sentence
X1:n = x1⊕ x2⊕ . . .⊕ xn of length n, and a convolution filter c ∈ Rl×1,
the feature map entry zi ∈ R is defined as:

zi = f (Xi:i+l−1 · c + b) (2.8)

where f is an elementwise non-linearity, b a bias term and c the con-
volution filter containing the learnable weights.

Thus, convolving the example sentence with the bigram and tri-
gram filter results in feature maps of size 4 and 3, respectively. Not-
ably, any composed n-gram is compressed into a scalar quantity when
stored in a feature map16. The size of the feature maps depends on
the sentence length and the width of the convolution filter. In order to
obtain a fixed length feature vector, a pooling operation is performed
which selects the entry with the highest numerical magnitude17 (see
the max pooling operation in the third bracket in Figure 2.6) from
each feature map. The resulting feature vector is subsequently used
as input to a classifier (often referred to as “fully connected layer")
and the whole network is trained via backpropagation (Rumelhart
et al., 1986). Globally, the composition mechanism, represented by
the convolution machinery, acts as a feature detector for the given
task and is optimised on the downstream objective of that task.

15 Either spatially adjacent or adjacent in a parse tree.
16 An alternative, feature based convolution has been proposed by Kalchbrenner et al.

(2014) who convolve elementwise over the given input sequence.
17 Alternatively, the mean or the top n highest values could be chosen (Kalchbrenner

et al., 2014).
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Distributional Composition with Recurrent and Recursive Neural Networks

Recurrent neural network models operate on sequential input data (El-
man, 1990) and have been generalised to tree structures by Pollack
(1990). The uni-directional recurrent variant by Elman (1990) has been
extended to a bi-directional variant, simultaneously processing data
in a forward and backward mode, by Schuster and Paliwal (1997).
Recently, bi-directional variants of recursive and recurrent neural net-
works have been shown to achieve strong performance for a variety of
NLP tasks ranging from parsing (Dyer et al., 2016; Kiperwasser and
Goldberg, 2016) to text classification and sentiment analysis (Teng
and Zhang, 2017), and recognising textual entailment (Chen et al.,
2016; Liu et al., 2016).

Figure 2.7: Composition operation in a Recursive Neural Network.

Figure 2.7 shows how distributional composition can be modelled
with a simple uni-directional recursive neural network, operating
on a binarised constituency parse tree. The inputs are usually low-
dimensional and dense word vector representations (bottom row in
Figure 2.7), which are composed in a bottom-up fashion, following
the given parse tree structure. Intermediary nodes represent com-
posed phrases (the green row vectors in Figure 2.7) of varying lengths,
which share the characteristic of pointwise algebraic composition func-
tions of having the same dimensionality as individual word vectors.
The top green row vector in Figure 2.7 represents the composed sen-
tence and is fed into a classifier for a downstream task. The network
is optimised on the given downstream objective and trained through
backpropagation.

An interesting consequence of the composition mechanism based
on a binarised constituency tree is that the weight matrix W can be
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factorised into two matrices Wl and Wr as shown in Equation 2.9
(and as already shown in Equations 2.6 and 2.7), resulting in position
dependent parameterisations of whether a word (or composed phrase)
is the left or the right constituent (Socher et al., 2014).

f
(

W

x

y

+ b
)
= f (Wl x + Wr y + b)

if W = [Wl; Wr]

(2.9)

In order to overcome that issue and avoid the model’s reliance on
binarised trees, Socher et al. (2014) generalised the recursive neural
network to n-ary trees such as resulting from a dependency parse
of a given input sentence. Hermann and Blunsom (2013) and Socher
et al. (2014) furthermore introduced weight tying between different
grammatical relations, such that all phrase types would be paramet-
erised by individual weight matrices. For example, all adjective-noun
phrases would be parameterised by Wamod, all verb-object phrases by
Wdobj, and so on. Interestingly, this idea follows Guevara (2011), but
for any phrase type and with a downstream training objective instead
of a pseudo-lexeme objective. Formally, distributional composition
with tied weights in an n-ary tree can be represented by:

z = f (bt + ∑
xi∈X

Wt · xi) (2.10)

where xi is the ith child of the parent node X in a given dependency
tree, z the composed phrase of all child nodes of X, Wt and bt are the
weight matrix and bias term of type t, representing the dependency
relation between the lexeme at node X and its ith child xi, and f is
an elementwise non-linearity such as tanh. This formulation of distri-
butional composition fully encodes the syntactic relation R between
two constituents.

Instead of using a simple recursive neural network, more com-
plex neural network models can be used, such as a long-short term
memory network (LSTM) (Hochreiter and Schmidhuber, 1997), which
has been generalised to work on tree structures by Tai et al. (2015)
and Zhu et al. (2015a). More complex networks have often been shown
to perform better than their simpler counterparts due to their im-
proved ability to model long-range dependencies. However, they have
themselves been frequently outperformed by much simpler composi-
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tion functions such as averaging word vectors (see Equation 2.5) in a
number of studies (Iyyer et al., 2015; Wieting et al., 2016).

2.2.2 Distributional Composition Based on Formal Semantics

One of the major advancements of distributional semantics has been
the development of a continuous model of meaning on the lexical
level, resulting in rich representations for content words such as ad-
jectives, nouns or verbs, and allowing fine grained distinctions in
meaning between any two lexemes. However, the lack of structure in
a continuous space makes it difficult to model more discrete linguistic
phenomena such as negation, or representing operators for quantific-
ation. Furthermore, distributional semantics has been lacking a clear
theory of how longer phrases can be modelled in a compositional
way, extending the continuous model of meaning from the lexical to
the phrasal level (Baroni, 2013).

On the other hand, semantic composition based on formal se-
mantics (Montague, 1970), has provided a strong foundational the-
ory of compositionality, focusing on recursive compositional rules to
derive the meaning of complex expressions. Unlike distributional se-
mantics, the form of representation of formal semantic expressions is
not a continuous vector space, but a logic formalism such as higher-
order predicate logic and the lambda calculus, where the meaning of
a composed sentence is frequently modelled as its truth value. On
the level of individual lexemes, formal semantics is primarily con-
cerned with negation, quantification and the role of function words,
but oftentimes treats content words as unanalysed primitives (Partee,
2016).

Hence, the two theories have frequently been described as comple-
mentary and a considerable amount of research effort has been spent
on integrating the strengths of both approaches into a single unified
model. For example, Lewis and Steedman (2013) represent natural
language meaning as a combination of first-order logic for function
words and distributional semantic representations for content words
such as nouns and verbs. The logical form is obtained from a CCG
parse of the input sentence and the relational terms in the logical
expressions are represented by distributional representations. In or-
der to improve the generality of their approach, Lewis and Steedman
(2013) subsequently cluster the distributional representations of the
relational terms in order to better capture the association between two
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typed entities (e.g. a book and its author). The distributional cluster-
ing has the effect of abstracting the representation away from differ-
ences in sentence structure such as the use of relative clauses or pass-
ives. For example for the relational terms wrote, was written by and is
author of in the respective phrases Shakespeare wrote Macbeth, Macbeth
was written by Shakespeare, and Shakespeare is the author of Macbeth,
would all be clustered together and represented by a relational iden-
tifier such as relation42 that captures the relationship between a book
and an author. Due to their use of CCG with its transparent syntax-
semantics interface (Steedman, 2000), composition would be suppor-
ted per se, however is not explored in this work. Lewis and Steedman
(2013) showed that their approach achieves strong performance for
question answering and recognising textual entailment.

A similar approach has been proposed by Beltagy et al. (2016) who
also represent natural language meaning as a combination of logical
and distributional semantics on the basis of Markov logic networks.
The main difference between their approach and the model of Lewis
and Steedman (2013) is the inference method. Where Lewis and Steed-
man (2013) use standard first-order inference, Beltagy et al. (2016) use
probabilistic logic in order to model the uncertainty of inferences.

Asher et al. (2016) attempt to integrate Type Composition Logic
with distributional semantic vectors where the use of types is aimed
at appropriately restricting the kinds of arguments that a given pre-
dicate can take. When composing two constituent words, the types
have the effect of contextualising the representations in the given phrase.
The model of Asher et al. (2016) can furthermore be interpreted as a
formal semantics flavoured version of the models of Guevara (2011)
and Socher et al. (2012).

However, as neither of these approaches propose a theory of com-
positionality within a distributional framework per se, a more detailed
discussion of the models of Lewis and Steedman (2013), Asher et al.
(2016) and Beltagy et al. (2016), together with related approaches that
aim to leverage the strengths of formal and distributional semantics,
is out of scope of this work.

A general framework for semantic composition on the basis of
Lambek pregroup grammar (Lambek, 2001, 2008) was introduced
by Coecke et al. (2011) who proved that pregroups and vector spaces
share the same abstract structure, referred to as a compact closed cat-
egory. The approach is inspired by the idea of combining symbolic
and distributional models of word meaning (Clark and Pulman, 2007).
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The framework is based on the formal semantic notion of function
application, modelling atomic units such as nouns as distributional
semantic vectors, and relational terms such as adjectives or verbs as
tensors. Distributional composition is achieved by a tensor product
between the constituents in a phrase. The abstract formulation of dis-
tributional composition by Coecke et al. (2011) gives rise to a number
of different strands of work, focused on providing a faithful imple-
mentation of the theory.

For the purpose of this thesis, I will distinguish three different
strands of work, the first one being the body of work originating from
the lexical function (lf) model (Baroni and Zamparelli, 2010). The con-
crete instantiation of the lexical function model is contained within
the categorical framework of Coecke et al. (2011)18. I will therefore
discuss the approach of Baroni and Zamparelli (2010) (§ Composition
Based on the Lexical Function Model) as a derivative of the more formal
definition of Coecke et al. (2011), despite the fact that the two ideas
have been developed independently at approximately the same time.

The second strand of work comprises concrete instantiations of the
categorical framework (Coecke et al., 2011) on the basis of the Lam-
bek pregroup grammar and is discussed in Section Composition based
on Pregroup Grammar. The third strand of work follows the abstract
framework of Coecke et al. (2011), but uses Combinatory Categorical
Grammar (CCG) instead of Lambek pregroup grammar as the un-
derlying formalism, and is presented in Section Composition based on
Combinatory Categorical Grammar.

While it is straightforward to build vector representations for atomic
types such as nouns, these approaches share the practical bottleneck
of deriving representations for relational terms such as adjectives and
verbs which are modelled as higher-order tensors. Much of the re-
search has therefore been focused on how these higher-order struc-
tures can be effectively extracted and built from the given data.

Composition Based on the Lexical Function Model

The lexical function (lf) model of Baroni and Zamparelli (2010) fo-
cuses on adjective-noun phrases and aims to follow the formal se-
mantic notion of modelling attributive adjectives as functions over
content nouns, which are represented as distributional semantic vec-
tors. Equation 2.11 shows how a phrase vector z would be obtained

18 It is also contained within the general framework of Baroni et al. (2014), introduced
a few years later.
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by multiplying the adjective, represented by the matrix X with the
noun vector y.

z = X · y (2.11)

Unlike the composition model by Guevara (2011), the matrix X does
not represent a weight acting on a content adjective, but aims to dir-
ectly encode the semantics of how an adjective modifies a given noun.
While vector representations of nouns are obtained in the “standard"
distributional semantic way, the adjective matrices need to be learnt
in a supervised setting.

Following Guevara (2010), Baroni and Zamparelli (2010) use a par-
tial least squares regression model to predict a vector representation
of an observed adjective-noun phrase z, that is obtained in the same
way as in Guevara (2010), with just the noun vector y as input. Thus,
the matrix X encodes the modifier semantics of how an adjective
changes its head noun. However, instead of training a single matrix
for all adjectives, Baroni and Zamparelli (2010) learn one matrix per
adjective.

Baroni and Zamparelli (2010) showed that their lf model produces
composed adjective-noun representations that are closer, in terms of
cosine similarity, to corpus observed representations than unsuper-
vised baselines such as pointwise addition or multiplication. The lf
model was later extended to verb phrases (Grefenstette et al., 2013),
again achieving improvements over simple pointwise additive and
multiplicative baselines. More recently, Vecchi et al. (2016) showed
that the lf model is also effective at recognising nonsensical adjective-
noun combinations, such as parliamentary tomato.

A major obstacle for scaling their model to other phrase types and
longer expressions is the fact that the order of the predicate repres-
entations depends on the valency19 of the given lexeme in context.
For example, while adjectives or intransitive verbs can be represen-
ted by matrices acting on noun vectors, transitive verbs such as eat
in the context of seagulls eat fish, would need to be represented by
3rd order tensors. Furthermore, eat in an intransitive context such as
seagulls eat would be different from eat in a transitive context, as it
would need to be modelled as a 2nd order tensor (a matrix) in the in-
transitive case and as a 3rd order tensor in the transitive case. This has
the consequence of not being able to share distributional information
between the two representations and furthermore having fewer ob-

19 Also referred to as arity, however I will be using valency throughout this thesis.
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servations for each case in the source corpus. The lf model has been
scaled to transitive phrases by Grefenstette et al. (2013) via a multi-
step regression learning regime. In the first step the model learns
predicate verb phrase matrices and then uses these to estimate the
corresponding verb tensor, however this approach remains difficult
to scale beyond short phrases.

To overcome the issues of estimating valence dependent tensors, Pa-
perno et al. (2014) proposed the practical lexical function (plf) model,
which relaxes the restriction that lexeme valency is modelled by tensor
order. Instead, every lexical item is represented by a distributional se-
mantic vector, encoding the given lexeme as “content word", and a
number of matrices encoding its predicate semantics. The number of
matrices for a given lexeme is dependent on its valency. This results
in adjectives such as big being represented by a vector and one matrix,
and transitive verbs such as catch being represented by a vector and
two matrices, a distinct matrix for encoding the subject and object
function-argument relations, respectively. Given an example transit-
ive phrase such as seagulls catch fish, a phrasal representation would
be obtained by:

z = x + ∑
y(i)t ∈Y,Xt∈X

Xt · y(i)t (2.12)

where x represents the vector representation for the verb catch,
Xt represents the matrices encoding the object and subject function-
argument semantics of catch, such that X catch = {Xnsubj, Xdobj}, and
the set Y = {seagullsnsubj, fishdobj} contains the typed content rep-
resentations of the nouns seagulls and fish, respectively. Paperno et al.
(2014) found that learning a set of matrices for encoding the func-
tional semantics of predicates is much easier to scale, and achieves
better generalisation, than the valency dependent tensor approach of
the lf model. The plf model has furthermore been shown to be effect-
ive for modelling longer and more complex sentences such as relative
clauses (Rimell et al., 2016).

An alternative generalisation of the lf model for adjective-noun and
noun-noun compounds has been proposed by Bride et al. (2015), who
learn a 3rd order tensor instead of individual matrices for represent-
ing the functional modifier semantics, relying on tensor decomposi-
tion for dimensionality reduction of the modifier data structure. Com-
position for an adjective-noun phrase such as big seagull is defined as:
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z = (X · x) · y (2.13)

where X is the adjective tensor, encoding the semantics of adjectival
modification, x is the vector representation for the adjective big and y
is the vector representation of the noun seagull.

Composition based on Pregroup Grammar

A first implementation of the categorical framework by Coecke et al.
(2011) on a toy dataset has shown that the model is able to capture
interesting compositional distributional patterns such as plausible
similarity scores between sentences with different structure, albeit
no quantitative experimental evaluation has been conducted (Grefen-
stette et al., 2011).

A more realistic implementation on a real-world corpus and with
a quantitative evaluation of the theory has been provided by Grefen-
stette and Sadrzadeh (2011a), who focus on modelling intransitive
and transitive verb phrases. In their instantiation, they make the sim-
plifying assumption that a transitive verb is modelled as a matrix
(2nd order tensor) instead of a 3rd order tensor. This has the con-
sequence that sentences and phrases with different lengths or struc-
ture live in different vector spaces. For example while intransitive
verb phrases would live in Ri, transitive verb phrases would live in
Ri×j and ditransitive ones in Ri×j×k. This characteristic severely limits
the scalability and applicability of the concrete instantiation.

In their model, nouns are represented by standard count-based dis-
tributional semantic vectors, obtained in an unsupervised way from
the given source corpus. Unlike Baroni and Zamparelli (2010), mat-
rix representations for predicates are computed in a bottom-up man-
ner from the given distributional information in the corpus, rather
than in a top-down way. More concretely, a verb matrix is repres-
ented by the sum of the Kronecker products of all the individual
subject and object pairs that co-occurred with the given verb in the
source corpus (Grefenstette and Sadrzadeh, 2011a,b). Distributional
composition for a transitive verb phrase is computed as the Hadam-
ard product between the verb matrix and the Kronecker product of
the distributional semantic vector representations of the constituent
subject and object representations:

Z = V� (s⊗ o) (2.14)
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where Z represents the resulting phrase as a matrix ∈ Ri×j, V rep-
resents the verb matrix, and s and o the corresponding subject and
object vector representations, respectively.

Despite the above mentioned shortcomings, Grefenstette and Sad-
rzadeh (2011a) showed that their implementation is able to outper-
form simple additive and multiplicative composition models on an
intransitive and a transitive verb phrase similarity task. In subsequent
work, Grefenstette and Sadrzadeh (2011b) compared several different
ways to building a verb matrix and found that instead of computing
the verb matrix from the distributional information of object and sub-
ject nouns, the Kronecker product between the basic distributional
semantic vector representation of the given verb with itself derives a
better representation.

V = x⊗ x (2.15)

Equation 2.15 shows how a verb matrix V is computed as the Kro-
necker product between the corresponding distributional semantic
vectors of the given verb x with itself20. While this method signific-
antly improved performance for a transitive verb phrase similarity
task, the above mentioned problem of phrases of different length and
structure living in different vector spaces, remained unaddressed.

A solution to this fundamental problem has been proposed by Kart-
saklis et al. (2012), who stipulated that a composed sentence S needs
to live in the same vector space as any other atomic units, S ∈ Ri. The
major challenge for this approach to work is to construct the required
3rd order tensor for a transitive verb from the given matrix, resulting
from the bottom-up construction approach for representing relational
words. Kartsaklis et al. (2012) proposed two different methods for
mapping the verb matrix into a 3rd order tensor. The first approach,
“copy-subject (CpSbj)", copies the dimension corresponding to the
subject to form a 3rd order tensor and “copy-object" (CpObj) cop-
ies the dimension corresponding to the object. 3rd order tensors are
built by applying the Kronecker product to subject-subject-object vec-
tors (CpSbj) or to subject-object-object vectors (CpObj). Equation 2.16

shows the two methods more formally.

VCpSbj = s⊗ s⊗ o

VCpObj = s⊗ o⊗ o
(2.16)

20 For two vectors, the Kronecker product is identical to the outer product.
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VCpSbj and VCpObj are the verb tensors for each method respectively,
and s and o represent the distributional semantic vectors for the sub-
ject and object. Composition of a transitive subject-verb-object phrase
can then be achieved through tensor contraction between a subject
vector, a verb tensor and an object vector:

z = s ·V · o (2.17)

where z is a representation of the phrase and has dimensionality
Ri, s and o are the distributional semantic vector representations of
the subject and object, respectively, and V represents the verb tensor
obtained via the copy-subject or the copy-object method. Kartsaklis
et al. (2012) found the copy-object method generally outperforming
its copy-subject counterpart for a transitive verb phrase similarity task
and a definition classification task. A top-down alternative approach
to constructing the necessary verb data structure for modelling a
transitive verb phrase is presented by Grefenstette et al. (2013), who
follow Baroni and Zamparelli (2010) and formulate the supervised
training procedure as a multi-step regression problem.

Further work by Kartsaklis and Sadrzadeh (2013) and Kartsaklis
et al. (2014) incorporated a contextualisation mechanism that disam-
biguates the sense of the given words in context and showed that
this approach can further improve performance of the tensor based
models for a variety of distributional composition tasks.

Composition based on Combinatory Categorical Grammar

An alternative to the Lambek pregroup grammar formulation
of Coecke et al. (2011) has been proposed by Maillard et al. (2014)
who show that the categorical framework of Coecke et al. (2011) can
be seamlessly integrated with Combinatory Categorical Grammar
(CCG) (Steedman, 2000). Unlike the “shallow" CCG based compos-
itional distributional model of Hermann and Blunsom (2013), which
represents all words as vectors and encodes the CCG rules and types
on the basis of tied weights in a neural network, Maillard et al. (2014)
follows the framework of Coecke et al. (2011) which ties the order
of a lexeme representation to its valency, representing nouns as vec-
tors, adjectives as matrices and transitive verbs as 3rd order tensors.
As with all practical implementations based on the abstract frame-
work of Coecke et al. (2011), the major bottleneck of the formulation
by Maillard et al. (2014) is to efficiently construct high-quality repres-
entations for higher-order tensors from the given data.
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Distributional composition of a transitive subject-verb-object phrase
is defined in the same way as in Equation 2.17 above. In order to over-
come the sparsity issue in estimating the parameters of a 3rd order
tensor for a transitive verb, Polajnar et al. (2014a) introduce 3 methods
that approximate the tensor with a matrix, and model distributional
composition as a combination of matrix and vector products. Their
best performing method decouples the direct interaction between the
subject and object vector representations and models composition as
a concatenation of two matrix-vector products:

z = Vnsubj · s⊕Vdobj · o (2.18)

where ⊕ is vector concatenation, s and o are the distributional se-
mantic vector representations of the subject and object, respectively,
and Vnsubj and Vdobj are the corresponding verb matrices. While the
approach of Polajnar et al. (2014a) is not fully faithful to the formula-
tion of Coecke et al. (2011) in terms of modelling a transitive verb as
a 3rd order tensor, their approach does not suffer from the shortcom-
ing of representing different kinds of verb phrases in different vector
spaces.

A more faithful implementation of the categorical framework
by Coecke et al. (2011), and alternative to the proposed method by Po-
lajnar et al. (2014a) has been proposed by Fried et al. (2015). Instead
of decoupling the subject and object interaction, Fried et al. (2015) ap-
plied tensor decomposition (Kolda and Bader, 2009) to the obtained
verb tensor in order to reduce its dimensionality. They created an
initial verb tensor by multi-linear regression, similar to the method
of Bride et al. (2015). While their approach vastly reduces the para-
meter space, tensor decomposition generally leads to inferior per-
formance on two transitive verb phrase similarity tasks in comparison
to modelling the full tensor.

Rimell et al. (2016) introduced a dataset for modelling relative
clauses, which in the categorical framework of Coecke et al. (2011)
is defined as a noun modifier, representing a mapping from a com-
posed transitive verb phrase to a modifier of the head noun. Follow-
ing the categorical framework, a relative pronoun would need to be
represented as a 4th order tensor, however due to the limited amount
of available training data, Rimell et al. (2016) introduce two simpli-
fications in order to approximate the relative pronoun tensor. Firstly,
following Paperno et al. (2014), relational transitive verbs are mod-
elled as a pair of matrices rather than a 3rd order tensor, reducing the
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required order of the relative pronoun tensor from 4 to 3. Secondly,
the same approach is subsequently applied to model the relative pro-
noun as another pair of matrices instead of a 3rd order tensor.

For evaluation, Rimell et al. (2016) compare several proposed tensor
based compositional models (Grefenstette and Sadrzadeh, 2011a; Pa-
perno et al., 2014; Polajnar et al., 2014a), together with a number of
simpler lexical baselines based on pointwise vector operations, for
modelling a relative clause. They found that the plf model21 achieves
strong performance, although it did not outperform a simple lexical
model based on adding predict-based word vectors. The best perform-
ing model in their study was a simplified version of the plf model,
where the composed verb argument vector is directly combined with
the head noun via pointwise addition, instead of first applying the
verb predicate matrix to it (Rimell et al., 2016).

While the plf model of Paperno et al. (2014) is also governed by a
CCG parse of a given sentence, and was developed at approximately
the same time as the model of Maillard et al. (2014), it evolved out of
the lexical function model, and has thus been discussed previously.

2.3 contextualisation — modelling word meaning in

context

Distributional semantic models do not make a “hard" distinction
between word senses and thereby conflate the multiple senses of a
polysemous lexeme into a single representation. While it can be ar-
gued that this approach is advantageous from a linguistics perspect-
ive (Ruhl, 1989), it has recently been subject to a lot of criticism in
the NLP community (Chen et al., 2014; Li and Jurafsky, 2015; Iaco-
bacci et al., 2015). However, integrating a word-sense disambiguation
component a priori might not always be a feasible solution as the gran-
ularity and number of different senses per lexeme differs per source
corpus and target application.

This reasoning follows Kilgarriff (1997) who argues that individual
word senses do not exist per se, but only relative to a given task, and
that the basic unit of word meaning is not an individual sense, but an
occurrence of a word in context (Kilgarriff, 1997). A proposal along
similar lines has been put forward by Hanks (2000), who argues that

21 Rimell et al. (2016) use the modified version of the plf model, proposed by Gupta
et al. (2015), that does not add the vector representation of the verb to the final
expression, which Rimell et al. (2016) found to be working better on their dataset.
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words outside of any context do not have a specific meaning, but a
number of different meaning potentials, which are activated on a con-
tinuous spectrum once they are used in context. A further argument
against enumerating the senses of a word was put forward by Puste-
jovsky (1991) on the basis of the argument that additional meanings
can arise as a product of composition.

A number of proposals have therefore been made to discriminate
the sense of an ambiguous word on the basis of its usage in a given
context. This contextualisation mechanism to model word meaning for
distributional semantic representations in context has the aim to up-
weight features that the ambiguous word shares with the current con-
text, and downweight incompatible features. Given the close simil-
arity between contextualisation and composition, it has been argued
that contextualisation is distributional composition (Weir et al., 2016;
Kober et al., 2017b). Nonetheless, the two concepts have frequently
been treated as related but separate methods, and therefore have their
own associated body of work.

In the following, I will review approaches to contextualisation on
the basis of multi-prototype and exemplar-based models (§ 2.3.1),
models leveraging selectional preference for representing word mean-
ing in context (§ 2.3.2), and approaches based on latent sense model-
ling (§ 2.3.3).

2.3.1 Contextualisation via Multi-Prototype and Exemplar-Based Models

A number of approaches in the literature attempt to overcome the
issue of conflating multiple senses into a single word representation
by creating multiple sense specific prototypes, based on the current
context, or aim to leverage a set of exemplars from the given contexts.
Prototype models represent a concept on the basis of an abstract in-
stance, aimed to capture the typicality of a set of observations. In
the case of a single-prototype model, all the senses of a polysemous
lexeme are conflated in a single representation22.

Multi-prototype models can be seen as a top-down approach, by
first creating a single-prototype model and subsequently clustering
the contexts of each target word type. A concept is thus represented

22 Most vector-based distributional semantic models — as well as Apts — follow the
one representation per lexeme paradigm, which means that every lexeme (or word type)
is encoded by a single representation, conflating the multiple different meanings of
an ambiguous word.
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by the cluster centroid of the given contexts. Exemplar-based models
on the other hand follow a bottom-up approach by representing a
target word type on the basis of a set of concrete observed instances.
These are usually filtered upon contextualisation such that only ex-
emplars that are similar to the current context contribute to the rep-
resentation of a concept.

I will divide the multi-prototype and exemplar-based methods for
contextualisation into two rough categories, ones that achieve contex-
tualisation in a self-contained manner by e.g. exploiting the informa-
tion from the distributional neighbourhood (§ Self-Contained Contextu-
alisation) and approaches that require an additional external resource
to model the meaning of a word occurrence in context (§ Contextual-
isation with External Resources).

Self-Contained Contextualisation

An early approach for modelling the sense of a word in context was
attempted by Schütze (1992, 1998), who contextualised a given tar-
get word on the basis of its second-order co-occurrence statistics in a
particular context. This is achieved by forming a centroid of the con-
text representations of a target word. For example, given the target
word landed in the sentence The big seagull landed elegantly, the con-
text representation of landed would be formed by averaging the vec-
tor representations for the remaining words in the sentence. Schütze
(1998) argues that leveraging second-order co-occurrence statistics in
this way is more robust and is not as severely affected by sparsity
as first-order co-occurrence information. The averaged context vector
representations are subsequently clustered in order to discriminate
the different usages of an ambiguous lexeme in context.

Different senses of a given target word are represented by the
centroid of their corresponding clusters. A new occurrence of an
ambiguous lexeme in a test corpus would be assigned to the sense
cluster that is closest given an averaged vector representation of
its context. Schütze (1998) shows the merit of his approach on the
basis of a small-scale evaluation on discriminating the senses of
10 naturally ambiguous nouns, and 10 pseudo-ambiguous nouns,
which are formed by concatenating two unrelated words, such as
seagull and turbine into the single lexeme, seagull_turbine.

Contextualising a polysemous lexeme on the basis of leveraging
second-order contextual information has also been shown to improve
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performance for modelling distributional composition (Kartsaklis
et al., 2013). Their approach to sense disambiguation is based on the
idea of Schütze (1998), where the context representations of a given
target word are averaged and subsequently clustered to represent the
senses of the given target word. Following Schütze (1998), Kartsaklis
et al. (2013) use a hierarchical agglomerative algorithm for clustering
the context representations. They show that their approach is able
to improve upon a baseline without disambiguation on two com-
position tasks with a standard count-based distributional semantic
model. Subsequently Kartsaklis and Sadrzadeh (2013) showed that
the same approach also improves performance for the categorical
model.

An alternative approach has been proposed by Reisinger and
Mooney (2010a), who create a standard count-based distributional
vector space and subsequently cluster the collected contexts of each
lexeme. Unlike the approaches of Schütze (1998) and Kartsaklis et al.
(2013), the clustering is based on individual representations of context
words rather than the centroid of context representations in a given
sentence. This results in a set of clusters per word type that captures
the different usages of that word in a given corpus. Each word in the
vocabulary can then be described as a set of cluster centroids. Clus-
tering of contexts is achieved by a method based on a mixture of von
Mises-Fisher distributions (Banerjee et al., 2005), which like spherical
k-means uses cosine to estimate the semantic similarity between two
context representations.

Distributional similarity between two words can be estimated in an
out-of-context fashion by either computing the average or maximum
similarity between the respective centroids of two given words. For
in-context distributional similarity estimates, Reisinger and Mooney
(2010a) calculate the probability of a context belonging to a given
cluster. Their model is evaluated on an out-of-context word-similarity
task and an in-context near-synonym prediction task, where Reisinger
and Mooney (2010a) observe performance improvements with their
multi-prototype vector model.

In a subsequent paper Reisinger and Mooney (2010b) extend their
approach by replacing the hard clustering of contexts with a Dirich-
let process mixture model, allowing for soft cluster assignments of
contexts, and a tiered model which combines the soft cluster mix-
ture model with a single-prototype approach. They show that their
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tiered model improves over a single-prototype and hard cluster multi-
prototype for modelling selectional preferences and two word simil-
arity tasks.

Huang et al. (2012) introduced a predict-based counterpart to the
count-based models of Reisinger and Mooney (2010a,b), which op-
erates over low-dimensional word embeddings from a neural net-
work. In addition to the local context, captured by the word embed-
dings, Huang et al. (2012) included global document context from
a tf-idf representation of the current document into the word rep-
resentation. For clustering the context representations of a given lex-
eme, Huang et al. (2012) used spherical k-means (Dhillon and Modha,
2001). Distributional similarity estimates in- and out-of-context are
computed the same way as in Reisinger and Mooney (2010a). Huang
et al. (2012) showed that their multi-prototype model is able to im-
prove performance over a single-prototype baseline for a word simil-
arity task and a novel word similarity in context task that they intro-
duce in the same work.

