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Abstract

Quantification of flood risk and flood inundation requires accurate numerical simu-
lations, both in terms of the mathematical theory that underpins the methods used
and the manner in which the meteorological phenomena that cause flooding are cou-
pled to such systems. Through our research, we have demonstrated how rainfall and
infiltration e↵ects can be incorporated into existing flood models in a rigorous and
mathematically consistent manner; this approach departs from preceding methods,
which neglect terms representing such phenomena in the conservation or balancing
of momentum. We demonstrate how the omission of these terms means the solution
derived from such models cannot a priori be assumed to be the correct one, which is
in contrast to solutions from the extended system we have developed which respect
the energetic consistency of the problem.

The second issue we address is determining how we can model these meteorological
phenomena that lead to flooding, with a specific interest in how existing observation
data from rain gauges can be incorporated into our modelling approach. To capture
the random nature of the precipitation, we use stochastic processes to model the
complex meteorological interactions, and demonstrate how an accurate representa-
tion of the precipitation can be built. Given the specific industrial applications we
have mind in regards to flood modelling and prediction, there will be a high com-
putational cost associated with any such simulations, and so we consider techniques
which can be used to reduce the computational cost whilst maintaining the accuracy
of our solutions. Having such an accurate flood model, coupled with a stochastic
weather model designed for e�cient computational modelling, will enable us to make
useful predictions on how future climate change and weather patterns will impact
flood risk and flood damage.
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Chapter 1

Introduction

A review by the World Resource Institute (WRI) in 2014 ranked 163 countries by
the average size of their population a↵ected annually by river flooding [Luo et al.,
2015]. The United Kingdom was ranked 61st, with an average of 24,670 people
a↵ected each year; this was far below the United States, ranked 18th with 167,210
people, and 1st placed India, with 4.8 million people.
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Figure 1.1: Top 5 ranked countries by population a↵ected by river flooding,
together with the US and UK.
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With the UK ranked so comparatively low on the global flood risk scale (both by
raw figures and % of population, as shown in Figure 1.1), we might ask why it is
worth considering questions regarding flood risk, flood defences, and flood modelling
in the UK. The answer to this question can be addressed as follows:

- the WRI ranking was based on an assumed 100-year flood protection level
across the entire UK

- climate change projections suggest extreme flood events will become more
common, and thus the return period a↵orded by the protection will decrease

- spending on flood defences has not increased consistently year-on-year and is
not determined on a long-term basis

Therefore, while the UK might be comparatively well-placed on the global flood risk
scale now, with climate change leading to more and more extreme flood events there
is significant uncertainty on whether it can consistently maintain the level of defence
required.

1.1 Flood risk in the UK

The average annual cost of flooding in the UK is around £1.1bn, but the flood
risk landscape in the UK has undergone a large shift in recent years: in the sum-
mer of 2007, flooding caused £3.2bn of damage, and winter flooding in 2013-14
and 2015-16 caused £1-£1.5bn and £5-£5.8bn of damage, respectively. Figures
from Priestley and Rutherford [2017] suggest that approximately 1-in-6 properties
in England (around 5.4m) are considered at risk from river, sea, or surface water
flooding:1

- 2.4 million properties are at risk of flooding from rivers or the sea

- 3 million properties are susceptible to surface water flooding

- 0.6 million properties are at risk of river, sea, and surface flooding

2.4m 0.6m 3m

ri
ve
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or
se

a f
loo

ding
surface water flooding

Figure 1.2: Venn diagram of the number of UK properties at risk from flooding.

1
The WRI figures quoted above represent the number of people in the UK a↵ected on average

each year by river flooding, while the 1-in-6 figure quoted here represents the number of properties

at risk ; of those properties at risk of flooding, only some will be a↵ected in any one year.
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However, these figures are not predicted to remain unchanged. Projections suggest
that in 2035 around 1-in-2 properties could be at risk of flooding, with annual flood
damage costs potentially rising to as much as £27bn by 2080 [Bennett and Hartwell-
Naguib, 2014].

1.2 Flood defence expenditure

As high intensity flood events can result in widespread damage, both in terms of
loss of life and destruction to property, significant amounts of government spending
is allocated to try and reduce their impact.

As shown below in Figure 1.3, spending on flood defences increased annually from
2007-08 to 2010-11, before falling in real terms by 15.68% for the 2011-12 period.
Real terms spending remained reasonably flat for the next two years before increasing
sharply in 2014-15 following the 2013-14 winter flooding. Spending for the 2016-17
period is around the levels seen in 2010-11, but remains 9.77% below the peak value
[Priestley and Rutherford, 2017].
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Figure 1.3: UK flood defence expenditure from 2000 - 2017 (given according to
2016-17 prices).

Whether this level of spending is adequate, and in particular whether the year on
year increase is su�cient to simply maintain current defences, remains a contentious
issue. The government has defended their flood defence policy and total flood de-
fence expenditure did increase for the five year period under the 2010 Coalition
government compared to the previous five years; it is worth noting, however, that
expenditure was originally set to decrease and the increase was only due to additional
funding provided following the 2013-14 winter floods.
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1.3 The impact of climate change

In 2017, the UK government published the Climate Change Risk Assessment report
in which they looked at the predictions of global temperature increases due to climate
change and how it would impact the country [Sayers et al., 2015, CCRA, 2017].
Since 1880, global temperatures have increased by 0.85�C (which is consistent with
observed temperature increases in the UK) and 14 of the 16 warmest years on record
have occurred since the turn of the century. Attempts to curb this temperature
increase were put forward in the Paris Climate Agreement, which endeavours to
limit the increase to 2�C; predictions suggest, however, that without changes being
made current policies will lead to at least a 2.7�C rise.

For the UK, the greatest climate change related threats will come from increases
in flood risk; as the temperature increases, the atmosphere becomes warmer and it
is able to hold more moisture, leading to heavier rainfall (see Table 1.1) and more
frequent flooding.

Table 1.1: Increase in intense short-duration (less than 6hrs) rainfall under the
three climate change scenarios [Sayers et al., 2015, p. 40].

Climate change scenario Temp. increase 2020s 2050s 2080s

L 2�C 0 10% 20%
M 4�C 10% 20% 50%
H > 4�C 17% 35% 70%

These increases in rainfall will also have an impact on the number of properties at
risk of flooding; under the predicted scenarios:

- a 2�C increase will see the number of properties at significant chance of flooding
rise from 860k to 1.2m by the 2080s

- a 4�C increase will see the number of properties at significant chance of flooding
rise to 1.7m by the 2080s

Under a 4�C rise, there is a limit to the amount of flood risk that can be avoided
through investment in flood defences, and there would also be irreversible damage
done to the natural environment.

1.4 Addressing the problem

The issue and debate around the level government funding for flood defences is one
that will always exist, and there is little that can be done to quell that. Instead,
we will consider ways in which the actual modelling of flood inundation can be
improved; even if real terms investment in flood defences does not change, being
able to more accurately model flooding will mean an improvement in our ability to
predict flood extents.
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The standard approach to modelling water-body flow and flood inundation is through
the shallow water equations, which model the height and momentum as conserved
variables over time. However, if we want our flood model to be accurate, we need to
ensure we also account for the various phenomena that influence or result in flood-
ing. The primary drivers of flood inundation are precipitation (through either rain
falling directly onto the water-body or runo↵ from the surrounding catchment) and
infiltration (with water lost from the system when the soil is unsaturated or added
to the system as recharge when the soil is saturated). There are a number of other
water sources and sinks, some of which we have highlighted in Figure 1.4, that can
also be considered.

watercourse

precipitation

infiltration

evaporation

drainage

vegetation

springs

Figure 1.4: Our focus will be on the precipitation and infiltration processes, but
there are a number of other sources and sinks that impact upon the hydrology of a

watercourse.

It is not enough, however, to simply include these terms as either sources (when
water is added) or sinks (when water is lost) in our shallow water system; we also
need to ensure that their inclusion and the derivation of the extended flood model
is consistent and mathematically rigorous. Since the shallow water equations are
derived by applying a vertical averaging approach to the Navier-Stokes equations
(under certain assumptions), it makes sense to use this as our starting point and
include the precipitation and infiltration terms as boundary conditions in Navier-
Stokes; this ensures we account for the e↵ect the additional terms will have on the
derivation.

As our desire is to apply the flood model we develop to real-world problems, we would
like to go beyond modelling the flood inundation with just some assumed precipi-
tation term. While we could model the phenomena using an ordinary deterministic
equation, such an approach cannot accurately capture the random behaviour that
the rainfall exhibits; therefore, if we want to ensure accuracy of our solutions, we
will have to instead approach the problem from a stochastic viewpoint. There are a
number of di↵erent methods that we can use to define the stochastic equation, and
so we will have to consider and compare how well each approach reflects reality.
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In addition to the stochastic behaviour, the precipitation rate at any given location
is influenced by a number of meteorological phenomena that we would like to reflect,
including the path and intensity of rain-bearing low pressure systems, variability in
the jet stream, and the probability of particular weather patterns emerging. The im-
pact of these e↵ects will be available through observation data collected by weather
stations or gauges, and so we will need to consider how we can include real-world
data in our stochastic precipitation term; we may also need to consider what to do
when such data is unavailable.
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Figure 1.5: Total monthly precipitation for an example rain gauge.

The final consideration we will give is to how we simulate the flood modelling system
that we have derived. Standard approaches of running multiple simulations and
then combining the statistics of these outputs in some way will be possible but
computationally (and thus monetarily) expensive; since our desire is to maximise
the accuracy we can achieve for the same cost, techniques to speed up or improve the
simulations will be required. We will have to take some care, however, to ensure that
these techniques can be applied to our coupled system, in which the precipitation
acts as a random forcing term on our shallow water model.

1.5 Summary

The motivation for this research can be summarised by the following question: how
can we better model flood inundation caused by precipitation?

Our approach will be to model the problem using the shallow water equations with
a stochastically perturbed source term designed to reflect precipitation statistics
from observation data and knowledge of weather patterns. We will also consider
techniques for speeding up numerical simulation of the model, to enable the max-
imum accuracy to be achieved for a given cost. This research can be applied to
give a greater and more accurate understanding of the risk of flooding subject to
knowledge of weather patterns and statistics.
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Chapter 2

Literature review

The research, results, observations, and discussions that we will present below on
flood modelling and stochastic precipitation do not exist in isolation and will build
upon a breadth of existing literature and prior research. The topics that we will
cover can be broadly divided into the following areas:

- shallow water equations

- numerical modelling of conservation laws

- kinetic scheme for the shallow water equations

- stochastic modelling of precipitation

- Monte Carlo methods

We will present here an overview of this existing literature and research, which
we will make references to whilst developing our flood modelling and stochastic
precipitation approach.

2.1 Shallow water equations

The shallow water equations are a system of hyperbolic conservation laws that model
the flow of water in a river, ocean, or channel. The classical one-dimensional shallow
water equations were developed by Adhémar Jean Claude Barré de Saint-Venant
in the 19th Century as a reduction of the Navier-Stokes equations under certain
assumptions on the horizontal and vertical scales [de Saint-Venant, 1871]. For the
specific problem of modelling flood inundation caused by precipitation, the inclusion
of such e↵ects in the shallow water equations turns it from a conservation law into a
balance. Existing approaches such as Sochala [2008] and Delestre et al. [2012] model
this system as

@th+ @xq = S

@tq + @x



q2

h
+

g h2

2

�

= � g h@xZ � k0(q/h),
(2.1.0.1)

where the unknowns h(x, t) and q(x, t) = hu model, respectively, the height and
momentum of the water column at a space-time point (x, t), whilst u(x, t) models
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the water velocity. For the remaining terms, S is the source term defined as the
net di↵erence between water entering the flow (such as through rainfall) and water
exiting the flow (such as through infiltration), g is the gravitational acceleration
(considered a constant ⇡ 9.81m/s2), Z(x) the topography of the channel bed with
slope @xZ(x), and k0(·) an empirical fluid-wall friction. The first equation in (2.1.0.1)
models the conservation of mass (in this case represented by the water height) whilst
the second models the conservation of momentum. These equations can be extended
to include additional terms representing the Coriolis force [Abarbanel et al., 2003]
or viscosity ⌫ [Ersoy, 2013].

This adaptation make sense from a physical perspective - the addition or loss of water
from the flow will cause a corresponding change to the mass (height) of the water -
but it does not entirely respect the derivation of the shallow water equations from
Navier-Stokes. The research that we present below will look to solve this problem
by going back to the original Navier-Stokes equations and adjusting the boundary
conditions to account for the additional terms. In doing so, we will demonstrate
how a new, extended shallow water model can be derived; this derivation from first
principles has not, to our knowledge, been considered thus far in the literature.

The form we considered above presented the shallow water system in one spatial
dimension, but these equations can also be considered in two-dimensions [Delis and
Katsaounis, 2005, LeVeque et al., 2011, Delestre et al., 2014], extending the system
above to include an additional equation for the conservation of momentum hv in the
new spatial dimension y, as well as additional flux terms in the existing equations.
For the application of two-dimensional pipe flow considered in Ersoy [2013], for
example, the two-dimensional system can be modelled by the one-dimensional free
surface model

@tA+ @xQ = 0

@tQ+ @x



Q2

A
+ g I1(x,A) cos ✓

�

= � gA sin ✓ + g I2(x,A) cos ✓
(2.1.0.2)

where A is the wet area, Q the discharge, I1 the hydrostatic pressure, I2 the pressure
source term, and sin ✓ the slope variation.

In the work we present below, we will consider the shallow water equations in
one-dimension only; for the modelling applications we wish to consider (in which
we assume there is no or negligible variation in the y spatial dimension) the one-
dimensional system will be su�cient and indeed the reduction from two-dimensions
will reduce the computational complexity required for our numerical modelling.
These techniques and extensions, however, can be readily applied to the two-dimensional
shallow water system by instead starting from the three-dimensional Navier-Stokes
system for variables (h, hu, hv) or the three-dimensional Euler equations for the
variables (A,Q); this derivation will be considered for future research.

2.2 Numerical modelling

In modelling mathematical systems, it is important that we have a numerical method
which is stable and will give us a reasonably accurate solution. This is particularly

13
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true in modelling conservation laws such as flood inundation: the outputs from such
numerical simulations may be used as the basis for policy decisions or predictions
on future events. Unlike other classes of equations, conservation laws have their
own specific di�culties (such as the formation of shocks) that require careful atten-
tion when developing a numerical method. A number of approaches have therefore
been derived that attempt to overcome these particular problems, including the in-
troduction of numerical viscosity, shock tracking, and entropy conditions [LeVeque,
1992].

Perhaps the simplest approach to model shallow water is the finite di↵erence method,
whereby the solution at time-step n + 1 is calculated as a combination of solutions
at the current time n.

j, nj � 1, n j + 1, n

j, n+ 1

Figure 2.1: Stencil for an explicit finite di↵erence method.

The finite di↵erence method was applied to the problem of two-dimensional shallow
water in de Almeida et al. [2012], giving the following explicit numerical scheme:

yn+1
i = yni +

�t

�x

⇣

qn+1
i�1/2 � qn+1

i+1/2

⌘

qn+1
i�1/2 =

qni�1/2 � g hf
�t
�x

�

yni � yni�1

�

1 + g�tn2

�

�

�

qni�1/2

�

�

�

/h
7/3
f

(2.2.0.1)

where y = h+Z. This scheme was intended to overcome certain problems that occur
when modelling water flow on high-resolution topography and to address certain
stability problems that can occur in low friction areas.

Another approach which is more accurate than the finite di↵erence method but
harder to implement computationally is the finite volume method [Kröner, 1997,
LeVeque, 1992, 2002, Toro, 2009]. The finite volume method evaluates divergence
terms in the di↵erential equation as fluxes across boundaries between grid cells: as
the flux into one cell will be equal to the flux leaving the adjacent cell, the method
is conservative and so well suited to modelling conservation laws.

A finite volume scheme for the one-dimensional shallow water system (2.1.0.1) was
presented in Delestre et al. [2008], given by

Un+1
i = Un

i � �t

�xi

�

F n
i+1/2,L � F n

i�1/2,R � Fcni
�

(2.2.0.2)

14



Chapter 2 : Literature review P. Townsend

xixi�1 xi+1xi�1/2 xi+1/2xi�3/2 xi+3/2

Figure 2.2: Finite volume mesh of the spatial domain with uniform cell size �x.

where F n
i+1/2,L and F n

i�1/2,R are the left and right numerical fluxes, respectively, and
Fcni a cell-centred source term. This scheme was applied to a number of numerical
tests and showed good consistency against both analytical and experimental data.
For the two-dimensional shallow water, Singh et al. [2015] presented a method for
simulating overland flows generated by rainfall from storm events, and which in-
cluded infiltration simulated using the Green-Ampt equation. This method was
applied to simulate historical storm events, and showed good capability in recreat-
ing the hydrological processes associated with rainfall-generated overland flows.

Due to its applicability to modelling conservation laws, we will use a finite volume
scheme to model our extended shallow water system, similar to the model considered
by Delestre et al. [2008]. However, since our shallow water system goes beyond
the model considered therein, there will be added complications in ensuring the
additional terms are appropriately included in the model; we will develop upon this
approach, therefore, and calculate the numerical fluxes using a kinetic scheme, an
overview of which is provided in §2.3.

2.3 Kinetic schemes

One of the challenges of modelling with finite volume methods is determining how
to define the numerical fluxes between cells. A drawback of the approaches we pre-
sented in §2.2 which compute the flux between cells through approximate Riemann
solvers (e.g. Roe, Godunov, HLL) is that they do not provide all the properties we
would want our scheme to have. In modelling water and river flows, we would like
our system to preserve equilibrium states, usually referred to as the lake at rest,
which are given by

h+ Z = constant and u = 0. (2.3.0.1)

If we wish to maintain this property, we cannot rely on the usual finite di↵erence or
finite volume methods, and thus a new (so called well-balanced) approach is required.
One such technique that has been developed uses ideas from kinetic theory, the basis
of which comes from the description of a gas as a large number of particles (e.g.
atoms or molecules) that are in constant rapid (and random) motion as a result of
collisions between the particles that make up the gas.

This idea was originally developed by Daniel Bernoulli in the 18th Century [Bernoulli,
1738], though it wasn’t until the start of the 20th Century (before which atoms
were still considered theoretical) when work by Einstein and Smoluchowski solidified
the idea [Einstein, 1905, von Smoluchowski, 1906]. Within the kinetic framework,
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certain macroscopic properties (such as pressure or temperature) are explained or
defined by considering the molecular composition and motion of the substance; tem-
perature, for example, is defined as proportional to the average kinetic energy of the
atoms that make up the substance.

Though the kinetic framework outlined above is concerned with describing gas par-
ticle motion, we will make use below of the ideas developed therein for our problem
(that is, the motion of water in a channel). Such an approach for the shallow water
equations can be found by going back to the first proof of the existence of weak
solutions after shocks for hyperbolic systems, which was achieved by a kinetic in-
terpretation of the system, as detailed in Audusse et al. [2000] and Perthame and
Simeoni [2001], and further developed by Bourdarias et al. [2014] and Ersoy [2015].
Properties of the kinetic scheme for the shallow water equations (though without
rainfall and precipitation terms) are presented in Xu [2002].

The method we use for the derivation of our kinetic scheme will follow much the
same approach, though with the added complication of accounting for the additional
terms. We will show in our approach that the derivation of the kinetic scheme for the
shallow water equations can be extended to include the additional source terms S
and Su in the mass and momentum equations, respectively, and that the additional
friction terms can be appropriately packed with the existing friction and topography
terms as already considered in the literature.

Z(x)
h(x, t)

0 L

Figure 2.3: Kinetic solvers are well suited to dealing with cases when the water
height h(x, t) = 0, such as water flowing away from a beach front.

One of the direct benefits of using such a approach for the shallow water system
is the ability of the kinetic solver to deal with dry soil cases (that is, when h = 0)
[Audusse et al., 2000], which will be of importance in ensuring our model continues
to function if infiltration causes the water level to fall close to zero, or if we consider
cases such as water flowing away from a beach front as depicted in Figure 2.3.

2.4 Stochastic modelling of precipitation

In modelling physical systems mathematically, the most general approach is to model
the system as the time derivative of a variable X(t) which is equal to some given
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function a(X, t):
dX

dt
= a(X, t), X(t0) = X0. (2.4.0.1)

The problem with this formulation is that, for certain systems, the physical reality
exhibits random behaviour or interactions that are too complex to be represented by
a single deterministic function a; this discovery was made concurrently by Einstein
[1905] and von Smoluchowski [1906], developing previous work by Robert Brown.

If we want our representation to be accurate, we need some way to model this. The
solution comes through stochastic di↵erential equations, whereby the right-hand side
of our ordinary di↵erential equation (the drift term a) is perturbed by a random
forcing (or di↵usion) term:

(

dX(t) = a(X(t), t)dt+ b(X(t), t)dWt

X(t0) = X0,
(2.4.0.2)

where b(X(t), t) is the intensity and W (t) a Wiener process. In integral form this
equation becomes

X(t,!) = X(t0,!) +

Z t

t0

a (X(s,!), s) ds+

Z t

t0

b (X(s,!), s) , dWs(!) (2.4.0.3)

for a given sample path !. The problem, however, is that the second integral does
not exist as an ordinary integral, and thus we require a new stochastic calculus to
make sense of the integral; the two most common approaches are Itô calculus and
Stratonovich calculus, though it is possible to convert from one approach to the
other [Brzezniak and Zastawniak, 1999, Øksendal, 2003, Klebaner, 2012].

For certain choices of a(X, t) and b(X, t) it is possible to solve the stochastic di↵eren-
tial equation explicitly, but in general this is not possible. The most basic approach
to solving the equation numerically is the Euler-Maruyama method [Kloeden and
Platen, 1999]: we partition our time domain [t0, T ] into a sequence of discretisation
points

t0 = ⌧0 < ⌧1 < · · · < ⌧N = T (2.4.0.4)

given by
⌧n = ⌧n�1 +�⌧n for n = 1, . . . , N (2.4.0.5)

and approximate the stochastic process X(⌧n) by Yn and the integrals as
Z ⌧

n+1

⌧
n

a(X(t), t)dt ⇡ a(Yn, ⌧n) (⌧n+1 � ⌧n) = a(Yn, ⌧n)�⌧n+1

Z ⌧
n+1

⌧
n

b(X(t), t)dWt ⇡ b(Yn, ⌧n)(W⌧
n+1 �W⌧

n

),
(2.4.0.6)

giving us the Euler-Maruyama approximation
(

Yn+1 = Yn + a(Yn, ⌧n)�⌧n+1 + b(Yn, ⌧n)(W⌧
n+1 �W⌧

n

)

Y0 = X0.
(2.4.0.7)

Higher-order methods such as the Milstein method or Runge-Kutta method for
stochastic di↵erential equations can also be used.
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In modelling stochastic precipitation, a useful technique for creating such data are
weather generators, which model the precipitation using a cluster of stochastic pro-
cesses. A review of the underlying background and research into weather generators
was provided in Onof et al. [2000], focusing on the two main cluster models, the
Bartlett-Lewis and Neyman-Scott models, and recent developments in the field. Of
particular interest for our research and its applicability in modelling rainfall in a
variety of locations is the regionalisation of the parameters that drive the weather
generator models. Such a regionalisation was considered in Cowpertwait et al. [2013],
in which a superposition of two Neyman-Scott models fitting to daily temperature
data was used to model spatiotemporal rainfall in the Basque Country, Spain, while
Srikanthan and McMahon [2001] demonstrated how transition probability matrices
could be used for the parameters to account for whether the rainfall was occurring
in a wet or a dry period.

time

intensity

storm start storm end

Figure 2.4: Aggregated rain function for an example storm at a given location.

Our aim in this thesis will be to combine these two approaches together: we will
use a weather generator to determine the location and timing of the precipitation,
thereby capturing the physical occurrence and patterning of rainfall more accurately,
and then model the intensity using a stochastic equation with a drift term derived
from observation data and a di↵usion term with appropriate noise process.

