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Abstract

Observational surveys which probe our universe deeper and deeper into the nonlinear

regime of structure formation are becoming increasing accurate. This makes numerical

simulations an essential tool for theory to be able to predict phenomena at comparable

scales.

In the first part of this thesis we study the behaviour of cosmological models involving a

scalar field. We are particularly interested in the existence of fixed points of the dynamical

system and the behaviour of the system in their vicinity. Upon addition of spatial curvature

to the single-scalar field model with an exponential potential, canonical kinetic term, and

a matter fluid, we demonstrate the existence of two extra fixed points that are not present

in the case without curvature. We also analyse the evolution of the equation-of-state

parameter.

In the second part, we numerically simulate collisionless particles in the weak field

approximation to General Relativity, with large gradients of the fields and relativistic

velocities allowed. To reduce the complexity of the problem and enable high resolution

simulations, we consider the spherically symmetric case. Comparing numerical solutions to

the exact Schwarzschild and Lemaître-Tolman-Bondi solutions, we show that the scheme

we use is more accurate than a Newtonian scheme, correctly reproducing the leading-order

post-Newtonian behaviour. Furthermore, by introducing angular momentum, configura-

tions corresponding to bound objects are found.

In the final part, we simulate the conditions under which one would expect to form

ultracompact minihalos, dark matter halos with a steep power-law profile. We show that

an isolated object exhibits the profile predicted analytically. Embedding this halo in a

perturbed environment we show that its profile becomes progressively more similar to the

Navarro-Frenk-White profile with increasing amplitude of perturbations. Next, we boost

the power spectrum at a very early redshift during radiation domination on a chosen scale

and simulate clustering of dark matter particles at this scale until low redshift. In this

scenario halos form earlier, have higher central densities, and are more compact.
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Introduction

There are two main reasons why people want to study any dynamical evolving system.

The first is because they want to predict its behaviour in the future. The second is the pure

intellectual satisfaction one gains from understanding something beautiful. The observable

universe represents the largest system that we can potentially research, probe, describe

with predictable models and therefore gain insightful understanding.

Today, this understanding rests upon decades of interplay between theoretical mod-

els predicting phenomena that were confirmed by later observations, and observations

discovering new physics that led to the construction of new theories.

The success of the “hot big bang” (HBB) model, which predicts that the universe

started in a hot, dense state that later expanded and cooled, relies on the impressive

range of observations with which it is compatible. First came the observations that the

universe is expanding. As early as 1917, Slipher (Slipher, 1917) measured that most of the

galaxies are redshifted and concluded that our own must be moving with respect to them.

However, the discovery of the expansion of the universe is usually accredited to Hubble

(Hubble, 1929), since he introduced the linear distance-redshift relation (also the Hubble

law), which states that the further things are (distance d), the faster (speed v) they are

moving away from us:

v = Hd, (1.1)

where H is the Hubble parameter.

In 1948, Alpher, Bethe, and Gamow (Alpher et al., 1948) calculated the abundance

of elements heavier than hydrogen that were synthesised in the primordial nuclear fluid.

Their prediction agrees very well with the measured values and this process is today known

as the big bang nucleosynthesis.

Cosmology became a precise science, and not just something particle physicists do when

they feel philosophically inspired, with the discovery of the anisotropies in the cosmic

microwave background (henceforth CMB) radiation. First detected in 1964 by Penzias
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and Wilson (Penzias and Wilson, 1965), the CMB is light emitted from the surface of last

scattering, just after the protons and neutrons combined into atoms and the photons thus

became unbound and began to stream freely. It has since been probed by three major

satellite telescopes: COBE (Smoot et al., 1992) confirmed its black-body nature, and

discovered temperature anisotropies of the order 10≠5, which were carefully mapped out

by WMAP (Spergel et al., 2007) and even more precisely measured by Planck (Ade et al.,

2014b) which also gave strong evidence for their Gaussian nature. In addition, numerous

ground-based and balloon experiments performed measurements of polarisation, lensing,

and smaller angular scales from localised regions of the sky. All these probes allow us to

constrain parameters of the (standard) model of cosmology with fantastic precision.

A surprising discovery came in 1998, when two independent groups measured the ac-

celerated expansion of the universe using type Ia supernovae (Riess et al., 1998; Perlmutter

et al., 1999). This type of supernova is caused by a binary system with one of the stars

being a white dwarf. Gas and dust are being accreted onto the white dwarf and when

the total mass exceeds the Chandrasekhar limit (1.44 solar masses), the star explodes as

a supernova with a normalisable luminosity. This fact, together with the spectroscopic

measurement of their recession velocity makes them an excellent probe of the expansion

in the local universe.

On the other hand, many open questions in cosmology remain to be addressed. The

discovery of accelerated expansion ignited the discussion about its origin which is still

very much not settled, also known as the dark energy problem. While the cosmological

constant provides the simplest solution which requires the introduction of only one new

free parameter, many attempts have been made to come up with an alternative explana-

tion. Among the most popular candidates are tensor-scalar theories and modified gravity

models, most of which rely on introducing new degrees of freedom.

Only a small fraction of the energy density in the universe today is the usual matter

that we deal with on the Earth. According to Planck (Ade et al., 2015), this proportion is

only 4.8%. Dark energy is the dominant component of the total energy density, with 68.3%.

The rest is a component which interacts with the ordinary baryonic matter gravitationally,

and possibly through the weak interaction, but not electromagnetically. It has therefore

been dubbed dark matter.

Since all the astrophysical observations1 rely on measuring some part of the electro-

magnetic spectrum, all astrophysical evidence for dark matter is indirect.
1with the exception of the gravitational-wave experiments (Abbott, 2017b,a) and neutrino detections,

e.g. (Hirata et al., 1987)
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One of the first indications of dark matter came in the 1970s, when Vera Rubin meas-

ured the rotation curves of stars in the outer regions of galaxies and concluded that the

mass in those galaxies had to exceed the visible part in magnitude and spatial extent

(Rubin et al., 1980). Since then, many more observations confirmed the need for such

a component, from the CMB, gravitational lensing, large-scale-structure dynamics, and

galaxy clusters. Despite all this evidence, to this day, dark matter manages to successfully

avoid detection in a controlled environment. It is therefore not yet possible to answer

questions about its precise nature, such as, is it a particle or some other e�ect, what is

the mass of the particle, does it interact with normal matter other than through gravity,

etc. For the purposes of astronomical classification, there are three main broad branches

of theories of dark matter: cold, warm, and hot, which refers to the speed of the particles:

cold being slow compared to the speed of light, hot being relativistic, and warm being

in-between.

1.1 Standard Concepts in Cosmology

Most modern cosmological models respect the Copernican principle, which states that we

are statistically typical observers of the large-scale structure in the universe. On small

scales, this is a very poor assumption because it is trivial to realise that it is not the

case; both in our everyday lives, and on all scales up to the galactic ones, we can observe

environments with very high density, such as stars and planets, and others almost entirely

vacant of any matter, such as the interstellar space. However, as we examine larger

and larger scales (especially & 100 Mpc), the universe seems to become more and more

Copernican.

More formally, this statement is expressed through the concepts of statistical homo-

geneity and isotropy. The former states that the universe is the same at every point, and

the latter that it is the same in all directions. These two properties are not mutually as-

sured; one can envision manifolds that posses only one of these qualities. But if a space is

isotropic in at least two points, then it is also homogeneous. And likewise, if it is isotropic

around a point and also homogeneous, then it is isotropic at every point.

The isotropy is well supported by observations of the CMB, where the relative di�erence

in the temperature in di�erent directions2 does not exceed 10≠5.
2once we subtract the dipole anisotropy, caused by the movement of the Earth with respect to the

CMB, which is of the order of 10≠3.
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In practice, most cosmological models treat the contents of the universe perturbat-

ively, by separating background from perturbations. Only the background then needs to

be treated as perfectly homogenous and isotropic. Recently, there has been quite some

discussion whether this is the right approach – or whether by doing so one introduces

spurious e�ects, collectively referred to as backreaction (see for example Adamek et al.

(2017a) and references within).

1.1.1 Background: The Lagrangian, Einstein equations, Friedmann equa-

tions, curvature

In classical mechanics, when we want to describe the movement of a point particle, we

resort to the principle of least action, which states that when the system evolves from

one configuration to anther, it follows a “path” in configuration space for which S is an

extremum (Peskin and Schroeder, 1995). For a one-dimensional particle with coordinate

q(t), we can define the action as:

S =
⁄

dt L(q, q̇), (1.2)

where L(q, q̇) is the Lagrangian, and the dot represents time derivative. When the action

is minimised, ”S = 0, we obtain the equations of motion which govern the movement of

the particle. In classical mechanics, the Lagrangian is defined as L = T ≠ V , with T and

V being the kinetic and potential energy, respectively. The Euler-Lagrange equations are:

ˆL

ˆq
≠ d

dt

3
ˆL

ˆq̇

4
= 0. (1.3)

In classical field theory on the other hand, the Lagrangian depends on one or more fields

Ï(x) and their derivatives ˆµÏ(x). The action is therefore:

S =
⁄

dt L =
⁄

d4x L(Ï(x), ˆµÏ(x)), (1.4)

where we have introduced the Lagrangian density L. Demanding again ”S = 0, the

Euler-Lagrange equation now becomes:

ˆµ

A
ˆL

ˆ(ˆµÏ)

B

≠ ˆL
ˆÏ

= 0. (1.5)
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1.1.2 General Relativity (GR)

Compared to the other three fundamental interactions, gravity is treated a bit exception-

ally. Instead of introducing a new field which propagates through space-time, Einstein

realised that gravity can be described as curvature of the space-time itself. This insight

was inspired by two principles: the equivalence principle, which states that gravitational

and inertial mass are equivalent, and the relativity principle, demanding that the laws of

physics should not depend on the choice of the coordinate system they are written in. In

this section we will review some basic concepts of general relativity. More details can be

found in, for example, Carroll (2004) and Lyth and Liddle (2009).

We start with the line element, which describes the distance between two points in

space-time, and can be written in the Euclidean (flat) space-time and using the Cartesian

coordinates as:

ds2 = ≠dt2 + dx2 + dy2 + dz2. (1.6)

The overall sign of this equation is a convention; we will use (≠, +, +, +) throughout this

thesis. More generally, we can describe the two points as vectors in four-space xµ =

(t, x, y, z) and the line element becomes:

ds2 = gµ‹dxµdx‹ . (1.7)

Here, we have introduced the metric tensor gµ‹ . We also adopted Einstein summation

convention, which says that every pair of repeated space-time indices is summed over. In

general, gµ‹ has 16 entries, but because it is symmetric, gµ‹ = g‹µ, there are only 10

independent elements. We will also use the determinant of the metric, written as g.

The metric in equation (1.6) is called the Minkowski metric, characterised by there

being no matter and no curvature. It is sometimes written as ÷µ‹ .

The action of general relativity can be written as:

S =
⁄

d4x
Ô

≠g

3 1
16fiG

(R ≠ 2�) + Lmatter

4
. (1.8)

An action containing only a term with R is usually referred to as the Einstein-Hilbert

action. In the above equation, � is the cosmological constant and Lmatter describes the

matter contents of the model.

The equations of motion which can be derived by varying equation (1.8) with respect

to the metric are the Einstein equations. Before we write them down, we need to introduce
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some new concepts.

The metric connection is expressed by the Christo�el symbol:

�–
µ‹ = 1

2g–—(g—‹,µ + gµ—,‹ ≠ gµ‹,—) (1.9)

where commas symbolise partial derivatives with respect to the coordinate, for example

gµ‹,– = ˆ–gµ‹ = ˆg
µ‹

ˆx–

. Having the metric connection we can write down the Riemann

tensor:

Rfl
‡µ‹ = ˆµ�fl

‹‡ ≠ ˆ‹�fl
µ‡ + �fl

µ⁄�⁄
‹‡ ≠ �fl

‹⁄�⁄
µ‡ (1.10)

The Riemann tensor measures the intrinsic curvature, a property defined on a given man-

ifold. It should be distinguished from the extrinsic curvature, which depends on how a

submanifold is embedded in some higher-dimensional manifold. We can also formulate the

symmetric Ricci tensor:

Rµ‹ = R⁄
µ⁄‹ (1.11)

and Ricci scalar:

R = Rµ
µ. (1.12)

With these definitions in place, one can, by varying the action with respect to the metric,

derive the Einstein equations:

Rµ‹ ≠ 1
2gµ‹R + �gµ‹ = (8fiG)Tµ‹ . (1.13)

G is the Newton’s gravitational constant; sometimes the reduced Planck mass M2
P l =

1/(8fiG) and Ÿ = 8fiG are also used. The first two terms on the left side of this equation

come from the first term in equation (1.8) and describe the curvature of the space-time.

The third term on the left contanis �, the cosmological constant. On the left side we

introduced the stress-energy tensor, Tµ‹ , which depends on what matter contents of the

universe are described by Lmatter and is derived by:

T µ‹ = ≠ 2Ô≠g

ˆ(Lmatter
Ô≠g)

ˆgµ‹
. (1.14)

For the perfect fluid, which can be characterised by two quantities, its density fl and

pressure p, the energy-momentum tensor is T ‹
µ = diag(≠fl, p, p, p). More generally, pressure
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p and density fl are related through the equation of state:

p = wfl, (1.15)

where the parameter w corresponds to di�erent types of matter. For pure pressureless

matter, radiation, or the cosmological constant, w is constant and takes the value of 0,

1/3, and ≠1, respectively.

1.1.3 The background dynamics

Throughout this thesis, we will use the concept of the scale factor a(t) and comoving

coordinates x, related as:

r = a(t)x, (1.16)

where r is the proper physical coordinate. Because we assume homogeneity and isotropy,

a only depends on time. Focusing only on the dynamics of the background, and using the

Friedmann-Lemaître-Robertson-Walker (FLRW) metric ansatz:

ds2 = ≠dt2 + a(t)2
A

dr2

1 ≠ Kr2 + r2d◊2 + r2 sin ◊2d„2
B

, (1.17)

the Einstein equations (1.13) can be simplified into the Friedmann equations:

H2 = 8fiG

3 fl ≠ K

a2 + �
3 (1.18a)

ä

a
= ≠4fiG

3 (fl + 3p) + �
3 . (1.18b)

We have introduced the Hubble parameter H © ȧ/a and the curvature constant K, which

can be negative, zero, or positive for open, flat, or closed universe, respectively. This

will be discussed in some more detail in Chapter 2. The energy-momentum conservation

(T µ‹
;‹ = 0) gives the continuity equation, which holds separately for each component of

the universe:

fl̇ + 3H(fl + p) = 0. (1.19)

Using the equation of state (1.15), the continuity equation can be rewritten as:

fl̇

fl
= ≠3(1 + w) ȧ

a
(1.20)
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which can be integrated, assuming that w is constant, to give the dependence of the

background density on the scale factor, depending on the dominant fluid of the universe:

fl(t) = a(t)≠3(1+w). (1.21)

The radiation dominated phase (w = 1/3) therefore decays as flrad Ã a≠4. This means

that for our universe at some point the energy density of matter (w = 0) started to

dominate with flmat Ã a≠3. We refer to this event as the radiation-matter equality. At

even later times matter energy density gets diluted as well and the universe e�ectively

became dominated by the cosmological constant (w = ≠1), which has no dependence on

the scale factor: fl� Ã const. These are of course only the cases where one component

dominates over the others and to account for the transitions between di�erent stages, one

has to consider a mixture of fluids.

Another useful quantity to define is the critical density:

flcrit = 3H2

8fiG
. (1.22)

This follows from the first Friedmann equation (1.18a), with the spatial curvature set to

zero and the cosmological constant absorbed in flcrit. The critical density is therefore the

density of the universe if there is no background curvature. It can also be regarded as the

total energy density of the universe, once all di�erent components (apart from curvature)

are summed over. With this parameter in place, one can also define the density parameter,

for each component i of the universe as �i = fli/flcrit. The first Friedmann equation can

then be written as

H(a)2 = H2
(0)

3�(0)r
a4 +

�(0)m
a3 +

�(0)K
a2 + �(0)�

4
, (1.23)

where the subscript (0) denotes the value of the quantities at present, and we have addi-

tionally defined H2
(0) = 8fiGfl(0)crit/3 and �(0)K = ≠K/H2

(0).

Equation (1.23) can be used to give the functional dependence of scale factor with time

for special cases, where the background is dominated by one of the fluids. For radiation,

we have a2ȧ2 = H2
(0)�(0)r = const. and therefore

a(t) Ã t1/2. (1.24)
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Similarly, for pure matter and with negligible curvature, we have

a(t) Ã t2/3. (1.25)

Finally, for the case of dominant cosmological constant, one finds

a(t) Ã et. (1.26)

1.1.4 The redshift

The light coming from distant galaxies, which are moving away from us with the Hubble

flow3, is redshifted:

z = ⁄obs ≠ ⁄src
⁄src

(1.27)

where ⁄src is the wavelength of light, emitted by the source, and ⁄obs recorded by the

observer. This redshift z is one of the most important tools we have in cosmology to

measure the distance to an object. At the same time, since the light only travels at finite

speed, z serves as a measure for cosmological time. If the light is emitted at some time t1

when the scale factor is a(t1) and recorded at t2, we have:

1 + z = ⁄2
⁄1

= a(t2)
a(t1) . (1.28)

The scale factor is a dimensionless quantity and there is freedom in its normalisation.

For simplicity, it is often defined to be unity at the present time: a(t0) = 1. To give

some typical redshifts: the universe transitioned from being radiation to being matter

dominated at z ≥ 3200. The redshift of the CMB is z ≥ 1100, the most distant observed

galaxy is at z ≥ 11, the epoch of reionisation started around z ≥ 6, the most distant

observed supernova is at z ≥ 4. The universe started being dominated by a fluid with

equation of state w = ≠1 at z ≥ 0.3.
3Here it should be noted that a virialised object such as our Galaxy, is actually decoupled from the

Hubble flow and is not expanding in physical size. Therefore it is shrinking in the comoving-coordinate
frame.
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1.2 Eulerian Perturbation theory

So far we have focused on the dynamics of the homogeneous background, but the really

interesting aspect of the universe are its rich structures, from the cosmic web on the

largest scales, clusters, individual galaxies and their halos, to stars and planets. These

structures were most likely seeded by quantum fluctuations and inflated to macroscopic

scales in a process described by the theory of inflation. Once the background became

matter dominated, these seeds started growing due to gravitational attraction. Because

fluctuations are initially su�ciently small in amplitude, their evolution can be studied

using perturbation theory, until quite late times, when they start becoming order one.

For a thorough review see for example Bernardeau et al. (2002). We start with the fluid

equations:

Continuity equation: ˆfl

ˆt
+ Ò · (flv) = 0, (1.29a)

Euler equation: ˆv

ˆt
+ (v · Ò)v + Òp

fl
+ Ò� = 0, (1.29b)

Poisson equation: �� = 4fiGfl, (1.29c)

where fl = fl(r, t) is the density field, v = v(r, t) is the velocity field, � = �(r, t) denotes

the gravitational potential, and p = p(r, t) is the pressure, related to the density through

the equation of state: p = p(fl). In the Poisson equation we used the Laplacian, defined

as the divergence of the gradient: �� = Ò · Ò�. For each quantity y we introduce small

first-order perturbations by y(r, t) = ȳ(t) + ”y(r, t), where barred quantities denote the

background and ”y/ȳ π 1. Perturbation theory assumes this kind of split is possible.

It is justified as long as we consider early enough times and large enough scales. Here

we also assume the Newtonian limit, meaning that the velocities are non-relativistic and

there are no GR e�ects. These two assumptions will be relaxed in Chapter 34. Inserting

these perturbations into the fluid equations, keeping in mind that the background terms

satisfy the equations on their own, and keeping all perturbations up the first order, the

perturbed fluid equations become:

d”fl

dt
+ fl̄Ò · ”v + 3H”fl = 0 (1.30a)

4Note that there � refers to the metric perturbation and not the full potential.
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d”v

dt
+ H”v + Ò”p

fl̄
+ Ò”� = 0 (1.30b)

�”� = 4fiG”fl, (1.30c)

where we used v̄ = Hr, and we also introduced the total derivative as d/dt = ˆ/ˆt+(v·Ò).

Equations (1.30a)–(1.30c) apply only on subhorizon scales. For the velocity field, which

is a vector field, it is enough to specify its divergence ◊(r, t) = Ò · ”v(r, t) and vorticity

w(r, t) = Ò ◊ ”v(r, t). Taking the divergence of the Euler equation (1.30b), and replacing

the last term from the Poisson (1.30c), we get, for the evolution of the divergence:

d◊

dt
+ H◊ + �”p

fl̄
+ 4fiG”fl = 0. (1.31)

Similarly, by taking the curl of equation (1.30b), we get, for the evolution of vorticity:

dw

dt
+ Hw = 0. (1.32)

Integrating the above equation we get w(r, t) Ã a≠1. This means that in the linear regime

the vorticity decays with the expansion of the universe.

We now introduce the comoving coordinates x as r = ax. Spatial derivatives become

Ò
r

= (1/a)Ò
x

and temporal derivatives (ˆ/ˆt)
r

= (ˆ/ˆt)
x

≠ (v̄ · Ò)
r

. We can further

define the density contrast as:

”(x, t) = fl(x, t) ≠ fl̄(t)
fl̄(t) , (1.33)

which simplifies the form of equation (1.30a) to:

ˆ”

ˆt
+ 1

a
Ò · ”v = 0. (1.34)

Taking another temporal derivative of this equation and combining it with (1.30b), we get

an expression for the evolution of the density perturbation:

ˆ2”

ˆt2 + 2H
ˆ”

ˆt
≠ c2

s

a2 �” ≠ 4fiGfl̄” = 0. (1.35)

Here, we used ”p = c2
s”fl. We can solve this equation for a matter-dominated universe

with a Ã t2/3 (equation (1.25)), and neglecting pressure perturbations ”p = 0. Using the
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Friedmann equation to simplify the last term: 4fiGfl̄ = ≠3ä/a, we get:

ˆ2”

ˆt2 + 4
3t

ˆ”

ˆt
≠ 2

3t2 ” = 0. (1.36)

This is easy to solve by introducing a power-law ansatz: ” Ã t–, and there are two solutions:

– = {≠1, 2/3}. The density perturbation can therefore be expressed as the sum of two

modes:

”(x, t) = D(+)(t)A(x, 0) + D(≠)(t)B(x, 0). (1.37)

Here, A(x, 0) and B(x, 0) are two functions describing the initial conditions of the density

perturbation field. D(+) Ã a Ã t2/3 is the growing mode which is responsible for the fact

that perturbations happily grow during matter domination. D(≠) Ã a≠3/2 Ã t≠1 is the

beautiful sad decaying mode that everyone always neglects.

For the case of radiation domination, it can equivalently be shown that perturbations

grow only logarithmically.

1.3 Lagrangian perturbation theory

Eulerian perturbation theory deals with density and velocity as fields, which take a partic-

ular value in each point of space and time. There exists another approach, the Lagrangian

perturbation theory (LPT) (e.g. Buchert, 1995), where the perturbation theory is ex-

pressed not in terms of an expansion of the density field, but in terms of an expansion of

the displacements of fluid elements. In this picture, already at linear order in the displace-

ments, the density is a non-linear field. The two lowest orders of LPT are the Zel’dovich

approximation (ZA) (Zel’dovich, 1970) and its second-order upgrade, 2LPT. Both of these

approximations are in practice used for generating initial conditions of N-body simulations

(Scoccimarro, 1998).

