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Abstract

Individual and sexual variation are widespread across the animal kingdom, and can have
significant implications for species and population ecology and conservation.
Ontogenetic shifts in diet and habitat use are prevalent in species that exhibit large
changes in body size from birth/hatching to maturity, and can alter an individual’s role
in communities and ecosystems. The role of these phenomenon in the ecology of mobile
top predators is especially important to understand, as these species are often vital for
maintaining food web stability and ecosystem linkage. White sharks (Carcharodon
carcharias) are highly migratory top predators, listed as Vulnerable on the International
Union for the Conservation of Nature’s Red List, and are reported to undergo an
ontogenetic dietary shift. Despite being protected across parts of their range, they are
still subject to multiple anthropogenic threats. This work incorporates tooth shape,
stable isotope, and fatty acid analyses to investigate individual and sexual variation in
white shark ontogenetic shift dynamics and trophic ecology. Evidence for individual
and sexual variation across populations is reviewed, and the associated conservation
implications discussed, highlighting important current issues and areas for future

research that will benefit white shark conservation management.
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Chapter 1 General Introduction

Intraspecific variation within populations, whether morphological, physiological, or
behavioural is an inherent facet of species biology and evolution. It is well documented
that demographic differences, such as sex and life stage/size can significantly influence
individual, population and community ecology (Clutton-Brock et al. 1982; Polis 1984;
Forero et al. 2002; Morris 2003; Ruckstuhl and Neuhaus 2005). The effects of sex and
life stage can also have complex interactions which lead to disparate ecological
outcomes (Lejeune et al. 2017). Additionally, the significance of intraspecific variation
in studies of ecology has only more recently been recognised and is still not well
understood in some cases, while often being ignored in others; an oversight which can
obfuscate our understanding of a species’ role within an ecosystem (Bolnick et al. 2003,
2011; Réale et al. 2007; Dall et al. 2012). These sources of variation can have
significant implications for species and population conservation, and so it is of great
importance that they are accounted for and understood (Ruckstuhl and Neuhaus 2005;
Biro and Post 2008; Réale et al. 2010; Matich et al. 2011; Wolf and Weissing 2012). It
is especially important to understand these mechanisms and outcomes in highly mobile
top predators, as these species are integral for food web stability and ecosystem linkage

(Sweitzer et al. 1997; Estes et al. 1998, 2011; Schreiber et al. 2011; Nifong et al. 2015).
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1.1. Ontogeny/size

1.1.1. Ontogenetic shifts

In general, animals increase in size throughout their lifetime. Increase in body size can
require a switch towards food sources with higher energetic rewards, at the same time as
altering metabolic requirements (Werner and Hall 1974; Werner and Mittelbach 1981;
Olson 1996; Scharf et al. 2000; Sherwood et al. 2002; Jackson et al. 2004; Glazier et al.
2015). Distinct ontogenetic shifts in trophic ecology are common in species which have
very large differences in body size from birth/hatching to maturity, and so are
particularly prevalent in fish and reptiles (Wilson 1975; Werner and Gilliam 1984). For
example, young komodo dragons (Varanus komodoensis) < 1 kg in weight forage
mostly on insects, small rodents, reptiles, and birds, while adult dragons which weigh >
20 kg include large ungulates in their prey base (Purwandana et al. 2016). Size-based
ontogenetic shifts such as this can have significant effects on predator-prey dynamics
and population stability (McCauley et al. 1996; Olson 1996; Scharf et al. 2000) and the
differences in trophic ecology between size/age classes can be so great that in some
cases they can be considered different ecological species (Polis 1984), performing
different functional roles in communities and ecosystems (Hutchinson 1957; Werner

and Gilliam 1984; McCauley et al. 1996; Olson 1996; Scharf et al. 2000; Grubbs 2010).

1.1.1.2. Allometric scaling of trophic structures

Large increases in body size are not the only morphological features that facilitate
ontogenetic shifts in trophic ecology. Allometric scaling of body structures used in
feeding such as gape size, dentition, and jaw musculature can also be key in dietary

shifts (Wilson 1975; Polis 1984; Peters 1986; Scharf et al. 2000; Huber et al. 2008).
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Allometric scaling in this context means a disproportionate change in a physical feature
in comparison to change in overall body size. For example, in the turtle Sternotherus
minor the size of the jaw muscle exhibits a disproportionate increase in size with
increased turtle length, which facilitates a shift towards hard-bodied prey (Pfaller et al.

2011).

1.1.1.3. Habitat use

Ontogenetic changes in diet are typically concurrent with changes in habitat use and
movement patterns, where larger individuals select habitats which support their new
prey choices/nutritional requirements, have greater movement capability, and are able to
use habitats that may pose more risk to smaller individuals (Werner and Gilliam 1984;
Gilliam and Fraser 1987; Werner and Hall 1988; Lima and Dill 1990; Law 1991;
McCauley et al. 1996; Morris 2003; Keren-Rotem et al. 2006; Purwandana et al. 2016).
Referring to the komodo dragon example given earlier, the demonstrated ontogenetic
shift in diet is accompanied by a significant increase in home range size, and a switch
from arboreal to terrestrial habitat use (Purwandana et al. 2016). Ontogenetic shift
dynamics need to be integrated into the identification of critical habitats such as nursery
areas (Nagelkerken et al. 2015) and ontogenetic differences in habitat and resource
requirements should be important considerations in conservation management plans.
Increased movement between habitats can also result in larger size classes playing an
important role in nutrient distribution and ecosystem linkage (Nifong et al. 2015), which

may provide key information for effective landscape scale ecosystem management.
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1.2. Sex

Ecological differences between the sexes of a species is prevalent across taxa (Clutton-
Brock et al. 1982; Le Boeuf et al. 2000; Phillips et al. 2004; Mowat and Heard 2006;
Beck et al. 2007; Thiemann et al. 2008; Patrick and Weimerskirch 2014; Lejeune et al.
2017). Mechanisms underlying sex-mediated differences in ecology include sexual

dimorphism and sexual segregation, which are explained below.

1.2.1. Sexual dimorphism

Sexual dimorphism is evident throughout the animal kingdom, and has a key role in
understanding ecology (Selander 1972; Belovsky and Jordan 1978; Clutton-Brock et al.
1982; Shine 1989; Magurran and Garcia 2000). Sexual dimorphism in size and
morphology can be influenced by one or a combination of, fecundity selection (e.g.
increased fecundity in larger females), sexual selection (mating displays, mate
acquisition, choice, searching, cooperation) and ecological divergence (Shine 1989). In
this context, sexual dimorphism in body size or foraging apparatus can present similar
ecological effects to ontogenetic shifts, where in this case the larger sex, or the sex that
has developed more exaggerated trophic structures may exploit different food resources
and/or habitats than the other sex, comprising intersexual niche divergence (Selander
1972; Shine 1989). Sexual dimorphism features heavily in theories of sexual

segregation, described below.

1.2.2. Sexual segregation

Sexual segregation is typically split into two categories; social segregation and habitat

segregation (Conradt 2005; Ruckstuhl 2007), both of which can be influenced by sexual
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size dimorphism (Ruckstuhl and Neuhaus 2005). Social segregation occurs when the
two sexes form different groups outside of the mating season but use the same areas and
habitats, while habitat segregation occurs when the sexes use different habitats, which
may or may not be within the same area. Both types of segregation can lead to spatial
separation of the sexes (Conradt 2005; Ruckstuhl and Clutton-Brock 2005; Wearmouth
and Sims 2008) and it is important to distinguish between them in order to understand
their ecological implications (Bowyer 2004). The majority of research into this subject
has been on sexually dimorphic, social species where sexual segregation is particularly
prevalent, and studies have especially focussed on ungulates (Ruckstuhl 2007) though
application to the marine environment has been recognised as important (Wearmouth
and Sims 2008). Sexual segregation is an important consideration in wildlife
conservation (Rubin and Bleich 2005) and ecological differences between the sexes are
likely to become important in species conservation under future climate change and
human exploitation scenarios (Paiva et al. 2017).

There are five main hypotheses of the proximate causes of sexual segregation; 1)
predation risk 2) forage selection 3) activity budget 4) thermal niche — fecundity 5)

social factors (Ruckstuhl and Neuhaus 2005).

1.2.2.1. Predation risk

Formerly known as the reproductive strategy hypothesis (Main et al. 1996), the
predation risk hypothesis predicts that the sex most vulnerable to predation will select
safer habitats. Often this means that the larger sex will be able to exploit more risky
habitats and food resources, though females may also choose safer habitats for

parturition and rearing of progeny (Ruckstuhl and Neuhaus 2005; Croft et al. 2006).
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1.2.2.2. Forage selection

The forage selection hypothesis is based on differences in the nutritional needs of the
sexes, which typically results in habitat segregation (Main et al. 1996; Ruckstuhl and
Neuhaus 2000). The theory refers specifically to the fact that larger animals have a
proportionately larger gut that inherently improves digestion efficiency and allows for a
diet that is comparatively lower quality than that needed by a smaller animal that has
less efficient digestion (Gross 1998; Ruckstuhl and Neuhaus 2000). Furthermore,
different forage needs due to gestation, lactation and other reproductive factors also fall
under this hypothesis (Robbins 1983; Ruckstuhl and Clutton-Brock 2005), as does
competitive exclusion as a result of one sex being better morphologically adapted to
exploit certain food patches (Ruckstuhl and Neuhaus 2005; Wearmouth and Sims

2008).

1.2.2.3. Activity budget

Under this hypothesis, sexual segregation occurs when the sexes (in species that are
either size dimorphic or have different reproduction-related needs), have different
nutritional needs, which causes them to exhibit differences in activity rhythm, also
described as having incompatible activity budgets (Ruckstuhl 1998, 1999; Conradt
1998). These differences in time allocation to tasks such as foraging, movement rates,
and predator vigilance cause mixed-sex groups to split apart and form same-sex groups,
potentially causing both social and habitat segregation (Conradt 1998; Ruckstuhl 1999,

2007; Ruckstuhl and Neuhaus 2005).
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1.2.2 4. Social factors

Here, an affinity for the same sex, or avoidance of/conflict with the opposite sex causes
habitat segregation (Bon 1991; Main et al. 1996; Ruckstuhl and Neuhaus 2000; Conradt
2005; Parker 2006). Same sex affinities can provide benefits in mate acquisition and
location of breeding sites for naive individuals, and assist males by providing
opportunities to practice fighting skills, develop dominance hierarchies and assess the
competitive value of their rivals (Main et al. 1996; Ruckstuhl and Neuhaus 2000;
Ruckstuhl 2007). Conflict avoidance can be both physical, for example female
avoidance of sparring males, and evolutionary, where the optimal reproductive
outcomes for both sexes cannot be achieved simultaneously due to differential
investment in procreation (Parker 2006; Ruckstuhl 2007). In solitary species, the
affinities and splits caused by these social factors would take the form of size, or
reproductive state, dependent habitat use (Wearmouth and Sims 2008). A relatively new
social factor that seems particularly prevalent in marine systems is female avoidance of
males due to sexual harassment/mating coercion, which can cause females both physical

harm and energetic costs (Wearmouth et al. 2012; Galezo et al. 2017).

1.2.2.5. Thermal niche — fecundity

This hypothesis is based on an assumption that the sexes select habitats that have
different temperatures, reflecting those at which their fecundity is maximised (Sims
2005). This has mostly been proposed in ectotherms (Robichaud and Rose 2003; Sims
2005; Wearmouth and Sims 2008) but has also been found in mammals (Altringham

and Senior 2005; Angell et al. 2013).
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1.3. Individual variation

1.3.1. Trophic/resource polymorphism and individual specialists

Individual trophic specialisation has been identified in a wide range of organisms
(Bolnick et al. 2003; Aragjo et al. 2011). There are subtle differences between the most
commonly used nomenclature for this phenomenon, namely resource polymorphism,
which centres around discrete intraspecific morphs (Wimberger 1994; Skulason and
Smith 1995; Smith and Sktlason 1996) and individual specialisation, where an
individual’s comparatively narrow niche width is not attributable to sex, age, or discrete
morphological group (Bolnick et al. 2003). Morphs are sometimes referred to as
‘ecotypes’, especially when genetic differences exist between them (Snorrason et al.
1994; Mowat and Heard 2006; Kobler et al. 2009; Shafer et al. 2014; Jeglinski et al.
2015).

Specialisation within trophic ecology is influenced by competition, habitat and
prey availability, morphology, genetics, and behaviour (Meyer 1990b; Ehlinger 1990;
Wainwright et al. 1991; Bolnick et al. 2003; Araugjo et al. 2011; Shafer et al. 2014;
Newsome et al. 2015; Marklund et al. 2018). Consistent selection for specific prey can
increase individual foraging efficiency (Reilly et al. 1992; Araujo and Gonzaga 2007)
and decrease intraspecific competition (Roughgarden 1972; Bolnick et al. 2003;
Swanson et al. 2003). However, this specialisation can also increase some specialist’s
exposure to parasites and disease (Curtis et al. 1995; Lloyd-Smith et al. 2005; Johnson
et al. 2009) and can limit food web connectivity in addition to leaving species or
populations more vulnerable to ecosystem fragmentation and the risk of extinction
compared to generalists (Purvis et al. 2000; Layman et al. 2007b; Quevedo et al. 2009).

Dietary specialisation in top predators can have especially strong effects on food webs,
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through differential prey choice and hunting tactics (Schmitz and Suttle 2001; Schreiber

et al. 2011) and recent studies are revealing that specialisation in top predators is more
prevalent than previously thought (e.g. (Matich et al. 2011; Nifong et al. 2015;

Rosenblatt et al. 2015)).

1.3.2. Behaviour — personality and behavioural syndromes

Personality can be defined as intra-individual behavioural differences that are consistent
through time and across contexts (Gosling 2001; Wolf and Weissing 2012). The term
personality is often used interchangeably with ‘behavioural syndrome’, though
behavioural syndromes are suites of behavioural traits correlated across individuals,
which result in behavioural types (Sih et al. 2004b; Réale et al. 2007; Dingemanse et al.
2012). The ecological implications of personality and behavioural syndrome differences
are significant, including life-history trade-offs, food-web stability and at an
evolutionary scale, speciation (Sih et al. 2004a, 2012; Réale et al. 2007; Wolf and
Weissing 2012; Dall et al. 2012; Dingemanse et al. 2012). One of the most simple and
often described behavioural syndromes is the bold-shy axis, where some individuals can
be categorised as ‘bold’, while others are ‘shy’ (Réale et al. 2007). Correlations between
shyness and boldness and individual ecology have been found in many species (e.g.
Conrad et al. 2011; Sih et al. 2012; Patrick and Weimerskirch 2014; Pruitt and Keiser
2014) and present a more nuanced phenotypic polymorphism than the morphological
type described above, where individuals with no apparent morphometric differences can
present very different ecologies. For example, ‘bold’ black-browed albatross
(Thalassarche melanophrys), categorised as such by their response to a novel object,
forage in a different habitat to ‘shy’ individuals (Patrick and Weimerskirch 2014).

Interestingly, these foraging locations have different fitness implications for males and
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females (Patrick and Weimerskirch 2014), which highlights the importance of assessing

intraspecific variation in combination with sex differences.

1.3.3. Pace-of-Life-Syndrome Hypothesis

The POLS hypothesis comprises intrinsic links between individual behaviour,
physiology, and life history parameters where for example, individuals that are
considered ‘bold’ in their behaviour have faster growth rates, earlier onset of maturity,
and other physiological differences, such as ability to cope with stress, in comparison to
‘shy’ individuals (Ricklefs and Wikelski 2002; Biro and Stamps 2008; Réale et al.
2010). This has implications for ontogenetic shift dynamics, where some individuals
may undergo ontogenetic shifts earlier or later than others.

Individual differences in life history parameters and behaviour have significant
effects on individual exposure to anthropogenic threats such as risk of fishing mortality,
in addition to effects on population stability and growth rates (Biro and Post 2008;
Wilson et al. 2011; Wolf and Weissing 2012; Harkonen et al. 2014). It is therefore
critical that these sources of variation are well understood, especially in already

threatened species.

1.4. Model system: The white shark

14.1. Description

The white shark (Carcharodon carcharias) is a large predatory fish, characterised by its
conical snout, torpedo shaped body, large serrated teeth, and lunate caudal fin shape

(Compagno 2001). Colouration is variable, but typically grey (ranging from light to
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dark) dorsally, countershaded ventrally with white (Compagno 2001). Controversy

reigns over the maximum size and age attained by white sharks, though the most
recently accepted reliable estimates are 600 cm (Castro 2012) and 70 years+ (Hamady
et al. 2014).

As a Lamniform, white sharks possess the ability to maintain the temperature of
their eyes, brain, stomach, and muscles several degrees above that of the water in which
they are swimming (Carey et al. 1982; Block and Carey 1985; McCosker 1987; Wolf et
al. 1988). The physiological structures behind this ability are termed the retia miriabilia,
and comprise a system of vascular tissue that acts as a counter-current heat exchanger,
utilising metabolic heat to warm the various body parts to which they are adjacent
(Carey and Teal 1969; Carey et al. 1982). Elevated muscular temperatures allow white
sharks to increase their muscle power output (Hartree and Hill 1921), while increased
ocular temperature is believed to improve visual capabilities (Block and Carey 1985);
both of these factors facilitating the ability to predate highly mobile and sometimes
large prey. Such prey items are subsequently rapidly digested, as a consequence of
heightened stomach temperatures (McCosker 1987). The ability to maintain a relatively
warm brain is hypothesised to aid in mitigating against rapid and substantial changes in
temperature by providing a thermal buffer for the nervous system (Block and Carey

1985).

1.4.2. Distribution

White sharks use both coastal and pelagic habitats around the globe (Compagno 2001),
where they undertake both return coastal migrations, and movement between the coast
and open ocean (Bonfil et al. 2005, 2010; Weng et al. 2007a; Jorgensen et al. 2010;

Block et al. 2011; Duffy et al. 2012; Domeier and Nasby-Lucas 2013; Bonfil and
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OBrien 2015), which are transoceanic in some cases (Bonfil et al. 2005; Duffy et al.
2012; Del Raye et al. 2013). Genetically distinct populations are located in South
Africa, Australia/New Zealand, Northeast Pacific, Northwest Pacific, Northwest
Atlantic and the Mediterranean (Pardini et al. 2001; Jorgensen et al. 2010; Tanaka et al.

2011; Gubili et al. 2011, 2012; Andreotti et al. 2015).

1.4.3. Conservation

1.4.3.1. Intrinsic vulnerability to anthropogenic threats

White sharks have long lifespans, take up to three decades to reach sexual maturity, and
have relatively low fecundity (Myers and Worm 2003; Hamady et al. 2014; Natanson
and Skomal 2015); like many elasmobranchs, this renders them sensitive to over-fishing
and exploitation, leading to significant population declines (Myers and Worm 2003;
Baum et al. 2003; Worm et al. 2013; Dulvy et al. 2014). Removal of mobile top
predators such as the white shark can have significant impacts on marine food webs and
ecosystems, causing consumptive and behaviour-mediated trophic cascades (Heithaus et
al. 2008; Ferretti et al. 2010; Ruppert et al. 2013; Rasher et al. 2017), and disrupting
ecosystem connectivity (Lundberg and Moberg 2003; McCauley et al. 2012; Rosenblatt

etal. 2015).

14.3.2. Conservation status

White sharks are listed as Vulnerable on the International Union for the Conservation of
Nature's (IUCN) Red List (Fergusson et al. 2009), in addition to Appendix II of the
Convention on International Trade in Endangered Species of flora and fauna (CITES),

and both Appendices of the Convention on Conservation of Migratory Species. National
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protection has been granted in South Africa, Australia, USA, Namibia, Israel and Malta

(Fergusson et al. 2009).

1.4.3.3. Existing threats

Although white sharks are listed under several pieces of protective legislation, they are
still subject to threats across their range, partly because their wide ranging movement
patterns mean that the sharks travel into areas where they are not protected (Bonfil et al.
2005, 2010; Weng et al. 2007a; Fergusson et al. 2009; Blower et al. 2012; Domeier and
Nasby-Lucas 2013). White shark fins are also illegally traded for both food and trophies
(Shivji et al. 2005), and species-specific identification of fins within markets remains an
issue (Cardenosa et al. 2017). Targeted and non-targeted sport and trophy fishing is still
prevalent across their range, in addition to bycatch in commercial fisheries (Baum et al.
2003; Fergusson et al. 2009; Lyons et al. 2013b) and swimmer protection programmes
in South Africa and Australia continue to catch white sharks despite both countries
listing them as protected species (Dudley and Simpfendorfer 2006; Fergusson et al.
2009). Shark nets and especially targeted culls in response to shark bites in Australia are
still utilised and regularly proposed, despite lack of public support (Pepin-Neff and
Wynter 2017). The media play a pivotal role in the public perception of sharks, often
irresponsibly portraying them in an overly negative manner that has been shown to
influence policy and fisher attitudes (Neff and Hueter 2013; Neff 2015; McCagh et al.
2015; Nosal et al. 2016; Drymon and Scyphers 2017; Pepin-Neff and Wynter 2018).
Several emerging global threats are likely to affect white sharks.
Bioaccumulation of anthropogenic toxins has been recorded in white sharks across
populations (Schlenk et al. 2005; Mull et al. 2013; Lyons et al. 2013a; Marsili et al.

2016), with deleterious effects recognised in South Africa (Marsili et al. 2016). Ocean



290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

14

warming and acidification reduce shark hunting efficacy while increasing their
energetic demands (Dixson et al. 2015; Pistevos et al. 2015, 2017; Rosa et al. 2017) and
anthropogenic noise pollution has been identified as posing extreme and negative fitness
consequences for the world’s fishes (Cox et al. 2018). Cage diving ecotourism is
popular at major white shark aggregations in South Africa, Australia and Mexico, and
there is evidence that these activities alter the shark’s movement patterns, though it has
not yet been ascertained whether these changes may be detrimental to the sharks
(Laroche et al. 2007; Bruce and Bradford 2013; Huveneers et al. 2013; Towner et al.
2016).

As the white shark is a globally threatened, highly mobile top predator,
understanding the dynamics of ontogenetic shifts and sexual and individual variation in
the species is of significant importance to our understanding of its ecology and

conservation management.

1.4.4. Diet and ontogenetic shift

White sharks are documented to experience a distinct ontogenetic shift in prey
preference when they reach approximately three metres in length, characterised by a
change in primary prey from piscine species in smaller sharks, to incorporating hunting
of marine mammals in larger individuals (Tricas and McCosker 1984; Klimley 1985;
Cliff et al. 1989; Estrada et al. 2006; Hussey et al. 2012b). The reported shark length at
which the shift occurs varies between 2.0 m and 3.4 m total body length (Table 1.1). It
was previously believed that only large white sharks scavenged from whale carcasses,
but young individuals have also been documented feeding at carcasses (Dicken 2008).

