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Abstract

In PG(2, q), the projective plane over the field F, of ¢ elements, a (k,n)-arc is a set K
of k points with at most n points on any line of the plane. When n = 2, a (k,2)-arc is
called a k-arc. A fundamental question is to determine the values of k for which C is
complete, that is, not contained in a (k + 1,n)-arc. In particular, what is the largest

value of k for a complete K, denoted by m,(2,q)?

This thesis focusses on using some algorithms in Fortran and GAP to find large com-
plete (k,n)-arcs in PG(2,q). A blocking set B is a set of points such that each line
contains at least ¢ points of B and some line contains exactly ¢ points of B. Here, B is
the complement of a (k,n)-arc K with t = ¢+ 1 —n. Non-existence of some (k,n)-arcs
is proved for ¢ = 19,23, 43. Also, a new largest bound of complete (k, n)-arcs for prime
gand n > (¢—3)/2 is found. A new lower bound is proved for smallest size of complete
(k,n)-arcs in PG(2,q). Five algorithms are explained and the classification of (k,n)-
arcs is found for some values of n and ¢. High performance computing is an important
part of this thesis, where Algorithm Five is used with OpenMP that reduces the time
of implementation. Also, a (k,n)-arc IC corresponds to a projective [k,n,d],~code of
length £k, dimension n, and minimum distance d = k — n. Some applications of finite

geometry to operational research are also explained.



Introduction

A projective plane of order ¢ consists of a set of ¢> + ¢+ 1 points and a set of ¢ +¢+ 1
lines, where each line contains exactly ¢+ 1 points and two distinct points lie on exactly
one line. It follows from the definition that each point is contained in exactly ¢ + 1

lines and two distinct lines have exactly one common point.

A (k,n)-arc is a set KC of k points, such that there is some n but no n+ 1 are collinear,

where n > 2; a (k,n)-arc is complete if there is no (k + 1,n)-arc containing it.

Many studies have been done to find all complete (k, n)-arcs in PG(2, q) for some values
of q. The size of the largest and the second largest complete (k,n)-arc are denoted by
mn(2,q) and m! (2, q); also the minimum size of a complete (k,n)-arc is denoted by

tn(2,q). The value of ms(2,q) is ¢ + 1 for odd ¢ and g + 2 for even q.

In this thesis, a t-fold blocking set B in PG(2,q) is a set of points such that each line
contains at least ¢ points of B and some line contains exactly ¢ points of B. A 1-fold
blocking set is called a blocking set. A 2-fold blocking set is called a double and a
3-fold blocking set is called a triple blocking set. A blocking set is the complement of a
(k,n)-arc K in PG(2, ¢) with t = ¢+ 1 —n. The smallest blocking sets are just the lines
and any blocking sets containing a line will be called trivial. A blocking set is said to
be minimal, when no proper subset of it is a blocking set. A new largest bound for a
(k,n)-arc in PG(2,q), for n > (¢ — 3)/2 and prime ¢, has been proved and applied to
PG(2,47) in Chapter 2.

A new lower bound for the smallest complete (k,n)-arc in PG(2,q) has been found
and applied for ¢5(2,q) and 3(2,¢q). Also, constructions of complete k-arcs from a
quadrangle and the configuration of the union of two conics are found. The classification
of (k,n)-arcs in PG(2, ¢) for some ¢ and n is done using four different methodologies.
Also, a comparison among these methodologies is done to show which method is best
according to the time of implementation to get the final results. All these results are
presented in Chapter 3. High Performance Computing (HPC) technique is used in
Chapter 4 to accelerate the calculations without affecting the accuracy of the results.
Here HPC depends on dividing the big problem into smaller problems and solve each
of them individually.



The relationship between coding theory and finite projective spaces is presented in
Chapter 5. A linear [k, n,d]-code is an n-dimensional subspace of the k-dimensional
vector space V(k,q) with non-zero vectors having weight at least d. An important
problem in coding theory is that to optimise one of the parameters k,n,d for given
values of the other two and fixed ¢. So, e errors can be corrected for a code with mini-
mum distance at least 2e + 1. Chapter 6 provides general definitions and the historical
development of operational research. In addition, applications of finite geometry to
operational research and a generalisation of Kirkman’s problem and the golf problem

are considered in Chapter 7.

Aim and Objectives

The aim of this research study is investigate structures in finite geometry and apply

the results to operational research.

The objectives are the following.

1. To find the largest and the smallest complete (k,n)-arcs in PG(2, ).

2. To establish some good algorithms to find the classification of (k,n)-arcs in

PG(2,¢q) in a short time.
3. To apply the results of (k,n)-arcs to coding theory.

4. To apply the results to operational research.

Thesis Structure
This thesis is organised into seven chapters.
Chapter 1: Background

This chapter includes the general definitions of finite geometry. It also includes some
important theorems and lemmas which are used to prove new lower bounds of the
smallest and the largest complete (k,n)-arcs in PG(2,¢q). The stabiliser groups and
methods of the classification of the largest size of (k,n)-arcs are also given in this

chapter.



Chapter 2: Blocking Sets

This chapter provides some basic equations about blocking sets, and includes an overview
of previous studies in this area. A significant part of this chapter focusses on the proof

of non-existence of some arcs in PG(2, ¢) and finding new largest bounds of (k, n)-arcs.
Chapter 3: Classification of (k,n)-arcs in PG(2,¢)

This chapter includes a new lower bound for the smallest complete (k, n)-arc in PG(2, q)
with a comparison to previous bounds. Four algorithms have been used in this chapter

to find large sizes of (k,n)-arcs with respect to the time of implementation.
Chapter 4: High Performance Computing (HPC)

This chapter includes some details of the High Performance Computing (HPC) tech-
niques used to accelerate the calculations without affecting the accuracy of the results.
In this chapter the paralleling computing systems can be classified as shared memory

(OpenMP) and distributed memory (MPT).
Chapter 5: Coding Theory

This chapter presents the relationship between projective geometry and coding theory.

MDS codes of dimension three and codes of dimension five are considered.
Chapter 6: Operational Research

This chapter provides general definitions and the historical development of operational
research. Also, the concept and the approach of operational research have been ex-

plained.
Chapter 7: Application of Finite Geometry to Operational Research

This chapter highlights new applications of finite geometry to operational research. A

generalisation of Kirkman’s Problem is also provided.
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Chapter 1

Background

1.1 Group Theory

Definition 1.1. [40] A group is a set G together with an operation o satisfying the

following requirements:

(a) for each pair x,y of elements of G, x oy is an element of G;
(b) for all elements z,y,2z of G, (roy)oz=xo0(yo z);
(c) there is an element e € G such that eog =g = goe for all g € G;

(d) given an element g € G, there is an element g* € G such that
goy-=e=goy.

A group G is abelian if, for all x,y € G, roy = yox. A cyclic group is a group
generated by a single element; that is, a group consisting of all powers of one of its
elements. A finite group G of order n is cyclic if and only if it contains an element of

order n. Also, a group of prime order is cyclic.
Definition 1.2. [40] An action of a group G on a set € is a function p: Q x G — )

with the following properties:

(a) ((x,9)u, h)p = (x,goh)u for all x € Q and g,h € G;
1
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(b) (z,1)pu =z for all x € Q, where 1 is the identity of G;
(e) (9. g = ((z,97" ), g)p=xforallz € Q, g € G.

A relationship ~ on €2 by the rule that z ~ y if there exist g € G with (x,g)u =y. So

~ is an equivalence relation.

Definition 1.3. Let G be a group. A homomorphism 6 : G — H is a function 6 from
G to H that satisfies the condition, for all g1, g2 € G,

(9192)0 = (910)(g20).

A homomorphism that is one-to-one and onto is an isomorphism; then G and H are

isomorphic. A bijective homomorphism 6 group to itself is an automorphism.

Definition 1.4. A bijection f: X — X is a permutation on X, and the set S(X) of

permutations f is a group under composition of functions.

Definition 1.5. [18]

(i) A permutation p is k-cycle if there exists a positive x and an integer ¢ such that
(a) r is the smallest positive integer such that p(i) = ;
(b) p fixes each j not in {4, p(i),..., p" (i)}

(ii) A permutation group is a group whose elements are permutations; that is, a

subgroup of a symmetric group.

(iii) The order of a permutation is equal to the least common multiple of the lengths

of its cycles.

Example 1.1. There are 27 possible maps from the set X = {1, 2,3} to itself. Most

of these are not injective, only six of these maps are permutations denoted as follows:

1 2 3 1 2 123 123
€ = 7052 7/8: 7’7:
123 2 3 31 2 13 2
123 2 3
0 = 7¢: )
321 2 13
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where the values of each map are given in the second row. Thus the map [ takes 1 to
3, 8(2) = 1 and 5(3) = 2. Since the maps are injective, the entries in the second row
are all distinct. The five non-identity elements of S(3) are cycles, and may be written
as

(123), (132), (23), (13), (12).

Definition 1.6. A group G is a semidirect product of a subgroup N by a subgroup H

if the following conditions are satisfied:

1. G= NH,;
2. N is a normal subgroup of G;

3. HON = {e}.

1.2 Finite Fields

A field is a set F closed under two operations +, x such that

(i) (F,+) is an abelian group with identity 0;
(ii) (F\ {0}, x) is an abelian group with identity 1;

(iii) a(b+c) = ab+ ac, (a + b)c = ac + be, for all a,b,c € F.

Let IF, denoted a field of ¢ elements. Note that ¢ must always be an integral power
p" of a prime p. Here, p is characteristic of the finite field. For ¢ prime, F, = Z/qZ.
Here, for all ¢ = p", there exists a € F, such that F, = {0,1,a,...,a?? | 4t = 1}.
Here, o is the root of a primitive polynomial of degree h over F,. In Table 1.1, some

primitive polynomials f(x) are given for the fields of prime power order up to 17.
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TABLE 1.1: Primitive cubic polynomials [37]

q| f(x) q | f(z)

2|23+ 2 +1 9 |a®—Ba? -1

3l =222 —x—2| 11|23 —a2—2—3

4lad—a?—x—2 |13 |22 —2%2 -2

5la% —a%—1 16 | 23 — yz? — v

There exists a primitive element s in I, such that
F,=1{0,1,s,...,87% | s =1}.
When ¢ is not prime, the root a of f(x) is such an element. If ¢ = p", then F,, is the

prime subfield of F,.

Definition 1.7. An automorphism o of I, is a permutation of IF, such that

(x +y)o = zo + yo, (xy)o = (xo)(yo) forall z,yeF,.

h

The group Aut(F,) of automorphisms of F,, ¢ = p", is isomorphic to Zj,. It is generated

by the Frobenius automorphism ¢, where x¢ = zf for all x € F,; so z¢' = e
Equivalently, if ¢ is any automorphism of F,, then o = ¢' for some i. It is occasionally

convenient to write 27 instead of zo. Thus
Aut(F,) = {1,0,0% ...,0" '}

Since ¢ is an automorphism, (z + y)? = 2P + y* for all x,y € IF,.
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1.3 Projective Spaces Over a Finite Field

Let V.=V (n+1,q) be an (n + 1)—dimensional vector space over a field I, with zero
element 0. Consider the equivalence relation on the elements of Vy = V'\ {0} whose
equivalence classes are the one-dimensional subspaces of V' with zero removed. Thus,
if X,Y € Vp, then X is equivalent to YV if Y = tX for some ¢ in F, \ {0}; that is,
y; = tx; for all i. Then the set of equivalence classes is the n-dimensional projective
space over F, and is denoted by PG(n,q). The elements of PG(n,q) are points; the
equivalence class of the vector X is the point P(X). It will also be said that X is a
coordinate vector for P(X) or that X is a vector representing P(X). In this case, tX
with ¢ in F, \ {0} also represents P(X); that is, by definition, P(tX) = P(X). So,
the points of PG(n, ¢) can be described in terms of coordinates as in Table 1.2, where

o, X1y, Tp-1 € ]Fq- So

TABLE 1.2: Type of elements of PG(n, q)

Type of elements Number of elements
P(zg,...,xp-1,1) q"
P(zg,...,24-2,1,0) g !
P(z0,1,0,...,0) q
P(1,0,...,0)

0(n,q)

[PG(n,q)| = 0(n,q) = (¢"*" —1)/(q —1).

Definition 1.8. Let F' be a subfield of the field K.

(i) The dimension of K as a vector space over F' is the degree of K over F', and is

denoted by [K : F].
(ii) K is a finite extension of F if [K : F] is finite.

(iii)) When [K : F] =2,...,n, then K is a quadratic, cubic, ..., n-ic extension of F.
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Definition 1.9. A collineation of projective plane II is a map v of IT onto II such that
1. 7 is bijection;
2. 1 maps points onto points and lines onto lines;

3. if P and /¢ are an incident point and line in II, then ¢ (P) and ¥ (¢) are incident.

Theorem 1.10. The Fundamental Theorem of Projective Geometry [37]

(i) If{Po,..., Pos1}, {Fy,-.., Py1} are two sets of n+2 points of PG(n, K) such that
no n—+1 points chosen from the same set lie in a subspace of dimension n—1, then

there exists a unique projectivity T such that P! = P/T, for alli € {0,...,n+1}.

(ii) Let S = PG(2,K), and ¢ : S — S be a collineation, then ¢ = oT, where
o s an automorphism and T is a projectivity. This means that if K = T,
and P(X') = P(X)y, then there exists o € Ny,t;; € F, for (i,j) € N} and
tiy € F,\ {0} such that tX* = XP°T, where X** = (ab,... 22°) and T =
(tij). i, € N, ={0,1,...,h}.

Definition 1.11. For any positive integer n, the general linear group, GL(n, q), is the
set of all invertible n x n matrices over F, under matrix multiplication. The order of

the group GL(n, q) is

(" =" =) " =) (" =" ")

Definition 1.12. The special linear group SL(n,q) is the subgroup of the group

GL(n, q) consisting of those matrices of determinant 1.

Definition 1.13. [37]

i) The projective general linear group PGL(n,q) is the group of projectivities of
) g

PG(n — 1, q) with respect to the operation of composition of maps.

(ii) The collineation group PT'L(n, q) is the group of collineations of PG(n—1, ¢) with

respect to the operation of composition of maps.

Definition 1.14. The projective special linear group PSL(n, q) is the quotient group
SL(n,q)/Z, where Z is the subgroup of scalar matrices in SL(n, q).
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1.4 Affine Spaces

If Hy is any hyperplane in PG(n, K) that is, a subspace of dimension n — 1, then
AG(n,K) = PG(n, K)\H is an affine space of n dimensions over field K. When
K =T, write AG(n, K) = AG(n,q). The subspaces of AG(n, K) are the subspaces of
PG(n, K), apart from H,, with the points of H., deleted in each case. Here H is

referred to as the hyperplane at infinity of AG(n, ¢q).

1.5 Projective Planes

Consider the projective plane PG(2, q) over F,. So, PG(2,q) contains ¢*> + ¢+ 1 points
and ¢? +q+1 lines. There are exactly ¢+ 1 points on each line, and ¢+ 1 lines through

each point. The points and lines of PG(2, q) satisfy the axioms of a projective plane:

1. every two distinct points are on a unique common line;
2. every two distinct lines contain a unique common point;

3. there are four distinct points, no three of which are on a common line.

The constants k, [, m determine the line . A point P(z,y, z) is incident with a line

((k,l,m) if and only if

XUl=(x y 2)| | | =kzx+ly+mz=0.

With every non-singular matrix 7" = (¢;;) € F, associate a bijection from the point
P(X) = P(z,y,2) to P(X') = P(«',y,2') and the line ¢(U) = {(k,1,m) to {(U") =
((k' U, m")t with X’ = XT and U" = T-'U". In other words,

too tor To2

/ /

(" v )=@ y 2)| tw tn ti |-

tog To1 ta2
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-1

k' too tor to2 k
U =1 tio t11 ti2 [
m’ tog To1 ta2 m

Such a bijection is a projectivity or projective linear transformation. A projectivity
preserves the incidence between points and lines: a point P(X) lies on a line £(U?)
if and only if the image P(X’) of P(X) lies on the image ¢(U") of £(U"). Indeed,
X'U" = XTT'U' = 0. As with coordinate triples, also the matrix T of a projectivity

is only determined up to a scalar factor.

The group of all projectivities of PG(2, ¢) is the projective general linear group PGL(3, q)
and has order ¢*(¢> — 1)(¢* — 1). From the Fundamental Theorem of Projective Ge-
ometry, a projectivity is uniquely determined by the four images of the vertices of a

quadrangle. In other words, PGL(3, q) acts transitively on ordered quadrangles.

A collineation in PG(2,q) is a bijection mapping points to points and lines to lines,
which preserves incidence. Each projectivity is a collineation. However, in general not
all collineations are projectivities. The Frobenius automorphism mapping the point
P(z,y,z) to P(zP,y?, zP) is a collineation, but not a projectivity. From the Funda-
mental Theorem of Projective Geometry, let i) be a collineation, then there exists a

non-singular matrix 7" and a field automorphism o, such that

too tor to2
Vvi(w oy 2)=(x y 27| tip tu te |-

tog To1 ta2

—1 o
k too tor to2 k
(R [ = | tio ti1 ti2 l
m tog to1 too m

The group of all collineations of PG(2,q), ¢ = p", is the collineation group PT'L(3, q)
and has order hg®*(¢* — 1)(¢*> — 1). So, PGL(3, q) is a subgroup of PT'L(3,¢) and

[PTL(3,q) : PGL(3,q)] = h.

When ¢ is prime, then PGL(3, q) = PT'L(3, q).
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Example 1.2. The simplest finite projective plane is PG(2,2). It consists of seven
points and seven lines with three points on every line and three lines through every
point. This projective plane is the Fano plane and may be illustrated as in Figure 1.1.
The points are A, B,C, D, E, F, G and the lines are ABC, AGE, ADF, CEF, CDG,
BDE, BFG.

FI1cURE 1.1: Fano plane

A

C E F

In all known examples the order ¢ of projective plane is a prime power. It is a fact
that, for any given prime power, there exists at least one projective plane of that order,
namely PG(2,q). It is not known whether planes of non-prime power order exist,
although it is commonly believed that any finite projective plane must have prime

power order.

1.6 Affine Planes

An affine plane AG(2,q) of order ¢ is an incidence structure of points and lines with

the following properties:

1. every two points are incident with a unique line;

2. given a point P and a line ¢ such that P ¢ ¢ then there exist a unique line m such

that P € m and mN{ = 0;
3. there are three points that are not collinear;

4. every line is incident with a constant ¢ points and every point is incident with ¢+ 1

lines;

5. an affine plane of order ¢ has ¢? points and ¢? + ¢ lines.
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1.7 Projective Lines
The projective line, PG(1, ¢), has ¢ + 1 points:

PG(1,¢) ={(1,0)} U{(z,1) | = € Fy}.

Each point P(z, 1) of PG(1, q) can be represented by the non-homogeneous coordinate
z in F, and the coordinate for P(1,0) is co. These points are often referred as the

parameters ¢ € F, U {oo}.

A projectivity T of PG(1, q) is given by Y = XT', where X = (x¢,z1), Y = (40, 1) and

From the Fundamental Theorem of Projective Geometry, any three points of PG(1, q)
can be mapped to any other three points by a projectivity. A simple example of how

a projectivity of the line maps points to points is presented below.
Example 1.3. In PG(1,5) there are six points (0, 1), (1,1), (2,1), (3,1), (4,1), (1,0).
Then the projectivity

T =
11

maps these points of PG(1,5) to the points (1,1), (4,1), (0,4), (3,1), (1,0), (2,1).

1.8 Conics

An irreducible conic of PG(2,q) is a set of points C whose coordinates (x,y, z) satisfy

the following equation:

Q(z,y, 2) = ar® + by? + cz* + doy + exz + fyz,

with condition that (‘Z)—Z, ‘?9—5, %—5) # (0,0,0) at any points of C and a,b,c,d, e, f € F,.

Let O = o(Q) = {P(x,9,2) | Q(.y,2) = 0.
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When ¢ is odd,
Qz,y,2) = XAXT,

where X = (z,y,2) and

a d/2 e/2
A=14d/2 b f/2
e/2 f/2 ¢

Consider a projectivity ¥ € PGL(3,¢q). Let C denote the conic represented by the
matrix A. Then the image C’ of C by T is represented by the matrix A’ = T-1A(T~1)".
Indeed,

XAX" = (XT)(T'ATHHXT)
= XTT'A(TH'T'X!
= XAX'

An oval O is aset of g+1 points in PG(2, q), with the property that every line is incident
with at most two points of O. A conic is an example of an oval in PG(2, q). Here the
classification of lines and points of the plane with respect to a conic is considered from
a geometric viewpoint, and then an algebraic method for classifying points and lines
with respect to conic is given. Since no three points of conic C are collinear, any line [ in
IT = PG(2, q) can intersect C in at most two points, Hence, [ is geometrically classified

in the following way:

1. [ is a tangent line to C when |INC| = 1;
2. [ is a secant line to C when | NC| = 2;
3. 1 is an exterior line to C when |INC| = 0.

Note 1.15. [37] For ¢ odd, there are ¢ + 1 tangent lines, %q(q + 1) secant lines, and

%q(q — 1) exterior lines.
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1.8.1 Conics in Planes of Even Order

The points of the plane are geometrically classified with respect to a conic. If P is a

point in a plane of even order, then P is classified in three ways with respect to C:

1. P is a conic point, when P is on C;
2. P is the nucleus, if P lies on all the tangent lines to C;

3. P is a regular point, if P is not on C and not the nucleus.

Any conic point has one tangent and ¢ secants through it, while the nucleus has ¢ + 1
tangents through it. The remaining points have exactly one tangent, %q secants and %q
exterior lines through them. The set of ¢ + 2 points obtained from adding the nucleus

to the oval is a hyperoval; it is a maximal arc of degree 2.

Lemma 1.16 ([37]). In PG(2,q) for q even, the nucleus of the conic
v(ax? + by® + ¢z + doy + exz + fyz)

is the point P(f, e, d).

Example 1.4. Let C be a conic in the projective plane PG(2,¢q), ¢ > 4 and even. Let
N be the nucleus of C, and let H denote the hyperoval which consist of the ¢+ 1 points
of C and the nucleus of C. So, H is a set of ¢ + 2 points with the property that no
three are collinear. By construction, there are no tangent lines to . Any line in the
plane must be either a secant line or an exterior line. Let O be the oval which consists
of N and any ¢ points of C. Recall that five points, no three collinear, determine a
unique conic. The sets C and O have ¢ points in common and these ¢ points satisfy
a quadratic equation. But, the point N of O does not satisfy this quadratic equation.
Hence, there is no quadratic equation which every point of O satisfies; so O is not a

conic.
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1.8.2 Conics in Planes of Odd Order

In planes of odd order, every oval is a conic. Here, every conic is an oval and an oval has
g + 1 points on it, every conic consist of ¢+ 1 points that satisfy some non-degenerate

quadratic equation.

If P is a point in the plane, then P is classified in three ways with respect to C:

1. when P is on C, then P is a conic point;
2. when P is not on C, but on a tangent line to C, then P is exterior point;
3. when P is neither on C nor a tangent line to C, then P is an interior point.

Any conic point has one tangent and ¢ secants through it. An interior point has %(q—l— 1)
exterior lines through it, an exterior point has exactly two tangents, %(q — 1) secant

and % (g — 1) exterior lines through it.

Example 1.5. Consider the conic C whose points satisfy —axy + % + 2yz + 22 = 0.
The lines z = 0 and y = 0 are tangent lines to C. Since (0,0, 1) lies on both of these
tangent lines, then (0,0,1) is an external point with respect to C. The lines through
(0,0,1) are + = 0 and y = mz, for m € F,. Then y = mxz is a secant when m is

non-zero square and is a tangent when m is a non-square element.

Lemma 1.17. A conic in PG(2,q) has the following canonical forms:
(i) v(XZ + X1 Xy), all q;
(i) v(XZ — X1 Xs), all ¢;

(iii) v(agXE + a1 X? + axX3), with apayay # 0, q odd;

(iv) (X3 + X7+ X3), ¢ odd.

Corollary 1.18 ([37]). In PG(2,q) for q even, the q + 1 tangents to a conic are

concurrent.

Theorem 1.19 ([19]). If F' = }_,; ajxix;, then F = v(F) is singular if and only if
0 =0, where

2 2 2
0 = 4agoar1a22 + ao1002a12 — Qpol1o — A110gy — G220 -
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Theorem 1.20 ([19]). A conic of PG(2,q) is reducible if and only if it is singular.

(1) Suppose a conic C of PG(2,q) is reducible. If it reduces to two distinct lines £
and m, then the point { N m is a singular point of the conic. If C reduces to

two coincident lines, then every point of C is singular. In either case, the conic is

singular.

(2) Let F = az?+by*+cz?+dxy+ frz+eyz be the equation of a singular conic. Without
loss of generality, let (1,0,0) be a singular point of C. Then (1,0,0) satisfies F' =0

and also
OF
—— =2ar+dy+ fz2=0,
ox
OF
— =dxr+2by+ez =0,
Ay
oF
— = fr+ey+2cz=0.
0z

Therefore, a = d = f = 0. The equation of C becomes 1 = by? + cz? + eyz = 0.

The quadratic v is reducible, and therefore the conic C is reducible.

Theorem 1.21 (Segre’s Theorem [57]). If q is odd, every (q+ 1)-arc of PG(2,q) is an

irreducible conic.

Example 1.6 ([19]). Let C be a conic of PG(2, ¢) with equation
2 2 2 _
x°+2xy +y° +4yz+ 427 =0.
(i) Find the equation of the tangent to C at (1,—1,0).
(ii) Find the tangent of C passing through (1,0, 0).

Solution From the given equation of the conic,a=1,b=1,c=4,d=2,e=0, f = 4.

The matrix A of the given conic is

1 10
A=111 2
0 2 4
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(i) The tangent at the point (1, —1,0) is

1 10 T
(L,=1,0) | 1 1 2 y =0z + 0y — 22 =0,
0 2 4 z

which is the line of equation z = 0.
(ii) For P = (1,0,0), then PTAX = x +y and PTAP = 1. So the equation of the
tangents passing through (1,0, 0) is

(PTAX)? — (PTAP)(XTAX) =0,

that is (z +y)? — (22 + 2oy + y? + dyz + 42%) = —4(yz + 2?) = —4z2(y + 2) = 0.

The two tangents passing through (1,0,0) are the lines z =0 and y + z = 0.

1.9 Arcs

Definition 1.22. [37] A (k,n)-arc in PG(2,¢q) is a set KC of k points, no n+ 1 of which
are collinear, but with at least one set of n points collinear. When n = 2, a (k, 2)-arc

is called a k-arc.
Definition 1.23. [37] A (k,n)-arc is complete if it is not contained in a (k + 1, n)-arc.

Definition 1.24. [37] A set of lines concurrent at a point P of a projective plane II is

a pencil of lines. A set of points incident with a fixed line ¢ in II is a range of points.
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Notation 1.25. For a (k,n)-arc K in PG(2, q), let

7; = the total number of i-secants of IC,

= the number of i-secants through a point P of IC,

)
)

m,(2,q) = the maximum size of a (k,n)-arc in PG(2, q),
)

= the minimum size of a (k,n)-arc in PG(2, q).

Definition 1.26. [37]

(i) The type of a point P on a (k,n)-arc K is the (n + 1)-tuple (po, p1, - . -

(ii) The i-secant distribution of IC is the (n + 1)-tuple (7, Th-1,...,70).

Theorem 1.27 ([37]).

q+ 2, forq even;
m2(27Q) =

q+1, forq odd.

Theorem 1.28 ([37]). (1)

=(n—1)q+n, forq even andn | g;
mn(2,q)
<(n—=1)g+mn, forq odd.

= the number of i-secants through a point @ of PG(2,q) \ K,

. Pn)-

(2) A (k,n)-arc K is mazimal if and only if every line in PG(2, q) is either an n-secant

or an external line.
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Lemma 1.29 ([37]). For a (k,n)-arc IC, the following equations hold:
doro= PHa+l; (1.1)
i=0
Y in = k(g+1); (1.2)
i=1
il -7 = Sk(k—1). (1.3)
i=2
Lemma 1.30 ([37]). For a (k,n)-arc KC, the following equations also hold:
i o= q+1 (1.4)
i=1
d(i-Dp = k-1 (1.5)
i=2
Zai = q+1 (1.6)
=0
sz‘ = k; (1.7)
i=1
Sopi o= im (1.8)
Pek
Yo o= (g+1-i)m. (1.9)
QeI\K

Notation 1.31.

solutions

7pnj>7 .7:177M

(ii) Let b; be the number of points on the (k,n)-arc K with solution B;.

(iii) Let the Equations (1.6) and (1.7) have L distinct solutions

Mj = (O'(]j, ..

.,O'nj), j:]_,,L

(iv) Let m; be the number of points in PG(2, ¢) \ £ with solution M;.

