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Valuation of Callable Convertible Bonds Using Binomial Trees Model with 

Default Risk, Convertible Hedging and Arbitrage, Duration and Convexity 

Abstract  

 

In this thesis, I develop a valuation model to price convertible bonds with call 

provision. Convertible bonds are hybrid instruments that possess both equity and 

debt characteristics. The purpose of this study is to build a pricing model for 

convertible and callable bonds and to compare the mathematical results of the 

model with real world market performance. I construct a two-factor valuation 

model, in which both the interest rate and the stock price are stochastic. I derive 

the partial differential equation of two stochastic variables and state the final and 

boundary conditions of the convertible bond using the mean reversion model on 

interest rate. Because it is difficult to obtain a closed solution for the American 

convertible bond due to its structural complexity, I use the binomial tree model 

to value the convertible bond by constructing the interest rate tree and stock 

price tree. As a convertible bond is a hybrid security of debt and equity, I combine 

the interest rate tree and stock price tree into one single tree. Default risk is 

added to the valuation tree to represent the event of a default. The model is then 

tested and compared with the performance of the Canadian convertible bond 

market. Moreover, I study the duration, convexity and Greeks of convertible 

bonds. These are important risk metrics in the portfolio management of the 

convertible bond to measure risks linked to interest rate, equity, volatility and 

other market factors. I investigate the partial derivative of the value of the 

convertible bond with respect to various parameters, such as the interest rate, 

stock price, volatility of the interest rate, volatility of the stock price, mean 

reversion of the interest rate and dividend yield of the underlying stock. A 
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convertible bond arbitrage portfolio is constructed to capture the abnormal 

returns from the Delta hedging strategy and I describe the risks associated with 

these returns. The portfolio is created by matching long positions in convertible 

bonds, with short positions in the underlying stock to create a Delta hedged 

convertible bond position, which captures income and volatility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 
 

Acknowledgements 
 

This thesis would have never been achieved without the help and blessing of God 

and the support of my family, friends, and supervisors. I would like to express my 

special thanks to my supervisor, Dr. Qi Tang, for his support, guidance, and 

supervision and for providing me the opportunity and encouragement to 

accomplish this work. Dr. Tang has provided me with great suggestions, helpful 

comments, and valuable academic assistance during the time of my PhD course. 

 I would like to thank my friends and colleagues, especially Linghua Zhang for her 

programming support. I would like to thank my parents, brothers, and sisters for 

their care and prayers. 

Finally, I would like to thank the University of Taibah and the former Dean of the 

Business School, Dr. Rayan Hammad, who granted me the opportunity of this 

scholarship and supported me during my PhD research.      

 

 

 

 



VI 
 

CONTENTS 

Acknowledgements ........................................................................................ V 

1 Introduction ............................................................................................. 1 

1.1 Introduction to the convertible bond valuation model ............................ 1 

1.2 Literature review ...................................................................................... 12 

1.3 Data ........................................................................................................... 20 

2 Interest rate model ................................................................................. 22 

2.1 The Vasicek model .................................................................................... 22 

2.2 Vasicek zero-coupon bond pricing ........................................................... 29 

3 Stock Price Model ................................................................................... 30 

3.1 CRR model ................................................................................................. 30 

4 Convertible bonds pricing model involving two-stochastic factors .......... 34 

4.1 Deriving the PDE for the convertible bond option .................................. 34 

4.2 Conditions and solutions .......................................................................... 37 

4.3 American convertible bond ...................................................................... 39 

4.4 Two-stochastic-factor tree model............................................................ 40 

4.4.1 Soft call and hard Call ..................................................................... 45 

4.4.2 Call and convert conditions ............................................................ 46 

4.5 Two-stochastic-factor tree model with default risk ............................... 47 

4.5.1 Credit spread (𝒓𝒄) ........................................................................... 49 

4.5.2 Default risk probability (𝝀) ............................................................. 50 

4.6 Numerical example................................................................................... 53 

4.6.1 Option-free convertible bond ......................................................... 53 

4.6.2 Callable convertible bond subject to default risk .......................... 61 

4.6.3 Conclusion of the numerical examples .......................................... 68 

4.6.4 Further numerical examples ........................................................... 70 

4.6.5 Monthly spacing numerical examples ............................................ 71 

5 Duration and convexity of convertible bonds .......................................... 74 

5.1 Introduction to duration and convexity .................................................. 74 

5.2 Duration .................................................................................................... 75 

5.3 Convexity .................................................................................................. 81 



VII 
 

5.4 Duration and convexity of the European zero-coupon convertible bond

 83 

5.4.1 The sensitivity of the zero-coupon bond price and duration to 

interest rate changes .................................................................................. 85 

5.4.2 The sensitivity to the interest rate volatility 𝝈𝒓 ............................ 85 

5.4.3 The impact of stock price changes on the duration and convertible 

bonds 87 

5.4.4 The sensitivity to the stock price volatility 𝝈𝒔 ............................... 88 

5.4.5 The sensitivity to the long-run rate 𝜽 ............................................ 88 

5.4.6 The sensitivity to the mean reversion rate 𝒌 ................................. 89 

5.4.7 Dividend yield.................................................................................. 89 

5.5 Convexity .................................................................................................. 90 

5.5.1 The sensitivity of convexity to stock prices. .................................. 91 

5.5.2 The sensitivity of convexity to the interest rate. ........................... 92 

5.6 The Greeks of the convertible bond ........................................................ 92 

5.6.1 Delta of the convertible bond price ............................................... 93 

5.6.2 Gamma of the convertible bond price ........................................... 95 

6 Convertible Delta arbitrage .................................................................... 97 

6.1 Introduction to convertible bond arbitrage ............................................ 97 

6.2 Convertible bond arbitrage and portfolio construction ......................... 99 

6.2.1 Delta of the binomial tree .............................................................. 99 

6.2.2 Delta of the Black-Scholes model ................................................. 103 

6.3 Data ......................................................................................................... 105 

6.4 Results ..................................................................................................... 106 

6.4.1 Results of the binomial tree method ........................................... 106 

6.4.2 Results of the Black-Scholes model .............................................. 110 

6.4.3 Summary of the results ................................................................. 113 

7 Conclusion ............................................................................................. 115 

8 Appendix ............................................................................................... 118 

8.1 MATLAB code for construction Vasicek tree ......................................... 118 

8.2 MATLAB code for generating Vasicek model parameters .................... 119 

8.3 CRR stock price tree – Matlab code ....................................................... 120 

8.4 AAV convertible bond – Matlab code .................................................... 121 

8.5 CWT convertible bond with default risk– Matlab code ........................ 124 

References ................................................................................................... 128 

   



VIII 
 

List of symbols and abbreviations 

𝑉 Convertible bond value 

𝑟 Risk-free interest rate 

𝑆 Stock price  

𝑘 Speed of mean reversion 

𝜃 Central tendency or the long run value of the short-term rate 

𝑊 Standard Wiener process 

𝐾 Exercise price 

𝑟∞ Long-term value 

𝜆 Risk premium  

𝜎𝑟  Volatility of risk- free interest rate 

𝜎𝑠 Volatility of underlying stock 

𝜎̂ Term volatility  

𝑡 Present time 

𝜋 Up node Probability at 𝑡1 

𝑝 Up node Probability at 𝑡2 for upper nodes 

𝑞 Up node Probability at 𝑡2 for lower nodes 

𝑃 Vasicek zero-coupon bond 

𝜏 Time to maturity  

𝐹 Face value  

𝑐 Coupon 

𝑦 Coupon yield  

𝑁( . ) Cumulative standard distribution function 

𝛼 Conversion ratio 

𝐶𝑃 Call price 

𝐵 Value of the straight bond 

𝑉𝐶  Callable convertible bond 

𝐷 Duration  

𝐶𝑥 Convexity  

∆𝑟 Change in interest rate 

∆ Delta  

Γ Gamma  

𝑞𝑠 Dividend yield of the underlying stock 

  
Abbreviations   

𝑆𝐷𝐸 Stochastic differential equation   

PDE Partial differential equation   

𝐸𝑞𝑛 Equation    

𝐶𝑅𝑅 Cox, Ross, and Rubinstein model 



IX 
 

List of Figures  

Figure 1: Global convertible bond market - Ferox Capital ..................................... 2 

Figure 2: Vasicek interest rate tree ......................................................................24 

Figure 3: Interest rate pricing for the first month ................................................25 

Figure 4: Valuation of 𝑟𝑢𝑑 as the expected value of the interest rate in step 2   26 

Figure 5: Canadian Five-Year Zero-Coupon Bond Yields from 2000 to 2015 .......28 

Figure 6: Simulation of Canadian 5-Year zero coupon bond yield from 2000 to 

2015 ......................................................................................................................28 

Figure 7: Modified CRR stock price tree ...............................................................32 

Figure 8: Historical prices of the convertible bond and its underlying stock price 

for Advantage Energy (AAV) .................................................................................34 

Figure 9: One-period two-stochastic factor tree model with no default risk ......40 

Figure 10: 𝑟𝑢𝑢𝑆𝑢𝑢  node pricing with the two-stochastic-factor tree model from 

maturity ................................................................................................................42 

Figure 11: 𝑟𝑢𝑢𝑆𝑢𝑢 node pricing of the callable convertible bond tree model from 

maturity ................................................................................................................43 

Figure 12: Three-period two-stochastic-factor tree model..................................44 

Figure 13: One-period two-stochastic-factor tree model with default risk .........47 

Figure 14: One-period stock price model with default risk ..................................48 

Figure 15: 𝑟𝑢𝑢𝑆𝑢𝑢 node pricing of the callable convertible bond tree model with 

the default risk from maturity ..............................................................................51 

Figure 16: Three-period two-stochastic-factor tree model with credit risk ........52 

Figure 17: Vasicek interest rate tree ....................................................................54 

Figure 18: AAV stock price tree model .................................................................56 

Figure 19: Relationship between the bond price and the conversion price of AAV

...............................................................................................................................59 

Figure 20: AAV convertible bond 3- period pricing tree ......................................60 

Figure 21: Vasicek interest rate tree ....................................................................62 

Figure 22: CWT stock price tree model ................................................................63 



X 
 

Figure 23: Relationship between bond price and conversion price of CWT ........68 

Figure 24: CWT callable convertible bond 3- period pricing tree with default risk

...............................................................................................................................69 

Figure 25: Relationship between duration and convexity ...................................76 

Figure 26: AAV convertible bond price (Series1) and  interest rate (Series2) for 

one factor case ......................................................................................................77 

Figure 27: 𝑉+ interest rate tree after shifting the rate up by + 25 basis points ...78 

Figure 28: 𝑉− interest rate tree after shifting the rate down by - 25 basis point .79 

Figure 29: Relationship between the AAV convertible bond price and interest rate 

volatility ................................................................................................................86 

Figure 30: AAV convertible bond price (Series1) and share price (Series2) .........87 

Figure 31: Duration as a function of stock price...................................................87 

Figure 32: Relation between convertible bond price and stock volatility of 

AAV………………………………………………………………………………………………………………….89 

Figure 33: JE convertible bond as a function of the stock dividend yield ............90 

Figure 34: AAV convertible bond convexity as a function of stock price .............91 

Figure 35: AAV convertible bond convexity as a function of interest rate ..........92 

Figure 36: AAV convertible bond Delta (out of the money) .................................94 

Figure 37: GH convertible bond Delta (in the money) .........................................94 

Figure 38: RUS convertible bond Gamma ............................................................96 

Figure 39: One-step binomial tree of the convertible bond and underlying stock

............................................................................................................................ 100 

Figure 40: CWT pricing node .............................................................................. 101 

Figure 41: Average annual Delta -hedge return – binomial method ................ 107 

Figure 42: Return distributions of long convertibles positions and the hedging 

strategy .............................................................................................................. 108 

Figure 43: Average annual Delta -hedge return ................................................ 111 

Figure 44: Return distributions of long convertibles positions and the hedging 

strategy .............................................................................................................. 111 



XI 
 

List of Tables   

Table 1: Interest rates and yields summary .........................................................21 

Table 2: Back testing for Canadian 5-year zero coupon bond yield .....................27 

Table 3: Data for a convertible bond issued by Advantage Energy (AAV) and its 

underlying asset ....................................................................................................33 

Table 4: 3- year CRR model tree for the Advantage Energy (AAV) share price....33 

Table 5: Probabilities of one-period two-stochastic factor tree model with no 

default risk ............................................................................................................40 

Table 6: CIBC report of Canadian convertible debentures ...................................45 

Table 7: Probabilities of one-period two-stochastic-factor tree model with default 

risk .........................................................................................................................47 

Table 8: Vasicek interest rate tree model parameters .........................................54 

Table 9: AAV stock price tree model parameters .................................................55 

Table 10: Vasicek interest rate tree model parameters .......................................61 

Table 11: CWT stock price tree model parameters ..............................................62 

Table 12: Duration calculation sheet for the AAV convertible bond ...................77 

Table 13: Hedging strategy over one month ..................................................... 102 

Table 14: Delta hedging portfolio data sorting ................................................. 106 

Table 15: Binomial tree Delta hedging summery .............................................. 107 

Table 16: Black-Scholes Delta hedging summery .............................................. 110 

Table 17: Average annual returns of the Delta strategy………………………….…….. 108 

Table 18: Model examples compared to market prices.....................................116 

 

   

 

 

 



1 
 

1 Introduction 

 

1.1 Introduction to the convertible bond valuation model 

 

Convertible bonds are a developing segment of the corporate bond market. 

Convertible bonds are hybrid instruments that possess both equity and debt 

characteristics. Similar to straight bonds, convertible bonds are entitled to receive 

interest payments (coupons) and the full principal at maturity. However, 

convertible bonds typically pay lower interest than straight corporate debt 

because of the value of the convert option that is embedded in this derivative 

security. Convertible bondholders have the option to convert their bonds into 

common shares of the underlying stock at a pre-specified rate, which is called the 

conversion ratio. The conversion ratio is usually specified at the time of bond 

issuance. This ratio indicates the number of underlying shares into which the 

convertible bond can be converted. The conversion value is the market value of 

the underlying asset into which a convertible security may be exchanged. The 

conversion value is calculated by multiplying the current share price by the 

conversion ratio. A convertible bond can be converted only when the underlying 

equity is trading at the conversion value or higher. A convertible bond is called ‘in- 

the-money’ if the share price is higher than the conversion value.  

 

Often, convertible bonds contain embedded call options that provide the issuer 

with the right to redeem the bond at a specified price before maturity. Less 

frequently, the bonds may include embedded put options that allow the holder to 

sell the bond back to the issuer at a predetermined price. 

 

 A hard call feature allows the issuer of a convertible bond to redeem the 

convertible bond before maturity by paying the call price to the investor. The 

issuer may need to pay the accrued interest to the investor in addition to the call 
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price. The issuer can also exercise the hard call feature after the call date. The 

period during which the issuer may not redeem a convertible bond under any 

circumstance is called the hard non-call period. During the non-call period, the 

issuer is prohibited from redeeming the bond without the consent of the 

bondholders. 

 

On the other hand, a convertible bond may have a soft call period that allows the 

issue to be called but provides bondholders with a capital gain to offset the loss of 

interest income. The most common soft call stipulates that the underlying equity 

instrument must trade for a specified period of time above a certain price level in 

order for the bond to be called (Navin,1999). 

 

The convertible bond market has progressed substantially in recent years. The 

global convertible bond market is worth approximately US$500 billion in size and 

contains around 2,500 issues, according to Ferox’s Capital Report in 2012 (Ferox 

Capital LLP, 2012). Figure 1 shows the size of the global convertible bond market 

in dollars. Evidently, the overall market capitalisation of the convertible bond 

market has shown a gradual increase since the financial crisis in 2008.  

 

 
Figure 1: Global convertible bond market - Ferox Capital 
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As of 31 December 2014, the US convertibles market had a market capitalisation 

of $268 billion from 2,346 issuers, composing about 10% of all debt in the US, 

according to Janney Montgomery Scott LLC (Janney Montgomery Scott LLC, 2014). 

 

The convertible bond markets are expanding rapidly in some developing countries. 

For example, China issued more than 60 trillion yuan of new convertible bonds in 

2010, which is almost three times the level from four years earlier. Hong Kong is 

an international financial centre that issued about 70 trillion yuan of convertible 

bonds in 2012. (Zhang, 2014). 

 

In Canada, 143 convertible debenture issues were listed on the Toronto Stock 

Exchange (TSX) in 2014/15. According to a report by Deloitte, the estimated size 

of the Canadian convertible debenture market was approximately $14 billion in 

size and was issued by 92 separate issuers (Deloitte LLP, 2014). Canadian mid-cap 

companies and real estate investment trusts have been particularly active users of 

convertible debt in the past decade as an opportunity to finance acquisitions of 

new projects, enter new markets, or fund continuing operations. In this thesis, we 

will use the Canadian convertible bond market data for validation and data testing 

purposes. 

 

A convertible bond is a hybrid instrument comprised of two components (debt and 

equity). Therefore, the convertible bond valuation is a two-factor valuation model 

that includes the interest rate and the stock price. Since the numerical valuation 

of a two-factor model is quite complex, most convertible bond pricing models 

assume a non-stochastic interest rate. As I believe that a stochastic interest rate 

will provide more accurate and efficient results, I develop a two-factor valuation 

model for convertible bonds with call provisions that is subject to the default risk 

of two stochastic variables using the mean reversion model for interest rate. I also 

derive the PDE for a European convertible bond with two stochastic variables and 
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state the final and boundary conditions of this convertible bond. Because of the 

difficulties of deriving the PDE for an American convertible bond due to the 

structural complexity of this style of bond, I use the binomial tree as numerical 

model to value the convertible bond. 

 

Valuation of a convertible bond is not responsive to exact solution in closed form 

due to the security’s optionality which is complex, according to Finnerty (2015). In 

convertible bonds, the owner has an option (American) to substitute them for 

common stocks. This is done by converting them to a specified number of equities 

at any period before they are redeemed. Most of the time, the entity has a call 

option (American), which prior to bondholders converting voluntarily, it can be 

used in forcing conversion. Bondholders can have several put options (European) 

with which redemption can be forced prematurely if the option of conversion is 

that of in-the-money. 

 

This project will study a valuation model for convertible bonds with provisions, 

such as call options. The binomial tree model is one common way to value and 

forecast the prices of convertible callable bonds with options. According to Huang 

(2013), the pricing of convertible bonds cannot get closed-form solution; in most 

conditions, numerical methods should be adopted such as binary tree method, 

Monte Carlo method, finite difference method. As for Monte Carlo method, firstly 

it uses different stochastic differential equations to describe the pricing factor 

models in the market for simulation, then it makes pricing based on the 

characteristic of convertible bonds, for example, the boundary conditions acquired 

by all kinds of provisions. Because of the complexity of convertibles, the resulting 

pricing equation can be solved only numerically. The binomial tree method of two 

stochastic variables is presented to solve the price of convertible bond. 
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Some valuation models have been developed to provide estimations for valuing 

complex convertible bond. However, it has been widely argued that most of these 

models include some assumptions that are not predicted by historical information 

or real world data, particularly for the interest rates and volatility.  

 

To value a convertible bond, we need to construct two trees: an interest rate tree 

and a stock price tree. We adopt the Vasicek model tree to value the debt through 

the interest rate tree, which will lead to calculating the price of the straight bond. 

For the equity part, we will adopt the Cox, Ross, & Rubinstein (CRR) approach, with 

some modifications, that allows us to assume non-constant volatility. 

 

Kwon and Chiarella (2007) claimed that various previous models of interest rates 

put emphasis and built on Vasicek’s model in several ways. In Vasicek’s model, the 

assumption was that spot rate followed a process of mean reversion which had a 

volatility which was constant and a degree of mean reversion that was also 

constant. Rapid spot interest rate was the quantity in control of the present group 

of models. The spot rate is a quantity that is non-traded and hence the models 

normally take to account market price associated with risk in the interest rate. 

Since the risk’s market price is a quantity that cannot be observed, assumptions 

were made and they relied on mathematical convenience as the basis and not 

economic aspects for the purpose of getting pricing PDE which permits several 

solution techniques to be applied. Heath-Jarrow-Morton (1992) established a 

model that led to a large departure from this broad and regular theme. They took 

into consideration the various quantities that drove the model that is a series of 

instant forward rates that are related directly to the traded bond’s prices. 

Techniques derived from stochastic calculus were used to come up with a general 

framework relating to the interest rate’s evolution which had an important 

characteristic stating the model had natural calibration to yield curve which is 

observed currently. Volatility processes of the forward rates form the major inputs 
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to HJM framework, which depicts a special model known as, Cox-Ingersoll-Ross 

model as being a case and part of one-factor HJM framework which is general and 

it corresponds to specific volatility process choice. Despite HJM model becoming 

largely accepted as most consistent and general framework by which derivatives 

relating to interest rates can be studied, added complexity, as well as lack of 

enough numerical techniques in the HJM, meant that models that had been 

formulated earlier maintained popularity specifically among their users. 

Nevertheless, owing to high developments relating to technology by computers, 

models of HJM are gradually becoming practical and practitioners are currently 

adopting several of these model forms for the purpose of hedging and pricing in 

interest rate instruments according to Kwon and Chiarella (2007). 

 

Our model will discuss the valuation of convertible bonds with call provisions using 

a binomial tree model that is subject to default risk through data analysis of the 

Canadian bond market. One of this thesis’s main aims is to build a pricing model 

for convertible and callable bonds and compare the results with the market price. 

A convertible bond is a bond that can be converted into a predetermined amount 

of the company's equity at certain times during its life; therefore, convertible bond 

valuation can be divided into two components: 

o Equity – (the risk-free rate used to discount equity). 

o Debt – (the risky bond rate used to discount the straight bond to reflect the 

future default probabilities). 

 

The Vasicek model is adopted to construct the interest rate tree. The Vasicek 

model is a mean-reverting stochastic process for short-term interest rate valuation 

where the interest rate r is supposed to follow the Ornstein-Uhlenbeck process. 

For the underlying stock price tree, we adopt the Cox, Ross, and Rubinstein (CRR) 

model with some modifications that allow for a non-constant volatility in different 

intervals but a constant volatility within the same time interval. 
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Once the interest rate tree and the stock price tree are constructed, we combine 

the two trees into one single tree to find the price of the convertible non-callable 

bond as well as that of the callable bond. Each node of the combined tree will have 

four branches in the next period, 𝑡𝑖+1. These branches represent the combination 

of the two stochastic factors, the interest rate and the stock price. We use the 

single central node in the interest rate tree at 𝑡 ≥ 2 for both central nodes in the 

stock tree at 𝑡 ≥ 2. The same methodology is applicable for the nodes in other 

time intervals. 

 

Since convertible bonds have a straight bond element in them, default risk can 

happen any time in the bond's life. As a result, it is essential that default risk is 

considered through the process of valuation. Choice concerning the rate of 

discount is the challenge faced when dealing with matters of credit risk. If the 

convertible element of the bond does not change, then cash payoff is exposed to 

credit risks and the necessary rate of interest takes to account the credit spread 

that matches with the issuer's credit rating. Besides that, if there is certainty in the 

convertibles conversion, shares can always be issued by the entity and ensure that 

the invested proceeds are risk-free. The discounting rate appropriate is now risk-

free rate. Hull (2003) and Goldman Sachs (1994) put into consideration the 

likelihood of conversion in every node and also considered the rate of discount as 

being a properly weighted arithmetic average of risky rate and risk-free rate (it is 

obtained by summing up the credit spread of the issuer). The conversion 

probability for the last tree layer is either 0 or 1, based on whether or not the 

convertible has been converted. At the former nodes, the mean for conversion 

probabilities of all successor nodes is used to determine conversion probability. 

Suppose the convertible is put (or converted) at a node, resetting of the conversion 

probability to 0 or 1 has to be done. 
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Various models of valuation of convertible bonds are reviewed financial literature 

as seen in arguments by Carayannopoulos (2003). These models have to show both 

the option of exchanging bonds to equities as the features of conversion depicts 

and also show the credit risk associated with the bond. These authors examine two 

examples of models relating to credit risk: structural models which are needed in 

showing the value of a company in a given period of time to assess the probability 

of default, (2) reduced-form models which view default as a process that is 

exogenous and statistical. Structural models have limitations of data and this is the 

reason as to why these authors pick reduced-form model (the model of credit risk 

by Singleton and Duffie). In this model, the bonds default probability is always the 

function of both stock price of the issuer and time. The valuation model of 

convertible bonds combines option values to trade off bonds for equity plus risky 

straight bond's values. The tree model is an example of a numerical method they 

use in determining the prices of convertible bonds which they use to make 

comparisons with market prices. Takahashi (2001) shows arguments by others 

whereby jump process should represent the probability of default this is because 

the processes of diffusion are not in a position to discuss in detail empirical 

observations in that even prior to maturity there exists huge credit spreads. 

Turning attention to the problems, Jarrow Turnbell (1994) and Duffie-Singeton 

(1999) did not endogenously discuss in detail the probability of default by 

exogenously identified it through a jump process and obtained the securities 

prices which are arbitrage-free subject to the usual and ordinary default risk. 

Because it is difficult to derive the PDE for the American convertible bond due to 

its structural complexity such as conversion option, call option and default risk, I 

deploy the tree model for this project to determine the convertible bond price 

considering default risk while making the assumption that stock price and interest 

rate process are stochastic. 
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In this model, A new branch is added to the tree model to represent the default 

event and the probability of default 𝜆. Therefore, the combined tree will have five 

branches for each node instead of four to reflect the default event. In the case of 

default, the stock price jumps to zero in the convertible bond valuation model, as 

the bond is no longer converted, and the bondholders will receive a portion of the 

bond’s principal according to its recovery rate 𝛿. 

 

Then, we will test our convertible bond valuation against the real market prices of 

selected convertible bonds from the Toronto Stock Exchange (TSX). We will 

investigate the option-free convertible bond valuation model (convertible bonds 

that do not allow call provision) against the real market price of these convertible 

bonds. Moreover, we will examine the callable convertible bonds valuation model 

subject to default risk relative to the market price. 

 

We also study the duration, convexity, and Greeks of convertible bonds. The 

duration, convexity and Greeks are important risk metrics in the portfolio 

management of convertible bonds to measure the risk associated with interest 

rates, equity, volatility, and other economic factors. Duration is a measure of the 

approximate price sensitivity of a bond to interest rate changes. More specifically, 

it is the approximate percentage change in bond price for a 100-basis point change 

in rates (Fabozzi, 2005). Convexity is a measure of the curvature of the value of a 

security or portfolio as a function of interest rates. It indicates how the duration 

changes as interest rates change. 

