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Summary

This thesis is concerned with strongly coupled extensions to the Standard Model. The
majority of the thesis is dedicated to the study of Composite Higgs models, which are
a proposed solution to the hierarchy problem of the electroweak scale. In these models
the Higgs is a composite pseudo-Nambu Goldstone boson which forms a part of a new
strongly interacting sector. There are many different variations on the basic Composite
Higgs theme – the current status of some of these variations is assessed in light of results
from the Large Hadron Collider. A new kind of Composite Higgs model is presented
and studied, which features an alternative mechanism for the breaking of electroweak
symmetry. A mechanism for deforming one model into another is also discussed, which
might find application to the UV completion of Composite Higgs models.

The formalism used in the Composite Higgs literature is also applied to the study of
inflation, where the inflaton is assumed to be a pseudo-Nambu Goldstone boson arising
from strongly coupled dynamics. A study of the inflaton potential is performed and its
cosmological implications discussed.

A different extension to the Standard Model with interesting phenomenological con-
sequences is also studied. Quirks are strongly interacting particles whose masses are
significantly higher than their confining scale. If produced in colliders, they leave un-
usual tracks which current searches are mostly blind to. A new search strategy for these
hypothetical particles is proposed.
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Chapter 1

Introduction

1.1 Problems and solutions

The Standard Model of particle physics is arguably the most successful scientific theory

ever formulated – it is however, far from being a theory of everything. There are several

problems with the Standard Model which still lack a satisfactory solution:

• It does not explain what dark matter is;

• It does not explain how there came to be a matter/anti-matter asymmetry in the

universe;

• It does not explain how neutrinos acquire masses;

• It does not explain the mechanism behind cosmological inflation;

• It does not explain how gravity works at high energies;

• It does not explain why there is such a large hierarchy between the electroweak scale

and the scale of gravity.

The last item on the list is known as the hierarchy problem. One might argue that

it is different from the other problems in that it does not need an answer. It is a ‘why’

question and not a ‘how’ question, and there might not be a ‘why’. To be more precise,

if this hierarchy turns out not to have any explanation, then the Standard Model would

not have lost any predictive power. We understand electroweak physics very well – the

hierarchy problem is not a barrier to our understanding of current experimental results.

The true appeal of the hierarchy problem is that it suggests the existence of new

physics; in particular, new physics within the reach of current particle colliders. All of
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the other problems on the list might be explained by physics which for the time being is

experimentally out of reach. For instance, aside from its gravitational interactions, dark

matter might be completely decoupled from the Standard Model, and neutrinos might

acquire their masses from operators generated at the unification scale (∼1016 GeV). On

the other hand, the hierarchy problem is best solved by new physics at the TeV scale,

which could in principle be just around the corner.

The hierarchy problem is the main motivation for the work contained in this thesis. In

particular, we shall be focusing on a specific solution to the problem, namely Composite

Higgs models. In the following sections I shall describe in more detail the nature of the

hierarchy problem and precisely how Composite Higgs models can solve it.

1.2 The hierarchy problem

The Higgs field is a crucial component of the Standard Model. It is a scalar field in the

(1,2)1 representation of the Standard Model (SM) gauge group SU(3)c×SU(2)L×U(1)Y .

It has couplings to gauge bosons via its covariant derivative

(DµH
†)(DµH), (1.1)

couplings to fermions via Yukawa couplings

∑

ij

yijψ
(i)
L Hψ

(j)
R + h.c. (1.2)

and a potential

V (H) = −m2
HH

†H + λ(H†H)2. (1.3)

For m2
H , λ > 0, the potential is unstable at the origin and the Higgs acquires a vacuum

expectation value (VEV):

〈H†H〉 =
m2
H

2λ
. (1.4)

We can use the SU(2)L × U(1)Y gauge freedom to rotate the VEV into an arbitrary

direction, and write:

〈H〉 =

(
0

v

)
, v =

√
m2
H

2λ
, (1.5)

where v is real. This vacuum is not invariant under SU(2)L×U(1)Y ; thus the electroweak

symmetry of the Standard Model is spontaneously broken to U(1)em. The VEV of the

Higgs field, via the couplings in (1.1) and (1.2), gives masses to the fermions and the W

and Z gauge bosons. This is the Higgs mechanism, and it is one of the cornerstones on
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which the Standard Model is built [6–8]. In 2012 the Higgs boson was finally discovered,

with a mass measured to be approximately 125 GeV [9,10].

All of the massive particles in the Standard Model (possibily with the exception of the

neutrinos) therefore have masses that are proportional to the electroweak scale v. As we

have seen, the electroweak scale is proportional to mH : the only mass scale, and indeed the

only dimensionful parameter, in the Standard Model Lagrangian. The hierarchy problem

concerns the extremely large hierarchy between this mass and the Planck mass mP – the

scale at which quantum gravity effects are expected to become important:

mP /mH ≈ 1017. (1.6)

Why is this large hierarchy considered a problem? The problem concerns the notion of

‘technical naturalness’, as introduced by ’t Hooft in [11]. A small parameter is considered

natural if setting it to zero restores a symmetry of the action. For instance, fermion masses

are technically natural in the sense that setting them to zero restores the chiral symmetry

under which their left- and right-handed components transform separately.

This means that, when quantum corrections to the fermion mass are computed, the

corrections must be proportional to the bare parameter itself. Schematically:

δmf ∝ mf log(Λ/mf ) + . . . (1.7)

where Λ is the cutoff used to regularise the loop integrals. We expect this to be the case,

because in the limit mf → 0, the chiral symmetry is restored and should remain exact,

with δm = 0, to all orders in perturbation theory.

No such symmetry protects the Higgs mass, and quantum corrections to mH may scale

with the cutoff:

δm2
H ∝ Λ2 + . . . (1.8)

Indeed, one-loop corrections to the Higgs mass from loops of fermions

ψi

ψj

H H (1.9)

are given by [12]

δm2
H =

y2
ij

8π2
Λ2 + . . . , (1.10)
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where Λ is the momentum cutoff in the loop integral. We can interpret Λ as the scale at

which new physics appears that alters the high-energy behaviour of the theory. From an

effective field theory point of view, unless the Higgs mass is technically natural, then it

should scale with the mass of the heaviest degrees of freedom to which the Higgs couples.

If Λ is equal to the Planck scale, then either some extremely finely-tuned cancellation

occurs (tuned to the level of around 1 part in 1034), or the Higgs mass, somehow, is a

technically natural parameter which does not depend quadratically on the cutoff after all.

A solution would call for new physics, perhaps new fields and/or new symmetries. And

crucially, to avoid the need for more cancellations and tuning, the scale of this new physics

should not be too much higher than the electroweak scale.

1.3 Solutions to the hierarchy problem

Conventional solutions to the hierarchy problem generally involve introducing new fields

with masses not too far above the electroweak scale. Some or all of these particles will

couple to the Higgs and/or other Standard Model fields, opening up exciting possibilties

for direct detection at particle colliders. New fields that couple to the Higgs have the

potential to resolve the hierarchy problem, but they will typically only do so if there is

some symmetry that ensures this.

One well studied and popular solution to the hierarchy problem is supersymmetry

[12]. Supersymmetry (or SUSY) is a kind of symmetry that relates bosonic degrees of

freedom to fermionic degrees of freedom. In a fully supersymmetric action, all states

come with a superpartner, with the same mass and quantum numbers, but with opposite

spin statistics. These states sit together in a representation of supersymmetry called a

superfield, and interactions are introduced by writing down a superpotential which is a

holomorphic function of these superfields.

It turns out that supersymmetry is sufficient to cancel out the quadratically divergent

contributions to the Higgs mass. Take the fermion loops in (1.9): in a supersymmetric the-

ory, ψi has the superpartner φi, and the quadratic divergence is cancelled by the following

diagrams

H H

φi,j

(1.11)
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where φi,j are the scalar superpartners of ψi and ψj .

Since we have not yet discovered any supersymmetric particles, they must exist at a

scale not yet accessible to colliders. Thus, if supersymmetry is realised in our universe, it

is clear that it must be a broken symmetry. One of the obstacles to constructing a viable

supersymmetric model is ensuring that supersymmetry is broken in a way that does not

reintroduce another hierarchy problem.

This is traditionally done via what are known as ‘soft’ breaking terms. These are

breaking terms which are proportional to some mass scale, which we will label msoft . If

we break supersymmetry with soft terms, then the induced corrections to the Higgs mass

must scale with

δm2
H ∝ m2

soft log(Λ/msoft) + . . . (1.12)

since the corrections must vanish in the limit msoft → 0. On the other hand, if we were to

introduce some dimensionless SUSY-breaking parameter, then the corrections could scale

with cutoff ∼Λ2, and we would have reintroduced the hierarchy problem. This leads us to

another obstacle facing supersymmetric theories: the origin of these soft supersymmetry

breaking terms. Ultimately we need some mechanism for generating the scale associated

with the breaking of supersymmetry, which is the scale that ultimately determines the

electroweak scale. Of course, the literature on this problem is extensive, and beyond the

scope of this thesis.

Supersymmetry can be considered a weakly-coupled solution to the hierarchy problem,

in that all of the interactions are of order the strength of the Standard Model interactions,

which, evaluated at the electroweak sale, are perturbative interactions. Composite Higgs

models, which we shall discuss in the next section, are strongly-coupled models. Like SUSY,

they also predict the existence of new states near the electroweak scale. But unlike SUSY,

these states take part in non-perturbative interactions. In these models the Higgs, rather

than being an elementary particle, is a composite bound state, allowing for a solution to

the hierarchy problem of an altogether different kind.

1.4 Composite Higgs models

There are other scalar fields in the Standard Model besides the Higgs. The spectrum of

bound states in QCD contains many scalar resonances, the lightest of which are the pions.

We do not consider pion masses to be problematic: this is because their masses are not an

input into the Standard Model Lagrangian, they are related to the confinement scale of

QCD, ΛQCD. This scale is generated by dimensional transmutation, and can be defined
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as the scale at which QCD becomes strongly interacting (i.e. non-perturbative). This is

determined by the RG running of the strong coupling constant:

∂gs
∂ log(µ)

= − c

16π2
g3
s +O(g5

s), (1.13)

where the value of c is dependent on the particle content of the Standard Model. The

running is logarithmic with the energy scale µ, meaning that a large hierarchy between

ΛQCD and the Planck scale can be easily generated. Hierarchies between scales generated

in this way are considered natural since they arise without the need for any fine-tuning or

cancellations.

Inspired by this, Composite Higgs models generate the electroweak scale via a similar

mechanism. One can postulate the existence of a new gauge force which confines not far

above the electroweak scale. If the Higgs is a bound state of this new strong dynamics,

then its mass would be tied to this confining scale and would no longer be a fundamental

input to the Standard Model Lagrangian.

The idea of generating the electroweak scale via dimensional transmutation is not

unique to Composite Higgs models; in fact it was the main inspiration behind Technicolor

models [13–15]. In Technicolor models, it is the confining vacuum of the new sector that

breaks electroweak symmetry, rather than the VEV of the Higgs field; indeed, Technicolor

theories do not require a Higgs field. Of course, now that the Higgs has been discovered,

Technicolor theories are a less attractive possibility, notwithstanding the fact that they

generally struggle to pass electroweak precision tests [16,17].

1.4.1 The pNGB Higgs

The first question one might ask is: if the Higgs is a composite formed from a new,

strongly interacting sector, then why have we not yet seen any other resonances alongside

the Higgs? QCD provides us with another clue: it is well known that in QCD the pions are

pseudo-Nambu Goldstone bosons (pNGBs). They emerge from the spontaneous breaking

of the approximate SU(2)L× SU(2)R chiral symmetry of the up-down quark sector to its

vectorial subgroup. If this chiral symmetry were exact – that is to say, if the up and down

quarks were massless – then the pions would be exact, massless Goldstone bosons. In the

Standard Model this chiral symmetry is broken by the small quark masses, allowing the

pions to acquire mass. But they are the lightest QCD resonances nevertheless, and the

‘little hierarchy’ between their masses and the rest of the QCD resonances is explained by

their pseudo-Goldstone nature.
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Inspired by this, we can postulate that the Higgs is also a pNGB. Let us assume that

the strong sector has a global symmetry, denoted by G, which is spontaneously broken to

a subgroup H ∈ G. This spontaneous symmetry breaking is, just like in QCD, assumed to

be triggered by the appearance of a non-perturbative vacuum condensate. That is, some

strong sector operator O/G gets a vacuum expectation value 〈O/G〉 due to non-perturbative

interactions which is invariant under H transformations but not under the whole group

G. This spontaneous breaking will give rise to n = dim(G) − dim(H) pNGB scalars. We

need four pNGBs to account for the four real degrees of freedom in a complex doublet of

SU(2)L, so we need n ≥ 4. The two minimal cosets that deliver exactly four pNGBs are

1. SU(3)→ SU(2)× U(1),

2. SO(5)→ SO(4).

However, in order to protect the Peskin-Takeuchi T -parameter1 [18] from large corrections

(coming mainly from the exchange of spin-1 composites), it is necessary to endow the

strong sector with an unbroken custodial symmetry:

Gcust = SU(2)L × SU(2)R, (1.14)

where SU(2)L is the electroweak gauge group (see the next section). This rules out option

1), since Gcust cannot be embedded in SU(2) × U(1). Therefore the minimal coset is

SO(5)/SO(4), where the unbroken SO(4) is identified exactly with Gcust , using the local

isomorphism SO(4) ' SU(2)×SU(2). The model based on this coset is referred to as the

Minimal Composite Higgs model (MCHM) [19].

We will be analysing Composite Higgs models in an effective field theory (EFT) frame-

work. Generally speaking, our philosophy will be to be as agnostic as possible about the

structure of the UV theory, and deal with an effective theory in which only the lightest

resonances are kept as dynamical degrees of freedom. Without precise microscopic real-

isations of our models, we will not be able to make definite predictions; however, in a

non-perturbative theory such predictions would prove difficult even if we did know the full

structure of the theory. The formalism we will use for writing down an effective theory of

the pNGB fields and their interactions is the CCWZ2 formalism [20,21]. We introduce an

object U which parametrises the pNGB fields:

U(x) = exp(iφa(x)Xa/f), (1.15)

1The Peskin-Takeuchi S, T and U parameters are a set of observables that parameterise new physics

corrections to electroweak physics. They are all defined to be exactly zero in the Standard Model.
2CCWZ here stands for Callan, Coleman, Wess and Zumino, who coauthored the original papers on

this formalism.
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where φa are the pNGB fields, Xa are the corresponding generators of the G/H coset,

and f is a scale associated with the symmetry breaking G → H. The Goldstone fields

then parameterise the coset G/H. To find out how U transforms under a general group

transformation g ∈ G, let us first note that a general group element of G can be written

g = exp(iχaXa) exp(iθaT a), (1.16)

where T a are the unbroken generators of H. Thus U can be seen as a group element with

θa = 0 and the parameters χa being equal to the spacetime dependent fields φa(x)/f .

Therefore when we multiply U from the left with a general group element g, we should

obtain another group element

g U(x) = exp(iφ̃a(x)Xa) exp(iθ̃a(x)T a), (1.17)

where we identify φ̃a as the transformed pNGB fields. In general now the parameters θ̃a will

be spacetime dependent fields. We can multiply from the right by h−1(x) = exp(−iθ̃(x)T a)

to obtain

Ũ = g U h−1(x) = exp(iφ̃a(x)Xa), (1.18)

which gives us the transformation properties of U . Notice that h(x) is a field-dependent

transformation belonging to the unbroken subgroup H. This means that transformations

of U are non-linear in the sense that h(x) depends on the values of the fields themselves.

The task of writing down an effective theory for the pNGB fields will in practice be the

task of writing down G-invariant terms involving U and any spurion fields we introduce.

The method of spurions will be covered in the next section.

1.4.2 Couplings of the Higgs

The Lagragian describing the interactions of exact Nambu Goldstone bosons should be

invariant under the shift symmetry

φa → φa + Ca, (1.19)

for each NGB φa. We know that the Higgs is not an exact Nambu Goldstone boson, since

it has a potential and participates in interactions with other SM fields. Our first task is to

describe the manner in which the strong sector couples to the rest of the Standard Model.

To do so we will need to introduce couplings which will break G explicitly.
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Gauge interactions

We can introduce gauge interactions by gauging a subgroup of the unbroken global sym-

metry H. The Higgs transforms under the electroweak gauge group Gew = SU(2)L ×
U(1)Y , which means that we need to gauge a subgroup Gew ∈ H. Under the unbroken

subgroup H the transformations of U are linear :

U → h U h−1, (1.20)

linear in the sense that h is no longer field-dependent. Gauge interactions are then intro-

duced via the covariant derivative of U :

Lkinetic =
f2

4
Tr[DµU

†DµU ]. (1.21)

Note that gauging a subgroup of the global symmetry breaks it explicitly.

Fermion interactions

We are now faced with the question of how to couple fermions to the strong sector. One

way of doing this, inspired by technicolor models, is to couple the left and right handed

quarks directly to an operator O as follows:

L ⊃ λqLqRO + h.c. (1.22)

The operator O thus has the same quantum numbers as the Higgs. It turns out that

this procedure is problematic, and has difficulties reproducing a large enough top Yukawa

coupling while at the same time evading flavour constraints.

An alternative, more successful approach is the partial compositeness paradigm [22–24].

The idea in this case is that the strong sector contains operators with the same quantum

numbers as the SM quarks, with which the quarks have linear mixings, schematically given

by

L ⊃ yLqLOL + yRqROR + h.c. (1.23)

Since the operators OL,R come in representations of G, the interactions in (1.23) also

explicitly break the global symmetry. To write down operators encoding the interactions

of the quarks and the pNGBs, we can embed the quarks in ‘spurionic’ representations of

G:

q → Ψq, (1.24)

where Ψq formally transforms in the same representation as the operator Oq. Then we can

write down effective operators involving U and the Ψq, invariant under G, which encode

all the interactions of the pNGBs with the SM fermions.
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An example

To see how this works in practice, let us look at the MCHM, which, as we already discussed,

involves the coset SO(5)/SO(4). To accommodate the U(1)Y hypercharge gauge group

we must actually extend the global symmetry by an extra unbroken U(1)X , so that G =

SO(5)×U(1)X , and hypercharge is realised as Y = T 3
R+X, with T 3

R the diagonal generator

of the SU(2)R ∈ SO(4).

We can break SO(5) to SO(4) if an operator in the vectorial 5 of SO(5) gets a VEV.

We will take this VEV to be proportional to

〈5〉 ∝ (0, 0, 0, 0, 1). (1.25)

Then the broken SO(5)/SO(4) generators can be taken to be

Xa
ij = − i√

2

(
δai δ

5
j − δaj δ5

i

)
, (1.26)

with i, j = 1, . . . , 5 and a = 1, . . . , 4. We can construct a linearly transforming object,

labeled by Σ, by noticing that h〈5〉 = 〈5〉, for h ∈ H. This is just the trivial statement

that the vacuum is invariant under the unbroken group H. Thus

Σ = U〈5〉 (1.27)

transforms as Σ→ gUh−1〈5〉 = gU〈5〉 = gΣ, and we have removed the non-linear depend-

ence on the fields. The object Σ is therefore a more convenient object for constructing

invariants involving the pNGB fields, and is given explicitly by

Σ =
sin(h̃/f)

h̃
(h1, h2, h3, h4, h̃ cot(h̃/f)), (1.28)

where ha are the four pNGB fields and h̃ =
√
haha.

The Standard Model fermions must be embedded in representations of the group H.

In principle there are many options: the smallest irreducible representations of SO(5)

are the 1,4,5,10,14, and without knowledge of the full theory the representation is

essentially a free choice of the model. There is, however, a theorem which states that the

left-handed quark doublet qL = (tL, bL) must be embedded in a (2,2) bidoublet of the

SU(2)L × SU(2)R custodial symmetry, if the Zbb coupling is not to receive unacceptably

large corrections [25]. The smallest representation that fulfills this criterion is the 5,

decomposing as (2,2) ⊕ (1,1) under H. We can embed qL in the (2,2), and the right-
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handed tR, bR in the singlet (1,1), like so

Ψq = (bL, ibL, tL,−itL, 0)/
√

2,

Ψt = (0, 0, 0, 0, tR),

Ψb = (0, 0, 0, 0, bR).

(1.29)

We can build our EFT for the Higgs-fermion interactions out of these objects and Σ, all

of which transform in the vector representation. For instance, the top Yukawa coupling

can be recovered from the operator

Mt(p)(Ψq · Σ)(Σ ·Ψt) + h.c. (1.30)

where Mt(p) is a momentum-dependent form factor, encoding the integrated-out dynamics

of the strong sector. This gives a term of the form

Mt(p) tLHtR
sin(h̃/f) cos(h̃/f)

h̃
+ h.c. (1.31)

from which the top Yukawa coupling can be extracted. Note however that there are also

form factor corrections to the fermion kinetic terms:

L ⊃ Πq(p)Ψq/pΨq + Πt(p)Ψt/pΨt, (1.32)

so that fields must be canonically normalised before the Yukawa coupling itself can be

extracted.

1.4.3 The Higgs potential

The couplings of the Higgs to the SM fields lead to a Coleman-Weinberg potential for the

Higgs at one-loop [26]. The potential is expected to be dominated by the gauge bosons

and by the third generation quarks, since these have the largest couplings to the Higgs.

We will delay a detailed explanation of this mechanism until Chapter 3, where we consider

general Coleman-Weinberg contributions to the inflaton potential.

For the time being it is sufficient to say that the Higgs potential (and that of the other

pNGBs, if there are any) will generally be a trigonometric function of the scalars. In the

MCHM, with fermions in the 5, the potential is given to leading order by

V (h) = α sin2(h/f)− β sin2(h/f) cos2(h/f), (1.33)

where α and β are given by integrals over form factors. Loops of gauge bosons contribute

only to the first term, and their contribution to α is guaranteed to be positive. Therefore

the fermionic contribution, coming primarily from the top quark, is necessary for a negative
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Higgs mass-squared and electroweak symmetry breaking to occur. We also need some

tuning between α and β to ensure that the VEV of the Higgs field is significantly lower

than the scale f . If we have 〈h〉 ∼ f , then corrections to the SM couplings of the Higgs will

be unacceptably large, as will be contributions to the Peskin-Takeuchi S-parameter [24].

1.4.4 Top partners

One of the consequences of the partial compositeness mechanism described in Section 1.4.2

is the existence of bound states with the same quantum numbers as the SM fermions.

As we will show in Chapter 4, an important phenomenological prediction of Composite

Higgs models is that the lightest of these states are expected to be the top partners.

Diagonalisation of the mixing terms in (1.23) leads to mass eigenstates which are a linear

superposition of elementary and composite states:

|t̃〉 = cos θ |t〉 − sin θ |T 〉

|T̃ 〉 = cos θ |T 〉+ sin θ |t〉 ,
(1.34)

where T̃ , t̃ represent the physical, partially-composite mass eigenstates and θ is the mixing

angle. There will generally be a separate partner for the left and right handed components

of the top, and these could in principle be embedded in different representations of G.

As we demonstrate in Chapter 4, one can derive strong relations between the mass of

the Higgs and the mass of the lightest top partner. Generally one finds relations of the

form:

mH ∼
√
Nc

π

mtmT

f
, (1.35)

where Nc = 3 is the number of QCD colours. One therefore expects top partners with

masses around the scale f , and the higher the scale f , the more tuning necessary to obtain

a light Higgs.

New states charged under QCD are an obvious search candidate at the LHC, and a

number of dedicated searches have been performed. Current bounds are at around 1− 1.2

TeV for the mass of the lightest top partner, which already implies an uncomfortable

degree of tuning [27]. Precise bounds will depend on the model in question. Models can

vary both in the choice of symmetry coset G/H, and the representation that the left and

right handed top partners come in.

1.4.5 UV completions?

We have treated the symmetry coset and the top partner representations as free choices,

but in principle they should depend on the UV completion of the theory. By ‘UV comple-
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tion’ I mean a description of the strongly coupled theory out of which the composite Higgs

emerges.3 There are, however, many challenges involved in constructing a phenomenolo-

gically viable UV completion of a Composite Higgs model.

The most straightforward way to UV-complete a Composite Higgs model would be in

the form of a fermion-gauge theory; that is, a theory with a set of new fermions ψ charged

under a new strongly interacting gauge group. In generally, one can have ni fermions in

each representation Ri of this gauge group. Then the global symmetry of the theory will

be a product of SU(N) and U(1) factors:

G = SU(n1)× · · · × SU(np)× U(1)p−1, (1.36)

where p is the number of different irreducible representations in the model.

