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Summary

This work explores mechanisms for pattern formation through coupled bulk-
surface partial differential equations of reaction-diffusion type. Reaction-diffusion
systems posed both in the bulk and on the surface on stationary volumes are coupled
through linear Robin-type boundary conditions. In this framework we study three
different systems as follows (i) non-linear reactions in the bulk and surface respect-
ively, (ii) non-linear reactions in the bulk and linear reactions on the surface and (iii)
linear reactions in the bulk and non-linear reactions on the surface. In all cases, the
systems are non-dimensionalised and rigorous linear stability analysis is carried out
to determine the necessary and sufficient conditions for pattern formation. Appro-
priate parameter spaces are generated from which model parameters are selected. To
exhibit pattern formation, a coupled bulk-surface finite element method is developed
and implemented. We implement the numerical algorithm by using an open source
software package known as deal.II and show computational results on spherical and
cuboid domains. Theoretical predictions of the linear stability analysis are verified
and supported by numerical simulations. The results show that non-linear reactions
in the bulk and surface generate patterns everywhere, while non-linear reactions in
the bulk and linear reactions on the surface generate patterns in the bulk and on
the surface with a pattern-less thin boundary layer. However, linear reactions in the
bulk do not generate patterns on the surface even when the surface reactions are
non-linear. The generality, robustness and applicability of our theoretical computa-
tional framework for coupled system of bulk-surface reaction-diffusion equations set
premises to study experimentally driven models where coupling of bulk and surface
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chemical species is prevalent. Examples of such applications include cell motility,
pattern formation in developmental biology, material science and cancer biology.
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convergence history for the equations in the bulk, whereas Sub-figure

(b) shows the same for equations on the surface. . . . . . . . . . . . 134
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Most biological and chemical processes that can be explored through reaction and

diffusion of chemical species, are often modelled by systems of partial differential

equations Kondo and Asai (1995); Janssen (1981); Hutson (1988). A special class of

these are reaction-diffusion equations, which are used to analyse and quantify various

biological processes such as the natural evolution of pattern formation on animal

coats, developmental embryology, immunology, ecological dynamics Murray (1981);

Mullins et al. (1996); De Boer et al. (1992); Segel and Jackson (1972). The study

of reaction-diffusion systems in general has been and continues to be an interesting

topic for research in various branches of scientific studies. In order to quantify

the evolution of chemical reaction kinetics associated to biological processes, it is a

usual approach to employ a system of partial differential equations describing the

chemical reactions, which is investigated through mathematical techniques to reveal

the long-term behaviour of the evolving kinetics Keener and Sneyd (1998); Logan

(2008).

Alan Turing was one of the first scientists to suggest in 1952 the use of a system

of reaction-diffusion equations to model how two or more chemical substances evolve

when they are simultaneously subject to a specific reaction rate and each one of them

diffuses independently of the other. Alan Turing suggested that the theory of biolo-
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gical pattern formation can be mathematically formulated by a system of partial dif-

ferential equations Turing (1952). The work presented in Turing (1952) contains an

elegant and detailed study on the evolution and interaction of morphogenesis, which

are modelled as a discrete set of chemical concentrations coupled through a specific

given reaction kinetics and independent diffusion rates. Turing’s work turned out

to be one of the most motivational studies for applied mathematicians to rigorously

explain the evolution and properties of reaction-diffusion systems. The seminal work

of Turing Turing (1952) also proved as a motivational ground for experimental and

theoretical biologists to search for experimental evidence of pattern formation satis-

fying Turing’s mathematical theory of reaction-diffusion systems. A few examples of

Turing models being tested by experimental biologists are Castets et al. (1990); Lev-

ine and Rappel (2005), whose results indicate strong evidence supporting Turing’s

theory of pattern formation. In Castets et al. (1990) a detailed chemical experiment

is conducted to show similar evidence to that predicted by Alan Turing as a result

of specific chemical reaction and diffusion. The results pertained by Castets et al.

(1990) are claimed by authors to be the first unambiguous experimental evidence of

Turing pattern. However, Turing theory of pattern formation as the solution of a

reaction-diffusion system has still not been proven as a scientific fact. Researchers

have also studied the bulk excursion of a particle when it intermittently unbinds

from a planar surface into the bulk Chechkin et al. (2012). The study in Chechkin

et al. (2012) is a theoretical set-up through coupling reaction-diffusion system to

provide insight on the trajectory of a particle during the process of bulk excursion,

when it unbinds from the surface without a regular occurrence. Turing’s theory

suggests that pattern formation occurs, when a system experiences diffusion-driven

instability Turing (1952); Murray (2001), which is a concept that is hypothetically

responsible for the emergence of spatial variation in the concentration density of

a chemical species. Diffusion-driven instability takes place in the evolution of a

system, when a uniform stable steady state is destabilised by including the effects

of the diffusion process in the system. It is a non-trivial property of the diffusion

operator that it can be responsible to destabilise a stable steady state of a system of

partial differential equations, because a diffusion operator by itself has the property

to homogenise small spatial perturbations, therefore, intuitively if diffusion is added
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to a system of reaction kinetics that is stable in the absence of diffusion, then small

perturbations near a uniform steady state are expected to ensure that the evolution

of the reaction-kinetics converges to the uniform steady state. It is rather unexpec-

ted to find that a stabilising process such as diffusion can be capable to destabilise

a steady state that is also stable. Such a transition from a uniform steady state in

the absence of diffusion to diffusion-driven instability was observed by scientists and

presented with detailed elaboration on the process in Ouyang and Swinney (1991).

Reaction-kinetics without diffusion are usually modelled by a system of ordinary dif-

ferential equations, which becomes a system of partial differential equations, when

diffusion is added to the system. This makes the analysis and computation of such

systems a very challenging task.

Researchers in applied mathematics and computational science also explore bulk-

surface reaction-diffusion systems (BSRDSs), which are employed in special kinds

of models for biological processes, where species react and diffuse in the bulk of

a domain and these are coupled with other species that react and diffuse on the

surface of the domain. Bulk-surface reaction-diffusion systems are employed as a

framework to model the chemical interaction of bulk-surface problems arising in cell

biology Novak et al. (2007). In particular the framework proposed by Novak et al.

(2007) aims to provide improved computational and algorithmic efficiency, which is

mainly achieved, through employing the usual diffusion on local tangential planes as

an approximation of Laplace-Beltrami operator. The framework proposed by Novak

et al. (2007) is applied to a realistic cell-like geometry, which produces results that

are in agreement with quantitative experimental analysis on fluorescence-loss in

photo-bleaching. Another example of a computational approach to solving coupled

systems of BSRDEs is the work presented in Hansbo et al. (2016), where they

proposed a computational approach to bulk-surface reaction-diffusion systems on

time-dependent domains.

In general there are two main aspects to the study of bulk-surface reaction-

diffusion equations. The first approach is to solve systems of bulk-surface numer-

ically. Finite element method is the usual choice of the numerical method in the

literature, for example there is a detailed study in Elliott and Ranner (2013), sug-

gesting some results on the numerical analysis, existence and convergence of finite
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element approximation when bulk-surface reaction-diffusion equations (BSRDEs)

are posed with Robin-type boundary conditions. A priori error bounds on the finite

element approximate numerical solution are also both derived in certain norms and

verified numerically. The work in Elliott and Ranner (2013) is concentrated mainly

on the numerical analysis side of the particular scheme they present, which lacks

to provide any insight on the stability analysis of the proposed system. Although

it is a reasonable decision to exclude stability analysis due to consistency and rel-

evance of contents, with improvements in computational efficiency of BSRDEs, it

is crucial that attention is given to stability analysis of such systems. Bulk-surface

systems with a single PDE posed in the bulk and coupled with another PDE on the

surface also play a vital role in the understanding of receptor-ligand in the process

of a signalling cascade Elliott et al. (2017). The study in Elliott et al. (2017) is

mainly focused on the numerical analysis through finite element method (FEM) of

a two-component system of single equations posed in the bulk and on the surface.

In Elliott et al. (2017) the existence of solutions is proven with some computational

results associated to the theoretical problem, again lacking to provide insight on the

stability behaviour of the dynamics modelled by the coupled system. Even though

the results achieved in Elliott et al. (2017) are mathematically sound from a nu-

merical analysis and computational viewpoint, it would provide a complementary

back-up to the work if it is equipped with detailed results of stability analysis.

The non-linearities associated with reaction-diffusion system were treated by

IMEX and 1-SBEM (a first order semi-implicit backward Euler differentiation for-

mula). Each of these schemes has associated drawbacks that are either related to

accuracy or computational efficiency. With the attempt to resolve these drawbacks

scientists used a fully implicit, with fractional θ scheme, to improve the compu-

tational efficiency as well as to obtain sufficient accuracy. Numerical solutions of

reaction-diffusion equations are studied in Madzvamuse and Chung (2014) with a

single Newton iteration and compared the convergence rate with the use of a single

Picard iteration and it is found that a single Newton’s iteration can only prove more

efficient if a fractional θ-scheme is applied in the particular case when θ = 1−
√

2.

The work contained in Madzvamuse and Chung (2014) is not conducted on the

actual bulk-surface set-up, instead the numerical schemes are rigorously compared
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through investigating the results obtained for a two component reaction-diffusion

equation on stationary volumes of rectangular and spherical geometries. This com-

parison and the results therein can potentially be employed to solve a system of

coupled bulk-surface reaction-diffusion equations. One of the computational exten-

sions associated to this thesis is that we apply the fully implicit scheme to an actual

four component bulk-surface reaction-diffusion system. The numerical solution of

BSRDEs are obtained through this extension on two types of stationary volumes

and on the corresponding surfaces. We execute the algorithm to solve the four com-

ponent BSRDEs on a cuboid and on sphere, where two of the equations are posed

on the bulk and the remaining two equations are posed on the boundary surface.

Stability and bifurcation analysis are two other usual analytical approaches to

understanding the dynamical properties of reaction-diffusion system near a uniform

steady state Krischer and Mikhailov (1994); Hagberg and Meron (1994); Iron et al.

(2004); Madzvamuse et al. (2015a); Wei and Winter (2015). It is evident from the

literature on the subject of stability analysis that a very limited amount of work is

done on stability analysis in a coupled bulk-surface set-up. This is mainly due to

the extensive complexity associated in deriving the relevant conditions for diffusion-

driven instability when equations from the bulk are coupled with equations on the

surface. One of the first detailed studies on stability analysis of BSRDEs is con-

ducted in Madzvamuse et al. (2015a), where it is analytically proven that a certain

suitable parameter range exists for equations in the bulk that can induce spatial

pattern on the surface. For example Madzvamuse et al. (2015a) found that if a

suitable set of reaction kinetics are posed in the bulk, with appropriate choice of

parameters, then it is possible that the reaction-diffusion process inside the bulk

causes the pattern to emerge on the surface as well, which is found to occur regard-

less of the type of governing reaction kinetics on the surface. However, if a system

of reaction-diffusion equations is posed on the surface with parameters from Tur-

ing spaces, then a spatial pattern can evolve on the surface, which may induce the

same pattern on a layer of the bulk that is closest to the boundary. It means that

such case scenario initiates a patterned boundary layer of certain thickness, beyond

which the pattern is not induced in the interior of the bulk. This happens even

if the reaction kinetics or parameter values are not suitable for pattern formation



6

for reaction-diffusion system posed inside the bulk. It is also evident from findings

in Madzvamuse et al. (2015a), that the properties of pattern formation in the bulk

and on the surface have a continuous influence on each other during the process of

reaction and diffusion. The findings of Madzvamuse et al. (2015a) may be further

summarised by stating that no choice of reaction kinetics posed on the surface can

induce patterning in the whole volume of the bulk, however a certain reaction kinet-

ics with suitable parameter values can induce a boundary layer in which patterning

can be emerged without extension of the pattern to the interior of the bulk. All the

results in Madzvamuse et al. (2015a) are numerically supported by the finite ele-

ment method through a library called deal.II Bangerth et al. (2016). The current

thesis extends the approach taken in Madzvamuse et al. (2015a) to explore different

combinations of reaction kinetics on the surface and in the bulk. In particular, com-

binations of linear and non-linear reaction kinetics are investigated to understand

the pattern formation properties of reaction-diffusion equations posed on a coupled

bulk-surface type setting.

1.2 Biological motivation

Coupled systems of bulk-surface reaction-diffusion equations (BSRDEs) are one of

the several generalisations of reaction-diffusion theory to explore numerous applica-

tions in mathematical biology. Processes that involve bulk-surface reaction and/or

diffusion are found in various research disciplines such as experimental research in

organic chemistry, where a bulk-surface photografting process is used as an efficient

tool to create thick grafted layers of hydrophobic polymers in a very short span

of time Yang and R̊anby (1996a,b). Bulk-surface reaction kinetics are also used

to investigate the behaviour of chemical reactions in the interior of a cell, and to

explore how a set of specific reaction kinetics in the interior of a cell evolve to in-

fluence the surface of the cell Levine and Rappel (2005). We also find bulk-surface

reaction-diffusion equations that model a particular aspect of cellular functions with

relevance to chemical signalling. In Rätz and Röger (2014) a detailed mathemat-

ical model is developed for this particular investigation, to explore the dynamics

of pattern formation in the consequences of bulk-surface coupling reaction kinetics.
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Moreover, bulk-surface reaction-diffusion equations help to reveal the mechanism of

symmetry breaking which is one of the essential steps before the emergence of po-

larisation of biological cells or buds in yeast cells, the direction of cell motility Rätz

and Röger (2014). Bulk-surface reaction-diffusion system are also used to model

how surface active agents (surfactants) evolve on the surface of a system, in which

the chemical concentration is coupled through a given reaction with the substance

in the bulk Hahn et al. (2014). BSRDSs also arise in mathematical models for

the dynamics of lipid raft formation on biological membranes Garcke et al. (2016),

where the formation of the layer on a biological membrane is modelled as the con-

sequence of coupling conditions with species that react and diffuse in the bulk. A

further example of biological application employing bulk-surface reaction-diffusion

systems is presented in Bruce et al. (2007), where they model the mediation of

cellular metabolism and signalling in part by trans-membrane receptors that un-

dergo the process of diffusion in cell membrane. From the variety of applications

that employ BSRDSs, one realises that a robust study of such systems can provide

solutions to a great number of important questions in mathematical biology. This

in turn requires in-depth and rigorous study of BSRDSs in an attempt to achieve

extensive insight on the evolving properties of these models. Most of the published

work presented in the current section on the study of BSRDSs either investigate an

over-simplified case scenario with the aim of mathematical tractability or a complex

model with limitations on the robustness of analytical and numerical findings. This

study is therefore, motivated to explore BSRDSs with a realistic degree of complex-

ity through a four-component reaction-diffusion system, two of which are posed on

the surface and the other two are posed the bulk. The equations in the bulk and on

the surface also satisfy coupling conditions through the evolution dynamics on the

surface is influenced by the reaction-diffusion process inside the bulk. It can prove

of great importance to obtain insight on the pattern formation properties of such

systems. The tools to achieve this in the current thesis are the combined application

of linear stability theory, mode isolation and the finite element method.
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1.3 Notation and mathematical preliminaries

We start by introducing the required mathematical notations that are consistently

used throughout the thesis. Most of the mathematical notation conventions are

standard and used globally throughout the entire length of the thesis, unless other-

wise stated. We also present some definitions and theorems to serve as the mathem-

atical requirement associated with the derivations and proofs contained in the body

on this thesis.

1.3.1 Notations

Consider the set of real numbers R, we define the following concepts:

• A two-dimensional real space denoted by R2 and defined by R2 = {x = (x, y) :

x, y ∈ R}.

• A three-dimensional real space denoted by R3 and expressed by R3 = {x =

(x, y, z) : x, y, z ∈ R}.

Let u(x, y, z) denote a scalar valued function defined on a three-dimensional real

space and w = (w1, w2, w3) to be a vector valued function. The following operators

are defined as in Arfken and Weber (2005):

• The gradient operator is given by ∇u =
(
∂u
∂x
, ∂u
∂y
, ∂u
∂z

)T
.

• The divergence operator is defined by ∇ ·w = ∂w1

∂x
+ ∂w2

∂y
+ ∂w3

∂z
.

We denote ordinary derivatives using both the Leibniz notation du
dx
, d2u
dx2 , . . . , or the

prime notation y
′
, y
′′
, . . . . depending on the notational convenience.

1.3.2 Definitions in R3

Definition 1.3.1 (Laplace operator) Gilbarg and Trudinger (2015) Let Ω ⊂ R3

be a connected domain and u a C2(Ω) scalar function. The Laplace of u denoted by

∆u, is given by

∆u = ∇ · ∇u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.
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Definition 1.3.2 (Outward flux) Evans (1998) If ν denotes a unit vector in the

outward normal direction, then ∇ϕ·ν represents the outward flux which is also called

the directional derivative of the scalar valued function ϕ in the direction ν, which is

defined by

∇ϕ · ν =
∂ϕ

∂ν
.

Theorem 1.3.1 (Divergence theorem in Rn) Gantmacher et al. (1960) Let Ω

be a bounded domain with C1 boundary ∂Ω and let ν denote the unit outward normal

to ∂Ω. For any vector field u ∈ C1(Ω̄) we have∫
Ω

∇ · u dΩ =

∫
∂Ω

u · ν dS (1.1)

where dS indicates the (n− 1) dimensional area element in ∂Ω. In particular, if w

is a C2(Ω̄) function, we have by taking u = ∇w∫
Ω

∆w dΩ =

∫
∂Ω

∇w · ν dS =

∫
∂Ω

∂w

∂ν
dS. (1.2)

Definition 1.3.3 (Green’s formula in Rn) Gantmacher et al. (1960) Let Ω be a

domain in Rn with C1 boundary ∂Ω for which the divergence theorem holds and let

u be C2(Ω̄) function. If we select w = v∇u in the divergence theorem above, we

will have ∫
Ω

v∆u dΩ +

∫
Ω

∇u · ∇v dΩ =

∫
∂Ω

v
∂u

∂ν
dS, (1.3)

which is Green’s formula.

1.3.3 Definitions on surface

Definition 1.3.4 (Hypersurfaces) Dziuk and Elliott (2013a) Γ is called a hyper-

surface if it is defined by a C2 function in R2, such that there exists an open subset

U in R2 and a function f ∈ C2(U), with the properity that ∇f 6= 0 on U and

Γ = {x ∈ U : f(x) = 0}.

Definition 1.3.5 (The tangential gradient) Dziuk and Elliott (2013a) For a scalar

valued function u : Ω × (0, T ] → R we denote by the ∇Γu the tangential gradient

of u and it is defined by

∇Γu = ∇ū− (∇ū · ν)ν
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where ū is an smooth extension of u, ∇ū is the ordinary gradient of ū and ν is the

outward normal to the surface Γ.

Definition 1.3.6 (The Laplace-Beltrami operator) Dziuk and Elliott (2013a)

If tangential divergence denoted by ∇Γ· is applied to the tangential gradient of u,

that is, ∇Γu, this will provide us with The Laplace-Beltrami operator which is

∆Γu = ∇Γ · ∇Γu,

where the tangential divergence of a vector valued function is defined by

∇Γ · u = ∇ · u−
N+1∑
i=1

(∇ui · ν)νi.

1.3.4 A typical example of reaction kinetics

For illustrative purposes, we consider Schnakenberg reaction kinetics as an example

of classical reactions kinetics. It was introduced by Schnakenberg in (1979) and

it is also known as activator-depleted model or the Brusselator model Gierer and

Meinhardt (1972); Schnakenberg (1979); Lakkis et al. (2013); Prigogine and Lefever

(1968); Venkataraman et al. (2012). It is derived from a series of autocatalytic

reactions by given in Schnakenberg (1979) of the form

X
k2



k1

A, B
k4−→ Y, 2X + Y

k3−→ 3X.

Consider the concentrations of X,A,B and Y denoted by u, a1, b1 and v respectively.

By using the Law of Mass Action and non-dimensionalisation Madzvamuse (2000),

we obtain

f(u, v) = a− u+ u2v, and g(u, v) = b− u2v, (1.4)

with positive parameters a and b.

1.4 Thesis overview

This thesis is structured such that in Chapter 2 a detailed study is conducted through

the application of rigorous linear stability theory which is applied to analytically ex-

plore and predict the pattern formation properties associated to three bulk-surface



11

reaction-diffusion systems. This is done through investigating the necessary condi-

tions for diffusion-driven instability for each of these systems. Chapter 3 presents

deriving a set of sufficient conditions for diffusion-driven instability, which comple-

ments the necessary conditions of the previous chapter in order to insure that spatial

pattern is obtained. In Chapter 4 the theoretical formulation for the finite element

method is presented for each of the three systems in great detail. We also con-

duct a comparison of two types of time-stepping schemes in this chapter. Chapter

5 contains the numerical simulations obtained using Deal.II library to verify the

analytical predictions associated to the pattern formation properties for the three

systems. Chapter 6 concludes the thesis with some ideas for future extensions of the

current framework.
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Chapter 2

Analysis of Coupled System of

Bulk-Surface Reaction-Diffusion

Equations (BSRDEs)

In this chapter, we formulate and present the coupled systems of bulk-surface

reaction-diffusion equations on stationary volumes, in which two of the equations

are posed in the bulk and coupled with two other equations that are posed on the

surface bounding the corresponding stationary volume. Reaction-diffusion systems

posed both in the bulk and on the surface are coupled through linear Robin-type

boundary conditions. In this chapter we explore three different systems. In the first

system we analyse non-linear reaction kinetics both in the bulk and on the surface.

We present the details of the scaling process that makes all the systems studied in

this chapter dimensionless. Also, linear stability analysis is carried out both in the

absence and presence of diffusion, the necessary and sufficient conditions for steady

state to be stable are derived in the absence of diffusion. In the presence of diffusion,

the necessary conditions for diffusion-driven instability are derived. The theoretical

results for this system show that the bulk dynamics and the surface dynamics drive

pattern formation. The second system is non-linear reactions in the bulk and lin-

ear reactions on the surface. The process of re-scaling and rigorous linear stability

analysis both in absence and presence of diffusion is carried out to determine the

necessary conditions for diffusion-driven instability. The theoretical results for this

system show that only the bulk dynamics emerge spatial pattern with the surface
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dynamics undergoing a pattern-less evolution. In the last part of this chapter we

study another system with linear reactions in the bulk, which are coupled with non-

linear reactions on the surface. This system is also investigated through a similar

approach as the previous two systems and we find that neither equations in the bulk

nor those on the surface can emerge spatial pattern. Therefore, a system with such

characteristics is shown to always return to its constant and uniform steady state

upon small perturbation in the neighbourhood of the same.

2.1 Non-linear reaction kinetics in the bulk and

on the surface

Let Ω ⊂ R3 be a stationary domain with boundary that is a compact hypersurface

denoted by Γ ⊂ R2. Let u : Ω × (0, T ] → R and v : Ω × (0, T ] → R denote

the concentration of two chemical species which react and diffuse in Ω. Let r :

Γ × (0, T ] → R and s : Γ × (0, T ] → R denote two chemical species residing on

the surface. When the species from the bulk and surface are coupled only through

the reaction kinetics and there is no cross-diffusion, it means that all four species

diffuse independently of each other, which can be written in dimensional form as a

four-component reaction-diffusion system with independent diffusion rates. For the

first system we focus a non-linear reaction kinetics posed both in the bulk and on

the surface written in the form

 ut = Du∆u+ f(u, v),

vt = Dv∆v + g(u, v),
in Ω× (0, T ] rt = Dr∆Γr + f(r, s)− h1(u, v, r, s),

st = Ds∆Γs+ g(r, s)− h2(u, v, r, s),
on Γ× (0, T ]

(2.1)

with coupling boundary conditions ∂u
∂ν

= h1(u, v, r, s),

dΩ
∂v
∂ν

= h2(u, v, r, s),
on Γ× (0, T ]. (2.2)

We take Ω to be a three-dimensional fixed domain bounded by a compact surface

denoted by Γ. We assume that it is a boundary-free connected and closed surface.

The strictly positive constants Du > 0, Dv > 0, Dr > 0 and Ds > 0 are the
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independent diffusion rates corresponding to the variables indicated in the respective

subscripts of each D. We assume f(., .) and g(., .) to be non-linear functions. The

coupling conditions of the system are represented by h1 and h2 which are functions of

u, v, r and s. h1 and h2 denote reactions of substances througth boundary interface,

therefore they depend on all four species namely u, v, r and s. We explicitly define

h1(u, v, r, s) and h2(u, v, r, s) Madzvamuse et al. (2015a) to be

h1(u, v, r, s) = α1r − β1u− κ1v (2.3)

h2(u, v, r, s) = α2s− β2u− κ2v. (2.4)

The constants α1, α2, β1, β2, κ1 and κ2 are positive parameters of system (2.1). We

also assume that from all the species we initially have some positive quantity present,

which we denote by u0, v0, r0 and s0, which provides the initial conditions for system

(2.1) written as

u(x, 0) = u0(x), v(x, 0) = v0(x), r(x, 0) = r0(x), and s(x, 0) = s0(x).

In this system, we focus on the widely known activator-depleted model also known

as the Brusselator model (Gierer and Meinhardt, 1972; Schnakenberg, 1979; Lak-

kis et al., 2013; Prigogine and Lefever, 1968; Venkataraman et al., 2012). In the

Brusselator model the reaction kinetics are non-linear, given by

f(u, v) = k1 − k2u+ k3u
2v, and g(u, v) = k4 − k3u

2v, (2.5)

with positive parameters k1, k2, k3 and k4.

