
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



                                                                 
1 

UNIVERSITY OF SUSSEX SCHOOL OF GLOBAL STUDIES 
GEOGRAPHY DEPARTMENT 

Saharan Heat Low: A 
Comprehensive analysis 

of thermodynamics, 
dynamics and associated 

variability 
A thesis submitted for the partial fulfilment of degree of Doctor of 

Philosophy 

 

Netsanet Alamirew 

     2/8/2018 

 



 
1 

 
DECLARATION 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

I confirm that this is my own work and the use of all material from other sources 

has been properly and fully acknowledged. 

 

 

 

 

                             

 

 

 

 

 

 

 

 

 

 

 

Netsanet Alamirew 

  



 
2 

 

Abstract 
During summertime Saharan heat low, a region of low pressure system, is 

formed as a result of large solar insolation superimposed with the convergence of west 

African South westerly monsoon flow and dry north easterly Harmattan flow along the 

intertropical discontinuity. This region plays significant role in the initiation and 

development of the West African Monsoon. The Saharan heat low is co-located with 

region of maximum load of dust aerosol which is known to have impact on the climate.  

Further the Saharan heat low plays key role in the global circulations including its role 

in formation of African Easterly Jets and African Easterly Waves. Despite its role in 

influencing the dynamic and thermodynamics of the region, the Saharan Heat low is 

not extensively studied partly due to lack of comprehensive data due to the harsh 

weather conditions of the region.  

Climate system of the Saharan heat low is a result of different complicated 

atmospheric and land surface processes most dominantly immense solar input at the 

surface, large convergence of sensible heat flux from the ground into the atmosphere, 

and low level cooling by horizontal advection of moisture from the surrounding area. 

These dynamical and thermodynamical processes take part in transport and 

redistribution of heat and transport of the moisture in the region.  

This thesis aims at providing a detailed analysis of the physical processes 

responsible for the development, maintenance, and decadal variability of the Saharan 

heat low region. I investigate three specific aspects of the Saharan heat low region.  

 

1. Heat and Moisture Budget: Heat and moisture are drivers of dynamics and 

thermodynamics of a region. Previous studies presented heat and moisture 

budget of the Saharan heat Low without attributing to the detailed mechanisms by 

which heat and moisture is transported from the surrounding area to the Sahara 

heat low and vice versa. This thesis presents components of heat and moisture 

budget resulting from mean and transient flows that are responsible for 

heating/cooling and moistening/drying of the Sahara heat low region. Heat and 

moisture budget are derived using commonly used reanalyses simulations (ERA-I, 

NCEP, and MERRA) and comparison of the results between the three reanalyses 

are made. I investigate the mechanisms responsible for the decadal variability of 

intensity of the Sahara heat low and provide implications. This work has not been 

done previously to the best of knowledge.   

2. Role of Dust and Water vapor in controlling the radiative flux: Recent 

studies show that water vapour greenhouse forcing is responsible for 
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intensification of the Saharan heat low and as a consequence recovery of Sahel 

rainfall. Dust aerosol is known to have impact on the climate through its 

interaction with radiation. The large dust load in the Sahara heat low makes it 

important in controlling the variability in the radiative budget of the region. 

Previous studies have quantified the role of dust and water vapour in the region in 

controlling day to day variability in the radiative flux in the heat low. There is still 

uncertainty in the radiative forcing and associated variability partly due to lack of 

observational data. Furthermore separating the radiative effect of dust from that of 

water vapour is challenging due to the co-variability of dust and water vapour. 

This thesis quantifies separate and combined effect of dust and water vapour in 

controlling the radiative flux of the Saharan heat low using the recently made 

FENNEC observations of meteorological variables and dust loading. Theoretical 

experiments are made to study sensitivity of radiative flux to variations in dust and 

water vapour.      

3. Characteristics of convective density currents:  Convective down drafting 

density currents (cold pools) are ubiquitous features of the Saharan Heat low 

region which are shown to play important role in the transport of moisture and 

emission of dust in the region. Despite this, the characteristics of these 

atmospheric processes are not well studied in the Sahara Heat Low. Improving 

our knowledge of properties of convective density currents is imperative to better 

understand atmospheric processes within boundary layer of the Saharan heat low 

and thus improve model simulation performance. Here I provide magnitude, 

spatial distribution, and seasonal variability of cold pools using data from the 

Automatic weather Station (AWS) spread over the Sahara desert. I implement a 

unique identification method which is further verified by satellite observations of 

cold pool signatures. Once cold pools are identified at all stations, statistical 

description of the occurrence frequency and distribution are presented. Finally I 

asses reanalyses model simulation of convection triggered cold pool outflows 

through comparison with measurements.       
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CHAPTER I 

1.1 Introduction     
 

Sahara desert which engulfs most of North Africa surrounded by the Red sea in 

the east and the Atlas Mountains and Mediterranean in the north to Atlantic Ocean in 

the west is the hottest desert in the world. The characteristics of the atmosphere and 

land surface, including dry features and prevailing high temperature, make the Sahara 

desert an important component of global climate system. The Sahara desert is also 

known for being the largest source of dust in the world (Prospero et al., 2002; Tanaka 

and Chiba, 2006; Washington et al., 2003). It is estimated that more than half of the 

global dust is emitted from the Sahara desert. Climate models estimate dust emission 

from Sahara desert ranges from 200 to 3000 Tg yr-1 (Huneeus et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Climatological state of the Saharan heat Low region (mean June from 

1979-2013): SHL location, low level circulation, and dust load. Shaded: the mean 

position of heat low region (occurrence frequency of 90% of llat), arrows: mean 925 

hPa wind (m s-1), Blue Line: the mean position of the inter-tropical discontinuity from 

ERA-Int reanalysis data (925 hPa 10 g Kg-1 specific humidity) and aerosol optical depth 

(AOD) from satellite MISR data (contour intervals are 0.4, 0.6, and 0.8 for grey, white, 

and cyan lines respectively).  The purple rectangle denotes location of the FENNEC 

Supersite 1 (SS1) 

 

During the northern hemisphere summertime a low-pressure region, known as 

Saharan Heat Low (SHL), is formed embedded within the Sahara desert over northern 

Longitude 
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Mali, southern Algeria, and eastern Mauritania (fig. 1.1). SHL is known for its unique 

extreme features: high surface temperature or equivalently low surface pressure 

(Lavaysse et al., 2009;Messager et al., 2010a) with little or no precipitation and being 

largest source of dust on the planet. The large insolation over the region is the prime 

driver for the formation of the heat low resulting in surface temperature as high as 40 
0C during summer (fig. 1.2). The excess solar energy at the surface is converted to 

sensible heat that triggers deep atmospheric convection with a well-mixed boundary 

layer during the day. The SHL is known for its deepest Planetary Boundary Layer 

(PBL) on Earth, often extending up to ~4 - 5 km (Marsham et al., 2013b).  Coupled with 

synoptic circulations, the SHL is a dominant component of the region’s dynamical 

system playing key role in: (i) initiation of west Africa monsoon (Sultan and Janicot, 

2003), (ii) influencing the structure and development of Africa Easterly Jets(AEJs) 

(Thorncroft and Blackburn, 1999), and (iii) driving precipitation over Sahel (Evan et al., 

2015;Lavaysse et al., 2010a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Mean 2m air temperature averaged for all Automatic Weather Stations 

(AWS stations, see chapter II) during summer months in 2011. 

 

Despite its key role in regional dynamics and thermodynamics, the detailed 

processes within the Sahara heat low region, associated variability and its link with the 

West Africa monsoon system and Sahel rainfall are not well understood. Both 

observational evidences and model simulations prove that the Saharan Heat Low 

region display decadal warming trend, sometimes termed as ‘desert amplification’ 

(Cook & Vizy, 2015; Evan, Flamant, et al., 2015; Lavaysse, 2015; Lavaysse et al., 

2016; Wei et al., 2017; Zhou, 2016). However there is still no clear unanimity on the 
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causes of warming of the Saharan heat low. In line with this, some publications show 

recovery in Sahelian rainfall to be correlated with intensification of SHL (Biasutti et al., 

2009; Evan, Fiedler, et al., 2015). Others contradict the idea that SHL intensification 

has enhancing effect on Sahelian rainfall (Shekhar & Boos, 2017). A lot of publications 

suggest the cause of recovery for Sahel precipitation from severe draught in the 1970’s 

and 1980’s to be anomalies in SST (Giannini et al., 2013; Giannini et al., 2003; Hagos 

& Cook, 2008; E. R. Martin et al., 2014; Roehrig et al., 2013). It is also argued that 

global temperature increase due to greenhouse increase is driver of enhanced Sahel 

precipitation (Cook & Vizy, 2015; Dong & Sutton, 2015).  

 The points stated above suggest the need to investigate the causes of 

variability of the SHL and its link with Sahel precipitation. The dominant factor 

responsible for the circulation within SHL is temperature gradient between the hot SHL 

and the cooler surrounding ocean driving advection of moisture towards the heart of 

the Saharan desert which includes the summer West African Monsoon (WAM), 

(Lavaysse et al., 2009;Parker et al., 2005;Sultan et al., 2003), surges from 

Mediterranean sea (Lavaysse et al., 2010b;Vizy and Cook, 2009), and the Atlantic 

inflow (Grams et al., 2010) inflow.  The variability in SHL intensity modulates moisture 

transport, convective activity, and thus precipitation within the surrounding region most 

importantly on the WAM across a range of timescales, including (i) the synoptic 

(Couvreux et al., 2010) to intra-seasonal (Chauvin et al., 2010) (ii) mean seasonal 

(Sultan and Janicot, 2003;Xue et al., 2010) (iii) inter-annual and decadal through to 

future climate change in the WAM (Martin and Thorncroft, 2014;Roehrig et al., 2013).  

On longer time scales SHL is observed to have a positive trend in surface temperature 

which is attributed to different causes (Dong and Sutton, 2015;Evan et al., 

2015;Lavaysse et al., 2016;Vizy and Cook, 2009). The exact cause for warming trend 

of the SHL is still unknown (Lavaysse, 2015). 

Lavaysse et al. (2009) have studied the seasonal evolution of the SHL. They 

proposed a method for detection of the seasonal evolution of the SHL using differences 

in geopotential heights at 700 hPa and 925 hPa, which they refer it as Low Level 

Atmospheric Thickness (LLAT). Over the annual cycle, they showed the SHL core 

migrates from a position south of the Darfur mountains (centred on ~6N, 20E) in winter 

to central western Sahara (centred on ~23N,3W) in summer (fig. 1.1) covering much of 

northern Mauritania, Mali and Niger and Southern Algeria. The annual seasonal 

displacement of the heat low region is linked with the transition of the maximum surface 

temperature resulting from solar insolation. Northwest (rather than north) shifting of the 

heat low region from winter to summer is argued to be associated with the orography of 
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the region (Drobinski et al., 2005;Semazzi and Sun, 1997). Figure 1.3 displays the 

seasonal evolution of location of the SHL region in a year averaged from 1979-2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1.3 Climatological Occurrence Frequency (colour) of West Africa Heat 

Low Region averaged from 1979-2015, Era-Int data 

 

In relation to this Chauvin et al. (2010) investigated the intra-seasonal variability 

of SHL and its link with mid-latitudes. They identified two modes variability (namely 

west phase and east phase) using composite analysis of 850 hPa potential 

temperature. The west phase is associated with changes in the Atlantic westerly polar 

jet and the North Africa subtropical westerly jet configurations while the east phase is 

associated with large extension of the Azores anticyclone over Europe and western 

Mediterranean. In both phases they showed west (east) anomalous temperature 

propagation in southeastward (southwestward) and concluded the SHL bridges the 

mid-latitudes and the West African monsoon. The variability of the climate system of 

SHL has been extensively studied by many authors (Chauvin et al., 2010; Couvreux et 

al., 2010; Parker et al., 2005; Peyrille & Lafore, 2007; Thorncroft & Blackburn, 1999; 

Xue et al., 2010). Despite large volume of study, there is still a need for better 

understanding of the physical processes causing variability within the SHL. 
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 In addition to the important dynamical aspects mentioned above, the SHL is 

region of largest dust loading on the globe during boreal summer (Engelstaedter et al., 

2006) which has various environmental and climate impacts. There are various 

mechanisms responsible for dust uplift including low level jets(LLJ, Washington and 

Todd (2005)), dry convection (Ansmann et al., 2009), monsoon surges (Karam et al., 

2009), and cold pool outflows (Allen et al., 2013;Heinold et al., 2013;Marsham et al., 

2013b). The contribution of each mechanism to the total dust loading in the Sahara 

heat low has been estimated in recent studies (Allen et al., 2013;Heinold et al., 2013) 

but the total dust loading in the region still remains uncertain. Dust aerosol is known for 

altering the radiation budget on top of atmosphere, within the atmosphere, and surface 

of the Sahara desert (Ansell et al., 2014;Banks et al., 2014;Haywood et al., 

2005;Marsham et al., 2016;Yang et al., 2009). Dust is also known for its impact on 

atmospheric circulation as a consequence of its radiative effect (Evan et al., 

2011;Solmon et al., 2012;Stanelle et al., 2010). Atmospheric dust particles emitted 

from the Sahara desert are transported to large distances eventually being deposited 

providing nutrient to ocean (Jickells et al., 2005) and on land such as the Amazon 

(Bristow et al., 2010). In addition, dust may affect visibility and thus causing impact on 

aviation (Weinzierl et al., 2012). There is also evidence that dust can be health problem 

on dryland and downwind environments (Goudie, 2014). The above reasons make dust 

an important component of the atmosphere which needs interdisciplinary study.    

There is large uncertainty associated with climate effect of dust (predominantly 

radiative effect) partly due to lack of accurate knowledge on the optical properties of 

dust. On a global scale magnitudes of the radiative effect of dust are uncertain that it is 

still not clear atmospheric dust has a net cooling or heating effect on global climate. A 

recent study using dust observational and chemical model transport simulations, (Kok 

et al., 2017) estimate the direct radiative effect of dust to be in the range -0.48 and 

+0.28 W m-2. In a similar study an estimated -0.3 and +0.1 W m-2 (Myhre et al., 2014) 

direct radiative forcing of anthropogenic dust, which constitutes 20% of total dust, is 

reported in the Intergovernmental Panel on Climate Change (IPCC) assessment report 

5. A number of field campaigns have been taking place near Sahara desert to better 

understand dust properties and its influence on the regions climate. Table 1.1 

summarises mineral dust field campaigns carried out near the dust sources of the 

Sahara desert. Despite the continuing experimental and modelling studies and 

substantial progresses, there still exists unanswered questions concerning the role of 

dust in the climate system (Ansmann et al., 2011; Ryder et al., 2015). Given the large 

presence of dust and its key role in the atmosphere of region, there is a research need 
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to determine and hence improve the radiative forcing of dust and its role in shaping the 

dynamics of the SHL.  

 

Table 1.1 List of experimental dust field campaigns in the vicinity of Sahara 

Campaign  
Acronym 

Campaign  
Time 

Campaign 
Location 

Campaign Objective  Reference 

AMMA  Jan and 

Feb 2006 

West 

Africa 

Characterize Saharan aerosol 

and biomass-burning aerosols 

from West Africa 

(Redelsperger et 

al., 2006) 

DABEX  Jan and 

Feb 2006 

Niger Same topic as AMMA-SOP0 (Haywood et al., 

2008) 

DODO  

 

Feb and 

Aug 2006 

West 

Africa 

Characterize Saharan dust in 

two seasons, constrain model 

simulations, quantify 

deposition of iron to the North 

Atlantic Ocean 

(McConnell et al., 

2008) 

SAMUM-1 May and 

Jun 2006  

Southern 

Morocco 

 

Characterize Saharan aerosol 

near the source region and 

quantify dust-related 

radiative effects 

 

(Heintzenberg, 

2009) 

GERBILS  Jun 2007  North 

Africa  

Geographic distribution and 

physical and optical properties 

of Saharan dust, impact 

on radiation, validation of 

satellite retrievals and 

numerical weather prediction 

models 

 

(Haywood et al., 

2011) 

FENNEC  Apr and Jun 

2011, 

Jun 2012 

 

Algeria 

and 

Mauritania 

 

Improve understanding of the 

Saharan climate system 

through a synergy of 

observations and modeling 

 

Washington et al. 

(2012); 

(Ryder et al., 

2015) 

 

For the two major reasons, i.e. role on the dynamical system of the region more 

importantly on WAM and being large source of dust emission, the SHL has attracted 
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the attention of researchers around the globe. A progress has been made in the past 

two decade and our understanding of the different components of the climate system of 

the region has improved. Despite the ongoing efforts, there still remains a gap in our 

understanding on the detailed physical processes and variability that lead to the 

formation and maintenance of the SHL. The scarce ground observational dataset due 

to the harsh weather conditions has hindered the research at least partly. This thesis 

will try to help fill the gap by providing a comprehensive analysis of different aspects of 

the SHL. As a part of understanding the climate system of the SHL region, I first 

provide a brief description of the main known features of the climate system of the 

region followed by defining the research objectives of this thesis. The remainder of this 

chapter is organized as follows. Section 1.2 presents an overview of components of 

climate systems of the SHL region which are responsible for its development and 

evolution. This will be followed by giving roles of dust and water vapour in the climate 

system of the region which is given in section 1.3. A review of literature from selected 

past papers is summarized in section 1.4. Last I define the objectives of that this 

research work in section 1.5. 

1.2 Overview of the Saharan Heat Low summertime Climate System 

1.2.1 Energy budget of Sahara Heat Low  
 

Deserts are known by the large intake of direct solar radiation which controls 

the surface and atmospheric state. The net surface radiative energy 𝑄𝑄𝑅𝑅 at any time of a 

day is given by:  

 

                                              𝑄𝑄𝑅𝑅 = 𝑄𝑄𝐺𝐺 + 𝑄𝑄𝐻𝐻 + 𝑄𝑄𝐿𝐿                                           (1.1)     

       

where 𝑄𝑄𝐺𝐺 is ground conduction flux, 𝑄𝑄𝐻𝐻 is sensible heat flux, and 𝑄𝑄𝐿𝐿 is latent heat flux.   

In deserts the radiation budget equation is characterized by large radiant input and 

output. This is mainly due to the following reasons: in the sub-tropics the Sun is often 

close to the zenith, absence or limited cloud coverage of deserts, and low water vapour 

content, and surface properties of deserts. Besides to that deserts have relatively very 

high surface albedo and thus considerable amount of incoming shortwave energy is 

reflected at the surface back to space. Moreover because of low evaporation rates from 

the dry surfaces of deserts and small thermal conductivity of sand, only a small fraction 

of the incoming solar energy is lost as non-radiative energy. The resulting high surface 

temperature of deserts arising from soil factors makes longwave emission very large. 
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The clear sky conditions let much of the longwave radiation escape. Therefore the net 

radiation absorbed by desert is not as large as one would expect rather it is less than 

that for bare soil in mid-latitudes in the same season (Oke, 1987). Figure 1.4 shows 

observed mean diurnal cycle of surface radiative shortwave, longwave and total flux 

averaged for all the AWS stations during summertime (JJA) in the year 2011.  

Since latent heat is negligible over deserts, most of the excess radiant energy 

(approximately 90%) at the surface is converted into as sensible heat (heating the air 

or the soil) and a very small amount is converted to ground heat energy flux. The large 

convergence of surface sensible heat flux into the atmosphere during summer in the 

Sahara heat low results in  deep atmospheric boundary layer (BL). On annual basis the 

ground conduction is zero (because net sub-surface storage must be zero). Based on 

zero net evaporation assumption, integrated over a one year period the net surface 

radiation is approximately equal to the sensible heat flux converged into the 

atmosphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 summertime (JJA, 2011) Mean Diurnal Surface radiative flux (Net: blue line, 

Shortwave: green line, and red: longwave) averaged for AWS stations 

 

Diabatic heat which constitutes sensible heat, latent heat, and radiative energy 

is crucial part of Earth-Atmosphere interaction and driver of transport of mass and 

energy on the planet. On a global scale latent heat and radiative heat are dominant 

components of the diabatic heat while sensible heat is an important component of the 

heat budget in dry lands with high surface temperature. Diabatic heating is an elusive 

quantity to measure and climate models parameterize to derive it from horizontal and 

vertical heat advection (Bounoua and Krishnamurti, 1991;Chan and Nigam, 
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2009;Hagos and Zhang, 2010). In general low latitude regions have positive top of 

atmosphere radiation where the incoming solar radiation exceeds the outgoing infrared 

radiation opposed to high latitudes where there is a negative net top of atmosphere 

radiation with more outgoing than incoming. This is not always true particularly for 

deserts due to the reasons previously mentioned above, i.e. large surface albedo, 

transparent atmosphere, and insignificant latent heat releases, deserts may have net 

outgoing larger than the incoming making it a radiative deficit  (Blake et al., 1983). 

Furthermore the presence of dust over desert surface significantly changes the 

radiative budget. For instance over the Sahara desert the net TOA radiative flux is 

weak or positive. Advection plays significant role in the redistribution of energy on a 

global scale. The relative importance of advective terms in transport of energy can be 

different depending on the location. For instance in extra tropical regions, horizontal 

advection is dominant means of heat transportation. During summertime the relatively 

large temperature gradient between the gulf of guinea and desert favours temperature 

and moisture advection into the SHL (Bounoua and Krishnamurti, 1991;Lavaysse et al., 

2009;Peyrille and Lafore, 2007). This will be further investigated over the SHL region in 

this thesis.  

1.2.2 Dynamics of Sahara Heat Low 
 

The dynamics of the heat low region characterized by low level cyclonic  and 

mid-level anticyclonic circulations (Racz and Smith, 1999). This basic structure is 

influenced by the configuration of topography and land-ocean boundaries resulting in a 

complex circulation pattern of horizontal temperature and moisture advection, with 

pronounced zonal and meridional gradients. The low pressure over the SHL (fig. 1.3) 

drives both the low level north easterly hot dry flow (harmattan) and the South westerly 

cool moist air monsoon flow (Lafore et al., 2010), converging along then Intertropical 

Discontinuity (ITD) to the south of the SHL (see fig. 1.1). The convergence of the two 

opposing low level flows, creates a strong baroclinic instability across the ITD leading 

to diverging flow at the mid tropospheric level. This diverging anticyclonic flow is 

responsible for the maintenance of mid-level African Easterly Jets (AEJ) (Thorncroft 

and Blackburn, 1999).  Figure 1.5 displays a schematic of different components of 

summer time Saharan heat low circulation. The low level convergence followed by 

ascent and overturning divergent northerly wind near 700 hPa constitutes what is 

referred to as Saharan shallow meridional circulation (Shekhar and Boos, 2017). 

Another important feature of circulation over the Saharan region are African Easterly 

waves (AEWs) which are known to have influence on convection and thus rainfall in the 
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Sahel. They are also noted for being precursors to tropical cyclones in the tropical 

Atlantic and east Pacific Ocean basins (Thorncroft and Hodges, 2001). AEWs are 

commonly observed over latitudinal extent of 100 to 150 with characteristics wavelength 

of 2000 to 4000 km, period of 3 to 5 days, and westward propagation at speeds of 7 to 

8 m s-1. The AEW seasonal peak and migration is linked to the cycle of the AEJ. The 

mechanism by which AEWs initiate is still under active research although the instability 

of the AEJ is clearly a major factor. However the formation and evolution of AEWs is 

believed to be influenced by the topography in the Ethiopian highlands and Darfur 

mountains (Mekonnen et al., 2006) that can be described as a trough or cyclonic 

curvature maximum that develops on the AEJ.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5 Schematic diagram representing the Saharan atmospheric Circulation. The 

blue arrow represent wet cold monsoon flow, and red arrow represent the dry hot 

harmattan flow and the thick blue dashed line represents the position of the inter 

tropical discontinuity (ITD)Rectangular box shown in dashed lines represent the 

Saharan shallow meridional circulation. The crosses inside circles show into page 

direction, which represents the African easterly jets. 

 

1.2.3 Convective Density Currents (Cold pools)  
 
The climate system of the Sahara heat low briefly described above shows that it is a 

result of different complex physical processes among which two pronounced processes 

are the summertime intensification of the Saharan heat low and subsequent monsoon 

flow advecting moist air towards the heart of the Sahara desert from the gulf of Guinea. 
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The moist air together with hot temperature of the Sahara boundary layer creates a 

favourable condition for the development of convection in the region.  In the heart of 

the Sahara desert it is common that convective rain evaporates before reaching the 

ground due to the extreme large surface temperature.  

Cold pools are formed when precipitation resulting from mesoscale convective 

cloud evaporates before reaching the ground (Charba, 1974;Simpson, 1969). Figure 

1.6 illustrates the processes involved during the formation of convective triggered cold 

pools. The down drafting cold air creates a density current (Weisman and Rotunno, 

2004) spreading out horizontally up to hundreds of kilometres from the source 

(Knippertz et al., 2009). The size and magnitude of cold pools vary ranging from 

intense microscale downdrafts with vertical velocity up to 15 m s-1 covering horizontally 

up to 1 km to synoptic or planetary subsidence with vertical velocity as small as cm s-1 

(Lafore et al., 2016). Cold pools particularly large ones are commonly observed in low 

latitude arid regions pertaining to their optimal conditions. The two dominant sources 

for cold pool downdrafts in the Sahara are convection from the monsoon flow and Atlas 

Mountains which will be further investigated in Chapter V. The high speed air arising as 

a result of the density difference between the moist cold pool air and the hot 

surrounding atmospheric air can emit wall of dust referred locally as 'haboob' (Allen et 

al., 2013;Heinold et al., 2013;Karam et al., 2014). As the cold pool expands, it can lift 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Schematic showing formation of cold pool 

the surrounding warm air (fig 1.6) and thus creating condition for the development of 

new convective cells which can lead to formation of multi-cell thunderstorms as a 
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consequence (Tompkins, 2001;Weisman and Klemp, 1982). Studies show cold pools 

play key role in the organization of deep convection (Tompkins, 2001;Weisman and 

Rotunno, 2004).  

1.3 Roles of Dust and Water vapour on the radiation budget of Saharan 
Heat Low 
 

Dust is known for its radiative effect making it important actor in controlling the 

energy budget of the Saharan heat low region. The radiative effect of dust comes from 

absorption, scattering, and emission of solar and teresterial radiation shortwave 

radiation (Balkanski et al., 2007; Haywood et al., 2005; Sokolik et al., 2001; Tegen, 

2003) emitted by both the atmosphere and Earth’s surface. Dust confined within the 

mixed layer has a warming effect on the atmosphere primarily due to its absorption of 

shortwave radiation (Ackerman and Cox 1982). This could increase the top of 

atmosphere net incoming radiation. For instance the long mean (1979-2015) JJA net 

top of atmosphere radiation at the Saharan heat low region derived using ERA-I data is 

26 W m-2. It is also understood that dust has net cooling effect at the surface and 

warming above the dust layer (Tegen and Lacis, 1996). In addition to its direct radiative 

effect, dust is known to have indirect radiative effect by serving ice nuclei (IN) (Hoose & 

Mohler, 2012) altering the microphysics of cloud (Seinfeld et al., 2016)   

 During summer time moisture is transported dominantly from the monsoon flow 

and further deep in to the desert by cold pools (Garcia-Carreras et al., 2013;Marsham 

et al., 2013a). Though debatable, it is recently indicated that greenhouse effect of water 

vapour is responsible for the intensification of the SHL. But there is a clear positive 

trend in the moisture level within the Sahara desert. It is well understood that water 

vapour, along with carbon dioxide and ozone, is the most important radiatively active 

greenhouse gas of the Earth’s atmosphere which has longwave cooling effect in the 

troposphere. Water vapour molecules also absorb solar radiation resulting in heating of 

the troposphere. However the longwave effect of water vapour is dominant over its 

shortwave effect with a net effect being cooling of the troposphere. In the Sahara heat 

low, in addition to dust, water vapour has also dominant role in controlling the radiative 

budget of a region (Evan et al., 2015;Marsham et al., 2016).   

 

1.4 Literature Review  
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The Saharan heat low is a region of immense research interest to scholars 

around the globe with active research going on to answer the existing questions in 

relation to its climate variability and associated impact on the initiation and intensity of 

monsoon flow and precipitation in the Sahel. Here I present previous research works 

relevant to the research questions I would like to address in this thesis.  

Recent studies show desert amplification, that is strongest near surface 

warming observed in the arid regions (Cook & Vizy, 2015; Wei et al., 2017). Large 

downward longwave radiation is believed to be driver for near surface warming which 

in turn in is strongly correlated with increased water vapour over deserts (Cook & Vizy, 

2015; Evan, Fiedler, et al., 2015; Wei et al., 2017). In agreement with this Sahara 

desert has been detected to have surface warming of 2 – 4 times greater than that of 

the tropical mean temperature (Cook and Vizy, 2015).  In line with this, intensification of 

the Saharan heat low is implicated with recovery of Sahelian rain fall.  There are two 

suggestions for intensification of SHL: (i) warming due to increased water vapour in the 

SHL (Evan et al., 2015;Zhou, 2016) and (ii) warming due to increased greenhouse 

gases(Cook and Vizy, 2015;Dong and Sutton, 2015) resulting in warming of the African 

continent and thus enhancing land-sea thermal contrast. However it is consistently 

proposed that the surface warming in the SHL is a result of the increased downward 

longwave radiation despite what it might caused it. Most previous studies prove that 

intensification of the SHL leads to increased Sahel rainfall. Stronger Saharan 

circulation (shallow meridonal circulation) as a result of the intensification of the SHL is 

attributed to the increase in Sahel precipitation (Martin and Thorncroft, 2014). Others 

argue that the changes in Sahel precipitation to be associated with changes in sea 

surface temperature (SST), (Hagos and Cook, 2008;Roehrig et al., 2013).  A more 

recent work (Shekhar and Boos, 2017) suggested that stronger shallow meridonal 

circulation weakens Sahel rainfall. They further attributed anomalies in SST and 

surface albedo for ultimate cause for the changes in Sahel precipitation. The above 

studies suggest the SHL still needs further investigation so that a consensus can be 

arrived in relation to the causes of variability to and its influence on Sahel precipitation.  

 

PART I (Heat and moisture budget of SHL) 
 

The SHL experiences strong temperature and moisture advection (termed 

‘ventilation’ by (Chou et al., 2001) around its peripheries. Notably, maritime air from the 

Eastern Atlantic at the western SHL boundary, from the Mediterranean on the 

northeastern boundary and from the monsoon at the southern boundary. These 

circulations have a strong diurnal cycles and intra-seasonal variability e.g. Parker et al. 
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(2005), Grams et al. (2010), Todd et al. (2013), and Marsham et al. (2013b). Previous 

studies have investigated the heat and moisture budget of the Saharan region and 

associated impact on intensity of the heat low at various time scales. For instance an 

earlier work, Bounoua and Krishnamurti (1991) studied the thermodynamic energy and 

moisture budget for a five day wave over the Sahara desert. They showed the 

contribution of horizontal and vertical advection is removing heat from the surface 

layer. During their period of study they also showed that water vapour is supplied via 

horizontal advection from the monsoon region. Lavaysse et al. (2009) used 

temperature tendency equation to investigate the process controlling the displacement 

of SHL. They suggested the advective terms are less important in the seasonal 

displacement of SHL. However the decadal variability is not considered in their work. 

Further Evans et al. (2015), through heat and moisture budget analysis from 1979-

2012, suggested that the intensification of the SHL to be associated with increased 

moisture advected from the monsoon flow which has also a positive feedback of further 

intensifying the SHL due to the greenhouse effect of water vapour. To investigate the 

year-to-year variability, Evan et al. (2015) considered ten warmest and ten coolest 

seasons. In a more recent work Martin et al., 2017 investigated the 3-D distribution of 

diabatic heating using CMIP5 over the North Africa region and studied its role on the 

West African Monsoon (WAM) circulations. However the contribution of mean and 

transient flows to the heat and moisture budget are not presented in previous works. 

The relative magnitude of these processes at various spatial/temporal scale remains to 

be resolved fully. Although climate model projections for the 21st century link changes 

in SHL intensity with Sahel precipitation (Biasutti et al., 2009), uncertainty in 

representation of the mean state of the SHL in models is high (Evan et al., 2014). 

Therefore, improved understanding the dynamics and thermodynamics of the SHL is 

required. I here investigate specifically the heat and moisture budget of the core heat 

low region and attribute the mean and transient flows to the total advection of heat and 

moisture. To see decadal variability, I  will consider the composite three warmest and 

three coolest seasons and compare it with the long mean of moisture and heat budget. 

I extend this to investigate the variability of the SHL region and its association with 

diabatic heating of the region. To the best of our knowledge this has not been done 

previously. This will help understand the detailed process that make up SHL and its 

variability.  

 

 

Part II Role of Dust and Water vapour in controlling radiative budget of SHL 
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During summertime, SHL is broadly co-located with the maximum dust aerosols 

location (Knippertz and Todd, 2012). Direct radiative effects of dust aerosol at the top 

of atmosphere and surface has been quantified from in situ observations and satellite 

data (Ansell et al., 2014; Banks and Brindley, 2013; Yang et al., 2009). There is still 

considerable uncertainty on the local radiative forcing of dust because it depends on 

many factors such as geometrical properties (size distribution), optical properties 

(composition), altitude of dust, and underlying surface albedo that collectively 

determine whether radiative effect of dust is cooling or warming (Haywood et al., 

2005;Highwood et al., 2003;Muller et al., 2009;Petzold et al., 2009;Ryder et al., 2013b). 

In this thesis, I will present different experiments on the sensitivities of dust radiative 

effect to different parameters including size distributions and surface albedo. In a 

recent study water vapour is shown to have impact on the heat budget and thus 

intensity of the Sahara heat low region (Evan et al., 2015). Marsham et al. (2016) 

empirically derived variability in the DRE due to water vapour variations, and implicitly 

cloud, as well as dust. However, there remain important gaps in our understanding. 

First, there are substantial uncertainties in the magnitudes of radiative fluxes (and other 

heat budget terms) across both the various reanalyses and observations. Second, 

separating the radiative effects of water vapour from both its and associated clouds 

and from dust aerosol is challenging, given the strong co-variability of dust and total 

column water vapour anomalies in the Sahara associated with monsoon surges and 

resulting convective cold pool events (‘haboobs’) which transport water vapour and 

dust into the central Sahara (Garcia-Carreras et al., 2013; Marsham et al., 2008; 

Marsham et al., 2013b). As such, there is a need to quantify more fully the DRE of dust 

and water vapour, both independently and together, over the Sahara. This information 

is necessary to resolve the processes that govern the fundamental structure and 

maintenance and variability of the SHL. Addressing these research gaps is hindered by 

the acute shortage of routine observations in the region and large discrepancies 

between models and reanalyses (Evan et al., 2015a; Roberts et al., 2015). 

 

Part III Convective density currents and their role in the SHL 
 

Convection triggered density currents, which are ubiquitous features in the 

Sahara region, have been shown to play significant role in the advection of moisture to 

the heart of the Saharan desert (Marsham et al., 2013a, Redl et al., 2015) and 

emission and transport of dust (Allen et al., 2013;Heinold et al., 2013). Cold pools are 

also shown to influence the displacement of the ITD (Flamant et al., 2009). Despite 

their influence in the transport of moisture and dust with in the Sahara, the 
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characteristics of cold pools including their seasonal and spatial variation is under 

documented. Partly this is due to models lack of simulation of convection and partly 

due to lack of observational data. In order to better represent regional surface and 

boundary layer processes in models, and thus improve simulation of convection and 

related processes, it is essential to understand the characteristics of such convective 

triggered density currents. A number observational analysis has been made to 

characterise cold pools over different locations: in the United States (Engerer et al., 

2008), in the southern Arabian Peninsula (Miller et al., 2008), in the southern foothills of 

the Atlas mountains (Emmel et al., 2010;Redl et al., 2015), and in Niger, Niamey 

(Provod et al., 2016). Previous studies in the region are limited to case studies focusing 

on few locations and shorter period. I would like to extend this to larger domain and 

relatively longer study period on the condition of data availability. Fennec AWS data 

provides an opportunity to make an in depth study on the properties of these common 

atmospheric processes over the central Sahara region. Here give a comprehensive 

description of the cold pool events using the FENNEC AWS station surface 

measurements of atmospheric variables. I further compare characteristics of selected 

cold pool events with MERRA re-analysis product and thus derive the associated error 

arising due to lack of resolving these mesoscale processes in models.  