1.4 N-body Methods: A Review

In cosmology, N-body simulations are used to model structures which compose the cos-

mic web. Since the gravitational dynamics at the scales in question in non-linear, N-body

simulations present an indispensable tool for building bridges between theory and observa-

tions. One of the main challenges is to ensure high dynamical range: to resolve structures

that form on small as well as large scales with a su�cient accuracy.
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One of the first ever N-body simulations was performed on an analog computer (Holmberg,

1941), where they used lightbulbs, photocells, and galvanometers to model and measure

gravitational force. In the 1960s, the first N-body simulations were made on digital com-

puters, using an order of 100 particles (Aarseth, 1963). What is now considered the first

cosmological simulation was done by Press and Schechter (1974); they investigated the

mass distribution of bound objects. Similar work was done by Haggerty and Janin (1974).

Through the 80s and 90s, simulations grew in the number of particles used, started includ-

ing richer physics such as baryons, they used progressively more sophisticated algorithms

to model particles’ dynamics and to extract statistical quantities such as the two-point

correlation function as the measure of clustering.

1.4.1 State of the art

The success of N-body simulations has not only been driven by the sophistication of

algorithms, but also by the progress in computer technology. Today the biggest simulations

require multiple millions of CPU-hours and terabytes of memory and are run on the most

powerful supercomputers in the world.

On cosmological scales, a noticeable breakthrough came with the Millennium run, a

cosmological simulation that used over 10 billion particles (Springel et al., 2005). There

have since been an few upgrades of this project, Millennium-II (Boylan-Kolchin et al., 2009)

and Millennium-XXL (Angulo et al., 2012) simulations, which both use the GADGET-3

code. In terms of the size of the volume, the biggest simulation to date is DEUS FUR

(Alimi et al., 2012), with box size 21000h≠1Mpc and 550 billion particles.

Other noticeable simulations include Illustris (Riess et al., 1998), Bolshoi (Klypin et al.,

2011), Horizon run 3 (Kim et al., 2011), MultiDark Run (Prada et al., 2012), PKDGRAV3

(Potter et al., 2016), Dark Sky Simulations (Skillman et al., 2014), MICE (Fosalba et al.,

2015), The Q Continuum Simulation (Heitmann et al., 2015), and The Caterpillar Project

(Gri�en et al., 2016).

1.4.2 Simulation algorithms

For dark matter simulations, there are many di�erent numerical methods used to discretise

and solve the equations of motion. Direct computation of forces between all particles
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(particle-particle method, henceforth PP) would scale as O(N2) with N , the number of

particles used, which is not the most optimal way.

One way to achieve a better performance is the particle-mesh (PM) method, which

coarse-grains the continuous space of potentials into a grid, while still sampling the dark

matter phase-space with particles. There has to exist the correspondence between the two:

particle-to-mesh projections serves to construct a density field fl(x, t) from the particle

distribution. There are di�erent recipes to perform this projection; a widely-used example

is the cloud-in-cell (CIC) scheme, which uses information from the eight grid points nearest

to the particle. This procedure in e�ect treats every particle as a cube of uniform density.

In Chapter 4 we will use a bit more elaborate scheme, the “triangular-shaped particle”,

which distributes the mass of each particle along three grid-cells in each dimension. At

each time step of the simulation, potentials are calculated solving the Poisson equation,

and particles are propagated along their geodesics. For this, one needs to know what the

potential is at each particle’s location. Therefore the fields have to be interpolated with

the same particle-to-mesh scheme to avoid the e�ect of self-force on each particle. PM

scales as O(N log N). The grid can also be refined - subdivided into smaller cubic cells, if

the number of particles exceeds some threshold value in a particular cell. Two examples

of codes that use refined PM are ART (Kravtsov et al., 1997) and RAMSES (Teyssier,

2002).

Another algorithm that has O(N log N) scaling, is the tree code (Barnes and Hut, 1986;

Bouchet and Hernquist, 1988), which organises particles in a recursive tree structure. At

the smallest scales, PP method is used to calculate forces between neighbouring particles.

Neighbouring particles are then grouped together and treated as a single heavier one

whose behaviour is determined through multipole expansion at a lower resolution. This

significantly reduces the number of interactions between two particles that needs to be

computed. Perhaps the most widely used code that uses a version of the tree method is

Gadget 2 (Springel, 2005).

We will now briefly describe two of the N-body codes used in this work.

1.4.3 Ramses

RAMSES (Teyssier, 2002) is a Newtonian N-body code with AMR, which recursively

refines the grid on a cell-by-cell basis up to some maximum level, specified by the user.

This feature is essential for the hierarchical structure formation of cosmological structures,
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where high resolution is required in regions with high density and solving can be optimised

by requiring lower resolution in region of low density.

1.4.4 gevolution

gevolution (Adamek et al., 2016b) is a new-generation gravity solver that goes beyond

the simplest Newtonian approximation and instead employs General Relativity. Its name

derives from the fact that it finds the time-dependent solution for the first order perturb-

ations of the metric tensor gµ‹ . Instead of evolving particles according to the underlying

scalar potential, gevolution keeps track of two scalar potentials, a vector, and a tensor po-

tential. This makes it ideal for problems with relativistic sources, as long as the weak-field

approximation is valid.

1.4.5 Halo finders: ROCKSTAR

The analysis of simulations is another interesting challenge. In Chapter 4 we used the

ROCKSTAR halo finder (Behroozi et al., 2013) to find the centres of the halos. For

halo identification, ROCKSTAR uses a friends-of-friends algorithm in six phase-space

dimensions. This algorithm assigns two particles to the same group if they are separated

by less than the linking length. The process is repeated iteratively so that subgroups

within the coarse groups are identified. ROCKSTAR calculates the halo’s centre based

on the peak of the halo’s density. This means only the innermost particles are used to

determine the centre which has been shown to be more accurate than averaging locations

of all particles (Knebe et al., 2011).

1.4.6 N-body challenges

To extract cosmological parameters from the upcoming large-scale galaxy surveys such as

Euclid (Laureijs et al., 2011) we will need to understand the behaviour of the dark matter

and dark energy at the same precision. Gravitational dynamics at the scales in question

in non-linear and so structure will need to be modelled with N-body simulations. But

running a new simulation for each new set of cosmological parameters is very expensive

and ine�cient. Instead, one should focus on carefully probing the highly-dimensional space

of parameters with only a few points and interpolating between them to fit the observed
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power spectrum to the simulated one. One way to achieve this is with the use of cosmic

emulators (Kwan et al., 2015).

Another challenge is how to correctly include the e�ects of baryons (Schneider and

Teyssier, 2015). What is more, relativistic species such as massive neutrinos also have

an impact on structure formation. Because of their relativistic nature, they can only be

properly accounted for in relativistic simulations. The most self-consistent treatment of

neutrinos in an N-body simulation to date was done by Adamek et al. (2017b).

1.5 Inflation and generation of primordial perturbations

In search of a theory that would describe the earliest time we can describe with a predictive

model, inflation (Guth, 1981; Starobinsky, 1980; Linde, 1982) has been established as the

as the most successful theory so far, with very few competing alternatives (Khoury et al.,

2001; Lyth and Wands, 2002) The main concept is a phase of exponential expansion before

the start of the bot big bang, which was proposed to address some issues that the HBB

model faces. Apart from solving these problems, the biggest appeal of inflation is that

it provides a mechanism to generate perturbations with a nearly scale-invariant power

spectrum.

1.5.1 Problems with the hot big bang

The universe is observed to be flat today up to the measurable precision (�K = 0.0003 ±

0.0005) (Ade et al., 2015). The comoving Hubble radius (aH)≠1 grows during the matter

and radiation eras, meaning that �K must have been even tinier at the start of the hot

big bang. This is know as the flatness problem. During the exponential expansion on the

other hand, the amount of curvature shrinks and so inflation provides a solution to this

problem.

Another problem is associated with the fact that we observe the CMB to be nearly the

same in all directions. If we assume only matter and radiation eras, then patches of the

sky greater than 2¶ could not have been in causal contact up to the decoupling and there

is therefore no reason that the temperature of the CMB should be so uniform through the

sky. This is known as the horizon problem. Inflation solves it because exponential growth

of scale factor a Ã eHt means that two points initially in causal contact, grow out of it,

provided that the period of inflation lasts long enough.
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There is another conundrum, the absence of relic particles such as magnetic monopoles,

strings, domain walls, and textures. These phenomena would form during the hot big

bang because of the symmetry breaking when the temperature dropped below that of the

unification of electromagnetic, weak and strong interaction. Inflation solves this problem

because rapid expansion dilutes these relic particles to unobservable abundance.

All of these problems can be bypassed by simply requesting some fine-tuned initial

conditions for the HBB. It is however much more satisfying to have a mechanism that

solves them, as well as simultaneously expanding quantum perturbations to explain the

O(10≠5) fluctuations in the temperature of the CMB.

1.5.2 Scalar field inflation

The theory of inflation comes in many di�erent flavours. More precisely, there are many

di�erent models by which inflation can ensure an equation of state with w < ≠1/3. One

thing they almost all have in common is the use of one or several scalar fields, sometimes

referred to as “the inflaton”. The action of a single scalar field „ is:

S =
⁄

d4x
Ô

≠g

A
M2

Pl
2 R ≠ ˆµ„ˆµ„ ≠ V („)

B

(1.38)

The first term is the Einstein-Hilbert term, the second term is the simplest kinetic term,

usually referred to as canonical, and the last term is the potential V („), which can in

principle be any function. The equation of motion for the homogenous scalar field comes

from varying the action with respect to „:

„̈ + 3H„̇ + dV („)
d„

= 0, (1.39)

and the corresponding Friedmann equations are:

H2 = 1
3M2

Pl

31
2 „̇2 + V („)

4
, (1.40a)

Ḣ = ≠ „̇2

2M2
Pl

. (1.40b)

The energy density and pressure of a single homogeneous scalar field are:

fl„ = 1
2 „̇2 + V („) (1.41a)
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P„ = 1
2 „̇2 ≠ V („) (1.41b)

The slow-roll condition is satisfied if the kinetic energy is small compared to the potential:
1
2 „̇2 π V („), which is usually achieved by the potential being su�ciently flat. It is useful

to introduce the slow-roll parameters (Liddle and Lyth, 1992) as:

‘(„) = M2
Pl

2

3
V Õ

V

42
(1.42a)

÷(„) = M2
Pl

V ÕÕ

V
. (1.42b)

In the slow-roll approximation these two parameters are small: ‘(„) π 1, |÷(„)| π 1.

The amount of inflation is usually parameterised by the logarithm of the ratio of the scale

factor at final and initial times:

N = ln a(tf)
a(ti)

, (1.43)

also known as the number of e-foldings. To solve the flatness and horizon problems, N

needs to be at least 60 or 70. This amount is su�cient to ensure that the entire observable

CMB sky was once within a causally connected region, and that the spatial curvature of

the universe is less than the upper bound given by observations.

During inflation, quantum fluctuations expand to super-horizon scales. There, they

can be described by the comoving curvature perturbation a2R(3), which is gauge invariant.

Outside the horizon, this quantity remains constant even once exponential expansion ends

and the radiation-dominated phase starts, regardless of the physics of reheating. R(3) =

6K/a2 is the Ricci scalar of the spatial part of the FLRW metric (Eq. 1.17). The Ricci

scalar contains two derivatives, so we can also define R as 4�R = ≠a2R(3), which in

Fourier space becomes R = a2R(3)/4k2. We can now parameterise the spatial part of the

metric as

ds2
3 = a(t)2 e2’(x,t) dx

2, (1.44)

where we have introduced ’(x, t) as the primordial curvature perturbation. In a gauge

with no density perturbations (”fl = 0) on super-horizon scales ’ corresponds to R. In

other slicings of the space-time, this relation can be di�erent, for example in the conformal

Newton gauge we have:

R = ’ + ”fl

3(p + fl) . (1.45)

To relate primordial curvature perturbations to the late-time density perturbation ”(k, t),

in linear theory, we can define a transfer function T”(k, t) such that ”(k, t) = T”(k, t)R(k, 0).
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The power spectrum of ”(k, t) describes the average amplitude of density fluctuations at

each wave number k, corresponding to a scale ⁄ = 2fi/k:

2fi2

k3 P”(k)”D(kÕ ≠ k) = È”ú(kÕ, t)”(k, t)Í. (1.46)

Here, ”D(kÕ ≠ k) is the Dirac delta and the left-hand side is only non-zero if k

Õ = k.

For a statistically isotropic field, there is no preferred direction and therefore P”(k, t) =

k3|”(k, t)|2/(2fi2). The power spectrum of the density at some time t can be calculated from

the transfer function5, which encodes all information about the evolution of perturbations

in the linear regime:

È”ú(k, t)”(kÕ, t)Í = T”(k, t)2 2fi2

k3 PR(k) ”D(kÕ ≠ k) (1.47)

and therefore P”(k, t) = T”(k, t)2 PR(k). The primordial power spectrum generated by

inflation is nearly scale-invariant and can be parameterised by:

PR(k) = As

3
k

kú

4n
s

≠1
(1.48)

where ns is the spectral tilt, measured to be ns = 0.968 ± 0.006, As ƒ 2 ◊ 10≠9 is the

amplitude (Ade et al., 2015), and kú is some pivot scale.

1.5.3 The matter power spectrum

From the shape of the matter power spectrum we can learn about how di�erent scales

evolved during di�erent cosmological epochs. It is often defined as

P (k) = 2fi2

k3 P”(k). (1.49)

For large scales that entered the horizon during matter domination k π 2fi(aH)|eq, the

Poisson equation (Eq. 1.30c) implies that P” Ã k4 PR Ã kn
s

+3 and therefore P (k) Ã kn
s .

On smaller scales k ∫ 2fi(aH)|eq which enter the horizon during radiation domination, the

growth of density perturbations is suppressed. Super-horizon scales grow proportionally

to a2 during radiation domination, but as a scale enters the horizon, its growth is stalled

(strictly speaking it grows only logarithmically) until matter-radiation equality when it

starts growing Ã a. Its density perturbation is therefore suppressed by roughly a factor
5Provided that we are in the linear regime.
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of f(k) = a2(tH)/a2
eq where a(tH) corresponds to the scale factor when this scale enters

the horizon and aeq is the scale factor at equality. During radiation domination a Ã t≠1/2

and the suppression factor at a scale k = 2fiaH is f(k) Ã 1/(k2a2
eq). The matter power

spectrum is therefore suppressed by a factor of k4, which implies P (k) Ã kn
s

≠4 for scales

smaller than the horizon at matter-radiation equality.

In-between these two regimes, the functional dependence of P (k) turns over at the scale

given by matter-radiation equality: keq = 2fi(aH)|eq. Around that scale, there are also

baryon acoustic oscillations. In contrast to the cold dark matter, both baryons and photons

are pressure supported, which leads to characteristic oscillations in the tightly coupled

plasma. After recombination, radiation streams freely, baryons fall into the potential

wells and their oscillations get imprinted onto the dark matter power spectrum.

1.6 Ultracompact Minihalos

CMB experiments managed to measure the power spectrum over ≥ 3 orders of magnitudes

in scale (10≠3Mpc≠1 . k . 1Mpc≠1). On larger scales we are limited by the cosmic

variance: there is only one universe we can observe. On the other hand, small scales

(k & 10Mpc≠1) are still very much unexplored. For the CMB probes, these scales are

unobtainable because of the Silk damping. However, there could potentially be a lot of

information hidden there: inflationary models that predict more power on smaller scales

are not uncommon. Constraining the power spectrum on these scales therefore presents

a very promising way of ruling out inflationary models. One way to place upper bounds

on k & 10Mpc≠1 is from non-detection of primordial black holes (PBHs). PBHs are

postulated to form if the the density contrast in a particular region of space exceeds

” & 0.3 at horizon crossing. More power at some scale would therefore make them more

abundant in the present-day universe. Although constraints from PBHs span over ≥ 20

orders of magnitude, they are not very tight: about six orders of magnitude above the

value of the power spectrum extrapolated from scales measured with the CMB experiments

(see figure 1.1).

Much tighter constraints come from the non-detection of ultracompact minihalos (UCMHs),

but over a somewhat smaller range of scales (10Mpc≠1 . k . 107Mpc≠1). In contrast

with the PBHs, formation of ultracompact mini haloes requires only ” ≥ 10≠3 at horizon

crossing. Such overdensities would start collapsing much sooner than the most abundant,

” ≥ 10≠5 overdensities do, forming a dark matter halo soon after matter-radiation equality
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Figure 1.1: Constraints on the power spectrum from measurements of the CMB and non-detection of primordial
black holes and UCMHs. The figure is taken from Bringmann et al. (2012).

when the growth of dark matter perturbations turns from logarithmic to proportional to

the scale factor. Most of the literature on UCMHs assumes that they would have a very

steep power-law density profile (Bertschinger, 1985):

fl(r) Ã r≠9/4 . (1.50)

Their extreme compactness would allow them to retain their shape until the present time.

On the other hand, the Navarro-Frenk-White (NFW) (Navarro et al., 1996, 1997) profile

has been established as the best fit to the angular average of the density profile for halos

found in cosmological simulations:

flNFW(r) = fl0
1

r
r

s

1
1 + r

r
s

22 . (1.51)

This profile is characterised by two parameters: rs, the “scale radius”, and fl0 which

serves as a normalisation parameter, and can be expressed as fl0 = 4fl(rs). For radii

smaller than rs the profile has the functional dependence fl(r) Ã 1/r, and for large r, it

scales as fl(r) Ã 1/r3. Scale radius rs therefore represents the scale at which the profile

turns from one function to the other. The significance of this profile is in its generality;

its functional dependence is the same regardless of the mass of the halo or values of

cosmological parameters (Cole and Lacey, 1996; Tormen et al., 1997). It is useful to define

the concentration parameter (Bullock et al., 2001) as:

c = rvir
rs

, (1.52)
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where rvir is the virial radius which contains the virial mass. It is often taken to be the

radius within which the average density is 200 times the critical density. The value of

the concentration parameter is typically between 4 and 40 for halos of di�erent sizes and

masses.

In Chapter 4 we assume that baryons and dark matter act as a single fluid. However,

baryon perturbations oscillate on scales smaller than the Jeans’ length, but the dark mat-

ter perturbations grow (logarithmically in radiation domination and Ã a during matter

domination). We therefore introduce a small error by treating all matter as collision-

less and slightly overestimate the amount of perturbations. More accurate treatment of

baryons would be an interesting extension of this work.

One of the main constraints on the number density of UCMHs comes from non-

detection of dark matter annihilation signal (Bringmann et al., 2012). If DM is made up

of weakly interacting massive particles (WMIPs) which self-annihilate and emit gamma

rays, we could indirectly detect UCMHs this way. The annihilation cross-section depends

on the square of the density and is therefore sensitive to the profile of the halo in its centre.

Establishing what shape density profiles take in the centre of the halos is therefore crucial

for understanding how to correctly translate non-detection of gamma rays to constraints

on the primordial power spectrum. Since the DM dynamics is highly non-linear on these

scales, this can only be explored using N-body simulations.

1.7 Open questions in cosmology

The simplest solution to the acceleration issue is to add a constant term �gµ‹ in the

Einstein’s equation. This solution seems particularly appealing because of its simplicity.

What is more, the cosmological constant gives exactly w = ≠1, but there are two concerns

with this picture: fine tuning and the coincidence problem (Yoo and Watanabe, 2012a).

The former problem existed even before we knew that that the expansion is accelerated.

Particle physics suggests the scale of vacuum energy � to be significantly bigger (Weinberg,

1989) than the dark energy today. Zero-point energy of some field with mass m, momentum

k and frequency Ê is given by E = Ê/2 =
Ô

k2 + m2/2. Integrating that over all scales up

to some cut-o� scale kmax(∫ m) we obtain the vacuum energy density:

flvac =
⁄ k

max

0

d3k

(2fi)3

Ô
k2 + m2

2 ¥ k4
max

16fi2 . (1.53)

If one takes the cut-o� scale to be the Planck mass MP l, then the vacuum energy density
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is approximately flvac ƒ 1074GeV4.

On the other hand, we know that dark energy represents about 70% of the critical en-

ergy density flcrit = 3H2/8fiG which is, for today’s value of Hubble’s parameter, measured

to be flcrit ƒ 10≠47GeV4 which corresponds to � ƒ (10≠3eV )4.

Roughly speaking, there are 120 orders of magnitude between the value, predicted by

quantum field theory and the one measured by cosmologists. This was dubbed “the worst

theoretical prediction in history of physics”. It seems very likely for the observed value to

come from somewhere else rather than the vacuum energy.

The latter, perhaps less severe concern is why dark energy is of the same order of

magnitude as the dark matter today. This is equivalent to asking, why do we happen to

live exactly when the universe is entering the epoch of accelerated expansion. It is possible

to resolve this issue with the anthropic principle.

The anthropic principle is useful to explain, for example, the distance between the

Earth and the Sun. Life as we know can only exist in a certain temperature range.

Hundreds of planets have been discovered around bright stars relatively close to us and

we have a good reason to suspect that there are billions in our galaxy alone. Most of

these planets are either too close or too far from their stars for life to develop. So the

coincidence that we live on just about the right distance from Sun may actually not be a

coincidence at all.

In a similar manner, we just happen to live in a moment in time that allows life forms

to exist in the way we know them. Much earlier the universe was too hot and much later

stars will either become black holes or disintegrate and life forms that might occur then

will find that environment favourable. Although it seems, that the chance we live in such

a special moment in time is vanishingly small, one must consider that life can only sprout

where the conditions allow for it.

1.8 Future observational prospects

Over the next 10 to 15 years, a lot more new data will be collected and hopefully shed

light on some of the conundra that we are faced with today, most importantly what drives

the accelerated expansion and what the dark matter is made of.

Details of the structure formation will be probed with Euclid (Laureijs et al., 2011),

a European Space Agency (ESA) mission that will take images and spectra of billions of

galaxies. It is scheduled to be launched in 2020. Dark Energy Spectroscopic Instrument
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(DESI) (Levi et al., 2013) will be a ground-based experiment and will measure the e�ect

of dark energy on the expansion history of the universe. Large Synoptic Survey Telescope

(LSST) (Abell et al., 2009) will survey the entire sky every few nights. Apart from detect-

ing potentially hazardous objects in our Solar System, its significants for cosmology lies in

billions of galaxies that it will record. Square Kilometre Array (SKA) (Blake et al., 2004),

an array of radio telescopes, will obtain the power spectrum of dark matter by measuring

the cosmic shear distortion of 1010 radio sources.
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2.1 Abstract

We explore the dynamical behaviour of cosmological models involving a scalar field (with

an exponential potential and a canonical kinetic term) and a matter fluid with spatial

curvature included in the equations of motion. Using appropriately defined parameters to

describe the evolution of the scalar field energy in this situation, we elucidate the character

of two fixed points that are not present in the case without curvature. We also analyse

the evolution of the e�ective equation-of-state parameter for di�erent initial values of the

curvature.