 

Since the convertible bond is a hybrid of a bond and an underlying equity 

component, we investigate the partial derivative of the value of the convertible 

bond to various parameters, such as the interest rate, stock price, volatility of the 

interest rate, volatility of the stock price, mean reversion of the interest rate, and 
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dividend yield of the underlying stock. I also investigate the effects of these factors 

on the price of the convertible bond.  

 

In addition, we will examine the importance of the Greeks of the convertible bond, 

such as Delta and Gamma. The Delta of a convertible bond measures the 

convertible equity’s sensitivity to any stock price changes. Delta is used as an 

estimation tool in a hedging strategy that determines the number of equity shares 

to short against the convertible bond’s long position. 

  

Convertible bond arbitrage entails purchasing a convertible bond and selling short 

the underlying stock, creating a Delta hedge ratio. The Delta hedge strategy aims 

to benefit from the undervalued convertible bonds by going long for the 

convertible and short for the underlying stock. If the underlying stock price falls, 

the hedge fund will exploit its short position. It is also likely that convertible bonds 

decline less than their underlying stock because they are protected by their value 

as fixed-income instruments. Moreover, any discrepancies or mispricing in the 

relationships among the single components and additional features of the 

convertible bond will, therefore, lead to arbitrage opportunities that attract the 

attention of hedge fund managers (Werner, 2010). 

 

Henderson and Zhao (2013) argue that convertible bonds are typically under 

priced relative to their fair values. Arbitrageurs, typically hedge funds, attempt to 

profit from this under pricing by establishing a long position in the convertible 

bonds and simultaneously shorting the issuer’s stock to hedge their exposure to 

the issuer’s stock price and default risk. 

 

Moreover, we study convertible bond Delta arbitrage by producing the daily 

convertible bond arbitrage returns of 44 convertible bonds that were listed on the 

TSX for the period from 2009 to 2016.  
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The Delta hedging strategy is designed to generate returns from, firstly, the 

convertible bond yield income and short interest, and secondly from long volatility 

exposure from the option component of the convertible bond. We will create a 

convertible bond arbitrage portfolio to capture the abnormal returns from the 

Delta hedging strategy and describe the risks associated with these returns. The 

portfolio is created by matching long positions in convertible bonds, with short 

positions in the underlying stock to create a Delta hedged convertible bond 

position, that captures income and volatility. The Delta strategy is implemented by 

constructing an equally weighted portfolio of 44 hedged convertible bonds from 

2009 to 2016. To obtain Delta, we present two calculation methods; Delta with the 

binomial tree model and Delta with the Black-Scholes model. 

 

The thesis is organised as follows. In Chapter 2, we identify the interest rate model 

as the first stochastic factor in the convertible bond valuation model. We will 

explain the construction process of the Vasicek interest rate tree. In Chapter 3, we 

describe the CRR stock price model as the second stochastic factor that represents 

the equity component of the convertible bond. In Chapter 4, we derive the PDE of 

the two stochastic factors and state the boundary conditions of the European 

convertible bond. We then combine the two constructed trees into one single tree 

using the binomial model. We also compare the results of the numerical example 

with the real market prices of Canadian convertible bonds. In Chapter 5, we 

present the duration, convexity and Greeks and other risk metrics associated with 

convertible bond investment. We also show the sensitivity of the convertible bond 

value and duration to various parameters, such as the interest rate, stock price, 

volatility of the interest rate, volatility of the stock price, mean reversion of the 

interest rate, and dividend yield of the underlying stock. In Chapter 6, we illustrate 

the Delta hedging strategy and construct the convertible arbitrage portfolio. 

Chapter 7 concludes the thesis. 

 



12 
 

1.2 Literature review  
 

Since convertible bonds are sophisticated financial instruments that play a major 

role in financial markets, some important valuation models have been developed 

in the past century. Because of the complexity of convertible bonds, most of these 

models are one-factor models that assume non-stochastic interest rates. A 

contingent claims approach to the valuation of convertible bonds was initially 

proposed by Ingersoll (1977) and Brennan and Schwartz (1977). They proposed 

that the value of a convertible bond is based on one underlying variable: the value 

of the firm. The price of a convertible bond is obtained by solving a PDE under a 

non-stochastic interest rate, in which case a convertible bond can be decomposed 

into a straight bond plus a warrant with an exercise price equal to the par value 

(i.e., 𝑉 = 𝐾 + max (𝜔 𝐷𝑇 − 𝑘, 0), where 𝐷𝑇 is the value of the firm at 𝑇 and 𝜔 is 

the fraction of the equity that the bond holders receive if the bond was converted) 

(Li,2005). Some numerical models have focused on finite difference schemes that 

also assume non-stochastic interest rates, such as, for example, Brennan and 

Schwartz (1980), McConnel and Schwartz (1986), Tsiveriotis and Fernandes (1998), 

Nyborg (1996), and Xingwen (2005). However, other studies have proposed that 

the value of a convertible bond is based on the equity rather than the value of the 

firm. The equity value model includes those proposed by Ho and Pfeffers (1996), 

Tsiveriotis and Fernandes (1998), and Hull (2003).  

 

Some valuation models have been developed to price convertible bonds under the 

assumption of stochastic interest rates. Initially, Brennan and Schwartz (1980) 

extended their previous model and introduced a short-term, risk-free interest rate 

as an additional stochastic variable to capture the stochastic nature of the interest 

rate. Carayannopoulos (1996) extended the result suggested by King (1986) and 

provided an empirical investigation to test the contingent claims approach to the 

valuation of corporate convertible bonds under the assumption of a stochastic 

interest rate. Giovanni, Ana, and John (2003) solved a two-factor convertible 
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bonds model under a stochastic interest rate process that is assumed to follow 

Hull and White’s (1990) framework. Kim (2006) discussed deriving the PDE of 

convertible bonds with a stochastic interest rate using Black-Scholes analysis 

(1973). In Chapter 4, I derive the PDE of convertible bonds with a stochastic 

interest rate by adopting the mean-reverting process suggested by the Vasicek 

model (1977). 

 

Huang, Liu, and Rao (2013) claimed that the pricing of convertible bonds did not 

have a closed-form solution; under most conditions, a numerical method, such as 

the binary tree method, the Monte Carlo method, or the finite difference method, 

must be adopted. Mezofi (2015) introduced that closed-form solutions can only be 

used with a restricted set of assumptions, therefore numerical solutions are 

frequently used in practice. Numerical solutions such as lattice methods, finite 

difference methods or Monte Carlo simulations can include path-dependent 

payoff structure allowing more realistic implementation of convertible bond 

features.  

 

The research did previously on how convertible bonds are valued by Monte Carlo 

or probability simulation is not sufficient enough (Kind and Amman 2008). Buchan 

(1997,1998) discusses in detail how Bossaert’s technique relating to parametric 

optimization is applied to all these convertible bonds, this is done by using the 

value of the firm as the state variable underlying as well as giving an allowance of 

senior debt. Nevertheless, the assumption she made during the empirical 

implementation is that of European option as the conversion option and not 

American. This group of methods of pricing convertible bonds employs probability 

simulation and it overcomes most of the limitations of numerical methods for 

partial differential equations. Kind and Amman (2008) initiated an empirical and 

theoretical contribution. Initially, we suggest the convertible bond’s pricing 

method which is the stock value- based building on the already developed Monte-
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Carlo approach according to Garcia (2003). This method has two stages which are 

developed to deal with bias associated with the approach of Monte Carlo which is 

attributable to methods with only one stage. These two-step methods of 

simulation can be described as it being a parametric approach since it employs 

representations which are parametric of the initial and primary exercise decisions. 

An important foundation of numerical computation for prices of convertible bonds 

was laid by Ayache et al (2003) describing how recent finite-difference techniques 

of computing can take place of the computationally complex trinomial trees and 

sub-optimal binomial trees which fill and are everywhere in the literature. 

Anderson and Buffum in 2002 formulated computing and theory methods on a 

basis which was reasonably solid though the method of how the convertible bonds 

models can be parameterized was not determined. In the literature, several 

particular parameterizations have come up and they include Gregory and Arvanitis 

of 2001, Miralles and Bloch (2002) and Muromachi (1999), they all emanate from 

empirical observations. Normally, they do not come up with a price model that will 

bring any specific instrument near the market. As a matter of fact, when used in 

simple instruments for example coupon bonds and stock options, models of 

convertible bonds which are parameterized carelessly can result in huge price 

biases. In a case of market setting, where attention is in relative values or maybe 

or you are in need of hedging against all convertible bond prices using credit 

derivatives (straight debt) and options, obviously this would not be the ideal 

situation. 

 

The complexity of numerical computation in financial theory has increased 

significantly in recent years, which has created more demand on the speed and 

efficiency of computer systems. Numerical methods are used to value convertible 

bonds, estimate their sensitivities, as well as carry out risk analysis. The American 

option contains early exercise characteristics making it increasingly complex. The 

complexity of the American option has necessitated the adoption of new methods 
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based on Monte Carlo Simulation, finite difference, as well as the binomial process. 

Relative to other numerical methods, Monte Carlo method has been employed 

more often to solve more complex problems (Boyle et al, 1997). For instance, 

analyse function 𝑓(𝑥)  over d-dimensional unit hypercube. The simple integral 

approximation using Monte Carlo is equal to the mean value of the function 𝑓 over 

𝑛 points that have been randomly selected from a hypercube unit. In essence, the 

n points are not random per se in a standard Monte Carlo application; rather, they 

are produced by a deterministic algorithm and later on defined by pseudorandom 

numbers. Based on the law of large numbers, the estimation meets the true value 

of the integrand as n inclines to infinity. Moreover, the central limit theorem 

clearly illustrates that the estimation of the standard error tends to zero as 1/√𝑛. 

Hence, the convergence rate error is not dependent on the problem’s dimension 

and this is what gives this method its edge as compared to other methods of 

classical numerical integration. The only limitation to this approach, which is mild, 

is that function 𝑓  should be square integrable. Moreover, the adoption of this 

method has been faster due to an increase in the availability of powerful 

computers.  

 

One disadvantage of this approach is that for it to get exact results in complex 

problems, it requires many replications. Various methods of variance reduction 

have been developed to enhance precision. In Geske and Shastri’s (1985) view, 

step sizes aren’t zero and that they don’t have to be equal. This notwithstanding, 

step sizes ought to be selected in such a way as to make sure that there is stable, 

efficient, and accurate solution convergence. The prices of the stock as well as time 

solution space are put together in a put and call option valuation problems. Based 

on time dimension, the date of expiry 𝑇 establishes the optimum time which is 

allowed. The lower absolute bound is established by limited liability in stock-price 

space, 𝑆𝑀𝐼𝑁 =  0.  Moreover, the derivative condition is used to establish the 

upper bound SMAX. In directly estimating primary stochastic process, there is a 
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possibility of not reaching upper and lower stock-price bounds. According to 

Monte Carlo simulation, reaching the bounds will be dependent on the number of 

jumps, and for the binomial process this would depend on the size of the up and 

down jumps and on the number of jumps.  Stock price range is dependent on size 

of up and down jumps which is in turn dependent on the approximation of changes 

of the primary stock prices. According to the binomial process, the net is a cone 

and the number of stock price in a given time step is determined by the selection 

of the time steps and subsequently the stock price-time net. As regards finite 

difference estimations, time step is equally defined by expiration. The size of the 

stock price is described as (𝑆𝑀𝐴𝑋 − 𝑆𝑀𝐼𝑁)/𝑛. The shape of the finite difference 

is rectangular and choosing the mesh size is crucial for a stable and accurate 

convergence to the solution. It is worth noting that critical mesh ratio tends to be 

sensitive to the model of differencing technique used.  

 

Since convertible bonds may have other option features that significantly affect 

their valuations, such as call and put options, Tsiveriotis and Fernandes (1998) 

proposed a pricing approach that values convertible bonds numerically using 

lattice-based methods. This approach splits the value of a convertible bond into an 

equity component and a debt component. The binomial trees method for valuing 

convertible bonds was initially proposed by Cheung and Nelken (1994) as a one-

factor model. This model assumes a constant interest rate and does not allow for 

provisions such as call and put options. Goldman and Sachs (1994) introduced the 

one-factor valuation model using a binomial tree that assumes a constant interest 

rate and allows for call and put options.  

 

Hung and Wang (2002) presented a binomial tree method for convertible bonds in 

a two-factor model in which the stock price and the interest rate are stochastic. 

This model was extended by Chambers and Lu (2007) to include the correlation 
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between the equity price and the interest rate. These models suggested that 

Interest rates could be modeled using the Ho-Lee (1986) lognormal model. 

 

Finnerty (2015) established a closed-form model for valuing contingent claims for 

the convertible bonds which calculates the exchange options value when the 

following aspects are stochastic; the share prices, the credit spread of the firm and 

the risk-free rate in the short term. Interest rate process is said to be in line with a 

framework by white and hull (1990). His model displays scientific evidence that 

does the comparison of market prices and the model for 148 corporate bonds 

samples of which issuing was done from 2006 to 2010. Respectively, the standard 

mean and median errors of pricing were 0.21% and -0.18%. This model evaluates 

the disruptive effect on short selling prohibition on prices of convertible bonds at 

the time of the financial crisis which occurred more recently. 

 

An integrated framework for pricing of convertible bonds was initiated by Kyriakou 

and Ballotta (2015) and it consists of the value of the firm emerging as a reliable 

numerical scheme of pricing, movements in interest rates that are correlated 

stochastically and a jump diffusion (exponential). The stochastic model proposed 

fits jump diffusion (affine) framework by construction. Their model also 

incorporated stochastic rates of interests as well as a correlation structure (non-

zero) relating to interest rates and value of the firm. 

A recent model developed by Zhang and Zhao (2016) discusses the pricing of 

convertible bond with call provision based on the traditional Black-Scholes formula. 

By applying the principle of no arbitrage, the partial differential equation for the 

bond is established with identified boundary conditions, which solution results in 

the closed form of the pricing formula. Their model is one-factor model where the 

interest rate is assumed to be constant.  
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The literature which displays the framework of valuation of convertible bonds 

using the binomial tree as the basis based on credit risk starts with strategies that 

are quantitative from a research note by Goldman Sachs in 1994. This structure is 

built on Brownian motion (geometric) also, as an equity model (stochastic) and the 

risk-free rate of interest which is constant. It has been developed further by 

Fernandes and Tsiveriotis (1998) and by Pfeffer and Ho (1996). Wang and Hung 

(2002) employs a model which is in a reduced form and which uses Turnbull and 

Jarrow framework (1995) as its basis. They employ stock-price tree (stochastic) in 

this model that belongs to them and mix risky and risk-free rates in a single tree. 

As a result of Singleton and Duffie framework, Kalimipalli and Carayannopoulos 

examine trinomial tree (reduced-form) approach. This model here employs a stock 

price (stochastic) also hazard rate relies upon stock price movements. By using 

interest rate and stock price trees correlation Wang and Hung's model is expanded 

by Lu and Chambers (2007). A trinomial tree approach taking into account 

counterparty credit and market risks present in CB pricing structure are proposed 

by Xu (2011). Generalization of the reduced-form technique is done to incorporate 

the process of (CEV) constant elasticity of variance relating to equity price just 

before default. 

 

The aim of my study is to present a new extension to these models in which the 

interest rate follows a mean-reversion model and the stock price follows a 

modified version of the CRR model that allows non-constant volatility in different 

intervals but keeps volatility constant within each time interval. Unlike previous 

models, I combine two trees with different structures into one single tree. The 

mean-reverting interest rate and the non-constant volatility of equity have a 

significant impact on the valuation process. It is also possible, under my approach, 

to include a default risk adjustment, which I will introduce in Section 4.5.  
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Only a few studies have raised the issue of duration and convexity in terms of 

convertible bonds, given their complexity. Brooks and Attinger (1992) provided a 

theoretical definition of the duration and convexity of convertible bonds. They 

expressed the duration of convertible bonds in terms of the straight bond duration, 

the equity duration, the rho of the conversion option, and the sensitivity of the 

equity return to the yield. Although their arguments form derivation is a correct 

definition, they do not explain how the conversion option is valued, nor does it 

provide values for Rho and Delta, as no valuation model was provided. Other 

studies, such as those by Calamos (1988), Gepts (1987), and Ferguson et al. (1995), 

discussed the approximations of empirical examples; however, these studies did 

not illustrate the derivation of the duration and convexity of convertible bonds. 

Sarkar (1999) stated that very little work has been done on convertible bond 

duration or convexity. On one hand, studies have attempted to estimate the 

duration and convexity of convertible bonds with ad-hoc measures but without 

the benefit of a fully explained valuation model. Sarkar (1999) provided a closed-

form expression for the duration and convexity of a zero-coupon convertible bond. 

This model followed the contingent-claim approach of Ingersoll (1977) and 

Brennan and Schwartz (1980). Sarkar (1999) adopted one-factor valuation models 

that assume a constant risk-free interest rate. 

 

In my analysis, I use a binomial model to study the duration and convexity of an 

American-style convertible bond. I provide an example of a closed-form expression 

for the duration and convexity of a European zero-coupon convertible bond based 

on a two-factor model that adopts a stochastic interest rate. I also study the 

duration that expresses the approximate change in the convertible value for any 

change in the interest rate. Moreover, I investigate the sensitivity of the 

convertible bond value and duration to various parameters, such as the interest 

rate, stock price, volatility of the interest rate, volatility of the stock price, mean 

reversion of the interest rate, and dividend yield of the underlying stock.  
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Several convertible bond arbitrage studies have identified pricing inefficiencies in 

some convertible bond markets due to their complex structures. Amman, Kind, 

and Wilde (2003) demonstrated that 21 convertible bonds listed on the French 

market were underpriced by 3% compared to their theoretical values between 

February 1999 and September 2000. This finding is consistent with those of other 

studies by King (1986), Kang and Lee (1996), Henderson (2005), and Chan and Chen 

(2007).  

 

In this thesis, I will create a convertible bond arbitrage portfolio to capture the 

abnormal returns from the Delta hedging strategy and describe the risks 

associated with these returns. The portfolio is created by matching long positions 

in convertible bonds with short positions in the underlying stock to create a Delta 

hedged convertible bond position, which captures income and volatility. This 

portfolio also demonstrates, in a sense, that the underpricing of convertible bonds 

existed in the Canadian market in seven out of the eight years or all the years 

depending on the choice of Delta, in the observed period. 

 

1.3 Data 

 

The Toronto Stock Exchange (TSX) is one of the global markets on which 

convertible bonds are widely traded. A selection of 44 Canadian convertible bonds 

and their corresponding stocks are used in my valuation model. Data such as bond 

and stock symbols and prices, maturities, coupons, yields to maturity, and 

conversion ratios were collected from Financialpost.com and Google Finance.  

 

Because there is a maturity date for each bond, MATLAB code is used to collect 

data automatically at different time intervals, such as daily, weekly, or monthly. 

Then, the data can be converted to an Excel spreadsheet according to the 

researcher’s preference. 
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I also set up a contract with Stockwatch, which is one of the common data 

providers specializing in Canadian financial markets, in order to obtain any 

necessary historical data. 

 

Interest rates and bond yields were collected from the Bank of Canada. A number 

of interest rates and yields were used in this thesis, and they are listed in Table 1. 

The data used in the duration and convexity section were collected from the 

Stockwatch and TSX databases. To study the sensitivities of the convertible bond 

values, durations, and convexities to several parameters, data needed to be 

obtained from the bonds and underlying stocks, such as the interest rate, stock 

price, volatility of the interest rate, volatility of the stock price, mean reversion of 

the interest rate, and dividend yield of the underlying stock. 

 

Interest Rate - Yields Time Period 

Government of Canada Benchmark Bond Yields 3 Years 

Government of Canada Benchmark Bond Yields 5 Years 

Canadian Three-Year Zero-Coupon Bond Yield 3 Years 

Canadian Five-Year Zero-Coupon Bond Yield 5 Years 

Canadian Ten-Year Zero-Coupon Bond Yield 10 Years 

Real Return Bond Yield  5 Years 
Table 1: Interest rates and yields summary  

 

For the analysis in Chapter 6, data from 44 Canadian convertible issues were 

collected for the period from 2009 to 2016. The required data were obtained from 

the Stockwatch and TSX databases. Data such as the conversion ratios, dividend 

yields, start dates, maturity dates, and face values of the convertible bonds were 

obtained from CIBC annual reports. 
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2 Interest rate model 

 

2.1 The Vasicek model 

 

The prices of all bonds and bond options are affected by changes in the term 

structures of interest rates. In this chapter, I will describe the Vasicek model, which 

is known as one of the equilibrium interest rate models. The Vasicek model is a 

mean-reverting stochastic process for short-term interest rate valuations.  

 

Gupta and Zepta (2007) claimed that Cox-Ingersoll-Rox and Vasicek models are 

examples of two essential short-rate models. They have closed-form solutions to 

the several instruments of interest rates and also they are controllable and hence 

their importance. These two models have the same reaction to parameters 

changes according to the comparative studies done. Nevertheless, because of 

square-root term multiplication, a specific change in sigma does not influence 

bond prices as it does in Vasicek model. Additionally, the sigma value present in 

CIR model is often high and at times, this can be deceptive. It was concluded that 

because of the volatility parameter which was very stable the performance of the 

Vasicek model appeared to be better. In addition, Vasicek model is seen to have 

an edge over Cox-Ingersoll-Rox model because of model tractability as well as 

closed-form solutions availability in more complicated interest rate financial 

instruments. The difficulty of adopting Vasicek model is that a high sigma in the 

Vasicek model could result in negative interest rates which is not observable in the  

reality. 

In the Vasicek model, the interest rate, r, is supposed to follow the Ornstein-

Uhlenbeck process and has the following expression under the risk-neutral 

measure: 

𝑑𝑟𝑡 = 𝑘(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟(𝑡). 
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The constant 𝜃 denotes the central tendency or the long-run value of the short-

term rate in the risk-neutral process. The positive constant 𝑘 denotes the speed of 

mean reversion. The parameter 𝜎𝑟  is the volatility of the short-term rate, and 𝑊𝑟 

is a standard Wiener process.  

  

The above process is sometimes called the elastic random walk or the mean 

reversion process. The instantaneous drift 𝑘(𝜃 − 𝑟𝑡 ) represents the effect of 

pulling the process towards its long-term mean 𝜃 with a magnitude proportional 

to the deviation of the process from the mean. When the short-term rate is above 

its long-run equilibrium value, the drift is negative, driving the rate down towards 

this long-run value. When the rate is below its equilibrium value, the drift is 

positive, driving the rate up, towards this long-run value (Tuckman, 2011). 

 

As in a risk-neutral process, the drift combines both interest rate expectations and 

the risk premium. The risk premium 𝜆 can be written separately and enters into 

the risk-neutral process as a constant drift and  𝑟∞  is the long-term value. The 

Vasicek model is then written as follows: 

                                                 𝑑𝑟𝑡 = 𝑘(𝑟∞ − 𝑟𝑡)𝑑𝑡 + 𝜆𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟(𝑡). 

                                                        = 𝑘([𝑟∞ +
𝜆

𝑘
] − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟(𝑡). 

where  

𝜃 = [𝑟∞ +
𝜆

𝑘
]. 

  

In this section, I represent the process with a Vasicek binomial tree for interest 

rate model valuation. The Vasicek interest rate tree is constructed as presented in 

Tuckman Model (2011). The Vasicek interest rate tree is shown in Figure2. 
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In Figure 2, 𝜋 is the probability of an increase in the interest rate at 𝑡 = 1, and 1-

 𝜋 represents the probability of a decrease in the interest rate at 𝑡 = 1, whereas 

𝑝 is the probability of an increased interest rate at 𝑡 = 2 at node 𝑟𝑢𝑢 , and 1- 𝑝 

represents the probability of a decreased interest rates at 𝑡 = 2  at node 𝑟𝑢𝑑 . 

Similarly, 𝑞 is the probability of an increased interest rates at 𝑡 = 2 at node 𝑟𝑢𝑑, 

and 1-  𝑞  represents the probability of a decreased interest rate at 𝑡 = 2  at 

node 𝑟𝑑𝑑. 

 

Figure 2: Vasicek interest rate tree 

 

 

The tree-pricing model goes through a number of processes to value each node in 

the tree and the corresponding probabilities. As 𝑟0 is a known value and denotes 

the current short-term rate, at 𝑡 = 1, the up and down nodes can be calculated 

as  𝑟𝑢 = 𝑟0 +  𝑘(𝜃 − 𝑟𝑡 ) 𝑑𝑡  + 𝜎𝑟√𝑑𝑡  and  𝑟𝑑 = 𝑟0 +  𝑘(𝜃 − 𝑟𝑡 ) 𝑑𝑡  - 𝜎𝑟√𝑑𝑡,  where 

the probability 𝜋 is assumed to be 0.5. 
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Figure 3 shows that, on a monthly basis, there are 12 nodes from 𝑟0 to 𝑟1. Thus, 

when 𝑡 =
1

12
, the first monthly node becomes: 

 

𝑟𝑚1
𝑢 = 𝑟0 +  

 𝑘(𝜃−𝑟𝑡)

12
 + 

𝜎𝑟

√12
. 

and  

𝑟𝑚1
𝑑 = 𝑟0 +  

 𝑘(𝜃−𝑟𝑡)

12
 - 

𝜎𝑟

√12
. 

 

                                                                                        𝑟𝑚1
𝑢 = 𝑟0 +  

 𝑘(𝜃−𝑟𝑡)

12
 + 

𝜎𝑟

√12
 

 

 

 

 

                                               𝑟𝑚1
𝑑 = 𝑟0 +  

 𝑘(𝜃−𝑟𝑡)

12
 - 

𝜎𝑟

√12
 

Figure 3: Interest rate pricing for the first month 

 

The nodes at the next step, can be obtained as follows.  

For the central node, the drift determines the expected value of the process after 

each time step. To find 𝑟𝑢𝑑, we need to find the expected value of the interest rate 

at 𝑡 = 1: 

𝐸(𝑟1) = 𝑟0 + 𝑘(𝜃 − 𝑟0). 

 

Then we find  𝑟𝑢𝑑 as the expected value of interest rate at 𝑡 = 2: 
 

𝑟𝑢𝑑 = 𝐸(𝑟1) + 𝑘(𝜃 − 𝑟1). 

 
Then, from the definition of the expected rate value, 𝐸(𝑟𝑢), and the definition of 

the standard deviation, 𝑟𝑢𝑢 node can be found by solving the following equations. 