Immediately we can see that the Minimal Composite Higgs model SO(5)/SO(4) will

not be straightforward to embed in a UV-complete model, since SO(5) cannot be written

as a product of SU(N) factors. On the other hand, the next-to-minimal Composite Higgs

model [28] is based on the coset SO(6)/SO(5), and is UV-completable thanks to the local

isomorphism SO(6) ' SU(4). The SO(6)/SO(5) model has 5 pNGB fields, leading to a

doublet and a singlet under SU(2)L.

Symmetry breaking

In QCD, the global chiral symmetry is broken by the vacuum expectation value of the

condensate

〈qLqR〉, (1.37)

which is invariant only under vectorial SU(N)V ∈ SU(N)L × SU(N)R transformations:

qL → V qL, qR → V qR. (1.38)

Similarly we can argue that the strongly interacting fermions ψ will form vacuum con-

densates that will break the global symmetry G to some subgroup H. There are a few

different possibilities [29–31]:

1. SU(N)1 × SU(N)2 → SU(N)D – this is the ‘QCD-like’ case, and can be achieved

with two sets of fermions, ψ1 in representation R of the new gauge group, and ψ2 in

representation R, with R the conjugate representation of R. The condensate

〈ψi1ψj2〉 (1.39)

3This description itself might not be truly ‘UV-complete’ in the sense that it might contain non-

renomalisable operators.
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will be invariant under the diagonal subgroup of the two SU(N)s.

2. SU(N) → SO(N) – this can be achieved with a single fermion ψ in a real repres-

entation of the gauge group. The condensate

〈ψiψj〉 (1.40)

turns out to be symmetric in i ↔ j and invariant under the SO(N) subgroup of

SU(N).

3. SU(N) → Sp(N) – this can be achieved with a single fermion ψ in a pseudo-real

representation of the gauge group. The condensate

〈ψiψj〉 (1.41)

turns out to be antisymmetric in i↔ j and invariant under the Sp(N) subgroup of

SU(N).

The most minimal examples, in terms of number of pNGB fields, in each category are4

[29–31]

• SU(4)× SU(4)→ SU(4),

• SU(5)→ SO(5),

• SU(4)→ Sp(4).

We will consider the latter two models in Chapter 6, where we will also discuss how

the cosets might be deformed by strong external couplings so that their phenomenology

could resemble different models.

1.5 Outline of this thesis

This thesis features five papers that were published during the course of my PhD, and is

structured as follows:

• Chapter 2 – Composite Higgs models after Run 2 [1]. In this paper we assess the

status of various Composite Higgs models in the light of the latest Run 2 LHC data

at 13 TeV. We focus on the measurements of the Higgs couplings and introduce a

4The reader may ask why the coset SU(4)/SO(4) does not appear in this list. The reason is that when

SU(4) is broken to SO(4) by a fermion condensate of the form (1.40), the 9 pNGBs come in the (3,3)

representation of SU(2)L × SU(R), so we do not recover the necessary Higgs doublet.
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classification of different models depending on how the couplings of the Higgs are

modified. We also consider various scenarios in which the Higgs might mix with an

extra singlet or doublet field, and how this will affect the couplings.

• Chapter 3 – Goldstone Inflation [2]. In this paper we apply some of the formalism

developed in the Composite Higgs literature to the study of inflation. The problems

that models with a scalar inflaton face are in many ways comparable to the problem

of generating a natural electroweak scale, so we find that this approach is useful and

can ameliorate issues with trans-Planckian decay constants in models of Natural

Inflation.

• Chapter 4 – Composite Higgses with seesaw EWSB [3]. In this paper we present

an original model in which the pNGB coset consists of two doublets that acquire a

mixing term. This mixing term can contribute to the misalignment of the vacuum

and electroweak symmetry breaking. We perform a thorough analysis of this model,

including a discussion of tuning and the modifications of the Higgs couplings.

• Chapter 5 – Tracking down Quirks at the Large Hadron Collider [4]. This paper

can be considered an ‘interlude’, in which we move away from Composite Higgs and

focus on another strongly-coupled extension of the Standard Model. In this paper

we focus on quirks, which are heavy states charged under a new confining gauge

group. The key feature of quirks is that their mass is assumed to be considerably

higher that the confining scale of the new gauge group, so that these particles do

not confine and instead interact over macroscopic distances. We present a novel

detection strategy that could be implemented at the LHC, utilising the fact that

quirk trajectories are constrained to lie within a plane.

• Chapter 6 – Composite Higgs models in disguise [5]. Returning to Composite Higgs,

in the final chapter we present a mechanism that could disguise one Composite Higgs

model as another. Strong couplings between the strong sector and an external sector

can deform the symmetry group so that, at low energies, the model has the same

phenomenology as a different model. Any extra resonances acquire large masses and

remain hidden. This mechanism could be of interest especially if one is concerned

with models that have a viable UV completion; in particular, we show that two such

models can be ‘disguised’ as the Minimal Composite Higgs model SO(5)/SO(4) if

the correct external couplings are introduced.
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Chapter 2

Composite Higgs models after

Run 2

Abstract

We assess the status of models in which the Higgs is a composite pseudo-Nambu Goldstone

boson, in the light of the latest 13 TeV Run 2 Higgs data. Drawing from the extensive

Composite Higgs literature, we collect together predictions for the modified couplings

of the Higgs, in particular examining the different predictions for κV and κF . Despite

the variety and increasing complexity of models on the market, we point out that many

independent models make identical predictions for these couplings. We then look into

further corrections induced by tree-level effects such as mass-mixing and singlet VEVs.

We then investigate the compatibility of different models with the data, combining the

Run 1 and recent Run 2 LHC data. We obtain a robust limit on the scale f of 600 GeV,

with stronger limits for different choices of fermion embeddings. We also discuss how a

deficit in a Higgs channel could pinpoint the type of Composite Higgs model responsible

for it.



17

2.1 Introduction

Composite Higgs models [19, 32, 33] offer an elegant solution to the hierarchy problem of

Higgs physics. They postulate the existence of a new strongly interacting sector which

confines not far above the electroweak scale. In recent years there has been significant

interest in a specific class of these models – models in which the Higgs emerges as a

pseudo-Nambu Goldstone boson of the strong sector. This sector is taken to be endowed

with a global symmetry which is spontaneously broken in the confining phase, protecting

the Higgs mass from corrections above the compositeness scale. Although the idea is

reasonably straightforward, there are, as with most theories Beyond the Standard Model,

many possibilities for its realisation.

Although this plethora of models offers a variety of unique and interesting predictions,

those that are most immediately testable are the modifications of the Higgs couplings to

the rest of the Standard Model fields. Of particular interest are the values of the coupling

modifiers κV and κF , as defined in [34].

In this paper we summarise the predictions for these couplings in Composite Higgs

(CH) models. We make the case that, despite the diversity of models in the literature,

these predictions have very generic structures, and we attempt to provide some intuition

for this fact.

We then investigate some simple cases in which tree-level effects can modify these

generic structures. These can occur, for instance, in models with extra singlets that get

vacuum expectation values (VEVs), or models with an extra SU(2)L doublet that mixes

with the Higgs. We point out that to leading order the modifications to κV and κF are

precisely as one would expect in corresponding models where all the scalars are elementary,

plus the usual CH corrections.

Taking the generic structures we have identified, we then perform a χ2 fit to the data,

allowing for the possibility that different fermions couple in different ways. We place

bounds on the compositeness scale f , and identify the classes of models that are most

constrained.

2.2 The non-linear Composite Higgs

In Composite Higgs models, the Higgs is realised as a pseudo-Nambu Goldstone boson

(pNGB) of a broken global symmetry. This symmetry is a symmetry of a new strongly

interacting sector, out of which the Higgs emerges as a composite.
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Let the global symmetry be denoted G and the subgroup to which it spontaneously

breaks be denoted H. Then the Higgs and the other pNGBs (denoted collectively by φa,

one for each broken generator Xa), are parametrised via

U = exp(iφaXa/f), (2.1)

where f is an energy scale associated with the spontaneous symmetry breaking. U trans-

forms non-linearly under the global symmetry G:

U → gUh−1, (2.2)

where g ∈ G and h ∈ H. By non-linear we mean that the transformation h is field-

dependent: h = h(g, φa).

In cases where the coset G/H is symmetric1 we are allowed to construct an object

(which we will label Σ) whose transformation under G is linear. In all the models considered

here [3,19,24,28–30,35–47], and in the vast majority of models in the literature, G/H will

be symmetric. This reduces the task of writing down a low-energy effective theory for the

pNGBs to a relatively trivial search for invariant combinations of Σ and the other relevant

fields.

We will assume that the Higgs boson is a doublet under SU(2)L, which, along with

U(1)Y , must be embedded as an unbroken subgroup of G. Although data strongly supports

the doublet scenario (e.g. see LHC constraints on the ratio of couplings to W and Z

bosons [34]), non-linear models have been studied in which the four scalar fields are actually

a singlet and a triplet under SU(2)L [48–51]. 2

2.2.1 Gauge couplings

The couplings of the Higgs to the gauge bosons come from the kinetic term for Σ, which

in the CCWZ prescription [21] is:

Lkinetic =
f2

4
Tr[DµΣ†DµΣ], (2.3)

where Dµ = ∂µ − igAµ, with Aµ = AaµT
a for each gauged generator T a. We assume that

the Higgs is embedded in a bidoublet (2,2) of a custodial SO(4) ' SU(2)L×SU(2)R ∈ H
1If T a and Xa are the unbroken and broken generators respectively, then the Lie algebra of a symmetric

coset obeys the schematic relations

[T, T ] ∼ T, [X,X] ∼ T, [T,X] ∼ X.

2Note, though, that one could assume a custodially symmetric strong sector as in Ref. [52,53].
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– this is necessary in order to protect the ρ parameter from unwanted corrections [54].

Note that this imposes the non-trivial requirement thatH must contain an unbroken factor

of SO(4).

Since we are interested in the couplings of the physical Higgs boson to SM fields, we

will expand Σ along the direction in which the Higgs will get a VEV, and set all other

pNGB fields to zero. The term in (2.3) will generically3 lead to a Higgs-gauge coupling of

the form:

g2f2AµA
µ sin2(H/f), (2.4)

which is valid as a series expansion around H/f .

Expanding around the Higgs VEV H → 〈H〉 + h (where h is the physical excitation

of the Higgs field) we find the gauge boson masses and couplings:

Lgauge ⊃
1

8
g2f2 sin2

(〈H〉
f

)
W a
µW

aµ

+
1

8
g2f sin

(
2〈H〉
f

)
W a
µW

aµh

+
1

8
g2 cos

(
2〈H〉
f

)
W a
µW

aµh2. (2.5)

Identifying4 v = f sin(〈H〉/f) and defining ξ = v2/f2, we find

Lgauge ⊃
1

8
g2v2W a

µW
aµ +

1

4
g2v
√

1− ξW a
µW

aµh+
1

8
g2(1− 2ξ)W a

µW
aµh2. (2.6)

Thus

gWWh =
√

1− ξgSMWWh

gWWhh = (1− 2ξ)gSMWWhh.
(2.7)

Since κV is defined as gWWh/g
SM
WWh, we find

κV =
√

1− ξ ≈ 1− 1

2
ξ (2.8)

Since the structure of (2.3) is generic, so too is this result, at leading order, across

almost all Composite Higgs models.5

3In unusual cases the coupling may be proportional instead to sin2(H/(2f)), but all this amounts to is

a redefinition of ξ and an effective rescaling of f .
4Here v is defined as 4M2

W /g
2, as in the Standard Model

5This discussion has assumed that we can only write down one kinetic term for the pNGBs; in cases

where there exist more than one possible kinetic term, these conclusions will be modifed.
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2.2.2 Fermion couplings

In Composite Higgs models the SM fermions usually couple to the strong sector via the

partial compositeness mechanism [22–24]. As far as this mechanism pertains to the con-

struction of the low energy effective theory, it involves embedding the SM fermions in

representations of the global symmetry G, and then constructing G invariant operators

out of these multiplets and Σ. Such an embedding is sometimes called a spurion – the

term spurion refers to the ‘missing’ elements of the multiplet, since after all, the SM

particles do not come in full multiplets of the new symmetry G. The incompleteness of

these spurious multiplets contributes to the explicit breaking of G and allows the Higgs to

acquire a potential via loops of SM fermions.

The appropriate representation in which to embed the SM particles would, in principle,

depend on the UV completion of the model. Some attempts towards UV completions of

Composite Higgs models have been made (see, for example [29, 30, 35]), however for the

purposes of most model building the choice of representation is a ‘free parameter’ of the

model. There is, however, good cause to restrict the choice of representation into which

the SU(2)L quark doublet is embedded. As shown in [25], embedding qL into a bidoublet

(2,2) of the custodial SO(4) ' SU(2)L×SU(2)R can prevent anomalous contributions to

the Z → bb coupling. This restriction forces one to choose representations that contain a

bidoublet in their decomposition under the custodial SO(4) subgroup of G.

To treat the EFT in full generality, one should embed qL, tR and bR into different

multiplets Ψq, Ψt and Ψb. The kind of representation that the three quarks are embedded

into need not be the same. Thus, even for each coset G/H, there are a bewildering number

of possibilities. However, for the vast majority of models the form of κF is actually quite

restricted. We tabulate a few examples in Table 2.1.

It might seem strange that so many distinct models lead to so few possibilities for κF .

In fact, when one examines the structure of the allowed terms in the effective Lagrangian,

a general pattern emerges: the lowest order coupling of the Higgs to fermions will generally

contain either one or two factors of Σ. For example, in the Minimal Composite Higgs Model

(MCHM), the coset group is SO(5)/SO(4), and one can define a linearly transforming Σ

in the 5 of SO(5), which, expanded along the H direction can be expressed as

Σ(h) = (0, 0, 0, sin(H/f), cos(H/f)). (2.9)

With qL and tL embedded in the 5, Yukawa couplings come from the SO(5) invariant

effective operator

(Ψ
5
q · Σ)(Σ ·Ψ5

t ), (2.10)
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κF Models

κAF =
√

1− ξ SO(5)/SO(4) – [19,37]

SO(6)/SO(4)× SO(2) – [40–42]

SU(5)/SU(4) – [43]

SO(8)/SO(7) – [46,47]

κBF = 1−2ξ√
1−ξ SO(5)/SO(4) – [37–39,45]

SU(4)/Sp(4) – [28]

SU(5)/SO(5) – [30]

SO(6)/SO(4)× SO(2) – [40–42]

Table 2.1: κF in different models.

leading to a term proportional to sin(H/f) cos(H/f). Alternatively one could embed qL

into a 10, the tR into a 5 – in this case the Yukawa term originates from an operator like

ΣTΨ
10
q Ψ5

t , (2.11)

and the interaction is proportional to sin(H/f). 6

In general the structure must be such that the leading term in the trigonometric expan-

sion is H/f . In almost all cases the relevant term will be proportional to either sin(H/f)

or sin(H/f) cos(H/f). This argument is certainly not intended to be rigorous – we merely

hope to provide some intuition for the fact the non-linear nature of a pNGB Higgs boson

leads to repeated structures even across different models and choices of representations.7

Following the same procedure as in equation (2.5), we can expand around the Higgs

VEV to find the expression for κF , defined by yv/mF . A coupling of the form ψψ sin(H/f)

leads to

κF =
√

1− ξ ≈ 1− 1

2
ξ, (2.12)

while a coupling of the form ψψ sin(H/f) cos(H/f) leads to

κF =
1− 2ξ√

1− ξ ≈ 1− 3

2
ξ. (2.13)

As we stated above, the representation into which we embed tR and bR might not be

the same – in this case it is quite possible (depending on the details of the model) that

6Note that this structure of couplings also depends on the assumption that the Higgs forms part of

a doublet, whereas other forms of the effective coupling could be possible in a singlet case, see e.g. the

generic forms of the potential in Ref. [2].
7See also [55] for a comprehensive review of different Composite Higgs models, and an especially detailed

look at the constraints on the SO(5)/SO(4) coset with Run 1 data.
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the top and bottom couplings to the Higgs have different structures. For instance, in the

second example above, although the tR is embedded into a 5, the bR might be embedded

into a 10. As a result the top coupling would scale with 1− 1
2ξ while the bottom coupling

would scale with 1− 3
2ξ.

There are (as always) some interesting exceptions. For example, in [44], with qL in a

5 and tR in a 14, one can derive κF ≈ 1− 3ξ, see also Ref. [56]. In some models (for some

examples, see [37, 44]) more than one operator can be constructed which contributes to

the same Yukawa coupling. The degree to which each operator contributes will, in such

cases, be a free parameter and will lead to more complex expressions for κF . Such models

are interesting insofar as they are exceptions – however more minimal scenarios will follow

the structure we have outlined above.

No mention has been made so far of the leptonic sector. In theory the lepton Yukawas

can also be generated via the partial compositeness mechanism (see for instance [38]).

This means that κτ (for instance) would also receive corrections, and in minimal scenarios

would depend on ξ like κAF or κBF , as defined in Table 2.1.

2.3 Tree-level effects

In this section we will briefly look at two interesting scenarios that can lead to tree-level

corrections to κV and κF from the integrating-out of heavier states. We will describe these

corrections as leading to a new effective ξeff to be compared with the vanilla prediction

for ξ.

The first possibility is that in models with an extra singlet pNGB (such as the SU(4)/Sp(4)

and SU(5)/SO(5) cosets), the pNGB potential could induce a VEV for the singlet. This

can modify κF and κV in two ways – firstly a VEV for the singlet η will induce singlet-

doublet mixing between η and H. Singlet-doublet mixing (in the elementary case) and its

effect on Higgs couplings was studied in detail in [57]. The fact that the H mixes with

another scalar means that the couplings will be modified by a factor of cos θ, where θ is

the mixing angle between H and η. For small mixing angles:

κV ≈ 1− 1

2
θ2. (2.14)

In this and in the following we are assuming that the singlet is heavier than the Higgs

and that it makes sense to integrate it out. Generally, in the absense of further tuning,

one expects the extra pNGBs to be heavier than the Higgs by a factor of ξ = v2/f2, since

this is the amount by which the mass of the Higgs has to be tuned to satisfy electroweak
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precision test [58]. Thus, in models with around 10% tuning, values for the extra pNGB

masses of around 300− 500 GeV are not unreasonable.

There could also be effects similar to those studied above, arising from higher-dimensional

terms in the non-linear effective theory. As an example we will look at the SU(4)/Sp(4)

model. The gauge boson coupling to the Higgs and η (the equivalent of equation (2.4))

will be (neglecting hypercharge)

H2

H2 + η2
sin2

(√
H2 + η2

f

)
W a
µW

aµ. (2.15)

As expected, there is no dimension-4 coupling of η to the SU(2)L gauge bosons, but there

are higher order terms involving η which could modify the hWW coupling if η gets a VEV.

However one should also note that the kinetic term in (2.3) corrects the Higgs kinetic term:

Lkinetic =
sin2(vη/f)

v2
η/f

2
(∂µH)2 ≈ (1− 1

3
ξη)(∂µH)2. (2.16)

After canonically normalising the Higgs field and expanding around small values of ξη =

v2
η/f

2 we find that the O(ξη) correction to κV actually cancels. To leading order in ξ, ξη

and θ we have:

κV ≈ 1− 1

2
ξ − 1

2
θ2. (2.17)

The correction due to the singlet VEV thus neatly “factorises” into the mass-mixing

correction O(θ2) plus the usual compositeness correction O(ξ). We can thus define a

ξeff = ξ + θ2, such that κV ≈ 1− ξeff /2.

One finds a similar result for κF . The singlet VEV modifies κF from ≈ 1− 3
2ξ to

κF ≈ 1− 3

2
ξ − 1

2
θ2, (2.18)

and in this case our effective ξeff = ξ + 1
3θ

2.

In the regime where mη and vη are both � v, the mixing will be small and will scale

approximately as

θ2 ∼
v2v2

η

m4
η

=
1

g4
η

ξξη, (2.19)

where we have related mη to f via some coupling: mη = gηf .

The amount of tuning present in such a model was analysed in [59]. This coset was

also investigated in a cosmological setting in [2, 60], where the singlet η plays the role of

the inflaton. In such a scenario the size of the singlet VEV has important implications for

the scale of inflation, and the mass-mixing of the inflaton would be important also for the

process of reheating. Moreover, the singlet η and a non-zero value of ξη could be a key

component of a solution to the matter-antimatter asymmetry in the Universe [61].
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Figure 2.1: χ(f)2 − χ2
min for the Run 1 (left) and combination of Run 1 and 2 (right) datasets.

The lines correspond to different choices of fermion couplings κA,BF for (κt, κb, κτ ). For example,

AAA indicates κt = κb = κτ = κAF .

If the value of ξeff were the same for all couplings (i.e. the modifications to κV and

κFi were the same), then the theory would resemble a CH model without any mixing, only

with an apparent rescaling of f . However it is interesting to note that in the above case

the inferred values of ξeff from the measurements of κV and κF are different, which would

in principle allow us to experimentally distinguish between these two scenarios.

Another possibility is that the spontaneous breaking leads to another pNGB doublet

of SU(2)L (a composite two Higgs doublet model). In principle, explicit breaking effects

could lead to a mixing between the two doublets. This possibility is discussed in [40, 41],

and in a different context in [3], in which the two doublets appear from two different

spontaneous breakings at different scales.

In this case we will obtain similar results to our expressions above for ξeff , with a

correction from the mass-mixing at O(θ2) that will be present in the elementary case,

and the usual correction at O(ξ) coming from higher dimensional operators (see [62] for

a review of the elementary two Higgs doublet model, and [57] for an analysis of the Higgs

EFT in such a scenario).

Since we have looked at tree-level corrections to κV and κF coming from new states

in the composite sector, one should also talk about loop level modifications. In principle

loops of scalar, fermionic and vector resonances of the strong sector can modify the Higgs

couplings. These will arise from higher dimensional (d ≥ 6) operators in the effective

theory, suppressed by factors of f4−d.
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2.4 Status after Run 2

In this section we study the impact of Run 1 LHC data on Composite Higgs models, as

well as the improvement which results when adding the 13 TeV results recently released by

the collaborations. In Table 3.1 we summarize the channels considered in the combination

of Run 1 and 2 data from ATLAS and CMS, as well as indicate the coupling modifiers

that one would obtain in Composite Higgs models, as discussed previously.

Channel Refs. κ-factors

ttH (H → γγ) [63–65]
κ2
tκ

2
γ

κ2
H

ttH (H → bb̄) [63]
κ2
tκ

2
b

κ2
H

ttH (H → τ+τ−) [63]
κ2
tκ

2
τ

κ2
H

ttH (H →WW ∗, H → ZZ∗) [63]
κ2
tκ

2
V

κ2
H

ggF (H → γγ) [64,65]
κ2
gκ

2
γ

κH

ggF (H → τ+τ−) [66]
κ2
gκ

2
τ

κ2
H

ggF (H →WW ∗, H → ZZ∗) [67–69]
κ2
gκ

2
Z

κ2
H

HV (H → bb̄) [70,71]
κ2
V κ

2
b

κ2
H

V BF , HV (H → γγ) [64,65]
κ2
V κ

2
γ

κH

V BF , HV (H →WW ∗, H → ZZ∗) [67,69,72]
κ4
V

κ2
H

Table 2.2: List of 13 TeV channels considered in the fit, with the corresponding κ modifiers. Note

that the 7+8 TeV Run 1 data was included using the results of the combination of ATLAS and

CMS data in Ref. [34].

The couplings of the Composite Higgs to gluons and photons, κg and κγ , are functions

of the modifications of the couplings to fermions and gauge bosons, which appear at one-

loop order, i.e. κ2
g = 1.06κ2

t+0.01κ2
b−0.07κbκt and κ2

γ = 1.59κ2
V +0.07κ2

t−0.66κV κt [34,73].

The modification of the Higgs width, κH is also a function of the coupling modifiers,

κ2
H ≈ 0.57κ2

b + 0.25κ2
V + 0.09κ2

g, see e.g. Ref. [34].

We then perform a χ2 fit to the ATLAS and CMS data8, with the restriction ξ > 0.

The dependence of the χ2 function with the scale of new physics f is shown in Fig. 2.1.