2.1.1 Non-dimensionalisation

Non-dimensionalisation is a process of rescaling in which partial or full removal of

units occurs from an equation by appropriate substitution of the rescaled variables

(Murray, 2001; Madzvamuse, 2000; George, 2012). We non-dimensionalise the sys-

tem of equations using a specific scale, in space or time, when we are interested

in observing the prospective solution within the specified scale range. In the new

system after non-dimensionalisation, the variables and parameters are all unitless

and the parameters will be fewer than in system (2.1). We introduce the non-

dimensional variables with a hat and these are written as û, v̂, r̂ and ŝ with the
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corresponding scaling factors u∗, v∗, r∗ and s∗ respectively. We present the process

of non-dimensionalisation only for the bulk-equations in three spatial diemnsions,

and the process is identical to non-dimensionalise the surface equations where a

two-dimensional surface is embedded in three dimensional space. We choose L to

denote the scaling factor for length (Lb for the bulk and Ls for the surface) and t∗

to denote the scaling factor for time (t∗b for the bulk and t∗s for the surface), The

dimensional and the non-dimensional variables Madzvamuse (2000), George (2012)

are related through

u = u∗û, v = v∗v̂, r = r∗r̂, s = s∗ŝ,

where for the bulk we use the scaling given by

x = Lbx̂, y = Lbŷ, z = Lbẑ, t = t∗bτ

and for the surface equations we use

x = Lsx̂, y = Lsŷ, z = Lsẑ, t = t∗sτ.

We substitute for each dimensional variable its corresponding product of non-dimensional

variable and the scaling factor leading to

u∗

t∗b

∂û

∂τ
= Du

u∗

L2
b

∆û+ k1 − k2u
∗û+ k3u

∗2v∗û2v̂, (2.6)

v∗

t∗b

∂v̂

∂τ
= Dv

v∗

L2
b

∆v̂ + k4 − k3u
∗2v∗û2v̂, in Ω̂× (0, T̂ ] (2.7)

r∗

t∗s

∂r̂

∂τ
= Dr

r∗

L2
s

∆Γ̂r̂ + k1 − k2r
∗r̂ + k3r

∗2s∗r̂2ŝ− α1r
∗r̂ + β1u

∗û+ κ1v
∗v̂, (2.8)

s∗

t∗s

∂ŝ

∂τ
= Ds

s∗

L2
s

∆Γ̂ŝ+ k4 − k3r
∗2s∗r̂2ŝ− α2s

∗ŝ+ β2u
∗û+ κ2v

∗v̂, on Γ̂× (0, T̂ ]

(2.9)

where Ω̂ and Γ̂ respectively denote unit cube and its six sided surface. The scaling

T̂ denotes the final time for the non-dimensional system. Multiplying (2.6), (2.7),

(2.8) and (2.9) by
t∗b
u∗
,

t∗b
v∗
, t∗s
r∗

and t∗s
s∗

respectively, provided that u∗, v∗, r∗ and

s∗ are non-zero, we obtain


∂û
∂τ

= Du
t∗b
L2
b
∆û+

t∗bk1

u∗
− k2t

∗
b û+ k3t

∗
bu
∗v∗û2v̂,

∂v̂
∂τ

= Dv
t∗b
L2
b
∆v̂ +

t∗bk4

v∗
− k3t

∗
bu
∗2û2v̂,

in Ω̂× (0, T̂ ] ∂r̂
∂τ

= Dr
t∗s
L2
s
∆Γ̂r̂ + t∗s

r∗
k1 − k2t

∗
s r̂ + k3t

∗
sr
∗s∗r̂2ŝ− α1t

∗
s r̂ + t∗s

r∗
β1u

∗û+ t∗s
r∗
κ1v

∗v̂,

∂ŝ
∂τ

= Ds
t∗s
L2
s
∆Γ̂ŝ+ t∗s

s∗
k4 − k3t

∗
sr
∗2r̂2ŝ− α2t

∗
sŝ+ t∗s

s∗
β2u

∗û+ t∗s
s∗
κ2v

∗v̂, on Γ̂× (0, T̂ ].

(2.10)
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We may choose to define t∗b =
L2
b

Du
and t∗s = L2

s

Dr
to obtain

 ∂û
∂τ

= ∆û+
L2
b

Du
[ k1

u∗
− k2û+ k3u

∗v∗û2v̂],

∂v̂
∂τ

= Dv

Du
∆v̂ +

L2
b

Du
[k4

v∗
− k3u

∗2û2v̂],
in Ω̂× (0, T̂ ] ∂r̂

∂τ
= ∆Γ̂r̂ + L2

s

Dr
[k1

r∗
− k2r̂ + k3r

∗s∗r̂2ŝ− α1r̂ + u∗

r∗
β1û+ v∗

r∗
κ1v̂],

∂ŝ
∂τ

= Ds

Dr
∆Γ̂ŝ+ L2

s

Dr
[k4

s∗
− k3r

∗2r̂2ŝ− α2ŝ+ u∗

s∗
β2û+ v∗

s∗
κ2v̂],

on Γ̂× (0, T̂ ].

(2.11)

Factoring out some parameters will result in writing the system as

 ∂û
∂τ

= ∆û+
L2
bk2

Du
[ k1

k2u∗
− û+ k3

k2
u∗2v∗û2v̂],

∂v̂
∂τ

= dΩ∆v̂ +
L2
bk2

Du
[ k4

k2v∗
− k3

k2
u∗2û2v̂],

in Ω̂× (0, T̂ ] ∂r̂
∂τ

= ∆Γ̂r̂ + L2
sk2

Dr
[ k1

r∗k2
− r̂ + k3

k2
r∗2s∗r̂2ŝ− α1

k2
r̂ + u∗

r∗k2
β1û+ v∗

r∗k2
κ1v̂],

∂ŝ
∂τ

= dΓ∆Γ̂ŝ+ L2
sk2

Dr
[ k4

s∗k2
− k3

k2
r∗2r̂2ŝ− α2

k2
ŝ+ u∗

s∗k2
β2û+ v∗

s∗k2
κ2v̂], on Γ̂× (0, T̂ ]

(2.12)

where dΩ = Dv

Du
and dΓ = Ds

Dr
express the non-dimensional positive ratios of diffusion

parameters. Requiring the terms k3

k2
u∗2 = 1 and k3

k2
r∗2 = 1 to be non-dimensional

respectively imply defining u∗ =
√

k2

k3
and r∗ =

√
k2

k3
. The scaling factors v∗ and s∗

through a similar process may be derived as

k3

k2

√
k2

k3

v∗ = 1⇒ v∗ =

√
k2

k3

and
k3

k2

√
k2

k3

s∗ = 1⇒ s∗ =

√
k2

k3

. (2.13)

Substituting (2.13) in system (2.12) results in

 ∂û
∂τ

= ∆û+ γΩ[a2 − û+ û2v̂],

∂v̂
∂τ

= dΩ∆v̂ + γΩ[b2 − û2v̂],
in Ω̂× (0, T̂ ] ∂r̂

∂τ
= ∆Γ̂r̂ + γΓ[a2 − r̂ + r̂2ŝ− ρ3r̂ + µû+ δ2v̂],

∂ŝ
∂τ

= dΓ∆Γ̂ŝ+ γΓ[b2 − r̂2ŝ− ρ4ŝ+ µ1û+ δ3v̂],
on Γ̂× (0, T̂ ]

(2.14)

where the new dimensionless parameters γΩ =
L2
bk2

Du
, γΓ = L2

sk2

Dr
, a2 =

k1

√
k3
k2

k2
, b2 =

k4

√
k3
k2

k2
, ρ3 = α1

k2
, ρ4 = α2

k2
, µ = β1

k2
, µ1 = β2

k2
, δ2 = κ1

k2
and δ3 = κ2

k2
are defined

as a consequence of the scaling choice used for u∗, v∗, r∗ and s∗. The boundary

and initial conditions are non-dimensionalised through the same choice of scaling

factors for all variables. For notational convenience we drop all the hats from the

non-dimensional variables to obtain the full system of BSRDEs given by (2.1) in its
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non-dimensional form as

 ∂u
∂t

= ∆u+ γΩ[a2 − u+ u2v],

∂v
∂t

= dΩ∆v + γΩ[b2 − u2v],
in Ω× (0, T ] ∂r

∂t
= ∆Γr + γΓ[a2 − r + r2s− ρ3r + µu+ δ2v],

∂s
∂t

= dΓ∆Γs+ γΓ[b2 − r2s− ρ4s+ µ1u+ δ3v],
on Γ× (0, T ]

(2.15)

with linear boundary conditions ∇u · ν = γΓ[ρ3r − µu− δ2v],

dΩ∇v · ν = γΓ[ρ4s− µ1u− δ3v].
on Γ× (0, T ], (2.16)

The non-dimensional initial conditions for all equations are given by

u(x, 0) = u0(x), v(x, 0) = v0(x), r(x, 0) = r0(x) and s(x, 0) = s0(x). (2.17)

The parameter γΩ is known as the reaction scaling parameter in the bulk and γΓ

is the reaction scaling parameter on the surface and both are non-dimensional.

2.1.2 Linear stability analysis in the absence of diffusion

Definition 2.1.1 (Uniform steady state):(Turing, 1952; Murray, 2001) A point

(u0, v0, r0, s0) is a uniform steady state of the coupled system of bulk-surface reaction-

diffusion equations (2.15) if it solves the nonlinear algebraic system given by

fi(u0, v0, r0, s0) = 0 , for all i = 1, 2, 3, 4 and satisfies the boundary conditions given

by (2.16).

We derive the uniform steady state by solving the algebraic system

f1(u, v, r, s) = γΩ(a2 − u+ u2v) = 0, (2.18)

f2(u, v, r, s) = γΩ(b2 − u2v) = 0, (2.19)

f3(u, v, r, s) = γΓ(a2 − r + r2s− ρ3r + µu+ δ2v) = 0, (2.20)

f4(u, v, r, s) = γΓ(b2 − r2s− ρ4s+ µ1u+ δ3v) = 0, (2.21)

such that the boundary conditions given by (2.16) are also satisfied:

γΓ[ρ3r − µu− δ2v] = 0, (2.22)

γΓ[ρ4s− µ1u− δ3v] = 0. (2.23)
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We add (2.18) and (2.19) to obtain

a2 − u0 − u2
0v0 + b2 − u2

0v0 = 0 ⇒ u0 = a2 + b2. (2.24)

Upon substituting u0 into (2.19), we find

v0 =
b2

(a2 + b2)2
.

Through a similar straightforward algebraic manipulations we also find the steady

state expressions for r0 and s0 in the form

r0 = a2 + b2, and s0 =
b2

(a2 + b2)2
. (2.25)

Therefore, the uniform steady state solution satisfying system (2.15) is of the form

(u0, v0, r0, s0) =
(
a2 + b2,

b2

(a2 + b2)2
, a2 + b2,

b2

(a2 + b2)2

)
. (2.26)

Substituting the uniform steady state (2.26) in (2.20) and (2.21), leads to state

condition on the parameters that is required for (2.26) to satisfy Definition 2.1.1.

The condition on the parameters is derived by direct substitution of (2.26) and

algebraic manipulations through the following steps

−ρ3(a2 + b2) + µ(a2 + b2) + δ2
b2

(a2 + b2)2
= 0,

⇒ (a2 + b2)3 = − b2δ2

µ− ρ3

. (2.27)

−ρ4
b2

(a2 + b2)2
+ µ1(a2 + b2) + δ3

b2

(a2 + b2)2
= 0,

⇒ (a2 + b2)3 = −b2(δ3 − ρ4)

µ1

. (2.28)

Combining (2.27) and (2.28) we obtain the required condition on the parameters in

the form

b2δ2

µ− ρ3

=
b2(δ3 − ρ4)

µ1

,

(µ− ρ3)(δ3 − ρ4) = δ2µ1. (2.29)

Therefore, in order for (2.26) to be a steady state of system (2.15), a condition on

the parameters is required to hold, which is

(µ− ρ3)(δ3 − ρ4)− δ2µ1 = 0. (2.30)

These findings are summarised in the following theorem.
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Theorem 2.1.1 (Existence and uniqueness of the uniform steady state) (Madzvamuse

et al., 2015a) The coupled system of BSRDEs (2.15) with conditions (2.16) admits

a unique non-zero steady state given by

(u0, v0, r0, s0) =
(
a2 + b2,

b2

(a2 + b2)2
, a2 + b2,

b2

(a2 + b2)2

)
, (2.31)

provided the following compatibility condition on the coefficients of the coupling terms

is satisfied

(µ− ρ3)(δ3 − ρ4)− δ2µ1 = 0. (2.32)

Proof 2.1.1 The proof of this theorem is provided by all the steps from (2.18) to

(2.30). �

The next step is to complete the linearisation in the absence of diffusion, which is

achieved by omitting the diffusion terms from system (2.15). It results in a four-

component system of ordinary differential equations written as

du

dt
= f1(u, v, r, s) = γΩ(a2 − u+ u2v) (2.33)

dv

dt
= f2(u, v, r, s) = γΩ(b2 − u2v) (2.34)

dr

dt
= f3(u, v, r, s) = γΓ(a2 − r + r2s− ρ3r + µu+ δ2v) (2.35)

ds

dt
= f4(u, v, r, s) = γΓ(b2 − r2s− ρ4s+ µ1u+ δ3v). (2.36)

We proceed to linearise the system of ordinary differential equations about the

steady state (u0, v0, r0, s0) using the Taylor expansion (Arfken and Weber, 2005)

for functions of four variables up to and including the linear terms, where we define

u(t) = u0 +εw1(t), v(t) = v0 +εw2(t), r(t) = r0 +εw3(t), s(t) = s0 +εw4(t), with

0 < ε << 1. The next step is to substitute the linear expansion into (2.33)-(2.36)

to obtain

ε
dw1(t)

dt
=
du(t)

dt
= γΩ[a2 − (u0 + εw1(t)) + (u0 + εw1(t))2(v0 + εw2)]

ε
dw2(t)

dt
=
dv(t)

dt
= γΩ[b2 − (u0 + εw1(t))2(v0 + εw2(t))].

ε
dw3(t)

dt
=
dr(t)

dt
= γΓ[a2 − (r0 + εw3(t)) + (r0 + εw3(t))2(s0 + εw4(t))

− ρ3(r0 + εw3(t)) + µ(u0 + εw1(t)) + δ2(v0 + εw2(t))]

ε
dw4(t)

dt
=
ds(t)

dt
= γΓ[b2 − (r0 + εw3(t))2(s0 + εw4(t))

− ρ4(s0 + εw4(t)) + µ1(u0 + εw1(t)) + δ3(v0 + εw2(t))].
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We can expand the brackets to write

ε
dw1(t)

dt
= γΩ[a2 − u0 − εw1(t) + u2

0v0 + v0ε
2w2

1(t) + 2u0v0εw1(t)

+ u2
0εw2(t) + ε3w2

1(t)w2(t) + 2u0ε
2w1(t)w2(t)],

ε
dw2(t)

dt
= γΩ[b2 − u2

0v0 − v0ε
2w2

1(t)− 2u0v0εw1(t)− u2
0εw2(t)

− ε3w2
1(t)w2(t)− 2u0ε

2w1(t)w2(t)],

ε
dw3(t)

dt
= γΓ[a2 − r0 − εw3(t) + r2

0s0 + ε2w2
3(t)s0 + 2r0s0εw3(t) + r2

0εw4(t)

+ ε3w2
3(t)w4(t) + 2r0ε

2w3(t)w4(t)− ρ3r0 − ρ3εw3(t) + µu0 + µεw1(t)

+ δ2v0 + δ2εw2(t)],

ε
dw4(t)

dt
= γΓ[b2 − r2

0s0 − ε2w2
3(t)s0 − 2r0s0εw3(t)− r2

0εw4(t)− ε3w2
3(t)w4(t)

− 2r0ε
2w3(t)w4(t)− ρ4s0 − ρ4εw4(t) + µ1u0 + µ1εw1(t) + δ3v0 + δ3εw2(t)].

(2.37)

Since we know that at the steady state f(u0, v0, r0, s0), g(u0, v0, r0, s0), h1(u0, v0, r0, s0)

and h2(u0, v0, r0, s0) are all equal zero, we can arrange the terms appropritely. Such

arrangement of terms is obtained as a step of linearisation process to write

ε
dw1(t)

dt
= γΩ[a2 − u0 + u2

0v0︸ ︷︷ ︸
f(u0,v0,r0,s0)=0

+εw1(t)(2u0v0 − 1) + εw2(t)(u2
0)

+ v0ε
2w2

1(t) + ε3w2
1(t)w2(t) + 2u0ε

2w1(t)w2(t)︸ ︷︷ ︸
O(ε2)

],

ε
dw2(t)

dt
= γΩ[ b2 − u2

0v0︸ ︷︷ ︸
g(u0,v0,r0,s0)=0

+εw1(t)(−2u0v0) + εw2(t)(−u2
0)

− v0ε
2w2

1(t)− ε3w2
1(t)w2(t)− 2u0ε

2w1(t)w2(t)︸ ︷︷ ︸
O(ε2)

],

ε
dw3(t)

dt
= γΓ[a2 − r0 + r2

0s0 − ρ3r0 + µu0 + δ2v0︸ ︷︷ ︸
f(u0,v0,r0,s0)−h1(u0,v0,r0,s0)=0

+ εw1(t)(µ) + εw2(t)(δ2) + εw3(t)(2r0s0 − ρ3 − 1) + εw4(t)(r2
0)

+ ε2w2
3(t)s0 + ε3w2

3(t)w4(t) + 2r0ε
2w3(t)w4(t)︸ ︷︷ ︸

O(ε2)

],
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ε
dw4(t)

dt
= γΓ[b2 − r2

0s0 − ρ4s0 + µ1u0 + δ3v0︸ ︷︷ ︸
g(u0,v0,r0,s0)−h2(u0,v0,r0,s0)=0

+ εw1(t)(µ1) + εw2(t)(δ3) + εw3(t)(−2r0s0) + εw4(t)(−r2
0 − ρ4)

− ε2w2
3(t)s0 − ε3w2

3(t)w4(t)− 2r0ε
2w3(t)w4(t)︸ ︷︷ ︸

O(ε2)

].

Performing the algebra, cancelling the expressions for steady state and ignoring

higher order terms will transform the equations into the following linearised system:

dw1(t)

dt
= γΩ[(2u0v0 − 1)w1(t) + u2

0w2(t)], (2.38)

dw2(t)

dt
= γΩ[−2u0v0w1(t)− u2

0w2(t)], (2.39)

dw3(t)

dt
= γΓ[µw1(t) + δ2w2(t) + (2r0s0 − ρ3 − 1)w3(t) + r2

0w4(t)], (2.40)

dw4(t)

dt
= γΓ[µ1w1(t) + δ3w2(t)− 2r0s0w3(t) + (−r2

0 − ρ4)w4(t)], (2.41)

which can be written in matrix notation in the form



dw1(t)
dt

dw2(t)
dt

dw3(t)
dt

dw4(t)
dt

 =


(2u0v0 − 1)γΩ u2

0γΩ 0 0

−2u0v0γΩ −u2
0γΩ 0 0

µγΓ δ2γΓ (2r0s0 − ρ3 − 1)γΓ r2
0γΓ

µ1γΓ δ3γΓ −2r0s0γΓ (−r2
0 − ρ4)γΓ




w1(t)

w2(t)

w3(t)

w4(t)

 ,

or equivalently

wt = Aw, (2.42)

where

w =


w1(t)

w2(t)

w3(t)

w4(t)

 ,
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A =


(2u0v0 − 1)γΩ u2

0γΩ 0 0

−2u0v0γΩ −u2
0γΩ 0 0

µγΓ δ2γΓ (2r0s0 − ρ3 − 1)γΓ r2
0γΓ

µ1γΓ δ3γΓ −2r0s0γΓ (−r2
0 − ρ4)γΓ



=


f1u f1v f1r f1s

f2u f2v f2r f2s

f3u f3v f3r f3s

f4u f4v f4r f4s

 .

This is a coupled system of four ordinary differential equations which has solutions

in the form

w = ceλt where eλt > 0, c 6= 0. (2.43)

Substituting (2.43) into (2.42) gives us

λceλt = Aceλt where eλt > 0, c 6= 0.

Cancelling eλt from both sides, we obtain

(λI−A)c = 0.

Since c 6= 0 then A is a singular matrix. This leads to the computation of the

discrete eigenvalues λ of system (2.42), which is obtained through solving the discrete

eigenvalue problem written as

∣∣∣∣∣∣∣∣∣∣∣∣

λ− γΩ(2u0v0 − 1) −γΩ(u2
0) 0 0

γΩ(2u0v0) λ+ γΩ(u2
0) 0 0

−γΓ(µ) −γΓ(δ2) λ− γΓ(2r0s0 − ρ3 − 1) −γΓ(r2
0)

−γΓ(µ1) −γΓ(δ3) γΓ(2r0s0) λ+ γΓ(r2
0 + ρ4)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(2.44)
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We find the eigenvalues of system (2.44) by stating and solving the characteristic

polynomial of the matrix, which is

(λ− γΩ(2u0v0 − 1))

∣∣∣∣∣∣∣∣∣
λ+ u2

0γΩ 0 0

−δ2γΓ λ− γΓ(2r0s0 − ρ3 − 1) −γΓ(r2
0)

−δ3γΓ γΓ(2r0s0) λ+ γΓ(r2
0 + ρ4)

∣∣∣∣∣∣∣∣∣ (2.45)

+(u2
0γΩ)

∣∣∣∣∣∣∣∣∣
2u0v0γΩ 0 0

−µγΓ λ− γΓ(2r0s0 − ρ3 − 1) −γΓ(r2
0)

−µ1γΓ γΓ(2r0s0) λ+ γΓ(r2
0 + ρ4)

∣∣∣∣∣∣∣∣∣ = 0. (2.46)

Proceeding with the usual steps we find that the eigenvalues of this matrix are the

roots of a degree-four polynomial given by(
λ− γΩ(2u0v0 − 1)

)[
(λ+ u2

0γΩ)
(

(λ− γΓ(2r0s0 − ρ3 − 1))(λ+ γΓ(r2
0 + ρ4)) + 2r3

0s0γ
2
Γ

)]
+(u2

0γΩ)
[
(2u0v0γΩ)

(
(λ− γΓ(2r0s0 − ρ3 − 1))(λ+ γΓ(r2

0 + ρ4)) + 2r3
0s0γ

2
Γ

)]
= 0.

(2.47)

Simplifying the brackets and factoring out the appropriate terms in (2.47) gives[(
λ− γΓ(2r0s0 − ρ3 − 1)

)(
λ+ γΓ(r2

0 + ρ4)
)

+ 2r3
0s0γ

2
Γ

]
[(
λ− γΩ(2u0v0 − 1)

)(
λ+ u2

0γΩ

)
+ 2u3

0v0γ
2
Ω

]
= 0,

which implies to solve two independent quadratic equations written as

(λ− γΓ(2r0s0 − ρ3 − 1))(λ+ γΓ(r2
0 + ρ4)) + 2r3

0s0γ
2
Γ = 0, (2.48)

and

(λ− γΩ(2u0v0 − 1))(λ+ u2
0γΩ) + 2u3

0v0γ
2
Ω = 0. (2.49)

In order to find the two eigenvalues in (2.48) we use the equation

λ2 − γΓ(2r0s0 − ρ3 − 1− r2
0 − ρ4)λ+ [2r3

0s0 − (2r0s0 − ρ3 − 1)(r2
0 + ρ4)]γ2

Γ = 0.

From this we obtain

2λ = γΓ(2r0s0 − ρ3 − 1− r2
0 − ρ4)

±
√
γ2

Γ(2r0s0 − ρ3 − 1− r2
0 − ρ4)2 − 4[2r3

0s0 − (2r0s0 − ρ3 − 1)(r2
0 + ρ4)]γ2

Γ.
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We see that for the real part of the two roots to be negative we require the conditions

γΓ(2r0s0 − ρ3 − 1− r2
0 − ρ4) < 0, and [2r3

0s0 − (2r0s0 − ρ3 − 1)(r2
0 + ρ4)]γ2

Γ > 0,

(2.50)

which can be equivalently written as

f3r + f4s < 0, and f3rf4s − f3sf4r > 0, (2.51)

in terms of the trace and determinant of the last (2× 2) block matrix of the system.

Similarly we can find the remaining two eigenvalues in (2.49) by using the equation

λ2 + γΩ(u2
0 − 2u0v0 + 1)λ+ (u2

0)γ2
Ω = 0.

From this we obtain

2λ = −γΩ(u2
0 − 2u0v0 + 1)±

√
γ2

Ω(u2
0 − 2u0v0 + 1)2 − 4(u2

0)γ2
Ω.

We see that for the real part of the final two roots to be negative we require the

conditions

γΩ(u2
0 − 2u0v0 + 1) > 0, and (u2

0)γ2
Ω > 0, (2.52)

which can be equivalently written as

f1u + f2v < 0, and f1uf2v − f1vf2u > 0, (2.53)

in terms of the trace and determinant the first (2 × 2) block matrix of the system.

Finally we set out the summary of the necessary and sufficient conditions for Re(λ) <

0 in Theorem 2.1.2.

Theorem 2.1.2 (Necessary and sufficient conditions for Re(λ) < 0 )(Turing, 1952;

Murray, 2001) The necessary and sufficient conditions such that the zeros of the

polynomial p4(λ) have Re(λ) < 0 are given by the following conditions:

f1u + f2v < 0, (2.54)

f1uf2v − f1vf2u > 0, (2.55)

f3r + f4s < 0, (2.56)

f3rf4s − f3sf4r > 0. (2.57)

Proof 2.1.2 The proof of this theorem consists of all the steps from (2.42) to

(2.53).�
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2.1.3 Linear stability analysis in the presence of diffusion

We start by analysing the system by taking the diffusion terms into account and

performing the linear stability analysis. We introduce a small perturbation in the

neighbourhood of the steady state namely (u0, v0, r0, s0). We introduce the small

perturbations up to the linear term in the form of

u(x, t) = u0 + εw1(x, t),

v(x, t) = v0 + εw2(x, t),

r(y, t) = r0 + εw3(y, t),

s(y, t) = s0 + εw4(y, t),

where 0 < ε << 1.