𝑟0 

 

𝜋 

1 − 𝜋 
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Figure 4: Valuation of 𝑟𝑢𝑑 as the expected value of the interest rate in step 2 

 

 
From the expected value of the interest rate, 𝐸(𝑟𝑢), we know that: 
 

𝑝 × 𝑟𝑢𝑢 + (1 − 𝑝) × 𝑟𝑢𝑑 = 𝐸(𝑟𝑢).               (1) 

 
From the standard deviation definition:  
 

√𝑝(𝑟𝑢𝑢 − 𝐸(𝑟𝑢)2 + (1 − 𝑝)(𝑟𝑢𝑑 − 𝐸(𝑟𝑢)2 = 𝜎.       (2) 

 
By Solving (1) and (2), we obtain   𝑟𝑢𝑢 and 𝑝. 
 
 

Similarly, 𝑟𝑑𝑑  node can be obtained by solving the definition of the expected rate 

value 𝐸(𝑟𝑑) and the definition of standard deviation. 

From the expected rate value 𝐸(𝑟𝑑), we know that: 

𝑞 × 𝑟𝑢𝑑 + (1 − 𝑞) × 𝑟𝑑𝑑 = 𝐸(𝑟𝑑).                  (3) 

 
From the standard deviation:  
 

√𝑞(𝑟𝑢𝑑-𝐸(𝑟𝑑)2 + (1 − 𝑞)(𝑟𝑑𝑑-𝐸(𝑟𝑑)2 = 𝜎.        (4) 

 

By Solving (3) and (4), we get 𝑟𝑑𝑑  and 𝑞. 
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For more time periods, the same methodology for interest rate tree pricing can be 

extended.  

 

We run back data testing for Canadian 5-year zero coupon bond yield as a risk-free 

rate benchmark with mean reverting parameters from the date 04/01/2012. We 

construct a 3-year Vasicek model tree as shown in Table 2 below. Figure 5 shows 

the historical data of Canadian 5-year zero coupon bond yield from 2000 to 2015. 

The parameters are estimated using the likelihood function suggested by James 

and Webber (2000).  MATLAB is used for tree construction and the associated 

codes are provided below. 

 

 Jan 2012 Jan 2013 Jan 2014 Jan 2015 

Rates 𝑟0 𝑟1 𝑟2 𝑟3 

 0.0138 0.0162           0.0189           0.0218 

 — 0.0104           0.0130           0.0156 

 — — 0.0071           0.0098 

 — — — 0.0037 

     

Mean 0.0138 0.0133 0.0130 0.0127 

     

Real Market Data      0.0138 0.0147 0.019 0.0132 

     

Parameters 𝑘 = 0.167 𝜃 = 0.0112              𝜎 = 0.0029  ∆𝑡 = 1 

Table 2: Back testing for Canadian 5-year zero coupon bond yield 
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Figure 5: Canadian Five-Year Zero-Coupon Bond Yields from 2000 to 2015 

 

In Figure 6, we estimate the Vasicek model parameters using 15 years of daily 

historical data of Canadian 5-year zero- coupon bond yield using the exact form of 

the likelihood function suggested by James and Webber (2000). Figure 6 presents 

10 random paths generated for the short rate and construct the yield curve based 

on the parameters.  

 

 

Figure 6: Simulation of Canadian 5-Year zero coupon bond yield from 2000 to 2015 
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It can be seen in Figure 6 that the black thick line is the original short rate with 10 

simulated random paths in thin lines of various colours. The number of the 

observations in one year is 252, so 𝑑𝑡 = 1/252.    

The Yield curve generated for a Vasicek zero-coupon bond 𝑃(𝑟, 𝑡) along with the 

random paths described earlier is expressed as 

𝑃(𝑟, 𝑡) = 𝐴(𝑡, 𝑇)𝑒−𝑟𝐵(𝑡,𝑇) 

 

and the yield curve 𝑟(𝑡, 𝑇) is given by  

 

𝑟(𝑡, 𝑇) = −𝑙𝑜𝑔(𝑃(𝑡, 𝑇))/(𝑇 − 𝑡). 

 

 

 

2.2 Vasicek zero-coupon bond pricing 

 

Vasicek (1977) showed that the value at time  𝑡 of a zero coupon bond that pays 

$1 at time 𝑇 is given by: 

𝑃(𝑟, 𝑡) = 𝐴(𝑡, 𝑇)𝑒−𝑟𝐵(𝑡,𝑇) 

where  

𝐴(𝑡, 𝑇) = 𝑒𝑥𝑝 {(𝜃 −
1

2

𝜎𝑟
2

𝑘2
) (𝐵(𝑡, 𝑇) − 𝜏) −

𝜎𝑟
2

4𝑘
𝐵2(𝑡, 𝑇)}, 

𝐵(𝑡, 𝑇) =  
1 −  𝑒−𝑘𝜏

𝑘
. 

 

The governing SDE for the bond price can be expressed as:  

𝑑𝑃

𝑃
= 𝑟 𝑑𝑡 +  

𝜎𝑟

𝑘
(1 −  𝑒−𝑘𝜏)𝑑𝑊𝑝. 

where  𝜏 = 𝑇 − 𝑡, is time to maturity and 𝑘 denotes the speed of mean 

reversion. 

 

The volatility of the instantaneous rate of return of the zero coupon bond is given 

by:  
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𝜎𝑃 =  
𝜎𝑟

𝑘
 (1 −  𝑒−𝑘𝜏). 

When 𝑇 → ∞, the coefficient (1 −  𝑒−𝑘𝜏) approaches 1 (Vasicek, 1977). 

 

Thus, the PDE of the Vasicek zero coupon bond pricing is given by: 

 

𝜕𝑃

𝜕𝑡
+ 𝜇(𝑟, 𝑡)

𝜕𝑃

𝜕𝑟
+

1

2
𝜎𝑟

2
𝜕2𝑃

𝜕𝑟2
− 𝑟𝑃 = 0, 

 

where the drift term 𝜇(𝑟, 𝑡) is  

𝜇(𝑟, 𝑡) = 𝑘(𝜃 − 𝑟). 

Subject to the final condition that: 

𝑃(𝑟, 𝑇) = 1. 

 

3 Stock Price Model 
 

3.1 CRR model 
 

For the equity price tree, we adopt the Cox, Ross and Rubinstein (CRR) model with 

some modifications. The CRR model assumes a constant volatility 𝜎𝑠  over the 

periods of the pricing tree. In this study, I assume that the equity volatility 𝜎𝑠  is 

changeable (non- constant) in different intervals, but remains constant within the 

same time interval. This assumption will lead to having two central nodes for every 

advancing step from  𝑡 = 2 onwards as illustrated in Figure 7, instead of one node, 

as in the normal CRR model. In every individual advancing step, the stock price 𝑆 

process will follow: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑠𝑆𝑡𝑑𝑊𝑠(𝑡). 

 If the underlying pays dividends 𝑞𝑠 then the process becomes:  

𝑑𝑆𝑡 = (𝑟 − 𝑞𝑠)𝑆𝑡𝑑𝑡 + 𝜎𝑠𝑆𝑡𝑑𝑊𝑠(𝑡). 
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In this model, there are two possible states in the market, up or down for each 

node within the time interval [𝑡𝑖 , 𝑡𝑖+1]. Suppose that 𝑆𝑂 indicates the current stock 

price. Then after one period of time, the stock price can move up to 𝑆0𝑢 with 

probability 𝑝𝑢or down to 𝑆0𝑑 with probability 𝑝𝑑 = (1 −  𝑝𝑢 ), where 𝑢 >  1 and 

0 <  𝑑 <  1; and 𝑢 and 𝑑 are the magnitude of up and down respectively (Cox, 

1979). The parameters 𝑢, 𝑑, 𝑝𝑢 and 𝑝𝑑 are stated in the following relations: 

𝑢 =  𝑒𝜎𝑠√𝑑𝑡 

𝑑 =  𝑒−𝜎𝑠√𝑑𝑡 =  
1

𝑢
 

In the CRR model, the up node probability 𝑝𝑢  when the price is likely to increase 

is  

𝑝𝑢 =  
(𝑒𝑟𝑑𝑡 − 𝑑)

𝑢 − 𝑑
.   

If the underlying asset pays dividends 𝑞𝑠 then the process becomes: 

𝑝𝑢 =  
(𝑒(𝑟−𝑞𝑠)𝑑𝑡 − 𝑑)

𝑢 − 𝑑
. 

The probability 𝑝𝑑 if the price decreases at 𝑡1 is  

𝑝𝑑 = 1 − 𝑝𝑢 

where 𝑟 is the risk-free interest rate. 
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Figure 7: Modified CRR stock price tree 

 

To find the price of the stock for any time fraction within the time intervals 

[𝑡𝑖 , 𝑡𝑖+1] in the pricing tree, we need to reset 𝑢, 𝑑 and ∆𝑡 according to the new time 

fraction, and the parameters 𝑢 and 𝑑 becomes: 

𝑢 =  𝑒𝜎𝑠 √𝑑𝑡∗𝑡𝑖𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑑 =  
1

𝑢
 

For example, given a tree in which one step interval represents one year, the 

expected change in the stock price over the next month when 𝑡 =
1

12
 is  

𝑢 =  𝑒
𝜎𝑠 √

𝑑𝑡 

12    and     𝑑 =  
1

𝑢
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We also run back data testing on the underlying asset of one of the selected 

convertible bond from Toronto Stock Exchange (TSX). Table 3 shows the primary 

data of the selected asset. 

 

Table 3: Data for a convertible bond issued by Advantage Energy (AAV) and its underlying asset 

 

We construct a 3-step CRR model tree from 04/01/2012 as shown in Table 4 below. 

Figure 8 shows the historical data chart of convertible bond and share price 

movements from the start date of the convertible bond of 04/01/2010 to the 

maturity date of 30/01/2015 as declared in Table 3. 

 

Table 4: 3- year CRR model tree for the Advantage Energy (AAV) share price 

 Jan 2012 Jan 2013 Jan 2014 Jan 2015 

 𝑆0 𝑆1 𝑆2 𝑆3 
 4.3600 5.9445 8.6061 12.7111 
 — 3.1978 4.1061 5.8268 
 — — 4.6296 6.0646 
 — — 2.2089 2.7801 
 — — — 6.8378 
 — — — 3.1345 
 — — — 3.2624 
 — — — 1.4955 
     

Mean 4.3600 4.5711 4.8876 5.2641 

     

Real Market Data      4.3600 3.2 4.63 5.56 
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Figure 8: Historical prices of the convertible bond and its underlying stock price for Advantage Energy (AAV) 

 

 

4 Convertible bonds pricing model involving two-stochastic factors   
 

4.1 Deriving the PDE for the convertible bond option 

 

In this section, we adopt similar ideas that were widely used in other research 

papers in deriving the Cox, Ingersoll, and Ross (1985) equation and Hull and 

White’s (1990) (HW) framework, for example in Carayannopoulos (1996) and 

Barone, Bermudez and Hatgioannides (2003). We assume that the interest rate 𝑟 

follows the mean-reversion process suggested by Vasicek (1977). 

When interest rates 𝑟  and stock prices 𝑆 are stochastic, the option price has a 

value of the form 

𝐶 =  𝐶 (𝑆, 𝑟, 𝑡). 

 

The value of the option is now a function of both 𝑆 and 𝑟. We assume that the 

stock price process is governed by the CRR model 
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𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑠𝑆𝑑𝑊𝑠(𝑡). 

and that the interest rate is modeled by the Vasicek model 

𝑑𝑟 = 𝑘(𝜃 − 𝑟)𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟(𝑡). 

Here {𝑊𝑠(𝑡), 𝑡 ≥ 0} and {𝑊𝑟(𝑡), 𝑡 ≥ 0} are two standard Brownian motions with 

zero-correlation between the interest rate and the stock price, that is,   

(𝑑𝑊𝑠(𝑡), 𝑑𝑊𝑟(𝑡)) = 0. 

Similar to Li et al. (2008), the Itô’s formula for the two random variables governed 

by 𝑑𝑆 and 𝑑𝑟 leads to  

𝑑𝐶 =
𝜕𝐶

𝜕𝑡
𝑑𝑡 +

𝜕𝐶

𝜕𝑆
(𝑟𝑆𝑡 + 𝜎𝑠𝑆𝑡𝑑𝑊1) +

𝜕𝐶

𝜕𝑟
(𝑘(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑑𝑊2)

+
1

2
(𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+𝜎𝑟

2
𝜕2𝐶

𝜕𝑟2
) 𝑑𝑡. 

 

For the option price, following similar idea of Ugur (2008) for deriving Black-

Scholes differential equation, consider a portfolio that consists of a short sell of a 

European option and long ∆1units of the underlying asset and long ∆2 units of the 

zero-coupon bond price. The portfolio 𝛱 has the value 

𝛱 =  𝛥1𝑆𝑡 + 𝛥2𝑃(𝑡, 𝑇) − 𝐶(𝑆, 𝑟, 𝑡). 

Differentiating 𝛱 gives that 

𝑑𝛱 =  𝛥1𝑑𝑆𝑡 + 𝛥2𝑑𝑃(𝑡, 𝑇) − 𝑑𝐶(𝑆, 𝑟, 𝑡). 

From the Vasicek model, we know that  

𝑑𝑃 =
𝜕𝑃

𝜕𝑡
𝑑𝑡 +

𝜕𝑃

𝜕𝑟
𝑑𝑟 +

1

2
𝜎𝑟

2
𝜕2𝑃

𝜕𝑟2
𝑑𝑡. 

Then  

𝑑𝛱 = − (
𝜕𝐶

𝜕𝑡
+

1

2
𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+

1

2
𝜎𝑟

2 𝜕2𝐶

𝜕𝑟2
) dt + (𝛥1 −

𝜕𝐶

𝜕𝑆
) 𝑑𝑆

+ (𝛥2

𝜕𝑃

𝜕𝑟
−

𝜕𝐶

𝜕𝑟
) 𝑑𝑟 + 𝛥2 (

𝜕𝑃

𝜕𝑡
+

1

2
𝜎𝑟

2
𝜕2𝑃

𝜕𝑟2
) 𝑑𝑡. 
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We can choose 𝛥1 and 𝛥2 that eliminate risk from the portfolio 

𝛥1 =  
𝑑𝐶

𝑑𝑆
. 

𝛥2 =  
𝑑𝐶/𝑑𝑟 

𝑑𝑃/𝑑𝑟 
. 

Thus, 

𝑑𝛱 = − (
𝜕𝐶

𝜕𝑡
+

1

2
𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+

1

2
𝜎𝑟

2 𝜕2𝐶

𝜕𝑟2
) 𝑑𝑡 + 𝛥2 (

𝜕𝑃

𝜕𝑡
+

1

2
𝜎𝑟

2
𝜕2𝑃

𝜕𝑟2
) 𝑑𝑡. 

 

From the PDE of the Vasicek zero- coupon bond  

𝜕𝑃

𝜕𝑡
+ 𝜇(𝑟, 𝑡)

𝜕𝑃

𝜕𝑟
+

1

2
𝜎𝑟

2
𝜕2𝑃

𝜕𝑟2
− 𝑟𝑃 = 0. 

 

We can rewrite the formula, so that 

𝜕𝑃

𝜕𝑡
+

1

2
𝜎𝑟

2
𝜕2𝑃

𝜕𝑟2
= 𝑟𝑃 − 𝜇(𝑟, 𝑡)

𝜕𝑃

𝜕𝑟
. 

 

The term of the drift 𝜇(𝑟, 𝑡) becomes  

𝜇(𝑟, 𝑡) = 𝑘(𝜃 − 𝑟). 

 

We can rewrite 𝑑𝛱, so that  

𝑑𝛱 = − (
𝜕𝐶

𝜕𝑡
+

1

2
𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+

1

2
𝜎𝑟

2 𝜕2𝐶

𝜕𝑟2
) 𝑑𝑡

+ 𝛥2 (𝑟𝑃 − 𝑘(𝜃 − 𝑟) 
𝜕𝑃

𝜕𝑟
) 𝑑𝑡.                            (𝑎) 

In a non-arbitrage market, the condition that the portfolio value earns the risk 

free rate 𝑟 implies that the change in the portfolio is: 

𝑑𝛱 = 𝑟𝛱𝑑𝑡. 

𝑑𝛱 = 𝑟((𝛥1𝑆𝑡 + 𝛥2𝑃(𝑡, 𝑇) − 𝐶(𝑆, 𝑟, 𝑡))𝑑𝑡. 

                                       𝑑𝛱 = (𝛥1𝑟𝑆𝑡 + 𝛥2𝑟𝑃 − 𝑟𝐶)𝑑𝑡.                            (𝑏) 
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From Eqns (𝑎) and (𝑏), we obtain: 

(𝛥1𝑟𝑆𝑡 + 𝛥2𝑟𝑃 − 𝑟𝐶)𝑑𝑡 = − (
𝜕𝐶

𝜕𝑡
+

1

2
𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+

1

2
𝜎𝑟

2 𝜕2𝐶

𝜕𝑟2
) 𝑑𝑡 

                                                                                       +𝛥2 (𝑟𝑃 − 𝑘(𝜃 − 𝑟) 
𝜕𝑃

𝜕𝑟
) 𝑑𝑡.  

 

This equation can be rearranged so that the PDE of the Vasicek model becomes 

𝜕𝐶

𝜕𝑡
+ 𝑟𝑆𝑡

𝜕𝐶

𝜕𝑆
+

1

2
𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+

1

2
𝜎𝑟

2 𝜕2𝐶

𝜕𝑟2
 

+𝑘(𝜃 − 𝑟) 
𝜕𝐶

𝜕𝑟
− 𝑟𝐶 = 0. 

 

If the underlying asset pays dividend 𝑞𝑠 and we assume that the risk premium λ 

enters into a risk – neutral process, then  

𝜕𝐶

𝜕𝑡
+ (𝑟 − 𝑞𝑠)𝑆𝑡

𝜕𝐶

𝜕𝑆
+

1

2
𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+

1

2
 𝜎𝑟

2 𝜕2𝐶

𝜕𝑟2
 

+𝑘([𝑟∞ +
𝜆

𝑘
] − 𝑟) 

𝜕𝐶

𝜕𝑟
− 𝑟𝐶 = 0. 

Recall that  

𝜃 = [𝑟∞ +
𝜆

𝑘
]. 

 

This is the PDE for the option with stochastic interest rate and asset. The right side 

is = 0 which indicates that the option has a European style.  

 

4.2  Conditions and solutions  

Following Li et al. (2008), consider boundary conditions for a call option (European). 

Note, interest rates which are negative are not considered. 

At the maturity time 𝑇, the price of the call option becomes payoff function 

𝐶 (𝑆, 𝑟, 𝑇)  =  𝑚𝑎𝑥(𝑆 − 𝐾, 0), 
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In the above equation, the stock price is represented by S, t is the time in terms 

of years and strike price is given by K. 

At 𝑆 = 0, the option is worthless: 

𝐶 (0, 𝑟, 𝑡) = 0 

At 𝑆 = 𝑆𝑚𝑎𝑥 , having 𝑆𝑚𝑎𝑥  which is sufficiently large to show also solution 

behaviours as 𝑆 → ∞ , hence we obtain a payoff 𝑆(𝑇) − 𝐾  during time(𝑇)  the 

expiration time. Value present at t needs the exercise price K to be discounted 

back and taking to account that 𝑆𝑚𝑎𝑥is the time 𝑡 price of underlying asset, tan 

hen the boundary condition appropriate is  

𝐶 (𝑆𝑚𝑎𝑥 , 𝑟, 𝑡) = 𝑆𝑚𝑎𝑥 −  𝐾𝑃(𝑟, 𝑡), 

where 𝑃(𝑟, 𝑡) is the zero-coupon bond with 𝑃(𝑟, 𝑇)= 1. 

 

At 𝑟 →  ∞, the price S and the value of the option are assumed to have a linear 

relationship with each other since the value of the bond diminishes down to zero 

and hence the discounting part is not present. Hence the price of the option 

becomes only the price of underlying stock: 

𝐶 (𝑆, 𝑟𝑚𝑎𝑥 , 𝑡) = 𝑆. 

For 𝑟 = 0, certain PDE terms disappear and others presume simpler forms and 

hence according to Li et al boundary value problem is noted as; 

𝜕𝐶

𝜕𝑡
+

1

2
𝑆2𝜎𝑠

2
𝜕2𝐶

𝜕𝑆2
+

1

2
𝜎𝑟

2 𝜕2𝐶

𝜕𝑟2
 

+𝑘(𝜃 − 𝑟) 
𝜕𝐶

𝜕𝑟
= 0. 

 

 

The price of convertible bonds which are converted to stocks only at expiration 

may be noted as portfolio incorporating a long position for a single call share with 



39 
 

an exercise price 𝐾 and principal 𝐹 zero-coupon bond which at maturity they have 

$1 payoff. Hence convertible bond value is; 

𝑉(𝑆, 𝑟, 𝑡) =  𝐶 (𝑆, 𝑟, 𝑡) + 𝐹𝑃(𝑟, 𝑡), 

According to Otto (2000), the value of the European call option can be written as 

𝐶(𝑆, 𝑟, 𝑡) = 𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2) 

Therefore, the value of the convertible bond can be expressed as  

                                 𝑉(𝑆, 𝑟, 𝑡) =  𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2) + 𝐹𝑃(𝑟, 𝑡),                (𝑐) 

where  

𝑑1 =  
𝑙𝑛(𝑆

𝐾⁄ ) − 𝑙𝑛 𝑃(𝑟, 𝑡) + (𝑟 − 𝑞𝑠)
1
2

𝜎̂2𝜏

𝜎̂√𝜏
, 

𝑑2 = 𝑑1 − 𝜎̂√𝜏. 

where 𝜎̂ is the term volatility of the convertible bond in terms of risk-free bond 

price and expressed as   

𝜎̂2 =  𝜎𝑠
2 + 𝜎𝑃

2. 

 

From the Vasicek (1977) model that introduced in Section 2.2, we have   

𝜎𝑃 =  
𝜎𝑟

𝑘
 (1 −  𝑒−𝑘𝜏), 

Therefore  

𝜎̂2 =  𝜎𝑠
2 +

𝜎𝑟
2

𝑘2
 (1 −  𝑒−𝑘𝜏)2. 

 

4.3 American convertible bond 

Since the location of the boundary the American option is not known in advance, 

this situation creates a free boundary problem. As there is no obvious explicit 

solution for the American convertible bond, we use the binomial tree model as a 

numerical method to value the convertible bond in the next section.  
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4.4 Two-stochastic-factor tree model 

 

In this section, the binomial tree is used as a numerical model to value the 

convertible bond. Once the interest rate tree and the stock price tree are 

constructed, we combine the two trees into one single tree to find the price of the 

convertible non-callable bond as well as that of a callable bond. It is important to 

mention that we are combining two trees with different structures. As the interest 

rate tree has one central node and the stock price tree has two central nodes, I 

will use the single central node in the interest rate tree at 𝑡 ≥ 2 for both central 

nodes in the stock tree at 𝑡 ≥ 2. The same methodology is applicable for the nodes 

in other time intervals. As I assume no default risk for now, each node should have 

four branches for the movements of both the interest rate tree and the stock price 

factors, as seen in Figure 9 below. 

 

Figure 9: One-period two-stochastic factor tree model with no default risk 

 

The probability for each pathway should involve both the interest rate and equity 

probabilities, as shown in Table 5 below. 

Pathway 𝒓𝒖𝑺𝒖 𝒓𝒅𝑺𝒖 𝒓𝒖𝑺𝒅 𝒓𝒅𝑺𝒅 

               Probability 

 

𝝅𝒑𝒖 (𝟏 − 𝝅)𝒑𝒖 𝝅(𝟏 − 𝒑𝒖)        (𝟏 − 𝝅)(𝟏 − 𝒑
𝒖

) 

Table 5: Probabilities of one-period two-stochastic factor tree model with no default risk 
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After constructing the combined tree, we use the backward induction method to 

price the convertible bond.  Therefore, we start the process from the maturity date 

backwards to the initial point.  At the maturity date, the price of the convertible 

bond should satisfy 

𝑉 = 𝑚𝑎 𝑥[𝐶𝑉,  𝐹] + 𝑐 

 

𝐶𝑉 is the conversion value, 𝐹 is the face value and 𝑐 is the coupon value. 

 

When 𝛼 is the conversion ratio, which is defined as the number of shares into 

which each convertible bond can be converted, the conversion right can be 

represented by the conversion value, the price at which the bonds can be 

converted into common stocks. The conversion value can be expressed in terms of 

the conversion ratio, as follows: 

𝐶𝑉 = 𝛼𝑆 

At any time 𝑡𝑖 for each node of the tree, the price of the convertible bond should 

satisfy  

𝑉 = 𝑚𝑎𝑥 [𝐶𝑉,  𝐵] 

where 𝐵 is the value of the straight bond.  

 

As we mentioned earlier, the value of the straight bond component at the maturity 

 𝑇 is the combination of the face value and the coupon interest that is paid off at 

maturity, whereas the value of the straight bond component at any time  𝑡𝑖  is 

calculated as the average weighted present value of the up and down nodes at 

𝑡𝑖+1. 

Assuming the probability of default is set to be zero, the value of the straight bond 

component at any time 𝑡𝑖 is  

𝐵 = 𝜋 (
𝐵𝑢 + 𝑐

1 + 𝑟∗

) + (1 − 𝜋) (
𝐵𝑑 + 𝑐

1 + 𝑟∗

) 

 

where 𝑟∗ is the interest rate of the node that has already been determined by the 

interest rate tree. 
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The tree in Figure 10 shows an example of the nodes pricing methodology of the 

convertible bond valuation model. In this tree we price the node 𝑟𝑢𝑢𝑆𝑢𝑢 at 𝑡2 of 3- 

period two-factor tree model where, the 𝑡3 nodes represent the maturity 𝑇 of the 

convertible bond. At the maturity date 𝑇 = 𝑡3, the bondholder has the right to 

convert the bond to common stocks at the conversion ratio 𝛼  or receive the 

principal 𝐹 plus the final coupon 𝑐. The targeted node that to be priced in this 

example 𝑟𝑢𝑢𝑆𝑢𝑢 is equal to the maximum of either the present value of the bond’s 

expected value at maturity discounted on 𝑟𝑢𝑢 or its conversion value 𝐶𝑉.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: 𝑟𝑢𝑢𝑆𝑢𝑢 node pricing with the two-stochastic-factor tree model from maturity 

 

When the convertible bond has some advanced features, such as call and put 

options (callable and puttable convertible bonds), the issuer will find it profitable 

to call the convertible prior to maturity whenever the price of the convertible is 

greater than the call price. When the convertible bondholder is faced with a call, 

he usually has the choice to either redeem the bond at the call price or convert the 

bond to common stocks. 
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If the call price is below the bond value but above the conversion value, the issuer 

would call the bond, and the bondholders would take the call instead of 

converting. 