(i) Let the Equations (1.4) and (1.5) of Lemma 1.30 have M distinct
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Lemma 1.32 ([36]). For a (k,n)-arc K in PG(2,q), the following equations hold:

M
j=1
M
d b= ks (1.11)
j=1
L
ijaij = (¢g+1—1i)m; (1.12)
j=1
L
omp = @Ptqt+l-k (1.13)
j=1

Lemma 1.33 ([37]). If K is a complete (k,n)-arc, then (¢+1—n)7, > ¢*+q+1—k,
with equality if and only if o, = 1 for all Q in PG(2,q) \ K.

1.10 Stabiliser Group

If @ is a point of PG(2, q), then Q9 denotes the image of @) through the right action of
the non-singular matrix ¢ that induces the projectivity ; that is, T € PGL(3,q). Let
S be a set of points of PG(2, q), possibly an (k,n)-arc. Then SY = {Q9 | Q € S}.

Definition 1.34 (Orbit). For G < PGL(3,q), if T € PGL(3,¢), then the orbit of a
point Q € PG(2,¢) under G is the set QY = {Q? | g € G}. The orbit of S C PG(2,q)
under G is the set {QY | Q € S}.

Definition 1.35 (Stabiliser). A set S C PG(2,q) is said to be stabilised by the pro-
jectivity T € PGL(3, ¢) if and only if S9 = S.

To determine the automorphism or stabiliser group of a (k, n)-arc S, first calculate every
projectivity T € PGL(3,¢q) that maps S to itself; that is S¢ = S. This is achieved
by finding every g that maps a 4-arc of S onto the frame points, where the frame
points are P(1,0,0), P(0,1,0),P(0,0,1), P(1,1,1) and then determining if S9 = S.
The stabiliser group of S consists of all such projectivities. If this group has order
1 =1,2,3,5,7,11,13,15,17,19, 23, then it is isomorphic to Z;. If the group has order
1 = 4,6,8,9,10,12, 14, 18, 20, 21, 22, 24, then the group with which it is isomorphic is

determined by the orders of its elements.
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GxH

group of integers;

cyclic group of order n;

symmetric group of degree n;

alternating group of degree n;

dihedral group of order 2n = (r,s | r" = s* = (rs)? = 1);

dicyclic group of order 2n = (r,s | r* = 1,7"/? = s? = (sr™1)2);
Klein 4-group which is the direct product of two copies of the cyclic
group of order 2;

the direct product of G and H;

the semi-direct product of G with H, where G is normal subgroup.

In the tables, N is the number of elements of order O in the group.

TABLE 1.3: Groups of order 4

Groups |[O| N|O|N|O|N

Z, 1111211142

Z2XZ2 1 1 213

TABLE 1.4: Groups of order 6

Groups | O N|O|N|O|N|O|N

Zg 111121132612

Ss 1111213 ]3]2
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TABLE 1.5: Groups of order 8

Groups |[O|N|O|N|O|N|O
Zg 1711211141218
ZoxZy| 1| 112]3 |44
(Zs)3 1117127
D, 111125142
Q. 111121146
TABLE 1.6: Groups of order 9
Groups |[O| N|O|N|O|N
Zy 111]13]1219]6
Z3xZsz| 11|38
TABLE 1.7: Groups of order 10
Groups | O| N|O|N|O|N|O
Zy 1712111514110
D; 111125154
TABLE 1.8: Groups of order 12
Groups |O| N|O|N|O|N|O|N|O O
Z, 1112111312 (4|12|6 12
ZexZo| 1| 112]13|13]2]|6]6
Dg 11112713 [2(6]2
Qs 1111211132 (4|6]|6
Ay 11112131318
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TABLE 1.9: Groups of order 14

Groups O O O|N

Zyy 2 7 141 6

D, 2 7

TABLE 1.10: Groups of order 16

Groups @) N N N|O
VAL 1 1 2 4116
Zg x 7o 1 3 4 8 abelian
7y x 71y 1 3 12 abelian
Z, X (Zy)* 1 7 8 abelian
(Zy)* 1 15
Dy 1 9 2 4
Qs 1 1 10 4
Dy x Z, 1 11 4
Q4 X Zs 1 3 12 non-abelian
Zs x 7o, Hy 1 3 4 8 non-abelian
Zs x 7y, Hy 1 5 6 4
AW 1 3 12 non-abelian
(Zy X Zo) X Zy,Hj | 1 7 8 non-abelian
(Zy x Zo) xZy,Hy | 1 7 8 non-abelian
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TABLE 1.11: Groups of order 18
Groups O/ NIO|IN|O|IN|O|N|O|N|O
VAT 111211 13]2(6[]2]9 18
Z¢ X 13 1111211138618
Dy 111121913296
S3 X Z3 11112133 8|6|6
(Z3 X Zg) X Z2 1 2191318
TABLE 1.12: Groups of order 20
Groups |O|N|O|N|O|N|O|N|O|N|O|N
% 11211141215 |4]10]51]20
ZioxXZo | 1|1 (12354 ]10]12
Do 111211514110 4
Q1o 1121410/ 5]41]10|4
ZsxZy |1]112]5(1411015 |4
TABLE 1.13: Groups of order 21
Groups |O|N|O|N|O|N|O|N
7o, 111312 |7]6]21]12
Z7 X Z3 1 1 3114|1716
TABLE 1.14: Groups of order 22
Groups | O N|O|N|O|N|O|N
Zs 1112 1]11]10(22]10
Dy 1112 11]11]10
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TABLE 1.15: Groups of order 24

Groups O|N N N N|O|N|O @]
Zy, 111 1 2 2181412 24
Zyy X 7o 111 3 4 6 |12 8

Zo x (Zo)*| 1] 1 7 14

Sy 111 9 6

D, 111 13 2 2 |12 4

Q12 1)1 1 14 2 |12 4

D¢ x Zs 111 15 6

Ay X Zs 111 7 8

Qs X Z3 111 3 12 6

D, x Zs 111 5 2 101121 4

Q4 X Zs 111 1 6 2 |12 |12

Ss X Zy 111 7 8 2 |12 4

SL(2,3) 111 1 6 8

Z3 x Zs 111 1 2 2181212

Z, x Dy 111 9 6 6
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Definition 1.36 (Companion matrix). [18] Let f(x) be a monic polynomial in F[z]:

f@)=a" +ap 12"+ 4+ a1z + ao.

The companion matriz C(f) is the n x n matrix given by

0 1 0 0 0
0 0 1 0 0
C(f) =
0 0 0 0 1
—ap —a1 —0Ay ... —Qp_9 —0p_1

In PG(2,q), let
f(z) = 2° + ag2® + ayz + ao.

The companion matriz C(f) is the 3 x 3 matrix given by

1.11 Methodology to Find m,(2, q)

There are many methods used to find the classification of (k,n)-arcs in PG(2, q). Some

of these methods are now described.

1.11.1 Method 1 [60], [2]

For any (k,n)-arc KC, k > n + 2, there are at least four points in K no three of which
are collinear. Let Ay = {P; |i=1,2,...,k} and Ay = {P/ | i = 1,2,...,k} be two
(k,n)-arcs in PG(2, ¢), where the coordinates of the points P; and P/ are the following:

Fy = P(xi(1),2i(2),2:(3)) and P = P(yi(1),4:(2), %:(3)).
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By the Fundamental Theorem of Projective Geometry, there exists a unique projectivity
which takes any set of four points of the (k,n)-arc A; no three collinear to any set of

four points of A; no three collinear.

Consider the (3 x 3) matrix Z = (2;;), ¢,j = 1,2,3. Map a fixed set of four points
of Ay no three collinear, say {Pi, P, P5, P,}, to any set of four points of Ay no three
collinear, say {P], Py, P;, P;}. The (k,n)-arcs A; and A, are said to be projectively
equivalent if ZX; =AY}, 4,5 = n+2,...,k, where X; and Y} are the column vectors

that represent the other points P; of A; and P]’ of As.

To determine Z, fix a quadrangle ) of A;. Then find Z such that ) maps to a
quadrangle Q' of A,. Do this for every Q. Here Z € G if it takes the remaining points

of A; to the remaining points of As.

1.11.2 Method 2

This algorithm depends on the type of i-secant distribution and is used to find the
large complete (k,n)-arcs in PG(2,q). To explain this method, the classification of
(k,4)-arcs in PG(2,8) is used. The Equations (1.1), (1.2) and (1.3) of Lemma 1.29 are

used here.

1 The construction of the distinct (4,4)-arcs

Let A = {1,2,4,37} be a (4,4)-arc in PG(2,8). A (4,4)-arc has the same type
of i-secant distribution as A. Therefore there is only one (4,4)-arc in PG(2,8) with
respect to the type of i-secant distribution. This can be calculated from the following

equations:

To+T+n+m+17 = 73,
T+ 24+ 3+41, = 36,

7'2+3T3+67'4 = 6.

Since 74 = 1,73 = 0,75 = 0, so the only type of (4,4)-arc is (1,0, 0, 32, 40).
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2 The construction of the distinct (5,4)-arcs

From Step 1, there is only one (4,4)-arc A, and there are 64 points of index zero
which do not lie on 4-secant of A. So by adding one point of the points of index zero

to A, then there is only one type of (5,4)-arc denoted by B, satisfying the following:

T()+7'1+7'2+7'3+T4 = 73,
T1+27'2+3T3+4T4 = 45,

T2 —|—3T3 + 6’7’4 = 10.

Since 74 = 1,73 = 0, so the only type of (5,4)-arc is (1,0, 4, 33, 35).

3 The construction of the distinct (6,4)-arcs

From Step 2, there is only one (5,4)-arc B, and there are 63 points of index zero. So
by adding one point of the points of index zero to B, two distinct (6,4)-arcs C; and
Cy are obtained. Then (Y is of type (1,0,9,14,7) and C; is of type (1,1,6,17,6).

4 The construction of the distinct (k,4)-arcs

Table 1.16 shows the number of i-secant distribution of (k, 4)-arcs in PG(2, 8). Here, &

is the number of distinct (k,4)-arcs according to i-secant distribution.

TABLE 1.16: The i-secant distribution of (k,4)-arcs in PG(2, 8)

75 | (11,4) —arcs || 94

E | (k,4)—ares | € | (k,4) —ares | €| (k,4) —arces
9 | (7,4) —arcs || 128 | (15,4) —ares || 15 | (23,4) — arcs
20 | (8,4) —ares || 130 | (16,4) —arcs || 6 | (24,4) — arcs
32 | (9,4) —ares || 127 | (17,4) —ares || 2 | (25,4) — arcs
52 (26,4) — arcs
(27,4)
(28,4)

108

(15,4)
(16,4)
(17,4)

10,4) —ares || 119 | (18,4) —arcs | 1
(19,4)
(20,4)
13,4) —ares || 45 | ( )
(22,4)

(10,4)
(11,4)
95 | (12,4) —ares | 71
(13,4)
(14,4)

118 | (14,4) — arcs || 32
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Blocking Sets

A t-fold blocking set B in PG(2,q) or AG(2,q) is a set of points such that each line
contains at least ¢ points of B and some lines contain exactly ¢ points of B. A 1-fold
blocking set is called a blocking set. A blocking set in PG(2,¢) should contain no
line. A 2-fold and a 3-fold blocking sets are called a double and a triple blocking set,

respectively.

However, a blocking set can be considered as the complement of a (k,n)-arc K in
PG(2,q) with ¢ = ¢+ 1 — n. The smallest blocking sets are just the lines, and any
blocking set containing a line will be called trivial. A blocking set is said to be minimal,
when no proper subset of it is a blocking set, and some authors call them irreducible
instead of minimal. A minimal blocking set in a projective plane is either a line, or
does not contain a line. The terminology is not standard; sometimes it is supposed
that a blocking set contains no line. For K with an external line [, so K is contained
in the affine plane AG(2,q) = PG(2,¢) \ [. The complement of K within AG(2,¢q) is a
t-blocking set with t = ¢ — n.

Blocking sets have been first studied in 1969 by Di Paola [51], where the author has
calculated the minimum size of a non-trivial blocking set in PG(2, ¢), having orders
of 4,5,7,8,9. The major challenge was finding the minimum size of blocking set in
PG(2,q). In 1970, Bruen [13, 14] proved that |B| > ¢ + /g + 1 for any non-trivial
blocking set. A Baer subplane of PG(2,q) is a (¢ + \/q + 1)-set B of type (1,,/q + 1).

An alternative approach is to consider a blocking set which does not contain a Baer

27
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subplane. Bruen and Thas showed in 1977 [15] that a blocking set with g+-,/g+2 points
necessarily contains a Baer subplane. Therefore, for a non-trivial minimal blocking set
which does not contain a Baer subplane, B > ¢+ /g + 3 will hold. Bruen and Thas in
[15] have introduced another term for these blocking sets: Rédei type. A blocking set
of Rédei type is a blocking set of size ¢ + m that has an m-secant. In Theorem 13.4.1
and Theorem 13.4.2 [36], it is shown that, when ¢ is odd, then there is a blocking set,
the projective triangle, with size 3(q+ 1)/2, while for even ¢ there is a blocking set, the
projective triad, with size (3¢g +2)/2. Hill and Mason studied multiple blocking sets in
PG(2,¢). In 1981 [35], it is shown that, for even ¢, there are 2-blocking sets of sizes 3¢
and 3-blocking sets of sizes 4¢g. Brouwer and Wilbrink [12] have shown that the size of
the smallest example is between ¢+ ¢/p®+1 and ¢+ (¢—1)/(p° — 1) for a divisor e of n.
Bruen and Silverman improved the latter bound to ¢ + v/2¢g + 1 — a/(2q) in 1987 [16],

2/3 41 for p > 3. In the special case of ¢ = p? the bound is improved to

and to ¢ + ¢
q+¢**/v/2 4+ 1 by Blokhuis and Storme in 1995 [11]. After that it has been improved
in 1996 to ¢ 42,/ + 1 by Ball and Blokhuis [6]. One of the most important questions
raised by Szonyi in 1977, is the following: “What are the possible sizes of minimal

blocking sets in the interval (¢ + 1,3(¢ 4+ 1)/2)?”

According to Ball in 1994 [3], the arcs (78,8) and (90,9) are the largest complete arcs
in PG(2, 11), while for PG(2, 13), there exist no arcs of size (106, 9), (110, 10), (134, 11).
Furthermore, for a triple blocking set in PG(2, ¢) a new lower bound has been found for
g < 11 by Ball [5] in 1996. For a double blocking set in PG(2, ¢), Ball and Blokhuis [6]
have introduced a new lower bound for ¢ > 11. In addition, Daskalov [30] investigated

PG(2,17), and found the largest complete (k,n)-arc for n = 11,...,16 in 2004.

Here, a new upper bound is found for the size of a (k,n)-arc in PG(2, q), for all values
of n > (¢ + 3)/2 and prime ¢. It may be noted that a (k,n)-arc is the complement of
a{¢®+q+1—k,q+1—n}-blocking set and conversely.
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2.1 Some Basic Equations

According to Richardson [53], “The name blocking set originates from game theory,
where we have a set of individuals, and certain subsets called coalitions, with the prop-
erty that a coalition can force a particular decision. A blocking set then is a subset that
1s not a coalition, but contains at least one member of each coalition, so that it can

block any decision without being able to force one”.
Theorem 2.1. A t-blocking set in AG(2,q) has at least (t +1)(q — 1) + 1 points.

Theorem 2.2. A t-blocking set in AG(2,q), (t,q) =1, has at least (t+1)(q— 1)+t

points.

Theorem 2.3 (Ball [3]). Let K be (k,r)-arc in PG(2,p), where p is prime.

(1) If r < (p+1)/2, then k < (r—1)p+1.

(2) If r > (p+3)/2, then k< (r—p+r—(p+1)/2.

Theorem 2.4 (Ball [4]). Let B be t-fold blocking set in PG(2,p), p prime and p > 3.
(1) Ift <p/2, then |B| > (t+3)(p+1).

(2) Ift > p/2, then |B| > (t + 1)p.

Theorem 2.5 (Ball [4]). Let B be a t-fold blocking set in PG(2, q) that contains a line.
(1) If (t—1,q) =1, then |B| > q(t + 1).

(2) If (t—1,9) > 1 andt < q/2+ 1, then |B| >tq+q—t+2.

(3) If t —1,q) > 1 and t > q/2+ 1, then |B| > t(qg+1).

Definition 2.6. [3] A polynomial in F, is fully reducible if it factors completely into
linear factors over IF,. If in the sequence of coefficients of a polynomial a long run of

zeros occurs, this polynomial is lacunary.

Theorem 2.7 (Ball [4]). Let f € F,[x] be fully reducible, and suppose that f has the
form f(x) = x%(z) + w(z), where v and w have no common factor. Let m < q be the
mazimum of the degrees of v and w. Let e be maximal such that f and hence also v

and w are a p°-th power. Then one of the following holds:
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(1) e = h and m = 0;

(2) > h/2 and m > p*;

(3) e<h/2 andm > p[(p"° +1)/(p° + 1)];
(4) e=0, m=1 and f(z) = a(z? — x).

Theorem 2.8 gives a slight improvement of Theorem 2.7 as follows.

Theorem 2.8 (Daskalov [30]). Let B be an {l,t}-blocking set in PG(2,p), p prime.
(1) Ift <p/2, and p >3, thenl >n(p+1)+ (p+1)/2.
(2) Ifl=tlp+1)+ (p+1)/2, then

(a) through each point of B there are exactly (p+ 3)/2 lines that are not t-secants;

(b) through each point of B there are exactly (p — 1)/2 lines that are t-secants;

(c) the total number of t-secants is p = 1(p — 1)/(2t).

Lemma 2.9 ([37], Chapter 12 ). For any set of k points in PG(2,q), the following
hold:

donio= A+ (2.1)
Zz‘n = |B|(qg+1); (2.2)
Zi(i—m = |B|(|B] - 1). (2.3)

Here, 7; is the number of i-secants to B.

2.2 Known Lower Bounds for B

According to [38], Table 2.1 gives lower bounds on the number of points in a ¢-blocking
set B of PG(2, ¢q) without conditions on the ¢-blocking sets. Also, Table 2.2 gives lower
bounds on the number of points in a ¢-blocking set B of PG(2, ¢) with conditions on
the t-blocking sets.
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TABLE 2.1: Lower bounds for ¢-blocking sets without condition
q t |B| > Sharp for References
¢ = p prime,p > 3 t<p/2 (2t+1)(p+1)/2 t=1,(p—1)/2 [4]
q = p prime,p > 3 t>p/2 (t+1)p t={p+1)/2 [4]
qg<9 2 3q t=2 9], [25], [42]
g =11,13,17,19 2 (5¢ +7)/2 14], [6]
q square, q > 4 2 2q +2,/q+2 t=2 4], [6]
e+1
q=p*"q>19 2 2q + p°| et | 42 [4], [6]
q=>5,7,9 3 4q t=3 [5], [25], [42]
qg=28 3 31 t=3 [35],
q=11,13,17 3 (7q+9)/2 4], [5]
q odd square, ¢ > 21 3 3¢ +3y/q+3 t=3 4], [5]
e el pott
q=p*t, q>17 2 3¢+ p°| Bt +3 [4], 5]
g even square, g > 4, 3 3¢ +2/q+3 4], 5]
or q € {25,49,81,121}
TABLE 2.2: Lower bounds for ¢-blocking sets with condition
q t  Condition |B| > References
q t B does not contain a line tq+tg+1 [4]
q t B contains a line and (t —1,q9) =1 q(t+1) [10]
q t  Bcontains a line and (t —1,q) > 1,t < ¢q/2+1 tqg+q—t+2 |[17]
q t B contains a line and (¢t —1,¢) > 1,t > ¢q/2+1 t(qg+1) [4]
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2.3 Non-existence of some (k,n)-Arcs in PG(2,q)

In this section, the non-existence of (k,n)-arcs in PG(2, q) is proved for ¢=19, 23, 43
and n > 1(q + 3).

2.3.1 Non-existence of some arcs in PG(2,19)

Theorem 2.10. (1) There ezists no (211, 12)-arc in PG(2,19); so m12(2,19) < 210.
(2) There exists no (231,13)-arc in PG(2,19); so my3(2,19) < 230.

(3) There exists no (291,16)-arc in PG(2,19); so my6(2,19) < 290.
Proof. (1) Finding a maximum (k, 12)-arc in PG(2,19) is equivalent to finding a min-
imum 8-fold blocking set. Theorem 2.4 implies that B must have at least 170 points.

Theorem 2.8 gives that the total number of 8-secants is (170 * 18)/16 which is not an

integer number. Therefore a (211, 12)-arc does not exist and

The other bounds are proved in the same way. O]
Theorem 2.11. (1) There exists no (251, 14)-arc in PG(2,19); so my4(2,19) < 250.
(2) There exists no (271,15)-arc in PG(2,19); so my5(2,19) < 270.

(3) There exists no (311,17)-arc in PG(2,19); so m17(2,19) < 310.

(4) There exists no (331,18)-arc in PG(2,19); so mys(2,19) < 330.

Proof. (1) Finding a maximum (251, 14)-arc is equivalent to finding a {130, 6 }-blocking
set B. Theorem 2.8 implies that the total number of 6-secants is 195. Let r be the
length of the longest secant. If r = 20, then B contains a line and Theorem 2.5 implies
that |B| > 133, a contradiction. If 16 < r < 19 then considering lines through a point
on the longest secant but not in B, so B must have at least 6 x 19 4+ r points. This

contradicts that |B| = 130.
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Consider the intersection of the 6-secants through P ¢ B with the longest secant. So,

Te > 9r 4 (20 — r)(19 — i). (2.4)

The values of 74 are calculated from (2.4) for ¢ < 8, and give Table 2.3.

TABLE 2.3: The values of 74 for i < 8

r 16 | 1514 | 13 |12 | 11 | 10 | 9 8

l 0 1 2 3 4 ) 6 7 3

v

T6 220 | 225 | 228 | 229 | 228 | 225 | 220 | 213 | 204

This shows that all values of 74 for r = 8, ..., 16 give contradictions. This is because

the total number of 6-secants is 195. For r = 6,7, Lemma 2.9 gives the following:

Te + 77 = 381,
676 + 777 = 2600,

316 + 4217, = 16770.

There is no solution for this system. Therefore, no 130 point 6-blocking set exists and

hence no (251, 14)-arc exists.

The remaining cases are proved similarly. O]

2.3.2 Non-existence of some arcs in PG(2,23)

Theorem 2.12. (1) There ezists no (301, 14)-arc in PG(2,23); so m14(2,23) < 300.
(2) There exists no (325,15)-arc in PG(2,23); so my5(2,23) < 324.
(3) There exists no (349,16)-arc in PG(2,23); so mys(2,23) < 348.
(4) There exists no (373,17)-arc in PG(2,23); so m7(2,23) < 372.

(5) There exists no (421,19)-arc in PG(2,23); so my9(2,23) < 420.
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Proof. (1) Finding a maximum (k, 14)-arc in PG(2,23) is equivalent to finding a min-
imum 10-fold blocking set. Theorem 2.4 implies, since 23 is prime, that such a set
must have at least 252 points. Theorem 2.8 shows that the total number of 10-secants
is (252 % 22)/20 which is not an integer. Therefore there exists no (301, 14)-arc in
PG(2,23) and my4(2,23) < 300. In the same way, the other bounds are shown. O

Theorem 2.13. (1) There exists no (397,18)-arc in PG(2,23); so myg(2,23) < 396.
(2) There exists no (445,20)-arc in PG(2,23); so may(2,23) < 444.
(3) There exists no (469, 21)-arc in PG(2,23); so ma(2,23) < 468.

(4) There exists no (493,22)-arc in PG(2,23); so maa(2,23) < 492.

Proof. (1) Finding a maximum (397, 18)-arc is equivalent to finding a {156, 6 }-blocking
set B. Theorem 2.8 implies that the total number of 6-secants is 286. Let r be the
length of the longest secant. If » = 24, then B contains a line and Theorem 2.5 can be
applied. It follows from Theorem 2.5 that |B| > 161, a contradiction. If 18 < r < 23
then consider lines through a point on the longest secant but not in B. Since B must

have at least 6 * 23 + r points, then the values 18 < r < 23 do not give |B|.

Consider the intersection of the 6-secants through P ¢ B with the longest secant. So,

76 > 11r + (24 — 7)(23 — ). (2.5)

The values of 74 are calculated from (2.5) for i = 0,...,10, and give Table 2.4.

TABLE 2.4: The values of 74 for ¢ < 10

r 8117116 |15 |14 | 13 |12 | 11 | 10 | 9 8

1 0 1 2 3 4 5 6 7 8 9 |10

Y

336 | 341 | 344 | 345 | 344 | 341 | 336 | 329 | 320 | 309 | 296

T6

This shows that all values of 74 for » = 8, ..., 18 give contradictions. This is because

the total number of 6-secants is 286. For » = 6,7, Lemma 2.9 gives
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Te + T7

67’6 + 77'7

37—6 + 427'7

553,
3744,

24180.

There is no solution for this system. So, no 156 point 6-blocking set exists and hence

no (397, 18)-arc exists.

The proof of the remaining cases is similar.

2.3.3 Non-existence of some arcs in PG(2,43)

Theorem 2.14. In PG(2,43) there exists no (k,n)-arc for the following cases.

Case I:

TABLE 2.5: The values of n that make p a non-integer

k 991 | 1035|1079 | 1123 | 1167 | 1211 | 1299 | 1343 | 1431 | 1475
n 24 | 25 | 26 | 27 | 28 | 29 | 31 | 32 | 34 | 35
ma(2,43) < | 990 | 1034 | 1078 | 1122 | 1166 | 1210 | 1298 | 1342 | 1430 | 1474
k 1519 | 1651 | 1695
n 36 | 39 | 40
ma(2,43) < | 1518 | 1650 | 1694

Case II:

TABLE 2.6: The values of n that make p an integer

k 1255 | 1387 | 1563 | 1605 | 1739 | 1783
n 30 33 37 38 41 42
m,(2,43) < | 1254 | 1386 | 1562 | 1606 | 1738 | 1782
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Proof. (1) The largest (k,24)-arc in PG(2,43) is equivalent to the smallest 20-blocking
set. According to Theorem 2.4, a 20-blocking set should have at least 920 points. From
Theorem 2.8, there are 23 lines not on 20-secants while there are 21 lines which are
20-secants. Then p is not n integer. Therefore there exist no (991, 24)-arc in PG(2, 43)
and mgy(2,43) < 990.

Similarly, the remaining cases are proved.

(2) Finding a maximum (1255, 30)-arc is equivalent to finding a {638, 14}-blocking set
B. Theorem 2.8 implies that the total number of 14-secants is 957. Let r represent the
length of the longest secant. If r = 44, then B contains a line and Theorem 2.5 can be
applied. It follows from Theorem 2.5 that |B| > 645, a contradiction. If 37 < r < 43
then consider lines through a point on the longest secant but not in B. So, B must

have at least 14 % 43 4+ r points, a contradiction.

Consider the intersection of the 14-secants through P ¢ B with the longest secant. So,

T4 > 210 4 (44 — r)(43 — ). (2.6)

The values of 714 are calculated according to (2.6) as shown in Table 2.7.

TABLE 2.7: The values of 714 for i < 22

Tia > | 1100 | 1113 | 1124 | 1133 | 1140 | 1145 | 1148 | 1149 | 1148 | 1145 | 1140 | 1133

Ti4 > | 1124 | 1113 | 1100 | 1085 | 1068 | 1049 | 1028 | 1005 | 980 | 953 | 924

This shows that all values of 74 for r = 16,...,36 and ¢+ = 0, . . ., 20 give a contradiction.

This is because the total number of 14-secants is 957.
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For r = 14 and r = 15 then from Lemma 2.9 the standard equations for the set B are

the following:
T4 +T15 = 1893,
147’14 + 157'15 = 28072,

182714+210715 = 406406.

There is no solution of this system. So no 638-point 14-blocking set exists and hence

no (1255, 30)-arc exists.

The remaining cases are proved similarly. O

2.4 New Largest Bound

Theorem 2.15. For %(q +3) < n < q, with q prime,

(¢+1)(2n - 3)
; :

Proof. From Theorem 2.3, a (k,n)-arc satisfies
k<(g+1)(n—2)+1

Suppose that there exists a ((¢ + 1)(n — 3) + 1, n)-arc K.

Let B be an {[,t}-blocking set that is the complement of K. Since | = ¢* + ¢+ 1 —k
andt=¢q+1—n, so
[>(q+1)(g—n+3)

This implies that B is a (¢ + 1)(¢ —n + 2), ¢+ 1 — n-blocking set, and

Bl = tlg+1)+3(qg+1)

= (¢+1)(a—n+3). (2.7)

Let T be the total number of ¢t-secants of B. From Theorem 2.7, f(z) = x%(x) + w(z).

