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ABSTRACT

We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set,
covering 1500 deg? with a median redshift of 0.59. The catalogues cover two main fields:
Stripe 82, and an area overlapping the South Pole Telescope survey region. We describe our
data analysis process and in particular our shape measurement using two independent shear
measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue
uses a Gaussian model with an innovative internal calibration scheme, and was applied to riz
bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc
model calibrated using simulations, and was applied to r-band data, yielding 21.9M objects.
Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing
science. We estimate the 1o uncertainties in multiplicative shear calibration to be 0.013 and
0.025 for the METACALIBRATION and IM3SHAPE catalogues, respectively.
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1 INTRODUCTION

Weak lensing, the gravitational bending of light paths by wide-field
matter distributions, presents a powerful probe of cosmological
physics and the laws of gravity. The angle by which light is bent
by any lens depends on two factors: the geometry of the source—
lens—observer system, and the inherent strength of the lens. In the
cosmic case, the former depends on the expansion history of the
Universe via the relationship between redshift and distance. The
latter depends on laws of gravity and the amount of structure in the
Universe — the variance of the cosmic density field. Through both
these dependences we can put limits on the history of the Universe,
the cosmological parameters, and most interestingly the behaviour
of dark matter and the equation of state of dark energy.

The most direct way to measure weak lensing is to measure the
ellipticity of distant galaxies. The effect of the intermediate grav-
itational fields on the light from a source is to shear it, coherently
stretching the galaxies in a region in the same direction. The mag-
nitude of this effect on a single galaxy is only a few per cent, which
is much smaller than either the intrinsic scatter in galaxy shapes or
the atmospheric and optical image distortion. The intrinsic scatter
means we require large surveys, to obtain as much statistical power
as possible, and the atmospheric and optical effects mean we re-
quire careful optical design and precision modelling of the induced
distortions (the point spread function, PSF).

The Dark Energy Survey (DES) is the largest ongoing lensing
survey designed to meet these requirements, and is part of the cur-
rent ‘Stage III” group of lensing surveys (Albrecht et al. 2006). The
earliest Stage I surveys, including VIRMOS-Descart (Van Waer-
beke, Mellier & Hoekstra 2005), CTIO (Jarvis et al. 2006), SDSS
(Hirata et al. 2004), and COSMOS (Schrabback et al. 2007), mostly
measured tens of square degrees, and made some of the first de-
tections of cosmic shear. Stage II surveys included DLS (Jee et al.
2013), SDSS (Lin et al. 2012; Huff et al. 2014), RCSLenS (Hilde-
brandt et al. 2016), CFHTLenS (Heymans et al. 2012) as well as
early science verification (SV) DES results in Jarvis et al. (2016).
They included both deep and wide surveys, up to hundreds of square
degrees, and obtained significant cosmological constraints. The cur-
rent Stage III generation includes DES, KiDS (Hildebrandt et al.
2017; Amon et al. 2018), and HSC (Aihara et al. 2018), which
are each surveying at least 1000 deg” and will obtain cosmological
constraints comparable in power to all other cosmological data. Up-
coming Stage IV surveys, including Euclid, LSST, WFIRST, and
SKA, will measure the dark energy equation of state with 1 per cent
precision when combined with data from the cosmic microwave
background (CMB). DES will eventually survey 5000 deg?. It has
currently completed four out of its five planned full seasons of ob-
servations. The catalogues described in this paper use observations
from the first of those 4 yr, and cover 1500 deg”. Processing and
analysis of the entirety of existing DES data is underway.

Building a catalogue of galaxy ellipticities (a shape catalogue)
from image data is a long process with many steps, each of which
must be performed with careful attention to potential induced bi-
ases. The DES implementation of these steps is shown visually in
Fig. 1. The first stage is low-level calibration to detect artefacts,
measure noise, and regularize images. We build coadded images
and detect and classify stars and galaxies in them. We measure the
astrometry and PSF in each single-epoch image. We collect together
single-epoch ‘postage-stamp’ images for each source into a single
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Figure 1. A flow-chart showing the steps in the DES Year 1 heckedshape
analysis, starting from low-level calibrated data products made by DES Data
Management (DES-DM) and ending with final output catalogues. Yellow
stages are performed in the DES-DM software process. Green stages are
performed in the Weak Lensing analysis process. Blue stages are part of the
IM3SHAPE process, mostly simulation and calibration, and red stages part of
the METACALIBRATION analysis. ‘S.E.” stands for ‘single epoch’.

multi-epoch data structure (MEDS). Finally we come to the shape
measurement process itself, which forms the bulk of this paper. We
measure galaxy ellipticities with two quantities e; and e,, and the
ensemble shear in terms of either y| and y, or the reduced shears
g1 and g, (Bartelmann & Schneider 2001).

The difficulty of accurately recovering ellipticities and shears
from noisy, pixelized data, as well as the value of exploring multi-
ple approaches to it, was quickly recognized. In response, a series
of shape measurement challenges have sought to compare and test
the various codes available. The past decade has seen several such
exercises, most notably the Shear Testing Programme and GRavi-
tational IEnsing Accuracy Testing (GREAT) challenges (Heymans
et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al.
2012; Mandelbaum et al. 2015), which have illuminated many of
the issues that the field must solve.

Galaxy shape measurement methods can be split into two broad
categories. Each must correct for the imaging processes, such as PSF
convolution, which alter the apparent shapes of galaxies. The first is
forward-modelling methods, in which parametric models of galaxy
images are generated, propagated through the observing processes,
and compared to the data in order to obtain a likelihood or other
goodness-of-fit metric for the galaxy parameters. The second class,
inverse methods, measure second-order moments or other values
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on the image data, then apply corrections to compensate for the
effects of the observing process. Early methods like KSB (Kaiser,
Squires & Broadhurst 1995) and Shapelets (Refregier 2003) largely
fall into the latter category, but recent work has mostly focused on
model-based methods.

Within each of these categories there are a great many method-
ologies and specific codes, each with different assumptions and
designs, which lead to advantages and drawbacks in different do-
mains. One advantage of model-fitting methods is that it is easier to
enumerate the biases that can afflict them.'

We can characterize these biases with a Taylor expansion as
(Heymans et al. 2006)

g = +m)g +ci, (1)

where g; is a shear estimate for the i = (1, 2) component of shear
and g!" is the true value. The dominant contribution to the ¢; term
usually arises from the PSF ellipticity, so we sometimes re-write
this as

g = +m)gl +ael> +¢ 2
for some o and the PSF ellipticity e?SF. The three largest biases
that generate various combinations of m, ¢, and « are usually model
bias, noise bias, and selection bias.

Model bias, the mismatch between an assumed galaxy image
model and the true one, was shown in the GREAT3 challenge to
cause an error of up to ~1 percent, which is comparable to the
target errors in the current generation of surveys (Mandelbaum
et al. 2015).

Noise bias is often the dominant shear measurement bias, and is
more properly understood as an estimator bias. It affects methods
that use the maximum point in the likelihood of model parameters
or similar quantities as a point-wise estimator of the ellipticity, since
these quantities are inherently biased if the probability distributions
are asymmetric (Bernstein & Jarvis 2002; Hirata & Seljak 2003;
Kacprzak et al. 2012), as is almost always the case for shear es-
timation. It typically causes a ~10 percent bias if untreated. One
solution is to account for the shape of the posterior surface; methods
for doing this have been developed in Miller et al. (2007) and Bern-
stein & Armstrong (2014) and was used by the DES-SV analysis in
the NGMIX code (Sheldon 2015).

Selection bias is the result of objects being included or excluded
from the catalogue in a way that depends on their intrinsic shapes
or the shear to which they are subject. Every catalogue has some se-
lection function, and nearly all will result in biased shear estimates.
Even if the measurements on individual galaxies are completely ac-
curate (i.e. the histogram of their shapes can be recovered perfectly),
if we preferentially select, for example, the roundest galaxies, we
will systematically underestimate the cosmological shear. If noise
bias is an estimator bias, then selection bias can be thought of
as a representativeness bias. These effects have been found to be
more pervasive than previously believed, and were found to cause
5 per cent biases in Jarvis et al. (2016). They make comparison be-
tween shear samples particularly difficult, and can arise from the
detection process itself or from cuts or binning applied to measured
results — the latter was found to be much more significant in Fenech
Conti et al. (2017).

There are multiple practical paths to the elimination of these vari-
ous shear estimation biases. The simplest is to accept their existence

!Problems analogous to these issues affect model-independent methods too,
but it is typically harder to interpret their impact.
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and estimate the shear errors by processing simulated data with
known input shear through the same pipeline as the real data. Early
calibration methods using simulations used a single global calibra-
tion factor (Schrabback et al. 2007; Jee et al. 2013). More recent
methods have derived a calibration value per-object as a function
of measured galaxy properties, e.g. Jarvis et al. (2016), Hildebrandt
et al. (2017). This is the approach taken by the IM3SHAPE code in
this paper.

These calibration methods require simulations that are very care-
fully matched to the properties of the given data; otherwise the
calibration factors used can be incorrect. Methods which do not
depend on simulations can reduce the scale of this challenge, or
avoid it completely. There has been a flurry of interest in recent
years in the various ways one could do this. In Fenech Conti et al.
(2017), the KiDS collaboration used self-calibration, in which a
simulated version of each object is generated from the best-fitting
model parameters and re-measured — this removes about half of
the noise bias and reduces required simulation volumes. Huff &
Mandelbaum (2017) and Sheldon & Huff (2017) describe the meta-
calibration method used by the METACALIBRATION pipeline in this
paper, which calibrates the estimator biases by applying an added
shear to the real galaxy images and gauging its effect on galaxy
measurement and selection. This proves highly effective in tests on
simulations. Another recent approach, the Bayesian Fourier Domain
method (BFD; Bernstein & Armstrong 2014), uses deeper data to
provide an implicit model, avoiding model bias, and prescribes a
selection process for which biases are calculable from a full proba-
bilistic treatment. BFD estimates will be investigated in future DES
shear catalogues.

The DES shape measurement methodology in the DES-SV period
was exhaustively detailed in Jarvis et al. (2016), hereafter J16. Many
aspects of our methodology are the same as in SV, so this paper
builds on that work — unchanged aspects of the process that are not
explained here are detailed there.

This paper is organized as follows: in Section 2 we describe
the observations analysed in this work. In Section 3 we describe
the measurement of the PSF. Sections 4 and 5 describe the con-
struction of our two catalogues, METACALIBRATION and IM3SHAPE,
respectively, including the calibration simulations used in the latter.
Section 6 describes a series of tests validating that the catalogues
have sufficient accuracy for cosmic shear, cross correlations, and
other measurements of the lensing signal. Section 7 discusses pro-
cedures for use of the catalogues, including appropriate systematic
error priors and the correct use of the calibration systems. We con-
clude in Section 8.

2 DATA

2.1 Observing period and conditions

The Dark Energy Survey (DES) Year One (Y1) catalogues described
here are based on observations taken using the Dark Energy Camera
(DECam, Flaugher et al. 2015) on the Blanco telescope at the Cerro
Tololo Inter-American Observatory during the first full season of
DES operations. Y1 images were acquired between 2013 August
31 and 2014 February 9 (Diehl et al. 2014). The nominal plan for
the DES Wide Survey is to image the entire 5000 deg? footprint
10 times in each of the g, r, i, z, and Y filters over five seasons
of operation. DECam images have an average pixel scale of 0.263
arcsec. In Y1 we opted to target only the regions overlapping the
South Pole Telescope (SPT) survey footprint at —60° < § < —40°
and the equatorial SDSS ‘Stripe 82’ region covering —1.26° < § <
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Figure 2. The DES Y1 shear catalogue footprint with galaxy density of the
METACALIBRATION catalogue shown with the nominal 5-yr DES footprint
outline overlayed. IM3SHAPEis qualitatively similar, but slightly shallower.
We define three fields: (1) The large, southern field overlapping with SPT,
which has been selected for DES Y1 science applications due to contiguity.
(2) The long equatorial strip overlapping with SDSS Stripe 82. (3) The dis-
joint supernovae and spectroscopic-overlap fields, which have been selected
from the four exposure depth (D04) GOLD catalogue. Additional D04 fields
far from the SPT region are not shown. The densities are not corrected for
the detection fraction within each pixel. The Albers equal-area projection is
used.

+1.26° and 20: 00/ < RA < 04: 00/, comprising about 30 per cent of
the full footprint. The goal was to obtain four ‘tilings’ per filter over
this region in Y1, rather than cover the full footprint with two tilings,
because four-tiling coverage is much more robust to cosmic rays
and per-exposure systematic errors, especially after considering the
gaps in the functional imaging area of DECam. Given these factors,
atwo-tiling coverage would not have led to a viable shape catalogue.
The vagaries of the weather led to non-uniform coverage of the Y1
target area. Fig. 2 shows the footprint of the Y1 METACALIBRATION
shape catalogue after the cuts described below for minimum depth
in each filter.

In comparison to the SV catalogues described by J16, the
main areas of the Y1 shape catalogues cover a much larger area
(1500 deg? versus 140 deg?) but with a lower integrated exposure
time (up to 4 x 90 s exposures per filter in griz versus 10 x 90 s
nominal in SV). The quality of the Y1 imaging is superior to that
taken in SV in several respects:

(1) The telescope tracking servos exhibited oscillations in right
ascension during most of the SV period, leading to more elliptical
and less stable PSFs. This was fully remedied for Y1.

(i1) More rigorous assessment of image quality was in place for
Y1, and exposures failing to meet certain thresholds for seeing,
cloud extinction, and sky brightness were rejected after each night’s
observing and placed back onto the observing queue (Neilsen et al.
2016).

(iii) The feedback system using out-of-focus stellar images to
maintain focus and alignment of the camera (Roodman, Reil &
Davis 2014) was improved substantially by the start of Y1, further
stabilizing the PSF quality.

(iv) Thermal control of the Blanco mirror and dome was im-
proved between the SV and Y1 periods.

(v) Improved baffling of the filters reduced the incidence of stray-
light contamination, and improvements in software identification of
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image artefacts also reduced the number of spurious features in the
images.

(vi) The SV observing sequences concentrated most of the obser-
vations of a given part of the sky into a small number of nights. By
Y1 we had adopted a wide-survey scheduler which penalizes repeat
coverage in a given filter on a given night. This decorrelates weather
variation from the sky coordinates and leads to more uniform survey
quality.

(vii) The shutter-closed time between exposures was reduced,
increasing the observing efficiency ~2.5 per cent.

One degradation in camera performance during Y1 is that one of
the 62 CCDs in the DECam science array failed on 2013 November
30. Most of the Y1 data therefore has one less usable CCD’s worth
of data per exposure.

2.2 Object catalogue

The initial selection of galaxies on which shape measurement was
performed is detailed in Drlica-Wagner et al. (2018), and the se-
lection described therein is denoted the GOLD catalogue. The im-
age reduction, photometric calibration, and detection from coad-
ded images to the catalogues are described in that paper, and the
star—galaxy separation described therein is applied to the IM3SHAPE
catalogue. The full region the catalogue covers is shown in Fig. 2,
though our cosmological analyses will use only the southern region
that overlaps with the SPT survey.

2.3 Galaxy selection

Galaxies are distinguished from stars in GOLD using a clas-
sifier called MODEST, which is based on the SEXTRACTOR
SPREAD_MODEL variable (Bertin & Arnouts 1996; Soumagnac
et al. 2015), which discriminates between objects best fit as a point
source versus an extended object. In this paper the IM3SHAPE selec-
tion cuts made use of MODEST, in the high-purity variant described
in Drlica-Wagner et al. (2018). The METACALIBRATION catalogue
and the PSF star selection used alternative criteria. The overall
magnitude distributions of the selections, and of the final shape
catalogues, are shown in Fig. 3.

Images within 30 pixels of the edge of a CCD are removed from
the selection because of a ‘glowing-edge’ effect which gives pixels
there a different effective size (Plazas, Bernstein & Sheldon 2014b).