Instead of modelling word meaning in context with prototypes, Erk
and Pado (2010) proposed an exemplar-based approach where each
target word is modelled by the set of vector representations of sen-
tences in which the target word occurs. Contextualisation is modelled
by a process of selecting the most relevant exemplars for a given con-
text. Relevancy between a context and a set of exemplars is calculated
as the cosine similarity between the respective bag-of-words vector
representations of the current context and the set of exemplars. Every
exemplar representation exceeding a certain similarity threshold sub-
sequently contributes to the contextualised representation of a target
word.

Erk and Pado (2010) explore two different variants for modelling
the threshold: a static approach that always includes the top n nearest
neighbours for every lexeme, and a density based approach that in-
cludes all exemplars exceeding a certain similarity. Erk and Pado
(2010) showed that their simple exemplar-based approach is able to
achieve strong performance on the lexical substitution task (McCarthy
and Navigli, 2007) when used in a paraphrase ranking setup.
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Contextualisation with External Resources

Unlike self-contained contextualisation, which exploits the intrinsic
distributional space itself, the following approaches make use of ad-
ditional external components such as systems for performing word-
sense induction and disambiguation, or a language model.

Reddy et al. (2011) proposed two approaches for disambiguating a
lexeme prior to composition in a standard count-based distributional
semantic space. Their first approach builds upon a graph based word
sense induction (WSI) component to derive multiple “static" proto-
type vectors for a given lexeme in context. The WSI system takes dis-
tributional word representations as input and builds a graph where
lexemes are represented by vertices, and edges are based on the sim-
ilarity between two distributional representations. The edge space
is pruned upon creation of the graph, based on a pre-determined
similarity threshold. The graph is subsequently clustered using the
chinese-whispers algorithm (Biemann, 2006) and a number of sense
clusters is returned.

The second approach is exemplar-based and builds a “dynamic"
prototype by only activating features that are relevant to the cur-
rent context. For determining the relevancy of a given context fea-
ture, Reddy et al. (2011) used Sketch Engine (Kilgarriff et al., 2004) to
retrieve weighted collocations for a target lexeme from a corpus and
apply a ranking to its output, based on the distributional similarity
of ranked words to the given target lexeme. In an evaluation on the
noun-noun composition subtask of Mitchell and Lapata (2010), Reddy
et al. (2011) showed that their exemplar-based dynamic prototype
substantially outperforms a baseline without disambiguation. How-
ever, they find their static prototype approach to be performing poorly.

In order to avoid dissecting a single word representation into mul-
tiple prototypes, or creating a contextualised representation in an
exemplar-based model, Iacobacci et al. (2015) aimed to avoid the con-
flation of multiple senses into a single representation before construct-
ing their semantic space. In order to achieve the construction of a
disambiguated semantic space, Iacobacci et al. (2015) applied Babel-
Net (Navigli and Ponzetto, 2012), an external word-sense disambigu-
ation system, to a given source corpus. This resulted in multiple vec-
tors per lexeme, rendering contextualisation as a process of selecting
the best fitting sense from an explicitly modelled list. Sense selection
can be achieved by maximising the distributional similarity between
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the sense representations of the target and context words, respect-
ively. Iacobacci et al. (2015) show that their method improves perform-
ance on a number of out-of-context word similarity tasks, however
has been shown to perform worse on in-context evaluations (Iaco-
bacci et al., 2015; Kober et al., 2017b).

Instead of focusing on senses on the basis of word usage or dic-
tionary definitions, Melamud et al. (2015) concentrated on modelling
potential fillers for a given slot. Their approach is based on substitute
vectors (Yatbaz et al., 2012), which represent plausible alternatives
for a blank slot in a given context, weighted by their suitability for
that slot. Melamud et al. (2015) used an n-gram language model to
determine plausible filler words for a given empty slot. For example
in the sentence The __ seagull landed elegantly, the language model
would be used to determine suitable fillers for the blank space, such
as big, hungry or wicked. A contextualised substitute vector represent-
ation for a given target word is simply the weighted average of all
potential fillers, for a given context. This means that, for the example
above, the representation for the empty slot would be the averaged
vector of the distributional representations for the lexemes big, hungry
and wicked. Melamud et al. (2015) evaluated their substitute vector
models on a pseudo-disambiguation task as well as the lexical sub-
stitution task, and showed that their approach is able to outperform
strong baselines such as word2vec.

2.3.2 Contextualisation via Modelling Lexical Selectional Preferences

The model of Erk and Padó (2008) represents every lexeme as a set
of vectors, consisting of one vector encoding the lexical meaning of a
word, and a number of vectors encoding the selectional preferences
of that word in different syntactic relations. Equation 2.19 formalises
the representation as a triple

w = (v, R, R−1) (2.19)

where v is the distributional semantic vector representation for a lex-
eme w, such as fish, R maps a syntactic relation onto a vector de-
scribing the selectional preferences of w, such as all the adjectival
modifiers that appear with fish, and R−1 maps a relation onto a vec-
tor denoting the inverse selectional preferences of w, such as all the
direct object relations to verbs that fish occurs with.
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Modelling word meaning in context is therefore a function of the
meaning of a word per se, combined with its syntactic relation to one
or more context words. For example, in order to derive a fully con-
textualised representation of the verb phrase catch fish, the meaning
of the verb catch in the context of fish needs to be combined with the
meaning of fish in the context of catch.

More formally, given the lexemes x and y in each others context,
and given a dependency relation r between x and y, where x would
represent the head of the phrase, their contextualised representations
x′ and y′ are defined as

x′ = (x ~ R−1
y (r), Rx − {r}, R−1

x )

y′ = (y ~ Rx(r), Ry, R−1
y − {r})

(2.20)

where ~ denotes some vector combination function such as pointwise
addition or multiplication, x ~ R−1

y (r) denotes the combination of the
standard distributional semantic representation of x with the inverse
selectional preferences of y, i.e. nouns in their direct object positions
that take catch as their verb. Conversely, y ~ Rx(r), represents the
combination of the lexical meaning of y and the forward selectional
preferences of x, i.e. verbs that take fish in their direct object slot. The
current relation r is removed from the set of forward and inverse
selectional preferences of the resulting phrase as denoted by Ra−{r}
and R−1

b − {r}.
Erk and Padó (2008) showed that their model achieves strong per-

formance on the verb-noun short phrase composition task of Mitchell
and Lapata (2008) as well as the lexical substitution task.

Instead of explicitly modelling the syntactic selectional preferences
of lexemes in a separate set of vectors, Thater et al. (2010) general-
ised the method of Erk and Padó (2008) and directly encoded typed
second-order co-occurrences in a shared vector space. Following Padó
and Lapata (2007) and Baroni and Lenci (2010), they encoded 〈w, r, w′〉
triples in their first-order distributional semantic co-occurrence space.

Second order representations are obtained from the co-occurrence
quadruple 〈w, r, r′w′〉, where r′ denotes the second-order syntactic re-
lation between w and w′, via r. Modelling word meaning in context
for a verb phrase such as catch fish is achieved by contextualising the
second-order representation of catch with the first-order representa-
tion of fish. In this setting the first-order representation has the role
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of a weighted filter in order to extract the contextualised meaning of
the verb.

Due to explicitly modelling the type in their distributional
space23, Thater et al. (2010) observed that lexemes with different syn-
tactic roles, such as verbs and their direct objects, live in different
areas of the typed distributional space. This has the consequence that
composition requires an additional step to align the two represent-
ations, which Thater et al. (2010) modelled through a “lifting-map"
that maps the co-occurrence space spanned by 〈w, r, w′〉 triples into
the second-order space spanned by 〈w, r, r′, w′〉 quadruples.

Thater et al. (2010) evaluated their model on the lexical substitu-
tion task where they showed improved performance over the model
of Erk and Padó (2008) on ranking paraphrases for verbs.

In later work, Thater et al. (2011), extended their previous approach
with a more focused re-weighting scheme for contextualising a lex-
eme. Instead of constructing first and second-order vector spaces for
modelling the distributional semantics and syntactic selectional pref-
erences of lexemes, Thater et al. (2011) only built a first-order vector
space spanned by 〈w, r, w′〉 triples. Contextualisation is modelled by
re-weighting individual dimensions on the basis of their current con-
text.

For example for the verb phrase catch fish, with a direct object rela-
tion connecting catch with fish, only the 〈r, w′〉 tuple 〈dobj, fish〉would
remain in the vector representation for catch. In order to avoid overly
sparse representations, Thater et al. (2011) exploited the distributional
similarity between fish and other nouns in the same syntactic role (i.e.
other direct objects) to enrich the contextualised representation of fish.

Thater et al. (2011) evaluated their model on the lexical substitu-
tion task and achieved substantially improved performance in com-
parison to their previous approach and the selectional preferences
based-model of Erk and Padó (2008), as well as other approaches
by Erk and Pado (2010) and Dinu and Lapata (2010).

2.3.3 Contextualisation via Latent Sense Modelling

These approaches are based on the notion of matrix factorisation of
the distributional space in order to obtain distributional word vector

23 Padó and Lapata (2007), and Erk and Padó (2008) remove the type label from their
representation.
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representations in terms of a distribution over senses instead of over
context words. Contextualisation is subsequently modelled as a dis-
tribution over these latent senses that is modulated by the current
context of a lexeme.

Dinu and Lapata (2010) introduced two models based on Latent Di-
richlet Allocation (LDA) (Blei et al., 2003), and Non-negative Matrix
Factorisation (NMF) (Lee and Seung, 2001), respectively. As Equa-
tion 2.21 shows, the goal of matrix factorisation is to approximate a
given matrix M ∈ Ri×j by the product of two matrices of lower di-
mensionality, W ∈ Ri×k and C ∈ Rk×j, where typically k << i and
k << j, on the basis of minimising an error criterion such as the
Frobenius norm or the KL-divergence between the original matrix M
and its factorisation into W and C.

Mi×j ≈ Wi×k · Ck×j (2.21)

Both matrix factorisation techniques are based on the same count-
based distributional space. In the case of their LDA model, the words
within a context window of the distributional model are treated as
documents24, and the senses are interpreted as topics. This leads to
a factorisation of the original target word by context matrix M into
the product of two smaller matrices W and C, where W represents a
target word by sense matrix and C a sense by context matrix.

The second model they introduced is based on NMF, which when
used with KL-divergence as objective function, has a probabilistic
interpretation (Gaussier and Goutte, 2005; Ding et al., 2008). The
matrices, M, W and C, in the factorisation have the same interpreta-
tion as in the LDA based model where M is the original distributional
semantic co-occurrence matrix, W is a target word by sense matrix,
and C a sense by context matrix.

For both models, all words in the distributional space share the
same n senses globally — i.e. all words are comprised of a distribu-
tion over the same latent sense space. This distribution is accordingly
modulated for a particular target word when contextualised with a
specific context. This is in contrast to the approaches of Reisinger and
Mooney (2010a) and Reisinger and Mooney (2010b), discussed in Sec-
tion 2.3.1 above, where all senses of a lexeme are local to that lexeme
and not shared globally for the whole vocabulary.

24 That is every possible sliding window of size n over the whole corpus is interpreted
as an individual document.
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In their evaluation Dinu and Lapata (2010) found that both of
their proposed models achieved comparable performance on an
out-of-context evaluation on a word similarity task and an in-context
evaluation on the lexical substitution task, with the NMF based
model working slightly better than the LDA model. Both of their
models substantially outperformed a count-based distributional
semantic baseline.

Two generalisations of the models introduced by Dinu and
Lapata (2010) have been proposed by Van de Cruys et al. (2011)
and Ó Séaghdha and Korhonen (2011), respectively. Both approaches
aim to integrate syntactic context from a dependency parse of a given
sentence into their models.

The approach of Van de Cruys et al. (2011) is based on an extension
of the NMF model of Dinu and Lapata (2010), where the syntactic
dependency contexts are modelled as two additional matrices, Rw,
representing a target word by dependency relation matrix, and Rc,
representing context by dependency relation matrix, in addition to
the standard target word by context matrix M. NMF is subsequently
applied in an interleaved fashion to these three matrices in the order
of Rw → M → Rc, where the result of the former is used to initialise
the latter (Van de Cruys, 2008). Combining the bag-of-words contexts
with the syntactic contexts is achieved in a straightforward way by a
weighted linear combination, such as a simple pointwise average, of
the two corresponding factorised word by context matrices.

Similarly, Ó Séaghdha and Korhonen (2011) extend the LDA based
model of Dinu and Lapata (2010) by incorporating syntactic context,
treating a target word at a given dependency node, together with its
head and dependants, as a document for the LDA modelling pro-
cedure. When evaluated on the lexical substitution task, both Van de
Cruys et al. (2011) and Ó Séaghdha and Korhonen (2011) found that
incorporating syntactic context improves upon the pure bag-of-words
approach of Dinu and Lapata (2010). Their results provide independ-
ent evidence that incorporating syntax is beneficial for modelling
word meaning in context.

An alternative approach has been proposed by Moon and Erk
(2013), who modelled word meaning in context as an undirected
graphical model. Each lexeme is modelled as an observed node, rep-
resenting the surface form of the word, and a hidden node, repres-
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enting its contextualised meaning. Hidden nodes are modelled as
distributions over paraphrases which take the role of latent senses
of the given target word. Contextualisation is modelled as an infer-
ence problem with the aim of inferring a paraphrase distribution for
every word in a given phrase or sentence. The graphical model allows
for a probabilistic formulation, describing the interactions between
paraphrase distributions of contextualised lexemes. The factors of the
graphical model are learnt based on Maximum Likelihood Estimation
from a given source corpus. Moon and Erk (2013) showed that their
approach outperforms the comparable models of Dinu and Lapata
(2010), Erk et al. (2010), and Thater et al. (2010) on the lexical substi-
tution task.

2.4 inferring unobserved events

The need for mechanisms for inferring unobserved events in distri-
butional representations arises from the simple reality of not having
a large enough corpus to observe all plausible co-occurrence events
between any two lexemes. While simple smoothing techniques such
as add-1 smoothing are often regarded as “good enough" in text clas-
sification models because of their simplicity, they quickly exhibit their
shortcomings25 in more complex tasks such as word-sense disambig-
uation or language modelling.

The issue of data sparsity is particularly problematic for explicit
count-based distributional semantic models, especially when com-
bined with an intersective composition function. This is because com-
posed distributional phrase representations become sparser with each
composition operation, making it difficult to scale the approach bey-
ond modelling short phrases and sentences (Polajnar et al., 2014b).
Consequently, the need for a mechanism for distributional inference
in count-based distributional semantic models becomes a necessity
for constructing high-quality elementary and composed represent-
ations. The predominant approach to inferring unobserved events
is based on leveraging the distributional neighbourhood by enrich-
ing elementary representations with information from distribution-
ally similar terms. Mitchell and Lapata (2008) note that inferring
knowledge by leveraging the distributional neighbourhood provides
one way of integrating additional knowledge K (see Equation 2.3) into

25 See Gale and Church (1994) for an overview of why add-1 smoothing is a problem-
atic estimation technique.
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the distributional composition function.

The earliest approaches of using distributional information for in-
ferring unobserved co-occurrences date back to Essen and Steinbiss
(1992), who use ideas based on an earlier model by Sugawara et al.
(1985). The approach of Essen and Steinbiss (1992) is to estimate the
contextual similarities of seen lexemes wi with the context of an un-
seen occurrence of w′ in bigrams (wi, w′), in order to infer whether
the unobserved lexeme w′ is similar to any of the observed occur-
rences. Essen and Steinbiss (1992) showed that their co-occurrence
smoothing technique substantially improves a language model for
speech processing.

The technique gained popularity in the NLP community through
the work of Dagan et al. (1993) and Dagan et al. (1994), who ap-
plied it to word-sense disambiguation and language modelling, re-
spectively. Unseen events are assigned the average pointwise mutual
information score of their top n distributionally most similar neigh-
bours. Dagan et al. (1993) used a Jaccard based similarity measure
to compare the two contextual distributions of two lexemes. They
showed that their approach is significantly better at predicting asso-
ciation scores for two related lexemes than a simple frequency based
baseline, leading to substantially improved results for a word-sense
disambiguation component in a machine translation system.

Dagan et al. (1994) extended their earlier approach by embed-
ding it into a fully probabilistic language modelling framework, that
first allocates an appropriate amount of probability mass for unseen
co-occurrence events, and subsequently re-distributes that mass to
the distributionally most similar terms, based on relative entropy
as similarity measure. They showed that by combining their simil-
arity based smoothing model with a standard back-off smoothing
strategy (Katz, 1987), they were able to achieve statistically signific-
ant improvements for a language model. The merit of their distri-
butional inference approach has furthermore been confirmed in a
controlled pseudo-disambiguation experiment by Dagan et al. (1997),
where they showed that their similarity based approaches signific-
antly outperform other smoothing techniques such as the back-off
model of Katz (1987) used by itself.
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Inferring unobserved events on the basis of nearest neighbour es-
timates has been a popular approach for mitigating the data sparsity
problem. For example, Turney (2006) used a similar idea to increase
the coverage of his Latent Relational Analysis model for estimating
the similarity of semantic relations. A notably different approach has
been proposed by Erk (2016) who argued that cognitively, similarity
between two terms is based on the property overlap between the two
corresponding concepts. Distributional inference should therefore be
a mechanism for inferring properties of a known into an unknown
concept. In a number of preliminary experiments, Erk (2016) showed
that there is a linear relation between corpus-based distributional sim-
ilarity and property overlap, as based on the McRae feature norms
dataset (McRae et al., 2005), between two corresponding concepts.

2.4.1 Distributional Inference for Composition

An early approach to distributional composition, that also in-
cluded a mechanism for distributional inference, has been pro-
posed by Kintsch (2001), who focused on modelling intransitive verb
phrases. The approach called predication is based on pointwise ad-
dition of distributional semantic vectors that aims to integrate addi-
tional knowledge into the composed representation of a subject-verb
pair. This is achieved by choosing the n most similar neighbours of
the predicate verb, of which the top k, that are also most similar to
the argument noun, are selected to enrich the final composed repres-
entation. Equation 2.22 formalises the composition function:

z = x + y + ∑
ni∈N

ni (2.22)

where x and y are the distributional semantic representations for the
predicate and the argument, respectively, and N is the set of neigh-
bours most similar to x and y.

In this model, both composition and inference are based on the
union of the features of each constituent. This creates the danger of
overflowing the distributional representations with noise from unre-
lated neighbours if the hyperparameters of the model — the number
of neighbours n and k, or alternatively the similarity thresholds — are
not carefully tuned. The only discriminative aspect of the composi-
tion function is the constraint that any neighbours need to be similar
to the predicate and the argument. However, this severely restricts
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the usefulness of the algorithm for typed count-based distributional
semantic models, where lexemes with different syntactic roles live in
very different areas of the distributional space with the consequence
of very little distributional commonality between them.

Kintsch (2001) showed the feasibility of his proposal on a small
qualitative experiment, highlighting how the predication algorithm im-
proves distributional similarity estimates between plausible and im-
plausible verb phrases; however, he does not conduct a quantitative
evaluation. Later work by Mitchell and Lapata (2008) and Mitchell
and Lapata (2010), found the predication algorithm to be performing
relatively poorly for adjective-noun, noun-noun and verb-noun com-
positions, whereas Utsumi (2009) and Utsumi (2012) found it to be
competitive for modelling a different set of noun-noun compounds.

An algorithm similar to predication, called comparison, has been pro-
posed by Utsumi (2009) for composing noun-noun compounds. In-
stead of retrieving the n nearest neighbours of the predicate and then
sub-selecting the k most similar to the argument as in the predication
algorithm, the comparison algorithm selects the top n common neigh-
bours of both constituents. Utsumi (2009) showed that his comparison
algorithm outperforms a pointwise vector addition baseline as well
as the predication algorithm for noun phrases that exhibit emergent
meaning properties26. However, taken all noun-noun compounds in
his dataset into account, the predication algorithm beats the comparison
algorithm by a small margin.

The comparison algorithm can also be represented by Equation 2.22

above with the only difference being that the set N of most similar
neighbours has been constructed in a different way. The approach
by Utsumi (2009) also models composition and inference as a feature
union, thereby suffering from the same hyperparameter sensitivity
problem as the approach of Kintsch (2001).

Further alternatives of the predication algorithm have been proposed
by Utsumi (2012) in subsequent work, introducing a variant based on
composition and inference by pointwise multiplication, as well as a
variant based on composition by pointwise multiplication and infer-
ence based on pointwise addition. The latter variant is the most sim-
ilar previously introduced approach to the distributional inference

26 For example, in the phrase information gathering, the meaning of intelligence emerges
in the compound and is thus more than just the sum of its parts.
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algorithm proposed in this thesis. Equation 2.23 formalises the two
novel variants

z = x� y� ∏
ni∈N

ni

z = x� y� ∑
ni∈N

ni

(2.23)

where x and y are the constituent word vector representations, and
N is the set of nearest neighbours. The set of neighbours N can be
retrieved by the predication or the comparison algorithm. Utsumi (2012)
furthermore tests two variants of Equation 2.22 where the geometric
mean instead of the raw product is used. The performance of the
newly introduced variants exhibited mixed results when evaluated
on modelling noun-noun compounds in comparison to the predication
algorithm, and simple additive and multiplicative baselines.

Utsumi (2012) addressed the problem of too little discriminatory
power in the composition function when integrating distributional
inference with composition, by modelling composition as an inter-
sective operation and inference as a unifying operation. However, the
mixed set of results suggest that the restrictive neighbour retrieval
function, that requires the neighbours to be similar to both constitu-
ents, represents a bottleneck for achieving better performance. For ex-
ample, given the noun phrase bike race, the predication and comparison
algorithms might discard the lexeme bicycle as a neighbour of bike,
because of its low similarity to race27. This results in missing a po-
tentially large number of lexemes that could contribute a significant
amount of plausible co-occurrence information to the representations.
Furthermore, Utsumi (2012) only evaluated the algorithms on noun-
noun compounds, leaving any other phrase types untested for.

Thater et al. (2011) proposed an alternative similarity-based ap-
proach for enriching elementary word representation during distri-
butional composition28. Instead of probing the distributional space
for similar words to add unobserved events, they leverage the distri-
butional neighbourhood to retain distributional knowledge that has
already been observed with the target word, but would be filtered

27 Indeed in an untyped VSM, similar to the ones used by Utsumi (2012), the lexeme
bicycle is not among the top 100 neighbours for the lexeme race. This has the con-
sequence that any co-occurrence information from bicycle would be neglected when
composing the phrase bike race with the comparison or predication algorithm.

28 Or “conextualisation" in their terminology.
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out during composition. For example, given some target word x and
some context word y, with the goal of creating a contextualised ver-
sion of x, Thater et al. (2011) first calculate the nearest neighbours
of the context word y. Subsequently all the neighbours of y that have
already been observed in some syntactic relation with the target word
x are retained in the contextualised representation of x. This has the
effect of creating a richer contextualised representation and resulted
in superior performance for paraphrase ranking and word-sense dis-
ambiguation in comparison to approaches proposed by Erk and Padó
(2008) and Erk and Pado (2010) (see also § 2.3.1 and § 2.3.2 above).



3
A N C H O R E D PA C K E D T R E E S

This chapter outlines the theory behind the Anchored Packed Trees
framework, that has been published in Weir et al. (2016), focusing on
the nature of elementary Apt representations (§ 3.1) and how they
are composed (§ 3.2) to form longer phrases. This chapter further-
more contributes a comparison between the Anchored Packed Trees
framework and previously proposed models in the literature (§ 3.3).

The theoretical work has been due to the first three authors (David
Weir, Julie Weeds & Jeremy Reffin), whereas my contributions have
been the empirical work in Weir et al. (2016).

Anchored Packed Trees (Apts) are a framework for modelling dis-
tributional composition based on a typed distributional co-occurrence
space. The Apt represents a novel unified data structure which is able
to capture the distributional semantics of phrases and full sentences
in the same space as individual lexemes. The predominant approach
to modelling distributional composition has been to apply a composi-
tion function to fixed meaning representations of individual lexemes.
Rather than defining composition to be a post-hoc operation on top of
a given static semantic space, Apts model distributional composition
as an intrinsic component of the distributional framework. The mean-
ing of individual lexemes and composed phrases is represented in the
same shared space. The core of the proposal is a unified data struc-
ture that enables the precise alignment of the distributional features
of the lexemes in a phrase that are bespoke to the current context. In
the following I will outline the most important characteristics of the
Anchored Packed Trees framework. A more detailed definition has
been published in Weir et al. (2016).

Apts are a compositional distributional semantic model where com-
position is treated as a process of lexeme contextualisation. The effect
of composition is the integration of the contextualised distributional
knowledge of all lexemes in some phrase into a single unified data
structure — the Anchored Packed Tree. The Apt is an aggregation of
all occurrences involving a given lexeme and uses a single represent-
ation to encode the distributional knowledge concerning that lexeme.

62
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In a composed phrase, the contextualised meaning of each lexeme in
the phrase is bespoke to the current context. This is achieved through
a mechanism that reduces the contribution of distributional features
unsuitable to the current context while increasing the contribution of
compatible features.

For example, consider the adjective-noun phrase white clothes. Not
everything that can be described as white is compatible with clothes,
such as the distributional knowledge about white obtained from a sen-
tence like Some sort of machine hummed around the corner, breaking the
silence with mindless white noise. Things done to or with white clothes
or white shoes are very different to things done to or with white noise.
Contextualisation is therefore a mechanism for deriving a set of dis-
tributional features on which the representations for white and clothes
agree on. This agreement process between the lexemes in a phrase
distills their bespoke meaning in the current context while using a
single representation per word type.

In general, a composition function based on the intersection of the
features of two aligned lexeme representations in a phrase is more ap-
propriate to contextualise the semantic content of the representations
in a given phrase than a composition function based on feature union
is. Thus, discussions involving the semantic contextualisation of two
lexemes pre-suppose an intersective composition function.

3.1 elementary apt representations

The structure of the distributional semantic space is a consequence
of how composition has been specified in the framework but it is
easier to first describe Apts as a distributional semantic model, and
subsequently show how composition is defined. The distributional se-
mantic space is built on the basis of typed1 co-occurrences 〈w, τ, w′〉,
where w and w′ are two co-occurring lexemes and τ denotes the
dependency relation between the two. Following Padó and Lapata
(2007), the string τ may represent a single dependency relation such
as amod, denoting an adjectival modifier for some noun, however it
may also represent a higher-order path such as dobj.amod, denoting
the adjectival modifier of some noun that is the direct object of some
verb. Furthermore, Apts include inverse dependency paths, denoting
the relations from modifiers back to their respective heads.

1 The Apt framework is agnostic to the concrete grammatical formalism used to build
the model, however this work assumes relations between lexemes to be dependency
types.
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Throughout this work I will assume that any lexemes w and w′

are elements from a finite vocabulary V, and all relations r and their
inverse counterparts r are from a finite set of dependency relations
R ∪ R, such that for any given co-occurrence type τ = r1 · . . . · rn,
each ri ∈ R ∪ R for 1 ≤ i ≤ n. Furthermore the co-occurrence type
τ is restricted to be in R∗R∗ for all elementary, offset and composed
Apt representations. This means that the path τ between w and w′ in
general first travels up towards the root of the given dependency tree
until an ancestor of w′ is reached. It subsequently travels down the
tree until w′ is encountered.

Figure 3.1 shows 4 unaligned example dependency trees, where the
extracted typed co-occurrence features for the lexeme clean from the
tree depicted in Figure 3.1 (a) are shown in Table 3.1 below.

we folded the dry clean clothes

nsubj

amod

amod

det

dobj
root

(a)

we bought white shoes yesterday

nsubj amod

dobj

nmod:tmod
root

(b)

you clothes look great

nmod:poss nsubj xcomp

root

(c)

he folded the clean white sheets

nsubj amod

amod

det

dobj
root

(d)

Figure 3.1: Unaligned example dependency trees.

Including the co-occurrence 〈clean, ε, clean〉 results in a uniformity
to the type system which is important for formulating distributional
composition within the Anchored Packed Trees framework (Weir et al.,
2016). The feature 〈clean, ε, dry〉 highlights another important aspect
of Apt theory: canonicalisation of all co-occurrence types. Consid-
ering Figure 3.1 (a), the original path from the lexeme clean to dry
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Extracted Co-occurrence Features
〈clean, ε, clean〉 〈clean, ε, dry〉

〈clean, amod, clothes〉 〈clean, amod.det, the〉
〈clean, amod.dobj, folded〉 〈clean, amod.dobj.nsubj, we〉

Table 3.1: Typed co-occurrence features for the lexeme clean, extracted from
the dependency tree shown in Figure 3.1 (a).

involves inversely travelling along the amod edge from clean to its
head clothes, and from there, taking the forward amod edge to dry. The
path between clean and dry would therefore be amod.amod. However,
through the canonicalisation of dependency paths, complementary
adjacent edges are cancelled out. More formally:

↓ (τ) =

↓ (τ1τ2) if τ = τ1 rr τ2 or τ = τ1 rr τ2 for some r ∈ R

τ otherwise
(3.1)

where ↓ (τ) denotes the reduced co-occurrence type for some τ. This
results in the empty path ε in the co-occurrence triple 〈clean, ε, dry〉
In the following, only reduced co-occurrence types are considered for
any typed 〈w, τ, w′〉 co-occurrence event.

Constructing APTs

Figure 3.2 illustrates the process of building Apts for the lexemes
white and clothes from the example dependency trees in Figure 3.1.
Step (1) in Figure 3.2 highlights how the path reduction proced-
ure outlined above has placed — or “packed"2 — the lexeme dry at
the same node in the aligned tree as the adjective clean, which sub-
sequently will hold other adjectives that modify the anchored lexeme
clothes. As Figure 3.2 illustrates, the process of packing has the effect
of losing the order information of lexemes with identical paths.

Step (2) shows how the third sentence is aligned with the first one,
and (3) shows the aligned representation3 for the Apt anchored at
the lexeme white for the second and last sentence of the example de-
pendency trees shown in Figure 3.1. Weights associated with lexemes

2 The term “packed" in Apts refers to the process that merges words with identical
paths into the same node as in the example for the two adjectives dry and clean in
the sentence we folded the dry clean clothes. This notably differs from other usages
of “packing" that refer to packing or unpacking individually quantified statements in
logical form as used in Copestake and Herbelot (2012), among others.

3 The packing step that places the adjectival modifiers clean and white at the same
node is identical as in (1) and has been omitted for brevity.
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we folded the clean clothes...
...

... dry
...

anchor

nsubj amod

det

dobj

(1)

we folded
... the clean clothes

...
......

...
...

... dry
...

...
......

... your
...

... clothes look great

anchor

nsubj amod

dobj

nmod:poss

det

nsubj xcomp(2)

we bought
... white shoes yesterday

he folded the white sheets
......

...
... clean

...
...

anchor

nsubj amod

det

dobj

nmod:tmod

(3)

Figure 3.2: Alignment procedure of the dependency trees depicted in Fig-
ure 3.1. Tree (1) is the aligned representation of tree (a) in
Figure 3.1, with the adjectival modifier dry merged into the
same node as clean. Tree (2) is the final representation for the
Apt anchored at clothes and tree (3) is the aligned represenation
of trees (b) and (c) of Figure 3.1 for the Apt anchored at the
adjective white.

are not shown in Figure 3.2, however their number of occurrences at a
node is highlighted by having two occurrences of clothes in Figure 3.2
(2) and two occurrences of white in Figure 3.2 (3). The notion of an
anchor in an Apt generalises the anchor formulation of Padó and
Lapata (2007) in their SVS model, as it represents the starting point
for the paths for a whole Apt structure, consisting of any number of
aligned dependency trees, rather than an individual tree. The posi-
tion of the anchor in an Apt denotes the starting points of the paths.
Moving the position of the anchor along some path in the Apt is a
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key component to modelling distributional composition within the
Anchored Packed Trees framework as will be shown in Section 3.2.

