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SUMMARY

The thesis is devoted to non-stationary point process models as generalizations of
the standard homogeneous Poisson process. The work can be divided in two parts.

In the first part, we introduce a fractional non-homogeneous Poisson process (FNPP)
by applying a random time change to the standard Poisson process. We character-
ize the FNPP by deriving its non-local governing equation. We further compute
moments and covariance of the process and discuss the distribution of the arrival
times. Moreover, we give both finite-dimensional and functional limit theorems for
the FNPP and the corresponding fractional non-homogeneous compound Poisson
process. The limit theorems are derived by using martingale methods, regular vari-
ation properties and Anscombe’s theorem. Eventually, some of the limit results are
verified via a Monte-Carlo simulation.

In the second part, we analyze statistical point process models for durations between
trades recorded in financial high-frequency trading data. We consider parameter set-
tings for models which are non-stationary or very close to non-stationarity which is
quite typical for estimated parameter sets of models fitted to financial data. Simu-
lation, parameter estimation and in particular model selection are discussed for the
following three models: a non-homogeneous normal compound Poisson process, the
exponential autoregressive conditional duration model (ACD) and a Hawkes process
model. In a Monte-Carlo simulation, we test the performance of the following in-
formation criteria for model selection: Akaike’s information criterion, the Bayesian
information criterion and the Hannan-Quinn information criterion. We are partic-
ularly interested in the relation between the rate of correct model selection and the
underlying sample size. Our numerical results show that the model selection for the
compound Poisson type model works best for small parameter numbers. Moreover,
the results for Hawkes processes confirm the theoretical asymptotic distributions of
model selection whereas for the ACD model the model selection exhibits adverse
behavior in certain cases.
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Introduction

Motivation

Time series analysis as presented in standard textbooks like Brockwell and Davis

1991 or Hamilton 1994 assumes integer-indexed time series of the form x1, x2, . . . , xn.

This assumption is most suitable for data and measurements that can be recorded

at specific equidistant times or are already aggregated. For example, this is the case

for daily, monthly or yearly stock market data.

A useful assumption for time series models is the concept of stationarity1: A time

series is stationary if the autocorrelation function only depends on the lag, i.e. the

time difference h := t − s between two data points xs and xt, where s < t. Sta-

tionarity allows a form of dependence between data points that still ensures consist-

ency and asymptotic results for parameter estimates of time series models such as

ARMA (autoregressive moving average) and GARCH (generalized autoregressive

conditional heteroskedasticity).

An initially non-stationary time series can sometimes be transformed into a station-

ary one. This is usually done by detecting and removing deterministic trends and

seasonality as well as differencing (see Section 1.4 in Brockwell and Davis 1991).

These two assumptions of regularly spaced and stationary data are called into ques-

tion when moving to high-frequency level of financial data. As a consequence of

technological advancement, it is possible to record all transaction of a trading day

or as Engle 2000 termed it: financial data are increasingly available at “ultra-high-

frequency”. This kind of intra-day or tick-by-tick data are inherently irregularly

spaced. One could aggregate the data to fit into the framework of integer-indexed

time series, but this can be problematic as pointed out in Engle and Russell 1998:

The choice of the time grid for aggregation is somewhat arbitrary and distorts the

results of a subsequent statistical analysis. If time intervals are too small, some in-

tervals are empty or just contain a single observation. If the intervals are too large,

information on the time structure might get lost. A way to accommodate irregularly

1At this point, we refer to stationarity as second-order or weak stationarity as opposed to strict
stationarity, where the finite dimensional marginals of the process do not depend on the lag. For
an exact definition see Definition 1.3.2 and Definition 1.3.3 in Brockwell and Davis 1991.
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spaced data is continuous-time point process models. Engle and Russell 1998 have

proposed the ACD (autoregressive conditional duration) model which will be dis-

cussed further in Section 5.3 of this thesis. As direct generalizations of the standard

time series models, there are approaches in constructing continuous time analogues

such as the CARMA (Brockwell 2001, 2004, 2014 and Section 11.5 in Brockwell and

Davis 2016) and COGARCH (Klüppelberg, Lindner and Maller 2004, Brockwell,

Chadraa and Lindner 2006) process. Slightly separate from the theory around time

series models, doubly stochastic point processes are already established in actuarial

risk theory, but their subclass self-exciting point processes has received attention in

recent publications (see Section 5.4 in the thesis) and are viable alternatives to the

ACD model.

Concerning the stationarity property, it is debatable whether this theoretically con-

venient property can be reconciled with stylized facts of empirical data. One of these

stylized facts is long-range dependence which is closely related to non-stationarity.

Long-range dependence usually describes the slow decay (slower than exponential)

of the autocorrelation function for absolute or squared returns. When working with

stationary processes, long-memory is for example achieved by fractional integration,

which is a generalized differencing method (Hosking 1981). However, it is not al-

ways easy to distinguish whether data is stationary with long-memory or simply

non-stationary and thus it is not clear which model approach to follow. Numerous

tests for detection of non-stationarity have been developed and proposed (see Dette,

Preuss and Sen 2017 and references therein). Empirical studies suggest the existence

of structural changes or structural breaks (Rapach and Strauss 2008, Mikosch and

Stărică 2004, Stărică and Granger 2005), i.e. market shocks after which estimated

parameters of time series models need to be adjusted. A possible modeling choice in

order to accommodate such changes are locally stationary models, i.e. in between

structural changes we still assume a homogeneous process. The compound Poisson

type model discussed in Section 5.2 can be categorized as a locally stationary point

process. Moreover the fractional Poisson process is a non-stationary point process

and Leonenko, Meerschaert, Schilling et al. 2014 has proved some long-memory

properties. Furthermore, Biard and Saussereau 2014, 2016 also discuss long-range

dependence and propose the fractional Poisson process for application in an actuarial

modeling framework.

Structure of the thesis

The thesis is a collection of work during my PhD studies at the Department of

Mathematics of the University of Sussex. The content of the thesis has appeared in

the following publications and preprints:
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J. Chen, A. G. Hawkes, E. Scalas and M. Trinh (2018). “Performance of informa-

tion criteria for selection of Hawkes process models of financial data”. In: Quant.

Finance 18.2, pp. 225–235

N. Leonenko, E. Scalas and M. Trinh (2017b). “The fractional non-homogeneous

Poisson process”. In: Statist. Probab. Lett. 120, pp. 147–156

N. Leonenko, E. Scalas and M. Trinh (2017a). “Limit Theorems for the Frac-

tional Non-homogeneous Poisson Process”. In: ArXiv e-prints. arXiv: 1711.08768

[math.PR]

L. Ponta, M. Trinh, M. Raberto, E. Scalas and S. Cincotti (2012). “Modeling non-

stationarities in high-frequency financial time series”. In: ArXiv e-prints. arXiv:

1212.0479 [q-fin.ST]

Wherever it seemed necessary and appropriate, preliminaries are given for under-

standing the content of each chapter. We require the reader to have some basic

knowledge of graduate level mathematics, especially in the area of probability and

statistics. If in doubt, we refer the reader to standard textbooks on probability (in-

cluding martingale theory and Lévy processes) and statistics, for example Durrett

2010, Applebaum 2009, Georgii 2007, Czado and Schmidt 2011.

Chapter 1 sets up the mathematical framework of one-dimensional point processes

and their simulation methods. As a typical example, we present the Poisson pro-

cess together with properties relevant for the following chapters. Both the fractional

Poisson process and the financial models for durations between trades can be viewed

as generalizations of certain aspects of the usual Poisson process.

The rest of the thesis is divided in two parts: The first part consists of Chapter 2

and 3 which discuss the fractional Poisson process and in particular the fractional

non-homogeneous Poisson process (FNPP).

In Chapter 2, building on the standard Poisson process, we propose a construc-

tion of a fractional non-homogeneous Poisson process via a time-change of a non-

homogeneous Poisson process using the inverse of an α-stable subordinator. Prelim-

inaries for understanding the essential elements of this construction, like α-stable

distributions and their associated Lévy processes and the Mittag-Leffler function,

are provided in the first part of the chapter. In direct comparison with previ-

ous results on the fractional homogeneous Poisson process (FHPP), we derive the

http://arxiv.org/abs/1711.08768
http://arxiv.org/abs/1711.08768
http://arxiv.org/abs/1212.0479
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one-dimensional marginals, moments and covariance and prove governing equations.

Links to the FHPP and the standard Poisson process are discussed as special cases

of the FNPP. The results on the FNPP in Chapter 2 are mainly based on work in

Leonenko, Scalas and Trinh 2017b.

After deriving governing equations for the FNPP, we move on to the derivation of

finite-dimensional and functional limit theorems for the fractional Poisson process in

Chapter 3. First, we provide an introduction to the basic framework of weak conver-

gence of probability measures and more specific convergence notions for stochastic

processes with càdlàg paths (right-continuous with left limits). For the space of

càdlàg functions we focus on the J1 and M1 topology and general techniques for

proving functional convergence with respect to those topologies, in particular with

applications to the FNPP. The results on limit theorems for the FNPP follows up on

the work in Leonenko, Scalas and Trinh 2017b and can also be found in Leonenko,

Scalas and Trinh 2017a

The second part of the thesis is devoted to the statistical analysis of performance

of information criteria in selecting model orders of financial models for durations

between trades. Recall that such models are typically applied for high-frequency

intra-day trading data in order to directly model trade durations instead of losing

this information by aggregation to equidistant time grids.

Chapter 4 serves as an introduction to information criteria for model selection, espe-

cially comparing the different motivations for the two most popular ones, Akaike’s

information criterion (AIC) and and the Bayesian information criterion BIC. The

chapter is meant to be read together with Chapter 5, which contains numerical res-

ults of a Monte-Carlo experiment to test the performance of information criteria for

model selection within three different model classes: a type of compound Poisson

model, the ACD model and a Hawkes process model. Especially Hawkes processes

have recently gained popularity as a model for financial data. For each model class,

we first give their definition and stationarity conditions if necessary. Moreover,

we discuss simulation and estimation methods as well as goodness-of-fit measures

needed for the setup of the Monte-Carlo simulation. This work on model selection

draws from work found in Chen et al. 2018 and Section 4 in Ponta et al. 2012.

Preceding Section 4 in Ponta et al. 2012 is an empirical study of high-frequency

trading data, taken from the Italian stock exchange Borsa Italiana on the FTSE

MIB index, that led to the proposed compound Poisson type model. This material

is not covered in this thesis.

Following the main text is an appendix containing some useful results from regular

variation theory which are applied at several points in the thesis. Moreover, a
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manual and the source code for key functions of the implementations done for the

Monte-Carlo simulations are included in the appendix.
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Guide to notation

s.t. such that

w.r.t. with respect to

w.l.o.g. without loss of generality

i.i.d independently and identically distributed

iff if and only if

a.s. almost surely

Exp(λ) exponential distribution with mean 1/λ

N(µ, σ2) normal distribution with mean µ and variance σ2

X, (X(t))t≥0 random variable/stochastic process with time index t, the

index is omitted whenever the range of the index is clear.

1A(x) indicator function: 1A(x) = 1 if x ∈ A and 1A(x) = 0

otherwise

δx(y) delta distribution: δx(y) = 1 if x = y, δx(y) = 0 otherwise

FHPP fractional homogeneous Poisson process

FNPP fractional non-homogeneous Poisson process

càdlàg right-continuous with left limits (continue à droite, limite

à gauche)

C(X, Y ) space of continuous functions defined on the space X, map-

ping to the space Y

Cc(X, Y ) space of continuous functions with compact support

Cb(X, Y ) space of continuous and bounded functions

C0(X, Y ) space of continuous functions vanishing at infinity

D(X, Y ) space of càdlàg functions, Skorokhod space
d
= equality in distribution
a.s.−−→ almost sure convergence
f.d.−→,

d−→ convergence in finite-dimensional distributions, conver-

gence in distribution
P−→ convergence in probability
w−→ weak convergence (of probability measures)
J1−→, M1−−→ convergence w.r.t. the J1 or M1 topology
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ACD autoregressive conditional duration model

GARCH generalized autoregressive conditional heteroskedasticity

CLT central limit theorem

DOA domain of attraction (of a stable law)

MLE maximum likelihood estimation/estimator

MSE mean squared error

RMSE root mean squared error

IC information criterion/criteria

AIC Akaike’s information criterion

BIC Bayesian information criterion

HQ Hannan-Quinn information criterion
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Chapter 1

Point processes

In this chapter, we provide some general results of point process theory and specify

them for the Poisson process as a typical example. These concepts will be used in

the subsequent chapters and are essential for the definition and discussion of point

process models.

1.1 Point process theory and martingales

Definition 1. Let E be a complete separable metric space and B(E) be the σ-field

of its Borel sets.

(i) A locally finite measure on B(E) is called a Borel measure.

(ii) A Borel measure µ on E is boundedly finite if µ(A) <∞ ∀A ∈ B(E).

(iii) A boundedly finite, integer-valued measure is a counting measure.

(iv) A counting measure is simple if N({x}) ∈ {0, 1} ∀x ∈ E.

We consider simple, boundedly finite, integer-valued measures and refer to them as

point processes . Usually, we will set E = R+ which will have the interpretation of

time in later applications. In this case, we do not need to primarily think of a point

process as a random measure. Instead, the point process is literally random points,

say t1, t2, t3, . . . on the positive half line1. The associated counting measure is also a

counting process N which has increasing càdlàg paths (see Figure 1.1).

Similar to Lévy’s characterization of Brownian motion using its quadratic variation

(see Theorem II.4.4 in Jacod and Shiryaev 2003), point processes are characterized

by their compensators.

1Capital letters will usually refer to random variables, e.g. T1, T2, . . . for arrival times and lower
case letters denote their realizations t1, t2, . . ..
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t
t1 t2 t3

N(t)

1

2

3

Figure 1.1: Typical càdlàg path of a counting process N associated with a (Poisson)
point process with arrival times t1, t2, t3, . . ..

Definition 2. Let (N(t))t≥0 be a counting process on R+ adapted to a filtration

(Ft)t≥0. A compensator A of ξ w.r.t. (Ft)t≥0 is a monotonic non-decreasing, right-

continuous predictable process such that (M(t))t≥0, where M(t) := N(t) − A(t), is

a local martingale.

The Doob-Meyer decomposition (see Theorem 4.10 in Karatzas and Shreve 1988) of

submartingales ensures the existence and uniqueness of the compensator of a point

process. The following theorem will be useful in later chapters:

Theorem 1. Let P be a probability measure on a probability space (Ω,F). Then,

there exists for a point process (N(t))t≥0 a (Ft)-predictable random measure dA(t)

(or equivalently an increasing (Ft)-predictable process (A(t))t≥0) such that for all

positive (Ft)-predictable processes (X(t))t≥0, it holds that

E
[∫ ∞

0

X(t) dN(t)

]
= E

[∫ ∞
0

X(t) dA(t)

]
(see Theorem I.3.18 Jacod and Shiryaev 2003).

In the case that t 7→ A(t, ω) is an absolutely continuous function which admits a

density λ s.t.

A(t, ω) =

∫ t

0

λ(τ, ω) dτ, (1.1)

we call λ the (Ft)-conditional intensity of (N(t))t≥0. Intuitively, the conditional

intensity can be interpreted as the instantaneous probability of an event at time t

given the history Ft. Formally, we can write for the intensity

λ(t) ≈ lim
∆→0

1

∆
E[N(t+ ∆)−N(t)|Ft−] = lim

∆→0

1

∆
P[N(t+ ∆)−N(t) = 1|Ft−].

Although the existence of the compensator is guaranteed, this is not always the

case for the intensity. Nevertheless, point process models can be defined using an

intensity function as we will see in later chapters.
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Let T1, T2, . . . be the events of the point process (N(t))t≥0. The conditional probabil-

ity density function (if it exists) of the nth event is denoted by pn(t|T1, T2, . . . , Tn−1)

and the survivor function or survival function is given by

Sn(t|T1, T2 . . . , Tn−1) = 1−
∫ t

Tn−1

pn(u|T1, T2, . . . , Tn−1) du, (t > Tn−1)

and the hazard function is defined as

hn(t|T1, T2, . . . , Tn−1) =
pn(t|T1, T2, . . . , Tn−1)

Sn(t|T1, T2 . . . , Tn−1)
. (1.2)

Using the above terms we can express the conditional intensity via

λ(t) =

{
h1(t) if 0 < t ≤ T1,

hn(t|T1, T2, . . . , Tn−1) if Tn−1 < t ≤ Tn, n ≥ 2
(1.3)

(for details see Section 7.2 in Daley and Vere-Jones 2003). Indeed, it can be shown

that the conditional intensity functions in Equation (1.1) and the representation in

(1.3) coincide a.s. (see Corollary 14.1.V. in Daley and Vere-Jones 2008).

1.2 The homogeneous Poisson process

The Poisson process is the archetypical stochastic process for random occurrences.

There are various possible characterizations for the homogeneous Poisson process

(see Vidmar 2016 and references therein). Nevertheless, we will restrict the present-

ation to the most commonly encountered definitions as seen especially in the actu-

arial risk theory context: Most of the results in this section can be found in Mikosch

2009. First, we choose the characterization of the Poisson process as a Lévy process

as a definition.

Definition 3. Let λ > 0 and (N(t))t≥0 be a stochastic process such that

(i) N(0) = 0 a.s.

(ii) N has independent increments

(iii) N has stationary increments with

N(t)−N(s) ∼ Poi(λ(t− s)), 0 ≤ s < t. (1.4)

(iv) N has càdlàg paths.

Then N is a homogeneous Poisson process and λ is called the intensity parameter.
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It follows from (i) and (iii) that the one-dimensional distributions of N are given by

pN(t)(k) := P(N(t) = k) = e−λt
(λt)k

k!
, k ∈ N.

Since the Poisson process is a Lévy process, there is a closed form expression for its

characteristic function:

ϕN(t)(u) := E[eiuN(t)] = exp(λt(eiu − 1)).

The homogeneous Poisson process can also be characterized by its compensator

A(t) = λt, which implies a constant intensity function a(t) = λ. This result is

known as the Watanabe characterisation due to Watanabe 1964. Related to this is

another characterization via an infinitesimal description:

Theorem 2. Let (N(t))t≥0 be a counting process with stationary and independent

increments, N(0) = 0 and increasing càdlàg paths. Then, (N(t))t≥0 is a homogen-

eous Poisson process with parameter λ if and only if

P(N(t+ h)−N(t) = 1) = λh+ o(h) (h −→ 0+)

P(N(t+ h)−N(t) > 1) = o(h) (h −→ 0+),

(see Theorem 2.2.III in Daley and Vere-Jones 2003).

The Poisson process is a Markov process and its semigroup is generated by the shift

operator (see Example 3.3.6 in Applebaum 2009).

(Lf)(x) = λ(f(x+ 1)− f(x))

and the associated governing equation is{
f ′(t) = λ(f(t+ 1)− f(t))

f(0) = δ0.
(1.5)

The Poisson process can equivalently be defined as a renewal process with i.i.d.

Exp(λ) distributed waiting times (Ji)i∈N, i.e.

1− FJi(t) := P(Ji > t) = exp(−λt).

The corresponding arrival times are given by Tn = J1 + J2 + . . . + Jn and their

distribution is sometimes referred to as Erlang distribution. Let FTn and fTn be the
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distribution function and probability density function of Tn respectively. Then

FTn(t) = 1− eλt
n−1∑
x=1

(λt)x

x!
, fTn(t) = e−λt

λntn−1

(n− 1)!
.

Given the arrival times T1, T2, . . ., the corresponding counting process (N(t))t≥0 can

be written as

N(t) := sup{n ∈ N : Tn ≤ t}.

Instead of specifying the waiting time distribution, another possible characterization

of the homogeneous Poisson process is the order statistics property (see Liberman

1985, Gan and Yang 1989, Gan and Yang 1990, Section 2.1.6 in Mikosch 2009):

Theorem 3 (Order statistics property). A renewal process (N(t))t≥0 is a homo-

geneous Poisson process if and only if the distribution of the interarrival times

T1, T2, . . . , Tn given N(t) = n is equal to the distribution of the (minimum) order

statistics of i.i.d. samples U1, U2, . . . , Un of a Uniform(0, t) distribution, i.e. for

n ∈ N
(T1, T2, . . . , Tn|N(t) = n)

d
= (U(1), U(2), . . . , U(n)) (1.6)

This turns out to be very useful for simulation purposes.

1.3 The inhomogeneous Poisson process

The homogeneous Poisson process is one of the simplest examples of a Lévy process.

Similarly, one can consider the inhomogeneous Poisson process 2 as a simple example

of an additive process. We require the process (N(t))t≥0 to fulfill properties (i), (ii)

and (iv) in Definition 3 and replace the stationary increment property (iii) by a

more general one

(iii’) N(t)−N(s) ∼ Poi(Λ(s, t)), 0 ≤ s < t,

where the function Λ has to satisfy Λ(r, s) + Λ(s, t) = Λ(r, t) for all s, r, t ∈ R+ with

r ≤ s ≤ t. In the following, we assume Λ to be absolutely continuous, i.e. there is

a positive function λ : R+ → (0,∞) such that

Λ : R2
+ → [0,∞)

(s, t) 7→
∫ t

s

λ(τ)dτ. (1.7)

The function Λ is sometimes called rate function. The idea of this generalization is

to allow the intensity λ of the process to depend on time. Indeed, if we set λ(τ) ≡ λ

2synonymously non-homogeneous Poisson process



20

constant we get

Λ(s, t) = λ(t− s) and N(t)−N(s) ∼ Poi(λ(t− s)), 0 ≤ s < t

and we obtain property (iii), i.e. N is a homogeneous Poisson process iff λ is

constant.

Example 1. Rate functions can be constructed using the hazard function as de-

scribed in Section 1.1.

(i) A popular extreme value distribution is the Weibull distribution with probab-

ility distribution function

F (t) = 1− e−(t/b)c , c > 0, b > 0,

(see Embrechts, Klüppelberg and Mikosch 1997). The corresponding intensity

function is given by

λ(t) =
F ′(t)

1− F (t)
=
c

b

(
t

b

)c−1

.

Integration yields Weibull’s rate function:

Λ(t) := Λ(0, t) =

(
t

b

)c
, c > 0, b > 0

(ii) A commonly used distribution for mortality is the Gompertz–Makeham law

with distribution function

F (t) = 1− exp
(
−c
b
(ebt − 1)− µt

)
, c > 0, b > 0, µ ≥ 0,

(see Marshall and Olkin 2007). The corresponding rate function and intensity

are given by

Λ(t) =
c

b
ebt − c

b
+ µt, λ(t) = cebt + µ, c > 0, b > 0, µ ≥ 0.

In Brémaud 1975 it is shown that the compensator of the inhomogeneous Poisson

process is given by A(t) = Λ(0, t), i.e. M(t) := N(t)− Λ(0, t) is a martingale.

It is possible to transform a non-homogeneous Poisson process into a homogeneous

one via a time-change which is exactly given by the compensator:

Theorem 4 (Time-change theorem). Let (N(t))t≥0 be a simple point process ad-

apted to a history (Ft)t≥0 with bounded, strictly positive conditional Ft-intensity
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λ∗(t) and Ft-compensator

Λ∗(t) =

∫ t

0

λ∗(u) du

that is not a.s. bounded. Under the random time-change t 7→ Λ∗(t), the transformed

process Ñ(t) = N(Λ∗(t)) is a Poisson process with unit rate.

Conversely (see Theorem 7.4.I. in Daley and Vere-Jones 2003).

The result goes back to Meyer 1971 and Papangelou 1972. In particular, the time

change theorem implies that

N(t) = N1(Λ(0, t)),

where N1 is the homogeneous Poisson process with intensity parameter 1.

The characteristic function of the increments can be written as

ψ(N(t)−N(s))(u) = exp(Λ(s, t)(eiu − 1)).

The inhomogeneous Poisson process is a time-inhomogeneous Markov process and

the dynamics can be described by the Kolmogorov equations (see Section 3.5.3 in

Applebaum 2009). Let gk denote the one-dimensional marginals of N and w.l.o.g.

0 < s < t:

gk(s, t) := P(N1(Λ(s, t)) = k) = e−Λ(s,t) Λ(s, t)k

k!
.

and for the increment we write

px(t, v) := P(N(t+ v)−N(v) = x)

=
e−Λ(v,t+v)Λ(v, t+ v)x

x!
, x = 0, 1, 2, . . . . (1.8)

For notational convenience, we write pk(t) = pk(t, 0). We can derive the Kolmogorov

backward equation (sometimes also called master equation) as follows:

∂

∂s
gk(s, t) = λ(s)e−Λ(s,t) Λ(s, t)k

k!
− λ(s)e−Λ(s,t)kΛ(s, t)k−1

k!

= λ(s)e−Λ(s,t)

[
Λ(s, t)k

k!
− Λ(s, t)k−1

(k − 1)!

]
= λ(s)[gk(s, t)− gk−1(s, t)].
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In a similar way, the forward equation yields an equation of Fokker-Planck type

∂

∂t
gk(s, t) = −λ(t)e−Λ(s,t) Λ(s, t)k

k!
+ λ(t)e−Λ(s,t)kΛ(s, t)k−1

k!

= λ(t)e−Λ(s,t)

[
−Λ(s, t)k

k!
+

Λ(s, t)k−1

(k − 1)!

]
= −λ(t)[gk(s, t)− gk−1(s, t)] (1.9)

or in terms of the increment

d

dt
px(t, v) = −λ(t+ v)px(t, v) + λ(t+ v)px−1(t, v), x = 0, 1, 2, . . . , (1.10)

with initial conditions

px(0, v) =

{
1, x = 0

0, x ≥ 1

and p−1(t, v) ≡ 0.

We see that for constant λ Equation (1.10) simplifies to Equation (1.5), the homo-

geneous case.

1.4 Simulation

1.4.1 Simulation methods for the homogeneous Poisson pro-

cess

Since more general simulation algorithms for point processes rely on an effective

simulation method for the homogeneous Poisson process, it is useful to discuss com-

mon approaches for that first. Due to the constant intensity parameter, several of

the previously mentioned characterizations of the homogeneous Poisson process lend

themselves to vectorized sampling algorithms.

The common approach to simulate Lévy processes is to sample the increments, due

to their independence. If this is done on an equidistant grid, the increments are i.i.d.

and the sampling can be vectorized in this step. Finally, one needs to calculate the

cumulative sum to get the process values. However, this would give us merely an

approximation of (N(t))t≥0 because there would be no information on the exact

event times T1, T2, . . ..

The renewal representation of the Poisson process allows us to simulate the arrival

times directly by drawing from Exp(λ). However, the procedure is not easily vec-

torized as it is not clear a priori how many samples are actually needed (assuming

we are to simulate the process on a given time interval).

At this point, the order statistics characterization comes quite handy as we can
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see from Formula (1.6) that we can draw the number of events in a given interval

separately from the actual event times. This leaves us with Algorithm 1.1

Algorithm 1.1: Sampling of a homogeneous Poisson process

1 input :
2 T − time horizon , sampling i n t e r v a l [0, T )
3 λ − i n t e n s i t y parameter
4 output :
5 t = (t1, t2, ...) − event t imes o f the s imulated proce s s
6 begin
7 1) Generate N ∼ Poi(λT )
8 2) Generate u1, u2, . . . , uN i . i . d . samples drawn from Uniform(0, 1)
9 3) Apply the minimum order s t a t i s t i c s  t← (u(1), . . . , u(N))

10 end

1.4.2 Thinning algorithms

Thinning algorithms are adaptions of the sampling approach via acceptance-rejection

schemes. In their basic form of drawing i.i.d. samples from a given probability dens-

ity function f the idea is to find an upper bound on f using a probability density g

which is easy to sample from:

f ≤ cg,

where c is a constant. The pseudocode in Algorithm 1.2 displays how such a method

would be implemented.

Algorithm 1.2: Acceptance-rejection method

1 input :
2 f − p r o b a b i l i t y dens i ty
3 g − p r o b a b i l i t y dens i ty f o r which a s imu la t i on method i s
4 a l ready implemented
5 c − constant f o r upper bound on f
6 output :
7 X sample from d i s t r i b u t i o n with dens i ty f
8 begin
9 do

10 1) draw X ∼ g
11 2) draw U ∼ Uniform(0, 1)
12 while U > f(X)/cg(X)
13 end

In a similar way, the same technique works for point processes, where the acceptance-

rejection rule is applied to a ratio of intensities instead of probability densities. In

the next paragraphs we will discuss the two cases in which intensity functions can

be globally or locally bounded.
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The Lewis-Shedler algorithm If a time-varying and possibly random intensity

function λ can be a.s. bounded from above by a constant M , we are able to obtain

samples from the point process with underlying intensity λ: First, a sample from a

homogeneous Poisson process with intensity parameter M can be drawn using for

example Algorithm 1.1. This would give us a sample with too many events. We

therefore need to “thin” out the sample proportional to λ(t)/M . This leads to the

thinning algorithm by Lewis and Shedler 1979 (see Algorithm 1.3).

Algorithm 1.3: Lewis-Shedler algorithm

1 input :
2 M − bound on the c o n d i t i o n a l i n t e n s i t y
3 A − l i m i t o f the s imu la t i on i n t e r v a l [ 0 ,A)
4 λ∗ − c o n d i t i o n a l i n t e n s i t y func t i on
5 output :
6 {t1, t2, . . .} − event t imes o f the s imulated proce s s
7 begin
8 1) s imulate x1, x2, . . . as r e a l i z a t i o n s o f a Poisson proce s s
9 with i n t e n s i t y parameter M .

10 2) s imulate independent samples y1, y2, . . . o f Uniform (0 , 1 )
11 3) s e t k ← 1 , j ← 1 , H = ∅
12 4) i f xk > A  terminate
13 else eva luate λ∗ = λ(xk|H)
14 end i f
15 5) i f yk ≤ λ∗(xk)/M  s e t tj ← xk , H = H ∪ {tj} , j ← j + 1
16 end i f
17 6) k ← k + 1 , goto (4 )
18 end

Ogata’s modified algorithm The existence of a global upper bound on the

intensity function is not always given. This is for example the case for Hawkes

processes which we will discuss in more detail in Chapter 5. Hawkes processes

belong to the class of self-exciting point processes, which essentially means that the

occurrence of an event caused a positive jump in the intensity. Although additional

requirements like stationarity might prevent a blow up in intensity, this is generally

not enough to guarantee a deterministic global upper bound on the intensity.

Fortunately, it is possible to relax the requirement to a local upper bound on the

intensity between events. For the algorithm to work, one needs to make sure that the

current upper bound is updated whenever an event occurs. We first present Ogata’s

modified algorithm Ogata 1981 as described in Section 7.5 in Daley and Vere-Jones

2003 and then give a version specifically for the Hawkes process in Chapter 5.

For Algorithm 1.4 we assume the following: Let (Ht)t≥0 be a filtration. It typically

contains the events of the point process for it to be adapted, but could also include

additional information. Suppose that there exist functions M(t|Ht) and L(t|Ht)
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such that for all initial histories H0 and all t ∈ [0,∞), n = 1, 2, . . . and sequences

0 < t1 < t2 < . . . < tn−1 < t the hazard functions satisfy

hn(t+ u|H0, t1, . . . , tn−1) ≤M(t|Ht), 0 ≤ u < L(t|Ht).

Algorithm 1.4: Ogata’s modified algorithm

1 input :
2 H0 − i n i t i a l h i s t o r y
3 M(t|H) , L(t|H) − f u n c t i o n s f o r l o c a l s p a t i a l and temporal
4 bounds
5 λ∗ − c o n d i t i o n a l i n t e n s i t y func t i on
6 output :
7 {t1, t2, . . .} − event t imes o f the s imulated proce s s
8 begin
9 1) s e t t← 0 , i← 0 , H ← H0

10 2) while te rminat ion cond i t i on not met
11 eva luate M ←M(t|H) and L← L(t|H)
12 generate T ∼ Exp(M(t)) and U ∼ Uniform(0, 1)
13 i f T > L  t← t+ L
14 else i f λ∗(t+ T )/M > U  t← t+ T
15 else i← i+ 1 , ti ← t+ T , t← ti H ∪ {ti}
16 end i f
17 end i f
18 end while
19 end

1.5 Summary

We have revised the general definition of point processes and in particular their

relation to martingale theory. As a typical example, we presented the homogeneous

and inhomogeneous Poisson process. This revision should prepare for the treatment

of the fractional version of the Poisson process in the following chapters. We have

concluded the chapter with a simulation algorithm for the Poisson process and the

standard thinning algorithms for point processes with (locally) bounded intensity.

These are basis for the implementation of simulation algorithms needed in Monte-

Carlo experiments in Chapter 5.
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Chapter 2

The fractional Poisson process

In this chapter, we introduce the fractional Poisson process and its relation to α-

stable subordinators and the Caputo derivative. We propose a definition for the

fractional non-homogeneous Poisson process and derive some first properties. First,

we give some preliminaries on the Mittag-Leffler function and α-stable distributions.

2.1 Preliminaries

2.1.1 The Mittag-Leffler function

The one-parameter Mittag-Leffler function was proposed by Mittag-Leffler 1903a,b,

1905 for the summation of divergent series and is given by

Eα(z) =
∞∑
k=0

zk

Γ(1 + αk)
, α ∈ C,Re(α) > 0, z ∈ C. (2.1)

The Mittag-Leffler function can be viewed as a generalization of the exponential

function. If we set α = 1, the right hand side of Equation (2.1) reduces to the power

series representation of the exponential function. In other words, E1(z) = exp(z).

The two parameter Mittag-Leffler function was first used by Wiman 1905a,b and is

defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
, α, β ∈ C,Re(α),Re(β) > 0, z ∈ C.

In the most general form, we will consider the three parameter Mittag-Leffler func-

tion, which was introduced by Prabhakar 1971. To write it in compact form the

notation for the rising and falling factorial is useful. Let γ ∈ C and k ∈ N, then
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define the falling and the rising factorial as

(γ)k = γ(γ − 1) . . . (γ − k + 1) =
Γ(γ + 1)

Γ(γ − k + 1)
and

(γ)k = γ(γ + 1) . . . (γ + k − 1) =
Γ(γ + k)

Γ(γ)

respectively. The three parameter Mittag-Leffler function can now be defined as

follows:

Eγ
α,β(z) =

∞∑
k=0

(γ)kzk

k!Γ(β + αk)
α, β, γ ∈ C,Re(α),Re(β) > 0, z ∈ C.1

Note that E1
α,β = Eα,β and Eα,1 = Eα.

For an extensive review on Mittag-Leffler functions and their applications, the reader

is referred to Erdélyi et al. 1981, the Appendix in Mainardi and Gorenflo 2000 and

the review paper Haubold, Mathai and Saxena 2011. For the sake of completeness

we will give useful relations of the Mittag-Leffler function that will be used later in

the following proposition.

Proposition 5. Let α > 0 and k = 0, 1, 2, . . .. Then

a)
dk

dzk
Eα(z) = k!Ek+1

α,αk+1(z)

b) L{tαkE(k)
α (−tα); s} =

k!sβ−1

(1 + sβ)k+1
.

Proof. For part (a) we check via direct computation. As the power series of the

Mittag-Leffler function converges absolutely, we can interchange differentiation and

the limit of the series:

dk

dzk
Eα(z) =

dk

dzk

∞∑
j=0

zj

Γ(1 + αj)
=
∞∑
j=k

(j)kzj−k

Γ(1 + αj)
=
∞∑
j=0

(j + k)kzj

Γ(1 + α(j + k))

=
∞∑
j=0

(j + k)!

j!

zj

Γ(1 + α(j + k))
= k!