The green and yellow bands correspond to the one- and two-sigma regions of the fit, and

8When two measurements of the same channel were available, we discarded the worse measurement, or

kept both if they were of similar significance. Results from [74,75] were considered but not included in the

fit.
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the left and right panels correspond to Run 1 and the combination of Run 1 and Run

2, respectively. Different choices of fermion representations κA,BF (as shown in Table 2.1)

lead to different χ2 dependences.

The model-independent limit on f improves from 450 GeV (Run 1) to 600 GeV (Run

1+2) at 95% CL, and we see that the most constrained screnario is κt = κAF , κb = κτ = κBF .

Moreover, one can see that the spread of limits on the scale f due to these fermion choices

increases with the addition of more data. This is a signal that the data is increasingly

sensitive to these choices, due to better determination of the Higgs couplings to the heavy

fermions. To illustrate this point, assume that at some point in the future a deficit in one

channel is observed, whereas other channels remain consistent with the SM. For example,

assume that the signal strength of the ttH processes was found to be a third of the SM

rate, whereas other processes involving the coupling of the Higgs to vector bosons remained

consistent with the SM. In this case, certain representations for fermion embeddings of

the top and bottom quarks would be preferred by data, see Fig. 2.2.

These limits on f should be compared with the limits of direct searches for new res-

onances. One would typically expect a set of new resonances, e.g. new massive W ′ and

Z ′, to appear at some scale related to f , mW ′ = gρf , with gρ . O(4π). The value of gρ

is an input to the effective theory, but can be obtained by performing a lattice simulation

of the theory and investigating the spectrum of resonances. Its value depends on the

specific pattern of breaking as well as the possible electroweak effects. As an indicator of

the value of gρ in these kind of models, we draw attention to the work done in the coset

SO(6)/SO(5) [76], and in others scenarios [77], where gρ was found to be O(10). In this

case, a limit on f ∼ 600 GeV, would correspond to a Z ′ and W ′ in the multi-TeV scale,

certainly competitive with direct searches for these resonances.

Besides vector resonances, one would expect a tower of fermion resonances, or techni-

baryons. Typically, these techni-baryons are heavier than the vector bound states by a

factor of NTC , with NTC the number of colours in the new strongly coupled sector [78,79].

Hence, naively one would expect fermion resonances again in the multi-TeV scale. Yet, in

most Composite Higgs models the mechanism of electroweak symmetry breaking depends

on the existence of light techni-baryons (top partners) with masses of the order of f ,

contrary to the large-N expectation. This mechanism is being tested by direct searches

of heavy partners of the top, with recent Run 2 results already sensitive to the 1.2 TeV

region [27], clearly more competitive than the indirect searches in Higgs data if one believed

this is the correct mechanism in place. Note, though, that the mass of the top partner
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Figure 2.2: χ(ξ)2 assuming a scenario where a deficit is found in ttH production channels, while

other channels remain consistent with the SM. The labels correspond to different hypothesis of

κA,BF for (κt, κb). In this case, the choice κt = κb = κBF would be preferred by data. We assume a

20% uncertainty in these channels, except in gg → H → γγ where a 10% accuracy is assumed.

is also linked to the amount of fine-tuning in these models. From this point of view the

strong limits in top partners may lead one to consider alternative constructions, such as

Composite Twin Higgs models [46,47,80,81], or models involving the see-saw mechanism

devloped in [3]. In such models the top partners can be significantly heavier without

introducing more fine-tuning.

2.5 Conclusions

In this paper we have summarised the structure of the Higgs couplings (parameterised

by κV and κF ) in Composite Higgs models. Although different CH models have very

different predictions for the UV theory and the spectrum of higher mass resonances, we

have identified generic forms for κV and κF which hold for many different choices of the

coset group and fermion representations.

We have also looked into tree level effects on these couplings coming from extra states.

In particular we studied the interesting possibility that an extra singlet pNGB may acquire

a VEV. The modifications to κV and κF are to leading order just a sum of the corrections

in elementary singlet + doublet models, and the usual correction expected in composite

models. The same can be said for the case in which the Higgs mixes with an extra doublet.

We combined the Run 1 and recent Run 2 LHC data to set limits on CH models,

finding that different choices for fermion representations lead to a spread of limits but a

lower bound on the scale f can be set to 600 GeV. We also discussed how an observed
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deficit in a Higgs channel such as tt̄H could pinpoint the type of CH model responsible

for it.
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Chapter 3

Goldstone Inflation

Abstract

Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its poten-

tial. Successful Goldstone Inflation should also be robust against UV corrections, such as

from quantum gravity: in the language of the effective field theory this implies that all

scales are sub-Planckian. In this paper we present scenarios which realise both require-

ments by examining the structure of Goldstone potentials arising from Coleman-Weinberg

contributions. We focus on single-field models, for which we notice that both bosonic

and fermionic contributions are required and that spinorial fermion representations can

generate the right potential shape. We then evaluate the constraints on non-Gaussianity

from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson

scattering prevail over the current CMB measurements. The fit to CMB data can be con-

nected to the UV completions for Goldstone Inflation, finding relations in the spectrum of

new resonances. Finally, we show how hybrid inflation can be realised in the same context,

where both the inflaton and the waterfall fields share a common origin as Goldstones.
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3.1 Introduction

The empirically well supported paradigm of cosmic inflation [82] has a hierarchy problem

from the perspective of particle physics. Parameterised in terms of a slowly rolling scalar

field, the scale of inflation (from CMB data [83]) is exceeded by the field excursion (given

by the Lyth bound [84,85]) by roughly two orders of magnitude:

Λ4 =
(
1.88× 1016 GeV

)4 ( r

.10

)
and ∆φ ≥Mp

√
r

4π
(3.1)

where r is the ratio of the tensor to the scalar power spectrum, and where Mp = 2.435×
1018 GeV is the reduced Planck mass. Meeting both these conditions implies an excep-

tionally flat potential for the inflaton, which generically is radiatively unstable.

Natural Inflation (NI) [86, 87] offers a solution to this hierarchy problem by imposing

a symmetry on the inflaton: the inflaton potential exhibits a shift symmetry φ → φ + C

with C a constant, and therefore could be protected from higher order corrections. The

shift symmetry is realised by identifying the inflaton with the Goldstone boson (GB) φ

of a broken global symmetry G to its subgroup H (φ ∈ G/H). In turn, the GB obtains

a potential through effects that render G inexact. The resulting degree of freedom is

therefore not an exact Goldstone boson, but a pseudo-Goldstone boson (pGB). Different

effects can lead to an inexact global symmetry; we reviewed the relevant mechanism in [88].

The original and most popular NI model has an axion as the inflaton, the GB of spon-

taneously broken Peccei-Quinn symmetry [86, 87]. The axion gets a potential through

non-perturbative (instanton) effects. As shown in Ref. [89] these effects lead to the char-

acteristic cos(φ/f) potential across models, where f is the scale at which G is broken.

To obtain the famous NI model one adds a cosmological constant term to impose the

phenomenological constraint V (φmin) = 0, to obtain,

V (φ) = Λ4(1 + cosφ/f) (3.2)

Alas, the original NI model can only be successfully reconciled with the data from

CMB missions for superplanckian scales of the decay constant: f = O(10Mp). This

is evidently a problem, because above the Planck scale one should expect a theory of

Quantum Gravity (QG), and it is known that theories of QG in general do not conserve

global symmetries [90]. Therefore one generically expects large contributions to the simple

potential (3.2), as was shown recently in [91]. Thus, one may conclude that vanilla NI is

not a good effective theory.1

1It is found that it is only possible to maintain control over the backreaction in very specific configur-

ations, such as [92].
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Different proposals have been made to explain the super-Planckian decay constant

while maintaining the simple potential (3.2) and the explanatory power of the model.

Among these are Extra-Natural inflation [93], hybrid axion models [94,95], N-flation [96–

98], axion monodromy [99] and other pseudo-natural inflation models in Supersymmetry [100].

These proposals usually focus on generating an effective decay constant feff in terms of

model parameters, such that feff = O(10Mp) is no longer problematic. Some of these

models rely on a large amount of tuning or on the existence of extra dimensions, as 4D

dual theories suffer from the same problems as the vanilla model.

In [88] we recognised that pGB inflation does not have to have an axion as the in-

flaton. There are other models which generate a natural inflaton potential, protected

from radiative corrections by the same mechanism. In particular, we focussed on compact

group structures and showed that one can find models2 that fit the CMB constraints for

a sub-Planckian symmetry breaking scale f .

For example, if the pGB field is coupled to external gauge bosons and fermions, a

Coleman-Weinberg potential is generated for the inflaton. We demonstrated the general

mechanism and gave a specific successful example inspired by the minimal Composite

Higgs model MCHM5 [102].

Here we develop a comprehensive approach to Goldstone Inflaton. In Sec. 3.2, we give

a full analysis of the potentials that can be generated, and motivate that the potential

that is uniquely expected to give successful single-field inflation is given by

V (φ) = Λ4
(
CΛ + α cos(φ/f) + β sin2(φ/f)

)
. (3.3)

In Sec. 3.3, we compare its predictions against the CMB data and find that the latter

singles out a specific region in the parameter space. We comment on the fine-tuning

necessary and show that one obtains a successful model with f < Mp at marginal tuning.

As the Goldstone inflaton is expected to have non-canonical kinetic terms, we give

an analysis of the non-Gaussianity predictions. We show that the current bounds are

comfortably evaded.

In Sec. 3.4, we further explore the region of parameter space that leads to successful

inflation. The relations that we find by comparison with the Planck data give information

about the form factors that parameterise the UV-theory. We comment on the scaling with

momentum we expect from theoretical considerations. We finish with an analysis of the

2One can also consider non-compact groups such as space time symmetries. In [101] the authors consider

broken conformal symmetry and showed that a dilaton inflaton can generate inflation with strictly sub-

Planckian scales.



32

UV theory, in which we use QCD-tools to compute the relevant parameters and give a

specific example in the approximation of light resonance dominance in Sec. 3.5. Finally, in

the Appendices we give specific examples of single-field and hybrid inflation coming from

Goldstone Inflation.

3.2 A successful Coleman-Weinberg potential

Our starting assumption is that the inflaton is a Goldstone boson, coming from the break-

ing of some global symmetry G → H. We parameterise the Goldstone bosons using a

non-linear sigma model

Σ(x) = exp(iT âφâ(x)/f), (3.4)

where T â are the broken G/H generators, φa(x) are the Goldstone fields, and f is the

scale of spontaneous symmetry breaking3 [21]. Under a G/H symmetry transformation

the Goldstone bosons transform via a shift φa(x) → φa + fαa, for some transformation

parameters αa. This non-linear shift symmetry prevents the Goldstone fields from acquir-

ing a tree-level potential. The inflaton can only get a potential if there are sources of

explicit symmetry-breaking that will render G inexact. We list two possibilities:

1. If the inflaton is a composite object formed of strongly-interacting UV fermions,

then explicit fermion mass terms could break the symmetry and give the inflaton a

non-zero mass. This would be analogous to the pions of QCD, which acquire a mass

from the explicit breaking of chiral symmetry due to the small up and down quark

masses.

2. If the inflaton sector has couplings to particles that do not form complete representa-

tions of G, then loops of these ‘external’ particles will generate a Coleman-Weinberg

potential for the inflaton.

Although 1. is an interesting possibility, in this paper we will explore 2., since the Coleman-

Weinberg potential can be computed perturbatively (up to coefficients determined by

strongly interacting dynamics).

A point worth noting is that, as of yet, we have not fixed the scale at which inflation

occurs. The ‘external’ particles relevant to our calculation are those with masses close to,

but below the scale of symmetry breaking ∼ f . If inflation occurs near the TeV scale, we

3Here we assume the CCZW formalism. A different proposal relying on quark seesaw has been made re-

cently (see for instance [103] and references therein); however, in this setup the periodicity of the Goldstone

field is disguised and therefore we will stick to CCWZ.
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would have to embed the SM gauge group and the heavy quarks into representations of G,

since these particles would be expected to have the greatest contributions to the inflaton

potential (just as in Composite Higgs models). If inflation occurs at the GUT scale ∼ 1016

GeV, then our lack of knowledge of the high-scale particle spectrum means we can be

more open-minded. In the following treatment we leave this question open, considering

generic possibilities for the particle content.

That said, we will not consider the contribution from elementary scalars, our prime

motivation being the unnaturalness of scalar masses much below the Planck scale. The

only scalars appearing in our model will be those coming from the G/H breaking, with

masses protected by the non-linear Goldstone symmetry.

We will work through in detail a scenario in which the strong sector has a global

SO(N) symmetry which breaks to SO(N − 1).4 This symmetry breaking gives rise to

N − 1 massless Goldstone fields, one linear combination of which will play the role of

the inflaton. We will assume that the symmetry-breaking VEV is in the fundamental

representation:

Σ0 = 〈Σ〉 =




0

0
...

1



, (3.5)

so that

Σ(x) = exp(iT âφâ(x)/f)Σ0, (3.6)

transforms as a fundamental of SO(N).

If we take the unbroken symmetry SO(N − 1) to be a gauge symmetry, we can gauge

away N − 2 of the Goldstone fields (they give mass to N − 2 gauge bosons once the

vacuum is misaligned), as we show pictorially in Fig. 3.1. This will leave us with one

physical Goldstone field, which we identify with the inflaton. The same mechanism gives

masses to the W± and Z bosons in Composite Higgs models (see for example [19,28]). We

can gauge a smaller subgroup of SO(N), although this will leave more than one Goldstone

degree of freedom. Some possibilities are explored in Appendix 3.6.

We now attempt to write down an effective Lagrangian containing couplings of the

Goldstone fields to the SO(N − 1) gauge bosons. A useful trick is to take the whole

SO(N) global symmetry to be gauged, and only at the end of the calculation setting the

unphysical SO(N)/SO(N − 1) gauge fields to zero [24, 55]. The most general effective

4Many of the results of this section generalise straightforwardly to SU(N)→ SU(N − 1).
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Lagrangian involving couplings between Σ and SO(N) gauge bosons, in momentum space

and up to quadratic order in the gauge fields, is

Leff =
1

2
(PT )µν

[
ΠA

0 (p2) Tr{AµAν}+ ΠA
1 (p2)ΣTAµAνΣ

]
, (3.7)

where Aµ = AaµT
a (a = 1, ..., N) are the SO(N) gauge fields, PµνT = ηµν − qµqν/q2 is the

transverse projector, and ΠA
0,1(p2) are scale-dependent form factors, parameterising the

integrated-out dynamics of the strong sector.

Taking an appropriate choice for the SO(N) generators and expanding out the matrix

exponential in (3.6), we obtain:

Σ =
1

φ




φ1 sin(φ/f)
...

φN−1 sin(φ/f)

φ cos(φ/f)



, (3.8)

where φ =
√
φâφâ. With an SO(N − 1) gauge transformation we can rotate the φâ fields

along the φ1 direction, so that

Σ =




sin(φ/f)
...

0

cos(φ/f)



. (3.9)

The remaining N−2 degrees of freedom give masses to as many gauge bosons. Expanding

out all the terms in (3.7) and setting the SO(N)/SO(N − 1) gauge fields to zero as

promised, we obtain:

Leff =
1

2
(PT )µν

[
ΠA

0 (p2) +
1

2
ΠA

1 (p2) sin2(φ/f)

]
AãµA

ã
ν , (3.10)

where Aãµ are the SO(N−1)/SO(N−2) gauge fields. The remaining (massless) SO(N−2)

gauge fields do not couple to the inflaton (See Fig. 3.1).
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SO(N) global symmetry

SO(N − 1) gauged

SO(N − 2)

unbroken

SO(N − 1)/SO(N − 2) massive gauge bosons,

couple to the inflaton

SO(N − 2) massless gauge bosons,

do not couple to the inflaton

Figure 3.1: Subgroups of the global SO(N) symmetry.

Using this Lagrangian we can derive a Coleman-Weinberg potential for the inflaton [26]:

V =
3(N − 2)

2

∫
d4pE
(2π)4

log

[
1 +

1

2

ΠA
1

ΠA
0

sin2(φ/f)

]
, (3.11)

where p2
E = −p2 is the Wick-rotated Euclidean momentum. This result can be understood

as the sum over the series of diagrams:

+ + + ..., (3.12)

in which the inflaton field is treated as a constant, classical background. The factor of

3(N−2) comes from the 3 degrees of freedom of each of the massive SO(N−1)/SO(N−2)

gauge bosons, any of which may propagate around the loop.

As discussed in [24,55], Π1 can be thought of as an order parameter, which goes to zero

in the symmetry-preserving phase at high momenta. Provided the ratio ΠA
1 /Π

A
0 decreases

fast enough, the integral in (3.11) will converge. We can approximate the potential by

expanding the logarithm at leading order. This approximation is equivalent to assuming

the dominant contribution comes from diagrams with one vertex, and that higher order
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diagrams are suppressed.5 This gives

V (φ) = γ sin2(φ/f), (3.14)

where

γ =
3(N − 2)

4

∫
d4pE
(2π)4

(
ΠA

1

ΠA
0

)
. (3.15)

It is worth pointing out that gauge contributions generically lead to a sin2 type po-

tential at leading order. A sin2 potential suffers from the same problems as the cosine of

Natural Inflation – it is only flat enough for superplanckian values of f .

However, we should also include contributions from external fermions. Just as with

the gauge case, the easiest way to write down a general effective Lagrangian is to assume

that the fermions are embedded within representations of the full symmetry group SO(N).

First we try embedding two Dirac fermions (one left and one right handed) in fundamental

SO(N) representations:

ΨL =




ψL
...

0


 , ΨR =




0
...

ψR


 . (3.16)

The reader will note that fermions placed anywhere other than the first and N th entries of

these fundamentals will not contribute to the inflaton potential, since they will not couple

to the rotated Σ (3.9). We place ψL and ψR in two separate fundamentals for the sake of

generality – this arrangement will avoid cancellations between terms that would occur if

we used the embedding 


ψL
...

ψR


 . (3.17)

The most general SO(N) invariant effective Lagrangian we can write down, up to

quadratic order in the fermion fields, is

Leff =
∑

r=L,R

Ψ
i
r /p [Πr

0(p)δij + Πr
1(p)ΣiΣj ] Ψj

r +M(p)Ψ
i
LΣiΣjΨ

j
R + h.c. , (3.18)

which can be rewritten:

Leff = ψL/p
[
ΠL

0 (p) + ΠL
1 (p) sin2(φ/f)

]
ψL + ψR/p

[
ΠR

0 (p) + ΠR
1 (p) cos2(φ/f)

]
ψR

+M(p) sin(φ/f) cos(φ/f)ψLψR + h.c. (3.19)

5Equivalently ∫
d4pE
(2π)4

(
ΠA

1

ΠA
0

)
�
∫

d4pE
(2π)4

1

2

(
ΠA

1

ΠA
0

)2

�
∫

d4pE
(2π)4

1

3

(
ΠA

1

ΠA
0

)3

� ... (3.13)

If the form factors behave as described in Section 3.5, then this is a reasonable approximation.
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We can derive the Coleman-Weinberg potential using the formula

V = −1

2
Nc

∫
d4pE
(2π)4

Tr
[
log
(
MM†

)]
, (3.20)

which is correct up to terms independent of φ. Here Nc is the number of fermion colours

and

Mij =
∂2L

∂ψi∂ψj
, (3.21)

for all fermions ψi. We obtain, up to terms independent of φ:

V = −2Nc

∫
d4pE
(2π)4

log

[
1 +

ΠL
1

ΠL
0

sin2(φ/f) +
ΠR

1

ΠR
0

cos2(φ/f) +
ΠL

1

ΠL
0

ΠR
1

ΠR
0

sin2(φ/f) cos2(φ/f)

+
M2

p2
EΠL

0 ΠR
0

sin2(φ/f) cos2(φ/f)

]
. (3.22)

The presence of the sin2 cos2 function inside the logarithm is essentially due to the fact

that there are loops in which both ψL and ψR propagate. We have, among other diagrams,

the series:

ψL

ψR

+

ψL

ψRψL

ψR

+ ... (3.23)

This series includes diagrams with 2n vertices (compare to (3.12), which sums over dia-

grams with n vertices). Thus the resummation leads to a higher order term in the argument

of the log. Again we can expand the logarithm at first order to get a potential of the form:

V (φ) = α sin2(φ/f) + β sin2(φ/f) cos2(φ/f). (3.24)

This potential has a very flat region for α ' β, the flat region being a maximum (minimum)

for β > 0 (β < 0). For realistic inflation we require the flat region to be a local maximum,

so that the inflaton can roll slowly down the potential. However, since we expect the

Π0 form factors to be positive (see, for example [104]), the expansion of the log6 gives a

negative value for β. The gauge contribution – being of the form sin2(φ/f) – will not help

matters.

Therefore we turn to the next simplest option: embedding the fermions in spinorial

representations of SO(N). Spinors of SO(N), for odd N , have the same number of

6Note that the (ΠL
1 ΠR

1 )/(ΠL
0 ΠR

0 ) term cancels other terms at next order in the expansion, so does not

contribute to the potential.
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components as spinors of SO(N − 1). The extra gamma matrix ΓN is the chiral matrix,

which in the Weyl representation is the only diagonal gamma matrix. Spinors of SO(N)

are built from two spinors of SO(N−2) in the same way that Dirac spinors are constructed

using two Weyl spinors. We denote these SO(N−2) spinors χL,R, and embed the fermions

as follows:

χL,R =




ψL,R

0
...


 , (3.25)

and construct the full SO(N) spinors thus:

ΨL =


χL

0


 , ΨR =


 0

χR


 . (3.26)

This embedding is chosen so as to ultimately give a coupling between ψL and ψR – other

embeddings that achieve this will lead to the same eventual result. The SO(N) invariant

effective Lagrangian takes the form

Leff =
∑

r=L,R

Ψ
i
r /p
[
Πr

0(p)δij + Πr
1(p)ΓaijΣ

a
]

Ψj
r +M(p)Ψ

i
LΓaijΣ

aΨj
R + h.c. , (3.27)

where Γa are the Gamma matrices of SO(N). If we take

Γ1 =


0 I

I 0


 , ΓN =


I 0

0 −I


 (3.28)

this can be expanded to give:

Leff = ψL/p
[
ΠL

0 (p) + ΠL
1 (p) cos(φ/f)

]
ψL + ψR/p

[
ΠR

0 (p)−ΠR
1 (p) cos(φ/f)

]
ψR

+M(p) sin(φ/f)ψLψR + h.c. (3.29)

Combined with the gauge contribution, this will lead to the potential:

V (φ) = α cos(φ/f) + β sin2(φ/f), (3.30)

where

α = −2Nc

∫
d4pE
(2π)4

(
ΠL

1

ΠL
0

− ΠR
1

ΠR
0

)
, β =

∫
d4pE
(2π)4

(
3(N − 2)

4

ΠA
1

ΠA
0

− 2Nc
M2

p2
EΠL

0 ΠR
0

)
.

(3.31)

This potential has a flat maximum for α ' 2β, β > 0. The gauge contribution can now

give us a positive value for β. Thus, for a region of parameter space, this is a viable

inflationary potential.
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Including more fermions in our model will lead to a wider class of diagrams contribut-

ing to the Coleman-Weinberg potential. If we expand consistently to first order in Π1/Π0

and (M/Π0)2 however, the only terms that appear at leading order will be those coming

from diagrams in which only a single fermion, or an alternating pair of fermions, propag-

ates around the loop. Equation (3.30) will therefore be the generic leading order result,

although the coefficients will be modified. In particular, α will be given generally by

α = −2Nc

∫
d4pE
(2π)4

(∑

i

(−1)ai
Πi

1

Πi
0

)
, (3.32)

where ai = 0 if ψi is embedded in the upper half of an SO(N) spinor, and ai = 1 if ψi is

embedded in the lower half.

We should also consider whether including NLO terms in the log expansion changes

any of the above conclusions. Assuming that the log expansion is valid, we expect the

NLO terms to be suppressed. A small sin4(φ/f) or cos(φ/f) sin2(φ/f) addition to the

potential will only have the effect of changing slightly the conditions on the coefficients.

For example, the potential

V (φ) = α cos(φ/f) + β sin2(φ/f) + δ cos(φ/f) sin2(φ/f), (3.33)

has the flatness condition α = 2(β + δ).

To satisfy the phenomenological constraint that the inflaton potential should be zero

at its minimum V (φmin) = 0, we now insert a constant term CΛ by hand:

V (φ) = CΛ + α cos(φ/f) + β sin2(φ/f). (3.34)

In this case, CΛ = α. As conventional when writing inflaton potentials we may factor out

a scale Λ4 to obtain (3.3), with a redefinition of the coefficients α and β.