The formulation of Apts as function (Weir et al., 2016) allows the
retrieval of the weight associated with a specific co-occurrence event
〈w, τ, w′〉 for Apt Aw, where Aw is the Apt representation for the
lexeme w, as Aw(τ, w′) as shown in Equation 3.2 below:

Aw = f (w, 〈τ, w′〉) (3.2)

where f represents some weighting function for the co-occurrence
event 〈w, τ, w′〉. For example, the number of occurrences of white at
path ε in the Apt in Figure 3.2 (3), denoted by Awhite, can be retrieved
by Awhite(ε, white), resulting in 2. Equivalently, the number of occur-
rences of shoes at path amod can be retrieved as Awhite(amod, shoes),
resulting in 1.

Given a large corpus, the elementary Apts for the lexemes white
and clothes would give rise to the graph-like data structure in Fig-
ure 3.3.

Figure 3.3: Structured distributional Apt space. Different colours reflect dif-
ferent parts of speech. Boxes denote the lexeme at which the cur-
rent Apt is anchored. Circles represent nodes in the Apt space,
holding lexemes, and edges represent their relationship within
the space.

All edges in the Apts are bi-directional as exemplified between the
adjective node at which white appears (blue) and its corresponding
head noun node at which clothes appears (green) for the Apt anchored
at white (see Figure 3.3, top left), however for reasons of readability,
the figure only contains uni-directional edges.
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Vectorising APTs

A vectorisation of the Apt distributional space can be achieved by
collecting all typed features up to some order for all lexemes in the
space, and flattening them into a shared vector space such that any
contextual dimension consists of a 〈τ, w′〉 tuple. The whole space can
subsequently be represented by a M ∈ R|V|×|C| matrix, where C rep-
resents the set of all 〈τ, w′〉 contextual dimensions.

Formally, let M ∈ R|V|×|C| be the adjacency matrix4 of the Apt lex-
icon where each row i corresponds to a lexeme of the vocabulary V
and each column j denotes a 〈τ, w′〉 context tuple of the set of con-
texts C. Every co-occurrence event between a lexeme w and a context
〈τ, w′〉 is weighted by some score function f as Equation 3.3 below
shows, which gives rise to a matrix formulation of Apts that is equi-
valent to the functional definition of Equation 3.2.

Mi,j = f (w, 〈τ, w′〉) (3.3)

In practice, the dependency path τ and the context word
w′ are concatenated. For example, the concrete co-occurrence
triple 〈seagull, nsubj, landed〉 would be converted into the tuple
〈seagull, nsubj:landed〉. This representation scheme follows Padó and
Lapata (2007), Baroni and Zamparelli (2010), and Thater et al. (2010)
by integrating the syntactic infomation as part of the context into the
model.

A vectorised Apt is denoted by ~A and represents the ith row of
the adjacency matrix M defined above, hence ~A = Mi. For notational
consistency with Weir et al. (2016) I will use the notation ~A (rather
than Mi) to refer to a vectorised Apt and explicitly denote any co-
occurring context of the vectorised Apt ~A as just 〈τ, w′〉, such that
~A[〈τ, w′〉] refers to the specific co-occurrence between 〈w, τ, w′〉.

The distributional similarity between two vectorised Apts5, denoted
as sim( ~A1, ~A2), can be calculated with any distributional similarity
measure such as cosine or euclidean distance as Equation 3.4 below
shows.

4 Apts give rise to a weighted, directed and labelled graph as shown in Figure 3.3
from which the adjacency matrix can be obtained. Instead of representing an edge
between two vertices by 0 or 1, the existence of an edge is weighted by the PMI score
of the corresponding co-occurrence event associated with the two vertices and the
labelled edge connecting them.

5 I.e. any two rows of M.
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sim( ~A1, ~A2) = cos( ~A1, ~A2)

sim( ~A1, ~A2) = 1− ‖ ~A1 − ~A2‖
(3.4)

As the euclidean norm in the second line of Equation 3.4 denotes a
distance rather than a similarity, it is necessary to express it as 1 −
‖ ~A1 − ~A2‖.

In addition to the common practice of weighting all co-occurrence
events by a lexical association score such as PMI, following Padó and
Lapata (2007), it is furthermore possible to apply a path weighting
function, reflecting the fact that path length is inversely proportional
to the amount of direct distributional knowledge that a co-occurrence
event provides about some lexeme. The weight of a given 〈w, τ, w′〉
co-occurrence event for some vectorised Apt ~A can therefore be ex-
pressed as the product of a path weighting function φ(τ, w) and a
lexical association score W(w, 〈τ, w′〉) as Equation 3.5 below shows6.

~A[〈τ, w′〉] = φ(τ, w)W(w, 〈τ, w′〉) (3.5)

For example, using PMI as lexical association function would result
in the formulation shown in Equation 3.6, which is following the PMI
definition for a co-occurrence triple of Hindle (1990), that holds the
path τ fixed:

p(w, w′; τ) =
#〈w, τ, w′〉
#〈∗, τ, ∗〉

p(w; τ) =
#〈w, τ, ∗〉

#〈w ∗ τ, ∗〉

p(w′; τ) =
#〈∗, τ, w′〉
#〈∗, τ, ∗〉

PMI(w, w′; τ) = log
p(w, w′; τ)

p(w; τ)p(w′; τ)

(3.6)

where a “#" in front of a co-occurrence triple denotes the frequency of
the event, and a “∗" in any slot denotes the co-occurrences for any lex-

6 Hence, the function f of Equation 3.3 is formed of the product of the lexical associ-
ation function W and the path weighting function φ.
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eme in that slot. An alternative way to calculate PMI would be to treat
the path τ as part of the context word w′ as used by Ó Séaghdha and
Copestake (2007) and Kiela and Clark (2014). However in this work,
I will consistently use the definition of Hindle (1990) as outlined in
Equation 3.6 above.

Subsequently as shown in Equation 3.7, it is common to clamp any
negative PMI values at 0 (Dagan et al., 1993; Niwa and Nitta, 1994),
leading to Positive Pointwise Mutual Information (PPMI).

PPMI(w, w′; τ) = max(PMI(w, w′; τ), 0) (3.7)

3.2 composing apt representations

Before turning to distributional composition with Apts, the concept
of so-called offset Apts and the procedure of offsetting needs to be
introduced. Offsetting is the first step in deriving a set of agreeing fea-
tures for the lexemes in a phrase and is governed by the syntactic con-
text of a lexeme. Thus the process of alignment suppresses distribu-
tional features that do not fit into the current grammatical frame. The
process of offsetting an Apt representation according to its syntactic
use is the key feature for aligning two or more elementary Apt rep-
resentations with different parts of speech.

Offset APTs

By considering Figure 3.3 above, it can be seen that the Apt structure
can be traversed along the forward and inverse dependency links
between the nodes. Furthermore, Figure 3.3 shows that words with
different parts of speech live in very different feature spaces. For ex-
ample the typed co-occurrence features of adjectives frequently start
with amod, the path connecting them to the nouns they modify (see
Table 3.1 or Figure 3.3). Paths starting with amod, however, cannot be
observed for nouns or verbs as Figure 3.3 shows.

Thus, composing representations with different parts of speech
without prior alignment would result in practically no feature overlap.
This has the effect that any distributional commonalities between the
representations cannot be leveraged. Therefore Apts require a mech-
anism to appropriately align the representations of the lexemes in a
phrase. This process is called “offsetting" or “aligning", and causes a
shift in anchor position along a given edge in the data structure. It is
important to note that an anchor shift associated with offsetting does
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not cause any structural changes per se. The only thing that is chan-
ging is the position of the anchor which denotes the starting point of
the paths. For example by considering Figure 3.3, traversing along the
amod edge from the adjective white to the adjacent noun node, results
in a view in the Apt for white, that constitutes a noun that has been
modified by the adjective white. It therefore represents a “thing that
can be white" structure. However, in accordance with the restriction
that any dependency path τ in given an Apt has to satisfy the con-
straint of being in the set R∗R∗, not all co-occurrence events that are
part of the elementary view of an Apt are necessarily part of any of
its offset views.

we folded
... the clean clothes

...
......

...
...

... dry
...

...
......

... your
...

... clothes look great

anchor

nsubj amod

dobj

nmod:poss

det

nsubj xcomp(1)

we folded
... the clean clothes

...
......

...
...

... dry
...

...
......

... your
...

... clothes look great

anchor

nsubj amod

dobj

nmod:poss

det

nsubj xcomp(2)

Figure 3.4: Offset procedure of the Apt for the lexeme clothes. Tree (1) is
the original Apt representation for the lexeme clothes and tree (2)
represents its dobj offset view clothesdobj which results in mov-
ing the anchor along the inverse direction of the dobj arc to the
node where the lexeme folded occurs. The occurrences of look and
great in faded text in tree (2) are not part of the representation
of clothesdobj because they do not satisfy the constraint of being
in R∗R∗. This is because in order to reach the lexeme look (and
subsequently great) from the anchored node at which the lexeme
folded appears, one needs to traverse the dobj arc in a forward
manner, however after which no more upwards traversals in the
tree are allowed.

Figure 3.4 provides an example for this case where the lexemes look
and great are part of the Apt for the lexme clothes in tree (1), however
are removed in tree (2) when moving the position of the anchor along
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the inverse direction of the dobj arc from clothes to the node where
the lexeme folded occurs.

In the case where an offset would be triggered along a path that
has not been observed in the data and would therefore result in
the anchor being placed at an empty node, the resulting Apt struc-
ture would still adequately reflect the semantics of the resulting off-
set view. For example, as Figure 3.5 below shows, the compound off-
set view for the lexeme clothes, clothescompound, does not have any ob-
served co-occurrences for the path ε, but is otherwise intact. If an
offset would be triggered along a non-sensical path, such as dobj for
an adjective, the resulting Apt would still be non-empty, however
it would not be expected to have any overlapping features with any
other lexemes and would therefore be expected to yield distributional
similarity scores of 0 in comparison with any other lexeme7.

we folded
... the clean clothes

...
...

......
...

...
... dry

...
...

...
......

... your
...

... clothes look great
...

anchor

nsubj amod

dobj

nmod:poss

det

nsubj xcomp

compound

(1)

we folded
... the clean clothes

...
...

......
...

...
... dry

...
...

...
......

... your
...

... clothes look great
...

anchor

nsubj amod

dobj

nmod:poss

det

nsubj xcomp

compound

(2)

Figure 3.5: Offset procedure of the Apt for the lexeme clothes along a path
that has not been observed in the data. Tree (1) is the original
Apt representation for the lexeme clothes and tree (2) represents
its compound offset view clothescompound which results in moving
the anchor along the inverse direction of the compound arc. As in
Figure 3.4 above, all paths not satisfying the constraint of being
in R∗R∗ have been removed.

7 Indeed, when tested with an order 2 Apt space, derived from the BNC, comparisons
between dobj offset views of adjectives such as ancient, blonde, boring, or new to any
other adjectives, nouns or verbs alike, all yield a cosine similarity score of 0.
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Distributional Composition with APTs

The lexeme that requires offsetting in a concrete phrase, and the path
by which the lexeme needs to be offset is determined by the depend-
ency tree of that phrase. For example, given the phrase white clothes
with its associated dependency tree in Figure 3.6, the offset is carried
out for the dependent8 of the phrase, in the inverse direction of the
dependency relation connecting it to its head.

white clothes

amod

Figure 3.6: Dependency tree for the adjective-noun phrase white clothes.

For the adjective-noun phrase white clothes this means offsetting the
modifier white by amod. The offset path amod results from the obser-
vation that the lexeme white is connected to its head via the relation
amod and the inverse of amod is just amod. Hence traversing an edge,
mathematically, is a process of path reduction as formulated in Equa-
tion 3.1 above, leading to the reduction ↓ (amod.amod) = ε. This re-
duction reflects the fact that the data structure now provides a noun
view of the adjective white.

Table 3.2 lists a number of example typed co-occurrence features for
white, its offset noun view whiteamod and the noun clothes, highlighting
the non-overlapping feature spaces between white and clothes, and
the alignment between whiteamod and clothes, once the offset has been
carried out for white.

white whiteamod clothes

:clean amod:clean amod:wet
amod:shoes :shoes :clothes
amod.dobj:wear dobj:wear dobj:wear
amod.dobj.nsubj:coat dobj.nsubj:coat dobj.nsubj:actor

Table 3.2: Sample of vectorised features for the Apts shown in Figure 3.3.
Offsetting white by amod creates an offset view, whiteamod, repres-
enting a noun, and has the consequence of aligning its feature
space with clothes.

8 Alternatively, one could offset the head of a phrase, thereby creating an adjective
view of the noun clothes. Either alignment approach produces the same resulting
Apt when the aligned elementary Apts are composed. For convenience Weir et al.
(2016) generally illustrate the process by offsetting the dependent in a relation and
this convention is followed here.
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Once the typed distributional co-occurrence features of the lexemes
in a phrase are appropriately aligned, composition can be carried out
by merging the respective aligned nodes and their associated feature
weights. More formally, Equation 3.8 below shows that composition
is a function f between n aligned Apts, where f is a pointwise arith-
metic function such as min, max, addition or multiplication, among
others, that combines the feature weights associated with their re-
spective aligned nodes.

⊔
Υ

{A1, . . . , An}(τ, w′) = f1≤i≤n[Ai(τ, w′)] (3.8)

The type of the merge function
⊔

, determined by Υ, can be feature
intersection, union, or any other merging operation. In this thesis I will
restrict myself to either merging by intersection, denoted by

⊔
int

, or
merging by union, denoted by

⊔
uni

. I will use pointwise addition9

for combining the feature weights of two aligned Apt nodes through-
out this thesis and will use the terminology composition by intersec-
tion or composition by union as shorthand for referring to “merging
aligned nodes by feature intersection/union, and combining their as-
sociated weights by pointwise addition". The use of pointwise addi-
tion to combine aligned Apt nodes corresponds to multiplying the
associated probability distributions for each node due to the use of
log in PPMI (Ganesalingam and Herbelot, 2013). Furthermore, distri-
butional composition between two or more Apts is always assumed
to happen between aligned representations.

The composition function is responsible for integrating the distribu-
tional knowledge of the aligned lexemes in a phrase, and is governed
by the semantic context of the lexemes in that phrase. Thus the dis-
tributional content of a composed phrase is determined by the align-
ment process, which contextualises the lexemes syntactically, and by
composing them, which contextualises them semantically. This leads
to the interpretation of distributional composition as a process of lex-
eme contextualisation.

Figure 3.7 illustrates the composition process for white clothes. First,
as denoted by the red dashed arrow, the adjective white is aligned
with its head clothes by offsetting it into the noun node, and sub-
sequently the two aligned representations can be composed by inter-
section (bottom left) or union (bottom right). Notably, composition
by intersection creates a much sparser representation for the whole

9 In preliminary experiments I found that pointwise addition was consistently among
the top performing functions.
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phrase than composition by union, however has the potential of more
accurately reflecting the semantics of the phrase due to filtering fea-
tures that are not compatible with both lexemes. On the downside,
composition by intersection has the effect of making a sparse repres-
entation even sparser, therefore requiring a mechanism to ease that
sparsity effect.

Figure 3.7: Distributional composition of two aligned Apt representations
by intersection (bottom left) or union (bottom right).

3.3 relation of anchored packed trees to previous mod-
els

Anchored Packed Trees bear some amount of resemblance to a num-
ber of previously proposed models. In the following I will discuss
their similarities as well as their characteristic differences.

3.3.1 Relation to Padó and Lapata (2007)

As discussed in Section 2.1.2, Padó and Lapata (2007) proposed10

a structured vector space (SVS) model on the basis of a depend-
ency parsed corpus. The most important differences between the
SVS model and Apts are that the former is purely a distributional

10 While originally published in an earlier paper (Padó and Lapata, 2003), the publica-
tion Padó and Lapata (2007) represents a more formal and exhaustive description of
the model.
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model and does not provide a theory of how composition should
work within the distributional space. Secondly, Apts define a com-
pletely novel data structure, where elementary representations, only
when instantiated as vectors, are similar to the structured vector space
model of Padó and Lapata (2007).

Leaving the compositional component of Apts aside and assuming
a vector based instantiation of the Apt space, the models do bear a
number of similarities. For example, the notion of an anchor is ad-
opted in Anchored Packed Trees, however instead of only referring
to the current starting point in a given dependency tree, its notion
is extended to refer to the current starting point in an Apt structure,
which aggregates and aligns any number of dependency trees. Fur-
thermore, like in the SVS model, Apts adopt the notion of a path
weighting function in combination with a lexical association score for
a co-occurrence event. Apts include inverse and higher-order depend-
encies when collecting co-occurrence events, however unlike Padó
and Lapata (2007) who state that all paths in a 〈w, τ, w′〉 co-occurrence
triple are undirected, Apt paths are labelled and directed11. Most
notably, Padó and Lapata (2007) remove the type label from the co-
occurrence events in order to reduce the sparsity of their model while
in Apts all co-occurrences remain labelled12.

3.3.2 Relation to Baroni and Lenci (2010)

Much like the structured vector space model of Padó and Lapata
(2007), the Distributional Memory (DM) framework of Baroni and
Lenci (2010) does not provide a theory of how composition can be
modelled within the distributional space, whereas Apts are built
around the concept of composition. Nonetheless, when focused on
the distributional aspect of both models, the Distributional Memory
framework and Apts exhibit a number of similarities. Firstly, the
Apt lexicon could be represented as a tensor by encoding the type
of the relation in a co-occurrence event in its own dimension. The
procedure of offsetting could be expressed in terms of matrix-matrix
multiplication and distributional composition can also be expressed

11 While all paths in any Apt are bi-directional, they cannot be reduced to undirected
edges as the direction and label of a path are crucial for correctly offsetting and
composing Apts.

12 The difference between typed and labelled is that a typed model follows some syn-
tactic pattern when collecting the co-occurrences from a given source corpus as de-
scribed in Section 2.1.2. Labelling refers to the fact that the typed co-occurrences
retain their path information (the label) when building the co-occurrence space.
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as functions between two matrices. Secondly, when the DM tensor is
matricised by encoding the type of the 〈w, r, w′〉 co-occurrence event
as part of the contextual dimension, 〈w, r w′〉, it yields the same mat-
rix base representation13 as when the Apt lexicon is vectorised. While
the representations of individual lexemes can be regarded as identical
between the DM model and Apts, the former does not provide any
machinery for modelling distributional composition. For example, it
is unclear how lexemes with different grammatical roles could be
composed in the Distributional Memory framework.

3.3.3 Relation to Erk and Padó (2008)

While not explicitly defining a theory of distributional composi-
tion, Erk and Padó (2008) proposed a model for representing the
contextualised meaning of a word. A single lexeme is represented
by a lexical vector for the given lexeme itself and an additional set
of vectors expressing the selectional preferences of the given lexeme
(also see Section 2.3.2).

Lexical vectors are either represented as standard untyped distri-
butional semantic vectors, or as typed vectors by following the SVS
model of Padó and Lapata (2007). The number of selectional prefer-
ence vectors for a given lexeme is determined by the number of in-
coming and outgoing dependency edges that are adjacent to the given
lexeme. A selectional preference vector is subsequently created for
each dependency path and is represented as a weighted average of all
lexical vectors that appear as w′ in a specific 〈w, τ, w′〉 co-occurrence
event for a fixed lexeme w and dependency path τ.

For example, the selectional preference vector for the relation dobj

of the verb catch, is the weighted average of all word vector repres-
entations that co-occur as the direct object of catch across the given
corpus. The weight is determined by the frequency of the specific co-
occurrence event (Erk and Padó, 2008). The meaning of some phrase
w w′ is then defined as the tuple of vectors for the meaning of w in
the context of w′ and the meaning of w′ in the context of w, where
the contextualised representations of w and w′ are subsequently not
composed.

The major similarity to Anchored Packed Trees is an explicit mech-
anism to contextualise the meaning of a lexeme; however Apts
provide a more flexible and general mechanism for modelling word

13 Assuming the typing in DM and in Apts are equivalent
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meaning in context and distributional composition. The elementary
lexical representations in the Apt framework already encode the se-
lectional preferences of a given lexeme due to explicitly modelling
and retaining the grammatical type of all co-occurrences in the distri-
butional space. Hence, there is no need for separate representations
for modelling the lexical meaning and the selectional preferences of
a lexeme.

Explicitly contextualising the selectional preferences of a lexeme in
a given phrase is achieved through offsetting one of the lexemes in
the dependency relation. Due to following the direction of the de-
pendency tree of a phrase, there is no need for reciprocal contextual-
isation as the dependent in a relation is adapted to its phrasal head,
which reflects its usage in the context of the head lexeme. Composi-
tion of the offset representation with the lexical representation of the
head lexeme is subsequently carried out to integrate the combined
meaning of the lexemes into a single representation.

While Apts and the model of Erk and Padó (2008) provide altern-
ative ways of expressing the contextualised meaning of a word, Erk
and Padó (2008) do not provide a way to represent the meaning of a
phrase as a whole.

3.3.4 Relation to Thater et al. (2010)

The model of Thater et al. (2010) arguably shares the most common-
alities with the Anchored Packed Trees framework, where globally,
Apts can be seen as a formalised generalisation that subsumes the
model proposed by Thater et al. (2010).

Thater et al. (2010) created a typed distributional vector space and
observe, by explicitly retaining the type structure, that lexemes with
different parts of speech, such as verbs and nouns, have a very dif-
ferent set of features and cannot be compared in a straightforward
manner. For example, the distributional features of verbs frequently
start with dobj or nsubj, denoting the direct objects and subjects that
the verb co-occurs with. Nouns on the other hand will have have fea-
tures starting with amod, denoting their adjectival modifiers or dobj

and nsubj denoting the inverse relation to the verbs for which they
occur as direct object or subject. In order to address that issue, Thater
et al. (2010), created a second vector space that captures the second-
order co-occurrences of lexemes.
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This is achieved through the use of a so-called “lifting-map" which
creates a second-order vector from a first-order vector, by prepending
every typed feature of the given first-order vector with the depend-
ency relation in which the lexemes co-occur in the given phrase. For
example, if the first-order noun vector has the typed distributional
features dobj:catch and compound:fish, and is the direct object of the
verb eat, then the lifting operation creates the second-order typed fea-
tures dobj.dobj:catch and dobj.compound:fish from the given first-
order representation.

The use of a “lifting-map" is very similar to the concept of offsetting
in Apts, and they are indeed operations that are yielding equivalent
outcomes: an alignment between two or more representations with
different parts of speech. However there are a number of differences
between the two alignment methods. Firstly, the lifting-map changes
the first-order representation of a given lexeme itself. In Apts on the
other hand, offsetting does not cause a structural change, but only
a shift in the anchor position in the given Apt data structure that
changes the starting points of the paths. Secondly, due to using sep-
arate vector spaces for first- and second-order representations, it is
unclear how any higher-order liftings could be performed. In Apts
higher-order offsets are supported due to the use of a unified data
structure for distributional features of any order. Lastly, paths are not
canonicalised, which has the consequence of, for example verbs, hav-
ing paths such as dobj.dobj to other verbs. In Apts such paths would
be reduced to an empty path by the reduction ↓ (dobj.dobj) = ε. Any
such verbs would subsequently be merged into the same node, which
is enabled by the use of a unified data structure. Therefore, the off-
setting procedure in Anchored Packed Trees represents a formalised
and generalised variant of the lifting operation proposed by Thater
et al. (2010).

By using an intersective composition function (pointwise multiplic-
ation) to combine the lifted first-order vector w with the second-order
vector w′ in the phrase w w′, the lifted representation for w acts as a
filter on w′, retaining non-zero values for only those features that
have been observed for both w and w′. Pointwise multiplication con-
flates the merging of aligned features and combination of their asso-
ciated weights into a single operation. Instead, composition in Apts
decouples the two steps by first merging aligned nodes by feature in-
tersection, union, or a variant of the two, and subsequently combines
the feature weights of the merged nodes by any arithmetic operation.
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This decoupling of aligning and merging adds a layer of flexibility to
the composition operation.

3.3.5 Relation to Thater et al. (2011)

Thater et al. (2011) proposed a simplified model of the approach pub-
lished in Thater et al. (2010), which notably removes the modelling of
second-order co-occurrences, while representing individual lexemes
in a typed first-order vector space. The elimination of the second-
order vector space abolishes the need for the lifting-map operation to
align two lexemes with different parts of speech. Through the simpli-
fication of removing the requirement for aligning the representations
of lexemes with different parts of speech., the model of Thater et al.
(2011) is less similar to the Anchored Packed Trees framework.

Thater et al. (2011) compare two different contextualisation mech-
anisms. Given the phrase catch fish, where fish is the direct object of
catch, the first contextualisation method would simply remove all fea-
tures from the vector representations of catch and fish, apart from
dobj:fish for catch and dobj:catch for fish. Despite the simplicity and
high degree of sparsity induced by this operation Thater et al. (2011)
found the method to be working surprisingly well for ranking para-
phrases.

The second method uses a mechanism to retain features of distri-
butionally similar lexemes in the corresponding vectors, such that for
example, the feature dobj:trout would be retained in the vector for
fish, where trout and fish are assumed to be distributionally similar.
This approach is not similar to the contextualisation process in Apts
per se, however it is indeed similar to the use of the standard distribu-
tional inference algorithm introduced in Chapter 5.



4
C H A R A C T E R I S I N G E L E M E N TA RY A N D C O M P O S E D
A P T R E P R E S E N TAT I O N S

This chapter analyses the Anchored Packed Trees framework as a dis-
tributional semantic and compositional distributional semantic model
by characterising the distributional neighbourhood of elementary, off-
set and composed Apt representations. The performance of Apts is
evaluated on a number of word similarity tasks, as well as a short
phrase composition benchmark dataset. This chapter contains an ex-
panded version of the empirical work presented in Weir et al. (2016).
The contributions of this chapter are:

• An empirical evaluation of the Apt theory on word similarity
and short phrase composition tasks.

• A hyperparameter sensitivity analysis of elementary and com-
posed Apt representations.

• Practical recommendations for favourable hyperparameter set-
tings.

• An analysis of the effect of different hyperparameter settings on
the semantic Apt space.

• A qualitative and quantitative assessment of the distributional
neighbourhood that elementary, offset and composed Apt rep-
resentations give rise to.

The chapter is structured as follows: the preprocessing pipeline
(§ 4.1.1), evaluation methodology (§ 4.1.2) and datasets (§ 4.1.4) are
summarised in Section 4.1. Section 4.2 reports the practical evaluation
on word and phrase similarity tasks, introducing the investigated hy-
perparameters in Section 4.2.1, presenting the large-scale hyperpara-
meter sensitivity analysis in Section 4.2.3, and providing practical
recommendations in Section 4.2.4. Subsequently, Section 4.3 charac-
terises the distributional space of elementary (§ 4.3.1), offset (§ 4.3.2),
and composed (§ 4.3.3) Apt representations.
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4.1 preprocessing , data and evaluation

4.1.1 Preprocessing Pipeline and Source Corpus

The empirical work in this chapter predominantly relies on rep-
resentations derived from the widely used British National Corpus
(BNC) (Burnard, 2007), containing ≈100 million words. This primar-
ily has practical reasons as the BNC is big enough to enable the cre-
ation of word representations of good quality, however is still com-
pact enough to allow the exploration of a large number of model
parameters while keeping the computational load associated with cre-
ating Apt spaces manageable. Furthermore, the primary aim of this
chapter is not to achieve state-of-the-art results on any of the datasets,
but to provide a practical evaluation of the theory and to explore and
quantify the impact of different parameterisations on elementary and
composed Apt representations.

The BNC was preprocessed with the Stanford NLP Toolkit1 (Man-
ning et al., 2014), using the default models for lemmatisation and part
of speech tagging, and the standard version of the shift-reduce parser
for dependency parsing. All lexemes have been lowercased before
creating the Apt spaces2. Any 〈w, τ, w′〉 co-occurrence triple with a
frequency of less than 10 has been discarded, and any Apt represent-
ations with fewer than 50 non-zero features have been disposed of.
All numbers3 have been replaced by a “#num" token and all URLs4

have been replaced by a “#url"5 token prior to creating Apts. The
motivation for this fixed set of hyperparameters is due to prelimin-
ary experiments, where an exhaustive investigation of the impact of
simple transformations such as lowercasing or text normalisation are
out of scope of this work. The adoption of a set of “good defaults"
allows to shift the focus on parameters that are more idiosyncratic to
Apts.

1 Version 3.5.2
2 Lowercasing has been shown to provide a small benefit in terms of processing time

in preliminary experiments, while the results did not differ beyond the 4th or 5th

significant digit.
3 Anything part of speech tagged as a cardinal number (CD), which can include lex-

emes such as third.
4 URLs have been identified on the basis of a regular expression.
5 While most of the texts in the BNC pre-date the world wide web, there are only very

few occurrences of URLs (a search for string patterns ending with *.com yields ≈ 80
results), hence this normalisation step is expected to have relatively little impact, but
is nonetheless applied to reduce the contextual noise of URLs for their surrounding
words.
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4.1.2 Evaluation

Evaluating compositional distributional semantic models is an act-
ive, and relatively recent, area of research. Unlike part of speech tag-
ging or dependency parsing, there neither is a widely adopted bench-
mark such as the Penn Treebank (Marcus et al., 1993), nor a general
agreement of what the best way of evaluating a given model actually
is (Batchkarov, 2016).

A broad categorisation can be made between intrinsic and extrinsic
evaluation strategies. An intrinsic evaluation generally involves a com-
parison to human judgements, such as in word similarity or phrase
similarity tasks. An extrinsic evaluation on the other hand, is carried
out on downstream tasks such as dependency parsing, sentiment ana-
lysis or recognising textual entailment.

An intrinsic evaluation such as word and phrase similarity tasks
only provide part of the performance picture of a compositional dis-
tributional model as they focus on relatively frequent lexemes and ig-
nore the wider context in which a lexeme might occur. However, these
tasks are a convenient way for analysing the impact of a large number
of parameters on the distributional space. If a model performs badly
on the “easier" tasks in an intrinsic evaluation, it is unlikely that it
will perform substantially better than other models in a more diffi-
cult task. Hence, intrinsic evaluations can provide important insights
about the quality of a model.

4.1.3 Statistical Significance

The correlation coefficients of two models, in comparison to the same
set of target variables, in general, are not independent. Therefore, the
method of Steiger (1980) tests whether the similarity estimates of two
different models are statistically different in comparison to the hu-
man judgements. One model is judged to perform statistically sig-
nificantly better than another model if the method of Steiger (1980)
judges the similarity distributions obtained from the respective mod-
els, in comparison to the human judgements, to be statistically differ-
ent with a level of confidence of p < 0.05.

Testing for statistical significance has long been neglected when
comparing distributional semantic models on word or phrase similar-
ity datasets. The first work to perform a systematic and large scale
analysis for statistical significance has been conducted by Shalaby
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and Zadrozny (2015), who found that even seemingly large differ-
ences in correlation between two models are frequently not stat-
istically significant due to the small size of some of the datasets
such as MC30 Miller and Charles (1991) and RG65 Rubenstein and
Goodenough (1965). Due to their small size and inconsistent beha-
viour with regards to noise as identified by Batchkarov et al. (2016), I
refrain from an evaluation on these two datasets. Shalaby and Za-
drozny (2015) furthermore recommend the usage of the statistical
test of Steiger (1980) for its above mentioned properties. The method
of Steiger (1980) has subsequently been adopted by Rastogi et al.
(2015), Wieting et al. (2015) and Faruqui et al. (2016). Due to its pop-
ularity in recent work, I am also adopting the method of Steiger (1980)
in this thesis. All statistical tests in this thesis use the two-tailed vari-
ant of the recommended test. The statistical test will generally be
referred to as “the method of Steiger (1980)" throughout.