The Mediterranean population is the only one known to potentially partially specialise
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313 on turtles (Fergusson et al. 2000) and relatively little is known about the ecology of the

314 population off the coast of Japan in the northwest Pacific (Tanaka et al. 2011).

315
316 Table 1.1: Shark total length (TL) at which the ontogenetic shift is reported to occur in
317 white shark populations.
TL at which
ontogenetic shift is
reported to oceur Population Reference Notes
(m)
= Africa Bruce 1992)
2.7 Australia (Malcolm et al.
2001)
2-3 All (Compagno 2001)
Smallest size
3.0 Australia (Bruce et al. 2006) visiting seal
colonies
3.41 North Atlantic (Estrada et al. 2006) Stable isotope
study
Smallest
individual found
2.66 South Africa (Hussey et al. 2012b) to have seal
remains in
stomach
318
319 This shift in diet is believed to be facilitated by a change in tooth shape, from relatively
320 cuspidate to broad; hypothesised to increase handling efficiency of marine mammal

321 blubber (Tricas and McCosker 1984; Frazzetta 1988). Tooth shape change through
322 ontogeny has not been studied in the context of sexual or individual variation in white

323 sharks, despite evidence of both sexual and individual variation in tooth shape of
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elasmobranchs (e.g. Taniuchi 1970; Litvinov 1983, 2003; Hubbell 1996; Kajiura and

Tricas 1996) and the evidence presented below.

With the exclusion of the smallest size classes, which are not present, size
segregation at aggregations associated with pinniped colonies has little support
(Domeier and Nasby-Lucas 2007, 2008; Duffy et al. 2012; Kock et al. 2013; Bruce and
Bradford 2015), though some stratification of aggregation attendance by size is evident
in South Africa (see section 1.5.2.) and fine-scale habitat use has been shown to differ
temporally between size classes at Guadalupe Island (Hoyos-Padilla et al. 2016). A
size-based feeding hierarchy was noted among bait-attracted sharks by Strong et al.

(1992).

14.5. Sexual dimorphism

Significant sexual dimorphism is evident in C. carcharias with females achieving
greater length and mass in comparison to their male cohorts (Compagno 2001).
Differences in age and length at maturity are evident, where males have been shown to
mature at 350 - 410 cm, while females only reach maturity at 400 - 500 cm (Table 1.2.),
and the most recent estimate places male maturity at 26 years and female at 33 years
(Natanson and Skomal 2015). There is evidence that these sizes and ages differ between
populations (Tanaka et al. 2011) and that growth rates differ between the sexes, where
females grow faster than males (Tanaka et al. 2011; Hamady et al. 2014), though this is

yet to be confirmed.
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Table 1.2: Size (total length (m)) and maturity classes of male and female white

sharks.
Maturity
Male References Female References
Class
Young of the ) )
<1.75 (Francis 1996) <1.75 (Francis, 1996)
Year
(Bruce & Bradford, (Bruce & Bradford,
Juvenile 2-3 2-3
2012) 2012)
(Francis, 1996;
(Pratt, 1996; Bruce &
Sub-Adult 3-35 3-4.5 | Compagno, 2001; Bruce
Bradford, 2012)
& Bradford, 2012)
(Francis, 1996;
Adult >3.6 (Pratt, 1996) >4.5

Compagno, 2001)

1.4.6. Sexual segregation

Habitat segregation and differences in movement patterns have been recorded in the

northeast Pacific (Anderson & Pyle, 2003; Jorgensen et al., 2010; Domeier & Nasby-

Lucas, 2012, 2013; Weng & Honebrink, 2013), Australia/New Zealand (Bruce et al.

2006; Robbins 2007; Robbins and Booth 2012; Francis et al. 2015; Bruce and Bradford

2015) and South Africa (Cliff et al. 1989, 2000; Pardini et al. 2001; Zuffa et al. 2002;

Bonfil et al. 2005; Kock et al. 2013; Towner et al. 2013a, 2016; Hewitt et al. 2018).

Some of these differences have been attributed to female gestation and pupping

(Anderson & Pyle, 2003; Domeier & Nasby-Lucas, 2013) and different nutritional

requirements (Robbins 2007; Weng et al. 2007a; Jorgensen et al. 2010; Kock et al.
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357 2013; Bruce and Bradford 2015), while others hypothesise influence of thermal niche

358 where females use warmer water conditions to increase growth rate and/or development

359 of embryos (Robbins, 2007; Towner et al., 2013a). As yet, there has not been a

360 cohesive review of sexual segregation in white sharks, or its potential conservation
361 implications. Furthermore, many studies of the trophic ecology of white sharks do not
362 separate samples into the sexes, or consider the interaction of both sex and size. Given
363 the evidence for both ontogenetic and sexual variation in white shark ecology, this
364 represents a major gap in the scientific literature for this species.

365 1.4.7. Individual variation

366 The study of individual variation in shark behaviour and ecology is a burgeoning field,
367 and few studies have tackled it explicitly in white sharks. Individual variation in
368 response to ecotourism activities has been recorded (Laroche et al. 2007; Huveneers et

369 al. 2013), in addition to predatory behaviour (Huveneers et al. 2015; Towner et al.
370 2016), and individual dietary specialisation has been revealed in the northeast Pacific

371 and Australia (Kim et al. 2012; Pethybridge et al. 2014).

372 1.5. Study population - South African white sharks

373 1.5.1. Population status and size

374 South Africa’s white shark population is genetically distinct, though there is a degree of
375 movement and gene flow between South Africa and the Australia/New Zealand
376 population (Pardini et al. 2001; Bonfil et al. 2005; Andreotti et al. 2015). Recently,

377 controversy has emerged over population estimates for South Africa, with some
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378 claiming a size of 808 - 1008 and 972 - 1586 (Cliff et al. 1996; Towner et al. 2013b)

379 while others claim the very low number of 353 - 522 (Andreotti et al. 2016); a figure

380 that has been contested (Irion et al. 2017).

381 1.5.2. Population distribution

382 Ferreira and Ferreira (1996) provided the first description of South Africa’s discrete
383 white shark coastal aggregations (False Bay, Gansbaai, Struisbaai, Mossel Bay and
384 Algoa Bay), and Cliff et al. (1989) documented that white sharks are common off the

385 coast of KwaZulu-Natal (KZN) (Figure 1.1).

>
\.)’/J \/\j(r/;astem Cape
\ Western Cape '% - ___//
{‘ i o ——__\’_‘/ —~—~—
False Bay ‘1 A~ ~ = Algoa Bay
Gansbaai W Mossel Bay
386 Struisbaai
387 Figure 1.1 Locations of the five major coastal aggregations of white sharks in South

388 Africa.
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The sharks are known to undertake return coastal migrations between the coastal
aggregation sites, KwaZulu-Natal, and Mozambique, as well as oceanic return
migrations within the western Indian Ocean (Cliff et al. 1996; Ferreira and Ferreira
1996; Bonfil et al. 2005; Jewell et al. 2011). There is some stratification of age class
between the aggregations; Algoa Bay is believed to serve as a white shark nursery (CLiff
et al. 1996; Dicken 2008), KZN sharks are mostly juvenile and young of the year (CILiff
et al. 1989), the Mossel Bay aggregation is largely juvenile with some sub-adults
(Ryklief et al. 2014), and Gansbaai and False Bay sharks are dominated by sub-adults of
both sexes as well as some juveniles and adult males (Kock et al. 2013; Towner et al.
2013a; Hewitt et al. 2018). All of the coastal aggregations are in proximity to large
pinniped colonies, except for Struisbaai (Dudley 2012). Mature females are notable by
their scarcity from all of these aggregations, and have instead been documented in the
tropical waters of the Western Indian Ocean, where sightings of large sharks have been
made in Mozambique, Madagascar, Kenya, Seychelles, Mauritius and Zanzibar (Cliff et
al. 2000; Bonfil et al. 2005). No pregnant females have yet been recorded in South

Africa (Francis 1996).

1.5.3. National conservation plan

The United Nation's Food and Agriculture Organisation (FAO) International Plan of
Action for the conservation and management of sharks (IPOA-Sharks, 1999), requires
member states to develop their own, self funded, National shark POA's (NPOA-
Sharks). As an FAO member state, and following it's guiding marine biodiversity
legislation (Objectives and Principles of the Marine Living Resource Act 1998), South

Africa has recently finalised the NPOA-Sharks South Africa (NPOA-Sharks South
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Africa), within which is highlighted the need for better understanding of all aspects of

shark behaviour for the benefit of optimal conservation efforts.

Aims of this Thesis

This thesis aims to assess and review the role of sexual and individual variation in the
trophic ecology of the white shark, particularly in ontogenetic shift dynamics. The work
uses data collected from the Gansbaai aggregation of white sharks in South Africa, for
which trophic studies have not yet been conducted, in addition to previously published
data. Questions asked in this thesis challenge long-held paradigms in white shark
biology, especially concerning tooth shape change through ontogeny. Trophic ecology
is investigated through tooth shape metrics, stable isotope and fatty acid analyses. A
timely review of sexual and individual variation in the species provides a cohesive
overview of research to date, and highlights conservation management implications.
Direct incorporation of size, sex and individual differences in trophic modelling will
provide important insight into the ecology of a highly mobile, threatened top predator.
These insights could be transferred across species and ecosystems, and provide a basis

for better-informed management of ecologically important wildlife.
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Chapter 2 The tooth, the whole tooth and nothing
but the tooth: tooth shape and ontogenetic shift
dynamics in the white shark Carcharodon

carcharias.
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2.1. Abstract

Ontogenetic dietary shifts are widespread across the animal kingdom, and often involve
associated morphological changes in foraging phenotype. These changes may differ
between sexes or vary between individuals, and are important factors in the ecology of
species. While such factors have received much attention in terrestrial systems, they are
much less well understood in marine taxa. The white shark Carcharodon carcharias is a
marine apex predator that is accepted to provide a classic example of an ontogenetic
dietary shift, with an associated change in tooth morphology from cuspidate to broad.
Our results however, which include measurements obtained using a novel photographic
method, reveal significant differences between the sexes in the relationship between
tooth cuspidity and shark total length (TL), and a novel ontogenetic change in male
tooth shape. Males exhibit broader upper first teeth and increased distal inclination of
upper third teeth with increasing length, while females do not present a consistent
morphological change. Substantial individual variation, with implications for pace of
life syndrome, was present in males, and tooth polymorphism was suggested in females.
Sexual differences and individual variation may play major roles in ontogenetic changes
in tooth morphology in white sharks, with potential implications for their foraging
biology. Such individual and sexual differences should be included in studies of

ontogenetic shift dynamics in other species and systems.
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2.2. Introduction

Ontogenetic shifts in ecological niche are widespread across the animal kingdom, and
represent changes in resource use with size, from birth/hatching to maximum size
(Werner and Gilliam 1984). In some species, ontogenetic shifts in diet are generally
characterized by a change from smaller size classes consuming a limited range of
relatively small prey species, to larger size classes consuming a wider range of prey
items with a larger mean body size (Wilson 1975). Such shifts in diet can be
accompanied, or even made possible, by allometric scaling of morphological features,
in which one morphological feature changes disproportionately to general body growth.
In some species, there may be phenotypic polymorphism in the ontogenetic change in
morphology and diet, resulting in trophic polymorphism (Hutchinson 1957; van Valen
1965; Meyer 1989, 1990a).

The ecological importance of ontogenetic dietary shifts and associated
morphological changes, and of sexual or individual variation in them, may be
particularly significant in marine apex predators such as sharks because of their often
keystone ecology and vulnerable conservation status (Matich and Heithaus 2015). It is
becoming increasingly clear that sharks exhibit sexual and individual differences in diet
and habitat use, and allometric scaling of morphological features through ontogeny. For
example, bull sharks (Carcharhinus leucus), tiger sharks (Galeocerdo cuvier), and other
large pelagic sharks show individual variation in diet (Heithaus et al. 2002; Matich et al.
2011; Kiszka et al. 2015), and female scalloped hammerheads (Sphyrna lewini) shift to
offshore habitats at a smaller size than males, where access to pelagic prey and
improved foraging success allow them to grow faster than their male counterparts
(Klimley 1987). Bull, tiger, blacktip (Carcharhinus limbatus), and horn sharks

(Heterodontus francisci) show allometric changes in head shape and musculature
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(Huber et al. 2006; Kolmann and Huber 2009; Habegger et al. 2012; Fu et al. 2016), and

bull, tiger and white (Carcharodon carcharias) sharks show this with caudal-fin shape
(Lingham-Soliar 2005; Irschick and Hammerschlag 2015). Allometric scaling of mouth
length and width is also evident in the viper dogfish (Trigonognathus kabeyai) (Yano et
al. 2003).

Individual variation in tooth morphology, a mechanistic facilitator of shark diet
(Frazzetta 1988; Compagno 1990) has been reported for sand tiger (Carcharias taurus),
blue (Prionace glauca), and porbeagle (Lamna nasus) sharks (Litvinov 1983; Shimada
2002a; Lucifora et al. 2003; Litvinov and Laptikhovsky 2005). Sexual dimorphism in
tooth shape has been linked to different diets (Litvinov and Laptikhovsky 2005), but can
also be an adaptation that gives males greater purchase when holding on to females
during copulation (Kajiura and Tricas 1996). Quantifying ontogenetic change is
logistically challenging in large pelagic elasmobranchs due to their intolerance of
captivity, cryptic habitat use, wide-ranging movements, relatively low abundance and
handling difficulty. As such, many ontogeny studies have been limited to dead
specimens.

The white shark is a classic example of a morphological, diet-related change
through ontogeny. White sharks are a member of the Lamniformes, an order for which
tooth morphology is an informative defining character (Compagno 1990). It is widely
accepted that white sharks undergo an ontogenetic shift in prey preference (Tricas and
McCosker 1984; Cliff et al. 1989; Bruce 1992; Compagno 2001; Estrada et al. 2006;
Hussey et al. 2012b). Stomach content and stable isotope analyses indicate that this shift
constitutes a change in trophic level, from a predominantly piscivorous diet when
young, to marine mammals making up the major component of diet when older (Tricas

and McCosker 1984; Klimley 1985; Cliff et al. 1989; Estrada et al. 2006; Hussey et al.
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2012b). The estimated length at which they undergo this dietary shift varies between 2

m and 3.4 m body length (Cliff et al. 1989; Bruce 1992; Compagno 2001; Estrada et al.
2006; Bruce et al. 2006; Hussey et al. 2012b), and is generally considered to occur in
both sexes at the same size, despite the fact that white sharks are sexually dimorphic,
with males reaching maturity at approximately 3.5 m and females at 4.5 m in length
(Francis 1996; Pratt 1996; Compagno 2001; Bruce and Bradford 2012). This dietary
shift is widely accepted to be facilitated by a change in tooth morphology, from
relatively pointed (cuspidate) teeth with serrational cusplets adapted to puncturing
piscivorous prey, to broader teeth lacking serrational cusplets that are better suited to
handling mammalian prey (Tricas and McCosker 1984; Frazzetta 1988; Hubbell 1996;

Whitenack and Motta 2010; Bemis et al. 2015) (Figure 2.1).

(a) (b)

Figure 2.1: Illustrations of variation in Carcharodon carcharias tooth breadth and

cuspidity (a) a broad and (b) a cuspidate tooth.

However, the primary reliance of adult white sharks on marine mammal prey is
arguably overstated (Fergusson et al. 2009), and there is mounting evidence of
individual dietary variation that does not appear to be related to sex or age (Estrada et
al. 2006; Hussey et al. 2012b; Carlisle et al. 2012; Kim et al. 2012; Hamady et al. 2014;

Pethybridge et al. 2014; Christiansen et al. 2015; Towner et al. 2016). Individual and
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sexual differences in foraging strategy have been found (Huveneers et al. 2015; Towner
et al. 2016), and there are questions over whether the dietary shift occurs at all for some
individuals (Estrada et al. 2006; Hussey et al. 2012b). Tooth shape in adult white sharks
has also been reported as highly variable, with some large sharks retaining the more
cuspidate tooth shape of juveniles (Hubbell 1996; Castro 2012). However, the only
previous explicit investigations of tooth morphometrics in relation to sex and body
length included only tooth height (Randall 1973, 1987; Mollet et al. 1996; Shimada
2002b), a metric which does not capture tooth cuspidity. As tooth cuspidity is
considered to play an important role in the ontogenetic dietary shift, this leaves a
substantial gap in our understanding of the dynamics of this shift, including within and
between the sexes.

Morphological changes through ontogeny are difficult to measure in wild
animals, especially those inhabiting marine environments, and even more so in wide-
ranging apex predators. White sharks provide an excellent opportunity to study these
changes because their predictable aggregation at certain pinniped colonies, and the ease
with which they can be lured to boats and photographed makes photographic analysis of
live sharks a potentially valuable source of information on tooth morphology. Here we
examine the ontogenetic change in tooth cuspidity by integrating published data and
tooth measurements from jaws of dead sharks with a new non-invasive method of
quantifying tooth morphology for live sharks from photographs, and examine how the

ontogenetic change in tooth morphology differs between sexes and individuals.
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2.3. Methods

2.3.1. Tooth cuspidity

Teeth are described as per the system detailed by Moyer et al. ( 2015) and Bemis et al.
(2015), in which teeth are given a code based on their location in the left or right side
of the jaw (L and R, respectively), in Meckel’s or palatoquadrate cartilage (M and P,
respectively), and then numbered distally to medially, relative to the appropriate
symphysis (Figure 2.2a, 2.3a). We used measurements of tooth crown height and width,
as described in Hubbell, (1996), to calculate tooth cuspidity, dividing the crown height
by the crown width to produce what we have termed the tooth index value (Figure
2.2b). The presence of serrational cusplets are not mentioned in the published datasets,
and were not observed in any of the specimens that we measured. For analyses of the
relationship between tooth cuspidity and shark length, all tooth measurements were

taken from RP1 or LP1 teeth (Figure 2.2).



(a)

555 Figure 2.2 Calculating tooth index value for RP1 and RP2 teeth (a) Position of first (1) and
556 second (2) right (R) palatoquadrate (P) teeth in Carcharodon carcharias from a jaw held in the
557 KwaZulu-Natal Sharks Board jaw collection, with (b) an enlarged view of RP1 and RP2
558 showing crown height and base length measurements. (c) Photograph of a live C. carcharias
559 showing left (L) P1 and LP2 teeth with (d) an enlarged view of the teeth showing height and
560 base length measurements

561 of the LP2 tooth.

562

563 We included P1 data from 23 live sharks in Gansbaai, South Africa (34.5805° S,
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19.3518° E), using a novel photographic method and ImageJ software (Abramoff et al.

2004) described below. We included measurements taken manually from teeth of 50
jaws in the jaw collection held by the KwaZulu-Natal Sharks Board (KZNSB) South
Africa, and P1 crown height and width data from 55 sharks, published by Hubbell
(1996), and Mollet et al. (1996), where in the latter, crown height was termed “UA1E2”
and crown width “UA1W”). KZNSB sharks were caught as part of a bather safety
program, and jaws either dried or frozen at time of measurement. The Gansbaai and
KZNSB sharks both came from the same South Africa population. The sharks in
Hubbell (1996) and Mollet et al. (1996) came from multiple populations (Australia-New

Zealand, South Africa, northeast Pacific, northwest Atlantic).

2.3.2. Tooth angle

The intermediate upper tooth (R/LP3, Figure 2.3a, b, ¢, d) is markedly different in shape
from the P1 and P2 teeth, in that it typically displays asymmetry, and an approximately
straight medial edge (Applegate and Espinosa-Arrubarrena 1996; Hubbell 1996). The
angle of the tip of the crown in comparison to the tooth midpoint shows greater
variation in this tooth than the equivalent angles of the P1 and P2 teeth (Hubbell 1996),
and was thus selected as another potential metric for analysing relationships between
tooth morphology and shark length (Figure 2.3b, d). One P3 tooth per shark was
selected, and Image] software was used to measure the angle (lateral or medial) of the
tip of the tooth crown in relation to the midpoint of the tooth base (Hubbell 1996);
Figure 2.3b, d). Medial inclinations were denoted by positive angles, and distal
inclinations as negative (Figure 2.3b). We combined P3 angle measurements derived
from photographs of live sharks (see below), and photographs of jaws held by the

KZNSB, with data published by Hubbell (1996).
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Figure 2.3 Measuring P3 tooth angle (a) Derivation of Carcharodon carcharias tooth
angle from the third (3) left (L) palatoquadrate (P) (LP3) tooth from a jaw held in the KwaZulu-
Natal Sharks Board jaw collection, with (b) an enlarged view of LP2 and LP3 teeth showing the

tooth midpoint and tooth angle on the LP3 tooth. (¢) Photograph of a live C. carcharias
showing RP3 and RP4 teeth of a live shark with (d) an enlarged view of the teeth showing tooth

angle measurement of the LP3 tooth.
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2.3.3. Shark length

Shark lengths (total length) were directly measured for sharks in the KZNSB and
published datasets. For live sharks in Gansbaai, lengths were estimated in the field by
visually comparing the free-swimming sharks to an object of known length (a 4.7 m
length cage diving cage), fixed to the side of the boat, as has been done in many

previous studies (Kock et al. 2013; Towner et al. 2013a, 2016).

2.3.4. Photographic method

We took measurements of crown height, width, and angle from photographs of both live
sharks and KZNSB jaws (Figures 2.2c, d, 2.3, 2.4). Live sharks were photographed
from a cage diving vessel operated by Marine Dynamics, based in Gansbaai, South
Africa. The photographs were taken when sharks were interacting with stimuli (salmon
head bait and a wooden seal decoy), during three field trips: August-October 2014,
February-April 2015, and June 2015. Sharks were individually identified using
photographs of the first dorsal fin and DARWIN ID software, with digital traces of the
outline of the fin being matched by the software and confirmed by eye (Stanley 1995;
Towner et al. 2013b). We gave tooth images a quality score rating of 1-6, based on their
resolution, clarity and angle relative to the camera, and only images with a score of four
or above were included in analyses, based on the results of the repeatability of the
method, described below. These images were imported into ImageJ software where
measurements of crown height, crown width and tooth angle were taken in pixels.
Height and width measurements were taken three times, and averages used in the

calculation of tooth index values.
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2.3.5. Statistical analyses

To investigate scaling relationships between shark length and P1 tooth index, both
variables were log;o transformed, sorted into male and female datasets, and analysed
with linear regression. Logo transformations are typically used to increase linearity of
allometric relationships, which tend to form curves as they are a power function, e.g.
(Huber et al. 2006; Kolmann and Huber 2009; Habegger et al. 2012). If the predicted
isometric slope of 1 fell outside of the 95% confidence intervals of the regression slope,
the relationship was considered allometric (Sokal and Rohlf 1995). To identify discrete
tooth index groupings (e.g. pre- and post-ontogenetic shift and/or polymorphs) in P1
teeth, hierarchical cluster analyses were applied to P1 tooth index data. The NbClust
function (Charrad et al. 2014) in R statistical software (version 3.2.4.) (R 2017) was
used to identify the optimal number of clusters with which to perform the cluster
analyses a priori. A Mann-Whitney U test and one-way ANOVA were applied to data
from males and females, respectively, to test for differences in shark length between
tooth clusters (male data were non-normal; female data had more than two clusters).
Linear regression analyses were further applied separately to male and female P3 tooth
angle and shark length data, and an isometric slope of 1 used to determine

allometry. Log)otransformations were not used for these data, as they included negative

and positive values.