Since |B| = (g+1)(5+t), then the lacunary polynomial from a point of B is zv(x)*quw ()
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which satisfies f(z) = (vz + w)(vyw — wyv). This implies that the number of different
factors in f(x) is precisely (¢ + 3)/2. So, each point of B is incident with precisely
(¢ — 1)/2 t-secants. Then count {(z, L)}, where z is in B and L is a t-secant. So
Tt = |B|(q — 1)/2; this implies that 7' = |B|(¢ — 1)/(2t). Then

T = (¢+1)(t+35)(q—1)/(2t) (2.8)

= (@& —1)(2t+1)/(4t). (2.9)
If o= (¢* — 1)(2t + 1)/(4t) is not an integer, this implies that there exists no

((g+1)(n— ;) +1,n) — arc.

So

m(2,0) < (g + )0~ 3).

Suppose that p is an integer. Let L be an r-secant and P € L\, where r is the largest
number of points of B on any line through P. If there are s lines that are t-secants to

B, and s; through P that are (¢ + i)-secants, for 1 < i < m, then

B = st+si(t+1)+s2(t+2)+--+su(t+m)+r
= st+si(t+1)+s2(t+1)+so+-+sut+1)+(m—1)s, +r
= st+(s1+s2+-F+sp)t+1)+ss+2s3+---+(m—1)s,, +7r

= st+s(t+1)+s" +r,
where s+ =qgand s’ =51+ 89+ -+ 5,8 =853+ 283+ -+ (m —1)s,,. So,
st+(qg—9)(t+1)+r<|B|

This implies that
s>q(t+1)+r— 18|
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Since |B| = t(q+ 1) + (¢ + 1)/2 = (t + L) (g + 1), s0

s > r4qt+1)—(t+5(g+1)

> (¢g—1)/2+7—t (2.10)
Now, the number of ¢t-secants is at least s(¢+1—1r)+1r(¢—1)/2. So

lg—1)/2t) > rlg—1)/2+Gla—1)+r—t)(g+1-7) (2.11)

> (F—=1)/2+(r—t)(g+1—r). (2.12)
So, the Inequality (2.12) becomes
P —r(g+1+t)+tlg+1)—(¢* —1)/(4t) > 0. (2.13)

To solve (2.13) for r = t,t+1,...,q+1, the values of r can be divided into the following

cases.

(1) When r = g+1, then B contains a line, and Theorem 2.5 implies that |B| > ¢(t+1),

a contradiction.

(2) When %(q + 1)+t < r < g, then consider lines through a point on the longest
secant but not on B. So B must have at least ¢t + r points. This contradicts that
B = (t+3)(g +1).
(3) Whent+2 <r < %(q—l— 1)+t, then, sincet = g¢+1—n, n > %(q+3), soq > 2t+1.
Let f(r) =r*—(¢+ 1+ t)r+t(qg+ 1)+ (¢° — 1)/(4t), so
fr)y > = Bt+2)r+ 2t +1)(t+1),
> —

3t+2)r+ (33t +2)) — (33t +2))* + (2t + 1) (¢ + 1),

> (r—1(3t+2)2— /4,

Here, f(r) is positive for some values of ¢ and negative for others.
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Therefore (2.13) is not true for t +2 <r < 3(¢+1) + ¢.
(4) When t <r <t+1, according to Lemma 2.9,
AT = ¢ +q+1; (2.14)
try + (t+ 1)1 = |B|(g+1); (2.15)
tt—Dr+tlt+1)re = |B|(I1B] = 1). (2.16)
Multiplying Equation (2.14) by t and subtracting Equation (2.15) gives
n = [Bllg+1) —t¢* +q+1)
= (¢* +2q+2qt + 1); (2.17)
o= ¢+q+1+t@P+q+1)—|Bl(g+1)
= ¢ —2q¢t+1). (2.18)

Substituting the values of 7 and 711 in (2.16) implies that

tt— D) +tt+Dr+t+1 = tg+t*(¢+3¢+1)
# [BI(|1B] —1).

Therefore, there exists no ((¢ + 1)(n — 2) + 1,n)-arc in PG(2,q) for n > (¢ + 3)/2.

Hence

mu(2,q) < (¢+1)(n— %) for n > %(q—|—3).

2.5 Application of Theorem 2.15

Case I : Bounds for complete (k,n)-arcs when p is a non-integer.

Theorem 2.16. In PG(2,47), there exist no (k,n)-arc for the following values of k,

giving corresponding upper bounds for my,(2,47).
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TABLE 2.8: The values of n when p is not an integer
k 1177 1 1225 | 1273 | 1321 | 1369 | 1417 | 1465 | 1513
n 26 | 27 | 28 | 29 | 30 | 31 32 | 33
m,(2,47) < | 1176 | 1224 | 1272 | 1320 | 1368 | 1416 | 1464 | 1512
k 1561 | 1609 | 1705 | 1753 | 1801 | 1897 | 1993
n 34 | 35 | 37 | 38 | 39 | 41 | 43
mn(2,47) < | 1560 | 1608 | 1704 | 1752 | 1800 | 1896 | 1992
Proof. For k = 1177 and n = 26, then [=1080, t=22;
B = tlg+1)+35(q+1)
= 22x48+ 44
= 1080.
This implies that |B| = .
Assume that the total number of ¢-secants is 7. Then, from (2.9),
T = |Bl(g—1)/2t
= (1080 * 46) /44.
As = (1080 % 46) /44 is not an integer, then there exists no (1177, 26)-arc. So
The remaining cases are proved similarly. O]

Case II: Bounds for complete (k,n)-arcs when T is integer.

Theorem 2.17. In PG(2,47) there exists no (k,n)-arc for the following values of k.

Hence the upper bound for m,(2,47) is established in the corresponding cases.
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TABLE 2.9: The values of n when p is integer

k 1657 | 1849 | 1945 | 2041 | 2089 | 2137

n 36 40 42 44 45 46

mn(2,47) < | 1656 | 1848 | 1944 | 2040 | 2088 | 2136

Proof. Finding a (1657, 36)-arc is equivalent to finding a {600, 12}-blocking set B. The
total number of 12-secants is 1150. Let r be the length of the longest secant. If r = 48,
then B contains a line and |B| > 611, a contradiction. If 35 < r < 47, considering
lines through a point on the longest secant but not in B, then B must have at least

12 % 47 + r points. This contradicts that |B| = 600.

Now, consider the intersection of the 12-secants through P ¢ B with the longest secant.
Then (2.13) becomes
T2 > (r—12)(48 — ). (2.19)

The lower bounds for 715 are calculated according to (2.19) as shown in Table 2.10.

TABLE 2.10: The values of 14 < r < 36

r 36 | 35 | 34 | 33 | 32 | 31|30 |29 |28 |27 |26 | 25

Ti2 > | 288 [ 299 | 308 | 315 | 320 | 323 | 324 | 323 | 320 | 315 | 308 | 299

Tig > | 288 | 275 | 260 | 243 | 224 | 203 | 180 | 155 | 128 | 99 | 68

This shows that all values of r for r = 14, ..., 36 give a contradiction. This is because

the total number of 12-secants is 46.

However, for r = 12 and r = 13, Equations (2.1), (2.2), (2.3) of Lemma 2.9 become the

following;:

Ti2 +T13 = 2257,
12T12+13T13 = 28800,

132715 + 15673 = 359400.
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As there is no solution of this system, so no {600, 12}-blocking set exists and hence no

(1657, 36)-arc exists.

The other bounds are established similarly. O]

Here, all of the largest bounds which were found by Theorem 2.15 are the same as

known bounds as in [7].

2.6 Chapter Summary

This chapter explains some basic equations for (k,n)-arcs. Also, the non-existence of
(k,n)-arcs in PG(2,q) is proved for ¢ = 19,23,43 and n > 3(¢ + 3). Finally, a new
upper bound for & is proved and applied to PG(2,47).
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Classification of (k,n)-arcs in PG(2, q)

3.1 Introduction

Many studies have been done to find all complete (k,2) and (k, 3)-arcs in PG(2, ¢) for
some values of q. The size of the largest and the second largest complete (k,2)-arc are
denoted by m(2,q) and m’(2,¢) as in Notation 1.25. Theorem 1.27 shows the value of

m(2,q), but the value of m/(2, ¢) is not known in general.

The full classification of k-arcs in PG(2, ¢) for ¢ < 19 is shown in [37]. Sticker [26], [27]
obtained the full classification of k-arcs in PG(2,23), PG(2,25), PG(2,27). Coolsaet
[29] obtained the classification of k-arcs in PG(2,31), in 2014. The values of m/(2, ¢) in
PG(2, ¢) have been shown by Chao and Kaneta [23] to be 21,22, 24 for ¢ = 25,27, 29.
The classification of all arcs of size k > ¢ — 8 has been calculated by Kéri [41] for values

of ¢ < 32.

The classification of (k, 3)-arcs in PG(2, ¢) for ¢ < 9 has been done in 2001 by Marcugini
et al. [45]. Here the largest size of complete arc has been found to be 21 in PG(2,11)
and 23 in PG(2,13), while the smallest size is found to be 15 in PG(2,13). They also
found that there is a complete (k,3)-arc for each k, where 15 < k < 23, [44], [47].
Bartoli [8] showed that the smallest and largest (k,3)-arc in PG(2,16) have sizes 15
and 28. The size of the smallest complete (k,n)-arc in PG(2, q) is denoted by t,(2, q).

Many attempts have been done to find a general lower bound of ¢5(2,¢q) in PG(2,q).

In 1959 Segre [56] showed that t5(2,q) < /2¢ + 1. Furthermore, Ball [3] found that
44
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2(2,q) < V3¢ + 5. Regarding (k,3)-arcs, a bound for the smallest size t3(2,¢) of a

complete (k, 3)-arc is

q— 8+ /24¢® — 23¢2 — 40q + 16
2(¢—-2) ’

t3(2a q) S

as indicated by Marcugini et al. [47]. Hirschfeld and Pichanick [39] found that

tn(2,9) < v/n(n —1)(g +1).

A new lower bound for the smallest complete (k,n)-arc in PG(2, ¢) has been found in

Theorem 3.3. This general bound can be applied for £5(2, q) and t3(2, q).

In this chapter, the classification of (k,n)-arcs in PG(2, q) for some ¢ has been done
using four different methodologies. Also a comparison among these methodologies has
been done to show which method is best according to the time of implementation to

get the final result.

3.2 Known Results for m,(2,q) and t,(2, q) in PG(2, q)

Many studies have been done to find the largest and the smallest complete (k, n)-arcs in

PG(2,q). Some of these studies focused on the full classification of k-arcs in PG(2, q).
3.2.1 The classification of k-arcs in PG(2,q) for ¢ <29

The full classification of k-arcs in PG(2, ¢) are given in Table 3.1, Table 3.2 and Table
3.3 for ¢ < 29. For ¢ < 8, see [37]. For ¢ =9, see [49]. For g = 11, see [54]. For ¢ = 13,
see [2]. For ¢ = 17,19, see [21]. For g = 23,25, see [26]. For q = 27, see [27]|. For
q = 29, see [22]. For ¢ = 31, see [29]. For ¢ = 32, see [48]. Table 3.4 gives the values
of t5(2,q) for 2 < ¢ < 29.

Here 7 is the number of projectively-distinct complete arcs of this size. In each table

the entry gives the number of projectively distinct arcs for the corresponding k and gq.
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TABLE 3.1: The classification of k-arcs in PG(2,¢q) for 4 <k <18 and 5 < ¢ < 17

q=5|q=7|q=8|q=9|q=11|q=13|q=16|q =17
k=4 1 1 1 1 1 1 1 1
k=5 1 1 1 2 2 3 4 4
k=6 1 3 5 7 15 26 61 74
k=17 1 2 4 21 80 454 733
k=38 1 2 2 21 181 2633 | 5441
k=9 2 1 5 110 6014 | 17633
k=10 1 1 2 27 4899 | 21064
k=11 1 2 1171 | 6814
k=12 1 2 587 629
k=13 1 260 15
k=14 1 100 4
k=15 30 1
k=16 9 1
k=17 3 1
k=18 2 1

g=19q=23|q=25|q=27|qg=29

k=4 1 1 1 1 1

k=5 3 6 8 4 10

kE=6]| 117 257 365 174 682

k=7] 1768 | 7613 | 14114 | 8261 | 41301
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TABLE 3.3: The classification of k-arcs in PG(2,q) for 8 <k <30 and 19 < ¢ <29

gq=191] ¢=23 q=25 q=27 qg=29
k=8| 20361 | 172416 419385 311313 1933469
k=9 | 115492 | 2235523 | 7490938 7348659 58423579
k=10 | 280104 | 15032508 | 74026338 | 101047498 | 1072049736
k=11 | 235320 | 46333282 | 366007216 | 744145433 | 11123944005
k=12 | 55708 | 56846595 | 806719354 | 2665334400 | 60140705285
kE=13| 2733 | 23362684 | 690593155 | 4145194407 | 153994534160
k=14| 83 2634266 | 195308347 | 2452359922 | 167238862321
k=15 5 64773 15070303 | 472714330 | 67799467128
k=16 4 692 263843 24808360 | 8854773945
k=17 1 41 1492 290532 314349510
k=18 1 22 222 1431 2540088
k=19 1 6 58 183 7280
k=20 1 4 29 82 1477
k=21 1 9 32 646
k=22 1 5 15 293
k=23 1 1 4 98
k=24 1 1 3 43
k=25 1 1 10
k =26 1 1 5
k=27 1 1
k=28 1 1
k=29 1
k=30 1
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TABLE 3.4: Size and number of the smallest complete k-arc, ¢ < 29

q 21314578911 |13]16] 17 |19|23| 25 | 27| 29

t2(2,q) | 4]4]6|6|6]|6]6] 78 |9 10]|10]/10] 12 |12] 13

n |11} 2]1(2{42]1|2]81]560[29|1 |606| 7 |708

3.2.2 The classification of (k,3)-arcs in PG(2,¢q) for ¢ < 13

The full classification of (k,3)-arcs in PG(2, ¢) are given in Table 3.5 and Table 3.6 for
q < 13. For ¢ = 5, see [28]; for ¢ = 7, see [46]; for ¢ = 8, see [43], [60]; for ¢ = 9, see
[45]; for g = 11, see [44]; for ¢ = 13, see [47]. Table 3.7 gives the values of t3(2,q) for
q < 13.

TABLE 3.5: The classification of (k, 3)-arcs in PG(2,q) for4 < k < 15and 5 < ¢ <13

q=5>5|q=T7|q=8| ¢q=9 qg=11 q=13
k=4 1 1 1 1 1 1
k=5 2 3 2 3 3 4
k=26 7 14 15 24 37 62
k=17 13 53 98 188 043 1349
k=38 13 180 505 1341 6743 25670
k=9 16 026 | 2248 | 8231 70550 405813

E=10| 7 907 | 6680 | 36572 | 574775 5175900

k=11 2 923 | 12664 | 111833 | 3520994 02242281

k=12 395 | 12781 | 209172 | 15291647 | 403124641
k=13 65 | 9822 | 211818 | 44020760 | 2282452774
k=14 4 871 | 97050 | 76936027 | 9001288812

k=15 1 43 16386 | 73157838 | 23188169036
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TABLE 3.6: The classification of (k, 3)-arcs in PG(2,q) for 16 < k£ <23,5<¢ <13

q=5|qg=T7]q=8|q¢q=9| g=11 qg=13
k=16 734 | 32916332 | 36058738738
k=17 6 5884405 | 30742092308
k=18 333585 | 12779923892
k=19 4467 2246238494
k=20 17 140208097
k=21 2 2507054
k=22 9805
k=23 7

TABLE 3.7: Number of #3(2,¢),5 < ¢ <13

g |[5]718]9(11|13]16

t3(2,¢) |99 11|12 |13 (15|15

n |21 24|5(33]1

Theorem 3.1 ([47]). Let K be a complete (k,3)-arc in PG(2,q). Then

- q— 8+ /24¢> — 23¢2 — 40q + 16

= 2(g —2)

Theorem 3.2 ([39]). Let K be a complete (k,n)-arc in PG(2,q), where n > 2 and
q>n. Then

k>+/n(n—1)(qg+1).

3.3 New Lower Bounds

This section shows some new lower bounds for the smallest complete (k,n)-arcs K in

PG(2,¢). A comparison among Theorem 3.1, Theorem 3.2 and Theorem 3.3 is given.
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Theorem 3.3. In PG(2,q), a complete (k,n)-arc does not exist for k < k*, where

(@+1-n)+(g+1-n?2+4(n* —n)(g+1-n)(?+q+1)

k* =
2(¢+1—n)

Proof. From Lemma 1.30, Equations (1.4) and (1.5) are as follows:

prtpat-tpn = g+ 1

p2+2p3+--+(n—1)p, = k—1.

(1) With |d]| the integer part of d, let m = { J , > 2.

n—1
So the maximum value that p, can have is m.

(k — 1) — Zi:l(n - U)pn—v—H
(n—1)—1

(2) Let r,—; = {

for pn_;.

J. Here r,_; gives the possible values

The points of the plane are of the following types:

(1) e \‘(k - 1) - (n - 1):0n

J gives the possible values for p,_1; the points are of

(n—2)
type
(p07p170a"'707pn—17j>a
where j =1,2,...,m.
k=1 —(n—1)p, —(n—2)p_1| . ,
(il) rp_o = {( ) —(n ( )PS) (n—2)p 1J gives the possible values for p,,_s;
n_

the points are of type

(p())pla 07 s 7O’pn—27pn—1aj)’

where j =1,2,...,m.

(iii) o =(k—1)— (n—=1)p, — (n—2)pp_1,-..,2p3 gives the possible values for py;
the points are of type

(p07p17p27 s 7pn*17j>7

where j =1,2...,m.
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Suppose that o denotes the number of points of PG(2, q) of type (ra, 73, ..., 70_1).
From Lemma 1.32, Equations (1.10) and (1.11),
m m Tn—1 (2
(3 5 S atmnnan) <m0
j=1 pn—1=0 pp—2=0 p2=0
m Tn—1 79
Z Z -~~Za(r2,r3,...,rn_1,j) = k, (3.2)
Pn—1=0 pp—2=0 p2=0
where 7, is the total number of n-secants of a (k,n)-arc in PG(2, ).
Since m > 0 for kK > n, so
m Tn—1 ()
(35 St 1)
Pn—1=0 pn72:0 p2=0
m m Tn—1 r2
235 ( 33 Satarnn 1),
Jj=1 pn—1=0 pp_2=0 p2=0
This implies that
mk
< — 3.3
<o (33
Since
e =1
(n—1)
Sl0)
k(k —
T < ( ) (3.4)
n(n —
On the other hand, if the (k,n)-arc K is complete, Lemma 1.33 implies that
2 1—k
> L4t 8 (3.5)

g+1—n

Now, from Equations (3.4) and (3.5),

Bk _¢tq+l-k
n?—n g+1—n
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Hence
(q+1=n)k* = (g +1—=n)k > (n*—n)(¢® +q+1) — (n* —n)k,
(q+1—-n)k*>—(g+1—n—n*+n)k—n*—n)(¢®+q+1) >0,
(q+1-n)k*—(¢g+1—nHk—(n*>—n)(@+q+1)>0. (3.6)
Now, Inequality (3.6) implies that k = k* > 0. m

This can be applied to k-arcs and (k, 3)-arcs, as in Table 3.8 and Table 3.9, with the

notation n* = b,(2,¢) and n = 2, 3.

TABLE 3.8: Bounds for complete k-arcs for 4 < ¢ < 23

q 41571819 |11|13]16]17]19]23

b(2,q) |5|5]5(516|6|6|7][7]7]8

t2(2,¢q) |6|6]6] 6| 6|7 ]8|9]10[10|10

ma(2,q) | 616]8/10[10]12|14]18]20|20]25

TABLE 3.9: Bounds for complete (k, 3)-arcs for 4 < ¢ < 16

qg |45 7819 ]11]13]16

b3(2,¢) | 7] 8199 9]10[11]12

t3(2,q) |71 919 |11]12]13|15]|15

ms(2,¢q) |9 11|15 | 15| 17|21 |23]28

3.3.1 Comparison with known results

(i) Table 3.10 gives the comparison, for (k,3)-arcs, among Theorem 3.1, Theorem

3.2 and Theorem 3.3, for 4 < ¢q < 16.
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TABLE 3.10: Lower bounds for complete (k,3)-arcs for 4 < ¢ < 16

q | Theorem 3.1 | Theorem 3.2 | Theorem 3.3 | Exact value
k k k k

4 7 6 7 7

5 8 6 8 9

7 9 7 9 9

8 9 8 9 11

9 10 8 10 12

11 10 9 10 13

13 11 10 11 15

16 12 11 12 15

(ii) From Theorem 3.3, when n = 3, this implies the same result as Theorem 3.1.

Theorem 3.4. Let K be a (k,n)-arc in PG(2,q). When 1, < k, the following state-

ments hold:

(1) k<qg+2+n(n-—2);

(2) if K is complete, then g+n—1<k <n(n—2)+q+ 2.

Proof. From Lemma 1.29, Equations (1.2) and (1.3) are as follows:

71 +nT, + "z_: i, = k(g+1); (3.7)
n(n— 1)1, + 2_: i(i— 1)1 = k(k—1). (3.8)

By subtracting Equation (3.7) from (3.8),

[y

nin—2)r, = k(k—q—2)+m — ; it —2)7;. (3.9)

i

Il
V)
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Since k > 7,, so
n—1
nn—2)k>k(k—q—2)+mn — i(i — 2)7;. (3.10)
i=2
If 1y — 37 i(i — 2)7; > 0, then
nn—2) > k—q-2. (3.11)
Now, Equation (3.11) implies that
k<qg+2+n(n-2). (3.12)
On the other hand, if the (k,n)-arc K is complete, Lemma 1.33 implies that
(q+1—n)r, > ¢F+q+1—k. (3.13)
Since k > 7,, so
(q+1—-n)k > ¢ +q+1—k, (3.14)
(¢+2-n)k > ¢+q+1, (3.15)
ko> %, (3.16)
ko> q+n—1+%, (3.17)
k> q+n—1. (3.18)
Equations (3.12) and (3.18) imply that
g+n—1<k<n(n-2)+q+2. (3.19)
[

Proposition 3.5. In PG(2,q), if n | ¢ and q even, then

(1) 7= (g +1)>—q(qg+1)/n.

(2) o=9q(qg+1—-n)/n.
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Proof. (1) From Theorem 1.28, Equations (1.1) and (1.2) of Lemma 1.29 be

To+Tn = ¢ +q+1

nt, = k(g+1)

Since k = (n — 1)q + n, Equation (3.21) implies that

(¢ + D[(n —1)g +n]
g+ 1)

Tn

= (¢+1)" -

(2) From Equation (3.20),

q(q+1)

o= ¢@+q+1—(q+1)°+

q(g+1—n)
—_—

Table 3.11 shows a special case.

TABLE 3.11: Application of Proposition (3.5) for some values of n

n 2 q/2 q
|| q+2 a¢—1)/2| ¢
To q(g—1)/2 q+2 1
T | (@+1)(@+2)/2| ¢&-1 |aqlg+1)

Example 3.1. (i) m2(2,8) = 10 and the i-secant distribution is (45,0, 28).
(ii) mso(2,16) = 18 and the i-secant distribution is (153, 0, 120).

(iii) my4(2,8) = 28 and the i-secant distribution is (63,0, 0,0, 10).

(iv) m4(2,16) = 52 and the i-secant distribution is (255, 0,0, 0, 18).

(v) mg(2,8) = 64 and the i-secant distribution is (72,0,0,0,0,0,0,0,1).

(vi) mg(2,16) = 256 and the i-secant distribution is (272,0,0,0,0,0,0,0,1).

(3.20)

(3.21)
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3.4 Construction of Complete k-Arcs in PG(2, ¢) from

a Quadrangle
The equation of a conic C is v(xg, 21, x2) = 0, where
v(T0, 21, To) = a127 + a9T7 + azT3 + ATT1 + A5TeT2 + A6T1T, (3.22)

a; € ]Fq. With Uo,Ul,UQ S C, where U(] = P(l,0,0),Ul = P(O,l,O),UQ = P(0,0,l)
then

a4ToT1 + A5ToTo + AgL1To = 0. (323)

This is non-singular for ajasas # 0. By dividing Equation (3.23) by a4 then

a a
ToT1 + —5.7}0I2 + —6$11’2 =0. (324)
Q4 Q4

Let a = 23 and B = %, then Equation (3.24) becomes
a4 a4
ToT1 + axoxo + Brixe = 0. (3.25)
Substitute P(1,1,1) in Equation (3.25), then 1 4+ « 4+ 5 = 0 implies
f=—-(1+a). (3.26)
Assume o = 0, so f = —1 substitute these values in Equation (3.25), obtains

Tory — x172 = 0,

which implies Equation (3.25) is degenerate, a contradiction. So, o € F, \ {0, —1}.

Then, for ¢ odd, the form of a conic containing the frame points is

Ci = v(xoxy + axory — (1 + @)z129); (3.27)

where 1 =1,...,q — 2.

Table 3.12 illustrates a simple application of Equation (3.27).
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TABLE 3.12: Application of Equation (3.27) in PG(2,5)

1 | conic equation

Tox1 + ToZo + 31‘11'2

1
2 Tox1 + 2$0$2 + 21’1372
3

Lol + 31‘0[[’2 + 1[)311]2

If there are two conics C' = v(xox1+oyzore+/17122), C" = v(xox1+00T0T2+ Lox122),

where ay + 51 +1 =0, a3 + B2 + 1 = 0, then the general form of the union of them is

Cul" = v(xga] + apaprias + Bifexias + (a + ao)xizize + (81 + Bo)Toriay

(1B + agfh)xors23). (3.28)

So, applying Equation (3.28) to the conics in Table 3.12,

CiUCy = v(xda? + 2x3x5 + 2375 + 3xi7172 + 3207173).
CiUCs = wv(ziz] + 3z5xs + 3wiws + dwlz 20 + 42025 1y).
CoUCs = v(zjat + adas + 32325 + 3woxias + 3w 23).

From the general form of conic and Corollary 1.16, the final form of hyperoval contained

the frame points is the following.

Hi; = {P(xg,x1,22) | v(xox1 + Qo2 — (1 + @)z129) } U{P(— (v + 1), 0, 1)}, (3.29)

where i = 1,...,q — 2. So, the following proposition gives the number of i-secants for

the union of two hyperovals.

Proposition 3.6. In PG(2,q), q even, if [ HNH'| =4, then |HUH'| has the following

constants:
= (¢ —8q¢+12)/4,
3 = 4(¢—2),
o= (¢ —2¢+12)/2,
n = 0,

To = q2/4.
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3.5 Algorithms for the Classification of (k,n)-Arcs
in PG(2, q)

Several attempts have been made to find the largest complete (k,n)-arcs in PG(2, ).
This section illustrates the algorithms which are used to find the classification of (k,n)-
arcs in PG(2, ¢) and make a comparison among them depending on the time to get the
results. Here, one of these methods is developed to reduce the time of implementation.

So, Algorithm One 3.5.1 and Algorithm Three 3.5.3 are first applied to PG(2,5).

3.5.1 Algorithm One

This algorithm is used to find the maximum size of (k, n)-arc K in PG(2, ¢) and depends
on the Fundamental Theorem of Projective Geometry. There is a unique projectivity
of PG(2, ¢) transforming four points no three are collinear to any other four points no
three are collinear. Two (k, n)-arcs Ky, Ky are equivalent if ;T = Iy for a projectivity

T.

To find a matrix T which transforms the frame points to any given 4-arc say { P(ay, a1, as),

P(b())blabQ)aP(007cl702)7P(d07d17d2)}7 let
(17 0, O)T = )\(%7 ay, a2), (0, 1, O)T = 7(50, b1, 52)7 (0; 0, 1>T = V(Co, C1, 02),

where A\, v,v € F,. So
)\CLO /\Gl /\CLQ
T = Yoo b1 ybe

vcy UVCp Ve

Also (1,1, 1)T = p(dy, dy, ds), p € F,, which implies that

A

Qo bg Co do
v

aq b1 C1 d1 . :(0,0,0)
v

as by ¢y ds
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do bo Co Qo do Co Qo b(] do Qo b() Co
A= di by ¢ [, B=la d ¢ ,C = ap by dy |, D=|a b c |,

dy by c ay dy c az by dp az by c

where A, B,C, D # 0. Then,

Aao Aal ACLQ
T = Bbo Bbl Bbg
CCO CCl CCQ

The main steps of Algorithm One to classify (k,4)-arcs in PG(2,5) are the following.

1. Start with the frame points

P(1,0,0), P(0,1,0), P(0,0,1), P(1,1,1).

2. The are 31 — 4 = 27 remaining points. So some of these points are of index zero
which do not lie on any 4-secant and the others are not of index zero and lie on a
4-secant. Add one point of index zero to the frame points; the number of (5, 3)-arcs

obtained is 27.