If we substitute these small perturbations into the system we obtain

∂u(x, t)

∂t
=
∂(u0 + εw1(x, t))

∂t
= ε

∂w1(x, t)

∂t
,

∂v(x, t)

∂t
=
∂(v0 + εw2(x, t))

∂t
= ε

∂w2(x, t)

∂t
,

∂r(y, t)

∂t
=
∂(r0 + εw3(y, t))

∂t
= ε

∂w3(y, t)

∂t
,

∂s(y, t)

∂t
=
∂(s0 + εw4(y, t))

∂t
= ε

∂w4(y, t)

∂t

and also

∆u(x, t) = ∆(u0 + εw1(x, t)) = ε∆w1(x, t),

dΩ∆v(x, t) = dΩ∆(v0 + εw2(x, t)) = dΩε∆w2(x, t),

∆Γr(y, t) = ∆Γ(r0 + εw3(y, t)) = ε∆Γw3(y, t),

dΓ∆Γs(y, t) = dΓ∆Γ(s0 + εw4(y, t)) = dΓε∆Γw4(y, t).

Similarly we substitute such perturbations in the reaction terms to obtain

ε
∂w1(x, t)

∂t
=
∂u(x, t)

∂t
= ε∆w1(x, t) + γΩ[a2 − (u0 + εw1(x, t))

+ (u0 + εw1(x, t))2(v0 + εw2(x, t))],

ε
∂w2(x, t)

∂t
=
∂v(x, t)

∂t
= dΩε∆w2(x, t) + γΩ[b2 − (u0 + εw1(x, t))2(v0 + εw2(x, t))],

ε
∂w3(y, t)

∂t
=
∂r(y, t)

∂t
= ε∆Γw3(y, t) + γΓ[a2 − (r0 + εw3(t))

+ (r0 + εw3(t))2(s0 + εw4(t))− ρ3(r0 + εw3(t)) + µ(u0 + εw1(t))

+ δ2(v0 + εw2(t))],
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ε
∂w4(y, t)

∂t
=
∂s(y, t)

∂t
= dΓε∆Γw4(y, t) + γΓ[b2 − (r0 + εw3(t))2(s0 + εw4(t))

− ρ4(s0 + εw4(t)) + µ1(u0 + εw1(t)) + δ3(v0 + εw2(t))].

Since we know that at the steady state f(u0, v0, r0, s0), g(u0, v0, r0, s0), h1(u0, v0, r0, s0)

and h2(u0, v0, r0, s0) are all equal zero, therefore we aim to collect terms in such a

way to determine the relative expressions for the steady state in each equation.

Furthermore, we aim to perform linear stability analysis,

ε∂w1(x,t)
∂t

= ε∆w1(x, t) + γΩ[a2 − u0 + u2
0v0︸ ︷︷ ︸

f(u0,v0,r0,s0)=0

+εw1(x, t)(2u0v0 − 1) + εw2(x, t)(u2
0)

+ v0ε
2w2

1(x, t) + ε3w2
1(x, t)w2(x, t) + 2u0ε

2w1(x, t)w2(x, t)︸ ︷︷ ︸
O(ε2)

],

ε∂w2(x,t)
∂t

= dΩε∆w2(x, t) + γΩ[ b2 − u2
0v0︸ ︷︷ ︸

f(u0,v0,r0,s0)=0

+εw1(x, t)(−2u0v0) + εw2(x, t)(−u2
0)

− v0ε
2w2

1(x, t)− ε3w2
1(x, t)w2(x, t)− 2u0ε

2w1(x, t)w2(x, t)︸ ︷︷ ︸
O(ε2)

],

ε∂w3(y,t)
∂t

= ε∆Γw3(y, t) + γΓ[a2 − r0 + r2
0s0 − ρ3r0 + µu0 + δ2v0︸ ︷︷ ︸

f(u0,v0,r0,s0)−h1(u0,v0,r0,s0)=0

+εw1(t)(µ) + εw2(t)(δ2) + εw3(t)(2r0s0 − ρ3 − 1) + εw4(t)(r2
0)

+ ε2w2
3(t)s0 + ε3w2

3(t)w4(t) + 2r0ε
2w3(t)w4(t)︸ ︷︷ ︸

O(ε2)

],

ε∂w4(y,t)
∂t

= dΓε∆Γw4(y, t) + γΓ[b2 − r2
0s0 − ρ4s0 + µ1u0 + δ3v0︸ ︷︷ ︸

g(u0,v0,r0,s0)−h2(u0,v0,r0,s0)=0

+εw1(t)(µ1) + εw2(t)(δ3) + εw3(t)(−2r0s0) + εw4(t)(−r2
0 − ρ4)

− ε2w2
3(t)s0 − ε3w2

3(t)w4(t)− 2r0ε
2w3(t)w4(t)︸ ︷︷ ︸

O(ε2)

].

Performing the algebra and cancelling the expressions for steady state and ignoring

higher order terms will transform the equations into the following linearised system:


∂w1(x,t)

∂t
= ∆w1(x, t) + γΩ[w1(x, t)(2u0v0 − 1) + w2(x, t)(u2

0)],

∂w2(x,t)
∂t

= dΩ∆w2(x, t) + γΩ[w1(x, t)(−2u0v0) + w2(x, t)(−u2
0)],

x ∈ Ω

(2.58)
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∂w3(y,t)
∂t

= ∆Γw3(y, t) + γΓ[w1(x, t)(µ) + w2(x, t)(δ2)

+w3(y, t)(2r0s0 − ρ3 − 1) + w4(y, t)(r2
0)],

∂w4(y,t)
∂t

= dΓ∆Γw4(y, t) + γΓ[w1(x, t)(µ1) + w2(x, t)(δ3)

+w3(y, t)(−2r0s0) + w4(y, t)(−r2
0 − ρ4)].

y ∈ Γ (2.59)

We also present the boundary conditions using the substitution of linearisation as ∂w1

∂ν
= γΓ[ρ3w3(y, t)− µw1(x, t)− δ2w2(x, t)],

dΩ
∂w2

∂ν
= γΓ[ρ4w4(y, t)− µ1w1(x, t)− δ3w2(x, t)].

on Γ× (0, T ]. (2.60)

For the remaining of this work, the analysis is restricted to circular and spherical

domains, where the cartesian coordinates are transformed to polar coordinates. The

coordinate transformation is done mainly for the convenience of applying the separ-

ation variables. Transformation of the Laplace operator from cartesian coordinates

to spherical coordinates is a well-known process in (Arfken and Weber, 2005; Chap-

lain et al., 2001) and it can be shown that in spherical coordinates the usual Laplace

is given by

∆u =
∂2u

∂r2
+

1

r2

∂2u

∂θ2
+

1

r2 sin2(θ)

∂2u

∂φ2
+

2

r

∂u

∂r
+

cos(θ)

r2 sin(θ)

∂u

∂θ
. (2.61)

Laplace-Beltrami operator on the surface is given by

∆Γu =
∂2u

∂θ2
+

1

sin2(θ)

∂2u

∂φ2
+

cos(θ)

sin(θ)

∂u

∂θ
, (2.62)

Solving the eigenvalue problem for the Laplace-Beltrami operator given by (2.62),

requires the method of separation of variables of the form

u(θ, φ) = Θ(θ)Φ(φ), (2.63)

which we subtitute into (2.62) to obtain

Θ
′′
Φ +

cos(θ)

sin(θ)
Θ
′
Φ +

1

sin2(θ)
ΘΦ

′′
= −k2ΘΦ. (2.64)

Dividing both sides by ΘΦ and multiplying by sin2(θ) results in

sin2(θ)
Θ
′′

Θ
+ cos(θ) sin(θ)

Θ
′

Θ
+

Φ
′′

Φ
= −k2 sin2(θ), (2.65)

whose solution satisfies the eigenvalue problem for the Laplace-Beltrami operator of

the form

∆Γu = −k2u, (2.66)
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with the eigenvalues k2 = l(l+ 1). The eigenfunction can be chosen as the spherical

harmonics in Chaplain et al. (2001) in the form

uml (θ, φ) = cml P
|m|
l (cos θ) exp(imφ), (2.67)

where (θ, φ) ∈ [0, π]× [0, 2π], l = 0, 1, 2, ... and |m| ≤ l. In Arfken and Weber (2005)

and Chaplain et al. (2001) the coefficients cml are given by

cml =

√
2l + 1

4π

(l −m)!

(l +m)!
,

and P
|m|
l (cos θ) are the associated Legendre function. Using the method of separa-

tion of variables, a close a form solution satisfying (2.58) and (2.59) can be written

in the form

w1(x, t) = ψkl,m(x)ul,m(t),

w2(x, t) = ψkl,m(x)vl,m(t),

w3(y, t) = φ(y)rl,m(t),

w4(y, t) = φ(y)sl,m(t),

which are substituted in (2.58) and (2.59), to obtain

ψkl,m(x)u
′

l,m(t) = ∆ψkl,m(x)ul,m(t),

ψkl,m(x)v
′

l,m(t) = ∆ψkl,m(x)vl,m(t),

φ(y)r
′

l,m(t) = ∆Γφ(y)rl,m(t),

φ(y)s
′

l,m(t) = ∆Γφ(y)sl,m(t).

For equations on the surface the relations may be written as

r
′

l,m(t)

rl,m(t)
=

∆Γφ(y)

φ(y)
= −l(l + 1),

s
′

l,m(t)

sl,m(t)
=

∆Γφ(y)

φ(y)
= −l(l + 1),

whereas for the bulk the relations take the form

u
′

l,m(t)

ul,m(t)
=

∆ψkl,m(x)

ψkl,m(x)
= −k2

l,m,

v
′

l,m(t)

vl,m(t)
=

∆ψkl,m(x)

ψkl,m(x)
= −k2

l,m.
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We consider a coordinate transformation in which a vector x may define every point

in the bulk by the variables r (radial distance from the origin) and y (a point on

the surface), with the relationship x = ry where r ∈ (0, 1), y ∈ Γ. The eigenvalue

of the problem on the surface depends on l itself, where we may consider positive

integers only, and m can be any integer with the restriction |m| ≤ l. This is because

the eigenvalues of both problems are equal at r = 1. We introduce the continuous

eigenvalue problems for the bulk as well as for the surface, in the form of

∆ψkl,m(r) = −k2
l,mψkl,m(r), 0 < r < 1 (2.68)

and

∆Γφ(y) = −l(l + 1)φ(y), y ∈ Γ. (2.69)

Note that if r = 1 for the eigenvalue problem in the bulk, then the eigenvalues

associated to the usual diffusion operator must coincide with those associated to the

Laplace-Beltrami operator on the surface, which means the relation

−k2
l,m = −l(l + 1)

must hold. Solutions to such a system can be written in power series representation

Arfken and Weber (2005), taking the form

w1(ry, t) =
∑

l∈N0,m∈Z

ul,m(t)ψkl,m(r)φl,m(y),

w2(ry, t) =
∑

l∈N0,m∈Z

vl,m(t)ψkl,m(r)φl,m(y),

w3(y, t) =
∑

l∈N0,m∈Z

rl,m(t)φl,m(y),

w4(y, t) =
∑

l∈N0,m∈Z

sl,m(t)φl,m(y),

(2.70)

which we substitute for w1, w2, w3 and w4 the power series solutions (2.70) to turn

the system of PDEs into a system of ODEs. First we note that on the surface we

have

∂w3

∂t
= ∆Γw3 + γΓ[w1(µ) + w2(δ2) + w3(2r2

0s0 − ρ3 − 1) + w4(r2
0)]

= ∆Γw3 + γΓ[(2r2
0s0 − 1)w3 + (r2

0)w4]− γΓ[−µw1 − δ2w2 + ρ3w3],

∂w3

∂t
=

d

dt
(rl,m(t)φl,m(y)),

=
drl,m(t)

dt
(φl,m(y)),
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drl,m(t)

dt
(φl,m(y)) = ∆Γrl,m(t)φl,m(y)

+γΓφl,m(y)[(2r2
0s0 − 1)rl,m(t) + (r2

0)sl,m(t)]

−γΓφl,m(y)[−µul,m(t)ψkl,m(1)− δ2vl,m(t)ψkl,m(1) + (ρ3)rl,m(t)].

(2.71)

Upon substituting (2.69) in (2.71) we are able to write the differential equation for

r in the form

drl,m(t)

dt
(φl,m(y)) = −rl,m(t)l(l + 1)φl,m(y)

+γΓφl,m(y)[(2r2
0s0 − 1)rl,m(t) + (r2

0)sl,m(t)]

−γΓφl,m(y)[−µul,m(t)ψkl,m(1)− δ2vl,m(t)ψkl,m(1) + (ρ3)rl,m(t)],

(2.72)

which upon cancelling φl,m(y) from both sides of (2.72), leads to

drl,m(t)

dt
= −rl,m(t)l(l + 1) + γΓ[(2r2

0s0 − 1)rl,m(t) + (r2
0)sl,m(t)]

−γΓ[−µul,m(t)ψkl,m(1)− δ2vl,m(t)ψkl,m(1) + (ρ3)rl,m(t)].
(2.73)

In order to obtain the differential equation for s, through a similar approach we

write

∂w4

∂t
= dΓ∆Γw4 + γΓ[w1(µ1) + w2(δ3) + w3(−2r2

0s0) + w4(r2
0 − ρ4)]

= dΓ∆Γw4 + γΓ[(−2r2
0s0)w3 − (r2

0)w4]− γΓ[−(µ1)w1 − (δ3)w2 + (ρ4)w4],

∂w4

∂t
=

d

dt
(sl,m(t)φl,m(y))

=
dsl,m(t)

dt
(φl,m(y)),

which results in

dsl,m(t)

dt
(φl,m(y)) = dΓ∆Γsl,m(t)φl,m(y)

+γΓφl,m(y)[(−2r2
0s0)rl,m(t)− (r2

0)sl,m(t)]

−γΓφl,m(y)[−(µ1)ul,m(t)ψkl,m(1)− (δ3)vl,m(t)ψkl,m(1) + (ρ4)sl,m(t)].

(2.74)

Substituting (2.69) in (2.74) we obtain

dsl,m(t)

dt
(φl,m(y)) = −dΓsl,m(t)l(l + 1)φl,m(y)

+γΓφl,m(y)[(−2r2
0s0)rl,m(t)− (r2

0)sl,m(t)]

−γΓφl,m(y)[−(µ1)ul,m(t)ψkl,m(1)− (δ3)vl,m(t)ψkl,m(1) + (ρ4)sl,m(t)].

(2.75)
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Cancelling φl,m(y) from both sides of (2.75), we obtain

dsl,m(t)

dt
= −dΓsl,m(t)l(l + 1) + γΓ[(−2r2

0s0)rl,m(t)− (r2
0)sl,m(t)]

−γΓ[−(µ1)ul,m(t)ψkl,m(1)− (δ3)vl,m(t)ψkl,m(1) + (ρ4)sl,m(t)].
(2.76)

Similarly we substitute the power series solution for the equations in the bulk

∂w1

∂t
= ∆w1 + γΩ[w1(2u0v0 − 1) + w2(u2

0)],

∂w1

∂t
=
d(ul,m(t))

dt
[ψkl,m(r)φl,m(y)],

⇒ d(ul,m(t))

dt
[ψkl,m(r)φl,m(y)] = ∆ul,m(t)ψkl,m(r)φl,m(y)

+γΩ[(2u0v0 − 1)ul,m(t)ψkl,m(r)φl,m(y)

+(u2
0)vl,m(t)ψkl,m(r)φl,m(y)].

(2.77)

Upon substituting (2.68) in (2.77) we are able to write the differential equation for

u in the form

d(ul,m(t))

dt
[ψkl,m(r)φl,m(y)] = −k2

l,mul,m(t)ψkl,m(r)φl,m(y)

+γΩ[(2u0v0 − 1)ul,m(t)ψkl,m(r)φl,m(y)

+(u2
0)vl,m(t)ψkl,m(r)φl,m(y)],

(2.78)

which upon cancelling ψkl,m(r) and φl,m(y) from both sides of (2.78), leads to

d(ul,m(t))

dt
= −k2

l,mul,m(t) + γΩ[(2u0v0 − 1)ul,m(t) + (u2
0)vl,m(t)]. (2.79)

In order to obtain the differential equation for v through a similar approach we write

∂w2

∂t
= dΩ∆w2 + γΩ[w1(−2u0v0) + w2(−u2

0)],

∂w2

∂t
=
d(vl,m(t))

dt
[ψkl,m(r)φl,m(y)],

⇒ d(vl,m(t))

dt
[ψkl,m(r)φl,m(y)] = dΩ∆vl,m(t)ψkl,m(r)φl,m(y)

+γΩ[(−2u0v0)ul,m(t)ψkl,m(r)φl,m(y)

−(u2
0)vl,m(t)ψkl,m(r)φl,m(y)],

(2.80)

Substituting (2.68) in (2.80) we obtain

d(vl,m(t))

dt
[ψkl,m(r)φl,m(y)] = −dΩk

2
l,mvl,m(t)ψkl,m(r)φl,m(y)

+γΩ[(−2u0v0)ul,m(t)ψkl,m(r)φl,m(y)

−(u2
0)vl,m(t)ψkl,m(r)φl,m(y)],

(2.81)
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Cancelling ψkl,m(r) and φl,m(y) from both sides of (2.81), results in

d(vl,m(t))

dt
= −dΩk

2
l,mvl,m(t) + γΩ[(−2u0v0)ul,m(t)− (u2

0)vl,m(t)]. (2.82)

We apply this substitution to the given boundary conditions to obtain

∂w1

∂ν
= γΓ[−µw1 − δ2w2 + (ρ3)w3],

∂w1

∂ν
= d

dν
(ul,m(t)ψkl,m(1)φl,m(y))

= ul,m(t)φl,m(y)
dψkl,m

(1)

dν
,

ul,m(t)φl,m(y)
dψkl,m

(1)

dν
= γΓ[−µul,m(t)ψkl,m(1)φl,m(y)− δ2vl,m(t)ψkl,m(1)φl,m(y)

+(ρ3)rl,m(t)φl,m(y)].

(2.83)

Cancelling φl,m(y) from both sides of (2.83), we have

ul,m(t)
dψkl,m(1)

dν
= γΓψkl,m(1)[−µul,m(t)− δ2vl,m(t)] + γΓ(ρ3)rl,m(t). (2.84)

Similarly

dΩ
∂w2

∂ν
= γΓ[−µ1w1 − δ3w2 + ρ4w4],

dΩ
∂w2

∂ν
= dΩ

d
dν

(vl,m(t)ψkl,m(1)φl,m(y)),

= dΩvl,m(t)φl,m(y)
dψkl,m

(1)

dν
,

dΩvl,m(t)φl,m(y)
dψkl,m

(1)

dν
= γΓ[−µ1ul,m(t)ψkl,m(1)φl,m(y)− δ3vl,m(t)ψkl,m(1)φl,m(y)

+(ρ4)sl,m(t)φl,m(y)].

(2.85)

Cancelling φl,m(y) from both sides of (2.85), we obtain

dΩvl,m(t)
dψkl,m(1)

dν
= γΓψkl,m(1)[−µ1ul,m(t)− δ3vl,m(t)] + γΓρ4sl,m(t), (2.86)

where
dψkl,m

(1)

dν
= ψ

′

kl,m
(1) . We rewrite (2.79) and (2.82), and we substitute (2.84)

and (2.86) into (2.73) and (2.76) respectively to obtain

d(ul,m(t))

dt
= [−k2

l,m + 2u0v0γΩ − γΩ]ul,m(t) + [u2
0γΩ]vl,m(t), (2.87)

d(vl,m(t))

dt
= [−2u0v0γΩ]ul,m(t) + [−dΩk

2
l,m − u2

0γΩ]vl,m(t), (2.88)

d(rl,m(t))

dt
= [−l(l + 1) + γΓ(2r2

0s0 − 1)]rl,m(t) + [r2
0γΓ]sl,m(t) + [−ψ′kl,m(1)]ul,m(t),

(2.89)

d(sl,m(t))

dt
= [−2r2

0s0γΓ]rl,m(t) + [−dΓl(l + 1)− r2
0γΓ]sl,m(t) + [−dΩψ

′

kl,m
(1)]vl,m(t),

(2.90)
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which can be written in the form

wt = Mw, (2.91)

where w and M are given by

w =


ul,m(t)

vl,m(t)

rl,m(t)

sl,m(t)



and

M =


−k2

l,m+2u0v0γΩ−γΩ u2
0γΩ 0 0

−2u0v0γΩ −dΩk
2
l,m−u2

0γΩ 0 0

−ψ′

kl,m
(1) 0 −l(l+1)+γΓ(2r

2
0s0−1) r2

0γΓ

0 −dΩψ
′

kl,m
(1) −2r2

0s0γΓ −dΓl(l+1)−r2
0γΓ

 .

This is a coupled system of four ODEs which has a solution in the form

(ul,m, vl,m, rl,m, sl,m)T = (u0
l,m, v

0
l,m, r

0
l,m, s

0
l,m)T eλt, (2.92)

⇒ w = w0eλt, (2.93)

where

w = (ul,m, vl,m, rl,m, sl,m)T , w0 = (u0
l,m, v

0
l,m, r

0
l,m, s

0
l,m)T 6= (0, 0, 0, 0)T , eλt > 0

and λ depends on k2 for equations in the bulk and it is a function of l for equations

on the surface. Substituting (2.93) into (2.91), to obtain

λw0eλt = Mw0eλt, where eλt > 0.

Cancelling eλt from both sides,

(λI−M)w0 = 0.

Since w0 = (u0
l,m, v

0
l,m, r

0
l,m, s

0
l,m)T 6= (0, 0, 0, 0)T , then M is a singular matrix. This

leads to the computation of the discrete eigenvalues λl,m associated to the system
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(2.91), which is obtained through solving the discrete eigenvalues polynomial given

by

|λI−M| = 0,

∣∣∣∣∣∣∣∣∣∣
λ+k2

l,m−γΩ(2u0v0−1) −γΩ(u
2
0) 0 0

γΩ(2u0v0) λ+dΩk
2
l,m+γΩ(u

2
0) 0 0

ψ
′

kl,m
(1) 0 λ+l(l+1)−γΓ(2r

2
0s0−1) −γΓ(r

2
0)

0 dΩψ
′

kl,m
(1) γΓ(2r

2
0s0) λ+dΓl(l+1)+γΓ(r

2
0)

∣∣∣∣∣∣∣∣∣∣
= 0.

Proceeding with the usual steps we find that the eigenvalues of this matrix are the

roots of a degree-four polynomial given by

[(λ+ l(l + 1)− γΓ(2r2
0s0 − 1))(λ+ dΓl(l + 1) + r2

0γΓ) + 2r3
0s0γ

2
Γ]

[(λ+ k2
l,m − γΩ(2u0v0 − 1))(λ+ dΩk

2
l,m + u2

0γΩ) + 2u3
0v0γ

2
Ω] = 0.

We observe that

(λ+ l(l + 1)− γΓ(2r2
0s0 − 1))(λ+ dΓl(l + 1) + r2

0γΓ) + 2r3
0s0γ

2
Γ = 0, (2.94)

or

(λ+ k2
l,m − γΩ(2u0v0 − 1))(λ+ dΩk

2
l,m + u2

0γΩ) + 2u3
0v0γ

2
Ω = 0. (2.95)

In order to find the two eigenvalues in (2.94) we use the equation

λ2 +
(
(1 + dΓ)l(l + 1)− γΓ(2r2

0s0 − r2
0 − 1)

)︸ ︷︷ ︸
M1

λ

+
(
dΓ[l(l + 1)]2 − l(l + 1)γΓ[dΓ(2r2

0s0 − 1)− r2
0] + r2

0γ
2
Γ

)︸ ︷︷ ︸
H1

= 0.

From this we obtain

2λ = −M1 ±
√

(M1)2 − 4H1.

Let M1 and H1 respectively denote the trace and the determinant of the last 2× 2

block matrix; then for the uniform steady state (2.26) to be unstable, we require

that

Re(λ(l(l + 1))) > 0 for some l(l + 1) > 0, (2.96)
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which can be found if and only if

M1 < 0 and H1 > 0, (2.97)

or

M1 > 0 and H1 < 0. (2.98)

Since 2r0s0−1− r2
0 < 0, then M1 > 0 from (2.98). A direct consequence of H1 < 0

is to write

H1(l(l + 1)) = dΓ[l(l + 1)]2 − l(l + 1)γΓ[dΓ(2r2
0s0 − 1)− r2

0] + r2
0γ

2
Γ, (2.99)

where we observe that H1(l(l+1)) < 0 if dΓ(2r2
0s0−1)− r2

0 > 0 which also implies

that dΓ 6= 1 because 2r0s0 − 1− r2
0 < 0 .