The null hypothesis for all tests is that the distributions of similarity
estimates of two models, in comparison to the human judgements, are
statistically equivalent — i.e. that the performance of the two models
does not significantly differ. The null hypothesis will be rejected if a
statistically significant difference between two models can be determ-
ined on the basis of the method of Steiger (1980). Rejecting the null
hypothesis will not be explicitly mentioned when presenting the res-
ults. Repeated trials are not corrected for in the results, which means
that each model instantiation with a specific set of hyperparameters
is treated as a model in its own right rather than a permutation of
some base model.

4.1.4 Datasets

For analysing the impact of the hyperparameter settings of differ-
ent Apt spaces I am using 3 commonly used word similarity data-
sets, WordSim-353 (Finkelstein et al., 2001), MEN (Bruni et al., 2014),
SimLex-999 (Hill et al., 2015). Distributional composition is evaluated
on the popular short phrase composition benchmark of Mitchell and
Lapata (2010), containing adjective-noun, noun-noun, and verb-object
pairs. The BLESS dataset (Baroni and Lenci, 2011) is used for charac-
terising the distributional space of elementary, offset and composed
Apt representations.
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WordSim-353

The WordSim-353 (WS353) dataset (Finkelstein et al., 2001) contains
3536 word pairs, each annotated with 13-16 human similarity judge-
ments on a scale of 0 (completely dissimilar) to 10 (maximally sim-
ilar). The task is to compare the averaged human judgements to the
distributional similarity between the two lexemes in the model by
calculating Spearman’s ρ between the two sets of similarity judge-
ments. Notably, the WordSim-353 dataset contains a mix of different
semantic relations such synonymy, co-hyponymy, hypernymy, mer-
onymy and topical relatedness, without clear annotation guidelines
on what constitutes a similar pair (Batchkarov et al., 2016).

Therefore, I will use the partitioned variant of WordSim-353

by Agirre et al. (2009), who split the dataset into a similarity
and relatedness subset. The name of the subsplit will be added in
parentheses, as in WordSim-353 (similarity) or WS353 (rel)7. The sim-
ilarity subset contains all pairs categorised as synonyms, antonyms,
hypernym-hyponyms or identical, together with all dissimilar pairs
that have an average human similarity rating of less than or equal
to 5. The relatedness subset is the union of the same dissimilar
pairs as the similarity subset, together with all pairs categorised as
meronym-holonyms. After re-partitioning the dataset, the similarity
subset contains 203 word pairs, and the relatedness subset contains
252 word pairs.

MEN

The MEN dataset (Bruni et al., 2014) consists of 3000 word pairs con-
taining adjectives, nouns and verbs8, and its annotation guidelines
favour semantic relatedness. The word pairs have been created in a
semi-automatic way on the basis of their distributional similarity and
their frequency in a reference corpus. Bruni et al. (2014) used Amazon
Mechanical Turk to collect the annotations, where the annotation task
has been set up as a comparison between two word pairs, requiring
annotators to select which of the two pairs shows a greater degree of
relatedness. Each word pair has been rated 50 times and its score is

6 While in total it contains 353 pairs, the dataset contains only 352 distinct pairs as the
pair money - cash occurs twice, with slightly different average similarity ratings (9.08
vs. 9.15).

7 Representing the abbreviation for WordSime-353 (relatedness)
8 Word pairs are not restricted to the same part of speech but are frequently across

different parts of speech.
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computed as the number of times the word pair has been identified as
more related in a comparison, divided by 50. The task is to compare
the human annotations to the similarity judgements of the distribu-
tional model by computing Spearman’s ρ. The MEN dataset contains
a separate development set which will be referred to as MEN (dev)
throughout this work.

SimLex-999

The SimLex-999 dataset (Hill et al., 2015) contains 999 word pairs, con-
sisting of adjectives, nouns and verbs. Unlike MEN, all comparisons
between words are between pairs with the same part of speech. The
word pairs in the dataset have been selected on the basis of the Univer-
sity of South Florida Free Association Database (Nelson et al., 2004)
and WordNet (Fellbaum, 1998). Annotations have been collected from
Amazon Mechanical Turk with careful annotation guidelines that aim
to capture synonymy and near-synonymy, while regarding, for ex-
ample antonyms, which are treated as related in MEN, as completely
dissimilar9. Each annotator rated 20 groups of word pairs, where each
group consisted of 6-7 pairs, on a scale between 0 (completely dissim-
ilar) to 6 (maximally similar). In a post-processing step, the ratings
have been averaged across all annotations per word pair, and linearly
transformed to the interval [0, 10] (from [0, 6]). The task is to compare
the averaged human annotations to the similarity estimates of the dis-
tributional model by computing Spearman’s ρ.

Short Phrase Composition

For evaluating distributional composition, I am using the dataset in-
troduced by Mitchell and Lapata (2010), henceforth referred to as
“ML2010". The dataset assesses the capability of a compositional dis-
tributional model to represent adjective-noun (AN), noun-noun (NN),
and verb-object (VO) compounds. Each phrase type consists of 108
phrase pairs which have been annotated in a crowdsourced experi-
ment on a Likert scale from 1 (completely dissimilar) to 7 (maximally
similar). In total 162 annotators have been recruited, each one judging
36 phrase pairs for their similarity, leading to 5832 annotations in
total, uniformly distributed across the three phrase types. The task is

9 For example the antonym pair hot - cold has a normalised similarity of 0.66 in MEN,
whereas the antonym pair old - new only scores 0.16 (normalised) in SimLex-999.
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to compose each of the two phrases in a pair and compare the result-
ing distributional similarity of the composed phrases to each human
annotator individually by computing Spearman’s ρ. Notably, this dif-
fers from the evaluation strategy used in the word similarity datasets
where the similarity estimates of a distributional model are compared
to averaged human similarity judgements.

BLESS

The BLESS dataset (Baroni and Lenci, 2011) consists of 200 concrete
single-word noun concepts which are paired with relata from the fol-
lowing set of semantic relations to the target concepts: co-hyponyms
(“coord"), hypernyms (“hyper"), meronyms (“mero"), attributes (“at-
tri") and events (“event"). Co-hyponyms, hypernyms and meronyms
are all nouns, attributes are adjectives, and are selected to represent
typical properties of the given target concept. Events are verbs that
are frequently associated actions or happenings the target concept
is involved in. For all 3 parts of speech, the BLESS dataset includes
random distractors (“random-n", “random-j" and “random-v").

The target concepts have been chosen by using the McRae Feature
Norms dataset (McRae et al., 2005) as primary source, and relata have
been selected on the basis of WordNet (Fellbaum, 1998), Concept-
Net (Liu and Singh, 2004), and the ukWaC corpus (Ferraresi et al.,
2008), and have been filtered and validated using Amazon Mechan-
ical Turk. The task is to calculate the similarity of every concept noun
with all of its relata and choose the most similar relatum per relation.
The distributions are subsequently converted into z-scores to account
for concept-specific sparsity effects, and summarised in a box-and-
whisker plot in order to visualise the preference of a given model for
particular semantic relations (Baroni and Lenci, 2011).

4.2 practical evaluation

A major challenge when putting a theoretical proposal into practice
is finding a set of robust parameters that optimise the performance
of the given model. As other compositional distributional models,
Anchored Packed Trees specify a number of parameters that need
to be set prior to deriving representations from a corpus. These hy-
perparameters can have a significant impact on the nature and char-
acteristics of the resulting distributional space. This section aims to
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identify the most important hyperparameters by quantifying their
impact on 3 word similarity task and a short phrase composition
task. On the basis of the hyperparameter sensitivity analysis, a set
of favourable parameter settings is identified and will be adopted for
further processing.

In the following, the hyperparameters are defined in Section 4.2.1,
and the methodology and quantification of the contribution of each
parameter is subsequently presented in Section 4.2.3. Section 4.2.4
provides recommendations for favourable parameter settings.

4.2.1 Hyperparameters

The investigated hyperparameters are categorised into three groups,
preprocessing parameters, Apt parameters10, and lexical association metric
parameters, each group concerning a different stage of the Apt cre-
ation pipeline. A large body of previous work, such as Bullinaria and
Levy (2012); Lapesa and Evert (2014); Kiela et al. (2014); Lapesa and
Evert (2017) has already investigated the impact of various hyperpara-
meterisations on typed and untyped distributional semantic models.
The insights obtained by these studies provide a robust starting point
for the parameters in this work. For example there is strong evid-
ence that some form of mutual information (Lapesa and Evert, 2014;
Kiela et al., 2014; Polajnar and Clark, 2014; Weeds et al., 2014b) or
t-test (Curran, 2004; Kiela et al., 2014; Polajnar and Clark, 2014) as
lexical association function consistently is among the top performers
in recent studies. Furthermore, Sahlgren (2006); Levy et al. (2015) have
shown that the weighting applied to the context window can have a
substantial effect on the characteristics of the distributional space.

Preprocessing Parameters

The parameters investigated at the preprocessing stage include the
use of lemmatisation: {true, false}, the use of part of speech tags:
{true, false} and the granularity of the part of speech tags when
they are used: {1, full}. When being set to 1, only the first letter of
a PoS tag is considered for a given lexeme. This means that all tags
associated with nouns, such as NN, NNS, or NNP would be mapped
to just N. The option full uses the complete tag information.

10 While referred to as Apt parameters they are also applicable to other typed distribu-
tional models such as the SVS model of Padó and Lapata (2007).
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The preprocessing parameters can have a considerable impact on
the dimensionality of the distributional space. For example a lemmat-
ised order 3 Apt space without PoS tags gives rise to ≈1.39M dimen-
sions, whereas the same order 3 Apt space without lemmatisation
or PoS tags results in ≈1.51M dimensions — a difference of ≈120k
contextual dimensions.

APT Parameters

In this section, the path length and its associated weight are investig-
ated, representing two specific Apt parameters.

Path length — or Apt order — defines the maximum length of
typed features in an Apt, and has a similar role to the size of the
sliding window in untyped distributional semantic models. Figure 4.1
shows the features that would be extracted for the verb jumps in the
given example sentence when using an order 1 Apt space (top) in
comparison to an order 2 Apt space (bottom). Notably, an order 3
Apt would be sufficient to capture all lexemes in the sentence for the
anchored word jumps.

Figure 4.1: Co-occurrence features captured by an order 1 Apt (top) and an
order 2 Apt bottom for the lexeme jumps. The numbers below
each lexeme indicate the distance from the anchored word. For
the given sentence, an order 3 Apt would capture the full sen-
tence for the lexeme jumps.

Figure 4.1 highlights that higher-order paths tend to provide less
direct evidence about the semantics of a given lexeme. For example,
the order 1 features for the lexeme jumps provide distributional evid-
ence that foxes are able to jump and that it is possible to jump over
something. The order 2 features of jumps provide evidence that quick
and brown things can jump and that it is possible for something to
jump over a dog. While the order 2 features still provide useful co-
occurrence information, they tend to be less general and more specific



4.2 practical evaluation 90

to the current context, i.e. not all quick or brown things might be able
to jump. In this section, I am investigating the following path lengths
for building Apts: {1, 2, 3, 5, 7}.

After defining the order of the Apt space, the associated path weight-
ing function needs to be defined next. This parameter is the equival-
ent of weighting the terms in the sliding window in untyped distri-
butional semantic models. The following path weighting schemes are
considered in this section: {constant, harmonic, inverse harmonic,

very aggressive, path probability}.

Figure 4.2: Overview of path weighting functions directly dependent on
path length (left), and accumulation of probability mass per path
length for the path probability weighting scheme (right).

Figure 4.2 (left) illustrates the effect of different path weighting
schemes for an order 5 Apt space. Path probability weighting is not-
ably missing from Figure 4.2 (left) as it is the only path weighting
scheme that is not a direct function of the length of a given path. Fig-
ure 4.2 (right) shows the accumulated probability mass of paths of
different lengths across all words in the BNC with path probability

as weighting scheme.
As Figure 4.2 (left) shows, constant path weighting is the simplest

function and uniformly weights paths independent of their length.
The harmonic path weighting scheme weights paths as φ = 1

l where l
is the length of a given path such that paths of length 2 are assigned a
weight of 1

2 , paths of length 3 are assigned a weight of 1
3 , and so on. A

more extreme version of downweighting longer paths is represented
by the very aggressive11 path weighting scheme, where the weight
assigned to a path is defined as φ = 21−l2

. As Figure 4.2 (left) shows,
this scheme causes paths beyond the length of 2 to be assigned a
weight of nearly 0. For example a path of length 2 would be assigned
a weight of 1

8 and a path of length 3 would be assigned a weight of 1
256 .

11 I am using a more extreme variant of the “aggressive" weighting function, φ = 21−l ,
suggested by Sahlgren (2006), as it would have been too similar to the harmonic path
weighting function for the path lengths under consideration.
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The general hypothesis is that features associated with longer paths
contribute less salient information to the distributional semantics of a
given lexemes than shorter and more direct paths (Padó and Lapata,
2007; Weir et al., 2016).

This section furthermore includes an inverse harmonic path
weighting scheme that assigns higher weight to longer paths. For ex-
ample in an order 5 Apt space, direct relations are assigned a weight
of 1

5 , whereas paths of length 3 would be assigned a weight of 3
5 .

The last path weighting scheme I am considering in this section
is path probability that weights paths according to the probability
that a randomly selected co-occurrence between the lexemes w and
w′ happens to be of type τ as shown in Equation 4.1 below:

p(τ | w) =
#〈w, τ, ∗〉
#〈w, ∗, ∗〉 (4.1)

where #〈w, τ, ∗〉 is the number of co-occurrence events of the
lexeme w with path τ, and #〈w, ∗, ∗〉 denotes the number of co-
occurrence events involving the lexeme w. Interestingly, as Figure 4.2
(right) shows, the majority of the probability mass for paths of
length 2-5 is accumulated for longer paths. This is because there
are considerably more 2nd order features than 1st order features,
thus the higher-order features accumulate a larger proportion of the
available probability mass12. For the order 7 Apt space, however, the
distribution is shifted towards shorter paths. One explanation for this
behaviour is that the large amount of additional features of orders 6
and 7 caused a considerably larger number of negative PPMI scores
which have subsequently been filtered due to the positive threshold,
while retaining proportionally more features with shorter paths.

Lexical Association Metric Parameters

Lexical association functions are commonly applied to count-based
distributional semantic spaces to transform raw counts to scores that
better capture more expressive contexts of a given lexeme. For ex-
ample common contexts for a noun include the articles the or an,
which are very uninformative, and whose contribution to the se-
mantics of a noun should therefore be decreased. The contribution
of other content words such as verbs co-occurring with a given noun,
on the other hand, should be increased.

12 Which, however, does not necessarily translate to a larger proportion of PPMI score
mass as will be highlighted in Table 4.2 below.
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In this section I am considering 3 lexical association functions which
have been found to work well in a number of studies (Baroni and
Lenci, 2010; Kiela and Clark, 2014; Polajnar and Clark, 2014): {PPMI,
PLMI, t-test}.

Positive Pointwise Mutual Information (PPMI) (Church and Hanks,
1989; Dagan et al., 1993), is perhaps the most commonly used associ-
ation score for count-based distributional semantic models and is a
measure of how surprising a collocation between a context and a tar-
get word is. The PMI and PPMI formulas for Apts have been defined
in the previous chapter in Equations 3.6 and 3.7, respectively, and are
repeated in Equation 4.2 below for convenience.

p(w, w′; τ) =
#〈w, τ, w′〉
#〈∗, τ, ∗〉

p(w; τ) =
#〈w, τ, ∗〉
#〈∗τ, ∗〉

p(w′; τ) =
#〈∗, τ, w′〉
#〈∗, τ, ∗〉

PMI(w, w′; τ) = log
p(w, w′; τ)

p(w; τ)p(w′; τ)

PPMI(w, w′; τ) = max(PMI(w, w′; τ), 0)

(4.2)

For PPMI, I furthermore consider two more parameters that have
been shown to have a major impact on the performance of a distribu-
tional model on numerous tasks. The first one is a negative shift of
the PMI matrix (Levy and Goldberg, 2014b), which is applied before
clamping all negative values at 0. The negative shift has the effect
of promoting more prominent PMI scores, while zeroing out poten-
tially noisy scores. Shifting the PMI scores is furthermore related to
the context selection method introduced by Polajnar and Clark (2014)
which selects the top n largest PMI scores and zeroes out the rest.
The two methods are achieving the same effect by different means.
Where a shift of the PMI values discards all dimensions with a PMI
score lower than some threshold, context selection explicitly retains
the top n highest scoring dimensions. Interestingly, a positive effect
of considering only PMI scores above a certain threshold (albeit on
a different task) has already been observed in earlier work (Church
and Hanks, 1989). I am considering the following negative shifts of
the PMI matrix: {log 1, log 5, log 10, log 40, log 100}. SPPMI
alters the PPMI formula to Equation 4.3 below:
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SPPMI(w, w′; τ) = max(PMI(w, w′; τ)− log k, 0) (4.3)

where k is the magnitude of the negative shift.
The second PPMI parameter under consideration is context distri-

bution smoothing (cds) (Levy et al., 2015) which can be applied to
reduce the contribution of more common contexts shown in Equa-
tion 4.4 below:

PMIα(w, w′; τ) = log
p(w, w′; τ)

p(w; τ)p(w′; τ)α
(4.4)

where α denotes the magnitude of the applied smoothing operation.
I am considering the following values for α: {1.0, 0.75}, where 1.0
means that no context distribution smoothing is applied and repres-
ents the standard PMI association function as shown in Equation 4.213.

The second lexical association function under consideration is
Pointwise Localised Mutual Information (PLMI) (Scheible et al., 2013),
which scales the PMI score by the joint probability14 of two lexemes
co-occurring together with a given path as shown in Equation 4.5
below.

p(w, w′; τ) =
#〈w, τ, w′〉
#〈∗, τ, ∗〉

PLMI(w, w′; τ) = p(w, w′; τ)× PMI(w, w′; τ)

(4.5)

The last lexical association function under consideration is the t-test,
which is a hypothesis testing technique. The t-test requires the defin-
ition of a null hypothesis that contradicts the desired result, and is
subsequently rejected on the basis of the outcome of the statistical
test (Curran, 2004). For lexical association the null hypothesis would
be that a co-occurrence between two lexemes w and w′, given a path
τ, is independent or unrelated. This would mean that the joint prob-
ability of the co-occurrence event would be equal to the product of
the respective marginals: p(w, w′; τ) = p(w; τ)p(w′; τ), in which case
the association score between w and w′, given τ, would be 0 as Equa-
tion 4.6 below shows.

13 In preliminary experiments I found that no other value of k, either lower than 0.75
or higher than 1.0, had a positive effect.

14 PLMI notably differs from LMI (Evert, 2005) which scales PMI by the frequency of
the target word w.
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p(w, w′; τ) =
#〈w, τ, w′〉
#〈∗, τ, ∗〉

p(w; τ) =
#〈w, τ, w′〉
#〈w, τ, ∗〉

p(w′; τ) =
#〈∗, τ, w′〉
#〈∗, τ, ∗〉

t-test(w, w′; τ) =
p(w, w′; τ)− p(w; τ)p(w′; τ)√

p(w; τ)p(w′; τ)

(4.6)

A positive t-test score indicates some level of association between a
lexeme and its context, where the level of dependence between the
lexeme and its context is proportional to the magnitude of the t-test
score.

The higher the score, the more dependence there is between a lex-
eme and its co-occurring context.

4.2.2 The APT Baseline Model

To better assess the performance difference between the various
parameterisations, I am using a standard parameterisation of the
Apt space as baseline that has been shown to achieve competitive
results in previous studies (Weir et al., 2016; Kober et al., 2017a)15

and is shown in Table 4.1 below16.
This model will henceforth be referred to as “Apt baseline model"

or simply “baseline model", which is shorthand for an Apt space,
produced by a particular corpus (the BNC in this case), pre-processed
with the pipeline outlined in Section 4.1.1 above, and parameterised
as shown in Table 4.1.

The Feature Space of the APT Baseline Model

Table 4.2 below shows basic feature statistics of the Apt feature space.
The data has been obtained on the basis of the MEN dataset, consist-
ing of 57 unique adjectives, 656 unique nouns and 38 unique verbs.
For all lexemes per PoS tag, the number of features per path length

15 The resulting models are not exactly the same, as the previously published results
have been achieved with a slightly different preprocessing pipeline, such as the use
of a pre-parsed version of the source corpus, without any number or url normalisa-
tion.

16 Due to not using any PoS tag information the granularity parameter is not applicable
(N.A.) for the baseline model.
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Parameter Value

Lexical Association Metric PPMI

Path weight constant

SPPMI shift log 1

CDS 1.0

Apt order 2

Lemma True

PoS False

PoS granularity N.A.

Table 4.1: Hyperparameter configuration of the Apt baseline model.

have been counted and subsequently averaged by the number of
unique lexemes per PoS tag. To obtain the PPMI score distribution,
the PPMI scores for every lexeme per PoS tag have been tallied up
and subsequently normalised.

Path Length Number of Features PPMI Score Distribution
0 ≈34 (JJ), ≈12 (NN), ≈5 (VB) 0.11 (JJ), 0.05 (NN), 0.01 (VB)
1 ≈167 (JJ), ≈199 (NN), ≈634 (VB) 0.52 (JJ), 0.62 (NN), 0.60 (VB)
2 ≈223 (JJ), ≈229 (NN), ≈708 (VB) 0.37 (JJ), 0.33 (NN), 0.39 (VB)

Table 4.2: Average number of features and PPMI score distribution per path
length and PoS tag for all lexemes occurring in the MEN dataset
on the basis of the order 2 Apt baseline model.

As Table 4.2 shows, the number of features generally increases with
their path lengths, however, despite the larger number of features of
order 2, the combined magnitude of their PPMI scores is substantially
smaller than for the features with path length 1. Even in the absence
of any path weighting function, this behaviour appears to capture
the idea that features closer to the target word generally contribute
more to the semantics of a word (Padó and Lapata, 2007; Weir et al.,
2016). A further interesting observation is that verbs appear to have
the richest contexts with more than 600 order 1 features on average,
in comparison to only ≈200− 230 for adjectives and nouns.

4.2.3 Hyperparameter Sensitivity Study

In order to estimate and quantify the impact of any of the hyperpara-
meters introduced above, I follow the evaluation strategy proposed
by Lapesa and Evert (2014) who learn a linear regression model to
predict the performance of a distributional model on a given task
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from its parameterisation. More concretely, Lapesa and Evert (2014)
treat the performance measure on the given task — Spearman’s ρ in
the case of the tasks used in this section — as the dependent vari-
able, and the hyperparameters of the given distributional model as
the independent variables. Hence, running all distributional models
on a given task creates a set of observations, and Lapesa and Evert
(2014) subsequently aim to fit a linear regression model to predict the
model performance from the hyperparameters. As the primary in-
terest of this study is the impact of each hyperparameter individually
— and as the individual parameters account for a sufficiently large
amount of the variance — I do not add higher-order interactions as
independent variables to the model as Lapesa and Evert (2014) do.

In the following, the method of Lapesa and Evert (2014) will be
applied to quantify the impact of each individual parameter on the 3
word similarity tasks, as well as the short phrase composition task.

Word Similarity

Fitting a linear regression model to each of the word similarity data-
sets results in ≈70-80% of the variance explained by the model. Fig-
ure 4.3 shows the result of a feature ablation study on the basis of
an ANOVA type 2 test. The ANOVA test shows that the choice of
the lexical association metric has the largest impact on subsequent
model performance, followed by the path weighting scheme and the
magnitude of the negative SPPMI shift.

Figure 4.3: ANOVA type 2 test for quantifying the amount of variance ex-
plained for each parameter for the word similarity tasks.

Interestingly, the preprocessing parameters (lemmatisation, PoS tag-
ging, PoS granularity) have very little impact on the quality of the
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resulting model on the word similarity tasks. Furthermore the order
of the Apt space, as well as the application of context distribution
smoothing, have a negligible effect as well.

For the MEN dataset the parameters have been tuned on its de-
velopment set. For the other word similarity datasets, following the
evaluation methodology of Levy et al. (2015), I have used 2-fold cross-
validation to tune the hyperparameters and the results represent the
averaged Spearman ρ scores.

As the results in Table 4.3 show, tuning the parameters pays off,
with statistically significant improvements on the two WordSim-353

datasets and MEN, and a more modest performance improvement
on the SimLex-999 dataset, in comparison to the baseline model. In-
terestingly while the performance of Apts on MEN is substantially
weaker than the performance of the comparable model of Kiela et al.
(2014)17, the reverse happens for the WordSim-353 dataset18. While
both, Apts and the model of Kiela et al. (2014), have a comparable
base setup they differ in a number of aspects such as the prepro-
cessing pipeline with differing parser and the use of potentially dif-
ferent sets of dependency relations19. Furthermore, the way in which
PMI is performed between the two models is different, as Kiela et al.
(2014) treat the dependency relation as part of the context, whereas
PMI weighting in this work follows Hindle (1990) by treating the path
as fixed in a co-occurrence event.

The improvements on the MEN and the WordSim-353 (similarity)
tasks are statistically significant at the p < 0.01 level. The improve-
ment for the WordSim-353 (relatedness) subtask is statistically signi-
ficant at the p < 0.05 level. Statistical significance has been determ-
ined using the method of Steiger (1980).

Table 4.3 also highlights some clear trends with regards to favour-
able parameterisations. In general, context distribution smoothing
does not improve performance on the word similarity tasks, and
top performance is usually achieved with a lemmatised Apt model,
without any PoS tag information. Furthermore, the best performing
models for WordSim-353 (similarity), WordSim-353 (relatedness) and

17 Kiela et al. (2014) report a Spearman’s ρ score of ≈ 0.5 on the MEN dataset, whereas
the tuned Apts only achieve a score of 0.43.

18 Kiela et al. (2014) achieve a Spearman’s ρ score of ≈ 0.36, whereas Apts achieve a
Spearman’s ρ score of 0.40 on the whole dataset (not shown in Table 4.3).

19 Apts use universal dependencies, which are very fine grained, Kiela et al. (2014) do
not specify explicitly which dependency annotation schema is used by their parser.
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WS353 (sim) WS353 (rel) MEN SimLex-999
Lex. Assoc. PPMI PPMI PPMI PPMI

Path weight constant constant constant inv. harmonic

SPPMI shift log 40 log 40 log 40 log 5

CDS 1.0 1.0 1.0 1.0

Apt order 1 1 1 7

Lemma true true true true

PoS false false false false

PoS gran. N.A. N.A. N.A. N.A.

Result 0.52‡ (+/- 0.09) 0.35† (+/- 0.01) 0.43‡ (+/- 0.02) 0.25 (+/- 0.01)
Baseline 0.40 (+/- 0.14) 0.24 (+/- 0.06) 0.36 (+/- 0.01) 0.22 (+/- 0.02)

Table 4.3: Results and corresponding hyperparameters for the Apt spaces
with optimal parameterisation for the word similarity datasets in
comparison to the Apt baseline model. Performance is reported in
terms of averaged Spearman ρ across 2-fold cross-validation. The
numbers in parentheses denote the standard deviation across the
two runs. ‡ marks statistical significance at the p < 0.01 level and
† marks statistical significance at the p < 0.05 level according to
the method of Steiger (1980).

MEN are achieved with an order 1 Apt space and a relatively high
negative SPPMI shift of log 40. SimLex-999 is the only dataset break-
ing that pattern, by preferring a lower SPPMI shift of log 5 and an
order 7 Apt space. Interestingly, assigning a higher weight to distri-
butional features with longer paths outperforms other path weight-
ing schemes on SimLex-999, although the differences to other path
weighting schemes are relatively small.

The high negative SPPMI shift of log 40 zeroes out the majority of
features in the representation. The remaining features exhibit a rel-
atively stringent set, focused on a particular sense of the lexeme. For
example the features with the highest PPMI scores in the Apt baseline
model for the lexemes bank and market are relatively mixed between
the different senses of the lexemes. In the model with the higher
SPPMI shift on the other hand, the features of the two lexemes are
dominated by the financial institution and financial trading place mean-
ings of bank and market, respectively. The higher order of the best per-
forming configuration on the SimLex-999 dataset causes a relatively
larger number of modifier features in the representation in compar-
ison to the baseline model. As the SimLex-999 is more difficult due
to its strict focus on synonymy, the additional content words in the
representation have a small positive effect on performance.

The best performing path weights for WS353 (sim), WS353 (rel) and
MEN are slightly misleading because the top performing models are
of order 1, meaning neither of the path weighting schemes, except
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path probability, are relevant for this Apt model. In the following,
I will separately investigate the impact of the 3 parameters that ac-
count for the largest amount of variance, according to Figure 4.3.

Table 4.4 lists the best result involving a specific parameterisation.
For example, the lexical association metric group lists the best result
for any Apt space per lexical association function, independent of
all other parameters. Upwards pointing arrows such as ⇑ and ↑ mark
generally superior (⇑) and mostly superior (↑) parameterisations, and
a ⇓ arrow marks a generally unfavourable parameterisation.

WS353 (sim) WS353 (rel) MEN SL

Lex. Assoc.
PPMI⇑ 0.52 0.35 0.43 0.25
PLMI 0.36 0.12 0.35 0.22
t-Test 0.38 0.22 0.32 0.15

Path weight

constant 0.49 0.33 0.43 0.24
harmonic 0.49 0.33 0.43 0.24

inv. harmonic 0.49 0.33 0.43 0.25
path prob.⇓ 0.20 0.11 0.19 0.11

very aggr. ↑ 0.50 0.34 0.43 0.24

SPPMI shift

log 1 0.43 0.28 0.37 0.23
log 5 0.46 0.32 0.36 0.25
log 10 0.47 0.33 0.38 0.24
log 40↑ 0.52 0.35 0.43 0.20
log 100 0.48 0.27 0.39 0.16

Table 4.4: Overview of the impact of individual parameterisations. All res-
ults represent the best run for each respective set of parameters.
Boldfaced numbers indicate the best result for the given para-
meter, underlined numbers indicate the worst result. Recommen-
ded parameterisations are marked with ⇑ (strongly recommen-
ded) and ↑ (recommended), and parameterisations marked with
⇓ are advised against and should be avoided.

As Table 4.4 shows, using PPMI as lexical association function out-
performs the other options by a considerable margin. Surprisingly,
the different path weighting schemes are all relatively similar in terms
of their performance on the given word similarity task, except for
path probability which performs much worse than any other path
weighting function, and is the main driver of variance for this para-
meter. An explanation for its poor performance would be that the
dependency-typed nature of the space is too fine grained, and poten-
tially too sensitive to frequency effects, causing an increase in weight
for common paths such as between a determiner and a noun, that
would otherwise be assigned a much lower score due to PPMI. Us-
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ing a weighting criterion that relies on the path label is less robust
to parsing errors, causing an accumulation of probability mass for
less informative or even implausible paths20. Furthermore, except for
SimLex-999, a relatively high SPPMI shift of log 40 is performing best
for word similarity, which has already been observed in previously
published work (Kober et al., 2016). In the following, I will refer to
the best performing configuration on both WS353 subtasks and MEN
as the “Apt-WS-MEN" model, and to the best performing model on
SimLex-999 as the “Apt-SL-999" model.

Measuring the Impact on the Distributional Space

A different choice of hyperparameters can lead to significantly dif-
ferent distributional Apt spaces. In order to investigate the effect of
different configurations on the distributional neighbourhood, I am
measuring the neighbour overlap between two Apt spaces for a given
set of lexemes. The neighbour overlap between two Apt spaces, A
and Aref, as defined in Equation 4.7 below, measures how many of
the top n neighbours, independent of their rank, are shared between
A and Aref for each lexeme in the set W ⊆ V, where V denotes the
vocabulary.

overlap(A, Aref; W) =
∑w∈W |NA(w) ∩NAref(w)|

|W| · n (4.7)

NA(w) is a function returning the top n neighbours for some Apt A,
and |W| denotes the size of the set W.