  

At ti when the call option is applicable, the callable convertible bond value satsify 

 

𝑉𝐶 = 𝑀𝑎𝑥 [𝐶𝑉,  𝑀𝑖𝑛[𝐵, 𝐶𝑃]], 

 

where 𝐶𝑉 is the conversion value, 𝐵 is the bond price, and 𝐶𝑃 is the call price. 

 

In Figure 11, when a call provision is applied, the targeted node that is to be priced 

in this example, 𝑟𝑢𝑢𝑆𝑢𝑢, rolling back from maturity, is equal to the maximum of its 

conversion value 𝐶𝑉 and the minimum of the straight bond component and the 

call price 𝐶𝑃 discounted on 𝑟𝑢𝑢. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11: 𝑟𝑢𝑢𝑆𝑢𝑢 node pricing of the callable convertible bond tree model from maturity  

 

The tree in Figure 12 shows the complete tree for three periods of the two-

stochastic-factor tree model.   
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Figure 12: Three-period two-stochastic-factor tree model 
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4.4.1 Soft call and hard Call 
 

A callable bond allows the issuer to redeem the bond from the bondholders at a 

known exercise date before its maturity date. The convertible bond’s call provision 

usually has two features: soft-call and hard-call protection. Soft-call protection for 

a convertible bond 𝑉 usually means that the bond can be recalled by the issuer 

only if the stock price has previously closed above a specified trigger price for any 

20 of the 30 consecutive trading days prior the exercise date (Navin, 1999). On the 

other hand, the hard-call feature allows the issuer of a convertible bond to redeem 

the convertible bond before maturity by paying the call price to the bondholders. 

Hard-call protection restricts the issuer from exercising the bond's call provision 

prior to the hard-call date. However, the bond can be exercised or redeemed by 

the issuer at any time between the hard-call date and its maturity date. It is worth 

noting that not all callable bonds necessarily have these two features in the same 

issue. As can be seen in Table 6, some convertibles have both hard and soft calls. 

Other convertibles have only soft or hard calls. Few convertibles include no call 

provision features at issue. Table 6 shows the CIBC report of Canadian convertible 

bonds, including soft- and hard-call dates. We will use both soft and hard call in 

the numerical examples. 

 

Table 6: CIBC report of Canadian convertible debentures 

http://www.investinganswers.com/node/2133
http://www.investinganswers.com/node/2236
http://www.investinganswers.com/node/1287
http://www.investinganswers.com/node/782
http://www.investinganswers.com/node/952
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4.4.2 Call and convert conditions 
 

Toronto Stock Exchange (TSX) applies regulations and conditions in the event that 

the issue is called or converted. According to a CIBC report, one or more of the 

following conditions might be applied (CIBC Wood Gundy, 2016).  

At maturity or redemption: 

i. Cash or stock valued at 95% of the weighted average trading price of shares. 

ii. Cash or stock valued at the weighted average or at the market price on the 

date fixed for redemption.  

iii. Interest may be paid in stock or paid from the proceeds of stock sales. 

iv. Accrued interest is paid if converted. 

v. Accrued interest is paid if converted, but only if there has been a notice of 

redemption. 

vi. Upon change of control, an issuer may purchase debentures at 101.00% 

plus accrued. 

vii. Upon change of control, an issuer may purchase debentures at 100.00% 

plus accrued. 

viii. Upon change of control, an issuer may purchase debentures at 105.00% 

plus accrued. 

ix. Upon change of control and under certain conditions, such as cash 

consideration, the holder may convert at an adjusted conversion price. 

x. The redemption price is valued at 105.00% from the first call date to the 

second call date. The redemption price is valued at 102.50 % from the 

second call date maturity. 

xi. Accrued interest is paid up to the last record date for distributions on the 

underlying units. 

xii. Assets are convertible to common shares (or units) plus another security, 

such as notes or contingency value receipts. 

xiii. Upon conversion, the issuer may elect to deliver cash instead of stock.  
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4.5 Two-stochastic-factor tree model with default risk 
 

Although a convertible bond consists a straight bond component, default risk may 

occur during the life of the bond. If the issuer of a bond defaults, the bondholders 

do not receive the full principal but rather receive a portion of the face value 𝐹 

that is called the recovery rate 𝛿. Therefore, a new branch will be added to the tree 

model to represent the case of default and the probability of default 𝜆. Note that 

the default is assumed to occur over the same time interval as that of the pricing 

tree. 

 

Figure 13: One-period two-stochastic-factor tree model with default risk 

 

The probability of default is added to each pathway of the tree, and the total 

probability of each node is denoted as the average of the probabilities of both 

factors, as shown in Table 7. 

Pathway 𝜹 𝒓𝒖𝑺𝒖 𝒓𝒅𝑺𝒖 𝒓𝒖𝑺𝒅 𝒓𝒅𝑺𝒅 

Probability 

 

𝝀 𝝅𝒑𝒖(𝟏 − 𝝀) (𝟏 − 𝝅)𝒑𝒖(𝟏 − 𝝀) 𝝅(𝟏 − 𝒑𝒖)(𝟏 − 𝝀) 

       (𝟏 − 𝝅)(𝟏 − 𝒑𝒖) 

(𝟏 − 𝝀) 

Table 7: Probabilities of one-period two-stochastic-factor tree model with default risk 
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Figure 14: One-period stock price model with default risk 

 

As discussed previously, in the CRR model, the stock price moves from start date 

𝑡0to the next interval 𝑡1by multiplying 𝑆0 by 𝑢 and 𝑑 for the up and down nodes, 

respectively. When a default occurs and the corporation goes to bankruptcy, the 

stock price jumps to zero in the convertible bond valuation model, as the bond is 

no longer converted. In the risk-neutral world, the value of a derivative security 

equals the present value of the expected payoff, so the default probability should 

be now taken into account to meet the no-arbitrage condition  

 

𝑆𝑒(𝑟−𝑞𝑠)𝑑𝑡 = 𝑝𝑢(1 − 𝜆)𝑆𝑢 + (1 − 𝑝𝑢)(1 − 𝜆)𝑆𝑑 + 0 ∙  𝜆, 

 

 

where the expected yield rate is 𝑟 − 𝑞𝑠, 𝑟 is the risk-free interest rate, and 𝑞𝑠 is 

the stock’s continuous dividends yield. 

 

In the case of a default, 𝑝𝑢 becomes  

𝑝𝑢 =
(

𝑒(𝑟−𝑞𝑠)𝑑𝑡

(1 − 𝜆) − 𝑑
)

𝑢 − 𝑑
, 

 

𝑝𝑑 = 1 − 𝑝𝑢. 
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Following Tsiveriotis and Fernandes (1998), Hull (2003) suggested that the value 

of a convertible bond is a combination of two components: a risk-free component 

and a risky component. The risk-free component represents the value of the 

convertible bond if it converts to equity, whereas the risky component represents 

the value of the convertible bond if it ends up as a bond. 

 

Following Jarrow and Turnbull’s (1995) approach, in order to find the probability 

of default 𝜆, I need to find the risky bond price given the risky interest rate 𝑟̂. This 

approach implies that the debt component should be discounted using an interest 

rate that reflects the credit risk of the issuer. The risky interest rate 𝑟̂  can be 

determined by adding a credit spread 𝑟𝑐 to the risk-free interest rate 𝑟. This spread 

is a representation of the credit spread implied by non-convertible bonds from the 

same issuer with maturities similar to that of the convertible bond. On the other 

hand, the credit spread is often obtained from the credit rating given to a 

defaultable corporate bond by credit rating agencies like Standard & Poor’s, Fitch 

Ratings, and Moody’s.  

 

4.5.1 Credit spread (𝒓𝒄) 
 

The component of the risk premium or yield spread attributable to default risk is 

called the credit spread. The credit spread is the difference between the yield of a 

default-free bond and that of a defaultable bond of similar maturity with a 

different credit quality. The credit-spread risk is the risk that an issuer’s debt 

obligation will decline due to an increase in the credit spread. 

 

𝑠𝑝𝑟𝑒𝑎𝑑 = (𝑦𝑖𝑒𝑙𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦) – (𝑟𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒 𝑦𝑖𝑒𝑙𝑑) 

 

Therefore, the risky interest rate 𝑟̂ can be expressed as  

𝑟̂ = 𝑟 + 𝑟𝑐 . 
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4.5.2 Default risk probability (𝝀) 
 

Suppose that I price a four-year convertible bond with default risk and the 

probabilities of the default parameters are [𝜆1, 𝜆2, 𝜆3, 𝜆4]. Then, the risky bond 

price is at 𝑡1is 

   

𝑒−𝑟̂1+𝑟0 = (1 − 𝝀𝟏) + 𝛿𝝀𝟏. 

where 𝑟̂1 is the one-year risky interest rate.  

 

Then, at 𝑡1, the default probability 𝜆 1 becomes 

 

𝜆 1 = (1 − 𝑒𝑟0−𝑟̂1)/(1 − 𝛿). 
 
At 𝑡2, 
 

𝑒−2𝑟̂2+𝑟0 = 𝜋(1 − 𝜆1)(1 − 𝜆2 + 𝛿𝜆2) ∙ (𝑒−𝑟𝑢1 + 𝑒−𝑟𝑑1) + 𝛿𝜆1. 

 

At 𝑡3, 
 

𝑒−3𝑟̂3+𝑟0 = 𝜋2(1 − 𝜆1)(1 − 𝜆2)(1 − 𝜆3 + 𝛿𝜆3)

∙ (𝑒−𝑟𝑢1(𝑒−𝑟𝑢𝑢2 + 𝑒−𝑟𝑢𝑑2) + 𝑒−𝑟𝑑1(𝑒−𝑟𝑢𝑑2 + 𝑒−𝑟𝑑𝑑2)

+ 𝜋(1 − 𝜆1)𝛿𝜆2 ∙ (𝑒−𝑟𝑢1 + 𝑒−𝑟𝑑1) + 𝛿𝜆1. 

 

 

At 𝑡4, 

 

𝑒−4𝑟̂4+𝑟0 = 𝜋3(1 − 𝜆1)(1 − 𝜆2)(1 − 𝜆3)(1 − 𝜆4 + 𝛿𝜆4)

∙ {𝑒−𝑟𝑢1[𝑒−𝑟𝑢𝑢2(𝑒−𝑟𝑢𝑢𝑢3 + 𝑒−𝑟𝑢𝑢𝑑3)

+ (𝑒−𝑟𝑢𝑑2(𝑒−𝑟𝑢𝑢𝑑3 + 𝑒−𝑟𝑢𝑑𝑑3)] + 𝑒−𝑟𝑑1[𝑒−𝑟𝑢𝑑2(𝑒−𝑟𝑢𝑢𝑑3 + 𝑒−𝑟𝑢𝑑𝑑3)

+ 𝑒−𝑟𝑑𝑑2(𝑒−𝑟𝑢𝑑𝑑3 + 𝑒−𝑟𝑑𝑑𝑑3)]} + 𝜋2(1 − 𝜆1)(1 − 𝜆2)𝛿𝜆3

∙ [𝑒−𝑟𝑢1(𝑒−𝑟𝑢𝑢2 + 𝑒−𝑟𝑢𝑑2) + 𝑒−𝑟𝑑1(𝑒−𝑟𝑢𝑑2 + 𝑒−𝑟𝑑𝑑2)]

+  𝜋(1 − 𝜆1)𝛿𝜆2 ∙ (𝑒−𝑟𝑢1 + 𝑒−𝑟𝑑1) + 𝛿𝜆1. 
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In Figure 15, when the call provision and default risk are applied, the targeted node 

to be priced in this example, 𝑟𝑢𝑢𝑆𝑢𝑢, rolling back from maturity, is equal to the 

maximum of its conversion value  𝐶𝑉  and the minimum of the straight bond 

component and the call price 𝐶𝑃 discounted on 𝑟𝑢𝑢. It can be seen that the value 

of the straight bond is the average weighted value of the up and down nodes, 

including the recovery value that represents the default event. The value of 

recovery is obtained by multiplying the recovery rate 𝛿 as a percentage of the face 

value or the principal 𝐹. 

 

At the strike date of the call option, the callable convertible bond value is  

𝑉𝐶 = 𝑀𝑎𝑥 [𝐶𝑉,  𝑀𝑖𝑛[𝐵, 𝐶𝑃]]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: 𝑟𝑢𝑢𝑆𝑢𝑢 node pricing of the callable convertible bond tree model with the default risk from maturity 
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𝑉𝐶 = 𝑀𝑎𝑥 [𝐶𝑉,  𝑀𝑖𝑛[𝐵𝑢𝑢, 𝐶𝑃]]. 
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Figure 16 shows the complete tree for three periods of two-stochastic-factor tree 

model with default risk.   

 

 

Figure 16: Three-period two-stochastic-factor tree model with credit risk 
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4.6 Numerical example  
 

In this section, we will use a number of numerical examples to illustrate the 

valuation model, including an option-free convertible bond and a callable 

convertible bond with default risk. As discussed in the data section, this study will 

investigate Canadian convertible bonds issued on the TSX. I will use the numerical 

examples to compare this model to real market prices in targeted periods. I will 

use the five-year zero-coupon yields of government bonds as the risk-free interest 

rate, and I will provide the parameters of the Vasicek interest rate tree. The CRR 

model is used to price the equity component of the convertible bond, but stock 

price volatility is not assumed to be constant. Instead, the volatility 𝜎𝑠  is 

changeable (i.e., non-constant) in different intervals, but it is constant within the 

same time interval. The option-free convertible bond tree has four branches for 

each node to represent the two stochastic factors of the interest rate and equity. 

At maturity, the interest rate is set to be zero, so the maturity nodes have two 

rather than four branches. When the default (credit) risk is considered, the 

convertible bonds are discounted using the risky interest rate 𝑟̂ by adding a credit 

spread 𝑟𝑐 to the risk-free interest rate 𝑟. The recovery rate is usually published in 

the bond's original issue handbook at the time of going to market. The probability 

of default 𝜆 is calculated using the Tsiveriotis and Fernandes model. Bloomberg 

and Stockwatch are the sources of convertible bond credit ratings. The defaultable 

convertible bond tree has five rather than four branches going forward in one time 

step to represent the default event. 

 

4.6.1 Option-free convertible bond 
 

In this section, I value the Advantage Energy (AAV) 5% convertible bond 

(AAV.DB.H) listed on the TSX market. This convertible bond does not include a call 

option feature and can be converted to maturity at any time. This bond is a five-

year convertible bond with a start date of 04/01/2010 and matured on 
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30/01/2015. The face value of this issue is 100 with a conversion ratio of 𝛼 =

11.63  at a conversion price of equity (𝐴𝑉𝑉)  = 8.6 at the date of issuing.  

First, I construct the interest rate tree of the five-year zero coupon bond yield at 

the risk-free rate adopting the Vasicek model with the parameters given in Table 

8 for the dates from 04/01/2012 to 03/01/2015. These are daily yields data for 

zero-coupon bonds, generated using pricing data for Government of Canada bonds 

and treasury bills. The number of nodes in interest rate tree after 𝑛 time periods 

is (𝑛 + 1). The interest rate tree is constructed in Figure 17 with the corresponding 

probabilities. The parameters are estimated using the likelihood function 

suggested by James and Webber (2000). The interest rate volatility 𝜎𝑟  is obtained 

from historical data. 

parameters  𝒓𝟎 𝒌 𝜽 𝝈𝒓 𝒅𝒕 

 

 

𝟏. 𝟑𝟕𝟓% 𝟎. 𝟏𝟔𝟕 𝟎. 𝟎𝟏𝟏𝟐 𝟎. 𝟎𝟎𝟐𝟗        𝟏 

Table 8: Vasicek interest rate tree model parameters 

 

Figure 17: Vasicek interest rate tree 
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Second, I build the stock price tree for AAV for the same selected period used in 

the interest rate model. The equity volatility 𝜎𝑠 is assumed to be changeable (i.e., 

non-constant) in different intervals, but it is constant within the same time 

interval. This assumption leads to two central nodes at 𝑡 = 2, four central nodes 

at 𝑡 = 3, and so on for the following periods. Thus, the number of nodes after 𝑛 

time periods is (2𝑛). The parameters of the AAV stock price tree are shown in 

Table 9.  

 

Table 9: AAV stock price tree model parameters 

 

The equity volatility 𝜎𝑠  is calculated from historical prices. As the parameters 𝑢 

and 𝑑 are dependent on the volatility 𝜎𝑠, 𝑢𝑛 and 𝑑𝑛 differ in each time interval of 

the tree. For three-period tree,  

 

𝑢1 =  𝑒𝜎𝑠1√𝑑𝑡 = 1.363                                                𝑑1 =   
1

𝑢1

=  0.733    

𝑢2 =  𝑒𝜎𝑠2√𝑑𝑡 =  1.447                                              𝑑2 =   
1

𝑢2

=  0.690    

𝑢3 =  𝑒𝜎𝑠3√𝑑𝑡 =  1.476                                              𝑑3 =   
1

𝑢3

=  0.677    

 

The stock price 3-period tree and the corresponding probabilities of the stock tree 

are shown in Figure 18. 

parameters  𝑺𝟎 𝝈𝑺𝟏 𝝈𝑺𝟐 𝝈𝑺𝟑  𝒅𝒕    𝒒𝑺 

 

 

𝟒. 𝟑𝟔 𝟑𝟏% 𝟑𝟕% 𝟑𝟗% 𝟏    

 

                𝟎 
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Figure 18: AAV stock price tree model 

 

Next, I combine the interest rate tree and the equity tree into one single tree, the 

so-called two-factor tree. I need to use the backward induction method to solve 

the two-factor tree, starting from the bond’s terminal value at the maturity date 

𝑇. I also need to find the probabilities of each node of the tree, which, as explained 

earlier, are the average of the interest rate and equity probabilities, as shown in 

Table 5.  

 

The value of convertible bond therefore consists of two components: the 

conversion value, which represents the equity component, and the present value 

of the straight bond. When using backward induction, the value of the convertible 

bond at maturity 𝑇 is the maximum of the conversion value and the sum of the 
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face value 𝐹 and the coupon interest. Note that the conversion value is denoted 

as the product of the conversion ratio 𝛼 and the equity price at the given node. 

 

At any time 𝑡𝑖 for each node of the tree, the price of the convertible bond satisfies  

 𝐵𝑐𝑣 = 𝑚𝑎𝑥 [𝐶𝑉,  𝐵]. 

 

                                                                                                                   𝑡1 

𝑟0, 𝑆0 

 

 

 

 

 

 

 

 

 

 

 

In Period 3 at maturity 𝑇, the node 𝑆𝑢𝑢𝑢 indicates that the convertible bondholder 

would exercise the conversion option, converting the bond to 𝛼 shares of stock.  

The value of the convertible bond, 𝑉𝑢𝑢𝑢, would therefore be equal to its conversion 

value of 153 for the condition 

𝑉(𝑆, 𝑟, 𝑇) =  {
 𝐹 + 𝑐                     𝑖𝑓  𝐹 + 𝑐 ≥ 𝛼𝑆   

𝛼𝑆                        𝑖𝑓  𝐹 + 𝑐 < 𝛼𝑆
}. 
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For the other terminal nodes, the value of the convertible bond is equal to the face 

value plus the coupon interest, as the conversion strategy is worthless.  Rolling 

back to the initial node at 𝑡0 which values the current period, we obtain a 

convertible bond value 𝑉 of 111.75.  

The AAV convertible bond was traded at a real market price between 100 and 

111.99 for the period of 30/06/2011 – 01/01/2012.   

Figure 19 illustrates the movement of the convertible bond and its underlying 

asset in the real market during the life of the issue.   

 

 

Figure 19: Relationship between the bond price and the conversion price of AAV 

 

Figure 20 shows the 3- period pricing tree of the AAV convertible bond with a 

model price of 111.75. 
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Figure 20: AAV convertible bond 3- period pricing tree 
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4.6.2 Callable convertible bond subject to default risk 
 

In this section, we value the Calloway REIT (CWT) 5.75% convertible bond 

(CWT.DB.B) listed on the TSX market assuming that the convertible bond is 

featured with a call option and can be converted at any time to maturity. This is a 

7-year convertible bond with a start date 05/01/2010 and matured on 

30/06/2017. The face value 𝐹 of this issue is 100, with a conversion ratio of 𝛼 =

3.88 at a conversion price of equity (𝐶𝑊𝑇)  = 25.75 at the date of issuing. The 

convertible bond has a strike call price (trigger) of (𝐶𝑊𝑇)  = 32.188, which gives 

a conversion price of 𝛼 × 𝑆 = 3.88 × 32.188 = 125.  The convertible can be 

called in a 5-year period from maturity with a trigger date of 30/06/2014.  

 

First, I construct the interest rate tree used in the previous example of the five-

year zero-coupon bond yield as the risk-free rate, adopting the Vasicek model with 

the following parameters for the dates from 04/01/2012 to 03/01/2015 in Table 

10. These are daily yields data for zero-coupon bonds, generated using pricing data 

for Government of Canada bonds and treasury bills. The number of nodes in the 

interest rate tree after 𝑛  time periods is (𝑛 + 1) . The interest rate tree is 

constructed in Figure 21 with the corresponding probabilities. The parameters are 

estimated using the likelihood function suggested by James and Webber (2000). 

The interest rate volatility 𝜎𝑟  is obtained from historical data. 

 

parameters 𝒓𝟎 𝒌 𝜽 𝝈𝒓 𝒅𝒕 

 𝟏. 𝟑𝟕𝟓% 𝟎. 𝟏𝟔𝟕 𝟎. 𝟎𝟏𝟏𝟐 𝟎. 𝟎𝟎𝟐𝟗 𝟏 

Table 10: Vasicek interest rate tree model parameters 
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Figure 21: Vasicek interest rate tree 

 

 

Second, I build the stock price tree of CWT for the same selected period used in 

the interest rate model. The equity volatility 𝜎𝑠 is assumed to be changeable (i.e., 

non-constant) in different intervals, but it is constant within the same time 

interval. This assumption leads to two central nodes at 𝑡 = 2, four central nodes 

at 𝑡 = 3, and so on for the following periods. Therefore, the number of nodes after 

𝑛 time periods is (2𝑛). The parameters of the CWT stock price tree are shown in 

Table 11.  

 

Table 11: CWT stock price tree model parameters 

parameters  
𝑺𝟎 𝝈𝑺𝟏 𝝈𝑺𝟐 𝝈𝑺𝟑  𝒅𝒕    𝒒𝑺 

 𝟐𝟖 𝟏𝟓% 𝟏𝟒. 𝟓% 𝟏𝟔% 𝟏                   𝟎 



63 
 

The stock price volatility 𝜎𝑠 is calculated from historical prices. As the parameters 

𝑢  and 𝑑  are dependent on the volatility 𝜎𝑠 , therefore,  𝑢𝑛  and 𝑑𝑛 differ in each 

period interval of the tree. For a three-period tree,  

𝑢1 =  𝑒𝜎𝑠1√𝑑𝑡 = 1.161                                                𝑑1 =   
1

𝑢1

=  0.860    

𝑢2 =  𝑒𝜎𝑠2√𝑑𝑡 =  1.156                                              𝑑2 =   
1

𝑢2

=  0.865    

𝑢3 =  𝑒𝜎𝑠3√𝑑𝑡 =  1.173                                              𝑑3 =   
1

𝑢3

=  0.852    

The stock price 3-period tree and the corresponding probabilities are shown in 

Figure 22. 

Figure 22: CWT stock price tree model 
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 Default risk 

As a convertible bond is divided into two components, an equity component and 

a debt component, we use the risk-free interest rate to discount equity and the 

risky bond rate to discount debt, which reflects the future default probabilities. As 

explained in Section 4.5, the risky interest rate can be determined by adding a 

credit spread 𝑟𝑐 to the risk-free interest rate 𝑟. This spread is a representation of 

the credit spread implied by non-convertible bonds from the same issuer for 

maturities similar to that of the convertible bond. On the other hand, the credit 

spread is often obtained from the credit rating given to a defaultable corporate 

bond by credit rating agencies.  

 

Suppose that the three-period risky yields are 1.97%, 2.01%, and 2.22%, 

respectively, with a constant recovery rate 𝛿 = 30% . Then, the three-period 

probabilities of default, [𝜆1, 𝜆2, 𝜆3], are given by 

𝑒−0.0197+0.01375 = (1 − 𝝀𝟏) + (0.3)𝝀𝟏 

 

𝜆1 = 0.0034 

𝜆2 = 0.0155 

𝜆3 = 0.0221. 

Therefore, the credit spread for each period 𝑡𝑖  will be added to the risk-free 

interest rate to discount the defaultable bond, and it can be expressed as  

𝑟𝑐1 = 0.0197 − 0.01375 

= 0.00595 

𝑟𝑐2 = 0.0201 − 0.01375 

= 0.00635 

𝑟𝑐3 = 0.0222 − 0.01375 

= 0.00845. 
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We use the methodology from the first example to combine the interest rate tree 

and the equity tree into one single tree to form the so-called two-factor tree. The 

single tree in this example will have five branches for each node instead of four to 

reflect the default event. The value of the convertible bond therefore consists of 

two components: the conversion value, which represents the equity component, 

and the present value of the straight bond. The debt component is obtained as the 

weighted average of three components: the up node, the down node, and the 

default component, which is represented as the recovery value paid when the 

corporation goes to default.   

 

As the CWT convertible has a call provision with a determined strike price and 

date, the convertible bond price when the call option is applicable is 

   

𝑉𝐶 = 𝑀𝑎 𝑥[𝐶𝑉,  𝑀𝑖𝑛[𝐵, 𝐶𝑃]]. 

 

 

                                                                                                                𝑡1 

                                                                                                                  

𝑟0, 𝑆0 
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In Period 3 at maturity 𝑇, the nodes 𝑆𝑢𝑢𝑢, 𝑆𝑢𝑢𝑑, 𝑆𝑢𝑑𝑢  and 𝑆𝑑𝑢𝑢  indicate that the 

convertible bondholder would exercise the conversion option, converting the 

bond to 𝛼  shares of stock. The value of the convertible bond, 𝑉𝑢𝑢𝑢 , would 

therefore be equal to its conversion values of 176.75, 132.25, 133.75 and 131.75 

respectively, subject to the condition 

𝑉(𝑆, 𝑟, 𝑇) =  {
 𝐹 + 𝐶                     𝑖𝑓  𝐹 + 𝐶 ≥ 𝛼𝑆   

𝛼𝑆                        𝑖𝑓  𝐹 + 𝐶 < 𝛼𝑆
} 

 

As the strike date of the call option is set to be  𝑡2, the convertible bond value at 

𝑡2 is 

𝑉𝐶 = 𝑀𝑎𝑥 [𝐶𝑉,  𝑀𝑖𝑛[𝐵, 𝐶𝑃]] 

The nodes at 𝑡2, such as 𝑟𝑢𝑢𝑆𝑢𝑢 , 𝑟𝑢𝑑𝑆𝑢𝑢 , and 𝑟𝑑𝑑𝑆𝑢𝑢 , are converted to common 

stocks even when bond prices are higher. The reason is that the bond price is 

eliminated by the call strike price at a trigger of 32.188, which gives a conversion 

price of 125. Therefore, the convertible callable bond price is equivalent to the 

maximum price of the conversion value or the minimum of the straight bond price 

and the call price.   