We conducted tests of both accuracy and repeatability to determine the
robustness of the photographic methodology (Jeffreys et al. 2013). We used the white
shark jaw collection held by the KZNSB to assess the accuracy of our photographic
method for measuring tooth cuspidity (Figure 2.2a, b). We measured LM1 and LM2

teeth of 35 jaws using a tape measure in situ, and used photographs of the same jaws to
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measure the same teeth digitally, in pixels, using ImageJ software. We used linear
regression to compare the tooth index values produced from manual and digital
measurements. We further compared digital measurements, obtained from multiple
photographs of the same teeth of live Gansbaai sharks, to assess the repeatability of our
photographic method (Figure 2.4). This dataset included teeth from both the upper and
lower jaw, in any position visible, provided the quality of the image met the
requirements described above. The teeth of eleven individual sharks, totalling 12 unique
teeth, each measured at least twice, were included in a repeatability calculation
described by Lessells and Boag (1987). This calculation uses the mean square values
produced by a one way analysis of variance (ANOVA) (IBM SPSS v22) (MSyw =
within group variance, MS, = among group variance) as such; Repeatability (r) = S /
S? + S%4, where S = MSw. S%A = (MSa - MSw)/ng, no = [1/(a-1)] * [Yni — Yni*/ Yni), a
= number of groups, and n;= sample size of the ith group. Two repeatability scores were
calculated: using teeth with a quality score of three and above (n=46), or four and above

(n=25).
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b Vo ik
Figure 2.4. Repeat photographs of the same tooth (a) 15 March 2015 (K. Baker,

www.sharkwatch.sa) and (b) 24 March 2015 showing position of first (1) and second (2) left (L)
palatoquadrate (P) teeth in the individually identified Carcharodon carcharias ‘Rosie 1I” used

in the repeatability test of the photographic method.

2.4. Results

2.4.1. Tooth cuspidity and shark length

P1 tooth index in male white sharks was significantly related to body length (linear
regression, F ss = 20.6, P < 0.001, 95% confidence interval on slope -0.17 and -0.07, R?
=(.25), and was negatively allometric, with the predicted isometric slope of 1 being

outside the 95% confidence intervals of the regression slope (Figure 2.5a). Tooth index
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in female sharks also decreased significantly with body length (linear regression, F; ¢ =
4.0, P =0.05, 95% confidence interval on slope -0.14 and -1.23, R?= 0.05), but showed
isometry (predicted isometric slope of 1 was inside of the 95% confidence intervals)
(Figure 5b). Additionally, there was much greater variability in the relationship for

females than for males (R* = 0.05 and R = 0.25, respectively) (Figure 2.5b).
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Figure 2.5 Relationships between log;y P1 tooth index (/1) and log10 total body length (L)

for (a) male and (b) female Carcharodon carcharias. Broad and cuspidate tooth types are
illustrated on the y-axes. Males formed two clusters, with teeth that were relatively cuspidate
(black triangles) or relatively broad (grey squares), whereas females formed three clusters, with
teeth that were relatively cuspidate (black triangles), intermediate (open circles) or relatively
broad (grey squares) (c) The relationships between the angle of the third palatoquadrate (P3)

tooth and total body length (L) for male and (d) female C. carcharias.
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678 2.4.2. Tooth angle and shark length

679 The angle of the P3 tooth was significantly related to shark length in male sharks (linear
680 regression, F = 6.85, P = 0.019; 95% confidence interval on slope -0.94 and -0.1, R*=
681 0.31) in an isometric relationship, as the predicted isometric slope was 1 (Figure 2.5¢).
682 In female sharks, the angle of the P3 tooth was not related to shark length (linear

683 regression, F =2.62, P = 0.146, 95% confidence interval on slope -4.35 and 0.69, R%*=
684 0.05) (Figure 2.5d). The P1 teeth of male sharks formed two clusters; one where teeth
685 were relatively cuspidate, and another where teeth were broader (Figure 2.5a). The
686 lengths of sharks in the two tooth clusters were significantly different (Mann-Whitney
687 U test, U= 191, P <0.001). Female P1 teeth separated into three clusters that

688 represented cuspidate, intermediate and broad teeth (Figure 2.5b), and shark length did
689 not significantly differ between these clusters (one way ANOVA, F; ¢,=0.234, P =

690 0.63, 95% confidence interval on slope -0.14 and 0.22, R* = 0.01).

691 2.4.3. Accuracy and repeatability of the photographic method

692 There was a significant, positive relationship between the measurements taken directly

693 from teeth and from photographs (P1 and P2: linear regression, F; 34=43.02, P <0.001,
694 95% confidence interval: 0.57 - 1.08, R* = 0.57; P1 only: linear regression, F; 16=61.0,
695 P <0.001, 95% confidence interval: 0.73 - 1.27, R* = 0.8) (Figure 2.6a and b,

696 respectively). Digital images of only the P1 tooth were therefore substantially more

697 accurate than those of the P2 tooth.
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(a) 1-61 (b)
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Figure 2.6 Accuracy regressions. Relationship between Carcharodon carcharias tooth index
values (/1) from (a) measurements from photographs of first (1) and second (2) palatoquadrate
(P) teeth from photographs and (b) manual measurement of PI teeth of only C. carcharias

caught by the KwaZulu-Natal Sharks Board.

Tooth measurements showed high repeatability, which was substantially greater when
using images ranked four or more (Table 2.1), and therefore only those were considered

in analyses of tooth index and shark length.

Table 2.1 Repeatability (R) of tooth index (/1) values obtained from photographs of teeth

with image quality scores (Q) >3 and >4 n, Number of images.

Group C.V. 95%
0 n mean It d.f. (%) C.L R P
>3 46 1.09 45 0.092 1.17 0.57 | <0.001

>4 25 1.10 24 1.32 0.57 0.86 | <0.001
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2.5. Discussion

The results show that white sharks exhibit an ontogenetic shift in tooth shape, but that
this relationship differs between sexes, and shows substantial individual variation.
Males showed a distinct increase in P1 tooth breadth with length, and a change in angle
of the P3 tooth, both of which were far less pronounced in females. Measurements taken
from photos were accurate and repeatable, suggesting that use of photos of live sharks
could be a valuable source of data for future studies.

The results confirm that male white sharks undergo an ontogenetic shift in tooth
shape. Upper first teeth of male sharks become significantly more broad with increasing
shark length, showing negative allometry, and male sharks clustered into cuspidate and
broad-toothed groups that significantly differed in shark length, with the more cuspidate
group containing smaller sharks than the broad group. These two clusters likely
represent pre- and post-ontogenetic shift individuals. This ontogenetic change in white
sharks is commonly believed to facilitate the inclusion of marine mammals into their
diet (Tricas and McCosker 1984; Klimley 1985; Frazzetta 1988; Cliff et al. 1989;
Hubbell 1996; Estrada et al. 2006; Hussey et al. 2012b). The medial angle of the P3
tooth was also found to scale significantly with shark length in males, in an isometric
relationship. This tooth has been hypothesised to be a specialised tool for inflicting
large, disabling wounds on pinniped prey due to its shape and location on the strongest
part of the jaw (Martin et al. 2005). An increase in the distal inclination of the tooth tip,
as evidenced in males, could be a further adaptation for handling and despatching
marine mammals. Alternatively, this change in angle could assist in the handling of
females during copulation, during which male sharks bite females in the gill, head, and

pectoral regions (Kajiura and Tricas 1996; Pratt and Carrier 2001).
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Although shark lengths in the cuspidate and broad clusters of males were
significantly different, providing further evidence of a distinct change in tooth shape
through ontogeny, there was significant variation and overlap in size. This indicates that
there may be individual variation in the length at which male sharks undergo the
ontogenetic shift. Males reach sexual maturity at a similar size to that at which they
undergo the ontogenetic shift in tooth morphology (Cliff et al. 1989). This suggests that
the ontogenetic shifts in diet and tooth shape are intrinsically linked to sexual maturity.
In animals, individual variation in life history traits such as the onset of maturity,
coupled with behavioural changes such as changes in habitat use and diet, can be
components of a Pace-of-Life Syndrome, in which life-history trade-offs produce
consistent behavioural differences in areas such as activity level, movement patterns,
boldness and aggressiveness (Ricklefs and Wikelski 2002; Stamps 2007; Wolf et al.
2007; Biro and Stamps 2008; Réale et al. 2010). For example, in the house mouse (Mus
musculus), size and age at maturity is linked to activity level, growth rate, fecundity,
adult body size, and longevity, with ‘fast paced’ mice being more active, faster growing,
and reaching maturity at a smaller size and younger age than ‘slow paced’ mice (Wirth-
Dziegiolowska et al. 1996; Wirth-Dziegiotowska and Czuminska 2000; Wirth-
Dzigciotowska et al. 2005). The higher energetic needs of individuals which mature
more quickly, require morphological and physiological adaptations that enable them to
consume the necessary volume or type of sustenance (Biro and Stamps 2008). In the
case of white sharks, this could pertain to broader teeth facilitating the incorporation of
energy rich marine mammals into their diet. White sharks exhibit sexual and individual
differences in migratory behaviour (Weng et al. 2007a; Block et al. 2011; Domeier and
Nasby-Lucas 2012; Kock et al. 2013), that will affect the water temperatures individuals

inhabit and, because white sharks are endothermic (Carey et al. 1982), therefore the
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energetic demands of thermoregulation, producing individual variation in

energetic demands that may influence pace-of-life strategies. Elevated hunger and
activity levels increase risk of fishing mortality, and can lead to rapid depletion of fast
paced genotypes (Young et al. 2006; Biro and Post 2008; Mittelbach et al. 2014;
Héarkonen et al. 2014).

Female white shark teeth were found to scale with isometry in relation to shark
length, and the observed level of variation made any overall relationship weak.
Additionally, the facts that the angle of the intermediate tooth did not scale with shark
length and the cluster analysis suggested three tooth groups as opposed to the two
groups in males, demonstrate that ontogenetic shifts in tooth shape likely differ between
males and females. That these tooth types were independent of shark length, suggests
that female white sharks may exhibit phenotypic polymorphism. Stable isotope analyses
suggest that some females do not undergo an ontogenetic dietary shift, and can show
consistent dietary specialisation instead (Estrada et al. 2006; Hussey et al. 2012b; Kim
et al. 2012; Pethybridge et al. 2014; Christiansen et al. 2015). However, the mechanism
behind such specialisation has not been elucidated. Tooth polymorphism facilitates
niche polymorphism in sympatric populations of some fish species (Meyer 1990b), and
has been linked to dietary specialisation in other shark species (Litvinov 1983; Litvinov
and Laptikhovsky 2005). As tooth shape is generally accepted to relate to the
exploitation of different prey types in white sharks (Tricas and McCosker 1984;
Frazzetta 1988; Hubbell 1996), it is reasonable to suggest that sharks with cuspidate,
intermediate or broad teeth feed preferentially on different prey, constituting trophic
polymorphism in females. Potential consequences of specialisation in white shark diets
include altered food web structure if changes in resource availability affect tooth

morphs differently (Christiansen et al. 2015), and differing levels of bioaccumulation of
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toxins (Young et al. 2006; Biro and Post 2008; Mittelbach et al. 2014; Harkonen et al.

2014), an issue already known to pose a significant threat to white sharks generally
(Schlenk et al. 2005; Mull et al. 2013; Lyons et al. 2013a; Marsili et al. 2016). While we
cannot rule out geographic variation in female shark tooth shape, it seems less likely as
no such variation was evident in male teeth.

One of the major limitations in establishing the ontogenetic relationships
between morphology, diet and maturity, especially in threatened species, is sample size.
For sharks, the majority of tooth data currently available is from a limited number of
jaw collections, harvested from dead specimens. Our study shows that our novel
photographic method produces accurate and repeatable tooth shape data of live white
sharks in the field, providing that image quality is controlled, and these data can be used
to study the ontogenetic dietary shift. The increase in accuracy when comparing digital
and manual measurements of P1 teeth and pooled P1 and P2 teeth is likely due to
parallax error, induced by P2 teeth not being exactly front-on to the camera due to their
position in the jaw. This highlights the importance of ensuring that the position of the
tooth relative to the camera is directly parallel.

We have developed a non-lethal research method that can be used to provide
sample sizes that better elucidate the onset and occurrence of ontogenetic shifts within
and between populations, in addition to individual variation, sexual dimorphism and
polymorphism in white sharks, and potentially other sharks as well. Ontogenetic shift
dynamics are a major component of elasmobranch life history. Consideration of sexual
and individual variation in ontogenetic shift dynamics will therefore be important both
for understanding the ecology of a species, and for the development of effective

management strategies.
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3.1. Abstract

Demographic differences in resource use are key components of population and species
ecology across the animal kingdom. White sharks (Carcharodon carcharias) are
migratory, apex predators, which have undergone significant population declines across
their range. Understanding their ecology is key to ensuring that management strategies
are effective. Here we carry out the first stable isotope analyses of free-swimming white
sharks in South Africa. Biopsies were collected in Gansbaai, (34.5805° S, 19.3518° E)
between February and July 2015. We used SIBER (Stable Isotope Bayesian Ellipses in
R) and traditional statistical analyses to quantify and compare isotopic niches of male
and female sharks of two size classes, and analyse relationships between isotopic values
and shark length. Our results reveal cryptic trophic differences between the sexes and
life stages. Males, but not females, were inferred to feed in more offshore or westerly
habitats as they grow larger, and only males exhibited evidence of an ontogenetic niche
shift. Lack of relationship between 8'°C, '°N and female shark length may be caused
by females exhibiting multiple migration and foraging strategies, and a greater
propensity to travel further north. Sharks < 3 m had much wider, and more diverse
niches than sharks > 3 m, drivers of which may include individual dietary specialisation
and temporal factors. The differences in migratory and foraging behaviour between
sexes, life stages, and individuals will affect their exposure to anthropogenic threats,

and should be considered in management strategies.
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3.2. Introduction

Patterns of resource use are a key component in the ecology of species, and such data
are vital for ensuring that wildlife management and conservation measures are
successful. Individual variation in resource use has been highlighted as a critical topic in
further understanding species, and community ecology (Bolnick et al. 2003, 2011;
Réale et al. 2010; Sih et al. 2012; Dall et al. 2012), particularly in the case of predators
(Schreiber et al. 2011), and is emerging as an important facet in the study of
elasmobranchs (Matich et al. 2011; Jacoby et al. 2014; Huveneers et al. 2015; Matich
and Heithaus 2015; Towner et al. 2016). Ecological differences between males and
females in elasmobranchs are already recognised as prevalent (Sims 2005), and form
another important consideration in the understanding of their ecology, and consequently
their effective management. The niche concept (Hutchinson 1957), has been recognised
as a tool for quantifying resource specialisation and overlap between individuals, and
species (van Valen 1965; Kohn 1968; Cody 1974). This concept has recently been
reinvigorated by construction of the isotopic niche, in which stable isotope ratios of
Carbon and Nitrogen (in 6 denomination) of study organism tissue are plotted in
bivariate space (Bearhop et al. 2004; Layman et al. 2007a; Newsome et al. 2007). The
isotopic constituents of an animal’s tissues reflect the isotopic composition of the
organisms on which they feed, with nitrogen isotopes (8'°N) being considered to
provide reliable reflections of trophic position (Post 2002) and carbon isotopes (3'°C)
indicating habitat use (DeNiro and Epstein 1978).

The white shark (Carcharodon carcharias) is the world’s largest non-filter
feeding fish (Compagno 2001), and is currently listed as Vulnerable on the [IUCN Red
List (Fergusson et al. 2009), due to significant population declines, largely attributed to

targeted overfishing and bycatch, which has resulted in relatively small contemporary
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populations across its range (Baum et al. 2003; Gubili et al. 2011; Blower et al. 2012;

Nasby-Lucas and Domeier 2012; Towner et al. 2013b). Upon reaching approximately 3
m in length, white sharks are thought to undergo an ontogenetic shift in diet, from being
largely piscivorous to a greater emphasis on marine mammals (Tricas and McCosker
1984; Casey and Pratt 1985; Cliff et al. 1989; Compagno 2001; Hussey et al. 2012b).
There is suggestion of individual dietary specialisation in white sharks (Estrada et al.
2006; Hussey et al. 2012b; Carlisle et al. 2012; Kim et al. 2012; Hamady et al. 2014;
Pethybridge et al. 2014; Christiansen et al. 2015), evidence of individual variation in
predatory behaviours (Huveneers et al. 2015; Towner et al. 2016), and sexual
differences in movement patterns (Pardini et al. 2001; Anderson and Pyle 2003;
Domeier and Nasby-Lucas 2007; Weng et al. 2007a; Jorgensen et al. 2010; Domeier
and Nasby-Lucas 2012; Robbins and Booth 2012; Bruce and Bradford 2012; Kock et al.
2013).

The South African population of white sharks has five main coastal aggregation
sites (from west to east: False Bay, Gansbaai, Struisbaai, Mossel Bay and Algoa Bay).
These aggregations are not genetically distinct (Andreotti et al. 2015), with sharks
migrating between them, and further along the South African coast to KwaZulu-Natal
(KZN), Mozambique, and the western Indian Ocean (Cliff et al. 1989; Ferreira and
Ferreira 1996; Bonfil et al. 2005; Jewell et al. 2011). Some segregation by shark size is
apparent between the sites, with average size typically increasing from west to east
(Cliff et al. 1989; Ferreira and Ferreira 1996; Dicken 2008; Kock et al. 2013; Towner et
al. 2013a; Ryklief et al. 2014; Hewitt et al. 2018). Apart from Struisbaai, these
aggregation sites are typified by the presence of large pinniped colonies (Dudley 2012).

Mature females are largely absent from all of these aggregations, instead being recorded
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in the more tropical waters of the Western Indian Ocean (Cliff et al. 2000; Bonfil et al.

2005).

Previous studies of diet in South African white sharks, both through gut content
analysis and isotopic analyses, have been based on samples from relatively small sharks
caught in the nets of a bather safety programme managed by the KZN Sharks Board
(Cliff et al. 1989; Hussey et al. 2012b; Christiansen et al. 2015), and have not included
an analysis of niche space. Christiansen et al. (2015) have urged that isotopic results be
interpreted within a multidisciplinary framework, in order to obtain the most accurate
and useful data, from which management decisions can be deduced. Biopsy sampling
provides a non-lethal method of collecting shark tissue for stable isotope analysis,
which may be of particular benefit for elasmobranchs, many of which are undergoing
severe population declines at a global scale and require informed conservation
management (Myers and Worm 2003; Worm et al. 2013; Dulvy et al. 2014). Here, in
addition to traditional statistics, we use metrics derived from stable isotope bivariate
plots (Layman et al. 2007a; Jackson et al. 2011) to visualise and quantify the variation
in niche among potential pre and post ontogenetic shift male and female sharks, and
interpret our results in the context of published diet, telemetry, sighting and capture

data, in the first isotopic study of free-swimming white sharks in South Africa.

3.3. Methods

3.3.1. Data collection

Tissue biopsy samples were collected from white sharks between February and July
2015, within the designated white shark cage-diving area in Gansbaai, South Africa.

Collection took place from either a 9 m research catamaran or a 14 m custom-built
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shark cage-diving catamaran, owned and operated by the Dyer Island Conservation
Trust and Marine Dynamics Shark Tours. Sharks were brought close to the vessels
using fish oil chum and a salmon head bait lure. Photographs were taken for individual
identification based on distinguishing marks and DARWIN dorsal fin ID software
(http://darwin.eckerd.edu/). Finn Larsen Ceta darts (4 x 0.9 cm) affixed to a biopsy pole
were used to excise cores of tissue, comprising muscle and dermis, from the dorsal
surface of free-swimming sharks.

Shark sex was classified by the presence or absence of claspers, and only
samples from the 26 sharks of known sex were included in the study. Shark total length
was estimated by comparison of free-swimming sharks with a 4.7 m object of known
length (Kock et al. 2013; Towner et al. 2013a). For the SIBER analyses (see below)
sharks were classified as either < 3 m (six females, five males), or > 3 m (ten females,
five males) to reflect pre-and post-ontogenetic shift life stages (Tricas and McCosker

1984; Casey and Pratt Jr 1985; Cliff et al. 1989; Compagno 2001; Hussey et al. 2012b).

3.3.2. Stable isotope analysis

Twenty-six samples were prepared for stable isotope analysis. Muscle and dermis have
different isotopic turnover rates, and muscle isotopic turnover can take up to two years
(Martinez del Rio et al. 2009; Logan and Lutcavage 2010; Hussey et al. 2012c¢). Only
muscle was used for analysis. Ethanol was removed from the tissues by blowing with
nitrogen for 20 min at 30°C using a Techne dri-block DB.2A, and samples were freeze-
dried overnight. Storage of fish muscle in ethanol causes small but directionally uniform
changes to 5"°C and 3"°N values (Arrington and Winemiller 2002), and so would not
affect between-sample comparisons. Dried samples were homogenised using scissors,

weighed and placed into tin capsules. Lipid and urea extraction are recommended prior
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to isotope analysis of elasmobranch tissues as presence of lipids, trimethylamine and
urea can affect isotopic values and ratios, which precludes accurate estimation of
trophic position and diet reconstruction (Fisk et al. 2002; Hussey et al. 2012a). Lipid
and urea extraction were not performed, because our main aim was to perform
comparative analyses within our own samples, and no effect of increasing animal size
has been detected (Hussey et al. 2012a).