The result that fermions in fundamental representations cannot induce a satisfactory

inflation potential holds generically for any group, for precisely the reasons outlined above.

It is for this reason that we did not consider SU(N) symmetries, since the only single-

index representations of SU(N) are fundamental (or anti-fundamental) representations.

Embedding fermions in spinorial representations will generally lead, at first order, to a

potential of the form (3.30). Since spinorial representations only exist in SO(N), we

conclude that an SO(N) symmetry of the strong sector is the simplest and most natural

way to generate a realistic inflaton potential. Isomorphisms such as SO(6) ' SU(4) and

SO(4) ' SU(2) × SU(2) allows us to extend this result a little further. For example,

embedding fermions in a vector of SO(4) should lead to the same result as fermions

embedded in a (2, 2) of SU(2)× SU(2).
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3.3 Constraints from Inflation

After our discussion of the general structure of the inflaton potential, let us discuss the

restrictions coming from inflation. We list some potentials that can give rise to inflation

in Table 3.1.

We parameterise the flatness of the potential as usual in the slow roll approximation

(SRA). That is, we require ε� 1 and η � 1, where ε and η are here given by

ε =
M2
p

2

(
V ′(φ)

V (φ)

)2

and η = M2
p

V ′′(φ)

V (φ)
. (3.35)

To simplify our expressions, in this section we work in units of reduced Planck mass

Mp; that is, we will rescale our parameters φ→ φ
Mp

and f → f
Mp

.

The number of e-foldings in the slow-roll approximation is then given by

N =
1√
2

∫ φI

φE

1√
ε

(3.36)

where φE is fixed as the field value for which either ε = 1 or η = 1, in other words, the field

value for which the SRA breaks down. In our models slow roll breaks down by the second

condition. Here and in the following we conservatively choose N = 60 for our predictions,

and this allows us to find the initial condition for φ.

We compare the predictions of our model and the CMB data for the spectral tilt and

the tensor-to-scalar ratio, which can be expressed in the SRA as

ns = 1 + 2η − 6ε (3.37)

r = 16ε (3.38)

respectively.

A generic potential for a pseudo-Goldstone boson would contain powers of periodic

functions, cφ = cosφ/f and sφ = sinφ/f , which we parametrize as

V (φ) = Λ4 (CΛ +
∑

n

αnc
n
φ + βns

n
φ) (3.39)

The derivatives of this potential are again proportional to the same periodic functions.

Roughly speaking, the flatness of the potential can be achieved in two ways. One possibility

is setting the argument, φ/f , to be very small (modulo 2π) as in the Natural Inflation

scenario. As the fluctuations of the inflaton can be large, this condition typically implies

f &Mp, hence spoiling the predictivity of the model.
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Model |β̃| = |β/α| β/|β| CΛ (pheno)

V = Λ4
(
CΛ + α cos φf + β sin φ

f

)
Like vanilla NI: no +/− CΛ =

√
α2 + β2

solution for f ≤Mp

V = Λ4

(
CΛ + α cos

φ

f
+ β sin2 φ

f

)

= Λ4

(
C̃Λ + α cos

φ

f
− β cos2 φ

f

) . 1/2 +
CΛ = α

C̃Λ = α+ β

V = Λ4

(
CΛ + α sin2 φ

f
+ β sin2 φ

f
cos2 φ

f

)

= Λ4

(
C̄Λ − α cos2 φ

f
+ β sin2 φ

f
cos2 φ

f

)

= Λ4

(
CΛ + (α+ β) sin2 φ

f
− β sin4 φ

f

)

= Λ4

(
C̄Λ + (β − α) cos2 φ

f
− β cos4 φ

f

)

. 1/2 +
CΛ = α

C̄Λ = 2α

Table 3.1: Goldstone models for inflation: Trigonometric inflationary potentials, grouped by equi-

valence upon a rotation in parameter space.

Another possibility, and that is what we pursue here, is to look for models with f < Mp,

which in turn implies that two oscillating terms contribute to the flatness of the potential.

This may seem like it would introduce fine-tuning in the model, but in the next section

we quantify that tuning, finding it is milder than e.g. Supersymmetry with TeV scale

superpartners.

Note that different models are equivalent from a cosmological perspective and can be

transformed into each other by a rotation in parameter space. We list these redefinitions

of the parameters and the cosmological constant in Table 3.1 as well.

In the limit that the ratio β̃ = β/α is ±1/2, the potential is exactly flat at the origin

and the spectrum is scale-invariant, i.e. ns = 1 as shown in Fig. 3.2.

As the Planck data indicates a small deviation from scale invariance, we expect a small

deviation of β̃ with respect to 1/2. We find that the smaller f compared to Mp, the closer

β̃ must be to the values in the table. The deviation δβ̃ = 1/2− β is then

1× 10−2

(
f

Mp

)2

< δβ̃ < 2× 10−2

(
f

Mp

)2

(3.40)

for all models in the table, but most importantly the model motivated in the previous

section (3.34).

This is the range of β̃ for which the model is compatible with the Planck data, as we

plot in Fig. 3.3. for the well motivated example V = Λ4
(
CΛ + α cosφ/f + β sin2 φ/f

)
.

Our models predict negligible tensors, so the measurement of r imposes no constraint on
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Figure 3.2: Form of the potential: Shape of the potential for β̃ = ±1/2 respectively. Different

values will interpolate between these extreme cases. We show the shape of the vanilla NI (3.2) for

comparison. The height of the potential is normalised to Λ.

β̃. In fact, the tensor to scalar ratio will scale as

r ∝
(
f

Mp

)4

(3.41)

such that the lower the symmetry breaking scale, the smaller the predicted tensor modes

are.

The scale of inflation can be found from the amplitude of the scalar power spectrum,

as measured by Planck [83],

As =
Λ4

24π2M4
p ε

=
e3.089

1010
(3.42)

where ε = r/16 is the first slow roll parameter. For our case this implies

Λinf ≈ 1015

(
f

Mp

)
GeV. (3.43)

It is seen that Λinf is expected to be of order of the GUT scale, but can be lower if we

allow for tuning. The symmetry breaking should occur before the onset of inflation, and

therefore the scale f is expected to lie in the interval Λinf < f < Mp. Indeed, from the

above relation, it is seen that Λinf ≈ 10−3f . Lowering the scale f as a result of more

tuning thus directly results in lowering the scale inflation; for example, the model predicts

f ≈ MGUT → Λinf ≈ 1012 GeV for δβ̃ ≈ 10−6. We will quantify the tuning in the model

more precisely in the next section.
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f=1., 100% tuning

f=.9, 81% tuning

f=.8, 63% tuning

f=.5, 25% tuning
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Figure 3.3: Model predictions: Parameters ns and r plotted against the Planck 2015 data [83] for

the model (3.34) for f = Mp (red upper bound). For lower values f < Mp, r → 0 (shaded region).

3.3.1 Fine-tuning

One may note that the specific relationship between α and β in the model described

above requires one to fine-tune it. Here we quantify the amount of fine-tuning that one

will typically expect.

Defining tuning as is customary in Particle Physics [105,106], we have

∆ =

∣∣∣∣
∂ log ns

∂ log β̃

∣∣∣∣ =

∣∣∣∣∣
β̃

ns

∂ ns

∂β̃

∣∣∣∣∣ ≈ [1.02− 1.05]

(
f

Mp

)−2

(3.44)

This relation is not unexpected because for large f > Mp the potential will very flat

over a large field range ∆φ, and this flatness is not sensitive to the specific value of β̃. For

f < Mp one needs a (partial) cancelation in α and β, at the cost of fine-tuning.

Then we can define the percentage of tuning as

Percentage tuning =
100

∆
% ≈ 95

(
f

Mp

)2

%

It is seen in particular that if we take the upper bound f = Mp seriously, the minimal

tuning is at 95%. In Fig. 3.4 we plot the tuning ∆ as defined in (3.44) for the model at

hand, (3.3). It is seen that for Mp/10 . f < Mp one expects no tuning below the percent

level. One should note that f < 10−2Mp ≈ MGUT is not expected, as the symmetry

breaking pattern should occur before the onset of inflation.

One can compare this amount of tuning with the one required to avoid the de-

stabilization of the electroweak scale in Supersymmetry. For example, stops at 1 TeV
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require a much worse fine-tuning, at the level of 1% [107].

It is also noteworthy that the tuning necessary in the other models in Table 3.1 will

be very similar to the tuning in V = Λ4
(
CΛ + α cosφ/f + β sin2 φ/f

)
.

10-2 10-1 1
102

103

104

100

10-1

10-2

f

Mp

D %

Figure 3.4: Tuning: The parameter ∆ as defined above for V = Λ4
(
CΛ + α cosφ/f + β sin2 φ/f

)
.

Outside of the pink zone the spectral index ns predicted by the model is incompatible with the

Planck data (ns < .948 above the region, ns > .982 below).

3.3.2 Non-Gaussianity and its relation to Goldstone scattering

Even before switching on the Coleman Weinberg potential, Goldstone bosons interact

with themselves through higher-order derivative terms. Indeed, consistent with the shift

symmetry, one can write terms containing a number of derivatives of the field,

L =
∑

n

cn
f2n−4

Xn, with X =
1

2
∂µΣ ∂µΣ† (3.45)

The first order term (n = 1) is the usual kinetic term, whereas any other term (n > 2)

would involve interactions of 2n pions. This expansion is called in the context of Chiral

Perturbation Theory [108–110] as order O(pn) in reference to the number of derivatives

involved. Goldstone self-interactions appear at order O(p4).

Alongside the Coleman-Weinberg potential we derived in the previous section, the de-

rivative self-interactions are relevant for inflation as well, as a nontrivial speed of sound

arises from a non-canonical kinetic term. Specifically, the sound speed is a parameterisa-

tion of the difference of the coefficients of the spatial and temporal propagation terms for

the Goldstone bosons φ:

L 3 (∂tφ)2 − c2
s(∂iφ)2 (3.46)
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This difference arises from higher dimensional kinetic terms Xn and the fact that inflation

breaks Lorentz invariance. This can of course already be seen from the metric,

ds2 = (dt)2 − a(t)2(dxi)
2 → g00 6= gii (3.47)

The speed of sound is then given by

c2
s =

(
1 + 2

XLXX
LX

)−1

(3.48)

where LX and LXX denote the first and the second derivative of the Lagrangian with

respect to X respectively, and where cs is expressed in units of the speed of light. It is im-

mediately seen that models with a canonical kinetic term predict cs = 1. The background

equations of motion can be used to relate coefficients to the Hubble expansion parameter,

XLX = ḢM2
p ≈ c1f

4 (3.49)

To second order, the kinetic term will have the form7

L2 =
M2
p Ḣ +M2

p Ḣ(cs − 1)

f4
(∂tφ)2 =

M2
p Ḣcs

f4
(∂tφ)2 (3.50)

Canonically normalising the kinetic term thus implies,

f4 = 2ḢM2
p cs (3.51)

These higher order derivatives are also constrained by arguments of unitarity, analyti-

city and crossing symmetry of Goldstone scattering amplitudes such as shown in Fig. 3.5,

φ(p1)φ(p2)→ φ(p3)φ(p4) . (3.52)

This scattering amplitude must be a function of the Mandelstam parameters s, t and u,

e.g. s = (p1 + p2)2 = (p3 + p4)2.8 This amplitude A(s, t, u) must be analytical in the

complex s plane, except for branch cuts (due to unitarity) and isolated points (due to

the possible exchange of a resonance) [113–116]. Unitarity then implies the existence of

a branch at some position s > s0. Similarly, other branch crossings can be obtained by

using crossing symmetry. Using these arguments, one can show that the amplitude would

be non-analytical for s > 4m2
φ, where mφ is the mass of the pseudo-Goldstone. Moreover,

analiticity restricts the dependence of the amplitude on s, namely

d2

ds2
A(s, t, u) > 0 (3.53)

7Here we use the expansions L ∈ (XLX + 2X2LXX)(∂tφ)2/f4 and cs − 1 ≈ XLXX
LX

.
8In this simplified analysis we have neglected the curvature of space-time. Various issues related to the

curvature, and the relevant assumptions one should make to obtain the positivity constraint were discussed

in [111] and [112].
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Figure 3.5: Sound speed: Predictions for c2 x. In dark grey the Planck bound; the shaded region

indicates the perturbativity bound. The continuous lines are the predictions for c2 > 0, which is

relevant for our model as discussed in the text. We also indicate the hypothetical situation c2 < 0

with dashed curves. It is seen that the prediction approaches the asymptote cs = 1/
√

3 for large

c2, as expected from (3.55). Note that we plot against the absolute value |c2|x.

where s, t and u are restricted to the physical region, e.g. s 6 4m2
φ. This translates into

bounds for the coefficients of the Lagrangian in (3.45). At leading order in the Goldstone

interactions,

L(p4) = c2f
−4(∂µφ

†∂µφ)2 (3.54)

the aforementioned conditions lead to a bound for c2. In particular, c2 must be positive

and larger than some function of the Goldstone mass. 9

The positivity of c2 constrains possible deviations from the speed of sound in the model

with Goldstone inflatons. Indeed,

cs =

(
1 + 2

2c2X

f2 + 2c2X

)−1/2

=

(
1 + 2

2 c2x

1 + 2 c2x

)−1/2

(3.55)

Where we have defined the dimensionless parameter x = X/f2. As X ∼ p2, we expect the

effective theory to be valid up to

X ≤ (4πf)2 or x ≤ (4π)2 (3.56)

The current bound by Planck is cs > .024 [83]. In Fig. 3.5 one can see how for positive

c2 the speed of sound is in agreement with Planck for any value of c2 x.

9Note that c2 in the case of two- and three-flavour QCD have been computed, assuming that its

dominant contribution comes from vector meson exchange [117, 118] or with the inclusion of scalar and

pseudo-scalar resonances [76]
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As mentioned above, the sound speed is also constrained by arguments of (perturbat-

ive) unitarity. The scale at which violation of perturbative unitarity occurs was computed

by Ref. [119] (and corrected in [120]) from imposing partial wave unitarity in the quartic

interaction, and reads,

Λ4
u =

24π

5

(
2M2

p |Ḣ|c5
s

1− c2
s

)
(3.57)

We are in particular concerned with how Λu relates to the symmetry breaking scale f .

If Λu < f , the action needs a completion below the symmetry breaking scale, possibly

in terms of strongly coupled dynamics or new low-energy physics. The effective theory

is therefore no longer a good description. One may thus consider a critical sound speed

(cs)∗, defined by [120]

Λ4
u =

24π

5

(
2M2

p |Ḣ|(cs)5
∗

1− (cs)2
∗

)
= f4 (3.58)

For cs > (cs)∗ our model predicts Λu > f . Canonically normalising using (3.51), we have

24π

5

(
(cs)

4
∗

1− (cs)2
∗

)
> 1 (3.59)

This theoretical lower bound is also shown in Fig. 3.5 for different values of x (subject

to (3.56)). One can see how, once axiomatic conditions from Goldstone scattering are

imposed, the inflaton evades both bounds.

The speed of sound is related to non-Gaussianity by

feqNL ∼
1

c2
s

(3.60)

One does not expect significant contributions to non-Gaussianity from the non-derivative

terms in the potential, as they will be slow-roll suppressed.

It is worth noting that a deviation from one in the speed of sound will modify the

tensor to scalar ratio [120]

r = 16εcs (3.61)

The predictions for r will in this case be lowered, but as the Planck bound is consistent

with r = 0, this is only to the merit of models with a pGB inflaton.

3.4 Link to UV models

We saw above that the model (3.3) gives inflation compatible with the CMB data for

particular relations between the coefficients. Here we discuss what these relations indicate

for the UV theory.
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Firstly, we noticed that to have the right shape of the potential, we should require β

to be positive, that is

β =

∫
d4pE

(2πΛ)4

(
3(N − 2)

4

ΠA
1

ΠA
0

− 2Nc
M2

p2
EΠL

0 ΠR
0

)
> 0 (3.62)

Then we saw in Table 3.1 that the requirement of a sufficiently flat potential gives the

condition α ≈ 2β, which will give a relation between the form factors of the form

α = −2Nc

∫
d4pE

(2πΛ)4

(
ΠL

1

ΠL
0

− ΠR
1

ΠR
0

)

= 2

∫
d4pE

(2πΛ)4

(
3(N − 2)

4

ΠA
1

ΠA
0

− 2Nc
M2

p2
EΠL

0 ΠR
0

)
= 2β (3.63)

Lastly we have that the phenomenological condition V (φmin) = 0 gives a preferred

value of the constant CΛ in terms of the model parameters. In explicit models this will

give a condition of the form10

α = −2Nc

∫
d4pE

(2πΛ)4

[
ΠL

1

ΠL
0

− ΠR
1

ΠR
0

]
= CΛ (3.64)

where CΛ is a cosmological constant during inflation.

To obtain explicit expressions for the form factors ΠX one would need a UV-complete

theory. However, using the relations above we can make some general remarks about their

large momentum behaviour. First, we can use an operator product expansion to find the

scaling of Π1. This implies that Π1 scales as 〈O〉/pd−2, where O is the lowest operator

responsible for the breaking G → H, with mass dimension d. In our case, we expect O
to be a fermion condensate with d = 6. Secondly we can require finiteness of the fermion

Lagrangian (3.27). The scaling of the other form factors can be found by consideration of

the kinetic terms in the high momentum limit. We will discuss this in the next section.

We summarise our conclusions in Table 3.2.

In the next section we will assume a light resonance connection to derive more specific

conclusions in this approximation.

3.5 Light resonance connection

In this section we attempt to derive some of the properties of the UV theory, assuming

that the integrated-out dynamics is dominated by the lightest resonances of the strong

sector.
10Note that in some models CΛ will be related to α± β ≈ 3/2α, as is seen in Table 3.1.
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Form factor Large momentum behaviour Argument

Π1 ∼ 〈O〉/pd−2 = 1/p4 OPE coupling

Π0 ∼ p2 Recovering the bosonic Lagrangian

Πr
1 ∼ 1/p6 OPE coupling

Πr
0 ∼ p0 Recovering the fermion Lagrangian

M r ∼ 1/p2 OPE coupling

Table 3.2: Connection to the UV theory: Scaling of the form factors derived from an operator

product expansion and symmetry restoration at high energies.

To simplify what follows, we note that the form factor M in equation (3.29) is ‘nat-

urally’ small in the ’t Hooft sense [11]. This is because in the limit M → 0 we have an

enhanced U(1)L × U(1)R global symmetry under which ψL and ψR transform with inde-

pendent phase-rotations. Therefore in the following we will assume that the dominant

contributions to α and β come from the Πi
0,1 form factors. Note that this observation

makes it very plausible that condition (3.62) is satisfied.

Note that to ensure a convergent behaviour of the form factors at high scales Q2, one

would have to introduce an amount of resonances to saturate the Weinberg sum rules. The

minimum number of resonances depends on the behaviour of the form factor with Q. This

behaviour is described in the previous section. The convergence of these form factors in

the large-Q regime is not a necessary condition for a generic model of strong interactions,

but rather helps on describing the interpolation between the low-energy regime of the

theory with an asymptotically free UV theory (provided this is the case).

Irrespective of these issues of interpolation with the UV behaviour, one can consider

a spectral decomposition of the form factor. A common description, valid for a SU(N)

gauge sector in the large-N limit is form factors as infinite sums over narrow resonances

of the strong dynamics [78,79,121]. In the following, we assume that the Πi
1 form factors

can be well approximated by considering only the contribution from the lightest of these

resonances.

We expect that Πi
1 has a pole at the mass of the lightest resonance m2

i , and that the

residue of this pole is equal to the square of the amplitude to create the resonance from

the vacuum. This amplitude, fi, is equivalent to the decay constant of the resonance. This

leads us to the following approximation for the fermionic Πi
1:

Πi
1(p2) =

f2
i

p2 +m2
i

. (3.65)
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In the gauge case, this expression is modified to

1

p2
ΠA

1 (p2) =
f2

p2
+

f2
A

p2 +m2
A

, (3.66)

which now has a pole at p2 = 0, since the broken SO(N)/SO(N − 1) currents can excite

the Goldstones from the vacuum [24].

We approximate the Π0 form factors with their tree level values. By inspecting (3.7)

and (3.27), we see that to recover the tree level fermion and gauge Lagrangians we must

have Π0 = 1 in the fermionic case, and Π0 = p2/g2 in the gauge case, where g is the gauge

coupling.

Let us study the minimal model we can construct that leads to successful inflation.

We will only need one external fermion – in this case we take the ψR of Sec. 3.2. Then α

and β will be given by

α = 2Nc

∫
d4p

(2πΛ)4

(
ΠR

1

ΠR
0

)
, β =

3(N − 2)

4

∫
d4p

(2πΛ)4

(
ΠA

1

ΠA
0

)
. (3.67)

Now we assume that ΠR
1 and ΠA

1 are given respectively by (3.65) and (3.66). With a single

resonance, we cannot guarantee convergence of the integrals in (3.67) – generally this can

be done by introducing more resonances and demanding that the form factors satisfy

Weinberg sum rules [122, 123]. However we can argue that, since our effective theory is

only expected to be valid up to a scale ΛUV = 4πf , we should cut off the momentum

integrals at p2 = Λ2
UV .

Putting all this together, we find:

α =
a

8π2Λ4

∫ Λ2
UV

0
dp2 p2f2

R

p2 +m2
R

=
af2

R

8π2Λ4

[
Λ2
UV −m2

R log

(
m2
R + Λ2

UV

m2
R

)]
, (3.68)

where a = 2Nc, and

β =
bg2

8π2Λ4

∫ Λ2
UV

0
dp2f2 =

b g2

8π2

[
Λ2
UV f

2 + Λ2
UV f

2
A − f2

Am
2
A log

(
m2
A + Λ2

UV

m2
A

)]
, (3.69)

where b = 3(N − 2)/4.

The approximate relation α ' 2β then implies a relationship between the parameters

of the UV theory. If we demand that the quadratic cutoff dependence cancels, we obtain

the relation

af2
R = 2bg2(f2 + f2

A), (3.70)

and

af2
Rm

2
R log

(
m2
R + Λ2

UV

m2
R

)
= 2bg2f2

Am
2
A log

(
m2
A + Λ2

UV

m2
A

)
. (3.71)
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Inserting (3.70) into (3.71) we obtain

2bg2f2
A

af2
R

=
f2
A

f2 + f2
A

=
m2
R log[(m2

R + Λ2
UV )/m2

R]

m2
A log[(m2

A + Λ2
UV )/m2

A]
, (3.72)

which implies that mR < mA.

If fA � f , one finds that mR ' mA, i.e. there would be a degeneracy between

fermionic and bosonic resonances. Note that this condition will be satisfied no matter

the scale factor between α and β is, as long as they are proportional, α ∝ β. This kind

of mass-matching situation [124–126] where resonances from different sectors acquire the

same mass is reminiscent of what had been found in trying to build successful Technicolor

models, namely Cured Higgsless [127,128] and Holographic Technicolor [129,130] models.

3.6 Discussion and conclusions

The framework of slow-roll inflation has been corroborated to a good precision by the

Planck data. This framework, however, suffers from an inflationary hierarchy problem,

namely the strain of providing sufficient inflation while still satisfying the amplitude of the

CMB anisotropy measurements. This balancing act requires a specific type of potential,

with a width much larger than its height.

This tuning is generically unstable unless some symmetry protects the form of the

potential. In this paper we explored the idea that this potential could be related to the

inflaton as a Goldstone boson, arising from the spontaneous breaking of a global symmetry.

Another issue for inflationary potentials, including Goldstone Inflation, is that they

are only effective descriptions of the inflaton physics. With the inflationary scale relat-

ively close to the scale of Quantum Gravity, one expects higher-dimensional corrections

to the inflationary potential. These corrections would de-stabilise the inflationary poten-

tial unless the model is small-field [131, 132]. In other words, as the inflaton field value

approaches Mp the Effective Theory approach breaks down.

We found out that in Goldstone Inflation a predictive effective theory is indeed possible,

and it leads to specific predictions. For example, in single-field inflation, we computed the

most general Coleman-Weinberg inflaton potential and learnt that 1.) Only the breaking

of SO(N) groups provide successful inflation and 2.) fermionic and bosonic contributions

to the potential must be present and 3.) for fermions in single-index representations, a

successful inflaton potential is given uniquely by V = Λ4(CΛ + α cos(φ/f) + β sin2(φ/f)),

with α ≈ 2β. When linking to UV completions of Goldstone Inflation, we have been

able to show how relations among the fermionic and bosonic resonances are linked to the
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flatness of the potential.