2.2 Introduction

The discovery, based on the observed behaviour of Type Ia Supernovae (Riess et al., 1998;

Perlmutter et al., 1999), that the expansion of the Universe appears to be accelerating,

generated enormous theoretical interest in finding a suitable framework to account for this

phenomenon. Other independent observational data such as the Cosmic Microwave Back-

ground radiation (CMB) (Hinshaw et al., 2013; Ade et al., 2014a) and Baryonic Acoustic

Oscillations (BAO) (Percival et al., 2010; Abazajian et al., 2009) have subsequently con-

firmed that reconciling a standard Friedmann-Lemaître-Robertson-Walker model based on

Einstein’s General Theory of Relativity requires roughly 70% of the average energy density

today to be in the form of an exotic fluid whose equation-of-state parameter w = P/fl is

close to ≠1.

Although over fifteen years have passed since the original discovery, we still lack a

compelling theoretical model to explain this so-called dark energy. The three major the-
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ories that attempt to do this all rely in one way or another on modification of the Einstein

Equations, which we use in the form

Rµ‹ ≠ Rgµ‹/2 = 8fiGTµ‹ , (2.1)

in which properties of space-time appear on the left-hand side and the matter-energy

contents of the Universe on the right.

The obvious phenomenological possibility is to add a constant term �gµ‹ to Einstein’s

Equations. This seems appealing because of its simplicity and that when included in the

energy-momentum tensor on the right-hand-side of the Einstein Equations, it leads to a

clear prediction of the e�ective equation of state, namely that w = ≠1 exactly. There

are, however, two major concerns with this picture. The first is that the magnitude

of the vacuum energy associated with a �-term is out of line with the value expected

from summation of zero-point energies of quantum fields up to some cut-o� scale. This

discrepancy is 120 orders of magnitude if one chooses a cut-o� at the Planck energy, but

even if some mechanism imposes a cut-o� at for example a QCD energy scale, the problem

is alleviated but not entirely solved (Weinberg, 1989).

The second problem is that there seems no natural explanation of why the energy

density associated with the vacuum energy should be within a factor of a few of the present

matter density or, in other words, why the expansion of the Universe should have began

to accelerate so very recently in cosmic history. These are called the fine-tuning problem

and the coincidence problem, respectively (Yoo and Watanabe, 2012b). Although such

statements clearly depend on some choice of measure, related in this case to the probability

distribution of the value of �, they must also take account of anthropic selection e�ects

(Sivanandam, 2013).

A second class of models that might explain dark energy are those based on some

form of modification of Einstein’s theory of gravity. The usual approach in such models

is that instead of starting from the standard Einstein-Hilbert action (which leads to the

Einstein Equations), one considers additional terms in the action (Tsujikawa, 2010b). The

most straightforward modification of General Relativity is to replace the Ricci scalar, R,

in the Einstein-Hilbert action, by their function of this scalar, usually called f(R). An

example of this model is f(R) = R + –R2, which was in fact one of the first models

of inflation, proposed by Starobinsky. The idea of using f(R) for late-time acceleration

was first suggested in (Capozziello, 2002) and examples of viable models of this type

are proposed in (Starobinsky, 2007; Hu and Sawicki, 2007; Tsujikawa, 2008). In a more



28
Dynamical Analysis of Scalar Field Cosmologies with Spatial Curvature

general case, one can include an arbitrary function of R, Rµ‹Rµ‹ and Rµ‹fl‡Rµ‹fl‡ in the

action. The Gauss-Bonnet combination R2 ≠4Rµ‹Rµ‹ +Rµ‹fl‡Rµ‹fl‡ (Nunez and Solganik,

2005) is particularly widely explored in the literature. Another, more complicated, class of

modified gravity models include scalar-tensor theories, where Ricci scalar R and a scalar

field „ are coupled (an example of this is Brans-Dicke theory (Brans and Dicke, 1961)), and

DGP (Dvali, Gabadadze and Porrati) braneworld model (Dvali et al., 2000). In the latter,

particles are confined to a 3-dimensional brane, embedded in a 5(or more)-dimensional

space-time with an infinite extra dimension. Standard 4D gravity is recovered at small

distances, but at larger scales gravity is weakened, because its energy is essentially getting

lost to the additional dimension.

A third class of possible models include modifications to the standard form of matter

on the right-hand-side of the Einstein Equations, designed to generate a negative e�ective

pressure. Among such models are quintessence, k-essence, coupled dark energy and the

generalised Chaplygin gas (for reviews see Tsujikawa (2010a, 2013); Yoo and Watanabe

(2012b); Copeland et al. (2006)). Quintessence, which will be studied in much greater

detail in the rest of this paper, represents the idea that accelerated expansion is driven by

a canonical scalar field „ (Wetterich, 1988; Caldwell et al., 1998; Zlatev et al., 1999). The

most important consequence of this is that we now have a dynamical equation of state,

rather than a constant (Copeland et al., 1998, 2006). Please note that this is also the case

in some of the modified-gravity theories discussed in the paragraph above. Quintessence

models are usually divided into two types on the basis of the form of potential that drives

the scalar field dynamics. The first class contains models in which w gradually decreases to

w = ≠1; these models are called “freezing models” (Caldwell and Linder, 2005). The forms

of potential needed for this kind of behaviour were studied in (Steinhardt et al., 1999; Ratra

and Peebles, 1988). In this scenario, the field energy density does not necessarily need to

be negligible at the radiation epoch (this is the case with the cosmological constant). The

other option is the class of “thawing models” (Caldwell and Linder, 2005) in which the

field equation-of-state parameter is close to w = ≠1 initially, but at late times deviates

from this value.

Theories that involve non-canonical kinetic terms in the Lagrangian are called k-essence

(Chiba et al., 2000; Armendariz-Picon et al., 2001; Tamanini, 2014). The idea is that

inclusion of non-canonical terms results in cosmic acceleration even without the field po-

tential, as was shown in (Armendariz-Picon et al., 1999). A number of di�erent scenarios

were proposed, to name a few: Low energy e�ective string theory (Gasperini and Venezi-
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ano, 1993), Ghost condensate (Arkani-Hamed et al., 2004), Tachyon field (Garousi, 2000),

Dirac-Born-Infeld (DBI) theory (Silverstein and Tong, 2004; Alishahiha et al., 2004).

Furthermore, there are suggestions that dark energy and dark matter are coupled (Wet-

terich, 1995; Guo et al., 2007; Khoury and Weltman, 2004), that a single fluid (e.g. gener-

alised Chaplygin gas) is responsible for dark energy and dark matter (Kamenshchik et al.,

2001; Bento et al., 2003), and finally unified quintessence and inflation theories, namely

quintessential inflation (Peebles and Vilenkin, 1999; Liddle and Urena-Lopez, 2006). In

(Boehmer et al., 2015) the authors consider models of quintessence interacting with dark

or baryonic matter.

There are also attempts to explain the apparent cosmic acceleration by means of in-

homogeneities in the matter distribution in other words by breaking the assumption that

cosmological space-time is described by a FLRW metric; for a review see (Buchert, 2008).

One specific example is the suggestion that we live in the middle of a huge underdensity

(a “void”) and we interpret the expansion of its surroundings as an overall cosmic ac-

celeration (Tomita, 2001; Alnes et al., 2006), although this seems to be in conflict with

observations, see for example (Bull et al., 2012). Another approach relies upon the back-

reaction of cosmological perturbations (Rasanen, 2004; Kolb et al., 2005), which may be

able to explain acceleration without dark energy; some work along these lines related to

this paper can be found in (Buchert et al., 2006; Roy et al., 2011).

Given this plethora of possible models it is important to undertake a rigorous sys-

tematic study of their dynamical properties, in order to understand and classify the wide

range of behaviours they may exhibit. In particular, focusing on the fixed points of their

evolution will allow us to tackle the di�cult question of what can be considered to be

“natural” behaviour in a given scenario. Since the fixed points attract trajectories from

a wider parameter space around them, the configuration of the system can be determ-

ined by its dynamical evolution in the fixed point rather than in the initial conditions.

We concentrate on a specific class of possibilities by studying the dynamical evolution of

quintessence-type models, extending previous work (described in detail below) by including

spatial curvature, which is usually neglected in such analyses. Although the observational

evidence at the moment points to a universe which is (nearly) spatially flat this conclusion

is based on a model with restricted set of parameters. In the framework of a more general

model the constraints on �K can be weaker (Okouma et al., 2013). It therefore remains

important to establish whether the inclusion of curvature leads to any qualitative changes

in the dynamics. This issue has been addressed before (van den Hoogen et al., 1999), but
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in this paper we use a di�erent parametrisation of the equations of motion, which makes

the connection between the curvature and dynamics more explicit. The aim of our ana-

lysis is to ask the question whether it is possible, via this relatively simple generalisation

of the quintessence scenario, to generate an attractor solution that corresponds to a value

of w ”= ≠1, which would distinguish it from many of the other models listed above.

The paper is organized as follows. In Sec. 2.3 we explore the dynamics of a single

scalar field with an exponential potential and a canonical kinetic term under the flat

FLRW metric. This is a well-studied system (Halliwell, 1987; Burd and Barrow, 1988) but

one which repays further analysis. We find the fixed points of this system and investigate

values of important dynamical parameters at these fixed points; this section follows the

analysis that was done in (Copeland et al., 1998). The further details of this analysis are

given in the Appendix. In Sec. 2.4.1 we generalize this approach by introducing another

variable that corresponds to spatial curvature and analyze how the dynamics are a�ected

as a consequence. We find two new fixed points and explore evolution of equation-of-state

parameter for di�erent initial values of curvature. For a parallel discussion see (Pavlov

et al., 2013).

2.3 Dynamical analysis

2.3.1 Background

The action of a canonical scalar field „ is given by

S =
⁄

d4x
Ô

≠g

51
2M2

PlR ≠ 1
2gµ‹ˆµ„ˆ‹„ ≠ V („) + LM

6
, (2.2)

where MPl represents the reduced Plank mass: MPl = 1/
Ô

8fiG = 1/
Ô

Ÿ. The matter

Lagrangian LM has two contributions: non-relativistic matter with equation of state wm =

Pm/flm = 0 and radiation with equation of state wr = 1/3. Varying this action with respect

to metric and applying the action principle gives the Einstein Equations with the energy

momentum tensor:

Tµ‹ = ˆµ„ˆ‹„ ≠ gµ‹

31
2ˆfl„ˆfl„ ≠ V („)

4
. (2.3)



31
Dynamical Analysis of Scalar Field Cosmologies with Spatial Curvature

The assumption of spatial homogeneity and isotropy allows us to adopt the Friedmann-

Lemaître-Robertson-Walker (FLRW) metric:

ds2 = ≠dt2 + a(t)2
A

dr2

1 ≠ Kr2 + r2d◊2 + r2 sin ◊2d„2
B

, (2.4)

where a(t) is time-dependent scale factor and K is a constant describing the spatial

curvature. The universe is open if K < 0, flat if K = 0 and closed if K > 0. With

the use of this metric, the Einstein Equations become the modified Friedmann Equations:

3M2
PlH

2 = 1
2 „̇2 + V („) + flm + flr ≠ 3M2

Pl
K

a2 (2.5a)

2M2
PlḢ = ≠„̇2 ≠ (1 + wm)flm ≠ (1 + wr)flr + 2M2

Pl
K

a2 (2.5b)

where the Hubble parameter is defined in the usual manner as H = ȧ/a. The requirement

of energy-momentum conservation demands T µ‹
;‹ = 0. For a homogeneous and isotropic

universe the energy-momentum tensor becomes symmetric, i.e. Tµ‹ = diag(≠fl, P, P, P )

and we thus obtain the continuity equation fl̇ + 3H(fl + P ) = 0. This equation is obeyed

separately by the matter, radiation and scalar field as long as there is no coupling between

these components. Applying the same condition to the energy-momentum tensor of the

scalar field (2.3) we get

„̈ + 3H„̇ + V,„ = 0 , (2.6)

where V,„ is the derivative of the potential with respect to the field „. Comparing this to

the general continuity equation we see that the e�ective energy density and pressure of

the scalar field are fl„ = „̇2/2 + V („) and P„ = „̇2/2 ≠ V („), respectively. The equation

of state for the scalar field is then given by

w„ = P„

fl„
= „̇2/2 ≠ V („)

„̇2/2 + V („)
. (2.7)

Equation (2.6) is a dynamical equation for the evolution of the scalar field; in order to

solve for the dynamics of the system, one must solve this equation simultaneously with

the Friedmann Equations (2.5) and the continuity equation.
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2.3.2 Two dynamical variables

It is convenient to define a new set of dimensionless variables:

x = „̇Ô
6MPlH

, y =


V („)Ô
3MPlH

, (2.8)

because the energy density of the scalar field can be expressed as:

�„ = fl„

3M2
PlH

2 = x2 + y2 (2.9)

and the equation of state for the scalar field reads:

w„ = x2 ≠ y2

x2 + y2 . (2.10)

Additionally defining combined matter and radiation energy density parameter as:

�M = �m + �r = flm
3M2

PlH
2 + flr

3M2
PlH

2 (2.11)

and assuming that spatial curvature is zero, the first Friedmann Equation (2.5a) simplifies

as:

1 = x2 + y2 + �M. (2.12)

To study the evolution of the scalar field we can take derivatives of x and y with respect to

the number of e-foldings N = ln a, anticipating that such a system can display accelerated

exponential expansion. For an exponential potential V = V0e≠⁄„/M
Pl we get:

dx

dN
=

Ú
3
2⁄y2 ≠ 3

2x
1
wM

1
x2 + y2 ≠ 1

2
≠ x2 + y2 + 1

2
(2.13a)

dy

dN
= ≠

Ú
3
2⁄xy ≠ 3

2y
1
wM

1
x2 + y2 ≠ 1

2
≠ x2 + y2 ≠ 1

2
. (2.13b)

In order to analyse the dynamical system (2.13) we first look at the fixed/critical points

for di�erent values of the parameters ⁄ (not to be confused with the cosmological constant

�) and wM (defined as wM = (flmwm + flrwr)/(flm + flr)). From the constraint (2.12), it

follows that x2 +y2 Æ 1 because �M is always positive for the form of the potential we use.

Every solution with non-zero y can be positive or negative in y, since y2 ≥ V . The part

of parameter space in which y is negative corresponds to a contracting universe. Because

the phase plane is symmetric with respect to the x-axis, we will only consider its upper
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part. This implies that trajectories in phase plane are limited to the upper half of the unit

disc. Fixed points are defined as:

dx

dN
= 0 ,

dy

dN
= 0 . (2.14)

There are five such critical points; their coordinates and values of the associated physical

parameters are listed in Table (2.1).

Table 2.1: Coordinates and properties of fixed points.

xú yú we� �„ �M

A 0 0 wM 0 1
B1 1 0 1 1 0
B2 -1 0 1 1 0
D ⁄/

Ô
6


1 ≠ ⁄2/6 ⁄2/3 ≠ 1 1 0

E


3/2(wM + 1)/⁄
Ò

3/2(1 ≠ w2
M)/⁄ wM 3(wM + 1)/⁄2 1 ≠ 3(wM + 1)/⁄2

The value of the parameter ⁄ can consequently be divided into three qualitatively dif-

ferent cases:

• (⁄ <


3(wM + 1)) All trajectories are drawn to the point D which is a stable at-

tractor.

• (


3(wM + 1) < ⁄ <
Ô

6) Point E becomes a spiral attractor. D is still present.

• (
Ô

6 < ⁄ ) D is no longer defined and B

1

becomes a saddle point.

The solutions of Equations (2.13) for these three cases are illustrated in figure (2.1).

We have defined wM to be a combination of pressureless dust (with wM = 0) and radiation

(wM = 1/3) so its values can only lie between these two values but in the most general

case (including more exotic equations of state) its value could lie outside this range. The

specific cases shown in the figures (2.1) all have wM = 0. The value of this parameter only

slightly a�ects the position of the fixed point E (and none others). For higher values of

wM points E and D merge at higher ⁄. For a limiting case wM = 1 (that extends beyond

our analysis) point E merges with D exactly at the point B

1

so it is never inside the half

disc.
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Figure 2.1: Phase planes for three qualitatively di�erent cases of ⁄ and w
M

= 0 as discussed in the text.

2.4 The Role of Curvature

2.4.1 Three dynamical variables

In this subsection we introduce spatial curvature into dynamical system, while still keep-

ing matter and radiation as one variable and considering a scalar field described as an

exponential potential. We define new variables to construct a generalization of the two-

dimensional phase plane discussed in the previous subsection into a three-dimensional

phase space:

x = „̇Ô
6MPlH

, y =


V („)Ô
3MPlH

, z = K

a2H2 . (2.15)

Definitions of �„, w„, �M and wM are identical to those in the previous subsection. The

first Friedmann Equation is now expressed as:

1 = x2 + y2 ≠ z + �M. (2.16)

Note that z is not squared in this definition. If z were defined in such a manner that it

was squared in the above equation then all solutions with negative K would correspond

to solutions with imaginary z. The minus sign in front z has no physical significance; our

definition corresponds to �K = ≠z. With the introduction of the curvature, ratio of the
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Friedmann Equations becomes:

Ḣ

H2 = 3
2

1
wM

1
x2 + y2 ≠ z ≠ 1

2
≠ x2 + y2 ≠ 1

2
≠ 1

2z (2.17)

and the e�ective equation-of-state parameter can be expressed as:

we� = P„ + PM
fl„ + flM

= x2 ≠ y2 + wM(1 ≠ x2 ≠ y2 + z)
1 + z

(2.18)

The evolution of the dynamical system is now described by a system of three coupled

di�erential equations:

dx

dN
=

Ú
3
2⁄y2 ≠ 1

2x
1
3wM

1
x2 + y2 ≠ z ≠ 1

2
≠ 3x2 + 3y2 ≠ z + 3

2
(2.19a)

dy

dN
= 1

2y
1
≠3wM

1
x2 + y2 ≠ z ≠ 1

2
+ 3x2 ≠

Ô
6⁄x ≠ 3y2 + z + 3

2
(2.19b)

dz

dN
= z

1
≠3wM

1
x2 + y2 ≠ z ≠ 1

2
+ 3x2 ≠ 3y2 + z + 1

2
. (2.19c)

2.4.2 Phase space analysis, fixed points and their stability

In this case under consideration the constraint x2 + y2 Æ 1 holds only in the plane z = 0.

The general constraint is x2 + y2 ≠ z Æ 1 and it defines a parabolic surface in the space of

parameters x, y, z. All trajectories must lie above this parabolic surface; they are confined

either to the plane z = 0, where the curvature is zero, or to the part of the space where

z > 0 and K has a positive sign, or to the finite part of the space between the parabolic

surface and the plane z = 0 with a negative z-component and thus a negative curvature

parameter K. Because this parameter can not change sign in our model, no trajectories

can cross from z > 0 to z < 0 or vice-versa. Figures (2.2) show solutions for four di�erent

case of parameter ⁄. Again, we ignore wM by setting it to zero.

Inspection of the fixed points in this new system shows that all fixed points we had

before are preserved, when the newly-added additional z is fixed at z = 0. In addition,

however, there are now two new fixed points: C and F. The eigenvalues corresponding

to these points are obtained by extending the matrix (2.27) to describe three variables;

the additional dimension of the parameter space requires that there will be an additional

eigenvalue. If that eigenvalue is positive, then the fixed point is repulsive in the new

direction and if it is negative, the fixed point is attractive. For a point to be an attractor, all

the eigenvalues must be negative at that point. If at least one is positive, then trajectories
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will be drawn away in at least one direction.

Point A is the matter dominated solution where all energy density is in �M. At this point

the only contribution to the e�ective equation of state parameter comes from the

matter sector, so we� = wM. The eigenvalues of this point are [3(wM ≠ 1)/2, 3(wM +

1)/2, (1 + 3wM)] so the point is a saddle for all values of ⁄, as long as wM < 1. It is

attractive for the trajectories along the x-axis and repulsive for others. In the limit

case of initial potential being exactly 0 (the trajectories that start exactly on the

x-axis) this point is an attractor.

Points B

1

and B

2

represent solutions in which the universe is dominated by the kinetic

energy of the scalar field: �„ = 1. Here the e�ective equation-of-state parameter

is constant and the scale factor behaves as a Ã t2/3. Eigenvalues for stability are

[3(1 ≠ wM),


3/2⁄ û 3, 4] with the minus sign for B

1

and plus for B

2

. This means

that B

2

is always repulsive and B

1

repulsive for ⁄ <
Ô

6 and a saddle for ⁄ >
Ô

6.

Point C is new compared to the two-dimensional case and corresponds to a curvature-

dominated solution; all the energy density resides in �K . This solution is trivial,

because it does not involve any matter or the scalar field. The point is a saddle for

all values of parameters; its eigenvalues are [≠2, 1, ≠(1 + 3wM)].

Point D is a solution where the universe is dominated by the scalar field. All energy

density is in �„ = x2 + y2 = 1, with �M = 0. The e�ective parameter of state is

we� = ⁄2/3 ≠ 1, so the universe is accelerating for ⁄ <
Ô

2. In the limit case ⁄ æ 0,

this solution corresponds to the de Sitter expansion dominated by the cosmological

constant. This fixed point lies in the z = 0 plane, at the edge of the half disc and it

moves from (x = 0, y = 1) for ⁄ = 0 to (x = 1, y = 0) for ⁄ =
Ô

6. After this value of

⁄ it is not defined anymore. The eigenvalues are [(⁄2 ≠ 6)/2, ⁄2 ≠ 3(wM ≠ 1), ⁄2 ≠ 2]

which means that the point is attractive for all trajectories with z Æ 0 and some

with z > 0 for ⁄ <
Ô

2. It is also an attractor for trajectories in the plane z = 0

for
Ô

2 < ⁄ <


3(wM + 1), and a saddle for


3(wM + 1) < ⁄ <
Ô

6. The case of

⁄ <
Ô

2 is especially interesting because in this setup even some of the trajectories

that start with a positive amount of curvature end up in the inflationary solution

(most of the trajectories which start with the positive curvature evolve to a state

with infinite K, i.e. the universe collapses). This demonstrates that “closed” does

not imply “finite”.
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Point E is the so-called “tracking” solution. Both �„ and �M are between 0 and 1, and

the e�ective equation-of-state parameter matches that of the matter: we� = wM.

This means that the universe expands as if it were matter dominated and there is no

accelerated expansion. This point is, however, interesting because the scalar field is

still present; some of the energy density in stored in �„. This fixed point lies in the

z = 0 plane where both its coordinates are infinite for ⁄ = 0. Since that is outside of

the half disc, it is not relevant for this analysis. The point only becomes relevant as

⁄ becomes larger than


3(wM + 1). At this value E crosses D and enters the half

disc. Analysis of the stability shows that for ⁄ >


3(wM + 1) two of the eigenvalues

are complex conjugates of each other. This means that for the trajectories in the

z = 0 plane this point is a stable spiral. The additional eigenvalue is always positive

so all other trajectories are repelled.

Point F The e�ective equation-of-state parameter in point F is always we� = ≠1/3.