Stable isotope ratios were measured using continuous flow isotope ratio mass
spectrometry using a Sercon Integra integrated elemental analyser and mass
spectrometer. Stable isotope ratios are reported as 8-values and expressed in %o,

according to the following: & X =[(R_,,.;./Ryumee) - 11 X 1000, where X'is "C or "N and

R is the corresponding ratio “C/"C or "N/"N, and R is the ratio of the international

standard
references PDB for carbon and AIR for nitrogen. Replicate analyses of internal lab
standard alanine yielded standard deviations of 0-15%o for 8'°N and 0-09%o for 8"°C.
8'°C and 5"°N data were averaged between the two analytical runs and tested for
outliers using the package ‘Outliers’ (Komsta 2011) in R statistical software version

3.3.1., which was used for all analyses (R 2017). Data points that fell outside of 95% of

the normal distribution were removed to create an ‘outlier-removed’ dataset.

3.3.3. Statistical analysis

General linear models (glms) were used to assess the relationship between outlier-
removed 8"C and 8'"°N values, and for relationships between and shark total length (m)
and sex respectively. Models specified a Gaussian distribution and identity link
function, and all two-way interactions were included in the full models. Backwards
step-wise elimination of variables, using Akaike Information Criterion (AIC) (Akaike

1973), and variable significance, was used to pare models. F-values were produced by
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comparing full and null models in an ANOVA. Differences in median 8'"°C and §"°N

between the sexes were analysed for both averaged and outlier-removed data sets, using
independent samples Mann Whitney U tests, and differences in the variance of these
data were tested using a Fligner-Killeen test. For the statistical analyses described
above, P-values were considered significant if <0.05. To investigate dietary
specialisation, we used the pamk function in R package ‘fpc’ to determine the optimal
number of clusters for a k-means cluster analysis of averaged 8'°C and 5"°N, and
averaged 5"°C and 3'°N with outliers removed. This method uses optimum average
silhouette width to suggest the number of data clusters based on mediods (Hennig
2015).

We used the SIBER package in R to compute the size and overlap of isotopic
niches for < 3 m, and > 3 m male and female sharks, and compared results produced
from analyses run with averaged, and outlier-removed data sets (Jackson et al. 2011).
Isotopic niches based on 8'°C and §'°N were plotted in SIBER, and values of niche size
produced from estimates of small sample size corrected standard ellipse areas (SEAc)
and total area (TA) of convex hulls. Bayesian estimates of standard ellipse area were
generated using 10000 repetitions, and the probabilities of each demographic group
(“Group A”) being smaller than the other demographic groups in turn (“Group B”’) were
calculated and plotted with 50%, 75% and 95% credible intervals. Layman metrics were
computed for each group, providing values of nitrogen range (NR), carbon range (CR),
mean distance to centroid (CD), mean nearest neighbour distance (MNND), and the
standard deviation of MNND (SDMNND) (Layman et al. 2007a). Wider nitrogen and
carbon isotope ranges suggest wider trophic diversity and a greater number of basal
food sources exploited respectively, while CD provides a metric of the average degree

of trophic diversity. MNND gives a measure of trophic similarity within each group,
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where smaller numbers would indicate that individuals within a group have more
similar ecologies, and SDMNND provides a similar measure, but less influenced by
sample size. Isotopic niche overlap was calculated as the % of a group’s SEAc that

overlapped with the SEAc of another group.

3.4. Results

3.4.1. General linear models of 8"C, 8N, sex and length

Two 8"°C and two 3"°N outliers (each from a separate individual, all juveniles) were
identified, resulting in 24 samples being included in glm analyses, and 22 included in
SIBER analyses. 3'"°C and 8"°N values were significantly related (Linear regression: R>
=0.15, F(120) = 4.66, P = 0.043, confidence interval on the slope 0.01 and 0.69; Figure
3.1a), with larger males in particular exhibiting a conspicuous linear trend. There was
no effect on 8'°N of shark sex or length (General linear model: F(; )= 0.89, P = 0.24),
but there was a significant interaction between the effects of shark sex and length on
8"°C (General linear model: F(; 2= 3.57, P = 0.018). There was no relationship between
8'°C and female length (Figure 3.2a), but it was negatively correlated with the length of
male sharks (Figure 3.2b). There was also no relationship between 8'°N and female
length (Figure 3.2¢), but while there was no significant relationship between 5'°N and
male length, there was a decreasing trend (Figure 3.2d). Overall, neither 5"°C nor 3"°N
differed between males and females (averaged data: Mann-Whitney U = 70, N1 = 10,
N2=16,P=0091,and U=71, N1 =10, N2 = 16, P = 0.86, respectively; outlier-
removed data: Mann-Whitney U= 86, N1 =9, N2 =15,P=0.78,and U=87,N1 =9,
N2 =15, P = 0.74 respectively), and the variances of the data also did not differ

between males and females for either 5"°C or 8'"°N (averaged data, df = 1 in all cases:
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Chi-Square test: %* < 0.001, P = 0.95; x* = 0.52, P = 0.47 respectively; outlier-removed

data: Chi-square test: %*= 0.005, P = 0.95; x* = 0.516, P = 0.47 respectively).

3.4.2. Cluster analysis

The pamk function revealed that paired 8"°C and 3'°N data split optimally into three
clusters for the averaged data, heavily influenced by the inclusion of outliers (Figure
3.1a). Cluster one comprised sharks with moderate 8'°N, and low 8"°C values, while
cluster 2 was typified by sharks with relatively high '°N and moderate to high 5"°C,
and cluster three contained juveniles with low 8'°N but relatively high 8"°C values
(Figure 3.1a). In the outlier-removed dataset, the data split into two clusters, where
sharks grouped into cluster two exhibited slightly higher 8"°C and 5'°N values than
cluster 1 (Figure 3.1b). The average lengths of female sharks within these clusters were
almost identical (3.6 and 3.68m respectively), but there was a distinctive difference in
the average male shark lengths of the two clusters (3.67 and 3.0m respectively). As this
dataset was less biased by outlying data points, it likely reflects a more accurate

clustering of the isotopic data within the Gansbaai aggregation.
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Figure 3.1 Cluster and regression analyses a) K-means cluster analysis of averaged

8"C and 3"°N data for white sharks (Carcharodon carcharias) from the Gansbaai aggregation

separated by sex and size category: female sharks <3 m (closed black circles n = 6), female

sharks > 3 m (open grey circles n = 10), male sharks < 3 m (closed black triangles n = 5), and

male sharks > 3 m (open grey triangles n = 5). Three clusters were indicated in the analysis (1,
2, 3 demarcated by a dashed line) b) Linear regression (y = 0.35x — 19.17, R* =0.15, P =0.043)
and k-means cluster analysis results of averaged and outlier-removed 8"C and 8"°N data; female

sharks <3 m (closed black circles n = 4), female sharks > 3 m (open grey circles n = 10), male

sharks <3 m (closed black triangles n = 3), and male sharks > 3 m (open grey squares n = 5);

two clusters were indicated by the analysis (1 and 2, demarcated by a dashed line).
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Figure 3.2 Relationships between male and female shark length and stable isotope values
a) female length and 3"°C, b) male length and 3"C, ¢) female length and 3"N, and d) male

length and 8'"°N, for white sharks sampled at the Gansbaai aggregation.

3.4.3. SIBER analysis

In the averaged data, both female and male sharks > 3 m had markedly smaller isotopic
niche regions than sharks < 3 m, as indicated by estimates of SEAc, TA, and
probabilities generated by SIBER analysis (Tables 3.1 and 3.2, Figure 3.3a). Large (> 3
m) males had the smallest isotopic niche, while small (< 3 m) males had the largest, and
greatest trophic diversity (Tables 3.1 and 3.2). The greatest difference in isotopic niche

size was for smaller males, with the niche of male sharks < 3 m being significantly
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larger than that of males or females > 3 m at the 75% credible interval limit (Figure
3.3b), and overlapping all other groups by 100% (Table 3.3). The smallest overlap in
SEAc was between larger and smaller males, with males > 3 m only overlapping with
9.02% of the niche for males <3 m. Smaller females had 1.6 times greater overlap with
larger females than they did with larger males, and overlap between larger and smaller
females was three times greater than the overlap between larger and smaller males. Both
nitrogen and carbon ranges were greater in smaller sharks, and values of CD, MMND
and SDNND showed that for the most part, larger sharks had the least trophic diversity,
most similar ecologies, and even distribution of trophic niches (Table 3.1).

The isotopic niches of < 3 m sharks were greatly reduced in the outlier-removed
dataset (Table 3.1, Figure 3.3¢), and Layman metrics became roughly similar across
groups (Table 3.1, Figure 3.3d). The biggest change in isotopic niche overlap was
between larger males and smaller females, which changed from 92.5% to 8.7% with the
removal of outliers. However, females consistently exhibited greater niche overlap than
males, and females < 3 m had much greater overlap with males <3 m than was true for

males > 3 m.
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Table 3.1: Layman metrics and standard ellipse areas (SEAc) generated for female white
sharks less than 3 m in length (F < 3), females over 3 m (F > 3), males less than 3 m (M < 3)
and males over 3 m (M > 3). TA = convex hull total area; SEAc = small sample size corrected
standard ellipse area; NR = range of 8'°N values; CR = range of 5"°C values; CD = mean
distance to centroid; MNND = mean nearest neighbour distance; SDNND = standard deviation
of nearest neighbour distance. White cells = averaged 8"C and 8"°N data, grey cells = averaged

and outlier-removed 8">C and §"°N data.

Group TA | SEAc | NR CR | CD | MNND | SDNND

F<3m 5.89 6.13 3.64 | 327 | 15 1.26 0.52
F>3m 4.08 2.05 2.68 21 1094 | 0.64 0.33
M<3m |1024 ] 1287 | 5.19 | 3.72 | 2.16 1.99 1.46
M>3m | 0.96 1.15 2.92 1.74 1097 | 0.78 0.57
F <3m 1.39 2.24 2.21 1.62 | 1.02 | 0.98 0.38
F>3m 4.08 2.05 2.68 21 1094 | 0.64 0.33
M<3m | 0.50 1.81 1.28 1.32 | 076 | 0.97 0.37
M>3m | 0.96 1.15 2.92 1.74 1 097 | 0.78 0.57

Table 3.2: SEAc size probabilities. Probability that the standard ellipse area (SEAc) of the
isotopic niche of each sex-size demographic group of white sharks (“Group A”) was smaller
than the other groups (“Group B”). Probabilities are for female (F) or male (M) white sharks < 3

m or > 3 m in total body length. White cells = averaged §"°C and 8'"°N data, grey cells =

averaged and outlier-removed 3"°C and 3"°N data.
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Figure 3.3: Isotopic niches of 22 white sharks sampled at the Gansbaai aggregation.

a) SIBER generated biplots of averaged 3'°C and 8'"°N values with small sample size corrected

standard ellipse areas (SEAc) for female sharks < 3 m (closed black circles, solid black line n =

6), female sharks > 3 m (open grey circles, solid grey line n = 10), male sharks <3 m (closed

black triangles, dashed black line n = 5), and male sharks > 3 m (open grey triangles, dashed

grey line n = 5). b) Credible intervals (95%, 75%, 50%) of Bayesian estimates of SEAc for

averaged 8"°C and 5"°N values for female sharks < 3 m, female sharks > 3 m, male sharks < 3

m, male sharks > 3 m. ¢) Averaged and outlier-removed 8"°C and 8"°N values with small sample
size corrected standard ellipse areas (SEAc), for female sharks < 3 m (closed black circles, solid
black line n = 4), female sharks > 3 m (open grey circles, solid grey line n = 10), male sharks <

3 m (closed black triangles, dashed black line n = 3), and male sharks >3 m (open grey
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triangles, dashed grey line n = 5). d) Credible intervals (95%, 75%, 50%) of Bayesian estimates

of SEAc for averaged and outlier-removed 8"°C and 8"°N values for female sharks < 3 m,

female sharks > 3 m, male sharks < 3 m, male sharks > 3 m.

Table 3.3: Percentage overlap of SEAc for a sex-size demographic group of white sharks
(Group A) with the SEAc of the other groups (Group B). Percentages are for female (F) or male
(M) white sharks less than 3 m or over 3 m in total body length. White cells = averaged §'"°C

and 8"°N data, grey cells = averaged and outlier-removed 5"°C and §"°N data.

F>3m
28.21

Group A

3.5. Discussion

Our results reveal isotopic differences between sexes of white sharks. Male sharks
exhibited clear change in 8'°C with increasing shark length, while females retained a
more homogenous isotopic niche through ontogeny. Male §'°N values also showed a
decreasing trend with increasing shark length, and 8"°N values were significantly related
to 8"°C for outlier-removed shark data. Averaged data revealed differences in niche size
between size classes of shark, which were greatly reduced when outliers were removed.
Though SIBER sample sizes were comparatively small, we believe that the results can
still provide useful insights, especially when interpreted within the context of available

literature.
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The change in §"°C values with increasing male length, the evident male length
differences between clusters based on both §"°C and 8'°N data, and the significant
relationship between 8'°C and 8'°N overall, are indicative of an ontogenetic change in
food web, and potentially a concurrent change in diet, in male sharks. Our 8"°C results
suggest that males either feed further offshore, or in more westerly coastal habitats as
they age (Hill et al. 2006; Hill and McQuaid 2008), which could explain the observed
relative lack of males caught in KZN, and a paucity of males at the Western Cape in the
summer (Cliff et al. 2000; Kock et al. 2013; Towner et al. 2013a). Previous studies in
South Africa and globally have also shown that white sharks utilise offshore areas more
as they age (Boustany et al. 2002; Bonfil et al. 2005; Bruce et al. 2006; Weng et al.
2007a; Domeier and Nasby-Lucas 2008; Bonfil et al. 2010; Hussey et al. 2012b; Smale
and CIliff 2012; Carlisle et al. 2012; Hoyos-Padilla et al. 2016), but have not detected
the male bias evident in our results. While we did not find a significant relationship
between male length and 3'°N, males, and particularly those > 3 m, did show an overall
trend for depletion of 5'°N with increasing length, which may have been weakened by a
relatively small sample size. Depletion in 3'°N has been found previously in the largest
white sharks of other studies, and suggests that pelagic prey items are an important part
of male diet as they age (Hussey et al. 2012b; Smale and Cliff 2012; Carlisle et al.
2012).

Females did not exhibit the relationships between length and §"°C or "°N found
in males, which could be due to multiple factors. Satellite tracking and sighting data of
South African white sharks indicates that only large individuals cross the Mozambique
Basin to Madagascar, with only mature females travelling up to the northern Mascarene
Plateau (Cliff et al. 2000; Zuffa et al. 2002; OCEARCH 2017). Our muscle samples

represent a relatively slow isotopic turnover rate, and therefore long-term diet and
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habitat use (MacNeil et al. 2006), comprising the average isotopic uptake over up to two
years (Martinez del Rio et al. 2009; Logan and Lutcavage 2010; Hussey et al. 2012a). If
females are roaming over a larger area than males, as appears the case in South Africa
and as has been found in the northeastern Pacific population (Jorgensen et al. 2010;
Domeier and Nasby-Lucas 2012), a greater degree of averaging of the 3'°C signatures
of several habitats is likely, resulting in less clear cut trends. Alternatively, the lack of
relationships for both 8'°C and 8'°N and female shark length could be explained by
dietary specialisation, which has been identified in northeastern Pacific and Australian
white sharks (Kim et al. 2012; Pethybridge et al. 2014). Specialisation on piscine prey
and/or lack of ontogenetic dietary shift in females is further suggested by the fact that
females within the two clusters identified in the outlier-removed data were of the same
average length, and that large females consistently exhibited greater isotopic niche
overlap with smaller sharks than larger males did. Additionally, females lack a
significant ontogenetic change in tooth shape (French et al. 2017) which is reported to
facilitate a change in diet from largely fish based, to heavily reliant on marine mammals
(Tricas and McCosker 1984; Frazzetta 1988), and greater reliance on fish in the females
compared to males studied here is supported by fine-scale habitat use and seasonal
abundance of sharks acoustically tagged in False Bay, Gansbaai and Mossel Bay (Kock
et al. 2013; Jewell et al. 2013; Towner et al. 2013a; Jewell et al. 2014; Towner et al.
2016). Lastly, there is evidence of multiple coastal migration strategies in females that
may preclude clear isotopic trends. Easterly migrations to the coast of KZN peak either
in mid-winter or mid-summer, with a capture bias towards females (Cliff et al. 1989;
OCEARCH 2017). These peaks coincide respectively with either a mass migration
event of Sardinops sagax pilchard (the ‘sardine run’; (Whitehead et al. 1985) that

attracts high densities of the mesopredator prey of white sharks (Cliff et al. 1989;
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Dudley et al. 2005; Dudley and Cliff 2010), or abundance of high densities of dusky

shark (Carcharhinus obscurus) and reef manta ray (Manta alfredi) prey species (Smale
1991; Dudley et al. 2005; Marshall and Bennett 2010a, b). Females attending the
Gansbaai aggregation could be following one of two strategies during summer, either
staying at the Western Cape to feed on elasmobranchs and teleosts, or migrating east to
take advantage of shark and ray prey availability in Algoa Bay, KZN and Mozambique.
Sharks that migrate in midwinter seem likely to be exploiting prey availability
associated with the sardine run, be it the sardines themselves (Dudley and Cliff 2010),
or the mesopredators that the sardines attract.

While we found overlap between isotopic niches of all demographic groups,
similar to other South African white shark diet studies, we also found evidence of
expanded and diverse niches in juvenile sharks in comparison to those > 3 m (Cliff et al.
1989; Hussey et al. 2012b; Christiansen et al. 2015), where all our outliers were
juveniles. This concords with expanded habitat use found in smaller white sharks in
South Africa (Jewell et al. 2013). Christiansen et al. (2015) suggested multiple reasons
why South Africa’s young white sharks show such diversity in isotopic signatures,
including individual variation, spatial segregation, and maternal influences. In the case
of smaller sharks at the Gansbaai aggregation, temporal variation could also play a
strong role in their isotopic diversity, representing a function of the time since they
undertook the westerly coastal migration for the first time (Cliff et al. 1989, 1996;
Ferreira and Ferreira 1996; Dicken 2008; Kock et al. 2013; Towner et al. 2013a; Ryklief
et al. 2014; Hewitt et al. 2018). Kelp detritus contributes significantly to the coastal
food web of South Africa (Bustamante and Branch 1996; Miller and Page 2012), and
recorded variation in §'"°C values of kelp could also partially explain the variation in

SIBER niches between juveniles and larger sharks as juveniles make comparatively
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more use of coastal habitat as opposed to the pelagic or tropical habitats utilised by
larger individuals (Cliff et al. 2000; Zuffa et al. 2002; Bonfil et al. 2005; Hussey et al.
2012b; Smale and Cliff 2012; OCEARCH 2017). However, this would not account for
the concurrent variation in 8'°N values found in Christiansen et al. (2015) and this
study.

Our results, combined with multifaceted evidence of individual and sexual
variation in diet, movement, and foraging strategies in South Africa and globally,
suggest that that sex and individual specialisation are key drivers in ecological variation
in white sharks, which remain important through ontogeny (Estrada et al. 2006; Hussey
et al. 2012b; Carlisle et al. 2012; Kim et al. 2012; Kock et al. 2013; Pethybridge et al.
2014; Huveneers et al. 2015; Christiansen et al. 2015; Towner et al. 2016). Intraspecific
trait variation in a predator population has important implications for community
ecology and species conservation (Bolnick et al. 2003, 2011; Schreiber et al. 2011;
Mittelbach et al. 2014). In South Africa, the sexes exhibit ontogenetic differences in
habitat use, migration patterns and diet, and juvenile sharks have expanded niches
compared to larger sharks, which may be the result of multiple factors including
specialisation and temporal effects. These sex, age, and individual driven differences
should be considered in conjunction with exposure to spatially explicit threats, such as
fisheries and pollution when developing management strategies, and explicitly included

in ecological studies of the species.
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4.1. Abstract

Top predator trophic ecology can have strong effects on food webs, with the sex and
size of predators having significant, but often overlooked, effects on this. Stable isotope
and fatty acid analyses provide non-lethal methods of assessing diet and habitat use in
wild animals, and in combination can provide both long and short-term information on
predator foraging and movement patterns, though dietary interpretation of predator fatty
acids are less well understood than for stable isotopes. Here we use fatty acids to
analyze the effects of sex and size on the trophic ecology of a large marine top predator,
the white shark (Carcharodon carcharias), which is classically thought of as exhibiting
an ontogenetic dietary shift. We compare these results to the stable isotopes 8'°N and
8'"°C to aid interpretation and explore assumptions of some fatty acid biomarkers. We
found novel fatty acid differences between the sexes and sizes of South African white
sharks indicating that both are important factors in their ecology. While we found
evidence from fatty acid signatures of the generally recognized dietary shift from
piscivory to marine mammal prey at ~ 3.0 m body length, there were lower levels of
fatty acids associated with marine mammals in large sharks (> ~ 4.0 m in body length),
which could indicate a second ontogenetic dietary shift. Dietary specialization,
influenced by sex and less so by size, was also detected, while the fatty acid signatures
of large female sharks suggested extended use of tropical habitats, which may expose
them to greater risk of fishing mortality. Fatty acid signatures can be a useful tool to
complement stable isotope analysis in elucidating the trophic ecology of marine
predators, and that sex, size, and individual variation needs to be considered when

designing management strategies.
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4.2. Introduction

Top predators exert strong forces on food webs, and their removal can have cascading
trophic effects with ecosystem-wide consequences in both terrestrial and aquatic
environments (Estes et al. 2011). Food web alteration occurs through both direct
consumption of prey and behaviour-mediated effects of fear of predation (Beckerman et
al. 1997; Brown et al. 1999; Pace et al. 1999; Fortin et al. 2005; Preisser et al. 2005;
Burkholder et al. 2013; Rasher et al. 2017), in addition to mesopredator competitive
release (Ritchie and Johnson 2009). Dietary choice in even a small number of individual
top predators can also result in changes at prey, community, and ecosystem scales
(Sweitzer et al. 1997; Estes et al. 1998). The global human-induced predator population
reduction is one of mankind’s most prevalent, negative influences on the natural
environment (Estes et al. 2011). Given the vital role of top predators in ecosystems and
communities, and their history of population declines due to anthropogenic activities, it
is important that their ecology is well understood if population, species, community, and
ecosystem-scale conservation efforts are to be effective. This is especially important in
the context of highly mobile predators, as these species can play significant roles in
ecosystem connectivity and nutrient regulation (Lundberg and Moberg 2003; McCauley
et al. 2012; Nifong et al. 2015).