∞∑
j=0

(j + k)!

k!

zj

j!Γ(1 + α(j + k))

= k!
∞∑
j=0

(j)kzj

j!Γ(1 + α(j + k))
= k!Ek+1

α,αk+1(z),

which yields the desired result.

1In the original notation given in Prabhakar’s work (γ)k was replaced by (γ)k for the rising
factorial and is often referred to as Pochhammer symbol. However, we follow the recommendation
given in Knuth 1992. Pochhammer himself actually used it as a notation for the binomial coefficient,
i.e. (γ)k =

(
γ
k

)
. Across the literature, (γ)k is used as both the rising and the falling factorial and

can therefore lead to confusion.
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In order to show (b), we again interchange differentiation and limit:

L{tαkE(k)
α (−tα); s} =

∫ ∞
0

e−sttαk

 dk

dzk

∞∑
j=0

zj

Γ(1 + αj)

∣∣∣∣∣
z=−tα

 dt

=

∫ ∞
0

e−sttαk

 ∞∑
j=k

(j)kzj−k

Γ(1 + αj)

∣∣∣∣∣
z=−tα

 dt =

∫ ∞
0

e−sttαk

(
∞∑
j=k

(j)k(−tα)j−k

Γ(1 + αj)

)
dt

=
∞∑
j=k

(j)k

Γ(1 + αj)
(−1)j−k

∫ ∞
0

e−sttαjdt︸ ︷︷ ︸
= 1
s

∫∞
0 e−u(us )

αj
du=s−1−αjΓ(1+αj)

=
∞∑
j=k

(j)k(−1)j−ks−1−αj

= s−1−αk
∞∑
j=k

(j)k (−1)j−ks−α(j−k)︸ ︷︷ ︸
(−s−α)j−k

= s−1−αk

 dk

dzk

∞∑
j=0

zj

∣∣∣∣∣
z=−s−α


= s−1−αk k!

(1− z)k+1

∣∣∣∣
z=−s−α

= s−1−αk k!

(1 + s−α)k+1
=

k!s−1+α

(1 + sα)k+1

2.1.2 Stable distributions

Let us consider a sequence of i.i.d. random variables X1, X2, . . . with mean µ ∈ R
and finite variance σ2 > 0. Then the classic central limit theorem (CLT) states that

under suitable centering and scaling, the sequence of partial sums Sn =
∑n

k=1 Xk

converges in distribution to a normal law2, i.e.

1√
n

(
n∑
k=1

Xk − µ

)
d−−−→

n→∞
N (0, σ2).

In the case that the variance of X1 is infinite, it is possible to generalize the classical

CLT if we allow not only a normal distribution, but a broader class of distributions

in the limit. This class of distributions is referred to as stable laws which can be

defined by their characteristic function.

Definition 4 (Characteristic function of stable laws Sα(σ, β, µ)). A random variable

X is said to have a stable distribution if there are parameters 0 < α ≤ 2, σ ≥ 0,

−1 ≤ β ≤ 1 and µ ∈ R such that its characteristic function has the following form:

E[exp(iθX)] =

{
exp

(
−σα|θ|α

[
1− iβ sign(θ) tan

(
πα
2

)]
+ iµθ

)
if α 6= 1,

exp
(
−σ|θ|

[
1 + iβ 2

π
sign(θ) ln(|θ|)

]
+ iµθ

)
if α = 1

.

The parameter α is called index of stability (see Definition 1.1.6 in Samorodnitsky

2see Theorem 5.29 in Georgii 2007
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and Taqqu 1994).

The index α determines the existence of moments:

Proposition 6. Let X ∼ Sα(σ, β, µ) with 0 < α < 2. Then

E[|X|p] <∞ for any 0 < p < α

E[|X|p] =∞ for any p ≥ α

(see Property 1.2.16 in Samorodnitsky and Taqqu 1994).

Definition 5 (Domain of attraction of a stable law). Let X1, X2, . . . be a sequence

of i.i.d. random variables. The law of X1 is said to be in the domain of attraction

(DOA) of a stable law Sα(σ, β, µ) if there exist sequences (an)n∈N, (bn)n∈N and a

random variable S ∼ Sα(σ, β, µ) such that

an

n∑
k=1

Xk − bn
d−−−→

n→∞
S. (2.2)

Indeed, one can show that Definition 4 and Definition 5 are equivalent, i.e. the law

of a random variable S is a stable law if and only if it arises from a generalized CLT

as in (2.2) (see Chapter 1 in Samorodnitsky and Taqqu 1994 and references therein).

The tail behaviour of the distribution of X1 determines whether it lies in the DOA of

a stable law. For a definition of the set of slowly varying functions R0 see Definition

A.2 in the appendix.

Theorem 7. A distribution µ is in the DOA of a stable law with exponent α ∈ (0, 2)

if and only if

i) lim
x→∞

µ(x,∞)

µ(−∞, x) + µ(x,∞)
= M ∈ [0, 1]

ii) If M > 0, then µ(x,∞) =
L+(x)

xα
for some slowly varying function L+.

If M > 0, then µ(−∞,−x) =
L−(x)

xα
for some slowly varying function L−.

The distribution µ is in the DOA of a normal law if and only if

lim
x→∞

x2
∫
|y|>x dµ(y)∫

|y|≤x y
2dµ(y)

= 0

(see Theorem 9.34 and Theorem 9.41 in Breiman 1968).

A similar characterizing theorem for DOA of stable laws can be found in Section

XVII.5 in Feller 1971 and also as Theorem 3.2 in Gut 2013 from which we will state

the part relevant for our purposes:



30

Theorem 8. A random variable X belongs to the DOA of a stable distribution iff

there exists l ∈ R0 such that

U(x) = E[X21{|X|≤x}] ∼ x2−αl(x), (x→∞). (2.3)

Remark 1. The function U can be interpreted as a truncated (second) moment

function. The proof explicitly constructs the norming constants an in 2.2 as

(an)−1 = inf

{
x :

nU(x)

x2
≤ 1

}
.

From this together with 2.3 one can conclude that an ∈ R−1/α (as a function of n).

A subclass of stable distributions of particular interest in the next section are the

totally right skewed stable distributions Sα(σ, 1, 0) with α ∈ (0, 1). The density

function has support in R+. In this special case, the Laplace transform of X ∼
Sα(σ, 1, 0) is

E[e−γX ] = exp

(
− σα

cos (πα/2)
γα
)
, α ∈ (0, 1). (2.4)

For convenience, we choose

σ∗ =
(

cos
(πα

2

))1/α

≥ 0,

and Sα(σ∗, 1, 0) for α ∈ (0, 1) is the underlying infinitely divisible distribution of a

strictly increasing Lévy process in the next section.

2.2 The stable subordinator and its inverse

Definition 6. Let α ∈ (0, 1), then the α-stable subordinator (Lα(t))t≥0 is a positive

valued Lévy process with Laplace transform

φ(u) = E[e−uLα(t)] = e−tu
α

.

The inverse α-stable subordinator (Yα(t))t≥0 is defined by

Yα(t) := inf{u ≥ 0 : Lα(u) > t}. (2.5)

The Laplace transform of the one-dimensional marginal distribution associated with

the inverse α-stable subordinator can be expressed in terms of the Mittag-Leffler

function: Let h(t, ·) be the density function of the distribution of Yα(t), then∫ ∞
0

e−suhα(t, u)du = Eα(−stα)
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(see Proposition 1(a) iii) in Bingham 1971).

Note that both Lα and Yα are self-similar, i.e.

Lα(t)
d
= t1/αLα(1) and Yα(t)

d
= tαYα(1)

and in particular we have the relation

Yα(t)
d
=

(
Lα(1)

t

)−α
, t > 0,

(see Corollary 3.1 (a) in Meerschaert and Scheffler 2004), which implies

hα(t, x) =
t

αx1+ 1
α

gα

(
t

x
1
α

)
, x ≥ 0, t ≥ 0, (2.6)

where gα is the probability density of Lα(1).

Using Equation (2.5), we can derive the following limit for the distribution function

of Yα:

P(Yα(t) ≤ u) = P(Dα(u) ≥ t) −−−→
t→∞

0.

It is possible to say more about the asymptotic behaviour by invoking a Tauberian

theorem.

Proposition 9. Let (Yα(t))t≥0 be the inverse α-stable subordinator with distribu-

tion density x 7→ hα(t, x). Then for fixed u ≥ 0, α ∈ (0, 1)

hα(t, x) ∼ (1− α)

Γ(2− α)
t−α (t→∞).

Proof. We use a Tauberian theorem which can be found in Simon 1979 (see Theorem

A.4 in Appendix A) To this end, define the measure

µ(dt) = hα(t, x)dt.

We denote its Laplace(-Stieltjes) transform by

G(s) :=

∫ ∞
0

e−tsµ(dt) =

∫ ∞
0

e−sthα(t, x)dt = sα−1 exp(−xsα)

Set γ = 1− α, then sγG(s)→ 1 for s→ 0. Then it follows by Theorem A.4 that

b−γµ([0, b)) ∼ 1

Γ(2− α)
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which is equivalent to ∫ b

0

hα(t, x) dt ∼ 1

Γ(2− α)
b1−α.

As both sides are differentiable w.r.t. b we may use l’Hospital’s rule to derive

asymptotics for the density h. On the one hand, it holds that

1 = lim
b→∞

∫ b
0
hα(t, x) dt

1
Γ(2−α)

b1−α = lim
b→∞

hα(b, x)
1

Γ(2−α)
(1− α)b−α

and on the other hand we have

1 = lim
b→∞

1
Γ(2−α)

b1−α∫ b
0
hα(t, x) dt

= lim
b→∞

1
Γ(2−α)

(1− α)b−α

hα(b, x)
.

Thus it follows that

hα(t, x) ∼ (1− α)

Γ(2− α)
t−α.

2.3 Definition of the fractional Poisson process

The fractional homogeneous Poisson process (FHPP) can be defined in two equival-

ent ways. First, the renewal approach in defining the FHPP replaces the exponential

waiting time distribution of the standard homogeneous Poisson process (see p. 17)

with a Mittag-Leffler distribution.

Nα(t) := sup{n ∈ N : Tn < t}, Tn =
n∑
k=1

Jk,

where (Jk) are i.i.d. distributed with survival function P(Jk > t) = Eα(−λtα). As

shown in Theorem. 2.2 in Meerschaert, Nane and Vellaisamy 2011, one can also

define the FHPP in an equivalent way via the time-change approach. Let (Nλ(t)) be

a homogeneous Poisson process with parameter λ and (Yα(t)) be the inverse α-stable

subordinator:

Nα(t) := Nλ(Yα(t)).

Remark 2 (Mittag-Leffler distribution). Note that the term “Mittag-Leffler distri-

bution” can refer to two kinds of probability distributions which are not equivalent:

(i) The distribution of the inverse α-stable subordinator due to its relation to the
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Mittag-Leffler function via its Laplace transform (see Section 2.2).

(ii) The distribution of the waiting times Jk in the renewal representation of the

FHPP:

P(Jk > t) = Eα(−λtα)

Analogous to the introduction of fractionality of the FHPP, we propose the construc-

tion of a fractional non-homogeneous Poisson process using the subordination ap-

proach. Incidentally, we cannot follow the renewal approach as the non-homogeneous

Poisson process cannot be represented as a renewal process3.

Definition 7. Let (N1(t))t≥0 be a Poisson process with parameter λ = 1, (Yα(t))t≥0

an inverse α-stable subordinator and Λ a rate function. Then the fractional non-

homogeneous Poisson process of first kind is defined as

Nα(t) = N1(Λ(Yα(t))), t ≥ 0, 0 < α < 1 (2.7)

and the fractional non-homogeneous Poisson process of second kind is given by

Ñα(t) := N1(Yα(Λ(t))), t ≥ 0, 0 < α < 1.

Remark 3. We will refer to the fractional non-homogeneous Poisson process (FNPP)

as the first kind defined in (2.7) unless stated otherwise. For results on the second

kind see for example Maheshwari and Vellaisamy 2017.

2.4 Governing equations

2.4.1 Fractional differential operators

The Caputo derivative is a possible way to define a fractional derivative (Caputo

1967). 4

Definition 8. The Caputo derivative is defined as

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

df(τ)

dτ

dτ

(t− τ)α
, 0 < α < 1. (2.8)

According to Theorem 2.1 in Kilbas, Srivastava and Trujillo 2006 the Caputo de-

rivative exists and is well-defined for absolutely continuous functions. The following

3Although the non-homogeneous Poisson process cannot be represented as a classical renewal
process, there exists a construction method for generalized renewal processes. For details see
Gergely and Yezhow 1973.

4For other notable fractional derivatives such as the Grünwald and Riemann-Liouville fractional
derivative see Chapter 2 in Meerschaert and Sikorskii 2012.
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formula for the Laplace transform of the Caputo derivative is well known and we

provide a proof for the sake of completeness.

Proposition 10. Let f be in the domain of the Caputo derivative with Laplace

transform f̃(s) := L{f ; s} and let g(t) := Dα
t f(t). Then, the Laplace transform of

g is given by

L{Dα
t f ; s} = sαf̃(s)− sα−1f(0+) (2.9)

Proof. Using the definition in (2.8) we get

L{Dα
t f ; s} =

∫ ∞
0

e−stDα
t f(t) dt =

1

Γ(1− α)

∫ ∞
0

e−st
(∫ t

0

d

dτ
f(τ)

dτ

(t− τ)α

)
dt

=
1

Γ(1− α)

∫ ∞
0

d

dτ
f(τ)

(∫ ∞
τ

e−st
dt

(t− τ)α

)
︸ ︷︷ ︸

=e−τs Γ(1−α)

s−α+1

dτ (2.10)

= sα−1

∫ ∞
0

d

dτ
f(τ)eτsdτ = sα−1(sf̃(s)− f(0+)) = sαf̃(s)− sα−1f(0+),

where in (2.10) we used Fubini’s theorem.

2.4.2 The homogeneous case

The governing equations of the one-dimensional marginal distribution of the FHPP

can be derived using the Fourier-Laplace transform. The equations were first intro-

duced by Laskin 2003 and Beghin and Orsingher 2009, 2010. The section follows

the presentation found in Meerschaert and Sikorskii 2012.

Theorem 11. The one-dimensional marginal distributions

pαx(t) := P(Nλ(Yα(t)) = x), x = 1, 2, . . .

satisfy the following Cauchy problem{
Dα
t p

α
x(t) = λ(pαx(t)− pαx−1(t))

pαx(0) = δ0(x); pα−1 ≡ 0.
(2.11)

Proof. By a conditioning argument we can write

pαx(t) =

∫ ∞
0

e−λu
(λu)x

x!
hα(t, u) du

Next, we apply the Fourier transform w.r.t. the state variable x and the Laplace
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transform w.r.t. the time variable t, which yields

pαy (s) =

∫ ∞
0

exp(λu(eiy − 1))sα−1 exp(−usα) du

=

∫ ∞
0

sα−1 exp(u(λ(eiy − 1)− sα)) du

=
sα−1

λ(eiy − 1)− sα
exp(u(λ(eiy − 1)− sα))

∣∣∞
u=0

=
sα−1

sα − λ(eiy − 1)
. (2.12)

The limit in (2.12) can be calculated as follows:

lim
u→∞

exp((λ(eiy − 1)− sα)u) = lim
u→∞

exp(λu(cos(y) + i sin(y)− 1)− sαu)

= lim
u→∞

exp(iλ sin(y))︸ ︷︷ ︸
|·|=1

exp(λ(cos(y)− 1))︸ ︷︷ ︸
≤1

exp(−sαu) = 0.

Next, we apply the same Fourier-Laplace transform to Equation (2.11) in order to

compare it with the result in (2.12). First, the Laplace transform of Equation (2.11)

w.r.t. t is

sαp̃αx(s)− sα−1 pαx(0+)︸ ︷︷ ︸
=δ0(x)

= λ(p̃αx(s)− p̃αx−1(s)), (2.13)

where we have used the Formula (2.9) for the Laplace transform of the Caputo

derivative according to Proposition 10 and the initial condition pαx(0+) = δ0(x).

Next, the Fourier transform w.r.t. x of above equation yields

sαpαy (s)− sα−1 = λ(eiy − 1)pαy (s).

Finally, we are able to solve for pαy algebraically:

pαy (s) =
sα−1

sα − λ(eiy − 1)
,

which coincides with (2.12). The assertion follows by uniqueness of the Fourier-

Laplace transform.

Remark 4. The above Cauchy problem is also solved in the proof of Theorem 2.1 in

Beghin and Orsingher 2010 by using the Laplace transform only. The proof resolves

the recursion in Equation (2.13) by using the initial conditions:

p̃αx(s) =
λxsα−1

(sα + λ)x+1
, x = 0, 1, 2, . . .

Using Proposition 5 we can invert the Laplace transform to obtain an expression for
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pax in terms of the Mittag-Leffler function:

pαx(t) = (λtα)xEx+1
α,αx+1(−λtα).

This coincides with the marginals obtained from the renewal approach (see Mainardi,

Gorenflo and Scalas 2004).

2.4.3 The non-homogeneous case

In the following, we derive a differential equation involving the distribution of the

increments of the FNPP that generalizes the results in Theorem 11, Equation 1.5

and Equation 1.9. In other words, the governing equations of both the standard

Poisson process and the fractional homogeneous Poisson process are contained as

special cases.

To this end, first consider the process (I(t, v))t≥0 for v ≥ 0 defined as

I(t, v) = N1(Λ(t+ v))−N1(Λ(v)),

where (N1(t))t≥0 is a homogeneous Poisson process with intensity λ = 1 and Λ is

a rate function as described on page 19. We will refer to (I(t, v))t≥0 as increment

process of the non-homogeneous Poisson process.

The fractional increment process of the NPP is given by

Iα(t, v) := I(Yα(t), v) = N1(Λ(Yα(t) + v))−N1(Λ(v)). (2.14)

and its marginals will be denoted as

fαx (t, v) := P{N1(Λ(Yα(t) + v))−N1(Λ(v)) = x}, x = 0, 1, 2, . . .

=

∫ ∞
0

px(u, v)hα(t, u)du

=

∫ ∞
0

e−Λ(v,u+v)Λ(v, u+ v)x

x!
hα(t, u)du. (2.15)

For the FNPP the marginal distributions are given by

fαx (t, 0) = P{Nα(t) = x} =

∫ ∞
0

px(u)hα(t, u)du

=

∫ ∞
0

e−Λ(u)Λ(u)x

x!
hα(t, u)du, x = 0, 1, 2, . . . (2.16)

For shorthand notation we write fαx (t) := fαx (t, 0).

Theorem 12. Let Iα(t, v) be the fractional increment process defined in (2.14).
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Then, its marginal distribution given in (2.15) satisfies the following fractional

differential-integral equations

Dα
t f

α
x (t, v) =

∫ ∞
0

λ(u+ v)[−px(u, v) + px−1(u, v)]hα(t, u)du, x = 0, 1, . . . , (2.17)

with initial condition

fαx (0, v) =

{
1, x = 0,

0, x ≥ 1
(2.18)

and fα−1(0, v) ≡ 0, where px(u, v) is given by (1.8) (with p−1(u, v) = 0) and hα(t, u)

is given by (2.6).

Proof. The initial conditions are easily checked using the fact that Yα(0) = 0 a.s

and it remains to prove (2.17). Let fαx be defined as in Equation (2.15). Taking the

characteristic function of fαx and the Laplace transform w.r.t. t yields

f̄αy (r, v) =

∫ ∞
0

p̂y(u, v)h̃α(r, u)du

=

∫ ∞
0

exp(Λ(v, u+ v)(eiy − 1))rα−1e−ur
α

du.

Using integration by parts we get

f̄αy (r, v) = rα−1

[
− 1

rα
e−ur

α

exp(Λ(v, u+ v)(eiy − 1))

∣∣∣∣∞
u=0︸ ︷︷ ︸

=1

+
1

rα

∫ ∞
0

(
d

du
Λ(v, u+ v)

)
(eiy − 1) exp(Λ(v, u+ v)(eiy − 1))e−ur

α

du

]
=

1

rα

[
rα−1 + (eiy − 1)

∫ ∞
0

λ(u+ v) exp(Λ(v, u+ v)(eiy − 1))rα−1e−ur
α

du

]
.

Now we are able to calculate the Caputo derivative in Laplace space using Equation

(2.9). Note that f̂αy (0+, v) = 1 as Yα(0) = 0 a.s.

rαf̄αy (r, v)− rα−1

= (eiy − 1)

∫ ∞
0

λ(u+ v) exp(Λ(v, u+ v)(eiy − 1))rα−1e−ur
α

du

= (eiy − 1)

∫ ∞
0

λ(u+ v)p̂y(u, v)h̃α(r, u)du.

Inversion of the Laplace transform yields

Dα
t f̂

α
y (t, v) = (eiy − 1)

∫ ∞
0

λ(u+ v)p̂y(u, v)hα(t, u)du
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and finally, by inverting the characteristic function, we obtain

Dα
t f

α
x (t, v) =

∫ ∞
0

λ(u+ v)[−px(u, v) + px−1(u, v)]hα(t, u)du. (2.19)

which was to be shown.

Directly from Theorem 12 setting v = 0 one gets

Corollary 1. Let Nα(t), t ≥ 0, 0 < α < 1 be a FNPP given by (2.7). Then, its

marginal distributions shown in (2.16) satisfy the following fractional differential-

integral equations:

Dα
t f

α
x (t) =

∫ ∞
0

λ(u)[−px(u) + px−1(u)]hα(t, u)du, (2.20)

with initial condition

fαx (0) =

{
1, x = 0,

0, x ≥ 1
(2.21)

and fα−1(0) ≡ 0, where px(u) is given by (1.8) and hα(t, u) is given by (2.6).

Special cases

It is useful to consider two special cases of the governing equations derived above,

the FHPP and the NPP.

(i) To get back to the FHPP we choose λ(t) = λ > 0 as a constant to get

Dα
t f

α
x (t) = λ

∫ ∞
0

[−px(u) + px−1(u)]hα(t, u)du

= −λfαx (t) + λfαx−1(t) (2.22)

which is identical with (2.11). Indeed for constant λ in (2.16) we get

fαx (t) =

∫ ∞
0

e−uλ(λu)x

x!
hα(t, u)du = pαx(t),

i.e. fαx coincides with the marginal probabilities of the FHPP.

(ii) To obtain the case of the NPP, we consider α = 1 for which we have h̃1(s, u) =

e−us and its inverse Laplace transform is the delta distribution: L−1{h̃}(t, u) =

δ(t− u). By replacing this in Equation (2.15) we formally get

f 1
x(t, v) =

∫ ∞
0

px(u, v)δ(t− u)du = px(t, v),
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which means that f 1
x coincides with the marginal probabilities px of the NPP.

Moreover, the proof of Theorem 12 is still valid and by substituting Dirac’s

delta distribution in Equation (2.17) we get for t ≥ 0

D1
t px(t, v) = D1

t f
1
x(t, v)

=

∫ ∞
0

λ(u+ v)[−px(u+ v) + px−1(u, v)]δ(t− u)du

= λ(t+ v)[−px(t, v) + px−1(t, v)]

which coincides with (1.10). Related to this formal calculation, Proposition

33 shows a convergence result for the limit α→ 1.

2.5 Moments and covariance structure

As a further characterization of the FNPP, we now give the first moments of its

distribution, namely the expectation, the variance and the covariance.

2.5.1 Moments

For fixed t > 0, the moments of the Poisson distribution with rate Λ(t) can be cal-

culated via the derivatives of its characteristic function. However, the most explicit

formula for higher moments of the Poisson distribution is given by

E[[N(t)]k] =
k∑
i=1

Λ(t)i

{
k

i

}
, (2.23)

where

{
k

i

}
are the Stirling numbers of second kind:

{
k

i

}
=

1

i!

i∑
j=0

(−1)i−j

(
i

j

)
jk.

Equation (2.23) is the non-homogeneous generalization of the Dobiński formula (see

Dobiński 1877). Polynomials of the form:

qk(x) =
k∑
i=1

xi

{
k

i

}

are known as Touchard polynomials, exponential polynomials or Bell polynomials.

Note that the first moment is

E[N(t)] = Λ(t)
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and the second moment is given by

E[[N(t)]2] = Λ(t) + Λ(t)2,

which we will use later for the calculation of the expectation, variance and covari-

ance.

Thus for the higher moments of the subordinated process we have

E[[N(Yα(t))]k] = E[E[[N(Yα(t))]k|Yα(t)]] =

∫ ∞
0

E[[N(x)]k]hα(t, x)dx

=

∫ ∞
0

k∑
i=1

Λ(x)i

{
k

i

}
hα(t, x)dx = E

[
k∑
i=1

Λ(Yα(t))i

{
k

i

}]
. (2.24)

Expectation and variance immediately follow from 2.24. The expectation is

E[N(Yα(t))] = E[Λ(Yα(t))]. (2.25)

Then, using

E[[N(Yα(t))]2] = E[Λ(Yα(t))] + E[Λ(Yα(t))2], (2.26)

we find

Var[N(Yα(t))] = E[[N(Yα(t))]2]− E[[N(Yα(t))]]2 = E[Λ(Yα(t))] + Var[Λ(Yα(t))].

(2.27)

2.5.2 Covariance

Let s, t ∈ R+ and w.l.o.g. assume s < t. Then

E[N(s)N(t)] = E[N(t)−N(s)]E[N(s)] + E[N(s)2]

= Λ(s, t)Λ(0, s) + Λ(0, s)2 + Λ(0, s)

and thus

Cov(N(s), N(t)) = E[N(s)N(t)]− E[N(s)]E[N(t)]

= Λ(s, t)Λ(0, s) + Λ(0, s)2 + Λ(0, s)− Λ(0, s)Λ(0, t)

= Λ(0, s)[Λ(s, t) + Λ(0, s)− Λ(0, t)︸ ︷︷ ︸
=−Λ(s,t)

+1] = Λ(0, s).
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The same calculation can be done for the case t < s. In short, both cases can be

summarized in the following way:

Cov(N(s), N(t)) = Λ(0, s ∧ t). (2.28)

Proposition 13. By the law of total covariance, one finds:

Cov[N(Yα(s)), N(Yα(t))] = E[Cov[N(Yα(s)), N(Yα(t))|Yα(s), Yα(t)]]

+ Cov[E[N(Yα(s))|Yα(s), Yα(t)],E[N(Yα(t))|Yα(s), Yα(t)]]

= E[Λ(0, Yα(s ∧ t))] + Cov[Λ(Yα(s)),Λ(Yα(t))] (2.29)

Proof. For the first term, we have

E[Cov[N(Yα(s)), N(Yα(t))|Yα(s), Yα(t)]] = E[E[N(Yα(s))N(Yα(t))]|Yα(s), Yα(t)]

− E[N(Yα(s))|Yα(s), Yα(t)]E[N(Yα(t))|Yα(s), Yα(t)]

=

∫ ∞
0

∫ ∞
0

E[N(x)N(y)]p(Yα(s),Yα(t))(x, y) dx dy

−
∫ ∞

0

∫ ∞
0

E[N(x)]E[N(y)]p(Yα(s),Yα(t))(x, y) dx dy

=

∫ ∞
0

∫ ∞
0

Cov[N(x), N(y)]p(Yα(s),Yα(t))(x, y) dx dy

= E[Λ(0, Yα(s) ∧ Yα(t))] = E[Λ(Yα(s ∧ t))].

Note that in the last step we have used that Yα is an increasing process.

For the second term:

Cov[E[N(Yα(s))|Yα(s), Yα(t)],E[N(Yα(t))|Yα(s), Yα(t)]]

= E[E[N(Yα(s))|Yα(s), Yα(t)]E[N(Yα(t))|Yα(s), Yα(t)]]

− E[E[N(Yα(s))|Yα(s), Yα(t)]]E[E[N(Yα(t))|Yα(s), Yα(t)]]

=

∫ ∞
0

∫ ∞
0

E[N(x)]E[N(y)]p(Yα(s),Yα(t))(x, y) dx dy − E[N(Yα(s))]E[N(Yα(t))]

= E[Λ(Yα(s))Λ(Yα(t))]− E[Λ(Yα(s))]E[Λ(Yα(t))]

= Cov[Λ(Yα(s)),Λ(Yα(t))],

where p(Yα(s),Yα(t))(x, y) is the joint density of Yα(s) and Yα(t).

Remark 5. The two-point cumulative distribution function of the inverse stable

subordinator Yα(t) can be computed using the fact that (see Leonenko, Meerschaert
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and Sikorskii 2013)

P(Yα(s) > x, Yα(t) > y) =

∫ t

v=0

α

v
yhα(s, y)

∫ s−v

u=0

α

u
(x− y)hα(t, x− y) du dv. (2.30)

Remark 6. For the homogeneous case Λ(t) = λt, we get

Cov[N(Yα(s)), N(Yα(t))] = λE[Yα(s ∧ t)] + λ2Cov[Yα(s), Yα(t)],

which is consistent with the results in Leonenko, Meerschaert, Schilling et al. 2014.

Using a regular variation assumption on λ, we can derive asymptotics for the ex-

pectation of the FNPP.

Proposition 14. Let λ ∈ Rρ and (Yα(t))t≥0 be the inverse α-stable subordinator.

Then

E[Λ(Yα(t))] ∈ Rα(ρ+1), (t→∞). (2.31)

Proof. Define

φ(t) := E[Λ(Yα(t))] =

∫ ∞
0

Λ(x)h(t, x) dx.

Consider the Laplace transform of φ:

L{φ; s} =

∫ ∞
0

e−stφ(t) dt =

∫ ∞
0

e−st
(∫ ∞

0

Λ(x)h(t, x) dx

)
dt

=

∫ ∞
0

Λ(x)

(∫ ∞
0

e−sth(t, x) dt

)
dx (2.32)

=

∫ ∞
0

Λ(x)sα−1 exp(−xsα) dx = sα−1

∫ ∞
0

Λ(x) exp(−xsα) dx

= sα−1L{Λ; s}, (2.33)

where we have used Fubini’s theorem in (2.32). We are thus able to express the

Laplace transform of φ in terms of the Laplace transform of Λ evaluated at sα.

It follows from λ ∈ Rρ that there exists a slowly varying function g ∈ R0 such that

λ(x) = xρl(x), (x→∞).

By Proposition A.5 we get

Λ(t) ∼ tρ+1 l(t)

1 + ρ
(t→∞)

or in other words Λ ∈ Rρ+1. The Laplace-Stieltjes transform of Λ is given by

Λ̃(s) =

∫ ∞
0

e−st dΛ(t) =

∫ ∞
0

e−stλ(t) dt.
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Karamata’s Tauberian theorem (Theorem A.4) yields

Λ̃(s) ∼ s−ρ−1 l
(

1
s

)
(1 + ρ)Γ(1 + ρ)

(s→ 0+),

which implies

L{Λ; s} =

∫ ∞
0

e−st
∫ t

0

λ(τ) dτ dt = −1

s
e−st

∫ t

0

λ(τ) dτ

∣∣∣∣∞
t=0︸ ︷︷ ︸

=0

+
1

s

∫ ∞
0

e−stλ(t) dt

=
1

s
Λ̃(s) ∼ s−ρ−2 l

(
1
s

)
(1 + ρ)Γ(1 + ρ)

(s→ 0+).

By Proposition A.2 (ii) for the composition of regularly varying functions we may

conclude that

L{Λ, sα} =
1

sα
Λ̃(sα) ∼ s−αsα(−ρ−1) l

(
1
sα

)
(1 + ρ)Γ(1 + ρ)

(s→ 0+)

= s−1−α(ρ+1) l1
(

1
s

)
(1 + ρ)Γ(1 + ρ)

,

where l1(s) = l(sα) is another slowly varying function. Plugging above into Equation

(2.33) yields

L{φ; s} = sα−1L{Λ; s} ∼ sα−1−αρ−2α l1(1
s
)

(1 + ρ)Γ(1 + ρ)
(s→ 0+)

= s−1−α(ρ+1) l1(1
s
)

(1 + ρ)Γ(1 + ρ)

Using Karamata’s Tauberian theorem again we get∫ t

0

E[Λ(Yα(τ))] dτ ∼ t1+α(ρ+1) l1(t)

1 + ρ
.

Since t 7→ φ(t) is an increasing function, we may apply the monotone density theorem

(Theorem A.6) to get

E[Λ(Yα(t))] ∼ tα(ρ+1)l1(t), (t→∞)

which yields the assertion.
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2.6 Summary

We have introduced a fractional non-homogeneous Poisson process as Nα(t) =

N1(Λ(Yα(t))) where N1(t) is the homogeneous Poisson process with λ = 1, Λ(t)

is the rate function and Yα(t) is the inverse stable subordinator. It reduces to the

usual non-homogeneous Poisson process in the case α = 1 and additionally to the

homogeneous Poisson process for a constant intensity λ. The calculations of mo-

ments for this process is a straightforward application of the rules for conditional

expectations. The assumption of regular variation gives a result on the asymptotics

of the mean.

Building on the ideas of this chapter, we will categorize the FNPP as a doubly

stochastic process and derive limit theorems for the FNPP in the next chapter.
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Chapter 3

Limit theorems

This chapter is devoted to the derivation of limit theorems for stochastic processes

involving the fractional Poisson process, both the homogeneous and inhomogeneous

one, as well as for the fractional compound Poisson process.

3.1 Preliminaries: Convergence in the Skorokhod

space

First, we give a short introduction to weak convergence of probability measures on

topological spaces, in particular with Polish (complete, separable and metrizable)

spaces in mind. The primary aim is to provide the reader with the notation and

terminology used in this chapter. Moreover, we would like to point out how the

framework is linked to profound measure-theoretic, functional analytic and topolo-

gical concepts as far as the scope of this section allows.

3.1.1 Weak convergence of probability measures and Riesz

representation theorem

Let (Ω,F ,P) be a probability space. We consider a (continuous time) stochastic

process (Xt)t≥0 as a measurable map from Ω into a suitable function space E:

X : Ω→ E, ω 7→ X·(ω),

i.e. Xt(ω) = x(t), x ∈ E. To ensure that the process is measurable w.r.t. F and

adapted to a (right continuous) filtration (Ft)t≥0 we define

F0
t := σ(Xs : s ≤ t)

F :=
⋃
t≥0

F0
t , Ft :=

⋂
s>t

F0
s .
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The filtration (Ft)t≥0 and the σ-field F are thus generated by the cylinder sets

associated with (Xt)t≥0. The σ-field F is sometimes referred to as Kolmogorov σ-

field due to its connection to Kolmogorov’s extension theorem (see Theorem A.3.1.

in Durrett 2010).

Typical paths of realizations of X belong to the space of càdlàg functions, which is

also known as Skorokhod space, denoted by D. The càdlàg path property allows for

uniqueness results: for example Lévy processes are shown to have a unique càdlàg

modification up to indistinguishability (see Theorem 2.1.8 in Applebaum 2009). The

space of continuous functions C is an important subspace of D and we will discuss

the cases E = C and E = D. For our purposes, we need to equip E with a suitable

metric d such that E becomes a Polish space. Additionally, the topology associated

with d induces a Borel σ-field on E, which we will denote by B(E) or B for short.

The Borel σ-field B has to be compatible with the Komogorov σ-field above to ensure

consistent measurability.