1.5 This thesis 
 

The physical processes by which the SHL develops and is maintained are not 

fully understood, not least due to the relative lack of observations in this remote region. 

Given that SHL is changing I need to understand it better if I are to improve prediction 

of future climate. This research is necessary for the following two key reasons.  

1. Sahara heat low is believed to play key role in the onset and development of 

the West African Monsoon (WAM) and the livelihood of millions of people 

inhabitant in the Sahel are dependent upon the monsoon rain. Therefore 

understanding the detailed processes involved in the Saharan heat low is thus 

vital to better understand associated impact and long-time variability of the 

WAM. 

2. Sahara desert is the largest source of dust aerosol which is known to impact the 

climate system through its interaction with radiation on both regional and global 

scale. Recently it has been shown that dust has significant role in controlling the 

intensity of the Saharan heat low. Nevertheless climate impact of atmospheric 

aerosols in general and dust in particular is still poorly represented in climate 

models. Radiative forcing of aerosols is one of the major sources of uncertainty 
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in IPCC reports. Uncertainty of dust aerosol in driving the variability of radiative 

energy in the region still remains high in the region.  

 

Driven by the above two important reasons, this research attempts to address three 

important questions which are clearly stated below. The big picture of this research is 

to provide a comprehensive analysis of the different components of climate system of 

the SHL which are crucial for its development and maintenance. Here I attempt to 

answer the following three questions which are the main objective of this research: 

1. What processes are responsible for formation, maintenance, and large scale 

variability of SHL? To answer this question I provide a comprehensive 

analysis of the SHL heat and moisture budgets from reanalysis data and thus 

determine the important processes responsible for its structure and 

maintenance. The 3D spatial distributions of the long term mean heat and 

moisture budget will be analyzed. I will establish degree of uncertainty in heat 

budget estimates by comparisons across a range of available reanalysis 

products. Further I aim to quantify inter-annual variability in the SHL intensity 

and the associated heat budgets to determine the drivers of such variability. 

By answering the above research question I will be able to determine the 

relative importance of each advective terms in the maintenance of the 

Saharan heat low region.  

2. The first research question leads us to further investigate the role of dust and 

water vapour in controlling the heat budget of the heat low region and thus 

my second research question: How important are water vapour and dust in 

controlling variability of heat budget of the Saharan heat low? 

3. It is well understood climate models misrepresent the amount of dust and 

moisture in the atmosphere. The third and last research question I address in 

this thesis is: What are the characteristics and how frequent are convective 

triggered cold pool outflows in transporting of moisture in the Sahara heat low 

region? This will enable us to characterize mean features, distribution and 

frequency of cold pools in the remote central Sahara. I will also provide bias 

of climate models in resolving these processes and the resulting error in the 

amount of moisture in the region.   

The detailed explanation of the methodology implemented to carry out the specific 

research objectives mentioned above and the required dataset are presented in 

chapter II. Each research question is addressed in Chapters III, IV, and V. Additional 

information on the methods and data used are also provided in Chapters III, IV, and V.   
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CHAPTER II 

2 Data and Methods 

2.1   Introduction 
 

This research work aims to improve our understanding of the key processes 

involved in the maintenance and variability of the SHL. Specifically I investigate mean 

state and the variability of heat and moisture budget of the SHL during summertime, 

the roles of water vapour and dust in controlling the energy budget of the SHL, and the 

contribution of the mesoscale convective activities in transporting of water vapour into 

the SHL. To this end I use different dataset sources: model output, satellite 

observations, and ground measurements. In this chapter I provide complete list of 

datasets used and description of the methodology I implement. Additional information 

on the data used are also provided in each chapter.  

2.2 Data 

2.2.1 In-situ Observations 
 

The Fennec project has produced a detailed observational data set in the 

scarcely observed remote locations of the Sahara desert during 2011 and 2012 

(Washington et al., 2012). The project comprises of aircraft and ground based 

observations of meteorological dataset. A total of 20 aircraft flights were conducted 

during 2011 and 2012, where on board in-situ instruments measured meteorological 

fields, radiation flux, and quantities related to cloud and aerosol properties. A detailed 

instrumentation and flight patterns can be found in (Ryder et al., 2015). The ground 

based data includes measurements made during the intensive observation period 

(IOP) at two sites, SS1 at BBM, Southern Algeria (Marsham et al., 2013b), and SS2 at 

Zouerate, central Mauritania (Todd et al., 2013) and network of automatic weather 

stations (AWS) spread over Sahara (Hobby et al., 2013). Fennec AWS data available 

for 2011 and 2012 which constitutes a network of eight stations installed across the 

Sahara desert providing measurements of atmospheric variables including 

temperature, moisture, pressure, wind speed and direction, shortwave and longwave 

flux. Detailed description of the FENNEC AWS is provided in (Hobby et al., 2013).  
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The AErosol RObotic NETwork (AERONET) is a global network of ground 

based photometers which provides aerosol optical, micro-physical and radiative 

properties. We use data from a particular station located at Bordj Badji Mokhtar (BBM).   

The CIMEL Electronique CE-318 radiometer is implemented to make automatic 

tracking of the sun with a 1.20 field of view width (Holben et al., 1998). AOD 

measurements are made every 15 minutes at multiple channels from UV to IR (340nm, 

380nm, 440nm, 500nm, 675nm, 870nm, 940nm, and 1020nm) for three quality data 

levels. For this study I use the Level-2 data at BBM which is cloud screened and quality 

assured data.  Since dust AOD at 550nm is not available for june 2011, I derive it from 

AOD at 500 using the relation: 

 

                                                            𝛼𝛼 =
𝑙𝑙𝑙𝑙𝑙𝑙

𝜏𝜏𝜆𝜆1
𝜏𝜏𝜆𝜆2

𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆1𝜆𝜆2
                                                        (2.1)    

                                                                                                                   

where α is angustum exponent 𝜏𝜏𝜆𝜆1and 𝜏𝜏𝜆𝜆2are optical depths at wavelengths 𝜆𝜆1and 

𝜆𝜆2respectively.  

 

2.2.2 Reanalysis  
 

Reanalysis is systematic approach through which climate model output is 

combined with observation data (data assimilation) that produce outputs with better 

representation of the state of the atmosphere. In spite of limitations and biases 

(Roberts et al., 2015), reanalysis products are useful component of the earth system 

science giving the opportunity to better understand the physical processes and 

variability on various temporal and spatial scales of the global climate system. There 

are many reanalysis outputs available for research purpose. Here I use data from three 

widely used reanalysis products, namely the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Interim Reanalysis (ERA-I, Dee et al. (2011)), the 

National Centre for Environmental Prediction Reanalysis 2 (NCEP II, Kanamitsu et al. 

(2002)), and Modern-Era Retrospective analysis for Research and Application 

(MERRA, Rienecker et al. (2011)). The specific atmospheric and surface variables data 

used which are appropriate for each of my research questions are provided in chapters 

II - IV.   
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2.2.3 Satellite 
 

Satellite observation has increasingly become an integral part of climate 

monitoring, hazard warning, and research. Instruments carried aboard satellites collect 

useful data of the state and composition of the atmosphere. In this research work, I use 

various satellite measurements of radiation and dust profile. Here I present a brief 

description of the satellite instruments, measurements of which I use in this research. 

More information on the specific measurements that I use are provided in the relevant 

chapters.  

 

2.2.3.1 CERES 
 

The Cloud and the Earth Radiant Energy System (CERES) provides 

measurement of top of atmosphere radiation budget. The CERES instruments carried 

aboard the National Aeronautics and Space Administration (NASA) Aqua satellite have 

three channels for radiance measurements: total channel (0.4 to 200𝜇𝜇𝜇𝜇), shortwave 

channel (0.4 to 4.5𝜇𝜇𝜇𝜇), and narrow thermal infrared channel (8.1 to 11.8𝜇𝜇𝜇𝜇). Since 

there is no longwave-only channel on CERES, daytime longwave radiances are 

determined from the difference between the total and shortwave channel radiances. 

For this research I use The CERES Level-3 SSF1deg_Hour TERRA footprint gridded 

data (CERES - footprint) instantaneous which has twice daily measurements with 1.00 

resolution.  In addition energy balanced and filled (EBAF) data is provided that spatially 

interpolates and files non-observed regions where the global net TOA flux is 

constrained to ocean heat storage term (Loeb et al., 2009).  

 

2.2.3.2 GERB 
        

The Geostationary Earth Radiation Budget (GERB) is one of the instruments 

along with SEVIRI telescopes aboard the Meteosat Second Generation (MSG) satellite 

in a geostationary orbit. The GERB instrument, which is aimed at carrying out 

atmospheric physics and meteorology researches, measures total emitted and surface 

reflected radiances over the Earth area as seen by MSG with a nominal resolution at 

nadir of 50 km and temporal sampling of 5 minutes. GERB level 2 products of 

Averaged Rectified Geolocated (ARG) fluxes at approximately 17 minute time and 50 
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km spatial (at nadir) resolution, with spectral ranges 0.32 to 4μm in the shortwave and 

4 to 100 μm in the longwave (Harries et al., 2005). GERB does not provide a separate 

channel for longwave measurements. It is rather calculated as difference of total 

radiance and shortwave radiance measurements.   

2.2.3.3 SEVIRI 
 

The Spinning and Enhanced Visible and Infra-Red Imager (SEVIRI), aboard the 

Meteosat Second Generation (MSG) satellite orbiting in a geostationary orbit located at 

3.50 W over the equator, provides observations every 15 min at a horizontal resolution 

3X3 km at nadir (Schmetz et al., 2002). The SEVIRI instrument measures radiances at 

11 spectral channels covering the visible and IR spectra between 0.6 - 3.4 μm and one 

high resolution visible (HVR) channel. A highlight of dust in the atmosphere is produced 

by combination of three brightness temperatures at 8.7 μm, 10.8μm, and 12 μm which 

is then applied to red-green-blue imagery.  (Brindley et al., 2012) provided assessment 

of SEVIRI thermal infrared red-green-blue imagery to identify dust events. Due to the 

different spectral behaviours images of atmospheric particles, clouds, and surface 

characteristics in the above wavelength appear as different colours. In SEVIRI imagery 

Cold, thick high-level cloud appears in red, mid-level cloud in green, high moisture at 

low levels in blue and dust in pink (the more intense the emission, the brighter the 

pink). The signature of dust in SEVIRI is complicated by a number of factors such as; 

high water vapour (the largest influence), a strong near surface temperature inversion, 

the height of the dust layer, characteristics of the underlying surface (emissivity), 

mineralogical composition of dust, and the size distribution of particles (Brindley et al., 

2012). An important advantage of this method using the IR spectrum is ability to detect 

dust emission at night. However the resulting changes in thermal emissivity of surface 

and atmospheric dust due to change in temperature at night makes the images 

complicated and difficult to interpret (Banks and Brindley, 2013). 

 

2.2.3.4 CALIOP  
 

The Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) is an active 

lidar instrument that gives quasi-insatantaneous view of the vertical structure and 

properties of cloud and aerosol. CALIOP is the main instrument on the Cloud Aerosol 

LIDAR Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which is one of 

the Afternoon Constellation of Earth observing satellites in sun synchronous orbit, 
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providing observations for advanced studies on clouds and aerosols. CALIOP sends a 

frequency doubled simultaneous laser pulses down through the atmosphere and 

collects and measures the light that is backscattered from the laser pulse. Aerosol 

backscatter and extinction coefficient are measured at the wavelengths 532 and 1064 

nm respectively (Vaughan et al., 2004;Winker et al., 2009) overpassing the Sahara 

twice a day at night and day (at ~01:30 and 13:30 local time) and gives global 

coverage in 16 days. The Calipso lidar level 3 aerosol data produces optical properties 

of aerosols on uniform spatial grid at altitudes below 12km. In this study I used dust 

vertical extinction profile. Details on production of vertical profiles of dust extinction I 

used are presented in Chapter IV. 

 

2.3 Methodology 
  

Detailed descriptions of methods implemented to answer each research 

questions are presented separately in chapters III, IV, and V. I present here a brief 

summary of the methodology.  

The mean position of the SHL during JJA season is determined using the 

method of (Lavaysse et al., 2009) based on low level atmospheric thickness (LLAT): 

the difference in geopotential height between the 700 hPa and 925 hPa levels. Heat 

and moisture budgets are derived from thermodynamic energy equation (Chan and 

Nigam, 2009) and continuity equation (Trenberth and Guillemot, 1995;Wu, 1993) 

respectively.    

 The radiative effect of dust and water vapour are determined through 

simulations of radiative transfer model. It is a common practice using radiative transfer 

codes to study radiative effects of atmospheric gaseous molecules and particles. 

Radiative transfer codes can be run integrated with climate models or offline as stand 

alone models. When integrated within climate models, inputs required for radiative 

transfer calculations are provided from land surface and atmosphere modules while in 

stand-alone simulations inputs are provided externally. Here I use fennec observations 

complemented by reanalysis outputs to carry out radiative transfer calculations..  For 

this research I use SOCRATES (Suite Of Community Radiative Transfer codes based 

on Edwards and Slingo) model (Edwards and Slingo, 1996;Randles et al., 2013). 

Detailed description of SOCRATES and the experiments conducted  to quantify the 

radiative effect of dust and water vapour are provided in Chapter IV. 
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 Arrival of cold pool is typically associated with gust of air carrying moisture and 

lowering the surrounding temperature as a consequence. Changes in wind speed and 

humidity are therefore used as primary selection criteria for cold pool events. I develop 

a unique method for detection of cold pools using specific threshold of changes in 

atmospheric variables complemented with satellite imagery. That is once cold pools are 

identified by the magnitude of change in wind speed and moisture, they will be further 

confirmed against satellite imagery for possible nearby signs of dust and/or deep 

convection. Details of the algorithm used in the identification of cold pools is presented 

in chapter IV.  
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CHAPTER III 

3 Heat and Moisture Budget of the Saharan Heat Low 
(The main results of this chapter are in review for Publication) 

3.1 Introduction 
 

The Saharan Heat Low extends over a vast sector the central Sahara, is known 

for its unique extreme features: high surface temperature (or equivalently low surface 

pressure) with little or no precipitation and being largest source of dust on the planet. It 

is a key component of the West African Climate System. Over the annual cycle the 

SHL core migrates from a position south of the Darfur mountains (centred on ~6N, 

20E) in winter to central western Sahara (centred on ~23N,3W) in summer(fig. 1.3), 

when it covers much of northern Mauritania, Mali and Niger and Southern Algeria  and 

is characterized by extremely high surface temperature (Lavaysse et al., 

2009;Messager et al., 2010b) and thick PBL, often extending up to ~4 to 5 km  

(Marsham et al., 2013b).  

During summertime, SHL is broadly co-located with the maximum dust aerosols 

location (fig. 1.3) (Knippertz and Todd, 2012). The large-scale cyclonic low level 

circulation into the SHL includes the summer West African Monsoon (WAM) flow such 

that variability in SHL intensity modulates moisture transport and convective activity 

within the WAM (Lavaysse et al, 2010). As such the SHL has been implicated in WAM 

variability across a range of timescales, including (i) the synoptic (Couvreaux et al., 

2009; Chauvin et al., 2010) to intraseasonal (Parker et al, 2005) (ii) mean seasonal 

(Thorncroft and Blackburn 1999; Sultan and Janicot, 2003; Peyrillé and Lafore 2007; 

Xue et al., 2010) (iii) Inter-annual and decadal through to future climate change in the 

WAM (Martin et al., 2014; Martin and Thorncroft 2014). Although climate model 

projections for the 21st century link changes in SHL intensity with Sahel precipitation 

(Biasutti et al., 2009) uncertainty in representation of the mean state of the SHL in 

models is high (Evan et al., 2014). Therefore, improved understanding of  dynamics 

and thermodynamics of the SHL is required. 

The physical processes by which the SHL develops and is maintained are not 

fully understood, not least due to the relative lack of observations in this remote region. 

The most comprehensive set of observations come from the recent field campaign 

‘Fennec: The Saharan climate system’ (Washington et al, 2012) which is providing new 
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insights into the SHL radiation budget (Banks et al., 2014;Marsham et al., 2016) and 

processes within the SHL core (Engelstaedter et al., 2015). 

 

 
 

Figure 3.1 Climatology of SHL from ERA-I (left), NCEP (middle) and MERRA (right) re-

analyses for 1979-2014. Mean JJA low level atmospheric thickness (LLAT) (m, 

shaded), 925 hpa winds and 2m 14 0C dew point temperature (green dashed line, for 

MERRA 10g/kg 925 hPa specific humidity). SHL core heat low region (cyan line, see 

methods for explanation) 

 

Radiation budget over the Saharan heat low region plays a key role in 

controlling the dynamics of the region. The net balance of shortwave and longwave 

radiative fluxes at the top of atmosphere, within the atmosphere and at the surface are 

modulated primarily by clouds, dust aerosols and water vapour (Banks et al., 

2014;Marsham et al., 2016;Yang et al., 2009). TOA net radiation is generally weakly 

positive in the summer months, +26 W m-2 for JJA averaged over SHL (+26 W m-2 for 

June 2011 and 2012, Marsham et al., 2016).  At the surface the large net radiation 

surplus, 76 W m-2 for JJA averaged over SHL (~100 W m-2, Marsham et al. (2016)) in 

summertime is converted to sensible heat, which controls the development and 

evolution of the mixed layer. Driven by net surface radiation, SHF shows seasonal 

variability with maximum SHF observed during summer, average JJA net sensible heat 

flux is ~68 W m-2. The Saharan boundary layer, which is primarily controlled by 

convergence of surface SHF, exhibits a strong diurnal (Marsham et al., 2013b;Todd et 

al., 2013) and seasonal variability (Cuesta et al., 2008). During summer time 

convective boundary layer is formed in the daytime primarily driven by solar heating 
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which becomes fully developed in the afternoon, typically reaching depths of ~4 km 

and on some days when the SHL is intense up to 5 km (Marsham et al, 2013b) based 

on data from the Fennec supersite 1. 

The dynamics of the heat low region characterized by low level cyclonic 

circulation and mid-level anticyclonic circulations (Racz and Smith, 1999). This basic 

structure is influenced bytopographic configuration and land-ocean boundaries 

resulting in a complex circulation pattern of horizontal temperature and moisture 

advection, with pronounced zonal and meridional gradients. The low pressure over the 

SHL drives both the low level North-easterly hot dry flow (harmattan) and the South-

westerly cool moist air monsoon flow (Lafore et al., 2010), converging along the ITD to 

the south of the SHL (fig. 3.1). The SHL experiences strong temperature and moisture 

advection (termed ‘ventilation’ by Chou et al. (2001)) around its peripheries. Notably, 

maritime air from the Eastern Atlantic at the western SHL boundary (Grams et al., 

2010), from the Mediterranean on the northeastern boundary (Lavaysse et al., 

2010b;Vizy and Cook, 2009) and from the monsoon at the southern boundary (Parker 

et al., 2005;Sultan et al., 2003). These circulations have a strong diurnal cycles and 

intra-seasonal variability (Grams et al 2009; Marsham et al., 2013; Parker et al., 2005; 

Todd et al., 2013). Vertical advective heating through the descending Hadley cell 

branch may also be important. The relative magnitude of these processes at various 

spatial/temporal scale remains to be resolved fully.  

Others have documented variability in the SHL and associations with the WAM 

at timescales from the synoptic (Bounoua and Krishnamurti, 1991) to intraseasonal 

(Chauvin et al., 2010;Roehrig et al., 2013), through to long terms decadal (Evan et al., 

2015). Evan et al. (2015) suggested that the intensification of the SHL to be associated 

with increased moisture advected from the monsoon flow which has also a positive 

feedback of further intensifying the SHL due to the greenhouse effect of water vapour. 

In a more recent work Martin et al., 2017 investigated the 3-D distribution of diabatic 

heating using CMIP5 over the North Africa region and studied its role on the WAM 

circulations. Despite presenting the different components of diabatic heating (eddy flux 

convergence, radiative heating, and latent heating), they haven’t provided the mean 

and transient advective processes which will effectively transport and balance the extra 

heating from diabatic source. There still remains a gap in our understanding particularly 

inter-annual variability and it is not known processes driving SHL variability at these 

timescales.   

The main objective of this chapter is to provide a comprehensive analysis of the 

SHL heat and moisture budgets from reanalysis data and thus determine the important 

processes responsible for its structure and maintenance. The 3D spatial distributions of 
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the long term mean heat and moisture budget will be analysed. I derive the different 

advective terms resulting from the mean and transient flows (deviations from the mean) 

responsible for the transport of temperature and moisture and determine the relative 

importance of each term in the heat budget of the SHL, from which I derive the diabatic 

heating as a residual. I extend this to investigate the variability of the SHL region and 

its association with diabatic heating of the region. I establish degree of uncertainty in 

heat budget estimates by comparisons across a range of available reanalysis products. 

Further I aim to quantify inter-annual variability in the SHL intensity and the associated 

heat budgets to determine the drivers of such variability. To the best of my knowledge 

this hasn’t been done previously. The chapter is composed of 4 sections. In section 3.2 

a description datasets used and the methodology are presented. The results of my 

SHL heat budget analysis are presented in Section 3.3 covering both the mean state 

and analysis of variability. A discussion of the results and conclusions are provided in 

Section 3.4.  

3.2 Datasets and Methodology 

3.2.1 Data 
 

    Heat and moisture budgets are derived using data from reanalysis products for 

the common period 1979-2014. For comparison I use three widely used reanalyses, 

namely the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim 

Reanalysis (ERA-I, Dee et al. (2011)), the National Centre for Environmental Prediction 

Reanalysis 2 (NCEP II, Kanamitsu et al. (2002)), and Modern-Era Retrospective 

analysis for Research and Application (MERRA, Rienecker et al. (2011)). Horizontal 

resolutions are 0.50X0.50, 1.250X1.250, and 2.5X2.50 for ERA-I, MERRA, and NCEP 

respectively. I use data on standard pressure levels, with ERA-I and MERRA available 

on 23 pressure levels up to 200 hPa and NCEP on 10 levels. I ignore the lowest levels 

below what is the approximate mean surface pressure over the SHL core region: ~965 

hPa in reanalyses and in observations at Bordj Badj Mokthar (21.4N, 0.9E, elevation 

400m a.m.s.l., Marsham et al. (2013b)), the synoptic weather station closest to the SHL 

core. I use temperature and wind fields to derive the heat budget terms in Eq. 2.3. I 

also use satellite measurements of TOA radiation from CERES monthly mean Energy 

Balanced and Filled (EBAF) product at 1-degree resolution (Loeb et al., 2009). Unless 

stated, results presented are calculated using  ERA-I dataset. 
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3.2.2 Definition and location of the Saharan Heat Low  
 

The location of the heat low is determined using the method of (Lavaysse et al., 

2009) based on low level atmospheric thickness (LLAT): the difference in geopotential 

height between the 700 hPa and 925 hPa levels. The heat-induced dilation of Low 

Level atmospheric Thickness (LLAT) between the P1=925 hPa and P2= 700 hPa 

pressure levels can be expressed mathematically by combining the equation of state 

and hydrostatic balance as: 

                                                       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑅𝑅
𝐺𝐺 ∫ 𝐿𝐿𝑝𝑝2

𝑝𝑝1 𝑑𝑑�𝑙𝑙𝑙𝑙(𝑝𝑝)�                                     (3.1)                                                                                

where R is universal gas constant, g is acceleration due to gravity, T is 

temperature and P is pressure. The LLAT varies depending on the heat contained 

within of the lower atmosphere and thus is a good indicator of presence of heat low. 

The long term (1979-2014) mean field of LLAT is derived (from the 06:00 slot only), 

and the core heat low area is defined as the region of highest LLAT, specifically the 

upper decile of LLAT over the domain 100 - 360N, 200E -200 W. The reason for using 

the 06:00 time slot only for derivation of the heat low location is to avoid other 

perturbations which are not directly associated with the formation of the heat low 

(Lavaysse et al., 2009). Figure 3.1 displays the long term (1979-2014) mean position of 

the core heat low region (inside the cyan line). SHL is defined as the upper decile of 

LLAT over the domain 100 - 360N, 200E -200 W. This SHL core region is centred on the 

Mali-Algeria border region in all reanalysis datasets but the centre of gravity is slightly 

further northwest (close to the triple point of Mauritania, Mali and Algeria at ~250 N, 50 

W) in ERA-I relative to NCEP (~230 N, 10 E) and MERRA (~230 N, 00 E).  

Inter-annual variability of heat and moisture budget is examined based on 

samples of composite of three strongest (warmest) and three weakest (coolest) SHL 

summer periods. Each of the strongest and weakest SHL years constitute 10% of the 

study period. Composite analysis is a standard technique in climate science commonly 

practised to study variability. For instance (Evan, Flamant, et al., 2015) considered ten 

warmest and ten coolest years to study the cause of warming trend in SHL. Here I use 

three years for each extreme case to maximize the signal causing the changes. I use 

time series of LLAT to identify three warmest and three coolest years. I use student t-

test to measure statistical significance of differences between weak and strong heat 

low periods. From the time series of SHL LLAT (fig. 3.2), there is considerable 

agreement between the different reanalyses on what are the weakest SHL years but 

less agreement in the strongest years. Here I consider three common weakest SHL 
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years (1984, 1986, and 1992) and strongest SHL years (2002, 2010, and 2012) among 

the three reanalysis. There is a significant positive trend in LLAT in MERRA (0.3 m 

year-1) and NCEP (0.3 m year-1) assessed in (Evan et al., 2015) but less pronounced in 

ERA-I (0.2 m year-1). The positive trends evidence of the intensification (warming) of 

the SHL also suggested by recent works (Cook and Vizy, 2015; Evan et al., 2015; Wei 

et al., 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Time Series of LLAT averaged over the core SHL region (Region inside the 

cyan line in Fig. 1) during JJA 

3.2.3 Derivation of heat and moisture budget  
 

The different tendency terms in heat budget are derived from the 

thermodynamic energy equation (Chan and Nigam, 2009): 

 

           𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −�́�𝑣 ∙ 𝛻𝛻�́�𝐿 − �́�𝜔 � 𝑝𝑝
𝑝𝑝0
�
𝜅𝜅
�𝜕𝜕�́�𝜃
𝜕𝜕𝑝𝑝
� − 𝛻𝛻 ∙ (𝑣𝑣′𝐿𝐿′) − � 𝑝𝑝

𝑝𝑝0
�
𝜅𝜅 𝜕𝜕
𝜕𝜕𝑝𝑝
�𝜔𝜔′𝜃𝜃′´ � + 𝑄𝑄             (3.2)  

 

where is Q the diabatic heating rate, T is temperature, V is horizontal wind velocity, ѡ is 

vertical velocity, P is pressure, θ is potential temperature, 𝜅𝜅 = 𝑅𝑅𝑑𝑑
𝐶𝐶𝑝𝑝

 where Rd is gas 

constant, Cp is specific heat at constant pressure, and ∇ is the horizontal gradient 

operator. The primed quantities represent deviations from the monthly mean values 

and over bars show monthly mean. The local temperature tendency is calculated as 

the difference between 6 hour (or 3 hourly depending on data availability) interval of the 
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re-analysis data. The horizontal advection terms are calculated using centred 

difference method. The vertical derivatives at a given pressure level of mean and 

transient vertical temperature advection (2nd and 5th terms respectively on right hand 

side of eq. 3.2) are made by first calculating the mean of each variable between two 

pressure levels and then taking the difference.    

The term on the left hand side of eq. 3.2 is the local temperature tendency. On 

the right hand side the first term is the monthly mean horizontal temperature advection 

term; the second term represents the mean vertical temperature advection (adiabatic 

heating and vertical advection); the fifth term is diabatic heating (derived as a residual) 

and the third and fourth terms are the transient horizontal and vertical advection 

respectively resulting from deviations from the monthly mean. 

Diabatic heating rate that includes the shortwave and longwave radiative 

heating, latent heating, and sensible heat flux (SHF) transported from the surface into 

the boundary layer through turbulence is derived as a residual from eq. 3.2. I estimate 

the temperature tendency due to turbulent component of diabatic heating (𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕

) by 

converting the reanalysis surface SHF into a heating rate in K day-1 using: 

 

                                                𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕

= � 𝑙𝑙
𝐶𝐶𝑝𝑝
� Δ𝐹𝐹𝑆𝑆𝑆𝑆

Δ𝑃𝑃
                                              (3.3) 

 

where Δ𝐹𝐹𝑆𝑆𝐻𝐻 is the convergence of sensible heat flux in a given pressure layer Δ𝑃𝑃. We 

approximate the sensible heat flux to be distributed uniformly through the depth of the 

PBL. Over the SHL in summer, I assume net latent heating to be negligible, although 

there is still differential heating rates through the atmosphere due to the unbalanced 

heating and cooling rates of evaporation and condensation at different vertical levels. 

The long mean JJA latent heat flux at the surface over the core heat low region is less 

than 3 W m-2 compared to the sensible heat flux of over 60 W m-2 supporting the 

assumptions made above. If 3 W m-2 latent heat from the surface is distributed 

uniformly through the lowest 200 hPa pressure levels, results in atmospheric heating 

rate of ~0.1 K day-1. A similar approach is also implemented in the calculation of heat 

budget over the Arabian heat low (Blake et al., 1983; Smith, 1986). Based on these 

assumptions we are left with only one unknown quantity, the radiative heating rate, 

which is evaluated as residual from the diabatic heating rate diagnosed using equation 

3.2 and the estimated sensible heating rate. At levels above the PBL top I assume all 

diabatic heating to be radiative.   

 Moisture budget is derived from continuity (Trenberth and Guillemot, 1995;Wu, 

1993) given by: 
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                                 𝜕𝜕�́�𝑞
𝜕𝜕𝜕𝜕

= −�́�𝑣 ∙ 𝛻𝛻�́�𝑞 − �́�𝜔 𝜕𝜕�́�𝑞
𝜕𝜕𝑝𝑝
− 𝛻𝛻 ∙ �𝑞𝑞′´ 𝑣𝑣′� − 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑞𝑞′𝜔𝜔′´ � + (𝐸𝐸 − 𝐶𝐶)               (3.4) 

 

 where q is specific humidity, E is evaporation, and C is condensation. The definition of 

primed and overbar quantities is similar to the definitions given in eq. 3.2. The left hand 

side of eq. 3.4 represents the tendency of moisture. On the right hand side of eq. 3.4 

the first and second terms represent the rate of advection of moisture by mean 

horizontal and vertical flows respectively while the third and fourth terms represent the 

rate of moisture advection by transient horizontal and vertical flows respectively. The 

last term on the right hand side of equation 2 represents the rate of change of moisture 

from physical processes (evaporation and condensation).  Similar procedures are used 

for the vertical and horizontal derivatives as in heat budget calculations.   

The heat and moisture budgets are derived for each summer month and then 

averaged over the individual years and all data (1979-2014) to obtain the long term 

climatological mean. The diurnal cycle in the low level circulation and radiative fluxes is  

pronounced over the Sahara so that I need to ensure the mean diurnal cycle actually 

contributes to the mean advective not the transient components. To this end I derive 

the monthly heat/moisture budgets separately for each time step and then average the 

resulting quantities. For long time mean conditions, (Section 3.3) I present results 

averaged over the peak SHL season of JJA. In considering inter-annual variation 

(Section 3.4) I consider the longer spring-summer season AMJJA as I seek to explain 

differences in the evolution of the SHL and in particular the temperature tendency term, 

which is close to zero over JJA. For moisture budget calculations, the mean flow and 

transient flow horizontal advection of moisture are considered. Vertical advection of 

moisture is small since the extreme hot conditions of the SHL, the net vertical transport 

of moisture due to evaporation and precipitation is negligibly small, and therefore  

horizontal advection of moisture is the dominant factor that brings water vapor into the 

heat low region, vertical moisture advection is not treated here (Evan et al., 2015).  

Heat and moisture budgets are unavailable in the publically accessible reanalyses 

output(with exception to MERRA), and thus I developed codes using Interactive Data 

Language (IDL) to derive each term in equations 3.2 and 3.4.   

3.3 Results of Heat and moisture budget analysis over SHL 
 

The fundamental structure of the long term mean summertime SHL heat and 

moisture budgets is common between the various reanalysis products although the 
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magnitudes of heating/drying rates varies considerably. Over the Sahara the net 

balance of shortwave and longwave radiative fluxes at the top of atmosphere, within 

the atmosphere and at the surface are modulated primarily by clouds, dust aerosols, 

water vapour and surface albedo (Banks et al., 2014;Marsham et al., 2016;Yang et al., 

2009). TOA net radiation is generally weakly positive in the summer months 26 (16, 15) 

W.m-2 for JJA averaged over SHL from ERAI, (NCEP and MERRA). This makes the 

SHL a weak net heat sink. At the surface the large net radiation surplus 76 (33, 69) W 

m-2 in summertime is largely converted to sensible heat ~68 (19, 60) W m-2 which 

controls the development of the PBL. Atmospheric radiative convergence i.e. the 

difference in net radiation between the TOA and surface is -50 (-17, -53) W m-2 such 

that the atmosphere as a whole experiences cooling, balanced of course by the 

sensible heat flux from the surface. I used the CERES Edition 2.8 energy balanced and 

filled top of atmosphere flux (Loeb et al., 2009) to compare with reanalysis TOA flux. 

The 16 year (2000-2015) climatological (JJA) averages of all-sky TOA fluxes over the 

core of heat low (70W-40E, 200N-280N) is 13 W m-2. The TOA net flux is overestimated 

in ERA-I compared to NCEP and MERRA which both have closer agreement with 

CERES observation. There is a wide range of differences in the surface and TOA 

radiative flux and sensible heat flux among reanalyses products. Note that NCEP 

surface radiative and sensible heat fluxes are under half those of the other reanalyses. 

This difference could be due to differences in model physics (cloud representation), 

surface properties, and importantly data assimilation, however it needs a further 

investigation to clearly identify the reason for the discrepancy.  

The differences in heat and moisture budget among the three reanalyses 

products is presented below. I have already pointed out position of the core heat low is 

determined using the thickness of the geopotential height between 925 hPa and 700 

hPa. This layer has a typical representative of the heat contained in the heat low region 

(Lavaysse et al., 2009) and thus I discuss here vertically averaged diabatic heating rate 

between 925 hPa and 700 hPa. Figure 3.3 displays the mean 1979 - 2014, 

summertime (JJA) diabatic heating rate vertically averaged between 925 hPa and 700 

hPa for the three reanalysis products and their mean. There is a distinction in the 

heating rate (notably in ERA-I) north of ITD mainly from convergence of turbulent heat 

flux into the atmosphere and south of ITD from release of latent heat associated with 

monsoon rainfall. In all the three reanalysis products there is a stronger diabatic 

heating (up to ~2 K Day-1) which is centered to the west of the core heat low (fig. 3.3). 