Sex and size differences in diet have been found in top predators across taxa (e.g.
bears (Mowat and Heard 2006; Thiemann et al. 2008), seals (Le Boeuf et al. 2000; Beck
et al. 2007), birds (Phillips et al. 2004; Patrick and Weimerskirch 2014) and reptiles
(Nifong et al. 2015)) but are not always considered in dietary analyses. Sexual
dimorphism and ontogenetic changes in diet with body size can be particularly
significant in species which have very large differences in body size from birth/hatching

to maturity (Wilson 1975; Werner and Gilliam 1984), and failure to include sex and size
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in ecological studies can result in underestimation of niche breadth (Clutton-Brock et al.
1982; Polis 1984; Forero et al. 2002), ultimately limiting our understanding of the
ecology of populations or species. Dietary specialisation in top predators can have
further effects on food webs, through differential prey choice and hunting tactics
(Schmitz and Suttle 2001; Schreiber et al. 2011), and recent studies are revealing that
some predators previously considered generalist are in fact made up of subsets of
specialists (e.g. Matich et al., 2011; Rosenblatt et al., 2015).

Non-lethal methods of studying predator trophic ecology are especially important
in the case of threatened species, and stable isotope and fatty acid analyses of biopsies
can provide such methods for the study of diet and habitat use in wild animals (Budge et
al. 2006; Layman et al. 2012). Ratios of isotopes “"N/"“N and "C/"?C compared to
international standard values can respectively be used to infer trophic level and habitat
use (DeNiro and Epstein 1978; Post 2002). Prey fatty acids undergo very little
modification during transference to predator tissues so can also provide relatively
detailed dietary information (Iverson et al. 2004; Budge et al. 2006). Whereas stable
isotopes provide information on relatively long-term dietary changes, fatty acid
signatures and give insight into relatively short-term changes, including those with
season (Iverson et al. 2002). Certain fatty acids and fatty acid ratios are considered
biomarkers, which can indicate trophic position, nutritional condition, and predation on
different food sources (Graeve et al. 1994; Sargent et al. 1999; Iverson et al. 2004; El-
Sabaawi et al. 2009; Mohan et al. 2016), although these are often applied across taxa
and species without consideration of potential differences in physiological processes.
Comparison of these biomarkers, for example to stable isotopes, to better understand
measures of trophic level and habitat use is important to develop our understanding of

their suitability in different model systems. Combination of stable isotope and fatty acid
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analyses can therefore be particularly useful in the study of food webs and the foraging
ecology of predators (Smith et al. 1996; Hooker et al. 2001; Herman et al. 2005;
Williams et al. 2008; Budge et al. 2008; El-Sabaawi et al. 2009; Belicka et al. 2012).

The white shark (Carcharodon carcharias) is a highly migratory top predator
(Compagno 2001), listed as Vulnerable on the IUCN Red List of Threatened Species
due to a variety of anthropogenic causes (Fergusson et al. 2009). White sharks display
sexual dimorphism in size, and the size at which different maturity stages are reached,
with females attaining longer total lengths and reaching maturity at greater size than
males (Francis 1996; Pratt 1996; Compagno 2001). White sharks also undergo an
ontogenetic dietary shift at approximately 3 m in length, when they begin to switch
from piscivory to incorporating marine mammals into their diet (Tricas and McCosker
1984; Casey and Pratt 1985; CIiff et al. 1989; Compagno 2001; Hussey et al. 2012b),
though sexual and individual variation in this shift have been detected (Kim et al. 2012;
French et al. 2017). Fatty acids have only recently been used to infer diet and dietary
specialism in white sharks in Australia (Pethybridge et al. 2014), and validation of fatty
acid interpretation and clarification of drivers of dietary specialism remain important
issues (Kim et al. 2012; Pethybridge et al. 2014; Christiansen et al. 2015).

Here we combine fatty acid and stable isotope analyses to explore the effects of sex
and size on the trophic ecology of white sharks, as an example of a large, marine,
migratory top predator, to gain insight into the interpretation of fatty acid data for the
species and the complementarity of the methods in general. Our study focuses on
individuals from the South African population, understanding the ecology of which is
especially important in light of a recent, though perhaps overly negative, population

estimate of only 438 individuals (Andreotti et al. 2016), evidence of deleterious effects
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of bioaccumulated toxins (Marsili et al. 2016), and potential for trophic specialism to

have food web effects (Christiansen et al. 2015).

4.3. Methods

4.3.1. Sample collection and analysis

Muscle biopsies and shark sex, length, and individual identification data were collected
from free-swimming white sharks in Gansbaai, South Africa over two field trips in 2015
(Feb - April, June - July) following the methodology described in (French et al. 2017).
In brief, biopsies were collected using Finn Larsen Ceta darts (4 x 0.9 cm) affixed to a
biopsy pole and samples were stored immediately in ethanol. Shark length (total length,
m) was estimated by comparison to a 4.7 m object of known length (Kock et al. 2013;
Towner et al. 2013a), sex was determined by the presence or absence of claspers, and
individuals were identified using distinguishing marks and DARWIN dorsal fin ID
software (http://darwin.eckerd.edu/). For the Principal Component Analyses (see below)
sharks were classified as either < 3 m total body length (five females, five males), or > 3
m (ten females, five males) to reflect pre- and post- the generally recognised
ontogenetic dietary shift (Tricas and McCosker 1984; Casey and Pratt 1985; CIiff et al.
1989; Compagno 2001; Hussey et al. 2012b).

Total lipid was extracted from muscle biopsies by homogenising in 20 volumes of
ice-cold chloroform:methanol (2:1, v/v) using an Ultra-Turrax tissue disrupter (Fisher
Scientific, Loughborough, UK) according to Folch et al. (1957). Non-lipid impurities
were isolated by washing with 0.88% (w/v) KCl and the upper aqueous layer removed
by aspiration and the lower solvent layer containing the lipid extract dried under

oxygen-free nitrogen and overnight desiccation in vacuo before making up to a 10



1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

69

mg.ml” concentration. Fatty acid methyl esters (FAME) from total lipid extracts were
prepared by acid-catalysed transmethylation at 50°C for 16 h according to Christie
(1993). FAME were extracted and purified according to Tocher and Harvie (1988), and
separated by gas-liquid chromatography using a Fisons GC-8160 (Thermo Scientific,
Milan, Italy) equipped with a 30 m x 0.32 mm id. x 0.25 pm ZB-wax column
(Phenomenex, Cheshire, UK), ‘on column’ injection and flame ionisation detection.
Hydrogen was used as carrier gas with an initial oven thermal gradient from 50°C to
150°C at 40°C.min™' to a final temperature of 230°C at 2°C.min"'. Individual FAME
were identified by comparison to known standards (Restek 20-FAME Marine Oil
Standard; Thames Restek UK Ltd., Buckinghamshire, UK) and published data (Tocher
and Harvie, 1988). Data were collected and processed using Chromcard for Windows
(Version 1.19; Thermoquest Italia S.p.A., Milan, Italy).

Stable isotope analyses are from Chapter 3, and were quantified using a Sercon
Integra integrated elemental analyser and mass spectrometer. Stable isotope ratios are

reported as 6-values and expressed in %o, according to the following: & X = [(R, .
IR, ..o) - 11 x 1000, where X is “C or "N and R is the corresponding ratio “"C/"C or

“N/“N, and R is the ratio of the international references PDB for carbon and AIR

standard

for nitrogen. Replicate analyses of internal lab standard alanine yielded standard

deviations of 0-15 for 8'°N and 0-09 for 8*C.

4.3.2. Statistical analyses

Only dietary fatty acids (Iverson et al. 2004), and only those representing at least 0.05%
of the total lipids on average, were included in statistical analyses, comprising 22
individual fatty acids (Table 4.1). All statistical analyses were conducted in R 3.3.1. (R

2017). Fatty acids are described as A:BwD, where A represents the number of carbon
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atoms, B the number of double bonds in the carbon chain and @D is the position of the
first double bond from the terminal methyl end of the molecule. Some fatty acids are
abbreviated; docosahexaenoic acid, 22:6w3 (DHA), eicosapentaenoic acid 20:5m3
(EPA) and arachidonic acid 20:406 (ARA). Lipid classes include saturated fatty acids
SFA, monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA).

Principal Component Analysis (PCA) was used to identify which fatty acids had
the most influence on variation within the fatty acid dataset. As PCA is a parametric
test, fatty acid % data were logit transformed before PCA analysis (Budge et al. 2006;
Warton and Hui 2011), which was performed using the factoMineR package (Le et al.
2008). 8"°N, 3'°C, and demographic group (females less or greater than 3 m in length (F
<3 m, F >3 m), males less or greater than 3m length (M <3 m, M > 3 m)) were treated
as supplementary variables for comparison to PCA results. The centre of gravity of each
group, calculated as the barycentre of individuals within the group, was plotted and the
dimdesc function was used to calculate the correlation coefficient and associated P
value between the supplementary variables and the axes of the principle components.
95% confidence ellipses were plotted around each demographic group’s centre of
gravity.

We applied general linear models with Gamma link functions to test for
associations between 8'°N, PCA identified fatty acids (14:0, 16:0, ARA, 18:1®9, and
DHA), and shark sex and length, including second order interactions. Interactions
between isotopes and length would indicate changes through ontogeny while
isotope:sex interactions would signify differences in diet and/or habitat use between the
sexes. Length:sex interactions would suggest differences between the life stages of the
sexes, and interactions between 8N and 8"°C could indicate either foraging on

different prey in the same location or the same prey in different habitats. Data were
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assessed for outliers using Cleveland dot plots (Cleveland 1993) and the Gamma family
was chosen for its appropriateness in analysing proportional data and utility in reducing
the effects of outlying data in response variables (Zuur et al. 2010). Third order
interactions weren’t used due to low sample size and to avoid false inference (Crawley
2013), and Trip wasn’t included in any interactions due to low sample size (Zuur et al.
2010). Some fatty acids with extreme outlying data points were logit transformed (+20)
prior to modelling. The link function that produced the best model fit, assessed on
inspection of standard residuals, was used in each case. Using the MuMIn package
(Barton 2017), models were run in every possible sequence and those with & small
sample size corrected Akaike Information Criterion (AICc) (Hurvich and Tsai 1989) <6
were averaged to produce final model estimates (Burnham and Anderson 2003;
Richards 2007). Several fatty acid biomarkers used to infer 1) trophic position,
18:109/18:1w7 (El-Sabaawi et al. 2009), 2) nutritional condition, physiological stress or
benthic input, AA/EPA, ®3/w6 (Sargent et al. 1999; El-Sabaawi et al. 2009) and 3)
diatom vs. dinoflagellate food webs DHA/EPA (Graeve et al. 1994), were also modeled
as described above, to test for their validity for use as biomarkers in white sharks and to
provide further insight into their trophic ecology.

To identify possible dietary groups, we performed hierarchical cluster analysis on
the full fatty acid dataset. The analysis was applied to a Bray-Curtis similarity matrix,
and the number of clusters to split the data into was determined a priori using the

NbClust function (Charrad et al. 2014).
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4.4. Results

4.4.1. Fatty acid profiles

A total of 23 muscle samples were prepared for fatty acid analyses, comprising 14
females and 9 males of varying length (Table 4.1). Fatty acids are expressed as
percentages of total fatty acids + one standard error. The most abundant individual fatty
acids were 16:0 (average 29.5 = 091%), 18:1w9 (average 16.2 + 0.93%), 18:00
(average 14.8 + 0.65%), and ARA (average 5.78 + 0.55%). w6 PUFA made up a larger
component than w3 PUFA with a w3/w6 ratio of 0.61. Further fatty acid profile data

and discussion are presented in Supplementary Data.
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4.4.2. Principal component analysis

Principal Components 1 and 2 together explained 78% of the variation
data, with Principal Component 1 being driven primarily by the fatty ac
and DHA, and Principal Component 2 being driven primarily by 14
(Figure 4.1a). There was considerable overlap between the four demog
fatty acid Principal Components 1 and 2, though smaller females 1

smallest ellipse, and only marginal overlap with larger females anc

(Figure 4.1b).
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Figure 4.1: Principal component analysis results of logit transformed dieta
Top five most influential PC1 and PC2 fatty acids, overlaid with 8N (%o) an
b) PC1 and 2 individual sharks split into demographic groups (F <3 m = fems
in total length (black), F > 3 m = females over 3 m in total length (red), M <!

than 3 m in total length (green), M > 3 = males over 3 m in total length (bl

confidence ellipses around each group.
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4.4.3. Fatty acid GLMs of 8"°N, 8"°C, sex and length

Both the fits and the explanatory power of the general linear models varied between
fatty acids, but explanatory power (R*) was generally high (Table 4.2; Supplementary
Data). Models for 14:0, and ARA/EPA had no significant relationships with any of the
explanatory factors (Table 4.2). There were significant interactions between the effects
of sex, size and isotopes for several fatty acids: 0"°N:Sex and &'°N:Length were
significant interactions for four fatty acids, 8"C:Sex, 613C:Length, and Length:Sex were
significant interactions for two fatty acids (Table 4.2). The interaction between 8"°N and
8"C was also significant for 16:0, and there was a significant effect of Trip for 18:1®w9
(Table 4.2).

Model 16:0 had a significant interaction between 8'°N and sex, where males and
females had positive and negative relationships respectively (Figure 4.2a). Smaller
sharks exhibited a positive relationship between 5'"°C and 8'°N, but this relationship was
reversed in larger sharks (Figure 4.2b). Further, less clear results for model 16:0 are
presented in Supplementary Data. In the ARA model, sex interacted significantly with
8"°N, where females had a positive relationship between ARA and §'°N, while this
relationship was negative in males (Figure 4.2c¢).

In model 18:1®9, 3'"°N had a significant interaction with shark length, where
smaller sharks displayed a positive slope, and larger sharks a negative slope (Figure
4.2d). Trip also had a significant effect on 18:1®9, which was higher in Trip 1, though
boxplots of the data exhibited overlap (Figure 4.2¢). The trophic marker 18:1w9/18:1w7
was found to be significantly influenced by sex mediated differences in shark length,
where 18:109/18:1w7 decreased with increasing female length, but increased with
increasing length in males (Figure 4.2f). Results and figures for models DHA,

DHA/EPA and ®3/w6 were heavily influenced by a small number of extreme values,
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1434  despite the mitigation of using a Gamma link and are presented in Supplementary Data.
1435
1436  Table 4.2: 5 AICc < 6 averaged general linear models of fatty acids (%), 8N (%), 8"°C (%),

1437 and total shark length (m), with 95% confidence intervals. Sig = significance of the P-value for

1438 a term in the model (. =< 0.1; * =< 0.05; ** =< 0.005; *** =< 0.0005).
95% CI's

Variable Estimate | P-Value | Sig 2.50% 97.50%

Model: 14:0 Intercept 0.10045 0.03 * 0.0433 0.0681
F; 15=0.85 Sex -0.01905 0.50 -0.0109 0.0088
AlICc =35.85 dhcC 0.00322 0.28 -0.0015 0.0006
R*=0.29 Length -0.01392 0.24 -0.0037 0.0044
8N 0.00016 0.73 -0.0008 0.0007

Family: Gamma Sex:8"C -0.00115 0.30 -0.0020 0.0009
Link: Inverse Sex:0"N 0.00011 0.91 -0.0023 0.0006
8"C:Length -0.00101 0.24 -0.0015 0.0011

Model: 16:0 Intercept 0.02577 0.85 -0.2400 0.2915
Fi.1,=3.33 8N 0.00422 0.62 -0.0123 0.0208
AlCc = 140.25 Sex 0.05199 0.37 -0.0628 0.1668
R*=0.74 &"N:Sex -0.00493 0.01 * -0.0088 -0.0010
dhcC 0.00353 0.87 -0.0402 0.0473

Family: Gamma Length -0.05018 0.37 -0.1604 0.0600
Link: Inverse 8"C:Length -0.00519 0.02 * -0.0095 -0.0009
dC:Sex -0.00491 0.03 * -0.0092 -0.0006

Trip 0.00123 0.66 -0.0042 0.0066

d"C: 6N 0.00330 0.03 * 0.0003 0.0063

Length: "N | 0.00397 0.04 * 0.0001 0.0078

Model: 18:109 Intercept 0.68318 0.26832 -0.5265 1.8928
F,,=2.14 dhcC 0.00671 0.88174 -0.0817 0.0951
AlICc = 13251 Length -0.21188 0.08686 . -0.4544 0.0307
R*=0.72 "N -0.05809 0.08214 . -0.1236 0.0074
Sex 0.04047 0.39502 -0.0528 0.1337

Family: Gamma Trip 0.01601 0.03907 * 0.0008 0.0312
Link: Inverse Length: 6"°N 0.01596 0.00303 o 0.0054 0.0265
Length:Sex -0.02176 0.09554 . -0.0474 0.0038

d"C: 6N -0.00635 0.22518 -0.0166 0.0039

dC:Sex 0.00461 0.42755 -0.0068 0.0160

&"N:Sex 0.00007 0.99205 -0.0134 0.0135

8"C:Length -0.00029 0.95608 -0.0106 0.0100
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Model: ARA Intercept 0.76590 0.6278 -72.424 74.064
Fy 13=3.59 Length -0.04734 0.7005 -28.505 22.357
AlICc = 10747 Trip -0.06166 0.0592 0.030 4.809
R*=0.71 d"N -0.05337 0.6864 -6.064 7.547
d"*C 0.06638 0.7387 -10.849 10.959
Family: Gamma Sex -0.49677 0.4995 -29.028 52.247
Link: Inverse 8'°N:Sex 0.08068 0.0146 * -3.034 0.299
8"C: 8N -0.02864 0.1846 -4.532 -0.211
Length: 8°N | -0.00547 0.8443 -0.719 3.084
8"*C:Length 0.01852 0.4826 0.005 2.784
Model: DHA Intercept 0.03433 0.69736 -0.138685 | 0.207344
F11,, =498 Length 0.02890 0.01911 * 0.004730 | 0.053078
AICc =33.82 "N 0.00126 0.8212 -0.009644 | 0.012159
R?=0.83 Sex -0.02023 0.32769 -0.060734 | 0.020278
Length: 8°N | -0.00159 0.00397 wok -0.002667 0.006507
Family: Gamma 8" N:Sex 0.00168 0.00789 wok 0.000440 | 0.002915
Link: Inverse d*C 0.00432 0.59337 -0.011543 | 0.020188
8"*C:Length 0.00095 0.07239 -0.000086 | 0.001982
8"C: 8N -0.00093 0.05772 -0.001898 | 0.000031
8"C:Sex 0.00146 0.05943 -0.000058 | 0.002973
Length:Sex 0.00152 0.21944 -0.000909 | 0.003958
Trip 0.00015 0.82726 -0.001177 | 0.001472
?fg;dle(:)b/l&lmﬂ Tntercept 0.18502 0.865 -1.949 2.319
Fi,1.,=159 Trip 0.04211 0.1911 -0.021 0.105
AICc=11843 Length -0.15229 0.7157 -0.972 0.667
R?=0.61 d*C -0.00520 0.9406 -0.142 0.132
Sex 0.20137 0.427 -0.295 0.698
Family: Gamma Length:Sex -0.10960 0.0468 * -0.218 -0.002
Link: Inverse "N -0.03235 0.7201 -0.209 0.145
8"*C:Length -0.03109 0.2393 -0.083 0.021
Length:8"°N 0.04086 0.0808 -0.005 0.087
8"C: 8N -0.00631 0.7519 -0.045 0.033
8" N:Sex -0.03776 0.1541 -0.090 0.014
8"C:Sex -0.01464 0.6946 -0.088 0.058
X‘;le/;ap ) Intercept 0.08368 0.936 -1.96 2.12
Fy ;=24 Length 0.10192 0.75 -0.52 0.73
AICc =90.46 Sex -0.01968 0.893 -0.31 0.27
R?=0.62 d*C -0.04809 0.709 -0.30 0.20
Trip -0.01819 0.639 -0.09 0.06
Family: Gamma 8"C:Length 0.04630 0.077 -0.01 0.10
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Link: Log 8N 0.02242 0.846 -0.20 0.25
Length:Sex 0.09128 0.177 -0.04 0.22
Length: 8°N | -0.02653 0.323 -0.08 0.03
813C: 81N 0.02924 0.182 -0.01 0.07
Model: (03/m6) | Intercept 3.41140 0.8875 -43.83 50.66
F,, =431 Length -6.84090 | 0.0149 * -12.35 -1.34
AICc = 1.94 8N 030510 | 0.8353 -3.18 2.57
R?=0.81 Sex 6.27220 0.1791 -2.88 15.42
Length:8"°N 041510 0.0078 ik 0.11 0.72
8""N:Sex 045620 | 0.0102 * -0.80 -0.11
Family: Gamma | 8C -1.53430 | 0.5064 -6.06 2.99
Link: Log 813C: 81N 0.24280 0.0949 -0.04 0.53
Length:Sex 037020 | 0.2851 -1.05 031
Trip -0.12900 | 0.5169 -0.52 0.26
8"3C:Sex 027490 | 0.1312 -0.63 0.08
8"C:Length | -0.15420 | 0.2694 043 0.12
?ﬁ‘g{:‘l’EP A) Intercept 3521630 | 0.031683 | * 3.09 67.34
F, ;= 8.61 d"C 224710 | 0.025944 | * 0.27 422
AICc = 76 47 Length -11.47270 | 0.004867 | ** -19.46 -3.49
R?=0.86 8N -0.42280 | 0.631201 215 1.30
Sex -6.90870 | 0.048094 | * -13.76 -0.06
Family: Gamma 8"C:Length -0.68050 | 0.000558 | *** -1.07 -0.29
Link: Log 8"C:Sex -0.86000 | 0.000387 | ¥ -1.34 -0.39
Length:3"°N | 0.33510 | 0.056855 -0.01 0.68
Length:Sex -1.55080 | 0.001345 | -2.50 -0.60
813C: 81N -0.15660 | 0.353059 -0.49 0.17
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Figure 4.2: Significant averaged general linear model results (see Table 4.2 for full models)

and two-way interactions of a) fatty acid 16:0 and 8'"°N, influenced by sex; b) fatty acid 16:0

and 8"C, influenced by shark length (m); c) fatty acid ARA and 3"N influenced by shark sex;

d) 18:109 and 8N, influenced by shark length; e) the effect of Trip on 18:1®9; f)

18:109/18:1w7 and shark length, influenced by sex. Symbol size reflects shark length, with

larger symbols denoting longer sharks and slopes are fitted to -1 standard deviation of length,

mean length, and + 1 standard deviation length, to illustrate the interaction effect. N.B. For

illustrative purposes, the plots are based on models with a Gaussian distribution, while the

statistical models all utilised a Gamma distribution (Table 4.2).
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4.4 4. Hierarchical cluster analysis

The NbClust analysis revealed that the optimal number of clusters in the fatty acid
principal components was three (Figure 4.3). Cluster 1 was dominated by large females
with high 14:0, ARA/EPA and DHA/EPA (7 females, 1 male, average length = 3.7 m),
Cluster 2 comprised only 4 sharks all of average length with the lowest 18:109 and
DHA and highest 16:00 (3 females, 1 male, average length = 3.5 m), and Cluster 3
contained 11 sharks that were relatively small in size and had the highest 18:1w9 (7

males, 4 females, average length = 3.3m).
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Figure 4.3: Dendrogram of hierarchical cluster analysis, based on a Bray-Curtis similarity

matrix, of dietary fatty acids. Red boxes denote clusters identified by the NbClust function in R.