The pushforward measure P ◦ X−1 belongs to the set of probability measures over

E, denoted by P(E). In order to make assertions about the limit of a sequence

of stochastic processes (Xn)n∈N, Xn = (Xn
t )t≥0, we first need to define a suitable

convergence notion for the laws of (Xn), for which we write L(Xn
t ).1 In other words,

when does a sequence of measures µn := P ◦ (Xn)−1 converge in P(E)? There are

several takes on how the choice of convergence can be motivated. We follow a

measure-theoretic perspective which can be found in Chapter VIII in Elstrodt 2005.

One might want to start from the idea that convergence of finite measures µn to a

measure µ could be defined by demanding

µn(A)→ µ(A) ∀A ∈ B. (3.1)

This is sometimes referred to as strong convergence of measures. Moreover, if we

even require the above convergence to be uniform among the sets A ∈ B, we arrive

at the convergence in total variation. Both convergence concepts are too restrictive

for our purposes as the following example shows.

Example 2 (see pp. 380-381 in Elstrodt 2005). Let E = R and define the measures

µn(A) := 1A

(
1

n

)
, µ(A) := 1A(0), n ∈ N, A ∈ B.

Since the sequence 1/n converges to 0 for n → ∞, We might want to have conver-

gence of µn → µ.

1It is possible for the processes (Xn
t ) to exist on different probability spaces for different n, i.e.

Xn is a map on (Ωn,Fn,Pn). In this case, the law of Xn is to be understood under the respective
measure Pn. For simplicity and notational convenience we will assume that all stochastic processes
in the sequence are on the same probability space.
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However, for A = (−∞, 0] we have µn(A) = 0 6= 1 = µ(A) and for A = (0,∞) it

holds that µn(A) = 1 6= 0 = µ(A). Both implie that µn does not converge to µ for

n→∞ in the way defined by (3.1).

In order to relax the condition in (3.1) a plausible idea would be to require that it just

holds for a subset of B. In the way (3.1) is written, it is not clear how a reasonable

restriction should look like. This is where following integral representation comes in

handy.

Proposition 15. The convergence notion of (3.1) is equivalent to the convergence

of the associated linear forms:∫
E

f dµn −−−→
n→∞

∫
E

f dµ, ∀ f ∈ L∞(E,B(E), µ). (3.2)

Proof. “⇐” Let A ∈ B. Choose f = 1A ∈ L∞(E,B(E), µ), then

lim
n→∞

µn(A) = lim
n→∞

∫
E

1A dµn =

∫
E

1A dµ = µ(A).

“⇒” Let f ∈ L∞(E,B(E), µ). Let (fm)m∈N be a sequence of step functions approx-

imating f , i.e. there exist coefficients a1, . . . , am and sets A1, ·, Am such that fm

converges uniformly to f (see Corollary 4.14 in Elstrodt 2005).

lim
m→∞

ess sup
x∈E

|fm(x)− f | = lim
m→∞

ess sup
x∈X

∣∣∣∣∣
m∑
k=1

ak1Ak(x)− f

∣∣∣∣∣ = 0.

By dominated convergence we get

lim
n→∞

∫
E

f dµn = lim
n→∞

lim
m→∞

∫
E

fm dµn. (3.3)

According to the Moore-Osgood theorem (see Theorem 7.11 in Rudin 1976 or The-

orem 2.1.4.1. in Gelbaum and Olmsted 1990), we need to show that at least one of

the limits (either for n→∞ or m→∞) converges uniformly in order to exchange

the limits. By assumption we have that µn(E) → µ(E) which implies that the

sequence (µn(E))n is bounded:

sup
n∈N

µn(E) <∞.
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Using that we derive

lim
m→∞

sup
n∈N

∣∣∣∣∫
E

fm − fdµn

∣∣∣∣ ≤ lim
m→∞

sup
n∈N

∫
E

|fm − f |dµn

≤ lim
m→∞

ess sup
x∈E

|fm(x)− f(x)| sup
n∈N

µn(X)

= 0,

This proves that uniformly in n

lim
m→∞

∫
E

fm dµn =

∫
E

f dµ.

We are allowed to exchange the limits in (3.3):

lim
n→∞

∫
E

f dµn = lim
m→∞

lim
n→∞

∫
E

fm dµn = lim
m→∞

lim
n→∞

m∑
k=1

akµn(Ak)

= lim
m→∞

m∑
k=1

ak lim
n→∞

µn(Ak) = lim
m→∞

m∑
k=1

ak lim
n→∞

µ(Ak)

=

∫
E

f dµ,

which proves the thesis.

By the above proposition we are able to interpret the strong convergence of prob-

ability measures as convergence of positive linear forms on the function space L∞.

Instead of choosing a subset of B(E) for µn → µ to hold, we can alternatively replace

L∞ with a different function space. Such a function space for which the associated

linear forms have to converge is sometimes referred to as convergence determining

class2. Indeed, we are able to fully characterize positive linear forms on certain

classes of continuous functions defined on Polish spaces. This is accomplished by

the Riesz representation theorems, of which we will present the most relevant for

probabilistic purposes.

Recall from Definition 1 on p. 15 that a locally finite measure on the Borel sets B
is called a Borel measure.

Definition 9. Let (E,B, µ) be a measure space.

(i) A measure µ is inner regular if for all A ∈ B

µ(A) = sup{µ(K) : K ⊂ A, K compact}.
2In the finite dimensional case E = R, the characteristic functions of random variables are such

a class due to the Cramér-World device.
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(ii) An inner regular Borel measure is called Radon measure.

(iii) A measure µ is outer regular if for all A ∈ B

µ(A) = inf{µ(U) : U ⊃ A, U open }

(iv) A measure µ is regular if it is inner and outer regular.

(v) A linear form I : E → R is positive3 if I(x) ≥ 0 if x ≥ 0.

On a Polish space every Borel measure is regular according to Ulam’s theorem (see

Theorem VIII.1.16 in Elstrodt 2005).

Theorem 16 (Riesz representation theorem for Cb). Let E be a Polish space, Cb(E)

be the class of bounded continuous functions and I : Cb(E) → R a positive linear

form. Define the measure µ via

µ0(K) := inf{I(f) : f ∈ Cb(E), f ≥ 1K}, K compact,

µ(A) := sup{µ0(K) : K ⊂ A, K compact}, A ∈ B.

Then µ is a finite Radon measure and Cb(E) ⊂ L1(µ) and the following are equival-

ent:

(i) I can be represented by µ:

I(f) =

∫
E

f dµ, ∀ f ∈ Cb(E). (3.4)

(ii) µ(E) = I(1E)

(iii) ∀ε > 0∃K compact s.t. I(f) < ε ∀f ∈ Cb(E), 0 ≤ f ≤ 1, f |K = 0.

Moreover, if any of (i)-(iii) are fulfilled, µ is the only Radon measure on B to allow

the representation in (3.4).4

We have seen that with any finite Borel measure µ we can associate a positive

linear form I such that the representation in (3.4) holds. Conversely, the Riesz

representation theorem tells us that on Cb(E) for a positive linear form, under certain

conditions, there exists a unique Borel measure µ such that it can represented as in

(3.4).

3non-negative to be more precise (we follow the terminology in Elstrodt 2005)
4A more general formulation of this theorem for completely regular Hausdorff spaces and an

additional fourth condition involving nets can be found in Elstrodt 2005
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This provides the background and possible motivation for the definition of weak

convergence of finite measures µn → µ as∫
E

f dµn −−−→
n→∞

∫
E

f dµ, ∀ f ∈ Cb(E).

If the measures are associated with a sequence of random variables (Xn) and X

such that µn = L(Xn) and µ = L(X), then we can express the above convergence

in terms of expectations:

E[f(Xn)] −−−→
n→∞

E[f(X)] ∀ f ∈ Cb(E).

We write Xn
w−−−→

n→∞
X and occasionally Xn

d−−−→
n→∞

X if it is a sequence of random

variables mapping in a finite-dimensional space (typically Rn) instead of a function

space. In the finite dimensional case, convergence in (finite-dimensional) distribution

and weak convergence coincide. If E were a locally compact Hausdorff space, we

could choose the continuous functions with compact support Cc(E) as the space of

test functions. Then, there is a Riesz representation theorem that describes the one-

to-one correspondence between positive linear forms on Cc and finite Borel measures.

Theorem 17 (Riesz representation for Cc). Let E be a a locally compact Hausdorff

space with countable basis. Then, for every positive linear form I : Cc → R there

exists a unique Borel measure µ such that

I(f) =

∫
E

f dµ, ∀ f ∈ Cc(E).

This leads to the definition of vague convergence, i.e. a sequence of finite measures

µn converges to µ if ∫
E

f dµn −−−→
n→∞

∫
E

f dµ, ∀ f ∈ Cc(E) (3.5)

holds.

Weak convergence and to some extent vague convergence are useful for the probabil-

istic setting. It is worth mentioning that formally the expression in (3.5) looks very

similar to convergence of functionals, i.e. continuous linear forms, or in other words

weak-∗ convergence for the space of continuous functions. Indeed, a characteriza-

tion of the dual space of Cc and C0 (the space of continuous functions vanishing at

infinity) is motivated by the analysis of quantum mechanical Hamiltonians. Since

there is no longer a restriction due to measurability issues, such a theory introduces

the σ-algebra of Baire sets, which is smaller than the Borel σ-algebra and is associ-
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t

xn
1

1/n 2/n2/n 1

Figure 3.1: Shape of a function in the sequence (xn)n∈N of Example 3

ated with the Baire measure. This allows an identification of weak-∗ convergence of

functionals on Cc and C0 with vague convergence if E is a (locally) compact space.

For details in this direction related to mathematical physics see Reed and Simon

1980.

3.1.2 Prokhorov’s theorem

Returning now to stochastic processes with càdlàg paths, we can define following

mode of convergence:

Definition 10 (Convergence in finite dimensions). Let (Xn
t )t≥0 be a sequence of

stochastic processes. The sequence convergences in finite dimensions if its finite

dimensional marginals converge, i.e. Xn f.d.−−−→
n→∞

X if

(Xn
t1
, Xn

t2
, . . . , Xn

tN
)

d−−−→
n→∞

(Xt1 , Xt2 , . . . , XtN ), ∀ t1, . . . , tN ≥ 0, N ∈ N.

However, convergence in finite dimensions does not imply convergence in the re-

spective function space also called functional convergence. In other words, the path

properties might not be preserved in the limit or the limit might not even exist.

Example 3 (see Example 11.6.1. in Whitt 2002). Let (xn)n∈N be a sequence of

continuous functions which converges pointwise to a function x = 0. Such a sequence

can be a linear interpolation between

xn(0) = 0, xn

(
1

n

)
= 1 and xn

(
2

n

)
= 0.

The distance is constant in the uniform norm ‖xn − x‖∞ = 1. If we set for random

variables Xn and X that P(Xn = xn) = 1 and P(X = x) = 1, then the pointwise

convergence xn → x implies Xn
f.d.−→ X, but P(‖Xn−X‖∞ = 1) = 1. See Figure 3.1.

Prokhorov’s theorem uses the definition of tightness to connect the topology of the

path space E with the weak topology in the space of measures P(E).

Definition 11. Let E be a metric space with Borel σ-algebra B and P(E) the set

of probability measures on E.



52

(i) A finite Borel measure is tight if

∀ε > 0 ∃K ⊂ E compact s.t. µ(Kc) < ε.

(ii) A set M ⊂ P(E) is tight5 if

∀ε > 0 ∃K ⊂ E compact s.t. µ(Kc) < ε∀µ ∈M (3.6)

(iii) A sequence (µn)n∈N ⊂ P(E) is tight if the set M := {µn : n ∈ N} is tight.

We are now able to formulate Prokhorov’s theorem which characterizes compact sets

in P(E).

Theorem 18 (Prokhorov’s theorem). Let E be a Polish space. A set M ∈ P(E) is

relatively compact iff it is bounded and tight.

For a proof see Section 5 in Billingsley 1999.

Method 1 (Compactness approach). Given a sequence of stochastic processes (Xn),

we can show that (Xn
t )t≥0

w−−−→
n→∞

(Xt)t≥0 as a functional limit by following two steps:

(i) The sequence of stochastic processes (Xn)n∈N is tight, i.e. the sequence of

laws µn := L(Xn) is tight. Then Prokhorov’s theorem implies that (µn) is

relatively compact in P(E).

(ii) Prove that µ := L(X) is the only possible limit point.

The above method is sometimes referred to as compactness approach to functional

convergence. Point (ii) can be shown via convergence of the finite-dimensional mar-

ginals (on a dense subset of R+). However, one often does not have access to

their analytic form. For example, Lévy processes are defined via their characteristic

function and finite-dimensional convergence is usually shown via convergence of the

corresponding characteristic functions. In other words, Lévy’s continuity theorem

is invoked:

Theorem 19 (Lévy’s continuity theorem). If (ϕn)n∈N is a sequence of characteristic

functions and there exists a function ψ : Rd → C such that, for all u ∈ Rd, ϕn(u)→
ψ(u) as n→∞ and ψ is continuous at 0, then ψ is the characteristic function of a

probability distribution (see Theorem 1.1.15 in Applebaum 2009 and also compare

with Theorem 3.3.6. in Durrett 2010).

5Some refer to (3.6) as uniform tightness since the choice of the set K is uniform throughout
the set M.
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More generally, conditions for functional convergence of semimartingales can also be

expressed in terms of the characteristic triplet of the Lévy-Khinchine formula (see

Jacod and Shiryaev 2003 for an extensive treatment).

3.1.3 Compactness in C

A closer look at (3.6) reveals that the choice of the metric d on the space E de-

termines the compact sets from which K can be chosen and affects the tightness

condition. Therefore, it is useful to have a characterization of relatively compact

sets on metric spaces. In the case of continuous functions, relatively compact sets

are characterized by the Arzelà-Ascoli theorem, which we will state here along with

the necessary notation and terminology. One possible formulation of the Arzelà-

Ascoli theorem is for a subset A ⊂ C(S,R), where S is a compact space. Then A

is relatively compact iff it is bounded and equicontinuous, a property which can be

defined as follows:

Definition 12 (Equicontinuity). Let (S, d) be a metric space. A subset A ⊂ C(S,R)

is equicontinuous if

∀ε > 0 ∃δ > 0 s.t. d(s, t) < δ ⇒ |x(s)− x(t)| < ε ∀x ∈ A.

This especially holds true for S = [0, 1], d(s, t) = |s − t| and the space C([0, 1])

equipped with the uniform topology induced by the supremum norm

‖x‖∞ := sup
t∈[0,1]

|x(t)|.

Alternatively to the ε-δ-formulation, the equicontinuity condition can be expressed

by using the modulus of continuity . As defined on p. 80 in Billingsley 1999:

w(x, θ) = sup{|x(s)− x(t)| : |s− t| ≤ θ, θ ∈ [0, 1]}.

It holds that

x ∈ C([0, 1],R)⇔ lim
θ→0

w(x, θ) = 0,

which is equivalent to requiring x to be uniformly continuous. A subset A is equicon-

tinuous if

lim
θ→0

sup
x∈A

w(x, θ) = 0.

When we consider S = R+ instead of a bounded interval, this space is locally

compact, but no longer compact. Jacod and Shiryaev 2003 propose the following
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adjustment to the modulus of continuity: let θ > 0 and N ∈ N and define

wN(x, θ) := sup

{
sup

τ∈[t,t+θ]

x(τ) : 0 ≤ t ≤ t+ θ ≤ N

}
.

Then, it holds that

x ∈ C(R+,R)⇔ lim
θ→0

wN(x, θ) = 0 ∀N ∈ N,

which is equivalent to demanding that x is locally uniformly continuous. Equicon-

tinuity of a subset A is given by

lim
θ→0

sup
x∈A

wN(x, θ) = 0 ∀N ∈ N.

A more general version of the Arzelà-Ascoli theorem is needed to cover the cases of

non-compact spaces. Such a version can be found as Theorem 4.7.1. on p. 290 in

Munkres 2000, which we will state here in a slightly modified form:

Theorem 20 (Arzelà-Ascoli for locally compact spaces). Let S be a locally compact

Hausdorff space, (F, d) be a complete metric space., A ⊂ C(S, F ). Then, A is

relatively compact in C(S, F ) w.r.t. the topology of compact convergence iff A is

equicontinuous and pointwise totally bounded.

Remark 7.

(i) Recall that in a locally compact space it holds that local uniform convergence

is equivalent to compact convergence.

(ii) In a finite-dimensional metric space, e.g. R+, total boundedness is equivalent

to usual boundedness.

We are able to apply the general theorem to the relevant spaces of continuous func-

tions.

Corollary 2 (Arzelà-Ascoli theorem for C([0, 1],R)). A subset A ⊂ C([0, 1],R) is

relatively compact for the uniform topology iff

a) sup
x∈A
|x(0)| <∞

b) lim
θ→0

sup
x∈A

w(x, θ) = 0

(see Theorem 7.2. in Billingsley 1999).
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Corollary 3 (Arzelà-Ascoli theorem for C(R+,R)). A subset A ⊂ C([0, 1],R) is

relatively compact for the uniform topology iff

a) sup
x∈A
|x(0)| <∞

b) lim
θ→0

sup
x∈A

wN(x, θ) = 0 ∀N ∈ N

(see Theorem VI.1.5 in Jacod and Shiryaev 2003).

Since it is quite difficult to prove tightness directly via its definition the following

characterization can be used which specifies tightness for the space of continuous

functions.

Theorem 21 (Tightness for C([0, 1],R)). A sequence Xn with paths in C([0, 1],R)

is C-tight iff

(i) ∀ε > 0 ∃c > 0, n0 ∈ N s.t.

n ≥ n0 ⇒ P

(
sup
t∈[0,1]

|Xn
t | > c

)
< ε,

(ii) ∀η > 0, ε > 0 ∃n0 ∈ N, θ > 0 s.t.

n ≥ n0 ⇒ P(w′(Xn, θ) > η) < ε

,

(see Theorem 7.3 in Billingsley 1999).

Theorem 22 (Tightness for C(R+,R)). A sequence (Xn) with paths in C(R+,R) is

C-tight iff

(i) ∀N ∈ N, ε > 0 ∃n0 ∈ N, c > 0 s.t.

n ≥ n0 ⇒ P
(

sup
t≤N
|Xn

t | > c

)
≤ ε,

(ii) ∀N ∈ N, ε > 0, η > 0 ∃n0 ∈ N, θ > 0 s.t.

n ≥ n0 ⇒ P (wN(Xn, θ) > η) ≤ ε

(see Proposition VI.3.26 in Jacod and Shiryaev 2003).

Finally, it can be shown that the Kolmogorov σ-field coincides with the Borel σ-field

on C (see Exercise 4.2 on p. 60 with solutions on p. 119 in Karatzas and Shreve
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1988).

In summary, the choice of metric needs to address the following aspects:

(i) (E, d) is a Polish space.

(ii) The metric induces a topology on E and determines the weak topology on

P(E) via Prokhorov’s theorem. We are able to characterize relatively compact

sets via the modulus of continuity.

(iii) The σ-field generated by the open sets in (E, d) coincides with the σ-field

generated by the cylinder sets associated with the stochastic processes.

3.1.4 A Skorokhod topology: J1 and compactness on D

While C(R+,R) equipped with the local uniform topology fulfills all requirements

(i)-(iii), it is not clear how to choose the topology for D. This larger space of

càdlàg functions is non-separable under the uniform topology as can be seen from

the following example.

Example 4. Consider the set {xs}s∈[0,1/2] of functions in D([0, 1],R) of the form

xs(t) := 1[s,1](t) for s ∈ [0, 1/2]. The set contains uncountably many elements and

under the uniform metric ‖xs1−xs2‖ = 1 for s1 6= s2. IfD were separable, {xs}s∈[0,1/2]

would contain a countable dense subset, which is not possible as all elements have

constant distance.

Skorokhod 1956 proposed four different topologies for D, namely J1, J2, M1 and M2

and Jakubowski 1997 introduced the non-metrizable S topology on D. We give the

definition of the J1 topology and the corresponding modifications in the framework

of separability, completeness, measurability and compactness. After that, the M1

topology is briefly introduced together with the theorems which are relevant for our

purposes later on in the chapter.

The requirements for the J1 topology should be weaker than uniform convergence

that accounts for the jumps of càdlàg paths.

Example 5. Consider the sequence (xn)n∈N ⊂ D([0, 1],R) of the form

xn(t) :=

(
1 +

1

n

)
1[ 1

2
+ 1
n
,1](t), n ≥ 3

and the potential limit candidate

x(t) := 1[ 1
2
,1](t)
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Figure 3.2: Shape of functions in Example 5

Similar to the examples seen before, xn −−−→
n→∞

x pointwise but not uniformly as

‖xn − x‖∞ = 1 ∀n. See Figure 3.2.

Intuitively, we want to match the jumps in Example 5 by using a small time-change.

To this end, define the set of continuous time-changes:

Λ := {λ : I → I : λ ∈ C(I) strictly increasing},

where I = [0, 1] or I = R+ depending on the domain of the functions of the space

E = D. The identity map is denoted by id : I → I. Then a J1 metric is defined as

dJ1(x1, x2) := inf
λ∈Λ
{‖x1 ◦ λ− x2‖∞ ∨ ‖λ− id‖∞} .

Example 5 (Continued). We can choose a λ ∈ Λ such that

dJ1(xn, x) −−−→
n→∞

0.

Consider the functions

λn(t) =

{ (
1 + 2

n

)
t, t ∈

[
0, 1

2

)
,(

1− 2
n

)
t+ 2

n
, t ∈

[
1
2
, 1
]
.

It can be checked that limt→1/2− λn(t) = 1/2 + 1/n = λn(1/2) and λn is strictly

increasing for n ≥ 3. Moreover

(xn ◦ λn)(t) =

(
1 +

1

n

)
1[ 1

2
+ 1
n
,1](λn(t)) =

(
1 +

1

n

)
1[ 1

2
,1](t),

i.e. the jumps of (xn ◦ λn) are now matched with the jump of x at t = 1/2. We
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calculate

‖λ− id‖ =
1

n
and ‖xn ◦ λn − x‖ =

1

n
,

which implies

dJ1(xn, x) =
1

n
−−−→
n→∞

0.

Suitable modifications of the moduli of continuity for the spaces D([0, 1],R) and

D(R+,R), respectively, allow analogous formulations of the Arzelà-Ascoli theorem

for those spaces. Let θ > 0 and N ∈ N. We define the two moduli and continuity

w′(x, θ) :=

inf

{
max
i≤r

sup
s,t∈[ti−1,ti)

|x(s)− x(t)| : 0 = t0 < . . . < tn = 1, inf
i≤r

(ti − ti−1) ≥ θ

}
w′N(x, θ) :=

inf

{
max
i≤r

sup
s,t∈[ti−1,ti)

|x(s)− x(t)| : 0 = t0 < . . . < tn = N, inf
i<r

(ti − ti−1) ≥ θ

}
.

Similar to the case of E = C it holds that

x ∈ D([0, 1],R)⇔ sup
s∈[0,1]

|x(s)| <∞ and lim
θ→0

w′(x, θ) = 0

x ∈ D(R+,R)⇔ sup
s≤N
|x(s)| <∞ and lim

θ→0
w′N(x, θ) = 0 ∀N ∈ N.

(see Lemma VI.1.11 in Jacod and Shiryaev 2003). The versions of the Arzelà-Ascoli

theorem can be stated as follows.

Corollary 4 (Relative compactness in D([0, 1],R)). A subset A ∈ D([0, 1]) is rel-

atively compact iff

a) sup
x∈A

sup
s∈[0,1]

|x(s)| <∞

b) lim
θ→0

sup
x∈A

w′(x, θ) = 0

(see Theorem 12.3 in Billingsley 1999).

Corollary 5 (Relative compactness in D(R+,R)). A subset A ∈ D(R+) is relatively

compact iff

a) sup
x∈A

sup
s≤N
|x(s)| <∞

b) lim
θ→0

sup
x∈A

w′N(x, θ) = 0 ∀N ∈ N
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(see Theorem VI.1.14 b) in Jacod and Shiryaev 2003).

Remark 8. Indeed, it can be shown that (D, dJ1) is a separable metric space.

However, D is not complete under dJ1 . The metric dJ1 can be replaced by an

equivalent metric under which D is complete. Concerning measurability, one can

prove that also in this case the Borel σ-field coincides with the σ-field generated

by the cylinder sets. For detailed proofs we refer to Billingsley 1999 and Theorem

VI.1.14 in Jacod and Shiryaev 2003.

A characterization of tightness in D(R+,R) looks very much like Theorem 21 and

22 where the modulus of continuity is replaced by w′N .

Theorem 23 (Tightness for D([0, 1],R)). A sequence (Xn) with paths in D([0, 1],R)

is tight iff

(i) ∀ε > 0 ∃c > 0, n0 ∈ N s.t.

n ≥ n0 ⇒ P

(
sup
t∈[0,1]

|Xn
t | > c

)
< ε,

(ii) ∀η > 0, ε > 0 ∃θ > 0, n0 ∈ N s.t.

n ≥ n⇒ P(w′(Xn, θ) > η) < ε

(see Theorem 13.2 Billingsley 1999).

Theorem 24 (Tightness for D(R+,R)). A sequence (Xn) with paths in D(R+,R)

is tight iff

(i) ∀N ∈ N, ε > 0∃n0 ∈ N, c > 0 s.t.

n ≥ n0 ⇒ P
(

sup
t≤N
|Xn

t | > c

)
≤ ε,

(ii) ∀N ∈ N, ε > 0, η > 0∃n0 ∈ N, θ > 0 s.t.

n ≥ n0 ⇒ P (w′N(Xn, θ) > η) ≤ ε

(see Proposition VI.3.21 in Jacod and Shiryaev 2003).

The above theorems allow us to apply the compactness approach of Method 1 also

for the space D. If a sequence in D converges to a function in C in the J1 topology,

the convergence improves to (local) uniform convergence.

One of the rare cases in which tightness can be shown generally does indeed apply

to some situations that we will encounter in this chapter.
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Figure 3.3: Illustration of the step functions of Example 6.

Theorem 25 (Tightness for increasing processes). Let Xn, X be increasing pro-

cesses such that

(a) either X is continuous

(b) or all Xn, X are point processes.

Then, if Xn
f.d.−−−→
n→∞

X for some dense subset D ⊂ R+, we also have Xn
J1−−−→

n→∞
X

(see Theorem VI.3.37 in Jacod and Shiryaev 2003).

3.1.5 Continuity of functions on D × D: M1 topology and

continuous mapping approach

Note that D with the J1 topology is not a topological vector space, i.e. addition is

not continuous under the J1 topology as can be seen in the following example:

Example 6. Define the following two sequences in the space D([0, 1],R):

xn := 1[ 1
2
− 1
n
,1] and yn := −1[ 1

2
+ 1
n
,1].

Although the sequences converge in the J1 topology individually to x = 1[ 1
2
,1] and

y = −1[ 1
2
,1] respectively, the sum xn + yn = 1[ 1

2
− 1
n
, 1
2

+ 1
n ] does not converge to 0 (see

Figure 3.3).

Another useful function on D × D is composition, which is only continuous w.r.t.

J1 on certain subsets of D×D. To make this more precise we follow pp. 430-431 in

Whitt 2002 and define the following subsets of E = C and E = D respectively:

E+ := {x ∈ E : x(0) ≥ 0}

E↑ := {x ∈ E+ : x non-decreasing}

E↑↑ := {x ∈ E+ : x strictly increasing}

Em := {x ∈ E+ : x monotone}
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Consider the composition map:

◦ : D ×D↑ → D

(x, y) 7→ x ◦ y.

We see that y ∈ D↑ has the role of a time-change applied to x ∈ D. Therefore, it

makes sense for y to be non-negative and non-decreasing. We can now state the

theorems for continuity of the composition under the J1 topology.

Theorem 26. The composition map is measurable and continuous at (x, y) ∈ C×C↑.

Theorem 27 (J1-continuity of the composition). The composition is continuous at

(x, y) ∈ (D × C↑↑) ∪ (C × D↑),

using the J1-topology throughout.

The so-called continuous mapping approach makes use of theorems of this kind to

derive limit theorems for time-changed processes. It can be anticipated from the

previous chapter that we want to apply the above theorems to derive limit theorems

for processes that are time-changed by the inverse α-stable subordinator (Yα(t))t≥0.

Unfortunately, the paths of (Yα(t))t≥0 are only non-decreasing, but not strictly in-

creasing. For this situation, there exists another topology on the Skorokhod space

which is weaker than the J1-topology and allows continuity of the composition on

the relevant subspace of D × D+. To understand intuitively how the convergence

notion of J1 is weakened, consider following example.

Example 7. Consider the sequence of functions (xn)n∈N and a limit candidate x

defined as

xn := n

(
t− 1

2
+

1

n

)
1[ 1

2
− 1
n
, 1
2)(t) + 1[ 1

2
,1](t), x := 1[ 1

2
,1](t).

We have ‖xn−x‖∞ = 1 and dJ1(xn, x) = 1 as the jump at t = 1
2

cannot be matched

(see Figure 3.4).

The examples show that jumps need to “match” under the J1-convergence. However,

there are many situations where this is not the case. A topology for “non-matched”

jumps considers the graph of the function in R2:

For a function x ∈ D(I,R), I = [0, 1] or I = R+, we can define the completed graph

as

Γx := {(t, z) ∈ I × R : z = αx(t−) + (1− α)x(t) for some α ∈ [0, 1]}.
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Figure 3.4: Sequence of continuous functions (xn)n∈N converging to a step function
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Figure 3.5: Illustration of the parametric representation of the graph of x in Example
7. The points a, b can be arbitrarily chosen from (0, 1).

with an order on Γx: (t1, z1) ≤ (t2, z2) if either

(i) t1 < t2 or

(ii) t1 = t2 and |x(t1−)− z1| ≤ |x(t2−)− z2|.

A parametric representation of Γx is a map

P : I → Γx

t 7→ (r(t), u(t))

which is non-decreasing w.r.t. the above order. Let Πx denote the set of parametric

representations corresponding to an element x ∈ D. Then, the M1-metric is defined

as

dM1(x1, x2) := inf
(rj ,uj)∈Πxj

j=1,2

{‖r1 − r2‖ ∨ ‖u1 − u2‖}.

Example 7 (Continued). Figure 3.5 depicts possible parametric representations of

Γx such that dM1(xn, x)→ 0.
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uniform convergence

pointwise convergence

J1 M1

Figure 3.6: Overview of relations between the topologies. The relation a → b is to
be read as a implies b.

For a proof of separability, completeness, compactness and measurability results of

D under the M1-topology, we refer to Chapter 12 in Whitt 2002. Figure 3.6 shows

the relative strength of the modes of convergence discussed in this section. We omit

the tightness criteria for the M1-topology, since these will not be used in the scope

of this work. We will arrive at M1-convergence by using the following theorems of

the continuous mapping approach.

Theorem 28 (M1-continuity of the composition). If (xn, yn) −−−→
n→∞

(x, y) in D×D↑
and

(x, y) ∈ (D × C↑↑) ∪ (Cm ×D↑),

then xn ◦ yn −−−→
n→∞

x ◦ y in D using the M1-topology throughout.

The above theorem can be seen as an analogue to Theorem 27. It can be seen that

we still need one of the processes to be continuous in the limit. If this is not the

case, there is a different theorem which requires conditions on the jumping times of

the processes.

Theorem 29 (M1-continuity of the composition, discontinuity points). Suppose

that (xn, yn) −−−→
n→∞

(x, y) in D × D↑. Let Disc(z) denote the set of discontinuity

points of an element z ∈ D. If

(i) y is continuous and strictly increasing at points t ∈ Disc(x) and

(ii) x is monotone on [y(t−), y(t)] and y(t−), y(t) 6∈ Disc(x) whenever t ∈ Disc(y),

then xn ◦ yn −−−→
n→∞

x ◦ y in D using the M1-topology throughout.

3.2 A martingale approach to limit theorems for

the fractional Poisson process

In the previous section, alongside an introduction to finite-dimensional convergence

and the various modes of functional convergence, we have already discussed the

theorems underlying the the compactness and the continuous mapping approach

to deriving limit theorems. Before applying these to the fractional Poisson pro-

cess, we present a third method using martingale theory. Essentially, under suitable
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conditions, the convergence of compensators can imply the convergence of the cor-

responding processes. Moreover, the compensator of a point process can be used as

the centralizing and norming quantity of a central limit theorem.

3.2.1 The fractional Poisson process as a Cox process

In order to apply martingale theory to the FNPP, we need to identify its com-

pensator. To this end, it is useful to first verify that the FNPP belongs to the class

of Cox processes. Cox processes go back to Cox 1955 who proposed to replace the

deterministic intensity of a Poisson process by a random one. In this section, we

discuss the connection between FNPP and Cox processes.

Definition 13. Let (Ω,F ,P) be a probability space and (N(t))t≥0 be a point pro-

cess adapted to a filtration (FNt )t≥0. (N(t))t≥0 is a Cox process if there exists a

right-continuous, increasing process (A(t))t≥0 such that, conditional on the filtra-

tion (Ft)t≥0, where

Ft := F0 ∨ FNt , F0 = σ(A(t), t ≥ 0),

then (N(t))t≥0 is a Poisson process with intensity dA(t).

In particular, we have E[N(t)|Ft] = A(t) and

P(N(t) = k|Ft) = e−A(t)A(t)k

k!
, k = 0, 1, 2, . . . .

Remark 9.

1. A Cox process N is said to be directed by A, if their relation is as in the above

definition and A is called the directing process of N . Cox processes are also

called (Ft)t≥0-Cox process, doubly stochastic processes, conditional Poisson

processes or (Ft)t≥0-conditional Poisson process.

2. Definitions vary across the literature. The above definition can be compared

to essentially equivalent definitions: in Brémaud 1981, 6.12 on p. 126 in Jacod

and Shiryaev 2003, Definition 6.2.I on p. 169 in Daley and Vere-Jones 2008,

where X = R+ and Definition 6.6.2 on p.193 in Bielecki and Rutkowski 2002.

The FHPP as a Cox process It can be verified that the FHPP belongs to

the class of Cox processes (or doubly stochastic Poisson processes or mixed Poisson

processes). This can be done by using a result in Yannaros 1994 (see also Theorem 1

of Section 2.2 in Grandell 1976) which we will state here for the readers’ convenience:
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Lemma 1. An ordinary renewal process whose interarrival distribution function FJ

satisfies

FJ(t) = 1−
∫ ∞

0

e−txdV (x), (3.7)

where V is a proper distribution function with V (0) = 0 is a Cox process.

The proof of this result uses a lemma due to Kingman 1964, which is formulated for

the Laplace transform of FJ :

Lemma 2. An ordinary renewal process with interarrival distribution function FJ

is a Cox process if and only if the Laplace transform F̂J of FJ satisfies

F̂J(s) =
1

1− ln(Ĝ(s))
, (3.8)

where Ĝ is the Laplace transform of an infinitely divisible distribution function G.

Both lemmata can be used to check whether a renewal process also belongs to the

class of Cox processes. Especially, Lemma 2 gives a full characterization of renewal

Cox processes via the Laplace transform of the waiting time distribution. However,

the theorem does not give any insight about the underlying filtration setting. This

will become more evident from the following discussion concerning the general case of

the FNPP. In the case of the FHPP the conditions of both lemmata can be verified.

To this end, as presented in the the previous chapter, recall that the interarrival

times J of the FHPP can be expressed by the one-parameter Mittag-Leffler function

(we assume λ = 1 in this paragraph):

FJ(t) = 1− Eα(−tα).