As we have developed a specific model for inflation, we were able to address the amount

of tuning required to make it work, and found that it is not dramatic. Indeed, we found

that the tuning is milder than that found in Supersymmetric models nowadays.

Another advantage of this framework is the ability to examine the higher-order derivat-

ive terms in the Goldstone Lagrangian from several different points of view: modifications

of the CMB speed of sound, constraints from unitarity and also axiomatic principles from

Goldstone scattering.

We have presented results in a rather generic fashion and for single-field inflation, and

delegated to the appendices a discussion of a specific model of single-field inflation, and

few examples of hybrid inflation which originate from this framework.

There are other aspects of Goldstone Inflation which deserve further study. For ex-

ample, in these models, hybrid inflation and reheating are quite predictive as the inflaton

and waterfall fields come from the same object and naturally the inflaton can decay to

other, lighter pseudo-Goldstones. Moreover, there may be interesting features of the phase

transition causing the spontaneous breaking of the global symmetry, which we plan to in-

vestigate.
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Appendix A: Successful patterns of breaking: an example of

single field

The simplest instance of the general model outlined in Section 3.2 takes the global sym-

metry of the strong sector to be SO(3), breaking to SO(2).11 This gives rise to two

Goldstone bosons, one of which is eaten when we gauge the remaining SO(2) symmetry.

We parameterise the Goldstones via:

Σ(x) = exp(iT âφâ/f)Σ0, (3.73)

11This coset was also studied in the context of inflation in [133].
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with â = 1, 2. We can take the generators of SO(3) to be

T 1 =
i√
2




0 0 0

0 0 −1

0 1 0


 , T 2 =

i√
2




0 0 1

0 0 0

−1 0 0


 , T 3 =

i√
2




0 −1 0

1 0 0

0 0 0


 . (3.74)

The broken generators satisfy T âΣ0 6= 0. If, following Sec. 3.2, we take Σ0 to be

Σ0 =




0

0

1


 , (3.75)

then T 1 and T 2 are the broken generators. T 3 remains unbroken, and will generate the

SO(2) gauge symmetry. A suitable gauge transformation then allows us to set φ1 = φ,

φ2 = 0, and we can write

Σ =




sin(φ/f)

0

cos(φ/f)


 . (3.76)

Following (3.7) the effective Lagrangian for the SO(2) gauge boson is

Leff =
1

2
(PT )µν

[
ΠA

0 (p2)A3
µA

3
ν Tr{T 3T 3}+ ΠA

1 (p2)A3
µA

3
νΣTT 3T 3Σ

]
, (3.77)

=
1

2
(PT )µν

[
ΠA

0 (p2) +
1

2
ΠA

1 (p2) sin2(φ/f)

]
A3
µA

3
ν . (3.78)

This leads to the Coleman-Weinberg potential

V =
3

2

∫
d4p

(2π)4
log

[
1 +

1

2

ΠA
1

ΠA
0

sin2(φ/f)

]
. (3.79)

Now we embed a fermion in an SO(3) spinor:

ΨL =


ψL

0


 . (3.80)

The gamma matrices of SO(3) can be taken to be the Pauli matrices σa. Thus the most

general effective Lagrangian for the fermion is

Leff = ΨL/p
[
ΠL

0 (p) + ΠL
1 (p)σaΣa

]
ΨL. (3.81)

We find that

σaΣa =


cos(φ/f) sin(φ/f)

sin(φ/f) − cos(φ/f)


 , (3.82)
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so

Leff = ΨL/p
[
ΠL

0 (p) + ΠL
1 (p) cos(φ/f)

]
ΨL, (3.83)

from which we derive the Coleman-Weinberg potential:

V = −2Nc

∫
d4p

(2π)4
log

[
1 +

ΠL
1

ΠL
0

cos(φ/f)

]
. (3.84)

Combining both gauge and fermion contributions, and expanding the logs at first order,

we obtain

V (φ) = α cos(φ/f) + β sin2(φ/f), (3.85)

where

α = −2Nc

∫
d4p

(2π)4

(
ΠL

1

ΠL
0

)
, β =

3

4

∫
d4p

(2π)4

(
ΠA

1

ΠA
0

)
. (3.86)

Appendix B: Successful patterns of breaking: an example of

hybrid inflation

We can also construct models in which more than one physical Goldstone degree of freedom

is left in the spectrum. This can be done by only gauging a subgroup of the unbroken

SO(N − 1) symmetry. Let us look briefly at a simple example of such a model, in which

we take the global symmetry breaking to be SO(5)→ SO(4). In such a case we have four

Goldstone bosons, and Σ is given by

Σ =
sin(φ/f)

φ




φ1

φ2

φ3

φ4

φ cot(φ/f)




, (3.87)

where we have φ =
√
φâφâ, as before.

If we gauge only SO(2) ∈ SO(4), taking for instance the gauged generator to be

T 1
g =

i√
2




0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




, (3.88)

then the gauge freedom allows us to set φ4 = 0.
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φ1,2,3

φ1,2,3

φ1,2,3

φ1,2,3

φ1

φ1

φ2,3

φ2,3

Figure 3.6: Goldstone quartic interactions

Following the same steps as before, the effective Lagrangian for the gauge field will be

Leff =
1

2
(PT )µν

[
ΠA

0 (p2) +
1

2
ΠA

1 (p2)

(
φ1

φ

)2

sin2(φ/f)

]
AµAν . (3.89)

If we, as in Appendix 3.6, consider the contribution from a single left-handed fermion,

now embedded in an SO(5) spinor like so:

ΨL =




ψL

0

0

0



, (3.90)

then in fact the effective fermion Lagrangian will still be given by (3.83). Thus the

Coleman-Weinberg potential will be given by

V (φ) = α cos(φ/f) + β

(
φ1

φ

)2

sin2(φ/f), (3.91)

with α and β given by

α = −2Nc

∫
d4p

(2π)4

(
ΠL

1

ΠL
0

)
, β =

3

4

∫
d4p

(2π)4

(
ΠA

1

ΠA
0

)
. (3.92)

If we expand the trigonometric functions for small field excursions, we obtain, up to

constant terms:

V (φ1, φ2, φ3) =
1

f2

(
β − α

2

)
φ2

1 −
α

2f2

(
φ2

2 + φ2
3

)
+

1

f4

(
α

24
− β

3

)
φ4

1

+
α

24f4

(
φ4

2 + φ4
3

)
+

1

f4

(
α

12
− β

3

)(
φ2

1φ
2
2 + φ2

1φ
2
3

)
+

α

12f4
φ2

2φ
2
3 +O

(
φ6

f6

)
. (3.93)

We see that the three Goldstones have masses

m2
1 = β − α/2 , m2

2 = m2
3 = −α/2, (3.94)

and we have, among others, the quartic interactions shown in Fig. 3.6.
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We can remove another of the Goldstone fields by gauging a further generator of SO(2).

For instance, if we gauge

T 2
g =

i√
2




0 0 −1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, (3.95)

then the potential will be exactly as in (3.93), with φ3 set to zero. We must also replace

β → 2β, since the potential now receives contributions from two gauge bosons.

We note further that if instead we gauged the generator

T 2
g =

i√
2




0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0




, (3.96)

then we obtain

V (φ) = α cos(φ/f) + β

(
φ2

1 + φ2
2

φ2

)
sin2(φ/f) = α cos(φ/f) + β sin2(φ/f), (3.97)

which is symmetric in φ1 and φ2.
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Chapter 4

Composite Higgses with seesaw

EWSB

Abstract

We introduce a new class of Composite Higgs models in which electroweak symmetry

is broken by a seesaw-like mechanism. If a global symmetry is broken sequentially at

different scales, two sets of pseudo-Goldstone bosons will arise, one set being typically

heavier than the other. If two Composite Higgs doublets mix, then the mass-squared of

the lighter state can be driven negative, and induce EWSB. We illustrate with the example

SO(6) → SO(5) → SO(4), and derive an estimate of the light Higgs potential. We find

that the introduction of an extra scale can ease many of the tensions present in conventional

Composite Higgs models, especially those related to fine-tuning. In particular we find that

we can significantly raise the upper bound on the mass of the elusive top partners.
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4.1 Intoduction

The Composite Higgs paradigm offers a beautiful solution to the hierarchy problem of

Higgs physics. By suggesting that the Higgs is realised as a composite pseudo-Goldstone

boson, Composite Higgs (CH) models provide a dynamical origin of the electroweak scale

while protecting the Higgs mass from UV corrections. The existence of a new, strongly

coupled sector with resonances not far above the electroweak scale offers tantalising pro-

spects for new physics at the LHC and future colliders.

A central component of CH models is the idea of partial compositeness [23]. If Stand-

ard Model (SM) fermions couple linearly to strong sector operators, Yukawa terms can

be generated via the mixing of composite and elementary states. Partial compositeness

provides a compelling mechanism for the large hierarchy in the quark masses, while at the

same time evading flavour constraints [134,135].

There are however, important tensions within CH models; for instance the generic

requirement for top partners [136] lighter than the spin-one counterparts. This feature is

difficult to reconcile with arguments based on the large-Nc expansion [78, 79, 137], where

the expectation is indeed the opposite, namely ms=1/2/ms=1 ∼ O(Nc), as well as a naive

understanding of these resonances as bound states of techni-quarks.

This tension partly arises from the necessity of generating a negative mass-squared for

the Higgs, which is crucial for electroweak symmetry breaking (EWSB). This is usually

induced via loops of fermions [24]; of these, the top quark is expected to give the largest

contribution. Since the top quark is responsible for the mass of the Higgs, this results in a

relationship between the Higgs mass and the mass of the lightest top partner. In general, a

significant amount of tuning is required to lift the top partner mass much higher than a TeV

[138] (for further developments in CH model-building see [30, 38, 46, 47, 103, 139–145]; for

a discussion of CH phenomenology [146–157] and searches for top partners [44,158–172]).

In this paper we present a model that provides an entirely different means for the Higgs

to acquire a negative mass-squared. As was noted in [32], if a composite Higgs doublet

were to mix with an elementary scalar doublet, diagonalisation of the mass matrix could

lead to a negative mass-squared for one of the resulting physical eigenstates.1 Of course,

introducing a new elementary scalar will inevitably lead to a new hierarchy problem,

of the kind we are trying to avoid. We propose a new class of models in which the

extra doublet is also composite, and arises as a pseudo-Goldstone boson from another

1A similar mechanism for obtaining a negative Higgs mass-squared from the mixing of two doublets has

also been explored in supersymmetric contexts, for instance [173].



59

spontaneous symmetry breaking. We propose that the dynamics of the strong sector are

such that its global symmetry G is broken successively: G → H1 → H2. If the breakings

occur at different scales, or if there are different sources of explicit symmetry breaking

(see Section 4.3), the mass of one of the doublets can be significantly higher than the

other. Assuming the strong sector dynamics generate a linear coupling between the two,

then the heavy doublet can drive the mass of the lighter state negative, via a seesaw-like

diagonalisation of the mass matrix.

We present one realisation of this class of models, in which the symmetry breaking has

the appealing structure SO(6)→ SO(5)→ SO(4). As is known from the minimal [19,174]

and next-to-minimal [28] CH models, both breakings can give rise to a doublet of a gauged

SU(2)L ⊂ SO(4). As we show, the mixing of these doublets can lead to a negative mass-

squared for the lighter eigenstate, which in turn can break the same SU(2)L electroweak

symmetry.

We also find that, if one wants to retain partial compositeness as a means to generate

quark masses, a setup can be constructed in which the mass of the light Higgs is no longer

tied to the masses of the top partners. The top partners can comfortably be accommodated

at or close to the scale of the first breaking, significantly raising the upper bound on their

masses.

The paper is structured as follows. In Section 4.2, we specify the general outline for

this class of models. In Section 4.3 we work through the SO(6→ 5→ 4) model in detail,

deriving an estimate for the Higgs potential by integrating out the heavy doublet at tree

level. In Section 4.4, we give the modifications to the gauge-Higgs couplings, and how

they differ to the results obtained in conventional CH models. In Section 4.5, we discuss

the generation of quark masses, and explain how this class of models can relax the bounds

on top partner masses. In Section 4.6 we review our findings.

4.2 Seesaw symmetry breaking

At high scales we assume that the strong sector has a global symmetry G. The global

symmetry undergoes two successive spontaneous breakings at different scales: G breaks to

H1 at scale F1, and H1 breaks to H2 at scale F2. The minimal requirement on these groups

is that both the broken G/H1 and the H1/H2 cosets each contain four Goldstone bosons

that transform as bidoublets of a custodial SU(2)L×SU(2)R ∈ H2. The SU(2)L subgroup

will eventually become the electroweak gauge group of the Standard Model. Extending

this picture to accommodate hypercharge is straightforward as discussed elsewhere [24].
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We denote the doublet coming from the first breaking H, and the second doublet h.

After the first breaking, the spectrum consists of the doublet H, which can acquire a

Coleman-Weinberg potential via radiative corrections from SM gauge bosons and fermions

[26]. We expect H to acquire a mass

m2
1 ∼

g2
1F

2
1

(4π)2
≡ f2

1 (4.1)

where g1 represents a coupling which breaks explicitly the symmetry G (a gauge coupling,

for instance). Note that we define the reduced scale f1, the typical mass scale of the pseudo-

Goldstones. After the second breaking, the light doublet h appears in the spectrum, which

acquires a CW potential and gets a mass m2
2 ∼ f2

2 , where f2 = g2F2/(4π), as before. Both

potentials arise via the Coleman-Weinberg mechanism, at different scales. Note also that

if the UV theory contains other sources of explicit breaking (for instance, a fermion mass

term), then the Goldstones could get further contributions to their mass (in analogy to

the pions in QCD).

If we assume that a bilinear coupling is generated between H and h:

Vmix =
µ2

2
H†h+ h.c. (4.2)

or some more generic function Vmix = Vmix (H,h), then, for µ2 > 2m1m2, diagonalisation

of the mass matrix 
 m2

1 µ2/2

µ2/2 m2
2


 (4.3)

will lead to a negative mass-squared for the lighter eigenstate. Therefore V (h) becomes

unstable at the origin, and electroweak symmetry will be spontaneously broken. In par-

ticular, in the limit where m2
1 � m2

2, the physical masses become

m2
h ≈ −

µ4

4m2
1

+m2
2, (4.4)

m2
H ≈ m2

1. (4.5)

Using a slight abuse of notation, we will continue to refer to the physical eigenstates as

H and h, which are ‘mostly’ the original states, provided m2/m1 is small. To obtain the

potential for the light Higgs, we need to integrate out the heavy state. We can do this

consistently at tree-level by solving the equations of motion for H and setting derivative

terms to zero (since the heavy particle is effectively non-propagating). This amounts to

solving
∂V1(H)

∂H†
+
∂Vmix (H,h)

∂H†
= 0, (4.6)
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for H, and an analogous expression for H†. Substituting back into the Lagangrian will give

a consistent approximation to the light Higgs potential. We illustrate with an example

in the next section, where we will also discuss the origin and expected size of the mixing

term.

4.3 SO(6→ 5→ 4)

In this section we study in detail a specific model, in which the symmetry breaking is

G → H1 → H2 = SO(6)→ SO(5)→ SO(4). (4.7)

The SO(6)/SO(5) coset consists of five Goldstone bosons, a doublet of SU(2) (the heavy

Higgs H) and a singlet, which we denote η [28]. The SO(5)/SO(4) coset contains just a

single doublet (the SM-like Higgs h).

We parameterise the Goldstone bosons using a non-linear Sigma model, following the

CCWZ formalism [21]. We choose the vacua:

〈Σ1〉 = (0, 0, 0, 0, 0, F1)T , 〈Σ2〉 = (0, 0, 0, 0, F2)T , (4.8)

so that the SO(6)/SO(5) Goldstones are parameterised by

Σ1 = exp(i(XaHa +X5η)/F1)〈Σ1〉, (4.9)

which, for an appropriate choice of generators (see Appendix), can be written

= F1
sin(H̃/F1)

H̃
(H1, H2, H3, H4, η, H̃ cot(H̃/F1))T , (4.10)

where H̃ =
√
H†H + η2. The SO(5)/SO(4) Goldstones are parameterised by

Σ2 = exp(iX̃aha/F2)〈Σ2〉 (4.11)

= F2
sin(h̃/F2)

h̃
(h1, h2, h3, h4, h̃ cot(h̃/F2))T , (4.12)

where h̃ =
√
h†h. With this parameterisation Σ1 and Σ2 transform as a 6 of SO(6) and

a 5 of SO(5) respectively. That is, they both transform in fundamental representations.

The SU(2)L doublets can be written

h =

(
h1 + ih2

h3 + ih4

)
, H =

(
H1 + iH2

H3 + iH4

)
. (4.13)

As the perceptive reader will note, the bilinear mixing term in equation (4.2) explicitly

breaks the shift symmetry acting on the Goldstone bosons, i.e. transformations of the form
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ha → ha + χa. This can only be justified if the UV completion contains explicit breaking

of both SO(6)/SO(5), the shift symmetry acting on H and η, and SO(5)/SO(4), the shift

symmetry acting on h. However, breaking SO(5)/SO(4) explicitly spoils the role of h as

a Goldstone boson, allowing it to get a (potentially large) mass.

We note that terms of the form

∆L = A(Σ2 ·H) +B(Σ2 ·H)2 + . . . , (4.14)

where H = (H1, H2, H3, H4, η) is a vector of SO(5) containing the first set of Goldstone

bosons, break only the SO(6)/SO(5) shift symmetry. We thus come to an important con-

clusion: In order to generate bilinear couplings between the two sets of Goldstone bosons,

the theory must contain explicit breaking of at least SO(6)/SO(5).

Breaking SO(6)/SO(5) allows us to write down explicit mass terms m2
HH

†H and

m2
ηη

2, but this is not problematic since a mass hierarchy between H and h is desirable.2

In the SO(5) invariant limit we expect mH = mη, but gauging SU(2)L ∈ SO(6) (as is

usual practice in composite Higgs models) means that H will get corrections to its mass

from loops of gauge bosons, while η will not [28].

This gauging of SU(2)L explicitly breaks the symmetry down to the custodial SO(4)

subgroup. Since H and η transform differently under SU(2)L, we should allow for the

possibility that their couplings to the light doublet h are modified. To this end we embed

H and η in different multiplets of SO(5), so that H4 = (H1, H2, H3, H4, 0) and H1 =

(0, 0, 0, 0, η). We then split up (4.14) into terms invariant under the unbroken SO(4):

∆L = A1(Σ2·H4)+A2(Σ2·H1)+B1(Σ2·H4)2+B2(Σ2·H1)2+2B3(Σ2·H4)(Σ2·H1), (4.15)

= A1F2
(H · h)

h̃
sh+A2F2ηch+B1F

2
2

(H · h)2

h̃2
s2
h+B2F

2
2 η

2c2
h+2B3F

2
2

(H · h)

h̃
ηshch, (4.16)

where sh = sin(h/F2) and ch = cos(h/F2). We recover SO(5) invariance in the limit where

A1 = A2, B1 = B2 = B3, and mH = mη. In this limit we expect that h should not be able

to acquire a potential from H and η, due to the SO(5)/SO(4) shift symmetry. We have

discarded any higher order terms since their contributions to the final Higgs potential will

be of order O
(
h6/F 6

2

)
.

2Note that this raises the possibility that the two symmetry breakings occur at the same scale, (i.e.

F1 = F2), since the explicit mass terms give us a different way of generating a mass hierarchy between mH

and mh.
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Without loss of generality, we can rotate h along the direction in which it is to get a

VEV, so that

h =

(
0

h̃

)
. (4.17)

Then the only part of H that couples to the light doublet will be H3, so from now on we

will simply redefine H3 ≡ H and h̃ ≡ h. Then ∆L can be written

∆L ≡ Vmix = A1F2Hsh +A2F2ηch +B1F
2
2H

2s2
h +B2F

2
2 η

2c2
h + 2B3F

2
2Hηshch. (4.18)

Comparing with the notation of the previous section, we see that the coefficient of the

linear coupling is µ2 = A1.

It is worth commenting on the expected sizes of the A and B terms. Their mass

dimensions are [A] = 2 and [B] = 0. From a naive EFT perspective, we expect O(1)

values for the dimensionless B parameters. How about the A terms? All the terms in

(4.15) explicitly break the SO(6) symmetry, so, assuming this explicit breaking has the

same source as the heavy doublet mass term, we might naively expect the dimensionful A

terms to be comparable in size to m2
H .

As we show in the appendix, the gauging of SU(2)L gives a sin2 potential to the light

h:

VCW (h) = m2
CWF

2
2 sin2(h/F2). (4.19)

Furthermore h gets corrections to its potential via tree level exchange of the heavy Higgs

and the singlet, for example:

H
h h +

H

h

h

h

h + ... (4.20)

To integrate out H, we follow the procedure outlined in the previous section: we solve

the equations of motion for H, setting derivative terms to zero, and substitute back into

the original potential.

Thus the equations of motion for H are approximately given by

∂V

∂H
= H

(
2m2

H + 2B1F
2
2 s

2
h

)
+A1F2sh + 2B3F

2
2 ηshch = 0, (4.21)
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which gives us our formal solution3 for H:

H = −A1F2sh + 2B3F
2
2 ηshch

2(m2
H +B1F 2

2 s
2
h)

. (4.22)

Substituting back into V :

V (η, h) = m2
ηη

2 +A2F2ηch +B2F
2
2 η

2c2
h −

(A1F2sh + 2B3F
2
2 ηshch)2

4(m2
H +B1F 2

2 s
2
h)

+ VCW (h). (4.23)

We can repeat the process to rewrite η in terms of h. We obtain the final Higgs

potential:

V (h) = −

(
A1B3F 3

2 s
2
hch

m2
H+B1F 2

2 s
2
h
−A2F2ch

)2

4
(
m2
η +B2F 2

2 c
2
h −

B2
3F

4
2 s

2
hc

2
h

m2
H+B1F 2

2 s
2
h

) − A2
1F

2
2 s

2
h

4(m2
H +B1F 2

2 s
2
h)

+ VCW (h). (4.24)

A nice feature of this potential, is that in the SO(5) invariant limit where A1 = A2,

B1 = B2 = B3 and mH = mη, the first two terms become constant, independent of h.

This is what we expect, since h can only get a potential through SO(5) violating effects.

To get a feel for the contributions to the Higgs mass, let us look at the simplified case

in which B1 = B2 = B3 = 0. In this case, the potential reduces to

V (h) =

(
A2

2

4m2
η

− A2
1

4m2
H

+m2
2

)
F 2

2 sin2(h/F2), (4.25)

plus constant terms independent of h. The contribution to the Higgs mass is

m2
h =

A2
2

4m2
η

− A2
1

4m2
H

+m2
CW . (4.26)

This is to be compared to equation (4.4). In this model specific equation, we see that the

presence of the singlet leads to positive contributions to the Higgs mass.

If we let δA = A1 −A2 and δm2 = m2
H −m2

η, then to first order in δA and δm2:

m2
h = − A2

2m2
η

δA+
A2

2

4m4
η

δm2 +m2
CW . (4.27)

The purpose of this equation is to show the relative sizes of the contributions. As was

mentioned earlier, we naively expect the A terms and the masses of the heavy Goldstones

to come from a common source of SO(6)/SO(5) breaking. Thus our naive expectation is

that
A2

m2
η

∼ O(1). (4.28)

The differences δA and δm2 come from the gauging of SU(2)L, and are therefore expected

to be of order

δA ∼ δm2 ∼ g2F 2
1 /(4π)2. (4.29)

3We should note at this point that integrating out H leads to a kinetic term for h that is not canonically

normalised. After h gets a VEV we must make a field redefinition, as discussed in Section 4.4.
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Figure 4.1: Plots of the light Higgs potential for different combinations of model parameters.

Left: In this case the heavy Goldstone mass comes out at 700 GeV. We choose A1 = 2mH and

δA ∼ (4mCW )2. Right: In this case the heavy Goldstone mass is 1.7 TeV. Again we choose

A1 = 2mH and δA ∼ (2mCW )2. In both cases we have taken B1 = 2, B2 = B3 = 1.

If F1 is not too far above F2 (or indeed if the two scales are equal), then the terms in

equation (4.27) are expected to be of comparable size. Thus no particular fine tuning is

required to obtain a negative Higgs mass which is small compared to F2.