This corresponds to the scale factor being linearly proportional to t. The matter-

energy density vanishes here so the point always lies exactly on the parabolic surface

x2 + y2 ≠ z = 1. The corresponding eigenvalues are [≠3wM ≠ 1, ≠
Ô

8⁄4 ≠ 3⁄6/⁄3 ≠

1,
Ô

8⁄4 ≠ 3⁄6/⁄3 ≠ 1] which results in this point being either a saddle, attractor or

a stable spiral, depending on the value of ⁄. This is the analogue of the tracking

solution (point E) for the case where the universe behaves as if curvature were the

only component. This implies a Ã t.

Table 2.2: List of fixed points and theirr properties for the three dimensional case.

xú yú zú we� �„ �M �K

A 0 0 0 wM 0 1 0
B1 1 0 0 1 1 0 0
B2 -1 0 0 1 1 0 0
C 0 0 -1 undefined 0 0 1
D ⁄/

Ô
6


1 ≠ ⁄2/6 0 ⁄2/3 ≠ 1 1 0 0

E
Ô

3/2(w
M

+1)
⁄

Ô
3/2(1≠w2

M

)
⁄ 0 wM

3(w
M

+1)
⁄2

1 ≠ 3(w
M

+1)
⁄2

0
F


2/3/⁄ 2/(

Ô
3⁄) 2/⁄2 ≠ 1 ≠1/3 2/⁄2 0 1 ≠ 2/⁄2
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Figure 2.2: Phase spaces for four di�erent ⁄ and w
M

= 0. Valid phase space is limited by the parabolical sur-
face: all valid trajectories lie above it. Trajectories in the x ≠ y plane (where z = 0) are shown
in blue. Green trajectories lie between this plane and the parabolic surface. Since z = ≠�

K

=
K/(a2H2), green trajectories represent part of the phase space with negative curvature. Red traject-
ories are bounded to the part of the space where z > 0 which corresponds to K > 0. Point E lies
under the parabolic surface for the first two cases, so it’s not shown in the plots.
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Four qualitatively di�erent cases of ⁄ are distinguishable:

• (⁄ <
Ô

2) There are 6 fixed points (all except E, which is outside of allowed region).

Point D is the attractor for all of z Æ 0 part of the space and some trajectories in

z > 0. F has positive z-component and is a saddle.

• (
Ô

2 < ⁄ <


3(wM + 1)) There are still the same 6 fixed points but the z-component

of F is now negative. This point is a stable attractor for all trajectories with z < 0.

For trajectories that lie in the plane z = 0 the attractor is point D, and trajectories

with z > 0 don’t converge.

• (


3(wM + 1) < ⁄ <
Ô

6) Point D becomes a saddle, E enters the allowed region

and becomes attractive for trajectories in the plane, while trajectories with z > 0

diverge. Two of the eigenvalues of point F are now complex conjugates of each other

while the third is negative, so this point is a stable spiral in three dimensions.

• (
Ô

6 < ⁄) At ⁄ =
Ô

6 The significance of this last case is that point D merges with

B

1

and disappears. B

1

is now a saddle point in the plane.

2.4.3 Evolution of the Equation of State

For the same cases of ⁄ we plot trajectories that correspond to initial conditions that give

flat, open and closed universe models. These are shown in figures (2.3). Note that we

used the same initial conditions for all four cases. In the first case all curves converge.

For all other values of ⁄ the equation-of-state parameter diverges for K > 0. For K < 0

trajectories in phase space are drawn towards point F, where we� = ≠1/3. For K = 0

they can either end up in the point D (first two values of ⁄) or E (third and fourth case

of ⁄).
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Figure 2.3: Evolution of equation-of-state parameter over 20 e-foldings (N) for four di�erent cases of ⁄.

2.5 Conclusions

We explored a single-field quintessence model with exponential potential and canonical

kinetic term in presence of a FLRW metric and overall (positive or negative) spatial

curvature. In the Friedmann Equations, the term with spatial curvature is dynamical, so

we introduced a new variable and generalized two-dimensional case that holds for a flat

geometry to three dimensions.

In comparison to the model without curvature there are two new fixed points. These

have been noticed before (e.g. Burd and Barrow (1988)) but their behaviour is clearer

when viewed in terms of the parametrization we use. One of them is trivial, in that

it corresponds to a universe where entire energy density is dominated by the curvature.

This fixed point is not attractive. The other fixed point corresponds to a universe where

energy density is a combination of curvature and scalar field (but no matter). The ratio

between them depends on the parameter of the exponential potential. This fixed point

is interesting, because it is attractive for all trajectories with negative curvature term for

⁄ >
Ô

2. We have thus established that there is a natural configuration of this system that

corresponds to a specific value of w. Although we know that the energy density of the

Universe today is almost critical (so there is very little or no curvature), this fixed point
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might still be interesting for the cases where ⁄ is just above
Ô

2 and so energy density is

dominated by the scalar field.

The only problem with relating this solution to our observed reality is that equation-

of-state parameter in this point is ≠1/3, but we know that the present value is very close

to ≠1. Nonetheless, the attractor solution D is an accelerating solution for flat, negatively

curved and some positively curved cases. The corresponding equation-of-state parameter

is close to the value w = ≠1 in the limit ⁄ æ 0, but for any value of ⁄ <
Ô

2 it corresponds

to w < ≠1/3 so this is at least qualitatively applicable to dark energy.

We have only investigated one particular and rather simple model, but this sort of

curvature inclusive analysis is applicable to other, potentially more complicated models

that might exhibit a much richer dynamical interplay. Cases which might prove amenable

to further study on these lines would be scalar fields with a more general potential (Cope-

land et al., 2009), non-canonical terms, with multiple scalar fields, with globally aniso-

tropic metrics (i.e. the Bianchi models) (Fadragas et al., 2014), e.g. the Kantowski-Sachs

model (Coley and Goliath, 2000), and models based on exact inhomogeneous cosmologies.

Such models would of course introduce more than one extra parameter, so the resulting

phase portraits would involve more than three dimensions and their analysis would entail

considerably greater complexity.
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2.A Two dynamical variables and stability of fixed points

After introducing new variables as in Equation (2.8) for a general potential V („) and using

the Klein-Gordon Equation (2.6), the derivatives with respect to N are:

dx

dN
= ≠ „̇Ô

6MPlH

A

3 + Ḣ

H2

B

≠ V,„Ô
6MPlH2 (2.20a)

dy

dN
= V,„ „̇

2
Ô

3MPl
Ô

V H2 ≠
Ô

VÔ
3MPlH

Ḣ

H2 . (2.20b)
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Defining parameter ⁄ as ⁄ = ≠MPlV,„/V is especially convenient because this parameter

is constant for the exponential potential. Using this potential and eliminating �M with

the use of constraint (2.12), the ratio of the Friedmann Equations Ḣ/H2 can be expressed,

in terms of x and y, as:

Ḣ

H2 = 3
2

1
wM

1
x2 + y2 ≠ 1

2
≠ x2 + y2 ≠ 1

2
, (2.21)

where we define wM to be the combined equation-of-state parameter for a fluid component

taken to describe both matter and radiation:

wM = flmwm + flrwr
flm + flr

. (2.22)

Derivatives of x and y are hence expressed, for the exponential potential as (2.13). This

provides a useful way to express the evolution of both w„ and �„:

wÕ
„ = (w„ ≠ 1)

3
≠⁄

Ò
3(1 + w„)�„ + 3(1 + w„)

4
(2.23a)

�Õ
„ = 3(�„ ≠ 1)�„(w„ ≠ wM), (2.23b)

where the prime stands for di�erentiation with respect to N . Additionally, by defining

� = V V,„„/V 2
,„ we can obtain the derivative of ⁄:

⁄Õ = ≠⁄2(� ≠ 1)
Ò

3(1 + w„)�„. (2.24)

For the exponential potential ⁄ is constant, so ⁄Õ does not carry any additional information

in this case. In the fixed points the e�ective equation-of-state parameter, defined as

we� = P„ + PM
fl„ + flM

= x2 ≠ y2 + wM(1 ≠ x2 ≠ y2) (2.25)

is constant so we can easily integrate Equation (2.21) to see how scale factor changes with

time:

a Ã t
2

3(1+w

e�

) . (2.26)

Note that this only holds if the system is at one of the fixed points. In other cases Equa-

tion (2.21) has to be integrated numerically because its right-hand side is not constant.

However, it is still sensible to define an equation-of-state parameter we� even outside these

points. For we� = ≠1/3 the scale factor will have a linear dependance on time; values
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larger or smaller than that will give decelerated and accelerated expansion, respectively.

We investigate the stability of the fixed points by finding eigenvalues of the matrix,

evaluated at the fixed point (xú, yú):

M =

S

WU
ˆf

x

ˆx
ˆf

x

ˆy

ˆf
y

ˆx
ˆf

y

ˆy

T

XV

xú,yú

, (2.27)

where fi = di/dN stands for the terms on the right-hand side of Equations (2.13). A fixed

point is stable (attractive) if both eigenvalues are negative, non-stable (repulsive) if they

are positive and a saddle (attractive in one direction and repulsive in others) if they have

the opposite sign. If the two eigenvalues are complex conjugates of each other, then the

fixed point is a stable spiral.

In the case of two variables there are five such critical points; their coordinates and

values of the associated physical parameters are listed in Table (2.1). Their existence and

properties depend on the values of ⁄ and wM.
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Abstract

Within a cosmological context, we study the behaviour of collisionless particles

in the weak field approximation to General Relativity, allowing for large gradients

of the fields and relativistic velocities for the particles. We consider a spherically

symmetric setup such that high resolution simulations are possible with minimal com-

putational resources. We test our formalism by comparing it to two exact solutions:

the Schwarzschild solution and the Lemaître-Tolman-Bondi model. In order to make

the comparison we consider redshifts and lensing angles of photons passing through

the simulation. These are both observable quantities and hence are gauge independ-

ent. We demonstrate that our scheme is more accurate than a Newtonian scheme,

correctly reproducing the leading-order post-Newtonian correction. In addition, our

setup is able to handle shell-crossings, which is not possible within a fluid model. Fur-

thermore, by introducing angular momentum, we find configurations corresponding to

bound objects which may prove useful for numerical studies of the e�ects of modified

gravity, dynamical dark energy models or even compact bound objects within General

Relativity.

3.1 Introduction

Recent results from the Planck mission (Ade et al., 2015), BOSS (Anderson et al., 2014;

Busca et al., 2013; Samushia et al., 2013), WiggleZ survey (Blake et al., 2012), CFHTlenS

(Kilbinger et al., 2013) and SNLS (Betoule et al., 2014) have consolidated the �CDM

concordance model of cosmology as providing a very good fit to observations. However,

this model is characterized by two semi-phenomenological ingredients – cold dark matter

(CDM) and a cosmological constant (�) – whose true nature still needs to be determined
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at the fundamental level. With the reach of linear analysis now being nearly exhausted,

phenomena at nonlinear scales can help to make progress. On the observational side, large

surveys such as Euclid (Laureijs et al., 2011), DES (Abbott et al., 2005), LSST (Abell

et al., 2009) and SKA (Carilli and Rawlings, 2004) will make significant progress analysing

these non-linear scales. This puts the onus on the theoretical side to understand precisely

what we expect these surveys to see. Due to the non-linearity, numerical simulations will

be a necessary tool to probe this regime.

The N-body codes used for the study of cosmic large scale structure normally employ

Newton’s law of gravitation. One expects that this approximation works well as long as

perturbations are generated by nonrelativistic matter only. This is true if dark energy is

indeed a cosmological constant and dark matter is some heavy fundamental particle (like

in the WIMP scenario). However, since these facts are not established it seems that by

using the Newtonian approximation we are unable to access a viable part of model space.

In fact, even within the realm of known physics this approximation will break down

due to the existence of very light, but still massive, neutrinos. In principle, the initial

conditions of simulations can be set late enough that neutrinos have already become non-

relativistic; however, this can be so late that the cold dark matter has already begun

to cluster significantly. Therefore, relativistic e�ects are already important in order to

rigorously model the e�ects of neutrino masses in cosmology.

In an e�ort to address these shortcomings, a relativistic framework for N-body simula-

tions has recently been developed (Adamek et al., 2013, 2014b). This framework is based

on a weak-field expansion of Einstein’s equations, similar to the one proposed in (Green

and Wald, 2011, 2012). It does not require a particular form of stress-energy and relies

solely on the assumption that gravitational fields are weak, at least at large scales. There-

fore, it is applicable1 to a much larger set of models, including hot dark matter (Davis

et al., 1992; Abazajian et al., 2001) and many types of dynamical dark energy (Copeland

et al., 2006).

Before investing significant computational resources in order to do a full-scale cosmolo-

gical simulation it is interesting to study the relativistic e�ects in a simplified setup. Here

we will consider the case of a single, isolated, spherically symmetric structure which could,

for instance, be a model for a cosmological void or a galaxy cluster. The idealization to

exact spherical symmetry drastically reduces computational requirements, allowing high-

resolution simulations to be carried out at negligible cost. Furthermore, the numerical
1Note however that in some models the stress energy tensor may need to be modelled by a method

other than simple N-body particles.
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scheme can be thoroughly verified by comparing to several known exact solutions. When

comparing to exact solutions, structures can also be allowed to evolve into regimes where

metric perturbations do become large and the framework breaks down, allowing us to

probe the boundaries of where the framework can and cannot be trusted.

Our approach is in some sense complementary to existing methods for the numerical

solution of Einstein’s equations. For instance, the BSSN formalism (Shibata and Na-

kamura, 1995; Baumgarte and Shapiro, 1999; Rekier et al., 2015) can probe the strong

field regime, but existing implementations rely on a fluid description for matter. Our

N-body method, on the other hand, allows us to study matter configurations with highly

nontrivial phase space distributions.

In section 3.2 we introduce the relativistic framework and study some simple spher-

ically symmetric setups. We first consider a Schwarzschild solution to confirm that the

relativistic potentials are calculated accurately in vacuum. We then add nonrelativistic

matter and compare our simulations to the exact Lemaître-Tolman-Bondi models which

describe spherically symmetric solutions with a dust fluid. In order to avoid gauge issues,

we construct several physical observables which can be compared without ambiguity. We

note that the fluid solutions break down at the formation of caustics, but our relativistic

framework remains valid and can thus probe settings beyond the fluid approximation.

Without support from pressure or angular motion, overdensities tend to collapse quickly

and can not easily form stable bound objects. In section 3.3, we propose a way to intro-

duce angular motion without breaking spherical symmetry. This is achieved by arranging

the motion of the particles such that they all individually have angular momentum, but

the total angular momentum of the system remains zero. We demonstrate that one can

find configurations corresponding to bound objects. Such configurations may be useful

laboratories to study the e�ects of modified gravity, dynamical dark energy models, or

even the early stages of the formation of primordial blackholes (Hawking, 1971; Carr and

Hawking, 1974), or ultra compact mini-haloes (Berezinsky et al., 2003; Bunn and White,

1997; Ricotti and Gould, 2009), within ordinary gravity.
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3.2 The Model

The perturbed Friedmann-Lemaître-Robertson-Walker (FLRW) metric, in spherical co-

ordinates and longitudinal gauge, is:

ds2 = ≠a2(·) [1 + 2�(·, r)] d·2 + a2(·) [1 ≠ 2�(·, r)]
Ë
dr2 + r2d�2

È
, (3.1)

where · is the conformal time, a is the scale factor and we impose spherical symmetry

of the perturbations by requiring that the Bardeen potentials �(·, r) and �(·, r) depend

only on the radial coordinate and time. We have also assumed a spatially flat background

although it would be easy to generalize our model to allow for open or closed geometries.

We examine this metric in the regime where gravitational fields are weak. In other

words, we are interested in perturbations caused by structures that remain much larger

than their Schwarzschild radius. Such a weak-field setting allows for a systematic expan-

sion of the various equations of motion (including Einstein’s field equations) in terms of

metric perturbation variables. We will follow an approach studied in (Adamek et al., 2013)

which takes into account the most important relativistic terms.

This approach can be summarized as follows: first, all equations are expanded in terms

of the metric perturbations – in our case � and � – and all terms up to first order are kept

without distinction. At higher orders, however, one only wants to keep the most relevant

terms. Noting that linear perturbation theory is accurate on the largest scales (close to

or beyond the horizon) the only higher order terms that we will keep are those which may

become large at small scales. These terms will be those with two spatial derivatives,2

since a derivative will e�ectively multiply a term by an inverse power of a length scale.

To arrive at a tractable set of equations that still contains the most important relativistic

corrections we will therefore add all second order terms with two spatial derivatives and

no terms of any higher order. Although there are scenarios where terms of higher than

quadratic order can dominate over the linear terms (e.g. �,ij�2 if �,ij > ”ij/�) these

higher order terms will always be sub-dominant to the largest quadratic order terms that

we do include. Further details on this approximation scheme can be found in (Adamek

et al., 2013).

It is important to emphasise that any perturbations of the stress-energy tensor, in-

cluding momenta, are allowed to be arbitrarily large. The perturbative expansion is only

carried out in terms of gravitational fields and we make no assumptions about other
2Note that Einstein’s equations are second order di�erential equations, therefore no terms will have

more than two derivatives.
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perturbations. For instance, our solar system perfectly fits into this scheme since the

gravitational field of the sun remains well within the weak-field regime, despite the fact

that its density is some thirty orders of magnitude larger than the mean density of the

Universe.

Using the “time-time” component of Einstein’s equations, G0
0 = 8fiGT 0

0 , we obtain an

equation for the metric perturbations:

�,rr + 2
r

�,r ≠ 3H�,· ≠ 3H2(� ≠ ‰) + 3
2(�,r)2 = ≠4fiGa2(1 ≠ 4�)”T 0

0 , (3.2)

where commas denote partial derivatives with respect to r or · . Note that, in a spherical

coordinate system as the one used here, second spatial derivatives can give rise to terms

like �,r/r. We will treat these terms like second derivatives in our expansion scheme,

i.e. a factor 1/r will e�ectively be counted like a spatial derivative. We also introduced

the conformal Hubble parameter H = d ln a/d· and the di�erence of the potentials as

‰ = � ≠ �. On the right-hand side, ”T 0
0 stands for the perturbations of the stress-energy

tensor, ”T 0
0 = T 0

0 ≠T̄ 0
0 . We will only consider contributions from massive particles (e.g. cold

dark matter). The background model is governed by the Friedmann equation

H2 = ≠8fiG

3 a2T̄ 0
0 . (3.3)

Another equation comes from the traceless part of the “space-space” components of

Einstein’s equations, Gi
j ≠ 1

3”i
jGk

k = 8fiG
1
T i

j ≠ 1
3”i

jT k
k

2
, and reads:

‰,rr ≠ 1
r

‰,r + ‰2
,r + 2�2

,r + 2
3

�,rr ≠ 1
r

�,r

4
(2� ≠ ‰) = 12fiGa2(1 ≠ 2‰)�rr , (3.4)

where �rr is the radial component of the anisotropic stress, defined for a general coordinate

system as:

�ij = ”ikT k
j ≠ 1

3”ijT k
k . (3.5)

Latin indices denote spatial coordinates only. As a consequence of spherical symmetry the

anisotropic stress is purely longitudinal in our setting.

The stress-energy tensor is derived by varying the action of an ensemble of massive

point particles with respect to ”gµ‹ (see e.g. equation (2) of (Adamek et al., 2014b)). This

gives:

T µ‹ =
ÿ

n

m(n)
”(3)(x ≠ x(n))Ô≠g

◊

Q

a≠g–—

dx–
(n)

d·

dx—
(n)

d·

R

b
≠1/2 dxµ

(n)
d·

dx‹
(n)

d·
, (3.6)
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where we sum the contributions of n particles with masses m(n) and spatial positions x(n),

and Greek indices run over all four coordinates of space-time.

For a particle moving in the radial direction we can define a momentum

p =
m(1 ≠ �) dr

d·Ú
1 + 2� ≠ (1 ≠ 2�)

1
dr
d·

22
, (3.7)

which is the proper relativistic momentum as measured in a Gaussian orthonormal co-

ordinate frame aligned with our foliation of spacetime3. The motivation for this is that

it allows us to derive an expression for the stress-energy tensor that is valid (within the

bounds of our approximation scheme) even when the particles have arbitrarily high velo-

cities. In particular,

T 0
0 = ≠1 + 3�

4fir2a3
ÿ

n

”(r ≠ r(n))
Ò

m2
(n) + p2

(n) , (3.8)

and

�rr = 2
3

1 + 3�
4fir2a3

ÿ

n

”(r ≠ r(n))
p2

(n)Ò
m2

(n) + p2
(n)

. (3.9)

As we restrict our solutions to spherical symmetry we can imagine collections of particles

as representing spherically symmetric shells with only radial positions. This is because

symmetry also requires that the particle distribution function is independent of angular

position. We therefore simply dropped the angular coordinates from above expressions

and defined the masses such that m(n)/(4fir2
(n)) is the surface mass density (in coordinate

space) of the shell with label n. Thus, each shell accounts for all particles at given radius

r(n) with given radial momentum p(n) and we need only sum over shells. Note that, for

descriptive ease, from here onwards we will refer to the individual shells as the “particles”

of our simulations.

In order to evolve the particle positions one can invert eq. (3.7),

dr

d·
= p


m2 + p2 (1 + � + �) . (3.10)

3Explicitly, a Gaussian orthonormal coordinate frame is given by a set of orthonormal basis vectors eµ

0

,
eµ

1

, eµ

2

, eµ

3

, g
µ‹

eµ

0

e‹

0

= ≠1, g
µ‹

eµ

0

e‹

i

= 0, g
µ‹

eµ

i

e‹

j

= ”
ij

with eµ

0

orthogonal to the space-like hypersurface.
The metric in the coordinates defined by this basis locally looks like the Minkowski metric. The momentum
p defined in eq. (3.7) is simply the spatial component of the covariant 4-momentum in that coordinate
system. If we align eµ

1

with the radial direction, i.e. eµ

1

Ã ”µ

r

, we can write p = muµg
µ‹

e‹

1

, where uµ denotes
the covariant 4-velocity.
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The geodesic equation for massive particles,

d2xµ

ds2 + �µ
‹fl

dx‹

ds

dxfl

ds
= 0 , (3.11)

finally determines the evolution of the momenta as

dp

d·
= ≠(H ≠ �,· )p ≠ �,r

Ò
m2 + p2 . (3.12)

Our aim is to study numerical solutions to the above system of equations. To this end,

we adopt a particle-mesh (PM) scheme as used in many cosmological N-body simulations.

The “mesh” part of the scheme takes care of the evolution of fields such as � or ‰. All

fields are represented approximately by sampling their values on a discrete set of points,

hereafter referred to as the “grid”. The field equations (3.2), (3.4) are solved on the grid

by replacing the di�erential operators by finite-di�erence versions thereof.

The “particle” part of the PM scheme, on the other hand, takes care of the evolution

of the particle ensemble. The phase-space of fundamental particles is sampled by a much

smaller number of N-body particles which can be viewed as discrete elements of phase-

space. Hereafter, the term “particle” usually refers to the latter notion. Positions and

momenta of particles are real-valued (i.e. they can exist in arbitrary positions between

grid points) and the geodesic equation is solved by interpolating field-dependent quantities

such as �,r to the particle positions.