2.5 Monte Carlo methods

As we are looking to model the precipitation as a stochastic process, each simulation
we run of the system will generate a di↵erent sample path ! and thus lead to a
di↵erent end solution. Though the solution from a single simulation may tell us
something, it cannot tell us what the entire distribution of solutions may look like.
The obvious solution is to run multiple simulations, generating a distribution of
possible solutions, and then calculate statistical values from this.

The most common method to generating such a distribution of solutions is the Monte
Carlo methods, a class of algorithms used extensively in numerical simulations when
one wishes to repeatedly sample from a given distribution. As we sample from the
distribution more and more, the statistics for these samples will tend to the statistics
of the true solution. An early variant of the Monte Carlo method was Bu↵on’s needle
experiment, a method proposed by Georges-Louis Leclerc, Comte de Bu↵on, which
can be used to estimate the value of ⇡, while what we would view as the modern
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Monte Carlo method was first introduced and used by researchers at Los Alamos
National Laboratory in the 1940s [Liu, 2004].

Though the Monte Carlo methods are very simple to run and implement, a major
drawback of the methods is that they are very computationally expensive. If we wish
to achieve O (") accuracy for our solution, we require the number of samples of the
discretisation N = O("�2) and the time step �t = O("); thus the computational
cost can be calculated as

cost =
MT

�t
=

O("�2)

O (")
= O

�

"�3
�

. (2.5.0.1)

This means that if we want to achieve a 10x increase in accuracy, the computational
cost will increase by 1000. This increase in computational complexity will become
highly restrictive if we desire a high level of accuracy, and thus it is desirable to
consider how this can be improved upon.

Several methods have been proposed as an improvement on the standard approach.
Quasi Monte Carlo [Niederreiter, 1992] attempts to address the problem of a high
computational cost by changing the manner in which the random numbers are gen-
erated, ensuring a more equal distribution of points over the domain. The benefit
of Quasi Monte Carlo over the standard method is that the rate of convergence is
increased to O (N�1) from O (N�0.5) and hence we have a lower computational cost.
Quasi Monte Carlo has been applied to a number of problems, including finance
[Giles et al., 2008] and elliptic PDEs [Graham et al., 2011, 2013].

Another approach which attempts to address the problem of high computational
cost is Multilevel Monte Carlo, which was introduced in Giles [2006], building on a
similar two-level approach that had previously been considered by Kebaier [2005].
Unlike Quasi Monte Carlo, which adjusts the random inputs for the simulations
in a particular way, Multilevel Monte Carlo exploits our ability to run simulations
at di↵erent grid levels. On the coarser grids, simulations are run a large number
of times while on the finer grids only a small number of simulations are run. The
resulting combined estimator then has a lower computational cost for the standard
Monte Carlo method.

Research into Multilevel Monte Carlo and its application to particular problems
is wide-ranging; an extensive list of researchers, project groups, and papers can
be found at [MLMC research]. For the specific application of modelling shallow
water flows with random source terms, a multilevel approach was considered in
Mishra et al. [2012] for a two-dimensional shallow water system to improve upon the
convergence rate of the standard Monte Carlo method. In this case, the randomness
was assumed to be due to possible measurement errors in the initial data and bottom
topography.

For our approach, however, the stochasticity in our shallow water equations will
come from the rainfall, and our aim is to use the Multilevel Monte Carlo method
to model the extended shallow water system coupled with a stochastic precipitation
term; to our knowledge, this is the first such application of MLMC to stochastic
precipitation thus far.

19



Chapter 3

A rigorous extension of the
shallow water equations

In quantifying the dynamics of a watercourse, the most important component of the
hydrologic recharge and loss is the precipitation and infiltration process, respectively.
Modelling these processes and predicting the motion of water is a di�cult task to
which substantial e↵ort has been devoted [Grace and Eagleson, 1966, Woolhiser
and Liggett, 1967, Zhang and Cundy, 1989, Esteves et al., 2000, Weill et al., 2009,
Rousseau et al., 2012].

Our goal is to derive a model akin to (2.1.0.1) via vertical averaging under the shal-
low water assumption, starting from the Navier–Stokes equations with a permeable
Navier boundary condition to account for the infiltration and a kinematic boundary
condition to consider the precipitation. The obtained averaged model extends this
system in a unique manner through an additional momentum source term of the
form

Su� (kR � kI) u, with S = R� I, (3.0.0.1)

where R � 0 denotes the recharge rate on the free surface (accounting for both rain
and runo↵ e↵ects) and I denotes the infiltration rate from the water to the ground
(when I > 0) or the ground to the water (when I < 0). The terms kR and kI ,
which will be discussed in detail in §3.1, model the friction caused by the addition
of water (at zero velocity), which attaches to and is advected by the flow. We will
see below that these friction terms are necessary to avoid paradoxical outcomes such
as perpetual motion.

In this chapter we provide an overview of the construction of the extended shallow
water system for overland flows, extending the standard shallow water system to
account for the addition of water through rainfall and runo↵ processes. In §3.1, we
present the geometric setup of the system and the adjusted boundary conditions from
the typical Navier–Stokes equations, before introducing the first order approximation
which leads to the extended shallow water system in §3.2. Finally, we discuss several
theoretical results and corollaries that can be derived for the system in §3.3.
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3.1 Geometric setup and boundary conditions

We consider an incompressible fluid moving in the space-time box
(

[0, L]⇥ [0, T ]⇥ R with typical point (x, t, z)

where L > 0 is the horizontal length of the domain

)

. (3.1.0.1)

The absolute height of the surface of the water course and the topography of the
river-bed are modelled, respectively, by functions

H : [0, L]⇥ [0, T ] ! R, Z : [0, L] ! R (3.1.0.2)

whose values measure the water height with respect to a reference horizontal height
0. We define the local height of the water by

h(x, t) := H(x, t)� Z(x). (3.1.0.3)

The wet region is defined as the area in which the fluid resides at each time t 2 [0, T ]

⌦(t) := {(x, z) 2 R2 : x 2 (0, L), Z(x) < z < H(x, t)} (3.1.0.4)

Z(x)

h(x, t)
q(x, t) wet region

ground

w
at
er

co
lu
m
n R(x, t)

t⌦

n⌦

I(x, t) t⌦

n⌦

0 x L

free surface
F = {(x, t,H) : t > 0, x 2 (0, L)}

wet boundary
B = {(x, Z) : x 2 (0, L)}

Figure 3.1: Diagram of a river and river bed depicting the variables of interest

As we can see in Figure 3.1, the wet region has two boundaries; the first is the wet
boundary between the wet region and the ground, denoted by

B = {(x, Z) : x 2 (0, L)}, (3.1.0.5)

and the second is the free surface between the wet region and the surrounding air,
denoted by

F = {(x, t,H) : t > 0, x 2 (0, L)}. (3.1.0.6)

We assume that the viscous flow u satisfies, on the space-time domain ⌦, the two-
dimensional incompressible Navier Stokes equation

div[⇢0u
|] = 0,

@t[⇢0u] + div[⇢0u⌦ u]� div�[u]� ⇢0F = 0,
(3.1.0.7)
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where u = (u, v) is the velocity field, ⇢0 is the density of the fluid (taken to be
constant), F = (0,� g) is the external force of gravity with constant g, and �[u] is
the total stress tensor whose matrix is given by

�[u] :=



�p+ 2µ@xu µ (@zu+ @xv)
µ (@zu+ @xv) �p+ 2µ@zv

�

(3.1.0.8)

where p is the pressure and µ > 0 the dynamic viscosity. The tensor product of two
vectors a⌦ b is defined as ab| (all vectors are displayed as columns) and the div of
a covector/tensor is taken as the row-wise divergence of the associated matrix.

To work with the wet region, we introduce its indicator function

�(x, t, z) := I⌦(t)(x, z) = I[Z(x)  z  H(x, t)] for all x, t, z 2 R. (3.1.0.9)

The function � is advected by the flow so its material derivative, with respect to the
flow u, must therefore be zero. Moreover, thanks to the incompressibility condition,
� satisfies the following indicator transport equation

@t�+ @x[�u] + @z[�v] = 0 on ⌦. (3.1.0.10)

3.1.1 The wet boundary

On the wet boundary the topography is assumed to be rough and hence produces
friction. We take this into account by considering the following Navier boundary
condition:

(�[u]n⌦) · t⌦ = �⇢0 (k(u)� kI)u · t⌦ on B, (3.1.1.1)

where t⌦ and n⌦ are, respectively, the unit tangential and normal vectors to the
wet boundary. We will leave defining kI for the moment and note that the scalar
function k(u) models a general friction law on the channel bed:

k(⇠) := (Clam + Ctur|⇠|) 8⇠ 2 R2, (3.1.1.2)

with friction coe�cients Clam and Ctur (which by definition are always non-negative)
corresponding, respectively, to the laminar and turbulent friction factors.

The ground may also, due to porosity, absorb water (by infiltration) or inject water
(through recharge) from and into the bulk. This mechanism is modelled with the
following permeable boundary condition:

u · n⌦ = I(x, t, h(x, t)) on B, (3.1.1.3)

where the infiltration function I models the amount of water that leaves (I > 0) or
enters (I < 0) the flow per elementary boundary element. The friction e↵ect of the
water recharging through the ground on the flow itself is modelled by

kI = ↵ min(0, I) (3.1.1.4)

with ↵ representing the magnitude of the friction e↵ect. We note that the recharge-
induced friction only occurs when water is entering the flow (i.e. I < 0), and is zero
otherwise. We define ⌦’s tangential and outward unit normal vectors on B by

t⌦(x, Z(x)) =
1

q

1 + |@xZ(x)|2



�1
�@xZ(x)

�

(3.1.1.5)
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and

n⌦(x, Z(x)) =
1

q

1 + |@xZ(x)|2



@xZ(x)
�1

�

(3.1.1.6)

respectively, following the convention that the outward normal is the tangential
vector rotated by ⇡/2 counterclockwise. We can use these definitions to simplify
equations (3.1.1.1) and (3.1.1.3); considering first the left-hand side of (3.1.1.1), we
have:

�[u]n⌦ =
1

q

1 + |@xZ|2



(�p+ 2µ@xu) @xZ � µ (@zu+ @xv)
µ (@zu+ @xv) @xZ + p� 2µ@zv

�

(�[u]n⌦) · t⌦ =
µ (@zu+ @xv)

�

1� |@xZ|2
�

+ 2µ (@zv � @xu) @xZ

1 + |@xZ|2
.

(3.1.1.7)

On the right hand side we have

⇢0 (k(u)� kI)u = ⇢0 (k(u, v)� kI)



u
v

�

�⇢0 (k(u)� kI)u · t⌦ =
⇢0 (k(u, v)� kI) (u+ v@xZ)

(1 + |@xZ|2)1/2
.

(3.1.1.8)

Bringing these two equations together, (3.1.1.1) simplifies to

µ (@xv + @zu)
�

1� |@xZ|2
�

+ 2µ (@zv � @xu) @xZ
�

1 + |@xZ|2
�1/2

= ⇢0 (k(u, v)� kI) (u+ v@xZ) .

(3.1.1.9)

Similarly, (3.1.1.3) can be rewritten as

u · n⌦ =



u
v

�

· 1
q

1 + |@xZ|2



@xZ
�1

�

=
u@xZ � v
q

1 + |@xZ|2
= I. (3.1.1.10)

Simplifying and moving all terms to one-side, (3.1.1.10) becomes

v � u@xZ(x) + I

q

1 + |@xZ|2 = 0. (3.1.1.11)

3.1.2 The free surface

On the free surface we neglect all other meteorological phenomena (such as evap-
oration) and consider only the addition of water in the form of direct rainfall and
runo↵. Assuming a kinematic boundary condition, we set

u · n⌦ =
@tH �R

q

1 + |@xH|2
on F := {(x, t,H(x, t)) : 0 < x < L and t > 0} (3.1.2.1)
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where R(x, t) is the recharge rate due to rainfall. The unit tangential and normal
vectors t⌦ and n⌦ to the free surface can be explicitly computed in terms of H as

t⌦(x,H(x, t)) =
1

q

1 + |@xH(x, t)|2



1
@xH(x, t)

�

(3.1.2.2)

and

n⌦(x,H(x, t)) =
1

q

1 + |@xH(x, t)|2



�@xH(x, t)
1

�

(3.1.2.3)

which leads to the following explicit form of (3.1.2.1):

@tH + u@xH � v = R on F . (3.1.2.4)

We also assume a stress condition on the free surface, given by

(�[u]n⌦) · t⌦ = �⇢0kRu · t⌦, (3.1.2.5)

where kR = ↵Rmodels the friction e↵ect of the rain droplets on the free surface, with
↵ again representing the magnitude of this e↵ect. Using the tangential and normal
vectors (3.1.2.2) and (3.1.2.3), respectively, this condition simplifies as follows:

�[u]n⌦ =
1

q

1 + |@xH|2



(p� 2µ@xu) @xH + µ (@zu+ @xv)
�µ (@zu+ @xv) @xH � p+ 2µ@zv

�

(�[u]n⌦) · t⌦ =
µ (@zu+ @xv)

�

1� |@xH|2
�

+ 2µ (@zv � @xu) @xH

1 + |@xH|2

(3.1.2.6)

and

�⇢0kRu · t⌦ = �⇢0kR (u+ v@xH)

(1 + |@xH|2)1/2
. (3.1.2.7)

Bringing these two equations together, (3.1.2.5) simplifies to

µ (@xv + @zu)
�

1� |@xH|2
�

+ 2µ (@zv � @xu) @xH
�

1 + |@xH|2
�1/2

= �⇢0kR (u+ v@xH) . (3.1.2.8)

3.2 Shallow water system with precipitation

We now proceed to write the Navier–Stokes equations with adapted boundary con-
ditions in non-dimensional form. Under an assumption on the shallowness of the
ratio of the water height to the horizontal domain (represented by small parame-
ter "), we formally make an asymptotic expansion of the Navier–Stokes system to
the hydrostatic approximation at first order. Finally, we derive the shallow water
system through an integration on the water height.

This approach follows one established by Gerbeau and Perthame [2001] and also
found in Ersoy [2015]; the di↵erence in our application, however, is that we will be
using as our starting point a two-dimensional rather than three-dimensional system,
and we will also have to take extra care in how we non-dimensionalise our additional
precipitation, infiltration, and friction terms.
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3.2.1 Non-dimensionalisation approach and assumptions

To derive the shallow water model, we make the following assumptions:

- the water height is small with respect to the horizontal length of the domain

- vertical variations in velocity are small compared to the horizontal variations

This is achieved by postulating a small parameter ratio

" :=
D

L
=

V

U
⌧ 1 (3.2.1.1)

where D, L, V , and U are the scales of water height, domain length, vertical fluid
velocity, and horizontal fluid velocity, respectively. As a consequence, the time scale
T is such that

T =
L

U
=

D

V
. (3.2.1.2)

We also choose the pressure scale to be

P := ⇢0U
2. (3.2.1.3)

The rationale for this choice is that we are focusing on the e↵ect of the horizontal
forces as mass per horizontal acceleration, which has a force scale of

F := (DL2�1⇢0)(UT�1), (3.2.1.4)

and these forces are applied to vertical boundary scale to give the pressure scale

F
�

DL2�2
��1

= DL⇢0UT�1D�1 = ⇢0ULT�1 = ⇢0U
2. (3.2.1.5)

It is convenient to define the domain length, L, and horizontal velocity, U , (and
by definition T ) as finite constants with respect to " ! 0, while the water height
and vertical velocity are defined as D = "L and V = "U , respectively. This allows
us to introduce the dimensionless quantities of time t̃, space (x̃, z̃), pressure p̃, and
velocity field (ũ, ṽ) via the following scaling relations:

8

>

>

>

>

>

<

>

>

>

>

>

:

t̃ :=
t

T
, p̃(x̃, t̃, z̃) :=

p(x, t, z)

P
,

x̃ :=
x

L
, ũ(x̃, t̃, z̃) :=

u(x, t, z)

U
,

z̃ :=
z

D
=

z

"L
, ṽ(x̃, t̃, z̃) :=

v(x, t, z)

V
=

v(x, t, z)

"U

9

>

>

>

>

>

=

>

>

>

>

>

;

. (3.2.1.6)

We also rescale the laminar and turbulent friction factors as, respectively,

Clam,0 :=
Clam

V
=

Clam

"U
and Ctur,0 :=

Ctur

"
, (3.2.1.7)

and the infiltration and rainfall rates as, respectively,

Ĩ(x̃, t̃) :=
I(x, t)

V
and R̃(x̃, t̃) :=

R(x, t)

V
. (3.2.1.8)
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Chapter 3 : A rigorous extension of the shallow water equations P. Townsend

Note that in the assumed asymptotic setting, Clam,0 and Ctur,0 are constants with
respect to ", thus implying that Clam and Ctur vanish linearly with " ! 0. Finally,
we define the following non-dimensional numbers:

Froude’s number, Fro := U/
p

gD,

Reynolds’s number with respect to µ, Rey := ⇢0UL/µ.
(3.2.1.9)

and consider the following asymptotic setting

Rey�1 = "µ0, (3.2.1.10)

where µ0 is the viscosity.

3.2.2 Dimensionless Navier-Stokes equations

We now proceed to apply these dimensionless variables to the Navier–Stokes equa-
tions (3.1.0.7) and (3.1.0.8).

Equation 1

For the first equation we have:

0 = div[⇢0u] = ⇢0 · div[u] = ⇢0

✓

@u

@x
+
@v

@z

◆

= ⇢0

✓

U

L

@ũ

@x̃
+
"U

"L

@ṽ

@z̃

◆

(3.2.2.1)

⇢0
U

L

✓

@ũ

@x̃
+
@ṽ

@z̃

◆

= 0 !
✓

@ũ

@x̃
+
@ṽ

@z̃

◆

= div[ũ] = 0. (3.2.2.2)

Equation 2

For the second equation we have:

@ (⇢0u)

@t
+
@ (⇢0u2)

@x
+
@ (⇢0uv)

@z

�
✓

�@p
@x

+ 2µ
@

@x



@u

@x

�

+ µ
@

@z



@u

@z
+
@v

@x

�◆

= 0.
(3.2.2.3)

This becomes:

⇢0U

T

@ũ

@ t̃
+
⇢0U

2

L

@ (ũ2)

@x̃
+
⇢0"U

2

"L

@ (ũṽ)

@z̃
+
⇢0U

2

L

@p̃

@x̃

=
2µU

L2

@

@x̃



@ũ

@x̃

�

+
µU

"L2

@

@z̃



1

"

@ũ

@z̃
+ "

@ṽ

@x̃

�

.

(3.2.2.4)
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Recalling that T = L/U, Rey = ⇢0UL/µ, and Rey�1 = "µ0, we multiply each term by
L/⇢0U2, giving us

@ũ

@ t̃
+
@ (ũ2)

@x̃
+
@ (ũṽ)

@z̃
+
@p̃

@x̃

=
2µ

⇢0UL

@

@x̃



@ũ

@x̃

�

+
µ

⇢0UL

@

@z̃



1

"2
@ũ

@z̃
+
@ṽ

@x̃

�

=
2

Rey

@

@x̃



@ũ

@x̃

�

+
1

Rey

@

@z̃



1

"2
@ũ

@z̃
+
@ṽ

@x̃

�

=
@

@z̃



µ0

"

@ũ

@z̃

�

+ "µ0

✓

@

@x̃



2
@ũ

@x̃

�

+
@

@z̃



@ṽ

@x̃

�◆

.

(3.2.2.5)

Equation 3

For the third equation we have:

@ (⇢0v)

@t
+
@ (⇢0uv)

@x
+
@ (⇢0v2)

@z

�
✓

µ
@

@x



@u

@z
+
@v

@x

�

� @p

@z
+ 2µ

@

@z



@v

@z

�◆

= �⇢0 g .
(3.2.2.6)

This becomes

⇢0"U

T

@ṽ

@ t̃
+
⇢0"U

2

L

@ (ũṽ)

@x̃
+
⇢0"

2U2

"L

@ (ṽ2)

@z̃
+
⇢0U

2

"L

@p̃

@z̃

=
2µ"U

"2L2

@

@z̃



@ṽ

@z̃

�

+
µU

L2

@

@x̃



1

"

@ũ

@z̃
+ "

@ṽ

@x̃

�

� ⇢0 g .

(3.2.2.7)

Multiplying each term by "L/⇢0U2 and noting that Fro = U/
p
" gL, we get

"2
@ṽ

@ t̃
+ "2

@ (ũṽ)

@x̃
+ "2

@ (ṽ2)

@z̃
+
@p̃

@z̃

=
2µ

⇢0UL

@

@z̃



@ṽ

@z̃

�

+
µ

⇢0UL

@

@x̃



@ũ

@z̃
+ "2

@ṽ

@x̃

�

� " gL

U2

=
2

Rey

@

@z̃



@ṽ

@z̃

�

+
1

Rey

@

@x̃



@ũ

@z̃
+ "2

@ṽ

@x̃

�

� 1

Fro2
.

(3.2.2.8)

Grouping terms with respect to " we have

@p̃

@z̃
= � 1

Fro2
+ "µ0

✓

@

@x̃



@ũ

@z̃
+ "2

@ṽ

@x̃

�

+
@

@z̃



2
@ṽ

@z̃

�◆

� "2
✓

@ṽ

@ t̃
+
@ (ũṽ)

@x̃
+
@ (ṽ2)

@z̃

◆

.

(3.2.2.9)
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The overall dimensionless incompressible Navier–Stokes system thus reads as follows:

div[ũ] = 0, (3.2.2.10)

@ũ

@ t̃
+
@ (ũ2)

@x̃
+
@ (ũṽ)

@z̃
+
@p̃

@x̃
=

@

@z̃



µ0

"

@ũ

@z̃

�

+ %1(ũ), (3.2.2.11)

@p̃

@z̃
= � 1

Fro2
+ %2(ũ), (3.2.2.12)

where

%1(ũ) := "µ0

✓

2
@2ũ

@x̃2
+

@2ṽ

@x̃@z̃

◆

(3.2.2.13)

and

%2(ũ) :="µ0

✓

@2ũ

@x̃@z̃
+ "2

@2ṽ

@x̃2
+ 2

@2ṽ

@z̃2

◆

� "2
✓

@ṽ

@ t̃
+
@ (ũṽ)

@x̃
+
@ (ṽ2)

@z̃

◆

. (3.2.2.14)

Assuming eu has bounded second derivatives, definitions (3.2.2.13) and (3.2.2.14)
formally lead to

%1(ũ), %2(ũ) = O (") . (3.2.2.15)

Wet boundary

For the Navier boundary condition (3.1.1.9) on the wet boundary B, we recall the
scaling relations (3.2.1.6) and note that

@Z

@x
! "L

L

@Z̃

@x̃
= "@x̃Z̃, kI ! fĨ = ↵ min(0, Ĩ). (3.2.2.16)

Applying the dimensionless variables, on the left hand side we have

LHS =
µ
�

U
"L

@ũ
@z̃

+ "U
L

@ṽ
@x̃

�

⇣

1� "2(@x̃Z̃)2
⌘

+ 2µ"
�

"U
"L

@ṽ
@z̃

� U
L

@ũ
@x̃

�

@x̃Z̃
⇣

1 + "2(@x̃Z̃)2
⌘1/2

=
µU

L

�

1
"
@ũ
@z̃

+ " @ṽ
@x̃

�

⇣

1� "2(@x̃Z̃)2
⌘

+ 2"
�

@ṽ
@z̃

� @ũ
@x̃

�

@x̃Z̃
⇣

1 + "2(@x̃Z̃)2
⌘1/2

(3.2.2.17)

while the right hand side becomes

RHS = ⇢0
�

UClamũ+ U2Ctur (|ũ|+ "|ṽ|) ũ� "U2fĨ ũ
�

+ ⇢0"
2@x̃Z̃

�

UClamṽ + U2Ctur (|ũ|+ "|ṽ|) ṽ � "U2fĨ ṽ
�

= ⇢0U (Clamũ+ UCtur (|ũ|+ "|ṽ|) ũ� "UfĨ ũ)

+ ⇢0U"
2@x̃Z̃ (Clamṽ + UCtur (|ũ|+ "|ṽ|) ṽ � "UfĨ ṽ) .