Of course a pure sin2 potential, such as in equation (4.25), leads to a Higgs VEV at

v = (π/2)F2, which is not phenomenologically viable. Fortunately switching on the B

terms can increase the quartic coupling, and help to lower the VEV.

The scale of SO(6)/SO(5) explicit breaking, which determines the sizes of A1,2 and

m2
H,η, could in fact be large (> TeV). As we show in Fig. 4.1, a light Higgs with a realistic

VEV can still be obtained for mH,η ∼ 2.5 TeV, so long as the loop-induced δm2, δA

corrections are of order m2
CW . It is worth noting that the shape of the potential (including

the small value of the Higgs VEV) is reasonably robust, and it not hard to find values of

the parameters (obeying the expected scaling) that lead to a satisfactory potential.

4.4 Gauge couplings

As shown in the appendix, the effective Lagrangian for the gauge fields is

Lgauge =
1

2
(PT )µν

[
Π0(p2) +

1

4
F 2

1 Π1
1(p2)

H†H

H̃2
sin2(H̃/F1) +

1

4
F 2

2 Π2
1(p2) sin2(h̃/F2)

]
W a
µW

a
ν .

(4.30)

At low energies we expect Π0(0) = 0 and Π1,2
1 (0) = 1 [24]. To leading order in 1/F2,

we can get an approximate expression for H by expanding our formal solution up to first
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order in h:4

H =

(
− A1

2m2
H

+
A2B3F

2
2

2(m2
η +B2F 2

2 )m2
H

)
h ≡ −εh. (4.31)

Substituting this back in the gauge Lagrangian, we can estimate the effect that integrating

out H has on the couplings of the light Higgs to the SU(2) gauge bosons. Expanding

around the Higgs VEV:

Lgauge =
1

2
(PT )µν

[1

4

(
F 2

2 sin2 〈h〉
F2

+ F 2
1 sin2 ε〈h〉

F1

)

+
1

4

(
2F2 cos

〈h〉
F2

sin
〈h〉
F2

+ 2εF1 cos
ε〈h〉
F1

sin
ε〈h〉
F1

)
h

+
1

4

((
1− 2 sin2 〈h〉

F2

)
+ ε2

(
1− 2 sin2 ε〈h〉

F1

))
h2 + ...

]
W a
µW

a
ν .

(4.32)

Of course, making the replacement (4.31) leads to a correction ε2(∂µh
†)(∂µh) to the kinetic

term. Thus we must redefine h → h/
√

1 + ε2 in order that the physical Higgs field is

canonically normalised.

In the ‘Composite Higgs’ limit ε→ 0, we recover the well-known modifications of the

gauge-Higgs couplings:

gWWh = gSMWWh

√
1− ξ ≈ gSMWWh

(
1− ξ

2

)
, gWWhh = gSMWWhh(1− 2ξ), (4.33)

where now ξ = sin2(h/F2), since this is the value of the VEV that we infer from measure-

ment of the W and Z mass, which is slightly different to the true value of the Higgs VEV

〈h〉. The correction terms from integrating out H change these relations. For small values

of ξ and ε the relations are

gWWh = gSMWWh

(
1− ξ

2
(1− ε2)

)
, gWWhh = gSMWWhh

(
1− 2ξ(1− ε2)

)
. (4.34)

Thus we see that the corrections to the SM gauge couplings are generally smaller than

in ordinary Composite Higgs models, depending on the value of ε. This can be seen in

Figure 4.2 where we plot the value of κV ≡ gWWh/g
SM
WWh against ξ for different values of

ε.

4.5 Quark masses and top partners

An important question to ask is whether this mechanism can tell us anything about the

generation of quark masses. Assuming that quark masses are generated in the usual way,

4We use the equations of motion for H to first write H = H(η, h), then the equations of motion for η

to write H = H(η(h), h).
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Figure 4.2: κV plotted against ξ for different values of ε. The red band corresponds to a measure-

ment with 10% accuracy.

via linear couplings to composite fermionic operators (partial compositeness), can our

model modify the bounds on top partner masses?

An attractive consequence of our model is that we manage to induce electroweak

symmetry breaking without considering any fermionic contributions to the Higgs potential.

Usually fermionic contributions are required to generate a negative mass-squared for the

Higgs, but we achieve this via diagonalisation of a mass-mixing matrix. However it is

important to address the issue of quark masses within this context.

Let us first review how Yukawa couplings are generated in conventional CH models.

One can introduce the fermionic operators, T, T̃ , and allow them to have linear couplings

to the elementary top quarks, and well as their own mass terms [136]:

∆L = −(yLFtLTR + yRFtRT̃L)−m∗TTT −m∗T̃ T̃ T̃ . (4.35)

One then assumes that the strong dynamics generates a Yukawa-like coupling between the

composite operators

Lyukawa = Y hT T̃ + h.c. (4.36)

The top Yukawa is then interpolated via the following diagram:

TR

TL

h

tR

tL

∼ Y yLyR
F 2

mTmT̃

, (4.37)
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where mT ,mT̃ are the physical masses of the top partners. It can been shown that

the composite Yukawa Y is not in fact independent and is related to other dimensionful

parameters [136]:

Y ∼ m∗
T,T̃

/F. (4.38)

Thus the heavier the top partners, the larger must be yL,R in order to keep the top Yukawa

O(1).

However the couplings yL, yR are also related to the mass of the Higgs. In conventional

CH models the greatest contribution to the Higgs potential is the CW contribution from

the top quark, so we can relate the Higgs mass directly to yL,R:

m2
H '

Ncy
4

2π2
v2. (4.39)

where Nc is the number of QCD colours, and where y stands for either yL or yR. The

reason the mass is proportional to y4 and not y2 is that in order to achieve a realistic

VEV with ξ < 1 one is required to tune the contribution from the top quark such that

the leading order term (∼ y2
L,RF

2) is of the same order as the next-to-leading order term

(∼ y4
L,RF

2).

Combining (4.37), (4.38) and (4.39), one arrives at a relation between the Higgs mass

and the mass of the lightest top partner:

mH ∼
√
Nc

π

mtmT

F
, (4.40)

where mt is the mass of the top quark.

Insisting that the top partners are heavy is therefore in conflict with the requirement

that the Higgs is light compared to F . Models in which the top partners are much heavier

than a TeV tend therefore to be highly tuned.

This tension can be eased in our model. Let us assume that the top partners are

associated with the scale of the first symmetry breaking, F1. Equation (4.35) now reads

∆L = −(yLF1tLTR + yRF1tRT̃L)−m∗TTT −m∗T̃ T̃ T̃ . (4.41)

We assume that there is a Yukawa-like coupling between the heavy Higgs and the top

partners:

Lyukawa = YHHTT̃ , (4.42)

but that the corresponding Yukawa coupling between the light Higgs and the top partners

is suppressed. Now the top Yukawa is interpolated by the following diagrams:
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H
TR

TL

h

tR

tL

+
Hη

TR

TL

h

tR

tL

(4.43)

so that yt is given by

yt ∼
(

A1

2m2
H

− A2B3F
2
2

2(m2
η +B2F 2

2 )m2
H

)
YHyLyR

F 2
1

mTmT̃

= εYHyLyR
F 2

1

mTmT̃

, (4.44)

where ε is the same as in (4.31), and quantifies the degree of mixing between the heavy

and light Higgs doublets. Even if ε is small, we can arrange for an O(1) top Yukawa

provided the mixing terms yL,R are large enough. We are free to do this since the top

partner no longer couples directly to the light Higgs, and any corrections to m2
h appear

via its couplings to the heavy doublet.

We do not expect the heavy doublet to get a VEV, and we no longer need to fine tune

the leading order and next-to-leading order CW contributions against each other. The

CW contribution to the heavy Higgs mass is therefore given by

δm2
H ∼

Nc

16π2
y2F 2

1 . (4.45)

We would like to keep the Coleman-Weinberg loop expansion under perturbative control:

Nc

16π2
y2 < 1, (4.46)

so we do not expect mH to get corrections larger than F 2
1 . Assuming yt ' 1 we can find

a relation between δm2
H and mT :

δm2
H ∼

1

ε

Nc

16π2
mTF1. (4.47)

This puts an approximate upper limit on the top partner mass5

mT ≤ ε
16π2

Nc
F1. (4.48)

If the explicit masses of H and η are significantly higher than F 2
1 , then the corrections

received will not be so significant – although relation (4.47) suggests that it is unnatural

for the loop-corrected mass of H to be much lower than the mass of the top partner.

5Note that the ε → 0 limit is not physically relevant, since in this limit the heavy doublet decouples

and the top Yukawa cannot be generated via diagrams of the form (4.43).
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As we have already mentioned, a hierarchy between the two doublet masses is not

problematic. Our model permits the existence of heavier top partners than the usual CH

scenarios, since (as shown in Sec. 4.3 and Fig. 4.1) a light Higgs with a realistic VEV can

still be realised with H and η at the TeV scale. However a more thorough investigation

of the parameter space is perhaps warranted.

Another pleasing feature of our setup is that we manage to avoid the particularly

unnatural tuning mentioned earlier in this section – the need in CH models to tune the

second order term of the fermionic CW potential to be comparable in size to the leading

order term. In our model we can get a realistic Higgs mass together with a small value of

ξ simply by tuning the A and B parameters against one another. As shown in Section 4.3,

the tuning required is reasonably mild.

4.6 Discussion and conclusions

The two challenges facing Composite Higgs models are 1) generating a naturally light

Higgs, and 2) breaking electroweak symmetry in a phenomenologically viable way. Con-

ventional CH models attempt to address both of these issues by introducing a new scale

f , the scale of some spontaneous symmetry breaking that gives rise to a pseudo-Goldstone

Higgs boson. In order that the Higgs can fulfil its purpose and break electroweak sym-

metry, it needs to acquire a negative mass-squared. This is done by allowing loops of

fermions to generate a potential for the Higgs radiatively.

As is now well known, this procedure inevitably leads to the presence of light top

partners. Top partner searches at the LHC are now putting some of the strongest bounds

on CH models. Evading the constraints these null-results are putting on CH models

requires increasingly fine tuning, and thus 2) becomes in tension with 1) – we begin to

lose some of the naturalness of the light Higgs.

We address these tensions by introducing a new scale. The new scale provides us with

an entirely new mechanism by which the Higgs can acquire a negative mass-squared, and

significantly more freedom with which to address 2). In particular, the masses of the top

partners need no longer be tied to the mass of the Higgs.

In this paper, we have presented a detailed model, with the symmetry breaking struc-

ture SO(6 → 5 → 4). We have found that with minimal tuning this setup can lead

to a satisfactory Higgs potential with small values of ξ. We have also found that the

corrections to the Standard Model gauge couplings are generally milder than in conven-

tional CH models. Interestingly, this can help relax the bounds that the model faces from
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precise measurement of the gauge-Higgs couplings. For the same values of ξ, our model

can account for gauge couplings much closer to the SM values than the corresponding

conventional CH prediction.

In addition to this, the model has a rich phenomenology, with an extended Higgs

sector containing another doublet and a singlet, see e.g. [57, 175, 176] for the type of

phenomenological analyses one can perform. Finally, the flavour structure of the model in

particular deserves more detailed study, since it is clear that it can be quite distinct from

the conventional CH scenarios [177–181].

Appendix: The gauge Lagrangian

Generators of SO(6)

The basis for the SO(6) generators that we use in this paper are as follows:

• SU(2)L

T aLij = − i
2

[
1

2
εabc(δbi δ

c
j − δbjδci ) + (δai δ

4
j − δaj δ4

i )

]
, aL = 1, 2, 3, (4.49)

• SU(2)R

T aRij = − i
2

[
1

2
εabc(δbi δ

c
j − δbjδci )− (δai δ

4
j − δaj δ4

i )

]
, aR = 1, 2, 3, (4.50)

• SO(5)/SO(4)

X̃a = − i√
2

(δai δ
5
j − δaj δ5

i ) , a = 1, ..., 4, (4.51)

• SO(6)/SO(5)

Xa = − i√
2

(δai δ
6
j − δaj δ6

i ) , a = 1, ..., 5. (4.52)

Together these 15 generators comprise a complete basis.

Gauge effective Lagrangian

There are two effective Lagrangians of interest: those characterising the interactions of

both the G/H1 and the H1/H2 Goldstones with the SU(2)L gauge bosons. In the first

case, we want to write down a Lagrangian consistent with the SO(6) symmetry, in the

second case, the SO(5) symmetry. One can do this by first assuming that the entire global

symmetry is gauged. Then, for instance, the term in the effective Lagrangian for H is

1

2
(PT )µνΠ1

1(p2)Σ1AµAνΣ1, (4.53)
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where Aµ = AaµT
a, for all 15 generators T a of SO(6), and Π1

1(p2) is a scale-dependent

form factor. This term is SO(6) invariant. The explicit breaking comes from the fact that

we only gauge the SU(2)L subgroup, so we set all gauge fields other than those associated

with the SU(2)L generators to zero. It is not hard to show that the above expression then

becomes
1

2
(PT )µν

1

4
F 2

1 Π1
1(p2)

H†H

H̃2
sin2(H̃/F1)W a

µW
a
ν , (4.54)

with H̃ =
√
H†H + η2. Working through the same procedure for the H1/H2 Goldstones

gives the effective Lagrangian

1

2
(PT )µν

1

4
F 2

2 Π2
1(p2) sin2(h̃/F2)W a

µW
a
ν , (4.55)

with h̃ =
√
h†h. In both cases we can write down another term including only the gauge

fields:
1

2
(PT )µνΠ0(p2) Tr(AµAν) =

1

2
(PT )µνΠ0(p2)W a

µW
a
ν (4.56)

We could write down terms with higher powers of the fields, but it is only this these terms

which are relevant for the calculation of the 1-loop Coleman-Weinberg potential.

Coleman-Weinberg potential

The Coleman-Weinberg potential arises via the resummation of all 1-loop diagrams in

which a gauge boson propagates around the loop. For instance, for the light doublet:

V (h) = + + + ...

(4.57)

This series of diagrams leads to the potential

V (h) =
9

2

∫
d4pE
(2π)4

log

[
1 +

1

4

Π2
1(p2

E)

Π0(p2
E)
F 2

2 sin2(h̃/F2)

]
, (4.58)

where p2
E = −p2 is the Euclidean momentum. We expect Π2

1(p2
E) to go to zero at high

energies. We make the usual assumption that it does so fast enough that the integral

converges, and that to a good approximation the log can be expanded at first order:

V (h) = m2
2F

2
2 sin2(h̃/F2), (4.59)
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where

m2
2 =

9

8

∫
d4pE
(2π)4

Π2
1(p2

E)

Π0(p2
E)
. (4.60)

We have written the coefficient in such a way that m2
2 is the mass that the light doublet

acquires from the gauge CW potential.

By an entirely analogous procedure, the CW potential for the G/H1 Goldstones is

given by

V (H, η) =
9

2

∫
d4pE
(2π)4

log

[
1 +

1

4

Π1
1(p2

E)

Π0(p2
E)

H†H

H̃2
F 2

1 sin2(H̃/F2)

]
, (4.61)

≈ m2
1F

2
1

H†H

H̃2
sin2(H̃/F1). (4.62)
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Chapter 5

Tracking down quirks at the Large

Hadron Collider

Abstract

Non-helical tracks are the smoking gun signature of charged and/or colored quirks, which

are pairs of particles bound by a new, long-range confining force. We propose a method

to efficiently search for these non-helical tracks at the LHC, without the need to fit their

trajectories. We show that the hits corresponding to quirky trajectories can be selected

efficiently by searching for co-planar hits in the inner layers of the ATLAS and CMS

trackers, even in the presence of on average 50 pile-up vertices. We further argue that

backgrounds from photon conversions and unassociated pile-up hits can be removed almost

entirely, while maintaining a signal reconstruction efficiency as high as ∼70%. With the

300 fb−1 dataset, this implies a discovery potential for string tension between 100 eV and

30 keV, and colored (electroweak charged) quirks as heavy as 1600 (650) GeV may be

discovered.
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5.1 Introduction

With run II of the Large Hadron Collider (LHC) well underway, signatures of beyond

the Standard Model physics have yet to reveal themselves. As the LHC transitions to its

luminosity driven-phase, its focus will shift toward precision measurements and low rate

signals. It is hereby imperative to consider new physics signatures that may not yet be

covered; a task which has become increasingly difficult as the collaborations have greatly

expanded and refined their search strategies in recent years. Nevertheless, there is con-

siderable room for further progress, in particular in the context of long-lived exotica. The

reason is that triggering and tracking often raise unique challenges, such that the sensitiv-

ity of more traditional searches is very poor or non-existent, and specialized strategies are

needed. Nonetheless, once these challenges are addressed, these dedicated exotica searches

(e.g. Long-lived particles, R-hadrons, disappearing tracks, hidden valleys [182–186]), have

resulted in some of the most stringent experimental limits to date [187–192], precisely

because of their qualitative departure from known standard model phenomena.

In this paper, we consider the quirks scenario [193], for which traditional tracking

algorithms break down. A quirk/anti-quirk pair is a pair of new heavy stable charged

particles (HSCP’s), that is connected by a flux tube of dark gluons. Such quirks can

be present in models of dark matter [194] or neutral naturalness, like the quirky little

Higgs [195], folded supersymmetry [196,197] and certain twin Higgs models [198,199]. The

regime we consider here is defined by a large hierarchy between the quirk mass (mQ) and

the dark confining scale Λ, i.e. mQ � Λ. In this limit, the breaking of the dark flux tube,

by pulling a quirk/anti-quirk pair from the vacuum, is suppressed by ∼ exp(−m2
Q/Λ

2).

This is to be contrasted with standard model QCD, for which mQ � Λ. In QCD, an

excited flux tube can therefore easily break into multiple bound states, which is the process

known as hadronization. For quirks, the flux tube does not break and instead induces a

spectacular, macroscopic oscillatory motion before the quirks eventually annihilate. In

the center of mass (CM) frame of the quirk/anti-quirk pair, the characteristic amplitude

of this oscillation is

dcm ∼ 2 cm (γ − 1)

(
mQ

100 GeV

)(
keV

Λ

)2

, (5.1)

where γ = 1/
√

1− v2 is the Lorentz boost factor of quirks at the moment of their produc-

tion.

For large Λ & 30 keV, the oscillation length will typically be smaller than the detector

resolution (roughly ∼ 100 µm), and the combined motion of the quirks is resolved as a
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single, nearly straight track. In the track reconstruction, this would be seen as a very

high pT track with high dE/dx. A dedicated search of this type was carried out by the

D0 collaboration at the Tevatron [200]. This search has not yet been repeated at the

LHC, but it is conceivable that the existing HSCP searches have nevertheless sensitivity

to this scenario. We leave this possibility for future work. In the opposite regime, where

Λ . 100 eV, the length of the string is of the order of the detector size or larger. For

this regime it has recently been shown that the existing HSCP searches already set rather

strong limits [201].

In the intermediate regime where 100 eV . Λ . 10 keV, most events will have an

oscillation amplitude of roughly d ∼ 0.1 to 10 cm. In this case, no tracks are reconstructed

with existing algorithms, and the only current constraint comes from the jets + /ET search

[201]. Although cm-size oscillating tracks would be a truly spectacular signature, it is

thought to be very difficult to design a reconstruction algorithm for such tracks, especially

with current high pile-up conditions and given that the mQ and Λ are not a priori known.

Even for fixed Λ and mQ, the trajectories depend strongly on the initial velocities of the

quirks and can differ greatly on an event-by-event basis.

Rather than attempting to reconstruct the tracks directly, we will therefore take ad-

vantage of some of the universal features of the motion of two particles subject to a central

force. This allows us to develop a strategy that is largely independent of Λ, mQ and the

kinematic configuration of the event. In particular, we will argue that the angular mo-

mentum of the quirk/anti-quirk system is approximately conserved as it traverses the

ATLAS/CMS tracker. Since the quirk and anti-quirk interact via a central force and the

external torque on the system is negligible, the trajectories lie on a plane to a good ap-

proximation. The idea is therefore to search for pairs of hits in each layer which all lie on

a single plane (See Fig. 5.1).

The remainder of this paper is organized as follows: In Sec. 5.2, we review quirk

dynamics and how to model their motions. We present details on our search strategy

in Sec. 5.3 and the main results and sensitivity estimates in Sec. 5.4. We reserve some

additional results on dE/dx for App. 5.4.

5.2 Quirk Dynamics

At the LHC, quirks can be pair-produced through either electroweak (Drell-Yan) and/or

QCD interactions. Below we study the dynamics of quirks after they are pair-produced.

As our benchmarks scenarios, we will consider vector-like quirks in the (1, 1)1 and (3, 1) 2
3
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Figure 5.1: Schematic event display of a pair of quirks (green) with an ISR jet (blue). The cylinders

represent the three innermost layers of the ATLAS/CMS tracker. The hits (black dots) all lie on

a single plane (shaded red).

representations. In the latter case, the quirks will quickly hadronize into quirk-hadrons,

and the probability for those final states to have ±1 charges is roughly 30% as estimated

using Pythia8 [202]. Our analysis is largely independent on the charges of the quirk-

hadrons, as long as both quirk-hadrons carry non-zero electric charge, such that they

leave a signal in the inner trackers of ATLAS and CMS. In what follows we will loosely

refer to the quirk-hadrons as quirks.

The quirks are approximately free right after they are produced. As their separation

length becomes larger than Λ−1, confinement will lead to an unbreakable flux-tube con-

necting the two quirks. This system can be described by the Nambu-Goto action with

massive endpoints, which has been shown to correctly capture the properties of the heavy

quark potential in QCD [203]. More general actions are possible, but should not affect

our results significantly, as long as the string tension is much larger than the Lorentz force

exerted by the magnetic field. The action for the quirks and the flux-tube (effectively a

string) is then,

S = −mQ

∑

i=1,2

∫
dτi − Λ2

∫
dA+ Sext , (5.2)

where A is the area of the string worldsheet, τi the proper time of the two quirks, and Sext

describes external forces on the system. The boundaries of the string worldsheet are fixed

to be the worldlines of the quirks. Note that we have taken Λ2 to be the string tension,
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which will also serve as a precise definition for Λ. Eq. 5.2 leads to the following sets of

equations for the quirks [193]

∂

∂t
(mγv) = −Λ2




√
1− v2

⊥

v‖
v‖ +

v‖√
1− v2

⊥

v⊥


+ Fext, (5.3)

where v is the quirk velocity, v‖ and v⊥ are the components of the velocity parallel and

perpendicular to the string (v‖ + v⊥ = v). There is one equation for each quirk, and the

dynamics of the string in general leads to another, very complicated partial differential

equation that couples to Eq. 5.3. Fortunately, in the region where Λ� 100 eV, the force

from the string is large compared to other interactions, and the string can be approximated

as straight. In this limit, and in the center of mass frame, v‖ will lie along the displacement

vector between the quirks, and Eq. 5.3 alone suffices to describe the motion of the quirks.

Ignoring Fext, and for a pair of quirks produced back-to-back with initial velocity v, the

motion for one period 0 ≤ t ≤ 2vγmQ/Λ
2 is given by

dcm(t) =
mQ

Λ2


γ −

√
1 +

(
Λ2t

mQ
− vγ

)2

 , (5.4)

where γ = 1/
√

1− v2. This gives the amplitude in Eq. 5.1.

In ATLAS and CMS, the trajectory in Eq. 5.4 will be modified by the inclusion of Fext,

which is the Lorentz force exerted by the magnetic field as well as forces exerted during

the passage through the detector material. Then, to justify our proposed search strategy,

we must verify two crucial features of the quirk trajectories taking Fext into account:

1. The probability that the quirks annihilate before reaching the outer part of the inner

tracker is very small.

2. The quirk/anti-quirk system does not pick up a large amount of angular momentum

as it traverses the detector material and the magnetic field.