Vice versa, a so-called particle-to-mesh projection is required to construct the stress-

energy tensor (whose components are treated like a field) from the particle ensemble.

This is achieved by replacing ”(r ≠ r(n)) æ w(r ≠ r(n)) in eqs. (3.8), (3.9), where w is a

weight function which depends on the projection method. We use the so-called “triangular-

shaped particle” (TSP) method where w is constructed using a piecewise linear (triangle-

shaped, hence the name) function of the separation. Some details on the projection and

interpolation methods can be found in appendix 3.C.

In the following subsections, in order to validate the numerical scheme, we will compare

simulations to two well-known exact solutions of Einstein’s equations.

3.2.1 The Schwarzschild Solution

The Schwarzschild metric describes the spherically symmetric vacuum solution around a

central mass concentration. Within the context of our simulations this metric is suitable
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for regions void of particles, and can hence be used to test the implementation of the field

equations independently of the particle evolution.

In order to obtain explicit expressions for the two Bardeen potentials, it is useful to

write the Schwarzschild solution in so-called “isotropic coordinates” (Eddington, 1924),

ds2 = ≠
!
1 ≠ r

S

4r

"2

!
1 + r

S

4r

"2 dt2 +
3

1 + rS

4r

44 Ë
dr2 + r2d�2

È
, (3.13)

where rS = 2GM denotes the Schwarzschild radius.

As long as the mass M is distributed over a central region much larger than rS , the

exterior Schwarzschild solution can be viewed as a perturbation around Minkowski space.

Within our simulations, such a background is described by T̄ 0
0 = 0 and hence H = 0. We

can therefore set a = 1 and · = t. In order to obtain a numerical solution we set up a

homogeneous ball of particles (much larger than its Schwarzschild radius) in the center of

an otherwise empty simulation volume. The Bardeen potentials � and � outside of the

ball are independent of time, as guaranteed by Birkho�’s theorem. Their behavior in the

weak-field regime is given by the large-r expansion of the above exact metric. For r ∫ rS

we have

!
1 ≠ r

S

4r

"2

!
1 + r

S

4r

"2 = 1 + 2�(r) = 1 ≠ rS

r
+ r2

S

2r2 + . . . , (3.14a)

3
1 + rS

4r

44
= 1 ≠ 2�(r) = 1 + rS

r
+ 3r2

S

8r2 + . . . . (3.14b)

In Figure 3.1 we show some results for � and ‰ obtained with our numerical scheme and

compare them to the corresponding analytic results obtained from the exact solution. We

only consider the vacuum region outside the central mass concentration. Evidently, our

numerical scheme accurately accounts for the leading-order post-Newtonian corrections

and is therefore one order (in post-Newtonian counting) better than a purely Newtonian

scheme. Using the results of our simulation it would be possible, for instance, to get an

accurate prediction for the advance of the perihelion of Mercury.

3.2.2 The Lemaître-Tolman-Bondi Solution

If spacetime is filled with a dust fluid then one can construct a spherically symmetric

class of exact parametric solutions known as Lemaître-Tolman-Bondi (LTB) models. For

our simulation this is equivalent to requiring that particles occupying identical space-time
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Figure 3.1: Top: numerical results for � (green) and ‰ = � ≠ � (red) as a function of r/r
S

. They are in excel-
lent agreement with the exact result, shown as dashed and dot-dashed lines, respectively. Bottom:
relative error of the numerical values of � with respect to the exact result (in green). For compar-
ison, the relative error of the Newtonian approximation, � = ≠GM/r, is shown as dotted line (in
black).

points also have identical velocities, or more precisely, having a phase space distribution

function which, at each spacetime point, is a single Dirac delta-distribution in velocity

space. Being exact solutions, these models do not require the density to be nearly homo-

geneous, allowing the study of strongly non-perturbative settings. However, it is impossible

to extend these solutions beyond the point where particle trajectories cross and the phase

space distribution function loses its simple delta-distribution character without using a

di�erent coordinate system to the comoving-synchronous one used here.

In this coordinate system, the LTB line element reads

ds2 = ≠dt2 + [R,r(t, r)]2

1 + 2E(r) dr2 + R2(t, r)d�2 . (3.15)

In order to compare the LTB solutions to our numerical calculations we choose initial

conditions such that the density perturbation is linear. In the perturbative regime we can

easily work out the coordinate transformation between the synchronous comoving coordin-

ates used to parameterize the LTB solution and the coordinates used in our framework,

which are related to the longitudinal gauge 4. Details can be found in appendix 3.A. A
4For a discussion on why this is a coordinate transformation rather than a gauge transformation see
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more general treatment of this coordinate transformation has previously been considered

in (Van Acoleyen, 2008). Setting initial conditions in this way we can make a comparison

between the two physical situations. This procedure does not precisely match the exact

LTB solution to the perturbed FLRW solution; however it is su�cient for our purposes

of comparing observables in the two physical models. For a more rigorous comparison see

(Sussman et al., 2015).

Figures 3.2 and 3.3 show some simulation results. We plotted the evolution of the

density contrast, momentum of particles p, scalar perturbation � and the di�erence of the

two potentials ‰ as a function of comoving radius r. The density contrast here is defined

as fl/fl̄ = T 0
0 /T̄ 0

0 , where T 0
0 is constructed according to eq. (3.8) and T̄ 0

0 is taken from the

background model. The density, �, and ‰ are quantities projected to the grid with the

method described in Appendix 3.C, whereas the momentum portrait shows the momentum

for each particle separately. The first set of figures portrays the collapse of a spherically

symmetric overdensity and the second set shows the expansion of a spherically symmetric

void. The initial densities were set as “compensated tophat profiles”, where a central

region of constant density contrast is surrounded by a second layer with constant density

contrast of opposite sign such that the entire region can be matched onto a homogeneous

FLRW exterior solution. In both cases we find ‰ to be proportional to ≥ �2 and negative.

In the expansion of a void, we can also observe a “shell-crossing” which happens when

a set of particles moves outwards faster than particles that were initially at a larger

radius. As mentioned before, this cannot be described with the comoving synchronous

coordinates – it becomes singular as soon as shell crossing occurs. Note that LTB model

can also exhibit shell-crossings if constructed with non-comoving coordinates (Plebanski

and Krasinski, 2006).

When following the respective solutions into the non-linear regime we face the problem

that the coordinate transformation becomes highly nontrivial. This makes it di�cult to

compare quantities like the density or metric components directly. A good way to proceed

is to compute and compare observables. In the following section we will discuss some

examples in detail.

(Malik and Matravers, 2013).
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Figure 3.2: Top left: the evolution of the density profile of a spherically symmetric compensated tophat per-
turbation. Di�erent-coloured lines correspond to outputs at di�erent times in the simulation, para-
metrised by the background redshift z

FLRW

. The last output at z
FLRW

= 0.5 happens just before
the collapse occurs. Density plots exhibit some discreteness noise, which is caused by having a finite
number of particles. Bottom left: the momentum of the shells moving inwards. Top right: evolution
of the underlying scalar metric perturbation �. This profile is continuous even where the density
has a step. Bottom right: Evolution of the di�erence of the two potentials ‰ = � ≠ �. This is a
purely relativistic quantity and does not exist in a Newtonian setup. The magnitude of ‰ is ≥ �2.
Parameters of the simulation were: size of the box: 20 Mpc/h, initial radii of top-hat overdensity
and compensated region, respectively: r

1

= 6 Mpc/h, r
2

= 18 Mpc/h, initial density contrast of the
overdensity: ” = 1/200, initial redshift: z

in

= 500.

3.2.3 Observables

Redshift of radially in-falling source

The first observable we will study is the redshift of a source of light that is moving with

the flow of particles surrounding it. We place this source of light at an initial radius r1

from the center and an observer at r2, the boundary where the inhomogeneous LTB patch

is matched to FLRW. For this example, the source and observer are along the same radial

line. The source constantly emits photons at a fixed energy given in the rest frame of the

source. As the simulation progresses, we propagate these photons through the simulation

volume until they reach the observer. There they are detected and we calculate their
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Figure 3.3: The same set of plots as for figure 3.2, this time for an evolving underdensity. The last two outputs
exhibit a shell-crossing, which can be seen in the density and momentum portraits. This non-linear
feature can only be modelled with an N-body simulation. The parameters used here were: size of
the box: 120 Mpc/h, r

1

= 36 Mpc/h, r
2

= 84 Mpc/h, ” = ≠1/40, z
in

= 500.

observed redshift, which is defined as:

1 + zobs = (gµ‹kµu‹)|src
(gµ‹kµu‹)|obs

, (3.16)

where the product of the photon’s 4-momentum kµ and the 4-velocity of the source (ob-

server) uµ can be related to the momentum p of the source (observer) particle in the limit

of weak fields as:

gµ‹kµu‹ = ≠k0a (1 + �) 1
m

5Ò
m2 + p2 ≠ p

6
. (3.17)

To propagate a photon through the simulation, we use the null condition (ds2 = 0). We

can actually find a fixed relation between dr/d· and dÏ/d· , a consequence of the fact that

a photon always travels at the speed of light:

1 + 2� + 2� =
3 dr

d·

42
+

3dÏ

d·

42
r2 (3.18)

which gives:
dr

d·
= ± (1 + � + �) … dÏ

d·
= 0. (3.19)
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Figure 3.4: Top: the redshift of light, emitted by an in-falling source particle, as a function of the background
redshift z

FLRW

at the time when the light is detected by the observer. Initially, the observed red-
shift is decreasing, which is something we would expect for two particles comoving with the back-
ground in a matter dominated universe. Later, as the collapsing structure evolves, the velocity of
the in-falling source becomes the dominant contribution and the redshift starts increasing again.
Bottom: relative error between our relativistic simulation and the LTB solution. The error is mainly
due to the first-order matching of the initial conditions. The error increases as the collapse evolves.
This is because the collapse time itself receives a first-order correction. Therefore, the divergence in
observed redshift happens at slightly o�set times, resulting in the error blowing up. For this plot,
the same parameters as the ones in Figure 3.2 were used.

On every step, the photon’s energy can be evaluated by integrating the time component

of the geodesic equation:

dk0

d·
+

5
�,· ≠�,· +2�,r

dr

d·
+ 2H

6
k0 = 0 (3.20)

The results for this observable are shown in figure 3.4. As can be seen, the simulation

agrees well with the LTB predictions. In fact, for this plot the leading source of deviation

actually comes from imprecise matching of initial conditions, which could only be improved

by performing that matching at a higher order of perturbation theory.
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Figure 3.5: Schematic representation of the trajectories of lensed photons in an LTB geometry. The rays enter
the LTB region at varying angles on the right end of the plot. Along their way through the simula-
tion volume their trajectories are deflected due to the underlying overdensity.

Lensing of non-radial rays

Another observable we can analyse is the deflection of a ray that propagates not only in

the radial, but also in an angular direction. The trajectory of such a ray is lensed by the

gravitational potentials. Spherical symmetry ensures that the trajectory of a light ray will

be planar, so we only have to consider the radial direction and one angular direction. By

setting Ë = fi/2 or kË = 0, one can derive the two equations that determine that path of

the photon from the geodesic equation:

d2r

d·2 ≠ 2 (�,r +�,r )
3 dr

d·

42
≠ (�,· +�,· ) dr

d·
≠

3dÏ

d·

42
r + (�,r +�,r ) = 0 (3.21a)

d2Ï

d·2 + (�,· ≠�,· ≠2�,· ) dÏ

d·
+

32
r

≠ 2�,r ≠2�,r

4 dr

d·

dÏ

d·
= 0 (3.21b)

Varying the initial angle at which photons enter the perturbed region and observing the

deflection angle (the angle by which its outgoing trajectory di�ers from the incoming one),

we get a gauge independent probe of the underlying potentials.

In Figure 3.5 we show the trajectories of photons that propagate through the simula-

tion volume. We tracked 200 photons, entering at di�erent angles –. The photons that

experience the most lensing are those that pass near the edge of the overdensity. A photon

that enters at – = 0 and passes through the centre of the overdensity is not lensed, since

its path is radial. Likewise, a photon that enters at – = fi/2 spends too little time inside

the non homogeneous region to change its path substantially. In Figure 3.6 we show the

deflection angle as a function of –.
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Figure 3.6: Lensing of photons by an underlying overdensity. We plot the LTB predictions (solid lines) and the
results from our simulation (dashed lines on top of them) at four selected redshifts. The parameters
used here are the same as the ones in Figure 3.2.

3.3 Angular Momentum

Using the formalism presented so far, any initial over-density would collapse to a singu-

larity within a finite amount of time. For realistic cosmological structures this does not

happen due to the process of virialisation during which the initial potential energy of a

large scale density fluctuation is partially converted into radial and angular kinetic ener-

gies of individual particles. Most importantly, the angular momentum thus generated in

individual particles causes these particles to miss the centre of a collapsing structure. This

then avoids the production of densities large enough to cause singularities to arise. Es-

sentially, the produced angular momentum provides an e�ective pressure term that resists

the collapse.

We show in this section how we can model this pressure by adding angular momentum

to the particles in our simulation box, without losing spherical symmetry as conceived in

(Einstein, 1939). The downside to the method we present is that there can be no exchange

of angular momentum between particles. This is because adding such an e�ect would
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Figure 3.7: Space-time diagrams showing the radial trajectories of shells initially arranged as a uniform ball
with zero radial motion. Di�erent colors label di�erent shells, black labelling the outermost one.
From left to right, the angular momentum of the shell particles was set to L = 0 where we get col-
lapse; L = 0.5L

K

where a violent re-configuration to a new, much more compact state happens;
L = L

K

at which point the behaviour is almost Keplerian, with tiny perturbations caused by re-
lativistic corrections - stability is guaranteed for a very long time scale; L = 1.1L

K

with quasi-stable
oscillations with relatively long timescale for chaotic behavior; and L = 1.4L

K

which corresponds
to an unbound state. Here, L

K

is the (r-dependent) value of L which corresponds to a circular Kep-
lerian orbit in Newtonian theory. The radius is plotted in units of r

S

, the Schwarzschild radius of
the ball; initially the ball has a radius of 50r

S

. The time coordinate is plotted in units of t
c

, the
collapse time of the irrotational ball.

necessarily require some degree of deviation from spherical symmetry. Unfortunately, this

limits how far we can model the true virialisation process; nevertheless, as we show, we

can still set initial conditions that produce stable, bound, spherical structures.

We can now imagine the shells to be made up of infinitesimal point-like particles, evenly

distributed over the sphere. Apart from the radial momentum, which is the same for all

infinitesimal point-like particles on a given sphere, we can assign each of those particles

an angular momentum in a particular direction, in such a manner that once we perform

the average over the momenta of all infinitesimal particles on a given sphere, there is no

preferred direction of angular momentum. One can imagine that for every infinitesimal

particle with some angular momentum, there is another particle on a trajectory in the

same plane, but traveling in the opposite direction. Although we can not observe any

non-radial motion of spherical shells, their radial motion is nevertheless a�ected. This

is because the equation that governs the propagation of particles in the radial direction

involves a pressure-like term that depends on the angular momentum of the particle.
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We start again with the geodesic equation

d2xµ
(n)

ds2 + �µ
‹fl

dx‹
(n)

ds

dxfl
(n)

ds
= 0 (3.22)

Calculating all the Christo�el symbols �µ
fl‡ we have three equations for evolution of co-

ordinates:

d2·

ds2 = ≠ (H + �,· )
3d·

ds

42
≠ 2�,r

d·

ds

dr

ds
≠ (H(1 ≠ 2� ≠ 2�) ≠ �,· )

A3dr

ds

42
+ r2

3dÏ

ds

42B

(3.23a)
d2r

ds2 = ≠ �,r

3d·

ds

42
≠ 2 (H ≠ �,· ) d·

ds

dr

ds

+ �,r

3dr

ds

42
+ r (1 ≠ r�,r)

3dÏ

ds

42 (3.23b)

d2Ï

ds2 = ≠2 (H ≠ �,· ) d·

ds

dÏ

ds
≠ 2

31
r

≠ �,r

4 dr

ds

dÏ

ds
(3.23c)

Here we only kept one angular coordinate. Since the potentials are spherically symmetric,

each infinitesimal point-like particle will move in a two-dimensional plane and so the

reference frame can always be rotated so that the direction of the angular momentum

is perpendicular to this plane. We see that the last equation (3.23c) can be integrated

analytically with respect to ds once, to give

dÏ

ds
= L

(ar)2 (1 + 2�) (3.24)

where L is the constant of integration. We can express the evolution of coordinates r and

Ï with respect to coordinate time d· instead of eigentime ds using a simple trick:

d2r

d·2 =
A

d2r

ds2 ≠ d2·

ds2
dr

d·

B 3d·

ds

4≠2
(3.25)

And equivalently for Ï. With this we can combine equations (3.23b) and (3.23c) with

(3.23a) to express:

d2r

d·2 = (≠H + 2�,· + �,· ) dr

d·
≠ �,r + (�,r + 2�,r)

3 dr

d·

42
+

1
r ≠ r2�,r

2 3dÏ

d·

42

+ (H(1 ≠ 2� ≠ 2�) ≠ �,· )
A3 dr

d·

42
+ r2

3dÏ

d·

42B
dr

d·

(3.26a)
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d2Ï

d·2 = (≠H + 2�,· + �,· ) dÏ

d·
+

3
≠2

r
+ 2�,r + 2�,r

4 dr

d·

dÏ

d·

+ (H(1 ≠ 2� ≠ 2�) ≠ �,· )
A3 dr

d·

42
+ r2

3dÏ

d·

42B
dÏ

d·

(3.26b)

In addition we have the “mass-shell condition” for particles with mass:

gµ‹
dxµ

ds

dx‹

ds
= ≠1 (3.27)

which is expressed, using our metric, as:5

≠ a2
3d·

ds

42
(1 + 2�) + a2

3dr

ds

42
(1 ≠ 2�) + a2r2

3dÏ

ds

42
(1 ≠ 2�) = ≠1 (3.28)

The momentum of the particles now has a radial component,

pr =
m(1 ≠ �) dr

d·Ú
1 + 2� ≠ (1 ≠ 2�)

1
dr
d·

22
≠ (1 ≠ 2�)r2

1
dÏ
d·

22
(3.29)

and an angular one,

pÏ =
m(1 ≠ �)r dÏ

d·Ú
1 + 2� ≠ (1 ≠ 2�)

1
dr
d·

22
≠ (1 ≠ 2�)r2

1
dÏ
d·

22
(3.30)

Using the mass-shell condition (3.28), the definition of the conserved quantity L (3.24),

and (3.23a), we can extract the angular velocity of infinitesimal particles,

dÏ

d·
= L

ar2

ı̂ııÙ
1 + 4� + 2� ≠ (1 + 2�)

1
dr
d·

22

1 + L2(1+2�)
a2r2

, (3.31)

and eliminate it from the momenta equations:

pr = m
dr

d·

(1 ≠ �)
ar

ı̂ııÙ
a2r2 + L2(1 + 2�)

1 + 2� ≠ (1 ≠ 2�)
1

dr
d·

22 (3.32)

and

pÏ = mL(1 + �)
ar

. (3.33)

Note that it is L which is the conserved quantity, not pÏ, within our framework. With

this setup, we can finally express the equation for evolution of shell particles (3.23b) as a
5Again, we have set Ë = fi/2, so dË/ds = 0.
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system of two first-order equations:

dpr

d·
= (�,· ≠ H)pr ≠

Ò
m2 + p2

r + p2
Ï�,r +

31
r

≠ �,r

4
p2

Ï(1 + � + �)
Ò

m2 + p2
r + p2

Ï

(3.34)

and
dr

d·
= prÒ

m2 + p2
r + p2

Ï

(1 + � + �). (3.35)

These two equations describe the movement of shell particles and need to be solved nu-

merically. A sanity check verifies that if we set pÏ to zero, we recover the momentum

evolution equation in the case without angular momentum, (3.12).

With our new definitions of pr and pÏ, the energy-momentum tensor expresses as:

T 0
0 = ≠1 + 3�

4fir2a3
ÿ

n

”(r ≠ r(n))
1Ò

m2 + p2
r + p2

Ï

2

(n)
(3.36)

and

�rr = 1 + 3�
4fir2a3

ÿ

n

”(r ≠ r(n))

Q

a
2
3p2

r ≠ 1
3p2

ÏÒ
m2 + p2

r + p2
Ï

R

b

(n)

(3.37)

The angular motion also gives rise to a transverse Doppler e�ect. This can be seen,

e.g., from eq. (3.17) being modified as

gµ‹kµu‹ = ≠k0a (1 + �) 1
m

ËÒ
m2 + p2

r + p2
Ï ≠ pr

È
. (3.38)

In figure 3.7 we have plotted the radial trajectories of shells within balls that have

uniform density, but non-zero and non-uniform angular momentum. Each panel corres-

ponds to the same initial density state, but di�erent initial states of angular momentum.

As can be seen, our code is able to describe balls that collapse to a point; balls that first

begin to collapse under gravity but then stabilise; balls where the e�ective pressure due

to angular momentum perfectly balances gravitational attraction; balls that first expand

due to e�ective pressure, but then stabilise; and finally, balls which are blown apart by

pressure. Only in the first and last situations respectively will our code certainly break

down, and even then it will survive until the weak field limit breaks down, or a particle

leaves the box. In these plots, the balls begin only 50 times larger than their Schwarzschild

radii, therefore relativistic e�ects will not be negligible.

We have not considered the stability of the shells in our simulation. This is a non-

trivial issue (Gleiser, Reinaldo J. and Ramirez, Marcos A., 2009, 2010). From the results in

(Gleiser, Reinaldo J. and Ramirez, Marcos A., 2009, 2010) it is clear that the assumption
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of stable, fixed mass shells is not always physically valid and that the shells would in fact

disperse if examined in finer resolution. In fact, in the second panel of figure 3.7 we can see

this e�ect occurring in our own analysis. For example, the red and orange lines begin close

to each other in phase space and could even be considered as parts of the same shell in a

lower resolution simulation of the same initial conditions. However at later times (e.g. at

t = 5tc) the two shells are moving in opposite directions. An interesting analysis that could

be done within our framework is to analyse two simulations with di�erent resolutions, but

the same initial conditions. It would then be possible to follow the evolution of the sub-

shells of one large shell to quantitatively determine the stability of the larger shell. Such

an analysis, which is beyond the scope of our present work, would hopefully reproduce, in

the simulation, the results of (Gleiser, Reinaldo J. and Ramirez, Marcos A., 2009, 2010).

If our method were to be applied to real physical structures, such an issue would need to

be examined and quantified.

3.4 Conclusion

We have presented an N-body framework for spherically symmetric solutions valid in the

weak-field regime of general relativity. We have primarily applied this framework in a

cosmological context, expanding around an FLRW metric; however nothing forbids the

application of the framework to other contexts. Spherical symmetry was imposed in order

to obtain an economic setup for numerical studies. We compared our code against two

types of known exact solutions, Schwarzschild and Lemaître-Tolman-Bondi, and found

good agreement. However, our scheme is suitable also for setups where no exact solution

is known, for instance when the fluid description of matter is not valid.