Therefore

dΓ(2r2
0s0 − 1)− r2

0 > 0 ⇒ dΓ 6= 1, (2.100)

which can be equivalently written as

dΓf3r + f4s > 0 ⇒ dΓ 6= 1, (2.101)

is necessary but not sufficient. We find the stationary point of H1 through differ-

entiating the equation (2.99) with respect to p = l(l + 1) and equate it to zero to

obtain

dH1(p)

dp
= 2dΓ[l(l + 1)]− γΓ[dΓ(2r2

0s0 − 1)− r2
0],

⇒ p =
γΓ[dΓ(2r2

0s0 − 1)− r2
0]

2dΓ

. (2.102)

Substituting (2.102) into (2.99), we obtain

H1(p) =
γ2

Γ[dΓ(2r2
0s0 − 1)− r2

0]2

4dΓ

− γ2
Γ[dΓ(2r2

0s0 − 1)− r2
0]2

2dΓ

+ r2
0γ

2
Γ < 0,

which implies that

r2
0γ

2
Γ <

γ2
Γ[dΓ(2r2

0s0 − 1)− r2
0]2

4dΓ

. (2.103)
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By simplifying (2.103) we obtain

[dΓ(2r2
0s0 − 1)− r2

0]2 − 4dΓr
2
0 > 0, (2.104)

which can be equivalently written as

[dΓf3r + f4s]
2 − 4dΓ(f3rf4s − f3sf4r) > 0. (2.105)

Similarly we can find the remaining two eigenvalues in (2.95) by using the equation

λ2 +
(
(dΩ+1)k2

l,m−γΩ(2u0v0−u2
0−1)

)︸ ︷︷ ︸
M2

λ+
(
k4
l,mdΩ−k2

l,mγΩ[dΩ(2u0v0−1)−u2
0]+u

2
0γ

2
Ω

)︸ ︷︷ ︸
H2

= 0.

(2.106)

From this we obtain

2λ = −M2 ±
√

(M2)2 − 4H2.

Let M2 and H2 respectively denote the trace and the determinant of the first 2× 2

block matrix; then, for the uniform steady state (2.26) to be unstable, we require

that

Re(λ(k2
l,m)) > 0 for some k2

l,m > 0, (2.107)

which can be found if and only if

M2 < 0 and H2 > 0, (2.108)

or

M2 > 0 and H2 < 0. (2.109)

Since 2u0v0−1−u2
0 < 0, then M2 > 0 from (2.109). A direct cnsequence of H2 < 0

is to write

H2(k2
l,m) = kl,m

4dΩ − kl,m2 γΩ[dΩ(2u0v0 − 1)− u2
0] + u2

0γ
2
Ω. (2.110)

where we observe that H2(k2
l,m) < 0 if dΩ(2u0v0 − 1)− u2

0 > 0 which implies that

dΩ 6= 1 because 2u0v0 − 1− u2
0 < 0 . It follows therefore that the condition

dΩ(2u0v0 − 1)− u2
0 > 0 ⇒ dΩ 6= 1, (2.111)
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which can be equivalently written as

dΩf1u + f2v > 0 ⇒ dΩ 6= 1, (2.112)

is necessary but not sufficient. We find the stationary point of H2 through differen-

tiating the equation (2.110) with respect to k2
l,m and equate it to zero to obtain

dH2(k2
l,m)

dk2
l,m

= 2kl,m
2dΩ − γΩ[dΩ(2u0v0 − 1)− u2

0],

⇒ k2
l,m =

γΩ[dΩ(2u0v0 − 1)− u2
0]

2dΩ

. (2.113)

Substituting (2.113) into (2.110), we obtain

H2(k2
l,m) =

γ2
Ω[dΩ(2u0v0 − 1)− u2

0]2

4dΩ

− γ2
Ω[dΩ(2u0v0 − 1)− u2

0]2

2dΩ

+ u2
0γ

2
Ω < 0.,

which implies that

u2
0γ

2
Ω <

γ2
Ω[dΩ(2u0v0 − 1)− u2

0]2

4dΩ

. (2.114)

By simplifying (2.114) we obtain

[dΩ(2u0v0 − 1)− u2
0]2 − 4dΩu

2
0 > 0, (2.115)

which can be equivalently written as

[dΩf1u + f2v]
2 − 4dΩ(f1uf2v − f1vf2u) > 0. (2.116)

Now we summarise the results in the following theorem.

Theorem 2.1.3 (Turing, 1952; Murray, 2001) The necessary conditions for diffusion-

driven instability for the coupled system of BSRDEs (2.15) and (2.16) are given by

f1u + f2v < 0, (2.117)

f1uf2v − f1vf2u > 0, (2.118)

f3r + f4s < 0, (2.119)

f3rf4s − f3sf4r > 0, (2.120)

and

dΩf1u + f2v > 0 and [dΩf1u + f2v]
2 − 4dΩ(f1uf2v − f1vf2u) > 0. (2.121)

and/or

dΓf3r + f4s > 0 and [dΓf3r + f4s]
2 − 4dΓ(f3rf4s − f3sf4r) > 0. (2.122)
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Proof 2.1.3 The proof of this theorem consists of all the steps from (2.91) to

(2.116).�

Theoretical predictions

We state from the analytical results about system the following theoretical predic-

tions.

• The bulk dynamics and the surface dynamics can both give rise to pattern

formation.

• From conditions (2.117) and (2.121) for the bulk, we write

f1u + f2v < 0 and dΩf1u + f2v > 0.

Combining the inequalities imply f1u < −f2v < dΩf1u, which means that

for diffusion-driven instability to occur, f1u < dΩf1u ⇒ dΩ > 1. Thus, the

inhibitor must diffuse faster than the activator, because dΩ = Dv

Du
where Dv is

the diffusion coefficient of the inhibitor and Du is the diffusion coefficient of

the activator. It is through a similar argument for diffusion-driven instability

to occur on the surface, one finds that dΓ > 1 is required. For a detailed

mathematical derivation of condition d > 1 the interested reader may consult

(Madzvamuse et al., 2010, 2015b, 2016).

• Taking dΩ = 1 and dΓ > 1, the surface dynamics may evolve into a spatial

pattern while the bulk dynamics can not produce patterns.

• Taking dΩ = 1 and dΓ = 1, the bulk and the surface dynamics fail to produce

patterns.

• Taking dΩ > 1 and dΓ = 1, the bulk dynamics may produce pattern while the

surface dynamics fail to do so, however, the bulk pattern can induce pattern

on the surface as well, even though the surface reaction-diffusion system can

not.

• The conditions (2.117) - (2.122) are necessary but not sufficient for the emer-

gence of an inhomogeneous spatial structure. Sufficient conditions will be

presented in Chapter 3.
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2.2 Linear reaction kinetics on the surface and

non-linear reaction kinetics in the bulk

In this system we focus on a system with linear reaction kinetics on the surface

and non-linear reaction kinetics in the bulk by considering the following coupled

bulk-surface reaction-diffusion equations

 ut = Du∆u+ f(u, v),

vt = Dv∆v + g(u, v),
in Ω× (0, T ] rt = Dr∆Γr − ar + bs− h1(u, v, r, s),

st = Ds∆Γs+ cr − ds− h2(u, v, r, s),
on Γ× (0, T ]

(2.123)

with coupling boundary conditions ∂u
∂ν

= h1(u, v, r, s),

dΩ
∂v
∂ν

= h2(u, v, r, s),
on Γ× (0, T ]. (2.124)

The constants a, b, c and d are strictly positive parameters of the system. The

coupling conditions of the system is represented in a similar way by h1 and h2 which

are functions of u, v, r and s, where h1 and h2 are given by

h1(u, v, r, s) = α1r − β1u− κ1v, (2.125)

h2(u, v, r, s) = α2s− β2u− κ2v. (2.126)

The constants α1, α2, β1, β2, κ1 and κ2 are also positive parameters. The initial

conditions are prescribed similar to those given for system (2.1), which are

u(x, 0) = u0(x), v(x, 0) = v0(x), r(x, 0) = r0(x), and s(x, 0) = s0(x).

In the bulk, we focus on an activator-depleted type model also known as the Brus-

selator model (Gierer and Meinhardt, 1972; Schnakenberg, 1979; Lakkis et al., 2013;

Prigogine and Lefever, 1968; Venkataraman et al., 2012). In the Brusselator model

the reaction kinetics are non-linear and are

f(u, v) = k1 − k2u+ k3u
2v, and g(u, v) = k4 − k3u

2v, (2.127)

with positive parameters k1, k2, k3 and k4.
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2.2.1 Non-dimensionalisation

We proceed with a similar approach to that used in Section 2.1.1 of scaling choices

to non-dimensionalise a system (2.123), which reads as

 ∂u
∂t

= ∆u+ γΩ[a2 − u+ u2v],

∂v
∂t

= dΩ∆v + γΩ[b2 − u2v],
in Ω× (0, T ] ∂r

∂t
= ∆Γr + γΓ[−r + q2s− ρ3r + u+ δ2v],

∂s
∂t

= dΓ∆Γs+ γΓ[c2r − j2s− ρ4s+ u+ δ3v].
on Γ× (0, T ],

(2.128)

The prescribed choices of rescaling consist of display dΩ = Dv

Du
, dΓ = Ds

Dr
, γΩ =

L2
bk2

Du
, γΓ = L2

sa
Dr
, a2 =

k1

√
k3
k2

k2
, b2 =

k4

√
k3
k2

k2
, q2 = bβ2

aβ1
, c2 = cβ1

aβ2
, j2 = d

a
, ρ3 = α1

a
, ρ4 =

α2

a
, δ2 = κ1

β1
, δ3 = κ2

β2
. The linear boundary conditions for material interface are

given by  ∇u · ν = γΓ[ρ3r − u− δ2v],

dΩ∇v · ν = γΓ[ρ4s− u− δ3v].
on Γ× (0, T ]. (2.129)

The non-dimensional initial conditions for all chemical concentrations are exactly

the same as prescribed for system (2.15).

2.2.2 Linear stability analysis in the absence of diffusion

We derive the uniform steady state as defined in Definition 2.1.1 by solving the

algebraic system

f1(u, v, r, s) = γΩ(a2 − u+ u2v) = 0, (2.130)

f2(u, v, r, s) = γΩ(b2 − u2v) = 0, (2.131)

f3(u, v, r, s) = γΓ(−r + q2s− ρ3r + u+ δ2v) = 0, (2.132)

f4(u, v, r, s) = γΓ(c2r − j2s− ρ4s+ u+ δ3v) = 0, (2.133)

such that the boundary conditions given by (2.129) are also satisfied:

γΓ[ρ3r − u− δ2v] = 0, (2.134)

γΓ[ρ4s− u− δ3v] = 0. (2.135)
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We found in Section (2.1.2) that equations (2.130) and (2.131) admit a uniform

non-zero steady state of the form

u0 = a2 + b2, (2.136)

v0 =
b2

(a2 + b2)2
. (2.137)

Substituting u0 and v0 in (2.134) and (2.135) we obtain steady-state values for r0

and s0, which read as

r0 =
(a2 + b2)3 + δ2b2

ρ3(a2 + b2)2
, (2.138)

s0 =
(a2 + b2)3 + δ3b2

ρ4(a2 + b2)2
. (2.139)

Therefore, the uniform steady state we wanted to compute is

(u0, v0, r0, s0) =
(
a2 + b2,

b2

(a2 + b2)2
,
(a2 + b2)3 + δ2b2

ρ3(a2 + b2)2
,
(a2 + b2)3 + δ3b2

ρ4(a2 + b2)2

)
. (2.140)

Substituting (2.140) in (2.132) leads to

−(a2 + b2)3 + δ2b2

ρ3(a2 + b2)2
+ q2

(a2 + b2)3 + δ3b2

ρ4(a2 + b2)2
) = 0

⇒ q2ρ3(a2 + b2)3 − ρ4(a2 + b2)3 = ρ4δ2b2 − q2ρ3δ3b2,

⇒ (a2 + b2)3 =
b2(ρ4δ2 − q2ρ3δ3)

q2ρ3 − ρ4

. (2.141)

Similarly substituting (2.140) in (2.133) we obtain

c2(
(a2 + b2)3 + δ2b2

ρ3(a2 + b2)2
)− j2(

(a2 + b2)3 + δ3b2

ρ4(a2 + b2)2
) = 0

⇒ c2ρ4(a2 + b2)3 − j2ρ3(a2 + b2)3 = j2ρ3δ3b2 − c2ρ4δ2b2,

⇒ (a2 + b2)3 =
b2(j2ρ3δ3 − c2ρ4δ2)

c2ρ4 − j2ρ3

. (2.142)

Combining (2.141) and (2.142) and requiring that (2.140) is a uniform steady state

according to Definition 2.1.1, reveals a parameters conditions on values of c2, q2 and

j2. This is achived by

b2(ρ4δ2 − q2ρ3δ3)

q2ρ3 − ρ4

=
b2(j2ρ3δ3 − c2ρ4δ2)

c2ρ4 − j2ρ3

⇒ (c2ρ4 − j2ρ3)(ρ4δ2 − q2ρ3δ3) = (q2ρ3 − ρ4)(j2ρ3δ3 − c2ρ4δ2),

c2q2 = j2. (2.143)

The results of these finding are summarised in Theorem 2.2.1.
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Theorem 2.2.1 (Existence and uniqueness of the uniform steady state): Madzvamuse

et al. (2015a) The coupled system of BSRDEs (2.128) with conditions (2.129) admits

a unique steady state given by

(u0, v0, r0, s0) =
(
a2 + b2,

b2

(a2 + b2)2
,
(a2 + b2)3 + δ2b2

ρ3(a2 + b2)2
,
(a2 + b2)3 + δ3b2

ρ4(a2 + b2)2

)
, (2.144)

provided the following compatibility condition on the cofficients of the coupling is

satisfied:

c2q2 = j2. (2.145)

Proof 2.2.1 The proof of this theorem consists of all the steps from (2.130) to

(2.143). �

The next step is to complete the linearisation in the absence of diffusion, which

is achieved by omitting the diffusion term from system (2.128). This results in a

four-component system of ordinary differential equations written as

ut = f1(u, v, r, s) = γΩ(a2 − u+ u2v) (2.146)

vt = f2(u, v, r, s) = γΩ(b2 − u2v) (2.147)

rt = f3(u, v, r, s) = γΓ(−r + q2s− ρ3r + u+ δ2v) (2.148)

st = f4(u, v, r, s) = γΓ(c2r − j2s− ρ4s+ u+ δ3v). (2.149)

We use the approach taken in section 2.1.2 to linearise system (2.146)-(2.149), which

reads as

dw1(t)

dt
= γΩ[(2u0v0 − 1)w1(t) + u2

0w2(t)] (2.150)

dw2(t)

dt
= γΩ[−2u0v0w1(t)− u2

0w2(t)] (2.151)

dw3(t)

dt
= γΓ[w1(t) + δ2w2(t) + (−ρ3 − 1)w3(t) + q2w4(t)] (2.152)

dw4(t)

dt
= γΓ[w1(t) + δ3w2(t) + c2w3(t) + (−ρ4 − j2)w4(t)], (2.153)

which can also be written in the form

wt = Aw, (2.154)
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where

w =


w1(t)

w2(t)

w3(t)

w4(t)

 ,

A =


γΩ(2u0v0 − 1) γΩ(u2

0) 0 0

γΩ(−2u0v0) γΩ(−u2
0) 0 0

γΓ(1) γΓ(δ2) γΓ(−ρ3 − 1) γΓ(q2)

γΓ(1) γΓ(δ3) γΓ(c2) γΓ(−ρ4 − j2)

 =


f1u f1v f1r f1s

f2u f2v f2r f2s

f3u f3v f3r f3s

f4u f4v f4r f4s

 .

The system (2.154) requires the solutions in the form

w = ceλt where eλt > 0, c 6= 0, (2.155)

which leads to the relevant discrete eigenvalue problem of 4× 4 algebraic system in

the form∣∣∣∣∣∣∣∣∣∣∣∣

λ− γΩ(2u0v0 − 1) −γΩ(u2
0) 0 0

γΩ(2u0v0) λ+ γΩ(u2
0) 0 0

−γΓ(1) −γΓ(δ2) λ+ γΓ(ρ3 + 1) −γΓ(q2)

−γΓ(1) −γΓ(δ3) −γΓ(c2) λ+ γΓ(ρ4 + j2)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.156)

The eigenvalues of system (2.156) are the roots of a degree-four polynomial which

can be factorised in the form

[((λ+ γΓ(ρ3 + 1))(λ+ γΓ(ρ4 + j2))− c2q2γ
2
Γ]

[(λ− γΩ(2u0v0 − 1))(λ+ u2
0γΩ) + 2u3

0v0γ
2
Ω] = 0.

(2.157)

Equation (2.157) gives rise to two quadratic equations of the form

((λ+ γΓ(ρ3 + 1))(λ+ γΓ(ρ4 + j2))− c2q2γ
2
Γ = 0, (2.158)

and

(λ− γΩ(2u0v0 − 1))(λ+ u2
0γΩ) + 2u3

0v0γ
2
Ω = 0, (2.159)

both of which are solved to obtain

2λ = −γΓ(ρ3 + ρ4 + j2 + 1)

±
√
γ2

Γ(ρ3 + ρ4 + j2 + 1)2 − 4(ρ3ρ4 + ρ4 + ρ3j2 + j2 − c2q2)γ2
Γ,

(2.160)
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and

2λ = −γΩ(u2
0 − 2u0v0 + 1)±

√
γ2

Ω(u2
0 − 2u0v0 + 1)2 − 4(u2

0)γ2
Ω. (2.161)

We see that for the real parts of the roots in (2.160) to be negative we require the

conditions

γΓ(ρ3 + ρ4 + j2 + 1) > 0 and (ρ3ρ4 + ρ4 + ρ3j2 + j2 − c2q2)γ2
Γ > 0, (2.162)

which can be equivalently written as

f3r + f4s < 0 and f3rf4s − f3sf4r > 0, (2.163)

in terms of the trace and determinant the corresponding 2 × 2 block matrix of

the system. Similarly for the roots in (2.161) to be negative we also require the

conditions

γΩ(u2
0 − 2u0v0 + 1) > 0, and (u2

0)γ2
Ω > 0, (2.164)

which can be equivalently written as

f1u + f2v < 0, and f1uf2v − f1vf2u > 0, (2.165)

in terms of the trace and determinate the corresponding 2× 2 block matrix. Finally

we set out the summary of the necessary and sufficient conditions for stability of

system (2.154) in Theorem 2.2.2.

Theorem 2.2.2 (Turing, 1952; Murray, 2001) The necessary and sufficient condi-

tions such that all the zeros of the polynomial p4(λ) have Re(λ) < 0 are given by

the following conditions:

f1u + f2v < 0, (2.166)

f1uf2v − f1vf2u > 0, (2.167)

f3r + f4s < 0, (2.168)

f3rf4s − f3sf4r > 0. (2.169)

Proof 2.2.2 The proof of this theorem consists of all the steps from (2.154) to

(2.165). �
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2.2.3 Linear stability analysis in the presence of diffusion

We start by analysing system (2.128) by taking the diffusion terms into account

and perform the stability analysis. Through identical steps to those taken in section

2.1.3, we obtain

d(ul,m(t))

dt
= [−k2

l,m + 2u0v0γΩ − γΩ]ul,m(t) + [u2
0γΩ]vl,m(t), (2.170)

d(vl,m(t))

dt
= [−2u0v0γΩ]ul,m(t) + [−dΩk

2
l,m − u2

0γΩ]vl,m(t), (2.171)

drl,m(t)

dt
= [−l(l + 1)− γΓ]rl,m(t) + [q2γΓ]sl,m(t) + [−ψ′kl,m(1)]ul,m(t), (2.172)

dsl,m(t)

dt
= [c2γΓ]rl,m(t) + [−dΓl(l + 1)− j2γΓ]sl,m(t) + [−dΩψ

′

kl,m
(1)]vl,m(t),

(2.173)

which can be written in the form

wt = Mw, (2.174)

where

w =


ul,m(t)

vl,m(t)

rl,m(t)

sl,m(t)


and

M =


−k2

l,m+2u0v0γΩ−γΩ u2
0γΩ 0 0

−2u0v0γΩ −dΩk
2
l,m−u2

0γΩ 0 0

−ψ′

kl,m
(1) 0 −l(l+1)−γΓ q2γΓ

0 −dΩψ
′

kl,m
(1) c2γΓ −dΓl(l+1)−j2γΓ


This is a coupled system of four ODEs which has the solution in the form

(ul,m, vl,m, rl,m, sl,m)T = (u0
l,m, v

0
l,m, r

0
l,m, s

0
l,m)T eλt,

⇒ w = w0eλt,
(2.175)

where

w = (ul,m, vl,m, rl,m, sl,m)T , w0 = (u0
l,m, v

0
l,m, r

0
l,m, s

0
l,m)T 6= (0, 0, 0, 0)T , eλt > 0,
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which leads to the relevant discrete eigenvalue problem of 4× 4 algebraic system in

the form∣∣∣∣∣∣∣∣∣∣
λ+k2

l,m−γΩ(2u0v0−1) −γΩ(u
2
0) 0 0

γΩ(2u0v0) λ+dΩk
2
l,m+γΩ(u

2
0) 0 0

ψ
′

kl,m
(1) 0 λ+l(l+1)+γΓ −γΓ(q2)

0 dΩψ
′

kl,m
(1) −γΓ(c2) λ+dΓl(l+1)+γΓ(j2)

∣∣∣∣∣∣∣∣∣∣
= 0.

(2.176)

Proceeding in the usual way we find that the eigenvalues of this matrix in (2.176)

are the roots of the polynomial, which can be factorised in the form[(
λ+ l(l + 1) + γΓ)(λ+ dΓl(l + 1) + j2γΓ

)
− c2q2γ

2
Γ

]
[(
λ+ k2

l,m − γΩ(2u0v0 − 1))(λ+ dΩk
2
l,m + u2

0γΩ

)
+ 2u3

0v0γ
2
Ω

]
= 0.

(2.177)

Equation (2.177) gives rise to two quadratic equations of the form

(λ+ l(l + 1) + γΓ)(λ+ dΓl(l + 1) + j2γΓ)− c2q2γ
2
Γ = 0, (2.178)

and

(λ+ k2
l,m − γΩ(2u0v0 − 1))(λ+ dΩk

2
l,m + u2

0γΩ) + 2u3
0v0γ

2
Ω = 0. (2.179)

In order to find the two eigenvalues in (2.178) we use the equation

λ2 +
(

(1 + dΓ)l(l + 1) + γΓ(j2 + 1)
)

︸ ︷︷ ︸
M1

λ

+
(
dΓ[l(l + 1)]2 + l(l + 1)γΓ(j2 + dΓ) + γ2

Γ(j2 − c2q2)
)

︸ ︷︷ ︸
H1

= 0,

from which we obtain

2λ = −M1 ±
√

(M1)2 − 4H1.

We observe that, since M1 > 0 and H1 > 0, the real part of the two roots are

negative. For the remaining two eigenvalues in (2.179), a similar procedure to (2.1.3)

is followed to obtain the necessary and sufficient conditions for the real part of the

eigenvalues to be positive, which reads as

dΩf1u + f2v > 0, and [dΩf1u + f2v]
2 − 4dΩ(f1uf2v − f1vf2u) > 0. (2.180)

Now we summarise the main result in Theorem 2.2.3.
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Theorem 2.2.3 (Turing, 1952; Murray, 2001) The necessary conditions for diffusion-

driven instability for the coupled system of BSRDEs (2.128) and (2.129) are given

by

f1u + f2v < 0, (2.181)

f1uf2v − f1vf2u > 0, (2.182)

f3r + f4s < 0, (2.183)

f3rf4s − f3sf4r > 0, (2.184)

and

dΩf1u + f2v > 0 and [dΩf1u + f2v]
2 − 4dΩ(f1uf2v − f1vf2u) > 0. (2.185)

Proof 2.2.3 The proof of this theorem consists of all the steps from (2.174) to

(2.180).�

Theoretical predictions

We state from the analytical results the following theoretical predictions.

• The bulk dynamics can give rise to patterning while the surface reaction-

diffusion system can not.

• From conditions (2.181) and (2.185) for the bulk, we write

f1u + f2v < 0 and dΩf1u + f2v > 0.

Combining the inequalities imply f1u < −f2v < dΩf1u, which means that for

diffusion-driven instability to occur, f1u < dΩf1u ⇒ dΩ > 1. For a detailed

mathematical derivation of condition d > 1 the interested reader may consult

(Madzvamuse et al., 2010, 2015b, 2016).

• dΩ > 1 means that inhibitor must diffuse faster than the activator, because

dΩ = Dv
Du

where Dv is the diffusion coefficient of the inhibitor and Du is the

diffusion coefficient of the activator.

• The conditions (2.181) - (2.185) are necessary but not sufficient for the emer-

gence of an inhomogeneous spatial structure. Sufficient conditions will be

presented in Chapter 3.
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2.3 Linear reaction kinetics in the bulk and non-

linear reaction kinetics on the surface

In this system we focus on a system with linear reaction kinetics in the bulk and

non-linear reaction kinetics on the surface by considering the following coupled bulk-

surface reaction-diffusion equations:

 ut = Du∆u− au+ bv,

vt = Dv∆v + cu− dv,
in Ω× (0, T ] rt = Dr∆Γr + (f(r, s)− h1(u, v, r, s)),

st = Ds∆Γs+ (g(r, s)− h2(u, v, r, s)),
on Γ× (0, T ]

(2.186)

with coupling boundary conditions ∂u
∂ν

= h1(u, v, r, s),

dΩ
∂v
∂ν

= h2(u, v, r, s).
on Γ× (0, T ] (2.187)

The coupling conditions of the system are represented in a similar way by h1 and

h2 which are functions of u, v, r and s, where h1 and h2 are given by

h1(u, v, r, s) = α1r − β1u− κ1v, (2.188)

h2(u, v, r, s) = α2s− β2u− κ2v. (2.189)

The constants α1, α2, β1, β2, κ1 and κ2 are also positive parameters. The initial

conditions are prescribed similar to those given for system (2.123), which are written

as

u(x, 0) = u0(x), v(x, 0) = v0(x), r(x, 0) = r0(x), and s(x, 0) = s0(x).