4.5. Discussion

The combined analysis of fatty acids and stable isotopes reveals a complex picture of
trophic ecology in a top predator, which is significantly influenced by both sex and size.
Hierarchical cluster analysis further indicated dietary specialization, which was also
influenced by sex and size. Fatty acid biomarkers that are commonly used to infer
trophic position, nutritional condition, and habitat use in diverse animals also had
complex relationships with shark demographics and stable isotopes, calling their

applicability across taxa into question.
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As a consequence of our comparatively low ®3 levels, influenced largely by lack of
DHA, ours is the first study to report a w3/w6 ratio of < 1 in white sharks, and the third
to find this low ratio in a shark species, the other being whale sharks in Mozambique
and three tropical euryhaline sharks (Rohner et al. 2013; Every et al. 2016). Fatty acid
signatures of muscle and sub-dermal tissue differ significantly in white sharks (Meyer et
al. 2017), and while the low levels of DHA in our sample more closely resemble sub-
dermal levels, other fatty acids responsible for separation of the tissue types, such as
ARA and EPA, more closely match muscle. While every care was taken to ensure that
samples comprised pure muscle, it is possible that some contamination with sub-dermal
tissue occurred, though this would have likely produced results more consistent with
findings in Meyer et al. (2017). Our results may instead reflect use of tropical habitat,
especially by females (see Supplementary Data for detailed discussion).

Fatty acids that contributed the most to Principal Component axes were 16:0, ARA,
18:1w9 and DHA. These are all thought to relate to the contribution of fish/cephalopod
vs. marine mammal prey in the diet of marine predators (Pethybridge et al. 2014).
Detailed discussion of PCA results in relation to female size are presented in
Supplementary Data.

18:1w9 is very high in the blubber of cape fur seals (Arctocephalus pusillus
pusillus) and dusky dolphin (Lagenorhynchus obscurus) in South Africa (Grahl-Nielsen
et al. 2010). 18:1w9 as a reflection of marine mammal input is supported by our results,
where it increased in smaller sharks of < 3 m, and decreased in sharks >4 m. This likely
reflects the accepted ontogenetic shift towards marine mammals in sharks approaching
3 m (Tricas and McCosker 1984; Cliff et al. 1989; Bruce 1992; Compagno 2001;
Estrada et al. 2006; Hussey et al. 2012b), and suggests a decreasing dependency on

them in larger sharks, which could constitute a secondary ontogenetic shift, perhaps



1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

83

involving increased consumption of lower trophic value cephalopods (Smale and Cliff
2012). The effect of Trip on 18:1w9 is discussed in Supplementary Data. 16:0 had
complex relationships with shark sex, length, 8"N, and &"C (Figure 4.2 and
Supplementary Data), which may indicate multiple sources and locations of high 16:0
prey exploited disproportionately by different demographic groups (Post 2002; Hill et
al. 2006; Hill and McQuaid 2008; Allan et al. 2010). Our DHA model indicated several
interactions between model variables, but extreme data points makes drawing
conclusions from them risky. High ARA can be associated with tropical habitat use in
elasmobranchs (Dunstan et al. 1988; Couturier et al. 2013; Rohner et al. 2013). We
found that females had a clear positive relationship between 8'°N and ARA, while
males did not. This could reflect the overall, long-term higher trophic level feeding of
larger females, which are more likely to make excursions to the tropics (CILiff et al.
2000; Zuffa et al. 2002; OCEARCH 2017) and consequently may provide an important
link between temperate and tropical ecosystems in the South Atlantic and Western
Indian Oceans. Extended travel outside of South Africa where they are not protected
may also expose large females to greater fishing mortality.

It would be expected that the trophic biomarker 18:109/18:1w7 would have a
relationship with 8'°N as both are used to reflect trophic position (Post 2002; El-
Sabaawi et al. 2009). The lack of relationship in our findings suggests that either: 1)
18:109/18:1w7 is not a valid trophic marker for white sharks, 2) 8'°N isn’t a reliable
indicator of trophic level in white sharks, 3) the timescales reflected by stable isotope
and fatty acid are too different to compare 18:1w9/18:107 and 8"°N, or 4) our sample
size wasn’t large enough to detect a relationship. Compound-Specific Isotope Analysis
of Individual Amino Acids (CSIA-AA) would help to resolve whether 5'"°N is reflecting

trophic position (McClelland and Montoya 2002). Nutritional condition index ®3/w6
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decreased with increasing 8'°N in smaller sharks, but increased in larger sharks. Similar
to bull sharks (Carcharhinus leucus) this pattern could reflect increased foraging
success in more experienced larger sharks in comparison to smaller individuals that
have only more recently joined the Gansbaai aggregation (Hobson et al. 1993; Martin et
al. 2005; Belicka et al. 2012). While our ARA/EPA biomarker wasn’t significantly
related to any demographic or isotopic variable, it was higher than for white sharks
sampled three years earlier in KwaZulu-Natal (4.44 compared to 3.82) (Davidson et al.
2011). Differences in this ratio between Gansbaai and KwaZulu-Natal may be dietary in
nature, though elevated ARA/EPA can be a symptom of physiological stress in fish, for
example inflammatory response (Sargent et al. 1999). White sharks sampled in
Gansbaai in 2012 were found to have dangerously high levels of ecotoxins, derived
from human-sourced pollutants and ascribed to recent use of the insecticide
Dichlorodiphenyltrichloroethane (DDT) and oil transport (Marsili et al. 2016). Sexually
immature sharks exhibited signs of estrogenic effects, which can cause feminization and
subsequently impaired reproductive success (Jobling et al. 1998; Harris et al. 2011;
Marsili et al. 2016). It is possible that the effect of these toxins has also resulted in an
elevated ARA/EPA ratio in the shark fatty acids.

Dietary clusters have previously been recorded in white sharks through both stable
isotope and fatty acid analyses, but drivers behind the clustering have not been
identified (Kim et al. 2012; Pethybridge et al. 2014). Our fatty acid cluster analysis
results suggest dietary specialization that is at least in part influenced by sex and size.
These results are in-keeping with evidence of individual variation in hunting tactics,
also influenced by sex, from behavioural data and tooth morphometrics (Towner et al.
2016; French et al. 2017) and seasonal movement patterns in nearby False Bay (Kock et

al. 2013). Isotope values were fairly uniform across these clusters, which may highlight
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the usefulness of the more short-term, comparatively detailed analyses of multiple fatty
acids in highly mobile, top predator ecology. Cluster 1 contained all of the largest
females and the high DHA/EPA and ARA/EPA of the group could reflect wide ranging
movement and resultant physiological stress (Graeve et al. 1994; Sargent et al. 1999).
Cluster 2 was the most different to other clusters and had the lowest DHA and 18:109
and highest 16:0 which may indicate feeding on coastal fish (Dunstan et al. 1988;
Schmidt-Nielsen 1997; Pethybridge et al. 2011a). The relatively small sharks of Cluster
3 which contained the highest proportion of males (including all smaller males) had the
highest 18:1®9, which likely indicates preference for marine mammals.

Our results suggest that sex, size, and individual dietary specialization are
important facets in the trophic ecology of a top predator, with the result that a generalist
predator in fact consists of specialized subsets of individuals which my exhibit multiple
ontogenetic dietary shifts. At least some females may be opting to forage more heavily
on fish than on pinnipeds, which males, especially smaller individuals, appear to favor
until they reach approximately 4 m in length. The combination of stable isotope and
fatty acid analyses provided complementary insights into long-term and short-term
aspects of shark diet and highlighted shortcomings in our understanding of data
interpretation. This temporal contrast could be especially useful in the study of
ontogenetic dietary shift dynamics within predator populations. Future predator studies
would benefit from the combination of stable isotope or ideally CSIA-AA, and fatty
acid analyses with telemetry to provide a better understanding of how to produce valid
diet and habitat use interpretations across taxa. Mixing models such as QFASA (Happel
et al. 2016) would also assist in identification of different sources of fatty acids, which
may be exploited differently by demographic groups and/or specialists. Clear

differences in the ecology of the sexes and sizes of white sharks should be considered in
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5.1. Summary

Sexual and individual phenotypic variations are widespread drivers of population
ecology across taxa, and have significant implications for conservation management. As
a top predator, white sharks (Carcharodon carcharias), are important for the healthy
functioning of their environments, but are currently listed as Vulnerable on the [IUCN
Red List. To date, the occurrence and implications of sexual and individual variation
have not been synthesised for this species, representing a significant gap in the
understanding of their ecology, and potentially, effective conservation management.
This review describes sexual and individual variation in white sharks in the context of
1) sexual dimorphism and life history; 2) diet; 3) migration patterns and habitat use; 4)
behaviour, and discusses the consequent ecological and management implications for
the species. Females and some individuals may be disproportionately exposed to
fisheries interactions, swimmer safety programmes, and bioaccumulation of toxins.
Furthermore, the potential deleterious effects of cage-diving ecotourism may affect
some individuals more than others, and males may be more affected by climate-
mediated changes in ocean conditions. The aggregated evidence presented here strongly
suggests that sex and individual variation should be explicitly considered in the analysis
and interpretation of data in studies of white shark ecology and factored into

conservation management strategies.
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5.2. Introduction

White sharks are the largest of the warm-bodied, fast-swimming Lamnidae (Compagno
2001), reaching maximum lengths of approximately six meters (Castro 2012). They
have an International Union for the Conservation of Nature (IUCN) Red List global
categorisation of Vulnerable and are protected in several countries, in addition to being
listed under Appendix II of the Convention on International Trade in Endangered
Species of flora and fauna (CITES), and both Appendices of the Convention on
Conservation of Migratory Species (Fergusson et al. 2009). The species is found in six
more-or-less discrete populations in South Africa, Australia/New Zealand, northeast
Pacific, northwest Pacific, northwest Atlantic and the Mediterranean (Pardini et al.
2001; Jorgensen et al. 2010; Gubili et al. 2011, 2012). White sharks utilise both coastal
and pelagic habitat (Compagno 2001), and are highly migratory within and between the
coastal and offshore areas of their population range (Weng et al. 2007a; Bonfil et al.
2010; Jorgensen et al. 2010; Block et al. 2011; Domeier and Nasby-Lucas 2013; Bonfil
and OBrien 2015), and in some cases transoceanic (Pardini et al. 2001; Bonfil et al.
2005; Duftfy et al. 2012; Del Raye et al. 2013). While white sharks are relatively well
protected by various legislation, they remain victims of fisheries bycatch, bather safety
nets, deliberate culling, negative consequences of ocean warming and acidification, and
the deleterious effects of bioaccumulation of environmental toxins (Schlenk et al. 2005;
Fergusson et al. 2009; Mull et al. 2013; Lyons et al. 2013a, b; Dixson et al. 2015;
Pistevos et al. 2015, 2017; Marsili et al. 2016; Rosa et al. 2017).

Large sharks are typified by long life spans, delayed maturity and low fecundity
in comparison to bony fish (Myers & Worm 2005); traits that make them vulnerable to
the threats of fishing pressure, pollution, and habitat changes that have led to significant

population declines in many species (Myers and Worm 2003; Baum et al. 2003;
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Cavanagh et al. 2007; Worm et al. 2013; Dulvy et al. 2014). These large sharks have a
disproportionate influence on marine ecosystems, exerting strong top-down forces on
communities (Heithaus et al. 2008; Ferretti et al. 2010; Estes et al. 2011; Ruppert et al.
2013; Burkholder et al. 2013; Rasher et al. 2017), and are considered vital to
maintaining ecosystem health.

Sexual and individual phenotypic variation can significantly influence many key
aspects of the ecology and biology of species, from diet to life history parameters,
behaviour, and movement patterns (e.g. Bolnick et al. 2003; Sims 2005; Sih et al. 2012;
Wolf and Weissing 2012). This variation is important in the context of species and
population conservation, and should be explicitly addressed in management plans. Sex
driven differences, particularly sexual dimorphism and spatial segregation, are prevalent
in elasmobranchs, and have direct influence on disparate exposure to anthropogenic
threats (Klimley 1987; Sims 2005; Mucientes et al. 2009; Domeier and Nasby-Lucas
2013). Individual variation in resource use is an important facet in the study of wildlife
ecology (Bolnick et al. 2003, 2011; Réale et al. 2010; Schreiber et al. 2011; Sih et al.
2012; Dall et al. 2012) and especially so in highly mobile predatory species due to
potential community and ecosystem level effects (Lundberg and Moberg 2003;
Quevedo et al. 2009; Schreiber et al. 2011; McCauley et al. 2012; Nifong et al. 2015).
While individual variation in behaviour and movement patterns have been well studied
in fish in general (Conrad et al. 2011; Mittelbach et al. 2014; Héarkonen et al. 2014), it is
only recently that this field of research has been recognised as important in the study
and management of elasmobranchs (Matich et al. 2011; Jacoby et al. 2014; Huveneers
et al. 2015; Matich and Heithaus 2015).

Although white sharks are relatively well studied in some respects, there remain

important gaps in our understanding of some of the more basic aspects of their life-



1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

91

history and behaviour, which hinders the development of effective species management
strategies. This review synthesises the evidence for sexual and individual variation in
white sharks in the context of 1) sexual dimorphism and life history; 2) diet; 3)
migration patterns and habitat use; 4) behaviour, and discusses the implications of these

for the ecology and management of the species.

5.3. Sexual Dimorphism and Life History

White sharks exhibit sexual size dimorphism, with females growing to and maturing at
a larger size than males (Francis 1996; Pratt 1996; Compagno 2001). Faster growth
rates have also been reported for females (Tanaka et al. 2011; Hamady et al. 2014),
though sample sizes were small. There is, however, evidence of individual variation in
the size at which individuals reach maturity stages. Significant variation in the size at
which male sharks in South Africa undergo the substantial increase in testes mass at the
onset of maturity was noted by Cliff et al. (1989), and variation in the size at which they
experience an ontogenetic shift in tooth shape has also been identified (French et al.
2017). Questions remain over individual differences in body length at maturity for
females (Francis 1996). French et al. (2017) recently presented evidence for Pace-of-
Life-Syndrome (POLS) in male sharks. The POLS hypothesis comprises intrinsic links
between individual behaviour, physiology and life history parameters where for
example, individuals with ‘bolder’ behaviour may have faster growth rates, earlier onset
of maturity and other physiological differences, such as ability to cope with stress, in
comparison to ‘shyer’ individuals (Ricklefs and Wikelski 2002; Réale et al. 2010). In
male white sharks, links between ontogenetic tooth shape change, onset of sexual
maturity, and foraging biology have been put forward as a basis for POLS (French et al.

2017).
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In addition to sexual dimorphism, regional and latitudinal variation in life
history parameters are common in elasmobranchs (Lombardi-Carlson et al. 2003;
Driggers et al. 2004; Neer and Thompson 2005; Walker 2007; Smart et al. 2015).
Tanaka et al. (2011) provided evidence for differential maturity and growth rates of
white sharks in the NWP population compared to other populations, suggesting that
NWP white sharks grow comparatively faster and mature at smaller sizes. This
population remains relatively understudied, and it is unclear what role regional variation

plays in white shark ecology.

Implications:

Differences in maturity and growth rates between the sexes and individuals will likely
result in differences in resource requirements, as the onset of sexual maturity can
require increased energy intake and specific nutrients (Robbins 1983). This can result in
spatial segregation, such as that exhibited by the scalloped hammerhead (Sphyrna
lewini), where females move offshore at a younger age than males, allowing them to
grow faster due to access to plentiful pelagic prey (Klimley 1987). Such spatial
segregation can lead to differences in exposure to anthropogenic threats (see section on
Migration Patterns and Habitat Use). Larger sharks, in addition to being
disproportionately important for population viability, are also disproportionately
removed by fishing (Ward and Myers 2005; Lucifora et al. 2009). In the case of white
sharks, this would pertain to females and potentially faster growing males, being fished
more heavily. Explicitly in the case of POLS, bolder fish genotypes that are also faster
growing, are also at greater risk of fishing mortality, due to elevated hunger levels to
sustain faster growth and greater levels of exploration; directly illustrating how POLS

can have ramifications for population survival (Young et al. 2006; Biro and Post 2008;
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Mittelbach et al. 2014; Hérkonen et al. 2014). For white sharks, this is particularly
pertinent in the context of culling programmes and swimmer protection programmes,
which may disparately remove genotypes associated with greater movement activity
and bolder behaviour. Some evidence of disproportionate removal of faster growing
individuals is reported in South Africa (Wintner and Cliff 1999), but has not been found
in the northeast or northwest Pacific (Cailliet et al. 1985; Tanaka et al. 2011).
Population differences in size at maturity could have similar effects to intra-population
variation in maximum size and growth rates, and should be taken into account in the

development of regional management plans.

5.3. Migration Patterns and Habitat Use

Migration patterns and habitat use are the most intensively studied areas of white shark
ecology, thanks mostly to the development of acoustic and satellite tags, some of which
are able to provide data for up to multiple years (Dewar et al. 2004; Bonfil et al. 2005,
2010; Bruce et al. 2006; Weng et al. 2007a; Domeier and Nasby-Lucas 2008, 2013,
Jorgensen et al. 2010, 2012; Block et al. 2011; Duffy et al. 2012; Bradford et al. 2012;
Bruce and Bradford 2012, 2013, 2015; Nasby-Lucas and Domeier 2012; Kock et al.
2013; Jewell et al. 2013, 2014; Towner et al. 2016; Hoyos-Padilla et al. 2016). Some
researchers have also made use of photographic identification methods, while others
have simply recorded the sex and length of sharks, to monitor shark attendance patterns
at aggregation sites (Domeier and Nasby-Lucas 2007; Robbins 2007; Robbins and
Booth 2012; Nasby-Lucas and Domeier 2012; Towner et al. 2013a; Ryklief et al. 2014).
While some size segregation amongst white sharks is apparent across populations
(Klimley 1985; Robbins and Booth 2012; Jewell et al. 2013; Hoyos-Padilla et al. 2016),

several studies have identified strong sex-driven differences in movement and habitat
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use at both broad and fine scales (Anderson and Pyle 2003; Weng et al. 2007a; Domeier
and Nasby-Lucas 2008, 2012; Robbins and Booth 2012; Jorgensen et al. 2012; Kock et
al. 2013; Bruce and Bradford 2015; Towner et al. 2016), and more recently have also
described individual variation in these (Francis et al. 2015; Towner et al. 2016).

White sharks in the northeastern Pacific have received the most attention in
terms of satellite tagging studies. This population is split into two discrete coastal
aggregations, Guadalupe Island, and central California, both of which utilise a pelagic
area (referred to as either the “Shared Offshore Forging Area” (SOFA) or the “White
Shark Café”), and in some cases also visit Hawaii (Weng et al. 2007a; Domeier and
Nasby-Lucas 2008; Nasby-Lucas et al. 2009; Jorgensen et al. 2010; Weng and
Honebrink 2013). At the central California aggregation, sex-specific visitation patterns
were first identified by Anderson and Pyle (2003), who found seasonal differences in
the arrival times of sharks at the Farallon Islands. It was later shown that the sharks
from this aggregation exhibit sex-specific use of the SOFA/café, where males
concentrate in a relatively small area, while females roam much more widely (Jorgensen
et al. 2010). Domeier and Nasby-Lucas (2012), addressed sexual differences in
migratory patterns for the Guadalupe Island aggregation explicitly, and revealed similar
usage patterns of the SOFA/café as the Californian sharks, showing that females move
more widely, and stay offshore for longer periods than males, where they experience
warmer temperatures generally, and a greater temperature range. More recently, these
authors further revealed that large females exhibit a biennial visitation pattern to
Guadalupe Island in contrast to the annual visits of males (Domeier and Nasby-Lucas
2013). During this extended migration period, females are believed to pup in the sea of

Cortez and the central Pacific coast of Baja California, Mexico (Domeier and Nasby-
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Lucas 2013). Seasonal differences in the visitation of males and females to Hawaii have
also been recorded (Weng and Honebrink 2013).

Seasonal sex-driven differences in coastal aggregation attendance have also been
identified in Australia and South Africa, with inferences for differentiation in prey
choice between the sexes (Robbins 2007; Robbins and Booth 2012; Kock et al. 2013;
Towner et al. 2013a; Bruce and Bradford 2015). In Australia there are marked
differences between the sexes in the seasonality of their attendance at the seal rookeries
of the Neptune Islands (Bruce et al. 2006; Robbins 2007; Robbins and Booth 2012;
Bruce and Bradford 2015). Males are in attendance year round, while female attendance
peaks specifically during the weaning period of Australian fur seals (Arctocephalus
forsteri), when the greatest number of female seals and pups will be frequenting the
water (Bruce and Bradford 2015). Sea surface temperature has also been linked to this
sexual segregation, with cooler conditions being associated with increased numbers of
male sharks, and female attendance tending to coincide with warmer conditions
(Robbins and Booth 2012). A similar pattern of visitation takes place in Gansbaai,
South Africa, with male abundance being associated with colder water temperatures and
female abundance coinciding with warmer temperatures (Towner et al. 2013a). The
authors hypothesised that this would result in warming female core temperatures, which
would increase their growth rate, enabling them to reach sexual maturity at the same age
as their male cohorts, and accelerate gestation in pregnant individuals. However, while
mature females may use tropical habitats for gestation and parturition, (e.g. in South
Africa: Cliff et al. 2000; Zuffa et al. 2002; OCEARCH 2017) females attending these
aggregations are generally not sexually mature so cannot be gravid (Towner et al.
2013a; Bruce and Bradford 2015). In addition, female visitation did not match warmer

temperatures in a long-term study at the Neptune Islands by Bruce and Bradford,
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(2015), and water temperatures are very unstable in Gansbaai during the female-specific
visitation season (Towner et al. 2013a). It therefore remains to be fully ascertained
whether sexual segregation is influenced by temperature itself, or by prey associated
with different temperatures.