3. This step finds which arcs are projectively distinct. When there is a projective
transformation T that maps the points of Iy to Iy, Ky and Ky are projectively
equivalent. Similarly, check if Iy is projectively equivalent to K3, ..., Ks7. Repeat
this procedure for o with K3, ..., Ko7, and similarly for the remain arcs. Therefore

there are Z?il © = 378 checks to decide which arcs are equivalent or not equivalent.

4. From step 3, there are 4 projectively distinct (5,3)-arcs. So, add the remaining
points of index zero to these arcs; the number of (6, 3)-arcs and (6, 4)-arcs obtained is
98. Repeat step 3; then there are 8 projectively distinct (6, 3)-arcs and 2 projectively
distinct (6,4)-arcs. To classify (7,4)-arcs start with the two projectively distinct
(6,4)-arcs.

5. Table 3.13 shows the result of the classification of (k,4)-arcs in PG(2,5).
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Here, ¢ is the number of (k,4)-arcs and 7 is the number of projectively distinct (k,4)-
arcs.

TABLE 3.13: The classification of (k,4)-arcs in PG(2,5)

k|71 8 9 | 10 | 11 12 13 | 14 | 15 | 16

£ 146|120 | 406 | 891 | 1545 | 1849 | 1594 | 825 | 250 | 35

n| 6124|600 [123] 176 | 207 | 165 | 82 | 27 | 6

3.5.2 Algorithm Two

A new algorithm has been obtained by modifying Algorithm One using the stabiliser

group of arcs. Algorithm Two is the following.

1. Start with an initial (k,n)-arc K.

2. Add all points of index zero to obtain (k + 1,n)-arcs. If there is no added point to
a (k,n)-arc K, then KC complete.

3. Find the stabiliser group for each (k + 1,n)-arc.
4. Separate (k + 1,n)-arcs into different sets A;, according to the group of the arcs.

5. Find the projectively distinct arcs for each set A; and separate them into sets B;;.

Here B;; are the sets of projectively distinct (k + 1,n)-arcs.

6. Collect all projectively distinct arcs in B;; and put them in M. Here M is set of all
projectively distinct (k + 1, n)-arcs.

7. Repeat steps 2,...,5, for all arcs of M.

3.5.3 Algorithm Three

This algorithm depends on the type of i-secant distribution (7,,, 7,—1, ..., 7o) and used

to find the largest complete (k,n)-arcs in PG(2,¢q). Algorithm Three is the following.

1. Start with an initial (k,n)-arc K.
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2. Add all points of index zero to obtain (k 4 1,n)-arcs. If there is no added point to
IC, then K is complete.

3. Find the i-secant distribution for each (k + 1,n)-arc.

4. Separate (k + 1,n)-arcs into different sets A;, according to the type of n-secant

distribution.

5. Choose only one (k + 1,n)-arc of each A; and put it in M. Here M is the set of

distinct (k + 1,n)-arcs according to n-secant distribution.

6. Repeat steps 2,...,4, to all arcs of M.

As an application of Algorithm Three, (k,4)-arcs in PG(2,5) will be classified.

1. The construction of the distinct (4, 4)-arcs

Let A = {1,2,4,21} be a (4,4)-arc in PG(2,5). Here, all (4,4)-arcs have the
same type of i-secant distribution. This can be calculated from Equations (1.1),

(1.2) and (1.3) of Lemma 1.29 are as follows:
To+T1+T+113+74 = 31,
T1+27'2—|—37'3—|-47'4 = 24,

TQ+3T3—|—67'4 = 0.

Since 7y = 1,73 = 0,75 = 0, so the type of (4,4)-arc is (1,0,0, 20, 10).

2. The construction of the distinct (5,4)-arcs

From step 1, there is only one (4, 4)-arc A, and there are 25 points of index zero
for A. So by adding one point of the points of index zero to A, then there is only
one (5,4)-arc denoted by B, for which

To+Tn+n+mn+17 = 31,
T+ 21+ 3 +41, = 30,

Ty + 37'3 + 67'4 = 10.

Since 74 = 1,73 = 0, so the type of (5,4)-arc is (1,0, 4,18, 8).
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3. The construction of the distinct (6,4)-arcs

From step 2, there is only one (5,4)-arc B, and there are 24 points of index zero.
So, by adding these points to B, two distinct (6,4)-arcs C; and Cy are obtained.
Then C is of type (1,0,9,14,7) and Cs is of type (1,1,6,17,6).

4. The construction of the distinct (k,4)-arcs, k=7,...,16

Tables 3.14, ..., 3.23 show the number of i-secant distribution of (k,4)-arcs in
PG(2,5). Here, £ is the number of (k,4)-arcs.

TABLE 3.14: The i-secant distribution of (7,4)-arcs in PG(2,5)

Elma|m || |T|| ||| | |7

312101911614 1(24]1]2(9 (145

6113|6174 (13]1]1(12(11|6

TABLE 3.15: The i-secant distribution of (8,4)-arcs in PG(2,5)

Elm|m| ||| |na|mB||T |7

1116411821221 (13|11 4
51213 71712113911 14]10(12]14
2212121011413 212|016 8|5

1001571573281 ]3]13]9 |5
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TABLE 3.16: The i-secant distribution of (9,4)-arcs in PG(2,5)

57473 T2 | T1 | To 5 Ta | T3 | T2 | T1 | T0

21314161180 4 (|3]1(15]9 |3
1312166 (16111515155 |5
6131391511142 |4|12|10|3
113101816 4|44 (2]3|15|7]4
6118|6142 |38 ||1|7|9]|11|3
221312121212 |38 |16 |12] 8 |4

6312 (15]9[13]2

TABLE 3.17: The i-secant distribution of (10,4)-arcs in PG(2,5)

Elma| | 2| 1|70 E || T3 || T |70

41313 (18131418 [|3|161]9(12]1

1 (510 |15{10] 1) 38 |3[4]|15]6 |3

19141419 ]14]02712]|6|15]|4]|4

813|716 |15/0|179]|3 |5 (1219 ]2

2111811525 48|1]1019 813

2514 |3 |12111 (138|119 1125 |4

1614121582 |153]2|8]|9]|10]|2

122121916131 2042 |7 |12| 7|3
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TABLE 3.18: The i-secant distribution of (11,4)-arcs in PG(2,5)

E|Ta| 3| 2|71 |To § |Ta| T3 | T2| 71|70
S 13| 711601 4] 4 121314 |11]1
121513165267 [5]4]13]8]1
41612 (13|{10]0| 18 4|5 ]|16| 3|3
211|161 4 1912742127 |82
711140716 3135211105 |3
13/1]13]10]3|4(268[4|7]10]9]1
1912110132 |4 1227|416 [13] 6 | 2
46155 (10111103923 ]9 |10] 7 |2
32041871210 132|3 |8 |13|4]3
88|13 10| 7 [10] 1

TABLE 3.19: The i-secant distribution of (12,4)-arcs in PG(2,5)

§ |Ta|T3| 72|71 |70 § |Ta|T3|T2|T1|To
1 11862491 |4]121/6|8]1
5 [ 311211210464 |3 [14|6 |62
4 121151911438 |5]9]9 |71
1 131160 (12]0 129 |6|5 |15]3 |2
1 1641803 8 [5|7]|15]1|3
O 31531911966 |12|6]1
111211616 |4 (3] 9 [3]13]9 (3|3
31 1511016 {10101 91 |4 |10]12]2 |3
O | 7|3 |15 5 | 1140141119152
32| 7141121802865 |8 (12|42
1008167191910
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TABLE 3.20: The i-secant distribution of (13,4)-arcs in PG(2,5)

574 T3 | T2 | T1 | T0 f Ta | T3 | T2 | T1 | T0

4131193331125 8 | 719|710
31318160 4(192]6|12]6 |61
2316113131910 5 [4[17]3 |5 |2
D515 3| 7|1 (1365|146 |42

4917110168109 |86 (12141

4191315313446 1119|312
1216 (10120 | 3 (1121 | 7 |18 12| 2 | 2
281411616 | 2][3(360 71919 ]5]|1

67151319113

TABLE 3.21: The i-secant distribution of (14,4)-arcs in PG(2,5)

E|lma|T3 | 72| T T0 § Ty | T3 | T2 | T1 | To

316|181 42|18 |8 12| 7 2|2
2116 [ 1714 (11364199 110]17]2
16| 7|14} 7103 47|10 8|7 ]|6]0
351911114701 30115 |10]51]0

A2 7|15 413 2| 73107 ]10]3]1

211006 [1310]2]24819 (10| 7 141
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TABLE 3.22: The i-secant distribution of (15,4)-arcs in PG(2,5)

5747372717057473727170

619163 [0 3| 11(12]10, 3610
3011011413 (221011316 |9]2|1
9112181910 ]223]|11]|12|3 |41
D9 11111116 [ 1215|113 7|65 |0
2115111213108 1(12] 9|63 |1

311011510 5 ]1

TABLE 3.23: The i-secant distribution of (16,4)-arcs in PG(2,5)

Elm|m|m | |T|&|Ta|T3|T| 7|

1 112716{ 00| 3(2[15|/10{ 0|60

O 15| 81602 16]15]9 (3|31

131411113 (1]2|8]16]6|6]|2]1

Table 3.24 shows the number of distinct type of i-secant distribution in PG(2,5) using
Algorithm Three. Here, IV is the number of distinct type of i-secant distribution.

TABLE 3.24: The classification of (k,4)-arcs in PG(2,5) according to their i-secant
distribution

E {7819 (10]11[12]13|14]15|16

N{419/13|17(19(21(19]14]11] 6
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3.5.4 Classification of (k,n)-arcs in PG(2,¢) using Algorithm
Three

In this section (k,n)-arcs in PG(2, q) are classified.

Case I: Classification of (k,n)-arcs in PG(2,5),n = 2,3,4

(i) From Note 1.15 there exists one type of i-secant distribution of (6,2)-arcs as
shown in Table 3.25.

TABLE 3.25: (6,2)-arcs in PG(2,5)

Points T | T1 | To

112135712015 ]10] 1|5

(ii) There are two distinct (11, 3)-arcs according to i-secant distribution as shown in
Table 3.26.

TABLE 3.26: (11,3)-arcs in PG(2,5)

Points T3 | To | T1 | To

1121356781014 16 2015|101 |5

1121356781015 (16(20| 16| 7 |4 |4

(iii) There are six distinct (16, 4)-arcs according to i-secant distribution as shown in

Table 3.27, Table 3.28.

TABLE 3.27: (16,4)-arcs in PG(2,5)

Points Tu | T3 | 2|7 |70

11213141516 7]8[10115]10{0(61]0

14115116 | 18|20 |21 |23

112135167 |8[12(1312]16]0 (0|3

16 [ 18120 123125]30]31
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TABLE 3.28: (16,4)-arcs in PG(2,5)

Points T4 | T3 | T2 | T1 | To
1121356 7|8|12|13|15|8|61]0]2
14116 |18 1201|2225 30
11213567 |8 [12]13||14|11(3]1]2
14116118 120(25]30]31
1121314567819 (1519(3]3]1
10711 114115]18 (20|25
1121314567 |8|10)116/6[6]2]1
11714 115118202129

Note that all results of (k,n)-arcs in PG(2,5) are calculated within 1 second.

Case II: Classification of (k,n)-arcs in PG(2,7),n =2,3,4,5

(i) From Note 1.15 there exists one type of i-secant distribution of (8,2)-arcs as

shown in Table 3.29.

TABLE 3.29: (8,2)-arcs in PG(2,7)

Points

T2

T1

To

4

7

12

32

33

28

21

(ii) There is one type of (15,3)-arcs as shown in Table 3.30.

TABLE 3.30: (15,3)-arcs in PG(2,7)

Points 3| T | 11| To
112131457 (8112]13(30]15|0 |12
21132133134 |38]|52
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(iii) There are two distinct (22, 4)-arcs according to i-secant distribution as shown in
Table 3.31.
TABLE 3.31: (22,4)-arcs in PG(2,7)

Points T4 | T3 | T2 | T | T0

112131457 |8110]12(13|15130(16|3 |26

16119121127 30(32|33|34|38]43 |49

112131456 |7][8|12(13|]16(28(21|0| 117

20121 126(28132|33|34|38|39]46 |52

(iv) There are four distinct (29, 5)-arcs according to i-secant distribution as shown in

Tables 3.32.
TABLE 3.32: (29, 5)-arcs in PG(2,7)

Points Ts | Ta | T3 | 2 | 71 | T0

1121314578 |10]11]12)28|21/0(01]0]8

1311511611921 (22]27(30|32|33

3413814043149 |50 |54 155156

11213145 |7]|8|10]11]12)27]20|5|1]0]|4

1311511619121 122|23|25]|27]30

3213334373843 145149152

1121314167 |8|10]12|1328|18|6 (01|23

14115116 |18 119(20|21 24|26 |28

321331353840 |44 146 |48153

112131457 |8 |10/11112)31|13(4]6]| 1|2

13119121 122125(26|27(29]|31|32

3335|3738 42|43 44|51 |57

The results of (k,n)-arcs in PG(2,7) were obtained within 12 seconds.



Chapter 3. Classification of (k,n)-arcs in PG(2, q)

Case III: Classification of (k,n)-arcs in PG(2,8),n = 2,3,4,5,6

(i) From Theorem 1.28 2 there exists one type of i-secant distribution of (10, 2)-arcs

as shown in Table 3.33.

TABLE 3.33: (10,2)-arcs in PG(2,8)

Points

T2

1

To

10

11

40

44

48

23

61

45

28

(ii) There are four distinct (15, 3)-arcs according to i-secant distribution as shown in

Tables 3.34.
TABLE 3.34: (15, 3)-arcs in PG(2,8)
Points 3| T | 71| To
1121314 (10711]112120(38(25({30| 0 |18
40|44 148 | 50 | 53 | 61
1121314 (10]11(12(20|381(27[24| 6 |16
40|44 148 | 53|59 | 61
11213 |4]10(11|12|13[21(29|18(12|14
38140 |44 |53]60 |61
1121341011 |12]40[48|31|12|18]12
52| 53|56 |61 69|73
(iii) There is one type of (28,4)-arcs as shown in Table 3.35.
TABLE 3.35: (28,4)-arcs in PG(2,8)
Points Ta | T3 | T2 | T1 | To
11213 |4]10(11|12]15]20(22(63|0|0|0 10
28130 (3435|3840 |44 |46 |48 |50
53159 |61|63|64]|65|68|71
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(iv) There are three distinct (33, 5)-arcs according to i-secant distribution as shown
in Tables 3.36.

TABLE 3.36: (33,5)-arcs in PG(2,8)

Points Ts | T4 | T3 | T2 | 71 | T0

11213148 |10[11]12|15|17{20(39|18]10/0 |0 |6

2412501263034 |36|38[40 |41 |44 148

50 [ 5152 |53(55[5H8|61|62]66|70]|72

11213148 |10[11]12|15]20{2248|0(16/0|9/0

2413034 |35|38[40]41|44|48|50]51

525358 |59(61(63|64]|66|69|71|73

11213145 |10[11]12|15]20{22(36{28]0 |0 |5 |4

23128130 132(34135|38|40 42|43 |44

46 |48 150 53159 (61|63 |64|65|68 |71

(v) There are two distinct (42, 6)-arcs according to i-secant distribution as shown in
Table 3.37 and Table 3.38.

TABLE 3.37: (42,6)-arcs in PG(2,8)

Points Te | T5 | Ta | T3 | T2 | 71 | T0

1721356789 10/11|15||50]0 18013 |0]2

1612012212324 (26|27|28]29]|30]31

32134 37|38(39[40 |41 |42 |43 47148

5115215315960 |65|66|72]73
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TABLE 3.38: (42,6)-arcs in PG(2,8)

Points

T6 | T5

T4

73

T2

T1

T0

8

10

12113

15

39 |24

18

20

21

22

26

28

30

33

34 | 37

40

41

43

44

45

46

53

o4

o6

57|58

29

61

62

64

65

67

68

69

72

73

The results of (k,n)-arcs in PG(2,8) were calculated within 62 seconds.

Case IV: Classification of (k,n)-arcs in PG(2,9),n = 2,3,4,5

(i) From Note 1.15 there exists one type of i-secant distribution of (10, 2)-arcs as

shown in Table 3.39.

(ii) There are two distinct (17, 3)-arcs according to i-secant distribution as shown in

Table 3.40.
TABLE 3.40: (17,3)-arcs in PG(2,9)
Points T3 T | 71| To
11213579 |12]15(23|39|43|38(22|12]19
53|56 |58 |63|67 |79
11213567 |11126(29|30(49|39|19|15]18
52| 57161]63|86 |90

TABLE 3.39: (10, 2)-arcs in PG(2,9)

Points

T2

1

To

23

43 | 53

56

63 || 45

10

36
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(iii) There is one type of (28,4)-arcs as shown in Table 3.41.

TABLE 3.41: (28,4)-arcs in PG(2,9)

Points T4 | T3 | T2 | T1 | To
112131456 |79 |11/114{19163[01]01]28]|0
2012325324353 |55 |56 |57 |63 |64
6776|8285 |89 |90

(iv) There are two distinct (37, 5)-arcs according to i-secant distribution as shown in

Table 3

42.

TABLE 3.42: (37,5)-arcs in PG(2,9)

Points

T5

T4

T3

T2

1

To

9

10

16

17

18

20

45

36

22

25

27

30

36

43

44

47

51

53

35

o7

o8

60

61

63

64

69

71

76

79

81

83

87

90

91

10

16

17

18

20

48

29

22

25

27

30

36

43

44

47

51

23

95

o7

o8

60

61

63

64

69

71

79

81

83

85

87

90

91

Case V: Classification of (k,n)-arcs in PG(2,11),n = 2,3,4,5

(i) From Note 1.15 there exists one type of i-secant distribution of (12,2)-arcs as

shown in Table 3.43.

TABLE 3.43: (12,2)-arcs in PG(2,11)

Points

T2

T1

To

83 | 84

89

98

113

128

66

12

5}
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(ii) There is one type of (21, 3)-arcs as shown in Tables 3.44.

TABLE 3.44: (21, 3)-arcs in PG(2,11)

Points T3 | T2 | 71| To
112135712121 ]22]23 |28 [33(63]21]21]28
5570179 |88(96 | 102|115 | 117|121 | 129

(iii) There is one type of (32,4)-arcs as shown in Table 3.45.
TABLE 3.45: (32,4)-arcs in PG(2,11)
Points Ty | T3 | T2 | T1| To
1 (2|3 [12]13 |14 |15 |17 (21 |30|39|65/30{16|2 |20
45 | 46 | 49 | 55 | 62 | 65 | 68 | 71 | 75 | 77 | 96
105|108 | 111 | 113 | 115 | 117 | 118 | 125 | 126 | 132
(iv) There is one type of (43, 5)-arcs as shown in Table 3.46.
TABLE 3.46: (43,5)-arcs in PG(2,11)
Points Ts5 | T4 | T3 | T2 | T1 | To
1 2 3 D 8 |12 | 13 | 14 | 15 | 17 | 21 |60 {4510 3 | 0 |15
22 123|128 |30 |39 |45 |46 | 49 | 55 | 62 | 65
68 | 71 | 72 | 73 | 75 | 77T | 79 | 88 | 96 | 105 | 106
108 | 111 {113 | 115 | 117 | 118 [ 125 | 126 | 129 | 132
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Case VI: Classification of (k,n)-arcs in PG(2,13),n =2,3,5

(i) From Note 1.15 there exists one type of i-secant distribution of (14,2)-arcs as

shown in Table 3.47.

TABLE 3.47: (14, 2)-arcs in PG(2, 13)

Points T | 71| To

112138192128 |30|46 |48 |68 |125|147 16391 |14 |78

(ii) There are four distinct (23, 3)-arcs according to i-secant distribution as shown in

Tables 3.48.

TABLE 3.48: (23,3)-arcs in PG(2, 13)

Points 3| T | T | T

1 2 3 7T |14 137139 |46 | 51 | 55 | 66 |69 || 71]40|29 |43

84 | 98 | 100 | 122 | 125|126 | 143 | 163 | 171 | 172 | 180 7114012943

51 | 56 | 82 | 85 | 87 | 96 | 118 | 142 | 170 | 171 | 181

94 | 98 | 101|103 | 106 | 111|114 |139|163 | 177|183

101|103 | 111 | 126 | 129 | 137 | 143 | 163 | 166 | 172 | 174
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(iii) There are two distinct (49, 5)-arcs according to i-secant distribution as shown in
Table 3.49.

TABLE 3.49: (49,5)-arcs in PG(2, 13)

Points Ts | Ta | T3 | T2 | T4 | TO

1 2 3 4 ) 7 8 9 |18 1 19| 22 |82(49|16|14| 4 |18
25 128 |29 | 34 |35 |37 |38 |43 |46 | 48 | 50

54 | 55 | B8 | 63 | 67 | 69 | 70 | 80 | 84 | 95 | 98

100 | 101 | 103 | 112 | 113 | 126 | 127 | 148 | 152 | 153 | 156

159 | 163 | 166 | 172 | 183

25 128 |29 | 34 |35 |37 |38 |43 |46 | 48 | 50

54 | 55 | 38 | 63 | 67 | 69 | 70 | 80 | 84 | 95 | 98

101|102 { 103 | 112 | 113 | 126 | 127 | 148 | 152 | 153 | 156

159 1163 | 166 | 172 | 183

Case VII: Classification of (k,n)-arcs in PG(2,16),n = 2,4

(i) From Theorem 1.28 2 there exists one type of i-secant distribution of (18, 2)-arcs
as shown in Table 3.50.

TABLE 3.50: (18,2)-arcs in PG(2, 16)

Points T | T | To

1 2 3 169 | 79| 8 [109]112 122|124 158 153 | 0 | 120

166 | 201 | 207 | 222 | 234 | 250 | 263
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(ii) There is one type of (52,4)-arcs as shown in Table 3.51.

TABLE 3.51: (52,4)-arcs in PG(2, 16)

Points Ty | T3 | T2 | T1| To

1 2 3 6 7110 11|16 |19 |23 24|30 |32 {221,001 0]|52
38 139 [ 53 |60 | 64 | 65|67 | 70 | 8 | 87 | 90 | 91 | 106
119 {120 [ 125 | 132 | 153 | 156 | 165 | 169 | 174 | 186 | 188 | 192 | 206
209 | 211 | 212 | 217 | 221 | 232 | 234 | 239 | 244 | 251 | 255 | 262 | 263

Case VIII: Classification of (k,n)-arcs in PG(2,17),n = 2,3

(i) From Note 1.15 there exists one type of i-secant distribution of (18,2)-arcs as

shown in Table 3.52.

TABLE 3.52: (18,2)-arcs in PG(2,17)

Points ™ | 71| To
100 7 | 21 |29 |36|44 (7391|153 |18 136
1321137 | 141 | 163 | 173 | 262 | 271

(ii) There are three distinct (28,3)-arcs according to i-secant distribution as shown

in Table 3.53 and Table 3.54.

TABLE 3.53: (28, 3)-arcs in PG(2,17)

Points T3 | T2 | 1| To
1 2 3 D 7T |15 | 33|47 | 52|62 | 68 | 80 | 90 || 100 | 78|48 |81
81 | 100 | 104 | 184 | 186 | 189 | 197 | 206 | 225 | 232 | 240 | 243 | 254
287 | 288
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TABLE 3.54: (28, 3)-arcs in PG(2,17)

Points 3 | T | T | T

1 2 3 O | 15126 |33 (34 ]39 |60 |8 |92]99 ||101]75]51]80

100 | 101 | 105 | 143 | 162 | 164 | 168 | 172 | 179 | 194 | 211 | 255 | 284

289 | 296

1 2 3 5 | 15 |21 |24 | 28 | 41 | 53 | 76 | 100|104 || 98 |84 42|83

105 | 107 | 145 | 149 | 184 | 190 | 192 | 195 | 202 | 231 | 238 | 244 | 260

271 | 296

Here, all of the results which were found by Algorithm Three are the same as known

results as in [7].

3.5.5 Algorithm Four to find the classification of (k,n)-arcs

This algorithm modifies the Algorithm Two using Algorithm Three. The main steps
of Algorithm Four are the following.

1. Start with an initial (k,n)-arc K.

2. Add all points of index zero to obtain (k 4 1,n)-arcs. If there is no added point to
a (k,n)-arc K, then KC complete.

3. Find the n-secant distribution for each (k + 1,n)-arc.

4. Separate (k + 1,n)-arcs into different sets A;, according to the type of n-secant

distribution.

5. Find the stabiliser group of (k + 1,n)-arc for each A; and separate them into sets
B;j. Here B;; are the sets of distinct stabiliser (k + 1, n)-arcs.

6. Find the projectively distinct arcs for each set B;; and put them in M. Here M is
set of all projectively distinct (k + 1,n)-arcs.

7. Repeat steps 2,...,5, for all arcs of M.
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From the classification of (k,4)-arcs in PG(2,5), Algorithm Four gives the following
results. Here  represents the number of arcs with the same type of i-secant distribution

and ( represents the number of arcs with the same group.