Furthermore, we demonstrated that the relativistic potentials are computed more ac-

curately than in a Newtonian scheme. This feature will be useful for the study of models

which have exotic sources of stress-energy perturbations, such as dynamical dark energy

or modified gravity. On a related note, we stress that our scheme does not make any

assumptions about the nature of perturbations apart from the requirement that they give

rise to weak gravitational fields only. This assumption breaks down, e.g., if a black hole

is formed.

In order to avoid the collapse of an overdensity into a black hole, we have introduced

a method to create a stable bound structure supported by angular momentum. Such

configurations may, in some sense, be more realistic proxies for cosmic structures such
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as galaxy clusters, and can therefore be useful laboratories for studying gravity at these

scales. They may also be useful for the study of weakly relativistic, compact bound objects

that can form in the early universe, such as ultra compact mini-haloes, or for the early

stages of the formation of primordial black holes.
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3.A Appendix1: Linear Relation between LTB Solution and Longit-
udinal Gauge

In this appendix we give the linear coordinate transformations which we use to set up

initial conditions corresponding to a given LTB solution. These relations are valid to the

extent that the matching is done at a time when linear perturbation theory can be applied.

LTB solutions which do not allow a perturbative description at any time are more di�cult

to translate into our gauge, and there may be cases where it is impossible. We will not

consider solutions of this type in this paper.

Our starting point is the LTB line element given in eq. (3.15). At the initial time tin

where we will do the matching, we will rescale the coordinate r such that, at that time,

R(tin, r) = a(tin)r. The (time independent) gravitational mass function can then simply

be obtained as

2M(r) = 8fiGa3(tin)
⁄ r

0
r̃2fl(tin, r̃)dr̃

= 3H2a3
⁄ r

0
r̃2 (1 + ”(tin, r̃)) dr̃ . (3.39)

In this work we are interested in setups where the metric is FLRW everywhere except

for a finite spherical region. This can be achieved by choosing a “compensated” density



65
Spherically Symmetric N-body Simulations with General Relativistic

Dynamics

profile such that the mass function becomes the one of FLRW, M(r) = H2a3r3/2, at the

boundary of the region6. We will choose a particularly simple profile, given by

”(tin, r) =

Y
______]

______[

”1 r < r1

”2 r1 < r < r2

0 r > r2

, (3.40)

where ”2 = ≠”1r3
1/

!
r3

2 ≠ r3
1
"

gives the correct matching to FLRW as can be seen by

inspecting the resulting mass function.

Next we will use the parametric expression for the exact LTB solution in order to

determine the metric function E(r). Let us consider E(r) < 0, the opposite case is

analogous. The parametric expressions are

R(t, r) = ≠ M(r)
2E(r) (1 ≠ cos ÷) , (3.41a)

(÷ ≠ sin ÷)2/3 = ≠ 2E(r)
M2/3(r)

t2/3 . (3.41b)

While the parameter ÷ cannot be eliminated in closed form, it is possible to do so per-

turbatively for small ÷, i.e. at early time. We find that

E(r) = ≠5
6r2H2(tin)a2(tin)f(r) , (3.42)

where

f(r) =

Y
______]

______[

”1 if r < r1

”2 + r3

1

r3

(”1 ≠ ”2) if r1 < r < r2

0 if r > r2

. (3.43)

In the linear regime we also have

R(t, r) = a(t)r
5
1 + 1

3f(r)
3

1 ≠ a(t)
a(tin)

46
. (3.44)

Let us now write the line element in a convenient perturbative notation,

R2(t, r) = a2(t)r2 [1 + 2b(t, r)] , (3.45a)
[R,r(t, r)]2

1 + 2E(r) = a2(t) [1 + 2y(t, r)] , (3.45b)

6Note that H2a3 is independent of time in a matter dominated universe.
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which implies

b(t, r) = 1
3f(r)

3
1 ≠ a(t)

a(tin)

4
, (3.46a)

y(t, r) = b(t, r) + rb,r(t, r) ≠ E(r) . (3.46b)

We can now work out the linear coordinate transformation from synchronous to longitud-

inal gauge (see also (Adamek et al., 2014a)). A straightforward calculation shows

r
ˆ

ˆr

51
r

�,r(t, r)
6

= ≠b,rr(t, r) + H(t)a2(t) [y,t(t, r) ≠ b,t(t, r)] (3.47a)

≠ 2
r2 [y(t, r) ≠ b(t, r)] + 1

r
y,r(t, r) ,

r
ˆ

ˆr

51
r

�,r(t, r)
6

= 2H(t)a2(t) [b,t(t, r) ≠ y,t(t, r)] + a2(t) [b,tt(t, r) ≠ y,tt(t, r)] .(3.47b)

Since the combination H2a3 is independent of time in a matter dominated universe we

can evaluate it at t = tin and find

r
ˆ

ˆr

51
r

�,r(t, r)
6

= r
ˆ

ˆr

51
r

�,r(t, r)
6

= 1
2H2(tin)a2(tin)rf Õ(r) , (3.48)

which can be integrated twice to obtain � and �. The constants of integration should be

chosen such that we can match smoothly to FLRW at r = r2. In other words, we require

�|r=r
2

= �|r=r
2

= �,r|r=r
2

= �,r|r=r
2

= 0. The corresponding solutions are

�(t, r) = �(t, r) = 1
2H2(tin)a2(tin)

⁄ r

r
2

r̃f(r̃)dr̃ . (3.49)

3.B Appendix2: Initial Particle Data

Given a linear solution for �, � which specifies the initial conditions, we can work out the

initial particle configuration. To this end, we linearize eq. (3.2),

�,rr + 2
r

�,r ≠ 3H2� = ≠4fiGa2”T 0
0 , (3.50)

where we have used that �,t = ‰ = 0 at linear order.

The aim of this section is to construct a linear displacement field ”r(r) which specifies

the initial particle positions r(n)(tin) = r0
(n) + ”r(r0

(n)) as infinitesimal displacements from
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a homogeneous distribution r0
(n). Expanding eq. (3.8) to linear order we find

”T 0
0 = T̄ 0

0

3
3� ≠ ”r,r ≠ 2

r
”r

4
. (3.51)

To see this, take the continuum limit of the particle sum,

T 0
0 = ≠1 + 3�

4fir2a3
ÿ

n

m(n)”(r ≠ r(n)) æ ≠1 + 3�
4fir2a3

⁄
f̄(r0

(n))”(r ≠ r(n))dr0
(n) , (3.52)

with a distribution function f̄(r0
(n)) Ã (r0

(n))2 corresponding to the homogeneous distri-

bution. Next, change the integration variable to r(n) to obtain eq. (3.51). Inserting into

eq. (3.50) and using eq. (3.3), the solution for the displacement is found to be

”r = 5
r2

⁄ r

0
r̃2�(tin, r̃)dr̃ ≠ 2

3H2 �,r . (3.53)

Here the constant of integration is fixed by requiring regularity at the origin, which implies

”r|r=0 = 0.

The initial particle velocities can be obtained simply by taking the time derivative of

above equation,
dr

d·

----
t
in

= ”r,· = ≠ 2
3H�,r , (3.54)

where we used HÕ = ≠H2/2 in a matter dominated universe.

3.C Appendix3: Particle-Mesh Scheme for Spherical Coordinates

Standard particle-mesh schemes (Hockney and Eastwood, 1999) usually employ a Cartesian

mesh which means that a few modifications are required in order to make them fit for our

purpose. Our mesh will have a uniform resolution in r, the radial coordinate, meaning

that the volume of the cells increases as one moves outwards from the center. The mass

resolution can be set independently by changing the number of particles per cell – a num-

ber which can also depend on radius and should be chosen according to the problem at

hand.

The stress-energy tensor on the grid is computed by means of a particle-to-mesh pro-

jection. It is constructed by smearing out each particle over a finite radial interval and

then determining the fraction of its mass within each cell. Explicitly, we replace

”(r ≠ r(n))
4fir2 æ

r=r
i

w(ri ≠ r(n))
Vi

, (3.55)
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where ri denotes the center of the ith cell, Vi is the cell’s volume, r(n) is the position

of the nth particle, and w is a weight function which depends on the smearing. We use

triangular-shaped particles where

w(ri ≠ r(n)) =
⁄

Ù(r ≠ ri)·(r ≠ r(n))dr , (3.56)

with

Ù(�r) =

Y
__]

__[

1 if ≠ dr
2 < �r < dr

2

0 otherwise
, (3.57)

and

·(�r) =

Y
______]

______[

1 + �r
dr if ≠ dr < �r < 0

1 ≠ �r
dr if 0 < �r < dr

0 otherwise

. (3.58)

Here and in the following, dr denotes the grid unit. Pictorially, Ù characterizes the foot-

print of the cell (an interval of width dr centered at r = ri), whereas · characterizes the

shape of the particles (its mass distribution along the radial coordinate).

Our grid cells are centered at ri = idr, with i = 0, 1, . . .. The volume of the ith cell is

computed as

Vi = 4fi

3

3
ri + dr

2

43
≠ 4fi

3

3
ri ≠ dr

2

43
= 4fi

3
i2 + 1

12

4
dr3 (3.59)

for i > 0, and

V0 = 4fi

3

3dr

2

43
= 4fi

24 dr3 (3.60)

for the cell at the origin. Contributions which would be projected at negative radius are

simply folded back onto the positive axis.

Next, we want to construct a particle distribution which would correspond to a ho-

mogeneous universe. A perturbed distribution can then be obtained by acting with an

infinitesimal displacement as explained in appendix 3.B. Our homogeneous distribution

will be constructed in a way as to minimize discretization issues. For simplicity, let us

discuss a setup where we have one particle per grid cell (mass resolution can be increased

by subdividing particles). If we choose initial particle positions as r(n) = (n + 1
2)dr, with

n = 0, 1, . . ., one can recursively construct the mass assignment for each particle which
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would lead to an exactly uniform projected density under the above projection method:

m(n) = 4fi

3 1
12 + n + n2

4
dr3a3fl̄ (3.61)

Here, fl̄ = ≠T̄ 0
0 is the homogeneous density of the background FLRW model. Evid-

ently, at very large radius r(n) ∫ dr this expression asymptotes to the correct continuum

limit m(n) = 4fir2
(n)dra3fl̄. The corrections which come in at small radii are chosen to

compensate for discretization e�ects, such that the projected density remains exactly ho-

mogeneous,
1
a3

ÿ

n

w(ri ≠ r(n))
Vi

m(n) = fl̄ ’i . (3.62)

The weight function w can also be used in order to interpolate grid-based quantities

(fields, gradients of fields etc.) to the positions of the particles. This is necessary for the

integration of the geodesic equations. For instance, in order to interpolate �, we would

define

�(r(n)) =
ÿ

i

�(ri)w(ri ≠ r(n)) . (3.63)

Note that the sum is now taken over the grid points. Similarly, we can interpolate a

gradient as

�,r(r(n)) =
ÿ

i

�(ri+1) ≠ �(ri)
dr

w(ri + 1
2dr ≠ r(n)) , (3.64)

based on a standard one-sided two-point gradient which naturally sits at half-integer grid

units.
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Abstract

We perform three-dimensional simulations of structure formation in the early Uni-

verse, when boosting the primordial power spectrum on ≥ kpc scales. We demon-

strate that our simulations are capable of producing power-law profiles close to the

steep fl Ã r≠9/4 halo profiles that are commonly assumed to be a good approximation

to ultracompact minihalos (UCMHs). However, we show that for more realistic ini-

tial conditions in which halos are neither perfectly symmetric nor isolated, the steep

power-law profile is disrupted and we find that the Navarro-Frenk-White profile is a

better fit to most halos. In the presence of background fluctuations even extreme,

nearly spherical initial conditions do not remain exceptional. Nonetheless, boosting

the amplitude of initial fluctuations causes all structures to form earlier and thus at

larger densities. With su�ciently large amplitude of fluctuations we find that values

for the concentration of typical halos in our simulations can become very large. How-

ever, despite the signal coming from dark matter annihilation inside the cores of these

halos being enhanced, it is still orders-of-magnitude smaller compared to the usually

assumed UCMH profile. The upper bound on the primordial power spectrum from

the non-observation of UCMHs should therefore be re-evaluated.

4.1 Introduction

The cosmic microwave background (CMB) has yielded precise constraints on the primor-

dial power spectrum of density perturbations that gave rise to all of the gravitationally

bound structures observed in the Universe today (Ade et al., 2015). These constraints

are especially tight over about two orders of magnitude in scales, with the constraints on

the largest scales being weakened by cosmic variance limits, which cannot be overcome.
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Hence the search for new information about the primordial power spectrum must focus

on the smaller scale perturbations where there is potentially enormously more informa-

tion to gain. There are numerous challenges to measuring the power spectrum on scales

k & 0.3 hMpc≠1, e.g. Silk damping of the CMB, radiation pressure during structure

formation, and the nonlinear dynamics of matter in the late Universe.

A promising constraint comes from the non-detection of primordial black holes (PBHs),

which puts upper limits on the primordial power spectrum over a vast range of scales

spanning 20 orders of magnitude (Carr et al., 2010; Josan and Green, 2010a). However,

the constraints are weak, around P’ . 10≠3 ≠ 10≠2, six orders of magnitude above the

amplitude observed on CMB scales. While these upper limits do provide useful constraints

on certain models of inflation (Kawasaki et al., 2016; Pattison et al., 2017), they are very

weak because the critical threshold to collapse to a PBH is extremely large and only a

curvature perturbation of order unity will do so (with an exception if there was an early

matter-dominated era, during which time the critical collapse threshold is greatly reduced

by the absence of pressure (Carr et al., 2017; Cole and Byrnes, 2017)).

If the initial perturbations had a higher amplitude than expected from extrapolating

the CMB measurement then another possible signature would be ultracompact minihalos

(UCMHs), which are dense dark matter halos with a very steep density profile and large

central density. It has been claimed that the non-detection of annihilating dark matter

signatures from such compact objects provides relatively stringent upper limits on the

primordial power spectrum, around P’ . 10≠7 ≠ 10≠6 over the scales corresponding to k

from 10 Mpc≠1 to 107 Mpc≠1 (Bringmann et al., 2012). Due to the exponential dependence

of the number density of UCMHs and PBHs on the amplitude of the power spectrum,

confirmation of the UCMH constraints would also completely rule out the existence of any

PBHs forming on these scales (corresponding to a PBH mass greater than about a solar

mass). This would rule out the observed supermassive black holes having a primordial

origin (Kohri et al., 2014). The relation between PBH and UCMH formation has also been

studied in Mack et al. (2007), Lacki and Beacom (2010), and Saito and Shirai (2011).

Assuming that weakly interacting massive particles (WIMPs) make up the majority

of dark matter, the most stringent observational constraint on the existence of UCMHs

comes from the expected annihilation signal from the cores of UCMHs, where the density

is extremely large and hence the probability of WIMPs annihilating is massively boos-

ted by their large number density. The constraints only weakly depend on the assumed

cross section and mass of the WIMPs, but can be totally evaded if dark matter does not
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annihilate. There are nonetheless other possible signatures of UCMHs, such as from the

Shapiro time-delay of millisecond pulsars (although note that no actual constraints exist

yet, but there are forecasts (Clark et al., 2016a,b)) or microlensing (Ricotti and Gould,

2009; Zackrisson et al., 2013; Li et al., 2012).

It is in any case interesting to ask how the dark matter substructure would change if the

initial small scale perturbations were larger than expected. Other papers which constrain

the power spectrum on small scales include: Zhang (2011); van den Aarssen et al. (2012);

Chluba et al. (2012); Yang et al. (2013a,b); Shandera et al. (2013); Yang et al. (2013c);

Berezinsky et al. (2013); Ben-Dayan and Kalaydzhyan (2014); Berezinsky et al. (2014);

Yang (2014); Natarajan et al. (2015); Anthonisen et al. (2015); Aslanyan et al. (2016);

Clark et al. (2017); Beck and Colafrancesco (2016); Emami and Smoot (2017); Choi and

Takahashi (2017). In particular, we note that CMB spectral distortion constraints provide

an upper bound on the primordial power spectrum on about the same scales as UCMHs,

which are about an order of magnitude weaker than the currently claimed constraints but

independent of the DM model (Chluba et al., 2012).

To date, the theoretical forecasts on UCMH formation have been made using an ideal-

ised analytical model of their formation. Josan and Green (Josan and Green, 2010b) as-

sumed that any density contrast ” = ”fl/fl̄ satisfying ”c > 10≠3 at horizon entry would form

an UCMH (following Ricotti and Gould (2009)) with a steep power law profile fl Ã r≠9/4.

This is motivated by the analytical calculation of Bertschinger 1985 (Bertschinger, 1985),

who calculated the profile of a spherically symmetric perturbation accreting from a ho-

mogeneous background. The analytical calculation of the requisite density threshold was

refined by Bringmann et al. (Bringmann et al., 2012) who included the e�ects of radi-

ation in their calculation, which is relevant because UCMHs are assumed to form shortly

after matter-radiation equality. They found comparably tight constraints. We show that

in practice no ”c actually exists, because the formation and final profile of a small halo

strongly depends on its environment in a way which cannot be captured even approxim-

ately by a single number, unlike the case for PBHs.

In this paper we revisit and dramatically revise the calculation of UCMH formation,

and for the first time perform realistic 3D simulations of this complex process. The

analytical calculations assumed that UCMHs are su�ciently rare high-density peaks that

form in isolation, surrounded by an unperturbed background until redshift ≥ 10. They

also neglected the e�ects of angular momentum, thereby using spherical symmetry to

reduce the problem to a 1D one. This gives rise to the steep fl Ã r≠9/4 density profile,



73
3D simulations with boosted primordial power spectra and ultracompact

minihalos

with a correspondingly boosted dark matter annihilation signal. We verify these results

with an N-body simulation of an isolated spherical overdensity, obtaining a UCMH-like

density profile.

In practice however, all UCMHs will be formed with particles with non-zero initial

peculiar velocities and they are not really isolated from nearby perturbations, even if

the nearest perturbations have a smaller amplitude. We analytically estimate that even

an exceptionally large amplitude perturbation will be relatively close (in comparison to

the size of the object) to another perturbation with the same scale and at least half its

amplitude, even in the case of non-Gaussian initial perturbations. Moreover, even if an

overdense region appears spherical when smoothed on a particular scale, it will still have

fluctuations on smaller scales. These fluctuations will themselves grow, making the initial

sphericity unstable (Lithwick and Dalal, 2011).

We then perform N-body simulations using two classes of initial conditions: the first

with a 1 kpc/h sized protohalo of large initial density surrounded by successively larger

surrounding fluctuations, and the second starting with the standard featureless power law

spectrum of the curvature perturbation but boosted around the kpc scale, with boost

factors of 10, 100, 1000, and without the boost (corresponding to the standard �CDM

cosmology).

We find no clear evidence that UCMHs are formed even in the case when we boost the

initial power spectrum by a factor of 1000. Furthermore, a UCMH which formed when

simulated in isolation becomes unexceptional compared to other halos in the simulation

box when we add background perturbations with a typical amplitude 1/5 of that of the

protohalo. This means that the analytical estimates of UCMH formation are a poor match

to realistic initial conditions. Instead we find that the emergence of NFW profiles is more

generic (Angulo et al., 2016; Ogiya and Hahn, 2017; Dalal et al., 2010). NFW profiles

have a central core with a much gentler fl Ã 1/r slope, and a correspondingly much

weaker WIMP-annihilation signal.

The NFW minihalos formed when the initial power spectrum is boosted are nonetheless

of much greater density than would exist in the standard �CDM Universe. Because every

structure that forms earlier forms at a greater density, these NFW minihalos are also

much more abundant than proposed UCMHs, which would only have formed at the most

extreme locations of the primordial density field. Therefore it remains interesting to

study which observational signatures they may give rise to. We provide estimates of how

sharply the existing constraints have to be weakened when taking our results into account
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by calculating the WIMP annihilation signal from an NFW rather than the r≠9/4 profile.

This paper is structured as follows: In the next section we introduce the power-law

density profile usually assumed for the UCMHs and the universal NFW profile, and explain

the fitting procedure we used to find the parameters of these models. We also describe the

initial conditions of large-amplitude fluctuations. In section 4.3 we discuss the simulation

results from an initial spherical overdensity, whose evolution into an UCMH in a homogen-

eous background we disrupt by adding random perturbations around it, with successively

larger amplitude. We then boost the power spectrum on the kpc scale in section 4.4 by up

to a factor of one thousand, and we describe how this gives rise to many NFW-like halos

with very large concentration parameters. In section 4.5 we briefly review the theory of

WIMP annihilation in the dense center of halos and calculate the signal from the halos

we simulated, before concluding in section 4.6. Technical details of how we performed the

simulations and convergence testing are left to the appendices.

4.2 Halo profiles and properties

4.2.1 UCMH profiles

Ultracompact minihalos are dark matter halos, expected to form around matter-radiation

equality, featuring a very steep power-law density profile (Ricotti and Gould, 2009)

fl(r) Ã r≠9/4 . (4.1)

If a UCMH forms, its extreme compactness might allow it to retain its shape until the

present time making it and the extreme density at its center potentially observable.

This r≠9/4 power-law profile is the late-time form for the density of an initial spherical

overdensity accreting from a homogenous background (Bertschinger, 1985).1 This is true

irrespective of the density profile of the initial seed overdensity, so long as its size is finite,

it is spherical, and it eventually starts accreting from a homogeneous background. Though

note that even the smallest amount of asphericity in initial conditions is unstable and will

result in a triaxial profile (Lithwick and Dalal, 2011). For fitting to the power-law profiles
1Note that this is only strictly true when the profile is su�ciently coarse-grained. The true profile

will be made up of a series of separate caustics arising from shells that have passed through the center
of the overdensity a di�erent number of times. See Fig. 8 of Bertschinger (1985) for the shape of the full
non-coarse-grained profile.
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we use the ansatz:

fl(r) = Cr≠–. (4.2)

If we know the mass within a certain radius then C can be calculated via:

M(rmax) =
⁄ r

max

0
4fir2drfl(r). (4.3)

The choice of rmax is somewhat ambiguous, because halos do not have a clear “edge”; their

density instead asymptotes to the average density of the Universe and, for – Æ 3, the above

integral diverges with rmax. There are several possible choices for rmax in the literature,

we use the virial radius rvir as determined by the ROCKSTAR halo finder (Behroozi et al.,

2013). It is defined as the radius of a sphere inside which the average density contrast is

18fi2 ƒ 178 (Bryan and Norman, 1998). Correspondingly, the mass of a halo up to the

virial radius Mvir = M(rvir) is the virial mass.