In the lowest levels diabatic heating is primarily controlled by convergence of sensible 

heat flux which is relatively smaller in the core heat low area. Maximum JJA mean 

sensible heat flux is located over the borders of North and Northwest Africa (not 
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shown). Weaker Vertical temperature gradient in the deep mixed boundary layer of 

central Sahara and smaller surface wind speed, which affect magnitude of sensible  

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 

Figure 3.3 Diabatic Heating Rate (K Day-1) vertically averaged between 925 and 700 

hPa for JJA, 1979 - 2014. Top plots: left-ERA-I, right-NCEP and bottom plots: left-

MERRA, and Right-mean of all 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Zonal average (10W-5E) Vertical Profile of long mean (1979-2014) diabatic 

heating (shade) and Hadley Circulation (arrow),[zonal mean(10W-5E) meridional wind 

(m.s-1) and vertical wind times 100 (m.s-1)] 
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heat flux convergence into the atmosphere, are possible reasons for the smaller 

sensible heat flux in the SHL core. Near the surface the strong diabatic heating is partly 

cancelled by the radiative cooling. In the layer between 925 hPa and 700 hPa, radiative 

cooling is relatively smaller and thus heating is primarily controlled by sensible heat 

flux. The strong diabatic heating rate of up to ~3 K Day-1 in the south west of the 

domain is from the latent heat release of convective rain from the Northern edge of the 

West African monsoon rainband (70N-120N). Meridional cross section of zonal 

averaged(100W-50E) vertical profile diabatic heating rate (fig. 3.4) shows this clearly, 

heating in the lower levels (~ 800 hPa) from convergence of sensible heat flux and 

cooling aloft due to radiative (longwave) emission. The heating up to ~4.5 K day-1 from 

deep convection in the WAM rainbandbetwee ~700 and 200 hPa is evident on the 

southern end of the domain (on left side of each plot, fig. 3.4). The main features of the 

vertical heating profile is similar among the three reanalyses despite their differences in 

the magnitude of heating (or cooling) rates. The radiative cooling dominates above the 

dry convective layer. NCEP has weaker heating rate with deeper dry convective layer 

compared with ERA-I and MERRA. A consistent result of the mean diabatic heating 

profile is given in (Martin et al., 2017), figure 5a.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Horizontal Advection of Temperature (K Day-1) from mean (left column) and 

transient (right column) circulations vertically averaged between 950 and 850 hPa for 

JJA, 1979-2015. Top plots: ERA-I, middle plots: NCEP and bottom plots: MERRA 
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The strong diabatic heating in the lower levels is primarily balanced by cold 

advection from the surrounding areas. The low level convergence flow extends from 

surface to ~850 hPa and thus I use this layer to present the results of temperature 

advection over my domain (fig. 3.5). The spatial structure of horizontal low level 

temperature advection over the wider North-West Africa indicates that ventilation by the 

mean circulation, which includes the mean diurnal cycle that occur primarily around the 

peripheries of the SHL core region. Specifically, in order of magnitude, the Atlantic 

inflow (Grams et al, 2011; Todd et al., 2013) at the western boundary of the SHL 

(locally ~-8 K day-1), advection from the Mediterranean at northeastern boundary 

(diverted around the northern flank of the Hoggar massif) (locally ~-3 K Day-1), and the 

monsoon flow along the southern boundary (locally ~-3 K day-1). This ventilation by the 

mean circulation is primarily a nocturnal phenomenon associated with the deep inland 

penetration of the nocturnal low level jets (LLJs) in the Atlantic inflow (Grams et al, 

2011), harmattan and monsoon circulations (Schepanski et al., 2017). The SHL core is 

co-located with a minimum in ventilation by the mean horizontal circulation. Horizontal 

transient flows cool the core heat low region by up to 2 K day-1. On the whole domain, 

the transient flows appear to oppose the cooling from the advection of temperature due 

to mean horizontal wind flows. However as one might expect, the magnitude of the 

heating rate from the transient horizontal flows is small compared to that of the mean 

horizontal wind. Once more the three reanalyses have captured the main picture of 

advective heating/cooling over the region.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Similar to Figure 3.5 except for moisture advection (g Kg-1 Day-1). Blue 

shades represent moistening and red shades represent drying.   
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Consistent with the horizontal temperature advection results (fig. 3.5), there is 

net moistening of SHL from the surrounding peripheries (fig. 3.6). The moisture 

advection from the monsoon flow is relatively stronger in ERA-I (up to 1.5 g Kg-1 Day-1) 

compared with NCEP and MERRA (~1.0 g Kg-1 Day-1). Central heat low region is 

moistened by up to 0.7 g Kg-1 Day-1 from the transient flows (left panel on fig. 3.6). 

There is meridional distinction in the moisture advection of transient flows with drying 

tendency up to -1 g Kg-1 Day-1 below 200 N and above ~300N and moistening of up to 1 

g Kg-1 Day-1 the region between ~200N to ~300N. There is an agreement in the spatial 

representation of the moisture advection among the reanalyses. NCEP produced the 

smallest tendency compared with ERA-I and MERRA. Notably the contribution of 

moisture advection by the monsoon is stronger in ERA-I compared with NCEP and 

MERRA.     

As my primary focus here is to investigate the processes taking place in the 

SHL core, I next present the vertical profile heating rates of the thermodynamic energy 

equation terms in Eq. 3.2. Figure 3.7 shows the heating rate terms averaged over the 

core heat low region (region inside the cyan line in fig. 3.1). The horizontal lines on the 

plots indicate variability (standard deviation) of the mean heat budget terms vertical 

profile. The main result in the vertical profile plots are low level cooling from horizontal 

mean and transient flows and vertical transient flow, warming from mean vertical flow. 

The diabatic heating derived as residual from E.q. 3.2 has two main structures. Heating 

primarily from dry convection extending from surface up to ~700 hPa and radiative 

cooling aloft. The structure of residual diabatic heating profile calculated by Martin et 

al., 2017(Figure 7g) over the Sahara (10W-10E, 20-30N) are consistent with what I 

found here.  

The distinct vertical structure of horizontal wind divergence (not shown here) 

leads us to consider the heat budget profile as structured into three broad vertical 

sections with characteristic heating processes, namely lowest levels(950 – 850 hPa), 

mid-levels (850 – 600 hPa), and upper levels (600 – 200 hPa). The heat budget terms 

vertically integrated over these three levels are provided in Table 3.1, and 3.2. Overall, 

as the SHL is well established in JJA temperature tendencies over the JJA period are 

close to zero so that I am effectively concerned with quantifying various and opposing 

heating processes which maintain quasi equilibrium. There is agreement both in 

magnitude and structure of heating rate profile between ERA-I and MERRA in contrast 

to that of NCEP which shows notable difference particularly in the lower atmosphere 

below 600hPa (fig. 3.7). The advective heating rate terms in NCEP are under half of 

the respective terms in ERA-I or MERRA. NCEP data has 11 pressure levels up to 200 

hPa compared with 23 pressure levels of ERA-I and MERRA. For this reason I do not 
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include vertically integrated heat and moisture budgets over the three vertical sections 

mentioned above. I thus present results of vertically averaged heat and moisture 

budget for ERA-I and in bracket MERRA. 

 
(i) Lowest Levels (950-850 hPa) 

 

On average the lower troposphere is cooled by a combination of all the 

advective terms but substantially by the horizontal rather than vertical terms. The mean 

horizontal component has the largest maximum, peaking at almost -1.3 K day-1 (-0.7 K 

day-1) at 950 hPa for ERA-I (MERRA). When integrated over the lowest layers (950 to 

850 hPa) the mean and transient horizontal components contribute at -0.9 K day-1 (-0.5 

K day-1) and -0.8 K day-1 (-1.0 K day-1), respectively (Tables 3.1 and 3.2). Together the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mean and transient horizontal advection drive a substantial ventilation of the SHL 

through the low level convergent circulation into the SHL described further below. 

Ventilation by horizontal transient component (fig. 3.5) is focussed over the core SHL 

Temp. Tendency 
VTA mean flow 
HTA mean flow 
VTA transient flow 
HTA transient flow 
Diabatic Heating 

Figure 3.7 Mean 1979-2014 JJA 
heating rate terms averaged over the 

core heat low region for ERA-I, NCEP, 
and MERRA. Solid lines and dashed 

lines represent mean flow and transient 
flows respectively. Dash-dot line 

represents diabatic heating. VTA stands 
for vertical temperature advection and 
HTA stands for horizontal temperature 
advection. Horizontal lines on the plots 

show standard deviation 
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region itself (locally up to ~-2 K day-1). Indeed, transients appear to warm the SHL 

peripheries suggesting that they act to weaken the mean circulation. The diurnal cycle 

in the transient term is far smaller than that for the mean term. Vertical temperature 

advection also act to cool the lower atmosphere over the SHL, notably the transient 

flow which cools to ~800 hpa at a peak rate of 1.1 K day-1 near the surface. Averaged 

over the lowest levels 950 to 850 hPa, the vertical transient flows contribute  cooling of 

-0.8 K day-1 (-0.7 K day-1). This suggests that transients invoke a net upward heat flux 

over the SHL. This occurs mostly at night (not shown). The mean vertical motion 

involves a marginal cooling of 0.1 K Day-1 (Table 3.1).  

Mean Vertical profile wetting/drying rates are displayed in fig. 3.8. Once again 

the horizontal lines on the plots represent year to year variability (standard deviation) of 

moisture advection. As one would expect year to year variability in the upper 

atmosphere is smaller compared with the lower levels. Total horizontal moisture 

advection (fig. 3.8) shows substantial net moistening of lowest layers up to ~850 hPa 

(peaking at 0.8 g kg-1 day-1 (0.6 g kg-1 day-1) for ERA-I (MERRA). Horizontal moisture 

advection from the transient flow is the dominant mechanism in the moistening of the 

lower levels over the core heat low region. There is a notable difference in the low level 

moisture advection rate from the mean flow among the three reanalyses products: 

moistening in ERA-I opposed to both NCEP and MERRA which have net drying when 

averaged over the core heat low region.  

 

Table 3.1 Heating Rate (K Day-1) for terms in equation 3.2 averaged over the core heat 

low 1979-2014 from ERA-I data. Vertical averaging is mass weighted mean for each 

layer considered. 

Layer period VTA mean 
flow 

HTA mean 
flow 

VTA transt. 
flow 

HTA transt. 
flow 

diabtic 
heating 

950-850 AMJJA 0.1 -1.3 -0.9 -0.9 3.1 

 JJA -0.1 -0.9 -0.8 -0.8 2.7 

850-600 AMJJA 0.3 -0.2 0.4 -0.5 0.1 

 JJA -0.0 -0.1 0.3 -0.4 0.3 

600-200 AMJJA 0.6 0.2 0.1 -0.1 -0.8 

 JJA 0.7 0.0 0.1 0.0 -0.8 

925-700 AMJJA 0.2 -0.6 0.0 -0.7 1.2 

 JJA -0.1 -0.3 -0.1 -0.6 1.1 

950-200 AMJJA 0.4 -0.1 0.0 -0.3 0.0 

 JJA 0.3 -0.1 0.0 -0.2 0.0 
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The low level cooling from horizontal and vertical advection is countered by 

diabatic warming up to 3.4 K day-1 (3.2 K day-1) at the lowest level and 2.7 K day-1 (2.4 

K day-1) averaged from 950 to 850 hPa layer (Table 3.1 and Table 3.2). Diabatic 

heating acts to warm the SHL up to about 700 hPa and over this layer the sensible 

heat flux (1.95 K day-1 for ERA-I) exceeds total diabatic heating (1.34 K day-1 for ERA-I) 

such that there is a net radiative cooling to 700 hPa of 0.62 K day-1. My estimates 

derived using distribution of sensible heat flux uniformly through the PBL are consistent 

with those directly obtained from MERRA reanalysis outputs (not shown). Horizontal 

temperature advection from mean flow in the lowest levels averaged over the months 

AMJJA becomes stronger, -1.3 K day-1 (-0.9 K day-1) compared with that of JJA, -0.9 K 

day-1 (-0.5 K day-1) showing on April and May there is strong advection. A possible 

reason for this could be during the later summer months (July and August) the SHL 

region will be established and the horizontal temperature gradient will be smaller and 

thus reducing mean horizontal temperature advection.  

 

Table 3.2 Same as Table 3.1 except for MERRA data 

 

 

(ii) Mid-level (~850-600 hPa) 
 

In the mid troposphere between ~850 to ~600 hPa there is warming from 

vertical advection, primarily from transient flow, up to 0.6 K day-1. As such transient 

vertical flow drives descent in this mid layer (and ascent in the lowest layers). This is 

offset by cooling from the diabatic component (presumably radiative, above 750 hPa). 

In the mid layer the role of horizontal advection declines rapidly.  The mean moisture 

Layer period VTA mean 
flow 

HTA 
mean flow 

VTA transt. 
flow 

HTA transt. 
flow 

diabtic 
heating 

950-850 AMJJA 0.1 -0.9 -0.8 -1.0 2.8 

 JJA -0.1 -0.5 -0.7 -1.0 2.4 

850-600 AMJJA 0.4 -0.1 0.3 -0.5 -0.0 

 JJA 0.0 -0.0 0.2 -0.4 0.1 

600-200 AMJJA 0.9 0.1 0.1 -0.0 -1.0 

 JJA 0.9 0.0 0.1 0.1 -1.0 

925-700 AMJJA 0.2 -0.4 -0.0 -0.7 0.9 

 JJA -0.0 -0.2 -0.1 -0.6 0.9 

950-200 AMJJA 0.6 -0.1 0.0 -0.3 -0.2 

 JJA 0.5 -0.1 0.0 -0.2 -0.1 
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tendency (fig. 3.8) show substantial net drying by the mean horizontal circulation, 

consistent with the vertical structure of convergent/divergent inflow/outflow. The drying 

from the transient flow is smaller in magnitude compared to the mean flow and starts at 

upper level ~750 hPa (~800 hPa) in ERA-I (MERRA). The vertical temperature 

advection from mean flow changes from 0.0 K day-1 in JJA to considerable warming of 

0.4 K day-1 in AMJJA. This due to the adiabatic warming from surface to ~600 hPa 

during April and May will decrease which further becomes cooling later in summer.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(iii) Upper level (~600-200 hPa) 
 

Horizontal temperature advection plays little(or zero) role in this layer. In the 

upper troposphere above ~600 hPa to the first order there is a quasi-equilibrium 

between radiative cooling and warming from mean vertical advection (fig. 3.7), 

associated with mean subsidence in the descending limb of the Hadley circulation. It is 

interesting to note that the transient terms vanish above about 600 hPa justifying that 

there is insignificant variation from the mean flow in the upper part of the atmosphere.     

HMA mean flow 
HMA transient flow 

HMA total  

Figure 3.8 Mean 1979-2014 JJA moisture 

advection averaged over the core heat low 

region for ERA-I, NCEP, and MERRA. 

Blue, green, and black lines represent 

moisture advection tendency from mean 

flow, transient flow, and total respectively. 

HMA stands for horizontal moisture 

advection. Negative numbers show drying 

and positive numbers show moistening. 

Horizontal lines on plots show standard 

deviation 
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Overall, the mean state atmosphere in the lower layers of SHL shows 

characteristics of a highly damped system in that there are strong opposing forces. The 

SHL itself drives a mean circulation which strongly cools the system, which is offset by 

turbulent transfer of sensible heat flux. As such the SHL caused by strong low level  

heating is essentially regulated by horizontal ventilation and radiative cooling 

processes. However the magnitude of the heat budget terms differs substantially 

between the three reanalyses products with NCEP values less than half those of the 

ERA-I and MERRA.  

3.4 Inter-annual variability in the SHL and heat budget 
 
Having presented the long mean state of the Saharan heat low, next I investigate the 

inter-annual variability based on heat budget and moisture budget. I have already 

shown that there is positive trend in LLAT (fig 3.2), and thus warming of the Saharan 

heat low region. The three weakest and three strongest years are not the same for the 

reanalyses products (fig 3.2). I have made test analysis of heat and moisture budget for 

different three weakest and three strongest years for each reanalyses and the results 

are consistent with those of common weak and strong years for all the reanalyses. 

Therefore, to be consistent, I use here the common weakest three years and common 

strongest three SHL years. Composites of LLAT time series for the three strong and 

weak years show the difference in SHL intensity between samples occurs primarily 

early in the summer season during May and June (fig. 3.9), and subsequently 

maintained through the summer season. During AMJJA the difference in mean LLAT 

between the weak and strong years is 8 m which is statistically significant with p value 

< 0.01. The distinction between the strong and weak heat low years is more evident 

starting from mid-june (fig. 3.9) after which heat low is fully developed. This pattern is 

consistent across all the observations in the two samples. The composite heat and 

moisture budget analysis for the weak and strong SHL years is presented (fig. 3.10, fig. 

3.11, fig. 3.12, and fig. 3.13) over summer. The spring (April and May) period results 

are also used to identify the processes determining variability in SHL intensity. That is 

to understand the details of these processes in the SHL, I consider the tendency terms 

for each month in April to August. Over the earlier period (April to June) temperature 

tendency is non-zero reflecting inter-annual differences in temperature and thus LLAT.  

There is a clear difference in the low level (950 hPa - 850 hPa) specific humidity 

between the strong and weak SHL periods (Figure 3.10). That is strong (weak) heat 

low years are moister (drier) by up to 2 g Kg-1 compared with the long mean (1979-

2014). All reanalysis products consistently reproduce anomalous moistening (drying) of 
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central Sahara locally up to ~0.4 g Kg-1 (1.0 g Kg-1) during the strong (weak). Monsoon 

flow has significant contribution to the increase in moisture which in turn is a result of 

the enhanced meridional circulation due to the high SHL temperature (Thorncroft et al., 

2011) during the strong years. NCEP shows the strongest anomalous moisture both 

during the strong and the weak SHL periods while the differences between the two 

contrasting periods in ERA-I is not as pronounced. This is consistent with the weaker 

trend in LLAT in ERA-I have already shown in Figure 3.2. Regardless of the varying 

magnitude, the difference in moisture between strong and weak years is statistically  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Daily LLAT over the summer season during strong and weak SHL years. 

 

significant in all reanalyses output (p value < 0.01). There is no notable difference in 

low level diabatic heating between the strong and weak heat low years in the three 

reanalysis products (fig. 3.11). This consistent with the results of sensible heat and 

surface longwave flux discussed above. The diabatic heating difference between the 

strong and weak heat low years is slightly larger in NCEP compared with ERA-I and 

MERRA. Despite the smaller magnitudes of heating/moistening rates calculated so far 

with NCEP fields, it has a better representation of variability in heat and moisture 

budget. This is clearly seen in the moisture difference between the contrasting years 

and to a lesser extent but consistent in diabatic heating. ERA-I has weak signals in 

capturing the differences in moisture and heat budget between the two contrasting 

periods. The disparity in the magnitude diabatic heating among the reanalyses could 

be because of differences in the core dynamical processes and way in which data is 

assimilated and differences in models simulation of these prognostic variables.  
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 In spite of the strong heat low period being hotter by up to 3 K compared with 

the weak years, there is small difference (up to ~1 W m-2) in sensible heat flux between 

the two extreme conditions of the SHL(Table 3.3). Additional analysis is required to 

estimate warming of the atmosphere due to increased sensible heat flux however from 

the above results it can be suggested that feedback of increased sensible heat flux due 

to the warming of the SHL is too small to be detect in reanalyses calculations. It is also 

important to note that there could be bias in calculation of sensible heat flux in  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10 Figure 3.12 Mean JJA vertically averaged specific humidity (g Kg-1) 

(950 hPa - 850 hPa) difference, q (mean strong years) minus q (long mean, 1979-

2014): top plots and difference, q (mean weak years) minus q (long mean, 1979-2014): 

bottom plots, Left: ERA-I, Middle: NCEP, and Right: MERRA 

 

reanalyses. Further reinforcing the above results, time series of 1979-2014 mean JJA 

net surface longwave flux averaged over SHL region (not shown) does not reveal any 

notable increase during the strong heat low years compared with the weak heat low 

years. This is in contrast to the findings of Evan, Flamant, et al. (2015) that suggest 

strong change in net surface longwave flux in the range 1.0 - 3.0 W m-2 as a result of 

increase in a kg m-2 column integrated moisture in the atmosphere. However Evan et 

al., 2015 results are for the period from 2001 to 2010 calculated at night-time hours 
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only during which the longwave flux forcing is strongest. The disparity between the 

magnitudes of sensible heat flux between reanalyses results (Table 3.3) are large.    

 The vertical profile of tendency terms for composites of strong and weak SHL 

years is shown in figs. 3.12, 3.13, and 3.14. The time May to June is the period when 

the temperature tendency term is positive and relatively larger while during July to 

August, temperature tendency is close to zero. The reason for very small temperature 

tendency during the peak JJA period is because the heat low is already established 

during the late spring time (see the inter-annual differences in LLAT) such that after this  

there is no further intensification rather it is maintained before it starts weakening after 

August. Therefore, the change in temperature during JJA is effectively close to zero in 

both strong and weak SHL composites. This makes it difficult to see the difference in 

temperature tendency between the composite weak and composite strong SHL years.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11 Same as Figure 3.10 except for diabatic heating (K day-1) 

 

TABLE 3.3 JJA skin temperature (SKT) and sensible heat flux (SHF) averaged for 

weak and strong heat low years. 

 Weak Heat Low Years mean Strong Heat Low Years mean 
ERA-I NCEP MERRA ERA-I NCEP MERRA 

SKT (K) 310 303 312 312 306 313 

SHF(W m-2) 58 23 62 59 21 61 
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The tendency terms from advection, notably from the horizontal component, 

has a relatively bigger difference between the two contrasting periods. The weak years 

have stronger low level mean JJA advective cooling from the mean circulation than the 

strong years -1.6 K day-1 (-1.3 K day-1) and -1.2 K day-1  (-0.8 K day-1) respectively for 

ERA-I(MERRA) in the lowest level.On average despite the stronger low level circulation 

during the strong years, horizontal advection is smaller compared with results of the 

weak years. This can be understood by noting that horizontal advection is a product of 

wind and change in temperature and  advection by itself would lead to temperature 

differences of about - 30 K (40 K) in ERA-I (MERRA) over the ~100 day spring-summer 

period. The actual difference in temperature tendency in the SHL layer between the 

composites is ~1 - 2 K. The transient horizontal flow has less but opposing effect to the 

mean flow in the lower levels, less cooling during the weak years. The stronger 

advective cooling in weak SHL is substantially compensated by the combined effects 

of, in decreasing order of importance, stronger warming from the mean vertical 

circulation (perhaps directly resulting from the greater horizontal convergence), weaker 

transient horizontal cooling and slightly greater diabatic heating (figs. 3.12 - 3.14). In 

general horizontal temperature advection from the mean flow is strongest during the 

months April to June after which its magnitude starts declining. It is also in this 

particular time (April to June) the difference between mean horizontal temperature 

advection between strong and weak years is notable. This difference is smaller during 

the months July and August.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Mean temperature advection and diabatic heating rates (K Day-1) for the 

weak SHL years (dashed lines) and strong SHL years (solid lines) from ERA-I data. 
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Figure 3.13 Same as fig. 3.12 except for NCEP 

 

 

 

Figure 3.14 Same as fig. 3.12 except for MERRA data. 
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There is notable change in the structure of vertical temperature advection from 

the mean flow as time progresses from April to August. During April and May warming 

from surface to ~600 hPa, cooling from 600 to ~300 hPa, and warming aloft. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.15 Difference of total horizontal moisture advection tendency (g Kg-1 

day-1) between strong and weak years. Positive values show larger moisture tendency 

during the strong years compared with the weak years.  

 

This vertical profile heating rate is changed in summer months during which the 

warming from surface to ~600 hPa decreases in June and becomes cooling in July and 

August. Furthermore the cooling from 600 hPa to 300 hPa becomes warming in June 

which then increases in magnitude during July and August. The main difference in the 

vertical temperature advection between the strong and weak years is that there is more 

cooling in the low levels and more warming in the upper levels during the weak than 

the strong SHL years. There is no significant difference in the vertical temperature 

advection from transient flows between the strong and weak years.    

Consistent with the increase in the low level specific humidity in the strong heat 

low years, more moisture is advected at a rate up to 1.2 g Kg-1 day-1 (although not 

statistically significant) in much of the North Africa domain during the strong heat low 

period compared with the weak years (fig. 3.15) further confirming net moistening of 

the SHL during the strong SHL years. Vertical profile of total moisture advection by 

horizontal wind (figs. 3.16, 3.17, 3.18) shows a net moistening in the lower levels (~950 

hPa - ~800 hPa) peaking near surface up to 1 g Kg-1 day-1 (0.5 g Kg-1 day-1) in ERA-I 

(MERRA) and drying in mid-levels (~800 hPa - ~400 hPa) with peak values 0.25 g Kg 

day-1 (0.35 g Kg day-1) around 600 hPa (750 hPa) in ERA-I (MERRA). In the late spring 
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to early summer period changes in the vertical profile of circulation pattern results in 

modified moisture advection profile. This comes primarily due to the convergence of 

moisture from the mean flow in the mid layer around ~700 hPa - ~500 hPa. In general 

there is net moistening of the atmospheric column (more moistening in the lower levels) 

and less drying in the mid-levels (figs. 3.14 - 3.16) during the strong heat low years 

compared with the weak years.    

In summary during the strong SHL years the net effect of horizontal 

temperature advection is less cooling while the net effect of vertical temperature 

advection is less warming compared with the weak SHL years. There is no clear or 

significant difference in mean JJA surface sensible heat flux (table 3.3) between the 

weak years, 58 W.m-2 (23 W.m-2, and 62 W.m-2) and the strong years, 59 W.m-2 (21 

W.m-2, and 61 W.m-2) from ERA-I (NCEP, and MERRA) confirming the assertion I 

made based on the results I found above that the variability in the Saharan Heat low 

intensity is not directly correlated with variability in the diabatic heating. However there 

is a consistent temperature increase of ~2 K in the strong years compared with the 

weak years (Table 3.3) in all reanalyses. This is in contrast to what one might expect  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.16 Mean horizontal moisture advection (HMA) for the weak SHL years 

(dashed lines) and strong SHL years (solid lines) from ERA-I data. Red, green, and 

black lines denote mean moisture advection from mean flow, transient flow and total 

respectively. 
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Figure 3.17 Same as fig. 3.16 except for NCEP 

 

Figure 3.18 Same as fig. 3.17 except for MERRA 
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as a result of intensification of the SHL leading to larger sensible heat flux convergence 

into the atmosphere. My results here contrasts what has been suggested in Evan et al., 

2015 that year to year changes in diabatic heating of the SHL is strongly correlated 

with surface sensible heat fluxes. A possible reason for models lack of consistency in 

reproducing the inter-annual variability in energy budget could be under representation 

of moisture and dust which are known to play a key role in the heat budget of the heat 

low region. This will be further investigated in the next chapter. 

3.5 Conclusions and Discussions 
 

The Saharan Heat Low is an important feature of the North African climate and 

driver of the West African Monsoon. As such it is important that climate prediction 

models are able to replicate the mean state and variability in the SHL over all 

timescales. However, the processes governing the mean state and variability in the 

SHL are not well understood. To this end this chapter provided an analysis of the 

atmospheric heat and moisture budget from reanalysis to resolve the drivers of the 

SHL. I use the low level atmospheric thickness as an indicator for the heat content of 

the lower atmosphere as a proxy metric to locate the SHL core for summertime 

seasonal mean conditions. I then determined the various components of the heat and 

moisture budget from the thermodynamic equation and moisture conservation 

equation. Diabatic heating is giagnosed as a residual of the thermodynamic equation 

and is then decomposed into the radiative and sensible heat terms. The summertime 

long mean and extreme (warmest and coolest) periods of heat and moisture budget are 

quantified from three reanalyses products namely ERA-I, NCEP, and MERRA. 

The lower troposphere in the SHL region gains energy through, in rank order of 

magnitude, sensible heat flux, radiative heating and adiabatic subsidence warming. 

This is compensated for by cooling from horizontal advection in which the transient 

component dominates over the mean circulation over the core heat low. As such the 

results are in agreement with previous analyses (Peyrille and Lafore, Evan, Couvreaux) 

indicating that within the SHL, diabatic heating of the atmosphere is to a first-order 

approximation controlled by the surface turbulent heat fluxes, which is balanced by 

horizontal heat flux divergence. Pertinent to the convergent low level circulation, 

transport of moisture to the central Sahara from around the peripheries is an important 

component of the SHL system. Here I further discuss the roles and present implications 

of each process involved.    

Diabatic heating, more importantly convergence of sensible heat flux into 

atmosphere, is an important component of the SHL energy budget. Vertical and 
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horizontal distribution of diabatic heating influences the physical processes that could 

affect regional circulations (Martin et al., 2017). Over SHL diabatic heating warms lower 

layers and more than compensates for the advective terms. Diabatic heating is slightly 

greater in the strong SHL years compared to the weaker year. This leads us to 

conclude that variability in the intensity of SHL is not strongly related to variability in 

diabatic heating. In contrast to this, based on reanalysis data Evan et al. (2015) 

highlight the role of water vapour in SHL trends. The extreme strong SHL has TCWV 

about 3 kg m-2 higher than the weak SHL. From the dependence of TOA net radiation 

on TCWV in Fennec observations at supersite 1 (Alamirew et al., 2018) this would 

cause a 4 W m-2 radiative warming of the atmosphere which equates to a 0.12 K day-1 

warming which is close to the difference in radiative heating between the strong and 

weak SHL years of 0.1 K day-1 (but this is much smaller than the values for the 1000 

hPa-700hPa layer) 

Horizontal temperature advection from the mean flow is the dominant 

heating/cooling mechanism on a larger scale: primarily the nocturnal Atlantic inflow and 

WAM circulations, however over the core SHL the transient flows have a nearly equal 

effect. This cooling is actually smaller in magnitude during the strong SHL years 

compared to weaker years. The transient fluctuations can be associated with 

depressions including the SHL itself and longer-lived migrating cyclones (Fiedler et al., 

2013). The SHL exhibits variability at intraseasonal scales (Lavaysse et al., 2010) with 

pronounced horizontal migrations across the Sahara occurring over a matter of a few 

days (Marsham et al., 2013b, Todd et al., 2013). During summer the dominant synoptic 

scale weather systems over summertime West Africa are African Easterly Waves 

(AEWs) which can feature cool and moist advection at low levels if the surface trough 

is pronounced (Thorncroft and Hodges, 2001). These are most frequent over Northern 

Mauritania and Mali often enhanced in the lee of the Air and Hoggar mountains (Fiedler 

et al., 2013) and will act drive cool advection into the southern SHL core region. 

Cyclonic systems over North Africa and the Mediterranean can also advect cool 

midlatitude air into the Sahara but are infrequent in the summer months (Fiedler et al., 

2013). Cooling from transients is greater in the strong SHL year.  However transient 

circulation typically involve the coincidence of negative temperature advection and 

moistening of the atmosphere, the latter leading to radiative warming (Todd et al., 

2013, Marsham, et al, 2016). Therefore at short timescales the advective and radiative 

terms will tend to counteract each other. Marsham et al., 2016 estimate a lag time of a 

few days for radiative re-warming following advective cooling monsoon surge events. A 

major difference of horizontal temperature advection between the weak and strong 
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years is that the mean cooling in the lowest levels is larger (notably may and june) and 

warming in the mid layer(~800 hPa to 300 hPa) is weaker in the former.  

Vertical temperature advection from the mean flow has a  small cooling effect 

from surface to ~600 hPa and more significantly warming in the upper levels above 

~600 hPa (Lavaysse et al., 2009) which is a result of the subsidence in the Northern 

branch of sub-tropical Hadley circulation (Figure 3.5). The net effect of vertical 

temperature advection over the entire column is warming by 0.3 K day-1. It should be 

however noted that vertical temperature advection has a strong seasonal variability 

which is linked with the changes in the vertical profile atmospheric circulation as time 

proceeds from spring to summer.   

Although the sign and vertical structure and inter-annual variability of 

heating/drying rates are consistent between the reanalyses, magnitudes differ 

substantially. Roberts et al. (2015) note considerable differences between the various 

reanalyses products in the representation of low level moisture, associated with 

differences in underlying model physics and assimilation methods. These differences 

reduced substantially in field campaign periods when the density and coverage of 

upper air observations for assimilation increased, pointing to lack of data assimilation 

as a key source of reanalysis bias. Pertinent to this, reanalysis products have good 

representation the inter-annual variability of measureable atmospheric variables (q, 

T...). However this appear to be less the case with variables which are derived 

diagnostically using measured quantities. On a larger spatial scale there is agreement 

on the moisture and heat budget of the North Africa region. But this agreement will 

deviate on smaller regional scale such as the Saharan heat low region. This may not 

be unexpected that global scale models which are expected to struggle in representing 

dynamics and thermodynamics of a relatively smaller domain.   

  Overall my main findings of the heat and moisture budget analysis over the SHL 

can be summarized with the following points.  

• The mean and transient horizontal flows contribute to the cooling of the 

lower atmospheric levels. Despite its small magnitude, the transient term 

plays of equal role with in the core heat low region.  

• The weak Saharan heat low years have stronger horizontal advection of 

temperature compared with the strong years.  

• There is no significant difference in the diabatic heating between the strong 

and weak years. This is further confirmed with the sensible heat flux which 

has no clear trend. That is I find there is no strong correlation of sensible 

heat flux with variability of intensity of the Saharan heat low.  
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• More moisture is advected during the strong heat low year possibly 

explaining the cause for the two contrasting periods of the SHL.   

• The climatology of the heat low heat and moisture budget spatial distribution 

is well reproduced by all the reanalysis outputs. However there is notable 

difference in the magnitude of heating and drying rates among the different 

reanalysis outputs when averaged over core heat low region. In particular 

models tend to deviate from each other in their representation of the inter-

seasonal variability.     

There is a clear change in the climate of the Saharan region. However the 

changes are not evident from the diabatic heating rate differences. There is no clear or 

noticeable change in the surface sensible heat flux between the strong and weak heat 

low years. There is small change in surface temperature up to 2 K between the strong 

and weak years. While the changes in the atmosphere is more evident (trend in llat) 

and also bigger changes in boundary layer thickness. I believe this change is partly 

related to the increased advection of moisture into the heat low region. However 

models underestimate the anomalous moisture advection into the SHL, particularly 

from mesoscale convective processes (Engelstaedter et al., 2015). The model error in 

moisture will have consequences in the simulation of heat budget and dynamics of 

SHL. In Chapter IV I will show that surface longwave flux per unit change in standard 

deviation change in column integrated water vapour (5.5 Kg m-2 at BBM for June 2011) 

is ~8 W Kg-1. It is therefore likely that models will miss the heating from anomalous 

moisture at least partly explaining the absence of trend in diabatic heating between the 

contrasting periods. I will also show in Chapter IV cloud has a net cooling effect at the 

surface which has a contrasting effect to atmospheric moisture. This means that 

underestimated cloud in models will result in warming of the surface.   

In this chapter, I investigated the heat and moisture budget of SHL derived 

using primarily temperature, wind, and moisture fields. Despite the fact that reanalyses 

products provide improved representation of state of the atmosphere, however these 

fields still have their respective varying uncertainity. These errors will be propagated 

upon calculation of heat and moisture budgets. As a consequence my results will have 

errors which is larger than the errors of the variables used to derive each term in Eqs. 

3.2 and 3.4. This is clearly one of the limitations of this work. At the start of this work 

we planned to use FENNEC observational atmospheric data to calculate heat and 

moisture budgets for one season. A similar approach has been implemented in the 

Arabian peninsula (Blake et al., 1983; Smith, 1986). However the way FENNEC 

campaign was designed and carried out does not allow for heat and budget 

calculations. A more complete observational atmospheric data designed gathered in a 
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similar way as that of the Arabian Peninsula in the 1980’s is thus imperative to get a  

better result for heat and moisture budget which is a possible future work. 

To clearly envisage the long term inter-annual variability it is necessary to study 

seasonal effects, for instance increased anomalous temperature occurred during early 

spring will be evident during manifested in late summer time. That is what I found in 

deriving the heat and moisture budget variability during spring-summer time. Therefore 

a complete investigation of inter seasonal variability of the heat and moisture budgets 

is necessary to better understand the long term inter-annual variability of the SHL. 

Further there is a need to understand the resulting feedback on the circulation, 

particularly on the WAM, due to the intensification of the heat low (Martin et al., 2017). 

This will provide a complete understanding of the cause and effect of different 

thermodynamical and dynamical components. These are possible future study.  
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CHAPTER IV 

4. Role of Dust and Water Vapour on radiative Budget of the 
Saharan Heat Low 

            (The main results of this chapter are published on Alamirew et al., 2017)  

4.1 Introduction 
 

In the previous chapter I have presented the heat and moisture budget of the 

SHL using reanalysis outputs of atmospheric variables. The results show no clear link 

between diabatic heating (sensible heating plus radiative heaing) in causing variability 

of the SHL. It was suggested that this could be due to the models’ lack of 

representation of amount of dust and water vapour. I have also shown in Chapter-III 

that there is a net advection of moisture (dominantly from the monsoon flow) to the 

Saharan heat low during summer time. However there is discrepancy in the models’ 

representation of moisture (Engelstaedter et al., 2015;Roberts et al., 2015) which leads 

to subsequent errors in dynamics and associated dust emission. For instance 

convective triggered cold pool outflows, which are not resolved in models, are 

attributed for over 40% of dust emission in the Sahara region (Allen et al., 2013;Heinold 

et al., 2013). Misrepresentation of moisture and dust in the region will have 

consequences in thermodynamical energy budget of the region.  