2.4 Astrometry

The DES Y1 single-epoch pipeline derives an astrometric solution
for each exposure by comparing object positions across the focal
plane to the reference catalogue UCAC-4 (Zacharias et al. 2013)
using the AstrOmatic utility SCAMP (Bertin 2006, 2010). These so-
lutions typically have 200-300 mas RMS in their residuals with
respect to the reference catalogue. In order to produce high-quality
co-added images in the multi-epoch pipeline, an astrometric refine-
ment step is used prior to combining the images. That step considers
catalogued objects with S/N > 10 from all exposures (at all bands)
that overlap the coadd tile. A simultaneous astrometric fit is made,
again using SCAMP but now using the 2MASS Point Source Cata-
logue as an astrometric reference (Skrutskie et al. 2006). The refined
astrometric solutions are used to update the world coordinate sys-
tem (WCS) for each image prior to coaddition. The resulting fits
typically have an internal astrometric residual of 25-35 mas (RMS)
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Figure 3. Magnitude histograms showing different selections of the DES
Y1 catalogues. Values are measured with the multi-object fitting (MOF)
method described in Drlica-Wagner et al. (2018). The GOLD catalogue is the
input detection catalogue described in Section 2.2. ‘Galaxies’ are those iden-
tified as galaxies by the process described in Section 2.3. ‘Good’ galaxies are
those with no indication of blending or extreme colours from SEXTRACTOR.
The METACALIBRATION and IM3SHAPE histograms show objects in the final
shape catalogues, after method-specific cuts.

between the individual images/exposures and an external astromet-
ric residual of 250 mas with respect to the 2MASS catalogue.

2.5 COSMOS data

For several simulations and validation tests we make use of a galaxy
catalogue from Advanced Camera for Surveys (ACS) imaging of
HST’s COSMOS field (Koekemoer et al. 2007; Scoville et al. 2007).
The catalogue of ~73 000 objects has been ‘whitened’ (correlated
noise removal; see Rowe et al. 2015), and is a deeper superset of the
galaxies used in the GREAT3 challenge.” It extends significantly
beyond the Y1 detection limit of M im = 23.4 (Drlica-Wagner et al.
2018), reaching ~25.2 mag in the HST F814W filter and ~27.9 mag
in the DES r band.

Zhttp://great3 jb.man.ac.uk/
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2.6 Blinding

The DES Y1 shear catalogues were blinded to mitigate experi-
menter bias, in which analysis methodology may be intentionally
or otherwise tuned so that results match expectations. The blinded
catalogues have all ellipticities e as defined below in equation (4)
transformed via |n| = 2 arctanh |e| — f|n], with a hidden value 0.9
< f < 1.1. This mapping preserves the confinement of the e values
to the unit disc while rescaling all inferred shears. DES cosmologi-
cal analyses making use of these catalogues finalized their analysis
methodology before being supplied with the unblinded catalogues.
Cosmological parameter estimation for these projects incorporate
further secondary blinding strategies as described in their respective
papers.

In the interests of full disclosure we must report that two inde-
pendent but equivalent errors in the two shape pipelines meant that
the multiplicative calibration process was incorrectly applied after
the blinding process instead of before, partially undoing its effects.
The transformation described above is not a purely multiplicative
one, since it acts on arctanh |e| instead of e, but for small elliptic-
ities it is nearly so. Since the calibration removed a multiplicative
bias, This meant that most of the effect of blinding was undone by
the calibration process. Since the mistakes were equivalent, the two
catalogues remained consistent after blinding, and no errors were
caused in any tests or comparisons.

This fact was discovered during the cosmological analysis, but
after the catalogues had been frozen and the tests presented in this
paper finalized. The error was not disclosed to the full analysis
team, so most members remained effectively blinded. Additionally,
the individual cosmology analyses in Troxel et al. (2017) and DES
Collaboration (2017) included another layer of blinding: all cos-
mology constraint plots included shifts in the positions of the DES
results, so that the absolute position could not be compared to exist-
ing results or preconceived expectations. While these errors could
not therefore have resulted in any experimenter bias being possible,
they will be corrected in the next DES analysis.

3 PSF ESTIMATION

One of the most important aspects of image characterization is
accurately estimating the PSF. The PSF describes how a point source
of light in the sky is mapped into a two-dimensional profile on the
image. The images of galaxies are the convolution of the true surface
brightness profile with the PSF.

Since stars are essentially point sources, observations of stars
give us a direct (albeit noisy) estimate of the PSF at the locations of
the stars. However, the PSF is not constant across the field of view,
so the PSF must be interpolated from the locations of stars, where
it is observed, to the locations of galaxies, where it is needed.

The process for PSF estimation in Y1 is largely unchanged from
the procedure used in J16. We briefly recap the procedure described
therein, emphasizing the changes we have made since SV.

3.1 Selection of PSF stars

We use the same method for identifying and selecting PSF stars
as J16. The initial identification of candidate PSF stars involved
using a size—magnitude diagram of all the objects detected on the
image. For the magnitude, we used the SEXTRACTOR measurement
MAG_AUTO. For the size, we use the scale size, o, of the best-fitting
elliptical Gaussian profile using the adaptive moments algorithm
HSM (Mandelbaum et al. 2005).

MNRAS 481, 1149-1182 (2018)
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Figure 4. An example size-magnitude diagram for a single CCD image,
used to identify stars.

The stars are easily identified at bright magnitudes as a locus
of points with size nearly independent of magnitude. The galaxies
have a range of sizes, all larger than the PSF size. The candidate
PSF stars are taken to be this locus of objects from about m ~ 15,
where the objects begin to saturate, down to m = 22, where the
stellar locus merges with the locus of faint, small galaxies.

From this list of candidate stars, we remove objects that are not
suitable to use as models of the PSF. Most importantly, we remove
all objects within 3 mag of the faintest saturated star in the same
CCD exposure in order to avoid stars whose profiles are affected by
the so-called ‘brighter-fatter effect’ (Antilogus et al. 2014; Gruen
etal. 2015; Guyonnet et al. 2015) —see Section 3.2. This magnitude
cut-off varies between 18 and 19.5.

In addition, we remove stars that overlap the ‘tape bumps’. The
CCDs on DECam each have six spots where 2 mm x 2 mm
x 100 pm-thick spacers were placed behind the CCDs when they
were glued to their carriers (see Flaugher et al. 2015). This alters
the electric field and hence the PSF is distorted near each spacer.
Fig. 4 shows such a size-magnitude diagram for a representative
CCD image. The stellar locus is easily identified by eye, and the
stellar sample identified by our algorithm is marked in pink and
green. The pink points are stars that are removed by our various
selection cuts, while the green points are the stars that survive these
cuts.

We find a median of 115 useful stars per CCD image, which we
use to constrain the PSF model. The distribution of PSF stars per
CCD exposure is shown in Fig. 5. In Fig. 6, we show the distribution
of the median measured full-width half-maximum (FWHM) for the
PSF stars used in our study, restricted to the exposures used for shear
measurements. The overall median seeing is 0.96 arcsec, which is
significantly better than we obtained in the SV observations (108),
but still somewhat larger than the original target of 0.90 arcsec.

Occasionally, this process for selecting stars fails, in which case
we add the CCD’s image to a ‘blacklist’ of those not used for
shear estimation. For instance, if fewer than 20 stars are identified
as PSF stars (e.g. because there is a very bright star or galaxy
dominating a large fraction of the CCD area), then we blacklist
the CCD image. Sometimes the star-finding algorithm finds the
wrong stellar locus and ends up with far too many ‘stars’ or finds
a very large FWHM (>3.6). These CCDs are similarly excluded
from consideration. These PSF blacklist entries are added to the
GOLD-catalogue blacklist, which includes CCDs with large ghosts,
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Figure 5. The distribution of the numbers of stars used to constrain the PSF
model per CCD image.
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Figure 6. The distribution of the median seeing FWHM of the stars used
to model the PSF in the riz bands. The median seeing of these distributions
is 1.03 in the r band, 0.95 in the i band , 0.89 in the z band, and 0.96 in the
three bands overall.

scattered light, satellite trails, or other apparent defects (Drlica-
Wagner et al. 2018).

3.2 PSF measurement and interpolation

We used the software package PSFEX (Bertin 2011) to measure the
surface brightness profile /(x, y) of the PSF stars selected above as
well as to interpolate between the locations of the stars. We used
the following configuration parameters for PSFEX:

BASIS_TYPE PIXEL

PSF_SAMPLING 0.5

PSF_SIZE 101,101

PSFVAR_KEYS XWIN_IMAGE, YWIN_IMAGE
PSFVAR_GROUPS 1,1

PSFVAR_DEGREES 2

The one change from the procedure described in J16 is to
switch the BASIS_TYPE from PIXEL_AUTO to PIXEL. With
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Figure 7. The relative model size (top) and shape (bottom) residual of stars.
To reduce the impact of the brighter-fatter effect bright stars are excluded
from our PSF models; the cut-off varies between CCD exposures but the
shaded region shows a typical example.

PIXEL_AUTO, there was an overall mean residual in the size of the
PSF models compared to the measured sizes of the stars. Switching
to PIXEL yields near-zero size residual for faint stars (i.e. those
unaffected by the brighter-fatter effect).

In Fig. 7 we show size and shape residuals of all identified stars,
relative to our standard PSFEX model, which uses only the faint ones.
The sizes and shapes are defined in terms of the second moments
of the surface brightness profile (Seitz & Schneider 1997):

T =1l +1, 3)
Ly — Iy +2il,,

e =¢ +iex = ) )
Lo+ Iy + 24/ Lo 1y — I}y
where the moments are defined as
dxdy I(x, y)(n — a)(v — D)
I;/,v = f . (5)

fdx dy I(x,y)

The moments are measured using HSM (Mandelbaum et al. 2005).
The quantity 7'is one measurement of the square of the object radius.

The brighter-fatter effect is seen at bright magnitudes to lead to
biases in both the size and shape (especially e;). This motivates the
cut described above in Section 3.1 and shown in the shaded region.
There is a small residual error in e; even at the faintest magnitudes,
and we are unable to find settings to PSFEX that eliminate this bias.
However, the size residual is now seen to be consistent with zero at
faint magnitudes, which was not the case for the SV analysis.

In Fig. 8, we show both the raw PSF shape and the residuals as
a function of position on the focal plane. The residuals are small,
but not quite zero, and there is an evident rippling pattern. The
impact of these spatially correlated residuals is investigated below
in Section 3.3.

3.3 PSF model diagnostics

The errors in the PSF model seen in Fig. 8 will propagate into the
galaxy shapes and inferred lensing shear. To estimate the impact of
PSF modelling errors on the shear two-point correlation function,
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&, we turn to the p statistics (Rowe 2010; Jarvis et al. 2016):

P1(0) = (8efsu(x)5epse(x + 0)) (6)
2(0) = (e (X)Sepsp(x +60)) 7
p3(0) = <<e;fsp 8TT ) (x) (e‘sTL) (x + a)> (8)
S8 Tosr:
pa(6) = <6e;fSF(x) (emT—)u + 0>> ©)
(STPSF
ps(6) = <e:SF(x> (ePSFT—)(x + o)> : (10)

where epsr and Sepsy = €psp — emodel are the measured ellipticity of
the PSF model at the locations of stars and its measured residual,
respectively; Tpse and § Tysp = Tpsp — Tinodel are the size of the model
and its residual; the asterisk denotes complex conjugation; and the
averages are taken over pairs of stars separated by angle 6. These
statistics neglect anisotropy in PSF errors, but will indicate the first-
order effects on the correlation functions. There is no equivalent
effect on £_, where such additive effects are negligible.

The values 8 Tpse/ Tpse as measured from sizes of reserved stars
are typically positive, meaning stars are slightly larger than smooth
polynomial PSF models predict. In DES data we find mean size
errors from this effect (8 Tpsp/Tpse) ~ 8.3 x 10~* and a much larger
size variance: (8 Tpse/ Tpse)?) '/ ~ 3 x 1072,

For these tests, we constructed PSF models using only 80 per cent
of the PSF stars that were selected as described in Section 3.1.
The PSF model was then interpolated to the locations of the other
20 per cent of the stars that had been reserved from the modelling
step. This is an improvement over the procedure used by J16 where
the same stars that were used for making the PSF model were
used in the p statistics. The statistics are shown, binned by |6/,
in Fig. 9 averaged over single-epoch stellar observations in 7 i,
and z bands. The averages thus include pairs of observations from
different exposures as well as those from the same exposure, thus
corresponding to the way these residuals impact the two-point shear
correlation of the shear estimates of the galaxies.

The p statistics for individual exposures in Y 1 are similar to those
obtained for SV in J16. The SV data, however, have a mean of 19.7
usable exposures per galaxy in the riz bands, while the Y1 data
presented here have a mean of only 8.4 exposures. When the mod-
elling errors are uncorrelated between exposures for a given star or
galaxy target, the survey-averaged statistics scale as poc1/Nexposures -
As such, the amplitude of the p, statistic is significantly larger for
Y1 than reported for SV in J16. In addition, the fact that we are
using reserved stars this time also increased the measured correla-
tions somewhat compared to SV, especially at large scales. In the
SV statistics the mean residual was close to zero by construction,
so the statistics were probably spuriously low. The mean residual
of the reserved stars is expected to be a better estimate of the actual
error in the fitted PSF models.

The PSF modelling residuals constitute the largest known addi-
tive systematic error on the estimated shear values. For two-point
shear statistics such as &, we expect the additive error due to these
statistics to be (J16, equation 3.17):

TPSF :
86,(0) = <T ] > (p1(0) + p3(0) + p4(6))
ga

TPSF
- < T > (02(0) + p5(0)) , Y

gal

where « is the amount of ‘leakage’ of the PSF shape into the galaxy
shape (see Section 6.2.2). We discuss the impact of this contribution
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Figure 8. The mean PSF ellipticity (left) and mean residual after subtracting the PSFEX model ellipticity (right), binned by position in the focal plane. The
residual is multiplied by a factor of 10 to be visible in the same colour scale.
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Figure 9. The p statistics for the PSF shape residuals. Negative values are shown in absolute value as dotted lines. Requirements on the p statistics are specific
to individual science cases; the yellow fill is a general guide, rather than a requirement, and is 10 per cent of the value of the weakest cosmic shear & signal,
which is from the lowest redshift tomographic bin (for this bin only scales above § &~ 7 arcmin were used in the analyses in Troxel et al. 2017 and DES
Collaboration 2017). It pessimistically assumes & = 0.1 and Tpsr/Tga = 1. Contributions to the signal from the flat regimes at large scales will be absorbed by
the marginalization over the mean shear discussed in Section 7.1.
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to &, further in Troxel et al. (2017). For other analyses of these data
that are sensitive to additive errors, we also recommend explicitly
accounting for the potential impact of additive systematics due to
the PSF model residual.

4 THE METACALIBRATION CATALOGUE

4.1 METACALIBRATION overview

Our primary catalogue uses metacalibration, a new method for
shear measurement that derives shear calibrations directly from the
available imaging data. Metacalibration is described in detail in
Huff & Mandelbaum (2017) and Sheldon & Huff (2017), hereafter
SH17.

The principle behind METACALIBRATION is to measure the re-
sponse of a shear estimator e to shear. Unlike in most methods
this response is not estimated from a suite of simulated images,
but rather calculated directly for each observed image, using the
scheme described below.

Any estimator that has sensitivity to shear can be used with
metacalibration, and here we use measurements of galaxy ellipticity.
For small shears, ellipticity estimators can be written as a Taylor
expansion:

| n de n
e=c¢el,_o+—| y+..
¥ oy |
E€|y=o+Ry}’+..., (12)

where we have defined the shear response matrix R, . The shear
response is calculated by artificially shearing the images and re-
measuring the ellipticity. We do this by directly deconvolving the
PSF [by dividing the Discrete Fourier Transform (DFT) of the image
by the DFT of the PSF image], applying a shear, and then recon-
volving by a symmetrized version of the PSF (the latter steps using
the GALSIM package, Rowe et al. 2015). We then form a numerical
derivative: for a given element of the response matrix, we calculate

Ry,"j = 171., (13)

where ¢ is the measurement of component i made on an image
sheared by +y;, e; is the measurement made on an image sheared
by —y;, and Ay; = 2y;. We used an applied shear y; = 0.01.

When measuring a shear statistic, such as mean shear or a shear
two-point function, these responses can be averaged appropriately
to produce a calibrated result. For the example of mean shear, we
can take the expectation value of equation (12). Keeping terms to
first order in the shear, and assuming the mean ellipticity is zero in
the absence of shear, we find

(e) = (e)ly=0 + (Ryy) = (Ryy), 14)

With estimates of R, for each galaxy, we can form a weighted
average:

)w ~ (Ry) " (Ryy) = (Ry)"(e), s)

where the subscript w implies this is a weighted average over the
true shears. The generic correction for two-point functions was also
derived in SH17 as

£ = (R*)(R")) ! (ee”) 16)

for two samples of objects (e.g. tomographic bins) o and B where
(e”eP) is a standard two-point correlation function estimate. The
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application of this method to other specific statistics should be
worked out carefully, as the details of the averaging are important.