For the above power-law profile, C can therefore be expressed in terms of the virial

mass and virial radius as:

C = Mvir
4fi

(3 ≠ –)r(–≠3)
vir . (4.4)

4.2.2 The Navarro-Frenk-White profile

Most of the halos in the Universe appear to exhibit a density profile close to the Navarro-

Frenk-White (NFW) (Navarro et al., 1996, 1997) profile:

fl(r) = fl0
r
r

s

1
1 + r

r
s

22 , (4.5)

characterised by two parameters: rs, the “scale radius”, and fl0. For small radii, r π rs,

the profile’s radial dependence is fl(r) Ã 1/r, and for large r, it is fl(r) Ã 1/r3. The scale

radius rs therefore determines the radius at which the profile changes from one power

law to the other. The characteristic density fl0 corresponds to fl0 = 4fl(rs). Integrating

Eq. (4.3) for fl(r), we obtain the mass within radius rmax:

M(rmax) = 4fifl0r3
s

3
ln

3
rs + rmax

rs

4
≠ rmax

rs + rmax

4
. (4.6)
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Defining the concentration parameter (Bullock et al., 2001) as:

c = rvir
rs

, (4.7)

fl0 can be expressed as:

fl0 = Mvir
4fir3

s (ln(1 + c) ≠ c/(1 + c)) . (4.8)

4.2.3 Fitting the profiles

We can use the relation between Mvir, rvir and the two profiles’ parameters (i.e. equations

(4.4) and (4.8)) to eliminate one free parameter from each profile. In logarithmic space

the NFW profile can be expressed as:

log (fl(r)) = log
3

Mvir
4fir3

vir

4
+ log

A
c2

ln(1 + c) ≠ c/(1 + c)

B

≠ log (r/rvir) ≠ 2 log (1 + cr/rvir)
(4.9)

and the power-law as

log (fl(r)) = log
3

Mvir
4fir3

vir

4

+ log(3 ≠ –) ≠ – log (r/rvir) .

(4.10)

For Mvir and rvir we use the values calculated with ROCKSTAR.

To perform the fit we then logarithmically weight every point in the profile. Specifically,

the function we minimise when fitting to a profile is:

S =
ÿ

i

wi

1
log(flmodel(ri)) ≠ log(fldata(ri))

22
, (4.11)

with the weights: wi = log(ri/ri≠1) chosen so that each point is weighted according to the

logarithm of the size of the bin it represents. This would be equivalent to having bins of

equal length in log(r) with equal weighting. This fitting was chosen because we fit over

more than an order of magnitude in r and the density within this range also changes by

more than an order of magnitude.

The fitting is performed over the range from r = 0.004 kpc/h to r = rvir, independently

for each halo. The lower bound is forced upon us by the resolution of the profiles (see
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section 4.A.4) and the upper bound is where we assume the ‘edge’ of the halo to be.

For the NFW fits we can also plot rescaled density fl/fl0, against rescaled radius r/rs.

In these units all halos with an NFW profile “collapse” onto a single curve.

One selection criterion we apply is that we only consider halos that are not in the

process of merging. To determine this, we compare two measures of the halo mass. The

first is the combined mass of the particles that ROCKSTAR associates to that halo given

their six-dimensional phase-space information. The second one includes all particles, even

the ones whose momenta suggest that they are not part of the halo. We only keep halos

where these two mass parameters agree within 10%.

4.2.4 Extreme fluctuations

To date, the literature on UCMHs has focussed on treating these halos as isolated objects,

forming in an otherwise homogeneous and uniform background. This allows analytical

calculations to be made but the validity of this approximation has not been verified.

To answer how extreme the most dense region of a certain size in some larger volume

is, and assuming the density perturbation ” at horizon entry to be distributed according to

the Gaussian distribution with ”̄ = 0, we can express the fraction of volume where ” > x

as:

V”>x

V
= 1

‡
Ô

2fi

⁄ Œ

x
e

1
≠ ”

2

2‡

2

2

d”

= 1
2Erfc

3
xÔ
2‡

4
.

(4.12)

If we further consider a region of the size of (1kpc/h)3 in a (32 kpc/h)3 volume, we find

that the most extreme overdensity is a 4.0-‡ fluctuation. We show the distribution of

the most extreme values in Fig. 4.1, which shows that a 4-‡ fluctuation is the most likely

value, but that values as extreme as 5.5-‡ are possible if one draws from 1000 samples.

We can also reverse the question and estimate the fraction of volume where the density

is greater than some threshold value. For 2 and 3 times the typical density contrast, we get

this fraction to be 0.023 and 0.001, respectively. In a (32 kpc/h)3 volume this corresponds

to 745 and 44 regions of (1kpc/h)3 size. Assuming that all peaks are randomly placed

independently of each other, an estimate of the distance between the most overdense

region and the one with overdensity greater or equal to twice the typical is given by

32/(745)1/3kpc/h ƒ 3.5 kpc/h, i.e. rather close compared to the scale of the halo itself.
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Figure 4.1: A histogram showing how many standard deviations the maximum ”
1kpc/h

is away from the aver-
age in a 32 kpc/h sized volume (taken from 1000 samples). To derive this histogram we have made
the approximation that each 1kpc/h region in each 32 kpc/h volume is independent of all the other
1kpc/h regions in that volume.

Due to the clustering of density peaks which arises from superimposing multiple scales,

the distances between large overdensities will in fact be even smaller than the estimate

made above (Lumsden et al., 1989).

The spherical infall model, which leads to a steep power law profile also assumes

spherical symmetry. Whilst it is true that the most extreme peaks are expected to be

close to spherical initially (Bardeen et al., 1986), the unsmoothed density field will still

have substructure. This substructure will grow with time and pull any matter on a purely

radial trajectory o� this trajectory. Moreover, gravitational tidal forces from the nearby

surrounding halos will further break the spherical symmetry.

In the presence of large primordial non-Gaussianities (which are observationally un-

constrained on the small scales we are interested in), one might expect the existence of

isolated large-amplitude density peaks to become much more probable. For some prob-

ability density functions, extremely large-amplitude peaks do become exponentially more

likely, but so do other comparably large amplitude peaks, implying that the extremely

large peak will still not be isolated. For example, if the density perturbation is drawn

from a chi-squared probability density function with one degree of freedom, ” = ”2
G ≠È”2

GÍ,

where ”G has a Gaussian distribution (which follows in the asymptotic limit of very large

local fNL (Lyth, 2012)), then the typical (32 kpc/h)3 volume will have a 10-‡ fluctuation

and the most extreme fluctuation in 1000 realisations of the initial conditions will have a

20-‡ fluctuation, twice the amplitude of the second largest perturbation expected in the

same volume. Furthermore, the mode coupling between di�erent scales would in practice

mean that the largest overdensity is likely to be situated close to the second largest per-
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turbation, and so it still appears to be very hard to come up with a situation in which a

large amplitude perturbation is likely to form in isolation from its nearest neighbours. We

will show in Sec. 4.3.2 that a UCMH-like halo can form if we place a smooth, spherical

overdensity surrounded by perturbations with a typical amplitude 15 times smaller. It

would be interesting to find a model of the early Universe capable of generating compar-

able initial conditions.

4.3 Gaussian-profile spherical overdensity.

4.3.1 A completely isolated halo

We first simulate an isolated, spherically symmetric overdensity to test the theoretical

prediction of a power-law profile (4.1). For the initial profile of the overdensity we chose

a three-dimensional function with a Gaussian profile

”in(r) = A exp
A

≠r2

2‡2
w

B

, (4.13)

where A represents the initial amplitude of the seed overdensity in the center, and ‡w

regulates the size of the overdensity. We place the overdensity at the center of the box

and r denotes the distance from this center. We have set ‡w = 0.5 kpc/h so that the

overdensity is well-contained inside the simulation volume. We set A = 0.3 at initial

redshift zin = 10 000 such that the perturbation starts o� marginally within the linear

regime but quickly triggers the spherical collapse process shortly after matter-radiation

equality. After some time the collapse dynamics give rise to a self-similar steady-state and

we determined the slope of the density profile by fitting

fl(r) = Cr≠–, (4.14)

which in log-log space is just a straight line with the slope ≠–. In Fig. 4.2 we show that

we indeed obtain a fl(r) ≥ r≠– profile. It is not precisely – = ≠9/4, but this is not

entirely unexpected because of numerical instabilities (Vogelsberger et al., 2009; Lithwick

and Dalal, 2011) and the fact that – = ≠9/4 is only the coarse-grained form of this type

of structure growth.

Collisionless particles that can freely move through the center of the overdensity form

caustics, which can be seen as additional structure at the edges of profiles. This e�ect is
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Figure 4.2: The profile of the Gaussian-seed halo in the absence of all other perturbations. We fit the power-
law and thus obtain the parameter –. The number of particles used for this simulation was 5123.
By z = 3 the halo mass has grown to 1.8 ◊ 104M§/h, which is still a negligible fraction of the total
mass inside the box (meaning that the finite box size is not slowing down the halo accretion).

physical and we have tested that by changing the resolution of the simulation, as shown

in Fig. 4.20.

4.3.2 Peak-to-background ratio 15

Having seen that we can form a UCMH starting with a spherically symmetric overdensity

surrounded by a homogeneous background, we will now investigate how the evolution of

the central halo changes when we drop the assumption of a homogeneous background.

Following the discussion in Sec. 4.2.4, we would not expect the amplitude of the central

halo to be more than about five times larger than the typical amplitude of the other

perturbations. We study that case in Sec. 4.3.3. Here we study as an intermediate case

the situation where the amplitude of the typical fluctuations in the box smoothed on the

same kpc/h scale were 15 times smaller.

Given our choice of A = 0.3, we can make the typical amplitude of the perturbations

15 times smaller by boosting the standard �CDM power spectrum by a factor of 16

on all scales relevant to our simulation, meaning that the linearised root-mean-square

perturbation (excluding the large amplitude central halo) is 4.0 times larger than it would

be in �CDM on all scales. Starting from such initial conditions we simulate and study the

formation and evolution of halos. A snapshot at redshift z = 30 is illustrated in Fig. 4.3.

To determine –, the slope of the profile in log-log space, we fit the linear function
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Figure 4.3: Slice through the simulation box at redshift z = 30 for the peak-to-background ratio 15 simulation.
The halo, marked by the arrow, that was seeded by the Gaussian overdensity peak is slightly to the
left and to the top of the center, highlighted in light blue.

(4.14) to the central halo.2

In Fig. 4.4 we show a scatter plot of the slope parameter – against the virial mass

for every halo in this simulation (at z = 100 and z = 30). The red circle in each panel

represents the seed halo that started with amplitude 15 times the background. The seed

halo clearly has an exceptional slope compared to its background, even down to z = 30.

In Fig. 4.5 we show the density profiles of halos at multiple redshifts. For z = 100 we

show a random sub-sample of halos with a mass Mvir > 102M§/h and for the other three

redshifts the mass cut is Mvir > 103M§/h. We also include a histogram of – values for

all of the halos that pass this mass cut. It is again clear that amongst the most massive

halos the seed halo’s slope remains exceptional, even down to z = 10 (although less and

less so as the background structure develops).

Finally, in Fig. 4.6, we collapse the halo profiles on to the NFW function in the manner

described at the end of section 4.2.3 (we apply the same mass cuts as for Fig. 4.5). We

also show a histogram of the di�erence in the value of our fitting statistic S, eq. (4.11)

for the best fitting power-law and NFW profiles (i.e. SPL ≠ SNFW). It is clear from the
2Since halos move around the simulation volume, it is not always obvious which halo formed from the

Gaussian overdensity. We identified that halo by tracking one of the particles that was initially closest to
the center of the simulation volume. At each redshift, we looked for the halo that contained the tracked
particle at its core.
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Figure 4.4: The best-fit power-law exponent – for all halos in the peak-to-background 15 simulation at z =
100 and 30. The special halo has an exceptionally steep slope compared to all other halos with a
comparable mass.

profiles that the NFW profile is not an excellent fit for the special seed halo. There is a

noticeable upturn at small r/rs. Also note how far to the right the special halo’s profile

extends in each panel. This is a consequence of the NFW fit requiring a small rs value,

exceptionally smaller than any other halo that satisfies the mass cuts.

We cannot resolve the profile of any halo on scales below the resolution limit of our

simulation. However, because the special halo remains exceptional compared to its back-

ground, even down to z = 10, it seems reasonable to expect that the profile would remain

close to a power-law even beyond the limits of our resolution.

4.3.3 Peak-to-background ratio 5

We now increase the amplitude of the surrounding perturbations even more and repeat

the analysis. In the results of this subsection the central overdensity is only 5-times larger

than a typical one. A snapshot at redshift z = 30 is shown in Fig. 4.7.

Figs. 4.8, 4.9 and 4.10 are analogous to Figs. 4.4, 4.5 and 4.6, however for the simula-

tions with even larger background perturbations and showing only z = 100 and z = 30.

The most striking observation to make is that the special halo is no longer at all

exceptional compared to its surroundings. Its slope compared to its mass is large compared

to other halos in the simulation, but not exceptionally so. Moreover, its value of SPL ≠

SNFW, although still favouring a power-law, is not at all special compared to other halos,

some of which also favour the power-law.

We cannot say what happens below the limits of our resolution; however it is clear

that when an initial, spherically-symmetric perturbation is embedded in a background 5

times smaller it is no longer exceptional at least by z = 100. Therefore it does not behave
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Figure 4.5: The profiles of the halos in the peak-to-background ratio 15 simulation at z = 100, 30, 15, and 10.
The profile of the halo descending from the seed halo is highlighted in red so it can be distinguished
from the other halos. For each snapshot, we fit the profiles to eq. (4.14) and present the resulting –
in a histogram. The range we fit over is r between 0.004 kpc/h and r

vir

for each halo individually.
To plot the profiles, for z = 100 we only kept halos with M

vir

> 102M§/h and for z = 30, 15, 10
we kept the halos with M

vir

> 103M§/h. The power-law fit to the seed halo’s profile is plotted as a
violet dashed line.

as if it was in a homogeneous background and it is reasonable to assume that it has not

formed a UCMH-like profile on smaller scales. Although we do not show it here, this holds

even at z = 300.

4.3.4 Summary of special halo simulations

In this section we have shown that as the background of an initial spherically-symmetric

perturbation is increased, the halo descending from this seed perturbation becomes less

and less exceptional. This might not appear too surprising, however it isn’t trivial that

an initial 5-‡ fluctuation at z = 10 000 will be entirely unexceptional by z = 100.

The conclusion we take from this section is that unless a fluctuation has an initial

amplitude at least between 5 and 15 times larger than the typical background fluctuations

its halo will soon become comparable in slope, mass and density to many other nearby

halos. Unless the perturbation is more extreme initially than one would expect to find



84
3D simulations with boosted primordial power spectra and ultracompact

minihalos

10�2 10�1 100 101 102

r/rs

10�5

10�3

10�1

101

103

�/
� 0

z=100

�0.1 0.0 0.1
SPL � SNFW

0

5

#
h
al

os
0.01

10�2 10�1 100 101 102

r/rs

10�5

10�3

10�1

101

103

�/
� 0

z=30

�0.1 0.0 0.1
SPL � SNFW

0

5

#
h
al

os

-0.03

10�2 10�1 100 101 102

r/rs

10�5

10�3

10�1

101

103

�/
� 0

z=15

�0.1 0.0 0.1
SPL � SNFW

0

5

#
h
al

os

-0.02

10�2 10�1 100 101 102

r/rs

10�5

10�3

10�1

101

103

�/
� 0

z=10

�0.1 0.0 0.1
SPL � SNFW

0

5

#
h
al

os

-0.0

Figure 4.6: The rescaled profiles of halos in the peak-to-background ratio 15 simulation. The NFW analytical
prediction is shown in green and the descendant of the seed halo is highlighted in red. Histograms
show the di�erence of a measure for goodness of fit between the power-law and NFW profile. A
negative value of this quantity points towards the power-law being a better fit than NFW. With
the exception of z = 100, the special halo seems to favour power-law profile over NFW. The ex-
ceptionality is particularly noticeable near the center of the halo. Fitting the special halo with an
NFW profile gives a very small r

s

. Here this is manifested by the special halo’s profile being shifted
towards larger radii than any other halo.

given Gaussian initial conditions, see Sec. 4.2.4, it will not grow into a UCMH-like halo.

We stress that this is not the result of lowering the density of the initial seed fluctuation.

The initial profile was identical in all three subsections; the only thing that was changed

was the amplitude of background fluctuations. Therefore, when examining the evolution

of objects on the very small scales in the early Universe, a single density contrast ”c is not

enough to describe the subsequent evolution. The evolution depends sensitively on the

environment and therefore any constraints must too.

4.4 Boosting the power spectrum around the 1 kpc/h scale

In this section we no longer consider the evolution of a specific overdensity peak that was

planted by hand. Instead, we increase the probability of extreme random fluctuations on

a similar scale by boosting the variance of the primordial perturbation modes over some
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Figure 4.7: Slice through the simulation box at redshift z = 30 for the peak-to-background ratio 5 simulation.
The halo, marked by the arrow, that was seeded by the Gaussian overdensity peak is slightly to the
left and to the top of the center, highlighted in light blue.

range of scales. In principle this boost can take many forms (e.g. a step, or a bump in

Fourier space) and the precise nature of structure formation will depend on the form of

the boost. However, UCMHs are claimed to form with a su�ciently large abundance to

be observed under any boost of the power spectrum with su�ciently large amplitude.

We see no halo with convincing UCMH properties; however we are somewhat limited

by the resolution. We do however see many compact structures. With hindsight, this is not

surprising either. If we boost the primordial spectrum then structures on the boosted scales

form earlier. This means these structures form when the Universe is denser. Therefore

they also reach a larger virial density than they would have had they formed from a

non-boosted initial power spectrum.

Note however this is not only true for the most extreme, and therefore rare, structures

forming under a boosted power spectrum. In fact every structure that forms on the boosted

scales forms earlier and is therefore more compact. As a consequence, even though we do

not find structures as compact as a hypothetical UCMH, the structures we find may, due

to their increased abundance, have their own unique cosmological signals. It would be

useful and interesting future work to examine how the new type of compact halos we

describe depend on the specific nature of the boost to the power spectrum.
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Figure 4.8: Figures analogous to Fig. 4.4, but for the peak-to-background-ratio 5. The power-law parameter –
of the halo, formed from the special seed, is no longer very di�erent from the other halos.
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Figure 4.9: The profiles of the halos in the peak-to-background ratio 5 simulation at z = 100 and 30. We have
again only included halos with M

vir

> 102M§/h for the z = 100 profiles and M
vir

> 103M§/h
for z = 30. The profile of the descendant of the seed halo is again highlighted in red. Unlike the
situation in the peak-to-background 15 simulation, the slope of the special halo is no longer more
extreme than the other halos in the box.

The form of our boost in the power spectrum is as follows. Firstly we take the following

unboosted power-law power spectrum of the primordial curvature perturbation ’, P’
0 (k) =

As (k/kpivot)n
s

≠1 with As = 2.26 ◊ 10≠9, kpivot = 0.05 Mpc≠1 and ns = 0.96.

We then boost this power spectrum to form the primordial power spectrum used for

our simulations, P’(k). Specifically,

P’(k) = P’
0 (k) (1 + B(k)) (4.15)

where

B(k) = Ab exp
1
≠2.77 (ln k ≠ ln kı)2

2
. (4.16)

The scale at which we boost the simulation’s power spectrum is kı = 1 hkpc≠1.

The value of 2.77 in the definition of B(k) is chosen such that the full width at half

maximum of the boost is 1 (in units of ln k). This means that our power spectrum is
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Figure 4.10: The rescaled profiles of halos in the peak-to-background ratio 5 simulation. The analytical pre-
diction is shown in green and the special halo is highlighted in red. In contrast to the peak-
to-background ratio 15, the special halo does not appear distinguishable from the rest. The
S

PL

≠ S
NFW

measure also demonstrates the profile of the special halo to be a better fit to NFW
than to power-law (note a smaller value of S indicates a better fit, see equation (4.11) and the
discussion around it).

Figure 4.11: Boosted matter power spectrum used in our simulations. Plot shown has boost parameters A
b

=
103 and k

ı

= 1 hkpc≠1 from eq. (4.16). The matter power spectrum has been calculated using
CAMB and is outputted at z = 100 000. Note that this is only the dark matter power spectrum.

boosted over a width corresponding to approximately one efolding, which is a natural

length scale during inflation.

Before starting each simulation we use CAMB (Lewis et al., 2000) to calculate the

linear transfer functions and hence the matter power spectrum at the simulation’s starting

redshift. The shape of such a boosted power spectrum is plotted in Fig. 4.11 for Ab = 103,

kı = 1 hkpc≠1 and at redshift z = 100 000. Note that this is the power spectrum of dark

matter only. The power spectrum of baryons is significantly di�erent due to baryons still

being tightly coupled to photons at this high redshift.

We also show ‡R (i.e. the rms of the density contrast smoothed by a spherical tophat

on a scale R) in Fig. 4.12 for the same input power spectrum with four di�erent boost

amplitudes at the same redshift.
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Figure 4.12: The root-mean-square fluctuations of the density perturbation when smoothed with a tophat filter
of radius R (i.e ‡

R

). This is for the same input power spectrum as that shown in Fig. 4.11 with
four di�erent boosts and at the same redshift.

We ran simulations with boosts of Ab = 0, 10, 100 and 1000. Each simulation was given

the same seed. At z = 100 000 the largest fluctuation in the Ab = 1000 simulation, when

the density was smoothed with a spherical tophat filter of radius 1 kpc/h was ”R = 0.23.

With this boost, ‡R at this radius and redshift is 0.054 therefore this corresponds to a

4.3-‡ fluctuation.

We start each simulation at z = 5◊106 and run them to z = 15. We do not go to lower

redshifts than this because at z = 10 the scale of our box, 32 kpc/h, becomes non-linear.

Snapshots at redshift z = 30 are illustrated in Fig. 4.13.

4.4.1 Results of boosted simulations

As might be expected, given our results from section 4.3, we find that most of the halos

fit NFW profiles better than power-law (see Figs. 4.14 and 4.15). Moreover, there are

no obvious exceptional halos, even when we set Ab = 103. There are a few halos that fit

the power-law better than NFW; however none stand out as much as the special halo in

the peak-to-background 15 simulation in section 4.3.2 (see, for example, the red line in

Fig. 4.6 for z = 30, 15 and 10). We expect this better fit arises here simply because our

resolution is not good enough to resolve the rs of the NFW profile for these lower mass

halos. A similar e�ect was seen for the non-special halos in the previous section.

Histograms of the concentration parameter c are shown in Fig. 4.16. At redshift z = 30,

concentration parameters of c & 100 can occur for the Ab = 103 simulation. Given that we

expect this to grow with time, the concentration today would be much larger. This shows
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Figure 4.13: Slices through the simulation volume at redshift z = 30 for the simulations with boosted power
spectrum. The amplitudes of the boosts are A

b

= 0, 10, 100, 1000, clockwise, starting from the top
left.

that although there may be no UCMH candidates in our simulations the structures that

do form are still much more compact than those in a simulation without a boosted power

spectrum. It is worth stressing again that when the input power spectrum is boosted all the

structures that form are much more compact. It is not just the rare, extreme fluctuations

that experience this e�ect. This is because the boosted initial conditions form structures

earlier, when the whole universe was more dense. Therefore these structures also virialise

at much larger densities and remain much denser at later times.

A similar, but less pronounced e�ect is also seen for the smaller boosts.
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Figure 4.14: The evolution of halos’ profiles with the increasing amount of boost. The NFW analytical predic-
tion is shown in green. Histograms show the di�erence of a measure for goodness of fit (equation
(4.11)) between the power-law and NFW. Almost all halos seem to be a better fit to NFW than to
power-law.