Analysis of "°N and 8"°C stable isotopes in animal tissue provides information
on their diet and foraging habitat respectively (DeNiro and Epstein 1978; Post 2002). A
significant negative relationship between 8'°C and male shark length has been found in
Gansbaai, South Africa, indicating that they use either more pelagic or more westerly
habitats as they grow, while the lack of a similar isotopic trend in suggests they have
more varied, broad scale movement (Chapter 3). Two studies in the northeastern Pacific
have also detected a depletion in 8"°C with increased shark length, both of which were
dominated by male shark samples (Kerr et al. 2006; Carlisle et al. 2012), in addition to
evidence of depleted 8'°C in males from the northwest Atlantic (Hamady et al. 2014)
and KwaZulu-Natal, South Africa (Hussey et al. 2012b). This is suggestive that, the
lack of relationships between shark length and 3'"°C in some other studies, may be
because differences between the sexes were not accounted for (Estrada et al. 2006; Kim
etal. 2012).

In False Bay, South Africa, Kock et al. (2013) found that during the summer
months, females of all size classes move close inshore, while male sharks tend to move
away from the area. Disproportionate female use of inshore habitats has also recently
been identified in nearby Gannsbaai, in addition to fine-scale sex-specific movement
(Towner et al. 2016). Of five sharks acoustically tracked in Gansbaai by Jewell et al.,
(2014), the single female of the sample was the only shark to utilise an area of reef as its
core habitat, as opposed to areas adjacent to a pinniped colony used by the males of

comparable size. Individual habitat partitioning and female preference for non-pinniped
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adjacent habitat is also suggested in a core habitat analysis of thirteen females
acoustically tracked in Mossel Bay, South Africa (Jewell et al. 2013). Here, some of the
sharks, including small (< 3 m) and a large (> 4 m) individual did not include the local

pinniped colony within their core habitat, instead using reef and rivermouth areas.

Implications

The collective data suggest that female movement patterns may put them at greater risk
of anthropogenic threats than males. When females pup in coastal areas, such as the Sea
of Cortez for example, the time spent in proximity to the coast exposes them to
increased risk of fishing mortality compared to males (Domeier and Nasby-Lucas
2013). Females in South Africa are caught more often in swimmer protection
programmes than males (Cliff et al. 1989), which may be caused by their apparent
propensity to use habitats closer to the shore (Kock et al. 2013; Towner et al. 2016).
Heavier utilisation of coastal habitats would also result in greater exposure to pollutants,
as detailed below. The fact that females rove more widely may further put them at
increased risk of encountering pelagic fisheries, especially if they move into areas
where they are not protected by law e.g. from South Africa to Mozambique and the
High Seas.

If the sexes have disparate responses to thermal cues (Robbins and Booth 2012;
Towner et al. 2013a), warming caused by climate change could affect them differently.
The links between sea temperature, white shark physiology, and prey availability need
to be more clearly understood to ascertain the potential effects of climate change on the

SEXCES.
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54. Diet

The diet of white sharks is varied, comprising largely teleost fish, elasmobranchs,
cephalopods, cetaceans and pinnipeds (Tricas and McCosker 1984; Cliff et al. 1989;
Bruce 1992; Compagno 2001; Hussey et al. 2012b).

Stomach content analysis has not yielded dietary differences between the sexes
(Hussey et al. 2012b). However, this may due to the relatively coarse resolution of
stomach content data, which also only provides a very narrow snapshot of prey
selection. While several studies have investigated long-term diet using stable isotopes,
(Estrada et al. 2006; Kerr et al. 2006; Hussey et al. 2012b; Carlisle et al. 2012; Kim et
al. 2012; Malpica-Cruz et al. 2013; Jaime-Rivera et al. 2014; Christiansen et al. 2015),
only one has analysed data for males and females separately (Chapter 3). This study,
based on sharks sampled in Gansbaai, South Africa, revealed evidence for the sexes
foraging in different food webs, and a trend for reduced 8"°N, inferring feeding at a
lower trophic level, in large males while no obvious trends in '°N were apparent in
females. Towner et al. (2016) reported that female white sharks tracked in Gansbaai
were more likely than males to adopt what the authors termed “patrolling”, as opposed
to “area restricted searching” foraging modes, and females there and in nearby False
Bay make exclusive use of near-shore habitats that coincides with peak abundance of
teleosts and elasmobranchs (Kock et al. 2013; Towner et al. 2016). Fatty acid data from
sharks in this aggregation, which likely represents shark diet from approximately 3 — 18
weeks (Beckmann et al. 2013, 2014) inferred greater recent consumption of marine
mammals in males, while females exhibited more individual variation, and higher input
of coastal fish (Chapter 4), matching inshore and reef-associated habitat use patterns
described above. Sex-specific foraging strategies have also been suggested for white

sharks in the northeastern Pacific population (Weng et al. 2007a; Jorgensen et al. 2010,
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2012; Domeier and Nasby-Lucas 2013) in which males display more rapid oscillatory
diving behaviour within a restricted offshore area, which could reflect foraging for
squid (Weng et al. 2007a; Domeier and Nasby-Lucas 2012; Carlisle et al. 2012;
Jorgensen et al. 2012; Domeier and Nasby-Lucas 2013).

Individual differences in prey choice have been identified and suggested in
several studies across white shark populations (Estrada et al. 2006; Hussey et al. 2012b;
Kim et al. 2012; Hamady et al. 2014; Pethybridge et al. 2014; Christiansen et al. 2015).
Some sharks (notably females) appear not to undergo the generally recognised dietary
shift from fish to mammal prey (Estrada et al. 2006; Hussey et al. 2012b), while others
have been found to form groups of apparent specialisation that have not yet been
explained by any biological or environmental factors (Kim et al. 2012; Pethybridge et
al. 2014). Dietary specialisation seems particularly prevalent in females (Chapter 3,
Chapter 4), a pattern that has been noted in other marine predators (Young and
Cockcroft 1994; Connan et al. 2014).

The teeth of white sharks are generally accepted to undergo an ontogenetic
change in shape, becoming broader as sharks age (Tricas and McCosker 1984; Frazzetta
1988; Hubbell 1996), and facilitating a transition from a largely piscivorous diet to one
more heavily reliant on marine mammals (Cliff et al. 1989; Bruce 1992; Compagno
2001; Hussey et al. 2012b). However, anecdotal descriptions of tooth shape within the
published literature suggest that tooth cuspidity in the largest sharks, especially females,
is highly variable and does not always correspond to shark length (Hubbell 1996; Castro
2012). A recent quantitative investigation of the relationship between white shark
length, sex, and tooth cuspidity found clear differences in tooth shape change through
ontogeny between the sexes (French et al. 2017). Males did undergo the accepted

broadening of teeth with increasing shark length, but notable individual variation in the
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shark’s length at which their teeth changed shape was apparent. Females did not exhibit
a distinct ontogenetic change in tooth shape, and rather there was evidence of tooth
polymorphism between females. As tooth morphology is considered to facilitate
handling of specific prey types, it is reasonable to suggest that these differences in the
change in tooth shape reflect consequent differences in foraging ecology between the
sexes and among individuals. Several studies have found evidence of dietary clusters
(Kim et al. 2012; Pethybridge et al. 2014) and it is possible that these may be at least
partially explained by variation in the size at which some sharks change from cuspidate
to broad tooth morphologies, and the tooth shape polymorphism found in females. This
has been found for blue sharks (Prionace glauca) (Litvinov 1983; Litvinov and
Laptikhovsky 2005), small spotted catsharks (Scyliorhinus canicula) (Litvinov 2003)

and a classic example in a cichlid fish (Cichlasoma citrinellum) (Meyer 1990a, b).

Implications

Christiansen et al. (2015) mapped out the management consequences of specialisation
in white shark diet, concluding that multiple trophic roles within the species could alter
food web structure, and that declining resources would disparately affect different
individuals; factors of high and medium significance for management respectively.
Specialisation for different marine food webs, related to sex or size differences, can
have effects on levels of bioaccumulation of toxic substances, such as mercury,
polycyclic aromatic hydrocarbons, pesticides, and organochlorines (Loseto et al. 2008b,
a; Cardona-Marek et al. 2009; Gelsleichter and Walker 2010; St. Louis et al. 2011;
Lyons et al. 2013a). As apex marine predators, large sharks are particularly at risk of
bioaccumulation of these damaging materials (Gelsleichter and Walker 2010), and

white sharks have already been shown to contain very high, and potentially injurious
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levels of ecotoxins (Schlenk et al. 2005; Mull et al. 2013; Lyons et al. 2013a; Marsili et
al. 2016). High concentrations of ecotoxins found in the tissues of young of the year and
juvenile white sharks are the results of maternal offloading during gestation, and these
levels are affected by the trophic position and foraging habitat of females (Borga et al.

2004; Lyons et al. 2013a).

5.5. Behaviour

Consistent inter-individual differences in behaviour ('personalites’ Gosling 2001; Wolf
and Weissing 2012) have been found across a wide range of fish (Conrad et al. 2011;
Mittelbach et al. 2014; Hérkonen et al. 2014), including recently in several shark
species (Jacoby et al. 2014; Wilson et al. 2015; Finger et al. 2016; Byrnes and Brown
2016; Finger et al. 2018). The links between individual differences in behaviour and
POLS, and the associated ramifications, were discussed above. Individual differences in
the behaviour of white sharks has been inferred in several studies of the behaviour of
sharks around cage-diving vessels (Johnson and Kock 2006; Laroche et al. 2007; Bruce
and Bradford 2013; Huveneers et al. 2013). For example, Huveneers et al., (2015)
reported consistent individual differences in the way in which Australian white sharks
exploit the sun during predatory attempts on bait at a cage diving vessel. This has been
followed by the results of a sophisticated movement model, based on acoustic telemetry
data in South Africa, which revealed both individual and sex specific differences in
hunting strategy (Towner et al. 2016). Clearly individual differences in behaviour is
something that requires more scientific attention in the study of white shark ecology and

conservation.
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Implications

Consistent inter-individual behavioural differences in white sharks have the potential to
have significant ramifications for their conservation. As discussed under the POLS,
differing personality types can lead to disparate exposure to threats, especially fishing,
and therefore individual survival as well as population stability and growth rates (Biro
and Post 2008; Wilson et al. 2011; Wolf and Weissing 2012; Mittelbach et al. 2014;
Héarkonen et al. 2014). The effects of variation in fish behavioural types, at the
individual to the ecosystem level, are summarised in Figure 5.1 (Mittelbach et al. 2014);
see also discussion of POLS under Sexual Dimorphism and Life History. In a species
that is already considered Vulnerable to extinction due to overfishing, this issue is of

urgent importance.
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Biological effects

Conservation and management

social structure, group feeding rate,
population dynamics, species
interactions, nutrient dynamics

domestication, stocking success,
migration, return rate, harvestable
population

diet, habitat use, growth,
survival, ontogenetic niche shifts,
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gear, vulnerability to recreational

reproductive success :
angling
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Consistent individual differences in behaviors (e.g.,
shy vs bold, aggressive vs timid)

Figure 5.1 Consequences of variation in fish behavioural types, from Mittelbach et al.,

(2014).

Shark cage diving companies operate at white shark hotspots around the world
and their effects on white sharks recorded so far include significant increase in
residency time at the islands, changes in diel patterns, decrease in swimming depth,
decrease in rate and area of movement, change in behavioural state and decreased times
of arrival at cage-diving vessels (Laroche et al. 2007; Bruce and Bradford 2013;
Huveneers et al. 2013; Towner et al. 2016). Evidence that some individuals are
disproportionately effected by cage diving operations has been found in both South
Africa and Australia (Johnson and Kock 2006; Laroche et al. 2007; Bruce and Bradford
2013; Huveneers et al. 2013), and changes in both short and long-term behaviour have
been recorded for white sharks in general, with the ecological implications currently

unknown (Bruce and Bradford 2013; Huveneers et al. 2013; Towner et al. 2016). In
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South Africa, some individuals were more consistently present at cage-diving vessels,
and may have learned to arrive at them more quickly over time (Johnson and Kock
2006; Laroche et al. 2007). Individual differences in response to cage-diving operators
found at the Neptune Islands in Australia has raised concerns over the energetic costs
due to distraction from feeding (Bruce and Bradford 2013; Huveneers et al. 2013).
Shark ecotourism generates millions of US dollars every year, and has the potential to
benefit shark conservation through education, increased shark protection and provision
of alternative livelihoods to fishers (Gallagher and Hammerschlag 2011; Vianna et al.
2012; Cisneros-Montemayor et al. 2013; Gallagher et al. 2015; Haas et al. 2017). While
some studies have found negligible effects of shark ecotourism (Laroche et al. 2007;
Maljkovi¢ and Cété 2011), and white shark cage-diving provides an opportunity to
improve their conservation status through participant education (Apps et al. 2016), the
overriding scientific stance is one of precaution, and more research into its potentially
negative effects, which can include among others - injury, impaired mobility, reduced
foraging success, energetic costs, change in habitat use and increased risk of disease
(Orams 2002; Gallagher et al. 2015). Research is urgently required to quantify more
fully the impacts of ecotourism on white sharks, and investigate whether some
individuals or one of the sexes is disproportionately exposed to its potentially

deleterious effects.

5.6. Discussion

It is clear from the available literature that sexual and individual differences exert strong
influences on white shark ecology across populations and contexts, and that these
differences have significant ramifications for their effective conservation management.

Such differences disproportionately predispose the sexes, and some individuals, to
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greater interaction with fishing apparatus, more prolonged exposure to environmental
pollutants, the effects of climate change, and the potential negative effects of
ecotourism activities.

Our current understanding of individual and sexual variation in white shark
ecology is obfuscated by a lack of direct incorporation of sex in published analyses, in
addition to relatively small sample sizes. Samples are frequently simply split into shark
size classes, without consideration of sex or how sex and size may interact. As this
review shows that white sharks exhibit sexual dimorphism in size at maturation, tooth
morphology, movement patterns, habitat use, and diet, aggregation of data into size
classes without consideration of sex, often forced by small sample size, could have
serious implications for the usefulness and accuracy of results derived from such
studies.

Several studies have shown that females range more widely than males, yet
others reveal that they spend a greater proportion of their time in coastal habitats (Zuffa
et al. 2002; Bonfil et al. 2005; Weng et al. 2007a; Domeier and Nasby-Lucas 2012,
2013; Weng and Honebrink 2013; Kock et al. 2013; Towner et al. 2016). Both of these
traits, and associated inferences for differences in diet, suggest that females are at
greater risk of encountering swimmer protection programmes and inshore fisheries, and
suffering greater exposure to, and contamination by, marine pollutants. Accumulation of
anthropogenic toxins, and interaction with fishing gear, both targeted and non-targeted,
are already recognised to pose serious threats to white sharks, despite their protected
status (Baum et al. 2003; Schlenk et al. 2005; Shivji et al. 2005; Fergusson et al. 2009;
Domeier and Nasby-Lucas 2012; Mull et al. 2013; Lyons et al. 2013a, b; Marsili et al.
2016), and if females are especially vulnerable, management strategies should reflect

this. Dietary specialisation has been found and/or inferred across populations (Estrada et
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al. 2006; Hussey et al. 2012b; Kim et al. 2012; Pethybridge et al. 2014; Christiansen et
al. 2015; French et al. 2017) and carries implications for food web effects, individual
survival, and exposure to pollutants. This phenomenon seems especially prevalent in
female white sharks, a trend also found in other marine predators (Young and Cockcroft
1994; Connan et al. 2014).

Pace-of-Life-Syndrome hypothesis has recently been suggested in male white
sharks (French et al. 2017), suggesting that some males grow faster, mature more
quickly, and exhibit bolder behaviour than others (Ricklefs and Wikelski 2002; Réale et
al. 2010). These traits predispose fish to increased fishing mortality, and can result in
rapid depletion of genotypes (Biro and Post 2008; Conrad et al. 2011; Mittelbach et al.
2014). As culling efforts essentially comprise fishing for white sharks in the wake of a
shark-human interaction, they may be disproportionately attracting and removing faster
growing individuals, adding to the already negative effects of removing individuals
from an already depleted population. Pace-of Life Syndrome and its genetic component
in white sharks should be investigated promptly to assess potential impacts on
conservation of the species.

Climate change, which is projected to result in steadily increasing seas surface
temperatures (Solomon et al. 2007), may also affect the sexes differently. Climate
change induced increases in ocean temperature and associated acidification negatively
affect shark growth and ability to hunt (Dixson et al. 2015; Pistevos et al. 2015, 2017;
Rosa et al. 2017). As males may be less varied in their habitat use and diet (Zuffa et al.
2002; Weng et al. 2007a; Domeier and Nasby-Lucas 2012; French et al. 2017;
OCEARCH 2017), they could also be less able to adapt to climate-mediated changes in

habitat and prey availability.
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Individual and sexual differences in behaviour have been demonstrated in
several sharks species, and suggested in white sharks (Laroche et al. 2007; Huveneers et
al. 2013; Jacoby et al. 2014; Wilson et al. 2015; Huveneers et al. 2015; Towner et al.
2016; Byrnes et al. 2016; Finger et al. 2016; Byrnes and Brown 2016; Finger et al.
2017, 2018). In addition to fishing mortality risks, individual differences in behaviour
could also result in some sharks being more affected by cage-diving ecotourism than
others (Laroche et al. 2007; Huveneers et al. 2013). Suggested deleterious effects of
cage-diving include distraction from feeding and associated energy expenditure, decline
in predatory success, changes to predator/prey interactions, impairment of growth and
reproductive success, and reduced individual and population fitness (Laroche et al.
2007; Bruce and Bradford 2013; Huveneers et al. 2013). Studies specifically assessing
the effects, in particular energetic costs, of cage-diving operations on individuals is
urgently required.

Scientific studies of white shark ecology, especially diet and movement patterns,
often consider the population under investigation as a single unit. The evidence
reviewed here strongly suggests that sex and individual differences should be
considered explicitly in analyses of these data. Future research priorities should include
dietary specialisation and its drivers, differences in fisheries mortality and toxin
accumulation between the sexes, Pace-of-Life-Syndrome hypothesis, in particular in
males and combined with genetic testing, and the effects of cage diving ecotourism on

individuals.
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Chapter 6 General Discussion

In this thesis I explore the roles of sexual and individual variation in white shark trophic
ecology, and their effects on ontogenetic shift dynamics. These relationships are
examined through tooth shape metrics, and stable isotopes and fatty acid analyses, in

addition to a review of the existing literature.

Ontogenetic shifts in diet and habitat use, often facilitated by morphological changes in
foraging apparatus, can have profound effects on an individual or age/size class’s
resource requirements, functional role, and conservation needs (Werner and Gilliam
1984; Polis 1984; Werner and Hall 1988; McCauley et al. 1996; Law and Dickman
1998; Scharf et al. 2000; Grubbs 2010). For the first time, I have shown that both sex
and individual variation have strong effects on ontogenetic shift dynamics in white
sharks, evidenced by tooth morphology (Chapter 2), stable isotope analysis (Chapter 3),
fatty acid analysis (Chapter 4) and a review of the available evidence in the published
literature (Chapter 5).

It was previously accepted that when white sharks reach approximately three
meters length, they undergo an ontogenetic shift in diet that involves the inclusion of
marine mammals as prey, and that this shift is facilitated by a change in tooth shape
from cuspidate to broad (Tricas and McCosker 1984; Frazzetta 1988; Compagno 2001).
This tooth shape change is cited ubiquitously in the white shark literature, despite the
fact it was originally based on only 16 sharks (Tricas and McCosker 1984) and that the
effect of sex on tooth cuspidity change through ontogeny has never been explored, only
tooth height (Randall 1973, 1987; Mollet et al. 1996; Shimada 2002b). In Chapter 2, I

aimed to explore whether this ontogenetic shift in tooth shape did indeed occur, and if it
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was influenced by sex and individual variation. I further aimed to extend our current
knowledge of ontogenetic tooth shape change in white sharks by including a novel
metric; the angle of the upper intermediate, or P3 tooth, as this measurement was found
to vary considerably between individuals (Hubbell 1996). Incorporating results from a
novel photographic method, for the first time we found evidence for both sexual and
individual variation in white shark ontogenetic tooth shape change, including a
previously unreported change in P3 tooth shape in male sharks which could be an
adaptation for handling marine mammal prey, or allow males to more effectively grasp
females during copulation (Chapter 2). Future research in this area should directly
compare tooth shape with dietary data, to determine whether tooth shape is related to
foraging or reproduction.

Significantly, Chapter 2 provided the first argument for Pace-of-Life-Syndrome
(POLS) (Ricklefs and Wikelski 2002; Réale et al. 2010) in white sharks, at least in
males. Here, we linked individual variation in the size at which males underwent an
ontogenetic shift in tooth shape, to previously published data on variation in increase in
testes mass associated with sexual maturity (CILiff et al. 1989). Further evidence for
POLS was discussed in Chapter 5, and interestingly individual variation in growth rate
has recently been identified in juvenile lemon sharks (Negaprion brevisrostris), with
links to personality suggested (Hussey et al. 2017). POLS, linked to physiology,
personality, and life history, could have serious implications for white shark
conservation management, as reviewed in Chapter 5. Given this information, and the
significant potential conservation management ramifications, studies directly testing for
POLS in white sharks, and other shark species, appear warranted.

Chapter 3 represents the first stable isotope study on white sharks that examined

8N and 8"°C relationships with shark length separately for the sexes. The results from
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Chapter 3 and examination of the literature in Chapter 5 suggest that failure to do so can
confound interpretation of long-term patterns in trophic and ontogenetic differences
between males and females. In concordance with the results of the tooth shape data
analyses in Chapter 2, Chapter 3 revealed clearer evidence of a predictable ontogenetic
shift in male sharks in contrast to females, especially in terms of habitat use. When
considered alongside evidence from the northeast Pacific (Kerr et al. 2006; Carlisle et
al. 2012), the northwest Atlantic (Hamady et al. 2014) and South Africa (Chapter 5), it
seems that males across genetically distinct populations exploit pelagic food webs as
they grow.