We can also correct for selection effects, for example shear biases
that may occur when placing a cut on signal-to-noise ratio S/N. This
is accomplished by measuring the mean response of the estimator
to the selection, repeating the selections on quantities measured on
sheared images. Again taking the example of mean shear, a given
element of the mean selection response matrix (Rg) is

(e)5T — (e)*~

(Rs); ; ~ Ay,
j

, a7
where (e)5* and (e)5~ represent the means of ellipticities measured
on images without artificial shearing, but with selection based on
parameters from positively and negatively sheared images, respec-
tively. The full response for the mean shear is then given by the sum
of the shear response and selection response

(R) = (Ry) + (Rs). (18)

For the ellipticity estimators used here we have found that the
response matrix R is on average diagonal, and that R}; ~ Ry, so
that a single scalar value characterizes the response.

METACALIBRATION was tested using an extensive set of simula-
tions, and proved to be unbiased for galaxy images with realistic
properties matching the deep COSMOS data, and noise and PSFs
similar to DES data (SH17). Furthermore, METACALIBRATION was
shown to be robust to the presence of stars in the sample if the PSF
is well determined. There are additional challenges for real data,
which we will discuss below.

4.2 METACALIBRATION in DES Y1

For DES we ran METACALIBRATION in a mode similar to that used
in SH17, using the METACALIBRATION implementation available in
the NGMIX software package® (Sheldon 2015). We used an estimate
of each object’s ellipticity as the basis for shear estimation, to be
calibrated using METACALIBRATION. The total time for a run of
METACALIBRATION on DES Y1 data was about 150 000 CPU hours
for the full set of 139M detected objects. The calculations were
performed using computational resources at the SLAC National
Accelerator Laboratory.

To determine the ellipticity, we fit the images associated with
each object to a simple parametric model using the NGMIX code. For
efficiency reasons, we chose a single Gaussian to model the object,
convolved by a model of the PSF. As described above, we model the
PSF in each image using the PSFEX code. We then reconstructed an
image of the PSF at the location of each object from PSFEX output
using a separate package.*

This full PSF image was used for the devonvolution step in the
metacalibration process. For the shape fitting stage itself we rep-
resented the PSF as a single Gaussian, for efficiency reasons. A
Gaussian is not a good description of the DES PSF, but SH17 find
that this does not limit our ability to calibrate the shear estimate,
because the response accounts for any mismatch between the actual
PSF and the model used for fitting.

The full model for each galaxy image was the analytic convolu-
tion of the object Gaussian with the Gaussian representation of the

3The NGMIX package is freely available at https://github.com/esheldon/ng
mix.
“https://github.com/esheldon/psfex
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PSF. We then found the parameters that maximized the likelihood,
as calculated across all available imaging epochs and bands r, i, z.

We simultaneously fit images from all available observing
epochs, and all available band passes, with a free flux in each band.
In general the r band is the most powerful band and gives the most
shape signal, though the others do add significant information. The
total Gaussian model has five structural parameters, shared between
all band passes, plus a free flux for each band pass. The structural pa-
rameters are two for the centre in sky coordinates, two for ellipticity
components, and one for the size T as in equation (3) (equal to the
trace of the Gaussian’s covariance matrix). These quantities were
measured for the unsheared as well as artificially sheared images
discussed in Section 4.

We applied priors on all model parameters. These priors were un-
informative, except for the prior on ellipticity, which we found nec-
essary to provide a stable fit for faint objects: we used the isotropic
unlensed distribution presented in (Bernstein & Armstrong 2014,
equation 24), with o = 0.3. The details of this prior are not impor-
tant, because METACALIBRATION can accurately calibrate this shear
estimator as long as the fitting is stable (SH17).

Real data present significant challenges that were not tested in
the simulations of SH17. For this work we tested the following
additional issues:

(i) Shear estimation using multi-epoch data.
(ii) Effects of neighbouring objects.
(iii) PSF modelling and interpolation errors.

We show tests using simulations for (i) in Section 4.3, for (ii) in
Section 4.4, and for (iii) in Section 4.5. We also show tests of (ii)
using real data in Section 7.6.1. The behaviours of the response
functions Ry and R, are described in Appendix F.

4.3 METACALIBRATION and multi-epoch data

METACALIBRATION was tested in SH17 in the simple case where
each object is observed once. However, in DES we simultaneously
fit to images from multiple observing epochs in each of multiple
bands. Each object was thus imaged in different seeing and noise
conditions, and was observed at different locations within the fo-
cal plane. Furthermore, galaxies do not in general have the same
morphology in every band.

We generated simulations to mimic this scenario using the GAL-
SIM simulation package (Rowe et al. 2015). For each object we
generated a set of 10 images with different PSF, noise, and position
offset within the image. The PSF size was drawn from a distri-
bution similar to DES data, with mean FWHM = 0.9 arcsec (see
Fig. 6). The PSF ellipticity was drawn from a truncated Gaussian
with centre (0.0, 0.01) and width (0.01, 0.01). The noise was varied
by 10 per cent, and the object was offset randomly within a pixel.

The galaxy morphology was chosen to be the model used in
SH17: a combination of exponential disc and de Vaucouleurs bulge
profiles, with additional simulated knots of star formation. Size and
flux distributions were matched to the 25.2 mag limited sample from
COSMOS. The fraction of light in the disc was chosen uniformly
from O to 1, and the fraction of disc light in knots was also cho-
sen uniformly from O to 1. To simulate morphological differences
between bands we varied the flux and size of the object in each
image by 10 per cent, and assigned a random ellipticity. The noise
was chosen such that the minimum S/N for the sample was approx-
imately 5 in the combined set of 10 images. The S/N definition
was that used in GALSIM, which is the same definition used in the

MNRAS 481, 1149-1182 (2018)

GREATS3 simulations (Mandelbaum et al. 2015, equation 16). We
applied a constant shear to each image of (0.02, 0.00).

We fit the images using the same code used for fitting DES data.
We applied a selection similar to that in our data: S/N > 10 and
size T /Tysr > 0.5, where Ty is the size of the PSF determined
from a Gaussian fit. We found no multiplicative bias m or additive
bias ¢, with limits m < 1 x 1073 (95 percent) and ¢ < 2 x 107°
(95 percent). We also applied various threshold and range cuts in
S/N, flux, and size and again found no bias.

4.4 METACALIBRATION and blending

In this section we explore the effect of blending on METACALIBRA-
TION shear estimation.

In principle, METACALIBRATION will correctly infer the shear ap-
plied even to complex blends of multiple objects. However, even if
the calculated shear response is accurate, there will be uncertainty
in the interpretation of the inferred shear for overlapping objects.
Consider first a scenario where two overlapping objects are at the
same redshift. The same lensing shear has been applied to both, as
well as to the apparent separation of the pair, so the entire scene
has been transformed with a single shear and the METACALIBRATION
shear inference should be an unbiased estimate of this shear as long
as the model fitting process is stable.

Now consider the case that the two objects are at very different
redshifts. In this case, the two sources have been sheared by differ-
ent amounts, and the separation between the pair depends on the
different deflections applied to the light from each object. To facil-
itate a correct interpretation, a detection algorithm must determine
that there are two objects present, and a deblending algorithm must
accurately assign a fraction of the light in each pixel to each of the
blended objects. Then the response must be measured separately
for each object based on this flux assignment.

This flux assignment can in principle be done given some a priori
assumptions on the morphology allowed for each galaxy, but can be
exceedingly difficult when galaxies are highly irregular or heavily
overlapped. In addition, the response of the deblending algorithm
to shear can cause selection effects that may be significant.

In DES we have utilized two different approaches to dealing with
blends. The first, and simplest, is the {iberseg algorithm (J16), which
masks pixels close to neighbours rather than assigning a fraction of
the light in each pixel to them.

We have also developed a second algorithm, called multi-object
fitting (MOF, Drlica-Wagner et al. 2018), which does attempt to
assign a fraction of the light in each pixel to sets of blended ob-
jects. In brief, MOF finds groups of overlapping galaxies using a
friends-of-friends algorithm. Within a group, MOF sequentially ap-
plies forward-modelling of simple bulge/disc models to each source,
subtracting the models for all other sources in the group. MOF fits
use all available imaging data in the g, r, i, z bands. Once conver-
gence is achieved, a fraction of the flux in each pixel can be assigned
appropriately to each object. The light of neighbours using the MOF
models were subtracted off when running METACALIBRATION, in ad-
dition to using the iiberseg masking. Note the METACALIBRATION
fitting only uses the MOF models to subtract neighbours.

We suspect that the iiberseg+MOF method may be more accurate
than iiberseg-only, based on the performance in simulations (see
Section 4.4.2). However, we use the iiberseg-only measurements in
our fiducial catalogue, because photo-z measurements based on flux
measurements from the artificially sheared images used in META-
CALIBRATION were not available for iiberseg+MOF at the time of
writing. These are required in order to correct for selection effects
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associated with placing galaxies into redshift bins, for example
when studying shear correlations in tomographic bins.

We tested these two methods for flux assignment using both
simulations and real data, as described in detail in the following
sections. In brief, we find indications of relative shear biases at the
1-2 per cent level between our fiducial iiberseg and the MOF method
of flux assignment, consistent between data and simulations.

4.4.1 Deblending tests in DES data

We compare tangential shear profiles around foreground galaxies,
measured with our two different treatments of near neighbours de-
scribed in Section 4.4. We use a simple ratio of the measurements as
our test. As foreground galaxies we use the redMaGiC high density
sample (Rozo et al. 2016) cut to the redshift range of z =0.2...0.4.

To reduce shape noise in the shear ratio, we perform the mea-
surements with an identical source sample from the two catalogues.
Note that with METACALIBRATION we can correct for selections as
long as those selections are repeatable on quantities measured in
artificially sheared images. We therefore apply the recommended
cuts on flags, signal-to-noise ratio and pre-seeing size described in
Section 7.2, demanding that they be met in both catalogues and
correcting for the selection bias induced by the joint selection crite-
rion. One selection in which we do not strictly adhere to this policy
is source photo-z selection. As our source sample, we use galaxies
with a BPZ photometric redshift estimate (Hoyle et al. 2018) based
on their MOF photometry of (z) of 0.4 and above. While this could
induce a small selection bias in our measurement, we do not expect
it to significantly differ between the two catalogues, and we have
confirmed that not applying a photo-z selection makes the resulting
estimate of bias more noisy but consistent with our estimate.

We measure the tangential shear profiles from both catalogues in a
set of jackknife resamplings of the full, matched source catalogue.
For each jackknife resampling, we determine the best-fitting re-
scaling r required to bring the fiducial, iiberseg masked catalogue to
the same amplitude as the MOF subtracted catalogue by minimizing

MOF-subtracted fiducial )2

(g i — X8y
= — : (19)

i i
i

where g; is the mean tangential shear measured in a set of angu-
lar bins 7, logarithmically spaced between 0.2 and 30 arcmin, from
which the tangential shear around redMaGiC random points was
subtracted to remove additive systematics, and o; is the jackknife
uncertainty of g/{°F*"""%«d_ While the two estimates of tangential
shear are highly correlated, this is meant to give an appropriate rela-
tive weighting to each radial bin. We test that swapping gMorsubtracted
and g/"“! in equation (19) or variation of the binning scheme does
not change our constraints on r significantly, except for the inclusion
of very small scales, on which fiducial shears fall off while MOF
shears continue on a power-law-like profile, suggesting that MOF
may be correcting for effects of blending with the lens galaxies.

These measurements are shown in Fig. 10. For a measurement
involving all objects (blue data points), we find a relative mul-
tiplicative bias of the iiberseg shear catalogue of m =1 — r =
0.023 £ 0.009 (blue-shaded region).

If all of this difference is due to neighbour bias, we would ex-
pect this m to approach 0 as we limit the measurement to objects
without many pixels contaminated by neighbours. We find that the
ratio drops to m = 0.018 £ 0.015 among galaxies with little con-
tamination, selected as those with less than 10 per cent of area in
their postage stamp masked for missing data or iiberseg neighbours
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Figure 10. Ratio of shears measured with our fiducial METACALIBRATION
pipeline to shears measured after subtracting neighbouring galaxies with
model from the multi-object fit, a proxy for the multiplicative shear bias
in either method due to the presence of neighbours. Blue data points show
measurements for the full sample, including jackknife error bars of the
fiducial run. Orange data points show measurements that only use objects
with less than 10 per cent of area in their postage stamp masked for missing
data or iiberseg neighbours. Blue and orange horizontal lines and shaded
regions are the best-fitting m and statistical 1o uncertainties for both cases.
Marginalizing over an unknown multiplicative bias starts to dominate the
posterior uncertainty in our main science use cases at about 2 percent
uncertainty.

(orange data points and shaded region). This ratio is no longer de-
tected with high significance, but is consistent with both zero and
the 0.023 ratio measured for the full sample.

We will test the effects of neighbours further using simulations
in Section 4.4.2. Note that there will also be an effect from objects
that are below the detection threshold, and thus not included in the
catalogue. Studies using image simulations have shown that, when
using simulations to calibrate the signal, neighbouring galaxies can
indeed have a significant effect on multiplicative bias (Hoekstra
et al. 2015; Hoekstra, Viola & Herbonnet 2017; Samuroff et al.
2018). We test this effect as well in Section 4.4.2.

4.4.2 Deblending tests in simulations

We used simulations to test the effect of blended objects, as well
as objects fainter than the detection threshold. The motivation is
to examine the relative performance of iiberseg and iiberseg+MOF,
not to determine the numerical value of bias or to calibrate the shear
measurements.

The simulations are similar to those used in Section 4.3 in the
type of galaxy used, but include additional complexities. We used
the same galaxy models described in Section 4.3, with a maximum
magnitude for the COSMOS catalogue of approximately 25.2. In
addition, we also added a lower flux population by simply scaling
the flux such that the faintest magnitude was about 27.5, and scaled
the sizes by a factor of 0.5. We also added a small number of big and
high-flux objects by scaling the sizes by a factor of 5 and flux by a
factor of 50. Approximately 85 per cent of the objects were in the
low-flux category, and 0.1 per cent were in the high-flux category.
Half the objects were sheared by 0.01 and half were sheared by
0.02, such that the mean shear was close to 0.015.

All images were convolved by a PSF modelled as a Moftat profile
(Moffat 1969) with FWHM = 0.9 arcsec, and ellipticity 0.025 in the
reduced shear convention. We added noise appropriate for 5-yr DES
depths, such that the 5o detection limit was about magnitude 24.
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Table 1. Shear calibration bias m for METACALIBRATION in the deblending
simulations. Shown are results when using the iiberseg algorithm to mask
neighbours, as well as results when subtracting the light of neighbours using
MOF models. Results are listed for three different threshold cuts in S/N, in
addition to cuts at 7/Tpsr > 0.5 and SEXTRACTOR flags < 3.

Method S/N cut m
(1072)

tiberseg SN > 10 2.18 £ 0.16
iiberseg S/N > 15 1.73 £ 0.17
tiberseg S/N > 20 1.74 £ 0.18
iiberseg+MOF S/N > 10 0.10 £+ 0.20
iiberseg+MOF S/N > 15 —0.24 £ 0.21
iiberseg+MOF S/N > 20 —0.04 £ 0.22

Note that most of the objects in these images are much fainter than
the detection limit. Also note that these images are ‘deeper’ than
Y1 data, with higher galaxy density. Thus, if the images matched
real data exactly, we would expect the effects of neighbours to be
larger than in Y1 data.

We generated images similar to DES coadds. We verified that the
number density of objects in the resulting SEXTRACTOR catalogue
matched that expected for DES data. We placed objects in the images
randomly, with no spatial correlation. We found that the number
of blends of detected objects is similar to that found in typical
DES coadds field, but is not representative of fields with relatively
low-redshift galaxy clusters. Thus these images are appropriate for
testing cosmic shear measurements, but not necessarily for testing
shear cross-correlations such as cluster lensing studies. Note that
most of the galaxy images were well below the detection threshold,
so there are a large number of undetected blends.

We then ran SEXTRACTOR on the images with settings similar to
those used in DES, created MEDS files, and spatially matched the
SEXTRACTOR catalogue to the input simulation catalogue, in order
to associate a ‘true’ shear with each detection.

We ran the METACALIBRATION shear code on the MEDS files
with identical settings used for the real data, including cuts on
SEXTRACTOR flags <3, which only removes objects near edges
or with incomplete apertures. Note that we cannot correct for this
flag selection within the METACALIBRATION formalism. We then
calculated the mean shear, which we compared to the mean ‘true’
shear from the matched catalogue. We ran in two different modes:
one using the iiberseg algorithm only, and one subtracting the light
of neighbours as measured using the MOF algorithm in addition to
iiberseg masking.