(3.2.2.18)
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Equating and simplifying we have

µ

⇢0L

✓

1

"
@z̃ũ+ "@x̃ṽ

◆

+
2µ"

⇢0L

@x̃Z̃ (@z̃ṽ � @x̃ũ)

1� "2(@x̃Z̃)2

= (Clamũ+ UCtur (|ũ|+ "|ṽ|) ũ� "UfĨ ũ)

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2

+ "2@x̃Z̃ (Clamṽ + UCtur (|ũ|+ "|ṽ|) ṽ � "UfĨ ṽ)

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2
.

Moving all terms of order " and above to the right hand side and dividing by U , we
get

µ

⇢0UL

@z̃ũ

"
=� "µ

⇢0UL

 

@x̃ṽ +
2@x̃Z̃ (@z̃ṽ � @x̃ũ)

1� "2(@x̃Z̃)2

!

+

✓

Clam

U
ũ+ Ctur (|ũ|+ "|ṽ|) ũ� "fĨ ũ

◆

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2

+ "2@x̃Z̃

✓

Clam

U
ṽ + Ctur (|ũ|+ "|ṽ|) ṽ � "fĨ ṽ

◆

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2
.

Recalling that Rey = ⇢0UL/µ, this becomes


@z̃ũ

"Rey

�

B
=� "

Rey

 

@x̃ṽ +
2@x̃Z̃ (@z̃ṽ � @x̃ũ)

1� "2(@x̃Z̃)2

!

| {z }

�1(ũ)=O("/Rey)

+

✓

Clam

U
ũ+ Ctur (|ũ|+ "|ṽ|) ũ� "fĨ ũ

◆

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2

+"2@x̃Z̃

✓

Clam

U
ṽ + Ctur (|ũ|+ "|ṽ|) ṽ � "fĨ ṽ

◆

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2
| {z }

�2(ũ)=O("2)

.

Thus we have



@z̃ũ

"Rey

�

B
=

✓

Clam

U
ũ+ Ctur (|ũ|+ "|ṽ|) ũ� "fĨ ũ

◆

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2
+O("/Rey) + O

�

"2
�

.

Applying the non-dimensional friction factors

Clam 7! "UClam," and Ctur 7! "Ctur," (3.2.2.19)

we get



@z̃ũ

"Rey

�

B
= " (Clam,"ũ+ Ctur," (|ũ|+ "|ṽ|) ũ� fĨ ũ)

q

1 + "2(@x̃Z̃)2

1� "2(@x̃Z̃)2
+O("/Rey) + O

�

"2
�

.
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In evaluating the first term, we want to group together terms of O ("), whilst those
of higher order will be absorbed into the existing O ("2). The first component can
be divided as

" (Clam,"ũ+ Ctur,"|ũ|ũ� fĨ ũ)
| {z }

O(")

+ "2 (Ctur,"|ṽ|ũ)
| {z }

O("2)

.
(3.2.2.20)

For the second component, we simply note that it can be expanded as 1 + higher
order terms; the higher order terms when multiplied with the first component will
all be absorbed into O ("2), as will the "2 (Ctur,"|ṽ|ũ) term, leaving



@z̃ũ

"Rey

�

B
= " (Clam,"ũ+ Ctur,"|ũ|ũ� fĨ ũ)

| {z }

=(k0(ũ)�f
Ĩ

)ũ

+O("/Rey) + O
�

"2
�

= " (k0(ũ)� fĨ) ũ+O
�

"2
�

(3.2.2.21)

with asymptotic friction laws

k0(⇠) := Clam,0 + Ctur,0|⇠| for ⇠ 2 R
fĨ := ↵ min(0, Ĩ).

(3.2.2.22)

For the permeable boundary condition (3.1.1.11), applying our dimensionless vari-
ables we get

"Uṽ � Uũ · "@x̃Z̃ + "UĨ

q

1 + "2(@x̃Z̃)2 = 0

ṽ � ũ@x̃Z̃ + Ĩ +O(") = 0.
(3.2.2.23)

Free surface

For the boundary conditions on the free surfaceF , applying our non-dimensionalisation
approach to the kinematic boundary condition (3.1.2.4) we derive

@t̃H̃ + u@x̃H̃ � ṽ = R̃ (3.2.2.24)

while we can non-dimensionalise (3.1.2.8) in the same manner as the Navier bound-
ary condition (3.1.1.9) on the wet boundary B, giving



@z̃ũ

"Rey

�

F
= �"fR̃ũ+O

�

"2
�

(3.2.2.25)

with free surface asymptotic friction law

fR̃ = ↵R̃ for ↵ 2 R. (3.2.2.26)

3.2.3 First order approximation of the dimensionless Navier–
Stokes

Before considering the first order approximation that will lead to the shallow water
equations, we recall the system of equations and boundary conditions that we non-
dimensionalised in the previous section:
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Navier–Stokes

div[ũ] = 0

@ũ

@ t̃
+
@ (ũ2)

@x̃
+
@ (ũṽ)

@z̃
+
@p̃

@x̃
=

@

@z̃



µ0

"

@ũ

@z̃

�

+O(")

@p̃

@z̃
= � 1

Fro2
+O(")

(3.2.3.1)

Wet boundary B


@z̃ũ

"Rey

�

B
= " (k0(ũ)� fĨ) ũ+O

�

"2
�

ṽ � ũ@x̃Z̃ + Ĩ = O(")

(3.2.3.2)

Free surface F


@z̃ũ

"Rey

�

F
= �"fR̃ũ+O

�

"2
�

@t̃H̃ + u@x̃H̃ � ṽ = R̃

(3.2.3.3)

Dropping all terms of order " and higher in equations (3.2.3.1), (3.2.3.2), and
(3.2.3.3) (and dropping the ·̃ throughout for brevity), we deduce the following hy-
drostatic approximation of the dimensionless Navier–Stokes system:

@xu" + @zv" = 0 (3.2.3.4)

@tu" + @x
⇥

u2
"

⇤

+ @z[u"v"] + @xp" = @z

hµ0

"
@zu"

i

(3.2.3.5)

@zp" = � 1

Fro2
(3.2.3.6)

whilst the boundary conditions, as a result of the asymptotic setting Rey�1 = "µ0,
simplify to

hµ0

"
@zu"

i

= (k0(u")� kI) u" and v" = u"@xZ � I on B, (3.2.3.7)

and
hµ0

"
@zu"

i

= �kRu" and @tH + u"@xH � v" = R on F . (3.2.3.8)

Here, (u", v", p") represents the solution of the first-order dimensionless Navier-Stokes
system.

Vertically integrating (3.2.3.6) over [z,H(x, t)], we obtain the hydrostatic pressure

p"(x, t,H)� p"(x, t, z) = � 1

Fro2
(H � z) . (3.2.3.9)

We assume that the pressure exerted on the free surface p"(x, t,H) = pc for some
constant pc 2 R (as we neglected all other meteorological phenomena), and thus the
equation becomes

p"(x, t, z) =
1

Fro2
(H � z) + pc (3.2.3.10)
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Identifying terms at order 1/" in (3.2.3.5), (3.2.3.7), and (3.2.3.8), we can decompose
the function u" as

u"(x, t, z) = u0(x, t) + O (") (3.2.3.11)

for some function u0(x, t), as a consequence of

@z[µ0@zu"] = O (") , [µ0@zu"]B = O(") , and [µ0@zu"]F = O(") . (3.2.3.12)

Noting hu"(x, t)i as the mean speed of the fluid over the section [Z(x), H(x, t)],

hu"(x, t)i =
1

h(x, t)

Z H(x,t)

Z(x)

u"(t, x, z)dz, (3.2.3.13)

one can use the following approximations at first order:

u"(x, t, z) = hu"(x, t)i+O(") and
⌦

u"(x, t)
2
↵

= hu"(x, t)i2 +O(") . (3.2.3.14)

3.2.4 Shallow water system with recharge

To derive the conservation of mass equation, there are two points we must first
recall; the first is the definition of the indicator function for the wet region, given by

�(x, t, z) := I[Z(x)  z  H(x, t)] for all x, t, z 2 R. (3.2.4.1)

The second is Leibniz’s rule, which states that for a function f(x, t),

Z b(t)

a(t)

@f

@t
dx = @t

"

Z b(t)

a(t)

f(x, t)dx

#

+ f(a(t), t) · @ta� f(b(t), t) · @tb. (3.2.4.2)

With these in place, we can integrate the indicator transport equation (3.1.0.10) for
z 2 [Z(x), H(x, t)]:

Z H(x,t)

Z(x)

@t�+ @x[�u"] + @z[�v"] dz = 0. (3.2.4.3)

Considering each integral individually, we have

Z H(x,t)

Z(x)

@t�dz = @t

Z H(x,t)

Z(x)

�dz +[�]B @tZ
|{z}

=0

�[�]F @tH

= @th�[@tH]B

(3.2.4.4)

Z H(x,t)

Z(x)

@x[�u"] dz = @x

Z H(x,t)

Z(x)

�u"dz +[�u"]B @xZ �[�u"]F @xH

= @x[hu"] +[u"@xZ]B �[u"@xH]F

(3.2.4.5)

and
Z H(x,t)

Z(x)

@z[�v"] dz =[v"]F �[v"]B (3.2.4.6)

Grouping these terms together, we get

@th+ @xq �[@tH + u"@xH � v"]B +[u"@xZ � v"]F = 0 (3.2.4.7)
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where, in view of (3.2.3.14), the discharge q is defined as

q(x, t) := hu"(x, t)ih(x, t). (3.2.4.8)

From the penetration condition (3.2.3.7) and kinematic boundary condition (3.2.3.8),
we deduce the conservation of mass equation

@th+ @xq = S (3.2.4.9)

where the source term S := R � I measures the gain or loss of water through the
rainfall and infiltration rates, respectively.

Recalling the pressure equation (3.2.3.10) and making use of boundary conditions
(3.2.3.7) and (3.2.3.8) once again, the left hand side of (3.2.3.5) can be integrated
as follows:

Z H(x,t)

Z(x)

LHS dz =

Z H(x,t)

Z(x)

@tu" + @x
⇥

u2
"

⇤

+ @z[u"v"] + @xp dx. (3.2.4.10)

As we did in deriving the conservation of mass equation, we will consider each
integral in turn:

Z H(x,t)

Z(x)

@tu" dz = @t

Z H(x,t)

Z(x)

u"dz +[u"]B @tZ
|{z}

=0

�[u"]F @tH

= @t

✓

u"

h

z
i

�

�

�

H(x,t)

Z(x)

◆

�[u"]F @tH

= @t

⇣

u"

h

H(x, t)� Z(x)
i

| {z }

=h(t,x)

⌘

�[u"]F @tH

= @tq �[u"]F @tH

(3.2.4.11)

Z H(x,t)

Z(x)

@u2
"

@t
dz = @x

Z H(x,t)

Z(x)

u2
"dz +

⇥

u2
"

⇤

B @xZ �
⇥

u2
"

⇤

F @xH

= @x (q
2/h) +

⇥

u2
"

⇤

B @xZ �
⇥

u2
"

⇤

F @xH

(3.2.4.12)

and
Z H(x,t)

Z(x)

@z[u"v"] dz =[u"v"]F �[u"v"]B (3.2.4.13)

For the last integral, we first recall the definition of the pressure (3.2.3.10):

p"(x, t, z) =
1

Fro2
(H � z) + pc. (3.2.4.14)

The integral thus becomes:
Z H(x,t)

Z(x)

@xp" dz = @x

Z H(x,t)

Z(x)

p"dz +[p"]B @xZ �[p"]F @xH

= @x

Z H(x,t)

Z(x)



1

Fro2
(H � z) + pc

�

dz +
h

Fro2
@xZ + pc@xZ � pc@xH

=
1

Fro2
@x

Z H(x,t)

Z(x)

(H � z)dz +
h

Fro2
@xZ

+ @x

Z H(x,t)

Z(x)

pcdz + pc@xZ � pc@xH

| {z }

=0
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which integrates to
Z H(x,t)

Z(x)

@xp" dz =
1

Fro2
@x



H(x, t)z � z2

2

�

�

�

�

�

H(x,t)

Z(x)

+
h

Fro2
@xZ

=
1

Fro2
@x

✓

H2 � H2

2
�HZ +

Z2

2

◆

+
h

Fro2
@xZ

=
1

Fro2
@x

✓

(H � Z)2

2

◆

+
h

Fro2
@xZ

= @x

✓

h2

2Fro2

◆

+
h

Fro2
@xZ.

(3.2.4.15)

Grouping terms together, we have
Z H(x,t)

Z(x)

LHS dz = @tq + @x



q2

h
+

h2

2Fro2

�

+
h2

Fro2
@xZ

�[(@tH + u"@xH � v") u"]B +[(u"@xZ � v") u"]F

= @tq + @x



q2

h
+

h2

2Fro2

�

+
h2

Fro2
@xZ

�[Ru"]B +[Iu"]F

= @tq + @x



q2

h
+

h2

2Fro2

�

+
h2

Fro2
@xZ � S

q

h

(3.2.4.16)

where S is again defined as above. Integrating the right hand side of (3.2.3.5) using
(3.2.3.7) and (3.2.3.8), we obtain

Z H(x,t)

Z(x)

RHS dz =
hµ0

"
@zu"

i

F
�
hµ0

"
@zu"

i

B

= �[kRu"]F +[(k0(u")� kI) u"]B

= �
⇣

kR � kI + k0

⇣ q

h

⌘⌘ q

h

(3.2.4.17)

where the friction factors kR, kI , and k0 are defined as in (3.2.2.26) and (3.2.2.22),
respectively. Multiplying each side of (3.2.4.9), (3.2.4.16), and (3.2.4.17) by ⇢0U2/D,
we derive the shallow water system with recharge:

@th+ @xq = S

@tq + @x



q2

h
+ g

h2

2

�

= � g h@xZ + S
q

h
�
⇣

kR � kI + k0

⇣ q

h

⌘⌘ q

h

where q = hu .

(3.2.4.18)

3.3 Extended shallow water theorem

We will now consider several properties of the extended shallow water system,
(3.2.4.18), and consider how these properties compare to the existing model. Most
notably, we will see how the condition for the model to be well-posed di↵ers depend-
ing upon the existence of the additional Sq/h term in the conservation of momentum
equation.
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3.3.1 Theorem (stability and entropy relation)

(a) System (3.2.4.18) is strictly hyperbolic on the set {h > 0}.

(b) For smooth solution (h, u), the mean velocity u = q/h satisfies:

@tu+ @x (x, h, u) = �(kR � kI + k0(u)) u

h
(3.3.1.1)

where  (x, h, u) = u2

2
+ g h+ gZ is the total head.

(c) For smooth solutions, the still water steady state reads

u = S = 0 and h+ Z = h0 for some constant h0 > 0. (3.3.1.2)

(d) System (3.2.4.18) admits a mathematical entropy

E(h, u) =
hu2

2
+

g h2

2
(3.3.1.3)

which satisfies the reference-frame invariant entropy relation for smooth solu-

tions

@tE + @x

✓

E +
g h2

2

◆

u

�

= S

✓

u2

2
+ g h

◆

� g hu@xZ

� (kR � kI + k0(u)) u
2.

(3.3.1.4)

Proof. The proof of these assumptions follows after some manipulations of the two
equations of system (3.2.4.18). We consider each statement in turn.

(a) The Jacobian of the flux function is given by

J(h, q) :=



0 1
�q2/h2 + g h 2q/h

�

. (3.3.1.5)

To calculate the eigenvalues of the Jacobian, we need to solve the quadratic
equation

0 = det (J(h, q)� �In) =
�

�

�

�

0� � 1
�q2/h2 + g h 2q/h � �

�

�

�

�

= �2 � 2q/h�+ (q2/h2 � g h) ,

(3.3.1.6)

whose solutions are given by

�1,2 =

2q
h
±
q

4q2

h2 � 4q2

h2 + 4 g h

2
=

q

h
±
p

g h. (3.3.1.7)

Our eigenvalues are therefore

�1(h, q) = q/h +
p

g h and �2(h, q) = q/h �
p

g h. (3.3.1.8)

For these eigenvalues to exist and be real, we require that h > 0; the di-
agonalizability of the Jacobian (3.3.1.5) follows from the eigenvalues being
necessarily distinct for h > 0. We can conclude, therefore, that the extended
shallow water system is hyperbolic on the set {h > 0}.
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(b) We rewrite the conservation of momentum equation in terms of (h, u) rather
than (h, q) to give

@t[hu] + @x



hu2 +
g h2

2

�

= � g h@xZ + Su� (kR � kI + k0(u)) u. (3.3.1.9)

Applying the product rule to the first term of (3.3.1.9) and substituting in the
conservation of mass equation, we get

h@tu+ u (S � @x[hu]) + @x
⇥

hu2
⇤

+ @x



g h2

2

�

= � g h@xZ + Su� (kR � kI + k0(u)) u,

(3.3.1.10)

from which we can cancel Su on both sides. Using the product rule again, we
have that

u@x[hu] = @x
⇥

hu2
⇤

� hu@xu, (3.3.1.11)

which can be substituted into (3.3.1.10) to give

h@tu� @x
⇥

hu2
⇤

+ hu@xu+ @x
⇥

hu2
⇤

+ @x



g h2

2

�

= � g h@xZ � (kR � kI + k0(u)) u,

(3.3.1.12)

enabling us to now cancel @x[hu2]. Noting that

@x



g h2

2

�

= h@x[g h] , (3.3.1.13)

we can substitute this into (3.3.1.12) and divide by h throughout to get

@tu+ u@xu+ @x[g h] = � g @xZ � (kR � kI + k0(u)) u

h
. (3.3.1.14)

Making a final substitution of

u@xu = @xu
2/2 (3.3.1.15)

and grouping derivatives of x, we have

@tu+ @x (x, h, u) = �(kR � kI + k0(u)) u

h
(3.3.1.16)

where  (x, h, u) = u2

2
+ g h+ gZ, as required.

(c) Setting u = 0 in equation (3.3.1.1), we have

@x = @x[g h+ gZ] = 0, (3.3.1.17)

which is strictly constant, thereby yielding the lake-at-rest steady state.

(d) We begin by noting that

✓

E +
g h2

2

◆

u = ( � gZ)hu (3.3.1.18)
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and hence

@tE + @x

✓

E +
g h2

2

◆

u

�

= @tE + @x[ hu]� @x[g huZ]

= @tE + hu@x +  @x[hu]� @x[g huZ] .

(3.3.1.19)

Through a rearrangement of property (b), we have

hu@x = �(kR � kI + k0 (u))u
2 � hu@tu, (3.3.1.20)

and so equation (3.3.1.19) becomes

@tE � (kR � kI + k0(u)) u
2 � (hu) @tu+  @x[hu]� @x[g huZ] . (3.3.1.21)

Next we substitute

(hu) @tu = u@t[hu]� u2@th@x[g huZ] = g hu@xZ + gZ@x[hu] (3.3.1.22)

to give

@tE � u@t[hu] + u2@th+  @x[hu]� g hu@xZ

� gZ@x[hu]� (kR � kI + k0(u)) u
2.

(3.3.1.23)

From the definition of E, (3.3.1.3), we note that E = ( � gh/2 � gZ)h, and
hence

@tE = @t

✓

 � gh

2

◆

h

�

� @t[g hZ]

= h@t



 � gh

2

�

+

✓

 � gh

2

◆

@th� @t[g hZ]

= h@t



 � gh

2

�

+  @th� gh

2
@th� @t[g hZ] .

(3.3.1.24)

Substituting (3.3.1.24) into (3.3.1.23), we have

h@t



 � gh

2

�

� gh

2
@th� u@t[hu] + u2@th

+  (@th+ @x[hu])� gZ (@th+ @x[hu])� g hu@xZ � (kR � kI + k0(u)) u
2

| {z }

=S(u2/2+g h)�g hu@
x

Z�(k
R

�k
I

+k0(u))u2

.

To conclude the proof we need to show that the terms in the first line all
cancel. Expanding the first derivative, we have

h@t � h@t



gh

2

�

� gh

2
@th� u@t[hu] + u2@th

= h@t � h@t[gh]� u@t[hu] + u2@th.

(3.3.1.25)

The last two terms can be rewritten as

u2@th = @t
⇥

hu2
⇤

� h@t
⇥

u2
⇤

= @t
⇥

hu2
⇤

� 2(hu)@tu

u@t[hu] = @t
⇥

hu2
⇤

� (hu)@tu.
(3.3.1.26)
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Substituting and cancelling, (3.3.1.25) becomes

h@t � h@t[gh]� (hu)@tu. (3.3.1.27)

Using the definition of  , we have

h@t
⇥

u2/2 + gh+ gZ
⇤

� h@t[gh]� (hu)@tu

= h@t
⇥

u2/2
⇤

| {z }

=(hu)@
t

u

+h@t[gh] + h@t[gZ]
| {z }

=0

�h@t[gh]� (hu)@tu

= (hu)@tu+ h@t[gh]� h@t[gh]� (hu)@tu

= 0.

Thus the result is proven.

3.3.2 Remark on discontinuous solutions

In theorem 3.3.1, we only made reference to smooth solutions (h, u) in defining the
stability and entropy relations of our extended shallow water system (3.2.4.18). For
discontinuous solutions, it is not in general the case that strong solutions will always
exist, and hence we must instead rely upon having a weak solution to system. The
requirements and conditions under which such weak solutions exist is the focus of
current ongoing research.

3.3.3 Corollary (condition for energy growth or decay)

(a) The extended shallow water system (3.2.4.18) with infiltration rate I < 0 (i.e.

water is recharging from the ground into the system) has energy decay if

↵S + k0 (q/h) �
S (q2/2h2 + g h)� g q@xZ

q2/h2
(3.3.3.1)

that is, if the reduction in energy of the system from the friction e↵ects is

enough to compensate for the increase in energy from the source terms and

the increase or decrease in energy from the topography, and energy growth

otherwise.

(b) The extended shallow water system (3.2.4.18) with infiltration rate I > 0 (i.e.

water is infiltrating from the system into the ground) has energy decay if

↵R + k0 (q/h) �
S (q2/2h2 + g h)� g q@xZ

q2/h2
(3.3.3.2)

that is, if the reduction in energy of the system from the friction e↵ects is

enough to compensate for the increase in energy (when the rate of precipitation

exceeds that of the infiltration and so S > 0) and the increase or decrease in

energy from the topography, and energy growth otherwise.
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3.3.4 Comparison to the existing model

The derived model di↵ers from the usual shallow water system for overland flows,
(2.1.0.1), in which Sq/h and the additional friction terms in the conservation of
momentum are neglected. In particular properties (a) and (c) in theorem 3.3.1 (hy-
perbolicity of the system and existence of a steady state) still hold, but the entropy
relation is altered and the energy-consistency of the system becomes conditional not
on the assumed level of friction but on the water height.