Dust and water vapour are known to play important role in shaping the energy 

budget (Marsham et al., 2016;Tegen and Lacis, 1996) and hence the dynamics of the 

Saharan heat low (Lavaysse et al., 2011). The variability of radiative budget of the 

Saharan heat low region is shown to be primarily controlled by the combining effect of 

dust, water vapour, and cloud (Marsham et al., 2016). In Chapter IV I have shown that 

there is intensification of SHL in recent decades confirming previous results (Evan et 

al., 2015;Lavaysse et al., 2016). The cause for these trends is debatable. However 

radiative warming from increasing water vapour is suggested to be possible reason 

(Dong and Sutton, 2015;Evan et al., 2015) that strengthens the SHL, which 

subsequently enhances the moist low level monsoon flow driving greater water vapour 

transport into the SHL and further warming with an implied enhanced West African 

Monsoon. This indicates water vapour and dust play significant role in determining the 

radiative and thus heat budget of the Saharan heat low. Therefore there is a need to 

better quantify their radiative effect.  
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Previous studies have quantified direct radiative effects (DRE) of dust aerosol 

at the top of atmosphere (TOA) and surface from in situ observations and satellite data 

(Ansell et al., 2014;Banks and Brindley, 2013;Yang et al., 2009), whilst Marsham et al., 

2016, hereafter M16, extend this empirically to consider water vapour variations, and 

implicitly cloud, as well as dust. However, there remain important gaps in our 

understanding. First, there are substantial uncertainties in the magnitudes of radiative 

fluxes (and other heat budget terms) across both the various reanalyses and 

observations. Second, separating the radiative effects of water vapour from both its 

and associated clouds and from dust aerosol is challenging, given the strong co-

variability of dust and total column water vapour (TCWV) anomalies in the Sahara 

associated with monsoon surges and resulting convective cold pool events (‘haboobs’) 

which transport water vapour and dust into the central Sahara (Allen et al., 

2013;Garcia-Carreras et al., 2013;Heinold et al., 2013;Marsham et al., 2013b). As 

such, there is a need to quantify more fully the DRE of dust and water vapour, both 

independently and together, over the Sahara. This information is necessary to resolve 

the processes that govern the fundamental structure and maintenance and variability of 

the SHL. Addressing these research gaps is hindered by the acute shortage of routine 

observations in the region and large discrepancies between models and reanalyses 

(Evan et al., 2015a; Roberts et al., 2015). 

This chapter seeks to address these gaps in our understanding of radiative 

processes within the SHL during summer. Specifically, to quantify the separate roles of 

water vapour and dust aerosol in controlling the top of atmosphere, surface, and the 

vertical profile of the atmospheric column radiative budget. This will be achieved 

through radiative transfer (RT) model simulations using uniquely detailed observations 

of atmospheric conditions over the SHL region during summer, including those from the 

main supersite of the recent Fennec field campaign (Marsham et al., 2013b). Best 

estimates and associated uncertainty are established through a set of RT model 

experiments testing the sensitivity of radiative flux and atmospheric heating rates to 

both water vapour and dust variability and to uncertainties in a set of controlling 

variables. In this way, I can inform interpretation of hypotheses on drivers of SHL 

variability and its wider impact on the regional climate. A description of the radiative 

transfer code is given in section 4.2 followed by list of input data used to run the RT 

model (section 4.3). The different experiments used towards the optimal model 

configuration are presented in section 4.4. Results of the mean state and sensitivity RT 

runs for water vapour and dust are given in section 4.5. The chapter is concluded by 

presenting the summary and conclusion of my results in section 4.6.         
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4.2 Data and Methods 

4.2.1 Description of the SOCRATES Radiative Transfer (RT) model 
 

Radiative transfer codes are generally used to calculate radiative fluxes in the 

atmosphere from which heating rates can be derived. RT codes are integral part of 

general circulation models and other climate models driving the interaction of radiation 

with surface and atmospheric constituents and thus calculating radiation flux and 

resulting heating rates. The research questions are addressed through simulations 

from a column stand-alone RT model. Such models are commonly used for detailing 

the combined and unique radiative impact of dust aerosol and water vapour (Osborne 

et al., 2011;Osipov et al., 2015;Otto et al., 2009;Otto et al., 2007;Otto et al., 

2011;Slingo et al., 2006). RT models typically comprise a radiative transfer core and a 

pre-processor to configure the necessary information on the radiatively active 

atmospheric constituents and surface characteristics. Typically, these include 

meteorological and gas component profiles from observations, reanalysis products or 

weather/climate models, spectral aerosol optical property profiles and surface 

properties. 

Here I use SOCRATES (Suite Of Community Radiative Transfer codes based 

on Edwards and Slingo) (Edwards and Slingo, 1996;Randles et al., 2013) model 

configured with observed and idealised profiles of water vapour and dust aerosol, as 

described below. The core code of SOCRATES is used in the Met office's global 

circulation model (GCM) and Numerical Weather prediction (NWP) forecasts. These 

are among the best models used for seasonal and weather forecasting and thus 

reason for my choice of SOCRATES. SOCRATES is a flexible RT model, which 

calculates the longwave and shortwave radiative fluxes and heating rates throughout 

the atmosphere given the atmospheric and surface properties of that column, the solar 

zenith for the location, date and time. SOCRATES is operated via two-stream 

approximation in which radiation is taken to have two directions, upward or downward. 

Radiative flux calculations are made for parallel plane atmosphere with spectral 

resolution ranging over the shortwave and longwave from 0.2 to 10 μm divided in 6 

bands and 3.3 μm to 10,000 μm divided 9 bands respectively. Column atmospheric 

and surface characteristics required to run the RT model are described in sections 

4.3.2 and section 4.3.3.  

Calculations using radiative transfer codes involve three steps. First spectral 

information of the active absorbing gases, cloud, and desired aerosols for each band is 

generated and stored in a spectral file. The radiative transfer codes read this file in the 
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calculation of fluxes and do not need to be changed for further calculations unless the 

spectral band or absorption properties are changed. In the second stage of pre-

processing atmospheric profile data are prepared and specified to the code. The 

atmosphere is divided into number of homogeneous layers starting from the top of the 

atmosphere.  Inputs used to run the radiative transfer model typically include active 

gases, meteorological fields, and aerosol mixing ratios and surface properties. In the 

last stage the actual code is run to calculate radiances, fluxes, and heating rates in the 

column atmospheric profile.  Figure 4.1 summarises the key steps in radiative transfer 

calculations. A detailed description of SOCRATES is provided in (Randles et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. A schematic showing the key steps involved in the processes of radiative 

transfer calculation 

 

4.2.2 Observed top of atmosphere and surface radiation 
measurements  

 
I use satellite retrievals of TOA radiation from two sources. 1). The EUMETSAT 

Geostationary Earth Radiation Budget (GERB) (Harries et al., 2005) level 2 products of 

Averaged Rectified Geolocated (ARG) fluxes at approximately 17 minute time and 

50km spatial (at nadir) resolution, with spectral ranges 0.32 to 4μm in the shortwave 
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and 4 to 100 μm in the longwave. 2). The Clouds and the Earth’s Radiant energy 

System (CERES) (Wielicki, 1996) instrument which has channels that measure total 

radiance (0.4-200µm) and shortwave radiance (0.4-4.5µm). Since there is no 

longwave-only channel on CERES, daytime longwave radiances are determined from 

the difference between the total and shortwave channel radiances. I use two CERES 

products: (i) the monthly mean Energy Balanced and Filled (EBAF) product at 1-degree 

resolution. (ii) The CERES Level-3 SSF1deg_Hour TERRA footprint gridded data 

(CERES-footprint) instantaneous, twice daily with 1-degree resolution. 

For our high resolution, pixel based analysis focused on a single location 

(BBM), cloud screening is notoriously challenging. For GERB data I apply the 

EUMETSAT cloud mask to derive clear sky and all-sky conditions and for CERES data 

I use both all sky and clear sky products. MODIS cloud parameters are used to derive 

CERES cloud free fluxes. However, analysis of GERB all-sky minus clear-sky fluxes at 

BBM suggests unrealistically small cloud DRE (~2 W.m-2 in longwave flux), which 

suggests that the cloud mask is not robust. I therefore choose only to use GERB all sky 

fluxes and limit the clear sky-only analysis to the CERES products. For ‘validation’ of 

the ‘optimum’ model configuration(section 4.3), I favour comparison with GERB (all-

sky) because the time period of the CERES monthly product is not exactly compatible 

with the RT simulations of 8-30th June, whilst the CERES footprint data has 

observations twice daily. 

Surface measurements of shortwave and longwave upwelling and downwelling 

radiation are obtained from Kipp and Zonen CNR4 radiometers situated at 2m height 

deployed at BBM during the FENNEC campaign (Marsham et al., 2013b). The surface 

radiometer measure 0.3 to 2.8µm in the shortwave and 4.5 to 42µm in the longwave 

which is narrower spectral range coverage than both GERB and CERES. Because of 

the narrower bands, radiometer measurement can miss up to 3.5 W m-2 in shortwave 

atmospheric heating and up to 3.8 W m-2 in net longwave (Banks et al., 2014).  

4.2.3 Atmospheric profile and surface characteristics 
 

I provide here a detailed list of input data which are used to run the RT model. 

Inputs for the model include meteorological fields (temperature, specific humidity), 

cloud mixing ratio and cloud fraction, active radiative gases mixing ratios, surface 

properties (skin temperature, surface pressure, broadband albedo, and emissivity). To 

include the effect of aerosols, optical properties and the vertical profile of mass mixing 

ratio of the required aerosol should be provided.  
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I specify these inputs as accurately as possible using observations from the 

recent Fennec field campaign, which obtained unique data from within the SHL region 

during June 2011 (Ryder et al., 2015). I use observations from ground-based 

instruments deployed at the Fennec supersite at BBM (Marsham et al., 2013b) and 

various aircraft flights (see Ryder et al., 2015 for overview) complemented with fields 

from the ECMWF ERA-I, and MERRA reanalyses where direct observations are 

inadequate. 

Profiles of temperature and water vapour (fig. 4.1) are obtained from 

radiosonde measurements at BBM for June 8th-30th 2011. The temporal resolution of 

radiosonde measurements varied from 3-6 hour over the study period. A distinction can 

be made between the cooler, drier, less dusty Saharan ‘maritime’ phase from around 

8th to 12th June to a hotter, moister, dustier ‘heat low’ phase from around 13th to 30th 

June (fig. 4.1a) during which time both synoptic scale monsoon surges and meso-scale 

convective cold pool events transported both water vapour and dust into the heart of 

the SHL (see Ryder et al., 2015; Todd et al., 2013b for full details). For comparison, 

profiles of water vapour from Era-I reanalysis are shown in fig. 4.1b. Despite the good 

agreement between measurement and model outputs, ERA-I underestimates specific 

humidity in the lowest level by ~4.9% (MERRA by 4.5%). Note that the error in 

reanalysis at BBM is relatively small because the Fennec radiosondes data were 

assimilated. In the subsequent absence of such observational data I expect reanalysis 

errors to be greater given the known problems of reanalysis model representation of 

meso-scale convective processes in the region (Garcia-Carreras et al., 2013; Roberts 

et al., 2015; Todd et al., 2013). Such mesoscale convective ‘cold pool’ outflows (known 

locally as ‘haboobs’) are known to make a significant contribution to moisture advection 

as well as being the dominant dust emission process (Marsham et al., 2013b; Trzeciak 

et al., 2017). Red arrows in fig. 4.1a denote major haboob events. Detailed information 

on the Characteristics and frequency Convective cold pool outflows over the Sahara 

desert is provided in Chapter V.  

Profiles of trace gases needed by the radiative transfer model (CO2, O2, N2O, 

O3, and CH4) are taken from the standard tropical atmosphere (Anderson et al., 1986). 

Temperature and water vapour profiles beyond the upper maximum height of the 

radiosonde data (approximately 20 km) are also taken from the standard tropical 

atmosphere. This is unlikely to affect RT model results significantly since there is little 

day to day variability in the uppermost part of the atmosphere.  
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Figure 4.1. Vertical Profile Specific Humidity (a) FENNEC radiosonde measurements 

(b) ERA -I and (c) Difference between (a) and (b). Red arrows in (a) denote times of 

major haboob events 

        

Acquiring observations of the vertical structure of clouds of sufficient quality for 

radiative transfer calculations is always challenging. Here I use the ERA-I and MERRA 

outputs of cloud fraction, liquid and ice water mixing ratios. Cloud is treated to have 

maximum overlap in a column where ice and water are mixed homogeneously. During 

the Fennec period, cloud was characterised by shallow cumulus or altocumulus near 

the top of the PBL and occasional deep convection. It is likely that the relatively coarse 

vertical and horizontal resolution of both reanalysis models will have considerable bias 

and I recognise that this is likely to underestimate the true cloud-related uncertainty. 

For example, M16 suggest that ERA-I underestimate cloud fraction by a factor of 2.4. 

I calculate surface albedo from surface observations of shortwave flux at BBM 

for the days when good measurement is available (see fig 4.2). During the days where 

measurements were not good, I use the diurnal average surface albedo of all other 

days. The mean surface albedo at BBM is 0.36 and shows strong diurnal cycle, varying 
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with solar zenith angle giving maximum surface shortwave reflection during the 

morning and evening hours, i.e. when the sun is at high solar zenith angles. This has 

an impact on the diurnal cycle of dust radiative effect (Ansell et al., 2014;Banks et al., 

2014;Osipov et al., 2015). Fennec does not provide measurements of skin temperature 

and thus I look for alternative best approximates from ERA-I and MERRA. For 

comparison, I also use the skin temperature product form CERES Level-3 

SSF1deg_Hour TERRA footprint data. 

 

 
Figure 4.2. Diurnal Cycle of mean Surface Albedo at BBM 

4.2.4 Dust Extinction profile and optical properties  
 

No observations of the vertical profile of dust loading at BBM are available from 

the Fennec instrumentation. Since the model requires the vertical distribution of mass 

mixing ratio of dust as an input, I use the long term mean extinction coefficient profiles 

for dust aerosol derived from the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP, (Liu et al., 2009;Winker et al., 2009)) satellite instrument. These are then 

scaled at each model time step to yield the observed column integrated AOD  
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Figure 4.3. Wavelength dependence of optical properties of dust particle for longwave 

(top three) and shortwave (bottom three panel). The continuous lines are the spectrally 

resolved optical properties the horizontal lines are the band-averaged data that are 

used in the RT code. 
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from the BBM AERONET sun photometer. I then use the mass extinction coefficient (in 

m2 Kg-1) to convert dust extinction coefficient (in m-1) to dust mass mixing ratio (kg kg-1) 

as required by the model (Greed et al., 2008). Mass extinction coefficient is calculated 

from Mie code (see fig. 4.3). Data from all individual CALIOP satellite orbits over the 

2006-14 period were quality controlled and screened to retain dust aerosol only 

observations using the method described in (Todd and Cavazos-Guerra, 2016), which 

provides sampling for robust characterisation of aerosol distribution in 3 dimensions 

(Ridley et al., 2012;Ryder et al., 2013a;Todd and Cavazos-Guerra, 2016;Winker et al., 

2009). The long term mean extinction coefficient profile at BBM (fig. 4.4) shows a 

regular decrease of extinction through the aerosol layer which extends up to about 5 

km at the top of the planetary boundary layer, which is also seen in Fennec airborne 

measurements from 2011 (Ryder et al., 2013b). 

 AOD data used to scale the mean extinction coefficient profiles are taken from 

retrievals from the AErosol RObotic NETwork (AERONET) (Holben et al., 1998) 

instrument at BBM, using Level-2 data, which is cloud screened and quality assured. I 

compared AERONET AOD with estimates of AOD from the SEVIRI instrument on 

Meteosat 9 satellite (derived from the 550nm channel using the algorithm of Banks and 

Brindley (2013)) over the June 2011 study period (fig. 4.5). The more frequent dust 

events during the latter half of the month (heat low phase) compared to the earlier heat  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Caliop mean Extinction Coefficient profile at BBM 2006-13 
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maritime phase is apparent, with dust events frequently associated with high water 

vapour indicative of convective cold pool ‘haboob’ dust events (see fig. 4.1a). The 

estimates of mean AOD agree to within 20% and there is a strong correlation between 

the two estimates of 0.7, despite some apparent dust events apparent in SEVIRI but 

not AERONET e.g. 13th and 29th June. This is mainly due to AERONET masking dust 

as cloud particularly in cases when dust and cloud coexist. 

Night time dust emission is common during summer in the SHL region, although 

I expect dust shortwave daytime radiative effect to be dominant (Banks et al., 2014). 

Estimation of AOD at night is problematic for most passive instruments and I use the 

following method: estimate AOD from observations of scattering from the nephelometer 

instrument deployed near the surface at BBM (Rocha-Lima et al., 2017), based on the 

regression of scattering to column integrated AOD during coincident daytime 

observations. The nephelometer-based estimates of AOD will account for night time 

emission of dust due to Haboobs (Marsham et al., 2013b) but since haboobs tend to 

occupy a shallow layer, than the better mixed daytime dust, this will tend to 

overestimate AODs estimated at night. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5. AOD from AERONET and SEVIRI, and column integrated water vapour 

from FENNEC observation.Gray shades show driest (11, 12, and 16), blue shades 

shows most humid days (18, 25, and 30) Nephelometer measurement and green 

shade shows a major haboob event occurred on the 21st which resulted in large dust 

emission 
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4.3 Description of RT model experiments 
 

I undertake two types of RT experiment in this study (i) model ‘configuration 

mode’ in which I test the sensitivity of simulated radiative fluxes to uncertainty in as 

many of the input variables as possible, described in Section 4.2.1, summarised in 

Table 4.1, with results provided in Section 4.4. This will result in an acceptably 

configured model for experimental analysis. (ii) Model ‘experiment mode’ to specifically 

address the research questions using the ‘optimal’ model configuration. The 

experiments are described in Section 4.3.2, summarised in Table 2, with results 

described in Section 4.4. These include RT model experiments run for durations from 

one day to one month (June 2011). 

  

Table 4.1. Summary of model configuration sensitivity analysis 

 Sensitivity 
input variable 

Source of data for 
sensitivity run  

Sensitivity results ‘Optimal configuration 
choice 

surface 
albedo 

 

Fennec measured 

quantity  

 ERA-I 

Difference of up to 16 W 

m-2 in TOA net SW flux 

Surface Albedo 

calculated from flux 

measurements 

skin 
temperature 

ERA-I 

MERRA 

Difference of 6 W m-2 in 

surface net LW flux 

MERRA SKT OLR  4 W 

m-2 more than ERA-I 

ERA-I skin temperature 

estimate 

Surface 
emissivity 

CERES 

MERRA 

Differences of 2.3 W m-2 

at TOA LW flux and 5 W 

m-2 at the surface. 

MERRA 

reanalysis estimates 

Cloud fraction 
and mixing 

ratio 

ERA-I 

MERRA 

Difference of 4 W m-2 

both at TOA and 

surface net SW flux 

ERA-I 

dust size 
distribution 

Dubovik 

FENNEC-Ryder 

TOA SW dust DRE -2 

W m-2 Using Dubovik 

and 23 W m-2 using 

Ryder-FENNEC 

TOA net LW Dubovik 7 

W m-2 more than 

FENNEC 

Dubovik 
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4.3.1 RT configuration mode experiments towards ‘optimal’ 
configuration 

 
For some quantities, I do not have direct observations so I use alternative data 

from various sources. In the ‘configuration mode’ I test the uncertainty of the modelled 

radiative fluxes to uncertainties in these model inputs using the experiments 

summarised in Table 4.1. Then comparison of TOA fluxes with satellite observation 

allows us to arrive at what I consider to be an ‘optimal’ model configuration for the 

subsequent model ‘experiment mode’ analysis. 

(i) Surface skin temperature. Since there are no complete observations of 

skin temperature I use reanalysis products as inputs to the RT code and I use both 

these data to further investigate sensitivity of flux to uncertainty in skin temperature. 

Figure 4.6 displays the time series of surface skin temperature from ERA-I, MERRA, 

and CERES footprint data. Root mean square error (RMSE) of the reanalysis products 

with respect to CERES-footprint data are high (4.5 K and 5.5 K for MERRA and ERA-I, 

respectively). Despite the higher RMSE of ERA-I skin temperature compared with 

RMSE of MERRA, the RMSE of ERA-I 2 m air temperature (Figure 4.6) with respect to 

flux tower measurement is 3.1 K (3.7 K, MERRA). The relatively bigger RMSE in skin 

temperature could be due to the uncertainty in CERES measurements. 

(ii) Surface emissivity. I test the sensitivity of radiative fluxes to uncertainty in 

estimates of surface emissivity using CERES measurements and MERRA output that 

have monthly mean values of 0.89 and 0.94 respectively. 

(iii) Surface albedo. I noted that in contrast to observations the reanalysis 

products have weak representation of the diurnal cycle in surface albedo (fig. 4.2). 

Although I use observed surface albedo throughout all my experiment model RT runs, I 

also test the sensitivity of TOA shortwave flux to reanalysis surface albedo errors. 

(iv) Dust size distribution. Dust radiative effect is known to be influenced by 

size distribution (Otto et al., 2009; Ryder et al., 2013a, b), which remains uncertain over 

the Sahara. I test the RT model sensitivity to two different and highly contrasting dust 

size distributions: (i) derived using AERONET sun photometer inversions from Cape 

Verde , representative of transported dust (Dubovik et al., 2002), referred to as Dubovik 

hereafter and (ii) measured directly from aircraft observations during the Fennec 

campaign (Ryder et al., 2013b) referred to as Fennec-Ryder hereafter, which include a 

pronounced coarse-mode with effective diameter in the range between 2.3 and 19.4 

μm, contrasting with the much finer size distribution of Dubovik from AERONET. In 

both cases the dust size distributions and the same refractive index are used as inputs 

to Mie code in the RT pre-processor from which the optical properties of dust are 
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calculated, specifically the single scattering albedo (ω or SSA), mass extinction 

coefficient (known as MEC or Kext units m2 Kg-1), and asymmetry parameter (g), for the 

relevant spectral bands applied in the RT model. I would like to remind the reader that 

spherical shape assumption of dust particles in Mie theory could cause some error 

calculation of optical properties (Mishchenko et al., 1995). However, we will not 

consider this here as it is neither the objective nor scope of this research.  Figure 4.3 

displays the wavelength dependence of optical properties for both Dubovik and 

Fennec-Ryder dust size distributions. The continuous lines are the spectrally resolved 

optical properties and the horizontal lines are the band-averaged data which are used 

in the RT code. SSA values in the band covering the spectral range 0.32 to 0.69 µm 

are 0.82 and 0.91 for Fennec-Ryder and Dubovik respectively. The coarser particles in 

Fennec-Ryder result in a lower SSA – i.e. more absorbing dust. Note that in the model 

since AOD is fixed based on measured values, the vertical profile of dust mass mixing 

ratio is adjusted so that when combined with the MEC shown in fig. 4.3, the AOD is 

correct. Therefore the differences in MEC between the two datasets shown in figure 4.3 

cannot result in differences within the RT model. However, differences in SSA and g 

are able to exert different impacts on the radiative fluxes within the RT model, as 

described in section 4.3.  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6, Surface skin temperature (SKT) and 2 m air temperature at BBM: Skin 

Temperature Black: ERAI, Red: MERRA, and Green Star: CERES footprint, 2 m air 

temperature Gold:ERAI and Cyan: Flux Tower measurement. The black and red stars 

denote ERAI and MERRA skin temperature at the time steps when there 
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4.3.2 RT model ‘experiment mode’ design 
 
 Using the suitably configured RT model (Section 4.3.1) I address the research 

questions, specifically to quantify the combined and separate DRE of water vapour and 

dust, I undertook a number of experiments summarized in Table 4.2, i.e. the 

‘experiment mode’. For all the experiments RT calculations are made for each day 

using the atmospheric profiles at hourly time steps over the diurnal cycle, and the mean 

flux and heating rates are derived by averaging outputs at each time step. All input data 

are linearly interpolated to a one-hour temporal resolution. 

     

Table 4.2. Description of the RT ‘experiment mode’. Names of different experiments 

acronyms are defined as ‘n’ = NO, ‘w’ = with, ‘D’ = Dust, ‘C’ = Cloud, ‘WV’ = water 

vapour, and ‘sen’ = sensitivity 

Name Description Water  vapour Aerosol Cloud 
nDnC 

 

Dust free and 

Cloud free 

atmosphere  

Observed 8th-30th 

June 2011 

None None 

nDwC Dust free but 

cloudy 

atmosphere 

Observed 8th-30th 

June 2011 diurnal 

cycle 

None ERAI 

 

MERRA 

wDnC Cloud free 

but dusty 

atmosphere 

Observed 8th-30th 

June 2011 diurnal 

cycle 

AERONET AOD 

scaled with 

CALIOP Extinction 

None 

wDwC Dusty and 

Cloudy 

Atmosphere  

Observed 8th-30th 

June 2011 diurnal 

cycle 

AERONET AOD 

scaled with 

CALIOP Extinction 

ERAI 

MERRA 

senDnC Sensitivity to 

full range of 

possible 

AOD 

Mean diurnal WV Linear increase in 

AOD 0.0 to 3.0 

Constant AOD 

each time step for 

a given run 

None 

senWVwDnC 

 

  

Sensitivity to 

full range of 

possible WV 

Linear increase in 

TCWV from 10 to 40 

kg m-2 at 2.5 kg m-2 

interval  with mean 

diurnal WV profile 

Mean Diurnal AOD 

  

  

   

None 
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For the experiments with (‘w’) and without (‘n’) dust ('D') I simulate the 8th-30th June 

2011 period. For the sensitivity (‘sen’) experiments, I simulate linearly increased levels 

of dust AOD and water vapour. I use runs both with cloud (‘C’) and with no cloud (nC). 

For dust sensitivity experiment (‘senDnC’), AOD is increased linearly over the range 0 

(dust free) to 3 (extremely dusty), while keeping the mean value of water vapour 

constant. For water vapour sensitivity experiment (‘senWVwDnC’) the mean diurnal 

profile of water vapour is used but is scaled so that the column integrated water vapour 

increases from 10 to 40 kg m-2 and the mean AOD is used in each case. 

DRE of dust is derived by (i) subtracting TOA and surface fluxes of experiment 

wDnC from nDnC (ii) linear regression of the flux dependence on the range of dust 

AOD from the dust sensitivity experiments (senDnC), in which a single diurnal cycle is 

simulated. The results are presented in Section 4.4.2. The impact of water vapour is 

determined by (i) composites of dry versus humid days from the nDnC experiment (ii) 

linear regression of the flux dependence on the range of water vapour from the water 

vapour sensitivity experiments (senWVwDnC).        

4.4 Results and discussion 

4.4.1 RT model optimum configuration and validation 
 

Prior to testing the main research questions related to the relative roles of dust and 

water vapour in radiative heating (Section 4.4.2), the RT model was configured based 

on the ‘configuration mode’ sensitivity analyses (described in Section 4.3.1, Table 4.1) 

and comparison with observed TOA fluxes from the CERES-EBFA monthly mean 

product (clear sky in the case of all sensitivity analysis except the cloud sensitivity 

which I compare to CERES-EBFA all sky). 

 Sensitivity of RT simulated fluxes to uncertainty in the surface skin temperature 

and emissivity is low compared to the sensitivity to other factors (Table 4.1) with 

variations of ~2 W m-2 at TOA and 5-6 W m-2 at surface. Based on bias with respect to 

CERES-EBFA observations I use ERA-I skin temperature and MERRA emissivity 

products for the ‘optimal’ configuration. 

Sensitivity to the two contrasting dust size distributions is pronounced. As 

expected results using Fennec-Ryder dust show much stronger absorption in the 

shortwave compared with the Dubovik dust distribution, and the resulting TOA net 

shortwave flux is higher by 25 W m-2 in the former. Results of shortwave flux using 

Fennec-Ryder are not consistent with the GERB/CERES satellite observations (nor 

with previous estimates of shortwave DRE derived from satellite e.g. Yang et al. 
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(2009); Ansell et al. (2014)) and I use Dubovik optical properties in the optimum 

configuration. Recent work suggests that the dust optical properties at BBM in June 

2011 were significantly less absorbing than both those measured by the aircraft further 

west during Fennec, and the Dubovik representation (less absorbing, smaller sized) 

with SSA values of 0.99 (Rocha-Lima et al., 2017). Therefore, Dubovik optical 

properties represent intermediate values in terms of SW absorption. 

 TOA fluxes are not strongly sensitive to the choice of cloud properties with 

TOA net flux variations of ~4 W m-2. On the basis of bias with respect to observations I 

select the ERA-I cloud properties.  

It is interesting to note that TOA radiative fluxes are quite sensitive to the errors 

in surface albedo from reanalysis with differences up to 16 W m-2 compared to the 

optimum configuration, which used observed surface albedo. This suggests that it is 

important to have good observational data, which captures the strong diurnal cycle of 

surface albedo to achieve accurate radiative fluxes. 

 The RT model with the above choices of input data is considered to be the 

‘optimum’ configuration, and I validate TOA and surface fluxes with respect to satellite 

and surface observations, respectively (Tables 4.3 and 4.4) for the most ‘realistic’ 

experiment wDwC. The sign convention used here and in the remainder of  

   

Table 4.3. Mean June 08-30, 2011 TOA Radiative flux at BBM (definition of acronyms 

are given in table 2). Values are in W.m-2.  The sign convention is that downward flux is 

considered as positive while upward flux is negative. 

 nDnC nDwC wDnC wDwC 
 
TOA_SW 

SOCRATES 

GERB  

MERRA 

ERAI 

328 

--  

312  

-- 

322 

-- 

307 

-- 

325 

--  

322  

336 

321 

314  

317  

324 

 
TOA_LW 

SOCRATES 

GERB  

MERRA 

ERAI 

-313  

-- 

-314 

-- 

-304 

-- 

-- 

-- 

-297 

-- 

-307  

-309 

-290 

-276  

-296 

-294 

 
TOA_NET 

SOCRATES 

GERB  

MERRA 

ERAI 

15  

--  

-2  

-- 

18 

--  

-- 

-- 

28 

-- 

15  

27 

31 

38 

20 

29 
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the paper is that downward flux is considered as positive while upward radiation is 

negative. The simulated TOA net shortwave flux is 321 W m-2, compared with 314 W 

m-2 in GERB. It is -290 W m-2 for net longwave, with -276 W m-2 in GERB, giving 31 W 

m-2 for net radiation, compared with 38 W m-2 in GERB, i.e. there is more shortwave 

heating in the model, with more longwave cooling, giving less net TOA heating. These 

RT model shortwave/longwave/net (SW/LW/N) biases of 7/-14/-7 W m-2 although larger 

than many of the sensitivity ranges for the input data uncertainties (Table 1) are within 

the estimated error of the GERB measurements (~10 W m-2 for LW and SE flux, Ansell 

et al., 2014). It is difficult to identify the most important sources of this bias although 

errors in the reanalysis skin temperature and ERA-I cloud representation included in 

the wDwC experiment are likely candidates. The DRE of cloud provides a useful 

comparison and could be considered to be an estimate of the upper limit of cloud-

related biases. Cloud DRE (Table 5) is estimated from the difference in fluxes at the 

TOA between wDnC and wDwC to be -4/7/3 W m-2 and from EBFA-CERES to be -

15/16/1 W m-2. These results of cloud DRE indicate that the optimum configuration flux 

biases are within the uncertainties of both observations and cloud effects. 

 
Table 4.4. Same as Table 3 but for surface radiative flux and observation from fennec     

instrument 

 nDnC nDwC wDnC wDwC 
 
SRF_SW 

SOCRATES 

FENNEC_OBS 

MERRA 

ERAI  

237 

-- 

220 

-- 

232 

-- 

215 

-- 

192 

-- 

190 

210 

187 

180 

185 

199 

 
SRF_LW 

SOCRATES 

FENNEC_OBS 

MERRA 

ERAI 

-138 

-- 

-139 

-- 

-134 

-- 

-- 

-- 

-106 

-- 

-119 

-139 

-103 

-78 

-115 

-132 

 
SRF_NET 

SOCRATES 

FENNEC_OBS 

MERRA 

ERAI 

99 

-- 

82 

-- 

98 

-- 

-- 

-- 

86 

-- 

70 

71 

84 

103 

70 

67 

 

At the surface there is a relatively wider disparity between simulated and 

observed flux (Table 4). The net shortwave simulated flux, 187 W m-2, is 7 W m-2 more 

than measured surface shortwave flux. Net longwave flux is -103 W m-2 compared with 

that of measurement -78 W m-2, the net effect being more cooling at the surface in the 
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model than measurement by 25 W m-2. I can again give comparison of cloud related 

biases between my result and CERES-EBFA product. Cloud SW/LW/N DRE at surface 

is estimated as -5/3/-2 W m-2 from the wDwC-wDnC experiments and -19/11/-8 W m-2 

from EBFA-CERES, such that the shortwave bias at least could be explained by cloud 

but not all the longwave or net radiation bias. The remaining error could be attributable 

to measurement related errors and uncertainties to other variables such as surface 

emissivity, skin temperature, and surface albedo. Note also the difference in time 

averaging periods between the CERES-EBAF data covering whole of June 2011 and 

the RT experiments wDwC-wDnC covering for 8th-30th June could possibly contribute to 

part of the differences in the above figures. There is also bias associated with point 

observation as a representative to a certain grid box given in Satellite measurements 

which could lead to certain disagreement between in-situ measurements (Schwarz et 

al., 2017).    

 

Table 4.5. TOA and Surface Direct Radiative Effect of Dust and Cloud 

 

 RT model bias in the longwave is larger than that in the shortwave at both TOA 

and surface. The mean diurnal cycle of flux bias (fig. 4.7) shows that modelled outgoing 

longwave flux is overestimated at night time. Different factors could be attributed to this 

difference. Surface skin temperature used in this work is interpolated to 1 hr (Figure 

4.6), which could lead to errors in the longwave flux. Satellite observations (see 

Marsham et al., (2013b)) show over both shallow cumulus cloud at the top of the PBL 

during late afternoon and occasional moist convection preferentially at night, which 

may be missed in models given the poor representation of moist convection. This could 

also contribute to the difference between observed and calculated longwave flux 

associated with under-representation of cloud in the model. 

The RT simulation wDwC captures well the day-to-day variability in radiative 

fluxes at TOA and surface (fig. 4.8) including the effect of the major synoptic and meso-

scale dust/water vapour events e.g. the haboob event of 21st June. However, in the 

longwave there are significant RT model errors during the night time of 17th and 18th 

June, which are cases of high dust load following haboob events. Analysis of satellite 

 Dust  DRE Cloud DRE                    Cloud DRE 
SOCRATES SOCRATES EBAF-CERES 
SW LW NET SW LW NET SW LW NET 

TOA -3 16 13 -4 7 3 -15 16 1 
SURFACE -45 32 -13 -5 3 -2 -19 11 -8 
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imagery shows this anomalous high GERB longwave flux to be coincident with 

convective cloud development, presumably resulting from the moistening of the 

Saharan atmosphere, which the RT model, dependent on reanalysis cloud field, cannot 

capture. This coincidence of dust and cloud is particularly challenging for both GERB 

cloud screening (which fails in this instance hence my use of all sky observations) and 

for the RT simulations themselves. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Mean Diurnal Cycle of TOA Flux. Blue: SOCRATES wDwC and green: 

GERB. ) The bars show standard error over the diurnal cycle. 

 

I can evaluate my model wDnC experiment results against clear-sky CERES 

footprint data in which RMSE are 17 W m-2 and 12 W m-2 for TOA shortwave and 

longwave fluxes, respectively. The equivalent figures for the model versus GERB 

(cloud screened using the CERES footprint cloud mask product) at the same times are 

22 W m-2 and 12 W m-2. These are comparable to and consistent with (i) the individual 

instrumental errors of CERES/GERB (ii) the inter-sensor uncertainties (CERES vs 

GERB RMSE = 22 W m-2 and 6 W m-2 for shortwave and longwave) (iii) previous 

similar studies (e.g. Osipov et al., 2015). 

 In summary, RT simulated flux errors of the ‘optimum’ configuration are 

comparable to observational uncertainties and those errors introduced by uncertainties 

in input fields. On this basis I suggest the RT configuration is acceptable for further 

analysis on the direct radiative effect of dust and water vapour. 