For a comparison I am using the Apt baseline model introduced
previously as Aref, all individual lexemes from the WordSim-353

21

dataset as the set W, and the top 100 neighbours for each lexeme
(n = 100). The Apt-SL-999 model has a neighbour overlap of approx-
imately 60% with respect to the baseline model. The order 1 Apt-WS-
MEN model, on the other hand, has a neighbour overlap with respect
to the baseline of only 37%22.

20 Interestingly the highest scoring features, for a number of investigated nouns, in
an order 2 Apt space with path probability weighting are almost exclusively other
nouns with a path of compound or compound, but only very few amod, dobj or nsubj
features. This is in contrast to the Apt baseline model, where more high scoring
features are co-occurrences with adjectives and verbs.

21 The dataset consists of 437 unique words.
22 The ranks of the neighbours between models, on the basis of a comparison of the

pairwise similarities of all 437 unique words in WS353, differ substantially, with a
Kendall’s τ of only ≈0.014, and a Spearman’s ρ of only ≈0.021 between the baseline
model and the Apt-SL-999 model. This provides further evidence that the spaces dif-
fer considerably between configurations, however the low correlation suggests that
taking the ranks of the neighbours into account is a too sensitive measure. Therefore,
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Lexeme Apt Baseline Apt-SL-999 Apt-WS-MEN
game match, season, match, program, match, adventure,

player, goal, season, goal, competition,
team player clash, fun

government authority, party, authority, council, regime, parliament,
council, company, party, state, cabinet,
state policy administration,

policy

change development, development, effect, variation, privilege,
difference, increase, increase, alter, alter, improvement,
effect, alter shift review

Table 4.5: Nearest neighbours of the 3 different Apt spaces for 3 example
lexemes. While even the top neighbours do not necessarily overlap
between the 3 spaces, the neighbours are all topically coherent and
predominantly co-hyponyms of the respective target lexeme.

Table 4.5 show the 5 nearest neighbours of the 3 different
Apt spaces under consideration for 3 example lexemes, and provides
a first hint that the distributional neighbourhood of all 3 Apt spaces is
governed by co-hyponymy. In general, previous research (Peirsman,
2008; Baroni and Lenci, 2011; Levy and Goldberg, 2014a) has found
that typed distributional models generally favour co-hyponymy and
hypernymy in their neighbourhood and 4.5 suggests that this trend
also holds for Apts (a more exhaustive characterisation of the
Apt space is presented in Section 4.3). A more The neighbourhood
for the lexeme game is dominated by the “sports" sense of game for
the Apt baseline and Apt-SL-999 spaces, with all of their 5 nearest
neighbours expressing that sense. The Apt-WS-MEN space exhibits
a second dominant factor in the distributional neighbourhood, the
sense of game related to “children playing" with neighbours such as
fun and adventure.

For the lexeme government, the Apt-WS-MEN space appears to cap-
ture a more narrow sense of government, perhaps describable as the
“legislative body" sense of government, with neighbours such as cab-
inet and administration. The other 2 spaces on the other hand capture
a more abstract and general notion of government with neighbours
such as state and authority.

An interesting effect happens for the lexeme change, where the dis-
tributional neighbourhoods for all 3 spaces seem to mix verbs, such
as the lexeme alter appearing in all 3 Apt spaces, and nouns. This is

I will be using the neighbour overlap measure as defined in Equation 4.7 to quantify
in how far two Apt spaces differ.
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an artifact of working on a non PoS tagged source corpus, however,
as shown in the ablation study above (see Figure 4.3), the inclusion of
PoS tags did not have a significant effect on the performance of the
Apt spaces on the word similarity tasks, it might however, affect the
distributional neighbourhood as shown in Table 4.5.

Phrase Similarity

I am using the ML2010 dataset for evaluating the impact of different
model parameters for distributional composition tasks. The dataset
consists of 108 pairs of adjective-noun, noun-noun and verb-object
compounds, 324 phrase pairs in total, rated by multiple human annot-
ators for similarity. All parameters are tuned on the development por-
tion of the ML2010 dataset23. Hyperparameter effects are compared
to the same Apt baseline model as used for the word similarity tasks
above.

Given that neither lemmatisation nor PoS tags had a significant
effect on the results of the word similarity tasks, I am dropping
these parameters from the hyperparameter sensitivity analysis for the
phrase similarity task. I furthermore exclude all Apt models with the
path probability weighting scheme due to their poor performance
on the word similarity tasks. For the experiments involving compos-
ition, an additional parameter — the composition function used to
combine two aligned Apt representations — is added to the study. I
am considering the following composition functions for the ML2010

dataset: {intersection, union}.
Composition by intersection only keeps distributional features that

occur in both Apts. This results in composed representations that are
substantially sparser — and more discriminative — than representa-
tions obtained with composition by union, which merges all features
of the two aligned Apts.

The same line fitting procedure of all first-order features, as out-
lined earlier in this section, results in an adjusted R2 of ≈0.74-0.78 for
the different phrase types, meaning that approximately 74-78% of the
variance can be explained by the model. This represents a substan-
tial amount of model variation explained and allows solid inferences
regarding the importance of individual parameters.

23 The phrase pairs labelled by the first 108 participants are the test set and the phrase
pairs labelled by the last 54 participants are the development set. Information based
on personal communication with Douwe Kiela (18th April, 2016) who shared his
communication with Jeff Mitchell w.r.t. the test/development split on the ML2010

dataset with me.
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Figure 4.4: ANOVA type 2 test for quantifying the amount of variance ex-
plained for each parameter for the ML2010 dataset.

Figure 4.4 shows that the composition function is the parameter
causing the largest proportion of variance in the data, followed the
by the negative SPPMI shift, and to a lesser extend, the lexical asso-
ciation function. Interestingly the order of the Apt space only has a
small impact for most configurations. Due to the removal of models
with the path probability weighting scheme, the path weight para-
meter has relatively little impact on model performance as well.

Table 4.6 shows the best performing configurations per compos-
ition function. Interestingly, the optimal choice of order for the
Apt space on the phrase similarity tasks appears to be 2 or 3, hence
adding order 5 or even order 7 features does not appear to be bene-
ficial. The optimal magnitude of the negative SPPMI shift is consid-
erably lower for the phrase similarity task than for the word similar-
ity tasks above. This suggests that for tasks involving distributional
composition it is beneficial to keep distributional features relating
to more than the predominant sense in the representations. Any fil-
tering of unrelated features can be carried out by the composition
function itself. For composition by union a negative shift of log 5 con-
sistently results in optimal performance, whereas for composition by
intersection no shift at all is the best performing configuration for this
parameter.

The optimal parameterisation for the path weight parameter ap-
pears to vary for each phrase type, however the relative differences
in performance between configurations is very small. Furthermore,
using context distribution smoothing for composition by union per-
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Comp. by union Adjective-Noun Noun-Noun Verb-Object
Lexical Association PPMI PPMI PPMI

Path weight harmonic inv. harmonic very aggr.

SPPMI shift log 5 log 5 log 5

CDS 0.75 0.75 0.75

Apt order 3 2 2

Result 0.50‡ 0.45‡ 0.45‡

Baseline 0.43 0.39 0.41

Comp. by intersection Adjective-Noun Noun-Noun Verb-Object
Lexical Association t-test PPMI PPMI

Path weight inv. harmonic inv. harmonic harmonic

SPPMI shift log 1 log 1 log 1

CDS 1.0 1.0 1.0

Apt order 2 2 3

Result 0.39 0.43‡ 0.36
Baseline 0.39 0.41 0.35

Table 4.6: Results and corresponding hyperparameters for the Apt spaces
with optimal parameterisation for the test set of the ML2010

phrase similarity tasks in comparison to a standard Apt-baseline
for composition by union and composition by intersection, re-
spectively. ‡ marks statistical significance at the p < 0.01 level
according to the method of Steiger (1980).

forms slightly better than models without applying context distribu-
tion smoothing.

The most interesting observation, however, is that all of the im-
provements due to hyperparameter tuning for composition by union
cause a statistically significant performance boost at the p < 0.01 level
using the method of Steiger (1980). For composition by intersection on
the other hand, the performance improvements are minimal and only
the improvements for modelling noun-noun compounds have a stat-
istically significant effect. Hence, despite extensive parameter tuning,
composition by intersection still performs poorly — even in compar-
ison to the untuned composition by union baseline. The reason for its
bad performance is therefore not due to a bad choice of parameters,
but due to data sparsity, and the discriminative effect of the composi-
tion function. This characteristic will be investigated in further detail
in Chapter 5.
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An overview of the best performing configurations per composi-
tion function for the 3 most important hyperparameters24 is shown
in Table 4.7.

Composition by union Adjective-Noun Noun-Noun Verb-Object

SPPMI shift

log 1 0.54 0.42 0.38
log 5⇑ 0.55 0.43 0.41
log 10 0.53 0.43 0.40
log 40 0.41 0.43 0.34

log 100⇓ 0.30 0.37 0.31

Lex. Assoc.
PPMI⇑ 0.55 0.43 0.41
PLMI⇓ 0.26 0.29 0.27

t-Test 0.53 0.42 0.37

CDS 1.0 0.53 0.42 0.41
0.75⇑ 0.55 0.43 0.41

Composition by intersection Adjective-Noun Noun-Noun Verb-Object

SPPMI shift

log 1⇑ 0.42 0.41 0.32
log 5 0.31 0.35 0.28
log 10 0.25 0.31 0.20
log 40 0.11 0.35 0.01

log 100⇓ NaN 0.02 0.07

Lex. Assoc.
PPMI↑ 0.41 0.41 0.32
PLMI⇓ 0.31 0.27 0.28

t-Test 0.42 0.34 0.27

CDS 1.0⇑ 0.42 0.41 0.32
0.75 0.38 0.38 0.28

Table 4.7: Overview of the impact of individual parameterisations. All res-
ults represent the best run for each respective set of parameters
on the ML2010 development set. Boldfaced numbers indicate the
best result for the given parameter, underlined numbers indic-
ate the worst result. Recommended parameterisations are marked
with ⇑ (strongly recommended) and ↑ (recommended), and para-
meterisations marked with ⇓ are advised against and should be
avoided.

The table highlights the trends observed for the best performing
parameterisations in Table 4.6 above, by showing the tendency of
composition by union to prefer a low negative SPPMI shift of log 5,
and of composition by intersection to work best without any SPPMI
shift. The best performing lexical association function is PPMI, with
the exception of using composition by intersection for adjective-noun
phrases where t-test works slightly better. Lastly while the use of con-
text distribution smoothing generally hurts performance for compos-

24 As results are shown for each composition function individually, the 3 most import-
ant parameters are therefore SPPMI shift, the lexical association function and the use
of context distribution smoothing.
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ition by intersection, its use with composition by union can improve
the results by a small margin. In the following, the best performing
configuration for composition by union will be referred to as the “Apt

union" model.

4.2.4 Practical Recommendations

Before starting to tune the hyperparameters it is important to choose
an Apt baseline model, representing a default choice of parameters.
For both, word similarity and phrase similarity tasks, the chosen or-
der 2 Apt baseline model represented a solid lower bound, while not
degenerating into a “trashline"25.

As the different optimal parameterisations for word similarity and
phrase similarity show, tuning the parameter space can significantly
boost performance, however different tasks require different paramet-
erisations, and it is therefore advised against to tune the model para-
meters on a word similarity task if the goal is to achieve strong per-
formance on phrase similarity or another downstream task26.

In general, it is recommended to use PPMI as lexical association
function and to avoid path probability as path weighting function.
Furthermore, lemmatisation appears to perform slightly better than
an unlemmatised Apt space, and PoS tagging does not appear to have
a significant performance impact and can therefore be omitted. Fur-
thermore lower order Apt spaces (1-3) have been found to perform
better than higher-order spaces.

If the aim is to optimise the Apt space for word similarity tasks, it
is recommended to start with a larger negative SPPMI shift (log 40),
and gradually decrease it if the performance remains below the
chosen baseline. The path weighting scheme can relatively safely be
set to constant, however trying very aggressive or even inverse

harmonic has the potential to give marginally better results.
For optimising the parameters for a task involving composition,

it is advisable to start with a low negative SPPMI shift (log 5), or
to not apply a shift at all. Furthermore, applying context distri-

25 The term has been coined by Twitter user @deliprao and refers to “A poorly
constructed baseline, possibly done to make one’s model look good", see https:
//twitter.com/deliprao/status/908987429528334336.

26 A similar observation has been made by Schnabel et al. (2015), who found that the
best performing model on an intrinsic task is rarely the best performing model on a
given extrinsic downstream task.

https://twitter.com/deliprao/status/908987429528334336
https://twitter.com/deliprao/status/908987429528334336
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bution smoothing might slightly improve performance. The use of
constant path weighting is recommended as a starting point, how-
ever the use of any of the other path weighting schemes (except path
probability!) can lead to small performance improvements. Table 4.8
summarises the hyperparameter recommendations for tasks assess-
ing word and phrase similarity, respectively.

Parameter Elementary APTs Composition
Union Intersection

Lex. Assoc. PPMI PPMI PPMI

Lemma true true true

PoS false false false

PoS gran. N.A. N.A. N.A.

Path weight very aggressive constant constant

SPPMI shift log 40 log 5 log 1

Apt order 1 2 2

CDS 1.0 0.75 1.0

Table 4.8: Recommended parameterisations for word similarity and phrase
similarity tasks, respectively.

4.3 characterising the distributional space

In order to quantitatively describe the characteristics of the distribu-
tional Apt space, I am using the BLESS dataset27 (Baroni and Lenci,
2011) to determine which semantic relation is generally favoured by
a given Apt model — i.e. whether hypernyms or co-hyponyms are
generally more similar to a given lexeme than meronyms or other
related terms. Previous studies have concluded that typed distribu-
tional models, as well as untyped models with a small sliding win-
dow size, give rise to a distributional space governed by hypernymy
and co-hyponymy (Peirsman, 2008; Baroni and Lenci, 2011; Levy and
Goldberg, 2014a). In the same studies untyped distributional semantic
models with a wider sliding window have been found to give rise to
a space favouring meronymy and topical relatedness.

In the following, Section 4.3.1 will describe the distributional se-
mantics of elementary Apt representations, followed by the charac-
terisation of offset Apt representations and composed Apt represent-
ations in sections 4.3.2 and 4.3.3, respectively.

27 See Section 4.1.4 for further details about the BLESS dataset.
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4.3.1 The Distributional Semantics of Elementary APT Representations

When analysing the neighbour overlap between different Apt spaces
above, Table 4.5 has hinted that most neighbours of a given Apt model
are co-hyponyms. Previous research has found that typed distribu-
tional semantic models in general give rise to a distributional neigh-
bourhood predominantly governed by co-hyponymy and hypernymy.
The following section aims to provide empirical evidence in favour of
that claim for Anchored Packed Trees.

Figure 4.5 shows the similarity distributions of semantic relations
for the Apt baseline model (left) and the Apt-WS-MEN model (right)
on the BLESS dataset. The boxplot captures the distribution of sim-
ilarities across the semantic relations. Each plot represents the distri-
bution of similarity estimates of the given Apt model for each of the
200 target concepts in the BLESS dataset.

Figure 4.5: Distribution of similarities of the order 2 Apt baseline model
without SPPMI shift (left) and the order 1 Apt-WS-MEN model
with an SPPMI shift of log 40 (right) on the BLESS dataset.

The plots show the median of the distribution as a horizontal line
inside the box, and following the setup of Baroni and Lenci (2011),
the whiskers cover 1.5 of the interquartile range beyond the boxes,
with outliers plotted as diamonds outside the range covered by the
whiskers. In accordance with previous research, the Apt spaces ex-
hibit a strong preference towards co-hyponymy with hypernyms rep-
resenting a second, but considerably weaker, dominant factor.

The similarities of the target concepts to meronyms, however, are
rarely higher than the similarities to random nouns. Other relations
such as attributes and events also exhibit a relatively low average
similarity to the given target concepts. The low average similarity
of Apt representations for target concepts in comparison to random
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relata and relata with parts of speech other than nouns, furthermore
suggests that the Apt model represents a very stable and coherent
semantic space.

Interestingly, as Figure 4.5 (right) shows, the preference of the Apt-
WS-MEN model is even more skewed towards co-hyponyms, how-
ever the distribution of the similarities is considerably less peaky and
more spread out. One reason for this behaviour is that the negat-
ive SPPMI shift of log 40 for the order 1 Apt space results in fewer
non-zero dimensions in the resulting representations. This in turn
results in less feature overlap when calculating the cosine similarity,
and hence a wider distribution of possible similarity scores. Lastly,
Figure 4.5 (right) suggests that the contextual dimensions with the
highest PPMI scores belong to a set of features that predominantly
occur with co-hyponyms of the given concept28.

The bias towards “taxonomic similarity"29 of the Apt distributional
spaces is further highlighted by Figure 4.6 which is showing a pre-
cision/recall curve of ranking taxonomically similar lexemes above
topically related ones.

Figure 4.6: Precision / Recall curves on ranking the taxonomically similar
word pairs above the topically related ones on the WordSim-353

and Chiarello et al. (1990) datasets.

The word pairs are ranked by their corresponding cosine similarity
where the similarity between each word pair represents a threshold
at which the precision and recall of the model are evaluated. For ex-

28 Indeed a quick check of the highest scoring PPMI features of 3 BLESS concepts
(pub, train, lettuce) and their co-hyponyms reveals some characteristic commonalities,
especially with regards to their function. For example the lexemes restaurant, pub and
cafe all share features related to eating and drinking, whereas the lexemes train, car
and bus share features related to driving and transportation, and the lexemes lettuce,
celery and cucumber co-occur frequently with other vegetables.

29 I am using the phrase “taxonomic similarity" in the sense of any given model’s
neighbourhood being predominantly governed by lexemes that are taxonomically
close, i.e. hypernyms, hyponyms or co-hyponyms.
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ample, if the highest cosine similarity between any word pair is 0.6,
then this value represents the first threshold where all pairs ≥ 0.6
are classified as taxonomically similar and all pairs < 0.6 are classi-
fied as topically related. This results in the first precision and recall
value that can be plotted on the curve. Then, the second highest co-
sine similarity is used as the next threshold value, and the process
subsequently repeats for all word pairs.

Following Levy and Goldberg (2014a), I use the WordSim-353 sim-
ilarity and relatedness subsplits of Agirre et al. (2009) as well as the
dataset of Chiarello et al. (1990), containing pairs of words exhibiting
taxonomic similarity and topical relatedness30. Both of the WordSim-
353 subsplits share the low similarity word pairs, which are neither
taxonomically similar, nor topically related, and which therefore are
removed prior to creating the precision/recall curve. I furthermore
removed the pair tiger - tiger from the WordSim-353 similarity subset.

Figure 4.6 shows that both the order 2 Apt baseline model as well
as the order 7 Apt-SL-999 model exhibit a bias towards ranking taxo-
nomically similar lexemes above topically related ones for both data-
sets. In comparison, the red dashed line shows an untyped distribu-
tional semantic VSM31 with a window size of 10, which is showing
a stronger tendency towards ranking topically related lexemes above
taxonomically similar ones. While the effect is lesser on the Chiarello
et al. (1990) dataset due to its small size, it is very pronounced on the
WordSim-353 dataset.

Another observation in Figure 4.6 is that increasing the order of the
Apts does not appear to have the effect of biasing the representations
away from taxonomic similarity and more towards topical relatedness
as observed in untyped vector space models (Peirsman, 2008; Levy
and Goldberg, 2014a). The precision/recall curve of the order 7 Apt-
SL-999 model closely follows the curve of the Apt baseline model,
and does not deviate much towards the curve of the untyped VSM.

Further evidence for the vastly different distributional spaces
between the Apt models and the untyped VSM is provided by the
low neighbour overlap scores between the two types of models. The
neighbour overlap among the top 100 neighbours of all lexemes
in the WordSim-353 dataset between the Apt-baseline model and
the untyped VSM is 21%, between the Apt-SL-999 model and the

30 The dataset also conatins a list of word pairs that exhibit both — taxonomic similarity
and topical relatedness — which, however, I do not use in this study.

31 The model has been obtained from the same lowercased and lemmatised version of
the BNC as the Apt models.



4.3 characterising the distributional space 111

untyped VSM is 17%, and between the Apt-WS-MEN model and the
untyped VSM is only 14%.

Estimating the Semantic Relations of Nearest Neighbours

In the absence of labelled gold standard data, quantifying the dis-
tribution of semantic relations of the neighbours of some lexeme is a
more difficult problem. In this thesis, I am using WordNet (Fellbaum,
1998) in order to get a rough estimate of which semantic relation
holds between a target concept and its neighbours. Given that any
distributional neighbour of a concept might not be in WordNet, or
might be in a far away branch in the WordNet hierarchy, a direct
classification of a neighbour in any of the semantic relations under
consideration is not a feasible option.

Thus, I am applying a more indirect way of determining which
semantic relation any given neighbour has to its target concept. This
is achieved by comparing every neighbour of a given BLESS concept
to the average similarity of all hypernyms, hyponyms, meronyms,
and direct co-hyponyms of the target concept, across all of the target
concept’s synsets32. The semantic relation with the highest average
similarity to any given neighbour is tallied up and collected into a
histogram.

The target concepts are taken from the BLESS dataset and for each
target concept the top 10 neighbours are analysed. Characterising the
neighbours of a concept, rather than some pre-defined relata as in the
BLESS dataset, is important for estimating what kind of knowledge
will be inferred from the distributional neighbourhood in Chapter 5.

Figure 4.7: Histogram of the semantic relations that the nearest neighbours
of the BLESS concepts exhibit.

32 The BLESS dataset does not contain any synset information, hence it is necessary to
take all synsets of a concept into account.
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Figure 4.7 shows the distribution of neighbours for the Apt baseline
model as well as Apt-WS-MEN and Apt-SL-999 models. While there
is a relatively low neighbour overlap between the Apt-WS-MEN and
Apt-SL-999 models with the Apt-baseline space (37% with the Apt-
WS-MEN space and 60% with the Apt-SL-999 space, respectively), the
distributions in Figure 4.7 are relatively similar among the three dif-
ferent spaces. This suggests that while the neighbours themselves can
vary considerably, the distribution of semantic relations they have to
the given target concept remains stable. Interestingly, nearest neigh-
bours are very rarely hyponyms of the target concept. One explana-
tion for this effect is that hyponyms represent more specialised words
and are thus often less frequent.

4.3.2 The Distributional Semantics of Offset APT representations

Offset Apt-representations are the key ingredient for distributional
composition, as the offset procedure aligns two otherwise incompat-
ible representations with each other. In this section, I will investigate
what offset Apts represent, in what neighbourhood they are embed-
ded, and more generally, what preference (if any) towards specific
semantic relations they exhibit.

The focus in this section is on 3 prominent first-order order offset
paths: amod, dobj and nsubj. The amod offset study uses a number of
frequent adjectives and creates respective noun offset views. For ex-
ample, when creating the noun view whiteamod for the adjective white,
whiteamod represents a “thing that can be white". The dobj and nsubj

offset views create a verb view from a noun. For example the nsubj

offset representation of father, fathernsubj, represents a typical action
carried out by a father.

For qualitatively investigating the neighbours of offset Apts, I have
created amod Apt offset representations from all adjectives in the
adjective-noun subset of the Mitchell and Lapata (2010) dataset, and
manually added33 20 additional adjectives. These include antonyms,
such as old and new, or boring and exciting, as well as some common
colour terms such as red, green or blue. Furthermore, I have created
dobj and nsubj offset representations for all nouns that appear as
direct objects or subjects in the datasets of Mitchell and Lapata (2008,
2010) and Kartsaklis and Sadrzadeh (2014).

33 See Appendix A.



4.3 characterising the distributional space 113

Offset Representation Neighbours
ancientamod monument, civilization, legend, temple, rome
blackamod darkamod, redamod, blueamod, greenamod, jacket
prettyamod uglyamod, cleveramod, smartamod, blondeamod, sexyamod

hotamod coldamod, stove, snack, tea, cylinder
rightamod leftamod, goodamod, gentleman, friend, betteramod

doordobj unlock, shut, slam, push, fling
fatherdobj motherdobj, parentdobj, wifedobj, familydobj, girldobj

gentlemandobj assure, refer, remind, congratulate, thank
bookdobj letterdobj, read, exampledobj, worddobj, publish

requirementdobj satisfy, needdobj, demanddobj, meet, fulfill

tonguensubj dart, lick, flick, toothnsubj, twist
researchernsubj authornsubj, graduatensubj, discover, conclude, writernsubj

fathernsubj mothernsubj, parentnsubj, wifensubj, girlnsubj, familynsubj

gentlemannsubj appreciate, acknowledge, recall, doctornsubj, aware
handnsubj clasp, handdobj, caress, eyensubj, clutch

Table 4.9: 5 nearest neighbours of amod, dobj and nsubj representations, us-
ing the Apt baseline model.

Table 4.9 shows the 5 nearest neighbours, according to their cosine
similarity, of a number of amod, dobj and nsubj offset representations
for the Apt baseline model .

The noun offset view for the lexeme ancient, ancientamod, represents a
typical “thing that can be ancient", with neighbours easily associated
with the property ancient. Neighbours of offset Apt representations
are frequently other offset Apts, showing that black things are most
similar to dark things, but also to red, blue and green things, provid-
ing empirical evidence that “things that can be coloured"34 share a
considerable amount of features. The two nearest neighbours for the
lexemes pretty and hot, respectively, show that the woes of distribu-
tional semantic models, of having antonyms as close neighbours, are
extended to offset Apt-representations. Another interesting case is
the ambiguous lexeme right, where the neighbours of its amod offset
representation cover the directional (or political) sense, with neigh-
bours such as leftamod, as well as the moral sense (“doing the right
thing"), with neighbours such as goodamod and betteramod.

The group of dobj offset Apts, representing “actions typically done
to a concept", and the group of nsubj offsets, representing “actions car-
ried out by a concept" in Table 4.9 exhibit a similar and often comple-

34 More precisely, “things for which colour is typically mentioned in the text". For ex-
ample, while red onion has several mentions in the BNC, brown onion does not oc-
cur. This means that distributional models tend to pick up atypical properties more
frequently than typical ones that would not require a mention in the text but are
presupposed.
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mentary behaviour. For example actions done to a father and actions
done by a father tend to be similar to actions done to and by a mother,
parent or wife. Interestingly a gentleman typically tends to be assured,
referred to, reminded, congratulated and thanked, while he himself tends
to appreciate and acknowledge things. Another interesting example are
the neighbours of handnsubj, where an action done by a hand, is very
similar to an action done to a hand, as the offset view handdobj among
the top neighbours of handnsubj shows.

Table 4.9 furthermore highlights that a single Apt representation
can give rise to different offset views and is not restricted to a static
vector space. In terms of the neighbour overlap between different
Apt models, I compared the neighbourhoods of the offset representa-
tions of the Apt baseline model to the Apt-WS-MEN and Apt-SL-999
models, respectively. Following the trend from just standard element-
ary Apt representations, the overlap between the baseline and Apt-
WS-MEN was 31%, whereas the overlap between the baseline and the
Apt-SL-999 model is 53%. While the overlap among the offset repres-
entations is slightly lower than that of the elementary Apt represent-
ations, a substantial amount of the distributional neighbourhood of
offset views is shared across different Apt parameterisations.

For a quantitative evaluation of Apt offset representations, I am
using the BLESS dataset. Instead of taking the target concepts as they
are, I am extracting the most frequent adjectival modifiers for each
target concept from the BNC and retaining target concepts where the
adjectival modifier occurs at least 50 times with the target concept in
the BNC35. Any target concept might be represented by more than
one offset if it occurs with more modifiers of frequency ≥ 50 in the
BNC. Each target concept is subsequently represented by its amod

offset representation.
For example, if the most frequent adjectival modifier for the tar-

get concept bear would be polar, then bear would be represented by
polaramod — a polar thing. The underlying question I am addressing
is, if a target concept were to be represented by a noun view of its
most frequent modifiers, would the Apt space still be biased towards
co-hyponymy, or would there be a shift towards a different semantic
relation such as meronymy? While the task might not be perfect for
characterising offset Apts, as for example a polar thing is quite dif-

35 Appendix B contains a list of all modifiers used for this study.
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ferent from a bear, it nonetheless provides a first estimation of what
semantic relation offset Apts prefer.

Figure 4.8: Comparison of the distribution of similarities between target
concepts represented as the offset representations of their most
frequent modifiers (left), and target concepts represented with
“standard" elementary Apt representations (right), using the
baseline model.

Figure 4.8 shows a comparison between the similarity distributions
of semantic relations of offset representations (left) and “standard"
elementary representations (right) from the same subset of target
concepts, using the Apt baseline model. The offset representations
are less biased towards co-hyponyms. In general, the resulting space
appears to be less coherent and more fuzzy, judging from its relat-
ively higher similarity to random concepts. Furthermore, due to us-
ing the amod offset view of the given noun, the space is more tipped
towards meronymy and attributes, which will be further investigated
in Chapter 5.

The results on the BLESS dataset suggest that offset Apt represent-
ations offer a complementary view of a given lexeme, and might be
used for biasing a representation towards a specific semantic relation
as the offset inference algorithm proposed in Chapter 5 will show.

4.3.3 The Distributional Semantics of Composed APT Representations

One goal of distributional composition is to extend the continuous
model of meaning from the word level to the phrase level. This opens
the potential for inferences about paraphrases and entailment rela-
tions in compositional distributional semantic models. This section
aims to provide a preliminary overview about the distributional neigh-
bourhood of composed representations that Apts give rise to. Further-
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more, the question whether composed Apt representations are still
biased towards co-hyponymy is addressed.

For investigating the distributional neighbourhood of composed
Apts, I am using the ML2010 dataset, consisting of 108 each of
adjective-noun, noun-noun and verb-object compounds, 324 phrase
pairs in total. Table 4.10 lists the 5 nearest neighbours of a num-
ber of adjective-noun, noun-noun and verb-object phrases, using the
Apt baseline model and composition by intersection. Interestingly, most
neighbours exhibit some degree of topical relatedness to the query
phrase as in the case of the adjective-noun compound federal assembly
which is among other government related terms and phrases. Other
examples of the topical coherence of composed Apt representations
are the noun-noun compound health minister, which is embedded
between other governmental secretaries, such as environment secret-
ary, and the verb-object phrase raise head, which is located in a “body
movement" neighbourhood.

Phrase Neighbours
elderly woman elderly lady, older man, old person, pensioner, carer

federal assembly legislature, assembly, presidency, state control,
bureaucracy

vast amount large quantity, quantity, wealth, bulk, amount
hot weather weather, cold air, pants, sunshine, vacation

further evidence evidence, indication, particular case, explanation,
consideration

health minister defence minister, health service, environment secretary,
education officer, government leader

tax credit tax charge, credit, tax rate, exemption, compensation
league match match, football club, fixture, game, football

bedroom window kitchen door, window, door, suite, floor
family allowance allowance, housing benefit, tax credit, pension, motto

send message relay, convey, communicate, send, delete
buy land sell property, buy home, leave house, purchase, cultivate

consider matter discuss issue, address question, complicate, consider,
express view

raise head lift hand, wave hand, stretch arm, raise, close eye
pose problem pose, present problem, face difficulty, anticipate,

require attention

Table 4.10: 5 nearest neighbours of composed adjective-noun, noun-noun
and verb-object phrases. All phrases have been composed with
composition by intersection using the Apt baseline model.