Using the same notations for E and  , one can prove that model (2.1.0.1) instead
satisfies the following properties:

(b) For smooth solution (h, u), the mean velocity u = q/h satisfies:

@tu+ @x (x, h, u) =
�Su� k0(u)u

h
. (3.3.4.1)

(d) System (2.1.0.1) satisfies the following entropy relation for smooth solutions:

@tE + @x

✓

E +
g h2

2

◆

u

�

= �S

✓

u2

2
� g h

◆

� g hu@xZ � k0(u)u
2 . (3.3.4.2)

Due to the altered entropy relation, the energy-consistency of model (2.1.0.1) is
conditional on the water height, which we will ultimately see does not depend on
the sign of the source term S. To begin with, however, let there be a net gain of
water into the system, S > 0. Our entropy relation this implies that

�S

✓

u2

2
� g h

◆

� g hu@xZ � k0(u)u
2 > 0. (3.3.4.3)

Dividing through by �S (which we note will be negative), we have
✓

u2

2
� g h

◆

+
g hu@xZ

S
+

k0(u)u2

S
6 0. (3.3.4.4)

Rearranging to isolate the water height h, we have

h

✓

g u@xZ

S
� g

◆

6 �u2

2
� k0(u)u2

S
(3.3.4.5)

which simplifies to

h 6
u2

2
+ k0(u)u2

S

g
�

1� u@
x

Z
S

� =
u2 (S + 2k0(u))

2 g (S � u@xZ)
. (3.3.4.6)

For S < 0, our entropy relation becomes

�S

✓

u2

2
� g h

◆

� g hu@xZ � k0(u)u
2 6 0. (3.3.4.7)

Dividing through by �S (which this time will be positive), we have
✓

u2

2
� g h

◆

+
g hu@xZ

S
+

k0(u)u2

S
6 0, (3.3.4.8)

39



Chapter 3 : A rigorous extension of the shallow water equations P. Townsend

and so we derive the same condition as above for S > 0. Therefore, we can conclude
that the entropy inequality for the existing model is only satisfied on the set

⇢

h 6 u2 (S + 2k0(u))

2 g (S � u@xZ)

�

(3.3.4.9)

and hence the model is only conditionally well-posed. Therefore, as demonstrated
in the mathematical derivation, the term Sq/h cannot be omitted.

3.4 Conclusion

Our aim in this chapter was to derive a mathematically rigorous one-dimensional
shallow water model, extended to include both precipitation and infiltration e↵ects.
We achieved this by going back to the original two-dimensional Navier-Stokes equa-
tions and adapting the boundary conditions appropriately to model these additional
meteorological phenomena.

The new model (3.2.4.18) that we have derived includes additional momentum source
and friction terms in comparison to earlier models, which become special cases of our
extended system. The friction terms are obtained naturally from the derivation and
their presence is essential in explaining how the velocity of the water-body interacts
with the additional water coming from either precipitation or runo↵.

We showed in Theorem 3.3.1 and Corollary 3.3.3 that the existence of these ad-
ditional terms leads to a model whose energetic consistency depends solely on the
level of assumed rain-induced friction, denoted by ↵, and whenever these terms
are neglected the model is instead conditionally consistent with respect to the wa-
ter height; for certain regimes, this model may yield non-physical solutions. The
presence of the rain-induced friction terms is particularly important from a flood
modelling perspective, as these additional terms will cause a greater accumulation
of the flow and thus lead to longer lasting and more pronounced flooding.

As we noted in §2.1, the techniques and approach that we have used to adapt the
one-dimensional shallow water model to include precipitation and infiltration e↵ects
can be readily extended to the two-dimensional system, starting from both the three-
dimensional Navier-Stokes and three-dimensional Euler equations. The inclusion of
the rain- and infiltration-induced friction terms in the two-dimensional system will
require careful treatment, however, since there may be new issues that arise due to
the additional dimension.
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Chapter 4

Developing a well-balanced kinetic
scheme

Now we have developed our extended shallow water system, the next step is to design
a suitable numerical method. As we detailed in §2.3, our approach will be to consider
a kinetic interpretation of our extended shallow water system from which we will
derive a kinetic equation. This equation can then be used to derive a well-balanced
numerical scheme akin to those detailed in §2.2.

Z(x)

h(x, t) wet region

ground

R(x, t) R(x, t)

0 L

Figure 4.1: In considering a balance law system, we must adapt the lake-at-rest
property used for conservation laws to account for the expected addition of water.

For our extended shallow water system, we do first have to make a small adjustment
to the framework for our kinetic formulation. Since through the addition of the
rainfall and infiltration e↵ects our shallow water system is no longer a conservation
law but rather a balance law, we have the possibility of water being added to or
lost from the lake, and thus this particular equilibrium only holds in the case S = 0
(which is not very useful for the applications we want to consider). We must adapt
this property, therefore, and instead desire that our system preserves the filling the
lake state (see Figure 4.1), given by:

@th = R and u = 0; (4.0.0.1)

that is, the rate at which the height of water changes is equal to the rate at which
water is added to the system through the rainfall term. Failing to preserve this
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would mean a change in the mass of water greater or lower than the rate at which
it is added, thus violating the balance of mass property of our system. As for the
lake-at-rest, the kinetic solvers can be modified to preserve the filling-the-lake state,
while at the same time maintaining their simplicity and stability properties.

In this chapter we demonstrate the construction of a new numerical method for
modelling the shallow water system, extended to include rainfall and infiltration
e↵ects. In §4.1, we present an overview of the kinetic formulation that underpins
our numerical method, which is then used to extend the standard kinetic equation
to include the new terms in the momentum equation in §4.2. Finally, in §4.3, we
present several numerical experiments to demonstrate the application of the model
we have developed.

4.1 Kinetic formulation

To derive the kinetic equation for our extended shallow water system, we follow
the kinetic formulation proposed by Audusse et al. [2000], Perthame and Simeoni
[2001] and further developed by Bourdarias et al. [2014], Ersoy [2015]. We consider
a kinetic averaging weight function � : R ! R and a kinetic density function M
satisfying

�(!) = �(�!) � 0,

Z

R
�(!)d! = 1,

Z

R
!2�(!)d! =

g

2
, (4.1.0.1)

M(x, t, ⇠) :=
p

h(x, t)�

 

⇠ � u(x, t)
p

h(x, t)

!

. (4.1.0.2)

These functions originate in the kinetic theory where M(x, t, ⇠) accounts for the
density of particles with speed ⇠ at the space-time point (x, t).

The discretisation we will use in our numerical scheme will be based upon the specific
weighting function

�(!) =
1

⇡ g

⇥

2 g�!2
⇤1/2

+
for ! 2 R, (4.1.0.3)

where [X]+ stands for the positive part ofX [Perthame and Simeoni, 2001, eq.(2.13)].
We show this function has the required properties we desire.

Proof. The non-negativity of �(!) is directly implied by the definition, as we con-
sider only the positive component the square root. We also note that, since !2 =
(�!)2, it can easily be seen that �(!) = �(�!).

For the first integral, the square root is non-negative for ! 2 [�
p
2 g,

p
2 g] and so

the integral can be simplified to

1

⇡ g

Z

p
2 g

�
p
2 g

⇥

2 g�!2
⇤1/2

. (4.1.0.4)
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To calculate this integral, we first make the substitution ! =
p
2 g sin(x); this leads

to
! =

p

2 g, x = ⇡/2

! = �
p

2 g, x = �⇡/2

d! =
p

2 g cos(x)dx

(4.1.0.5)

and thus
1

⇡ g

Z

⇡/2

�⇡/2

p

2 g cos(x)
q

2 g�2 g sin2(x)dx

=
2

⇡

Z

⇡/2

�⇡/2

cos(x)
q

1� sin2(x)dx.

(4.1.0.6)

Using the identities 1� sin2(x) = cos2(x) and cos2(x) = 1+cos(2x)
2

, we have

2

⇡

Z

⇡/2

�⇡/2

cos(x)
q

1� sin2(x)dx =
2

⇡

Z

⇡/2

�⇡/2

1 + cos(2x)

2
dx

=
1

⇡



x+
sin(2x)

2

�

⇡/2

�⇡/2

=
1

⇡

h⇡

2
+ 0�

⇣

�⇡
2
+ 0
⌘i

= 1.

(4.1.0.7)

Similarly, for the second integral we have

1

⇡ g

Z

⇡/2

�⇡/2

2 g sin2(x)
p

2 g cos(x)
q

2 g�2 g sin2(x)dx

=
4 g

⇡

Z

⇡/2

�⇡/2

sin2(x) cos(x)
q

1� sin2(x)dx

=
4 g

⇡

Z

⇡/2

�⇡/2

sin2(x) cos2(x)dx.

(4.1.0.8)

Using this time the identity sin2(x) cos2(x) = 1�cos(4x)
8

, we have

4 g

⇡

Z

⇡/2

�⇡/2

1� cos(4x)

8
dx =

g

2⇡



x� sin(4x)

4

�

⇡/2

�⇡/2

=
g

2⇡

h⇡

2
� 0�

⇣

�⇡
2
� 0
⌘i

=
g

2
.

(4.1.0.9)

Thus the proof is concluded.

In developing a numerical method, the goal is for the derivation of the finite-volume
scheme fluxes to be based on M , through the following property which links the
macroscopic variables with the microscopic ones.
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4.1.1 Proposition (macroscopic-microscopic relations)

Let the functions h, u solve the shallow water system (3.2.4.18) and kinetic density

M as in (4.1.0.2). If h(x, t) > 0 at (x, t) then the following macroscopic-microscopic
relations hold

Z

R

2

4

1
⇠
⇠2

3

5M(x, t, ⇠)d⇠ =

2

4

h(x, t)
h(x, t)u(x, t)

h(x, t)u(x, t)2 + g h(x, t)2/2

3

5 . (4.1.1.1)

Proof. We prove each of the three integrals in turn.

(1) From the definition of the kinetic density M , (4.1.0.2), the integral becomes

Z

R
M(x, t, ⇠)d⇠ =

p

h(x, t)

Z

R
�

 

⇠ � u(x, t)
p

h(x, t)

!

d⇠. (4.1.1.2)

Applying a change of variables ⌘ := ⇠�up
h
, from which we have d⇠ =

p
hd⌘,

(4.1.1.2) becomes

p

h(x, t)

Z

R

p

h(x, t)�(⌘)d⌘ = h(x, t)

Z

R
�(⌘)d⌘. (4.1.1.3)

From (4.1.0.1), the integral

Z

R
�(⌘)d⌘ = 1 (4.1.1.4)

and thus we have
Z

R
M(x, t, ⇠)d⇠ = h(x, t) (4.1.1.5)

as claimed.

(2) For the second integral, we apply the same change of variables, which yields

Z

R
⇠M(x, t, ⇠)d⇠ =

p

h(x, t)

Z

R
⇠�

 

⇠ � u(x, t)
p

h(x, t)

!

d⇠

=
p

h(x, t)

Z

R

p

h(x, t) · (⌘
p
h+ u)�(⌘)d⌘

= h(x, t)

Z

R
(⌘
p
h+ u)�(⌘)d⌘.

(4.1.1.6)

Multiplying out the brackets within the integral, we get

h(x, t)
p

h(x, t)

Z

R
⌘�(⌘)d⌘ + h(x, t)u(x, t)

Z

R
�(⌘)d⌘

| {z }

=1

= h(x, t)
p

h(x, t)

Z

R
⌘�(⌘)d⌘ + h(x, t)u(x, t).

(4.1.1.7)
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To prove the claim of the proposition, we need to show that the remaining term
equals 0. From the properties (4.1.0.1), we note that � is an even function
(i.e. �(⌘) = �(�⌘)), and thus ⌘�(⌘) is an odd function. Since the integral of
an odd function over R is by definition 0,

Z

R
⌘�(⌘)d⌘ = 0 (4.1.1.8)

and hence
Z

R
⇠M(x, t, ⇠)d⇠ = h(x, t)u(x, t) (4.1.1.9)

as claimed.

(3) For the third and final integral, we proceed in a similar manner as above:

Z

R
⇠2M(x, t, ⇠)d⇠ =

p

h(x, t)

Z

R
⇠2�

 

⇠ � u(x, t)
p

h(x, t)

!

d⇠

=
p

h(x, t)

Z

R

p

h(x, t) · (⌘
p
h+ u)2�(⌘)d⌘

= h(x, t)

Z

R
(u2 + 2⌘

p
hu+ ⌘2h)�(⌘)d⌘

= hu2

Z

R
�(⌘)d⌘

| {z }

=1

+2h
p
hu

Z

R
⌘�(⌘)d⌘

| {z }

=0

+h2

Z

R
⇠2�(⌘)d⌘

| {z }

= g
2

= hu2 +
g h2

2

making use of (4.1.0.1) and (4.1.1.8) in the last simplification.

Thus the proof of proposition 4.1.1 is complete.

4.2 Kinetic equation

Recall the extended shallow water model (3.2.4.18) that we developed in Chapter 3
to incorporate precipitation and infiltration phenomena:

@th+ @xq = S

@tq + @x



q2

h
+ g

h2

2

�

= � g h@xZ + S
q

h
�
⇣

kR � kI + k0

⇣ q

h

⌘⌘ q

h

where q = hu .

(4.2.0.1)

We will demonstrate in this section how we can solve this equation (that is, find
(h, u) for a given topography, source term, and friction coe�cients) using a kinetic
approach.

For the topography and friction terms in the conservation of momentum equation,
substituting for u = q/h, we note that these terms can be rewritten as

� g h@xZ � (kR � kI + k0(u)) u = � g h

✓

@xZ +
(kR � kI + k0(u)) u

g h

◆

(4.2.0.2)
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following the approach considered in [Bourdarias et al., 2011], for example, adapted
to account for our additional friction terms. The reason for rewriting these terms in
this manner is so we can pack them into a single term; that is, we define

W (x, t) := Z(x) +

Z x

0



(kR � kI + k0(u)) u

g h

�

(s, t)ds for 0 < x < L, (4.2.0.3)

and thus the system becomes

@th+ @x[hu] = S ,

@t[hu] + @x



hu2 +
g h2

2

�

= � g h@xW + Su .
(4.2.0.4)

The kinetic approach allows us to simplify this system into a single equation; more
specifically, we set M as the solution of the following kinetic equation

@tM(x, t, ⇠) + ⇠@xM(x, t, ⇠)

� g @xŴ@⇠M(x, t, ⇠) +
S(x, t)M(x, t, ⇠)

hMi1
= Q(x, t, ⇠) (4.2.0.5)

where

Ŵ (x, t) := Z(x) +

Z x

0



(kR � kI + k0(hMi2)) hMi2
g hMi1

�

(s, t)ds (4.2.0.6)

using the notation

hMi1 =
Z

R
Md⇠, hMi2 =

1

hMi1

Z

R
⇠Md⇠. (4.2.0.7)

The term Q(x, t, ⇠) plays the mathematical role of a collision term, similar, for
instance, to the ones encountered in Boltzmann’s equation, and must satisfy

Z

R



1
⇠

�

Q(x, t, ⇠)d⇠ =



0
0

�

. (4.2.0.8)

We take a second here to note why the additional notation for hMi1 and hMi2 is
required. In defining Ŵ (x, t), the kinetic form of W (x, t), we assume that (h, u) are
unknown and to be found, and thus we cannot use them within the definition. We
are required, therefore, to instead define Ŵ in terms of hMi1 and hMi2, which are
themselves defined in terms of the density function M , the solution to the kinetic
equation, and which by virtue of proposition 4.1.1 will ultimately give us h and u.

4.2.1 Observations

Before continuing with the derivation of our kinetic scheme, we make two interesting
observations on what we have developed thus far:
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(1) In contrast to previous work, e.g. Perthame and Simeoni [2001], the kinetic
equation (4.2.0.5) contains an extra term accounting for precipitation and
infiltration e↵ects, and this departure is crucial for the derivation of the fluxes
that lead to a well-balanced scheme in the presence of such terms. We also
note that, even though the Maxwellian function M is constructed for still
water steady states, where S(x, t) = 0, we can still use it here to ensure a
well-balanced scheme.

(2) In general, it is easier to find a numerical scheme to solve equation (4.2.0.5)
for M that has the properties we desire than to solve the full shallow water
system for h and u. However, in finding M , we can calculate h and hu by
virtue of the macro-microscopic relations (proposition 4.1.1). In fact, M is
never calculated explicitly, rather the function

M̂(h, ⌘) :=
p
h�

✓

⌘p
h

◆

with M(x, t, ⇠) = M̂(h(x, t), ⇠ � u(x, t)), (4.2.1.1)

is used to build the fluxes appearing in a finite volume method.

4.2.2 Discretisation and kinetic fluxes

To go from the kinetic equation (4.2.0.5) to a numerical method, we follow the
approach of Perthame and Simeoni [2001], in which they developed a kinetic scheme
for the standard shallow water system, i.e. equation (4.2.0.5) with S = 0. Their
approach was based on the general method for developing a finite volume scheme,
integrating the kinetic equation over the domain of interest, with the vector of
unknowns defined as

Un
i =

Z

R



1
⇠

�

Mn
i (⇠)d⇠ =



hn
i

hn
i u

n
i

�

(4.2.2.1)

where the final equality can be seen from the macroscopic-microscopic relations
(4.1.1.1) and in view of the second observation above. We follow the same process
for our shallow water system, giving us the numerical scheme

Un+1
i = Un

i � �t

�x

�

F n
i+1/2 � F n

i�1/2

�

+�t



Sn
i

Sn
i u

n
i

�

(4.2.2.2)

where Sn
i is a discretisation of the combined rain and infiltration terms (and which

we will explore in more detail in the next chapter). For the time-step, �t, we use
the following condition:

�t = CFL · �x

max
�

|un
i |+

p

2 g hn
i

� (4.2.2.3)

where CFL 2 (0, 1] [Perthame and Simeoni, 2001, e.g.].

The construction of the numerical fluxes F n
i±1/2 in (4.2.2.2) is based on the Nemitskii-

type operator associated with M̂ given in (4.2.1.1). We give here a brief overview
of how the successive numerical flux terms are developed; the interested reader
is directed to Perthame and Simeoni [2001] and Bourdarias et al. [2014] for more
details.
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We define the numerical flux (which has two components representing the conserva-
tion of mass and momentum equations), as the integral

F n
i± 1

2
:=

Z

R
⇠



1
⇠

�

M⌥
i±1/2(⇠)d⇠. (4.2.2.4)

The intermediate quantities M⌥
i±1/2(⇠), which measure the flux at the upper and

lower boundaries of the cell ci = [xi�1/2, xi+1/2], respectively, are realised as upwinded
fluxes:

M�
i+1/2 := Mn

i (⇠)I[⇠ > 0] +Mn
i+1/2(⇠)I[⇠ < 0] ,

M+
i�1/2 := Mn

i (⇠)I[⇠ < 0] +Mn
i�1/2(⇠)I[⇠ > 0] ,

(4.2.2.5)

with

Mn
i±1/2 := Mn

i (�⇠)I
⇥

|⇠|2  2 g�W n
i±1/2

⇤

+Mn
i±1

✓

⌥
q

|⇠|2 � 2 g�W n
i±1/2

◆

I
⇥

|⇠|2 � 2 g�W n
i±1/2

⇤

(4.2.2.6)

where we use the notation

I[P ] :=

(

1 if P is true,

0 if P is false.
(4.2.2.7)

To understand how these fluxes are defined, consider the flux over the upper bound
M�

i+1/2. From (4.2.2.5), we can see that it is comprised of two terms:

(1) Mn
i (⇠)I[⇠ > 0] : movement of water with positive velocity (⇠ > 0) from within

cell ci to cell ci+1

(2) Mn
i+1/2(⇠)I[⇠ < 0] : movement of water with negative velocity (⇠ < 0) from

within cell ci+1 to cell ci. This term is decomposed a second time into compo-
nents reflecting whether the water has enough energy to overcome the topog-
raphy and friction to enter or leave the cell.

The term �W n
i±1/2 is the upwinded source term and provides the jump condition

necessary for a particle in one cell to overcome the friction and topography to move
to an adjacent cell. Consistent with previous definitions, we calculate this term
numerically as:

�W n
i+1/2 = Wi+1(tn)�Wi(tn), �W n

i�1/2 = Wi�1(tn)�Wi(tn) (4.2.2.8)

where

Wi(t) = I[ci] (x)
1

�x

Z

c
i

W (x, t)dx (4.2.2.9)

for a given cell ci. The semi-discretised kinetic density, Mn
i , is defined as

Mn
i (⇠) :=

p

hn
i �

 

⇠ � un
i

p

hn
i

!

. (4.2.2.10)

We provide details of each step in deriving our kinetic scheme in Algorithm 4.1.
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Algorithm 4.1 Kinetic scheme algorithm

1: procedure KineticScheme

2: consider the extended shallow water system (4.2.0.1)
3: pack the topography and friction into a single term W given by (4.2.0.3)
4: write the new shallow water system (4.2.0.4) in terms of (h, u, S,W )
5:

6: simplify (4.2.0.4) into a single kinetic equation (4.2.0.5) in terms of M
7: define Un

i as the vector of unknowns given by (4.2.2.1)
8: integrate (4.2.0.5) to derive the numerical scheme (4.2.2.2)
9:

10: define the fluxes in the numerical scheme as the integral (4.2.2.4)
11: quantities M⌥

i±1/2 are defined in (4.2.2.5) and (4.2.2.6) in terms of ⇠ and �W

12: the upwinded source term �W is given by the di↵erence (4.2.2.8)
13: end procedure

4.3 Numerical tests

The kinetic scheme we use for our numerical method was implemented by extend-
ing the code of Besson and Lakkis [2013] to account for the additional source term
in (4.2.2.2), and we present here several simple numerical tests to demonstrate the
validity and application of our shallow water system and the associated numerical
method. Since the infiltration and precipitation term have almost the same mathe-
matical and numerical di�culties, we will consider only the rain term and thus take
I ⌘ 0. Numerical tests with a realistic infiltration term will be considered in future
work.

In §4.3.1, we begin by examining the influence of the friction e↵ect ↵ on the solution
in an idealised scenario where an exact solution can be calculated, with a focus on
determining in what regimes of ↵ the solution is physically realistic. In §4.3.2, we
compare our numerical model to a flume experiment, considering how our results
compare to both the physical data collected from this experiment and also previous
numerical simulations of this experiment using other methods. Finally, in §4.3.3,
we simulate multiple rainfall processes of increasing duration on a slope with both
a constant and decreasing gradient, and again measure how the value of ↵ impacts
the solution.

4.3.1 Influence of the friction e↵ect ↵ in an idealised sce-
nario

We start by studying the influence of the rain-induced friction e↵ect kR = ↵R, which
is included in Equations (3.2.4.18) and omitted in Equations (2.1.0.1). As we saw
in Corollary 3.3.3, for S > 0 (i.e. a net gain of water into the system), the energy
growth/decay of the system depends upon the value of ↵ as follows (substituting
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q = hu into our condition):

@tE + @x

"

✓

E +
g h2

2

◆

u

#

8

>

>

<

>

>

:

6 0 if ↵ > R
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u

2

2 +g h
⌘
�g hu@

x

Z�k0(u)u2

Ru2

> 0 if ↵ 6 R
⇣

u

2

2 +g h
⌘
�g hu@

x

Z�k0(u)u2

Ru2

(4.3.1.1)

i.e. we see energy decay if the friction e↵ect from ↵ and k0 is large enough to
balance the source and topography terms, and energy growth otherwise. Similarly,
the presence of the term kR in the conservation of momentum equation indicates a
dependence on ↵ for the change in momentum and velocity. From a flood modelling
perspective, the momentum and energy of a flood will be directly related to the
amount of damage it could potentially cause; our aim, therefore, is to consider
exactly how these variables behave over time as we change the value of ↵.

To do this, we will simplify the conditions for our test to a hypothetical, idealised
scenario that will enable us to calculate an exact solution for our extended shallow
water system that we can compare our simulation with. We consider a constant
rainfall process on a river spanning spatial domain x 2 [0, 10] and time domain
t 2 [0, 1], with topography Z(x) = 0.1, N = 100 meshpoints, and a CFL number
of 0.95. We prescribe periodic boundary conditions and assume a constant initial
height and discharge of

h(x, 0) = q(x, 0) = 1.0 8x 2 [0, 10]. (4.3.1.2)

The rainfall intensity is applied uniformly on the river as a function of time up the
final time T = 1:

R(t) = 1.0 8t 2 [0, 1]. (4.3.1.3)

q(x, 0) = 1

h
(x
,0
)
=

1

R(t) = 1

0 10

Figure 4.2: Diagram of the idealised scenario we are considering for our first
numerical test.

Using these parameter values and assuming that the spatial derivative in both the
mass and momentum equation can be neglected, our extended shallow water system
simplifies to:

@th = 1

@tq = (1� ↵)
q

h
where q = hu.

(4.3.1.4)
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We can solve explicitly for h, q, and u (which we note now only depend on t) as
follows:

h(t) = t+ 1

q(t) = (t+ 1)1�↵

u(t) =
q(t)

h(t)
=

(t+ 1)1�↵

t+ 1
= (t+ 1)�↵.