The results are shown in Table 1 for a few different S/N thresh-
olds, in addition to our fiducial size cut 7/Tpsg > 0.5 and SEXTRAC-
TOR flags <3. When using iiberseg only we detect a ~2 per cent
bias in all cases. We detect no bias when subtracting the light from
neighbours.

For our default cuts (S/N > 10, T/Tpsg > 0.5 and SEXTRACTOR
flags <3) the ratio of biases for the two methods is approximately
e g, (20)
1+ MMOF-sub
This is consistent with the empirical bias ratio found in Sec-
tion 4.4.1, but as noted above this simulation has a higher density
of galaxies than Y1 data, so this may be an upper limit.

Because these simulations do not match the real data perfectly,
we do not use these results to predict the systematic bias that may
exist in either method for dealing with neighbours. Rather we treat
these results as independent confirmation of the presence of a bias
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between the two methods. It is suggestive that the bias may be
higher in the fiducial liberseg-only measurements.

4.4.3 Multiplicative bias prior due to blending

From the tests done on DES data and on simplified image simula-
tions in the previous sections, we conclude the following

(i) The shear calibrations m of the MOF-subtracted and non-
MOF-subtracted runs of METACALIBRATION differ at alevel of Am =~
0.023, measured by the ratio of shear around lens galaxies with a
matched version of both catalogues.

(i) A Am of the same sign but somewhat smaller amplitude re-
mains when limiting the comparison to galaxies with little masking.
The measured ratio 0.018 = 0.015 is consistent with both zero and
the 0.023 detected for all galaxies, and is thus inconclusive.

(iii) Although the image simulations do not match the data per-
fectly, and thus should not be used to estimate a numerical value for
the bias, the results do give a bias difference of the same sign and
comparable amplitude to the 1.02 value seen in equation (20).

The relative difference in multiplicative bias of the two runs of
0.023 can be interpreted in multiple ways. It could be that one of
the methods is unbiased and the other is biased by 0.023. It is also
plausible that neither method is unbiased, in which case the 0.023
is divided between the two methods. In order to encompass both
scenarios, we adopt a Gaussian prior on the multiplicative bias of
0.012 £ 0.012, which is consistent with a bias of both zero and
0.023 at the 1o level. We continue to use the iiberseg-only shear
because photoz information is not available for the MOF-subtracted
catalogue.

We note these numbers were derived directly from the data. For
this reason we do not artificially increase the width of the prior as
we did for numbers based on simulations.

4.5 METACALIBRATION and PSF modelling bias

The Y1 PSF modelling and interpolation exhibit small biases both
in the size and shape (see Section 3), which result in additive and
multiplicative errors.

The additive errors come about due to PSF mis-estimation, which
results in inaccurate deconvolution during METACALIBRATION pro-
cess, resulting in some remnant of PSF ellipticity remaining in
deconvolved images of circular sources. We have calculated empir-
ical estimates for the additive bias in the shear two-point correlation
function as a function of angular separation (see Troxel et al. 2017),
and shown that they are negligible once the mean shear is corrected.

We discuss multiplicative bias from PSF modelling errors in de-
tail in Section 4.5.1. Additional biases due to stellar contamination
in the source sample are discussed in Section 4.5.2.

4.5.1 METACALIBRATION shear bias from PSF modelling errors

As discussed in Section 3.2, our PSF model does not perfectly model
the true PSF. Most aspects of the PSF modelling errors manifest as
additive shear errors (see Section 6.2); however, the mean error in
the size estimate of the PSF, described in Section 3.3, manifests
as a multiplicative error. To measure the shear biases caused by
these effects, we created further bulge+disc+knots simulations with
a range of S/N, similar to those presented in Section 4.3 but using
only a single simulated image per object.
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We chose the minimum galaxy S/N used for these simulations to
be S/N & 50 in order to measure the shear bias at high precision.
We saw no evidence that the magnitude of the effect depends on the
galaxy S/N, so we expect these results to hold for our full galaxy
sample including lower S/N objects.

We kept the nominal PSF model identical in all cases, using
a Moffat profile with § = 2.5, a size corresponding to 0.9 arcsec
FWHM, and (eq, ¢2) = (0, 0.03). We then created several versions of
the simulation with different true PSFs: (1) the same as the nominal
PSF, (2) a constant PSF that was larger by AT/T = 8.3 x 1074, (3)
a variable PSF with the correct mean size but varying in a normal
distribution with o(7)/T = 3 x 1072, and (4) a variable PSF with
both the larger mean and this variance.

The shears were measured with the same code used to process
the DES data. We used the nominal PSF, not the true PSF, when
performing the METACALIBRATION image manipulations. We ap-
plied various size cuts, and applied the appropriate shear and se-
lection responses. For case 1 we found the bias to be less than
0.001 at 95 percent confidence. This was expected because these
simulations are similar to that presented in SH17, for which no
bias was found. For case 2 with an overall PSF size error but no
variance, we found a multiplicative shear bias of m = 0.001, in-
dependent of the size cut. With the additional size variance (cases
3 and 4) the mean bias increased, reaching nearly m = 0.002 for
case 4. For case 4 the bias was independent of galaxy size for
T /Tose > 0.3, but we saw some variation for smaller sizes. This
partly motivated the choice to cut at 7'/ Tysz > 0.5 for our final shear
catalogues.

We do not expect this simulation to produce an exact measure
of the shear bias present in the real data, because it undoubtedly
depends on the details of the morphology distribution of the galaxies
and the precise distribution of the PSF errors around the mean value.
We therefore attempt no correction for this effect. Rather, we take the
results of this simulation as an estimate of a systematic uncertainty
o, in the multiplicative error from this effect. We conservatively
take the value of o0, = 0.003. See Section 7.6.1 for a summary of
all systematic uncertainties.

4.5.2  METACALIBRATION shear bias from stellar contamination

Stars do not bias METACALIBRATION shear recovery when the PSF is
accurately known, since they should yield (e¢) = (R) = 0 (SH17).
If, however, the PSF model is biased, stars will not have zero mean
shear response (R, ), which can potentially result in a shear bias. In
Fig. 11 we show the decidedly non-zero response for known stars
and galaxies in the COSMOS field. Such a distribution of responses
for point sources will occur when the PSF estimate is biased, but
the exact distribution depends intimately on the details of the PSF
errors.

We can calculate the expected bias from these stars given our
fiducial cuts S/N > 10 and 7' /Tysz > 0.5. Based on COSMOS we
found this cutresults in 0.4 per cent stellar contamination. Averaging
over the stellar response distribution, and taking into account a
re-scaling from the COSMOS stellar density to the mean density
inside the DES Y1 footprint, results in a shear bias of |m| < 0.001.
Because the COSMOS field may not be representative of the wider
DES survey data, we take this measurement as indicative of the
uncertainty in this systematic effect. We conservatively take o, =
0.002.
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Figure 11. The distribution of responses measured in the COSMOS field
for objects flagged as galaxies or stars. The non-zero response of the stars
is due to noise in the measurement and interpolation of the PSF, and is
accounted for in our error budget.

5 THE 1M3SHAPE CATALOGUE

5.1 Overview

Our second DES Y1 catalogue was generated with the max-
imum likelihood code IM3SHAPE (Zuntz et al. 2013), which
uses Levenberg—Marquardt minimization to find the maximum-
likelihood (ML) fit of two Sérsic models, with power-law indices
n=1and n =4, to all the exposures of each galaxy simultaneously.
Each galaxy is then identified as a bulge or a disc, depending on
which model returned the superior likelihood.

The IM3SHAPE code’ is largely unchanged from the version used
for SV, though the simulations used to calibrate it have been up-
graded significantly. We refer the reader to J16 and the original code
release paper Zuntz et al. (2013) for code details.

The code fits six parameters: two ellipticity components (ej, e2),
a half-light radius r, a centroid offset (xg, y9), and an amplitude A.
For each fit we also compute a signal-to-noise ratio (S/N) using the
convention of Mandelbaum et al. (2015) and J16. As we point out
in J16, this signal-to-noise measure is analogous to a matched filter,
favouring maximal agreement between the model fit and the image
pixel fluxes. IM3SHAPE also defines a size metric Rgy/R,,, the ratio of
the convolved galaxy FWHM to the PSF FWHM, where the former
is measured from a circularized version of the best-fitting galaxy
profile.

A small number of changes have been made to the code to im-
prove internal organization, human readability, and tools for running
it on high-performance computing systems. After these, the mean
time taken to analyse a galaxy was 1.6 seconds per exposure, which
was dominated by a small number of difficult objects. The total time
was approximately 200 000 CPU hours for a single full analysis (not
including the time taken for calibration simulations).

As noted in the introduction, maximum-likelihood methods such
as IM3SHAPE accrue noise bias when the pixel values are a non-linear
function of the model parameters, as is true in galaxy model fits.
Along with all other sources of systematic measurement bias in our
shear estimates, this effect must be calibrated. The most common
approach, which we also adopt for Y1 of DES, is to do this using a
suite of image simulations. We describe these simulations and the

Shttps://bitbucket.org/joezuntz/im3shape- git
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calibration process used to generate the corrections needed for the
data in Section 5.2.

All IM3SHAPE measurements presented here were carried out at
the National Energy and Scientific Research Computing Center®
(NERSC) and the GridPP grid computing system’ (Britton et al.
2009). The calibration simulations were generated entirely using
the NERSC facility.

5.2 The HOOPOE image simulations

We use a suite of simulations, called HOOPOE, to calibrate biases
in the IM3SHAPE shape measurements. They account for noise bias,
model bias, PSF leakage, mask effects, and selection biases. These
simulations were used to model the m; and ¢; terms in equation (1).
Previous studies have found no evidence of off-diagonal multiplica-
tive bias when fitting Sérsic models, and we see no evidence of a
systematic difference between m; and m, in any region of parame-
ter space. Our calibration therefore uses the simple arithmetic mean
m = (my + my)/2.

Our Y1 simulations differ significantly from those used in SV.
The latter started with postage-stamp images of isolated galaxies,
to which we applied simulations of observational features. For Y1
we start with reduced image data from the survey, and create an
object-for-object simulacrum, preserving as much of the original
detail as possible. The differences are listed in detail in Table 2.

Variants of the HOOPOE simulations specifically to explore biases
from blending are discussed further in Samuroff et al. (2018).

5.2.1 Simulating DES Y1: the image pipeline

The simulation pipeline for the HOOPOE image simulations is shown
in the blue (left-hand) part of Fig. 1. The analysis of the resulting
simulations was closely matched to the equivalent process used on
real data, although we do not repeat the single-epoch data processing
or PSF estimation stages. The position, noise levels, and PSFs of
each simulated galaxy are taken from the real observations. The
mask is made by combining the bad-pixel map, which is imported
directly from real data, with the object segmentation map, which is
remade on the simulations using SEXTRACTOR.

The HOOPOE image simulator begins by choosing one of the
0.73 x 0.73 deg coadd tiles output by the DESDM pipeline, each of
which is generated by coaddition of around 70 partially overlapping
exposures. For each tile we require (a) a source catalogue generated
by SEXTRACTOR or similar object detection algorithm, (b) a WCS
specifying the image bounds and the transformation between pixel
and world coordinates per exposure, (c) a model describing the PSF
variation across the image plane, (d) a noise variance weight map
per exposure.

With these basic inputs the simulation then proceeds as follows
for each sky region:

(i) Generate a set of noise images from the SEXTRACTOR weight
maps, matched to the bounds of each data image. A simulated
coadd-image is also generated in the same way.

(i1) Import the true detection catalogue for the region, and add to
it a population of fainter undetected galaxies (see Section 5.2.4).

(iii) Iterate through positions, selecting a random COSMOS pro-
file (from a rolling cache designed to make the expected number

Shttp://www.nersc.gov/
"https://www.gridpp.ac.uk/
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of unique profiles per coadd tile 2000) and simulating it with addi-
tional shears and rotation angle drawn from g;, € [—0.08, 0.08],
and 0 € [—m, ].

(iv) Convolve the profile with the PSF at the position in each
image and draw it into each image (including the coadd).

(v) If a faint galaxy is associated with this position (see Sec-
tion 5.2.4) then draw one from a secondary cache of faint profiles.
It is placed in some point in the region formed by the overlap of
all the exposures that contain the current galaxy, so that it will be
in approximately the same geographic region as the primary galaxy
but is not guaranteed to overlap it. It is sheared and convolved as in
the previous steps.

(vi) Once the full image is simulated, run SEXTRACTOR on the
simulated image, generating a new detection catalogue.

(vii) Iterate through the detection positions a second time, build-
ing the SEXTRACTOR mask for each and extracting a postage stamp
cutout. In the version of the simulations presented here the stamp
size was not recomputed for each object, but came from the size of
the original object in the real images. Later code versions corrected
this, but re-running the full simulations was deemed too expensive.
The impact of this error is discussed in Section 7.6.2.

(viii) Store and stack the cutouts in the MEDS format (J16).

(ix) Run IM3SHAPE on the HOOPOE MEDS files, blinding using
the prescription described in Section 2.6 with the same factor f as
applied to the data.

5.2.2 Galaxy sample

To capture the range of morphologies found in a photometric survey
like DES the Y1 HOOPOE simulations use real galaxy profiles rather
than analytic constructions. In order to obtain an accurate calibration
the profiles used as input should extend to at least the same depth
as the data and have sufficiently low levels of noise and seeing to
allow them to be degraded to match DES precisely, which limits the
available data. We make use of the COSMOS sample described in
Section 2.5, which meets these requirements.

We do not use the quality flags supplied with the COSMOS sam-
ple, which were not available at the time the code was run. Instead
we visually inspected the sample, as described in Appendix A. The
publicly available HST data are limited to wide band photometry in
the optical F814W filter. In order to obtain the desired magnitudes
in the DES bands, we match the sky position of each of these galax-
ies to the COSMOS mock catalogue of Jouvel et al. (2009), which
includes photometry specific to the transmission curves of the DES
filters.

The input sample for a tile is then generated by splitting the
COSMOS catalogue about M, i, and discarding objects too faint
for detection. Each of these galaxies is simulated at its original
COSMOS magnitude, rescaled to the zero-point of the DES images.

5.2.3 Simulated stars

The mock images also contain stars, simulated at the positions
of objects classified as stars in the real data. Stars are rendered
as point sources and account for around 10 per cent of simulated
objects. This should capture any effect they may have as a source
of neighbour bias, including changes they induce in the galaxy
selection. We do not re-run star/galaxy separation in the simulations,
so do not account for any mis-classification bias. The cuts to the
IM3SHAPE catalogue in size and S/N, however, will remove the
majority of the ambiguous objects, so we expect the impact of this
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Table 2. Comparison of IM3SHAPE shear calibration schemes used in DES-SV and DES Y1. The upper portion of the table itemizes differences in the
calibration simulations HOOPOE and GREAT-DES. Entries below the dividing line pertain to methodological choices rather than systematic differences between
simulations. In the case of the interpolation scheme we compare three methods in this study, as described in the text below. The asterisks highlight the two

interpolation methods used as the fiducial schemes in SV and Y1.

GREAT-DES (DES-SV)

HOOPOE (DES Y1)

Multiple exposures
Point spread function
Pixel noise
Blending/neighbours

Coadd only
Discrete, Kolmogorov

Galaxies below detection limit None
Source detection None
Masking None
Input galaxy selection COSMOS (<23.5 mag)
Magnitudes/photometry HST F814W magnitudes
Stars None
Simulated galaxies 48M

Input shears |g| = 0.05, 8 discrete rotations

Galaxy morphology
Interpolation/fit

No morphology split
Polynomial fit*
Radial basis functions

PSF measurements IM3SHAPE weighted moments

Gaussian random per pixel, fixed o,
None (postage stamp simulations)

Multi-exposure

PSFEXx, image plane variations from data

Gaussian random per pixel, o, from weight maps
Simulate full image plane

Random positions, drawn from faint COSMOS cache
Rerun SEXTRACTOR on simulated images

Spatial masks and PSF blacklists from GOLD catalogue
COSMOS deep (<25.2 mag)

SDSS (DES) r-band magnitudes

Point sources

68M

Continuous uniform random —0.08 < g;» < 0.08

Bulges/discs calibrated separately
Grid nodes*

Radial basis functions
Polynomial fit

HSM adaptive moments

decision to be small. For reference, the residual number of objects
not removed by internal IM3SHAPE flags, but flagged as stars with
the GOLD star—galaxy classifier in the data, is only about 1.5 per cent
of objects.