While the topical coherence of the phrasal neighbours might be an
artifact of the ML2010 dataset itself, it is nonetheless an interesting



4.3 characterising the distributional space 117

observation that the general topic of a phrase is preserved. Further-
more, Table 4.10 highlights the contextualisation capabilities of an in-
tersective composition function. For example, due to its composition
with weather, the lexeme hot is disambiguated and promotes contexts
such as sunshine and vacation instead of neighbours associated with its
meaning in hot sauce. The same effect can be observed for the phrase
raise head, where raise is fully embedded in a “body movement" neigh-
bourhood, where contexts associated with the financial sense of raise,
such as in raise money, are suppressed.

The table shows that the Apt model is able to capture paraphrases
as close neighbours, as in the case of fixture, as a close neighbour of
the phrase league match. Further examples are the verb communicate as
a neighbour for send message, and legislature as the nearest neighbour
of the phrase federal assembly.

As a first step towards studying the entailment characteristics of
Anchored Packed Trees, I am extracting the most frequent adjectival
modifiers of all target concepts from the BLESS dataset that occurred
at least 50 times with the target concept in the BNC36. Subsequently,
I compose the target concept with the respective extracted modifiers
and represent the BLESS concept as the composed construct. For ex-
ample, if polar is extracted as a modifier for the concept bear, it would
be represented by the adjective-noun phrase polar bear.

Most of the extracted modifiers fall into the class of subsective ad-
jectives, hence the resulting adjective-noun compound represents a
more specific concept than the noun by itself (Kamp and Partee, 1995).
The question I am addressing is whether a composed adjective-noun
phrase is able to retain the characteristics of its head noun in terms
of the distribution of semantic relations, or whether it distorts the
distribution towards random behaviour.

Figure 4.9 shows a comparison of the distributions of semantic re-
lations between the composed Apt representations (left) and the cor-
responding subset of concepts represented by “standard" elementary
Apts (right), using the Apt baseline model.

These experiments provide preliminary evidence that adjective-
noun composition — at least when the adjectives are subsective —
retain the characteristics of the distributional space of the head noun,
while being able to retrieve paraphrases from the distributional space
as shown in Table 4.10. Hence, composition in Anchored Packed

36 See Appendix B for a complete overview of the BLESS subset used in this study.
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Figure 4.9: Comparison of the distribution of similarities between target con-
cepts, composed with their most frequent adjectival modifiers
(left), and target concepts represented with “standard" element-
ary Apt representations (right), using the Apt baseline model.

Trees has the potential to successfully extend the continuous model of
meaning from individual words to phrases, as well as contextualising
the meaning of a given lexeme in some phrase.

4.4 summary

This chapter has presented an empirical evaluation of the Apt theory
on word similarity and short phrase composition tasks. The chapter
also contributed a characterisation of the distributional semantic space
that Anchored Packed Trees give rise to. It has furthermore been
shown that the choice of hyperparameters is a task-dependent prob-
lem, and does not transfer from word similarity to composition. In
particular

• Optimising the hyperparameters in a task specific manner can
significantly improve performance.

• While the performance of elementary Apt representations and
for composition by union could be significantly improved
through optimising the various model hyperparameters, the
performance of composition by intersection remained poor.

• The distributional space of elementary and composed Apt rep-
resentations is predominantly governed by co-hyponyms.

• Offset Apt representations can encode higher-order semantic
relations between lexemes and can offer a complementary view
of a given lexeme.
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• Composed Apt representations retain a strong topical coher-
ence, primarily caused by the contextualisation effect of an in-
tersective composition function.

• Distributional composition in Apts can extend the continuous
model of meaning to the phrase level, as well as achieve contex-
tualisation of ambiguous lexemes.

• The distributional semantics of offset Apt representations cap-
ture a number of interesting higher-order semantic phenomena,
such as black things being similar to dark things, and actions car-
ried out by a father being similar to actions carried out by a
mother.

One central observation in this chapter was that even with extens-
ive hyperparameter tuning, the performance of composition by inter-
section on short phrase composition tasks remained poor. The next
chapter will investigate the reason for the weak performance and pro-
pose a method for improving composition by intersection that retains
its desirable effect of contextualising the meaning of the lexemes in
some phrase.



5
I N F E R R I N G U N O B S E RV E D C O - O C C U R R E N C E
E V E N T S I N A N C H O R E D PA C K E D T R E E S

This chapter investigates the problem of data sparsity in the context
of Anchored Packed Trees. Data sparsity leads to incomplete element-
ary representations due to not observing all plausible co-occurrences
for any given lexeme. This problem is amplified for intersective com-
position functions, that rely on observing plausible co-occurrences
between all lexemes in a phrase. In addition, an algorithm for expli-
citly inferring unobserved co-occurrence events is proposed, and its
utility for improving elementary Apt representations and distribu-
tional composition is shown. The algorithm is generalised in order
to leverage the rich type structure in Apts, yielding further perform-
ance improvements for distributional composition. Lastly, the comple-
mentary nature between distributional inference and distributional
composition is highlighted.

The following chapter is based on, and extends, the work pub-
lished in Kober et al. (2016), which leveraged the idea of distribu-
tional inference of Dagan et al. (1993) to improve elementary distribu-
tional semantic word representations and distributional composition,
and Kober et al. (2017a) which proposed the generalisation of distri-
butional inference to offset inference and highlighted the similarity
between distributional composition and distributional inference.

The previous chapter has shown that considerable improvements
can be gained from optimising the hyperparameters for a given
Apt model. This chapter shows that even well tuned models suf-
fer from the problem of not observing all plausible co-occurrences.
This chapter shows that statistically significant improvements can be
achieved by leveraging the distributional neighbourhood and expli-
citly inferring unobserved co-occurrence events in the distributional
space.

The contributions of this chapter are:

• An analysis of the issue of data sparsity and its consequences
for Anchored Packed Trees.

120
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• The proposal of distributional inference — an unsupervised
algorithm for explicitly inferring unobserved co-occurrence
events in distributional semantic models that extends the al-
gorithm of Dagan et al. (1993) to a mechanism for augmenting
elementary word representations with unseen but plausible co-
occurrence events.

• The subsequent generalisation of distributional inference to off-
set inference, in order to leverage the type structure in Apts.

• A characterisation of the kind of knowledge that can be learnt
from the distributional neighbourhood as well as a qualitative
and quantitative assessment of how the distributional inference
algorithms affect the semantic space of Apts.

• An empirical validation of the algorithm on a range of word
similarity tasks and a short phrase composition benchmark
dataset, showing that distributional inference is successfully
closing the performance gap between low-dimensional uninter-
pretable models and high-dimensional interpretable models on
the short phrase composition task.

• An analysis of the relation and complementary nature between
distributional composition and distributional inference.

This chapter is structured as follows: the issue of data sparsity is
discussed in Section 5.1, followed by the proposal and analysis of
the distributional inference algorithm in Section 5.2. Subsequently,
the standard distributional inference algorithm is generalised to off-
set inference in Section 5.3. Finally, Section 5.4 discusses the relation
between distributional inference and distributional composition.

5.1 the issue of data sparsity

Data sparsity is the problem of not observing all plausible co-
occurrences that a lexeme might co-occur with. For example, while
the two lexemes bike and bicycle might be used interchangably in
many cases, their co-occurrence with possibly independent contexts
leads to unobserved co-occurrences for both lexemes. Indeed, in the
distributional space of the Apt baseline model, a bicycle is never ob-
served as being bought, used or stolen, whereas a bike is.

The missing information in the distributional representations leads
to less feature overlap when the similarity of two lexemes is com-
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puted. This in turn has the consequence that the similarity between
two given words is frequently underestimated, or even results in no
feature overlap at all.

Figure 5.1: Scatterplots of human judgements in comparison to model estim-
ates on the WordSim-353 similarity (left) and relatedness (right)
subsplits using the Apt baseline model.

Figure 5.1 show the scatter plots resulting from the Apt baseline
model on the WordSim-353 similarity (left) and relatedness (right)
subsets between the similarity estimates of the human annotators (x-
axis) and the distributional model (y-axis).

The plots highlight that even for many word pairs given high sim-
ilarity scores by the human annotators, the model estimates are often
very close to 0. This is highlighted by the large proportion of dots
along the x-axis in Figure 5.1. Therefore, missing information about
many plausible co-occurrence events is likely the primary factor that
is causing the weak performance of the Apt models on the word sim-
ilarity tasks.

The problem is amplified when composing two distributional word
representations with an intersective composition function because
two incomplete representations are used to build a phrasal repres-
entation. The result is a phrasal representation that is missing a large
proportion of plausible features. This in turn leads to increasingly
semantically incoherent behaviour of the composed constructs that
manifests in low similarity estimates between similar phrases.

Figure 5.2 shows the distribution of model similarity estimates for
each step on the 1-7 Likert scale as rated by human annotators, for
composition by union (left) and composition by intersection (right)
on the adjective-noun subtask of the Mitchell and Lapata (2010) data-
set. While the distributions of similarity estimates are monotonically
increasing with the human judgments for composition by union, the
estimates for an Apt model using composition by intersection are lev-
elling off and remain constant from a human similarity rating of 4
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Figure 5.2: Distribution of similarity estimates by the Apt baseline model
in comparison to human judgements on the ML2010 adjective-
noun subtask for composition by union (left) and composition
by intersection (right).

onwards. Even phrase pairs judged with a similarity of 6 or 7 by the
human annotators frequently receive very low similarity estimates by
the model, as the corresponding whiskers in Figure 5.2 show. The
reason for this problem with model estimates using composition by
intersection is the larger impact of data sparsity due to the discrim-
inative nature of the composition function as the comparison to the
same Apt model, using composition by union, in Figure 5.2 shows.

5.2 improving sparse apt representations with distri-
butional inference

The previous section has identified data sparsity as one of the root
causes for the weak performance of Apts on word similarity, and in
particularly in conjunction with composition by intersection, on com-
position tasks. This section proposes a simple algorithm that infers
missing co-occurrence information by leveraging the distributional
neighbourhood of a lexeme. Furthermore, the algorithm generalises
earlier approaches by Kintsch (2001); Utsumi (2009, 2012) which can
be represented as special cases of the proposed algorithm.

In the following, after the distributional inference (DI) algorithm
will be described, the kind of knowledge that can be inferred will be
characterised in Section 5.2.1. Subsequently, Section 5.2.2 shows the
positive effect of using distributional inference on the word similarity
datasets and short phrase composition tasks, yielding statistically sig-
nificant improvements, and being especially beneficial to composition
by intersection. A detailed analysis of the properties of distributional
inference is presented in Section 5.2.3, showing that the performance
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improvements come from inferring missing information rather than
just mitigating sparsity. Section 5.2.4 analyses how much data distri-
butional inference can make up for, followed by Section 5.2.5 which is
putting the DI algorithm in context with earlier approaches. Finally,
Section 5.2.6 assesses the limitations of distributional inference.

Algorithm 1 below outlines how distributional inference works.
The input to the algorithm is a source distributional model M, the
representation for the lexeme w on which distributional inference
will be performed, and the number of neighbours to consider k. The
algorithm returns an enriched version of w, w′, as output. The distri-
butional features in w are scaled by the number of neighbours k (see
line 2 in Algorithm 1) to prevent the representation for the original
lexeme w from being overwhelmed by the information inferred from
its neighbours. The algorithm subsequently loops through all of the k
neighbour representations of w in M, and then merges them with w′.

Algorithm 1 Distributional Inference

1: procedure distributional_inference(M, w, k)
2: w′ ← w× k
3: for all n in neighbours(M, w, k) do
4: w′ ← merge(w′, n)
5: end for
6: return w′

7: end procedure

The time complexity of the algorithm broadly follows that of the
k-Nearest Neighbours algorithm (Manning et al., 2008). It linearly de-
pends on the size of the vocabulary |V|, the number of lexemes for
which to perform distributional inference for q, the number of neigh-
bours k, and the time it takes to calculate the similarity between two
items s. Merging two elements is dependent on the dimensionality
of the distributional space. However given a sparse representation
of the distributional Apt space, a tighter bound can be achieved by
using the average number of non-zero features per lexeme dAvg.

Each iteration of the main loop in Algorithm 1 requires O(|V| s +
dAvg) runtime, where O(|V| s) is the time it takes to retrieve a neigh-
bour, and dAvg is the time required to merge two elements. The main
loop is executed n times for q words, thus the overall runtime of the
algorithm can be estimated as O(k q (|V| s + dAvg)).

The largest impact on runtime is the time it takes to calculate the
similarities of a query word to all other lexemes in the distributional
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space, which is dependent on the size of the vocabulary |V|. In order
to speed up the algorithm, it is possible to calculate all sorted pair-
wise similarities upfront, and thereby reduce the work of the main
loop to a lookup operation, requiring constant time, and the merge
operation, requiring O(dAvg). Overall this would result in a runtime
of the algorithm of O(k q dAvg)

1.

Distributional inference can be seen as a non-parametric soft-
clustering algorithm, where every cluster is formed by the given
lexeme w as the centroid, and its distributional neighbours as mem-
bers of the cluster. However, any lexeme can be part of any number
of clusters, differentiating it from hard-clustering methods such as
k-means. Every lexeme for which distributional inference has been
performed is subsequently represented as a weighted average of its
respective cluster.

The algorithm is agnostic to the distributional model M used for
querying neighbours. For example, it is possible to use a word2vec

model to infer knowledge for an Apt model, or even have an en-
semble of different source distributional models to query the neigh-
bours. Throughout this thesis, however, I will use the same Apt model
for querying neighbours and for which to perform distributional in-
ference for.

Algorithm 1 has two degrees of freedom: the method to query
neighbours for a given lexeme and the method to merge the inferred
information into a given word representation. For the former I will
use the “static top n" neighbour retrieval function that uses the top n
neighbours of any lexeme for inference. This method has been found
to consistently perform well across tasks in (Kober et al., 2016), while
at the same time requiring only the number of neighbours n to be
tuned for the task at hand. For the latter, I will use pointwise addi-
tion to merge the aligned distributional features of two or more word
representations.

5.2.1 What kind of knowledge can be inferred?

Section 4.3 characterised the distributional space of Apts, and it was
shown that the distributional Apt space is predominantly governed
by co-hyponymy. Any inferred co-occurrence events for a given lex-

1 The constant factor O(1) is subsumed by the time required by the larger factor
O(dAvg) in the main loop, allowing the runtime to be estimated as O(k q dAvg) in-
stead of O(k q + k q dAvg).
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eme will therefore primarily be drawn from its co-hyponym neigh-
bours.

Lexeme Neighbours Inferred Co-occurrences
magazine newspaper, journal, papers dobj:sell, nsubj:report, amod:daily
cafe pub, restaurant, lounge dobj:leave, nsubj:close,

amod:famous
cat dog, rabbit, pet dobj:walk, nsubj:bark, amod:hot
car vehicle, lorry, bus amod:four-wheel, amod:horse-drawn,

amod:military
house building, room, home dobj:brighten, dobj:book,

amod:stuffy

Table 5.1: Example co-occurrence inferences from the boldfaced neighbour
for a given lexeme on the basis of the Apt baseline model. The il-
lustrated features have been observed with the (boldfaced) neigh-
bours, but not with the target lexeme itself. For the lexemes
magazine, cafe and cat, inferred co-occurrences from co-hyponym
neighbours are exemplified, the lexeme car shows example infer-
ences from a hypernym neighbour, and for the lexeme house ex-
ample inferences from a meronym neighbour are shown.

Table 5.1 shows the nearest neighbours of a number of lexemes,
together with co-occurrences that have been observed with the neigh-
bours, but not with the lexeme itself. The table shows that leveraging
co-occurrence events from co-hyponyms can lead to many plausible
inferences, for example for the lexeme magazine, one would learn that
they can be sold, that they report things and that they might be pub-
lished on a daily basis, by observing its top neighbour newspaper. By
considering the nearest neighbour for cafe, which is one of its co-
hyponyms pub, it can be inferred that cafes can be left, that they close,
and that they might be famous.

However, inferring co-occurrence events from co-hyponyms can
also lead to implausible inferences. For example for the lexeme cat,
whose nearest neighbour is its co-hyponym dog, one would infer that
cats might be taken for a walk, that they are able to bark and that they
might be hot2. While co-hyponyms share a large number of distribu-
tional properties, for example that it is possible to have lunch in both,
a cafe and a pub, they are distinctive in many other respects. The cur-
rent distributional inference algorithm, however, does not make any
assumptions about what can plausibly be inferred from a neighbour
and what represents an implausible feature for the given lexeme.

2 An artefact from many occurrences of hot dog, which has been parsed as an adjective-
noun phrase.
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An interesting case is the inferences that can be made for car from
its nearest neighbour — a hypernym — vehicle. For example, it has not
been observed in the BNC that cars might be four-wheeled, suggesting
that distributional word representations are frequently missing obvi-
ous common-sense properties. A further example of common-sense
information being missing from a distributional model is that neither
cats nor dogs have tails in the Apt baseline model. This stems from
the fact that there are only 3 occurrences of the phrase dog’s tail, and
2 occurrences of the phrase cat’s tail in the BNC — not enough occur-
rences to pass through the PPMI filtering (and potentially not enough
to even pass through the preprocessing stage).

As the neighbour room for the lexeme house shows, meronyms can
also contribute useful co-occurrence information to a given lexeme.
For example, it has not been observed in the BNC that a house might
be booked or that it can be brightened, or maybe be stuffy.

Estimating the Change in the Distributional Neighbourhood

Lexeme 0 neighbours 100 neighbours 1000 neighbours
mug tray, pot, glass, jar, tray, glass, tray, jar, glass,

cup, gulp bottle, bowl pot, cup

rock punk, stone, pop, surface, jazz, surface, punk,
roll, jazz sea, wood, hill stone, sea, jazz

train bus, taxi, boat, bus, car, journey, bus, taxi, car,
car, lorry taxi, flight boat, journey

Table 5.2: Nearest Neighbours for the Apt baseline model with and without
distributional inference. The increasing number of neighbours for
DI highlights its effect on the distributional space.

Table 5.2 shows the nearest neighbours for the Apt baseline model
without distributional inference (0 neighbours) and with distribu-
tional inference, using 100 and 1000 neighbours, respectively. While
the use of DI preserves the general nature of the distributional neigh-
bourhood, it is able to shift the meaning of a given lexeme towards a
different sense.

For example, for the lexeme rock, the semantics seems to shift from
a “music" dominated topic to a more mixed “music" and “surface"
related neighbourhood as distributional inference seems to predom-
inantly promote the “surface" meaning of rock. Similarly, for the lex-
emes mug and train a refinement of its semantics is visible. Where
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the meaning of mug seems to shift from a “drinking" related to a
“glass container" related neighbourhood, the meaning of train seems
to move from a “vehicle" related to a “travelling" related neighbour-
hood. An interesting effect happens for the lexeme apple, where dis-
tributional inference with 100 neighbours seems to promote a second
sense, which however, gets suppressed again when using 1000 neigh-
bours. When using 100 neighbours, DI blends the distributional neigh-
bourhood with some more “fruitiness", which is weighted down when
using 1000 neighbours.

The effects of topicality shifts that distributional inference cause
are a consequence of reinforcing the predominant — or majority —
sense of its nearest neighbours. For example, while many of the top
neighbours for train are other vehicles, there is a large number of
neighbours associated with the primary function of trains — travel-
ling. This subsequently results in top neighbours such as flight or
journey when distributional inference is applied.

Interestingly, the neighbour overlap scores on the words from the
WordSim-353 dataset between a space with and without the use of dis-
tributional inference are generally higher than with different hyper-
parameterisations. For example, the overlap between the Apt baseline
model without DI and the same model with DI, using 100 neighbours,
is 65%. Between the baseline model without DI and a model with DI
and 1000 neighbours, the overlap is still 51%. Hence, the use of DI
better preserves the characteristics of the distributional space in com-
parison to using a different hyperparameterisation of the Apt space.

Characterising the Effect of Distributional Inference

Inferring missing knowledge furthermore has a substantial effect on
the distribution of semantic relations. Figure 5.3 compares the dis-
tribution of semantic relations on the BLESS dataset for the Apt-WS-
MEN model without distributional inference (left), and the same Apt-
WS-MEN model with DI, using the top 100 neighbours for the infer-
ence process. Whilst the tendency of the semantic space to favour
co-hyponymy prevails, distributional inference is able to increase the
similarities to hypernyms, and to a lesser extend meronyms, while
preserving the semantic coherence of the space and keeping the me-
dian similarities to any random concepts well below 0.

The widening of the similarity distributions for relations other than
co-hyponymy is caused by the fact that distributional inference is able
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to add features associated with hypernyms or meronyms back into
the elementary representations. These features have previously been
filtered out due to applying a high negative SPPMI shift of log 40.

The tightening of the similarity distribution for co-hyponyms can
be explained by the same effect. The widening of the co-hyponym
similarity distribution in Figure 5.3 (left) has been caused by ap-
plying a negative SPPMI shift of log 40, which filtered out many
features associated with co-hyponymy as well. This caused a wider
spread in similarity scores as the elementary representations have
been “thinned out". Distributional inference is able to add a large
amount of features indicating co-hyponymy back into the represent-
ations which is causing the tightening of the similarity distributions
for co-hyponyms in Figure 5.3 (right).

Figure 5.3: Distribution of semantic similarities in the BLESS dataset for the
Apt-WS-MEN model without distributional inference (left) and
the same model with distributional inference (right) using 100
neighbours.

5.2.2 Quantitative Analysis

Word Similarity

Table 5.3 summarises the results of using distributional inference with
the tuned Apt-WS-MEN and Apt-SL-999 models on the word similar-
ity tasks in comparison to the standard Apt baseline model without
the use of DI, and the two tuned Apt-WS-MEN and Apt-SL-999
models without DI, respectively. The use of distributional inference
can significantly improve performance on the optimised Apt models,
showing that the algorithm is able to successfully infer relevant and
missing knowledge from the distributional neighbourhood. An over-
view of the optimal number of neighbours for each dataset for distri-
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butional inference is listed in Table 5.8 further below. The number of
neighbours for distributional inference for MEN has been tuned on
its development set. For the other datasets, the number of neighbours
was determined by 2-fold cross-validation and the results reported in
Table 5.3 represent averaged Spearman ρ’s.

WS353 (sim) WS353 (rel) MEN SimLex-999
Baseline (No DI) 0.40 (+/- 0.14) 0.24 (+/- 0.06) 0.36 (+/- 0.01) 0.22 (+/- 0.02)
Tuned Apt models 0.52‡ (+/- 0.09) 0.35† (+/- 0.01) 0.43‡ (+/- 0.02) 0.25 (+/- 0.01)

Tuned Apt models + DI 0.54‡ (+/- 0.06) 0.35† (+/- 0.06) 0.48‡♠ (+/- 0.02) 0.30‡♠ (+/- 0.01)

Table 5.3: Results on the word similarity tasks for a standard Apt baseline
model, the tuned models (Apt-WS-MEN for both WordSim-353

subtasks and MEN, and Apt-SL-999 for the SimLex-999 dataset)
without DI and the tuned Apt models with distributional infer-
ence. Performance is reported in terms of averaged Spearman ρ
across 2-fold cross-validation. The numbers in parentheses denote
the standard deviation across the two runs. Results marked with
† and ‡ are statistically significant at the p < 0.05 and p < 0.01
level in comparison to the Apt baseline model, respectively. Res-
ults marked with ♠ are statistically significant at the p < 0.01
level in comparison to the respective Tuned Apt models. Statist-
ical significance has been determined using the method of Steiger
(1980).

Furthermore, the unimproved performance on the WordSim-353

(relatedness) subtask when using distributional inference suggests
that simply alleviating the issue of sparsity alone does not guaran-
tee improved performance. If the “wrong" distributional knowledge
for the task at hand — features indicating taxonomic similarity rather
than topical relatedness for WS353 (rel) — is inferred, then DI might
not lead to improved performance.

Phrase Similarity

The use of distributional inference has a particularly positive effect in
conjunction with composition by intersection as the results in Table 5.4
show. The table shows a comparison between the hyperparameter-
optimised Apt models without DI for composition by intersection
and composition by union, respectively, compared to the same model
with the use of distributional inference.

The table shows that performance is vastly improved for compos-
ition by intersection, performing on par with composition by union,
for which the performance remained at the same level. As the hyper-
parameter sensitivity study for the short phrase composition dataset
in the previous chapter has shown, no tweaking of model parameters
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Composition by Intersection AN NN VO Average
Tuned Apt model 0.39 0.41 0.35 0.38
Tuned Apt model + DI 0.48‡ 0.46‡ 0.44‡ 0.46‡

Composition by Union AN NN VO Average
Tuned Apt model 0.50 0.45 0.44 0.46
Tuned Apt model + DI 0.50 0.44 0.45† 0.46

Table 5.4: Comparison between tuned Apt models without DI and the same
models with the use of distributional inference on the ML2010

composition task. Results marked with ‡ are statistically signific-
ant at the p < 0.01 level, and results marked with † are statistic-
ally significant at the p < 0.05 level, in comparison to the respect-
ive baseline without distributional inference for composition by
union and composition by intersection. Statistical significance has
been determined using the method of Steiger (1980).

can alleviate the fact that there is too much missing information in
the elementary representations. This is subsequently leading to very
little feature overlap in the composition process and distributional
similarity estimation.

For composition by union on the other hand, data sparsity is less
problematic as the composition function does not discard any fea-
tures. This, however, leads to the problem where implausible features,
either introduced by the composition process or by distributional in-
ference, cannot be filtered out, thus decreasing the composition func-
tions capability of performing semantic contextualisation. An over-
view of the optimal number of neighbours for distributional infer-
ence, which has been determined on the ML2010 development set is
listed in Table 5.11 further below.

Alleviating the Problem of Data Sparsity for Composition by Intersection

Figure 5.4 shows the distribution of similarity estimates of the
Apt baseline model in a boxplot for each similarity band on the Likert
scale from 1-7 for composition by intersection on the adjective-noun
subtask of the ML2010 dataset. Without the use of distributional in-
ference (left), there are a large number of phrase pairs with very few
distributional features after composition, resulting in a large number
of 0-similarity estimates and very low scores for even high similarity
pairs.

The use of distributional inference is able to remedy this shortcom-
ing as the right-hand side plot in Figure 5.4 shows. With distribu-
tional inference, the distribution of the Apt model’s similarity estim-
ates is increasing with higher human similarity judgements. This res-
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ults in substantially fewer 0-overlap comparisons, which for medium-
and high-similarity pairs could be avoided altogether as the whiskers
in Figure 5.4 (right) show. The additionally inferred knowledge fur-
thermore leads to a significant improvement in Spearman ρ correla-
tion as shown in Table 5.4 above.

Figure 5.4: Distribution of similarity estimates by the Apt baseline model in
comparison to human judgements on the ML2010 adjective-noun
subtask for composition by intersection without distributional in-
ference (left) and composition by intersection with distributional
inference (right) using 10 neighbours.

5.2.3 Inferring Missing Knowledge vs. Reducing Sparsity

An important question is whether the performance improvements of
the Apt models are due to inferring missing information, or whether
they are simply an effect of the decrease in sparsity in the distribu-
tional space.

In order to address this question I am comparing the scatterplots
of the similarity judgements between the human annotators and the
Apt models on the two WordSim-353 subtasks, with and without the
use of distributional inference, in Figure 5.5.

The two top plots show how the number of (near) 0-overlap com-
parisons, resulting in a large number of dots along the x-axis cor-
responding to a model similarity estimate of close to 0, substantially
decreases with the use of distributional inference on the WordSim-
353 (similarity) subtask (5.5, top right). Furthermore, the inference of
missing knowledge leads to an improvement of fit for the correspond-
ing regression line in Figure 5.5 as well as to an improved Spearman
ρ correlation measure as shown in Figure 5.6 as well as Table 5.3 in
the previous section.

For WordSim-353 (relatedness) on the other hand, distributional in-
ference reduces sparsity, as shown by a substantial decrease in near 0
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Figure 5.5: Scatterplots for WordSim-353 (similarity; top) and WordSim-353

(relatedness; bottom) showing the reduction of (near) 0-overlap
comparisons after distributional inference (plots on the right) in
comparison to no distributional inference (plots on the left), us-
ing the Apt baseline model.

similarity estimates by the model, but is unable to improve the fit of
the regression line, and therefore does not result in improved Spear-
man ρ correlation. One reason for this behaviour is that the distri-
butional Apt space is primarily governed by co-hyponymy and in-
ferring knowledge from a large amount of co-hyponym neighbours
does not lead to representations better suited for a task favouring top-
ical relatedness.

A further question relates to the number of neighbours. If the only
factor that is improving performance would be a decrease in sparsity
in the representations, then model performance must be linearly in-
creasing with the number of neighbours. However, this is not the
case.

Figure 5.6 shows the Spearman ρ correlation on the ML2010 devel-
opment set between the human similarity judgements and the model
estimates as a function of the number of neighbours used for distri-
butional inference for all 3 ML2010 subtasks (left), using composition
by intersection, as well as the word similarity tasks (right) used in
this thesis. The dashed lines show the model performance without
the use of distributional inference, whereas the solid lines show the
performance trajectory of an Apt model with distributional inference.
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Figure 5.6: Spearman ρ correlation between human similarity judgements
and model estimates on the adjective-noun, noun-noun and
verb-object subtasks of the ML2010 dataset (left), using the
Apt baseline model and composition by intersection, and the
WS353 (sim), WS353 (rel), MEN and SimLex-999 word similar-
ity tasks (right) as a function of the number of neighbours used
for distributional inference, using the respective tuned Apt mod-
els. The dashed lines represent model performance without the
use of distributional inference.

The figure therefore highlights that the improved performance is
due to inferring missing distributional knowledge rather than just
a decrease in sparsity, because otherwise more neighbours would
always lead to better performance. Every neighbour might contrib-
uted noise in addition to missing knowledge, however as long as
the amount of actual knowledge being inferred is larger than the
amount of noise added to the representations, the performance of dis-
tributional inference is better than the performance of an Apt model
without distributional inference. The peaks in the performance traject-
ories in Figure 5.6 show that there generally appears to be an optimal
number of neighbours for a given task.

While composition by intersection appears to be relatively robust
to overestimating the number of neighbours required due to the com-
position function’s ability to filter out a substantial amount of noise,
the performance trajectories for the word similarity tasks show that
adding information from too many neighbours can hurt perform-
ance. This is supporting evidence that closer neighbours contribute
actually missing information, while “oversmoothing" with too many
neighbours is akin to add-1 smoothing and is decreasing sparsity but
overflowing the representations with noise.

An interesting observation for the word similarity trajectories in
Figure 5.6 is that certain bands of neighbours seem to be better suited
for the given task than others. For example for the WordSim-353 (sim-
ilarity) subtask the first 30 neighbours do not appear to contribute
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much useful information, whereas the next ≈170 neighbours do. This
characteristic opens the potential for a more sophisticated neighbour
selection procedure in future work as briefly outlined in Section 6.3.2.

5.2.4 How much Data can Distributional Inference make up for?

One way to assess how much missing information distributional
inference is able to contribute is to compare the performance of
an Apt space with distributional inference to Apt representations
without DI on samples of different size of the source corpus. In
addition to the full BNC corpus, I created 20 independently drawn
samples of size 1%, 5%, 10%, 25%, 50%, and 75% from the BNC and
created order 2 Apt representations, using the baseline configuration,
for this experiment. Figure 5.7 shows the performance trajectories of
the Apt-baseline model on the MEN (dev) and WordSim-353 (related-
ness) datasets3. The similarity judgements of each Apt model for each
sample have been concatenated and Spearman ρ correlation has sub-
sequently been calculated between the concatenated model estimates
and the corresponding concatenated human similarity judgements4.

Figure 5.7: Spearman ρ correlation between human similarity judgements
and estimates by the Apt baseline model on MEN (left) and
WS353 (rel; right) on increasing sample sizes of the BNC. The
dashed line is the performance without distributional inference,
the solid line shows the model performance with the use of dis-
tributional inference.