Moreover, it can be found in Mainardi and Gorenflo 2000 that∫ ∞
0

e−rtKα(r)dr = Eα(−tα), where Kα(r) =
1

π

rα−1 sin(απ)

r2α + 2rα cos(απ) + 1
.

For 0 < α < 1 the function Kα(r) is positive and qualifies as a probability density as∫∞
0
Kα(r)dr = 1. Therefore, the function V (x) :=

∫ x
0
Kα(r)dr fulfills the conditions

of Lemma 1.

The FNPP as a Cox process In the non-homogeneous case, we cannot apply

the theorems which characterize Cox renewal processes as the FNPP cannot be

represented as a classic renewal process. Therefore, we need to resort to Definition

13 for verification. It can be shown that the FNPP is a Cox process under a suitably

constructed filtration. We will follow the construction of doubly stochastic processes
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given in Section 6.6 in Bielecki and Rutkowski 2002. Let (FNαt )t≥0 be the natural

filtration of the FNPP (Nα(t))t≥0

FNαt := σ({Nα(s) : s ≤ t}).

We assume the information on the inverse α-stable subordinator to be available at

time t = 0, i.e.

F0 := σ({Yα(s), s ≥ 0}).

We refer to this choice of initial σ-algebra as non-trivial initial history as opposed

to the case of trivial initial history, which is F0 = {∅,Ω}.
The overall filtration (Ft)t≥0 is then given by

Ft := F0 ∨ FNαt , (3.9)

which is sometimes referred to as intrinsic history. If we choose a trivial initial

history, the intrinsic history will coincide with the natural filtration of the FNPP.

Proposition 30. Let the FNPP be adapted to the filtration (Ft) as in (3.9) with

non-trivial initial history F0 := σ({Yα(t), t ≥ 0}). Then the FNPP is a (Ft)-Cox

process directed by (Λ(Yα(t)))t≥0.

Proof. This follows from Proposition 6.6.7. on p. 195 in Bielecki and Rutkowski

2002. We give a similar proof: As (Yα(t))t≥0 is F0-measurable we have for s ≤ t

E[exp{iu(Nα(t)−Nα(s))}|Fs]

= E
[
exp{iu(Nα(t)−Nα(s))}|F0 ∨ FNαs

]
= E

[
exp{iu(N1(Λ(Yα(t)))−N1(Λ(Yα(s))))}|F0 ∨ FN1

Λ(Yα(s))

]
(3.10)

= E [exp{iu(N1(Λ(Yα(t)))−N1(Λ(Yα(s))))}|F0] (3.11)

= exp[Λ(Yα(s), Yα(t))(eiu − 1)],

where in (3.10) we used the time-change theorem (see for example Theorem 7.4.I. p.

258 in Daley and Vere-Jones 2003) and in (3.11) the fact that the standard Poisson

process has independent increments. This means, conditional on (Ft)t≥0, (Nα(t))

has independent increments and

(Nα(t)−Nα(s))|Fs ∼ Poi(Λ(Yα(s), Yα(t)))
d
= Poi(Λ(Yα(t))− Λ(Yα(s))).

Thus, (N(Yα(t))) is a Cox process directed by Λ(Yα(t)) by definition.
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3.2.2 The FNPP and its compensator

The identification of the FNPP as a Cox process in the previous section allows

us to determine the compensator of the FNPP. In fact, the compensator of a Cox

process coincides with its directing process. From Lemma 6.6.3. p.194 in Bielecki

and Rutkowski 2002 we have the result

Proposition 31. Let the FNPP be adapted to the filtration (Ft) as in (3.9) with

non-trivial initial history F0 := σ({Yα(t), t ≥ 0}). Assume E[Λ(Yα(t))] < ∞ ∀t >
0. Then the FNPP has Ft-compensator (A(t))t≥0, where A(t) := Λ(Yα(t)), i.e.

the stochastic process (M(t))t≥0 defined by M(t) := N(Yα(t)) − Λ(Yα(t)) is a Ft-
martingale.

A central limit theorem

Using the compensator of the FNPP, we can apply martingale methods in order to

derive limit theorems for the FNPP. For the sake of completeness, we restate the

definition of F -stable convergence along with the theorem which will be used later.

Definition 14. If (Xn)n∈N and X are R-valued random variables on a probability

space (Ω, E ,P) and F is a sub-σ-algebra of E , then Xn → X (F -stably) in distribu-

tion if for all B ∈ F and all A ∈ B(R) with P(X ∈ ∂A) = 0,

P({Xn ∈ A} ∩B) −−−→
n→∞

P({X ∈ A} ∩B)

(see Definition A.3.2.III. in Daley and Vere-Jones 2003).

Note that F -stable convergence implies weak convergence/convergence in distribu-

tion. We can derive a central limit theorem for the FNPP using Corollary 14.5.III.

in Daley and Vere-Jones 2003 which we state here as a lemma for convenience.

Lemma 3. Let N be a simple point process on R+, (Ft)t≥0-adapted and with

continuous (Ft)t≥0-compensator A. Suppose for each T > 0 an (Ft)t≥0-predictable

process fT (t) is given such that

B2
T =

∫ T

0

[fT (u)]2dA(u) > 0

and define

XT :=

∫ T

0

fT (u)[dN(u)− dA(u)].

Then the randomly normed integrals XT/BT converge F0-stably to a standard nor-

mal variable W ∼ N(0, 1) for T →∞.

The above lemma allows us to show the following result for the FNPP.
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Proposition 32. Let (N(Yα(t)))t≥0 be the FNPP adapted to the filtration (Ft)t≥0

as defined in Section 3.2.1. Then,

N(Yα(T ))− Λ(Yα(T ))√
Λ(Yα(T ))

−−−→
T→∞

W ∼ N(0, 1) F0-stably. (3.12)

Proof. First note that the compensator A(t) := Λ(Yα(t)) is continuous in t. Let

fT (u) ≡ 1 a constant, then

B2
T =

∫ T

0

[fT (u)]2dA(u) = Λ(Yα(T ))− Λ(Yα(0))

= Λ(Yα(T )) > 0, ∀T > 0

and

XT :=

∫ T

0

[dN(Yα(u))− dA(u)]

= N(Yα(T ))− A(T )−N(Yα(0)) + A(0)

= N(Yα(T ))− A(T )] = N(Yα(T ))− Λ(Yα(T )).

It follows from Lemma 3 above that

XT

BT

=
N(Yα(T ))− Λ(Yα(T ))√

Λ(Yα(T ))
−−−→
T→∞

W ∼ N(0, 1) F0-stably.

Limit α→ 1

In the following, we give a more rigorous proof for the limit α→ 1 (point (ii) under

special cases) in Section 2.4.3. We will use Theorem 3.36 in Jacod and Shiryaev

2003 which will be stated here as a lemma.

Lemma 4. Let (Xt)t≥0 be a Poisson process with compensator (At)t≥0, i.e. At =

E[Xt], and (Xn) a sequence of point processes (Xn
t )t≥0 with compensator (Ant )t≥0;

let D ⊂ R+.

(i) The following condition implies Xn f.d.−−−→
n→∞

X on the set D:

Ant
P−−−→

n→∞
A ∀t ∈ D. (3.13)

(ii) If moreover D is dense in R+, then (3.13) implies the Xn J1−−−→
n→∞

X.
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Proposition 33. Let the FNPP be adapted to the filtration (Ft) as in (3.9) with

non-trivial initial history F0 := σ({Yα(t), t ≥ 0}). Let (Nα(t))t≥0 be the FNPP as

defined in (2.7). Then, we have the limit

Nα
J1−−→
α→1

N in D([0,∞)).

Proof. By Proposition 31 we see that (Λ(Yα(t)))t≥0 is the compensator of (Nα(t))t≥0.

According to Lemma 4 it suffices to show

Λ(Yα(t))
P−−→

α→1
Λ(t).

We can check that the Laplace transform of the density of the inverse α-stable

subordinator converges to the Laplace transform of the delta distribution:

L{hα(·, y)}(s, y) = Eα(−ysα) −−→
α→1

e−ys = L{δ0(· − y)}(s, y). (3.14)

We may take the limit as the power series representation of the (entire) Mittag-

Leffler function is absolutely convergent. Thus (3.14) implies

Yα(t)
d−−→

α→1
t ∀t ∈ R+.

As convergence in distribution to a constant automatically improves to convergence

in probability, we have

Yα(t)
P−−→

α→1
t ∀t ∈ R+.

By the continuous mapping theorem, it follows that

Λ(Yα(t))
P−−→

α→1
Λ(t) ∀t ∈ R+,

which concludes the proof.

3.3 Regular variation and scaling limits

In this section we will work with the trivial initial filtration setting (F0 = {∅,Ω}),
i.e. Ft is assumed to be the natural filtration of the FNPP. In this setting, the

FNPP can generally not be seen as a Cox process and although the compensator of

the FNPP does exist, it is difficult to give a closed form expression for it.

Instead, we follow the approach of results given in Grandell 1976, Serfozo 1972a,

Serfozo 1972b, which require conditions on the function Λ. Recall that a function Λ
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is regularly varying with index β ∈ R if

Λ(xt)

Λ(t)
−−−→
t→∞

xβ, ∀x > 0. (3.15)

Under the mild condition of measurability, one can show that the above condition

is not too restrictive in the sense that if the quotient of the right hand side of (3.15)

converges to a function x 7→ g(x), g has to be of the form xβ (see Theorem A.1).

Example 8. We check whether typical rate functions (taken from Example 1) fulfill

the regular variation condition.

(i) Weibull’s rate function

Λ(t) =

(
t

b

)c
, λ(t) =

c

b

(
t

b

)c−1

, c ≥ 0, b > 0

is regularly varying with index c. This can be seen as follows

Λ(xt)

Λ(t)
=

(xt)c

tc
= xc, ∀x > 0.

(ii) Makeham’s rate function

Λ(t) =
c

b
ebt − c

b
+ µt, λ(t) = cebt + µ, c > 0, b > 0, µ ≥ 0

is not regularly varying, since

Λ(xt)

Λ(t)
=

(c/b)ebxt − (c/b) + µxt

(c/b)ebt − (c/b) + µt
=

(c/b)ebt(x−1) − (c/b)e−bt + µxte−bt

(c/b)− (c/b)e−bt + µte−bt

t→∞−−−→


0 if x < 1

1 if x = 1

+∞ if x > 1

does not fulfill (3.15). 4

In the following, the condition that Λ is regularly varying is useful for proving limit

results. We will first show a one-dimensional limit theorem before moving on to the

functional analogue.

3.3.1 A one-dimensional limit theorem

For a one-dimensional limit, we first provide a self-contained proof which essentially

evokes Lévy’s continuity theorem and is a good excercise before using the same
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method in multiple dimensions in the next section to show convergence in finite-

dimensions.

Proposition 34. Let the FNPP (Nα(t))t≥0 be defined as in Equation (2.7). Suppose

the function t 7→ Λ(t) is regularly varying with index β ∈ R. Then the following

limit holds for the FNPP:
Nα(t)

Λ(tα)

d−−−→
t→∞

(Yα(1))β. (3.16)

Proof. We will first show that the characteristic function of the random variable on

the left hand side of (3.16) converges to the characteristic function of the right hand

side.

By self-similarity of Yα we have

N1(Λ(Yα(t)))
d
= N1(Λ(tαYα(1))).

Therefore, it follows for the characteristic function of Z(t) := Nα(t)
Λ(tα)

that

ϕ(t) := E[exp(iuZ(t))] = E[exp(iuΛ(tα)−1N1(Λ(Yα(t))))]

= E[exp(iuΛ(tα)−1N1(Λ(tαYα(1))))]

=

∫ ∞
0

E[exp(iuΛ(tα)−1N1(Λ(tαx)))]hα(1, x) dx (3.17)

=

∫ ∞
0

exp(Λ(tαx)(eiuΛ(tα)−1 − 1))hα(1, x) dx, (3.18)

where we used a conditioning argument in (3.17), x 7→ hα(1, x) is the density function

of the distribution of Yα(1). In the last step in (3.18) we may insert the characteristic

function of a Poisson distributed random variable with parameter Λ(tαx) evaluated

at the point uΛ(tα)−1.

In order to pass to the limit, we need to justify that we may exchange integration

and limit. It can be observed that the integrand is dominated by an integrable

function independent of t:

∣∣E[exp(iuΛ(tα)−1 N1(Λ(tαx)))]hα(1, x)|

≤ E[| exp(iuΛ(tα)−1N1(Λ(tαx)))|]hα(1, x) ≤ hα(1, x)

This allows us to use the dominated convergence theorem to get

lim
t→∞

ϕ(t) = lim
t→∞

∫ ∞
0

exp(Λ(tαx)(eiuΛ(tα)−1 − 1))hα(1, x) dx

=

∫ ∞
0

[
lim
t→∞

exp(Λ(tαx)(eiuΛ(tα)−1 − 1))
]
hα(1, x) dx. (3.19)

We are left with calculating the limit in the square bracket in (3.19). To this end,
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consider a power series expansion of eiuΛ(tα)−1
to observe that

exp
(

Λ(tαx)(eiuΛ(tα)−1 − 1)
)

= exp

(
Λ(tαx)

(
∞∑
k=1

(iu)k

Λ(tα)kk!

))

= exp

(
iu

1!

Λ(tαx)

Λ(tα)︸ ︷︷ ︸
−−−→
t→∞

xβ

+ Λ(tαx)O
(

1

Λ(tα)2

)
︸ ︷︷ ︸

−−−→
t→∞

0

)
,

where we have used that Λ is regularly varying with index β in the last step. Inserting

this result into (3.19) yields

lim
t→∞

ϕ(t) =

∫ ∞
0

exp
(
iuxβ

)
hα(1, x)dx

= E[eiu(Yα(1))β ].

Applying Lévy’s continuity theorem concludes the proof.

A more general result can be found as Theorem 3.4 in Serfozo 1972a or Theorem

1 on pp. 69-70 in Grandell 1976, which we state here with slight modification of

notation:

Theorem 35. Let N be a doubly stochastic process with directing process A. Sup-

pose that there exist real numbers (at)t≥0 and (bt)t≥0 with

at > 0 and
bt
at
−−−→
t→∞

σ2, 0 ≤ σ2 <∞

and a random variable S such that

A(t)

at
− bt

d−−−→
n→∞

S.

Then
N(A(t))

at
− bt

d−−−→
n→∞

S + σW,

where W is a standard normal distributed random variable.

Remark 10. As a special case of the Proposition 34 we get for Λ(t) = λt, for

constant λ > 0
Λ(xt)

Λ(t)
= x1

which means Λ is regularly varying with index β = 1. It follows that

N1(λYα(t))

λtα
d−−−→

t→∞
Yα(1).
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This is in accordance to the scaling limit given in Cahoy, Uchaikin and Woyczynski

2010 who showed

N1(λYα(t))

E[N1(λYα(t))]
=
N1(λYα(t))

λtα

Γ(1+α)

d−−−→
t→∞

Γ(1 + α)Yα(1).

3.3.2 A functional limit theorem

The one-dimensional result in Proposition 34 can be extended to a functional limit

theorem. In the following, we consider the Skorokhod space D([0,∞)) endowed with

a suitable topology introduced in Section 3.1.

Theorem 36. Let the FNPP (Nα(t))t≥0 be defined as in Equation (2.7). Suppose

the function t 7→ Λ(t) is regularly varying with index β ∈ R. Then the following

limit holds for the FNPP:(
Nα(tτ)

Λ(tα)

)
τ≥0

J1−−−→
t→∞

(
[Yα(τ)]β

)
τ≥0

. (3.20)

Remark 11. As the limit process has continuous paths the mode of convergence

improves to local uniform convergence. Also in this section, we will denote the

homogeneous Poisson process with intensity parameter λ = 1 with N1.

In order to prove the theorem we need Theorem 2 on p. 81 in Grandell 1976, which

we will state here for convenience.

Theorem 37. Let Λ̄ be a stochastic process in D([0,∞)) with Λ̄(0) = 0 and let

N = N1(Λ̄) be the corresponding doubly stochastic process. Let a ∈ D([0,∞)) with

a(0) = 0 and t 7→ bt a positive regularly varying function with index ρ > 0 such that

a(t)

bt
−−−→
t→∞

κ ∈ [0,∞) and(
Λ̄(tτ)− a(tτ)

bt

)
τ≥0

J1−−−→
t→∞

(S(τ))τ≥0,

where S is a stochastic process in D([0,∞)). Then(
N(tτ)− a(tτ)

bt

)
τ≥0

J1−−−→
t→∞

(S(τ) + h(B(τ)))τ≥0,

where h(τ) = κτ 2ρ and (S(t))t≥0 and (B(t))t≥0 are independent. (B(t))t≥0 is the

standard Brownian motion in D([0,∞)).

Proof of Theorem 36. We apply Theorem 37 and choose a ≡ 0 and bt = Λ(tα). Then

it follows that κ = 0 and it can be checked that bt is regularly varying with index
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αβ:
bxt
bt

=
Λ(xαtα)

Λ(tα)
−−−→
t→∞

xαβ

by the regular variation property in (3.15).

We are left to show that

Λ̃t(τ) :=

(
Λ(Yα(tτ))

Λ(tα)

)
τ≥0

J1−−−→
t→∞

(
[Yα(τ)]β

)
τ≥0

.

This can be done by following the usual technique of first proving convergence of the

finite-dimensional marginals and then tightness of the sequence in the Skorokhod

space D([0,∞)).

Concerning the convergence of the finite-dimensional marginals we show conver-

gence of their respective characteristic functions. Let t > 0 be fixed at first,

τ = (τ1, τ2, . . . , τn) ∈ Rn
+ and 〈·, ·〉 denote the scalar product in Rn. Then, we

can write the characteristic function of the joint distribution of the vector

Λ(tαYα(τ))

Λ(tα)
=

(
Λ(tαYα(τ1))

Λ(tα)
,
Λ(tαYα(τ2))

Λ(tα)
, . . . ,

Λ(tαYα(τn))

Λ(tα)

)
∈ Rn

+

as

ϕt(u) := E
[
exp

(
i

〈
u,

Λ(Yα(tτ))

Λ(tα)

〉)]
= E

[
exp

(
i

〈
u,

Λ(tαYα(τ))

Λ(tα)

〉)]
=

∫
Rn+

exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)dx

=

∫
Rn+

[
n∏
k=1

exp

(
iuk

Λ(tαxk)

Λ(tα)

)]
hα(τ1, . . . , τn;x1, . . . , xn)dx1 . . . dxn

where u ∈ Rn and hα(τ, x) = hα(τ1, τ2, . . . , τn;x1, x2 . . . , xn) is the density of the

joint distribution of (Yα(τ1), Yα(τ2), . . . , Yα(τn)). We can find a dominating function

by the following estimate:∣∣∣∣exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)

∣∣∣∣ ≤ hα(τ, x).

The upper bound is an integrable function which is independent of t. By dominated
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convergence we may interchange limit and integration:

lim
t→∞

ϕn(u) = lim
t→∞

∫
Rn+

exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)dx

=

∫
Rn+

lim
t→∞

exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)dx

=

∫
Rn+

exp
(
i
〈
u, xβ

〉)
hα(τ, x)dx = E[exp(i〈u, (Yα(τ))β〉)],

where in the last step we used the continuity of the exponential function and the

scalar product to calculate the limit. By Lévy’s continuity theorem we may conclude

that for n ∈ N (
Λ(Yα(tτk))

Λ(tα)

)
k=1,...,n

d−−−→
t→∞

(
[Yα(τk)]

β
)
k=1,...,n

.

In order to show tightness, first observe that for fixed t both the stochastic process

Λ̃t on the left hand side and the limit candidate ([Yα(τ)]β)τ≥0 have increasing paths.

Moreover, the limit candidate has continuous paths. Therefore we are able to invoke

Theorem 25 to ensure tightness of the sequence (Λ̃t)t≥0 and thus the assertion follows.

By applying the transformation theorem for probability densities to (2.6), we can

write for the density hβα(t, ·) of the one-dimensional marginal of the limit process

([Yα(t)]β)t≥0 as

hβα(t, x) =
1

β
x1/β−1hα(t, x1/β)

=
1

β
x1/β−1 t

αx1/β(1+1/α)
gα

(
t

y1/(αβ)

)
=

t

αβx1+1/(αβ)
gα

(
t

y1/(αβ)

)
. (3.21)

Note that this is not the density of Yαβ(t).

A further limit result can be obtained for the FHPP via a continuous mapping

argument.

Proposition 38. Let (N1(t))t≥0 be a homogeneous Poisson process and (Yα(t))t≥0

be the inverse α-stable subordinator. Then(
N1(Yα(t))− λYα(t)√

λ

)
t≥0

J1−−−→
λ→∞

(B(Yα(t)))t≥0,

where (B(t))t≥0 is a standard Brownian motion.
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Proof. The classic result (
N1(t)− λt√

λ

)
t≥0

J1−−−→
λ→∞

(B(t))t≥0

can be shown by using that (N1(t) − λt)t≥0 is a martingale. As (B(t))t≥0 has con-

tinuous paths and (Yα(t))t≥0 has increasing paths we may use Theorem 27 to obtain

the result.

The above proposition can be compared with Lemma 5 in the next section and a

similar continuous mapping argument is applied in the proof of Theorem 41.

3.4 The fractional compound Poisson process

Let X1, X2, . . . be a sequence of i.i.d. random variables. The fractional compound

Poisson process is defined analogously to the standard compound Poisson process

where the Poisson process is replaced by a fractional one:

Zα(t) :=

Nα(t)∑
k=1

Xk, (3.22)

where
∑0

k=1Xk := 0. The process Nα is not necessarily independent of the Xi’s

unless stated otherwise.

We will assume a limit result for the sequence of partial sums without time-change

Sn :=
n∑
k=1

Xk, (3.23)

usually a stable limit, i.e. there exist sequences (an)n∈N and (bn)n∈N and a random

variable following a stable distribution S such that

S̄n := anSn − bn
d−−−→

n→∞
S.

(see also Section 2.1.2 for more on stable distributions). In other words the distri-

bution of the Xk’s is in the domain of attraction of a stable law.

In the following, we will derive limit theorems for the fractional compound Poisson

process. In Section 3.4.2, we assume Nα to be independent of the Xk’s and use

a continuous mapping theorem argument to show functional convergence w.r.t. a

suitable Skorokhod topology. A corresponding one-dimensional limit theorem would

follow directly from the functional one: According to Proposition VI.3.14 in Jacod

and Shiryaev 2003 or Theorem 11.6.6 in Whitt 2002 convergence in J1 and M1 im-

plies that we also have convergence in finite dimensions on the time domain except
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the set of fixed times of discontinuity. As stable processes are Lévy processes, this

set is empty (see Lemma 2.3.2 in Applebaum 2009) and Yα has continuous paths.

However, in the special case of Nα being a FHPP, using Anscombe’s theorem in the

next section allows us to drop the independence assumption between Nα and the

Xk’s and thus strengthen the result for the one-dimensional limit.

3.4.1 A one-dimensional limit result

The following theorem is due to Anscombe 1952 and can be found slightly reformu-

lated in Richter 1965.

Theorem 39. We assume that the following conditions are fulfilled:

(i) The sequence of random variables Rn such that

Rn
d−−−→

n→∞
R,

for some random variable R.

(ii) Let the family of integer-valued random variables (N(t))t≥0 be relatively stable,

i.e. for a real-valued function ψ with ψ(t) −−−→
t→∞

+∞ it holds that

N(t)

ψ(t)

P−−−→
t→∞

1.

(iii) (Uniform continuity in probability) For every ε > 0 and η > 0 there exists a

c = c(ε, η) and a t0 = t0(ε, η) such that for all t ≥ t0

P
(

max
m:|m−t|<ct

|Rm −Rt| > ε

)
< η.

Then,

RN(t)
d−−−→

t→∞
R.

Concerning the condition (ii), note that the required convergence in probability

is stronger than the convergence in distribution we have derived in the previous

sections for the FNPP. Nevertheless, in the special case of the FHPP, we can prove

the following lemma.

Lemma 5. Let Nα be a FHPP, i.e. Λ(t) = λt. Then with C := λ
Γ(1+α)

it holds that

Nα(t)

Ctα
P−−−→

t→∞
1.
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Proof. According to Proposition 4.1 from Di Crescenzo, Martinucci and Meoli 2016

we have the result that for fixed t > 0 the convergence

N1(λYα(t))

E[N1(λYα(t))]
=
N1(λYα(t))

λtα

Γ(1+α)

L1

−−−→
λ→∞

1 (3.24)

holds and therefore also in probability.

It can be shown by using the fact that the moments and the waiting time distribution

of the FHPP can be expressed in terms of the Mittag-Leffler function.

Let ε > 0. We have

lim
t→∞

P
(∣∣∣∣N1(λYα(t))

Ctα
− 1

∣∣∣∣ > ε

)
= lim

t→∞
P

(∣∣∣∣∣N1(λtαY (1))
λtα

Γ(1+α)

− 1

∣∣∣∣∣ > ε

)
(3.25)

= lim
τ→∞

P

(∣∣∣∣∣N1(τY (1))
τ ·1α

Γ(1+α)

− 1

∣∣∣∣∣ > ε

)
= 0, (3.26)

where in (3.25) we used the self-similarity property of Yα and in (3.26) we applied

(3.24) with t = 1.

As a direct application of Theorem 39 we can prove the following lemma.

Lemma 6. Let Nα be a FHPP and X1, X2, . . . be a sequence of i.i.d. variables in

the DOA of a stable law µ. Then, for the partial sums Sn defined in (3.23) there

exist sequences (an)n∈N and (bn)n∈N such that

aNα(t)SNα(t) − bNα(t)
d−−−→

t→∞
S,

where S ∼ µ.

Proof. We would like to use the above theorem for Rn = S̄n. Indeed, condition (i)

follows from the assumption that the law of X1 lies in the domain of attraction of a

stable law and condition (ii) follows from Lemma 5. It is readily proven in Theorem

3 in Anscombe 1952 that (S̄n) satisfies the condition (iii), if condition (i) and (ii)

are fulfilled. Therefore, it follows from Theorem 39 that

S̄Nα(t) = aNα(t)

Nα(t)∑
k=1

Xk − bNα(t)
d−−−→

t→∞
S. (3.27)

Finally, we would like to replace Nα(t) with bCtαc in the index of a and b. This

requires additional conditions. The following theorem is a slight modification of

Theorem 3.6 in Chapter 9 of Gut 2013.
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Theorem 40. Let X1, X2, . . . be i.i.d. random variables with E[X1] = 0 and set

Sn :=
n∑
k=1

Xk, n ≥ 1.

Suppose that (an)n≥0 is a sequence of positive norming constants such that

Sn
an

d−−−→
n→∞

S,

where S follows a stable law with index α ∈ (1, 2]. Let (N(t))t≥0 be a sequence of

integer-valued random variables such that (ii) in Theorem 39 is fulfilled. Then,

abCtαc

Nα(t)∑
k=1

Xk = abCtαcZα(t)
d−−−→

t→∞
S.

Idea of proof. By Lemma 6 we have

aNα(t)

Nα(t)∑
k=1

Xk
d−−−→

t→∞
S,

as bn = 0 by assumption. In order to replace Nα(t) with bCtαc in the index of a one

has to show that
Nα(t)

Ctα
P−−−→

t→∞
1

implies
aNα(t)

abCtαc

P−−−→
t→∞

1.

The derivation of suitable estimates relies on the fact that n 7→ an is regularly

varying (for details see Lemma 2.9 (a) in Gut 1974).

Remark 12.

(i) The conditions restrict to the centered, symmetric case (i.e. E[X1] = 0, bn = 0)

and α ∈ (1, 2] as the mean exists (see Proposition 6). While it can be shown

that an ∈ R−1/α, in the non-symmetric case (see also Remark 1), we generally

do not have a regular variation property for bn.

(ii) Note that this convergence result does not require Nα to be independent of the

Xk’s. The above derivation also works for mixing sequences X1, X2, . . . instead

of i.i.d. (see Csörgő and Fischler 1973 for a generalization of Anscombe’s

theorem for mixing sequences).
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3.4.2 A functional limit theorem

Theorem 41. Let the FNPP (Nα(t))t≥0 be defined as in Equation (2.7) and suppose

the function t 7→ Λ(t) is regularly varying with index β ∈ R. Moreover let X1, X2, . . .

be i.i.d. random variables independent of Nα. Assume that the law of X1 is in the

domain of attraction of a stable law, i.e. there exist sequences (an)n∈N and (bn)n∈N

and a stable Lévy process (S(t))t≥0 such that the partial sums Sn definced in (3.23)

satisfy

(
anSbntc − bn

)
t≥0

J1−−−→
n→∞

(S(t))t≥0. (3.28)

Then the fractional compound Poisson process Zα defined in (3.22) fulfills the fol-

lowing limit:

(cnZα(nt)− dn)t≥0
M1−−−→
n→∞

(
S
(
[Yα(t)]β

))
t≥0

,

where cn := abΛ(n)c and dn := bbΛ(n)c.

Proof. The proof follows the technique proposed by Meerschaert and Scheffler 2004:

By Theorem 36 we have(
Nα(tτ)

Λ(tα)

)
τ≥0

J1−−−→
t→∞

(
[Yα(τ)]β

)
τ≥0

.

By the independence assumptions we can combine this with (3.28) to get

(
abΛ(nα)cSbΛ(nα)tc − bbΛ(nα)c, [Λ(nα)]−1Nα(nt)

)
t≥0

J1−−−→
n→∞

(S(t), [Yα(t)]β)t≥0

in the spaceD([0,∞),R×[0,∞)). Note that ([Yα(t)]β)t≥0 is non-decreasing. Moreover,

due to independence the Lévy processes (S(t))t≥0 and (Dα(t))t≥0 do not have sim-

ultaneous jumps (for details see Becker-Kern, Meerschaert and Scheffler 2004 and

more generally Cont and Tankov 2004). This allows us to apply Theorem 29 to get

the assertion by a continuous mapping argument since the composition mapping is

continuous in this setting.

3.5 Some numerical examples

Figure 3.7 shows the shape and time-evolution of the densities for different values

of α. As Yα is an increasing process, the densities spread to the right hand side as

time passes.

We conducted a small Monte-Carlo simulation in order to illustrate the one-dimensional

convergence results of Proposition 32 and Proposition 34. In Figures 3.8, 3.9 and

3.10, we can see that the simulated values for the probability density x 7→ ϕα(t, x)
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Figure 3.7: Plots of the probability densities x 7→ hα(t, x) of the distribution of the
inverse α-stable subordinator Yα(t) for different parameter α = 0.1, 0.6, 0.9 indicat-
ing the time-evolution: the plot on the left is generated for t = 1, the plot in the
middle for t = 10 and the plot on the right for t = 40.

of [N(Yα(t))− Λ(Yα(t))]/
√

Λ(Yα(t)) approximate the density of a standard normal

distribution for increasing time t. In a similar manner, Figure 3.11 depicts how the

probability density function x 7→ φα(t, x) of Nα(t)/Λ(tα) approximates the density

of (Yα(t))β given in (3.21), where Λ has regular variation index β = 0.7.

3.6 Summary

We have given a short review of weak convergence of probability measures and in

particular in the case of continuous and càdlàg path spaces. Continuing with the

FHPP of Chapter 2, we identified the FHPP as a Cox process under a suitable

choice of filtration. Thus we were able to address the case α = 1 for the FNPP

as a functional limit. In the case of a trivial initial filtration, we made reasonable

assumptions for the rate function Λ in order to derive scaling limits. Finally, we

derive limit results for the fractional compound Poisson process. This concludes the

first part of the thesis on fractional Poisson processes.
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Figure 3.8: The red line shows the probability density function of the standard
normal distribution, the limit distribution according to Proposition 32. The blue
histograms depict samples of size 104 of the right hand side of (3.12) for different
times t = 10, 109, 1012 to illustrate convergence to the standard normal distribution.
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Figure 3.9: The red line shows the probability density function of the standard
normal distribution, the limit distribution according to Proposition 32. The blue
histograms depict samples of size 104 of the right hand side of (3.12) for different
times t = 1, 10, 100 to illustrate convergence to the standard normal distribution.
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Figure 3.10: The red line shows the probability density function of the standard
normal distribution, the limit distribution according to Proposition 32. The blue
histograms depict samples of size 104 of the right hand side of (3.12) for different
times t = 1, 10, 20 to illustrate convergence to the standard normal distribution.
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Figure 3.11: Red line: probability density function φ of the distribution of the
random variable (Y0.9(1))0.7, the limit distribution according to Proposition 34. The
blue histogram is based on 104 samples of the random variables on the right hand
side of (3.16) for time points t = 10, 100, 103 to illustrate the convergence result.
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Chapter 4

Information criteria and model

selection

4.1 The model selection problem

In a broader sense, the principles that govern the process of selecting a single model

or a subset of models from a given set of candidate models or working hypotheses

in order to describe an observed phenomenon are deeply rooted in the in the idea of

scientific method. Essentially, the decision to be made between a number of com-

peting models is driven by two contradicting desires: fit and simplicity.

On the one hand, we cannot hope for a model, how complex it may be, to fully

describe reality. From a philosophical standpoint it is questionable whether our

perception and subsequent description of reality is able to reflect reality and truth

as such. Is there such a thing as a true model? Moreover, independently from the

notion of truth and true model, many phenomena that we seek to understand and

analyze in sciences such as physics, biology and economic and social sciences exhibit

a high degree of complexity. As a result, we consider models only as approximations

of certain key aspects of reality in order to infer underlying principles and laws.

As a quote attributed to George Box put it: “All models are wrong, but some are

useful”.

On the other hand, in contrary to the previous argument that a model can never be

complex enough to match reality as a whole, pragmatism gives rise to the principle

of parsimony or in its looser form sometimes referred to as Ockham’s razor. 1 The

idea to keep a model as simple as possible while still capturing the underlying phe-

nomenon is not only mentioned in Ockham’s work, but is stated in various forms by

other scientists.

1Sometimes also written Occam.
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The fact that models are required to be good approximations, i.e. to fit the data,

while at the same time to be as simple as possible shows that a trade-off has to

be made. Depending on the discipline there are various methods of model selection

with varying degree of subjectivity. The context of this chapter is model selection

in statistical sciences for which the model selection problem can be formulated as

follows: Given observed (and appropriately collected) data and a set of candidate

models arising from the scientific context where the data is coming from we want

to quantify the suitability of a model relative to its competitors. Model parameters

are estimated using statistical methods like maximum likelihood or least squares

estimation. The trade-off between fit and simplicity can be seen as a trade-off

between bias and variance: A model containing only few parameters may not be

able to capture the underlying phenomenon whereas a complex model might contain

too many parameters with little descriptive power. In other words, a good model

should be able to separate the information from the noise within the data. “We are

not trying to model the data, we are trying to model the information in the data.”

(p. 275, Burnham and Anderson 2004).

4.2 Information criteria

Information criteria (IC) are tools for model selection which aim to quantify the

trade-off structure of the model selection problem. We first give an overview of the

IC before presenting the ideas and derivations that justify the respective formulas.

This section follows introductory work which can be found in Claeskens and Hjort

2008 and references therein.