5.2.4 Galaxies below the detection limit

In addition to simulating objects detected in real data we wish to
simulate a population of fainter (undetected) galaxies. We choose
a number of faint galaxies for each tile Ny, by integrating the full
distribution of COSMOS magnitudes,

ffaim
(] - ffaint)

where frn = f A[;: . p(M,) dM, is the fraction of the weight of the
normalized magnitude distribution p(M;) above the nominal DES
detection limit, and M, is the aperture magnitude. In reality faint
galaxies undetected by DES will include objects brighter than the
nominal DES limiting magnitude, since the survey is really surface-
brightness limited; the simple model here does not include this
population, but should account for the leading order effect of faint
neighbours.

Each of these extra objects is randomly assigned a companion
from the detections within its coadd tile. This faint object is ran-
domly placed into the same exposures as its detected companion,
but does not replace it, nor are their properties linked in any other
way.

In the real data the flux from these galaxies enters the images
prior to reduction, and would affect the background subtraction.
We choose not to simulate thermal sky emission and rerun the
background subtraction. To gauge the impact of the extra back-
ground flux, we reran a small subset of the simulations with the
same random seed settings, but without faint galaxies. The back-
ground estimation algorithm was then applied to the two sets of
images, which were identical apart from the omission of the faint
objects. To first order we find the sub-detection galaxies produce
a uniform shift in the mean of the estimated sky background. To

Nfaim = X Ndelv (21)

correct for this effect, we subtract the average per-pixel flux of faint
objects drawn into our simulated images.

The tests described here have neglected clustering between faint
and bright galaxies, and between the faint galaxies themselves.
Clustering would enhance the amount of blending, and would also
make the sky subtraction effect more heterogeneous. Based on the
variation of m with the density of faint objects we expect both of
these effects to be smaller than the basic faint object effect described
here, but not generally negligible. Future data sets will require
simulations that include careful galaxy correlation modelling.

The impact of sub-detection galaxies on shear measurement is
explored in more detail in section 5 of Samuroff et al. (2018). In the
tests presented therein we find a net contribution to the multiplicative
bias we correct for of m ~ —0.01 due to these sub-detection galaxies.

5.2.5 Comparing simulations and data

Given the sensitivities of measurement bias to the observable param-
eters of an image, most notably signal-to-noise, size, and ellipticity,
it is important that the simulations should cover the same parameter
space as the data. We explicitly calibrate over S/N and the ratio
Rgp/R, of the galaxy image FWHM to PSF FWHM, so exactly
matching simulations and data in these parameters are of secondary
importance; matching the distributions of ellipticity, PSF size and
shape, and other properties is more important for an accurate cali-
bration.

The distributions of a selection of salient properties are shown
in Fig. 12. Unlike in previous studies, we are convolving simulated
galaxies with the measured PSF at each position on the sky, thus
more directly matching the PSF variation across the sky compared
to real data. Since we apply shape quality cuts it is not automatic that
the PSF properties still match well to the data after those cuts — any
significant difference in PSF properties after these cuts would imply
a different selection behaviour with respect to PSF in simulations
compared to the data. Unlike in real data the simulations do not
include PSF errors, so we will be susceptible to the kinds of biases
described in Section 4.5.1, which is also accounted for in our error
budget (see Section 7.6.2).
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Figure 12. A comparison of normalized distributions in the Y1 simulations used for IM3SHAPE calibration (purple) and data (blue). The upper panels show
(clockwise from upper left) PSF ellipticity; PSF size, as measured using HSM; the fraction of pixels masked out, averaged across each object’s exposures;
IM3SHAPE’s measure of galaxy size relative to the PSE, Ryp/Rp; flux signal-to-noise; and total galaxy ellipticity. In the latter we show both the input and
remeasured distributions to the simulations as dashed and dot—dashed lines, respectively. The lower-most panel shows the distribution of measured and input
magnitudes from the simulation, in addition to the data. The shaded green (dotted) curve shows the equivalent r-band magnitudes for the full COSMOS

catalogue from which we draw our input sample.

The distribution of input simulated ellipticities in Fig. 12 is no-
tably narrower than the measured distributions in both simulations
and data. As well as the expected effect of noise, this arises due to
blending. An interesting comparison can be made with a new set of
simulations, identical to HOOPOE, but with neighbour light removed
(described in Samuroff et al. 2018). In those simulations we find
that the measured ellipticity histogram is much closer to the input
distribution.

As in J16, the difference in Rgp/R,, increases at small sizes. This
may be due to the COSMOS sample used, or the similar PSF esti-
mation methodology.
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Finally in the lower panel we compare the input and output mag-
nitudes from the simulations. We do not find a significant bias
in the remeasured magnitudes, nor serious disagreement with the
data.

Though most properties match well, there are obvious inaccura-
cies in the simulated Ry,/R,, and flux distributions. In Appendix B
we test their impact by reweighting the simulation to match the data,
and find no significant change in the final calibration. In Appendix C
we describe tests of the impact on the calibration of other features
in the simulations that differ from the data.
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5.3 Bias calibration and diagnostics

5.3.1 Multiplicative bias scheme

We now define a scheme to correct for the multiplicative bias mea-
sured in the simulations, which must interpolate among the very
noisy individual measurements. Both on theoretical grounds for
noise bias (Refregier et al. 2012) and in practice for general biases
(J16, Fenech Conti et al. 2017), the galaxy size and S/N parameters
are the dominant factor in determining bias. We therefore build a
calibration model in terms of those parameters.

The first step in this process is to decide on the most relevant pa-
rameters upon which the measurement biases depend, and calculate
m, ¢; as a function of those parameters. To this end, we sort the sim-
ulated HOOPOE data into a 16 x 16 grid according to the measured
S/N and Ryp/R;,, allowing the bin width to vary such that each grid
cell contains roughly the same number of galaxies. A multiplicative
bias is derived within each cell by subdividing the galaxies into bins
of ¢g" and fitting a linear function to the bin-averaged shear response
(e;) — (&) (see equation 1). The resulting bias surface m? is shown
in Fig. 13.

It is important here to define a well-motivated gridding scheme in
terms of bin numbers along each axis; too coarse a grid will result
in real structure in this parameter space being washed out, while
an overly fine sampling will inflate the statistical variance on our
grid nodes. We have verified that varying our fiducial 16 x 16 grid
between 6 x 6 and 20 x 20 does not lead to a significant change in
the results.

We compare three methods for interpolating between grid nodes.
In the first scheme, we follow Fenech Conti et al. (2017), and
compute a fine grid in m. If a galaxy falls within cell ij, we simply
take the mean m in that cell as our bias estimate. The accuracy of
such an approach will depend on the resolution of the grid.

In the second scheme we interpolate with radial basis functions.
The bias at a point is a linear combination of radial basis functions,
each centred on one of the grid nodes:

Soomi f((x — x)? 4+ (v — yi)H)

) = , 22
D N (Cr N @
where
foH = (r’/e+ 1)’% (23)

and the (x, y) coordinates are S/N and Rgp/R,, suitably weighted to
give the two dimensions parity, € is a fixed smoothing parameter,
and the sums are over the grid nodes.

Finally, we fit the polynomial basis used in J16. We will not write
out the entire functional form here, but note that it consists of a linear
combination of 18 terms of the form (S/N)™¢ (Rgp/Rp)_ﬂ , where the
indices «, B € (1.25, 1.5, 1.75, 2, 2.5, 3, 4). We will refer to these
three methods respectively as grid, RBF, and polynomial calibration
schemes. Owing to slightly better performance in diagnostic tests
the grid scheme is our fiducial choice.

The relative performance of the three schemes is shown in Fig. 14,
where we show the residual bias after calibration as a function of
signal-to-noise and galaxy size. The grid model is constructed using
two sets of equal-number cells, defined for bulge and disc galaxies
independently. The bin edges used to evaluate it are defined by the
full catalogue, and so are not identical.
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5.3.2 Robustness to tomographic binning

A simulation-based calibration of the sort presented here may be
valid for the full dataset, and yield residual biases within tolerance,
but it does not trivially follow that this is true for all sub-divisions
of the data. It is perfectly possible that there are competing sources
of biases in the catalogue, which by chance cancel to zero. It is
also possible to induce biases by introducing extra post-calibration
selections based on quantities which correlate with galaxy shape.
We will show an explicit example of this in Section 7.3.

Many science applications of the Y1 shape catalogues require a
calibration that is robust to selection in bins of redshift and angu-
lar scale. HOOPOE uses input galaxies with redshifts and generates
images in sky coordinates, allowing us to test both of these. In this
section we focus on the tomographic selection; we refer the reader
to Samuroff et al. (2018) for discussion of scale-dependent selection
effects.

The redshift information we use for each COSMOS galaxy has the
form of single point-estimate photo-z, as estimated using the ACS
30-band photometry. In the following we assume this measurement
is of sufficient quality to allow us to treat it as an input ‘true’ redshift
Ztr-

We build two sets of tomographic bins for the simulated dataset.
For the first set we use the COSMOS measurement z,, for each
object; this corresponds to an ideal situation in which we have
no redshift error and sharp-edged (top-hat) redshift bins. In the
second set we mimic the scatter in photometric redshift that will
inevitably be present in DES. Each HOOPOE galaxy is stochastically
allocated to one of the four Y1 redshift bins as follows. First we
construct a realistic set of DES Y1 redshift estimates using the Y1
IM3SHAPE catalogue. The per-galaxy redshift PDFs obtained from
the BPZ code are stacked in four bins z = [(0.2—0.43), (0.43—0.63),
(0.63—-0.9), (0.9—1.3)], resulting in four normalized distributions
ni(z). We assign each galaxy with true redshift z;, to a bin 7, with

4

probability n'(z¢)/[> n/(z)]. The resulting histograms of z,; in
i=1

each bin cover the jfull range z € [0.2—1.3], and approximately
match the measured n(z) in that bin from the data. This random
assignment of redshifts is a simplified model; it does not simulate
systematic correlation between photometric redshifts and shear, but
it does address the smearing out of the estimated redshifts due to
noise, which we expect to be dominant.

To test the redshift dependence of our calibration, we measure
the residual bias after splitting into these bins. The results are shown
in Fig. 15 and Table 3 (the latter includes values for the alternative
interpolation methods). The top-hat results show larger RMS scatter
than those using the more realistic redshift binning, which blur out
the bias slightly.

The residuals in our top-hat redshift bins demonstrate an im-
portant limitation of our current calibration procedure: namely that
galaxy morphology (and thus measurement bias) varies with red-
shift. Our calibration assumes that S/N and size are a sufficient
proxy for change, which will be true only to some level of accuracy.
The results on DES-like photometric bins suggest this will have
less impact on our real data. We have also neglected noise effects
which would induce correlations between both redshift, via fluxes,
and ellipticity. For higher precision calibrations on future data both
of these issues must be addressed.

As a further test, we split the calibration sample into halves, and
then use each half to generate a calibration model for the other. We
perform this test twice, once completely at random, such that each
part contains an equal number of HOOPOE galaxies, and once by
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Figure 13. Top: Multiplicative bias estimates for Y1 IM3SHAPE, using the HOOPOE image simulations for objects fitted using bulge profiles (right) and disc
profiles (left) . The coloured circles represent the grid of directly evaluated m described in the text. The underlying colour map is generated using radial basis
functions to interpolate between nodes, and is for illustrative purposes only. Bottom: Bulge fraction as a function of galaxy signal-to-noise and size. The bulge
fraction is calculated on a 16 x 16 grid and interpolated to generate the smooth map shown. The circles represent the grid cell positions, and are drawn at a
size proportional to the total IM3SHAPE lensing weight of galaxies contained.
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described in the text. The shaded band marks the +10 Gaussian width of the recommended m prior for the Y1 IM3SHAPE catalogue.
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Figure 15. Residual multiplicative bias for IM3SHAPE measured from the
full HOOPOE catalogue in four tomographic bins after fiducial calibration.
For the ‘“Top-hat’ points objects are binned by their COSMOS redshifts, and
for the ‘DES’ bins they are assigned to match DES Y1 redshift distribu-
tions, partially simulated photometric redshift errors. As above the shaded
band shows the 1o width of our Gaussian prior on m in the Y1 IM3SHAPE
catalogue, and the vertical dotted lines show the redshift bin boundaries.

Table 3. Residual multiplicative bias in the IM3SHAPE calibration simula-
tions, after calibration using different methods for interpolating m¥ nodes
onto individual galaxies. The calibration is derived globally, and the resid-
uals are computed for the redshift bins used in the cosmic shear analysis in
Troxel et al. (2017).

Method AmD Am® Am® Am™®

Uncalibrated —0.0886 —0.0981 —0.1200 —0.1547
Grid 0.0069 —0.0014 —0.0074 0.0013
Radial Basis 0.0056 —0.0024 —0.0082 —0.0022
Polynomial 0.0049 —0.0028 —0.0078 —0.0000

profile, such that each part contains half of the unique COSMOS
profiles used. Since the biases will depend on both the distribution
of galaxy morphologies and the specific observing conditions in
the calibration sample, both these tests are relevant. The results are
shown in Table 4.

Though subdominant to the other forms of systematic bias dis-
cussed in this paper, the residual bias in the third redshift bin is
statistically significant. Some residual biases might be expected,
given that we are using a rigid two parameter grid to describe com-
plex morphology-dependent biases. Unfortunately it is not possible
to predict the magnitude or sign of these residuals, which depend
on the details of the COSMOS sample and how they are distributed
between redshift bins. It is thus not guaranteed that the measured
residual m in the third redshift bin implies an equivalent bias in the
data.

To account for this uncertainty we widen our prior on m after
calibration. The maximum amplitude of the residual bias in Fig. 14
is |Am®| = 0.0074. We include this amplitude rounded up to &, =
0.01 as a systematic contribution to the prior on residual bias in the
IM3SHAPE catalogue (see Section 7.6). To be conservative, we also
widen the m prior to account for the fact that these residual biases
will be correlated between redshift bins (Appendix D).
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5.4 Galaxy weights for IM3SHAPE

We compute an IM3SHAPE measurement weight for each galaxy
using a very similar calculation to that used in J16. In summary,
we first define a 2D grid of signal-to-noise and size, with each
cell containing roughly the same number of galaxies. In each cell
a zero-centred Gaussian is first fitted to the histogram of the e,
component ellipticity, and the stand ard deviation is also calcu-
lated directly. This yields two similar but non-identical variance
estimates, of which we adopt the maximum. The resulting grid is
then interpolated using 2D radial basis functions, and the weight
allocated to a given galaxy is simply the inverse of the interpolated
variance at that position. This process is designed to estimate the to-
tal uncertainty of an ellipticity measurement, including both shape
noise and measurement uncertainty, or (cfe2 + O'SZN) in the syntax of
J16 Section 7.3. Simulated galaxies were assigned weights by the
same process, which were used in constructing the calibration.

6 TESTS OF THE SHEAR MEASUREMENTS

Lensing null tests can be difficult to construct, because of strong
correlations (both inherent and noise-induced) between measured
shear and other measurable observables.

None the less they remain a powerful tool when correctly under-
stood. These null tests can be broken up into several broad cate-
gories:

Spatial tests check for systematic errors that are connected to
the physical structure of the camera. Examples of these are errors
in the WCS correction, including effects like edge distortions or
tree rings (Plazas, Bernstein & Sheldon 2014a), and errors related
to features on the CCDs such as the tape bumps. (Section 6.1)

PSF tests check for systematic errors that are connected to
the PSF correction. This includes errors due to inaccurate PSF
modelling as well as leakage of the PSF shapes into the galaxy
shape estimates. (Section 6.2)

Galaxy property tests check for errors in the shear measure-
ment algorithm related to properties of the galaxy or its image. This
can include effects of masking as well, which involve the other
objects near the galaxy being measured. (Section 6.3)

B-mode statistics check for systematic errors that show up as a
B-mode signal in the shear pattern. The gravitational lensing signal
is expected to be essentially pure E-mode. Most systematic errors,
in contrast, affect the E- and B-mode approximately equally, so the
B-mode is a direct test of systematic errors. (Section 6.4)

Cross-catalogue comparisons check that the two shear cata-
logues are consistent with each other. It has previously proven ex-
tremely challenging to test the agreement between two catalogues
directly, because of the calibration corrections that are required
when selecting any given subset of a catalogue. In particular, the
METACALIBRATION selection bias correction in equation (17) re-
quires executing any selection cuts on the sheared renditions of
the galaxy images. It is impractical to run IM3SHAPE in this con-
text, and even less so to incorporate METACALIBRATION cuts into
the IM3SHAPE bias correction simulations. This makes it impracti-
cal to use direct shear comparisons, either object-by-object or on
populations, to compare the catalogues.