On the surface, we focus on an activator-depleted model also known as the Brus-

selator model (Gierer and Meinhardt, 1972; Schnakenberg, 1979; Lakkis et al., 2013;

Prigogine and Lefever, 1968; Venkataraman et al., 2012). In Brusselator model the

reaction kinetics are non-linear, given by

f(r, s) = k1 − k2r + k3r
2s, and g(r, s) = k4 − k3r

2s, (2.190)

with non-negative parameters k1, k2, k3 and k4.
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2.3.1 Non-dimensionalisation

We proceed with a similar approach that used in Section 2.1.1 of scaling choices to

the non-dimensionalised system (2.186), which reads as

 ∂u
∂t

= ∆u+ γΩ[−u+ qv],

∂v
∂t

= dΩ∆v + γΩ[c1u− zv],
in Ω× (0, T ] ∂r

∂t
= ∆Γr + γΓ[a1 − r + r2s− ρ1r + u+ v],

∂s
∂t

= dΓ∆Γs+ γΓ[b1 − r2s− ρ2s+ µu+ δv],
on Γ× (0, T ]

(2.191)

The prescribed choices of rescaling consist of display dΩ = Dv

Du
, dΓ = Ds

Dr
, γΩ =

L2
ba

Du
, γΓ = L2

sk2

Dr
, q = bκ1

aβ1
, c1 = cβ1

aκ1
, z = d

a
, a1 =

k1

√
k3
k2

k2
, b1 =

k4

√
k3
k2

k2
, ρ1 = α1

k2
, ρ2 =

α2

k2
, µ = β2

β1
, δ = κ2

κ1
. The linear boundary conditions are given by ∇u · ν = γΓ[ρ1r − u− v],

dΩ∇v · ν = γΓ[ρ2s− µu− δv].
on Γ× (0, T ] (2.192)

The non-dimensional initial conditions for all chemical concentrations are exactly

the same as prescribed for the system (2.15).

2.3.2 Linear stability analysis in the absence of diffusion

We derive the uniform steady state as defined in Definition 2.1.1 by solving the

algebraic system

f1(u, v, r, s) = γΩ(−u+ qv) = 0, (2.193)

f2(u, v, r, s) = γΩ(c1u− zv) = 0, (2.194)

f3(u, v, r, s) = γΓ(a1 − r + r2s− ρ1r + u+ v) = 0, (2.195)

f4(u, v, r, s) = γΓ(b1 − r2s− ρ2s+ µu+ δv) = 0, (2.196)

such that the boundary conditions given by (2.192) are also satisfied:

γΓ[ρ1r − u− v] = 0, (2.197)

γΓ[ρ2s− µu− δv] = 0. (2.198)

From (2.193) we observe that

u0 = qv0, (2.199)
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which we can substitute into (2.194) to obtain

v0(c1q − z) = 0. (2.200)

Considering (2.200) we have that either of c1q − z = 0 or v0 = 0 must hold for

the system to have a unique solution. From the first condition, namely, c1q− z = 0

we deduce that there are infinitely many steady states for all positive real values of

v0 and u0 . This case is not of much interest for further investigation, because it is

impractical. Subject to this observation, we only have to consider the case v0 = 0.

Substituting v0 = 0 into (2.199), we get that u0 = 0. Also, substituting u0 = 0 and

v0 = 0 into the given boundary conditions, we obtain that r0 = 0 and s0 = 0 , for

strictly non-negative parameters ρ1 and ρ2. We observe that the solution

(u0, v0, r0, s0) = (0, 0, 0, 0), (2.201)

is a steady state. However, if we substitute this steady state into the surface reaction

kinetics, it results in a contradiction, namely

a1 = 0 and b1 = 0. (2.202)

Therefore, in order for zero steady state to exist, we require some conditions on

parameters of the model, which are presented in theorem (2.3.1).

Theorem 2.3.1 (Parameter conditions for a uniform steady state) The coupled

system given by (2.191) with the boundary conditions given by (2.192) admits a

uniform steady state

(u0, v0, r0, s0) = (0, 0, 0, 0), (2.203)

under the conditions on the non-negative parameters such that

a1 = 0, b1 = 0 and c1q − z 6= 0. (2.204)

Proof 2.3.1 The proof of this theorem consists of all the steps from (2.193) to

(2.202).�



51

Remark 2.3.1 The steady state given in Theorem 2.3.1 is a trivial case, which does

not provide interesting mathematical implications. However we conduct stability

analysis for completeness purposes. In general we require non-zero steady states and

in fact all this is saying is that linear kinetics in the bulk is not that interesting. In

fact, one could simply take constant solutions in the bulk and study how these affect

the surface reaction-diffusion system.

In the absence of diffusion we note that u, v, r and s must satisfy

ut = f1(u, v, r, s) = γΩ(−u+ qv), (2.205)

vt = f2(u, v, r, s) = γΩ(c1u− zv), (2.206)

rt = f3(u, v, r, s) = γΓ(a1 − r + r2s− ρ1r + u+ v), (2.207)

st = f4(u, v, r, s) = γΓ(b1 − r2s− ρ2s+ µu+ δv). (2.208)

We use the approach taken in Section 2.1.2 to linearise system (2.205)-(2.208), which

reads as

dw1(t)

dt
= γΩ[−w1(t) + qw2(t)],

dw2(t)

dt
= γΩ[c1w1(t)− zw2(t)],

dw3(t)

dt
= γΓ[w1(t) + w2(t) + (2r0s0 − ρ1 − 1)w3(t) + r2

0w4(t)],

dw4(t)

dt
= γΓ[µw1(t) + δw2(t)− 2r0s0w3(t) + (−r2

0 − ρ2)w4(t)].

(2.209)

Substituting the uniform steady state in (2.209), we obtain

dw1(t)

dt
= γΩ[−w1(t) + qw2(t)] (2.210)

dw2(t)

dt
= γΩ[c1w1(t)− zw2(t)] (2.211)

dw3(t)

dt
= γΓ[w1(t) + w2(t) + (−ρ1 − 1)w3(t)] (2.212)

dw4(t)

dt
= γΓ[µw1(t) + δw2(t)− ρ2w4(t)]. (2.213)

which can also be written in the form

wt = Aw (2.214)
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where

w =


w1(t)

w2(t)

w3(t)

w4(t)

 ,

A =


γΩ(−1) γΩ(q) 0 0

γΩ(c1) γΩ(−z) 0 0

γΓ(1) γΓ(1) γΓ(−ρ1 − 1) 0

γΓ(µ) γΓ(δ) 0 γΓ(−ρ2)

 =


f1u f1v f1r f1s

f2u f2v f2r f2s

f3u f3v f3r f3s

f4u f4v f4r f4s

 .

This is a system of ordinary differential equations which has the solutions in the

form of

w = ceλt where eλt > 0, c 6= 0, (2.215)

which leads to the relevant discrete eigenvalue problem of a 4× 4 lgebraic system in

the form∣∣∣∣∣∣∣∣∣∣∣∣

λ− γΩ(−1) −γΩ(q) 0 0

−γΩ(c1) λ− γΩ(−z) 0 0

−γΓ(1) −γΓ(1) λ− γΓ(−ρ1 − 1) 0

−γΓ(µ) −γΓ(δ) 0 λ− γΓ(−ρ2)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.216)

The eigenvalues of system (2.216) are the roots of a degree-four polynomial which

can be factorised in the form

(λ+ γΓ(ρ1 + 1))(λ+ ρ2γΓ)[(λ+ γΩ)(λ+ zγΩ)− (c1qγ
2
Ω)] = 0, (2.217)

Two of those roots can be easily found by rating that

λ+ γΓ(ρ1 + 1) = 0, and λ+ ρ2γΓ = 0, (2.218)

from which it can be observed that those two roots are negative. In order to find

the remaining two eigenvalues we use the equation

(λ+ γΩ)(λ+ zγΩ)− (c1qγ
2
Ω) = 0, (2.219)
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[λ2 + γΩ(z + 1)λ+ (z − c1q)γ
2
Ω] = 0.

From this we obtain

2λ = −γΩ(z + 1)±
√
γ2

Ω(z + 1)2 − 4(z − c1q)γ2
Ω

We see that for the real part of the final two roots to be negative we require the

conditions

γΩ(z + 1) > 0, and (z − c1q)γ
2
Ω > 0, (2.220)

which can be equivalently written as

f1u + f2v < 0, and f1uf2v − f1vf2u > 0, (2.221)

in terms of the trace and determinant of the first 2× 2 block matrix of the system.

Finally we set out the summary of the necessary and sufficient conditions for Re(λ) <

0 in Theorem 2.3.2.

Theorem 2.3.2 (Turing, 1952; Murray, 2001) The necessary and sufficient condi-

tions such that the zeros of the polynomial p4(λ) have Re(λ) < 0 are given by the

following conditions:

f1u + f2v < 0, (2.222)

f1uf2v − f1vf2u > 0. (2.223)

Proof 2.3.2 The proof of this theorem consists of all the steps from (2.214) to

(2.221).�

2.3.3 Linear stability analysis in the presence of diffusion

We start by analysing the system taking the diffusion terms into account and perform

the stability analysis. Through identical steps to those taken in Section 2.1.3 we
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obtain

d(ul,m(t))

dt
= [−k2

l,m − γΩ]ul,m(t) + [qγΩ]vl,m(t),

d(vl,m(t))

dt
= [c1γΩ]ul,m(t) + [−dΩk

2
l,m − zγΩ]vl,m(t),

drl,m(t)

dt
= [−l(l + 1) + 2r0s0γΓ − γΓ]rl,m(t) + [r2

0γΓ]sl,m(t) + [−ψ′kl,m(1)]ul,m(t),

dsl,m(t)

dt
= [−2r0s0γΓ]rl,m(t) + [−dΓl(l + 1)− r2

0γΓ]sl,m(t) + [−dΩψ
′

kl,m
(1)]vl,m(t).

(2.224)

Substituting the uniform steady state in (2.224) equations, we obtain

d(ul,m(t))

dt
= [−k2

l,m − γΩ]ul,m(t) + [qγΩ]vl,m(t), (2.225)

d(vl,m(t))

dt
= [c1γΩ]ul,m(t) + [−dΩk

2
l,m − zγΩ]vl,m(t), (2.226)

drl,m(t)

dt
= [−l(l + 1)− γΓ]rl,m(t) + [0]sl,m(t) + [−ψ′kl,m(1)]ul,m(t), (2.227)

dsl,m(t)

dt
= [0]rl,m(t) + [−dΓl(l + 1)]sl,m(t) + [−dΩψ

′

kl,m
(1)]vl,m(t), (2.228)

which can be written in the form

wt = Mw, (2.229)

where

w =


ul,m(t)

vl,m(t)

rl,m(t)

sl,m(t)


and

M =


−k2

l,m − γΩ qγΩ 0 0

c1γΩ −dΩk
2
l,m − zγΩ 0 0

−ψ′kl,m(1) 0 −l(l + 1)− γΓ 0

0 −dΩψ
′

kl,m
(1) 0 −dΓl(l + 1)

 .

The system (2.229) has the solution in the form

(ul,m, vl,m, rl,m, sl,m)T = (u0
l,m, v

0
l,m, r

0
l,m, s

0
l,m)T eλt, (2.230)

⇒ w = w0eλt, (2.231)
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where

w = (ul,m, vl,m, rl,m, sl,m)T , w0 = (u0
l,m, v

0
l,m, r

0
l,m, s

0
l,m)T 6= (0, 0, 0, 0)T , eλt > 0,

which leads to the relevant discrete eigenvalue problem of a 4× 4 algebraic system

in the form∣∣∣∣∣∣∣∣∣∣∣∣

λ+ k2
l,m + γΩ −qγΩ 0 0

−c1γΩ λ+ dΩk
2
l,m + zγΩ 0 0

ψ
′

kl,m
(1) 0 λ+ l(l + 1) + γΓ 0

0 dΩψ
′

kl,m
(1) 0 λ+ dΓl(l + 1)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.232)

The eigenvalues of system (2.232) are the roots of a degree-four polynomial which

can be factorised in the form

(λ+ l(l + 1) + γΓ)(λ+ dΓl(l + 1))[(λ+ k2
l,m + γΩ)(λ+ dΩk

2
l,m + zγΩ)− (c1qγ

2
Ω)] = 0.

(2.233)

Two of those roots can be found by noting that

λ+ (l(l + 1) + γΓ) = 0, (2.234)

λ+ dΓl(l + 1) = 0, (2.235)

from which it can be observed that those two roots are negative. For the remaining

two eigenvalues we solve the quadratic equation

[(λ+ k2
l,m + γΩ)(λ+ dΩk

2
l,m + zγΩ)− (c1qγ

2
Ω)] = 0. (2.236)

Expanding the brackets we write this equation in the form

λ2 + (dΩk
2
l,m + zγΩ + k2

l,m + γΩ)︸ ︷︷ ︸
N

λ+ (k4
l,mdΩ + zγΩk

2
l,m + dΩγΩk

2
l,m + γ2

Ω(z − c1q))︸ ︷︷ ︸
H

= 0.

⇒ λ2
l,m +Nλl,m +H = 0, (2.237)

where N and H are given by

N = dΩk
2
l,m + zγΩ + k2

l,m + γΩ, (2.238)

H = k4
l,mdΩ + zγΩk

2
l,m + dΩγΩk

2
l,m + γ2

Ω(z − c1q). (2.239)
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For the uniform steady state to be unstable, we require the real part of the eigen-

values to be strictly positive; that is,

Re(λl,m(k2
l,m)) > 0 for some k2

l,m > 0. (2.240)

Solving (2.237) we can find that Re(λl,m(k2
l,m)) > 0 if and only if either of the

following conditions hold:

N < 0 and H > 0, (2.241)

or

N > 0 and H < 0. (2.242)

Since every terms in the expression for N is clearly strictly positive, therefore we

must proceed with requiring H < 0.

In the expression for H we know that

γ2
Ω(z − c1q) > 0, (2.243)

from the second condition in Theorem 2.3.2. The remaining terms in the expression

for H are strictly positive by definition. We notice that the strict positivity of

N and H implies that both the remaining roots are negative, which excludes the

existence of positive real roots as eigenvalues. This analysis allows us to conclude

the results in Theorem 2.3.3.

Theorem 2.3.3 The zero steady state for bulk-surface reaction-diffusion system

with linear reaction kinetics in the bulk and non-linear reaction kinetics on the sur-

face is stable.

Proof 2.3.3 The proof of this theorem consists of all the steps from (2.229) to

(2.243).�

2.4 Conclusion

If non-linear reaction kinetics are posed both in the bulk and on the surface, then

linear stability theory suggests that both the bulk and surface dynamics are capable

of producing spatial patterning, provided that Turing conditions are satisfied and



57

furthermore, the non-dimensional diffusion ratios satisfy dΩ > 1 and dΓ > 1. If

dΩ = 1 is chosen with dΓ > 1, then the coupled system only produces a pattern on

the surface with equations in the bulk returning to a constant steady state with no

pattern. However, if dΓ = 1 and dΩ > 1 are chosen, then the bulk equations are

capable to form a spatial pattern and any pattern that emerges on the surface under

this case scenario is the consequence of coupling conditions relating bulk equations

to the equations posed on the surface. This means that the dynamics on the surface

under such a setting are not capable to produce a pattern. It is the same effect that

if dΩ = dΓ = 1 is chosen then the resulting coupled system is not able to produce

any pattern at all. If a set of non-linear reaction kinetics are posed in the bulk

that are also coupled with a set of linear reaction kinetics posed on the surface then

given that dΩ > 1 the equations in the bulk are predicted to evolve spatial pattern

in the bulk with no pattern produced by the linear reaction kinetics on the surface.

The spatial pattern may also extend to emerge on the surface, which is purely due

to the coupling conditions imposed at the boundary interface. This is due to the

surface in discretised domain being defined as the outer face of the elements in

the bulk. If the non-linear reaction kinetics are posed on the surface with linear

reaction kinetics in the bulk which are coupled through linear coupling conditions,

then the system is expected to evolve a definite behaviour with no spatial pattern

at all, which is to converge uniformly to a constant and homogeneous steady state.

It must be noted that all the conditions derived for diffusion-driven instability in

this chapter are necessary but not sufficient conditions. In order to insure that

diffusion-driven instability occurs under either of settings prescribed in this chapter,

a further requirement in the form of sufficient conditions must be fulfilled, which

is to isolate the excitable wavenumber in order for the pattern to be formed. The

next chapter is devoted to presenting a numerical procedure on how to isolate the

excitable wavenumber to provide sufficient conditions for spatial pattern formation.
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Chapter 3

Mode Isolation and Parameter

Space Generation

In this chapter we proceed with the process of deriving sufficient conditions for

diffusion-driven instability that complement the necessary conditions found in Chapter

2 to ensure the emergence of spatial patterns. As the standard requirement of this

process, we start by extracting excitable wavenumber through the analysis of critical

diffusion ratio. Wavenumber is an eigenmode of the Laplace operator that satisfies

the criteria for diffusion-driven instability. The results for mode isolation for the ex-

citable wavenumber are employed to computationally find Turing parameter spaces

on the real positive parameter plane. We also present the process of coordinate

transformation from cartesian to spherical of the usual Laplace operator. Finally,

we analyse and compare the shift and dependence of Turing spaces for equations in

the bulk with those Turing spaces that are derived for equations on the surface.

3.1 Critical diffusion ratio and excitable wavenum-

ber

For the bulk, the conditions (2.117), (2.118) and (2.121) are necessary but not

sufficient for the emergence of an inhomogeneous spatial structure. The sufficient

condition requires the existence of some finite wavenumber k2 ∈ (k2
−, k

2
+), where k2

±

are the roots of the equation H2(k2) = 0 as in (2.110). Also, for the surface the

conditions (2.119), (2.120) and (2.122) are necessary but not sufficient for diffusion-
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driven instability and the sufficient condition requires the existence of some finite

wavenumber l(l + 1) ∈ (l(l + 1)−, l(l + 1)+) where l(l + 1)± are the roots of the

equation H1(l(l + 1)) = 0 as in (2.99). When the minimum H2(k2) = 0, we require

that

f1uf2v − f1vf2u =
(dcf1u + f2v)

2

4dc
. (3.1)

For fixed parameters on the kinetics in the bulk, the critical diffusion dc is required

to satisfy

f1uf2v − f1vf2u =
d2
cf

2
1u + 2dcf1uf2v + f 2

2v

4dc
. (3.2)

Multiplying both sides of (3.2) by 4dc, we obtain

4dcf1uf2v − 4dcf1vf2u = d2
cf

2
1u + 2dcf1uf2v + f 2

2v, (3.3)

which can be simplified to

d2
cf

2
1u − (2f1uf2v − 4f1vf2u)dc + f 2

2v = 0. (3.4)

Corresponding to the critical diffusion coefficient dc, there exists a critical wavenum-

ber k2
c , which is the root of the polynomial

H2(k2
l,m) = kl,m

4dΩ − kl,m2 γΩ[dΩf1u + f2v] + (f1uf2v − f1vf2u)γ
2
Ω = 0. (3.5)

The expression for k2
c , given as the root of (3.5) is

kc
2 =

γΩ[dcf1u + f2v]±
√
γ2

Ω[dcf1u + f2v]2 − 4dc(f1uf2v − f1vf2u)γ2
Ω

2dc
.

From (3.3), which is substituted into the expression for k2
c to obtain

k2
c = ±γΩ

√
(f1uf2v − f1vf2u)

dc
. (3.6)

This is the critical wavenumber, the sufficient condition for Turing instability with

the necessary conditions (2.117), (2.118) and (2.121) satisfied, which leads the sys-

tem to evolve into spatial pattern. Similarly, the critical diffusion coefficient dc on

the surface can be obtained from the following equation:

d2
cf

2
3r − (2f3rf4s − 4f3sf4r)dc + f 2

4s = 0. (3.7)
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The critical wavenumber on the surface is given by

l(l + 1)c = ±γΓ

√
(f3rf4s − f3sf4r)

dc
, (3.8)

which provides the sufficient condition for diffusion-driven instability on the surface.

For fixed kinetics parameter values a2 = 0.1, b2 = 0.9 Murray (2001), we use the

first derivatives of f1, f2, f3 and f4 which are given by

f1u = 2u0v0 − 1, f1v = u2
0,

f2u = −2u0v0, f2v = −u2
0,

f3u = 1, f3v = δ2, f3r = −(ρ3 + 1), f3s = q2,

f3u = 1, f3v = δ3, f3r = c2, f3s = −(ρ4 + j2).

Since

u0 = a2 + b2 = 0.1 + 0.9 = 1, v0 =
b2

(a2 + b2)2
= 0.9, (3.9)

therefore, we obtain

f1u = 0.8, f1v = 1, f2u = −1.8, f2v = −1.

Note that f1u + f2v = −0.2 < 0 and f1uf2v − f1vf2u = 1 > 0 hold so that the

conditions (2.117) and (2.118) are satisfied. Substituting these values into (3.4), one

obtains

d2
c(0.64)− (5.6)dc + 1 = 0,

for which the two roots are given by

dc = 8.56762745781 > 1, (3.10)

dc = 0.18237254218 < 1. (3.11)

Since the diffusion coefficient must be greater than 1, then we only take the critical

diffusion coefficient ratio as dc = 8.56762745781. Figure 3.1a shows the plot of

H2(k2) as a function of k2, which is defined by (2.110). All three possibilities for

diffusion coefficient d with respect to the critical diffusion dc are plotted. It can

be observed that only when d > dc, H2(k2) becomes negative for a finite range of

k2 > 0. Also Figure 3.1b shows the plot of real part of λ as a function of k2, which
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(a) (b)

Figure 3.1: Plot of H2(k2) defined by (2.110) is shown in (a). When d > dc, then

H2(k2) < 0 for a finite range of k2 > 0. Plot of the largest of the eigenvalue λ(k2)

from (2.106) as a function of k2 is shown in (b). When d > dc, there is a range of

wavenumbers k2
− < k2 < k2

+ which are linearly unstable.

is defined by (2.106). It can be observed that only when d > dc we have a region in

k2 for which the value of Reλ(k2) is positive. This means that when d > dc, there

exist certain wavenumbers k2 on a finite region which correspond to the frequency

of the spatial (Turing) pattern.

To verify that d < dc does not allow Turing pattern to evolve, the necessary

conditions are tested on the parameter space (a2, b2) where a2 and b2 are the positive

constants of the Schnakenberg reaction kinetics. It is found that when d < dc, there

is no region in the parameter space that would become unstable due to diffusion in

the system. This is shown in Figure 3.2a. Similarly when d > dc, then we see that

the unstable region is formed in the parameter space (yellow region in Figure 3.2b),

which corresponds to the parameter values that would result in the system to evolve

into a Turing pattern.
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(a) (b)

Figure 3.2: When d < dc, then there is no region in parameter space that corresponds

to Turing instability, which is shown in (a). When d > dc, then the diffusion-driven

instability region in parameter space exists that corresponds to Turing instability

and is shown in (b).
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3.2 Mode isolation in the bulk

With the help of linear stability analysis, certain modes can be isolated to help find

the admissible set of parameter values dΩ and γΩ for diffusion-driven instability. The

necessary conditions for diffusion-driven instability found in Chapter 2 are

f1u + f2v < 0, (3.12)

f1uf2v − f1vf2u > 0, (3.13)

dΩf1u + f2v > 0 and [dΩf1u + f2v]
2 − 4dΩ(f1uf2v − f1vf2u) > 0. (3.14)

One of the sufficient conditions however, for diffusion-driven instability is that the

eigenvalues of the Laplace operator should fall in the real interval between the small

and the large eigenvalues of the system. It means that

γL = k2
− < k2 < k2

+ = γR (3.15)

must hold with L and R expressed by

L =
(dΩf1u + f2v)−

√
(dΩf1u + f2v)2 − 4dΩ(f1uf2v − f1vf2u)

2dΩ

, (3.16)

and

R =
(dΩf1u + f2v) +

√
(dΩf1u + f2v)2 − 4dΩ(f1uf2v − f1vf2u)

2dΩ

, (3.17)

respectively. Therefore, for sufficient condition to exists for diffusion-driven instabil-

ity, the excitable modes must exist and belong to the interval (3.15). Consider the

one-dimensional case, the eigenvalues are k2
l = l2π2. In order to find the excit-

able wavenumbers, in addition to the necessary conditions (3.12), (3.13), (3.14) and

(3.15), one requires the sufficient condition of the form

k2
l−1 < k2

− < k2
l < k2

+ < k2
l+1. (3.18)

Figure 3.3 represents the real part of the larger eigenvalue as a function of k2.

In Figure 3.3 the parameter dΩ = 10 was fixed and the value of γΩ was varied

according to the values in Madzvamuse (2000), which suggested that when γΩ = 15

and γΩ = 60 then no wavenumber excited, however if γΩ = 30 and γΩ = 90 then

only one wavenumber is excited for each value which are k2
1 and k2

2 respectively, with

k1 = π and k2 = 2π. For γΩ = 187, there are two excitable wavenumbers which are

of the form k2
2 = (2π)2 and k2

3 = (3π)2.
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Figure 3.3: Plot of the real part of eigenvalue λ(k2) from (2.106) as a function of

k2. For fixed dΩ = 10 and increasing γΩ, we see that when γΩ = 30 there is only one

wavenumber excited (k2
1 = π2), when γΩ = 90 there is only one wavenumber excited

(k2
2 = (2π)2). There are two excitable wavenumbers namely k2

2 = (2π)2 and k2
3 =

(3π)2 when γΩ = 187.
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A similar approach is applied to the case in two dimensions. The values of dΩ

and γΩ are computed using the same algorithm used by Madzvamuse (2000). We

are interested in finding combination of dΩ and γΩ, such that the curve Re(λ(k2))

encapsulates only one excitable wavenumber. The algorithm is outlined through the

following steps.

