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Abstract 

The aim of this thesis is to solve two problems: the. trajectory tracking and navigation, 

for controlling the motion of unmanned ground vehicles (UGV). Such vehicles are usually used 

in industry for assisting automated production process or delivery services to improve and 

enhance the quality and efficiency. 

With regard to the trajectory tracking problem, the main task is to design a new method 

that is capable of minimising trajectory-tracking errors in UGV. To achieve this, a 

comprehensive mathematical model needs to be established that contains kinematic and 

dynamic characteristics beside actuators. In addition, different trajectories need to be generated 

and applied individually as a reference input, i.e. continuous gradient trajectories such as linear, 

circular and lemniscuses or a non-continuous gradient trajectory such as a square trajectory. 

The design method is based on a novel fractional order proportional integral derivative 

(FOPID) control strategy, which is proposed to control the movement of UGV to track given 

trajectories. Two FOPID controllers are required in this design. The first FOPID is constructed 

in order to control the orientation of UGV. The second FOPID controller is to control the speed 

of UGV. The particle swarm optimization (PSO) algorithm is used to obtain the optimal 

parameters for both controllers. The significance of the proposed method is that an observable 

improvement has been achieved in terms of minimising trajectory-tracking errors and reducing 

control efforts, especially in continuous gradient trajectories. The stability of the proposed 

controllers is investigated based upon Nyquist stability criterion. Moreover, the robustness of 

the controllers is examined in the presence of disturbances to demonstrate the effectiveness of 

the controllers under certain harsh conditions. The influence from external disturbances has 

been represented by square pulses and sinusoidal waves. The drawback of this method, 

however, a highly trajectory tracking error is observed in non-continuous gradient trajectories 

due to the sharpness of the rotation at the corners of a square trajectory.  

  To overcome this drawback, a new controller, abbreviated as (NN-FOPID), has been 

proposed based on a combination of neural networks and the FOPID. The purpose is to 

minimise the trajectory tracking error of non-continuous trajectories, in particular. The 

Levenberg-Marquardt (LM) algorithm is used to train the NN-FOPID controller. The neural 

networks’ cognitive capacities have made the system adaptable to respond effectively to the 

variants in trajectories. The obtained results by using NN-FOPID have shown a significant 

improvement of reducing errors of trajectory tracking and increasing control efforts over the 

results by FOPID. 
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The other task is to solve the navigation problem of UGV in static and dynamic 

environments. This can be conducted by firstly constructing workspace environments that 

contain multiple dynamic and static obstacles. The dynamic obstructing obstacles can move in 

different velocities. The static obstacles can be randomly positioned in the workspace and all 

obstacles are allowed to have different sizes and shapes. Secondly, a UGV can be placed in 

any initial posture on the condition that it has to reach a given destination within the boundaries 

of the workspace. Thirdly, a method based on fuzzy inference systems (FIS) is proposed to 

control the motion of the UGV. The design of FIS is based on fuzzification, inference engine 

and defuzzification processes. The navigation task is divided into obstacle avoidance and target 

reaching tasks. Consequently, two individual FIS controllers are required to drive the actuators 

of the UGV, one is to avoid obstacles and the other is to reach a target. Both FIS controllers 

are combined through a switching mechanism to select the obstacle avoidance FIS controller 

if there is an obstacle, otherwise choosing reaching target FIS. The simulation results have 

confirmed the effectiveness of the proposed design in terms of obtaining optimal paths with 

shortest elapsed time.  

Similarly, a new method is proposed based on an adaptive neurofuzzy inference system 

(ANFIS) to guide the UGV in unstructured environments. This method combines the 

advantages of adaptive leaning and inference fuzzy system. The simulation results have 

demonstrated adequate achievements in terms of obtaining shortest and feasible paths whilst 

avoiding static obstructing obstacles and hence reaching the specified targets speedily.  

Finally, a UGV is constructed to investigate the overall performance of the proposed 

FIS controllers practically. The architecture of the UGV consists of three ultrasonic sensors, a 

magnetic compass and two quadratic decoders that they are interfaced with an Arduino 

microcontroller to read the sensory information. The Arduino, who acts as a slave 

microcontroller is serially connected with a master Raspberry Pi microcontroller. Raspberry Pi 

and Arduino communicate with each other based on a proposed hierarchical algorithm. Three 

case studies are introduced to demonstrate the effectiveness and the validation of the proposed 

FIS controllers and the UGV’s platform in real-time. 
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Chapter 1 
Introduction 

 

1.1 Background 

nmanned ground vehicles (UGV) can be defined as programmable and multi-

purpose machines, capable of gathering and extracting information from its 

surroundings using sensory devices and control units to plan and execute its mission 

within its environment without human interventions. The types of unmanned vehicles can be 

classified according to its working environment into three types: aerial, terrestrial and aquatic 

vehicles. In an unmanned aerial vehicle (UAV), the operating workspace is simply the air. The 

aquatic type also is classified into two sub-categories; when a vehicle operates on the surface 

of water, it is called an unmanned surface vehicle (USV); when the vehicle operates under the 

water, it is called an unmanned underwater vehicle (UUV). The final type is terrestrial vehicles 

which they can be any type wheeled unmanned ground vehicles.   

      Nowadays, there is an obvious increasing of such vehicles in many applications of 

industrial automation and daily life. The applications of such vehicles can be summarised based 

on the operating workspace. For instance, in a hostile or military environment, it would be 

essential under particular circumstances to have a UGV for performing some predefined 

missions where it is dangerous or inconvenient to achieve such missions by humans. In 

addition, for mining purposes in some areas which might contain serious radioactivity or 

poisonous gases. Hence, the application of a UGV will be the key means for such workspaces.  

The UGV can be utilised in many other environments, such as those for increasing productivity, 

reducing costs and improving life quality. They have further potential applications in industrial 

production lines and transportation systems. They can be utilised in a transportation system 

and performing special functions in manufacturing processes such as loading and unloading of 

equipment and products. Recently, they have been employed in advanced security applications 

for surveillance purposes.  

       Designing a UGV requires a knowledge from many disciplines of engineering, including 

mechanical, electrical, and computer engineering. A UGV consists mainly of components such 

as sensors, intelligent controllers and actuation systems.  Those components are the key 

element of achieving the autonomy and make a UGV capable of working and performing its 

tasks without human assistance. Hence, a UGV operates autonomously based on its perception, 

U 
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intelligence, and action. The efficient navigation of such vehicles is achieved via continuous 

interactions among perception, intelligence and action. A UGV is capable of understand and 

interacting with its surroundings in a compact approach to reach its specific targets smoothly. 

The perception can be obtained based on utilising sensing devices that will enable a UGV to 

sense and understand objects in order to avoid collision and operate in a safe manner. The 

artificial intelligence is the key element of a decision-making. This will make a UGV behaves 

intelligently in its workspace to perform the required tasks. Many controllers and algorithms 

can be used to obtain an intelligent technique that makes a UGV learning and inferencing 

within the workspace environments.  

 

1.2 Research Motivation 

       In industrial and manufacturing automation, the safety, productivity, accuracy are essential 

factors when the performance of a process is evaluated. The applications of UGV have 

significantly increased and they become ubiquitous transportation system and even a major 

tool for the development of industrial automation. The motivation comes from the research 

work presented in the state of the art literature to solve the trajectory tracking and navigation 

problems for non-holonomic robotic systems. These problems are particularly vigorous 

because of their challenges in terms of theoretical nature and practical importance. The 

theoretical behaviour of non-holonomic constrains presents a number of challenges. For 

instance, such systems are underactuated, that is, the number of control inputs is less than the 

number of states or variables of the system to be controlled. Thus, motion planning implies that 

the systems can be completely controlled with a fewer number of actuators, thereby improving 

the overall cost-effectiveness of the system. In addition, underactuation can provide backup 

control techniques for a fully actuated system.  

       Recently, trajectory tracking and navigation problems of unmanned ground vehicles have 

become popular and vigorous research topics. Additionally, such problems are within the main 

challenges in the development of advanced UGV. The primary aim of this research is to utilize 

intelligent controllers and optimization algorithms to be used in solving the trajectory tracking 

and navigation problems. In this thesis, trajectory tracking and navigation are intensively 

studied based on different scenarios to develop a fully autonomous navigation. These two 

separate problems need to be addressed to improve the industrial environments. The firstly 

problem is the trajectory tracking. In this problem, a UGV is required to follow a specific 

trajectories such as continuous gradient trajectories and non-continuous gradient trajectories. 
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The second problem is the navigation. The aim is to make a UGV capable of traversing between 

an initial position and a target position without colliding with obstructing obstacles including 

dynamic and static obstacles and reach its destination safely and efficiently.  

 

1.3 Research Objectives 

       The fundamental task of an unmanned ground vehicle is to design intelligent robust 

controllers, which enable the UGV to track pre-defined trajectories and to navigate efficiently 

in a complex environment populated with static and dynamic obstacles. In the trajectory 

tracking, the UGV has to track given trajectories accurately and minimise trajectory-tracking 

error. In addition, the UGV must create a collision free path and avoid obstacles that might 

obstruct its path. The UGV must be capable of searching another feasible path when 

encountering obstacles that blocking its way, optimal and shortest paths should be obtained 

always in reasonable time.  

 

The author’s objectives of research work can be divided into categories based on the reported 

research topics as follows: 

a) Trajectory tracking  

       The main aims are to minimise trajectory-tracking error and reduce the control efforts in 

any of utilised continuous and non-continuous gradient trajectories. To achieve the aims, 

several objectives need to be conducted as summarised below: 

1) To generate continuous gradient trajectories such as lemniscate, circular, and linear 

trajectories and non-continuous gradient trajectories such as square trajectories. 

2) To model the UGV based on non-holonomic kinematic characteristic, dynamic and 

actuators units. 

3) To introduce intelligent controllers based on the fractional order PID controllers and 

neural networks to demonstrate better performance in terms of minimising trajectory 

tracking error and improve control efforts. Two controllers are need to govern the 

orientation and the speed of a UGV. 

4) To optimise the parameters of the designed controllers to enhance the overall responses 

using the particle swarm optimisation and Levenberg–Marquardt algorithms using 

online training in the feedback control systems. 

5) To build and simulate the proposed controllers and the model of the UGV to examine 

the responses comparing to the state of the art methodologies.  
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b) UGV Navigation 

This problem comprises the obstacle avoidance and target reaching. Thus, the aim is to 

keep the UGV away from any obstructing bodies and find a collision-free path from an 

initial position to a destination position where the navigation will be stopped when a 

required target is reached. To achieve that, the following tasks are needed: 

1) To build a navigation platform that contains obstructing static and dynamic obstacles, 

which move randomly with different speeds and orientations.  

2) To provide sensing technology to sense the surrounding and localise the UGV within 

its workspace to find a collision-free path between starting and targeting positions.  

3) To design intelligent controllers to drive the motion of the UGV efficiently in unknown 

environments. The controllers are combined by a switching mechanism, to achieve the 

obstacle avoidance and target reaching tasks as needed in working-scenarios. 

4) To combine and simulate the navigation platform, the model of UGV, sensing schemes 

and the proposed controllers i.e. a fuzzy inference system and an adaptive neuro-fuzzy 

inference system. 

5) To practically implement the architecture of the UGV to validate the overall 

performance of the proposed intelligent controllers. 

 

1.4 Contributions to Knowledge   

       The work of this thesis can be understood by considering two main research questions. 

Firstly, the problem of trajectory tracking of an unmanned ground vehicle is studied based on 

different predefined trajectories. These trajectories have been generated based on two 

categories i.e. the continuous and non-continuous gradient trajectories. Examples of continuous 

gradient are linear, circular and lemniscate trajectories whereas an example of non-continuous 

gradient is a square trajectory. The novelty and contribution of this research lie in the following 

tasks: 

1) To extend and develop a model of UGV to take into consideration the non-holonomic 

constraints. 

2) To introduce novel fractional order proportional integral derivative (FOPID) controllers 

to tackle the problem of trajectory tracking. The parameters of the FOPID controllers 

are optimally tuned using a particle swarm optimisation (PSO) algorithm. The obtained 

results have demonstrated an observable development for minimising the trajectory 

tracking error and reducing control efforts. Thus, this in turn leads to improve the 
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operational response of the system in continuous and non-continuous gradient 

trajectories. However, the improvement has not been satisfied with the non-continuous 

gradient trajectory at this stage.  

3) Stability analysis of the proposed FOPID controllers and the controlled plant by 

obtaining the Multi-Input Multi-Output (MIMO) and Single-Input Single-Output 

(SISO) systems, then apply Nyquist stability criterion, which is based on Cauchy’s 

theorem to determine the stability of the system. 

4) Robustness investigation in the presence of disturbances to verify the effectiveness of 

the proposed methodology into different operating conditions.   

5) To propose new controllers based on the FOPID controllers and neural networks (NN) 

to create a new architecture called NN-FOPID model, which is designed to combine 

the advanced learning capabilities of neural networks with the FOPID controllers. The 

obtained results using NN-FOPID model have been demonstrated significant 

improvements for minimizing the tracking error between desired and actual trajectories 

of the non-continuous gradient trajectory. 

Secondly, the problem of navigation of the UGV is investigated into static and dynamic 

environments. The contribution of this research lies in the following tasks: 

1) To create a workspace topology that contains randomly moving objects with different 

speeds and orientations. The moving objects are dimensioned with different shapes and 

sizes. 

2) To present fuzzy inference systems to control the motion of the UGV in dynamic 

environments without colliding with obstructing obstacles and then to reach a specified 

destination.  

3) To propose another control methodology based on an adaptive neuro fuzzy inference 

system to investigate the performance of different control systems in newly constructed 

environments.  

4) Finally, a UGV architecture has been implemented based on the author’s design. Real 

time experiments have been conducted to investigate the overall performance of the 

proposed methodology i.e. FIS controllers. In the design, new modules of embedded 

system parts are interfaced with each other. Thus, algorithms for communication 

protocols are introduced in order to enable the devices communication with each other. 

The experimental results have been successfully and feasibly shown that the proposed 

methodology is efficiently performed the obstacle avoidance and target reaching. 
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1.5 Research Application   

      In industrial automation; the safety, productivity, accuracy are essential factors when the 

efficiency of a process is evaluated. Hence, applications of UGV can be significantly beneficial 

for development of a workspace automation. The UGV can be used in industry for moving 

equipment and delivery services from production lines to storage areas.   

        The automation includes several advantages rather than manual approaches in terms of 

solving some problems and challenges as follows: 

1) A lot of time and an enormous amount of energy are required to transport equipment. 

Therefore, time, resources and energy can be saved and optimally managed. 

2) A huge cost is required to employ enough store assistants that could be a challenging 

for growing industries and firms. Profit will also be maximised by reduction a cost that 

would be spent on frequent staff training and continuous wage payments. 

3) The repetitive nature of delivering services can be tedious for workers, thus, automation 

would be a solution for employers in terms of labouring. 

4) Health and safety are crucial to involved individuals due to  moving heavy equipment. 

Hence, associated risks will be reduced.  

5) Reaching some positions might be difficult or hazardous, therefore, the automation can 

an efficient solution for increasing quality and efficiency of industry. 

According to all above challenges, the employing of UGV in the industrial environments is 

desirable.   

  

 

1.6 Structure of Thesis 

       Efforts have been made in this thesis to develop robust trajectory tracking and navigation 

methodologies for unmanned ground vehicles that can be deployed in different industrial 

automation scenarios to facilitate automatic parts and equipment transportation in a line of 

manufacturing and production process. Different trajectory tracking algorithms have been 

studied in this regard and techniques have been proposed to tackle the associated problems. 

       The thesis is divided into two parts. The first part deals with trajectory tracking problem 

based on different patterns of trajectories. The second part investigates the navigation and 

obstacle avoidance problem.  

        Initially, Chapter 2 explains a background of some key elements in this thesis and reviews 

intensively previous work in the literature. 
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       The actual research work begins in Chapter 3 by analysing of the mathematical model of 

a spatial unmanned ground vehicle subject to non-holonomic constraints. The energy-based 

Lagrangian approach is deployed in modelling of the UGV. In addition, it describes the basic 

properties of non-holonomic and holonomic systems. Chapter 4 is devoted to the proposed 

novel approach to solve a trajectory-tracking problem based on the fractional order PID 

controllers. This controller has five parameters. The best values of those parameters are 

determined based on the particle swarm optimization.   

        Chapter 5 introduces the design of novel fractional order PID neural network controllers 

to compare the obtained trajectory tracking error by using fractional order PID controllers. 

Chapter 6 is dedicated for implementation of the developed fuzzy inference systems (FIS) for 

achieving obstacle avoidance and destination reaching. In this chapter, the core of building the 

model is presented to explain the designing process of two fuzzy inference systems for a 

dynamic environment that contains randomly moving obstacles. Chapter 7 presents a new 

controller for solving the navigation problem based on adaptive neuro fuzzy inference systems.  

Different scenarios are investigated to take into a consideration the adaptive performance of 

another approach for different operating conditions. 

       In Chapter 8, vehicle experiments have been introduced; it demonstrates the architecture 

of an unmanned ground vehicle. The embedded sensors are illustrated to describe how the 

UGV perceives the surroundings in a dedicated workplace. Additionally, the proposed FIS 

given in Chapter 6 is implemented in this chapter practically to validate the overall 

performance. Finally, Chapter 9 introduces with a brief summary the conclusions of the 

research work.  The work has answered some research questions and but has raised new 

questions. Accordingly, the thoughts and suggestions for a number of issues that can be future 

directions of research are stated. 
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Chapter 2 
Literature Review 

 

2.1 Introduction 

his chapter provides information about the relevant work related to the research 

topics. The concentration is based on exploring a variety of techniques that used in 

trajectory tracking and navigation solutions. A target reaching and obstacle 

avoidance are the essential components for performing the navigation of UGV. This makes the 

UGV interacts with its surrounding and perceives its workspace environment. In the last three 

decades, there was a considerable amount of research conducted on the development of an 

efficient navigation system and motion-planning algorithm in structured and unstructured 

environments with many applications.   

       The motion planning of the UGV can be classified and analysed into two main research 

areas i.e. trajectory tracking and navigation. These two areas contain various control strategies 

and methodologies. Many intelligent controllers have been utilised for solving such the 

problems such as proportional integral derivative controller, fuzzy logic control, neural 

networks and hybrid controllers that combine more than one controller. They have been widely 

applied in dealing with motion planning in a variety of case studies and scenarios based on 

different environments. In additional, many evolutionary optimization algorithms have been 

applied to solve the motion planning. The trajectory tracking is considered based on generating 

different reference trajectories. Hence, the UGV should be capable of tracking the desired 

trajectories with minimum tracking error.  

      The main goal of this research is to propose novel controllers based on different 

methodologies for controlling the trajectory tracking of the UGV. The introduced controller is 

compared with literature to analyse the advantage and disadvantage of the new methodologies. 

      The navigation is a task of path planning and obstacle avoidance into static and dynamic 

environments. This can be achieved based on many approaches and methodologies such as an 

artificial potential field, visibility graphs, a genetic algorithm, a simulated annealing, a particle 

swarm optimization and an ant colony optimization technique. It has been noticed that the most 

of the conducted work has been applied to static environments, which this does not imply 

sophisticated behaviour of the UGV to avoid obstacles and reach its destination. Hence, there 

is a need for investigating such techniques and optimization algorithms in cluttered dynamic 

T 
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environments. Although some techniques of the existing works had shown the applications of 

UGV in dynamic environments, some limitations and constrained were assumed to ease the 

navigation process such as obstacles move at constant speed, the size and shape of obstacles 

are identical. The intelligent controllers such as artificial intelligence in a dynamic environment 

where obstacles move randomly with various speeds and directions are utilised by the author. 

Based on real world scenarios, the obstacles are also considered to be constructed based on a 

variety of sizes and shapes. Such considerations will cover all the potential challenges that the 

UGV might confront whilst it navigates in such sophisticated workspaces. The intelligent 

controllers will endow the UGV intellectual abilities to execute its manoeuvrability safely and 

efficiently.  

 

2.2 Chapter Organisation 

       The chapter is organised as follows: In the following section, a brief overview of a control 

scheme for UGV is presented. In Section 2.4, the trajectory-tracking problem of is reviewed. 

In Section 2.5, an intensive literature review is conducted for navigation of UGV based on 

different techniques and methods. Finally, chapter summary is described in Section 2.6. 

 

2.3 Control Scheme of Unmanned Ground Vehicles  

       Trajectory tracking and navigation in an unknown environment can be achieved by local 

reactive path planning approach using an on-board sensory information. Fig. 2.1 depicts the 

general control scheme for the main concepts of the trajectory tracking and navigation 

architecture. It can be clearly seen that a UGV requires several elements to accomplish the 

vehicle’s navigation. For instance, several sensors are used to sense the surroundings of the 

UGV. Many control techniques can be utilised to identify the localisation of UGV within its 

workspace. In trajectory tracking, a desired trajectory must be tracked accurately based on a 

motion control approach. In addition, the UGV must decide how to act for achieving its goals 

without collision with surrounding obstacles and finally, the UGV must modulate its wheels’ 

steering to obtain an optimal and a desired path towards a destination point. The navigation 

will be efficient and successful if the elements of navigation scheme can be verified (Siegward 

et al., 2011).  
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Fig. 2.1 General Control scheme for UGV.   

        

2.3.1 Path Planning 

        Path planning is an important and primitive step for unmanned ground vehicles to find the 

optimal path between starting and destination points. The navigation missions involve the 

activities of stopping, turning and running repeatedly. Hence, optimal paths should be obtained 

to minimise the amount of turning and braking based on a specific application. Path planning 

requires a map of the environment and the UGV must be capable of localising its posture with 

respect to the map. Consequently, several questions have been raised, such as how to create a 

map for a workspace; how can UGV localise itself into the workspace, and how can the UGV 

avoid obstacles and deal with uncertain position information.  

        Path planning is a vital task in the design of UGV. In addition, it is one of the most studied 

topics. The definition of path planning is to find a feasible route in which kind of environments 

after avoiding obstacles. The Methods of  path planning can be classified into two  categories; 

global path planning (GPP) and local path planning (LPP) (Sedighi et al., 2004) according to 

the characteristics of the environment. In GPP, the vehicle is simulated based on a static 
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environment which the vehicle has a prior knowledge about its work environment and the 

features are completely known and the terrain should be static. Hence, the vehicle can navigate 

smoothly between an initial position and the desired whilst avoiding obstacles. Whereas, in 

LPP, the vehicle does not have a prior information and it might work in unknown environment. 

In other words, LPP is required if the environment is dynamic and features of which are 

partially or entirely unknown. Therefore, the vehicle must use its own sensors to extract the 

required information to achieve save navigation and to reach to its target.  

       Path planning is a fundamental element to make the vehicle is fully autonomous and 

reliable. Its goal is to plan a sequence of suitable paths via multiple points and segments 

subjected to some techniques and optimization criteria that allows the vehicle to complete its 

task objectives by reaching the specified destination point from the starting location with free 

collision route.  Path planning involves several methods such as Visibility Graph (Berg et al., 

2000), Voronoi Diagram (Garrido et al., 2011), Cell Decomposition and Bug Algorithm 

(Choset et al., 2005).  

       The map representation is the key step of achieving the path planning. In order to   plan a 

path, a workspace environment is represented either discretely or continuously. The discrete 

representation is the most dominated based on a computer because it divides the map into an 

equilateral grid or a hexagonal structure to create a topological map. The spatial coordinates of 

each vertex of the grid are known and they can be stored computational into a repository of 

matrices to represent the topological map of a graph.  The continuous representation requires 

the definition of inner obstacles and outer boundaries. 

        Currently, the most common map is based on an occupancy grid map. In a grid map, an 

environment is discretised into a number of squares of arbitrary resolution, e.g. 1cm x 1cm, on 

which obstacles are marked. In a probabilistic occupancy grid, grid cells can also be marked 

with the probability that they contain an obstacle. This is particularly important when the 

position of a UGV that senses an obstacle is uncertain. Disadvantages of grid maps are their 

large memory requirements as well as computational time to traverse data structures with large 

numbers of vertices. A solution to the latter problem is the topological map that encodes entire 

rooms as vertices and use edges to indicate navigable connections between them.   

        Fig. 2.2 illustrates the representation of a grid map that describes the topology of a 

workspace environment based on a computer simulation. The workspace’s grid is a square 

environment and sized in metres in a two-dimensional coordinate system, and the obstacles are 

occupied into different shapes and sizes. The coordinates of a starting point and a target point 

http://en.wikipedia.org/wiki/Occupancy_grid_mapping
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have to be known based on their localisations. According to these known coordinates, a path is 

planned, thus, the starting and the goal points are connected through via different waypoints. 

The number of via points in the path is varied based on the path’s length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Grid map of path planning in a 2D Environment. 

 

2.3.2 Obstacle Avoidance 

       Obstacle avoidance is one of the most important aspects for accomplishing the navigation 

task. It means that the UGV must be capable of creating a collision free path and without it 

movement would be strongly restrictive and fragile. Many techniques can be used for obstacle 

avoidance; however, the best technique depends on the topology of a specific environment. 

The difficulty of obstacle avoidance increases with the complexity of the structures of the 

specific environment. The type of workspace environments could be classified into three types; 

firstly, well-known environment; secondly, partially known environment and finally unknown 

environment. Fig. 2.3 describes a multiple of obstacles that the UGV might encounter. 
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Fig. 2.3 Navigation and obstacle avoidance in a 2D coordinate system. 

 

       The collision avoidance task can be achieved accurately when the UGV takes into 

consideration instantaneously any obstacle within the range of surrounding’s sensing of a 

UGV’s platform. The closest obstacle has the priority to be analysed and selected for 

evaluation. In case of multiple obstacles are available surrounding the UGV form all the 

directions. Hence, the passage of the UGV might be blocked and the avoidance might not be 

occurred. Therefore, the best decision will be to stop the movement of the UGV until obstacles 

are cleared. 

 

2.4 Trajectory Tracking of Unmanned Ground Vehicle 

        The trajectory tracking is achievable based on motion control approaches. To achieve a 

robust tracking, a given desired trajectory is needed to be a reference input. The control 

approach has to achieve a motion of a UGV in order to track a given reference and provide an 

actual trajectory, which should approach the reference input with a minimal trajectory tracking 

error. The validation criterion is based on an evaluation of a trajectory tracking error. The best 

trajectory tracking is when errors of both trajectory and orientation tracking are minimal. 

 

2.4.1 Problem Statement 

      Recently, the trajectory tracking has been a hot research area. The challenges presented by 

trajectory tracking come from the fact that a motion of unmanned ground vehicles in a plane 

possesses three degrees of freedom (DoF); whilst it has to be controlled using only two control 
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inputs under non-holonomic constraints. In different applications, UGVs operate 

autonomously over predefined trajectories to track a given trajectory in an environment. In 

other words, the UGVs will be enforced using a control methodology to follow the given 

trajectory. In the most recent studies, many algorithms and control techniques have been 

proposed to cope with the trajectory tracking problem. Therefore, to solve this problem, it is 

necessary to have a methodology that allows guiding the UGV to track a predefined trajectory. 

The methodology addresses the motion planning of the UGV based on the kinematic, dynamic 

and actuation characteristics that are taken into consideration.  

 

2.4.2 Related Work 

      A bibliographic review of related work that embraces different approaches of UGV 

trajectory tracking is provided. Padhy et al. (2010) designed a traditional proportional integral 

derivative (PID) controller for trajectory tracking. In spite of the structure and implementation 

of PID was simple and valid for tracking performance. However, the proposed controller is not 

sufficient for applications that require high trajectory tracking accuracy. Guo et al. (2014) 

reported the trajectory-tracking controller of closed-loop control structure is derived using 

integral back-stepping method to construct a new virtual variable. The Lyapunov theory was 

utilised to analyse the stability of the proposed tracking controller. Pawlowski et al. (2001) 

implemented a fuzzy logic for a mobile robot. The kinematic model of the mobile robot was 

introduced in the implementation. Antonelli et al. (2007) also proposed a fuzzy logic approach 

to deal with trajectory tracking problem. In this approach, the input to a fuzzy system was 

represented by approximate information concerning the next bend ahead the vehicle; the 

corresponding output is the cruise velocity that the vehicle needs to attain in order to safely 

drive on the path.  

     Shojaei e t al. (2009) presented an adaptive controller for trajectory tracking of wheeled 

mobile robots based on feedback linearization technique. The adaptive controller was designed 

based on input-output feedback linearization technique to obtain asymptotically exact 

cancellation for the uncertainty in the given system parameters. The presented adaptive 

controller was designed based on the Lyapunov approach. Keighobadi et al. (2010) designed 

feedback-linearization and fuzzy controllers for trajectory tracking of a wheeled mobile robot. 

The linguistic if-then rules of fuzzy controllers are constructed using knowledge and 

experience of expert humans about variations of input torque with respect to position and 

velocity variables.  
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      Jiang and Nijmeijer (1997) proposed a tracking control methodology via time-varying state 

feedback based on the back-stepping technique. Local and global tracking problems were 

considered based on initial tracking error, which is set arbitrary. Hao et al. (2014) presented a 

trajectory tracking control methodology base on a fuzzy approach. In this methodology, both 

kinematic and dynamic were derived using Lagrange’s equations. 

     Xu et al. (2014) designed fuzzy PID controller for trajectory tracking mobile robots. The 

controller combines between of a PID technique and fuzzy inference system. This shows a 

comparison between traditional PID and the integrated PID-fuzzy control. Liang et al. (2010) 

proposed an adaptive fuzzy control for trajectory tracking of a mobile robot. The proposed 

method integrated proportional derivative (PD) controller with the fuzzy controller to make use 

of full Benefits of both controllers. Xie et al. (2012) integrated a fuzzy control with a slide 

mode technique to deal with trajectory tracking problem of mobile robots. The slide mode 

technique implemented based on the kinematic characteristic. On the other side, the fuzzy 

controller used to solve the constant speed problem. 

       Fukao et al. (2000) integrated both kinematic controller and a torque controller for the 

dynamic model of a non-holonomic mobile robot. The adaptive controller for the dynamic 

model was designed using back-stepping method. The derivative of a torque controller was 

based on the kinematic controller. Solea et al. (2009) presented a slide-mode control strategy 

for trajectory tracking of a wheeled mobile robot. The strategy implemented in the presence 

uncertainties i.e. mass and moment of inertia.  

       Ye (2008, 2013) presented two pieces of research based on a neural network technique. 

The implemented architecture is based on tracking control of the velocity and orientation of a 

non-holonomic mobile robot. The first research is based on a PID neural network technique. 

This technique tracks the velocity and ordination of a non-holonomic mobile robot. The second 

research is a methodology based on compound sine function neural networks for tracking 

control of two-wheel driven mobile robot. The sine function was implemented in hidden layer 

based on combining a sine function with a unipolar sigmoid function. Using this method, the 

weight values are only adjusted between the nodes in the hidden layer and the output nodes, 

whilst the weight values between the input layer and the hidden layer are one, that is, constant, 

without the weight adjustment.   

      Cardenas et al.(2013) analysed the performance of a fuzzy controller and a neural network. 

It was implemented for an autonomous motion of mobile robots. The designed fuzzy and neural 

controllers were trained to optimize a given cost function by minimizing positioning error. It 
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was found that the mobile robot with fuzzy neural controller presents good positioning and 

tracking performance for different types of desired trajectories. It also showed that the fuzzy 

neural networks whose internal structure represents the process of fuzzy reasoning, require less 

training time than conventional neural networks. 

     The drawbacks of the aforementioned approaches are a high value of a trajectory tracking 

error and control efforts, especially in non-continuous gradient trajectories. Hence, the 

trajectory tracking error can be investigated further based on new control approaches to 

improve it significantly. 

 

2.5 Navigation for Unmanned Ground Vehicles 

       The navigation of a UGV can be represented as a task of determining a collision free path 

that enables the UGV to travel safely between obstacles from an initial configuration to a 

destination configuration. The obstacle avoidance can be achieved by employing several 

sensors that provide information about the UGV’s surroundings. Three main sensors are an 

ultrasound sensor, a compass sensor and an encoder sensor. The number of sensors is varied 

based on a design of a robotic platform. The ultrasound sensor is used to detect obstacles nearby 

and calculating how far are from the robotic platform. When the number of ultrasonic sensors 

is increased, the range of detection will be wider. The orientation of the UGV can be determined 

by using a compass sensor to calculate a relative angle between the UGV and a target point. 

The movement of the UGV can be recorded based on two-dimensional coordinates by using 

an encoder sensor attached to wheels. 

       The research communities in robotics systems have paid a great attention to develop 

different control architectures for aiding the navigation of UGVs. Artificial intelligence 

techniques and optimization algorithms have been applied widely for solving navigation 

problem. Artificial intelligence techniques and optimization algorithms such as neural 

networks fuzzy logic controllers, and genetic algorithm, particle swarm optimization, 

simulated annealing, ant colony optimization and artificial potential field have been widely 

applied for solving motion problem of UGVs and improve their performance. The ability of 

fuzzy logic to represent linguistic terms and reliable decision making in systems associated 

with uncertainty and imprecise information makes it a useful tool in control systems (Dadios, 

2012). A large amount of research has been devoted based on a variety of techniques and 

methods, which can be summarised as in below;  
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2.5.1 Artificial Potential Field Based Navigation  

        An artificial potential field (APF) method is rapidly gaining popularity for autonomous 

mobile robot navigations because of its simple mathematical analysis. The main idea of the 

potential field technique is to fill a UGV’s environment with the APF where a UGV is attracted 

towards its goal and is repulsed from obstacles (Koren and Borenstein, 1991). Fig. 2.4 

demonstrates an example of a concept of the APF. The main idea comprises of generating 

attraction and repulsion forces, inside a workspace environment of UGV, to guide it to a target 

point. The target point has an attractive force that draws the UGV. Whereas, obstacles have a 

repulsive force that repulses the UGV. This has been provided an elegant solution to the path-

finding problem. Since a path is a result of an interaction of appropriate force fields, the path-

finding problem becomes a search for optimum field configurations instead of the direct 

construction of an optimum path. The APF uses a vector of sums of repulsive and attractive 

virtual forces to compute a desired heading. The velocity of the UGV is proportional to a 

magnitude of a potential vector. 

 

 

 

 

 

 

 

 

Fig. 2.4 Concept of the artificial potential field. 

 

       The APF algorithm has substantial shortcomings and these shortcomings have been 

identified as problems that are inherent to a principle based upon mathematical analysis. The 

heart of that analysis is a differential equation that combines the UGV and an environment into 

a unified system. In experimental work with the APF algorithm, four significant problems have 

been recognised that are inherent in artificial potential field methods. These inherent problems 

are as follows: firstly, trapping situations due to local minima, secondly, no passage between 

closely spaced obstacles, thirdly, oscillations in the presence of obstacles and in narrow 

passages (Aenugu and Woo, 2012).  
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      Many researchers have applied this method in solving the navigation problem. Different 

criteria have been suggested to overcome potential filed method’s drawbacks. Ge and Cui 

(2002) presented a new potential field method for motion planning of mobile robots in a 

dynamic environment where a target and obstacles are moving. The new potential functions 

take into account not only the relative positions of a mobile robot with respect to the target and 

obstacles. However, it also takes into consideration relative velocities of the mobile robot with 

respect to the target and obstacles. Accordingly, virtual forces are defined as a negative gradient 

of the potential field with respect to both position and velocity. The motion of the mobile robot 

is then determined by a total virtual force through the Newton’s Law. Hamani and Hassam 

(2012) developed an APF for a navigation of a mobile robot in an unknown environment. The 

APF allows controlling a mobile robot to reach its goal whilst avoiding unknown obstacles on 

its route. The simulation results of a mobile robot are given to show the effectiveness of the 

proposed method.  

       Tang et al. (2010) presented a novel artificial potential field method for obstacle avoidance 

and path planning of mobile robots. An obstacle avoidance method based on gravity chain was 

proposed by analyzing the shortcoming of the APF method. The simulation results show that 

the proposed method is correct and effective. Shi et al. (2007) proposed a new method for 

improving artificial potential field by analysing of the disadvantage of APF such as local 

trapping and vibrating. By this method, a new force function was built, this in turn leads to that 

the trapping problem of the APF was eliminated and the vibrating problem was mitigated. In 

addition, the rapidness of arriving at the target was improved. The workspace of this proposed 

method was a static environment.  

       Adeli et al. (2011) introduced a new algorithm based on an artificial potential field for 

solving the path planning problem of mobile robots. This algorithm was built upon new 

potential functions based on distances from obstacles, destination point and start points. The 

algorithm used potential field values iteratively to find optimum points in the workspace in 

order to form a path from a start point to a destination point. The number of iterations depends 

on the size and the shape of a workspace. The performance of the proposed algorithm was 

tested by conducting simulation experiments. The workspace was discretised into a grid of 

rectangular cells where each cell was marked as an obstacle or a non-obstacle. Hence, the 

potential function of each cell was calculated. Simulation results showed successfully the 

generated paths for two workspaces. 