Definition 15. For a given model fitted to data via MLE let L be the maximal

log-likelihood value, k the number of parameters and n be the sample size of the

data set. Then, we define:

1. Akaike’s information criterion (AIC)

AIC = −2L+ 2k (4.1)

2. Bayesian information criterion (BIC)

BIC = −2L+ k ln(n) (4.2)

3. Hannan and Quinn information criterion (HQ)

HQ = −2L+ 2k ln(ln(n)) (4.3)
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The above information criteria are of the form

IC(Mk) = −2L+ c(k, n) (4.4)

where Mk is a model associated with parameter number k and c(k, n) is a suitably

chosen penalty term that accounts for the complexity of the model, i.e. the number

of parameters. Within a given set of models to choose from, the “best” model is the

one which minimizes the IC value. In other words, the selected model should give the

best fit to the data, i.e. have a large log-likelihood value, while being as parsimonious

as possible, i.e. use few parameters. Therefore, formula (4.4) represents the trade-off

situation we have discussed previously.

The specific form of the penalty term for the AIC and BIC was initially derived from

the respective frequentist and Bayesian parameter estimation framework. Whereas

the AIC derives from the Kullback-Leibler or entropy distance and can be related

to the likelihood ratio, the BIC is related to the Bayes factors. However, as pointed

out in Burnham and Anderson 2004, the AIC can be interpreted in a Bayesian

framework and vice versa, therefore negating a strict categorization of AIC and BIC

as frequentist and Bayesian respectively. We will revisit this point in Section 4.2.3.

4.2.1 Akaike’s information criterion

In his original work Akaike 1973, Akaike uses the connection between maximum

likelihood estimation method and the Kullback-Leibler distance between probability

distributions in order to derive a rule for model selection that is widely known as

Akaike’s information criterion (AIC).

Definition 16. Let f and g be two probability density functions defined on Rn.

Then the Kullback-Leibler distance (KL-distance) between f and g is given by

KL(g, f) =

∫
Rn
g(y) log

(
g(y)

f(y)

)
dy. (4.5)

The KL-distance originated in Kullback and Leibler 1951 and is also known as

entropy distance or relative entropy due to its relation to the physical notion of

Boltzmann entropy (see p. 266 in Burnham and Anderson 2004). In general, the

KL-distance is not symmetric, i.e. KL(g, f) 6= KL(f, g), thus is not a bona fide

distance. However, it does hold that KL(g, f) ≥ 0 and KL(g, f) = 0 iff g = f .

We assume that the data y = (y1, y2, . . . , yn) is coming from a distribution with

probability density function g which is unknown. Moreover, we suppose that the

context of the data gives reason to believe that the underlying distribution may be
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well described by a member of a family of probability distributions with probability

density functions {f(·, θ)}θ∈Θp , where θ is a parameter vector and Θp ⊂ Rp the

space of admissible configurations of θ. The model selection problem in this setting

often reduces to the optimal choice of the dimension of θ or in other words the

order p of the model. Usually, due to practical reasons we only allow a finite set of

orders to choose from, for example p ∈ {1, 2, . . . , P}. However, the derivation does

not necessarily require a set of nested models. In that case, p can be seen more

generally as an index instead of an order. As a shorthand, we will refer to model p

as “the model with order/index p and parameter vector θ ∈ Θp”.

For fixed model order p we can estimate the parameter θ via maximum likelihood

estimation.

θ̂ := arg max
θ∈Θp

log(f(y1, y2, . . . , yn, θ)). (4.6)

where ln(θ) := log(f(y1, y2, . . . , yn, θ)) is the log-likelihood function. When solely

looking at maximum likelihood values ln(θ̂), as a measure of fit to compare different

indices p, the most complex models, i.e. those with the highest possible number of

parameters, will dominate the simpler ones.

For simplicity and illustration of key ideas of the derivation we assume that the data

(y1, y2, . . . , yn) consist of realizations of i.i.d. random variables Y = (Y1, Y2, . . . , Yn)

and the usual conditions are given for the consistency of the MLE θ̂ of θ and asymp-

totic normality (see for example Thm. 7.30 in Georgii 2007, which assumes identi-

fiability and unimodality of the probability densities).

Indeed, the connection between KL-distance and MLE can be seen in the proof

of consistency of MLE in the i.i.d. case: Due to independence, the log-likelihood

function takes the form

ln(θ) =
n∑
k=1

log(f(yi, θ)).

By the law of large numbers

1

n

n∑
k=1

log(f(yi, θ))
P−−−→

n→∞
Eg[log(f(Y1, θ))] =

∫
Rn
g(y) log(f(y, θ)) dy

=

∫
Rn
g(y) log(g(y)) dy −KL(g, f(·, θ))

Heuristically, we may reason that maximizing of the log-likelihood function is more

or less equivalent to minimizing the Kullback-Leibler distance. Of course, conver-

gence of the objective functions generally does not imply convergence of the respect-

ive optimizers. To ensure that, we need to require the functions in the sequence to
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be unimodal or concave. The proof of consistency therefore implies:

θ̂
P−−−→

n→∞
θ0 := arg min

θ∈Θ
KL(g, f(·, θ)),

where θ0 is the best or least false parameter.

If the true distribution g were known, the KL-distance would be a potential quantity

for comparisons of different models with probability density f(·, θ):

KL(g, f(·, θ)) =

∫
Rn
g(y) log(g(y)) dy −

∫
Rn
g(y) log(f(y, θ)) dy︸ ︷︷ ︸

=:Rn(θ)

. (4.7)

The first term of (4.7) is constant w.r.t. θ and thus constant for all p. Therefore, in

order to discriminate among the candidate models, we only need to analyze the term

Rn. Since we cannot compute Rn directly due to a lack of knowledge of g, Akaike

reasons that it is possible to estimate the expected value of Rn instead: Define

Qn := Eg[Rn] = E[log(f(X, θ̂(Y )))], (4.8)

where X and Y are to be understood as two independent random vectors with

underlying distribution g. The expectation is therefore to be taken under their joint

distribution, in other words the product measure. A possible estimator for Qn can

be obtained by using the empirical distribution

Q̂n :=
1

n

n∑
i=1

log(f(Yi, θ̂)) =
1

n
ln(θ̂). (4.9)

In order to get an unbiased estimator in first approximation, we will compare the

Taylor expansions of Rn and Q̂n. At this point, it is useful to revisit quantities

and notation related to the consistency and asymptotic normality of MLE and their

relation to the KL-distance.

Under suitable regularity conditions on f we can write down the optimality con-

ditions of the minimizer θ0 of the KL-distance. To this end, we define the first

derivative the score vector and the information matrix as the first derivative and

the Hessian of the function θ 7→ log(f(y, θ)) respectively:

u(y, θ) :=
∂

∂θ
log(f(y, θ)) I(y, θ) :=

∂2 log(f(y, θ))

∂θ∂θt

The necessary first order optimality condition of the KL-distance is then given by

0 =
∂

∂θ

∣∣∣∣
θ=θ0

KL(g, f(·, θ)) = − ∂

∂θ

∣∣∣∣
θ=θ0

∫
Rn
g(y) log(f(y, θ)) dy (4.10)
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For conditions that allow us to interchange the order of differentiation and integra-

tion, for example dominated convergence, we require the existence of a dominating

function h ∈ L1 such that

∂

∂θ
log(f(y, θ)) = u(y, θ) ≤ h(y)

holds for all y and independent of θ, we may further simplify (4.10) to obtain

0 = −
∫
Rn
g(y)u(y, θ0)dy = −Eg[u(Y, θ0)]. (4.11)

In order to state the asymptotic normality result for MLE, we need to define follow-

ing second order quantities:

J := −Eg[I(Y, θ0)], K := Varg[u(Y, θ0)].

Under suitable conditions for asymptotic normality (see Section 4.4. in Czado and

Schmidt 2011) we have the limit

√
n(θ̂ − θ) d−−−→

n→∞
J−1U ′ ∼ Np(0, J

−1KJ−1),

where U ′ ∼ Np(0, K). Let Vn :=
√
n(θ̂ − θ).

Having discussed the first and second derivative of θ 7→ f(Y, θ), we can use above

quantities to write down its two-term Taylor expansion evaluated at the MLE θ̂:

log(f(Y, θ̂)) = log(f(Y, θ0)) + u(Y, θ0)t(θ̂ − θ0)

+
1

2
(θ̂ − θ0)tI(Y, θ0)(θ̂ − θ0) + S(θ̂), (4.12)

where the equality holds a.s. and S is a residual term that vanishes for θ̂ → θ0.

Taking expectations yields

Rn(θ̂) =

∫
Rn
g(y)

[
log(f(y, θ0)) + u(y, θ0)t(θ̂ − θ0) +

1

2
(θ̂ − θ0)tI(y, θ0)(θ̂ − θ0)

+ S(θ̂)

]
dy

=

∫
Rn
g(y) log(f(y, θ0)) dy︸ ︷︷ ︸

=:Q0

+

(∫
Rn
g(y)u(y, θ0) dy

)t
︸ ︷︷ ︸

=0

(θ̂ − θ0)

+
1

2
(θ̂ − θ0)t

(∫
Rn
g(y)I(y, θ0) dy

)
(θ̂ − θ0) + S̃(θ̂)

= Q0 −
1

2
n−1V t

nJVn + oP (1), (4.13)
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where it is assumes that the residual term after integration is of order oP (1) for

θ̂ → θ0. 2

Analogously, we may plug (4.12) into (4.9) to obtain the Taylor expansion of Q̂n:

Q̂n =
1

n

n∑
i=1

[
log(f(Yi, θ0)) + u(Yi, θ0)t(θ̂ − θ0) +

1

2
(θ̂ − θ0)tI(Yi, θ0)(θ̂ − θ0)

+ T (θ̂)

]
=

1

n

n∑
i=1

log(f(Yi, θ0))︸ ︷︷ ︸
=:Z̄n

+

(
1

n

n∑
i=1

u(Yi, θ0)

)t

︸ ︷︷ ︸
=:Ūn

(θ̂ − θ0)

+
1

2
(θ̂ − θ0)t

(
1

n

n∑
i=1

I(Yi, θ0)

)
︸ ︷︷ ︸

=:J̄n

(θ̂ − θ0) + oP (1)

= Z̄n + Ū t
n(θ̂ − θ0) +

1

2
(θ̂ − θ0)tJ̄n(θ̂ − θ0) + oP (1). (4.14)

By the law of large numbers and the central limit theorem respectively we have

Q0 − Z̄n
P−−−→

n→∞
0,
√
nŪn

d−−−→
n→∞

U ′ ∼ Np(0, K) and J − Jn
P−−−→

n→∞
0. (4.15)

Using (4.13) and (4.14) we further compute

Q̂n −Rn = (Zn −Q0)︸ ︷︷ ︸
→0

+
1

n

√
nŪn

t︸ ︷︷ ︸
→(U ′)t

Vn︸︷︷︸
J−1U

+oP (n−1).

In first approximation, for large n, we may conclude that the difference Q̂n − Rn

behaves approximately like n−1(U ′)tJ−1U ′. The convergence is in distribution and

from a rigorous standpoint it is not possible to justify that the convergence also

holds in mean. Nevertheless, in a last rather heuristic step we approximate:

Eg[Q̂n −Qn] = Eg[Q̂n −Rn]− Eg[Rn −Qn]︸ ︷︷ ︸
=0 by def. in (4.8)

≈ 1

n
E[(U ′)tJ−1U ′] =

1

n
E[(J−

1
2U ′)tJ−

1
2U ′]

=
1

n
Var[J−

1
2U ′] =

1

n
Tr(J−

1
2KJ−

1
2 ) =

1

n
Tr(J−1K).

2The Taylor expansion of Rn implicitly interchanges integration and derivatives and would
again require regularity assumptions to allow that.
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This leads us to the bias corrected estimator

Q̂n −
p∗

n
, with p∗ = Tr(J−1K). (4.16)

Remark 13. In the special case that the true density is contained in the set of

candidate models and is attainable by θ0, i.e. g = f(·, θ0), then J = K, i.e.

J(θ0) = −
∫
Rn
f(y, θ0)I(y, θ0) dy =

∫
Rn
f(y, θ0)u(y, θ0)u(y, θ0)t dy

and J is called Fisher information matrix . This can be seen by taking the derivative

in the first oder condition in 4.11 and rearranging terms. Moreover, p∗ in (4.16)

simplifies to

p∗ = Tr(J−1K) = Tr(Id) = length(θ̂) = p.

This leads to the classic AIC formula by multiplying by −2n

AIC = −2n
(
Q̂n −

p

n

)
= −2ln(θ̂) + 2p,

which coincides with Formula (4.1). In practice, this formula is also used when it is

not clear whether the true model is actually attainable.

In his original work, Akaike first proposes a mean discrimination functional of the

form

I(θ1, θ0, ϕ) :=

∫
R
f(x, θ0)ϕ(τ(x)) dx, (4.17)

where ϕ is a function to be specified and τ is the likelihood ratio of the respective

distributions corresponding to the parameters θ0, θ1 ∈ Θ:

τ(x) =
f(x, θ1)

f(x, θ0)
.

The likelihood ratio is commonly used as a test statistic for hypothesis tests on the

model parameter θ: Let 0 ≤ m ≤ d, Θ ⊂ Rd and Θ0 ⊂ Θ such that the first m

coordinate entries of the parameter vector coincide with a fixed θ0, i.e.

Θ0 := {θ ∈ Θ : θ(1) = θ
(1)
0 , θ(2) = θ

(2)
0 , . . . , θ(m) = θ

(m)
0 }

Define for a likelihood function L the quantities

L0 := sup{L(θ), θ ∈ Θ0}, L1 := sup{L(θ), θ ∈ Θ}.



92

Then the test statistic

Tn = 2 log

(
L1

L0

)
corresponds to the hypothesis test{

H0 : θ(1) = θ
(1)
0 , θ(2) = θ

(2)
0 , . . . , θ(m) = θ

(m)
0

H1 : θ unrestricted
.

Due to Wilks’ theorem the test statistic follows a chi-square distribution in the large

sample case: Tn ∼ χ2
m (Wilks 1938, see also p.132 in Young and Smith 2005).

Akaike gives justification for the choice of ϕ(x) = −2 log(x) in Equation (4.17) and

thus draws a connection to the Kullback-Leibler distance and subsequently uses

Wilks’ theorem, Taylor expansions and geometric arguments in the derivation of

the IC.

Although the likelihood ratio and its associated hypothesis test could be used as

a means to discriminate between models, it has several drawbacks: As mentioned

before, likelihood values are merely a measure of fit and do not account for complex-

ity. Moreover, the hypothesis test is limited to nested models which is generally not

required for IC model selection. In addition, Burnham and Anderson point out that

“[h]ypothesis testing is particularly limited in model selection” (p. 266 in Burnham

and Anderson 2004). Instead, they advocate the application of IC for quantification

of “strength of evidence” and especially methods of model weighting and averaging

(see Section 4.2.3).

Additionally, in the case of small samples, Hurvich and Tsai 1989 proposed a cor-

rection of the AIC:

AICc = −2L+
2kn

n− k − 1
. (4.18)

We shall follow the recommendation in Burnham and Anderson 2004 and use the

AICc whenever n < 40kmax as a rule of thumb, where kmax is the maximal number

of parameters used among the candidate models.

4.2.2 The Bayesian information criterion

The Bayesian information criterion goes back to Schwarz 1978, who applied the

approach to exponential families, and is derived by applying a suitable approxim-

ation to the posterior probabilities. In the following derivation, we do not require

the probability densities to belong to a specific distribution class. Instead, only a

certain degree of regularity is assumed. We will slightly change the notation of the

previous section to accommodate the Bayesian argument:

Let y = (y1, y2, . . . , yn) denote the data and M1,M2, . . . ,Mk be the list of candidate
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models. For a model Mj, j ∈ {1, 2, . . . , k}, there is an associated parameter vector

θj ∈ Θj, where Θj ⊂ Rdj is the set admissible parameter configurations.

The definition of conditional probability implies

P(y,Mj) = P(Mj|y)P(y) = P(y|Mj)P(Mj)

and rearranging of terms yields the well known Bayes’ rule

P(Mj|y) =
1

P(y)
P(y|Mj)P(Mj). (4.19)

In Bayesian statistics, P(Mj|y) is referred to as posterior probability. The uncondi-

tional likelihood, normalization constant or evidence P(y) can be written as

P(y) =
k∑
j=1

P(y|Mj)P(Mj) =
k∑
j=1

λn,j(y)P(Mj), (4.20)

where λn,j(y) := P(y|Mj) is the marginal likelihood for model Mj. Further condi-

tioning on the parameter vector θj yields

λn,j(y) := P(y|Mj) =

∫
θj∈Θj

P(y|Mj, θj) dP(θj|Mj). (4.21)

For simplicity, we assume that P(·|Mj) is absolutely continuous and admits a density

which will be denoted by πn,j(·|Mj). Equation (4.21) then simplifies to

λn,j(y) := P(y|Mj) =

∫
θj∈Θj

P(y|Mj, θj)π(θj|Mj) dθj

=

∫
θj∈Θj

Ln,j(θj)π(θj|Mj) dθj. (4.22)

The expression Ln,j(θj) := P(y|Mj, θj) coincides with the likelihood function in

the maximum likelihood setting and ln,j(θj) := log(Ln,j(θj)) can be identified with

Equation (4.6).

Lemma 7 (Multidimensional Laplace approximation). Let Ω ⊂ Rd. Assume f ∈
C2(Ω), with unique maximizer x0 ∈ intΩ and g ∈ C∞(Ω). Then

∫
Ω

g(x)enf(x) dx ≈ enf(x0)

(
2π

n

) d
2

g(x0)|D2f(x0)|−
d
2

(for details see Section IX.5 in Wong 2001).

In order to apply the Laplace approximation to the integral in (4.22), we rearrange



94

the terms

λn,j(y) =

∫
θj∈Θj

π(θj|Mj) exp

(
n

1

n
log(Ln,j(θj))

)
dθj

=

∫
θj∈Θj

π(θj|Mj) exp

(
n

1

n
ln,j(θj)

)
dθj.

Since the MLE θ̂j maximizes ln,j by definition, we get the approximation

λn,j(y) ≈ Ln,j(θ̂j)
(

2π

n

) dj
2

π(θ̂j|Mj)|Jn,j(θ̂j)|
1
2 ,

where Jn,j(θ̂j) is the Fisher information matrix associated with the log-likelihood

ln,j. In particular we have convergence of Jn,j for n → ∞ due to the law of large

numbers (compare with (4.15) in the previous section). The above result implies

−2 log(λn,j(y)) ≈ − 2ln,j(θ̂j)︸ ︷︷ ︸
=OP (n)

+ dj log(n)︸ ︷︷ ︸
=O(log(n))

− dj log(2π)− log(|Jn,j(θ̂j)|)− 2 log(π(θ̂j|Mj))︸ ︷︷ ︸
=Op(1)

≈ −2ln,j(θ̂j) + dj log(n) =: BICn,j,

where we have dropped all lower order terms for n→∞ in the second step.

4.2.3 Model weighting and model averaging

Similar to the likelihood ratio in Section 4.2.1 in the frequentist context, the Bayesian

approach allows a comparison of models using the Bayes factors. If we divide the

Bayes formula for the different models Mj1 and Mj2 we get

P(Mj2|y)

P(Mj1|y)︸ ︷︷ ︸
posterior odds

=
P(y|Mj2)

P(y|Mj1)︸ ︷︷ ︸
Bayes factor

P(Mj2)

P(Mj1)︸ ︷︷ ︸
prior odds

Using the previous approximation, the Bayes factor can be approximated by the

ratio of BIC values:

P(y|Mj2)

P(y|Mj1)
=
λn,j2(y)

λn,j1(y)
≈

exp(−1
2
BICn,j2)

exp(−1
2
BICn,j1)

.

If the model probabilities are equal (especially in the case of a uniform prior), the

posterior odds coincide with the Bayes factor.

We can re-write the posterior probabilities in Equation (4.19) where λn,j from Equa-
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tion (4.22) denotes the marginal likelihood of model j:

P(Mj|y) =
P(Mj)λn,j(y)∑k

j′=1 P(Mj′)λn,j′(y)
.

Substituting the BICn,j as an approximation for −2 log(λn,j) yields

P(Mj|y) ≈
P(Mj) exp(−1

2
BICn,j)∑k

j′=1 P(Mj′) exp(−1
2
BICn,j′)

. (4.23)

The posterior probabilities allow a direct interpretation as the probability of the

model Mj given the data y and is conveniently normed on a scale from 0 to 1 by

definition. In a similar way, the Akaike weights are defined as

wAIC
j :=

exp(−1
2
AICn,j)∑k

j′=1 exp(−1
2
AICn,j′)

=
Ln,j exp(−1

2
dj)∑k

j′=1 Ln,j′ exp(−1
2
dj′)

,

where dj = dim(θ). When we consider the ratio of the Akaike weights for models

with the same number of parameters, it reduces to the likelihood ratio as discussed

in the context of Wilks’ theorem (see p. 92).

In regard to the posterior probabilities in Equation (4.23), if we choose a suitable

prior, we are able to recover the Akaike weights. Substituting

P(Mj) = C exp

(
1

2
BICn,j

)
exp

(
−1

2
AICn,j

)
,

with norming constant

C =

(
k∑
j=1

exp

(
1

2
BICn,j

)
exp

(
−1

2
AICn,j

))−1

,

in (4.23) we obtain

P(Mj|y) ≈
exp(−1

2
AICn,j)∑k

j′=1 exp(−1
2
AICn,j′)

= wj.

In other words, we are able to interpret the AIC in the Bayesian context.

More generally for any IC of the form

ICn,j = −2L+ c(dj, n)
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Buckland, Burnham and Augustin 1997 propose corresponding weights

wIC
j =

exp(−1
2
ICn,j)∑k

j′=1 exp(−1
2
ICn,j′)

.

The weights cannot only be used for direct comparison between candidate models,

but are also useful for inference of key quantities. The idea is to design estimators

for quantities of interest µ̂, e.g. mean or variance, as a weighted average of estimates

µ̂j coming from each individual model Mj, i.e.

µ̂ =
k∑
j=1

wjµ̂j.

According to Burnham and Anderson 2004 such multimodel inference has proven to

be more accurate than selecting a single “best” model first and ignoring the risk of

having selected an unsuitable model for the subsequent inference.

4.2.4 The consistency property

Similar to the consistency property of the MLE, it is a desirable property to have

the IC selecting the correct model order with high probability when the underlying

sample size increases. To be more precise:

Definition 17. Let n be the underlying sample size, J be the set of models among

all competing models that minimize the Kullback-Leibler distance to the true model

and let J0 ⊂ J be the subset of models with minimal (parameter) dimension. Then,

an IC is said to be consistent if there is a j0 ∈ J0 such that

lim
n→∞

P
{

min
l∈J\J0

(IC(Mj0)− IC(Ml)) > 0

}
= 1, (4.24)

i.e. the probability that the IC will choose a model with smallest dimension minim-

izing the Kullback-Leibler distance converges to 1.

An IC is strongly consistent if the assertion in (4.24) holds almost surely:

P
{

min
l∈J\J0

(IC(Mj0)− IC(Ml)) > 0, for almost all n

}
= 1 (4.25)

Remark 14. The above definition follows the notation in Claeskens and Hjort 2008,

p. 101, but the original proof of sufficient conditions for consistency and strong

consistency are shown in Sin and White 1996, (where consistency actually goes

under the name of weak consistency).

The HQ is designed to have the slowest growing penalty term that still renders
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the IC to be strongly consistent (see later for a more precise definition). The proof

makes use of the law of iterated logarithm. Besides, the HQ was originally defined

more generally as

HQ′ = −2L+ 2ck ln(ln(n)), c > 1, (4.26)

but c was chosen to be 1 in a subsequent example. Claeskens and Hjort 2008 point

out that the choice of c is not clear and renders the information criterion less relev-

ant for practitioners.

As a matter of fact, the AIC fails to be consistent as the penalty term does not

depend on the sample size. The asymptotic distribution of the associated model

selection was analyzed for autoregressive models for example in Shibata 1976. BIC

and HQ on the other hand are found to be strongly consistent. As a consequence,

their asymptotic distribution of model selection is bound to converge to a delta on

the most parsimonious Kullback-Leibler minimizing model. The respective conver-

gence rates for AIC and BIC were analyzed in Zhang 1993 for another regression

model.

Consistency from a practical perspective From the previous section one

might conclude that the non-consistent AIC would be inferior to the consistent

BIC and HQ. However, the situation is more complicated: We have to keep in mind

that consistency is an asymptotic property. This means that in theory the consist-

ent IC will eventually outperform the AIC for almost all cases if the sample size is

sufficiently large. Unfortunately, practitioners just have a limited amount of data

available and it is very difficult to judge whether the sample size belongs to the

asymptotic region. Indeed, empirical studies suggest for various statistical models

that the AIC outperforms the BIC in small sample cases 3: As an example among

regression models, Hurvich and Tsai 1989; Hurvich and Tsai 1990 compared differ-

ent IC on simulated data especially to promote the (still inconsistent) AICc as a

modification of the AIC for smaller samples. More recently, Javed and Mantalos

2013 applied IC (AIC, BIC, HQ, AICc) in a MC simulation of (nonlinear) GARCH

models. Their results suggest that the AIC outperforms the BIC and HQ for higher-

order GARCH processes.

As a consequence of the above discussion, we can make the idea and objective of

our Monte Carlo experiment in the next chapter more precise: First, we need to

point out that the numerical results of the simplistic setting of our Monte Carlo

experiment do not directly translate to how empirical data should be handled. IC

3By “small samples” we refer to the situation that the sample size is not sufficiently large enough
for the asymptotic consistency results to hold, but large enough such that effects similar to the
paradox discussed by Freedman 1983 can be safely excluded.
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are one of many tools for model-selection and cross-validation. We do not expect to

find a “best” IC, but rather want to verify the theoretical properties of the different

IC for point process models. In particular, due to the fact that most theoretical res-

ults have been derived for regression models only, our work may help to shed light

on asymptotic regions and convergence rates of consistent IC and the asymptotic

distribution of selected orders of the AIC for this model class.

4.3 Summary

In this chapter, we have introduced information criteria for model selection. In

particular, we have discussed the idea and derivation of the AIC and BIC as well

as their connection. The concept of consistency lays the theoretical foundation for

the application of IC in the next chapter, where we use simulated data to verify the

asymptotic behaviour of the IC for growing sample size.
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Chapter 5

Models for durations between

trades and model selection

5.1 The Monte-Carlo setup

In this chapter, we will discuss three models for durations between trades in high-

frequency financial data: a compound Poisson type model with time-varying determ-

inistic intensity, the exponential ACD model and Hawkes processes. In particular,

we will briefly describe simulation and estimation methods for each model class.

We will then perform the following Monte-Carlo experiment for each model: First,

we simulate data from the respective model, where we use parameter sets and sample

sizes that reflect typical observations in empirical studies of financial data whenever

it is appropriate. This follows the advice given in Burnham and Anderson 2004.

In order to test the performance of information criteria from Chapter 4 in finding

the correct order of a model, we then fit several candidate models of different order

from the same model class as the true underlying model via maximum likelihood

estimation (MLE).

Although we are primarily interested in the performance of model selection, we

must make sure that the MLE gives reasonable results. As we can see from the

IC formulas in Definition 15, the IC are based on the maximized likelihood value.

Therefore, we may conclude that there is a close connection between the quality of

the MLE and the subsequent model selection result. In any case, a poor MLE due

to numerical problems or lack of data is likely to compromise the model selection.

For example, a correctly selected model order can be meaningless if the estimated

model itself fails to describe and predict key features or quantities of the data we

are interested in.

We ensure that the estimates are reasonably good by using the mean squared error

(MSE) as a measure for the goodness of fit: Let θ ∈ R be a generic model para-
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meter to be estimated and θ̂ the corresponding estimator. Given N samples and

θ̂(k), k = 1, . . . , N , the estimates for each sample, the MSE can be calculated as

MSE(θ) = E
[
|θ − θ̂|2

]
=

1

N

N∑
k=1

|θ − θ̂(k)|2 (5.1)

(see Czado and Schmidt 2011). The root mean squared error is given by

RMSE(θ) =

√√√√ 1

N

N∑
k=1

|θ − θ̂(k)|2 (5.2)

and the relative root mean squared error by

RMSErel(θ) =
1

θ

√√√√ 1

N

N∑
k=1

|θ − θ̂(k)|2. (5.3)

It is easy to calculate the above quantities as the true model values are known in

our mock data setting.

After assessing goodness-of-fit, we calculate the information criteria for model selec-

tion. As the model underlying the data is known, we can easily calculate the success

rate of each IC, which allows a direct comparison.

5.2 A normal compound Poisson model

This model follows the idea of a locally stationary model for tick-by-tick data. It can

be seen as a simplified form of the model proposed in Scalas 2007 and mimics the

U-shaped trade intensity often observed in intra-day trading data1 (see for instance

Bertram 2004).

5.2.1 Definition

The compound Poisson model with discrete intensity (Dλ)-model

We suppose that high-frequency data is given over a time interval [t0, T ]. First, set

a time grid {ti}i∈{1,...,n} such that t0 < t1 < t2 < . . . < tn = T . On each time interval

[ti−1, ti) we have a compound Poisson process

Xi(t) :=

Ni(t)∑
k=1

R
(i)
k , (5.4)

1In a more extensive analysis, it is observed that the intra-day seasonalities depend on the
market, the institutional setting and the time zone (see Section 3.4 in Hautsch 2012).
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where {R(i)
k }k∈N is an i.i.d. sequence of N(µi, σ

2
i ) distributed random variables and

(Ni(t))t≥0 is a homogeneous Poisson process with parameter λi. Further, {R(i)
k }k∈N

are all independent of (Ni(t))t≥0.

For a fixed time interval [ti−1, ti) the log-likelihood function is given by

LDi (λi, µi, σi) = −λi(ti − ti−1) + ln(λi)Ni(ti) +

Ni(ti)∑
k=1

ln(pµi,σi(R
(i)
k )), (5.5)

where pµi,σi denotes the probability density function of the N(µi, σ
2
i ) distribution.

Due to the independence assumptions the overall log-likelihood is given by the sum

of all Li. Equation (5.5) can be derived from the general expression for the sample

density function given on page 200 in Snyder and Miller 1991 by substituting a

constant λ.

The maximum likelihood estimators are therefore:

λ̂i = Ni/wi, µ̂i =
1

Ni

Ni∑
k=1

ri, σ̂2
i =

1

Ni

Ni∑
k=1

(ri − µ̂i)2, (5.6)

where Ni is the number of trades in the ith interval and wi = ti − ti−1.

Note that the maximum likelihood estimator for σ2 is biased and the bias can be

corrected by using

σ̃2
i =

1

Ni − 1

Ni∑
k=1

(ri − µ̂i)2 (5.7)

instead. We shall use either the biased or unbiased estimator in the following sections

when appropriate.

The compound Poisson model with parametrized intensity (Pλ)-model

This model will be used for simulation later on as well as serve as a benchmark

model when testing model selection criteria. As empirical results about the trading

intensity suggest a daily seasonality, this model assumes that the step function in

the (Dλ) model is parametrized by a quadratic function:

λa,b,c(t) = at2 + bt+ c, t ∈ [0, 1]. (5.8)

Of course, this parametrization can be easily replaced by a different function. Since

λ needs to be positive and convex, we also have the conditions

a > 0 and c >
b2

4a
. (5.9)
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Figure 5.1: Deterministic intensity function (blue) and a step function approxima-
tion (red)

Similar to the (Dλ)-model, the log-likelihood for the (Pλ)-model is given by

LPi (a, b, c, µi, σi) = −λa,b,c(ti−1)(ti − ti−1)

+ ln(λa,b,c(ti−1))Ni(ti) +

Ni(ti)∑
k=1

ln(pµi,σi(R
(i)
k )). (5.10)

While the maximum likelihood estimators for µi and σi are the same as for the (Dλ)

case, the maximum likelihood estimators for a, b, c, which determine the form of

λ, cannot be obtained in closed form. As a consequence, a numerical optimization

method needs to be applied to estimate those parameters.

5.2.2 Simulation

The simulation algorithm essentially uses the (Pλ)-model. For simplicity we will

choose the time interval [t0, T ] to be [0, 1]. For the simulation we set an equidistant

grid 0 = t0 < t1 < t2 < . . . < tn = 1 on the time interval. Thus, the interval [0, 1] is

divided into n subintervals. For i ∈ {1, . . . , n} the parameters µi, σi and λi on the

subinterval [ti−1, ti) are chosen to be

µi = 0, σi = 1 and λi = λ(ti−1) ∀i ∈ {1, . . . , n},

where λ(t) := 4(λmax − λmin)(t− 0.5)2 + λmin,

∀t ∈ [0, 1] and λmin, λmax > 0 constant. (5.11)

The functional form of λ is inspired by the empirical findings in the previous sections

and should account for the observed seasonality in a simple way. The form of λ

can be easily replaced by more complex functions. We have chosen λmin = 100

and λmax = 10000. Note that the {λi} form a step function approximation of the

parabola in Equation (5.11), which is also depicted in Figure 5.1. For different grid

sizes, we simulate with sample size 1000 each.
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5.2.3 Fitting

The parameter estimation will be carried out using different grid sizes. Note that

the grid size to be used in fitting is bounded from above by the length of the entire

time interval (in our case 1). However, we would like to emulate the behavior of the

intensity which was observed in empirical data, i.e. high intensity at the beginning

and at the end of the trading day and relatively low intensity in the middle of the

day. Consequently, we need at least 3 subintervals to have a piecewise constant func-

tion that fulfills these conditions on the time interval. Further, the smallest eligible

grid size is bounded from below by the maximal distance between neighboring data

points within the data set. Otherwise, there are subintervals which do not contain

any data points. In such cases, the estimation formulas in (5.6) would fail.

More precisely, for the maximal distance ∆max between two consecutive data points

within a given sample, the finest valid equidistant grid has at most
⌊

1
∆max

⌋
subinter-

vals. Therefore, we will consider a list of candidate models on grids which correspond

to n = 3, 4, . . . ,
⌊

1
∆max

⌋
subintervals on the interval [0, 1].

For the (Dλ) model, the estimators are given in closed form in (5.6) and the like-

lihood value is easily calculated via Equation (5.5) and subsequently used for the

calculation of the IC. We decide to use the biased estimator σ̂2
i : Since we are mainly

interested in model selection, we would like to ensure that we work with the optimal

value of the log-likelihood when calculating the IC.

In order to fit the (Pλ) model, we assume that the estimates for {µi}, {σi} and {λi}
for the (Dλ)-algorithm are already calculated and can be used as an input for the

estimation of the (Pλ)-model. As mentioned previously, the estimators for µi and σi

coincide in both models and no further calculation is needed for these parameters.

It remains to solve the following minimization problem:

(â, b̂, ĉ) = arg min
a,b,c∈R

[
−

n∑
i=1

LPi (a, b, c, µi, σi)

]

s.t. a > 0 and c >
b2

4a
(5.12)

A reasonable choice of the starting value for the minimization algorithm can be

easily obtained by the least-squares fit of the parabola to the {λi} values of the

(Dλ) case, which already gives a fairly good approximation of the parabola. In case

the initial values obtained by this method do not lie in the admissible set, a change

of signs for a or a shift of the parabola may be applied.

Note that the estimation of the (Pλ)-model requires a grid with at least 4 grid

points, i.e. 3 subintervals on which λ1, λ2, λ3 are estimated using the (Dλ)-model.
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This ensures that the parabola is well determined. However, as mentioned before,

this condition is not restrictive and covers all models on which we would like to run

model selection.