 

For the other terminal nodes, the value of the convertible bond is equal to the face 

value plus the coupon interest, as the conversion strategy is worthless.  Rolling 

back to the initial node at 𝑡0, which values the current period, I obtain a convertible 

bond value 𝑉 of 123.8.  

The AAV convertible bond was traded at a real market price between 112.5 and 

124 for the period of 30/06/2012 – 01/09/2012.   

Figure 23 illustrates the movement of the convertible bond and its underlying 

asset in the real market during the life of the issue.  

  

Figure 24 shows 3- period pricing tree of CWT callable convertible bond with model 

price of 123. 
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Figure 23: Relationship between bond price and conversion price of CWT 

 

4.6.3 Conclusion of the numerical examples 

Our tree model for pricing convertible bonds is based on two-factor models using 

modified CRR modeling of stock prices and Vasicek tree of interest rates. The first 

numerical example of option-free convertible bond indicates that our model 

produces a moderately different convertible bond price than that found in the real 

market price in TSX. For the investigated period, our model shows a price 

difference of 0.21% with the market price.  

In the second numerical example, we use the approach of Jarrow and Turnbull 

(1995) framework to model the default probability. For this example, we price the 

callable convertible bond using the risky discount rate to reflect the future default 

probability. The model price is not far from the real market price and shows a 

better valuation model than the default- free pricing model.  For the investigated 

period, our model shows a price difference of 0.16% with the market price. It is 

worth noting that the model can be used to price convertible bonds with complex 

provisions and other financial derivatives such as bond’s call and put options. 

 

 

0

20

40

60

80

100

120

140

2
0

1
0

0
2

1
1

2
0

1
0

0
4

0
7

2
0

1
0

0
5

3
1

2
0

1
0

0
7

2
2

2
0

1
0

0
9

1
5

2
0

1
0

1
1

0
8

2
0

1
0

1
2

3
1

2
0

1
1

0
2

2
4

2
0

1
1

0
4

1
8

2
0

1
1

0
6

1
0

2
0

1
1

0
8

0
4

2
0

1
1

0
9

2
7

2
0

1
1

1
1

1
8

2
0

1
2

0
1

1
3

2
0

1
2

0
3

0
7

2
0

1
2

0
4

3
0

2
0

1
2

0
6

2
1

2
0

1
2

0
8

1
5

2
0

1
2

1
0

0
9

2
0

1
2

1
1

2
9

2
0

1
3

0
1

2
4

2
0

1
3

0
3

1
9

2
0

1
3

0
5

1
0

2
0

1
3

0
7

0
4

2
0

1
3

0
8

2
7

2
0

1
3

1
0

2
1

2
0

1
3

1
2

1
1

2
0

1
4

0
2

0
5

2
0

1
4

0
3

3
1

2
0

1
4

0
5

2
3

2
0

1
4

0
7

1
6

2
0

1
4

0
9

0
9

2
0

1
4

1
0

3
1

2
0

1
4

1
2

2
3

2
0

1
5

0
2

1
8

2
0

1
5

0
4

1
3

2
0

1
5

0
6

0
4

CWT

Bond PRICE Conversion Value



69 
 

Figure 24: CWT callable convertible bond 3- period pricing tree with default risk 

 



70 
 

4.6.4 Further numerical examples 
 

In this section, we extend the numerical examples to conclude 6 convertible bonds 

that traded in TSX market. We then compare the model price to the real market 

price in TSX. 

 

 

 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(31 Jul 2012) 

Model price 
(31 Jul 2012) 

 
GH.DB 

 
31-Jul-2015 5.25% 9.39 120.49 

 
119.72 

 

 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(31 Oct 2012) 

Model price 
(31 Oct 2012) 

 
PBH.DB.A 

 
31-Oct-2015 5.75% 4.464 104 

 
105.68 

 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(31 Oct 2012) 

Model price 
(31 Oct 2012) 

 
ARE.DB.A 

 
31-Oct-2015 

 
6.25% 

 
5.263 105 

 
104.19 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(30 Jun 2012) 

Model price 
(30 Jun 2012) 

CNE.DB 30-Jun-15 8% 9.5 101.5 
 

101.96 
 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(31 Oct 2012) 

Model price 
(31 Oct 2012) 

 
CAM.DB 

 
31-Oct-2015 6.25% 8.333 104.8 

 
105.43 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(31 Dec 2012) 

Model price 
(31 Dec 2012) 

 
CUS.DB.A 

 
31-Dec-2015 5.75% 12.048 103.11 105.62 
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The numerical examples of the annual spacing indicate that our model produces a 

moderately different convertible bond prices than that found in the real market 

price in TSX. For the investigated period, our model shows that ARE.DB.A 

convertible bond has a value of 104.19 compared to the market price of 105.  

 

Our valuation model shows that CNE.DB was underpriced by 0.45% with a value of 

101.96 compared to a market price of 101.5. it can be seen that other convertible 

bonds were also underpriced by various percentages such as CAM.DB, CUS.DB.A 

and PBH.DB.A. 

 

For the investigated period, GH.DB convertible bond has a model price of 119.72 

compared to a market price of 120.49. 

 

In the periods under consideration, we can conclude that our convertible bond 

valuation model price is more or less close to the real market prices. 

 

 

4.6.5 Monthly spacing numerical examples 
 

In this section, we provide numerical examples of a finer spacing binomial tree 

where steps are generated on a monthly basis. As the American convertible bond 

may be exercised in between coupon payments, we need to calculate the accrued 

interest which is defined as the amount of interest that has accrued on a bond 

between coupon payments. To construct the monthly tree model, we use a similar 

method that was used in the previous annual numerical examples.  

 

For the interest rate tree, there are 12 monthly nodes from 𝑟0 to 𝑟1. Thus, when 

𝑡 =
1

12
, the first monthly nodes become: 
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𝑟𝑚1
𝑢 = 𝑟0 +  

 𝑘(𝜃−𝑟𝑡)

12
 + 

𝜎𝑟

√12
. 

And  

𝑟𝑚1
𝑑 = 𝑟0 +  

 𝑘(𝜃−𝑟𝑡)

12
 – 

𝜎𝑟

√12
. 

To find the price of the stock for any time fraction within the time intervals 

[𝑡𝑖 , 𝑡𝑖+1] in the pricing tree, we need to reset 𝑢, 𝑑 and ∆𝑡 according to the new time 

fraction. For example, the stock price process over one-month interval 𝑡 =
1

12
 

would be 

𝑢 =  𝑒
𝜎𝑠 √

𝑑𝑡 

12    and     𝑑 =  
1

𝑢
 

 

 

The accrued interest between coupon payments is obtained as 

 

 

𝐴𝑐𝑐𝑟𝑢𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = 𝐶 ×  
𝑑𝑎𝑦𝑠 𝑠𝑖𝑛𝑐𝑒 𝑙𝑎𝑠𝑡 𝑝𝑎𝑦𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑐𝑜𝑢𝑝𝑜𝑛 𝑝𝑎𝑦𝑚𝑒𝑛𝑡
 

 

 

For the monthly numerical examples, we valued the prices of 5 convertible bonds 

traded in TSX stock market. We then compare the model price to the real market 

price in TSX. The numerical examples show that our monthly model produces a 

small price difference between the prices of convertible bonds obtained from our 

monthly model techniques and those from TSX market. In the period under 

consideration, the model we used depicts that the value ARE.DB.A convertible 

bond is 101.11 while that of the market is 101.15. 

 

According to our model, CNE.DB is under-priced by close to 2% with a valuation of 

102.68 against a market price of 100.  Moreover, it shows that other convertible 

bonds are also under-priced by a number of percentages like CUS.DB.A and GH.DB. 
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Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(31 Jul 2015) 

Model price 
(31 Oct 2015) 

 
ARE.DB.A 

 
31-Oct-2015 

 
6.25% 

 
5.263 101.15 

 
101.11 

 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 

(30 Mar 2015) 
Model price 

(30 Jun 2015) 

CNE.DB 30-Jun-15 8% 9.5 100 
 

102.68 
 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(30 Jul 2015) 

Model price 
(31 Oct 2015) 

 
CAM.DB 

 
31-Oct-2015 6.25% 8.333 118.73 

 
117.79 

 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(30 Apr 2015) 

Model price 
(31 Jul 2015) 

 
GH.DB 

 
31-Jul-2015 5.25% 9.39 117.05 

 
118.26 

 

 

Convertible bond 
symbol 

Maturity Coupon 
Conversion 

ratio 
Market price 
(31 Sep 2015) 

Model price 
(31 Dec 2015) 

 
CUS.DB.A 

 
31-Dec-2015 5.75% 12.048 100 

 
100.33 
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5 Duration and convexity of convertible bonds   

 

5.1 Introduction to duration and convexity 

 

Duration and convexity are important risk measures in fixed income securities 

management. These measures can help to predict the change in the price of a bond 

with a given change in the interest rate. Duration measures the percentage change 

in the market value of a cash flow for a given change in the yield and comes close 

to the true value when the rate changes are small. With larger changes in rates, 

however, it is necessary to consider convexity, which is the curvature of the price-

yield relationship (Dunetz and Mahoney, 1988). As described in Section 1.2, Brooks 

and Attinger (1992) initially provided the theoretical definition of the duration and 

convexity of convertibles. However, they did not describe how the conversion 

option was valued, nor did they provide values for Rho (𝜌) and Delta (∆), as no 

valuation model was provided. Sarkar (1999) provided a closed-form expression 

for the duration and convexity of a zero-coupon convertible bond. This model 

followed the contingent-claim approach of Ingersoll (1977) and Brennan and 

Schwartz (1980) and adopted a one-factor valuation model that assumed a 

constant risk-free interest rate.  

 

In this chapter, I study duration and convexity numerically, as it is difficult to obtain 

a closed-form expression for an American convertible bond that can be converted 

at any time during its life. I use the present value method and the binomial tree 

method as numerical examples to illustrate the duration and convexity of 

American convertible bonds. Moreover, I provide an example for the duration and 

convexity of European zero-coupon convertible bonds based on a two-factor 

model that adopts a stochastic interest rate. I also study the duration that 

expresses the approximate change in the convertible value for any change in the 

interest rate. Moreover, I investigate the sensitivity of the convertible bond value 

and duration to various parameters, such as the interest rate, stock price, volatility 



75 
 

of the interest rate, volatility of the stock price, mean reversion of the interest rate, 

and dividend yield of the underlying stock. It can be seen that the results differ 

from the one factor cases considerably. 

 

5.2 Duration  

 

Duration is a measure of the approximate price sensitivity of a bond to interest 

rate changes. More specifically, it is the approximate percentage change in the 

bond price for a 100 basis point change in rates. The numerical duration is defined 

as  

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑝𝑟𝑖𝑐𝑒 𝑖𝑓 𝑦𝑖𝑒𝑙𝑑𝑠 𝑑𝑒𝑐𝑙𝑖𝑛𝑒 − 𝑝𝑟𝑖𝑐𝑒 𝑖𝑓 𝑦𝑖𝑒𝑙𝑑𝑠 𝑟𝑖𝑠𝑒

(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑖𝑐𝑒)(2 × 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒)
 

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑉− −   𝑉+ 

(𝑉0)(2∆𝑟)
 

where  

 𝑉−  =  𝑝𝑟𝑖𝑐𝑒 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 𝑑𝑒𝑐𝑙𝑖𝑛𝑒𝑠 𝑏𝑦 ∆𝑟 

 𝑉+ =  𝑝𝑟𝑖𝑐𝑒 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑏𝑦 ∆𝑟 

 𝑉0  =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑖𝑐𝑒  

  ∆𝑟 =  𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒  

 

 

Duration is used to approximate the percentage price change for a given change 

in the interest rate and a given duration. 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  −𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × ∆𝑟 × 100 

 

The negative sign on the right side of the equation shows the inverse relationship 

between a price change and a yield change (Fabozzi, 2005). 
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Figure 25 illustrates the approximate error in price between the straight line 

(duration) and the curved line (convexity). The formula for the duration of a bond 

shows that the duration —the price sensitivity or elasticity— depends on the 

maturity of the bond, the coupon level, and the yield to maturity (interest or 

discount rate). Holding other factors constant, the longer the time to maturity is, 

the greater the duration is, and the greater the bond's interest or coupon is, the 

smaller the duration is (Martellini, 2003). 
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Figure 25: Relationship between duration and convexity 
 

In this section, we conclude with two methods to value the duration of a 

convertible bond: the present value method and the binomial tree method. 

 

For the present value method, I examine the outcomes for the AAV convertible 

bond price over a period when interest rate is raised. Figure 26 shows that the 

AAV convertible bond price falls as the interest rate increases. The duration is 

represented as a straight line that shows approximate estimation of the 

relationship between the bond value and the interest rate.  
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The change in price ∆𝑉 is expressed as  

∆𝑉 = −𝐷 ∗ 𝑉0 ∗ ∆𝑟. 

 

Therefore, I find that the duration of the convertible bond is 𝐷 =  3.39 for the 

date of 01/04/2011. This result means that at the time concerned, the 

approximate change in price for this bond is 3.39%  given a 100-basis point or 1% 

change in the interest rate. Similarly, if the interest rate changes by 50 basis 

points, or 0.5%, up or down, the convertible bond price is likely to react to the 

interest rate change by shifting 1.695% in the opposite direction. The calculations 

of the duration can be seen in Table 12. 

 

Figure 26: AAV convertible bond price (Series1) and interest rate (Series2) for one factor case 

 

Table 12: Duration calculation sheet for the AAV convertible bond 

Present value

if r up if r down

1.005411 0.994619 1.009029 0.991052 1.00180117 0.998202

0.005381 99.46186 0.008948 99.10515 0.001798 99.82020681

3.587615 3.579396 3.595864

17.93807 17.89698 17.97932

V0 117.3999 V+ 117.0021 V- 117.7995261

0.797394 0.2348 D Delta p y inc New price Delta p y dic New price

3.396058831 -0.398697073 117.0012 0.398697073 117.798628
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For the binomial tree method, I first construct the tree for the convertible bond 

value 𝑉+, which represents an increase in yield. Second, I construct the tree for the 

convertible bond value 𝑉−, which represents a decline in yield. ∆𝑟 is expressed as 

the change in the interest rate that should be added to the interest rate tree 

(Fabozzi,1999).  

 

For illustration, I use the numerical example used in Section 4.6.1 for the AAV.DB.H 

option-free convertible bond. I assume that ∆𝑟 = 0.0025 or 25 basis points for this 

example.  

 

First, I construct the new interest rate tree for 𝑉+ after shifting the interest rate up 

by ∆𝑟. 

 

Figure 27: 𝑉+ interest rate tree after shifting the rate up by + 25 basis points 

 

The value of the convertible bond 𝑉+ is 110.25. 
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Second, I construct the new interest rate tree for 𝑉− after shifting the interest rate 

down by ∆𝑟. 

 

Figure 28: 𝑉− interest rate tree after shifting the rate down by - 25 basis point 
 

 

The value of the convertible bond 𝑉− is 113.12. 

 

The duration is then  

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  
113.12 −   110.25

(100)(2 × 0.0025)
 

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 7.175 

 

For the callable convertible bond duration, we use the numerical example from 

Section 4.6.2 for the CWT.DB.B convertible bond. The convertible bond has a strike 

call price of 125 with a trigger date of 30/06/2014. At the strike date of the call 

option, the callable convertible bond value is  

𝑉𝐶 = 𝑀𝑎𝑥 [𝐶𝑉,  𝑀𝑖𝑛[𝐵, 𝐶𝑃]. 
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We use the same procedure that used in the previous example. However, we 

assume that  ∆𝑟 = 0.0035, or 35 basis points, for this example.  

 

In the first step, we construct the new interest rate tree for 𝑉+ after shifting the 

rate up by +35 basis points. 

The convertible bond value 𝑉+ is 121.9. 

 

In the next step, we construct the new interest rate tree for 𝑉− after shifting the 

rate down by −35 basis points. 

 

The convertible bond value 𝑉− is 125.2. 
 

The duration is then  

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  
125.2 −   121.9

(100)(2 × 0.0035)
 

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 4.715 

 

Duration of call option 

The duration of the call option of the convertible bond measures the sensitivity of 

the option value to changes in the interest rate (Fabozzi, 1999). The duration of 

the call option is directly related to the convertible bond and is expressed as 

𝐷𝑜𝑝𝑡𝑖𝑜𝑛 = 𝐷 × 𝐷𝑒𝑙𝑡𝑎𝑜𝑝𝑡𝑖𝑜𝑛 ×
𝑉

𝐶𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
, 

 

where  

𝐷𝑒𝑙𝑡𝑎𝑜𝑝𝑡𝑖𝑜𝑛 =  
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑝𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑏𝑜𝑛𝑑 𝑣𝑎𝑙𝑢𝑒
. 
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5.3 Convexity 

 

Convexity is a measure of the curvature of the value of a security or portfolio as a 

function of the interest rate. It indicates how the duration changes as interest rates 

change. The numerical convexity is defined as 

 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 (𝐶𝑥) =  
𝑉+ +   𝑉− − 2𝑉0

2(𝑉0)(∆𝑟)2 
 

 

Convexity measures the curvature of the price-yield relationship, and the convex 

line shows that the bond price is a nonlinear function of the yield to maturity. As 

the duration relationship does not fully capture the true relationship between 

bond prices and yields, convexity contributes to a more accurate estimation of the 

price-yield relationship by using higher-order differentiation.  

 

The maturity and the coupon rate are the main characteristics that show a strong 

relationship with convexity. Holding the other factors constant, convexity has an 

inverse relationship with the coupon rate; the greater the coupon rate is, the 

lower the convexity is. However, maturity is positively correlated with convexity; 

the greater the maturity is, the higher the convexity is (Martellini, 2003). 

 

Convexity can be used in association with duration to obtain an accurate 

estimation of the percentage change in the convertible bond price. The percentage 

change in the convertible bond price is given as: 

∆𝑉 = −𝐷 × ∆𝑟 + 𝐶𝑥 ×  (∆𝑟)2. 

 

The convexity adjustment is the change required to be made to the convexity to 

obtain a better estimation. The convexity adjustment is given as 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦  𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝐶𝑥 ×  (∆𝑟)2. 
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For clarification, we provide an example of the convexity and the convexity 

adjustment of the AAV convertible bond.  

 

We will use the same previous example data for the AAV convertible bond where 

the initial bond price is 117.399 and ∆𝑟 = 0.001. 

 

When 𝑟 increases by ∆𝑟, the present value of the convertible bond is 117.0021, 

and the percentage change in the convertible bond price is 

∆𝑉+ =
𝑉+ − 𝑉0

𝑉0 
=  −0.3388%. 

When 𝑟 decreases by ∆𝑟 , the present value of the convertible bond is 117.799,  

and the percentage change in the convertible bond price is 

∆𝑉− =
𝑉− − 𝑉0

𝑉0 
=  0.3404%. 

The convexity of the convertible bond is  

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 (𝐶𝑥) =  
𝑉+ +   𝑉− − 2𝑉0

2(𝑉0)(∆𝑟)2 
. 

 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 (𝐶𝑥) = 7.647. 

 

The adjusted convexity of the convertible bond is 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦  𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝐶𝑥 ×  (∆𝑟)2 

                                             =  0.00076%. 
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5.4 Duration and convexity of the European zero-coupon convertible bond 

 

Mathematically, the duration of the convertible bond 𝑉  is defined as the first 

derivative of  𝑉 with respect to 𝑟, and it can be written as  

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝐷) = − 
1

𝑉
.
𝜕𝑉

𝜕𝑟
. 

 

As there is no closed solution for the American convertible bond in the case we 

considered here, we differentiate the European convertible bond Value shown in 

Section 4.2. 

 

As discussed in Section 4.2, the value of the European convertible bond is written 

as: 

𝑉(𝑆, 𝑟, 𝑡) =  𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2) + 𝐹𝑃(𝑟, 𝑡), 

 

By differentiating 𝑉 with respect to 𝑟, the duration (𝐷) of the convertible bond is 

obtained as 

 

𝐷 = − 
1

𝑉
.
𝜕(𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2) + 𝐹𝑃(𝑟, 𝑡))

𝜕𝑟
. 

 

𝐷 = − 
1

𝑉
.  [𝑆𝑁′(𝑑1)

𝜕𝑑1

𝜕𝑟
− 𝐾

𝜕𝑃

𝜕𝑟
𝑁(𝑑2) − 𝐾𝑃(𝑟, 𝑡)𝑁′(𝑑2)

𝜕𝑑2

𝜕𝑟
+ 𝐹

𝜕𝑃

𝜕𝑟
]. 

 

Mathematically, the convexity of the convertible bond is defined as the second 

derivatives of 𝑉 with respect to 𝑟. 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦(𝐶𝑥) =  
1

𝑉
.
𝜕2𝑉

𝜕𝑟2
. 

 

By differentiating 𝐷 with respect to 𝑟, the convexity (𝐶𝑥) of convertible bond is 

obtained as 
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𝐶𝑥 =  
1

𝑉
.
𝜕2(𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2) + 𝐹𝑃(𝑟, 𝑡))

𝜕𝑟2
 

 

𝐶𝑥 =  
1

𝑉
. [𝑆𝑁′′(𝑑1) (

𝜕𝑑1

𝜕𝑟
)

2

+ 𝑆𝑁′(𝑑1)
𝜕2𝑑1

𝜕𝑟2
− 𝐾

𝜕2𝑃

𝜕𝑟2
𝑁(𝑑2)

− 2𝐾
𝜕𝑃

𝜕𝑟
𝑁′(𝑑2)

𝜕𝑑2

𝜕𝑟
− 𝐾𝑃(𝑟, 𝑡)𝑁′′(𝑑2) (

𝜕𝑑2

𝜕𝑟
)

2

− 𝐾
𝜕𝑃

𝜕𝑟
𝑁′(𝑑2)

𝜕2𝑑2

𝜕𝑟2
+ 𝐹

𝜕2𝑃

𝜕𝑟2
], 

where  

𝑑1 =  
𝑙𝑛(𝑆

𝐾⁄ ) − 𝑙𝑛 𝑃(𝑟, 𝑡) + (𝑟 − 𝑞𝑠)
1
2

𝜎̂2𝜏

𝜎̂√𝜏
, 

𝑑2 = 𝑑1 − 𝜎̂√𝜏. 

In the next section, I investigate the sensitivity of the duration of the convertible 

bond with respect to various parameters such as the short rate, the stock price, 

the volatilities of both factors, the long run, the mean reversion rate and the 

dividend yield of the underlying asset. We use the solution of the European 

convertible bond to study the partial derivatives of these parameters as there is 

no a closed-form expression for an American convertible bond. The findings are 

consistent with other studies, such as Choi (2004). However, it is possible to use 

binomial tree method to calculate approximate values of these derivatives, since 

they are tedious, I omit the details. In the Delta arbitrage section in the following, 

we illustrate how to use binomial methods to compute Delta, similar ideas apply 

to all quantities discussed here.   
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5.4.1 The sensitivity of the zero-coupon bond price and duration to interest rate 

changes 
 

Here, I investigate the effect of interest rate movements on the values of the 

convertible bond V through the zero-coupon bond component: 

𝜕𝑉

𝜕𝑃

𝜕𝑃

𝜕𝑟
 

 

Recall that,  

𝑉(𝑆, 𝑟, 𝑡) =  𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2) + 𝐹𝑃(𝑟, 𝑡)     

and  

𝑃(𝑟, 𝑡) = 𝐴(𝑡, 𝑇)𝑒−𝑟𝐵(𝑡,𝑇) 

We have    

𝜕𝑉

𝜕𝑃

𝜕𝑃

𝜕𝑟
= (−𝐾𝑁(𝑑2) + 𝐹)

𝜕𝑃

𝜕𝑟
  

 

 The partial derivative of duration with respect to 𝑟 is  

𝜕𝐷

𝜕𝑟
=  

1

𝑉2
(
𝜕𝑉

𝜕𝑟
)2 −

1

𝑉
.
𝜕2𝑉

𝜕𝑟2
, 

where  

𝐷 = − 
1

𝑉
.
𝜕𝑉

𝜕𝑟
. 

 

 

5.4.2 The sensitivity to the interest rate volatility 𝝈𝒓  
 

Changes in 𝜎𝑟  should affect the convertible bond price in the following form 

 

𝜕𝑉

𝜕𝜎𝑟

=
𝜕(𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2))

𝜕𝜎𝑟

+ 𝐹
𝜕𝑃

𝜕𝜎𝑟

, 

 

Use Chain rule, we obtain  
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𝜕(𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2))

𝜕𝜎𝑟

=  
𝜕(𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2))

𝜕𝜎̂
.

𝜕𝜎̂

𝜕𝜎𝑟

 , 

 

and  

𝜕𝑃

𝜕𝜎𝑟

=  
𝜕𝑃

𝜕𝑟

𝜕𝑟

𝜕𝜎𝑟

 

where 

𝜎̂2 =  𝜎𝑠
2 +

𝜎𝑟
2

𝑘2
 (1 −  𝑒−𝑘𝜏)2. 

Therefore  

𝜕𝑉

𝜕𝜎𝑟

=
𝜕(𝑆𝑁(𝑑1) − 𝐾𝑃(𝑟, 𝑡)𝑁(𝑑2))

𝜕𝜎̂
.

𝜕𝜎̂

𝜕𝜎𝑟

+ 𝐹
𝜕𝑃

𝜕𝑟

𝜕𝑟

𝜕𝜎𝑟

. 

 

The partial derivative of duration with respect to 𝜎𝑟  is 

 

𝜕𝐷

𝜕𝜎𝑟

=  
1

𝑉2

𝜕𝑉

𝜕𝑟

𝜕𝑉

𝜕𝜎𝑟

−
1

𝑉

𝜕2𝑉

𝜕𝑟𝜕𝜎𝑟

, 

where  

𝐷 = − 
1

𝑉
.
𝜕𝑉

𝜕𝑟
. 

 

Figure 29 shows the real-life data testing of AAV convertible bond price with 

respect to 𝜎𝑟. 