Chapter 2: Literature Review 

 

19 
 

       Mohamed (2013) presented an enhanced artificial potential field planner. This planner was 

proposed to rapidly find online solutions for a mobile robot path planning. The required data 

for the algorithm are; a starting point, a target point, and readings of five infrared distance 

meters that were fixed in the front of the mobile robot within some angles. The classical 

artificial potential field represents both the repulsive force due to the detected obstacle and the 

attractive force due to the target. These forces can be considered as the primary direction 

indicator for the mobile robot. However, the classical artificial potential field has many 

drawbacks. Therefore, two secondary forces were suggested which are called the midpoint 

repulsive force and the off-sensors attractive force. These secondary forces and modified 

primary forces were merged to overcome the drawbacks like dead ends and U shape traps.  

 

2.5.2 Fuzzy Logic Control Based Navigation 

          In the past three decades, a large amount of research has been conducted based on an 

application of a fuzzy logic controller (FLC) for autonomous vehicle navigation. The prime 

target in designing the FLC for individual behaviours is to guarantee robust operation in the 

presence of uncertainties. The fuzzy logic controller allows to model different types of 

uncertainties and imprecisions; to build robust controllers starting from heuristic and 

qualitative models, and to integrate symbolic reasoning and numeric computation in a 

naturalistic framework. The FLC offers a powerful representation tool for modelling weak and 

imprecise information.  

       In literature survey, many researchers have been working on different techniques for 

solving path planning and navigation problems. For instance, intelligent soft computing 

techniques such as fuzzy control, artificial neural networks and hybrid intelligent techniques 

have been applied widely in solving navigation problems. Pradhan et al. (2009) presented a 

navigation approach for several mobile robots in an unknown environment using a fuzzy logic 

controller. The controller was implemented based on a different number of membership 

functions to navigate the mobile robots in the unstructured environment. The drawback of this 

approach is the representation of the mobile robots as points without considering their 

dimensions and dynamic characteristics.  

       Rashid et al. (2010) introduced an indoor navigation using a fuzzy logic controller. The 

controller was proposed based on the using of FLC for the target tracking control of wheeled 

mobile robots. The obstacle avoidance was not considered in this application. However, the 

controller was mainly used for the motion control. Hajar et al. (2013) presented an obstacle 
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avoidance approach for a mobile robot using a fuzzy logic technique. In that work, the fuzzy 

logic technique was constructed using eight inputs of sensory information and two outputs to 

control the speed and turning angle. A workspace environment was built using Webots Pro 

simulation software. The workspace environment consists of four static obstacles. Raguraman 

et al. (2009)  proposed a navigation methodology for a mobile robot based on a fuzzy logic 

controller. The inputs and outputs of that controller were five and two respectively. The utilised 

environment in that methodology was a static indoor environment. 

      Dong et al. (2005) addressed the problem of obstacle avoidance and trajectory tracking of 

a desired trajectory based on a fuzzy logic controller for an unmanned aerial vehicle. The 

obstacles might appear unexpectedly in practical applications and might be of any shape. 

Simulation studies on multiple obstacles with various shapes were conducted and the 

effectiveness of the proposed method was verified.  Islam et al., (2006) introduced a fuzzy logic 

algorithm for controlling an autonomous mobile robot. This algorithm enables the autonomous 

mobile robot to navigate in an unstructured environment. Hence, it will be capable of avoiding 

any obstacles might encounter its way without human intervention. The navigation task was 

accomplished appropriately during its reacting to avoid the crashing with obstacles by turning 

to a proper angle whilst moving.  

       Faisal et al. (2013) investigated an online navigation technique for a wheeled mobile robot 

in an unknown dynamic environment using fuzzy logic techniques. The aim is to apply the 

wheeled mobile robot for a warehouse workspace. Experimental results showed the 

effectiveness of the proposed algorithm. Li and Choi (2013) designed a fuzzy logic system of 

for path planning and obstacle avoidance in an unknown environment for a mobile robot. This 

fuzzy system consists of four inputs and two outputs. The obstacles in that approach were three 

static obstacles only. In addition, the representation of a mobile robot was represented simply 

as a point. 

      Cui et al. (2010) presented an obstacle avoidance control algorithm for a mobile robot based 

on a fuzzy controller. The mobile robot can detect its surrounding information by using 

ultrasonic sensors. The fuzzy control system was composed of dual fuzzy controllers; the first 

was used to control an obstacle avoiding behaviour when the mobile robot is approaching 

obstacles. However, the second was applied to control the mobile robot’s movement to its 

target goal. The conducted simulation results showed that the algorithm could help the mobile 

robot to avoid obstacles safely. Abdessemed et al. (2014) introduced a motion control algorithm 

based on a fuzzy logic control for an autonomous robot navigation. In addition, a stereo vision 
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was applied to a path-planning module. Focusing on its kinematics characteristics and on its 

behavioural based fuzzy control architecture, this requires the capability to manoeuvre in a 

complex unknown environment. In this work, behavioural-based control architecture was 

adopted. This architecture was an ordered hierarchical architecture based on a fuzzy reasoning, 

and each local navigational task was analysed in terms of primitive behaviours.   

 

2.5.3 Artificial Neural Networks Based Navigation 

       Artificial neural networks (ANNs) can be widely applied to many disciplines for solving 

complex problems. The interests in neural networks stem from the comprehension of basic 

human brain functions. Mainly, artificial neural networks deal with cognitive tasks such as 

learning, adaptation, and optimization. Indeed, recognition, learning, decision-making and 

action constitute the principal navigation problems. Therefore, to solve these problems, neural 

networks are used.  Jung et al. (1999) presented an effective method to achieve both target 

tracking and obstacle avoidance for a mobile robot work in an indoor environment. In addition, 

a wall following algorithm was employed using an artificial neural network. The ANN was 

trained by using back propagation method. The mobile robot was capable of reaching its 

destination by using the utilised tracking algorithm. The basic operation is, when the mobile 

robot comforts an obstacle, it avoids collision by a wall-tracking algorithm. For detecting 

obstacles, sonar sensors were used.  

      Yongjie et al. (2002) proposed a new path-planning algorithm based on neural networks 

for mobile robots. The neural network was used in the algorithm to model an environment and 

calculate a collision energy function that was the dominating term in a cost function. To 

implement a path-planning procedure, rather than calculating the minimum value of the cost 

function directly, a discrete method was used to approximate a minus gradient direction of the 

cost function in order to determine a motion tendency of a set of point alongside a path.  

Janglová (2004) solved a motion-planning problem for mobile robot control using neural 

networks. In this method, a collision-free path was constructed to achieve the movement of a 

mobile robot among obstacles based on two neural networks. The first neural network was used 

to determine a free space using data from ultrasonic range finders. The second neural network 

was based on finding a safe direction for the next position of a path in an environment whilst 

avoiding the nearest obstacles. Arbitrary shapes and sizes of obstacles were involved in this 

method. 
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       Engedy and Horváth (2010) introduced an artificial neural network based on a motion 

control and a path planning system of a wheeled mobile robot navigating among multiple 

obstacles. The presented neural network considers distance sensor readings and relative 

position of a target point. The neural network was used was trained using back propagation 

optimisation algorithm. In addition, it employs potential fields for obstacle avoidance purposes. 

For a construction of a path, a numerous of waypoints might be combined to create the path. 

The mobile robot was able to follow the path, without colliding with any obstacle. Velagic et 

al. (2010) implemented a neural network controller to control the velocity for a kinematic 

model of a mobile robot. The controller was trained online by using back propagation algorithm 

to track a predefined path. In such a case, it would be useful to set a number of waypoints to 

be followed by the mobile robot and to avoid obstacles.  

       Chi and Lee (2011)  proposed a neural network control system that is able to guide mobile 

robots traverse through a maze with arbitrary obstacles. The patterns were trained by using 

Matlab toolbox for a motion control. There were many specific patterns which defined to help 

the mobile robot to organize its situation. Sonar and laser range finders are two main sensors 

for passing on information about the environment. The neural network approach had 

demonstrated the effectiveness on avoiding obstacles and the mobile robot can navigate 

through the trajectory with a stability and reliability. Zhao and Wang (2012) introduced an 

autonomous navigation system based on neural networks for mobile robots. In this research, a 

navigation system was developed with a learning capability to adapt to an unknown 

environment. Sonar sensors were incorporated by the neural network to solve the problem of 

an autonomous robot navigation.  

      Based on the literature, the most of work has been conducted in static environments. This 

represents one of the main drawbacks in addition to the previous problems.  

 

2.5.4 Evolutionary and Swarm Intelligence Algorithms Based Navigation 

        Evolutionary and swarm intelligence algorithms have been approved to be beneficial for 

tackling challenging of search and optimization problems. They are used to find the best 

trajectories for a certain task. If an unmanned ground vehicle works in a manufacturing plant,  

the evolutionary and swarm intelligence algorithms could figure out the best solution for such 

problem (Simon, 2013). Miao and Tian (2008)  proposed a simulated annealing algorithm to 

determine an optimal approach or a near optimal path for a mobile robot in dynamic 

environments that filled with static and dynamic obstacles. The approach had used vertices of 
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obstacles to define a search space. It processes off-line computation based on known static 

obstacles, and then, re-computes a route online, if a moving obstacle was detected.     

       An obvious example of evolutionary algorithms is a genetic algorithm (GA).  The principle 

operation of GA consists of a set of solutions, which could be represented by chromosomes. 

The solutions are called a population. Based on solutions from one population, a new 

population will be formed and generated for a new generation. This is achieved with the hope 

that the new generation will be better than the old one. Solutions that are selected to form new 

solutions called an offspring. The offspring is selected based on a fitness function; the more 

suitable offspring has more chances to be reproduced.  In additional, the process of GA is based 

on deploying different techniques to obtain the best solution such as coding, crossover and 

mutation. This process is repeated until some predefined condition is satisfied or the best 

solution is achieved (Uszkoreit et al., 2007). In additional, GA is a specifically useful tool when 

a problem under consideration does not have an accurate mathematical representation. It has 

been established that is an advantageous tool for a robotic navigation. Moreover, It has been 

utilized in a motion planning problem in different environments (Tewolde, 2013).  

       Elshamli et al. (2004) introduced a genetic algorithm path planner for solving the path-

planning problem in stochastic environments. The genetic algorithm path planner was based 

on a variable length of chromosomes for path encoding, where different evolutionary operators 

are applied. A generic fitness function was used to combine all the objectives of the problem. 

The paths are evolved using specially designed random operators and specific domain 

knowledge operators. Davies and Jnifene (2006) utilised a genetic algorithm that was capable 

of generating an optimal (shortest distance) path plan for a mobile robot to visit all of e 

specified waypoints without colliding with known obstacles. Once a path plan had been 

determined, a suitable trajectory-planning program needs to provide required velocities and 

accelerations for a mobile robot to reach each waypoint. It was shown that the choice of search 

parameters for the genetic algorithm effected execution time of searching for a solution. The 

genetic algorithm path planner then successfully guided an actual the mobile robot to its 

waypoints without colliding with obstacles surrounding its platform. 

       Ghorbani et al. (2009), a global path planning is considered based on genetic algorithm to 

reach an optimum path for a mobile robot with obstacle avoidance. Two-dimensional coding 

for a path via points was converted to one-dimensional coding for reducing complexity. The 

parameters of collision avoidance and the shortest distance were integrated into a fitness 

function. The simulation results showed that the proposed method is an accurate and effective.  
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Shi and Cui (2010) presented a dynamic path-planning scheme based on a genetic algorithm 

for a navigation and an obstacle avoidance of a mobile robot in an unknown environment. The 

fitness function of the genetic algorithm takes a full consideration of three factors; the collision 

avoidance, the shortest distance of a path and smoothness of the path. The simulation results 

verify that the genetic algorithm is an effective approach.    

       Yun et al. (2010) proposed an improved genetic algorithm of an optimum path planning 

for a mobile robot navigation. An obstacle avoidance algorithm and a distinguish algorithm 

were introduced to generate an initial population and check paths in order to come out with all 

feasible individuals in a first generation. This technique was used to avoid all types of obstacles 

that are detected by sonar sensors of a mobile robot in an environment. The feasibility of the 

proposed genetic algorithm had been verified and proven by testing the algorithm in a 

workspace filled with obstacles located randomly. Mohanta et al. (2011) presented a novel 

knowledge based on a genetic algorithm for a path planning of multiple robots to reach multiple 

targets based seeking behaviour in the presence of obstacles. The genetic algorithm had been 

incorporated in the Petri-Net model to make an integrated navigational controller. The 

proposed algorithm was based upon an iterative non-linear search, which utilises matches 

between an observed geometry of an environment and a priori map of position locations, to 

estimate a suitable heading angle, thereby correcting a position and an orientation of the mobile 

robots to find targets. This knowledge based GA was capable of finding an optimal or near 

optimal robot path in complex environments.  

      Tuncer and Yildirim (2012) introduced a new mutation operator for a genetic algorithm 

and applied it to a path-planning problem of mobile robots in dynamic environments. The 

improved mutation method simultaneously checks free nodes close to mutation node instead 

of randomly selecting a node one by one. The method accepts the node according to a fitness 

value of a total path instead of a direction of movement through a mutated node. Whereas, a 

conventional random mutation operator in a simple genetic algorithm or some other improved 

mutation operators might cause infeasible paths. Achour and Chaalal (2011) investigated the 

application of a genetic algorithm for solving the problem of a path planning for mobile robots. 

In this approach, a population of paths was obtained using a random distribution strategy. The 

performance of a proposed genetic algorithm was examined in complex environments. The 

obtained results showed that this approach can find an optimal path in a short time and has the 

capacity to enrich the configuration space by a different set of eligible movements based on a 

crossover operator and selection.  Zhao and Gu (2013) utilised an environment model based on 
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grid for performing a path-planning task. A two-layer genetic algorithm mechanism was used 

as a searching tool to find an optimal path in a given environment. Each layer has different 

fitness function. The first layer was employed for avoiding of static obstacles and the second 

layer was engaged for avoiding of dynamic obstacles. In which case study, only one moving 

obstacle are considered with multiple static obstacles. 

      Raja and Pugazhenthi (2009)  presented a particle swarm optimisation algorithm to 

determine an optimal planning solution for a mobile robot in dynamic environments. Obstacles 

of different shapes with varying velocities were considered. The generated valid paths were 

subjected to the particle swarm optimisation to acquire global optimal paths. The proposed 

algorithm also gives the velocity of the robot for each path segment depending upon 

optimisation of the path length and elapsed time. The effectiveness and efficiency of the 

proposed algorithm is demonstrated by simulation studies. Zhang et al. (2013) proposed a 

multi-objective path-planning algorithm based on particle swarm optimization for a robot 

navigation in a workspace. Several new operations were incorporated into the proposed 

algorithm to improve its effectiveness, such as the particle updating method based on random 

sampling and uniform mutation. The simulation results demonstrated the capability of the 

proposed method to generate optimal paths. 

      Cong and Ponnambalam (2009) proposed an ant colony optimization (ACO) to solve a 

mobile robot path-planning problem. Several maps of varying complexity were used in order 

to demonstrate the effectiveness of ACO algorithms in solving the path-planning problem. 

Each map consists of static obstacles and walls in different arrangements. The ants, which 

representing the mobile robots were placed at different starting points. The ants would then 

have to find their way towards destinations whilst avoiding all obstacles and walls approaching 

its way. Lee et al. (2011) presented a novel heterogeneous ant colony optimization (HACO) 

algorithm to solve a global path-planning problem. The performance of HACO algorithm was 

compared with a modified genetic algorithm for global path planning. The simulation results 

demonstrated that the proposed HACO algorithm provides a better performance than a 

conventional genetic algorithm in overall. 

      Although some of the conducted optimisation algorithms have been tackled a path planning 

and obstacle avoidance in dynamic environment, some drawbacks have been noticed in the 

conduced work in the literature. Most methodologies were based on a global path planning and 

this acquires a prior knowledge of environments. Hence, a reactive navigation is needed to deal 

with randomly changing environments. Autonomous platforms were represented as points and 
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this facilitates navigation missions significantly to pass through narrow passages. 

Consequently, such limitations are necessary to be considered in order to establish a robust 

navigation methodology. 

 

2.5.5 Hybrid Intelligence Techniques Based Navigation 

       In the previous sections, standalone techniques have been used to deal with a navigation 

problem such as potential filed, evolutionary and swarm intelligence algorithms, artificial 

neural networks and fuzzy logic techniques. These techniques are not always the best choice 

for some tasks that can be effectively produced a robust performance in dynamic and complex 

environments. The combination of two techniques or more might be involved to obtain better 

performance. Du et al. (2005)  introduced a global path planning based on both a neural network 

and a genetic algorithm. The neural network model was constructed from information in an 

environment of a mobile robot. Then, the model was used to establish a relationship between a 

collision avoidance path and the output of the model. Hence, a two-dimensional coding for the 

path via-points was converted to one-dimensional. The genetic algorithm was applied to find 

the global optimal path in a static workspace.  

      Parhi (2008) discussed the application of a neuro-fuzzy controller for a task of navigation 

of multiple mobile robots. In the controller, the output of an artificial neural network was fed 

as an input to a fuzzy controller. Hence, the final outputs from the fuzzy controller were used 

for a motion control of the multiple mobile robots. The inputs to the neural network were 

obtained from mobile robots’ sensors (such as left, front, right obstacle distances and the target 

angle). The implemented neural network consists of four layers and the back propagation 

algorithm was used to train the neural network. The output from the neural network was an 

initial steering angle. The output of the ANN accompanied with left, front, right obstacle 

distances represent the inputs to the fuzzy controller.  The outputs from the fuzzy controller 

were the crisps values of left and right wheel velocities. From the left and right wheel velocities, 

the final steering angle of the mobile robots was calculated.  He et al. (2008) proposed a fuzzy 

neural network method based on Takagi-Sugeno model. The navigation algorithm based on 

Takagi-Sugeno model was carried out by utilizing a collection of data from eight ultrasonic 

sensors. The test results showed that a mobile robot using this fuzzy neural network could 

detect obstacles in different workspaces.  

      Ganapathy et al. (2009) utilised a fuzzy logic and an artificial neural network to help an 

autonomous mobile robot of moving, learning its environment and reaching the destination. 
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The study was conducted based on four combinations of training algorithms, which were 

composed of the fuzzy logic and the artificial neural network for avoiding acute obstacles in a 

given environment. In addition, a path-remembering algorithm was proposed to assist a mobile 

robot to come out from acute obstacles. Moreover, a virtual wall creation method was presented 

in order to prohibit the mobile robot from re-entering the same acute obstacle once it had been 

turned away from the wall. A goal seeking was the main behaviour that controls the mobile 

robot to reach its target. The mobile robot was capable of reaching the desired goal even when 

the environment consists of some odd shaped acute obstacles such as ‘U’ or ’V’ shaped ones. 

Joshi and Zaveri (2010) developed a neuro-fuzzy system for reactive behaviour based 

navigation of a mobile robot. In the system, wheels’ velocities were controlled by based on 

sensory information. The mobile robot performed the reactive navigation rather than looking 

for optimal path as performed by path planning techniques. The performance of a neuro-fuzzy 

system was compared to neural and fuzzy approaches.  

       Vukosavljev et al. (2011) used a combination of two navigation algorithms; firstly, a self-

learning neural network was used to form a movement plan for a mobile robot; secondly, a 

collision-free control algorithm based on heuristic neuro-fuzzy approach was presented. The 

basic task of a neural network was to generate an initial path. Both algorithms were adapted 

and implemented to navigate a platform of a mobile robot equipped by two independent wheel 

drives, encoders and a set of short-range sonars. The combined reactive algorithm was used in 

real time for accomplishing the navigation mission of a robotic system. The navigation 

algorithms were placed into a personal computer, which was connected to the mobile robot 

wirelessly and based on a wired link as well.   

        Khelchandra et al. (2014) presented a technique of solving a motion-planning problem of 

a mobile robot using artificial neural network, fuzzy logic and genetic algorithm. In this 

technique, a path from a set of numerous paths was selected by using trained artificial neural 

networks for the mobile robot to be moving straight towards a target point. A fuzzy logic was 

used to avoid collision when obstacles obscure all the paths. Genetic algorithm was applied as 

an optimizer to find optimal locations along the obstacle free directions and positions by 

choosing a set of fuzzy rules for the fuzzy logic system from a large rule base engine. The 

obtained results showed that a combination of those features was computational efficient by 

helping each other to eliminate their individual limitations. 

         Deshpande and Bhosale (2013) introduced an adaptive neuro-fuzzy inference system 

(ANFIS) technique to solve a navigation problem of a mobile robot. The sensory information 
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is based on magnetic compass and sonar, which they represent the inputs to the ANFIS 

network, the output of this network is motor velocity to control the motion of the robot. The 

path planning in this technique was examined on a simple static environment consists of three 

obstructing obstacles. Notwithstanding, the obtained path is not completely feasible and 

relatively long. 

       In addition to the aforementioned drawbacks, other limitations can be considered to 

improve a navigation performance based on real world scenarios. For example, kinematics and 

dynamics constraints have not been widely applied to investigate its influence on the motion 

control. Moreover, considering an occupied size of an unmanned ground vehicle and obstacles 

are essential to demonstrate the vigorous and effectiveness of proposed techniques.  

 

2.6 Chapter Summary 

        In this chapter, the problem of trajectory tracking is intensively reviewed based on the 

state of the art. It has been noticed that there are still some gaps to improve the tracking response 

further and minimise the tracking error. It is observable that some techniques such as a 

fractional order proportional integral derivative controller has not been utilised yet to 

investigate its performance with such a problem in unmanned ground vehicles. Such controllers 

can be also integrated with other techniques to create new control approaches to enhance its 

effectiveness i.e. a neural network to create fractional order proportional integral derivative-

neural network, FOPID-NN, controller. Secondly, the navigation problem is intensively 

studied based on a variety of control methodologies. It is noticeable that most the conducted 

work is based on static environments. Even though, it was assumed that the locations of 

obstacles were already known. Thus, this considers as a global navigation, which it would be 

easier to be handled. In addition, despite of some works are also conducted in dynamic 

environments. However, the movement of obstacles was invariant. The motion of a UGV was 

mainly assumed as a point. Hence, this simplifies the navigation, especially in narrow passages. 

Hence, the dimensions of the UGV are important to be considered based on real world 

applications. Random movement of dynamic obstacles will be utilised on our proposed 

workspaces. Fuzzy inference systems and adaptive neuro-fuzzy inference systems will be 

introduced to tackle the navigation based on a reactive approach where the UGV does not have 

prior knowledge about its operating environment. 
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Chapter 3 
Modelling of UGV and Trajectory Tracking Based 

on PID Controller 
 

3.1 Introduction 

he  mathematical modelling is a key procedure for representing and analysing the 

behaviour of a system. It is required for designing and analysing of control systems. 

In addition, it is an essential step for the development and controllability of optimal 

systems. An accurate representation of some models might be a challenge based on several 

facts i.e. linear and nonlinear systems. For instance, the modelling of a system is increased in 

terms of complexity if the system is nonlinear and especially with higher order systems. Some 

linearization approaches might be utilised to overcome complexity of modelling. However, this 

might have an influence over the accuracy of the system. Based on the advances in modelling 

techniques, many approaches have been proposed for facilitating the modelling processes such 

as a database model that involves creating some input data to be fed into a system, and based 

on outputs, the system modelling and can be identified. 

      Robotic systems generally consist of different components of subsystems such as electrical, 

electronic and mechanical subsystems. In other words, it can be defined in term of hybrid 

systems. The modelling process of each component of the robotic systems involves analogous 

procedures for each component. The components of robotic systems in somehow, they are 

linked and integrated with each other based on the defining inputs and outputs of each 

component. This in turn will lead for constructing a model of each subsystem that can be 

combined to obtain the overall model. The modelling of an unmanned ground vehicle platform 

consists of kinematic, dynamic and electrical actuating units that model the driving of the whole 

platform. Kinematic modelling deals with the geometric relationships that govern the system 

and studies the mathematics of motion without considering affecting forces. On the other hand, 

dynamic modelling studies the motion in which forces and energies take into consideration as 

part of the model. The kinematic and dynamic modelling is considered as the mechanical part 

of the robotic system. Actuator modelling is needed to find the relationship between driving 

control signals and inputs of a mechanical system.  

       The modelling of each part of the robotic system is conducted and discussed separately 

throughout this chapter. The simulation of the implemented model will be accomplished and 

T 



Chapter 3: Modelling of UGV and Trajectory Tracking Based on PID Controller 

 

30 
 

demonstrated after obtaining all equations that govern the system entirely. The simulation 

process based on four main trajectories is investigated to examine the validation the model 

using an appropriate computer package. The first step for the mechanical modelling is to define 

an appropriate coordinate system for the platform, which is described in the next section. 

       The implementation of the model is based on MATLAB-Simulink software package. The 

MATLAB-Simulink is an important research tool for performing a sophisticated modelling and 

it is a powerful tool for a graphical visualization, planning, and strategic development in 

different areas of research. It provides a huge range of built in functions and tools for 

accomplishing the modelling accurately. In addition, it facilitates the programming of coding 

for users for innovation and creativity based on new applications. For instance, mathematical 

equations that describe the behaviour of a model can be coded based on a user experience and 

its proficient. One of the more convenient approaches that MATLAB provides is a state space 

modelling. This is based on defining inputs and outputs of a system and then creates a matrix 

of parameters that manipulates inputs with outputs of the modelled system.  

 

3.2 Chapter Organisation 

        The chapter is organised as follows: In the next section, locomotion of the UGV is 

discussed based on two categories i.e. holonomic and non-holonomic. Section 3.4 is dedicated 

to achieve the modelling of the UGV, it comprises kinematic and dynamic analysis in addition 

to the actuation unit. The designing of a traditional PID controller is described in Section 3.5. 

It has been devoted to solve the trajectory tracking problem. In Section 3.6, the simulation 

results are conducted based on four different scenarios to investigate the performance of the 

traditional PID controller. Finally, the chapter summary is introduced in Section 3.7. 

 

3.3 Locomotion of Unmanned Ground Vehicle 

        The locomotion is the power of movement of an unmanned ground vehicle (UGV) from 

one place to another. Hence, locomotion is concerned with interaction forces, mechanism and 

actuators that generate those forces. Locomotion and mobility of the UGV can be depended on 

several facts such as a number of contact points or areas, an angle of contact, a friction, a centre 

of gravity, an inclination of terrain, an environment structure and a medium of environment 

(water, air, soft or hard ground). Recent advances in robotic technology have made some of 

robotic platforms are capable of working on different medium such as land, air, water and 

space.  



Chapter 3: Modelling of UGV and Trajectory Tracking Based on PID Controller 

 

31 
 

        The locomotion understanding of UGV implies finding out how wheels are constrained 

to affect the motion of the UGV. The motion of the UGV can be analysed based on a structure 

of wheels and how they can be driven. The motion of a UGV can be constrained based on two 

mechanisms, i.e. holonomic and non-holonomic constraints. These two terminologies will be 

explained in the following subsections.  

 

3.3.1 Holonomic Unmanned Ground Vehicle 

       When kinematic constraints can be integrated to yield constraints on position variables, 

these are called holonomic constraints. Additionally, this refers to the relationship between 

controllable and total degrees of freedom of the UGV. If the controllable degree of freedom is 

equal to total degrees of freedom, then, the UGV is holonomic. When the UGV is built in castor 

wheels or Omni-wheels that is an explicit example of the holonomic drive as it can freely move 

in any direction and the controllable degrees of freedom is equal to total degrees of freedom.  

Figs. 3.1(a) and 3.1(b) demonstrate a castor wheel and an Omni-wheel which they can rotate 

in both X-axis and Y-axis making it move in both the directions (Holmberg and Khatib, 1999).  

 

  

 

 

 

Fig. 3.1 Holonomic wheels a) Castor wheel b) Omni-wheel. 

 

3.3.2 Non-Holonomic Unmanned Ground Vehicle 

     When kinematic constraints for which an integration is not possible, called non-holonomic 

constraints. A typical example of a non-holonomic constraint is a wheel rolling vertically 

without slipping on a surface. The constraint on an allowable velocity (the point of contact of 

the wheel with the surface cannot slip in all directions) cannot be integrated to yield a constraint 

on the position of the wheel. Furthermore, if the number of controllable degree of freedom is 

less than the total degrees of freedom, then it is known as non-holonomic drive. For instance, 

when a vehicle has three degrees of freedom; i.e. its position in two axes and its orientation. 

However, there are only two controllable degrees of freedom that are accelerating or braking 

and turning angle of steering wheels. This makes it difficult for a driver to turn a vehicle in any 

direction unless it skids. The vehicle will move in Y-axis forward and backward and will never 

(a) (b) 
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make any movement in the X-axis (Barraquand and Latombe, 1989). Fig. 3.2 demonstrates a 

typical example of non-holonomic unmanned ground vehicles. 

 

 

 

 

 

 

 

 

        Fig. 3.2 Non-holonomic of unmanned ground vehicles. 

 

        In addition, based on which approach that utilises to drive a UGV, the driving mechanism 

can be classified into four main types of driving systems as follows: 

 

1) Differential Drive 

       Many unmanned ground vehicles use a driving mechanism known as differential drive. It 

consists of two driving sides mounted on a common axis, and each side of a vehicle can have 

either one or two wheels. However, whatever each side has of wheels, they will be driven 

independently and being driven either forward or backward. Whilst the velocity of each side 

can be varied, the vehicle must rotate about a point that lies along their common left and right 

wheels’ axis. The point that the UGV rotates about is known as the instantaneous centre of 

curvature (ICC) as shown in Fig. 3.3. By varying the velocities of two wheels, the motion can 

be varied to track given trajectories. 

 

 

 

 

 

 

 

 

Fig. 3.3 Differential drive vehicle. 
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𝜔 (𝑅 +
𝐿

2
) = 𝑉𝑟                                                                                                                        (3.1)      

𝜔 (𝑅 −
𝐿

2
) = 𝑉𝑙                                                                                                                        (3.2) 

 

where L is the distance between the centre of the two wheels, Vr, Vl are the right and left wheel 

velocities along the ground, and R is the signed distance from the ICC to the midpoint between 

the wheels. At any instance of time, Both R and 𝜔 can be calculated as follows: 

 

𝑅 =
𝐿

2
 (
𝑉𝑙+𝑉𝑟

𝑉𝑟−𝑉𝑙
)                                                                                                                          (3.3)    

 𝜔 = 
𝑉𝑟−𝑉𝑙

𝐿
                                                                                                                              (3.4) 

 

2) Synchronous Drive 

        In a synchronous drive, each wheel is capable of being driven and steered separately. 

However, a typical configuration of wheels allows all wheels to turn and drive in unison, this 

leads to a holonomic behaviour. The orientation of a steered wheel of the rotation axis can be 

controlled as shown in Fig. 3.4. In addition, the three wheels point out in the same direction 

and turn at the same rate.  This is typically achieved with a complex collection of belts that 

physically links the wheels together. The vehicle controls the direction the wheels steering and 

the rate at which they roll.  Because of all wheels remain parallel, the synchronous drive always 

rotates about the centre of the UGV. The synchronous drive has the ability to control the 

orientation of their pose directly. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Synchronous drive vehicle. 
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3) Car Drive (Ackerman Steering) 

       It is an elegant and a simple mechanism to approximate ideal steering used in motor 

vehicles, the inside front wheel is rotated slightly sharper than the outside wheel to reduce tire 

slippage. Ackerman steering provides nearly an accurate dead reckoning solution whilst 

supporting traction and ground clearance. Generally, the method of choice for outdoor 

autonomous vehicles. An example of an Ackerman steering drive vehicle is shown in Fig. 3.5 

below. 

 

 

  

 

 

 

Fig. 3.5 Ackerman steering drive vehicle. 

The Ackerman steering equation: 

cot 𝜃𝑖 − cot 𝜃𝑜 =
𝑑

𝐿
                                                                                                   (3.5) 

where,  

           d = lateral wheel separation, 

            L = longitudinal wheel separation, 

           i = relative angle of inside wheel, 

           o = relative angle of outside wheel. 

 

4) Omni-Directional Drive 

          The term of omni-directional is used to describe the ability of a system to move 

instantaneously in any direction from any configuration. When a vehicle has holonomic 

constraints, it can travel in every direction under any orientation. This capability is widely 

known as omnidirectional mobility. Omnidirectional vehicles have great advantages over 

conventional non-holonomic platforms, with car-like Ackerman steering or differential drive 

system, for moving in tight areas (Borenstein et al., 1997). They can crab sideways, turn on the 

spot, and follow complex trajectories. Based on Omni-directional mechanism, UGVs are 

capable of easily performing tasks in environments with static and dynamic obstacles and 

narrow aisles. Such environments are commonly found in factory workshop offices, 

ICC 
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L 
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warehouses and so on. In contrast, non-holonomic UGVs can move in forward and backword 

directions and describe some curved trajectories. However, they cannot crab sideways. For 

example, for parallel parking, a differential drive vehicle should make a series of manoeuvres 

(Doroftei et al, 2007). Fig. 3.6 introduces an example of an Omni-directional drive vehicle. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 Omni-directional drive vehicle. 

 

3.4 Modelling of Unmanned Ground Vehicle 

       The modelling of an unmanned ground vehicle is analysed and described in the following 

sections. This modelling includes analysis of the kinematic, dynamic and actuating 

characteristics of the UGV. The kinematic model describes the motion of the vehicle without 

considering the forces cause this motion. The dynamic model takes into consideration the 

forces and torques that cause the motion. Finally, the actuator modelling provides the analysis 

of power sources that generate the torques. 

 

3.4.1 Kinematic Modelling 

      The kinematic model of an unmanned ground vehicle in a two-dimensional plane can be 

conducted by using Cartesian coordinates. It is assumed that the UGV moves without slipping 

on a plane, that means there is a pure rolling contact between the wheels and the ground and 

there is no lateral slip between the wheel and the plane. The vehicle has four fixed standard 

wheels and is differentially driven by skid steering motion. The two wheels on front side are 

driven simultaneously with the two wheels on the rear side.  The wheels have the same radius 

‘r’. The driving wheels are separated by distance ‘L’. The position of the vehicle in the two 

dimensional plane at any instant is defined by the situation in Cartesian coordinates and the 

heading with respect to a global frame. The configuration of the UGV is represented by 

generalized coordinates, Pc = (Xc, Yc, 𝜃). The schematic diagram of the unmanned ground 

vehicle is depicted in Fig. 3.7. 
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Fig. 3.7 Schematic diagram of the unmanned ground vehicle . 

 

A set of relationships for the unmanned ground vehicle can be defined as: 

[

vx
vy

θ̇

] = [

r

2
         

r

2

0         0

-
r

L
       

r

L

] [
ωl
ωr
]                                                                                                                  (3.6)                                                                              

𝑣 = 𝑟. [ 
𝜔𝑟+𝜔𝑙

2
 ]                                                                                                                                     (3.7)                                                                                           

�̇� = 𝑟. [
𝜔𝑟−𝜔𝑙

𝐿
 ]                                                                                                                                     (3.8)                                                                                                    

�̇�𝑐 = 𝑣 cos 𝜃                                                                                                                                         (3.9)                                                                                                      

�̇�𝑐 = 𝑣 sin 𝜃                                                                                                                                       (3.10)          

𝑥𝑐 = 𝑆 𝑐𝑜𝑠 𝜃                                                                                                                                       (3.11)                                                                                                      

𝑦𝑐 = 𝑆 𝑠𝑖𝑛 𝜃                                                                                                                                      (3.12)          

𝑆 =  
𝑆𝑟+𝑆𝑙

2
                                                                                                                                           (3.13)                                                                                           

𝜃 =
𝑆𝑟−𝑆𝑙

𝐿
                                                                                                                                            (3.14)                                                                                                    

𝜔 = �̇�                                                                                                                                                  (3.15)                                                                                                                                              

ωr = ∅�̇�                                                                                                                                              (3.16)                                                                                                            

ωl = ∅𝑙̇                                                                                                                                                (3.17)                                                                                                                  

[
  �̇�
�̇�

�̇�

] = [
𝑐𝑜𝑠𝜃         0
𝑆𝑖𝑛𝜃         0
0       1

] [
𝑉
𝜔
]                                                                                                           (3.18)                                                                                       
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        In addition, it is assumed that  the UGV is subject to the kinematic constraints such as  the 

contact between the wheels and the ground is pure rolling, and non-slipping (Fierro and Lewis, 

1998).  