(4.3.1.5)

For the entropy relation (3.3.1.4), which simplifies under these conditions to

@tE =

✓

1

2
� ↵

◆

u2 + g h where E =
hu2

2
+

g h2

2
, (4.3.1.6)

we note that the energy is comprised of both the kinetic energy, KE = hu2/2, and
the potential energy, PE = g h2/2. In our case, we are only interested in the change
in kinetic energy, and thus our entropy relation becomes

@tKE =

✓

1

2
� ↵

◆

(t+ 1)�2↵

(

> 0 if ↵ 6 1
2

< 0 if ↵ > 1
2

. (4.3.1.7)

Using these equations, we can plot how the momentum, velocity, and change in
kinetic energy fluctuate over time depending on the friction level ↵, giving us a
total of seven separate regimes. We also measure these values in our simulations at
the midpoint of the domain (x = 5) to enable us to compare the accuracy of our
numerical scheme (in an admittedly idealised scenario) to the exact solution.

(i) ↵ < 0 : the friction e↵ect from the rain hitting the river acts with the flow,
resulting in an increase in momentum, velocity, and change in kinetic energy.
Such a regime is unrealistic, as additional momentum is being created even
though the rain is assumed to fall with zero momentum.
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(ii) ↵ = 0 : rain falling on the river does not produce any friction to slow the flow
down, and thus the velocity remains the same while the momentum increases
at the rate of the increase in water height. The change in kinetic energy is
positive but remains steady. Since momentum is still being produced, this
regime is also unrealistic.
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(iii) 0 < ↵ < 1
2
: friction is produced when the rain hits the river flow, but not

enough is produced to counter the increase in momentum. Both the velocity
and change in kinetic energy decrease over time, though the energy change still
remains positive. Though the velocity is decreasing, the rate is not enough to
reduce the momentum, and so the regime is also unrealistic.
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(iv) ↵ = 1
2
: similar to the previous case, the momentum increases and the velocity

decrease over time, though the rate at which this occurs is reduced for the
momentum and increased for the velocity. Unlike previous cases, however, the
change in kinetic energy is zero, which remains steady over time. This regime
is, like the previous cases, unrealistic from a physical perspective.
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(v) 1
2
< ↵ < 1 : once again, the momentum increases and the velocity decreases,

but the increase in friction causes the rate at which this occurs to reduce and
increase, respectively. The change in kinetic energy is now negative, but tends
to zero over time. This regime is again unrealistic.
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(vi) ↵ = 1 : the friction generated by the rain causes a large enough reduction in
velocity to balance the increase in height, and so momentum is conserved. The
change in kinetic energy is again negative and tends to zero. Since momentum
is conserved, this regime is realistic from a physical perspective.
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(vii) ↵ > 1 : the friction generated by the rain slows the flow at faster rate than
the increase in water height; momentum and velocity both decrease over time,
and the change in kinetic energy is again negative and tending to zero. The
reduction in momentum due to the higher friction e↵ect is physically realistic,
though whether taking ↵ > 1 is physically relevant remains an open question.
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Overall, our conclusion from this numerical test focusing on an idealised scenario
is that we have physically realistic solutions when the friction a↵ect ↵ � 1, as it
is within this regime that the momentum is either conserved of decreasing. As is
clear from both the equations and the simulations, this occurs when the reduction
in velocity is large enough to compensate for or balance the increase in water height.

The value of ↵ also has a significant impact on the change in kinetic energy, with
the rate being positive for ↵ < 1/2 and negative for ↵ > 1/2. It is also interesting to
note that for ↵ > 1/2, over time the rate of change tends to zero due to the reduction
in the velocity of the water, even though the momentum may still be increasing.

4.3.2 Comparison with experimental data

For our second test, we explore the accuracy of our numerical scheme by compar-
ing with data taken from the flume experiment run as part of the ANR project
METHODE at INRA-Orléans; we also compare our results to those obtained by
Delestre and James [2008], who considered only an addition to the conservation of
mass equation.

4m

0.2m

Figure 4.3: Visualisation of the flume experiment.

The experiment in question concerns a slope with a 5% gradient, an initial height
h0 = 0, and initial discharge q0 = 0. The topography for the slope is given by
Z(x) = (4 � x)0.05, we consider N = 1000 meshpoints, and we assume a CFL
condition of 0.95. Rain falls onto the slope uniformly at a constant rate within a
given time interval,

R(x, t) =

(

50 mm/hr if (x, t) 2 [0, 3.95]⇥ [5, 125]

0 otherwise
(4.3.2.1)

and we measure the discharge at the downstream edge of the slope up to time
T = 250s. For our simulation, we assume the rain-induced friction level ↵ = 1. The
hydrograph for the experiment is provided below in Figure 4.4.

The results from the simulation compare well with with the experimental data, par-
ticularly in the third and final phase when no rain is falling and the discharge is
decreasing gradually over time. For the initial phase, where the discharge is increas-
ing, the simulation matches well to begin with (up to around 25s) but subsequently
appears to increase at a slower rate than in the experiment; at t = 35s, for example,
the experiment shows a discharge level of 5.7 g/s, compared to the simulation which
is at 3.59 g/s. For the secondary phase, where the discharge has stabilised, while the
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Figure 4.4: Hydrograph for the uniform slope test with both the experimental data
and the simulated solution.

simulation does not capture the fluctuations that were present in the experiment,
it does maintain a smooth transition through the centre of the data, and begins to
decrease at the same point as the experiment.

Comparing the results of our simulation to those of Delestre and James [2008], we
see that our simulation matches much better in both the initial and final phases; in
the initial phase, their simulation increases a lot sooner than in the experiment, and
though it begins to decrease at the correct time, it also underestimates the total
discharge level in the final phase. For the secondary phase, their results are slightly
lower than ours but still consistent with the experimental data.

We would also like to consider the sensitivity of our numerical model to the number
of meshpoints N . To achieve this, we rerun this simulation for additional meshpoints
N = [10, 50, 100, 500] and compare the discharge value at the point (x, t) = (12, 125).
The convergence of the discharge value is shown below in Figure 4.5.
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Figure 4.5: Convergence of the discharge value for increasing meshpoints N .
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The results demonstrate good convergence of the discharge value as the number
of meshpoints increases, with minimal di↵erence in the outputs between N = 100
and N = 1000. Where we see significant di↵erence is for lower meshpoint sizes; for
N = 10 our simulation gives a poor estimation of the discharge and this continues
(though to a lesser degree) for N = 50. This is most likely an artefact of the
CFL condition we use to calculate the time-step �t for each iteration; at these
lower meshpoint values, the time-step generated is too large to accurately capture
the motion of the flow, resulting in a poor solution. For the higher meshpoint
values where the solution is much more accurate, we may still see discrepancies in
the solution due to the CFL dependancy, but the rate of convergence lends some
evidence to suggest that these di↵erences will be minimal.

4.3.3 Single-level and three-level cascade

For our final test, we consider a similar scenario to §4.3.2 but with a higher intensity
rainfall process on a slope with a much shallower gradient. We also compare how
the water flows when the gradient of the slope is constant across the full domain,
and how it flows when the gradient decreases periodically from the upstream to
downstream end. For our simulations, we consider a spatial domain x 2 [0, 12],
a final time t = 40s, a rainfall intensity R0 = 0.001 which falls across the entire
domain, N = 1000 meshpoints, and a CFL number of 0.95. Within this test, the
parameters that we want to change and measure the e↵ect of are the following:

(1) the total length of the rainfall process TR = 10, 20, and 30 seconds

(2) the topography of the slope onto which the rain falls, for which we consider a
constant slope (the single cascade) with Z1(x) = (12�x)0.005, and a decreas-
ing slope (the three-level cascade, see Figure 4.6) with

Z2(x) =

8

>

<

>

:

(12� x)0.006� 0.012 if x 2 [0, 4]

(12� x)0.005� 0.004 if x 2 [4, 8]

(12� x)0.004 if x 2 [8, 12]

(4.3.3.1)

(3) the rain-induced friction level ↵, for which we take ↵ = 0, 1, and 5 for the
single cascade and ↵ = 0 and 1 for the three-level cascade

4m 4m 4m

Figure 4.6: Topography for the three-level cascade, showing the decrease in
gradient as we move from the upstream to the downstream end.
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For our outputs, we measure the height of the flow across the entire domain at
the point the rainfall stops, and we also measure the height and discharge at the
downstream end (i.e. x = 12) up to the final time.

Starting with the height profile at t = TR, we see in Figure 4.7 that for the single-level
cascade, increasing the value of ↵ causes more water to accumulate at the upstream
end, as expected since the momentum of the water will decrease the higher we
take ↵. It is interesting to note also that for TR = 10, the water still accumulates
to the same maximum amount irrespective of the value of ↵, though at di↵erent
points in the domain; for longer rainfall times, this accumulation can still occur, but
potentially beyond the end of the domain if the water has enough momentum.
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Figure 4.7: Height profiles for the single-level cascade for varying values of
rain-induced friction ↵ at the rainfall end time TR = 10, 20, and 30.

For the three-level cascade shown in Figure 4.8, the reduction in gradient induces
multiple waves to be formed, though these waves become more smoothed out as the
rainfall time increases. This e↵ect is reduced as ↵ is increased, which is consistent
with our expectation since the water flow will be more slowed down. Unlike the
single-level cascade, the flows do not accumulate to the same amount, though this
may be due to the length of the domain.

For the second part of our numerical test, we consider the height and momentum
profiles over time at the end of the domain (x = 12). For the single-level cascade
(see Figure 4.9), we see that increasing the friction level ↵ extends the height profile
of the flow, causing it to decrease at a later time. This occurs for all lengths of
rainfall TR, though notably we see that as TR increases the length of time for which
the flow plateaus is decreased.

For the momentum, the change in friction and length of rainfall has a much more
pronounced e↵ect. For TR = 10, the three friction levels result in much the same
profile though slightly shifted as the level increases. For TR = 20 and 30, however,
the profiles are more varied, with the momentum tending to change rather linearly
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Figure 4.8: Height profiles for the three-level cascade for varying values of
rain-induced friction ↵ at the rainfall end time TR = 10, 20, and 30.

for ↵ = 0 but showing a much more curved profile for ↵ = 5. We can also see that
for TR = 30, the momentum is decreasing when the rainfall stops for ↵ = 0 and 1,
but continues to rise and at an increased rate for ↵ = 5.

The three-level cascade shown in Figure 4.10 exhibits much the same behaviour as
the single-level cascade, with perhaps the most notable changes being in the height
profile; for the single-level cascade the height profile for ↵ = 0 remains consistently
below that for ↵ = 1, but for the three-level cascade this does not hold true between,
approximately, t = 10 and t = 20. The momentum profile for the three-level cascade
is very similar in behaviour to the single-level.

4.4 Conclusion

Since the envisioned application of our extended shallow water model was to real-
world problems of flood inundation, it is vital that we have an accurate numerical
method to simulate our extended shallow water system. Existing approaches such
as finite di↵erence or finite volume can be used, but they fail to ensure certain
properties that we would like our method to have. The alternative approach we
took was to instead use a kinetic formulation, rewriting our shallow water system
as a single kinetic equation (which is easier to solve and guarantees the properties
we want) which can then be solved using a finite volume method to find the original
variables (h, q).

To demonstrate the applicability and viability of the shallow water system and as-
sociated kinetic scheme, we ran a number of numerical simulations of our model.
Our focus was on demonstrating the e↵ect the rain-induced friction level, ↵, has on
the height and momentum profiles of the flow. In §4.3.1, we showed that increases
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Figure 4.9: Height and momentum profiles over time for the single-level cascade
for varying values of rain-induced friction ↵ at the domain end x = 12.

or decreases in the momentum, velocity, and energy could be directly linked to par-
ticular regions of ↵, while in §4.3.3 we saw that increasing the value of ↵ slows down
the propagation of the flow (as one would expect). This is particularly important in
modelling flood inundation and being able to predict the position of the leading edge
of the flood event, thus justifying why it is necessary that these terms be included
in the model.
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Figure 4.10: Height and momentum profiles over time for the three-level cascade
for varying values of rain-induced friction ↵ at the domain end x = 12.
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Chapter 5

A stochastic approach to
modelling rainfall

Thus far, we have shown how we can incorporate the meteorological phenomena that
lead to flood inundation in our shallow water model in a mathematically rigorous
manner (specifically, through adapting the boundary conditions in the Navier-Stokes
equations) and developed a robust kinetic scheme that we can use to model the
overall system numerically. We have not, however, addressed the question of how
to actually model the precipitation and infiltration e↵ects themselves; in our deriva-
tion of the shallow water system from Navier-Stokes in §3.1 and §3.2, we included
the precipitation and infiltration e↵ects as inflow and outflow boundary conditions
without specifying their exact form, and in all of the numerical tests we ran in §4.3
the rainfall rate was assumed to be a given function of space and time.

Within this chapter we will take a step back and consider the modelling of the
precipitation as a stochastic di↵erential equation. In §5.1 we will give a brief dis-
cussion of the background and general usage of stochastic processes to modelling
physical phenomena, and note some of the drawbacks of such an approach. In §5.2,
we will present a number of approaches of increasing complexity for our stochastic
equation for modelling the rainfall term; we will then combine the most realistic
approach with a novel technique for incorporating observation data in §5.2.2 to give
a new approach to predicting precipitation rates, reflecting both observed values
and stochastic e↵ects. Finally, we will present some techniques used to model such
equations numerically in §5.3 and §5.4, in particular demonstrating how the im-
proved Multilevel Monte Carlo method introduced in Giles [2006] can be applied
to our extended shallow water system, and present some numerical simulations to
demonstrate the validity of our approach in §5.4.3.

5.1 An introduction to stochastic processes

Before considering the representation of the precipitation, we will give a basic in-
troduction to stochastic processes and stochastic di↵erential equations, and present
some background to their application to modelling physical phenomena. Much of
this initial background comes from Kloeden and Platen [1999] and Lord et al. [2014].
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5.1.1 Motivation

We begin by considering a very simple question: why do we care about stochastic
modelling?

The simple answer is that stochastic modelling better reflects reality than deter-
ministic (i.e. non-stochastic) modelling approaches. When applying mathematical
techniques and methods to real world situations, the analysis will typically involve
representing the problem as a system of ordinary or partial di↵erential equations
(referred to as ODEs and PDEs, respectively) and there are a number of methods
for solving such equations.

Around the end of the 19th Century, the prevailing mathematical theory was that
if all initial data for a problem could be collected, it was possible to predict the
future (i.e. the solution to the problem) with absolute certainty. Albert Einstein,
continuing work which had previously been developed by botanist Robert Brown,
showed this belief to be false [Einstein, 1905]. The example used was the motion
of a particle of dust in a volume of water (as depicted in Figure 5.1); the motion
of the particle will be a↵ected by its interactions with the water molecules, which
are too complex to be described deterministically and thus require a stochastic
interpretation.

DW

W

W

W

W

W

water flow

Figure 5.1: As the dust particle flows in the water, its motion will be a↵ected by
its interactions with the water molecules.

We could use ODEs or PDEs to give a good representation of the motion of the
particle (and indeed, the stochastic equations we use will build upon an ODE or
PDE framework), but they cannot describe the random interactions that occur, and
so will fall short of giving an accurate enough solution.

We deal with this limitation through the use of stochastic di↵erential equations
(SDEs), whereby one or more of the terms in the equation is a stochastic process
which models the random interactions that occur in the system, and thus the solution
to the equation itself depends on a stochastic variable ! in addition to the space-
time variables (x, t). The example above of the stochastic motion of a dust particle
in water is often referred to as Brownian motion, in reference to Robert Brown’s
work on the problem.

The use of SDEs is not restricted to merely physical phenomena as already discussed;
they are also used in modelling stock prices [Black and Scholes, 1973, Merton, 1973]
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and population dynamics [Kloeden and Platen, 1999]. In each case, there is some
degree of randomness that we wish to accurately model which cannot be achieved
using an ODE; for example, in a stochastic population model

dXt = aXt

✓

1� Xt

K

◆

dt+ �Xt

✓

1� Xt

K

◆

dWt (5.1.1.1)

the inclusion of the stochastic term (multiplied by intensity �) can vastly change the
rate at which the population reaches carrying capacity (K) or possibly extinction.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

time

X
t

� = 0
� = 2

Figure 5.2: Comparison of deterministic (–) and stochastic (–) model of population
growth with X0 = 10, standard growth rate a = 2, and carrying capacity K = 30.

5.1.2 Wiener process

The Wiener process forms an important part of the development of stochastic dif-
ferential equations, and is key in the development of more complicated stochastic
processes. Due to its importance, we will explore its use in more detail, enabling us
to create a foundation for developing these techniques in established probabilistic
methods.

Background

We introduced the idea of stochastic modelling by considering a single particle of
dust in a volume of water, which will move in an erratic and irregular fashion
due to its interactions with the water particles. However, if we were to instead
consider a cloud of dust particles suspended in water (see Figure 5.3), the cloud
will spread throughout the volume of water due to di↵usion over time and the
concentration of dust at a given spatial position will change in a smooth manner. We
can hence model the motion of the cloud mathematically using an ordinary or partial
di↵erential equation. This therefore gives us a rather interesting phenomenon; the
erratic motion of the individual particles gives rise to a smooth motion of the mass
of particles when considered as a whole.
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time

Figure 5.3: The smooth motion of the dust cloud as a whole is contrasted by the
erratic motion of a single particle.

The Wiener process, named after American mathematician Norbert Wiener, was
designed as a way to model the motion of these individual particles, and paths of
the process exhibit similar behaviour to the erratic motion of real dust particles.
The Wiener process is widely used in mathematical models involving noisy systems;
one of the main reasons for such widespread use is that, in real world examples, if
the noise comes from a number of independent random changes, then by the Central
Limit Theorem it is predicted that the net result will be normally distributed, a trait
shared by increments of the Wiener process.

Definition

We define a standard Wiener process, given by W = {W (t), t � 0}, to be a
continuous Gaussian process with independent increments such that W (0) = 0,
E(W (t)) = 0, and

Var(W (t)�W (s)) = t� s (5.1.2.1)

for all 0  s  t. From (5.1.2.1) we can determine that W (t)�W (s) is N (0; t� s)
Gaussian distributed for 0  s  t and

Var(W (t)) = t. (5.1.2.2)

The variance of the Wiener process will therefore grow unbounded over time, whereas
the mean will always remain as zero. This means that, as time increases, the values
attained by the sample path of such a process will become larger, in both a positive
and negative sense to achieve a continued mean of zero.

Approximating a Wiener process

Since our intention overall is to use numerical methods to simulate the evolution of
a stochastic di↵erential equation, we will require some method for approximating a
standard Wiener process; we can do this using a scaled random walk. Without loss
of generality, suppose our process is over the interval [0, T ]; we split this interval
into N equal subintervals

0 = t0 < t1 < · · · < tk < · · · < tN = T (5.1.2.3)
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Figure 5.4: Mean and variance for 100 sample paths of W (t); as expected, the
variance evolves as approximately t whilst the mean remains close to zero.

where the length of each subinterval is given by �t = T/N . From this, we can
construct a simple stepwise random walk, which we denote by YN(t), by taking
steps of length ±

p
�t, each equally probable, at the end of each subinterval. We

therefore define
(

YN(t0) = 0

YN(tk) = (X1 +X2 + · · ·+Xk)
p
�t 8j = [1 : N ]

(5.1.2.4)

where the value of Xj is either ±1, with equal probability. We can then define YN(t)
through a linear interpolation of the values (5.1.2.4), giving

YN(t) = YN(tk) +
t� tk

tk+1 � tk
(YN(tk+1)� YN(tk)) (5.1.2.5)

for tk < t < tk+1 and k = [0 : N ], with initial condition SN(0) = 0. In practice, we
would use a (pseudo-)random number generator to generate values for Xk which we
can then use to calculate (5.1.2.4) and hence (5.1.2.5).

5.1.3 Stochastic di↵erential equations

We will now present the concept of a stochastic process and a stochastic di↵erential
equation, which ultimately we will use to model the precipitation phenomena.

Stochastic integral

We can write the general form of an ordinary di↵erential equation (ODE) as the
following system of equations:

8

<

:

dx(t)

dt
= a(x(t), t)

x(t0) = x0

(5.1.3.1)
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Figure 5.5: Four sample paths of the Wiener process.

for a given function {a(·, t) : t 2 T} and time interval T. Through a simple rear-
rangement, we can rewrite (5.1.3.1) in the form

dx(t) = a(x, t)dt (5.1.3.2)

and thus as the integral equation

x(t) = x0 +

Z t

t0

a(x(s), s)ds. (5.1.3.3)

The uniqueness and existence of a solution x(t) = x(t, x0, t0) can be ensured under
certain regularity assumptions on the function a(x, t), such as Lipschitz continuity.

We can think of a stochastic di↵erential equation (SDE) as an ODE with additional
”randomness”. We note, however, that the inclusion of random e↵ects in an ODE
does not necessarily lead to a stochastic equation, and thus we need to be clear on
exactly what sort of equation we are defining. Consider the first possibility of an
ODE with random coe�cients, a random initial value, or that is being forced by a
stochastic process; for example

8

<

:

dx(t)

dt
= a(!)x(t) + b(t,!)

x(0) = x0(!)
(5.1.3.4)

where the forcing term b is continuous for each !. This is known as a random
di↵erential equation, and is solved for each sample path as an ODE:

x(t,!) = ea(!)t
✓

x0(!) +

Z t

0

e�a(!)sb(s,!)ds

◆

. (5.1.3.5)
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The second possibility, and the one that we will be using, is when the forcing term
is a stochastic process; the dynamics of this formulation can be written symbolically
as

dXt = a(Xt, t)dt+ b(Xt, t)⇠tdt (5.1.3.6)

whereXt is a stochastic process; that is, a sequence of random variables on a common
probability space (⌦, A, P ) which describes the evolution of a probabilistic system
over time. If the process is defined at discrete instants of time then we call this a
discrete stochastic process; similarly, a continuous stochastic process is defined for
all time instants, in either a bounded interval [0, T ] or an unbounded interval [0,1).

In this formulation, the function a(Xt, t) represents the deterministic drift term
(comparable to the term a(x, t) given in (5.1.3.2)), which is perturbed by a di↵usion
term b(Xt, t)⇠t. The ⇠t are standard Gaussian random variables for each t whilst
b(Xt, t) represents the intensity of the randomness; the di↵usion term is typically
referred to as Gaussian white noise.

In much the same way that we rearranged our ordinary di↵erential equation into
an integral equation, we can do the same for (5.1.3.6); for each sample path !, we
interpret the di↵erential equation as

Xt(!) = Xt0(!) +

Z t

t0

a (Xs(!), s) ds+

Z t

t0

b (Xs(!), s) ⇠s(!)ds. (5.1.3.7)

For the Gaussian random variables ⇠t, we note that if we set a = 0 and b = 1 in
(5.1.3.6), we have

dXt = ⇠tdt ) dXt

dt
= ⇠t. (5.1.3.8)

Since ⇠t should be the derivative of pure Brownian motion, we can equate it to the
derivative of a Wiener process Wt, and hence our integral equation (5.1.3.7) becomes

Xt(!) = Xt0(!) +

Z t

t0

a (Xs(!), s) ds+

Z t

t0

b (Xs(!), s) dWs(!). (5.1.3.9)

From a first look, we seem to be in a good position to continue; however, this
formulation presents something of a problem. A significant property of the Wiener
process is that it is non-di↵erentiable, and so the Gaussian random variable ⇠t does
not exist as a conventional function. We can conclude, therefore, that the second
integral in (5.1.3.9) does not exist as an ordinary integral.

We fix this problem through the use of the Itô integral. Rather than defining the
integral using standard calculus, we define it as the limit of a sequence of random
variables over some partition of the interval [t0, T ], which in the limit will tend to
zero. This approach is possible if the integrand of this second integral in (5.1.3.9) is
what is known as a non-anticipating or adapted process.