5.2.4 Numerical results

Goodness of fit

Depending on the number of subintervals the total number of parameters can be

quite large. Thus it is difficult compare the MSE separately for parameters. There-

fore, we make a slight modification to the MSE formula: The distance in Equation

(5.1) is understood as a functional distance. To be more precise, we choose the

L2-distance between the true step function intensity and the estimated one:

E
[
|θ − θ̂|2

]
= E

[
‖θ − θ̂‖2

L2

]
(5.13)

The cases of µ and σ2 are the easier ones, as we just need to calculate the distance

between a step function and a constant: For the step functions with values {µi} on

the fitting grid t1 < t2 < . . . < tn Equation (5.13) can be further written as

E
[
‖µ− µ̂‖2

L2

]
=

1

N

N∑
k=1

‖µ− µ̂(k)‖2
L2

=
1

N

N∑
k=1

∫ T

0

(µ(t)− µ̂(k)(t))2dt

=
1

N

N∑
k=1

n∑
i=2

(µ− µ̂(k)
i )2(ti − ti−1). (5.14)

and in the same way for σ2.

Concerning the intensity function, we have to merge the simulation grid ts1 < ts2 <

. . . < tsm with the fitting grid tf1 < tf2 < . . . < tfr . After reordering and relabeling,

we can calculate the MSE on the merged grid t1 < t2 < . . . < tn via

E
[
‖λ− λ̂‖2

L2

]
=

1

N

N∑
k=1

n∑
i=2

(λi − λ̂(k)
i )2(ti − ti−1). (5.15)

The numerical results that we present as an example are for N = 1000 samples of

data simulated from a grid containing 30 subintervals: Table 5.1 shows summary

statistics of µ and σ2, where the summary statistics were calculated over the set of

fitting grids. The MSE for the µ and σ2 are comparably small.

For the intensity function λ we plot the MSE against the number of subintervals

used for fitting in Figure 5.2. Starting from a small number of subintervals, the
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MSE decreases sharply before it reaches its optimum at 30, the true number of

subintervals from the simulation. Number of subintervals above 30 give a larger

MSE and, in the case of the (Dλ) model, instabilities of over parametrization even

lead to an increasing MSE.

Table 5.1: Table of summary statistics of the MSE of the parameters µ and σ2 of
the compound Poisson type model. The analysis is based on 1000 samples generated
from a simulation grid containing 30 subintervals.

mean min max std
µ 0.0545 0.0026 0.1049 0.0212
σ2 0.1038 0.0049 0.1757 0.0439
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Figure 5.2: Plot of the mean squared error (MSE) of the estimation of the intensity
function for the (Dλ) model (orange lines) and for the (Pλ) model (blue lines)
respectively. The graph shows the MSE together with dashed lines indicating the
size of the first standard deviation from the mean as a function of the underlying
number of intervals of the fitting grid. The true model for the simulation originally
used 30 subintervals. The MSE is calculated as a squared L2 distance between the
estimated and the true intensity function (see also Eq. (5.15)).

Concerning goodness of fit, we can see that the MSE of the (Pλ) model is con-

sistently smaller than the MSE of the (Dλ) model. This is to be expected as, by

construction of the experiment, the (Pλ) model is the true model and gives a better

fit to the data.

Moreover, we can observe that apart from the optimum at 30 there are “preferred”
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numbers of subintervals at 10, 20, 45, 60. This is crucial for the explanation of the

behavior of model selection as the relationship between goodness of fit and number

of subintervals in the region below the optimal number is not monotone.

The size of the MSE can be estimated from the expected fluctuations of the estimator

λ̂. The MSE can be estimated from below by means of the ideal situation when the

simulation and fitting grid are identical. Without loss of generality, we assume an

equidistant simulation grid with grid size w = ti− ti−1 and rewrite Equation (5.15):

E
[
‖λ− λ̂‖2

L2

]
≥ w

n∑
i=2

E
[
(λi − λ̂i)2

]
= w

n∑
i=2

Var
[
λ̂i

]
=

1

w

n∑
i=2

Var [Ni] , (5.16)

where we have used the definition of the estimator in (5.6) and that the number of

events in an interval of size w is Poisson distributed: Ni ∼ Poi(λw). We finally get

that

E
[
‖λ− λ̂‖2

L2

]
≥ 1

w

n∑
i=2

Var [Ni]

=
1

w

n∑
i=2

λiw ≈
1

w

∫ 1

0

λ(t) dt, (5.17)

where we approximate the integral of the step function by the integral of the smooth

intensity parametrization in Equation (5.11). For our numerical example we have
1
w

= 30 and λmin = 100 and λmax = 10000. An explicit calculation of above integral

gives the rough estimate

E
[
‖λ− λ̂‖2

L2

]
& 30 · 3400 = O(105), (5.18)

which is of about the same order of magnitude observable in Figure 5.2.

Model selection

Figures 5.3, 5.4 and 5.5 show box plots of the model selection results of the AIC,

BIC and HQ respectively. In each box plot, the orange and blue box plot correspond

to the results of the (Dλ)- and (Pλ)-model respectively. The horizontal axis shows

the number of subintervals used in the simulation grid. On the vertical axis are the

selected number of parameters after the parameter estimation of the (Dλ)- and (Pλ)-

models using different discretizations of [0, 1]. A single box in the box plots extends

from the 25th percentile to the 75th percentile and the dot indicates the median.
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The whiskers have a maximum length of 1.5 times the box length and extend to the

outermost point which is not considered as outlier. The crosses indicate outliers.
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Figure 5.3: The lower plot shows the ratio of samples which allow the true model to
be among the set of models from which the IC may choose from, in other words there
is no misspecification (blue areas). This ratio decreases and for finer discretization
there are more cases of model selection under misspecification (red areas). The sum
of blue and red areas is 100%.
The upper plot shows that the model selection using the AIC for the (Dλ)-model
(orange box plot) closely follows the reference line indicating 3n (n = number of
subintervals) for small n, before deviating for larger n. The same holds for the (Pλ)-
model (blue box plot) and its corresponding reference line 2n + 1. The number of
subintervals for which both box plots deviate from their respective reference lines is
around n = 25 to n = 27. In the region n < 15, there are several outliers which are
almost all overestimates.

Below the box plots, bars indicate the ratio of samples which allow model selection

under correct specification (blue) and under misspecification (red): In our setting,

we speak of model selection under misspecification if the correct model is not con-

tained in the set of selectable models and cannot be chosen by the IC. If this is not

the case, i.e. the correct model can potentially be chosen by the IC, we call it model

selection under correct specification.

The results for the (Dλ) and (Pλ) model are very similar. Common for all three

IC is that for small parameter numbers below 15 the model selection works well:

the distributions of the selected orders are concentrated and closely follow the 3n
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Figure 5.4: The lower plot shows the ratio of samples which allow the true model to
be among the set of models from which the IC may choose from, in other words there
is no misspecification (blue areas). This ratio decreases and for finer discretization
there are more cases of model selection under misspecification (red areas). The sum
of blue and red areas is 100%.
The upper plot shows that the model selection using the BIC for the (Dλ)-model
(orange box plot) closely follows the reference line indicating 3n (n = number of
subintervals) for small n before deviating for larger n. The same holds for the (Pλ)-
model (blue box plots) and its corresponding reference line 2n + 1. The number of
subintervals for which both box plots deviate from their respective reference lines is
around n = 15 to n = 17.

or 2n + 3 reference line respectively, where n is the number of subintervals. For

very large parameter numbers one can observe that the selected model orders re-

main distributed around a maximum model order and stop to follow the linear trend

of the reference line. This is rather due to a limitation of our Monte-Carlo setup

than an inherent property of the IC: As described in Section 5.2.2, we only work

with equidistant grids when applying the model selection procedure. The finest grid

which can be used for fitting is determined by the maximal distance ∆max between

two consecutive points within a sample. On the other hand, ∆max is related to the

minimal value of λ in the middle of the interval, depending on how small we choose

the simulation grid size ∆sim. This means that whenever ∆max > ∆sim, the true

model is not contained in the pool of models from which the IC may choose from.

In other words, we have a case of model selection under misspecification. The bar

plots show that first cases occur at around n = 20 and go up to a ratio of about

50% for the finest grid in the analysis.
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Figure 5.5: (Color online) The lower plot shows the ratio of samples which allow the
true model to be among the set of models from which the IC may choose from, in
other words there is no misspecification (blue areas). This ratio decreases and for
finer discretization there are more cases of model selection under misspecification
(red areas). The sum of blue and red areas is 100%.
The upper plot shows that the model selection using the HQ for the (Dλ)-model
(orange box plot) closely follows the reference line indicating 3n (n = number of
subintervals) for small n before deviating for larger n. The same holds for the (Pλ)-
model (blue box plots) and its corresponding reference line 2n + 1. The number of
subintervals for which both box plots deviate from their respective reference lines is
around n = 18 to n = 20.

Another look at Figure 5.2 hints that the general rule “the more parameters, the

better the fit” is not entirely true: we can observe that the relation between grid

size and MSE is not entirely monotone. This is due to the fact that the fit of the

specific model does not only depend on the number of parameters, but also to some

extent on the position of the grid. As a consequence, under misspecification, the

selected order does not necessarily correspond to the finest available grid size above

∆sim. This might explain the “plateaus” on the model selection results for large

parameters.

Between the region of very small and very large parameters the IC exhibit quite

different behaviors according to their intrinsic tendency of under- and overfitting,

which will be described in the following:

The AIC tends to overestimate the number of parameters. It allows outliers (in

the region of n ≤ 22) as well as a larger number of cases of the model selection
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to lie above the reference line (in the region of n ≥ 23). In contrast, the selected

model orders of the BIC and HQ are either on the reference line or strictly below

the reference line. In other words BIC and HQ tend to underestimate. Additionally,

we can see that, starting from around n = 25 to n = 27, the boxplot for the AIC

deviates from the reference line and the BIC and HQ deviate earlier around n = 15

and n = 20 respectively. Especially, for n < 27 the underestimation in the BIC and

HQ case is not attributable to the behavior of model selection under misspecification,

as the ratio of model selection under misspecification is rather low. Based on our

results, if the IC were to be ordered by their parsimonious character, the BIC would

be the most parsimonious whereas the AIC the least.

The above observations show that the model selection using any of the three IC

works quite well as long as the true model is actually retrievable. The AIC tends to

overestimate, but the model selection results are closest to the reference line of true

parameters compared to the other two IC.

5.3 The autoregressive conditional duration (ACD)

model

The autoregressive conditional duration model was first proposed by Engle and

Russell 1998. We will consider a model for the durations between events only, i.e.

without marks:

Definition 18. Let (εi)i∈N be a sequence of i.i.d. random variables with mean 1.

The autoregressive conditional duration (ACD) model is defined as

xi = ψiεi (5.19)

ψi ≡ ψi(xi−1, . . . , x1; θ) := E [xi|xi−1, . . . , x1] . (5.20)

If we assume a point process (N(t))t≥0 with arrival times t1, t2, . . . to correspond

to an ACD process, then the relation between durations xn, n ∈ {1, 2, . . .} and the

arrival times is given by xn = tn+1 − tn, t0 = 0.

The conditional intensity of the ACD model can be derived using the construction

seen in Section 1.1 on page 15. The hazard function for ε with probability density

function pε is given by

λε(t) =
pε(t)

P(ε > t)
=

pε(t)∫∞
t
pε(τ)dτ

, t ≥ 0

and is referred to as baseline hazard in Engle and Russell 1998. Using the relation
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in (5.19) and the fact that (εi)i∈N are i.i.d., we obtain for t ∈ [tn, tn+1)

P(xn+1 ≤ t|t1, . . . tn) = P
(
εn+1 ≤

t

ψn+1

)
.

Writing the above expression in terms of the probability densities pxn+1 and pε

respectively yields ∫ t

0

pxn+1(τ |t1, . . . , tn) dτ =

∫ t
ψn+1

0

pε(τ) dτ.

Differentiating w.r.t. t we get

pxn+1(t|t1, . . . , tn) =
1

ψn+1

pε

(
t

ψn+1

)
.

Plugging this into the formula for the hazard function (see Equation (1.2) on p. 17)

yields

hn+1(t|t1, . . . , tn) =
pxn+1(t|t1, . . . , tn)

P(xn+1 > t|t1, . . . , tn)
=

1

ψn+1

pε

(
t

ψn+1

)
P
(
ε > t

ψn+1

)
=

1

ψn+1

λε

(
1

ψn+1

)
, t ∈ [tn, tn+1),

which piecewisely defines the conditional intensity function as seen in Section 1.1.

The choice of ψ and the distribution of ε specifies the kind of ACD process. For the

remainder of this chapter, we assume ε ∼ Exp(1) which simplifies the formula for

the hazard function to

hn+1(t|t1, . . . , tn) =
1

ψn+1

.

We will work with the following representation for ψi:

ψi := ω +
m∑
j=0

αjxi−j +

q∑
k=0

βkψi−k, (5.21)

where ω > 0, αi ≥ 0 and βi ≥ 0 for all i. We will call this model ACD(m, q).

The ACD model is closely related to the GARCH model proposed by Bollerslev

1986 as a volatility model that allows clustering. Indeed, it was stated that the

ACD model “surprisingly turns out to be isomorphic to the GARCH model” (p.

428 in Engle 2002). Sufficient stationarity conditions are given by

m∑
i=1

αi +

q∑
k=1

βk < 1,
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which is also the case for an analogous GARCH(m, q) model. For proof of weak

and strict stationarity conditions for GARCH models which translate to ACD see

Bollerslev 1986, Bougerol and Picard 1992, Bollerslev, Engle and Nelson 1994,

Francq and Zaköıan 2010.

For given duration data {x1, . . . , xn} the log-likelihood function is given by

LACD(ω, α1, . . . , αm, β1, . . . , βq) = −
n∑
i=1

[
lnψi +

xi
ψi

]
(5.22)

(see p. 104 in Hautsch 2012).

5.3.1 Simulation and fitting

For both simulation and MLE of ACD models we use the R package ACDm written by

Belfrage 2016. The model selection analysis for the ACD model follows the Monte-

Carlo experiment conducted in Javed and Mantalos 2013. We consider model orders

m, q ∈ {1, 2} and Table 5.2 shows the choice of parameters for the simulation.

Table 5.2: Parameter settings for the simulation of ACD data

ω α1 α2 β1 β2

ACD(1,1) 1 0.089 – 0.85 –
ACD(1,2) 1 0.1 – 0.45 0.4
ACD(2,1) 1 0.15 0.15 0.65 –
ACD(2,2) 1 0.1 0.1 0.42 0.35

5.3.2 Numerical results

Goodness-of-fit

In the ACD case we have a simple parameter vector (ω, α1, . . . , αm, β1, . . . , βq) ∈
R1+m+q. Therefore, we can use the formula given in Equation (5.1) for each scalar

valued parameter. The results can be seen in Table B.1. The largest sample size

ensures that the MSE are comparably low for each model. The largest contribution

to the MSE comes from the ω parameter. A closer look shows that the MSE of the β

parameter(s) is of different order depending on the model order q. In the case q = 1,

the MSE of the β parameter is of the same size as the α parameter(s). However, in

the case of q = 2, the order of the MSE of the β parameters are significantly larger

than the MSE of the α parameters (by a factor of 10 in the ACD(1, 2) case and by

a factor of 100 in the ACD(2, 2) case).
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Model selection

The results of the model selection experiment can be found in Tables B.2 to B.5.

The numbers are success rates in percent of the respective IC in selecting the correct

model from which the simulation data was generated from. The qualitative behavior

of the IC are unsurprisingly similar to the findings for the GARCH model in Javed

and Mantalos 2013.

A closer look at Table B.2 shows that the success rate of the IC is exceptionally good

in the case of ACD(1, 1) data. Even for a small sample size all information criteria

are able to detect the correct model order in the majority of cases. The tendency

to underfit works in favor for the BIC and to some extent also for the HQ. For the

same reason, the success rates for the AIC are relatively low due to its overfitting

property.

A similar behavior can be observed for ACD(2, 1) in Table B.4: Although the IC

underestimate the model for smaller sample sizes as a ACD(1, 1) model, they im-

prove for large sample sizes.

In both the ACD(1, 1) and the ACD(2, 1) case, i.e. the cases for q = 1, the behaviour

of the model selection is acceptable: a reasonably large sample size, which is of the

order of a typical intra day trading data sample, ensures a sufficiently large success

rate in detecting the correct model. Unfortunately, this cannot be said about the

case q = 2:

In the first example of ACD(1, 2) data in Table B.3, we see that the correct model

order is never detected in the majority of cases even for large sample sizes. The

best success rates are the ones of the AIC again due to its overfitting tendency.

This may be concerning, as this shows that despite the fact that ACD(1, 2) and

ACD(2, 1) have the same number of parameters the model selection behavior is far

from comparable.

In comparison, the results for the ACD(2, 2), the most complex model in our ex-

periment, are even more critical: Not only are the IC unable to detect the correct

model in most of the cases even with large samples, but the best success rates, again

from the AIC, are below 20%.

In relation with our observations in the previous section, the cases where model

selection fails align with relatively high MSE of the β parameters for q = 2: The

contribution of the MSE of the ω parameter is not as important, as this parameter

is included in all models. However, the increase in MSE when moving from q = 1

to q = 2 might be one of the factors explaining the discrepancy in model selection

between q = 1 and q = 2. This part of our Monte-Carlo experiment suggests that

parameters which are harder to estimate compared to other model parameters (in
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our case α vs. β parameters or in other words moving average vs. autoregressive

parameters in Equation (5.21)) might also be less likely to be detected by model

selection.

5.4 Hawkes processes

Hawkes processes are a class of self-exciting point processes that is popular in various

areas of scientific research. This stochastic model allows dependence between ran-

dom events and associated clustering effects while still offering an acceptable degree

of tractability. Therefore, Hawkes process models, which were initially applied to

seismic data (Hawkes and Adamopoulos 1973, Ogata 1988), also find application in

areas such as neuroscience as models for spike trains (Pernice et al. 2012, Reynaud-

Bouret, Rivoirard et al. 2014), genetics (Reynaud-Bouret and Schbath 2010), crimin-

ology (Mohler et al. 2011) and social networks (Crane and Sornette 2008, Blundell,

Beck and Heller 2012). Moreover, Hawkes processes have been incorporated into

economic and financial models for different asset classes and risk types. The prop-

erty of self-excitation and event clustering were found to match empirically observed

stylized facts of intra-day financial data better than models with independent events.

Bowsher 2007 was among the early works to propose Hawkes processes for a finan-

cial model for mid-price changes, and also Bauwens and Hautsch 2004 and Hewlett

2006 followed similar approaches for trade duration models. Bacry, Mastromatteo

and Muzy 2015 give an excellent overview of Hawkes processes in finance which can

be complemented by Hawkes 2018. Nevertheless, in order to indicate the scope in

which Hawkes processes are used in financial modeling, let us mention a few recent

developments: Filimonov and Sornette 2012, Hardiman, Bercot and Bouchaud 2013,

Hardiman and Bouchaud 2014 investigate whether price changes in futures markets

are mainly endogenously driven or influenced by exogenous factors like news events

or other market shocks. The key quantity is the so-called branching ratio. Rambaldi,

Pennesi and Lillo 2015 analyze foreign exchange data and propose a combination

of a stationary Hawkes process with either double exponential or power-law kernel

for endogenous market activity and an additional term similar to a non-stationary

Hawkes process. This additional term represents macroeconomic news that arrive at

fixed times of the day and influence the market. Muni Toke and Pomponio 2012 and

Achab et al. 2018 give applications for order books and Chavez-Demoulin, Davison

and McNeil 2005, Chavez-Demoulin and McGill 2012 address Hawkes processes for

value-at-risk (VaR) calculations and peaks-over-threshold (POT) methods. Among

credit risk models, Errais, Giesecke and Goldberg 2010 incorporate Hawkes pro-

cesses into the affine process framework for portfolio credit risk and Aı̈t-Sahalia,

Laeven and Pelizzon 2014 propose a valuation technique for CDS. Schneider, Lillo
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and Pelizzon 2018 analyze illiquidity spillovers in sovereign bond markets via self-

exciting point processes.

5.4.1 Definition and some properties

Within the scope of this presentation, we will consider one-dimensional Hawkes

processes which are defined by specifying the conditional intensity function (see also

Section 1.1). For an overview of more general spatio-temporal point processes see

for example Reinhart 2017.

Definition 19. A Hawkes process is a point process (N(t))t≥0 with (conditional)

intensity function

λ(t) = µ+

∫ t

a

g(t− τ) dN(τ), (5.23)

where a = 0 (finite past) or a = −∞ (infinite past) and g is the response function

with g(τ) ≥ 0 ∀τ ∈ R+ and µ > 0 is the baseline intensity.

The function g is sometimes also referred to as kernel due to the integral in (5.23).

The choice of g determines how past events affect the intensity function and thus the

probability of future events. Essentially, for parametric estimation, there are two

kernels which are widely used in the literature to fit financial data: the exponential

kernel and the power-law kernel.

The early seismologic model which was proposed by Ogata 1988 is of power law

type:

g(τ) =
K

(τ + c)1+ω
,

where K, c, ω > 0. Plugging this into (5.23) yields

λ(t) = µ+K
k∑
i=1

1

(t− ti + c)1+ω
,

where {t1, . . . , tk} are the jump times of N(t) up to time t. This model is also called

ETAS (epidemic-type aftershock sequence) model.

For an exponential kernel, choose g to be of the form

g(τ) =
P∑

m=1

αme−βmτ ,

with µ, αm, βm > 0. The resulting conditional intensity is given by

λ(t) = µ+
P∑

m=1

αm

k∑
i=1

e−βm(t−ti), (5.24)
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where {t1, . . . , tk} are again the jump times of N(t) up to time t. In short, we will

call this process exponential Hawkes process of order P or exponential Hawkes-P

for short. The exponential Hawkes-P model will be the model used for numerical

experiments on the model selection.

Remark 15 (Double exponential versus power-law, empirical findings in the liter-

ature). In order to enhance the practical relevance of our experiments and results

we would also like to use parameter settings which allow intensities which can also

be observed in empirical studies. This is why we include a parameter set that was

estimated in Lallouache and Challet 2016 for our Monte-Carlo experiment (see Table

5.4).

When applying the above models to financial data, the results allow following com-

parison: whereas the power law asymptotics are additionally supported by results

from non-parametric estimation literature as in Bacry, Dayri and Muzy 2012, the

exponential kernel case is analytically more tractable and is still applied in recent

literature. Of course this is just a rough division and there have been variations and

hybrid models proposed across the literature. For example, in Hardiman, Bercot

and Bouchaud 2013 and Lallouache and Challet 2016, power-law kernels are ap-

proximated with sums of exponential functions with power-law weights.

Concerning the exponential Hawkes P-model, Hardiman, Bercot and Bouchaud 2013

found that the use of the single exponential intensity function might give misleading

results, which is also confirmed by Rambaldi, Pennesi and Lillo 2015. However, this

does not necessarily hold for exponential Hawkes processes of higher order: Lallou-

ache and Challet 2016 found that Hawkes models with exponential intensity kernels

of order P = 2, 3, but not greater than 4 perform better than the single exponential

model and comparably well to power law models when applied to FX data. Due

to computational inefficiency and lack of empirical evidence in the corresponding

literature, we just consider the model orders up to P = 3. Moreover, the findings

in Lallouache and Challet 2016 were corroborated by Omi, Hirata and Aihara 2017

who used data from the Japanese futures market and considered similar models with

up to four exponential terms to later restrict their studies to the best fitting ones

with two and three exponential terms.

Figure 5.6 shows a typical path of the counting process N of an exponential Hawkes-

P process and its underlying (conditional) intensity process λ. Whenever an event

occurs, there is a jump in λ of the size α :=
∑P

m αm. In between events, the in-

tensity function decays exponentially. The more events occurred in the recent past,

the higher the intensity and thus the probability of future events. Therefore, the
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Figure 5.6: Depiction of a typical path of the counting process N corresponding to
a Hawkes process with underlying intensity process λ.

process exhibits clustering and self-exciting effects.

Proposition 42. Let (N(t))t≥0 be a stationary Hawkes process with infinite past

and intensity λ as given in Equation (5.23). Then, the average intensity of N can

be calculated to be

Λ := E[λ(t)] =
µ

1−
∫∞

0
g(ν) dν

,

Proof. Let A(t) =
∫ t
−∞ λ(u)du denote the compensator of N . Taking expectations

on both sides of Equation (5.23) yields

E[λ(t)] = µ+ E
[∫ t

−∞
g(t− u) dN(u)

]
= µ+ E

[∫ t

−∞
g(t− u) dA(u)

]
(5.25)

= µ+ E
[∫ t

−∞
g(t− u)λ(u) du

]
= µ+

∫ t

−∞
g(t− u)E[λ(u)] du, (5.26)

where in (5.25) we used Theorem 1 and in (5.26) we applied Fubini’s theorem since

the integrand is positive. Due to stationarity, the average intensity is constant and
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setting Λ := E[λ(t)] simplifies the above equation to

Λ = µ+ Λ

∫ t

−∞
g(t− u) du

Solving for Λ and changing coordinates (t− u =: v) in the integral yields

Λ =
µ

1−
∫∞

0
g(v) dv

.

Remark 16 (Branching ratio and stationarity). The quantity n :=
∫∞

0
g(ν) dν

is called the branching ratio. In particular, for the exponential kernel we have

n =
∑P

m=1 αm/βm and the stationarity condition is n < 1. The special case of n = 1

also allows stationary processes which are treated in Brémaud and Massoulié 2001.

In the case of exponential Hawkes processes with finite past, we follow a different

approach using Laplace transforms: Let ϕ(t) := E[λ(t)] now be the average intensity

function of a non-stationary Hawkes process. Then, taking expectations as in the

proof of Proposition 42 yields

ϕ(t) = µ+
P∑

m=1

∫ t

0

αme−βm(t−u)ϕ(u) du. (5.27)

The Laplace transform of ϕ is given by

ϕ̃(s) =

∫ ∞
0

e−stϕ(t) dt

=

∫ ∞
0

e−stµ dt+
P∑

m=1

αm

∫ ∞
t=0

e−st
∫ t

u=0

e−βm(t−u)ϕ(u) du dt

=
µ

s
+

P∑
m=1

αm

∫ ∞
u=0

e−suϕ(u)

∫ ∞
t=u

e−(s+βm)(t−u) dt du (5.28)

=
µ

s
+

P∑
m=1

αm
s+ βm

∫ ∞
u=0

e−suϕ(u) du =
µ

s
+

(
P∑

m=1

αm
s+ βm

)
ϕ̃(s),

where in (5.28) we are able to apply Fubini’s theorem since the integrand is positive.

Finally, we have an algebraic equation which can be solved for ϕ̃:

ϕ̃(s) =
µ
s

1−
∑P

m=1
αm
s+βm

. (5.29)
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For P > 1 we could write alternatively:

ϕ̃(s) =
µ

s

∏P
m=1(s+ βm)∏P

m=1(s+ βm)−
∑P

m=1 αm
∏

k 6=m(s+ βk)
. (5.30)

This gives an analytic expression for the Laplace transform of the intensity func-

tion. From Equation (5.29) we can see that it is reasonable to demand the usual

stationarity condition
∑P

m=1 αm/βm < 1 in order to ensure that the right hand side

term is well defined.

In general, the evaluation of the average intensity function can be done by (numer-

ical) Laplace inversion. However, for lower model orders (up to P = 4) it is possible

to invert the Laplace transform analytically. We will show this for first and second

order in the following examples.

Example 9 (Formula for the average intensity in the case P = 1). For P = 1 the

expression in (5.29) simplifies to

ϕ̃(s) =
µ(s+ β1)

s(s+ β1 − α1)
=

µ

β1 − α1

(
β1

s
− α1

s+ β1 − α1

)
, (5.31)

where we used a partial fractions decomposition in the last step. This allows us to

analytically invert the Laplace transform:

ϕ(t) =
µ

β1 − α1

(
β1 − α1e−(β1−α1)t

)
, t > 0. (5.32)

Example 10 (Formula for the average intensity in the case P = 2). For P = 2 we

have

ϕ̃(s) =
µ(s+ β1)(s+ β2)

s[(s+ β1)(s+ β2)− α1(s+ β2)− α2(s+ β1)]
(5.33)

Starting from order P = 2, the explicit formulas can be quite complicated.

By standard partial fractions, the inverse Laplace transform can be calculated to be

ϕ(t) = µ
(
A1 + A2es2t + A3es3t

)
. (5.34)

Let R and Q denote the polynomial in the numerator and the denominator of the

right hand side expression in (5.33) respectively. Then, assuming Q has only real

valued roots of single multiplicity denoted by s1, s2, s3, the partial fractions decom-

position is given by

ϕ̃(s) =
P (s)

Q(s)
=

3∑
i=1

P (si)

Q′(si)(s− si)
= µ

(
A1

s
+

A2

s− s2

+
A3

s− s3

)
, (5.35)

where



120

s1 = 0, s2 =
1

2
(γ − ξ), s3 =

1

2
(γ + ξ) (5.36)

with γ = α1 + α2 − β1 − β2 and ξ =
√
γ2 − 4(β1β2 − α1β2 − α2β1). (5.37)

The partial fractions decomposition implies that

A1(s− s2)(s− s3) + A2s(s− s3) + A3s(s− s2)
!

= (s+ β1)(s+ β2) (5.38)

and comparing coefficients of s2, s and 1 on both sides of the equation yields

A1 + A2 + A3 = 1 (5.39)

−A1(s1 + s2)− A2s3 − A3s2 = β1 + β2 (5.40)

A1s1s2 = β1β2. (5.41)

Then we get

A1 =
β1β2

s1s2

=
β1β2

(γ2 − ξ2)/4
=

β1β2

β1β2 − α1β2 − α2β1

(5.42)

by solving (5.41) for A1 and inserting (5.36).

Now multiply (5.39) by s2 and add (5.40) to get

− A1s3 + A2(s2 − s3) = β1 + β2 + s2. (5.43)

Solving for A2 we get

A2 =
β1β2/s2 + β1 + β2 + s2

s2 − s3

=
β1β2 + s2(β1 + β2) + s2

2

s2(s2 − s3)

=
4β1β2 − 2(ξ − γ)(β1 + β2) + (ξ − γ)2

2ξ(ξ − γ)
=

(ξ − γ − 2β2)(ξ − γ − 2β1)

2ξ(ξ − γ)

=
(ξ − α1 − α2 + β1 − β2)(ξ − α1 − α2 − β1 + β2)

2ξ(ξ − γ)
. (5.44)

Multiplying (5.39) by s3, adding (5.40) and following similar steps as for A2 yield

A3 =
(ξ + γ + 2β1)(ξ + γ + 2β2)

2ξ(ξ + γ)
=

(ξ + α1 + α2 + β1 − β2)(ξ + α1 + α2 − β1 + β2)

2ξ(ξ + γ)
.

(5.45)

The Laplace inversion gives the required result.

Note that with the condition
∑P

m=1 αm/βm < 1 it follows that the roots s2 and s3

are real and negative.

From both examples, we can see that for large times t the exponential terms in

Equations (5.32) and (5.34) become negligible and the remaining expressions co-
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Figure 5.7: A comparison between the average number of events from a Monte-
Carlo simulation and the theoretical values. For the parameter values µ = 0.5,
α1 = 3.1, α2 = 5.9, β1 = 9.9 and β2 = 10, we simulated an exponential Hawkes
process of order P = 2 with finite past and plotted the empirical average number of
events (red curve) against the theoretical values of the expected number of events
in Eq (5.46). In the non-stationary case, we integrate the average intensity function
in Eq (5.34) which corresponds to the blue curve. The stationary case is shown via
the green curve.

incide with the intensity function of the stationary case. In a small Monte-Carlo

experiment, we simulated 1000 paths of a Hawkes process with 1000 events (see

also empirAgg2.m). The parameters are µ = 0.5, α1 = 3.1, α2 = 5.9, β1 = 9.9

and β2 = 10. Figure 5.7 shows a plot of the empirically observed average num-

ber of events against the theoretically expected number of events. Plotting such

figures might be useful for validation of a simulations algorithm. Recall the rela-

tion between average intensity function ϕ and expected number of events of a point

process (N(t))t≥0:

E[N(t)] =

∫ t

0

ϕ(τ) dτ (5.46)

For small times we can observe the transient exponential behavior which vanishes

for large times. In particular, the slope of the two theoretical functions are ap-

proximately equal for large times and indicate that the intensity function of the

non-stationary case converges to the stationary case. Also, we can verify the edge

effect when simulating a Hawkes process with finite past, which will be briefly dis-

cussed in the next section.
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5.4.2 Simulation

Apart from the thinning approach Ogata 1981, there are several alternatives: the

time-change approach based on the random time-change theorem Meyer 1971 and

applied specifically to Hawkes processes for instance in Ozaki 1979, exact simulation

Dassios and Zhao 2013 and perfect simulation Møller and Rasmussen 2005. We will

use a variation of Algorithm 1.4, which follows the thinning approach. As seen in

the previous section, simulating a Hawkes process with finite past in order to ap-

proximate a Hawkes process with infinite past will cause the simulated process to

be non-stationary at the beginning of the simulation time. This phenomenon is also

known as edge effect as offspring of events that might have occurred in the past are

omitted. For further details on this see Møller and Rasmussen 2005, 2006.

However, similar to Dassios and Zhao 2013, we explicitly want to work with a Hawkes

process with finite past. Therefore, we view the edge effect as an inherent property

of the model rather than an artifact of the simulation. Besides, the exact simu-

lation algorithm in Dassios and Zhao 2013, though applicable to multidimensional

exponential models, does not directly apply to our proposed model due to the lack

of identification of the exogenous and endogenous part of the intensity. This leaves

us with the popular thinning algorithm going back to Lewis and Shedler 1979 and

Ogata 1981. We used an implementation of the thinning algorithm to simulate the

process on a time interval [0, T ] (see hawkesThinning.m) and compare models up

to order 3. We first generate sample data that serve as a technical example for the

estimation and model selection methods. The parameter settings are given in Table

5.3.

Algorithm 5.1: Ogata’s algorithm for Hawkes processes

1 input :
2 µ − b a s e l i n e i n t e n s i t y
3 α − upper bound on jumps o f the i n t e n s i t y func t i on
4 λ − c o n d i t i o n a l i n t e n s i t y func t i on
5 output :
6 {t1, t2, . . .} − event t imes o f the s imulated proce s s
7 begin
8 1) s e t M ← µ , t← 0 , H ← ∅
9 2) generate T ∼ Exp(M)

10 i f T ≤ A  t1 ← T
11 else  terminate
12 end i f
13 3) s e t i← k ← 1
14 4) update M ← λ(tk|H) + α
15 5) generate T ∼ Exp(M) , U ∼ Uniform(0, 1)
16 6) i f t+ T > A  terminate
17 else i f λ(t+ T |H)/M > U  t← t+ T , M ← λ(t|H) , goto (5 )
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18 else k ← k + 1 , tk ← t+ T , t← tk , H ← H ∪ {tk} ,
19 goto (4 )
20 end i f
21 end i f
22 end

t

λ

µ

t1
= s0

s1 s4t2
= s2

t3
= s3

A1

R1

A5

R5

M1
M2

M3

Figure 5.8: Thinning algorithm, an example: From simulated samples {s1, s2, s3, s4}
the points {s1, s4} were rejected and the rest are accepted as samples of the Hawkes
process (s0 is the initial event which is Exp(µ) distributed). The acceptance-rejection
ratio for sk is Ak/Rk where Ak = λ(sk) and Rk = M − λ(sk), where k = 1, 2, 3, 4
and M is the current local upper bound on the intensity at the point sk.