 

1) No slip constraint 

 𝑦�̇� cos 𝜃 −  𝑥�̇� sin 𝜃  = 𝑎 �̇�                                                                                             (3.19) 

 

2) Pure rolling constraint 

 𝑥�̇� cos 𝜃 + 𝑦�̇� sin 𝜃 +  𝐿 �̇� = 𝑟 ∅�̇�                                                                                 (3.20) 

𝑥�̇� cos 𝜃 + 𝑦�̇� sin 𝜃 −  𝐿 �̇�  = 𝑟 ∅𝑙̇                                                                                   (3.21) 

       These constraints demonstrate that the driving wheels do not slip. The three non-

holonomic constraints can be written in the following form: 

𝐴(𝑞)�̇� = 0                                                                                                                            (3.22) 

𝐴(𝑞) = [
−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃

    𝑐𝑜𝑠𝜃
    𝑠𝑖𝑛𝜃
    𝑠𝑖𝑛𝜃

      𝑎
        𝐿
      −𝐿

        0
     −𝑟
        0

         0
          0
       −𝑟

]                                                                (3.23) 

�̇� = [𝑥�̇�    𝑦�̇�   �̇�   ∅�̇�   ∅𝑙̇  ]
𝑇                                                                                                 (3.24) 

      The above system can be transformed into a more proper representation for control and 

simulation purposes. In this transformation, it is required to find a method to eliminate the 

constraint term from the equation. The kinematic matrix is defined by the following 

transformation: 

�̇� =

[
 
 
 
 
 
 𝑥�̇�   
𝑦�̇�
�̇�
 ∅�̇�
∅𝑙̇ ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑐𝑜𝑠𝜃     −𝑎𝑠𝑖𝑛𝜃
𝑆𝑖𝑛𝜃      𝑎𝑐𝑜𝑠𝜃
0            1
1

𝑟
                 

𝐿

𝑟
1

𝑟
               −

𝐿

𝑟 ]
 
 
 
 
 
 

[
𝑣
𝜔
]                                                                        (3.25) 

      This model is referred to a vehicle kinematic model since it describes velocities but not 

forces that have an effect on the velocity. The wheels’ radius and the distance between driving 

wheels is assumed ‘r=0.06m’ and ‘L=0.20m’, respectively. The distance between the centre of 

mass and the rear driving wheels ‘h’ equals ‘0.10 m’. In the next section, the dynamic model 

will be analysed.  
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3.4.2 Dynamic Modelling 

        The dynamics model of an unmanned ground vehicle represents the study of the 

relationship between the various forces action on a robotic mechanism and their accelerations. 

This is mainly used for simulation study and analysis of the vehicle’s design and a motion 

controller design for the vehicle.  The description of the mechanism of the robot movement is 

given in terms of its component parts; bodies, joints and the parameters that characterise them. 

In fact, several parameters are required to define the dynamic model of a given rigid body such 

inertia, centre of mass and applied forces. The Newton-Euler approach can be used to derive 

the dynamic model of the unmanned ground vehicle which is represented in the following 

general form (Fierro and Lewis, 1997; Mohareri, 2009): 

 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐹(𝑞, �̇�) + 𝐺(𝑞) = 𝐵(𝑞)𝑇                                                          (3.26) 

where, 

𝑞 ∈ ℛ𝑛𝑥1 is a vector of generalized position coordinates 

�̇� ∈ ℛ𝑛𝑥1a vector of longitudinal and angular velocities of generalized coordinates. 

 𝑀(𝑞)  ∈ ℛ𝑛𝑥𝑛 is the symmetric positive definite inertia matrix of the system,  

𝐶(𝑞, �̇�) ∈ ℛ𝑛𝑥1 is the centripetal and Coriolis forces matrix, 

 𝐹(�̇�) is the surface friction matrix, 

 𝐺(𝑞) is the gravitational vector, 

 𝐵(𝑞) ∈ ℛ𝑛𝑥(𝑛−𝑚) is the input transformation matrix, 

 𝑇 ∈ ℛ(𝑛−𝑚)𝑥1 is the input transformation matrix and input vector.  

 

The vehicle planar motion leads to the elimination of the gravity terms in the dynamic equation: 

𝐺(𝑞) & 𝐹(𝑞, �̇�) = 0                                                                                                            (3.27) 

Therefore, Eq. (3.26) can be rewritten in another appropriate manner as follows: 

𝑀(𝑞)�̇� + 𝐶(𝑞, �̇�)𝜔 = 𝐵(𝑞)𝑇                                                                                          (3.28) 

 

It is observable that the only forces acting on the vehicle are actuator forces acting on left 

and right wheels as shown in Fig 3.7 given previously. The model derivation can be started by 

representing the vehicle position using polar coordinates.  

Assuming that the vehicle is a rigid body, its position can be represented using its angle and 

radius: 

𝑟 = 𝑟𝑒𝑖𝜃                                                                                                                                              (3.29) 
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By differentiating the position vector, the velocity and acceleration of the vehicle can be 

calculated: 

�̇� = �̇�𝑒𝑖𝜃 + 𝑟�̇�𝑖𝑒𝑖𝜃                                                                                                              (3.30) 

�̈� = �̈�𝑒𝑖𝜃 + �̇��̇�𝑖𝑒𝑖𝜃 − 𝑟�̇�2𝑒𝑖𝜃 + �̇��̇�𝑖𝑒𝑖𝜃 + 𝑟�̈�𝑖𝑒𝑖𝜃                                                        (3.31) 

These two above equations can be simplified and re-written in radial and tangential terms as 

follows: 

�̇� = �̇�𝑒𝑖𝜃 + 𝑟�̇�𝑒(𝑖𝜃+
𝜋
2
)                                                                                                       (3.32) 

�̈� = (�̈� − 𝑟�̇�2)𝑒𝑖𝜃 + (2�̇��̇�𝑒𝑖𝜃 + 𝑟�̈�)𝑒(𝑖𝜃+
𝜋
2
)                                                               (3.33) 

The radial and tangential velocity and acceleration terms are defined as follows: 

𝑣𝑥 = �̇�                                                                                                                                  (3.33) 

𝑣𝑦 = 𝑟�̇�                                                                                                                                (3.34) 

𝑎𝑥 = �̈� − 𝑟�̇�
2                                                                                                                      (3.35) 

𝑎𝑦 = 2�̇��̇� + 𝑟�̈�                                                                                                                    (3.36) 

From the above four equations, we can write the following relations between the radial and 

tangential velocity and acceleration of the robot: 

𝑎𝑥 = �̇�𝑥 − 𝑣𝑦�̇�                                                                                                                    (3.37) 

𝑎𝑦 = �̇�𝑦 − 𝑣𝑥�̇�                                                                                                                     (3.38) 

It is needed to write Newton’s second law in radial (x) and tangential (y) directions to find 

the relation between the forces and accelerations: 

∑𝐹𝑥 = 𝑚𝑎𝑥 

𝑚𝑎𝑥 = 𝐹𝑥𝑙 + 𝐹𝑥𝑟                                                                                                                 (3.39) 

∑𝐹𝑦 = 𝑚𝑎𝑦 

𝑚𝑎𝑦 = 𝐹𝑦𝑙 + 𝐹𝑦𝑟                                                                                                                (3.40) 

 

The acceleration terms from Equations (3.37) and (3.38) are substituted in Equations (3.39) 

and (3.40), that yields the acceleration of the vehicle in terms of the actuating forces and the 

velocity terms as shown in the following two equations: 

�̇�𝑥 = 𝑣𝑦�̇� +
𝐹𝑥𝑙 + 𝐹𝑥𝑟

𝑚
                                                                                                      (3.41) 

�̇�𝑦 = −𝑢𝑥�̇� +
𝐹𝑦𝑙 + 𝐹𝑦𝑟

𝑚
                                                                                                  (3.42) 
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The Newton's second law in rotation about the centre of mass can be calculated as follows: 

∑𝑀𝑐 = 𝐼𝑐�̈� 

�̈� = −
(𝐹𝑦𝑙 + 𝐹𝑦𝑟)𝑎

𝐼𝑐
+
(𝐹𝑥𝑟 − 𝐹𝑥𝑙)𝐿

𝐼𝑐
                                                                               (3.43) 

 

Based on the assumptions that no sliding on lateral direction and pure rolling on longitudinal 

direction, the lateral velocity of the midpoint if the drive wheels is zero. Therefore, the lateral 

velocity and acceleration of the centre of mass are given as follows: 

𝑣𝑦 = 𝑎�̇�                                                                                                                                              (3.44) 

�̇�𝑦 = 𝑎�̈�                                                                                                                                              (3.45) 

By substituting Equation (3.45) into Equation (3.42), it yields: 

𝑎�̈� = −𝑣𝑥�̇� +
(𝐹𝑦𝑙 + 𝐹𝑦𝑟)

𝑚
                                                                                               (3.46) 

𝑚(𝑎�̈� + 𝑣𝑥�̇�) = 𝐹𝑦𝑙 + 𝐹𝑦𝑟                                                                                                (3.47) 

By substituting Equation (3.47) into Equation (3.43) and solve for �̈� as in the following 

equations: 

�̈� = −
𝑚(𝑎�̈� + 𝑣𝑥�̇�)𝑎

𝐼𝑐
+
(𝐹𝑥𝑟 − 𝐹𝑥𝑙)𝐿

𝐼𝑐
                                                                          (3.48) 

 

�̈�𝐼𝑐 = −𝑚(𝑎�̈� + 𝑣𝑥�̇�)𝑎 + (𝐹𝑥𝑟 − 𝐹𝑥𝑙)𝐿                                                                       (3.49)  

�̈�𝐼𝑐 +𝑚𝑎
2�̈� = (𝐹𝑥𝑟 − 𝐹𝑥𝑙)𝐿 − 𝑣𝑥�̇�𝑎                                                                            (3.50) 

 

�̈� =
(𝐹𝑥𝑟 − 𝐹𝑥𝑙)𝐿

𝑚𝑎2 + 𝐼𝑐
−

𝑚𝑎𝑣𝑥�̇�

𝑚𝑎2 + 𝐼𝑐
                                                                                        (3.51) 

Likewise, by substituting Equation (3.44) into Equation (3.41), the following equation is 

obtained:  

�̇�𝑥 = 𝑎�̇�2 +
(𝐹𝑥𝑟 + 𝐹𝑥𝑙)

𝑚
                                                                                                    (3.52) 

The torques of the left and right wheels can be determined as follows: 

𝑇𝑟 = 𝑟𝐹𝑥𝑟                                                                                                                              (3.53) 

𝑇𝑙 = 𝑟𝐹𝑥𝑙                                                                                                                               (3.54) 

By substituting Equations (3.53) and (3.54) into Equations (3.51) and (3.52) and re-arranging 

the result, main dynamic equations of the differential unmanned ground vehicle considering 
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the non-holonomic constraints are obtained based on the Newtonian dynamic approach as 

follows: 

𝑚�̇� −𝑚𝑎�̇�2 =
(𝑇𝑟 + 𝑇𝑙)

𝑟
                                                                                                 (3.55) 

(𝑚𝑎2 + 𝐼𝑐)�̈� + 𝑚𝑎𝑣�̇� =
(𝑇𝑟 − 𝑇𝑙)𝐿

𝑟
                                                                             (3.56) 

The above equations can be transformed to the following matrix form as follows: 

[
𝑚 0
0 𝑚𝑎2 + 𝐼𝑐

] [
�̇�
�̈�
] + [ 0 −𝑚𝑎�̇�

𝑚𝑎�̇� 0
] [
𝑣
�̇�
] =

1

𝑟
[
1 1
𝐿 −𝐿

] [
𝑇𝑟
𝑇𝑙
]                                          (3.57)                          

 

The matrix elements are stated as follows: 

𝑀(𝑞) = [
𝑚 0
0 𝑚𝑎2 + 𝐼𝑐

]                                                                                                  (3.58) 

 

𝐶(𝑞, �̇�) = [ 0 −𝑚𝑎�̇�
𝑚𝑎�̇� 0

]                                                                                              (3.59) 

𝐵(𝑞) =
1

𝑟
[
1 1
𝐿 −𝐿

]                                                                                                            (3.60) 

 

     The calculations of moment of inertia is attached in the Appendix and the relevant 

physical parameters of the unmanned ground vehicle are illustrated in Table 3.1. 

 

Table 3.1 Parameters of the unmanned ground vehicle. 

Parameter Description Value Unit 

r Wheel radius 0.12 m 

L 
Distance between the drive wheel and the 

axis of symmetry 
0.20 m 

a 
Distance between the centre of mass and 

drive wheel axis 
0.10 m 

m 
Mass of the vehicle with driving wheels 

and motors 

 

5 

 

kg 

Ic Moment of inertia about the centre of mass 0.0427 Kg.m2 

 

3.4.3 Actuators Modelling 

    An actuator is an electrical system such as a servo or a direct current (DC) motor that 

drives the mechanical part of a robotic system. Each system might have multiple number of 

actuators based on its mechanism. The actuators receive a control signal directly from a control 

system to be activated in order to drive wheels into a specified motion.  Otherwise, they are in 
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idle modes. DC motors are used as actuators for driving the UGV in this work. The electrical 

circuit and mechanical part of the DC motor is depicted in Fig. 3.8. 

 

 

 

 

 

 

 

 

Fig. 3.8 Electrical circuit and mechanical part of a DC motor. 

     

The basic model of a DC motor based on the electric circuit is derived and given in the 

following equations: 

𝑇𝑚 = 𝑘𝑚𝑖𝑎                                                                                                                           (3.61) 

𝑣𝑏 = 𝑘𝑏𝜔𝑚                                                                                                                           (3.62) 

𝐸𝑎 = 𝑅𝑎𝑖𝑎 + 𝐿𝑎
𝑑𝑖𝑎
𝑑𝑡

+ 𝑣𝑏                                                                                                 (3.63) 

𝑇𝑚 = 𝐽𝑎
𝑑𝜔

𝑑𝑡
+ 𝐵𝜔                                                                                                               (3.64) 

where, 

 𝜔𝑚 - Angular speed of motor, 

𝑖𝑎 - Armature current, 

𝐸𝑎 - Armature terminal voltage,  

𝑣𝑏 - Back electromotive force (e.m.f) voltage, 

𝐽𝑎 - Motor inertia,  

𝑇𝑚 - Motor torque. 

 

By taking Laplace transform of the four equations above, the following equations are obtained: 

𝑇𝑚(𝑠) = 𝑘𝑚. 𝐼𝑎(𝑠)                                                                                                              (3.65) 

𝑉𝑏(𝑠) = 𝑘𝑏𝜔𝑚(𝑠)                                                                                                               (3.66) 

𝑇𝑚(𝑠) = 𝐽𝑎. 𝑠. 𝜔𝑚(𝑠) + 𝐵.𝜔𝑚(𝑠)                                                                                   (3.67) 

𝐸𝑎(𝑠) = 𝑅𝑎𝐼𝑎(𝑠) + 𝐿𝑎 . 𝑠. 𝐼𝑎(𝑠) + 𝑉𝑏(𝑠)                                                                        (3.68) 
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From Equation (3.67), the following equations can be found: 

𝑇𝑚(𝑠) = [𝐽𝑎. 𝑠 + 𝐵]𝜔𝑚(𝑠)                                                                                               (3.69) 

𝜔𝑚(𝑠) = [
1

𝐽𝑎. 𝑠 + 𝐵
]𝑇𝑚(𝑠)                                                                                               (3.70) 

Similarly, Equation (3.68) can be re-arranged to find the following equations: 

𝐸𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑎 . 𝑠). 𝐼𝑎(𝑠) + 𝑉𝑏(𝑠)                                                                              (3.71) 

𝐸𝑎(𝑠) − 𝑉𝑏(𝑠) = (𝑅𝑎 + 𝐿𝑎. 𝑠). 𝐼𝑎(𝑠)                                                                              (3.72) 

𝐼𝑎(𝑠) = [
1

𝑅𝑎 + 𝐿𝑎. 𝑠
] [𝐸𝑎(𝑠) − 𝑉𝑏(𝑠)]                                                                            (3.73) 

 

From Equations (3.65), (3.66), (3.70) and (3.73), the main transfer function between the applied 

voltage and the angular velocity can be found as follows: 

𝜔𝑚(𝑠)

𝐸𝑎(𝑠)
=

𝑘𝑚
𝐽𝑎. 𝐿𝑎 . 𝑠2 + (𝐽𝑎. 𝑅𝑎 + 𝐵𝐿𝑎). 𝑠 + (𝐵. 𝑅𝑎 + 𝑘𝑏𝑘𝑚)

                                      (3.74) 

 

The physical parameters of the actuator are given in Table 3.2 below: 

 

Table 3.2 Physical parameters of the actuators. 

Parameter Description Value Unit 

𝑉 Nominal voltage 12 V 

𝑁𝑜 No-load speed 200 RPM 

𝑁𝑟 Rated speed 163 RPM 

𝑅𝑎 Resistance of the armature winding 0.5 Ω 

𝐿𝑎 Inductance in the motor winding 0.1 H 

𝐽𝑎 Moment of inertia 0.00036  

 
Kg.m2 

𝑘𝑚 Torque constant 0.268 N.m/A 

𝑘𝑏 Back e.m.f. constant 0.01 V.s/rad 

𝐵 Viscous friction 0.001 N.m.s 

𝑇𝑚 Motor rated torque 0.0764 N.m 

𝑖𝑜 No-load current 0.115 A 

𝑖𝑎 Rated current 0.285 A 
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3.5 Design PID Controller for Trajectory Tracking 

      In this section, the modelled system is conducted based on a so called proportional integral 

derivative (PID) controller. Simulation results will be accomplished to investigate how efficiently 

the system satisfies the operating condition and how far the performance from the required targets 

that reach a minimum tracking error. Nonetheless, different controllers will be proposed and 

integrated with the implemented model to explore a better response and minimising the error. The 

PID has been widely applied in many industrial applications(Chaudhary and Ohri, 2016; Pedro et 

al., 2016; Tian et al., 2014). Although PID controller has a simple structure, it has been approved 

that it capable of performing required functions efficiently. The PID ccontroller is designed to 

stabilise and enhance the performance of the system under certain conditions. However, in 

general, each controller is designed for a specific situation or scenario and is effective under 

these particular conditions. A PID controller improves the transient response of a system by 

reducing the overshoot and settling time of a system. The main reason to develop advanced 

methods to design PID controllers is the significant impact on the performance improvement. 

The performance index adopted for problem formulation is settling time, overshoot and 

oscillations. The primary design goal is to obtain a minimised tracking error by optimally 

selecting the PID controller parameters. The proportional integral differential equation 

governors the control action of a PID controller is given by: 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
                                                            (3.75) 

The block diagram of the PID controller and the unmanned ground vehicle is depicted in Fig. 

3.9 below. 

  

 

 

 

 

 

 

Fig. 3.9 Block diagram of PID controller and UGV. 
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        The PID controllers are tuned based on self-tuning procedure using Ziegler-Nichols 

method (Bhatti et al., 2016), the optimum response is obtained based on reaching the 

parameters of PID controllers. The tuning procedure is achieved using control system toolbox 

based on MATLAB environment (Turevskiy, 2016).The parameters of the traditional PID 

controller for both orientation and velocity are given in Table 3.3 and Table 3.4, respectively. 

They represent the optimal parameters after tuning process of the system.  

 

Table 3.3 Parameters of the traditional PID controller for UGV’s orientation. 

Parameters Proportional 

constant (Kp1) 

Integral constant 

(Ki1) 

Derivative constant 

(Kd1) 

Value 1.754 1.830 12.904 

 

Table 3.4 Parameters of the traditional PID controller for UGV’s velocity. 

Parameters Proportional 

constant (Kp2) 

Integral constant 

(Ki2) 

Derivative constant 

(Kd2) 

Value 5.378 7.027 0.293 

 

3.6 Simulation Results 

       In this section, four desired trajectories are considered as inputs for the implemented model 

and control system to investigate the trajectory tracking error. It demonstrates the behaviour of 

the system based on the traditional PID controller in terms of vehicle orientation, velocity 

control and tracking error. The three comparisons are conducted to demonstrate the 

performance and the effectiveness of the two PID controllers. In additional, this investigates 

the capability of tracking any trajectories with continuous and non-continuous gradients. These 

comparisons are made under identical conditions in order to specify the differences and 

similarities of using different trajectories. Consequently, the advantages and disadvantages of 

the utilised control methodology can be determined.  

 

3.6.1 Linear Trajectory  

      A linear trajectory can be simply generated based on providing a constant value for the 

desired orientation for a specific given time. For instance, an orientation of 𝜃𝑑 =π/4 [𝑟𝑎𝑑] is 

used for interval  0 ≤ 𝑡 ≤ 40 [𝑠𝑒𝑐]. As shown in Fig. 3.10, it can be clearly noticed that the 



Chapter 3: Modelling of UGV and Trajectory Tracking Based on PID Controller 

 

46 
 

desired generated trajectory is a linear route that is a reference input to the system.  However, 

the actual obtained output has a bumpy path alongside the desired linear trajectory. Hence, this 

confirms that the modelled system behaves in a proper manner to track the pre-defined input. 

However, it encounters a difficulty to adapt itself to guide the UGV precisely to track the given 

trajectory. Similarly, the relationship between the desired and actual orientation is shown in 

Fig. 3.11. Fig. 3.12 demonstrates that the orientation error is significantly high. Hence, this 

needs to be minimised drastically to reach an optimal trajectory tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3.10 Linear trajectories using PID controller. 
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Fig. 3.11 Orientations for linear trajectory using PID controller. 

 

 

 

 

 

 

 

           

 

 

 

 

 

Fig. 3.12 Orientation error for linear trajectory using PID controller. 

 

        The above figures show that the system states reach their reference trajectories in about 

40 seconds, which shows a relatively fast tracking response for the PID controller. The control 

actions needed from the UGV’s wheel motors to provide such a tracking response are shown 



Chapter 3: Modelling of UGV and Trajectory Tracking Based on PID Controller 

 

48 
 

in Fig. 3.13. This figure demonstrates that the system actuators can provide control efforts 

needed for such a trajectory tracking response. Therefore, the designed controller is applicable 

to the real platform.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Control efforts for linear trajectory using PID controller. 

 

         Another comparison is made based on the second PID controller for the velocity of the 

vehicle. The step input value is set at ‘0.5 m/s’ as shown in Fig. 3.14. It has been noticed that 

the actual velocity is successfully reached the desired velocity. However, the overshoot and the 

settling time are still high and this demands designing a better control system to enhance the 

operational performance of the system. The error rate of the velocity is given in Fig. 3.15. The 

peak value shown in the first two seconds is normal because the velocity operation commences 

from standstill. Hence, the velocity is zero and this in turn leads to reach the maximum value 

of step input.  Therefore, the influence of the error rate is considered when the velocity reaches 

the desired output at the steady state level. 
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Fig. 3.14 Velocities for linear trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 3.15 Velocity error for linear trajectory using PID controller. 
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         The last comparison is conducted based on the coordinates of both X and Y-axes. Figs. 

3.16 and 3.17 demonstrate the desired coordinates of both X and Y-axes, respectively. The 

errors for both axes are depicted in Fig. 3.18 and again the tracking error is relatively high and 

this will be improved in the next chapter based on proposing a different control methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.16 X-coordinates for linear trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17 Y-coordinates for linear trajectory using PID controller. 
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Fig. 3.18 Error in X and Y coordinates for linear trajectory using PID controller. 

 

3.6.2 Circular Trajectory  

       In this case, a circular trajectory has been generated. It demonstrates a different orientation 

that the UGV might confront comparing to a linear trajectory. The implementation process of 

this trajectory has been achieved based on the following equations. The input profile of the 

velocity is the same as in the linear trajectory. However, the actual velocity is expected to be 

slightly different due to the response of the new patterns of the circular trajectory. The 

simulation results for the desired, actual are shown in Fig. 3.19. The results of the desired and 

actual orientations are shown in Fig. 3.20. The error of the vehicle’s orientation demonstrates 

a slight increment when the UGV commences the movement from the starting point. Later on, 

the error decays to the minimum as shown in Fig. 3.21. The orientation of the UGV is governed 

by the following equation and the given interval time by: 

 

𝜃𝑑 = (2𝜋𝑡 −40)⁄  [𝑟𝑎𝑑 ],   0 ≤ 𝑡 ≤ 40 [𝑠𝑒𝑐 ]                                                           (3.76) 
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Fig. 3.19  Circular trajectories using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.20 Orientations for circular trajectory using PID controller. 
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Fig. 3.21 Orientation error for circular trajectory using PID controller. 

 

 

         The control actions needed from the UGV’s wheel motors to provide such a tracking 

response are shown in Fig. 3.22. It shows smooth response of system actuators, which can 

provide control efforts needed for such a trajectory tracking response. The desired and the 

actual velocities are obtained for such a circular trajectory as discussed previously. The actual 

velocity has an overshoot over the first five seconds and it has shortly decayed and reach the 

optimal value. This approves that the traditional PID controller has satisfied the input 

requirement. Although there is an overshoot and it cannot be avoided, this will be studied 

further based on a different control strategy to improve the response. The desired and actual 

velocity using the traditional PID controller is shown in Fig. 3.23 and the consequent error is 

depicted in Fig. 3.24. The trajectory tracking for X and Y coordinates are demonstrated in Fig. 

3.25 and Fig. 3.26, respectively. The tracking error for both axes is illustrated in Fig. 3.27. It 

clearly shows that the tracking error has a maximum overshoot at the first five seconds. 

However, this is improved after a few seconds and the tracking error is reached the optimal 

value after 20 seconds. 
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Fig. 3.22 Control efforts for circular trajectory using PID controller. 

         

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.23 Velocities for circular trajectory using PID controller. 
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Fig. 3.24 Error in velocity for circular trajectory using PID controller. 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

Fig. 3.25 X- coordinates for circular trajectory using PID controller. 
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Fig. 3.26 Y- coordinates for circular trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.27 Error in X and Y coordinates for circular trajectory using PID controller. 
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3.6.3 Leminscate Trajectory  

       The lemniscate trajectory is another type of continuous gradient route. Although 

lemniscate trajectory’s orientation is nearly similar to circular trajectory, it is a plane curve 

with a characteristic shape that it consists of two loops that meet at a central point. It 

demonstrates a roundabout motion because of changing the directions of coordinates whilst 

moving. The lemniscate trajectory is generated using the following equations: 

𝑥 = cos(𝜃(𝑡))                                                                                                             (3.77) 

𝑦 = sin(2𝜃(𝑡)/2)                                                                                                     (3.78) 

The time interval is  0 ≤ 𝑡 ≤ 6.5 [𝑠𝑒𝑐] 

       

      The desired and actual lemniscate trajectories of the UGV are depicted in Fig. 3.28. It 

demonstrates a quite reasonable performance of trajectory tracking based on the used PID 

controller. The steering of the UGV based on the desired and actual orientation is illustrated in 

Fig. 3.29. The error between the desired and the actual orientation is demonstrated in Fig. 3.30. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.28 Lemniscate trajectories using PID controller. 
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Fig. 3.29 Orientations for lemniscate trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.30 Error in orientation for lemniscate trajectory using PID controller. 
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          The control actions for leminsacte trajectory are given in Fig 3.31, which shows the 

efforts needed from the UGV’s wheel motors to provide such a tracking response. The figure 

shows reasonable response of system actuators for such a trajectory. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.31 Control efforts for lemnscate trajectory using PID controller. 

 

        In addition, the simulation results of the desired and actual velocity depicted in Fig. 3.32, 

have demonstrated the ability of the PID controller to control the velocity of the UGV. The 

desired velocity is a unit step function has a maximum amplitude of 0.5m/s. Although the actual 

velocity eventually reached the reference velocity, this shows an inappropriate velocity 

tracking due to remaining of velocity error whilst the movement of the UGV as shown in Fig. 

3.33. 

  Moreover, the convergences between the desired and actual coordinates for both x and y-

axes are illustrated in Fig. 3.34 and Fig. 3.35, respectively. The error of those convergences is 

shown in Fig. 3.36. The maximum tracking error in the X-coordinate trajectory is equal to 

0.22m whilst the minimum tracking error is equal to -0.33m. Similarly, the maximum and the 

minimum tracking error in the Y-coordinate are equal to 0.6m and -0.34m. It is obvious that 

the tracking error for both coordinates is constantly diverged from reaching a minimum 

tracking value. 
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Fig. 3.32 Velocities for lemniscate trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.33 Error in velocity for lemniscate trajectory using PID controller. 
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Fig. 3.34 X- coordinates for lemniscate trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.35 Y- coordinates for lemniscate trajectory using PID controller. 
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Fig. 3.36 Error in X and Y coordinates for lemniscate trajectory using PID controller. 

 

3.6.4 Square Trajectory  

       In this case study, a non-continuous gradient trajectory is generated, i.e. a square trajectory, 

using Equations 3.37 and 3.38. The equations are simply implemented as shown in Fig. 3.37 

to generate an orientation of a square trajectory.  This has been carried out to investigate the 

capability and the performance of the classic PID controller of obtaining a minimum trajectory 

tracking based on a non-continuous gradient. Fig. 3.38 demonstrates a generating of an accurate 

desired square trajectory. However, on the same figure, it is evident that the actual taken 

trajectory is diverged significantly from the desired trajectory. The reason for that belongs to 

the sudden changes of the orientation at the square corners. In addition, the PID controller has 

demonstrated a limited capability of adaptation for such circumstances. Hence, a new control 

strategy is needed to be designed for overcoming the large values of errors at each corner in 

particular.  Fig. 3.39 illustrates the relationship between the desired and the actual orientation 

of the UGV. The error rate is remarkably high as shown in Fig. 3.40 comparing to the previous 

continuous gradient trajectories. The maximum value of the error is notably large and it equals 

to 1.6 m. 

 

𝜃𝑑 = 𝑇ℎ𝑒𝑡𝑎1 + 𝑇ℎ𝑒𝑡𝑎2 + 𝑇ℎ𝑒𝑡𝑎3 + 𝑇ℎ𝑒𝑡𝑎4                                                            (3.79) 
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𝑇ℎ𝑒𝑡𝑎1 =
𝜋

2
                  5 ≤ 𝑡 ≤ 15

 𝑇ℎ𝑒𝑡𝑎2 =
𝜋

2
                  15 ≤ 𝑡 ≤ 25

𝑇ℎ𝑒𝑡𝑎3 =
𝜋

2
                  25 ≤ 𝑡 ≤ 35

𝑇ℎ𝑒𝑡𝑎4 =
𝜋

2
                  35 ≤ 𝑡 ≤ 40

              

}
 
 
 

 
 
 

                                                                                 (3.80) 

 

 

 

 

 

 

 

 

Fig. 3.37  Desired orientation for square trajectory. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.38  Square trajectories using PID controller. 
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Fig. 3.39 Orientations for square trajectory using PID controller. 

 

 

       

 

 

 

 

 

 

 

 

Fig. 3.40 Error in orientation for square trajectory using PID controller. 
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       The control actions for square trajectory are relatively high when compared with the 

continuous gradient trajectories. This is because of a non-continuous gradient trajectory has 

sharp changes in its path and this require higher control efforts to overcome those changes. Fig. 

3.41 demonstrates control effort of the UGV’s wheel motors to provide such a tracking 

response.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.41 Control efforts for square trajectory using PID controller. 

 

       The velocity profile of the square trajectory of the actual velocity demonstrates continuous 

changes due to the sudden changes of the motion whilst moving in the non-continuous gradient. 

However, those changes are still smooth values and without sharp spikes, as shown in Fig. 

3.42. The error response is depicted in Fig. 3.43, which has an average maximum value of 0.17 

m/s and an average minimum of -0.12 m/s. 
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Fig. 3.42 Velocities for square trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.43 Error in velocity for lemniscate trajectory using PID controller. 

 

       Moreover, the trajectory tracking for both X and Y coordinates of the square trajectory is 

given in Fig. 3.44 and Fig. 3.45, respectively. The trajectory tracking errors of X and Y 

coordinates are depicted in Fig. 3.46. They demonstrate a sharp drop and rising alongside to 

both coordinates. The maximum X-coordinate error in the square trajectory is equal to ‘1m’ 

whilst the minimum X-coordinate error is equal ‘-1.25m’. Correspondingly, the maximum Y-

coordinate error in the square trajectory is equal to ‘1.8m’ whilst the minimum Y-coordinate 
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error is equal ‘0.3m’. In fact, this significant value of tracking error reflects that the PID control 

is not an efficient approach for a non-continuous gradient trajectory. This might be solved if 

the model of the UGV is being simplified and hence this will imply ramifications on the 

performance of the UGV. Therefore, a development of a new control strategy is the effective 

solution to improve the operation of the UGV and minimise the tracking error greatly. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.44 X coordinates for square trajectory using PID controller. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.45 Y coordinates for square trajectory using PID controller. 
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Fig. 3.46 Error in X and Y coordinates for square trajectory using PID controller. 

 

3.7 Chapter Summary 

       A description of locomotion of an unmanned ground vehicle is introduced. This involves 

the definition of the two main characteristics, i.e. holonomic and non-holonomic. It implies the 

study of some constraints that emerges based on the fact of existing of non-holonomic 

characteristic. Then, the modelling of the UGV is presented. The modelling has involved three 

main components based on kinematic, dynamic and actuating characteristics. Each component 

is thoroughly investigated and modelled based on its governing equations. A traditional PID 

controller is implemented based on the literature. The simulation results are conducted based 

on four trajectories that comprise continuous and non-continuous gradient routes. Although the 

simulation results demonstrate a reasonable performance for the continuous gradient routes, 

the trajectory-tracking error has been still highly observed in the non-continuous gradient 

square trajectory. This reveals a strong demand for proposing a new control methodology to 

improve trajectory-tracking error largely. In the next chapter, a novel control strategy based on 

a fractional PID controller is conducted to minimise trajectory-tracking error and improve 

control efforts. Trajectory tracking will be investigated thoroughly based the same trajectories 

to highlight the main differences and similarities between the conventional and fractional order 

PID controllers.  
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Chapter 4 
Trajectory Tracking of UGV Based on Fractional 

Order PID Controller 
 

4.1 Introduction 

ractional order of a proportional integral derivative controller is increasingly 

becoming a popular technique that has gained an increasing attention in recent years 

in industrial applications. In the state of the art, many applications have been reported. 

Aboelela et al. (2012) designed a fractional order proportional integral derivative (FOPID) to 

control a trajectory of a flight path of six degrees of freedom. Aldair and Wang (2010) 

introduced an optimal fractional order PID controller for a full vehicle nonlinear active 

suspension system. The optimal values of the fractional PID controller’s parameters are tuned 

using an evolutionary algorithm. Zamani et al. (2009) presented an application of a fractional 

order PID controller to an automatic voltage regulator. The controller employed a particle 

swarm optimization algorithm to carry out the design procedure of the fractional order PID 

controller.  

       The fractional order PID controller has structure based parameters. It has been proved that 

its performance is robust for uncertainties in robotic systems. It is apparent that the fractional 

order PID controller would involve many optimization algorithms based on evolutionary and 

swarm intelligence for tuning and obtaining optimal parameters. Lee and Chang (2010) 

presented two optimization algorithms for optimizing a fractional order PID controller. These 

algorithms are an electromagnetism and evolutionary algorithm. Hence, a combination of two 

algorithms was introduced to take the advantages of both algorithms and reduce the 

computation complexity of the electromagnetism algorithm.  

       Cao et al. (2005) introduced an intelligent optimization method for designing a fractional 

order controller based on a genetic algorithm. The optimization of a designing process was 

analysed for obtaining of proportional, integral, derivative, derivative order and integral order 

based on the genetic algorithm. Furthermore, a PSO has been regarded widely as a promising 

optimization algorithm due to its combination of simplicity (in terms of its implementation), 

low computational cost and good performance. Concomitant, optimal problems solved by 

genetic algorithms can be obtained better solutions with PSO in comparison with conventional 

methods. These are precisely the main motivations that the PSO will be applied for designing 

F 
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the fractional PID controller design to obtain the optimal parameters (Cao and Cao, 2006; 

Ramezanian and Balochian, 2013). 

       Accordingly, this chapter investigates a trajectory tracking problem of unmanned ground 

vehicles using a proposed fractional order PID controller. The controller’s parameters are 

optimized by using a particle swarm algorithm. The algorithm is utilized for searching the 

optimal values for the controller’s parameters. These parameters are pivotal in designing the 

fractional order PID controller. The models of kinematics, dynamics and actuators are used to 

implement an accurate mathematical representation and thus a robust fractional order PID is 

required. The used tuning approach for the PSO algorithm is based on the integral square of 

error (ISE) method.  