• Define dΩ = dc + ε where 0 < ε� 1 and dc = 8.5676.

• Compute k2
− and k2

+.

• If k2
l,m > k2

+ as shown in Figure 3.4 then increase the value of γΩ by 1, till the

curve includes the wavenumber by shifting to the right.

• If k2
l,m < k2

− then decrease the value of γΩ by 1, till the curve includes the

wavenumber by shifting to the left.

• If there exist two excitable wavenumbers as shown in Figure 3.5a then we

decrease ε till we obtain a unique excitable wavenumber as shown in Figure

3.5b.
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Figure 3.4: Plot of the real part of eigenvalue λ(k2) given by (2.106) as a function

of k2. For all parameter values suitable for diffusion-driven instability, dΩ and γΩ

are varied to capture the excitable wavenumber.

(a) (b)

Figure 3.5: Plot of the real part of eigenvalue λ(k2) given by (2.106) as a function

of k2, where we see that in Figure 3.5a there exist two excitable wavenumbers. By

decreasing ε we extract a unique excitable wavenumber shown in Figure 3.5b.
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3.3 Turing (parameters) space on the surface

In this section we show Turing (parameters) spaces for equations posed on the

surface, the conditions for these are obtained in Chapter 2 and outlined as

f3r + f4s < 0, (3.19)

f3rf4s − f3sf4r > 0, (3.20)

dΓf3r + f4s > 0 and [dΓf3r + f4s]
2 − 4dΓ(f3rf4s − f3sf4r) > 0. (3.21)

The parameter spaces are derived on the actual positive real parameter plane (a2, b2),

for two choices of diffusion ratios namely dΓ = 20 and dΓ = 30.

(a) (b)

Figure 3.6: Turing space for Schnakenberg model for different values of dΓ. Unstable

region is shown in the parameter space (yellow region).
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3.4 Mode isolation on the surface

A similar procedure may be employed to extract excitable wavenumbers from the

spectrum of Laplace-Beltrami operator as a sufficient condition for Turing pattern to

be formed on the surface. The spectrum of Laplace-Beltrami operator on spherical

surface is studied in great details in Chaplain et al. (2001) where they derive the

infinite set of discrete eigenvalues of the form k2 = l(l + 1) corresponding to an

infinite set of eigenfunctions given by uml (θ, φ) = cml P
|m|
l (cos θ) exp(imφ).

3.5 Turing spaces in the bulk and on the surface

The following sub-figures show diffusion-driven instability spaces for the conditions

on diffusion-driven instability given by (2.117)-(2.122) in the bulk and on the surface.

We combine the Turing spaces (more than one space) in the bulk and on the surface

together. We note that if dΩ is chosen the same as dΓ, there is no difference in the

region corresponding to Turing space as shown in Sub-figure 3.8a. In Sub-figures

3.8b and 3.8c, it can be seen that for larger values of the diffusion coefficient the

Turing space is significantly larger than that for the smaller value of the diffusion

coefficient. In the context of pattern formation it means that regions corresponding

to diffusion driven instability enlarge with an increase in the diffusion coefficient.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: First row shows that the Turing space for both the bulk and the surface

separately for parameter choices dΓ = 30 and dΩ = 30 respectively. Second and

third rows show that the Turing space in the bulk and on the surface separately

with different parameter choices (second row dΓ = 30 and dΩ = 40) and (third row

dΓ = 30 and dΩ = 40).
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(a) (b) (c)

Figure 3.8: Sub-figure (a) shows that the Turing space for both the bulk and the

surface (cream colour) is shown to exactly coincide for parameter choices dΓ = 30

and dΩ = 30. Sub-figure (b) shows that the Turing space on the surface (cream

colour) forms a proper subset of those derived for the bulk equations (union of

cream and grey regions) when dΓ = 30 and dΩ = 40. Sub-figure (c) shows that the

Turing space for equations on the surface (union of yellow and cream colour regions)

with dΓ = 40 produces larger region, which contains the spaces for the bulk equation

with dΩ = 30 as proper subset, upon submerging.
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3.6 Conclusion

As a natural extension from the contents of Chapter 2, where all necessary conditions

for diffusion-driven instability are derived, these are also equipped with the sufficient

conditions through the contents of this chapter to guarantee achieving spatial pat-

tern formation. Critical diffusion ratio was extracted and analysed. Furthermore,

mode isolation algorithm was applied as a technique to extract a single excitable

wavenumber. Turing spaces for both the bulk and the surface were computation-

ally found, which are employed for numerical solutions of BSRDEs in Chapter 5.

The results of this chapter in relation to Chapter 2 motivates to test the emergence

of spatial pattern formation through employing the conditions and constraints ob-

tained in Chapter 2 and Chapter 3, through the formulation and simulation of the

finite element numerical scheme. The next chapter is therefore devoted to present

the theoretical formulation of the finite element scheme, with strategies for mesh

generation and other necessary steps that are required for computational simulation

of BSRDEs.
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Chapter 4

Finite Element Methods for

Reaction-Diffusion Equations on

Stationary Volumes

This chapter serves to provide the theoretical formulation required to obtain nu-

merical solutions through the finite element method of all the three systems that

were explored in Chapter 2. A brief introduction to Sobolev and Hilbert func-

tion spaces is provided as the basis to obtain the weak formulation. The methods

of space and time discretisations are described with a brief overview of the time-

stepping schemes. We compare the first order IMEX time-stepping scheme with the

second order semi-implicit backward differentiation formula (2-SBDF) through the

numerical simulations of a reaction-diffusion system on a stationary two-dimensional

disc-shape domain. For simplicity the problem is formulated to solve independently

in the bulk and on the surface with appropriate boundary settings. Upon achiev-

ing such a formulation the method is extended to consider the full four component

system of BSRDEs. We present the weak formulation with the corresponding finite

element formulation through a fully implicit treatment by employing the extended

form of Newton’s method for vector valued functions.
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4.1 Notations

Before implementing the finite element method, we briefly introduce the necessary

function spaces and norms Brenner and Scott (2007) that are utilised in numerical

set up of the problem. For a non-negative integer n, we introduce an n-tuple multi-

index α = (α1, · · · , αn) with length |α| = α1 + α2 + · · · + αn. Let the operator Dα

be defined as

Dα = (
∂

∂x1

)α1 · · · ( ∂

∂xn
)αn =

∂|α|

∂xα1
1 · · · ∂xαn

n

.

For example, for a function u that depends on three variables x1, x2 and x3, then

applying Dα to u generates the third order mixed derivatives of u with respect to

all the independent variables, therefore we have∑
|α|=3

Dαu =
∂3u

∂x3
1

+
∂3u

∂x3
2

+
∂3u

∂x3
3

+
∂3u

∂x2
1∂x2

+
∂3u

∂x2
1∂x3

+
∂3u

∂x1∂x2
2

+
∂3u

∂x1∂x2
3

+
∂3u

∂x2
2∂x3

+
∂3u

∂x2∂x2
3

+
∂3u

∂x1∂x2∂x3

.

For a real number p ≥ 1 the set of all real valued integrable functions defined on

an open subset Ω of Rn are denoted by Lp(Ω), which are referred to as Lebesgue

function spaces. Let the set Lp(Ω) be equipped with the norm in the form that

u ∈ Lp(Ω)⇒‖ u ‖Lp(Ω)=
(∫

Ω

|u(x)|pdx
) 1

p
<∞.

Definition 4.1.1 Sobolev spaces Brenner and Scott (2007) Let k be a positive

integer and p ∈ [1,∞), then the set W k
p (Ω) is called a Sobolev space of order k where

W k
p (Ω) is defined by

W k
p (Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k}.

The function space W k
p (Ω) must also equipped with the norm in form

‖ u ‖Wk
p (Ω)=

( ∑
|α|≤k

‖ Dαu ‖pLp(Ω)

) 1
p if 1 ≤ p <∞

Hilbert space is a special subset of Sobolev space with p = 2, which means that it

is the set of all functions that belongs to Sobolev space, with bounded L2 norm.
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By taking k = 1, the set W 1
2 (Ω) refers to all functions which are bounded in the

L2 norm as well as their first derivatives are also bounded in the L2. The usual

notation for W 1
2 (Ω) used in literature is H1(Ω), which is defined as

H1(Ω) = {u ∈ L2(Ω) :
∂u

∂xi
∈ L2(Ω), i = 1, · · · , n}.

We say u ∈ H1(Ω) if u satisfies the following

‖ u ‖H1(Ω)=
(
‖ u ‖2

L2(Ω) +
n∑
i=1

‖ ∂u
∂xi
‖2
L2(Ω)

) 1
2 <∞.

Definition 4.1.2 Newton’s method Quarteroni et al. (2010) : Assuming that

f ∈ C1(I) and that f
′
(α) 6= 0 (i.e., α is a simple root of f), if we let

qk = f
′
(xk), ∀k ≥ 0

and assign the initial value x0, we obtain the so called Newton method

xk+1 = xk −
f(xk)

f ′(xk)
, ∀k ≥ 0. (4.1)

Newton’s method can also be employed for vector valued functions as in Quarteroni

et al. (2010), Hueso et al. (2009) and Saheya et al. (2016), which means that for a

vector valued function with the root xk ∈ Rn, the equivalent algorithm to (4.1) is

to find xk+1 through

JF(xk+1 − xk) = −F(xk), k = 0, 1, · · · . (4.2)

where JF denotes the corresponding Jacobian matrix associated to the vector valued

function F.

4.2 The finite element method in the bulk

We consider a circular two-dimensional simply connected domain Ω ⊂ R2 with a

disc-shape geometry and Lipschitz boundary ∂Ω ⊂ R2 which consists of a circle. Let

I = (0, T ] be some finite time interval. Reaction-diffusion equations with Schnaken-
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berg reaction kinetics in its non-dimensional form posed on Ω reads as

∂u
∂t
−∆u = γ(a− u+ u2v) := γf(u, v), in Ω, t ∈ I,

∂v
∂t
− d∆v = γ(b− u2v) := γg(u, v), in Ω, t ∈ I,

u(x, 0) = u0(x) in Ω,

v(x, 0) = v0(x) in Ω,

∂u
∂n

= ∂v
∂n

= 0 on ∂Ω,

(4.3)

for the concentrations u(x, t) and v(x, t) with a, b, d and γ denoting some real

positive constants. Here, d represents the ratio of the diffusion coefficients of the v

and u variables while γ measures the strength of the reaction. For this system, we

have chosen homogeneous Neumann boundary conditions on the entire boundary

and initial conditions that are chosen to be small random perturbations about the

uniform steady state

(u0, v0) =

(
a+ b,

b

(a+ b)2

)
. (4.4)

In the absence of diffusion, the equilibrium point (4.4) is linearly stable provided

that

fu + gv < 0 and fugv − fvgu > 0, (4.5)

where the derivatives are evaluated at the equilibrium point (4.4) Madzvamuse and

Chung (2014). Upon adding diffusion to the system and provided that conditions

for Turing instability namely (4.6)-(4.7), then it is possible that the dynamics of the

system evolve to converge to a spatially inhomogeneous (Turing type) steady state.

This phenomenon is described as diffusion-driven instability or Turing instability

Madzvamuse and Chung (2014). It can be shown that the necessary conditions for

diffusion-driven instability are

fu + gv < 0 and fugv − fvgu > 0, (4.6)

dfu + gv > 0 and (dfu + gv)
2 − 4d(fugv − fvgu) > 0. (4.7)

It is demonstrated in Madzvamuse and Chung (2014) that the numerical values for

parameters a = 0.1, b = 0.9, d = 10 and γ = 29 lead to diffusion-driven instabil-

ity, which is used in the numerical simulations. For the finite element formulation

we require the weak formulation of the reaction-diffusion system, which is derived
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through multiplying system (4.3) by a test function ψ(x, t) ∈ H1(Ω) and integrating

over Ω which takes the form∫
Ω

ψ
∂u

∂t
dΩ−

∫
Ω

ψ∆udΩ = γ

∫
Ω

ψ
(
a− u+ u2v

)
dΩ∫

Ω

ψ
∂v

∂t
dΩ− d

∫
Ω

ψ∆vdΩ = γ

∫
Ω

ψ
(
b− u2v

)
dΩ.

(4.8)

Application of Green’s formula defined by (1.3.2) and enforcing the homogeneous

Neumann boundary conditions namely ∂u
∂n

= ∂v
∂n

= 0 on (4.8) leads to write the weak

formulation of system (4.3), which is to find u(x, t), v(x, t) ∈ H1(Ω), t ∈ [0, T ] such

that 
∫

Ω
ψ ∂u
∂t
dΩ +

∫
Ω
∇ψ · ∇udΩ = γ

∫
Ω
ψ (a− u+ u2v) dΩ,∫

Ω
ψ ∂v
∂t
dΩ + d

∫
Ω
∇ψ · ∇vdΩ = γ

∫
Ω
ψ (a− u2v) dΩ,

(4.9)

is true for all test functions ψ(x, t) ∈ H1(Ω). Let Ωh be the discretised domain which

is a quadrilateral approximation of Ω. Let Th denote the triangulation of Ωh which is

made up of non-degenerate rectangular elements Ki such that Th =
⋃
iKi. We call

each Ki an element of the mesh Th where h is the diameter of the largest element.

For the mesh Th, we require that it is made up of a finite number of elements and

the elements must intersect along a complete edge, or at a vertex or not at all. We

define the finite element solution space Vh by

Vh =
{
vh ∈ C0(Ω) : vh|Ki

is linear
}
. (4.10)

We seek numerical approximate solutions of system (4.3) in Vh. The finite element

formulation entailed by the weak formulation (4.9) of the reaction-diffusion system

(4.3) therefore is to find uh(x, t), vh(x, t) ∈ Vh such that
∫

Ωh
ψh

∂uh
∂t
dΩh +

∫
Ωh
∇ψh · ∇uhdΩh = γ

∫
Ωh
ψh (a− uh + (uh)

2vh) dΩh,∫
Ωh
ψh

∂vh
∂t
dΩh + d

∫
Ωh
∇ψh · ∇vhdΩh = γ

∫
Ωh
ψh (a− (uh)

2vh) dΩ,

(4.11)

for all ψh(x, t) ∈ Vh(Ω). With linear choice of Vh it must have a basis that spans

the finite n-dimensional function space. Let φi(x) ∈ Vh, i = 1, 2, ..., n, be the i-th

basis function such that

φi(pj) =

1 if i = j,

0 if i 6= j,

(4.12)
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where pj is the j-th nodal point of the mesh. We seek to find the finite element

numerical approximations uh(x, t), vh(x, t) ∈ Vh expressed as the linear combinations

of the linear nodal basis functions φi(x) expressed as

uh(x, t) =
n∑
j=1

Uj(t)φj(x) and vh(x, t) =
n∑
j=1

Vj(t)φj(x), (4.13)

where Uj(t) = uh(pj, t) and Vj(t) = vh(pj, t). Without loss of generality, we also

express the test functions ψh(x, t) in terms of φi(x) ∈ Vh, i = 1, 2, ..., n, which leads

to write (4.11) as a set of ordinary differential equations in the form

n∑
j=1

∫
Ωh

φi(x) · φj(x)
dUj(t)

dt
dΩh +

n∑
j=1

∫
Ωh

∇φi(x) · ∇φj(x) Uj(t) dΩh =

γa

∫
Ωh

φi(x) dΩh − γ
n∑
j=1

∫
Ωh

φi(x) · φj(x)Uj(t) dΩh

+ γ
n∑
j=1

∫
Ωh

φi(x) · (φj(x)Uj(t))
2 · (φj(x)Vj(t)) dΩh,

(4.14)

n∑
j=1

∫
Ωh

φi(x) · φj(x)
dVj(t)

dt
dΩh + d

n∑
j=1

∫
Ωh

∇φi(x) · ∇φj(x) Vj(t) dΩh =

γb

∫
Ωh

φi(x) dΩh − γ
n∑
j=1

∫
Ωh

φi(x) · (φj(x)Uj(t))
2 · (φj(x)Vj(t)) dΩh,

(4.15)

respectively, for all i = 1, 2, ..., n and x = (x, y). Integrating over the discretised Ωh

gives rise to a set of semi-discrete equations in the form

M
dU(t)
dt

+ AU(t) = γaH− γMU(t) + γB(U(t),V(t))U(t),

M dV(t)
dt

+ dAV(t) = γbH− γB(U(t),U(t))V(t),

(4.16)

where U(t) = (U1(t), U2(t), ..., Un(t))T and V(t) = (V1(t), V2(t), ..., Vn(t))T are the

solution vectors, M is the global mass matrix, A is the global stiffness matrix, B is

the matrix corresponding to the non-linear terms and H is the global force vector
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with entries
Mij =

∫
Ωh
φi(x) · φj(x) dΩh, Hj =

∫
Ωh
φj(x) dΩh, Aij =

∫
Ωh
∇φi(x) · ∇φj(x) dΩh,

(B(U,V)U)ij =
∫

Ωh
φi(x) · φj(x) · (U2

j φj(x)) · (Vjφj(x))dΩh,

(B(U,U)V)ij =
∫

Ωh
φi(x) · φj(x) · (U2

j φj(x)) · (Vjφj(x))dΩh.

(4.17)

So far we have formulated the spatial approximation through which we obtain a semi-

discrete system of 2n ODEs. We proceed to analyse and compare the convergence

rate of two time-stepping schemes for solving (4.16).

4.2.1 First order IMEX scheme

The idea of first order IMEX time-stepping scheme is to treat the diffusive term im-

plicitly while the terms in the reaction kinetics are treated explicitly Ruuth (1995);

Madzvamuse (2006); Madzvamuse and Chung (2014). Applying this scheme to sys-

tem (4.16) results in obtaining a fully discrete system of algebraic equations in the

form M
Um+1−Um

τ
+ AUm+1 = γaH− γMUm + γB(Um,Vm)Um,

M Vm+1−Vm

τ
+ dAVm+1 = γbH− γB(Um,Um)Vm,

(4.18)

where τ denotes the time-step size. System (4.18) can be rearranged to obtain

an algebraic matrix system whose solution at each time step is the finite element

approximate numerical solution of system (4.3) which is written in the form(M + τA) Um+1 = τγaH + (1− τγ)MUm + τγB(Um,Vm)Um,

(M + τdA) Vm+1 = τγbH− τγB(Um,Um)Vm +MVm,

(4.19)

where Um, Um+1 refers to the approximate numerical solutions for u at time tm and

tm+1 respectively. Similarly Vm, Vm+1 denote the approximate numerical solutions

corresponding to v at time step tm and tm+1 respectively.

4.2.2 Second order semi-implicit backward differentiation

formula (2-SBDF)

Using the second order semi-implicit backward differentiation formula to the semi-

discrete equations (4.16) gives a discrete scheme also presented in Ruuth (1995);
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Madzvamuse (2006) and has the form

M
(

3Um+1−4Um+Um−1

2τ

)
+ AUm+1 = 2(γaH− γMUm + γB(Um,Vm)Um

−(γaH− γMUm−1 + γB(Um−1,Vm−1)Um−1,

M
(

3Vm+1−4Vm+Vm−1

2τ

)
+ dAVm+1 = 2(γbH− γB(Um,Um)Vm

−(γbH− γB(Um−1,Um−1)Vm−1,

where τ is the time-step. Collecting likewise terms and rearranging the equations

provide a system of linear equations expressed by

(3M + 2τA) Um+1 = 4MUm −MUm−1 + 2τγaH + 2τγMUm−1

− 2τγB(Um−1,Vm−1)Um−1 − 4τγMUm + 4τγB(Um,Vm)Um, (4.20)

(3M + 2τdA) Vm+1 = 4MVm −MVm−1 + 2τγbH

+ 2τγB(Um−1,Um−1)Vm−1 − 4τγB(Um,Um)Vm. (4.21)

Here we notice that we need solutions at both times t = tm and t = tm−1. Solutions

for the last two time-steps will therefore need to be stored. For the initial start of

the scheme we use a single step of Backward Euler method with the reaction terms

treated explicitly to solve for the U1 and V1 solutions, which provides sufficient

data for the scheme to discretely step forward in time.

4.2.3 Numerical simulations in the bulk

For our simulations, the domain Ω is the unit disc. We employ the deal.ii library

Bangerth et al. (2016) to discretise the domain with 5185 degrees of freedom. The

initial data is chosen to be random perturbations from the equilibrium points in

equation (4.4). The simulations are run until a spatially inhomogeneous steady

state is reached as shown in Figures 4.1, 4.2, 4.5 and 4.6. The convergence rate in

the L2-norm of the two time stepping schemes namely first order IMEX and 2-SBDF

are compared through the use of τ = 10−3 and τ = 2× 10−3 for time step sizes. To

verify the convergence, we also compute the relative error given by

Relative error =

√∑
|Un+1 − Un|2∑
|Un+1|2

, (4.22)
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at the final time t = 10. The convergence rates corresponding to the variable u

using the first order IMEX and 2-SBDF schemes with different values of time step

sizes are shown Tables 4.1 and 4.2 respectively. We vary the parameter γ and plot

the solutions in Figure 4.11. We plot in logarithmic scale the graph for the L2-norm

with two choices of time-steps shown in Figure 4.3. We plot the convergence history

of the simulations conducted on the Schnakenberg model for variable u using the

first order IMEX scheme, with different time steps shown in the legend of Figure

4.7 and with refined mesh shown in Figure 4.8. Also, the convergence history of

the simulations is plotted for the Schnakenberg model for variable u using 2-SBDF

scheme, with different time-steps shown in Figure 4.9 and with refinement of mesh

size shown in 4.10. We can observe from Figures 4.4 (a) and (b) that 2-SBDF

outperforms first order IMEX in the convergence rate to a spatially inhomogeneous

steady state. This can be verified by realising that the values of the discrete L2-norm

of the numerical solutions difference for subsequent time steps for 2-SBFD always

remains smaller than those values obtained for first order IMEX.

(a) (b) (c)

Figure 4.1: Solutions for variable u of the Schnakenberg model using the first order

IMEX scheme. Sub-figure (a) shows the initial condition as random perturbations

about steady states. Sub-figures (b) and (c) show the numerical solutions corres-

ponding to u at times t = 5.8 and t = 10 respectively.
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Figure 4.3: Convergence history of the simulations of the Schnakenberg model for

the variable u using (a) the first order IMEX scheme and (b) the 2-SBDF scheme.

(a) (b) (c)

Figure 4.2: Solutions for variable v of the Schnakenberg model using the first order

IMEX scheme. Sub-figure (a) shows the initial condition as random perturbations

about steady states. Sub-figures (b) and (c) show the numerical solutions corres-

ponding to v at times t = 5.8 and t = 10 respectively.
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Figure 4.4: Comparison of the convergence history of the simulations of the

Schnakenberg model for the variable u between the first order IMEX and the 2-

SBDF schemes with (a) entire time interval and (b) time interval [0, 1] zoomed.

(a) (b) (c)

Figure 4.5: Solutions for variable u of the Schnakenberg model using the 2-SBDF

scheme. Sub-figure (a) shows the initial condition as random perturbations about

steady states. Sub-figures (b) and (c) show the numerical solutions corresponding

to u at times t = 5.5 and t = 10 respectively.
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Figure 4.6: Solutions for variable v of the Schnakenberg model using the 2-SBDF

scheme. Sub-figure (a) shows the initial condition as random perturbations about

steady states. Sub-figures (b) and (c) show the numerical solutions corresponding

to v at times t = 5.5 and t = 10 respectively.

Time-step τ No. of time

steps

Relative error ‖un+1−un
τ
‖

1.5× 10−2 667 5.86517× 10−2 497.647

1.0× 10−2 1, 000 8.49711× 10−2 1040.86

9.0× 10−3 1, 111 4.77306× 10−2 296.839

8.3× 10−3 1, 200 2.90822× 10−5 0.255796

8.0× 10−3 1, 250 1.9956× 10−5 0.182218

5.0× 10−3 2, 000 8.03654× 10−8 0.00117415

Table 4.1: Convergence of u variable using the first order IMEX scheme with refine-

ment of time steps.
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Figure 4.7: Convergence history of the simulations of the Schnakenberg model for

the variable u using the first order IMEX scheme with refinement of time steps.

Time-step τ No. of time

steps

Relative error ‖un+1−un
τ
‖

2.0× 10−2 500 1.57128× 10−1 518.582

1.85× 10−2 540 9.69243× 10−4 3.81838

1.82× 10−2 550 1.30074× 10−6 0.00522085

1.5× 10−2 667 2.62499× 10−7 0.00127839

1.0× 10−2 1, 000 2.34805× 10−7 0.00171531

9.0× 10−3 1, 111 2.22973× 10−7 0.00180987

8.3× 10−3 1, 200 2.13171× 10−7 0.00187625

8.0× 10−3 1, 250 2.08573× 10−7 0.00190462

Table 4.2: Convergence of u variable using the 2-SBDF scheme with refinement of

time steps.
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Figure 4.8: Convergence history of the simulations of the Schnakenberg model for

the variable u using the first order IMEX scheme with refinement of the mesh.
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Figure 4.9: Convergence history of the simulations of the Schnakenberg model for

the variable u using the 2-SBDF scheme with refinement of time steps.
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Figure 4.10: Convergence history of the simulations of the Schnakenberg model for

the variable u using the 2-SBDF scheme with refinement of the mesh.

Figure 4.11: Solutions for the variable u of the Schnakenberg model using the 2-

SBDF scheme with a = 0.1, b = 0.9, d = 10 and (a) γ = 29 and (b) γ = 100.