TABLE 3.55: Stabilisers of (7,4)-arcs in PG(2,5)

5T4T37'2717'0C|G‘ 57’47'37'27'1704‘G|

312101916143 8 (124129 |14|5]16] 1
6136 ([17]4]6] 2 8| 2

13{1 (1127116 |10 2

TABLE 3.56: Stabilisers of (8,4)-arcs in PG(2,5)

57’4737'27'1TOC|G| 57’47'37'27'17'0C|G|

11164118121 8 ||12]2 |1 (13|11[4 | 8| 2
D213 |7 |1712|5 1 4 41 4

221212 (10|14 3|14} 1 ||39|1]4 110|124 ]24| 1

8| 2 131 2
100157151371 11 4
31 2 218

28011311319 15]20] 1
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TABLE 3.57: Stabilisers of (9,4)-arcs in PG(2,5)

O [T |T3|T2| T |To| C ’G| O |Ta|7T3|T2| T |T0]| ¢ ‘G’
2131416 ([18]0 2|24 15|15 [15]5|5]10| 1
6 (3|39 |15]1|6] 3 5| 2
131216616113 2 (11424 (12]10(3]91| 1
113]0118]6 4] 1124 181 2
2213121121122 22| 2 5| 8
6 |1 |86 (142 |4] 2 || 44|23 15| 7 [4]12| 1
21 4 29| 2

6312|159 (13]2(32] 1 3] 4
260 2 || B8 |1 |79 (11349 1

41 5 91 2
413111519343 |58 |1]6([12]8[4]40]| 1
171 2

118
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TABLE 3.58: Stabilisers of (10,4)-arcs in PG(2,5)

O |Ta|73| 72| T 70| ¢ ||G] O |Ta|73| 72|71 70| ¢ ||G]
4 |33 (18|34 4 6 12121916 (13112 ] 1
11510151071} 1 |20 8 |1 |11]6 [11]2] 6 2
19141419 (14]0] 19| 2 2 4
8 |3 716|150 6 6 1190 [ 3]6]9|12|1|67 |1
2 |12 16 | 2

2 1181525 2 4 4 3
25 |41 3 |12(11] 115 | 1 3 6
101 2 || 5813411516334 |1

6412 (1582|131 18] 2
3 8 3 3

26 1216|1514 141101 1 3 6
W2 |3r]1191]12]5 (4|19 1

1 4 17 1 2

1791315 (1219 |2 |141] 1 1] 4
35| 2 (115312819102 |118] 1

3 4 29 | 2

46 |1 1019 | 813 1]39 | 1 3 4
4 2 2 8

3 4 1 |16

2021 2| 7|12 7|3 ]173] 1

29 | 2
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TABLE 3.59: Stabilisers of (11,4)-arcs in PG(2,5)

S |||l C||IG| 0 |||l ¢ |]|G]
513171161 |45 ] 4 68 |54 (138|152 1
121513165 |2 |12] 2 16 | 2
41612 (13|110101] 4] 8 7621121782611
211151419 |2|2] 4 12 | 2
711147716 ([34]1 3 4
3| 2 1814151161313 11| 1

13111310} 3 |4 (13| 2 7 2
1912|1013 2 (4|11 1 (1352|1110 5|3 |101| 1
6| 2 31| 2

21 8 3 4

4615 | 5 1011 |0 |15 1 [[2654 | 7 |10]9 |1 |225| 1
30| 2 35| 2

1120 5) 4

8813 (10| 7 (101169 1 [[224(4 |6 |13]6 |2 |178| 1
19| 2 39 | 2

3114871210 (14] 1 7 4
91 2 1393|319 |10]7]2]320] 1

8| 4 70 | 2

4 1211341111114 8 3 4
13213 (8|13 4|3 |119] 1

13 | 2
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TABLE 3.60: Stabilisers of (12,4)-arcs in PG(2,5)

O |Ta|73| 72| T 70| ¢ ||G] O |Ta|73| 72|71 70| ¢ ||G]
4 | 311513191 4 3 1 16141181013 1 |24
1 11181624 1 8 12121166 |4 (3] 9 1
5 | 311211210 14| 4 6 3 8
1 1243351016 (10]0] 11 | 1

4 1211519 |1 (4] 4| 4 19 | 2
1 131160 112{0| 1 |96 3 8
3317141121801 15| 1 ||18|61]6 [12]6 |1]164] 1
11 1 2 12 | 2

7T | 4 7 3

94 1411216 | 8 |1] 77| 1 3 4
17 1 2 2 |12

68 | 3|14 6 |6 | 247 | 1 ||408| 411119 |5 |2]345] 1
17 1 2 29 | 2

4 1 4 4 1 4

10716171919 10]63 ] 11]91]4]10]122|3]61 | 1
27 | 2 30 | 2

8 398 (313|933 ]68] 1

) 4 20 | 2

4 6 4 3
3911519197133 1 6 6
o6 | 2 8 | o 715113 8 2

29 16 |5 |15 32|23 | 1 ||2785 |8 (124 |2]218] 1
6 2 49 | 2

7| 4

4 8
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TABLE 3.61: Stabilisers of (13,4)-arcs in PG(2,5)

O |Ta|73 |7 ||| ¢ |G| 0 ||m|m|n|n| ¢ ||G]
3131816014 3 |24 32]|4116]61]2]3]21 |1
5 |31191 3133 5 6 11 ] 2
231613131910 5 |3 |11]|6]10|12{0|3| 5 | 3
18 1 6 6 6
4 141171315124 |4 ]67|5(13[/9|1]3]33]1
6 | 5153|716 2 34 | 2
48 | 711016 | 8]0 34| 1 ||88[8|6|12]14 1] 74 |1
10 | 2 14 1 2
4 8 (14551416 |4]2 113 1
7185|1512 7 | 4 32 | 2
4 19131151314 |3 362|7[9|9|5]1]310] 1
12218719 |7]0] 76 | 1 92 | 2
40 | 2 (|120 7| 8 (12122 |93 | 1
6 4 18 | 2
19516 11216 |61 |170| 1 6 | 4
13 ] 2 3 8
6 313566 11|19 [3]2]293| 1
4 | 4 63 | 2
2 |12
211914 (1216 0| 9 2
) 3
4 | 4
3 |24
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TABLE 3.62: Stabilisers of (14,4)-arcs in PG(2,5)

0 |m|m|m|n|n| (|G| b |m|m|n|n|n|l ¢ |G|
3519 11141710114 1 || 48 |7 |15]4]3]2]31]|1
11| 2 17 | 2
100 4 || 75|10 71013 |1]56 | 1
21106 |17 4 (13|21 2 19 | 2
6711417101319 2 ||177|8 12| 7 |2|2]145]| 1
7|4 32 | 2
6 |6 (181141268 63[9(9]10]1]2|37]1
501101 8 | 7160 1(38] 1 26 | 2
91 2 |23 9107 |4]11]221| 1
318 29 | 2
61| 8 |13 4 |5 |1]47| 1 3 4
141 2 130|115 (105|014 | 1
211016 (13102 2] 8 16 | 2
3 (1114 (13211 3] 8 5 91161303 5 6
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TABLE 3.63: Stabilisers of (15,4)-arcs in PG(2,5)

0 |m|m|n|n|n| G| |m|m|n|n|n| (|G
3110151051132 9136|9219/ 1
11112]10[3 |6 |06 | 3 (|25|11|12| 3 |4 |1]|16] 1
5 | 12 91| 2
0110114132217 1 ||8]12{9 6 |3 |1|62]| 1
13| 2 13| 2
9112181910219 2 51 3
58 |11 (11|16 | 1|2 ]44] 1 3| 6
8|1 2 1613 7|6 |50 |11 2
6| 4 51 4
6 | 4 2 115112130 2|24
TABLE 3.64: Stabilisers of (16,4)-arcs in PG(2, 5)
Ol |m|m|m||C||GI||d|m|m|n|n|n| C]|]|G]
1112116003196 |[12(14 (11 |3 |1 |2 |12] 2
2157100160 [2]120( 6 |15]9 |3 |3|1]|6] 3
4115181610124 4 811616 6|2 |1]8] 2
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Figure 3.1 shows a comparison among Algorithm One, Algorithm Three and Algorithm
Four to classify (k,4)-arcs in PG(2,5).

O Algorithm One & Algorithm Two R Algorithm Four

18000 - 17111
16000 -
14000
12000
10000 -
8000 -
6000 -
4000
2000 - 1170

o N

Algorithm One Algorithm Two Algorithm Four

F1GURE 3.1: Time required for implementation of Algorithm Three and Algorithm
Four

3.6 Chapter Summary

This chapter describes a survey for known results for maximum and minimum size of
complete (k,n)-arcs in PG(2, q) is proved for k-arcs and (k, 3)-arcs. Also, a new lower
bound is proved for smallest size of complete (k,n)-arcs in PG(2,¢). A comparison with
known results is shown. Furthermore, a construction of complete k-arcs in PG(2, q)
from quadrangle is proved and applied for PG(2,5). Four algorithms are explained,
and the classification of (k,n)-arcs is shown for some values of n and ¢. Algorithm
Two gives the same results for large complete (k,n)-arcs which are obtained using
Algorithm One. Algorithm Two is faster than Algorithm One. Finally, the program
which is written in Fortran as mentioned in Appendix C is faster than the program

which is written in GAP as mentioned in Appendix B.



Chapter 4

High Performance Computing

(HPC)

Many complex mathematical problems deal with extremely large amounts of data that
require to be processed. In such cases, a conventional program, known as a serial
program, may require days, weeks, or even months before obtaining the results. This
requires High Performance Computing (HPC) techniques to accelerate the calculations
without affecting the accuracy of the results. The HPC relies on dividing a big problem
into smaller problems and solving each of them individually, or more precisely in a
parallel way [59]. Thus, parallel computing is the key role of the HPC. Based on
accessing the memory by the processors, the paralleling computing systems can be
divided into shared memory, distributed memory, or shared-distributed hybrid memory
[55]. Besides these techniques, Graphical Processor Units (GPUs) are utilised as an

effective tool to accelerate the calculations.

4.1 Parallel Computing on a Shared Memory Ar-
chitecture - OpenMP

In the shared-memory architecture, processors share the physical memory, that is the

processors read /write from/to any memory location, as depicted in Figure 4.1.

88
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FIGURE 4.1: Shared memory architecture

Global Memory

+++++++++

The CPUs have been developed during the last decade. They started with more than
one processing unit (core). These cores are designed to work independently forming
a multi-core processor. This increases the number of tasks that can be preformed at
the same time. From the software point of view, OpenMP has been developed to
provide a standard (API) that can be utilised to develop parallel programs using the
shared-memory technique. The OpenMP matches the state of the hardware [20].

In sequential programs, the CPU provides one thread to execute the program instruc-
tions sequentially, whereas in OpenMP the program is executed serially by a master
thread, usually denoted as Thread 0, until it reaches the parallel region, which is a
group of instructions that need to be executed concurrently. In the parallel region, the
master thread creates a group of threads; depending on the nature of the program, a
master thread may or may not wait for the other threads to complete their jobs at
the end of the parallel region. Figure 4.2 shows the sequence of OpenMP threads in a

program.

The program instructions are executed sequentially in the serial programming by one
thread which is dedicated by the CPU. In OpenMP, the program is divided into two
regions: serial region and parallel region, which is a set of instructions that need to be
executed concurrently. The serial region is executed by the master thread while the
parallel region is executed by threads which are generated by the master thread, as

shown in Figure 4.2.

At the end of the parallel region, the master thread may or may nor wait for other

threads to complete executing their tasks.
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FI1GURE 4.2: Threads diagram in OpenMP program

Serial Region|«- - - - - - - - - - - - Master thread

ci |a- - - - - - . Team of threads

ThO vThl vTh2 vThN

Serial Region|«- - - - - - - - - - ... Master thread

ThO = thread 0
Thl = thread 1
Th2 = thread 2

ThN = thread N

The number of instructions executed in the parallel region equals the number of spec-
ified or available threads. The OpenMP program accelerates the calculations of the
given problem; however, the acceleration factor depends on the size of the parallel re-

gion as compared with the size of the whole program. This has been formalised by

Gene Amdahl [20] as

1
§=—p, (4.1)

(1—P)+S—P

where S is the expected acceleration, P is the size of the program, and S, is the

acceleration obtained from the parallel region.

The OpenMP has feature of adaptation; that is, the program parallelised using OpenMP
can be executed in a parallel or serial version. The adaptation feature allows the de-
veloper to switch between the serial and parallel versions without introducing any
changes. This is achieved by changing the compilation option(s). For instance, the
OpenMP directives in Fortran start with “!$” which are comments for non-OpenMP

compilers.
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4.2 Parallel Computing on a Distributed Memory
Architecture - MPI

As shown in Figure 4.3, the CPUs in the distributed memory architecture are physically
separated and a communication network is used to maintain the connection among
the CPUs. Each CPU has its own local memory which is non-accessible by other
CPUs. Thus, CPU2 in Figure 4.3 cannot directly fetch data in the local memory
available in CPU1. Message passing is used to perform the communication between
the CPUs. Therefore, the distributed memory architecture is known as the message
passing architecture [33]. Since 1994, the Message Passing Interface (MPI) is used for

message passing.

FiGuURrE 4.3: Distributed memory architecture

Network
Memory|  [Memory] [Memory) Memory

Each CPU in the MPI communication world has an identifier which is a unique number
used to distinguish between the ranks. The ranks begin with 0 and end with number
of CPUs —1; therefore, the ranks of the MPI communication world with 8 CPUs are
Rank 0, ..., Rank 7. The problem data are divided by the developer using the ranks.
Let us consider the 2-dimensional matrix shown in Figure 4.4; the matrix is divided
over a number of CPUs and can be performed in many ways. In this case, the division
is randomly chosen to be row by row. In practice, the division of data among ranks
may affect the efficiency of the parallel program. The key feature of the MPI is that
the developer can build an application-dependent topology, which is known as virtual
topology [33]. This is achieved by the aid of ranks and the MPI communication world.
The virtual topology concept overcomes the problem of selecting the efficient topology

that matches the hardware of the HPC.
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The communications among the CPUs, which are in the same MPI communication
world, are unicast, multicast, or broadcast. The unicast is the point-to-point com-
munication, whereas the multicast is the point to multi-points communications. The
broadcast is the case when a CPU sends data to all other CPUs. Although it is essen-
tial, the communication between CPUs reduces the overall computational performance.

Thus, the broadcast should be avoided as much as possible.

The MPT is a powerful tool for parallel programming. Nevertheless, the MPI library
contains many functions which may be considered a restriction for developers with
limited experience in parallel programming. Practically, this large number of functions
does not add complexity to developing a parallel program using MPI. Many of the
MPI functions are combinations of a small number of concepts [33]. Moreover, to
implement an MPI program with a good acceleration of performance, only a small
number of functions is required. Basically, the following steps are essential for any

MPI program.

Create the MPI communication world.

Discover the CPUs which are participating in the MPI communication world.

Discover the CPU’s rank.

Exchange the data with the CPU(s).

Terminate the MPI communication world.

FIGURE 4.4: Example of MPI data fraction
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4.3 Algorithm Five to Find the Classification of
(k,n)-Arcs

This algorithm has been obtained by modifying the Algorithm Four by using parallel
computing on a shared memory architecture-OpenMP, as mentioned in Appendix C.1.2.

Here a laptop is used with the following details.

1. CPU Intel (R) core (TM) i7 — 4710 HQ CPU @ 2.5 GHz.

2. RAM 16 GB.

Figure 4.5 shows a comparison between Algorithm One, Algorithm Three, Algorithm
Four and Algorithm Five.

OAlgorithm One @ Algorithm Two & Algorithm Four m Algorithm Five
18000 17111
16000
14000
12000
10000
8000
6000
4000
2000 1170
[ @ 292
0 il OO
Algorithm One Algorithm Two Algorithm Four Algorithm Five

FI1GURE 4.5: Time required for implementation of Algorithm One, Algorithm Three,
Algorithm Four and Algorithm Five
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4.3.1 Application of Algorithm Five Using OpenMP

Figure 4.6 shows a comparison between different threads to classify k-arcs in PG(2, 13).

7000 1
6404.225 0l ©92 ©3 m4 @8 816 @32

6000 A

5000 A

4000 +

3374.558

Time (Seconds)

3000 A
2000 4

1753.527

1000 A

650.296
83.596
preeey

Number of threads

FIGURE 4.6: Time required for implementation of Algorithm Five

Here, the cluster of the University of Sussex is used to find the classification of k-arcs

in PG(2,13) with different numbers of threads.

4.4 Chapter Summary

This chapter has showed some applications of HPC. A new algorithm with OpenMP

technique is applied. Also, a comparison among all five algorithms is shown.



Chapter 5

Coding Theory

5.1 Introduction

Projective geometry has applications in modern information and communication sci-
ence, more specifically, in coding theory. The aim of coding theory is to develop meth-
ods that enable the recipient of message to detect or even correct errors that occur
while transmitting data. Many aspects of coding theory can be directly translated into

geometry problems.

5.2 Linear Codes

A linear [k, n, d] code C over q = p" is an n-dimensional subspace of the k-dimensional
vector space V' = V(k, ¢) over F,. The minimum distance d of the code is the smallest
number of positions in which two different elements of C' differ. Equivalently, d is the
smallest number of non-zero symbols in any non-zero vector of C'. Here, C' is MDS if
and only if any n columns of G are linearly independent; this property is preserved
under multiplication of the columns by non-zero scalars. So, consider the columns of
G as points P, Py, ..., P, of PG(n — 1,q). It follows that C' is MDS if and only if
{Py,..., P} is ak—arc of PG(n—1,q); so a k—arc corresponds to an MDS code. This
gives the relation between linear MDS codes and arcs. One of the main problems of

coding theory is to correct as many errors as possible.

95
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Following [34], let Z* denote the set of positive integers and F a finite set. This finite

set constitutes our alphabet, and its elements are called letters. Then
V={e; x|z eF1<i<kkeZ"}

is the set of all possible n-tuples of letters (repetition allowed) from F. A subset C of V'
is referred to as a code, and the elements of C' are codewords. For a fixed k € Z", then
refer to a subset C' of V' as a block code of length k if each of its elements is a k-tuple of
elements of IF. Here take I to be a finite field. If C' has n information symbols, where

n is the dimension of C' as a vector space over IF, then refer to C' as a (k,n) code.

Let C'= {00000, 11111}. If the encoder transmits 00000 but 00101 is received instead,
then the decoder on realising that there are more 0’s than 1’s decodes the message as
00000. Such codes are repetition codes. This code detects up to 4 errors and corrects

2 of them.

In general, repetition codes can detect the presence of up to d — 1 errors and correct

d—1
up to {TJ errors in each d-tuple.

The space is V(k, q) = ((F,)*, +, x). For x € V(k,q), write
x = (T1,T2,...,Tk) = T1To - Tg-

Definition 5.1. (i) A linear code is a subspace of V(k, q).
(ii) If dim C = n, then C'is a [k, n]-code or [k, n],-code,
or, if d(C') = d, it is a [k, n,d]-code or [k, n, d],-code.

Definition 5.2. A generator matriz G of a [k,n]-code C' is an n X k matrix whose

rows form a basis for C. A parity check matriz for C' is a (kK —n) x k matrix H such
that ¢ € C if and only if cHT = 0. Also, the dual code of C, denoted by C*, is the set

of vectors of V(k, q) which are orthogonal to every codeword in C:

Ct={veV(kq) |vu=0,foraluecC}.
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5.3 The Main Coding Problem

The notation (k, M, d) is used to represent a code with length k, a total of M code-
words, and minimum distance d. The main coding theory problem is to optimise a
code (k,M,d) and make a balance among k for fast transmission, large M to enable

transmission of a wide variety of messages, and large d to correct many errors.

Let A,(k, d) be the maximum value of M for which there exists a ¢-ary (k, M, d)-code.
Theorem 5.3.

(i) A,k 1) = ¢~

(ii) Ag(k, k) =q.

Definition 5.4. An e-error-correcting code C' in (F,)* is perfect if any vector in (F,)*

is at distance at most e from exactly one codeword; that is, every received message is

corrected.

Theorem 5.5. (i) A code C' can detect up to s errors in any codeword if

d(C) > s+ 1.

(ii) A code C' can correct up to t errors in any codeword if

d(C) > 2t + 1.

From [8], the Singleton bound states that, if C'is an [k, n, d|,-code, then d < k —n+ 1.
The Singleton defect for linear code C'is defined as A(C') = k+1—n—d. Linear codes
meeting the Singleton bound are Maximum Distance Separable (MDS). A linear code
C having Singleton defect equal to 1 and such that also C* has Singleton defect 1 is
Near Mazimum Distance Separable (NMDS). In general, a linear code having Singleton
defect equal to 1 is Almost Mazimum Distance Separable (AMDS). Not all the AMDS-
codes are NMDS-codes.
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Theorem 5.6 ([31]). If k > n+ q, then every [k,n,k — n],-code is NMDS.

Theorem 5.7 ([1]). If K > mu_a(n — 2,q) + 2, then every [k,n,d],~AMDS code is
NMDS.

Note 5.8. A g-ary [k, n,d]-code is a g-ary (k,q", d)-code.

Theorem 5.9. There exists a projective [k,n,d|,-code if and only if there exists an

(k,k —d)-arc in PG(n —1,q).

5.4 MDS Codes of Dimension Three

From Theorem 5.9, if ¢ = 13,n = 3 then in PG(2,13) there exists a correspondence
between (k,2)-arcs and projective [k, 3, k — 2];3-codes.

Table 5.1 shows the MDS codes corresponding to (k,2)-arcs in PG(2,13), where e is
the number of errors corrected.

TABLE 5.1: MDS Codes over Fq3

K MDS code K MDS code K MDS code | e
(5,2)-arc | [5,3,3] (12,2)-arc | [12,3,10] (19,2)-arc | [19,3,17] | 8
(6,2)-arc 6,3, 4] (13,2)-arc | [13,3,11] (20,2)-arc | [20,3,18] | 8
(7,2)-arc | [7,3,5] (14, 2)-arc | [14,3,12] (21,2)-arc | [21,3,19] | 9
(8,2)-arc | [8,3,6] (15,2)-arc | [15,3,13] (22,2)-arc | [22,3,20] | 9
(9,2)-arc | [9,3,7] (16, 2)-arc | [16,3,14] (23,2)-arc | [23,3,21] | 10
(10,2)-arc | [10,3, 8] (17,2)-arc | [17,3,15]

(11,2)-arc | [11,3,9] (18,2)-arc | [18,3, 16]

5.5 Codes of Dimension Five

From Theorem 5.9, if ¢ = 13,n = 5, then in PG(2, 13) there exists a correspondence

between (k,5)-arcs and projective [k, 5, k — 5]13-codes.
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Table 5.2 shows codes corresponding to (k,5)-arcs in PG(2,13) and e is the number of

errors corrected.

TABLE 5.2: Codes of dimension 5 over Fq3

K Code K Code e K Code e
(7,5)-arc | [7,5,2] (22,5)-arc | [22,5,17] | 8 | (37,5)-arc | [37,5,32] | 16
(8,5)-arc | [8,5,3] (23,5)-arc | [23,5,18] | 9 || (38,5)-arc | [38,5,33] | 16
(9,5)-arc | [9,5,4] (24, 5)-arc | [24,5,19] | 9 | (39,5)-arc | [39,5,34] | 17
(10,5)-arc | [10,5, 5] (25,5)-arc | [25,5,20] | 10 || (40, 5)-arc | [40,5,35] | 17
(11,5)-arc | [L1,5, 6] (26,5)-arc | [26,5,21] | 10 || (41,5)-arc | [41,5,36] | 18
(12,5)-arc | [12,5,7] (27,5)-arc | [27,5,22] | 11 || (42,5)-arc | [42,5,37] | 18
(13,5)-arc | [13,5,§] (28,5)-arc | [28,5,23] | 11 | (43,5)-arc | [43,5,38] | 19
(14,5)-arc | [14,5,9] (29, 5)-arc | [29,5,24] | 12 || (44, 5)-arc | [44,5,39] | 19
(15,5)-arc | [15,5,10] | 5 | (30,5)-arc | [30,5,25] | 12 || (45,5)-arc | [45,5,40] | 20
(16, 5)-arc | [16,5,11] | 5 || (31,5)-arc | [31,5,26] | 13 || (46, 5)-arc | [46,5,41] | 20
(17,5)-arc | [17,5,12] | 6 || (32,5)-arc | [32,5,27] | 13 || (47,5)-arc | [47,5,42] | 21
(18, 5)-arc | [18,5,13] | 6 || (33,5)-arc | [33,5,28] | 14 || (48, 5)-arc | [48,5,43] | 21
(19,5)-arc | [19,5,14] | 7 || (34,5)-arc | [34,5,29] | 14 || (49, 5)-arc | [49,5,44] | 22
(20,5)-arc | [20,5,15] | 7 || (35,5)-arc | [35,5,30] | 15
(21,5)-arc | [21,5,16] | 8 || (36,5)-arc | [36,5,31] | 15

5.6 Chapter Summary

This chapter has shown that arcs have applications to coding theory. Each arc can be

interpreted as a linear code.



Chapter 6

Operational Research

6.1 Introduction

This chapter aims at providing a snapshot of operational research (OR). It starts by
giving a historical overview of the emergence of this discipline of science. A number
of the definitions of operational research are presented with the aim of developing a
better understanding of its concepts. Finally, a brief description of each stage of the

operational research process is provided.

6.2 Development of Operational Research

The concept of operational research emerged in the late 1930s, in the UK, mainly in
military and industrial operations. In fact, OR can be traced back to the period of the
Second World War when it was introduced as a systematic method to deal with the
scarcity of resources and other strategic problems in the military operations, mainly
by the British army. The main motive for its development was the introduction of the
radar defence system for the Royal Air Force, and the belief that radar system would
solve many problems for fighter direction and control. Thus, OR has been used to
incorporate radar data with ground-based viewer data for fighter interruption. Due
to its success during the war, several scientists realised that the principles that they
had used to solve military-related problems can be applied to various other issues in

other fields. Therefore, OR has been introduced to other disciplines such as health
100
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care, manufacturing, and transportation. As an example, in 1947, George Dantzig
developed the simplex algorithm for Linear Programming (LP). This helped the growth
of OR, and it is one of the most widely used techniques of OR. Secondly, the computer
revolution made the process of dealing with complex problems much easier, particularly
the development of OR packages. As soon as the simplex method had been developed
and used, the expansion of other methods followed rapidly. The last twenty years
have witnessed the development of most of the OR techniques that are now used,
such as computer simulation, game theory, scheduling algorithms, non-linear dynamic

programming and integer dynamic programming. For more details see [58] and [32].

6.3 The Concept of Operational Research

The concept of operational research has commonly been misinterpreted by many as a
combination of mathematical tools. Although, operational research is fundamentally
based on a variety of mathematical models and techniques, however, in reality, its scope
goes much beyond that operational research, according to the Institute for Operational
Research and the Management Science (INFORMS) as cited by Monios and Bergqvist
[50], 2017, is a “discipline that deals with the application of advanced analytical methods
to help make better decisions”. Whereas Churchman, [24] in 1957, who is seen as one
of the pioneers of operations research, gives a more comprehensive definition, and
describes OR as “the application of scientific methods, techniques and tools to problems
involving the operations of a system so as to provide those in control of the system
with optimum solutions to problems”. Similarly, Rajgopal [52] in 2004 defines it as a
systematic approach to solving problems, which uses one or more analytical tools in the

»

process of analysis 7. In light of the aforementioned definitions, operational research
can be viewed as an objective methodology or a complementary analytic approach
that helps managers and decision-makers make the most appropriate decisions. In
other words, it plays a consultative role through providing decision-makers with a set
of robust, scientifically derived alternative solutions for a complex problem at hand.
Nevertheless, the final decision regarding selecting the most appropriate solution is

always left to be made by a human being based on their knowledge, perspective and

experience.
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6.4 The Operational Research Approach

Having considered operational research as a tool to facilitate making good decisions, it
is now essential to have a better understanding of such a tool to secure its successful
application to a general problem. Accordingly, this section is dedicated to presenting
general guidelines for the implementation of operational research in practice. Accord-
ing to Rajgopal [52] 2004 the process of implementing operational research can be

decomposed into seven sequential stages as briefly described here in below.

Orientation: This is the first stage in the operational research approach. The main
objective of this stage is to establish the multifunctional team that will be responsible
for addressing the problem at hand. Each multifunctional team has, typically, a leader,
and involves members from different departments that will be influenced by or affect

the problem.

The key aim of the orientation stage is to develop a clear understanding of the problem
and its relation to various operational aspects of the system, and to reach a general
agreement on what should be the most important focus of the project. This can be
achieved through the regular meeting and discussions of the team members along with

reviewing and studying documents and literature related to the problem.

Problem Definition: This stage can be seen as the most difficult stage of the oper-
ational research approach in most cases. It aims to provide a clear definition of the
problem with regard to both the problem’s scope and the results required. This can

be met through defining three main components of the problem, namely:

(i) establishing a very clear objective of the study alongside determining its scope,

so as to set limits for the analysis;

(ii) specifying factors that can influence the defined objective. This should also be
accompanied by providing a set of all the decision alternatives that can be made

by the decision maker and which can affect the objective;

(iii) defining the constraints on the decision alternatives and setting boundaries for

the modelled system operates.
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Data Collection: Having defined the problem clearly, the multifunctional team at
this stage should work on collecting the data required to translating the problem into a
model that can be objectively analysed. Typically, data can be gathered from two main
sources, namely, observation and standard. In terms of observation, data is usually
derived from observing the technology of the system in operation. Whereas, in regard
to the second source of data, the company documents and records are used to provide
standard information on the problem at hand. However, it is also common to employ
other data collection techniques such as interview and questionnaires in collecting the

required data.

Model Formulation: This stage aims at translating the defined problem into math-
ematical relationships using the data collected throughout stage three. Based on the
complexity of the resulting model, a standard mathematical model such as linear pro-
gramming can be used to solve a simple model and arrive at a solution. Whereas, for a
very complex model, the team may prefer to simplify the mode and utilize a heuristic
approach, or even use simulations. However, the option to use a combination of differ-
ent mathematical, heuristic and simulation models still exists to resolve the decision

problem in many cases.

Model Solution: This is considered as the simplest stage amongst all operational
research stages. The main objective of this stage is to provide a solution to the con-
structed model of the decision problem by using one or a combination of problem-
solving techniques. During this stage, a particular attention should be paid to the
sensitivity analysis, which concerns with acquiring more information about the con-
duct of the most favourable solution when the model is subjected to some parameter
changes. This is particular critical in case the parameters of the constructed model

cannot be estimated precisely.

Validation and Analysis: This is considered an important stage that must be
promptly undertaken after obtaining the optimum solution and before developing the
final course of action for implementation. It aims to test and check whether or not the
proposed solution model can do what it is expected to do, and whether it is able to
adequately predict the behaviour of the system under study. Indeed, the operational

research team has to be sure that the outputs of the proposed solution model do not
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include unexpected or surprising results. In other words, the team should secure that
the proposed solution makes sense, and its results are intuitively acceptable. This can
be achieved by comparing the output of the proposed model with historical output data
under similar implementation conditions. Obtaining similar outputs gives an indication
of the validity of the proposed model. Moreover, operational research team may also
need to use simulation as a technique for verifying the results of the proposed mathe-
matical model. This is particularly important when the proposed model represents a

new system, and where the historical data and output is not available.

Implementation and Monitoring: This is the final stage of operational research
approach. The key objective of this stage is to translate the results obtained from the
solution of a validated model into operating instructions and procedures that are un-
derstandable by the people who will be responsible for implementing and administering
the recommended system. The responsibility of undertaking this task lies mainly with
the operations team. Nevertheless, having completed the implementation process, the

responsibility for monitoring the system is typically shifted to an operating team.

6.5 Chapter Summary

This chapter provides a brief overview of operational research. Also, the historical

development of operational research and its basic concepts have been explained.



Chapter 7

Application of Finite Geometry to

Operational Research

7.1 Introduction

This chapter aims to discuss applications to operational research (OR). The results of
finite geometry can be applied to game theory, probability, and scheduling problems,

which are the some of the important aspects of operational research.

7.2 Application to Probability

An affine plane of order n has n? points, n? + n lines and n 4 1 parallel classes. Then
some problems of probability, scheduling, and game theory can be solved using affine

planes.

Problem 1: There are nine teams to match up in a schedule of four days D;, where

each team plays once in group of 3.