The dashed lines show the performance of the Apt-baseline model
without the use of distributional inference and the solid lines show
the Spearman ρ correlation between the human judgements and the
baseline model with distributional inference. For the MEN (dev) data-

3 These two datasets have been chosen because they best illustrate the contributions
of distributional inference for the Apt baseline model.

4 The human similarity judgements are identical for, and independent of, each sample,
hence they have been duplicated and stacked in order to match the size of the con-
catenated model estimates.
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set, the use of distributional inference consistently improves the fit
between the human judgements and the model’s similarity estimates.
For the WS353 (rel) subtask, distributional inference has a positive ef-
fect for up to a sample size of 75% and then decreases when the whole
BNC is used. The black angled lines illustrate the performance differ-
ence between an Apt model with distributional inference at sample
size i− 1 and an Apt model without distributional inference at sample
size i, where i indexes the list [1, 5, 10, 25, 50, 75, 100], repres-
enting the sample sizes. For example, as shown in Figure 5.7, for the
MEN (dev) dataset, the performance of the Apt model with distribu-
tional inference for 50% of the BNC is approximately at level with
the performance of an Apt model without distributional inference at
a sample size of 75% of the BNC.

Figure 5.8 shows the impact of distributional inference on all word
similarity tasks with bootstrapped confidence intervals (Efron and
Tibshirani, 1994) over samples of increasing size of the BNC. 20
samples were drawn for each size without replacement and the in-
dividual cosine similarity scores of the Apt model were concatenated
and compared to the human similarity judgements by calculating
Spearman’s ρ.

Figure 5.8: Spearman ρ correlation between human similarity judgements
and model estimates on WS353 (sim), WS353 (rel), MEN and
SimLex-999 with and without distributional inference using the
Apt baseline model on samples of increasing size of the BNC.

Figure 5.7 illustrates that the use of distributional inference can
make up for a substantial amount of data. The positive effect of the
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algorithm is amplified for tasks involving distributional composition
with an intersective composition function. Figure 5.9 shows the per-
formance gains due to distributional inference on the adjective-noun
and verb-object subtasks of the development portion of the ML2010

dataset on the same samples of the BNC. As for the sampling exper-
iments with the word similarity datasets, the Apt model’s similarity
estimates have been concatenated for all 20 samples and compared
to the corresponding concatenated human similarity judgements by
calculating Spearman’s ρ.

Figure 5.9: Spearman ρ correlation between human similarity judgements
and estimates by the Apt baseline model on the adjective-noun
and verb-object subtasks of the development portion of the
ML2010 dataset on increasing sample sizes of the BNC. The
dashed line is the performance without distributional inference,
the solid line shows the model performance with the use of dis-
tributional inference. Composition by intersection has been used
as the composition function.

The use of distributional inference results in a substantial perform-
ance boost which is proportionally larger for smaller amounts of data.
For example by only using 25% of the BNC in conjunction with dis-
tributional inference, it is possible to achieve approximately the same
performance as if all of the BNC had been used without distributional
inference on the adjective-noun subtask. The performance improve-
ment is even higher for verb-object compounds, where distributional
inference is able to achieve comparable performance with only 5% of
the BNC in comparison to using the whole BNC without DI.

Interestingly for both adjective-noun and verb-object compounds,
the improvements due to distributional inference are exhausted earlier
than the improvements due to adding more data. On the adjective-
noun task, the performance of distributional inference remains rel-
atively stable from 50% of the BNC onwards, whereas without the
use of DI, the correlation between the human judgements and the
model’s estimates keeps increasing. For verb-object phrases, peak per-
formance for distributional inference is reached even earlier at about
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25% of the BNC.

Given that the BNC is a relatively small corpus, I have merged it
with several other corpora in order to test whether the positive effect
of distributional inference carries over to much larger amounts of
data and, more importantly, whether or when the positive effect of
using DI starts levelling off.

Figure 5.10: Spearman ρ correlation between human similarity judgements
and model estimates on MEN (left) and WS353 (rel; right)
on corpora of increasing size. The Apt model follows the
baseline configuration, but uses a negative SPPMI shift of
log 40. The dashed line is the performance without distribu-
tional inference, the solid line shows the model performance
with the use of distributional inference. The spacing on the x-
axis is proportional to the (cumulative) size of the corpora. Cor-
pora explanation: C1=BNC, C2=C1+Wikipedia, C3=C2+Toronto,
C4=C3+ukWaC, C5=C4+Gigaword, C6=C5+Gutenberg

In addition to the BNC (C1=BNC; ≈0.1bn tokens), I have used a
cleaned version of an October 2013 dump of Wikipedia5 (Wilson,
2015), (C2=C1+Wikipedia; ≈0.6bn tokens), the Toronto books cor-
pus (Zhu et al., 2015b), (C3=C2+Toronto; ≈1.45bn tokens), consist-
ing of ≈11k books from unpublished authors, ukWaC (Ferraresi
et al., 2008), (C4=C3+ukWaC; ≈3.5bn tokens), consisting of scraped
web pages in the .co.uk domain space, the english Gigaword cor-
pus (Parker et al., 2011), (C5=C4+Gigaword; ≈5.25bn tokens), consist-
ing of newswire text, and all books electronically available from Pro-
ject Gutenberg6, (C6=C5+Gutenberg; ≈7.73bn tokens). The largest cor-
pus, C6, is ≈77 times larger than the BNC.

Figure 5.10 shows the Spearman ρ performance trajectory on in-
creasing amounts of data, using an order 2 Apt space with a negative
SPPMI shift of log 40 and constant path weighting. The cleaned Wiki-
pedia corpus is more than 5 times the size of the BNC, and as Fig-

5 Articles with fewer than 20 page views on a particular day have been re-
moved (Wilson, 2015).

6 https://www.gutenberg.org

https://www.gutenberg.org
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ure 5.10, when going from C1 to C2, for both datasets shows, adding
such a large amount of additional data results in a tremendous surge
in performance for the elementary Apt representations on MEN (dev)
and WS353 (rel). In general, distributional inference is able to improve
over the performance of an Apt model without DI in the majority of
cases, however its contributions become smaller with larger amounts
of available data and starts levelling off on MEN and WS353 (rel)
from C4 onwards.

The previous chapter has highlighted that an order 2 Apt space
does not appear to be the optimal choice for the MEN and WordSim-
353 datasets7, hence the performance in Figure 5.10 when using only
the BNC (C1) is generally worse than previously published results
with count-based distributional semantic models (Kiela et al., 2014).
Thus, distributional inference cannot only boost the performance of a
well-tuned model as shown in Section 5.2.2, but furthermore remedy
some of the shortcomings of a non-optimal parameterisation.

On the MEN (dev) dataset, going from C2 to C3 improves the Spear-
man ρ correlation for an Apt model without distributional inference
from 0.66 to 0.72; however the same Apt model using only C2 but in
conjunction with DI, already achieves a Spearman ρ of 0.70 — with
less than half the amount of data. On the WordSim-353 (relatedness)
subtask, the Apt model with distributional inference, obtained from
C2 outperforms the Apt model without DI using C4 and achieves
comparable performance to the Apt model without DI on C5. Hence,
distributional inference is able to obtain equal or better performance
with only a fraction of the data.

In general, the performance contributions of using distributional
inference start diminishing with larger corpora, where beyond C4, no
further gains are achieved on the two word similarity tasks8.

The performance trajectories for the Apt baseline model with com-
position by intersection on the adjective-noun and verb-object sub-
tasks of the development portion of the ML2010 dataset in Fig-
ure 5.11 show that distributional inference is able to substantially im-
prove upon a baseline without DI at any level of available data. This
provides empirical evidence that distributional inference is a signific-

7 Section 4.2.3 has highlighted that an order 1 Apt space with a high SPPMI shift is
indeed working substantially better.

8 An interesting side note is that adding general fiction corpora appears to harm the
Apt models on the WordSim-353 (relatedness) subtask as the two dents (one at C3
when the Toronto books corpus is added, and a smaller one at C6 when the Project
Gutenberg corpus is added) in the performance trajectory in Figure 5.10 (right) show.
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Figure 5.11: Spearman ρ correlation between human similarity judge-
ments and model estimates on ML2010 - Adjective-Noun (left)
and ML2010 - Verb-Object (right) on corpora of increasing
size. The Apt model follows the baseline configuration. The
dashed line is the performance without distributional infer-
ence, the solid line shows the model performance with the
use of distributional inference. The spacing on the x-axis
is proportional to the (cumulative) size of the corpora. Cor-
pora explanation: C1=BNC, C2=C1+Wikipedia, C3=C2+Toronto,
C4=C3+ukWaC, C5=C4+Gigaword, C6=C5+Gutenberg

ant ingredient to achieving competitive performance when using an
intersective composition function with sparse word representations.
As Figure 5.11 shows, the worst Apt model with distributional infer-
ence is still better than the best model without distributional inference
for both composition tasks, independent of the amount of available
data for an Apt model without DI.

Using larger amounts of data for the ML2010 dataset exhibits an in-
teresting corpus-dependent effect, where more data frequently results
in lower model performance as Figure 5.11 shows. One explanation
for this behaviour is that the ML2010 dataset has been constructed on
the basis of co-occurrence statistics derived from the BNC (Mitchell
and Lapata, 2010). Therefore, all words and bigrams in the ML2010

are ensured to a) occur with sufficient frequency and b) are gener-
ally within the same frequency band. This potentially has the effect
of factoring out any frequency effects when a model is subsequently
learnt from the BNC9.

Overall, the use of distributional inference almost always has a pos-
itive effect on the performance of an Apt model and works excep-
tionally well with little data. It has its largest positive contribution
in composition tasks, in conjunction with an intersective composition
function — a characteristic that will be analysed in more depth in

9 Frequency effects in word representations are known to have a substantial impact on
performance, for example for lexical entailment (Weeds and Weir, 2003) or sequence
labelling tasks (Schnabel et al., 2015).
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Section 5.4. The positive effect of using DI tends to become smaller
with larger amounts of data for the word similarity tasks, but remains
a solid method for getting more value out of the available data. Fur-
thermore, if peak performance for an Apt model with distributional
inference is approximately the same as for an Apt model without
DI, using distributional inference reaches that peak earlier and fre-
quently with a significantly smaller amount of data. This would make
the algorithm particularly well suited for improving distributional se-
mantic models in low-resource settings.

5.2.5 Relation of Distributional Inference to Previous Work

Leveraging the use of information from the distributional neighbour-
hood for composing two or more word representations has already
been attempted in previous work, although none of that work has
investigated the kind of information that is inferred in detail. Further-
more, previous work has primarily used the inference mechanism to
augment distributional composition rather than to improve element-
ary representations.

Perhaps the earliest proposal dates back to the predication algorithm
of Kintsch (2001), who used an additive composition function to-
gether with an additive inference mechanism to enrich the represent-
ation of a composed phrase. Kintsch (2001) focused on intransitive
verb phrases and his proposal was to choose the top n neighbours of
the predicate verb and from this set, select the top k also most similar
to the argument noun in a phrase.

A similar proposal has been brought forward by Utsumi (2009)
who introduced the comparison algorithm which adds the information
of the top n common distributional neighbours of both constituents to
the resulting composed phrasal representation.

Both algorithms incorporate the constraint that the neighbours ad-
ded to the resulting composed representation must be compatible
with all lexemes in a given phrase. This constraint can be integrated
into the DI algorithm, thereby generalising the distributional infer-
ence algorithm and subsuming the proposals of Kintsch (2001) and Ut-
sumi (2009). The generalisation can be achieved by integrating an
additional conditional statement, representing a neighbour selection
step, that governs whether a given neighbour n of the current lexeme
w will be added to the final representation depending on its member-



5.2 improving sparse apt representations with distributional inference 142

ship in a given set of neighbours N. Algorithm 2 below shows the
modified algorithm with the additional constraint.

Algorithm 2 Generalised Distributional Inference

1: procedure distributional_inference(M, w, k, N)
2: w′ ← w× k
3: for all n in neighbours(M, w, k) do
4: if N = ∅ or n ∈ N then . Require that n is a member of N
5: w′ ← merge(w′, n)
6: end if
7: end for
8: return w′

9: end procedure

The original distributional inference algorithm can be retrieved by
passing an empty set, N = ∅, to the algorithm. Interestingly the al-
gorithms by Kintsch (2001) and Utsumi (2009) can be represented by
the same pseudo-code, the only difference being the size of the set
N, which for the comparison algorithm by Utsumi (2009) needs to be
larger in order to account for the fact that the two lexemes being com-
posed are very dissimilar and so the number of neighbours required
from one lexeme must be sufficiently large to satisfy the overall con-
straint of using the top n common neighbours for inference.

The additional constraint in the algorithm has no impact on its
runtime as set membership checks can be very efficiently implemen-
ted and executed in constant time.

The conditional spanning lines 4-6 in Algorithm 2 can be incorpor-
ated into the neighbour retrieval method, extending it to a neighbour
selection routine, which is highlighted in the pseudo-code snippet be-
low that shows the modified main loop of the algorithm.

1: for all n in neighbour_selection(M, w, k, N) do
2: w′ ← merge(w′, n)
3: end for

The change of name from neighbours(...) to
neighbour_selection(...) highlights that the purpose of the
function has been extended from pure retrieval to retrieval and
selection.

Distributional Inference as Data Augmentation

Distributional inference can also be interpreted as a form of data aug-
mentation in the distributional space. Data augmentation has been
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a commonly used technique in computer vision for creating addi-
tional data by rotating or randomly cropping the original images (Kr-
izhevsky et al., 2012; Chatfield et al., 2014). Recently, this approach
has been adopted for natural language processing tasks such as ma-
chine translation (Sennrich et al., 2016; Fadaee et al., 2017) or morpho-
logical inflection generation (Bergmanis et al., 2017; Silfverberg et al.,
2017).

Instead of augmenting the raw input data, which would corres-
pond to adding additional sentences to the BNC by modifying ex-
isting ones, it is the representations themselves that are augmented
with additional knowledge from similar instances. For example, for
data augmentation, all sentences in the BNC with an occurrence of
bike would be copied and all occurrences of bike in the copied sen-
tences would be replaced by bicycle, in order to create more training
data for the lexeme bicycle. The resulting representation for bicycle
would essentially correspond to the case where unobserved know-
ledge from the representation for bike has been added to bicycle with
distributional inference. Thus, distributional inference represents a
more direct approach of enriching representations without the need
for generating new input data.

5.2.6 Inferring Noise - The Limitations of Distributional Inference

As previously pointed out in Section 5.2.1, which concerned the know-
ledge that can be learnt from the distributional neighbourhood, infer-
ring information from the nearest neighbours has the risk of inferring
implausible co-occurrences — for example that cats might bark. Fur-
thermore, the more neighbours are used to infer information from,
the less reliable the information becomes. For example, one might in-
fer that cats can be four-wheeled or that there are military cats, because
the lexeme vehicle happened to be among the top n neighbours for cat.
There is no immediately obvious way to prevent this from happening
while retaining the unsupervised nature of the algorithm10. In order
to estimate the impact of noise in the inference process, I compare
the distributional inference algorithm with the standard “top n neigh-
bour" retrieval function to a version where neighbours are retrieved

10 One possible solution would be to use an ensemble of several distributional models
and only use a neighbour for inference if it occurs in the nearest neighbour list in
the majority of models. However, this approach is out-of-scope for this thesis and
represents an idea for future work.
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on the basis of their occurrence as synonyms, hypernyms, hyponyms,
meronyms or direct co-hyponyms in WordNet11.

WS353 (sim) WS353 (rel) MEN SimLex-999
Best top n 0.54 (+/- 0.06) 0.35 (+/- 0.06) 0.48 (+/- 0.02) 0.30 (+/- 0.01)
WordNet 0.57 (+/- 0.14) 0.31 (+/- 0.00) 0.52† (+/- 0.00) 0.50‡ (+/- 0.01)

Table 5.5: Comparison between the best unsupervised DI variant using the
“static top n" neighbour retrieval method, and a WordNet-based
neighbour retrieval function. The Apt baseline model has been
used with both DI variants. Performance is reported in terms of
averaged Spearman ρ across 2-fold cross-validation. The numbers
in parentheses denote the standard deviation across the two runs.
Tasks favouring taxonomic similarity benefit more from using a
hand crafted resource such as WordNet. Results marked with
† are statistically significant at the p < 0.05 level, and results
marked with ‡ are statistically significant at the p < 0.01 level
according to the method of Steiger (1980).

Table 5.5 shows that for similarity tasks such as the WordSim-
353 similarity subset and SimLex-999, that benefit proportionally
more from inferring information from hypernyms, hyponyms and co-
hyponyms, the performance improvements by using a “clean" source
such as WordNet can be substantial. Especially the surge by 20 points
for the SimLex-999 dataset is remarkable12.

Interestingly, using WordNet as neighbour retrieval function does
not result in the same performance improvements for tasks that fo-
cus on the topical relatedness of two lexemes rather than their taxon-
imic similarity. For example the performance improvement for MEN
is only marginal in comparison to the purely unsupervised variant
of the DI algorithm. For the WordSim-353 (relatedness) task, using
WordNet even underperfoms the standard DI algorithm13.

Table 5.5 furthermore highlights that inferring unobserved co-
occurrence events is a fine-grained task specific problem and depends
on the specific kind of similarity (taxonomic, topical, etc.) that a given
task is testing. As the cases of MEN and WordSim-353 (relatedness)
show, the utility of inferring purely taxonomic knowledge from Word-
Net into a task geared towards testing topical relatedness is limited.

11 The WordNet retrieval function has already been tested in Kober et al. (2016), where
however, only synonyms have been used for inference. The current comparison rep-
resents an extension of the version of Kober et al. (2016).

12 One explanation for this huge surge is that the dataset construction of SimLex-999

made use of WordNet to extract similar word pairs.
13 A further disadvantage in using WordNet might be in low-resource settings or in

very specialised domains where a data-driven approach would be expected to work
better.
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The results on the word similarity tasks show that if a handcraf-
ted resource is available, and perhaps more importantly, suitable for
a given task, its performance is able to exceed the standard unsuper-
vised distributional inference algorithm. However, the results show
that the inference of potentially noisy co-occurrences is not a dom-
inant problem and that just leveraging the distributional neighbour-
hood results in robust knowledge inferences that improve the per-
formance of a distributional model significantly.

The Effect of Too Many Neighbours

While the use of distributional inference with a “good" number of
neighbours can substantially improve the performance of a distribu-
tional model, using too many neighbours for the inference process
can have a severe negative effect. In order to analyse that effect, I am
using the BLESS dataset and compare an Apt baseline model without
DI to the same model with distributional inference, using 1000 neigh-
bours for the inference process. Figure 5.12 shows the distribution of
semantic relations among the target concepts from the BLESS dataset
between the two Apt spaces.

Figure 5.12: Comparison of the distribution of semantic relations of the
Apt baseline model without distributional inference (left) and
the same Apt model with distributional inference, using 1000
neighbours (right). The large number of neighbours substan-
tially decreases the specificity of the distributional space, for
example by causing random nouns to be more similar to the
BLESS target concepts than their hypernyms.

While co-hyponyms remain the dominant semantic relation in the
distributional space with DI, the large number of neighbours caused
an increase in similarity of the target concepts to any other relation
as well. This has the consequence that for example the median sim-
ilarity between random nouns and BLESS concepts is higher than
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the median similarity between BLESS concepts and their hypernyms.
The relative differences between target concepts and lexemes of any
semantic similarity have become substantially smaller when distribu-
tional inference with (too) many neighbours is used. This is an effect
of “oversmoothing" the semantic space and is the result of using a
large proportion of the same neighbours for the inference process,
thereby rendering all representations more similar to each other.

Figure 5.13: Comparison of the distribution of semantic relations of the
Apt baseline model without distributional inference (left) and
the same Apt model with distributional inference, using 10
neighbours (middle) and 1000 neighbours (right), respectively.
All Apt models use composition by intersection as composition
function. While a small number of neighbours increases the spe-
cificity of the space, too many neighbours leads to oversmooth-
ing resulting in a distributional space where random relata are
difficult to distinguish from co-hyponyms, hypernyms or mer-
onyms for any given target concept.

Oversmoothing can also have a negative impact on the distribu-
tional space after composition as Figure 5.13 shows. The figure com-
pares the distribution of semantic relations of the Apt baseline model
without distributional inference (left), to the same Apt model with
distributional inference using 10 neighbours (middle), and 1000 neigh-
bours (right) on the same subset of BLESS target concepts, composed
with their most frequent adjectival modifiers as in Section 4.3.3 when
characterising the distributional semantics of composed Apt repres-
entations. For all Apt models, composition by intersection is used.

Using distributional inference with 10 neighbours has a clear pos-
itive effect on the nature of the distributional space, for example by
making the distribution of similarities of co-hyponyms peakier, while
on average, substantially decreasing the similarity to attributes and
random relata. However, with 1000 neighbours, the distributional
space is devoid of almost all of its specificity, resulting in a space
where random nouns frequently cannot be distinguished from co-
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hyponyms, meronyms or hypernyms based on their feature distribu-
tion alone.

5.3 offset inference

The previous section has shown that the proposed distributional infer-
ence algorithm can successfully infer missing knowledge into distri-
butional word representations and thereby — to a substantial extent
— overcome the issue of data sparsity in Apts. However, the existing
algorithm performs inferences on the basis of the “surface form" of a
word. For example, it is possible to learn things about a bicycle, such
that it can be stolen14, by observing its neighbour bike, but it is not
possible to infer knowledge from other things that can be stolen.

This section describes the generalisation of the distributional infer-
ence algorithm to offset inference, followed by a characterisation of
the kind of knowledge that can be learnt from the distributional space
(§ 5.3.1). Section 5.3.2 presents the experimental results, showing that
Apts, together with offset inference achieve a new state-of-the-art on
the short phrase composition dataset of Mitchell and Lapata (2010).

Inferring knowledge from higher-order interactions between lex-
emes can be achieved by leveraging the rich type structure in Apts
that give rise to offset representations. Offset Apts describe the se-
mantics of a concept on a more abstract level. Figure 5.14 illustrates
the capacity of an Apt structure to represent different concepts on
the basis of shifting its anchor position. For example, considering the
adjective old, and shifting its anchor position along the amod edge15,
creates a noun view that describes the semantics of “something that
can be old", such as a bicycle or a desk, as the top left illustration in
Figure 5.14 shows.

Similarly, by considering the verb steal, offsetting its anchor along
the dobj edge results in a structure of “something that can be stolen",
such as a bike or a wallet as highlighted by the top right example in
Figure 5.14. Apts also support higher-order offsets as the bottom ex-
ample in Figure 5.14 shows. The anchor of the adjective old is first

14 Indeed, the distributional feature dobj:steal has not been observed with the lexeme
bicycle in the representations derived from the BNC, but it has been observed with
bike.

15 Recalling from Chapter 3 that traversing an edge is a process of type reduction of
the form ↓ (r.r) = ε, where r is some dependency relation, such as in the concrete
reduction ↓ (amod.amod) = ε. Thus, traversing an edge requires an offset by its
inverse.
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Figure 5.14: Illustration of 3 example offsets. The top left example creates
a noun offset view of the adjective old, the top right example
creates a noun offset view of the verb repair, and the bottom
example shows a higher-order offset, creating a verb view for
the adjective old.

shifted along the amod edge, creating a “thing that can be old struc-
ture" as in the top right example. Subsequently, its anchor is further
shifted along the dobj edge, creating a “something that can be done
to an old thing", which represents a verb.

This creates the potential for a much richer inference mechanism,
that is able to infer features from the “surface form" distributional
Apt representation of a lexeme, as well as from its higher-order inter-
actions. For example, it is possible to learn that a bicycle can be stolen
from its distributional neighbour bike, and subsequently infer further
knowledge from “other things that can be stolen", such as that they
might be expensive or valuable.

Offset inference therefore offers the possibility to learn new know-
ledge at a more abstract concept level and goes beyond the shallow
inferences that can be made from the co-occurrences that have been
observed at the lexeme level. In order to achieve higher-order infer-
ences, I extend the distributional inference algorithm to include an
additional step, offsetting the current lexeme w by a specified path p,
to infer knowledge from neighbours of offset representations of the
given lexeme.

The pseudo-code for offset inference is shown in Algorithm 3 be-
low. The input to the algorithm is a source distributional model to
query neighbours from, M, a distributional representation of the lex-
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eme w for which offset inference should be performed, an offset path
p indicating on which offset view of w offset inference should be per-
formed on, the number of neighbours used for offset inference k, and
an optional set of neighbours constraining the neighbour space for
inference N.

Algorithm 3 Offset Inference

1: procedure offset_inference(M, w, p, k, N)
2: w′ ← offset(w, p)
3: for all n in neighbour_selection(M, w′, k, N) do
4: w′′ ← merge(w′′, n)
5: end for
6: return w′′

7: end procedure

The original distributional inference algorithm can be recovered
by passing the empty path, p = ε, as offset to the algorithm. A fur-
ther constraint to Algorithm 3 is the need of the source distributional
model M to provide a meaningful mechanism for representing offset
representations.

The additional offset step in the algorithm does impact its runtime.
The runtime of offsetting depends on the dimensionality of the distri-
butional space — or with a tighter bound — on the average number
of non-zero dimensions across all word representations in the space,
dAvg. The algorithm performs inference for a single given offset at a
time, however it is possible to infer additional distributional features
for any number of offset paths. For example, for any noun, one could
perform distributional inference on the noun itself, as well as on its
amod, dobj and nsubj offset views, executing the algorithm 4 times
altogether. A single run of the algorithm now consumes O(dAvg +

n q dAvg) runtime due to the offset operation requiring O(dAvg) ad-
ditional work. Denoting the number of offset paths for a given lex-
eme as z, the running time of the algorithm increases to O(z (dAvg +

n q dAvg))
16.

5.3.1 What kind of Knowledge can be Inferred?

Table 5.6 shows a number of example inferences that can be made
from offset representations. All example co-occurrences in the table
have been observed with the neighbours, but not with the target lex-
eme itself. Offset representations exhibit a less specific semantic space,

16 Presupposing that the pairwise similarities have been computed upfront.



5.3 offset inference 150

as shown for its distribution of semantic relations in the previous
chapter, because they conflate several different semantic meaning po-
tentials into one view. For example, the offset representation oldamod —
an old thing — blends together fragments of meaning from its usage
in old car, old friend, old job, amongst many others.

Offset Neighbours Inferred Co-occurrences
magazineamod newspaperamod, glossy, amod:column, amod:report

monthly amod:payment
magazinedobj newspaperdobj, edit, read dobj:paragraph, dobj:fiction,

dobj:message
magazinensubj newspapernsubj, journalnsubj, nsubj:press, nsubj:researcher,

publish nsubj:government
cafeamod pubamod, restaurantamod, amod:lounge, amod:house

comfortable amod:accommodation
cafedobj pubdobj, restaurantdobj, dobj:hotel, dobj.amod:furnished

roomdobj dobj.amod:elegant
cafensubj pubnsubj, restaurantnsubj, nsubj:library, nsubj:office

roomnsubj nsubj.amod:spacious
catamod dogamod, stray, wild amod:party, amod:flower

amod:creature
catdobj dogdobj, catnsubj, feed dobj:cattle, dobj:population,

dobj.amod:hungry
catnsubj dognsubj, catdobj, jump nsubj:heart, dobj:fence

dobj:cliff

Table 5.6: Example offset inferences from the boldfaced neighbours for a
given lexeme using the Apt baseline model. The distributional
features have been observed with the (boldfaced) neighbours, but
not with the offset representation itself.

Table 5.6 reflects that characteristic. For example, a close neighbour
of the adjective offset view for the noun magazine is the adjective
monthly which indicates that magazines tend to occur in a monthly
interval. However, something monthly is less specific than an attribute
of a newspaper, i.e. it could also be a bill or a salary, hence the off-
set inference algorithm infers co-occurrences such as amod:report or
amod:payment for the lexeme magazine.

However, performing inferences on offset representations opens the
possibility to expand the knowledge of a lexeme beyond the features
that can be learnt from a direct distributional neighbour. For example,
Table 5.6 shows that from observing the neighbours of cafedobj —
verbs that are specifying actions that take cafe as their direct object
— it is possible to infer that cafes are usually furnished and often eleg-
ant from its neighbour roomdobj. Another example is that through the
offset representation catdobj — things done to a cat — it can be learnt
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that cats can be hungry from its neighbour feed. Thus, offset inference
is able to learn attributive and behavioural common sense knowledge
about a given lexeme that distributional semantic models frequently
struggle with (Rubinstein et al., 2015) as the relevant information is
often not mentioned explicitly in the text.

Characterising the Effect of Offset Inference on the Distributional Space

Figure 5.15 shows the impact of offset inference on the BLESS data-
set, using the Apt-WS-MEN model (top row in Figure 5.15) and the
Apt baseline model (bottom row in Figure 5.15). The top row shows
how the distribution of similarities is changed from an Apt-WS-MEN
space without distributional distributional inference (top left) to the
same Apt-WS-MEN model with offset inference (top right) on the
amod, dobj and nsubj views for each target concept.

The use of offset inference has the effect of making the similarit-
ies of co-hyponyms much peakier, and comparatively more similar
to the target concepts, than the Apt space without distributional in-
ference. At the same time, offset inference decreases the similarities
to all other relations for this Apt space. This result is remarkable, as
it provides empirical evidence that in its combination, co-hyponyms
share a substantial amount of properties as well as events in which
they participate as agent or patient. The combination of these proper-
ties and events, however, is not shared by hypernyms or meronyms.

The bottom row in Figure 5.15 highlights the change in similarities
between an Apt baseline model without DI (bottom left) and the same
Apt baseline model with combined standard distributional inference
and offset inference on the advmod view of all target concepts (bottom
right). Enriching the elementary representations with the combina-
tion of standard and offset distributional inference has the effect of
decreasing the similarities to co-hyponyms, while at the same time sub-
stantially increasing the similarities to hypernyms, meronyms, and —
somewhat undesirably — events and random nouns. Offsetting by
the advmod relation shows the versatility of offset inference, especially
in comparison to offsetting an Apt representation by amod, dobj and
nsubj. Where the offset inference on the advmod view biases the se-
mantics of the representation away from co-hyponyms and towards
hypernyms and meronyms, offset inference on amod, dobj and nsubj

offset views biases the semantics of the Apts towards co-hyponyms
exclusively.
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Figure 5.15: Comparison of the Apt-WS-MEN models (top row) and
Apt baseline models (bottom row) on the BLESS dataset with
and without offset inference. The top row compares the Apt-
WS-MEN model without any form of distributional inference
to the same Apt-WS-MEN model with offset inference on its
amod, dobj and nsubj offset views. The bottom row compares
the Apt baseline model without DI to the same Apt baseline
model with combined standard distributional inference and off-
set inference on the advmod offset views of each target concept.

This behaviour creates an interesting avenue for future work where
offset inference in conjunction with Anchored Packed Trees can po-
tentially be leveraged for distinguishing co-hyponyms and hyper-
nyms in text. For example, the boxplot for offset inference on the
amod, dobj and nsubj offset views (Figure 5.15, top right) shows that
the combination of properties of target concepts, actions done to a
target concept, and actions carried out by a target concept, tend to be
very similar to their respective co-hyponyms, but far less similar to
their hypernyms.
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5.3.2 Quantitative Analysis

In order to evaluate the performance of offset inference, I am using
the same datasets — WS353 (sim), WS353 (rel), MEN, SimLex-999,
and ML2010 — as for the evaluation of the standard distributional
inference algorithm, and reusing the same optimised Apt models. For
the two WordSim-353 subtasks and the MEN dataset, I use the Apt-
WS-MEN model, for SimLex-999 I use the Apt-SL-999 model, and for
the ML2010 dataset I use the Apt baseline model for composition by
intersection and the Apt union model for composition by union. In
the following, given the ambiguity of the term distributional inference,
I will use “standard distributional inference" to refer to generalised
distributional inference (see Algorithm 2) and “offset inference" to
refer to the algorithm introduced in this section (see Algorithm 3).