.
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4.3 The surface finite element method

In this section we apply the same procedure used in Section 4.2 to equations posed

on a surface domain. It means that material diffusion is represented by Laplace-

Beltrami operator ∆Γ instead of the usual Laplacian in (4.3). The surface finite

element method presented in Dziuk and Elliott (2013b), Elliott and Ranner (2014)

and Barreira et al. (2011) is employed to get approximate numerical solutions. We

also study on the surface finite element method a comparison of the convergence

rates of two time-stepping schemes namely first order IMEX scheme and the second

order semi-implicit backward Euler differentiation formula (2-SBDF).

4.3.1 Numerical simulations on the surface

For the numerical simulations, Γ is the surface of a sphere and cuboid. Using Deal.II

library we discretise the domain with 6146 degrees of freedom. The initial data is

chosen (similar to the case of the bulk) to be random perturbations near the uniform

steady state in equation (4.4). The simulations were allowed to run until a spatially

inhomogeneous steady state was reached as shown in Figures 4.12 and 4.16. The

parameter values for simulations on the surface are chosen identical to those for the

bulk case, which are a = 0.1, b = 0.9, d = 10 and γ = 29. For illustration purposes,

we have chosen both the first order IMEX and second order semi-implicit backward

differentiation formula,2-SBDF, schemes. In first order IMEX scheme, the diffusive

term is treated implicitly while the reaction term is treated explicitly. For each of

these methods, we have chosen time-step sizes to be τ = 1×10−3, τ = 1.33333×10−3

and τ = 2 × 10−3 and compare the L2-norms of the numerical solution difference

‖un+1−un
τ
‖. In the latter case, we choose to divide the L2-norm by τ for comparison

purposes. We also compute the relative error given by

Relative error =

√∑
|Un+1 − Un|2∑
|Un+1|2

, (4.23)

at the final time t = 10. The convergence of the variable u using the first order IMEX

scheme with different values of time step is shown in Table 4.3. Also, the convergence

of the variable u using the 2-SBDF scheme with different values of time steps is

shown in Table 4.4. We plot the graph for the L2-norms of the solution differences
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Time-step τ No. of time

steps

Relative error ‖un+1−un
τ
‖

7.5× 10−3 1, 333 0.000349925 3.78871

7.4× 10−3 1, 351 6.33246× 10−5 0.695777

7.0× 10−3 1, 428 2.51018× 10−5 0.29199

6.0× 10−3 1, 666 6.94301× 10−7 0.00942279

5.0× 10−3 2, 000 5.04293× 10−7 0.0082124

2.0× 10−3 5, 000 1.7363× 10−7 0.00706762

10−3 10, 000 8.0948× 10−8 0.00658958

Table 4.3: Convergence of the variable u using the first order IMEX scheme with

refinement of time steps.

versus time, shown in Figures 4.13 and 4.17. We plot the convergence history of the

simulations of the Schnakenberg model for the variable u, using first order IMEX

scheme, with different time steps as shown in 4.14 and with refinement in the mesh

as shown in 4.15. Also, we plot the convergence history of the simulations of the

Schnakenberg model for the variable u, using the 2-SBDF scheme, with different

time steps as shown in 4.18 and with mesh refinements as shown in 4.19



90

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.12: Surface finite element solutions for the variable u ”first and second

rows” and the variable v ”third and fourth rows” of the Schnakenberg model using

the first order IMEX scheme at τ = 10−3. First and second columns show initial

condition as random perturbations about steady states. Third and fourth columns

show solution at the final time t = 10 showing convergence to an inhomogeneous

steady state.
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(a) (b)

Figure 4.13: Convergence history of the simulations of the Schnakenberg model

using the first order IMEX scheme (a) for the variable u, (b) for the variable v.

Figure 4.14: Convergence history of the simulations of the Schnakenberg model for

the variable u using the 2-SBDF scheme with refinement of time steps.
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Figure 4.15: Convergence history of the simulations of the Schnakenberg model for

the variable u using the first order IMEX scheme with refinement of the mesh.

Time-step τ No. of time

steps

Relative error ‖un+1−un
τ
‖

2.0× 10−2 500 0.157484 566.497

1.8× 10−2 556 0.0560895 232.541

1.7× 10−2 588 1.75893× 10−6 0.00842489

10−2 1, 000 9.20586× 10−7 0.00749488

5.0× 10−3 2, 000 4.06565× 10−7 0.00661931

2.0× 10−3 5, 000 1.51609× 10−7 0.0061706

10−3 10, 000 7.47409× 10−8 0.00608396

Table 4.4: Convergence of the variable u using the 2-SBDF scheme with refinement

of time steps.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.16: Surface finite element solutions for the variable u ”first and second

rows” and the variable v ”third and fourth rows” of the Schnakenberg model using

the 2-SBDF scheme at τ = 10−3. First and second columns show initial condition

as random perturbations about steady states. Third and fourth columens show

solution at the final time t = 10 showing convergence to an inhomogeneous steady

state.
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(a) (b)

Figure 4.17: Convergence history of the simulations of the Schnakenberg model

using the 2-BSDF scheme (a) for the variable u, (b) for the variable v.

Figure 4.18: Convergence history of the simulations of the Schnakenberg model for

the variable u using the 2-SBDF scheme with refinement of time steps.
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Figure 4.19: Convergence history of the simulations of the Schnakenberg model for

the variable u using the 2-SBDF scheme with refinement of the mesh.

In Sections 4.2 and 4.3 we compared first order IMEX and 2-SBDF time-stepping

schemes through the implementation of the finite element method. We use discrete

time-derivative of the numerical solution in the discrete L2 norm and the relative

error of the same to conduct a quantitative comparison and found that 2-SBDF

time-stepping scheme outperforms the first order IMEX in convergence rate to a

Turing type spatially patterned steady state. Next we implement the finite ele-

ment method with a fully implicit time-stepping scheme through the application of

extended Newton’s method.
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4.4 The bulk-surface finite element method

In Chapters 2 and 3 we derived the necessary and sufficient conditions for diffusion-

driven instability for the coupled system of bulk-surface reaction-diffusion equations

on stationary volumes. In this chapter we present the finite element formulation for

coupled bulk-surface reaction-diffusion system on stationary volumes. We employ

a fully implicit time integrator for stepping forward in time, which is implemented

through the application of Newton’s extended method for vector valued functions.

4.5 Non-linear reaction kinetics both in the bulk

and on the surface

We rewrite the non-dimensional bulk-surface reaction-diffusion systems given by

(2.15) in Chapter 2,

 ∂u
∂t

= ∆u+ f1(u, v, r, s),

∂v
∂t

= dΩ∆v + f2(u, v, r, s),
in Ω× (0, T ] ∂r

∂t
= ∆Γr + f3(u, v, r, s),

∂s
∂t

= dΓ∆Γs+ f4(u, v, r, s),
on Γ× (0, T ].

(4.24)

where

f1(u, v, r, s) = γΩ(a2 − u+ u2v), (4.25)

f2(u, v, r, s) = γΩ(b2 − u2v), (4.26)

f3(u, v, r, s) = γΓ(a2 − r + r2s− ρ3r + µu+ δ2v), (4.27)

f4(u, v, r, s) = γΓ(b2 − r2s− ρ4s+ µ1u+ δ3v). (4.28)

The linear boundary conditions have the form ∇u · ν = γΓ[ρ3r − µu− δ2v],

dΩ∇v · ν = γΓ[ρ4s− µ1u− δ3v].
on Γ× (0, T ]. (4.29)

The non-dimensional initial conditions for all chemical concentrations are given by

u(x, 0) = u0(x), v(x, 0) = v0(x), r(x, 0) = r0(x) and s(x, 0) = s0(x). (4.30)
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4.5.1 Weak formulation

In order to derive the weak formulation, we multiply (4.24) by a test function say

ϕ ∈ H1(Ω) for the bulk and ψ ∈ H1(Γ) for the surface and integrate over Ω for

the bulk and over Γ for the surface written as

∫
Ω

∂u

∂t
ϕ dΩ−

∫
Ω

∆uϕ dΩ = γΩ

∫
Ω

[a2 − u+ u2v]ϕ dΩ,∫
Ω

∂v

∂t
ϕ dΩ−

∫
Ω

dΩ∆vϕ dΩ = γΩ

∫
Ω

[b2 − u2v]ϕ dΩ, in Ω× (0, T ]∫
Γ

∂r

∂t
ψ dΓ−

∫
Γ

∆Γrψ dΓ = γΓ

∫
Γ

[a2 − r + r2s− ρ3r + µu+ δ2v]ψ dΓ,∫
Γ

∂s

∂t
ψ dΓ−

∫
Γ

dΓ∆Γsψ dΓ = γΓ

∫
Γ

[b2 − r2s− ρ4s+ µ1u+ δ3v]ψ dΓ, on Γ× (0, T ].

Using the Green’s formula for the second terms in the above with the boundary

conditions (4.29), we obtain

∫
Ω

∂u

∂t
ϕ dΩ +

∫
Ω

∇u · ∇ϕ dΩ = γΩ

∫
Ω

[a2 − u+ u2v]ϕ dΩ

+ γΓ

∫
Γ

(ρ3r − µu− δ2v)ϕ dΓ,∫
Ω

∂v

∂t
ϕ dΩ + dΩ

∫
Ω

∇v · ∇ϕ dΩ = γΩ

∫
Ω

[b2 − u2v]ϕ dΩ

+ γΓ

∫
Γ

(ρ4s− µ1u− δ3v)ϕ dΓ, in Ω× (0, T ]∫
Γ

∂r

∂t
ψ dΓ +

∫
Γ

∇Γr · ∇Γψ dΓ = γΓ

∫
Γ

[a2 − r + r2s− ρ3r + µu+ δ2v]ψ dΓ,∫
Γ

∂s

∂t
ψ dΓ + dΓ

∫
Γ

∇Γs · ∇Γψ dΓ = γΓ

∫
Γ

[b2 − r2s− ρ4s+ µ1u+ δ3v]ψ dΓ, on Γ× (0, T ].

4.5.2 Spatial discretisation of the weak formulation

We discretise the original domain Ω and its boundary Γ to obtain Ωh and Γh where

Ωh ⊂ Ω and Γh ⊂ Γ with NΩ and NΓ the number of vertices associated to their

respective discretisation. Let VΩh
and VΓh

denote the finite element function spaces

associated to the discretised domains Ωh and Γh respectively. The finite element

formulation is then to seek uh, vh ∈ VΩh
and rh, sh ∈ VΓh

such that for t > 0 the
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equations∫
Ωh

∂uh
∂t

ϕh dΩh +

∫
Ωh

∇uh · ∇ϕh dΩh = γΩ

∫
Ωh

[a2 − uh + u2
hvh]ϕh dΩh

+ γΓ

∫
Γh

(ρ3rh − µuh − δ2vh)ϕh dΓh,∫
Ωh

∂vh
∂t

ϕh dΩh + dΩ

∫
Ωh

∇vh · ∇ϕh dΩh = γΩ

∫
Ωh

[b2 − u2
hvh]ϕh dΩh

+ γΓ

∫
Γh

(ρ4sh − µ1uh − δ3vh)ϕh dΓh,

∫
Γh

∂rh
∂t

ψh dΓh +

∫
Γh

∇Γrh · ∇Γψh dΓh = γΓ

∫
Γh

[a2 − rh + r2
hsh

− ρ3rh + µuh + δ2vh]ψh dΓh,∫
Γh

∂sh
∂t

ψh dΓh + dΓ

∫
Γh

∇Γsh · ∇Γψh dΓh = γΓ

∫
Γh

[b2 − r2
hsh

− ρ4sh + µ1uh + δ3vh]ψh dΓh,

are true for all test functions ϕh ∈ VΩh
and ψh ∈ VΓh

respectively. Let {ϕi}NΩ
i=1

and {ψi}NΓ
i=1 be the set of piecewise bilinear basis functions. It is known that

the spaces VΩh
and VΓh

are spanned by the basis functions {ϕi}NΩ
i=1 and {ψi}NΓ

i=1

respectively Brenner and Scott (2007). Thus, uh, vh, rh and sh may be expanded

in terms of linear combinations of its corresponding basis functions namely {ϕi}NΩ
i=1

and {ψi}NΓ
i=1. Substituting the expressions uh =

∑NΩ

i=1 Uiϕi, vh =
∑NΩ

i=1 Viϕi, rh =∑NΓ

i=1 Riψi, and sh =
∑NΓ

i=1 Siψi in the finite element formulations leads to a system

of differential equations written in matrix notation as

M0Ut + γΩM0U + A0U− γΩB0(U,V)U

− γΓ(ρ3M10R− µM00U− δ2M00V) = γΩa2C0,

M0Vt + dΩA0V + γΩB0(U,U)V

− γΓ(ρ4M10S− µ1M00U− δ3M00V) = γΩb2C0,

M1Rt + γΓM1R + A1R− γΓB1(R,S)R

+ γΓ(ρ3M11R− µM01U− δ2M01V) = γΓa2C1,

M1St + dΓA1S + γΓB1(R,R)S

+ γΓ(ρ4M11S− µ1M01U− δ3M01V) = γΓa2C1,
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where the matrices with their corresponding entries are given by

(M0)ij =

∫
Ωh

ϕiϕjdΩh, (A0)ij =

∫
Ωh

∇ϕi · ∇ϕjdΩh, C0 =

∫
Ωh

ϕjdΩh,

(B0(U,V))ij =

∫
Ωh

(Uiϕi)(Viϕi)ϕiϕjdΩh, (B0(U,U))ij =

∫
Ωh

(Uiϕi)(Uiϕi)ϕiϕjdΩh,

and the entries for M1, A1, B1(R,S) and C1, are expressed in similar way to those

expressed for matrices with subscript 0. The entries of the matrices that are con-

structed from the combination of function spaces defined in the bulk and on the

surface are defined by

(M10)ij =

∫
Γh

ψiϕjdΓh, (M01)ij =

∫
Γh

ϕiψjdΓh,

(M00)ij =

∫
Γh

ϕiϕjdΓh, (M11)ij =

∫
Γh

ψiψjdΓh,

where M is the mass matrix and A is the stiffness matrix, B is the matrix corres-

ponding to the non-linear terms and C is the column vector.

4.5.3 Mesh generation (using deal.II Bangerth et al. (2016))

The usual approach to discretising Ω and Γ is such that, Ω is first discretised and

denoted by Ωh. The union of those elements from Ωh whose vertices lie on ∂Ω is

considered as the discretisation of Γ, which is denoted by Γh. Bulk is discretised by

quadrilateral elements each with uniform structure throughout Ωh. Triangulation

Γh is also a uniform set of 2-dimensional quadrilaterals consisting of the external

faces of all the bulk elements that have at least one vertex on Γh.

4.5.4 Time discretisation

We discretise the time interval [0, T ] into a finite number of uniform subintervals

such that 0 = t0 < t1 · · · < tJ = T . Let τ be the time steps and J be a fixed

positive integer, then T = Jτ. We denote the approximate solution at time tn = nτ

by unh = uh(., tn) where n = 0, 1, · · · , J and similar for the other variables. A fully

implicit Euler scheme is used to solve the system in time. The fully implicit scheme

is applied to the uniform time discretisation. We can obtain the fully discretised
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system as

M0
Un −Un−1

τ
+ γΩM0U

n + A0U
n − γΩB0(Un,Vn)Un

− γΓ(ρ3M10R
n − µM00U

n − δ2M00V
n) = γΩa2C0,

M0
Vn −Vn−1

τ
+ dΩA0V

n + γΩB0(Un,Un)Vn

− γΓ(ρ4M10S
n − µ1M00U

n − δ3M00V
n) = γΩb2C0,

M1
Rn −Rn−1

τ
+ γΓM1R

n + A1R
n − γΓB1(Rn,Sn)Rn

+ γΓ(ρ3M11R
n − µM01U

n − δ2M01V
n) = γΓa2C1,

M1
Sn − Sn−1

τ
+ dΓA1S

n + γΓB1(Rn,Rn)Sn

+ γΓ(ρ4M11S
n − µ1M01U

n − δ3M01V
n) = γΓb2C1.

Algebraic manipulation and rearrangement of each equation, leads to write the sys-

tem in a different form which is

F1(Un,Vn,Rn,Sn) = 0,

F2(Un,Vn,Rn,Sn) = 0,

F3(Un,Vn,Rn,Sn) = 0,

F4(Un,Vn,Rn,Sn) = 0,

where

F1(Un,Vn,Rn,Sn) = ((
1

τ
+ γΩ)M0 + A0)Un − γΩB0(Un,Vn)Un

− γΓ(ρ3M10R
n − µM00U

n − δ2M00V
n)− γΩa2C0 −

1

τ
M0U

n−1,

F2(Un,Vn,Rn,Sn) = (
1

τ
M0 + dΩA0)Vn + γΩB0(Un,Un)Vn

− γΓ(ρ4M10S
n − µ1M00U

n − δ3M00V
n)− γΩb2C0 −

1

τ
M0V

n−1,

F3(Un,Vn,Rn,Sn) = ((
1

τ
+ γΓ)M1 + A1)Rn − γΓB1(Rn,Sn)Rn

+ γΓ(ρ3M11R
n − µM01U

n − δ2M01V
n)− γΓa2C1 −

1

τ
M1R

n−1,

F4(Un,Vn,Rn,Sn) = (
1

τ
M1 + dΓA1)Sn + γΓB1(Rn,Rn)Sn

+ γΓ(ρ4M11S
n − µ1M01U

n − δ3M01V
n)− γΓb2C1 −

1

τ
M1S

n−1.
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In order to solve the system of non-linear equations, we employ the extended form

of Newton’s method for vector valued functions leads to

JFı |(un
k ,v

n
k ,r

n
k ,s

n
k ) (unk+1 − unk ,v

n
k+1 − vnk , r

n
k+1 − rnk , s

n
k+1 − snk) = −Fı(u

n
k ,v

n
k , r

n
k , s

n
k),

(4.31)

where the index ı = 1, 2, 3, 4 and

JF |(un
k ,v

n
k ,r

n
k ,s

n
k )=



∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂un
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F2(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F3(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F4(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk

 ,

(4.32)

and the entries of JF are expressed by

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= (

1

τ
+ γΩ)M0 + A0 − 2γΩB0(unk ,v

n
k ) + γΓµM00,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −γΩB0(unk ,u

n
k) + γΓδ2M00,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= −γΓρ3M10,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= 0,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= 2γΩB0(unk ,v

n
k ) + γΓµ1M00,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
=

1

τ
M0 + dΩA0 + γΩB0(unk ,u

n
k) + γΓδ3M00,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= 0,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= −γΓρ4M10,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= −γΓµM01,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −γΓδ2M01,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= (

1

τ
+ γΓ)M1 + A1 − 2γΓB1(rnk , s

n
k) + γΓρ3M11,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= −γΓB1(rnk , r

n
k),

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= −γΓµ1M01,

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −γΓδ3M01,
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∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= 2γΓB1(rnk , s

n
k),

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂snk
=

1

τ
M1 + dΓA1 + γΓB1(rnk , r

n
k) + γΓρ4M11.

Substituting (4.32) in (4.31) and simplifying, we obtain

[(
1

τ
+ γΩ)M0 + A0 − 2γΩB0(unk ,v

n
k )](unk+1) + [−γΩB0(unk ,u

n
k)](vnk+1)

− γΓ[(ρ3M10)rnk+1 − (µM00)unk+1 − (δ2M00)vnk+1]

= −2γΩB0(unk ,v
n
k )unk + γΩa2C0 +

1

τ
M0u

n−1,

[2γΩB0(unk ,v
n
k )](unk+1) + [

1

τ
M0 + dΩA0 + γΩB0(unk ,u

n
k)](vnk+1)

− γΓ[(ρ4M10)snk+1 − (µ1M00)unk+1 − (δ3M00)unk+1]

= 2γΩB0(unk ,u
n
k)vnk + γΩb2C0 +

1

τ
M0v

n−1,

[(
1

τ
+ γΓ)M1 + A1 − 2γΓB1(rnk , s

n
k)](rnk+1) + [−γΓB1(rnk , r

n
k)](snk+1)

+ γΓ[(ρ3M11)rnk+1 − (µM01)unk+1 − (δ2M01)vnk+1]

= −2γΓB1(rnk , s
n
k)rnk + γΓa2C1 +

1

τ
M1r

n−1,

[2γΓB1(rnk , s
n
k)](rnk+1) + [

1

τ
M1 + dΓA1 + γΓB1(rnk , r

n
k)](snk+1)

+ γΓ[(ρ4M11)snk+1 − (µ1M01)unk+1 − (δ3M01)vnk+1]

= 2γΓB1(rnk , r
n
k)snk + γΓb2C1 +

1

τ
M1s

n−1,

which can be written in matrix form as

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂un
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F2(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F3(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F4(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk




unk+1

vnk+1

rnk+1

snk+1



=


−2γΩB0(unk ,v

n
k )unk + γΩa2C0 + 1

τ
M0u

n−1

2γΩB0(unk ,u
n
k)vnk + γΩb2C0 + 1

τ
M0v

n−1

−2γΓB1(rnk , s
n
k)rnk + γΓa2C1 + 1

τ
M1r

n−1

2γΓB1(rnk , r
n
k)snk + γΓb2C1 + 1

τ
M1s

n−1

 .
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4.6 Linear reaction kinetics on the surface and

non-linear reaction kinetics in the bulk

In this system we consider linear reaction kinetics on the surface and non-linear

reaction kinetics in the bulk. We rewrite the non-dimensional bulk-surface reaction-

diffusion systems given by (2.128) in Chapter 2,

 ∂u
∂t

= ∆u+ f1(u, v, r, s),

∂v
∂t

= dΩ∆v + f2(u, v, r, s),
in Ω× (0, T ] ∂r

∂t
= ∆Γr + f3(u, v, r, s),

∂s
∂t

= dΓ∆Γs+ f4(u, v, r, s),
on Γ× (0, T ].

(4.33)

where

f1(u, v, r, s) = γΩ(a2 − u+ u2v), (4.34)

f2(u, v, r, s) = γΩ(b2 − u2v), (4.35)

f3(u, v, r, s) = γΓ(−r + q2s− ρ3r + u+ δ2v), (4.36)

f4(u, v, r, s) = γΓ(c2r − j2s− ρ4s+ u+ δ3v). (4.37)

The linear boundary conditions have the form ∇u · ν = γΓ[ρ3r − u− δ2v],

dΩ∇v · ν = γΓ[ρ4s− u− δ3v].
on Γ× (0, T ]. (4.38)

The non-dimensional initial conditions for all chemical concentrations are given by

u(x, 0) = u0(x), v(x, 0) = v0(x), r(x, 0) = r0(x) and s(x, 0) = s0(x). (4.39)

An analogous approach to that employed in Section 4.5 gives rise to a system of

non-linear algebraic equations which are solved by Newton’s method. The set of

non-linear equations can be written in the form

F1(Un,Vn,Rn,Sn) = 0,

F2(Un,Vn,Rn,Sn) = 0,

F3(Un,Vn,Rn,Sn) = 0,

F4(Un,Vn,Rn,Sn) = 0,
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where

F1(Un,Vn,Rn,Sn) = M0U
n + τγΩM0U

n + τA0U
n − τγΩB0(Un,Vn)Un

− τγΓ(ρ3M10R
n −M00U

n − δ2M00V
n)− τγΩa2C0 −M0U

n−1,

F2(Un,Vn,Rn,Sn) = M0V
n + τdΩA0V

n + τγΩB0(Un,Un)Vn

− τγΓ(ρ4M10S
n −M00U

n − δ3M00V
n)− τγΩb2C0 −M0V

n−1,

F3(Un,Vn,Rn,Sn) = M1R
n + τγΓM1R

n + τA1R
n − τq2γΓM1S

n

+ τγΓ(ρ3M1R
n −M01U

n − δ2M01V
n)−M1R

n−1,

F4(Un,Vn,Rn,Sn) = M1S
n + τj2γΓM1S

n + τdΓA1S
n − τc2γΓM1R

n

+ τγΓ(ρ4M1S
n −M01U

n − δ3M01V
n)−M1S

n−1,

In order to solve the system of non-linear equation, the employing the extended form

of Newton’s method for vector valued functions lead to write

JFı |(un
k ,v

n
k ,r

n
k ,s

n
k ) (u

n
k+1−unk ,v

n
k+1−vnk , r

n
k+1−rnk , s

n
k+1−snk) = −Fı(unk ,vnk , rnk , snk), (4.40)

where the index ı = 1, 2, 3, 4 and

JF |(un
k ,v

n
k ,r

n
k ,s

n
k )=



∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂un
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F2(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F3(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F4(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk

 ,

(4.41)

and the entries of JF are expressed by

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= (1 + τγΩ)M0 + τA0 − 2τγΩB0(unk ,v

n
k ) + τγΓM00,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −τγΩB0(unk ,u

n
k) + τγΓδ2M00,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= −τγΓρ3M10,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= 0,
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∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= 2τγΩB0(unk ,v

n
k ) + τγΓM00,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= M0 + τdΩA0 + τγΩB0(unk ,u

n
k) + τγΓδ3M00,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= 0,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= −τγΓρ4M10,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= −τγΓM01,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −τγΓδ2M01,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= (1 + τγΓ)M1 + τA1 + τγΓρ3M1,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= −τq2γΓM1,

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= −τγΓM01,

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −τγΓδ3M01,

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= −τc2γΓM1,

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= (1 + τj2γΓ)M1 + τdΓA1 + τγΓρ4M1.