It is straightforward to see that a typical quirk/anti-quirk system does not annihilate

in the presence of a magnetic field, as the B-field will induce a macroscopic amount of

internal angular momentum in the system, which will prevent it from annihilating. To

estimate the effect of the B-field, it is useful to move to the center of mass frame. In this

frame, the magnetic field is seen as a combination of an E-field and a B-field. If we neglect

the effect of the B-field in this frame, we can estimate the torque due to the E-field:

τ ∼ 2d× (eEcm) = 2eγcm d× (vcm ×B), (5.5)
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Figure 5.2: Angular momentum L and the relative distance between the quirks d, as a function of

the radial distance of the center of mass to the interaction point for a representative event, with

B = 2 T. The displacement d varies several orders of magnitude over the quirk trajectories, but

despite the appearance on this figure, it does not vanish except at the origin (r=0).

where γcm = 1/
√

1− v2
cm and vcm is the center-of-mass velocity. 2d is the typical dis-

placement of the quirks in the center of mass frame, and B the magnetic field in the lab

frame. The angular momentum that is picked up in a single oscillation with period ∆t is

roughly

L ∼ |τ |∆t ∼ evcmγcmvγ(γ − 1)
m2
QB

Λ4
(5.6)

∼ 1012~
(
vcmv

3

0.1

)(
2 keV

Λ

)4( mQ

1.8 TeV

)2( B

2 T

)
, (5.7)

where we used |d| ∼ (γ − 1)
mQ
Λ2 , ∆t ∼ 2vγ

mQ
Λ2 and taken the non-relativistic limit. For

such large values of the angular momentum, the annihilation probability is negligible.

Equivalently, it is possible to show that the distance of closest approach is much larger

than 1/mQ. The angular momentum does however oscillate along the trajectory of the

quirks. Although whenever |L| = 0, the separation between the quirks is large, and

annihilation is suppressed by a small wave-function overlap. This is illustrated in Fig. 5.2

for a sample event.

While the internal angular momentum of the system is typically very large in units of

~, it is still small compared to the resolution of the trackers, and the trajectories remain

co-planar as far as the experiments are concerned. We can see this by estimating the
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Figure 5.3: ∆φ as a function of the radial distance of the center of mass to the origin for two

representative benchmark events, with B = 2 T.

angular rotation of the plane spanned by the quirks’ velocity vectors:

∆φ ∼ |τ |∆t2/I ∼ evcmγcm
γ2v2

(γ − 1)2

B

Λ2
(5.8)

∼ 10−5 vcm

v2

(
B

2 T

)(
2 keV

Λ

)2

. (5.9)

The key point here is that the effect of the torque on the angular acceleration is suppressed

by the large moment of inertia of the system I ∼ 2d2mQ. There could be an enhancement

for close to threshold quirks, where v � 1; but this is relevant only for a very small part

of phase space, and ∆φ is typically not larger than 10−3. We show ∆φ in Fig. 5.3 for two

example events, as found in the full numerical solution of Eq. 5.3 with Fext the Lorentz

force. In the numerical result, ∆φ oscillates and slowly accumulates as the quirks travel

through the detector until it stabilizes around a fixed value. We see that the typical ∆φ

is somewhat larger than 10−5, but is still small compared to the resolution of the tracker.

The effect of the magnetic field is accounted for in all our simulations, and any potential

efficiency loss due to shifting of the quirks’ plane is included in our results.

Similarly, one can show that the rotation induced by the torque exerted by interactions

with the detector material is small: the forces exerted by the ionization process when the

quirks traverse a silicon layer are of the order ∼ (100 eV)2, which induce an angular

acceleration of up to α ∼ 10 ns−2. The time it takes to traverse a ∼ cm thick layer of

detector material is ∼ 10−2 ns, such that the shift in angle is ∆φ ∼ 10−3 for each layer the

quirks traverse. We therefore neglect this effect in our simulations. It is worth noting that

while we focused on the quirk action in Eq. 5.2, all arguments presented above hold for
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an arbitrary central force, as long as the external forces are small compared to the central

force between the particles.

Finally, a priori dark glueball radiation may also induce a change in angular momentum

and therefore, a deviation from co-planarity. While there is no reliable calculation of the

nonperturbative dark glueball radiation rate, naive dimensional analysis suggests that it is

irrelevantly small [193]. Concretely, at large distance, the quirks’ glueball radiation rate is

proportional to the acceleration, a ∼ Λ2/mQ, which is very small compared to the glueball

mass ∼ Λ [204]. This small acceleration strongly suppresses glueball radiation at large

distances. On the other hand, when the quirks approach each other within a distance of

Λ−1 or less, ∼ Λ worth of energy may be radiated in a few glueballs. Such a radiation

pattern changes the angular momenta of the quirk/anti-quirk system by a few quanta of

~, but does not modify the macroscopic trajectory of the quirks.

5.3 Search strategy

5.3.1 Signal simulation

We generate signal samples of vector-like fermions with up to 1 jet using MadGraph5 aMC@NLO [205,

206], which is subsequently matched using Pythia8 [202, 207]. For electroweak produc-

tion the quirks are taken to have unit charge and are produced in Drell-Yan, while for

colored production only QCD contributions are included. The resulting four-momenta of

the quirks are then evolved by numerically solving the equation of motion in (5.3) assum-

ing a uniform 2T magnetic field along the z-direction. The intersections of the trajectories

with a simplified model of the ATLAS inner detector are calculated, and the center of

each pixel hit is used as the input for our analysis. We hereby use the parameters of the

various detector elements as specified in [208]. Specifically, for the pixel detector we use

the pixel size rather than the resolution and for the silicon microstrip tracker (SCT) we

conservatively assume a resolution of twice the intrinsic accuracy quoted in [208]. Hits in

neightboring pixels, according to the above definitions, are merged to a single hit, in an

attempt to model the ATLAS hit merging procedure. We further apply a uniform, gaus-

sian smearing with width 45 mm to the z-coordinates of all the hits, to account for the

finite longitudinal size of the beamspot. For simplicity, we only included the barrel of the

pixel and SCT detectors in our simulations, which effectively restricts the fiducial range

to |η| . 1.8. Including additional detector components such as the endcaps, calorimeters

and/or the transition radiation tracker would further enhance the sensitivity, although it
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would require a more careful consideration as our co-planar approximation may be invalid

for denser materials, and the timing constraint (t < 25 ns) may become important for

components farther away from the interaction point.

5.3.2 Trigger

Similar to conventional Heavy Stable Charged Particles (HSCPs), we do not expect quirks

with a moderate boost to stop in the material of the calorimeters. This implies that the

quirks will typically leave a handful of hits in the ATLAS muon detectors, which may be

a triggering opportunity. In particular, the L1 trigger selection requires a coincidence of

hits in two or three layers of the muon system, depending on the pT threshold associated

with the trigger path [209,210]. The High Level Trigger (HLT) subsequently attempts to

reconstruct a track, which is matched to a track in the inner detector. This step is likely

to fail for the quirk signature, since a fit to a helix-shaped track is likely very poor for the

string tensions we consider here [201]. It is however plausible that many of these events

could be recovered with a dedicated quirk trigger at the HLT, for example by requiring

pairs of nearby hits in multiple layers of the muon system. An important caveat here is

that the quirks must reach the muon chamber in less than 25 ns, which may not be the

case for a sizable fraction of the events.

If the event contains a sizable amount of transverse energy in the form of initial state

radiation (ISR), the HLT will interpret the lack of a reconstructed track as missing trans-

verse energy (/ET ). With start-up trigger thresholds for run-2 in mind [210], we therefore

impose a pT > 200 GeV cut on the center mass momentum of the quirk/anti-quirk system.

This requirement implies that the quirk/anti-quirk pair is essentially always central and

sufficiently boosted, such that each quirk will most likely intersect each layer only once.

The /ET cut also reduces the initial opening angle of the quirk pair, and therefore biases

the sample towards smaller oscillation amplitudes. While we will make use of the latter

feature, the precise value of the /ET cut does not significantly impact the reconstruction

efficiency of our proposed algorithm.

Although the /ET trigger path is conceptually simple, it has a number of important

downsides. Firstly, quirks with lower boost can traverse each layer multiple times, which

can potentially lead to spectacular events with O(10) hits in each tracker layer. The re-

quirement of a hard ISR jet removes essentially all of these events.1 Secondly, a tight ISR

requirement substantially reduces the unusable signal cross sector, which can be problem-

1It would be interesting to investigate whether some of these events could be recovered with the future

CMS and/or ATLAS hardware track triggers [211,212], perhaps along the lines of [213].
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atic especially for Drell-Yan production. Finally, the thresholds for the /ET triggers are

expected to increase further as the instantaneous luminosity increases, which will further

reduce the signal efficiency. Given that a substantial fraction of the quirk events would

likely pass the L1 muon trigger, it would therefore be very interesting to design a suitable

trigger path at the HLT which makes use of the muon chambers. Since the focus of this

letter is on the off-line reconstruction strategy, we do not consider a potential muon trigger

here.

5.3.3 Plane finding Algorithm

As argued above, the quirk trajectories largely lie on a single plane, which will be the

essential ingredient for our proposed algorithm. We will assume that the primary vertex

is identified correctly, and is located at the origin. A single hit is then defined by its

position three-vector, and a candidate plane is fully specified by its normal unit vector.

Our tracking algorithm is thus reduced to solving the following problem: Given a list of

hits, what is the optimal plane that is close to as many hits as possible? To find a solution,

one must first define a metric that specifies what ‘closeness’ means. One also needs to

define when a hit is considered to be part of a plane, given the finite resolution of the

tracker. Finally, the notion of an ‘optimal plane’ is ambiguous, given that one must weigh

the goodness of the fit against the number of hits included. We will address these issues

step by step in the remainder of this section.

A natural choice for the distance measure between a set of hits {xa}a≤N and a plane

with normal vector n is the root-mean-squared distance of the hits to the plane

d(n,xa) ≡

√√√√ 1

N − 1

N∑

a=1

(n · xa)2 . (5.10)

The distance can be rewritten as d =
√
Tijninj , where the two-tensor Tij is defined by

T (xa)ij ≡
1

N − 1

N∑

a=1

xai x
a
j . (5.11)

Minimization of d with respect to n simply reduces to solving an eigenvalue problem for

T . The smallest eigenvalue, ∆s2, then gives the minimum value of d2, with an associated

eigenvector n1 equal to the normal vector of the optimal plane. ∆s therefore gives a

measure of the thickness of the plane.

There is additional useful information in the other eigenvalues and eigenvectors of

T that describe the geometry of the hits: Since T is symmetric, the eigenvectors are

orthogonal. The eigenvectors n2 and n3, ordered by increasing eigenvalues, therefore lie
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Figure 5.4: Hits for a sample signal event, projected onto the reconstructed plane spanned by

(n3,n2). The dotted line shows the cylindrical detector layers projected onto the signal plane as

ellipses. The inner figure shows a zoomed-in view of the hit patterns, which lie roughly on a strip

with width ∆w ∼ 0.074 cm.

on the plane defined by n1. Geometrically, n2 describes a second plane, orthogonal to the

first, that has minimal root-mean-squared distance to all the hits. For a pair of quirks

on a plane specified by n1, the n2 plane roughly splits the pair of the hits. The second

eigenvalue, denoted by ∆w, then provides a measure of the width of the quirks’ oscillations.

As for the third eigenvector n3, it is orthogonal to n1,2 and therefore provides a good

estimate of the direction of the quirks’ motion. In the limit that ∆w is small compared

to the detector size, all the quirks’ hits will then be confined along a narrow planar strip.

Specifically, the quirks signal we are after will lie in a positive direction (xa ·n3) > 0, with

a small thickness ∆s for the fitted plane and an oscillation width ∆w.

Fig. 5.4 shows an example signal hit pattern, projected on the reconstructed plane

spanned by (n3,n2). The dotted ellipses show the tracking layers projected on the (n3,n2)

plane. We see that all the hits lay in the positive n3 direction, and that the hits mainly

lay a few factors within ∆w. As expected, n3 reconstructs the quirks’ direction to a good

approximation.

With the key geometric variables defined, we now describe an algorithm that will

iteratively reconstruct an ‘optimal plane’. Given that for each list of hits, a best fitted

plane can be computed as described above, the goal would then be to pick out an ‘optimal

list’ of hits {xa} among thousands of unassociated hits in an event. The definition of

what is optimal will involve a combination of ∆s and ∆w cuts, in addition to a few other

selection cuts in the algorithm. For simplicity, we assume a detector geometry of 8 layers
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of detector, following the ATLAS pixel layers and SCT; although our description may be

generalized to other detector elements. The algorithm is split into two main stages, the

seeding and iterative fitting stage:

1. Seeding: Define initial hits for iterative fitting

(a) Start from the 8th layer, collect all pairs of hits with ∆φ < 0.1 and ∆z < 2cm.

Repeat the same for the 7th layer.

(b) Construct four-hits combinations by choosing one pair from each initial layer.

Compute the tensor T and apply the follow cuts: xa · n3 > 0 for all hits,

∆s < 0.05 cm and ∆w < 1 cm.

2. Iterative fitting: for each seed, loop over the remaining 6 layers outside-in, and

collect more hits consistent with the initial fit

(a) Start from the 6th layer, collect all hits that satisfy (x·n3) > 0, |x · n1| < 0.05 cm

and |x · n2| < 1 cm.

(b) Loop over selected hits, starting with the one with the smallest |x·n1|. Together

with the list {xa}, recompute T and associated variables. If ∆s and ∆w do

not increase by a factor of 3, add the hit to the list.

(c) Iterate the previous steps all the way to the first layer, then construct the final

list {xa} and compute associated variables.

3. Event Selection: Gather all the reconstructed lists, apply the final cut ∆w < 1 cm.

If there are more than one plane identified, keep the one with the smallest ∆s.

In summary, after the plane-finding algorithm has identified a set of candidate plains,

the main discriminating variables of our analysis are

– First eigenvalue of (5.11), or the “thickness”, (∆s)2

– Second eigenvalue of (5.11), or the “width”, (∆w)2

– Number of hits found

It is important to note that the selection cuts on these variables can be easily modified to

accommodate better signal acceptance and/or background rejection. A tighter selection

will generally boost computational efficiency at a cost of reduced signal efficiency, which

is what has been chosen in this work. Looser selection can easily be implemented at a

cost of increased computational time, and may require additional adjustments on the final

cuts to maintain the same level of background rejection.
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An amortized O(N) time complexity can be achieved for the tracking algorithm, as-

suming that the (∆φ,∆z) cut is adjusted so that roughly a constant number of hits are

within such a window.2 An algorithm of this sort may be sufficiently fast for implement-

ation at the high level trigger (HLT), which would partially remedy the problem of the

stringent /ET trigger.

There are additional variables that can potentially enhance background rejection and/or

the efficiency of the seeding step. For instance, n3 is expected to be aligned with ~/ET in the

transverse plane, which can limit the region of interest in the detector for reconstruction.

Additionally, we did not include dE/dx information, which can be leveraged for heavier

masses; although we found that the algorithm described above already provided sufficient

discriminating power (see Sec. 5.4). Since dE/dx information could nevertheless be of

interest for a realistic experimental implementation, we include a brief summary of our

relevant results in App. 5.4.

5.3.4 Backgrounds

The biggest background for our search are unassociated hits, which predominantly come

from pile-up tracks for which the track reconstruction failed. For this purpose we use the

public available tracking efficiency plots [214], where we neglect the η-dependence of the

efficiency, as long as the track is within the η-range of the barrel. For our study we assume

an average of 〈µ〉 = 50 pile-up interactions with a longitudinal beam spot spread of 45 mm,

where the former is conservative compared to current conditions by roughly a factor of 2.

We model pile-up by randomly selecting minimum bias events from a sample of 125×103

events generated by Pythia8, processed by the simplified detector described in [215]. We

approximately account for all elements of the inner detector, including the beam pipe,

service layers and endcaps and include the effects of bremsstrahlung and energy loss from

ionization. For more details we refer to appendix A of [215]. We did not attempt to

model secondaries from hadronic interactions with the inner detector material, which will

increase the hit counts in the outer layers of the pixel and SCT detectors. We however

verified that this deficiency is roughly offset by our conservative choice for 〈µ〉.
A second potential background arises from isolated photon conversions in the beam

pipe. These conversions give rise to a fairly collimated e+e− pair, which results in a nearby

pair of hits in each layer of the tracker. For some conversion events, these hits could all

approximately lie on a plane, and thus fake a quirk signal. We model this background by

2Assuming that the hits are stored in such a way that access through (φ, z) coordinates takes constant

time.
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Figure 5.5: Signal and background distributions for thickness and width of the strip, parametrized

by ∆s (left) and ∆w (right) respectively. The signal benchmarks for colored (EW) quirks are given

by mQ = 1.8 TeV and Λ = 2000 eV (mQ = 800 GeV and Λ = 4000 eV). A signal selection cut

∆s < 0.01 cm is indicated on the left figure.

generating a Z+γ+j sample with MadGraph5 aMC@NLO, where we decay the Z to neutrinos

and require at least 200 GeV of /ET , to satisfy our trigger requirement. We further require

the pT of the photon be larger than 0.5 GeV. The fiducial cross section for this process is

∼ 1 pb, which drops to∼ 10 fb if we require that the photon converts in the beampipe using

the conversion probability from figures 33.16 and 33.17 of [216]. Then we assume equal

energy sharing between both electrons, which is conservative, as softer electrons would

bend more strongly and lead to poor fit to a plane. The e+e− pair is then passed through

the same detector simulation as described for the pile-up background. We subsequently

overlay pile-up hits and pass the resulting set of hits through our reconstruction algorithm.

5.4 Results

Given the O(1000) unassociated pile-up hits per layer in the tracker, a subset of these hits

do accidentally land on a plane. Through our reconstruction algorithm, only ∼ 10−3 of all

background events contain a plane with at least one hit in 4 out of 8 layers. The number

rapidly drops to 6 × 10−5, for events with a plane that contains at least one hit in each

layer. Still the majority of these planes have only one hit in most of the layers. Our signal

region is then defined by the following cuts:

1. At least one plane reconstructed under the tracking algorithm

2. All but one layer must contain 2 hits, the remaining layer must contain at least 1

hit

3. ∆w < 1.0 cm and ∆s < 0.01 cm
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For a quirk signal, as long as the length scale of oscillation mQ/Λ
2 is smaller than ∼ 1 cm,

and if the quirks pass through all 8-layers, the reconstruction efficiency for these cuts can

be as high as ∼ 73%.

Fig 5.5 shows the ∆s and ∆w distribution for background and our benchmark signal

before the final cut on those variables are imposed. We see that the signal and back-

ground have distinctive distributions. In order to compensate for the lack of simulation

statistics, the pileup backgrounds are derived by taking the distribution from events that

are allowed to have 1-hit per layer, weighted by the overall efficiency of passing the more

stringent requirement in point 2 above. For the pile-up background, the number of hits

is anti-correlated with the thickness and the width of the plane, and as such this yields a

conservative estimate for the pile-up background in the signal region. We deliberately do

not impose a tight cut on ∆w, as the efficiency for such a cut is strongly signal dependent.

The rather loose cut of ∆w < 1.0 cm is intended to retain decent efficiencies for quirks

with larger oscillation amplitude (low Λ). Even though Fig 5.5 suggests a few background

events after the final selection cut of ∆s < 0.01 cm, we suspect that they can easily be re-

moved through either a ∆φ requirement between ~/ET and n3, and/or by examining dE/dx

pattern for the reconstructed hits. We have also not used any direct information on the

quirk trajectory, other than the semi-strip geometry. Should our background estimates

prove to be overly optimistic in a real experimental setup, it should be possible to further

increase signal discrimination by fitting a quirk trajectory to the hits identified by our

method. If any quirk candidates are observed, this would also be an obvious way to try

to measure the mass and string tension.

We factorize the total signal efficiency into the trigger efficiency (εtrig), the fiducial

efficiency (εfid) and the reconstruction efficiency (εreco) such that the total efficiency ε is

given by

ε = εtrig × εfid × εreco . (5.12)

The trigger efficiency tends to be low, especially for Drell-Yan production, but it may

be possible to improve on this with dedicated trigger strategies, as outlined in Sec. 5.3.2.

The fiducial efficiency parametrizes the likelihood that each quirk intersect with each layer

at least once, in events passing the trigger. We also include a 25 ns timing cut, which

causes a slight drop in εfid for heavier quirks, which tend to be slower. Inclusion of the

endcaps should increase εfid without significantly impacting the tracking algorithm. The

reconstruction efficiency is defined as the efficiency of our algorithm in finding quirks which

satisfy both the trigger and fiducial requirements. The various efficiencies are shown in
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mQ (GeV) Λ (keV) εtrig εfid εreco

800

(DY)

1

0.10 0.28

0.11

2 0.41

3 0.65

4 0.72

5 0.74

1800

(QCD)

1

0.24 0.28

0.083

2 0.35

3 0.59

5 0.74

10 0.58

Table 5.1: Breakdown of the signal efficiencies for two benchmarks, one for Drell-Yan (DY) pro-

duction, and one for colored production (QCD). εtrig and εfid are independent of Λ, the latter with

the exception of small edge effects. For Λ & 5 keV, εreco deteriorates as pairs of hits start merging

into a single pixel.

Tab. 5.1 for two benchmark points. We see that the peak εreco can be as high as ∼ 70%,

while εreco drops at lower Λ, where the iterative algorithm may fail to capture enough

hits largely due to a stringent ∆w requirements. At high Λ, εreco drops as well since the

separation is small enough for the hits to start merging, at which point a plane cannot be

found.

In Fig. 5.6, we show the expected 95% exclusion for an integrated luminosity of 300

fb−1, assuming negligible irreducible backgrounds. We also show a tentative ‘discov-

ery’ curve, corresponding to an expected signal of 5 events. (Discovery with only a few

events may be possible when multiple events show hit patterns consistent with a common

(mQ,Λ).) Our results are highly complimentary with recent (projected) constraints from

HSCP searches [201], which are very stringent in the low string tension regime.

In summary, we show that searching for planar hits in the inner tracker is a powerful

way to search for quirks with intermediate string tensions. It is moreover possible to

design a generic search, which has good acceptance to all string tensions and quirk masses

in the qualitative regime of interest (µm-cm size oscillations). Additionally, we show

that an efficient algorithm can be straightforwardly implemented, while providing strong

background rejection. While our theory study is no substitute for a full analysis, including

understanding more subtle detector effects and backgrounds, we are optimistic that this
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Figure 5.6: Contours of having 3 (5) events in the mQ vs Λ plane for an integrated luminosity of
∫
Ldt = 300 fb−1, overlaid with (projected) HSCP and monojet limits [217], where we extrapolated

the latter to high Λ. In reality, the monojet limits may deteriorate in high Λ part of the plot, where

the quirk system may be reconstructed as a single, high pT track. The 3 events bound corresponds

to 2-σ exclusion given no background. Discovery is defined by 5 events, which may be achieved by

close examination of each individual event and by showing that they are compatible with a fixed

mass and tension. The dashed blue contour shows the average separation of the quirks in the CM

frame, dcm, as defined in Eq. 5.1.

type of search could be (nearly) free of irreducible backgrounds, especially if a quirk track

is fitted to the hits identified by a plane-finding algorithm.
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Appendix: dE/dx information

Although we did not make use of variables relying on dE/dx measurements in our analysis,

we here include a brief discussion for completeness. In Fig. 5.7 we show the include the

dE/dx and βγ distributions for the hits in the ATLAS pixel detector for a few signal

benchmarks. For the dE/dx we use the most probable value as a function of βγ [216].

Since this simplified treatment of the dE/dx distribution is not accurate for very slow

particles, we omitted hits with βγ < 0.1 in the left-hand panel of Fig. 5.7. While dE/dx

is a powerful variable in conventional HSCP searches, its utility for quirks is more subtle

because the quirks accelerate and decelerate along their trajectory through the detector.

This implies that a substantial fraction of hits has rather low dE/dx, and as such a tight

cut is most probably not advisable if a high signal efficiency is desired. On the other

hand, should an excess of events be observed, we expect that dE/dx will be important to

measure the mass and string tension.



92

Chapter 6

Composite Higgs models in

disguise

Abstract

We present a mechanism for disguising one composite Higgs model as another. Allowing

the global symmetry of the strong sector to be broken by large mixings with elementary

fields, we show that we can disguise one coset G/H such that at low energies the phe-

nomenology of the model is better described with a different coset G′/H′. Extra scalar

fields acquire masses comparable to the rest of the strong sector resonances and therefore

are no longer considered pNGBs. Following this procedure we demonstrate that two mod-

els with promising UV-completions can be disguised as the more minimal SO(5)/SO(4)

coset.
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6.1 Introduction

The hierarchy problem is one of the most puzzling aspects of the Standard Model, and still

it lacks a satisfactory solution. Composite Higgs models [19, 32, 33, 44] offer a fascinating

explanation of the origin of the electroweak scale – the Higgs is a composite pseudo-Nambu

Goldstone boson (pNGB), which arises when a new sector becomes strongly interacting and

confines. This new sector is endowed with a global symmetry, and it is the breaking of this

global symmetry by non-perturbative vacuum condensates which leads to the appearance

of the Higgs as a pNGB.