Chapters 3 and 4 further represent the first stable isotope and fatty acid analysis
results from free-swimming white sharks in South Africa, and Chapter 4 is the first
study to compare results from these analyses in the species. Interestingly, fatty acid
results in Chapter 4 revealed a dietary separation between smaller and larger females
that was not evident in stable isotope results (Chapter 3). It would be worthwhile to
explore this further using mixing models, which would allow identification of the
different prey species contributing to the diets of the female size classes. This finding
highlights the usefulness of combining trophic biomarker methods to study ecology, as
advocated by Christiansen et al., (2015). Fatty acids further indicated a potential second
ontogenetic shift in sharks over four meters in length, involving a reduced reliance on
marine mammals. This relationship was not significantly influenced by sex, which
contrasts with the stable isotope results in Chapter 3, and patterns suggested in other
stable isotope studies (Kerr et al. 2006; Hussey et al. 2012b; Carlisle et al. 2012;
Hamady et al. 2014). These studies point towards a reduction in trophic level in large
males and less clear patterns in females. It could be that the comparatively short-term

nature of fatty acids fails to detect differences in trophic ecology picked up by more
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long-term representative stable isotope analysis (Iverson et al. 2002; MacNeil et al.
2005; Martinez del Rio et al. 2009; Logan and Lutcavage 2010; Hussey et al. 2012c).
However, stable isotopes, fatty acids, and a review of the current literature (Chapters 3,
4 and 5 respectively) all point towards wide ranging and varied movement patterns,
habitat utilization, and food web exploitation in female white sharks, with especial
importance of tropical ecosystems and coastal habitats.

Because stable isotopes and fatty acids represent relatively long and short time
frames respectively, and because white sharks are highly mobile, future studies should
combine these analyses with telemetry to allow for more precise interpretation foraging
and food web utilization within an understood temporal context. Pooling of data
between research projects to boost sample size would also allow for more robust
statistical analyses. As ontogenetic changes can alter a species’ functional role within an
ecosystem (Werner and Gilliam 1984; Polis 1984; Scharf et al. 2000; Grubbs 2010), it is

important that the ontogenetic shift dynamics identified here are understood.

In addition to the effects of sex on white shark trophic ecology and ontogenetic shift
dynamics, I aimed to improve our understanding of individual and sexual variation in
white shark ecology more generally, and if and how sex and individual variation may
interact. Individual variation can be strongly influenced by sex in marine predators
(Young and Cockcroft 1994; Kernaléguen et al. 2012; Connan et al. 2014; Smith et al.
2015), and this has actually been demonstrated in two South African white shark prey
species; cape fur seals (Arctocephalus pusillus pusillus) (Connan et al. 2014) and
common dolphin (Delphinus delphis) (Young and Cockcroft 1994). Similarly, size
and/or life stage can also have significant effects on individual variation (Scharf et al.

2000), which is already evident in white sharks (Hussey et al. 2012b; Christiansen et al.
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2015). Despite this, the only studies to have explicitly tested for individual variation in
white shark trophic ecology (Kim et al. 2012; Pethybridge et al. 2014) failed to
incorporate the combined influence of sex and size. I found evidence of individual
variation, influenced both by sex and size in Chapters 2, 3, 4 and 5 of this thesis.

Stable isotope analysis highlighted prevalence of expanded trophic niche in
smaller sharks (Chapter 3), which concords with previously published white shark data
(Hussey et al. 2012b; Christiansen et al. 2015). Female white sharks pup in discrete
nursery areas and juveniles aggregate in specific habitats, usually close to the shore
(Klimley 1985; Dewar et al. 2004; Weng et al. 2007b; Bruce and Bradford 2012;
Domeier and Nasby-Lucas 2013; Lyons et al. 2013b; Harasti et al. 2017). Risk-benefit
tradeoffs related to foraging habitat and predation risk (Stamps 2007; Wolf et al. 2007)
have been suggested as mechanisms driving individual variation in diet and movement
patterns in juvenile bull (Carcharhinus leucas) and lemon sharks (Matich and Heithaus
2015; Finger et al. 2016; Hussey et al. 2017). Future research into whether young white
sharks also display individual variation in risk-benefit tradeoffs, or obtain their varied
isotopic signatures from different nursery grounds or maternal influence would benefit
our understanding of white shark ecology and management needs (Matich et al. 2015;
Christiansen et al. 2015).

The results from Chapters 3 and 4 mean that Gansbaai is the first white shark
aggregation recorded to exhibit sexual and individual variation in both hunting behavior
(Towner et al. 2016) and diet, providing evidence for behavior-linked dietary
specialization. Trophic specialization, especially in females, was suggested by tooth
shape analysis (Chapter 2), stable isotope analysis (Chapter 3) and fatty acid analysis

(Chapter 4). It is possible that this trophic specialization, which was independent of
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size, is linked to personality differences in females that remain consistent through

ontogeny and/or phenotypic polymorphism with regards to tooth shape type.

The underlying causes of sexual habitat segregation in elasmobranchs, including white
sharks, is poorly understood (Wearmouth and Sims 2008). Competitive exclusion is
thought to be unlikely (Bruce and Bradford 2015), as is female avoidance of male
sexual coercion, given that segregation occurs between both mature and immature
sharks (Kock et al. 2013; Towner et al. 2016). One theory behind sexual habitat
segregation in white sharks is the thermal-niche hypothesis, where females are
hypothesized to select warmer temperatures to increase their growth rate, enabling them
to attain a larger size than their male conspecifics which may help them to cope better
with bites endured copulation, and improve fecundity (Robbins 2007; Towner et al.
2013a). However, some long-term studies have found no significant relationships
between temperature and female attendance at aggregation sites (Bruce and Bradford
2015). While there is some evidence, based on small sample sizes, that females may
grow at a faster rate than males (Tanaka et al. 2011; Hamady et al. 2014), it is not yet
certain if this is the case (Cailliet et al. 1985; Wintner and Cliff 1999; Kerr et al. 2006;
Natanson and Skomal 2015; Andrews and Kerr 2015). It seems more likely that females
achieve greater size in the same way as other members of the lamnidae family, where
male growth rate reduces once they reach sexual maturity, which is at a smaller size
than females, and females continue to grow (Campana et al. 2001; Natanson et al. 2002;
Bishop et al. 2006). Also, the multiple migration strategies suggested in females in
Chapter 3 don’t lend support to the uniform habitat selection that would be expected if
females were selecting for warm temperatures. However, until the growth rates and

nutritional requirements of the sexes are better understood, it is not possible to discern
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whether thermal niche, forage selection, activity budget, or perhaps a combination of
two or more factors are the reason behind the observed sexual segregation recorded in
this thesis and other studies (Chapter 5).

The patterns of individual and sexual variation in white shark trophic ecology
identified in this thesis and elsewhere have clear implications for conservation
management (Chapter 5). Through reviewing the available data in Chapter 5, I have
highlighted that female white sharks are especially at risk from multiple threats that
includes exposure to toxins, which will affect new generations of sharks through
maternal offloading (Schlenk et al. 2005; Mull et al. 2013; Lyons et al. 2013a; Marsili et
al. 2016), and fisheries interactions. In light of the evidence presented in this thesis, it
seems likely that some individuals, and especially in males, grow faster than others.
Given the potential for these individuals be disproportionately removed from the
population via fishing mortality (Biro and Post 2008) and evidence that this may already
be occurring (Wintner and Cliff 1999), swimmer safety programmes, culls, and any
form of deliberate legal fishing for white sharks should be even more carefully

considered.

Broadly speaking, this work has aimed to assess and review the roles of sexual and
individual variation in the trophic ecology of the white shark. The evidence presented
clearly shows that sexual and individual variation play major roles in white shark
trophic ecology, particularly in ontogenetic shift dynamics, and future ecological studies
should consider these factors in study design and analyses. There is a lot of work to be
done in terms of understanding the proximate and ultimate causes of individual and
variation in white sharks, and elasmobranchs generally. Determination of sex-specific

growth rates and direct investigation of Pace-of-Life-Syndrome and personality in white
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2200  sharks should be ranked amongst white shark research priorities. Finally, the
2201  implications of sexual and individual variation presented here should be directly

2202  incorporated into conservation management strategies.
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3495  Fartty Acid Profile
3496  Saturated fatty acids were the most abundant (average 53.52% =+ 1.5) followed by
3497  monounsaturated (MUFA) (average 27.09% + 1.1) and polyunsaturated (PUFA)

3498  (average 16.30% + 1.36).
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3500  Supplementary Figure 1: Significant averaged general linear model (see Table 2 for full
3501  models) two-way interaction plots of fatty acid 16:0 (%) and A) 8"°C (%), influenced by sex; B)

3502  §"°N (%) influenced by length, with lines of best fit of predicted values. Symbol size reflects



3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

178

shark length, with larger symbols denoting longer sharks and slopes are fitted to -1 standard
deviation of length, mean length, and + 1 standard deviation length, to illustrate the interaction
effect; C) 8°C (%o) influenced by 8'"°N (%o). Symbol size reflects 5'°N, with larger symbols
denoting higher values and slopes are fitted to -1 standard deviation of §"°N, mean 8N, and + 1
standard deviation 8"°N, to illustrate the interaction effect. N.B. For illustrative purposes, the
plots are based on models with a Gaussian distribution, while the statistical models all utilised a

Gamma distribution (Table 4.2).

In the 16:00 model 5'"°C had a significant interaction with sex, where males and females
had positive and negative relationships respectively (Supplementary Figure 1A). There
was also a significant interaction between 5'°N and shark length, where the slope of
larger sharks was much more steeply negative than the slope for smaller sharks
(Supplementary Figure 1B). Finally, there was a significant interaction between 8'°N
and 8"°C, where 16:0 increased with mean and high levels of 5'°N and 8'°C, and was

decreased when 8'°N §'°C were low (Supplementary Figure 1C).
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3518  Supplementary Figure 2: Significant averaged general linear model (see Table 2 for full

3519  models) two-way interaction plots of fatty acid DHA (%) and A) 8"°N and sex; B) 8"°N and
3520  shark length (m). Symbol size reflects shark length, with larger symbols denoting longer sharks
3521  and slopes are fitted to -1 standard deviation of length, mean length, and + 1 standard deviation
3522  length, to illustrate the interaction effect. N.B. For illustrative purposes, the plots are based on
3523  models with a Gaussian distribution, while the statistical models all utilised a Gamma

3524  distribution (Table 4.2).

3525



3526

3527

3528

3529
3530
3531
3532
3533
3534

3535

3536

3537

3538

3539

3540

3541

180

Length
Sex -1SD Length
@ Male —— Mean Length
—©— Female --- +1SD Length
1A . o B ° °

0.8

o3/06

04

8N (%go)

Supplementary Figure 3: Significant averaged general linear model (see Table 2 for full
models) two-way interaction plots of fatty acid ®3/w6 (%) and A) 8"N and sex; B) "°N and
shark length (m). Symbol size reflects shark length, with larger symbols denoting longer sharks
and slopes are fitted to -1 standard deviation of length, mean length, and + 1 standard deviation
length, to illustrate the interaction effect. N.B. For illustrative purposes, the plots are based on
models with a Gaussian distribution, while the statistical models all utilised a Gamma

distribution (Table 4.2).

DHA and ®3/m6 had a significant interaction between 3'°N and sex, where females
exhibited a positive relationship in contrast to the negative relationship in the male
sample (Supplementary Figures 2A, 3A). 8"°N had further significant interactions with
shark length, revealing a negative relationship in smaller sharks, and a positive
relationship in larger sharks (Supplementary Figures 2B, 3B). Both of these interactions
were heavily influenced by a small number of large DHA w3/w6 values, despite the

mitigation of using a Gamma link.
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Supplementary Figure 4: Significant averaged general linear model (see Table 2 for full
models) results of fatty acid DHA/EPA (22:603/20:5m03) (%) and two-way interactions between
A) shark length (m) influenced by shark sex, B) 8'"°C influenced by shark sex, and C) §"°C
influenced by shark length (m). Symbol size reflects shark length, with larger symbols denoting
longer sharks and slopes are fitted to -1 standard deviation of length, mean length, and + 1
standard deviation length, to illustrate the interaction effect. N.B. For illustrative purposes, the
plots are based on models with a Gaussian distribution, while the statistical models all utilised a

Gamma distribution (Table 4.2.).

The model for diatom vs. dinoflagellate food webs, DHA/EPA, revealed a significant
effect of shark length in interaction with sex, where DHA/EPA increased with
increasing shark length in females, and decreased with increasing shark length in males
(Supplementary Figure 4A). In this model, sex also had a significant interaction with
8'°C, where both sexes exhibited a negative slope, but this was much steeper in females
(Supplementary Figure 4B). Finally, 8"°C had a further significant interaction with
shark length, where the negative slope of larger sharks was much steeper than the slopes

for mean sized and smaller sharks (Supplementary Figure 4C). Similarly to the results
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for DHA, interactions were influenced by extreme data points, though the effects were

dampened with the use of the Gamma link function.

Supplementary Discussion

Fatty Acid Profile of Muscle Tissue

Saturated fatty acid 16:00 was the major contributor to our high SFA results, levels of
which were much greater in our samples compared to Australian sharks (29.50% vs.
18.55% respectively). 16:00 had complex relationships with shark sex, length, 8"°N and
8'°C (Figure 1, Supplementary Figure 1), which may indicate multiple sources and
locations of high 16:00 prey exploited disproportionately by different demographic
groups (Post 2002; Hill et al. 2006; Hill and McQuaid 2008; Allan et al. 2010).
Dominance of saturated fatty acids (SFA) has been recorded previously in white sharks
from South Africa and Australia, but SFA levels in our samples were much higher —
53.52% compared to 34.82% and 34.7% for South Africa and Australia respectively
(Davidson et al. 2011; Pethybridge et al. 2014). While our MUFA proportions were
very similar to these studies (27.09% vs. 25.26% and 27.08%), our levels of PUFA were
much lower (16.30% vs. 29.5% and 34.48%). Both of these studies demonstrated much
higher levels of ®3 PUFA (29.5% and 34.48% compared to our 6.07%), of which DHA
was significantly higher (15.52% and 9.90% respectively) than our samples, which only
averaged 3.36%. This low value is much closer to that found in sub-dermal tissue of
whale sharks (Rhincodon typus), sampled further up the coast in Mozambique
(Couturier et al., 2013). Low PUFA is more similar to dusky and spinner sharks
sampled in South Africa (Davidson et al. 2011), which mostly consume elasmobranchs

and teleosts, and teleosts respectively (Allen and Cliff 2000; Dudley et al. 2005), and
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are known prey of white sharks (Cliff et al., 1989; Hussey et al., 2012).

PCA and Female Size

In our samples, smaller and larger females were almost completely separated along the
PC1 axis, where larger females correlated more with greater amounts of ARA and
DHA. High levels of ARA and dominance of n6 pathways have been linked to tropical
marine ecosystems (Couturier et al., 2013; Sinclair et al., 1983). Previous research off
Mozambique, where large South African white sharks are known to visit during return
migrations (OCEARCH, 2017) found very high levels of ARA in the samples of whale
sharks (Rhincodon typus) and reef manta rays (Manta alfredi) (Couturier et al., 2013).
The largest female included in this study was a 4.6m individual, which has previously
been satellite tracked moving from Gansbaai, up the coast to Mozambique, and then
across to Madagascar, before returning to Gansbaai (OCEARCH 2017), and to date
only very large females are known to travel to the northern Mascarene plateau (CIiff et
al. 2000; Zuffa et al. 2002; OCEARCH 2017). Separation of female size classes on PC1
could therefore be caused by larger females making more extensive tropical migrations
than smaller females, which may be linked with a high DHA food source, though
reproductive state could also be a factor (Pethybridge et al. 2011b) . In this instance,
ARA and 6 generally, could be a useful tool for detecting tropical habitat use. Smaller
ellipses in females generally, may point to a more restricted diet than in males, despite

overlap between all ellipses.

18:1w9 and Trip
18:1®9 was higher in sharks sampled during Trip 1 than Trip 2. This is surprising as

Trip 2 occurs within the peak season for seal predation by sharks in Gansbaai (Towner
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et al., 2013a). However, fatty acids have been shown to take up to 18 weeks to reflect
dietary changes in shark muscle tissue (Beckmann et al., 2013, 2014), which would
overlap with seasonal availability of aggregating whales in Gansbaai, which could be
another source of high 18:109 (Waugh et al., 2012). 18:1®9 also increases with depth
(Lewis 1967) and has been interpreted as evidence of deep diving behavior in whale

sharks (Rohner et al., 2013), though this seems unlikely in white sharks.
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Table 4.1: Dietary fatty acids (%) with means > 0.05% included in analyses.

Group| 14:0 | 16:0 | 18:0 [16:107|18:109(18:107|20:101120:109/20:10722:1011]18:206(18:306|20:206/20:306(20:40622:406/22:506(18:3103(18:4103[20:503| 22:503 |22:6®3
M<3m| 3.99 |28.93]|15.94| 1.5 | 1648 | 2.11 0.18 0.8 | 014 | 048 | 229 | 036 | 0.1 0.00 | 5.89 ] 099 | 0.19 | 0.52 | 0.00 | 1.13 | 092 | 231
F>3m|3.11 [23.76[11.84| 2.14 | 2337 | 2.79 | 0.26 143 | 0.19 1.09 | 428 | 023 | 0.22 | 0.00 | 527 | 1.09 | 0.19 | 1.26 | 0.25 | 1.73 1.16 | 2.65
M>3m| 3.5 |32.05/14.64| 093 | 15.82 | 1.61 0.29 | 0.96 | 0.00 1.04 | 286 | 041 | 0.00 | 0.26 | 439 | 0.65 | 0.00 | 0.27 | 0.00 | 1.45 | 0.56 1.3
F>3m| 3.48 [35.64[15.81] 1.05 | 1821 | 1.4 0.21 086 | 029 | 0.64 | 3.19 | 04 | 0.00 | 0.00 | 2.61 | 0.59 | 0.00 | 0.32 | 0.15 | 0.76 | 0.39 1.1
F>3m| 3.41 |28.21]|15.99]| 1.59 | 14.03 | 2.48 0.2 1.05 | 023 | 0.65 1.74 | 035 | 0.25 | 0.00 | 8.07 | 143 | 0.22 | 0.28 | 0.00 | 1.32 1.05 1.81
F>3m|2.75 |28.88]15.05| 1.36 | 15.84 | 2.37 | 0.18 1.04 | 0.19 | 0.78 2.5 031 | 029 | 0.00 | 7.21 | 1.83 | 0.16 | 0.29 | 0.16 | 1.09 1.2 1.73
M>3m| 3.02 |35.61|15.91| 1.08 | 16.64 | 1.72 | 0.24 1.14 | 0.16 1.01 325 1 045 | 0.16 | 0.00 | 2.57 | 046 | 0.00 | 043 | 0.00 | 1.3 0.3 1.6
M>3m|3.21 341|167 ] 1.13 | 1509 | 1.68 | 0.19 | 0.74 | 0.16 0.4 271 | 031 | 0.00 | 0.00 | 509 | 1.0 | 0.15 | 0.31 | 0.00 | 1.06 | 0.79 1.55
F<3m|2.96 [34.43|16.96| 1.27 | 19.24 | 146 | 0.22 1.11 | 0.00 1.28 29 | 048 | 0.00 | 0.00 | 2.37 | 041 | 0.00 | 0.47 | 0.00 | 1.01 0.57 1.24
F<3m| 2.69 |28.87|13.77| 0.72 | 27.66 | 1.87 1.68 1.52 | 0.00 1.77 | 238 | 0.5 | 0.00 | 0.00 | 1.86 | 0.37 | 0.00 | 0.36 | 0.16 | 0.59 | 0.26 | 0.79
F<3m| 3.0 [31.74]16.75] 1.58 | 17.99 | 2.06 | 0.27 1.42 | 0.00 1.2 2.58 | 0.58 | 0.00 | 0.00 | 3.88 | 0.8 | 0.00 | 0.31 | 0.00 | 0.69 | 0.68 1.15
F<3m|2.75(32.11|16.31| 1.52 | 17.27 | 2.74 | 024 | 074 | 0.15 | 038 | 238 | 034 | 0.00 | 094 | 439 | 0.57 | 0.17 | 0.51 | 0.19 | 1.29 | 0.17 1.75
F>3m| 3.7 |34.24|14.65| 2.0 | 15.76 | 2.58 | 0.23 0.5 | 0.00 | 0.33 56 | 0.00 | 0.00 | 1.32 | 3.15 | 0.65 | 0.00 | 0.55 | 0.17 | 0.73 | 0.4l 1.1
M<3m| 4.87 |27.14|13.35]| 2.56 | 21.24 | 3.93 0.27 121 | 0.12 | 076 | 3.65 | 0.12 | 0.12 1.1 365 | 058 | 0.12 | 237 | 022 | 1.29 | 059 | 2.08
F>3m|[10.47|28.21(13.07| 145 |11.72 | 227 | 0.17 | 0.88 | 0.19 | 0.61 1.69 | 0.00 | 0.00 | 0.18 | 813 | 1.27 | 027 | 027 | 02 | 1.75 1.15 3.22
F>3m| 1.12 [19.81]16.36| 1.14 | 10.0 | 407 | 0.00 | 0.86 | 0.12 | 0.24 1.06 | 025 | 0.12 | 0.19 | 986 | 2.58 | 0.68 | 0.11 | 0.00 | 1.22 29 17.64
M<3m| 1.48 |29.83|15.57| 1.26 | 11.85| 3.19 | 0.21 0.78 | 0.00 | 041 2.04 | 0.00 | 0.00 | 022 | 582 | 145 | 047 | 03 | 0.25 1.2 2.07 | 11.53
F>3m|2.86(30.0 [17.55| 1.25 | 14.27 | 2.11 0.21 0.59 | 0.13 | 037 | 238 | 0.00 | 0.00 | 0.15 74 1099 | 0.14 | 0.23 | 0.00 | 1.63 1.15 | 2.21
F>3m| 1.66 [28.14{16.94| 1.73 | 14.83 | 2.79 | 0.21 079 | 0.17 | 038 | 231 | 0.00 | 0.00 | 0.00 | 842 | 1.54 | 0.33 | 0.22 | 0.00 | 2.03 1.19 | 331
M>3m| 1.69 [24.94|17.27| 1.68 | 1645 | 2.74 | 0.23 1.24 | 0.21 0.48 1.83 | 0.00 | 0.14 | 0.00 | 9.62 | 1.94 | 0.28 | 0.16 | 0.00 | 1.93 1.19 | 2.95
M<3m|10.76|32.82|16.12| 0.97 | 11.85 | 1.51 024 | 0.68 | 0.14 | 0.37 198 1 0.00 | 03 | 0.15 | 597 | 0.79 | 0.14 | 0.19 | 0.00 | 0.96 | 0.89 1.81
F>3m| 1.45]2041]14.6 | 147 | 11.77 | 3.61 0.14 0.7 | 0.14 | 0.24 147 | 0.00 | 0.00 | 0.16 | 112 | 2.21 | 044 | 0.18 | 0.00 | 2.02 | 2.67 |1045
M>3m|24.46|32.8811.28| 0.97 | 9.53 | 1.54 0.2 0.5 | 0.00 | 0.38 1.38 | 0.00 | 0.12 | 0.00 | 3.8 | 0.62 | 0.12 | 0.13 | 0.19 | 1.27 | 0.47 1.23
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