Definition. A function G(t) is called a nonanticipating or adapted function of t if
for all s and t such that t < s, G(t) is statistically independent of G(s)�G(t).

This definition e↵ectively states that the value of the function G(t) should only
depend on information up to time t, and thus independent of how the Wiener process
behaves in the future. This consideration is motivated not only by its requirement
in deriving the Itô integral, but also because the idea occurs in nature, where the
unknown future cannot a↵ect the present.
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5.2 Stochastic precipitation

With the framework for our stochastic modelling approach built, we now consider
how we can apply these ideas to model the precipitation process as a stochastic
di↵erential equation. We recall the extended shallow water system that we developed
in Chapter 3:

@th+ @xq = S

@tq + @x



q2

h
+ g

h2

2

�

= � g h@xZ + S
q

h
�
⇣

kR � kI + k0

⇣ q

h

⌘⌘ q

h
.

(5.2.0.1)

As our desire is to consider modelling of the precipitation term only, we will simplify
this equation by assuming that infiltration is zero and thus take S = R.

In §5.2.1 and §5.2.2 we will consider increasingly more complex stochastic repre-
sentations of the rainfall, before considering the issue of numerical approximation
and Monte Carlo simulation in §5.2.3 and §5.3. Finally, in §5.4, we will consider im-
provements upon the standard Monte Carlo approach, giving a basic introduction to
Quasi Monte Carlo simulation and exploring in more detail Multilevel Monte Carlo
and its application to flood and precipitation modelling.

5.2.1 Simple stochastic rainfall

We begin by considering the most simple stochastic representation of the precipi-
tation term: that the source term S is modelled as pure white noise in space and
time. We define the rainfall intensity Si,j in a given cell ci = [xi�1/2, xi+1/2] over
time interval [tj, tj+1] through the integral equation

Si,j =

Z x
i+1/2

x
i�1/2

Z t
j+1

t
j

(@xtw) dtdx (5.2.1.1)

where w(x, t) represents a white noise process. The assumption that the rainfall is
pure white noise implies that the intensity at this cell should be independent of the
intensity at any other spatial-temporal cell; that is

Si,j is independent of Sk,l () i 6= k or j 6= l. (5.2.1.2)

We model the rain intensity (5.2.1.1) by sampling from a Normal distribution, such
that Si,j 2 N (0,�x�tj+1), where �x is the grid cell size (taken as constant across
the spatial domain) and �tj+1 the time step across interval [tj, tj+1], with �tj+1 =
tj+1�tj. To generate samples from this distribution we use the Box-Muller transform
[Box and Muller, 1958] as follows:

(1) We generate two independent random variables U1 and U2 from a uniform
distribution in the interval [0, 1]

(2) We define
X =

p

�2 ln(U1) cos(2⇡U2) 2 N (0, 1)

Y =
p

�x�tj+1X;
(5.2.1.3)
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then Y 2 N (0,�x�tj+1) as required. The Box-Muller transform is chosen to
generate the normally distributed values due to the simplicity of its implementation
and integration into our existing shallow water code; other methods (such as the
Ziggurat algorithm or the Marsaglia polar method) can also be used.

Applying this method in a simple example over the space-time interval [0, 3]⇥ [0, 2]
with �x = 0.1 and �tj+1 = �t = 0.1, we get the following heatmap plot for the
rainfall intensity:
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Figure 5.6: Heatmap plot of the stochastic rain function, showing the intensity of
the rainfall over spatial-temporal domain [0, 3]⇥ [0, 2].

The heatmap Figure 5.6 highlights a problem with using pure white noise as our
stochastic representation of the rainfall: while the intensity of the rainfall may follow
a random process, to be realistic there should be some degree of correlation in both
space and time. Since the assumption of the rainfall as pure white noise implies that
each spatial-temporal cell is uncorrelated, we will need to go beyond this if we want
to determine a stochastic representation for the precipitation that has some degree
of realistic correlation. To achieve this, we impose the following conditions on our
stochastic representation:

- the closer two cells are (spatially and temporally), the more likely their inten-
sities are to be correlated

- two cells that are next to one another can be uncorrelated, but this should
have a low probability of occurring

These two points infer that sudden jumps in the rainfall intensity can occur, but
they shouldn’t occur too often.

Going back to our stochastic di↵erential equation formulation, an obvious first ap-
proach would be to model the stochastic precipitation as a simple Wiener process,
i.e.

dS(x, t) = b(x, t)dWt. (5.2.1.4)

We present in Figure 5.7 the output from modelling this formulation on the domain
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(x, t) 2 [0, 4]⇥ [0, 2] for a single sample path ! with two intensity functions:

b(x, t) = 1 and b(x, t) =
(x� 2)2

4
(5.2.1.5)
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Figure 5.7: Representation of the precipitation, S(x, t), as a Wiener process with
both a constant and spatially-variant intensity function b(x, t).

The formulation (5.2.1.4) will ensure a reasonable correlation in time and thus go
some way to achieving our first condition, but the lack of spatial variability (aside
from the di↵usion function) presents something of an issue and makes it di�cult
to achieve the second condition. To address this, we consider the way in which
precipitation is produced. In general, rainfall does not occur as a single event but as
a collection of storms, each with their own start time, duration, and location. This
suggests, therefore, that rather than considering our rainfall as a single stochastic
process, we should instead consider it as a summation of stochastic events.

In light of this, we adopt for our stochastic representation a weather generator ap-
proach (see §2.4 and the references contained therein for an overview of the relevant
literature). We assume that our precipitation is represented by a collection of storm
cells which exist in the full spatial-temporal domain ⌦. We model the storm vari-
ables as stochastic processes:

- storm arrival Ts = Pois(�)

- storm duration Td = Exp(⌫)

- storm location Tl = Unif(·) on the spatial domain

The parameters � and ⌫ are assumed to be given, and will in general be based on
real-world measurements; for example, we can use previous storm occurrences to
estimate the expected duration of a single storm, which will then determine the
value ⌫. Each individual storm cell will occupy a subset of the domain ⌦, which
we denote by ⌦j for j = [1 : J ], incorporating these three variables. We present in
Algorithm 5.1 a simplified algorithm of the weather generator approach.

We can then model the intensity of each individual storm as a separate Wiener
process, with the overall precipitation function given by the combined equation

dS(x, t) =
J
X

j=1

I⌦
j

⇣

b(x, t)dW (j)
t

⌘

. (5.2.1.6)
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Algorithm 5.1 Weather generator algorithm

1: procedure WeatherGenerator

2: specify final time T
3: initialise total storm time Tmax = 0
4: counter for the storm cell number j = 0
5:

6: while Tmax < T do
7: j = j + 1 % iterate storm count
8: Ts(j) = Pois(�) % sample time to next storm
9: Tmax = Tmax + Ts(j) % track cumulative storm time

10:

11: Td(j) = Exp(⌫) % sample duration of next storm
12: Tl(j) = Unif(·) % sample location of next storm
13: end while
14: end procedure

This formulation ensures that the closer two cells are the more likely they are to be
correlated, and also allows for jumps in the intensity that do not occur too regularly.

To demonstrate this approach, we provide in Table 5.1 and Figures 5.8 and 5.9 an
example of 3 generated storms with respective storm arrival, duration, and location
values; combining these storms will then give us our overall precipitation function.

Table 5.1: Generated values for the 3 storms and associated domain ⌦j.

Storm no. j Ts(j) Tmax Td(j) Tl(j) ⌦j

1 0.3 0.3 1.2 3.6 [3.5, 3.7]⇥ [0.3, 1.5]
2 0.7 1.0 0.8 0.8 [0.7, 0.9]⇥ [1.0, 1.8]
3 0.2 1.2 0.4 1.2 [1.1, 1.3]⇥ [1.2, 1.6]
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Figure 5.8: Surface plots for each of the 3 storm cells generated.

We note that we have assumed a given intensity function b(x, t) which is identical
for all generated storms. Our weather generator algorithm detailed above could,
however, be extended to allow for di↵erent ”variations” of storms which each have
di↵erent parameter rates. This work is left for future research.
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Figure 5.9: Surface plot for the full precipitation.

5.2.2 Rainfall observation data

The approaches we have detailed thus far to modelling the precipitation stochasti-
cally have focused on the di↵usion term, which we have represented as a stochastic
process (in particular, pure white noise ! and a Wiener process W ). In this section,
we would like to explore the deterministic drift term and an approach that should
ensure the precipitation term reflects reality.

Figure 5.10: River network in the United Kingdom. Contains OS data © Crown
copyright and database right (2017)

Within industrial applications the basis for any prediction of future rainfall rates
is the use of observation data sourced from rain gauges, which record the daily
precipitation rate at a given location. In the United Kingdom, there is an extensive
network of rain gauges which are administered by the Met O�ce and monitored
daily. There is also an archive of historical data for these gauges, with the data for
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some gauges going back over 100 years [Met O�ce, 2017]; the length of these records
provides greater assurance on the accuracy of any predictions of future rates.

Our intention is to incorporate observation data from one or more rain gauges into
our stochastic precipitation equation. This can be achieved by adding a drift term,
which we will denote very generally by a(·), to our stochastic equation to give

dS(x, t) =
J
X

j=1

I⌦
j

⇣

a(·)dt+ b(x, t)dW (j)
t

⌘

(5.2.2.1)

through which we hope to capture any underlying patterns in the rainfall at the
location. The question thus becomes exactly how to define this function based on
the observation data we have available.
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Figure 5.11: Total monthly precipitation for an example rain gauge.

In Figure 5.11 we present the data from the Eastbourne weather station, which has
around 60 years of records (a reasonably long length of record). However, we can
notice very quickly that it will be problematic to use this data set in its entirety,
as the data is too sporadic for any meaningful conclusions or approximations to be
made. We therefore aggregate the data as follows:

(1) Organise the data from the rain gauge with the total monthly precipitation
for each year in columns

(2) For each month, calculate the average monthly precipitation (for months where
data is missing, we exclude this from our averaging)

(3) Divide the average by the number of days in each month to determine a total
daily precipitation rate

We provide in Table 5.2 a cross-section of this aggregation applied to the data from
the Eastbourne weather station, together with the resulting rainfall intensity plot
in Figure 5.12.
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Table 5.2: Aggregation of the rain gauge data from the example Eastbourne
weather station.

Month Days 1959 1960 · · · 2016 Average Daily precip.

Jan 31 109.5 82 · · · 167.8 83.7 2.70
Feb 29 0 52.6 · · · 53.7 54.3 1.87
...

...
...

Dec 31 196.7 125.3 · · · 12.3 91.5 2.95
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Figure 5.12: Average total daily precipitation for the rain gauge.

Looking at the aggregated data, we can see a clear seasonality in the precipitation
rate that we would like to capture, suggesting that some form of sinusoidal line would
fit the data best. To achieve this, we introduce a new time variable s measured in
days, and define January 1st as s = 1, January 2nd as s = 2, and so on, up to
s = 366 for December 31st. We also assume that the average daily precipitation
rates are assigned to the first day in each month. Our approximation to the data is
then given by

a(s) =

✓

rmax � rmin

2

◆

cos

✓

2⇡ (s� smax)

366

◆

+

✓

rmax + rmin

2

◆

. (5.2.2.2)

The choice of a cosine curve is to ensure we capture the seasonality of the data, and
we multiply by 2⇡/366 to ensure we fit our curve to the full year of data. We subtract
smax, the day on which the maximum daily precipitation rmax occurs, to ensure
our approximation captures the maximum precipitation rate and the time at which
this occurs, since from a flood modelling perspective the maximum amount of rain
we can expect to see is going to have the greatest impact. The final adjustments,
multiplying by half the range and adding the average, ensure we get the correct
vertical fit for our cosine curve to the data.

Applying this to our gauge from above, we get the plot shown in Figure 5.13.
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Figure 5.13: Fit of the approximation a(s) to the exact data.

We can see that the fit to the data is reasonably good, though we do overestimate
the precipitation in the second half of the year. Applying this approach to data from
two other rain gauges, we again get a good approximation of the daily precipitation
rate.
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Figure 5.14: Approximation for two other rain gauges.

Bringing the various components together, our stochastic precipitation equation is
given by

dS(x, t, s) =
J
X

j=1

I⌦
j

⇣

a(s)dt+ b(x, t)dW (j)
t

⌘

a(s) =
1

�

✓

rmax � rmin

2

◆

cos

✓

2⇡ (s� smax)

366

◆

+

✓

rmax + rmin

2

◆�

with dual time scales: t 2 [0, T ] for the underlying unit of time and s 2 [1 : 366] in
days.
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Before we continue, we take a second to explain each term in this formulation, how
it contributes to approximating the rate of precipitation, and how each term will be
estimated. The formulation states that the precipitation is formed as the summation
of J storm cells, with the spatial-temporal domain ⌦j for each cell generated as a
combination of stochastic processes. The intensity for each cell is given by a stochas-
tic equation, with a drift term a(s) derived from observation data and a di↵usion
term given by a Wiener process. This drift term follows a sinusoidal formulation
fitted to observation data to capture the seasonality of the rainfall and, due to the
di↵ering time scales, is scaled by a variable � which will depend on the units used
for the time t (for example, if t is in days then � = 1; if t is in hours, then � = 24).

5.2.3 Numerical approximation

The standard approach to approximating a stochastic di↵erential equation follows
much the same framework as that for ordinary di↵erential equations; the main dif-
ference, as one would expect, is the treatment and approximation of the Wiener
process. We also note that the solution to the SDE will have an additional depen-
dence on the sample path !, and thus each time we run our numerical simulation
we will have a di↵erent solution. This issue will be addressed in greater detail in
§5.3.

Before considering the numerical approximation of our full stochastic precipitation
term S(x, t, s), we will first consider a simplified version for a single storm cell

dS(x, t, s) = a(s)dt+ b(x, t)dWt (5.2.3.1)

with initial condition S(·, 0, s) = S0(·, s). We partition the time domain [0, T ] into
a sequence of discretisation points

0 = ⌧0 < ⌧1 < · · · < ⌧M = T (5.2.3.2)

where ⌧m = ⌧m�1 +�⌧m for m = 1, . . . ,M , and using the Euler-Maruyama method,
integrate (5.2.3.1) over the time interval [⌧m, ⌧m+1] to get

Z ⌧
m+1

⌧
m

dS(x, t, s) =

Z ⌧
m+1

⌧
m

a(s)dt+

Z ⌧
m+1

⌧
m

b(x, t)dWt

S(x, ⌧m+1, s)� S(x, ⌧m, s) = a(s) (⌧m+1 � ⌧m) +

Z ⌧
m+1

⌧
m

b(Xt, t)dWt.

(5.2.3.3)

We approximate the stochastic process S(x, ⌧m, s) by Ym(x, s) and the integral as
Z ⌧

m+1

⌧
m

b(x, t)dWt ⇡ b(x, ⌧m)(W⌧
m+1 �W⌧

m

) (5.2.3.4)

giving us, for m = [0 : M � 1],
(

Ym+1(x, s) = Ym(x, s) + a(s)�⌧m+1 + b(x, ⌧m)�Wm+1

Y0(x, s) = S0(x, s).
(5.2.3.5)

where, for simplicity, we define the Wiener process term as

W⌧
m+1 �W⌧

m

= �Wm+1 2 N (0,�tm+1), (5.2.3.6)
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which we can approximate using the method we detailed in §5.1.2. Extending this
definition to include all storm cells generated, our numerical approximation for m =
[0 : M � 1] is given by:

8

>

>

<

>

>

:

Ym+1(x, s) = Ym(x, s) +
J
X

j=1

I⌦
j

⇣

a(s)�⌧m+1 + b(x, ⌧m)�W
(j)
m+1

⌘

Y0(x, s) = S0(x, s).

(5.2.3.7)

5.3 Monte Carlo methods

We demonstrated in §5.2.3 how our stochastic precipitation term could be approxi-
mated numerically. For each storm cell we generate a new sample path ! which is
used to determine the intensity of the precipitation for that particular cell, and each
time we run our shallow water simulation, we will get a new sequence {⌦j,!j}Jj=1

which will give a unique precipitation S as the source term. We need to determine,
therefore, how we can make sense of the outputs from these simulations. The Monte
Carlo method is one such possible approach.

To explain the typical procedure for a Monte Carlo simulation (and to motivate
the approach we will use for our shallow water system), we will consider a very
simple example of using the Monte Carlo method to approximate the integral of the
equation y = (2x � 1)2 on the domain [0, 1], as shown in Figure 5.16. We proceed
as follows:

(1) define our domain of consideration, (x, y) 2 [0, 1]2

(2) model the system as one or more distributions, in this case a uniform distri-
bution U([0, 1]2)

(3) randomly generate N points (inputs) over the domain following the distribu-
tion

(4) perform a deterministic computation on the inputs; for this we count the
number of points, Np, below the line y = (2x� 1)2

(5) calculate the quantity of interest; the integral of our equation over the domain
x 2 [0, 1] is approximated by the ratio of points below the line to the total
number of points (Np/N)

As we generate a greater number of inputs N , our calculated integral will become
closer to the true solution (in this case, 1/3).

Applying the Monte Carlo method to our shallow water system with stochastic
precipitation, our approach is as follows:

(1) define our space-time domain of consideration, (x, t) 2 [0, L]⇥ [0, T ]

(2) model the system as one or more distributions; in this case, we model the
stochastic component of our precipitation as a Wiener process on space-time
domain {⌦j}⇥ [0, T ]
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Figure 5.15: Monte Carlo simulation to determine the integral of the function
y = (2x� 1)2 over the domain [0, 1]2.

Table 5.3: Calculating our Monte Carlo approximation and associated error.

Points N Count Np Calculated integral Relative error

10 1 0.1 70%
100 28 0.28 16%
1000 347 0.347 4.1%
10000 3313 0.3313 0.61%

(3) randomly generate sample paths !j over the domain for each storm cell gen-
erated

(4) perform a deterministic computation on the inputs; that is, run our shallow
water model with inputs !j

(5) calculate the quantity of interest; specified below

The first four steps are relatively simple to define; the question is how to determine
the quantity of interest we want to measure. For each simulation we run, the outputs
from our shallow water system will be the height and momentum at each spatial
and temporal grid point.

In modelling flood inundation, our interest is in understanding the water height and
the probability that it will exceed a given value. Considering the expected maximum
water height E[hmax] at just the final time T may mean we miss events that occur
prior to that, so the approach we take instead is to calculate for simulation k the
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maximum water height achieved at any point in space and time:

Mk = max
i,n

h(xi, tn) (5.3.0.1)

Calculating this for each of our N simulations, we can then define our shallow water
Monte Carlo estimator as

E[hmax] ⇡ µSW-MC =
1

N

N
X

k=1

Mk (5.3.0.2)

The final step in the process we outlined above thus becomes

(5) calculate the quantity of interest, the average maximum water height over
time:

µSW-MC =
1

N

N
X

k=1

Mk. (5.3.0.3)

A problem with the estimator (5.3.0.2), however, is that for a very large domain
what occurs in one part of the domain (a very high water height, for example)
may not be reflected in another part of the domain (where there might be almost
no change in the water height). This will be particularly true if we consider more
complex topographies, since this will often have a large influence on the level of
water height produced. Another approach, therefore, is to consider the maximum
at each grid-point instead:

Mk(xi) = max
n

h(xi, tn) (5.3.0.4)

and hence calculate our estimator as

µSW-MC(xi) =
1

N

N
X

k=1

Mk(xi) (5.3.0.5)

We note also that, instead of considering just the average, we could also calculate
from these values a probability distribution of the chance that any given water height
will be exceeded.

5.4 Quasi and Multilevel Monte Carlo

A major problem with the standard Monte Carlo method is the computational cost
required to achieve an accurate solution. To achieve O (") accuracy, we require the
number of samples of the discretisation N = O("�2) and the time step �t = O(");
thus the computational cost can be calculated as

cost =
MT

�t
=

O("�2)

O (")
= O

�

"�3
�

(5.4.0.1)

where MT/�t is the total number of steps we have to compute. In practice, this
means that if we wanted to achieve a 10x increase in accuracy, the computational
cost will increase by 1000. It is desirable, therefore, to look at ways in which this
cost can be reduced, and there are two main methods for consideration:
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- Quasi Monte Carlo

- Multilevel Monte Carlo

Our primary focus will be on Multilevel Monte Carlo, but we will give a brief
overview of Quasi Monte Carlo as well for completeness.

5.4.1 Quasi Monte Carlo

When we considered the application of the standard Monte Carlo to the simple
example of finding

Z 1

0

(2x� 1)2dx (5.4.1.1)

we generated N random points uniformly over the domain [0, 1]2, and approximated
the integral as the ratio of points below the line y = (2x� 1)2 to the total number
of points. The positioning of these points in the domain is uniform but ultimately
random, and if we look at the plots in Figure 5.16 we can see that there are regions
where the density of points is higher than in others.

The Quasi Monte Carlo (QMC) approach [Niederreiter, 1992] is to change the way in
which the random numbers used to cover the domain are generated. The sequence of
random numbers is chosen in such a way that the number of points in the sequence
that fall in an arbitrary subdomain D is close to proportional to the measure of
D (i.e. if D is a quarter of the total domain, then the number of points falling in
D should be close to a quarter). The measure of equidistribution of points in a
domain is known as the discrepancy, and thus the sequence of random numbers for
Quasi Monte Carlo should have low-discrepancy. The rate of convergence for Quasi
Monte Carlo is increased to O (N�1) from O (N�0.5) and hence we have a lower
computational cost.

For our specification application of Monte Carlo to stochastic precipitation, the
randomly generated inputs are the sample paths !j that we use to approximate the
Wiener processes; thus the analogy with the standard Quasi Monte Carlo approach
is that the sequence of samples paths !j should have low-discrepancy (in some
manner). One possible approach to ensure this is to use a constrained random walk,
fixing the value of the sample path at the start and end times:

(

!j(0) = 0

!j(T ) = xj

(5.4.1.2)

where the sequence of points {xj} is distributed in such a way as to have low-
discrepancy. This constraint can be achieved by introducing a bias on the direction
of the random walk, which is recalculated after each step to ensure that the sample
path will always converge on the desired end value [Lawless, 2013].

5.4.2 Multilevel Monte Carlo

We have seen how the standard Monte Carlo method can be extended to Quasi
Monte Carlo by exploiting the choice and sequencing of the random inputs to the

81



Chapter 5 : A stochastic approach to modelling rainfall P. Townsend

0 50 100 150 200 250 300 350 400 450 500

�10

0

10

20

30

Figure 5.16: Example of a constrained random walk with w(T ) = 0; by using such
sample paths as our Wiener process, we can enforce that our inputs have low

discrepancy.

method. Our interest, however, is in another extension of the standard method
known as Multilevel Monte Carlo (MLMC), which instead exploits our ability to
run simulations at di↵erent grid levels [Giles, 2006, 2015].

The reason for our choice of MLMC over QMC is that, in coupling our shallow
water system with a weather generator, for each simulation we may compute only a
small number of random paths and thus there is minimal speed up to be gained by
choosing our sequence of paths to have low-discrepancy. If we instead consider the
sequence of paths over all simulations, we see that the computational speed up will
be dependent upon how many sample paths we generate in total; if this number is
very small, the reduction in computational cost will be limited. For example, if we
are modelling a system with a low storm generation rate, we may not see enough
reduction in the computational cost from using the Quasi Monte Carlo method to
balance the increase in cost from the additional computations needed to generate
our low-discrepancy sequence.

General stochastic problem

We begin by considering the general problem of approximating numerically the
process

{X(t) : t 2 [0, T ]} (5.4.2.1)

which is modelled as a stochastic equation

dX(t) = a(X(t), t)dt+ b(X(t), t)dWt. (5.4.2.2)

For a given sample path !, the solution at time T is given by X(T,!), which we
can approximate numerically using the Euler-Maruyama method as

YM ⇡ X(T,!), (5.4.2.3)
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where the time points tm = m�t are assumed to be equidistant with �t = T/M.
We generate N independent samples Y i

M for i = 1, . . . , N , and approximate the
expectation E[X(T )] by the Monte Carlo estimator

µMC =
1

N

N
X

i=1

Y i
M (5.4.2.4)

which has computational cost O ("�3).