5.4.3 Fitting

The fitting algorithm follows the theory in Ozaki 1979 which is a standard maximum

likelihood procedure. For a self-exciting point process with intensity λ the log-

likelihood for data 0 < t1 < . . . < tn < T is given by

logL(t1, . . . , tn|θ) = −
∫ T

0

λ(t|θ) dt+

∫ T

0

log(λ(t|θ))dN(t). (5.47)

Let θ = (µ, α1, . . . , αP , β1. . . . , βP ) be the vector of parameters for the Hawkes P -

model. Inserting Equation (5.24) into Equation (5.47) gives

logL(t1, . . . , tn|θ) = −µT −
P∑

m=1

[
αm
βm

∑
ti<T

(
1− e−βm(T−ti)

)]

+
∑
tk<T

log

(
µ+

P∑
m=1

αm
∑
ti<tk

e−βm(tk−ti)

)
. (5.48)

Moreover, Ozaki 1979 shows that the log-likelihood can be calculated recursively,

which reduces the computational burden from O(n2) to O(n): Assume that T = tn,



124

i.e. the last event is the last time point of observation. Then

logL(t1, . . . , tn|θ) = −µtn −
P∑

m=1

[
αm
βm

∑
ti≤tn

(
1− e−βm(tn−ti)

)]

+
∑
tk≤tn

log

(
µ+

P∑
m=1

αmAm(k)

)
, (5.49)

where Am(1) = 0 ∀m = 1, . . . , P

Am(k) =
∑
ti<tk

e−βm(tk−ti) = (1 + Am(k − 1)) e−βm(tk−tk−1).

To obtain the MLE of the parameters we maximize the log-likelihood function with

respect to the parameters subject to the stationarity condition:

arg max
µ,α1,...,αP ,β1,...,βP

logL(t1, . . . , tn|µ, α1, . . . , αP , β1, . . . , βP ) (5.50)

s.t. µ, α1, . . . , αP , β1, . . . , βP > 0, β1 < . . . < βP and
P∑

m=1

αm
βm

< 1.

We assume the β parameters to be ordered to avoid identification problems (see page

285 in Hautsch 2012). The maximization (or rather the minimization of the negative

log-likelihood) is typically done numerically as the estimators are not available in

closed form. We used the standard MATLAB function fmincon for constrained prob-

lems. The optimization routine can be found in the supplementary files fitting.m,

conditions.m and LogLik iter.m.

Important asymptotic properties of the MLE for Hawkes processes have been stud-

ied and proven by Ogata 1978 (see also in the appendix in Rambaldi, Pennesi and

Lillo 2015 for a brief summary). In particular, we may assume the MLE to be con-

sistent, i.e. with sample size tending to infinity the MLE converge to the true values

of the parameters. In order to verify these results with our Monte-Carlo experiment,

we use the RMSE as a measure for the goodness of fit. Nevertheless, especially for

empirical analysis, testing the distribution of the residuals is an important step of

model diagnostics. As a consequence of the time-change theorem (see Theorem 4)

for point processes, we may expect that the residuals

θk =

∫ tk+1

tk

λ̂(s) ds (5.51)

are i.i.d. exponentially distributed with mean 1, where {t1, t2, . . . , tn} are the recor-

ded event times of the process (see also Section 4.1.5 in Hautsch 2012 and Section 4.1

in Bowsher 2007). In order to calculate the residuals for the exponential Hawkes-P

model, it is useful to rewrite the intensity in the following way: Let t ∈ [tk, tk+1),
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k ∈ {1, 2, . . . , n}. Then

λ(t) = µ+
P∑

m=1

αm

k∑
i=1

e−β(t−ti)

= µ+
P∑

m=1

(
αme−βm(t−tk) + αm

k−1∑
i=1

e−βm(t−ti)

)

= µ+
P∑

m=1

(
αme−βm(t−tk) + αm

k−1∑
i=1

e−βm(tk−ti+t−tk)

)

= µ+
P∑

m=1

αm

(
1 +

k−1∑
i=1

e−βm(tk−ti)

)
e−βm(t−tk).

This representation also appears in Dassios and Zhao 2013 following from an ODE

approach. Using this expression we are able to calculate the integral in (5.51):

θk =

∫ tk+1

tk

λ̂(s) ds

= µ̂(tk+1 − tk) +
P∑

m=1

α̂m

(
1 +

k−1∑
i=1

e−β̂m(tk−ti)

)∫ tk+1

tk

e−β̂m(t−tk)ds

= µ̂(tk+1 − tk) +
P∑

m=1

α̂m

(
1 +

k−1∑
i=1

e−β̂m(tk−ti)

) (
− 1

β̂m
e−β̂m(t−tk)

)∣∣∣∣tk+1

tk

= µ̂(tk+1 − tk) +
P∑

m=1

α̂m

β̂m

(
1 +

k−1∑
i=1

e−β̂m(tk−ti)

)(
1− e−β̂m(tk+1−tk)

)
.

As a first visual test, one can plot the quantiles of the residuals against the theor-

etical quantiles of the exponential distribution. Figure 5.9 shows some QQ-plots of

exponential Hawkes-P models fitted to simulated data with varying model order.

While underfitted cases can be recognized (since the plotted line diverges from the

diagonal), overfitted situations are not as easy to identify. After a visual check via

QQ-plot, one can also apply statistical tests like the Kolmogorov-Smirnov test or

excess dispersion test (see Engle and Russell 1998). Independence is difficult to test

for, indeed, Lallouache and Challet 2016 use a Ljung-Box test to check whether the

residuals are uncorrelated.

5.4.4 Numerical results

Using the thinning algorithm described in Algorithm 5.1 we simulated four differ-

ent data sets containing 1000 samples. Three of them correspond to each row of

Parameter Set 1 in Table 5.3 and one data set consists of samples of an exponential

Hawkes 2-model with parameter values from Parameter Set 2 shown in Table 5.4.
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Especially for Parameter Set 2 the time horizon T can be assumed to be given in

seconds. It ranges from 10 min to 6 h to reflect typical intra-day financial data sets.

In order to check how well the estimation method works for our parameter sets,

we first assume that the correct model order P is known and run a MLE of the

parameters of the true model underlying each data set. Subsequently, we are able

to calculate the RMSE as a measure of distance between the true and the estimated

parameter values. The absolute and relative RMSE values for Parameter Set 1 can

be found in Table B.6 and Table B.7 respectively. For Parameter Set 2, see Tables

B.11 and B.12. We observe that the RMSE decreases with increasing sample size.

This is to be expected as the MLE is known to be consistent.

Finally, we assume that the true model order is not known, but needs to be selected

by the IC. Consequently, for each data set we have to fit all possible model orders

P = 1, 2, 3 and to calculate the associated IC values. In the following we discuss the

results of the model selection.

Table 5.3: Simulation parameters (Parameter Set 1)

µ α1 α2 α3 β1 β2 β3

P=1 0.5 9 – – 10 – –
P=2 0.5 0.00066 100 – 0.001 300 –
P=3 0.5 0.00033 3.3 100 0.001 10 300

Table 5.4: Parameter set taken from Lallouache and Challet 2016 (Parameter Set
2)

µ α1 α2 β1 β2

0.05 0.01761905 0.28 0.04761905 0.6666667

We first consider Parameter Set 1. For simulated data with model order P = 1 we

can see in Table B.7 that the relative RMSE is comparably low even for the smallest

samples corresponding to the time horizon T = 500. The model selection in Table

B.8 confirms that the smallest sample size might already be enough to guarantee

high success rates (over 90%) of all IC. Nevertheless, already in the lowest order

case, we can observe the different behavior of consistent and inconsistent IC. For

BIC and HQ, the success rate improves with increasing average sample size. In

particular, the relation seems to be monotone and, in the case of the BIC, the suc-

cess rate reaches 100% already for T = 1000, The HQ performs slightly worse than

BIC, but is still well over 90% and very close to 100% for T = 5000. However, the

AIC behaves in a more concerning manner. Even for large sample sizes the model



128

selection using the AIC allows a comparably large probability (> 6%) to select a

higher order than P = 1. As the AIC is not a consistent IC, we cannot exclude

the possibility that these results already approximate the asymptotic distribution

of model selection of the AIC. As mentioned earlier this asymptotic distribution

is typically different from the delta distribution with mass one on the true model

order. Additionally, the numerical results show that increasing the average sample

size does not necessarily increase the success rate of model selection. For instance,

moving from T = 500 to T = 1000 we can observe a decrease in success rate in the

AIC case.

In the case of model order P = 2, there is the possibility of both over- and underes-

timation. We observe quite large RMSE for the parameters α1 and β1, especially for

smaller samples corresponding to T = 500 and T = 1000. This could be one of the

factors affecting the model selection for T = 500 in Table B.9: there is a significant

proportion of underestimation among all IC, most notably the high underestimation

rate of almost 95% of the BIC. The AIC seems to perform best in this setting for

T = 500 with success rates slightly above 50%, but also with 48% underestimation.

For larger samples, the BIC and HQ select the correct model order with very high

probability (around 90% or even larger) and the BIC reaches 100% success rate at

T = 2000. Again, we have the adverse effect that the success rates of the AIC

decrease with growing average sample size. Even for the largest average sample size

for T = 5000 there is a relatively large probability of overestimation of over 6%.

For data simulated with P = 3 we have a similar behavior as with P = 2. Again,

Table B.7 reports large RMSE for the parameters α1 and β1 in small sample cases.

As P = 3 is the highest selectable model order, this excludes cases of overspecific-

ation. This means that the we can observe the same pattern in model selection of

the AIC as for the BIC and HQ: Starting at T = 500, there are mostly cases of

underestimates followed by improving success rates as the sample size increases. All

IC reach 100% success rate for T = 2000. However, it is very likely that we would

be able to observe the tendency of the AIC to overestimate if we included higher

orders P > 3 in the model selection set.

When working with Paramerter Set 2, we chose the time horizons 10 min, 15 min,

30 min, 1 h, 3 h and 6 h. At first, there are large RMSE values for T = 600 and

T = 900 (see Tables B.11 and B.12), which shows that the sample sizes are so small

that we cannot ensure good estimates of the MLE method. Especially estimates

of α2 and β2 have large RMSE. This situation corresponds to the case T = 500 in

the setting of Parameter Set 1. When we compare with the corresponding model

selection in Table B.13, we observe the same phenomenon of underestimation is most

severe for the BIC, less for the HQ and least for the AIC. As samples are quite small
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for these cases and may fulfill the rule of thumb discussed at the end of Section 4.2.1,

we included the combined model selection rule AICc/AIC in the table. It applies

the AICc whenever n < 7 · 40 = 280 and the AIC otherwise. The numerical results

for the combined AICc/AIC selection rule are very similar to the standalone AIC

and even slightly worse for T=600 and T=900.

When we move on to larger samples from 30 min to 1 h, there is a noticeable change

in the RMSE values. More precisely, the RMSE values decrease faster for the second

exponential term, i.e. α2 and β2, which leads to the first exponential term with α1

and β1 to contribute more to the overall estimation error. There is a noticeable

increase in the rate of correct model selection among all IC ranging over 90% for

T = 3600.

Finally, for large samples with time horizons from 3 h up to 6 h represent data of

half up to an entire trading day respectively. The relative RMSE of each parameter

is less than 20% and the rate of correct model selection for the consistent IC (BIC

and HQ) is close to 100%. However, the success rate of the AIC decreases to about

94% with a 6% probability of overestimation.

5.5 Summary

We have analyzed the performance of IC for model selection for three model classes.

In the case of the compound Poisson type process, the IC are able to detect the

correct number especially for small and moderately many parameters. The model

selection procedure for the ACD model is adversely affected by the differing estima-

tion quality for different model orders and can especially be seen in higher orders of

the model. The Hawkes process gives satisfying results concerning model selection

and the results give hints to the asymptotic distribution of model selection of the

AIC.

In all cases we see slight overestimation of the AIC whereas BIC and HQ are more

parsimonious and tend to underfit in small sample cases.



130

Conclusion and outlook

We have seen several point processes that can be used as models for irregular spaced

and potentially non-stationary financial data.

In the first half of the thesis we have introduced a non-homogeneous generalization of

the fractional homogeneous Poisson process and derived first properties such as gov-

erning equations and moments and covariance as well as limit theorems. Using this

theoretical basis, we can identify several points for potential further research. First,

there is no limitation to the dimension of the Poisson process subject to the time-

change. Indeed, Leonenko and Merzbach 2015, Aletti, Leonenko and Merzbach 2018

discuss fractional Poisson fields, whose non-stationary analogues can be explored.

Second, further research can be directed towards the implications of the limit results

for estimation techniques. The suitability of pre-existing estimation techniques for

doubly stochastic models and a modification for the FNPP could be further invest-

igated.

The second part of the thesis comprises a Monte-Carlo experiment to assess the

performance of IC using simulated data. Concerning information criteria and model

selection, a natural step would be an application to empirical data. This implies

that we perform model selection under misspecification and probably need addi-

tional model diagnostic tools in order to assess the quality of model selection. The

inclusion of robust IC and IC specifically designed for model selection under mis-

specification could be considered.

Again, all point processes encountered in Chapter 5, which were discussed as one-

dimensional processes, have multidimensional generalizations and spatio-temporal

point processes are natural directions for further research.
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Appendix A

Regular variation and Tauberian

theorems

The following definitions and results can be found in Bingham, Goldie and Teugels

1989.

Definition A.1 (Slow variation). Let l be a positive measurable function, defined

on some neighborhood [X,∞) of infinity and satisfying

l(λx)

l(x)
−→ 1 for x −→∞, ∀λ > 0.

Then l is said to be slowly varying (in Karamata’s sense). We write l ∈ R0.

Definition A.2 (Regular variation). A measurable function f > 0 satisfying

f(λx)

f(x)
−→ λρ for x −→∞, ∀λ > 0 (A.1)

is called regular varying of index ρ. We write f ∈ Rρ.

Theorem A.1 (Characterization theorem). If f > 0 is measurable and (A.1) holds

for all λ in a set of positive measure, then

(i) The limit in (A.1) holds for all λ > 0.

(ii) There exists a real number ρ with g(λ) ≡ λρ ∀λ > 0.

(iii) f(x) = xρl(x) with l slowly varying.
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Proposition A.2 (Properties of regular variation).

(i) If f ∈ Rρ, then fα ∈ Rαρ, α ∈ R.

(ii) If fi ∈ Rρi (i = 1, 2) and f2(x)→∞ for x→∞, then f1(f2(x)) ∈ Rρ1ρ2 .

(iii) If fi ∈ Rρi (i = 1, 2), then f1(x) + f2(x) ∈ Rρ; ρ = max(ρ1, ρ2).

(iv) If fi ∈ Rρi (i = 1, . . . , k) and r(x!, . . . , xk) a rational function with positive

coefficients, then r(f1(x), . . . , fk(x)) ∈ R.

Theorem A.3 (Karamata’s Tauberian theorem). Let U be a non-decreasing right-

continuous function on R with U(x) = 0, ∀x < 0 and let

Ũ(s) :=

∫ ∞
0

e−sxdU(x)

If l varies slowly and c ≥ 0, ρ ≥ 0, the following are equivalent:

U(x) ∼ cxρl(x)
1

Γ(1 + ρ)
, (x→∞) (A.2)

Ũ(s) ∼ cs−ρl

(
1

s

)
, (s→ 0+). (A.3)

When c = 0, (A.2) is to be interpreted as U(x) = o(xρl(x)); similarly for (A.3).

Theorem A.4 (A Tauberian theorem). Let µ be a (positive) Borel measure on

[0,∞) and suppose ∫
e−txdµ <∞ ∀ t > 0

and that for some γ ≥ 0 and D ≥ 0 it holds that

lim
t→0+

tγ
∫

e−txdµ(x) = D.

Then

lim
a→∞

a−γµ([0, a)) =
D

Γ(γ + 1)

(pp. 108-110 in Simon 1979).

Proposition A.5 (Integrating asymptotic relations). If l is slowly varying, X is so

large that l(x) is locally bounded in [X,∞) and α > −1, then∫ x

X

tαl(t) dt ∼ xα+1 l(x)

1 + α
, (x→∞).

Theorem A.6 (Monotone density theorem). Let U(x) =
∫∞

0
u(y) dy. If U(x) ∼

cxρl(x) for x → ∞, where c ∈ R, ρ ∈ R, l ∈ Rρ and if u is ultimately monotone,
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then u(x) ∼ cρxρ−1l(x).

Remark A.1. Note that positivity of c and ρ is needed to say that U and u are

regular varying.
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Appendix B

Tables

Table B.1: Results of the MSE calculations for the ACD model

MSE(ω) MSE(α1) MSE(α2) MSE(β1) MSE(β2)

ACD(1,1) T=250 3.7508 0.0023 – 0.0231 –
T=500 1.8887 0.0010 – 0.0108 –
T=1000 0.3591 0.0005 – 0.0025 –
T=2000 0.1245 0.0002 – 0.0010 –

ACD(1,2) T=250 14.5255 0.0036 – 0.4748 0.4282
T=500 3.7468 0.0019 – 0.3039 0.2681
T=1000 0.6259 0.0010 – 0.1869 0.1606
T=2000 0.1905 0.0005 – 0.0809 0.0681

ACD(2,1) T=250 0.8491 0.0063 0.0108 0.0130 –
T=500 0.2664 0.0032 0.0050 0.0053 –
T=1000 0.0916 0.0014 0.0026 0.0023 –
T=2000 0.0418 0.0007 0.0012 0.0011 –

ACD(2,2) T=250 6.4135 0.0067 0.0102 0.3165 0.2445
T=500 1.1077 0.0032 0.0061 0.2722 0.2031
T=1000 0.3730 0.0014 0.0041 0.2086 0.1526
T=2000 0.1512 0.0006 0.0026 0.1612 0.1181
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Table B.2: Model selection results based on ACD(1,1) data samples: Given 1000
samples of size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases
in which the different IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and
ACD(2,2) respectively. The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 58.7 23.6 9.9 7.8
BIC 90.2 7 2.1 0.7
HQ 77.9 14.6 4.8 2.7

T=500 AIC 62.9 20.4 10.9 5.8
BIC 93.6 4.7 1.6 0.1
HQ 82.6 11.5 4.9 1

T=1000 AIC 67.5 16.4 11 5.1
BIC 97.4 1.8 0.8 0
HQ 87.2 7.5 4.8 0.5

T=2000 AIC 71.3 13.1 9.7 5.9
BIC 97.7 1.6 0.6 0.1
HQ 91.5 4.4 3 1.1

Table B.3: Model selection results based on ACD(1,2) data samples: Given 1000
samples of size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases
in which the different IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and
ACD(2,2) respectively. The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 58.6 24.7 9.6 7.1
BIC 91.5 6.5 1.3 0.7
HQ 78.6 14.8 3.7 2.9

T=500 AIC 60.6 25.1 10.3 4
BIC 94.7 4.3 0.7 0.3
HQ 81.2 13.5 4.5 0.8

T=1000 AIC 52.7 27.8 15.2 4.3
BIC 92.6 5.1 2.3 0
HQ 76 14.7 8.8 0.5

T=2000 AIC 41.5 35.6 18 4.9
BIC 88.4 6.7 4.9 0
HQ 67.6 20.4 11.6 0.4
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Table B.4: Model selection results based on ACD(2,1) data samples: Given 1000
samples of size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases
in which the different IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and
ACD(2,2) respectively. The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 36.2 20.9 31.8 11.1
BIC 73.7 8.9 16.8 0.6
HQ 52.4 16.3 28.1 3.2

T=500 AIC 19.1 20.7 50 10.2
BIC 59.9 10.5 29 0.6
HQ 36.5 16.4 43.8 3.3

T=1000 AIC 7.4 16.7 64.8 11.1
BIC 35.6 11.9 52.1 0.4
HQ 17.1 15.7 63.7 3.5

T=2000 AIC 1.2 12.7 74.2 11.9
BIC 6.8 12.9 80.1 0.2
HQ 2.2 14.2 81.6 2

Table B.5: Model selection results based on ACD(2,2) data samples: Given 1000
samples of size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases
in which the different IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and
ACD(2,2) respectively. The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 56.7 15.8 18.8 8.7
BIC 89.7 5.3 4.5 0.5
HQ 74 11.5 11.7 2.8

T=500 AIC 57.2 13.6 19.1 10.1
BIC 92.1 2.9 4.6 0.4
HQ 78.4 8 11.4 2.2

T=1000 AIC 48.4 13.1 23.4 15.1
BIC 91.5 2.7 5.7 0.1
HQ 74 6.9 16.1 3

T=2000 AIC 34.2 9.7 37.2 18.9
BIC 86.1 1.8 11.5 0.6
HQ 59.7 6.8 26.5 7
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Table B.7: Relative MSE values for MLE of the exponential Hawkes models
of order P ∈ {1, 2, 3} using Parameter Set 1 with varying time horizons T ∈
{500, 1000, 2000, 5000}. The order of the model which was used for simulation co-
incides with the model used for fitting. Thus, the true parameter values are known
and the RMSE is expected to decrease as the MLE improves. The values are given
in percent.

µ α1 α2 α3 β1 β2 β3 Average
sample size

P=1 T=500 7.9328 4.6951 – – 4.4731 – – 2483
T=1000 5.526 3.6082 – – 3.2928 – – 5019
T=2000 3.7475 2.4173 – – 2.2197 – – 9977
T=5000 2.2551 1.5384 – – 1.4544 – – 24962

P=2 T=500 14.359 912330 12.399 – 3732200 14.973 – 470
T=1000 12.252 129.45 7.9865 – 238.03 6.3186 – 1121
T=2000 9.9978 30.829 4.7732 – 45.077 3.805 – 2977
T=5000 8.5877 15.986 2.3918 – 18.339 1.9878 – 12883

P=3 T=500 15.426 97939 40.63 9.8602 150850 97.124 10.226 929
T=1000 12.361 109.45 8.9301 6.2401 211.89 7.6784 6.1113 2207
T=2000 10.305 38.758 5.956 3.8663 58.096 4.9288 3.9233 5840
T=5000 9.1124 16.895 3.2624 1.8741 19.317 2.7921 1.8908 25017
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Table B.8: Model selection for simulated data of an exponential Hawkes
model of order P=1 using Parameter Set 1 with varying time horizons T ∈
{500, 1000, 2000, 5000}. The numbers indicate how often the model order P ∈
{1, 2, 3} is selected among the 1000 samples and are given in percent. Bold numbers
show which model was selected most often.

Time horizon P=1 P=2 P=3 Average
sample size

AIC T=500 92.8 6.9 0.3 2483
T=1000 91.6 7.9 0.5 5019
T=2000 92.1 7.6 0.3 9977
T=5000 93.7 6.1 0.2 24962

BIC T=500 99.8 0.2 0 2483
T=1000 100 0 0 5019
T=2000 100 0 0 9977
T=5000 100 0 0 24962

HQ T=500 98.9 1.1 0 2483
T=1000 98.6 1.2 0.2 5019
T=2000 99.2 0.8 0 9977
T=5000 99.7 0.3 0 24962

Table B.9: Model selection for simulated data of an exponential Hawkes
model of order P=2 using Parameter Set 1 with varying time horizons T ∈
{500, 1000, 2000, 5000}. The numbers indicate how often the model order P ∈
{1, 2, 3} is selected among the 1000 samples and are given in percent. Bold numbers
show which model was selected most often.

Time horizon P=1 P=2 P=3 Average
sample size

AIC T=500 48.2 50.3 1.5 470
T=1000 0.2 99 0.8 1121
T=2000 0 96.9 3.1 2977
T=5000 0 93.7 6.3 12883

BIC T=500 94.5 5.4 0.1 470
T=1000 10.3 89.7 0 1121
T=2000 0 100 0 2977
T=5000 0 100 0 12883

HQ T=500 76.9 22.9 0.2 470
T=1000 2.1 97.8 0.1 1121
T=2000 0 99.4 0.6 2977
T=5000 0 99.6 0.4 12883
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Table B.10: Model selection for simulated data of an exponential Hawkes
model of order P=3 using Parameter Set 1 with varying time horizons T ∈
{500, 1000, 2000, 5000}. The numbers indicate how often the model order P ∈
{1, 2, 3} is selected among the 1000 samples and are given in percent. Bold numbers
show which model was selected most often.

Time horizon P=1 P=2 P=3 Average
sample size

AIC T=500 0 53.7 46.3 929
T=1000 0 0.2 99.8 2207
T=2000 0 0 100 5840
T=5000 0 0 100 25017

BIC T=500 0 96.5 3.5 929
T=1000 0 25 75 2207
T=2000 0 0 100 5840
T=5000 0 0 100 25017

HQ T=500 0 81.6 18.4 929
T=1000 0 4.7 95.3 2207
T=2000 0 0 100 5840
T=5000 0 0 100 25017

Table B.11: Absolute MSE values for MLE of the exponential Hawkes mod-
els of order P = 2 using Parameter Set 2 with varying time horizons T ∈
{600, 900, 1800, 3600, 7200, 21600}. The order of the model which was used for sim-
ulation coincides with the model used for fitting. Thus, the true parameter values
are known and the RMSE is expected to decrease as the MLE improves.

µ α1 α2 β1 β2 Average
sample size

T=600 0.030176 0.076208 12489000 0.17692 27063000000 135

T=900 0.025411 0.052971 1704000 0.11054 15861000000 205

T=1800 0.016031 0.023916 0.078183 0.049322 4.0458 417

T=3600 0.010572 0.0095225 0.039458 0.020001 0.15516 853

T=7200 0.0070848 0.0055058 0.025844 0.011919 0.088505 1708

T=21600 0.0039548 0.0030036 0.014737 0.006448 0.051022 5144
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Table B.12: Relative MSE values for MLE of the exponential Hawkes mod-
els of order P = 2 using Parameter Set 2 with varying time horizons T ∈
{600, 900, 1800, 3600, 7200, 21600}. The order of the model which was used for sim-
ulation coincides with the model used for fitting. Thus, the true parameter values
are known and the RMSE is expected to decrease as the MLE improves. The values
are given in percent.

µ α1 α2 β1 β2 Average
sample size

T=600 60.353 432.53 4460300000 371.53 4059400000000 135
T=900 50.822 300.64 608590000 232.14 2379200000000 205
T=1800 32.061 135.74 27.923 103.58 606.87 417
T=3600 21.144 54.047 14.092 42.003 23.275 853
T=7200 14.17 31.249 9.2299 25.03 13.276 1708
T=21600 7.9096 17.047 5.263 13.541 7.6533 5144
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Table B.13: Model selection for simulated data of an exponential Hawkes
model of order P=2 using Parameter Set 2 with varying time horizons T ∈
{600, 900, 1800, 3600, 7200, 21600}. The numbers indicate how often the model or-
der P ∈ {1, 2, 3} is selected among the 1000 samples and are given in percent. Bold
numbers show which model was selected most often.

Time horizon P=1 P=2 P=3 Average
sample size

AICc/AIC T=600 52.4 47 0.6 135
T=900 36.6 62.5 0.9 205
T=1800 6.8 90.2 3 417
T=3600 0 96.9 3.1 853
T=7200 0 94.7 5.3 1708
T=21600 0 94.1 5.9 5144

AIC T=600 49.3 50.1 0.6 135
T=900 34.8 64.1 1.1 205
T=1800 6.7 90.2 3.1 417
T=3600 0 96.9 3.1 853
T=7200 0 94.7 5.3 1708
T=21600 0 94.1 5.9 5144

BIC T=600 86.5 13.5 0 135
T=900 79.8 20.2 0 205
T=1800 42.7 57.2 0.1 417
T=3600 5 95 0 853
T=7200 0.1 99.9 0 1708
T=21600 0 100 0 5144

HQ T=600 69 30.8 0.2 135
T=900 55.6 44.4 0 205
T=1800 17.5 81.8 0.7 417
T=3600 1 98.7 0.3 853
T=7200 0 98.9 1.1 1708
T=21600 0 99.2 0.8 5144
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Appendix C

Code manual

C.1 Compound Poisson type models

compPoissonInterval Compound Poisson process on an interval

Usage

function [ res ] = compPoissonInterval( T, lambda, mu, sigma2 )

Description

Simulates a compound Poisson process with parameters λ, µ and σ2 in the interval

[0,T]

Inputs

T time horizon

lambda λ parameter of the Exp(λ) distributed waiting times

mu µ parameter of the N (µ, σ2) distributed jumps

sigma2 σ2 parameter of the N (µ, σ2) distributed jumps

Value

res matrix containing jump times in the first column and the

corresponding values of the process (cumulative sum of the

jump heights) in the second column
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nonhomPoisson Compound Poisson type process with varying lambda

Usage

function [ res, trueLambda ] = nonhomPoisson( grid, lambdaRange, mu,

sigma2 )

Description

Simulates a compound Poisson type model with varying λ on the time interval [0, 1]

Inputs

grid vector containing time points of the grid on which the pro-

cess is simulated

lambdaRange vector of the form [λmin, λmax] containing smallest and

largest possible value of lambda, which is parametrized by

a parabola:

λ(t) := 4(λmax − λmin)(t− 0.5)2 + λmin,

∀t ∈ [0, 1] and λmin, λmax > 0 constant.

mu µ parameter of the N (µ, σ2) distributed jumps

sigma2 σ2 parameter of the N (µ, σ2) distributed jumps

Value

res table consisting of two columns containing jump times and

corresponding values of the process

trueLambda table consisting of two columns containing the simulation

grid and the corresponding true intensity values per inter-

val.

ICSimInMem Simulation of data for information criteria experiment

Usage

function [ data, trueLambda ] = ICSimInMem( N, gridSim, lambdaRange)

Description

Simulates N samples of the compound Poisson type model on the time interval [0, 1]
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Inputs

N number of samples

gridSim vector containing time points of the grid on which the pro-

cess is simulated

lambdaRange vector of the form [λmin, λmax] containing smallest and

largest possible value of λ. (See also nonhomPoisson for

parametrization.)

Value

data cell of N sample paths

trueLambda cell of N tables containing true intensity values

likelihoodNP Evaluation of the log-likelihood function of the (Dλ)-

model

Usage

function [res] = likelihoodNP( lambda, mu, sigma2, marks,

interval length )

Description

Calculates for a time interval [ti−1, ti)

LDi (λi, µi, σi) = −λi(ti − ti−1) + ln(λi)Ni(ti) +

Ni(ti)∑
k=1

ln(pµi,σi(R
(i)
k ))︸ ︷︷ ︸

:=Lpart
i

. (C.1)

Remark: This function is written in C (MATLAB mex function) and needs to be

compiled first using the command mex likelihoodNP.c.

Inputs

lambda λ parameter of the Exp(λ) distributed waiting times

mu µ parameter of the N (µ, σ2) distributed jumps

sigma2 σ2 parameter of the N (µ, σ2) distributed jumps

marks vector containing jump sizes

interval length length of the interval: ti − ti−1
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Value

res vector with two entries: res(1) contains the value of LDi
and res(2) contains Lpart

i .

fitInterval Parameter estimation for compound Poisson process

Usage

function [ res ] = fitInterval( marks, interval length )

Description

Estimates the parameters of the compound Poisson process on an interval: Estim-

ators are given by closed formulas.

Inputs

marks vector containing jump sizes

interval length length of the interval

Value

res vector containing three entries for the parameters λ, µ and

σ2 respectively.

fit Fitting algorithm for the (Dλ)-model

Usage

function [ res ] = fit( grid, input )

Description

Estimates parameters and calculates log-likelihood value of the compound Poisson

type model (discrete lambda) on a given grid

Inputs

grid vector containing time points of the grid used for fitting

input matrix containing jump times in the first column and the

corresponding values of the process (cumulative sum of the

jump heights) in the second column
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Value

res matrix containing the parameter estimates for λi, µi and σi

in the first three columns followed by the likelihood values

LDi and Lpart
i in the fourth and fifth column respectively.

grids Generation of time grids

Usage

function [ res ] = grids( startTime, endTime, deltaMax )

Description

Generates cell array containing grids of different grid sizes

Inputs

startTime start value of the time grid(s) for estimation

endTime final value of the time grid(s) for estimation

deltaMax finest eligible grid size

Value

res cell array containing vectors representing the time grids

gridAIC Calculation of information criteria for the (Dλ)-model

Usage

function [ IC, numParam, fits ] = gridAIC( startTime, endTime, deltaMax,

data )

Description

Calculates information criteria for the (Dλ)-model after running a maximum likeli-

hood estimation by calling fit
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Inputs

startTime,

endTime, deltaMax

inputs to generate cell array of grids by calling grids

data matrix containing jump times and process value in two

columns

Value

IC 1-by-3 cell containing the values of information criteria

AIC, BIC HQ

numParam number of parameters corresponding to the number of

subintervals used in the fitting grid

fits cell of results of the MLE for each grid configuration: each

cell entry contains a matrix with 6 columns: the first

column contains the right end interval values of the fitting

grid, the second to fourth column the parameter estimates

for λ, µ and σ2 for each subinterval, the fifth columns gives

the total value of the maximum log-likelihood value and

the last column contains the part of the maximum log-

likelihood attributable too the marks, i.e. the parameters

µ and σ2, which is needed later on.

IChist Model selection for the (Dλ)-model

Usage

function [ IC, numParam, fits ] = IChist( data )

Description

Model selection for samples given in data

Inputs

data one data sample from previously generated data set using

ICSim
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Value

IC vector containing number of parameters chosen by the AIC,

BIC and HQ in each entry

numParam see gridAIC

fits see gridAIC

partialLogLikNP Calculation of partial log-likelihood of the (Pλ)-

model

Usage

function [ res ] = partialLogLikNP( a, b, c, jumpTimes )

Description

Calculates for a time interval [ti−1, ti) the part of the log-likelihood function attrib-

utable to the parametrized intensity λ: −Lparam
i (negative sign for convenience when

using minimization algorithm)

LPi (a, b, c, µi, σi) = −λa,b,c(ti−1)(ti − ti−1) + ln(λa,b,c(ti−1))Ni(ti)︸ ︷︷ ︸
:=Lparam

i

+

Ni(ti)∑
k=1

ln(pµi,σi(R
(i)
k ))︸ ︷︷ ︸

=Lpart
i

with

λa,b,c(t) = at2 + bt+ c, t ∈ [0, 1].

Remark: This function is written in C (MATLAB mex function) and needs to be

compiled first using the command mex partialLogLikNP.c. Call this function in

MATLAB using partialLogLikWrapper.

Inputs

a, b, c parameters of the parabola representation of λ

jumpTimes vector containing jump times given in the data

Value

res vector containing the function value of the

partial log-likelihood as well as the gradient:

−(Lparam
i , ∂aLparam

i , ∂bLparam
i , ∂cLparam

i )
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partialLogLikWrapper Wrapper to call partialLogLikNP

Usage

function [ f, g ] = partialLogLikWrapper( a, b, c, jumpTimes )

Description

Calls the pre-compiled function partialLogLikNP.

Inputs

See partialLogLikNP

Value

f negative function value −Lparam
i

g negative gradient −(∂aLparam
i , ∂bLparam

i , ∂cLparam
i )

constraints Constraints for the minimization routine

Usage

function [ c, ceq ] = constraints( p )

Description

Defines inequality and equality constraints for the MATLAB minimization function

fmincon. It partly ensures that the parabola fitted to the empirical data for λ is

non-negative by demanding that the extremal point of the parabola is non-negative.

Additional constraints are implemented in the function fit2.