 

4.2 Chapter Organisation 

       The chapter is organised as follows: Section 4.3 provides a theoretical overview of 

fractional order systems. It has the structure of the fractional order PID controller that is 

introduced to tackle the trajectory tracking problem. The particle optimisation algorithm is 

described in Section 4.4. In Section 4.5, the control system design is discussed.  The stability 

of the system is analysed in Section 4.6. The simulation results are conducted in Section 4.7. 

The robustness of the system is investigated in Section 4.8. Finally, the chapter summary is 

given in Section 4.9. 

4.3 Fractional Order Systems 

       In recent years, researchers have utilised fractional order systems for modelling various 

structures. The fractional order systems have demonstrated better responses than traditional 

controller systems. They have shown several advantages such as increasing speed of the 

response, decreasing the steady state error and improving the stability of control systems 

(Monje et al., 2010).  

 

4.3.1 Fractional Order Calculus 

      Fractional calculus is a mathematical topic which studies the ability of taking real number 

power of both the differential and integration operators. There are several definitions to 

describe the fractional derivative. The firmly established definitions are Grunwald–Letnikov 

definition and the Riemann– Liouville definition. The most frequently used definition in 

fractional-order calculus is the Riemann–Liouville definition (Podlubny, 1999), in which the 

fractional order integration is defined as follows: 
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𝐷𝑡
−λ

𝛼 𝑓(𝑡) =
1

𝛤(λ)
∫ (𝑡 − 𝜏)λ−1
𝑡

𝛼

𝑓(𝜏)𝑑𝜏                                                                         (4.1) 

       where λ represents the real order of the differential and integral (0< λ <1); 𝛼 is the initial 

time instance, often assumed to be zero; and ‘t’ is the parameter for which both the differential 

and integral are accounted.  

𝛤(λ) is Euler’s gamma function 

The Laplace and Fourier transforms of the fractional derivative of f (t) is given by: 

𝐿[𝐷𝑡
λ𝑓(𝑡)] = 𝑆λ𝐿[𝑓(𝑡)] −∑𝑆𝑘

𝑛

𝑘=1

[𝐷𝑡
λ−𝑘−1 𝑓(𝑡)]𝑡=0                                                     (4.2) 

       For convenience, the second part on the right hand side of Equation (4.2) can be ignored 

when the derivatives of the function f (t) are all equal to ‘0’ at t=0. Therefore, this equation can 

be rewritten as in below: 

𝐿[𝐷𝑡
λ𝑓(𝑡)] = 𝑆λ𝐹(𝑠)                                                                                                            (4.3) 

where F(s) is the Laplace transformer of f(t). 

 

4.3.2 Fractional Order PID Controller 

     The integral-differential equation defining the control action of a FOPID controller is given 

by:  

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖𝐷
−λ𝑒(𝑡) + 𝐾𝑑𝐷

𝜇𝑒(𝑡)                                                                      (4.4) 

Applying Laplace transform to this equation with null initial conditions, the transfer function 

of the controller can be expressed by: 

𝐶𝑓(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑆λ
+𝐾𝑑𝑆

𝜇                                                                                                    (4.5) 

      In a graphical way, the control possibilities using a fractional-order PID controller are 

shown in Fig. 4.1, extending the four control points of the classical PID to the range of control 

points of the quarter-plane defined by selecting the values of λ and μ. 

 

 

 

 

 

 

Fig. 4.1 Generalised fractional order PID controller. 
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        The essential advantage of the fractional order PID controller is the less sensitive to 

changes might happen to parameters of a controlled plant.  In fact, the two extra degrees 

produce more adjustment for the dynamic behaviour of the fractional order PID controller than 

a conventional case. The Simulink block diagram configuration of a fractional order PID 

controller is depicted in Fig. 4.2.  A fractional PID controller uses a fractional derivative and a 

fractional integral.  The transfer functions of these operations are s  and s/1 where   and 

 , which are both unity in a PID controller are not integers.    

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Block diagram of a fractional order PID. 

 

4.4 Particle Swarm Optimization 

       Traditionally, parameters of a system have been obtained from the trial and error approach, 

which consumes a large amount of time in reaching the best choice of gains. To reduce a 

complexity of the traditional approach, a particle swarm optimization is used to solve a wide 

range of practical problems including optimization and designing gains of fractional order PID 

controllers. It is a computational method that optimizes a problem by iteratively trying to 

improve a candidate solution about a given measurement of a quality. It can obtain suboptimal 

solutions for difficult problems when conventional methods fail to produce in a reasonable 

time.  

       Evolutionary algorithms (EA) can be a useful paradigm and provide promising results for 

solving complex optimization functions. Evolutionary computation refers to the study of 

computational systems that use ideas to draw inspirations from natural evolution. Evolutionary 

algorithms such as genetic algorithm, simulated annealing and ant colony optimization, have 

been extensively employed in control applications to efficiently search global optimum 
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solutions. Nonetheless, a particle swarm optimisation (PSO) draws more attention than other 

algorithms due to its simplicity and efficiency.  

        The PSO is a stochastic algorithm based on the principle of a natural selection and a search 

algorithm. This algorithm is inspired by the study of birds and fish flocking. In such an 

algorithm, each particle in a swarm represents a solution to a problem and it is defined within 

its position and velocity. In a D-dimensional search space, a position of an ith particle can be 

represented by a D-dimensional vector, Si= (Xi1,…, XiD). The velocity of a particle Vi can be 

represented by another D-dimensional vector Vi= (Vi1,…,ViD). The best position visited by the 

ith particle is denoted as 𝑝𝑏𝑒𝑠𝑡𝑖 = (𝑃𝑖1, … , 𝑃𝑖𝐷), and 𝑔𝑏𝑒𝑠𝑡 is denoted an index of a particle 

that visited the best position in a group of swarm, thus, 𝑔𝑏𝑒𝑠𝑡  becomes the best solution found 

so far (Sadati et al., 2006; Zhang et al., 2013).  

The principle steps of the PSO algorithm are illustrated as in the following procedures: 

1- Initialize 

a) Set constants W, c1, c2. 

b) Randomly initialize particle positions 𝑥0
𝑖 ∈ 𝐷  for 𝑖 = 1,… . , 𝑝. 

c) Randomly initialize particle velocities 0 ≤ 𝑣0
𝑖 ≤ 𝑣0

𝑚𝑎𝑥  for 𝑖 = 1,… . , 𝑝. 

d) Set k=1. 

2- Optimize 

a) Evaluate function value 𝑓𝑘
𝑖 using design space coordinates 𝑥𝑘

𝑖 . 

b) If fitness function 𝑓𝑘
𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡

𝑖  then 𝑓𝑏𝑒𝑠𝑡
𝑖 = 𝑓𝑘

𝑖, 𝑝𝑘
𝑖 = 𝑥𝑘

𝑖 . 

c) If fitness function 𝑓𝑘
𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡

𝑖  then 𝑓𝑏𝑒𝑠𝑡
𝑖 = 𝑓𝑘

𝑖, 𝑝𝑘
𝑖 = 𝑥𝑘

𝑖 . 

d) If stopping condition is satisfied then go to 3. 

e) Update all particle velocities 𝑣𝑘
𝑖  for 𝑖 = 1,… . , 𝑝. 

f) Update all particle positions 𝑥𝑘
𝑖  for 𝑖 = 1,… . , 𝑝. 

g) Increment k. 

h) Go to 2(a) 

3- Terminate 
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      The embedded of the PSO algorithm with the fractional order PID controller is described 

in the following steps: 

Step 1: The algorithm parameters such as a number of generations, swarm size, inertia weight, 

and maximum iterations are initialized.  

𝑊 = 𝑊𝑚𝑎𝑥 −
(𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 . iter                                                                   (4.6) 

where 𝑊 is the inertia weight. 

Step 2: The values of Kp, Ki, Kd, λ and μ for each controller are initialized randomly within the 

optimal range of values for each parameter. 

Step 3: The fitness of each particle is evaluated using an integration square of an error (ISE). 

The fitness function is given as in Equation (4.7). 

f(t) = (∫ [𝑒(𝑡)]2𝑑𝑡
∞

0

)                                                                                              (4.7) 

Step 4: The local best position (𝑝𝑏𝑒𝑠𝑡𝑖) and the global best position (𝑔𝑏𝑒𝑠𝑡) of particles are 

obtained based on the fitness value calculated from step 3 for each particle. 

Step 5: In each iteration, the velocity and position of the particle is updated using the Equation 

(4.8) and Equation (4.9) respectively. 

𝑉𝑖
𝑘+1  =  𝑊𝑉𝑖

𝑘  +  𝐶1 𝑅1 (𝑝𝑏𝑒𝑠𝑡𝑖 – 𝑆𝑖
𝑘) + 𝐶2 𝑅2 (𝑔𝑏𝑒𝑠𝑡𝑖 – 𝑆𝑖

𝑘)                                 (4.8)            

𝑆𝑖
𝑘+1 = 𝑆𝑖

𝑘 + 𝑉𝑖
𝑘+1                                                                                                    (4.9) 

where 𝑅1 and 𝑅2 are random numbers selected between ‘0’ and ‘1’. 

𝑐1and  𝑐2 are the acceleration constants which influence the convergence speed of each particle. 

Step 6: The steps from ‘2’ to ‘5’ are repeated until the maximum iterations reached or the best 

solution is obtained. 
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The flow chart for particle swarm optimization is given Fig. 4.3 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Structure of a particle swarm optimization. 

 

      The basic variants that have used in the PSO algorithm and their definitions are tabulated 

in Table 4.1. 

Table 4.1 Definitions of the PSO variables. 

Variable Definition 

k Iteration number 

Iter The current number of iterations 

Itermax Maximum number of iterations 

D Dimension search space 

𝑆𝑖
𝑘 The current position of particle ith at iteration k 

𝑉𝑖
𝑘 The current velocity of particle ith at iteration k 

𝑝𝑏𝑒𝑠𝑡𝑖 Local best position y visited by ith particle 

𝑔𝑏𝑒𝑠𝑡 Global best position visited by a warm 

Initial Swarm parameters  

Start 

Calculate particle velocity 

Finish 

Is maximum 

iteration reached? 

Yes 

Select the best individual 

No 

Calculate particle position 

Calculate the cost function 

Update particle velocity 

Update particle position 
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W Inertia weight function 

Wmax Maximum value of inertia weight 

Wmin Minimum value of inertia weight 

C1 Cognitive coefficient 

C2 Social coefficient 

R1 & R2 Random number between 0 and 1 

 

 

4.5 Control System Design  

       Two fractional order PID controllers are proposed for driving the wheels of an unmanned 

ground vehicle separately. The block diagram of the proposed fractional order PID controllers 

integrated with the model of the UGV is depicted in Fig. 4.4. The input of the first controller 

is the difference between the desired generated trajectory and actual instantaneous trajectory. 

Therefore, the vehicle must change its orientation frequently to track the desired trajectory. The 

output is for controlling the right wheel. The second controller receives the difference between 

a desired and an actual velocity as reference input. The desired velocity was represented by a 

constant value. The outputs of both controllers are fed to the actuators of the unamnned ground 

vehicle for controlling the motion and tracking the given trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Block diagram of the fractional order PID controller and UGV. 
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         The cost function used in PSO algorithm is simulated by using the integral square of the 

error method for both the orientation and velocity as shown in Equations (4.10) and (4.11). 

𝐼𝑆𝐸 #1 = (∫ [𝑒𝜃(𝑡)]
2𝑑𝑡

∞

0

)                                                                                 (4.10) 

𝐼𝑆𝐸 #2 = (∫ [𝑒𝑣(𝑡)]
2𝑑𝑡

∞

0

)                                                                                 (4.11) 

      The orientation error and velocity error signals of the first and second fractional order PID 

controllers are given in equations below, respectively: 

eθ = θd − θa                                                                                                            (4.12) 

ev = vd − va                                                                                                             (4.13) 

where  

θd - desired orientation, 

θa - actual orientation,  

eθ - orientation error,  

vd - desired velocity, 

va - actual velocity,  

ev - velocity error. 

 

       In our experiments, the PSO algorithm has used the following values for its initial variants 

i.e. Wmax=1, Wmin=0.25, Itermax=5, D=10, c1 = c2 =1.4, the dimension of the problem is D=10, 

the size of the swarm equals ‘5’. The optimal values for the first and second controllers are 

given in Table 4.2 and Table 4.3 respectively.  

 

Table 4.2 Parameters of the first fractional order PID controller. 

Parameters Kp1 Ki1 Kd1 λ1 μ1 

Optimal Value 8.58 0.36 10.71 1.12 0.5 

 

Table 4.3 Parameters of the second fractional order PID controller. 

Parameters Kp2 Ki2 Kd2 λ2 μ2 

Optimal Value 3.35 4.33 1.23 0.89 1.10 
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From the two tables above, the fractional order transfer functions of the first and second 

fractional order PID controllers are given below respectively: 

𝐹1(𝑠) =
1.23𝑠1.99 + 3.35𝑠0.89 + 4.33

𝑠0.89
 

𝐹2(𝑠) =
10.71𝑠1.62 + 8.58𝑠1.12 + 0.36

𝑠1.12
 

 

4.6 Stability Analysis 

      In this section, the stability analysis of the proposed system will be investigated. Different 

methods can be applied to test the stability of a given system such as using Nyquist stability 

criterion, which is based on Cauchy’s theorem concerned with mapping contours in a complex 

S-plane. The Nyquist stability criterion states that, a system is asymptotically stable if all its 

poles are placed in the left hand plane and the Nyquist diagram does not enclose the point ‘-1’. 

Vivero and Liceaga-Castro (2008) proposed a multi-input multi-output (MIMO) MATLAB 

toolbox for analysing the stability of multivariable systems. However, this toolbox cannot be 

applied for fractional order systems because it deals with continuous systems only.  Therefore, 

this will be manipulated based on analysing the continuous-time transfer function of each part 

of the MIMO system. Then, this will be integrated with a fractional transfer function of each 

control to obtain the overall fractional transfer function. Consequently, the MIMO system is 

connected with two diagonal fractional order controllers. The interconnection between the 

MIMO loops with fractional order controllers is shown in Fig. 4.5. 

 

 

 

 

 

 

 

 

 

 

 

      Fig. 4.5 Multivariable system with two controllers. 
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       F1(s) and F2(s) are the two designed fractional order PID controllers. G11, G12, G21 and G22 

are the transfer functions of the system. These transfer functions are obtained from the 

equations that driven based on the modelling of the unmanned ground vehicle. The 

mathematical model who derived in Chapter 3 is implemented based on a state space model. 

This can be easily transformed to transfer function representations using continuous time 

systems in MATLAB. The framework of the total closed loop transfer function is obtained 

from a multivariable system based on designing individual channels (Ugalde-loo et al., 2005). 

This is decomposed into an equivalent set of Single-Input Single-Output (SISO) systems. Each 

SISO system is an open loop channel that transmits between output Yi(s) and Input Ri(s) with 

all internal loops. 

      The multivariable system G(s) with 2x2 systems and the controllers are Fi(s)=diag[F1(s), 

F2(s)]. The transfer function for each individual channel can be established as in the following 

relationships: 

𝐶𝑖(𝑠) =
𝑌𝑖(𝑠)

𝑅𝑖(𝑠)
    (𝑖 = 1,2)                                                                                                 (4.14) 

where 𝐶1(𝑠) 𝑖𝑠 the first individual channel that can be defined in the following equation: 

𝐶1(𝑠) =
𝑌1(𝑠)

𝑅1(𝑠)
= 𝐹1(𝑠)𝐺11(𝑠)(1 − 𝛾(𝑠)𝐻2(𝑠))                                                         (4.15) 

Similarly, for the second individual channel 𝐶2(𝑠) is given below; 

𝐶2(𝑠) =
𝑌2(𝑠)

𝑅2(𝑠)
= 𝐹2(𝑠)𝐺22(𝑠)(1 − 𝛾(𝑠)𝐻1(𝑠))                                                         (4.16) 

where 𝛾(𝑠) is the multivariable structure function and 𝐻𝑖(𝑠) is a unity negative feedback 

subsystem, which are respectively defined in equations below: 

𝛾(𝑠) =
𝐺12(𝑠)𝐺21(𝑠)

𝐺11(𝑠)𝐺22(𝑠)
                                                                                                        (4.17) 

𝐻𝑖(𝑠) =
𝐹𝑖(𝑠)𝐺𝑖𝑖(𝑠)

1 + 𝐹𝑖(𝑠)𝐺𝑖𝑖(𝑠)
 (𝑖 = 1,2)                                                                                (4.18) 

      The stability assessment for a single input single output (SISO) of a fractional order transfer 

function for the first individual channel ‘𝐶1(𝑠)’ was carried out based on MATLAB function 

written in reference (Chen et al., 2009).  In this function, a returned argument factor calls ‘K’ 

is used to determine the stability of the fractional order system, if K is ‘1’ the system is stable 

and ‘0’ for unstable. In addition, from the pole positions shown in Fig. 4.6(a), it is observable 

that all poles are placed with the stable region. Fig. 4.6(b) shows the Nyquist plot for the first 

individual channel. The stability can be assessed based on Nyquist stability criterion. It can be 
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noticed that Nyquist diagram does not enclose the point ‘-1’, which confirms the stability of 

the system. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 Stability of first individual channel (a) Pole positions; (b) Nyquist plot. 

 

      The frequency domain response can be obtained for fractional order transfer function by 

replacing the variable‘s’ by 𝑗𝜔. Fig. 4.7 depicts the frequency response for the SISO fractional 

order function of the first individual channel. 

 

 

 

 

 

 

 

 

 

 

 

           

       

 

Fig. 4.7 Frequency-domain response for first individual channel. 
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        Similarly, the stability assessment for SISO fractional order transfer function is performed 

for the second individual channel ‘𝐶2(𝑠)’.  In addition, the returned argument factor ‘K’ for 

‘𝐶2(𝑠)’ is obtained when the simulation was executing.  K indicates ‘1’, which means the 

system, is stable.  Fig. 4.8(a) demonstrates that all poles are placed in the stable region. 

Likewise, from Fig. 4.8(b), it can be noticed that Nyquist diagram does not enclose the point 

‘-1’. Finally, the frequency domain response is introduced in Fig. 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Stability of second individual channel. (a) Pole positions; (b) Nyquist plot  
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Fig. 4.9  Frequency-domain response for second individual channel. 
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4.7 Simulation Results 

  The simulation results are carried out to validate the proposed fractional order PID 

controllers using the four trajectories, i.e. linear, circular, lemniscate and square trajectories. 

The model unmanned ground vehicle is governed by the kinematic, dynamic and actuating 

equations given in Chapter 3. The entire system has two fractional order PID controllers and 

each controller has five parameters. These parameters are symbolized as Kp1, Ki1, Kd1, λ1 and 

μ1 for the first fractional order PID controller and similarly Kp2, Ki2, Kd1, λ2 and μ2 for the 

second fractional order PID controller. Particle swarm optimization is used to find the optimal 

values for those ten parameters. After the unmanned ground vehicle’s model and the two 

fractional order PID controllers have been implemented, the platform is simulated and 

examined through different case studies to verify the performance of the proposed 

methodology. Each case study considers a different trajectory as follows: 

 

4.7.1 Application Case 1 

      In this case, a linear trajectory is generated based on a constant orientation i.e. 𝜃𝑑 =π/2 

[𝑟𝑎𝑑] for interval  0 ≤ 𝑡 ≤ 40 [𝑠𝑒𝑐]. The simulation results of this case study are compared 

based on the traditional PID controlled presented in Chapter 3 and the proposed fractional order 

PID controller. The relationship between the desired trajectory and the actual trajectory based 

on each controller is shown in Fig. 4.10. The comparison demonstrates the effectiveness of the 

fractional order PID over the classic approach. The convergence of the actual trajectory based 

on the fractional order is feasible and minimise the trajectory tracking error. Fig. 4.11 

demonstrates the UGV’s orientation that is used for generating the linear trajectory. The error 

between the desired and the actual orientation is shown in Fig. 4.12 based on the conduced 

controllers. It has demonstrated a remarkable improvement compared with the traditional PID 

controller.  
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Fig. 4.10 Linear trajectories using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Orientations for linear trajectory using PID and FOPID controllers. 
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Fig. 4.12 Error in orientation for linear trajectory using PID and FOPID controllers. 

 

 

       Fig. 4.13 and 4.14 demonstrate the control actions needed from the left and right wheels 

to provide such a tracking response when both FOPID and conventional PID controller are 

used. It can be clearly observed that the control efforts needed in case of using FOPID are 

smoother, which validate a better design. Fig. 4.15 illustrates the ability and effectiveness of 

the second fractional order PID controller and the comparison with the conventional PID 

controller to track the desired velocity. The time response based on fractional order PID 

controller shows better steady state and overshoot. The obtained error between the desired and 

actual velocity using both PID and FOPID controllers is shown Fig. 4.16. This validates that 

improvement has occurred based on the proposed methodology. Figs. 4.17 to 4.20 show the 

trajectory tracking comparison for the coordinates of X-Y axes and the trajectory tracking 

errors.  This confirms that the trajectory tracking has been improved significantly based on our 

design approach. Figs. 4.21 and 4.22 demonstrate the changing of the integral square error 

functions of both the orientation and velocity, respectively.  
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Fig. 4.13 Control efforts for left wheel of linear trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14 Control efforts for right wheel of linear trajectory using PID and FOPID controllers. 
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Fig. 4.15 Velocities for linear trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16 Error in velocity for linear trajectory using PID and FOPID controllers. 
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Fig. 4.17 X-coordinates for linear trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Fig. 4.18  Y-coordinates for linear trajectory PID and FOPID controllers. 

 



Chapter 4: Trajectory Tracking of UGV Based on Fractional Order PID Controller 

88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19 Error in X coordinate for linear trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.20 Error in Y coordinate for linear trajectory using PID and FOPID controllers. 
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Fig. 4.21 ISE of the orientation for linear trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.22  ISE of the velocity for linear trajectory PID and FOPID controllers. 
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4.7.2 Application Case 2 

       A comparison is conducted between conventional and fractional order PID controller for 

a circular smooth trajectory as depicted in Fig. 4.23. This trajectory is performed a continuous 

gradient trajectory motion. Hence, the error between the actual and desired trajectory is 

supplied into the first fractional order PID controller. The output of the fractional order 

controller is presented the control action that is connected the actuator of the wheel. Fig. 4.24 

demonstrates the orientation of an unmanned ground vehicle that it tracks and converges to the 

desired circular trajectory. The error between the desired and actual orientations for both the 

PID and fractional order PID controllers is depicted in Fig. 4.25.  It can be observed that the 

orientation errors are maintained around zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.23  Circular trajectories using PID and FOPID controllers. 
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Fig. 4.24 Orientations for circular trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 4.25 Error in the orientation for circular trajectory using PID and FOPID controllers. 
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         Control efforts for the left and right wheels for the circular trajectory based on using 

conventional and fractional order PID controllers are shown in Fig. 4.26 and Fig. 4.27, 

respectively. There are no significant differences between the control actions of the two control 

methodologies.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.26 Control efforts for left wheel of the circular trajectory using PID and FOPID 

controllers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27 Control efforts for right wheel of the circular trajectory using PID and FOPID 

controllers. 
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         The second input of the system represents the desired velocity and it equals to 𝑣𝑑 =

0.5  [m/sec] for interval 0 ≤ 𝑡 ≤ 40  [𝑠𝑒𝑐]. The velocity is compared with the actual velocity 

based on the traditional and the fractional order PID controller as illustrated in Fig. 4.28. The 

produced error of comparing the desired and actual velocities shown in Fig. 4.29 is supplied to 

the second fractional order controller. The actual velocities of both controllers are retrieved 

from its maximum amplitude and approached zero value after ‘6 sec’. Similarly, a comparison 

of trajectory tracking is conducted for both of X and Y coordinates as shown in Figs. 4.30 and 

4.31. Hence, the trajectory tracking errors can be determined and are demonstrated in Figs. 

4.32 and 4.33. Finally, the comparison of the changing of the integral square error functions of 

both the orientation and velocity is depicted in Figs. 4.34 and 4.35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.28 Velocities for circular trajectory using PID and FOPID controllers. 
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Fig. 4.29 Error in velocity for circular trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.30 X-coordinates for circular trajectory using PID and FOPID controllers. 
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Fig. 4.31 Y-coordinates for circular trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.32 Error in X-coordinates for circular trajectory using PID and FOPID controllers. 
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Fig. 4.33 Error in Y-coordinates for the circular trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.34 ISE of orientation for circular trajectory using PID and FOPID controllers. 
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Fig. 4.35 ISE of velocity for circular trajectory using PID and FOPID controllers. 

 

4.7.3 Application Case 3 

        In this case, a lemniscate trajectory is utilised as a new reference input. It behaves like the 

circular trajectory in terms of a continuous gradient motion. However, it demonstrates varied 

rotations to complete its cycle of movement. Fig. 4.36 illustrates the performance of the 

traditional and fractional order PID controllers of guiding the motion of a UGV. In fact, both 

have shown a precise performance in terms of trajectory tracking and minimising the tracking 

error. However, the fractional order PID controller displays better results based on the 

orientation and its error that are shown in Fig. 4.37 and Fig. 4.38, respectively. Control efforts 

for the left and right wheels for the lemniscate trajectory based on using conventional and 

fractional order PID controllers are shown in Fig. 4.39 and Fig. 4.40, respectively. It can be 

clearly that the control actions have been improved by using FOPID. The overshoot of both 

graphs is minimised and hence, better time responses are obtained.  
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Fig. 4.36 Lemniscate trajectories PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.37 Orientations for the lemniscate trajectory using PID and FOPID controllers. 
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Fig. 4.38 Error in orientations for the lemniscate trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.39 Control efforts for left wheel of lemniscate trajectory using PID and FOPID 

controllers. 
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Fig. 4.40 Control efforts for right wheel of lemniscate trajectory using PID and FOPID 

controllers. 

 

         Likewise, the desired and the actual velocities are compared using the same approach as 

demonstrated in Fig. 4.41. Besides, the error between the desired and the actual velocities 

proves that the fractional order methodology performs a more effective response as illustrated 

in Fig. 4.42. Correspondingly, the trajectory tracking of X and Y coordinates error is provided 

from Fig. 4.43 to Fig. 4.46. Comparably, the obtained error for each coordinate confirms that 

the fractional order has improved the performance of the system by minimising the tracking 

error. Eventually, the changing of the integral square error functions for both the orientation 

and velocity are given in Figs. 4.47 and 4.48. It is noticeable that the fractional order PID 

controller has introduced advantageous of minimising expecting errors. 
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Fig. 4.41 Velocities for the lemniscate trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.42 Error in velocities for the lemniscate trajectory using PID and FOPID controllers. 
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Fig. 4.43 X-coordinates for the lemniscate trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.44 Y-coordinates for the lemniscate trajectory using PID and FOPID controllers. 
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Fig. 4.45  Error of X-coordinates for lemniscate trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.46 Error of Y-coordinates for lemniscate trajectory using PID and FOPID controllers. 
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Fig. 4.47 ISE of the orientation for lemniscate trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.48 ISE of velocity for lemniscate trajectory using PID and FOPID controllers. 
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4.7.4 Application Case 4 

          In this case, a reference square trajectory is considered. Obviously, it is an explicit 

example of a non-continuous gradient trajectory. The main complexity of such a trajectory 

results from a sharp and a non-continuous motion. In Chapter 3, it has been noticed that the 

trajectory tracking of the square trajectory led to a significant error using the traditional PID 

controller. Based on the fractional order PID controller, the trajectory tracking errors and the 

control efforts have been improved significantly. Nonetheless, the trajectory tracking still 

suffers from high values of tracking error that might produce an unstable and a disturbed 

motion. Fig. 4.49 demonstrates the difference between the actual velocities of the conventional 

and fractional order PID controllers comparing to the desired square trajectory.  

         In addition, the introduced graph for the orientation as shown in Fig. 4.50 demonstrates 

similar facts about the performance of the UGV and its function in response to the non-

continuous gradient trajectory. The tracking error response that is depicted in Fig. 4.51 

validates the effectiveness of the fractional order PID controller and its ability to minimise the 

tracking error significantly. The value of the trajectory tracking error reaches the peak at each 

side of the desired square trajectory whilst it attempts to track the trajectory. Actually, an 

observable reason that describes this phenomenon, it belongs to the sudden changing at the 

corners of the desired trajectory. Hence, the UGV has to accomplish an appropriate and a 

feasible turn to retrieve its normal posture. Along any one side of the square, the desired 

orientation angle is constant, therefore, the orientation error approaches zero. However, at the 

end of one side of the square trajectory, the desired orientation angle changes suddenly. 

Therefore, the orientation error of the UGV against the desired trajectory at the corners of the 

square is increased. 
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Fig. 4.49 Square trajectories using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.50 Orientations for square trajectory using PID and FOPID controllers. 
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Fig. 4.51 Error in orientations for the square trajectory using PID and FOPID controllers. 

 

 

Control efforts for the left and right wheels for the square trajectory are demonstrated in Fig. 

4.52 and Fig. 4.53, respectively. It can be clearly that the control actions have been improved 

by using FOPID controller comparing to conventional PID controller.  The simulation results 

have demonstrated the effectiveness of the proposed controller by showing its ability to 

generate small values of the control input torques for right and left wheels with small sharp 

spikes at the corners of changing the gradient of the non-continuous square trajectory. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.52 Control efforts for left wheel of square trajectory using PID and FOPID controllers. 
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Fig. 4.53 Control efforts for right wheel of square trajectory using PID and FOPID 

controllers. 

 

        The velocities of the UGV based on the classic and the fractional order PID controller are 

shown in Fig. 4.54. Distinctly, the error of velocities for both of control methodologies validate 

that the fractional order PID controller has made a noticeable improvement to track the desired 

velocity as depicted in Fig. 4.55. After a duration of ‘5 sec’, the peak value of the velocity error 

has a range between ‘-0.12 m/sec’ to ‘0.18 m/sec’ using the traditional PID controller. Whereas, 

it has a value of ‘-0.02 m/sec’ using the fractional order PID controller.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.54 Velocities for square trajectory using PID and FOPID controllers. 
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Fig. 4.55 Error in velocity for square trajectory using PID and FOPID controllers. 

      

          Comparisons of trajectory tracking for X and Y coordinates are carried out as illustrated 

in Fig. 4.56 and Fig. 4.57, respectively. The tracking errors have been reduced to small values 

as shown in Fig. 4.58 and Fig. 4.59, for position tracking errors. The value of X-coordinate 

error in the square trajectory is oscillated around ‘-0.5m’ using the fractional order PID 

controller whilst it drops to ‘-1m’ and reaches a maximum of ‘1m’ using the conventional PID 

controller. The Y-coordinate error in the square trajectory is also fluctuated but around ‘0.5m’ 

using the fractional order PID controller. However, it exceeds a value of ‘1.5m’ based on the 

conventional PID controller. The final comparisons are conducted for the integral square error 

of the orientation and velocity. They  have approved the validation of our proposed 

methodology as demonstrated in Fig. 4.60 and Fig. 4.61, respectively. It is noteworthy that at 

the corner sides of the desired square, the tracking error rates have been improved and 

enhanced. 

 

 

 

 

 

 

 



Chapter 4: Trajectory Tracking of UGV Based on Fractional Order PID Controller 

110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.56 X-coordinates for square trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.57 Y-coordinates for square trajectory using PID and FOPID controllers. 
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Fig. 4.58 Error in X coordinate for the square trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.59 Error in Y coordinates for the square trajectory using PID and FOPID controllers. 
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Fig. 4.60 ISE of orientation for square trajectory using PID and FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.61 ISE of velocity for square trajectory using PID and FOPID controllers. 

 

4.8 Robustness Investigation 

         Designing an accurate and robust control system in the presence of disturbances is 

necessary for the effectiveness of control systems. Therefore, it is essential to establish 

robustness analysis of the fractional order to validate its performance in the presence of external 

disturbances.  The source of such disturbances might be due to the frictions and roughness of 
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a ground surface. Hence, there is a necessity to verify that the design meets different operating 

conditions and should have a desirable robustness. The robustness of the fractional order PID 

controllers is examined by applying a disturbance due to an external friction that might be 

produced from the movement of the unmanned ground vehicle. To achieve this, two types of 

disturbances are carried out to verify functional operating conditions. 

 Square pulses with different amplitudes, 

 Sinusoidal signals with different amplitudes 

       The square pulses are applied as external disturbances that are associated with the input 

voltages of DC motors that are driving the left and right wheels. The amplitude of the square 

pulses varies from 0.1 volts to 1 volt; the frequency is fixed at 1 Hz. The duty cycle of the 

pulses is set to 10%. At each value, the cost function of the orientation can be calculated based 

on Eq. (4.10), given previously. Fig. 4.62 demonstrates the response of the cost function for 

the orientation against different amplitudes of square pulses for the linear, circular, lemniscate 

and square trajectories. In addition, Fig. 4.63 demonstrates the response of the cost function for 

the velocity under the same operating conditions; this is based on Eq. (4.11) given earlier. 

Moreover, the cost function of the four trajectories establishes that the circular trajectory has a 

minimum error rate. It is also observed that the square trajectory shows the maximum tracking 

error. This has occurred because of a non-continuous gradient that is inherent in the square 

trajectory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.62 Time response of cost function of orientation against square pulses. 
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Fig. 4.63 Time response of cost function of velocity against square pulses. 

 

        Furthermore, a variety of sinusoidal signals based on different amplitudes have been 

applied and integrated with the actuators of the unmanned ground vehicle. The amplitude of 

the sinusoidal signals varies from 0.1volts to 1 volt. The angular frequency of all the sinusoidal 

signals is set at 1 rad/sec. The responses of the cost functions of the orientation and velocity 

against the changing of the amplitudes of the disturbances are shown in Fig. 4.64 and Fig. 4.65, 

respectively. It is noticeable that there is a slight changing in the response of the cost function 

when disturbances are applied. However, the influence of such a change is reasonable adequate 

and proves the robustness of the fractional order PID controller. It might be not appropriate 

when a considerable amount of disturbances is enforced. Hence, proper constraints have to be 

considered to avoid significant increases of disturbances. It is noticeable that the cost function 

for the square trajectory demonstrates the highest value, which in turn proves that the non-

continuous gradient trajectory imposes challenge on the operation of the UGV. Therefore, a 

further improvement might be still needed to enhance the performance under such 

circumstances. 
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Fig. 4.64 Time response of cost function of orientation against sinusoidal signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.65 Time response of cost function of velocity against sinusoidal signals. 
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4.9 Chapter Summary 

        The Fractional Order PIλDμ controllers have been introduced to control the motion of the 

unmanned ground vehicle. The controller is optimized by minimizing the cost function based 

on a particle swarm optimisation algorithm. The PSO algorithm has been used to tune the 

parameters of the fractional order PID controller. The designed fractional order PID controllers 

have shown a significant ability to track different trajectories and the desired velocity. Four 

different trajectories are considered to validate the adaptation of the system. The simulation 

results have confirmed successfully the effectiveness and validation of the proposed fractional 

order PID controller in terms of minimising the trajectory tracking error and reducing control 

efforts. Additionally, the simulation results have proven the stability and robustness of the 

design. 

       The influence of external disturbances has been accounted to investigate the efficiency and 

robustness of the proposed fractional order PID controllers. The square pulses and sinusoidal 

signals are considered as two different sources of disturbances. These disturbances are 

integrated with the actuation of the UGV. It is observed that when disturbances are applied, a 

slight change in the cost function occurs. This change does not affect the vehicle operation 

even when it is applied persistently. The results have shown the effectiveness and robustness 

of the proposed fractional order PID controllers. In addition, the results have proven that the 

proposed methodology has reduced the trajectory tracking error significantly to a minimum 

and the system is globally asymptotically stable. Whereas, the trajectory tracking error of the 

square trajectory has not demonstrated a reasonable response and it is still noticeably high. 

Hence, a new control methodology is proposed in the next chapter by combining the fractional 

order PID controller and neural networks to minimise the trajectory-tracking error. 
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Chapter 5 

Trajectory Tracking of UGV Based on NN-

FOPID Controller 
 

5.1 Introduction 

his chapter contextualises the research by introducing background information on the 

application of neural networks (NN). They can be utilised to solve complex linear 

and nonlinear control problems. The NN has been widely used in a variety of dynamic 

systems. A multilayer neural network is capable of learning and identifying the characteristics 

of dynamic systems (Nguyen and Widrow, 1990). Early studies proposed NNs to tackle some 

basic applications. For example, Khalid and Omatu (1992) introduced a backpropagation 

neural network to learn the inverse dynamics model of a temperature control system. It had 

been proved that the ability of the neural network to learn the inverse kinematic of the process 

plant based on input vectors without a priori knowledge regarding the dynamics. The reported 

results were compared to the conventional proportional integral (PI) controller to demonstrate 

the advantages of NN.  