The best cross-catalogue comparison we can make is therefore to
compare the results they yield at the ‘science’ level, such as cos-
mological parameter constraints from shear-shear or galaxy-galaxy
lensing. These tests are described in accompanying papers (DES
Collaboration 2017; Prat et al. 2017; Troxel et al. 2017). Con-
sidering the large differences between the METACALIBRATION and
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Table 4. Residual multiplicative bias in the HOOPOE simulations under various divisions. For reference the top line shows the result of applying the fiducial
calibration to the whole catalogue, and is identical to the ‘grid’ line in Table 3 and the purple diamonds in Fig. 14. The other lines show the remeasured biases
when using disjoint calibration and validation subsets of the simulation. We split first at random, such that there are equal numbers of HOOPOE galaxies in each

subset, and then such that there are equal numbers of COSMOS profiles in each.

Split type Am® Am® Am®
None 0.0069 + 0.0044 —0.0014 £ 0.0046 —0.0074 £ 0.0030 0.0013 £ 0.0034
At random 0.0021 £ 0.0046 —0.0018 £ 0.0039 —0.0095 £ 0.0039 —0.0027 £ 0.0054

By COSMOS profile 0.0034 + 0.0062

—0.0006 £ 0.0060

—0.0048 £ 0.0037 0.0073 £ 0.0039

IM3SHAPE codes, these are very stringent tests, especially since no
tuning or modification of any kind was performed to ensure agree-
ment of the results from the two codes. Agreement in cosmological
parameter constraints demonstrates the agreement of the catalogues
for one specific scientific use case, not general agreement in other
areas.

6.1 Spatial tests

Several sources of error related to the variation in pixel behaviour
and response across the CCDs might, if not properly accounted for,
leave an imprint on the shape catalogue. These could include silicon
‘tree rings’ (Plazas et al. 2014a), CCD defects and bad columns,
and a ‘glowing-edge’ effect in which the pixels at the edges of the
CCDs have a different effective size to those in the bulk. To search
for these effects we can bin the catalogues in pixel and field-of-view
coordinates. We can also plot mean shears in radial bins around the
central points of exposures and CCDs — if all is well these points
should have the same signal as randomly chosen points.

Another potential spatial bias comes from the effects of masks in
the data, which can have a preferred direction. Columns of CCDs,
for example, are often masked out together, and diffraction spikes
orient with the optics of the telescope. The DES focal plane does not
rotate, so these effects always correspond to the same orientation
in sky coordinates. This can affect shape measurement of galaxies
near the edge of the mask in two ways — a selection effect on
their detection since objects aligned perpendicularly to the mask
are more likely to have pixels removed, and on the measurement of
their signal-to-noise, for a similar reason. The latter effect, which is
expected to be larger, is included in the METACALIBRATION response
function and the IM3SHAPE simulations. The exposure dither means
thatif a galaxy is masked in one exposure it is generally not in others;
this reduces the size of the former effect. No detection selection bias
is seen in simulations with real masks.

6.1.1 Position in the field of view

Fig. 16 shows the mean ellipticity for each pixel in the focal plane,
binned across all exposures. No trends or problematic regions are
visible in the plot, which is consistent with noise.

6.1.2 Tangential shear around field centres

Fig. 17 shows the tangential shear binned by radius around field
centres (the set of points where the centre of the focal plane is
pointing over all exposures) of the Y1 survey. The mean tangential
shear around a comparable number of randomly selected points
is subtracted before plotting. No significant difference is seen at
separations 6 < 200 arcmin, but on larger scales we see a significant
deviation of y, up to 107> around the centres (note that figure shows
0y,). We verify in Prat et al. (2017) that this contamination is not a
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significant contaminant to the cosmological y, signals in our bins;
other users of these catalogues should perform similar tests for their
science case.

6.2 Tests of the PSF correction

6.2.1 Shear—PSF size correlation

Fig. 18 shows the mean shear in galaxies in bins of the size of
the PSF for the two catalogues, each using its own size metric.
In each case a mean shear is visible, which is discussed further
in Section 7.1. The mild trend in e, is negligible compared to our
measured results.

6.2.2 Shear—PSF ellipticity correlation

Fig. 19 shows the mean estimated shear in bins of PSF model
ellipticity. The clearly detected correlation between shear and PSF
ellipticity can be an indication of imperfect deconvolution of the
PSF from the galaxy image, or of simply imperfect modelling of the
PSEF. Paulin-Henriksson et al. (2008) demonstrate that size errors in
the PSF model can potentially produce an additive bias in the shear
in the direction of the PSF ellipticity.

The trends in Fig. 19 can also be produced when there is a
correlation between the PSF ellipticity and the PSF model ellipticity
errors (i.e. a non-zero p,, see Section 3.3). We find that while in this
case PSF model size errors do not significantly contribute to Fig. 19,
the PSF model ellipticity errors (and their correlation with the PSF
model ellipticity) do. We split up the « term in equation (2), into a
‘true’ o from imperfect deconvolution and a term § from imperfect
measurement:

ci =a;pi + Bigi, (24)

where p; is component i of the PSF model ellipticity and ¢; is
component i of the PSF model ellipticity error, i.e. ¢; = p; — pi™©.
For perfect deconvolution, we expect o = 0. On the other hand, we
expect B to be of order —1 for any shape measurement algorithm,
since an error in the PSF model ellipticity will propagate to an error
of the same order of magnitude, but opposite sign, in the inferred
shear (see Paulin-Henriksson et al. 2008 for a theoretical estimate
of the linear order effect of PSF size and ellipticity errors).

While we can estimate the PSF model ellipticity errors g; at the
position of stars, we do not have an estimate at galaxy positions,
so we cannot directly estimate the coefficient 8. However, we can
use the fact that PSF modelling errors are spatially correlated either
in focal plane coordinates (as demonstrated in Fig. 8) or in sky
coordinates (as demonstrated by the non-zero p; in Section 3.3).
We take advantage of the former by computing a PSF ellipticity
residual estimate for each galaxy in our sample by interpolating
the ellipticity residual maps at Fig. 8 to the focal-plane positions
where the galaxy appears. We average this quantity over the multiple
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Figure 16. The mean ellipticity for METACALIBRATION (left) and IM3SHAPE (right) binned by position in the focal plane. Each bin is approximately 400 pixels

across. The IM3SHAPE catalogues use only r-band data and so are noisier.
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focal plane positions at which each galaxy was observed; call this
g:- We can then compute the correlation of this quantity with the
inferred shear; this is shown in Fig. 20. For both components, the
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for each pair i = (1, 2) for each quantity. See Section 6.2.2 for a description
of this latter quantity.

slope (which in our model is given by f) is indeed O(— 1) (8; =
—1.08 £ 0.08, B> = —1.05 £ 0.07).

With this estimate of $ in hand, we can then estimate the con-
tribution of PSF model ellipticity errors to the correlation between
shear and PSF model ellipticity in Fig. 19. Assuming o = 0 we
expect a slope

86,‘
api

) 9gi
13171'.

=B (25)
We estimate the derivative on the right hand side using the ellipticity
measurements of the ‘reserved’ stars described in Section 3.3. We
find an expected contribution to the slope of de; vs. epsg as shown
in Fig. 19 of g%‘l = —0.030 and gizz = —0.018 for two components
in METACALIBRATION. For both the catalogues the overall leakage
from PSF to shear is explained well by this term alone.
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Figure 21. Tangential shear around stars, which have been split into a bright
(14 < m; < 18.3) and a faint sample (18.3 < m; < 22). The faint sample
includes stars used for PSF modelling while bright stars are used to test other
effects related to the saturation around them. The error bars come from the
jackknife method. The grey band is 10 percent of the weakest expected
signal, as in Fig. 17. The deviations from null in this test at small scales
were excluded by the scale cut & > 30 arcmin.

6.2.3 Tangential shear around stars

Since stars will not act as effective gravitational lenses of distant
galaxies the measurement of tangential shear around them provides
a null test that can reveal problems that could potentially contami-
nate the galaxy—galaxy lensing signal. In particular, the tangential
shear around faint stars, which includes objects used to constrain
the PSF modelling, can be used to check issues with PSF modelling
and interpolation. On the other hand, bright stars are not used in
the PSF modelling but can induce problems around them due to
blending and pixel saturation. We define the bright/faint cuts from
J16, with 14 < m; < 18.3 for the bright sample and 18.3 < m; < 22
for the faint one.

The results of these tests are shown in Fig. 21, for both METACAL-
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Figure 22. The mean galaxy shear as a function of the signal-to-noise
(METACALIBRATION top, and IM3SHAPE bottom). The solid lines are a linear
best fit to the data points.

IBRATION and IM3SHAPE. We find the signal to be consistent with
zero in all cases, using the covariance from jackknifing the stars.

6.3 Galaxy property tests

6.3.1 Galaxy signal-to-noise

Fig. 22 shows the mean ellipticities e; and e, after calibration for the
two catalogues in bins of measured signal-to-noise. The S/N value
for each catalogue comes from its own measurement process, and
different cuts have been applied, so the galaxies in corresponding
bins are not identical.

The IM3SHAPE calibration process uses signal-to-noise as a cal-
ibration parameter, so after calibration the mean shape should be
uncorrelated with signal-to-noise. The METACALIBRATION calibra-
tion process should also remove any correlation. Any physical cor-
relations between shape and brightness should have no preferred
direction, and therefore should not appear in Fig. 22.

Neither catalogue shows a strong trend in shear with S/N. Both
catalogues have a non-zero mean shear which is visible here and
discussed in Section 7.1.

6.3.2 Galaxy size

In IM3SHAPE the size of source galaxies is measured by Ryy/R, as
described in Section 5.1, and in METACALIBRATION we measure it
asT? , where T'is defined in equation (3). In neither case should any
correlation between the size and ellipticity be present after applying
the calibration process. Fig. 23 shows mean galaxy ellipticity as a
function of the size metrics. In neither case do we see any significant
trend in ellipticity as a function of galaxy size.

6.4 B-mode statistics

In general relativity (GR) lensing produces an E-mode (curl-free)
pattern in the shear field, and no detectable B-mode (divergence-
free) pattern. Contaminants to the signal such as PSF or other leak-
ages might produce either mode, so if we assume GR we can use
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Figure 23. The mean galaxy shear as a function of the galaxy size (META-
CALIBRATION top, on a logarithmic scale, and IM3SHAPE bottom). The solid
lines are a linear best fit to the data points.

the presence of B modes as a null test.® In Fig. 24 we show to-
mographic B-mode measurements using the redshift bins used for
cosmology measurements in Troxel et al. (2017) and DES Collab-
oration (2017). They are computed using a pseudo-C, estimator
(Hikage et al. 2011). The displayed x? values are for individual
bins; the total x 2 values, which also account for the correlations be-
tween bins, are 99.8 for METACALIBRATION and 90.8 for IM3SHAPE,
which for 90 data points indicates no evidence for B-modes.

6.5 Summary of systematics tests

There are two additive systematics, a PSF-related term and mean
shear, which should each be subtracted, marginalized over, or
demonstrated to be subdominant in precision analyses. They are
described in Sections 3.3 and 7.1, respectively.

There is also a residual uncertainty in the overall multiplicative
calibration of the two catalogues, which should be marginalized
over. This is described in Section 7.6.

We have found no tests that imply any further systematic errors
are present at a level significant for our cosmological analyses.

7 USING THE SHEAR CATALOGUES

7.1 Mean shear

Both catalogues show a non-zero mean ellipticity over the entire Y 1
survey, with a value e;, = (3.5, 2.8) x 10~* for METACALIBRATION
and e;, = (0.4, 2.9) x 10~* for IM3SHAPE. This is marginally too
large to be the mean of cosmic shear over the field: in log-normal
simulations we find a standard deviation of the mean e;» ~ 1 x 107*
over our region. An added constant shear will appear as a constant
offset in correlation function measurements, so this signal should
either be subtracted or marginalized over in cosmological parameter
estimation.

The origin of this mean shear is not known definitively, and
may be the combination of several effects. Charge self-interaction
effects in the DECam CCDs on star and galaxy profiles are expected

8Higher order lensing effects and PSF leakage can both generate B modes,
but not at a level detectable here.
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Figure 24. The measured B mode in METACALIBRATION (blue circles) and IM3SHAPE (red triangles), and the corresponding detection x2 values. The
measurements use the tomographic bins 1—4 as used in Troxel et al. (2017), and the auto- and cross-correlations between them are shown. The value is expected
to be close to zero in the absence of systematics. Error bars were calculated from a set of lognormal simulations matching the DES-Y1 survey geometry and
redshift distributions. The grey b and show = the E-mode signal in a fiducial cosmology.

to cause mean shears in the e direction that are of the order of a few
times 10~* (cf. table 1 of Gruen et al. 2015). The PSF correlations in
Fig. 19 are also expected to contribute a similar order of magnitude,
but our model of the PSF model errors does not entirely describe
this mean shear (Troxel et al. 2017).

7.2 Catalogue flags

Each catalogue uses its own flagging scheme to determine which
galaxies can safely be used in science applications.

IM3SHAPE uses a similar flagging scheme as in J16, based on
a small number of ‘error flags’ that remove extreme objects,
and a larger number of ‘info flags’ that remove the tails of his-
tograms in various quantities. They are combined into a single

MNRAS 481, 1149-1182 (2018)

FLAGS_SELECT=0 value in our final catalogues. The flags are ap-
plied when computing the calibration scheme, so they should always
be used identically in precision applications, by requiring:

FLAGS_SELECT = 0. (26)

The flag values are described in Appendix E. The main changes
we have made since J16 are reducing our minimum S/N from 15
to 12, and our minimum R,,/R,, from 1.15 to 1.13, reflecting our
improved calibration simulations for small faint objects.

The METACALIBRATION catalogue can be adapted to new data
cuts, as described below in Section 7.4. As a default cut, which is
incorporated into the FLAGS_SELECT column, we use and recom-
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Figure 25. Multiplicative bias for IM3SHAPE, measured from the HOOPOE
image simulation. Solid lines show the measured bias after imposing a
maximum r-band magnitude, using the measured values from the SEX-
TRACTOR run on the simulation. Dashed lines show the same, but defining
the cut using the input magnitudes. Purple curves use the fiducial calibra-
tion scheme described in Section 5.2, and blue curves are uncalibrated.
The shaded region shows the 2.5 per cent range that is our final IM3SHAPE
calibration uncertainty. This illustrates the danger of selection biases when
cutting on any observable which correlates with ellipticity, as magnitude
does.

mend:

S/N > 10
T/Tpse > 0.5 27

7.3 Applying the IM3SHAPE calibration

The IM3SHAPE calibration yields m and c values for each object, but
because they include corrections for selection biases these values
are only correct when applied to the specific default IM3SHAPE cuts.
Further cuts can induce biases due to noise that correlates between
ellipticity and other quantities. We have verified in Section 5.3.2
that the specific split into tomographic bins used in concurrent DES
papers does not induce a significant bias, but this cannot be assumed
for any other binnings. An example of a cut that does induce sig-
nificant bias is shown in Fig. 25, which illustrates that imposing an
upper magnitude limit can induce biases of 2—6 per cent, depending
on the limit.

The IM3SHAPE calibration is applied in the same manner as it was
in J16. The estimator for the mean shear on an ensemble of galaxies
is
Zi wi(ea,i — Ca,i)

Swi(l+myp) ’

where a = 1, 2 and i sums over all objects. For a shear two-point
estimator, the additive ¢ correction should first be applied, then the
galaxy pairs rotated to the tangential and cross directions e* and
e, and the weights and multiplicative corrections applied to these
rotated values:

> Zj w,-wj(efrej+ + el-xejx)

= 2
TS w4y’ @)

(Va) = (28)

where the sums run over (i, j) pairs separated by angle 6.
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7.4 Applying the METACALIBRATION calibration

To calibrate the METACALIBRATION catalogues we make use of the
five different sets of measurements that the code makes on each ob-
ject: on the original image, and on versions positively and negatively
sheared in the ¢, and e, directions. We can use these measurements
to calibrate bias in both the shape measurement for each object, and
any selection biases. The metacalibration process can only calibrate
selection biases when cuts are made on quantities which have been
measured by the METACALIBRATION estimator, so that equation (17)
can be used to calculate corrections. These include, but are not
limited to, galaxy and PSF sizes and ellipticities, S/N, and fluxes.

As an example of the process, one should use this calculation to
estimate the mean shear under some selection:

(i) For a given selection criterion S, and for each shear component
y1 and y, determine three subsets of the catalogue:

So- by applying S to the column measured on the original image,

S.- by applying S to the column measured after positive shear
in component i,

S_- by applying S to the column measured after negative shear
in component .