Remark: This function is called by fmincon and is not intended as a standalone

function.

Inputs

p parameter vector

Value

c inequality constraint

ceq equality constraint
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fitLambda Fitting of λ in the (Pλ)-model

Usage

function [ x, value, exitflag ] = fitLambda( p0, grid, numJumps, mode )

Description

Fits polynomially parametrized step function to (intensity) data depending on case

specified in the variable order

Inputs

p0 initial parameter values for a, b, c

grid vector containing nodes of the fitting grid

numJumps vector containing number of events per subinterval in the

corresponding fitting grid

order options:

3: fits a quadratic function using fmincon for constraint

minimization

any other value: fits a quadratic function using fminunc

for unconstrained optimization

Value

x (potential) minimizer

value (potential) minimum value

exitflag flag given by MATLAB minimization functions fminunc

and fmincon indicating whether the minimization proced-

ure finished successfully.

fit2 Fitting algorithm for the (Pλ)-model

Usage

function [ res ] = fit2( prefit, input )

Description

Estimates parameters and calculates log-likelihood value of the (Pλ)-model on a

given grid
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Inputs

prefit estimation values given by fit on the (Dλ)-model

input data matrix containing jump times in the first column.

Value

res cell of results of the MLE for each grid configuration: each

cell entry contains a matrix with 9 columns: the first

column contains the right end interval values of the fitting

grid, the second to seventh column the parameter estim-

ates for a, b, c, λ, µ and σ2 for each subinterval, the fifth

columns gives the total value of the partial log-likelihood

value for the λ parameter and the last column contains the

part of the maximum log-likelihood attributable too the

marks, i.e. the parameters µ and σ2,which is needed later

on.

gridAIC2 Calculation of information criteria

Usage

function [ IC, numParam, fits ] = gridAIC2( prefit, data )

Description

Calculates information criteria for the (Pλ)-model based on (Dλ) fitting results

Inputs

prefit data cell containing (Dλ) fitting results, each cell corres-

ponding to a certain fitting grid

data matrix containing jump times and process value in two

columns

Value

IC 1-by-3 cell containing the values of information criteria

AIC, BIC HQ

numParam number of parameters corresponding to the number of

subintervals

fits see output of fit2
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IChist2 Model selection

Usage

function [ IC, numParam, fits] = IChist2( prefit, data )

Description

Model selection for samples given in data

Inputs

data one data sample from previously generated data set using

ICSim

Value

IC vector containing number of parameters chosen by the AIC,

BIC and HQ in each entry

numParam see gridAIC2

fits see gridAIC2

C.2 Sample code for compound Poisson type mod-

els

Listing C.1: Sample code for simulation of data

1 sampleSize =1000;

2 numSpaces=40;

3 N=length ( sampleSize ) ;

4 trueLambda=c e l l ( numSpaces−1,N) ; %s t o r e matrix o f g r id and true

va lue s ( lambda , mu, sigma )

5 data=c e l l ( numSpaces−1,N) ;

6 lambdaRange=[100 1 0 0 0 0 ] ;

7

8 f o r k =2:1:40

9 gridSim = l i n s p a c e (0 , 1 , k ) ;

10 f p r i n t f ( 'k = %d\n' , k ) ;

11 [ data{k−1 ,1} , trueLambda{k−1 ,1} ] = ICSimInMem( sampleSize ,

gridSim , lambdaRange ) ;

12 end
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13 save ( ' s im 01 ' ) ;

Listing C.2: Sample code for MLE of the (Dλ)-model

1 load ( ' s im 01 ' )

2

3 sampleSize =1000;

4 numSpaces=40;

5 IC=c e l l ( numSpaces−1 ,1) ;

6 NP=c e l l ( numSpaces−1, sampleSize ) ;

7 f i t s=c e l l ( numSpaces−1, sampleSize ) ;

8 numParam=c e l l ( numSpaces−1, sampleSize ) ;

9

10 f o r k =3:1:39

11 ICtemp=ze ro s ( sampleSize , 3 ) ;

12 f o r n=1: sampleSize

13 f p r i n t f ( 'k = %d , \ t n = %d \n' , k , n ) ;

14 dataCe l l=data{k ,1}{n , 1 } ;

15 [ ICtemp (n , : ) , numParam{k , n} , f i t s {k , n } ] = ICh i s t (

dataCe l l ) ;

16 end

17 IC{k ,1} = ICtemp ;

18 end

19 save ( ' f i t 0 1 ' ) ;

Listing C.3: Sample code for MLE of the (Pλ)-model: It assumes that the script for

(Dλ) has already been executed.

1 load ( ' s im 01 ' )

2 %load r e s u l t s from D−Lambda f i t t i n g

3 load ( ' f i t 0 1 ' )

4

5 sampleSize =1000;

6 numSpaces=40;

7 IC2=c e l l ( numSpaces−1 ,1) ;

8 f i t s 2=c e l l ( numSpaces−1, sampleSize ) ;

9 numParam2=c e l l ( numSpaces−1, sampleSize ) ;

10

11 f o r k =3:1:39

12 ICtemp=ze ro s ( sampleSize , 3 ) ;

13 f o r n=1: sampleSize

14 f p r i n t f ( 'k = %d , \ t n = %d \n' , k , n ) ;

15 dataCe l l=data{k ,1}{n , 1 } ;
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16 p r e f i t = f i t s {k , n } ;

17 [ ICtemp (n , : ) , numParam2{k , n} , f i t s 2 {k , n } ] = IChi s t2 (

p r e f i t , dataCe l l ) ;

18 end

19 IC2{k ,1} = ICtemp ;

20 end

21 save ( ' f i t p 0 1 ' ) ;

The data contained in the data cells IC and IC2 can be used to generate boxplots

for the model selection which can be found in the paper by applying the MATLAB

function boxplot.

C.3 Using the ACDm package

The R package ACDm by Markus Belfrage (https://CRAN.R-project.org/package=ACDm)

provides functions for simulation and fitting of ACD models. The sample code in

Listing C.4 shows wrapper functions for a repeated use in a Monte Carlo simulation.

Listing C.4: Sample code for wrapper functions to use ACDm library functions

1 simData <- function(n,m, p,q, omega , alpha , beta){

2 data <- matrix(0,n,m)

3 for (k in 1:n){

4 cat(paste("..", k, ".."));

5 data[k,] <- sim_ACD(N=m, param=c(omega , alpha , beta),

order=c(p,q), Nburn =500);

6 }

7 return(data);

8 }

9

10 fitData <- function(p, q, omega , alpha , beta , data){

11 out <- tryCatch(

12 {

13 temp <- acdFit(data , order=c(p,q), startPara=c(omega ,

alpha , beta));

14 c(temp$mPara , temp$goodnessOfFit$value [1]);

15 },

16 error=function(e){

17 rep(NaN , p+q+2);

18 },

19 warning=function(e){
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20 rep(NaN , p+q+2);

21 },

22 finally ={}

23 )

24 return(out)

25 }

Note that the library function acdFit has to be modified to actually quit with an

error message for the tryCatch to be able to catch the exception. Listing C.5, which

uses a combination of cat and return to give the error information and to end the

function, should be replaced by stop, which throws an actual exception.

Listing C.5: Original exit sequence in the library function acdFit

1 ...

2 cat("\n\nError: Oops , seems like the the optimization

function failed. Changing the ’optimFnc ’ or/and its

settings , or starting from a diffrent ’startPara ’ might

work. You can also trace the MLE search path by adding

the argument ’control = list(trace = 1) ’. \n\n")

3 return ()

4 ...

1 ...

2 stop("\n\nError: Oops , seems like the the optimization

function failed. Changing the ’optimFnc ’ or/and its

settings , or starting from a diffrent ’startPara ’ might

work. You can also trace the MLE search path by adding

the argument ’control = list(trace = 1) ’. \n\n")

3 ...

Listing C.6: Replacement code for acdFit to allow exception handling in higher

level functions

C.4 Hawkes processes

intensity Evaluation of the intensity function of a Hawkes process

Usage

function [ res ] = intensity( mu, alpha, beta, t, tp )
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Description

Evaluates the intensity function of a Hawkes process

Inputs

mu, alpha, beta parameters of the Hawkes process (alpha and beta can be

vectors)

t time point of evaluation of the intensity function

tp event history prior to t

Value

res value of the intensity function at t

hawkesThinning Simulation of a Hawkes process up to a specified time

Usage

function [ t ] = hawkesThinning( mu, ialpha, ibeta, T )

Description

Simulates a Hawkes process with up to a specified time horizon (contains starting

value 0 at time 0)

Inputs

mu, iapha, ibeta parameters of the Hawkes process

T time horizon when to stop the simulation

Value

t first entry is 0, followed by vector of simulated events

hawkesThinning2 Simulation of a Hawkes process with specified sample

size

Usage

function [ t ] = hawkesThinning2( mu, ialpha, ibeta, T )
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Description

Simulates a Hawkes process with up to a specified sample size (contains starting

value 0 at time 0)

Inputs

mu, iapha, ibeta parameters of the Hawkes process

T sample size (has to be at least 2)

Value

t first entry is 0, followed by vector of simulated events

empirAgg2 Calculation of average number of events

Usage

function [ res, grid ] = empirAgg2( mu, alpha, beta, M, delta, T )

Description

Calculates average number of events based on simulated paths of a Hawkes process

(calls hawkesThinning2.m)

Inputs

mu, alpha, beta parameters of the Hawkes process (alpha and beta can be

vectors)

M number of paths

delta grid size for evaluation grid

T end of observation value

Value

grid time points at which avarage number of events are calcu-

lated

res average number of events for each time entry in grid
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LogLik iter Evaluation of the log-likelihood function of a Hawkes pro-

cess

Usage

function [ L ] = LogLik iter( p, t )

Description

evaluates the log-likelihood function of a Hawkes process for given parameters and

data estimators using the MATLABTM routine fmincon (calls LogLik iter.m and

constraints.m)

Inputs

p vector of parameters of the Hawkes process [mu, alpha,

beta]

t vector of recorded events

Value

L log-likelihood value

constrains Parameter constrains for optimization

Usage

function [ c, ceq ] = constraints( p )

Description

Parameter constrains passed on to the optimization algorithm fmincon

Inputs

p parameter vector [mu, alpha, beta]

Value

c inequality constraint c ≤ 0

ceq ceq: equality constraint ceq ≤ 0
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fitting Fitting of Hawkes process model to data

Usage

function [ x, value, exitflag ] = fitting( p0, data )

Description

Maximizes log-likelihood function to obtain maximum likelihood

Inputs

p0 initial values

data given data set used for estimation

Value

x (possible) maximizer of the log-likelihood function

value value of the log-likelihood function evaluated at x

exitflag indicator whether optimization routine was successful

IC Calculation of information criteria

Usage

function [ IC ] = IC( L, P, data )

Description

Calculates the values of AIC, BIC and HQ

Inputs

L contains log-likelihood values

P order of the model fitted

data cell containing data sets corresponding to each entry of L

Value

IC matrix containing the IC values; each row of the matrix

has entries [AIC, BIC, HQ] for each entry of L
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Appendix D

Source code

D.1 Poisson process

Listing D.1: compPoissonInterval

1 func t i on [ r e s ] = compPoissonInterva l ( T, lambda , mu, sigma2 )

2 numJumps = po i s s rnd ( lambda*T) ;

3 cum = [ ] ;

4 jumpTimes = [ ] ;

5 i f numJumps > 0

6 uniform = T* rand (numJumps , 1 ) ;

7 jumpTimes = s o r t ( uniform ) ;

8 jumpSize = normrnd (mu, s q r t ( sigma2 ) , numJumps , 1) ;

9 cum = cumsum( jumpSize ) ;

10 end

11 r e s = [ jumpTimes cum ] ;

12 end

Listing D.2: nonhomPoisson

1 func t i on [ res , trueLambda ] = nonhomPoisson ( gr id , lambdaRange ,

mu, sigma2 )

2 n = length ( g r id ) ;

3 cum = 0 ;

4 time = [ ] ;

5

6 lambdaVector=ze ro s ( ( n−1) ,1 ) ;

7 f o r k=1:(n−1)

8 s ta r tVa lue = cum( length (cum) ,1 ) ;

9 startTime = gr id (1 , k ) ;

10 lambda = 4*( lambdaRange (1 , 2 ) − lambdaRange (1 , 1 ) ) *( g r id (1 , k )
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−0.5) ˆ2 + lambdaRange (1 , 1 ) ;

11 lambdaVector (k , 1 )=lambda ;

12 tProce s s = compPoissonInterva l ( g r id (1 , k+1)−g r id (1 , k ) , lambda ,

mu, sigma2 ) ;

13 i f ( l ength ( tProce s s ) > 0)

14 tProce s s ( : , 1 ) = tProce s s ( : , 1 ) + startTime ;

15 tProce s s ( : , 2 ) = tProce s s ( : , 2 ) + star tVa lue ;

16 time = [ time ; tProce s s ( : , 1 ) ] ;

17 cum = [ cum ; tProce s s ( : , 2 ) ] ;

18 end

19 end

20 r e s = [ time , cum ( 2 : l ength (cum) ) ] ;

21 trueLambda = [ g r id ( 2 : end ) ' , lambdaVector ] ;

22 end

Listing D.3: ICSimInMem

1 func t i on [ data , trueLambda ] = ICSimInMem( N, gridSim ,

lambdaRange )

2 k=1;

3 data = c e l l (N, 1) ;

4 trueLambda = c e l l (N, 1) ;

5 whi l e k <= N

6 f p r i n t f ( 'simk = %d\n' , k ) ;

7 [ data{k ,1} , trueLambda{k , 1 } ] = nonhomPoisson ( gridSim ,

lambdaRange , 0 , 1) ;

8 i f (˜ isempty ( data ) )

9 k=k+1;

10 end

11 end

12 end

D.2 Dλ-model

Listing D.4: fit

1 func t i on [ r e s ] = f i t ( gr id , input )

2 jumpTimes = input ( : , 1 ) ;

3 m=length ( input ( : , 2 ) ) ;

4 marks = input ( : , 2) − [ 0 ; input ( 1 : (m−1) , 2) ] ;

5 data = [ jumpTimes , marks ] ;
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6 n = length ( g r id ) ;

7 par = ze ro s ( ( n−1) , 3) ;

8 L = ze ro s ( ( n−1) , 1) ;

9 Lpart = ze ro s ( ( n−1) , 1) ;

10

11 f o r k=1:(n−1)

12 tmarks = data ( data ( : , 1 ) >= gr id (1 , k ) & data ( : , 1 ) < g r id (1 , k

+1) ,2 ) ;

13 t l eng th = gr id (1 , k+1) − g r id (1 , k ) ;

14 i f l ength ( tmarks ) > 1

15 par (k , : ) = f i t I n t e r v a l ( tmarks , t l eng th ) ;

16 temp=l ike l ihoodNP ( par (k , 1 ) , par (k , 2 ) , par (k , 3 ) , tmarks ' ,

t l eng th ) ;

17 L(k , : )=temp (1) ;

18 Lpart (k , : ) = temp (2) ;

19 end

20 end

21 r e s = [ par L Lpart ] ;

22 end

Listing D.5: fitInterval

1 func t i on [ r e s ] = f i t I n t e r v a l ( marks , i n t e r v a l l e n g t h )

2 lambda = length ( marks ) / i n t e r v a l l e n g t h ;

3 mu = mean( marks ) ;

4 sigma2 = sum ( ( marks − mu) . ˆ 2 ) / l ength ( marks ) ;

5 r e s = [ lambda mu sigma2 ] ;

6 end

Listing D.6: gridAIC

1 func t i on [ IC , numParam , f i t s ] = gridAIC ( startTime , endTime ,

deltaMax , data )

2 g = g r i d s ( startTime , endTime , deltaMax ) ;

3 n=length ( g ) ;

4 numParam = ze ro s (1 , n ) ;

5 f i t s = c e l l (1 , n ) ;

6 IC = c e l l ( 1 , 4 ) ;

7 AIC = ze ro s (1 , n ) ;

8 BIC = ze ro s (1 , n) ;

9 HQ = ze ro s (1 , n ) ;

10 AICc = ze ro s (1 , n ) ;

11
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12 f o r k=1:n

13 f i t s {1 , k} = f i t ( g {1 , k} , data ) ;

14 numParamTemp=3*( l ength ( g {1 , k}) − 1) ;

15 numParam(1 , k ) = numParamTemp ;

16 sampleSize = length ( data ( : , 1 ) ) ;

17 logL ik=sum( f i t s {1 , k } ( : , 4 ) ) ;

18

19 AIC(1 , k ) = −2* l ogL ik + 2*numParamTemp ;

20 BIC(1 , k ) = −2* l ogL ik + numParamTemp* l og ( sampleSize ) ;

21 HQ(1 , k ) = −2* l ogL ik + 2*numParamTemp* l og ( l og ( sampleSize ) ) ;

22 AICc (1 , k ) = −2* l ogL ik + 2*numParamTemp...

23 * sampleSize /( sampleSize − numParamTemp − 1) ;

24 f i t s {1 , k} = [ g {1 , k } ( 2 : end ) ' f i t s {1 , k } ] ;

25 end

26 IC{1 ,1} = AIC ;

27 IC{1 ,2} = BIC ;

28 IC{1 ,3} = HQ;

29 IC{1 ,4} = AICc ;

30 end

Listing D.7: grids

1 func t i on [ r e s ] = g r i d s ( startTime , endTime , deltaMax )

2 n = max ( [ f l o o r ( ( endTime−startTime ) /deltaMax ) , 1 ] ) ;

3 g r i d L i s t = c e l l (1 , n ) ;

4 f o r k=1:n

5 g r i d L i s t {1 , k} = l i n s p a c e ( startTime , endTime , 2+(k−1) ) ;

6 end

7 r e s = g r i d L i s t ;

8 end

Listing D.8: IChist

1 func t i on [ IC , numParam , f i t s ] = ICh i s t ( data )

2 IC = ze ro s (1 , 3) ;

3 m = length ( data ( : , 1 ) ) ;

4 d = data ( : , 1 ) − [ 0 ; data ( 1 : (m−1) , 1) ] ;

5 deltaMax = max(d) ;

6 [ i n f oCr i t , numParam , e s t imate s ] = gridAIC (0 ,1 , deltaMax , data

) ;

7 f i t s=es t imate s ;

8 f o r q=1:3

9 [M, I ] = min ( i n f o C r i t {1 , q}) ;
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10 IC (1 , q ) = numParam(1 , I ) ;

11 end

12 end

Listing D.9: likelihoodNP

1 #include <math.h>

2 #include "mex.h"

3 #define M_PI 3.14159265358979323846

4

5 void mexFunction( int nlhs , mxArray *plhs[], int nrhs , const

mxArray *prhs[] )

6 {

7 double *prOut , *A, *lambda , *mu , *sigma2 , *marks , *

interval_length;

8 double res1 , res2;

9 int m, q, n;

10 lambda=mxGetPr(prhs [0]);

11 mu = mxGetPr(prhs [1]);

12 sigma2 = mxGetPr(prhs [2]);

13 n = mxGetN(prhs [3]);

14 marks = mxGetPr(prhs [3]);

15 interval_length = mxGetPr(prhs [4]);

16

17 res1 = -lambda [0]* interval_length [0] + log(lambda [0])*n -

0.5* log (2.0* M_PI*sigma2 [0])*n;

18 res2 = 0.0;

19 for(int k=0; k < n; k++){

20 res2 = res2 - (marks[k] - mu[0])*( marks[k] - mu[0]) /(2.0*

sigma2 [0]);

21 }

22

23 plhs [0] = mxCreateDoubleMatrix (2, 1, mxREAL);

24 prOut = mxGetPr(plhs [0]);

25 prOut [0] = res1 + res2;

26 prOut [1] = res2 - 0.5* log (2.0* M_PI*sigma2 [0])*n;

27

28 }
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D.3 Pλ-model

Listing D.10: constraints

1 func t i on [ c , ceq ] = c o n s t r a i n t s ( p )

2 c=−(p (1 ) *p (2) ˆ2) /(4*p (1) ˆ2) + (p (2 ) ˆ2) /(2*p (1) ) − p (3) ;

3 ceq =0;

4

5 end

Listing D.11: fit2

1 func t i on [ r e s ] = f i t 2 ( p r e f i t , input )

2 jumpTimes = input ( : , 1 ) ;

3 g r id =[0 ; p r e f i t ( : , 1 ) ] ;

4 n=length ( g r id ) ;

5 numJumps=ze ro s (1 , n−1) ;

6 f o r k=1:(n−1)

7 numJumps( k ) = length ( jumpTimes ( jumpTimes >= gr id ( k ) &

jumpTimes < g r id ( k+1) ) ) ;

8 end

9 lambda = p r e f i t ( : , 2 ) ;

10 i f l ength ( lambda ) < 3 %excluded

11 e r r o r ( 'Number o f data po in t s f o r lambda l e s s than 4 ! ' ) ;

12 e l s e

13 %f i r s t l e a s t squares f i t o f parabola to lambda va lue s

14 lambda0 = p o l y f i t ( g r id ( 1 : end−1) ' , lambda ' , 2) ;

15 i f lambda0 (1 ) < 0 %parabola opens downwards

16 lambda0 (1 ) = −lambda0 (1 ) ;

17 end

18 t e s t =(lambda0 (1 ) * lambda0 (2 ) ˆ2) /(4* lambda0 (1 ) ˆ2) − ( lambda0

(2 ) ˆ2) /(2* lambda0 (1 ) ) + lambda0 (3 ) ;

19 i f t e s t <= 0 %min o f parabola below zero

20 lambda0 (3 ) = lambda0 (3 ) − t e s t +1;

21 end

22

23 %f i r s t MLE ( uncons t ra in t ) us ing above LS estmate as i n i t i a l

va lue

24 [ coe f , LLambda , e x i t f l a g ]= fitLambda ( lambda0 , gr id , numJumps ,

2) ;

25

26 %check i f lambda i s p o s i t i v e f c t . −> i f not do c o n s t r a i n t
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opt imiza t i on

27 t e s t 2 =( c o e f (1 ) * c o e f (2 ) ˆ2) /(4* c o e f (1 ) ˆ2) − ( c o e f (2 ) ˆ2) /(2*

c o e f (1 ) ) + c o e f (3 ) ;

28 i f c o e f (1 )< 0 | | t e s t 2 <= 0 | | e x i t f l a g==0

29 [ coe f , LLambda , e x i t f l a g ]= fitLambda ( lambda0 , gr id ,

numJumps , 3) ;

30 f p r i n t f ( 'C ' ) ;

31 e l s e

32 f p r i n t f ( 'U ' ) ;

33 end

34 end

35

36 lambdaPartLogLik = par t i a lLogL ik2 ( c o e f (1 ) , c o e f (2 ) , c o e f (3 ) ,

gr id , numJumps) ;

37 lambdaDiscrete = po lyva l ( coe f , p r e f i t ( : , 1 ) ) ;

38 r e s = [ p r e f i t ( : , 1 ) , z e r o s (n−1 ,1)+c o e f (1 ) , z e r o s (n−1 ,1)+c o e f (2 ) ,

z e r o s (n−1 ,1)+c o e f (3 ) , ...

39 lambdaDiscrete , p r e f i t ( : , 3 : 4 ) , lambdaPartLogLik , p r e f i t

( : , 6 ) ] ;

40 end

Listing D.12: fitLambda

1 func t i on [ x , value , e x i t f l a g ] = fitLambda ( p0 , gr id , numJumps ,

mode )

2 i f mode ==3

3 fun = @(p) partialLogLikWrapper (p (1 ) , p (2 ) , p (3 ) , gr id ,

numJumps) ;

4 opt ions=opt imopt ions(@fmincon , 'Display ' , ' n o t i f y ' ) ;

5 [ x , value , e x i t f l a g ] = fmincon ( fun , p0 , [ ] , [ ] , [ ] , [ ] , [ 0 , −In f ,

−I n f ] , [ ] , @ c o n s t r a i n t s , opt ions ) ;

6 e l s e

7 fun = @(p) partialLogLikWrapper (p (1 ) , p (2 ) , p (3 ) , gr id ,

numJumps) ;

8 opt ions=opt imopt ions(@fminunc , 'Display ' , ' n o t i f y ' , 'GradObj

' , 'on' ) ; %

9 [ x , value , e x i t f l a g ] = fminunc ( fun , p0 , opt ions ) ;

10 end

11 end

Listing D.13: gridAIC2

1 func t i on [ IC , numParam , f i t s ] = gridAIC2 ( p r e f i t , data )
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2 n=length ( p r e f i t ) ;

3 numParam = ze ro s (1 , n ) ;

4 f i t s = c e l l (1 , n ) ;

5 IC = c e l l ( 1 , 4 ) ;

6 AIC = ze ro s (1 , n ) ;

7 BIC = ze ro s (1 , n) ;

8 HQ = ze ro s (1 , n ) ;

9 AICc = ze ro s (1 , n ) ;

10

11 f o r k=3:n

12 f i t s {1 , k} = f i t 2 ( p r e f i t {1 , k} , data ) ;

13

14 N=length ( f i t s {1 , k } ( : , 1 ) ) ;

15 numParamTemp=3+2*N;

16 numParam(1 , k ) = numParamTemp ;

17 sampleSize = length ( data ( : , 1 ) ) ;

18 logL ik=sum( f i t s {1 , k } ( : , 8 ) ) + sum( f i t s {1 , k } ( : , 9 ) ) ;

19

20 AIC(1 , k ) = −2* l ogL ik + 2*numParamTemp ;

21 BIC(1 , k ) = −2* l ogL ik + numParamTemp* l og ( sampleSize ) ;

22 HQ(1 , k ) = −2* l ogL ik + 2*numParamTemp* l og ( l og ( sampleSize ) ) ;

23 AICc (1 , k ) = −2* l ogL ik + 2*numParamTemp...

24 * sampleSize /( sampleSize − numParamTemp − 1) ;

25 end

26 IC{1 ,1} = AIC ;

27 IC{1 ,2} = BIC ;

28 IC{1 ,3} = HQ;

29 IC{1 ,4} = AICc ;

30 end

Listing D.14: IChist2

1 func t i on [ IC , numParam , f i t s ] = IChi s t2 ( p r e f i t , data )

2 IC = ze ro s (1 , 3) ;

3

4 [ i n f oCr i t , numParam , e s t imate s ] = gridAIC2 ( p r e f i t , data ) ;

5 f p r i n t f ( '\n' ) ;

6 f i t s=es t imate s ;

7 f o r q=1:3

8 [M, I ] = min ( i n f o C r i t {1 , q}) ;

9 IC (1 , q ) = numParam(1 , I ) ;

10 end
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11 end

Listing D.15: partialLogLikNP

1 #include <math.h>

2 #include "mex.h"

3 #define M_PI 3.14159265358979323846

4

5 void mexFunction( int nlhs , mxArray *plhs[], int nrhs , const

mxArray *prhs[] )

6 {

7 double *prOut1 ,*prOut2 , *a, *b, *c, *grid , *numJumps;

8 double f, g1 , g2 , g3 , lambda , t1 , t2;

9 int m, q, n;

10 a=mxGetPr(prhs [0]);

11 b = mxGetPr(prhs [1]);

12 c = mxGetPr(prhs [2]);

13 n = mxGetN(prhs [3]);

14 grid = mxGetPr(prhs [3]);

15 numJumps = mxGetPr(prhs [4]);

16

17 f=0.0;

18 g1 =0.0;

19 g2 =0.0;

20 g3 =0.0;

21 for(int k=0; k < (n-1); k++){

22 t2=grid[k+1];

23 t1=grid[k];

24 lambda = (a[0]*t2*t2 + b[0]*t2 + c[0]);

25 f = f + log(lambda)*numJumps[k] - (lambda)*(t2-t1);

26 g1 = g1 + t2*t2/( lambda)*numJumps[k] - t2*t2*(t2 -t1);

27 g2 = g2 + t2/( lambda)*numJumps[k] - t2*(t2 -t1);

28 g3 = g3 + 1.0/( lambda)*numJumps[k];

29 }

30

31 g3=g3 - (grid[n-1]-grid [0]);

32

33 plhs [0] = mxCreateDoubleMatrix (4, 1, mxREAL);

34 prOut1 = mxGetPr(plhs [0]);

35 prOut1 [0] = (-1.0)*f;

36 prOut1 [1] = (-1.0)*g1;

37 prOut1 [2] = (-1.0)*g2;
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38 prOut1 [3] = (-1.0)*g3;

39 }

D.4 Hawkes processes

Listing D.16: constraints

1 func t i on [ c , ceq ] = c o n s t r a i n t s ( p )

2 P = ( length (p)−1) /2 ;

3

4 alpha = p(2:(2+P−1) ) ;

5 beta = p((2+P) : end ) ;

6 i f (P==1)

7 c=sum( alpha . / beta )−1;

8 e l s e

9 %s t a t i o n a r i t y cond i t i on and i n c r e a s i n g order o f betas

10 c=[sum( alpha . / beta )−1, − beta ( 2 : end ) + beta ( 1 : ( end−1) ) ] ;

11 end

12 ceq =0;

13 end

Listing D.17: empirAgg2

1 func t i on [ res , g r i d ] = empirAgg2 ( mu, alpha , beta , M, de l ta , T

)

2 data=ze ro s (M, T) ;

3

4 f o r k=1:M

5 f p r i n t f ( '%s%d\n' , 'k = ' , k ) ;

6 datatemp = hawkesThinning2 (mu, alpha , beta , T) ;

7 data (k , : ) = datatemp ( 2 : end ) ;

8 end

9 g r id =0: d e l t a : min (max( data ) ) ;

10 n = length ( g r id ) ;

11 N = ze ro s (1 , n ) ;

12 f o r k=1:M

13 f o r m=1:n

14 N(m) = N(m) + sum( data (k , : ) <= gr id (m) ) ;

15 end

16 end

17 r e s = N/M;
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18 end

Listing D.18: fitting

1 func t i on [ x , value , e x i t f l a g ] = f i t t i n g ( p0 , data )

2 fun = @(p) −L o g L i k i t e r (p , data ) ;

3 opt ions=opt imopt ions(@fmincon , 'Display ' , ' n o t i f y ' ) ;

4 [ x , value , e x i t f l a g ] = fmincon ( fun , p0 , [ ] , [ ] , [ ] , [ ] , z e r o s (1 ,

l ength ( p0 ) ) , [ ] , @ c o n s t r a i n t s , opt ions ) ;

5 end

Listing D.19: hawkesThinning

1 func t i on [ t ] = hawkesThinning ( mu, ia lpha , ibeta , T )

2 alpha = sum( ia lpha ) ;

3 lambdaStar = mu;

4 t = 0 ;

5 jump = 0 ;

6 u = exprnd (1/ lambdaStar , 1 , 1) ;

7

8 i f u <= T

9 t = [ t , u ] ;

10 s = u ;

11 jump=1;

12 e l s e

13 re turn

14 end

15

16 tp = [ ] ;

17 whi l e 1

18 i f jump == 1

19 lambdaStar = i n t e n s i t y (mu, ia lpha , ibeta , s , tp ) + alpha

;

20 e l s e

21 lambdaStar = i n t e n s i t y (mu, ia lpha , ibeta , s , t ( 2 : end ) ) ;

22 end

23 u = exprnd (1/ lambdaStar , 1 , 1) ;

24 s = s + u ;

25 i f s > T

26 break ;

27 e l s e

28 U = rand ;

29 i f U <= i n t e n s i t y (mu, ia lpha , ibeta , s , t ( 2 : end ) ) /
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lambdaStar

30 tp = t ( 2 : end ) ;

31 t = [ t , s ] ;

32 jump = 1 ;

33 e l s e

34 jump = 0 ;

35 end

36 end

37 end

38 end

Listing D.20: hawkesThinning2

1 func t i on [ t ] = hawkesThinning2 ( mu, ia lpha , ibeta , T )

2

3 alpha = sum( ia lpha ) ;

4 lambdaStar = mu;

5 t = ze ro s (1 , T+1) ;

6 u = exprnd (1/ lambdaStar , 1 , 1) ;

7

8 t (2 ) = u ;

9 s = u ;

10 jump=1;

11 index =2;

12

13 tp = [ ] ;

14 whi l e 1

15 i f jump == 1

16 lambdaStar = i n t e n s i t y (mu, ia lpha , ibeta , s , tp ) + alpha

;

17 e l s e

18 lambdaStar = i n t e n s i t y (mu, ia lpha , ibeta , s , t ( 2 : end ) ) ;

19 end

20 u = exprnd (1/ lambdaStar , 1 , 1) ;

21 s = s + u ;

22 i f index > T

23 break ;

24 e l s e

25 U = rand ;

26 i f U <= i n t e n s i t y (mu, ia lpha , ibeta , s , t ( 2 : end ) ) /

lambdaStar

27 tp = t ( 2 : end ) ;
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28 t ( index +1) = s ;

29 jump = 1 ;

30 index=index +1;

31 e l s e

32 jump = 0 ;

33 end

34 end

35 end

36 end

Listing D.21: IC

1 func t i on [ IC ] = IC ( L , P, data )

2 numParam = 1+2*P;

3 n = length (L) ;

4 IC = ze ro s (n , 3 ) ; %AIC , BIC , HQ

5 f o r k=1:n

6 N = length ( data{k}) ;

7

8 IC (k , 1) = −2*L( k ) + 2*numParam ; %AIC

9

10 %r e p l a c e above l i n e by t h i s b loc to in c lude AICc

11 % i f N/7 > 40 %r u l e o f thumb : k max=7

12 % IC (k , 1) = −2*L( k ) + 2*numParam ; %AIC

13 % e l s e

14 % IC (k , 1) = −2*L( k ) + (2*numParam*N) /(N−numParam−1) ; %

AICc

15 % end

16

17 IC (k , 2) = −2*L( k ) + numParam* l og (N) ; %BIC

18 IC (k , 3) = −2*L( k ) + 2*numParam* l og ( l og (N) ) ; %HQ

19 end

20 end

Listing D.22: intensity

1 func t i on [ r e s ] = i n t e n s i t y ( mu, alpha , beta , t , tp )

2 r e s = mu;

3 order = length ( alpha ) ;

4 i f ˜ isempty ( tp )

5 f o r i =1: order

6 r e s = r e s + alpha ( i )*sum( exp(−beta ( i ) . * ( t−tp ) ) ) ;

7 end
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8 end

9 end

Listing D.23: LogLik iter

1 func t i on [ L ] = L o g L i k i t e r ( p , t )

2 P = ( length (p)−1) /2 ;

3 mu = p (1) ;

4 alpha = p(2:(2+P−1) ) ;

5 beta = p((2+P) : end ) ;

6 n = length ( t ) ;

7 T = t ( end ) ;

8 L = −mu*T;

9 A = ze ro s (P, n) ;

10 f o r m=1:P

11 f o r k=2:n

12 A(m, k ) = (1 + A(m, k−1) )*exp(−beta (m) *( t ( k ) − t (k−1) ) ) ;

13 end

14 end

15

16 f o r m=1:P

17 temp2 = 0 ;

18 f o r k=1:n

19 temp2 = temp2 + (1 − exp(−beta (m) *(T − t ( k ) ) ) ) ;

20 end

21 L = L − alpha (m) / beta (m)*temp2 ;

22 end

23

24 f o r k=1:n

25 temp1=0;

26 f o r m=1:P

27 temp1 = temp1 + alpha (m)*A(m, k ) ;

28 end

29 L = L + log (mu + temp1 ) ;

30 end

31 end
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