       The applications of neural networks to control systems have become increasingly broad.  

For instance, the application of neural networks was presented to control a double inverted 

pendulum (Arbo et al., 2014). Another application was proposed for neural networks of a 

thermal error compensation in computer numerical control machines (Nie, 2011). Recently, the 

neural networks have been applied extensively in a field of machine learning. In particular, 

many applications have been reported for a prediction and a deep learning based on neural 

networks. For instance, Rosli et al. (2016)  presented different neural network architectures for 

developing a prediction model for gas metering systems. The deep learning approaches, which 

are implemented based on large neural networks, have become currently a major research area. 

One of the main applications of the deep learning is visual perception for the UGV.  

 

5.2 Chapter Organisation 

       The chapter is organised as follows: The following section introduces a review of the 

architecture of neural networks. This also includes reviewing the comparisons among several 

optimisation algorithms that are utilised for tuning the parameters of neural networks. In 

T 
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Section 5.4, the proposed design of the neural networks is presented. The conducted simulation 

results are described in Section 5.5 and the study is finally concluded in Section 5.6. 

 

5.3 Neural Networks Architecture 

     The architecture of NN can be created using two or more combined neurons to form a multi-

layer network (Fausett, 1993). Fig. 5.1 depicts a typical example of a multilayer architecture 

for a neural network. It is apparent that the architecture of an artificial neural network consists 

of three layers, i.e., input layer, hidden layer and output layer. First, the input layer receives 

variables related to a problem, which has a finite number of inputs and duplicate the value to 

their multiple outputs. The nodes of the input layer are passive. It means that they do not modify 

the data. The second layer for this example is the hidden layer that processes the information 

between the input and output layers of a network to develop a behavioural representation of the 

problem. Finally, the output layer provides the desired output of a trained system. There is a 

node given at the end of each layer. Each node represents a processing element that is active in 

comparison with the nodes in the input layer. The relationship between the nodes is 

manipulated with weights associated with nodes’ outputs. This means that each node represents 

a summation value of all inputs that feed a particular node. Several transfer functions can be 

used to manipulate the relationship between the input and output of each node such as Sigmoid, 

Gaussian. In addition, there are biases associated with nodes to activate them. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Three-layer neural network. 

      The set of relationships for manipulating the interconnection between the layers at each 

stage is given below: 

𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘)                                                                                                                        (5.1) 
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𝑛𝑒𝑡𝑘 = (∑𝑊𝑘𝑗𝑂𝑗
𝑗

+ 𝑏𝑘)                                                                                              (5.2) 

𝑂𝑗 = 𝑓(𝑛𝑒𝑡𝑗)                                                                                                                      (5.3) 

𝑛𝑒𝑡𝑗 = (∑𝑊𝑗𝑖𝑂𝑖
𝑖

+ 𝑏𝑗)                                                                                                (5.4) 

where 

Wji - weights between the input layer and the hidden layer. 

Wkj - weights between the hidden layer and the output layer. 

𝑏𝑗  𝑎𝑛𝑑 𝑏𝑘 -biases of the hidden layer and the output layer, respectively. 

 

       In Equations (5.1) and (5.2), 𝑓(𝑛𝑒𝑡) is the transfer functions in both the hidden and output 

layer and can have different forms such as linear, sigmoid and hyperbolic tangent sigmoid 

transfer function. Transfer functions calculate a layer's output from its net input. 

 

        Different optimizations algorithms have already been developed for neural-networks 

training. For instance, the back-propagation (BP) algorithm that could be considered one of the 

most applied algorithms for training of ANN (Wilamowski, 2009).  Currently, the BP algorithm 

is still widely for optimisation purposes. However, the slow convergence makes this algorithm 

to be considered an inefficient algorithm. The two main causes of the slow convergence in BP 

algorithm are; its step sizes and the curvature of the error surface may not be the same in all 

directions. Gauss-Newton algorithm is introduced as new algorithm to greatly improve the slow 

convergence. This algorithm is based on second-order derivatives of an error function to assess 

the error in the curvature surface in contrast with BP algorithm, which is based on first order 

derivative.  

      The step size in the Gauss–Newton algorithm can be found for each direction that will 

converge speedily. In particular, if the error function has a quadratic surface. However, there 

is still a problem occurs if the quadratic approximation of error function is not reasonable. This 

in turn will lead the Gauss–Newton algorithm to be mostly divergent (Wilamowski and Irwin, 

2011). Therefore, the neural  is introduced due to its benefits over the BP and Gauss–Newton 

algorithms. Levenberg-Marquardt (LM) algorithm is a combination of BP algorithm and 

Gauss–Newton algorithm. In LM algorithm, a numerical solution is provided to a problem for 

minimizing a nonlinear function. Moreover, it is fast and has stable convergence, suitable for 

training small and medium sized problems. It inherits the stability of the BP algorithm and the 
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speed advantage of the Gauss–Newton algorithm.  To fully understand the derivation of the 

LM algorithm, the following four training algorithms will be presented; beginning with (1) 

Back-propagation algorithm, (2) Newton’s method, (3) Gauss–Newton’s algorithm, and ending 

with (4) Levenberg–Marquardt algorithm. 

       The mean square error (MSE) is defined in the equation below to evaluate the error value 

in training process. It is calculated for all training process and network outputs as follows: 

𝐸(𝑥,𝑤) =
1

2
∑∑ 𝑒𝑝,𝑚

2

𝑀

𝑚=1

𝑃

𝑝=1

                                                                                           (5.5) 

ep,m = dp,m − op,m                                                                                                      (5.6) 

where 

x - Network input,  

w - Weight of network, 

𝑝 - Number of patterns, 

𝑚 - Number of outputs, 

ep,m - Training error,  

d - Required output, and  

o - Actual output.  

 

5.3.1 Back-Propagation Algorithm 

        The BP algorithm is used for finding the minimum of the error function. It utilises a 

gradient descent method to calculate the error in weight space to be a solution of the learning 

problem. Therefore, the error function can be minimized by using an iterative process of the 

gradient descent as shown in equation below. The index ‘g’ is defined as the first-order 

derivative of the total error function: 

𝑔 =
𝜕𝐸(𝑥,𝑤)

𝜕𝑤
= [

𝜕𝐸

𝜕𝑤1
    
𝜕𝐸

𝜕𝑤2
  …   

𝜕𝐸

𝜕𝑤𝑁
]
𝑇

                                                               (5.7) 

The update rule for each weight of the BP algorithm could be written as follows: 

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑔𝑘                                                                                                          (5.8) 

where 

𝛼 - Learning rate or it is called the step size, 

𝑁 - Number of weights, 

𝑖 and 𝑗 - Indices of weights, from 1 to 𝑁, and 

𝑘 - Iteration number. 
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5.3.1 Newton’s Algorithm 

       In Newton’s method, it is assumed that all the gradient components, i.e., g1, g2, … , gN are 

the functions of weights where all weights are linearly independent: 

{

𝑔1 = 𝐹1(𝑤1, 𝑤2, … 𝑤𝑁)

𝑔2 = 𝐹2(𝑤1, 𝑤2, … 𝑤𝑁)
…

𝑔𝑁 = 𝐹𝑁(𝑤1, 𝑤2, … 𝑤𝑁)

                                                                                                           (5.9) 

where 𝐹1, 𝐹2, … and 𝐹𝑁 represent the nonlinear relationships between gradient components and 

weights. Thus, to unfold each gi (i = 1, 2, … , N) in Eq. (5.9) by Taylor series and take the first-

order approximation, it can be  obtained: 

{
  
 

  
 𝑔1 ≈ 𝑔1,0 +

𝜕𝑔1
𝜕𝑤1

∆𝑤1 +
𝜕𝑔1
𝜕𝑤2

∆𝑤2 +⋯+
𝜕𝑔1
𝜕𝑤𝑁

∆𝑤𝑁

𝑔2 ≈ 𝑔2,0 +
𝜕𝑔2
𝜕𝑤1

∆𝑤1 +
𝜕𝑔2
𝜕𝑤2

∆𝑤2 +⋯+
𝜕𝑔2
𝜕𝑤𝑁

∆𝑤𝑁
…

𝑔𝑁 ≈ 𝑔𝑁,0 +
𝜕𝑔𝑁
𝜕𝑤1

∆𝑤1 +
𝜕𝑔𝑁
𝜕𝑤2

∆𝑤2 +⋯+
𝜕𝑔𝑁
𝜕𝑤𝑁

∆𝑤𝑁

                                                           (5.10) 

From the definition of the gradient descent  𝑔 in Eq. (5.7), it could be determined that 

𝜕𝑔𝑖
𝜕𝑤𝑗

=
𝜕(
𝜕𝐸
𝜕𝑤𝑖

)

𝜕𝑤𝑗
=

𝜕2𝐸

𝜕𝑤𝑖𝜕𝑤𝑗
                                                                                                (5.11) 

By substituting Eq. (5.7) into Eq. (5.10), we obtain: 

{
 
 
 

 
 
 𝑔1 ≈ 𝑔1,0 +

𝜕2𝐸

𝜕𝑤1
2 ∆𝑤1 +

𝜕𝐸

𝜕𝑤1𝜕𝑤2
∆𝑤2 +⋯+

𝜕𝐸

𝜕𝑤1𝜕𝑤𝑁
∆𝑤𝑁

𝑔2 ≈ 𝑔2,0 +
𝜕2𝐸

𝜕𝑤2𝜕𝑤1
∆𝑤1 +

𝜕2𝐸

𝜕𝑤2
2 ∆𝑤2 +⋯+

𝜕2𝐸

𝜕𝑤2𝜕𝑤𝑁
∆𝑤𝑁

…

𝑔𝑁 ≈ 𝑔𝑁,0 +
𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤1
∆𝑤1 +

𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤2
∆𝑤2 +⋯+

𝜕2𝐸

𝜕𝑤𝑁
2 ∆𝑤2𝑁

                                        (5.12) 

       

     In order to obtain the minima of error function, the gradient descent should be zero of each 

component. Therefore, left side of the Eq. (5.12) are all set to zero, hence 

 

{
 
 
 

 
 
 0 ≈ 𝑔1,0 +

𝜕2𝐸

𝜕𝑤1
2 ∆𝑤1 +

𝜕2𝐸

𝜕𝑤1𝜕𝑤2
∆𝑤1 +⋯+

𝜕2𝐸

𝜕𝑤1𝜕𝑤𝑁
∆𝑤𝑁

0 ≈ 𝑔2,0 +
𝜕2𝐸

𝜕𝑤2𝜕𝑤1
∆𝑤1 +

𝜕2𝐸

𝜕𝑤2
2 ∆𝑤2 +⋯+

𝜕2𝐸

𝜕𝑤2𝜕𝑤𝑁
∆𝑤𝑁

…

0 ≈ 𝑔𝑁,0 +
𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤1
∆𝑤1 +

𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤2
∆𝑤2 +⋯+

𝜕2𝐸

𝜕𝑤𝑁
2 ∆𝑤2𝑁

                                       (5.13) 
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By combining Eq. (5.7) with (5.13), it yields 

{
 
 
 

 
 
 −

𝜕𝐸

𝜕𝑤1
= −𝑔1,0 ≈ +

𝜕2𝐸

𝜕𝑤1
2 ∆𝑤1 +

𝜕2𝐸

𝜕𝑤1𝜕𝑤2
∆𝑤1 +⋯+

𝜕2𝐸

𝜕𝑤1𝜕𝑤𝑁
∆𝑤𝑁

−
𝜕𝐸

𝜕𝑤2
= −𝑔2,0 ≈

𝜕2𝐸

𝜕𝑤2𝜕𝑤1
∆𝑤1 +

𝜕2𝐸

𝜕𝑤2
2 ∆𝑤2 +⋯+

𝜕2𝐸

𝜕𝑤2𝜕𝑤𝑁
∆𝑤𝑁

…

−
𝜕𝐸

𝜕𝑤𝑁
= −𝑔𝑁,0 ≈

𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤1
∆𝑤1 +

𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤2
∆𝑤2 +⋯+

𝜕2𝐸

𝜕𝑤𝑁
2 ∆𝑤2𝑁

                              (5.14) 

       

 From the equation above, it is obvious that there are N parameters for  N equations. This means 

all ∆wi can be calculated. During the learning process, the weights will be updated iteratively. 

Eq. (5.14) can be also written in a matrix form as follows: 

[

−𝑔1
−𝑔2
…
−𝑔𝑁

] =

[
 
 
 
 
 
 −

𝜕𝐸

𝜕𝑤2

−
𝜕𝐸

𝜕𝑤1…

−
𝜕𝐸

𝜕𝑤𝑁]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝜕2𝐸

𝜕𝑤1
2

𝜕2𝐸

𝜕𝑤1𝜕𝑤2
…        

𝜕2𝐸

𝜕𝑤1𝜕𝑤𝑁
𝜕2𝐸

𝜕𝑤2𝜕𝑤1

𝜕2𝐸

𝜕𝑤2
2 …        

𝜕2𝐸

𝜕𝑤2𝜕𝑤𝑁…
𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤1

…
𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤2
∆𝑤2

…
…               

…
𝜕2𝐸

𝜕𝑤𝑁
2 ]
 
 
 
 
 
 
 

[

∆𝑤1
∆𝑤2
…
∆𝑤𝑁

] 

                                                                                                                                               (5.15) 

where, the square matrix is Hessian matrix: 

𝐻 =

[
 
 
 
 
 
 
 
𝜕2𝐸

𝜕𝑤1
2

𝜕2𝐸

𝜕𝑤1𝜕𝑤2
…        

𝜕2𝐸

𝜕𝑤1𝜕𝑤𝑁
𝜕2𝐸

𝜕𝑤2𝜕𝑤1

𝜕2𝐸

𝜕𝑤2
2 …        

𝜕2𝐸

𝜕𝑤2𝜕𝑤𝑁…
𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤1

…
𝜕2𝐸

𝜕𝑤𝑁𝜕𝑤2
∆𝑤2

…
…               

…
𝜕2𝐸

𝜕𝑤𝑁
2 ]
 
 
 
 
 
 
 

                                               (5.16) 

By combining Equations (5.7) and (5.16) with Eq. (5.15) 

𝑔 = −𝐻∆𝑤                                                                                                                           (5.17) 

Then      ∆𝑤 = −𝐻−1𝑔                                                                                                                    (5.18) 

In addition, in Newton’s method, the incremental updating rule for weights can be given below: 

𝑤𝑘+1 = 𝑤𝑘 − 𝐻𝑘
−1𝑔𝑘                                                                                                         (5.19) 

 where H is defined as a Hessian matrix, which provides the second-order derivatives of total 

error function and gives a proper evaluation of the change of the gradient descent. By 

comparing Equations (5.18) and (5.19), it may be noticed that well matched step sizes are given 

by the inverted Hessian matrix. 
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5.3.3 Gauss-Newton Algorithm 

       In Gauss Newton algorithm, Jacobian matrix J is introduced to simplify the calculation 

process due to the complexity inherited in the second-order derivatives of total error function 

with Newton’s method. 

𝐽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑒1,1
𝜕𝑤1
𝜕𝑒1,1
𝜕𝑤1
⋯
𝜕𝑒1,2
𝜕𝑤1
⋯
𝜕𝑒𝑝,1

𝜕𝑤1
𝜕𝑒𝑝,2

𝜕𝑤1
⋯

𝜕𝑒𝑝,𝑚

𝜕𝑤1

𝜕𝑒1,1
𝜕𝑤2
𝜕𝑒1,1
𝜕𝑤2
⋯
𝜕𝑒1,2
𝜕𝑤2
⋯
𝜕𝑒𝑝,1

𝜕𝑤2
𝜕𝑒𝑝,2

𝜕𝑤2
⋯

𝜕𝑒𝑝,𝑚

𝜕𝑤2

⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯

𝜕𝑒1,1
𝜕𝑤𝑁
𝜕𝑒1,1
𝜕𝑤𝑁
⋯
𝜕𝑒1,2
𝜕𝑤𝑁
⋯
𝜕𝑒𝑝,1

𝜕𝑤𝑁
𝜕𝑒𝑝,2

𝜕𝑤𝑁
⋯

𝜕𝑒𝑝,𝑚

𝜕𝑤𝑁 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                       (5.20) 

By integrating Equations (5.5) and (5.7), gradient descent’s elements can be calculated as 

follows: 

𝑔𝑖 =
𝜕𝐸

𝜕𝑤𝑖
=
𝜕(
1
2
∑ ∑ 𝑒𝑝,𝑚

2𝑚
𝑚=1

𝑝
𝑝=1 )

𝜕𝑤𝑖
=∑∑ (

𝜕𝑒𝑝,𝑚

𝜕𝑤𝑖
 𝑒𝑝,𝑚)

𝑚

𝑚=1

𝑝

𝑝=1

                       (5.21) 

Combining Equations (5.20) and (5.21), the relationship between gradient descent (g) and 

Jacobian matrix (J) would be: 

𝑔 = 𝐽. 𝑒                                                                                                                       (5.22) 

where the error (e) has the following form: 

𝑒 =

[
 
 
 
 
 
 
 
 
𝑒1,1
𝑒1,2
⋯
𝑒1,𝑚
⋯
𝑒𝑝,1
𝑒𝑝,1
⋯
𝑒𝑝,𝑚]

 
 
 
 
 
 
 
 

                                                                                                                  (5.23) 

By inserting Eq. (5.5) into Eq. (5.16), the elements of the Hessian matrix, i.e., ith row and jth 

column can be calculated as: 

ℎ𝑖,𝑗 =
𝜕2𝐸

𝜕𝑤𝑖𝜕𝑤𝑗
=
𝜕2(

1
2
∑ ∑ 𝑒𝑝,𝑚

2𝑚
𝑚=1

𝑝
𝑝=1 )

𝜕𝑤𝑖𝜕𝑤𝑗
=∑∑

𝜕𝑒𝑝,𝑚

𝜕𝑤𝑖
 
𝜕𝑒𝑝,𝑚

𝜕𝑤𝑗
+ 𝑆𝑖,𝑗

𝑚

𝑚=1

𝑝

𝑝=1

    (5.24) 
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where 𝑆𝑖,𝑗 = ∑ ∑
𝜕2𝑒𝑝,𝑚

𝜕𝑤𝑖𝜕𝑤𝑗
 𝑒𝑝,𝑚

𝑚
𝑚=1

𝑝
𝑝=1                                                                                         (5.25) 

From Newton’s method, it is assumed that the 𝑆𝑖,𝑗 approaches to zero. Therefore, the 

relationship between Jacobian matrix (J) and Hessian matrix (H) can be rewritten as follows: 

𝐻 ≈ 𝐽𝑇𝐽                                                                                                                            (5.26) 

By combining Equations (5.19), (5.22), and (5.26), the weights that update rule of the Gauss–

Newton algorithm can be given as in below: 

𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘)

−1  𝐽𝑘𝑒𝑘                                                                                         (5.27) 

 

5.3.4 Levenberg-Marquardt Algorithm 

    This algorithm is an approximation to Newton’s method (Hagan and Menhaj, 1994).  In 

order to make sure that the approximated Hessian matrix is invertible, LM algorithm introduces 

another approximation to Hessian matrix as follows: 

𝐻 ≈ 𝐽𝑇𝐽 + 𝜇𝐼                                                                                                                      (5.28) 

where 

μ = combination coefficient and it is always positive,  

I = the identity matrix. 

By combining Equations (5.27) and (5.28), the update rule for weights of LM algorithm can be 

presented as follows: 

𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘 + 𝜇𝐼)

−1  𝐽𝑘𝑒𝑘                                                                                (5.29) 

       The LM algorithm switches between the backpropagation algorithms and the Gauss–

Newton algorithm during the training process. Two situations will be considered in LM 

algorithm. Firstly, if the combination coefficient μ is quite small, hence, Eq. (5.29) is 

approaching to Eq. (5.27) and Gauss–Newton algorithm is used. However, if the combination 

coefficient μ is quite large, Eq. (5.26) approximates to Eq. (5.8) and the BP algorithm is used.  

 

The following steps are described the training process of LM algorithms: 

Step 1: Generate the initial weights,  

Step 2:  update weights using Eq. (5.29), 

Step 3:  Evaluate the error at each updated weights, 

Step 4:  If the new error is increased after updating, then go to step 2 and try an update 

again after increasing combination coefficient 𝜇 by a suitable factor. Otherwise, go to 

step 5, 
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Step 5: If the new error is decreased. Compare the new error with the required value. 

If the new error is smaller than the required value, then stop learning. Otherwise, go to 

step 2. 

       The differences among the aforementioned algorithms are highlighted Table 5.1. It 

summarizes the update rules, convergence and computation complexity of each optimization 

algorithm. 

 

Table 5.1 Specifications of the various algorithms. 

Algorithms Update Rules Convergence 
Computation 

Complexity 

BP algorithm 𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑔𝑘 Stable, slow Gradient 

 

Newton algorithm 𝑤𝑘+1 = 𝑤𝑘 − 𝐻𝑘
−1𝑔𝑘 Unstable, fast Gradient and 

Hessian 

Gauss–Newton 

algorithm 
𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘

𝑇𝐽𝑘)
−1  𝐽𝑘𝑒𝑘 Unstable, fast Jacobian 

Levenberg-Marquardt 

Algorithm 
𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘

𝑇𝐽𝑘 + 𝜇𝐼)
−1  𝐽𝑘𝑒𝑘 stable, fast Jacobian 

 

5.4 Design of Neural Networks  

        The architecture of NN is reviewed previously in Section 5.3. In reminder of this chapter, 

the aim is to describe the proposed design of NN based on the fractional order PID controller. 

An intelligent control system can be implemented based on artificial neural networks to control 

the trajectory tracking of UGV. The implementation process of the control scheme for the 

neural networks can be achieved by building, training and validating the NN. It is needed to 

define and initiate the main parameters of NN. Multi-layers are embedded with each other via 

synapse matrices. Each synapse has a random weight assigned to it. In each layer of ANNs, 

there is a transfer function i.e. Sigmoid function. Such a function runs in every neuron of a 

network when data is supplied. 

Sigmoid function, 𝐴(𝑥) =
1

1+𝑒−𝑥
                                                                                                   (5.30) 

      The architecture of the neural networks is presented based on that fractional order PID 

controller as depicted in Fig. 5.2. It represents a combination of the neural network and the 

fractional order PID controller, abbreviated as NN-FOPID. The input of this combination is the 

error signal between the actual output and the desired input. These error signals are governed 

by the proposed NN-FOPID controller to produce suitable output signals, which they drive 

actuators of a UGV to follow pre-defined trajectories.   



Chapter 5: Trajectory Tracking of UGV based on NN-FOPID Controller 

126 
 

       The main functions of the neural networks in this structure are to build a system, which is 

capable of tracking the movement of a UGV based on measuring the errors between the actual 

and desired movements. The neural networks utilise their adaptive and learning capabilities to 

learn and predict the best needed control actions based on the available data. The datasets of 

the errors measurements are taken from the previously designed FOPID controllers. The 

measured errors are processed based on the three stages i.e. input, hidden and output layers. 

For instance, in the input layer, the measured errors become the input of the neural network 

that are further transformed using sigmoid transfer function given in Equation (5.30). This 

function transfers non-linear errors to linear error and it will limit the range of measured error 

between ‘0’ and ‘1’. Then, the samples can be fed into the hidden layer. Similarly, the outputs 

of the hidden layer are weighted using the Equation (5.4) and it is again shown in the neural 

networks block below. The latter equation is existed between the input and hidden layers and 

between the hidden and output layers. It calculates a weighted sum of its input, adds a bias in 

order to process into the next stage. 

 

      

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Neural network of one part of UGV model. 

     

      Fig. 5.3 demonstrates the training phase for which NN-FOPID controller using the LM 

training algorithm. The network training function given in Equation (5.29) earlier updates 

weight and bias values according to Levenberg-Marquardt optimization until obtaining the 

overall performance is optimised and the error rate is minimised.  The final layout of the control 

architecture and UGV is depicted in Fig. 5.4. Two trained neural network controllers are used 
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for controlling the voltages of the right and left actuators. This enables the vehicle to adjust its 

heading and consequently track a predefined trajectory based on the guidance of its wheels. 

The first controller receives the error between the desired generated trajectory and actual 

trajectory in order to control the orientation angle of the UGV. Therefore, the vehicle must 

change its orientation as needed to track the desired trajectory. The output of this controller is 

directly connected to the right motor. 

         The second controller utilises the error signal between the desired and actual velocities. 

The desired velocity is assumed to a constant value during the tracking process. The output of 

this controller is fed to the left motor voltage of the UGV. The main purpose of the second 

controller is to maintain a constant velocity for controlling the motion. The input and output 

data of NN are obtained from the FOPID controller that implemented in Chapter 4. They are 

used to train the parameters of the neural controller using the LM training algorithm. The 

optimal values of the trainable parameters of the neural controller are obtained using a cost 

function based on a mean square error. 

 

 

 

 

 

 

 

 

 

 

                                                                                                   

 

Fig. 5.3 Training phase of neural networks using LM training algorithm. 
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Fig. 5.4 Block diagram of the neural networks and UGV. 

 

      The tracking orientation error and tracking velocity error are measured by the equations 

below, respectively: 

eθ(t) = θd(t) − θa(t)                                                                                            (5.31) 

ev(t) = vd(t) − va(t)                                                                                            (5.32) 

where 

 θd (t) - Desired orientation angle, 

 θa (t) - Actual orientation angle,  

eθ(t) - Tracking orientation error,  

vr(t) - Desired velocity,  

va(t) - Actual velocity, and 

ev(t) - Tracking velocity error. 

       

       The parameters of neural network # 1 are discussed as follows: The number of neurons in 

the hidden layer is seven. The type of the transfer function used in the hidden layer is hyperbolic 

tangent sigmoid transfer function. It means that the number of biases in the hidden layer is 

seven, and the number of weights between the input layer and the hidden layer equals twenty-

one. Because of there is only one output for each NN controller, it means the number of weights 

between the hidden layer and the output layer is seven and there is only one set of biases in the 
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output layer.  A linear transfer function is used in the output layer. The weights and biases of 

this network are given below.  

       The performance progress of training against epoch numbers is depicted in Fig. 5.5. It is 

observable that the mean squared error equals 1.3628x10-05, which is the minimum average 

squared error and the best training performance obtained between outputs and targets. The 

dashed line is the best goal that equals 10-05 as set in the MATLAB code. In Fig. 5.6, the dashed 

line represents the perfect result (output=target). The solid line represents the best-fit linear 

regression line between outputs and targets. The value of the parameter R is an indication of 

the relationship between the outputs and targets. If R = 1, this indicates that there is an exact 

linear relationship between outputs and targets. If R is close to zero, then there is no linear 

relationship between outputs and targets. It is observable that R=1 which it indicates the exact 

linear relationship as desired. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Training performance for NN of orientation tracking control. 
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Fig. 5.6 Regression plot for NN of orientation tracking control. 

 

      Similarly, the parameters of neural network # 2 stated that the best training performance 

based on mean squared error equals 2.3545x10-05 as depicted in Fig. 5.7. In this network, the 

number of neurons in the hidden layer is ten.  Linear and hyperbolic tangent sigmoid transfer 

function are used in the hidden and output layers respectively. In Fig. 5.8, it is noticeable that 

R=1, which indicates the exact linear relationship as targeted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Training performance for NN of velocity tracking control. 
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Fig. 5.8 Regression plot for NN of velocity tracking control. 

 

5.5 Simulation results 

      In this section, the simulation results of the applying the artificial neural networks based on 

the fractional order PID controller are presented for solving trajectory tracking problem in the 

UGV.  The NN controllers are optimised by Levenberg-Marquardt algorithm. The introduced 

technique shows a remarkable improvement in terms of minimizing trajectory-tracking error 

in comparison with the other controllers. The architecture of NN consists of two neural 

controllers. The first one deals with steering control to enforce the UGV tracking of the give 

trajectory. Whereas, the second NN deals with tracking a reference velocity to maintain a 

constant velocity during the movement. The parameters of these two NN controllers are 

obtained using Levenberg-Marquardt algorithm, i.e., weights and biases.  

       The outcome results are compared with FOPID controller introduced earlier in Chapter 4. 

Despite the progress in the findings made previously, it is demonstrated an effective way of 

minimising the trajectory tracking error for the continuous gradient trajectories. However, the 

simulation results presented an insufficient tracking error for the non-continuous gradient 

trajectory i.e. square trajectory.  Therefore, this case reveals the need for further investigation 

into the non-continuous gradient trajectory in particular to minimise the trajectory tracking 

error, hence, to improve and enhance the performance of trajectory tracking. Other significant 

aspect is to minimise the orientation tracking error and eradicate from the delay in the time 
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response. A comparison of the results for three control methodologies reveals that the trajectory 

tracking error has been improved significantly as illustrated in Fig. 5.9. 

       It is noticeable that the UGV has tracked the desired square trajectory in a quite efficient 

manner using neural networks that have been developed based on the fractional order PID 

controller. In addition, the differences in the orientations of the UGV based on the three control 

methodologies are introduced in Fig. 5.10. The simulation results obtained from the NN 

controller show that the orientation angle converges faster to the corresponding orientation 

angle by comparison with the traditional and fractional order PID controllers. These findings 

have significant implications for minimising the error of the orientation that is shown in Fig. 

5.11. Moreover, these findings enhance the understanding of the predication capability and 

substantial adaptation of the neural networks when they have been associated with the 

fractional order PID controller. Furthermore, the neural networks based on fractional order PID 

controller make a significant contribution to the non-continuous gradient square trajectory and 

have approved the generalisability for the both of continuous gradient and non-continuous 

gradient trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Square trajectories using the PID, FOPID and NN-FOPID controllers. 
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Fig. 5.10 Orientations for square trajectory using PID, FOPID and NN-FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 Error in orientation for square trajectory using PID, FOPID and NN-FOPID 

controllers. 

 

      To investigate and demonstrate the effectiveness of the NN-FOPID controllers, Figs. 4.12 

and 5.13 are introduced to compare the control efforts for the left wheel and right wheel, 

respectively. There are no significant differences between the control efforts obtained by 
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FOPID and NN-FOPID controllers. Nonetheless, a slight improvement is observed at the 

corners of changing the gradient of the non-continuous square trajectory.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 Control efforts for left wheel of square trajectory using PID, FOPID and NN-

FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13 Control efforts for left wheel of square trajectory using PID, FOPID and NN-

FOPID controllers. 
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        Figs. 5.14 and 5.15 demonstrate the motion trajectory of the X and Y coordinates 

respectively. It is quite obvious that the X and Y coordinates have been reduced distinctively. 

For instance, it can be seen in Fig. 5.16 that the trajectory-tracking error of X coordinate has 

been eliminated greatly and it reaches the zero level since the UGV commences its movement 

until the end of the path. In Fig. 5.17, the trajectory tracking error of Y coordinate has been 

considerably improved and it approaches the zero level.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.14 X-coordinates for square trajectory using PID, FOPID and NN-FOPID controllers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15 Y-coordinates for square trajectory using PID, FOPID and NN-FOPID controllers. 
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Fig. 5.16 Error in X-coordinates for square trajectory using PID, FOPID and NN-FOPID 

controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.17 Error in Y-coordinates for square trajectory using PID, FOPID and NN-FOPID 

controllers. 
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       Finally, the other noticeable difference related to the cost function that is used to optimise 

the error based on the integral square error is introduced in Fig. 5.18. It is evident there are 

distinguished improvements of using the neural networks based on the fractional order PID 

controller comparing to the other methodologies introduced in Chapter 3 and Chapter 4. The 

tracking control is quite accurate owing to the quick online learning and adaptive capability of 

the ANNs. The simulation results demonstrate that the adaptive control of the ANN is capable 

of better tracking performance by dismissing any peculiarities in the behaviour of the UGV 

whilst tracking the given trajectory. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18 Error in orientation for square trajectory using PID, FOPID and NN-FOPID 

controllers. 
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5.6 Chapter Summary 

      In this chapter, two neural networks based on FOPID controllers have been proposed to 

control the motion of a UGV. The first NN-FOPID controller is used to control the orientation 

of the UGV whereas the second FOPID-controller is utilised to control the velocity of the UGV. 

These FOPID-NN controllers have been trained by using the Levenberg–Marquardt algorithm, 

which have effectively obtained the optimal parameters of the FOPID-NN controllers. The 

proposed FOPID-NN controllers have demonstrated significant improvements and highly 

accurate capability to track the square trajectory in comparison with solely FOPID controllers. 

Additionally, the NN-FOPID-controllers have demonstrated a fast learning capability of 

tracking the non-continuous gradient square trajectory. The simulation results have confirmed 

successfully the validation of the introduced NN-FOPID controllers in terms of minimising 

tracking error and reducing the control efforts, thus, the overall response of the system has been 

improved. Thereby, from the summary of the main findings, it is observable that the introduced 

method has a smoother and faster convergence performance of error tracking for orientation 

angles. Moreover, the simulation results demonstrated the effectiveness of the proposed 

controller by showing its ability to generate small values of the control input torques for right 

and left wheels with small sharp spikes. 
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Chapter 6 
Navigation of UGV Based on Fuzzy Inference 

System 
 

6.1 Introduction 

he increased applications of fuzzy inference systems (FIS) are based on the fact of 

the simplicity of fuzzy rule-based systems, capable of performing a wide variety tasks 

without explicit computations and measurements or requirement of prior knowledge 

about a system mathematical model. These facts make FIS extensively popular among 

scientists and researchers. FIS provides a means to capture a human mind’s expertise. It utilizes 

heuristic knowledge for representing and accomplishing of a methodology to develop a 

perceptual action based strategies for UGV’s navigation. Furthermore, the methodology of the 

FIS is strongly helpful in dealing with uncertainties in real world scenarios. Therefore, the 

importance of the FIS is based on a simple design, an easy implementation and robustness 

properties. Hence, many real world applications have been using FIS to approach and solve 

engineering problems. It has been intensively used in facial pattern recognitions, air 

conditioners, washing machines, vacuum cleaners, and robotic systems.  

       The applications of the FIS in robotic systems have demonstrated that most existing work 

has been dedicated to the navigation in static environments, rather than dynamic environments. 

However, industrial automation applications increasingly demand a development for UGV in 

dynamic environments based on real world situations. In this chapter, the attempts can be 

summarised as follows: the FIS is proposed to guide the vehicle in a busy and dynamic 

environment.  A full consideration of the UGV and obstacles with different shapes and sizes 

has been taken.  It is considered a random movement of obstacles in our proposed environment. 

As a result, this creates a challenge to the operation of the UGV to reach its destination. A new 

problem statement is proposed for the constructing dynamic environments where multiple 

obstacle movements are considered randomly with different speeds and directions. 

      The FIS consists of two fuzzy logic controllers, which they are locally reactive based on 

UGV’s navigation commands. The left and right rear wheels are controlled by the proposed 

two controllers to achieve an ultimate performance with a minimum power and to navigate 

safely, by manoeuvring the moving obstacles, all the way towards its destination with minimum 

delay.  The first proposed controller is reacted based on the sensing information of any objects 

T 
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that are moving near the UGV path or any other obstacles that on the UGV path. The second 

controller is designed to determine the optimal direction when no obstacles near the UGV 

platform until the destination point is reached. These two controllers are incorporated into a 

switching mechanism to choose the operational case that needs to be activated. If the UGV 

senses an obstacle that is approaching its platform, the first controller will be activated. On the 

contrary, when the path is clear of obstacles, the second controller will be activated. 

Thoroughly, both controllers allow the UGV to adjust its trajectory in real-time to avoid 

collisions with any obstacles in the environment during the navigating and to stop when it 

reaches its destination. The major advantage of our design is achieving an optimal and a smooth 

path during navigation. Hence, this will improve the operational performance of the UGV and 

avoid the random perturbations due to the movement. 

 

6.2 Chapter Organisation 

      The chapter is organised as follows: Section 6.3 present a review of the structure of the 

fuzzy inference systems. In Section 6.4, the design of our fuzzy inference systems is presented. 

The environment modelling and the navigation architecture are illustrated in Section 6.5. This 

describes the implementation process of the obstacle avoidance and target reaching algorithms. 

Four scenarios are conducted based on experimental simulation results are demonstrated in 

Section 6.6. In addition, comparisons are provided in Section 6.7 to introduce the benefits of 

our proposed algorithms and navigation architecture of the state of the art. Finally, Chapter 

summary is given in Section 6.8. 

 

6.3 The Structure of Fuzzy Inference Systems 

        Fuzzy inference systems are the process of formulating the mapping from inputs to 

outputs. The inputs and outputs can be defined as the linguistic variables. The mapping, then 

provides a basis from which decisions can be made based on the internal process of the FIS. 