4.5 UCMH observability and WIMP annihilation

Numerous observational tests have been either proposed or enacted to constrain the num-

ber density of UCMHs, and these observational limits translate into upper bounds on the

primordial power spectrum. These constraints assumed a dense r≠9/4 inner profile of the

halos, which we have shown to be unlikely to form. In this section we briefly calculate how

the observability of these halos changes when using an NFW halo with a large concentra-

tion parameter, of the form observed in our simulations. Whilst calculating the constraint

on the power spectrum goes beyond the scope of this work, we use our simulation results

in this section to show how the expected signature of WIMP annihilation in the dense

center of the halos reduces when using a realistic halo density profile.

The expected gamma-ray flux from WIMP annihilation within a halo at distance d

from the Earth is given by (Josan and Green, 2010b):

�“ = �astro�particle
2d2 (4.17)
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Figure 4.15: The rescaled profiles for A
b

= 103 at z = 100, 30 and 15. From the positions of the lines on top
of the NFW reference line it is clear that r

s

is getting smaller as time increases. As with Fig. 4.14
the NFW profile is a better fit than a power-law for almost all of the profiles.

where �particle depends on the WIMP particle mass and annihilation cross section, which

is assumed to be independent of the halo properties, e.g. the velocity distribution of the

particles (see Bringmann and Weniger (2012) for a justification).

The astrophysical part is given by an integral of the density squared

�astro =
⁄ r

h

0
fl(r)2r2dr (4.18)

where rh is the radius of the halo, which we always take to be rvir. In practice, although

the majority of the NFW halo mass is within the outer part of the profile where fl Ã 1/r3,

the annihilation signal is dominated by the innermost part with the greatest density, which

satisfies r < rs so it does not matter much where we cut-o� the integral. Note that the

physical radius and density must be used.

For halos with an r≠9/4 profile, the signal is dominated by the central density, which

must be cut o� at some maximum value. Bringmann et al. estimate a maximum possible
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Figure 4.16: Concentration parameter c for the halos in simulations where we boosted the power spectrum.
The halos in higher-boost simulations are much more compact. Concentration also grows with
time. We only retain halos with M

vir

> 102M§/h. Note that at z = 15 there already exist halos in
the A

b

= 103 simulation with c > 200.

density of the UCMHs today of

flmax ƒ m‰

È‡vÍ(t0 ≠ ti)
= Kflc,m, (4.19)

where

K ƒ 5 ◊ 1016, (4.20)

calculated assuming fiducial values of the WIMP mass m‰ = 1 TeV, thermally averaged

cross section È‡vÍ = 3 ◊ 10≠26cm3s≠1, and the age of the Universe t0 = 13.7 Gyr. The

UCMH formation time ti is irrelevant provided that ti π t0 (Bringmann and Weniger,

2012). The critical density of the Universe today is flc = 415M§h2/kpc3, and flc,m © �mflc.

The UCMH profile is given by

flUCMH =

Y
__]

__[

flmax if r < rcut,

flmax
1

r
r

cut

2≠ 9

4 if r > rcut.

(4.21)

Using the definition of the virial mass in terms of the virial radius (which is independent
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of the density profile)

Mvirial = 4fi

3 178flc,mr3
vir, (4.22)

where flc,m is the critical density of matter (of both CDM and baryons, because our

simulations treat them equally). Calculating the density contrast centered on a UCMH to

a radius rvir

1 + ”UCMH(rh) = 1
flc,m

3
r3

vir

⁄ r
vir

0
flUCMH(r)r2dr

ƒ 4K

3
rcut
rvir

49/4
,

(4.23)

leads to
rcut
rvir

ƒ
3179

4K

44/9
π 1. (4.24)

Using the above results, we find the WIMP-annihilation signal is

�astro,UCMH ƒ rcut
3fl2

max = K2/3
3179

4

44/3
r3

virfl
2
c,m. (4.25)

For an NFW profile, we can similarly evaluate (4.18) to calculate the WIMP-annihilation

signal from such a halo, and then compare it to the UCMH result for a halo with the same

mass (and hence the same rvir),3

�astro,NFW = r3
sfl2

0
c(3 + c(3 + c))

3(1 + c)3

= 1.2 ◊ 103r3
virfl

2
c,m

c4(3 + c(3 + c))
(1 + c)3

◊ 1
(log(1 + c) ≠ c/(1 + c))2 ,

(4.26)

where we note that the result strongly depends on the concentration parameter, c = rvir/rs,

with an approximate c3 dependence in the limit of c ∫ 1. For this reason the large values of

c generated by boosting the power spectrum do give rise to much larger WIMP annihilation

signals than would be the case with an unboosted power spectrum for halos of the same

mass and also with an NFW profile. We show the mild redshift evolution of the WIMP-

annihilation signal in Fig. 4.17 for all four levels of boost. Increasing Ab by an order of

magnitude has a much larger e�ect on �astro,tot, the total value of �astro added up for all

halos, than the redshift evolution of any given boost with redshift. Although the WIMP-

annihilation signal does initially increase with redshift for the unboosted simulation, we
3Although the density of the NFW profile also diverges at the center, the impact of including the

maximum density restriction given by (4.19) is negligible.
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expect this is a numerical artefact of many protohalos having not yet reached su�cient size

to be detected by ROCKSTAR. Similarly, we caution that the slight decrease in �astro,tot

with redshift may be due to the decreasing minimum physical length we can resolve in an

expanding background, meaning that we resolves the cores of the halos less well at late

times.

We calculated the WIMP-annihlation signal by integrating (4.18) which assumes spher-

ical symmetry, and compared the result to (4.26) using the best fit values of c from

Sec. 4.4.1 and rvir outputs from ROCKSTAR, finding the results agree within a factor

of 2. We note that Kohri et al. (Kohri et al., 2014) have previously shown that the

WIMP-annihilation signal is extremely sensitive to the exponent – when they assumed a

truncated power law profile of the form fl Ã (1 + r/rcut)–.

However, even for the largest values of c observed (using a boost factor Ab = 1000), the

WIMP-annihilation signal as far as we are able to resolve it remains about a factor of 104

smaller than it would be for a UCMH with the same mass, which means they would have

to be 100 times closer in order to be equally observable. Hence we can only observationally

rule out their existence in a volume one millionth as large as could be probed for halos

with r≠9/4 profiles. The NFW halos are however much more common than the assumed

abundance of UCMHs given the same initial conditions, meaning that the observational

constraints on the power spectrum may not weaken as strongly as may be expected, but

a detailed study of this issue goes beyond the scope of this paper.

In Fig. 4.18 we explore whether there is any connection between the combinations of

three di�erent parameters: the virial mass of a halo Mvir, its concentration parameter c,

and a measure for the WIMP annihilation signal. The WIMP-signal measure is higher for

heavier halos and more compact ones. It is also significantly higher in simulations with a

higher boost.

In Fig. 4.19 we show the WIMP-annihilation signal as a function of virial mass of all

halos. The most interesting feature is that the WIMP-annihilation signal of the special

seed in the peak-to-background 15 simulation is an order-of-magnitude larger than any of

the other halos in the same simulation with comparable mass. If we had better resolution,

we expect that the WIMP-annihilation signal from this halo would become even larger

than what is plotted. The integral of the density squared is dominated by the very center

of the halo where the density is largest, and this halo has a steeper profile towards the

center than all of the others, see Fig. 4.5.



95
3D simulations with boosted primordial power spectra and ultracompact

minihalos

101102

z

1013

1014

1015

1016

1017

�
a
s
t
r
o
,t
o
t

Ab = 0

Ab = 10

Ab = 102

Ab = 103

Figure 4.17: The total �
astro

part of the WIMP-annihilation signal from the most massive halos plotted
against z for the power spectrum boosted by 4 di�erent amounts. Notice how the strength of
the signal typically decreases slowly with redshift, which we caution may be a numerical arti-
fact, see the text after Eq. (4.26). To calculate this signal, we take into account all the halos with
M

vir

& 3 M§. For the two smallest boosts at z = 100, no such halos are identified in the simula-
tion.

4.6 Conclusions

We have performed the first 3D N-body simulations of UCMH formation. Starting with

an isolated spherical overdensity we have shown that this would form a steep power-law

profile with the density scaling close to fl Ã r≠9/4 (Bertschinger, 1985), and we are able to

resolve this profile by up to 3 orders of magnitude of length scales at low redshift. When

we include random density fluctuations with an amplitude typically 15 times smaller than

the special halo, we observe that the halo descended from the special seed becomes some-

what disrupted, with the density profile becoming shallower towards the center (compare

Figs. 4.2 and 4.5). This flattening occurs on such small scales that it does not make a

significant di�erence to the numerical values of the halo properties we extract, such as the

power-law steepness – or the WIMP-annihilation signal. Since the WIMP-annihilation

signal is dominated by the square of the density in the core of the halo, our estimates for

the WIMP-annihilation signal present only the lower bound on this quantity, due to the

limitations of our resolution.

However, even though the special halo flattens a little it still remains exceptional

relative to the other halos that form in the simulation box. Its steepness and WIMP-

annihilation signal are both much larger than any other comparable mass halo in the

simulation (see Figs. 4.4 and 4.17). It is therefore likely that the inner part of this halo,

unresolvable by our simulations, remains close to a power-law.
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Figure 4.18: Scatter plots for the WIMP-annihilation signal plotted against M
vir

for three di�erent redshifts
(top and left panels) and against c for z = 30 (bottom right). Di�erent amplitudes of the boost are
represented with di�erent color. It is curious that the WIMP-annihilation signal appears to depend
on concentration in a way that doesn’t depend on the size of the boost. However, there is a lot of
scatter in this relationship.

When we further increase the size of background fluctuations to be five times smaller

than the special halo we see the special halo become further disrupted. In fact, in this

simulation, even for the special halo, we find an NFW profile is a better fit than a power-

law (see Fig. 4.10). Moreover, although it starts as equivalent to a 5-‡ fluctuation of the

background it has ceased to be exceptional even by z = 300. These two facts strongly

suggest that even below the scales we can resolve the special halo will not have a steep

UCMH-like profile.

Note that in all of these situations the initial special seed remains the same size, it is

only the background fluctuations that change. Therefore, we can conclude that in order

to form this UCMH-like power-law profile an initial fluctuation must be substantially lar-

ger than five times its background. Ricotti and Gould estimated that the critical density

threshold for collapse into a UCMH was ”c = 10≠3 (Ricotti and Gould, 2009) and this

estimate was refined to include a scale dependence by Bringmann et al. (Bringmann et al.,

2012). We have here shown that in realistic cases ”c is strongly dependent on the envir-
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Figure 4.19: The �
astro

part of the WIMP-annihilation signal from all halos with M
vir

> 2 ◊ 102M§/h. For
the peak-to-background ratio 15 simulations, the value of �

astro

is significantly boosted compared
to all other halos with the same mass from the same simulation, due to the steeper profile density,
as shown by Fig. 4.4 for the same two redshifts. However for the peak-to-background 5 simulation,
we see that the special seed no longer has a larger value than average, but that its mass is consid-
erably larger than in the peak-to-background 15 simulation, especially at z = 30, meaning that the
special seed has has undergone more merging.

onment. The subsequent growth, profile steepness and WIMP-annihilation signal are all

a�ected by the neighbouring perturbations.

We note that although almost all constraints from UCMHs have been made assuming

a steep r≠9/4 profile to hold down to extremely small radii, the expectation from N-body

simulations is that the emergence of NFW profiles is generic due to radial instabilities

which will always exist and grow within realistic simulations (Angulo et al., 2016; Ogiya

and Hahn, 2017; Dalal et al., 2010). However, we perform the first 3D simulations with

boosted initial power spectra, probing small scales and starting deep in the radiation

dominated era. We confirm that the NFW profile remains generic. In section 4.2.4 we have

estimated an upper bound on the typical distance between an extremely large overdensity

and the nearest overdensity with a comparable size, and shown that even a rare 5-‡

fluctuation will not be isolated from the evolution of neighbouring halos over a long period

of time.

Despite providing evidence that UCMHs of the form typically considered in the liter-

ature are not very likely to be realised in nature, we stress that our simulations with the

initial power spectrum boosted on the kpc scale do form a significant number of dense

NFW-like halos with masses around 104 ≠ 105M§/h. Furthermore, these halos have ex-

tremely large values of the concentration parameter c = rvir/rs, which can grow to over

100 by redshift ten. Assuming the central density remains constant and the concentration

grows roughly as c Ã 1/(1 + z) (Bullock et al., 2001) this would imply concentrations as

large as 1000 by redshift zero. Subsequently, it would be very interesting to extend our

simulations to redshift zero to study the stability of the halos we simulate with large con-
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centration parameters. However, this would also require the inclusion of baryonic e�ects

on these extremely small scales.

Given that the presence of halos with profiles close to r≠9/4 is unrealistic in the Universe

the observational upper bounds on the primordial power spectrum on small scales, derived

from the non-observation of UCMHs will have to be re-evaluated. However, given that we

have also shown that when the primordial power spectrum is boosted even typical halos

form at much higher densities and are thus much more compact than usual there are likely

to be other means to constrain these small scales, which remains to be explored.
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4.A Appendix A: Notes about the simulations and halo analysis

4.A.1 Initial conditions and quasilinear evolution

In order to set up our initial conditions we use a customized version of the initial condition

generator that is implemented in gevolution (Adamek et al., 2016a). In the public version

of gevolution, the initial conditions are set up in terms of a linear displacement field and

velocity potential that are obtained by multiplying a Gaussian realization of the primordial

curvature perturbation by the respective linear transfer functions. The latter can be

computed using a Boltzmann code such as CAMB (Lewis et al., 2000) or CLASS (Blas

et al., 2011). As usual, the particle initial conditions are obtained by displacing particles

from a regular lattice according to the gradient of the displacement field, and assigning

velocities according to the gradient of the velocity potential. In our modification of this

algorithm we introduce the possibility to create an initial configuration corresponding to a
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spherical Gaussian overdensity that can act as a seed for a UCMH. Using the superposition

principle that applies in the linear regime we allow in general for any linear combination

of the random realization and this spherical overdensity.

The initial conditions are set deep inside the radiation dominated era, at redshift

z = 10 000 for the simulations with the special central halo or z = 5 000 000 for the

simulations with the boosted power spectrum. We ignore the fact that the baryonic

component of matter is strongly coupled at that time, assuming that at the small scales

relevant for our study the perturbations in the baryon-photon plasma are irrelevant and

we only have to consider CDM. Using gevolution we follow the initial logarithmic growth

of the matter perturbations up to the point where the density contrast approaches unity

for the most extreme initial conditions. This happens around z ƒ 3000.

4.A.2 Nonlinear evolution

The particle-mesh scheme of gevolution, which works at fixed spatial resolution, eventually

becomes inadequate for tracking the detailed evolution of the very compact structures

we are interested in. One common approach to deal with this issue is to use adaptive

mesh refinement (AMR), that is to successively fine-grain the mesh in regions of high

particle density. A cell-based AMR algorithm is implemented in the public code RAMSES

(Teyssier, 2002). We use a slightly modified version where the Hubble function takes into

account radiation density and hence is more accurate at high redshift. In order to pass

from one code to the other we have gevolution write a snapshot that we then use as initial

data for RAMSES. By running the two codes just a bit further and comparing snapshots

at a later time (still before AMR is triggered in RAMSES) we convince ourselves that the

change between codes did not introduce any unexpected issues.

For simplicity, we do not use the hydrodynamics modules of RAMSES which means

that baryons are e�ectively treated as dark matter. Baryonic e�ects are expected to play

an important role at low redshift z . 10, but we are not interested in these aspects here

and stop our simulations before they become a serious concern.

4.A.3 Spherical shells and smoothing

Once halos have formed we identify them using the friends-of-friends halo finder algorithm

ROCKSTAR (Behroozi et al., 2013). For each halo the profile of 1 + ” is obtained by
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counting the number of particles n inside the spherically symmetric shells around the

center of the halo and dividing by the volume of each shell:

1 + ” = fl

fl̄
= nVshell

N3V
, (4.27)

where N3 is the number of all particles in the simulation and Vshell and V are the volumes

of a chosen shell and the entire box, respectively. To reduce the noise at higher r, we have

gradually increased the size of the bins such that every bin was larger than the previous

by a constant factor: rn+1 = qrn, which was set to q = 1.01. Therefore, in the i-th bin the

density contrast was

1 + ” = 3nL3

4fiN3r3
0

(1 ≠ q)3

(1 ≠ qi+1)3 ≠ (1 ≠ qi)3 , (4.28)

where L3 represents the entire volume of the simulation. For the size of the starting bin

r0 we chose four-times the size of a cell for the finest AMR level. In our simulations the

maximum refinement level was 16, and therefore the starting bin was r0 = 32/214 kpc/h

= 1.95 pc/h. This approach works as long as the halos are approximately spherical. To

avoid empty bins in the shells where there happen to be no particles, we apply Gaussian

smoothing with a width small enough to retain the shape of a halo profile. We checked

that this does not degrade our resolution.

4.A.4 Convergence tests

In order to understand up to what minimal radius we can trust our results we ran some

convergence tests. In Fig. 4.20 we show two simulations performed with RAMSES with the

same initial conditions, but di�erent number of particles: 2563 and 5123. This corresponds

to a mass resolution of 0.169M§/h and 0.021M§/h, respectively. In both cases the max-

imum AMR level was 16. From the plot we conclude that we can trust the lower-resolution

simulation down to approximately r ≥ 2 ◊ 10≠3kpc/h. Unless indicated otherwise, our

numerical results presented in Sections III–V were obtained with simulations that had

2563 particles.
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Figure 4.20: The profile of the Gaussian-seed halo in the peak-to-background ratio 15 simulation at z = 30
for two di�erent numbers of particles. We also show the e�ect of smoothing – the profiles before
applying smoothing are shown in dashed and the ones after are continuous. The smoothing we
applied a�ects the shape of the profile even less than changing the resolution. The only noticeable
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Conclusion

In Chapter 2 we studied a quintessence model with an exponential potential and canonical

kinetic term. We assumed a FLRW metric and explored how spatial curvature a�ects the

evolution of the dynamical system. This was done by generalising the two-parameter flat

case to three parameters. In contrast to the flat model, we demonstrated the existence

of two new fixed points and elucidated the behaviour of the system in their vicinity.

The first fixed point corresponds to a universe where the energy density is dominated

by the curvature and is not attractive. The other one corresponds to a universe where

energy density is a combination of curvature and the scalar field. This fixed point is

interesting, because it attracts all trajectories with a negative curvature for a large class

of exponential potentials. The system is therefore naturally drawn towards a configuration

that corresponds to a fixed value of w.

Although it is well established that the universe today has almost critical density with

little or no curvature, this fixed point might still be of interest for the cases where the

energy density is dominated by the scalar field. The problem with using this solution to

explain the accelerated expansion is that the equation-of-state parameter at this point is

≠1/3, but the present value has been measured to be very close to ≠1 (Abbott et al.,

2017). In any case, there exists an attractor solution for flat, negatively curved and some

positively curved cases where the equation-of-state parameter is close to the value w = ≠1

in the limit ⁄ æ 0, which might be applicable to dark energy.

In Chapter 2 we focused on one specific and rather simple model, but this sort of

curvature-inclusive analysis is applicable to other more complicated models that might

exhibit significantly richer dynamical behaviour. Theories worth studying would be scalar

fields with a more general potential (Copeland et al., 2009), non-canonical kinetic terms,

multiple scalar fields, globally anisotropic metrics (i.e. the Bianchi models) (Fadragas

et al., 2014), e.g. the Kantowski-Sachs model (Coley and Goliath, 2000), and models based

on exact inhomogeneous cosmologies. These models would typically introduce several
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extra parameters which would make their dynamics a lot more complex.

In Chapter 3 we developed a spherically symmetric general-relativistic N-body frame-

work and simulated some particles’ motions for a few initial conditions. The weak-field

regime of general relativity was assumed. This framework was developed in a cosmological

context, expanding around an FLRW metric. We reduced the complexity of the problem

by introducing spherical symmetry. This not only shortened the set of equations but also

meant that simulations became very fast. To test our code, we studied two cases with

known exact solutions – the Schwarzschild and Lemaître-Tolman-Bondi metrics – and

found good agreement between analytical solutions and our numerical results. In contrast

with these special cases, our framework also applies in situations where no exact solution

is known, for example when the fluid description of matter is not valid, such as when

shell-crossings appear.

By comparing our numerical solution and the Schwarzschild solution around a point

mass we demonstrated that the relativistic potentials we compute as accurate as the

first-order post-Newtonian correction. This is of particular interest for the exploration of

models with exotic sources of stress-energy perturbations, such as dynamical dark energy

or modified gravity. The only assumption that goes into our scheme is the requirement

that the gravitational fields remain weak. For example, this assumption breaks down when

a black hole forms. In a purely spherical setup where particles only have radial velocities

this will eventually be the case for any initial overdensity.

In order to avoid this and create stable bound structures, we introduced angular mo-

mentum, which in spherical case, e�ectively acts as pressure and opposes collapse. The

objective was to create more realistic representations of cosmic structures such as galaxy

clusters, which can then act as tests of gravity on these scales. This could also be ap-

plied to study the compact bound objects that can form in the early universe, such as

ultracompact minihalos (which are the main theme in chapter 4), or for the early stages

of the formation of primordial black holes.

In Chapter 4 we simulated the formation of ultracompact minihalos (UCMHs). First,

we confirmed Bertschinger’s (Bertschinger, 1985) analytical prediction that halos which

form in isolation have a steep power-law profile.

As we increase the amplitude of perturbations surrounding the Gaussian-seed halo, its

profile becomes closer to an NFW profile. We simulated two cases, in the first one the

scale-invariant fluctuations had an amplitude boosted to be 15 times smaller than the one

of the special halo, and in the second, this ratio was 5. In the first case, the special halo
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can still be distinguished from the others: its profile resembles that of the power-law, but

already starts to display some flattening in the centre, which is typical for NFW. In the

second case, the special halo merges with some other, NFW-like halos in its surroundings

and by z = 30 its profile is indistinguishable from the rest.

We also computed the dark-matter annihilation signal that such a halo would produce

and compared it to the ones from the surrounding halos. This quantity is important

because the tightest constraints on the abundance of UCMHs come from the non-detection

of dark-matter annihilation signal. It is sensitive to the square of the density and therefore

most of the signal comes from the centre of the halo. It is therefore important to establish

whether in the centre density scales as fl Ã r≠9/4 or fl Ã r≠1 which is the case for NFW.

In the last part, we considered a slightly di�erent setting, where we instead boosted

the power spectrum at a selected scale. In this case halos form earlier, they have higher

central densities, and are more compact compared to the situation without a boost. They

however almost all exhibit a good fit to the NFW profile. Despite providing evidence that

UCMHs of the form typically considered in the literature are not very likely to be realised

in nature, we would like to stress that the dark-matter annihilation signal in a universe

with a power-spectrum higher than expected would be enhanced.

It would be interesting to extend our simulations to redshift zero and study the stability

the highly concentrated halos we found. This would most likely have to be performed

with a “zoom-in” simulation. Another interesting question is how to include the e�ects of

baryons.

This work also has observational consequences. Given that the presence of halos with

profiles close to r≠9/4 is unrealistic, the observational upper bounds on the primordial

power spectrum on small scales derived from the non-observation of UCMHs will have to

be re-evaluated.
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