SOCRATES 
 GERB 
 

SOCRATES 
GERB 
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Figure 4.8. Time series of TOA (left column) and Surface (right column) shortwave 

(SW), longwave (LW), and net Radiative Flux at BBM. Black lines denote SOCRATES 

outputs, red line denote GERB measurements, green dots denote CERES 

measurements and red dots denote GERB measurements corresponding to CERES 

time steps. 

4.4.2 The radiative flux and heating effects of dust and water 
vapour 

  

First, I consider the TOA and surface mean radiative budgets. In the absence of 

dust and cloud the Saharan atmosphere during summer at BBM shows a positive 

radiation budget at the surface of 99 W m-2 in which shortwave heating of 237 W m-2 is 

offset by longwave cooling of -138 W m-2 (Table 4.4). At TOA the shortwave flux of 328 

W m-2 is not quite offset by longwave losses of 313 W m-2 (Table 4.3) leading to a net 

positive radiation balance of 15 W m-2 making the SHL a weak net radiation sink. This 

strong (weak) radiation surplus at surface (TOA) leads to the atmosphere having a net 

cooling of 83 W m-2 (i.e. radiative divergence), presumably maintained by the transfer  
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of sensible heat from surface into the atmosphere through turbulent heat transfer 

(Alamirew et al., submitted). 

Both dust and water vapour are known to play an important role in controlling 

the radiative budget and heating rate of surface and the atmosphere over Sahara. 

Variability in these two active radiative components is strongly correlated due to the 

physical processes that govern transport of water vapour and dust emission into the 

SHL region (Marsham et al., 2013b; M16) such that it is challenging to quantify their 

separate radiative effects from observations alone. my RT simulations below address 

this research gap. 

4.4.2.1 Dust 
 

Here I determine the DRE of dust using two set of experiments described in 

Table 4.2. First I compare the simulations of radiative fluxes and heating during June 

2011 between the wDnC and nDnC experiments (figs 4.9, 4.10, 4.11, and 4.12 and 

Tables 4.3 and 4.4). Secondly, I derive the sensitivity of radiative fluxes and heating  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.9. Mean Diurnal direct radiative effect of dust averaged for June 08-30, 2016. 

TOA DRE of Dust (a) and Surface DRE of Dust (b) The bars show standard error over 

the diurnal cycle. 
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rates to a wide range of dust AOD using the sensitivity experiments. I then compare my 

estimates of dust DRE to those from previous studies. 

The mean SW/LW/N DRE of dust at TOA for June 2011 estimated from wDnC 

minus nDnC is -3/16/13 W m-2 confirming the net warming effect of dust over the 

Sahara. This warming comes primarily in the longwave with a peak at ~24 W m-2 close 

to midday (fig. 4.9a). The net shortwave DRE is small, consistent with other estimates 

(Huang et al., 2014;Yang et al., 2009). However, with a pronounced diurnal structure 

driven by a semi-diurnal cycle in the shortwave with a cooling effect of up to -29 W m-2 

after dawn until 10:00 and after ~16:00 until sunset, and a warming effect of up to ~22 

W m-2 around midday (fig. 4.9a). The diurnal cycle of dust DRE is not strongly 

dependent on the amount of dust loading in the atmosphere but controlled by solar 

zenith angle and surface albedo (Ansell et al., 2014; Banks et al., 2014). The phase 

function also exerts a control on the diurnal cycle of the DRE as its value increases the 

backscatter fraction of SW radiation at large solar zenith angles. For comparison, the 

equivalent TOA SW/LW/N DRE of dust for MERRA reanalysis are 10/7/17 W m-2 

suggesting that although MERRA has a good estimate of net DRE but the apparent 

shortwave warming effect is not in agreement with observations and the longwave 

warming is underestimated. 

 

 

Figure 4.10. DRE due to Dust: time series of TOA shortwave (a), longwave (b), 

net (c) and surface shortwave (d) longwave (e) and net (f) wdnC-nDnC flux 
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At surface SW/LW/N DRE of dust is estimated to be -45/32/-13 W m-2 for 

SW/LW/N (Table 4.5). Net cooling is driven by shortwave flux peaking at ~-108 W m-2 

around noon (fig. 4.9b) partly compensated by a longwave heating effect, 32 Wm-2. 

MERRA reanalysis DRE at surface is -30/20/-12 W m-2 again showing a good estimate 

of net effects but underestimating the shortwave and longwave components. Time 

series of shortwave DRE of dust (fig. 4.10a) at TOA further confirms the diurnal cycle 

discussed above: a midday warming and early morning and late afternoon cooling. The 

impact of big dust events (e.g. June 17th and 21st) can be clearly seen on the time 

series of longwave DRE of dust (Figure 4.11b). 

The results of sensitivity experiments ‘senDnC’ are shown in fig. 4.11 and the 

DRE per unit AOD and per unit standard deviation in AOD is presented in Table 4.6, 

assuming a linear relationship between flux and AOD. I find the net TOA shortwave  

 

Figure 4.11 Radiative budget as a function of dust AOD. Top row (a, b, c): TOA 

longwave (a), shortwave (b), and net (c). Second row (d, e, f): similar to top row but for 

surface. Third Row: atmospheric radiative convergence of longwave (g), shortwave (g), 

and net (i) 
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flux to be only weakly sensitive to dust AOD (fig. 4.11d) at -2 W m-2 per AOD. This is 

due to the competing dust effect of (i) increasing albedo which decreases net TOA 

shortwave and (ii) absorption by dust which increases TOA net shortwave by reducing 

the upwelling shortwave radiation. My estimates of shortwave dust DRE is less than 

half the sensitivity reported at BBM by M16, but consistent with the Sahara-wide 

estimates from satellite of Yang et al., (2009) and those of Ansell et al., (2014). 

Dust in the atmosphere acts to reduce the outgoing longwave flux by 10 W m-2 

per unit increase in AOD (Figure 4.11a), warming the surface, consistent with the 

observations at BBM of M16 (11 W m-2 per AOD increase) and within the Sahara-wide 

range of Yang et al., (2009). At the surface dust has opposing effect in shortwave and      

 

Table 4.6 Sensitivity of Radiative Flux to Dust AOD and CIWV at selected altitudes. 

SD*=Standard Deviation (0.8 for AOD and 5.5 g.kg-1 for water vapour. Mean AOD = 1.2 

and mean column integrated water vapour = 27.8 Kg m-2)    

Change in Flux  SW LW NET 

 

per unit AOD (W m-2) 

TOA -1.8 10.0 8.2 

Surface -33.8 19.8 -14.0 

Convergence 32.1 -9.7 22.4 

 

per unit CIWV (W Kg-1) 

TOA 0.3 1.1 1.4 

Surface -0.4 1.6 1.2 

Convergence 0.8 -0.5 0.3 

 

per one AOD SD* (W m-2) 

TOA -1.4 8.0 6.6 

500hPa -6.2    10.6 4.4 

700hPa -14.8 11.6  -3.2 

Surface -27.0 15.8 -11.3 

Convergence 25.7 -7.8 17.9 

 

per one CIWV SD*(W Kg-1) 

TOA 1.7 5.8 7.5 

500hPa -0.4 9.3 8.9 

700hPa -1.6 9.4   7.9 

Surface -2.4 8.3 5.9 

Convergence 4.0 -2.8 1.3 
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longwave, with shortwave having stronger cooling effect: for every unit increase in AOD  

there is shortwave reduction of 34W m-2 (fig. 4.11e, Table 4.6) compared to increase in 

longwave (fig. 4.11b) with 20 W m-2 the net effect (fig. 4.11h) being cooling of -14 W m-2 

per AOD increase. 

Dust drives radiative convergence in the atmosphere i.e. the difference in TOA 

minus surface flux, which acts to warm the atmosphere. This occurs through greater 

shortwave absorption, at a rate of 32 W m-2 per AOD (fig. 4.11f) offset partially by 

longwave cooling the atmosphere at -10 W m-2 per unit AOD increase, leading to a net 

warming effect of 22 W m-2 per unit change in AOD. Overall, the RT estimates of TOA 

and Surface DRE in the shortwave and longwave and the atmospheric radiative 

convergence are within a few W m-2 of those of M16 derived from observations. 

I convert the radiative fluxes to actual heating rates (fig. 4.12a). In the absence 

of dust (nDnC experiment) the PBL is heated in the shortwave mainly from absorption 

by O2 and water vapour peaking up to ~1.3 K day-1 at 450 hPa (the water vapour effect 

is shown in Figure 4.15). Strong longwave cooling throughout the troposphere (up to ~-

3 K day-1 at ~450 hPa) due to emission from water vapour and other greenhouse gases 

exceeds this shortwave heating, leading to tropospheric radiative cooling of ~-0.6 K 

day-1 throughout the PBL. This is consistent with the radiative heating I estimated of 

Chapter III, derived as a residual of the heat budget.  

 

 

 
Figure 4.12. Mean Radiative Heating Rate Profile for June (08-30, 2011) at BBM a: 

Results from nDnC (dashed lines) and wDnC (solid lines) using FENEC profile and b: 

MERRA Model output for all sky (solid lines) and clear sky (dashed lines) conditions. 

Blue, red, and green colours represent shortwave, longwave, and total heating rates 

respectively. 
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In the lowest near surface layer (below 925 hPa) there is less longwave cooling due to 

strong radiative flux from the hot desert surfaces in the SHL. Dust acts to modify the 

vertical structure of this radiative heating/cooling considerably. Absorption of shortwave 

radiation leads to a strong warming effect in the shortwave (especially in the dusty PBL 

up to ~0.75 K day-1 below ~700 hPa, where dust loadings are the highest), offset only 

partially by enhanced longwave cooling (up to ~-0.25 K day-1) resulting in a net 

warming of the atmosphere by up to ~0.5 K day-1 at ~700hPa, such that the dusty 

troposphere above ~600hPa has near zero cooling. For comparison I consider the 

MERRA reanalysis product mean heating rate (fig. 4.12b), which includes both cloud 

and climatological dust, is in close agreement with those of the wDwC experiment. 

However, MERRA does not capture the day-to-day variability in shortwave heating 

from dust and will not therefore be able to simulate the responses of the SHL 

atmosphere to variability at these timescales. Further weather/climate model 

simulations are required to determine the effect this has on the regional circulation and 

the behaviour of the SHL. 

 

 

 

Figure 4.13 Radiative Heating rates (K.Day -1) of dust in the atmosphere (DUST 

represents wDnC runs and CLEAN represents nDnC runs) 
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Day-to-day variability in the dominant shortwave net heating rate (fig. 4.13) is 

pronounced and shows the impact of the synoptic/meso-scale dust events on the SHL 

atmosphere. During large dust events (e.g. June 17th and 21st) there is strong 

shortwave heating up to 6 K day-1 around midday hours. This will be coincident with 

reduced surface net radiation and sensible heat flux. Together these processes will act 

to reduce the vertical temperature gradient, stabilise the atmosphere, reduce dry 

convection and reduce the depth of the PBL.  

4.4.2.2 Water vapour 
 

To estimate the heating rate profiles due to water vapour, I selected from the 

simulation nDnC three driest days (June 11, 12, and 16) with mean column integrated 

water vapour of 20.2 Kg m-2 and three most humid days (June 18, 25, and 30) with 

mean column integrated water vapour of 34.7 Kg m-2. The mean heating rate profiles 

for the two contrasting atmospheric conditions is shown in fig. 4.14. High humidity 

drives an increase in the shortwave heating rate up to 0.5 K day-1 peaking near the 

surface. This atmospheric warming is counteracted by a slightly bigger cooling in the 

longwave. Thus there is a net cooling up to -0.25 K day-1 in the atmosphere and strong 

heating up to 2.5 K day-1 near the surface as a result of increase in moisture. The 

atmospheric cooling in the longwave causes surface warming, which is suggested to 

be linked with the intensification of the Saharan heat low region (Evan et al., 2015b). 

The reversed heating rate profiles in the layer between 500 hPa and 400 hPa is 

because of the mean moisture profile in this layer is larger during the dry days and the 

vice versa (fig. 4.1). 

Results from the water vapour sensitivity experiments ‘senWVwDnC’ are 

presented in fig 4.15 and the linear dependence on fluxes per unit water vapour in 

Table 4.6. The outgoing longwave radiation (fig. 15a) decreases with increasing of 

water vapour at a rate 1 W kg-1 which is associated with the greenhouse effect of water 

vapour. This is about a third of that derived by M16 (3 W kg-1). Their result, however 

includes the effect of water vapour and associated dust and cloud while my result 

considers sensitivity of radiative flux to changes in water vapour only. The sensitivity of 

TOA shortwave flux due to water vapour (fig. 15d) is 0.3 W kg-1 which warms the 

atmosphere and to the contrary cools the surface due to the reduction of the shortwave 

reaching the earth. M16 showed that a reduction in the TOA shortwave radiation with 

increasing of water vapour, of -0.98 W Kg-1 which is contrary to what I find in my 

results. But this could be related with the impact of cloud on the shortwave radiation 
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which will reduce the TOA net shortwave radiation. The net flux at TOA increases by to 

1.4 W m-2 for a unit change in CIWV resulting in a net warming of the TOA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Atmospheric heating rate profile for selected dry days, June 11, 12, and 16 

(dashed lines) and moist days, June 18, 19, and 25 (solid lines) 

 

 The net flux reaching the surface (fig. 15h) is increased at a rate 1.1 W 

Kg-1 which is the counteracting effect of a dominant increase in longwave radiation re-

emitted downwards from the atmosphere (1.5 W Kg-1) and a smaller reduction in 

downwelling solar radiation (-0.4 W Kg-1). The warming effect of water vapour at both 

the surface and the TOA means that net atmospheric convergence changes relatively 

little with water vapour (fig. 15i) at 0.1 W Kg-1 which is a result of -0.6 W Kg-1 in the 

longwave (fig. 15c) and 0.7 W Kg-1 in the shortwave (fig. 15f). In comparison to the 

observational analysis of M16 I see some important differences, notably I see a greater 

surface net warming effect of water vapour and as a result negligible, not positive 

atmospheric radiation convergence. Nevertheless my estimate of the sensitivity of 

surface longwave radiation to changes in CIWV of 1.1 W Kg-1 is at the lower end of the 

range (1.0-3.6 W Kg-1) estimated by Evan et al., (2015b), from observations and RT 

simulations, suggesting the role of water vapour in driving longer term inter-annual to 

decadal heating of the SHL may not be as pronounced as previously suggested. 
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4.4.2.3 The relative effects of dust versus water vapour 
 

 From the sensitivity experiments, I can quantify the DRE of dust and 

water vapour at TOA and surface per unit change in AOD of dust and kg m-2 of CIWV 

respectively (Table 4.6). By scaling this to observed standard deviation in each variable 

observed during the Fennec observation period I provide estimates of the relative 

importance of dust and water vapour to the day-to-day variability in the radiation budget 

over the SHL. 

 The resulting normalised dust SW/LW/net DRE per AOD at TOA and 

surface is -1/8/7 W m-2 and -27/16/-11W m-2 respectively, where these figures provide a 

useful way of presenting the variability of dust and water vapour on their radiative 

effects. The equivalent values for water vapour are 2/6/8 W m-2 and -2/8/6 W m-2. As 

such, the radiative effects of dust and water vapour at TOA are of similar magnitude 

with net warming of ~7 W m-2 per unit variability. Dust and water vapour exert similar 

control on the total heating of the Earth-atmosphere. This contrasts with M16 who 

report water effects (from vapour and cloud) as ~3 times more powerful than dust. 

 

Figure 4.15. Same as Figure 4.11 except for column integrated water vapour. 

At the surface radiative flux is controlled much more strongly by dust than water 

vapour and with opposite sign: net cooling of -11 W m-2 and warming of 6 W m-2 per 
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unit variability respectively. M16 find near zero warming from water (vapour and cloud). 

In my study the net effect of TOA versus surface is strong atmospheric warming of 18 

W m-2 per unit variability from dust and negligible warming (1 W m-2 per unit variability) 

from water vapour. In contrast, M16 find almost equal warming from dust and water 

vapour (of 11-12 W m-2 per unit variability). Although this radtiative transfer based 

analysis of the role of water vapour does not include the cloud that is implicitly included 

in M16, I suggest that the co-variability of dust and water vapour hinders calculation of 

their independent effects in the observational analysis of M16. 

 

 
Figure 4.16 Sensitivity of Radiative Flux (W.m-2) to changes in dust AOD. The numbers 

at each pressure level are downward shortwave (blue), longwave (red), and net (green) 

flux. The grey shade represents dust and water vapour amount in the atmosphere 

 

In summary I find that dust and water vapour exert a similarly large control on 

TOA net radiation and therefore total column heating and by implication to the first 

order similar control on surface pressure in the SHL. However, the vertical structure of 

radiative heating from dust is far more complex than that for water vapour. The 

schematic, fig. 16 illustrates the sensitivity of dust and water vapour at different 
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pressure levels. Dust imposes a strong net cooling at the surface from the SW which 

declines to zero at ~700hPa, where SW cooling and LW warming balance, with net 

warming above this (Table 4.6). In contrast water vapour imposes a LW heating effect 

that varies relatively little from surface to TOA. As such dust is likely to have stronger 

impact on the structure and processes of the SHL atmosphere than does water vapour. 

 

Figure 4.17. Same as fig. 4.16 except for CIWV 

 

4.5 Summary and Conclusions 
 

The summertime Saharan Heat Low feature is of considerable importance to 

the wider regional climate over West Africa but remains poorly understood. To the first 

order the SHL is created by strong sensible heat flux from the surface radiative surplus 

which heats the deep Saharan boundary layer, which is in near balance with advective 

cooling from the low level convergence circulation (see Chapter III). However, radiative 
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heating is modulated by water vapour and dust whose variations, at least at short 

timescales, are correlated. Here, I aim to quantify the independent radiative effects of 

dust and water vapour, and atmospheric heating rates using an RT model. The model 

is configured for the location at BBM, close to the heart of the SHL using inputs from 

Fennec field campaign for June 2011. First, sensitivity to uncertainty in RT model 

inputs fields is assessed. I find that dust size distribution is the most important source 

of uncertainty in this case, through its impact on single scattering albedo. The RT 

model when suitably configured has radiative flux biases at TOA that are within 

observational uncertainties and input uncertainties. The subsequent RT experiments 

show: 

1. On average the SHL has a large positive radiative surplus at surface of 83 W m-2 , 

a small surplus at TOA of 31 W m-2 with a net atmospheric radiative divergence of 

52 W m-2 presumably approximately balanced by the transfer of sensible heat. 

2. The effect of dust is pronounced:   

I. During June 2011 dust had a positive DRE at TOA of 8 W m-2 per unit 

AOD (7 W m-2 per unit AOD variability) almost entirely in the longwave, 

as the effects of shortwave absorption with respect to surface albedo 

largely balance, acting to warm earth-atmosphere system as a whole, 

with magnitude consistent with previous studies (Banks et al., 2014; 

M16; Yang et al., 2009).  

II. Dust has a strong negative DRE at the surface of -14 W m-2 per unit 

AOD (-11 W m-2 per unit AOD variability) largely due to reduced 

shortwave flux from atmospheric absorption. 

III. The net effect of this negative surface DRE and positive TOA DRE is 

considerable atmospheric radiative convergence of 22 W m-2 per unit 

AOD (18 per unit AOD variability) largely from shortwave absorption. 

This directly heats the PBL below ~500hPa by ~0.6 K day-1.   

IV. Dust loading is variable and the heating effect of episodic synoptic and 

meso-scale dust events can be up to 6 K day-1. 

 

3. The effect of water vapour is weaker than dust at the surface and includes: 

I. a positive radiative effect at TOA of 1.4 W m-2 per unit column integrated 

water vapour (8 W m-2 per unit water vapour variability) almost entirely a 

longwave greenhouse effect. 

II. weak positive radiative effect at the surface of 1.2 W m-2 per unit column 
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integrated water vapour (6 W m-2 per unit water vapour variability) 

almost entirely from longwave radiation re-emitted downwards. 

III. positive radiative effects at surface and TOA and thus a negligible 

impact on atmospheric radiative convergence. 

 A key finding here is that in contrast to previous analysis dust and water vapour 

are roughly equally important at the TOA, in controlling day-to-day variability in heating 

the earth-atmosphere system as a whole, (in contrast to M16 who identify water and 

associated cloud as the key driver), but that dust variability dominates variations in 

surface and atmospheric radiative heating. The biggest single net radiative effect in this 

study is the atmospheric radiative convergence from dust. The impact of dust may 

therefore be greater than previously believed. Recent studies have proposed a water 

vapour positive-feedback mechanism driving decadal variations in SHL intensity, 

implicated in the recent recovery of Sahelian rainfall (Evan et al., 2015b). My results 

are consistent with this but strongly suggest that variability in dust loading should be 

considered in explaining variability and change in the SHL, reinforcing the need for high 

quality long term aerosol observations. Additionally dust size distributions, shape and 

chemical composition are spatially and temporally variable, and the vertical profile of 

dust will vary with meteorological conditions – thus introducing more variability and 

uncertainty than has been explored in this study. These variations potentially increase 

the controls of dust on the radiation budget even further than quantified here. 

  Therefore, water vapour events in themselves act to heat at the TOA and at the 

surface and presumably intensify the SHL. In contrast, dust events cool the surface but 

warm the lower troposphere as a whole, such that the net effect at the top of the 

Saharan residual layer (about 5km) is a warming which will intensify the SHL. Various 

climate model experiments also demonstrate this effect (Mulcahy et al., 2014). I can 

then consider the effects of variability in SHL associated with monsoon surges and 

haboobs in which dust and water vapour increases are often coincident. Through 

radiative processes such events act to (i) warm the whole troposphere, almost equally 

through dust and water vapour longwave effect (ii) strongly cool the surface from dust 

shortwave effect, and more weakly warm the surface through water vapour longwave 

effects. Although these counteracting effects mean the net surface radiative flux 

reduction is actually quite small, the diurnal effects are pronounced with the dust 

shortwave apparent in daytime and the water vapour effect dominant at night, which 

will act to reduce the sensible heat flux into the atmosphere limiting the vertical 

development of the SHL PBL (iii) Substantial radiative heating from dust occurs in the 

PBL up to 6 K day-1 through dust shortwave absorption. This will act to stabilise the 
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PBL with implications for dry and moist convection, although (Trzeciak et al., 2017) 

suggest that moistening may often counter this. Such events typically involve an 

additional advective cooling which can be substantial up to 2-5 K day-1 for monsoon 

surges (Couvreux et al., 2010) but is restricted to the lowest layers ( ~1 km from 

surface). 

Couvreux et al. (2010) suggested a negative feedback process within the SHL-

monsoon systems that may govern preferred 3-5 day timescale of variability in the SHL 

and monsoon pulses. Strong net radiative heating at the surface intensifies the SHL, 

enhancing monsoon surges which then, through low level advective cooling, act to 

weaken the SHL, before solar heating restores the SHL. My results add potentially 

important detail regarding the radiative role of dust and water vapour that may modify 

this conceptual understanding. First, the net effect on surface radiation of dust and 

water vapour together is to further cool the surface and weaken the SHL, in addition to 

the advective cooling. Second, this weakening of the SHL is offset because the 

magnitude of dust radiative heating in the lowest layers is comparable to that of 

advective cooling so that net effect may be small or even positive, but with the dust 

radiative heating extending throughout the entire PBL above, rather than just the lowest 

1km or so. Third, the timescale of re-establishment of the SHL through surface heating 

and sensible heat flux may be influenced by the rate of dust deposition and export, 

which, depending on the synoptic context may be 1-2 days, though sometimes dust 

remains suspended in the SHL for days -weeks. The net effect of these, often 

competing, processes on the SHL will depend on the precise nature of water vapour, 

dust and temperature advection during such monsoon surge events. As such, SHL 

variability will represent a complex interplay of factors rather than a feedback through a 

single mechanism. There is a clear need for much better spatially extensive and 

detailed observations of all these variables 

 I can therefore envisage an inherent tendency for pulsing in the SHL in which 

an intensifying SHL will lead towards monsoon surges, which act through near 

surface/low level radiative and advective cooling to weaken the SHL and through dust-

radiative heating to stabilise the PBL, until dust deposition and export allow re-warming 

of the surface to re-invigorate the SHL. Given the radiative effects described above the 

dynamical effects of dust variability on the low level convergence and mid-level 

divergence circulations will be greater than those of water vapour and require further 

model experiments to resolve. Whilst reanalysis models represent well the average 

radiative and heating effect of dust and water vapour they do not capture dust and 

water vapour variability well and the subsequent dynamical effects on the larger scale 

circulation. 
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 The unique observations of the Fennec aircraft campaign suggested that fresh 

dust is much coarser than previously believed (Ryder et al., 2013b), with corresponding 

higher absorption, and this has significant impacts on the radiation budget (Kok et al., 

2017). My RT model simulations results suggest that such a dominant coarse mode is 

not consistent with TOA radiative flux observations at BBM. However, if dust is coarser 

than I assume here then the radiative effects of dust would be even stronger. Further 

observations on dust size distribution and optical properties are a priority requirement. 

In addition, further work should consider in much greater detail the radaitive effects of 

cloud based on detailed observations rather than the rather coarse estimates from 

reanalysis used here.  

It is worth mentioning at this point that spatial and temporal representativeness 

of satellite observations should be considered when comparing with point surface 

measurements. Schwarz et al. (2017) showed the correlation between surface 

measurement and satellite derived surface solar radiation decreases linearly with 

increasing distance between surface observations leading to errors up to 8 W m-2. I 

have not taken this into consideration in my results. Radiative flux measurement should 

however take this into consideration to get results with improved accuracy.  

 Our results showing the complex interplay of dust and water vapour on surface 

and PBL radiative heating stress the need for improved modelling of these processes 

over the SHL region to improve predictions including those for the WAM across 

timescales (e.g. Evan et al., 2015b). Most models currently struggle in regard to short 

term variability in water vapour (Birch et al., 2014;Garcia-Carreras et al., 

2013;Marsham et al., 2013a;Roberts et al., 2015), (Roehrig et al., 2013;Stein et al., 

2015) and dust (Evan et al., 2014), with many dust errors coming from moist 

convection ( Heinold et al., 2013; Marsham et al., 2011). Forecast models typically 

have mean biases of up to 2 kg m-2 in column integrated water vapour (equivalent to 

change in 2.6 W m-2 TOA net flux) and lack variability in dust, and so are expected to 

poorly represent these couplings. A focus on improved representation of advection of 

water vapour, clouds and convection in models should be a priority.  
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CHAPTER V 

5. Characterising Cold Pools from Observations and their implication 
to amount of water vapour over the Saharan Heat Low 

5.1 Introduction 
 

Cold pools are prevalent features of the Saharan desert and are important 

component of the climate system of the region. Cold pools primarily triggered from the 

WAM in the south (Marsham et al., 2013a) and Atlas Mountains in the north (Knippertz 

et al., 2009) play significant role in the transport of moisture towards the central Sahara 

heat low. For instance (Cuesta et al., 2010) discussed the impacts of increase in low 

level moisture from meso-scale convective cold pools associated with the WAM on the 

precipitating cloud over the Hoggar. Similarly Marsham et al. (2013a) showed cold 

pools play significant role in the advection of moisture to the heart of the Saharan 

desert. It is also indicated that mesoscale convective cold pools over the Sahel has 

influence in the northward displacement of the ITD (Flamant et al., 2009). Moreover 

cold pools are shown to play significant role in the emission of dust over Sahara region. 

Allen et al., 2013 identified a total of 20 cold pool outflow events which are attributed to 

45% of dust emission locally at Bordj Badji Mokhtar (BBM) in Algeria during the 

FENNEC intensive operation period in June 2011. In a related study, (Heinold et al., 

2013) used an off line dust emission model applied to convective permitting simulations 

and showed that cold pools are attributed to 40% of dust emission over the Saharan 

desert. In a more recent study (Trzeciak et al., 2017) further highlighted the importance 

cold pools for moisture transport, dust and cloud. Despite their proven significance in 

the transport of moisture and emission of dust in the Sahara desert, their exact 

contribution is not well known.  

The theoretical framework via which cold pools are formed is well known 

(Charba, 1974;Simpson, 1969). However it is still challenging to accurately reproduce 

them in climate models mainly due to models struggle to accurately simulate 

convection. Relatively coarse resolution models with parametrized convection have 

limited ability to capture cold pools while models with higher resolution struggle to 

accurately simulate convective triggered cold pools on the right place and at the right 

time (Heinold et al., 2013;Knippertz et al., 2009;Marsham et al., 2013a). In order to 

better represent regional surface and boundary layer processes in models, and thus 

improve simulation of convection and related processes, it is imperative to understand 

the characteristics of such convective triggered density currents. A number of 
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observational analysis have been made to characterise cold pools over different 

locations: in the United States (Engerer et al., 2008), in the southern Arabian Peninsula 

(Miller et al., 2008), in the southern foothills of the Atlas mountains (Emmel et al., 

2010;Redl et al., 2015), and in Niger, Niamey (Provod et al., 2016). Here I present 

characteristics of summertime convective triggered cold pools occurring over a wider 

domain in the Sahara desert. As such I present the occurrence frequency, spatial and 

seasonal distribution cold pools that occurred in the Sahara desert.. Redl et al. (2015) 

presented characteristics of cold pools using multi-year AWS data in the southern 

foothills of Atlas Mountain. To the best of my knowledge there is no such previous 

studies in the central SHL region. Lack or scarcity of observational data required for a 

comprehensive characterization and analysis of cold pools in SHL region is partly a 

problem. Fennec AWS data provides an opportunity to make an in depth study on the 

properties of these common atmospheric processes over the central Sahara region. 

This chapter attempts to give a comprehensive description of characteristics the 

cold pools using the FENNEC AWS station surface measurements of atmospheric 

variables. For this I formulate detection method for cold pools occurring in particular in 

the SHL region based on analysis of available data and previous identification methods 

applied to other locations. Having identified cold pools I present the mean 

characteristics of cold pools. The occurrence frequency, spatial distribution, and 

seasonal variation of cold pools in the SHL region are presented. I further compare 

surface observation characteristics of selected cold pool events with re-analysis 

outputs and thus derive the associated bias arising due to lack of resolving these 

mesoscale processes in models. The remainder of the chapter is organized as follows. 

Section 5.2 presents the data and methods used in the identification and 

characterisation of cold pool events. Results are presented in section 5.3. Section 5.4 

focuses on comparison of measurements with reanalysis products. Section 5.5 

provides summary and conclusion of results. 

5.1 Data and Methods 
 

I use data collected with Fennec Automatic Weather Station (AWS) instruments 

deployed in the Sahara desert (fig. 5.1). This is the most comprehensive set of 

observations ever obtained across the heart of the SHL region. Despite limitations in 

these data, they provide the basis for a first detailed analysis of cold pools in the SHL 

based on direct observation. Each station has identification number and I use these 

numbers to refer to each station in what follows. The locations of the two super sites 

(SS1 and SS1) are also shown but I do not use data directly from these stations 
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because (Allen et al., 2013) has already presented a comprehensive analysis at SS1 

and no cold pool were detected at SS2 (Todd et al., 2013). Data are available for years 

2011 and 2012 period. Here I limit my analysis to JJAS, the time during which Saharan 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Location of the AWS station (dots) with respective identification numbers 

and elevation in meters (shade) 

 

heat low plays a significant role in the activation and development of the monsoon flow 

and it is the peak season for moist convection over the Sahel and Sahara and therefore 

initiating cold pool formation. The list of available data for each station is given in Table 

5.1. Measurement is made approximately every three minutes. For detection and 

characterisation of cold pools I use temperature, pressure, water vapour mixing ratio, 

wind speed, and wind direction. I also use dew point temperature which is derived 

using temperature and water vapour mixing ratio using equation 5.1: 

 

                                                          𝐿𝐿𝑑𝑑 = 𝑐𝑐𝑐𝑐
𝑏𝑏−𝑐𝑐

− 𝐿𝐿0                                                  (5.1) 

 

La
tit

ud
e 

Longitude 



94 
 

where 𝑐𝑐 = 243.5, 𝑏𝑏 = 17.67,𝐿𝐿0 = 273.5,𝑅𝑅𝑅𝑅 is water vapour mixing ratio and  𝑓𝑓 =

ln �𝑅𝑅𝐻𝐻
100
� + 𝑏𝑏 (𝜕𝜕+𝜕𝜕0)

(𝑐𝑐+𝜕𝜕+𝜕𝜕0) where 𝐿𝐿 is temperature.  

The measured variables have varying degrees of uncertainty due to errors in 

measurements. Humidity, temperature, and wind speed measurements have 

uncertainties up to 0.6%, 0.2 0C, and 0.1 m s-1 respectively. SW and LW radiation each 

have larger measurements uncertainties up to 38 W m-2. A complete description of the 

AWS instrumental design, measurements, and associated measurement uncertainties 

of all variables can be found in Hobby et al. (2013). For comparison of measurement 

with models, I use 2m temperature, wind speed, and mixing ratio from reanalysis 

products. When 2m wind is not available, I derive it from 10m wind speed using the 

equation 5.2:   

 

                                                             𝑣𝑣1 = 𝑣𝑣2
𝑙𝑙𝑙𝑙�𝑧𝑧1𝑧𝑧0

�

𝑙𝑙𝑙𝑙�𝑧𝑧2𝑧𝑧0
�
                                                  (5.2)  

 

where v1 and v2 are wind speeds at heights z1 and z2 respectively, and z0  is the 

roughness length which is computed using the 2m and 10m wind speed from MERRA 

re-analysis. Further, I use surface longwave flux for comparison with reanalysis 

products.  

For testing my algorithm for detection of cold pools data from AWS station 134 

is used.  The choice of station 134 is because of availability of relatively more data 

compared with other stations during JJAS 2011/12 period. The arrival of cold pool 

outflows at a given location is typically characterised by gusty wind that carry moisture 

within it ventilating the vicinity area. Therefore cold pool events are in general 

associated with the increases in moisture, wind speed, pressure, and decrease in 

temperature. However an increase in moisture and decrease in temperature are not  

necessary conditions for cold pool identification since depending on the details of their 

formation, cold pools may carry wetter or dryer air than the surrounding environment 

(Flamant et al., 2009;Miller et al., 2008). I consider here cases that resulted increase in 

water vapour mixing ratio only because of the extremely high surface temperature and 

arid conditions, it is expected mostly cold pools in the SHL moistening of the 

atmosphere. I use changes in wind speed and humidity (dew point temperature) as 

primary selection criteria for cold pool events.  
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Table 5.1. Data availability at AWS stations(C=complete, BD=Bad Data, ND=No Data) 

Range of numbers show days when data is available 

Date 131 133 134 135 136 138 140 141 
2011/06 1-8 01-05 C 2-3 7-30 C 1-4 2-3 

2011/07 ND ND C ND 1-30* C ND 1,2,5-31 

2011/08 ND ND BD ND 23-31 02-31 ND BD 

2011/09 ND ND BD ND 1-16, 

18-30 

C ND 5-3 

2012/06 1-30* 3-30 1-30* 2-30 1-30* 01-30* BD 14-30 

2012/07 1-31* 1-31* 1-11,  

13-31 

1-31 

 

1-10, 

12-31 

01-11, 

13-31 

BD 1-31* 

2012/08 1-31* 1-31* 1-31* ND 1-31* 01-31* BD 1-24 

2012/09 1-30* 1-30* 1-30* ND 1-30* 01-04 BD ND 
* there are missing time steps in each day data 

 

Satellite images of Spinning Enhanced Visible and Infrared Imager (SEVIRI) are 

used to verify existence of deep cloud and dust emission (Allen et al., 2013;Karam et 

al., 2014;Marsham et al., 2013b). On SEVIRI product of false colour composite imagery 

deep cumulonimbus is shown in dark red and dust is shown in pink colour (Brindley et 

al., 2012;Lensky and Rosenfeld, 2008). However dust is only visible in the absence of 

high level cloud and thus some dust events could be missed from the infrared SEVIRI 

imagery (Ashpole and Washington, 2012). Once all cold pools are clearly identified, I 

compare surface observations with data from MERRA and Era-I reanalysis model 

outputs in order to estimate the error in amount of moisture resulting from models’ lack 

of resolving convection. For the details of the satellite and reanalysis model data used, 

readers are referred to chapter II.  

To formulate a robust algorithm which will clearly identify cold pools, I employ 

the steps described below. 