The process of the fuzzy inference system involves a variety of terminologies such as 

fuzzification, inference engine, implication, and aggregation and defuzzification (Lee, 1990; 

Mamdani and Assilian, 1975).  

      The architecture of the FIS is demonstrated in Fig. 6.1. FIS can be comprised of a multiple 

input and output linguistic variables to be controlled. Each linguistic variable has a range of 

expected values such as ‘0’ to ‘100’ degrees. In addition, there are linguistic terms that 
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represent categories for the values of a linguistic variable. For example, a linguistic variable 

‘distance’ might include the linguistic terms ‘far and near’.  

       

 

 

 

 

 

 

 

 

 

Fig. 6.1 Architecture of fuzzy inference system. 

      The main components that drive the principle operation of the fuzzy inference system are 

explained below. 

 

6.3.1 Fuzzification 

       The composition of the fuzzification is based on numerous of membership functions. The 

purpose is to map the inputs from a set of sensors or features of those sensors such as amplitude 

or spectrum to values from ‘0’ to ‘1’ by using a set of input membership functions. The 

membership functions are numerical functions corresponding to linguistic terms. A 

membership function represents the degree of membership of linguistic variables within their 

linguistic terms. The degree of membership is continuous between 0 and 1, where ‘0’ is equal 

to ‘0%’ of the membership and ‘1’ is equal to ‘100%’ of the membership. The process by which 

the input values from sensors are scaled and mapped to the domain of fuzzy variables is known 

as fuzzification. The fuzzy variables are also known as linguistic variables that are determined 

based on intuition (from knowledge) or inference (known facts). These linguistic variables can 

be either continuous or discrete theoretically. However, practically, it should be discrete. 

Fuzzification can be classified as a two-step process: Assign fuzzy labels and Assign numerical 

meaning to each label (Sumathi and Paneerselvam, 2010). 

1) Assign fuzzy label: 

       The real inputs of the FIS are called crisp inputs. Each crisp input is assigned a fuzzy label 

in a universe of discourse. For example, for the input parameter, sensor distance, fuzzy labels 
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can be “far” and “near”. In addition, every crisp input can be assigned multiple labels. As the 

number of labels increases the resolution of the process is better. In some cases, assigning large 

number of labels leads to a large computational time and this might make a fuzzy system 

unstable.  

2) Assign numerical meaning: 

        Membership functions are formed to assign a numerical meaning to each label. The range 

of the input value that corresponds to a specific label can be identified by the related 

membership function. Although there are different shapes of membership functions, triangular 

and trapezoidal membership functions are commonly used to avoid time and space complexity. 

The crisp inputs of FIS are firstly fuzzified into linguistic values before the inference engine 

proceeds in processing with the rule base.  

 

6.3.2 Inference Engine 

        The inference engine is a major unit that represents a fuzzy knowledge base and a decision 

making fuzzy inference system. The FIS formulates suitable rules and based upon the rules 

decisions are made. This is mainly based on the concepts of a set of fuzzy using statements of 

“IF-THEN”. FIS uses the “IF-THEN” statements and connectors that would be presented in 

rule statements such as “OR” or “AND”. The inputs of the FIS can take either fuzzy inputs or 

crisp inputs. However, the FIS produces outputs as fuzzy sets. When the FIS is used as a 

controller, it is necessary to have a crisp output. Therefore, a defuzzification method is adopted 

to extract crisp values that represent the best fuzzy set (Driankov and Saffiotti, 2001).  

        After the aggregation of fuzzy rules, a fuzzy set for each output variable needs 

defuzzification. It is possible to use a single spike as the output membership function rather 

than a distributed fuzzy set. This is known as a singleton output membership function, and it 

can be thought of as a pre-defuzzified fuzzy set. It enhances the efficiency of the defuzzification 

process because it greatly simplifies the computation required by Mamdani method (Mamdani, 

1977). It finds the centroid of a two-dimensional function rather than integrating across ta two-

dimensional function to find the centroid and the weighted average.  

 

6.3.3 Generation of Fuzzy Rules 

      Fuzzy rules describe the relationships between input and output linguistic variables based 

on their linguistic terms. For example, a rule might be defined such as: IF left distance is near 

AND right distance is near, THEN speed setting is minimum. The clauses “front distance is 
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near” and “right distance is near” are the antecedents of this rule. The AND connective specifies 

how a FIS relates two antecedents to determine a truth-value for an aggregated rule antecedent. 

The clause "speed setting is minimum" is the consequent of a rule. The fuzzy rules are formed 

by integrating linguistic variables using assignment conditional based on a set of IF-THEN 

fuzzy rules. These rules are generated based on conditional statements. Examples of rules 

formation are given as follows: 

IF antecedent1 AND antecedent2 AND…AND antecedentn THEN consequent 

IF antecedent1 OR antecedent2 OR…OR antecedentn THEN consequent 

6.3.4 Aggregation of Fuzzy Rules 

       The rule based system constructs of several rules and each rule provides an output or a 

consequent. The consequent part also known as conclusion and it is a unique for every 

individual rule that has been executed based on input parameters. An overall conclusion has to 

be obtained from individual consequents. The method of obtaining the overall conclusion from 

the set of rules is called an aggregation of rules. Using ‘AND’ or ‘OR’ operators, a final 

decision is made on the output of the fuzzy set. 

Fuzzy rules can be aggregated by using the ‘AND’ or ‘OR’ connectives. The process of 

aggregating the rules using ‘AND’ connective is known as conjunctive aggregation and the 

process of aggregating the rules using ‘OR’ connective is known as disjunctive aggregation. 

Examples of a conjunctive and disjunctive aggregation are given below: 

1) Conjunctive aggregation: 

Consequent = Consequent1 AND Consequent2 AND ... AND Consequentn 

2) Disjunctive aggregation: 

Consequent = Consequent1 OR Consequent2 OR ... OR Consequentn 

6.3.5 Defuzzification  

    The necessity of converting fuzzy quantities into crisp quantities is to obtain real values for 

further processing in related applications. Hence, the defuzziffication is the process of 

converting the degrees of membership of output linguistic variables into numerical values. The 

transformation of fuzzy information into crisp outputs is necessary in order to acquire the 

required control signals. The control signals can be applied to control a plant when a fuzzy 

system is used as a controller. There are several  defuzzification methods, in which the  

commonly used is the centre of area (CoA) (Branson and Lilly, 2001). The CoA method takes 

the output distribution and finds its centre of mass to come up with one crisp number.  



Chapter 6: Navigation of UGV Based on Fuzzy Inference System 

144 
 

In the CoA method, the FIS calculates the area under the scaled membership functions and 

within the range of the output variable. Thus, it uses the following equation to calculate the 

geometric centre of this area. 

𝐶𝑜𝐴 =
∫ 𝑓(𝑥). 𝑥𝑑𝑥
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

                                                                                               (4.1) 

where, 

CoA is the centre of area,  

x is the value of the linguistic variable, and  

xmin and xmax represent the range of the linguistic variable. 

       Fig. 6.2 illustrates the CoA defuzzification method. In this figure, μ is the degree of 

membership, and the shaded portion of the graph represents the area under the scaled 

membership functions.  

 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 6.2 Centre of area method. 

6.4 Design of FIS for Navigation 

       In this work, the proposed intelligent controller is implemented based on the fuzzy 

inference system. The FIS consists of two fuzzy logic controllers as demonstrated in Fig. 6.3 

that are reactive based upon the navigation of the unmanned ground vehicle.  The wheels on 

the left and right sides are controlled by those FIS controllers for achieving the objective of the 

UGV to navigate safely and reach the target point without colliding moving obstacles appeared 

on its path. The first FIS controller is reacted based upon sensing obstacles near to the vehicle’s 

platform such as left distance (LD), front distance (FD) and right distance (RD). The second 

FIS controller responds for choosing the optimal direction in case of non-obstacles surrounding 

the vehicle’s platform based on an angle difference (AD) between the vehicle’s heading and 

Xmin 
Xmax CoA 

μ 

x 
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the target’s orientation. Therefore, the UGV will be able of adjusting its online trajectory to 

avoid collision with obstacles in the workspace through approaching a given target point.   

  The working of FIS can be explained as follows. The crisp inputs, i.e. sensory information 

and angle difference are converted into fuzzy sets by using the fuzzification method based on 

Mamdani type. Then, the rules are formed based on the data and knowledge bases which are 

jointly referred to make decisions. Defuzzification is used to convert fuzzy values to the real 

world values which they represent the final outputs that drive the wheels of the UGV. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3 Block diagram of proposed two FIS controllers. 

 

   The obstacle avoidance fuzzy inference system (OA-FIS) controller is designed to avoid 

collision with obstacles by using the sensory data. The target reaching fuzzy inference system 

(TR-FIS) controller aims to make the decision for choosing the optimal direction.  Two switches 

are used to combine the output from the two FIS controllers. The output signal from the first 

switch is utilised to drive the motor of the right wheel whereas the motor of the left wheel is 

driven by the signal from the second switch. 

  The operation of the FIS controllers can be summarised as follows: when there is no 

obstacle on the UGV path, the TR-FIS controller will be activated to determine the best route 

for the UGV to take and reach its destination. Whereas, if there is an obstacle on the path of the 

UGV, the OA-FIS controller will be activated to enable an obstacle avoidance strategy. The 
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switching mechanism between those two controllers will be decided based on information 

provided by a signal called obstacle sensing (OS). This OS signal indicates ‘0’ when there is no 

obstacles and ‘1’ when the UGV sensors detect an obstructing obstacle approaching the UGV’s 

path. The outputs of the switching block will be the angular velocities of the right and left wheels 

of the UGV. These velocities are then fed into the vehicle’s model in order to obtain the 

instantaneous UGV coordinates. 

 

6.4.1 Fuzzy Logic Controller for Obstacle Avoidance 

The main objective of this controller is to ensure that the UGV is capable of avoiding 

collision when moving obstacles that are diffused in its path. This controller is constructed based 

on the sensing information that received from the UGV fitted sensors. The sensory information 

is collected from three sensors. These sensors are placed on the forefront UGV in three different 

positions to estimate the left distance, front distance and right distance of the UGV with respect 

to any obstacle as shown in Fig. 6.4. The three estimated distances are supplied as inputs to the 

obstacle avoidance controller. Then, the obstacle controller produces the angular velocities for 

the left and right wheels of the UGV that are symbolised as ωl for left wheel angular velocity 

and ωr for the right wheel angular velocity. Thus, this controller actually regulates the direction 

of the UGV motion based on the obstacles locations by changing the angular velocities for each 

of the rear wheels. 

 

 

 

 

 

 

 

 

 

Fig. 6.4 Schematic diagram for sensory information. 

 

        The fuzzy system is implemented with two trapezoidal membership functions for each 

input variable of three distances, LD, RD and FD. The input variables for the obstacle avoidance 

controller are defined as the distance from the left (LD), distance from the right (RD) and 

Front Distance (FD) 

Left Distance (LD) Right Distance (RD) 

Obstacle -2 

Obstacle -3 
Obstacle -1 

Sensing Range  UGV  

45o 
45o 45o 
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distance from the front (FD). The estimated measurements are categorised as either near or far. 

A fuzzy logic controller for obstacle avoidance is designed using the Mamdani fuzzy inference 

mechanism. The knowledge base of the system consists of multiple rules that are given in Table 

6.1. It shows that the output values of LD, RD and FD are combined and translated to generate 

commands to the motors of the individual wheels independently based on the following 

specified angular velocities of ωl and ωr: Backward (BF), Backward Slow (BS), Forward Slow 

(FS) and Forward (FF). That means each output has five triangular membership functions. The 

defuzzification process is computed based on the centroid defuzzification technique, which is 

also called the centre of gravity.   

 

Table 6.1 Rules base of the OA controller. 

Rule 

No. 

Inputs Outputs 

Front 

Distance (FD) 

Right 

Distance (RD) 

Left  

Distance (LD) 

Right angular 

velocity (𝛚𝐫) 

Right angular 

velocity (𝛚𝐥) 

1 Near Near Near BF BF 

2 Near Near Far FS BS 

3 Near Far Near BF FS 

4 Far Near Near FS FS 

5 Near Far Far BS FF 

6 Far Near Far FS BS 

7 Far Far Near BS FS 

8 Far Far Far FF FF 

   

         

      Fig. 6.5 demonstrates the membership functions of the OA controller’s inputs, which are 

the sensory information of the left, right and front distances. For example, the linguistic 

variable ‘Near Distance’ has full membership (100%) within the linguistic term far at all far 

locations between 40 and 100 degrees, no membership (0%) within that term at 20 degrees or 

less, and partial membership at all between ‘20’ and ‘40’ degrees. Fig. 6.6 shows the 

membership functions for the outputs of the OA controller, which are the angular velocity of 

the rear right driving wheel and the angular velocity of the rear left driving wheel of the UGV.  

The surfaces of the three inputs FIS named (FD, RD, and LD) to its first output (right angular 

velocity) are depicted in Figs. 6.7(a), (b) and (c). Likewise, the same surfaces views can be 

obtained regarding the second output, which represents the left angular velocity. The surface 

viewer simply shows the mapping graphically between any two inputs and an output. 
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Fig. 6.5 Membership functions of right and left angular velocities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 Membership functions of front, right and left distances. 

 



Chapter 6: Navigation of UGV Based on Fuzzy Inference System 

149 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7 Surface viewer for right angular velocity against a) right and front distances; b) front 

and left distances; c) left and right distances. 

 

6.4.2 Fuzzy Logic Controller for Target Reaching 

 The target-reaching controller is designed to enable the UGV to reach its target destination 

in the shortest distance. In this section, the FIS controller is implemented using the same 

principle utilised for the obstacle avoidance controller. The input of this controller is an angle 

which represents the difference between the heading of the UGV and the targeted angle. This 

angle difference (AD) is computed as shown in Fig. 6.8. The outputs of this controller are 

obtained using the same technique that used in obtaining the FIS-OA controller outputs. The 

(c) 

(b) (a) 
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input variable of the target reaching controller is the angle difference (AD) which can be big 

negative (BN), small negative (SN), zero (Z), small positive (SP) or big positive (BP).    

The output variables are the angular velocities for the rear driving wheels (ωl and ωr) which 

are categorised as Backward (BF), Backward Slow (BS), Forward Slow (FS) or Forward (FF). 

Fig. 6.9 represents the membership functions of the angle difference (AD) input. The 

membership functions of the target reaching (TR) controller outputs, which are the left and right 

angular velocities, are same as in Fig. 6.6 given preciously. The rules of the target reaching 

controller are given in the Table 6.2. The relationships of the surface view between the angle 

difference (AD) variable and the left and right angular velocities, the outputs of the target-

reaching controller, are illustrated in Fig. 6.10. The surface viewer is shown in a two-

dimensional graph because it only represents the relationship between one input and one output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8 Coordinates of instantaneous localisation in a workspace. 

 

Table 6.2 Rules base of the TR controller. 

Rule 

No. 

Input Outputs 

Angle Difference 

(AD) 

Right angular 

velocity (𝛚𝐫) 

Right angular 

velocity (𝛚𝐥) 

1 SP BS FS 

2 BP BS FS 

3 SN FS BS 

4 BN FS BS 

5 Zero FF FF 
 

 

𝜃 

Vehicle’s orientation 

AD 

Y-axis 

∅ 

X-axis 

Goal/Target Point 

Pg(Xg, Yg) 

Vehicle’s posture 

Pc (Xc, Yc, 𝜃) 
 

UGV  

Xc  Xg 

Yc 

Yg  

θ = Vehicle’s heading, ∅=Target angle  

AD =Angle Difference =[θ − ∅]    
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Fig. 6.9 Membership functions of angle difference. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10 Surface viewer for angle difference. 

 

6.5 Navigation Architecture and Environment Modelling 

       This section deals with the implementation of the UGV navigation platform and the 

workspace. The objective of the navigation architecture and environment modelling is to show 

how to develop and perform the navigation of the UGV based on the implemented platform 

and the workspace environment. The two fuzzy logic controllers are integrated through a 

switching mechanism as discussed in the previous section. The outputs of the switching block 

drive the motors of the driving wheels and move the UGV. When the angular velocities (the 
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outputs) are identical, it means that the UGV will move in a straight line, but if the angular 

velocities are different, the UGV will be in steering situation either to the right or the left based 

on the obstacles locations. The dynamic environment of the workspace where the UGV 

navigates is implemented. The dynamic environment is based on dynamic obstacles in addition 

to the UGV’s platform. The Block diagram of the navigation architecture is shown in Fig. 6.11. 

As demonstrated, the environment modelling has five inputs and five outputs. The inputs are 

classified into two groups which are the actual position of the UGV (three inputs) Pc = (Xc,Yc,θ) 

and the target point coordinate (two inputs). 

       The outputs of the environment modelling, which are the inputs of the controllers and 

switching boxes, are categorised into three groups. First, the sensory information includes: 

front distance (FD), right distance (RD) and left distance (LD). This sensory information 

provides the OA-FIS controller with the necessary information to obtain the accurate angular 

velocities for the driving wheels for manoeuvring and avoid collisions. Second, the angle 

difference (AD) which represents the resultant direction of the UGV towards the destination. 

This angle is connected to the TR-FIS controller as an input to obtain the angular velocities for 

the rear driving wheels so that the UGV can move in a straight line towards its destination 

when there is no obstacle in its path. Third, the obstacle sensing (OS) is a switching mode to 

activate one of two FIS controllers as required, depending on the UGV surroundings. The S-

function manipulates the interconnection between the inputs and the outputs. It has been written 

by suing MATLAB coding for creating a simulation platform for the unmanned ground vehicle 

navigation and the surrounding environment. In summary, the main parameters of the 

navigation platform are stated as follows: 

Remark 1. The front, right and left distances represent the shortest distances between the 

vehicle and obstacles. The sensory information is modelled by assuming these three sensors 

are placed on a vehicle’s platform, and each senor carries the information for three directions 

of the platform. These sensor outputs change depending on the distance between the 

instantaneous positions of the vehicle.  

Remark 2. The angle difference represents the difference between the vehicle’s heading and 

the target point. 

Remark 3. Obstacle sensing (OS) signal is generated in accordance to the measured distances 

(front, right, left) from the sensory information. If the vehicle does not sense any obstacles in 

its path, this OS parameter will indicate ‘0’, and ‘1’ if the vehicle senses any obstacles near to 

its platform. 
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Remark 4. The clock timer is used for measuring the simulation running time that the vehicle 

elapsed to reach the destination in the platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.11 Block diagram of proposed FIS for UGV. 

 

         The composition of the navigation platform constitutes of a multi-controller architecture. 

Hence, a hierarchy switching mechanism is provided to select the appropriate controller based 

on a specific scenario. The Algorithm 6.1 illustrates the logic of the hierarchical selection of 

the switching mechanism. The purpose of the algorithm is to ascertain one controller is always 

activated as needed. For instance, the hierarchical switching mechanism activates the obstacle 

avoidance controller when an obstructing obstacle encounters the UGV’s movement. On the 

other hand, the stimulus of the target reaching controller occurs when the path of UGV is free 

of obstacles by a trigger of the obstacle sensing parameter. 
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Algorithm 6.1: Hierarchy of switching mechanism 

      Inputs: All distance parameters of the closed obstacles in three directions (left, front and 

right); the localisation of the initial point Po (Xo, Yo).and goal point Pg (Xg, Yg). 

     Outputs: Define which controller to be activated. 

1  if  It exists at least on obstructing obstacle then 

2            Activate fuzzy logic controller for obstacle avoidance (Algorithm 6.2) 

3 else 

4           Activate fuzzy logic controller for target reaching (Algorithm 6.3) 

5 end 

        

        The algorithm 6.2 describes how the obstacle avoidance reacts when obstructing obstacles 

are hindering the movement of the UGV towards a particular destination. It also demonstrates 

a sequence of events that happen in reaction to a specific case at a time. The Algorithm 6.3 

demonstrates the target reaching response when there are no obstructing obstacles that are 

facing the UGV’s movement. Hence, the UGV will act according the angle between the current 

orientation of the UGV and the heading of its destination as explained. It is notably that the 

target reaching is performed when the UGV terminates at the arrival position. 
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Algorithm 6.2: Obstacle Detection  

      Inputs: All distance parameters of the obstructing obstacles in three directions (left, front 

and right), the localisation of the goal point Pg (Xg, Yg). 

      Outputs: The index parameter ‘OS’ when obstructing obstacle is detected, driving angular 

velocities (ωr, ωl) for avoiding obstructing obstacles. 

1   for Each Sensor (Left, front, and right), measure distances of each obstacle. 

2             If  The obstacle is within the threshold range then 

3                     Add the obstacle to the obstructing obstacles list  

4            end 

5   end 

6     if obstructing obstacles list ≠ 𝑧𝑒𝑟𝑜 then 

7         identify the location of the obstacle (left, front right) 

8            If The detected obstacle is on the left then 

9                  the UGV turns right  

10          end 

11          If The detected obstacle is on the right then 

12                the UGV turns left  

13         end 

14         If The detected obstacle is on the front then 

15               the UGV turns either left or right based on the safest way 

16        end 

17         If The more than one obstructing obstacle is detected then 

18               the UGV will seek another obstacle free path, it will stop when it is stuck.  

19        end 

20  else 

21         No obstructing obstacle is detected; switch to Algorithm 6.3. 

22  end 
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Algorithm 6.3: Target Reaching 

      Inputs: All distance parameters of the closed obstacles in three directions (left, front and 

right), the localisation of the goal point Pg (Xg, Yg) and the actual localisation of the UGV i.e. 

Pc (Xc, Yc, 𝜃), current position of the left and right wheel, and L is the distance between driving 

wheels 

       Outputs: The predicted position of the UGV at a time, 𝑃𝑡
′ = 𝑓(𝑥, 𝑦, 𝜃, ∆𝑆𝑟, ∆𝑆𝑙), driving 

angular velocities (ωr, ωl) for target reaching.  

1  for j=1:1:max(size(Xg))  

2       for i=1:1:max(size(Yg)) 

3             If  |Xg - Xc|=0 && |Yg - Yc|=0 then 

4                    The target is reached and stop the UGV. 

5            elseif the distance sensors detect obstructing obstacles then 

6                    Switch to Algorithm 6.2. 

7            else 

8                 Determine the new position of the UGV at a time t, can be computed from the    

                      previous estimate xt-1 and the odometric integration of the movement. The motion  

                     is based on the equations (3.11-3.14) given in section 3.4.1 Kinematic Modelling  

                     in Chapter 3. 

9                     𝑥𝑐 = 𝑆 cos(𝜃) 

10                   𝑦𝑐 = 𝑆 sin(𝜃) 

11                   𝜃 =
𝑆𝑟−𝑆𝑙

𝐿
 

12                   𝑆 =
𝑆𝑟+𝑆𝑙

2
           

13              Updated position is,    𝑃𝑡
′ = 𝑓(𝑥, 𝑦, 𝜃, 𝑆𝑟 , 𝑆𝑙) = [

𝑥𝑡−1
𝑦𝑡−1
𝜃𝑡−1

] +

[
 
 
 
 
𝑆𝑟+𝑆𝑙

2
 cos(𝜃𝑡−1 +

𝑆𝑟−𝑆𝑙

𝐿
)

𝑆𝑟+𝑆𝑙

2
 cos(𝜃𝑡−1 +

𝑆𝑟−𝑆𝑙

𝐿
)

𝑆𝑟−𝑆𝑙

𝐿 ]
 
 
 
 

 

14                The orientation angle is,    ∅ = tan−1([𝑋𝑐     𝑌𝑐], [𝑋𝑔     𝑌𝑔]) 

15                The angel difference is,  𝐴𝐷 = [𝜃 − ∅] 

16          end 

17    end 

18 end 
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6.6 Simulation Results 

       The unmanned ground vehicle platform has been simulated using MATLAB-Simulink 

software package to mimic and verify the effectiveness of the controllers based on the fuzzy 

inference system. In the simulation environments, different scenarios have been established to 

validate the operational performance. Each scenario comprises multiple moving obstacles, they 

are randomly placed based in their topology. The obstacles are considered to be in different 

sizes and might move at various velocities. The initial and destination points of the unmanned 

ground vehicle are also randomly chosen at diverse positions to generate a feasible path. To 

investigate the performance of the two FIS controllers, four scenarios are presented, each of 

which demonstrates different performance of path planning based on dissimilar sizes, velocities 

and orientations of obstacles.  

 

6.6.1 Scenario-I: Dynamic obstacles with similar sizes and velocities 

       In this scenario, in addition to the UGV, there are six moving objects in the environment. 

The path generation is simulated based on such a workspace construction. The six objects are 

moving at a constant velocity of 2.42 m/s. As a reference, the coordinates of the starting point 

is marked as the origin 𝑃𝑜 (0, 0) and the coordinates of the destination is 𝑃𝑔 (15, 15). Fig. 

6.12 demonstrates that the UGV has successfully manoeuvred the obstacles by changing its 

moving direction and avoided collisions. The target destination is reached by the UGV, which 

means the TR-FIS controller changed the direction of the UGV movement back to the 

destination after passing each obstacle. As discussed earlier, the decisions to avoid collisions 

with obstacles are made by the OA-FIS controller according to the distances between the left, 

right and the front of the UGV and the obstacles. The journey of the UGV from the starting 

point to the target destination in this scenario has elapsed 3.21 seconds.  Based on the 

constructed workspace in this scenario, the motion of the UGV reveals that the generated path 

is feasible and smooth during completing the navigation task. 
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Fig. 6.12 Navigation platform and topology for scenario-I using FIS. 

 

       The orientation of the UGV is shown in Fig. 6.13. It demonstrates the behaviour of the 

path generation with respect to the changing in directions. It obvious that the first changing has 

occurred when obstacle no.1 has approached to the UGV in the first period. Hence, when the 

UGV has passed this obstacle, it has amended the heading toward the required destination. 

However, when obstacle no.6 confronts the UGV’s path, the UGV also has orientated into a 

different direction that is clear of obstacles. It is noticeable that there are two changes appearing 

on the second period. In fact, as the obstacle is still moving, thus, the UGV has carried on its 

motion until it has completely passed this obstacle, then; it heads to the given destination. Fig. 

6.14 demonstrates the linear velocity response of the UGV when it moves and responds to the 

changes in the workspace repeatedly. The velocity profile illustrates that the speed has declined 

rapidly from its peak value and reach the zero, this has happened expectedly when the turning 

occurs. Hence, the UGV should be at the minimum speed to make a feasible steering. 
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Fig. 6.13 Orientation of UGV in scenario-I using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.14  Linear velocity for UGV in scenario-I using FIS. 
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The two FIS controllers can be analysed and discussed in more detail for understanding 

the system reaction. The actual path of the UGV is generated based on the individual responses 

of controller designs. The angular velocity of the FIS controller for the target reaching which 

is shown in Fig. 6.15, it introduces the behaviour of the right and left wheels to generate the 

actual path based on the steering wheel angle. This result demonstrates that both of the right 

and left wheel move at a constant speed unless it faces obstacles. For instance, it is observable 

that two changes have occurred in two periods in response to obstacles no.4 and no.6. The main 

reported observations are that; in the first period, the right angular velocity is higher than the 

left angular velocity. Hence, the orientation has changed to the left. In contrast, in the second 

period, the left angular velocity is higher than the right, which brings the UGV to the right as 

noticed on navigation platform of the first scenario. Likewise, it is noticeable that in Fig. 6.16, 

the FIS of obstacle avoidance has responded at the same period due to the approaching of 

obstacles. Subsequently, the two FIS controllers are combined into a switching mechanism. 

Hence, the aggregation of the left and right angular velocity has produced the total angular 

velocity of the UGV as shown in Fig. 6.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.15 Angular velocity for target reaching of FIS in scenario-I. 
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Fig. 6.16 Angular velocity for obstacle avoidance of FIS in scenario-I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.17 Angular velocity of UGV in scenario-I using FIS. 
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      The sensory information on the left, front and right distances is obtained as shown in Fig. 

6.18. It is observable that the UGV can avoid obstacle no.4 by simply using only the right 

distance sensor. However, in accordance to obstacle no. 6, the three distances are detected. In 

fact, this has occurred whilst obstacle no.6 moves closely around the surrounding of the UGV. 

Fig. 6.19 presents the time response of the obstacle sensing indicator; this transmits a signal to 

the switching mechanism to select between the two FIS controllers of the target reaching and 

obstacle avoidance. It has a value of ‘1’ when an obstacle is detected and the FIS of obstacle 

avoidance will be activated accordingly. Otherwise, the sensing indicator will have a value of 

‘0’, which means the path is clear of obstacles. Hence, the FIS of the target reaching will be 

operated to guide the UGV to its destination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.18 Sensory information of three sensors in scenario-I using FIS. 
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Fig. 6.19 Obstacle sensing indicator in scenario-I using FIS. 

 

      To validate the basic functionality of the proposed algorithm for guiding the UGV to track 

the destination, the differences between the target and actual coordinates of X and Y-axes are 

demonstrated in Fig. 6.20 and Fig. 6.21, respectively. The curves on both graphs illustrate that 

the movement of the UGV is achieved successfully toward the target from the initial position. 

Despite of the larger error at the commencing of the movement, it is important to notice the 

self-regulatory behaviour of the proposed navigation algorithm. As soon as the tracking error 

is quite large due to the far distance between the initial position and the target point, the 

algorithm automatically adjusts the UGV’s orientation to a proper direction so that it heads 

back toward the target whilst avoiding obstacles. The tracking error of both of X and Y 

coordinates is shown in Fig. 6.22. 
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Fig. 6.20 X-coordinate of the UGV whilst navigation in scenario-I using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.21 Y-coordinate of the UGV whilst navigation in scenario-I based on FIS. 
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Fig. 6.22 Tracking error in X and Y coordinates of UGV in scenario-I using FIS. 

 

6.6.2 Scenario-II: Dynamic obstacles with similar sizes but different velocities 

        In this scenario as shown in Fig. 6.23, the UGV navigation platform is conducted in an 

environment where the obstacles are moving at different velocities. Obstacles ‘1’ and ‘2’ are 

moving at a speed of 2.65 m/s, obstacles ‘3’ and ‘4’ are moving at a speed of 1.8 m/s, and 

obstacles ‘5’ and ‘6’ are moving at a speed of 4.6 m/s. All the six moving obstacles are 

successfully avoided by the UGV whilst it has travelled from the starting point towards the 

destination coordinates. Interestingly, although this scenario is expected to be more challenge 

than the antecedent scenario based on the hypothesis of random velocities, it can be observed 

that the generated path is shorter regardless of the scenario complexity. Fig. 6.24 demonstrates 

the changing in the orientation of the UGV whilst avoiding obstacles. The linear velocity 

profile of UGV is shown in Fig. 6.25. The target reaching and obstacle avoidance FIS 

controllers have provided the driving wheels with the necessary angular velocities to change 

the direction of the UGV and avoid collisions with the moving obstacles as shown in Fig. 6.26 

and Fig. 6.27, respectively. The outputs of both FIS controllers are associated through the 

switching mechanism. The outputs of the switching mechanism are applied to the UGV’s 

wheels to find the turning angle of the UGV as shown in Fig. 6.28. The decisions are made 

according to the distances between the left, the right and the front of the UGV with respect to 

the approaching obstacles. In this scenario, the elapsed time of the UGV journey from the 

starting point to the destination coordinates is equal to 2.95 seconds.  
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      The random movement of obstacles makes the obstacles widespread at different positions 

in the environment. This is rather a surprising finding to have only one obstacle that could be 

attributed to the UGV navigation. Therefore, it seems that this scenario may have the shortest 

path. Fig. 6.29 demonstrates the sensory information of the three ultrasonic sensors. In 

additional, the obstacle sensing indicator is depicted in Fig. 6.30. It introduces a signal to 

switching mechanism within the obstacle detection range. The X and Y coordinates of the UGV 

whilst moving in the 2- dimensional grid are presented in Fig. 6.31 and Fig. 6.32, respectively. 

Accordingly, the corresponding tracking error is introduced in Fig. 6.33 that ascertains that the 

UGV has reached its destination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.23 Navigation platform and topology for scenario-II using FIS. 
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Fig. 6.24 Orientation of UGV whilst navigation in scenario-II using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.25 Linear velocity of UGV whilst navigation in scenario-II using FIS. 
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Fig. 6.26  Angular velocity for target reaching of FIS in scenario-II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.27 Angular velocity for obstacle avoidance of FIS in scenario-II. 
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Fig. 6.28 Angular velocity of UGV whilst navigation in scenario-II using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.29 Sensory information of three sensors in scenario-II using FIS. 
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Fig. 6.30 Obstacle sensing indicator whilst navigation in scenario-II using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.31  X-coordinate of UGV whilst navigation in scenario-II using FIS. 
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Fig. 6.32  Y-coordinate of UGV whilst navigation in scenario-II using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.33 Tracking error in X and Y coordinates of UGV in scenario-II using FIS. 
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6.6.3 Scenario-III: Dynamic obstacles with different velocities and sizes 

        In this scenario, to validate the proposed algorithm against a more complex environment, 

the UGV navigation platform is operated with six moving obstacles that are varied in their 

locomotion. The velocity of the obstacles no.3 and no.5 equals to 1.7 m/s. All the other 

obstacles move at velocity of 2.55 m/s.  Fig. 6.34 demonstrates that the moving obstacles are 

avoided and the UGV reached the target. The OA-FIS controller has made the UGV avoided 

the moving obstacles by making decisions on where to change the direction of the UGV. That 

allowed the UGV to prevent collisions with the obstacles. It is observable that obstacle ‘1’ left 

its original position towards a new position in the workspace. Therefore, its original place has 

become free. The TR-FIS controller is activated when there is no obstacle approaching the 

UGV. The target destination in this scenario is reached successfully by the UGV after avoiding 

all the moving obstacles and the elapsed time equals to 3.58 seconds. Fig. 6.35 illustrates the 

changing in the direction of the UGV whilst avoiding obstacles. The linear velocity profile of 

the UGV is shown in Fig. 6.36. It is noticed that the size of the obstacles has no influence over 

the performance of the controllers even though larger objects limited the free space in the 

environment. However, this is accomplished by the obtained distance readings from the UGV 

sensors. In practical, when the UGV is near a movable obstacle, it must be ready to react 

responsively to take care of the sudden motion of that obstacle. Therefore, the velocity response 

is decreased when the UGV enters the deceleration zone. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.34 Navigation platform and topology for scenario-III using FIS. 
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Fig. 6.35 Orientation of UGV whilst navigation in scenario-III using FIS. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.36 Linear velocity of UGV whilst navigation in scenario-III using FIS. 
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        Similarly, the angular velocities of the target reaching and obstacle avoidance FIS 

controllers are shown in Figs. 6.37 and 6.38. The total angular velocity that derives the UGV 

is presented in Fig. 6.39. In comparison to the previous scenarios, it can be observed that the 

UGV consistently confronts obstacles from the initial to the target point. Regardless, the 

proposed algorithm demonstrates a superiority of achieving the navigation successfully without 

colliding with obstacles. Fig. 6.40 shows the sensory information for this scenario. 

Consequently, the obstacle-sensing indicator is depicted in Fig. 6.41. Although the six 

obstacles have obstructed the path planning of the UGV, the UGV has demonstrated a quite 

decent efficacy in completing its task. Moreover, the coordinates of X and Y-axes are given in 

Figs. 6.42 and 6.43. Accordingly, the tracking error for both coordinates is introduced in Fig. 

6.44 to demonstrate that the UGV has reached the destination. Hence, the validity of the 

proposed algorithm has been proved. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.37 Angular velocity for target reaching of FIS in scenario-III. 
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Fig. 6.38 Angular velocity for obstacle avoidance of FIS in scenario-III. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.39 Angular velocity of UGV whilst navigation in scenario-III using FIS. 
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Fig. 6.40 Sensory information of three sensors of the UGV in scenario-III using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.41 Obstacle sensing indicator whilst navigation in scenario-III using FIS. 
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Fig. 6.42 X-coordinate of UGV whilst navigation in scenario-III using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.43 Y-coordinate of UGV whilst navigation in scenario-III using FIS. 
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Fig. 6.44 Tracking error in X and Y coordinates of UGV in scenario-III using FIS. 

 

 

 

6.6.4 Scenario-IV: Static and dynamic obstacles with different velocities and 

sizes 

      The environment in this scenario is likewise the preceding scenario. However, the obstacle 

no.4 is stationary at its original position whilst the other obstacles are moving at constant 

velocities. Such modification makes the environment comprising of static and dynamic 

obstacles. This scenario has been studied to ensure that the performance is independent of the 

behaviour of obstacles and to guarantee the adaptation of the proposed algorithm whatsoever 

is the structure of the environment. Fig. 6.45 demonstrates the navigation platform of the UGV 

and the six obstacles. Fig. 6.46 presents the orientation of the UGV whilst navigation. It is 

observable that no response has occurred due to obstacle no.4 and the motion is straight at the 

first instance towards the destination. Fig. 6.47 introduces the linear velocity of the UGV of 

the switching mechanism because of obstacle avoidance and target reaching. 
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Fig. 6.45 Navigation platform and topology for scenario-IV using FIS. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.46 Orientation of UGV whilst navigation in scenario-IV using FIS. 
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Fig. 6.47 Linear velocity of UGV whilst navigation in scenario-IV using FIS. 