The low-energy behaviour of Composite Higgs (CH) models can be studied in an

Effective Field Theory (EFT) framework, in which the heavy resonances of the strong

sector are integrated out. This picture is useful, since we do not need to know the details

of the UV-completion in order to understand the spectrum of the theory at energies below

the confinement scale. The only features of the strong sector that we need to specify are its

global symmetry G and the manner in which this symmetry breaks: G → H. The pNGBs

will come in a non-linear representation of the broken symmetry coset G/H, and the top

partners – the light, fermionic resonances that are present in all realistic realisations – will

come in full representations of G. A sigma-model approach then allows for a derivation

of the pNGB potential (albeit in terms of unknown form-factors). In this way the main

phenomenological differences between different CH models can be readily inferred from

the symmetry structure of the theory.

Of course, merely plucking a symmetry out of the air is not equivalent to claiming

it is realisable in a QFT framework. Some work has been done towards constructing

UV-completions of Composite Higgs models [29–31, 35, 218]. Not all symmetry cosets,

it turns out, were created equal. The cosets SU(4)/Sp(4), SU(5)/SO(5), and SU(4) ×
SU(4)/SU(4) have been identified as the minimal cosets that have a UV-completion in

the form of a fermion-gauge theory. The Minimal Composite Higgs Model (MCHM)

SO(5)/SO(4) is notably not so easy to complete. From one perspective, it might be

argued that one should restrict one’s attention to Composite Higgs models based on UV-

completable cosets, and to take seriously the phenomenology they predict.

However in this work we describe a mechanism whereby a Composite Higgs model with

the coset G/H might, at energies currently accessible to us, be disguised as a model with

a different symmetry coset G′/H′, with G′ ⊂ G and H′ ⊂ H. This can happen in such a

way that at or below the confinement scale f , only the resonances predicted by the G′/H′

model are seen, while the remaining resonances acquire masses � f and could remain
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hidden – thus the model is disguised.

This paper is organised as follows. In Section 6.2, we present a general description of

the mechanism, assuming that the field responsible for deforming the strong sector is a new

fermion ψ which is a singlet under the SM gauge group. In Section 6.3, we walk through

two examples in which the original symmetry coset is SU(4)/Sp(4) and SU(5)/SO(5), in

both cases showing that they can be disguised as the MCHM coset SO(5)/SO(4). Then

in Section 6.4 we argue that the field responsible for the deformation could in fact be the

right-handed top quark, if we take tR to be ‘mostly’ composite. Finally in Section 6.5 we

conclude our discussion.

6.2 Mechanism

In Composite Higgs models we assume that the new, strongly interacting sector is endowed

with a global symmetry G. The Higgs will be part of a set of pseudo-Nambu Goldstone

bosons (pNGBs) that arise when G is spontaneously broken to a subgroup H. The n

pNGBs live in the coset G/H, and there will be one for each broken generator, i.e. n =

dimG − dimH. The Higgs and other pNGBs can only acquire a potential if the global

symmetry G is explicitly broken by couplings to an external sector. This is normally

accomplished by allowing the SM to couple to the strong sector – these couplings then

explicitly break G and induce a loop-level potential for the pNGBs.

We are going to consider a modified scenario, in which some new fields couple to

the strong sector and provide an extra source of explicit breaking. We are particularly

interested in the case where these new couplings are strong. We will say that the new

couplings deform, or rather, disguise the strong sector’s symmetry properties – due to

the explicit breaking, its apparent global symmetry is now a subgroup of the original

symmetry, and the pattern of spontaneous breaking has been modified.

Depending on the nature of these new fields, there are different ways they could couple

to the strong sector. We are going to focus on the case where the new fields are fermionic,

and couple to the strong sector via the partial compositeness mechanism [22, 23]. This

mechanism is normally employed to allow the SM quarks (or at the very least, the top),

to interact with the composite sector. Ordinarily we consider terms such as

L ⊃ yLfqLOL + yRftROR + h.c., (6.1)

where qL = (tL, bL). The OL,R are composite fermionic operators with the same SM

quantum numbers as qL, tR. Thus the elementary top quark mixes with the ‘top partners’,
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allowing the physical, partially composite eigenstate to couple to the Higgs.

Now, the couplings in (6.1) will explicitly break the global symmetry G. If we were to

write the couplings in full we would have, for instance:

L ⊃ yLf(qL)α(∆L)αi OiL + yRf(tR)α(∆R)αi OiR, (6.2)

where i is an index belonging to G and α belongs to the SM gauge group. The tensor ∆

carries indices under both the SM gauge group and G, parametrising precisely how the

symmetry G is broken [136]. One can think of (tL)α∆α
i as an embedding of the SM top

into a ‘spurionic’ representation of G. The representation into which the top is embedded

should match the representation in which OL transforms, and this ensures that the explicit

breaking is treated in a way formally consistent with the symmetries of the strong sector.

As an example, let us consider the MHCM, which has the pNGB coset SO(5)/SO(4).

The SO(4) in this model becomes the custodial SO(4) ' SU(2)L×SU(2)R. We can take

OL and OR to both be in the 5 of SO(5), which decomposes under the custodial group as

(2,2)⊕ (1,1). The qL then couples to the bidoublet, while the tR couples to the singlet.

This translates into the following expressions [174] for ∆L,R in (6.2):

∆L =
1√
2


0 0 1 −i 0

1 i 0 0 0




∆R = −i
(

0 0 0 0 1
)
.

(6.3)

Proceeding along similar lines, let us introduce a new fermion ψ, which mixes with a

composite operator Oψ. For simplicity, let us take ψ to be a singlet under the SM gauge

group. The mixing terms look like:

L/G = yψfψ∆iOiψ + h.c. (6.4)

Note that the α index has been omitted, since ψ is a singlet under the Standard Model.

Now we are going to assume that the mixing parameter yψ is large – so that G is no longer

a good symmetry. Let us define G′ ⊂ G such that G′ is the residual symmetry after the

interactions with ψ are included. Suppose that the global symmetry of the original theory

spontaneously breaks to H, and define H′ = H ∩ G′. Then, with the inclusion of L/G , the

new theory appears to have the new symmetry breaking pattern G′/H′. One composite

Higgs model has been disguised as another.

What do we mean when we say that yψ is large? In the language of [219,220], we can

broadly parametrise the strong sector via its typical mass scale mρ and coupling gρ, which

scales in large-N theories [79] as

gρ =
4π√
N
. (6.5)
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They are related to the symmetry-breaking scale via mρ = gρf . The limit gρ = 4π repres-

ents the limit of validity of the effective theory; for stronger couplings a loop expansion in

(gρ/4π)2 is no longer valid.

For yψ ≈ gρ, the mixing angle between the elementary ψ and Oψ is large, and the

physical eigenstates will have a large degree of compositeness. Operators induced by the

coupling of ψ to the strong sector (which violate G) will be proportional to some power

of (yψ/gρ), and in the limit where yψ ≈ gρ, these operators are no longer suppressed.

We are justified in saying that the apparent global symmetry of the strong sector has

been disguised, since operators which break the symmetry appear at the same order as

operators which respect it.

In order to have a large value of yψ, we require the scaling dimension of Oψ to be close

to 5/2. This can happen if the dynamics above the compositeness scale are approximately

conformal, and the operator Oψ has a large anomalous dimension [19]. A similar require-

ment holds for the mixings of the top quark to the top partners – in order to generate a

sizeable O(1) top Yukawa, the OL,R must have large anomalous dimensions so that the

mixing terms become effectively relevant operators.

6.3 Two examples

It is often remarked that the Minimal Composite Higgs model (MCHM) [19] has no UV-

completion in the form of a renormalisable gauge-fermion theory. As discussed in [29,30],

a theory whose UV-completion consists of ni fermions in each representation Ri of the new

strongly interacting gauge group (assuming it is simple) has the following global symmetry:

G = SU(n1)× · · · × SU(np)× U(1)p−1, (6.6)

where p is the number of different irreducible representations in the model. From this we

see that there is no simple gauge-fermion theory that gives rise to an SO(5)/SO(4) pNGB

coset.

In this section we will take two models which do have gauge-fermion UV-completions,

and show that using the above procedure they can be disguised at low energy as the

SO(5)/SO(4) model.
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SU(4)

Sp(4) Sp(4)′

SO(4)

η

H

Sp(4)′

SO(4) H

Figure 6.1: Symmetry breaking patterns in the disguised SU(4)/Sp(4) model. The solid circles

represent the spontaneous breaking in the original model. The dashed circle represents the Sp(4)′

subgroup preserved by the explicit breaking, so that the ‘disguised’ model becomes Sp(4)′/SO(4).

6.3.1 SU(4)/Sp(4)

In this section we will look at the next to minimal Composite Higgs model [28, 221], in

which the pNGB coset is SU(4)/Sp(4).1 This coset features one extra singlet pNGB, which

we denote by η. The spontaneous breaking is achieved by a VEV in the antisymmetric 6

of SU(4), which we will take to be proportional to

〈6〉 ∝


iσ

2 0

0 iσ2


 . (6.7)

Then the pNGBs are parametrised as fluctuations around the vacuum:

Σ(φi) = U〈6〉UT , U = exp(iφiXi/f), (6.8)

where φ = {H, η} and Xi are the broken generators.2

As outlined in the previous section, we will introduce a new fermionic field ψ, singlet

under the SM. In order to disguise this model as SO(5)/SO(4), we must look for a L/G
that explicitly breaks G to G′ = SO(5). This can be done, for instance, with Oψ in the 6

of SU(4). In this case (6.4) looks like

L/G = yψfψTr[∆Oψ] + h.c. (6.9)

1A UV-completion of this coset was studied on the lattice with an SU(2) confining gauge force [222] –

the results point to a large value of gρ ∼ O(10), in line with the large-N expectation.
2The calculations in this and the next section use a specific basis for the generators of SU(4) and SU(5).

We use the bases given in [28,30], to which the interested reader can refer.
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The 6 decomposes under SU(2)L × SU(2)R as:

6 = (2,2)⊕ (1,1)⊕ (1,1). (6.10)

The new field ψ must couple to a linear combination of the two singlets in this decompos-

ition. The two singlets correspond to

∆± =


±iσ2 0

0 iσ2


 , (6.11)

and one can verify that if we take

∆ = cos θ ∆− + sin θ ∆+, (6.12)

the unbroken symmetry is indeed an Sp(4)′ ' SO(5) subgroup of the original SU(4).

Notice that, using this notation, 〈6〉 ∝ ∆+. So long as θ 6= π/2, the explicit and

spontaneous breakings preserve different Sp(4) subgroups. That is, in our earlier notation:

G′ = Sp(4)′

H = Sp(4)

H′ = H ∩ G′ = Sp(4) ∩ Sp(4)′.

(6.13)

If the spontaneous and explicit breakings preserved the same Sp(4) subgroup, then

in the disguised model there would be no spontaneous symmetry breaking at all, since

the spontaneously broken symmetry would never have been a good symmetry in the first

place. In Fig. 6.1, this would correspond to the Sp(4) and Sp(4)′ circles coinciding. In

such a model there would be no Goldstone bosons – the explicit breaking leads H and η

to acquire masses comparable to the other resonances of the strong sector.

Since we are trying to disguise SU(4)/Sp(4) as SO(5)/SO(4), we want the Higgs (but

not η) to remain an exact Goldstone boson. One can verify that in the limit where θ → 0,

the generators corresponding to the four degrees of freedom of the Higgs are preserved

by the explicit breaking. This is the case shown in Fig. 6.1: the Higgs lives in the part

of Sp(4)′ which is spontaneously broken, while the η lives in the part of SU(4) which is

broken by the explicit breaking, and thus acquires a large mass and is hidden. Thus we

have disguised the SU(4)/Sp(4) coset as SO(5)/SO(4).

Note that the angle θ is parametrising some of our ignorance about the UV physics.

Without having a specific UV model in mind we cannot predict the misalignment between

the explicit breaking and the spontaneous breaking. With an explicit model one might

be able to use lattice calculations, and/or an NJL-type analysis (see, for instance, [35]),
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in order to obtain a better understanding of the true vacuum of the theory. For now,

however, we are working at a more general level, and will treat θ as a free parameter.

Another way of seeing this mechanism at work is to look at the Coleman-Weinberg

potential for the pNGBs. Including only the corrections from loops of the new fermion

field ψ, the potential must be constructed out of invariants of Σ and ∆, i.e. it should be a

function of Tr[∆TΣ]. Taking ∆ as defined in (6.12), the lowest order contribution to the

CW potential is

V ∝ −Tr[∆TΣ] Tr[∆Σ†] (6.14)

= cos2 θ η2 + sin2 θ (1− h2 − η2). (6.15)

We can see that in the limit θ → 0, h remains an exact Goldstone boson, living in the

coset SO(5)/SO(4).

One should note that, in arriving at the above expression, we performed the following

field redefinitions of the pNGB fields (following [28]):

h√
h2 + η2

sin

(√
h2 + η2

f

)
→ h,

η√
h2 + η2

sin

(√
h2 + η2

f

)
→ η.

(6.16)

Field redefinitions of the form φ→ φ f(φ), (with f(0) = 1), are valid in the context of the

sigma-model [21]; the above redefinition is especially useful since it makes clear the fact

that h is an exact pNGB in the θ → 0 limit. 3

In order for the disguising mechanism to work, we need a small value of sin θ – only

then will there be a hierarchy between the masses of η and H. Having large values of both

sin θ and yψ will spoil the role of the Higgs as a Goldstone boson, giving it a mass closer

to that of the other strong sector resonances.

6.3.2 SU(5)/SO(5)

Another coset with a realistic UV-completion is SU(5)/SO(5) [30,223,224]. In this section

we show that, in complete analogy with the previous section, this model can also be

disguised as the MCHM via a suitable choice of L/G . 4

3Furthermore, in this basis it is precisely the VEV of h which sets the scale of EWSB, i.e. mW ∝ 〈h〉.
4See [103] for a microscopic realisation
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The spontaneous breaking SU(5) → SO(5) can be achieved with a VEV in the sym-

metric 15 of SU(5), which we take to be proportional to

〈15〉 ∝


14 0

0 1


 . (6.17)

This coset features 14 pNGBs, the Higgs, a charged SU(2)L triplet Φ±, a neutral triplet

Φ0, and a singlet η. These are parametrised by

Σ = U〈15〉UT , U = exp(iφaXa/f), (6.18)

but since in this case 〈15〉 is proportional to the identity, we can just write Σ = UUT .

Let us assume that the new source of explicit breaking comes from a SM singlet fermion

ψ. Then, just as before, L/G is given by:

L/G = yψfψTr[∆Oψ] + h.c. (6.19)

where now we take Oψ to be in the 15 of SU(5). Notice that in both this and the previous

example, Oψ was taken to be in the same representation as the operator whose VEV

breaks the symmetry spontaneously.

Now the 15 of SU(5) decomposes under SU(2)L × SU(2)R as:

15 = (3,3)⊕ (2,2)⊕ (1,1)⊕ (1,1). (6.20)

If we take the new source of breaking to be a SM singlet, then, just as in the SU(4)/Sp(4)

case, we have two singlets in the decomposition of the 15 to which ψ may couple. These

two singlets correspond to:

∆± =


14 0

0 ±1


 . (6.21)

For a linear combination of the two singlets, ∆ = cos θ ∆− + sin θ ∆+, SU(5) is explicitly

broken to SO(5)′. Precisely as before, only in the limit θ → 0 is the Higgs untouched by

the explicit breaking. Furthermore, the explicit breaking gives masses to Φ±, Φ0 and η.

In the case where yψ is large, the pNGB coset is disguised as SO(5)/SO(4).

6.4 Deforming with tR

It has been noted [219,225,226] that it is phenomenologically possible, and perhaps desir-

able, for the tR quark to be ‘mostly’ composite, in the sense that yR in (6.1) is of order gρ.

If this were the case, then the couplings of tR to the strong sector can indeed be thought of
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as changing the symmetry properties of the strong sector, and disguising the coset space

as another.

Let us go back to the SU(4)/Sp(4) example. Of course, unlike our hypothetical field

ψ, tR is not a Standard Model singlet – it is charged under U(1)Y and SU(3)c. This does

not change the discussion of Section 6.3.1, however; we just replace Oψ with OR, which

has the same SM quantum numbers as tR. In the original paper studying this coset [28],

the authors conclude that, in order to preserve the custodial symmetry that protects the

Zbb coupling, the left and right handed quarks ought to be embedded into the 6 of SU(4)

– precisely as we did for ψ in Sec. 6.3.1.

It is clear that, if we want tR to couple to the Higgs and to participate in Yukawa

interactions, then we must have θ 6= 0. As stated earlier, we can always take θ to be small,

such that a large hierarchy is generated between η and h. First however, we should check

that small values of θ are still consistent with a large enough top Yukawa coupling. We

must embed qL into the (2,2) of the 6, which fixes

∆L =


 0 Q

−QT 0


 , (6.22)

with Q = (0, qL). Let us assume that the couplings of tR are proportional to ∆R in analogy

to (6.12):

∆R = cos θ ∆− + sin θ ∆+. (6.23)

Then the Yukawa coupling of the top is obtained from the effective operator:

Mt tLtR Tr[∆T
LΣ] Tr[∆RΣ†], (6.24)

where Mt is a momentum-dependent form factor which encodes the integrated-out dy-

namics of the strong sector. Expanding this operator informs us that the coupling tLtRh

will be proportional to sin θ.

We expect the Yukawa coupling also to be proportional to yLyR, and dimensional

reasoning (discussed in detail in [136]) suggests it should also be proportional to f/mT ,

where mT is the mass of the lightest top partner. Thus we conclude that the top Yukawa

scales, up to some numeric prefactor, as

yt ≈ yLyR sin θ
f

mT
. (6.25)

Furthermore, all contributions to the CW potential of the Higgs involving the right-

handed top must be proportional to powers of Tr[∆RΣ†] – therefore the contributions to

the potential must always depend on powers of yR sin θ. In fact, the usual analyses of the
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size of the top Yukawa, the mass of the Higgs and the top partners, and the required tuning

for successful EWSB, proceed along all the usual lines, with the replacement yR → yR sin θ.

The disguising mechanism relies on small values of sin θ, but of course we can make

sin θ small as long as yR is sufficiently large. The mass of η will be proportional to cos 2θ

(from equation (6.15)), and for small θ the hierarchy between the ‘true’ pNGB h and the

disguised pNGB η is assured. Thus the couplings of the top quark alone can fulfil the

requirements of the disguising mechanism.

What is the phenomenology of such a scenario? We have a set of pNGBs which couple

very strongly to the top – in this example just the η, but in the SU(5)/SO(5) case we would

have Φ±,Φ0 and η. In ordinary composite Higgs models we expect these extra scalars to

be heavier than the Higgs by roughly a factor ξ = v2/f2. In models with around 10%

tuning, this corresponds to a mass of around 400-500 GeV. In our scenario, they would be

significantly heavier (how much heavier is of course dependent on the value of θ, or how

disguised the model is), but their Yukawa couplings to the top would be increased by the

same factor.

At sufficiently high center of mass energies, these resonances would eventually appear,

along with other fermionic and vector resonances. Evidence for the disguising mechanism

would be the presence of split multiplets. For instance, in the SU(4)/Sp(4) model we have

top partners in the 6 of SU(4). In the disguised model, this would be split into 5⊕ 1 of

the unbroken SO(5), with the singlet coupling most strongly to tR. We would expect the

large breaking of the SU(4) symmetry to lead to a mass splitting between the five-plet

and the singlet.

6.5 Conclusion

We have presented a mechanism whereby the symmetry breaking pattern of the strong

sector can be disguised, via couplings of an elementary field to a strong sector operator.

This field could be a BSM field, or, as we argued in Section 6.4, it could be the right-handed

top quark, avoiding the need for any new fields.

This is a useful observation, especially if one has reason to believe that some pNGB

cosets might be more plausible than others – perhaps because one is concerned about UV-

completions of the model. We have shown that two UV-completable cosets, SU(4)/Sp(4)

and SU(5)/SO(5), can be deformed in such a way that at low energies the pNGB spectrum

is as we would expect in an SO(5)/SO(4) model.

This is certainly not equivalent to claiming that a UV-completion for the SO(5)/SO(4)



103

coset has been found. After all, the mixing ψOψ+h.c. will arise from a non-renormalisable

operator, presumably a four-fermion operator involving ψ and three techni-fermions. Non-

etheless, attempts at finding a ‘UV-completion’ of composite Higgs models so far do not

speculate on the origin of these four-fermion interactions5 (their scale can be significantly

higher than the compositeness scale). Therefore it is fair to say that we have found a UV-

completion of the SO(5)/SO(4) coset which is just as complete as any other composite

Higgs UV-completion.

In the case where the tR is responsible for the disguise, we have a model with a set

of heavy scalar resonances with very strong couplings to the top – very strong in this

case meaning close to the non-perturbative limit. We leave a detailed phenomenological

analysis for future work. It would be interesting to study whether the large couplings of

the scalars to the top can lead to sizable contributions to effective operators, and whether

these can have any impact on Higgs or gauge boson production cross-sections.

5This discussion might call into question the usage of the term ‘UV-completion’ – there are always

problems whose solutions can be delayed to a higher scale.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, I have discussed a number of strongly-coupled extensions to the Standard

Model – in particular Composite Higgs models as a solution to the hierarchy problem.

In Chapter 2 we reviewed the status of different types of Composite Higgs models and

put bounds on the value of the compositeness scale f . We considered different scenarios in

which the Higgs might mix with other scalar pNGBs and discussed how this might affect

the bounds.

In Chapter 3 we presented a novel approach to the study of inflation, borrowing the

formalism from the Composite Higgs literature and applying it to a scenario in which the

inflaton is a pseudo-Nambu Goldstone boson. We find that by considering general bosonic

and fermionic contributions to the inflaton’s Coleman-Weinberg potential we can achieve

successful inflation with sub-Planckian values of the inflaton decay constant.

In Chapter 4 we introduced a class of Composite Higgs models in which the Higgs

mixes with an extra pNGB doublet. This mixing induces a negative mass-squared for one

of the physical eigenstates, and therefore contributes to the destabilisation of the Higgs

potential. We discussed the modifications of the couplings of the Higgs in such a model,

focusing in particular on the successive breaking pattern SO(6) → SO(5) → SO(4), and

analysed the tuning required for a successful realisation.

In Chapter 5 we perform a phenomenological analysis of the quirks scenario, and

proposed a method to efficiently search for these particles at the LHC. The method relies

on the trajectory of the quirks being constrained to lie in a plane. Our simulations indicate

that the search strategy has a high efficiency across a broad region of the quirk parameter

space.
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Finally, in Chapter 6 I presented a mechanism whereby one Composite Higgs model,

based on a coset G/H, can be deformed so that it resembles a model with a different coset.

Two examples were worked through and discussed, as was the possibility that the particle

responsible for the deforming might be the right-handed top quark.

7.2 Directions for further study

A broad range of topics have been discussed in this thesis, opening up a variety of directions

for future study.

More detailed study of UV-completable Composite Higgs models – i.e. those models

based on the cosets identified in [29–31] – is merited. In particular, the SU(5)/SO(5)

coset promises 10 extra scalar degrees of freedom besides the Higgs, which could lead

to an incredibly rich phenomenology, especially considering the ways that these degrees

of freedom might mix with each other. This could go hand in hand with a practical

application of the mechanism developed in Chapter 6.

The complicated scalar structure of the theory, and the comparatively small number

of free parameters that determine the scalar potential, could make such a model interest-

ing to study in the context of other open problems in the Standard Model, for instance

electroweak baryogenesis.

It would also be interesting to investigate whether the model studied in Chapter 4 can

be UV-completed with a fermion-gauge theory. In particular, the mechanism discussed in

Chapter 6 could be employed in order to generate the required mass hierarchy between the

two scalar doublets in the model. The challenge would be finding an appropriate source

of explicit breaking that is able to generate the required mixing between the two doublets.

With a tentative UV completion we might be able to make more concrete statements

about the tuning required to make such a model viable.

Further study of models featuring quirks is also warranted. Despite their unusual

collider signatures, quirks are a fairly generic extension of the Standard Model, and can

arise in well-motivated BSM models such as Twin Higgs models [198, 199]. It would be

interesting to study whether there are any cosmological bounds that can be put on these

models, especially in regions of their parameter space for which detection of quirks at

colliders is unfeasible.
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