Solution To design this schedule use AG(2, q). Since in PG(2, 3) there are 13 points,
13 lines, each line has 4 points and 4 lines pass through each point, then Table 7.1
shows the points of PG(2,3) and Table 7.2 illustrates lines of PG(2, 3).
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TABLE 7.1: Points of PG(2, 3)

Pi(1,0,0) | Py(0,1,0) | Py(0,0,1) | Pi(1,2,1) | Ps(1,1,2)

P5(1,0,2) | P(1,0,1) | R(1,1,1) | Py(1,1,0) | Pio(0,1,1)

P11(1,2,0) P12(0,1,2) P13(1,2,2)

TABLE 7.2: Lines of PG(2, 3)

Ly |Py | Py |Py |Piu||Ly | P | Py | Pro|Prial||Ls | Ps | Py | Pii| Pis
Ly |Py |Ps |Pio| Py ||Ls |P5 | B |Pis| P || Le | P |7 | P | Ps
Ly |P | Py | Py | Py ||Ls |Ps | Py |P3s | Bs || Lo | Py | Pio| Py | P
Lio|Po|Pu|Bs | Py || Ly | P | Pro| Fs | Ps || Lio| Pio| Pis| Py | Py
L13 P13 Pl PS PlO

Since, AG(2,3) = PG(2,3) \ Lg, then by deleting line 2 and its points from each line of
PG(2,3), so there are nine 3-secants. Table 7.3 and Figure 7.2 illustrate the 3-secants
in AG(2,3). Figure 7.1 shows the coordinates of the points in AG(2, 3).

TABLE 7.3: 3-secants in AG(2, 3)

St Pr Py Pu| S P Pu P3| S35 PPy P

54 P5 PG P13 S5 Pl PG P7 S6 P4 P?

Sr Ps Py Py | 55 Py Py | So P5 Py

SIO P6 PS Pll Sll P7 P13 812 Pl PS
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FIGURE 7.2: Lines in AG(2,3)

line 1 line 5 line 8 line 11
X y X y X y X y
0 0 1 2 1 1 2 0
1 0 0 2 1 0 0 2
2 0 2 2 1 2 1 1
line 3 line 6 line 9 line 12
X y X y X y X y
2 1 0 2 1 0 2 2
2 0 0 1 2 1 0 1
2 2 0 0 0 2 1 0
line 4 line 7 line 10 line 13
X y X y X y X y
2 1 0 1 2 0 2 2
1 2 1 1 1 2 0 0
0 0 2 1 0 1 1 1
FIGURE 7.1: Coordinates of the points in AG(2, 3)
PG P_ |::13
—o—linel
—m-line 3
—a—line 4
—<line 5
=#=line 6
[= Hs A —o-line 7
-e—line 8
—line 9
/ line 10
—o—line 11
~m-line 12
line 13
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Here, there are four parallel classes in AG(2,3) as shown in Figures 7.3, 7.4, 7.5, 7.6.

Ps Ps P
—e-linel
i Ps Pa —e-line 5
-e-line 7
P_l P.9 P-ll
FIGURE 7.3: Class 1 of AG(2,3)
“PS ‘,P5 ‘FIB
—e-line 3
[ P P
® ¢° ¢’ -e-line 6
-e-line 8
liPl leg l?ll

FIGURE 7.4: Class 2 of AG(2,3)
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—o-line 4

£

-e-line 11

line 12

T

Pqg 11

FIGURE 7.5: Class 3 of AG(2,3)

—e-line 9
-o—line 10

~o—line 13

FIGURE 7.6: Class 4 of AG(2,3)
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So, each class represents a group of 3 players. Therefore,
Dy = S U Sy U S¢ = (P,Py,Pn1) (Ps,Ps,Pi3) (Py, Pr, F)
Dy : Sy U S5 U S = (P,Pn,Ps) (P,Ps,Pr) (Ps P, FBy)
D3 : S3 U Sy U Su = (P,P,Ps) (Fs, B, Pu) (Pr, Py, Pi3)

Dy : Sg U Sy U Sio = (P, B, P) (P, P, P11) (P, P, Pi3)

7.3 Application of Projective Planes to Scheduling

Problems

7.3.1 A simple Schedule Obtained via a Projective Plane

The projective plane PG(2, ¢) over the field F, of g elements can be used as a model for
scheduling problems given a certain number of teams and a certain number of weeks in
the desired schedule. This representation can be used to assign the teams to multi-team
meetings so that each team plays each other team exactly once. The model is designed

as follows:

(a) each point represents a team;
(b) each line represents a meeting;

(¢) the number of the meetings (competition) is ¢ + 1.

In Problem 1, there are nine players to match up in a schedule of four days D;. Here,
USng K= PG(Q, 3) \ LQ. The nine pOiIltS are Pl, Pg, Pg, P4, P5, PG; Pg, PlO; PH, which

correspond to nine players as shown in Table 7.4.

TABLE 7.4

p = Player Pv| D2 |P3 |Pa|Ds |Ps |P7|Ds | Po
POIDtlHPG(?,S) P1 P2 P3 P4 P5 P6 Pg P10 PH
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Also, let S = {S; | i < 12} represent the twelve 3-secants as illustrated in Table 7.5.

TABLE 7.5: 3-secants in PG(2, 3)

S 1 2 11
Sy 2
S3 3 4 11

S
S
S
S3
Sy
Ss
St
So
S

Sy 1 45

S5 2 5 6|Ss
Se 1 3 6[.5
N 54 N S@
N S N Ss
N Sy N Sg
N Sy N S
N Ss N Sg
N 56 N Sg
N Sg N 811
N Sg N SIO
N 83 N SIO

St

2 4
3 5
4 6

SlQ
St
Sg
S9
S1o
Sll
Sl2
Sl2
Sll

2D DODODDODDODD

8 | S 5 10 11
8 1S 6 8 11
10152 1 8 10

1 | I | | |
R cReRe

Then, looking for sets of three lines which do not meet in K.

S1
S
S3
Se

D DODOD

Ss
Sy
S5
St

O DODOD

N
|

So, the solution of the problem is the following:

D1 . Sl U Sg U
D2 . SQ U 54 U
D3 . 53 U S5 U
D4 : SG U 57 U

(P1, P, Pry)
(P1, Py, Ps)
(P1, Ps, Pio)
(P1, Ps, Py)

0
0
0
0
(Ps, P5,Ps) (P4, Fs, Pro)
(P2, Ps, Pro)  (Fs, Ps, Pr1)
(Py, Ps, Ps) (Ps, Py, Pr1)

<P27P47P8) (P5aP107Pll)

7.3.2 Constraint Satisfaction Problem (CSP)

Assume that

(1) there are m players,

(2) players can be divided into r groups,

(3) any two players play only one time in the same group,

(4) the number of weeks this can take place is w.
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To solve this problem, first it is necessary to explain the following constraints:

(a) P={P,...,P,} is the set of all players;

(b) the size of each group of players is n;

(¢) the number of groups of n players is t = r x w;
(d) S={S1,...,5;} is the set of all groups of players;
(e) S;j NSy =0, where 1 <i<wand1<j<k<r;

(f) | Siy;NSik|<1,wherel<i<li<wand1<j<k<r.

Problem 2: In a local golf club, there are 28 social golfers, each of whom plays golf

once every 9 days, and always in groups of 4. How can this be arranged?

Solution The target is to come up with a schedule for these golfers to last as many
weeks as possible, such that no golfer plays in the same group as any other golfer on
more than one occasion. In other words, according to Section 7.3.2 this problem can
be described more explicitly by enumerating four constraints which must be satisfied.

Then, m =28, n=4,r =7, w =9,t = 63. Also,

(a) P={P,..., Py} is the set of all players,

(b) the size of each group of players is 4,

(¢) S={S51,...,863} is the set of all groups of players,
(d) SiyN Sk =0, where1 <i<9and 1<j<k<T,

(€) |Si;NSy|<1,wherel <i<l[<9and1<j<k<T.

Here, the problem is to divide 28 players into groups of 4 players. Therefore from the
classification of (k,4)-arcs in PG(2, 8), the largest (k, 4)-arc K has k = 28 with i-secant
distribution of type (63,0,0,0,10) as mention in Table 3.26. Now, the sixty-three 4-
secants represent the groups of 4 players, and the 28 players are represented by the 28
points. Table 7.6 shows the points of K which correspond to 28 players, and Table 7.7

illustrates the sixty-three 4-secants which correspond to the groups of 4 players.



Chapter 7. Application of Finite Geometry to Operational Research 113
TABLE 7.6
p = Player br |P2 |P3 |P4 |P5 |Pe |P7 | P8 | P9 |Pio |P11 | P12 | P13 | P14
Point in PG(2,8) | Py | Py | Py | Py | Pio| P | Pia| Pis | Pao | Pao | Pag | Pyo | Paa | Pss
p = Player P15 | P16 | P17 | P18 | P19 | P20 | P21 | P22 | P23 | P24 | P25 | P26 | P27 | P28
Point in PG(2,8) Psg | Pyo | Paa | Pas | Pag | Pso | Ps3 | Pso | Po1 | Pes | Pea | Pos | Pes | P
TABLE 7.7: 4-secants in PG(2,8)
Si p1 P2 pa Pas| Sz Din Piz P13 Paa | Sz Die Do P21 P2
Si D2 ps P15 P | S5 D11 Dia P22 Pas | Se Ds  Ps P2 P22
S7 ps ps ps Dis|Ss Ps pi2 Pir D2 | So Ps P13 P21 Dor
Sio P4 Dé Pia DPis | St Pe Do P12 D23 | Si2 Pr Pia Pir D23
Sis Pr P9 P22 Por | S1a D7 P13 P15 Pis | Sis Dis P22 Paa Pos
Si6 Ds Dio Pis P23 | Si7 Dio Pia Paa Por | Sis DPs Po P15 P2s
Sio P DPs P17 Des | S20 P13 Pis Pis D25 | So1 Dig P22 P23 Do
Sao Ps Pr Pie P24 Sas3 Ps P13 P14 D26 Saa P1 Pio Pie P22
Sos D5 Pe  Pis P2s | S26 Dia Pis P20 Pas | Sor D2 Do P23 Poa
Sos D1 Pe P P2 | S29 Dis DPie Pir P2r | Sso D3 D23 Pas Por
Ss1 p2 pr Ps Pio|Ss2 D1 P Pis P21 | Sss DPa P Paa P
Ss4 P3 Po Pii Pir| S35 P2 Py Pie Pis | S36 Dir D21 D2 Das
Ssr Da Ps P20 Por | Sss D3 DPiz Pie Pas | Ss9 Dio D25 Pas Pos
Sio ps Pio P12 Pis |Sai Pa Pio Pir Pio | Sa2 Dii Pis P2s Por
Saz P9 Dio P21 Pos | Saa D1 Pir pis P2 | Sas D1 Piz Pio Por
Sa6 Do DPio P13 P20 | Sar D2 D13 Pir P22 | Sis D2 Ps Par Pos
Si9 P1 Ps P9 Pia|Ss0 D3 Pia Pis Pio | Ssi D3 P P2 P22
Ss2 P2 Dé Pio Pii | Ss3 Pa Pis P21 D23 | Ssa Pa D7 P Dos
Ss5 P3 Pr Pio D21 |Ss6 Ps Pui Pio Do | Sst P11 P13 P23 Dos
Sss Pa Piz P15 P22 | Ss9 D Pis Pro P2 | Seo P2 P2 P4 D2
Se1 DPs D1 Pie P23 | Se2 D7 Diz P2 P2s | Ses D1 D3 Ps Poa

Here each group meets thirty-two other groups in four different players, for instance,

S1 meets 8 other groups in each of py, ps, ps, pos. Therefore, there remain 32 groups

meeting S at points other than those of S;. This gives Table 7.8.
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TABLE 7.8
SN Sy N S N Sz NSy N Sas N Sgg N Ss7 N Sz = i
S1 NSy N Sor NSz N S3s N Syr N Sgg N Ssz N Sep = po
Sy NSz N Sy N Sz N Ssg N Ssg N Ssp N Ss5 N Se3 = p3
Si NSy N Sip N Szg N S3r NSy N Ssg N Ssy N Ssg = py
Sog N Sio N St N Sig NS5 N Seg N Ssp N Ss2 N Ss9g = s
Siz2 N Sz NSy NS NSy NSz N Ssa N Sss N Se2 = pr
S N Sig N Sig N Sy N Sz N Sz N Sy N Ser N Se3 = ps
S N Sz N Sis N Szz NSy N Sgs N Sys N Sye N Sy = po
Sie N Sz N Sag N Szg N Sy N Sy N See N Ss2 N Ss5 = pio
Sp NS5 N Sz N Szyy N Sz N Sso N Ssy N Ss6 N Se1 = pn
S NSy N Sy N Ssg N Sye N Sys N Ssg N Seo N Se2 = P2
Sy NSy N Sy N Sy N Sy N Seg N Sgg N Saz N Ssz = pi3
Ss N Sip N Sz N Siz N Sag N Syg N Sgg N Sso N Sep = pua
Sy N S N Sie N Sig N Sy N Sy N Sz N Ssg N Ssg = pis
Sz N S N Syp N Sy N Sag N Szg N Szs N Ssg N Se1 = pis
Sg N Sz N Sy N Sy N Sy N Sgg N Sy N Sy N Sy = pir
Sy N Sis NSy NSz N Sig N Sag N Say N Sso N Ss3 = pig
Szo M So1 N S31 N Sy N Sgg NSz N S50 N Ss6 N Ss9 = prg
Sz N Sy N Sz N Szz N Sy N Sy N Ss1 N Ss6 N Sg2 = pao
Sz N S N Sy N Sz N Szg N Sz N Ss3 N Sss N Sep = pa
Ss NS¢ N Siz N Sis N S N Sy N Sy N Ss1 N Ssg = pao
Siu N Sz N S N Ser NSy NSz N Sz N Ssg N Se1 = pog
Sy N S5 N Sir N Sy N Sor N Sz N Szg N Ss9 N Sgz = P
Si NS5 N Sig N Sy N Sas N Szp N Szg N Sz9 N Sga = pas
Sz N Sy N Sy N Sy N Saz N Seg N Szz N Sg9 N Syo = pas
Sog N Siz N Siz N Sy N S N Sz N Sgg N Sys N Sys = par
Sis N Sig N Sog M Sz N Szg N Syz N Sy N Ssy N Ss7 = pag
Also,

Sl N Sg N 514 N 517 N 543 N S51 N Sﬁl == @

S4 N SlO N 513 N Sgo N 536 N S40 N 556 = (Z)

Sg N S7 N 512 N 515 N 518 N 545 N 552 == Q)

Ss N Sy N Sig N Sz33 N Sz N Sz N Sy =10

519 N Sgo N 827 N 542 N 849 N S55 N 558 == @

Sll N 522 N 532 N 537 N 539 N 547 N 550 = @

821 N 525 N Sgg N S46 N 554 N S60 N S63 == (Z)

SQ N Sﬁ N 526 N 528 N 535 N 541 N 557 == (Z)

Sog M Soy N Sz N Sgs N Ss3 N Ss9 N Sz =10
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Therefore, all the sixty-three groups of 4 players can be divided into nine days Dj,

where there are seven 4 players in each day.

D1 S1 U Sg U 514 U 817 U 543 U 551 U 561
Dy Sy U S U Si3 U S U S U Syg U Sse
Dy Ss U S; U S U S5 U Sig U S5 U Ss
Ds Sig U Sy U Sor U Sy U Sy9 U Sss U Sk
D¢ St U S U Sz U Szr U Sz U Syr U Sk
Dy Sor U Sps U Syg U Sy U Ssu U Seo U Sgz
Dqg Sy U Sg U Sy U Ses U Sss U Sy U Ssy
Dy Soz3 U Sy U S3y U Sy U Ss3 U Ss9 U Sgo

Problem 3: Sixteen players need to be arranged in groups of four and three players

to play for six days, where each player plays in the same number of groups.

Solution The target of this problem is to divide 16 players into groups of 3 and 4
players. From the classification of (16,4)-arcs K in PG(2,5), with i-secant distribution
of type (12,16,0,0,3) as mention in Table 3.27. Then, the twelve 4-secants represent
the groups of 4 players and the sixteen 3-secants represent the group of 3 players and
the 16 players are represented by the 16 points. Table 7.9 shows the points of K which
correspond to 16 players, Table 7.10 shows the groups of 4 players and Table 7.11 shows
the groups of 3 players.

TABLE 7.9
p = Player p1 |p2 |Ps |pa |DP5s |Pe | D7 |Ds
Point in PG<2,5) P1 PQ P3 P5 P6 P7 PS P12
p = Player P9 | Pio | P11 | P12 | P13 | P14 | P15 | P16
Point iIl PG(2,5) P13 P16 P18 P20 P23 P25 P30 P31
TABLE 7.10

(pla D2, P25, pso)

(P2, P3, P16, P13)

(p37p57p67p25>

(pﬁ, P75 P20, ]930)

(ps, p7, Ps, P31)

(pl » D5, P12, Pls)

(p1, 07, D16, P18)

(p27 Ps, D12, p20)

(p37 P13, P18, P20)

(p6; P12, P16, p23)

(p87 D1s, P23, p25)

(p137 P23, P30, p31)
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TABLE 7.11
(pl,ps,pzza) (pz,pmpls) (p1>p6>P8) (p2,p7ap23)
(P, s, P30) | (P12, P25, D31) | (D2, D6sP13) | (D3, D7, P12)

(p& D13, plﬁ)

(p5, Dis, p30)

(pﬁ, P18, p31)

(p57 P20, p23)

(p77 D13, p25)

(p16, P20, p25)

(p12, D18, p30)

(pla P20, p31)

So, the solution of this problem is the following:

Dy (
Dy - ( )
D3 = (ps, pr, P20, P30)
Dy (p1,ps, P12, P13)
D5 @ (p2; 3, P16, Pa1)
Dg: (

Here, each players participated in 3 groups of 4 players and 3 groups of 3 players.

7.4 Generalisation of Kirkman’s Problem

p37p57p6,p25) (P2,p8,p12,p20) (]91,]?772716,]?18) (p13,p23,p3oap31)
b1, P2, P25, P30 (p5,p7,ps,p31) (p3>p13,p18,p20) (p6>p12,]916,p23)
pl,pg,p23) (])27])57]?18)(2912,1?2571731) (p87p13>p16

( )
(P2, D7, D23) (P3, P8, P30) (D6, P18, P31) (D16, P20, D2s)
(Ph Dé, ps) (P5, pzo,p23)(p7, P13, p25) (p12, Dis, p3o)

)

P87P18,p23,p25) (ptho,p?,l) (P2>p6>p13)(]937]9772712) (p5,p16,p30

Definition 7.1 (Kirkman’ Problem). A Kirkman triple system is a method of choosing

3-sets called blocks from a set of v objects, and of partitioning the set of blocks into

subsets called rounds, so that each object occurs exactly once per round and each

object-pair occurs in exactly one triple in the system.

A generalisation of Kirkman’s problem as follow. If m = ¢(n — 1) 4+ n schoolgirls go

walking each day in ¢ + 1 — ¢/n groups of n, they can walk for ¢ 4+ 1 days so that each

girl has walked in the same group as has every other girl and with no girl twice.

Problem 4: A school has 64 girls, who need to be arrange in 8 groups of 8 girls. How

can they be arranged walk for nine days, such that no two girls walk together twice?
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Solution Here, m = 64,r = 8, w = 8,t = 64. According to Section 7.3.2 this prob-
lem can be described more explicitly by enumerating four constraints which must be

satisfied. Then,

(a) P={P,..., P} is the set of all girls,

(b) the size of each group of girls is 8,

() S={S1,...,S64} is the set of all groups of girls,

(d) Si;jN Sy =0, wherel <i<9and1<j<k<S§,

(€) |SijNSy|<1,wherel<i<l<9and1<j<k<8.

The classification in Table 7.12 and Table 7.13 shows the solution of this problem.

TABLE 7.12: 8-secants in PG(2,8)

1 2 4 8 16 32 37 55|63 66 70 5 21 26 44 53
D61 62 68 3 19 24 42 51|57 58 60 72 15 20 38 47
49 50 52 56 7 12 30 3933 34 36 40 48 69 14 23
28 29 31 35 43 59 9 18|10 11 13 17 25 41 46 73

2 3 5 9 17 33 38 56|66 68 72 7 23 28 46 55
Dy |62 63 69 4 20 25 43 52|58 59 61 73 16 21 39 39
50 51 53 57 8 13 31 40|34 35 37 41 49 70 15 24
29 30 32 36 44 60 10 19|11 12 14 18 26 42 47 1

3 4 10 18 34 39 57 66|72 73 2 14 30 35 53 62
Ds |48 49 51 55 63 11 29 38|43 44 46 50 58 1 24 33
25 26 28 32 40 56 61 15|16 17 19 23 31 47 52 70
79 13 21 37 42 60 69| 5 8 12 20 36 41 59 68

4 5 7 11 19 35 40 38|68 70 1 9 25 30 48 57
D,|66 69 73 8 24 29 47 56|60 61 63 2 18 23 41 50
52 53 55 59 10 15 33 42|36 37 39 43 51 72 17 26
31 32 34 38 46 62 12 21|13 14 16 20 28 44 49 3

7 8 10 14 38 43 61 70( 59 60 62 66 1 17 40 49
D5 |41 42 44 48 56 72 4 3132 33 35 39 47 63 68 13
23 25 29 37 53 58 3 12121 24 28 36 52 57 2 11
19 20 26 34 50 55 73 9 |15 16 18 30 46 51 69 5

8 9 11 15 23 39 44 62|72 1 5 13 29 34 52 61
Dg |70 73 4 12 28 33 51 6068 69 2 10 26 31 49 58
56 57 59 63 14 19 37 46|40 41 43 47 55 3 21 30
35 36 38 42 50 66 16 25|17 18 20 24 32 48 33 7
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TABLE 7.13: 8-secants in PG(2,8)

9 10 12 16 24 40

46 48 52 60
42 43 49 57
30 31 33 37

3
73
61

8
)
66

63
26
23
11

72
35
32
20

95
44
38
14

56
47
39
15

28 62 70
51 59 2

41 53 69
17 21 29

\]

50

18
25
19
68

36
34
28

Dy

12 13 15 19
46 47 49 53
28 30 34 42
24 25 31 39

43
61
58
95

48
4
63
60

66
9
8
)

2
36
17
14

69
37
26
20

70
38
29
21

72 3 11
40 44 52
33 41 57
23 35 51

32
68
62
56

20
73

29
18
16
10

18 19 21 25
55 57 61 69
51 52 38 66
39 40 42 46

33
12
9
70

49
17
14
2

72
35
32
20

8
44
41
29

73
23
47
23

1
o6
48
24

3 7 15
60 68 11
50 62 5
26 30 38

31
16
10
29

36
34
28

63
43
37
13

Problem 5: A school has ten girls. How can they arranged to walk for six days, such

that no two girls walk together twice?

Solution The target of this problem is to divide 10 girls into groups of 2 and 3 girls.

From the classification of (10, 3)-arcs K in PG(2,5), with i-secant distribution of type

(10,15,0,0,6). Then, the ten 3-secants represent the groups of 3 girls and the fifteen 2-

secants represent the group of 2 girls, and the 10 girls are represented by the 10 points.

Table 7.14 shows the points of I which correspond to 10 girls, Table 7.15 shows the

groups of 3 girls and Table 7.16 shows the groups of 2 girls.

TABLE 7.14
g = girl g1 192 193 |94 |95 |96 | 97 | 98 | 9o | 910
P01nt1nPG(2,5) P1 P2 P3 P5 P6 P7 Pg Pll P17 P24
TABLE 7.15
(91,93,99) (92,947910) (93,94,95) (91795,97) (92796797)
(93,98, 910) | (92, 95,98) | (94,97, 99) | (91,96 98) | (96> 99, G10)
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TABLE 7.16

(91,92) | (92.93) | (95.96) | (94, 96) | (97, 9s)

(91,94) | (93.96) | (95.99) | (92,90) | (93,97)

(94798) (957910) (9%910) (98799) (917910)

So, the solution of this problem is the following:

Dyt (91,93, 99) (92,95, 9s) (94 g6) (97, 910)
Ds : (g2, 91, 910) (91, 96, 98) (93, 97) (95, 99)
D3 : (93,94, 95) (92, 96, 97) (91, 910) (98, go)
Dyt (91,95, 97) (96, 99, 910) (92, 93) (94, g8)
Ds : (g3, gs: 910) (945 97, 99) (1. 92) (95, gs)
Ds : (91, 94) (92, 99) (93, 96) (97, 98) (95, 910)

Here, each girl participated in 3 groups of 3 girls and 3 groups of 2 girls.

7.5 Chapter Summary

In this chapter some application of finite geometry to operational research, probability
and scheduling problems are explained. Constraint satisfaction problems is considered
an important application to (k,n)-arcs to AG(2,q), PG(2,q). Also, a generalisation of
Kirkman’s problem is showed. Finally, the chapter presents, in details, solutions of five

problems to show the application of projective plane to operational research.
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Points and Lines

A.1 Projective Plane of Order Five

Since PG(2,5) contains 31 points and 31 lines, every line contains 6 points and every

point passes through it 6 lines. To find the points of PG(2,5). Let
flx)=a2®—2*—1
be an irreducible polynomial over F5, then the matrix

01 0
C(fy=10 0 1
101

gives a cyclic projectivity by right multiplication on the points of PG(2,5). Let P,
be represented by vector (1,0,0). Then P,7° = P;, i = 0,1,...,30, are 31 points of
PG(2,5). To find the lines of PG(2,5) Let L; be the line which contains the points
1,2,15,21,25,30, then )T = L;y , i = 1,2,...,30 are the lines of PG(2,5). Table
A.1 and Table A.2 show the points and lines of PG(2,5).
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TABLE A.1: Points of PG(2,5)

Pi(1,0,0) | Py(1,3,4) | Pis(1,2,2) | Pio(1,1,3) | Pos(1,1,0) | Pyi(0,1,4)
P5(0,1,0) | Po(1,4,3) | Pia(1,3,2) | Pao(1,2,3) | P(0,1,1)

P5(0,0,1) | Py(1,2,4) | Pi5(1,3,0) | Par(1,2,0) | Par(1,0,2)

Py(1,0,1) | Pio(1,4,4) | Pis(0,1,3) | P2(0,1,2) | Pas(1,3,1)

Ps(1,1,1) | Pi1(1,4,2) | Pi7(1,0,3) | Pa3(1,0,4) | Pao(1,1,4)

Ps(1,1,2) | Pi2(1,3,3) | Pis(1,2,1) | Pay(1,4,1) | P3o(1,4,0)

TABLE A.2: Lines of PG(2,5)

Ly | Py | Py | Pis| Po1r| Pas | Pso| Lir | Pir | Pis | Ps | Ps | Pio | Pis
Ly | Py | Py | Prg| Paa| Pag | Ps1|| Lis | Pis | Pro| Pr | Pr | Pri| P
Ly | Py | Py | Pir | Pas | Por | P1 || Lig | Pro| Pao | P2 | Py | Pra| Pi7
Ly | Py | Ps | Pig| Pog | Pog | Po || Loo | Pao | Po1 | P3 | Py | P13 | Pis
Ls | Ps | Bs | Pio| Pas | Pag | P3 || Loy | Por | Pog | Py | Pro | Pra| Pro
Lo | Ps | Pr | Pao | Pag | Pso | Pa || Loz | Paa | Pas | P5 | Pra | Pis | Pao
Ly | Pr | Bs | Por | Por | Ps1 | P5 || Log | Pas | Pos | P | Pra| Prig | P
Ly | Ps | Py | P | Pos | Pt | Bs || Loa | Pas | Pos | Pr | P3| Prr | Pao
Ly | Py | Pro| Pas| Pag | Po | Pr || Loy | Pas | Pas | Bs | Pra| Pis | Pas
Lig | Pio | Pri| Poa | Pao | Ps | By || Log | Pag | Por | Py | Prs | Pro | Pra
Ly | Py | Pro| Pos | Ps1 | Py | Py || Loy | Par | Pas | Pro | Pig | Pao | P25
Lig | Pro | Pas | Pog | P1 | Bs | Pro || Los | Pas | Pag | Pr1 | Par | Par | Pas
Lig | Pis | Pra| Por | Po | Bs | Pry|| Lag | Pag | Pao | Pra | Pis | Paz | Por
Liy | Py | Prs | Pos | P | Pr | Pra|| Lso | Pso | Ps1 | Pis | Pro | Pas | Pas
Lis | Pis | Pr | Pag | Py | Bs | Pas|| La1 | Ps1 | Pr | Pra | Pao | Pas | P
Lig | Prg | Prr| Pso | P5 | Py | Pra
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A.2 Projective Plane of Order Seven

Since PG(2,7) contains 57 points and 57 lines, every line contains 8 points and every

point passes through it 8 lines. To find the points of PG(2,7). Let
fx) =2 —2* 22 —4

be an irreducible polynomial over 7, then the matrix

01 0
C(fy=10 0 1
42 1

gives a cyclic projectivity by right multiplication on the points of PG(2,7). Let P,
be represented by vector (1,0,0). Then PyT% = P,, i = 0,1,...,56, are 57 points of
PG(2,7). To find the lines of PG(2,7) Let Ly be the line which contains the points
1,2,8,25,37,39,50,55, then L)T* = L;;, , ¢ = 1,2,...,56 are the lines of PG(2,7).
Table A.3 and Table A.4 show the points and lines of PG(2,7).