For the rest of this chapter, we will make a slight adjustment to the notation and
denote the time step as

�tl = TK�l (5.4.2.5)

for mesh-refinement parameterK 2 {2, 3, . . .}; for ease, we will typically takeK = 2.
The variable l will be referred to as the grid level the simulation is being run at,
with corresponding time step �tl; as we increase the grid level, the time-step will
decrease.

To motivate the Multilevel Monte Carlo method, consider the following two situa-
tions:

(1) sampling our equation on a fine grid (i.e. large l)

(2) sampling on a coarse grid (i.e. small l)

For the samples on the fine grid, given that each sample is reasonably accurate but
quite expensive to run, it makes sense to run only a small number of samples at this
level. On the other hand, since the samples on the coarse grid are more inaccurate,
it makes sense to run a larger number of samples at this level, which we can get
away since they are cheap computationally.

The multilevel approach is to determine the number of simulations to run on a
succession of levels (up to a final level L) in such a way that when we combine
all our sample runs in a single estimator, we maintain the same desired accuracy
but achieve a lower computational cost. We consider a hierarchy of grid levels
l = 0, . . . , L with time step �tl and define our numerical approximation to X(T ) on
level l as Pl. We can then approximate the expectation on the finest grid level L by
the telescoping sum

E[PL] = E[P0] +
L
X

l=1

E[Pl � Pl�1]. (5.4.2.6)

Here, we define the expectation on the finest level L as the expectation on the
coarsest level l = 0 plus a sum of corrections, which are each the di↵erence between
two approximations to X(T ): one with time step �tl (the fine step) and the other
with �tl�1 (the coarse step). Each component in (5.4.2.6) is estimated separately:

E[P0] ⇡ µ0 =
1

N0

N0
X

i=1

P i
0 using N0 samples of P0

E[Pl � Pl�1] ⇡ µl =
1

Nl

N
l

X

i=1

�

P i
l � P i

l�1

�

for l = 1, . . . , L

(5.4.2.7)
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To ensure that
�

P i
l � P i

l�1

�

is reasonably small, we compute these increments using
the same Brownian sample path !i. Incorporating this point into our notation, our
approximation of E[X(T )] is given by the multilevel estimator

µMLMC =
L
X

l=0

µl =
1

N0

N0
X

i=1

P 0
0 (!i) +

L
X

l=1

"

1

Nl

N
l

X

i=1

�

P l
l (!i)� P l

l�1(!i)
�

#

(5.4.2.8)

where the superscript indicates that the sample path !i is generated at that level;
for P l

l�1(!i), the sample path !i will therefore need to be extrapolated to grid level
l � 1. We note that µMLMC is more e�cient than the standard estimator µMC.

We approximate the error between the expectation of the true solution and our
multilevel estimator by

E[X(T )]� µMLMC = (E[X(T )]� E[PL])
| {z }

weak discretisation error

+(E[PL]� µMLMC)
| {z }

MLMC error

.
(5.4.2.9)

The error in estimating E[Pl � Pl�1] by µl will be proportional to the standard
deviation of (Pl � Pl�1), and since the numerical approximation Pl converges to
X(T ), the standard deviation of (Pl � Pl�1) decreases as the grid level l increases
(and the time step �tl decreases). Thus, fewer samples Nl are needed to compute
the estimator µl for increasing grid level.

To ensure that �tL = T/K�L  "/2 and achieve a weak discretisation error of O ("),
we set

L =

⇠

log(2T/")

log(K)

⇡

. (5.4.2.10)

The MLMC error is guaranteed to be O (") by virtue of the following three lemmas
[Lord et al., 2014].

Lemma. For a general stochastic di↵erential equation

dX(t) = a(X(t), t)dt+ b(X(t), t)dWt for t 2 [0, T ] (5.4.2.11)

let the drift and di↵usion functions a(X(t), t) and b(X(t), t), respectively, be Lips-
chitz continuous with linear growth, twice continuously di↵erentiable, and have uni-
formly bounded second derivatives. Consider the multilevel estimator, (5.4.2.8), of
E[X(T )]; if the number of samples

N0 =
⌃

"�2
⌥

Nl =
⌃

"�2L�tl
⌥

for l = 1, . . . , L
(5.4.2.12)

then Var(µMLMC) = O ("2).

Lemma. If N0 = d"�2e, Nl = d"�2L�tle for l = 1, . . . , L with L defined as in
(5.4.2.10), then the computational cost of finding the multilevel estimator is

cost(µMLMC) = O
�

"�2| log "|2
�

. (5.4.2.13)

Lemma. For a fixed computational cost C, 9KC > 0 such that Var(µMLMC) is
minimised by taking

N0 =
l

KC

p

V0�t0

m

Nl =

&

KC

r

Vl�tl
1 +K�1

'

(5.4.2.14)
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where

Vl =

(

Var(P0) if l = 0

Var(Pl � Pl�1) if l = 1, . . . , L
. (5.4.2.15)

To achieve Var(µMLMC) = "2/2, we set

KC = 2"�2

 

q

V0�t�1
0 +

L
X

l=1

q

Vl�t�1
l (1 +K�1)

!

. (5.4.2.16)

We provide a simplified version of the multilevel approach in Algorithm 5.2. For
testing the convergence of our method, we assume our method has converged if the
error is less than

" (2� � 1)p
2

(5.4.2.17)

where � is the rate of convergence of the error (i.e. E[Pl � Pl�1] / 2��l), which in
general we will have to estimate. However, rather than considering just the error
for the finest level L, we consider the maximum error over the previous three levels:

max
n

�

�E[PL�2 � PL�3]
�

�,
�

�E[PL�1 � PL�2]
�

�,
�

�E[PL � PL�1]
�

�

o

. (5.4.2.18)

This choice of convergence criteria ensures that we continue our simulations until
we see true convergence of the method rather than just at a single level. If no such
convergence is achieved, then we iterate the maximum level L and repeat; since the
error we are testing for will decrease as the level l increases, we expect to see an
improvement in our convergence each time we iterate.

Shallow water system with stochastic precipitation

We saw above how the Multilevel Monte Carlo method can be used to estimate more
e�ciently the expectation of the value of a given stochastic process X at final time
T . We would like to consider now how this method can be applied to our specific
problem: modelling the shallow water system with stochastic precipitation.

We determined in §5.3 that for our shallow-water/precipitation system, the appro-
priate quantity of interest to consider was the average maximum water height, hmax,
and we defined our shallow water Monte Carlo estimator as

E[hmax] ⇡ µSW-MC =
1

N

N
X

k=1

Mk. (5.4.2.19)

A significant departure from the general stochastic approach we outlined above is
that the time-step for our shallow water system is determined through the CFL
condition

�t = CFL · �x

max
�

|u|+
p
2 g h

� , CFL 2 (0, 1] (5.4.2.20)

with given grid size �x. Since this condition is included to ensure stability of
the shallow water model, it is preferable that it be maintained; the adjustment we
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Algorithm 5.2 Multilevel Monte Carlo algorithm

1: function MLMC

2: L = 2
3: K = 2
4:

5: while no convergence do % continue until convergence
6: initial = 100 % consider initial 100 samples
7:

8: for j = 1 : initial do
9: calculate samples on coarsest level

10: end for
11:

12: for l = 1 : L do
13: for j = 1 : initial do
14: calculate samples on remaining levels
15: calculate di↵erence estimator Pl � Pl�1

16: end for
17: end for
18: calculate mean and variance for each level l
19:

20: for l = 0 : L do
21: calculate optimal number of samples N(l)
22: end for
23:

24: for j = 1 : N(0)� initial do
25: calculate extra samples on coarsest level
26: end for
27:

28: for l = 1 : L do
29: for j = 1 : N(l)� initial do
30: calculate extra samples on remaining levels
31: calculate di↵erence estimator Pl � Pl�1

32: end for
33: end for
34: update mean and variance on each level l with the new samples
35:

36: if convergence has been achieved then
37: end while loop
38: else
39: iterate L and repeat
40: end if
41: end while
42:

43: for l = 1 : L+ 1 do
44: sum together estimators
45: end for
46: return final estimator
47:

48: end function
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make, therefore, is to instead consider our hierarchy of grids on the spatial domain
x 2 [0, D], and thus define the grid size on each level l = 0, . . . , L as

�xl = DK�l for some K 2 {2, 3, . . .}. (5.4.2.21)

As before, we define our quantity of interest

Mk = max
i,n

h(xi, tn) (5.4.2.22)

on level l with grid size �xl by P k
l . For the general problem, we used the fact that

the expectation on the finest level could be approximated as

E[PL] = E[P0] +
L
X

l=1

E[Pl � Pl�1]. (5.4.2.23)

i.e., the expectation on the coarsest level plus a sum of corrections, the di↵erence
between an approximation with time-step �tl and an approximation with �tl�1.
We use a similar approach here, defining the estimators as

µ0 =
1

N0

N0
X

k=1

P k
0 using N0 samples of P0

µl =
1

Nl

N
l

X

k=1

�

P k
l � P k

l�1

�

for l = 1, . . . , L

(5.4.2.24)

As before, we ensure that
�

P k
l � P k

l�1

�

is reasonably small by using the same sequence
of storm cells and sample paths {⌦,!} to determine our stochastic precipitation; in
practice, this works as follows:

(1) generate storm cells ⌦j on the finer grid level l

(2) for each storm cell, generate a sample path !j on grid level l

(3) calculate the precipitation term S which acts as the source term in the shallow
water equations

(4) run the shallow water simulation and calculate Pl

(5) extrapolate ⌦j and !j to the coarser level l � 1

(6) calculate the precipitation S on the coarser level, use this as the input for the
shallow water system, and calculate Pl�1

Our shallow water multilevel estimator is thus given by

µSW-MLMC =
1

N0

N0
X

k=1

P 0
0 {⌦,!}k +

L
X

l=1

"

1

Nl

N
l

X

k=1

�

P l
l {⌦,!}k � P l

l�1{⌦,!}k
�

#

,

where the superscript indicates that the sequence of storm cells and sample paths
{⌦,!}k is generated at that level. The error between the expectation of the ”true”
solution and our multilevel estimator will be

E[hmax]� µSW-MLMC = (E[hmax]� E[PL])
| {z }

weak discretisation error

+(E[PL]� µSW-MLMC)
| {z }

MLMC error

.
(5.4.2.25)
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We can ensure a weak discretisation error of O (") by adapting definition (5.4.2.10)
as

L =

⇠

log(2D/")

log(K)

⇡

. (5.4.2.26)

To achieve an MLMC error of O ("), we need to show that our stochastic precipita-
tion equation

dS(x, t, s) =
J
X

j=1

I⌦
j

⇣

a(s)dt+ b(x, t)dW (j)
t

⌘

(5.4.2.27)

satisfies the requirements of the first lemma, specifically that the drift and di↵usion
functions are:

- Lipschitz continuous with linear growth,

- twice continuously di↵erentiable,

- have uniformly bounded second derivatives.

Since we did not specify a particular form for the di↵usion intensity b(x, t), we can
assume that this function is chosen in such a way that the requirements of the
lemma. For the drift function

a(s) =
1

�

✓

rmax � rmin

2

◆

cos

✓

2⇡ (s� smax)

366

◆

+

✓

rmax + rmin

2

◆�

(5.4.2.28)

we note that the second derivative of the function f(s) = cos(s) is f 00(s) = � cos(s)
which is bounded from above and below by 1 and �1, respectively, and thus a(s)
will also have bounded second derivatives; all we have left to show, therefore, is
that a(s) is Lipschitz continuous with linear growth, which we will achieve by again
considering the function cos(s).

A function f(x) is Lipschitz continuous if there exists a constant K > 0 such that

|f(x1)� f(x2)|  K|x1 � x2|, 8 x1, x2 (5.4.2.29)

From the Mean Value Theorem, if a function f(x) is continuous on the interval [a, b]
and di↵erentiable on (a, b), then there exists c 2 (a, b) such that

f(b)� f(a) = f 0(c)(b� a) (5.4.2.30)

Taking f(x) = cos(x), we have that

|cos(x1)� cos(x2)| = |� sin(c)|
| {z }

1

|x1 � x2|  |x1 � x2|
(5.4.2.31)

and hence we have Lipschitz continuity. For linear growth, we want to show that
the values of the function are bounded as

|f(x)|  c1 + c2|x| (5.4.2.32)

for positive constants c1 and c2. Taking x2 = 0 in (5.4.2.31) and adding 1 to both
sides, we get

|cos(x1)� 1|+ 1  1 + |x1|; (5.4.2.33)
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From the triangle inequality, we note that

|cos(x1)|  |cos(x1)� 1|+ 1, (5.4.2.34)

and hence we can derive the following bound on our function

|cos(x1)|  1 + |x1|, (5.4.2.35)

and thus we also have the required linear growth. Since the requirements of the
lemma are satisfied, we can conclude that by picking the number of samples on each
level as

N0 =
⌃

"�2
⌥

Nl =
⌃

"�2D�xl

⌥

for l = 1, . . . , L
(5.4.2.36)

then the variance and cost of the shallow water multilevel are given by, respectively,

Var(µSW-MLMC) = O
�

"2
�

cost(µSW-MLMC) = O
�

"�2| log "|2
�

.
(5.4.2.37)

5.4.3 Numerical tests

Thus far, we have demonstrated in Chapter 3 how we can include precipitation and
infiltration e↵ects in our shallow water system and shown in Chapter 4 that this
system can be modelled numerically with a kinetic scheme. In this chapter, we
have demonstrated that the precipitation can be modelled as a stochastic equation
which accounts for observation data, and also considered how the Multilevel Monte
Carlo method can be applied to our coupled shallow water/precipitation system.
We present in Figure 5.17 a flowchart detailing how these processes interact with
one another.

Our aim now is to run several numerical simulations of the coupled system, showing
in particular that we can get good convergence of the maximum water height from
our multilevel code and the desired reduction in the number of samples to be ran at
each level. We also run a standard Monte Carlo method for an increasing number
of samples, and compare the computation time against our multilevel method.

We consider a river spanning spatial domain x 2 [0, 1] and time domain t 2 [0, 8],
with topography Z(x) = 0.1 and CFL number 0.95. We assume periodic boundary
conditions and assume a constant initial height and discharge of

h(x, 0) = 1.0, q(x, 0) = 0.0 8x 2 [0, 1] (5.4.3.1)

We present a diagram of these conditions in Figure 5.18.

For the rainfall, we use a weather generator with the following parameters:

- storms arrive at rate � = 0.25, i.e. a storm arrives on average every 4s

- the duration of each storm is exponential with rate ⌫ = 0.5, i.e. each storm
lasts 2s on average
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Figure 5.17: Simplified flow diagram for the application of MLMC to a coupled
shallow-water/precipitation system.

To check that our stochastic processes are correct, we will output the average number
of storms generated for each simulation and the average length of each storm; our
expectation is that both of these values should equal 2 (noting that our final time
T = 8, and hence we would expect 2 storms to have arrived in that time). For
our multilevel inputs, we will assume an initial maximum level L = 2 and run 100
samples to begin with to get an initial estimate for our mean and variance. For our
convergence error, we will take " = 0.0001.

The outputs of our simulation will be:

- the maximum level L achieved at convergence

- the total computation time (in seconds)

- the final estimator µMLMC of our maximum water height

- the number of samples N [0] and N [L] computed when convergence is reached

- the average number of storms arrivals for each simulation
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Figure 5.18: Diagram of the river conditions we are considering for our numerical
simulations.

- the average duration of each storm for each simulation

- the average time the maximum water height was achieved for each simulation

- the range of times for which the maximum water height was achieved

Running this numerical test three times for the same inputs, we get the results shown
in Table 5.4 and the times for the maximum water height shown in Figure 5.19.

Table 5.4: Simulation outputs from applying our multilevel method to the coupled
shallow-water/precipitation system.

Outputs Simulation 1 Simulation 2 Simulation 3

Maximum level L 6 8 8
Computation time (s) 84.63 217.75 263.12

Final estimator µ 2.12 1.86 1.91

N [0] 16735 18738 21123
N [L] 37 9 15

Average number of storms 1.96 2.15 1.91
Average storm duration 1.78 1.85 2.00

The results from these tests show good comparison with one another; the final
estimator for each test is reasonably similar (at around double the initial water
height), and the expected reduction in samples to be run at each level is also seen.
We note that the results for N [L] are all below the initial samples we run to calculate
our mean and variance, thus suggesting we could have taken a lower value to reduce
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Figure 5.19: Boxplot of the times at which the maximum water height was
achieved for each of the three simulations.

the computational cost further. This would, however, have the knock on e↵ect of
reducing the number of samples we are using to compute N [l] to begin with, and
thus any gain in cost may be balanced here.

The area where we saw the greatest di↵erence in the outputs was in the maximum
level L at which convergence was achieved and the total computation time. The
first simulation seems to be an outlier in this regard, as a maximum level of L = 6
was only needed, compared to L = 8 for the other two simulations. This resulted in
a large di↵erence in the computational time to run the tests, with the second and
third simulations taking around three times as long to run.

As we noted above, to check the outputs from the stochastic processes of our weather
generator were correct, we measured the average number of storms and average storm
duration for each simulation. The average number of storms was exactly as expected
(an average of 2.01), but the average duration was somewhat lower at 1.88. This is
most likely due to the fact that we are only simulating up to a final time T , and
thus if the duration of a storm would go beyond this point it is reduced, and thus
we get a slightly lower average than expected.

The boxplots for the times at which the maximum water height was achieved are
consistent across all three simulations, with a minimum of t = 0 (which occurs
when no storms are generated), a lower quartile of t = [4.30, 4.33, 4.21], a median
of t = [7.21, 7.26, 7.22] and an upper quartile/maximum of t = 8. These results
demonstrate the validity of considering the maximum water height across all times
and not just at the final time T (in this case 8s); while a large number of these times
were at the final time (from the data, around 40% occurred at the final time), a
quarter occurred at a time less than ⇡ 4.25s. From a modelling perspective, high
flood waves typically cause the most damage, and so underestimating the maximum
water height or overestimating the time this will occur could lead to significant
miscalculations of the expected damage.

We now consider how the computation time for our Multilevel Monte Carlo compares
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to a standard Monte Carlo method. We used the same conditions as above, and ran
our simulations on an equivalent L = 8 mesh for a varying number of samples. The
computation time and final estimator is shown below in Table 5.5.

Table 5.5: Simulation outputs from applying a standard Monte Carlo method to
the coupled shallow-water/precipitation system.

Samples Computation time (s) Final estimator µ

100 40.35 2.8
1000 271.44 2.3
10000 2819.99 1.98
100000 25319.10 1.91

For 100 samples we see a reduction in the computation time, as we would expect
given we used an initial 100 samples in our multilevel code, but the final estimator is
quite a lot higher than for our previous simulations. The computation time for 1000
samples is comparative, but again the final estimator appears to be much higher.
The results for 10000 and 100000 are in the range we saw for our multilevel method,
but the computation time is significantly higher, at around 100 times as long for
the final set of samples. This demonstrates the speed up we can achieve by using
the multilevel, and thus motivates its usage in modelling flooding: we can achieve
the same accuracy in our solution in significantly faster times using the multilevel
method than using the standard Monte Carlo.

5.5 Conclusion

Our first aim in this chapter was to consider how we could formulate the precipita-
tion term in our shallow water model as a stochastic process, enabling us to more
accurately reflect the random interactions that we could not otherwise capture deter-
ministically. The approach we took was to first consider a very simple formulation,
(5.2.1.1), defining the precipitation as pure white noise, and then progressively im-
prove upon this formulation, (5.2.1.4) and (5.2.1.6), to address certain deficiencies in
each approach. The final formulation we derived, (5.2.2.1) and (5.2.2.2), represents
the precipitation as a sum of distinct rain cells, whose intensity is given by a drift
term derived from observation data and a di↵usion term represented as a Wiener
process.

The second aim was to consider how we could numerically simulate the extended
shallow water system coupled with the stochastic precipitation; our particular focus
was on how we could reduce the computational cost, thereby enabling multiple sim-
ulations (which would be required for an accurate solution) to be run in a reasonable
time frame. The approach we settled upon was the Multilevel Monte Carlo method,
and we demonstrated analytically that this method could be applied to our coupled
system. We also ran several numerical tests to show the applicability of the method
to modelling the coupled shallow-water/precipitation system and its comparative
performance to the standard Monte Carlo, and presented an analysis of the results
of these simulations.
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Conclusion

At the beginning of this research, we asked ourselves the following question: how
can we better model flood inundation caused by precipitation? This question was
motivated in part by a recent increase in extreme flood events in a number of coun-
tries, including Australia, Malaysia, and the United Kingdom, and concerns that,
with such extreme events predicted to occur more regularly due to climate change,
existing flood defence expenditure levels would not be able to manage.

In researching this problem, we endeavoured to break the problem of rain-induced
flood modelling into three separate components:

(1) developing a mathematically rigorous model for the water-body flow and its
interactions with precipitation and infiltration phenomena

(2) modelling the precipitation phenomena itself and capturing the stochastic be-
haviour that it exhibits

(3) developing a numerical simulation approach that would enable accurate results
to be generated at a reasonable computational cost

One of the overarching themes within the research was ensuring the models devel-
oped could be applied to real world problems, and thus ensuring that the assump-
tions we make are consistent with the physical reality we wish to model. A number
of approaches had been proposed in the past and were being used for industrial
applications, but the methodology used in developing these techniques sometimes
lacked mathematical rigour or were too general to be applied to real world prob-
lems. Our desire, therefore, was to demonstrate how mathematical rigour could be
ensured by going back to the original problem, or by improving existing approaches
to reflect the real-world more accurately.

6.1 Developing a shallow water model

The first topic we considered in Chapter 3 was how to improve the mathematical
rigour of modelling the interaction between a water-body (such as a river) and the
precipitation and infiltration phenomena. The most commonly used method for
modelling water-body flow was through the shallow water equations, and existing
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approaches such as Delestre et al. [2012] had adapted these equations directly to
account for the meteorological phenomena.

As the shallow water system is derived as a reduction of the Navier-Stokes equa-
tions, the approach we decided to take was to go back to the original equations
and adapt the boundary conditions there instead of including them after the shal-
low water system had been derived. This would ensure that the e↵ect of including
these additional terms would be carried through in the derivation, and thus capture
additional terms that might arise that could otherwise be missed.

The approach we took in §3.1 was to incorporate the meteorological phenomena
directly into the boundary conditions, leading to

(�[u]n⌦) · t⌦ = �⇢0 (k(u)� kI)u · t⌦
u · n⌦ = I(x, t, h(x, t))

(6.1.0.1)

on the wet boundary B, and

(�[u]n⌦) · t⌦ = �⇢0kRu · t⌦

u · n⌦ =
@tH �R

q

1 + |@xH|2
(6.1.0.2)

on the free surface F . The friction terms kI and kR in the Navier boundary condition
and stress condition, respectively, model the interaction between the water droplets
of the rain or water recharging from the ground and the water-body itself, and their
inclusion ensures our system does not lead to non-physical solutions.

R(x, t) = 1

0 L

Figure 6.1: The inclusion of the friction terms ensures our system does not lead to
non-physical solutions, such as when modelling a simple water-body flow with

precipitation and periodic boundary conditions.

Applying a vertical averaging approach leads to the extended shallow water system

@th+ @xq = S

@tq + @x



q2

h
+ g

h2

2

�

= � g h@xZ + S
q

h
�
⇣

kR � kI + k0

⇣ q

h

⌘⌘ q

h
.