 

Figure 29: Relationship between the AAV convertible bond price and interest rate volatility 
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5.4.3 The impact of stock price changes on the duration and convertible bonds 
 

Changes in 𝑆 should affect the convertible bond price in the following form 

 

𝜕𝑉

𝜕𝑆
= 𝑁(𝑑1) + 𝑆𝑁′(𝑑1)

𝜕𝑑1

𝜕𝑆
− 𝐾𝑃(𝑟, 𝑡)𝑁′(𝑑2)

𝜕𝑑2

𝜕𝑆
 

 

 

Figure 30: AAV convertible bond price (Series1) and share price (Series2) 

 

Figure 31: AAV Duration as a function of stock price for one factor case 
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5.4.4 The sensitivity to the stock price volatility 𝝈𝒔 

 

Changes in 𝜎𝑆 should affect the convertible bond price through the term volatility 

𝜎̂. 

The partial derivative of the value of the convertible bond with respect to 𝜎𝑆 is 

 
𝜕𝑉

𝜕𝜎𝑆

=
𝜕𝑉

𝜕𝜎̂

𝜕𝜎̂

𝜕𝜎𝑆

 

where 

𝜎̂2 =  𝜎𝑠
2 +

𝜎𝑟
2

𝑘2
 (1 −  𝑒−𝑘𝜏)2. 

 

 
Figure 32: Relation between convertible bond price and stock volatility of AAV 

 

5.4.5 The sensitivity to the long-run rate 𝜽 
 

The long-run rate 𝜃 should affect the convertible bond price through changes in 

the bond price component, as the long-run rate 𝜃 is an effective parameter in the 

interest rate process.  

The partial derivative of the value of the convertible bond with respect to 𝜃 is 

𝜕𝑉

𝜕𝜃
. 

 

Thus, the partial derivative of duration with respect to θ becomes 
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𝜕𝐷

𝜕𝜃
=  

1

𝑉2

𝜕𝑉

𝜕𝑟

𝜕𝑉

𝜕𝜃
−

1

𝑉

𝜕2𝑉

𝜕𝑟𝜕𝜃
 , 

where  

𝐷 = − 
1

𝑉
.
𝜕𝑉

𝜕𝑟
. 

 

5.4.6 The sensitivity to the mean reversion rate 𝒌 
 

The mean reversion rate 𝑘 should affect the convertible bond price through the 

change in the interest rate, which is reflected in the straight bond component. The 

partial derivative of the value of the convertible bond with respect to the mean 

reverting rate 𝑘 is  

𝜕𝑉

𝜕𝑘
. 

 

5.4.7 Dividend yield 

 

The dividend yield should affect the convertible bond price through the stock price 

or the conversion component. Therefore, the partial derivative of the value of 

convertible bond with respect to the dividend yield is 

𝜕𝑉

𝜕𝑞𝑠

= 𝑆𝑁′(𝑑1)
𝜕𝑑1

𝜕𝑞𝑠

− 𝐾𝐹𝑒−𝑟𝜏𝑁′(𝑑2)
𝜕𝑑2

𝜕𝑞𝑠

 

 

The partial derivative of duration with respect to the dividend yield 𝑞𝑠 becomes 

𝜕𝐷

𝜕𝑞𝑠

=  
1

𝑉2

𝜕𝑉

𝜕𝑟

𝜕𝑉

𝜕𝑞𝑠

−
1

𝑉

𝜕2𝑉

𝜕𝑟𝜕𝑞𝑠

. 

where  

𝐷 = − 
1

𝑉
.
𝜕𝑉

𝜕𝑟
. 
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Figure 33 shows the real-life data testing of Just Energy convertible bond price 

with respect to 𝑞𝑠. 

 

Figure 33: JE convertible bond as a function of the stock dividend yield 

 

 

5.5 Convexity  
 

In this section, I investigate the sensitivity of the convexity of the convertible bond 

to the various parameters, such as the short rate, the stock price, the volatilities 

of these factors, and the coupon rate using numerical computation on real life 

data example.   

 

As described in Section 5.3, the convexity measure is an approximation of the 

(convex) curvature, as shown in Figure 25, which is expressed as the second 

derivative of 𝑉 with respect to 𝑟. 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦(𝐶𝑥) =  
1

𝑉
.
𝜕2𝑉

𝜕𝑟2
. 
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5.5.1 The sensitivity of convexity to stock prices. 
 

Stock prices have a significant impact on the convexity of a convertible bond 

through the conversion option component (i.e., the option to convert to equity). 

The relationship between stock price movements and the equity option 

component of a convertible bond should always be positive. This property 

indicates that if the stock price increases, the equity option component should 

increase. As a result, the convexity of a convertible bond should decrease with 

stock price increases because convertible bondholders are likely to exercise the 

conversion option with an increase in the stock price, which indicates that the 

expected life of the bond should be shorter, and, therefore, the convexity should 

be lower. 

In simple one-factor case all above statements are easy to verify. But in our 

multifactor case, the verification is not trivial.  

 

Figure 34 shows that the convexity of the AAV convertible bond decreases with 

an increase in the corresponding stock price.    

 

Figure 34: AAV convertible bond convexity as a function of stock price one factor case 
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5.5.2 The sensitivity of convexity to the interest rate. 
 

The interest rate affects the convexity of a convertible bond mainly through the 

straight bond component of the convertible bond. When the interest rate 

increases, the convexity of the convertible bond should decrease, whereas a lower 

interest rate should increase the bond component, indicating a higher convexity 

of the convertible bond. Moreover, a lower interest rate should increase the 

present value of the coupon payment until the end of bond’s life, which should 

increase the convexity of the bond component. 

In simple one-factor case all above statements are easy to verify. But in our 

multifactor case, the verification is not trivial.  

 

Figure 35 shows that the convexity of the AAV convertible bond decreases when 

the interest rate rises.  

   

Figure 35: AAV convertible bond convexity as a function of interest rate one factor case 
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price, the volatility of the underlying stock, the credit spread, the risk-free rate, 

the time to maturity, and the dividend of the underlying stock. Each of these 

variables has Greeks that measure the rate of change of the convertible fair value 

when the given variable moves by one unit. In this section, I examine various 

Greeks that play an important role in convertible arbitrage strategies, namely, 

Delta and Gamma.  

 

5.6.1 Delta of the convertible bond price  
 

Delta measures the change in the convertible bond price 𝑉 with respect to the 

change in the underlying common stock price 𝑆. The Delta under the single factor 

European option-pricing model of Black and Scholes is defined as 

𝐷𝑒𝑙𝑡𝑎 (∆) =
𝜕𝑉

𝜕𝑆
. 

 

∆ =  𝑒−𝑞𝑠(𝑇−𝑡)𝑁(𝑑1), 

where 

𝑑1 =  
𝑙𝑛(𝑆

𝐾⁄ ) − 𝑙𝑛 𝐹 + (𝑟 − 𝑞𝑠)
1
2

𝜎2𝜏

𝜎√𝜏
, 

 

where 𝑆 is the current underlying stock price, 𝐾 is the conversion price, 𝑟 is the 

continuously compounded yield of a risk-free bond, 𝑞𝑠 is the dividend yield, 𝜎 is 

the annualized stock return volatility, 𝜏 is the time to maturity in years, and 𝑁( . ) 

is the cumulative standard normal distribution function. 

 

For the American convertible bond, it is also possible to carry out an approximate 

binomial calculation for Delta. For the binomial tree method, the convertible bond 

Delta ∆ is  

∆ =
𝑉𝑢 − 𝑉𝑑

𝑆𝑢 − 𝑆𝑑

. 
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For further details of Delta, see Chapter 6. 

 

The Delta of a convertible bond measures the convertible equity’s sensitivity to 

any stock price changes. Delta is used as an estimation tool in the so-called Delta 

hedging strategy that determines the number of equity shares to short against the 

convertible bond’s long position. Figure 36 and 37 show the slope of the Delta of 

the AAV convertible bond versus its underlying stock price.  

The convertible bond Delta has a value between zero and one, so that 

 

0 ≤ ∆ ≤ 1. 

 

Figure 36: AAV convertible bond Delta (out of the money)                                               

Figure 37: GH convertible bond Delta (in the money) 
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The convertible bond Delta reaches one when the convertible moves deep in the 

money, because the convertible behaves like the underlying stock price as the 

stock price far exceeds the conversion value. A Delta of one indicates that the 

convertible bond moves equivalently to the underlying stock price (Calamos, 

2003).  

 

On the other side, the convertible bond Delta reaches zero when the convertible 

moves far out of the money, which indicates that the convertible bond no longer 

has the opportunity to be converted to common stocks. The convertible bond 

should then behave like a fixed income security. 

 

I will analyze the convertible bond Delta and arbitrage in Section 6. 

 

 

5.6.2 Gamma of the convertible bond price  
 

Gamma is the change in Delta with respect to the change in the underlying stock 

price. Gamma is expressed as the second derivative of the convertible bond price 

with respect to the underlying stock price. The Gamma under the single factor 

European option-pricing model of Black and Scholes is defined as 

𝐺𝑎𝑚𝑚𝑎 (Γ) =
𝜕2𝑉

𝜕𝑆2
=  

𝜕∆

𝜕𝑆
 

 

Γ = 𝑁 ,(𝑑1)𝑒−𝑞𝑠(𝑇−𝑡)/𝑆𝜎√𝑇 − 𝑡, 

 

where 

𝑁 ,(𝑑1) =
1

√2𝜋
𝑒−(𝑑1)2/2. 

Convertibles that are deep in the money or far out of the money have low gamma 

values, whereas convertible bonds that are at the money have relatively higher 
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gamma values. Moreover, gamma is at its highest when the stock price equals the 

conversion value 𝐶𝑉. In convertible arbitrage, a higher gamma indicates that the 

price of the long position of the convertible is more likely to increase than that of 

the short stock position is on the way up, and it is likely to decrease less than that 

of the short stock position is on the way down. 

 

Figure 38: RUS convertible bond Gamma 
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6 Convertible Delta arbitrage 
 

6.1 Introduction to convertible bond arbitrage  
 

The Delta hedging that is associated with convertible bonds investment is called 

convertible arbitrage. Convertible arbitrage is an investment strategy that involves 

purchasing convertible securities and short selling the issuer’s common stock. The 

number of shares sold short usually reflects a delta-neutral or market-neutral 

ratio. Under normal market conditions, the arbitrageur expects the combined 

position to be insensitive to fluctuations in the price of the underlying stock. 

 

Convertible bond arbitrage strategy aims to benefit from undervalued convertible 

bonds by going long on the convertible and going short on the underlying stock. If 

the underlying stock price falls, the hedging fund will exploit its short position. It is 

also likely that the convertible bond will decline less than its underlying stock does 

because it is protected by its value as a fixed-income instrument. 

 

Several convertible bond arbitrage studies have shown that there are pricing 

inefficiencies in some convertible bond markets due to their structural complexity. 

Amman, Kind, and Wilde (2003) showed that 21 convertible bonds listed on the 

French market were underpriced by 3% compared to their theoretical values 

between February 1999 and September 2000. This finding is consistent with those 

of other studies, such as King (1986), Kang and Lee (1996), Hutchinson (2004), 

Chan and Chen (2005), and Henderson (2005).  

 

In this study, I analyze convertible bond Delta arbitrage by producing daily 

convertible bond arbitrage returns for 44 convertible bonds listed on the TSX for 

the period from 2009 to 2016.  

 

The Delta hedging strategy is designed to generate returns from 
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1) the convertible bond yield income and short interest and 

2) the long volatility exposure from the option component of the convertible 

bond.  

In this section, I create a convertible bond arbitrage portfolio to capture the 

abnormal returns from the Delta hedging strategy and describe the risks 

associated with these returns. 

 

The portfolio is created by matching long positions in convertible bonds with short 

positions in the underlying stock to create a Delta hedged convertible bond 

position that captures income and volatility. The Delta strategy is implemented by 

constructing an equally weighted portfolio of 44 hedged convertible bonds from 

2009 to 2016.  

 

The Delta hedging ratio of each convertible bond represents the number of short 

sold units of the underlying stock relative to one unit of the long convertible bond. 

It also measures the sensitivity of price movements between the convertible bond 

and its underlying stock. For instance, a Delta of 0.56  indicates that if the 

underlying stock price increases by 1%, the convertible bond price is likely to 

increase by 0.56%. Therefore, the hedging may be rebalanced as the stock price 

and/or the convertible price moves to capture the long volatility exposure. 

 

In Section 6.2, I describe a typical convertible bond arbitrage position, provide a 

description of how this portfolio is constructed, and conclude with an explanation 

of how the return is captured from the convertible bond hybrid feature. In Section 

6.3, I provide a brief summary of the sample that includes 44 convertible bonds 

listed on the TSX. In Section 6.4, I illustrate the convertible arbitrage hedging 

strategy results and present the buy and hold equity portfolio returns. In Section 

6.5, I list the tables of yearly returns associated with the convertible arbitrage 

hedging strategy portfolio. 
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6.2 Convertible bond arbitrage and portfolio construction 

 

A convertible bond arbitrage strategy is implemented by purchasing a convertible 

bond and selling the underlying stock short, creating a Delta hedged long volatility 

position. The short position is taken at the current Delta of the convertible bond. 

The return of the position is captured from the convertible bond coupon and the 

return of the short sale of the underlying stock, including the cost of borrowing the 

underlying stock for the short sale. 

 

Moreover, the short sale minimizes the risk of the convertible bond portfolio, as 

the arbitrager will benefit from the short position in the underlying stock if the 

convertible bond price declines.  

 

To create a Delta hedging for each convertible bond, I estimate the Delta for each 

convertible bond from the first trading day of the issuing. The Delta estimated ∆ is 

then multiplied by conversion ratio of the convertible bond to calculate the 

number of shares or units of the underlying stock to be sold short. The Delta ratio 

is initiated for each trading day of the convertible bond. The Delta is obtained using 

two calculation methods: the binomial tree model and the Black-Scholes model 

with constant interest rate. 

 

 

6.2.1 Delta of the binomial tree  
 

The Delta is expressed as the ratio that estimates the change in the convertible 

price 𝑉 with respect the change in the equity price 𝑆. 

∆ =
𝜕𝑉

𝜕𝑆
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Figure 39: One-step binomial tree of the convertible bond and underlying stock 

 

Let 𝑆 be the value of the underlying stock at 𝑡0. Then, its terminal value is 𝑆𝑢 in the 

up state and 𝑆𝑑 in the down state. Let 𝑉0 be the convertible bond price at 𝑡0, so 𝑉𝑢 

is the price of the convertible in the up state and 𝑉𝑑 is the price of the convertible 

in the down state. Within the binomial-tree framework, the convertible bond Delta 

∆ is  

∆ =
𝑉𝑢 − 𝑉𝑑

𝑆𝑢 − 𝑆𝑑

. 

 

For illustration, I use the numerical example presented in Section 4.6.2, which 

describes the CWT convertible bond. The hedging strategy involves purchasing the 

convertible bond on 01/12/2011 at the price of 108. The convertible bond is 

hedged against changes in the underlying stock price over one month. The 

number of short sale units relative to long convertible bonds is calculated to be 

2.5 short sale shares for every unit of the convertible bond. 

 

As the Delta measures the convertible bond’s sensitivity to changes in the stock 

price or conversion value, the convertible Delta can be determined from the tree 

conversion value. 

 

Note that  

𝐶𝑉 = 𝛼𝑆, 

𝑉𝑢 

 

𝑆0 𝑉0 

 
𝑉𝑑 

 

𝑆𝑢 

 

𝑆𝑑 
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where 𝛼 is the conversion ratio and 𝑆 is the underlying stock price. 

 

 

 

 

 

 

 

Figure 40: CWT pricing node 

 

To calculate the ∆ of the four nodes, I need to take the average Delta of the upper 

and lower nodes.  

𝑈𝑝𝑝𝑒𝑟 𝐷𝑒𝑙𝑡𝑎 = (135 − 112)/(126 − 93)  

= 0.69 

 

𝐿𝑜𝑤𝑒𝑟 𝐷𝑒𝑙𝑡𝑎 = (137 − 113)/(126 − 93)  

= 0.73 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑡𝑎 = 0.71  

 

Therefore, for a long investment in convertible bond 𝑉, I short the underlying stock 

𝑆 by an equivalent hedging value based on a Delta of 0.71. Table 13 shows an 

example of implementing the binomial Delta method over one month.  
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Date 

Convertibl

e bond 

price 𝑉 

Stock price 

𝑆 

Change in 

𝑉  

Change in 

short 

position 

Net change 

20111201 108 26.97    

20111202 108.1 26.74 0.0009255 
0.006392144 0.007317641 

20111205 108.21 26.91 0.00101706 
0.007810322 0.008827381 

20111206 107.89 26.98 -0.0029616 
0.010700441 0.007738847 

20111207 108.8 26.99 0.00839914 
0.010484379 0.018883524 

20111208 107.5 26.71 -0.0120205 
0.011238631 -0.000781856 

20111209 107.5 26.42 0 
0.007249617 0.007249617 

20111212 107 26.47 -0.004662 
0.009731069 0.005069056 

20111213 106.85 26.55 -0.0014029 
0.009247232 0.00784438 

20111214 106.25 26.53 -0.0056312 
0.001252324 -0.00437885 

20111215 105.75 26.42 -0.004717 
0.002023423 -0.002693567 

20111216 106.25 26.03 0.00471699 
-0.001547587 0.003169403 

20111219 105.75 26.1 -0.004717 
-0.017153933 -0.021870923 

20111220 105.76 26.5 9.4558E-05 
-0.011907757 -0.011813199 

20111221 106.3 26.45 0.00509291 
0.000253811 0.005346721 

20111222 106.3 26.48 0 
-0.008071553 -0.008071553 

20111223 106.55 26.7 0.00234907 
-0.011006937 -0.008657864 

20111228 106.55 26.57 0 
0.004514252 0.004514252 

20111229 106.55 26.49 0 
0.002515492 0.002515492 

20111230 106.55 26.77 0 
0.002240263 0.002240263 

 
Total changes 

 
-0.013516869 0.035965634 0.022448765 

Table 13: Hedging strategy over one month 
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This example illustrates the convertible hedging strategy over one month. 

Although the convertible bond return declined by -1.35% over the month, the 

short position has a positive return of +3.59%, and the total return of the portfolio 

is +2.24%.    

 

6.2.2 Delta of the Black-Scholes model 
 

For a European-style convertible bond, the Black-Scholes model of constant 

interest rate can be used to determine the value of Delta ∆. The value of the 

convertible bond Delta ∆ is 

 

∆ =  𝑒−𝑞𝑠(𝜏)𝑁(𝑑1), 

where 

𝑑1 =  
𝑙𝑛(𝑆

𝐾⁄ ) − 𝑙𝑛 𝐹 + (𝑟 − 𝑞𝑠)
1
2

𝜎2𝜏

𝜎√𝜏
. 

 

The convertible bond Delta has a value between zero and one, so that 

 

0 ≤ ∆ ≤ 1, 

where 𝑆 is the current underlying stock price, 𝐾 is the conversion price, 𝑟 is the 

continuously compounded yield of the risk-free bond, 𝑞𝑠 is the dividend yield, 𝜎 

is the annualized stock return volatility, 𝜏 is the time to maturity in years, and 

𝑁( . ) is the cumulative standard normal distribution function. 

 

The number of short units against investing in a single convertible bond 𝑉  is 

therefore   

𝑠ℎ𝑜𝑟𝑡 𝑢𝑛𝑖𝑡𝑠 =
𝑉 ∗ ∆

𝑆
. 
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The mean reverting volatility is used to estimate the amount of fluctuation in the 

underlying stock as it relates to the convertible bond and the conversion option. 

The historical volatility is calculated in a number of steps. First, I find the day-to-

day price change (𝑅𝑡) (the daily return) from the current and previous day (𝑆𝑡−1) 

by 

𝑅𝑡 = 𝑙𝑛 (
𝑆𝑡

𝑆𝑡−1

). 

 

Then, I find the average price change over the estimation period (𝑛) by the sum 

of the changes and by calculating 𝑅𝑚. 

𝑅𝑚 =  ∑ 𝑅𝑡/𝑛. 

Therefore, the variance 𝜎2 from the mean is 

𝜎2 = √∑( 𝑅𝑡 − 𝑅𝑚)2/𝑁 − 1. 

 

For the annualized volatility, I multiply the variance by 252, the number of 

approximate trading days in a year. 

 

The daily return is calculated for each convertible bond on each trading day at the 

current Delta from the start date of the security to its maturity date. The 

convertible may have removed from the portfolio if the expiry date has passed or 

if the convertible has been called by the issuer. 

The returns for a position 𝑖 on day 𝑡 are calculated as follows 

 

𝑅𝑖𝑡 =
(𝑉𝑖𝑡 − 𝑉𝑖𝑡−1) + 𝑐𝑖𝑡 + (−∆𝑖𝑡−1)(𝑆𝑡 − 𝑆𝑡−1)

𝑉𝑖𝑡−1 + ∆𝑖𝑡−1𝑆𝑡−1

, 

 

where 𝑅𝑖𝑡 is the return on position 𝑖 at time 𝑡; 𝑉𝑖𝑡 is the convertible bond closing 

price at time t; 𝑉𝑖𝑡−1 is is the convertible bond closing price on the previous day 

𝑡 − 1; 𝑐𝑖𝑡 is the coupon payable between 𝑡 − 1 and 𝑡; ∆𝑖𝑡−1 is the Delta hedging 
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ratio for position 𝑖 at time 𝑡 − 1, where the negative sign represents the short sell 

position; 𝑆𝑡  is the underlying equity closing price at time 𝑡 ; and  𝑆𝑡−1  is the 

underlying equity closing price on the previous day 𝑡 − 1. 

 

In order to obtain the coupon payable between 𝑡 − 1 and 𝑡, I need to calculate the 

accrued coupon on each trading day of the convertible bond. Accrued interest is 

calculated based on the number of trading days in the coupon period, the number 

of days in the accrued interest period, and the amount of coupon payments that 

are payable annually or semi-annually.  

 

𝑐𝑖𝑡 = 𝑐 ×  
1

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑐𝑜𝑢𝑝𝑜𝑛 𝑝𝑎𝑦𝑚𝑒𝑛𝑡
 

 

Then, a weighted average portfolio return can be calculated for the 44 convertible 

bonds from 2009 to 2016.  

𝑅𝑝 = ∑ 𝑤𝑖𝑡

𝑛

𝑖=1

𝑅𝑖𝑡 

where 𝑅𝑖𝑡 is the return on position 𝑖 at time 𝑡; 𝑤𝑖𝑡 is the weighting of position 𝑖 on 

day 𝑡, 𝑛 is the total number of position on day 𝑡. 

 

 

6.3 Data  

 

As mentioned in Section 6.2, I investigate 44 Canadian convertible issues between 

2009 and 2016. Data regarding the issues and their characteristics, including stock 

and convertible bond prices, were obtained from the Stockwatch and TSX 

databases. Interest rates and government bond yields were collected from the 

Bank of Canada. Data such as the conversion ratios, dividend yields, start dates, 

maturity dates, and face values of the convertible bonds were obtained from CIBC 

reports. Table 14 shows the data sorting of the Delta hedging portfolio.  
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Table 14: Delta hedging portfolio data sorting 

 

 

6.4 Results 
 

6.4.1 Results of the binomial tree method  

Table 15 illustrates a summary of the annual convertible bond’s arbitrage return 

series based on the binomial method. In 2010, 16 new convertible bond positions 

were added to three positions that had already started in 2009, with an average 

position duration of 5.5 years. The majority of the listed positions were captured 

in 2013 and 2014, with 44 convertible bonds positions with average position 

durations of 2.5 and 1.8, respectively. By the end of 2015, 23 positions were closed 

out due to expiration or a call by the issuer.  

 

The maximum average annual return on hedged positions was 25.72% in 2013, 

and the minimum position return was 9.32% in 2016. The maximum return on an 

individual position was 106.35%, and the minimum position return was -154%. 
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Year 
Number 

of 
Positions 

Average 
Position 

Duration (Yrs) 

Max Position 
Return % 

Min 
Position 
Return % 

Daily 
Average 
Position 
Return % 

Annualize
d Average 
Position 
Return % 

Number 
of 

Positions 
Closed 

Out 

Individual 
Positivity 

- 
Negativit

y of 
Return 

31/12/2009 3 5.5 8.72% -7.99% 0.04% 12.65%  2/-1 

31/12/2010 19 4.3 45.06% -14.08% 0.19% 9.58%  10/-9 

31/12/2011 34 3.8 58.23% -52.58% 0.02% 17.18%  12/-22 

31/12/2012 42 3 58.23% -46.52% 0.03% 10.19%  22/-20 

31/12/2013 44 2.5 62.01% -141.68% 0.10% 25.72% 1 22/-22 

31/12/2014 44 1.8 85.73% -81.98% 0.38% 21.04% 1 24/-20 

31/12/2015 43 1 63.00% -33.94% 0.45% 17.67% 23 24/-19 

31/02/2016 20 0.3 106.35% -154.03% 0.30% 9.32% 20 10/-14 

         

Complete 
sample 

44      44  

Table 15: Binomial tree Delta hedging summery 

 

 

Figure 41 shows the average annual return of the Delta hedges of convertibles 

between 2009 and 2016. 

 

 

Figure 41: Average annual Delta -hedging return – binomial method 

 

The histograms in Figure 42 illustrate the return distributions of the long 

convertible bonds and the short sell positions in the underlying stocks. These 

frequency figures show an example of the mean returns of the 44 convertible 
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bonds in 2013, when the maximum average annual return on the hedging 

positions was captured.  

 

 

Figure 42: Return distributions of long convertibles positions and the hedging strategy 

 

 

Return distributions 
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6.4.2 Results of the Black-Scholes model 

 

Table 16 presents a summary of the annual convertible bond’s arbitrage return 

series based on the Black-Scholes model. In 2010, 16 new convertible bond 

positions were added to three positions that had already started in 2009, with an 

average position duration of 5.5 years. The majority of listed positions were 

captured in 2013 and 2014, with 44 convertible bonds positions with average 

position durations of 2.5 and 1.8, respectively. By the end of 2015, 23 positions 

were closed out due to expiration or a call by the issuer.  