TABLE A.3: Points of PG(2,7)
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TABLE A.4: Lines of PG(2,7)

Ly | P | Py | By | Pos | Par | Pso | Pso | Pss || Lso | Pso | Pa1 | Psr | Psa | Py | P | Paa | Py
Ly | Py | Py | Py | Pag| Pss| Pao| Ps1| Psg || La1 | Ps1 | Paa | Pas | Pss | Pro | Pra | Pas | Pos
Ly | Ps | Py | Pro| Por | Psg| Pur | Psa | Psr || Laz2 | Psa | Psg | Pag | Psg | Pr1 | Prs | Pas | Pag
Ly | Py | Ps | Py | Pos | Pao| Pao | Pss | Py || Lss | Psg | Paa| Pao | P57 | Pra | Paa | Pos | Pao
Ls | Ps | B | Pra| Pag | Pan | Pas | Psa | Po || Lsa | Paa | P35 | Pun | P | Pis | Pis | Pas | P
Le | Ps | Pr | Pig| Pso| Pao| Paa| Pss | Ps || Las | Pss | Pg | Pao | o | Pra | Prg | Par | Pa2
Ly | Pr | Py | Py | Py | Pas| Pas | Psg | Py || Las | Pss | Pz | Paz | P3| Pis | Prr | Pag | P33
Ls | Ps | Py | P15 | Pa| Paa| Pag | Psy | Ps || Lz | Pa7 | Pas | Paa | Py | Pro | Prs | Pag | Py
Lo | Py | Pro| Pis | Pss | Pas | Par | Pr | s || Las | Pss | Pag | Pus | Ps | Pir | Prg | Pso | Pss
Lio | Poo | Piv | Pir | Poa | Pag | Pas | P | Pr || Lag | Psg | Pao | Pas | Fs | Prs | Pao | Ps1 | Pse
Ly | Py | Pro| Pis | Pas | Pag | Pag | P3 | Ps || Lao | Pao | Pin | Par | Pr | Pro | Po1 | P2 | P37
Lig | Pro| Piz | Pro | P3g | Pag | Pso | Pa | Py || Lay | P | Pao | Pas | P3| Pao | Pz | P33 | Pag
Lig | Pas | Pra | Pao | Psr| Pag | P51 | Ps | Pro|| Lz | Pao | Pas | Pag | Py | Po1 | Pas | Psa | Pag
Ligy | Py | Pis | Por | Pss | Pso | Ps2 | Bs | Pra|| Las | Pas | Pas | Pso | Pro | Paa | Pog | P35 | Puo
Lis | Pis | Pig | Pag | Psg | P51 | Ps3 | Pr | Pra|| Laa | Pas | Pas | Ps1 | Pra | Pag | Pos | Psg | Pu
Lig | Pig | Pr7 | Pog | Pao | Psa | Psa | Ps | Prs || Las | Pas | Pag | Psa | Pra | Paa | Pag | P37 | Pao
Ly7 | Pi7 | Pig | Pos | Py | Ps3 | Pss | Py | Pra|| Lag | Pas | Par | Pss | Prs | Pas | Par | P3g | Pus
Lig | Pis | Pro | Pos | Pao | Psa | Psg | Pro | Pis || Lar | Par | Pas | Psa | Pra | Pag | Pas | Psg | P
Lyg | Pro | Poo | Pag | Pas | Pss | Ps7 | Pi1 | Pre || Lus | Pas | Pao | Pss | Pis | Por | Pag | Pao | Pus
Loo | Poo | Po1r | Por | Paa | Psg | Por | Pra | Prg || Lao | Pag | Pso | Pse | Pro | Pas | Pso | Pa1 | Pas
Loy | Por | Poa | Pos | Pus | Psr | o | Pis | Pis || Lso | Pso | Ps1 | Ps7 | Pir | Pao | Ps1 | Paa | Pur
Log | Py | Paz | Pag | Pag | Pr | P3| Pra | Pro || Ls1 | P51 | Psa | Pr | Pis | Pao | Pa2 | Pas | Pus
Log | Pog | Pog | Pso | Par | Po | Py | Pis | Pao || Ls2 | Psa | Pss | Pa | Pro | P31 | Ps3 | Paa | Pag
Loy | Poy | Pos | P31 | Pus | Ps | P5 | Pig | Po1 || Lss | Pss | Psa | Ps | Pao | Paa | Paa | Pus | Pso
Los | Pos | Pag | Psa | Pag | Py | Bs | Pi7 | Paa || Lsa | Psa | Pss | P | Por | Pag | Pss | Pas | P
Log | Pog | Par | Pss | Pso | P5 | Pr | Pas | Pas || Los | Pss | Pse | D5 | Paz | Paa | Psg | Par | P
Loz | Por | Pas | Paa | P51 | Bs | P | Pro | Paa || Lsg | Pro | Por | Do | Pas | Pas | Psr | Pas | Pss
Los | Pog | Pag | Pas | Psa | Pr | Py | Pao | Pas || Loy | Psr | Pr | Pr | Paa | Psg | Pas | Pag | Psa
Lag | Pag | Pso | P3¢ | Pss | Ps | Pro | Pa1 | Pas
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A.3 Projective Plane of Order Eight

Fg = {0,1,a,02, 0% a*, a®,a’:a® +a? +1=2=0}

10

0

0 01

c(f)

10

C¥4

Table A.5 and Table A.6 show the points and lines of PG(2,8).

TABLE A.5: Points of PG(2,8)

~| 2T~ BB T s S
— e . | 3 - - S - - -
- A ) 0 ~ o Yo © | © o) <t
Sa — 3 3 3| o 3 I | o 3 3 3
_ — | A A A w ] A A A =] ~] —~
A EI RS B IR e eI B R
A R AR RV R R A R R R R
~~ ™~ —~ | ™ — _ — 0
Sle| S| 3| S| en S| < —| -] 3 S
- S| — | — | — 3 3 3|~ 3| — 3
SRR R Rl R R B R A Y )
Iarg R = I B - B = R < - = B
R AR R R R R AR R R
S|~ & e = S| &0~ —~ &
= aa =) QNw aa aa > aa aa 4@ =) aa
~| ™ ~ | =~ ) ~ | © © s Y <t
3& 3 S| — 3 3 3 3 S| — 3 3
_ — | A A A A A A =] =] = ~
= 2 2| A8l & F| | 2| 8| & 2| e
A R AR R R R A R R R R
A R
~—~ | o < —
- ﬁa @7 Q.; < Qa o | e wT | " aa <
P 07 a7 a7 — a7 av Qa &7 07 &7
S|lSs|o|Zc|ic|ie|osic)o) o=
FF 2 A S B BB S B B E
R AR R R R R AR R
e ~ o~ —| <
sl au aa =) = aa aa \w/ — aa
(@] ~| & ] © <t ~ | & <t | o 0
_ 6& 3 3 3 3 — 3 3 — 3 3
S|~ 2| ecices
S F IR P B I B Bl B2
A R AR R R R A R R R R
= ﬁ\m/ 2&7 5&7 6@ 4@ \ﬂlu/ av 2@7 \ﬂnu” 5@7 2&7 -
S| = 3 3 — | S| — 3 3 3 3 3 S
B N e B B B B B e R el Rl
| X 2 2 & R HE g 8 B s R
A A AR R R R A R AR YA

TABLE A.6: Lines of PG(2,8)

P64

FPes

P63

P55

Psg

P54

P37

P38

P36

P32

P33

P31

P16

P17

P15

Py

Py

Py

Py

Ps

Py

P

Py

Py

P

P,

P73

Ly

L,

L73
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Appendix A. Points and Lines

A.4 Projective Plane of Order Nine

F9:{071727ﬁ7ﬁ27ﬁgaﬁ4765756:62_5_1 :3:0}

010
00 1]
108

C(f)l

Table A.7 and Table A.8 show the points and lines of PG(2,9).

TABLE A.7: Points of PG(2,9)
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TABLE A.8: Lines of PG(2,9)

P90

P91

P89

Pyy

P85

P83

P66

Per

P65

P44

Pys

Pys

P37

P38

P36

Psy

P33

P31

Pig

Piq

P15

P12

P13

pll

P

Py

5!

P

P,

P91

Ly

L,

L91
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A.5 Projective Plane of Order Eleven
010
C(f)=10 01
311

Table A.9 and Table A.10 show the points and lines of PG(2,11).
TABLE A.9: Points of PG(2,11)

Pi(1,0,0) | Py(0,1,0) | P5(0,0,1) | Py(1,4,4) | Ps(1,5,8) | Ps(1,10,1)
P:(1,8,0) | P5(0,1,8) | Py(1,4,10) | Pyo(1,0,10) | Pi1(1,0,4) | Pio(1,5,4)
Pi5(1,5,9) | Py(1,2,5) | Pi5(1,7,10) | Pig(1,0,9) | Pi7(1,2,4) | Pis(1,5,6)
Pig(1,1,0) | Py(0,1,1) | Pyy(1,4,8) | Pyo(1,10,6) | Pog(1,1,7) | Ps(1,3,3)
Pys5(1,9,8) | Pag(1,10,3) | Por(1,9,10) | Pog(1,0,1) | Pao(1,8,4) | Psy(1,5,1)
P31(1,8,2) | Psa(1,6,9) | Ps3(1,2,3) | P34(1,9,3) | P35(1,9,5) | Ps(1,7,9)
Py;(1,2,1) | Pis(1,8,1) | Pyo(1,8,3) | Pio(1,9,0) | Pu(0,1,9) | Pip(1,4,2)
Pyis(1,6,1) | Py(1,8,6) | Pis(1,1,2) | Py(1,6,6) | Pr(1,1,8) | Pys(1,10,10)
Pi(1,0,8) | P5p(1,10,4) | P5y(1,5,3) | Psa(1,9,7) | Pss(1,3,6) | Psy(1,1,6)
Pis(1,1,1) | Psg(1,8,8) | Ps7(1,10,8) | Pss(1,10,9) | Psg(1,2,6) | Pso(1,1,9)
Pi(1,2,2) | Psa(1,6,8) | Pss(1,10,7) | Psa(1,3,5) | Pes(1,7,2) | Peg(1,6,7)
Per(1,3,9) | Pes(1,2,9) | Peo(1,2,0) | Pro(0,1, ) Pr(1,4,6) | Pra(1,1,3)
Pr5(1,9,9) | Pry(1,2,8) | Prs(1,10,5) | Prg(1,7,1) | Pr7(1,8,10) | Prg(1,0,5)
Pro(1,7,4) | Pso(1,5,0) | Pey(0,1,5) | Pso(1,4,7) | Pss(1,3,0) | Pss(0,1,3)
Ps5(1,4,9) | Pss(1,2,7) | Psr(1,3,2) ng(l 6,10) | Pso(1,0,2) | Poo(1,6,4)
Py1(1,5,10) | Pya(1,0,6) | Pog(1,1,4) | Pyy(1,5,5) | Pas(1,7,8) | Py(1,10,2)
Py:(1,6,2) | Pos(1,6,5) | Pag(1,7,0) | Pigo(0,1,7) | Pioa(1,4,3) | Pia(1,9,2)
Pio3(1,6,0) | Pios(0,1,6) | Pios(1,4,1) | Pios(1,8,9) | Pior(1,2,10) | Pios(1,0,7)
Pioo(1,3,4) | Pi1o(1,5,7) Pm(l 3,10) | Pi12(1,0,3) | Pi13(1,9,4) | Piia(1,5,2)
Pi15(1,6,3) | Pig(1,9,1) | Pyy7(1,8,7) | Pus(1,3,7) | Pig(1,3,1) | Piy(1,8,5)
Pi21(1,7,6) | Pioa(1,1,5) | Pias(1,7,7) | Pias(1,3,8) P125(1 10,0) | Pyg6(0,1,10)
Pi27(1,4,0) | Pias(0,1,4) | Piag(1,4,5) | Piso(1,7,5) | Pis1(1,7,3) | Pi32(1,9,6)
Pis5(1,1,10)
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TABLE A.10: Lines of PG(2,11)
Ly P | Py | Py | Pog | Pao | Pag| Pag | Pss | Pra| Pros | Pris | Pis2
Ly | P | Py | Puo| Pas| Pu| Pas| Pso| Pse | Prs | Pror | Prag | Piss
Ligs | Pisg | P | Ps | Por | Pag | Pug | Pug | Psa | Pr3 | Pros | Pz | Pisi
A.6 Projective Plane of Order Thirteen
010
Cif)=10 01
2 01
Table A.11, Table A.12 and Table A.13 show the points and lines of PG(2, 13).
TABLE A.11: Pp,... Py of PG(2,13)
P1<1a070) P2(07170) P3(07071) P4(]-707 7) P(la]-)?) P6<1a]-78)
Py(1,9,3) | Ps(1,11,2) | Py(1,10,0) | Pio(0,1,10) | P11(1,0,9) | Pin(1,8,7)
Pi3(1,1,2) | Piy(1,10,4) | Pi5(1,5,5) | Pig(1,4,1) | Pi7(1,7,9) | Pis(1,8,11)
Pio(1,3,5) | Poo(1,4,6) | Po(1,12,3) | Pea(1,11,9) | Pr3(1,8,4) | Pauy(1,5,8)
Py5(1,9,0) | Pag(0,1,9) Py(1,0,2) Pyg(1,10,7) | Payo(1,1,4) P3o(1,5,12)
Py(1,6,11) | Pia(1,3,12) | Pi3(1,6,12) | Pau(1,6,4) | Ps(1,5,11) | Pss(1,3,9)
Pyr(1,8,5) | Pis(1,4,0) | Py(0,1,4) | Pip(1,0,12) | Pu(1,6,7) | Pu(1,1,0)
P43(071,1) P44(].,0,1) P45<1,7,7 P46(1 ) P47(1,7 ].) P48(1,7,4>
Pio(1,5,3) | Pso(1,11,10) | P51 (1,2,3) | Psa(1,11,3) | Pss(1,11,11) | Pyy(1,3,1)
Ps5(1,7,2) | Psg(1,10,12) | Ps7(1,6,2 Psg(1,10,2) | Pso(1,10,3) | Peo(1,11,0)
FPe1(0,1,11) | Ps2(1,0,10) | Pes(1,2,7) | Pea(1,1,9) | Pes(1,8,2) | Fes(1,10,9)
Per(1,8,9) | Pos(1,8,6) | Pso(1,12,12) | Pro(1,6,1) | Pry(1,7,10) | Pro(1,2,8)
Pr3(1,9,12) | Pra(1,6,9) | Prs(1,8,3) | Prg(1,11,4) | Prr(1,5,10) | Prg(1,2,4)
Pro(1,5,4) | Pso(1,5,6) | Pa(1,12,2) | Pea(1,10,10) | Peg(1,2,1) | Pay(1,7,8)
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TABLE A.12: Pgs,...Pig3 of PG(2,13)
Ps5(1,9,5) Pss(1,4,4) Ps7(1,5,1) Pss(1,7,3) Pyo(1,11,6) Pyo(1,12,9)
Py1(1,8,12) | Pyo(1,6,3) Pos(1,11,8) Py,y(1,9,2) Pys(1,10,6) Pos(1,12,10)
Py;(1,2,5) Pos(1,4,2) Pyy(1,10,8) P10(1,9,6 Pio1(1,12,11) | Pya(1,3,4)
Pio3(1,5,9) | Poa(1,8,8) | Pios(1,9,1) | Pios(1,7,5) | Pio7(1,4,9) | Pios(1,8,0)
Pi0o(0,1,8) | P11o(1,0,3) | Piy1(1,11,7) | Piy2(1,1,5 Pii3(1,4,11) | Pi14(1,3,6)
Pii5(1,12 Pi16(1,5,2) | Piy7(1,10,5) | Piis(1,4,8 Pi19(1,9,4) Pioo(1,5,0)
P121(0,1,5) | Piao(1,0,11) | Pyo3(1,3,7) Pio4(1,1,10) | P125(1,2,9) Pi26(1,8,10)
Pi97(1,2,10) | Piag(1,2,11) | Piog(1,3,0) Pi30(0,1,3 Pi31(1,0,5) Pi35(1,4,7)
Pi33(1,1,11) | Pi34(1,3,10) | Pi35(1,2,0) Pi36(0, 1, Pi37(1,0,4) Pi3s(1,5,7)
Pi3g(1,1,12) | P4o(1,6,0) | Pi41(0,1,6) P145(1,0,6 Piy3(1,12,7) | Pya(1,1,6)
Piy5(1,12,6) | Prae(1,12,8) | Piy7(1,9,11) | Piys(1,3,8 Pi49(1,9,8) Pi50(1,9,10)
Pi51(1,2,12) | Pi52(1,6,6) | Pis3(1,12,1) | Pis54(1,7,0 Pi55(0,1,7) Pi56(1,0,8)
Pi57(1,9,7) | Piss(1,1,3) | Piso(1,11,5) | Pigo(1,4,12) | Pi61(1,6,5) Piga(1,4,5)
Pi63(1,4,10) | Pia(1,2,2) | Pigs(1,10,1) | Pigs(1,7,12) | Pie7(1,6,10) | Pigs(1,2,6)
Pieo(1,12,5) | Pi70(1,4,3) | Pia(1,11,12) | Pi72(1,6,8) | Pi73(1,9,9) Pi74(1,8,1)
Pirs(1,7,11) | Piog(1,3,2) | Pirr(1,10,11) | Pirg(1,3,11) | Pirg(1,3,3) | Piso(1,11,1)
Pis1(1,7,6) | Piso(1,12,0) | Pis3(0,1,12)
TABLE A.13: Lines of PG(2,13)

Ly | P | PPy | Pas| Pss | Paa | Poo | Pros | Prao | Przo | Piss | Prao | Pisa | Prso
Ly | Py | P3| Pro| Pag| Psg| Pug| Po1 | Prog | Pro1 | Prso | Pise | Prar | Piss | Piss
Ligs | Piss | Pr | Bs | Paa | P37 | Pan | Psg | Pro7 | Prig | Pros | Pisa | Piso | Piss | Pisa
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A.7 Projective Plane of Order Sixteen
IF16 = {07 17’77 ’72773774775a767’7777877977107’7117’71257137714 : ’74 + Y + 1=2= O}

010

c(f)=100 1

v 0 v

Table A.14, ..., Table A.17 show the points and lines of PG(2, 16).

TABLE A.14: Py,...Pss of PG(?, 16)

P1<1a070) P2<07170) Pd(oa 071) P4(17071) P5(1771471)
Po(1,7M,9%) | Pr(1,7%9°) | B(1,7°,9%) | Po(1,9%,9%) | Puo(1,9%,7%)
P11(177107714) P12(17 ]-7/75) P13(17797’77) P14<1777774) P15<]-7/7107 ’78)

Plﬁ(la 767 ’74)

P17(17 710, ’}/4)

P18(17 710, ’710>

P19(17 747 73)

PQO(L 711, 0)

P21(07 17 ’)/11)

P22(17 Oa 714)

Py3(1,1,1)

Py (1,4, ~%)

P25(1a ’ylla 75)

Pys(1,77,71%)

Pyr(1,7%,7%)

Pos(1,7%,4')

P29<17 737 712)

on(la’YQa’YlO)

Py (1,74, 41?)

P32(17 e alO)

P33(1;747710)

Pyy(1,7%,9%)

P35(17712a74)

P36(17710779) P37(1775)0) P38(071a’75) P39(170a77) P40(]-7’y771)
P41(177147713) P42(17770) P43(071a7) P44(170a76) P45(1a7871)
Pis(1,4",9%) | Par(1,9°7) | Pas(1,77.9M) | Pao(1,1,9%) | Pso(1,7%,7%)

P51(1’ 712’ ,}/10)

Ps (1,74, 4%)

P53(1>’7107’73)

P54<1’ ,}/11’ 713)

P55<17 v, 711)

P56(1773’7)

P57(1;713774)

P58(177107'72)

P59(17712=79)

P60(1a75778)

Pei(1,74°,42)

Per(1,7%,77)

P63(17712a73)

Pos(1,4M,42)

P65(1,’712a72)

Pes(1,7"2,77) | Por(1,7",7) | Pos(1,7",9"°) | Poo(1,7%,7%) | Pro(1,7°,7°)
P71(177970> P72(071779) P73<1707710> P74<177471) P75<177147714>
Prs(1,1,7%) P (1,4 412) | Prg(1,74%,79%) | Pro(1,7%,7%) | Pso(1,7%,7%)

P81(177670)

P82(07 1a 76)

P83(17 Oa ’72)

P84(17 712, ]-)

P85(1,714a712)
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130

TABLE A.15: P86, ... Py of PG(Q, 16)

P86(1772a74)

P87<1,71077H)

P88(1,73776)

P89(1778>712)

P90(1772a75)

Por(1,79°,7%%)

Py(1,72,72)

P93(1a 727 ’7)

Poy(1,7,0)

Pos(0,1,7")

P96(17 07 74)

P97(17 7107 1)

P98(1;’Yl478)

P99(17’V77’713)

P100<17 Y, 72)

P101<17712776)

P102(17 787 710)

Pros(1,7%, M)

P104(17 737 ’79)

Pio5(1,7°,9%)

Pros(1,7"2,7°)

Pio7(1,75,7')

P108(17 1a ,713>

P109(17 v ’74)

P110(17 7107 712)

P111<1a 727 711)

Pr1o(1,7%,419)

Pris(1,~4%,4%)

P114(1>’Y5a77)

P115(17777711)

P116(1,73>”Y5)

P117(1,797’YH)

P118(1,73:’YH)

P119(1773,713)

P120(17 27 2)

P121<17713773)

P122(17711777)

P123<17 777 714)

P124(1,1;79)

P125(17 757 710)

P126<]-7 ’747 77>

P127(17 77) 712)

Piag(1,72,77)

Piag(1,77,77)

Piso(1,77,9%)

P131(1a 7117 714)

P132(17 1a 712)

P133(17 727 ,78)

P134(1,76,72)

Pyas (1,42, 41)

P136(17 17711)

P137(1,737’Yl4)

P138(17 1,714>

Pi39(1,1,0)

P140(O7 17 1)

P141(1,O7’Y3)

P142(1771171)

P143<17 7147 75)

P144(1779;’72)

P145(17 7127 713)

Pig(1,7,7°)

Piyz(1,7%,97)

P148(17 777 0)

P149(07 17 77>

P150(]-7 07 79)

P151(1,’757 1)

P152(17 714, 7)

Piss(1,~4%,4M1)

P154(17 73a 74)

Pis5(1,~4",49)

P156(1,78>’714)

P157(17 17 72)

P158(17’Yl2a711)

Pi59(1,+%,0)

P160(07 1»73)

P161<17 07 712>

P162(1,’)/271)

P163(1>’7147’Y4)

P164(17 7107 77>

P165(17’Y7>’78)

Pigs(1,7%,7%)

Pig7(1,7%,7%)

Pigs(1,7M,7)

Pigo(1,7,77)

Pi7o(1,77,7°)

P171<1a ’747 712)

P172(17 727 713)

P173(17 e 714)

P174(17 17 74)

Piz5(1,~4',9°)

P176<1a 797 ’Y)

Pir7(1,4%3,49)

Pizs(1,7°,41)

P179(1>17710)

P180(17 747 /Y)

Pigi (1,7, +%)

P182(17767’Y)

P183(1a713a’7)

P184(17 ’7137 712)

P185(17’Y2a0)

P186<07 17 72)

P187(17 07 /711)

P188(1;7371)

P189(17714778>

P190(1,767710)

P191<]-7 ’747 75>

Piga(1,77,7°)

Prg3(1,~%,~%)

Piga(1,~°%,~4%)

Pigs(1,4", %)

P196(1a 767 78>

Pig7(1,~%,4M)

P198(17 737 ,77)

Pigo(1,77,7%)

P200(17797’Y4)
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TABLE A.16: Pyq, ... Pyrg of PG(2,16)
Poor (1,4",7) | Paoa(1,7"%,9%) | Paos(1,7"%,9°) | Paoa(1,7%,7") | Paos(1,7,7°)
Paos(1,7°,7°) | Paor(1,9%,7™) | Paos(1,1,77) Paoo(1,77,7%) | Paro(1,7°,9')
Py (1, ) Poia(1, 712 0) | Pas(0,1, ) Poia(1, 0,7 ) Pr5(1,7°, 1)
Pois(1, 9", 4") | Porr(1,9%,9™) | Pas(1, 1, ) Paig(1,7%%,7°) | Pago(1,7%,74")
Pyo1(1,7,77) Poa (1,77, 7%) | Paas(1,7"%,7) | Paaa(1,7"%,79°) | Pass(1,7°,77)
Paos(1,7°,7%) | Paar (1,4, 4%) | Paas(1,7"°,7"™) | Pago(1,7,7") | Paso(1,7,7")
P231( 1% | Pasa(1,7°9%) | Pasa(1,7,9M) | Paaa(1,7°,9") | Pass(1,9,9%)
Pass(1,7,7°) Posr(1,7°%,9%) | Pass(1,7°,9%%) | Pazo(1,7%,7") | Paso(1,9°,7°)
Po(1,7°,7°) | Pasa(1,9%,7°) | Paas(1 Y1) | Paaa(1, ) Poy5(0,1,4%)
Pyy6(1,0,7°) Poyz(1,7%,1) | Pass(1,9",9%) | Paso(1,7"%,7"2) | Paso(1,7,7?)
Posi (1,4,7°) | Pasa(1,7°, 7) Posz (1,7, 7%) | Pasa(1,7,7%) Poss(1, 7', 4™)
P256(177 Y ) Posz (1, ) Pass(1,9",y ) Paso(1, 7’ ) Pseo 1,71070)
Poe1 (0, Lyt ) Poga(1,0,7) Pags(1,7" 1) Poga(1, ) Pags 1773778)
Paes(1,7%,77) | Pagr(1,77,7°) | Pags(1,7°,0) Pago(0,1,7°) Paro(1,0,7')
Pori (1,7, 1) Pyra(1,4",0) | Pars(0,1,7')
TABLE A.17: Lines of PG(2,16)
Ly | P | P | P | Par| Pa| Pri| Psi| Poa| Pizo | Pras | Piso | Piss | Poiz | Poaa
Paeo | Pags | Parz
Ly | P | Py | P | Pss| Pas| Pra| Psa| Pos | Prao | Prao | Preo | Pise | Pois | Pass
Pag1 | Pagy | Pars
Laor | Pars | Pv | Pro | Pag | Par | Pro | Pso | Pos | Piss | Prar | Piss | Pisa | Porr | Poas
Pasg | Pag7 | Por1
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A.8 Projective Plane of Order Seventeen
010
C(f)=10 0 1
1 08
Table A.18, ..., Table A.21 show the points and lines of PG(2,17).
TABLE A.18: Py,... P14 of PG(2,17)
Py(1,0,0) Py(0,1,0) | P5(0,0,1) | Py(1,0,8) P5(1,15,8) | Py(1,15,12)
Pr(1,10,5) | By(1,7,10) | Py(1,12,7) | Pio(1,5,0) | Pi(0,1,5) | Pin(1,0,15)
Pi3(1,8,8) | Pu(1,15,9) | Pis(1,2,4) | Pig(1,13,0) | Pr(0,1,13) | Pig(1,0,12)
Pio(1,10,8) | Py(1,15,5) | Po(1,7,11) | Poo(1,14,4) | Pos(1,13,3) | Pou(1,6,1)
Pos(1,1,14) | Py(1,11,2) | Pyr(1,9,5) | Pis(1,7.3) | Pag(1,6,16) | Pyo(1,16,2)
Pyi(1,9,16) | Pia(1,16,16) | Pss(1,16,9) | Pou(1,2,6) | Pss(1,3,14) | Pys(1,11,7)
P37(1,5,12) P3s(1,10,7) | P3o(1,5,7) Py(1,5,16) Py1(1,16,3) | Pya(1,6,2)
Py3(1,9,11) Puy(1,14,15) | P45(1,8,1) Pi(1,1,16) Py7(1,16,7) | Pss(1,5,3)
Pyy(1,6,4) P5o(1,13,1) | Ps5i(1,1,4) Psy(1,13,4) Ps3(1,13,7) | Pss(1,5,5)
Pi(1,7,9) | Ps(1,2,5) | Pr(1,7,5) | Ps(1,7,6) | Pso(1,3,12) | Peo(1,10,4)
Ps1(1,13,2) | Psa(1,9,6) | Pss(1,3,1) | Pea(1,1,11) | Pes(1,14,5) | Pss(1,7,4)
Per(1,13,14) | Pss(1,11,15) | Peo(1,8,11) | Pro(1,14,1) | Pri(1,1,5) | Pro(1,7,15)
Prs(1,8,13) | Pra(1,4,6) | Prs(1,3,3) | Prs(1,6,9) | Prr(1,2,3) | Prs(1,6,3)
Pro(1,6,10) | Peo(1,12,12) | Psi(1,10,9) | Pyo(1,2,11) | Psy(1,14,2) | Psa(1,9,15)
Pes(1,8,12) | Pe(1,10,3) | Per(1,6,0) | Pas(0,1,6) | Psg(1,0,11) | Pyo(1, 14, 8)
Por(1,15,14) | Pyo(1,11,3) | Pos(1,6,6) | Pou(1,3,9) | Pos(1,2,14) | Pog(1,11,13)
Py;(1,4,1) Pog(1,1,12) | Pyo(1,10,1) | Pioo(1,1,1) Pio1(1,1,9) | Pigo(1,2,10)
Pio3(1,12,15) | Pyoa(1,8,2) | Pio5(1,9,12) | Piog(1,10,13) | Pior(1,4,14) | Pios(1,11,1)
Pioo(1,1,2) Pi19(1,9,0) | P111(0,1,9) | P112(1,0,10) | Pi13(1,12,8) | Ppy4(1,15,1)
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TABLE A.19: P115, ... Poyo of PG(Q, 17)