Substituting (4.41) in (4.40), we obtain

[(1 + τγΩ)M0 + τA0 − 2τγΩB0(unk ,v
n
k ) + τγΓM00](unk+1)

+ [−τγΩB0(unk ,u
n
k) + τγΓδ2M00](vnk+1) + [−τγΓρ3M10](rnk+1)

= −2τγΩB0(unk ,v
n
k )unk + τγΩa2C0 +M0u

n−1,

[2τγΩB0(unk ,v
n
k ) + τγΓM00](unk+1) + [M0 + τdΩA0 + τγΩB0(unk ,u

n
k) + τγΓδ3M00](vnk+1)

+ [−τγΓρ4M10](snk+1) = 2τγΩB0(unk ,u
n
k)vnk + τγΩb2C0 +M0v

n−1,

[−τγΓM01](unk+1) + [−τγΓδ2M01](vnk+1) + [(1 + τγΓ)M1 + τA1 + τγΓρ3M1](rnk+1)

+ [−τq2γΓM1](snk+1) = M1r
n−1,

[−τγΓM01](unk+1) + [−τγΓδ3M01](vnk+1) + [−τc2γΓM1](rnk+1)

+ [(1 + τj2γΓ)M1 + τdΓA1 + τγΓρ4M1](snk+1) = M1s
n−1,
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which can be written in a matrix form as

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂un
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F2(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F3(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F4(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk




unk+1

vnk+1

rnk+1

snk+1



=


−2τγΩB0(unk ,v

n
k )unk + τγΩa2C0 +M0u

n−1

2τγΩB0(unk ,u
n
k)vnk + τγΩb2C0 +M0v

n−1

M1r
n−1

M1s
n−1

 .

4.7 Linear reaction kinetics in the bulk and non-

linear reaction kinetics on the surface

In this system we consider linear reaction kinetics in the bulk and non-linear reac-

tion kinetics on the surface. We rewrite the non-dimensional bulk-surface reaction-

diffusion systems given by (2.191) in Chapter 2,

 ∂u
∂t

= ∆u+ f1(u, v, r, s),

∂v
∂t

= dΩ∆v + f2(u, v, r, s),
in Ω× (0, T ] ∂r

∂t
= ∆Γr + f3(u, v, r, s),

∂s
∂t

= dΓ∆Γs+ f4(u, v, r, s),
on Γ× (0, T ].

(4.42)

where

f1(u, v, r, s) = γΩ(−u+ qv), (4.43)

f2(u, v, r, s) = γΩ(c1u− zv), (4.44)

f3(u, v, r, s) = γΓ(a1 − r + r2s− ρ1r + u+ v), (4.45)

f4(u, v, r, s) = γΓ(b1 − r2s− ρ2s+ µu+ δv). (4.46)

The linear boundary conditions have the form ∇u · ν = γΓ[ρ1r − u− v]

dΩ∇v · ν = γΓ[ρ2s− µu− δv]
on Γ× (0, T ]. (4.47)
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The non-dimensional initial conditions for all chemical concentrations are given by

u(x, 0) = u0(x), v(x, 0) = v0(x), r(x, 0) = r0(x) and s(x, 0) = s0(x). (4.48)

An analogous approach to that employed in Section 4.5 gives rise to a system of

non-linear algebraic equations which are solved by Newton’s method. The set of

non-linear equations can be written in the form

F1(Un,Vn,Rn,Sn) = 0,

F2(Un,Vn,Rn,Sn) = 0,

F3(Un,Vn,Rn,Sn) = 0,

F4(Un,Vn,Rn,Sn) = 0,

where

F1(Un,Vn,Rn,Sn) = ((
1

τ
+ γΩ)M0 + A0)Un − γΩqM0V

n

− γΓ(ρ1M10R
n −M00U

n −M00V
n)− 1

τ
M0U

n−1,

F2(Un,Vn,Rn,Sn) = ((
1

τ
+ γΩz)M0 + dΩA0)Vn − γΩc1M0U

n

− γΓ(ρ2M10S
n − µM00U

n − δM00V
n)− 1

τ
M0V

n−1,

F3(Un,Vn,Rn,Sn) = ((
1

τ
+ γΓ)M1 + A1)Rn − γΓB1(Rn,Sn)Rn

+ γΓ(ρ1M11R
n −M01U

n −M01V
n)− γΓa1C1 −

1

τ
M1R

n−1,

F4(Un,Vn,Rn,Sn) = (
1

τ
M1 + dΓA1)Sn + γΓB1(Rn,Rn)Sn

+ γΓ(ρ2M11S
n − µM01U

n − δM01V
n)− γΓb1C1 −

1

τ
M1S

n−1.

In order to solve the system of non-linear equation, the employing the extended form

of Newton’s method for vector valued functions lead to write

JFı |(un
k ,v

n
k ,r

n
k ,s

n
k ) (unk+1 − unk ,v

n
k+1 − vnk , r

n
k+1 − rnk , s

n
k+1 − snk) = −Fı(u

n
k ,v

n
k , r

n
k , s

n
k),

(4.49)
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where the index ı = 1, 2, 3, 4 and

JF |(un
k ,v

n
k ,r

n
k ,s

n
k )=



∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂un
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F2(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F3(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F4(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk

 ,

(4.50)

and the entries of JF are expressed by

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= (

1

τ
+ γΩ)M0 + A0 + γΓM00,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −γΩqM0 + γΓM00,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= −γΓρ1M10,

∂F1(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= 0,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= −γΩc1M0 + γΓµM00,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= (

1

τ
+ γΩz)M0 + dΩA0 + γΓδM00,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= 0,

∂F2(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= −γΓρ2M10,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= −γΓM01,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −γΓM01,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= (

1

τ
+ γΓ)M1 + A1 − 2γΓB1(rnk , s

n
k) + γΓρ1M11,

∂F3(unk ,v
n
k , r

n
k , s

n
k)

∂snk
= −γΓB1(rnk , r

n
k),

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂unk
= −γΓµM01,

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂vnk
= −γΓδM01,

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂rnk
= 2γΓB1(rnk , s

n
k),

∂F4(unk ,v
n
k , r

n
k , s

n
k)

∂snk
=

1

τ
M1 + dΓA1 + γΓB1(rnk , r

n
k) + γΓρ2M11.
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Substituting (4.50) in (4.49) and simplifying, we obtain

[(
1

τ
+γΩ)M0 + A0](unk+1) + [−γΩqM0](vnk+1)

− γΓ[(ρ1M10)rnk+1 − (M00)unk+1 − (M00)vnk+1] =
1

τ
M0u

n−1,

[−γΩc1M0](unk+1) + [(
1

τ
+ γΩz)M0 + dΩA0](vnk+1)

− γΓ[(ρ2M10)snk+1 − (µM00)unk+1 − (δM00)vnk+1] =
1

τ
M0v

n−1,

[(
1

τ
+γΓ)M1 + A1 − 2γΓB1(rnk , s

n
k)](rnk+1) + [−γΓB1(rnk , r

n
k)](snk+1)

+ γΓ[(ρ1M11)rnk+1 − (M01)unk+1 − (M01)vnk+1]

= −2γΓB1(rnk , s
n
k)rnk + γΓa1C1 +

1

τ
M1r

n−1,

[2γΓB1(rnk , s
n
k)](rnk+1) + [

1

τ
M1 + dΓA1 + γΓB1(rnk , r

n
k)](snk+1)

+ γΓ[(ρ2M11)snk+1 − (µM01)unk+1 − (δM01)vnk+1]

= 2γΓB1(rnk , r
n
k)snk + γΓb1C1 +

1

τ
M1s

n−1,

which can be written in a matrix form as

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂un
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F1(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F2(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F2(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F3(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F3(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk
∂F4(un

k ,v
n
k ,r

n
k ,s

n
k )

∂un
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂vn
k

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂rnk

∂F4(un
k ,v

n
k ,r

n
k ,s

n
k )

∂snk




unk+1

vnk+1

rnk+1

snk+1



=


1
τ
M0u

n−1

1
τ
M0v

n−1

−2γΓB1(rnk , s
n
k)rnk + γΓa1C1 + 1

τ
M1r

n−1

2γΓB1(rnk , r
n
k)snk + γΓb1C1 + 1

τ
M1s

n−1

 .

4.8 Conclusion

A fully implicit time-stepping scheme is employed with the finite element method

through the application of the extended form of Newton’s formula to discretise

the four-component bulk-surface reaction-diffusion systems both in space and in
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time. The theoretical set-up for the finite element method is provided with the re-

quired definitions of function spaces and other abstract concepts. Two time-stepping

schemes namely first order IMEX and 2-SBDF are compared and it is found that

2-SBDF is a faster time-stepping scheme. We also obtain a fully discretised system

of algebraic equations of BSRDEs with linear coupling conditions. The finite ele-

ment formulation is verified by considering well known parameters from the Turing

space that give rise to pattern formation. In particular, convergence of the numer-

ical method is shown both in the bulk and on the surface. In the next chapter,

we carry out detailed numerical solutions of the coupled system of bulk-surface

reaction-diffusion equations with an eye to verifying theoretical results obtained by

linear stability analysis in previous chapters.
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Chapter 5

Numerical Solution for Coupled

Bulk-Surface Reaction-Diffusion

Equations

In this chapter we carry out the numerical simulations on all three systems that were

explored in Chapter 2. We employ a fully implicit time-stepping scheme based on the

extended form of Newton’s method with the finite element formulation presented

in Chapter 4 to proceed with obtaining numerical approximate solutions both in

space and in time. We perform the finite element simulations on two types of bulk-

surface domains. The first is a cuboid forming the bulk and its six quadrilateral faces

forming the corresponding surface. The second domain is a three dimensional ball

forming the bulk and hollow sphere bounding the ball forming the corresponding

surface. The cuboid has volume 1 in dimensionless units and it occupies the space

defined by Cb, where Cb = {(x, y, z) ∈ R3 : 0 < x < 1, 0 < y < 1, 0 < z < 1}

and the surface consists of six quadrilaterals that bound the unit-volume cube. The

second domain is a three-dimensional ball of radios that forms the bulk Bb, given by

Bb = {(x, y, z) ∈ R3 : x2+y2+z2 < 1}, which is bounded by the surface that consists

of all points satisfying the definition of a two-dimensional hollow sphere expressed

by Bs = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. In each simulation we use the L2-norms

of the discrete time derivatives of the numerical solutions to observe diffusion-driven

instability. The discretised cuboid Ωh possesses 9826 vertices (also known as degrees

of freedom) of which 3076 belong to the corresponding surface Γh. The spherical
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discretised domain Ωh possesses 7634 degrees of freedom of which 772 belong to the

discretised hollow surface Γh. The initial conditions in all the simulations are taken

to be random small perturbation near the uniform steady state.

5.1 Non-linear kinetics both in the bulk and on

the surface

The finite element library deal.ii Bangerth et al. (2016) is employed to simulate the

numerical solutions of the coupled system of bulk-surface reaction-diffusion equa-

tions (4.24) on both the cubic and spherical bulk-surface domains respectively. In

all simulations for the coupled system of bulk-surface reaction-diffusion equations

(4.24) we use the values a2 = 0.1 and b2 = 0.9 for parameters in Schnakenberg

reaction kinetics. These values are chosen because they lie within a region in

parameter spaces corresponding to Turing instability Murray (2001); Madzvamuse

(2000); Madzvamuse et al. (2015a), and therefore satisfies conditions (2.117)-(2.122).

The other parameters are chosen as ρ3 = 2
5
, ρ4 = 3, µ = 2

5
, µ1 = 0, δ2 =

0, and δ3 = 3, so that they all satisfy the parameter compatibility condition

(2.32). We present simulations corresponding to four different cases, so that we

ensure to include all possible behaviors of pattern formation corresponding to dif-

ferent combinations between diffusion ratios namely dΩ and dΓ in the bulk and on

the surface respectively. In particular the four combinations of values chosen for the

current simulations consist of (dΩ, dΓ) = (1, 1), (30, 30), (1, 30), (30, 1). The theoret-

ical results proposed by Theorem 2.1.3 are verified numerically by observing that

the numerical solution of the coupled system of bulk-surface reaction-diffusion equa-

tions (4.24) induces no spatial pattern in the bulk or on the surface with a choice

of diffusion ratios given by dΩ = dΓ = 1. Figures 5.1 and 5.2 provide a numer-

ical verification of the absence of any spatial pattern under the parameter settings

dΩ = dΓ = 1, which is in agreement with Theorem 2.1.3 for both the cubic and spher-

ical domains. If the values of the diffusion ratios are chosen such that dΩ = 30 > 1

and dΓ = 30 > 1, then the finite element numerical solution of the coupled system

of bulk-surface reaction-diffusion equations (4.24) reveals pattern formation in the

bulk, on the surface and on the layer of interface where the coupling terms interact
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through the boundary conditions. It is therefore, when non-linear reaction kinet-

ics are posed both in the bulk and on the surface, with parameter compatibility

conditions (2.32) satisfied and dΩ, dΓ much larger than 1, that one may expect the

numerical solutions of the coupled system of bulk-surface reaction-diffusion equa-

tions (4.24) to form a spatial pattern everywhere. Figures 5.4 and 5.5 show results

in agreement with this prediction, which means that spatial pattern can be observed

everywhere. When the diffusion ratios are chosen such that dΩ = 1 and dΓ = 30 > 1,

then spatial pattern is emerged on the surface and it extends by forming a boundary

layer without inducing spatial pattern into the interior of the bulk. This is observed

to be the case in Figures 5.7 and 5.8 for spherical and cubic domains respectively.

Figures 5.10 and 5.11 reveal the case where we choose dΩ = 30 and dΓ = 1 for which

it was predicted through the results of stability analysis that the reaction kinetics

inside the bulk produces spatial pattern with a potential possibility that this pattern

may emerge on the surface as well. It is therefore, if a spatial pattern emerges on

the surface under this kind of parameter settings then it does not mean that surface

reaction kinetics with dΓ = 1 is capable of evolving spatial pattern, in fact it only

means that the emergence of spatial pattern on the surface is a consequence of the

spatial pattern formed in the bulk and extends through the coupling conditions to

appear on the surface.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.1: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 1 and dΓ = 1 and γΩ = γΓ = 300. The rows correspond to

variables u, v, r and s respectively. The first two columns show the initial profile of

concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.2: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 1 and dΓ = 1 and γΩ = γΓ = 300. The rows correspond to

variables u, v, r and s respectively. The first two columns show the initial profile of

concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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(a) (b)

Figure 5.3: Convergence history corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 1, dΓ = 1 and γΩ = γΓ = 300 is shown in the L2 norm

of the discrete time derivative. Sub-figure (a) shows the convergence history for the

equations in the bulk, whereas Sub-figure (b) shows the same for equations on the

surface.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.4: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 30 and dΓ = 30 and γΩ = γΓ = 300. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.5: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 30 and dΓ = 30 and γΩ = γΓ = 300. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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Figure 5.6: Convergence history corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 30, dΓ = 30 and γΩ = γΓ = 300 is shown in the L2 norm

of the discrete time derivative. Sub-figure (a) shows the convergence history for the

equations in the bulk, whereas Sub-figure (b) shows the same for equations on the

surface
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(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.7: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 1 and dΓ = 30 and γΩ = γΓ = 300. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.8: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 1 and dΓ = 30 and γΩ = γΓ = 300. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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Figure 5.9: Convergence history corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 1, dΓ = 30 and γΩ = γΓ = 300 is shown in the L2 norm

of the discrete time derivative. Sub-figure (a) shows the convergence history for the

equations in the bulk, whereas Sub-figure (b) shows the same for equations on the

surface.
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.10: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 30 and dΓ = 1 and γΩ = γΓ = 300. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.11: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 30 and dΓ = 1 and γΩ = γΓ = 300. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step at time t = 10.
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(a) (b)

Figure 5.12: Convergence history corresponding to the coupled system of BSRDEs

given by (4.24) with dΩ = 30, dΓ = 1 and γΩ = γΓ = 300 is shown in the L2 norm

of the discrete time derivative. Sub-figure (a) shows the convergence history for the

equations in the bulk, whereas Sub-figure (b) shows the same for equations on the

surface.
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5.2 Linear reaction kinetics on the surface and

non-linear reaction kinetics in the bulk

In simulations for the coupled system of bulk-surface reaction-diffusion equations

(4.33) the parameter values are chosen same as in Section 5.1, which are a2 = 0.1 and

b2 = 0.9 for Schnakenberg model (Murray, 2001; Madzvamuse, 2000; Madzvamuse

et al., 2015a). These values lie within Turing region in parameter spaces Murray

(2001); Madzvamuse (2000); Madzvamuse et al. (2015a), and therefore satisfy condi-

tions (2.181)-(2.185). The other parameters are chosen as q2 = 2, c2 = 3 and j2 =

6 which satisfy the compatibility condition (2.145). The proposed theoretical pre-

dictions in Theorem 2.2.3 are numerically verified in the sense that the coupled

system of bulk-surface reaction-diffusion equations (4.33) exhibits similar properties

to those obtained for the case dΩ = 30 and dΓ = 1, where spatial pattern is formed

inside the bulk with a possibility to emerge on the surface and also leaving a homo-

geneous and pattern-less boundary layer. Figures 5.13 and 5.14 reveal the numerical

results of such verification, where the reaction kinetics inside the bulk produce spa-

tial pattern which extends to emerge on the surface as well. It is therefore important

to realise that the emergence of spatial pattern on the surface under this kind of

reaction kinetics does not necessarily imply that the pattern is formed by diffusion-

reaction kinetics on the surface, in fact it only means that the emergence of spatial

pattern on the surface is a consequence of the spatial pattern formed in the bulk

and extends through the coupling conditions to appear on the surface. A distinction

that makes the numerical results of this system different from the results obtained

for dΩ > 1 and dΓ > 1 in Section 5.1 is that here, the boundary layer where the

coupling conditions interact between the bulk and the surface remain pattern-less

during the evolution.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.13: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.33) with dΩ = 20, dΓ = 20, γΩ = 500 and γΓ = 500. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step.



128

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.14: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.33) with dΩ = 20, dΓ = 20, γΩ = 500 and γΓ = 500. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step.
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(a) (b)

Figure 5.15: Convergence history corresponding to the coupled system of BSRDEs

given by (4.33) with dΩ = 20, dΓ = 20 and γΩ = γΓ = 500 is shown in the L2 norm

of the discrete time derivative. Sub-figure (a) shows the convergence history for the

equations in the bulk, whereas Sub-figure (b) shows the same for equations on the

surface.
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5.3 Linear reaction kinetics in the bulk and non-

linear reaction kinetics on the surface

This section presents numerical simulations verifying the proposed predictions for

the coupled system of bulk-surface reaction-diffusion equations (4.42) in Theorem

2.3.3. For the numerical simulations for the coupled system of bulk-surface reaction-

diffusion equations (4.42) the parameter values are chosen as a2 = 0, b2 = 0, q =

3, c1 = 2 and z = 4 which satisfy conditions (2.204). The theoretical results are

verified numerically by observing that the numerical solution of the coupled system

of bulk-surface reaction-diffusion equations (4.42), induces no spatial pattern in the

bulk or on the surface. Figures 5.16, 5.17 and 5.18 provide a numerical verification

of the absence of any spatial pattern under the parameter settings in Theorem 2.3.1,

and the results are in agreement with Theorem 2.3.3 for both the cubic and spherical

domains.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.16: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.42) with dΩ = 50, dΓ = 50, γΩ = 240 and γΓ = 240. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step.
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.17: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.42) with dΩ = 50, dΓ = 50, γΩ = 240 and γΓ = 240. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step.
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(m) (n) (o) (p)

Figure 5.18: Numerical solutions corresponding to the coupled system of BSRDEs

given by (4.42) with dΩ = 10, dΓ = 10, γΩ = 500 and γΓ = 500. The rows correspond

to variables u, v, r and s respectively. The first two columns show the initial profile

of concentration with random perturbation near the uniform steady state. The third

and fourth columns show the bulk-surface finite element numerical solutions at the

final time step.
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(a) (b)

Figure 5.19: Convergence history corresponding to the coupled system of BSRDEs

given by (4.42) with dΩ = 50, dΓ = 50 and γΩ = γΓ = 240 is shown in the L2 norm

of the discrete time derivative. Sub-figure (a) shows the convergence history for the

equations in the bulk, whereas Sub-figure (b) shows the same for equations on the

surface.

5.4 Conclusion

The bulk-surface finite element formulation provided in the contents of Chapter

4 was employed to simulate a numerical scheme for all three systems studied in

Chapter 2. Parameter choices for all simulations were chosen subject to the ad-

missibility of the necessary and sufficient conditions presented in Chapter 2 and 3

respectively. First the coupled system of bulk-surface reaction-diffusion equations

(4.24) with non-linear reaction kinetics in the bulk and on the surface is explored for

four different combinations of diffusion ratios. The coupled system of bulk-surface

reaction-diffusion equations (4.24) admits the formation of spatial pattern every-

where in the bulk and on the surface provided that the diffusion ratios both in the

bulk and on the surface are values greater than 1. If both the diffusion ratios are

chosen to be 1, then the coupled system of bulk-surface reaction-diffusion equations

(4.24) returns to the uniform steady state forming no pattern at all. If the diffusion

ratio only in the bulk is larger than 1, then spatial pattern is admitted inside the bulk

with possible emergence on the surface as well, which is due to the coupling condi-

tions between the bulk and its boundary (surface). If the diffusion ratio only on the

surface is chosen greater than 1, then spatial patterns can be formed on the surface,
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which also forms a patterned boundary layer and the dynamics fail to induce any

pattern in the interior of the bulk. In the coupled system of bulk-surface reaction-

diffusion equations (4.33), non-linear kinetics are posed inside the bulk which are

coupled with linear reaction-kinetics on the surface. Numerical simulation for this

system produces pattern in the interior of the bulk as well as on the surface, with

no pattern on the interface of the bulk near the surface. In the coupled system

of bulk-surface reaction-diffusion equations (4.42) linear reaction kinetics are posed

inside the bulk, which are coupled with non-linear kinetics on the surface. This sys-

tem only admits a trivial zero steady state, which induces a parameter condition for

stability on equations in the bulk, such that it prevents diffusion-driven instability

from happening and hence the system fails to produce spatial pattern at all.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Bulk-surface reaction-diffusion systems are explored through studying combinations

of linear and non-linear reaction kinetics with linear Robin-type boundary condi-

tions. If non-linear reaction kinetics are posed both in the bulk and on the surface,

then with appropriate parameter choices, such a system is able to give rise to pat-

tern formation everywhere. Parameters can also be chosen for this system such

that pattern emerges in the bulk and extends to the surface, however it forms no

pattern on the internal boundary layer. It is worth noting that the emergence of

no pattern in the internal boundary layer is a consequence of parameter choice in

the first system and not the exhaustive results associated to it. The results with

patterned bulk and surface and no pattern on the internal boundary layer can also

be obtained through the second system with non-linear reaction kinetics in the bulk

and linear reaction kinetics on the surface. This combination of reaction kinetics

is not capable of giving rise to pattern everywhere and the pattern that it emerges

on the surface is a consequence of patterning extension from the bulk since linear

kinetics on the surface do not satisfy the necessary conditions for diffusion-driven

instability. If linear reaction kinetics are posed in the bulk with non-linear reaction

kinetics on the surface, then the system is found to evolve with no spatial pattern

at all. It means that this combination of reaction kinetics prevents all the neces-

sary conditions required for diffusion-driven instability. It happens mainly because

with this combination of reaction kinetics the only uniform steady state admitted
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is the trivial zero steady state, therefore, failing to satisfy conditions for diffusion-

driven instability. Hence, the dynamics uniformly converge to the trivial zero steady

state. The existence of a unique excitable wavenumber is found through employing

critical diffusion ratio. The existence of critical wavenumber together with compu-

tationally derived (through the results of Chapter 2) provide a full set of necessary

and sufficient conditions for diffusion-driven instability. Two types of time-stepping

schemes namely first order IMEX and 2-SBDF were considered on a decoupled bulk-

surface reaction-diffusion system to explore their respective convergence rates and

it was found that 2-SBDF outperforms the first order IMEX. The weak formula-

tion of coupled bulk-surface reaction-diffusion system was obtained to set-up the

premises for discretisation in space through employing the standard finite element

method. The full coupled system of BSRDEs was simulated using a fully impli-

cit time-stepping scheme through the application of an extended form of Newton’s

method for vector valued functions. Using a fully implicit time-stepping scheme, we

numerically demonstrate that the first system allows patterns to emerge everywhere

and the second system emerges pattern inside the bulk and on the surface with a

pattern-less boundary layer. Finally, we also demonstrated that the third system

evolves to only converge to a homogeneous uniform steady state without any pattern

formation at all.

6.2 Future work

A possible direction to extend the current framework is to explore a system with

different types of non-linear reaction kinetics such as Gierer-Meinhardt reaction

kinetics in the bulk and Schnakenberg reaction kinetics on the surface or vice versa.

It is interesting to reveal whether the pattern formation properties found in the scope

of this thesis continue to be true for other types of non-linear reaction kinetics. In

the third system in Chapter 2 we found that if the coupled system fails to satisfy

conditions for diffusion-driven instability then no spatial pattern emerges. This

poses an interesting question to study whether employing non-linear Robin-type

coupling conditions (instead of linear Robin-type) could change these results or is

it that the non-existence of spatial pattern is embedded in the choice of reaction
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kinetics posed on the surface and in the bulk. A further direction for extending

this framework is to include domain-growth in the formulation. Studying reaction-

diffusion systems on time-dependent domains is important because the formulation

of such systems from real-world applications usually take place on continuously

evolving domains. The results of the current thesis can also be employed to explore

the dynamics responsible for cell motility, which is one of the most studied areas

of research in mathematical biology. Application of the results of this study could

improve our insight on the idea of symmetry breaking in animal embryos, which

is an attractive topic in developmental biology. This can be achieved by using a

bulk-surface approach to the process of symmetry breaking instead of the routinely

used approach of standard reaction-diffusion system. The results of bulk-surface

reaction-diffusion system on spherical geometries can also be employed to model the

reaction-diffusion process of chemo-taxis inside and on the surface of a solid tumour.
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