 

I. Synthesise evidence from literature on the likely 'signature' of cold pools 

 

Previous studies attempted to identify the meteorological signature of cold pools 

using different methods. A summary of the cold pool identification processes for 

selected publications is provided in table 5.2. Engerer et al. (2008) studied 

characteristics of cold pools using surface observations made between 2000 and 2007 

in Oklahoma, USA. Arrival of the leading edge of the cold pool outflow is determined 

from rapid change in wind direction (wind shift). The magnitude of change in 
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atmospheric variables associated with passage of cold pools is determined by finding 

the minimum or maximum of a given variable during the 30 min period before and 

during the 2 h time window after the wind shift occurred. They identified 39 cold pools 

from mesoscale convective events with mean characteristics of 3.2 - 4.5 hPa rise in 

surface pressure 5.4 - 9.5 K drop in 2 m air temperature, and mean wind speeds above 

15 m s-1. In a similar study Provod et al. (2016) characterised cold pools in the West 

African Sahel region using measurements from the African Monsoon Multidisciplinary 

Analysis Special Observing Period (AMMA SOP). They identified cold pool events 

using the following criteria: at least 300 change in wind direction, speed of the gust 

greater than 1.5 times the mean wind speed within 30 min before arrival, and 

temperature drop by 1 K. During the study period from June 01 to September 30 ,2006 

Provod et al. (2016) identified 42 cold pool events with a mean characteristics of 4 hPa 

increase in surface pressure, 8 K decrease in temperature, with 12.5 m s-1 wind gusts. 

Note that the difference of identification method in Provod et al. (2016) to that of 

Engerer et al. (2008) is that the former used a 1 h pre-storm time period to find the 

minimum or maximum of variables instead of the 30 min used by the later. Emmel et al. 

(2010) applied different detection algorithm for arrival of cold pools which used 

increases in mean horizontal wind speed by 4 m s-1 and increase in dew point 

temperature by 4 K within 30 min after the passage of the front. Redl et al. (2015) used 

a similar method (table 5.2) for the identification of cold pools.  

    

II. Identity candidate cold pool events with minimum threshold conditions 

 

In my work I use change in dew point temperature (ΔTd) and mean wind speed 

(U_av) after passage of the front as primary variables for identification of cold pools. 

Dew point temperature is most appropriate variable for hyper arid environment rather 

than temperature. Cold pools are identified when change in dew point temperature is 

greater than 2 K and mean wind speed for 1 h after event is greater than 4 m s-1. In the 

calculation of change of dew point temperature, mean Td 30 min before the event and 

mean Td 1 h after the event are used. To avoid any outlier due to turbulence associated 

with arrival of storm and to include cases when change in Td and wind speed do not 

occur simultaneously, calculation of change of a given parameter is made outside a 30 

min time window, 15 min before and 15 min after arrival of a given cold pool event. In 

some cases one event could be picked up more than once if at a given time step the 

criteria for selection of a cold pool are fulfilled. In such cases I take one with largest 

change in Td.  

 



97 
 

Table 5.2. Summary of Cold pools identification methods from previous studies 
Paper, location and 
study time 

Variables used in calculation of 
cold pool characteristics 

Cold pool Identification 
Criteria 

Engerer et al., 2008 
Oklahoma USA, 
2000-2007 

• P, T, v, wind direction 

• Difference of max (or min) of 
a variable 30 min before the 
event and 2 h after the 
event. 

• Rapid Change in wind 
Direction 

• Convective lines >200km 
in length 

• Reflectivity > 50dBz 

Provod et al., 2016 
Niamey, Niger 
June 01 - Sept 30, 
2006 

• P, T,𝜃𝜃𝑒𝑒 , WVMR, v , wind 
direction 

• Difference of max (or min) of 
a variable 1 h before the 
event and 2 h after the 
event.(P, T) 

• Mean 1h before and 2h after 
(𝜃𝜃𝑒𝑒) 

• Mean 1h before and 
Minimum 2h after (WVMR) 

• Max 2 h after (wind) 

• Rapid Change in Wind 
Direction within 5 min by 
at least 300 

• Max Wind speed 2h after 
passage > 1.5 times 
mean wind speed 30 min 
before the passage 

• Temperature drop by1K 

• Verified using radar or 
satellite images for MCS 
in the vicinity area 

Redl et al., 2015 
North West Africa, 
IMPETUS, 2002 – 
2006 

• Td, V, Precipitation, Satellite 
brightness temperature 

• Difference of maximum Td in 
30 min after detection and 
Td during arrival 

•  Mean wind speed 1 h after 
jump in Td 

• Td in 30 min 

• Mean wind speed  1h 
after the passage 

• the average of Td 1 h 
after the detected jump 
has to be 2 K larger than 
the average of Td 1 h 
before the jump 

• no precipitation 1 h 

•  An event observed at 
least in two stations 

• Verification microwave 
brightness temp 

• Distance between a 
station and convection in 
SEVIRI image 

 

Wind direction is used as a primary indicator of cold pool passage in Erenger et 

al. (2008) and Provod et al. (2016). Here I do not use wind direction as an indicator due 

to error in AWS wind direction data which has a precision of 450. Some authors use 
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decrease in temperature and increase in pressure to identify cold pool events. I have 

not used both these variables for the following reasons. Temperature does not always 

decrease while pressure does not always reflect quick response to arrival of cold pools 

and when there is, it does not always change simultaneously with other variables. 

Selected cases for increase and decrease of temperature will be presented in the 

results section. Further in examining a number of cases of known events there was no 

consistence signal in surface pressure. There are also lots of missing data points of 

observed pressure which makes it further difficult to use it as detection criteria. 

However in some ambiguous cases, I use the drop in temperature and rise in pressure 

as secondary verification criteria. It is important to note that my detection algorithm 

could miss out some cold pool events with small effects on atmospheric variables.  

There are some cases with clear signature of arrival of cold pool on SEVIRI images but 

missed in my identification which are further discussed later in this chapter.   

 

III. Verify all candidate events. 

 

Having identified all events that satisfy the minimum threshold conditions described 

above, I attempt to verify these using SEVRI imagery. For each event I examine 

SEVIRI images for some hours before and after to detect cold pool propagation in the 

area around the AWS site. I look for clear dust plumes and to consider cases where 

haboobs occur without significant dust I determine the likelihood based on the 

presence of deep convective cloud in the proximity in the hours before the apparent 

event. Based on this subjective but informed analysis I am able to identify events 

where there is little evidence of a haboob occurring and thus drop out all other cases 

which are not cold pool related. In the identification of cold pools one may encounter 

cases with large changes in atmospheric variables, sometimes part of diurnal cycle of 

synoptic variability, fulfilling the selection criteria, however not associated with 

convective downdraft. Changes in atmospheric variables from such cases is gradual in 

contrast to many cold pool cases where changes are abrupt.  The sudden jumps of 

atmospheric variables in the plots of time series are used as indicator of cold pool 

arrival. However abrupt changes are not used as a necessary condition for cold pool 

identification since there are cold pool arrivals with no clear sudden changes but clearly 

verified on SEVIRI images. 
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Table 5.3. Statistical properties for all the verified cold pool events      

 ΔTd (K) ΔU(m s-1) U_av(m s-1) Umax(m s-1) 

STDEV 4.8 2.7 2.6 2.6 

Mean 8.6 4.6 8.0 9.5 

Minimum 2.1 -1.1 4.1 4.7 

Maximum 23.4  10.8  13.8  15.3  

Median 7.8 4.5 7.9 9.5 

                      

A total of 146 events are identified on the first stage of identification process, 

which satisfied the criteria of change of dew point temperature greater than 2 K and 

mean wind speed after 1 h of event passage greater than 4 m s-1 at AWS 134 station, 

42 of which are verified using SEVIRI images for convective activity and (or) dust 

emission. For those events which are verified to be cold pool related, I derive the 

statistics for change in dew point temperature, change in wind speed, and mean wind 

speed 1 h after the cold pool passage. The results for the characteristics of the cold 

pool event signatures is presented in table 5.3.  

     

IV. Refine the thresholds to 'optimise' cold pool detection 

 

The first stage selection criteria is lenient capturing many small scale 

atmospheric features which are not cold pool related. It is rather cumbersome to carry 

out similar procedure for all other stations. I refine the thresholds to ensure an 

acceptable compromise between false alarms and missed events as follows: 

• Change in dew point temperature greater than 3 K.  

• Change in wind speed greater than 2 m s-1 or average wind speed one hour 

after cold pool passage greater than 4.5 m s-1. 

• SEVIRI imagery for nearby convective activity or dust emission in the 

following hours.  

The reason for using change in mean wind speed in addition to average wind 

speed because I found clear cold pool cases where the mean wind speed is small. This 

will be further investigated in the results. Once I have arrived at an acceptable 

algorithm using data from AWS 134 I apply to all other stations.  

5.2 Results 
 



(a) (b)

(c) (d)
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Once all the cold pool events are clearly identified for the JJAS 2011/2012 period I

characterise the cold pool events over the SHL region and derive occurrence frequency.

Then based on the occurrence frequency and comparison of observation with reanalysis I

estimate the amount of moisture which is misrepresented from models lack of resolving such

meso-scale convective events. 

5.1.1 Cold Pool Characteristics

Using the method described above I identified a total of 145 cold pool events across

the eight AWS stations during JJAS, 2011 and 2012. The list of identified events and their

resulting changes in atmospheric variables are presented in table A1. Characteristics of all

identified cold pool events are summarized in the box and whisker 

Figure 5.2 Box plot of  change in (a) dew point temperature (ΔTd) in K, (b) change in wind

speed (ΔU), (c) average wind speed (Uav) and (d) maximum wind speed (Umax) in in m s-1

associated with cold pools. Boxes represent the interquartile range, whiskers show minimum

and maximum values excluding outliers and crosses and lines in the boxes show mean and

standard deviation of each variable. Dots above whiskers are outliers
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plot, fig. 5.2. The vertical lines at the bottom and top of each box denote the minimum 

and maximum values respectively whereas the boxes represent the 50% of the values 

between first quartile (Q1) and third quartiles (Q3) or Interquartile range (IQR). All the 

parameters used to characterize cold pools lie within the upper limit (Q3+1.5*IQR) and 

lower limit (Q1-1.5*IQR) except for change in dew point temperature which has outliers 

in the upper limit (18.4 K). The change in Td is greater than 9.7 K in 25% of the total 

cold pools that is larger than the value (5.3 K) reported in Emmel et al., 2010. Change 

in wind speed has relatively normal distribution from its mean value 3.4 m s-1 with the 

first quartile 1.8 m s-1 and third quartile 5 m s-1. From all the cold pool events I 

identified, 25% have average wind speed and maximum wind speed greater than 8.6 m 

s-1 and 10.4 m s-1 respectively. 

Frequency distribution of change in dew point temperature associated with cold 

pool passage for all stations during 2012 is shown in fig. 5.3. There is a wide range of 

magnitudes of cold pool signatures resulting in change of dew point temperature from 3 

K to over 20 K confirming the results in the box plot, fig. 5.2. The signature of cold 

pools revealed as changes in atmospheric variables depends in general on the location 

of a station from starting point of a cold pool and on season (Provod et al., 2016). Cold 

pools that are detected at AWS 131 have smaller change in magnitude than those at 

AWS station 134 (fig 5.3a and 5.3b).  The mean change in dewpoint temperature is 7.2 

K for all stations with maximum change of 23.4 K recorded at station 134 on July 17, 

2012 around 03:30, fig. 5.4. I considered here cases with increase in Td and thus 

increase in moisture as a result of cold pool arrival. It is important to note the 3 K 

threshold for change in Td despite the fact that there are cold pools which are not 

included in my analysis that resulted in change of Td as small as 2 K. For instance a 

cold pool event detected at AWS 134 on June 23, 2012 at ~16:00 has a change in dew 

point temperature of 2.1 K. This small change in dew point temperature could possibly 

be due to the cold pool late in the previous day at 22:00 has already moistened 

atmosphere and was sustained relatively higher because of cloud. Such cases will be 

presented in later section of this chapter. I find the month July to be the time when 

strongest magnitude cold pools occurred. Reaffirming this the mean change in Td for all 

stations in 2012 is 7.2 K, 8.0 K, 7.1 K, and 5.9 K for June July, August, and September 

respectively. 

Distribution of average wind speed 1 h after cold passage for all stations during 

2012 is presented in fig. 5.5. The difference in wind average wind speed frequency (fig 

5.5a and fig 5.5b) difference between AWS 131 and AWS 134 does not show a clear 

difference to that of dew point temperature frequency distributions (fig 5.3a and fig 

5.3b). This implies the moisture brought in as cold pool during a cold pool passage and  
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Figure 5.4 Cold Pool resulting the largest change in dew point temperature occurred at 

AWS 134 on July 17, 2012, ~04:00. The shaded region shows the arrival of the cold 

pool.  
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Figure 5.3 Frequency Distribution for 

change in dew point temperature 

associated with cold pool passage for 

 all stations year 2012 data. (a)AWS 131, 

(b) AWS 134  and  (c) ALL STATIONS. 
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wind speed of the cold pool do not have a correlation based on the results of the two 

stations. The average wind speed for all available data is 7.0 m s-1 and maximum 

speed up to 14 m s-1 is recorded (Trzeciak et al., 2017). The average change in 

magnitude of wind is 3.4 m s-1, the maximum being 11 m s-1. Wind speed increases in  

general as a result of cold pool passage but there are cases of decrease in wind 

speed. This could be due to the prevalence of strong background wind flow in the 

opposite direction prior to cold pool arrival at a particular station. It is therefore 

necessary to take this into account when using wind speed as a selection criteria and 

therefore avoid misses when change in wind speed is negative. This is the reason for 

using magnitude of average wind as selection criteria in addition to change in wind 

speed in this work.   

   A rapid change in wind direction is a common feature of arrival and passage 

of cold pools (Engerer et al., 2008;Provod et al., 2016). Despite the inaccuracies in 

wind direction data at AWS as already mentioned, it still shows the arrival of cold pool. I 

also find there is change in wind direction up to 1800 resulting from cold pool arrival at a 

given station (fig. 5.4). However this is mostly followed by erratic changes in wind 

direction after the cold pool passage making it practically challenging to set a threshold 

for identification. Besides wind direction could exhibit similar sudden and rapid change 

due to non-cold pool related atmospheric features.   

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Frequency Distribution for 

average wind speed associated with 

cold pool passage for all stations year 

2012 data. (a)AWS 131, (b) AWS 134  

and  (c) ALL STATIONS. 
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Temperature does not always show the same response to cold pools arrival. I find cold 

pools mostly with clear drop in temperature however several instances of rise in 

temperature due to cold pool passage were also identified. Figure 5.6 shows examples 

of two typical cold pools occured in the same day which resulted in drop and rise of 

temperature. The first cold pool arrived at ~02:00 raising the temperature by ~5 K while 

the second cold pool which is relatively weaker arrived at ~23:30 resulting in a 

temperature drop of ~1.5 K. Emmel et al. (2010) also recorded an increase of 2m air 

temperature up to 6 0C as a result of cold pool passage while Provod et al. (2016) 

showed all the cold pools considered in their study to have decrease in temperature of 

up to 14 0C. In my results temperature drops mostly occur in the late afternoon cold 

pools while temperature rise occurs when cold pools arrive in the early morning hours 

following the radiative cooling of the relatively dry background atmosphere. This 

however needs further investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 5.6 Example of cold pools resulting in temperature increase (at 02:00) and 

decrease (at 23:00). Shaded areas show approximate arrival time of cold pools arrival. 

5.2.2 Cold Pool Frequency 
 

Cold pool frequency shows both seasonal and inter-annual variability (Emmel et al., 

2010). Here I assess the seasonal variability of cold pool frequency across the AWS 
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stations. I find the month July to be the time when most cold pools occur while 

September is the least. In 2012, from a total of 111 cold pools, 36 occurred in July, 33 

each in June and August, and 9 in September. The number of cold pools identified at 

each station for each month is listed in table 5.4. I did not include AWS 140 in my 

analysis of cold pools frequency since the available data at this station is small. In 

addition to seasonal variability, frequency of occurrence also varies on location. I find 

more cold pools occur in the southern edge of the Saharan heat low region as one 

might expect pertaining to the monsoon flow. This can be confirmed by comparing the  

 

Table 5.4 Number of identified Cold Pools at the AWS stations 

Date 131 133 134 135 136 138 141 

2011/06 - - 6 - 3        3  

2011/07 - - 4 - 1 1 - 

2011/08 - - - - 1 7 - 

2011/09 - - - -         -         4 3 

2012/06 6 2 6 1 7        7 3 

2012/07 11 2 12 6        - 3 2 

2012/08 9 1 12      -         - 4 8 

2012/09 5 2 2 - - - - 
*Frequency of 

occurrence 

0.25 0.1 0.24 0.12 0.07 0.15 0.15 

*Number of Cold Pools per day (when data is available) in 2012 

 

number of cold pools (Table 5.4) identified at station 134 (located at 23.50 N and 0.30 

E) and 138 (located at 27.40 N and 3.00 E). During the times where data is available, 

the number of cold pools detected at station 134 is 32 while in the same period 14 cold 

pools are detected at station 138. This can be further confirmed by the frequency of 

cold pool occurrence derived for 2012. During JJAS period an average of 

approximately 30 cold pools occur at AWS stations 134 and 131 compared with 

approximately 20 cold pools at AWS stations 138 and 141. The number of cold pools 

identified at AWS station 136, which is located on approximately the same latitude as 

AWS station 134 is to the contrary small. However there are lots of missing data at this 

station particularly in 2012. Allen et al., 2013 identified 20 cold pools at Bordj Bhadji 

Mokhtar in southern Algeria (SS1, fig. 5.1) during June 07-30, 2011. This is a large 

number compared to previous studies and to what I have found here during similar 

period at AWS 134 which is located close to SS1 (fig. 5.1). However some of the cold 

pools reported in Allen et al., 2013 are not verified with SEVIRI imagery. In the 
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calculation of the occurrence frequency of cold pools (Table 5.4) I have considered 

only available data. That is I exclude times with missing data within a day. This will 

possibly subject to biases in my calculation as there are hours in a day (early morning 

and late afternoon) that cold pools are more likely to happen but unidentified because 

of data unavailability. In spite of that, my results give us a broad overview of the 

distribution of cold pool across the AWS stations. This however needs further 

investigation with a more complete and equivalent data set at each station. 

5.2.3 Missed Cold Pools 
 

To emphasize the subjective nature of cold pool identification, I next present the 

list of cold pools clearly observed by SEVIRI but without strong signature on ground 

measurements of atmospheric variables. As mentioned earlier some cold pools could 

be missed undetected when changes in the atmospheric variables as a result of cold 

pool passage do not meet the minimum threshold. Despite the small changes in 

atmospheric variables, some of these events are clearly seen on SEVIRI imagery. 

Table A2 lists such cases with date and approximate time of arrival of cold pool at each 

station. More cold pools are missed unidentified at AWS stations 134 (14 cold pools) 

and 136 (16 cold pools) compared with those at station 138 (7 cold pools). Some of 

these unidentified cold pool events show a big signature (dust emission) on SEVIRI 

images. The cold pools observed on 10 July, 2011 around 00:30 at AWS station 136 

and on 24 June 2012 around 00:30 at station 141 are typical examples. It is not clear 

why there is no clear signature on the data as a result of these cold pools observed on 

SEVIRI however there is no missing or bad data on these days. This reaffirms 

identification of cold pools is a subjective process and it may be challenging to identify 

each and every cold pool that occurred at a given station. 

It is worth mentioning at this point that some atmospheric phenomena I 

identified have signatures in atmospheric variables similar to that of cold pool arrival 

but with no obvious convective activity in the vicinity. For instance at station 133 on 

2012/08/31 07:00, there is an event resulting in a change in dew point temperature 

11.2 K and average wind speed 5.5 m s-1 after the passage of this event.  Another 

similar event but with slightly less magnitude change in dew point temperature, 9 K and 

stronger wind average speed 8 m s-1 was recorded at AWS station 136 on 2012/06/16 

14:00. I have listed in table 5.6 such cases resulting in jumps in moisture and wind 

speed which are not related to convective activity. I will not investigate the cause of 

these events as it is not the objective of this research. But I would like to point out the 

need for a careful verification of cold pool events using satellite images or other in-situ 
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instruments for measurement of convective activity and (or) dust emission in the vicinity 

of a given station.  

 

Table 5.5 Atmospheric processes with signatures similar to cold pools but not related 

to convective activity. 

Station Date Time ΔTd(K) ΔU(m s-1) Uav(m s-1 ) Umax(m s-1) 

131 20120623  05:16 3.1 -0.4 6.1 7.8 

         20120831 07:00 11.2 1.0 5.3 6.2 

136 20110615  23:00 5.7     2.2 3.3 5.4 

 20120616  14:00 9.0     3.8 8.1 9.3 

138 20110602 02:00 25.7 3.7 3.7 4.3 

 20110811 02:30 3.6 1.0 4.7 5.9 

 20110928 07:06 3.0     2.8 2.9     3.2 

 20120901 04:06 3.2 1.8     4.5 5.3 

141 20110907 22:00 4.5 2.3 4.4 6.0 

 20110909 19:00 4.4 3.7 5.6 6.4     

         20110921 06:56 7.2 2 4.4 6.4 

 20120704 19:00 6.2 0.6 6.5 8.2 

 20120803  08:23 5.5     1.9 4.6 5.1 

 

5.3 Comparison with Re-Analysis. 
 

So far I have seen characteristics and frequency of occurrence of cold pools in 

the Sahara desert using observational data. Such meso-scale processes, which are 

shown to play significant role in the transport of moisture to the heart of the SHL, are 

not well represented in climate models (Heinold et al., 2013). To further investigate this 

I compare mixing ratios and surface long wave flux with corresponding reanalyses 

simulation. I have taken mixing ratio, instead of dew point temperature (variable used 

for cold pool identification) is to estimate the error in longwave flux due to bias in mixing 

ratio. This is derived by first deriving the approximate relation between column 

integrated water vapour and mixing ratio. Figures 5.7 and 5.8 show observed and 

MERRA output mean diurnal mixing ratio and longwave flux at selected AWS stations. 

MERRA has a weak representation of the diurnal cycle at most stations except AWS 

141. The diurnal cycle at AWS 141 is stronger compared with other stations. This is 

due to the proximity of AWS 141 to North West coast of Africa which experiences 

strong diurnal cycle from the meso-synoptic-scale circulation of the Atlantic inflow 
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(Grams et al., 2010;Todd et al., 2013). The main features in this cycle are strong sea 

breeze penetration into land following the decaying of the turbulent convective 

boundary layer in the evening which extends until 7:00 AM after which sea breeze 

declines as a result of the redevelopment of the boundary layer (see fig. 8b in Grams et 

al., 2010 and fig 9a in Todd et al., 2013). MERRA slightly overestimated moisture at all 

stations except 141 which MERRA has underestimated moisture (Table 5.6). The error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7 Diurnal Cycle of water vapour mixing ratio and net surface flux at 

selected AWS station during 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Same as fig. 5.7 except for 2012. 
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in observed surface longwave flux and MERRA simulation is consistent with the error in 

moisture amount. That is as underestimated moisture the resulting net surface 

longwave flux becomes smaller and the vice versa (see section 4.4.2.2 of previous 

chapter). However the discrepancy between observed and model longwave flux may 

not entirely due to error in moisture amount. To quantify this I estimated the 

approximate relation between vertical integrated water vapour and near surface mixing 

ratio at BBM (see fig. 5.9) and sensitivity of CIWV to surface longwave flux derived in 

chapter-IV. I apply this for example to AWS 133 at which mean mixing ratio is 

underestimated by 1.7 g kg-1, the estimated corresponding value in CIWV will be ~22 

Kg m-2.  Using the results of table 4.6, this will result in an error of 35 W m-2 on the net 

surface longwave flux which is about to a third of the actual difference I found between 

observed and MERRA simulation. This clearly shows that the error in net longwave flux 

is not totally a result of error in moisture amount. This will be further investigated for 

each cold pool cases.  

 

Table 5.6. Diurnal mean Bias (Observation - MERRA)  

Month/Year AWS ∆MR(g kg-1) ∆LW(W m-2) 
JJ/2011 134 -1.7 - 

JJA/2011 138 -1.1 -130 

JJ/2011 141 1.8 8 

JJA/2012 133 -1.1 -104 

JJ/2012 135 -0.7 -86 

JJA/2012 141 0.2 14 

 

 

 

 
 
 
 

 
 

 
 

Figure 5.9 Scatter plot of water vapour mixing ratio versus column integrated 

water vapour at BBM, June 2011. The red line shows linear fit 
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5.4 Summary and Conclusion 
 

The role of cold pools in the regional dynamics over the Sahara desert is vital, 

most importantly their role in (i) the transport of moisture from monsoon (Garcia-

Carreras et al., 2013;Marsham et al., 2013a) in the south and Atlas in the north (Redl et 

al., 2016;Emmel et al., 2010) to the central Sahara desert and (ii) emission of dust 

(Allen et al., 2013;Marsham et al., 2013b). This chapter provides a description 

characteristics and frequency of cold pools using in the AWS stations data spread 

across the Saharan Heat Low region during JJAS in 2011 and 2012. I used a unique 

identification method that effectively identifies cold pools using changes in 

meteorological variables confirmed by SEVIRI imagery for convective cloud and dust 

emission. I further compared observed atmospheric variables with reanalyses 

simulation outputs.  

A total of 137 cold pool events were identified at the eight AWS stations across 

the Sahara desert. It should however be emphasized that because the data is not 

complete for the whole study period, more cold pools expectedly occur than what I 

found here. There are two major sources of convection for the formation of cold pools 

in the in the region. The first and dominant source is the monsoon flow carrying 

moisture from Gulf of Guinea to the Sahel. Cold pools resulting from the monsoon flow 

are stronger in magnitude and mostly followed by dust emission. The second source of 

cold pool formation is convection triggered over the Atlas Mountains.  

The passage of cold pools is associated with increase of dew point temperature 

up to 23 K, mean change in wind speed 3.4 m s-1, and maximum wind speed up to 14 

m s-1. Even though I considered cases where cold pools arrival causing increase in 

moisture due to the dry conditions of the SHL, it is not always the case (Flamant et al., 

2009;Miller et al., 2008;Provod et al., 2016). For instance Provod et al., 2017 that found 

in premonsoon period (June 1 - June 12) decrease in water vapour mixing ratio 

compared to other later periods. However their domain of study is Niamey, Niger which 

is located south to all the station data I used. I find more cold pools in the southern 

edge of the Saharan heat low compared to that of the northern edge. During JJAS 

2012 period of time 0.24 and 0.15 cold pools per day are detected at AWS stations 134 

and 138 respectively. Furthermore more cold pool events happen during July and 

August. This is related to the seasonal cycle of the intensity of the SHL which is fully 

developed around mid-June onwards and starts to decline after August (Lavaysse et 

al., 2009), see also section 3.4 of this thesis.  

An important feature of cold pools is their role for the formation of next day 

convection  after their passage and hence cycles of convection followed by cold pool 
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(Trzeciak et al., 2017).  I observed such cases in the central Sahara. An example of 

cycle of convective events showing how monsoon brought moisture is transported 

deep into the Sahara Desert and further north west to the Atlas: Convective activity 

resulting in cold pool Around 06/21 ~06:30 over Algeria Mali Niger triple point, leading 

to formation of another convective activity resulting in cold pool arriving at BBM around 

06/22 01:15 and at AWS 134 at around 10:00. This in turn triggers two convective cells 

in southern Algeria merging and resulting in cold pool reaching to AWS 134 on 22nd at 

~22:00. And finally convective cloud forming near Western Algeria maturing and 

resulting in cold pool on 23rd ~21:00 which moves further to North West. Several similar 

processes occur over the entire summer period (Provod et al., 2016;Trzeciak et al., 

2017). 

This, however, is mostly missing in forecast or climate models that use 

parametrized convection. Reanalyses simulation despite their assimilation of 

observations and improved representation of atmospheric processes still struggle to 

resolve convection (Sodemann et al., 2015). To investigate this I have made 

comparison of measurement and reanalyses simulation products. The results of 

comparison of observed with MERRA output shows diurnal mean mixing ratio is not 

always underestimated. I find the mean moisture at selected AWS stations is actually 

overestimated compared with MERRA. In addition diurnal mean surface longwave flux 

shows a large bias of up to -100 W m-2 in MERRA. This however needs further 

investigation.  

There is a huge implication in the dynamics and energy budget of the SHL due 

to lack of proper representation of convection and resulting cold pools in climate 

models. For instance (Evan et al., 2015) showed that the intensification in the SHL and 

resulting recovery in the Sahel precipitation to be linked with greenhouse forcing of 

water vapour. Marsham et al., 2016 (and Chapter IV of this thesis) pointed the 

importance of dust and water vapour in controlling the daily variability of radiative 

budget of the SHL. Therefore there is a need for better representation of cold pools, 

which are sources of large water vapour and dust emission, in climate models to better 

understand variability and predict future of the SHL. From the results of comparison of 

observation with reanalysis, there are two major areas models need to improve. The 

primary importance is improving models capability in resolving convection possibly 

development of improved parametrization for convection and based on that building 

objectively generalized method of identification for cold pools in models (Drager and 

van den Heever, 2017). Secondly the model physics which involves calculation of 

radiative processes due to water vapour, dust, and cloud needs to be improved. 

Particularly there is a chronic need to improve cloud representation and calculation of it 
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radiative effect which is challenging currently in models (Hannak et al., 2017). The bias 

in observed net surface longwave flux compared with MERRA suggests that in some 

cases the resulting error is not due to atmospheric constituents (such as cloud and 

dust) which have known radiative effect. Other possible source of uncertainty could be 

due to error in surface optical characteristics (Haywood et al., 2005). All these needs to 

be addressed for better representation of the climate system of the SHL in models.  

The method I presented to identify cold pools is not free from uncertainty and 

could possibly miss cold pool cases. As I mentioned previously, the cold pool 

processes can be missed due to the choice of minimum thresholds. Related with this, I 

considered cases which result in increase in dew point temperature even if this is best 

approximation for arid environment. Atmospheric moisture could mask dust in SEVIRI 

observation (Brindley et al., 2012) and therefore may not detect haboobs (Allen et al., 

2013). It is also challenging to identify active deep convective systems from SEVIRI 

imagery making it confusing in the identification of cold pools (Ashpole and 

Washington, 2013). This can be improved by using microwave satellite imagery to 

identify deep convection (Redl et al., 2015) which are possible future work. However 

my results present useful information on the properties and frequency of cold pools in 

the SHL region which are required for model evaluation. This research helps in 

providing the first hand information required to evaluate models simulations. However 

an extensive research is required to fully account the contribution of cold pools to 

transport of dust and moisture in the region and their associated impact on the 

dynamics. 
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CHAPTER VI 
 

6 Summary Discussion and Future Work 

6.1 Summary 
 

Saharan heat low region is proved to play key role in the initiation and 

development of the West African Monsoon system (Sultan and Janicot, 2003). During 

summer a low pressure system is developed due to the intense heating over the 

Sahara (Lavaysse et al., 2009). As a result a low level cyclonic circulation is formed 

(Racz and Smith, 1999) and moist cold air is advected from the surrounding regions to 

the heat low, significantly from WAM in southern fringe of the Saharan desert(Grams et 

al., 2010;Lavaysse et al., 2010a;Parker et al., 2005;Sultan et al., 2003;Vizy and Cook, 

2009). Moist air advected from the surrounding areas along with prevailing hot surface 

temperature creates a favourable condition for convection (Knippertz et al., 2009; 

Marsham et al., 2013a). The resulting precipitation however evaporates before 

reaching the ground and down drafting cold air current density is formed (Charba, 

1974;Simpson, 1969) propagating at high speed and initiating emission of large wall of 

dust locally known as haboobs (Allen et al., 2013). Some of these processes are either 

totally missing or misrepresented in climate models (Evan et al., 2014; Heinold et al., 

2013; Knippertz et al., 2009;Marsham et al., 2013a) and introducing errors in model 

simulations. Specifically amount of dust and water vapour are underrepresented in 

models. This will lead to further uncertainty on the radiative effect of dust and water 

vapour in the region.  

The main aim of this thesis is to improve our understanding of key processes 

involved in the development, maintenance, and variability of the SHL. This enables us 

identify the key features that models are lacking to accurately represent present and 

past climate of the region. It also gives a way to assess its impact on regional scale 

which in turn will improve prediction of monsoon flow and associated rain fall in the 

Sahel region on which millions of people depend for their livelihood. This thesis has 

three major research chapters. In the first research chapter I presented a 

comprehensive analysis of the energy and moisture budget of the Saharan heat low 

region. Secondly, as a first step towards assessing biases in climate model outputs, I 

have investigated the roles of dust and water vapour in controlling variability of energy 

budget of the region using observational data. Last I have characterised occurrence 
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frequency and distribution of cold pools that are shown to be important features in 

transport of dust and moisture into Saharan Heat Low region.     

To this end, I used various data sources including reanalysis output, recent in-

situ measurement data, and satellite data. Heat and moisture budget of the heat low 

region is derived from the thermodynamic equation and continuity equation respectively 

using three dimensional temperature and wind fields. Radiative effects of dust and 

water vapour are calculated using radiative transfer model. I characterised the 

frequency and distribution of cold pools with a unique detection algorithm using data 

from the AWS. The main results of the research questions are summarized below for 

each of the three chapters.   

 

Summary of Chapter III 
 

One of main motivating reason for doing this research is the recent increases in 

trends  of temperature and precipitation compared with the draught in the 1980s over 

the Sahel (Dong and Suton 2016; Evan et al., 2015; Lavaysse et al., 2016). It is 

suggested that this could be due to the intensification of the Saharan Heat Low. In 

chapter III I investigated heat and moisture budget and its variability in the Saharan 

heat low region. The long-time (1979-2014) JJA mean heat and moisture is derived 

using the three commonly used reanalyses models. I find that all models have 

consistent representation of the heat and moisture budgets on a larger temporal and 

spatial scales. In all cases I found average horizontal temperature advection from both 

mean and transient flows plays important role in cooling the SHL the former being more 

important. However these results will notably deviate from each other on smaller 

regional scales.  The long term variability in the intensity is verified with the 1980’s 

being weak heat low years while in the past two decades there is intensification of the 

SHL. To explore the differences in heat and moisture budgets, I identified two 

contrasting periods of the mean of three warmest heat and the mean of three coolest 

seasons and derived the average heat and moisture budget for composite of the two 

contrasting periods. During the weak heat low years cooling from horizontal 

temperature advection is found to be larger than that of the strong heat low years. To 

the contrary I found more moisture advected during the strong heat low periods 

compared with weak heat low periods. No significant difference is observed in the 

diabatic heat between the strong and weak SHL periods. Specifically I find small 

correlation between intensity of the SHL and surface sensible heat flux.   

 I infer from this (i) the damping, negative feedback process linking the heat low 

intensity to the magnitude of cooling from the mean convergent circulation is perturbed 
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at inter-annual timescales i.e. the weaker SHL years actually have stronger advective 

cooling, likely due to circulation anomalies driven by processes outside the SHL itself 

(ii) Inter-annual variability in SHL temperature and intensity is related more to the 

advective processes described above rather than total diabatic heating. Evan et al., 

2015 propose a positive feedback process to explain the decadal increasing trend in 

SHL intensity, in which a stronger SHL and associated mean circulation drives greater 

import of water vapour into the SHL core and radiative warming. I have also confirmed 

their assertion that there is an increased moisture during the strong SHL years (fig. 

3.11) which will lead to the strengthening of SHL through the greenhouse gas effect.   

Overall reanalyses models are able to represent the heat and moisture budget 

of the SHL on a larger domain. However notable difference are observed when one 

considers the detailed processes to smaller regional scales. This is evident from the 

vertical profile of heating rates averaged over the SHL region. The differences in these 

results could be due to the different core model physics and assimilation methods 

involved in each model. Climate models still lack to represent the detailed heat and 

moisture budget particularly on a regional scale. In line to this models are known to 

misrepresent mesoscale convective cold pools, (see chapter V) which affects the 

moisture budget to first order and heating/drying rates subsequently. Furthermore 

models use climatological aerosol loading which is known to underestimate aerosol 

loadings. Aerosol effects on variability on a smaller time scale are not thus accounted 

reanalyses models. However, Marsham et al. 2015 find dust aerosol variability 

dominates surface rather than top of atmosphere radiative fluxes with net surface 

radiative sensitivity of ~13 W m-2 AOD-1. An improved representation of aerosols is thus 

imperative for a comprehensive understanding all physical processes involved with in 

the SHL.  