Pis(1,1,6) | Pug(1,3,11) | Pir(1,14,16) | Piis(1,16,11) | Pi1g(1,14,11) | Piao(1, 14, 0)
Pi51(0,1,14) | Pigs(1,0,2) | Pia3(1,9,8) | Pioa(1,15,7) | Pias(1,5,15) | Piag(1,8,14)
Pior(1,11,11) | Pog(1,14,9) | Piag(1,2,2) | Pi3o(1,9,9) | Pi31(1,2,9) | Pi3a(1,2,12)
Pi53(1,10,11) | Pisa(1,14,12) | Pi35(1,10,12) | Pisg(1,10,6) | Pi3r(1,3,4) | Piss(1,13,13)

Pi39(1,4,9) Pi4o(1,2,16) | P141(1,16,6) | Piso(1,3,5) Piy3(1,7,12) | Piyy(1,10,10)
Pi45(1,12,9) | Piag(1,2,15) | Piy7(1,8,7) Piag(1,5,14) | Piyo(1,11,12) | Pi50(1, 10, 16)
Pi51(1,16,15) | Pi52(1,8,0) Pi53(0,1,8) Pi54(1,0,6) Pi55(1,3,8) Pi56(1,15,2)
Pi57(1,9,7) Pi5s(1,5,2) Pi59(1,9,2) Pi6o(1,9,4) Pi61(1,13,6) | Pig2(1,3,13)
Pig3(1,4,3) Pi64(1,6,15) | Pigs(1,8,5) Pies(1,7,13) | Pigr(1,4,2) Pies(1,9,10)

Pigo(1,12,14)

Pi7o(1,11,4)

Pi71(1,13,15)

Pi75(1,8,10)

Pi74(1,9,14)

P175(17 117 5) P176(17 77 O) P177(07 17 7) P178<1a 07 13) P179(1747 8) P180<1a 157 0)
Plgl((), 1, 15) P182(1, 0, 16) Plgg(l, 16, 8) P184(1, 15, 10) P185(1, 12, 1) P186<17 1, 3)
Pis7(1,6,14) | Pigg(1,11,6) | Piso(1,3,7) Pig0(1,5,6) Pi91(1,3,6) Pig5(1,3,0)

P193(0,1,3) Pios(1,0,14) | Pio5(1,11,8) | Pios(1,15,3) | Pio7(1,6,13) | Pios(1,4,15)
Pioo(1,8,6) Pooo(1,3,15) | Pa1(1,8,15) | Pya(1,8,4) Poo3(1,13,10) | Pyos(1,12,11)
Pyo5(1,14,6) | Paos(1,3,16) | Pyor(1,16,5) | Paos(1,7,1) Paoo(1,1,15) | Pay0(1,8,16)
P511(1,16,0) | Ps2(0,1,16) | Py3(1,0,7) Py14(1,5,8) Py15(1,15,15) | Pa16(1,8,9)
Py7(1,2,7) Py5(1,5,1) Py19(1,1,13) | Pago(1,4,12) | Paoy(1,10,14) | Pago(1,11,16)

Pyy3(1,16, 14)

Pyoy(1,11,14)

Pyy5(1,11,10)

Pyog(1,12,4)

Pyy7(1,13,11)

Pyog(1,14,3)

Pay(1,6,7)

P230<1a 57 4)

Py31(1,13,5)

Py3o(1,7,14)

Py33(1,11,0)

Py34(0,1,11)

(
P235(17 07 5)

P236<17 77 8)

(
Py3r(1,15,11)

Py3s(1,14,14)

(
Py3y(1,11,9)

Paso(1,2,13)

Py41(1,4,16)

Pyyo(1,16,4)

P243(]-) 137 12)

Py44(1,10,2)

P245(]-7 97 13)

Pasg(1,4,10)

Poyr(1,12,5)

P248(17 7a 7)

P249(]-7 57 9)

P250(17 2a ]-)

Py51(1,1,10)

Pys5(1,12,3)




Appendix A. Points and Lines

134

TABLE A.20: Poss, ... P37 of PG(2, 17)

Pys3(1,6,12)

Py54(1,10,0)

P256<17 OJ 3)

P257(17 67 8)

Pyss(1,15,13)

Poso(1,4,0) | Pago(0,1,4) | Pogi(1,0,4) | Paga(1,13,8) | Pags(1, 15, 16) | Paga(1, 16, 10)
Poos(1,12,13) | Pogs(1,4,5) | Pogr(1,7,2) | Pogs(1,9,3) | Pago(1,6,11) | Paro(1,14,7)
Pori(1,5,10) | Pyra(1,12,0) | Pyr3(0,1,12) | Pora(1,0,1) | Pors(1,1,8) | Pare(1,15,6)
Porr(1,3,2) | Purg(1,9,1) | Pyro(1,1,0) | Paso(0,1,1) | Posi(1,0,9) | Paga(1,2,8)
Poss(1,15,4) | Pasa(1,13,16) | Poss(1,16,12) | Pags(1,10,15) | Pogr(1,8,3) | Pass(1,6,5)

Pygo(1,7,16)

Pygo(1,16,1)

P291(]-7 17 7)

Pg2(1,5,13)

Pyo3(1,4,11)

Pyoy(1,14,13)

P295(1,4, 13) P296(1,4, 7) P297(1,5, 11) ngg(l, 14, 10) P299(1,12,6) P300(1,3, 10)
Pyor(1,12,10) | Pyoa(1,12,16) | Paoy(1,16,13) | Pyos(1,4,4) | Paos(1,13,9) | Paos(1,2,0)
P307(07 17 2)
TABLE A.21: Lines of PG(2,17)
Ly P | Py | P | Pis | Psr | Prio | Pioo | Pisa | Pive | Piso | Proz2 | Por1 | Pass | Pasa
Posg | Pora | Porg | Psos
Laor | Psor | P1 | Py | Pis | Pse | Prog | Prig | Pis1i | Pirs | Pirg | Pio1 | Paio | Pasa | Poss
Poss | Por1 | Parg | Psos
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GAP Program

B.1 GAP Program

ps =l r={sa:= [l = [ =[5 mm =
oo:= ] ;;yy =1 nn =[5 a = [;

q:=13;

qq = 183;

n = 3;

uy == [1,0,0];

cm = 1[0, 1,0], 10,0, 1], (2,0, 1]];;

Find the Points Of PG(2,13)

tic := 0;tt := 0;

for i in [0..qq — 1] do

pi=uy xc. mod g;

if  p[1] <> 0 mod g then 2z := px* p[1]~! mod ¢;

elif p[2] <> 0 mod ¢ then z := p * p[2] ™ mod ¢;

[
elif p[3] <> 0 mod ¢ then z := p x p[3] ! mod ¢;

135
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fi

psli + 1] == z;

Add (ps, 2);

if p[3] = 0 then 2z := z;
tt o= tt + 1;

0 [tt] =1,

fi;

od;

c:= (s ny = [l aa = []; ar = [J;

a. = [[1,2,3,46,7],[1,2,3,46,8], [1,2, 3, 46, 18]);
for k in [1---qq| do;

nulk + 1] == k;

od;

for i in [1-- - Size(a,)] do
w, := Difference (n,, a.[i]);
¢ = a.li];

for j in w, do

od; od;

Find type of Secants

for 7 in ag4 do

for jin [1---qq| do
Add(en, [7]);

fi;

od;

if Size(c,) = 0 then
Add(a,,1);



137

Size (a,)],i— > List(a.[i], j— > ps[j]));

-w — 1] do
-w] do
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Appendix B. GAP Program

od;

Print(Size(a,),” n”

q1:

s:= List ([1---

w = Size(s);;

for hin [1--

for jin[h+1--

Find the Permutations Of Arcs

[sld1[ia], sli]lez], sls][2], sls][ial];;

Add(v,n);

n:

Find the Projectivity

T T I T S B
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a:= (a; — az + azg)mod ¢;

b:= (by — by + b3)mod g¢;

¢:= (¢ — c2 + c3)mod g;

T := [[a % t[1][1Jmod ¢, a * t[1][2]mod ¢, a * t[1][3]mod ¢],
[b* t[2][1Jmod ¢, b * t[2][2]mod ¢, b * t[2][3]mod ¢],

[c % t[3][1]mod g, ¢ * t[3][2]mod g, ¢ * ¢[3][3]mod ¢]];

Find the Equivalents Arcs

for k in[1---¢] do

r[k] == (s[h][k] * T)mod ¢;

od;

for k in[1---¢] do

if r[k][1] <> 0 mod gthen z[k] := r[k] * r[k][1] 'mod ¢;
elif r[k][2] <> 0 mod gthen z[k] := r[k] * r[k][2] 'mod ¢;
elif 7[k][3] <> 0 mod gthen z[k] := r[k] * r[k][3] 'mod ¢;
fi;

od;

if Set(x) = Set(s[j]) mod ¢ then

for m; in[1---¢] do
od;

if pos = fail then
Add (oo, 7);

fi; fi;

od; od; od;

Find the Distinct Arcs

ry =[] 50 == 0;

for ¢ in [1---w] do
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od;

for 7 in zz do

To =T+ 1;
rylro] = arli] ;
od;

Print( " The ”, Size(r,), ” distinct arcs-are: n”,r,,” n”);
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Fortran Program

C.1 Fortran Program

C.1.1 Algorithm Two

program Main implicit none integer G1, G2, G3, ci, cj, pi, pj, Li, Lj, adi, adj, ti, tj, tk, tr
integer sor, sorl, sor2, ui,uj, uk, xi,xj, O1,02,:1,4i2,13, 14, uuii, uujj

integer Det, Detl, Det2, Det3, M1, LO, N1,di,dj,dk,ni, GH, complete, uukk

integer start;oop, tip, tin, comp, major, minor, dist, i, jj, mm, oo, H H

integer loopl, loop2, clas,C, GF, B1,xr,i, 5,1V, Lk, LL, s, ads,ts,tt

integer, dimension (3) :: P1, AB

integer, dimension (3,3) :: CM, A, A1, A2, A3, projective

integer, dimension (4) :: INV

integer, dimension (6) ::
integer, dimension (31,6) :: LINE

31,3) :: POINT, poin
4) : PERMUTATION

(

(
integer, dimension (
integer, dimension (
integer, dimension (31) ::
integer, dimension (5) :: TRR,TY P, SEC
integer, allocatable :: AD(:,:)

integer, allocatable :: ADD(:,:)

140
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integer, allocatable :: ADDI1(:,:)
integer, allocatable :: ADDEDS(:,:)
integer, allocatable :: ADDED(:,:)
integer, allocatable :: NEW(:,:)
integer, allocatable :: FATEN(:,:)
integer, allocatable :: TY PES(:)
integer, allocatable :: Distinctrypes(:,:)
integer, allocatable :: MULT(:)

integer, allocatable :: DISTINCT(:,:)
open (unit=1, file="COMPLETE-ARCS.fort’)
open (unit=2 , file="NEW fort’)

open (unit=3 , file="Report.fort’)

IV =0

doi=1,q—1

doj=1,q-1

if (mod (i * j,¢).eq.1) then
IV=1V+1

INV(IV) =

end if

end do

end do

P1=(/1,0,0/)

poin= 0

poin (1,:) = P1

POINT (1,:) = poin(1,:)

do pi = 2,qq

dopj=1,3

poin(pi, :) = mod (poin(pi,:) + P1l(pj) * CM(pj,:),q)
end do

if (poin(pi,1).ne.0) then

poin = mod (INV (poin(pi, 1)) * poin, q)
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end if

P1 = poin(pi,:); POINT (pi,:) = poin(pi,:)

end

LL=0

do Lk =1,qq

if (POINT(Lk,3).eq.0) then
L(LL) = Lk

end if

LINE (1,:) =L

end do

do Li = 2,qq

LINE (Li,:) =L +1
doLj=1,q+1

if (LINE(Li, Lj).eq.qq + 1) then

LINE(Li, Lj) = 1

end if

end do

L =LINE(Li,:)
end do
Gl1=2;G2=6

allocate(AD(G1, G2))

AD(1,1) = 1; AD(1,2) = 2: AD(1,3)
AD(2,1) = 1; AD(2,2) = 2; AD(2,3)

do start,oop = 1,10
allocate(ADD1(G3,G2 + 6))
allocate(ADD(G3,G2 + 1))

tin = 0; complete = 0

do adi =1,Gl;comp =0, HH =0

do adj = 1,31
if(all(AD(adi, :).ne.adj))then;
HH=HH+1
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ADD(HH,:) = (/AD(adi,:),adj/)

end if

end do

do ads =1, HH;dott = 0,5; TRR(tt) = 0; end do
doti=1,31;tr =0

dotj=1G2+1

do tk =1,6
end do

end do

Td(ti) = tr

end do
dots=1,31

do tt =0,5

end do

end do

s=0
doi=4,0,—-1
TY P(i) = TRR(i)
s=s+TYP(i)
end do
if(s.eq.31) then;
do sorl =1,G2

do sor2 =sorl +1,G2+ 1

if(ADD(ads, sorl).gt. ADD(ads, sor2)) then
sor = ADD(ads, sor2)

ADD(ads, sor2) = ADD(ads, sorl)
ADD(ads, sorl) = sor

end if

end do

end do

comp = comp + 1
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tin =tin+1

ADDI1(tin,:) = (/ADD(ads,:), TY P/)

end if

end do

if(comp.eq.0) then

complete = complete + 1

write(1, x)AD(adi,:),' Is Complete(’, G2,/ 4, ) — ard
end if

end do

Y Y

write (1, %

b b

1)
write (1, %) Total number of complete(’, G2, )4, )is ', complete
write (1, %)

write (1,*)COMPLETE(’, G2,/ ,4,) — arcs is', [/, complete,’ |’
Deallocate (AD)

Deallocate (ADD)

allocate (ADDED(tin, G2+ 1))

dist =0

do uuii = 1,tin

uukk =0

do wujj = uuii + 1, tin

uukk = uukk + 1

end if

end do

if (uukk.eq.0) then

dist = dist + 1

ADDED(dist,:) = ADD1(uuii,1 : G2 + 1)

write (2,*)ADDED(dist,:)

end if

end do

write(3, x)dist, (',G2+ 1,/ 4 ) — arcs’

deallocate (ADD1)
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Gl =dist; G2 = G2+ 1
allocate(AD(G1,G2))
doi=1,dist

AD(i,:) = ADDED(i,:)
end do

Deallocate (ADDED)
end do
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C.1.2 Algorithm Five

program Main
implicit none
integer, parameter :: ¢ =13, qq=q*xq+q+1,N =2, NUM =q—3
integer G1,G2,G3, ci, cj, pi, pj, Li, Ly, adi,adj, ti, ty, tk, tr, ts, tt
integer sor, sorl, sor2,ui,uj, uk, i, xj, O1,02,11,12,13, 14, uuii, uujj
integer Det, Detl, Det2, Det3, M1, LO, N1, di, dj, dk,ni, GH, complete, uukk
integer start — loop, tip, tin, comp, major, minor, dist, 11, 77, mm, oo, HH
integer loopl, loop2, clas,C,GF, B1,xr,i,j,1V, Lk, LL,s, f f
integer, dimension (3) :: P1, AB
3):: CM, A, Al, A2, A3, projective

INV

integer, dimension
integer, dimension (¢ —

integer, dimension (q +

(
(3,
(¢—1)=
(g+1) =
integer, dimension (qq,q+ 1) :: LINE
integer, dimension (qq, 3) :: POINT, poin
integer, dimension (4) :: PERMUTATION
integer, dimension (qq) ::

integer, dimension (N + 1) :: TRR,TY P, SEC
integer, allocatable :: AD(:,:)

integer, allocatable :: ADD(:)

integer, allocatable :: ADDI(:,:)

integer, allocatable :: ADDEDS(:,:)

integer, allocatable :: ADDED(:,:)

integer, allocatable :: NEW(:,:)

integer, allocatable :: FATEN(:,:)

integer, allocatable :: TY PES(:)

integer, allocatable :: Distinct — Types(:,:)
integer, allocatable :: MULT(:)

integer, allocatable :: DISTINCT(:,:)

open (unit=0 , file="ARCS.fort’)

open (unit=1, file="COMPLETE-ARCS.fort’)
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open (unit=2 , file="TYPES.fort’)

open (unit=3 , file="EQUIVALENT fort’)
open (unit=4 , file="RESULTS.fort’)
open (unit=>5 , file="INFORMATION .fort’)
open (unit=8 , file="MAXIMUM.fort’)
IV =0

doi=1,q—1

doj=1,q-1

if (mod (i * j,¢).eq.1) then

IV =1V +1

INV(IV) =3

end if

end do

end do

P1=(/1,0,0/)

poin= 0

poin (1,:) = P1

POINT (1,:) = poin(1,:)

do pi = 2, qq

dopj=1,3

poin(pi,:) = mod (poin(pi,:) + P1(pj) * CM(pj,:), q)
end do

if (poin(pi,1).ne.0) then

poin = mod (INV (poin(pi, 1)) * poin, q)
end if

P1 = poin(pi,:); POINT (pi,:) = poin(pi,:)
end

LL =0

do Lk =1,qq

if (POINT(Lk,3).eq.0) then

L(LL) = Lk
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end if

LINE (1,:) =L

end do

do Li =2, qq

LINE (Li,:) =L +1
doLj=1,q+1
LINE(Li,Lj) =1
end if

end do
L=LINE(Li,:)
end do

Gl=1

G2=14

allocate (AD(G1, G2))
do lei =1,G1

1 read (0,%)AD(ci, 1), AD(ci,2), AD(ci, 3), AD(ct, 4)

DO start —loop =1, NUM
allocate (ADD(G2+ 1))

allocate (ADD1(G3,G2+2+ N))

tin =0

complete = 0

HH =1

do adi =1,G1

comp= ()

do adj = 1,qq

B1=0

if(all(AD(adi, :).ne.adj)) then
ADD(:) = (/AD(adi,:),adj/)
dott=0,N+1

TRR(tt) =0

end do
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do ti =1,qq

tr =0
dotj=1,G2+1
dothk=1,q+1

if (ADD(tj).eq.LIN E(ti,tk)) then
tr=tr+1

end if

end do

end do

Td(ti) = tr

end do

dots =1,qq
dott=0N+1

if (T'd(ts).eq.tt) then
TRR(tt) = TRR(tt) + 1
end if

end do

end do

ff=0

s=0

doi=N,0,—1
[f=fr+1
TYP(ff)=TRR(i)
s=s+TYP(ff)

end do

if (s.eq.qq) then

do sorl =1,G2

do sor2 =sorl +1,G2+1
if (ADD(sorl).gt. ADD(sor2)) then
sor = ADD(sor2)

ADD (sor2) = ADD(sorl)
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ADD (sorl) = sor

end if

end do

end do

comp = comp + 1

do zr = 1,tin

if (all(ADD1(zr,1: G2+ 1).eq. ADD(:))) then
Bl=1

end if

end do

if (B1.eq.0) then

tin =tin+1

ADDI1(tin,:) = (/ADD(:),TY P/)
end if

end if

end if

end do

if (comp.eq.0) then

complete = complete + 1

write (1,*)AD(adi,:), Is Complete (', G2, ), N, ) — ard
end if

end do

I )

write (1,

1, %)
write (1, %)’ Total number of complete (', G2, , N,/ )is ', complete
1, %)

Y Y

write (1,
write (1,*) * COMPLETE (', G2/, N, )-arcs is ', [, complete,’ |
Deallocate (AD)

Deallocate (ADD)

allocate (Distinct — Types(tin, N + 1))

dist =0

do uuii = 1,tin
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uukk =0

do wujj = uuit + 1, tin

if (all(ADD1(uujj, G2+2:G2+ 2+ N).eq ADD1(uuii, G2+ 2 : G2+ 2+ N)))then
wukk = uukk + 1

end if

end do

if (uukk.eq.0) then

dist = dist + 1

Distinct — Types(dist,:) = ADD1(uuii, G2+ 2 : G2+ 2+ N)
end if

end do

allocate (T'Y PES(dist))

allocate (ADDED(tin, G2 + 1))

00 =0

do i = 1,dist
mm =0

do jj =1,tin

if (all(ADD1(jj,G2+2: G2+ 2+ N).eq.Distinct — Types(ii,:))) then
00 =00+ 1

ADDED(oo,:) = ADD1(jj,1: G2+ 1)

mm =mm + 1

end if

end do

TY PES(ii) = mm

write (2,%)TY PES(ii),’ (,G2+ 1), N,)) — arcoftype’, Distinct — Types(ii, :)
end do

if (tin.eq.1) then

Nl=1

goto 44

end if

deallocate (ADD1)
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deallocate (Distinct — Types)
allocate (NEW (tin, G2 + 1))
allocate (FATEN(G2+ 1,3))
allocate (MULT(G2+ 1))
loopl =1

loop2 = TYPES(1)

GH =0

do clas = 1,dist

GF =0

C =1+ loop2 — loopl

Do major = loopl, loop2
01=0

dozi=1GH

if (all(NEW (zi,:).eq. ADDED(major,:))) then

0O1=01+1

end if

end do

if (O1l.eq.0) then

Do minor = major + 1, loop2
02=0

doxj=1GH

if (all(NEW (zj,:).eq. ADDED(minor,:))) then

02=02+1

end if

end do

if (02.eq.0) then
Doil=1,G2+1
Doi2=1,G2+1
Doi3=1,G2+1
Doid=1,G2+1

if (i1.ne.72.And.il.ne.i3.And.71.ne.i4.And.i2.ne.i3.And.i2.ne.i4.And.i3.ne.i4) then
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PERMUTATION(:) = (/ADDED(minor,il), ADDED(minor, i2),
ADDED(minor,i3), ADDED(minor,i4)/)

A(:,1) = POINT(PERMUTATION(1), )

A(:,2) = POINT(PERMUTATION(2),)

A(:,3) = POINT(PERMUTATION(3),)

AB = POINT(PERMUTATION(4),)

Al=A

A2=A

A3=A

Al(1,1) = AB(1)

A1(2,1) = AB(2)

A1(3,1) = AB(3)

A2(1,2) = AB(1)

A2(2,2) = AB(2)

A2(3,2) = AB(3)

A3(1,3) = AB(1)

A3(2,3) = AB(2)

A3(3,3) = AB(3)

Det = mod(mod((A(1,1) * A(2,2) x A(3,3) + A(1,2) x A(2,3) « A(3,1)+
A(1,3) x A(2,1) * A(3,2) — A(1,3) * A(2,2) « A(3,1) — A(1,1) = A(2,3) = A(3,
A(L,2) % A(2,1) % A(3,3)), 9) + ¢, 9)

if (Det.ne.0) then

Detl = mod (mod ((A1(1,1) x A1(2,2) x A
A1(1,2) % AL(2,3) * A1(3,1) + A1(1, )*Al(, ) AL(3,2)—
AL(1,3) % AL(2,2) % A1(3,1) — AL(1,1) x A

AL(1,2) % AL(2,1) % A1(3,3)),q) + ¢,9)

if (Detl.ne.0
Det2 =mod (mod((A2(1,1) x A2(2,2) x A2(3,3)+
A2(1,2) * A2(2,3) % A2(3,1) + A2(1,3)  A2(2, 1
A2(1,3) * A2(2,2) % A2(3,1) — A2(1, 1) * A2(2,3
A2(1,2) % A2(2,1) % A2(3,3)),9) + ¢, q)

) then

(
« A2(3,2)—
« A2(3,2)—

N W

)
)

2)—
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if (Det2.ne.0) then

Det3 =mod (mod ((A3(1,1
A3(1,2) % A3(2,3) x A3(3,1
A3(1,3) * A3(2,2) % A3(3,1
A3(1,2) % A3(2,1) % A3(3,3
if (Det3.ne.0) then
PROJECTIVE(1,:) = mod(Detl % A(:,1),q)
PROJECTIVE(2,:) = mod(Det2 + A(:,2), q)
PROJECTIV E(3,:) = mod(Det3 x A(:,3), q)
do M1=1G2+1

) % A3(2,2) % A3(3,3)+

)+ A3(1,3) % A3(2,1) * A3(3,2)—
) — A3(1,1) * A3(2,3) x A3(3,2)—
)

),q) +q,q)

FATEN(M1,1) =mod (POINT(ADDED(major, M1),1) * PROJECTIV E(1,1)+

POINT(ADDED(major, M1),

(
2) % PROJECTIVE(2,1)+
POINT(ADDED(major, M1),3)

« PROJECTIV E(3,1),q)

FATEN(M1,2) = mod(POINT(ADDED(major, M1),1) * PROJECTIV E(1,2)+

POINT(ADDED (major, M1),2) * PROJECTIV E(2,2)+
POINT(ADDED(major, M1),3) «x PROJECTIVE(3,2),q)

FATEN(M1,3) = mod(POINT(ADDED(major, M1),1) * PROJECTIV E(1, 3)+

POINT(ADDED(magor, M1),2) + PROJECTIV E(2,3)+
POINT(ADDED(major, M1),3) « PROJECTIV E(3,3),q)
if (FATEN(M1,1).ne.0) then

FATEN =mod (INV(FATEN(M1,1)) x FATEN, q)
elseif (FATEN(M1,2).ne.0) then

FATEN =mod (INV(FATEN(M1,2)) x FATEN, q)
elseif (FATEN(M1,3).ne.0) then

FATEN =mod (INV(FATEN(M1,3)) * FATEN, q)

end if

doLO =1,qq

MULT(M1) = LO

exit

end if

end do
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end do

do sorl =1,G2

do sor2 =sorl +1,G2+1

if (MULT (sorl).gt.MULT (sor2))then
sor = MULT (sor2)

MULT (sor2) = MULT (sorl)

MULT (sorl) = sor

end if

end do

end do

if (all(MULT(:).eq. ADDED(minor,:)))then

GH=GH+1
NEW(GH,:) = MULT(:)
end if

end if

end if

end if

end if

end if

33 end do

end do

end do

end do

end if

99 end do

end if

GF =GF +1

print*, GF/of’,C

100 end do

end do

allocate (DISTINCT (tin, G2+ 1))
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N1=0

do di = 1, tin

dk =0

dodj =1,GH

if (all(NEW (dj,:).eqADDED(di,:))) then
dk =dk+1

end if

end do

if (dk.eq.0) then

N1=N1+1

DISTINCT (N1,:) = ADDED(di,:)
write (4,%)DISTINCT(N1,:)

end if

end do

write (4,%)N1

write (1,x*) "Total number of complete (', G2, N, ) is!, complete
write (3, %) 'number of eq.(", G2+ 1,/ , N, )-arcs is ', GH, oftotal’, tin
write (5,*) "Total (,G2+ 1./, N,/ )-arcs is')/ [/, tin," |/

write (5, *) 'Equivalent(’, G2 + 1,/ , N, )-arcs i, [, GH,"|'

write (5,*) 'Distinc (', G2+ 1/, N,/ )-arcs is', [, N1,/

Gl=N1

G2=G2+1

allocate (AD(G1,G2))

doni = 1,G1

AD(ni,:) = DISTINCT (i, :)
end do

Deallocate (NEW)

(

Deallocate (DISTINCT)
Deallocate (ADDED)
Deallocate (FATEN)
Deallocate (MULT)
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Deallocate (TY PES)

END Do

goto 55

44 write (8, ) MAXIMUM (',G2 + 1/, N, )-arcs is ', ADDED(L,:)
write (5,*) 'MAXIMUM (',G2+1,/,, N/, )-arcs is ')/, 1

write (1,x*) "Total number of complete (',G2+ 1,/ N,) is’, 1

write (1,x)ADDED(1,:),’ Is Complete (',G2+ 1,/), N, )-arc’

write (4,%*)ADDED(1,:)

write(4,*)1

55 stop

end
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