Word Similarity

For the word similarity tasks, I restrict the evaluation to nouns only
and infer knowledge from neighbours from the respective amod, dobj,
nsubj offset representations of a given lexeme. I furthermore test the
combination of offset inference and standard distributional inference,
which infers co-occurrences from “surface-form" distributional neigh-
bours in addition to its offset neighbours. Essentially, combining off-
set inference and standard distributional inference amounts to execut-
ing the offset inference algorithm an additional time with p = ε as
the offset path (see Algorithm 3 above).

Table 5.7 shows an overall comparison between the Apt baseline
model without any form of distributional inference, the respective
tuned Apt models from the previous chapter without distributional
inference, and the tuned Apt models with standard distributional
inference, offset inference, and the combination of standard distribu-
tional inference and offset inference. As the results show, using offset
inference by itself results in worse performance than using standard
distributional inference and generally performs barely better than the
tuned Apt model without DI. Combining standard distributional in-
ference and offset inference appears to benefit the WordSim-353 (sim-
ilarity) subtask, but is hurting performance on the WordSim-353 (re-
latedness) and MEN datasets.

This suggests that higher-order knowledge inferences from offset
neighbours are less beneficial for word similarity tasks. A likely ex-
planation is that the offset inference process introduces too much
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WS353 (sim) WS353 (rel) MEN (N) SL-999 (N)
Apt baseline 0.40 (+/- 0.14) 0.24 (+/- 0.06) 0.399 (+/- 0.01) 0.24 (+/- 0.01)
Tuned Apts 0.52‡ (+/- 0.09) 0.35† (+/- 0.01) 0.440‡ (+/- 0.01) 0.25 (+/- 0.01)
Tuned Apts + DI 0.54‡ (+/- 0.06) 0.35† (+/- 0.06) 0.492‡♠ (+/- 0.01) 0.32‡♠ (+/- 0.00)

Tuned Apts + OI 0.53‡ (+/- 0.08) 0.29 (+/- 0.06) 0.435† (+/- 0.01) 0.28† (+/- 0.01)
Tuned Apts + comb. 0.59‡♦ (+/- 0.02) 0.26 (+/- 0.08) 0.440‡ (+/- 0.01) 0.27 (+/- 0.01)

Table 5.7: Comparison between distributional inference (DI), offset inference
(OI), combined offset and standard distributional inference (com-
bined), with the tuned Apt models without any distributional in-
ference and the Apt baseline model without distributional infer-
ence on the two WordSim-353 subtasks as well as the noun-only
subsets of MEN and SimLex-999. Performance is reported in terms
of averaged Spearman ρ across 2-fold cross-validation. The num-
bers in parentheses denote the standard deviation across the two
runs. Results marked with † and ‡ are statistically significant at
the p < 0.05 and p < 0.01 levels, respectively, in comparison to
the Apt baseline model. Results marked with ♦ and ♠ are statist-
ically significant at the p < 0.05 and p < 0.01 levels, respectively,
in comparison to the Tuned Apt model without any form of dis-
tributional inference. Statistical significance has been calculated
according to the method of Steiger (1980). For readability reasons,
a third significant digit is only added when necessary.

noise into the elementary Apt representations, which are lacking a
mechanism, such as composition by intersection, to filter out the im-
plausible co-occurrences.

Table 5.8 lists the optimal number of neighbours for the word simil-
arity tasks, determined by 2-fold cross-validation for standard distri-
butional inference, offset inference, and combined distributional and
offset inference.

Dataset DI OI DI+OI
WordSim-353 (similarity) 200 10 10/50
WordSim-353 (relatedness) 500 100 25/100
MEN 50 10 10/50
SimLex-999 500 10 10/50

Table 5.8: Number of neighbours used for the word similarity tasks. The
notation x/y for combined distributional and offset inference
means means that x is the number of neighbours used for stand-
ard distributional inference and y is the number of offset neigh-
bours for offset inference.

Phrase Similarity

The ML2010 dataset allows for a more focused offset inference pro-
cess because composition requires the explicit instantiation of a spe-
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cific offset view in order to align the Apt representations in a given
phrase. For any two constituents in a phrase, the head of the phrase
is enriched with standard distributional inference. For the dependent,
its appropriate offset view is instantiated, and subsequently enriched
with offset inference. For the combination of the two inference meth-
ods, the head of the phrase is smoothed with standard distributional
inference as before. The dependent is smoothed with standard dis-
tributional inference prior to offsetting, and after its offset view has
been instantiated from its enriched representation, offset inference is
performed on the instantiated offset view before composition.

A comparison on the ML2010 dataset between an Apt model, using
composition by intersection and composition by union, without dis-
tributional inference, the same model with distributional inference,
offset inference, and its combination is shown in Table 5.9. As the
table highlights, any form of distributional inference significantly im-
proves over a baseline without a mechanism to enrich the elementary
representations for composition by intersection. For composition by
union, standard distributional inference does not improve perform-
ance across all three composition tasks on average, however offset
inference or combined standard distributional inference and offset
inference does.

The benefit of using offset inference with composition by union is
smaller in magnitude in comparison to a baseline without DI, but con-
sistent and furthermore consistently better than the standard distribu-
tional inference algorithm. However, due to lacking a mechanism for
filtering implausible or noisy co-occurrence events, the performance
cannot be improved much beyond the level of a well tuned Apt space
without any distributional inference.

With the Apt baseline model, using composition by intersection,
offset inference is able to improve upon a baseline without any
distributional inference, however its performance lags behind that
of standard distributional inference. The reason for this is that the
Apt baseline model represents a non-optimal parameterisation for
offset inference. If the number of neighbours for all distributional
inference algorithms is optimised jointly with the other Apt hyper-
parameters, offset inference, together with composition by intersec-
tion, achieves state-of-the-art performance on the ML2010 dataset. For
standard distributional inference, the Apt baseline model indeed rep-
resents the optimal parameterisation, whereas for offset inference, the
Apt union model is a significantly better configuration. Jointly optim-
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Composition by Intersection AN NN VO Average
Tuned Apt model 0.39 0.41 0.35 0.38
Tuned Apt model + DI 0.48‡ 0.46‡ 0.44‡ 0.46‡

Tuned Apt model + OI 0.46‡ 0.43‡ 0.41‡ 0.43‡

Tuned Apt model + combined 0.47‡ 0.43‡ 0.41‡ 0.44‡

Composition by Union AN NN VO Average
Tuned Apt model 0.503 0.454 0.445 0.467
Tuned Apt model + DI 0.499 0.444 0.452† 0.465

Tuned Apt model + OI 0.503 0.445 0.459‡ 0.469†♠

Tuned Apt model + combined 0.504♦ 0.445 0.459‡ 0.469†♠

Table 5.9: Comparison between tuned Apt models without DI and the same
models with the use of distributional inference on the ML2010

composition task. Results denoted with † and ‡ mark statistical
significance at the p < 0.05 and p < 0.01 level in comparison to the
Tuned Apt model without distributional inference, per composi-
tion function, respectively. Results marked with ♦ and ♠ mark
statistical significance at the p < 0.05 and p < 0.01 level in com-
parison to the Tuned Apt models with standard distributional in-
ference, per composition function, respectively. Statistical signific-
ance has been determined using the method of Steiger (1980). For
readability reasons, a third significant digit is only added when
necessary — the use of 3 significant digits is justified when us-
ing the original evaluation regime of Mitchell and Lapata (2010),
which treats every human judgement as an individual data point,
resulting in almost 3.9k data points in the test set.

ising the number of neighbours with the other Apt parameters did
not result in further improvements for composition by union.

Table 5.10 compares the optimised Apt spaces without distribu-
tional inference, standard distributional inference, offset inference,
and combined standard and offset distributional inference, using com-
position by intersection, to other state-of-the-art model that reported
results on the ML2010 dataset using the BNC as source corpus17.

17 For example, other approaches that reported state-of-the-art performance on the
ML2010 dataset such as Wieting et al. (2015) used the Paraphrase Database (Gan-
itkevitch et al., 2013) as source corpus, while we used a cleaned version of Wikipedia
in Kober et al. (2016), and the concatenation of ukWaC, Wackypedia and the BNC
in Kober et al. (2017a).

18 The results reported here differ from the ones reported in Table 3 in Hashimoto et al.
(2014) because they did not evaluate their model against just the human judgements
from the test set. Unfortunately, private communication with Kazuma Hashimoto
could not resolve the issue. The reported results in this thesis use the published
resources of Hashimoto et al. (2014) and re-evaluted their model on just the test set
of the ML2010 dataset.
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Model AN NN VO Average
Kiela et al. (2014)∗ (cosine) 0.57 0.56 0.52 0.55
Kiela et al. (2014)∗ (correlation) 0.66 0.60 0.53 0.60
Apt

∗ + combined (intersect & cosine) 0.76 0.64 0.64 0.68
Apt

∗ + combined (intersect & correlation) 0.73 0.64 0.58 0.65

Mitchell and Lapata (2010) 0.46 0.49 0.37 0.44
Blacoe and Lapata (2012) 0.48 0.50 0.35 0.44
Hashimoto et al. (2014)18 0.49 0.45 0.46 0.47
Weir et al. (2016) 0.45 0.42 0.42 0.43

Apt + DI (union) 0.50 0.44 0.45 0.46
Apt + OI (union) 0.50 0.45 0.46 0.47
Apt + combined (union) 0.50 0.45 0.46 0.47

Apt + DI (intersect) 0.48 0.46 0.44 0.46
Apt + OI (intersect) 0.50 0.50‡♣ 0.45 0.48
Apt + combined (intersect) 0.52‡ 0.51‡♣ 0.45 0.49‡♠

Human agreement 0.52 0.49 0.55 0.52

Table 5.10: Comparison between the best performing Apt model in this
thesis with the state-of-the-art results from the literature. Mod-
els marked with ∗ denote that the result has been obtained by
comparing to averaged human judgements (i.e. the same evalu-
ation regime as used for the word similarity tasks) whereas mod-
els without an asterisk are evaluated on the basis of comparing to
individual human judgements (i.e. the original scheme of Mitchell
and Lapata (2008)). Results marked with ‡ are statistically signi-
ficant at the p < 0.01 level in comparison to the Apt + DI (inter-
sect) model, and ♠ denotes statistical significance at the p < 0.01
level in comparison to the Apt + OI (intersect) model. Results
marked with ♣ denote statistical significance at the p < 0.01
level in comparison to the state-of-the-art neural network model
of Hashimoto et al. (2014). The method of Steiger (1980) is used
as a statistical test.

As the results in Table 5.10 show, the Apt models19 with distribu-
tional inference outperform comparable sparse untyped count-based
models of Mitchell and Lapata (2010) and Blacoe and Lapata (2012),
using pointwise multiplication as composition function, and Kiela
et al. (2014) using pointwise addition. Furthermore, Apts in combina-
tion with combined standard distributional inference and offset infer-
ence outperform the neural network model of Hashimoto et al. (2014),
and achieve a new state-of-the-art on the ML2010 dataset. This shows
that distributional inference in conjunction with Anchored Packed
Trees is able to bridge the performance gap between interpretable
high-dimensional explicit word representations and low-dimensional

19 In Kober et al. (2016) we showed that the positive effect of distributional inference
furthermore transfers over to untyped count-based sparse word representations, al-
beit the benefit is smaller than for Apts.
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distributed neural network models for the ML2010 short phrase com-
position tasks.

Table 5.11 lists the optimal number of neighbours for all tasks of
the ML2010 dataset, determined on the respective development sets
for standard distributional inference, offset inference, and combined
distributional and offset inference.

Dataset DI OI DI+OI
ML2010 (adjective-nouns) 10/30 30/30 10/30
ML2010 (noun-nouns) 50/5000 10/1000 10/1000
ML2010 (verb-objects) 400/10 10/400 10/400

Table 5.11: Number of neighbours used for each task of the ML2010 dataset.
The notation x/y refers to the number of neighbours used for
composition by intersection x, and the number of neighbours
used for composition by union y.

5.4 distributional composition and distributional in-
ference

If untyped distributional semantic word representations are com-
posed with a pointwise arithmetic composition function20, then dis-
tributional inference and distributional composition are modelled by
the same algebraic mechanism as in the algorithms of Kintsch (2001)
and Utsumi (2009). With the generalisation of the offset inference al-
gorithm, distributional composition and distributional inference in
Anchored Packed Trees are also both realised by the same mechan-
ism — an offset followed by merging the features of two or more
representations.

In essence, distributional composition can be interpreted as an in-
ference process that, when given two or more lexemes in some gram-
matical construction, needs to infer the distributional features that
are plausible in the combined expression. This relation creates an in-
teresting dynamic between distributional inference and composition
by intersection when used in a complementary manner. The infer-
ence process can be used as a method for co-occurrence embellishment,
which adds missing information to a representation, however with
the risk of introducing co-occurrences implausible for the current
context. For example, given the phrase river bank, distributional infer-
ence will likely infer knowledge for the lexeme bank that concerns its
“financial institution" meaning, which however, is not relevant to the

20 For example pointwise min, max, addition or multiplication.
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phrase river bank. Therefore, an intersective composition function can
be used as a process of co-occurrence filtering, that is leveraging the en-
riched representations, while filtering out co-occurrences unsuitable
for the current context.

Table 5.12 below highlights the interplay between distributional
composition and inference. The table shows the 10 nearest neigh-
bours, corresponding to the meaning expressed by the subsequent
use in a phrase, for a number of ambiguous lexemes. The super-
scripted annotation denotes whether the neighbour corresponds to
the first (1) or second (2) phrase. The number in parentheses de-
notes the rank of the given neighbour. The last column shows the
5 nearest neighbours of the composed phrases. For this experiment,
the Apt baseline model, together with composition by intersection
and 50-100 neighbours for the offset inference algorithm, has been
used.

Lexeme Neighbours Phrase Neighbours

bank

company1(1), firm1(2), fund1(5), bank account account, bank, deposit, loan,
office1(7), business1(13), customer
bridge2(66), shore2(68), coast2(69), river bank bank, thames, bridge, valley,
beach2(97), trip2(98) river

novel

article1(5), papers1(9), notion1(21), novel method method, technique, approach,
journal1(23), innovative1(25), concept, procedure
poem2(1), fiction2(2), poetry2(3), romantic novel novel, fiction, poem, poetry,
story2(4), essay2(10) story

plant

tree1(1), shrub1(2), flower1(3), plant cell cell, tissue, plant, species,
grass1(13), crop1(14), factory2(4), extract
station2(7), equipment2(8), power plant plant, station, factory,
building2(10), industry2(16) equipment, unit

tear

anger1(2), scream1(21), cry1(22), false tear tear, accusation, promise,
disappointment1(24), yell1(26), hurry, surprise
rip2(1), drag2(4), pull2(8), tear apart tear, pull, drag, push,
sweep2(10), toss2(11) shake

Table 5.12: 10 neighbours, with their ranks in parentheses, for a number of
ambiguous lexemes and their use in phrases which disambig-
uates their meaning. Despite inferring co-occurrences from dif-
ferent meanings of an ambiguous lexeme, composition by inter-
section is able to appropriately contextualise the meaning of the
given ambiguous lexeme as shown by the 5 nearest neighbours
of each phrase. Superscripts for the neighbours of the lexemes
denote whether the neighbour is indicative of the meaning ex-
pressed by the first (1) or second (2) phrase.

As the example for the ambiguous lexeme bank shows, the nearest
neighbour expressing the “sloping land" sense of bank has only rank
66. This means that the distributional inference process is predomin-
antly enriching the Apt representation of bank with knowledge con-
cerning its “financial institution" meaning. Nonetheless, composition
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by intersection is able to recover the correct meaning of bank in the
phrase river bank, as its 5 nearest neighbours show. For the other am-
biguous lexemes, the respective neighbours are relatively balanced
between the meanings expressed in the short phrases. This leads to a
distributional inference process that embellishes a given elementary
Apt representation with co-occurrences from all meanings21 of an am-
biguous lexeme. However, composition by intersection is able to filter
most implausible co-occurrences and thereby recover the intended
meanings of the lexemes in context.

While composition by intersection has the capability to filter out
unrelated co-occurrences by itself, its strong discriminatory nature
leads to the issue of data sparsity. Therefore, it requires a support
mechanism that provides additional data to ease the sparsity effect.
As the empirical work in this thesis has shown, distributional infer-
ence represents such a supporting mechanism that is able to over-
come the sparsity issue while maintaining the discriminatory power
of the composition function.

5.5 summary

This chapter has provided an analysis of the issue of data sparsity
which is the result of not observing all plausible co-occurrences for
any given lexeme. Subsequently, an unsupervised algorithm has been
proposed to explicitly infer missing co-occurrence events and thereby
provide a mechanism to substantially ease the data sparsity prob-
lem. Furthermore, the standard distributional inference algorithm has
been generalised to offset inference in the scope of Anchored Packed
Trees.

The distributional inference algorithms have been qualitatively ana-
lysed in order to characterise the knowledge that is being inferred,
and have been put into context with earlier work as well as recent
developments using data augmentation. The merit of distributional
inference has been empirically validated on a number of popular
word similarity tasks, as well as a short phrase composition dataset.
The results demonstrate substantial and statistically significant im-
provements over a baseline without distributional inference, and are
closing the performance gap between high-dimensional interpretable
models and low-dimensional uninterpretable models for short phrase

21 All meanings present among the top n nearest neighbours in the given source cor-
pus.
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composition tasks. While for the short phrase composition tasks signi-
ficant performance improvements could be observed with any amount
of available data, the improvements due to distributional inference be-
come smaller with more available data on the word similarity tasks.

Furthermore, the limitations of the proposed algorithms have been
analysed, highlighting that the number of neighbours used for infer-
ence has a significant impact on the resulting distributional character-
istics of the enriched representations as well as on task performance.

Lastly, the chapter has uncovered a latent relation between distribu-
tional inference and distributional composition, and has highlighted
their complementary nature with an intersective composition func-
tion.



6
C O N C L U S I O N

This section highlights the main contributions of this thesis (§ 6.1),
summarises the thesis as a whole (§ 6.2) and provides an overview of
possible directions for future work (§ 6.3).

6.1 main contributions

This thesis contributed a practical evaluation of the Apt theory, to-
gether with a characterisation of the distributional semantic space
that elementary, offset and composed Apt representations give rise
to. Then, the thesis analysed and addressed the data sparsity prob-
lem in the Anchored Packed Trees framework. Data sparsity repres-
ented a central challenge to composition in Apts because of their rich
type structure, which results in a very sparse and high-dimensional
distributional space. The proposed algorithms for explicitly inferring
missing co-occurrence events from the distributional neighbourhood
have been shown to successfully alleviate the sparsity problem. The
thesis examined the kind of knowledge that can be inferred from
the distributional neighbourhood, as well as quantifying the impact
of distributional inference on the semantic space. Subsequently, the
thesis showed that the use of any form of distributional inference
resulted in statistically significant performance improvements on a
range of word similarity tasks as well as a short phrase composition
task.

6.2 summary

To summarise, the thesis contextualised the Apt framework and
the distributional inference algorithm with related work concerning
distributional semantics, compositional distributional semantics,
modelling word meaning in context and inferring unobserved events
in Chapter 2. The Anchored Packed Trees framework (Weir et al.,
2016) has been reviewed in Chapter 3. Subsequently, a practical eval-
uation of the Apt theory on the basis of a large-scale hyperparameter
sensitivity analysis was provided in Chapter 4. In addition, Chapter 4
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derived a robust set of favourable parameter settings which have been
shown to work well on a number of popular word similarity datasets
as well as on a short phrase composition benchmark. Furthermore,
Chapter 4 contributed a characterisation of the distributional space
that Apts give rise to and confirmed previous findings in the
literature that the neighbourhood of typed distributional semantic
models tends to be governed by co-hyponymy. Lastly, Chapter 4

studied the distributional semantics of offset Apt representations
as well as composed Apt representations, showing that offset Apts
provide a complementary view of the semantics of a lexeme and that
adjective-noun composition preserves the general characteristics of
the head noun.

Chapter 5 analysed the issue of data sparsity which is inherent
in natural language, and stems from not observing all plausible co-
occurrences for any given lexeme in a source corpus. Instead of us-
ing various dimensionality reduction techniques which would render
the distributional space uninterpretable, Chapter 5 proposed an un-
supervised algorithm to learn about unobserved co-occurrence events
in distributional space by explicitly inferring them from their neigh-
bours. The distributional inference algorithm is based on smooth-
ing approaches in the language modelling community (Essen and
Steinbiss, 1992; Dagan et al., 1993) and can be interpreted as a soft-
clustering algorithm where any given lexeme is the centroid of the
cluster formed by the weighted average of its distributional neigh-
bours.

In the following Chapter 5 showed that the distributional inference
algorithms successfully alleviates the data sparsity problem, result-
ing in statistically significant performance improvements for all data-
sets used in this thesis. Furthermore, the distributional inference al-
gorithm has been generalised within the Apt framework to offset
inference in order to effectively leverage the rich type structure in
Apts. Furthermore, Chapter 5 investigated how much data the dis-
tributional inference algorithm can make up for and found that DI
is able to improve performance at any (reasonably large) amount of
data, and is especially beneficial in combination with an intersective
composition function.

In addition to the quantitative studies of the distributional and off-
set inference algorithms, Chapter 5 contributed a qualitative analysis
that explored how inferring additional knowledge changes the charac-
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teristics of the distributional space, and furthermore what knowledge
can possibly be inferred.

Lastly, Chapter 5 highlighted the close relation between distribu-
tional composition and distributional inference which both are real-
ised by the same mechanism. This insight also provides an explana-
tion why an intersective composition function benefits relatively more
from an inference mechanism, as the two methods can be used in a
complementary manner.

6.3 future work

The work in this thesis opened up a number of avenues for future
work and I will briefly give an overview of possible routes. Directions
for future work are categorised in work concerning the Apt frame-
work itself (§ 6.3.1), work involving the distributional inference al-
gorithm (§ 6.3.2), and potential next tasks for applying Apts together
with distributional inference (§ 6.3.3).

6.3.1 Future Work on APTs

The current instantiation of the Anchored Packed Trees framework
uses a dependency grammar to model relations between lexemes, but
the theory itself is agnostic to the concrete grammatical formalism
used. One problem with using syntactic dependencies in a semantic
framework is that the type structure is frequently too fine-grained.
For example for a typed distributional semantic representation, dis-
tinguishing the active from the passive voice as in geese chase ducks
vs. ducks are chased by geese, is often undesirable as it leads to further
scattering the knowledge about the entities involved. Therefore, one
possible strand of future work would be to employ a different gram-
matical formalism such as Minimal Recursion Semantics (Copestake
et al., 2005), or Combinatory Categorical Grammar (Steedman, 2000),
which are able to abstract over such semantically equivalent classes.

An alternative strand of future work would be to either learn syn-
tactic relations from data directly, or to derive a more coarse grained
set of relations from the existing dependency structure, by e.g. clus-
tering similar dependency relations. Creating a more compact distri-
butional space for Apts has the potential for improving the handling
of longer phrases.
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6.3.2 Future Work on Distributional Inference

Currently, the distributional inference algorithm suffers from the
“cold-start" problem as it aims to create improved representations
from a knowingly incomplete distributional model. One potential
solution for the problem would be to leverage an existing lexical re-
source such as WordNet to provide an initial set of “good" neigh-
bours, and subsequently switch to the unsupervised mode and infer
knowledge from the distributional neighbourhood.

An alternative approach would be to apply an iterative inference
algorithm that does not consume all of the top n neighbours at once,
but only uses the first 3-5 neighbours per iteration to gradually enrich
the elementary representations. A further alternative would be to use
a different source distributional model, or indeed an ensemble of dis-
tributional models, to query an initial set of neighbours from. How-
ever, this would only be applicable to the offset inference algorithm
if the source distributional models are Apts themselves.

Another strand of future work would be to employ more soph-
isticated neighbour selection algorithms. Kintsch (2001) and Utsumi
(2009) used relatively simple constraints to select neighbours, and it
might be feasible to improve the distributional inference algorithm
with e.g. knowledge-based neighbour selection constraints by lever-
aging resources such as WordNet. An example would be to restrict
that any distributional neighbour to be within some edge distance in
WordNet, or even to impose the constraint that any neighbour must
be in a particular semantic relation, such as hypernymy, to the target
lexeme. A further option to extending the distributional inference al-
gorithm would be through a clustering of the neighbours of a lexeme.
Subsequently, only a subset of the (highest-ranking) features from
each cluster would be selected for inference. This has the potential
of achieving a tighter inference process that is reducing the amount
of inferred noise due to relying on a larger amount of evidence for a
co-occurrence event.

6.3.3 Task-based Future Work

There are numerous tasks to which Anchored Packed Trees in gen-
eral and distributional inference in particular would be well suited.
For example, potential tasks for assessing the contextualisation beha-
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viour in a more large-scale setting would be the lexical substitution
task (McCarthy and Navigli, 2007), setup as a paraphrase ranking
problem as in Erk and Padó (2008) and Thater et al. (2010, 2011), the
“Usage Similarity (USIM)" task of Erk et al. (2013) or the dictionary
definition task that we proposed in Kober et al. (2017b).

A very interesting route for further study would be the analysis
of the entailment properties of distributional inference, optionally in
conjunction with distributional composition, in further detail. A par-
ticularly fruitful avenue for further research would be the automatic
distinction of co-hyponyms and hypernyms based on the findings
in Chapter 5 (see Section 5.3.2). These show that offset inference to-
gether with a large SPPMI shift leads to a distributional space with
very high similarity scores for co-hyponyms, and very low similarity
scores for all other relations.

Lastly, measuring the impact of distributional inference on the se-
lectional preferences of common verbs would be a further feasible
task for evaluating the impact of DI on the distributional semantics
of Apt representations.



A
A P P E N D I X

Table A.1 lists the 20 additional adjectives that have been manually
added to the list of 55 adjectives occurring in the 72 distinct adjective-
noun phrases in the Mitchell and Lapata (2010) dataset, alongside
their frequency in the BNC, in order to study the distributional se-
mantics of offset representations in section 4.3.2, and specifically to
investigate their distributional neighbours (see Table 4.9).

Lexeme Frequency in BNC
ancient 4 946
blonde 1 062
blue 10 042
boring 1 481
clever 2 238
disgusting 464
dumb 728
exciting 3 261
green 14 863
long 56 301
nasty 1 809
new 124 114
old 53 171
pretty 7 570
red 14 960
sexy 634
shiny 692
short 19 721
smart 1 833
ugly 1 302

Table A.1: List of adjectives additionally added to the study of the distribu-
tional semantics of offset Apt representations.
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Table B.1 lists the 72 BLESS concepts alongside their most frequent
adjectival modifiers where the adjective-noun compound had more
than 50 occurrences in the BNC. The extraction of adjective-noun
compounds was done on the basis of an amod relation between the
two constituents. As the table below shows, some of the extrac-
ted adjective-noun pairs are due to parsing errors, because for ex-
ample the phrase Edinburgh castle represents a named entity — or
at least a noun-noun compound. In order to be consistent between
the Apt space1 and the dataset, the parsing errors have not been cor-
rected manually. This subset of BLESS has been used for character-
ising the distributional semantics of offset Apt representations (see
section 4.3.2) and composed Apt representations (see section 4.3.3).

BLESS concept Modifier (AN frequency in BNC)

ambulance john (60)

apple big (51)

bag carrier (186), paper (152), piping (55),

plastic (339), polythene (86), shopping (91),

sleep (184), tea (80)

bear polar (80), teddy (186)

bed double (251), flower (112), four-poster (58),

hospital (166), main (67), own (95), river (77),

sea (81), single (152)

birch silver (50)

blouse white (62)

bomb atom (54), atomic (137), car (117), hydrogen (54),

ira (122), mortar (50), nuclear (58), petrol (60)

bottle empty (58), glass (57), milk (91), plastic (70),

water (97)

bowl large (74), rose (53)

1 The creation of the Apt spaces relied on the same parsed corpus as the extraction of
frequent adjective-noun compounds.
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box ballot (108), black (134), cardboard (248),

deposit (50), dialogue (58), dispatch (61),

letter (138), little (91), metal (61), phone (117),

po (247), signal (114), small (66), telephone (105),

window (69), witness (67), wooden (87)

bull groupe (51), machines (66), pit (58)

bus local (126), school (65), scottish (54)

car big (74), black (53), british (63), cable (78),

company (239), diesel (70), dining (67), electric (57),

estate (60), european (55), family (56), fast (80),

first (59), hire (84), japanese (78), little (61),

luxury (57), many (53), motor (500), new (534),

old (114), other (168), own (156), park (130),

patrol (82), police (370), private (130), racing (69),

second-hand (60), small (91), sport (270), steal (202)

castle barnard (219), edinburgh (68), medieval (56),

windsor (148)

cat big (63), black (77), domestic (60), pussy (73),

wild (54)

chair comfortable (55), deputy (68), easy (70), high (51),

kitchen (55), wooden (62)

coat black (56), fur (103), white (170)

cottage country (67), little (52), rose (57), small (56),

tie (57)

cow dairy (70)

deer red (106)

desk reception (138)

dolphin river (53)

dress black (122), blue (58), cotton (50), evening (88),

fancy (120), new (64), red (50), silk (59),

wedding (134), white (73), golden (113)

elephant african (52)

fighter fire (67)
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glove rubber (59)

goat mountain (85)

guitar acoustic (87), electric (82)

gun big (74), machine (233)

hat black (66), bowler (78), hard (51), straw (116),

top (109)

herring red (70)

horse black (51), other (109), white (183), young (74)

hospital college (50), cross (55), day (81), district (52),

general (588), local (172), london (119),

maternity (78), memorial (163), mental (230), new (72),

nhs (53), other (66), park (69), private (104),

psychiatric (161), radcliffe (79), royal (95), teaching (94),

university (61), victoria (54)

hotel grand (161), house (160), london (58), luxury (77),

park (68), savoy (54), small (86), star (93)

jacket dinner (63), leather (182), tweed (64)

jar jam (71)

jet jumbo (65)

knife kitchen (53), sharp (104)

library academic (65), bodleian (54), british (301),

cdna (55), central (63), college (60), local (87),

national (146), public (461), reference (72),

research (52), school (249), university (172)

lion british (90), red (89)

missile ballistic (107), cruise (133), nuclear (70), scud (50)

oak royal (81)

onion spring (108)

oven microwave (87)

owl barn (240), brown (127), eagle (111), little (52),

tawny (94)

phone mobile (177)

pig guinea (134)
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pistol sex (141)

potato baked (57), jacket (77), new (71)

pub local (146)

radio bbc (237), car (54), community (58), local (255),

national (66)

restaurant chinese (67), italian (53), staff (51)

robin sir (79)

salmon smoked (93)

scarf silk (53)

sheep black (103)

shirt cotton (54), silk (79), striped (50), white (214)

spoon silver (50), wooden (76)

swan black (50)

table bedside (137), breakfast (87), coffee (158),

dining (127), dinner (88), dress (100), follow (94),

high (58), kitchen (282), league (279), little (60),

long (59), low (58), negotiating (56), next (56),

pool (53), round (241), side (61), small (130),

trestle (56), water (93), wooden (76)

tanker oil (73)

television bbc (92), british (63), cable (85), central (53),

circuit (52), colour (124), commercial (50),

independent (122), national (66), satellite (75)

train freight (67), passenger (100), royal (50),

special (89), steam (111)

trout brown (62)

van transit (57)

villa aston (340)

whale killer (56), minke (53)

yacht royal (63)

Table B.1: List of adjectival modifiers of the 72 BLESS concepts used to char-
acterise the distributional semantics of offset Apt representations
and composed Apt representations.
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