I have presented a comprehensive analysis of the heat and moisture budget of 

SHL in chapter-III. However my analysis is made during summer period of time limited 

over  core heat low area. Since SHL has strong link with the WAM and Ocean SSTs, a 

wider analysis that covers a larger domain on land and ocean is essential to give a 

complete description of causes and effects that are being observed in the region. It is 

further possible to infer dynamical aspects from diabatic heating diagnosis. I was not 

able to do it in this thesis because of time shortage. But I would like to further 

investigate these and other related features in future projects, which are described in 

section 6.3.  

  

Summary of Chapter IV 
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A major source of uncertainty in climate models arises from lack of accurate 

representation of aerosols impact on the climate. Among the several reasons for the 

uncertainties in aerosols climate impact some are: the rather non-uniform distribution of 

aerosols in the globe, difficult nature of representing processes involved in emission 

mechanisms of aerosols, and challenges in calculation of radiative effects due to lack 

of geometrical and optical properties of aerosols. In Sahara dust aerosol is known to 

play significant role in modulating the climate of the region. Despite its importance on 

influencing the regions climate, accurate quantitative values of its radiative forcing is far 

from being known accurately. In addition to dust water vapour is also shown to have a 

pivotal role in controlling the mean state and variability of the heat budget of the SHL 

(Evan et al., 2015; Marsham et al., 2016). Recent publications suggest the important 

roles of moisture in controlling (1) diurnal variability of the radiative budget (Marsham et 

al., 2016) and (2) the decadal variability in the intensity of SHL (Evan et al., 2015). 

Therefore improving quantitative values of the radiative effect of dust and water vapour 

and their role in controlling the climate of the region is vital.     

In this chapter, I derived the radiative effect of dust aerosol and water vapour at 

surface, top of atmosphere, and within atmospheric over a one month period at BBM. 

On average the SHL has large net radiative positive surplus at the surface, 83 W m-2, 

relatively smaller but also positive TOA net radiative surplus, 31 W m-2, and therefore 

large atmospheric radiative divergence of 52 W m-2. The results I found suggest that 

dust and water vapour have similar radiative forcing at TOA while dust is found to have 

a stronger surface radiative cooling effect compared with heating effect of water 

vapour. The radiative effects of dust and water vapour are separated by undergoing 

sensitivity experiments. I found for every change in one standard deviation of dust AOD 

DRE of 7 W m-2, -11 W m-2, and 22 W m-2 at surface, TOA, and within the atmosphere 

respectively. The contrasting TOA heating and surface cooling effects of dust results in 

considerable atmospheric convergence heating the PBL below 500 hPa by up to 0.6 K 

Day-1. However episodic and synoptic dust events can result in atmospheric heating as 

large as 6 K Day-1. Water vapour has small radiative convergence due to its similar 

TOA and surface radiative effects in both magnitude and sign.  DRE of water vapour at 

surface, TOA and within atmosphere is 8 W m-2, 6 W m-2, and 1 W m-2 per unit change 

in one standard deviation of column integrated water vapour respectively.  My results 

suggest that the effect of dust is larger than what it is believed to be previously in 

controlling the day to day variability and climate change of the region. It is therefore 

essential to include these updated effects of dust in climate models.  

RT codes are simplified to undergo different experiments. But this comes at its 

own disadvantage. The main limitation of standalone radiative transfer calculations is 
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their inability to account feedback from a radiative active component of the 

atmosphere. This can however be improved by using climate models that provide 

simulation options to run with and without feedback of aerosols.   

 

Summary of Chapter V 
 

The occurrence frequency and spatial distributions of cold pools in the Sahara 

heat low region are assessed in Chapter-V .For this I implemented a unique 

identification method which can effectively detect cold pools when the criteria set is 

fulfilled. Once the cold pools are identified, they are further confirmed by looking at 

SEVIRI satellite imagery for emission of dust or deep convective cloud. I found two 

sources of cold pool formation: (I) from convection fed by moisture carried from the 

WAM flow and (ii) from convection triggered over the North most Africa across the 

Atlas. Based on that I identified 145 cold pool events in eight AWS stations during, 

2011, and 2012. However I expect the actual number to be more than what I found 

here since there times when there is no measurement and times when measured data 

were not accurate. I found the mean changes of 7.2 K in dew point temperature and 

3.4 m s-1 in wind speed and average wind speed of 7 m s-1 associated with passage of 

cold pools. In this work, I have not considered temperature as selection criteria which is 

used in previous research publications. Temperature in general is found to drop as a 

result of cold pool passage. Nevertheless, several cold pools events resulting in rise in 

temperature are also identified. The magnitude of cold pools, measured by the 

changes in atmospheric variables as a result of their passage, varies both on season 

and location. The month July is the time with the most cold pool events identified 

compared with other months. From 111 cold pools identified in 2012 from June to 

September, 36 occurred during July, 33 occurred each in June and August, and 9 

occurred in September. It is also in the month July that cold pools with strong 

signatures are identified.  Moreover more cold pools are identified in the southern edge 

of the domain which is close to the monsoon flow. I identified 32 cold pools at AWS 134 

compared with 18 cold pools identified at AWS 138. (refer to fig 5.2 for the location of 

this two stations). On average Cold pools triggered by monsoon surge are 

comparatively stronger than those triggered over the Atlas. Furthermore monsoon 

triggered cold pools are often associated with emission of dust as confirmed by SEVIRI 

imagery. I have finally compared measurements with reanalyses model results. 

Moisture is not always underestimated in reanalyses simulations as I confirmed in 

some stations moisture produced in models greater than what is being observed. Large 

discrepancy in surface net longwave flux exists between models and reanalyses 
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outputs. This difference is not necessarily associated with error in moisture or other 

factors (eg. cloud, dust) in the atmosphere. LW flux in measurement has uncertainity 

up to ~50 W m-2 which could partly explain the discrepancy to model values. 

There is no standard or reference identification method for cold pools. This is 

because characteristics of cold pools could vary depending on location and time of 

occurrence. In this chapter I used SEVIRI satellite imagery for dust or convective cloud 

as confirmation for cold pools when the thresholds for selection criteria for atmospheric 

variables are satisfied. However dust is not visible when covered by higher level cloud. 

Moreover it is challenging to distinguish convective cloud from high level cloud from 

SEVIRI images. For a more robust cold pool identification process, an additional 

source would be beneficial for deep is essential for a more robust cold pool 

identification method.  

6.2 Discussion and Implications  
 
 The climate system of SHL is influenced by a number of small scale and large 

scale dynamical processes. The most dominant forces shaping the regions climate 

system are the north-easterly harmattan flow and south-westerly monsoon flow which 

in turn are influenced by the strength of the SHL (Schepanski et al., 2017). The 

strength of the heat low itself is influenced by dust loading and moisture advected into 

the region (Evan, Flamant, et al., 2015) by primarily from monsoon flow and mesoscale 

convective cold pools. The future climate of the region is thus strongly influenced by 

variabilities in circulation and intensity of the SHL.  I have shown in this thesis and also 

previous publications (Cook & Vizy, 2015; Evan, Flamant, et al., 2015; Lavaysse et al., 

2016) increasing trend in the intensity of SHL. The causes of recent intensification of 

the SHL is debatable and needs further investigation however the combined or 

separate effects due changes in SST, increase in greenhouse gases concentration, 

and/or enhanced moisture advection in SHL are likely drivers. Regardless of the exact 

cause, the intensification of the SHL deepens the temperature gradient between the 

Sahara and Gulf of Guinea. This increased temperature gradient drives strengthened 

flows of WAM enhancing precipitation over the Sahel region. Variability across various 

time scales within the SHL will therefore lead to implied changes in the magnitude of 

monsoon flow and thus associated Sahel precipitation (Evan, Flamant, et al., 2015; 

Lavaysse et al., 2010). If the warming trends of the SHL continues at the present or 

higher rate due to future increase of greenhouse gases concentration, Sahel 

precipitation will likely increase in the future.  
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Sahel rainfall is also influenced by global climate patterns such as Atlantic and 

Mediterranean SSTs (Sheen et al., 2017). To understand the future Sahel rainfall, it is 

therefore imperial to undergo an integrated research that consists different land and 

atmospheric components both on regional and global scale. I have shown in this thesis 

that climate models despite capturing the overall picture of the climate system of the 

region, the uncertainty on reproducing detailed dynamical and thermodynamical 

processes and associated variability is still large. Models still need to improve in 

representation of the climate system and associated variability in the SHL. 

Observational data in the region both on temporal and spatial scales are not sufficient 

to give a detailed analysis of climate system of the region. A combined effort of 

improved model representation of the climate of the region abetted by observational 

data is therefore a necessity to improve our understanding of the physical processes of 

the past and predict the future. This needs to be addressed if we have to rely on 

models especially for future projections.    

 Another important component of the Sahara desert is dust. Here I considered 

regional radiative impact of dust over a one-month period. I have shown that dust plays 

significant role in controlling the energy budget of SHL region. That is dust has strong 

SW absorption during the daytime warming the troposphere that leads to thickening in 

depth of boundary layer due to increased vertical mixing (Lavaysse et al., 2011). 

Further I have shown dust has a strong surface cooling basically from blocking of 

incoming solar radiation. The radiative effects of dust will have implications on the 

circulation of the region particularly of the WAM summer features (N'Datchoh et al., 

2018; Zhao et al., 2011). Previous researches documented that dust has a weakening 

effect on the northward penetration of the WAM flow and westward shift of AEJ 

(N'Datchoh et al., 2018). The weakening of WAM flow will lead to reduced precipitation 

over the Sahel region. In addition to its impact on the mean flow, dust is also shown to 

influence the diurnal variability of precipitation (Zhao et al., 2011). That is during 

daytime strong shortwave absorption increasing atmospheric stability and thus 

inhibiting convection while during nighttime surface warming and atmospheric cooling 

from LW emission reducing atmospheric stability leading to anomalous warming over 

the land surface and atmosphere below dust layer therefore creating favourable 

conditions for nocturnal precipitation. Moreover, dust has a far-reaching global 

influence ranging from its inhibiting impact on storm formation over the Atlantic Ocean 

(Dunion & Velden, 2004) to influencing the ecosystem in the Amazon and northern 

Atlantic by serving as fertilizer upon deposition (Bristow et al., 2010; Jickells et al., 

2005).   
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 Dust emission and transport in the Sahara desert shows wide range of 

variability from diurnal to decadal time scales (Chaboureau et al., 2007; Evan & 

Mukhopadhyay, 2010). In line with this recent research findings suggest pattern of 

changes in dust amount with elevated periods of dustiness during the 70s and 80s and 

less dustiness periods in 2000s (Evan et al., 2016). Further model predictions project 

less dustiness in the future Sahara as a consequence the current global warming 

(Evan et al., 2016). The implications of less dusty future are positive for the people 

living in the Sahel region. It is suggested the current global warming if continued 

pushes the ITD northward which could lead to future greening of the Sahara desert 

(Pausata et al., 2017) back to what is believed to be its state thousands of years ago.  

To the contrary, the projected less dustiness will have adverse consequences to the 

people living in the Americas due to stronger tropical cyclones and less deposition in 

the Amazon (Pausata et al., 2017).  

The above important features clearly show the crucial role dust plays in the 

circulation and energy budget of the region and hence the need to implement improved 

dust modules climate models. There are two important aspects that need urgent 

attention in modelling of dust. First accurate calculation of the radiative effect of dust 

which requires precise representation of geometrical and optical properties of dust 

aerosols in models. For this advanced in-situ measurements accounting details of 

different types of dust at various altitudes needs to be collected. Second there is a 

need to develop improved dust emission schemes with accurate capabilities of 

simulating emission and transport of dust. In this way it is possible to improve the 

modelling and thus accurate calculation of dust radiative effect and prediction of dust 

loading and variability in the atmosphere by models.    

6.3 Future works 
 

In general, lack of complete observational data due to the harsh weather 

conditions in the heart of the Sahara desert is a major setback to research. FENNEC 

field campaign during 2011 and 2012 has provided useful data in the remote locations 

of Sahara desert. However the data collection were not made in such a way that can 

be used for calculation of horizontal advection of temperature and moisture. Aircraft 

flights for the dropsondes designed in a similar way as those described in Eric Smith, 

1985 would be great advantage for the calculation heat and moisture budget from 

observations. In addition to atmospheric variables, measurements should include 

surface characteristics, dust distribution, dust optical and geometrical properties, and 

cloud distribution and properties. A comprehensive set data including surface, 
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atmosphere, and ocean is key to disclose what remains to be challenging to explain 

otherwise. Below I summarize some of the future works I would like to carry out as 

extension to what has been done in this thesis.    
The impact of ocean on land (teleconnection) is one of the major research field 

of our times. The details of variability and connection of SHL with the WAM flow and 

the various time scale changes in ocean SST is not yet understood. In relation to this 

there is a rich source of evidence that variability in West African Monsoon is strongly 

coupled with variability in tropical SST (Janicot et al., 1998; E. R. Martin & Thorncroft, 

2014; Mohino et al., 2011). However there is considerable uncertainty both on 

magnitude and sign of relationship between variability in WAM (and trends in Sahel 

precipitation) and changes in SST. Diabatic heating, the main source of energy driving 

circulation, is important quantity to investigate land-atmosphere and land-ocean 

interactions.  

In chapter III I determined the heat and moisture budget of the Saharan heat 

low region. I would like to extend the this work to explore roles of changes in SST on 

variability of SHL informed by studying the heat and moisture budget of the larger 

domain which includes land and ocean on the west side of Sahara on longer temporal 

scales. Here I derived heat and moisture budget from three reanalyses model output. I 

would like to further study the important dynamical and thermodynamical processes 

using simulation of coupled meteorology and aerosol/chemistry model WRF-Chem and 

RegCM.  These regional models improve the representation and thus radiative effect of 

dust compared with reanalyses models that use climatological dust. By analysing 

different components of vertical and horizontal distributions diabatic heating, it is 

possible to infer processes that affect land-ocean circulations (G. M. Martin et al., 

2017). This will present a more complete picture and thus improved understanding of 

the dynamics of the region.    

A major component of this research focuses on dust impact on the climate. In 

chapter IV, I quantified the role of dust and water vapour on the SHL radiative budget 

using a standalone radiative transfer code. For that, I used different set of input 

dataset. I used Dubovik dust size distribution in the radiative transfer calculations. 

However, there are large uncertainties in some of the input dataset I used for 

simulation of RT code. For instance Dubovik dust size distribution is not an ideal 

representation of dust particularly close to the emission sources. Lack of accurate size 

distribution and optical properties of dust are the major sources of uncertainty in 

calculation of radiative impact of dust. In addition to uncertainties in optical properties, 

dust modules in climate models have limited number of bins representing dust. As a 

future project, I would like to implement an improved dust representation in WRF and 
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RegCM models by presenting an improved size distribution with more dust bins that 

best approximate the actual distribution of dust in the atmosphere. The use of climate 

models to calculate radiative effect of dust will further enable us to include the dynamic 

and thermodynamic feedback from dust.     

  Another important but challenging aspect causing uncertainty in the radiative 

calculations of the SHL is lack of data of cloud properties. In this thesis, I used cloud 

properties from reanalysis. However, reanalysis models miss cloud specifically those 

associated with convection. It is therefore essential to have measurements of cloud 

properties in order to give a complete and accurate radiative budget the Sahara heat 

low. Therefore, with accurate measurements of dust and cloud properties, it is possible 

to significantly reduce the uncertainty in the radiative budget of the region, and hence a 

major plan of my future work.      

A shortcoming of the cold pool identification algorithm I used in this thesis is 

that SEVIRI imagery are not always reliable on detecting dust and convective cloud. 

Satellite microwave imagery are more reliable on detecting deep convective clouds, 

which are pre-coursers of cold pool outflows. This will increase the robustness of my 

cold pool detection method which is a possible future work. Having an improved cold 

pool identification method the next plan will be to study cold pools representation in 

regional models specifically using WRF-Chem and RegCM. Model evaluation of cold 

simulation has been studied by several authors for different locations (Heinold et al., 

2013; Knippertz et al., 2009; Marsham et al., 2013). A case studies have also been 

conducted over the Sahara region (Provod et al., 2016). I would like to carry out a more 

rigorous evaluation of regional climate models performance in resolving cold pool 

characteristics. This includes comparison of the model simulations and observations at 

all AWS stations spread over the Sahara desert.  

 Furthermore I would like to study the contribution of cold pools to the emission 

of dust in the region. This has been studied previously by a number of authors. But all 

previous studies focus on limited locations. For instance Allan et al., 2013 showed that 

cold pools contribute to 30% of the total dust emitted during summer time at BBM. I 

would like to extend this to other AWS stations. Such studies are vital for attribution of 

cold pools in the emission of dust in the region. In doing so it will be possible to figure 

out the shortcomings of models and thus indicate ways via developers can be informed 

possible future improvements.  
 

 

 



123 

 

References 
 

Allen, C. J. T., Washington, R. & Engelstaedter, S. 2013. Dust emission and transport mechanisms 
in the central Sahara: Fennec ground-based observations from Bordj Badji Mokhtar, 
June 2011. Journal of Geophysical Research-Atmospheres, 118, 6212-6232. 

Ansell, C., Brindley, H. E., Pradhan, Y. & Saunders, R. 2014. Mineral dust aerosol net direct 
radiative effect during GERBILS field campaign period derived from SEVIRI and GERB. 
Journal of Geophysical Research-Atmospheres, 119, 4070-4086. 

Ansmann, A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D., Muller, D. & Schulz, O. 2009. 
Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus 
Series B-Chemical and Physical Meteorology, 61, 340-353. 

Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M., Muller, D., . . . Heintzenberg, J. 
(2011). Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we 
learned? Tellus Series B-Chemical and Physical Meteorology, 63(4), 403-429. 
doi:10.1111/j.1600-0889.2011.00555.x 

 
Ashpole, I. & Washington, R. 2012. An automated dust detection using SEVIRI: A multiyear 

climatology of summertime dustiness in the central and western Sahara. Journal of 
Geophysical Research-Atmospheres, 117. 

Ashpole, I. & Washington, R. 2013. A new high-resolution central and western Saharan 
summertime dust source map from automated satellite dust plume tracking. Journal of 
Geophysical Research-Atmospheres, 118, 6981-6995. 

Balkanski, Y., Schulz, M., Claquin, T., & Guibert, S. (2007). Reevaluation of Mineral aerosol 
radiative forcings suggests a better agreement with satellite and AERONET data. 
Atmospheric Chemistry and Physics, 7, 81-95. doi:DOI 10.5194/acp-7-81-2007 

 
Banks, J. R. & Brindley, H. E. 2013. Evaluation of MSG-SEVIRI mineral dust retrieval products over 

North Africa and the Middle East. Remote Sensing of Environment, 128, 58-73. 

Banks, J. R., Brindley, H. E., Hobby, M. & Marsham, J. H. 2014. The daytime cycle in dust aerosol 
direct radiative effects observed in the central Sahara during the Fennec campaign in 
June 2011. Journal of Geophysical Research-Atmospheres, 119, 13861-13876. 

Biasutti, M., Sobel, A. H., & Camargo, S. J. (2009). The Role of the Sahara Low in Summertime 
Sahel Rainfall Variability and Change in the CMIP3 Models. Journal of Climate, 22(21), 
5755-5771. doi:10.1175/2009jcli2969.1 

 
Birch, C. E., Marsham, J. H., Parker, D. J. & Taylor, C. M. 2014. The scale dependence and 

structure of convergence fields preceding the initiation of deep convection. Geophysical 
Research Letters, 41, 4769-4776. 



124 

 

Blake, D. W., Krishnamurti, T. N., Lownam, S. V., & Fein, J. S. (1983). Heat Low over the Saudi 
Arabian Desert during May 1979 (Summer Monex). Monthly Weather Review, 111(9), 
1759-1775. doi:Doi 10.1175/1520-0493(1983)111<1759:Hlotsa>2.0.Co;2 

 
Bounoua, L. & Krishnamurti, T. N. 1991. Thermodynamic Budget of the 5 Day Wave over the 

Saharan Desert during Summer. Meteorology and Atmospheric Physics, 47, 1-25. 

Brindley, H., Knippertz, P., Ryder, C. & Ashpole, I. 2012. A critical evaluation of the ability of the 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared red-green-blue 
rendering to identify dust events: Theoretical analysis. Journal of Geophysical Research-
Atmospheres, 117. 

Bristow, C. S., Hudson-Edwards, K. A. & Chappell, A. 2010. Fertilizing the Amazon and equatorial 
Atlantic with West African dust. Geophysical Research Letters, 37. 

Chan, S. C. & Nigam, S. 2009. Residual Diagnosis of Diabatic Heating from ERA-40 and NCEP 
Reanalyses: Intercomparisons with TRMM. Journal of Climate, 22, 414-428. 

Chaboureau, J. P., Tulet, P., & Mari, C. (2007). Diurnal cycle of dust and cirrus over West Africa 
as seen from Meteosat Second Generation satellite and a regional forecast model. 
Geophysical Research Letters, 34(2). doi:Artn L02822 10.1029/2006gl027771 

 
Charba, J. 1974. Application of Gravity Current Model to Analysis of Squall-Line Gust Front. 

Monthly Weather Review, 102, 140-156. 

Chauvin, F., Roehrig, R. & Lafore, J. P. 2010. Intraseasonal Variability of the Saharan Heat Low 
and Its Link with Midlatitudes. Journal of Climate, 23, 2544-2561. 

Chou, C., Neelin, J. D. & Su, H. 2001. Ocean-atmosphere-land feedbacks in an idealized monsoon. 
Quarterly Journal of the Royal Meteorological Society, 127, 1869-1891. 

Cook, K. H. & Vizy, E. K. 2015. Detection and Analysis of an Amplified Warming of the Sahara 
Desert. Journal of Climate, 28, 6560-6580. 

Couvreux, F., Guichard, F., Bock, O., Campistron, B., Lafore, J. P. & Redelsperger, J. L. 2010. 
Synoptic variability of the monsoon flux over West Africa prior to the onset. Quarterly 
Journal of the Royal Meteorological Society, 136, 159-173. 

Cuesta, J., Edouart, D., Mimouni, M., Flamant, P. H., Loth, C., Gibert, F., Marnas, F., Bouklila, A., 
Kharef, M., Ouchene, B., Kadi, M. & Flamant, C. 2008. Multiplatform observations of the 
seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, 
in the framework of the African Monsoon Multidisciplinary Analysis field campaign 
conducted in 2006. Journal of Geophysical Research-Atmospheres, 113. 

Cuesta, J., Lavaysse, C., Flamant, C., Mimouni, M. & Knippertz, P. 2010. Northward bursts of the 
West African monsoon leading to rainfall over the Hoggar Massif, Algeria. Quarterly 
Journal of the Royal Meteorological Society, 136, 174-189. 



125 

 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., 
Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., 
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., 
Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., 
McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., 
Tavolato, C., Thepaut, J. N. & Vitart, F. 2011. The ERA-Interim reanalysis: configuration 
and performance of the data assimilation system. Quarterly Journal of the Royal 
Meteorological Society, 137, 553-597. 

Dong, B. W., & Sutton, R. (2015). Dominant role of greenhouse-gas forcing in the recovery of 
Sahel rainfall. Nature Climate Change, 5(8), 757-U173. doi:10.1038/Nclimate2664 

 
Drager, A. J. & van den Heever, S. C. 2017. Characterizing convective cold pools. Journal of 

Advances in Modeling Earth Systems, 9, 1091-1115. 

Drobinski, P., Sultan, B. & Janicot, S. 2005. Role of the Hoggar massif in the West African 
monsoon onset. Geophysical Research Letters, 32. 

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanre, D. & Slutsker, 
I. 2002. Variability of absorption and optical properties of key aerosol types observed in 
worldwide locations. Journal of the Atmospheric Sciences, 59, 590-608. 

Dunion, J. P., & Velden, C. S. (2004). The impact of the Saharan air layer on Atlantic tropical 
cyclone activity. Bulletin of the American Meteorological Society, 85(3), 353-+. 
doi:10.1175/Bams-85-3-353 

 
Edwards, J. M. & Slingo, A. 1996. Studies with a flexible new radiation code .1. Choosing a 

configuration for a large-scale model. Quarterly Journal of the Royal Meteorological 
Society, 122, 689-719. 

Emmel, C., Knippertz, P. & Schulz, O. 2010. Climatology of convective density currents in the 
southern foothills of the Atlas Mountains. Journal of Geophysical Research-Atmospheres, 
115. 

Engelstaedter, S., Tegen, I. & Washington, R. 2006. North African dust emissions and transport. 
Earth-Science Reviews, 79, 73-100. 

Engelstaedter, S., Washington, R., Flamant, C., Parker, D. J., Allen, C. J. T. & Todd, M. C. 2015. 
The Saharan heat low and moisture transport pathways in the central Sahara-
Multiaircraft observations and Africa-LAM evaluation. Journal of Geophysical Research-
Atmospheres, 120, 4417-4442. 

Engerer, N. A., Stensrud, D. J. & Coniglio, M. C. 2008. Surface Characteristics of Observed Cold 
Pools. Monthly Weather Review, 136, 4839-4849. 

Evan, A. T., Fiedler, S., Zhao, C., Menut, L., Schepanski, K., Flamant, C., & Doherty, O. (2015). 
Derivation of an observation-based map of North African dust emission. Aeolian 
Research, 16, 153-162. doi:10.1016/j.aeolia.2015.01.001 



126 

 

Evan, A. T., Flamant, C., Gaetani, M., & Guichard, F. (2016). The past, present and future of 
African dust. Nature, 531(7595), 493-+. doi:10.1038/nature17149 

 
Evan, A. T., Flamant, C., Fiedler, S. & Doherty, O. 2014. An analysis of aeolian dust in climate 

models. Geophysical Research Letters, 41, 5996-6001. 

Evan, A. T., Flamant, C., Lavaysse, C., Kocha, C. & Saci, A. 2015. Water Vapor-Forced Greenhouse 
Warming over the Sahara Desert and the Recent Recovery from the Sahelian Drought. 
Journal of Climate, 28, 108-123. 

Evan, A. T., Foltz, G. R., Zhang, D. X. & Vimont, D. J. 2011. Influence of African dust on ocean-
atmosphere variability in the tropical Atlantic. Nature Geoscience, 4, 762-765. 

Evan, A. T., & Mukhopadhyay, S. (2010). African Dust over the Northern Tropical Atlantic: 1955-
2008. Journal of Applied Meteorology and Climatology, 49(11), 2213-2229. 
doi:10.1175/2010jamc2485.1 

 
Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P. & Tegen, I. 2013. Climatology of nocturnal 

low-level jets over North Africa and implications for modeling mineral dust emission. 
Journal of Geophysical Research-Atmospheres, 118, 6100-6121. 

Flamant, C., Knippertz, P., Parker, D. J., Chaboureau, J. P., Lavaysse, C., Agusti-Panareda, A. & 
Kergoat, L. 2009. The impact of a mesoscale convective system cold pool on the 
northward propagation of the intertropical discontinuity over West Africa. Quarterly 
Journal of the Royal Meteorological Society, 135, 139-159. 

Garcia-Carreras, L., Marsham, J. H., Parker, D. J., Bain, C. L., Milton, S., Saci, A., Salah-Ferroudj, 
M., Ouchene, B. & Washington, R. 2013. The impact of convective cold pool outflows on 
model biases in the Sahara. Geophysical Research Letters, 40, 1647-1652. 

Giannini, A., Salack, S., Lodoun, T., Ali, A., Gaye, A. T., & Ndiaye, O. (2013). A unifying view of 
climate change in the Sahel linking intra-seasonal, interannual and longer time scales. 
Environmental Research Letters, 8(2). doi:Artn 024010 10.1088/1748-9326/8/2/024010 

 
Giannini, A., Saravanan, R., & Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual 

to interdecadal time scales. Science, 302(5647), 1027-1030. 
doi:10.1126/science.1089357 

 
Goudie, A. S. (2014). Desert dust and human health disorders. Environment International, 63, 

101-113. doi:10.1016/j.envint.2013.10.011 
 
Grams, C. M., Jones, S. C., Marsham, J. H., Parker, D. J., Haywood, J. M. & Heuveline, V. 2010. 

The Atlantic Inflow to the Saharan heat low: Observations and Modelling. Quarterly 
Journal of the Royal Meteorological Society, 136, 125-140. 

Greed, G., Haywood, J. M., Milton, S., Keil, A., Christopher, S., Gupta, P. & Highwood, E. J. 2008. 
Aerosol optical depths over North Africa: 2. Modeling and model validation. Journal of 
Geophysical Research-Atmospheres, 113. 



127 

 

Hagos, S. & Zhang, C. D. 2010. Diabatic heating, divergent circulation and moisture transport in 
the African monsoon system. Quarterly Journal of the Royal Meteorological Society, 136, 
411-425. 

Hagos, S. M. & Cook, K. H. 2008. Ocean warming and late-twientieth-century Sahel drought and 
recovery. Journal of Climate, 21, 3797-3814. 

Hannak, L., Knippertz, P., Fink, A. H., Kniffka, A. & Pante, G. 2017. Why Do Global Climate Models 
Struggle to Represent Low-Level Clouds in the West African Summer Monsoon? Journal 
of Climate, 30, 1665-1687. 

Harries, J. E., Russell, J. E., Hanafin, J. A., Brindley, H., Futyan, J., Rufus, J., Kellock, S., Matthews, 
G., Wrigley, R., Last, A., Mueller, J., Mossavati, R., Ashmall, J., Sawyer, E., Parker, D., 
Caldwell, M., Allan, P. M., Smith, A., Bates, M. J., Coan, B., Stewart, B. C., Lepine, D. R., 
Cornwall, L. A., Corney, D. R., Ricketts, M. J., Drummond, D., Smart, D., Cutler, R., Dewitte, 
S., Clerbaux, N., Gonzalez, L., Ipe, A., Bertrand, C., Joukoff, A., Crommelynck, D., Nelms, 
N., Llewellyn-Jones, D. T., Butcher, G., Smith, G. L., Szewczyk, Z. P., Mlynczak, P. E., Slingo, 
A., Allan, R. P. & Ringer, M. A. 2005. The geostationary Earth Radiation Budget Project. 
Bulletin of the American Meteorological Society, 86, 945-+. 

Haywood, J. M., Allan, R. P., Culverwell, I., Slingo, T., Milton, S., Edwards, J. & Clerbaux, N. 2005. 
Can desert dust explain the outgoing longwave radiation anomaly over the Sahara 
during July 2003? Journal of Geophysical Research-Atmospheres, 110. 

Haywood, J. M., Johnson, B. T., Osborne, S. R., Baran, A. J., Brooks, M., Milton, S. F., . . . Gupta, 
P. (2011). Motivation, rationale and key results from the GERBILS Saharan dust 
measurement campaign. Quarterly Journal of the Royal Meteorological Society, 
137(658), 1106-1116. doi:10.1002/qj.797 

 
Haywood, J. M., Pelon, J., Formenti, P., Bharmal, N., Brooks, M., Capes, G., . . . Tulet, P. (2008). 

Overview of the Dust and Biomass-burning Experiment and African Monsoon 
Multidisciplinary Analysis Special Observing Period-0. Journal of Geophysical Research-
Atmospheres, 113. doi:Artn D00c1710.1029/2008jd010077 

 
Heinold, B., Knippertz, P., Marsham, J. H., Fiedler, S., Dixon, N. S., Schepanski, K., Laurent, B. & 

Tegen, I. 2013. The role of deep convection and nocturnal low-level jets for dust 
emission in summertime West Africa: Estimates from convection-permitting simulations. 
Journal of Geophysical Research-Atmospheres, 118, 4385-4400. 

Heintzenberg, J. (2009). The SAMUM-1 experiment over Southern Morocco: overview and 
introduction. Tellus Series B-Chemical and Physical Meteorology, 61(1), 2-11. 
doi:10.1111/j.1600-0889.2008.00403.x 

 
Highwood, E. J., Haywood, J. M., Silverstone, M. D., Newman, S. M. & Taylor, J. P. 2003. Radiative 

properties and direct effect of Saharan dust measured by the C-130 aircraft during 
Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. Journal of Geophysical 
Research-Atmospheres, 108. 



128 

 

Hobby, M., Gascoyne, M., Marsham, J. H., Bart, M., Allen, C., Engelstaedter, S., Fadel, D. M., 
Gandega, A., Lane, R., McQuaid, J. B., Ouchene, B., Ouladichir, A., Parker, D. J., 
Rosenberg, P., Ferroudj, M. S., Saci, A., Seddik, F., Todd, M., Walker, D. & Washington, 
R. 2013. The Fennec Automatic Weather Station (AWS) Network: Monitoring the 
Saharan Climate System. Journal of Atmospheric and Oceanic Technology, 30, 709-724. 

Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., 
Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I. & Smirnov, A. 1998. AERONET - A 
federated instrument network and data archive for aerosol characterization. Remote 
Sensing of Environment, 66, 1-16. 

Hoose, C., & Mohler, O. (2012). Heterogeneous ice nucleation on atmospheric aerosols: a review 
of results from laboratory experiments. Atmospheric Chemistry and Physics, 12(20), 
9817-9854. doi:10.5194/acp-12-9817-2012 

 

Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q. & Yan, H. R. 2014. Climate effects of dust aerosols 
over East Asian arid and semiarid regions. Journal of Geophysical Research-Atmospheres, 
119, 11398-11416. 

Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, 
O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, 
A., Horowitz, L., Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R., 
Morcrette, J. J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T. & Zender, C. S. 
2011. Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry 
and Physics, 11, 7781-7816. 

Janicot, S., Harzallah, A., Fontaine, B., & Moron, V. (1998). West African monsoon dynamics and 
eastern equatorial Atlantic and Pacific SST anomalies (1970-88). Journal of Climate, 
11(8), 1874-1882. doi:Doi 10.1175/1520-0442-11.8.1874 

 
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, 

P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., 
Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I. & Torres, R. 2005. Global iron 
connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 
67-71. 

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M. & Potter, G. L. 2002. 
NCEP-DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society, 83, 
1631-1643. 

Karam, D. B., Flamant, C., Tulet, P., Chaboureau, J. P., Dabas, A. & Todd, M. C. 2009. Estimate of 
Sahelian dust emissions in the intertropical discontinuity region of the West African 
Monsoon. Journal of Geophysical Research-Atmospheres, 114. 

Karam, D. B., Williams, E., Janiga, M., Flamant, C., McGraw-Herdeg, M., Cuesta, J., Auby, A. & 
Thorncroft, C. 2014. Synoptic-scale dust emissions over the Sahara Desert initiated by a 
moist convective cold pool in early August 2006. Quarterly Journal of the Royal 
Meteorological Society, 140, 2591-2607. 



129 

 

Knippertz, P. & Todd, M. C. 2012. Mineral Dust Aerosols over the Sahara: Meteorological 
Controls on Emission and Transport and Implications for Modeling. Reviews of 
Geophysics, 50. 

Knippertz, P., Trentmann, J. & Seifert, A. 2009. High-resolution simulations of convective cold 
pools over the northwestern Sahara. Journal of Geophysical Research-Atmospheres, 114. 

Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., Albani, S. & 
Haustein, K. 2017. Smaller desert dust cooling effect estimated from analysis of dust size 
and abundance. Nature Geoscience, 10, 274-+. 

Lafore, J. P., Flamant, C., Giraud, V., Guichard, F., Knippertz, P., Mahfouf, J. F., Mascart, P. & 
Williams, E. R. 2010. Introduction to the AMMA Special Issue on 'Advances in 
understanding atmospheric processes over West Africa through the AMMA field 
campaign'. Quarterly Journal of the Royal Meteorological Society, 136, 2-7. 

Lavaysse, C. (2015). Saharan desert warming. Nature Climate Change, 5(9), 807-808. doi:DOI 
10.1038/nclimate2773 

 
Lavaysse, C., Chaboureau, J. P. & Flamant, C. 2011. Dust impact on the West African heat low in 

summertime. Quarterly Journal of the Royal Meteorological Society, 137, 1227-1240. 