(ii) For each pair of shear components i, j, compute R, , the
average of column R;; over galaxies in Sy

(iii) Compute Ry, = ({e;)s, — (e;)s_)/ Ay, where the e; columns
are the ones measured on the original image, and the averages are
taken over the subsets in the subscripts. For DES Y1 we used Ay =
0.01.

(iv) The complete response for the ensemble is R;; = Ry, +
8,‘ j R si

(v) The best estimate for the mean shear is y; = R;; ! (ej)s,

The process for correcting a two-point estimator in the same way is
described in SH17. For convenience, the default FLAGS_SELECT col-
umn has four additional sheared versions, FLAGS_SELECT_X, where
Xisin {1Ip, Im, 2p, 2m}, representing the component and direction
of the sheared version of the flag.

To enable bias correction of samples selected by photometric
redshift, we have applied our photo-z estimators to the flux mea-
sured for each galaxy by METACALIBRATION both before and after
the METACALIBRATION shears are applied (there are four additional
catalogues, for +8e;,). Given a galaxy selection, if the mean of
the shears is to be used, for example in the null tests described in
Section 6, the correction factors in Section 4 must be applied. The
calibration factor that must be applied when constructing two-point
statistics is described in SH17. For higher order statistics an equiv-
alent calibration should be derived. The selection biases in mean
shear for the DES redshift bins range from 1.1 to 2.5 per cent.

Note that the correction factors applied to each METACALIBRA-
TION object are large, because the model used is so simple, so
neglecting them is unlikely to be a good approximation in any con-
text.

7.5 Number density

Values of the (effective) number density and shape variance for
three definitions for the two catalogues are shown in Table 5. The
raw value is simply the total number of selected objects per unit
area.

The variance 03 of the estimated shear in a catalogue quantifies its
overall constraining power. This quantity is generally split into oyz =
aez /Nege, Where aez is a shape variance and n.¢r a number density. Any
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Table 5. Number density values and noise per component using various
definitions as described in the text for the two catalogues.

2

Catalogue Definition Number/arcmin O,
METACALIBRATION Raw 6.38
Chang-13 5.96 0.27
Heymans-12 6.38 0.28
IM3SHAPE Raw 4.02
Chang-13 3.16 0.25
Heymans-12 3.72 0.28

pair of definitions of these two quantities that yield the correct oyz
may be used as a metric to quantify the constraining power.
The definition described in Chang et al. (2013) is given by

R _ (30)
eff 1 o +al,
where A is the surveyed sky area. For METACALIBRATION the mea-
surement noise a,fu- is derived from the estimated measurement
covariance matrix, accounting for the response term, and the intrin-
sic shape noise o2 then derived from this and the total observed
variance (the denominator). For IM3SHAPE the shape noise is esti-
mated from high signal-to-noise objects where measurement noise
is minimal, and the measurement noise derived from this and the
total variance.
The total shape variance o> for one galaxy is the term 03, + 02 ;.
The definition in Heymans et al. (2012) is useful here for com-
parison to other surveys:

2
= L)
¢ A w;

Since we use unit weights for METACALIBRATION this is the same as
the raw value for that catalogue.

(3D

7.6 Systematic error budget

Additive errors from the PSF, including the aepsp PSF leakage
term, have been discussed in Section 6.2. In the following, we will
describe the budget of multiplicative systematic errors m to be used
with both shape catalogues. In general, where we have an untreated
systematic then we add the full width of its possible range to the
prior on m. Where we have a systematic that is treated but we believe
the treatment to be imperfect, we add 50 per cent of the width to the
prior.

We do not have a hard requirement on the multiplicative bias,
since any uncertainty can be marginalized over at the parameter
estimation stage, but at about 2 per cent uncertainty the associated
error is comparable to the statistical uncertainty in the data.

7.6.1 METACALIBRATION

The dominant contribution to the systematic calibration uncertainty
of the METACALIBRATION shear catalogue is the effect of overlapping
objects.

Additional multiplicative bias contributions arise from two ef-
fects related to the slight size bias of our PSF models, described in
detail in Sections 4.5 and 4.5.1. These are strongly subdominant
to the neighbour bias and its uncertainty, especially when added in
quadrature, which is appropriate since the effects are a priori uncor-
related. An overview is shown in Table 6, which results in a total
Gaussian prior on the multiplicative bias with centre m = 0.012
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Table 6. Multiplicative bias budget for METACALIBRATION. For the effect
of contributions that are correlated between redshift bins on tomographic
analyses, see Appendix D.

Effect Bin Mean Gaussian o,
correlation (1072) (1072)
Stellar contamination Yes 0.0 0.2
PSF size bias Yes 0.0 0.3
Neighbour bias Yes 1.2 1.2
Total 1.2 1.3

and 1o width 0.013. We note that all of the effects contributing to
METACALIBRATION multiplicative bias are potentially highly corre-
lated between source redshift bins in a tomographic analysis, a fact
that needs to be accounted for (see Appendix D for details).

7.6.2 IM3SHAPE

As in DES-SV (see Jarvis et al. 2016, their section 7.3.2), we cali-
brate the IM3SHAPE catalogue using image simulations. For DES Y1,
however, we have developed a new independent pipeline for gen-
erating image simulations, which includes several improvements
intended to mimic the properties of actual Y1 data as closely as pos-
sible (see Table 2 and Samuroff et al. 2018). Unlike SV, where the
multiplicative bias uncertainty was estimated by the (dis)agreement
of our two pipelines on simulations, our systematics budget for
IM3SHAPE is now set by quantifiable residual uncertainties in the
statistics and methodology of the simulation-based calibration.

A main part of this uncertainty is due to the effect of detected
and undetected neighbours on multiplicative bias. Comparison of
IM3SHAPE runs on identical sets of simulations with and without
neighbouring galaxies (Samuroff et al. 2018) (see their fig. 16) has
shown a mean shift in calibration corresponding to Am = —0.034
— mean shears measured in simulations with neighbours are about 3
per cent larger than for a sample of fully isolated galaxies. While our
simulation-based calibration is a bona fide correction of this effect
that should capture its dominant influence on shape measurement,
some aspects of the effect in real data might not be captured in
the simulations. Among these are the relative alignment of physical
neighbours and coherently sheared projected neighbours (both of
which, however, influence the distribution of relative alignments
only slightly), the influence of completely blended galaxies (which
are rare in DES data), or the clustering and coherent alignment of
undetected background galaxies (which are, however, altogether a
subdominant contribution to neighbour-related bias in IM3SHAPE as
shown in Samuroff et al. 2018). We therefore assume half of the
neighbour-induced shift in our calibration as an uncertainty, giving
o, = 0.017, which is conservative given the degree of realism
present in the simulations.

Additional systematic uncertainties in the simulation-based cali-
bration are due to

(1) assignment of cut-out sizes in the MEDS file — While stamp
size in the real data is based on measurements of a source’s size and
ellipticity performed on the coadd using SEXTRACTOR, in the bulk
of the simulations the code mistakenly truncated each simulated
galaxy’s image at the bounds of a postage stamp of the original
source whose position it was taking. Larger or highly elliptical
galaxies in our simulations are therefore often assigned smaller
boxes than they would in the data. When we remove galaxies from
the simulations that are in an incorrectly sized box, the population of
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galaxies used in deriving the calibration significantly changes. We
were unable to devise a cut based on the true input properties of the
simulated galaxies that did not significantly alter the ellipticity and
size distributions. Reweighting was found to be unreliable (since
the cut leaves very few large elliptical galaxies to upweight) and
not robust to binning in S/N and Rgp/R,. Re-running the calibration
on a small subset of the data with this problem fixed, we find a
maximum change in multiplicative bias of 0.025.

We conservatively assume a top-hat prior of |m| < 0.025 per red-
shift bin, corresponding to a Gaussian o, = 0.014. While this is a
non-negligible contribution to our overall error budget, rerunning
the full simulation with box sizes assigned according to properties
measured in the stack, as is done in the data, would require a large
computational overhead and represents a non-trivial restructuring
of the simulation pipeline that we defer to future work.

(ii) removal of bad objects from the COSMOS galaxy sample —
We have manually identified galaxies among the COSMOS library
that show issues potentially affecting multiplicative bias calibra-
tion (see Appendix A). The change in calibration when removing
flagged galaxies is at most 0.009 among the top-hat redshift bins.
Despite these efforts, the choice of which galaxies to remove re-
mains somewhat subjective, and the change in the galaxy properties
of the sample that ends up being used in the simulations could
cause a small systematic difference of our calibration sample from
the galaxies present in the real data. We therefore assume half of
the observed shift, or 0.005, as a systematic uncertainty.

(iii) variation of morphology as a function of redshift — Our cal-
ibration is described by a function of signal-to-noise ratio and size,
which are the two most important parameters affecting noise and
selection biases, and performed separately for galaxies better fit by
bulge- and disc-type Sérsic profiles. Noise bias does, however, de-
pend on additional galaxy properties whose distributions at given
signal-to-noise ratio and size vary as a function of redshift. When we
apply the calibration derived from the full galaxy sample to a red-
shift bin in our simulations, we therefore find deviations from zero
bias, which are at most at the level of 0.01. These residual biases are
robust to all of the choices which enter the calibration scheme (in-
terpolation, binning, etc.). Since lensing analyses virtually always
employ some implicit or explicit redshift-dependent re-weighting
of sources, we assume an additional systematic uncertainty of this
size in each redshift bin.

Summing in quadrature, these effects amount to a Gaussian system-
atic uncertainty of o, = 0.018.

The volume of our simulations is large but finite, leading to a
statistical uncertainty on mean m of o, = 0.002.

In addition, IM3SHAPE suffers biases from the mean size resid-
ual in our PSF models. To assess the impact of error in the inter-
polated PSF kernel at source positions, we run IM3SHAPE on the
high S/N simulations described in Section 4.5.1. These images con-
sisted of analytic profiles under constant shear g = (0.01, 0.00),
and convolved with highly elliptical Moffat PSFs. Using these sim-
ple simulations we compute a single-number mean bias m. Given
the lack of variance in g, and the low noise in these images the
statistical error on these measurements can safely assumed to be
negligible at O(10~*). Comparing the results from the reference
simulations (no PSF size bias) with a set of images with a mean
dilation (ATps:/T) ~ 8.3 x 107* we find a change in the mean
multiplicative bias of Am = 0.006. While these simulations likely
capture the dominant part of the effect, realistic galaxy morphol-
ogy might change the result at a second order level. Adopting a
conservative approach, we scale this observed change by a factor
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Table 7. Multiplicative bias budget for IM3SHAPE. The calibration system-
atic error includes the effects of cut-out size, removal of bad objects from the
COSMOS sample, and variation of morphology besides size as a function of
redshift. For the effect of contributions that are correlated between redshift
bins on tomographic analyses, see Appendix D.

Effect Bin Mean Gaussian o
correlation [1072] [1072]
Stellar contamination Yes 0.0 0.1
PSF size bias Yes 0.0 0.4
Neighbour bias Yes 0.0 1.7
Calibration statistical Yes 0.0 0.2
Calibration systematic No 0.0 1.8
Total 0.0 2.5

of 1.5 before incorporating it into our m prior. After conversion
to Gaussian width, maintaining variance, the total impact is o, =
0.005. Note that we find no change in additive biases between the
two simulations.

Contamination of our IM3SHAPE source sample with point sources
is a negligible effect at the strict cuts we have applied to the cata-
logue, which we include in the error budget at an estimated level
below one per-mille.

Adding these effects in quadrature, as shown in an overview in
Table 7, we arrive at a total Gaussian prior on the multiplicative
bias with centre m = 0.0 and 1o width 0.025. Some of the effects
contributing to the multiplicative bias are correlated between source
redshift bins and estimated in a way that requires us to account for
this fact in a tomographic analysis (see Appendix D for details).

8 SUMMARY AND DISCUSSION

We have presented two independent catalogues of shape measure-
ments of galaxies imaged in Year One of the Dark Energy Survey,
covering 1500 deg? of the Southern sky and containing 34.8 million
(for METACALIBRATION) and 21.9 million (for IM3SHAPE) objects.
They have passed a battery of tests that demonstrate that, when ap-
propriately used with calibration and error models, they are suitable
for weak lensing science. In companion papers we also demonstrate
that these catalogues lead to consistent cosmological constraints: in
Troxel et al. (2017) we study constraints from cosmic shear, in Prat
et al. (2017) we examine galaxy—galaxy lensing, and in DES Col-
laboration (2017) we study both in conjunction with galaxy density
correlation functions.

This work is the first application of the metacalibration method
to real data, and demonstrates its significant power in the face of
noise and model biases, and especially for its approach to dealing
with the pernicious issue of selection biases. This work also makes
use of the most sophisticated image simulations currently used for
lensing noise and model bias calibration, which account for a wide
range of systematic effects that would otherwise produce a signifi-
cantly biased IM3SHAPE catalogue. We emphasize the importance of
carefully ensuring that simulations match the data in as many ways
as possible, including PSF patterns, masks, weights, and processing
selections.

Since the analysis of our science verification SV data in Jarvis
et al. (2016) we have made the following improvements to our
shape pipelines, in addition to the improvements in data reduction
described in Drlica-Wagner et al. (2018):
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(1) Implemented the metacalibration technique, to incorporate
internal calibration of measurement and selection biases, into the
METACALIBRATION pipeline.

(ii) Included neighbours, sub-detection objects, stars, masks, re-
alistic PSFs, and multiple exposures, in our calibration simulations
for the IM3SHAPE pipeline.

(iii) Explored the effects of blending on our results.

(iv) Identified that PSF-associated errors arise almost solely from
mis-estimation of the PSF itself.

(v) Enumerated a full list of error sources contributing to our
final uncertainty.

As in the SV analysis, having two independent methods for shear
estimation has provided us with significantly greater confidence in
the robustness of the catalogue calibrations.

Like all weak lensing catalogues, the DES Y1 results come with
an uncertainty on overall calibration in the form of a multiplicative
bias m. Correctly and conservatively determining priors on this
quantity is a vital part of characterising a lensing catalogue, and in
this case we obtain o, ~ 1.2 x 10~2 for METACALIBRATION and &,
~2.5 x 1072 for IM3SHAPE. These values are small enough that this
systematic is subdominant in cosmic shear cosmology parameter
estimation. An additional correction is required due partly to mis-
estimation of the PSF, which leads to correlation of the inferred
shear with the PSF shape and a correctable residual additive bias in
the catalogues.

The data presented here comprise only 20 percent of the full
Dark Energy Survey, and work to analyse the subsequent 2 yr of
data has already begun. To fully exploit that upcoming opportu-
nity, the methods described here must be refined and improved in
a number of major ways. We plan to further extend our calibration
simulations to more precisely mimic the processes applied to real
data. We will continue to improve and adapt our shape measurement
algorithms, including incorporating new methods like BFD and ap-
plying novel calibration techniques like metacalibration to existing
methods like IM3SHAPE using multiple bands. We are also in the pro-
cess of implementing a new PSF measurement pipeline to reduce
the significant PSF model residuals found in our Y1 catalogues.

The catalogues presented in this paper will be made publicly
available following publication, at the URL https://des.ncsa.illinoi
s.edu/releases.
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APPENDIX A: THE COSMOS EYEBALL
PROJECT

It was noted after they had been run that the simulations described
in Section 5.2 contained a small number of obvious artefacts, origi-
nating from defects in the input COSMOS profiles. These included
deblending failures, and objects with diffuse light profiles truncated
at the edges of the postage stamp. Two such objects are shown in
Fig. Al. To assess the level to which these objects affect shape
measurements on the simulations we initiated a small-scale crowd-
sourcing project within the scientific community of the Dark Energy
Survey. Our specific aim here was to compile a list of COSMOS
galaxies in our input catalogues that are qualitatively ‘bad’, and so
should be excluded from our simulations.

Figure A1. Examples of profiles flagged as ‘bad’ by the COSMOS clas-
sification exercise described in the text. The two galaxies shown here were
classed as artefact (left) and box too small (right). For a breakdown of the
number in each category see Table Al.
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Figure A2. Change in the multiplicative bias (top) and additive bias (bot-
tom) after removal of bad COSMOS profiles, relative to the value derived
using all galaxies. In the lower panel the filled markers show the ¢; compo-
nent and the open ones show c>.

The exercise was set up as follows. Each deconvolved COSMOS
galaxy was reconvolved with a small nominal PSF and rendered into
a postage stamp image at HST pixel resolution with no additional
noise. The images were compiled in random order, and via a simple
web interface users were assigned batches of ~100 images. Galaxies
were assigned to the categories shown in Table Al.