(6.1.0.3)

The usual approach to numerical modelling of fluid flow is to use either a finite
di↵erence or finite volume method. A limitation of these methods is their inability
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to preserve the filling the lake state, defined as

@th = R and u = 0, (6.1.0.4)

an adaptation of the standard lake at rest to reflect that our extended shallow water
system is now a balance law instead of a conservation law. The approach we took
instead in §4.1 was to consider a kinetic interpretation of the system, representing
the system in terms of a kinetic averaging weight function � and a kinetic density
function M . Using the kinetic approach, in §4.2 we rewrote our shallow water system
into a single kinetic equation given by

@tM + ⇠@xM � g @xŴ@⇠M +
SM

hMi1
= Q (6.1.0.5)

which we then solve using a finite volume approach:

Un+1
i = Un

i � �t

�x

�

F n
i+1/2 � F n

i�1/2

�

+�t



Sn
i

Sn
i u

n
i

�

. (6.1.0.6)

The rationale for doing this is that it is easier to solve the single kinetic equation
than the full shallow water system, but in solving this equation we can use the
definition of M and � to retrieve our original variables (h, hu).

We note, however, the limitations of the model we have derived. Though the ex-
tended shallow water model goes some way to incorporate real-world phenomena,
that it only includes one spatial dimension makes its application to modelling realis-
tic flood inundation limited in scope, particular on very large catchments. Addition-
ally, as we noted in §6.4.1, it is not clear that the kinetic formulation and scheme we
have derived for the one-dimensional model can be extended to a second dimension,
and thus an entirely new approach may be required.

6.2 Modelling the precipitation stochastically

Having established our extended shallow water system and demonstrated how it
could be modelled numerically, we moved on to consider how to model the precip-
itation term. The decision to model the term as a stochastic process was taken
to better capture the random interactions that occur in reality, and that are too
complex to be described with a deterministic modelling approach.

The first approach we took in §5.2.1 was to model the precipitation very simply as a
pure white noise process. This assumption, however, highlighted that there should
be some degree of correlation in the rain intensity across of the grid cells, and so our
next approach was to model the precipitation as a single Wiener process, given by

dS(x, t) = b(x, t)dWt. (6.2.0.1)

Since for any given sample path the value of a Wiener process at time tn+1 is
dependent upon the intensity at time tn, using this representation would give us
good correlation between nearby cells.
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Figure 6.2: Representation of the precipitation, S(x, t), as a Wiener process with
both a constant and spatially-variant intensity function b(x, t).

The obvious limitation of using a single Wiener process to model across the entire
spatial domain is a lack of spatial variability, other than in the di↵usion term b(x, t).
To address this issue, we decided to apply the techniques used in weather genera-
tors and model the precipitation as a collection of rain-producing storms, with the
intensity for each storm given by a di↵erent Wiener process. This leads to the sum

dS(x, t) =
J
X

j=1

I⌦
j

⇣

b(x, t)dW (j)
t

⌘

, (6.2.0.2)

where ⌦j 2 ⌦ are the spatial-temporal domains in which each storm is located. Using
this formulation, combining both the Wiener process and the weather generator
approach, ensures that both of our desired properties are achieved.

The final improvement we made to our stochastic representation in §5.2.2 was to
add a drift term derived from observation data, which we denote very generally by
a(·):

dS(x, t) =
J
X

j=1

I⌦
j

⇣

a(·)dt+ b(x, t)dW (j)
t

⌘

. (6.2.0.3)

Looking at total monthly precipitation data from an example rain gauge with around
60 years of records, it became clear that the individual monthly values were too spo-
radic to be used to determine the drift term a (though we note that this sporadic
nature lends some justification to considering the precipitation as a stochastic pro-
cess). We cleaned up this data by calculating the average total daily precipitation
for each month, and in doing so we were able to determine that the drift term could
be approximated as

a(s) =

✓

rmax � rmin

2

◆

cos

✓

2⇡ (s� smax)

366

◆

+

✓

rmax + rmin

2

◆

. (6.2.0.4)

This approximation was chosen to ensure we capture the seasonality in the data,
and the parameters rmax (the maximum average daily precipitation) and rmin (the
minimum average daily precipitation) are taken from the observation data to ensure
we get the correct scaling in our approximation.
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Figure 6.3: Comparison of the full observation data for the example gauge and the
approximation, a(s), fitted to the total average daily precipitation.

Our final stochastic precipitation equation with drift term defined from observation
data is given by

dS(x, t, s) =
J
X

j=1

I⌦
j

⇣

a(s)dt+ b(x, t)dW (j)
t

⌘

a(s) =
1

�

✓

rmax � rmin

2

◆

cos

✓

2⇡ (s� smax)

366

◆

+

✓

rmax + rmin

2

◆�

The incorporation of observation data from weather stations in our stochastic pre-
cipitation formulation was intended to ensure it reflected realistic weather patterns
and seasonal changes in precipitation rate. This approach does, however, rely on
such observation data being available and being of a long enough record to be viable
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in determining our drift term. For some countries such data is widely and freely
available, but in other locations this may not be so. If this is the case, estimations
must instead be made based on expertise (which can be flawed) or data from other
locations (which may have very di↵erent precipitation patterns). In applying the
method we have presented to make policy decisions, consideration must therefore
be made on the accuracy and viability of any observation data used.

6.3 Monte Carlo simulations

The final topic we considered in §5.3 was how to simulate the extended shallow water
system with stochastic precipitation we had developed. We began by introducing
the standard Monte Carlo procedure and demonstrating its application by approxi-
mating the integral of a simple equation. This helped to motivate the approach we
would need to take for our shallow water system, and in particular determining the
quantity of interest we wanted to calculate in the final step.

As our intended application is to modelling flooding, we decided to use the expected
maximum water height, which could be estimated by the shallow water Monte Carlo
estimator

E[hmax] ⇡ µSW-MC =
1

N

N
X

k=1

Mk, (6.3.0.1)

where Mk = maxi,n h(xi, tn), i.e. the maximum water height for a single simulation.

Part of the motivation for our research was to consider how we could maximise
the accuracy of our flood model at no additional cost, and so we looked at two
improvements upon the standard Monte Carlo method. The first, Quasi Monte
Carlo, was introduced briefly with some consideration given to how it could be
applied to the sample paths !i we use to define our Wiener process. Our primary
focus, however, was on the Multilevel Monte Carlo introduced by Giles [2006] and
detailed further in Giles [2015]. We adapted the approach presented therein, first to
reflect the CFL condition used in the shallow water system by taking the hierarchy
of grids on the spatial rather than temporal domain, defining the grid size for each
level l = 0, . . . , L as

�xl = DK�l for some K 2 {2, 3, . . .}, (6.3.0.2)

and then defining the shallow water multilevel estimator as

µSW-MLMC =
1

N0

N0
X

k=1

P 0
0 {⌦,!}k +

L
X

l=1

"

1

Nl

N
l

X

k=1

�

P l
l {⌦,!}k � P l

l�1{⌦,!}k
�

#

,

so as to reflect the weather generator approach we detailed in §5.2.1. The error
approximation for the standard Multilevel Monte Carlo method is presented in the
form of three lemmas, detailed in [Lord et al., 2014]. For our shallow water system,
we demonstrated that the requirements for these lemmas to hold were satisfied
by the drift and di↵usion functions for our stochastic precipitation, and thus the
computational cost for our multilevel estimator is given by

cost(µSW-MLMC) = O
�

"�2| log "|2
�

, (6.3.0.3)
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as an improvement on the O ("�3) cost of the standard Monte Carlo estimator.

Our final step was to run several simulations of our Multilevel Monte Carlo method
on the coupled shallow-water/precipitation system. The outputs from the three sim-
ulations demonstrated good comparison with one another, with the final estimator
for the maximum water height reasonably consistent across all three simulations.
The reduction in the number of additional samples to be calculated for each level L
was also seen, and we also looked at the statistics of the storms from the weather
generator to ensure they were consistent with expectations. We also run a standard
Monte Carlo method for our system with increasing number of samples, and anal-
ysed the outputs in comparison to our multilevel method; in particular, we saw the
expected decrease in computational time for the multilevel method at the same level
of accuracy.

We can see from the reduction in computational cost that the Multilevel Monte Carlo
method improves upon the standard Monte Carlo, and thus enables us to simulate
at a greater accuracy for the same cost of resources. As part of the MLMC approach,
however, we made use of the shallow water Monte Carlo estimator (6.3.0.1), which
fails to account for the spatial variability in maximum water height, which will be of
particular interest in very large catchments. In defining our Monte Carlo approach,
we proposed another estimator to address this problem, defined as

µSW-MC(xi) =
1

N

N
X

k=1

Mk(xi), (6.3.0.4)

which is calculated for each grid-point rather than globally. The drawback of us-
ing this estimator is that it will significantly increase the number of computations
required; if we have 1000 grid points in our domain, we will have to calculate a mul-
tilevel estimator for each of these grid points, which may not be computationally
feasible. It may be possible to scale this approach back and consider the maximum
water height within a certain number of subdomains of the catchment, where cer-
tain properties are homogeneous, but determining these subdomains prior to the
simulation may not always be easy.

6.4 Extensions and future research

In this section we will consider some extensions of the research we have presented
thus far, in particular the extendability of the approach in Chapters 3 and 4 to the
two-dimensional shallow water equations, as well as some proposed avenues of future
research. In doing so, we will also attempt to address some of the pitfalls that could
occur and that will need to be overcome.

6.4.1 Extendability to two-dimensions

We saw above that through a simple adjustment of the boundary conditions of
the Navier-Stokes equations, (3.1.1.1) and (3.1.2.1), we can rigorously derive the
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one-dimensional extended shallow water system

@th+ @x[q] = S

@t[q] + @x
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⌘⌘ q

h
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(6.4.1.1)

where S is a source term which reflects the net amount of water added to or removed
from the flow. We also demonstrated how we can derive a numerical model, (4.2.2.2),
using ideas from both finite volumes and kinetic theory, and applied this model to
several numerical experiments to demonstrate its viability.

A drawback of having a purely one-dimensional model is that while we can model
certain real world problems (primarily when the additional spatial dimension can be
ignored), for some problems the spatial complexity is too great for a one-dimensional
model to give an accurate enough solution.

In §2.1, we presented two other forms of the shallow water equations without addi-
tional source terms: the one-dimensional free surface model given by

@tA+ @xQ = 0

@tQ+ @x



Q2

A
+ g I1(x,A) cos ✓

�

= � gA sin ✓ + g I2(x,A) cos ✓
(6.4.1.2)

where the variables of interest are A the wet area and Q the discharge, and the
two-dimensional shallow water equations, given by

@th+ @x[hu] + @y[hv] = 0

@t[hu] + @x
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+ @y[huv] = � g h@xZ � k0 (u) u
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hv2 +
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�

= � g h@yZ � k0 (v) v.

(6.4.1.3)

with additional spatial axis y and associated velocity v.

For the one-dimensional free surface model, considering just the added source term
S we can naturally extend the system in line with our derivation to give

@tA+ @xQ = S

@tQ+ @x



Q2

A
+ g I1(x,A) cos ✓

�

= � gA sin ✓ + g I2(x,A) cos ✓ + S
Q

A

(6.4.1.4)

For the two-dimensional shallow water system, this extension is not as trivial: we
can see that the inclusion of the additional spatial dimension y does not simply
add an extra equation, but also induces additional terms in the existing equations.
Therefore, we cannot assume that the right-hand side of the new equation will solely
be of the form

� g h@yZ + Sv (6.4.1.5)

and not include, for instance, momentum e↵ects generated by the rain in the x-
spatial dimension, or indeed that our existing equations will also remain unchanged.
This also holds for the friction terms kR and kI for both the two-dimensional system
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and the free surface model, since the manner in which these terms interact with the
flow will be di↵erent in two-dimensions and depend upon how the extensions to the
momentum equations are achieved.

This motivates, therefore, the necessity for any derivation of the model to be mathe-
matically rigorous, and therefore any further research into deriving the two-dimensional
model with additional precipitation and infiltration e↵ects should proceed as we con-
sidered above - by going back to the Navier-Stokes equations (or Euler equations
for the free surface model) and adapting the boundary conditions to incorporate the
precipitation and infiltration terms as needed.

Extending these models in this way will enable us to model systems and catchments
of much greater complexity: for instance, our extended shallow water model assumes
variations in the cross-section of a river can be neglected, but using the extended
free surface model, we can account for instances where this no longer holds true and
the cross-section is more general. The extended two-dimensional model will also
enable us to consider much wider catchments and more accurately model the flood
inundation away from the river, extending the level of real-world applications that
our model can be applied to.

Kinetic scheme in two-dimensions

For the one-dimensional system we presented above, the development of the kinetic
scheme was based on defining a kinetic density function M in terms of the variables
h and u, such that when we integrated M against powers of ⇠ we could get back
our desired variables h and q = hu. Given the desirable properties of the kinetic
approach, it would be beneficial to have a similar numerical method for the two-
dimensional system.

In our derivation of the one-dimensional model in Chapter 4, we followed the ap-
proach of Audusse et al. [2000], Perthame and Simeoni [2001], and Ersoy [2015].
Extending this approach to the two-dimensional model, the main di�culty will
be in determining the correct form of M to ensure we can derive the appropriate
macroscopic-microscopic relations.

Assuming that the conservation of mass equation for our two-dimensional shallow
water system will be of the form

@th+ @x[hu] + @y[hv] (6.4.1.6)

if we define a velocity vector w = [u, v]|, we can build the first two macroscopic-
microscopic relations as

Z

R



1
⇠

�

M(x, t, ⇠)d⇠ =



h(x, t)
h(x, t)w(x, t)

�

(6.4.1.7)

and derive the first part of the kinetic equation as

@tM + ⇠rxyM. (6.4.1.8)

Thus, we can achieve the derivation we require for the two-dimensional system by
simply extending the definition of M to include the vector w, and this will also
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give us the required time derivatives @t[hu] and @t [hv]. The di�culty will come in
getting the spatial derivatives in the conservation of mass equations, which we can
write as the matrix multiplication

⇥

@x @y
⇤

"

hu2 + g h2

2
huv

huv hv2 + g h2

2

#

= rxy

"

hu2 + g h2

2
huv

huv hv2 + g h2

2

#

. (6.4.1.9)

The requirement we need is therefore that
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2
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huv hv2 + g h2

2

#

. (6.4.1.10)

and there is no obvious extension of the one-dimensional formulation for M that
will achieve this. Further research will be required, therefore, to ascertain if such a
formulation of M is possible, or whether another approach will be required.

Spatial scales

The vertical averaging approach that we used to reduce the Navier-Stokes equations
to the shallow water system in §3.2 relies on the assumption that vertical variations
in height and velocity and small compared to the horizontal variations; this was
achieved by postulating a small parameter ratio

" :=
D

L
=

V

U
⌧ 1, (6.4.1.11)

where D, L, V , and U are the scales of water height, domain length, vertical fluid
velocity, and horizontal fluid velocity, respectively. As we move to two-dimensions,
however, this assumption breaks down in a number of cases. If we wish to model the
flow in a river, for example, while the vertical variations may be small with respect
to the horizontal scale in the direction of the river, they may not be with respect to
the scale across the width of the river.

A possible solution, and one that could be explored in more detail in future research,
is to model a catchment using both one- and two-dimensional systems: the river is
modelled as a single or collection of one-dimensional objects (see Figure 6.4), whilst
outside the river system, where vertical variations in water height and velocity will
be small with respect to both horizontal scales, we can use a two-dimensional model.

This approach would of course present additional complications to be dealt with:

- how to determine beforehand the extent of the river that is modelled one-
dimensionally

- how to deal with the boundary between the two models; foe example, deter-
mining the velocity of the water as it flows from the river into the catchment,
which will be of particular importance in flood modelling

- how to ensure the balance of mass, momentum, and energy is maintained

One of the primary benefits, however, of modelling our catchment in this way is
that we will gain in computational cost, since the one-dimensional model will be
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Figure 6.4: We can represent the full two-dimensional river as individual
one-dimensional segments.

cheaper to compute, but minimise the loss in accuracy since the areas where we
would expect to see the greatest complexity in the solution are modelled using the
more accurate two-dimensional model. This also improves the application of our
entire coupled model to real-world problems, since we would expect to be modelling
on very large catchments where the computational cost will be very high.

6.4.2 Ensuring non-negativity of the rainfall

In §5.2.3, we demonstrated that our stochastic precipitation could be approximated
numerically as

8

>

>

<

>

>

:

Ym+1(x, s) = Ym(x, s) +
J
X

j=1

I⌦
j

⇣

a(s)�⌧m+1 + b(x, ⌧m)�W
(j)
m+1

⌘

Y0(x, s) = S0(x, s).

(6.4.2.1)

Our formulation did not address, however, the issue of ensuring that the rainfall
remains non-negative. While we will not go into too much detail here, we would like
to give some discussion on how this can be achieved.

In the derivation of our extended shallow water system we presented in Chapter 3,
we made explicit the di↵erence between water being added to the system on the
free surface (i.e. rainfall, denoted by R) and water moving across the wet boundary
(i.e. infiltration, denoted by I), with the net flow of water being by denoted by
S = R � I. The reason for considering these separately rather than as a single
process is that each interacts with the flow in a di↵erent way, most notably the way
each process produces friction in contact with the water flow. Therefore, while the
net flow of water may become negative, it is important that this only occurs when
the infiltration exceeds the rainfall, and not due to the rainfall itself.

In light of this, consider the simplified numerical approximation (5.2.3.5) for a sin-
gle storm cell; a very simple approach to ensure non-negativity is to redefine our
approximation with an intermediate step

Ỹm+1(x, s) = Ym(x, s) + a(s)�⌧m+1 + b(x, ⌧m)�Wm+1 (6.4.2.2)
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and then adjust our iteration Ym+1(x, s) depending on the sign of (6.4.2.2) and the
boundary conditions we want to use. To determine the best boundary condition to
use, we note that any choice we use should have the following properties:

(1) if Ỹm+1(x, s) � 0, then we should have that Ym+1(x, s) = Ỹm+1(x, s)

(2) any adjustment we make should reflect the physical reality and underlying
mathematical structures of our system

Given these properties, we consider two di↵erent boundary conditions for our numer-
ical approximation, which are visualised below in Figure 6.5: a reflective boundary
condition, with

Ym+1(x, s) = max(Ỹm+1(x, s),�Ỹm+1(x, s)) (6.4.2.3)

and an absorbing boundary condition, with

Ym+1(x, s) = max(Ỹm+1(x, s), 0). (6.4.2.4)

Ym(x, s)

Ỹm+1(x, s)

Ym+1(x, s)

Ym(x, s)

Ỹm+1(x, s)

Ym+1(x, s)

Figure 6.5: We can ensure non-negativity of the stochastic precipitation using
either reflective (left) or absorbing (right) boundary conditions.

It is clear that both choices satisfy the first requirement that if Ỹm+1(x, s) � 0
then no adjustment is made; deciding which choice is better will therefore rely on
the second requirement. Looking at our approximation (5.2.3.5), we note that any
reduction in the rainfall will come from the di↵usion term b(x, ⌧m)�Wm+1 since
the drift term is by definition positive. The di↵usion term represents the random
fluctuations that can occur in the rate of precipitation, due to physical reactions
between the water molecules are their surroundings. A reduction in the precipitation
rate will mean a reduction in the amount of energy contained in the rainfall.

If we were to assume reflective boundary conditions, we would potentially be ad-
justing a reduction in energy to an increase in energy. On the other hand, if we
were to assume absorbing boundary conditions, we would limit the decrease the
energy to only the maximum contained in the system. Since we do not want to
be adding energy to the system when it should be decreased, we conclude that ab-
sorbing boundary conditions are more consistent with the underlying physical and
mathematical structures. Our numerical approximation for the single storm cell is
therefore given by:

8

>

<

>

:

Ym+1(x, s) = max(Ỹm+1(x, s), 0)

Ỹm+1(x, s) = Ym(x, s) + a(s)�⌧m+1 + b(x, ⌧m)�Wm+1

Y0(x, s) = S0(x, s).

(6.4.2.5)

A similar adjustment can be made for the full approximation (6.4.2.1).
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6.4.3 Inclusion of infiltration e↵ects

Infiltration plays an important role in the prediction of flood inundation, particularly
during cycles of high and low rainfall. If the soil is very unsaturated, a high-intensity
rainfall event may not result in flooding, as the water will infiltrate into the ground
too quickly for runo↵ to occur; however, if this is followed by further (even low-
intensity) rainfall events, the soil will become too saturated for the water to infiltrate
and thus a flood event will occur.

wet region

ground

Figure 6.6: Water will infiltrate from the water body into the ground, until the
ground becomes completely saturated.

The inclusion of infiltration in our system is therefore an important consideration for
future research, but care must be taken in how we model this e↵ect. The motion of
water across the boundary between the flow and the ground occurs at a much quicker
time scale than the groundwater flow, which itself can have increasing temporal
scales as we move to deeper and deeper layers. To ensure we can accurately capture
the temporal scale at which each process occurs, it makes sense to consider the
system as two components: a model for the amount of water added to or subtracted
from the water body, and a model for the motion of water within the ground itself.

For modelling the infiltration e↵ect, there are a number of existing approaches,
including Darcy’s law [Darcy, 1856], the Richards equation [Richards, 1931], and
the Green-Ampt method [Green and Ampt, 1911]. Each of these methods has there
advantages and disadvantages: a downside of the Green-Ampt method, for example,
is that the depth of water above the ground, h0, is assumed to be negligible, making
it di�cult to use the method for modelling a coupled infiltration and shallow water
system. A possible solution is to use the Richards equation in general, switching to
the more accurate Green-Ampt method when the water depth h0 ⇡ 0.

The main approach for modelling the flow of groundwater within an aquifer is with
the groundwater flow equation, in which we perform a mass balance on the water
that flows into and out of a small volume of the subsurface:

@h

@t
= ↵

✓

@2h

@x2
+
@2h

@y2
+
@2h

@z2

◆

� G

Ss

. (6.4.3.1)

This formulation is used by MODFLOW, a numerical model created by the US Ge-
ological Survey for modelling groundwater flow [MODFLOW]. Modelling the sub-
surface flow in three dimensions, however, can be very computationally expensive
to compute over a large catchment area. The formulation can be simplified using
the Dupuit-Forchheimer assumption [Dupuit, 1863, Forchheimer, 1886], whereby we
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assume that groundwater only flows in a horizontal direction, and hence

@h

@z
= 0. (6.4.3.2)

By reducing the dimension of the problem, we can significantly reduce the com-
putational cost required to calculate the groundwater flow, and hence maintain our
desired e�ciency when coupling this model with our extended shallow water system.

6.5 Moving forward

Within this thesis we have demonstrated how we can derive an extended shallow wa-
ter model which includes terms reflecting both precipitation and infiltration e↵ects.
The precipitation term was modelled as a stochastic equation, defined as a sum of
storm cells with their own individual intensities and including a drift term derived
from observation data. We then demonstrated how the system could be simulated
numerically by adapting the Multilevel Monte Carlo method, which improves upon
the e�ciency of the standard Monte Carlo method.
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Flood modelling is a wide and varied area of research, and which we have only
just begun to scratch the surface of in this thesis. What is clear, however, is that
flood modelling encompasses more than just the water-body itself; the mathematical
derivation that we undertook highlights that any model we develop cannot ignore
how the water-body interacts with precipitation and infiltration phenomena. The
addition or subtraction of water through these terms a↵ects not only the balance
of mass (in this case, the water height h) in the system but also, as we showed
rigorously in our derivation, the balance of momentum, and we showed in a number
of numerical tests that this addition will directly impact the extent to which the
water-body will flood.

The numerical simulation approach we developed was specifically focused on how we
can reduce the computational cost of predicting the expected maximum water height
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of a flood (or equivalently, how we can get a more accurate expectation for the same
computational cost). This was motivated by an increase in the number of extreme
flood events in recent years, and predictions for the future that suggest this will
only continue. If we are to face the inevitability of more and more extreme events,
being able to predict what these events will look like will help to alleviate some of
the potential damage. We demonstrated that the multilevel approach we considered
and developed will directly reduce the computational cost of running our simulations
in comparison to standard approaches, and we also discussed in §6.4.1 how we might
further reduce the computational cost when moving to a two-dimensional system

Flooding due to precipitation can cause significant damage, but being able to ac-
curately predict the level of flooding will help limit that damage and potentially
prevent the loss of life. There is always more work to still be done, but we hope this
thesis goes some way towards achieving that.
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