Lavaysse, C., Flamant, C., Evan, A., Janicot, S. & Gaetani, M. 2016. Recent climatological trend of 
the Saharan heat low and its impact on the West African climate. Climate Dynamics, 47, 
3479-3498. 

Lavaysse, C., Flamant, C. & Janicot, S. 2010a. Regional-scale convection patterns during strong 
and weak phases of the Saharan heat low. Atmospheric Science Letters, 11, 255-264. 

Lavaysse, C., Flamant, C., Janicot, S. & Knippertz, P. 2010b. Links between African easterly waves, 
midlatitude circulation and intraseasonal pulsations of the West African heat low. 
Quarterly Journal of the Royal Meteorological Society, 136, 141-158. 

Lavaysse, C., Flamant, C., Janicot, S., Parker, D. J., Lafore, J. P., Sultan, B. & Pelon, J. 2009. 
Seasonal evolution of the West African heat low: a climatological perspective. Climate 
Dynamics, 33, 313-330. 

Lensky, I. M. & Rosenfeld, D. 2008. Clouds-Aerosols-Precipitation Satellite Analysis Tool 
(CAPSAT). Atmospheric Chemistry and Physics, 8, 6739-6753. 

Liu, Z. Y., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R., Omar, A., Powell, K., 
Trepte, C. & Hostetler, C. 2009. The CALIPSO Lidar Cloud and Aerosol Discrimination: 
Version 2 Algorithm and Initial Assessment of Performance. Journal of Atmospheric and 
Oceanic Technology, 26, 1198-1213. 

Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., Manalo-Smith, N. & 
Wong, T. 2009. Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation 
Budget. Journal of Climate, 22, 748-766. 



130 

 

Marsham, J. H., Dixon, N. S., Garcia-Carreras, L., Lister, G. M. S., Parker, D. J., Knippertz, P. & 
Birch, C. E. 2013a. The role of moist convection in the West African monsoon system: 
Insights from continental-scale convection-permitting simulations. Geophysical 
Research Letters, 40, 1843-1849. 

Marsham, J. H., Hobby, M., Allen, C. J. T., Banks, J. R., Bart, M., Brooks, B. J., Cavazos-Guerra, C., 
Engelstaedter, S., Gascoyne, M., Lima, A. R., Martins, J. V., McQuaid, J. B., O'Leary, A., 
Ouchene, B., Ouladichir, A., Parker, D. J., Saci, A., Salah-Ferroudj, M., Todd, M. C. & 
Washington, R. 2013b. Meteorology and dust in the central Sahara: Observations from 
Fennec supersite-1 during the June 2011 Intensive Observation Period. Journal of 
Geophysical Research-Atmospheres, 118, 4069-4089. 

Marsham, J. H., Parker, D. J., Todd, M. C., Banks, J. R., Brindley, H. E., Garcia-Carreras, L., Roberts, 
A. J. & Ryder, C. L. 2016. The contrasting roles of water and dust in controlling daily 
variations in radiative heating of the summertime Saharan heat low. Atmospheric 
Chemistry and Physics, 16, 3563-3575. 

Martin, E. R. & Thorncroft, C. D. 2014. The impact of the AMO on the West African monsoon 
annual cycle. Quarterly Journal of the Royal Meteorological Society, 140, 31-46. 

Martin, E. R., Thorncroft, C., & Booth, B. B. B. (2014). The Multidecadal Atlantic SST-Sahel Rainfall 
Teleconnection in CMIP5 Simulations. Journal of Climate, 27(2), 784-806. 
doi:10.1175/Jcli-D-13-00242.1 

 
Martin, G. M., Peyrille, P., Roehrig, R., Rio, C., Caian, M., Bellon, G., Codron, F., Lafore, J. P., Poan, 

D. E. & Idelkadi, A. 2017. Understanding the West African Monsoon from the analysis of 
diabatic heating distributions as simulated by climate models. Journal of Advances in 
Modeling Earth Systems, 9, 239-270. 

McConnell, C. L., Highwood, E. J., Coe, H., Formenti, P., Anderson, B., Osborne, S., . . . Harrison, 
M. A. J. (2008). Seasonal variations of the physical and optical characteristics of Saharan 
dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. 
Journal of Geophysical Research-Atmospheres, 113(D14). doi:Artn D14s05 
10.1029/2007jd009606 

 

Mekonnen, A., Thorncroft, C. D. & Aiyyer, A. R. 2006. Analysis of convection and its association 
with African easterly waves. Journal of Climate, 19, 5405-5421. 

Messager, C., Parker, D. J., Reitebuch, O., Agusti-Panareda, A., Taylor, C. M. & Cuesta, J. 2010a. 
Structure and dynamics of the Saharan atmospheric boundary layer during the West 
African monsoon onset: Observations and analyses from the research flights of 14 and 
17 July 2006. Quarterly Journal of the Royal Meteorological Society, 136, 107-124. 

Messager, E., Lordkipanidze, D., Delhon, C. & Ferring, C. R. 2010b. Palaeoecological implications 
of the Lower Pleistocene phytolith record from the Dmanisi Site (Georgia). 
Palaeogeography Palaeoclimatology Palaeoecology, 288, 1-13. 



131 

 

Miller, S. D., Kuciauskas, A. P., Liu, M., Ji, Q., Reid, J. S., Breed, D. W., Walker, A. L. & Al Mandoos, 
A. 2008. Haboob dust storms of the southern Arabian Peninsula. Journal of Geophysical 
Research-Atmospheres, 113. 

Mishchenko, M. I., Lacis, A. A., Carlson, B. E., & Travis, L. D. (1995). Nonsphericity of Dust-Like 
Tropospheric Aerosols - Implications for Aerosol Remote-Sensing and Climate Modeling. 
Geophysical Research Letters, 22(9), 1077-1080. doi:Doi 10.1029/95gl00798 

 
Mohino, E., Rodriguez-Fonseca, B., Mechoso, C. R., Gervois, S., Ruti, P., & Chauvin, F. (2011). 

Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African 
Monsoon. Journal of Climate, 24(15), 3878-3891. doi:10.1175/2011jcli3988.1 

 
Mulcahy, J. P., Walters, D. N., Bellouin, N. & Milton, S. F. 2014. Impacts of increasing the aerosol 

complexity in the Met Office global numerical weather prediction model. Atmospheric 
Chemistry and Physics, 14, 4749-4778. 

Muller, T., Schladitz, A., Massling, A., Kaaden, N., Kandler, K. & Wiedensohler, A. 2009. Spectral 
absorption coefficients and imaginary parts of refractive indices of Saharan dust during 
SAMUM-1. Tellus Series B-Chemical and Physical Meteorology, 61, 79-95. 

Myhre, G., Shindell, D., Breon, F. M., Collins, W., Fuglestvedt, J., Huang, J. P., . . . Young, P. (2014). 
Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical 
Science Basis, 659-740.  

 
N'Datchoh, E. T., Diallo, I., Konare, A., Silue, S., Ogunjobi, K. O., Diedhiou, A., & Doumbia, M. 

(2018). Dust induced changes on the West African summer monsoon features. 
International Journal of Climatology, 38(1), 452-466. doi:10.1002/joc.5187 

 
Oke, T. R. 1987. Boundary layer climates, London, Methuen. 

Osborne, S. R., Baran, A. J., Johnson, B. T., Haywood, J. M., Hesse, E. & Newman, S. 2011. Short-
wave and long-wave radiative properties of Saharan dust aerosol. Quarterly Journal of 
the Royal Meteorological Society, 137, 1149-1167. 

Osipov, S., Stenchikov, G., Brindley, H. & Banks, J. 2015. Diurnal cycle of the dust instantaneous 
direct radiative forcing over the Arabian Peninsula. Atmospheric Chemistry and Physics, 
15, 9537-9553. 

Otto, S., Bierwirth, E., Weinzierl, B., Kandler, K., Esselborn, M., Tesche, M., Schladitz, A., 
Wendisch, M. & Trautmann, T. 2009. Solar radiative effects of a Saharan dust plume 
observed during SAMUM assuming spheroidal model particles. Tellus Series B-Chemical 
and Physical Meteorology, 61, 270-296. 

Otto, S., de Reus, M., Trautmann, T., Thomas, A., Wendisch, M. & Borrmann, S. 2007. 
Atmospheric radiative effects of an in situ measured Saharan dust plume and the role 
of large particles. Atmospheric Chemistry and Physics, 7, 4887-4903. 



132 

 

Otto, S., Trautmann, T. & Wendisch, M. 2011. On realistic size equivalence and shape of 
spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer 
calculations. Atmospheric Chemistry and Physics, 11, 4469-4490. 

Parker, D. J., Burton, R. R., Diongue-Niang, A., Ellis, R. J., Felton, M., Taylor, C. M., Thorncroft, C. 
D., Bessemoulin, P. & Tompkins, A. M. 2005. The diurnal cycle of the West African 
monsoon circulation. Quarterly Journal of the Royal Meteorological Society, 131, 2839-
2860. 

Pausata, F. S. R., Emanuel, K. A., Chiacchio, M., Diro, G. T., Zhang, Q., Sushama, L., . . . Donnelly, 
J. P. (2017). Tropical cyclone activity enhanced by Sahara greening and reduced dust 
emissions during the African Humid Period. Proceedings of the National Academy of 
Sciences of the United States of America, 114(24), 6221-6226. 
doi:10.1073/pnas.1619111114 

Petzold, A., Rasp, K., Weinzierl, B., Esselborn, M., Hamburger, T., Dornbrack, A., Kandler, K., 
Schutz, L., Knippertz, P., Fiebig, M. & Virkkula, A. 2009. Saharan dust absorption and 
refractive index from aircraft-based observations during SAMUM 2006. Tellus Series B-
Chemical and Physical Meteorology, 61, 118-130. 

Peyrille, P. & Lafore, J. P. 2007. An idealized two-dimensional framework to study the West 
African monsoon. Part II: Large-scale advection and the diurnal cycle. Journal of the 
Atmospheric Sciences, 64, 2783-2803. 

Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. 2002. Environmental 
characterization of global sources of atmospheric soil dust identified with the Nimbus 7 
Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of 
Geophysics, 40. 

Provod, M., Marsham, J. H., Parker, D. J. & Birch, C. E. 2016. A Characterization of Cold Pools in 
the West African Sahel. Monthly Weather Review, 144, 1923-1934. 

Racz, Z. & Smith, R. K. 1999. The dynamics of heat lows. Quarterly Journal of the Royal 
Meteorological Society, 125, 225-252. 

Randles, C. A., Kinne, S., Myhre, G., Schulz, M., Stier, P., Fischer, J., Doppler, L., Highwood, E., 
Ryder, C., Harris, B., Huttunen, J., Ma, Y., Pinker, R. T., Mayer, B., Neubauer, D., 
Hitzenberger, R., Oreopoulos, L., Lee, D., Pitari, G., Di Genova, G., Quaas, J., Rose, F. G., 
Kato, S., Rumbold, S. T., Vardavas, I., Hatzianastassiou, N., Matsoukas, C., Yu, H., Zhang, 
F., Zhang, H. & Lu, P. 2013. Intercomparison of shortwave radiative transfer schemes in 
global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. 
Atmospheric Chemistry and Physics, 13, 2347-2379. 

Redelsperger, J. L., Thorncroft, C. D., Diedhiou, A., Lebel, T., Parker, D. J., & Polcher, J. (2006). 
African monsoon multidisciplinary analysis - An international research project and field 
campaign. Bulletin of the American Meteorological Society, 87(12), 1739-+. 
doi:10.1175/Bams-87-12-1739 



133 

 

Redl, R., Fink, A. H. & Knippertz, P. 2015. An Objective Detection Method for Convective Cold 
Pool Events and Its Application to Northern Africa. Monthly Weather Review, 143, 5055-
5072. 

Redl, R., Knippertz, P. & Fink, A. H. 2016. Weakening and moistening of the summertime Saharan 
heat low through convective cold pools from the Atlas Mountains. Journal of 
Geophysical Research-Atmospheres, 121, 3907-3928. 

Ridley, D. A., Heald, C. L. & Ford, B. 2012. North African dust export and deposition: A satellite 
and model perspective. Journal of Geophysical Research-Atmospheres, 117. 

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., 
Schubert, S. D., Takacs, L., Kim, G. K., Bloom, S., Chen, J. Y., Collins, D., Conaty, A., Da 
Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., 
Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M. & 
Woollen, J. 2011. MERRA: NASA's Modern-Era Retrospective Analysis for Research and 
Applications. Journal of Climate, 24, 3624-3648. 

Roberts, A. J., Marsham, J. H. & Knippertz, P. 2015. Disagreements in Low-Level Moisture 
between (Re)Analyses over Summertime West Africa. Monthly Weather Review, 143, 
1193-1211. 

Roehrig, R., Bouniol, D., Guichard, F., Hourdin, F. & Redelsperger, J. L. 2013. The Present and 
Future of the West African Monsoon: A Process-Oriented Assessment of CMIP5 
Simulations along the AMMA Transect. Journal of Climate, 26, 6471-6505. 

Ryder, C. L., Highwood, E. J., Lai, T. M., Sodemann, H. & Marsham, J. H. 2013a. Impact of 
atmospheric transport on the evolution of microphysical and optical properties of 
Saharan dust. Geophysical Research Letters, 40, 2433-2438. 

Ryder, C. L., Highwood, E. J., Rosenberg, P. D., Trembath, J., Brooke, J. K., Bart, M., Dean, A., 
Crosier, J., Dorsey, J., Brindley, H., Banks, J., Marsham, J. H., McQuaid, J. B., Sodemann, 
H. & Washington, R. 2013b. Optical properties of Saharan dust aerosol and contribution 
from the coarse mode as measured during the Fennec 2011 aircraft campaign. 
Atmospheric Chemistry and Physics, 13, 303-325. 

Ryder, C. L., McQuaid, J. B., Flamant, C., Rosenberg, P. D., Washington, R., Brindley, H. E., 
Highwood, E. J., Marsham, J. H., Parker, D. J., Todd, M. C., Banks, J. R., Brooke, J. K., 
Engelstaedter, S., Estelles, V., Formenti, P., Garcia-Carreras, L., Kocha, C., Marenco, F., 
Sodemann, H., Allen, C. J. T., Bourdon, A., Bart, M., Cavazos-Guerra, C., Chevaillier, S., 
Crosier, J., Darbyshire, E., Dean, A. R., Dorsey, J. R., Kent, J., O'Sullivan, D., Schepanski, 
K., Szpek, K., Trembath, J. & Woolley, A. 2015. Advances in understanding mineral dust 
and boundary layer processes over the Sahara from Fennec aircraft observations. 
Atmospheric Chemistry and Physics, 15, 8479-8520. 

Schepanski, K., Heinold, B., & Tegen, I. (2017). Harmattan, Saharan heat low, and West African 
monsoon circulation: modulations on the Saharan dust outflow towards the North 
Atlantic. Atmospheric Chemistry and Physics, 17(17), 10223-10243. doi:10.5194/acp-17-
10223-2017 



134 

 

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkann, J., Rota, S. & Ratier, A. 2002. An introduction 
to Meteosat Second Generation (MSG) (vol 83, pg 977, 2002). Bulletin of the American 
Meteorological Society, 83, 1271-1271. 

Schwarz, M., Folini, D., Hakuba, M. Z., & Wild, M. (2017). Spatial Representativeness of Surface-
Measured Variations of Downward Solar Radiation. Journal of Geophysical Research-
Atmospheres, 122(24), 13319-13337. doi:10.1002/2017jd027261 

 
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., 

Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, 
A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., 
Ravishankara, A. R., Rosenfeld, D., Stephens, G. & Wood, R. 2016. Improving our 
fundamental understanding of the role of aerosol-cloud interactions in the climate 
system. Proceedings of the National Academy of Sciences of the United States of America, 
113, 5781-5790. 

Semazzi, F. H. M. & Sun, L. Q. 1997. The role of orography in determining the Sahelian climate. 
International Journal of Climatology, 17, 581-596. 

Sheen, K. L., Smith, D. M., Dunstone, N. J., Eade, R., Rowell, D. P., & Vellinga, M. (2017). Skilful 
prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nature 
Communications, 8. doi:ARTN 1496610.1038/ncomms14966 

 
Shekhar, R. & Boos, W. R. 2017. Weakening and Shifting of the Saharan Shallow Meridional 

Circulation during Wet Years of the West African Monsoon. Journal of Climate, 30, 7399-
7422. 

Simpson, J. E. 1969. A Comparison between Laboratory and Atmospheric Density Currents. 
Quarterly Journal of the Royal Meteorological Society, 95, 758-&. 

Slingo, A., Ackerman, T. P., Allan, R. P., Kassianov, E. I., McFarlane, S. A., Robinson, G. J., Barnard, 
J. C., Miller, M. A., Harries, J. E., Russell, J. E. & Dewitte, S. 2006. Observations of the 
impact of a major Saharan dust storm on the atmospheric radiation balance. 
Geophysical Research Letters, 33. 

Smith, E. A. (1986). The Structure of the Arabian Heat Low .2. Bulk Tropospheric Heat-Budget 
and Implications. Monthly Weather Review, 114(6), 1084-1102. doi:Doi 10.1175/1520-
0493(1986)114<1084:Tsotah>2.0.Co;2 

 
Sodemann, H., Lai, T. M., Marenco, F., Ryder, C. L., Flamant, C., Knippertz, P., Rosenberg, P., Bart, 

M. & McQuaid, J. B. 2015. Lagrangian dust model simulations for a case of moist 
convective dust emission and transport in the western Sahara region during 
Fennec/LADUNEX. Journal of Geophysical Research-Atmospheres, 120, 6117-6144. 

Sokolik, I. N., Winker, D. M., Bergametti, G., Gillette, D. A., Carmichael, G., Kaufman, Y. J., . . . 
Penner, J. E. (2001). Introduction to special section: Outstanding problems in quantifying 
the radiative impacts of mineral dust. Journal of Geophysical Research-Atmospheres, 
106(D16), 18015-18027. doi:Doi 10.1029/2000jd900498 

 



135 

 

Solmon, F., Elguindi, N. & Mallet, M. 2012. Radiative and climatic effects of dust over West Africa, 
as simulated by a regional climate model. Climate Research, 52, 97-113. 

Stanelle, T., Vogel, B., Vogel, H., Baumer, D. & Kottmeier, C. 2010. Feedback between dust 
particles and atmospheric processes over West Africa during dust episodes in March 
2006 and June 2007. Atmospheric Chemistry and Physics, 10, 10771-10788. 

Stein, T. H. M., Parker, D. J., Hogan, R. J., Birch, C. E., Holloway, C. E., Lister, G. M. S., Marsham, 
J. H. & Woolnough, S. J. 2015. The representation of the West African monsoon vertical 
cloud structure in the Met Office Unified Model: an evaluation with CloudSat. Quarterly 
Journal of the Royal Meteorological Society, 141, 3312-3324. 

Sultan, B. & Janicot, S. 2003. The West African monsoon dynamics. Part II: The "preonset'' and 
"onset'' of the summer monsoon. Journal of Climate, 16, 3407-3427. 

Sultan, B., Janicot, S. & Diedhiou, A. 2003. The West African monsoon dynamics. Part I: 
Documentation of intraseasonal variability. Journal of Climate, 16, 3389-3406. 

Tanaka, T. Y. & Chiba, M. 2006. A numerical study of the contributions of dust source regions to 
the global dust budget. Global and Planetary Change, 52, 88-104. 

Tegen, I. & Lacis, A. A. 1996. Modeling of particle size distribution and its influence on the 
radiative properties of mineral dust aerosol. Journal of Geophysical Research-
Atmospheres, 101, 19237-19244. 

Tegen, I. (2003). Modeling the mineral dust aerosol cycle in the climate system. Quaternary 
Science Reviews, 22(18-19), 1821-1834. doi:10.1016/S0277-3791(03)00163-X 

 
Thorncroft, C. & Hodges, K. 2001. African easterly wave variability and its relationship to Atlantic 

tropical cyclone activity. Journal of Climate, 14, 1166-1179. 

Thorncroft, C. D. & Blackburn, M. 1999. Maintenance of the African easterly jet. Quarterly 
Journal of the Royal Meteorological Society, 125, 763-786. 

Todd, M. C., Allen, C. J. T., Bart, M., Bechir, M., Bentefouet, J., Brooks, B. J., Cavazos-Guerra, C., 
Clovis, T., Deyane, S., Dieh, M., Engelstaedter, S., Flamant, C., Garcia-Carreras, L., 
Gandega, A., Gascoyne, M., Hobby, M., Kocha, C., Lavaysse, C., Marsham, J. H., Martins, 
J. V., McQuaid, J. B., Ngamini, J. B., Parker, D. J., Podvin, T., Rocha-Lima, A., Traore, S., 
Wang, Y. & Washington, R. 2013. Meteorological and dust aerosol conditions over the 
western Saharan region observed at Fennec Supersite-2 during the intensive 
observation period in June 2011. Journal of Geophysical Research-Atmospheres, 118, 
8426-8447. 

Todd, M. C. & Cavazos-Guerra, C. 2016. Dust aerosol emission over the Sahara during 
summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 
observations. Atmospheric Environment, 128, 147-157. 



136 

 

Tompkins, A. M. 2001. Organization of tropical convection in low vertical wind shears: The role 
of cold pools. Journal of the Atmospheric Sciences, 58, 1650-1672. 

Trenberth, K. E. & Guillemot, C. J. 1995. Evaluation of the Global Atmospheric Moisture Budget 
as Seen from Analyses. Journal of Climate, 8, 2255-2272. 

Trzeciak, T. M., Garcia-Carreras, L. & Marsham, J. H. 2017. Cross-Saharan transport of water 
vapor via recycled cold pool outflows from moist convection. Geophysical Research 
Letters, 44, 1554-1563. 

Vaughan, M., Young, S., Winker, D., Powell, K., Omar, A., Liu, Z. Y., Hu, Y. X. & Hostetler, C. 2004. 
Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval 
algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, 5575, 
16-30. 

Vizy, E. K. & Cook, K. H. 2009. A mechanism for African monsoon breaks: Mediterranean cold air 
surges. Journal of Geophysical Research-Atmospheres, 114. 

Washington, R., Todd, M., Middleton, N. J. & Goudie, A. S. 2003. Dust-storm source areas 
determined by the total ozone monitoring spectrometer and surface observations. 
Annals of the Association of American Geographers, 93, 297-313. 

Washington, R. & Todd, M. C. 2005. Atmospheric controls on mineral dust emission from the 
Bodele Depression, Chad: The role of the low level jet. Geophysical Research Letters, 32. 

Wei, N., Zhou, L. M., Dai, Y. J., Xia, G. & Hua, W. J. 2017. Observational Evidence for Desert 
Amplification Using Multiple Satellite Datasets. Scientific Reports, 7. 

Weinzierl, B., Sauer, D., Minikin, A., Reitebuch, O., Dahlkotter, F., Mayer, B., . . . Schumann, U. 
(2012). On the visibility of airborne volcanic ash and mineral dust from the pilot's 
perspective in flight. Physics and Chemistry of the Earth, 45-46, 87-102. 
doi:10.1016/j.pce.2012.04.003 

 
Weisman, M. L. & Klemp, J. B. 1982. The Dependence of Numerically Simulated Convective 

Storms on Vertical Wind Shear and Buoyancy. Monthly Weather Review, 110, 504-520. 

Weisman, M. L. & Rotunno, R. 2004. "A theory for strong long-lived squall lines'' revisited. 
Journal of the Atmospheric Sciences, 61, 361-382. 

Wielicki, B. A. 1996. Clouds and the Earth's radiant energy system (CERES): An earth observing 
system experiment (vol 77, pg 860, 1996). Bulletin of the American Meteorological 
Society, 77, 1590-1590. 

Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y. X., Powell, K. A., Liu, Z. Y., Hunt, W. H. & Young, 
S. A. 2009. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. 
Journal of Atmospheric and Oceanic Technology, 26, 2310-2323. 



137 

 

Wu, X. Q. 1993. Effects of Cumulus Ensemble and Mesoscale Stratiform Clouds in Midlatitude 
Convective Systems. Journal of the Atmospheric Sciences, 50, 2496-2518. 

Xue, Y. K., De Sales, F., Lau, W. K. M., Boone, A., Feng, J. M., Dirmeyer, P., Guo, Z. C., Kim, K. M., 
Kitoh, A., Kumar, V., Poccard-Leclercq, I., Mahowald, N., Moufouma-Okia, W., Pegion, 
P., Rowell, D. P., Schemm, J., Schubert, S. D., Sealy, A., Thiaw, W. M., Vintzileos, A., 
Williams, S. F. & Wu, M. L. C. 2010. Intercomparison and analyses of the climatology of 
the West African Monsoon in the West African Monsoon Modeling and Evaluation 
project (WAMME) first model intercomparison experiment. Climate Dynamics, 35, 3-27. 

Yang, E. S., Gupta, P. & Christopher, S. A. 2009. Net radiative effect of dust aerosols from satellite 
measurements over Sahara. Geophysical Research Letters, 36. 

Zhao, C., Liu, X., Leung, L. R., & Hagos, S. (2011). Radiative impact of mineral dust on monsoon 
precipitation variability over West Africa. Atmospheric Chemistry and Physics, 11(5), 
1879-1893. doi:10.5194/acp-11-1879-2011 

Zhou, L. M. 2016. Desert Amplification in a Warming Climate. Scientific Reports, 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



138 

 

Appendix 
Table A1 All Stations Identified Cold Pools   

Date ΔTd ΔU U_av Umax 
AWS_134 
20110614  08:00 9.6 5.2 5.2 5.9 
20110619  01:00 7.8 -1.1 4.1 6.3 
20110621  09:00 5.5 3 5.1 5.6 
20110621 18:30 9.7 8.1 11.1 12.2 
20110625  21:30 5.4 1.4 5.2 5.5 
20110627  21:30 4.6 4.5 9.7 11.6 
20110705   06:00 11.5 2 8.5 9.3 
20110710  02:00 20.6 7.9 10.4 11.2 
20110710  23:30 7.2 6.3 8.6 9.7 
20110714  22:00 10.6 2.8 4.6 5.3 
20120617  23:30 8.5 5.9 7.8 10.3 
20120622  10:00 15.1 1.7 11.5 11.9 
20120622  22:00 5.6 10.8 13.8 14.8 
20120627  02:00 14.5 4.4 6.7 9.5 
20120629  09:00 10.5 2.5 10.2 11.4 
20120630  02:00 7.7 2.5 6 9.4 
20120702  23:30 3.9 1.2 4.4 8.6 
20120705  05:00 5.8 6.7 12.2 12.5 
20120711 03:30 8.6 3.2 4.1 4.9 
20120716  08:00 7.7 8 9 9.9 
20120717  04:00 23.4 4.8 7.3 9.1 
20120717  22:00 11 7.6 8 10 
20120719  10:00 4.4 3 6.3 7.2 
20120719  19:26 3.5 1.5 5.3 6 
20120720  01:00 3.8 6.8 8.7 10.4 
20120725  03:00 9.8 3.3 5.9 7.7 
20120729  01:30 14.5 1.6 7.5 9.1 
20120731  02:00 16.1 5.5 7.9 8.5 
20120808  09:00 7.2 4.4 11.1 11.8 
20120809  19:30 5.3 8.6 13.5 15.3 
20120812  09:00 8.1 6 7.4 8.9 
20120815  20:00 4.5 3.8 7.2 7.9 
20120819  19:00 16.7 8.6 11 12.5 
20120820  23:00 8.3 5 9.2 10.2 
20120821  18:00 10.2 6.5 7.5 8.6 
20120824  05:00 10.6 -0.2 4.5 4.7 
20120830  02:00 7.6 -0.2 4.2 4.7 
20120830  23:00 4.9 7.8 10.6 13.2 
20120831  23:00 11.3 8.4 11 12 
20120904  18:30 5.7 3.4 7 9 
20120920  07:00 12.4 3.4 9 10.1 
S_131     
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20120617 21:23 5.6 8.3 8.6 11.3 
20120618 02:30 6 1.2 5.7 7.5 
20120618  20:36     5.9 1.5 5.7 9.7 
20120623 00:30     11.6 7.9 11.1 15.8 
20120623  05:16       3.1 -0.4 6.1 7.8 
20120623  13:00       3.8 2.3 10.1 10.9 
20120629  22:00      11.1 6.2 8.6 10.7 
20120701 02:00 3.4 2.7 4.4 6 
20120702  21:30       7.7 6.9 7.4 8.5 
20120720  19:30     5.8 3.5 8.3 9.3 
20120722  00:16      17.9 2.1 3.1 4.8 
20120725  23:00      4.6 3.2 7.2 8.6 
20120726 08:30 9.7 -1.3 6.5 8.4 
20120729  07:33      16.3 7.4 10 10.7 
20120729  21:00       6.5 1.2 5.5 7.1 
20120730  02:00       3.4 5.1 8.6 9.9 
20120731  01:16      15.8 3 6 6.9 
20120731  20:00       4.9 5.9 7.4 8.5 
20120807  07:46       7.5 0.5 4.5 5.2 
20120807  21:23       3.1 3.6 3.7 4.7 
20120809  17:30       4.9 2.7 6.5 7.3 
20120809  23:00       6.9 5.6 12.9 14.1 
20120819  22:00      14.8 8 10.2 11.5 
20120821  01:00       7.1 3.4 6 7.1 
20120824  17:30       8.2 4.1 8 9.5 
20120831  07:00       11.2 1 5.3 6.2 
20120831  19:23       3.1 2.8 4.9 5.5 
20120904 18:00 4.7 1.9 11.4 15.5 
20120904  23:00       5.3 3.7 8 8.5 
20120905  17:30       9.5 1.5 6.7 12 
20120906  02:00       3.5 2.1 4 4.9 
20120920  17:00      10.1 4.1 10 10.7 
S_133     

20120618 13:00 5.3 1.2 7.9 8.9 
20120630 10:00 4.1 -1.2 8.8 10.1 
20120703 08:23 6.7 3.5 11.2 12.5 
20120706 16:20 4.3 5.8 12 12.4 
20120820 14:46 3.1 -0.5 5.7 9 
20120901 08:26 7.3 2.9 9.4 10.5 
20120905 15:03 4.3 6.6 13.1 16.2 
S_135     

20120623 19:30 19.8 7.8 9.6 12.9 
20120703 21:00 11.5 3.1 4.6 7.1 
20120705  17:00       3.5 -1.5 5.2 9.5 
20120713  03:00       5.8 -0.8 5.1 6.1 
20120718  08:00       3 4 8 8.7 
20120720  20:00       4 3.3 4.1 7.3 
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20120721  19:00       6.4 5 11.2 13 
S_136     

20110617 15:30     3.5 3.8 5.7 6.5 
20110618  17:16       3.2 2.8 4.5 8.5 
20110630  16:00       3.8 2 4.7 6.1 
20110713  15:30       3.3 1.8 5.2 6.6 
20110823  19:06       5 2.1 3.9 7 
20120603  04:00       9.6 1.8 6.7 9.1 
20120603  17:00       5 6.3 8.9 9.5 
20120603  20:00       3.2 3.3 6.9 8.7 
20120605  19:30       6 4.3 6.4 8.7 
20120606  23:30       6.4 3.2 5.4 9.6 
20120612  20:00       9.6 3.3 6.9 8.4 
20120616  14:30 9 3.8 8.1 9.3 
S_138     

20110604  06:00      10.5 1.4 5.8 7.8 
20110611  06:30      12.3 4.4 6.7 8.6 
20110621  00:00       8.5 7.7 11.1 12.8 
20110711  05:30       5.6 2.2 4.2 5.2 
20110802  05:00       3.1 3.5 3.9 4.9 
20110803  23:43       3 5.8 8.2 9.7 
20110808  03:00       7.6 1.8 5.5 8.6 
20110829  10:00       3.3 2.5 5.1 6.2 
20110829  19:00       6.4 1.8 5.1 6.2 
20110830  15:00       4.4 6.7 12.1 15.8 
20110830  20:20       3.1 -2.4 7.7 10.7 
20110909  00:13       3 2.1 3.2 4.1 
20110915  00:00       9 -0.3 4.6 5.2 
20110928  07:06       3 2.8 2.9 3.2 
20110928  21:00      12 2.2 7.9 12.2 
20120617  01:30       3.1 3 6.8 10.3 
20120618  07:00       4.7 3.1 10.2 11.6 
20120618  19:30       7.9 -0.3 7 12.1 
20120619  17:30       3.4 -0.5 5.5 7.1 
20120620  15:33       3.9 3.8 8 11.6 
20120620  21:36       3.5 2.3 3.6 5.5 
20120624  01:00       3.4 3.3 3.3 5.2 
20120703  01:13       3 0.6 4.6 5.9 
20120705  20:00      10.1 4.9 7.5 10 
20120708  04:00       4.1 2.1 3.9 4.5 
20120816  16:36       3.2 5.2 10.7 12.6 
20120817  08:06       3.2 2.1 4.8 6.2 
20120817  18:00       3.6 2.3 4.2 5.2 
20120817  22:00       3.5 1.3 6.8 8.7 
S_140     

20110602  08:00      10.6 5.6 7.4 8.6 
S_141     



141 

 

20110922  21:00      11.5 3.5 5 6.5 
20110923  21:00       3.2 1.5 5.6 6.9 
20110929  20:00       6 1.9 5.1 5.9 
20120628  01:00      10.5 2.4 3.7 5.1 
20120628  19:00       4.1 3 5.3 6.4 
20120629  15:00       6.1 4.2 7.4 8.3 
20120716  23:16      11.2 2.1 2.6 3.5 
20120721  20:00       7.5 2.4 6.2 7.4 
20120801  19:00      13.8 4.5 6.5 8.9 
20120802  22:00      12.5 2.9 3.9 4.3 
20120811  22:00       3 3 4.6 6.6 
20120813  19:06       4.7 1.5 4.6 6.3 
20120817  05:23       3.9 -0.3 4.7 6.1 
20120817  18:00       6.9 1.1 4.9 7.2 
20120821  20:00       7.3 3.8 5.9 7.1 
20120823  21:00       3.9 -1.7 7.2 8.5 

 
 
Table A2 Cold Pools dates missed by my detection algorithm and due to data 
unavailability (red highlighted) but observed on SEVIRI 

YYYY/mm 131 133 134 135 136 138 141 

2011/06 21/~05:00  12/~03:30 20/~00:00  05/~20:30 20/~05:30 

 22/~07:00  13/~12:30 23/~08:00 12/~19:00   

   13/~21:30    13/~21:00   

   14/~01:30  22/~03:00   

   18/~03:00  24/~04:30   

   30/~01:30  30/~06:00   

2011/07   01/~01:30    10/~00:30b 15/~21:00d  

   15/~00:45  14/~12:30   

   16/~00:45  14/~16:15   

   18/~00:00  15/~20:30   

   22/~21:00  18/~04:00   

   28/~03:15  22/~18:30   

   31/~02:00  31/~18:00   

   31/~22:45     

2011/08     06/~05:30 05/~02:00  

     06/~21:15 07/~07:00  

     14/~07:00 19/~06:00  

     20/~17:45   
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     27/~03:00   

     27/~16:45   

2011/09     27/~21:30   

        

2012/06 19/~06:30 23/~05:30 16/~17:30d 11/~03:00 04/~18:00 22/~22:00 24/~00:30b 

 22/~19:30  18/~22:30 16/~20:45 07/~21:00 30/~23:00  

 27/~05:00  29/~21:00  13/~01:30 22/~02:00  

 29/~18:30    13/~17:30 31/~04:00s  

 30/~19:00    21/~22:00 31/~20:00d  

     29/~04:00   

     29/~21:00   

2012/07 05/~09:00 13/~03:30 31/~14:30 15/~23:00d     13/~16:00 

 13/~01:00 18/~02:30s  19/~15:45d   16/~04:00 

  21/~04:00      

  21/~18:00      

  30/~05/15      

2012/08 16/~23:30 01/~02:00 06/~22:00   09/~22:00 08/~21:00 

 24/~08:00 03/~01:15 16/~21:00    17/~11:45 

  08/~03:00      

  10/~04:00      

  16/~31:15      

  20/~04:30      

  25/~01:00      

  01/~20:00      

2012/09 05/~19:45     02/~03:00  

 21/~19:15     05/~18:00  

      21/~21:00  
dDust, bBig sSmall based on SEVIRI imagery 
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