To test the impact of the aberrant COSMOS profiles on the
IM3SHAPE calibrations we fit for multiplicative and additive bias
in the HOOPOE dataset three times with different selection criteria:
(a) IM3SHAPE quality cuts only; (b) removing any objects classed
as ‘bad’ for any reason; and (c) the same as (b), but additionally
cutting any galaxies that fall within a circular aperture of 100 pixels
around each flagged COSMOS profile. The results, in four DES
Y1-like tomographic bins, are shown in Fig. A2.

The straightforward cut (b) induces a shift Am that is comfort-
ably within the level of statistical error of the fit. The second test
suggests the corrupted profile may induce a small neighbour bias
on surrounding profiles, which manifests as a modulation in m. It
is worth pointing out that some of the categories listed in Table A1l
may be benign. Off-centred galaxies and those with neighbours, for
example, should not cause a problem, since we re-run SEXTRACTOR
object detection and deblending on the simulations. Our final cut on
the simulation rejects instances of COSMOS profiles categorized
under ‘artefact’, ‘box too small’, or ‘galaxy missing’. We test that
additionally cutting the other categories does not induce a statisti-
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Table Al. The number of input galaxies in the Y1 DES image simulations
presented in Chapter 3 falling under each category in the profile inspection
exercise described. The first three columns show (left to right) the total
number of COSMOS galaxies in each category from the full source catalogue
from which the simulation draws profiles, the number of simulated galaxies
affected, and the corresponding number of COSMOS profiles (note that the
second and third columns are not identical since each COSMOS profile is
drawn into multiple positions).

Category COSMOS Galaxies COSMOS profiles
profiles in HOOPOE in HOOPOE

Total 87624 17.97M 27612
Good 76707 16.93 M 25878

Box too small 3743 0.16 M 424
Artefact 1024 0.35M 410

Two galaxies 542 040M 375
Galaxy missing 4212 0.08 M 354

Off centre 915 0.05M 171

Other 481 0.10M 127

cally significant change in bias. Based on the results in Fig. A2, we
also incorporate a Gaussian component of width o, = 0.005 in the
residual m prior for IM3SHAPE.

APPENDIX B: SENSITIVITY OF HOOPOE
SIMULATIONS TO OBSERVABLE
DISTRIBUTIONS

Though our calibration appears to pass the internal tests presented
in Section 5.3, it is still possible that residual biases could arise due
to differences with the data seen in Section 5.2.5. The most notable
differences are in flux and Rgp/Rp. The raw distributions of R,p/R,
and flux are shown by the solid lines in Fig. B1, with the parent
DES data shown by the shaded histograms.

We assess the importance of these differences by reweighting the
HOOPOE simulations to match the data. In the case of Ryp/R,, we sim-
ply divide galaxies into bins of size and assign a uniform weight to
each bin, such that the simulated distribution p(Ry,/R,,) matches the
data. In the second case we carry out the same procedure for galaxy
flux. This time, however, an independent set of weights is computed
for bulge and disc galaxies, such that they each match the corre-
sponding sub-populations of the data. The reweighted distributions
are shown by the dashed lines in Fig. B1.

As pointed out by Fenech Conti et al. (2017), who carried out a
similar test for KiDS, reweighting can be problematic if the quanti-
ties in question are covariant with ellipticity. In such cases reweight-
ing to match a 1D projected distribution p(g) may be inadequate to
correct (or even worsen) differences in the 2D joint distribution p(g,
e). In each case we check both the 2D distributions (not shown
here) and the 1D p(e) histograms (shown in the right-hand panels
of Fig. B1). Neither reweighting operation is found to produce such
spurious differences.

Finally, galaxies are divided into four Y1-like tomographic bins,
as before, the fiducial calibration is applied, and the residual m
is calculated in each bin. The results are shown in Fig. B2. The
maximum change under reweighting Am in both cases is O(1073).
This is not found to have a coherent direction across z bins, and is
well within both the statistical error margin (the blue shaded boxes)
and the 1o width of our prior (the dashed horizontal lines).
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In the upper panel we show bulge and disc galaxies separately in red and
blue respectively.
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Figure B2. Change in the residual IM3SHAPE bias resulting from reweight-
ing the simulations prior to calibration, shown in the four tomographic bins
used in the DES Y1 shear 2pt analysis. The purple circles show the result
when reweighting to compensate for the excess of small galaxies shown in
the centre-right panel of Fig. 12, while the blue diamonds are reweighted
for bulge/disc flux. The blue bands mark the 1o statistical error on m, while
the horizontal dotted lines are the +10 bounds of the m prior for IM3SHAPE.
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APPENDIX C: VALIDATING THE HOOPOE
SIMULATIONS

In this appendix we describe a series of exercises to test the level at
which features of our HOOPOE simulations which are systematically
different from the data affect the multiplicative bias calibration. Any
such effects which have a non-vanishing impact must be included
in our prior on residual m after calibration.

The first limitation comes from the fact that a finite selection
of COSMOS galaxies is used to simulate a much larger sample
of DES galaxies. The cache of input profiles, though continuously
updated is relatively small, which results in the same COSMOS
galaxies appearing repeatedly within particular regions of the sim-
ulated images. Such effects could conceivably lead to additive or
multiplicative biases, if the frequency of repetition is sufficiently
high. To test this we divide the HOOPOE galaxies according to COS-
MOS identifier. For each unique profile we construct a k—d tree
data structure on the coadd pixel grid. This is repeatedly queried to
locate the nearest instance of the same COSMOS profile.

We find a mean recurrence scale of ~150 pixels or 40.5 arc-
sec, though there is a significant asymmetry in the distribution of
distances with a heavy tail out to 1000 pixels and higher. The frac-
tion of galaxies with a relatively close self-neighbour is, however,
also non-vanishing. We thus perform the following test. HOOPOE
galaxies are first assigned to four top-hat redshift bins, as described
in Section 5.3.2. In each bin we fit for multiplicative and additive
biases (a) using all galaxies and (b) using only galaxies with no
instance of the same profile within a radius of 100 pixels. The raw
number removed by the cut is relatively small, but it could conceiv-
ably favour small round objects. To ensure we are measuring the
true impact of self-neighbours, and not a selection effect from the
cut devised to remove them, we reweight the surviving galaxies.
Weights are assigned based on S/N and Rg/R,, such that, when
applied, the 2D histogram p(S/N, Rgp/R),) matches the data. We find
no significant change in multiplicative nor additive bias in any of
the redshift bins (Am ~ 107*, Ac; ~ 1079).

A second limitation concerns the nature of the input COSMOS
profiles themselves. The simulations make use of an early release of
the deep COSMOS catalogue. Due to masking errors and deblend-
ing failures a fraction of this input catalogue is visibly defective.
We use an internal crowdsourcing exercise, the details of which can
be found in Appendix A, to categorize the COSMOS galaxies into
six groups according to their visual characteristics. In the final cut
we remove profiles flagged as ‘artefacts’ or oversized relative to
their boxes. In total this removes 0.51M/18M objects from the sim-
ulated shape catalogue. Using a similar nearest neighbour search as
above, we estimate mean distance to the nearest ‘bad” COSMOS
profile to be ~90 pixels. We recompute the biases m and ¢; under
three scenarios: (a) using all galaxies, (b) cutting COSMOS pro-
files classed as artefacts or oversized and (c) the same as (b), but
also cutting galaxies drawn within 100 pixels of a bad COSMOS
profile. We find the computed biases are stable to well within 1o in
all apart from the upper redshift bin. Here we lose the bulk of the
galaxies removed by this cut, which is perhaps unsurprising given
that these objects tend to be small, faint and thus most susceptible
to deblending failures. The change in all scenarios is at the level of
the lo statistical error at Am ~ 0.005-0.0075. Though small, this
is non-trivial and so we incorporate this uncertainty as a systematic
contribution to our m prior (see Section 7.6).
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The use of the Y1 detection catalogue to source the positions
of simulated galaxies is intended to capture the galaxy clustering
patterns across the survey. It does have some drawbacks, chiefly that
it omits undetected or strongly blended galaxies (see Section 5.2.4).
A second potential limitation is this: not all detections in the Y1
source catalogue correspond to real galaxies. Spurious detections
can be produced by CCD chip edges and by image artefacts such
as satellite trails and ghosts. These detections are removed prior to
shape measurement and do not feature in the final GOLD catalogues,
but the raw detection catalogues, which are used as inputs to our
simulations, do not provide sufficient information to distinguish real
from false detections during runtime.

We tried a simple detection algorithm to flag these features, using
boxcar averaged source densities, but this was not found to reliably
detect diagonal or curved streaks. The HOOPOE images consequen-
tially include infrequent but visually striking lines of COSMOS
galaxies in these locations. To quantify the impact, we implemented
a second crowdsourcing exercise, analogous to the one described
in Appendix A. We first ran the boxcar detection algorithm on the
simulated coadd images, and created visual bookmarks for these
detections. Participants were then asked to inspect approximately
half of the simulated tiles, each of which was splitinto 5 x 5 square
patches. Patches in which the detection positions exhibited visi-
ble structure were flagged for removal. As before we then divide
HOOPOE galaxies into DES-like redshift bins and recompute m and
¢;, first including the flagged regions and then excising them. Using
all galaxies (no redshift binning) we find a shift Am = 3.7 x 1073,
which is equivalent to less than 2 per cent of the 1o statistical uncer-
tainty on m. In four redshift bins, and again reweighting to ensure
the p(S/N, R,p/R,) distribution still matches the data, we measure
m = (—0.0969, —0.1583, —0.1697, —0.2160) with the spurious de-
tection lines cut and m = (—0.0973, —0.1581, —0.1691, —0.2160)
when they are included. That is, the cut alters m by at most Am =
0.0007. Since any systematic shift is subdominant to statistical un-
certainty, we do not consider spurious detections further as a source
of systematic calibration error.

APPENDIX D: MULTIPLICATIVE BIASES IN
TOMOGRAPHIC MEASUREMENTS

The uncertainties o, on multiplicative bias m of the METACALIBRA-
TION and IM3SHAPE catalogues given in Section 7.6 are valid for our
overall source sample without redshift binning or weighting. The
true multiplicative biases present in our catalogues likely vary as a
function of redshift. We do not have a reliable model for this vari-
ation, so instead must use different multiplicative bias parameters
m; for different bins in tomographic analyses. In this appendix we
consider how m values should be statistically correlated between
redshift bins. Which choice of covariance matrix is more conserva-
tive depends on the type of parameter that we are measuring (see
also Hoyle et al. 2018, their appendix A).

Consider two hypothetical parameters to be estimated from a to-
mographic lensing measurement with two bins, denoted by S (pro-
portional to the sum of amplitudes in the low- and high-redshift bin)
and D (proportional to the difference of these amplitudes). Practical
examples for S include Sy = 034/, /0.3, and for D include photo-
7 bias parameters of the low- and high-redshift bin. The two most
obvious ways to marginalize over m in this scenario are

(i) to marginalize over a single parameter m with Gaussian prior
o, — this is the same as using a fully correlated m per bin, and
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is the most conservative choice possible for S. For D, though, it
underestimates the error when m varies with redshift.

(i1) to marginalize over two parameters m; and m, with fully
independent Gaussian priors of width o ,,. This is the most conser-
vative choice for D but underestimates the systematic uncertainty
of § due to m by a factor /2.

If we want to be conservative for both these types of param-
eter then we must increase o,,. If we have n redshift bins with
equal signal-to-noise, then we should use uncorrelated m values
with 0,,, = V/No,,. The generalization of this to bins with unequal
signal-to-noise ratios p; is to use o,,, = a x o0,, where

Zi,j pi24)012' ' ®1)
> Pi

For cosmic shear and redMaGiC galaxy—galaxy lensing with the

binning schemes similar to Troxel et al. (2017) and Prat et al.

(2017), we find approximately a = +/2.6 and /3.1, respectively.

We take the larger value of a as the default tomographic rescaling

of oy,

Analyses using redshift-weighted or binned versions of our shape
catalogues should take this re-scaling into account. For METACALI-
BRATION, it applies to all the contributions to o,,, and can be mul-
tiplied with the o, = 0.013 width. For IM3SHAPE, some of the
contributions are either anticorrelated between redshift bins or esti-
mated based on their maximum value among a set of redshift bins,
in which case the re-scaling is not necessary. The correct o, is

Op; = v/0.0182 + a2 x (0.0012 + 0.0042 + 0.0172 + 0.0022) .
D2)

APPENDIX E: iIM3SHAPE FLAGS

IM3SHAPE uses two sets of flags to remove objects. Many of these
flags will cause selection biases, so they are also applied in the
calibration simulations so that this effect will be taken into account.
These flags are described in Tables E1 and E2.

Table E1. IM3SHAPE error flags, for extreme objects. These are not indi-
vidually propagated into released catalogues.

Value Meaning

20 IM3SHAPE failed completely

2! Minimizer failed to converge

22 e < 10™*: IM3SHAPE fit fail

23 ey or ey outside (—1, 1)

24 Radius > 20 arcsec

23 Rep/Rp, > 6 or NaN

26 Negative or NaN Rg,/R,

27 S/N < 1 or NaN

28 x? per effective pixel > 3

2° Normalized residuals <—20 in any pixel
210 Normalized residuals > 20 in any pixel
211 RA more than 10 arcsec from nominal
212 Dec. more than 10 arcsec from nominal
213 Failed to measure the FWHM of PSF or galaxy
214 r-band SEXTRACTOR flag has 0x4 or above

In addition to these flags, the calibration process does not calibrate
objects with S/N > 200 or Rgp/R;, > 3. Objects outside this range
have FLAGS_SELECT > 0 in the catalogue.
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Table E2. IM3SHAPE info flags, for objects with any undesirable features.
These are included in the released catalogues as FLAGS.

Value Meaning

20 Area masked out in the GOLD catalogue

2! Region flagged in the GOLD catalogue

22 MODEST classifies as star

23 Mask fraction > 0.75

24 levmar_like_evals > 10 000

23 r-band SEXTRACTOR flag 0x 1, (bright
neighbours)

26 r-band SEXTRACTOR flag 0x 2, (blending)

27 More than 25 per cent of flux masked

28 SN < 12

2° S/N > 10000

210 Rop/R, < 1.13

211 Rop/R, > 3.5 (very large galaxy)

212 Radius > 5 arcsec

213 Radius <0.1 arcsec

214 Centroid more than 1 arcsec from nominal

213 %2 per effective pixel <0.5

216 % per effective pixel > 1.5

217 Normed residuals <—0.2 somewhere

218 Normed residuals > 0.2 somewhere

219 Very large PSF

220 Negative PSF FWHM

22 One or more error flags is set

APPENDIX F: METACALIBRATION RESPONSE
BEHAVIOUR

The METACALIBRATION response factors R, and R, described in Sec-
tion 4.1 can vary with any galaxy feature, since they are calculated
on a per-object basis. To illustrate the general behaviour of these
factors and their relative importance, Fig. F1 shows the size of the
different terms. Note that the two quantities plotted are calculated
slightly differently — the R, part is the correction for bias caused
by cutting out all objects below the x coordinate value, whereas
R, is the mean correction for all objects in a bin centred on the x
coordinate value.

For the specific estimator chosen here the selection bias asso-
ciated with signal-to-noise is nearly negligible, being well below
1 per cent, whereas the size selection bias is much larger, peaking
at 4 per cent. Our fiducial size cut was 7'/ Tpsz > 0.5, corresponding
to a 2 per cent correction.

Vnstitute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
2Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA
3Jodrell Bank Center for Astrophysics, School of Physics and Astronomy,
University of Manchester, Oxford Road, Manchester M13 9PL, UK
4Center for Cosmology and Astro-Particle Physics, The Ohio State Univer-
sity, Columbus, OH 43210, USA

SDepartment of Physics, The Ohio State University, Columbus, OH 43210,
USA

SDepartment of Physics and Astronomy, University of Pennsylvania,
Philadelphia, PA 19104, USA

TKavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stan-
ford University, Stanford, CA 94305, USA

8SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

9 Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Sci-
ence and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
10 Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510,
USA

Y Kavli Institute for Cosmological Physics, University of Chicago, Chicago,
IL 60637, USA

DES Year 1 results: weak lensing catalogues 1181

10(]

._.
15
L

Response Ry
—
o
8

1073 | — R,
3 — R,
10! 102
S/N
10°
< 01 b
% F
2 C
=}
g C
% -
o~ L
1072 3 — R,
C —— —R;
L | | | | | | |

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
T/Tpsp
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