 

Year 
Number 

of 
Positions 

Average 
Position 
Duration 

(Yrs) 

Max Position 
Return % 

Min 
Position 
Return % 

Daily 
Average 
Position 
Return % 

Annualiz
ed 

Average 
Position 
Return % 

Number 
of 

Positions 
Closed 

Out 

Individual 
Positivity 

- 
Negativit

y of 
Return 

31/12/2009 3 5.5 2.98% -2.41% 0.1608% 11.95%  2/-1 

31/12/2010 19 4.3 26.62% -14.08% 0.2127% 22.81%  18/-1 

31/12/2011 34 3.8 35.28% -34.04% 0.0676% 16.89%  28/-6 

31/12/2012 42 3 14.59% -18.09% 0.1142% 28.53%  36/-6 

31/12/2013 44 2.5 56.99% -64.99% 0.1286% 32.15% 1 23/-21 

31/12/2014 44 1.8 22.45% -20.47% 0.0629% 15.71% 1 25/-19 

31/12/2015 43 1 43.07% -28.76% 0.0491% 13.83% 23 17/-26 

31/02/2016 20 0.3 11.02% -19.70% -0.2401% -7.44% 20 6/-14 

         

Complete 
sample 

44      44  

Table 16: Black-Scholes Delta hedging summery 

 

The maximum average annual return on hedging positions was 32% in 2013, and 

the minimum position return was -7.4% in 2016. The maximum return on an 

individual position was 57%, and the minimum position return was -64%. 
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Figure 43 shows the average annual return of the Delta hedging of the convertible 

bonds between 2009 and 2016. 

 

The histograms in Figure 44 illustrate the return distributions of long convertible 

bonds and short sell positions in the underlying stock. These frequency figures 

show an example of the mean returns of 44 convertible bonds in 2013, when the 

maximum average annual return on hedging positions was captured.   

 

Figure 43: Average annual Delta -hedge return 

 

 

Figure 44: Return distributions of long convertibles positions and the hedging strategy 
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Return distributions  
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6.4.3 Summary of the results  

The Delta strategy was implemented by constructing an equally weighted portfolio 

of 44 hedged convertible bonds from 2009 to 2016. The strategy aimed to produce 

deltas and returns for 44 convertible bonds that were listed on the TSX between 

2009 and 2016. The return of the position is captured from the long convertible 

bond, the coupon interest of the convertible bond and the return of the short sale 

of the underlying stock, including the cost of borrowing the underlying stock for 

the short sale. 

 

For the Black-Scholes model, our example indicated that annual average return 

was positive for most of the periods with a maximum average annual return of 

32.15% in 2013. The worst returns were generated by positions added in 2016, 

with average annual returns of -7.4%. The maximum return on an individual 

position was 57%, and the minimum return on an individual position was -64%. 

 

For the binomial method, the annual average return was positive for all periods 

with a maximum average annual return of 25.72% in 2013 and a minimum position 

return of 9.32% in 2016. The maximum return on an individual position was 106%, 

and the minimum return on an individual position was -154%. For both models, 

the majority of new positions were added in 2013 and 2014 with 44 positions. The 

lowest number of positions were captured at the opening of portfolios in 2009 

with 3 positions.  

 

Table 17 shows the summary of the annual average return between 2009 and 

2016. 
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Table 17: Average annual returns of the Delta strategy 

 

It can be seen that the average position returns of the Black-Scholes model and 

the binomial method were -7.44% and 9.32%, respectively. The average position 

duration was 0.3 years. The number of positions was only 20 when the majority of 

the positions were closed out.  

 

The reason for the differences between the results of the two models is that the 

binomial method generated a higher Delta than the Black-Scholes model in most 

cases. The difference in Delta estimation can affect the determination of the 

number of shares selling short against the long convertible bond position. 

Therefore, the return of the short sale of the underlying stock is higher for the 

binomial tree method. Also, in the binomial tree mothed, the interest rate is 

assumed to be stochastic rather than constant as in the Black-Scholes model. 

Moreover, in 2016, when the majority of positions were closed out, some of the 

20 active positions were out of money where Delta was almost zero. This is 

because the conversion value of the bond or the underlying stock fell far below 

the conversion price and the equity option component became nearly worthless. 

Therefore, any difference in the Delta estimation between the two models may 

result in a contrasted outcome, which was only seen in 2016.  

.  

Year 
Annualized Average Position 

Return % (Black-Scholes Model) 

Annualized Average 
Position Return % 

(Binomial Method) 
31/12/2009 11.95% 12.65% 

31/12/2010 22.81% 9.58% 

31/12/2011 16.89% 17.18% 

31/12/2012 28.53% 10.19% 

31/12/2013 32.15% 25.72% 

31/12/2014 15.71% 21.04% 

31/12/2015 13.83% 17.67% 

31/02/2016 -7.44% 9.32% 

   

Total sample 44 44 
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7 Conclusion  
 

A convertible bond is a hybrid security of debt and equity. This type of bond 

provides its bondholders with the right to convert the issue to equity during the 

life of the bond. The conversion ratio determines the number of shares into which 

the bond can be converted. The call feature allows the bond to be purchased back 

by the issuer in the future at a pre-determined price and specified date.  

 

In this thesis, I introduced a two-factor model for convertible bond valuation with 

default risk. I derived the interest rate and the stock price as two stochastic 

variables. The interest rate represents the debt component of the asset, and the 

stock price reflects the equity component. For interest rate modeling, I adopted 

a Vasicek model that captures mean reversion, where the drift 𝑘(𝜃 − 𝑟𝑡 ) 

represents the expected instantaneous change in the interest rate at time 𝑡. I 

investigated the Vasicek model tree with data by back testing the Canadian five-

year zero-coupon bond yield for the period between 2012 and 2015. The 

investigation shows a significant prediction for the Canadian interest rate, with a 

mean of 1.27% in 2015, whereas the actual rate was 1.316%.  

 

For the underlying stock, I used the CRR model with some modifications. The 

model suggested that the equity volatility 𝜎𝑠 is non-constant in different intervals 

but remains constant within each time interval. This modification allows for two 

central nodes in the equity tree instead of one. 

 

Then, I derived the PDE of the European convertible bond with respect to two 

stochastic variables, the interest rate and the underlying stock price. Because it 

was difficult to find a closed solution for the American convertible bond due to 

the complexity of its features, such as the option to convert and its callability, I 

used a binomial tree to find a numerical solution for the convertible bond price. 
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As a convertible bond is a hybrid of debt and equity, I combined the two trees into 

a single tree to value the convertible bond. I provided two numerical examples for 

my valuation model. In the first example, I priced an option-free convertible bond 

that does not allow a call provision and has no default risk. The second example 

provided a valuation model for a callable convertible bond with default risk. Table 

18 summarizes the outcome of the model with respect to the market price.  

 

Example 1: 

AAV option-free convertible 

bond 

Model price Market price (Range) 

111.75 100-111.99 

Example 2: 

CWT callable convertible bond 
123.8 112-124 

Table 17: Model examples compared to market prices  

 

The duration and convexity are significant elements for the study of the sensitivity 

of the convertible bond price to changes in the interest rate. The duration is 

defined as the first derivative of 𝑉  with respect to the interest rate  𝑟 . The 

convexity is expressed as the second derivative of 𝑉 with respect to 𝑟. Because it 

is difficult to obtain a closed-form expression for the American convertible bond, 

I studied the duration and convexity numerically by two methods: the present 

value and the binomial tree method. I also provided an example of duration and 

convexity under the assumption of a European convertible bond. I studied the 

partial derivatives and sensitivities of convertible bond parameters, such as the 

short-run rate, the stock price, the volatilities of both factors, the long-run rate, 

the mean reversion rate, the dividend yield, and the coupon rate. 

 

Convertible arbitrage strategy aims to manage the convertible bond investment 

risk by purchasing convertible securities and short selling the underlying common 

stock. The Delta ratio determines the number of shares to sell short against the 
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long convertible bond position. The Delta strategy was implemented by 

constructing an equally weighted portfolio of 44 hedged convertible bonds from 

2009 to 2016. The strategy aimed to produce deltas and returns for 44 convertible 

bonds that were listed on the TSX between 2009 and 2016. For the Black-

Scholes model, our example indicated that annual average return was positive for 

most of the periods with a maximum average annual return of 32.15% in 2013 and 

a minimum position return of -7.4% in 2016. The maximum return on an individual 

position was 57% and the minimum return on an individual position was -64%. For 

the binomial method, the annual average return was positive for all periods with 

a maximum average annual return of 25.72% in 2013 and a minimum position 

return of 9.32% in 2016. The maximum return on an individual position was 106% 

and the minimum return on an individual position was -154%. Table 18 shows the 

summary of the annual average return of both methods between 2009 and 2016. 

This confirms that one way or another, there is a systematic average 

undervaluation of convertible bonds in the Canadian market as observed mainly 

by Amman, Kind, and Wilde (2003) for the French market. 
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8 Appendix  

8.1 MATLAB code for construction Vasicek tree 
 

function [R,P,Mean]= Vasicek(n) 
R=zeros(n+1,n+1); 

P=zeros(2*n,n); 

r0=0.0138; 

alpha=0.167; 

sigma=0.0029; 

dt=1; 

gama=0.112; 

R(1,1)=r0; 

digits(5) 

for i=2:n+1   % colomn 

    if mod(i,2)==0  

        % central path with p=q=1/2; 

        R(i/2,i)=R(i/2,i-1)+ alpha*(gama-R(i/2,i-1))*dt + sigma*sqrt(dt);    % 

ru,ruud,ruuudd... 

        R(i/2+1,i)=R(i/2,i-1)+ alpha*(gama-R(i/2,i-1))*dt - sigma*sqrt(dt);  % 

rd,rudd,ruuddd...   

        P(i-1,i-1)=0.5; 

        P(i,i-1)=0.5; 

        if i>2 

            for  j=1:i/2-1 

                if R(i/2-j,i)==0 

                    Eru=R(i/2-j,i-1)+alpha*(gama-R(i/2-j,i-1))*dt; 

                    R(i/2-j,i)=sigma^2*dt/(Eru-R(i/2+1-j,i))+Eru; 

                    P((i/2-j)*2-1,i-1)=(Eru-R(i/2+1-j,i))/(R(i/2-j,i)-R(i/2+1-j,i)); 

                    P((i/2-j)*2,i-1)=1- P((i/2-j)*2-1,i-1); 

                     

                    Erd=R(i/2+j,i-1)+alpha*(gama-R(i/2+j,i-1))*dt; 

                    R(i/2+1+j,i)=Erd-sigma^2*dt/(R(i/2+j,i)-Erd); 

                    P((i/2+j)*2-1,i-1)=(Erd-R(i/2+1+j,i))/(R(i/2+j,i)-R(i/2+1+j,i)); 

                    P((i/2+j)*2,i-1)=1-P((i/2+j)*2-1,i-1); 

                end 

            end 

        end 

    else 

        EXP=vpa(R((i-1)/2,i-2)+alpha*(gama-R((i-1)/2,i-2))*dt); 

        R((i+1)/2,i)=EXP+alpha*(gama-EXP)*dt; 

        if i>1 

            for j=1:(i-1)/2 

                if R((i+1)/2-j,i)==0 

                    Eru=R((i+1)/2-j,i-1)+alpha*(gama-R((i+1)/2-j,i-1))*dt; 

                    R((i+1)/2-j,i)=sigma^2*dt/(Eru-R((i+1)/2-j+1,i))+Eru; 

                    P(i-2*j,i-1)=(Eru-R((i+1)/2-j+1,i))/(R((i+1)/2-j,i)-R((i+1)/2-

j+1,i)); 

                    P(i+1-2*j,i-1)=1- P(i+1-2*j-1,i-1); 

                     

                    Erd=vpa(R((i+1)/2-1+j,i-1)+alpha*(gama-R((i+1)/2-1+j,i-1))*dt); 

                    R((i+1)/2+j,i)=Erd-sigma^2*dt/(R((i+1)/2-1+j,i)-Erd); 

                    P(i+2*j-2,i-1)=(Erd-R((i+1)/2+j,i))/(R((i+1)/2-1+j,i)-

R((i+1)/2+j,i)); 

                    P(i+2*j-1,i-1)=1-P(i+2*j-2,i-1); 

                end 

            end 

        end 

    end 

end 

  

U=R(1,:); 

L=[]; 

for k=1:length(U) 

    m=R(k,k); 

    L=[L m]; 

end 

Mean=0.5.*(L+U); 

%plot(U,'g-') 

%plot(L,'b.') 

%plot(Mean,'ro') % [R,P,~]= Vasicek(5)   %Interest Rate and Probabilities 

% [R,~,Mean]= Vasicek(5); %Mean value 
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8.2 MATLAB code for generating Vasicek model parameters  
 

% Parameter estimation for the Vasicek model. 
% Uses exact form for the likelihood function 
% Vasicek model is dr = alpha(mu - r)dt + sigma*W 
%   alpha = mean reversion speed, 
%   mu    = mean reversion level, 
%   sigma = volatility. 
clc; clear; 

  
% Input the 5- year bond yield. 
[r, date] = xlsread('Vasicek_short_rate_data.xls', 'Data', 'A3:B4000'); 
r = r/100; 

  
% Number of observations, observations are daily. 
N = length(r); 
dt = 1/252; 

  
% Find the OLS estimates for alpha, mu, and sigma. 
% These estimates are used as starting values for the exact likelihood. 
% From "Maximum Likelihood Estimation of the Vasicek Process: The 

Matlab 
% Implementation". 
y = (r(2:N) - r(1:N-1))./sqrt(r(1:N-1)); 
x1 = dt./sqrt(r(1:N-1)); 
x2 = sqrt(r(1:N-1)).*dt; 
b = regress(y, [x1 x2]); 
alpha = -b(2); 
mu = b(1)/alpha; 
res = y - b(1).*x1 - b(2).*x2; 
sigma = std(res)./sqrt(dt); 

  
% Estimate alpha, mu, and sigma using the exact likelihood. 

  
start = [alpha mu sigma]; 
params = fminsearch(@(b) CIR_LL(b,r,dt), start); 
alpha  = params(1); 
mu     = params(2); 
sigma  = params(3); 

  
% Generate the yield curve R(t,T) based on the parameters. 
% Inline function for A(t,T). 
A = inline('(2*gam*exp((alpha+gam)*(T-t)/2)/(2*gam + (alpha + 

gam)*(exp(gam*(T-t))-1)))^(2*alpha*mu/sigma^2)',... 
    'alpha','mu','sigma','gam','t','T'); 

  
% Inline function for B(t,T). 
B = inline('2*(exp(gam*(T-t))-1) / (2*gam + (alpha+gam)*(exp(gam*(T-

t))-1))',... 
    'alpha','mu','gam','t','T'); 

  
% Gamma parameter. 
gam = sqrt(alpha^2 + 2*sigma^2); 

  
% Define the required settings for the yield curve. 
LastTenor = N/252;        % Last tenor is about 10 years. 
t = 0;                    % Time zero t=0. 
Inc = 1/2;                % Increment for the yield curve tenor points. 
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T = [Inc:Inc:LastTenor];  % Tenor points. 
CurrentRate = r(end);     % Current rate r(t) is most recent rate. 

  
% Zero coupon bond: P(t,T) = A(t,T)*exp(B(t,T)*CurrentRate). 
% Yield curve : R(t,T) = -log(P(t,T))/(T-t). 
for i=1:length(T) 
    P(i) = A(alpha,mu,sigma,gam,t,T(i))*exp(-

B(alpha,mu,gam,t,T(i))*CurrentRate); 
    R(i) = -log(P(i))/(T(i)-t)*100; 
end 
% Simulate 10 paths for the short rate. 
Nsims = 10; 
for k=1:Nsims; 
    f(1,k) = r(1); 
    for t=2:N 
        f(t-1,k) = max(0,f(t-1,k)); 
        f(t,k) = f(t-1,k) + alpha*(mu - f(t-1,k))*dt + 

sigma*randn(1)*(dt); 
    end 
end 
% Plot the results. 
subplot(2,1,1) 
plot(T,R) 
legend('Estimated Yield Curve') 
xlabel('Time'); 
ylabel('Yield'); 

  
subplot(2,1,2) 
plot((1:N), r, 'k-o',(1:N), f) 
legend('Original time series', 'Simulated series') 
xlabel('Time') 
ylabel('Simulated short rate') 

 

 

8.3 CRR stock price tree – Matlab code 
 

function [S,P]= StockPrice(~,n) 

 
S0=4.36; 
dt=1; 
q=0;   %yield 
r=0.0138; 
% initial value of non-constant sigma1-sigma3 
sigma=[0.305; 0.33; 0.31]; 
% calculate u1,d1 - u3,d3 
u=exp(sigma*sqrt(dt))'; 
d=1./u; 
pu=(exp((r-q)*dt)-d)./(u-d); 
pd=1-pu; 
% matrix of the rate stock price goes up or goes down 
ud=zeros(2^n,n+1); 
ud(1,1)=1; 
ud(1:2,2)=[u(1);d(1)]; 
P=zeros(2^n,n); 
P(1:2,1)=[pu(1);pd(1)]; 
for i=3:n+1 
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    for j=1:2:2^(i-1)-1 
        ud(j:j+1,i)=ud((j+1)/2,i-1).*[u(i-1);d(i-1)]; 
        P(j,i-1)=(exp((r-q)*dt)-ud(j+1,i)/ud((j+1)/2,i-

1))./(ud(j,i)/ud((j+1)/2,i-1)-ud(j+1,i)/ud((j+1)/2,i-1)); 
        P(j+1,i-1)=1-P(j,i-1); 
    end    
end 

  
% Stock price matrix 
S=S0*ud; 

end 

 

 

8.4 AAV convertible bond – Matlab code 

 

function [Cb,Int_R,S_Price,Int_P,S_Prob]=C_B(n) 

%S0=4.36; 

F=100; 

c=0.05; 

C=c*F; 

CR=8.6; 

S0=4.36; 

%CB=zeros((2^(n-1))*n*2,n+1); 

Cb=zeros(2^(2*n-1),n+1); 

  

%----- reset Stock Price  

% 

[S_Price,S_Prob]= StockPrice(S0,n); % Stock Price 

Prob_S=[zeros(size(S_Prob,1),1) S_Prob]; 

S_price=zeros(2^(2*n-1),n+1); 

S_prob=zeros(2^(2*n-1),n+1); 

for j=n:-1:1 

    S=S_Price(1:2^j,j+1); 

    P_S=Prob_S(1:2^j,j+1); 

    for i=1:j 

        s=reshape(S,2^(2*i-1),[]); 

        s=repmat(s,2,1); 

        S=reshape(s,[],1); 

         

        p_S=reshape(P_S,2^(2*i-1),[]); 

        p_S=repmat(p_S,2,1); 

        P_S=reshape(p_S,[],1); 

    end 

    if j==n 

        A=reshape(S,[],length(S)/2); 

        AA=reshape(P_S,[],length(P_S)/2); 

        l=length(A); 

        B=[]; 

        BB=[]; 

        for i=1:2:l 

            b=A(:,i); 

            bb=AA(:,i); 

            B=[B;b]; 

            BB=[BB;bb]; 

        end 

        S_price(:,end)=B; 

        S_prob(:,end)=BB; 

    else 

        S_price(1:length(S),j+1)=S; 

        S_prob(1:length(P_S),j+1)=P_S; 

    end 

end 

S_price(1,1)=S_Price(1,1); 

S_probend=S_prob(1:2,end); 

S_prob=S_prob(1:length(S_prob)/2,2:end-1); 

  

%--------------------------------- 
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%----- reset interest rate 

[Int_R,Int_P]= Vasicek(n-1); 

Int_rate=zeros(4^(n-1),n); 

Int_rate(1,1)=Int_R(1,1); 

  

for j=2:n 

    r=Int_R(1:j,j)'; 

    for i=1:j-1 

        k=repmat(r,2,1); 

        [~,l]=size(k); 

        j1=k(:,1:l-1); 

        j2=k(:,2:l); 

        J=[j1;j2]; 

        r=J; 

    end 

    Int_rate(1:4^(j-1),j)=r; 

end 

  

Prob_I=zeros(4^(n-1),n-1); 

for j=1:n-1 

    p=Int_P(1:2*j,j)';    

    for i=1:j 

        k=repmat(p,2,1); 

        [~,l]=size(k); 

        if l>2 

            j1=k(:,1:l-2); 

            j2=k(:,3:l); 

        else 

            j1=k(:,1); 

            j2=k(:,2:l); 

        end 

        J=[j1;j2]; 

        p=J; 

    end 

    Prob_I(1:4^j,j)=p; 

end 

  

Cb(:,n+1)=max(S_price(:,n+1)*CR,F)+C; 

for i=1:4^(n-1) 

    Cb(i,n)=max(S_price(i,n)*CR, ((((S_probend(2)*Cb(2*i-1,end))+ 

(S_probend(1)*Cb(2*i,end))))/(1+Int_rate(i,n)))); 

end 

for i=n-1:-1:1 

    for j=1:4^(i-1) 

        Cb(j,i)=max(S_price(j,i)*CR,(S_prob(4*j-3,i).*Prob_I(4*j-3,i)*(Cb(4*j-

3,i+1)+C)+S_prob(4*j-2,i).*Prob_I(4*j-2,i)*(Cb(4*j-2,i+1)+C)+S_prob(4*j-1,i).*Prob_I(4*j-

1,i)*(Cb(4*j-1,i+1)+C)+S_prob(4*j,i).*Prob_I(4*j,i)*(Cb(4*j,i+1)+C))/(1+Int_rate(j,i))); 

    end 

end 

  

Cb_value=Cb(1,1); 

%Prob 

%Int_rate 

%S_price 

  

end 

  

function [R,P,Mean]= Vasicek(n) 

  

R=zeros(n+1,n+1); 

P=zeros(2*n,n); 

r0=0.0137; 

alpha=0.167; 

sigma=0.0029; 

dt=1; 

gama=0.0112; 

R(1,1)=r0; 

  

%digits(5) 

for i=2:n+1   % colomn 

    if mod(i,2)==0  

        % central path with p=q=1/2; 

        R(i/2,i)=R(i/2,i-1)+ alpha*(gama-R(i/2,i-1))*dt + sigma*sqrt(dt);    % 

ru,ruud,ruuudd... 

        R(i/2+1,i)=R(i/2,i-1)+ alpha*(gama-R(i/2,i-1))*dt - sigma*sqrt(dt);  % 

rd,rudd,ruuddd...   

        P(i-1,i-1)=0.5; 
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        P(i,i-1)=0.5; 

        if i>2 

            for  j=1:i/2-1 

                if R(i/2-j,i)==0 

                    Eru=R(i/2-j,i-1)+alpha*(gama-R(i/2-j,i-1))*dt; 

                    R(i/2-j,i)=sigma^2*dt/(Eru-R(i/2+1-j,i))+Eru; 

                    P((i/2-j)*2-1,i-1)=(Eru-R(i/2+1-j,i))/(R(i/2-j,i)-R(i/2+1-j,i)); 

                    P((i/2-j)*2,i-1)=1- P((i/2-j)*2-1,i-1); 

                     

                    Erd=round1(R(i/2+j,i-1)+alpha*(gama-R(i/2+j,i-1))*dt,6); 

                    R(i/2+1+j,i)=Erd-sigma^2*dt/(R(i/2+j,i)-Erd); 

                    P((i/2+j)*2-1,i-1)=round1((Erd-R(i/2+1+j,i))/(R(i/2+j,i)-

R(i/2+1+j,i)),6); 

                    P((i/2+j)*2,i-1)=1-P((i/2+j)*2-1,i-1); 

                end 

            end 

        end 

    else 

        EXP=(R((i-1)/2,i-2)+alpha*(gama-R((i-1)/2,i-2))*dt); 

        R((i+1)/2,i)=EXP+alpha*(gama-EXP)*dt; 

        if i>1 

            for j=1:(i-1)/2 

                if R((i+1)/2-j,i)==0 

                    Eru=R((i+1)/2-j,i-1)+alpha*(gama-R((i+1)/2-j,i-1))*dt; 

                    R((i+1)/2-j,i)=sigma^2*dt/(Eru-R((i+1)/2-j+1,i))+Eru; 

                    P(i-2*j,i-1)=(Eru-R((i+1)/2-j+1,i))/(R((i+1)/2-j,i)-R((i+1)/2-

j+1,i)); 

                    P(i+1-2*j,i-1)=1- P(i+1-2*j-1,i-1); 

                     

                    Erd=round1((R((i+1)/2-1+j,i-1)+alpha*(gama-R((i+1)/2-1+j,i-

1))*dt),6); 

                    R((i+1)/2+j,i)=Erd-sigma^2*dt/(R((i+1)/2-1+j,i)-Erd); 

                    P(i+2*j-2,i-1)=round1((Erd-R((i+1)/2+j,i))/(R((i+1)/2-1+j,i)-

R((i+1)/2+j,i)),6); 

                    P(i+2*j-1,i-1)=1-P(i+2*j-2,i-1); 

                end 

            end 

        end 

    end 

end 

  

U=R(1,:); 

L=[]; 

  

for k=1:length(U) 

    m=R(k,k); 

    L=[L m]; 

end 

Mean=0.5.*(L+U); 

end 

  

  

function [S,P]= StockPrice(S0,n) 

dt=1; 

q=0;   %yield 

r=0.02; 

% initial value of non-constant sigma1-sigma3 

sigma=[0.31; 0.37; 0.39]; 

  

% calculate u1,d1 - u3,d3 

u=exp(sigma*sqrt(dt))'; 

d=1./u; 

pu=(exp((r-q)*dt)-d)./(u-d); 

pd=1-pu; 

% matrix of the rate stock price goes up or goes down 

ud=zeros(2^n,n+1); 

ud(1,1)=1; 

ud(1:2,2)=[u(1);d(1)]; 

P=zeros(2^n,n); 

P(1:2,1)=[pu(1);pd(1)]; 

  

  

for i=3:n+1 

    for j=1:2:2^(i-1)-1 

        ud(j:j+1,i)=ud((j+1)/2,i-1).*[u(i-1);d(i-1)]; 

        P(j,i-1)=(exp((r-q)*dt)-ud(j+1,i)/ud((j+1)/2,i-1))./(ud(j,i)/ud((j+1)/2,i-1)-

ud(j+1,i)/ud((j+1)/2,i-1)); 
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        P(j+1,i-1)=1-P(j,i-1); 

    end    

end 

  

% Stock price matrix 

S=S0*ud; 

end 

  

  

function a= round1(a,n)     

a=a*(10^n); 

a=round(a); 

a=a/(10^n); 

end  

% INPUT 

% [Cb,Int_R,S_Price,Int_P,S_Prob]=C_B(4) 

 

 

8.5 CWT convertible bond with default risk– Matlab code 
 

function [Cb_callable,Int_R,S_Price]=CB_callable(n) 

%CWT 

%S0=28; 

F=100; 

c=0.0575; 

C=c*F; 

CR=3.88; 

S0=28; 

CP=125; 

lambda_1=0.0034; 

lambda_2=0.0155; 

lambda_3=0.0221; 

delta=30; 

 

%CB=zeros((2^(n-1))*n*2,n+1); 

Cb_callable=zeros(2^(2*n-1),n+1); 

  

%----- reset Stock Price  

% 

S_Price= StockPrice(S0,n); % Stock Price 

  

S_price=zeros(2^(2*n-1),n+1); 

for j=n:-1:1 

    S=S_Price(1:2^j,j+1); 

    for i=1:j 

        s=reshape(S,2^(2*i-1),[]); 

        s=repmat(s,2,1); 

        S=reshape(s,[],1); 

    end 

    if j==n 

        A=reshape(S,[],length(S)/2); 

        l=length(A); 

        B=[]; 

        for i=1:2:l 

            b=A(:,i); 

            B=[B;b]; 

        end 

        S_price(:,end)=B; 

    else 

        S_price(1:length(S),j+1)=S; 

    end 

end 

S_price(1,1)=S_Price(1,1); 

  

%----- reset interest rate 

[Int_R,P]= Vasicek(n-1); 

Int_rate=zeros(4^(n-1),n); 

Int_rate(1,1)=Int_R(1,1); 

  

for j=2:n 

    r=Int_R(1:j,j)'; 

    for i=1:j-1 
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        k=repmat(r,2,1); 

        [~,l]=size(k); 

        j1=k(:,1:l-1); 

        j2=k(:,2:l); 

        J=[j1;j2]; 

        r=J; 

    end 

    Int_rate(1:4^(j-1),j)=r; 

end 

%---------------------------- 

  

Prob=zeros(4^(n-1),n-1); 

for j=1:n-1 

    p=P(1:2*j,j)';    

    for i=1:j 

        k=repmat(p,2,1); 

        [~,l]=size(k); 

        if l>2 

            j1=k(:,1:l-2); 

            j2=k(:,3:l); 

        else 

            j1=k(:,1); 

            j2=k(:,2:l); 

        end 

        J=[j1;j2]; 

        p=J; 

    end 

    Prob(1:4^j,j)=p; 

end 

Cb_callable(:,n+1)=max(S_price(:,n+1)*CR,F)+C; 

for i=1:4^(n-1) 

    Cb_callable(i,n)=max(S_price(i,n)*CR,min(((0.5*(1- lambda_3))*Cb_callable(2*i-1,end)+ 

(0.5*(1- lambda_3))*Cb_callable(2*i,end)+lambda_3*delta)+/(1+Int_rate(i,n)),CP)); 

end 

for i=n-1:-1:2 

    for j=1:4^(i-1) 

        Cb_callable(j,i)=max(S_price(j,i)*CR,min(CP,(0.5*Prob(4*j-3,i)*(1- 

lambda_2)*(Cb_callable(4*j-3,i+1)+C)+0.5*Prob(4*j-2,i)*(1- lambda_2)*(Cb_callable(4*j-

2,i+1)+C)+0.5*Prob(4*j-1,i)*(1- lambda_2)*(Cb_callable(4*j-1,i+1)+C)+0.5*Prob(4*j,i)*(1- 

lambda_2)*(Cb_callable(4*j,i+1)+C))+lambda_2*delta /(1+Int_rate(j,i)))); 

    end 

end 

Cb_callable(1,1)=max(S_price(j,i)*CR,(0.5*Prob(4*j-3,i)*(1- lambda_1)*(Cb_callable(4*j-

3,i+1)+C)+0.5*Prob(4*j-2,i)*(1- lambda_1)*(Cb_callable(4*j-2,i+1)+C)+0.5*Prob(4*j-

1,i)*(1- lambda_1)*(Cb_callable(4*j-1,i+1)+C)+0.5*Prob(4*j,i)*(1- 

lambda_1)*(Cb_callable(4*j,i+1)+C))+lambda_1*delta /(1+Int_rate(j,i))); 

 

%Prob 

%Int_rate 

%S_price 

  

end 

  

function [R,P,Mean]= Vasicek(n) 

  

R=zeros(n+1,n+1); 

P=zeros(2*n,n); 

r0=0.01375; 

alpha=0.167; 

sigma=0.0029; 

dt=1; 

gama=0.0112; 

R(1,1)=r0; 

  

for i=2:n+1   % colomn 

    if mod(i,2)==0  

        % central path with p=q=1/2; 

        R(i/2,i)=R(i/2,i-1)+ alpha*(gama-R(i/2,i-1))*dt + sigma*sqrt(dt);    % 

ru,ruud,ruuudd... 