         

      Figs. 6.48 and 6.49 demonstrate the angular velocity response of FIS controllers for both 

of target reaching and obstacle avoidance, respectively. As aforementioned, both controllers 

respond in accordance to the state of the working path.  The final angular velocity that drives 

the motion of the UGV is given in Fig. 6.50. The sensory information and the corresponding 

obstacle sensing indicator are illustrated in Figs. 6.51 and 6.52, respectively. In addition, the 

navigation coordinates of X and Y axes are shown in Figs. 6.53 and 6.54. Accordingly, the 

obtained tracking errors of these coordinates are visualised in Fig. 6.55. 
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Fig. 6.48 Angular velocity for target reaching of the FIS in scenario-IV. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.49 Angular velocity for obstacle avoidance of FIS in scenario-IV. 

 

 



Chapter 6: Navigation of UGV Based on Fuzzy Inference System 

182 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6.50 Angular velocity of UGV whilst navigation in scenario-IV using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.51 Sensory information of three sensors of UGV in scenario-IV using FIS. 
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Fig. 6.52 Obstacle sensing indicator whilst navigation in scenario-IV using FIS. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.53 X-coordinates of UGV whilst navigation in scenario-IV using FIS. 
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Fig. 6.54 Y-coordinates of UGV whilst navigation in scenario-IV using FIS. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.55 Tracking error in X and Y coordinates of UGV in scenario-IV using FIS. 
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6.7 Comparisons with the related work 

        In order to validate the effectiveness of the proposed methodology, comparisons are made 

between the proposed  approach and an approach that introduced in the state of the art by 

(Cherni et al., 2016). The comparisons are conducted based on two different scenarios. The 

first scenario is considered with three moving obstacles. The starting point is set at (0, 0) and 

the target point is placed at (8, 9). The three obstacles are positioned at different locations and 

orientations as demonstrated in Fig. 6.56. It is observable that the obtained path using our 

approach is more optimal in comparison to the state of the art method. The major advantages 

of our control system are the capability of reaching the destination in much shorter path whilst 

avoiding obstacles and minimising the elapsing time. In addition, our proposed system 

encompasses a smoothness of controllers’ commands and its extensibility to compound 

scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.56 First comparison of proposed FIS with Ref.(Cherni et al., 2016). 
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        The other comparison is conducted based on a scenario that has obstacles traverse into 

constant and horizontal orientations. This leads to a different topology because new coordinates 

of the obstacles are occupied as shown in Fig. 6.57. In addition, the target point has been 

changed and it is placed at (12, 12). It is noticeable that the new generated path is quite different 

from Fig. 6.56 above, in response to the actual motion of the unmanned ground vehicle whilst 

navigating. That verifies the performance of the UGV in different circumstances that is capable 

of an instantaneous localisation and an effective adaptation to response to new conditions at 

any time within its workspace. It is noticeable that there is a spike close to the target point. In 

fact, this is made when the UGV approached to the first obstacle to avoid collision with it. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.57 Second comparison of proposed FIS with Ref.(Cherni et al., 2016). 
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6.8 Chapter Summary 

       In this chapter, an effective fuzzy inference system is presented for guiding an unmanned 

ground vehicle in a cluttered dynamic environment. The FIS makes the UGV move to a pose 

in a workspace whilst avoiding moving obstacles in the vehicle’s path. The introduced FIS 

system consists of two controllers based on reactive behaviour. Firstly, the target reaching 

controller is to ensure that the vehicle reaches its destination point.  In this controller, the input 

is the angle difference between vehicle’s heading and target angle. Secondly, it is to use the 

obstacle avoidance controller, in this controller, the vehicle receives sensory information as 

inputs form three sensors placed on front, right and left of the vehicle’s platform. The outputs 

of these two controllers are right and left angular velocities to guide the vehicle during its 

navigation.  

     The proposed FIS in random dynamic environments have been demonstrated in four 

scenarios. Firstly, five moving obstacles move at constant velocities. Secondly, the obstacles 

move in different velocities. Thirdly, the sizes of obstacles are varied to obtain a realistic real-

world situation. Finally, static and dynamic obstacles are combined to demonstrated a diverse 

scenario. In all constructed environments, the UGV is proved that it has the capability of 

avoiding obstacles safely and reaches the destination with feasible and smooth path between 

the starting and the target points. Hence, FIS is evident to be a satisfactory control methodology 

for the UGV. It exhibits an intelligent behaviour whilst confronting of an uncertainty in the 

presence of the static and dynamic obstacles. It has been established that the proposed 

methodology is capable of effectively guiding the UGV to traverse from a starting position to 

a desired goal with the optimum and the shortest path based on the target reaching algorithm. 

      Comparisons are established to determine the privileges of the proposed design comparing 

to the state of the art. It has been confirmed that an elapsed time and an optimum path are 

obtained based on the obstacle avoidance and target reaching algorithms.
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Chapter 7 

Navigation of UGV Based on Adaptive Neuro-Fuzzy 

Inference System 

 

7.1 Introduction 

uzzy inference systems (FIS) have understandable structures about how decisions are 

made. However, they are not able to obtain the required inference rules automatically. 

Notwithstanding, the FIS responses within a fast period in a control process. 

Designing an optimal structure requires inevitable efforts to decide the inference rules between 

inputs and outputs upon linguistic variables. In addition, it needs to determine the effective 

inference rule numbers. On the other hand, the artificial neural networks are utilised widely in 

different applications and they demonstrate an adequate performance. However, they are not 

sufficient in explaining how their control decisions are reached. As a result, such problems 

reveal a strong need for creating an intelligent hybrid system that combines two or more 

techniques properly to overcome the limitations of the individual techniques. Therefore, the 

adaptive neuro-fuzzy inference system (ANFIS) has been introduced instead of the fuzzy 

inference systems and neural networks.        

        A neuro-fuzzy model brings together the linguistic representation of a fuzzy system with 

the learning ability of artificial neural networks. Hence, such a combination exhibits the 

advantages of both approaches to tackle many engineering problems. Consequently, by using 

the ANFIS model, the disadvantages of the fuzzy logic systems and the artificial neural 

networks will vanish. The neuro-adaptive training techniques provide a method for the fuzzy 

modelling procedure to train information about provided datasets. Therefore, it provides the 

fuzzy inference system the capability to compute the parameters of the membership and rules 

effectively that minimise the error rate between the actual and predicted outputs. More benefits 

are provided by ANFIS model such as the learning and predicting efficiency based on the well-

selected datasets. 

      The ANFIS model is one of Neuro-Fuzzy systems that allows the fuzzy systems to learn 

the parameters by using either an adaptive back-propagation learning algorithm or a hybrid-

learning algorithm that combines back propagation and a mean square estimator. The ANFIS 

architecture is based on a Sugeno fuzzy model. This model is different from a Mamdani fuzzy 

F 
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model in terms of fuzzy rules are applied. Thus, their aggregation and defuzzification 

procedures differ accordingly. The rule implementation based on the Sugeno fuzzy model is 

defined as a linear combination of input variables. The corresponding final output is simply the 

weighted average of each rule’s output. A Sugeno fuzzy model consisting of two input 

variables x and y, for example, one output variable f will lead to two fuzzy rules: 

Rule 1: If x is A1, y is B1 then f1 = p1x + q1y + r1 

Rule 2: If x is A2, y is B2 then f2 = p2x + q2y + r2 

where pi, qi, and ri are the consequent parameters of ith rule. Ai, Bi and Ci are the linguistic labels 

of inputs. The architecture of the ANFIS will be discussed in detail in the following section 

       Following a brief review of ANFIS’s advantages and applications to various problems in 

industrial automation. In this chapter, we aim to develop ANFIS models for solving the 

navigation problem of unmanned ground vehicles in industrial environments that are filled with 

unknown obstacles. It means the UGV does not have a prior knowledge about the places of 

obstacles. However, it is assumed that obstacles are invariant which they do not change their 

position with the time. 

 

7.2 Chapter Organisation 

       The chapter is organised as follows: In the following section, a brief overview of the 

architecture of an adaptive neuro-fuzzy inference system is introduced. Section 7.4 is dedicated 

to design ANFIS controllers for navigation platform. The simulation results are conducted and 

illustrated in Section 7.5. A comparison with the related work is given in Section 7.6. Chapter 

summary is described in Section 7.7.   

 

7.3 Architecture of Adaptive Neuro-Fuzzy Inference System  

      The architecture of an adaptive neuro-fuzzy Inference system (ANFIS), consists of a fuzzy 

inference system and a neural network with given input and output data pairs. The ANFIS 

technique is a self-tuning and an adaptive hybrid controller that uses learning algorithms to 

tune its performance. In other words, it provides the fuzzy inference system the capability to 

adapt membership function parameters that it allows an associated fuzzy inference system to 

track given input and output data parameters of ANFIS model. In order to process a fuzzy rule 

by neural networks, it is necessary to modify a standard neural network structure accordingly. 

Fig. 7.1 demonstrates the architecture model of ANFIS. This model is called a first-order 
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Takagi-Sugeno-fuzzy model (Jang, 1993). For simplicity, it is assumed that the ANFIS model 

has two inputs k1 and k2, and one output f.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Architecture of an adaptive neuro-fuzzy inference system. 

 

 

This system can be broken down into five layers: 

 

Layer 1: Every node ‘i’ in this layer is an adaptive node with a node function 

𝑂1,𝑖 = 𝜇𝐴_𝑖(𝑥), 𝑓𝑜𝑟 𝑖 = 1,2                                                                                                            (7.1)                                                

𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑦), 𝑓𝑜𝑟 𝑖 = 3,4                                                                                                         (7.2) 

where 𝑘1 (or 𝑘2) is the input to node i and Ai (or Bi-2) is a linguistic label (such as "near" or 

"far") associated with a particular node. In other words, O1,i is the membership grade of a fuzzy 

set A( = A1 , A2 , B1 or B2 ) and it specifies the degree to which the given input 𝑘1 (or 𝑘2) 

satisfies the quantifier A. The membership function for A is assumed be triangular shaped 

membership function: 

 𝜇𝐴(𝑥) = 𝑚𝑎𝑥 [𝑚𝑖𝑛 {
𝑥 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

,
𝑐𝑖 − 𝑥

𝑐𝑖 − 𝑏𝑖
} , 0]                                                            (7.3) 

 where {ai, bi, ci} is the parameter set. As the values of these parameters change, the bell-shaped 

function varies accordingly, thus exhibiting various forms of membership function for the 

fuzzy set A. Parameters in this layer are referred to as premise parameters. 

 

 

 



Chapter 7: Navigation of UGV Based on Adaptive Neuro-Fuzzy Inference System 

191 
 

Layer 2: Every node in this layer is a fixed node labelled Π, whose output is the product of all 

the incoming signals: 

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴_𝑖(𝑥)𝜇𝐵𝑖(𝑦), 𝑖 = 1,2                                                                       (7.4) 

Each node output represents the firing strength of a rule. In general, any other T-norm operators 

that perform a fuzzy AND can be used as the node function in this layer. 

 

Layer 3: Every node in this layer is a fixed node labelled N. The ith node calculates the ratio 

of the ith rule’s firing strength to the sum of all of the rules firing strengths: 

 𝑂3,𝑖 = 𝑤𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
 𝑖 = 1,2                                                                                (7.5) 

The output of this layer is called the normalised firing strengths. 

 

Layer 4: Every node i in this layer is an adaptive node with a node function: 

 𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1,2                                                          (7.6) 

where 𝑤𝑖 is the normalised firing strength from layer 3 and {pi, qi, ri} is the parameter set of 

this node. Parameters in this layer are referred to as consequent parameters. 

 

Layer 5: The single node in this layer is a fixed node labelled ∑, which computes the overall 

output, f, as the summation of all incoming signals: 

𝑓 = 𝑂5,1 =∑𝑤𝑖
𝑖

𝑓𝑖 =
∑ 𝑤𝑖𝑖 𝑓𝑖
∑ 𝑤𝑖𝑖

 𝑖 = 1,2                                                               (7.7) 

        

        The first and fourth layers are adaptive layers in the ANFIS architecture. The modifiable 

parameters are called premise parameters in the first layer and consequent parameters in the 

fourth layer. The task of learning is to tune all modifiable parameters to make the ANFIS match 

the training data. Trainable parameters of ANFIS, i.e., premise parameters and consequent 

parameters {ai, bi, ci} and {pi, qi, ri} are adjusted to make the ANFIS output match the training 

data. The utilised training algorithm is called a hybrid learning algorithm. It combines the least 

square method and gradient descent method. The hybrid learning algorithm is composed of two 

processes i.e. a forward pass and a backward pass. The least squares method (forward pass) is 

used to optimize the consequent parameters with the premise parameters fixed. Once the 

optimal consequent parameters are found, the backward pass starts immediately. The gradient 

descent method (backward pass) is used to adjust optimally the premise parameters 

corresponding to the fuzzy sets in the input domain. The output of the ANFIS is calculated by 
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employing the consequent parameters found in the forward pass. The output error is used to 

adapt the premise parameters by means of a standard back propagation algorithm. The 

performance of the ANFIS network is evaluated statistically based on a root mean square error 

(RMSE). The error rate is measured between the actual and predicted values of the ANFIS 

output by employing the following equation: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖 − 𝐴𝑖)2                                                                                     (7.8) 

where Pi and Ai are respective predicted and actual yield for the ith iterations of data pairs and 

n is the number of the points in the dataset. 

 

7.4 Design of ANFIS Controllers for Navigation Platform 

       In this section, the proposed ANFIS controllers are discussed. Four ANFIS controllers 

have been designed to accomplish the navigation task; firstly, two ANFIS controllers for 

achieving the target reaching task; secondly, two ANFIS controllers for performing the obstacle 

avoidance mission.  

  All four controllers are combined through a switch block for choosing which controller 

will be activated. For instance, if there are no obstacles in the vehicle’s path, the target-reaching 

controller will be activated. Otherwise, if the vehicle senses an obstacle, the obstacle avoidance 

controller is activated. The switching between these two controllers is decided according to the 

obstacle sensing signal, OS, from the environmental model. This signal is generated in 

accordance to measured distances (front, right, and left) from sensory information. If the 

vehicle does not sense an obstacle in its path, this OS parameter indicates ‘0’ if there is no an 

obstacle and ‘1’ if the vehicle senses an obstacle near to its platform. Thus, the output of the 

switching block are the angular velocities of the left and right wheel of the unmanned ground 

vehicle. These velocities are provided in the vehicle’s model to obtain the instantaneous 

vehicle’s posture through the movement of the vehicle. Fig. 7.2 depicts the structure of the 

proposed ANFIS controllers. These controllers replace the fuzzy inference systems presented 

in the previous chapter. They are integrated with the UGV model and the introduced workspace 

environment.  
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Fig. 7.2 Block diagram of proposed four ANFIS controllers. 

 

7.4.1 Hybrid Training Algorithm 

       The hybrid-training algorithm is used to modify the parameters of the ANFIS model as 

follows: The gradient descent method as in neural network can be applied to modify the 

premise parameters whilst a least square estimate method can be applied to adapt the 

consequent parameters. In the forward pass of the hybrid learning algorithm, functional signals 

go forward (under the condition that the premise parameters are fixed) until layer four and the 

consequent parameters are identified by the least square estimate. In the backward pass, the 

error rates propagate backward and the premise parameters are updated by using the back 

propagation algorithm that described in Chapter 5.  

 

7.4.2 Target Reaching ANFIS Controller 

       To achieve a target reaching ANFIS architecture, a single input multiple output (SIMO) 

ANFIS controller is needed that comprises of one input and two outputs. However, the 

MATLAB-SIMULINK package does support only a multiple input single output (MISO) or a 
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single input single output (SISO) ANFIS models. Hence, two ANFIS controllers are 

implemented to provide two outputs for driving the right and left angular velocities toward the 

target. Both ANFIS controllers share the same angle difference input. This angle difference 

represents a subtraction between the vehicle’s heading and the target’s point. The calculation 

of the angle difference is already given in Chapter 6. The output of the first ANFIS controller 

is the right angular velocity and for the second ANFIS controller is the left angular velocity. A 

group of datasets has been selected after filtering the recursion in the datasets for training both 

ANFIS controllers. The datasets have been chosen based on real values that are obtained from 

the fuzzy inference system implemented preciously. The training procedure adjusts 

membership parameters to obtain an optimal performance of the model. The learning 

information of the first and second ANFIS controllers for predicting the angular velocity of the 

left and the right wheels respectively are given in Table 7.1. The characteristics of the structure 

of ANFIS architecture are illustrated in Table 7.2.  

   The training results illustrate that the error rate for predicting the left and right angular 

velocities are ‘0.015 rad/s’ and ‘0.0523 rad/s’, respectively. An epoch number of 200 is chosen 

after based on many iterations for obtaining the minimum value of error for training the 

datasets. The relationship between the error rate and epoch number is demonstrated in Fig. 7.3 

for both ANFIS 1 and 2. Ten membership functions have been specified in the angle difference 

input. The number of membership functions can be increased to minimise the error rate further. 

However, that will increase the complexity of the ANFIS architecture. Hence, the elapsed time 

will be increased and that would cause a delay in the response of the ANFIS model. 

MATLAB’s ANFIS editor offers different types of membership functions (MF) including: 

triangular and trapezoidal.  Correspondingly, we have chosen the triangular membership 

function after evaluating the other types as it has provided the best results. 

 

 Table 7.1 Learning information of the first and the second topology of ANFIS. 

ANFIS information ANFIS 1 ANFIS 2 

Number of nodes 52 52 

Number of linear parameters 12 12 

Number of nonlinear parameters 36 36 

Total number of parameters 48 48 

Number of training data pairs 350 350 

Number of fuzzy rules 12 12 
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Table 7.2 Characteristics of ANFIS 1 and 2 architecture. 

 

Item 

Type of MF Number of MF Learning 

method 

 

RMSE Input Output Input Epoch 

ANFIS 1 Triangle Linear 10 200 Hybrid 0.0015 

ANFIS  2 Triangle Linear 10 200 Hybrid 0.0523 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3 Error rate for ANFIS controllers of target reaching. 

 

7.4.3 Obstacle Avoidance ANFIS Controller 

  The principal operation of an unmanned ground vehicle is to have a collision free path 

during the navigation. In this architecture, there are four inputs and two outputs. The inputs are 

the front, right and left distances, and the outputs are the right and left angular velocities. 

Similarly, because of the ANFIS architecture based on MATLAB software package provides 

just one output. Currently, our model is a multiple input multiple output (MIMO). Therefore, 

the model is divided into two MISO models. Hence, Both of MISO models are deployed to 

implement the third and fourth ANFIS controllers. These controllers are utilised to steer the 

vehicle’s orientation when the vehicle becomes near obstacles.  

        For implementing the obstacle avoidance ANFIS controller, 35 pairs of training datasets 

are selected for the training purpose. The chosen training datasets are based on the most 
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dissimilar figures among a large volume of datasets. The training adjusts the membership 

parameters to implement the required model. The ANFIS learning information for predicting 

the angular velocity for the left and the right wheels are illustrated in Table 7.3. The 

characteristics of the structure of ANFIS architecture are described in Table 7.4. It is observable 

that the type of MF for which of three inputs is triangular and each of the inputs has five 

membership functions. Training result shows that the error rate between the predicting and 

actual angular velocity of ANFIS3 and ANFIS4 are ‘0.178’ rad/s and ‘0.102 rad/s’, 

respectively. The relationships between the error rate and epoch number of both ANFIS 

controllers are demonstrated in Fig. 7.4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 Error rate for ANFIS controllers of obstacle avoidance. 

 

Table 7.3 ANFIS information of the first and the second topology of ANFIS. 

ANFIS information ANFIS 3 ANFIS 4 

Number of nodes 286 286 

Number of linear parameters 125 125 

Number of nonlinear parameters 45 45 

Total number of parameters 170 170 

Number of training data pairs 350 350 

Number of fuzzy rules 125 125 
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Table 7.4 Characteristics of ANFIS 3 and 4 architecture. 

 

Item 

Type of MF Number of MF  

Learning method 

 

RMSE Input Output Input Epoch 

ANFIS 3 Triangle Linear 5,5,5 200 Hybrid 0.178 

ANFIS  4 Triangle Linear 5,5,5 200 Hybrid 0.102 

 

7.5 Simulation Results  

  To validate the proposed ANFIS controllers, two case studies have been carried out and 

simulated based on the MATLAB-SIMULINK environment. Each case study is constructed 

from a variety of obstacles that are placed in different positions in the workspace. The initial 

and the destination points of both case studies are similar. However, the configurations and the 

sizes of obstacles are diverse. Nonetheless, the initial position of the UGV can be set arbitrarily 

in the workspace to reach any target. Both case studies are explained in detail as in the 

following subsections. 

 

7.5.1 Case Study-I 

       In this case, a workspace has been presented as demonstrated in Fig. 7.5 for the navigation 

platform filled with seven static obstacles. The workspace dimensions are fixed by four corner 

points having the coordinates (–2, –2), (18, –2), (18, 18), (–2, 18) to combine a two-dimensional 

grid. The dimensions of the obstacles described by their peripheral vertices and occupied 

spaces are given in Table 7.5. The Cartesian coordinates of the initial and target points are Po 

(0, 0) and Pg (15, 15), respectively.  

       By running the implemented SIMULINK model, the UGV starts manoeuvring from the 

initial position towards to the destination position. It can be observed that, the UGV has avoided 

the surrounding obstacles successfully and safely. The decisions are made to change the 

vehicle’s direction when it approaches any obstacle; this is illustrated in Fig.7.6 that 

demonstrates how the UGV alters its orientation to avoid the pertaining obstacle. The linear 

velocity of the UGV is introduced as shown in Fig. 7.7. The task of obstacle avoidance has 

been accomplished based on the activation of the ANFIS3 and ANFIS4, in this situation, the 

simulation results of angular velocity of both right and left wheels are shown in Fig. 7.8. 

Whereas, when there are no obstacles approaching the UGV’s path, the ANIFS1 and ANFIS2 

are activated to guide the UGV to reach its destination. Fig. 7.9 illustrates the behaviour of the 

left and right angular velocity when target-reaching controllers are activated. Accordingly, the 
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final left and right angular velocities after the stage of the switching mechanism are shown in 

Fig. 7.10. It demonstrates the reactions of the left and right wheels that are combined based to 

the obstacle avoidance and target-reaching controllers.  

 

Table 7.5 Obstacles in the workspace grid of Case Study-I. 

Obstacle No. Peripheral Vertices Coordinates 

1 (8, 4), (8, 5.5), (9.5, 5.5), (9.5, 4) 

2 (8, 14), (8, 15.5), (9.5, 15.5), (9.5, 14) 

3 (10, 8), (10, 9.5), (11.5, 9.5), (11.5, 8) 

4 (3.5, 12.5), (3.5, 14), (5, 14), (5, 12.5) 

5 (2, 2), (2, 3.5), (3.5, 3.5), (3.5, 2) 

6 (6, 7), (6, 8.5), (7.5, 8.5), (7.5, 7) 

7 (12, 12), (12, 13.5), (13.5, 13.5), (13.5, 12) 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.5 Navigation platform and topology for case study-I using ANFIS. 
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Fig. 7.6 Orientation of UGV whilst navigation in case study-I using ANFIS. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.7 Linear velocity for UGV in case study-I using ANFIS. 
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Fig. 7.8 Angular velocity for obstacle avoidance of ANFIS in case study-I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.9 Angular velocity for target reaching of ANFIS in case study-I. 
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Fig. 7.10 Linear velocity of UGV whilst navigation in case study-I using ANFIS. 

        

        The action of the sensory information in this case study is demonstrated in Fig. 7.11. It is 

noticeable that the three sensors have responded effectively into the main regions that the 

collision avoidance is needed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.11 Sensory information of three sensors of UGV in case study-I using ANFIS. 
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      The Y and Y coordinates of the UGV motion are introduced in Fig. 7.12 and Fig.7.13, 

respectively. Both coordinates are conducted instantaneously from the start point until they 

reach the destination. The individual coordinates of each axis are positioned based on the 

posture of the UGV whilst manoeuvring. The trajectory tracking errors between the actual and 

the desired coordinates of X & Y axes are shown in Fig. 7.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.12 X-coordinate of UGV whilst navigation in case study-I using ANFIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.13 Y-coordinate of UGV whilst navigation in case study-I using ANFIS. 
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Fig. 7.14 Tracking error in X and Y coordinates of UGV in case study-I using ANFIS. 

 

 

7.5.2 Case study-II 

      In real world scenarios, obstacles would appear in different shapes and sizes based on 

unstructured environments. Thus, this case study is established based on an environment that 

is filled   multiple varied obstacles. The complexity of the environment is considered by 

increasing the number of obstacles. It is expected that the frequency of the switching between 

the obstacle avoidance ANFIS controllers and the target reaching ANFIS controllers will be 

increased in case of increasing the number of obstructing obstacles.  Consequently, the 

response might be more challenging and the UGV might lose the stability in a frequent 

switching. Hence, it is required to validate that the performance of the platform is adaptable 

into complicated situations and is capable to reach its destination and avoid obstacles in a 

highly various environment. The dimensions of the obstacles are described by their peripheral 

vertices, which are given in Table 7.6.  
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Table 7.6 Obstacles in the workspace grid of Case Study-II. 

Obstacle No. Peripheral Vertices Coordinates Shape Type 

1 (3.5, 3.5), (5, 5), (2.5, 4), (4, 2.5) Square 

2 (8, 0), (9, 1.5), (10, 0) Triangle 

3 Centre (9, 4) and Radius = 0.75m Circle 

4 (12, 1), (12, 4), (14, 4), (14, 1) Rectangle 

5 (0, 6), (0, 8), (2, 8), (2, 6) Square 

6 (3.5, 3.5), (5, 5), (15.5, 4) Triangle 

7 (14.5, 8), (16, 8), (15.5, 6), (14, 6) parallelogram 

8 Centre (10, 10) and Radius = 1m Circle 

9 Centre (3, 13) and Radius = 0.75m Circle 

10 (12, 12), (12.5, 5), (13.5, 13), (14, 12) Trapezoid 

11 (8, 14), (8, 15.5), (9.5, 15.5), (9.5, 14) Square 

 

 

         The number of obstacles has been increased to eleven to make a more complex 

environment. The simulation results demonstrate that the trained obstacle avoidance ANFIS 

controllers have made the UGV traverses all the obstacles in its path by making decisions to 

change the vehicle’s headings when it approaches an obstacle. Decisions are made upon the 

controllers’ inputs to manipulate the left and right angular velocities. A new feasible trajectory 

is generated by the UGV’s movement after roving around the obstacles as shown in Fig. 7.15. 

Accordingly, the orientation of the UGV is obtained as illustrated in Fig. 7.16. It demonstrates 

that the UGV has made several successful headings on both clockwise and counterclockwise. 

The linear velocity of the UGV is presented in Fig. 7.17. The right and left angular velocities 

of the target reaching and obstacle avoidance based on the conducted ANFIS controllers are 

demonstrated in Fig. 7.18 and Fig. 7.19, respectively. As a result, the right and left angular 

velocities of the target reaching and obstacle avoidance are combined through the switching 

mechanism to attain the required angular velocities for the left and right wheels. The ultimate 

left and right angular velocities are shown in Fig. 7.20. 
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Fig. 7.15 Navigation platform and topology for case study-II using ANFIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.16 Orientation of UGV whilst navigation in case study-II using ANFIS. 
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Fig. 7.17 Linear velocity for UGV in case study-II using ANFIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.18 Angular velocity for target reaching of ANFIS in case study-II. 
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Fig. 7.19 Angular velocity for obstacle avoidance of ANFIS in case study-II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.20 Linear velocity of UGV whilst navigation in case study-II using ANFIS. 
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       The sensor information given in Fig. 7.21 demonstrates that there are six significant 

responses occurring in reacting for approaching a hindrance. In addition, it is apparent that not 

all three sensors respond likewise. Instead, sensors who are obstructed by an obstacle will react 

accordingly when the UGV approaches the obstacle. As aforementioned in the previous case 

study, the motion coordinates of X and Y-axes are obtained as illustrated in Fig. 7.22 and Fig. 

7.23, respectively. Similarly, the error rate between the actual and the destination coordinates 

is introduced in Fig. 7.24. It is evident that the UGV has passed all surrounding obstacles 

effectively and successfully despite the environment complexity. Moreover, the simulation 

results have confirmed that the UGV has reached its required destination. It is observable that, 

when the UGV has commenced its motion, the error rate has reached the maximum. 

Nonetheless, when the UGV approaches the coordinates of the destination, the error rate has 

been decreased constantly until it becomes zero. When the number of obstacles is increased 

and the sizes are varied, the obstacle avoidance ANFIS controller has been activated frequently 

in order to avoid obstacles. When the avoiding has been accomplished, the UGV has switched 

to the target reaching ANFIS controller based on the provided indicated sensing signal. In both 

considered case studies, the UGV has been capable of avoiding obstacles and reaching the 

target feasibly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.21 Sensory information of three sensors of UGV in case study-II using ANFIS. 
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Fig. 7.22 X-coordinate of UGV whilst navigation in case study-II using ANFIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.23 Y-coordinate of the UGV whilst navigation in case study-II using ANFIS. 
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Fig. 7.24 Tracking error in X and Y coordinates of UGV in case study-II using ANFIS. 

  

 

7.6 Comparison with the related work 

       To prove that our proposed ANFIS model has improved the path planning and obstacle 

avoidance signifcantly, a comparsion is presented with a previous study that utilises a similar 

ANFIS model in the state of the art as demonstated in Fig. 7.25. In the conducted ANFIS model 

based on the literature, the motion of UGV has not been able to establish a feasible path that 

connects between the initial and target points. This indicates a need to develop an ANFIS model 

that can achieve a smooth navigation without undesirable uncertainties in the operational 

performance. The comparison has clearly shown that our proposed ANFIS controllers have 

improved the navigation response significantly in terms of obtaining an optimal path and 

reducing the elapsed navigation time. 
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Fig. 7.25 Comparison navigation platform contains three static obstacles with similar sizes. 

 

7.7 Chapter Summary 

       In this chapter, an adaptive neuro-fuzzy inference system has been implemented to control 

the angular velocities of the wheels of an unmanned ground vehicle. These velocities guide the 

vehicle successfully and safely to reach the destination in an unstructured environment without 

colliding with the obstacles presented on its path. The design system comprises four ANFIS 

controllers. Two of which are used for the target reaching to ensure that the UGV reaches its 

destination coordinates. The other two are utlised in guiding the UGV to avoid the collision 

with obstructing obstacles. The four controllers are integrated to provide the right and left 

angular velocities.   The validation of the proposed method has been demonstrated by 

considering two case studies; firstly, seven identical static obstacles are placed randomly with 

the workspace; secondly, eleven obstacles have considered with different sizes and shapes. In 

case of reducing obstacle numbers significantly, the obstacle avoidance ANFIS controller did 

not activate until the vehicle confronted an obstacle. Therefore, the target reaching ANFIS 

controller is activated most of the time. This case is similar to a situation when the path is clear 

of obstacles so that the UGV moves straightly between both start and target points.  

                  (Algabri et al., 2014) 

              Our ANFIS model 
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Chapter 8 
Experimental Work Based on Real Time Navigation 

of UGV 
 

8.1 Introduction 

n this chapter, an unmanned ground vehicle is implemented practically to perform real-

time navigation. The implementation has been accomplished by enabling the UGV of 

interacting and planning its motion in an unknown environment. In order to achieve a full 

autonomous architecture of the UGV, the latter has to be equipped with sensors, which are 

capable of sensing external surroundings and internal status of the UGV. The implementation 

process of the UGV’s architecture will be discussed in details in the following sections, which 

demonstrate the components of each stage and their function. Additionally, several algorithms 

are introduced to create a communication link between any device and another. Furthermore, 

the fuzzy inference system controllers given in Chapter 6, are utilised to perform the functions 

of obstacle avoidance and target reaching. The obstacle avoidance controller is constructed 

based on sensors’ information. Thus, it is needed to provide distance information to calculate 

how far objects are from a UGV’s platform. For the target reaching controller, the orientation 

is needed to know at any time of the UGV’s movement in a workspace. To reach any 

destination, a compass is embedded in the UGV’s platform to determine the heading of 

navigation instantaneously. The FIS is rewritten using Python programming language based on 

real time experiments to investigate its performance.  

 

8.2 Chapter Organisation 

      This chapter is organised as follows: In the following section, a brief overview of the 

UGV’s architecture is presented based on our design. Section 8.4 is dedicated to the sensor 

technology utilised in the architecture. The microcontrollers and the communication protocol 

between Raspberry Pi and Arduino are described in Section 8.5. In Section 8.6, the motion 

control is explained based on the driving actuators. The control methodology is discussed in 

Section 8.7. The experimental results are introduced in Section 8.8. Finally, the chapter 

summary is given in Section 8.9. 

I 
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8.3 Architecture of Unmanned Ground Vehicle 

      To construct a UGV’s architecture that operates in a workspace without an on-board human 

presence, on-board sensors are required to be equipped onto the platform to make it capable of 

moving autonomously. Based on an operational observation, the UGV makes full decisions 

about its behaviour in response to its surroundings. The architecture of the UGV is constructed 

mainly based on four functions that must be provided to enable an autonomous navigation. 

Firstly, the perception is to enable the UGV of understanding the surroundings, its current 

orientation and position within the workspace. The perception is achieved based on sensor 

technology. Three essential sensors are provided to make the perception occurring based upon 

the distance detection of surrounding objects. A compass module is equipped to recognise the 

intended direction of the UGV. A quadrature encoder is embedded into the motors’ shafts. It is 

necessary to specify the direction and the speed of the wheels. Accordingly, travelled distances 

and elapsed times can be obtained. They are the key elements for localising the UGV 

instantaneously within any given environment.  

      Secondly, master and slave microcontrollers communicate with each other based on values 

of sensor information to make appropriate actions accordingly. The Arduino, the slave 

microcontroller, is directly integrated with the three distance sensors. It constantly sends the 

sensory information to Raspberry Pi via coded strings. Conversely, the Raspberry Pi also 

continuously sends commands back based on particular aims according to required tasks. Based 

on the communication between Raspberry Pi and Arduino, the latter will send signals to the 

driving circuit. This is the third stage of the architecture and it provides the required power for 

the actuators. Fourthly, the actuators drive the UGV forward/backward, turning left/right, or 

stop based on a particular scenario in a given workspace environment. The proposed 

architecture of the UGV is demonstrated in Fig. 8.1. 
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Fig. 8.1 Architecture of unmanned ground vehicle. 

 

8.4 Sensor Technology  

       Sensing technology is the key element in understanding and sensing external environments 

and an internal state of unmanned ground vehicles. The sensing of surrounding can be achieved 

by using various sensors. One of the most important tasks of an autonomous platform is to 

acquire knowledge about its environment. The sensors take measurements and translate 

measured information to meaningful data. When sensors collect information from the real 

world environment, they are called exteroceptive sensors based on perform functions. For 

instance, for obstacle avoidance, sensors utilise for detecting distance with respect to 

surrounding obstacles. There are also some sensors called proprioceptive sensors, which they 

are used to measure the internal values of a system such as wheels’ speed and battery status. In 

this chapter, three types of sensors are used to guide an unmanned ground vehicle in each 

workspace. These sensors are explained in detail in the following sections. 
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8.4.1 Ultrasonic Range Sensing  

        An ultrasonic sensor has been the most popular sensor modality for autonomous systems 

because not only it can be readily interfaced with microprocessor systems. However, it is also 

probably the least expensive approach for "real time" sensing. In addition, the ultrasonic sensor 

requires a minimal power. Additionally, it offers precise ranging information from roughly 3 

cm to 4 metres, thus, that makes it an ideal range for robotic applications. The characteristics 

of ultrasonic range sensors are not unlike those associated with other range sensors, which use 

different parts of the electromagnetic spectrum. Such sensors are optically based or millimetre 

wave range or radar sensors from specular reflections, absorption, bandwidth, resolution, etc. 

that will affect the final measurement. Three ultrasonic sensors, type SR04, are used for 

distance detection of surrounding obstacles. The sensors are placed in three positions within 

the UGV’s platform i.e. left, front and right positions. Fig. 8.2 demonstrates the sending and 

receiving of trigger and echo signals. It is observable that the transducer creates an ultrasonic 

sound, which travels from the sensor, and then it bounces back to an object’s surface. The 

theory of how such sensors can calculate the distances based on the trigger and echo signal is 

illustrated in Algorithm 8.1. It transmits a pulse of sound outside the range of human hearing 

at 40 KHz. This pulse travels at the speed of sound away from the ranger in a cone shape and 

the sound reflects back to the ranger from any object in the path of sonic wave. The ranger 

pauses for a brief interval after the sound is transmitted and then awaits the reflected sound in 

the form of an echo. When the trigger signal is sent and the echo signal is received, the distances 

to objects can be computed based on elapsed time. The ultrasonic sensor is integrated with the 

Arduino microcontroller using four pins. Two of which pins are utilised for power supply. The 

other two pins are for the trigger and echo signals (Nedelkovski, 2015). The scheme diagram 

of connection between the ultrasonic sensor and Arduino is shown in Fig. 8.3. 
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Algorithm 8.1: Distances calculation between the UGV and an object 

Inputs: Trigger the ultrasonic sensor to transmit a signal, receive an echo signal, the speed of 

the sound is known in the air, 340m/s. 