        R(i/2+1,i)=R(i/2,i-1)+ alpha*(gama-R(i/2,i-1))*dt - sigma*sqrt(dt);  % 

rd,rudd,ruuddd...   

        P(i-1,i-1)=0.5; 

        P(i,i-1)=0.5; 

        if i>2 

            for  j=1:i/2-1 

                if R(i/2-j,i)==0 

                    Eru=R(i/2-j,i-1)+alpha*(gama-R(i/2-j,i-1))*dt; 
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                    R(i/2-j,i)=sigma^2*dt/(Eru-R(i/2+1-j,i))+Eru; 

                    P((i/2-j)*2-1,i-1)=(Eru-R(i/2+1-j,i))/(R(i/2-j,i)-R(i/2+1-j,i)); 

                    P((i/2-j)*2,i-1)=1- P((i/2-j)*2-1,i-1); 

                     

                    Erd=R(i/2+j,i-1)+alpha*(gama-R(i/2+j,i-1))*dt; 

                    R(i/2+1+j,i)=Erd-sigma^2*dt/(R(i/2+j,i)-Erd); 

                    P((i/2+j)*2-1,i-1)=(Erd-R(i/2+1+j,i))/(R(i/2+j,i)-R(i/2+1+j,i)); 

                    P((i/2+j)*2,i-1)=1-P((i/2+j)*2-1,i-1); 

                end 

            end 

        end 

    else 

        EXP=R((i-1)/2,i-2)+alpha*(gama-R((i-1)/2,i-2))*dt; 

        R((i+1)/2,i)=EXP+alpha*(gama-EXP)*dt; 

        if i>1 

            for j=1:(i-1)/2 

                if R((i+1)/2-j,i)==0 

                    Eru=R((i+1)/2-j,i-1)+alpha*(gama-R((i+1)/2-j,i-1))*dt; 

                    R((i+1)/2-j,i)=sigma^2*dt/(Eru-R((i+1)/2-j+1,i))+Eru; 

                    P(i+1-2*j-1,i-1)=(Eru-R((i+1)/2-j+1,i))/(R((i+1)/2-j,i)-R((i+1)/2-

j+1,i)); 

                    P(i+1-2*j,i-1)=1- P(i+1-2*j-1,i-1); 

                     

                    Erd=R((i+1)/2-1+j,i-1)+alpha*(gama-R((i+1)/2-1+j,i-1))*dt; 

                    R((i+1)/2+j,i)=Erd-sigma^2*dt/(R((i+1)/2-1+j,i)-Erd); 

                    P(i+2*j-2,i-1)=(Erd-R((i+1)/2+j,i))/(R((i+1)/2-1+j,i)-

R((i+1)/2+j,i)); 

                    P(i+2*j-1,i-1)=1-P(i+2*j-2,i-1); 

                end 

            end 

        end 

    end 

end 

  

U=R(1,:); 

L=[]; 

  

for k=1:length(U) 

    m=R(k,k); 

    L=[L m]; 

end 

Mean=0.5.*(L+U); 

end 

  

function S= StockPrice(S0,n) 

dt=1; 

% initial value of non-constant sigma1-sigma3 

sigma=[0.1; 0.11; 0.12 ]; 

  

% calculate u1,d1 - u3,d3 

u=exp(sigma*sqrt(dt))'; 

d=1./u; 

  

% matrix of the rate stock price goes up or goes down 

ud=zeros(2^n,n+1); 

ud(1,1)=1; 

ud(1:2,2)=[u(1);d(1)]; 

for i=3:n+1 

    for j=1:2:2^(i-1)-1 

        ud(j:j+1,i)=ud((j+1)/2,i-1).*[u(i-1);d(i-1)]; 

    end    

end 

  

% Stock price matrix 

S=S0*ud; 

end 

% INPUT 

% [Cb_callable]=CB_callable(3) 

 

 

 

 

%Default risk 

 

 

%Default risk 
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function [lambda_1, lambda_2, lambda_3] = lambda_calc(r0, r0_star, delta, ksai, r2_star, 

r1, u, d, r3_star, r2, uu, ud, dd) 

 

lambda_1 = (1-exp(r0)-r0_star)/(1-delta); 

 

 

 

lambda_2 = (1-(exp(-2*r2_star+r0)-ksai*lambda_1)/((exp(-r1*u)+exp(-r1*d))*pi*(1-

lambda_1)))/(1-ksai); 

 

lambda_3 = 1-((exp(-3*r3_star+r0)-ksai*lambda_1-pi*(1-lambda_1)*ksai*lambda_2*(exp(-

r1*u)+exp(-r1*d)))... 

    /pi^2*(1-lambda_1)*(1-lambda_2)*(exp(-r1*u)*(exp(-r2*uu)+exp(-r2*ud))+exp(-

r1)*d*(exp(-r2*ud)+exp(-r2*dd))))/(1-ksai); 

 

 

end 

 

 

 

  



128 
 

References  

1. Agarwal, V., Fung, W., Loon, Y.C. and Naik, N.Y., 2004. Risks in hedge fund 

strategies: Case of convertible arbitrage. Georgia State University, Robinson 

College of Business, Research Paper. 

2. Ammann, M., Kind, A. and Wilde, C., 2003. Are convertible bonds 

underpriced? An analysis of the French market. Journal of Banking & 

Finance, 27(4), pp.635-653. 

3. Ammann, M., Kind, A. and Wilde, C., 2008. Simulation-based pricing of 

convertible bonds. Journal of Empirical Finance, 15(2), pp.310-331. 

4. Andersen, L.B. and Buffum, D., 2002. Calibration and implementation of 

convertible bond models. 

5. Arvanitis, A. and Gregory, J., 2001. Credit. The complete guide to pricing, 

hedging and risk management. Risk books. 

6. Ayache, E., Forsyth, P.A. and Vetzal, K.R., 2003. The valuation of convertible 

bonds with credit risk. Cornell University.  

7. Ballotta, L. and Kyriakou, I., 2015. Convertible bond valuation in a jump 

diffusion setting with stochastic interest rates. Quantitative Finance, 15(1), 

pp.115-129. 

8. Bank of Canada. 2016.  Interest Rates. [ONLINE] Avalable 

at: https://www.bankofcanada.ca/rates/interest-rates/. [Accessed 1 

February 2016]. 

9. Barone-Adesi, G., Bermudez, A. and Hatgioannides, J., 2003. Two-factor 

convertible bonds valuation using the method of characteristics/finite 

elements. Journal of Economic Dynamics and Control, 27(10), pp.1801-

1831. 

https://www.bankofcanada.ca/rates/interest-rates/


129 
 

10. Black, F. and Scholes, M., 1973. The pricing of options and corporate 

liabilities. Journal of Political Economy, 81(3), pp.637-654.  

11. Bloch D. and P. Miralles (2002), “Credit Treatment in Convertible Bond 

Model,” Working Paper, Dresdner Kleinwort Wasserstein. 

12. Bossaerts, P., 1989. Simulation estimators of optimal early 

exercise. Graduate School of Industrial Administration. 

13. Boyle, P., Broadie, M. and Glasserman, P., 1997. Monte Carlo methods for 

security pricing. Journal of economic dynamics and control, 21(8-9), 

pp.1267-1321. 

14. Boyle, P.P., 1988. A lattice framework for option pricing with two state 

variables. Journal of Financial and Quantitative Analysis, 23(1), pp.1-12. 

15. Brennan, M.J. and Schwartz, E.S., 1977. Convertible bonds: Valuation and 

optimal strategies for call and conversion. The Journal of Finance, 32(5), 

pp.1699-1715.  

16. Brennan, M.J. and Schwartz, E.S., 1980. Analyzing convertible 

bonds. Journal of Financial and Quantitative Analysis, 15(4), pp.907-929.  

17. Brooks, R. and Attinger, B., 1992. Using duration and convexity in the 

analysis of callable convertible bonds. Financial Analysts Journal, 48(4), 

pp.74-77. 

18. Buchan, M.J., 1998. Convertible bond pricing: Theory and evidence. 

19. Buchan, M.J., 1998. The pricing of convertible bonds with stochastic term 

structures and corporate default risk. In Amos Tuck School of Business 

Dartmouth College Working Paper. 



130 
 

20. Buetow Jr, G.W., Hanke, B. and Fabozzi, F.J., 2001. Impact of different 

interest rate models on bond value measures. The Journal of Fixed 

Income, 11(3), pp.41-53. 

21. Calamos, J.P., 1988. Investing in Convertible Securities: Your Complete Guide 

to the Risks and Rewards. Longman.  

22. Calamos, N.P., 2003. Convertible Arbitrage: Insights and Techniques for 

Successful Hedging (Vol. 177). John Wiley & Sons.  

23. Carayannopoulos, P. and Kalimipalli, M., 2003. Convertible bond prices and 

inherent biases. The Journal of Fixed Income, 13(3), pp.64-73.  

24. Carayannopoulos, P. and Kalimipalli, M., 2003. Convertible bond prices and 

inherent biases. Journal of Fixed Income, 13(3), pp.64-73. 

25. Carayannopoulos, P. and Kalimipalli, M., 2003. Convertible bond prices and 

inherent biases. Journal of Fixed Income, 13(3), pp.64-73. 

26. Carayannopoulos, P., 1996. Valuing convertible bonds under the 

assumption of stochastic interest rates: An empirical 

investigation. Quarterly Journal of Business and Economics, pp.17-31. 

27. Chambers, D.R. and Lu, Q., 2007. A tree model for pricing convertible bonds 

with equity, interest rate, and default risk. The Journal of Derivatives, 14(4), 

pp.25-46.  

28. Chan, A.W. and Chen, N.F., 2007. Convertible bond underpricing: 

Renegotiable covenants, seasoning, and convergence. Management 

Science, 53(11), pp.1793-1814. 

29. Cheung, W. and Nelken, I., 1994. Costing the converts. Risk, 7(7), pp.47-49. 

30. Chiarella, C. and Kwon, O.K., 2001. Classes of interest rate models under the 

HJM framework. Asia-Pacific financial markets, 8(1), pp.1-22. 



131 
 

31. Choi, C.H., 2004. Analytics of duration and Greeks of convertible 

bonds (Doctoral dissertation). 

32. Choi, D., Getmansky, M. and Tookes, H., 2009. Convertible bond arbitrage, 

liquidity externalities, and stock prices. Journal of Financial 

Economics, 91(2), pp.227-251. 

33. CIBC Wood Gundy., 2016. Convertible Debenture Report. Available at 

https://www.cibcwg.com/c/document_library/get_file?uuid=c321cfd5-

591a-40ff-babd-9a879d5afb2f&groupId=92706 (Accessed: 30 November 

2016). 

34. Cox, J.C., Ingersoll Jr, J.E. and Ross, S.A., 1985. A theory of the term structure 

of interest rates. Econometrica: Journal of the Econometric Society, pp.385-

407.  

35. Cox, J.C., Ingersoll Jr, J.E. and Ross, S.A., 1985. An intertemporal general 

equilibrium model of asset prices. Econometrica: Journal of the 

Econometric Society, pp.363-384. 

36. Cox, J.C., Ross, S.A. and Rubinstein, M., 1979. Option pricing: A simplified 

approach. Journal of Financial Economics, 7(3), pp.229-263.  

37. Davis, M. and Lischka, F.R., 2002. Convertible bonds with market risk and 

credit risk. Ams Ip Studies In Advanced Mathematics, 26, pp.45-58. 

38. De Simone, A., 2013. A Two-Factor Binomial Model for Pricing Hybrid 

Securities: A Simplified Approach. 

39. De Spiegeleer, J. and Schoutens, W., 2011. The Handbook of Convertible 

Bonds: Pricing, Strategies and Risk Management (Vol. 581). John Wiley & 

Sons. 

40. Deloitte LLP., 2014. How to avoid the death spiral of converts, the Canadian 

convertible debentures market. Available at 

https://www.cibcwg.com/c/document_library/get_file?uuid=c321cfd5-591a-40ff-babd-9a879d5afb2f&groupId=92706
https://www.cibcwg.com/c/document_library/get_file?uuid=c321cfd5-591a-40ff-babd-9a879d5afb2f&groupId=92706


132 
 

https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/finance

/ca-en-convertile-debentures-financial-advisory.pdf (Accessed: 25 

September 2017). 

41. Duffie, D. and Singleton, K.J., 1999. Modeling term structures of defaultable 

bonds. The review of financial studies, 12(4), pp.687-720. 

42. Duffie, D. and Singleton, K.J., 2004. Credit Risk: Pricing, Measurement, and 

Management. 

43. Dunetz, M.L. and Mahoney, J.M., 1988. Using duration and convexity in the 

analysis of callable bonds. Financial Analysts Journal, 44(3), pp.53-72. 

44. Fabozzi, F.J., 1999. Duration, Convexity, and Other Bond Risk Measures 

(Vol. 58). John Wiley & Sons. 

45. Fabozzi, F.J., 2005. The handbook of fixed income securities. New York, 

McGraw Hill. 

46. Fabozzi, F.J., 2007. Fixed Income Analysis (Vol. 6). John Wiley & Sons. 

47. Ferguson, R.A., Butman, R.E., Erickson, H.L. and Rossiello, S., 1995. An 

intuitive procedure to approximate convertible bond hedge ratios and 

durations. The Journal of Portfolio Management, 22(1), pp.103-111. 

48. Ferox Capital LLP., 2012. The Case for Convertible Bonds. Available at 

www.barclayhedge.com/research/educational-articles  (Accessed: 08 

November 2017). 

49. Finnerty, J.D., 2015. Valuing convertible bonds and the option to exchange 

bonds for stock. Journal of Corporate Finance, 31, pp.91-115. 

50. Forsyth, P., 2005. An introduction to computational finance without 

agonizing pain. School of Computer Science, University of Waterloo. 

https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/finance/ca-en-convertile-debentures-financial-advisory.pdf
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/finance/ca-en-convertile-debentures-financial-advisory.pdf
http://www.barclayhedge.com/research/educational-articles


133 
 

51. Galla, T., 2006. Stochastic Processes, Ito Calculus and Black-Scholes 

formula. Complex Systems and Statistical Physics Group, School of Physics 

and Astronomy, University of Manchester, Manchester, UK. 

52. Garcıa, D., 2003. Convergence and biases of Monte Carlo estimates of 

American option prices using a parametric exercise rule. Journal of 

Economic Dynamics and Control, 27(10), pp.1855-1879. 

53. Gepts, S.J., 1987. Valuation and Selection of Convertible Bonds: Based on 

Modern Option Theory. Praeger. 

54. Geske, R. and Shastri, K., 1985. Valuation by approximation: a comparison 

of alternative option valuation techniques. Journal of Financial and 

Quantitative Analysis, 20(1), pp.45-71. 

55. Heath, D., Jarrow, R. and Morton, A., 1992. Bond pricing and the term 

structure of interest rates: A new methodology for contingent claims 

valuation. Econometrica: Journal of the Econometric Society, pp.77-105. 

56. Henderson, B.J. and Zhao, B., 2014. More than meets the eye: Convertible 

bond issuers' concurrent transactions. Journal of Corporate Finance, 24, 

pp.57-79. 

57. Henderson, B.J., 2005. Convertible bonds: New issue performance and 

arbitrage opportunities. Unpublished working paper. University of Illinois, 

Urbana-Champaign. 

58. Ho, T.S. and Lee, S.B., 1986. Term structure movements and pricing interest 

rate contingent claims. The Journal of Finance, 41(5), pp.1011-1029.  

59. Ho, T.S. and Pfeffer, D.M., 1996. Convertible bonds: Model, value 

attribution, and analytics. Financial Analysts Journal, 52(5), pp.35-44.  



134 
 

60. Huang, J., Liu, J. and Rao, Y., 2013, April. Binary tree pricing to convertible 

bonds with credit risk under stochastic interest rates. In Abstract and 

Applied Analysis (Vol. 2013). Hindawi Publishing Corporation. 

61. Hull, J. and White, A., 1990. Pricing interest-rate-derivative securities. The 

Review of Financial Studies, 3(4), pp.573-592. 

62. Hull, J. and White, A., 1990. Valuing derivative securities using the explicit 

finite difference method. Journal of Financial and Quantitative 

Analysis, 25(1), pp.87-100. 

63. Hull, J.C., 2003. Options, Futures and Others. Derivative (Fifth Edition), 

Prentice Hall. 

64. Hung, M.W. and Wang, J.Y., 2002. Pricing convertible bonds subject to 

default risk. The Journal of Derivatives, 10(2), pp.75-87.  

65. Hutchinson, M. and Gallagher, L., 2004. Convertible bond arbitrage. 

Research Paper, Department of Accounting and Finance, University College 

Cork. 

66. Ingersoll, J.E., 1977. A contingent-claims valuation of convertible 

securities. Journal of Financial Economics, 4(3), pp.289-321.  

67. James, J. and Webber, N., 2000. Interest rate modelling. Wiley-Blackwell 

Publishing Ltd, pp.505-508. 

68. Janney Montgomery Scott LLC., 2014. Convertible Bonds. Available at 

http://www.janney.com/file%20library/unassigned/wm-convertible-

bonds.pdf   (Accessed: 30 October 2017). 

69. Jarrow, R. and Turnbull, S., 1996. Derivative Securities, South Western 

College Publishing. An International Thomson Publishing Company.  

http://www.janney.com/file%20library/unassigned/wm-convertible-bonds.pdf
http://www.janney.com/file%20library/unassigned/wm-convertible-bonds.pdf


135 
 

70. Jarrow, R.A. and Turnbull, S.M., 1995. Pricing derivatives on financial 

securities subject to credit risk. The Journal of Finance, 50(1), pp.53-85.  

71. Johnson, R.S., 2010. Binomial Interest Rate Trees and the Valuation of 

Bonds with Embedded Options. Bond Evaluation, Selection, and 

Management, Second Edition, pp.451-485. 

72. Kalotay, A.J., Williams, G.O. and Fabozzi, F.J., 1993. A model for valuing 

bonds and embedded options. Financial Analysts Journal, 49(3), pp.35-46. 

73. Kang, J.K. and Lee, Y.W., 1996. The pricing of convertible debt 

offerings. Journal of Financial Economics, 41(2), pp.231-248. 

74. Kim, J.H., 2006. Pricing convertible bonds with known interest 

rate. Kangweon-Kyungki Mathematical Journal, 14(2), pp.185-202. 

75. King, R., 1986. Convertible bond valuation: An empirical test. Journal of 

Financial Research, 9(1), pp.53-69. 

76. Li, J., Clemons, C.B., Young, G.W. and Zhu, J., 2008. Solutions of two-factor 

models with variable interest rates. Journal of Computational and Applied 

Mathematics, 222(1), pp.30-41. 

77. Li, L.X., 2005. Pricing Convertible Bonds Using Partial Differential Equations. 

University of Toronto. 

78. Li, L.X., 2005. Pricing Convertible Bonds using Partial DiFFerential Equations. 

University of Toronto. 

79. Martellini, L., Priaulet, P. and Priaulet, S., 2003. Fixed-income securities: 

valuation, risk management and portfolio strategies (Vol. 237). John Wiley 

& Sons. 

80. McConnell, J.J. and Schwartz, E.S., July 1986. LYON taming. Journal of 

Finance, 41(3), pp.561-576. 



136 
 

81.  Muromachi, Y., 1999. The growing recognition of credit risk in corporate 

and financial bond markets. NLI Research Institute, Paper, 126. 

82. Navin, R.L., 1999. Convertible bond valuation: 20 out of 30 day soft-call. 

In Computational Intelligence for Financial Engineering, 1999.(CIFEr) 

Proceedings of the IEEE/IAFE 1999 Conference on (pp. 198-217). IEEE. 

83. Navin, R.L., 1999. Convertible bond valuation: 20 out of 30 day soft-call. 

In Computational Intelligence for Financial Engineering, 1999.(CIFEr) 

Proceedings of the IEEE/IAFE 1999 Conference on (pp. 198-217). IEEE. 

84. Nyborg, K.G., 1996. The use and pricing of convertible bonds. Applied 

Mathematical Finance, 3(3), pp.167-190. 

85. Öhrn, M. and Nordqvist, T., 2001. Pricing Convertible Bonds using Stochastic 

Interest Rate. 

86. Otto, M., 2000. Towards non-equilibrium option pricing theory. 

International Journal of Theoretical and Applied Finance, 3(03), pp.565. 

87. Sachs, G., 1994. Valuing convertible bonds as derivatives. Quantitative 

Strategies Research Notes, 11(1), p.30. 

88. Sarkar, S., 1999. Duration and convexity of zero-coupon convertible 

bonds. Journal of Economics and Business, 51(2), pp.175-192. 

89. Stockwatch. 2016. Stockwatch Products. [ONLINE] Available 

at: https://www.stockwatch.com/Help/Products.aspx. [Accessed 1 

February 2016]. 

90. Takahashi, A., Kobayashi, T. and Nakagawa, N., 2001. Pricing convertible 

bonds with default risk: a Duffie-Singleton approach. Journal of Fixed 

Income, 11(3), pp.20-29. 

https://www.stockwatch.com/Help/Products.aspx


137 
 

91. Tsiveriotis, K. and Fernandes, C., 1998. Valuing convertible bonds with 

credit risk. The Journal of Fixed Income, 8(2), pp.95-102.  

92. Tuckman, B. and Serrat, A., 2011. Fixed Income Securities: Tools for Today's 

Markets (Vol. 626). John Wiley & Sons. 

93. Ugur, Ö., 2008. An introduction to computational finance. World Scientific 

Books. 

94. Vasicek, O., 1977. An equilibrium characterization of the term 

structure. Journal of Financial Economics, 5(2), pp.177-188.  

95. Werner, S.P., 2010. Short Selling Activities and Convertible Bond Arbitrage: 

Empirical Evidence from the New York Stock Exchange (Vol. 75). Springer 

Science & Business Media. 

96. Xu, R., 2011. A lattice approach for pricing convertible bond asset swaps 

with market risk and counterparty risk. Economic Modelling, 28(5), 

pp.2143-2153. 

97. Zeytun, S. and Gupta, A., 2007. A Comparative Study of the Vasicek and the 

CIR Model of the Short Rate. 

98. Zhang, B. and Zhao, D., 2016. The Pricing of Convertible Bonds with a Call 

Provision. Journal of Applied Mathematics and Physics, 4(06), p.1124. 

99. Zhang, W.G. and Liao, P.K., 2014. Pricing convertible bonds with credit risk 

under regime switching and numerical solutions. Mathematical Problems in 

Engineering, 2014. 

100.Zhu, S.P., 2006. A closed-form analytical solution for the valuation of 

convertible bonds with constant dividend yield. The ANZIAM Journal, 47(4), 

pp.477-494. 

 


	PhD Coversheet
	PhD Coversheet

	ALDOSSARY final thesis.pdf