     Outputs: Calculate the distance to an object. 

1 if an object within the sensing range then 

2      Calculate the time (T) difference between sending and receiving the sound pulse.  

3      (The ultrasonic sensor measures the distance by timing how long for an ultrasonic wave 

        sent out by an emitter to bounce off an object and come back to the receiver.) 

4      Distance = (T x Speed of Sound) / 2 

        (The ‘2’ is in the formula because the sound has to travel back and forth). 

5 else 

6           No obstacle is existed within the sensing range. 

7 end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.2 Ultrasonic sensor transducers sending and receiving signals. 
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Fig. 8.3 Interfacing between ultrasonic sensor and Arduino. 

 

8.4.2 Magnetic Compass Module 

       In this setup, a magnetic compass module is used type CMPS03. It has been specifically 

designed for aiding the navigation. The heading control can be achieved by producing a unique 

number that represents the orientation of a robotic platform. The connection of the CMPS03 

compass module and Arduino is demonstrated in Fig. 8.4. There are nine pins in the 

configuration of the compass. Nonetheless, only four pins are used to be integrated with the 

Arduino. Pins 1 and 2 energise the compass by 5V power supply. Pins 2 and 3 of the compass 

are utilised for a communicative purpose. The compass uses a magnetic field sensor type 

Philips KMZ51, this sensor is sensitive enough to detect the Earth’s magnetic field. It is used 

to compute the direction of the horizontal component of the earth’s magnetic field.  

         An inter-integrated circuit (I2C) is a serial protocol that is used for communication 

between the compass module and Arduino microcontroller. This is based on the serial clock 

(SCL) and serial data (SDA). The SCL is the clock signal which synchronises data transfer 
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between devices on the I2C bus. The other line is SDA which carries the data.  The two lines 

are open drain, which means that pull-up resistors are needed to be attached to these lines in 

order to make the line high, because the devices on the I2C bus are active low. The commonly 

used range of the pull-up resistors are varied from 1.8-2 KΩ. The data signal is transferred in 

sequences of eight bits. The first eight-bit sequence indicates the address of the slave to which 

the data is sent. 

       The Arduino communicates with the magnetic compass by issuing a start sequence on the 

I2C bus. A start sequence is one of two special sequences defined for the I2C bus, the other 

being the stop sequence. The start sequence and stop sequence are special in that these are the 

only places where the SDA (data line) is allowed to change whilst the SCL (clock line) is high. 

When data is being transferred, the SDA must remain stable and not change whilst SCL is high. 

The start and stop sequences mark the beginning and end of a transaction between the Arduino 

and the magnetic compass module. Data is transferred in sequences of 8 bits. The bits are placed 

on the SDA line starting with the most significant bit (MSB). The SCL line is then pulsed high, 

then low. Algorithm 8.2 illustrates the structure of how the magnetic compass will be 

determining the orientation of the navigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4 Interfacing between compass sensor and Arduino. 
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Algorithm 8.2: Determining the orientation of the UGV 

        Inputs: Define the address of the compass and the baud rate (bit rate per second). 

        Output: The orientation of the UGV. 

1 Loop  

2      Communicate CMPS03 and Arduino using I2C protocol  

3      Send registers  

4       While there is a byte to receive 

5           Read the hightByte  

6           Read the lowByte 

7           The orientation = ((hightByte<<8) + lowbyte)/10 

8      end 

9 end 

 

8.4.3 Quadrature Encoder 

        A quadrature encoder is classified as a proprioceptive sensor that can measure internal 

values of the UGV i.e. the speed and direction of a rotating shaft. It is also known as an 

incremental rotary encoder based its operational performance. The Quadrature encoder can 

utilise an optic sensor or other type to perform its function.  Regardless the type of utilised 

sensors. The quadrature encoder produces two outputs of square waveforms that are shifted by 

90 degrees from each other. The amplitude of the square waveforms varies from 0-5 V. The 

speed of the rotation can be measured by using only one output of the quadrature encoder. 

However, in order to determine the direction of the rotation, the two outputs will be used. This 

can be achieved based on a pattern of binary numbers generated by both outputs. The 

quadrature encoder is essential for odometry which it is a method used for collecting data to 

estimate the change in the position of the UGV after it has moved over time. The connection 

between the compass module and Arduino is demonstrated in Fig. 8.5 below. The presented 

algorithm for determining the travelled distance is illustrated in Algorithm 8.3. 
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Fig. 8.5 Interfacing between quadrature encoder and Arduino. 

 

       The optic disk inside a quadrature encoder contains two tracks denoted channel A and 

channel B. These channels are shifted by ninety electrical degrees out of phase from each other 

as illustrated in Fig. 8.6. This is the key element that provides the quadrature encoder its 

functionality. For the direction sensing, a controller can determine the direction of movement 

based on the phase relationship between channels A and B. When the quadrature encoder 

rotates in a clockwise direction, its signal shows channel A leading channel B. Reciprocally, 

the reverse occurs when the quadrature encoder rotates anticlockwise. 

 

 

 

 

 

 

Fig. 8.6 Pulses of channels A and B in CW and CCW movement. 
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Algorithm 8.3: Travelled distance calculation 

Inputs: Radius of a wheel (r), revolutions per minute of the wheel based on the quadrature 

encoder measurements. 

        Outputs: The travelled distance of the UGV. 

1 if revolutions per minute is measured by the encoder then 

2      Calculate the circumference of the wheel from its radius (Circumference=2rπ).  

3      Calculate the speed, speed = revolutions per minute x circumference  

                 For k rpm, speed = 𝑘
𝑟𝑒𝑣

𝑚𝑖𝑛
𝑥
1𝑚𝑖𝑛

60 𝑠
𝑥
2𝜋𝑟

1 𝑟𝑒𝑣
= 𝑘 

𝑚

𝑠
 

4   Calculate the timing interval, the time is calculated using a built in function in Arduino 

     programming platform, the function is called millis() 

5      Calculate the travelled distance, travelled distance = speed x time 

6 else 

7           No movement is occurred. 

8 end 

 

       The paramount purpose of using quadrature encoder is for localisation of the UGV. If the 

initial position of the UGV is assumed known, the next position can be determined by using 

the quadrature encoder. This process is so called the dead reckoning, in which the new position 

of the UGV can be predicted and updated based on the continuous movement of the UGV. A 

systematic design of the UG can dramatically eliminate the deterministic errors of localisation. 

It is required to adjust the alignment of the wheels and diameters of wheels are equal. In 

addition, the floor contact of a workspace should be smooth and flat to avoid slippage as a 

result of variation in the contact point of the wheels. 

 

8.5 Microcontrollers and Communication Protocol 

        Microcontrollers represent the core elements of the robotic platform. They perform the 

function of processing and analysing data. They comprise of multi general purpose input/output 

(GPIO) pins that can be integrated with sensors or peripheral devices. In this work, two 

microcontrollers are used i.e. Raspberry Pi and Arduino based on the current advances in 

electronic technology. The Rasberry Pi and Arduino have been increasingly used in many 

applications and they have become quite popular. Recently, these controllers are increasingly 

utilised instead of traditional microcontrollers. In Raspbey Pi, the operating system is based on 

the Linux system and the distribution is based on the Debian operating system. Based on Linux 
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systems, many programming software can be used to perform a coding task for a specific 

problem. In particular, Python software which is already built-in and it is included in the 

distribution package. Nonetheless, other software can be installed and used based on a user’s 

desire.  

       Similarly, Arduino is another platform used in many applications of embedded systems. It 

is an open-source electronic prototyping platform that enabling users to create interactive 

electronic objects. The programming based on Arduino platform can be accomplished using 

C/C++ software packages. Raspberry Pi is utilised as a master microcontroller and Arduino is 

used as a slave microcontroller. The master controller. Such multi-stage controllers enable the 

embedded systems of sharing tasks and programming threads to minimise the computational 

time and provide more ports and units for transferring and processing data.  

      There are various ways to connect Raspberry Pi and Arduino, such as using GPIO pins, 

serial peripheral interface (SPI), I2C bus and universal serial bus (USB).  However, the USB 

connection can be considered as the easiest way to achieve the interfacing, because required 

hardware is minimal. The USB is a serial protocol for communication between the Raspberry 

Pi and Arduino (Oscar, 2013), which is the simplest communication approach. The interlinking 

between both microcontrollers is demonstrated Fig. 8.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.7 Interfacing of Raspberry Pi and Arduino using USB connection. 
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        In order to make the Raspberry Pi and Arduino taking to each other, a communication 

protocol is needed. It involves sending and receiving data between Raspberry Pi and Arduino. 

The communication protocol is based on teletypewriter (TTY). The TTY allows alphanumeric 

character to be typed in and sent synchronously. Therefore, an algorithm is proposed for the 

communication between Raspberry Pi and Arduino. The principle of the algorithm is based on 

encoding and decoding characters of strings. For instance, if a string of numbers and letters is 

coded and sent visa a single combination of numbers and letters, the string will be received on 

the other end in order to be decoded to make use of its data. The data sending can be from 

Raspberry Pi to Arduino or vice versa.  

        On Raspberry Pi side, a string is generated that comprises three parameters i.e. “M, 

moving, turning” to be sent via a single command to Arduino. This provides an order to 

Arduino to make an action for motor to either moving forward or turning left/right. On Arduino 

side, a single string is also generated for distance reading of three sensors to be sent to 

Raspberry Pi. This makes and closed loop circuit of communication. When the Raspberry Pi 

receives the sensors’ reading, it analyses the string to recognise which sensor requires more 

considering based on its provided distance. The master controller i.e. Raspberry Pi, will be 

constantly sending and receiving data. Likewise, Arduino is the slave microcontroller, will set 

the motors’ motion according to the specified commands specified by the sent string. The 

description of the communication process is described in Fig. 8.8 flowchart. 
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Fig. 8.8 The communication protocol algorithm. 

 

8.6 Motion Control 

       The automatic controlling of the wheels’ movement is essential for an autonomous 

naviagtion. A driving power circuit is required to be an intermediate connection between the 

actuators and the Arduino microcontroller. The driver circuit is designed based on a 

synchronous regenerative motor drive type Sabertooth 2x10 (dual motor driver of 10A output 

current each). It has two main channels; one is used for forward/backward motion. The other 

one is used for controlling the steering. The tolerance voltage of this motor driver circuit is 

from 6V to 25V. The output current is up to 10A per motor. The schematic diagram for the 

Check serial 

communication 

Read until comma 

and parse 

 (This is throttle) 

Read string until comma 

Initialise 

motors 

Yes 

No 

M (Motors) S (Sensors) 

Request 

sensors  

Read until comma 

and parse again 

 (This is steering) 

Encode sensors 

readings 

Send Sensors’ 

readings to Arduino 

serial port 

This is encoding on Arduino side 

 
This is decoding on Raspberry Pi side 

Generate a string and 

being send to Arduino 

serial port 

Is string 

available? 

Check for the 

first letter in 

a string 



Chapter 8: Experimental Work Based on Real Time Navigation of UGV 

225 
 

driver motor circuit and the wheels is demonstrated in Fig. 8.9. The battery provides a 12V DC 

power supply. It supplies the motor driver circuit with the required power supply. The 

regenerative motor drive provides the motors on the left and right side its rated voltage 

individually, i.e. 12 V.  

        In addition, the driving circuit receives two control signals from the slave microcontroller 

“Arduino”. The control signals are used either for moving forward/backward or for steering 

the UGV to control its orientation. This can be achieved by programming the Arduino device 

internally to supply an operation signal in order to provide a certain type of movement.  The 

deterministic motion of the wheels on both sides are driven differentially, which means the 

movement is based on two separately driven sides. Hence, the direction of the UGV can be 

controlled by varying the rotation rate of the wheels a specific side. If the wheels move at the 

same speeds the UGV will traverse straight forward.  However, if the wheels on the left side 

have less rate of rotation, it leads of turning the UGV in the right direction. Similarly, when the 

wheels on the right side have less rate of rotation, the UGV will turn left.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 8.9 The schematic diagram for the driving motor circuit and the wheels. 

 

       The actuators of the UGV can be driven based on the width of supply signals. In principle, 

the actuators are combined of the gearboxes, DC motors driving circuit and encoders. The DC 

motors in this platform are interfaced with the motor driving board (Sabertooth 2x10) that acts 

like two servo motors in an independent mode of servo control. Therefore, you need to send 
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servo type signals to control the motor controller, which in turns converts those to regular DC 

motor signals with higher currents/voltages. 

     The servos are controlled from full speed reverse (1000 us) to idle (1500) to full speed 

forward (2000). Whereas, the steering is controlled from full turn (left or right) at 1000 us, 

centre (no turning) at 1500 us and full turn (other direction, depends on the wiring of motors) 

at 2000 us. In case of forward and backwards movements, all wheels are turning in the same 

direction simultaneously. The pulse length (in microseconds) determines the position of a servo 

motor. In the case of the Sabertooth motor controller, instead of determining the position of the 

motor, the value is used to determine the throttle on one channel and the turning on the other 

channel. The waveforms of digital signals for servomotors are shown in Fig. 8.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.10 Servo control signals. 

 

      The pulse width modulation (PWM) is used to control the width of pulses to a servomotor 

to change its rotation angle. It can be also utilised a variety of applications including 

sophisticated control circuitry. The modulation of signal’s width can be achieved based on a 

duty cycle. The duty cycle can be modified based on a percentile ratio whilst the signal becomes 

high or low over a period of time. This period is the inverse of the frequency of a waveform. 

The digital signals for the specified period of time will be either ON or OFF correspondingly. 
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The generated digital signals from Arduino microcontroller is conducted by using the PWM to 

change the frequency to 50Hz (or period of 20ms). Hence, the duty cycle is changed to 7.5% 

(or length of the pulse of 1.5 ms = 1500 us). Between 5% duty cycle and 10% duty cycle at 

50Hz, a full range of 1.0-2.0 ms (or 1000-2000 us) can be achieved.  

 

8.7 Control Methodology 

       The applied control methodology in the experimental work is based on the fuzzy inference 

system controllers introduced previously in Chapter 6. The controllers are coded in the master 

controller, Raspberry Pi, using the Python software package. For the obstacle avoidance FIS, 

the universe variables are generated for both inputs and outputs. The inputs are the three 

distance sensors and the outputs are the driving motors of the left and right sides. Two 

trapezoidal-shaped membership functions are for each input, the membership functions are 

used to cover the range of the nearest distances, (0-50cm), and far distances, (50cm-1m). In 

addition, five singleton membership functions are used for each output to cover the specified 

intervals of the driving motors of the left and right wheels. The moving back quickly is 

achieved by applying 2000 μs signal width. Also, for moving back but slowly is fulfilled by 

reducing the width of the applied signal to 1750 μs. The idle case of the obtained when the 

width of the applied signal equals 1500 μs. Similarly, for the moving forward quickly and 

slowly can be accomplished when the applied signals are 1000 μs and 1250 μs, respectively. 

Consequently, fuzzy rules based on an inference engine are created to mimic the behaviour of 

the UGV operation according to sensor data and thus, the driving motors will respond 

accordingly to control the motion of the wheels. Sixteen fuzzy rules are created in the obstacle 

avoidance FIS. 

        The target reaching is implemented using the same principle. However, another input is 

added to the target reaching FIS i.e. target distance in additional to the target angle. The target 

distance is to provide an indication when the target is reached. Thus, the driving wheels will 

be stopped. The target angle covers a wide range of angles in the clockwise and anticlockwise 

from (-180 to 180 degrees). It has been arranged into five triangular-shaped membership 

functions. The two outputs of the target reaching FIS is also fuzzified into five singleton 

membership functions to make an action corresponds to a specific case. Like to the obstacle 

avoidance FIS, the fuzzy rules are generated to make proper decisions based on the inference 

engine. The number of generated fuzzy rules are twenty in total that would cover a high range 

of the possible scenarios. As explained earlier, the Rapsberry Pi is the master controller, which 
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will send commands to Arduino based on the sensing data, the Arduino in turn, will provide 

the signals to the driving unit of the designed architecture. 

 

8.8 Experimental Results 

       The experimental results are provided to validate the applicability of the developed 

techniques and algorithms. The solvability of the obstacle avoidance and target reaching 

problems is considered practically based of fuzzy inference systems presented in Chapter 6. 

The experiment results are conducted based on into three case studies. The UGV has to pass 

obstacles if any and reach the destination successfully and feasibly in each case study to prove 

the effectiveness of the designed architecture and proposed algorithms.  

 

8.8.1 Case Study-I 

       In this case, there are no obstructing obstacles considered to intercept the UGV’s 

movement. The main purposes of such a study are to ensure that the UGV can move toward its 

orientation and stop when it reaches the destination; to determine the travelled distance and the 

localisation of its posture instantaneously. Consequently, it can localise the coordinates of the 

destination. It has been assumed that an initial position of the UGV is already known and the 

target point is specified. Observably, the UGV has followed a straight line that connects the 

start and the target points. The length of the travelled distance is 2.2 m at an elapsed time equals 

1.95 seconds. The speed of the UGV equals 1.128 m/s. The difference between the actual 

coordinates and the target point determine instantaneously whether the UGV has reached its 

destination or not. The direction of the UGV is placed directly towards the destination. Hence, 

it is not expected that the UGV makes any changing in its heading whilst moving because no 

obstructing obstacles are existed to confront the movement.   

       The revolutions per minute of the wheels determine incrementally the travelled distance.  

Hence, when the coordinates of the starting and the target points are equal, the stopping 

instance occurs. Fig. 8.11 demonstrates this typical case study into three parts; (a) the allocated 

workspace which is dimensioned at 2.5 by 2.1 metres in addition to the coordinates of the 

starting and target points, i.e. (0.43, 0.2) and (1.75, 2.14), respectively, (b) when the UGV is 

positioned at the starting point and (c) when the UGV reaches the target point. In fact, such a 

case study can be considered the simplest scenario where the UGV might operate on. 
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Fig. 8.11 Case study-I when no obstacles are existed; (a) the mapped workspace, (b) the UGV 

at the start point (c) the UGV at the target point.  

 

8.8.2 Case Study-II 

        In this case study, a scenario is considered when only obstacle is placed at a random 

distance between the starting and the target points. By this case study, the complexity is 

gradually increased to guarantee that the UGV is capable of performing the obstacle avoidance 

and target reaching as required based on a particular situation. The starting and target points 

are considered as in the previous case study. The UGV commences its motion by headings 

towards the target as shown in Fig. 8.12(a). At this instance, the target reaching is activated to 

lead the movement towards the destination. However, the UGV has been obstructed by an 

obstacle who is randomly located at the coordinates of (1.1, 1.12). Hence, the obstacle 

avoidance algorithm is activated to avoid collision. It is noticeable that the turning has occurred 

in the right direction to avoid clashing with the obstacle. The turning implies changing the 

orientation of the UGV. Consequently, the UGV requires to switch back to the target reaching 

algorithm. The new orientation of the UGV is determined by using the magnetic compass 

module. The angle of the target is calculated based on a trigonometric approach between the 

coordinates of the actual position of the UGV and the target point. The angle difference of the 

target reaching and the UGV’s heading governs the new required orientation towards the target. 

Fig. 8.12(b) illustrates the turning process around the obstructing obstacle. After a successful 

avoidance of the hindering obstacle by controlling the speed of the wheels, the UGV makes a 

feasible movement towards the target. Finally, Fig. 8.12(c) demonstrates the competing of the 

Starting point 

Target point 
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navigation process by reaching the coordinates of the target point. The travelled distance in this 

case takes longer to reach the target comparing to case study I. As a result, the elapsed time is 

increased to 2.6 seconds. 
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Fig. 8.12 Case study-II when one obstacle is existed; (a) at the starting point, (b) at the 

turning point and (c) at the target point. 

 

8.8.3 Case Study-III 

       In this case study, multiple constructing obstacles are placed randomly within the 

workspace. Although the number of obstructing obstacles is six, only two obstructing obstacles 

are practically hindering the movement of the UGV. In theory, the principle of operation in 

terms of obstacle avoidance and target reaching will be invariant when the number of obstacles 

is increased. Instead, the switching frequency between the obstacle avoidance and target 

reaching algorithms will be increased. When the UGV avoids an obstructing obstacle, it intends 

to change back its direction towards the target point. Therefore, if another obstructing obstacle 

confront the movement of the UGV, this in turn applies a challenge for the UGV in order to 

adapt its localisation and move forwards the goal. Reasonable distances are given to separate 

the obstacles to enable the UGV of making the best decision. If the obstacles are completely 

blocking the movement path, the stopping decision will occur to avoid collision, the UGV will 

resume its movement when the path is clear of obstructing obstacles.  

       Similarly, Fig. 8.13(a) demonstrates the case study III when the workspace is filled by six 

obstructing obstacles. It also shows the measured coordinates of each obstructing obstacle. The 

UGV starts the movement from the same aforementioned starting point. Fig. 8.13(b) shows the 

(c) 



Chapter 8: Experimental Work Based on Real Time Navigation of UGV 

233 
 

first turning that occurs due to obstructing obstacle no.2. The UGV turns left to avoid this 

obstacle, afterward, it changes the heading towards the target. However, obstacle no.3 has 

lightly hindered the movement of the UGV. Hence, it has slightly changed its heading again 

accordingly as illustrated in Fig. 8.13(c). Then, it has also changed back its orientation in the 

direction of the goal point. Such process has validated a robust switching frequency between 

the target reaching and obstacle avoidance algorithms. Fig. 8.13(d) demonstrates the last 

instance of the target reaching after an effective and a successful avoidance of obstructing 

obstacles. The elapsed time equals 2.8 seconds for completing the navigation process in this 

case study. 

        A simple comparison of the three case studies demonstrates that the travelled distance and 

the elapsed time are taken longer in case study III. Obviously, the case study I shows the 

shortest distance and elapsed time. The case study II is slightly different by adding an 

obstructing obstacle in the path. Thus, longer travelled distance and elapsed time are occurred 

in comparing to the case study I. 
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Fig. 8.13 Case study-III when one obstacles are existed; (a) at the starting point, (b) at the 

first turning point, (c) at the second turning point and (d) at the target point. 

 

8.9 Chapter Summary 

        An unmanned architecture based on a real-time implementation is introduced for an 

unmanned ground vehicle. The system uses multiple sensors to sense its surrounding and 

localise itself simultaneously with a workspace. The distances between obstructing obstacles 

and the UGV’s platform are measured by three ultrasonic range sensors. The orientation of the 

UGV has been controlled using a magnetic compass module. The travelled distances are 

determined based on quadratic encoders. For each sensing device, an algorithm is developed 

to create communication links between the sensing devices and the control unit of the UGV on 

one hand, and between the sensing devices and an environment of the other hand.  The 

integrated platform based on the embedded system is investigated using three main case studies 

to demonstrate the interaction between the UGV and the environment. The real time 

experiments have demonstrated that the proposed algorithms have accomplished the 

requirements of the design effectively and feasibly with fast processing time.  
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Chapter 9 
Conclusions and Directions for Future Work 

 

  

9.1 Conclusions 

 robust control technique is proposed to address the problem of trajectory tracking 

of an unmanned ground vehicle. This technique utilizes fractional-order 

proportional integral derivative controllers to control the motion of the UGV to 

track the behaviour of predefined reference trajectories. The trajectories are divided into two 

different categories i.e. continuous and non-continuous gradient trajectories. The heading 

control of the UGV has been accomplished based on controlling the movement of the left and 

right wheels using the proposed FOPID controllers. The implemented model of the non-

holonomic unmanned ground vehicle takes into consideration both kinematic and dynamic and 

actuation characteristics. Each FOPID controller composes of five parameters i.e. proportional, 

integral, derivative and the fractional order of both integral and derivative. The values of the 

parameters are vital for obtaining an optimal response of a system. Therefore, a PSO algorithm 

is used to tune and optimize the parameters of the FOPID controller. The criterion of obtained 

the optimal parameters is based on minimizing the cost function used in the PSO algorithm. 

The effectiveness of the proposed FOPID controllers has been verified through different 

trajectories as given in Chapter 4 using MATLAB–Simulink software package.  

       In addition, the stability of the fractional-order system has been investigated to prove that 

the proposed controllers are stable at the operating conditions.  Moreover, the robustness of the 

entire system is examined by applying different sources of disturbances. The obtained results 

of FOPID controller demonstrate the advantage of the proposed FOPID controllers in terms of 

minimising trajectory tracking error and the completing of the path following. The performance 

of the constructed model has shown a robustness for changes due to the applied disturbances 

even it applies permanently. In order to validate the preference of the proposed FOPID, many 

comparisons have been conducted to compare the proposed FOPID model with a conventional 

PID controller. The simulation results have feasibly demonstrated that the proposed FOPID 

has improved the operation performance by minimising the trajectory tracking error and 

reducing control efforts.  

A 
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       Although the fractional order PID controller for a trajectory tracking of an UGV has been 

successfully designed, the design has not been significantly capable of minimising the tracking 

error in a non-continuous gradient trajectory in particular. Hence, another controller is 

proposed based on artificial neural networks.  This controller is implemented based on 

Fractional Order Proportional Integral Derivative controller designed earlier to track a non-

continuous gradient trajectory. The driven inputs of the UGV are the right and left motor 

voltage. The outputs represent the steering orientation and the actual velocity of the UGV. 

Therefore, two artificial neural network controllers are designed to control the inputs of the 

UGV. In order to train the two neural controllers, Levenberg-Marquardt algorithm is used for 

obtaining the parameters of the NN.  

       The newly developed NN has been compared with the FOPID controller to demonstrate 

the effectiveness of the introduced approach. The obtained results of the artificial intelligent 

neural technique reveal a significant improvement in term of minimizing trajectory-tracking 

error and improving control actions over the proposed FOPID controller. Accordingly, the 

combination of NN and FOPID has been improved a better efficiency and performance with 

respect to the standalone FOPID and the traditional PID controllers. Moreover, the combination 

NN-FOPID has been demonstrated as fast learning capability to track the given trajectories. It 

is observable that the smoothness and faster convergence performance of the tracking error for 

vehicle velocity and orientation angle have been satisfied.  

       The motion control of the UGV is essential in the industry of automation. Particularly in 

dynamic environment, it is required to have a control methodology that is efficiently capable 

to drive the UGV without collision with surrounding objects. In this thesis, we have proposed 

fuzzy inference systems to achieve the navigation in different cluttered dynamic environments. 

The structure of the fuzzy inference systems is based on two controllers. The first controller 

uses three sensors based on the distances from the front, the right and the left. The second 

controller employs the angle difference between the heading of the vehicle and the targeted 

angle to choose an optimal route based on dynamic environments and reach a desired 

destination with minimum running power and time. The first controller is used for the target 

reaching and is called abbreviated to TR-FIS controller and the second controller is utilised for 

the obstacle avoidance and is abbreviated to OA-FIS controller. The TR-FIS controller is 

proposed to ensure that the UGV reaches its target destination by keeping its heading direction 

towards the targeted destination when there is no obstacle approaching the UGV. The input of 

this controller is the angle difference (AD).  
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      The OA-FIS controller is responsible for changing the angular velocity of the driving 

wheels to provide an obstacle manoeuvring when any obstacle approaches the UGV’s platform. 

The inputs of this controller are the sensory information that have been gathered from the 

UGV’s sensors. The ultrasonic sensors are attached to the UGV to calculate e the distance of 

any obstacle that approaches the UGV from the front, right and left. The control and navigation 

architectures have been demonstrated in four different scenarios. In the first scenario, six 

moving obstacles are used; they all have similar sizes and velocities. In the second scenario, 

the six obstacles are assumed to have similar sizes, but they move at dissimilar velocities. In 

the third scenario, the obstacles are constructed to have different sizes but they all have similar 

velocities. In the four scenario, one static and five dynamic obstacles are placed in the same 

workspace to demonstrate the adaptation and performance of the UGV in a more realistic 

scenario.  

       In all scenarios, the designed target reaching and obstacle avoidance controllers have 

proved their capability of avoiding obstacles and guiding the UGV towards its final destination 

successfully. Therefore, the fuzzy inference systems proved to be a satisfactory control 

methodology for UGV to avoid static and moving obstacles in busy and dynamic environments. 

It has offered an intelligent behaviour in facing the uncertainty issues that are presented by 

such dynamic environments. The simulation results have been carried out in four different 

scenarios to investigate the validation and effectiveness of the introduced controllers of the 

fuzzy inference system. The reported simulation results are conducted using MATLAB 

software package. The results demonstrate that the fuzzy inference systems consistently 

perform the manoeuvring task and route planning efficiently even in complex environments 

with populated static and dynamic obstacles. Our methodology has been compared to a state 

of the art, where similar approach was used. The comparison results have approved that the 

developed FIS has been successfully improved the navigation performance of the UGV in 

terms of generating an optimal path and minimising the elapsed time. 

      Furthermore, we have made efforts to design a new adaptive neuro-fuzzy inference system 

for navigation and obstacle avoidance. It has been inspired based on the FIS to demonstrate a 

new approach that combines the learning capability and fast convergence for an obstacle 

avoidance and a target reaching. The adaptive neuro-fuzzy inference system consists of four 

standalone ANFIS controllers, two of which are used for regulating both the left and right 

angular velocities of the UGV in order to reach the target position, and other two ANFIS 

controllers are used for optimal heading adjustment in order to avoid obstacles. The two 

velocity controllers receive three sensor inputs: front distance, right distance and left distance 
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for the low-level motion control. Two heading controllers deploy the angle difference between 

the heading of UGV and the angle to the target to choose the optimal direction.  

       The simulation experiments have been carried out into two case studies to investigate the 

feasibility of the proposed ANFIS technique. In the first case study, seven identical static 

obstacles are placed randomly within the workspace. In the second case, eleven obstacles are 

positioned, but different sizes and shapes are used. In case of reducing obstacle numbers 

significantly, the obstacle avoidance ANFIS controller does not activate until the vehicle 

confronts an obstacle. Therefore, the target reaching ANFIS controller is activated most of the 

time. This case will be similar to the situation when a path is free of obstacles. Thus, the UGV 

will traverse through the shortest straight line that connects between both start and target points. 

In contrast, in multiple obstacles simulation, the obstacle avoidance ANFIS controller is 

activated more frequently in order to avoid obstacles. After completing each avoidance, the 

UGV switches to the target reaching ANFIS controller. In both considered case studies, the 

UGV is masterful of avoiding obstacles safely and reaching the target with a feasible and 

smooth online-generated path between the initial and the target points. The simulation results 

have been presented using MATLAB software package, showing that ANFIS can perform the 

navigation and path-planning task safely and efficiently in a workspace populated with 

unknown obstacles. In addition, our ANFIS model based navigation is compared with a recent 

ANFIS model conducted in the state of the art. It has been clearly found that our ANFIS model 

has performed much better feasible and optimal path. Therefore, the elapsed time has been 

reduced notably.  

       The architecture of the UGV is practically assembled validate the proposed algorithms 

based on real time experiments. The assembly involves three main categories of sensor 

technology. First, three ultrasonic sensors are used in three directions i.e. left, front and right 

to sense surrounding obstacles approaching the UGV’s platform. In addition, the magnetic 

compass module sensor is utilised to determine the orientation of the UGV whilst navigation 

towards its destination. Moreover, a quadratic encoder sensor is applied to the shaft of motors 

to measure the travelled distance, hence, the localisation of the UGV can be calculated 

accordingly. The experimental results are conducted based on three different case studies. They 

all have demonstrated an effective response in terms of obstacle avoidance and target reaching. 
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9.2 Directions for Future Work 

       Overall, in this thesis, the research objectives are successfully met. The thesis has extended 

the theory of solved the trajectory tracking and navigation by formalising and solving 

reconstruction problems and presenting new proposed techniques for industrial automation. 

The formalisation of the reconstruction case applications and workplace scenarios have been 

validated through the development of the proposed techniques. A number of novel results as 

well as problems associated with the developed formalisation have been discovered. 

Consequently, it has been noticed that some results can be improved further based on either 

proposed new algorithms or developing the existing algorithms. In addition, some limitations 

are identified in our work. The non-continuous gradient trajectories still need further research 

to design a controller methodology that reduces the tracking error to zero. It is also observable 

that a sharp response occurs at turnings whilst navigation. Nevertheless, a smoother switching 

mechanism is still needed to provide a feasible and smooth response for driving the movement 

of the UGV. This reveals that it is possible to extend the work for investigation new constructed 

problems and developing algorithms that are more efficient. Hence, several possible directions 

for future research can be proposed. They include extending formalisation of event 

reconstruction, developing more efficient event reconstruction algorithm, investigating new 

ways of constructing system models, and developing practical applications of the results of this 

work. Whilst this thesis has demonstrated the motion control of the UGV safely and efficiently. 

Notwithstanding, many opportunities and much research for extending the scope and topics 

can be considered and addressed for future directions as follows: 

1- For trajectory tracking, signifcant improvements have been made to reduce the tracking 

error and enhance the performance of the system based on the proposed control 

methodologies. Nonetheless, it is still a noticeable tracking error in a variety of 

trajectories. Therefore, new control architectures can be proposed to diminish the 

tracking error to the zero level.  

2- Some parameters of the proposed controllers are optimised based particle swarm 

optimisation and Levengberg-Marquardt algorithms. Thus, different optimising 

algorithms can be proposed such as ant colony optimisation and simulated annealing 

algorithms.  They might provide better results. 

3- The fitness functions of the PSO and LM algorithms are implemented based on the 

integral square error and mean square error criteria, respectively. However, the fitness 

functions can be constructed based on different criteria such as the integral of time 
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multiplied by absolute error criterion and integral of the absolute magnitude of the error 

criterion.  

4- For navigation and obstacle avoidance, construct three-dimensional environments are 

important case study to be investigated. This can be fulfilled by considering 3D 

structure and the height of objects and UGV in a navigation task. Less height objects 

can represent the motion of children in highly dynamic environments. Hence, they 

should have been given special arrangements and priority to be avoided. 

5- The switching mechanism demonstrates a sharp and a rapid response at some occasions. 

Hence, it requires a developed switching mechanism that provides a smoother response. 

6- To avoid the complexity and the delay in a computational time of fuzzy inference 

systems, it has been used a small number of inference rules. As a result, the velocity of 

the wheels shows acute responses at turning points. Therefore, more probabilities can 

be studied and then the system can be optimised to obtain an utmost response and 

performance. 

7- The navigation is conducted using FIS and ANFIS controllers. Therefore, different 

techniques and optimisation algorithms can be combined and proposed to optimise the 

followed path and the elapsed time further.  

8- Multiple waypoints can be set up between the initial and the target points. This makes 

the UGV navigate through multiple destinations at certain times. 

9- The trajectory tracking and navigation have been addressed individually in this work. 

Therefore, both problems can be integrated together to track a particular trajectory and 

avoid obstacles instantaneously if any is existed. 

10- Vision sensors can be embedded in the designed architecture to aid navigation 

processes. 

11- Design a multi-agent architecture for navigation of several unmanned ground vehicles 

to navigate and operate in complex scenarios. 
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Appendix: Calculation of moment of inertia 
 

 

 

 

 

 

 

 

 

 

 

 

 

The axis of rotation passes through the centre of gravity. 
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Parameter m 𝐴, 𝐵, 𝐶 r 𝐼𝑐 

Description Mass Dimensions Radius Moment of inertia 

Vehicle’s body Value 5 6,25,20 - 0.0427 

Wheel Value 0.20 - 6 0.00036 

Unit kg cm cm kgm2 

 

r=6 cm 

A=6 cm  

 

B=25 cm 

 

C=20 cm 

A= 6 cm 

B=25 cm 

C=20 cm 

r=6 cm 
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